RCA

Transistor Manual

INCLUDING RECTIFIERS, SILICON CONTROLLED RECTIFIERS VARACTOR DIODES, AND TUNNEL DIODES

READIO CORPORATION OF AMERICA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N. J.

RCA Transistor Manual

This manual, like its preceding edition, has been prepared to assist those who work or experiment with semiconductor devices and circuits. It will be useful to engineers, educators, students, radio amateurs, hobbyists, and others technically interested in transistors, silicon rectifiers, silicon controlled rectifiers, varactor diodes, and tunnel diodes.

This edition has been thoroughly revised to cover the latest changes in semiconductor-device technology and applications. The TECHNICAL DATA Section, as well as the text material, has been greatly expanded and brought up to date. Of particular interest to the hobbyist and experimenter are the many practical and timely additions to the CIRCUITS Section.

RADIO CORPORATION OF AMERICA

Electronic Components and Devices Harrison, New Jersey INFORMATION FURNISHED BY RCA IS BELIEVED TO BE ACCURATE AND RELIABLE. HOWEVER, NO RE-SPONSIBILITY IS ASSUMED BY RCA FOR ITS USE; NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLI-CATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF RCA.

Copyright 1964 by

RADIO CORPORATION OF AMERICA

(All rights reserved)

Trade Mark(s) Registered Marca(s) Registrada(s) 6-64 Printed in U.S.A.

CONTENTS

MATERIALS, JUNCTIONS, AND DEVICES Semiconductor Materials, P-N Junctions, Current Flow, N-P-N	3
and P-N-P Structures, Types of Devices	
TRANSISTOR DESIGNS AND CIRCUIT CONFIGURATIONS Design and Fabrication, Basic Circuits	10
TRANSISTOR CHARACTERISTICS	14
TRANSISTOR APPLICATIONS Biasing, Coupling, Circuit Stability, Amplification, Oscillation, Switching	18
SILICON RECTIFIERS Thermal Considerations, Reverse Characteristics, Ratings, Heat Sinks, Series and Parallel Arrangements, Overload Protection, Applications	49
SILICON CONTROLLED RECTIFIERS Construction, Current-Voltage Characteristics, Maximum Rat- ings, Triggering Characteristics, Overload Protection, Series Ar- rangement, Power Control, Current Ratios	59
TUNNEL, VARACTOR, AND OTHER DIODES Tunnel Diodes, High-Current Tunnel Diodes, Varactor Diodes, Voltage-Reference Diodes, Compensating Diodes	68
TRANSISTOR INSTALLATION Electrical Connections, Testing, Temperature Effects, Heat Sinks, Shielding, Dress of Circuit Leads, Filters	76
INTERPRETATION OF DATA	79
SELECTION CHARTS	82
TECHNICAL DATA	87
OUTLINES	332
CIRCUITS	342
RCA TECHNICAL PUBLICATIONS	378
READING LIST	381
INDEX	382

Materials, Junctions, and Devices

SEMICONDUCTOR devices are small but versatile units that can perform an amazing variety of control functions in electronic equipment. Like other electron devices, they have the ability to control almost instantly the movement of charges of electricity. They are used as rectifiers, detectors, amplifiers, oscillators, electronic switches, mixers, and modulators.

In addition, semiconductor devices have many important advantages over other types of electron devices. They are very small and light in weight (some are less than an inch long and weigh just a fraction of an ounce). They have no filaments or heaters, and therefore require no heating power or warm-up time. They consume very little power. They are solid in construction, extremely rugged, free from microphonics, and can be made impervious to many severe environmental conditions. The circuits required for their operation are usually simple.

SEMICONDUCTOR MATERIALS

Unlike other electron devices, which depend for their functioning on the flow of electric charges through a vacuum or a gas, semiconductor devices make use of the flow of current in a solid. In general, all materials may be classified in three major categories—conductors, semiconductors, and insulators—depending upon their ability to conduct an electric current. As the name indicates, a semiconductor material has poorer conductivity than a conductor, but better conductivity than an insulator.

The materials most often used in semiconductor devices are germanium and silicon. Germanium has higher electrical conductivity (less resistance to current flow) than silicon, and is used in most low- and medium-power diodes and transistors. Silicon is more suitable for high-power devices than germanium because it can be used at much higher temperatures. A relatively new material which combines the principal desirable features of both germanium and silicon is gallium arsenide. When further experience with this material has been obtained, it is expected to find much wider use in semiconductor devices.

Resistivity

The ability of a material to conduct current (conductivity) is directly proportional to the number of free (loosely held) electrons in the material. Good conductors, such as silver, copper, and aluminum, have large numbers of free electrons; their resistivities are of the order of a few millionths of an ohm-centimeter. Insulators such as glass, rubber, and mica, which have very few loosely held electrons, have resistivities as high as several million ohm-centimeters.

Semiconductor materials lie in the range between these two extremes, as shown in Fig. 1. Pure germanium has a resistivity of 60 ohm-centimeters. Pure silicon has a considerably higher resistivity, in the order of 60,000 ohm-centimeters. As used in semiconductor devices, however, these materials contain carefully controlled amounts of certain impurities

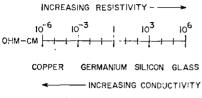


Figure 1. Resistivity of typical conductor, semiconductors, and insulator.

which reduce their resistivity to about 2 ohm-centimeters at room temperature (this resistivity decreases rapidly as the temperature rises).

Impurities

Carefully prepared semiconductor materials have a crystal structure. In this type of structure, which is called a lattice, the outer or valence electrons of individual atoms are tightly bound to the electrons of adjacent atoms in electron-pair bonds, as shown in Fig. 2. Because such a

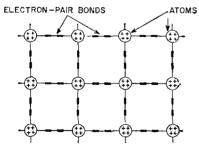


Figure 2. Crystal lattice structure.

structure has no loosely held electrons, semiconductor materials are poor conductors under normal conditions. In order to separate the electron-pair bonds and provide free electrons for electrical conduction, it would be necessary to apply high temperatures or strong electric fields.

Another way to alter the lattice structure and thereby obtain free electrons, however, is to add small amounts of other elements having a different atomic structure. By the addition of almost infinitesimal amounts of such other elements, called "impurities", the basic electrical properties of pure semiconductor materials can be modified and controlled. The ratio of impurity to the semiconductor material is usually extremely small, in the order of one part in ten million.

When the impurity elements are added to the semiconductor material, impurity atoms take the place of semiconductor atoms in the lattice structure. If the impurity atoms added have the same number of valence electrons as the atoms of the original semiconductor material, they fit neatly into the lattice, forming the required number of electron-pair bonds with semiconductor atoms. In this case, the electrical properties of the material are essentially unchanged.

When the impurity atom has one more valence electron than the semiconductor atom, however, this extra electron cannot form an electronpair bond because no adjacent valence electron is available. The excess electron is then held very loosely by the atom, as shown in Fig. 3, and requires only slight excitation to break away. Consequently, the presence of such excess electrons makes the material a better conductor, i.e., its resistance to current flow is reduced.

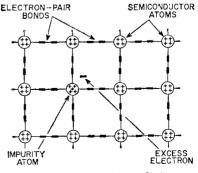


Figure 3. Lattice structure of n-type material.

Impurity elements which are added to germanium and silicon crystals to provide excess electrons include arsenic and antimony. When these elements are introduced, the resulting material is called **n-type** because the excess free electrons have a negative charge. (It should be noted, however, that the negative charge of the electrons is balanced by an equivalent positive charge in the center of the impurity atoms. Therefore, the net electrical charge of the semiconductor material is not changed.)

A different effect is produced when an impurity atom having one less valence electron than the semiconductor atom is substituted in the lattice structure. Although all the valence electrons of the impurity atom form electron-pair bonds with electrons of neighboring semiconductor atoms, one of the bonds in the lattice structure cannot be completed because the impurity atom lacks the final valence electron. As a result, a vacancy or "hole" exists in the lattice, as shown in Fig. 4. An electron from an adjacent electron-pair bond may then absorb enough energy to break its bond and move through the lattice to fill the hole. As in the case of excess electrons, the presence of "holes" encourages the flow of electrons in the semiconductor material; consequently, the conductivity is increased and the resistivity is reduced.

The vacancy or hole in the crystal structure is considered to have a

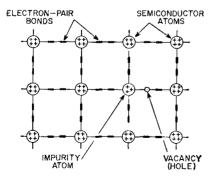


Figure 4. Lattice structure of p-type material.

positive electrical charge because it represents the absence of an electron. (Again, however, the net charge of the crystal is unchanged.) Semiconductor material which contains these "holes" or positive charges is called **p-type** material. P-type materials are formed by the addition of aluminum, gallium, or indium.

Although the difference in the chemical composition of n-type and p-type materials is slight, the differences in the electrical characteristics of the two types are substantial, and are very important in the operation of semiconductor devices.

P-N JUNCTIONS

When n-type and p-type materials are joined together, as shown in Fig. 5, an unusual but very important phenomenon occurs at the surface

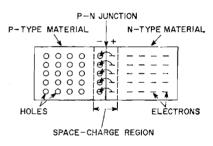


Figure 5. Interaction of holes and electrons at p-n junction.

where the two materials meet (called the p-n junction). An interaction takes place between the two types of material at the junction as a result of the holes in one material and the excess electrons in the other.

When a p-n junction is formed, some of the free electrons from the n-type material diffuse across the junction and fill holes in the lattice structure of the p-type material. This interaction or diffusion occurs for a short time in the immediate vicinity of the junction, and produces a small space-charge region (sometimes called the transition region or depletion layer). The p-type material in this region acquires a slight negative charge as a result of the addition of electrons from the n-type material. Conversely, the n-type material in the junction region acquires a slight positive charge as a result of the loss of excess electrons.

The potential gradient established across the space-charge region by the diffusion process is represented in Fig. 6 by an imaginary battery connected across the junction. (The

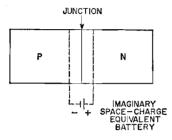
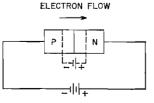



Figure 6. Potential gradient across spacecharge region.

battery symbol is shown only to represent the internal effects; the potential is not measurable.) In the absence of external circuits or voltages, this potential gradient discourages further diffusion across the p-n junction because electrons from the n-type material are repelled by the slight negative charge induced in the p-type material. In effect, therefore, the potential gradient (or energy barrier, as it is sometimes called) prevents total interaction between the two types of material, and thus preserves the differences in their characteristics.

CURRENT FLOW

When an external battery is connected across a p-n junction, the

(c) REVERSE BIAS

amount of current flow is determined by the polarity of the applied voltage and its effect on the space-charge region. In Fig. 7a. the positive terminal of the battery is connected to the n-type material and the negative terminal to the p-type material. In this arrangement, the free electrons in the n-type material are attracted toward the positive terminal of the battery and away from the junction. At the same time, electrons from the negative terminal of the battery enter the p-type material and diffuse toward the junction, filling holes in the lattice structure as they anproach the junction. As a result, the space-charge region at the junction becomes effectively wider, and the potential gradient increases until it approaches the potential of the external battery. Current flow is then extremely small because no voltage difference (electric field) exists across either the p-type or the n-type region. Under these conditions, the p-n junction is said to be reversebiased.

In Fig. 7b, the positive terminal of the external battery is connected to the p-type material and the negative terminal to the n-type material. In this arrangement, electrons in the p-type material near the positive terminal of the battery break their electron-pair bonds and enter the battery, creating new holes. At the same time, electrons from the negative terminal of the battery enter the n-type material and diffuse toward the junction. As a result, the spacecharge region becomes effectively narrower, and the energy barrier decreases to an insignificant value. Excess electrons from the n-type mate-

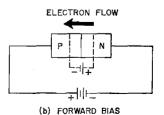


Figure 7. Electron current flow in biased p-n junctions.

rial can then penetrate the spacecharge region, flow across the junction, and move by way of the holes in the p-type material toward the positive terminal of the battery. This electron flow continues as long as the external voltage is applied. Under these conditions, the junction is said to be forward-biased.

The generalized voltage-current characteristic for a p-n junction in Fig. 8 shows both the reverse-bias and forward-bias regions. In the forward-bias region, current rises

Figure 8. Voltage-current characteristic for a p-n junction.

rapidly as the voltage is increased and is quite high. Current in the reverse-bias region is usually much lower. Excessive voltage (bias) in either direction should be avoided in normal applications because excessive currents and the resulting high temperatures may permanently damage the semiconductor device.

N-P-N AND P-N-P STRUCTURES

Fig. 7 shows that a p-n junction biased in the reverse direction is equivalent to a high-resistance element (low current for a given applied voltage), while a junction biased in the forward direction is equivalent to a low-resistance element (high current for a given applied voltage). Because the power developed by a given current is greater in a high-resistance element than in a low-resistance element (P_-I^*R) , power gain can be obtained in a structure containing two such resistance elements if the current flow is not materially reduced. A device containing two p-n junctions biased in opposite directions can operate in this fashion.

Such a two-junction device is shown in Fig. 9. The thick end layers

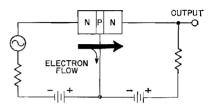


Figure 9. N-P-N structure biased for power gain.

are made of the same type of material (n-type in this case), and are separated by a very thin layer of the opposite type of material (p-type in the device shown). By means of the external batteries, the left-hand (n-p) junction is biased in the forward direction to provide a low-resistance input circuit, and the right-hand (p-n) junction is biased in the reverse direction to provide a highresistance output circuit.

Electrons flow easily from the lefthand n-type region to the center ptype region as a result of the forward biasing. Most of these electrons diffuse through the thin p-type region, however, and are attracted by the positive potential of the external battery across the right-hand junction. In practical devices, approximately 95 to 99.5 per cent of the electron current reaches the right-hand ntype region. This high percentage of current penetration provides power gain in the high-resistance output circuit and is the basis for transistor amplification capability.

The operation of p-n-p devices is similar to that shown for the n-p-n device, except that the bias-voltage polarities are reversed, and electroncurrent flow is in the opposite direction. (Many discussions of semiconductor theory assume that the "holes" in semiconductor material constitute the charge carriers in p-n-p devices, and discuss "hole currents" for these devices and "electron currents" for n-p-n devices. Other texts discuss neither hole current nor electron current, but rather "conventional current flow", which is assumed to travel through a circuit in a direction from the positive terminal of the external battery back to its negative terminal. For the sake of simplicity, this discussion will be restricted to the concept of electron current flow, which travels from a negative to a positive terminal.)

TYPES OF DEVICES

The simplest type of semiconductor device is the **diode**, which is represented by the symbol shown in Fig. 10. Structurally, the diode is basically a p-n junction similar to those shown in Fig. 7. The n-type material which

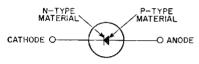


Figure 10. Schematic symbol for a semiconductor diode.

serves as the negative electrode is referred to as the **cathode**, and the p-type material which serves as the positive electrode is referred to as the **anode**. The arrow symbol used for the anode represents the direction of "conventional current flow" mentioned above; electron current flows in a direction opposite to the arrow.

Because the junction diode conducts current more easily in one direction than in the other, it is an effective rectifying device. If an ac signal is applied, as shown in Fig. 11, electron current flows freely during the positive half cycle, but little or no current flows during the negative half cycle.

One of the most widely used types of semiconductor diode is the silicon rectifier. These devices are available in a wide range of current capabilities, ranging from tenths of an ampere to 40 amperes or more, and are capable of operation at voltages as high as 800 volts or more. Parallel and series arrangements of silicon rectifiers permit even further extension of current and voltage

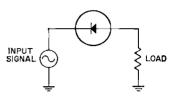
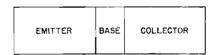
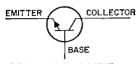


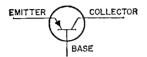
Figure 11. Simple diode rectifying circuit.

limits. Characteristics and applications of these devices are discussed in detail in the Silicon Rectifiers Section.

Several variations of the basic junction diode structure have been developed for use in special applications. The most important of these developments are the tunnel diode, which is used for amplification, oscillation, switching, and pulse generation, and the varactor or parametric diode, which amplifies at very high frequencies. These special diodes are described in the Tunnel, Varactor, and Other Diodes Section.

When a second junction is added to a semiconductor diode to provide power or voltage amplification (as shown in Fig. 9), the resulting device is called a transistor. The three regions of the device are called the emitter, the base, and the collector, as shown in Fig. 12. In normal operation, the emitter-to-base junction is


Figure 12. Functional diagram of transistor structure.

biased in the forward direction, and the collector-to-base junction in the reverse direction.

Different symbols are used for n-p-n and p-n-p transistors to show the difference in the direction of current flow in the two types of devices. In the n-p-n transistor shown in Fig. 13a, electrons flow from the emitter to the collector. In the p-n-p transistor shown in Fig. 13b, electrons

(a) N-P-N TRANSISTOR

⁽b) P-N-P TRANSISTOR

Figure 13. Schematic symbols for transistors.

flow from the collector to the emitter. In other words, the direction of dc electron current is always opposite to that of the arrow on the emitter lead. (As in the case of semiconductor diodes, the arrow indicates the direction of "conventional current flow" in the circuit.)

The first two letters of the n-p-n and p-n-p designations indicate the respective polarities of the voltages applied to the emitter and the collector in normal operation. In an n-p-n transistor, the emitter is made negative with respect to both the collector and the base, and the collector is made positive with respect to both the emitter and the base. In a p-n-p transistor, the emitter is made positive with respect to both the collector and the base, and the collector is made negative with respect to both the emitter and the base.

The transistor, which is a threeelement device, can be used for a wide variety of control functions, including amplification, oscillation, and frequency conversion. Transistor characteristics and applications are discussed in detail in the following sections.

Transistor Designs and Circuit Configurations

T HE performance of transistors on many factors besides the basic characteristics of the semiconductor material. The two most important factors are the design and fabrication of the transistor structure and the general circuit configuration used.

DESIGN AND FABRICATION

The ultimate aim of all transistor fabrication techniques is the construction of two parallel p-n junctions with controlled spacing between the junctions and controlled impurity levels on both sides of each junction. A variety of structures has been developed in the course of transistor evolution.

The earliest transistors made were of the point-contact type shown in Fig. 14. In this type of structure, two pointed wires were placed next

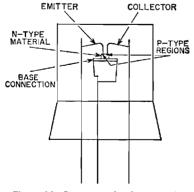
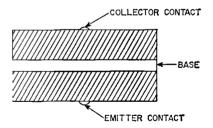
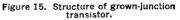




Figure 14. Structure of point-contact transistor.

to each other on an n-type block of semiconductor material. The p-n junctions were formed by electrical pulsing of the wires. This type has been superseded by junction transistors, which are fabricated hy the various alloy, diffusion, and crystalgrowth techniques described below.

In grown-junction transistors, the impurity content of the semiconductor material is changed during the growth of the original crystal ingot to provide the p-n-p or n-p-n regions. The grown crystal is then sliced into a large number of small-area devices, and contacts are made to each region of the devices, as shown in Fig. 15. The finished transistor is encased in plastic or a hermetically sealed enclosure.

In alloy-junction transistors, two small "dots" of a p-type or n-type impurity element are placed on opposite sides of a thin wafer of n-type or p-type semiconductor material, respectively, as shown in Fig. 16. After proper heating, the impurity "dots" alloy with the semiconductor material to form the regions for the emitter and collector junctions. The base connection in this structure is made to the original semiconductor wafer.

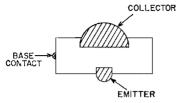
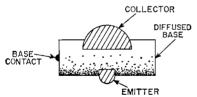
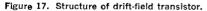
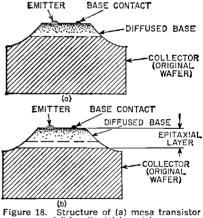
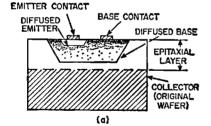




Figure 16. Structure of alloy-junction transistor.


The drift-field transistor is a modified allov-junction device in which the impurity concentration in the base wafer is diffused or graded, as shown in Fig. 17. Two advantages are derived from this structure: (a) the resultant built-in voltage or "drift field" speeds current flow, and (b) the ability to use a heavy impurity concentration in the vicinity of the emitter and a light concentration in the vicinity of the collector makes it possible to minimize capacitive charging times. Both these advantages lead to a substantial extension of the frequency performance over the alloy-junction device.

Mesa and planar transistors use newer construction techniques which are better suited to many applications than the grown-junction or alloy methods. These transistors involve two basic processes: (1) the use of diffusion masking materials and photolithographic techniques to obtain a planar structure in which all the p-n junctions are buried under a protective passivating layer, and (2) the use of a separate collector-contact diffusion or an epitaxial growth to reduce the electrical series resistance in the collector. In these types, the original semiconductor wafer serves as the collector. The base region is diffused into the wafer, and the emitter "dot" or region is then alloyed or diffused into the base region. A "mesa" or flattopped peak may then be etched to reduce the collector area at the basecollector junction. The mesa structure is inherently rugged, has large power-dissipation capability, and can operate at very high frequencies.

Figs. 18, 19, and 20 show some of the mesa and planar structures in production today. The grading of the impurity concentration in the base region results in a drift field and in reduced base-lead resistance. The use of a diffused emitter region permits tight geometry control. The use of a relatively light impurity concentration in the collector region results in high collector-breakdown voltages and low collector-junction capacitance.


and (b) epitaxial transistor.

BASIC CIRCUITS

There are three basic ways of connecting transistors in a circuit: common-base, common-emitter, and common-collector. In the commonbase (or grounded-base) connection shown in Fig. 21, the signal is introduced into the emitter-base circuit and extracted from the collector-base circuit. (Thus the base element of the transistor is common to both the input and output circuits.) Because the

EMITTER CONTACT BASE CONTACT DIFFUSED EMITTER DIFFUSED BASE (d 15 EPITAXIAL LAYER COLLECTOR (ORIGINAL WAFER) (a) EMITTER CONTACT BASE CONTACT DIFFUSED EMITTER COLLECTOR (ORIGINAL WAFER) (ь)

Figure 19. Structure of (a) double-diffused epitaxial mesa transistor and (b) doublediffused planar transistor.

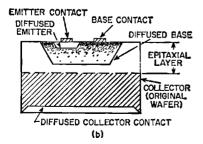



Figure 20. Structure of (a) double-diffused epitaxial planar transistor and (b) triplediffused epitaxial planar transistor.

input or emitter-base circuit has a low impedance (resistance plus reactance) in the order of 0.5 to 50 ohms, and the output or collector-base circuit has a high impedance in the order of 1000 ohms to one megohm, the voltage or power gain in this type of configuration may be in the order of 1500.

The direction of the arrows in Fig. 21 indicates electron current flow. As stated previously, most of the current from the emitter flows to the collector; the remainder flows through the base. In practical transistors, from 95 to 99.5 per cent of the emitter current reaches the collector. The current gain of this configuration, therefore, is always less than unity, usually in the order of 0.95 to 0.995.

The waveforms in Fig. 21 represent the input voltage produced by the signal generator e. and the output voltage developed across the load resistor R_L. When the input voltage is positive. as shown at AB. it opposes the forward bias produced by the base-emitter battery, and thus reduces current flow through the n-p-n transistor. The reduced electron current flow through R_I, then causes the top point of the resistor to become less negative (or more positive) with respect to the lower point, as shown at A'B' on the output waveform. Conversely, when the input signal is negative, as at CD. the output signal is also negative, as at C'D'. Thus, the phase of the signal remains unchanged in this circuit, i.e., there is no voltage phase reversal between the input and the output of a common-base amplifier.

In the common-emitter (or grounded-emitter) connection shown in Fig. 22, the signal is introduced into the base-emitter circuit and extracted from the collector-emitter circuit. This configuration has more moderate input and output impedances than the common-base circuit. The input (base-emitter) impedance is in the range of 20 to 5000 ohms, and the output (collector-emitter) impedance is about 50 to 50,000

ohms. Power gains in the order of 10,000 (or approximately 40 db) can be realized with this circuit because it provides both current gain and voltage gain.

Current gain in the commonemitter configuration is measured between the base and the collector, rather than between the emitter and the collector as in the common-base circuit. Because a very small change in base current produces a relatively large change in collector current, the current gain is always greater than unity in a common-emitter circuit; a typical value is about 50.

The input signal voltage undergoes a phase reversal of 180 degrees in a common-emitter amplifier, as shown by the waveforms in Fig. 22.



Figure 22. Common-emitter circuit configuration.

When the input voltage is positive, as shown at AB, it increases the forward bias across the base-emitter junction, and thus increases the total current flow through the transistor. The increased electron flow through R_L then causes the output voltage to become negative, as shown at A'B'. During the second half-cycle of the waveform, the process is reversed, i.e., when the input signal is negative, the output signal is positive (as shown at CD and C'D'.)

The third type of connection, shown in Fig. 23, is the common-collector (or grounded-collector) circuit. In

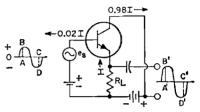


Figure 23. Common-collector circuit configuration.

this configuration, the signal is introduced into the base-collector circuit and extracted from the emittercollector circuit. Because the input impedance of the transistor is high and the output impedance low in this connection, the voltage gain is less than unity and the power gain is usually lower than that obtained in either a common-hase or a common-emitter circuit. The commoncollector circuit is used primarily as an impedance-matching device. As in the case of the common-base circuit. there is no phase reversal of the signal between the input and the output.

The circuits shown in Figs. 21 through 23 are biased for n-p-n transistors. When p-n-p transistors are used, the polarities of the batteries must be reversed. The voltage phase relationships, however, remain the same.

Transistor Characteristics

THE term "characteristic" is used to identify the distinguishing electrical features and values of a transistor. These values may be shown in curve form or they may be tabulated. When the characteristics values are given in curve form, the curves may be used for the determination of transistor performance and the calculation of additional transistor parameters.

Characteristics values are obtained from electrical measurements of transistors in various circuits under certain definite conditions of current and voltage. Static characteristics are obtained with de potentials applied to the transistor electrodes. Dynamic characteristics are obtained with an ac voltage on one electrode under various conditions of dc potentials on all the electrodes. The dynamic characteristics, therefore, are indicative of the performance capabilities of the transistor under actual working conditions.

Published data for transistors include both electrode characteristic curves and transfer characteristic curves. These curves present the same information, but in two different forms to provide more useful data. Because transistors are used most often in the common-emitter configuration, characteristic curves are usually shown for the collector or output electrode. The collectorcharacteristic curve is obtained by varying collector-to-emitter voltage and measuring collector current for different values of base current. The transfer-characteristic curve is obtained by varying the base-to-emitter (bias) voltage at a specified or constant collector voltage, and measuring collector current for different base currents. A collector-characteristic family of curves is shown in Fig. 24. Fig. 25 shows the transfercharacteristic family of curves for the same transistor.

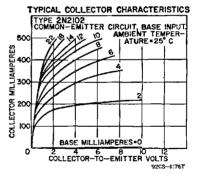
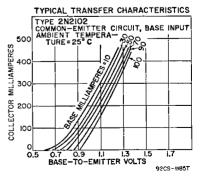
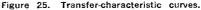
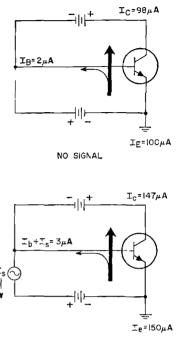




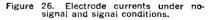
Figure 24. Collector-characteristic curves.

Transistor Characteristics

One of the most important characteristics of a transistor is its forward current-transfer ratio, i.e., the ratio of the current in the output electrode to the current in the input clectrode. Because of the different ways in which transistors may be connected in circuits, the forward current-transfer ratio is specified for a particular circuit configuration. The common-base forward currenttransfer ratio is often called alpha (or α), and the common-cmitter forward current-transfer ratio is often called beta (or β).


In the common-base circuit shown in Fig. 21, the emitter is the input electrode and the collector is the output electrode. The dc alpha, therefore, is the ratio of the dc collector current I_{σ} to the dc emitter current I_{B} :

$$\alpha = \frac{\mathbf{I}_{\mathrm{C}}}{\mathbf{I}_{\mathrm{E}}} = \frac{0.98 \, \mathrm{I}}{\mathrm{I}} = 0.98$$


In the common-emitter circuit shown in Fig. 22, the base is the input electrode and the collector is the output electrode. The dc beta, therefore, is the ratio of the dc collector current I_0 to the dc base current I_B :

$$\beta = \frac{I_{C}}{I_{B}} = \frac{0.98 I}{0.02 I} = 49$$

Because the ratios given above are based on dc currents, they are properly called dc alpha and dc beta. It is more common, however, for the current-transfer ratio to be given in terms of the ratio of signal currents in the input and output electrodes, or the ratio of a change in the output current to the input signal current which causes the change. Fig. 26 shows typical electrode currents in a common-emitter circuit under nosignal conditions and with a onemicroampere signal applied to the base. The signal current of one microampere in the base causes a change of 49 microamperes (147-98) in the collector current. Thus the ac beta for the transistor is 49.

Is=1µA

The frequency cutoff of a transistor is defined as the frequency at which the value of alpha (for a common-base circuit) or beta (for a common-emitter circuit) drops to 0.707 times its one-kilocycle value. The gain-bandwidth product is the frequency at which the commonemitter forward current-transfer ratio (beta) is equal to unity. These characteristics provide an approximate indication of the useful frequency range of the device, and help to determine the most suitable circuit configuration for a particular application. Fig. 27 shows typical curves of alpha and beta as functions of frequency.

Extrinsic transconductance may be defined as the quotient of a small change in collector current divided by the small change in emitter-tobase voltage producing it, under the condition that other voltages remain

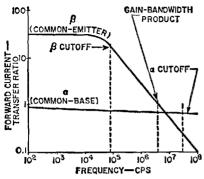


Figure 27. Forward current-transfer ratio as a function of frequency.

unchanged. Thus, if an emitter-tobase voltage change of 0.1 volt causes a collector-current change of 3 milliamperes (0.003 ampere) with other voltages constant, the transconductance is 0.003 divided by 0.1, or 0.03 mho. (A "mho" is the unit of conductance, and was named by spelling "ohm" backward.) For convenience, a millionth of a mho, or a micromho (μ mho), is used to express transconductance. Thus, in the example, 0.03 mho is 30,000 micromhos.

Cutoff currents are small dc reverse currents which flow when a transistor is biased into non-conduction. They consist of leakage currents, which are related to the surface characteristics of the semiconductor material. and saturation currents, which are related to the impurity concentration in the material and which increase with increasing temperatures. Collector-cutoff current is the dc current which flows in the reverse-biased collector-to-base circuit when the emitter-to-base circuit is open. Emitter-cutoff current is the current which flows in the reversebiased emitter-to-base circuit when the collector-to-base circuit is open.

Transistor breakdown voltages define the voltage values between two specified electrodes at which the crystal structure changes and current begins to rise rapidly. The voltage then remains relatively constant over a wide range of electrode currents. Breakdown voltages may be measured with the third electrode open. shorted, or biased in either the forward or the reverse direction. For example, Fig. 28 shows a series of collector-characteristic curves for different base-bias conditions. It can be seen that the collector-to-emitter breakdown voltage increases as the base-to-emitter bias decreases from the normal forward values through zero to reverse values. The symbols shown on the abscissa are sometimes used to designate collector-to-emitter breakdown voltages with the base open (BV_{OEO}), with external base-toemitter resistance (BV_{CER}) , with the base shorted to the emitter (BV_{(TR8}). and with a reverse base-to-emitter voltage (BVCEx).

As the resistance in the base-toemitter circuit decreases, the collector characteristic develops two breakdown points, as shown in Fig. 28. After the initial breakdown, the collector-to-emitter voltage decreases with increasing collector current until another breakdown occurs at a lower voltage. This minimum collector-to-emitter breakdown voltage is called the sustaining voltage.

(In large-area power transistors. there is a destructive mechanism referred to as "second breakdown". This condition is not a voltage breakdown, but rather an electrically and thermally regenerative process in which current is focused in a very small area of the order of the diameter of a human hair. The very high current, together with the voltage across the transistor, causes a localized heating that may melt a minute hole from the collector to the emitter of the transistor and thus cause a short circuit. This regenerative process is not initiated unless certain high voltages and currents are coincident for certain finite lengths of time.)

The curves at the left of Fig. 28 show typical collector characteristics under normal forward-bias conditions. For a given base input current, the collector-to-emitter saturation voltage is the minimum voltage required to maintain the transistor in full conduction (i.e., in the saturation region). Under saturation conditions, a further increase in forward bias produces no corresponding ina sharp increase in current. Punchthrough voltage does not result in permanent damage to a transistor, provided there is sufficient impedance in the power-supply source to limit the transistor dissipation to safe values.

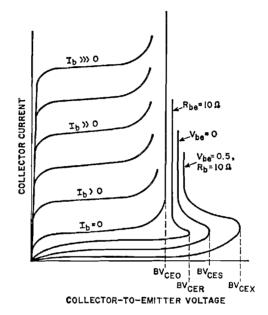


Figure 28. Typical collector-characteristic curves showing locations of various breakdown voltages.

crease in collector current. Saturation voltages are very important in switching applications, and are usually specified for several conditions of electrode currents and ambient temperatures.

Reach-through (or punch-through) voltage defines the voltage value at which the depletion region in the collector region passes completely through the base region and makes contact at some point with the emitter region. This "reach-through" phenomenon results in a relatively low-resistance path between the emitter and the collector, and causes Stored base charge is a measure of the amount of charge which exists in the base region of the transistor at the time that forward bias is removed. This stored charge supports an undiminished collector current in the saturation region for some finite time before complete switching is effected. This delay interval, called the "storage time", depends on the degree of saturation into which the transistor is driven. (This effect is discussed in more detail under "Switching" in the Transistor Applications Section.)

Transistor Applications

THE diversified applications of transistors are treated in this section under the three major classifications of Amplification, Oscillation, and Switching. Because various biasing and coupling methods are used in transistor circuits, bias and coupling arrangements are discussed separately before specific applications are considered. Also discussed are stability requirements for transistor circuits.

BIASING

The operating point for a particular transistor is established by the quiescent (dc, no-signal) values of collector voltage and emitter current. In general, a transistor may be considered as a current-operated device, i.e., the current flowing in the emitter-base circuit controls thecurrent flowing in the collector circuit. The voltage and current values selected, as well as the particular biasing arrangement used, depend upon both the transistor characteristics and the specific requirements of the application.

As mentioned previously, biasing of a transistor for most applications consists of forward bias across the emitter-base junction and reverse bias across the collector-base junction. In Figs. 21, 22, and 23, two batteries were used to establish bias of the correct polarity for an n-p-n transistor in the common-base, common-emitter, and common-collector circuits, respectively. Many variations of these basic circuits can also be used. (In these simplified circuits. inductors and transformers are represented only by their series resistances.)

A simplified biasing arrangement for the common-base circuit is shown in Fig. 29. Bias for both the collectorbase junction and the emitter-base junction is obtained from the single battery through the voltage-divider network consisting of resistors \mathbf{R}_{\bullet} and \mathbf{R}_{\circ} . (For the n-p-n transistor shown in Fig. 29a, the emitter-base junction is forward-biased because the emitter is negative with respect to the base, and the collector-base

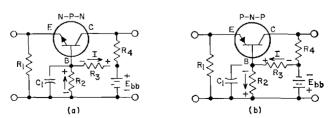


Figure 29. Biasing network for common-base circuit for (a) n-p-n and (b) p-n-p transistors.

Transistor Applications

junction is reverse-biased because the collector is positive with respect to the base, as shown. For the p-n-p transistor shown in Fig. 29b, the polarity of the battery and of the electrolytic bypass capacitor C_1 is reversed.) The electron current I from the battery and through the voltage divider causes a voltage drop across resistor R_2 which biases the emitter with respect to the base. This resistor is bypassed with capacitor C_1 so that the base is effectively grounded for ac signals.

The common-emitter circuit also can be biased by means of a single battery. The simplified arrangement shown in Fig. 30 is commonly called "fixed bias". In this case, both the base and the collector are made positive with respect to the emitter by means of the battery. The base resistance R_B is then selected to provide the desired base current for the transistor (which, in turn, establishes the desired emitter current), by means of the following expression:

 $R_{B} = \frac{Battery \text{ volts } E_{bb}}{Desired \text{ base amperes } I_{B}}$

In the circuit shown, for example, the battery voltage is six volts. The

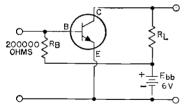


Figure 30. "Fixed-bias" arrangement for common-emitter circuit.

value of $R_{\rm B}$ was selected to provide a base current of 30 microamperes, as follows:

$$R_B = \frac{E_{bb}}{I_B} = \frac{6}{30 \times 10^{-6}} = 200,000 \text{ ohms}$$

The fixed-bias arrangement shown in Fig. 30, however, is not a satisfactory method of biasing the base in a common-emitter circuit. The critical base current in this type of circuit is very difficult to maintain under fixed-bias conditions because of variations between transistors and the sensitivity of these devices to temperature changes. This problem is partially overcome in the "selfbias" arrangement shown in Fig. 31.

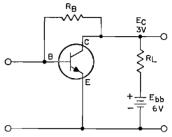


Figure 31, "Self-bias" arrangement for common-emitter circuit.

In this circuit, the base resistor is tied directly to the collector. This connection helps to stabilize the operating point because an increase or decrease in collector current produces a corresponding increase or decrease in base bias. The value of R_B is then determined as described above, except that the collector voltage E_c is used in place of the supply voltage E_{bb} :

$$R_B = \frac{E_C}{I_B} = \frac{3}{30 \times 10^{-6}} = 100,000 \text{ ohms}$$

The arrangement shown in Fig. 31 overcomes many of the disadvantages of fixed bias, although it reduces the effective gain of the circuit.

In the bias method shown in Fig. 32, the voltage-divider network composed of R_1 and R_2 provides the required forward bias across the base-emitter junction. The value of the base bias is determined by the current through the voltage divider. Any change in collector current

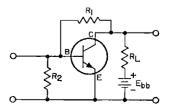


Figure 32. Bias network using voltagedivider arrangement for increased stability.

caused by a change in emitter current, therefore, automatically changes the base bias. This type of circuit provides less gain than the circuit of Fig. 31, but is commonly used because of its inherent stability.

The common-emitter circuits shown in Figs. 33 and 34 may be used to provide stability and yet minimize loss of gain. In Fig. 33, a resistor $R_{\rm H}$ is added to the emitter circuit, and the base resistor R_2 is returned

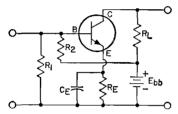


Figure 33. Bias network using emitter stabilizing resistor.

to the positive terminal of the battery instead of to the collector. The emitter resistor $R_{\rm B}$ provides additional stability; it is bypassed with capacitor $C_{\rm B}$. The value of $C_{\rm B}$ is usually about 50 microfarads, but may be much higher depending, among other things, on the lowest frequency to be amplified.

In Fig. 34, the R_2R_3 voltage-divider network is split, and all ac feedback currents through R_3 are shunted to ground (bypassed) by capacitor C₁. The value of R_3 is usually larger than the value of R_2 . The total resistance of R_2 and R_3 should equal the resistance of R_4 in Fig. 32.

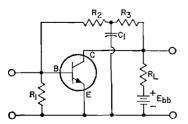


Figure 34. Bias network using split voltagedivider network.

In practical circuit applications, any combination of the arrangements shown in Figs. 31, 32, 33, and 34 may be used. However, the stability of Figs. 31, 32, and 34 may be poor unless the voltage drop across the load resistor R_L is at least one-third the value of the supply voltage. The determining factors in the selection of the biasing circuit are usually gain and circuit stability.

In many cases, the bias network may include special elements to compensate for the effects of variations in ambient temperature or in supply voltage. For example, the thermistor (temperature-sensitive resistor) shown in Fig. 35a is used to compensate for the rapid increase of collector current with increasing temperature. Because the thermistor resistance decreases as the temperature increases, the bias voltage is reduced and the collector current tends to remain constant. The addition of the shunt and series resistances provides most effective com-

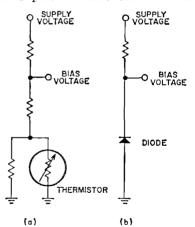


Figure 35. Bias networks including (a) a thermistor and (b) a temperature- and voltage-compensating diode.

pensation over a desired temperature range.

The diode biasing network shown in Fig. 35b stabilizes collector current for variations in both temperature and supply voltage. The diode current determines a bias voltage which establishes the transistor idling current (collector current under no-signal conditions). As the temperature increases, this bias voltage decreases. Because the transistor characteristic also shifts in the same direction and magnitude, however, the idling current remains essentially independent of temperature. Temperature stabilization with a diode network is substantially better than that provided by most thermistor bias networks.

In addition, the diode bias current varies in direct proportion with changes in supply voltage. The resultant change in bias voltage is small, however, so that the idling current also changes in direct proportion to the supply voltage. Supply-voltage stabilization with a diode biasing network reduces current variation to about one-fifth that obtained when resistor or thermistor bias is used.

COUPLING

Three basic methods are used to couple transistor stages: transformer, resistance-capacitance, and direct coupling.

The major advantage of transformer coupling is that it permits the input and output impedance of the transistor to be matched for maximum power gain. The transformer-coupled common-emitter n-p-n stage shown in Fig. 36 employs both fixed and self bias, and includes an emitter resistor $R_{\rm B}$ for herent in this transformer is not significant in transistor circuits because, as mentioned previously, the transistor is a current-operated device. Although the voltage is stepped down, the available current is stepped up. The change in base current resulting from the presence of the signal causes an ac collector current to flow in the primary winding of transformer T_2 , and a power gain can be measured between T_1 and T_2 .

This use of a voltage step-down transformer is similar to that in the output stage of an audio amplifier, where a step-down transformer is normally used to drive the loudspeaker, which is also a currentoperated device. The purpose of the transformer in both cases is to transfer power from one impedance level to another.

The voltage-divider network consisting of resistors \mathbb{R}_1 and \mathbb{R}_2 in Fig. 36 provides bias for the transistor. The voltage divider is bypassed by capacitor C_1 to avoid signal attenuation. The stabilizing emitter resistor $\mathbb{R}_{\mathbb{R}}$ permits normal variations of the transistor and circuit elements to be compensated for automatically without adverse effects. This resistor $\mathbb{R}_{\mathbb{R}}$ is bypassed by capacitor C_2 . The voltage supply \mathbb{E}_{bb} is also bypassed, by capacitor C_3 , to prevent feedback

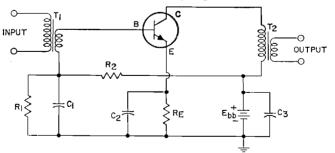


Figure 36. Transformer-coupled common-emitter stage.

stabilization. The voltage step-down transformer T_1 couples the signal from the collector of the preceding stage to the base of the commonemitter stage. The voltage loss inin the event that ac signal voltages are developed across the power supply. Capacitor C_1 and C_2 may normally be replaced by a single capacitor connected between the emitter and the bottom of the secondary winding of transformer T_1 with little change in performance.

Because there is no resistor in the collector circuit to dissipate power, the efficiency of a transformercoupled stage approaches the theoretical maximum of 50 per cent. In addition, the very low impedance in the base circuit may simplify the problem of temperature stabilization. When a large stabilizing resistor is used in series with the emitter, the circuit stability factor may be very high.

The use of resistance-capacitance coupling usually permits some economy of circuit costs and reduction of size, with some accompanying sacrifice of gain. This method of coupling is particularly desirable in low-level, low-noise audio amplifier stages to minimize hum pickup from stray magnetic fields. Use of resistance-capacitance (RC) coupling in battery-operated equipment is usually limited to low-power operation. The frequency response of an RCcoupled stage is normally better than that of a transformer-coupled stage.

Fig. 37a shows a two-stage RCcoupled circuit using n-p-n transistors in the common-emitter configuration. The method of bias is similar to that used in the transformercoupled circuit of Fig. 36. The major additional components are the collector load resistances R₁₄ and R₁₂ and the coupling capacitor Cc. The value of Ce must be made fairly large, in the order of 2 to 10 microfarads, because of the small input and load resistances involved. (It should be noted that electrolytic capacitors are normally used for coupling in transistor audio circuits. Polarity must be observed, therefore, to obtain proper circuit operation. Occasionally, excessive leakage current through an electrolytic coupling capacitor may adversely affect transistor operating currents.)

Impedance coupling is a modified form of resistance-capacitance coupling in which inductances are used to replace the load resistors. This type of coupling is rarely used except in special applications where supply voltages are low and cost is

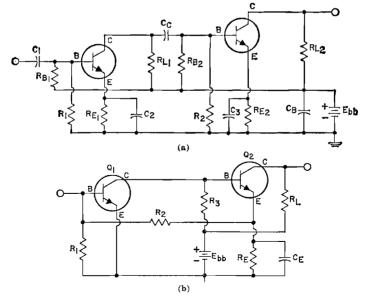


Figure 37. (a) Two-stage resistance-capacitance-coupled circuit and (b) two-stage directcoupled circuit.

not a significant factor.

Direct coupling is used primarily when cost is an important factor. (It should be noted that directcoupled amplifiers are not inherently dc amplifiers, i.e., that they cannot always amplify dc signals. Lowfrequency response is usually limited by other factors than the coupling network.) In the direct-coupled amplifier shown in Fig. 37b, resistor R. serves as both the collector load resistor for the first stage and the bias resistor for the second stage. Resistors R1 and R2 provide circuit stability similar to that of Fig. 32 because the emitter voltage of transistor Q_2 and the collector voltage of transistor Q_1 are within a few tenths of a volt of each other.

Because so few circuit parts are required in the direct-coupled amplifier, maximum economy can be achieved. However, the number of stages which can be directly coupled is limited. Temperature variation of the bias current in one stage is amplified by all the stages, and severe temperature instability may result.

CIRCUIT STABILITY

Because transistor currents tend to increase with temperature, it is necessary in the design of transistor circuits to include a "stability factor" to limit dissipation to safe values under the expected high-temperature operating conditions. The circuit stability factor SF is expressed as the ratio between a change in dc collector current I_0 and the corresponding change in dc collectorcutoff current with the emitter open I_{CBO} .

For a given set of operating voltages, the stability factor can be calculated for a maximum permissible rise in de collector current from the room-temperature value, as follows:

$$SF = \frac{I_{Cm_{2X}} - I_{C1}}{I_{CB02} - I_{CB01}}$$

where I_{01} and $I_{0:801}$ are measured at 25 degrees centigrade, $I_{0:B02}$ is measured at the maximum expected ambient (or junction) temperature, and $I_{0:max}$ is the maximum permissible collector current for the specified collector-to-emitter voltage at the maximum expected ambient (or junction) temperature (to keep transistor dissipation within ratings).

The calculated values of SF can then be used, together with the appropriate values of beta and r_b (baseconnection resistance), to determine suitable resistance values for the transistor circuit. Fig. 38 shows equations for SF in terms of resist-

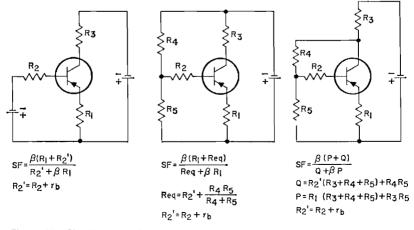


Figure 38. Circuit-stability-factor equations for three typical circuit configurations.

ance values for three typical circuit configurations. The maximum value which SF can assume is the value of beta.

AMPLIFICATION

The amplifying action of a transistor can be used in various ways in electronic circuits, depending on the results desired. The four recognized classes of amplifier service can be defined for transistor circuits as follows:

A class A amplifier is an amplifier in which the base bias and alternating signal are such that collector current in a specific transistor flows continuously during the complete electrical cycle of the signal, and even when no signal is present.

A class AB amplifier is an amplifier in which the base bias and alternating signal are such that collector current in a specific transistor flows for appreciably more than half but less than the entire electrical cycle.

A class B amplifier is an amplifier in which the base is biased to approximately collector-current cutoff, so that collector current is approximately zero when no signal is applied, and so that collector current in a specific transistor flows for approximately one-half of each cycle when an alternating signal is applied.

A class C amplifier is an amplifier in which the base is biased to such a degree that the collector current in each transistor is zero when no signal is applied, and so that collector current in a specific transistor flows for appreciably less than onehalf of each cycle when an alternating signal is applied.

For radio-frequency (rf) amplifiers which operate into selective tuned circuits, or for other amplifiers in which distortion is not a prime factor, any of the above classes of amplification may be used with either a single transistor or a pushpull stage. For audio-frequency (af) amplifiers in which distortion is an important factor, single transistors can be used only in class A amplifiers. For class AB or class B audioamplifier service, a balanced amplifier stage using two transistors is required. A push-pull stage can also be used in class A audio amplifiers to obtain reduced distortion and greater power output. Class C amplifiers cannot be used for audio applications.

Audio Amplifiers

Audio amplifier circuits are used in radio and television receivers, public address systems, sound recorders and reproducers, and similar applications to amplify signals in the frequency range from 10 to 20,000 cycles per second. Each transistor in an audio amplifier can be considered as either a current amplifier or a power amplifier.

Simple class A amplifier circuits are normally used in low-level audio stages such as preamplifiers and drivers. Preamplifiers usually follow low-level output transducers such as microphones, hearing-aid and phonograph pickup devices, and recorderreproducer heads.

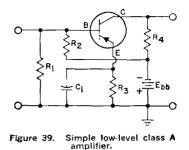
One of the most important characteristics of a low-level amplifier circuit is its signal-to-noise ratio, or noise figure. The input circuit of an amplifier inherently contains some thermal noise contributed by the resistive elements in the input device. All resistors generate a predictable quantity of noise power as a result of thermal activity. This power is about 160 db below one watt for a bandwidth of 10 kilocycles.

When an input signal is amplified, therefore, the thermal noise generated in the input circuit is also amplified. If the ratio of signal power to noise power (S/N) is the same in the output circuit as in the input circuit, the amplifier is considered to be "noiseless" and is said to have a noise figure of unity, or zero db.

In practical circuits, however, the ratio of signal power to noise power is inevitably impaired during amplification as a result of the generation

Transistor Applications

of additional noise in the circuit elements. A measure of the degree of impairment is called the noise figure (NF) of the amplifier, and is expressed as the ratio of signal power to noise power at the input (S_1/N_1) divided by the ratio of signal power to noise power at the output (S_0/N_0) , as follows:


$$NF = \frac{S_i/N_i}{S_o/N_o}$$

The noise figure in db is equal to ten times the logarithm of this power ratio. For example, an amplifier with a one-db noise figure decreases the signal-to-noise ratio by a factor of 1.26, a 3-db noise figure by a factor of 2, a 10-db noise figure by a factor of 10, and a 20-db noise figure by a factor of 100. A value of NF below 6 db is generally considered excellent.

In audio amplifiers, it is desirable that the noise figure be kept low. In general, the lowest value of NF is obtained by use of an emitter current of less than one milliampere, a collector voltage of less than two volts, and a signal-source resistance between 300 and 3000 ohms.

In the simple low-level amplifier stage shown in Fig. 39, the resistors R_1 and R_2 determine the base-emitter bias for the p-n-p transistor. Resistor R_3 is the emitter stabilizing resistor; capacitor C_1 bypasses the ac signal around R_3 . The output signal is developed across the collector load resistor R_4 . The collector voltage and the emitter current are kept relatively low to reduce the noise figure.

In many cases, low-level amplifier stages used as preamplifiers include some type of **frequency-compensa**tion **network** to improve either the low-frequency or the high-frequency components of the input signal. The simplest type of equalization network is shown in Fig. 40. Because

the capacitor C is effectively an open circuit at low frequencies, the low frequencies must be passed through the resistor R and are attenuated. The capacitor has a lower reactance at high frequencies, however, and bypasses high-frequency components around R so that they receive negligible attenuation. Thus the network effectively "boosts" the high frequencies.

Feedback networks may also be used for frequency compensation and for reduction of distortion. Basically, a feedback network returns a portion of the output signal to the input circuit of an amplifier. The feedback signal may be returned in phase with the input signal (positive or regenerative feedback) or 180 degrees out of phase with the input signal (negative, inverse, or degenerative feedback). In either case, the feedback can be made proportional to either the output voltage or the output current, and can be applied to either the input voltage or the input current. A negative feedback signal proportional to the output current raises the output impedance of the amplifier; negative feedback proportional to the output voltage reduces the output impedance. A negative feedback signal applied to the input current decreases the input impedance; negative feedback applied to the input voltage increases the input

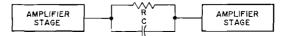


Figure 40. Simple RC frequency-compensation network.

impedance. Opposite effects are produced by positive feedback.

A simple negative or inverse feedback network which provides highfrequency boost is shown in Fig. 41. Such circuits should be designed to minimize the flow of dc currents through these controls so that little or no noise will be developed by the movable contact during the life of

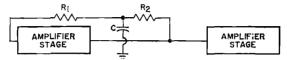


Figure 41. Negative-feedback frequency-compensation network.

This network provides equalization comparable to that obtained with Fig. 40, but is more suitable for low-level amplifier stages because it does not require high-level low frequencies. In addition, the inverse feedback improves the distortion characteristics of the amplifier.

As mentioned previously, it is undesirable to use a high-resistance signal source for an audio amplifier because of the high noise figure involved. High source resistance cannot be avoided, however, if an input device such as a crystal pickup is used. In such cases, the use of negative feedback to raise the input impedance of the amplifier circuit (to avoid mismatch loss) is no solution because feedback cannot improve the signal-to-noise ratio of the amplifier. A more practical method is to increase the input impedance somewhat by operating the transistor at the circuit. Volume controls and their associated circuits should permit variation of gain from zero to maximum, and should attenuate all frequencies equally for all positions of the variable arm of the control. Several examples of volume controls and tone controls are shown in the Circuits Section.

Driver stages in audio amplifiers are located immediately before the power-output stage. When a singleended class A output stage is used, the driver stage is similar to a preamplifier stage. When a push-pull output stage is used, however, the audio driver must provide two output signals, each 180 degrees out of phase with the other. This phase requirement can be met by use of a tapped-secondary transformer between a single-ended driver stage and the output stage, as shown in Fig. 42. The transformer T₁ provides

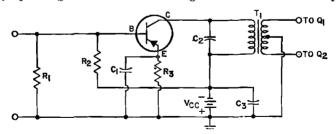


Figure 42. Driver stage for push-pull output circuit.

the lowest practical current level and by using a transistor which has a high forward current-transfer ratio.

Some preamplifier or low-level audio amplifier circuits include variable resistors or potentiometers which function as volume or tone controls. the required out-of-phase input signals for the two transistors Q_1 and Q_2 in the push-pull output stage.

Transistor audio power amplifiers may be class A single-ended stages, or class A, class AB, or class B push-pull stages. A simple class A

Transistor Applications

single-ended power amplifier is shown in Fig. 43. Component values which will provide the desired power output can be calculated from the transistor characteristics and the supply voltage. For example, an output of four watts may be desired from a circuit operating with a supply voltage of 14.5 volts (this voltage is normally available in automobiles which have a 12-volt ignition The current through resistor R_2 is about 10 to 20 per cent of the collector current; a typical value is 15 per cent of 0.6, or 90 milliamperes.

The voltage from base to ground is equal to the base-to-emitter voltage (determined from the transistor transfer-characteristics curves for the desired collector or emitter current; normally about 0.4 volt for an emitter current of 600 milliamperes)

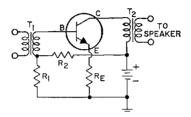


Figure 43. Class A power-amplifier circuit.

system). If losses are assumed to be negligible, the power output (PO) is equal to the peak collector voltage (e_c) times the peak collector current (i_c), both divided by the square root of two to obtain rms values. The peak collector current can then be determined as follows:

PO =
$$\frac{e_o}{\sqrt{2}} \times \frac{i_o}{\sqrt{2}}$$

i. = PO($\sqrt{2}$) $\times \frac{\sqrt{2}}{e_o}$
= $4\sqrt{2} \times \frac{\sqrt{2}}{14.5}$
= 0.55, or approximately
0.6 ampere.

In class A service, the dc collector current and the peak collector swing are about the same. Thus, the collector voltage and current are 14.5 volts and 0.6 ampere, respectively.

The voltage drop across the resistor $R_{\rm s}$ in Fig. 43 usually ranges from 0.3 to 1 volt; a typical value of 0.6 volt can be assumed. Because the emitter current is very nearly equal to the collector current (0.6 ampere), the value of $R_{\rm s}$ must equal the 0.6-volt drop divided by the 0.6-ampere current, or one ohm. plus the emitter-to-ground voltage (0.6 volt as described above), or one volt. The voltage across R_2 , therefore, is 14.5 minus 1, or 13.5 volts. The value of R_2 must equal 13.5 divided by 90, or about 150 ohms.

Because the voltage drop across the secondary winding of the driver transformer T_1 is negligible, the voltage drop across R_1 is one volt. The current through R₁ equals the current through R_2 (90 milliamperes) minus the base current. If the dc forward current-transfer ratio (beta) of the transistor selected has a typical value of 60, the base current equals the collector current of 600 milliamperes divided by 60, or 10 milliamperes. The current through R_1 is then 90 minus 10, or 80 milliamperes, and the value of R_1 is 1 divided by 80, or about 12 ohms.

The transformer requirements are determined from the ac voltages and currents in the circuit. The peak collector voltage swing that can be used before distortion occurs as a result of clipping of the output voltage is about 13 volts. The peak collector current swing available before current cutoff occurs is the dc current of 600 milliamperes. Therefore, the collector load impedance should be 13 volts divided by 600 milliamperes, or about 20 ohms, and the output transformer T_2 should be designed to match a 20-ohm primary impedance to the desired speaker impedance. If a 3.2-ohm speaker is used, for example, the impedance values for T_2 should be 20 ohms to 3.2 ohms.

The total input power to the circuit of Fig. 43 is equal to the voltage required across the secondary winding of the driver transformer T₁ times the current. The driver signal current is equal to the base current (10 milliamperes, or 7 milliamperes rms). The peak ac signal voltage is the sum of the base-to-emitter voltage across the transistor (0.4 volt as determined above), plus the voltage across $R_{\rm D}$ (0.6 volt). plus the peak ac signal voltage across R_i (1.0 milliampere times 12 ohms, or 0.12 volt). The input voltage, therefore, is about one volt peak, or 0.7 volt rms. Thus, the total ac input power required to produce an output of 4 watts is 0.7 volt times 7 milliamperes, or 5 milliwatts. and the input impedance is 0.7 volt divided by 7 milliamperes, or 100 ohms.

Higher power output can be achieved with less distortion in class A service by the use of a push-pull circuit arrangement. One of the disadvantages of a transistor class A amplifier (single-ended or push-pull). however, is that collector current flows at all times. As a result, transistor dissipation is highest when no ac signal is present. This dissipation can be greatly reduced by use of class B push-pull operation. When two transistors are connected in class B push-pull, one transistor amplifies half of the signal, and the other transistor amplifies the other half. These half-signals are then combined in the output circuit to restore the original waveform in an amplified state.

Ideally, transistors used in class B service should be biased to collector cutoff so that no power is dissipated under zero-signal conditions. At low signal inputs, however, the resulting signal would be distorted, as shown in Fig. 44, because of the low forward current-transfer ratio of the transistor at very low currents. This type of distortion, called cross-over

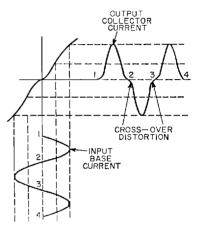


Figure 44. Waveforms showing cause of cross-over distortion.

distortion, can be suppressed by the use of a bias which permits a small collector current flow at zero signal level. Any residual distortion can be further reduced by the use of negative feedback.

A typical class B push-pull audio amplifier is shown in Fig. 45. Resistors R_{B1} and R_{B2} are the emitter stabilizing resistors. Resistors R. and R₂ form a voltage-divider network which provides the bias for the transistors. The base-emitter circuit is biased near collector cutoff so that very little collector power is dissipated under no-signal conditions. The characteristics of the bias network must be very carefully chosen so that the bias voltage will be just sufficient to minimize cross-over distortion at low signal levels. Because the collector current, collector dissipation, and dc operating point of a transistor vary with ambient temperature, a temperature-sensitive resistor (such as a thermistor) or a bias-compensating diode may be used in the biasing network to mini-

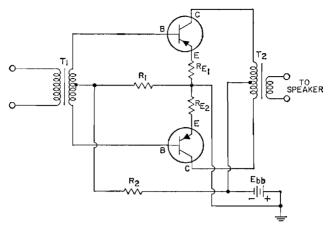


Figure 45. Class B push-pull audio-amplifier circuit.

mize the effect of temperature variations.

The advantages of class B operation can be obtained without the need for an output transformer by use of a single-ended class B circuit such as that shown in Fig. 46. In this circuit, the secondary windings of the driver transformer T1 are phased so that a positive signal from base to emitter of one transistor is accompanied by a negative signal from base to emitter of the other transistor. When a positive signal is applied to the base of transistor Q_1 , for example, Q₁ draws current. This current must flow through the speaker because the accompanying negative signal on the base of transistor Q_2 cuts Q_2 off. When the signal polarity reverses, transistor Q₁ is cut off, while Q_2 conducts current. The resistive dividers R_1R_2 and R_3R_4 provide a dc bias which keeps the transistors slightly above cutoff under no-signal conditions and thus minimizes cross-over distortion. The emitter resistors R_{E1} and R_{E2} help to compensate for differences between transistors and for the effects of ambient-temperature variations.

The secondary windings of any class B driver transformer should be bifilar-wound (i.e., wound together) to obtain tighter coupling and thereby minimize leakage inductance. Otherwise, "ringing" may occur in the cross-over region as a result of the energy stored in the leakage inductance.

Because junction transistors can be made in both p-n-p and n-p-n

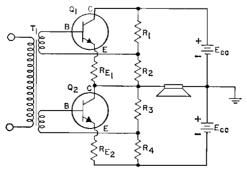


Figure 46. Single-ended class B circuit.

types, they can be used in complementary-symmetry circuits to obtain all the advantages of conventional push-pull amplifiers plus direct coupling. The arrows in Fig. 47 indicate the direction of electron current flow

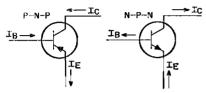


Figure 47. Electron-current flow in p-n-p and n-p-n transistors.

in the terminal leads of p-n-p and n-p-n transistors. When these two transistors are connected in a single stage, as shown in Fig. 48, the dc electron current path in the output circuit is completed through the collector-emitter circuits of the transistors. In the circuits of Figs. 45

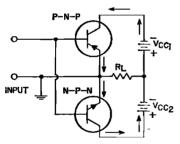


Figure 48. Basic complementary-symmetry circuit.

and 48, essentially no dc current flows through the load resistor R_{L} . Therefore, the voice coil of a loudspeaker can be connected directly in place of R_{L} without excessive speaker cone distortion.

A phase inverter is a type of class A amplifier used when two out-ofphase outputs are required. In the split-load phase-inverter stage shown in Fig. 49, the output current of transistor Q_4 flows through both the collector load resistor R_4 and the emitter load resistor R_4 . When the input signal is negative, the increased output current causes the collector side of resistor R_4 to become more positive and the emitter side of resistor R_4 to become more negative with respect to ground. When the input signal is positive, the output current decreases and opposite voltage polarities are established across resistors R_4 and R_4 . Thus, two output signals are produced which are 180 degrees out of phase with each other. This circuit provides the 180-degree phase relationship only when each load is resistive throughout the entire signal swing. It is not suitable, therefore, as a driver stage for a class B output stage.

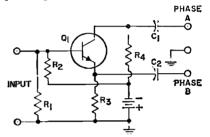
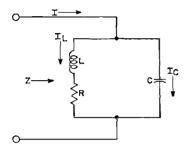


Figure 49. Split-load phase-inverter stage.

Tuned Amplifiers


In transistor radio-frequency (rf) and intermediate-frequency (if) amplifiers, the bandwidth of frequencies to be amplified is usually only a small percentage of the center frequency. Tuned amplifiers are used in these applications to select the desired bandwidth of frequencies and to suppress unwanted frequencies. The selectivity of the amplifier is obtained by means of tuned interstage coupling networks.

The properties of tuned amplifiers depend upon the characteristics of resonant circuits. A simple parallel resonant circuit (sometimes called a "tank" because it stores energy) is shown in Fig. 50. For practical purposes, the resonant frequency of such a circuit may be considered independent of the resistance R, provided R is small compared to the inductive reactance X_L . The resonant frequency f, is then given by

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

Transistor Applications

For any given resonant frequency, the product of L and C is a constant; at low frequencies LC is large; at high frequencies it is small.

The Q (selectivity) of a parallel resonant circuit alone is the ratio of the current in the tank $(I_{L} \text{ or } I_{C})$ to the current in the line (I). This unloaded Q, or Q₀, may be expressed in various ways, for example:

$$Q_{o} = \frac{I_{C}}{I} = \frac{X_{L}}{R} = \frac{Z}{X_{C}}$$

where X_L is the inductive reactance $(-2\pi f L)$, X_c is the capacitive reactance $(=1/[2\pi f C])$, and Z is the total impedance of the parallel resonant circuit (tank). The Q varies inversely with the resistance of the inductor. The lower the resistance, the higher the Q and the greater the difference between the tank impedance at frequencies off resonance compared to the tank impedance at the resonant frequency.

The Q of a tuned interstage coupling network also depends upon the impedances of the preceding and following stages. The output impedance of a transistor can be considered as consisting of a resistance R_0 in parallel with a capacitance C_o , as shown in Fig. 51. Similarly, the input impedance can be considered as consisting of a resistance R_i in parallel with a capacitance C_i . Because the tuned circuit is shunted by both the output impedance of the preceding transistor and the input impedance of the following transistor, the effective selectivity of the circuit is the loaded Q (or Q_L) based upon the total impedance of the coupled network, as follows:

$$Q_{L} = \frac{Z \text{ (total loading on coil)}}{X_{L} \text{ or } X_{C}}$$

The capacitances C_0 and C_1 in Fig. 51 are usually considered as part of the coupling network. For example, if the required capacitance between terminals 1 and 2 of the coupling network is calculated to be 500 picofarads and the value of C_0 is 10 picofarads, a capacitor of 490 picofarads is used between terminals 1 and 2 so that the total capacitance is 500 picofarads. The same method is used to allow for the capacitance C_1 at terminals 3 and 4.

When a tuned resonant circuit in the primary winding of a transformer is coupled to the nonresonant secondary winding of the transformer, as shown in Fig. 52, the effect of the input impedance of the following stage on the Q of the tuned circuit can be determined by considering the values reflected (or referred) to the primary circuit by transformer action. The reflected resistance r_i is equal to the resistance R₁ in the secondary circuit times the square of the effective turns ratio between the primary and secondary windings of the transformer T:



Figure 51. Equivalent output and input circuits of transistors connected by a coupling network.

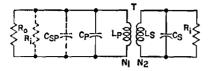


Figure 52. Equivalent circuit for transformercoupling network having tuned primary winding.

$$\mathbf{r}_{1} = \mathbf{R}_{1} (\mathbf{N}_{1}/\mathbf{N}_{2})^{2}$$

where N_1/N_2 represents the electrical turns ratio between the primary winding and the secondary winding of T. If there is capacitance in the secondary circuit (C₂), it is reflected to the primary circuit as a capacitance C_{ep}, and is given by

$$C_{ap} = C_p \div (N_1/N_2)^2$$

The loaded Q, or Q_L , is then calculated on the basis of the inductance L_p , the total shunt resistance (Ro plus r_1 plus the tuned-circuit impedance $Z_t = Q_o X_c = Q_o X_L$), and the total capacitance $(C_p + C_{ep})$ in the tuned circuit.

Fig. 53 shows a coupling network which consists of a single-tuned circuit using magnetic or mutual inductive coupling. The capacitance C_t includes the effects of both the output capacitance of the preceding transistor and the input capacitance of the following transistor (referred to the primary of transformer T_i).

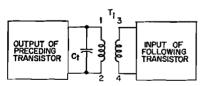


Figure 53. Single-tuned coupling network using inductive coupling.

The bandwidth, or effective frequency range, of a single-tuned transformer is determined by the half-power points on the resonance curve (-3 db or 0.707 down from the maximum). Under these conditions, the band pass Δf is equal to the ratio of the center or resonant frequency f. divided by the loaded (effective) Q of the circuit, as follows:

$\Delta f = f_r/Q_L$

The inherent internal feedback in transistors can cause instability and oscillation as the gain of an amplifier stage is increased (i.e., as the load and source impedances are increased from zero to matched conditions). At low frequencies, therefore, where the potential gain of transistors is high, it is often desirable to keep the transistor load impedance low. Relatively high capacitance values in the tuned collector circuit can then be avoided by use of a tap on the primary winding of the coupling transformer, as shown in Fig. 54. At

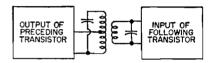
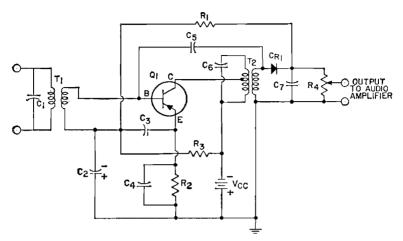


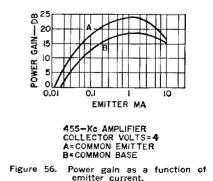
Figure 54. Transformer coupling network using tap on primary winding.

higher frequencies, the gain potential of the transistor decreases, and impedance matching is permissible.

External feedback circuits are often used in tuned coupling networks to counteract the effects of the internal transistor feedback and thus provide more gain or more stable performance. If the external feedback circuit cancels the effects of both the resistive and the reactive internal feedback, the amplifier is considered to be unilateralized. If the external circuit cancels the effect of only the reactive internal feedback, the amplifier is considered to be neutralized.

A typical tuned amplifier using neutralization is shown in Fig. 55. The input signal to the transistor is an if carrier (e.g., 455 kilocycles) amplitude-modulated by an audio signal. Capacitor C₁ and the primary winding of transformer T₁ form a parallel-tuned circuit resonant at 455 kilocycles. Transformer T₁ couples the signal power from the previous stage to the base of the transistor. Resistor R₃ provides forward bias to the transistor. Capacitor C₃ provides a low-impedance path




Figure 55. Neutralized if-amplifier and second-detector circuit.

for the 455-kilocycle signal from the input tuned circuit to the emitter. Resistor R_2 , which is bypassed for 455 kilocycles by capacitor C., is the emitter dc stabilizing resistor. The amplified signal from the transistor is developed across the parallel resonant circuit (tuned to 455 kilocycles) formed by capacitor C6 and the primary winding of transformer T₂, and is coupled by T₂ to the crystal-diode second detector CR.

Voltage at the intermediate frequency is taken from the secondary winding of the single-tuned output circuit and applied to the base of the transistor through the feedback (neutralizing) capacitor C_s . Because of the phase reversal in the commonemitter configuration, this external feedback is out of phase with the input from the if amplifier, and cancels the in-phase reactive feedback in the transistor due to the internal capacitance between the collector and the base.

The rectified output of the crystal diode CR is filtered by capacitor C_7 and resistor R₄ so that the voltage across capacitor C_7 consists of an audio signal and a dc voltage (positive with respect to ground for the arrangement shown in Fig. 55) that is directly proportional to the amplitude of the if carrier. This dc voltage is fed back to the emitter of the transistor through the resistor R_1 to provide automatic gain control. Resistor R_1 and capacitor C_2 form an audio decoupling network to prevent audio feedback to the base of the transistor.

Automatic gain control (agc) is often used in rf and if amplifiers in AM radio and television receivers to provide lower gain for strong signals and higher gain for weak signals. The dc component of the second-detector output, which is directly proportional to the strength of the signal carrier received, can be used to vary either the dc emitter current or the collector voltage of a transistor to provide agc. Fig. 56 shows typical curves of power gain

as a function of emitter current for a 455-kilocycle amplifier using either common-base or common-emitter configuration.

In high-frequency tuned amplifiers, where the input impedance is typically low, mutual inductive coupling may be impracticable because of the small number of turns in the secondary winding. It is extremely difficult in practice to construct a fractional part of a turn. In such cases, capacitance coupling may be used, as shown in Fig. 57. This arrangement, which is also called canacitive division, is similar to tapping down on a coil near resonance. Impedance transformation in this network is determined by the ratio between capacitors C1 and C2. Capacitor C_1 is normally much smaller than C₂; thus the capacitive reactance X_{01} is normally much larger

both the resonant circuit in the input of the coupling network and the resonant circuit in the output are tuned to the same resonant fre-In "stagger-tuned" quency. networks, the two resonant circuits are tuned to slightly different resonant frequencies to provide a more rectangular band pass. Double-tuned or stagger-tuned networks may use capacitive, inductive, or mutual inductance coupling, or any combination of the three.

Cross-modulation is an important consideration in the evaluation of transistorized tuner circuits. This phenomenon, which occurs primarily in nonlinear systems, can be defined as the transfer of modulation from an interfering carrier to the desired carrier. In general, the value of cross-modulation is independent of both the semiconductor material and

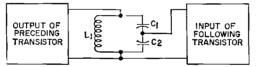


Figure 57. Single-tuned coupling network using capacitive division.

than X_{C2} . Provided the input resistance of the following transistor is much greater than X_{C2} , the effective turns ratio from the top of the coil to the input of the following transistor is $(C_1 + C_2)/C_1$. The total capacitance C_t across the inductance L is given by

$$C_t = \frac{C_1 C_2}{C_1 + C_2}$$

The resonant frequency f_r is then given by

$$\mathbf{f}_{r} = \frac{1}{2\pi\sqrt{L_{1}C_{t}}}$$

Double-tuned interstage coupling networks are often used in preference to single-tuned networks to provide flatter frequency response within the desired pass band and a sharper drop in response immediately adjacent to the ends of the pass band. In double-tuned networks, the construction of the transistor. At low frequencies, cross-modulation is also independent of the amplitude of the desired carrier, but varies as the square of the amplitude of the interfering signal.

In most rf circuits, the undesirable effects of cross-modulation can be minimized by good selectivity in the antenna and rf interstage coils. Minimum cross-modulation can best be achieved by use of the optimum circuit Q with respect to bandwidth and tracking considerations, which implies minimum loading of the tank circuits.

In rf circuits where selectivity is limited by the low unloaded Q's of the coils being used, improved crossmodulation can be obtained by mismatching the antenna circuit (that is, selecting the antenna primaryto-secondary turns ratio such that the reflected antenna impedance at the base of the rf amplifier is very low compared to the input impedance). This technique is commonly used in automobile receivers, and causes a slight degradation in noise figure. At high frequencies, where low source impedances are difficult to obtain because of lead inductance or the impracticality of putting a tap on a coil having one or two turns, an unbypassed emitter resistor having a low value of resistance (e.g. 22 ohms) may be used to obtain the same effect.

Cross-modulation may occur in the mixer or rf amplifier, or both. Accordingly, it is important to analyze the entire tuner as well as the individual stages. Cross-modulation is also a function of agc. At lowsensitivity conditions where the rf stage is operating at maximum gain and the interfering signal is far removed from the desired signal, cross-modulation occurs primarily in the rf stage. As the desired signal level increases and reverse agc is applied to the rf stage, the rf transistor eventually becomes passive and provides improved cross-modulation. If the interfering signal is close to the desired signal, it is the rf gain at the undesired signal frequency which determines whether the rf stage or mixer stage is the prime contribution of cross-modulation. For example, at low-signal levels, it is possible that the rf stage gain (including attenuation) at the undesired frequency is greater than unity. In this case, the undesired signal at the mixer input is larger than that at the rf input; thus the contribution of the mixer is appreciable. Intermediate and high signal conditions may be analyzed similarly by considering rf agc.

Direct-Coupled Amplifiers

Direct-coupled amplifiers are normally used in transistor circuits to amplify small dc or very-low-frequency ac signals. Typical applications of such amplifiers include the output stages of series-type and shunt-type regulating circuits, chopper-type circuits, differential amplifiers, and pulse amplifiers.

In series regulator circuits such as that shown in Fig. 58, direct-coupled amplifiers are used to amplify an

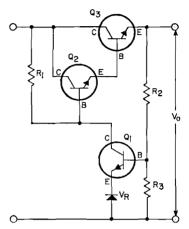


Figure 58. Typical series regulator circuit.

error or difference signal obtained from a comparison between a portion of the output voltage and a reference source. The referencevoltage source V_{R} is placed in the emitter circuit of the amplifier transistor Q_1 so that the error or difference signal between V_{R} and some portion of the output voltage V_0 is developed and amplified. The amplified error signal forms the input to the regulating element consisting of transistors Q_2 and Q_3 , and the output from the regulating element develops a controlling voltage across the resistor R₁.

Shunt regulator circuits are not as efficient as series regulator circuits for most applications, but they have the advantage of greater simplicity. In the shunt voltage regulator circuit shown in Fig. 59, the current through the shunt element consisting of transistors Q_1 and Q_2 varies with changes in the load current or the input voltage. This current variation is reflected across the resistance R_1 in series with the load so that the output voltage V_0 is maintained nearly constant.

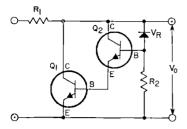


Figure 59. Typical shunt regulator circuit.

Direct-coupled amplifiers are also used in **chopper-type** circuits to amplify low-level dc signals, as illustrated by the block diagram in Fig. 60. The dc signal modulates an ac carrier wave, usually a square wave, and the modulated wave is then amplified to a convenient level. The series of amplified pulses can then be detected and integrated into the desired dc output signal.

Differential amplifiers can be used to provide voltage regulation, as described above, or to compensate for fluctuations in current due to signal, component, or temperature variations. Typical differential amplifier elements such as those shown in Fig. 61 include an output stage which supplies current to the load resistor R, and the necessary number of direct-coupled cascaded stages to provide the required amount of gain for a given condition of linevoltage or load-current regulation. The reference-voltage source $V_{\rm B}$ is placed in one of the cascaded stages in such a manner that an error or difference signal between V_R and some portion of the output voltage V_0 is developed and amplified. Some form of temperature compensation is usually included to insure stability of the direct-coupled amplifier.

OSCILLATION

Transistor oscillator circuits are similar in many respects to the tuned amplifiers discussed previously, except that a portion of the output power is returned to the input network in phase with the starting power (regenerative or positive feedback) to sustain oscillation.

DC bias-voltage requirements for oscillators are similar to those discussed for amplifiers. Stabilization of the operating point is important because this point affects both the output amplitude and waveform and the frequency stability. Operation is normally maintained within the linear portion of the transistor characteristic by use of a constant supply voltage. Because the collector-toemitter capacitance of the transistor affects frequency stability more than other parameters, a relatively large stabilizing capacitor is often used between the collector and emitter terminals to reduce the sensitivity of the circuit to voltage variations and to capacitance variations between transistors.

The maximum operating frequency of an oscillator circuit is limited by the frequency capability of the transistor used. The maximum frequency of a transistor is defined as the frequency at which the power gain is unity (i.e., an input signal appears in the output circuit at the same level, with no loss or gain). Because some power gain is required in an

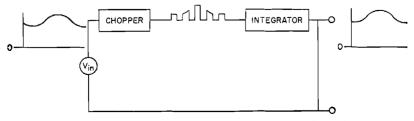


Figure 60. Block diagram showing action of "chopper" circuit.

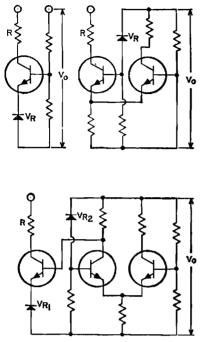


Figure 61. Typical differential amplifier circuits.

oscillator circuit to overcome losses in the feedback network, the operating frequency must be some value below the transistor maximum frequency.

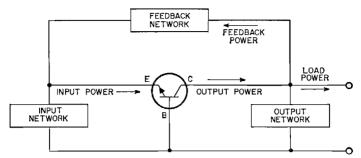
The transistor configuration selected for an oscillator circuit depends on the oscillator requirements. With the common-base and commoncollector configurations, the feedback network must include compensation for the difference between the input and output impedances. Phase inversion is not required, however, because no phase reversal occurs between input and output in these circuits. Voltage and power gains are greater than unity with the common-base circuit, but current gain is less than unity. Current and power gains are greater than unity with the common-collector circuit, but voltage gain is less than unity.

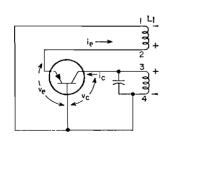
With the common-emitter configuration, current, voltage, and power gains are all greater than unity. This configuration is generally desirable for use in transistor oscillators because it provides highest power gains. The input and output impedances are more closely matched than in the other configurations, but phase inversion is necessary to compensate for the 180-degree phase reversal between input and output circuits. (The phase inversion required in a common-emitter oscillator may be less than 180 degrees, depending on the operating frequency of the circuit. The transistor develops a certain amount of phase shift as the frequency increases, usually in the order of 45 degrees at the betacutoff frequency and about 90 degrees at the gain-bandwidth product. The feedback network is required to supply only enough phase inversion to produce a net phase shift of 360 degrees around the entire loop.)

For sustained oscillation in a transistor oscillator, the power gain of the amplifier network must be equal to or greater than unity. When the amplifier power gain becomes less than unity, oscillations become smaller with time (are "damped") until they cease to exist. In practical oscillator circuits, power gains greater than unity are required because the power output is divided between the load and the feedback network, as shown in Fig. 62. The feedback power must be equal to the input power plus the losses in the feedback network to sustain oscillation. For example, if the power gain of the transistor amplifier is 50 and the input power is 2 milliwatts, the total output power is 100 milliwatts. If the losses in the feedback network equal 20 milliwatts, the feedback power must be 2 plus 20, or 22 milliwatts. The power delivered to the load is then 100 minus 22, or 78 milliwatts.

LC Resonant Feedback Oscillators

The frequency-determining elements of an oscillator circuit may consist of an inductance-capacitance



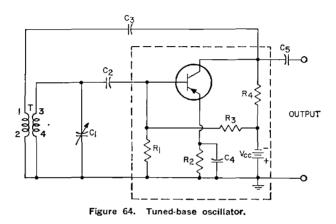

Figure 62. Block diagram of transistor oscillator showing division of output power.

(I.C) network, a crystal, or a resistance-capacitance (RC) network. Fig. 63a shows a simplified diagram for a transistor oscillator which uses a "tickler" coil L_1 for inductive feedback. (DC bias circuits are omitted for simplicity; as in the case of amplifiers, the emitter-base junction is forward-biased and the collectorbase junction is reverse-biased.) The waveforms of ac (instantaneous) emitter current i_e and collector current i_e are shown in Fig. 63b.

When the bias conditions of the transistor are normal and input power is applied, current flow in the circuit increases (between points X and Y in Fig. 63b) as a result of the regenerative feedback coupled from the collector circuit to the emitter circuit by the transformer windings

(3-4 to 1-2). A point (Y) is reached. however, at which the collector-base junction of the transistor becomes forward-biased (the transistor is saturated), and collector current can no longer increase. The feedback current then reverses, and emitter and collector current decrease (between points Y and Z) until the emitter-base junction becomes reverse-biased (the transistor is cut off). The bias conditions then revert to their original state, and the process is repeated. The time for change from saturation to cutoff is determined primarily by the tuned circuit (tank), which, in turn, determines the frequency of oscillation.

When the common-emitter configuration is used, the tuned circuit may be placed in either the base


(a)

 i_{e} X Y Z i_{c} X Z $TIME \longrightarrow$ (b)

Figure 63. (a) Simplified transistor LC oscillator and (b) corresponding current waveforms.

circuit or the collector circuit. In the tuncd-base oscillator shown in Fig. 64, one battery is used to provide all the dc operating voltages for the transistor. Resistors R_1 , R_2 , and R_4 , provide the necessary bias conditions. Resistor R_2 is the emitter stabilizing resistor. The components

emitter stabilizing resistor. Capacitors C_1 and C_2 bypass ac around resistors R_1 and R_2 , respectively. Although a scries-feed arrangement is shown, a shunt-feed arrangement is also possible with slight circuit modifications. The shunt-feed circuit would be almost identical with the

within the dotted lines comprise the transistor amplifier. The collector shunt-feed arrangement prevents dc current flow through the tickler (primary) winding of transformer T. Feedback is accomplished by the mutual inductance between the transformer windings.

The tank circuit consisting of the secondary winding of transformer T and variable capacitor C_1 is the frequency-determining element of the oscillator. Variable capacitor C_2 permits tuning through a range of frequencies. Capacitor C_2 couples the oscillation signal to the base of the transistor, and also blocks dc. Capacitor C_4 bypasses the ac signal around the emitter resistor R_8 and prevents degeneration. The output signal is coupled from the collector through coupling capacitor C_8 to the load.

A tuned-collector transistor oscillator is shown in Fig. 65. In this circuit, resistors R_1 and R_2 establish the base bias. Resistor R_2 is the

one shown in the tuned-base oscillator in Fig. 64, except for the location of the tank circuit. The tuned circuit consists of the primary winding of transformer T and the variable capacitor C_3 . Regeneration is accomplished by coupling the feedback signal from transformer winding 3-4 to the tickler coil winding

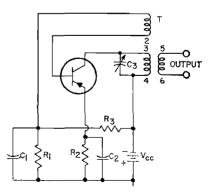


Figure 65. Tuned-collector oscillator.

1-2. The secondary winding of the transformer couples the signal output to the load.

Another form of LC resonant feedback oscillator is the transistor version of the familiar Colpitts oscillator, shown in Fig. 66. Regenera-

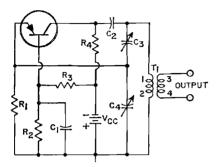


Figure 66. Transistor Colpitts oscillator.

tive feedback is obtained from the tuned circuit consisting of capacitors C_a and C₄ in parallel with the primary winding of the transformer, and is applied to the emitter of the transistor. Base bias is provided by resistors R₂ and R₃. Resistor R₄ is the collector load resistor. Resistor R₁ develops the emitter input signal and also acts as the emitter stabilizing resistor. Capacitors C₃ and C₄ form a voltage divider; the voltage developed across C₄ is the feedback voltage. The frequency and the amount of feedback voltage can be controlled by adjustment of either or both capacitors. For minimum feedback loss, the ratio of the capacitive reactance between C₃ and C. should be approximately equal to the ratio between the output impedance and the input impedance of the transistor.

A Clapp oscillator is a modification of the Colpitts circuit shown in Fig. 66 in which a capacitor is added in series with the primary winding of the transformer to improve frequency stability. When the added capacitance is small compared to the series capacitance of C_3 and C_3 , the oscillator frequency is determined by the series LC combination of the transformer primary and the added capacitor.

The Hartley oscillator shown in Fig. 67 is similar to the Colpitts oscillator, except that a split inductance is used instead of a split capacitance to obtain feedback. The circuit in Fig. 67 is modified for pushpull operation to provide greater output. The regenerative signal is applied between base and emitter of each transistor by means of the induced voltages in the transformer windings 1-3 and 4-6. After the feedback signal is applied to transformer winding 1-3, circuit operation is similar to that of a push-pull amplifier. Capacitor Ci places terminal 2 of the transformer at ac ground potential through capacitor C2.

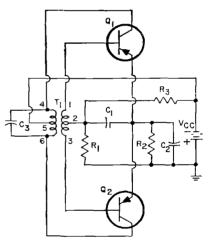


Figure 67. Hartley-type transistor push-pull oscillator.

Crystal Oscillators

A quartz crystal is often used as the frequency-determining element in a transistor oscillator circuit because of its extremely high Q (narrow bandwidth) and good frequency stability over a given temperature range. A quartz crystal may be operated as either a series or parallel resonant circuit. As shown in Fig. 68, the electrical equivalent of the

Transistor Applications

mechanical vibrating characteristic of the crystal can be represented by a resistance R, an inductance L, and a capacitance C. in series. The lowest impedance of the crystal occurs at the series resonant frequency of C. and L; the resonant frequency of the circuit is then determined only by the mechanical vibrating characteristics of the crystal.

The parallel capacitance C_p shown in Fig. 68 represents the electrostatic capacitance between the crystal electrodes. At frequencies above the

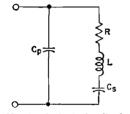


Figure 68. Equivalent circuit of quartz crystal.

series resonant frequency, the combination of L and C_s has the effect of a net inductance because the inductive reactance of L is greater than the capacitive reactance of C_s. This net inductance forms a parallel resonant circuit with C_p and any circuit capacitance across the crystal. The impedance of the crystal is highest at the parallel resonant frequency; the resonant frequency of the circuit is then determined by both the crystal and externally connected circuit elements.

Increased frequency stability can be obtained in the tuned-collector and tuned-base oscillators discussed previously if a crystal is used in the feedback path. The oscillation frequency is then fixed by the crystal. At frequencies above and below the series resonant frequency of the crystal, the impedance of the crystal increases and the feedback is reduced. Thus, oscillation is prevented at frequencies other than the series resonant frequency.

The parallel mode of crystal resonance is used in the Pierce oscillator shown in Fig. 69. (If the crystal

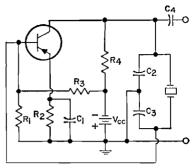


Figure 69. Pierce-type transistor crystal oscillator.

were replaced by its equivalent circuit, the functioning of the oscillator would be analogous to that of the Colpitts oscillator shown in Fig. 67.) The resistances shown in Fig. 69 provide the proper bias and stabilizing conditions for the common-emitter circuit. Capacitor C₁ is the emitter bypass capacitor. The required 180degree phase inversion of the feedback signal is accomplished through the arrangement of the voltagedivider network C2 and C3. The connection between the capacitors is grounded so that the voltage developed across C_3 is applied between base and ground and 180-degree phase reversal is obtained. The oscillating frequency of the circuit is determined by the crystal and the capacitors connected in parallel with it.

RC Resonant Feedback Oscillators

A resistance-capacitance (RC) network is sometimes used in place of an inductance-capacitance network when phase shift is required in a transistor oscillator. In the phaseshift oscillator shown in Fig. 70, the RC network consists of three sections (C_1R_1 , C_2R_2 , and C_3R_3), each of which contributes a phase shift of 60 degrees at the frequency of oscillation. Because the capacitive reactance of the network increases or decreases at other frequencies, the 180-degree phase shift required for the common-emitter oscillator occurs only at one frequency; thus, the out C_1 C_2 C_3 C_5 C_5 C_6 R_6 R_6 R_6 R_7 R_7

Figure 70. Transistor RC phase-shift oscillator.

put frequency of the oscillator is fixed. Phase-shift oscillators may be made variable over particular frequency ranges by the use of ganged variable capacitors or resistors in the RC networks. More than three sections may be used in the phaseshifting networks to reduce feedback losses.

An RC network is also used in the Wien-bridge oscillator shown in Fig. 71 to provide a sinusoidal output. In this circuit, transistor Q_2 functions as an amplifier and phase inverter. The feedback voltage developed between the collector of Q_2 and ground is impressed across the entire bridge network. The voltage developed across capacitor C_2 is regenerative (positive), and is applied to the input circuit of transistor Q_1 . Because this voltage is in phase with the

input signal only at the resonant frequency, the magnitude of the positive feedback is reduced at other frequencies.

Negative feedback (degeneration) is applied to the emitter of Q_t through resistor R_2 to improve frequency stability and to minimize distortion. R_4 normally provides greater negative feedback at frequencies other than the resonant frequency. Therefore, at other frequencies the negative feedback exceeds the positive feedback and a highly stable oscillator results.

The resonant frequency f_r of the oscillator is determined by capacitors C_1 and C_2 and resistors R_1 and R_2 , as follows:

$$\mathbf{f_r} = \frac{1}{2\pi\sqrt{R_1C_1R_3C_2}}$$

If resistor \mathbf{R}_1 is made equal to \mathbf{R}_3 , and capacitor C_1 to capacitor C_2 , this expression reduces to

$$\mathbf{f}_r = \frac{1}{2\pi \mathbf{R}_1 \mathbf{C}_1}$$

Either capacitors C_1 and C_2 or resistors R_1 and R_3 may be made variable to provide a variable-frequency oscillator.

Nonsinusoidal Oscillators

Oscillator circuits which produce nonsinusoidal output waveforms are

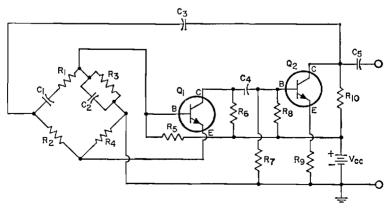


Figure 71. Wien-bridge-type transistor oscillator.

generally classified as relaxation oscillators. This type of oscillator uses a regenerative circuit in conjunction with resistance-capacitance (RC) or resistance-inductance (RL) components to produce a switching action. The charge and discharge times of the reactive elements (R xC or L/R) are used to produce sawtooth, square, or pulse output waveforms.

A multivibrator is essentially a nonsinusoidal two-stage oscillator in which one stage conducts while the other is cut off until a point is reached at which the conditions of the stages are reversed. This type of oscillator is normally used to produce a square-wave output. In the RC-coupled common-emitter multivibrator shown in Fig. 72, the output of transistor Q_1 is coupled to the input of transistor Q2 through the feedback network R₃C₂, and the output of Q_2 is coupled to the input of Q₁ through the feedback network R₄C₃. Because the feedback in each case is in phase with the signal on the base electrode, oscillations can be sustained.

In the multivibrator circuit, an increase in the collector current of transistor Q_1 causes a decrease in the collector voltage, and a corresponding reduction in the regenerative feedback through capacitor C_2 to the base of transistor Q_2 . As a result, the current through Q_2 decreases steadily as the current through Q_1 increases, until a point is reached where Q_2 is cut off. Capacitor C_2 then discharges through resistor R_3 until forward bias is reestablished across the base-emitter junction of Q_2 . Current through Q_2 then increases, while current through Q_1 decreases until Q_1 is cut off. The oscillating frequency of the multivibrator is determined by the values of resistance and capacitance in the circuit.

The output signal is coupled through capacitor C_s to the load. The output waveform, which is essentially square, may be obtained from either collector. A sawtooth output can be obtained by connection of a capacitor from collector to ground. A sinusoidal output wave can be obtained by connection of a parallel tuned circuit between the base electrodes of the two transistors.

A blocking oscillator is a form of nonsinusoidal oscillator which conducts for a short period of time and is cut off (blocked) for a much longer period. A basic circuit for this type of oscillator is shown in Fig. 73. Regenerative feedback through the tickler-coil winding 1-2 of transformer T₁ and capacitor C causes current through the transistor to rise rapidly until saturation is reached. The transistor is then cut off until C discharges through resistor R. The output waveform is a pulse, the width

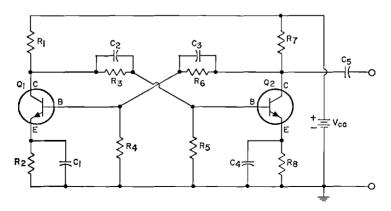


Figure 72. RC-coupled common-emitter multivibrator.

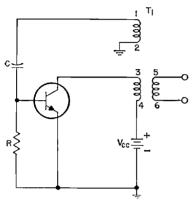


Figure 73. Basic circuit of blocking oscillator.

SWITCHING

Transistors are often used in pulse and switching circuits in radar, television, telemetering, pulsecode communication, and computing equipment. These circuits act as generators, amplifiers, inverters, frequency dividers, and wave-shapers to provide limiting, triggering, gating, and signal-routing functions. These applications are normally characterized by large-signal or nonlinear operation of the transistor.

In large-signal operation, the transistor acts as an overdriven amplifier which is driven from the cutoff region to the saturation region. In the simple transistor-switching circuit shown in Fig. 74, the collector-base junction is reverse-biased by battery V_{co} through resistor R₂. Switch S₁ controls the polarity and amount of base current from battery V_{B1} or V_{B2} . When S_1 is in the OFF position, the emitter-base junction of the transistor is reverse-biased by battery VBa through the current-limiting resistor R₂. The transistor is then in the OFF (cutoff) state. (Normal guiescent conditions for a transistor switch in the cutoff region require that both junctions be reverse-biased.)

When the switch is in the ON position, forward bias is applied to the emitter-base junction by battery V_{BI} through the current-limiting resistor R_1 . The base current and collector current then increase rapidly until the transistor reaches saturation. The active linear region is called the transition region in switching operation because the signal passes through this region rapidly.

In the saturation region, the collector current is usually at a maximum and collector voltage at **a**

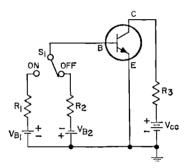


Figure 74. Simple switching circuit.

minimum. This value of collector voltage is referred to as the saturation voltage, and is an important characteristic of the transistor. A transistor operating in the saturation region is in the ON (conducting) state. (Both junctions are forwardbiased.)

Regions of operation are similar for all transistor configurations used as switches. When both junctions of the transistor are reverse-biased (cutoff condition), the output current is very small and the output voltage is high. When both junctions are forward-biased (saturation condition), the output current is high and the output voltage is small. For most practical purposes, the small output current in the cutoff condition and the small output voltage in the saturated condition may be neglected.

Switching Times

When switch S_1 in Fig. 74 is operated in sequence from OFF to

Transistor Applications

ON and then back to OFF, the current pulses shown in Fig. 75 are obtained. The rectangular input current

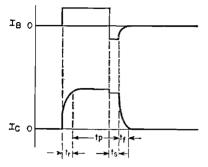


Figure 75. Current waveforms obtained in switching circuit.

pulse I_B drives the transistor from cutoff to saturation and back to cutoff. The output current pulse I_0 is distorted because the transistor cannot respond instantaneously to a change in signal level. The response of the transistor during the rise time t_r and the fall time t_r is called the transient response, and is essentially determined by the transistor characteristics in the active linear region.

The delay time t_d is the length of time that the transistor remains cut off after the input pulse is applied. This finite time is required before the applied forward bias overcomes the emitter depletion capacitance of the transistor and collector current begins to flow.

The rise time tr (which is also referred to as build up time) is the time required for the leading edge of the pulse to increase in amplitude from 10 to 90 per cent of its maximum value. Rise time can be reduced by overdriving the transistor, but only small amounts of overdrive are normally used because turn-off time (storage time plus fall time) is also affected.

The pulse time t_p (or pulse duration) is the length of time that the pulse remains at, or very near, its maximum value. Pulse time duration is measured between the points on the leading edge and on the trailing edge where the amplitude is 90 per cent of the maximum value.

The storage time t_* is the length of time that the output current I_0 remains at its maximum value after the input current I_B is reversed. The length of storage time is essentially governed by the degree of saturation into which the transistor is driven and by the amount of reverse (or turn-off) base current supplied.

The fall time t_r (or decay time) of the pulse is the time required for the trailing edge to decrease in amplitude from 90 to 10 per cent of its maximum value. Fall time may be reduced by the application of a reverse current at the end of the input pulse.

The total turn-on time of a transistor switch is the sum of the delay time and the rise time. The total turn-off time is the sum of the storage time and the fall time. A reduction in either storage time or fall time decreases turn-off time and increases the usable pulse repetition rate of the circuit.

Triggered Circuits

When an externally applied signal is used to cause an instantaneous change in the operating state of a transistor circuit, the circuit is said to be triggered. Such circuits may be astable, monostable, or bistable. Astable triggered circuits have no stable state: they operate in the active linear region, and produce relaxation-type oscillations. A monostable circuit has one stable state in either of the stable regions (cutoff or saturation); an external pulse "triggers" the transistor to the other stable region, but the circuit then switches back to its original stable state after a period of time determined by the time constants of the circuit elements. A bistable (flip-flop) circuit has two stable states in the two stable regions. The transistor is triggered from one stable state to the other by an external pulse,

and a second trigger pulse is required to switch the circuit back to its original stable state.

The multivibrator circuit shown in Fig. 76 is an example of a monostable circuit. The bias network holds

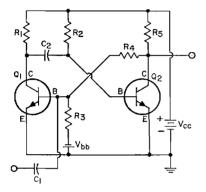


Figure 76. Monostable multivibrator.

transistor Q_1 in saturation and transistor Q_1 at cutoff during the quiescent or steady-state period. When an input signal is applied through the coupling capacitor C_1 , however, transistor Q_1 begins to conduct. The decreasing collector voltage of Q_1 (coupled to the base of Q_2 through capacitor C_2) causes the base current and collector current of Q_2 to decrease. The increasing collector voltage of Q_2 (coupled to the base of Q_1 through resistor R_4) then increases the forward base current of Q_1 . This regeneration rapidly drives transistor Q_1 into saturation and transistor Q_2 into cutoff. The base of transistor Q_2 at this point is at a negative potential almost equal to the magnitude of the battery voltage V_{ec} .

Capacitor C₂ then discharges through resistor R₂ and the low saturation resistance of transistor Q₁. As the base potential of Q₂ becomes slightly positive, transistor Q₂ again conducts. The decreasing collector potential of Q₂ is coupled to the base of Q₁ and transistor Q₁ is driven into cutoff, while transistor Q₂ becomes saturated. This stable condition is maintained until another pulse triggers the circuit. The duration of the output pulse is primarily determined by the time constant of capacitor C₂ and resistor R₂ during discharge.

The Eccles-Jordan-type multivibrator circuit shown in Fig. 77 is an example of a bistable circuit. The resistive and bias values of this circuit

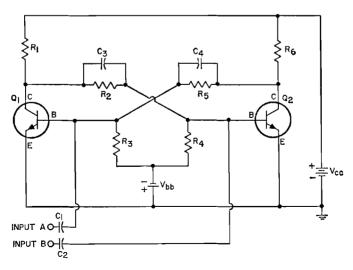


Figure 77. Eccles-Jordan-type bistable multivibrator.

Transistor Applications

are chosen so that the initial application of dc power causes one transistor to be cut off and the other to be driven into saturation. Because of the feedback arrangement, each transistor is held in its original state by the condition of the other. The application of a positive trigger pulse to the base of the OFF transistor or a negative pulse to the base of the ON transistor switches the conducting state of the circuit. The new condition is then maintained until a second pulse triggers the circuit back to the original condition.

In Fig. 77, two separate inputs are shown. A trigger pulse at input A will change the state of the circuit. An input of the same polarity at input B or an input of opposite polarity at input A will then return the circuit to its original state. (Collector triggering can be accomplished in a similar manner.) The time constants of C₃R₂ and of C₄R₅ essentially determine the fall time (from conduction to cutoff) of transistors Q_1 and Q_2 , respectively. The output of the circuit is a unit step voltage when one trigger is applied, or a square wave when continuous pulsing of the input is used.

Gating Circuits

A transistor switching circuit in which the transistor operates as an effective open or short circuit is called a "gate". These circuits are used extensively in computer applications to provide a variety of functions such as circuit triggering at prescribed intervals and level and waveshape control. Because these circuits are designed to evaluate input conditions to provide a predetermined output, they are primarily used as logic circuits. Logic circuits include OR, AND, NOR (NOT-OR), NAND (NOT-AND), series (clamping), and shunt or inhibitor circuits.

An OR gate has more than one input, but only one output. It provides a prescribed output condition when one or another prescribed input condition exists. In the simple OR gate shown in Fig. 78, the high resistance of R_1 and R_2 isolates one input source from the other. When a negative input pulse is applied at either input resistor, a negative output pulse is obtained. Application of negative pulses to both inputs results only in a widening of the output pulse. If a common-emitter configuration is used instead of the common-base configuration, phase inversion of the signal results, and the OR gate becomes a NOT-OR (NOR) gate.

An AND gate also has more than one input, but only one output. However, it provides an output only when all the inputs are applied simultaneously. As in the case of the OR gate, the use of a common-emitter configuration provides phase inversion and provides a NOT-AND (NAND) gate. In the simple NAND gate shown in Fig. 79. forward (saturation) bias is provided by battery V_{bb} . The bias value is chosen so that saturating current continues to flow when only one input pulse is applied. and both input pulses are required to turn the transistor off.

The AND-OR gate shown in Fig. 80 illustrates the use of a directcoupled transistor logic circuit to

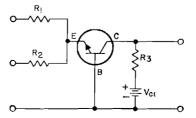


Figure 78. Simple OR-type logic circuit.

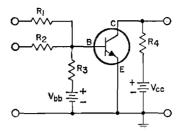


Figure 79. Simple NAND circuit.

trigger a bistable multivibrator. The over-all gating function, which consists of a NAND function and a NOR function, is performed by transistors Q_1 , Q_2 , and Q_3 . Transistor Q_4 is part of the bistable multivibrator. Provided all transistors are cut off (quiescent condition), triggering of the bistable multivibrator is accomplished when the prescribed input conditions for either of the NAND gates are met, i.e., when either transistors Q_1 and Q_2 or transistors Q_1 and Q_2 are triggered into conduction.

Transistors Q_1 and Q_2 are seriesconnected and form a NAND gate.

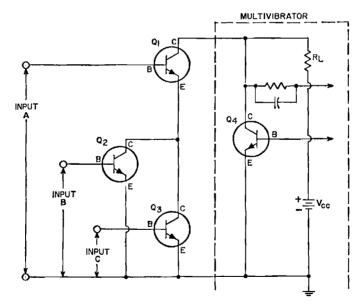


Figure 80. AND-OR gate or trigger circuit.

Similarly, transistors Q_1 and Q_2 are series-connected and form a NAND gate. Transistors Q_2 and Q_3 are parallel-connected and form a NOR gate. Reverse collector bias for all transistors is provided by battery V_{cc}. Gating circuits are also used as amplitude discriminators (limiters), clippers, and clamping circuits, and as signal-shunting or transmission gates.

Silicon Rectifiers

CILICON rectifiers, like other semi- \mathcal{O} conductor diodes, are essentially cells containing a simple p-n junction. As a result, they have low resistance to current flow in one (forward) direction, but high resistance to current flow in the opposite (reverse) direction. They can be operated at ambient temperatures up to 200 degrees centigrade and at current levels as high as 40 amperes. with voltage levels as high as 1000 volts. In addition, they can be used in parallel or series arrangements to provide higher current or voltage capabilities.

Because of their high forward-toreverse current ratios, silicon rectifiers can achieve rectification efficiencies in the order of 99 per cent. When properly used, they have excellent life characteristics which are not affected by aging, moisture, or temperature. They are very small and light-weight, and can be made impervious to shock and other severe environmental conditions.

THERMAL CONSIDERATIONS

Although rectifiers can operate at high temperatures, they are sensitive to sudden temperature changes because of the extremely small crystals used in their structure. The thermal capacity of a silicon rectifier is quite low, and the junction temperature rises rapidly during high-current operation. Sudden rises in junction temperature caused by either high currents or excessive ambient-temperature conditions can cause failure. (A silicon rectifier is considered to have failed when either the forward voltage drop or the reverse current has increased to a point where the crystal structure or surrounding material breaks down.) Consequently, temperature effects are very important in the consideration of silicon rectifier characteristics.

REVERSE CHARACTERISTICS

When a reverse-bias voltage is applied to a silicon rectifier, a limited amount of reverse current (usually measured in microamperes, as compared to milliamperes or amperes of forward current) begins to flow. As shown in Fig. 81, this reverse current flow increases slightly as the bias voltage increases, but then tends

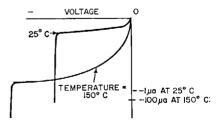


Figure 81. Typical reverse characteristics:

to remain constant even though the voltage continues to increase significantly. However, an increase in operating temperature multiplies the reverse current considerably for a given reverse bias.

At a specific reverse voltage (which varies for different types of diodes), a very sharp increase in reverse current occurs. This voltage is called the breakdown or avalanche (or zener) voltage. In many applications, rectifiers can operate safely at the avalanche point. If the reverse voltage is increased beyond this point. however, or if the ambient temperature is raised sufficiently (for example, a rise from 25 to 150 degrees centigrade increases the current by a factor of several hundred). "thermal runaway" results and the diode may be destroyed.

FORWARD CHARACTERISTICS

A silicon rectifier usually requires a forward voltage of 0.4 to 0.7 volt (depending upon the temperature and the impurity concentration in the p-type and n-type materials) to overcome the potential barrier at the p-n junction. As shown in Fig. 82, a slight rise in voltage beyond this point increases the forward current

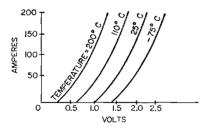


Figure 82. Typical forward characteristics.

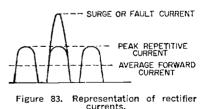

sharply. Because of the small mass of the silicon rectifier, the forward voltage drop must be carefully controlled so that the specified maximum value for the device is not exceeded. Otherwise, the diode may be seriously damaged or destroyed.

Fig. 82 shows the effects of an increase in temperature on the forwardcurrent characteristic of a silicon rectifier. In certain applications, close control of ambient temperature is required for satisfactory operation. Close control is not usually required, however, in power circuits.

RATINGS

Ratings for silicon rectifiers are determined by the manufacturer on the basis of extensive reliability testing. One of the most important ratings is the maximum peak reverse voltage (PRV), i.e., the highest amount of reverse voltage which can be applied to a specific rectifier before the avalanche breakdown point is reached. PRV ratings range from about 50 volts to as high as 1000 volts for some single-junction diodes. As will be discussed later, several junction diodes can be connected in series to obtain the PRV values required for very-high-voltage powersupply applications.

Three current ratings are usually given for silicon rectifiers: the maximum average forward current, the peak recurrent forward current, and the maximum surge current. As shown in Fig. 83, the first of these currents refers to the maximum average value of current which is allowed to flow in the forward direction for a specified ambient or case temperature. Typical average current outputs range from 0.5 ampere to as high as 40 amperes for single silicon diodes.

The peak recurrent forward current is the maximum repetitive instantaneous forward current permitted under stated conditions. The maximum surge current is the maximum non-repetitive peak current of a single forward cycle. The surge, or fault, current is permitted for only a very short time interval (about eight milliseconds). Surge currents generally occur when the equipment is first turned on, or when unusual voltage transients are introduced in the ac supply line. Protection against excessive currents of this type can be provided in various ways, as will be discussed later.

Because these maximum current ratings are all affected by thermal variations, ambient-temperature conditions must be considered in the application of silicon rectifiers. Temperature-rating charts are usually provided to show the percentage by which maximum currents must be decreased for operation at temperatures higher than normal room temperature (25 degrees centigrade).

HEAT SINKS

Silicon rectifiers are often mounted on devices called "heat sinks". A heat sink generally consists of a relatively large metal plate attached to the heat-conducting side of the rectifier. Because of its large surface, a heat sink can readily dissipate heat and thereby safeguard the rectifier against damage.

The size of a heat sink for a given rectifier application depends upon the ambient temperature and the maximum average forward current of the rectifier. As a result, the actual size must be calculated for each application which involves an ambient temperature or forward current other than that recommended by the manufacturer. For this calculation, two charts are used: the current-multiplying-factor chart shown in Fig. 84, and the heat-sink cooling chart shown in Fig. 85. Fig. 84 applies to all rectifier types for both polyphase and dc operation; Fig. 85 differs for different rectifier types.

The calculation requires four steps:

1. From Fig. 84, the current-multiplying factor is determined for the applicable conduction angle (i.e., the fraction of the ac input cycle during

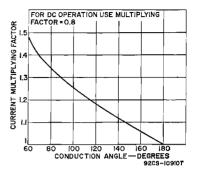


Figure 84. Current-multiplying-factor chart.

which forward current is expected to flow in the particular application). For dc operation of a silicon rectifier, a multiplying factor of 0.8 is generally specified.

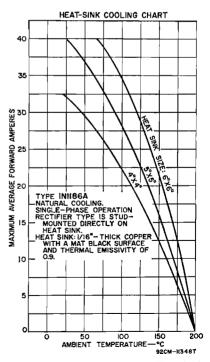


Figure 85. Typical heat-sink cooling chart.

2. The desired output current (expressed in amperes) is divided by the number of current paths. The actual number of paths depends on the type of operation intended, and can be determined from the table below.

Type of	Number of			
Operation	Current Paths			
Single-Phase, Full-Wa	2			
Center-Tapped	2			
Bridge	2			
Three-Phase: Y Double Y Bridge	3 6 3			
Six-Phase Star	6			

The resulting figure is the average forward current of the rectifier.

3. The average current is then multiplied by the current-multiplying factor obtained in Step 1. The resulting figure represents the adjusted average forward current of the rectifier.

4. This adjusted current is applied to Fig. 85 to determine either the maximum allowable ambient temperature for a given heat-sink size or the minimum heat-sink size for a given ambient temperature. (Published data may also include a chart similar to Fig. 85 for forced-air-cooling applications.)

The following example illustrates the calculation of minimum heat-sink size for a three-phase, half-wave (Y) circuit. The conduction angle is 120 degrees, the desired output current is 90 amperes, and the ambient temperature is 90 degrees centigrade.

1. From Fig. 84, the current-multiplying factor for a conduction angle of 120 degrees is 1.18.

2. For three-phase half-wave operation, the number of current paths is 3. The average forward current through the rectifier, therefore, is 90 divided by 3, or 30 amperes.

3. This average forward current is then multiplied by the current-multiplying factor (1.18) obtained in Step 1 to provide an adjusted forward current of 35.4 amperes. 4. From Fig. 85, the minimum heatsink size for the above conditions is found to be 6 by 6 inches.

SERIES AND PARALLEL ARRANGEMENTS

Series arrangements of silicon rectifiers are used when the applied reverse voltage is expected to be greater than the maximum peak reverse voltage rating of a single silicon rectifier (or cell). For example, four rectifiers having a maximum reverse voltage rating of 200 volts each could be connected in series to handle an applied reverse voltage of 800 volts.

In a series arrangement, the most important consideration is that the applied voltage be divided equally across the individual rectifiers. If the instantaneous voltage is not uniformly divided, one of the rectifiers may be subjected to a voltage greater than its specified maximum reverse voltage, and, as a result, may be destroyed. Uniform voltage division can usually be assured by connection of either resistors or capacitors in parallel with individual cells. Shunt resistors are used in steady-state applications, and shunt capacitors in applications in which transient voltages are expected. Both resistors and capacitors should be used if the circuit is to be exposed to both dc and ac components.

A parallel arrangement of rectifiers can be used when the maximum average forward current required is larger than the maximum current rating of an individual rectifier cell. To avoid differences in voltage across the parallel rectifiers, it is desirable to add either a resistor or an inductor in series with each cell. Balanced transformers or separate transformer windings can be used for this purpose. Although resistors are considered the simplest method of current division, individual inductors in series with each cell are more efficient because they do not consume as much power as the resistor arrangement.

Parallel rectifier arrangements are not in general use. Designers normally use a polyphase arrangement to provide higher currents, or simply substitute the readily available higher-current rectifier types.

OVERLOAD PROTECTION

In the application of silicon rectifiers, it is necessary to guard against both over-voltage and over-current (surge) conditions. A voltage surge in a rectifier arrangement can be caused by dc switching, reverse recoverv transients, transformer switching, inductive-load switching, and various other causes. The effects of such surges can be reduced by the use of a capacitor connected across the input or the output of the rectifier. In addition, the magnitude of the voltage surge can be reduced by changes in the switching elements or the sequence of switching, or by a reduction in the speed of current interruption by the switching elements.

In all applications, a rectifier having a more-than-adequate peak reverse voltage rating should be used. The safety margin for reverse voltage usually depends on the application. For a single-phase half-wave application using switching of the transformer primary and having no transient suppression, a rectifier having a peak reverse voltage three or four times the expected working voltage should be used. For a full-wave bridge using load switching and having adequate suppression of transients, a margin of 1.5 to 1 is generally acceptable.

Because of the small size of the silicon rectifier, excessive surge currents are particularly harmful to rectifier operation. Current surges may be caused by short circuits, capacitor inrush, dc overload, or failure of **a** single cell in **a** multiple arrangement. In the case of low-power cells, fuses or circuit breakers are often placed in the ac input circuit to the rectifier to interrupt the fault current before it damages the rectifier. When circuit requirements are such that service must be continued in case of failure of an individual diode, a number of cells can be used in parallel, each with its own fuse. Additional fuses should be used in the ac line and in series with the load for protection against dc load faults. In high-power cells, an arrangement of circuit breakers, fuses, and series resistances is often used to reduce the amplitude of the surge current.

APPLICATIONS

Silicon rectifiers are used in a continually broadening range of applications. Originally developed for use in such equipment as dc-to-dc converters, battery chargers, mobile power supplies, transmitters, and electroplating devices, silicon rectifiers are also used in power supplies for radio and television receivers and phonograph amplifiers, as well as in such applications as in-line-type modulators, hold-off and charging diodes, pulse-forming networks, and brushless alternators. They are also being used in many aircraft applications because of their small size, light weight, and high efficiency.

The most suitable type of rectifier circuit for a particular application depends on the dc voltage and current requirements, the amount of rectifier "ripple" (undesired fluctuation in the dc output caused by an ac component) that can be tolerated in the circuit, and the type of ac power available. Figs. 86 through 92 show seven basic rectifier configurations. (Filters used to smooth the rectifier output are not shown for each circuit, but are discussed later.) Figs. 86 through 92 also include the output-voltage waveforms for the various circuits and the current waveforms for each individual rectifier cell in the circuits. Ideally, the voltage waveform should be as flat as possible (i.e., approaching almost pure dc). A flat curve indicates a peak-to-average voltage ratio of one. In the case of the current waveform, the smaller the current flowing through the individual rectifier, the

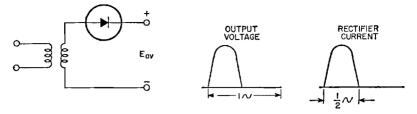


Figure 86. Single-phase half-wave circuit.

less chance there is for malfunction or burnout of the cell.

The half-wave single-phase circuit shown in Fig. 86 delivers only one pulse of current for each cycle of ac input voltage. As shown by the current waveform, the single rectifier cell is exposed to the entire current flow. This type of circuit, which contains a very high percentage of output ripple, is used principally in low-voltage high-current applications and in low-current high-voltage applications.

Fig. 87 shows a single-phase fullwave circuit with a center-tapped high-voltage winding. This circuit transformer voltage. In addition, it exposes the individual rectifier cell to only half as much peak reverse voltage, and allows only 50 per cent of the total current to flow through each cell. This type of circuit is popular in amateur transmitter use.

The three-phase circuits shown in Figs. 89 through 92 are usually found in heavy industrial equipment such as high-power transmitters. The **three-phase (Y)** half-wave circuit shown in Fig. 89 uses three rectifier cells. This circuit has considerably less ripple than the circuits discussed above. In addition, it allows only one-third of the total current to flow

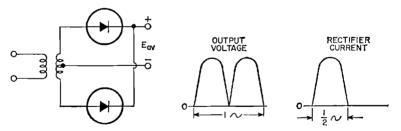


Figure 87. Single-phase full-wave circuit with center-tap.

has a higher peak-to-average voltage ratio than the circuit of Fig. 86, and about 50 per cent less ripple. This type of circuit is widely used in television receivers and large audio amplifiers.

The single-phase full-wave bridge circuit shown in Fig. 88 uses four rectifiers, and does not require the use of a transformer center-tap. It supplies twice as much output voltage as the circuit of Fig. 87 for the same through each rectifier cell. This type of circuit is used in alternator rectifiers in automobiles.

Fig. 90 shows a three-phase (Y) full-wave bridge circuit which uses a total of six rectifier cells. In this arrangement, two half-wave rectifiers are connected in series across each leg of a high-voltage transformer. This circuit delivers twice as much voltage output as the circuit of Fig. 89 for the same voltage condi-

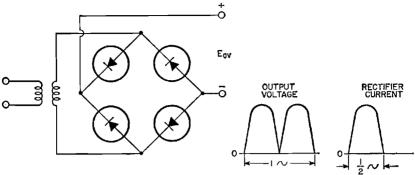
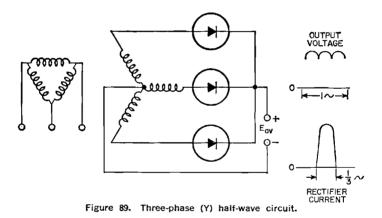



Figure 88. Single-phase full-wave circuit without center-tap.

Current Rectific Current Rectific Current Current Current

Figure 90. Three-phase (Y) full-wave bridge circuit.

tions. In addition, this circuit, as well as those shown in Figs. 91 and 92, has an extremely small percentage of ripple and a very low ratio of peak-to-average voltage.

The six-phase "star" circuit shown in Fig. 91, which also uses six rectifier cells, allows the least amount of the total current (one-sixth) to flow through each cell. The three-phase double-Y and interphase transformer circuit shown in Fig. 92 uses six half-wave rectifiers in parallel. This arrangement delivers six current pulses per cycle and twice as much output current as the circuit shown in Fig. 89.

Table I lists voltage and current ratios for the circuits shown in Figs. 86 through 92 for an inductive load. These ratios apply for sinusoidal ac input voltages. It is generally recommended that inductive loads rather than resistive loads be used for filtering of rectifier current, except for the circuit of Fig. 86. Current ratios given for inductive loads apply only when a filter choke is used be tween the output of the rectifier and any capacitor in the filter circuit. Values shown do not take into consideration voltage drops which occur in the power transformer, the silicon rectifiers, or the filter components under load conditions. When a particular rectifier type has been selected for use in a specific circuit, Table I can be used to determine the parameters and characteristics of the circuit.

In Table I, all ratios are shown as functions of either the average output voltage E_{av} or the average dc output current I_{av} , both of which are expressed as unity for each circuit. In practical applications, the magnitudes of these average values will, of course, vary for the different circuit configurations.

Filter circuits are generally used to smooth out the ac ripple in the output of a rectifier circuit. A smoothing filter usually consists of capacitors and iron-core chokes. In any filter-design problem, the load impedance must be considered as an

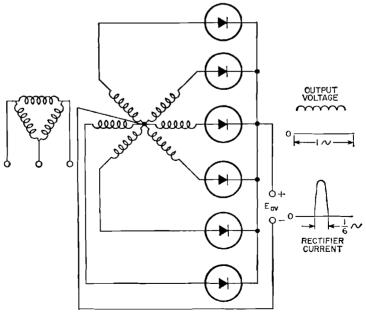


Figure 91. Six-phase "star" circuit.

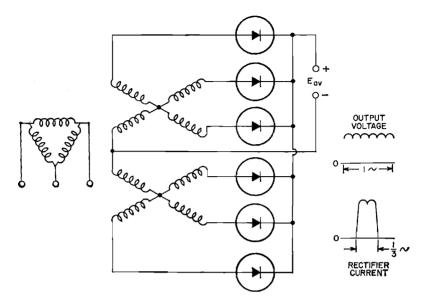
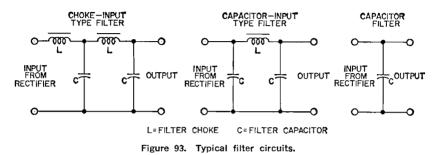



Figure 92. Three-phase double-Y and interphase transformer circuit.

integral part of the filter because the load is an important factor in filter performance. Smoothing effect is obtained from the chokes because they are in series with the load and offer a high impedance to the ripple voltage. Smoothing effect is obtained from the capacitors because they are in parallel with the load and store energy on the voltage peaks; this energy is released on the voltage

CIRCUIT RATIOS:								
Output Voltage	Fig. 86	Fig. 87	Fig. 88	Fig. 89	Fig. 90	Fig. 91	Fig. 92	
Average	\mathbf{Eav}	\mathbf{Eav}	\mathbf{Eav}	\mathbf{Eav}	\mathbf{Eav}	\mathbf{Eav}	\mathbf{Eav}	
Peak (x Eav)	3.14	1.57	1.57	1.21	1.05	1.05	1.05	
Ripple (%)	121	48	48	18.3	4.3	4.3	4.3	
Input Voltage (RMS)								
Phase $(\mathbf{x} \mathbf{Eav}) \dots$	2.22	1.11*	1.11	0.855●	0.428^{\bullet}	0.74^{ullet}	0.8 55 •	
Line-to-Line (x Eav)	2,22	2.22	1.11	1.48	0.74	1.48^{+}	1.71‡	
Average Output								
(Load) Current	Iav	Iav	Iav	Iav	Iav	Iav	Iav	
RECTIFIER CELL RATIOS								
Forward Current								
Average (x Iav)	1.00	0.5	0.5	0.333	0.333	0.167	0.167	
RMS (x Iav)	1.57	0.785	0.785	0.587	0.579	0.409	0.293	
Peak (x Iav)	3.14	1.57	1.57	1.21	1.05	1.05	0.525	
Peak Reverse Voltage								
x Eav	3.14	3.14	1.57	2.09	1.05	2.09	2.42	
x Erms	1.41	2.82	1.41	2.45	2.45	2.83	2.83	
* to center tap	† maximum value							
• to neutral	‡ maximum value, no load							

Table 1--Voltage and current ratios for rectifier circuits shown in Figs. 86 through 92. Fig. 86 uses a resistive load, and Figs. 87 through 92 an inductive load. dips and serves to maintain the voltage at the load substantially constant. Smoothing filters are classified as choke-input or capacitor-input according to whether a choke or capacitor is placed next to the rectifier. Typical filter circuits are shown in Fig. 93. measured by an ac voltmeter. Filter capacitors, therefore, especially the input capacitor, should have a rating high enough to withstand the instantaneous peak value if breakdown is to be avoided. When the input-choke method is used, the available dc out-

If an input capacitor is used, consideration must be given to the instantaneous peak value of the ac input voltage. This peak value is about 1.4 times the rms value as put voltage will be somewhat lower than with the input-capacitor method for a given ac voltage. However, improved regulation together with lower peak current will be obtained.

Silicon Controlled Rectifiers

THE silicon controlled rectifier (SCR) is basically a four-layer n-p-n-p semiconductor device having three electrodes: a cathode. an anode, and a control electrode called the gate. Like all rectifiers, it conducts current primarily in one direction. However, it differs from conventional rectifiers in that it will not conduct a substantial amount of current in the forward direction until the anode voltage exceeds a certain minimum voltage called the forward breakover voltage. The value of this voltage can be varied, or controlled, by the introduction of an external signal at the third elec-trode, or gate, of the silicon controlled rectifier. This unique control characteristic makes the silicon controlled rectifier a particularly useful switching or power-control-device, especially in high-power circuits.

(The generic term thyristor has recently been adopted as an international standard for semiconductor devices having control characteristics similar to those of thyratron tubes. The silicon controlled rectifier belongs in this class, and is, more specifically, a reverse-blocking triode type of thyristor. This name will probably replace the name silicon controlled rectifier on a gradual basis.)

CONSTRUCTION

Fig. 94 shows the basic construction details of the silicon controlled rectifier. The alternate layers of diffused silicon material serve as the cathode, gate, base, and anode. These layers are enclosed in a special metal container which is then hermetically sealed to maintain an ultradry atmosphere. This entire unit is

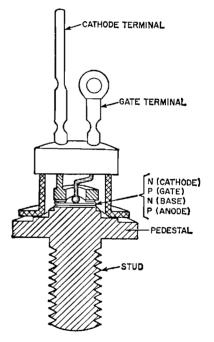


Figure 94. Construction details of typical silicon controlled rectifier.

mounted in a rugged case which provides protection against severe thermal environmental stresses. The pedestal below the semiconductor layers acts as a heat sink to help dissipate the heat developed internally during operation.

CURRENT-VOLTAGE CHARACTERISTICS

The voltage-current characteristic and circuit symbol of the silicon controlled rectifier are shown in Fig. 95. Under reverse-bias conditions, the device operates in a manner similar to that of conventional rectifiers. and exhibits a slight reverse leakage current which is called the reverse blocking current (IRBOM). This current has a small value until the peak reverse voltage (PRV) is exceeded, at which point the reverse current increases by several orders of magnitude. The value of the peak reverse voltage differs for each individual type.

this phenomenon occurs, the rectifier is considered to be triggered, or in the "on" condition. The forward current then continues to increase rapidly with slight increases in forward bias, and the device enters a state of high forward conduction.

It can be seen that when the forward breakover voltage of a silicon controlled rectifier is exceeded, the high internal resistance of the device changes to a very low value. The lower resistance then permits a high current to flow through the device at very low voltage values $(V_{\rm F})$.

This change in internal resistance makes the silicon controlled rectifier an ideal device for switching applications. When the operating voltage is below the breakover point, rectifier current is extremely small and the switch is effectively open. When

(a)

(b)

Figure 95. (a) Typical voltage and current characteristic and (b) circuit symbol for silicon controlled rectifier.

Under forward-bias conditions, there is a similar small leakage current called the forward blocking current (I_{FBOM}). Also, as the forward bias is increased, a voltage point is reached at which a forward breakover condition occurs and forward current increases rapidly. This point is called the forward voltage breakover point (V_{BOO}).

However, when the forward current exceeds a critical value of V_{BOO} , the voltage across the device suddenly reverts back to a very low value ($V_{\rm F}$) with very little decrease in current. (It is assumed that the rectifier is connected to a load resistance of sufficient value to permit this "cut-back" in voltage.) When the voltage increases to a value exceeding the breakover point, the rectifier switches to its high-conduction state and the switch is closed. The silicon controlled rectifier remains in the high-conduction state until the current drops below a value which can maintain the breakover condition. This value is called the holding current (i_{BOO}). When the anode-tocathode voltage drops to a low value and reverses the current flow, the device then reverts back to the forward blocking region, and the rectifier switches to the "off" mode.

The voltage breakover point of a silicon controlled rectifier can be varied, or controlled, by injection of a signal at the gate, as indicated by the family of curves shown in Fig. 96. When the gate current is zero, the forward voltage must reach the V_{BOO} value of the device before breakover occurs. As the gate current is increased, however, the value of break-over voltage becomes less until the curve closely resembles that of a conventional rectifier. In normal operation, silicon controlled rectifiers are operated well below the forward voltage breakover point, and a gate signal of sufficient amplitude is used to assure triggering of the rectifier to the "on" mode.

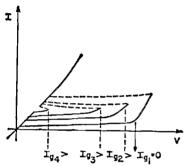
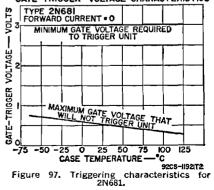


Figure 96. Family of curves with gate current at different values.

After the silicon controlled rectifier is triggered by the gate signal, the current flow through the device is independent of gate voltage or gate current. It remains in the highconduction state until the primary or anode current is reduced to a level below that required to sustain conduction. Turnoff of the device can be achieved in minimum time by application of a reverse bias.

MAXIMUM RATINGS


Like other semiconductor devices, silicon controlled rectifiers must be operated within the maximum ratings specified by the manufacturer. Several voltage ratings are generally given for silicon controlled rectifiers. The maximum peak reverse voltage $(V_{\mathbb{R}M} (\text{rep}))$ is the highest value of negative voltage which may be applied repetitively to the anode when the gate is open. The transient peak reverse voltage (V_{RM} (non-rep)) is the maximum value of negative voltage which may be applied to the anode for not more than five milliseconds when the gate is open. The **maximum peak forward blocking** voltage (V_{FBOM}) is the highest value of positive voltage which can be applied to the anode when the gate is open. The **maximum peak gate volt**age (forward V_{GEM} or reverse V_{KGM}) is the highest value of voltage which may be applied between the gate and the cathode when the anode is open.

One of the more critical current ratings for silicon controlled rectifiers is the maximum peak surge current ($i_{FM}(surge)$), which is the highest permissible non-repetitive peak current of a forward cycle. This peak current may be repeated after sufficient time has elapsed for the device to return to pre-surge thermal conditions.

Also important is the maximum average forward current of the device. Silicon controlled rectifiers presently available have forward-current ratings ranging from less than one to more than 100 amperes. Published data for these devices usually include temperature-rating charts which indicate the percentage of current permitted as a function of temperature.

TRIGGERING CHARACTERISTICS

Fig. 97 shows the gate triggervoltage characteristics for silicon controlled rectifier type 2N681. The GATE TRIGGER-VOLTAGE CHARACTERISTICS

trigger signal applied to the gate of the device must not exceed the maximum ratings of the gate, but must be sufficiently large to assure reliable triggering under all conditions.

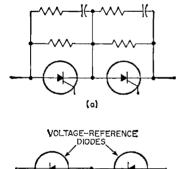
The gate voltage of silicon controlled rectifiers during "off" periods must be below the values shown by the lower curve of Fig. 97 to prevent random triggering. Because the maximum gate voltage for "off" periods varies with temperature, a sufficiently low value must be used to prevent undesired triggering at all temperature values encountered in a particular application.

When a negative voltage is applied to the anode of a silicon controlled rectifier, the positive voltage at the gate significantly increases the reverse leakage current and, as a result, the power which must be dissipated by the device. This dissipation may be reduced by means of a "clamping" circuit in which a diode and a resistor are connected between the gate and the anode. This arrangement attenuates positive gate signals when the anode is negative. An alternative arrangement is to place a conventional rectifier having a low reverse leakage current in series with the silicon controlled rectifier. A large percentage of the negative voltage is then assumed by the diode, and reverse dissipation in the controlled rectifier is greatly reduced.

OVERLOAD PROTECTION

In any silicon-controlled-rectifier circuit, precautions should be taken to protect the device from overcurrent and over-voltage surge conditions. Protection against overcurrent surges can be achieved by either preventing or interrupting the current surge, or by limiting the magnitude of the current flow by means of the circuit impedance. For the first approach, circuit fuses or breakers can be used effectively to disconnect the entire circuit from the power supply or to isolate the faulted silicon controlled rectifiers. In addition, dc fuses can be used to protect the devices from dc feedback originating in the load or parallel conduction circuits. The magnitude of the over-current flow can be limited by proper selection of source and transformer impedances, as well as the inductance and reactance, of the dc circuit.

Because of the fast switching action and high commutating duty of silicon controlled rectifiers, voltage transients are more troublesome than in conventional rectifiers. In many critical applications, effective protection against voltage transients requires the use of silicon controlled rectifiers having extremely high voltage ratings or the use of two or more rectifiers in series (as described below). In less critical applications, more economical techniques are available. For example, a conventional rectifier can be used in series with the silicon controlled rectifier for protection against high voltage surges.


The effects of voltage transients in silicon-controlled-rectifier circuits can be minimized by reducing the rate at which the energy is dissipated in the devices. This "slowdown" of energy release can be achieved by relocation of the switching elements in the circuit or by a change in the sequence of switching. Other preventive methods include the change of speed of current interruption by the switching elements, or the use of an additional energy source or dissipation means in the circuit.

SERIES ARRANGEMENT

Two or more silicon controlled rectifiers can be used in a series arrangement when the total forward (or reverse) voltage is higher than the maximum voltage rating for a single device. In series arrangements, precautions must be taken to assure equal division of the applied voltage among the devices. If one rectifier carries a larger share of voltage because of leakage differences or other variations between units, it may inadvertently fire when the peak voltage across the string is large, and thus disrupt the entire series string. Under steady-state blocking conditions, this problem can be minimized by shunting individual rectifiers with resistors of the same value to equalize the voltage drop.

Transient effects also present a problem in series arrangements. Under high-frequency voltage-transient conditions, voltage division across the silicon controlled rectifiers becomes inversely proportional to the junction capacitance of the individual units. In this case, proper voltage division can be achieved by placing a small capacitor in parallel with each voltage-equalizing resistor, as shown in Fig. 98a. For most applications, a 0.01- to 0.05-microfarad capacitor should be sufficient.

In extremely critical applications, voltage division for a series arrangement can best be attained by replacing each voltage-equalizing resistor with a silicon voltage-reference diode, as shown in Fig. 98b.

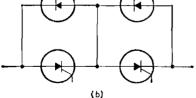
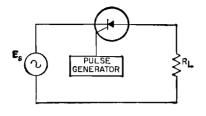
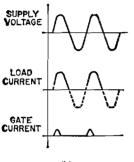


Figure 98. Various methods of proper voltage division in series arrangements.

Double-ended diodes should be used if the series string is required to block appreciable voltage in the reverse direction as well as in the forward direction.


In series operation, the gate signal for each silicon controlled rectifier must be electrically isolated from the gate signals for all other units. Small transformers having multiple secondary windings can effectively provide such isolation for ac and pulse-type triggering circuits. In addition, a small resistor or capacitor may be placed in series with each gate to prevent controlled rectifiers having low-impedance gate characteristics from shunting the triggering signal away from units having higher gate impedance.

Although silicon controlled rectifiers can also be used in parallel arrangements, the circuit requirements in such applications are quite complicated, and require a discussion which is too detailed for the purposes of this manual.


POWER CONTROL

As mentioned previously, silicon controlled rectifiers are used in a large number of commercial and industrial power-control applications. Fig. 99a shows a simple power-control circuit using a controlled rectifier; Fig. 99b shows the waveforms for applied voltage and load current. In this circuit, the rectifier is connected in series with the load, and the gate circuit receives its triggering signal from the pulse generator. The rectifier selected has a voltage breakover point which is higher than the value of applied peak ac anode voltage. As a result, when the gate circuit is open (i.e., no signal applied by the pulse generator), the rectifier is in the "off" condition, and no current flows through the load except a slight leakage current.

When a gate signal of sufficient amplitude is applied at the beginning of the positive anode voltage, the rectifier is triggered and current flows through the circuit for the remainder of the positive cycle, even when the triggering signal is removed. The load current ceases only when the applied ac signal becomes

(b)

Figure 99. (a) Basic power-control circuit and (b) waveforms for supply voltage, load current, and gate current.

negative and the rectifier current falls below the value required to maintain conduction.

A silicon controlled rectifier can be used to conduct during any desired portion of the positive cycle of anode voltage by applying the gate signal at the proper value of the anode voltage. For example, if the triggering signal is applied at the positive peak of the anode voltage waveform, the rectifier conducts only a quarter of the cycle. This flexibility of control distinguishes the silicon controlled rectifier from all other types of semiconductor devices.

CURRENT RATIOS

In the design of circuits using silicon controlled rectifiers, it is often necessary to determine the specific values of peak, average, and rms current flowing through the device. In the case of conventional rectifiers, these values are readily determined by the use of the current ratios shown in Table I of the section on Silicon Rectifiers. For silicon controlled rectifiers, however, the calculations are more difficult because the current ratios become functions of both the conduction angle and the firing angle of the device.

The charts in Figs. 100, 101, and 102 show several current ratios as functions of conduction and firing angles for three basic silicon-controlled-rectifier circuits. These charts

Figure 100. Ratio of device current as a function of conduction and firing angles for single-phase half-wave conduction into a resistive load.

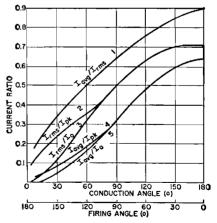


Figure 101. Ratio of device current as a function of conduction and firing angles for single-phase full-wave conduction into a resistive load.

Silicon Controlled Rectifiers

can be used in a number of ways to calculate desired current values. For example, they can be used to determine the peak or rms current in a silicon controlled rectifier when a certain average current is to be delivered to a load during a specific part of the conduction period. It is also possible to work backwards and determine the necessary period of conduction if, for example, a specified peak-to-average current ratio must be maintained in a particular application. Another use is the calculation of the rms current at various conduction angles when it is necessary to determine the power delivered to a load, or power losses in transformers, motors, leads, or bus bars. Although the charts are presented in terms of device current, they are equally useful for the calculation of load current and voltage ratios.

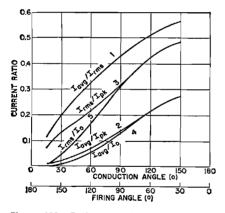


Figure 102. Ratio of device current as a function of conduction and firing angles for three-phase half-wave circuit having a resistive load.

The charts provide ratios relating average current I_{ave} , rms current I_{rms} , peak current I_{px} , and a parameter I_o called the reference current. This last value represents a constant of the circuit, and is equal to the peak source voltage V_{px} divided by the load resistance R_L . The term I_{px} refers to the peak current which appears at the controlled rectifier during its period of forward conduction. I_o is the maximum value that the current can obtain and corresponds to the peak of the sine wave. For conduction angles greater than 90 degrees, I_{pk} is equal to I_0 ; for conduction angles smaller than 90 degrees, I_{pk} is smaller than I_0 .

The general procedure for the use of the charts is as follows:

- (1) Identify the unknown or desired parameter.
- (2) Determine the values of the parameters fixed by the circuit specifications.
- (3) Use the appropriate curve to find the unknown quantity as a function of two of the fixed parameters.

Example No. 1: In the singlephase half-wave circuit shown in Fig. 103, a 2N685 silicon controlled rectifier is used to control power from a sinusoidal ac source of 120 volts rms (170 volts peak) into a 2.8-ohm load. This application requires a load current which can be varied from 2 to 25 amperes rms. It is necessary to determine the range of conduction angles required to obtain this range of load current.

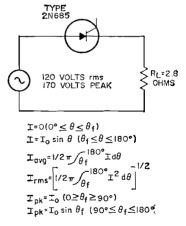


Figure 103. Single-phase half-wave circuit using resistive load, and respective equations for device current.

First, the reference current I_{\circ} is calculated, as follows:

$$I_{\circ} = -\frac{V_{pk}}{R_L} = -\frac{170}{2.8} = 61$$
 amperes

The ratios of I_{rma}/I_o for the maximum and minimum load-current values are then calculated, as follows:

$$\begin{bmatrix} \mathbf{I}_{rms} \\ \mathbf{I}_{o} \end{bmatrix} \min = \frac{2}{61} = 0.033$$
$$\begin{bmatrix} \mathbf{I}_{rms} \\ \mathbf{I}_{a} \end{bmatrix} \max = \frac{25}{61} = 0.41$$

These current-ratio values are then applied to curve 3 of Fig. 100, and the corresponding conduction angles are determined to be

> (Θ_c) min = 15 degrees (Θ_c) max = 106 degrees

Example No. 2: In the singlephase full-wave bridge circuit (two legs controlled) shown in Fig. 104, a constant average load current of seven amperes is to be maintained while the load resistance varies from 0.2 to 4 ohms. In this case, it is necessary to determine the variation

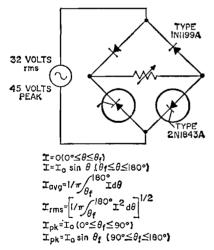


Figure 104. Single-phase full-wave bridge circuit using resistive load, and respective equations for device current.

required in the conduction angle. The average silicon controlled rectifier current is half the load current, or 3.5 amperes. The applicable current ratios for this circuit are shown in Fig. 100 (the individual device currents are half-wave although the load current is full-wave). Again, the first quantity to be calculated is the reference current. Because the reference current varies with the load resistance, the maximum and minimum values are determined as follows:

(I_o) max =
$$\frac{\mathbf{V}_{pk}}{(\mathbf{R}_{L})}$$
 min
= $\frac{45}{0.2}$ = 225 amperes

I.) min =
$$\frac{V_{pk}}{(R_L)}$$
 max
= $\frac{45}{4}$ = 11.2 amperes

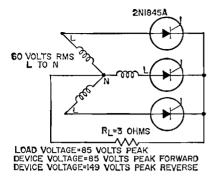
(

The corresponding ratios of I_{avg}/I_o are then calculated, as follows:

$$\begin{bmatrix} I_{avg} \\ I_o \end{bmatrix}_{min} = \frac{3.5}{225} = 0.015$$
$$\begin{bmatrix} I_{avg} \\ I_o \end{bmatrix}_{max} = \frac{3.5}{11.2} = 0.312$$

Finally, these ratios are applied to curve 2 of Fig. 100 to determine the desired conduction values, as follows:

(0_c) min = 25 degrees


 (Θ_c) max = 165 degrees

Example No. 3: In the three-phase half-wave circuit shown in Fig. 105, the firing angle is varied continuously from 30 to 155 degrees. In this case, it is necessary to determine the resultant variation in the attainable load power. Reference current for this circuit is determined as follows:

$$I_{\circ} = \frac{V_{pk}}{R_L} = \frac{85}{3.0} = 28$$
 amperes

Rectifier current ratios are determined from Fig. 102 for the extremes of the firing range, as follows:

$$\Theta_F = 30^\circ; \frac{\mathbf{I}_{rms}}{\mathbf{I}_o} = 0.49$$
$$\Theta_F = 155^\circ; \frac{\mathbf{I}_{rms}}{\mathbf{I}_o} = 0.06$$

$$\begin{split} \mathbf{I} &= \mathbf{I}_{0} \sin \theta \left(30^{\circ} \le \theta \le 180^{\circ} \right) \\ \mathbf{I}_{ovg}^{*1/2} \pi \int_{\theta_{f}}^{\theta_{f} + 120} \mathbf{I} d\theta \left(30^{\circ} \le \theta_{f} \le 60^{\circ} \right) \\ \mathbf{I}_{ovg}^{=1/2} \pi \int_{\theta_{f}}^{180^{\circ}} \mathbf{I} d\theta \left(60^{\circ} \le \theta_{f} \le 180^{\circ} \right) \\ \mathbf{I}_{rms}^{=} \left[1/2 \pi \int_{\theta_{f}}^{\theta_{f} + 120^{\circ}} \mathbf{I}^{2} d\theta \right]^{1/2} \left(30^{\circ} \le \theta_{f} \le 60^{\circ} \right) \\ \mathbf{I}_{rms}^{=} \left[1/2 \pi \int_{\theta_{f}}^{180^{\circ}} \mathbf{I}^{2} d\theta \right]^{1/2} \left(60^{\circ} \le \theta_{f} \le 180^{\circ} \right) \\ \mathbf{I}_{pk}^{=1} \cos \left(30^{\circ} \le \theta_{f} \le 90^{\circ} \right) \\ \mathbf{I}_{pk}^{=1} \cos \sin \theta_{f} \left(90^{\circ} \le \theta_{f} \le 180^{\circ} \right) \end{split}$$

Figure 105. Three-phase half-wave circuit using resistive load, and respective equations for device current.

These ratios, together with the reference current, are then used to determine the range of rms current in the rectifiers, as follows:

> $(I_{rms}) \max = 0.49 \times 28$ = 13.7 amperes $(I_{rms}) \min = 0.06 \times 28$ = 1.7 amperes

In this circuit, the rms current in

the load is equal to the rms rectifier current multiplied by the square root of three; as a result, the desired power range of the load is as follows:

$$\begin{array}{rcl} P &= (I_{\rm rms} \ \sqrt{3})^2 \ R \\ P_{\rm max} &= 1700 \ {\rm watts} \\ P_{\rm min} &= 26 \ {\rm watts} \end{array}$$

Tunnel, Varactor, and Other Diodes

TUNNEL DIODES

TUNNEL diode is a small p-n junction device having a very high concentration of impurities in the p-type and n-type semiconductor materials. This high impurity density makes the junction depletion region (or space-charge region) so narrow that electrical charges can transfer across the junction by a quantum-mechanical action called "tunneling". This tunneling effect provides a negative-resistance region on the characteristic curve of the device that makes it possible to achieve amplification, pulse generation, and rf-energy generation.

Construction

The structure of a tunnel diode is extremely simple, as shown in Fig. 106. A small "dot" of highly conductive n-type (or p-type) material is alloyed to a pellet of highly conductive p-type (or n-type) material to form the semiconductor junction. inductance, low-capacitance case. A very fine mesh screen is added to make the connection to the "dot". The device is then encapsulated, and a lid is welded over the cavity.

At the present time, most commercially available tunnel diodes are fabricated from either germanium or gallium arsenide. Germanium devices offer high speed, low noise, and low rise times (as low as 40 picoseconds). Gallium arsenide diodes have a voltage swing almost twice that of germanium devices, and, as a result, can provide power outputs almost four times as high. Because of their power-handling capability, gallium arsenide tunnel diodes are being used in an increasing number of applications, and appear to be particularly useful as microwave oscillators.

Characteristics

Typical current-voltage characteristics for a tunnel diode are shown in Fig. 107. Conventional diodes do

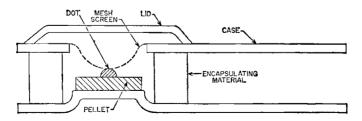


Figure 106. Structure of a tunnel diode.

The pellet (approximately 0.025 inch square) is then soldered into a low-

not conduct current under conditions of reverse bias until the breakdown

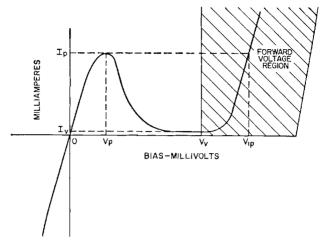


Figure 107. Typical current-voltage characteristic of a tunnel diode,

voltage is reached; under forward bias they begin to conduct at approximately 300 millivolts. In tunnel diodes, however, a small reverse bias causes the valence electrons of semiconductor atoms near the junction to "tunnel" across the junction from the p-type region into the n-type region; as a result, the tunnel diode is highly conductive for all reverse biases. Similarly, under conditions of small forward bias, the electrons in the n-type region "tunnel" across the junction to the p-type region and the tunnel-diode current rises rapidly to a sharp maximum peak I_p. At intermediate values of forward bias, the tunnel diode exhibits a negativeresistance characteristic and the current drops to a deep minimum valley point I_v. At higher values of forward bias, the tunnel diode exhibits the diode characteristic associated with conventional semiconductor current flow. The decreasing current with increasing forward bias in the negativeresistance region of the characteristic provides the tunnel diode with its ability to amplify, oscillate, and switch.

Equivalent Circuit

In the equivalent circuit for a tunnel diode shown in Fig. 108, the ntype and p-type regions are shown as pure resistances r_1 and r_2 . The transition region is represented as a voltage-sensitive resistance R(v) in parallel with a voltage-sensitive capacitance C(v) because tunneling is

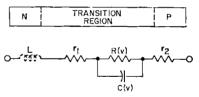


Figure 108. Equivalent circuit for a tunnel diode.

a function of both voltage and junction capacitance. This capacitance is similar to that of a parallel-plate capacitor having plates separated by the transition region.

The dashed portion L in Fig. 108 represents an inductance which results from the case and mounting of the tunnel diode. This inductance is unimportant for low-frequency diodes, but becomes increasingly important at high frequencies (above 100 megacycles).

Fig. 109 shows the form of the equivalent circuit when the diode is

biased so that its operating point is in the negative-resistance region; dynamic characteristics of tunnel diodes are defined with respect to this circuit. L_8 represents the total series

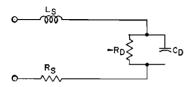


Figure 109. Equivalent circuit for a tunnel diode biased in the negative-resistance region.

inductance, and R_s the total series resistance. C_D is the capacitance and $-R_D$ is the negative resistance of the diode. For small signal variations, both the resistance R_D and the capacitance C_D are constant.

The figure of merit F of a tunnel diode is equal to the reciprocal of 2π RC, where R and C are the equivalent values $-R_D$ and C_D , respectively, shown in Fig. 109. This expression has two very useful interpretations: (1) it is the diode gain-bandwidth product for circuits operating in the linear negative-resistance region of the characteristic, and (2) its reciprocal is the diode switching time when the device is used as a logic element.

Applications

When the tunnel diode is used in circuits such as amplifiers and oscillators, the operating point must be established in the negative-resistance region. The dc load line, shown as a solid line in Fig. 110, must be very steep so that it intersects the static characteristic curve at only one point A. The ac load line can be either steep with only one intersection B, as in the case of an amplifier, or relatively flat with three intersections C, D, and E, as in the case of an oscillator. The location of the operating point is determined by the anticipated signal swing, the required signal-to-noise ratio, and the operating temperature of the device. Biasing at the center of the linear portion of the negative-resistance slope permits the greatest signal swing. For high-temperature operation, a higher operating current is chosen; for low noise, the device is operated at the lowest possible bias current.

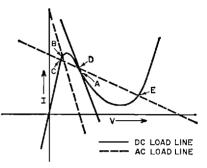


Figure 110. Typical load lines for tunneldiode circuits.

Because tunnel diodes can operate effectively at frequencies above 300 megacycles, they are particularly suitable for use in microwave amplifiers and oscillators. In microwave amplifier circuits, tunnel diodes offer low noise, as well as small size and weight, low cost, and low power drain. In addition, bandwidths in excess of an octave can readily be obtained because of the wideband negative-resistance characteristic of tunnel diodes. However, this wideband negative resistance makes stahilization an important problem in the design of microwave tunneldiode amplifiers.

In microwave oscillator circuits. tunnel diodes can provide useful power outputs at frequencies as high as 5000 megacycles. Compared to vacuum-tube microwave oscillators, tunnel-diode oscillators are inexpensive, require only a fraction of a volt dc bias, and are rugged and in severe environments. reliable Compared to transistor-driven varactor frequency-multiplier circuits. they are simple and compact, and afford higher dc-to-rf conversion efficiencies. (More detailed information on microwave tunnel-diode circuits, as well as on other tunnel-

Tunnel, Varactor, and Other Diodes

diode applications, is given in the RCA TUNNEL-DIODE MANUAL TD-30.)

As a two-terminal switch, the tunnel diode is particularly suited to computer applications because of its high speed, small size, and low power consumption. Switching operation is obtained by the use of a load line which intersects the diode characteristic in three points, as shown in Fig. 110; however, only points C and E are stable operating points. If the circuit is operated at point C and a positive current step of sufficient amplitude is applied, the operating point switches to point E. Correspondingly, a negative input signal switches the operating point back to point C.

An advantage of the switching mode is its nonsensitivity to the exact linearity of the negative-resistance region of the tunnel-diode characteristics. Slight irregularities in the negative characteristic have negligible effect on the switching action.

In the basic monostable circuit or "gate" shown in Fig. 111a, the static load line is determined by the resist-

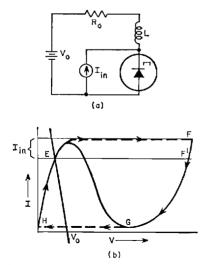
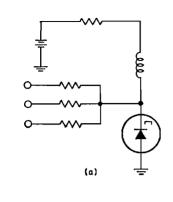



Figure 111. Basic tunnel-diode logic circuit.

ance R_o and the voltage V_o . If R_o is less than the minimum dynamic negative resistance of the diode, only a single operating point exists. The gate is stable in its low state if V_o is adjusted so that the operating point is at E. The dynamic load line is determined by the inductive time constant L/R_o . When the inductive time constant is long compared to the switching time t_s , the current in the circuit is effectively constant.

If a small step of current I_{in} is applied to the diode, the operating point switches to the high-voltage point F along the constant-current path shown by the dashed line in Fig. 111b. Removal of the input causes the operating point to move to F'. At this point, the energy stored in the inductor L must be dissipated before the circuit can return to its original operating point. As the energy in the inductor decreases, the operating point moves along the diode characteristic to the point of minimum current at G. When this point is reached, switching again occurs along a constant-current path to point H. The cycle of operation is completed by a recovery region in which the energy in the inductor builds up to its original level; during this period the operating point moves up the diode characteristic to the starting point.

Fig. 112a shows a simple tunneldiode logic circuit. If the static operating bias is adjusted so that only one input is required to trigger the diode, an OR function is performed. If all inputs are required to trigger the diode, an AND function is performed. Because the coupling impedance is high compared to the diode impedance, the inputs can be considered as current sources during the triggering period. Fig. 112b shows the biasing for a three-input AND gate. If the operating-point bias is increased slightly, the circuit can be made to trigger on two of its inputs; the logical function performed would then be that of a "majority gate".

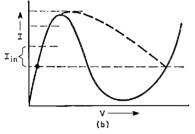


Figure 112. Tunnel-diode "AND" gate.

Radiation and Thermal Considerations

One of the most important features of the tunnel diode is its resistance to nuclear radiation. Experimental results have shown tunnel diodes to be at least ten times more resistant to radiation than transistors. Because the resistivity of tunnel diodes is so low initially, it is not critically affected by radiation until large doses have been applied. In addition, tunnel diodes are less affected by ionizing radiation because they are relatively insensitive to surface changes produced by such radiation.

In general, the tunnel-diode voltage-current characteristic is relatively independent of temperature. Specific tunnel-diode applications may be affected, however, by the relative temperature dependence of the various circuit components. In such applications, negative feedback or direct (circuit) compensation may be required.

HIGH-CURRENT TUNNEL DIODES

High-current tunnel diodes are basically the same as conventional tunnel diodes, except that they have a larger junction area to permit the flow of higher currents. In addition, they use a different package (RCA high-current devices generally use a rectifier package such as the DO-4 or DO-8), and have a much smaller value of series resistance (generally in the order of 0.010 ohm or less).

High-current tunnel diodes are used as low-voltage inverters in circuits having low-impedance dc power sources. They can also be used for efficient inversion of the output of solar cells, thermoelectric generators, or thermionic converters, and as overload detectors in dc and ac power supplies, pulse generators, high-speed switches, and oscillators.

Fig. 113 shows a simple overloadsensor circuit using a high-current tunnel diode. This circuit is a fastacting sensitive overcurrent detector which can be used to protect sensitive loads from current surges or overloads. Other circuit arrangements can be used to protect the power supply rather than the load.

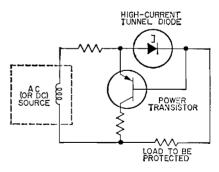


Figure 113. Overload sensor circuit using tunnel diode.

TUNNEL RECTIFIERS

In addition to its negative-resistance properties, the tunnel diode has an efficient rectification characteristic which can be used in many rectifier applications. When a tunnel

Tunnel, Varactor, and Other Diodes

diode is used in a circuit in such a way that this rectification property is emphasized rather than its negative-resistance characteristic, it is called a tunnel rectifier. In general, the peak current for a tunnel rectifier is less than one milliampere.

The major differences in the current-voltage characteristics of tunnel rectifiers and conventional rectifiers are shown in Fig. 114. In conventional rectifiers, current flow is substantial in the forward direction, but extremely small in the reverse direction (for signal voltages less than the breakdown voltage for the device). In tunnel rectifiers, however, substantial reverse current flows at very low voltages, while forward current is relatively small. Consequently, tunnel rectifiers can provide rectification at smaller signal voltages than conventional rectifiers. although their polarity requirements are opposite. (For this reason, tunnel rectifiers are sometimes called "back diodes.")

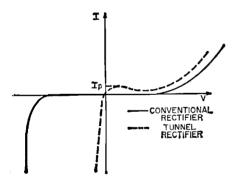
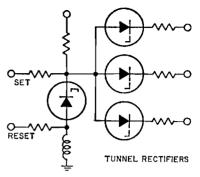
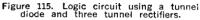




Figure 114. Current-voltage characteristics of tunnel rectifier and conventional rectifier.

Because of their high-speed capability and superior rectification characteristics, tunnel rectifiers can be used to provide coupling in one direction and isolation in the opposite direction. Fig. 115 shows the use of tunnel rectifiers to provide directional coupling in a tunnel-diode logic circuit.

VARACTOR DIODES

A varactor or variable-reactance diode is a microwave-frequency p-n junction semiconductor device in which the depletion-layer capacitance bears a nonlinear relation to the junction voltage, as shown in Fig. 116a. When biased in the reverse direction, a varactor diode can be represented by a voltage-sensitive capacitance C(v) in series with a resistance R_s . as shown in Fig. 116b. This nonlinear capacitance and low series resistance. which permit the device to perform frequency-multiplication, oscillation, and switching functions, result from a very high impurity concentration

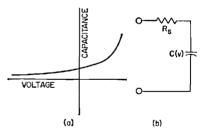


Figure 116. (a) Capacitance-voltage relationship and (b) equivalent circuits for a varactor diode.

outside the depletion-layer region and a relatively low concentration at the junction. Very low noise levels are possible in circuits using varactor diodes because the dominant current across the junction is reactive and shot-noise components are absent. Reactive nonlinearity, without an appreciable series resistance component, enables varactor diodes to generate harmonics with very high efficiency in circuits such as the shunttype frequency multiplier shown in Fig. 117. The circuit is driven by a sinusoidal voltage source V_a having

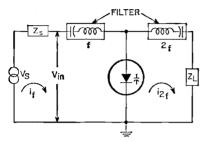


Figure 117. Varactor-diode frequency multiplier.

a fundamental frequency f and an internal impedance Z_{s} . Because the ideal input filter is an open circuit for all frequencies except the fundamental frequency, only the fundamental component of current i_{r} can flow in the input loop. A second-harmonic current i_{2r} is generated by the varactor diode and flows toward the load Z_{L} ; another ideal filter is used in the output loop to block the fundamental-frequency component of the input current.

Varactor diodes can amplify signals when their voltage-dependent capacitance is modulated by an alternating voltage at a different frequency. This alternating voltage supply, which is often referred to as the "pump", adds energy to the signal by changing the diode capacitance in a specific phase relation with the stored signal charge so that potential energy is added to this charge. An "idler" circuit is generally used to provide the proper phase relationship between the signal and the "pump".

VOLTAGE-REFERENCE DIODES

Voltage-reference or zener diodes are silicon rectifiers in which the reverse current remains small until

the breakdown voltage is reached and then increases rapidly with little further increase in voltage. The breakdown voltage is a function of the diode material and construction. and can be varied from one volt to several hundred volts for various current and power ratings, depending on the junction area and the method of cooling. A stabilized supply can deliver a constant output (voltage or current) unaffected by temperature. output load, or input voltage, within given limits. The stability provided by voltage-reference diodes makes them useful as stabilizing devices and as reference sources capable of supplving extremely constant current loads.

COMPENSATING DIODES

Excellent stabilization of collector current for variations in both supply voltage and temperature can be obtained by the use of a compensating diode operating in the forward direction in the bias network of amplifier or oscillator circuits. Fig. 118 shows the transfer characteristics of

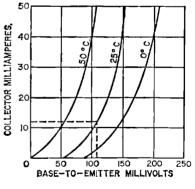


Figure 118. Transfer characteristics of transistor.

a transistor; Fig. 119 shows the forward characteristics of a compensating diode. In a typical circuit, the diode is biased in the forward direction; the operating point is represented on the diode characteristics by the dashed horizontal line. The

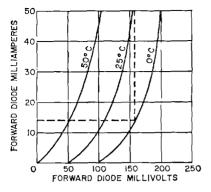


Figure 119. Forward characteristics of compensating diode.

diode current at this point determines a bias voltage which establishes the transistor idling current. This bias voltage shifts with varying temperature in the same direction and magnitude as the transistor characteristic, and thus provides an idling current that is essentially independent of temperature.

The use of a compensating diode also reduces the variation in transistor idling current as a result of supply-voltage variations. Because the diode current changes in proportion with the supply voltage, the bias voltage to the transistor changes in the same proportion and idling-current changes are minimized. (The use of diode compensation is discussed in more detail under "Biasing" in the Transistor Applications Section.)

Transistor Installation

THIS section covers installation suggestions and precautions which are generally applicable to all types of transistors. Careful observance of these suggestions will help experimenters and technicians to obtain the best results from semiconductor devices and circuits.

ELECTRICAL CONNECTIONS

The collector, base, and emitter terminals of transistors can be connected to associated circuit elements by means of sockets, clips, or solder connections to the leads or pins. If connections are soldered close to the lead or pin seals, care must be taken to conduct excessive heat away from the seals, otherwise the heat of the soldering operation may crack the glass seals and damage the transistor. When dip soldering is employed in the assembly of printed circuits using transistors, the temperature of the solder should be limited to about 225 to 250 degrees centigrade for a maximum immersion period of 10 seconds. Furthermore. the leads should not be dip-soldered too close to the transistor case. Under no circumstances should the mounting flange of a transistor be soldered to a heat sink because the heat of the soldering operation may permanently damage the transistor.

When the metal case of a transistor is connected internally to the collector, the case operates at the collector voltage. If the case is to operate at a voltage appreciably above or below ground potential, consideration must be given to the possibility of shock hazard and suitable precautionary measures taken.

TESTING

A quick check can be made of transistors prior to their installation in a circuit by resistance measurements with an electronic voltmeter (such as a VoltOhmyst*). Resistance between any two electrodes should be very high (more than 10,000 ohms) in one direction, and considerably lower in the other direction (100 ohms or less between emitter and base or collector and base; about 1000 ohms between emitter and collector). It is very important to limit the amount of voltage used in such tests (particularly between emitter and base) so that the breakdown voltages of the transistor will not be exceeded; otherwise the transistor may be damaged by excessive currents.

TEMPERATURE EFFECTS

Many transistor characteristics are sensitive to variations in temperature, and may change enough at high operating temperatures to affect circuit performance. Fig. 120 illustrates the effect of increasing temperature on the common-emitter forward current-transfer ratio (beta), the dc collector-cutoff current, and the input and output impedances. To avoid undesired changes in circuit operation, it is recommended that tran-*Trade Mark Reg. U.S. Pat, Off.

Transistor Installation

sistors be located away from heat sources in equipment, and also that provisions be made for adequate heat dissipation and, if necessary, for temperature compensation.

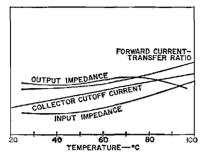


Figure 120, Variation of transistor characteristics with temperature.

HEAT SINKS

In some transistors, the collector electrode is connected internally to the metal case to improve heat-dissipation capabilities. More efficient cooling of the collector junction in these transistors can be accomplished by connection of the case to a heat sink. It is recommended that a 0.002inch mica insulator or an anodized aluminum insulator having high thermal conductivity be used between the transistor base and the heat sink. usually the chassis. The insulator should extend beyond the mounting clamp, as shown in Fig. 121. It should be drilled or punched to provide both the two mounting holes and the clearance holes for the collector, emitter, and base pins. Burrs should be removed from both the insulator and the holes in the chassis so that the insulating layer will not be destroyed during mounting. It is also recommended that a fiber washer be used between the mounting bolt and the chassis, as shown in Fig. 121, to prevent a short circuit between them.

The use of an external resistance in the emitter or collector circuit of a transistor is an effective deterrent to damage which might be caused by thermal runaway. The minimum value of this resistance for low-level stages may be obtained from the following equation:

$$R_{min} = \frac{E^2}{4\left(P_0 + \frac{25}{K}\right)}$$

where E is the dc collector supply voltage in volts, P_0 is the product of the collector-to-emitter voltage and the collector current at the desired operating point in watts, and K is the thermal resistance of the transistor and heat sink in degrees centigrade per watt.

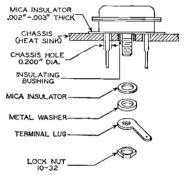


Figure 121. Suggested mounting arrangement for transistor on heat sink.

SHIELDING

In high-frequency stages having high gain, undesired feedback may occur and produce harmful effects on circuit performance unless shielding is used. The output circuit of each stage is usually shielded from the input of the stage, and each highfrequency stage is usually shielded from other high-frequency stages. It is also desirable to shield separately each unit of the high-frequency stages. For example, each if and rf coil in a superheterodyne receiver may be mounted in a separate shield can. Baffle plates may be mounted on the ganged tuning capacitor to shield each section of the capacitor from the other section.

The shielding precautions required in a circuit depend on the design of the circuit and the layout of the parts. When the metal case of a transistor is grounded at the socket terminal, the grounding connection should be as short as possible to minimize lead inductance. Many transistors have a separate lead connected to the case and used as a ground lead; where present, these leads are indicated in the terminal diagrams.

DRESS OF CIRCUIT LEADS

At high frequencies such as are encountered in FM and television receivers, lead dress (i.e., the location and arrangement of the leads used for connections in the receiver) is very important. Because even a short lead provides a large impedance at high frequencies, it is necessary to keep all high-frequency leads as short as possible. This precaution is especially important for ground connections and for all connections to bypass capacitors and high-frequency filter capacitors. It is recommended that a common ground return be used for each stage, and that short, direct connections be made to the common ground point. The emitter lead especially should be kept as short as possible.

Particular care should be taken with the lead dress of the input and output circuits of high-frequency stages so that the possibility of stray coupling is minimized. Unshielded leads connected to shielded components should be dressed close to the chassis.

In high-gain audio amplifiers, these same precautions should be taken to minimize the possibility of selfoscillation.

FILTERS

Feedback effects may occur in radio or television receivers as a result of coupling between stages through common voltage-supply circuits. Filters find an important use in minimizing such effects. They should be placed in voltage-supply leads to each transistor to provide isolation between stages.

Capacitors used in transistor rf circuits, particularly at high frequencies, should be mica or ceramic. For audio bypassing, electrolytic capacitors are required.

Interpretation of Data

THE technical data for RCA transistors given in the following section include ratings, characteristics, typical operation values, and characteristic curves. Unless otherwise specified, all voltages and currents are dc values, and all values are obtained at an ambient temperature of 25 degrees centigrade.

Ratings are established for semiconductor devices to help equipment designers utilize the performance and service capabilities of each type to the best advantage. These ratings are based on careful study and extensive testing, and indicate limits within which the specified characteristics must be maintained to ensure satisfactory performance. The maximum ratings given for the semiconductor devices included in this Manual are based on the Absolute Maximum system. This system has been defined by the Joint Electron Device Engineering Council (JEDEC) and standardized by the National Electrical Manufacturers Association (NEMA) and the Electronic Industries Association (EIA).

Absolute-maximum ratings are limiting values of operating and environmental conditions which should not be exceeded by any device of a specified type under any condition of operation. Effective use of these ratings requires close control of supply-voltage variations, component variations, equipment-control adjustment, load variations, signal variations, and environmental conditions. Electrode voltage and current ratings for transistors are in general self-explanatory, but a brief explanation of some ratings will aid in the understanding and interpretation of transistor data.

Voltage ratings are established with reference to a specified electrode (e.g., collector-to-emitter voltage), and indicate the maximum potential which can be placed across the two given electrodes before crystal breakdown occurs. These ratings may be specified with the third electrode open, or with specific bias voltages or external resistances.

Transistor dissipation is the power dissipated in the form of heat by the collector. It is the difference between the power supplied to the collector and the power delivered by the transistor to the load. Because of the sensitivity of semiconductor materials to variations in thermal conditions, maximum dissipation ratings are usually given for specific temperature conditions.

For many types, the maximum value of transistor dissipation is specified for ambient, case, or mountingflange temperatures up to 25 degrees centigrade, and must be reduced linearly for higher temperatures. For such types, Fig. 122 can be used to determine maximum permissible dissipation values at particular temperature conditions above 25 degrees centigrade. (This figure cannot be assumed to apply to types other than those for which it is specified in the

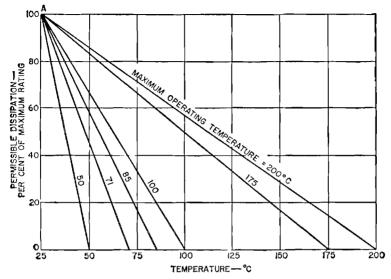


Figure 122. Chart showing maximum permissible percentage of maximum rated dissipation as a function of temperature.

data section.) The curves show the permissible percentage of the maximum dissipation ratings as a function of ambient or case temperature. Individual curves are plotted for maximum operating temperatures of 50, 71, 85, 100, 175, and 200 degrees centigrade. If the maximum operating temperature of a desired transistor type is some other value, a new curve can be drawn from point A in the figure to the desired maximum temperature value on the abscissa.

To use the chart, it is necessary to know the maximum dissipation rating and the maximum operating temperature for a given transistor. The calculation then involves only two steps:

1. A vertical line is drawn at the desired operating temperature value on the abscissa to intersect the curve representing the maximum operating temperature specified for the transistor.

2. A horizontal line drawn from this intersection point to the ordinate establishes the permissible percentage of the maximum dissipation for the transistor at the given temperature.

The following example illustrates the calculation of the maximum permissible dissipation for transistor type 2N1490 at a case temperature of 100 degrees centigrade. This type has a maximum dissipation rating of 75 watts at a case temperature of 25 degrees centigrade, and a maximum permissible case-temperature rating of 200 degrees centigrade.

1. A perpendicular line is drawn from the 100-degree point on the abscissa to the 200-degree curve.

2. The projection of this point to the ordinate indicates a percentage of 57.5.

Therefore, the maximum permissible dissipation for the 2N1490 at a case temperature of 100 degrees centigrade is 0.575 times 75, or approximately 43 watts.

Semiconductor devices require close control of thermal variations not only during operation, but also during storage. For this reason, the maximum ratings for transistors usually include a maximum permissible storage temperature, as well as a maximum operating temperature.

Interpretation Of Data

Characteristics are covered in the Transistor Characteristics Section. and such data should be interpreted in accordance with the definitions given in that section. Characteristic curves represent the characteristics of an average transistor. Individual transistors, like any manufactured product, may have characteristics that range above or below the values given in the characteristic curves. Although some curves are extended beyond the maximum ratings of the transistor, this extension has been made only for convenience in calculations: no transistor should be operated outside of its maximum ratings.

Although transistor symbols have not yet been standardized for the industry, many symbols have become fairly well established by common usage. Some of the more familiar transistor symbols are listed and defined below. Unless otherwise specified, the symbols represent parameters measured under dc or static conditions.

- BVCBO collector-to-base breakdown voltage with emitter open
- BVCEO collector-to-emitter breakdown voltage with base open
- BVORR collector-to-emitter breakdown voltage with specified resistance between base and emitter
- BVORBL. collector-to-emitter breakdown voltage with specified resistance between base and emitter and with a specified load resistance in the collector circuit.
- BVCMS collector-to-emitter breakdown voltage with base short-circuited to emitter
- BVCEY collector-to-emitter breakdown voltage with base biased in the reverse direction with respect to emitter
- BVCEX collector-to-emitter breakdown voltage with base biased in the reverse direction with respect to emitter through a specified circuit or under specified conditions BVEBO emitter-to-base breakdown voltage with collector open

- common-base input capaci-Cib tance (emitter to base)
- Cia common-emitter input capacitance (base to emitter)
- Cob common-base output capacitance (collector to base)
- Coe common-emitter output capacitance (collector to emitter)
- forb small-signal common-base forward - current - transfer ratio cutoff frequency
- small-signal common-emitfare ter forward-current-transfer-ratio cutoff frequency
- fr gain-bandwidth product (measured in the commonemitter circuit)
- common-base forward curhrs rent-transfer ratio
- small-signal common-base hrb forward current-transfer ratio
- common-emitter forward hwa current-transfer ratio
- hr. small-signal common-emitter forward current-transfer ratio
- hBB common-base open-circuit reverse voltage-transfer ratio
- common-emitter open-cirhan cuit reverse voltage-transfer ratio
- In hase current
- $\mathbf{I}_{\mathbf{C}}$ collector current
- $\mathbf{I}_{\mathrm{CBO}}$ collector-cutoff current with emitter open
- I ORO collector-cutoff current with base open In
 - emitter current
- emitter-cutoff current with Inbo collector open
- $\mathbf{P}_{\mathbf{c}}$ collector dissipation
- $\mathbf{P}_{\mathbf{T}}$ total transistor dissipation
- stored base charge Qsa
- Ŵвс base-to-collector voltage
- VBR base-to-emitter voltage
- Veb collector-to-base voltage V_{CB} collector-to-emitter voltage
- VER
- emitter-to-base voltage V_{EO} emitter-to-collector voltage
- V_{RT} reach-through (or punch
 - through) voltage

Selection Charts

T HE accompanying charts classify RCA semiconductor devices by function and by performance level. These charts are particularly useful for an initial selection of suitable transistors or rectifiers for a specific application. More complete data on

these devices, given in the Technical Data Section, should then be consulted to determine the most suitable type. For information on tunnel diodes and varactor diodes, refer to the charts on pages 324 and 328, respectively.

TRANSISTORS

AUDIO-FREQ	UENCY APPLICA	TIONS	2N1480 2N1481	2N1701 2N1768	2N2869/ 2N301	
Small Signal-	_flass 1		$\begin{bmatrix} 2N1481\\ 2N1482 \end{bmatrix}$	2N1768 2N1769	2N301 2N2870/	
		0310014	2N1482 2N1483	2N1769 2N2102	2N28707 2N301A	
2N104	2N220	2N2614		2.N2102 2N2147	2N301A 2N3054	
2N175	2N1010	2N3118	2N1484		2.N3034 40022	
2N215	2N2613		2N1485	2N2148	40022	
Duluen			2N1486	2N2270		
Driver			2N1700	2N2339		
2N405	2N591	2N 3054	Dissipa	tions of 50	W or More	
2N406	2N2953	2N3055	2N173	2N1100	2N1514	
Langa Cignal	Class & and Cl	D	2N174	2N1358	2N1702	
	-Class A and Cl		2N277	2N1412	2N1703	
2N109	2N649		2N278	2N1487	2N1905	
2N217	2N2147		2N441	2N1488	2N1906	
2N270	2N2148		2N442	2N1489	2N2015	
2N407	2N2869/	40050	2N443		2N2016	
2N408	2N301	40051	2N1069			
2N647			2N1070		2N3055	
			2N1099	2N1513		
Power Ampli	lier			2112020		
Diss	ipations up t	o 4.9 W	POWER-CON	POWER-CONVERTER APPLICATIONS		
2N699	2N1492	2N1613	1	DC-to- Dc	0	
2N1099	2N1493	2N1711	2N2869/2	N301 2N2	2870/2N301A	
2N1491					a	
Dissipa	tions from 5	to 49.9 W	2N2869/2	DC-to-A (N301 2N2	2870/2N301A	
2N176	2N1068			UTHON ADDING	ATIONO	
2N351	2N1183	2N1184A		UENCY APPLIC	ALIONS	
2N376	2N1183A		UHF Converte	er		
2N1067	2N1183B	2N1479	2N2857			

YHF or HF Co	nverter		I COMPUTER	SWITCHING AP	PLICATIONS		
2N140	2N1023	2N1396	•••		2.0		
2N219	2N1066	2N1397	Low-Speed Sa	Low-Speed Switching			
2N274	2N1224	2N1526	(Stage	(Stage Delays Greater than			
2N384	2N1225	2N1527		300 Nanoseconds*)			
2N411	2N1226	2N1639	2N398		2N398B		
2N412	2N1395		2N398A		2N586		
			21100011		211000		
IF Amplifier			Medium-Spee	1 Switching			
2N139	2N1023	2N1395	(Stage	e Delays of 1	100 to 300		
2N218	2N1066	2N1396	, ,	Nanosecond			
2N274	2N1180	2N1397	2N388	2N582	2N1305		
2N384	2N1224	2N1524	2N388A	2N585	2N1306		
2N409	2N1225	2N1525	2N395	2N1090	2N1307		
2N410	2N1226	2N1638	2N396	2N1091	2N1308		
			2N396A	2N1169 †	2N1309		
Mixer			2N397	2N1170 †	2N1319 †		
2N274	2N1179	2N1396	2N404	2N1302	2N1605		
2N372	2N11224	2N1396 2N1397	2N404A	2N1303	2N1605A		
2N384	2N1225	2N2708	2N414	2N1304	3907/2N404		
2N1023	2N1226	2142100	2N581				
2N1066	2N1395						
			High-Speed S	-			
Oscillator			(Stage	e Delays of			
030110101				Nanosecond	s*)		
	UHF		2N697	2N1384	2N1854		
2N2857			2N1300	2N1683	2N2476		
	VHF or H	L'	2N1301	2N1853	2N2477		
2N274	2N1178						
2N274 2N371	2N1178 2N1224	2N1396	Very-High-Spe	ed Switching			
2N384	2N1224 2N1225	2N1397 2N2708	(Stag	e Delays of	10 to 3 0		
2N1023	2N1226	2.12100		Nanosecond	s*)		
2N1066	2N1395		2N705	2N834	2N965		
	2		2N706	2N914	2N966		
America -			2N706A	2N960	2N967		
Amplifier			2N708	2N961	2N1708		
	UHF		2N710	2N962	2N2205		
2N2857			2N711	2N963	2N2206		
	*****		2N828	2N964			
	VHF						
2N384	2N1225	2N2482		eed Switching			
2N699	2N1396	2N2631	(Stag	e Delays of	5 to 10		
2N914	2N1397	2N2708		Nanosecond	s*)		
2N1023 2N1066	2N1491	2N2876	2N709	2N955A	2N2938		
2N1066 2N1177	2N1492 2N1493	2N3118	2N955	2N2475			
4.1177	2.N1493						
	HF		High-Speed S	aturated Switchi	ng		
2N274	2N1225	2N1493	2N960	2N963	2N966		
2N370	2N1226	2N1631	2N961	2N964	2N967		
2N384	2N1395	2N1632	2N962	2N965	2N2938		
2N708	2N1396	2N1637					
2N1023	2N1397	2N2273	* Measured	in resistor-cap	acitor-transistor		
2N1066	2N1491	2N3118	logic circ onds.	uit. Nanosecon	$ds = 10^{-9} sec$ -		
2N1224	2N1492		† Bidirectio	nal type.			
				-v			

POWER SWIT	CHING APPLIC	ATIONS	Dissipa	tions of 50	W or More
Dissi	pations up	to 4.9 W	2N173	2N1358	2N1703
Dissi, 2N697 2N699 2N706 2N706A 2N708 2N718A 2N720A 2N834 2N834 2N914	pations up 1 2N1092 2N1613 2N1708 2N1711 2N1893 2N2205 2N2206 2N2476 2N2477	20 4.9 W 2N2895 2N2896 2N2897 2N2898 2N2899 2N2899 2N2900 2N3119 40084	2N173 2N174 2N277 2N278 2N441 2N442 2N443 2N1069 2N1069 2N1070 2N1099	2N1358 2N1412 2N1487 2N1488 2N1489 2N1490 2N1511 2N1511 2N1512 2N1513 2N1514	2N1703 2N1905 2N1906 2N2015 2N2016 2N2338 2N3055 2N3263 2N3264 2N3265
-	•	W to 49.9 W	2N3119	2N1702 Saturated Switc High-Frequency	Ū
2N1067 2N1068 2N1183	2N1480 2N1481 2N1482	2N1768 2N1769 2N2102	2N3119	піда-глециенсу	L M2C-Hmbillet
2N1183A	2N1483	2N2270		IFIER APPLICAT	
2N1183B	2N1484	2N2339	2N274	2N1224	2N1397
2N1184	2N1485	2N2405	2N384	2N1225	2N1491
2N1184A 2N1184B 2N1479	2N1486 2N1700 2N1701	2N3053/ 40053 2N3054	2N699 2N1023 2N1066	2N1226 2N1395 2N1396	2N1492 2N1493

RECTIFIERS

TYPE	MAX. PEAK Reverse Volts	MAX. AMBIENT TEMPERATURE (Operating — °C)	TYPE	MAX. PEAK Reverse Volts	MAX. AMBIENT TEMPERATURE (Operating — °C)
Avera	ige Forward	Current =	1N538	200	165
	0.125 A (No		1N539	300	165
	•	•	1N540	400	165
1N3754	100	100	1N547	600	165
1N3755	200	100	1N1095	500	165
1N3756	400	100	1N2859	100	125
	- 10		1N2860	200	125
Average	Forward Cu	rrent = 0.4 A	1N2861	300	125
1N3563	1000	100	1N2862	400	125
			1N2863	500	125
Average	Forward Cu	$rrent \equiv 0.5 \ A$	1N2864	600	125
1N1763	400	100	1N3193	200	100
1N1764	500	100	1N3194	400	100
1N3196	800	100	1N3195	600	100
1N3256	800	100	1N3253	200	100
			1N3254	400	100
Average	Forward Cur	$rent = 0.75 \ A$	1N3255	600	100
1N440B	100	165	Average	Forward Cu	rrent = 5 A
1N441B	200	165	Average		
1N442B	300	165		(Note 2)	
1N443B	400	165	1N1612	50	175
1N444B	500	150	1N1613	100	175
1N445B	600	150	1N1614	290	175
1N536	50	165	1N1615	400	175
1N537	100	165	1N1616	600	175

RECTIFIERS (cont'd)

				MAY PEAK	MAX. AMBIENT
	MAX. PEAK REVERSE	MAX. AMBIENT TEMPERATURE		MAX. PEAK Reverse	TEMPERATURE
TYPE	VOLTS	(Operating—°C)	TYPE	VOLTS	(Operating—°C)
Average	Forward Cut	rrent = 10 A	High-Volta	ge, Low-Cu	
	(Note 2)	1	CR101	1200	125
40108	50	175	CR102	2000	125
40109	100	175	CR103	3000	125
40110	200	175	CR104	4000	125
40111	300	175	CR105	5000	125
40112	400	175	CR106	6000	125
40113	500	175	CR107	7000	125
40114	600	175	CR108	8000	125
40115	800	175	CR109	9000	125
40116	1000	175	CR110	10000	125
			CR201	1500	125
Average		rrent = 12 A	CR203	3000	125
	(Note 2)		CR204	4500	125
1N1199A	50	200	CR206	6000	125
1N1200A	100	200	CR208	8000	125
1N1202A	200	200	CR210	10000	125
1N1203A	300	200	CR212	12000	125
1N1204A	400	209	CR301	2400	125
1N1205A	500	200	CR302	3600	125
1N1206A	600	200	CR303	4800	125
	- 10		CR304	6009	125
Average		rrent = 18 A	CR305	7200	125
	(Note 2)		CR306	8400	125
40208	50	175	CR307	9600	125
40209	100	175	CR311	2400	125
40210	200	175	CR312	3600	125
40211	300	175	CR313	4800	125
40212	400	175	CR314	6000	125
40213	500	175	CR315	7200	125
40214	600	175	CR316	8400	125
1	Hannand Com		CR317	9600	125
Average		rent = 20 A	CR321	2400	125
1319494	(Note 2)	1 7 7	CR322	3600	125
1N248C 1N249C	55	175	CR323	4800	125
	110	175	CR324	6000	125
1N250C	220	175	CR325	7200	125
1N1195A	300	175	CR325	2400	125
1N1196A	400	175	CR332	3600	125
1N1197A 1N1198A	500	175	CR333	4800	125
1N1198A	600	175	CR334	6000	125
Average	Forward Cas	rent = 40 A	CR335	7200	125
1100rage	(Note 2)	70///0 40 II	CR341	2400	125
1N1183A	50	200	CR342	3600	125
1N1184A	100	200	CR342 CR343	4800	125
1N1186A	200	200	CR345	6000	125
1N1187A	300	175	CR351	2400	125
1N1188A	400	175	CR351 CR352	3600	125
1N1189A	500	175	CR353	4800	125
1N1190A	600	175	CR354	6000	125
	000	**0	L CINODA	0000	140

NOTE 1: With capacitive load. All other current values are for resistive or inductive load.

NOTE 2: Types in these groups are available in reverse-polarity versions. Maximum operating temperatures are case temperatures.

SILICON CONTROLLED RECTIFIERS

ТУРЕ	MAX. P eak Reverse Volts	MAX. AMBIENT TEMPERATURE (Operating—°C)	ТҮРЕ	MAX, PEAK Reverse Volts	MAX. AMBIENT TEMPERATURE (Operating—°C)
Average	Forward Cur	rent == 3.2 A	Average F	orward Cur	$rent \equiv 16 A$
2N3228	200	100	2N681 2N682	25 50	$\begin{array}{c} 125 \\ 125 \end{array}$
Average	Forward Cur	rent 10 A	2N683	100	125
2N1842A	25	125	2N684	150	125
2N1843A	50	125	2N685	200	125
2N1844A	100	125	2N686	250	125
2N1845A	150	125	2N687	300	125
2N1846A	200	125	2N688	400	125
2N1847A	250	125	2N689	500	125
2N1848A	300	125			
2N1849A	400	125	Other		
2N1850A	500	125	40216	600	125

TUNNEL AND VARACTOR DIODES

See charts at end of Technical Data Section for complete data.

Technical Data

This section contains technical descriptions of current RCA transistors, diodes, silicon controlled rectifiers, and other semiconductor devices. These types are listed according to the numerical-alphabetical-numerical sequence of their type designations. It also contains tabular data on RCA discontinued transistors (see page 323). In addition, this section has been expanded to include the following important semiconductor devices:

		For	data,	see	pages
,	Fin-mounted silicon rectifiers		32	20	
•	Tunnel diodes and tunnel rectifiers		32	24	
•	Varactor diodes		32	28	

For Key to Terminal Diagrams, see inside back cover.

SILICON RECTIFIER

Hermetically scaled 20-ampcre types used in generator-type power supplies in mobile equipment; dc-todc converters and battery chargers; power supplies for aircraft, marine, and missile equipment; transmitters,

1N248A 1N248B **1N248C**

rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Types 1N248A and 1N248B are discontinued types listed for reference only; they are similar to type 1N248C except for some slightly lower ratings, and can be directly replaced by type 1N248C. Type 1N248C is identical with type 1N1198A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	 	 55 max 39 max 50 max	volts volts volts
CHARACTERISTICS Maximum Reverse Curr Dynamic*		 3.8	ma

• Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature $= 150^\circ {\rm C}.$

These types are reverse-polarity versions of types 1N248A, 1N248B, and 1N248C, respectively. Types 1N248RA and 1N248RB are discontinued types listed for reference only. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

1N249A 1N249B 1N249C

1N248RA

1N248RB

1N248RC

Hermetically sealed 20-ampere types used in generator-type power supplies in mobile equipment; dc-todc converters and battery chargers; power supplies for aircraft, marine, and missile equipment; transmitters,

rf generators, and dc-motor supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Types 1N249A and 1N249B are discontinued types listed for reference only; they are similar to type 1N249C except for some slightly lower ratings, and can be directly replaced by type 1N249C. Type 1N249C is identical with type 1N1198A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

RMS Supply Voltage		110 max 77 max 100 max	volts volts volts
CHARACTERISTICS			
CHARACTERISTICS	nt.		

 Maxium Reverse Current:
 3.6

 Dynamic*
 3.6

 * Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150°C.

SILICON RECTIFIER

1N249RA 1N249RB 1N249RC These types are reverse-polarity versions of types 1N249A, 1N249B, and 1N249C, respectively. Types 1N249RA and 1N249RB are discontinued types listed for reference only. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

1N250A 1N250B 1N250C Hermetically sealed 20-ampere supplies in mobile equipment; dc-totypes used in generator-type power dc converters and battery chargers; power supplies for aircraft, marine, and missile equipment; transmitters,

rf generators, and dc-motor power supplies; machine-tool controls; welding and

electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Types 1N250A and 1N250B are discontinued types listed for reference only; they are similar to type 1N250C except for some slightly lower ratings, and can be directly replaced by type 1N250C. Type 1N250C is identical with type 1N1198A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single- phase operation, with resistive or inductive load				
Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	220 max 154 max 200 max	volts volts volts		
CHARACTERISTICS				
Maximum Reverse Current: Dynamic*	3.4	ma		

* Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150° C.

SILICON RECTIFIER

These types are reverse-polarity versions of types 1N250A, 1N250B, and 1N250C, respectively. Types 1N250RA and 1N250RB are discontinued types listed for reference only. JEDEC No. DO-5 package; outline 3, Outlines Section. 1N250RA 1N250RB 1N250RC

SILICON RECTIFIER

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 100 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

1N440B

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N443B except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

RMS Supply Voltage	• • • • • • • • • • • • • • • • • • • •	70 max	volts volts volts
CHARACTERISTICS			
Maximum Reverse Cur			
	· · · · · · · · · · · · · · · · · · ·		μa. μa
	***************************************	0.0	μα

* Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150° C.

† DC value at maximum peak reverse voltage, average forward current \simeq 0, and ambient temperature = 25°C.

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 200 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N443B except for the following items:

MAXIMUM RATINGS

1N441B

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage	 $200 \mathrm{max}$	
RMS Supply Voltage	 $140 \max$	volts
DC Blocking Voltage	 200 max	volts

CHARACTERISTICS

Maximum Reverse Current:		
Dynamic*	100	μa
Static†	0.75	μa

- Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150°C.
- \dagger DC value at maximum peak reverse voltage, average forward current = 0, and ambient temperature = 25°C.

SILICON RECTIFIER

Hermetically sealed 750-milliampore type for use at peak reverse voltages up to 300 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N443B except for the following items:

MAXIMUM RATINGS

1N442B

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

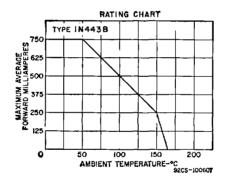
	,	300 max	volts
RMS Supply Voltage		210 max	volts
DC Blocking Voltage		300 max	volts

CHARACTERISTICS

Maximum Reverse Current:		
Dynamic*	200	μa
Static†	1	μa

- * Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150° C.
- \dagger DC value at maximum peak reverse voltage, average forward current = 0, and ambient temperature = 25°C.

Hermetically sealed 750-milliamperc type for use at peak reverse voltages up to 400 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifving applications. This type is


1N443B

OK tifying applications. This type is designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section.

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage	280 max volts	
DC Blocking Voltage	400 max vons	
Average Forward Current:		
At ambient temperature of 50°C	750 max ma	
At other ambient temperatures	See Rating Chart	2
Peak Recurrent Current	3.5 max amperes	
Surge Current (One Cycle)	15 max amperes	
Ambient-Temperature Range:		
Operating	-65 to 165 °C	
Storage	-65 to 165 °C -65 to 175 °C	

CHARACTERISTICS

Maximum Forward Voltage Drop*	1.5	volts
Maximum Reverse current:		
Dynamic‡	200	μa
Static†	1.5	μa

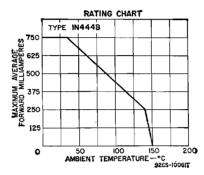
* DC value at full-load average current and ambient temperature $= 25^{\circ}$ C.

t Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150° C.

 $\dagger\,DC$ value at maximum peak reverse voltage, average forward current = 0, ambient temperature = 25°C.

SILICON RECTIFIER

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 500 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is


1N444B

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section.

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage Average Forward Current:	350 max volts 500 max volts
Average Forward Current: At ambient temperature of 35°C At other ambient temperatures	See Rating Chart
Peak Recurrent Current Surge Current (One Cycle) Ambient-Temperature Range:	3.5 max amperes 15 max amperes
Operating Storage	65 to 150 °C

CHARACTERISTICS

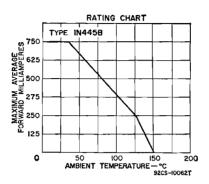
Maximum Reverse Current:	volts
Dynamic‡	μa

- DC value at full-load average current and ambient temperature = 25°C.
- t Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature 150°C.
- \dagger DC value at maximum peak reverse voltage, average forward current = 0, and ambient temperature = 25°C.

SILICON RECTIFIER

1N445B

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 600 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is


designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section.

MAXIMUM RATINGS

For power-supply phase operation, w	frequency of	60 cps, single-
phase operation, w	ith resistive or	• inductive load

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	600 max volts 420 max volts 600 max volts
Average Forward Current:	600 max voits
At ambient temperature of 35°C	750 max ma
At other ambient temperatures	See Rating Chart

Peak Recurrent Current	3.5 t 15 t	max amperes max amperes
Ambient-Temperature Range:		A /T
Operating	-65 to 150	in the second se
Storage	-65 to 175	-0

CHARACTERISTICS

Maximum Forward Voltage Drop [*]	1.5	volts
Dynamict	200	μa
Statict	2	μa

* DC value at full-load average current and ambient temperature $= 25^{\circ}$ C.

 \ddagger Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature $=150\,^{\circ}{\rm C}.$

 \dagger DC value at maximum peak reverse voltage, average forward current = 0, and ambient temperature = 25°C.

SILICON RECTIFIER

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 50 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

1N536

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N547 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage	50 max	volts
RMS Supply Voltage	35 max	volts
DC Blocking Voltage	50 max	volts
CHARACTERISTICS Maximum Forward Voltage Drop* Maximum Reverse Current: Dynamict	1.1 0.4	volts ma

• DC value at average forward ma = 500 and ambient temperature = 25° C.

[†] Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150°C.

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 100 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N547 except for the following items:

MAXIMUM RATINGS

1N537

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	100 max 70 max 100 max	volts volts volts
CHARACTERISTICS		
Maximum Forward Voltage Drop*	1.1	volts
Maximum Reverse Current; Dynamic‡	0.4	ma

* DC value at average forward ma = 500 and ambient temperature = 25° C.

 \ddagger Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150°C.

SILICON RECTIFIER

1N538

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 200 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N547 except for the following items:

MAXIMUM RATINGS

1N539

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	200 max 140 max 200 max	volts volts volts
CHARACTERISTICS		
Maximum Forward Voltage Drop*	1.1	volts
Maximum Reverse Current: Dynamic‡	0.3	m a

* DC value at average forward ma = 500 and ambient temperature = 25° C.

t Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150°C.

SILICON RECTIFIER

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 300 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

designed to meet stringent environmental and mechanical tests. JEDEC No.

DO-1 package; outline 1, Outlines Section. This type is identical with type 1N547 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Pcak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	210 max	volts volts volts
CHARACTERISTICS		
Maximum Forward Voltage Drop* Maximum Reverse Current:	1.1	volts
Dynamict	0.3	ma

* DC value at average forward ma = 500 and ambient temperature = 25°C.

 \ddagger Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150°C.

SILICON RECTIFIER

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 400 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

1N540

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N547 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	400 max 280 max 400 max	volts volts volts
CHARACTERISTICS		
Maximum Forward Voltage Drop*	1.1	volts
Maximum Reverse Current; Dynamict	0.3	ma

* DC value at average forward ma = 500 and ambient temperature = 25° C.

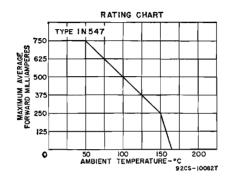
[†] Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150°C.

SILICON RECTIFIER

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 600 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

1N547

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section.


MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage	3	600 max	
RMS Supply Voltage	• • • • • • • • • • • • • • • • • • • •	420 max	volts

RCA Transistor Manual

DC Blocking Voltage	600 max vo	lts
Average Forward Current:		
At ambient temperature of 50°C	750 max n	na
At other ambient temperatures	See Rating Cha	art
Surge Current (One Cycle)	15 max amper	
Operating Frequency	100 max	kc
Ambient-Temperature Range:		
Operating	65 to 165	$^{\circ}C$
Storage	65 to 175	°C

CHARACTERISTICS

Maximum Forward Voltage Drop* Maximum Reverse Current:	1.2	volts
Dynamict Statict		ma μa

• DC value at average forward ma = 500 and ambient temperature := 25°C.

 \ddagger Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150°C.

† DC value at maximum peak reverse voltage, average forward current = 0, and ambient temperature = 25°C.

SILICON RECTIFIER

Hermetically sealed 750-milliampere type for use at peak reverse voltages up to 500 volts. It is used in magnetic amplifiers, dc-blocking circuits, power supplies, and other rectifying applications. This type is

designed to meet stringent environmental and mechanical tests. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N547 except for the following items:

MAXIMUM RATINGS

1N1095

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

RMS Supply Voltage	· · · · · · · · · · · · · · · · · · ·	500 max 350 max 500 max	volts volts volts
CHARACTERISTICS			

Maximum Reverse Current:

• Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 150°C.

Hermetically sealed 40-ampere type for use at peak reverse voltages up to 50 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies for

1N1183A

aircraft, marine and missile equipment; transmitters, rf generators, and dcmotor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty equipment. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. This type is identical with type 1N1186A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage		50 max	
RMS Supply Voltage	· · · · · · · · · · · · · · · · · · ·	35 max	volts
DC Blocking Voltage	······································	50 max	volts

SILICON RECTIFIER

This type is a reverse-polarity version of type 1N1183A. JEDEC No. 1N1183RA DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 40-ampere type for use at peak reverse voltages up to 100 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies for

1N1184A

aircraft, marine, and missile equipment; transmitters, rf generators, and demotor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty equipment. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. This type is identical with type 1N1186A except for the following items:

MAXIMUM RATINGS

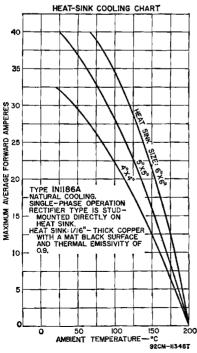
For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

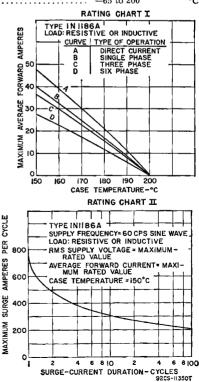
Peak Reverse Vo	oltage	$100 \max$	volts
RMS Supply Vol	ltage	$70 \max$	volts
DC Blocking Vol	ltage	$100 \max$	volts

SILICON RECTIFIER

This type is a reverse-polarity version of type 1N1184A. JEDEC No. 1N1184RA DO-5 package; outline 3. Outlines 1N1184RA Section.

Hermetically sealed 40-ampere type for use at peak reverse voltages up to 200 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies for


aircraft, marine, and missile equipment; transmitters, rf generators, and demotor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section.


MAXIMUM RATINGS

1N1186A

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage	200 max 140 max	volts volts
DC Blocking Voltage	200 max	volts
Average Forward Current: At case temperature of 150°C	40 max :	mneres
At other case temperatures	See Rating	Chart I
Peak Recurrent Current	195 max a	amperes
For one-half cycle, sine wave	800 max :	
For one or more cycles Case-Temperature Range:	See Rating	Chart II
Operating and storage	-65 to 200	°C
D/	TING CHART T	

Technical Data

CHARACTERISTICS

Maximum Forward Voltage Drop‡ Maximum Reverse Current:	0.65	volt
Dynamic‡ Static†	$2.5 \\ 0.015$	ma ma
Maximum Thermal Resistance: Junction-to-case	1	°C/watt

Superimposed on device operating within maximum voltage, current, and temperature ratings; may be repeated after sufficient time has elapsed for the device to return to the presurge thermal-equilibrium conditions.

‡ Average value over one complete cycle at maximum peak reverse voltage, maximum average forward amperes, and case temperature == 150°C.

[†] DC value at maximum peak reverse voltage, average forward current = 0, and case temperature = 25° C.

SILICON RECTIFIER

This type is a reverse-polarity version of type 1N1186A. JEDEC No. 1N1186RA DO-5 package; outline 3, Outlines 1N1186RA Section.

SILICON RECTIFIER

Hermetically sealed types for use at peak reverse voltages up to 300 volts. They are used in 1N1187 generator-type power supplies in **1N1187A** mobile equipment; dc-to-dc converters and battery chargers; power sup-

plies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Type 1N1187 is a discontinued type listed for reference only. These types are identical with types 1N1190 and 1N1190A, respectively, except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	1N1187 300 212 240	1N1187A 300 max 212 max 300 max	volts volts volts
CHARACTERISTICS			

CHARACTERISTICS

Maximum Reverse Current: Dynamic* 2.5ma

Average value for one complete cycle at maximum peak reverse voltage, maximum forward amperes, and case temperature = 150°C.

SILICON RECTIFIER

These types are reverse-polarity versions of types 1N1187 and 1N1187A. Type 1N1187R is a discon- 1N1187R tinued type listed for reference only. **1N1187RA** JEDEC No. DO-5 package; outline 3. Outlines Section.

Hermetically sealed types for use at peak reverse voltages up to 400 volts. They are used in generatortype power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies for

aircraft, marine, and missile equipment; transmitters, rf generators, and dcmotor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Type 1N1188 is a discontinued type listed for reference only. These types are identical with types 1N1190 and 1N1190A. respectively, except for the following items:

MAXIMUM RATINGS

1N1188

1N1188A

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	1N1188 400 284 320	1N1188A 400 max 284 max 400 max	volts volts volts
CHARACTERISTICS Maximum Reverse Current: Dynamic*		2.2	ma

* Average value for one complete cycle at maximum peak reverse voltage, maximum forward amperes, and case temperature = 150°C.

SILICON RECTIFIER

1N1188R

These types are reverse-polarity 1N1188 and versions of types 1N1188A. Type 1N1188R isea discon-**INII88RA** tinued type listed for Active JEDEC No. DO-5 package; outline 3. Outlines Section.

SILICON RECTIFIER

1N1189 **1N1189**

Hermetically sealed types for use at peak reverse voltages up to 500 volts. They are used in generatortype power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies for

aircraft, marine, and missile equipment; transmitters, rf generators, and dcmotor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Type 1N1189 is a discontinued type listed for reference only. These types are identical with types 1N1190 and 1N1190A. respectively, except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	1N1189 500 355 400	1N1189A 500 max 355 max 500 max	volts volts volts
CHARACTERISTICS Maximum Reverse Current: Dynamic*	_	2	ma

* Average value for one complete cycle at maximum peak reverse voltage, maximum forward amperes, and case temperature = 150 °C.

SILICON RECTIFIER

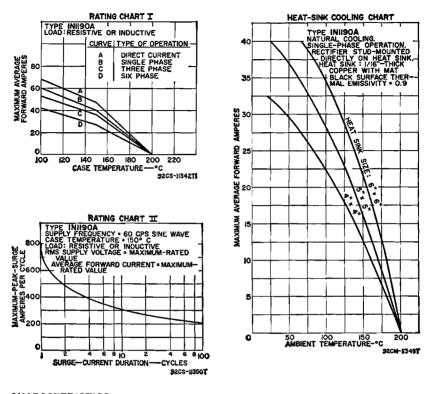
These types are reverse-polarity versions of types 1N1189 and 1N1189A. Type 1N1189R is a discontinued type listed for reference only. JEDEC No. DO-5 package; outline 3, Outlines Section.

1N1189R **1N1189RA**

SILICON RECTIFIER

Hermetically sealed types for use at peak reverse voltages up to 600 volts. They are used in generatortype power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies for

1N1190 1N1190A


aircraft, marine, and missile equipment; transmitters, rf generators, and dcmotor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. Type 1N1190 is a discontinued type listed for reference only. JEDEC No. DO-5 package; outline 3, Outlines Section.

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

	1N1190	1N1190A	
Peak Reverse Voltage	600	600 max	volts
RMS Supply Voltage	424	424 max	volts
DC Blocking Voltage	480	600 max	volts
Average Forward Current:			
At case temperature of 140°C	35	40 max	amperes
At other case temperatures		See Rating	Chart I
Peak Recurrent Current	130	195 max	amperes
Surge Current:			
For one-half cycle, sine wave	500	800 max	amperes
For one or more cycles		See Rating	Chart II
Case-Temperature Range:		-	
Operating and Storage	-65 to 175	—65 to 200	°C

• Superimposed on device operating within maximum voltage, current, and temperature ratings; may be repeated after sufficient time has elapsed for the device to return to presurge thermal-equilibrium conditions.

CHARACTERISTICS

Maximum Forward Voltage Drop** Maximum Reverse Current:	1.7	0.65	volts
Dynamic† Static†	10 0.025	1.8 0.015	ma ma
Maximum Thermal Resistance: Junction-to-case	1	1	°C/watt

** Peak value at maximum average forward current, case temperature = 140°C.

† Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 140°C.

 \pm DC value at maximum peak reverse voltage, average forward current = 0, and case temperature = 25°C.

SILICON RECTIFIER

1N1190R

These types are reverse-polarity versions of types 1N1190 and 1N1190A. Type 1N1190R is a discon-**INII90RA** tinued type listed for relationship of the second seco 3, Outlines Section.

Hermetically sealed types used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies for aircraft, marine, and missile equipment; transmitters, rf

generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Type 1N1195 is a discontinued type listed for reference only; it is similar to type 1N1195A except for some slightly lower ratings, and can be directly replaced by type 1N1195A. Type 1N1195A is identical with type 1N1198A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage 300 max vol RMS Supply Voltage 212 max vol DC Blocking Voltage 300 max vol	lts
---	-----

CHARACTERISTICS

Maximum Reverse Current: Dynamic*

Average value for one complete cycle at maximum peak reverse voltage, maximum average forward amperes, and case temperature = 150°C.

SILICON RECTIFIER

These types are reverse-polarity versions of types 1N1195 and 1N1195A, respectively. Type 1N1195R 1N1195R is a discontinued type listed for ref-erence only. JEDEC No. DO-5 pack- **1N1195RA** age; outline 3, Outlines Section.

SILICON RECTIFIER

Hermetically sealed types used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies for aircraft, marine, and missile equipment; transmitters, rf

3.2

ma

1N1196 1N1196A

generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Type 1N1196 is a discontinued type listed for reference only; it is similar to type 1N1196A except for some slightly lower ratings, and can be directly replaced by type 1N1196A. Type 1N1196A is identical with type 1N1198A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage

25

ma

RMS Supply Volta	ge	284 max	
DC Blocking Volta	ge	4 00 max	VOILS

CHARACTERISTICS

1N1196R

1N1196RA

Maximum Reverse Current: Dynamic*

* Average value for one complete cycle at maximum peak reverse voltage, maximum average forward amperes, and case temperature = 150°C.

SILICON RECTIFIER

These types are reverse-polarity versions of types 1N1196 and 1N1196A, respectively. Type 1N1196R is a discontinued type listed for reference only. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

1N1197 1N1197A

Hermetically sealed types for use at peak reverse voltages up to 500 volts. They are used in generatortype power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies for

aircraft, marine, and missile equipment; transmitters, rf generators, and dcmotor supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavyduty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Type 1N1197 is a discontinued type listed for reference only; it is similar to type 1N1197A except for some slightly lower ratings, and can be directly replaced by type 1N1197A. Type 1N1197A is identical with type 1N1198A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

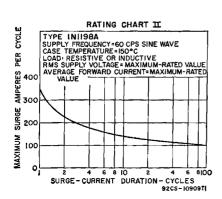
Peak Reverse Voltage	500 max	volts
RMS Supply Voltage	355 max	volts
DC Blocking Voltage	500 max	volts
CHARACTERISTICS Maximum Reverse Current: Dynamic*	2.2	m a

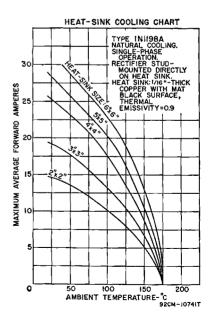
* Average value for one complete cycle at maximum peak reverse voltage, maximum average forward amperes, and case temperature $=150\,^\circ\mathrm{C}.$

SILICON RECTIFIER

1N1197R 1N1197RA

These types are reverse-polarity versions of types 1N1197 and 1N1197A, respectively. Type 1N1197R is a discontinued type listed for reference only. JEDEC No. DO-5 package; outline 3, Outlines Section.


Hermetically sealed 20-ampere types for use at peak reverse voltages up to 600 volts. They are used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power


^{ISK} verters and battery chargers; power supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. These types are designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. DO-5 package; outline 3, Outlines Section. Type 1N1198 is a discontinued type listed for reference only; it is similar to type 1N1198A except for some slightly lower ratings, and can be directly replaced by type 1N1198A.

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single- phase operation, with resistive or inductive load	
Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage Average Forward Current:	424 max volts
At case temperature of 150°C At other case temperatures Peak Recurrent Current Surge Current:*	See Rating Chart I
For one-half cycle, sine wave For one or more cycles Case-Temperature Range:	350 max amperes See Rating Chart II
Operating and storage	—65 to 175 °C

1N1198

1N1198A

CHARACTERISTICS

Maximum Forward Voltage Dropt		volt
Maximum Reverse Current: Dynamict	1.5	ma

Superimposed on device operating within maximum voltage, current, and temperature ratings; may be repeated after sufficient time has elapsed for the device to return to the presurge thermal-equilibrium conditions.

‡ Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150°C.

SILICON RECTIFIER

These types are reverse-polarity versions of types 1N1198 and 1N1198A, respectively. Type 1N1198R is a discontinued type listed for reference only. JEDEC No. DO-5 package: outline 3. Outlines Section.

SILICON RECTIFIER

1N1199A

1N1198R

1N1198RA

Hermetically sealed 12-ampere type for use at peak reverse voltages up to 50 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc con-

verters and battery chargers; power supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 1N1206A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage	$50 \max$	volts
Non-repetitive, for duration of 5 milliseconds maximum RMS Supply Voltage	100 max 35 max	volts volts
DC Blocking Voltage	50 max	volts
CHARACTERISTICS		

Maximum Reverse Current: Dynamic* 3 ma

* Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150°C.

SILICON RECTIFIER

This type is a reverse-polarity 1N1199RA version of type Introduction 2, Outlines version of type 1N1199A. JEDEC No. Section.

Hermetically sealed 12-ampere type for use at peak reverse voltages up to 100 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 1N1206A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage	100 max	volts
Transient Reverse Voltage: Non-repetitive, for duration of 5 milliseconds maximum RMS Supply Voltage DC Blocking Voltage	200 max 70 max 100 max	volts volts volts
CHARACTERISTICS Maximum Reverse Current:		

• Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150°C.

SILICON RECTIFIER

This type is a reverse-polarity version of type 1N1200A. JEDEC No. 1N1200RA DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 12-ampere type for use at peak reverse voltages up to 200 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

1N1202A

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 1N1206A except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage 200 r

1N1200A

2

.

ma

Transient Reverse Voltage: Non-repetitive, for duration of 5 milliseconds maximum 350 m RMS Supply Voltage 140 m DC Blocking Voltage 200 m	hax volts
--	-----------

CHARACTERISTICS

Maximum Reverse Current: Dynamic*

* Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150°C.

SILICON RECTIFIER

This type is a reverse-polarity 1N1202RA version of type 1112021. 0 DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 12-ampere type for use at peak reverse voltages up to 300 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 1N1206A except for the following items:

MAXIMUM RATINGS

1N1203A

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage	300 max	volts
Non-repetitive, for duration of 5 milliseconds maximum RMS Supply Voltage	450 max 212 max 300 max	volts volts volts
DC Blocking Voltage	30 0 max	Volus

Maximum Reverse Current: Dynamic*

* Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150°C.

SILICON RECTIFIER

This type is a reverse-polarity **1N1203RA** version of type 1112001. 2, Outlines DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

1N1204A

Hermetically sealed 12-ampere type for use at peak reverse voltages up to 400 volts. It is used in mobile equipment; dc-to-dc converters and battery chargers; power generator-type power supplies in

1.75

ma

supplies for aircraft, marine, and missile equipment; transmitters, rf generators,

and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 1N1206A except for the following items;

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single- phase operation, with resistive or inductive load		
Peak Reverse Voltage Transient Reverse Voltage: Non-repetitive, for duration of 5 milliseconds maximum RMS Supply Voltage DC Blocking Voltage	400 max 600 max 284 max 400 max	volts volts volts volts
CHARACTERISTICS Maximum Reverse Current: Dynamic*	1.5	ma

 Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150°C.

SILICON RECTIFIER

This type is a reverse-polarity version of type 1N1204A. JEDEC No. 1N1204RA DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 12-ampere type for use at peak reverse voltages up to 500 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

1N1205A

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 1N1206A except for the following items:

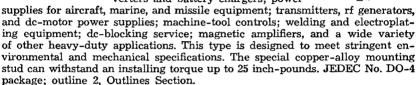
MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

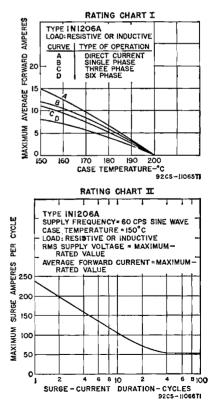
Peak Reverse Voltage Transient Reverse Voltage: Non-repetitive, for duration of 5 milliseconds maximum RMS Supply Voltage DC Blocking Voltage	500 max 700 max 355 max 500 max	volts volts volts volts
CHARACTERISTICS		
Maximum Reverse Current: Dynamic*	1.25	ma
* Amongo volue for one complete evelo at maximum postr reverse	molto de mas	

* Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150°C.

This type is a reverse-polarity version of type 1N1205A. JEDEC No. DO-4 package; outline 2, Outlines Section.



SILICON RECTIFIER


1N1206A

1N1205RA

Hermetically sealed 12-ampere type for use at peak reverse voltages up to 600 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

HEAT-SINK COOLING CHART TYPE INI206A NATURAL COOLING. SINGLE-PHASE OPERATION. RECTIFIER STUD-MOUNTED DIRECTLY ON HEAT SINK. HEAT SINK VB"-THICK COPPER WITH MAT BLACK SURFACE, THERMAL EMISSIVITY=0.9 AMPERES 71 AVERAGE FORWARD 10 HEAT-SINK_ 15:41 A SIZE 31/2 MAXIMUM 4 2 ۵ 50 100 150 200 AMBIENT TEMPERATURE-C 92CM-11068TI

Technical Data

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage Transient Reverse Voltage:	600 max	volts
Non-repetitive, for duration of 5 milliseconds maximum	800 max 424 max	volts volts
RMS Supply Voltage DC Blocking Voltage		volts
Average Forward Current: At case temperature of 150°C	12 max a	
At other case temperatures Peak Recurrent Current	See Rating 50 max a	
Surge Current:: For one-half cycle, sine wave	240 max a	
For one or more cycles Case-Temperature Range:	See Rating C	hart II
Operating and storage	65 to 200	°C

‡ Superimposed on device operating within maximum voltage, current, and temperature ratings; may be repeated after sufficient time has elapsed for the device to return to the presurge thermal-equilibrium conditions.

CHARACTERISTICS

Maximum Forward Voltage Drop* Maximum Reverse Current:	0.55	volt
Dynamic*	1 0.004	ma ma
Maximum Thermal Resistance: Junction-to-case	2	°C/watt

* Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 150°C.

+ DC value at maximum peak reverse voltage and case temperature = 25°C.

SILICON RECTIFIER

This type is a reverse-polarity version of type 1N1206A. JEDEC No. 1N1206RA DO-4 package; outline 2, Outlines 1N1206RA Section.

SILICON RECTIFIER

Hermetically sealed 5-ampere type for use at peak reverse voltages up to 50 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

1N1612

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package: outline 2. Outlines Section. This type is identical with type 1N1616 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage	 50 max	
RMS Supply Voltage	 $35 \max$	volts
DC Blocking Voltage	 50 max	volts

This type is a reverse-polarity version of type 1N1612. JEDEC No. DO-4 package: outline 2. Outlines Section.

SILICON RECTIFIER

Hermetically sealed 5-ampere type for use at peak reverse voltages up to 100 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 1N1616 except for the following items:

MAXIMUM RATINGS

1N1612R

1N1613

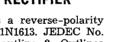
For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

SILICON RECTIFIER

1N1613R

This type is a reverse-polarity version of type 1N1613. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER


1N1614

Hermetically sealed 5-ampere type for use at peak reverse voltages up to 200 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 1N1616 except for the following items:

MAXIMUM RATINGS

For po phase	ower-supply frequency of 60 cps, single- operation, with resistive or inductive load		
RMS Supply Voltage		200 max 140 max 200 max	volts volts volts

ts ts

This type is a reverse-polarity version of type 1N1614. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 5-ampere mobile equipment; dc-to-dc contype for use at peak reverse voltages up to 400 volts. It is used in verters and battery chargers; power generator-type power supplies in

1N1615

1N1614R

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 1N1616 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltag	e	400 max	volts
RMS Supply Voltag	ee	280 max	volts
DC Blocking Voltag	e	400 max	volts

SILICON RECTIFIER

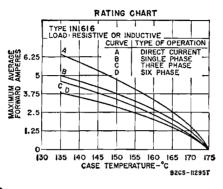
This type is a reverse-polarity version of type 1N1615. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 5-ampere type for use at peak reverse voltages up to 600 volts. It is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

1N1616

1N1615R


supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers, and a wide variety of other heavy-duty applications. This type is designed to meet stringent environmental and mechanical specifications. The special copper-alloy mounting stud can withstand an installing torque up to 25 inch-pounds. JEDEC No. DO-4 package; outline 2, Outlines Section.

MAXIMUM RATINGS

For 1	ower-suppl	y fre	quency	of (60 cps,	single-
phase	operation,	with	resistive	or	induction	ve load

	e	600 max	volts
RMS Supply Voltage	ð	420 max	volts

DC Blocking Voltage	600 max	volts
At case temperature of 135° C	5 max	
At other case temperatures Peak Recurrent Current	See Ratin 15 max	g Chart amperes
Case-Temperature Range:		•
Operating and storage	65 to 175	°C

CHARACTERISTICS

Maximum Forward Voltage Drop*	1.5	volts
Dynamic; Static†	0.01	ma ma

• At maximum average forward current and case temperature $= 25^{\circ}$ C.

[‡] Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and case temperature = 135°C.

 \dagger DC value at maximum peak reverse voltage and case temperature = 25°C.

SILICON RECTIFIER

1N1763

This type is a reverse-polarity version of type 1N1616. JEDEC No. DO-4 package; outline 2, Outlines Section.

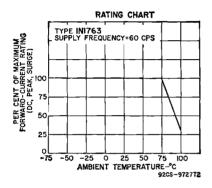
SILICON RECTIFIER

Hermetically sealed 500-milliampere type for use at peak reverse voltages up to 400 volts. It is used in power supplies of color and blackand-white television receivers, radio receivers and phonographs, and in

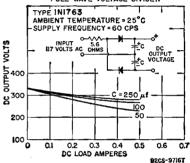
other rectifying applications. This type is intended for rectifier applications in which the device operates direct from a power line at ac voltages up to 140 volts. JEDEC No. DO-1 package; outline 1, Outlines Section. For forward-characteristic curve, refer to type 1N3196.

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single- phase operation, with capacitor input to filter	
Peak Reverse Voltage	400 max volts
RMS Supply Voltage	140 max volts
At ambient temperatures up to 75°C	500 max ma
At ambient temperatures above 75°C Peak Recurrent Current:	See Rating Chart
At ambient temperatures up to 75°C	5 max amperes
At ambient temperatures above 75°C	See Rating Chart


Technical Data

Surge Current (for turn-on time of 2 milliseconds duration):		
At ambient temperatures up to 75°C	. 35 max a	
At ambient temperatures above 75°C	. See Rating	Chart
Ambient-Temperature Range:	-	
Operating	65 to 100	°C
Storage	65 to 150	°Č


CHARACTERISTICS

Maximum Forward Voltage Drop* Maximum Reverse Current (at maximum peak reverse voltage):	3	volts
At ambient temperature of 25°C	100 1	μa ma

* Instantaneous value at average forward amperes = 15 and ambient temperature = 25°C.

TYPICAL CHARACTERISTICS FULL-WAVE VOLTAGE DIVIDER

TYPICAL OPERATION

As Half-Wave Rectifier

RMS Supply Voltage	117	117	117	volts
Filter-Input Capacitor	50	100	250	μf
Surge-Limiting Resistance	5.6	5.6	5.6	ohms
DC Output Voltage (Approx.) at input to filter:				
At half-load current of 250 milliamperes	126	146	150	volts
At full-load current of 500 milliamperes	100	132	139	volts
Voltage Regulation (Approx.):				
Half-load to full-load current	26	14	11	volts

As Half-Wave Voltage Doubler

RMS Supply Voltage	117	117	volts
Filter-Input Capacitor	100	250	μf ohms
Surge-Limiting Resistance	5.6	5.6	ohms
DC Output Voltage (Approx.) at input to filter:			
At half-load current of 250 milliamperes	273	288	volts
At full-load current of 500 milliamperes	235	262	volts
Voltage Regulation (Approx.):			
Half-load to full-load current	38	26	volts

As Full-Wave Voltage Doubler

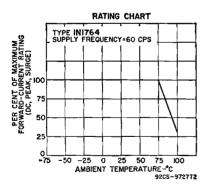
RMS Supply Voltage Filter-Input Capacitor Surge-Limiting Resistance†	117 50 5.6	117 100 5.6	117 250 5.6	volts µf ohms
DC Output Voltage (Approx.) at input to filter: At half-load current of 250 milliamperes At full-load current of 500 milliamperes	260 220	280 260	290 275	volts volts
Voltage Regulation (Approx.): Half-load to full-load current	40	20	15	volts

[†] The transformer series resistance or other resistance in the line may be deducted from the value shown.

Hermetically sealed 500-milliampere type for use at peak reverse voltages up to 500 volts. It is used in power supplies of color and blackand-white television receivers, radio receivers, and phonographs, and in

other rectifying applications. This type is intended for rectifier applications in which the device operates from the power line through a step-up transformer at ac output voltages up to 175 volts. JEDEC No. DO-1 package; outline 1, Outlines Section. For forward-characteristic curve, refer to type 1N3196.

MAXIMUM RATINGS


1N1764

For power-supply frequency of 60 cps, singlephase operation, with capacitor input to filter

Peak Reverse Voltage RMS Supply Voltage Average Forward Current:	500 max volts 175 max volts
At ambient temperatures up to 75°C At ambient temperatures above 75°C Peak Recurrent Current:	500 max ma See Rating Chart
At ambient temperatures up to 75°C	5 max amperes See Rating Chart
At ambient temperatures up to 75°C	35 max amperes See Rating Chart
Operating Storage	65 to 100 °C 65 to 150 °C
CHARACTERISTICS	
Maximum Forward Voltage Drop*	3 volts

Maximum Reverse Current (at maximum peak reverse voltage): At ambient temperature of 25°C At ambient temperature of 100°C	100 1	μa ma
		-

* Instantaneous value at average forward amperes = 15 and ambient temperature = 25° C.

TYPICAL CHARACTERISTICS FULL-WAVE VOLTAGE DIVIDER TYPE INI764 AMBIENT TEMPERATURE = 25 SUPPLY FREQUENCY = 60 CPS C 6.8 OHMS VOLTS INPUT 150 VOLTS 9 DC OUTPUT C 117 VOLTAGE с DUTPUT 500 ပ္ဂ ⁴⁰⁰ C=250µf 100 300 50 200 L 0.6 07 0.1 0.2 0.3 04 05 DC LOAD AMPERES 92CS-9717T -

TYPICAL OPERATION

As Half-Wave Rectifier

RMS Supply Voltage	150	150	150	volts
Filter-Input Capacitor	50	100	250	μf
Surge-Limiting Resistance	6.8	6.8	6.8	ohms
DC Output Voltage (Approx.) at input to filter: At half-load current of 250 milliamperes At full-load current of 500 milliamperes	158 128	184 170	190 178	volts volts
	120	110	110	VUIUS
Voltage Regulation (Approx.): Half-load to full-load current	30	14	12	volts

As Half-Wave Voltage Doubler

RMS Supply Voltage Filter-Input Capacitor	150 100	150 250	volts
Surge-Limiting Resistancet	6.8	6.8	μf ohms
DC Output Voltage (Approx.) at input to filter:			
At half-load current of 250 milliamperes	345	367	volts
At full-load current of 500 milliamperes	301	336	volts
Voltage Regulation (Approx.): Half-load to full-load current	44	31	volts
Han-load to fun-load current	44	31	VOILS
As Full Works Values F			

As Full-Wave Voltage Doubler

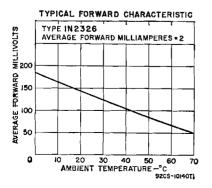
RMS Supply Voltage	150 50	150 100	150 250	vo
Surge-Limiting Resistancet	6.8	6.8	6.8	ohms
DC Output Voltage (Approx.) at input to filter: At half-load current of 250 milliamperes At full-load current of 500 milliamperes	340 290	370 340	380 360	volts volts
Voltage Regulation (Approx.): Half-load to full-load current	50	30	20	volts

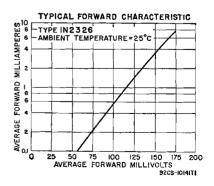
 \dagger The transformer series resistance or other resistance in the line may be deducted from the value shown.

DIODE

Hermetically sealed germanium type used to compensate for the effects of temperature and supplyvoltage changes in class B push-pull a u dio-frequency power-amplifier stages. In a typical af power-ampli-

1N2326


fier circuit, it maintains the bias voltage applied to the output stage within ± 0.015 volt for supply-voltage variations up to -40 per cent, and simultaneously compensates for ambient-temperature variations over the range from -20 to 71°C. Package is similar to JEDEC No. TO-1 (outline 4, Outlines Section) except that lead No. 3 is omitted.


MAXIMUM RATINGS

Temperature and voltage-compensation service

Peak Forward Current Reverse Voltage* Average Forward Current Ambient-Temperature Range: Operating and Storage	—1 max 100 max	ma volt ma °C
CHARACTERISTICS		

Forward voltage Drop:		
At average forward $ma = 2$	135	mv
At average forward $ma = 100$	260	my
* Operation with reverse voltages is not recommended.		

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 50 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

loads and 500 milliamperes for capacitive loads. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N2864 except for the following items:

MAXIMUM RATINGS

1N2858

For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	50 max 35 max 50 max	50 max 17 max 50 max	volts volts

CHARACTERISTICS

Maximum Reverse Current (at maximum peak reverse voltage) .

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 100 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

0.4

ma

ma

loads and 500 milliamperes for capacitive loads. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N2864 except for the following items:

MAXIMUM RATINGS

1N2859

For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage	100 max	100 max	volts
RMS Supply Voltage	70 max	35 max	volts
DC Blocking Voltage	100 max	100 max	volts

CHARACTERISTICS

1N2860

Maximum Reverse Current (at maximum peak reverse voltage) .

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 200 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

0.4

loads and 500 milliamperes for capacitive loads. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N2864 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage	200 max 140 max 200 max	200 max 70 max 200 max	volts volts

CHARACTERISTICS

Maximum Reverse Current (at maximum peak reverse voltage) .

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 300 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

 O^{κ} amperes for resistive or inductive loads and 500 milliamperes for capacitive loads. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N2864 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage	300 max	300 max	volts
RMS Supply Voltage	210 max	105 max	volts
DC Blocking Voltage	300 max	300 max	volts

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 400 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

1N2862

loads and 500 milliamperes for capacitive loads. JEDEC No. DO-1 package; outline 1, Outlines Section. This type is identical with type 1N2864 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage	400 max	400 max	volts
RMS Supply Voltage	280 max	140 max	volts
DC Blocking Voltage	400 max	400 max	volts

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 500 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

1N2863

loads and 500 milliamperes for capacitive loads. JEDEC No. DO-1 package;

ma

0.4

1N2861

a

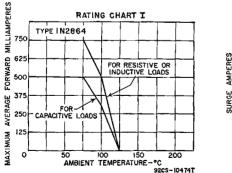
outline 1, Outlines Section. This type is identical with type 1N2864 except for the following items:

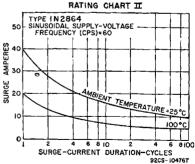
MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 600 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive


loads and 500 milliamperes for capacitive loads. JEDEC No. DO-1 package: outline 1, Outlines Section.


MAXIMUM RATINGS

1N2864

For power-supply frequency of 60 cps, single-phase operation

Peak Reverse Voltage RMS Supply Voltage DC Blocking Voltage Average Forward Current:	Resistive or Inductive Load 600 max 420 max 600 max	Capacitive Load 600 max 210 max 600 max	volts volts volts
At ambient temperatures up to 75°C	750 max See R	500 max lating Chart I	ma
For one cycle at ambient temperature of 25°C For more than one cycle and at other ambient temperatures	40 max See Ra	40 max ting Chart II	amperes
Ambient-Temperature Range: Operating and Storage	65 to 125	-65 to 125	۰C

CHARACTERISTICS

1.2 0.3 volts ma

• DC value at average forward ma = 500 and ambient temperature = $25 \circ C$.

See RCA TUNNEL DIODE CHART starting on page 324 for complete data on these types.

1N3128 to 1N3130

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 200 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

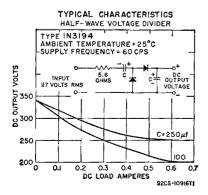
1N3193

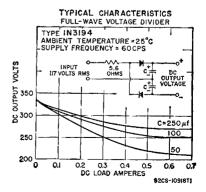
loads and 500 milliamperes for capacitive loads. It is designed to meet stringent temperature-cycling and humidity requirements of critical applications. Package is similar to JEDEC No. TO-1; outline 21, Outlines Section. This type is identical with type 1N3196 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage RMS Supply Voltage Average Forward Current:	200 max 140 max	200 max 70 max	volts volts
At ambient temperatures up to 75°C Peak Recurrent Current	750 max	500 max 6 max	ma amperes




SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 400 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

1N3194

loads and 500 milliamperes for capacitive loads. It is designed to meet stringent temperature-cycling and humidity requirements of critical applications. Package is similar to JEDEC No. TO-1; outline 21, Outlines Section. This type is identical with type 1N3196 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage RMS Supply Voltage Average Forward Current:	400 max 280 max	400 max 140 max	volts volts
At ambient temperatures up to 75°C Peak Recurrent Current	750 max	500 max 6 max	ma amperes

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 600 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

loads and 500 milliamperes for capacitive loads. It is designed to meet stringent temperature-cycling and humidity requirements of critical applications. Package is similar to JEDEC No. TO-1; outline 21, Outlines Section. This type is identical with type 1N3196 except for the following items:

MAXIMUM RATINGS

1N3195

For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage RMS Supply Voltage Average Forward Current:	600 max 420 max	600 max 210 max	volts volts
At ambient temperatures up to 75°C Peak Recurrent Current	750 max	500 max 6 max	ma amperes

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 800 volts. This type has a maximum average-forward-current rating of 500 milliamperes for resistive or inductive

loads and 400 milliamperes for capacitive loads. It is designed to meet stringent temperature-cycling and humidity requirements of critical applications. Package is similar to JEDEC No. TO-1; outline 21, Outlines Section.

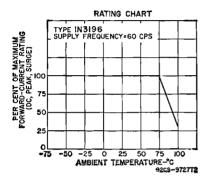
MAXIMUM RATINGS

1N3196

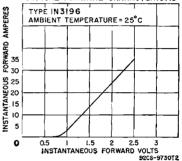
For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage RMS Supply Voltage Average Forward Current:	800 max 560 max	800 max 280 max	volts volts
At ambient temperatures up to 75°C At other ambient temperatures .	500 max See R	400 max Lating Chart	ma
Peak Recurrent Current Surge Current:		5 max	amperes
For turn-on time of 2 milliseconds duration Ambient-Temperature Range:	_	35 max	amperes
Operating		-65 to 100 -65 to 175	•C •C
Lead Temperature: For 10 seconds maximum	255 max	255 max	יכ יכ

Technical Data


CHARACTERISTICS

Maximum Forward Voltage Drop* Maximum Reverse Current:	1.2	volts
Dynamict	0.2	ma
Statict	0.005	ma


Instantaneous value at average forward amperes = 0.5 and ambient temperature = 25°C.

t Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature = 75°C.

 \dagger DC value at maximum peak reverse volts, average forward current = 0, and ambient temperature = 25°C.

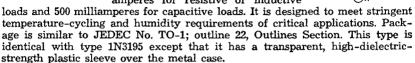
TYPICAL FORWARD CHARACTERISTIC

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 200 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

1N3253

loads and 500 milliamperes for capacitive loads. It is designed to meet stringent temperature-cycling and humidity requirements of critical applications. Package is similar to JEDEC No. TO-1; outline 22, Outlines Section. This type is identical with type 1N3193 except that it has a transparent, high-dielectricstrength plastic sleeve over the metal case.


SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 400 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

1N3254

loads and 500 milliamperes for capacitive loads. It is designed to meet stringent temperature-cycling and humidity requirements of critical applications. Package is similar to JEDEC No. TO-1; outline 22, Outlines Section. This type is identical with type 1N3194 except that it has a transparent, high-dielectricstrength plastic sleeve over the metal case.

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 600 volts. This type has a maximum average-forward-current rating of 750 milliamperes for resistive or inductive

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 800 volts. This type has a maximum average-forward-current rating of 500 milliamperes for resistive or inductive

loads and 400 milliamperes for capacitive loads. It is designed to meet stringent temperature-cycling and humidity requirements of critical applications. Package is similar to JEDEC No. TO-1; outline 22, Outlines Section. This type is identical with type 1N3196 except that it has a transparent, high-dielectricstrength plastic sleeve over the metal case.

SILICON RECTIFIER

Hermetically sealed type used in power-supply applications at peak reverse voltages up to 1000 volts. This type has a maximum averageforward-current rating of 400 milliamperes for resistive or inductive

loads and 300 milliamperes for capacitive loads. It is designed to meet stringent temperature-cycling and humidity requirements of critical applications. Package is similar to JEDEC No. TO-1; outline 22, Outlines Section. In addition, this type has a transparent, high-dielectric-strength plastic sleeve over the metal case and a protective coating to guard against the effects of severe environmental conditions. This type is electrically identical with type 1N3196 except for the following items:

MAXIMUM RATINGS

1N3563

For power-supply frequency of 60 cps, single-phase operation

	Resistive or Inductive Load	Capacitive Load	
Peak Reverse Voltage	1000 max 700 max	1000 max 350 max	volts volts
Average Forward Current: At ambient temperatures up			
to 75°C	400 max	300 max	ma
Peak Recurrent Current	—	4 max	amperes

1N3256

1N3255

Hermetically sealed 125-milliampere type used in power-supply applications at peak reverse voltages up to 100 volts. This type is designed meet stringent temperatureto cycling and humidity requirements

of critical applications. Package is similar to JEDEC No. TO-1 (outline 4, Outlines Section) except that lead No. 3 is omitted. It is identical with type 1N3756 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with capacitive load

Peak Reverse Voltage 100 max vol RMS Supply Voltage 35 max vol
--

SILICON RECTIFIER

Hermetically sealed 125-milliampere type used in power-supply applications at peak reverse voltages up to 200 volts. This type is designed to meet stringent temperaturecycling and humidity requirements

of critical applications. Package is similar to JEDEC No. TO-1 (outline 4, Outlines Section) except that lead No. 3 is omitted. It is identical with type 1N3756 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with capacitive load 200 max volts 70 max wolte

SILICON RECTIFIER

Hermetically sealed 125-milliampere type used in power-supply applications at peak reverse voltages up to 400 volts. This type is designed to meet stringent temperaturecycling and humidity requirements

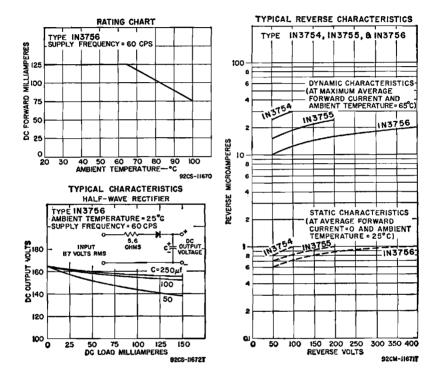
of critical applications. Package is similar to JEDEC No. TO-1 (outline 4, Outlines Section) except that lead No. 3 is omitted.

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with capacitive load

Peak Reverse Voltage	400 max	volts
RMS Supply Voltage Average Forward Current:	140 max	volts
At ambient temperatures up to 65°C	125 max	
At ambient temperatures above 65°C	See Rating	
Peak Recurrent Current	1.3 max a	mperes
Surge Current:		
For turn-on time of 2 milliseconds duration	30 max a	mperes
Ambient-Temperature Range:		-
Operating	to 100	ဒိုင်
Storage	to 175	°C
Lead Temperature:		
For 10 seconds maximum	255 max	۰C
CHARACTERISTICS		
Maximum Forward Voltage Drop*	1	volt

1N3754



Maximum Reverse Current:		
Dynamict	0.3	ma
Static†	0.005	ma

* Instantaneous value at maximum average forward current and ambient temperature = 25°C.

⁺ Average value for one complete cycle at maximum peak reverse voltage, maximum average forward current, and ambient temperature $= 65^{\circ}$ C. ⁺ DC value at maximum peak reverse voltage, average forward current = 0, and ambient

temperature $= 25^{\circ}C$.

1N3847 to 1N3863

See RCA TUNNEL DIODE CHART for complete data on these tunnel diodes and rectifiers.

TWIN DIODE

2DG001

Hermetically sealed germanium type used in high-speed switching service in electronic data-processing systems. Maximum ratings: dc reverse voltage = -20 volts; average forward current = -40 milliamperes;

ambient temperature range = -65 to 85° C. Package is similar to JEDEC No. TO-33 (outline 13, Outlines Section) except that lead No. 2 is omitted. This is a discontinued type listed for reference only.

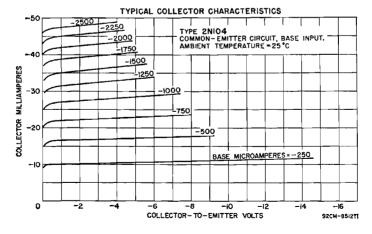
TRANSISTOR

Germanium p-n-p type used in low-power audio-frequency amplifier applications. In a commonemitter circuit, this type has a forward-current transfer ratio of 44, a low-frequency power gain of 41

2N104

db, and an integrated noise factor of 12 db maximum. JEDEC No. TO-40 package; outline 15, Outlines Section.

MAXIMUM RATINGS


Collector-to-Base Voltage (with emitter open) Collector Current Emitter Current	30 max 50 max 50 max	volts ma ma
Transistor Dissipation: At ambient temperatures up to 25°C	150 max	mw
At ambient temperature of 50°C		mw
At ambient temperature of 70°C		mw
Ambient-Temperature Range: Operating Storage		•C •C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $\mu a = -20$.	

Collector-to-Base Breakdown Voltage (with collector $\mu a = -20$ and emitter current = 0)	30 min	volts
Collector-Cutoff Current (with collector-to-base volts $= -12$		
and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= -12$ and	—10 max	μa
Emitter-Cutoff Current (with emitter-to-base volts $= -12$ and		
collector current = 0)	—10 max	μa
Thermal Resistance: Junction-to-ambient	0.4	°C/mw

In Common-Base Circuit

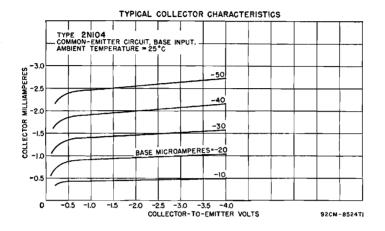
Small-Signal Forward-Current-Transfer-

With collector-to-base volts $= -6$ and collector ma $= -1$.	700	kc
With collector-to-base volts = -3 and collector ma = -0.2 .	530	kc
Power Gain (with collector-to-emitter volts = -6 , collector ma = -1 , input resistance = 170 ohms, and load resistance =		
0.5 megohm)	32.4	db

In Common-Emitter Circuit

Small-Signal Forward-Current-Transfer-
Ratio Cutoff Frequency:
With collector-to-emitter volts = -6 and collector ma = -113.9
16.5With collector-to-emitter volts = -3 and collector ma = -0.216.5

kc kc


14.3

Power Gain (with collector-to-emitter volts $= -6$, collector ma		
= -1, input resistance = 1400 ohms, and load resistance = 20000 ohms)	41	ďb
20000 ohms) Noise Figure (with collector-to-emitter volts = -4 , collector ma	-91	ub
= -0.7, and generator resistance = 518 ohms)	12 max	db

In Common-Collector Circuit

Power Gain (with emitter-to-collector volts = -3, collector ma = -0.2, input resistance = 0.5 megohm, and load resistance = 18000 ohms)

db

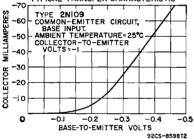
2N105

See list of Discontinued Transistors at end of Technical Data Section for abbreviated data.

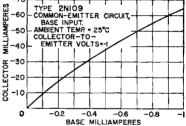
TRANSISTOR

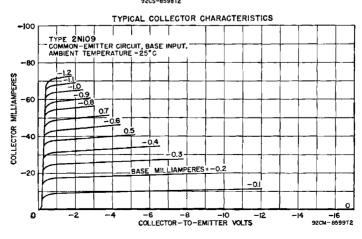
Germanium p-n-p type used in large-signal audio-frequency amplifier applications. It is used in class B push-pull power-output stages of battery-operated portable radio receivers and audio amplifiers

and in class A high-gain driver stages. JEDEC No. TO-40 package; outline 15, Outlines Section.


MAXIMUM RATINGS

2N109


Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Transistor Dissipation: At ambient temperatures up to 25°C At ambient temperatures above 25°C Temperature Range: Operating Storage Lead Temperature (for 10 seconds maximum)		volts volts volts ma ma page 80 °C °C
CHARACTERISTICS Collector-Cutoff Current (with collector-to-base volts = -30		
and emitter current (with confector-w-base volts $=$ -30 Emitter-cutoff Current (with emitter-to-base volts $=$ -12 and	-7 max	μa
collector current = 0) Base-to-Emitter Voltage (with collector-to-emitter volt = -1	—7 max	μa
and collector ma = -50 ma)	0.2 to 0.4	volt


Technical Data

Collector-to-Emitter Saturation Voltage (with collector ma = -50 and base current = -5 ma)-0.15 maxCollector-to-Base Breakdown Voltage (with collector $\mu a = -50$ and emitter current = 0)-35 minEmitter-to-Base Breakdown Voltage (with emitter $\mu a = -7$ and collector-to-Emitter Breakdown Voltage (with collector ma = -1 and base current = 0)-35 minCollector-to-Emitter Breakdown Voltage (with collector ma = -1 and base current = 0)-35 min	volt volts volts volts
In Common-Base Circuit	
Collector-to-Base Capacitance (with collector-to-base volts = -6 and emitter current = 0)20 to 60	pf
In Common-Emitter Circuit	
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -6, collector ma = -1, and frequency = 1 kilocycle) 50 to 150 Input Resistance at 1 kilocycle	ohms T
DC Collector-to-Emitter Supply Voltage	volts
Peak Collector Current (approx.) per transistor -35 -40 Maximum-Signal DC Collector Current (approx.) per transistor -11.5 -13 Zero-Signal DC Collector Current (approx.) per transistor -2 -2 Signal-Source Impedance per base 375 375 Load Impedance per collector 100 200 Signal Frequency 1 1	volt ma ma ohms ohms kc per cent db

T

TRANSISTOR

Germanium p-n-p type used primarily in 455-kilocycle intermediate-frequency amplifier applications in battery-operated portable radio receivers and automobile radio receivers operating from either a

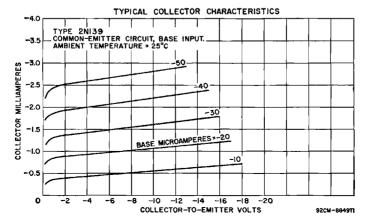
6-volt or a 12-volt supply. JEDEC No. TO-40 package; outline 15, Outlines Section.

MAXIMUM RATINGS

2N139

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector Current Transistor Dissipation Ambient-Temperature Range: Operating Storage	35 max 65 to 70	volts volts ma mw °C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector μa = -10 and emitter current = 0) Collector-Cutoff Current (with collector-to-base volts = -12)	—16 min	volts
and emitter current $= 0$)	$-6 \max$	μa
Emitter-Cutoff Current (with emitter-to-base volts = -12 and collector current = 0)	-40 max	$\mu \mathbf{a}$

In Common-Base Circuit


Small-Signal Forward Current-Transfer Ratio:		
With collector-to-base volts = -9 and collector ma = -0.5	0.978	
With collector-to-base volts $= -9$ and collector ma $= -1$	0.98	
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency:		
With collector-to-base volts $= -9$ and collector ma $= -0.5$.	4.5	Mc
With collector-to-base volts = -9 and collector ma = -1	4.7	\mathbf{Mc}

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio:	
With collector-to-emitter volts = -9 and collector ma = -0.5 .	45
With collector-to-emitter volts = -9 and collector ma = -1	48

TYPICAL OPERATION IN 455-KC IF AMPLIFIER CIRCUIT

DC Collector-to-Emitter Voltage	9	-9	volts
DC Collector Current	0.5	-1	ma
Input Resistance (approx.)	1000	500	ohms
Output Resistance (approx.)	70000	30000	ohms
Maximum Power Gain (approx.)	38	37	db
Useful Power Gain (approx.)	27.6	30.4	db
Spot Noise Figure (approx.)	4.5	4.5	db

TRANSISTOR

Germanium p-n-p type used primarily in converter and mixeroscillator applications in AM batteryoperated portable radio receivers and automobile radio receivers operating from either a 6-volt or a 12-volt

2N140

supply. JEDEC No. TO-40 package; outline 15, Outlines Section. For curves of typical collector characteristics, refer to type 2N139.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Transistor Dissipation Ambient-Temperature Range: Operating Storage	16 max 0.5 max -15 max 15 max 80 max 65 to 71 65 to 85	volts volt ma ma mw °C °C
CHARACTERISTICS Collector-to-Base Breakdown Voltage (with collector $\mu a = -10$ and emitter current = 0) Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -0.5 and collector current = 0)	—16 min —6 max —12 max	volts µa µa

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio (with collector-to-emitter volts = -9 and collector ma = -0.6)

TYPICAL OPERATION AT 1 MC IN SELF-EXCITED CONVERTER CIRCUIT

DC Collector-to-Emitter Voltage	9	volts
DC Collector Current	0.6	ma
RMS Base-to-Emitter Oscillator Injection Voltage (approx.)	100	mv
Input Resistance (approx.)	700	ohms
Output Resistance (approx.)	75000	ohms
Useful Conversion Power Gain (approx.)	32	db

POWER TRANSISTOR

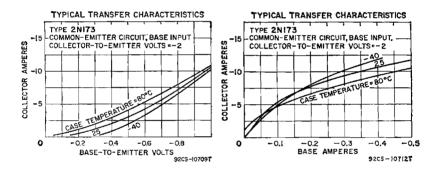
Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in

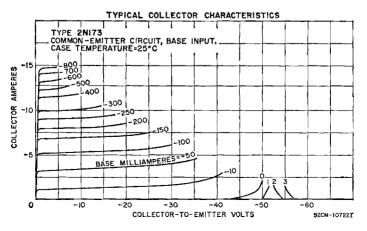
2N173

75

power-switching, voltage- and current-regulating, dc-to-dc converter, inverter, power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section.

MAXIMUM RATINGS


Collector-to-Base Voltage (with emitter-to-base volts $= -1.5$) Emitter-to-Base Voltage (with collector open)	-40 max volts
Collector Current	-15 max amperes
Emitter Current	15 max amperes
Base Current	-4 max amperes
Transistor Dissipation:	-
At case temperatures up to 25°C	150 max watts
At case temperatures above 25°C	See curve page 80
Case-Temperature Range:	
Operating and storage	65 to 100 °C


CHARACTERISTICS

Collector-to-Emitter Breakdown Voltage: With base short-circuited to emitter and collector amperes		
= 0.3	50 n	
With base open and collector amperes $= 0.3$ With base open and collector amperes $= -1$	—50 —45 n	
Base-to-Emitter Voltage (with collector-to-emitter volts = -2	-45 11	un vons
and collector amperes $= -5$) Emitter-to-Base Voltage (with collector-to-base volts $= -80$	0.65	\mathbf{v} olt
Emitter-to-Base Voltage (with collector-to-base volts $= -80$ and emitter current $= 0$)	0.15	volt
Collector-to-Emitter Saturation Voltage (with collector		
amperes = -12 and base amperes = -2)	-0.3	volt
Collector-to-Emitter Reach-Through Voltage Emitter-Cutoff Current (with emitter-to-base volts $= -40$	60 n	nin volts
and collector current $= 0$)	1	ma
Collector-Cutoff Current:	-100	
With collector-to-base volts $= -2$ and emitter current $= 0$ With collector-to-base volts $= -60$ and emitter current $= 0$	-100	μa ma
Thermal Resistance (junction-to-case)	0.35	
Thermal Capacity (for pulses in the 1-to-10-millisecond range) , Thermal Time Constant	0.075 26.25	watt-sec/°C msec
Inclinat The Constant	20.20	111300

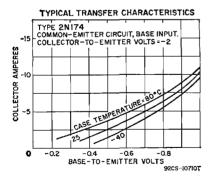
In Common-Emitter Circuit

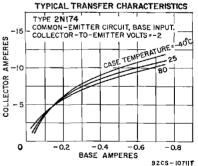
DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts = -2):		
With collector amperes $= -5$		
	25	
Small-Signal Forward-Current-Transfer-Ratio Cutoff		
		1
amperes = -5	10	KC
With collector amperes $= -12$ Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-emitter volts $= -6$ and collector amperes $= -5$)	25 10	kc

TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT

DC Collector Supply Voltage DC Base Supply Voltage On DC Collector Current Turn-On DC Base Current Turn-Off DC Base Current	12 6 12 2 0	volts volts amperes amperes amperes
Switching Time:	15	
Rise time		μsec
Fall time	15	µsec.

POWER TRANSISTOR

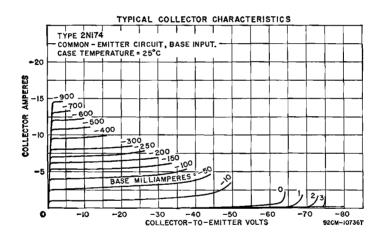

Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in


2N174

power-switching, voltage- and current-regulating, dc-to-dc converter, inverter, power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package: outline 14. Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter-to-base volts $= -1.5$) Emitter-to-Base Voltage (with collector open)	-80 max volts -60 max volts
Collector Current	-15 max amperes
Emitter Current	15 max amperes
Base Current	-4 max amperes
Transistor Dissipation:	
At case temperatures up to 25°C	150 max watts
At case temperatures above 25°C	See curve page 80
Case-Temperature Range:	
Operating and storage	–65 to 100 °C



CHARACTERISTICS

Collector-to-Emitter Breakdown Voltage: With base short-circuited to the emitter and collector		
amperes = -0.3	$-70 \min$	volts
With base open and collector amperes $= -1$	$-55 \min$	volts
Base-to-Emitter Voltage (with collector-to-emitter volts $= -2$		
and collector amperes $= -5$)	-0.65	volt
Emitter-to-Base Voltage (with collector-to-base volts $= -80$	1	volt
and emitter current $= 0$) Collector-to-Emitter Saturation Voltage (with collector	—1 max	VOIT
amperes $= -12$ and base amperes $= -2$)	-0.3	volt
Collector-to-Emitter Reach-Through Voltage	-80	volts
Emitter-Cutoff Current (with emitter-to-base volts $= -60$ and	••	
collector current $= 0$	1	ma

		μa ma °C/watt watt-sec/°C msec
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -2): With collector amperes = -5 With collector amperes = -12 Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-emitter volts = -6 and collector amperes = -5)	25 to 50 20 10	ke
TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT DC Collector Supply Voltage DC Base Supply Voltage On DC Collector Current	12 6 12 2	volts volts amperes
Turn-On DC Base Current Turn-Off DC Base Current	2 0	amperes amperes
Switching Time: Rise time Fall time	15 15	μsec μsec

TRANSISTOR

2N175

Germanium p-n-p type used in low-level preamplifier or input stages of audio-frequency amplifiers. This type is free from microphonism and hum and has a low noise figure. These features make it possible to

obtain high small-signal sensitivity in transistorized audio equipment such as hearing aids, microphone preamplifiers, and recorders. In addition, the low noise figure and the low input impedance permit the design of audio amplifiers in which the transistor is operated directly from low-level, low-impedance devices such as magnetic microphones and magnetic pickups without an input coupling transformer. JEDEC No. TO-40 package; outline 15, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base V	oltage (with	ı emitter	open)	· • • • • • • • • • • • • • • • • •	—10 max	volts
Emitter-to-Base Vo	ltage (with	collector	open)	· · · · · · · · · · · · · · · · · · ·	-10 max	volts

Technical Data

Collector Current Emitter Current Transistor Dissipation: Ambient-Temperature Range:	2 max 2 max 20 max	volts ma mw
Operating Storage	—65 to 50 —65 to 85	ိုင်
CHARACTERISTICS		
Collector-Cutoff Current (with collector-to-base volts = -25 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -12	—12 m ax	μa
and collector current $= 0$)	—12 max	μa
In Common-Base Circuit		
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = -4 and collector ma = -0.5)	0.85	Mc
In Common-Emitter Circuit		
Noise Figure (with collector-to-emitter volts = -4 , collector ma = -0.5 , and generator resistance = 1000 ohms) Matched-Impedance Power Gain (with collector-to-emitter volts = -4 , collector ma = -0.5 , input resistance = 2000 ohms.	6 max	db
= -4, confector ma $=$ -0.5, mput resistance $=$ 2000 onms, and output resistance $=$ 70000 ohms)	43	db

TYPICAL COLLECTOR CHARACTERISTICS -2.5 Τ Τ TYPE 2NI75 COMMON-EMITTER CIRCUIT, BASE INPUT. -25 -2.0 -20 COLLECTOR MILLIAMPERES ASE MICROAMPERES -15 -1.5 -10 -1.0 -5 -0.5 0 -2 -4 -8 --6 -10 COLLECTOR-TO-EMITTER VOLTS 92CM ~ 8914TH

POWER TRANSISTOR

Germanium p-n-p type used in large-signal audio-frequency amplifier applications. It is used in class A power-output stages and class B push-pull amplifier stages in automobile radio receivers. Package is

2N176

similar to JEDEC No. TO-3; outline 23, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector Current Emitter Current	3 max amperes
Transistor Dissipation: At mounting-flange temperatures up to 80°C*	10 max watts
Mounting-Flange-Temperature Range: Operating and storage	
* This rating is reduced 1 watt/C° for mounting-flange temperat	

CHARACTERISTICS

CHARACTERISTICS		
Collector-to-Emitter Breakdown Voltage (with collector ma = -330 and base short-circuited to emitter) Collector-Cutoff Current (with collector-to-base volts = -30	-30 min	volts
and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -10	3 max	ma
and collector current = 0)	-2 max	ma
Junction-to-ambient	1	°C/watt
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -2 and collector amperes = -0.5) Small-Signal Forward Current-Transfer Ratio at 1 kilocycle (with collector-to-emitter volts = -2 and collector	63	
amperes = -0.5) Small-Signal Input Resistance at 1 kilocycle	45 13.5	ohms
TYPICAL OPERATION IN CLASS A POWER-AMPLIFIER CIRCU	ЛТ	
DC Collector-Supply Voltage DC Collector-to-Emitter Voltage DC Base-to-Emitter Voltage Peak Collector Current Zero-Signal Collector Current Emitter Resistance Load Impedance Signal Frequency Signal Frequency Signal-Source Impedance Power Gain Total Harmonic Distortion Zero-Signal Collector Dissipation Maximum-Signal Power Output	$\begin{array}{c} -14.4 \\ -13.7 \\ -0.24 \\ -1 \\ -0.5 \\ 1 \\ 25 \\ 1 \\ 10 \\ 35.5 \\ 4 \\ 6.83 \\ 2 \end{array}$	volts volts volt ampere ampere ohm ohms kc ohms db per cent watts watts

2N206

2N215

2N217

2N218

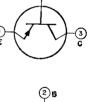
See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

TRANSISTOR

Germanium p-n-p type used in low-power audio-frequency amplifier applications. JEDEC No. TO-1 package; outline 4, Outlines Section. (1) This type is electrically identical Ewith type 2N104.

TRANSISTOR

Germanium p-n-p type used in large-signal audio-frequency amplifier applications. It is used in class B push-pull power-output stages of battery-operated portable radio receivers and audio amplifiers and in


class A high-gain driver stages. JEDEC No. TO-1 package; outline 4, Outlines Section. This type is electrically identical with type 2N109.

TRANSISTOR

Germanium p-n-p type used primarily in 455-kilocycle intermediate-frequency amplifier applications in battery-operated portable radio receivers and automobile radio receivers operating from either a 6-

volt or a 12-volt supply. JEDEC No. TO-1 package; outline 4, Outlines Section. This type is electrically identical with type 2N139.

(2)_B

2)_B

TRANSISTOR

Germanium p-n-p type used primarily in converter and mixeroscillator applications in AM batteryoperated portable radio receivers and automobile radio receivers operating from either a 6-volt or a 12-volt

supply. JEDEC No. TO-1 package; outline 4, Outlines Section. This type is electrically identical with type 2N140.

TRANSISTOR

Germanium p-n-p low-noise type used in low-level preamplifier or input stages of audio-frequency amplifiers, JEDEC No. TO-1 package: outline 4. Outlines Section. This type is electrically identical with

type 2N175.

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

TRANSISTOR

Germanium p-n-p type used in large-signal audio-frequency amplifier applications. It is used in single-ended or double-ended output stages, in high-gain class A driver stages of radio receivers and

audio amplifiers, and in class B push-pull audio-amplifier service. This type is also used in battery-operated equipment such as radio receivers, communication receivers, and phonographs. Package is similar to JEDEC No. TO-7; outline 25. Outlines Section.

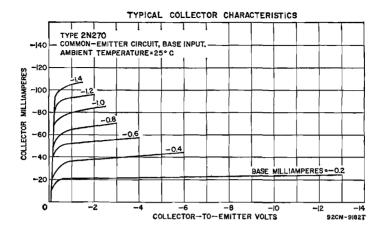
MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open)	25 max 12 max	volts volts
Collector Current:		
Peak	$-150 \max$	ma
	—75 max	ma
Emitter Current:	150	
Peak	150 max	ma
DC Transistor Dissipation:	75 max	ma
At ambient temperatures up to 25°C	250 max	mw
At ambient temperature of 55°C	150 max	mw
At ambient temperature of 71°C	60 max	mw
Ambient-Temperature Range:	00 max	111.44
Operating	-65 to 71	°C
Storage	-65 to 85	۰Č

CHARACTERISTICS

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -1 and collector ma = -150) 70

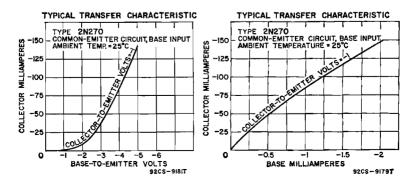

2	N	2	2	0	

2N219

2N247

2N269

2N270


TYPICAL OPERATION IN CLASS A AF AMPLIFIER CIRCUIT

DC Collector Supply Voltage	-9	volts
DC Collector-to-Emitter Voltage	9 6.7	volts
DC Base-to-Emitter Voltage	-0.19	volt
DC Collector Current	-19	ma
Emitter Resistance	400	ohms
Load Impedance	400	ohms
Signal Frequency	1	kc
Power Gain	35	db
Total Harmonic Distortion:		
At power output $= 60 \text{ mw}$	10 ma:	x per cent
At power output = 10 mw	4 ma:	x per cent
Zero-Signal Transistor Dissipation	128	‴ mwr
Maximum-Signal Power Output	60	mw

TYPICAL OPERATION IN CLASS B PUSH-PULL AF AMPLIFIER CIRCUIT

Values are for two transistors except as noted

DC Collector Supply Voltage	-12	volts
Zero-Signal DC Base-to-Emitter Voltage	-0.11	\mathbf{volt}
Peak Collector Current per transistor		ma
Maximum-Signal DC Collector Current per transistor	35	ma
Zero-Signal DC Collector Current per transistor	-2	ma
Signal-Source Impedance per base	1000	ohms
Load Impedance per collector	150	ohms
Signal Frequency	1	kc
Circuit Efficiency	75	per cent
Power Gain	32	db
Total Harmonic Distortion:		
At power output $= 500 \text{ mw}$		ax per cent
At power output = 10 mw		ax per cent
Maximum-Signal Power Output	500	mw

TRANSISTOR

Germanium p-n-p type used in rf and if amplifier circuits; oscillator, mixer, and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design of rf circuits

2N274

having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilities over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base resistance and collector-transition capacitance, and improves performance at higher frequencies. The center lead connected internally to the metal case provides integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. For curves of typical collector characteristics and for video-amplifier circuit, refer to type 2N384. JEDEC No. TO-44 package; outline 16, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base-to-emitter volts = 0.5) Emitter-to-Base Voltage (with collector open) Collector Current Transistor Dissipation: At ambient temperatures up to 25°C At case temperatures up to 25°C At case temperatures up to 25°C Temperature Range: Operating and storage	-40 max -40 max -0.5 max -10 max 10 max 120 max See curve 240 max See curve 5 to 100	page 80 mw
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $\mu a = -50$ and emitter current = 0)	80	volts
(with emitter-to-base volts = -0.5) Collector-Cutoff Current (with collector-to-base volts = -12	80	volts
and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -0.5	-4	μa
and collector current $= 0$	-1	$\mu \mathbf{a}$
Thermal Resistance: Junction-to-case Junction-to-ambient	0.31 max 0.62 max	°C/mw °C/mw

In Common-Base Circuit

Small-Signal Forward-Current-Transfer-Ratio Cutoff		
Frequency (with collector-to-base volts $= -12$ and emitter		
ma = 1.5)	30	Me
Collector-to-Base Capacitance (with collector-to-base volts		
$=$ -12 and emitter current \doteq 0)	2	pf

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio at 1 kilocycle (with collector-to-emitter volts = -12 and emitter ma = 1.5) Input Resistance with ac output circuit shorted:	60	
With collector-to-emitter volts = -12 , emitter ma = 1.5,	150	ohms
and signal frequency = 12.5 Mc With collector-to-emitter volts = -12 , emitter ma = 1.5 ,	190	oruns
and signal frequency $= 1.5 \text{ Mc}$	1350	ohms
Output Resistance with ac input circuit shorted:		
With collector-to-emitter volts $= -12$, emitter ma $= 1.5$,		
and signal frequency = 12.5 Mc With collector-to-emitter volts = -12 , emitter ma = 1.5 ,	4000	ohms
With collector-to-emitter volts $= -12$, emitter ma $= 1.5$,		
and signal frequency $= 1.5$ Mc	70000	ohms
Power Gain:		
With collector-to-emitter volts $= -12$, emitter ma $= 1.5$,		
and signal frequency $= 12.5$ Mc	22	db
With collector-to-emitter volts = -12 , emitter ma = 1.5,		
and signal frequency $= 1.5$ Mc	45	db

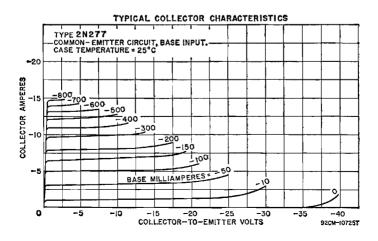
TYPICAL OPERATION IN VIDEO-AMPLIFIER CIRCUIT

DC Collector-to-Emitter Voltage	-12	volts
DC Emitter Current	5.8	ma
Source Impedance	150	ohms
Capacitive Load	16	pf
Frequency Response	20 cps to 9 Mc	
Pulse-Rise Time	0.039	µsec.
Voltage Gain	26	db
Maximum Peak-to-Peak Output Voltage	20	volts

POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in

power-switching, voltage- and current-regulating, dc-to-dc converter, inverter, power-supply and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is identical with type 2N173 except for the following items;


MAXIMUM RATINGS

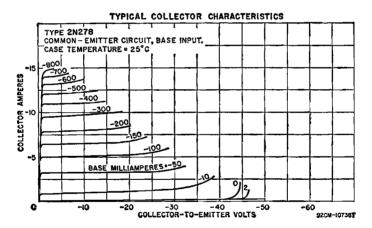
2N277

Collector-to-Base Voltage	(with emitter-to-base volts = -1.5).	$-40 \max$	volts
Emitter-to-Base Voltage	(with collector open)	-20 max	volts

CHARACTERISTICS

<u>—40 min</u>	volts
40	volts
-25 min	volts
$-1 \max$	volt
-40 min	volts
-1	ma
-	
	ma
	ma

POWER TRANSISTOR


Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in

2N278

power-switching, voltage- and current-regulating, dc-to-dc converter, inverter, power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is identical with type 2N173 except for the following items:

MAXIMUM RATINGS

Collector-to-Base Voltage	(with emitter-to-base volts $= -1.5$)	50 max	volts
Emitter-to-Base Voltage	(with collector open)	30 max	volts

CHARACTERISTICS

Collector-to-Emitter Breakdown Voltage: With base short-circuited to the emitter and collector amperes		
= -0.3 With base open and collector amperes $= -0.3$	-45 min -45	volts volts
With base open and collector amperes $= -1$ Emitter-to-Base Voltage (with collector-to-base volts $= -50$	—30 min	volts
and emitter current = 0) Collector-to-Emitter Reach-Through Voltage	—1 max —50 min	volt volts
Emitter-Cutoff Current (with emitter-to-base volts = -30 and collector current = 0)	1	ma
Collector-Cutoff Current (with collector-to-base volts = -50 and emitter current = 0)	-2	ma
	-	

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

2N301 2N301A

POWER TRANSISTOR

Germanium p-n-p type used in large-signal audio-frequency amplifier applications such as class A and class B audio-frequency amplifiers, class A driver amplifiers, low-frequency oscillators, converters, in-

verters, power supplies, light flashers, and communications systems. Package is similar to JEDEC No. TO-3; outline 26, Outlines Section.

MAXIMUM RATINGS

2N307

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage Collector Current Emitter Current Transistor Dissipation:	-35 max volts -35 max volts -1 max ma 1 max ma
At mounting-flange temperatures up to 25°C At mounting-flange temperatures above 25°C Mounting-Flange Temperature Range: Operating and storage	10 max watts See curve page 80
CHARACTERISTICS	-0310113 C
Collector-to-Emitter Saturation Voltage (with collector ma = -200 and base ma = -20) Collector-Cutoff Current (with collector-to-emitter volts = -35	1 max volt
and external base-emitter resistance = 30 ohms)	15 max ma
Junction-to-mounting flange	5 °C/watt
In Common-Emitter Circuit	
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -1.5 and collector ma = -200)	20

DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts = -1.5 and collector ma = -200)	20	
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency		-
(with collector-to-emitter volts = -1.5 and collector ma = 200)	3	kc

2N331

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

POWER TRANSISTOR

Germanium p-n-p type used in large-signal audio-frequency amplifier applications. It is used primarily in class A power-output stages and class B push-pull amplifier stages in automobile radio receivers. Pack-

age is similar to JEDEC No. TO-3; outline 23, Outlines Section. This type is identical with type 2N176 except for the following items:

CHARACTERISTICS

2N351

In Common-Emitter Circuit

DC Forward-Current Transfer Ratio (with collector-to-emitter volts $= -2$ and collector amperes $= -0.7$)	65	
Small-Signal Forward Current-Transfer Ratio at 1 kilocycle (with collector-to-emitter volts $= -2$ and collector amperes	-	
= -0.7)	45	
Small-Signal Input Resistance	13	ohms

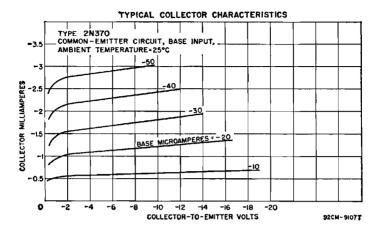
TYPICAL OPERATION IN CLASS A POWER-AMPLIFIER CIRCUIT

Mounting-flange temperature of 80°C

DC Collector Supply Voltage	14.4	volts
DC Collector-to-Êmitter Voltage	13.2	volts
DC Base-to-Emitter Voltage	0.3	volt
Peak Collector Current	1.4	amperes
Zero-Signal DC Collector Current	0.7	a mpere
Emitter Resistance	1	ohm

Technical Data

Load Impedance Signal Frequency Signal-Source Impedance Power Gain Total Harmonic Distortion at power output of 4 watts Zero-Signal Transistor Dissipation Maximum-Signal Power Output	$\begin{array}{ccc} 15 & \text{ohms} \\ 1 & kc \\ 10 & \text{ohms} \\ 33.5 & db \\ 5 & \text{per cent} \\ 9.25 & \text{watts} \\ 4 & \text{watts} \end{array}$
See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.	2N356
See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.	2N357
See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.	2N358


TRANSISTOR

Germanium p-n-p type used as an amplifier in AM broadcast-band battery-operated portable radio receivers and short-wave receivers. JEDEC No. TO-7 package; outline 7, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter ope Emitter-to-Base Voltage (with collector ope Collector Current Emitter Current Collector Dissipation:	n)	· · · · · · · · · ·	-20 max -1.5 max -10 max 10 max	volts volts ma ma
At ambient temperatures up to 25°C At ambient temperature of 55°C At ambient temperature of 71°C Ambient-Temperature Range:		•••••	80 max 40 max 20 max	mw mw mw
Operating			65 to 71 65 to 85	°C °C
CHARACTERISTICS				
Collector-Cutoff Current (with collector-to-b and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base	volts $= -1$	1.5	-20 max	μa
and collector current $= 0$	· • • · • • • • • • • • • • •	••••	—50 max	μa
In Common-B	ase Circuit			
Small-Signal Forward Current-Transfer Ratio (with collector-to-base volts = -12 and co Small-Signal Forward-Current-Transfer-Ratio	llector ma =	= 1)	0.984	
(with collector-to-base volts $= -12$ and co Interlead Capacitance between collector and 1 interlead shield grounded and all leads cut	llector ma = base leads (=1) . with	30 0.3	Mc
interieau smeiu groundeu and an leaus cut	10 916 111011)	•••••	0.3	pf
In Common-En	nitter Circuit			
DC Forward Current-Transfer Ratio at 1 kile collector-to-emitter volts $=$ -12 and collec Gain-Bandwidth Product (with collector-to-	toř ma = —	1)	60	
= -12 and collector ma $= -1)$			132	Mc
TYPICAL OPERATION				
Frequency DC Collector-to-Emitter Voltage DC Collector Current	-1.5 -12 1	-10 -12 1	20 12 1	Mc volts ma
Input Resistance Output Resistance Maximum Power Gain	1750 180000 50.5	200 18000 26.2	100 11000 17	ohms ohms db
Maximum Useful Power Gain in an unneutralized circuit Intrinsic Transconductance Collector Transition Capacitance	$\substack{\begin{array}{c}31\\37800\\1.7\end{array}}$	17.6 21400 1.7	12.5 13700 1.7	db µmhos pf
				-

TRANSISTOR

Germanium p-n-p type used as a radio-frequency oscillator in AM broadcast - band battery - operated portable radio receivers and shortwave receivers. JEDEC No. TO-7 package; outline 7, Outlines Section. Ratings and characteristics for this type are the same as for type 2N370 except for the following items:

MAXIMUM RATINGS

2N371

Emitter-to-Base Voltage (with collector open)	-0.5 max	volt
CHARACTERISTICS		
Emitter-Cutoff Current (with emitter-to-base volts = -0.5 and collector current = 0)	50 max	μa

TRANSISTOR

Germanium p-n-p type used as a radio-frequency mixer in AM broadcast - band battery - operated portable radio receivers and shortwave receivers. JEDEC No. TO-7 package; outline 7, Outlines Section.

This type is electrically identical with type 2N370 except for the following items:

MAXIMUM RATINGS

2N372

Emitter-to-Base Voltage (with	a collector open)	$-0.5 \max$	volt
	emitter-to-base volts = -0.5	50	μa

2N373 See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

2N374 See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

POWER TRANSISTOR

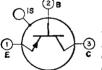
Germanium p-n-p type used in large-signal audio-frequency amplifier applications. It is used primarily in class A power-output stages and class B push-pull amplifier stages of automobile radio receivers. Package

2N376

is similar to JEDEC No. TO-3; outline 23, Outlines Section. This type is identical with type 2N176 except for the following items;

CHARACTERISTICS

In Common-Emitter Circuit


Small-Signal Forward Current-Transfer Ratio at 1 kilocycle		
(with collector-to-emitter volts $= -2$ and collector amperes		
= -0.7	60	
DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts = -2 and collector amperes = -0.7)	78	
Small-Signal Input Resistance	16	ohms

TYPICAL OPERATION IN CLASS A POWER-AMPLIFIER CIRCUIT

Mounting-flange temperature of 80°C

DC Collector Supply Voltage DC Collector-to-Emitter Voltage DC Base-to-Emitter Voltage	14.4 13.2 0.3	volts volts volt
Peak Collector Current	-1.4 -0.7	amperes ampere
Zero-Signal DC Collector Current Emitter Resistance	0.7	ohm
Load Impedance	15	ohms
Signal Frequency	10	kc ohms
Signal-Source Impedance Power Gain	35	db
Total Harmonic Distortion	5 9.25	per cent watts
Zero-Signal Transistor Dissipation Maximum-Signal Power Output	9.25	watts

TRANSISTOR

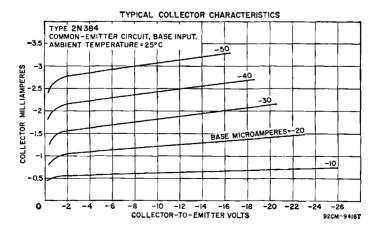
Germanium p-n-p type used in rf- and if-amplifier circuits; oscillator, mixer, and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design

2N384

of rf circuits having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilities over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base resistance and collector-transition capacitance, and improves performance at higher frequencies. The center lead internally connected to the metal case provides integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. JEDEC No. TO-44 package; outline 16, Outlines Section.

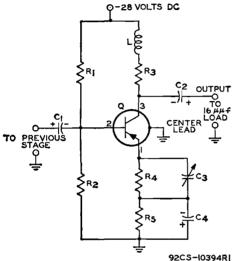
Collector-to-Base Voltage (with emitter open)	-40 max	volts
Collector-to-Emitter Voltage (with base-to-emitter volts $= 0.5$)	-40 max	volts
Emitter-to-Base Voltage (with collector open)	$-0.5 \mathrm{max}$	volt
Collector Current	-10 max	ma
Emitter Current	10 max	ma
Transistor Dissipation:		
At case temperatures up to 25°C	240 max	
At case temperatures above 25°C	See curve	page 80
At ambient temperatures up to 25°C	120 max	ĩmw
At ambient temperatures above 25°C	See curve	page 80
Ambient-Temperature Range:		
Operating (junction) and storage	-65 to 100	۰C

CHARACTERISTICS


Collector-to-Base Breakdown Voltage (with collector $\mu a = -50$ and emitter current = 0)		volt s
Collector-to-Emitter Reach-Through Voltage		
(with emitter-to-base volts $= -0.5$)	-80	volts
Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0)	-4	μa
Emitter-Cutoff Current (with emitter-to-base volts $= -0.5$		
and collector current $= 0$)	1	μa
	0.31 max	°C/mw
Junction-to-case Junction-to-ambient	0.62 max	

In Common-Base Circuit

Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts $= -12$ and emitter		
ma = -1.5) Input Resistance with ac output circuit shorted (with collector-	100	Mc
to-base volts = -12 , emitter ma = 1.5, and signal frequency		
= 50 Mc) Output-Resistance with ac input circuit shorted (with collector-	30	ohms
to-base volts $= -12$, emitter ma $= 1.5$, and signal frequency		-
= 50 Mc) Collector-to-Base Capacitance (with collector-to-base volts	5000	ohms
= -12, and emitter current $= 0$)	2	pf
Power Gain (with collector-to-base volts $= -12$, emitter ma $= 1.5$, signal frequency $= 50$ Mc)	18	ďb
$= 1.3$, signal frequency $= 50$ mc/ $\dots \dots \dots \dots \dots$	10	


In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio at 1 kilocycle (with collector-to-emitter volts = -12 and emitter ma = 1.5) Input Resistance with ac output circuit shorted:	60	
With collector-to-emitter volts $= -12$, emitter ma $= 1.5$, and signal frequency $= 30$ Mc	50	ohms
With collector-to-emitter volts $= -12$, emitter ma $= 1.5$, and signal frequency $= 12.5$ Mc	250	ohms
Output Resistance with ac input circuit shorted: With collector-to-emitter volts $= -12$, emitter ma $= 1.5$,		
and signal frequency = 30 Mc \dots With collector-to-emitter volts = -12 , emitter ma = 1.5,	50 00	ohms
and signal frequency = 12.5 Mc	16000	ohms
With collector-to-emitter volts = -12 , emitter ma = 1.5, and signal frequency = 30 Mc	20	ďb
With collector-to-emitter volts $= -12$, emitter ma $= 1.5$,		
and signal frequency = 12.5 Mc	28	db

TYPICAL OPERATION IN VIDEO-AMPLIFIER CIRCUIT BELOW

DC Collector-to-Emitter Voltage	-12	volts
DC Emitter Current	5.8	ູma
Source Impedance	150	ohms
Capacitive Load	16	pt
Frequency Response	0 cps to 10 Mc	
Pulse-Rise Time	0.035	µsec.
Voltage Gain	26	db
Maximum Peak-to-Peak Output Voltage	20	volts

 $\begin{array}{l} C_1 = 25 \ \mu f, \ 12 \ volts \\ C_2 = 25 \ \mu f, \ 25 \ volts \\ C_3 = 100 \ to \ 300 \ \mu \mu f \ (variable) \\ C_4 = 100 \ \mu f, \ 12 \ volts \\ L = 30 \ \mu h \\ R_2 = 2000 \ ohms, \ 0.25 \ watt \\ R_3 = 2000 \ ohms, \ 0.25 \ watt \end{array}$

.....

- $R_2 = 3600$ ohms, 0.25 watt $R_3 = 2000$ ohms, 0.25 watt

- $R_3 = 62$ ohms, 0.25 watt $R_5 = 620$ ohms, 0.25 watt

2N388

037900 4

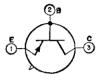
2N388A

TRANSISTOR

Germanium n-p-n types used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section.

	ZN 388	2N 388A	
Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	25 max	40 max	volts
With external base-to-emitter resistance			
= 10000 ohms	20 max	20 max	volts
With base-to-emitter volts $= -0.5$		40 max	volts
Emitter-to-Base Voltage (with collector open)	15 max	15 max	volts
Collector Current	200 max	200 max	ma
Transistor Dissipation:			
At ambient temperatures up to 25°C	150 max	150 max	mw
At ambient temperatures above 25°C	See c	urve page 80	
Ambient-Temperature Range:			
(Operating and storage)	-65 to 100	-65 to 100	ဒိုင်
Lead Temperature (for 10 seconds maximum)	235 max	235 max	°C
CHARACTERISTICS			
CHARACTERISTICS	2N388	2N388A	
CHARACTERISTICS Base-to-Emitter Voltage:	2N388	2N388A	
	2 <i>N388</i> 1.5 max	2N388A 1.5 max	volts
Base-to-Emitter Voltage:			volts volt
Base-to-Emitter Voltage: With collector ma = 200 and base ma = 10 With collector ma = 100 and base ma = 4 Collector-Cutoff Current:	1.5 max	1.5 max	
Base-to-Emitter Voltage: With collector ma = 200 and base ma = 10 With collector ma = 100 and base ma = 4 Collector-Cutoff Current: With collector-to-base volts = 40 and emitter	1.5 max	1.5 max 0.8 max	
Base-to-Emitter Voltage: With collector ma = 200 and base ma = 10 With collector ma = 100 and base ma = 4 Collector-Cutoff Current: With collector-to-base volts = 40 and emitter current = 0	1.5 max	1.5 max	
Base-to-Emitter Voltage: With collector ma = 200 and base ma = 10 With collector ma = 100 and base ma = 4 Collector-Cutoff Current: With collector-to-base volts = 40 and emitter current = 0 With collector-to-base volts = 25 and emitter	1.5 max 0.8 max	1.5 max 0.8 max 40 max	volt
Base-to-Emitter Voltage: With collector ma = 200 and base ma = 10 With collector ma = 100 and base ma = 4 Collector-Cutoff Current: With collector-to-base volts = 40 and emitter current = 0 With collector-to-base volts = 25 and emitter current = 0	1.5 max	1.5 max 0.8 max	volt
Base-to-Emitter Voltage: With collector ma = 200 and base ma = 10 With collector ma = 100 and base ma = 4 Collector-Cutoff Current: With collector-to-base volts = 40 and emitter current = 0 With collector-to-base volts = 25 and emitter current = 0 With collector-to-base volts = 1 and emitter	1.5 max 0.8 max — 10 max	1.5 max 0.8 max 40 max 10 max	volt μa μa
Base-to-Emitter Voltage: With collector ma = 200 and base ma = 10 With collector ma = 100 and base ma = 4 Collector-Cutoff Current: With collector-to-base volts = 40 and emitter current = 0 With collector-to-base volts = 25 and emitter current = 0	1.5 max 0.8 max	1.5 max 0.8 max 40 max	volt µa

In Common-Emitter Circuit


Forward Current-Transfer Ratio:		
With collector-to-emitter volts $= 0.75$		
and collector ma $= 200$	30 min	30 min
With collector-to-emitter volts $= 0.5$		
and collector ma $= 30$	60 to 180	60 to 189

In Common-Base Circuit

Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 6 and collector			
ma = 1 Collector-to-Base Capacitance (with collector-to-	5 min	5 min	Mc
Collector-to-Base Capacitance (with collector-to-			
base volts = 6 and collector $ma = 1$)	20 max	20 max	pf

TRANSISTOR

Germanium p-n-p type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section.

MAXIMUM RATINGS

2N395

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with external base-to-emitter	30 max	volts		
resistance = 10000 ohms)	-15 max	volts		
Emitter-to-Base Voltage (with collector open)	-20 max	volts		
Collector Current	$-200 \max$	ma		
Transistor Dissipation:	150			
At ambient temperatures up to 25°C	150 max			
At ambient temperatures above 25°C Ambient-Temperature Range:	See curve	page au		
Operating	-65 to 85	۰C		
Storage	-65 to 100	င် သိုင် သိုင်		
Storage Lead Temperature (for 10 seconds maximum)	230 max	۰C		
CHARACTERISTICS				
Collector-to-Emitter Saturation Voltage (with collector				
ma = 50 and base $ma = -5)$	0.2 max	volt		
Collector-Cutoff Current (with collector-to-base volts $= -15$ and emitter current $= 0$)	-6 max	μæ		
In Common-Base Circuit				
Collector-to-Base Capacitance (with collector-to-base				
volts $= -5$ and emitter ma $= 1$)	20 max	pf		
Forward-Current-Transfer-Ratio Cutoff Frequency (with	av maa	P~		
collector-to-base volts = -5 and emitter ma = 1)	3 min	Me		

In Common-Emitter Circuit

TRANSISTOR

Germanium p-n-p types used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. Ratings for these types are the same as for type 2N395

except for the following items:

MAXIMUM RATINGS

2N396A

	2N396	2N396A	
Collector-to-Emitter Voltage: With base open With external base-to-emitter resistance	_	-20 max	volts
= 10000 ohms	-20 max	-	volts
Transistor Dissipation: At ambient temperatures up to 25°C	15 0 max	200 max	mw

Technical Data

CHARACTERISTICS

Collector-to-Emitter Saturation Voltage (with collector ma $= -50$ and base ma $= -3.3$)	0.2 max	volt
Collector-Cutoff Current (with collector-to-base volts $= -20$ and emitter current $= 0$)	-6 max	μa
In Common-Base Circuit		

Collector-to-Base Capacitance (with collector-to-base volts $= -5$		
and emitter ma $=$ 1) Forward-Current-Transfer-Ratio Cutoff Frequency (with	20 max	pf
collector-to-base volts $=$ -5 and emitter ma = 1)	5 min	Mc

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio: With collector-to-emitter volts = -1 and collector ma = -10 ...30 to 150 With collector-to-emitter volts = -0.35 and collector ma = -200 15 m 15 min

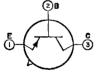
TRANSISTOR

Germanium p-n-p type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N395 except for

the following items:

CHARACTERISTICS

Collector-to-Emitter (with collector ma	Saturation $1 = -50$ and	Voltag base	ge ma	= -2.5	i).	••••••	-0.2 max	volt
				-				


In Common-Base Circuit

Forward-Current-Transfer-Ratio Cutoff Fre	equency (with	
collector-to-base volts $= -5$ and emitter	r ma = 1) 10 min Mo	с

In Common-Emitter Circuit

Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= -1$ and collector ma $= -10$	40 to 150
With collector-to-emitter volts $= -0.35$ and collector ma $= -200$	20 min

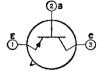
TRANSISTOR

Germanium p-n-p types used for direct high-voltage control of "onoff" devices such as neon indicators. relays, incandescent-lamp indicators, and indicating counters of electronic computers. JEDEC No. TO-5 2N398 2N398A 2N398B

2N397

package; outline 6. Outlines Section.

	2N398	2N398A	2N398B	
Collector-to-Base Voltage				
(with emitter open) Collector-to-Emitter Voltage	— 1 05 max	—105 max	—105 max	volts
(with emitter-to-base volts $= -1$)	-105 max	$-105 \mathrm{max}$	-105 max	volts
Emitter-to-Base Voltage	200 11101	ave main	100 11010	10103
(with collector open)	—50 max	-50 max	-75 max	volts
Collector Current	—100 max	—200 max	-200 max	ma
Emitter Current	100 max	200 max	200 max	ma
Transistor Dissipation:				
At ambient temperatures up to				
25°C	50 max	150 max	250 max	mw
At ambient temperatures above				
25°C Ambient-Temperature Range:		See curve page	80	
Ambient-Temperature Range:				
Operating	—65 to 55	-65 to 100	65 to 100	۰C
Storage	-65 to 85	-65 to 100	-65 to 100	٥Č
Lead Temperature				-


CHARACTERISTICS

OTARAOTERIOTICO				
Base-to-Emitter Saturation Voltage (with collector ma = -5 and base ma = -0.25) Collector-to-Emitter Saturation Voltage (with collector ma = -5	0.4 max	-0.4 max	-0.3 max	volt
and base ma $= -0.25$) Collector-Cutoff Current: With collector-to-base volts $= -2.5$	-0.35 max	0.35 max	0 .25 max	volt
and emitter current $= 0$ With collector-to-base volts = -105 and emitter current	—14 max	—14 m ax	$-6 \max$	μа
	-50 max	-50 max	—25 max	μa
in Com	mon-Base Cir	cuit		
Small-Signal Forward-Current- Transfer-Ratio Cutoff Frequency (with collector-to-base volts = -6 and emitter ma = 1)	-	_	1 min	Mc
In Comm	non-Emitter Ci	rcuit		
DC Forward Current-Transfer Ratio: With collector-to-emitter volts = -0.35 and collector ma $= -5With collector-to-emitter volts$	2 0 min	20 min		
= -0.25 and collector ma = -5 Small-Signal Forward Current- Transfer Ratio (with collector-to- emitter volts = -6, collector ma =	-	_	20 min	
-1, and frequency = 1 kilocycle)	-	20 min	40 min	

TRANSISTOR

Germanium p-n-p types used in medium-speed switching applications in data-processing equipment. These types also have wide applica-2N404A tion in other low-level, medium-speed "on-off" control circuits. JEDEC No. TO-5 package; outline 6, Outlines Section.

MAXIMUM RATINGS

	2N404	2N404A	
Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage	25 max	-40 max	volts
(with emitter-to-base volts $= -1$)	24 max	—35 max	volts
Emitter-to-Base Voltage (with collector open)	—12 max	—25 max	volts
Collector Current	—100 max	$-150 \max$	ma
Emitter Current Transistor Dissipation:	100 max	150 max	ma
At ambient temperatures up to 25°C	1 50 max		mw
At ambient temperatures above 25°C Ambient-Temperature Range:	See cu	rve page 80	
Operating	-65 to 85	-65 to 100	ိုင်ငံ
Storage	65 to 100	-65 to 100	۰C
Lead Temperature (for 10 seconds maximum)	255 max	$255 \max$	۰C
CHARACTERISTICS			
Collector-to-Emitter Saturation Voltage:			
With collector ma $= -12$ and base ma $= -0.4$.		-0.15 max	volt
With collector ma = -24 and base ma = -1 Base-to-Emitter Saturation Voltage:		—0.2 max	volt
With collector ma = -12 and base ma = -0.4 .		-0.35 max	volt
With collector ma = -24 and base ma = -1		-0.40 max	volt
Collector-Cutoff Current (with collector-to-base vol	lts = -12	or to man	1010
and emitter current == 0)		$-5 \max$	μa
Stored Base Charge (with collector $ma = -10$ and ba	ase ma $= -1$)	-1400 max	pcoul

In Common-Base Circuit

Collector-to-Base Capacitance (with collector-to-base volts $= -6$		
and collector current $= 0$) Forward-Current-Transfer-Ratio Cutoff Frequency (with	$20 \max$	\mathbf{pf}
collector-to-base volts $= -6$ and collector ma $= -1$)	4 min	Mc

In Common-Emitter Circuit

(4

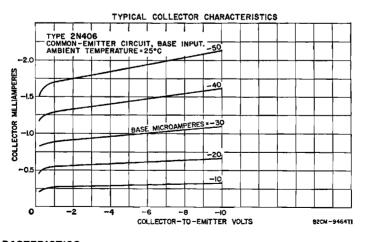
3

DC Forward Current-Transfer Ratio: With collector-to-emitter volts =-0.2 and collector ma =-24 With collector-to-emitter volts =-0.15 and collector ma =-12

TRANSISTOR

Germanium p-n-p type used in low-power class A audio-frequency driver-amplifier applications in battery-operated portable radio-receivers. JEDEC No. TO-40 package; outline 15, Outlines Section. This type is electrically identical with type 2N406.

Œ


TRANSISTOR

Germanium p-n-p type used in class A audio-frequency driver-amapplications in batteryplifier operated portable radio receivers. JEDEC No. TO-1 package; outline 4. Outlines Section.

MAXIMUM RATINGS

മം

Collector-to-Base Voltage (with emitter open)	20 max	volts
Collector-to-Emitter Voltage	—18 max	volts
Emitter-to-Base Voltage (with collector open)	-2.5 max	volts
Collector Current	—35 max	ma
Emitter Current	35 max	ma
Collector Dissipation:		
At ambient temperatures up to 25°C	150 max	mw
At ambient temperature of 55°C	50 max	mw
At ambient temperature of 71°C	20 max	mw
Ambient Temperature:		
Operating	-65 to 71	°C O°
Storage	65 to 85	°C

CHARACTERISTICS

Collector-Cutoff Current (with collector-to-base volts $\simeq -12$		
and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= -2.5$	—14 max	μa
Emitter-Cuton Current (with emitter-to-base volts $= -2.5$		
and collector current $= 0$	—14 max	μa

2N406

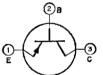
2N405

24 min 30 min

In Common-Base Circuit

Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = -6 and collector ma = -1) .	650	kc
In Common-Emitter Circuit		
DC Collector-to-Emitter Voltage DC Collector Current Power Gain (with load resistance of 8500 ohms and input	6 1	volts ma
resistance of 750 ohms)	43	db

TRANSISTOR


Germanium p-n-p type used in class A output stages and class B push-pull output stages of batteryoperated portable radio receivers and audio amplifiers. JEDEC No. TO-40 package; outline 15, Outlines Section.

This type is electrically identical with type 2N408.

TRANSISTOR

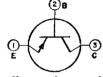
Germanium p-n-p type used in class A output stages and class B push-pull output stages of batteryoperated portable radio receivers and audio amplifiers. JEDEC No. TO-1 package; outline 4, Outlines Section.

For curves of collector characteristics and transfer characteristics, refer to type 2N109.

MAXIMUM RATINGS

2N408

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Collector Dissipation:	20 max 18 max 2.5 max 70 max 70 max	volts volts volts ma ma
At ambient temperatures up to 25°C At ambient temperature of 55°C At ambient temperature of 71°C Ambient-Temperature Range:	150 max 50 max 20 max	mw mw mw
Operating Storage	65 to 71 65 to 85	°° °°
CHARACTERISTICS		
Collector-Cutoff Current (with collector-to-base volts $= -12$ and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= -1.5$ and collector current $= 0$)	14 max 14 max	µа µа
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -1 and collector ma = -50)	75	
TYPICAL OPERATION IN CLASS B AF AMPLIFIER CIRCU	т	
Values are for two transistors except as not	ed.	
DC Collector Supply Voltage -4.5 Base-to-Emitter Voltage -0.15 Peak Collector Current (Approx.) per transistor -35	9 0.15 40	volts volt ma


Maximum-Signal DC Collector Current			
(Approx.) per transistor	⊢ 11. 5	-13	ma
Zero-Signal DC Collector Current			
(Approx.) per transistor	2	-2	ma
Signal Frequency	1	1	\mathbf{kc}
Signal-Source Impedance per base	375	375	ohms
Load Impedance per collector	100	200	ohms
Power Gain	30	33	db
Circuit Efficiency	60	69	per cent
Total Harmonic Distortion	10 max	10 ma:	x per cent
Maximum-Signal Power Output	75	160	mw

TRANSISTOR

Germanium p-n-p type used in 455-kilocycle intermediate-frequency amplifier applications in batteryoperated portable radio receivers. JEDEC No. TO-40 package; outline 15, Outlines Section. This type is

electrically identical with type 2N410.

TRANSISTOR

Germanium p-n-p type used in 455-kilocycle intermediate-frequency amplifier applications in batteryoperated portable radio receivers. JEDEC No. TO-1 package; outline 4, Outlines Section. For curves of

2N410

2N409

collector characteristics, refer to type 2N139.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current	—15 max	volts volt ma ma
Collector Dissipation:	••	
At ambient temperatures up to 25°C		mw
At ambient temperature of 55°C		mw
At ambient temperature of 71°C	10 max	mw
Ambient-Temperature Range:		
Operating	-65 to 71	°C
Storage	-65 to 85	٠Č
Storage	-03 10 83	0
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage		

(with collector $\mu a = -10$ and emitter current = 0)	-13 min	volts
Collector-Cutoff Current (with collector-to-base volts = -13 and emitter current = 0)	—10 max	μa
Emitter-Cutoff Current (with emitter-to-base volts $= -0.5$ and collector current $= 0$)	—12 max	μa

In Common-Base Circuit

Small-Signal Forward Current-Transfer Ratio at 1 kilocycle: With collector-to-base volts $\equiv -9$ and collector ma $= -0.5$ With collector-to-base volts $\equiv -9$ and collector ma $\equiv -1$ Small-Signal Forward-Current-Transfer-Ratio	0.978 0.98	
Cutoff Frequency at 1 kilocycle: With collector-to-base volts = -9 and collector ma = -0.5 With collector-to-base volts = -9 and collector ma = -1	6.8 6.7	Me Mc

In Common-Emitter Circuit

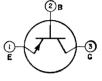
DC Forward Current-Transfer Ratio at 1 kilo	cycle:
With collector-to-emitter volts $= -9$ and coll	
With collector-to-emitter volts $=$ -9 and coll	ector ma = -1 . 48

TYPICAL OPERATION IN 455-KC IF AMPLIFIER CIRCUIT

DC Collector-to-Emitter Voltage	-9	9	volts
DC Emitter Current	0.5	1	ma
Input Resistance	1000	500	ohms
Output Resistance	70000	30000	ohms
Spot Noise Factor	4.5	4.5	db
Maximum Power Gain	38.8	37.8	db
Useful Power Gain	28.4	31.2	db

TRANSISTOR

Germanium p-n-p type used in converter and mixer-oscillator applications in battery-operated portable radio receivers. JEDEC No. TO-40 package; outline 15, Outlines Section. This type is electrically N412



identical with type 2N412.

2N411

TRANSISTOR

Germanium p-n-p type used in converter and mixer-oscillator applications in battery-operated portable radio receivers. JEDEC No. TO-1 package; outline 4, Outlines Section. For curves of collector charwre 2N139

75

(2)**8**

acteristics, refer to type 2N139.

MAXIMUM RATINGS

2N412

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Collector Dissipation:	13 max 0.5 max 15 max 15 max	volts volt ma ma
At ambient temperatures up to 25°C At ambient temperature of 55°C At ambient temperature of 71°C Ambient-Temperature Range:	80 max 35 max 10 max	mw mw mw
Operating Storage	—65 to 71 —65 to 85	°C °C
Collector-to-Base Breakdown Voltage (with collector $\mu a = -10$ and emitter current $= 0$) Collector-Cutoff Current (with collector-to-base volts $= -13$	-13 min	volts
and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -0.5	-10 max	μa
and collector current = 0)	—12 max	μa

In Common-Emitter Circuit

DC Forward	Current-Transfer	Ratio at 1	kilocycle	(with
collector-to	-emitter volts =	-9 and coll	ector ma =	≟ −0.6)

TYPICAL OPERATION IN CONVERTER CIRCUIT

DC Collector-to-Emitter Voltage	-9	volts
DC Collector Current	-0.6	ma
Input Resistance	700	ohms
Output Resistance	75000	ohms
RMS Base-to-Emitter Oscillator-Injection Voltage (Approx.)	100	mv
Signal Frequency	- 1	Mc
Useful Conversion Power Gain (Approx.)	22	dh
and a second a second a second (Approxit)	74	<u>u</u>

TRANSISTOR

Germanium p-n-p type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5; outline 6, Outlines Section.

Collector-to-Base Voltage (with emitter open)	—30 max	volts
Collector-to-Emitter Voltage: With base open With base-to-emitter volts = 1	—15 max —20 max	volts volts

Technical Data

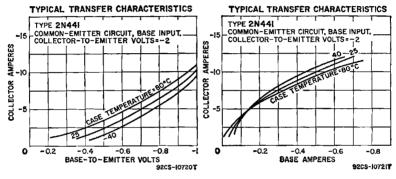
Emitter-to-Base Voltage (with collector open) Peak Collector Current DC Collector Current Transistor Dissipation: At ambient temperatures up to 25°C At ambient temperatures above 25°C Ambient-Temperature Range:	-20 max -400 max -200 max 150 max See curve	page 80
Operating and storage Lead Temperature (for 10 seconds maximum)	65 to 85 240 max	°C °C
CHARACTERISTICS Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0)	—5 m ax	μa
In Common-Base Circuit		
Collector-to-Base Capacitance (with collector-to-base volts = -6 and emitter ma = 1) Forward-Current-Transfer-Ratio Cutoff Frequency	11	pf
(with collector-to-base volts = -6 and emitter ma = 1) Small-Signal Open-Circuit Reverse Voltage-Transfer Ratio (with collector-base volts = -6, emitter ma = 1, and frequency = 1 kilocycle)	8 0.0005	Мс
In Common-Emitter Circuit	0.0000	
The Common-Emilier Circon		
Small-Signal Forward Current-Transfer Ratio (with collector- to-emitter volts = -6, emitter ma = 1, and frequency = 1 kilocycle)	80	

POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current and dissipation values. It is used in

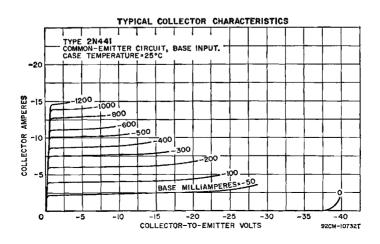
2N441

power-switching, voltage- and current-regulating, dc-to-dc converter, inverter, power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section.


MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter-to-base volts $= -1.5$) Emitter-to-Base Voltage (with collector open)	-40 max volts -20 max volts
Collector Current	
Emitter Current	15 max amperes
Base Current	-4 max amperes
Transistor Dissipation:	
At case temperatures up to 25°C	150 max watts
At case temperatures above 25°C	See curve page 80
Case-Temperature Range:	
Operating and storage	-65 to 100

CHARACTERISTICS


Collector-to-Emitter Breakdown Voltage:		
With base short-circuited to emitter and collector amperes		
= -0.3	—40 min	volts
With base open and collector amperes $= -0.3$	-40	volts
Base-to-Emitter Voltage (with collector-to-emitter volts $= -2$		
and collector amperes $= -5$)	-0.65	volt
Emitter-to-Base Voltage (with collector-to-base volts $= -40$		
and emitter current $= 0$	$-1 \max$	volt
Collector-to-Emitter Saturation Voltage (with collector amperes		
= -12 and base amperes $= -2$	-0.3	volt
Collector-to-Emitter Reach-Through Voltage	40 min	volts

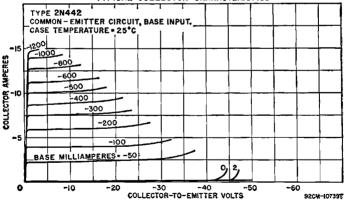
Emitter-Cutoff Current (with emitter-to-base volts = -20 and collector current = 0) Collector-Cutoff Current: With collector-to-base volts = -2 and emitter current = 0 With collector-to-base volts = -40 and emitter current = 0 Thermal Capacity (for pulse durations of 1 to 10 milliseconds) Thermal Time Constant	1 100 2 0.35 0.075 26.25	ma µa °C/watt watt-sec/°C msec
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio: With collector-to-emitter volts = -2 and collector amperes = -5 With collector-to-emitter volts = -2 and collector amperes = -12 Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-emitter volts = -6 and collector amperes = -5)	20 to 40 20 10	ke

TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT

DC Collector Supply Voltage DC Base Supply Voltage On DC Collector Current Turn-On DC Base Current Turn-Off DC Base Current Switching Time:	12 6 12 2 0	volts volts amperes amperes amperes
Rise time	15 15	μsec μsec

POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in


2N442

power-supply, voltage- and current-regulating, dc-to-dc converter, inverter, power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is identical with type 2N441 except for the following items:

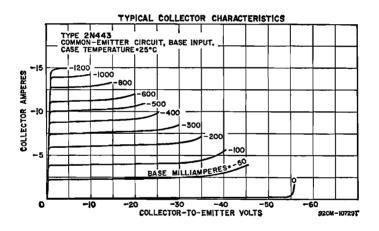
MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter-to-base volts = -1.5) Emitter-to-Base Voltage (with collector open)	50 max 30 max	volts volts
CHARACTERISTICS		
Collector-to-Emitter Breakdown Voltage:		
With base short-circuited to the emitter and collector amperes $= -0.3$ With base open and collector amperes $= -0.3$	45 min 45	volts volts
Emitter-to-Base Voltage (with collector-to-base volts = -50 and emitter current = 0) Collector-to-Emitter Reach-Through Voltage	1 max 50 min	volt volts
Emitter-Cutoff Current (with emitter-to-base volts $= -30$ and collector current $= 0$)	1	ma
Collector-Cutoff Current (with collector-to-base volts $= -40$ and emitter current $= 0$)	2	ma

TYPICAL COLLECTOR CHARACTERISTICS

POWER TRANSISTOR

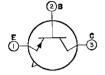
LI B


Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in

power-switching, voltage- and current-regulating, dc-to-dc converter, inverter,

power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is identical with type 2N441 except for the following items:

Collector-to-Base Voltage (with emitter-to-base volts = -1.5) Emitter-to-Base Voltage (with collector open)	60 max 40 max	volts volts
CHARACTERISTICS		
Collector-to-Emitter Breakdown Voltage: With base short-circuited to the emitter and collector amperes		
with base open and collector amperes $= -0.3$.	-50 min	volts
Emitter-to-Base Voltage (with collector-to-base volts = -60 and emitter current = 0)	55 1 max	volts volt
Collector-to-Emitter Reach-Through Voltage	-60 min	volts
Emitter-Cutoff Current (with emitter-to-base volts = -40 and collector current = 0)	-1	ma
Collector-Cutoff Current (with collector-to-base volts = -60 and emitter current = 0)	2	ma


- 2N456 See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.
- 2N457 See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.
- 2N497 See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.
- 2N544 See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.
- 2N561 See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

of Discontinued Data Section for a	end	of	2N579
of Discontinued Data Section for a	end	of	2N580

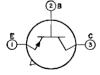
See List of Discontinued Transistors at end of

Technical Data Section for abbreviated data.

TRANSISTOR

Germanium p-n-p type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N404 except for

the following items:


MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with emitter-to-base volts = -1) Emitter-to-Base Voltage (with collector open)	— 18 max —15 max —10 max	volts volts volts
CHARACTERISTICSCoflector-to-Emitter Saturation Voltage(with collector ma = -20 and base ma = -1)Base-to-Emitter Saturation Voltage(with collector ma = -20 and base ma = -1)(with collector ma = -20 and base ma = -1)Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0)Stored Base Charge (with collector ma = -20 and base ma = -2)	0.3 0.5 max 10 max 2400 max	volt volt µa pcoul

In Common-Emitter Circuit

Forward	Current-Transfer	Ratio 🗉	(with	collector-to-emitter vol	its
= -0.3	and collector ma	= -20)	·		••

TRANSISTOR

Germanium p-n-p type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N404 except for

the following items:

MAXIMUM RATINGS

Collector-to-Emitter Voltage (with emitter-to-base volts $= -1$)	—14 max	volts
CHARACTERISTICS		
Collector-to-Emitter Saturation Voltage:		
With collector $ma = -24$ and base $ma = -0.6$	$-0.2 \max$	volt
With collector ma = -100 and base ma = -5	0.3 max	volt
Base-to-Emitter Saturation Voltage:		
With collector ma = -24 and base ma = -0.6	$-0.4 \max$	volt
With collector ma = -100 and base ma = -5	0.8 max	volt
Stored Base Charge		
(with collector ma = -24 and base ma = -1.2)	1200 max	pcoul
		-

In Common-Base Circuit

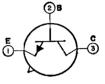
Forward-Current-Transfer-Ratio Cutoff Frequency		
(with collector-to-base volts = -6 and collector ma = -1)	14 min	Mc

20 min

2N582

2N578

In Common-Emitter Circuit


Forward Current-Transfer Ratio:With collector-to-emitter volts = -0.2 and collector ma = -2440 minWith collector-to-emitter volts = -0.3 and collector ma = -10020 min

- **2N583** See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.
- 2N584 See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

TRANSISTOR

Germanium n-p-n type used in switching circuits of compact, medium-speed electronic computers. JEDEC No. TO-5 package; outline 6, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open)	25 max	volts
Collector-to-Emitter Voltage:		
With base open	15 max	volts
With base-to-emitter volts $= -1$	24 max	volts
Emitter-to-Base Voltage (with collector open)	20 max	volts
Collector Current	200 max	ma
Transistor Dissipation:		
At ambient temperatures up to 25°C	120 max	mw
At ambient temperature of 55°C	35 max	mw
At ambient temperature of 71°C	10 max	mw
Ambient-Temperature Range:		
Operating	-65 to 71	°C S
Storage	-65 to 85	°C
		-

CHARACTERISTICS

2N586

Collector-to-Emitter Saturation Voltage (with collector ma = 20 and base ma = 1)	0.2 max	volt
Base-to-Emitter Saturation Voltage (with collector ma = 20 and base ma = 1)	0.45 max	volt
With collector-to-base volts = 0.25 and emitter current = 0 With collector-to-base volts = 12 and emitter current = 0 Stored Base Charge (with collector ma = 20 and base ma = 2)	6 max 8 max 3000 max	μa μa pcoul

In Common-Base Circuit

Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 6 and collector ma = 1) Collector-to-Base Capacitance (with collector-to-base volts = 6	3 min	Мс
and emitter open)	25 max	pf

In Common-Emitter Circuit

Forward Current-Transfer Ratio	(with collector-to-emitter volts
= 0.2 and collector ma $= 20$)	

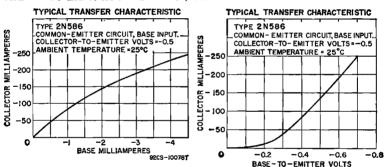
20 min

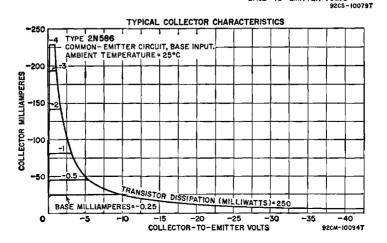
TRANSISTOR

Germanium p-n-p type used in low-speed switching applications in industrial and military equipment. It is used as a relay-actuating device and in voltage-regulator, multivibrator, dc-to-dc converter, and

power-supply circuits. It can also be used in audio-frequency service as an

Technical Data

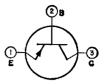

oscillator and in large-signal class A and class B circuits as a push-pull audio amplifier. Outline is similar to JEDEC No. TO-7 package; outline 25, Outlines Section.


MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Transistor Dissipation: At ambient temperatures up to 25° At ambient temperatures above 25°C	-45 max -12 max -250 max 250 max See curve p	volts volts ma ma mw page 80
Ambient-Temperature Range: Operating and storage	-65 to 85	۰c
CHARACTERISTICS		
Collector-to-Emitter Breakdown Voltage: With base short-circuited to emitter and collector $\mu a = -50$ With base open and collector ma = -1 Collector-to-Emitter Reach-Through Voltage	70 35	volts volts
(with emitter-to-base volts $= -1$ and emitter current $=0$)	75	volts
Base-to-Emitter Voltage (with collector ma = -250 and base ma = -7) Collector-to-Emitter Saturation Voltage	-0.7	volt
(with collector ma = -250 and base ma = -25)	-0.25	volt
Collector-Cutoff Current (with collector-to-base volts = -45 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -12	8	μa
and collector current = 0) $\dots \dots \dots$	-4	μa

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -0.5 and collector ma = -250)



55

TRANSISTOR

Germanium p-n-p type used in large-signal audio-frequency driveramplifier applications. It is used primarily in high-gain class A audiodriver stages in automobile radio receivers. JEDEC No. TO-1 package;

outline 4. Outlines Section.

MAXIMUM RATINGS

2N591

Collector-to-Emitter Voltage Collector Current:	—32 max	volts
Peak DC	-40 max -20 max	ma ma
Emitter Current: Peak	40 max	ma
DC	20 max Without heat sink	ma
At ambient temperatures up to 55°C	50 20	mw mw
Ambient-Temperature Range: Operating Storage	71 max 65 to 85	°C
CHARACTERISTICS	- 00 10 00	Ŭ
Collector-to-Emitter Breakdown Voltage (with collector ma =		
-0.3, base resistance = 4700 ohms, and emitter resistance = 500 ohms) Collector-Cutoff Current (with collector-to-base volts = -10	-32 min	v olt s
and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -1	-7 max	μα
and collector current $= 0$)	-20 max	μa
Junction-to-ambient Junction-to-heat sink	0.34 0.15	°C/mw °C/mw

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio at 1 kilocycle		
(with collector-to-emitter volts $= -12$ and collector ma $= -2$)	70	
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-emitter volts $= -12$ and collector ma $= -2$)	0.7	Мс

TYPICAL OPERATION IN CLASS A AF DRIVER-AMPLIFIER CIRCUIT

DC Collector Supply Voltage	-14.4	volts
DC Collector-to-Emitter Voltage	-12	volts
DC Base-to-Emitter Voltage	0.13	volt
DC Collector Current	2	ma
Signal Frequency	1	kc
Input Resistance	1000	ohms
Output Resistance	10000	ohms
Power Gain	41	db
Total Harmonic Distortion	3	per cent
Transistor Dissipation	25	mw
Power Output	5.	mw

2N640	See	List	of	Discontin	ued	Transistors	at	end	of
211040	Techn	nical	Data	Section	for	abbreviated	data.		

- See List of Discontinued Transistors at end of 2N641 Technical Data Section for abbreviated data.
- See List of Discontinued Transistors at end of 2N642 Technical Data Section for abbreviated data.
- See List of Discontinued Transistors at end of 2N643 Technical Data Section for abbreviated data.

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

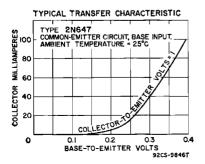
See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

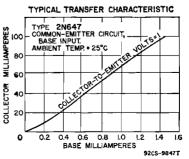
TRANSISTOR

Germanium n-p-n type used in large-signal audio-frequency amplifier applications. It is designed especially for use with its p-n-p counterpart, RCA-2N217, in class B complementary-symmetry power-

output stages of compact transformerless, battery-operated portable radio receivers, phonographs, and audio amplifiers operating at battery-supply voltages up to 9 volts. This type can also be used in conventional class B push-pull and class A audio-amplifier circuits. JEDEC No. TO-1 package; outline 4, Outlines Section.

MAXIMUM RATINGS

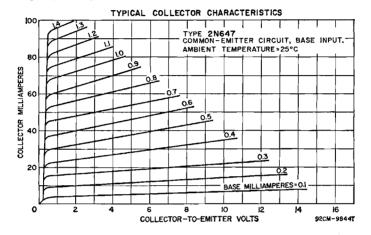

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage Emitter-to-Base Voltage (with collector open) Collector Current:	25 max 25 max 12 max	volts volts volts
Peak DC	100 max 50 max	ma ma
Emitter Current: Peak DC		ma ma
Collector Dissipation: At ambient temperatures up to 25°C At ambient temperature of 55°C At ambient temperature of 71°C	100 max 50 max 20 max	mw mw mw
Ambient Temperature: Operating Storage	—65 to 71 —65 to 85	°C °C


CHARACTERISTICS

Collector-Cutoff Current (with collector-to-base volts $= 25$		
and emitter current $= 0$)	1 4 max	μa
Emitter-Cutoff Current (with emitter-to-base volts $= 12$		
and collector current $= 0$)	14 max	μa

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 1 and collector ma = 50)


70

2N644

2N645

TYPICAL OPERATION IN CLASS B COMPLEMENTARY-SYMMETRY CIRCUIT

DC Collector Supply Voltage DC Collector-to-Emitter Voltage for driver stage	6 2.3	volts volts
Zero-Signal DC Base-to-Emitter Voltage for output stage	0.14	volt
Peak Collector Current for each transistor in output stage	70	ma
Zero-Signal DC Collector Current for each transistor		
(driver and output stage)	1.5	ma
Signal Frequency	1	ke
Input Resistance	1100	ohms
Load Resistance	45	ohms
Power Gain	54	db
Total Harmonic Distortion		x per cent
Power Output (with input $= 20$ millivolts)	100	mw

TRANSISTOR

2N649

Germanium n-p-n type used in large-signal audio-frequency amplifier applications. It is designed especially for use with its p-n-p counterpart, RCA-2N408, in class B complementary-symmetry power-

output stages of compact, transformerless, battery-operated portable radio receivers, phonographs, and audio amplifiers operating at battery-supply voltages up to 9 volts. This type can also be used in conventional class B push-pull and class A audio-amplifier circuits. JEDEC No. TO-1 package; outline 4, Outlines Section. This type is identical with type 2N647 except for the following items:

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open) Emitter-to-Base Voltage (with collector open)	20 max 18 max 2.5 max	volts volts volts
CHARACTERISTICS		
Collector-Cutoff Current (with collector-to-base volts = 12 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = 2.5 and	14 max	μa
collector current = 0)	1 4 max	μa
In Common-Emitter Circuit		

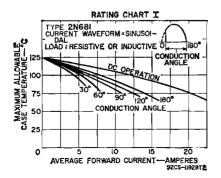
In Common-Emitter Circuit

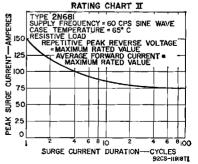
See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

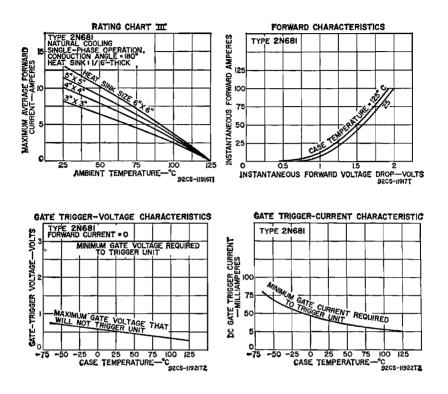
Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

2N681

of 25 volts and a forward-current capability of 16 amperes (average value) or 25 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copper-alloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section.


MAXIMUM RATINGS


For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load


Peak Reverse Voltage:		
Repetitive	$25 \mathrm{max}$	volts
Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	35 max	volts
Peak Forward Blocking Voltage (repetitive)	25 max	volts
Peak Gate Voltage:		
Forward	10 max	volts
Reverse	5 max	volts
Average Forward Current:		
At case temperature of 65°C and conduction angle of 180°	16 max an	peres
For other case temperatures and conduction angles	See Rating C	hart I
Peak Surge Current:		
For one cycle of applied voltage	150 maxan	peres
For more than one cycle of applied voltage	See Rating Cl	nart II
Peak Forward Gate Current	2 max an	peres
Peak Gate Power	$5 \max$	watts
Average Gate Power	$0.5 \max$	watt
Temperature Range:		
Operating (case)	-65 to 125	°C
Operating (ambient)	See Rating Ch	art III
Storage	-65 to 150	°C
_		
CHARACTERISTICS		

CHARACTERISTICS

Forward Breakover Voltage (at case temperature of 125°C)	25 min	volts
Forward Voltage Drop (at case temperature of 65°C)	0.86 max	volt
DC Gate-Trigger Voltage:		
At case temperature of -65°C	$3 \max$	volts
At case temperature of 125°C	0.25 min	volt
Average Blocking Current (at case temperature of 125°C):		
Forward	$6.5 \max$	ma
_ Reverse_	6.5 max	ma
DC Gate-Trigger Current (at case temperature of 125°C)	$25 \mathrm{max}$	ma
Holding Current (at case temperature of 125°C)	5	ma
Thermal Resistance (junction-to-case)	2 max °	C/watt

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 50 volts and a forward-current capability of 16 amperes (average value) or 25 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N681 except for the following items:

MAXIMUM RATINGS

2N682

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	50 max 75 max 50 max	volts volts volts
CHARACTERISTICS Forward Breakover Voltage (at case temperature of 125°C)	50 min	volts

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 100 volts and a forward-current capability of 16 amperes (average value) or 25 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N681 except for the following items:

MAXIMUM RATINGS

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	100 max 150 max 100 max	volts volts volts
CHARACTERISTICS Forward Breakover Voltage (at case temperature of 125°C)	100 min	volts

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

2N684

of 150 volts and a forward-current capability of 16 amperes (average value) or 25 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N681 except for the following items:

MAXIMUM RATINGS

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	150 max 225 max 150 max	volts volts volts
CHARACTERISTICS		
Forward Breakover Voltage (at case temperature of 125°C)	150 mi n	volts

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage TERMINALI ISHORT ISHORI

of 200 volts and a forward-current capability of 16 amperes (average value) or 25 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N681 except for the following items:

MAXIMUM RATINGS

2N685

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	200 max 300 max 200 max	volts volts volts
CHARACTERISTICS		
Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C);	200 min	volts
Forward Reverse	6 max 6 max	ma ma

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 250 volts and a forward-current capability of 16 amperes (average value) or 25 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N681 except for the following items:

MAXIMUM RATINGS

2N686

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	250 max 350 max 250 max	volts volts volts
CHARACTERISTICS		
Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C):	25 0 min	volts
Forward Reverse	5.5 max 5.5 max	ma ma

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 300 volts and a forward-current capability of 16 amperes (average value) or 25 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N681 except for the following items:

MAXIMUM RATINGS

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	300 max 400 max 300 max	volts volts volts
CHARACTERISTICS		
Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C);	300 min	volts
Forward	5 max 5 max	ma ma

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 400 volts and a forward-current capability of 16 amperes (average value) or 25 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N681 except for the following items:

MAXIMUM RATINGS

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	400 max 500 max 400 max	volts volts volts
CHARACTERISTICS		
Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C):	400 min	volts
Forward Reverse	4 max 4 max	ma ma

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 500 volts and a forward-current capability of 16 amperes (average value) or 25 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N681 except for the following items:

MAXIMUM RATINGS

2N689

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load		
Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	500 max 600 max 500 max	volts volts volts
CHARACTERISTICS		
Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C);	5 00 min	volts
Forward Reverse	3 max 3 max	ma ma
TICACI3C '''''''''''''''''''''''''''''''''''	5 max	1110

2N696

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

TRANSISTOR

Silicon n-p-n type used in highspeed switching applications in dataprocessing equipment. This type is especially effective under conditions of severe thermal and mechanical stress and other environmental haz-

ards. JEDEC No. TO-5 package; outline 6, Outlines Section.

. . .

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with external base-to-emitter	6 0 max	volts
resistance $= 10$ ohms or less)	40 max	volts
Emitter-to-Base Voltage (with collector open)	5 max	volts
Collector Current	5 00 max	ma
Transistor Dissipation:	_	
At case temperatures up to 25°C	2 max	
At ambient temperatures up to 25°C	0.6 max	
At case or ambient temperatures above 25°C	See curve	page 80
Temperature Range:	GE to 17E	•0
Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	-65 W 175	ŝ
Lead Temperature (101 10 seconds maximum)	255 max	C
CHARACTERISTICS		
Base-to-Emitter Saturation Voltage (with pulsed collector ma		
$= 150^*$ and base ma $= 15$)	1.3 max	volts
Collector-to-Emitter Saturation Voltage (with pulsed collector		
$ma = 150^*$ and base $ma = 15$)	1.5 max	volts
Collector-Cutoff Current (with collector-to-base volts = 30 and		-
emitter current $= 0$)	1 max	μa

In Common-Base Circuit

Collector-to-Base Capacitance (with collector-to-base volts = 10 and emitter current = 0)	35 max	pf
In Common-Emitter Circuit		
DC-Pulse Forward Current-Transfer Ratio (with collector-to- emitter volts = 10 and collector ma = 150**) Small-Signal Forward Current-Transfer Ratio (with collector- to-emitter volts = 10, collector ma = 50, and frequency = 20 Mc) Gain-Bandwidth Product	40 to 12 0 2.5 min 100	
• Pulse duration = 300 μ sec or less; duty cycle = 0.02 or less.		

** Pulse duration = 12 milliseconds or less; duty cycle = 0.02 or less.

TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and medium-power applications in industrial and military equipment. It can be used in rf service as an amplifier, mixer, oscillator, and con-

2N699

verter; in af service for small-signal and power applications; in switching service for high-speed switching circuits. It features low saturation voltage, high sustaining voltage, and low output capacitance. JEDEC No. TO-5 pack-age; outline 6, Outlines Section. For curves of collector characteristics, refer to type 2N1613.

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with external base-to-emitter resistance of 10 ohms or less) Emitter-to-Base Voltage (with collector open) Transistor Dissibation:	12 0 max	volts	
	80 max 5 max	volts volts	
At case temperatures up to 25°C At ambient temperatures up to 25°C At case or ambient temperatures above 25°C Temperature Range:	2 max 0.6 max See curve	watt	
Operating (junction) Storage		°C °C	
CHARACTERISTICS			
Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0) Collector-to-Emitter Sustaining Voltage (with external base-to- emitter resistance = 10 ohms or less and collector ma = 100) Base-to-Emitter Saturation Voltage (with pulsed collector ma = 150 ^a and emitter ma = 15) Collector-to-Emitter Saturation Voltage (with pulsed collector ma = 150 ^a and emitter ma = 15) Collector-Cutoff Current (with collector-to-base volts = 60 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = 2 and collector current = 0)	120 min	volts	
	8 0 min	volts	
	1.3 max	volts	
	$5 \max$	volts	
	2 max	μa	
	100 max	μa	
Thermal Resistance: Junction-to-case Junction-to-ambient	75 max 250 max	°C/watt °C/watt	
In Common-Base Circuit			
Input Resistance at 1 kilocycle:			

ns
ns
pf
10
10
r

In Common-Emitter Circuit

DC-Pulse Forward Current-Transfer Ratio (with collector-to- emitter volts = 10 and collector ma = 150*). Small-Signal Forward Current-Transfer Ratio:	40 to 120
With collector-to-emitter volts = 5, collector ma = 1, and frequency = 1 kilocycle With collector-to-emitter volts = 10, collector ma = 5, and frequency = 1 kilocycle	35 to 100 45 min
and frequency = 1 kilocycle With collector-to-emitter volts = 10 , collector ma = 50 , and frequency = 20 Mc	2.5 min

* Pulse duration = 300 μ sec or less; duty cycle = 0.02 or less.

TRANSISTOR

2N705

Germanium p-n-p type used in high-speed logic-circuit applications in data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section.

3 25 min

(2) **B**

2N7064

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage	-15 max	volts
(with external base-to-emitter resistance = 10 ohms or less)	-15 max	volts
Emitter-to-Base Voltage (with collector open)	-3.5 max	volts
Collector Current	50 max	ma
Emitter Current	50 max	ma
Transistor Dissipation:		
At ambient temperatures up to 25°C	150 max	
At case temperatures up to 25°C	300 max	
At ambient or case temperatures above 25°C	See curve	page 80
Temperature Range:		
Operating (junction) and storage	-65 to 100	D. D.
Lead Temperature (for 10 seconds maximum)	230 max	°C
CHARACTERISTICS		
Base-to-Emitter Voltage (with collector ma $= -10$		

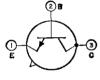
Base-to-Emitter Voltage (with collector ma = -10
and base ma = -0.4)-0.44 max voltCollector-to-Emitter Saturation Voltage
(with collector ma = -10 and base ma = -0.4)-0.3 max voltCollector-to-Cutoff Current (with collector-to-base volts = -5
and emitter current = 0)--3 max μa Collector Transition Capacitance (with collector-to-base volts
= -10, emitter current = 0, and frequency = 1 Mc)5Emitter Transition Capacitance (with emitter-to-base volts
= -2, collector current = 0, and frequency = 1 Mc)3.5

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio (with collector- to-emitter volts $= -5$, collector ma $= -10$, and frequency	
= 100 Mc) DC Forward Current-Transfer Ratio (with collector-to-emitter volts $=$ -0.3 and collector ma $=$ -10)	

TRANSISTOR

Silicon n-p-n type used in highspeed switching applications in dataprocessing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section.


MAXIMUM RATINGS

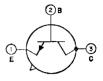
Collector-to-Base Voltage (with emitter open)	25 max	25 max	volts
Collector-to-Emitter Voltage (with external	20 max	Ly mux	10103
base-to-emitter resistance = 10 ohms)	20 max	20 max	volts
pase-w-emitter resistance in ordinas	3 max	5 max	volts
Emitter-to-Base Voltage (with collector open)	o max		
Collector Current		50 max	ma
Transistor Dissipation:			
At ambient temperatures up to 25°C	0.3 max	0.3 max	watt
At ambient temperatures above 25°C	See curve	page 80	
At ampletit temperatures up to 25°C			watt
At case temperatures up to 25 C			
At case temperature of 100°C	0.5 max	$1 \mathrm{max}$	watt
Transistor Dissipation: At ambient temperatures up to 25°C At ambient temperatures above 25°C At case temperatures up to 25°C At case temperature of 100°C	0.3 max See curve 1 max 0.5 max	0.3 max page 80 1 max 1 max	watt watt watt

Technical Data

Temperature Range: Operating (junction) and storage	6	5 to 175	°C
CHARACTERISTICS			
Base-to-Emitter Saturation Voltage (with collector ma = 10 and base ma = 1) Collector-to-Emitter Saturation Voltage (with collector ma = 10 and base ma = 1) Collector-Cutoff Current (with collector-to-base	0.9 max	0.9 max	volt
(with collector ma = 10 and base ma = 1)	0.6 max	0.6 max	volt
volts = 15 and emitter current = 0) \dots	0.5 max	0.5 max	μa
In Common-Base Circui	if		
Collector-to-Base Capacitance (with collector- to-base volts = 10 and emitter current = 0)	6 max	_	pf
In Common-Emitter Circuit			
	2N706	2N706A	
DC-Pulse Forward Current-Transfer Ratio (with dc collector-to-emitter volts = 1, collector ma = 10, pulse duration = 12 milliseconds or less, and duty factor = 0.02 or less) Small-Signal Forward Current-Transfer Ratio;	20 min	20 min	
With collector-to-emitter volts = 15, collector ma = 10, and frequency = 100 Mc	2 min		
With collector-to-emitter volts $=$ 10, collector ma $=$ 10, and frequency $=$ 100 Mc	-	2 mi n	

TRANSISTOR

Silicon n-p-n type used in veryhigh-speed switching and high-frequency applications in equipment which requires high reliability and high packaging densities. JEDEC No. TO-18 package; outline 12, Outlines Section.


2N708

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	40 max	volts	
With external base-to-emitter resistance $= 10$ ohms or less	20 max	volts	
With base open Emitter-to-Base Voltage (with collector open)	15 max 5 max	volts volts	
Transistor Dissipation: At case temperatures up to 25°C At ambient temperatures up to 25°C At case or ambient temperatures above 25°C Temperature Range:	1.2 max 0.36 max See curve	watt	
Operating (junction)	-65 to 200	°C	
Storage Lead Temperature (for 10 seconds maximum)	-65 to 300 300 max	သို့	
CHARACTERISTICS			
Base-to-Emitter Saturation Voltage (with collector ma = 10 and base ma = 1) Collector-to-Emitter Saturation Voltage	0.8 max	volt	
(with collector ma = 10 and base ma = 1) Collector-Cutoff Current (with collector-to-base volts = 20	0.4 max	volt	
and emitter ma $= 0$)	0 .025 m ax	μa	
In Common-Base Circuit			
Collector-to-Base Capacitance (with collector-to-base volts = 10 and emitter current = 0)	6 max	pf	
In Common-Emitter Circuit			
Small-Signal Forward Current-Transfer Ratio (with collector- to-emitter volts = 10, collector ma = 10, and frequency	9 min		

= 100 Mc) DC Forward Current-Transfer Ratio:	3 min
With collector-to-emitter volts = 1 and collector ma = $10 \dots$ With collector-to-emitter volts = 1 and collector ma = $0.5 \dots$	30 to 120 15 min
with conector-to-emitter voits $= 1$ and conector ma $= 0.5$	10 11111

TRANSISTOR

Silicon n-p-n type used in ultrahigh-speed logic-circuit applications in data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section. This type is electrically identical with type

2N2475 except for the following items:

CHARACTERISTICS

2N709

174

Base-to-Emitter Saturation Voltage (with collector ma $= 3$ and base ma $= 0.15$)	0 7 to 0 85	volt
Collector-to-Emitter Saturation Voltage	0.1 00 0.00	
(with collector ma = 3 and base ma = 0.15)	0.3 max	volt

In Common-Base Circuit

Input Capacitance (with emitter-to-bas	e volts = 0.5,		
\hat{c} collector current \doteq 0, and frequency =	= 140 kilocycles)	2 max	pf

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio (with collector-to- emitter volts = 4, collector ma = 5, and frequency = 100 Mc)	6 min
DC Forward Current-Transfer Ratio: With collector-to-emitter volts = 1 and collector ma = 30 With collector-to-emitter volts = 0.5 and collector ma = 10	15 min 20 to 120

TRANSISTOR

Germanium p-n-p type used in high-speed logic-circuit applications in data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section. This type is identical with type 2N705 except for

the following items:

2N710

MAXIMUM RATINGS

Emitter-to-Base Voltage (with collector open)	2 max	volts
CHARACTERISTICS		
Base-to-Emitter Voltage (with collector ma = -10 and base ma = -0.4) Collector-to-Emitter Saturation Voltage (with collector ma = -10 and base ma = -0.4)	—0.5 max —0.5 max	volt volt
In Common-Emitter Circuit		

Forward Current-Transfer Ratio (with collector-to-emitter volts = -0.5 and collector ma = -10)

TRANSISTOR

Germanium p-n-p type used in high-speed logic-circuit applications in data-processing equipment. JEDEC No. TO-18 package; outline (12, Outlines Section. This type is identical with type 2N705 except

for the following items:

MAXIMUM RATINGS

2N711

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage	—12 max	volts
(with external base-to-emitter resistance = 10 ohms or less)	—1 2 max	volts

25 min

(2)B

Technical Data

Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current	1 max 100 max 100 max	volt ma ma
CHARACTERISTICS Base-to-Emitter Voltage (with collector ma = -10 and base ma $c_{11} = -0.5$)	0.5 max	volt
Collector-to-Emitter Saturation Voltage (with collector ma = -10 and base ma = -0.5)	-0.5 max	volt
In Common-Emitter Circuit		
Small-Signal Forward Current-Transfer Ratio (with collector-to- emitter volts $= -5$, collector ma $= -10$, and frequency	_	

= 100 Mc	2
DC Forward Current-Transfer Ratio (with collector-to-emitter	
volts = -0.5 and collector ma = -10)	20 min

TRANSISTOR

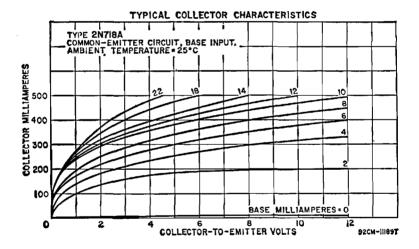
Silicon n-p-n type used in a wide variety of small-signal and high-speed switching applications. JEDEC No. TO-18 package; outline 12, Outlines Section.

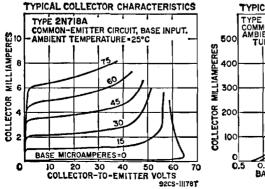
MAXIMUM RATINGS

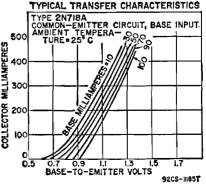
Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open) Collector-to-Emitter Voltage (with external base-to-emitter	32 max	volts volts
resistance = 10 ohms or less) Emitter-to-Base Voltage (with collector open) Transistor Dissipation:	50 max 7 max	volts volts
At case temperatures up to 25°C At ambient temperatures up to 25°C At case or ambient temperatures above 25°C Temperature Range:	1.8 max 0.5 max See curve	watt
Derating (junction) Storage Lead Temperature (for 10 seconds maximum)	65 to 200 65 to 300 255 max	•C •C •C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0) Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1	75 min	volts
and collector current = 0) Collector-to-Emitter Sustaining Voltage (with external base-to-	$7 \min$	volts
emitter resistance = 10 ohms and pulsed collector ma = 100°) Base-to-Emitter Saturation Voltage	50 min	volts
(with pulsed collector ma = 150° and pulsed base ma = 15^{*}). Collector-to-Emitter Saturation Voltage	1.3 max	volts
(with pulsed collector ma = 150^* and pulsed base ma = 15^*).	1.5 max	volts
Collector-Cutoff Current (with collector-to-base volts = 60 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = 5 and	0.01 max	μa
collector current $= 0$	0.01 max	μa
Thermal Resistance: Junction-to-case Junction-to-ambient	97 max 350 max	°C/watt °C/watt

In Common-Base Circuit

Emitter-to-Base Capacitance (with emitter-to-base volts $= 0.5$		
and collector current $= 0$)	80 max	pf
Collector-to-Base Capacitance (with collector-to-base volts = 10 and emitter current = 0)	25 max	pf


In Common-Emitter Circuit


DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= 10$ and pulsed collector	
$ma = 150^*$	40 to 120
With collector-to-emitter volts $= 10$ and pulsed collector	
ma = 500*	20 mi n
With collector-to-emitter volts $= 10$ and pulsed collector	
$ma = 10^*$	35 min
With collector-to-emitter volts $= 10$ and collector ma	
= 0.1	20 min
With ambient temperature $= -55$ °C, collector-to-emitter	
volts = 10, and pulsed collector $ma = 10^*$	20 min


2N718A

 Small-Signal Forward Current-Transfer Ratio: With collector-to-emitter volts = 5, collector ma = 1, and frequency = 1 kilocycle With collector-to-emitter volts = 10, collector ma = 5, and frequency = 1 kilocycle With collector-to-emitter volts = 10, collector ma = 50, and frequency = 20 Mc Small-Signal Open-Circuit Reverse Voltage-Transfer Ratio at 1 kilocycle 	30 to 100 35 to 150 3 min	
With collector-to-emitter volts = 5 and collector ma = 1 With collector-to-emitter volts = 10 and collector ma = 5 Input Resistance at 1 kilocycle:	3 x 10 ⁻⁴ max 3 x 10 ⁻⁴ max	
With collector-to-emitter volts = 5 and collector ma = 1 With collector-to-emitter volts = 10 and collector ma = 5 Output Conductance at 1 kilocvele:	24 to 34 4 to 8	ohms ohms
With collector-to-emitter volts = 5 and collector ma = 1 With collector-to-emitter volts = 10 and collector ma = 5 Noise Figure (with collector-to-emitter volts = 10, collector ma	0.1 to 0.5 0.1 to 1	µmho µmho
= 0.3, generator resistance $=$ 510 ohms, circuit bandwidth = 1 cps, and signal frequency $=$ 1 kilocycle)	12 max	db
time)	3 0 max	nsec

Pulse duration = 300 µsec; duty factor = 0.02 or less.
 Refer to type 2N2102 for Total-Switching-Time Measurement Circuit.

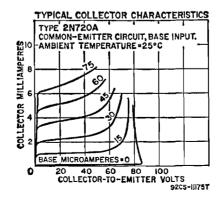
TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and high-speed switching applications. JEDEC No. TO-18 package; outline 12, Outlines Section. For curves of typical collector and transfer charac-

2N720A

teristics, refer to type 2N718A.

MAXIMUM RATINGS


Collector-to-Base Voltage (with emitter open)	120 max	volts
Collector-to-Emitter Voltage (with base open) Collector-to-Emitter Voltage (with external base-to-emitter	80 max	volts
resistance $= 10$ ohms or less)	1 00 max	volts
Emitter-to-Base Voltage (with collector open)	7 max	volts
Transistor Dissipation:		
At case temperatures up to 25°C	1.8 max	watts
At ambient temperatures up to 25°C	$0.5 \max$	watt
At case or ambient temperatures above 25°C	See curve p	age 80
Temperature Range:		-
Operating (junction)	65 to 200	°C
Storage	-65 to 300	°Ċ
Lead Temperature (for 10 seconds maximum)	255 max	°C

CHARACTERISTICS

Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0) Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1	120 min	volts
and collector current $= 0$	7 min	volts
Collector-to-Emitter Sustaining Voltage (with pulsed collector ma = 100* and base current = 0) Collector-to-Emitter Sustaining Voltage (with external base-to-	80 min	volts
$_$ emitter resistance = 10 ohms and pulsed collector ma = 100*)	100 min	volts
Base-to-Emitter Saturation Voltage (with pulsed collector ma = 150^* and pulsed base ma = 15^*)	1.3 max	volts
Collector-to-Emitter Saturation Voltage (with pulsed collector ma = 150* and pulsed base ma = 15*) Collector-Cutoff Current (with collector-to-base volts = 90 and	5 max	volts
emitter current $= 0$	0 .01 max	μa.
Emitter-Cutoff Current (with emitter-to-base volts = 5 and collector current = 0)	0.01 max	μa
Thermal Resistance: Junction-to-case Junction-to-ambient	97 max 350 max	

In Common-Base Circuit

Emitter-to-Base Capacitance (with emitter-to-base volts $= 0.5$		
and collector current $= 0$	85 max	pf
Collector-to-Base Capacitance (with collector-to-base volts $= 10$		
and emitter current $= 0$	$15 \max$	pf

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio: With collector-to-emitter volts = 10 and pulsed collector ma = 150* With collector-to-emitter volts = 10 and pulsed collector	40 to 120	
$ma = 10^{*}$	35 min	
With collector-to-emitter volts = 10 and collector ma $= 0.1$	20 min	
= 0.1 With ambient temperature $= -55$ °C, collector-to-emitter volts $= 10$, and pulsed collector ma $= 10^{\circ}$	20 min	
Small-Signal Forward Current-Transfer Ratio: With collector-to-emitter volts $= 5$, collector ma $= 1$, and		
frequency = 1 kilocycle	30 to 100	
With collector-to-emitter volts = 10, collector $ma = 5$, and frequency = 1 kilocycle	45 min	
With collector-to-emitter volts = 10, collector ma = 50, and frequency = 20 Mc	2.5 min	
Small-Signal Open-Circuit Reverse Voltage-Transfer Ratio at 1 kilocycle:		
With collector-to-emitter volts = 5 and collector ma = 1 With collector-to-emitter volts = 10 and collector ma = 5 Input Resistance at 1 kilocycle:		
With collector-to-emitter volts $= 5$ and collector ma $= 1$ With collector-to-emitter volts $= 10$ and collector ma $= 5$ Output Conductance at 1 kilocycle:	20 to 30 4 to 8	ohms ohms
With collector-to-emitter volts = 5 and collector ma = 1 With collector-to-emitter volts = 10 and collector ma = 5	0.5 max 0.5 max	µmho µmh o

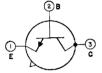
* Pulse duration = 300 µsec; duty factor = 0.02 or less. ** Refer to type 2N2102 for Total-Switching-Time Measurement Circuit.

- See List of Discontinued Transistors at end of 2N794 Technical Data Section for abbreviated data.
- See List of Discontinued Transistors at end of 2N795 Technical Data Section for abbreviated data.
- See List of Discontinued Transistors at end of 2N796 Technical Data Section for abbreviated data.

TRANSISTOR

Germanium p-n-p type used in high-speed switching applications in which high reliability and high packaging densities are required. JEDEC No. TO-18; outline 12, Outlines Section.

MAXIMUM RATINGS


Collector-to-Base Voltage (with emitter open)	—15 max	volts
Collector-to-Emitter Voltage (with external base-to-emitter		
resistance = 10 ohms or less) \dots	—15 max	
Emitter-to-Base Voltage (with collector open)	-2.5 max	volts
Collector Current	—200 max	ma
Transistor Dissipation:		
At case temperatures up to 25°C	300 max	mw
At ambient temperatures up to 25°C	150 max	mw
At case or ambient temperatures above 25°C	See curve	
Temperature Range:		1
	65 to 100	°C
Operating (junction) and storage Lead Temperature (for 10 seconds maximum)	230 max	•C
· · · · · · · · · · · · · · · · · · ·		
CHARACTERISTICS		
CHARACTERISTICS		
Base-to-Emitter Saturation Voltage		
(with collector ma = -10 and base ma = -1)	0.34 to 0.44	volt

(with conector ma $\simeq -10$ and base ma $= -1$)	94 10 0.44	VOIL
Collector-to-Emitter Saturation Voltage: With collector ma = -10 and base ma = -1	_02max	volt
With collector ma = -50 and base ma = -5	-0.25 max	volt
Collector-Cutoff Current (with collector-to-base volts $= -6$		
and emitter current $= 0$	—3 max	μa

In Common-Base Circuit

Collector-to-Base Capacitance (with collector-to-base volts = -6, emitter current = 0, and frequency = 100 Mc)	6 max	pf
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -0.3 and collector ma = -10) Small-Signal Forward Current-Transfer Ratio (with collector-to- emitter volts = -1 , collector ma = -10 , and frequency	25 min	
= 100 Mc	3 min	
Gain-Bandwidth Product (with collector-to-emitter volts = -1 and collector ma = -10)	300 min	Mc

TRANSISTOR

Silicon n-p-n type used in veryhigh-speed switching applications in equipment requiring high reliability and high packaging densities. JEDEC No. TO-18 package; outline 12, Outlines Section.

2N834

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base short-circuited	40 max	volts
to emitter)	30 max	volts
to emitter) Emitter-to-Base Voltage (with collector open)	5 max	volts
Collector Current	2 00 max	ma
Transistor Dissipation: At case temperatures up to 25°C	1 max	watt
At ambient temperatures up to 25°C	0.3 max	watt
At ambient temperatures up to 25°C	See curve	page 80
Temperature Range:		
Operating (junction) and storage	—65 to 175	o. D.
Operating (junction) and storage Lead Temperature (for 10 seconds maximum)	240 max	°C
CHARACTERISTICS		
Base-to-Emitter Saturation Voltage		
(with collector ma = 10 and base ma = 1) \dots	0.9 max	volt
Collector-to-Emitter Saturation Voltage:	0.5 max	VUIL
With collector ma = 10 and base ma = 1	0.25 max	volt
With collector ma = 50 and base ma = 5	0.4 max	
Collector-Cutoff Current (with collector-to-base volts = 20	0.4 max	VOIL
and emitter current $= 0$)	0.5 max	μa
	0.0 1114.4	μα
In Common-Base Circuit		
Collector-to-Base Capacitance (with collector-to-base volts = 10, emitter current = 0, and frequency = 100 Mc) \dots	4 max	pf
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter		
volta – 1 and collector ma – 10)	25 min	
volts = 1 and collector ma = 10) Small-Signal Forward Current-Transfer Ratio (with collector-to-	25 min	
emitter volts = 15, collector ma = 10, and frequency = 100 Mc)	3.5 min	
Gain-Bandwidth Product (with collector-to-emitter volts = 15,	9.9 mm	
collector ma = 10, and frequency = 100 Mc)	35 0 min	Mc
(2)B IKANSISIUK		

Silicon n-p-n type used in highspeed logic-switching and veryhigh-frequency amplifier applica-tions. JEDEC No. TO-18 package; outline 12, Outlines Section.

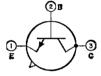
2N914

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open)	40 max	volts
With external base-to-emitter resistance = 10 ohms or less	20 max	volts
With base open	15 max	volts

Emitter-to-Base Voltage (with collector open) Transistor Dissipation:	5 max	volts
At case temperatures up to 25°C At ambient temperatures up to 25°C At case or ambient temperatures above 25°C	1.2 max 0.36 max See curve	watt
Temperature Range: Operating (junction) Storage Lead Temperature (for 10 seconds maximum)	-65 to 300	ວໍວໍວໍ
CHARACTERISTICS		
Base-to-Emitter Saturation Voltage (with collector ma = 10 and base ma = 1) Collector-to-Emitter Saturation Voltage	0.7 to 0.8	volt
(with collector ma = 200 and base ma = 20) Collector-Cutoff Current (with collector-to-base volts = 20	0.7 max	volt
and emitter current $= 0$)	0.025 max	μa

In Common-Base Circuit


Emitter-to-Base Capacitance (with emitter-to-base volts $= -0.5$.		
collector current $= 0$, and frequency $= 140$ kilocycles)	9 max	pf
Collector-to-Base Capacitance (with collector-to-base volts $= 10$,		
emitter ma = 0, and frequency = 140 kilocycles) \dots	$6 \max$	pf

In Common-Emitter Circuit

DC-Pulse Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= 1$ and collector ma $= 10$	30 to 120
With collector-to-emitter volts $= 5$ and collector ma $= 500 \dots$	10 mi n
Small-Signal Forward Current-Transfer Ratio	
(with collector-to-emitter volts $= 10$ and collector ma $= 20$)	3 mi n
······································	

TRANSISTOR

Germanium n-p-n types used in high-speed logic-circuit applications in data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section.

2N955A

2N955

MAXIMUM RATINGS

2N955 2N955A

	£11333	6M 300M	
Collector-to-Base Voltage (with emitter open)	12 max	12 max	volts
Collector-to-Emitter Voltage (with base open)	8 max	8 max	volts
Emitter-to-Base Voltage (with collector open)	2 max	2 max	volts
Collector Current	100 max	$150 \max$	ma
Transistor Dissipation:			
At ambient temperatures up to 25°C	150 max	150 max	mw
			111 VV
At ambient temperatures above 25°C	see cu	rve page 80	
Ambient-Temperature Range:			
Operating and storage	65 t	o 100	
Lead Temperature (for 10 seconds maximum) .	230 max	230 max	°C
Dead Temperature (101 10 Decondo mateman),		and man	•
ONADAOTEDIOTIOO			
CHARACTERISTICS			
Base-to-Emitter Saturation Voltage			
Dase-to-Limiter Saturation Voltage	004-00	004-00	14
(with collector ma $= 30$ and base ma $= 1$)	0.3 to 0.6	0.3 to 0.6	volt
Collector-to-Emitter Saturation Voltage:			
With collector ma $= 30$ and base ma $= 1$	0.5 max	0.3 max	volt
With collector $ma = 100$ and base $ma = 5$		0.6 max	volt
Collector-Cutoff Current (with collector-to-base		0.0 max	4010
	H	P	_
volts = 5 and emitter current = 0) \dots	5 max	5 max	μa
Total Stored Charge (with collector $ma = 30$			
and base ma $= 1.5$)	125 max	65 max	pcoul
	•-		

In Common-Base Circuit

Input Capacitance (with emitter-to-base volts			
= 0.5 and collector current $= 0$)	10 max	10 max	pf
Output Capacitance (with collector-to-base volts			
= 5 and emitter current $=$ 0)	6 max	$6 \max$	pf

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio		
(with collector-to-emitter volts $=$ 5, collector		
ma = 20, and frequency $= 100$ Mc)	10	10

Technical Data

DC Forward Current-Transfer Ratio: With collector-to-emitter volts = 0.5		
and collector ma = 30	30 mi n	
collector ma = 30	—	30 min

TRANSISTOR

Germanium p-n-p type used in high-speed saturation switching applications in industrial data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage Collector-to-Emitter Voltage (with external base-to-emitter	15 max	volts
resistance $= 0$	—15 max	volts
Collector-to-Emitter Voltage	—7 max	volts
Emitter-to-base voltage	-2.5 max	volts
Collector Current	—100 max	ma
Transistor Dissipation:		
At case temperatures up to 25°C	300 max	$\mathbf{m}\mathbf{w}$
At ambient temperatures up to 25°C	150 max	
_ At case or ambient temperatures above 25°C	See curve	page 80
Temperature Range:		<u>.</u>
Operating	–55 to 100	°C
Storage	-65 to 100	°Č
Lead Temperature (for 10 seconds maximum)	230 max	°C

CHARACTERISTICS

Collector-to-Emitter Saturation Voltage:		
With collector ma = -10 and base ma = -1	$-0.2 \max$	volt
With collector ma $=$ -50 and base ma $=$ -5	0.4 max	volt
With collector ma = -100 and base ma = -10	-0.7 max	volt
Collector-Cutoff Current (with collector-to-base volts $= -6$		
and emitter current $= 0$)	3 max	μa
		•

In Common-Base Circuit

Emitter-to-Base Capacitance (with emitter-to-base volts = -1, collector current = 0, and frequency = 100 kc)	3.5 max	pf
Collector-to-Base Capacitance (with collector-to-base volts = -10, emitter current = 0, and frequency = 1 Mc)	4 max	pf
Gain-Bandwidth Product (with collector-to-base volts $= -1$, emitter current $= 20$, and frequency $= 100$ Mc)	300 min	Mc

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts = -0.3 and collector ma = -10	20 min
With collector-to-emitter volts $= -1$ and collector ma $= -50$	20 min
With collector-to-emitter volts $= -1$ and collector ma $= -100$	20 min

TRANSISTOR

Germanium p-n-p type used in high-speed saturated switching applications in industrial data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section.

2N961

MAXIMUM RATINGS

Collector-to-Base Voltage	-12 max	volts
Collector-to-Emitter Voltage (with external base-to-emitter		
resistance $= 0$	12 max	volts
Collector-to-Emitter Voltage	7 max	volts
Emitter-to-Base Voltage	2 max	volts
Collector Current	-100 max	ma
Transistor Dissipation:		
At case temperatures up to 25°C	300 max	mw
At ambient temperatures up to 25°C	150 max	mw
At case or ambient temperatures above 25°C	See curve	

Temperature Range: -55 to 100 Operating -55 to 100 Storage -65 to 100 Lead Temperature (for 10 seconds maximum) 230 max	ວໍວູ ດີ
CHARACTERISTICS	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	volt volt volt µa
In Common-Base Circuit	

Emitter-to-Base Capacitance (with emitter-to-base volts $=$ -1 , collector current $=$ 0, and frequency $=$ 100 kc)	3 .5 max	þf
Collector-to-Base Capacitance (with collector-to-base volts =	0.J IIIAX	pr
-10, emitter current = 0, and frequency = 1 Mc)	4 max	pf
Gain-Bandwidth Product (with collector-to-base volts = -1 ,		34-
emitter current = 20, and frequency = 100 Mc)	30 0 min	Mc

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts = -0.3 and collector ma = -10	20 min
With collector-to-emitter volts = -1 and collector ma = -50	20 min
With collector-to-emitter volts = -1 and collector ma = -100	20 min

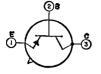
- ----

TRANSISTOR

2N962

Germanium p-n-p type used in high-speed saturated switching applications in industrial data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section.

MAXIMUM RATINGS


Collector-to-Base Voltage Collector-to-Emitter Voltage (with external base-to-emitter	—12 max	volts
resistance $= 0$	-12 max	volts
Collector-to-Emitter Voltage	$-7 \max$	volts
Emitter-to-Base Voltage	-1.25 max	volts
Collector Current	-100 max	ma
Transistor Dissipation:		_
At case temperatures up to 25°C	3 00 max	
At ambient temperatures up to 25°C	150 max	
At case or ambient temperatures above 25°C	See curve	page 80
Temperature Range:	FF to 100	
Operating		ပံုပံ
Storage	-05 to 100 230 max	~č
Lead Temperature (for 10 seconds maximum)	250 max	C
CHARACTERISTICS		
Collector-to-Emitter Saturation Voltage:		
With collector ma = -10 and base ma = -1	0.2 max	volt
With collector ma = -50 and base ma = -5	-0.4 max	volt
With collector ma = -100 and base ma = -10	-0.7 max	volt
Collector-Cutoff Current (with collector-to-base volts $= -6$		
and emitter current $= 0$	—3 max	μa
	•	

In Common-Base Circuit

Emitter-to-Base Capacitance (with emitter-to-base volts $=$		
-1, collector current = 0, and frequency = 100 kc)	$3.5 \max$	pf
Collector-to-Base Capacitance (with collector-to-base volts $=$		
-10, emitter current = 0, and frequency = 1 Mc)	4 max	pf
Gain-Bandwidth Product (with collector-to-base volts $= -1$,		_
emitter current $= 20$, and frequency $= 100$ Mc)	3 00 min	Mc

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts = -0.3 and collector ma = -10	2 0 min
With collector-to-emitter volts $= -1$ and collector ma $= -50$	20 min
With collector-to-emitter volts $= -1$ and collector ma $= -100$	20 min

Germanium p-n-p type used in high-speed saturated switching applications in industrial data-processing equipment. JEDEC No. TO-18 package: outline 12. Outlines Section.

2N963

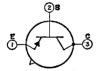
2N964

MAXIMUM RATINGS

Collector-to-Base Voltage	12 max	volts
Collector-to-Emitter Voltage (with external base-to-emitter		
resistance $= 0$	—12 max	volts
Collector-to-Emitter Voltage	-7 max	volts
Emitter-to-Base Voltage	1.25 max	volts
Collector Current	-100 max	ma
Transistor Dissipation:		
At case temperatures up to 25°C	3 00 max	
At ambient temperatures up to 25°C	150 max	mw
At case or ambient temperatures above 25°C	See curve	page 80
Temperature Range:		
Operating	-55 to 100	ວ ີ. ວີ.
Storage	65 to 100	°C
Lead Temperature (for 10 seconds maximum)	230 max	°C

CHARACTERISTICS

Collector-to-Emitter Saturation Voltage (with collector $ma = -10$		
and base ma = -1) Collector-Cutoff Current (with collector-to-base volts = -6	0.2 max	volt
Confector-Cuton Current (with confector-to-base voits $=$ -6		
and emitter current $= 0$	$-5 \max$	μa


In Common-Base Circuit

Emitter-to-Base Capacitance (with emitter-to-base volts = -1 , collector current = 0, and frequency = 100 kc)	4 max	pf
Collector-to-base Capacitance (with collector-to-base volts = -5 , emitter current = 0, and frequency = 1 Mc) Gain-Bandwidth Product (with collector-to-base volts = 1,	$5 \max$	pf
emitter current = 20, and frequency = 100 Mc) \dots	250 min	Mc

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter	
volts $= -0.3$ and collector ma $= -10$)	20 min

TRANSISTOR

Germanium p-n-p type used in high-speed saturated switching applications in industrial data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section. This type is identical with type following items:

2N960 except for the following items:

CHARACTERISTICS

Collector-to-Emitter			
With collector ma	= -10 and base ma $= -1$	0.18 max	volt
	= -50 and base ma $= -5$	0.35 max	volt
With collector ma	= -100 and base ma $= -10$	0.6 max	volt

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts = -0.3 and collector ma = -10	40 min
With collector-to-emitter volts $= -1$ and collector ma $= -50$	40 min
With collector-to-emitter volts $= -1$ and collector ma $= -100$	40 min

Germanium p-n-p type used in high-speed saturated switching applications in industrial data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section. This type is identical with type

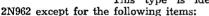
(2) B

2N961 except for the following items:

CHARACTERISTICS

2N965

Collector-to-Emitter	Saturation	Voltage:		
With collector ma	= -10 and	base ma $= -1$	-0.18 max	volt
With collector ma	= -50 and	base ma = -5	-0.35 max	volt
With collector ma	= -100 and	1 base ma = -10	$-0.6 \max$	volt


In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= -0.3$ and collector ma $= -10$	40 min
With collector-to-emitter volts $= -1$ and collector ma $= -50$	40 min
With collector-to-emitter volts $= -1$ and collector ma $= -100$	40 min

TRANSISTOR

Germanium p-n-p type used in high-speed saturated switching applications in industrial data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section. This type is identical with type following items:

CHARACTERISTICS


Collector-to-Emitter	Saturation Voltage:		
With collector ma	= -10 and base ma $= -1$	-0.18 max	volt
With collector ma	= -50 and base ma $= -5$	0.35 max	volt
With collector ma	= -100 and base ma $= -10$	-0.6 max	volt

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts = -0.3 and collector ma = -10	40 min
With collector-to-emitter volts $= -1$ and collector ma $= -50$	4 0 min
With collector-to-emitter volts $= -1$ and collector ma $= -100$	40 min

TRANSISTOR

Germanium p-n-p type used in high-speed saturated switching applications in industrial data-processing equipment. JEDEC No. TO-18 package; outline 12, Outlines Section. This type is identical with type

CHARACTERISTICS

2N967

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -0.3 and collector ma = -10)

40 min

Germanium n-p-n type used in low-noise small-signal audio-frequency amplifier applications. It is used in input stages of audio-frequency amplifiers operating from extremely small input signals, such

2N1010

as high-fidelity preamplifiers, tape-recorder amplifiers, microphone preamplifiers, and hearing aids, in which low noise is an important design consideration. JEDEC No. TO-1 package; outline 4, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Transistor Dissipation: At ambient temperatures up to 55°C Ambient-Temperature Range: Operating	10 max 10 max 2 max -2 max 20 max -65 to 55	volts volts ma ma mw
Storage	-65 to 85	۰Č
CHARACTERISTICS Collector-Cutoff Current (with collector-to-base volts = 10		
and emitter current $= 0$	10 max	μa
and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = 2.5 and collector current = 0)	6 max	μa
In Common-Base Circuit		
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 3.5 and collector ma = 0.3) \dots	2	Me
In Common-Emitter Circuit		
Small-Signal Forward Current-Transfer Ratio at 1 kilocycle (with collector-to-emitter volts = 3.5 and collector ma = 0.3) Noise Figure (with generator resistance = 1000 ohms	35	
and integrated noise bandwidth = 15 kilocycles)	5	ďb

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

2N1014

TRANSISTOR

Germanium p-n-p type used in rf and if amplifier circuits; oscillator, mixer, and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design of rf circuits

2N1023

having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilites over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base resistance and collector-transition capacitance, and improves performance at high frequencies. The center lead is internally connected to the metal case to provide integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. For curves of typical collector characteristics and for video-amplifier circuit, refer to type 2N384. JEDEC No. TO-44 package; outline 16, Outlines Section.

MAXIMUM RATINGS

(2) E

Collector-to-Base Voltage (with emitter open)	-40 max	volts
Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base-to-emitter volts $= 0.5$)	$-40 \max$	volts

Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Transistor Dissipation:	-0.5 max -10 max 10 max	volt ma ma
At case temperatures up to 25°C At ambient temperatures up to 25°C At case or ambient temperatures above 25°C Temperature Range:	240 max 120 max See curve	mw mw page 80
Operating (junction) and storage	-65 to 100	۰C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $\mu a = -50$ and emitter current = 0) Collector-to-Emitter Reach-Through Voltage	80	volts
(with emitter-to-base volts = -0.5) Collector-Cutoff Current (with collector-to-base volts = -12	80	volts
and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= -0.5$ and collector current $= 0$)	4	μa
and collector current $\doteq 0$)	-1	μa
Junction-to-case Junction-to-ambient	0.31 max 0.62 max	°C/mw °C/mw
In Common-Base Circuit		
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts $= -12$ and emitter ma $= 1.5$) Input Resistance with ac output circuit shorted (with collector-	120	Мс
to-base volts = -12 , emitter ma = 1.5, and frequency = 50 Mc) Output Resistance with ac input circuit shorted (with collector-	25	ohms
to-base volts = -12 , emitter ma = 1.5 and frequency = 50 Mc) Collector-to-Base Capacitance (with collector-to-base volts	8000	ohms
= -12 and emitter current $= 0$) Power Gain (with collector-to-base volts $= -12$,	2	pf
emitter ma = 1.5, and frequency = 50 Mc)	21	db
In Common-Emitter Circuit		
Small-Signal Forward Current-Transfer Ratio (with collector-to- emitter volts = -12 , emitter ma = 1.5 and frequency		
= 1 kilocycle) Input Resistance with ac output circuit shorted (with collector- to-emitter volts = -12, emitter ma = 1.5, and frequency	60	
= 30 Mc) Output Resistance with ac input circuit shorted (with collector- to-emitter volts $=$ -12, emitter ma $=$ -1.5, and frequency	100	ohms
= 30 Mc) Power Gain (with collector-to-emitter volts = -12 ,	8000	ohms
emitter $ma = 1.5$, and frequency = 30 Mc)	23	db
TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT		
DC Collector-to-Emitter Voltage DC Emitter Current	12 5.8	volts ma
Source Impedance Capacitive Load	150 16	ohms pf
Frequency Response Pulse Rise Time	20 cps to 11 Mc 0.032	μsec
Voltage Gain Maximum Peak-to-Peak Output Voltage	26 20	db volts
	0-	

2N1066

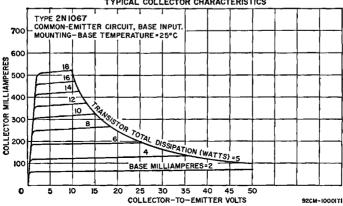
Germanium p-n-p type used in rf and if amplifier circuits; oscillator, mixer, and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design of rf circuits

having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilities over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base resistance and collector-transition capacitance, and improves performance at high frequencies. A fourth lead is internally connected to the metal case to provide integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. JEDEC No. TO-33 package; outline 13, Outlines Section. This type is electrically identical with type 2N1023.

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial and military equipment. It is used in power-switching, dc-to-

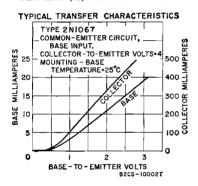
2N1067

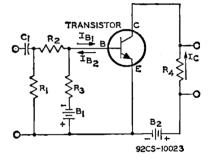

dc converter, inverter, chopper, solenoid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-8 package: outline 8. Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	60 max	volts
With base short-circuited to emitter	60 max	volts
	45 max	volts
With base open Emitter-to-Base Voltage (with collector open)	12 max	
Collector Current	0.5 max	
Emitter Current	-0.5 max	
Base Current	0.2 max	ampere
Transistor Dissipation:		- 44 -
At case temperatures up to 25°C		watts
At case temperatures above 25°C	See curve	page au
Temperature Range: Operating (junction) and storage	65 to 175	°C
	-03 10 113	C
CHARACTERISTICS		
Emitter-to-Base Voltage (with collector-to-emitter volts $= 4$		
and collector $ma = 200$)	1.2	volts
Collector-Cutoff Current (with collector-to-base volts $= 60$		
and emitter current $= 0$	15	μa
Emitter-Cutoff Current (with emitter-to-base volts = 12	1	
and collector current $= 0$	1	μa
Collector Current: With collector-to-emitter volts $= 60$ and base short-circuited		
to emitter	100	μa
With collector-to-emitter volts $=$ 30 and base open	100	μa
Thermal Resistance:		,
Junction-to-case	15 '	°C/watt
Junction-to-ambient	100 max '	°C/watt
Thermal Time Constant	8	msec

In Common-Base Circuit


Small-Signal Forward-Cur	rent-Transfer-Ratio	Cutoff	Frequency		
(with collector-to-base	volts $= 28$ and colle	ctor ma	= 5)	1.5	Mc



TYPICAL COLLECTOR CHARACTERISTICS

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 4 and collector ma = 200)DC Collector-to-Emitter Saturation Resistance (with collector ma = 200 and base ma = 20)	35 3	ohms
TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT BELO	W	
DC Collector Supply Voltage (B ₂)	12	volts
DC Base Supply Voltage (B ₁)	-12	volts
Generator Resistance	50	ohms
On DC Collector Current (Ic)	200	ma
Turn-On DC Base Current (I_{B1})	20	ma
Turn-Off DC Base Current (IB2)	-20	ma
Switching Time:		
Delay time (t _d)	0.2	µsec
Rise time (\mathbf{t}_r)	1.2	µsec
Storage time (t _a)	0.7	μsec
Fall time (tr)	0.9	μsec

 $\begin{array}{l} \mathbf{B}_1, \ \mathbf{B}_2 = 12 \ \text{volts} \\ \mathbf{C}_1 = 5 \ \mu f, \ \text{electrolytic, } 25 \ \text{volts} \\ \mathbf{R}_1 = 51 \ \text{ohms, } 1 \ \text{watt} \\ \mathbf{R}_2 = 280 \ \text{ohms, } 0.5 \ \text{watt} \\ \mathbf{R}_8 = 280 \ \text{ohms, } 1 \ \text{watt} \\ \mathbf{R}_4 = 59 \ \text{ohms, } 2 \ \text{watts} \end{array}$

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chop-

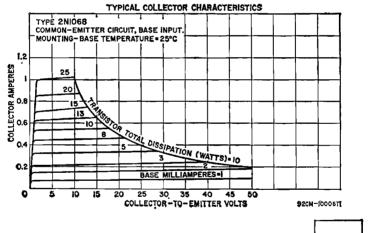
per, solenoid and relay control circuits; in oscillator, regulator, and pulseamplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-8 package; outline 8, Outlines Section.

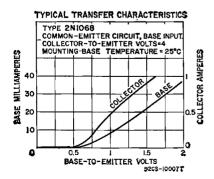
MAXIMUM RATINGS

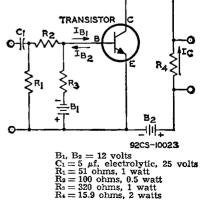
Collector-to-Base Voltage Collector-to-Emitter Voltage:	60 max	volts
With base short-circuited to emitter	60 max	volts
With base open	45 max	volts
Emitter-to-Base Voltage (with collector open)	12 max	
Collector Current	1.5 max	amperes
Emitter Current	—1.5 max	amperes
Base Current	0.5 max	ampere
Transistor Dissipation:		-
At case temperatures up to 25°C	10 max	
At case temperatures above 25°C	See curve	page 80
Temperature Range:		
Operating (junction) and storage	to 175	°C

Technical Data

CHARACTERISTICS


Emitter-to-Base Voltage (with collector-to-emitter volts = 4 and collector ma = 750) Collector-Cutoff Current (with collector-to-base volts = 60	1.2	volts
collector-cuton current (with collector-to-base volts $= 60$ and emitter current $= 0$)	15	μa
Emitter-Cutoff Current (with emitter-to-base volts = 12 and collector current = 0)	1	<i>щ</i> а
Collector Current: With collector-to-emitter volts = 60 and base short-circuited	-	
to emitter With collector-to-emitter volts = 30 and base open	100 100	μa µa
Thermal Resistance: Junction-to-case Junction-to-ambient Thermal Time Constant	7.5 100 max 8	°C/watt °C/watt msec


In Common-Base Circuit


Small-Signal Forward-C	urrent-Transfer-Ratio	Cutoff Freque	ency	
(with collector-to-base	volts = 28 and colle	ector ma $= 5$)	1.5	Me

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter	
volts = 4 and collector $ma = 750$)	
DC Collector-to-Emitter Saturation Resistance	
(with collector ma = 750 and base ma = 20) \dots 3 of	hms

189

TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT

DC Collector Supply Voltage (B ₂) DC Base Supply Voltage (B ₁) Generator Resistance On DC Collector Current (I _c) Turn-On DC Base Current (I _{B1}) Turn-Off DC Base Current (I _{B2}) Switching Time:	12 12 50 750 50 50	volts volts ohms ma ma ma
Delay time (ta) Rise time (tr) Storage time (ts) Fall time (tr)	0.2 1.6 1 1.8	μsec μsec μsec μsec

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chopper,

solenoid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-3 package; outline 5, Outlines Section. This type is identical with type 2N1070 except for the following:

CHARACTERISTICS

2N1069

Emitter-to-Base Voltage	(with collector-to-emitter volts $= 4$		
and collector amperes	± 1.5)	1.7	volts

In Common-Emitter Circuit

DC Collector-to-Emitter	Saturation	Resistance		
(with collector ampered	s = 1.5 and	base ma = 300)	0.7	ohm

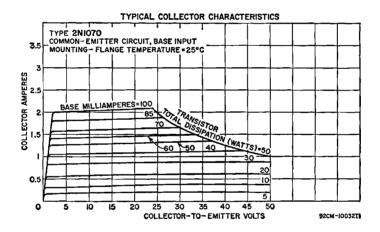
POWER TRANSISTOR

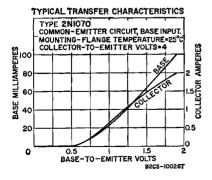
2N1070

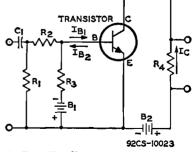
Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-todc converter, inverter, chopper, sole-

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-3 package; outline 5, Outlines Section.

MAXIMUM RATINGS


Collector-to-Base Voltage (with emitter open)	60 max volts
Collector-to-Emitter Voltage:	
With base short-circuited to emitter	60 max volts
With base open	45 max volts
Emitter-to-Base Voltage (with collector open)	9 max volts
Collector Current	4 max amperes
Emitter Current	-4 max amperes
Base Current	1.3 max amperes
Transistor Dissipation:	
At mounting-flange temperatures up to 25°C	50 max watts
At mounting-flange temperatures above 25°C	See curve page 80
Temperature Range:	
Operating (junction) and storage	-65 to 175 °C


Technical Data


CHARACTERISTICS

Emitter-to-Base Voltage (with collector-to-emitter volts = 4 and collector amperes = 1.5)	-1.1	volts
Collector-Cutoff Current (with collector-to-base volts $= 60$ and emitter current $= 0$)	25	μa
Emitter-Cutoff Current (with emitter-to-base volts = 9 and collector current = 0) Collector Current:	1	μa
With collector-to-emitter volts = 60 and base short-circuited to emitter With collector-to-emitter volts = 45 and base open Thermal Resistance:	200 200	μa μa
Junction-to-mounting-flange Thermal Time Constant	1 10	•C/watt msec
In Common-Base Circuit		
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 12 and collector ma = 100) \dots	1.2	Мс
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter		

volts = 4 and collector amperes = 1.5)	20	
DC Collector-to-Emitter Saturation Resistance	-	
(with collector amperes $= 1.5$ and base ma $= 1.5$)	0.4	ohm

B₁, B₂ = 12 volts C₁ = $5\mu f_r$, electrolytic, 25 volts R₁ = 51 ohms, 1 watt R₂ = 10 ohms, 0.5 watt R₃ = 75 ohms, 1 watt R₄ = 7.5 ohms, 2 watts

TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT

DC Collector Supply Voltage (B2) DC Base Supply Voltage (B1) Generator Resistance On DC Collector Current (Ic) Turn-On DC Base Current (Is1) Turn-Off DC Base Current (Is2)	12 12 50 1.5 200 200	volts volts ohms amperes ma ma
Switching Time: Delay time (ta) Rise time (tr) Storage time (ts) Fall time (tr)	0.2 1.8 0.8 1.4	μsec μsec μsec μsec

TRANSISTOR

Germanuim n-p-n type used in
high-current, medium-speed switch-
ing circuits in electronic computers.
JEDEC No. TO-5 package; outline
6, Outlines Section.

2)8

 \bigcirc

MAXIMUM RATINGS

MAAIMUM KATINGS		
Collector-to-Base Voltage (with emitter open)	2 5 ma x	volts
Collector-to-Emitter Voltage:		•.
With base-to-emitter volts $= -1$	18 max	volts
With base open Emitter-to-Base Voltage (with collector open)	15 max	volts
Emitter-to-Base Voltage (with collector open)	20 max	volts
Collector Current	400 max	ma
Transistor Dissipation:		
At ambient temperatures up to 25°C	120 max	mw
At ambient temperature of 55°C	35 max	mw
At ambient temperature of 71°C	10 max	mw
Ambient-Temperature Range:		
Operating and storage	- 65 to 85	۰C
Operating and storage	-03 10 03	v
CHARACTERISTICS		Ŭ
CHARACTERISTICS		Ŭ
CHARACTERISTICS Base-to-Emitter Voltage:		-
CHARACTERISTICS Base-to-Emitter Voltage: With collector ma = 20 and base ma = 0.67	0.4 max	volt
CHARACTERISTICS Base-to-Emitter Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10		-
CHARACTERISTICS Base-to-Emitter Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10 Collector-to-Emitter Saturation Voltage:	0.4 max 1.5 max	volt volts
CHARACTERISTICSBase-to-Emitter Voltage:With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10 Collector-to-Emitter Saturation Voltage:With collector ma = 20 and base ma = 0.67	0.4 max 1.5 max 0.2 max	volt volts volt
CHARACTERISTICS Base-to-Emitter Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10 Collector-to-Emitter Saturation Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10	0.4 max 1.5 max	volt volts
CHARACTERISTICS Base-to-Emitter Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10 Collector-to-Emitter Saturation Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10 Collector-Cutoff Current (with collector-to-base volts = 12	0.4 max 1.5 max 0.2 max 0.3 max	volt volts volt volt
CHARACTERISTICS Base-to-Emitter Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10 Collector-to-Emitter Saturation Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10 Collector-Cutoff Current (with collector-to-base volts = 12 and emitter current = 0)	0.4 max 1.5 max 0.2 max 0.3 max 8 max	volt volts volt volt
CHARACTERISTICS Base-to-Emitter Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10 Collector-to-Emitter Saturation Voltage: With collector ma = 20 and base ma = 0.67 With collector ma = 200 and base ma = 10 Collector-Cutoff Current (with collector-to-base volts = 12	0.4 max 1.5 max 0.2 max 0.3 max	volt volts volt volt

In Common-Base Circuit

Collector-to-Base Capacitance (with collector-to-base volts $= 6$	Ø5 ma ant	-6
and emitter current = 0) Forward-Current-Transfer-Ratio Cutoff Frequency	25 max	pf
(with collector-to-base volts = 6 and emitter ma = -1)	5 min	Mc

In Common-Emitter Circuit

TRANSISTOR

Germanium n-p-n type used in high-current, medium-speed switching circuits in electronic computers. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1090 except for the

following items:

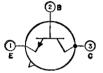
MAXIMUM RATINGS

Collector-to-Emitter Voltage:		
With base-to-emitter volts $= -1$	15 max	volts
With base open	12 max	volts

Technical Data

CHARACTERISTICS

Base-to-Emitter Voltage:		
With collector ma $=$ 20 and base ma $=$ 0.5	0.35 max	volt
With collector $ma = 200$ and base $ma = 6.7$	1.1 max	volts
Collector-to-Emitter Saturation Voltage:		
With collector ma = 20 and base $ma = 0.5$	0.2 max	volt
With collector ma = 200 and base ma = 6.7	$0.3 \max$	volt
Collector-Cutoff Current (with collector-to-base volts $= 12$		
and emitter current $= 0$)	8 max	µa pcoul
Stored Base Charge (with collector $ma = 20$ and base $ma = 1$)	100 0 max	pcoul
In Common-Base Circuit		


Common-Base Circuit

Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 6 and emitter ma = -1)	10 min	Mc
Collector-to-Base Capacitance (with collector-to-base volts = 6 and emitter current = 0)	25 max	pf

In Common-Emitter Circuit

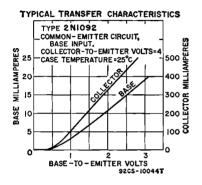
Forward Current-Transfer Ratio:		
With collector-to-emitter volts $= 0.2$ and collector ma $= 20$	••	40 min
With collector-to-emitter volts $= 0.3$ and collector ma $= 200$	••	3 0 min

POWER TRANSISTOR

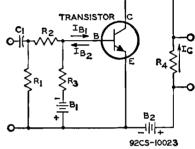
Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial and military equipment. It is used in power switching,

2N1092

dc-to-dc converter, inverter, chop-per, solenoid and relay control circuits; in oscillator, regulator, and pulseamplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-5 package; outline 6, Outlines Section.

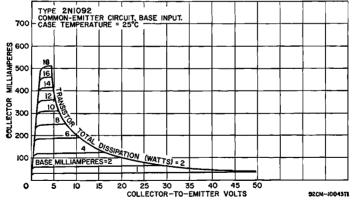

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	60 max volts
With base short-circuited to emitter	60 max volts
With base open Emitter-to-Base Voltage (with collector open)	30 max volts
Collector Current	12 max volts 0.5 max ampere
Emitter Current	-0.5 max ampere
Base Current	0.2 max ampere
Transistor Dissipation:	- -
At case temperatures up to 25°C At case temperatures above 25°C	2 max watts See curve page 80
Temperature Range:	······································
Operating (junction) and storage	-65 to 175 °C
0114D407ED107100	
CHARACTERISTICS	
Emitter-to-Base Voltage (with collector-to-emitter volts $= 4$	
and collector ma = 200) Collector-Cutoff Current (with collector-to-base volts = 60	-1.2 volts
and emitter current $= 0$	15 µa
and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= 12$	
and collector current $= 0$)	1 μa
Collector Current: With collector-to-emitter volts $= 60$ and base	
short-circuited to emitter	100 µa
With collector-to-emitter volts $= 30$ and base open	100 µa
Thermal Resistance: Junction-to-case	35 °C/watt
Junction-to-ambient	225 max °C/watt
Thermal Time Constant	8 msec
In Common-Base Circuit	
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 28 and collector ma = 5)	1.5 Mc


In Common-Emitter Circuit

DC Forward Current-Transfer	Ratio (with	collector-to-emitter	
volts = 4 and collector ma =	200)		35

DC Collector-to-Emitter Saturation Resistance (with collector ma = 200 and base ma = 20) \dots 3	ohms
TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT BELOWDC Collector Supply Voltage (B2)12DC Base Supply Voltage (B1)-12Generator Resistance50On DC Collector Current (Ic)200Turn-On DC Base Current (Is1)200Turn-Off DC Base Current (Is2)-20Switching Time:-20Delay time (ta)0.2Rise time (tr)1.2Storage time (ta)0.7Fail time (ta)0.9	volts volts ohms ma ma ma usec µsec µsec µsec

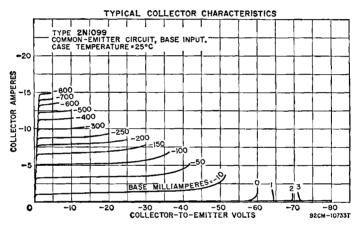


2N1099

B₁, B₂ = 12 volts C₁ = 5 μ f, electrolytic, 25 volts R₁ = 51 ohms, 1 watt R₂ = 280 ohms, 0.5 watt R₈ = 700 ohms, 1 watt R₄ = 59 ohms, 2 watts

POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in



power-switching, voltage- and current-regulating, dc-to-dc converter, inverter,

power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is identical with type 2N173 except for the following items:

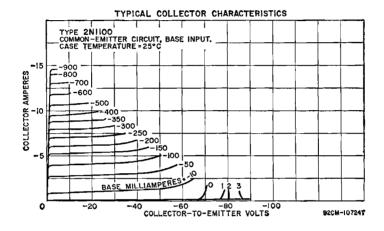
MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter-to-base volts = 1.5) Emitter-to-Base Voltage (with collector open)		volts volts
CHARACTERISTICS Collector-to-Emitter Breakdown Voltage: With base short-circuited to emitter and collector amperes = -0.3 With base open and collector amperes $= -0.3$ Collector-to-Emitter Reach-Through Voltage Collector-Cutoff Current (with collector-to-base volts $= -80$ and emitter current $= 0$)	70 min 60 80 min 2	volts volts volts ma

POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in

2N1100


power-switching, voltage- and current-regulating, dc-to-dc converter, inverter, power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is identical with type 2N174 except for the following items:

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter-to-base volts $= -1.5$)	100 max	volts
Emitter-to-Base Voltage (with collector open)	—80 max	volts

CHARACTERISTICS

Collector-to-Emitter Breakdown Voltage (with base short-circuited to emitter and collector amperes $= -0.3$)	-80 min	volts
Emitter-to-Base Voltage (with collector-to-base volts = -100	1	volt
and emitter current $= 0$) Collector-to-Emitter Reach-Through Voltage	—1 max ⊷100 min	volts
Emitter-Cutoff Current (with emitter-to-base volts $= -80$		
and collector current $= 0$) Collector-Cutoff Current (with collector-to-base volts $= -100$	1	ma
and emitter current $= 0$)	-2	ma

TRANSISTOR

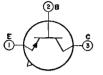
2N1169

Germanium n-p-n bidirectional type used in medium-speed switching circuits in data-processing equipment. This type is designed so that the emitter can also function as a collector and the collector can

also function as an emitter. It is especially useful in bidirectional switching, core-driver, and ac-signal relay circuits. JEDEC No. TO-5 package; outline 6_3 , Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open)	25 max 25 max	volts volts
	20 max 18 max	volts volts
Collector Current	土400 max 土400 max	ma ma
Transistor Dissipation: At ambient temperatures up to 25°C At ambient temperature of 55°C	35 max	mw mw
At ambient temperature of 71°C Ambient-Temperature Range:	10 max 65 to 71	mw
Operating	65 to 85	°C O°
CHARACTERISTICS		
Base-to-Emitter Voltage (with collector ma = 200 and base $m_{2} = 10$)	15 mex	volte



In Common-Base Circuit

Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 6 and collector ma = 1) Collector-to-Base Capacitance (with collector-to-base volts = 6 and collector current = 0)	4.5 min 19	Mc pf
In Common-Emitter Circuit	10	pi

Forward Current-Transfer Ratio	o (with collector-to-emitter volts	
= 0.3 and collector ma $= 200$		20 min

TRANSISTOR

Germanium n-p-n bidirectional type used in medium-speed switching circuits in data-processing equipment. This type is designed so that the emitter can also function as a collector and the collector can

also function as an emitter. It is particularly useful in bidirectional switching, core-driver, and ac-signal relay circuits. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1169 except for the following items:

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector-to-Emitter Voltage: With base-to-emitter volts = -1 With base open	40 max 40 max 39 max 20 max	volts volts volts volts
CHARACTERISTICS		
Collector-Cutoff Current (with collector-to-base volts = 12 and emitter open)	8 max	μa

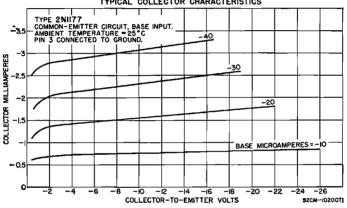
TRANSISTOR

Germanium p-n-p type used in radio-frequency amplifier applications in FM and AM/FM radio receivers. In a typical FM tuner operating at 100 megacycles, this type can provide a power gain of

2N1177

2N1170

14 db. JEDEC No. TO-45 package; outline 17, Outlines Section.


MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current	30 max 1 max 10 max 10 max	volts volt ma ma
Transistor Dissipation: At ambient temperatures up to 25°C At ambient temperature of 55°C At ambient temperature of 71°C Ambient-Temperature Range:	80 max 50 max 23 max	mw mw mw
Operating	65 to 71 65 to 85	°C S
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -0.5 and collector $\mu = -50$) Collector-Cutoff Current (with collector-to-base volts = -12	30 min	volts
and emitter current $= 0$)	12 max	μa
Emitter-Cutoff Current (with emitter-to-base volts $= -1$ and collector current $= 0$)	-12 max	μ .a

In Common-Base Circuit

Small-Signal Forward	Current-Transfer Ratio (with collector-	
	, collector ma = -1 , and frequency = 1	
kilocycle)		0.99

Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = -12 and collector ma = -1)	140	Me
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -12 , collector ma = -1 , and frequency = 1 kilocycle)	100	
TYPICAL OPERATION DC Collector-to-Base Voltage DC Collector Current Signal Frequency Input Resistance (with ac output circuit shorted) Output Resistance (with ac input circuit shorted) Extrinsic Transconductance Collector-to-Base Output Capacitance Maximum Available Power Gain	$-12 \\ -1.5 \\ 100 \\ 45 \\ 3800 \\ 24250 \\ 2 \\ 14$	volts ma Mc ohms ohms µmhos pf db

TYPICAL COLLECTOR CHARACTERISTICS

TRANSISTOR

Germanium p-n-p type used in radio-frequency oscillator applica-tions in FM and AM/FM radio receivers. In local-oscillator service at a frequency above the incoming rf

signal, this type can supply an rf mixer stage with required oscillator-injection voltage for optimum mixing throughout the FM band. JEDEC No. TO-45 package; outline 17, Outlines Section. This type is identical with type 2N1177 except for the following items:

CHARACTERISTICS

2N1178

In Common-Base Circuit

Small-Signal Forward Current-Transfer Ratio (with collector-to- base volts = -12, collector ma = -1, and frequency = 1 kilocycle)	0.976	
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter volts $= -12$, collector ma $= -1$, and frequency $= 1$ kilocycle)	40	
TYPICAL OPERATION DC Collector-to-Base Voltage Collector Current	$-11 \\ -2.5$	volts ma

Signal Frequency	110.7	Mc
Extrinsic Transconductance	21800	μmhos
Collector-to-Base Output Capacitance	2	pf

Germanium p-n-p type used in radio-frequency mixer applications in FM and AM/FM radio receivers. In a typical FM tuner operating at 100 megacycles, this type can provide a conversion power gain of

17 db. JEDEC No. TO-45 package; outline 17, Outlines Section. This type is identical with type 2N1177 except for the following items:

MAXIMUM RATINGS

In Common-Base Circuit

Small-Signal Forward Current-Transfer Ratio (with collector- to-base volts = -12, collector ma = -1, and frequency = 1 kilocycle)	0.988	Mc
In Common-Base Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -12 , collector ma = -1 , and frequency = 1 kilocycle)	80	
TYPICAL OPERATION		
DC Collector-to-Base Voltage DC Collector Current	12 0.8	volts ma
Signal Frequency Input Resistance (with ac output circuit shorted)	100 40	Mc ohms
Output Resistance (with ac input circuit shorted and intermediate frequency = 10.7 Mc)	90000	ohms
RMS Base-to-Emitter Oscillator Injection Voltage Extrinsic Conversion Transconductance	125	mv
Collector-to-Base Output Capacitance	7500	µmhos pf db
Maximum Available Conversion Power Gain	17	αρ

TRANSISTOR

Germanium p-n-p type used in intermediate-frequency amplifier applications in FM and AM/FM radio receivers. In a three-stage 10.7megacycle if amplifier circuit, this type can provide a useful power

2N1180

шa

gain of 65 db with neutralization or 57 db without neutralization. JEDEC No. TO-45 package; outline 17, Outlines Section. This type is identical with type 2N1177 except for the following items:

MAXIMUM RATINGS Emitter-to-Base Voltage (with collector open) $-0.5 \max$ volt CHARACTERISTICS Emitter-Cutoff Current (with emitter-to-base volts = -0.5and collector current = 0) $-12 \max$ In Common-Base Circuit Small-Signal Forward Current-Transfer Ratio (with collector-to-base volts = -12, collector ma = -1, and frequency = 1. kilocycle. A 100

Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency	0.200	
(with collector-to-base volts = -12 and collector ma = -1).	100	Me

80

In Common-Emitter Circuit

DC Forward Current-Transfer		
volts = -12 , collector ma =	-1, and	d frequency = 1 kilocycle)

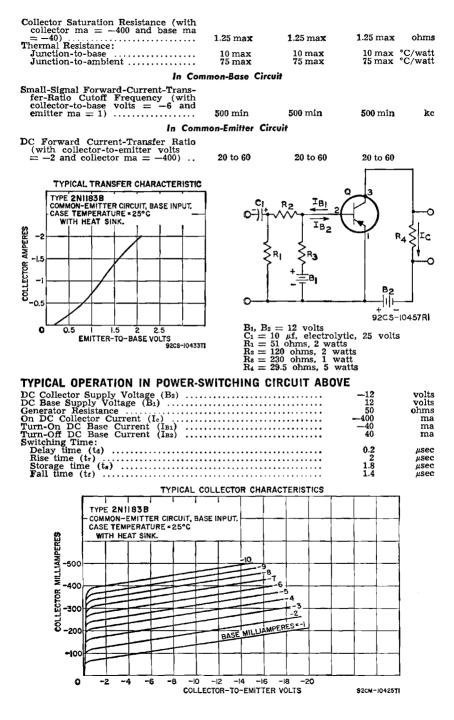
TYPICAL OPERATION

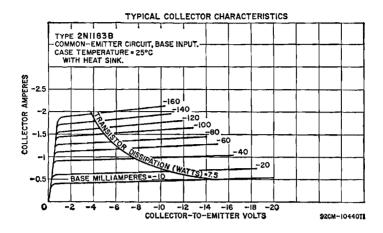
DC Collector-to-Emitter Voltage			volts
DC Collector Current		-1.5	ma
Signal_Frequency		10.7	Mc
Input Resistance (with ac output circuit shorted) .		325	ohms
Output Resistance (with ac input circuit shorted) .		24000	ohms
Extrinsic Transconductance		40250	μmhos
Collector-to-Base Output Capacitance		2	pf
Maximum Power Gain:	01	M 2	
	Single Stage	Three Stag	
Available	35	35	db d
Useful:			
In neutralized circuit	23	21.6	db
In unneutralized circuit	20	19	db

POWER TRANSISTOR

2N1183 2N1183A 2N1183B

Germanium p-n-p types used in intermediate-power switching, and low-frequency amplifier applications in industrial and military equipment. They are used in power switching, dc-to-dc converters, choppers, sole-




noid drivers, and relay controls; in oscillator, regulator, and pulse-amplifier circuits; and as class A or class B amplifiers for servo and linear amplifier applications. JEDEC No. TO-8 package; outline 8, Outlines Section.

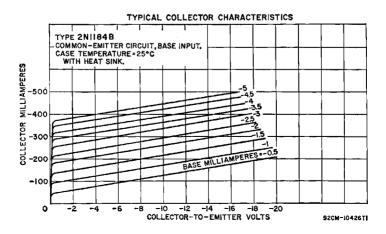
MAXIMUM RATINGS

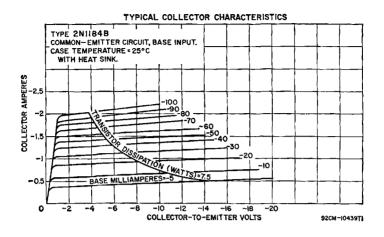
WAATWUW KATINGS				
	2N1183	2N1183A	2N1183B	
Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	—45 max	-60 max	-80 max	volts
With emitter-to-base volts $= -1.2$. With base short-circuited to emitter	45 max 35 max 20 max	60 max 50 max		volts volts volts
With base open Emitter-to-Base Voltage		-30 max		
(with collector open) Collector Current	20 max 3 max	20 max 3 max	20 max 3 max a	volts
Emitter Current	3.5 max	3.5 max	3.5 max a	mperes
Base Current	-0.5 max	$-0.5 \max$	-0.5 max a	ampere
Transistor Dissipation: At case temperatures up to 25°C	7.5 max	7.5 max	7.5 max	watts
At ambient temperatures up to 25°C	1 max	1 max	1 max	
At case or ambient temperatures above 25°C Temperature Range;		See curve pag	e 80	
Operating (junction) and storage		-65 to 100		
CHARACTERISTICS				
	2N1183	2N1183A	2N1183B	
Collector-to-Emitter Breakdown Voltage:	2111100	211110011	ENTIOUE	
With emitter-to-base volts $= -1.2$				
and collector ma $= -0.25$ With base short-circuited to emitter	-45 min	6 0 min	80 min	volts
and collector ma $= -50$	—35 min	-50 min	-60 min	volts
With base open and collector ma $= -50$	-20 min	30 min	-40 min	volts
Emitter-to-Base Voltage				
(with collector-to-emitter volts $= -2$ and collector ma $= -400$).	1.5 max	$1.5 \max$	1.5 max	volts
Collector-Cutoff Current:				
With collector-to-base volts $= -1.5$ and emitter current $= 0$	30 max	30 max	-30 max	μa
With collector-to-base volts = -45	-250 max			
and emitter current $= 0$ With collector-to-base volts $= -60$	-250 max		-	$\mu \mathbf{a}$
and emitter current $= 0$ With collector-to-base volts $= -80$	-	-250 max	-	$\mu \mathbf{a}$
and emitter current = 0 Emitter-Cutoff Current	-	_	—250 max	μa
(with emitter-to-base volts = -20 and collector current = 0)	—100 max	100 max	100 max	μa

Technical Data

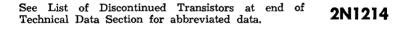
POWER TRANSISTOR

2N1184 2N1184A 2N1184B

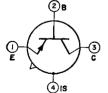

Germanium p-n-p types used in intermediate-power switching and low-frequency amplifier applications in industrial and military equipment. They are used in power switching, dc-to-dc converters, choppers, sole-



noid drivers, and relay controls; in oscillator, regulator, and pulse-amplifier circuits; and as class A or class B amplifiers for servo and linear amplifier applications. JEDEC No. TO-8 package; outline 8, Outlines Section. These types are identical with types 2N1183, 2N1183A and 2N1183B, respectively, except for the following items:


CHARACTERISTICS

In Common-Emitter Circuit



See	\mathbf{List}	of	Discontin	ued	Transistors	at	end	of	2N1213
Tech	nical	Data	Section	\mathbf{for}	abbreviated	data.			2111213

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data. 2N1215

See List of Discontinued Transistors at end of 2N1216 Technical Data Section for abbreviated data.

TRANSISTOR

Germanium p-n-p type used in rf and if amplifier circuits; oscillator, mixer and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design of rf circuits

2N1224

having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilities over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base resistance and collector-transition capacitance, and improves performance at high frequencies. A fourth lead internally connected to the metal case provides integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. JEDEC No. TO-33 package; outline 13, Outlines Section. This type is electrically identical with type 2N274.

Germanium p-n-p type used in rf and if amplifier circuits; oscillator, mixer, and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design of rf circuits

having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilities over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base resistance and collector-transition capacitance, and improves performance at high frequencies. A fourth lead internally connected to the metal case provides integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. JEDEC No. TO-33 package; outline 13, Outlines Section. This type is electrically identical with type 2N384.

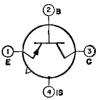
TRANSISTOR

Germanium p-n-p type used in rf and if amplifier circuits; oscillator, (mixer, and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design of rf circuits

industrial and military equipment. It is used in the design of rf circuits (4) is having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilities over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base resistance and collector-transition capacitance, and improves performance at high frequencies. A fourth lead internally connected to the metal case provides integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. JEDEC No. TO-33 package; outline 13, Outlines Section. This type is electrically identical with type 2N274 except for the following items:

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base-to-emitter volts $= 0.5$)	60 max 60 max	volts volts
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $\mu a = -50$ and emitter current $= 0$) Collector-to-Emitter Reach-Through Voltage	100	volts
(with emitter-to-base volts $= -0.5$)	-100	volts


TRANSISTOR

Germanium p-n-p type used in high-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section.

MAXIMUM RATINGS

2N1300

Collector-to-Base Voltage (with emitter open)	13 max	volts
Collector-to-Emitter Voltage (with base open)	$-12 \max$	volts
Emitter-to-Base Voltage (with collector open)	$-1 \max$	volt
Collector Current	-100 max	ma
Emitter Current	100 max	ma
Transistor Dissipation:		
At ambient temperatures up to 25°C	150 max	mw
At ambient temperatures above 25°C	See curve	page 80

2N1226

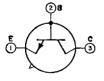
2N1225

(Эв
$\overline{(\tau)}$	\mathcal{D}_{a}
E	
Ć	∮)IS

Technical Data

Ambient-Temperature Range: Operating and storage Lead Temperature (for 10 seconds maximum)	65 to 85 255 max	ŝ
CHARACTERISTICS		
Base-to-Emitter Voltage (with collector ma = -40 and base ma = -1) Collector-Cutoff Current (with collector-to-base volts = -6	-0.4 max	volt
and emitter open) Total Stored Charge (with collector ma $= -10$	3 max	μa
and base ma $= -1$)	400 max	pcoul
In Common-Base Circuit		
Collector Capacitance (with collector-to-base volts = -6 and emitter current = 0)	12 max	pf
In Common-Emitter Circuit		
Forward Current-Transfer Ratio (with collector-to-emitter volts = -0.3 and collector ma = -10) Gain-Bandwidth Product (with collector-to-emitter volts	30 min	34-
= -3 and collector ma $= -10$)	25 min	Me

TRANSISTOR


Germanium p-n-p type used in high-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. Maximum ratings for this type are the same as for type

2N1300 except for the following items:

MAXIMUM RATINGS

Emitter-to-Base Voltage (with collector open)	-4 max	volts
CHARACTERISTICS		
Base-to-Emitter Voltage (with collector ma = -40 and base ma = -1) Collector-Cutoff Current (with collector-to-base volts = -6	0.6 max	volt
and emitter current $= 0$	3 max	μa
Total Stored Charge: With collector ma $=$ -10 and base ma $=$ -0.4 With collector ma $=$ -40 and base ma $=$ -1.6	325 max 800 max	pcoul pcoul
In Common-Base Circuit		
Collector Capacitance (with collector-to-base volts = -6 and emitter open)	12 max	pf
In Common-Emitter Circuit		
Forward Current-Transfer Batio		

With collector-to-emitter volts = -0.3 and collector ma = -10	30 min	
With collector-to-emitter volts $= -0.5$ and collector ma $= -40$ Gain-Bandwidth Product (with collector-to-emitter volts $= -3$	40 min	
and collector ma = -10)	35 min	Mc

TRANSISTOR

Germanium n-p-n type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open)	$25 \max$	volts
Emitter-to-Base Voltage (with collector open)	25 max	volts
Collector Current	300 max	ma

2N1301

RCA Transistor Manual

2)8

(١

Transistor Dissipation: At ambient temperatures up to 25°C At ambient temperatures above 25°C Ambient-Temperature Range: Operating Storage Lead Temperature (for 10 seconds maximum)	150 max See curve 65 to 85 65 to 100 230 max	
CHARACTERISTICS		
Base-to-Emitter Voltage (with collector ma = 10 and base ma = 0.5) Collector-to-Emitter Saturation Voltage	0.15 to 0.4	
(with collector ma = 10 and base ma = 0.5) Collector-Cutoff Current (with collector-to-base volts = 25	0 .2 max	volt
and emitter current $= 0$)	6 max	μa
In Common-Base Circuit		
Collector-to-Base Capacitance (with collector-to-base volts = 5 and emitter current = 0) Forward-Current-Transfer-Ratio Cutoff Frequency	20 max	pf
(with collector-to-base volts = 5 and emitter ma = 1)	3 min	Mc

In Common-Emitter Circuit

Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= 1$ and collector ma $= 10$	20 min
With collector-to-emitter volts $= 0.35$ and collector ma $= 200$.	10 min

TRANSISTOR

Germanium p-n-p type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector Current Transistor Dissipation:	—25 max	volts volts ma
At ambient temperatures up to 25°C At ambient temperatures above 25°C Ambient-Temperature Range:	150 max See curve pa	mw Ige 80
Operating Storage Lead Temperature (for 10 seconds maximum)	-65 to 100	သံုး

CHARACTERISTICS

Base-to-Emitter Voltage (with collector ma $=$ -10 and base		
ma = -0.5)	-0.15 to -0.4	volt
Collector-to-Emitter Saturation Voltage		
(with collector ma = -10 and base ma = -0.5)	-0.2 max	volt
Collector-Cutoff Current (with collector-to-base volts $= -25$		
and emitter current $= 0$	←6 max	μa

In Common-Base Circuit

Collector-to-Base Capacitance (with collector-to-base volts $= -5$		
and emitter current $= 0$	20 max	pf
Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = -5 and emitter ma = 1)	3 min	Mc

In Common-Emitter Circuit

Forward Current-Transfer Ratio:	
With collector-to-emitter volts = -1 and collector ma = -10	20 min
With collector-to-emitter volts $= -0.35$ and collector ma $= -200$	10 min

@B

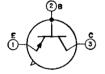
Germanium n-p-n type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1302 except

TRANSISTOR

2N1304

207

for the following:


CHARACTERISTICS

Base-to-Emitter Voltage (with collector ma = 10 and base ma = 0.5) Collector-to-Emitter Saturation Voltage (with collector ma = 10 and base ma = 0.25)	0:15 to 0.35 0.2 max	volt volt
In Common-Base Circuit		
Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 5 and emitter ma = 1)	5 min	Mc

In Common-Emitter Circuit

Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= 1$ and collector ma $= 10$	40 to 200
With collector-to-emitter volts $= 0.35$ and collector ma $= 200$.	15 min

TRANSISTOR

Germanium p-n-p type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1303 except

2N1305

for the following:

CHARACTERISTICS

Base-to-Emitter Voltage (with collector ma $= -10$		
and base ma = -0.5)	0.15 to0.35	i volt
Collector-to-Emitter Saturation Voltage (with collector ma $= -10$		
and base ma = -0.25)	0.2 max	volt

In Common-Base Circuit

Forward-Current-Transfer-Ratio	Cutoff Frequency		
(with collector-to-base volts =	-5 and emitter ma = 1)	5 min	Mc

In Common-Emitter Circuit

Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= -10$ and collector ma $= -10$.	40 to 200
With collector-to-emitter volts = -0.35 and collector ma = -200	15 m

TRANSISTOR

Germanium n-p-n type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1302 except

for the following:

CHARACTERISTICS

208

Base-to-Emitter Voltage (with collector $ma = 10$ and base ma		
= 0.5)	0.15 to 0.35	volt
Conector-to-Emitter Saturation voltage		
(with collector ma = 10 and base ma = 0.17)	$0.2 \max$	\mathbf{v} olt

nin

In Common-Base Circuit

Forward-Current-Transfer-Ratio Cutoff Frequency		
(with collector-to-base volts = 5 and emitter $ma = 1$)	10 min	Mc

In Common-Emitter Circuit

Forward Current-Transfer	Ratio:	
With collector-to-emitter	volts = 1 and collector ma = $10 \dots$	60 to 300
	volts $= 0.35$ and collector ma $= 200$.	20 min

TRANSISTOR

Germanium p-n-p type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1303 except

for the following:

CHARACTERISTICS

Base-to-Emitter Voltage (with collector $ma = -10$		
and base ma $= -0.5$	-0.15 to -0.35	volt
Collector-to-Emitter Saturation Voltage		
(with collector $ma = -10$ and base $ma = -0.17$)	-0.2 max	volt
In Common Press Circuit		

In Common-Base Circuit

Forward-Current-Transfer-Ratio	Cutoff Frequency		
	-5 and emitter ma $= 1$)	10 min	Mc

In Common-Emitter Circuit

Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= -1$ and collector ma $= -10$.	60 to 300
With collector-to-emitter volts $= -0.35$ and collector ma $= -200$	20 1

TRANSISTOR

Germanium n-p-n type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1302 except

min

for the following:

2N1308

CHARACTERISTICS

Base-to-Emitter Voltage (with collector ma = 10 and base ma $= 0.5$)	0.15 to 0.35	volt
Collector-to-Emitter Saturation Voltage (with collector ma = 10 and base ma = 0.13)	0.2 max	volt

In Common-Base Circuit

Forward-Current-Transfer-Ratio (with collector-to-base volts =	Cutoff Frequency 5 and emitter ma = 1)	15 min	Mc
(with concetor-to base form =			

In Common-Emitter Circuit

Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= 1$ and collector ma $= 10$	80 min
With collector-to-emitter volts $= 0.35$ and collector ma $= 200$.	20 min

208

Germanium p-n-p type used in medium-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1303 except

TRANSISTOR

2N1309

for the following:

CHARACTERISTICS

Base-to-Emitter Voltage (with collector ma $= -10$ and base ma $= -0.5$)	-0.15 to -0.35 volt	
Collector-to-Emitter Saturation Voltage (with collector ma = -10 and base ma = -0.13)	-0.2 max	volt
In Common-Base Circuit		
Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts $= -5$ and emitter ma $= 1$)	15 min	Mc
In Common-Emitter Circuit		

Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= -1$ and collector ma $= -10$	80 min
With collector-to-emitter volts $= -0.35$ and collector ma $= -200$	20 min

TRANSISTOR

Germanium p-n-p bidirectional type used in medium-speed switching circuits in data-processing equipment. This type is designed so that the emitter can also function as a collector and the collector can

2N1319

also function as an emitter. It is especially useful in bidirectional switching, core-driver, and ac-signal relay circuits. JEDEC No. TO-5 package; outline 6, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector-to-Emitter Voltage (with base-to-emitter volts = 1) Collector Current Emitter Current Transistor Dissipation:	-20 max -20 max -20 max ±400 max ±400 max	volts volts volts ma ma	
At ambient temperatures up to 25°C At ambient temperature of 55°C At ambient temperature of 71°C Ambient-Temperature Range:	120 max 35 max 10 max	mw mw mw	
Operating Storage	65 to 71 65 to 85	°C °C	
CHARACTERISTICS			
Base-to-Emitter Voltage (with collector ma = -400 and base ma = -26.7) Collector-to-Emitter Saturation Voltage	-1.5 max	volts	
(with collector ma = -400 and base ma = -26.7) Collector-Cutoff Current (with collector-to-base volts = -12	-0.3 max	volt	
and emitter current = 0)	-6 max	μa	
In Common-Base Circuit			
Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts $= -6$ and emitter ma $= 1$) Collector-to-Base Capacitance (with collector-to-base volts $= -6$	3 min	Me	
and emitter current $= 0$	$30 \max$	pf	

In Common-Emitter Circuit

Forward Current-Transfer Ratio (with collector-to-emitter volts	
= -0.3 and collector ma $=$ -400)	15 min

POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in

power-switching, voltage- and current-regulating, dc-to-dc converter, inverter, power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is identical with type 2N174 except for the following items;

CHARACTERISTICS

2N1358

Collector-to-Emitter Breakdown Voltage: With base short-circuited to emitter and collector amperes = -0.3 With base open and collector amperes $= -0.3$	—70 min —40 min	volts volts
Base-to-Emitter Voltage:	-40 11111	VOILS
With collector-to-emitter volts $= -2$ and collector amperes	A	
= -5 With collector-to-base volts = -2 and collector amperes = -1.2	0.65 0.35	volt volt
Emitter-to-Base Voltage (with collector-to-base volts = -80	0.35	von
and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= -60$	0.15	volt
Emitter-Cutoff Current (with emitter-to-base volts $= -60$	-1	
and collector current $= 0$) Collector-Cutoff Current (with collector-to-base volts $= -2$	-1	ma
and emitter current = 0)	-100	μa
In Common-Base Circuit		
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts $= -12$ and collector amperes		

Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts $= -12$ and collector amperes = -1)	100	kc
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio: With collector-to-emitter volts $= -2$ and collector amperes		

= -1.2	55
With collector-to-emitter volts $= -2$ and collector amperes	
$= -5 \ldots $	35

TRANSISTOR

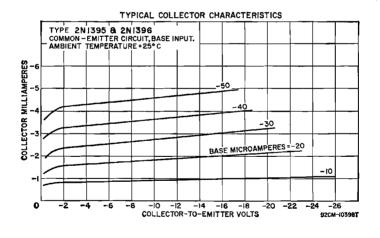
Germanium p-n-p type used in high-speed switching circuits in electronic computers. JEDEC No. TO-11 package; outline 10, Outlines Section.

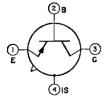
MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open)	—30 max	volts
Emitter-to-Base Voltage (with collector open) Collector Current	—1 max —500 max	
Emitter Current Transistor Dissipation:	500 max	ma
At ambient temperatures up to 25°C At ambient temperatures above 25°C	240 max See curve	
Ambient-Temperature Range: Operating and storage	65 to 85	°C
CHARACTERISTICS		
Base-to-Emitter Voltage (with collector ma = -200		

Base-to-Emitter voltage (with collector ma = -200 $-0.9 \max$ voltand base ma = -10) $-0.9 \max$ voltCollector-Cutoff Current (with collector-to-base volts = -3 $-8 \max$ μa Stored Base Charge (with collector ma = -10 and base ma = -1) $800 \max$ pcoul

In Common-Emitter Circuit


Forward Current-Transfer Ratio		
(with collector-to-emitter volts $= -0.5$ and collector ma		
= -200)	20 min	
Gain-Bandwidth Product (with collector-to-emitter volts		
= -3 and collector ma $=$ -10)	20 min	\mathbf{Mc}


TRANSISTOR

Germanium p-n-p type used in rf and if amplifier circuits; oscillator, mixer, and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design of rf circuits

2N1395

having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilities over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base resistance and collector-transition capacitance, and improves performance at high frequencies. A fourth lead internally connected to the metal case provides integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. JEDEC No. TO-33 package; outline 13, Outlines Section. This type is electrically identical with type 2N274 except for the collectorcharacteristic curves shown below and a higher common-emitter small-signal forward current-transfer ratio of 90.

TRANSISTOR

Germanium p-n-p type used in rf and if amplifier circuits; oscillator, mixer, and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design of rf circuits

2N1396

having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilities over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base re-

2)B

(4)IS

sistance and collector-transition capacitance, and improves performance at high frequencies. A fourth lead internally connected to the metal case provides integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. JEDEC No. TO-33 package; outline 13, Outlines Section. This type is electrically identical with type 2N384 except for the collector-characteristic curves, which are the same as for type 2N1395, and a higher common-emitter small-signal forward current-transfer ratio of 90.

TRANSISTOR

Germanium p-n-p type used in rf and if amplifier circuits; oscillator, mixer, and converter circuits; and low-level video-amplifier circuits in industrial and military equipment. It is used in the design of rf circuits

having high input-circuit efficiency, excellent operating stability, good automatic-gain-control capabilities over a wide range of input-signal levels, and good signal-to-noise ratio. The drift-field construction provides low base resistance and collector-transition capacitance, and improves performance at high frequencies. A fourth lead internally connected to the metal case provides integral shielding which minimizes interlead capacitance and coupling to adjacent circuit components. JEDEC No. TO-33 package; outline 13, Outlines Section. This type is electrically identical with type 2N1023 except for the collector-characteristic curves, which are the same as for type 2N1395, and **a** higher common-emitter small-signal forward current-transfer ratio of 90.

POWER TRANSISTOR

2N1412

2N1397

Germanium p-n-p type used in a wide variety of switching and amplifier applications in industrial and military equipment requiring transistors having high voltage, current, and dissipation values. It is used in power-switching, voltage- and current-regulating, dc-to-dc converter, inverter, power-supply, and relay- and solenoid-actuating circuits; and in low-frequency oscillator and audio-amplifier service. This type is designed to provide satisfactory performance under extreme environmental conditions of temperature, moisture, and altitude; it is stud-mounted to provide positive heat-sink contact, and has a cold-weld seal to insure reliable performance under severe environmental conditions. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is identical with type 2N174 except for the collector-characteristics curves, which are the same as for type 2N1100, and the following items:

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter-to-base volts = -1.5) Emitter-to-Base Voltage (with collector open)		volts volts
CHARACTERISTICS		
Collector-to-Emitter Breakdown Voltage (with base short- circuited to emitter and collector amperes $= -0.3$) Emitter-to-Base Voltage (with collector-to-base volts $= -80$	—80 min	volts
and emitter current $= 0$	-1 max	volt
Collector-to-Emitter Reach-Through Voltage Collector-Cutoff Current (with collector-to-base volts = -100	~100 min	volts
and emitter current $= 0$	2	ma
	_	

2N1425

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of medium-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-todc converter, inverter, chopper, sole-

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance, JEDEC No. TO-5 package: outline 6. Outlines Section. This type is identical with type 2N1482 except for the following:

MAXIMUM RATINGS

28

In Common-Emitter Circuit		
(with collector ma \simeq 50 and base current $=$ 0)	40 min	volts
volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage	60 min	volts
CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base		
With base open	60 max 40 max	volts volts
Collector-to-Base Voltage (with emitter open)	60 max	volts

Common-Emifter Circuit

DC Forward Current-Transfer Ratio		
(with collector-to-emitter volts = 4 and collector $ma = 400$)	20 to 60	
DC Collector-to-Emitter Saturation Resistance		
(with collector $ma = 200$ and base $ma = 20$)	7 max	ohms

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of medium-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-todc converter, inverter, chopper, sole-

2N1480

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits, and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-5 package: outline 6. Outlines Section. This type is identical with type 2N1482 except for the following items:

CHARACTERISTICS

(2) **B**

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts = 4 and collector ma = 200) DC Collector-to-Emitter Saturation Resistance	20 to 60	
(with collector ma = 200 and base ma = 20) \dots	7 max	ohms

2N1450

2N1426

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of medium-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-todc converter, inverter, chopper, sole-

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1482 except for the following items:

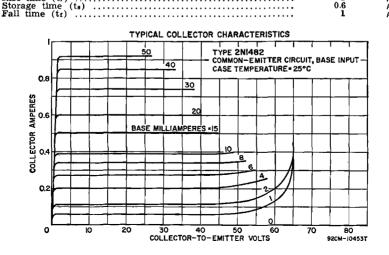
MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage: With emitter-to-base volts = 1.5 With base open	60 max 60 max 40 max	volts volts volts
CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage (with collector ma = 50 and base current = 0)	60 min 40 min	volts volts

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of medium-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-todc converter, inverter, chopper, sole-

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class b push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-5 package; outline 6, Outlines Section.


MAXIMUM RATINGS

2N1482

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	100 max	volts
With emitter-to-base volts $= 1.5$	100 max	volts
With base open	55 max	volts
With base open Emitter-to-Base Voltage (with collector open)	12 max	volts
Collector Current	1.5 max am	
Emitter Current	1.75 max am	peres
Base Current	1 max an	npere
Transistor Dissipation:	_	
At case temperatures up to 25°C At case temperatures above 25°C	5 max	
	See curve pa	ge 80
Temperature Range:		
Operating (junction) and Storage	-65 to 200	°C
Operating (junction) and Storage CHARACTERISTICS	65 to 200	۰C
Operating (junction) and Storage	-65 to 200	۰C
Operating (junction) and Storage CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base	-65 to 200	Ũ
Operating (junction) and Storage CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage		°C volts
Operating (junction) and Storage CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage (with collector ma = 50 and base current = 0)		Ũ
Operating (junction) and Storage CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage (with collector ma = 50 and base current = 0) Base-to-Emitter Voltage (with collector-to-emitter volts = 4	100 min 55 min	volts volts
Operating (junction) and Storage CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage (with collector ma = 50 and base current = 0) Base-to-Emitter Voltage (with collector-to-emitter volts = 4 and collector ma = 200)	100 min	volts
Operating (junction) and Storage CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage (with collector ma = 50 and base current = 0) Base-to-Emitter Voltage (with collector-to-emitter volts = 4 and collector ma = 200) Collector-Cutoff Current (with collector-to-base volts = 30	100 min 55 min 3 max	volts volts volts
Operating (junction) and Storage CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage (with collector ma = 50 and base current = 0) Base-to-Emitter Voltage (with collector-to-emitter volts = 4 and collector ma = 200) Collector-Cutoff Current (with collector-to-base volts = 30 and emitter current = 0)	100 min 55 min	volts volts
Operating (junction) and Storage CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage (with collector ma = 50 and base current = 0) Base-to-Emitter Voltage (with collector-to-emitter volts = 4 and collector ma = 200) Collector-Cutoff Current (with collector-to-base volts = 30	100 min 55 min 3 max	volts volts volts

Technical Data

Thermal Resistance: Junction-to-case 35 max °C/watt Junction-to-ambient 200 max °C/watt 200 max °C/watt Thermal Time Constant 10 msec msec	ŧ
In Common-Base Circuit	
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 28 and collector ma = 5)1.5McCollector-to-Base Capacitance (with collector-to-base volts = 40 and emitter current = 0)150pd	
In Common-Emitter Circuit	
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 4 and collector ma = 400) 35 to 100 Small-Signal Forward Current-Transfer Ratio (with collector-to-emitter volts = 4 and collector ma = 5) 50 DC Collector-to-Emitter Saturation Resistance (with collector ma = 200 and base ma = 10) 7 max	5
TYPICAL BASE MILLIAMPERES TYPE 2N1482 COMMON-EMITTER CIRCUIT, BASE INPUT COMMON-EMITTER CIRCUIT, BASE INPUT COMMON-EMITTER VOLTS * 4 CURVE CASE TEMPERATURE=°C 200 30	F 1
TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT ABOVE DC Collector Supply Voltage (Vcc) 12 voltage DC Base Supply Voltage (Vss) -8.5 voltage On DC Collector Current (Ia) 200 max Turn-Off DC Base Current (Is1) 20 max Switching Time: -8.5 max Delay time (ta) 0.2 µsee Storage time (ta) 0.6 µsee	s s a a c c c

215

Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-todc converter, inverter, chopper, sole-

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-8 package; outline 8, Outlines Secton. This type is identical with type 2N1486 except for the following:

MAXIMUM RATINGS

2N1483

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage: With emitter-to-base volts = 1.5 With base open	60 max 60 max 40 max	volts volts volts
CHARACTERISTICS		

volts = 1.5 and collector ma = 0.25)	60 min	volts
Collector-to-Emitter Sustaining Voltage (with collector ma = 100 and base current = 0)	40 min	volts

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts = 4 and collector ma = 750)	20 to 60	
DC Collector-to-Emitter Saturation Resistance (with collector $ma = 750$ and base $ma = 75$)	2.67 max	ohms
$ma = 100 \text{ and } \text{ base } ma = 107 \dots 107 \dots 107$		<i>Q₁, 1, 1, 1, 1, 1, 1, 1, 1</i>

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-todc converter, inverter, chopper, sole-

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-8 package; outline 8, Outlines Section. This type is identical with type 2N1486 except for the following:

CHARACTERISTICS

2N1484

In Common-Emitter Circuit

 DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 4 and collector ma = 750)
 20 to 60

 DC Collector-to-Emitter Saturation Resistance (with collector ma = 750 and base ma = 75)
 20 to 60

Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-todc converter, inverter, chopper, sole-

2N1485

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-8 package; outline 8, Outlines Section. This type is identical with type 2N1486 except for the following:

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage: With emitter-to-base volts = 1.5 With base open	60 max 60 max 40 max	volts volts volts
CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base	2 0 1	- 14
volts = 1.5 and collector ma = 0.25) Collector-to-Emitter Sustaining Voltage (with collector ma = 100 and base current = 0)	60 min 40 min	volts volts

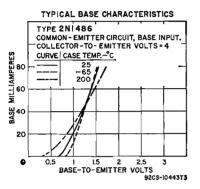
POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-todc converter, inverter, chopper, sole-

2N1486

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It feaures low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-8 package; outline 8, Outlines Section.

MAXIMUM RATINGS

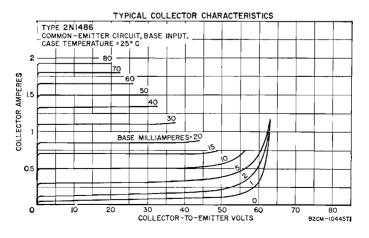

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	100 max	volts
With emitter-to-base volts $= 1.5$		volts
With base open Emitter-to-Base Voltage (with collector open)		volts volts
Collector Current	3 max am	peres
Emitter Current		
Transistor Dissipation:	95 m e m	
At case temperatures up to 25°C At case temperatures above 25°C	25 max See curve pa	
Temperature Range: Operating (junction) and storage	-65 to 200	°C
CHARACTERISTICS		
Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.25)	100 min	volts
Collector-to-Emitter Sustaining Voltage (with collector		volts
ma = 100 and base current $= 0$) Base-to-Emitter Voltage (with collector-to-emitter volts $= 4$	11111 66	voits


Base to -Entited Voltage (white collector-to-entitlet Voltage 13.5 max voltsand collector matrix3.5 max voltsCollector-Cutoff Current (with collector-to-base volts = 30
and emitter current = 0)15 max μa Emitter-Cutoff Current (with emitter-to-base volts = 12 and
collector current = 0)15 max μa

Thermal Resistance: Junction-to-case Junction-to-ambient Thermal Time Constant	7 max 100 max 10	°C/watt °C/watt msec
In Common-Base Circuit		
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 28 and collector ma = 5) Collector-to-Base Capacitance (with collector-to-base	1.25	Mc
volts = 40 and emitter current = 0) \dots	175	pf

In Common-Emitter Circuit

volts = 4 and collector ma =		35 to 100	
Collector-to-Emitter Saturation $ma = 750$ and base $ma = 40$)	Resistance (with collector	1 max	ohm



 $\begin{array}{l} V_{BB} = 8.5 \ volts \\ V_{CC} = 12 \ volts \\ R_1 = 50 \ ohms, \ 1 \ watt \\ R_2 = 220 \ ohms, \ 1 \ watt \\ R_3 = 15.9 \ ohms, \ 2 \ watts \end{array}$

TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT ABOVE

-	
12	volts
	volts
	ohms
	ma
	ma
35	ma
0.2	μsec
1	μsec
	µsec
1.1	μsec
	$ \begin{array}{r} 12 \\ -8.5 \\ 50 \\ 750 \\ 65 \\ -35 \\ 0.2 \\ 1 \\ 0.8 \\ \end{array} $

Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chopper, solenoid

2N1487

and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. Package is similar to JEDEC No. TO-3; outline 23, Outlines Section. This type is identical with type 2N1490 except for the following:

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage: With emitter-to-base volts = 1.5 With base open	60 max 60 max 40 max	volts volts volts
CHARACTERISTICS Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.5) Collector-to-Emitter Sustaining Voltage (with collector ma = 100 and base current = 0) In Common-Emitter Circuit	60 min 40 min	volts volts

	15 to 45	
DC Collector-to-Emitter Saturation Resistance (with collector		
amperes $= 1.5$ and base ma $= 300$)	2 max	ohms

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chopper, solenoid

2N1488

and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. Package is similar to JEDEC No. TO-3; outline 23, Outlines Section. This type is identical with type 2N1490 except for the following:

CHARACTERISTICS

In Common-Emitter Circuit

 DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 4 and collector amperes = 1.5)
 15 to 45

 DC Collector-to-Emitter Saturation Resistance (with collector amperes = 1.5 and base ma = 300)
 2 max
 ohms

Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chopper, solenoid

and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. Package is similar to JEDEC No. TO-3; outline 23, Outlines Section. This type is identical with type 2N1490 except for the following:

MAXIMUM RATINGS

2N1489

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	60 max	volts
With base open	60 max 40 max	volts volts
CHARACTERISTICS		
Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.5) Collector-to-Emitter Sustaining Voltage (with collector ma = 100	6 0 min	volts
and base current = 0) \dots	4 0 min	volts

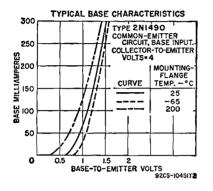
POWER TRANSISTOR

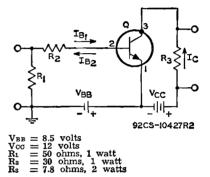
2N1490

Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chopper, solenoid

and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. Package is similar to JEDEC No. TO-3; outline 23, Outlines Section.

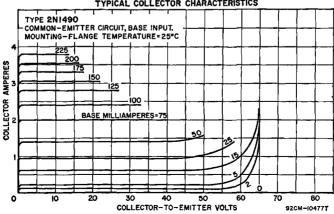
MAXIMUM RATINGS


Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage: With emitter-to-base volts = 1.5 With base open Emitter-to-Base Voltage (with collector open) Collector Current Base Current Transistor Dissipation: At mounting-fiange temperatures up to 25°C	100 max volts 55 max volts 10 max volts 6 max amperes 3 max amperes 3 max amperes 75 max watts
At mounting-flange temperatures above 25°C Temperature Range: Operating (junction) and storage	See curve page 80
CHARACTERISTICS	
Collector-to-Emitter Breakdown Voltage (with emitter-to-base	
volts = 1.5 and collector ma = 0.5) Collector-to-Emitter Sustaining Voltage (with collector ma = 100	100 min volts
and base current = 0) Base-to-Emitter Voltage (with collector-to-emitter volts = 4	55 min volts
and collector amperes $= 1.5$. 3.5 max volts
Collector-Cutoff Current (with collector-to-base volts = 30 and emitter current = 0)	, 2 5 max μ a
Emitter-Cutoff Current (with emitter-to-base volts = 10 and collector current = 0)	. 25 max μa
Thermal Tesistance: Junction-to-mounting-flange Thermal Time Constant	2.33 max °C/watt


In Common-Base Circuit

Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 12 and collector ma = 100).	1	Me
Collector-to-Base Capacitance (with collector-to-base volts $= 40$ and emitter current $= 0$)	200	pf

In Common-Emitter Circuit


DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts $= 4$ and collector amperes $= 1.5$)	25 to 75	
Collector-to-Emitter Saturation Resistance (with collector		
amperes = 1.5 and base $ma = 300$)	0.67 max	ohm

TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT ABOVE

DC Collector Supply Voltage (Vcc) DC Base Supply Voltage (Vbb) Generator Resistance On DC Collector Current (Ic) Turn-On DC Base Current (Ibi) Turn-Off DC Base Current (Ibi)	12 8.5 50 1.5 300 150	volts ohms ma ma ma
Switching Time: Delay time (ta) Rise time (ta) Storage time (ta) Fall time (tr)	0.2 1 1 1.2	μsec μsec μsec μsec

TYPICAL COLLECTOR CHARACTERISTICS

TRANSISTOR

Silicon n-p-n type used in a wide variety of high-frequency and vhf applications in industrial and military equipment. It is used in large-signal power-amplifier, videoamplifier, oscillator, and mixer cir-

cuits over a wide temperature range. This type can also be used in switching service in circuits requiring transistors having high voltage, current, and dissipation values. JEDEC No. TO-39 package; outline 32, Outlines Section. This type is identical with type 2N1493 except for the following items:

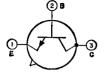
MAXIMUM RATINGS

2N1491

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with emitter-to-base volts = 0.5) Emitter-to-Base Voltage (with collector open)	30 max 30 max 1 max	volts volts volt
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0)	30 min	volts
In Common-Base Circuit		
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 30 and collector ma = 15)	2 50	Me
In Common-Emitter Circuit		
Power Gain at 70 Mc (with collector-to-base volts = 20, emitter ma = -15 , and power output = 10 mw)	15	db

TRANSISTOR

Silicon n-p-n type used in a wide variety of high-frequency and vhf applications in industrial and military equipment. It is used in large-signal power-amplifier, videoamplifier, oscillator, and mixer cir-

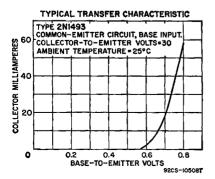

cuits over a wide temperature range. This type can also be used in switching service in circuits requiring transistors having high voltage, current, and dissipation values. JEDEC No. TO-39 package; outline 32, Outlines Section. This type is identical with type 2N1493 except for the following items:

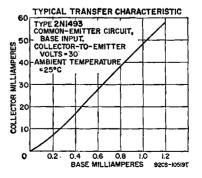
MAXIMUM RATINGS

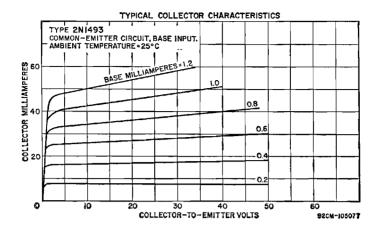
2N1492

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with emitter-to-base volts = 0.5) Emitter-to-Base Voltage (with collector open)	60 max 60 max 2 max	volts volts volts
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector ma $= 0.1$ and emitter current $= 0$)	6 0 min	volts
In Common-Base Circuit		
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 30 and collector ma = 15)	275	Mc
In Common-Emitter Circuit		
Power Gain at 70 Mc (with collector-to-base volts = 30, emitter ma = -15, and power output = 100 mw)	15	db

TRANSISTOR


Silicon n-p-n type used in a wide variety of high-frequency and vhf applications in industrial and military equipment. It is used in large-signal power-amplifier, videoamplifier, oscillator, and mixer cir-


2N1493


cuits over a wide temperature range. This type can also be used in switching service in circuits requiring transistors having high voltage, current, and dissipation values. JEDEC No. TO-39 package; outline 32, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with emitter-to-base volts = 0.5) Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Transistor Dissipation:	4.5 max 50 max —50 max	volts volts volts ma ma
At case temperatures up to 25°C At ambient temperatures up to 25°C At case or ambient temperatures above 25°C Temperature Range: Operating (junction) and storage		watts watt page 80 °C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = 0.5	100 min	volts
and collector current $= 0$ Collector-Cutoff Current (with collector-to-base volts $= 12$	100 max	μa
and emitter current = 0)	10 max	μa
Junction-to-case	50 max '	'C /watt
In Common-Base Circuit		
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 30 and collector ma = 15) Collector-to-Base-and-Stem Capacitance (with collector-to-base volts = 30 and emitter current = 0)	300	Mc pf
In Common-Emitter Circuit		-
Small-Signal Forward Current-Transfer Ratio:		
With collector-to-emitter volts = 20, collector ma = 15, and frequency = 1 kilocycle	50	
and frequency = 1 kilocycle With collector-to-emitter volts = 30, collector ma = 15, and frequency = 100 Mc	50 1.8	
and frequency = 1 kilocycle		đb
and frequency = 1 kilocycle	1.8	đb db

2N1511

2N1512

Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chopper, solenoid

and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. This type is studmounted to provide positive heat-sink contact and has a cold-weld seal. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is electrically identical with type 2N1487.

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chopper, solenoid

and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. This type is studmounted to provide positive heat-sink contact and has a cold-weld seal. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is electrically identical with type 2N1488.

Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chopper, solenoid

and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. This type is studmounted to provide positive heat-sink contact and has a cold-weld seal. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is electrically identical with type 2N1489.

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power switching, dc-to-dc converter, inverter, chopper, solenoid

and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. This type is studmounted to provide positive heat-sink contact and has a cold-weld seal. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is electrically identical with type 2N1490.

TRANSISTOR

Germanium p-n-p type used in intermediate-frequency amplifier applications in battery-operated AM portable radio receivers. JEDEC No. TO-1 package; outline 4, Outlines Section.

MAXIMUM RATINGS

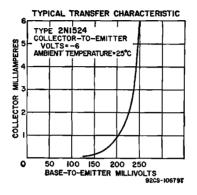
Junction-to-ambient

(2)**B**

CHARACTERISTICS Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -0.5 and collector $\mu a = -50$) Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0) -16 max	Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Transistor Dissipation: At ambient temperatures up to 25°C At ambient temperature of 55°C At ambient temperature of 71°C Ambient-Temperature Range:	24 max 0.5 max 10 max 10 max 80 max 50 max 23 max	volts volt ma ma mw mw
Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -0.5 and collector $\mu a = -50$)	Operating and Storage	-65 to 85	°C
volts = -0.5 and collector $\mu a = -50$)			
and emitter current = 0	•••••••••		
	Collector-to-Base Breakdown Voltage (with emitter-to-base volts $= -0.5$ and collector $\mu a = -50$)	24 min	volts
	Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -0.5 and collector $\mu a = -50$) Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0)		
and collector current = 0)	Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -0.5 and collector $\mu a = -50$) Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -0.5	-16 max	μa

2N1513

2N1524


°C/mw

0.4

2N1514

In Common-Base Circuit

Collector-to-Base Capacitance (with collector-to-base volts $= -12$, emitter current $= 0$, and frequency $= 455$ kilocycles) Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency	3.6 max	pf
(with collector-to-base volts = -12 , collector ma = -1 , and frequency = 1 kilocycle)	33	Mc

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio (with collector- to-emitter volts $= -6$, collector ma $= 1$, and frequency $= 1$		
kilocycle) Power Gain (with collector-to-emitter volts = -5.7 , emitter	17 min	
ma = 1, and frequency = 1 kilocycle)	$51 \max$	đb

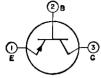
TYPICAL OPERATION IN SINGLE-STAGE 455-KC AMPLIFIER CIRCUIT

DC Collector-Supply Voltage DC Collector-to-Emitter Voltage Collector Current Input Resistance Output Resistance Collector-to-Base Capacitance Maximum Power Gain	$\begin{array}{r}6 \\ -5.7 \\1 \\ 1300 \\ 0.31 \\ 2.2 \\ 51 \end{array}$	$\begin{array}{r} -9\\ -8.5\\ -1\\ 1350\\ 0.415\\ 2.1\\ 52.4\end{array}$	$-12 \\ -11 \\ -1 \\ 1550 \\ 0.525 \\ 2 \\ 54.4$	volts volts ma ohms megohm pf db
In neutralized circuit	33	33	33	db
In uneutralized circuit	29.7	30	30.2	db

TYPICAL OPERATION IN TWO-STAGE 455-KC AMPLIFIER CIRCUIT

DC Collector-Supply Voltage .	-6	-6	-9	—9	-12	12	volts
DC Collector-to-Emitter Voltage Collector Current Input Resistance Output Resistance Collector-to-Base Capacitance Maximum Power Gain Useful Power Gain: In neutralized circuit	$\begin{array}{r} -5.7 \\ -1 \\ 1300 \\ 0.31 \\ 2.2 \\ 50.9 \\ 31.2 \\ 28.1 \end{array}$	5.7 0.65 2100 0.49 2.2 51.3 30 26.6	$\begin{array}{r}8.5 \\1 \\ 1350 \\ 0.415 \\ 2.1 \\ 52.4 \\ 31.2 \\ 28.2 \end{array}$	8.5 0.65 2200 0.65 2.1 52.8 30 26.7	$-11 \\ -1 \\ 1550 \\ 0.525 \\ 2 \\ 54 \\ 31.2 \\ 31.2 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ $	11 0.65 2500 0.82 2 54.3 30 26.8	volts ma ohms megohm db db db
In unneutralized circuit	20.1	20.0	40.4	40.1	28.3	20-0	œ

TRANSISTOR


Germanium p-n-p type used in intermediate-frequency amplifier applications in battery-operated AM portable radio receivers. JEDEC No. TO-40 package; outline 15, Outlines Section. This type is electrically

identical with type 2N1524.

2N1525

TRANSISTOR

Germanium p-n-p type used in converter (mixer-oscillator) applications in battery-operated portable radio receivers. In a common-emitter circuit, this type is capable of providing a useful conversion power

2N1526

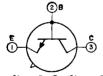
gain of 34.5 db. JEDEC No. TO-1 package; outline 4, Outlines Section. This type is identical with type 2N1524 except for the following items:

CHARACTERISTICS

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio (with collector- to-emitter volts $= 5.7$, emitter ma $= 1$, and frequency $= 1$		
kilocycle) Power Gain (with collector-to-emitter volts = -5 , emitter	130	
Power Gain (with collector-to-emitter voits $=$ - 5, emitter ma = 0.65, and frequency = 1.5 Mc)	44.2	đb
TYPICAL OPERATION IN SELF-EXCITED 1.5-MC CONVERTER	CIRCUIT	

DC Collector-Supply Voltage DC Collector-to-Emitter Voltage DC Collector Current Input Resistance Output Resistance RMS Base-to-Emitter Oscillator-Injection Voltage Conversion Power Gain:		9 8 0.65 1950 0.28 100	-12 -11 -0.65 2150 0.48 100	volts volts ma ohms megohm mv
Maximum available	44.2	46 1	48.9	đb
Useful	34.2	34.5	35-8	db


TRANSISTOR

Germanium p-n-p type used in converter (mixer-oscillator) applications in battery-operated AM portable radio receivers. This type is electrically identical with type 2N1526.

2N1527

TRANSISTOR

Germanium n-p-n type used in medium-speed switching applications in data-processing equipment. These transistors are n-p-n complements of the p-n-p types 2N404 and 2N404A. JEDEC No. TO-5 package;

5 31 1 CMM

2N1605 2N1605A

outline 6, Outlines Section.

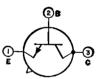
MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open).	2N 1605 25 max	$\frac{2N1605A}{40 \max}$	volts
Collector-to-Emitter Voltage (with base-to-	Domas	40 111012	•0105
emitter volts $= -1$)	24 max	$40 \max$	volts
Emitter-to-Base Voltage (with collector open) .	12 max	12 max	volts
Collector Current	1 00 max	100 max	ma
Emitter Current	-100 max	—100 max	ma
Transistor Dissipation:			
At ambient temperatures up to 25°C	150 max	200 max	mw
At ambient temperatures above 25°C	See cur	ve page 80	
Ambient Temperature Range:			
Operating and storage		65 to 100	°C
Lead Temperature (for 10 seconds maximum)	235 max	235 max	°C

	2N1605	2N1605A	
Collector-to-Emitter Saturation Voltage:			
With collector ma $= 12$ and base ma $= 0.4$	0.15 max	0.15 max	volt
With collector ma $= 24$ and base ma $= 1$	0.2 max	0.2 max	volt
Base-to-Emitter Voltage:			
With collector ma $= 12$ and base ma $= 0.4$	0.35 max	0.35 max	volt
With collector ma $= 24$ and base ma $= 1$	0.4 max	0.4 max	volt
Collector-Cutoff Current:			
With collector-to-base volts $= 12$ and			
emitter current $= 0$	5 max	—	μ B
With collector-to-base volts $= 40$			•
and emitter current $= 0$	—	$10 \max$	μ8ι
Total Stored Charge (with collector-to-base			
volts = 5.25, collector ma = 10, and base			
ma = 1)	1400	14 00 max	pcoul

In Common-Base Circuit

Collector-to-Base Capacitance (with collector-	2N1605	2N1605A	
to-base volts = 6 and collector current = 0) Forward-Current-Transfer-Ratio Cutoff	20 max	$20 \max$	pf
Frequency (with collector-to-base volts $= 6$ and emitter current $= 1$)	4 min	4 min	Mc


In Common-Emitter Circuit

Forward Current-Transfer Ratio:		
With collector-to-emitter volts = 0.15 and collector ma = 12	30 min	30 min
With collector-to-emitter volts $= 0.2$ and	•	
collector ma $= 24$ With collector-to-emitter volts $= 0.25$ and	24 min	24 min
collector ma = 20	40 min	40 min

TRANSISTOR

2N1613

Silicon n-p-n type used in a wide variety of small-signal and medium-power applications in industrial and military equipment. It can be used in rf service as an amplifier, mixer, oscillator, and con-

verter; in af service for small- and large-signal driver and power applications; in switching service for high-speed switching circuits requiring transistors having high voltage, high dissipation, high pulse beta, low output capacitance, and exceptionally low noise and leakage characteristics. JEDEC No. TO-5 package; outline 6, Outlines Section. For curve of typical transfer characteristics, refer to type 2N2102.

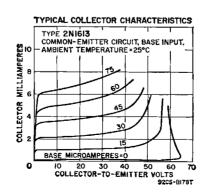
MAXIMUM RATINGS

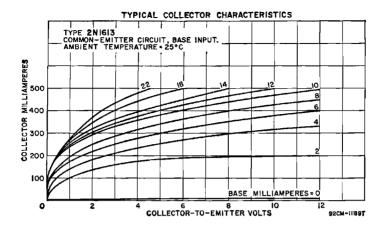
Collector-to-Base Voltage (with emitter open)	75 max	volts
Collector-to-Emitter Voltage (with external base-to-emitter		
resistance = 10 ohms or less)	50 max	volts
Emitter-to-Base Voltage (with collector open)	7 max	volts
Collector Current		ampere
Transistor Dissipation:	1 max	ampere
At case temperatures up to 25°C	3 max	watts
At ambient temperatures up to 25°C	0.8 max	
At case or ambient temperatures above 25°C		
	See curve	page ou
Temperature Range:	05 4- 000	20
Operating (junction)	-65 10 200	င်္ဂငံ
Storage	-65 10 300	
Lead Temperature (for 19 seconds maximum)	255 max	ւ
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage		
(with collector ma = 0.1 and emitter current = 0)	75 min	volts
Emitter-to-Base Breakdown Voltage	15 11111	VUILS
(with emitter ma = 0.25 and collector current = 0)	7 min	volts
	4 1000	VUIUS
Collector-to-Emitter Reach-Through Voltage	75 min	volts
(with emitter-to-base volts = 1.5 and collector ma = 0.1)	15 mm	vorus

Technical Data

Collector-to-Emitter Sustaining Voltage (with external base- to-emitter resistance = 10 ohms or less and collector ma = 100)	50 min	volts
Base-to-Emitter Saturation Voltage 100 mins of less and conector ma $= 100$	20 1111	VOIUS
(with collector ma = 150 and base ma = 15) \dots	1.3 max	volts
Collector-to-Emitter Saturation Voltage (with collector ma = 150 and base ma = 15)	1.5 max	volts
Collector-Cutoff Current (with collector-to-base volts = 60 and emitter current = 0)	0.01 max	μa
Emitter-Cutoff Current (with emitter-to-base volts = 5 and collector current = 0)	0.01 max	μa
Thermal Resistance:	58.3 max °(
Junction-to-case	219 max °	

In Common-Base Circuit


Input Resistance at 1 kilocycle: With collector-to-base volts = 5 and collector ma = 1 With collector-to-base volts = 10 and collector ma = 5 Input Capacitance (with emitter-to-base volts = 0.5	24 to 34 4 to 8	ohms ohms
and collector current $= 0$	80 max	pf
Output Capacitance (with collector-to-base volts $= 10$		
and emitter current $= 0$	25 max	pf
Output Conductance at 1 kilocycle:		,
With collector-to-base volts = 5 and collector ma = 1	0.1 to 0.5	μmho
With collector-to-base volts = 10 and collector ma = 5	0.1 to 1	μmho
Small-Signal Open-Circuit Reverse Voltage-Transfer Ratio at		
1 kilocycle:		
With collector-to-base volts = 5 and collector ma = 1	0.0003 max	
With collector-to-base volts = 10 and collector ma = 5 \dots	0.0003 max	


In Common-Emitter Circuit

DC-Pulse Forward Current-Transfer Ratio:*		
With collector-to-emitter volts = 10 and collector ma = 150	40 to 120	
With collector-to-emitter volts = 10 and collector ma = 500 \dots	20 min	
DC Forward Current-Transfer Ratio:		
With collector-to-emitter volts = 10 and collector $ma = 0.1$	20 min	
With collector-to-emitter volts = 10 and collector ma = 10	35 min	
Small-Signal Forward Current-Transfer Ratio:		
With collector-to-emitter volts $= 5$, collector ma $= 1$,		
and frequency = 1 kilocycle	30 to 100	
With collector-to-emitter volts $= 10$, collector ma $= 5$,		
and frequency = 1 kilocycle	35 to 150	
With collector-to-emitter volts = 10, collector ma = 50, \dots		
and frequency = 20 Mc	3 min	
Noise Figure (with collector-to-emitter volts $=$ 10, collector ma		
= 0.3, generator resistance $= 1000$ ohms, circuit bandwidth		-
= 15 kilocycles, and signal frequency $= 1$ kilocycle)	$12 \max$	đb
Total Switching Time [†] (delay time plus rise time plus fall time)	30 max	nsec

* Pulse duration = 300 μ sec; duty factor = 0.018.

† Refer to type 2N2102 for Total-Switching-Time Measurement Circuit.

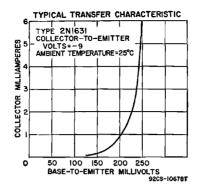
TRANSISTOR

Germanium p-n-p type used in radio-frequency amplifier applications in battery-operated AM portable radio receivers. In an unneutralized rf amplifier circuit, this type can provide a power gain of 25.6 db

at 1.5 megacycles. JEDEC No. TO-40 package; outline 15, Outlines Section.

MAXIMUM RATINGS

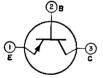
Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open) Collector Current Emitter Current Transistor Dissipation:	34 max 0.5 max 10 max 10 max	volts volt ma ma
At ambient temperatures up to 25°C	80 max	mw
At ambient temperature of 55°C	50 max	mw
At ambient temperature of 71°C	35 max	mw
Ambient-Temperature Range:	00 1111.4	111 **
Operating Storage	—65 to 71 —65 to 85	°C °C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $\mu a = -50$ and emitter current = 0)	34 min	volts
Collector-to-Base Breakdown Voltage (with collector $\mu a = -50$ and emitter current = 0) Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0)	—34 min —16 max	volts µa
Collector-to-Base Breakdown Voltage (with collector $\mu a = -50$ and emitter current = 0) Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -0.5 and collector current = 0)	0.0.000	
Collector-to-Base Breakdown Voltage (with collector $\mu a = -50$ and emitter current = 0) Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -0.5	16 max	μ a μa


In Common-Base Circuit

Small-Signal Forward Current-Transfer Ratio (with collector- to-base volts = -12 , collector ma = -1 , and frequency		
= 1 kilocycle)	0.987	
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = -12 and collector ma = -1)	45	Me

In Common-Emitter Circuit

DC Forward Current-Transfer	Ratio (with collector-to-emitter	
volts = -12 , collector ma =	- 1, and frequency $= 1$ kilocycle)	80


Technical Data

TYPICAL OPERATION

DC Collector-Supply Voltage	6	-9	12	volts
DC Collector-to-Emitter Voltage	6 5.7		11	volts
DC Collector Current	-1	—1	-1	ma
Signal Frequency	1.5	1.5	1.5	Mc
Input Resistance (with ac output circuit shorted) .	520	750	1000	ohms
Output Resistance (with ac input circuit shorted) .	0.065	0.11	0.18	megohm
Extrinsic Transconductance	36000	36000	36000	μ mhos
Collector-to-Base Capacitance	2.2	2.1	2	pf
Maximum Power Gain	40.4	44.3	47.7	db
Useful Power Gain:				
In unneutralized circuit	25.3	25.5	25.6	db

TRANSISTOR

Germanium p-n-p type used in radio-frequency amplifier applications in battery-operated AM portable radio receivers. In an unneutralized rf amplifier circuit, this type can provide a power gain of 25.6 db

2N1632

at 1.5 megacycles. JEDEC No. TO-1 package; outline 4, Outlines Section. This type is electrically identical with type 2N1631.

See List of Discontinued Transistors at end Technical Data Section for abbreviated data.	of	2N1633
See List of Discontinued Transistors at end Technical Data Section for abbreviated data.	of	2N1634
See List of Discontinued Transistors at end Technical Data Section for abbreviated data.	of	2N1635
See List of Discontinued Transistors at end Technical Data Section for abbreviated data.	of	2N1636

TRANSISTOR

Germanium p-n-p type used in
radio-frequency amplifier applica-
tions in AM automobile radio re-
ceivers. In an unneutralized circuit,
this type is capable of providing a
useful power gain of 25.6 db at 1

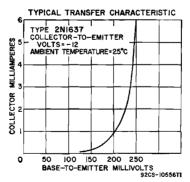
80

megacycle. JEDEC No. TO-1 package; outline 4, Outlines Section.

MAXIMUM RATINGS

2N1637

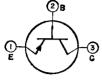
Collector-to-Base Voltage (with emitter open) Emitter-to-Base Voltage (with collector open)		volts volts
Collector Current	-10 max	ma
Emitter Current	10 max	ma
Transistor Dissipation:	ro mux	1114
At ambient temperatures up to 25°C	80 max	mw
At ambient temperature of 55°C At ambient temperature of 71°C	50 max	mw
At ambient temperature of 71°C	35 max	mw
Ambient-Temperature Range:	55 max	111 W
Operating	-65 to 71	**
Creating		°C °C
Storage	—65 to 85	-C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage		
(with collector $\mu a = -50$ and emitter current = 0)	-34 min	volts
Collector-Cutoff Current (with collector-to-base volts $= -12$		VULOS
and emitter current $= 0$	E more	
Emitter-Cutoff Current (with emitter-to-base volts = -1.5	$-5 \max$	μa
$c_{\rm min}$ contrast (with emitter-to-base voits $\equiv -1.5$	4	_
and collector current $= 0$)	-15 max	μa


Thermal Resistance:			
	· · · · · · · · · · · · · · · · · · ·	0.4 max	°C/mw

In Common-Base Circuit

Small-Signal Forward Current-Transfer Ratio (with collector-to-		
base volts = -12 , collector ma = -1 , and frequency		
= 1 kilocycle) Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency	0.987	
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency		
(with collector-to-base volts $= -12$ and collector ma $= -1$).	45	Mc
Collector-to-Base Capacitance	2	pf

In Common-Emitter Circuit


DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -12 and collector ma = -1)

TYPICAL OPERATION

DC Collector-to-Emitter Voltage	5.5	-11.2	volts
DC Collector Current	1	1	ma
Signal Frequency	1.5	1.5	Mc
Input Resistance (with ac output circuit shorted)	520	1000	ohms
Output Resistance (with ac input circuit shorted)	0.065	0.18	megohm
Maximum Power Gain	40.4	47.7	db
Maximum Useful Power Gain:			
In unneutralized circuit	25.3	25.6	db

TRANSISTOR

Germanium p-n-p type used in 262.5-kilocycle or 455-kilocycle intermediate-frequency amplifier applications in AM automobile radio receivers. In an unneutralized circuit, this type is capable of provid-

2N1638

ing a useful power gain of 36.6 db at 262.5 kilocycles. JEDEC No. TO-1 package; outline 4, Outlines Section. This type is identical with type 2N1637 except for the following:

MAXIMUM RATINGS

Emitter-to-Base Voltage (with collector open)	-0.5 max	volt
CHARACTERISTICS		
Collector-Cutoff Current (with collector-to-base volts $= -12$ and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= -0.5$	-7 ma x	μa
and collector current = 0)	-8 max	μa
In Common-Base Circuit		
Small-Signal Forward Current-Transfer Ratio (with collector-to- base volts = -12 , collector ma = -1 , and frequency	0.986	
= 1 kilocycle) Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-base volts = 12 and collector ma = -1)	40	Me
In Common-Emitter Circuit		
D C Forward Current-Transfer Ratio (with collector-to-emitter volts = -12 and collector ma = -1)	75	
TVDICAL ODEDATION IN SINCLE STACE 2625 KC AMPLIFIED	CIRCUIT	

TYPICAL UPERATION IN SINGLE-STAGE 202.3-NG	AWPLIFICK	CIRCUIT	
DC Collector-to-Emitter Voltage		$-11 \\ -2$	volts ma
Input Resistance	1800	1400	ohms
Output Resistance Maximum Power Gain	0.47 58.6	0.72 61.5	megohm db
Useful Power Gain: In unneutralized circuit	35	36.6	db

TRANSISTOR

Germanium p-n-p type used in converter (mixer-oscillator) applications in AM automobile radio receivers. In an unneutralized circuit, this type can provide a useful conversion power gain of 37 db at 1.5

2N1639

megacycles. JEDEC No. TO-1 package; outline 4, Outlines Section. This type is identical with type 2N1637 except for the following items:

MAXIMUM RATINGS

Emitter-to-Base Voltage (with collector open)	-0.5 max	volt
CHARACTERISTICS		
Collector-Cutoff Current (with collector-to-base volts = -12 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -0.5 and collector current = 0)	7 8	μa μa

In Common-Base Circuit

Small-Signal Forward Current-Transfer Ratio (with collector-to- base volts $= -12$, collector ma $= -1$, and frequency	
base volts = -12 , collector ma = -1 , and frequency	
= 1 kilocycle)	0.986

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-envolts = -12 and collector ma = -1)	mitter	75	
TYPICAL OPERATION DC Collector-to-Emitter Voltage DC Collector Current Signal Frequency Input Resistance Output Resistance at 252.5 kilocycles RMS Base-to-Emitter Oscillator-Injection Voltage Useful Conversion Power Gain	$\begin{array}{r} -5 \\ -0.65 \\ 1.5 \\ 1850 \\ 0.1 \\ 100 \\ 35.4 \end{array}$	$\begin{array}{r} -11 \\ -0.65 \\ 1.5 \\ 2200 \\ 0.2 \\ 100 \\ 37 \end{array}$	volts ma Mc ohms megohm mv db

TRANSISTOR

Germanium p-n-p type used in high-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section.

(2)**8**

MAXIMUM RATINGS

2N1700

Collector-to-Base Voltage (with emitter open)	—13 max	volts
Collector-to-Emitter Voltage (with base open)	-12 max	volts
Emitter-to-Base Voltage (with collector open)	-4 max	volts
Collector Current	100 max	ma
Emitter Current	100 max	ma
Transistor Dissipation:		
At ambient temperatures up to 25°C	150 max	
At ambient temperatures above 25°C	See curve	page 80
Ambient-Temperature Range:		
Operating and storage	65 to 85	o. S.
Operating and storage Lead Temperature (for 10 seconds maximum)	255 max	°C
CHARACTERISTICS		
Base-to-Emitter Voltage (with collector ma = -40 and base		
ma = -1	-0.6 max	volt
Collector-Cutoff Current (with collector volts $= -6$	010 111451	
and emitter current $= 0$	3 max	μ8ι
Total Stored Charge:	U IIIIII	,
With collector ma = -10 and base ma = -0.4	160 max	pcoul
With collector ma $=$ -40 and base ma $=$ -1.6	410 max	pcoul
	220 2200	P = 0

In Common-Base Circuit

Collector Capacitance (with	a collector-to-base volts $= -6$	
and emitter current $= 0$	•	12 max

In Common-Emitter Circuit

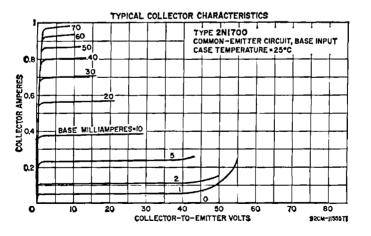
Forward Current-Transfer Ratio: With collector-to-emitter volts = -0.3 and collector ma = -10	50 min	
With collector-to-emitter volts = -0.5 and collector ma = -40	50 min	
Gain-Bandwidth Product (with collector-to-emitter volts $= -3$ and collector ma $= -10$)	50 min	Me

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of switching and amplifier applications in industrial equipment. It is used in power switching, dc-to-dc converter, inverter, chopper, and relay-control circuits; in

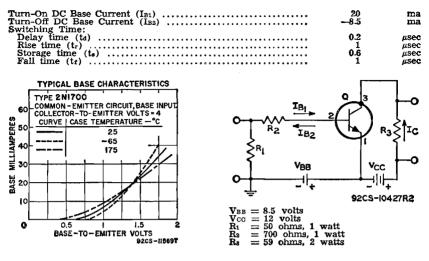
pf

oscillator, voltage- and current-regulator circuits; and in dc and servo amplifier circuits. JEDEC No. TO-5 package; outline 6, Outlines Section.


MAXIMUM RATINGS Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage: With emitter-to-base voltage With base open Emitter-to-Base Voltage Collector Current Base Current Transistor Dissipation: At case temperatures up to 25°C At case temperatures above 25°C	6 max 1 max 0.75 max 5 max See curve	volts volts volts ampere ampere watts page 80
Operating (junction) and storage	65 to 200 255 max	ိုင်
CHARACTERISTICS Collector-to-Emitter Breakdown Voltage		
(with emitter-to-base volts = 1.5 and collector ma = 0.5) Collector-to-Emitter Sustaining Voltage	60 min	volts
(with collector ma = 50 and base current = 0) Base-to-Emitter Voltage (with collector-to-emitter volts = 4)	40 min	volts
and collector ma = 100 Collector-Cutoff Current (with collector-to-base volts = 30	2 max	volts
and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = 6	75 max	μa
and collector current = 0)	25 max	μа
Junction-to-case Junction-to-ambient Thermal Time Constant	35 max 200 max 10	°C/watt °C/watt msec

In Common-Base Circuit

Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency		
(with collector-to-base volts $= 28$ and collector ma $= 5$)	1.2	Mc
Collector-to-Base Capacitance (with collector-to-base volts $= 40$		
and emitter current $= 0$	150	pf


In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts = 4 and collector ma = 100)	20 to 80	
Small-Signal Forward Current-Transfer Ratio		
(with collector-to-emitter volts = 4 and collector ma = 5) \dots	40	
DC Collector-to-Emitter Saturation Resistance		
(with collector ma = 100 and base ma = 10) $\dots \dots \dots \dots$	10 max	ohms

TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT

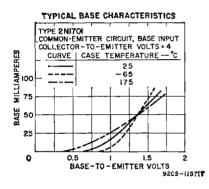
DC Collector Supply Voltage (Vcc)	12	volts
DC Base Supply Voltage (VBB)		volts
Generator Resistance	50	obms
On DC Collector Current (Ic)	200	ma

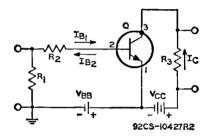
2N1701

Silicon n-p-n type used in a wide variety of switching and amplifier applications in industrial equipment. It is used in power-switching, dc-to-dc converter, inverter, chopper, and relay-control circuits; in

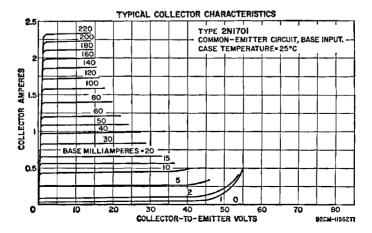
oscillator, voltage- and current-regulator circuits; and in dc and servo amplifier circuits. JEDEC No. TO-8 package; outline 8, Outlines Section.

MAXIMUM RATINGS


Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	60 max volt	3
With emitter-to-base volts $= 1.5$	60 max volt	
With base open Emitter-to-Base Voltage (with collector open)	40 max volt 6 max volt	
Collector Current	2.5 max ampere	3
Base Current	1 max ampere	,
At case temperatures up to 25°C At case temperatures above 25°C	25 max watt	
Temperature Range:	See curve page 8	
Operating (junction) and storage Lead Temperature (for 10 seconds maximum)	-65 to 200 °C 235 max °C	-
	200 max (•
CHARACTERISTICS		
Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts = 1.5 and collector ma = 0.75)	60 min volt	
Collector-to-Emitter Sustaining Voltage (with collector ma		
= 100 and base current = 0) Base-to-Emitter Voltage (with collector-to-base volts = 4	40 min volt	3
and collector ma = 300) Collector-Cutoff Current (with collector-to-base volts = 30)	3 max volt	3
Collector-Cutoff Current (with collector-to-base volts = 30 and emitter current = 0)	100 max #	,
Emitter-Cutoff Current (with emitter-to-base volts $= 6$		
and collector current $= 0$	50 max μ	1
Junction-to-case		
Junction-to-ambient	100 max °C/wat 10 mse	
Inernal Inte Constant	10 1126	


In Common-Base Circuit

Small-Signal Forward Current-Transfer-Ratio Cutoff Frequency		
(with collector-to-base volts = 28 and collector $ma = 5$)	1	Mc
Collector-to-Base Capacitance (with collector-to-base volts $= 40$		
and emitter current $= 0$	175	pf


In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 4 and collector ma = 300) DC Collector-to-Emitter Saturation Resistance (with collector ma = 300 and base ma = 30)	20 to 80 5 max	ohms
TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT BEL	.0W	
DC Collector Supply Voltage (Vcc)	12 8.5	volts
DC Base Supply Voltage (VBB)	-8.5	volts
Generator Resistance	50	ohms
On DC Collector Current (Ic)	750	ma
Turn-On DC Base Current (IB1)	20	ma
Turn-Off DC Base Current (IB2)	-8.5	ma
Switching Time:		
Delay time (ta)	0.2	µsec.
Rise time (t_r)	1	µsec
Storage time (t_{\bullet})	0.8	μsec
Fall time (tr)	1.1	μsec

VBB	\equiv	8.5 volts
		12 volts
\mathbf{R}_1	Ξ	50 ohms, 1 watt
R	=	220 ohms, 1 watt
R:	==	15.9 ohms, 2 watts

Silicon n-p-n type used in a wide variety of switching and amplifier applications in industrial equipment. It is used in power-switching, dc-to-dc converter, inverter, chopper, and relay-control circuits; in

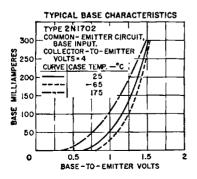
oscillator, voltage- and current-regulator circuits; and in dc and servo amplifier circuits. Package is similar to JEDEC No. TO-3; outline 23, Outlines Section.

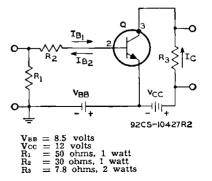
MAXIMUM RATINGS

2N1702

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	60 max volts
With emitter-to-base volts = 1.5 With base open	60 max volts 40 max volts
Emitter-to-Base Voltage (with collector open)	6 max volts 5 max amperes
Base Current Transistor Dissipation:	2.5 max amperes
At mounting-flange temperatures up to 25°C At mounting-flange temperatures above 25°C Temperature Range:	75 max watts See curve page 80
Operating (junction) and storage	65 to 200 °C

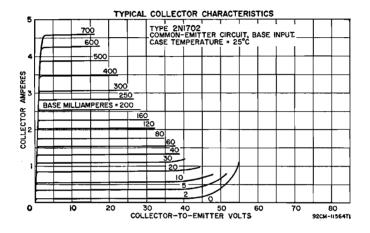
CHARACTERISTICS


Collector-to-Emitter Breakdown Voltage (with emitter-to-base		
volts = 1.5 and collector ma = 1) $(1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	6 0 min	volts
Collector-to-Emitter Sustaining Voltage (with collector ma = 100		
and base current $= 0$)	4 0 min	volts
Base-to-Emitter Voltage (with collector-to-emitter volts $= 4$		14
and collector ma = 800)	4 max	volts
Collector-Cutoff Current (with collector-to-base volts $= 30$	200 max	
and emitter current $= 0$	200 max	μa
Emitter-Cutoff Current (with emitter-to-base volts = 6 and collector current = 0)	100 max	
Thermal Resistance: (1)	100 max	μa
Junction-to-mounting-flange	2.33 max	°C /matt
Thermal Time Constant	12	msec
mermat time constant	14	III SCC


In Common-Base Circuit

Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency with collector-to-base volts $= 28$ and collector ma $= 5)$	1	Mc
Collector-to-Base Capacitance (with collector-to-base volts $= 40$ and emitter current $= 0$)	200	pf

In Common-Emitter Circuit


DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 4 and collector ma = 800)	15 to 60	
Collector-to-Emitter Saturation Resistance (with collector ma = 800 and base ma = 80)	4 max	ohms

TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT

DC Collector Supply Voltage (Vcc) DC Base Supply Voltage (VBB) Generator Resistance On DC Collector Current (Ic) Turn-On DC Base Current (IB) Turn-Off DC Base Current (IB)	$ \begin{array}{r} 12 \\ -8.5 \\ 50 \\ 1.5 \\ 300 \\ -150 \\ \end{array} $	
Switching Time: Delay time (t ₄) Rise time (t ₄) Storage time (t _a) Fall time (t _a)	130 0.2 1 1.2	ma µsec µsec µsec µsec

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of switching and amplifier applications in industrial equipment. It is used in power-switching, dc-to-dc converter, inverter, chopper, and relay-control circuits; in

oscillator, voltage- and current-regulator circuits; and in dc and servo amplifier circuits. This type is stud-mounted to provide positive heat-sink contact and has a cold-weld seal. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is electrically identical with type 2N1702.

TRANSISTOR

Silicon n-p-n type used in veryhigh-speed applications in equipments which require high reliability and high packaging densities. JEDEC No. TO-46 package; outline 18, Outlines Section.

2N1708

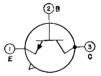
MAXIMUM RATINGS

(2) **B**

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with external base-to-emitter	25 max	volts
resistance = 1000 ohms and load resistance = 100 ohms)	12 max	volts
Emitter-to-Base Voltage (with collector open)	3 max	volts

RCA Transistor Manual

Collector Current Transistor Dissipation:	0.2 max	amper e
At case temperatures up to 25°C At ambient temperatures up to 25°C At case or ambient temperatures above 25°C	1 max 0.3 max See curve	watt
Temperature Range: Operating (junction) Storage Lead Temperature (for 10 seconds maximum)	-65 to 175	°C
CHARACTERISTICS	200 Max	Ŭ
Base-to-Emitter Saturation Voltage (with collector ma = 10 and base ma = 1) Collector-to-Emitter Saturation Voltage:	0.7 to 0.9	volt
With collector ma = 10 and base ma = 1 With collector ma = 50 and base ma = 5	0.22 max 0.35 max	volt volt
Collector-Cutoff Current (with collector-to-base volts = 15 and emitter current = 0)	0.025 max	μa
In Common-Base Circuit		
Collector-to-Base Capacitance (with collector-to-base volts $= 10$.		

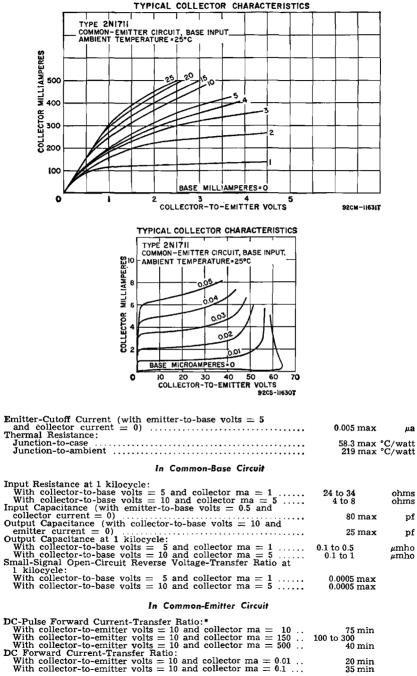

Collector-to-Base Capacitance (with collector-to-base volts = 10, emitter current = 0, and frequency = 140 kilocycles)

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter	
volts = 1 and collector $ma = 10$)	20 min
Small-Signal Forward Current-Transfer Ratio (with collector-to-	
emitter volts = 10, collector ma = 10, and frequency = 100 Mc)	2 min

TRANSISTOR

2N1711 Silicon n-p-n type used in a wide variety of small-signal and medium-power applications in industrial and military equipment. It can be used in rf service as an amplifier, mixer, oscillator, and con-


pf

verter; in af service for small- and large-signal driver and power applications. It features low saturation voltage, high sustaining voltage, high dissipation, high pulse beta, low output capacitance, and exceptionally low noise and leak-age characteristics. JEDEC No. TO-5 package; outline 6, Outlines Section. For curves of transfer characteristics, refer to type 2N2102.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with external base-to-emitter	75 max	\mathbf{v} olts
resistance = 10 ohms or less) Emitter-to-Base Voltage (with collector open)	50 max 7 max	volts volts
Collector Current		ampere
Transistor Dissipation: At case temperatures up to 25°C	3 max	
At ambient temperatures up to 25°C At case or ambient temperatures above 25°C	0.8 max See curve	
Temperature Range: Operating (junction)		°C
Storage	-65 to 300	۰č
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $ma = 0.1$		
and emitter current $= 0$) Emitter-to-Base Breakdown Voltage (with emitter ma $= 0.1$	75 min	volts
and collector current $= 0$	7 min	volts
Collector-to-Emitter Reach-Through Voltage (with emitter-to- base volts = 1.5 and collector ma = 0.1)	75 min	volts
Collector-to-Emitter Sustaining Voltage (with external base-to- emitter resistance = 10 ohms or less and pulse collector ma	•••	
= 100)	5 0 min	volts
Base-to-Emitter Saturation Voltage (with collector $ma = 150$ and base $ma = 15$)	1.3 max	volts
Collector-to-Emitter Saturation Voltage (with collector ma		
= 150 and base ma = 15) Collector-Cutoff Current (with collector-to-base volts = 60	1 .5 ma x	volts
and emitter current $= 0$)	0.01 max	μa

6 max

20 min 35 min

Small-Signal Forward Current-Transfer Ratio:		
With collector-to-emitter volts $=$ 5, collector ma $=$ 1, and		
frequency = 1 kilocycle	50 to 200	
With collector-to-emitter volts $=$ 10, collector ma $=$ 5, and		
frequency = 1 kilocycle	70 to 300	
With collector-to-emitter volts $=$ 10, collector ma $=$ 50, and		
frequency = 20 megacycles	3.5 min	
Noise Figure (with collector-to-emitter volts = 10, collector		
ma $-$ 0.3, generator resistance $-$ 510 ohms, circuit bandwidth $-$ 1 cycle, and signal frequency $=$ 1 kilocycle)	8 max	đb
* Pulse duration = 300 μ sec; duty factor = 0.018.	o max	ab
$1 \text{ use duration} = 500 \mu\text{sec, duty factor} = 0.018.$		

2N1768

Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial equipment requiring transistors having high voltage, current, and dissipation values. It is

used in power switching, dc-to-dc converter, inverter, chopper, and relay actuating circuits; in voltage- and current-regulator circuits; and in dc and servo amplifier circuits. This type has an offset pedestal, stud-mount arrangement which provides positive heat-sink contact. Outline 28, Outlines Section. This type is electrically identical with type 2N1486 except for the following items:

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	6 0 max	volts
With emitter-to-base volts = 1.5 With base open Transistor Dissipation:	60 max 40 max	volts volts
At case temperatures up to 25°C	40 max See curve 255 max	watts page 80 °C
CHARACTERISTICS		
Collector-to-Emitter Breakdown Voltage (with emitter-to-base volts ≈ 1.5 and collector ma $= 0.25$) Collector-to-Emitter Sustaining Voltage (with collector ma $= 100$	60 min	volts
and base current $= 0$	40 m in	volts
Thermal Resistance: Junction-to-case Junction-to-ambient	4.375 max 175 max	

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of intermediate-power switching and amplifier applications in industrial equipment requiring transistors having high voltage, current, and dissipation values. It is

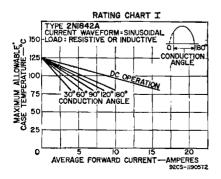
used in power-switching, dc-to-dc converter, inverter, chopper, and relay actuating circuits; in voltage- and current-regulator circuits; and in dc and servo amplifier circuits. This type has an offset pedestal, stud-mount arrangement which provides positive heat-sink contact. Outline 28, Outlines Section. This type is identical with type 2N1486 except for the following items:

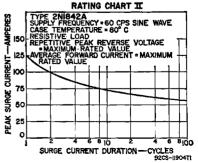
MAXIMUM RATINGS

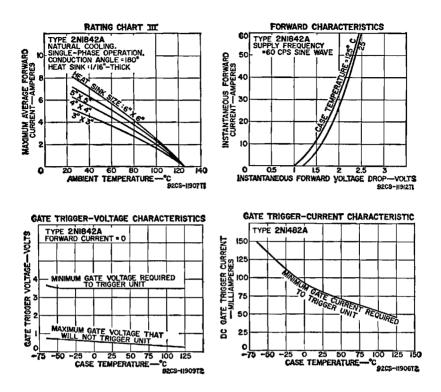
2N1769

Transistor Dissipation: At case temperatures up to 25°C At case temperatures above 25°C Lead Temperature (for 10 seconds maximum)	40 max watts See curve page 80 255 max °C
CHARACTERISTICS	
Thermal Resistance: Junction-to-case Junction-to-ambient	4.375 max °C/watt 175 max °C/watt

SILICON CONTROLLED RECTIFIER


Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage


2N1842A


of 25 volts and a forward-current capability of 10 amperes (average value) or 16 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section.

MAXIMUM RATINGS

Peak Reverse Voltage:	
Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	25 max volts
Non-repetitive (transient)	35 max volts
Peak Forward Blocking Voltage (repetitive)	25 max volts
Peak Gate Voltage	
Forward	10 max volts
Reverse	5 max volts
Average Forward Current:	10
At case temperature of 80°C and conduction angle of 180°	10 max amperes
For other case temperatures and conduction angles	See Rating Chart I
Peak Surge Current: For one cycle of applied voltage	125 max amperes
For more than one cycle of applied voltage	See Rating Chart II
Peak Forward Gate Current	2 max amperes
Peak Gate Power	5 max watts
Average Gate Power	0.5 max watt
Temperature Range:	
Operating (case)	-65 to 125 °C
Operating (ambient)	See Rating Chart III
Storage	-65 to 125 °C
CHARACTERISTICS	
Forward Breakover Voltage (at case temperature of 125°C)	25 min volts
Average Forward Voltage Drop (at case temperature of 80°C)	1.2 max volts
DC Gate-Trigger Voltage:	1.5 max vois
At case temperature of -40°C	3.5 max volts
At case temperature of -65°C	3.7 max volts
At case temperature of 100°C	0.3 min volt
At case temperature of 125°C	0.25 min volt
Average Blocking Current (at case temperature of 125°C):	
Forward	22.5 max ma
Reverse	22.5 max ma
DC Gate-Trigger Current (at case temperature of 125°C)	45 max ma
Holding Current (at case temperature of 125°C)	8 ma
Thermal Resistance (junction-to-case)	2 max °C/watt

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 50 volts and a forward-current capability of 10 amperes (average value) or 16 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N1842A except for the following items:

MAXIMUM RATINGS

2N1843A

Peak Reverse Voltage:		
Repetitive Non-repetitive (transient)	50 max 75 max	volts volts
Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	50 max	volta

Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C);	50 min	volts
Forward Reverse	19 max 19 max	ma ma

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

2N1844A

of 100 volts and a forward-current capability of 10 amperes (average value) or 16 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N1842A except for the following items:

MAXIMUM RATINGS

For sinusoidal ac supply voltage of 50 to

400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	100 max 150 max 100 max	volts volts volts
CHARACTERISTICS		
Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C);	100 min	volts
Forward Reverse	12.5 max 12.5 max	ma ma

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

2N1845A

of 150 volts and a forward-current capability of 10 amperes (average value) or 16 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N1842A except for the following items:

MAXIMUM RATINGS

Peak Reverse Voltage:		
Repetitive	150 max	volts
Non-repetitive (translent)	225 max	volts
Peak Forward Blocking Voltage (repetitive)	150 max	volts

Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C):	150 min	volts
Forward Reverse	6.5 max 6.5 max	ma ma

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 200 volts and a forward-current capability of 10 amperes (average value) or 16 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N1842A except for the following items:

MAXIMUM RATINGS

2N1846Δ

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

200 max 300 max 200 max	volts volts volts
2 00 min	volts
6 max 6 max	ma ma
	300 max 200 max 200 min 6 max

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 250 volts and a forward-current capability of 10 amperes (average value) or 16 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N1842A except for the following items:

MAXIMUM RATINGS

2N1847Δ

Peak Reverse Voltage:		
Repetitive	2 50 max	volts
Non-repetitive (transient)	350 max	volts
Peak Forward Blocking Voltage (repetitive)	250 max	volts

Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C):	250 min	volts
Forward	5.5 max 5.5 max	ma ma

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

2N1848A

of 300 volts and a forward-current capability of 10 amperes (average value) or 16 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N1842A except for the following items:

MAXIMUM RATINGS

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	300 max 400 max 300 max	volts volts volts
CHARACTERISTICS		
Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C):	300 min	volts
Forward	5 max 5 max	ma ma

SILICON CONTROLLED RECTIFIER

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 400 volts and a forward-current capability of 10 amperes (average value) or 16 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N1842A except for the following items:

MAXIMUM RATINGS

Peak Reverse Voltage:		
Repetitive	400 max	volts
Non-repetitive (transient)	500 max	volts
Peak Forward Blocking Voltage (repetitive)	400 max	volts

Forward Breakover Voltage (at case temperature of 125°C)	400 min	volts
Average Blocking Current (at case temperature of 125°C): Forward Reverse	4 max 4 max	ma ma

SILICON CONTROLLED RECTIFIER

2N1850A

Diffused-junction n-p-n-p type used in a wide variety of powercontrol and power-switching applications in industrial and military equipment. This type has a maximum peak forward blocking voltage

of 500 volts and a forward-current capability of 10 amperes (average value) or 16 amperes (rms value). This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength copperalloy stud can withstand an installing torque up to 50 inch-pounds. JEDEC No. TO-48 package; outline 19, Outlines Section. This type is identical with type 2N1842A except for the following items:

MAXIMUM RATINGS

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load

Peak Reverse Voltage: Repetitive Non-repetitive (transient) Peak Forward Blocking Voltage (repetitive)	500 max 600 max 500 max	volts volts volts
CHARACTERISTICS		
Forward Breakover Voltage (at case temperature of 125°C) Average Blocking Current (at case temperature of 125°C):	500 mi n	volts
Forward Reverse	3 max 3 max	m a m a

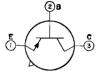
TRANSISTOR

2N1853

Germanium p-n-p type used in high-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section.

(2)B

MAXIMUM RATINGS


Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open) Emitter-to-Base Voltage (with collector open)	18 max 6 max 2 max	volts volts volts
Collector Current	-100 max	ma
At ambient temperatures up to 25°C	150 max See curve	
At ambient temperatures up to 25°C At ambient temperatures above 25°C Ambient-Temperature Range:	25 max See curve	
Operating and storage Lead Temperature (for 10 seconds maximum)	55 to 85 235 max	°C S
CHARACTERISTICS		
Base-to-Emitter Voltage (with collector ma = -6 and base ma = -0.2) Collector-to-Emitter Saturation Voltage (with collector ma = -6	-0.4 max	volt
collector-to-Emitter Saturation Voltage (with collector ma = -0 and base ma = -0.2) Collector-Cutoff Current (with collector-to-base volts = -15	-0.2 max	\mathbf{volt}
and emitter current = 0)	-4.2 max	μa

Technical Data

In Common-Emitter Circuit

Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= -1$, collector current $= 0$,	
and base ma $= -0.2$	30 to 400
With collector-to-emitter volts = 0.4, collector ma = -6 ,	
and base current $= 0$	30 min

TRANSISTOR

Germanium p-n-p type used in high-speed switching applications in data-processing equipment. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical with type 2N1853 except for the

2N1854

following:

CHARACTERISTICS

Base-to-Emitter Voltage (with collector ma $= -20$		
and base $ma = -0.5$	$-0.8 \max$	\mathbf{volt}
Collector-to-Emitter Saturation Voltage:		
With collector ma = -20 and base ma = -0.66	-0.25 max	volt
With collector ma = -20 and base ma = -0.5	$-0.3 \max$	volt

In Common-Base Circuit

Output Capacitance	(with collector-to-base volts $= -10$,		
emitter current $=$	$\hat{0}$, and frequency = 140 kilocycles)	12 max	pf

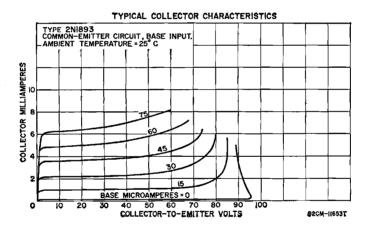
In Common-Emitter Circuit

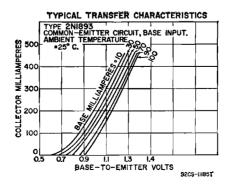
Forward Current-Transfer Ratio:		
With collector-to-emitter voltage $= -0.5$ and collector		
ma = -20	40 mi n	
With collector-to-emitter voltage $= -0.75$ and collector		
ma = -100	$25~{ m min}$	
With collector-to-emitter voltage $= -1$ and collector ma $= -50$	$400 \max$	
Gain-Bandwidth Product (with collector-to-emitter volts $= -1$		
and collector $ma = -10$)	40 mi n	Mc

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and mediumpower switching applications in industrial and military equipment. It features high collector-to-emitter sustaining voltage, low leakage char-

2N1893


acteristics, high switching speeds, and a high dc forward current-transfer ratio. This type can be replaced by the 2N2405 in most applications. JEDEC No. TO-5 package; outline 6, Outlines Section.


MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open)	120 max	volts
Collector-to-Emitter Voltage (with external base-to-emitter		
resistance $= 10$ ohms or less)	100 max	volts
Collector-to-Emitter Voltage (with base open)	80 max	volts
Emitter-to-Base Voltage (with collector open)	7 max	volts
Collector Current	0.5 max	ampere
Transistor Dissipation:		-
At case temperatures up to 25°C	3 max	watts
At ambient temperatures up to 25°C	0.8 max	watt
At case or ambient temperatures above 25°C	See curve	page 80
Temperature Range:		
Operating (Junction)	65 to 200	°C O
Storage	65 to 300	°C
Lead Temperature (for 10 seconds maximum)	255 max	۰Ċ

Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0) Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1 and collector current = 0) Collector-to-Emitter Saturation Voltage: With base ma = 15 and collector ma = 150 Base-to-Emitter Saturation Voltage: With base ma = 15 and collector ma = 50 Collector-to-Emitter Saturation Voltage: With base ma = 5 and collector ma = 50 Collector-to-Emitter Sustaining Voltage: With base current = 0 and pulsed collector ma = 30* With base current = 0 and pulsed collector ma = 30* Collector-Cutoff Current: With ease temperature = 25°C, collector-to-base volts = 90, and emitter current = 0 With case temperature = 150°C, collector-to-base volts = 90, and emitter current = 0	120 min 7 min 5 max 1.2 max 1.3 max 0.9 max 80 min 100 min 0.01 max 15 max	volts volts volts volts volt volts volts volts volts µa
With case temperature = 150° C, collector-to-base volts = 90 , and emitter current = 0 Emitter-Cutoff Current (with emitter-to-base volts = 5 and	15 max	μa
collector current = 0)	0.01 max	μa
Junction-to-cambient	58.3 max 219 max	

* Pulse duration = 300 μ sec, duty factor = 0.018

In Common-Base Circuit

Input Resistance at 1 kilocycle: With collector-to-base volts = 5 and collector ma = 1 With collector-to-base volts = 10 and collector ma = 5 Fritten to Prove Constitution with a matching of the second	20 to 30 4 to 8	ohms ohms
Emitter-to-Base Capacitance (with emitter-to-base volts $= 0.5$ and collector current $= 0$)	85 max	pf
Collector-to-Base Capacitance (with collector-to-base volts $=$	4	
10 and emitter current $= 0$) Output Conductance at 1 kilocycle;	15 max	pf
With collector-to-base volts $= 5$ and collector ma $= 1$ With collector-to-base volts $= 10$ and collector ma $= 5$ Small-Signal Open-Circuit Reverse Voltage-Transfer Ratio at	0.5 max 0.5 max	μmho μmho
1 kilocycle: With collector-to-base volts = 5 and collector ma = 1 With collector-to-base volts = 10 and collector ma = 5		

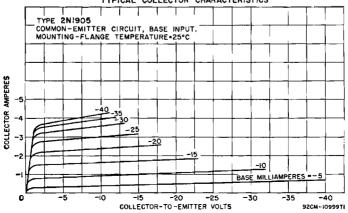
In Common-Emitter Circuit

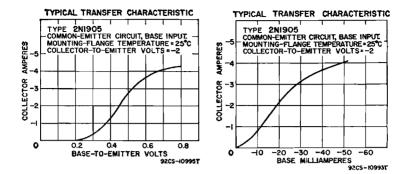
DC Forward Current Transfer Ratio:	
With collector-to-emitter volts $= 10$ and pulsed collector ma	
= 150*	40 to 120
With collector-to-emitter volts $= 10$ and collector ma $= 10$	35 min
With collector-to-emitter volts $= 10$ and collector ma $= 0.1$	20 min
With collector-to-emitter volts $= 10$, collector ma $= 10$, and	
case temperature $= -55^{\circ}C$	20 min
Small-Signal Forward Current-Transfer Ratio:	
With collector-to-emitter volts = 5, and collector ma = 1,	
and frequency $= 1$ kilocycle	30 to 100
with collector-to-emitter volts $= 10$, and collector ma $= 5$.	
and frequency = 1 kilocycle With collector-to-emitter volts = 10, and collector ma = 50,	45 min
With collector-to-emitter volts = 10, and collector $ma = 50$,	
and frequency = 20 Mc \dots	2.5 min

Pulse duration = 300 μ sec, duty factor = 0.018

POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of switching and amplifier applications. It is used as a high-power high-speed switch in dc-to-dc converters, inverters, and computers for data-processing equip-


2N1905


ment; and in ultrasonic oscillators and large-signal wide-band linear amplifiers. Package is similar to JEDEC No. TO-3; outline 24, Outlines Section. This type is identical with type 2N1906 except for typical operation and the following items:

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open)	-60 max	volts
Collector-to-Emitter Voltage (with base open)	—40 max	volts

TYPICAL COLLECTOR CHARACTERISTICS

CHARACTERISTICS

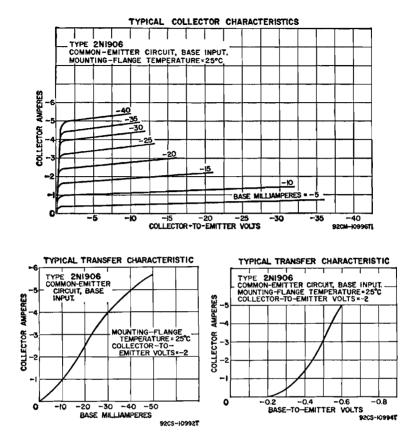
Collector-to-Base Breakdown Voltage (with collector ma = -10 and emitter current = 0) Collector-to-Emitter Breakdown Voltage (with collector ma = -100 and base current = 0) Base-to-Emitter Voltage (with collector-to-emitter volts = -2 and collector ma = -1000) Collector-to-Emitter Saturation Voltage (with collector	60 min 40 min 0.38	volts volt
ma = -1000 and base $ma = -50$)	0.3	volt

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts $= -2$ and collector ma $= -1000$) DC Forward Conductance (with collector-to-emitter volts $= -2$	50	
and collector ma = -1000	4	mhos

POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of switching and amplifier applications. It is used as a high-power high-speed switch in dc-to-dc converters, inverters, and computers for data-processing equip-



ment; and in ultrasonic oscillators and large-signal wide-band linear amplifiers. Package is similar to JEDEC No. TO-3; outline 24, Outlines Section,

MAXIMUM RATINGS

2N1906

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open) Emitter-to-Base Voltage (with collector open) Collector Current Base Current Transistor Dissipation:	-100 max volts -40 max volts -1 max volt -10 max amperes -3 max amperes
For mounting-flange temperatures up to 25°C For mounting-flange temperatures above 25°C Temperature Range:	50 max watts See curve page 80
Operating (junction) and storage	55 to 100 °C 255 max °C
CHARACTERISTICS	
Collector-to-Base Breakdown Voltage (with collector ma = -10 and emitter current = 0) Collector-to-Emitter Breakdown Voltage (with collector	100 min volts
ma = -100 and base current $= 0$	40 min volts
Emitter-to-Base Breakdown Voltage (with emitter ma $= -5$ and collector current $= 0$)	1 min volt

Base-to-Emitter Voltage (with collector-to-emitter volts = -2 and collector ma = -5000)		
and collector ma = -5000)	0.6	volt
Collector-to-Emitter Saturation Voltage (with collector $ma = -5000$ and base $ma = -250$)	0.75	volt
Collector-Cutoff Current (with collector-to-base volts $= -40$ and emitter current $= 0$)		μa
Collector-Cutoff Saturation Current (with collector-to-base volts $= -0.5$ and emitter current $= 0$)	65	μ8.
Emitter-Cutoff Current (with emitter-to-base volts = -0.5	-05	μa
and collector current $= 0$	-1	ma
Thermal Resistance: Junction-to-mounting flange	1.5 ma	x °C/watt

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts $= -2$ and collector ma $= -5000$)	125	
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency		_
(with collector-to-emitter volts $= -5$ and collector ma $= -500$)	75	kc
Gain-Bandwidth Product (with collector-to-emitter volts $= -5$		
and collector $ma = -500$) DC Forward Conductance (with collector-to-emitter volts = -2	7.5	Me
DC Forward Conductance (with collector-to-emitter volts $= -2$		
and collector $ma = -5000$)	8.3	mhos
TYPICAL OPERATION IN "ON OFF" POWER-SWITCHING CIRC	TIIIT	

ITPICAL OPERATION IN "UN-OFF" FOWER-SW	ліспі	nu circ	6011	
DC Collector-Supply Voltage On DC Collector Current		12.5 2.5	12.5	volts
Turn-On DC Base Current		0.25	0.25	amperes ampere
Turn-Off DC Base Current	-	0.25	0.25	ampere

Pulsc-Generator Open-Circuit Voltage Base-Bias Resistor "Speed-Up" Capacitor Load Resistor Generator Impedance Switching Time:	2 75 0.1 5 5	5 55	5 2.5 5	volts ohms µf ohms ohms
Belay time	0.1	0.1	0.1	µsec
Rise time	0.1	0.4	0.9	µsec
Storage time	1	7	7	µsec
Fall time	0.6	1	2	µsec

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power-switching, dc-to-dc converter, inverter, chopper. sole-

noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-36 package; outline 14, Outlines Section. This type is identical with type 2N2016 except for the following:

MAXIMUM RATINGS

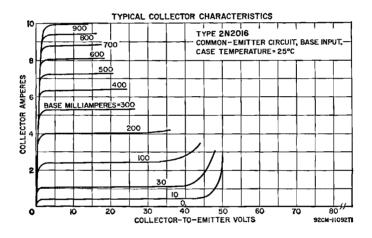
2N2015

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open)	100 max 50 max	volts volts
CHARACTERISTICS		
Collector-to-Emitter Voltage: With emitter-to-base volts -1.5 and collector ma $= 2$ With base open and collector ma $= 200$ Collector-Cutoff Current (with collector-to-emitter volts $= 100$	100 min 50 min	volts volts
and base-to-emitter volts $= -1.5$	2 max	m a
Collector-to-Emitter Sustaining Voltage (with collector amperes = 0.2 and base current = 0)	50 min	volts

POWER TRANSISTOR

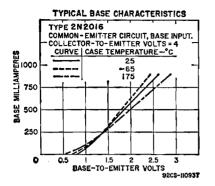
2N2016

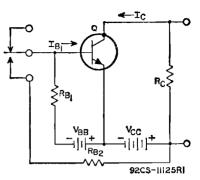
Silicon n-p-n type used in a wide variety of high-power switching and amplifier applications in industrial and military equipment. It is used in power-switching, dc-to-dc converter, inverter, chopper, sole-


noid and relay control circuits; in oscillator, regulator, and pulse-amplifier circuits; and as a class A or class B push-pull audio and servo amplifier. It features low saturation resistance, high current and power dissipation, high beta at high current, and excellent high-temperature performance. JEDEC No. TO-36 package; outline 14, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open) Emitter-to-Base Voltage (with collector open)	130 max volts 65 max volts 10 max volts
Collector Current	10 max amperes
Base Current	6 max amperes
Emitter Current	-13 max amperes
Transistor Dissipation	•
At case temperatures up to 25°C	150 max watts
At case temperatures above 25°C	See curve page 80
Temperature Range	
Operating (junction) and Storage	- 65 to 200 °C


CHARACTERISTICS

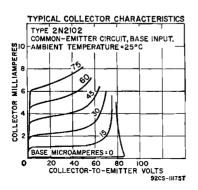

Collector-to-Emitter Voltage:		
With emitter-to-base volts $= -1.5$ and collector ma $= 2$	1 30 min	volts
With base open and collector $ma = 200$	65 min	volts
Collector-to-Emitter Sustaining Voltage (with collector		
ma = 200 and base current $= 0$)	65 min	volts
Collector-to-Emitter Saturation Voltage (with collector		
amperes = 5 and base ampere = 0.5) Base-to-Emitter Voltage (with collector-to-emitter volts = 5	1.25 max	volts
Base-to-Emitter Voltage (with collector-to-emitter volts $= 5$		
and collector amperes $= 5$	$2.2 \max$	volts
Collector-Cutoff Current:		
With collector-to-emitter volts $=$ 30, base-to-emitter	0	
volts = -1.5 , and case temperature = $150^{\circ}C$	2 max	ma
With collector-to-emitter volts $=$ 130, base-to-emitter	0	
volts = -1.5 , and case temperature = $25^{\circ}C$	2 max	ma
Emitter-Cutoff Current (with emitter-to-base volts $= 10$ and	0.05 max	-
collector current = 0)	0.05 max	\mathbf{ma}
Thermal Resistance:	1.17 max	C/mott
Junction-to-case	30	msec
Thermal Time Constant	30	TTREC.

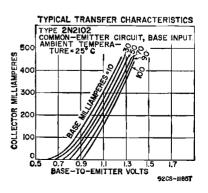
In Common-Base Circuit

Collector-to-Base Capacitance (with collector-to-base volts = 40, collector $\mu a = 50$, and frequency = 1 Mc)	400 max	: pf
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio: With collector-to-emitter volts = 4 and collector amperes = 9 With collector-to-emitter volts = 4 and collector amperes = 5 Small-Signal Forward Current-Transfer Ratio (with collector- to-emitter volts = 4, collector ampere = 1, and frequency = 1 kilocycle) Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-emitter volts = 4 and collector amperes = 5)	8 min 15 to 50 12 to 60 12 min	
TYPICAL OPERATION IN PULSE-RESPONSE TEST CIRCUIT DC Collector-Supply Voltage (Vcc) DC Base-Supply Voltage (VBB) On DC Collector Current (Ic) Turn-On DC Base Current (Is1) Base-Circuit Resistance (Rb1) or Rb2) Collector-Circuit Resistance (Rc) Switching Time: On time (Delay time ta plus rise time tr)	24 6 10 2 10 2	volts volts amperes amperes ohms ohms
Off time (Storage time to plus fall time tr)	4 7	µsec

TRANSISTOR

2N2102 medium dustrial can be t

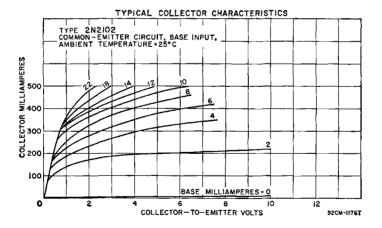

Silicon n-p-n type used in a wide variety of small-signal and medium-power applications in industrial and military equipment. It can be used in rf service as an amplifier, mixer, oscillator, and con-



verter; in af service for small- and large-signal driver and power applications; in switching service for high-speed switching circuits requiring transistors having high voltage and current values. It features low saturation voltage, high sustaining voltage, high dissipation, high pulse beta, low output capacitance, and exceptionally low noise and leakage characteristics. JEDEC No. TO-5 package; outline 6, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	1 20 max	volts
With external base-to-emitter resistance $= 10$ ohms or less	80 max	volts
With base open	65 max	volts
Emitter-to-Base Voltage (with collector open)	7 max	volts
Collector Current	1 max	ampere
Transistor Dissipation:		-
At case temperatures up to 25°C	5 max	watts
At ambient temperatures up to 25°C	1 max	watt
At case or ambient temperatures above 25°C	See curve	page 80
Temperature Range:		
Operating (junction)	-65 to 200	°C
Storage	65 to 300	°C
Storage Lead Temperature (for 10 seconds maximum)	300 max	°C



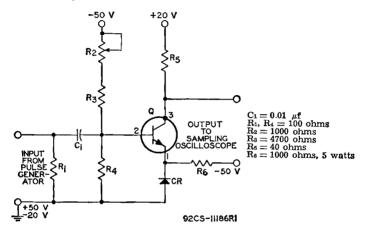
CHARACTERISTICS

Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0) Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1	120 min	volts
and collector current $= 0$	7 min	volts
Collector-to-Emitter Reach-Through Voltage (with emitter-to- base volts $= 1.5$ and collector ma $= 0.1$) Collector-to-Emitter Sustaining Voltage:	120 min	volts
With external base-to-emitter resistance = 10 ohms or less and collector ma = 100 With collector ma = 100 and base current = 0	80 min 65 min	volts volts
Base-to-Emitter Saturation Voltage (with collector ma = 150 and base ma = 15)	1.1 max	volts
Collector-to-Emitter Saturation Voltage (with collector ma = 150 and base ma = 15)	0.5 max	volt
Collector-Cutoff Current (with collector-to-base volts = 60 and emitter current = 0)	0.002 max	μa
Emitter-Cutoff Current (with emitter-to-base volts = 5 and collector current = 0)	0.002 max	μa
Thermal Resistance: Junction-to-case Junction-to-ambient	35 max 175 max	°C/watt °C/watt

In Common-Base Circuit

Input Resistance at 1 kilocycle:		
With collector-to-base volts $=$ 5 and collector ma $=$ 1	24 to 34	ohms
With collector-to-base volts $= 10$ and collector ma $= 5$	4 to 8	ohms
Input Capacitance (with emitter-to-base volts $= 0.5$ and		
collector current $= 0$)	80 max	pf
Output Capacitance (with collector-to-base volts $= 10$ and		
emitter current = 0	15 max	pf
Output Conductance at 1 kilocycle:		
With collector-to-base volts $= 5$ and collector ma $= 1$	0.1 to 0.5	µmho
With collector-to-base volts = 10 and collector $ma = 5$	0.1 to 1	μmho
Small-Signal Open-Circuit Reverse Voltage-Transfer Ratio at		•
1 kilocycle:		
With collector-to-base volts $=$ 5 and collector ma $=$ 1	0.0003 max	
With collector-to-base volts $= 10$ and collector ma $= 5$	0.0003 max	
	•••••	

In Common-Emitter Circuit


DC-Pulse Forward Current-Transfer Ratio:*	
With collector-to-emitter volts $= 10$ and collector ma $= 150$ 40 to	
With collector-to-emitter volts $= 10$ and collector ma $= 500$	25 min
With collector-to-emitter volts $= 10$ and collector ma $= 1000$.	10 min
DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts = 10 and collector $ma = 0.01$	10 min
With collector-to-emitter volts = 10 and collector $ma = 0.1 \dots$	20 min
With collector-to-emitter volts $= 10$ and collector ma $= 10$	35 min

Small-Signal Forward Current-Transfer Ratio:

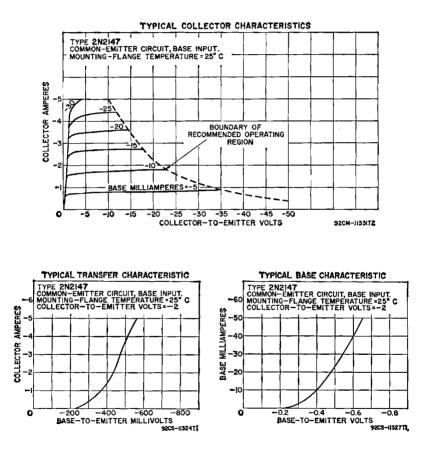
Small-Signal Forward Current-Transfer Ratio:
With collector-to-emitter volts = 5, collector ma = 1, and frequency = 1 kilocycle
With collector-to-emitter volts = 10, collector ma = 5, and frequency = 1 kilocycle
With collector-to-emitter volts = 10, collector ma = 50, and frequency = 20 Mc
Noise Figure (with collector-to-emitter volts = 10, collector ma = 0.3, generator resistance = 1000 ohms, chrcuit bandwidth = 15 kilocycles, and signal frequency = 1 kilocycle
Total Switching Time† (delay time plus rise time plus fall time) 30 to 100 35 to 150 3 min 6 max dh 30 max nsec

* Pulse duration = 300 μ sec, duty factor = 0.018.

† See Total-Switching-Time Measurement Circuit below.

POWER TRANSISTOR

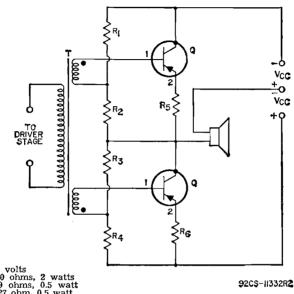
Germanium p-n-p type used in high-fidelity amplifiers and other af amplifiers where wide frequency range and low distortion are required. It is intended primarily for class B amplifier service. JEDEC No.


TO-3 package; outline 5, Outlines Section.

MAXIMUM RATINGS

2N2147

Collector-to-Base Voltage Collector-to-Emitter Voltage Emitter-to-Base Voltage Collector Current Base Current Emitter Current Transistor Dissipation: At mounting-flange temperatures up to 81°C At mounting-flange temperatures above 81°C Temperature Range: Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	1.5 max 5 max 1 max 5 max 12.5 max Derate 0.66	volts volts amperes amperes amperes watts
CHARACTERISTICS		-
Collector-to-Base Breakdown Voltage (with collector ma = -10 and emitter current = 0) Collector-to-Emitter Breakdown Voltage (with collector ma = -100 and base current = 0)	—75 min —50 min	volts volts
Base-to-Emitter Voltage (with collector-to-emitter volts = -10 and collector ma = -50) Collector-Cutoff Current (with collector-to-base volts = -40)	0.24	volt
and emitter current $= 0$	—1 max	ma


Collector-Cutoff Saturation Current (with collector-to-base volt = -0.5 and emitter current = 0) Emitter-Cutoff Current (with emitter-to-base volts = -1.5 and collector current = 0) Thermal Resistance: Junction-to-case	—70 max —2.5 max 1.5 max °C	µa ma C/watt
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter volts $= -1$ and collector ma $= -1000$) Gain-Bandwidth Product (with collector-to-emitter volts $= -5$ and collector ma $= -500$)	150 4	Мс

TYPICAL OPERATION IN SINGLE-ENDED PUSH-PULL AMPLIFIER CIRCUIT

DC Collector Supply Voltage	22 0.05	volts ampere
Zero-Signal Base-Bias Voltage	0.24	volt
Peak Collector Current	3.5	
Maximum-Signal DC Collector Current		amperes amperes
Input Impedance of Stage (per base)	75	ohms
Load Impedance (Speaker Voice Coil)	13	ohms
Load impedance (Speaker Voice Con)	4	UIIIIS

Power Gain	33	db
Maximum-Signal Power Output	25	watts
Maximum-Signal Power Output Total Harmonic Distortion at Maximum Signal Power Output	5	per cent
Maximum Collector Dissipation (per transistor) under worst-case		-
conditions	12.5	watts
EIA Music Power Output Rating	45	watts

 $\mathbf{v}_{reg} = 22$ volts $\mathbf{R}_{1}, \mathbf{R}_{3} = 330$ ohms, 2 watts $\mathbf{R}_{2}, \mathbf{R}_{4} = 3.9$ ohms, 0.5 watt $\mathbf{R}_{5}, \mathbf{R}_{6} = 0.27$ ohm, 0.5 watt Voice coil impedance = 4 ohms

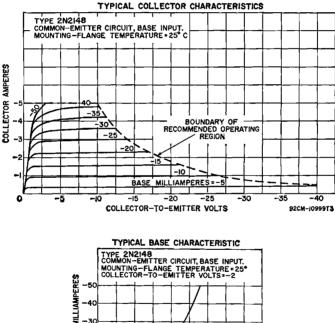
POWER TRANSISTOR

Germanium p-n-p type used in high-fidelity amplifiers and other af amplifiers where wide frequency range and low distortion are required. It is intended primarily for

use as a class A power amplifier in driver stages of high-power, high-quality af amplifiers, and in the output stages of moderate-power amplifiers. It can also be used in class B poweramplifier circuit. JEDEC No. TO-3 package; outline 5, Outlines Section.

MAXIMUM RATINGS

2N2148


Collector-to-Base Voltage	-60 max volts
Collector-to-Emitter Voltage	-40 max volts
Emitter-to-Base Voltage	-1.5 max volts
Collector Current	-5 max amperes
Base Current	
Emitter Current	5 max amperes
Transistor Dissipation:	
At mounting-flange temperatures up to 81°C	12.5 max watts
At mounting-flange temperatures above 81°C	Derate 0.66 watt/°C
Temperature Range:	
Operating (junction) and Storage	65 to 100 °C 255 max °C
Lead Temperature (for 10 seconds maximum)	255 max °C

CHARACTERISTICS

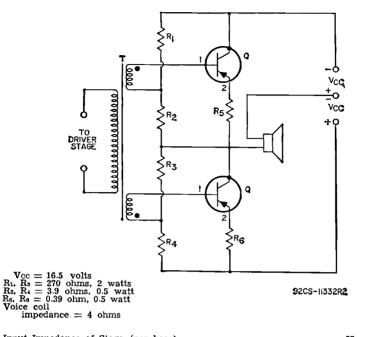
Collector-to-Base Breakdown Voltage (with collector ma = -10 and emitter current = 0)	60 min	volts
Collector-to-Emitter Breakdown Voltage (with collector ma = -100 and base current = 0)	40 min	volts
Base-to-Emitter Voltage (with collector-to-emitter volts = -10 and collector ma = -50)	0.26	volt
Collector-Cutoff Current (with collector-to-base volts $= -40$ and emitter current $= 0$)	-1 max	ma
Collector-Cutoff Saturation Current (with collector-to-base volt $= -0.5$ and emitter current $= 0$)	—100 max	ma
Emitter-Cutoff Current (with emitter-to-base volts = -1.5 and collector current = 0)	—10 max	ma
Thermal Resistance: Junction-to-case	1.5 max '	C/watt

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter	
volts $= -1$ and collector ma $= -1000$) Gain-Bandwidth Product (with collector-to-emitter volts $= -5$	100
and collector ma = -500)	3

WILLIAMPERES -30BASE -20 -10

TYPICAL OPERATION IN SINGLE-ENDED PUSH-PULL AMPLIFIER CIRCUIT


-0.2 -0.4 -0.6 BASE-TO-EMITTER VOLTS

-0.8 9205-113291

Ó

DC Collector Supply Voltage	16.5	volts
Zero-Signal DC Collector Current	0.05	ampere
Zero-Signal Base-Bias Voltage	0.26	volt
Peak Collector Current	-2.7	amperes
Maximum-Signal DC Collector Current	0.85	ampere

Mc

Input Impedance of Stage (per base)	65	ohms
Load Impedance (Speaker Voice Coil)	4	ohms
Power Gain	31	db
Maximum-Signal Power Output	15	watts
Total Harmonic Distortion at Maximum Signal Power Output	-5	per cent
Maximum Collector Dissipation (per transistor) under worst-case	-	P
conditions	7.5	watts
EIA Music Power Output Rating	25	watts
		17 64 6 665

TRANSISTOR

Silicon n-p-n type used in veryhigh-speed switching applications in equipments which require high reliability and high packaging densities. JEDEC No. TO-18 package; outline 12, Outlines Section. This

type is electrically identical with type 2N1708 except for the following item:

CHARACTERISTICS

2N2206

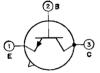
2N2205

Emitter-Cutoff Current (with emitter-to-base volts = 3 and collector current = 0) \dots

100 max μa

TRANSISTOR

Silicon n-p-n type used in veryhigh-speed switching applications in equipments which require high reliability and high packaging densities. JEDEC No. TO-46 package; outline 18, Outlines Section.



MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with external base-to-emitter	25 max	volts	
resistance = 1000 ohms and load resistance = 100 ohms) \dots	20 max		
Emitter-to-Base Voltage (with collector open) Collector Current	3 max 0.2 max	volts ampere	
Transistor Dissipation: At case temperatures up to 25°C	1 max	watt	
At ambient temperatures up to 25°C	0.3 max	watt	
At case or ambient temperatures above 25°C Temperature Range:	See curve		
Operation (junction)	65 to 175	င့် သို့	
Storage Lead Temperature (for 10 seconds maximum)	-65 to 300 235 max	۰č	
CHARACTERISTICS			
Base-to-Emitter Saturation Voltage (with collector ma = 10 and base ma -1)	0.7 to 0.9	volt	
and base ma = 1) Collector-to-Emitter Saturation Voltage:			
With collector ma = 10 and base ma = 1 With collector ma = 50 and base ma = 5	0.22 max 0.35 max		
Collector-Cutoff Current (with collector-to-base volts = 15 and emitter current = 0)	0.025 max	"a	
	0.020 11144	μu	
In Common-Base Circuit			
Collector-to-Base Capacitance (with collector-to-base volts $= 10$,			
emitter current $=$ 0, and frequency $=$ 140 kilocycles)	6 max	pf	
In Common-Emitter Circuit			
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 1 and collector ma = 10) 	40 to 120		

Small-Signal Forward Current-Transfer Ratio (with collector-	
to-emitter volts = 10, collector $ma = 10$, and frequency	0
= 100 Mc)	2 min

TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and medium-power applications in industrial and military equipment. It can be used in rf service as an amplifier, mixer, oscillator and con-

in inent. It **2N2270**

verter; in af service in small-signal and power applications. It features low output capacitance and exceptionally low noise and leakage characteristics. JEDEC No. TO-5 package; outline 6, Outlines Section. For curve of collector characteristics, refer to type 2N2102.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	60 max volt	s
With external base-to-emitter resistance $= 10$ ohms or less	60 max volt 45 max volt	
Emitter-to-Base Voltage (with collector open)	7 max volt	
Transistor Dissipation: At case temperatures up to 25°C At ambient temperatures up to 25°C	5 max watt 1 max wat	
At case or ambient temperatures above 25°C Temperature Range:	See curve page 8	
Operating (junction) and storage Lead Temperature (for 10 seconds maximum)	65 to 200 °C 255 max °C	

CHARACTERISTICS

Collector-to-Base Breakdown Voltage (with collector ma $= 0.1$		
and emitter current $= 0$) Emitter-to-Base Breakdown Voltage (with emitter ma $= 0.1$	60 min	volts
and collector current $= 0$)	7 min	volts

(2)B

 \square

Collector-to-Emitter Sustaining Voltage: With external base-to-emitter resistance = 10 ohms or less and		
pulse collector ma = 100^* With pulse collector ma = 100^* and base current = 0	60 min 45 min	volts volts
Base-to-Emitter Saturation Voltage (with collector $ma = 150$ and base $ma = 15$)	1.2 max	volts
Collector-to-Emitter Saturation Voltage (with collector ma	1.2 max	VOID
= 150 and base ma $= 15)$	0.9 max	\mathbf{volt}
Collector-Cutoff Current (with collector-to-base volts = 60 and emitter current = 0)	0.1 max	μa
Emitter-Cutoff Current (with emitter-to-base volts = 5 and collector current = 0)	0.1 max	μa
Thermal Resistance: Junction-to-case Junction-to-ambient	35 max ° 175 max °	
	210	•,

In Common-Base Circuit

Input Capacitance (with emitter-to-base volts $= 0.5$ and		
collector current $= 0$) Output Capacitance (with collector-to-base volts = 10 and	8 0 max	\mathbf{pf}
emitter current $= 0$)	15 max	pf

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= 10$ and pulse collector	
$ma^* = 150$	50 to 200
With collector-to-emitter volts = 10 and collector ma = 1 \dots	35 min
Small-Signal Forward Current-Transfer Ratio:	
With collector-to-emitter volts = 10, collector $ma = 5$, and	00 / 1 100
frequency = 1 kilocycle	30 to 180
With collector-to-emitter volts = 10, collector ma = 50, and	0
frequency = 20 Mc Noise Figure (with collector-to-emitter volts = 10 , collector	3 min
ma = 0.3, generator resistance = 1000 ohms, circuit bandwidth	
= 15 kilocycles, and signal frequency $= 1$ kilocycle)	6 max db
* Pulse duration = 300 μ sec, duty factor = 0.018.	o max uo
$1 \text{ and } \mathbf{u}$	

TRANSISTOR

Germanium p-n-p type used for low-power radio-frequency amplifier applications in the vhf range in industrial and military equipment. JEDEC No. TO-18 package; outline 12, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open) Emitter-to-Base Voltage (with collector open) Collector Current Transistor Dissipation: At ambient temperatures up to 25°C At ambient temperatures above 25°C	-25 max -15 max -1 max -100 max 100 max See curve	
Temperature Range:		page su °C
Operating (junction) and storage Lead Temperature (for 10 seconds maximum)	235 max	°Č
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0) Collector-to-Emitter Breakdown Voltage (with collector ma = 0.1	-25 min	volts
and base current $= 0$)	—15 min	volts
Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1 and collector current = 0) Collector-cutoff Current (with collector-to-base volts = -12	—1 min	volt
and emitter current $= 0$	—10 max	μa

In Common-Base Circuit

Output Capacitance (with	collector-to-base volts $= -10$,		
emitter current $= 0$, and	frequency = 140 kilocycles) \dots	3 .5 max	pf

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts $= -10$ and collector ma $= -1$)	20 to 150	
Small-Signal Forward Current-Transfer Ratio (with collector-to-		
emitter volts = -6 , collector ma = -1 , and frequency = 10 Mc) Base Spreading Resistance (with collector-to-emitter volts	20 to 28	
= -10, collector ma $=$ -1, and frequency $=$ 250 Mc) High-Frequency Input Impedance (with collector-to-emitter volts	250	ohms
= -9, collector ma = -1, and frequency = 250 Mc)	50 to 250	ohms
Small-Signal Power Gain (with collector-to-emitter volts = -9 , collector ma = -1 , and frequency = 30 Mc)	10 min	db

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of switching and amplifier applications in industrial equipment. It is used in powerswitching, dc-to-dc converter, inverter, chopper, and relay-control

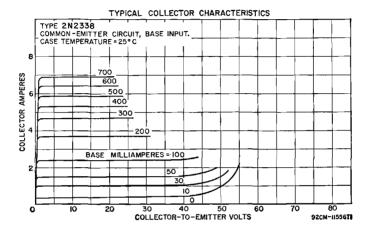
2N2338

circuits; in oscillator, voltage- and current-regulator circuits; and in dc and servo amplifier circuits. JEDEC No. TO-36 package; outline 14, Outlines Section.

MAXIMUM RATINGS

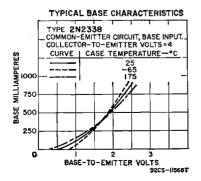
Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	60 max	volts
With emitter-to-base volts = 1.5 With base open Emitter-to-Base Voltage (with collector open) Collector Current	60 max 40 max 6 max 7.5 max	volts volts
Transistor Dissipation:	5 max	amperes
At case temperatures up to 25°C At case temperatures above 25°C Temperature Range:	150 max See curve	
Operating (junction) and storage	-65 to 200	°C
CHARACTERISTICS		
Collector-to-Emitter Voltage (with emitter-to-base volts = 1.5 and collector ma = 2) Collector-to-Emitter Sustaining Voltage (with base open and	6 0 min	volts
collector ma ≈ 200) Base-to-Emitter Voltage (with collector-to-emitter volts $= 4$	40 min	volts
and collector amperes = 3)	3 max	volts
With collector amperes $= 6$ and base ampere $= 1$ With collector amperes $= 3$ and base ampere $= 0.3$ Collector-Cutoff Current:	3.5 max 1.5 max	volts volts
With collector-to-emitter volts = 30 and base current = 0 With collector-to-emitter volts = 60 and base-to-emitter volts	5 max	ma
= -1.5 With collector-to-emitter volts = 30, base-to-emitter volts	2 max	ma
= -1.5, and case temperature = 200°C	50 max	ma
25°C 150°C	0.2 max 3 max	ma ma
Emitter-Cutoff Current (with emitter-to-base volts = 6 and collector current = 0) Thermal Time Constant	0.1 max 30	ma msec
Thermal Resistance: Junction-to-case	1.17 max	°C/watt

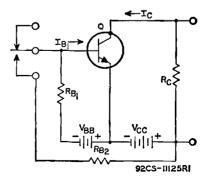
In Common-Base Circuit


Collector-to-Base Capacitance (with collector-to-base volts $= 40$,		
emitter current $=$ 0, and frequency $=$ 0.1 Mc)	6 00 max	pf

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= 4$ and collector amperes $= 3$	15 to 60
With collector-to-emitter volts = 4 and collector amperes = 6	7 min


RCA Transistor Manual


Small-Signal Forward Current-Transfer Ratio (with collector-to- emitter volts = 4, collector ampere = 0.5 , and frequency = 1 kilocycle)	12 to 72	
kilocycle) Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency (with collector-to-emitter volts = 4 and collector amperes	12 10 12	
= 5) Collector-to-Emitter Saturation Resistance (with collector	1 5 min	ke
amperes $= 3$ and base ampere $= 0.3$)	0.5 max	ohm

TYPICAL OPERATION IN PULSE-RESPONSE TEST CIRCUIT BELOW

DC Collector Supply Voltage (Vcc) DC Base Supply Voltage (VBB) On DC Collector Current (Ic) Turn-On DC Base Current (IBI) Base-Circuit Resistance (RBI or RB2) Collector-Circuit Resistance (RC) Switching Time:	24 6 10 2 10 2	volts volts amperes amperes ohms ohms
On time (Delay time t _d plus rise time t _r)	4	μsec
Off time (Storage time t _e plus fall time t _r)	7	μsec

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of switching and amplifier applications in industrial equipment. It is used in power-switching, dc-to-dc converter, inverter, chopper, and relay-control circuits; in

2N2339

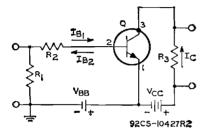
oscillator, voltage- and current-regulator circuits; and in dc and servo amplifiers circuits. This type has an offset pedestal, stud-mounted arrangement which provides heat-sink contact. Outline 28, Outlines Section. For curves of typical collector characteristics and base characteristics, refer to type 2N2338.

MAXIMUM RATINGS

MAANTON RATINGS		
Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	6 0 max	volts
With emitter-to-base volts = 1.5	60 max	volts
With base open	40 max	volts
With base open Emitter-to-Base Voltage (with collector open)	6 max	volts
Collector Current	2.5 max ar	
Base Current	1 max a	mpere
Transistor Dissipation:		
At case temperatures up to 25°C At case temperatures above 25°C	40 max	
_ At case temperatures above 25°C	See curve p	age 80
Temperature Range:	25 4 . 000	
Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	-65 to 200	°C
Lead Temperature (for 10 seconds maximum)	255 max	°C
CHARACTERISTICS		
Collector-to-Emitter Voltage (with emitter-to-base volts $= 1.5$		
and collector ma $= 0.75$)	60 min	volts
Collector-to-Emitter Sustaining Voltage (with base open and		
collector ma = 100)	40 min	volts
Base-to-Emitter Voltage (with collector-to-emitter volts = 4 and		
collector ampere $= 0.3$)	3 max	volts
Collector-to-Emitter Saturation Voltage:	•	
With collector amperes = 1.5 and base ampere = 0.3	9 max	volts
With collector ampere $= 0.3$ and base ampere $= 0.03$	$1.5 \max$	volts
Collector-Cutoff Current:		
With collector-to-emitter volts = 30 and base current = 0 With collector-to-emitter volts = 60 and base-to-emitter volts	3 max	ma
	0.75	
= -1.5	0.75 max	ma
With collector-to-emitter volts $=$ 30, base-to-emitter volts	20 max	
= -1.5, and case temperature = 200°C With collector-to-base volts = 30, emitter current = 0, and	20 max	ma
case temperature \equiv		
25°C	$0.1 \max$	ma
	1.5 max	ma
150°C	T'9 III9Y	illa

	1.0 1110.11	1110
Emitter-Cutoff Current (with emitter-to-base volts $= 6$ and		
collector current $= 0$)	0.05 max	ma
Thermal Time Constant	10	msec
Thermal Resistance:		
Junction-to-case	7 max °	C/watt
Junction-to-ambient	100 max °	

In Common-Base Circuit


Collector-to-Base Capacitance (with collector-to-base volts $= 40$,		
emitter current $= 0$, and frequency $= 0.1$ Mc)	300 max	pf
Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency		-
(with collector-to-base volts = 28 and collector ma = 5) \dots	1	\mathbf{Mc}
(with concern-to-base voits $= 20$ and concern in $a = 0$)	-	mic

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio: With collector-to-emitter volts = 4 and collector ampere = 0.3 With collector-to-emitter volts = 4 and collector ampere = 1.5	20 to 80 6 min	
Small-Signal Forward Current-Transfer Ratio:		
With collector-to-emitter volts = 4, collector ampere = 0.1 and frequency = 1 kilocycle	12 to 84	
With collector-to-emitter volts = 28, collector ampere =	12 10 04	
0.02, and frequency $= 0.1$ Mc	7 min	
Collector-to-Emitter Saturation Resistance (with collector	_	
ampere $= 0.3$ and base ampere $= 0.03$)	$5 \max$	ohms

TYPICAL OPERATION IN POWER-SWITCHING CIRCUIT BELOW

DC Collector Supply Voltage (Vcc) DC Base Supply Voltage (VBB) Generator Resistance On DC Collector Current (Ic) Turn-On DC Base Current (Ig1) Turn-Of DC Base Current (Ig2) Switching Time:	8.5 50 750 65 35	volts volts ohms ma ma
Delay time (ta)	0.2	μsec
Rise time (t _r)	1	μsec
Storage time (t _s)	0.8	μsec
Fall time (t _r)	1.1	μsec

V_{BB} V_{CO} R_1 R_2 R_3
\mathbf{V}_{CC} \mathbf{R}_1 \mathbf{R}_2

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and mediumpower switching applications in industrial and military equipment. It features high collector-to-emitter sustaining voltage, low leakage char-

acteristics, high switching speeds, and a high dc forward current-transfer ratio. JEDEC No. TO-5 package; outline 6, Outlines Section. For curve of typical transfer characteristics, refer to type 2N1893.

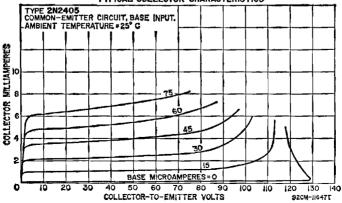
MAXIMUM RATINGS

Collector-to-Base Voltage (with base-to-emitter reverse bias = 1.5 volts) Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage:	120 max 120 max	volts volts
With external base-to-emitter resistance = 10 ohms or less With external base-to-emitter resistance = 500 ohms Collector-to-Emitter Voltage (with base open) Emitter-to-Base Voltage (with collector open) Collector Current	140 max 120 max 90 max 7 max 1 max	volts volts volts volts ampere
At case temperatures up to 25°C At ambient temperatures up to 25°C At case or ambient temperatures above 25°C Temperature Range: Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	1 max See curve	page 80 °C
Lead Temperature (for to seconds maximum)		
CHARACTERISTICS	SVV Mux	U
Collector-to-Base Breakdown Voltage (with collector $ma = 0.1$ and emitter current $= 0$) Emitter-to-Base Breakdown Voltage (with emitter $ma = 0.1$	120 mi n	volts
Collector-to-Base Breakdown Voltage (with collector $ma = 0.1$ and emitter current $= 0$) Emitter-to-Base Breakdown Voltage (with emitter $ma = 0.1$ and collector current $= 0$) Collector-to-Emitter Saturation Voltage: With base $ma = 15$ and collector $ma = 150$	120 min 7 min 0.5 max	volts volts volt
Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0) Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1 and collector current = 0) Collector-to-Emitter Saturation Voltage:	120 min 7 min	volts volts volt

Collector-to-Emitter Sustaining Voltage: With base current = 0 and pulsed collector ma = 100^* With base current = 0 and pulsed collector ma = 30^* With external base-to-emitter resistance = 10 ohms and	90 min 90 min	volts volts
pulsed collector $ma = 100^*$	140 min	volts
With external base-to-emitter resistance = 500 ohms and pulsed collector ma = 100*	120 min	volts
With case temperature = 25° C, collector-to-base volts = 90, and emitter current = 0 With case temperature = 150° C, collector-to-base volts = 90.	0.01 max	μa
and emitter current $= 0$	1 0 max	μa
Emitter-Cotoff Current (with emitter-to-base volts = 5 and collector current = 0)	0 .01 max	μa
Junction-to-case Junction-to-ambient	35 max ° 175 max °	

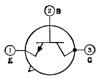
* Pulse duration = 300 μ sec, duty factor = 0.018

In Common-Base Circuit


Input Resistance at 1 kilocycle: With collector-to-base volts = 5 and collector ma = 1 With collector-to-base volts = 10 and collector ma = 5	24 to 34 .4 to 8	ohms ohms
Emitter-to-Base Capacitance (with emitter-to-base volts $= 0.5$ and collector current $= 0$)	80 max	pf
Collector-to-Base Capacitance (with collector-to-base volts $= 10$		· · .
and emitter current $= 0$) Output Conductance at 1 kilocycle:	15 max	pf
With collector-to-base volts $= 5$ and collector ma $= 1$	0.5 max	μ mho
With collector-to-base volts $= 10$ and collector ma $= 5$, Small-Signal Open-Circuit Reverse Voltage-Transfer Ratio at	0.5 max	μ mho
1 kilocycle:	9 10-4	
With collector-to-base volts = 5 and collector ma = 1 With collector-to-base volts = 10 and collector ma = 5	3 x 10-4 3 x 10-4	

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:With collector-to-emitter volts = 10 and pulsed collector ma25 min $= 500^{+}$ 25 minWith collector-to-emitter volts = 10 and pulsed collector ma = 10...60 to 200With collector-to-emitter volts = 10, collector ma = 10, and
case temperature = $-55^{\circ}C$ 20 minSmall-Signal Forward Current-Transfer Ratio:20 minWith collector-to-emitter volts = 5, collector ma = 5, and
frequency = 20 Mc50 to 275Noise Figure (with collector-to-emitter volts = 10, collector ma6 min= 0.3 generator resistance = 500 ohms, circuit bandwidth
= 15 kilocycles, and signal frequency = 1 kilocycle)6 max


* Pulse duration = 300 μ sec, duty factor = 0.018

TYPICAL COLLECTOR CHARACTERISTICS

TRANSISTOR

Silicon n-p-n type used in ultrahigh-speed logic-circuit applications in data-processing equipment. Package is similar to JEDEC No. TO-18; outline 27, Outlines Section.

MAXIMUM RATINGS

2N2475

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open) Emitter-to-Base Voltage (with collector open)	15 max vol 6 max vol 4 max vol	ts
Transistor Dissipation At case temperatures up to 100°C At ambient temperatures up to 25°C At ambient_temperatures above 25°C	500*max m 300 max m See curve page 8	w
Temperature Range: Storage Operating (junction) Lead Temperature (for 10 seconds maximum)	-65 to 200 °	CCC

* This rating must be reduced by 5 mw per °C for case temperature above 100°C.

CHARACTERISTICS

Base-to-Emitter Saturation Voltage (with collector $ma = 20$		
and base $ma = 0.66$)	0.8 to 1.0	volt
Collector-to-Emitter Saturation Voltage (with collector $ma = 20$		
and base ma $= 0.66$)	0.4 max	volt
Collector-Cutoff Current (with collector-to-base volts $= 5$		
and emitter current $= 0$)	0.05 max	μa
······································		

In Common-Base Circuit

Output Capacitance (with collector-to-base volts $=$ 5, emitter		
current $= 0$, and frequency $= 140$ kilocycles)	3 max	pf
Input Capacitance (with emitter-to-base volts $= 0.5$, collector		_
\hat{c} urrent = 0, and frequency = 140 kilocycles)	2 .5 max	pf

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio (with collector-to-	
emitter volts = 2, collector ma = 20, and frequency = 100 Mc)	6 min
DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts = 0.3 and collector ma = 1	2 0 min
With collector-to-emitter volts $= 0.5$ and collector ma $= 50$	20 min
With collector-to-emitter volts $= 0.4$ and collector ma $= 20$	30 to 150

TRANSISTOR

Silicon n-p-n type used in coredriving and line-driving applications requiring exceptionally fast switching speeds at high currents. JEDEC No. TO-5 package; outline 6, Outlines Section. This type is identical

with type 2N2477 except for the following items:

CHARACTERISTICS

2N2476

Collector-to-Emitter Saturation Voltage:		
With collector ma = 150 and base $ma = 7.5$	0.4 max	volt
With collector ma = 500 and base ma = 50 \dots	0.75 max	volt
Base-to-Emitter Voltage (with collector ma $= 150$		
and base ma = 7.5)	1 max	volt

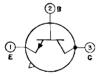
In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 0.4 and collector ma = 150)

20 min

TRANSISTOR

 Silicon n-p-n type used in coredriving and line-driving applications requiring exceptionally fast switching speeds at high currents. JEDEC No. TO-5 package; outline 6, Outlines Section.


MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open) Emitter-to-Base Voltage (with collector open) Transistor Dissipation:	60 max 20 max 5 max	volts
At case temperatures up to 25°C At ambient temperatures up to 25°C At case or ambient temperatures above 25°C Temperature Range:	2 max 0.6 max See curve	watt
Operating (junction) Storage Lead Temperature (for 10 seconds maximum)	-65 to 300	ပံ့ သူ့
CHARACTERISTICS		
Collector-to-Emitter Saturation Voltage: With collector ma = 150 and base ma = 3.75 With collector ma = 500 and base ma = 50 Base-to-Emitter Voltage (with collector ma = 150	0.4 max 0.65 max	volt volt
and base ma = 3.75) Collector-Cutoff Current (with collector-to-base volts = 30	0.95 max	volt
and emitter current $= 0$	0.2 max	μa
In Common-Base Circuit		
Output Capacitance (with collector-to-base volts = 10, emitter current = 0, and frequency = 140 kilocycles) $\dots \dots$	1 0 ma x	pf

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter	
volts = 0.4 and collector ma = 150)	40 min
Small-Signal Forward Current-Transfer Ratio (with collector-to-	
emitter volts = 10, collector ma = 50, and frequency = 100 Mc)	$2.5 \min$

TRANSISTOR

Germanium n-p-n type used for low-power radio-frequency amplifier applications in the vhf range in industrial and military equipment. JEDEC No. TO-18 package; outline 12, Outlines Section.

2N2482

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open) Collector-to-Emitter Voltage (with base open) Emitter-to-Base Voltage (with collector open)	12 max 3 max	volts volts volts
Collector Current	100 max 150 max	
Operating (junction) and storage Lead Temperature (for 10 seconds maximum)	65 to 100 235 max	°C °C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector ma = 0.1 and emitter current = 0) Collector-to-Emitter Breakdown Voltage (with collector ma = 2	20 min	volts
and base short-circuited to emitter)		volts
Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1 and collector current = 0) Collector-Cutoff Current (with collector-to-base volts = 6	3 min	volts
and emitter current $= 0$	5 max	μa

2N2477

In Common-Base Circuit

Output Capacitance (with collector-to-base volts = 6, emitter current = 0, and frequency = 140 kilocycles) Collector-to-Base Time Constant (with collector-to-base volts = 6, collector ma = 2, and frequency = 31.9 Mc)	4.5 max 0.3 max	pf µsec
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 6 and collector ma = 2) mall-Signal Forward Current-Transfer Ratio:	25 to 200	
With collector-to-emitter volts = 6, collector ma = 2, and frequency = 1 kilocycle With collector-to-emitter volts = 10, collector ma = 10, and frequency = 100 Ms	15 to 175	
With collector-to-emitter volts -17 collector ma -85	10	
and frequency = 100 Mc $requency = 100 Mc$ Base Spreading Resistance (with collector-to-emitter volts = 6, collector mc = 10 and frequency = 10 a	3 min	
= 250 Mc	30	ohms
With collector-to-emitter volts = 6, collector ma = 2, and frequency = 30 Mc	5	db
with collector-to-emitter volts = 6, collector ma = 2, and frequency = 100 Mc	6	db
Small-Signal Power Gain: With collector-to-emitter volts = 6, collector ma = 2, and frequency = 30 Mc With collector-to-emitter volts = 6, collector ma = 2,	25	db
and frequency = 100 Mc with collector-to-emitter volts = 12, collector ma = 10, with collector-to-emitter volts = 12, collector ma = 10,	12	db
and irequency $\equiv 200 \text{ Mc}$	8	db
Power Output as Class A Amplifier (with collector-to-emitter volts = 12, collector ma = 30, signal input = 6.5 mw, and frequency = 70 Mc)	150	mw

TRANSISTOR

2N2613

Germanium p-n-p type used in a wide variety of small-signal and low-power applications in highquality af-amplifier equipment. It is a low-noise high-gain type intended primarily for use in the input

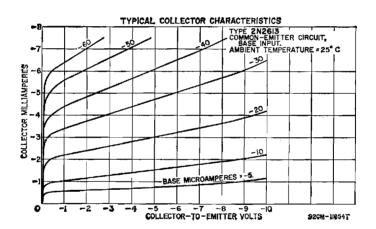
and low-level stages of equipment having stringent performance requirements at low idling-current levels (0.3 to 0.7 milliampere). It can also be used in the input stages of phonograph amplifiers using either ceramic or magnetic pickups, tape recorders and players, microphone amplifiers, and other similar applications. It features a high small-signal forward current-transfer ratio, excellent linearity over the entire range of collector current, high cutoff frequency, low saturation currents, and uniform gain characteristics over the entire audio-frequency spectrum. JEDEC No. TO-1 package; outline 4, Outlines Section.

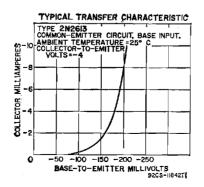
MAXIMUM RATINGS

Collector-to-Base Voltage	30 max	volts
Conector-to-Emitter voltage (with external pase-to-emitter		
resistance = 10000 ohms	$-25 \max$	volts
Emitter-to-Base Voltage	—25 max	volts
Collector Current	—50 max	ma
Emitter Current	50 max	ma
Transistor Dissipation		
At ambient temperatures up to 55°C	120 max	
At ambient temperatures above 55°C	Derate 2.6	mw/°C
Temperature Range:		
Operating (junction) and Storage – Lead Temperature (for 10 seconds maximum)	-65 to 100	°C O°
Lead Temperature (for 10 seconds maximum)	255 max	°C
QUADACTEDICTICC		
CHARACTERISTICS		

Collector-to-Base Breakdown	Voltage (with	emitter-to-base		
volts $= -2$ and collector n	na = —0.05)		—30 min	volts

Collector-to-Emitter Breakdown Voltage (with collector ma = -1 and external base-to-emitter resistance $= 10000$ ohms) Emitter-to-Base Breakdown Voltage (with emitter ma $= -0.05$ and collector current $= 0$) Collector-Cutoff Current (with collector-to-base volts $= -20$ and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= -20$ and collector current $= 0$) Extrinsic Base-Lead Resistance (measured at 20 Mc with collector-to-emitter volts $= -4.5$ and collector ma $= -0.5$)	25 min 25 min 5 max -7.5 max 300	volts volts µa µa ohms		
In Common-Emitter Circuit				
 Small-Signal Forward Current-Transfer Ratio (with collector-to-emitter volts = -4, colector ma = -0.5, and frequency = 1 kilocycle) Small-Signal Forward-Current Transfer-Ratio Cutoff Frequency with collector-to-emitter volts = -4.5 and collector ma = -0.5) Noise Figure (with collector-to-emitter volts = -4.5, collector ma = -0.5, enerator resistance = 1000 ohms, circuit band- 	120 min 10 typ	Мс		

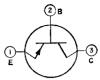



 ma = -0.5, generator resistance = 1000 ohms, circuit bandwidth = 1.1 kilocycle, and signal frequency = 1 kilocycle)...
 4 max
 db

 Collector-to-Base Feedback Capacitance (with collector-toemitter volts = -4.5 and collector ma = -0.5)
 10
 pf

 Equivalent RMS Noise Input Current for the 20- to 20000cps frequency range (with collector-to-emitter volts = -4.5, collector ma = -0.5, and external base-to-emitter resistance = 50000 ohms)
 0.001* max
 μa

*At ambient temperatures above 25°C, value may be higher.



273

TRANSISTOR

Germanium p-n-p type used in a wide variety of small-signal and low-power applications in highquality audio-frequency amplifier equipment. It is intended primarily for use in low-to-medium-level

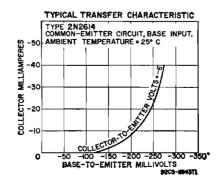
100 min

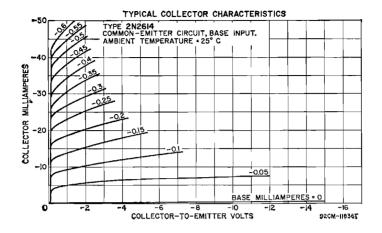
audio-amplifier and driver stages. It features a high small-signal forward current-transfer ratio, excellent linearity over the entire range of collector current, high cutoff frequency, low saturation currents, and uniform gain characteristics over the entire audio-frequency spectrum. JEDEC No. TO-1 package; outline 4, Outlines Section.

MAXIMUM RATINGS

2N2614

Collector-to-Base Voltage Collector-to-Emitter Voltage (with external base-to-emitter	—40 max	volts
resistance = 10000 ohms)	—35 max	volts
Emitter-to-Base Voltage	—25 max	volts
Collector Current	50 max	ma
Emitter Current	50 max	ma
Transistor Dissipation:		
At ambient temperatures up to 55°C	120 max	mw
At ambient temperatures above 55°C	Derate 2.6	mw/°C
At case temperatures up to 55°C with infinite heat sink	300 max	
At case temperatures above 55°C with infinite heat sink	Derate 6.67	mw/°C
At case temperatures up to 55°C with typical heat sink	225 max	mw
At case temperatures above 55°C with typical heat sink	Derate 5	mw/°C
Temperature Range:		
Operating (junction) and Storage	65 to 100	°C
Operating (junction) and Storage	255 max	°C
-		


CHARACTERISTICS

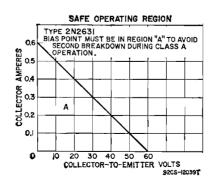

Collector-to-Base Breakdown Voltage (with emitter-to-base volts $= -2$ and collector ma $= -0.05$)	-40 min	volts
Collector-to-Emitter Breakdown Voltage (with collector ma $= -1$ and external base-to-emitter resistance = 10000 ohms)	—35 min	volts
Emitter-to-Base Breakdown Voltage (with emitter ma = -0.05 and collector current = 0)	25 min	volts
Collector-Cutoff Current (with collector-to-base volts $= -20$ and emitter current $= 0$)	—5 max	μa
Emitter-Cutoff Current (with emitter-to-base volts = -20 and collector current = 0)	-7.5 max	μa
Extrinsic Base-Lead Resistance (measured at 20 Mc with collector-to-emitter volts $= -6$ and collector ma $= -1$)	300	ohms

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio (with collectorto-emitter volts = -6, collector ma = -1 and frequency = 1 kilocycle)

Small-Signal Forward-Current Transfer-Ratio Cutoff Frequency		
(with collector-to-emitter volts = -6 and collector ma = -1)	10	Mc
Collector-to-Base Feedback Capacitance (with collector-to-	10	INC
	0	pf
emitter volts = -6 and collector ma = -1)	5	pr

POWER TRANSISTOR


Silicon n-p-n type used in a wide variety of large-signal high-power vhf applications in military and industrial communications equipment. It is intended primarily for use in AM, FM, and CW circuits at fre-

2N2631

quencies up to 150 megacycles. It features high power output and high voltage ratings. This type is 100-per-cent tested to assure freedom from second breakdown in class A operation at maximum ratings. JEDEC No. TO-39 package; outline 32, Outlines Section. This type is identical with type 2N2876 except for the following items:

MAXIMUM RATINGS

Collector Current	1.5 max amperes
Transistor Dissipation:	
At case temperatures up to 25°C	8.75 max watts
At case temperatures above 25°C	See curve page 80

CHARACTERISTICS

Collector-to-Emitter Satu	ration Voltage	(with base	ma = 30	0	
and collector amperes :	= 1.5)				volt

In Common-Emitter Circuit

Unneutralized RF Power Output (with load and generator		
impedance = 50 ohms): With collector-to-emitter volts = 28, collector ma = 375 .		
and frequency $= 50$ Mc	7.5* min	watts
with collector-to-emitter volts $= 28$, collector ma $= 275$,	3* min	watts
and frequency = 150 Mc \dots	a. mut	waits

* Input power = 1 watt.

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of vhf and uhf applications. It is intended primarily for use in amplifier, mixer, and oscillator applications in the frequency range from 200 to 500 megacycles. It uses

a four-lead package which has the same dimensions as the TO-18 package. Outline 31, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage Collector-to-Emitter Voltage Emitter-to-Base Voltage Collector Current	35 max volts 20 max volts 3 max volts Limited by power dissipation
Transistor Dissipation: At ambient temperatures up to 25°C At ambient temperatures above 25°C Temperature Range: Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	200 max mw See curve page 80 -65 to 200 °C 230 max °C
CHARACTERISTICS	
Collector-to-Base Breakdown Voltage (with collector $\mu a = 1$ and emitter current = 0) Collector-to-Emitter Breakdown Voltage (with pulsed collector	35 min volts
$m_a = 3^*$ and base current = 0 Emitter-to-Base Breakdown Voltage (with emitter $\mu a = 10$	20 min volts
and collector current $= 0$)	3 min volts
With ambient temperature = 25° C, collector-to-base volts = 15, and emitter current = 0 With ambient temperature = 150° C, collector-to-base volts =	0.01 max μa
15, and emitter current $= 0$	$1 \max \mu a$
In Common-Base Circuit	
Emitter-to-Base Capacitance ^{**} (with emitter-to-base volts $= 0.5$, collector current $= 0$, and frequency $= 140$ kilocycles). Collector-to-Base Capacitance ^{**} (with collector-to-base volts	1.4 pf
= 15, emitter current = 0, and frequency = 140 kilocycles). Collector-to-Base Time Constant*** (with collector-to-base volts	1.5 max pf
= 15, collector ma $=$ 2, and frequency $=$ 31.9 Mc)	15 to 33 psec

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 2 and collector ma = 2) Small-Signal Forward Current-Transfer Ratio (with collector-	30 to 200	
to-emifter volts = 15, collector ma = 2, and frequency = 1 kilocycle) Noise Figure (with collector-to-emitter volts = 15, collector ma	30 to 180	
= 2, source resistance $= 50$ ohms, and frequency $= 200$ Mc).	8.5 max	db
Transconductance (with collector-to-emitter volts = 15, collector ma = 2, and frequency = 200 Mc)	25	mmh o

Small-Signal Common Emitter Power Gain with collector-to- emitter volts = 15, collector ma = 2, and frequency = 200 Mc:		
Neutralized Unneutralized	15 to 22	db db
Magnitude of Small-Signal Forward Current-Transfer Ratio	14	ub
(with collector-to-emitter volts = 15, and collector $ma = 2$)	7 to 12	

Pulse duration = 300 µsec or less; duty factor = 0.01 or less.
** With lead No. 4 (case) not connected.
*** Lead No. 4 (case) grounded.

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of uhf applications in industrial and military equipment. It is used primarily in low-noise amplifier, oscillator, and converter circuits. When operated in the common-

2N2857

emitter configuration, it is useful up to 500 megacycles; in the common-base configuration, up to 1200 megacycles. This type features a high gain-bandwidth product, high converter gain, high power gain as a neutralized amplifier, high power output as a uhf oscillator, low noise figure, and a low collector-to-base time constant. It uses a four-lead package which has the same dimensions as the TO-18 package. (The fourth lead may be used to ground the case in applications requiring shielding of the device.) Outline 31, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage Collector-to-Bmitter Voltage Emitter-to-Base Voltage Collector Current Transistor Dissipation;	30 max 15 max 2.5 max 20 max	volts volts	
At ambient temperatures up to 25°C At ambient temperatures above 25°C At case temperatures up to 25°C (with heat sink) At case temperatures above 25°C (with heat sink) Temperature Range:	200 max See curve 300 max See curve	page 80 mw	
Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	65 to 200 230 max	ိင္ရင	
CHARACTERISTICS			
Collector-to-Base Breakdown Voltage (with collector ma = 0.001 and emitter current = 0) Collector-to-Emitter Breakdown Voltage (with collector ma	30 min	volts	
= 3 and base current = 0) Emitter-to-Base Breakdown Voltage (with emitter ma	15 min	volts	
= 0.01 and collector current = 0) Collector-Cutoff Current (with collector-to-base volts = 15	$2.5~{ m min}$	volts	
conector-cuton current (with conector-to-base voits \equiv 15 and emitter current \equiv 0)	0.01 max	μa	
In Common-Base Circuit			
Emitter-to-Base Capacitance [*] (with emitter-to-base volts = 0.5, collector current = 0, and frequency = 0.140 Mc). Collector-to-Base Capacitance ^{**} (with collector-to-base volts)	1.4	\mathbf{pf}	
Collector-to-Base Capacitance ^{**} (with collector-to-base volts $= 10$, emitter current $= 0$, and frequency $= 0.140$ Mc) Collector-to-Base Time Constant [*] (with collector-to-base volts	1.8 max	\mathbf{pf}	
= 6, collector ma = 2, and frequency = 31.9 Mc) Power Output as oscillator (with collector-to-base volts = 10,	4 to 15	psec	
emitter ma = 12, and frequency = 500 Mc)	30 min	mw	
In Common-Emitter Circuit			
DC Forward Current-Transfer Ratio (with collector-to-emitter volt = 1 and collector ma = 3) Small-Signal Forward Current-Transfer Ratio* (with collector-	30 to 150		
to-emitter volts = 6, collector ma = 2, frequency = 0.001 Mc) Noise Figure** (with collector-to-emitter volts = 6, collector	50 to 220		

Noise Figure** (with collector-to-emitter volts = 6, collec ma = 1.5, frequency = 450 Mc, and source resistance = 50 ohms) collector 4.5 max db

Small-Signal Common-Emitter Power Gain (with collector-to-emitter volts = 6, collector ma = 1.5, and frequency = 450 Mc) 12.5 to 19

* Fourth Lead (case) not connected. ** Lead No. 4 grounded.

2N2869/

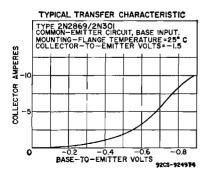
2N301

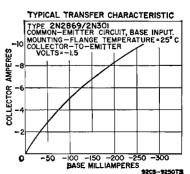
POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of af power-amplifier and large-signal applications in commercial, industrial, and military equipment. It is used in class A and class B af-output-amplifier stages of

automobile radio receivers and mobile communications equipment. It provides excellent dc-to-dc and dc-to-ac power conversion. This type features high breakdown voltage, low saturation voltage, high large-signal beta, and a high dissipation capability. JEDEC No. TO-3 package: outline 5. Outlines Section.

MAXIMUM RATINGS


Collector-to-Base Voltage Collector-to-Emitter Voltage Emitter-to-Base Volts	-50 max volts
Collector Current	
Base Current	
Transistor Dissipation: At mounting-flange temperatures up to 55°C	30 max watts
At mounting-flange temperatures above 55°C	Derate 0.66 watt/°C
Temperature Range:	CE to 100 PC
Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	-65 to 100 °C 255 max °C
CHARACTERISTICS	


CHARACTERISTICS

Collector-to-Base Breakdown Voltage (with collector ma $= -5$		
and emitter current $= 0$	—60 min	volts
Collector-to-Emitter Breakdown Voltage (with collector ma	50 min	volts
= -600 and base current $=$ 0)		vons
Emitter-to-Base Breakdown Voltage (with emitter ma $= -2$ and collector current $= 0$)	-10 min	volts
Collector-to-Emitter Saturation Voltage (with collector amperes	- 10 11111	VOIUS
= -10 and base ampere $= -1)$	0.75 max	volt
Base-to-Emitter Voltage (with collector-to-emitter volts $= -2$		
and collector ampere $= -1$	0.5 max	\mathbf{volt}
Collector-Cutoff Current (with collector-to-base volts $= -30$		
and emitter current $= 0$	0.5 max	ma
Collector-Cutoff Saturation Current (with collector-to-base	A 1 m a	-
volts = -0.5 and emitter current = 0)	0.1 max	ma

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = -2 and collector ampere = -1) 50 to 165 $V_{01S} = -4$ and collector ampere = -1) Gain-Bandwidth Product (with collector-to-emitter volts = -2and collector ampere = -1)

450

đb

Kc

TELC

നം

TYPICAL OPERATION IN CLASS A1 AF POWER AMPLIFIER CIRCUIT

Mounting-flange temperature of 80°C

DC Supply Voltåge DC Collector-to-Emitter Voltage DC Base-to-Emitter Voltage Zero-Signal Collector Current Signal-Source Impedance Load Impedance Power Gain Maximum-Signal Power Output Circuit Efficiency (at power output of 5 watts) Maximum Total Harmonic Distortion (at power output of watts)	$-14.4 \\ -12.2 \\ -0.35 \\ -0.9 \\ 400 \\ 10 \\ 15 \\ 38 \\ 5 \\ 45 \\ 5 \\ 5 \\ 11$	volts volts volt ampere cps ohms db watts per cent
Zero-Signal Collector Dissipation (at power output of watts)	5 11	per cent watts

TYPICAL OPERATION IN CLASS B PUSH-PULL AUDIO POWER-AMPLIFIER CIRCUIT

Mounting-flange temperature of 80°C; values are for two transistors except as noted

		-
DC Supply Voltage	-14.4	volts
Zero-Signal DC Base-to-Emitter Voltage	-0.13	volt
Zero-Signal DC Collector Current (per transistor)	-0.05	ampere
Peak Collector current (per transistor)	2	amperes
Maximum-Signal DC Collector Current (per transistor)	-0.64	ampere
Signal Frequency	400	cps
Signal-Source Impedance per base	10	ohms
Load Impedance per collector	6	ohms
Power Gain	30	db
Maximum-Signal Power Output	12	watts
Maximum Total Harmonic Distortion (at power output of		
12 watts)	5	per cent
Circuit Efficiency (at power output of 12 watts)	67	per cent
Collector Dissipation (per transistor at power output of	•••	per cent
12 watts)	3	watts
	0	mattis

TYPE 2N2869/2N301 COMMON-EMITTER CIRCUIT, BASE INPUT, MOUNTING-FLANGE TEMPERATURE = 25° C COLLECTOR MILLIAMPERES -10 • 6 50 40 -20 -10 -5 MILLIAMPERES = -1 BASE -25 -30 -35 -40 -45 COLLECTOR-TO-EMITTER VOLTS n -20 -50 92CM-9247T2

TYPICAL COLLECTOR CHARACTERISTICS

POWER TRANSISTOR

Germanium p-n-p type used in a wide variety of af power-amplifier and large-signal applications in commercial, industrial, and military equipment. It is used in class A and class B af-output-amplifier stages

of automobile radio receivers and mobile communications equipment. It provides excellent dc-to-dc and dc-to-ac power conversion. This type features high breakdown voltage, low saturation voltage, high large-signal beta, and a high dissipation capability. JEDEC No. TO-3 package; outline 5, Outlines Section. This type is identical with type 2N2869/2N301 except for the following items:

RCA Transistor Manual

MAXIMUM RATINGS

Collector-To-Base Voltage	—80 max	volts
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector ma = -5 and emitter current = 0) Collector-to-Emitter Saturation Voltage (with collector amperes = -10 and base ampere = -1)	80 min 0.5 max	

2N2873

See list of Discontinued Transistors at end of Technical Data Section for abbreviated data.

POWER TRANSISTOR

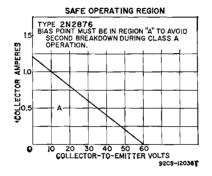
2N2876

Silicon n-p-n type used in a wide variety of large-signal high-power vhf applications in military and industrial communications equipment. It is intended primarily for use in AM, FM, and CW circuits at fre-

quencies up to 150 megacycles. It features high power output and high voltage ratings. This type is 100 per cent tested to assure freedom from second breakdown in class A operation at maximum ratings. It uses a special stud-mounted package which is electrically isolated from all electrodes and designed to provide excellent performance at high frequencies. Outline 35, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage Collector-to-Emitter Voltage:	80 max	volts
With base open With base-to-emitter volts = 1.5	60 max	volts
		volts
Emitter-to-Base Voltage Collector Current	4 max 2.5 max a	volts
Transistor Dissination:	2.0 1110.11	
At case temperatures up to 25°C	_17.5 max	
At case temperatures above 25°C Temperature Range:	See curve	page 80
Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	-65 to 200	°C
Lead Temperature (for 10 seconds maximum)	230 max	°Č
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $ma = 0.5$		
and emitter current $= 0$) Collector-to-Emitter Sustaining Breakdown Voltage (with	80 min	volts
pulsed collector ma = 500° and base current = $0)$	60 min	volts
Collector-to-Emitter Breakdown Voltage (with base-to-emitter		
volts = -1.5 and collector ma = 0.1)	80 min	\mathbf{v} olts
Emitter-to-Base Breakdown Voltage (with emitter ma $= 0.1$ and collector current $= 0$)	4 min	volts
Collector-to-Emitter Saturation Voltage (with base ma $= 500$		
and collector amperes $= 2.5$)	1 max	volt
Collector-Cutoff Current (with collector-to-base volts = 30 and emitter current = 0)	0.1 max	μa
Collector-to-Case Capacitance	6 max	pf


In Common-Base Circuit

Collector-to-Base Capacitance (with collector-to-base volts $=$ 30, emitter current $=$ 0, and frequency $=$ 140 kilocycles)	20 max	\mathbf{pf}
In Common-Emitter Circuit		

Base Spreading Resistance	(with collector-to-emitter volts $= 28$,		
collector ma $=$ 250, and	$frequency = 400 Mc) \dots$	6	ohms

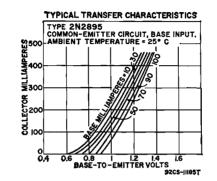
Gain-Bandwidth Product (with collector-to-emitter volts $= 28$ and emitter ma $= 250$) Unneutralized RF Power Output (with load and generator	200	Mc
impedance = 50 ohms): With collector-to-emitter volts = 28, collector ma = 500, and frequency = 50 Mc With collector-to-emitter volts = 28, collector ma = 275, and frequency = 150 Mc	10** min 3† min	watts watts

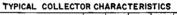
* Pulse duration = 5 μ sec or less; duty factor = 0.01 or less. ** Input power = 2 watts. † Input power = 1 watt.

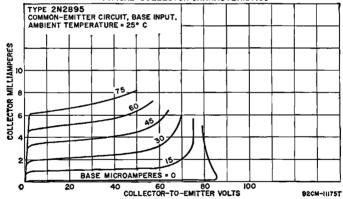
TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and low-tomedium power applications in military and industrial equipment. It feaures extremely low leakage characteristics, high pulse beta, high

2N2895


small-signal beta, very low capacitance, and large gain-bandwidth product. This type has an exceptionally low noise figure of 8 db maximum and offers five levels of beta control from 0.1 ma to 0.5 ampere. JEDEC No. TO-18 package; outline 12, Outlines Section.


MAXIMUM RATINGS


Collector-to-Base Voltage Collector-to-Emitter Voltage:	120 max	volts
With base open	65 max 80 max	volts volts
Emitter-to-Base Voltage	7 max	volts
Collector Current Transistor Dissipation:	$1 \max$	ampere
At case temperatures up to 25°C	1.8 max	watts
At ambient temperatures up to 25°C	0.5 max	watt
Temperature Range:	See curve	page 80
Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	-65 to 200	°C
Lead Temperature (for 10 seconds maximum)	255 max	°C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $ma = 0.1$		
and emitter current $= 0$) Emitter-to-Base Breakdown Voltage (with emitter ma $= 0.1$	120 min	volts
and collector current $= 0$	7 min	volts
Collector-to-Emitter Sustaining Voltage: With base open, pulsed collector ma = 100^* , and base		
current $= 0$	6 5 min	volts
current = 0 With emitter-to-base resistance = 10 ohms, and pulsed		
collector ma $= 100^*$ Collector-to-Emitter Saturation Voltage (with pulsed collector	80 min	volts
$ma = 150^*$ and base $ma = 15$)	0.6 max	volt
Base-to-Emitter Saturation Voltage (with pulsed collector $ma = 150^*$ and base $ma = 15)$	1.2 max	volts
	1.10 1110.75	. 0103

RCA Transistor Manual

Collector-Cutoff Current: With case temperature = 25° C, collector-to-base volts = 60, and emitter current = 0	0.000	_
With case temperature = 150° C, collector-to-base volts = 60,	0.002 max	μa
and emitter current $= 0$	2 max	μa
Emitter-Cutoff Current (with emitter-to-base volts = 5 and collector current = 0	0.002 max	μa
Junction-to-case	97 max 3 350 max 3	

In Common-Base Circuit

Emitter-to-Base Capacitance (with emitter-to-base volt		
= 0.5, collector current $=$ 0, and frequency $=$ 140 kilocycles).	80 max	pf
Collector-to-Base Capacitance (with collector-to-base volts		-
= 10, emitter current $=$ 0, and frequency $=$ 140 kilocycles)	1 5 max	pf
		-

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= 10$ and pulsed collector	
$ma = 150^*$ With collector-to-emitter volts = 10 and pulsed collector	40 to 120
$ma = 500^*$	25 min
With collector-to-emitter volts $= 10$ and collector ma $= 0.1$	20 min
With collector-to-emitter volts = 10 and collector ma = 10	35 min
With case temperature $= -55^{\circ}$ C, collector-to-emitter volts $= 10$, and collector ma $= 10$	20 min
Small-Signal Forward Current-Transfer Ratio:	20 mm
With collector-to-emitter volts = 5, collector $ma = 5$, and	
frequency = 1 kilocycle With collector-to-emitter volts = 10, collector ma = 50, and	50 to 200
With collector-to-emitter volts = 10, collector ma = 50, and frequency = 20 Me	6 min
frequency = 20 Mc \dots	6 min

Noise Figure (with collector-to-emitter volts = 10, collector ma = 0.3, generator resistance = 510 ohms, circuit bandwidth = 1 cps, and frequency = 1 kilocycle)

* Pulse duration = 300 μ sec; duty factor = 0.018.

TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and low-tomedium power applications in military and industrial equipment. It features extremely low leakage characteristics, high pulse beta, high

small-signal beta, very low capacitance, and large gain-bandwidth product. JEDEC No. TO-18 package; outline 12, Outlines Section. For curve of typical transfer characteristics, refer to 2N2895.

MAXIMUM RATINGS

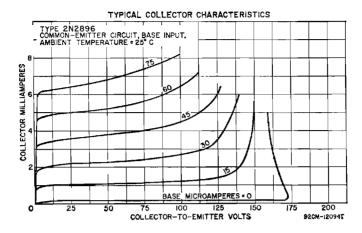
28

MAAIMOW BAIINGS		
Collector-to-Base Voltage Collector-to-Emitter Voltage:	140 max	volts
With base open	90 max	
With base-to-emitter resistance $= 10$ ohms or less	140 max	volts
Emitter-to-Base Voltage Collector Current	7 max	volts ampere
Transistor Dissipation:		ampere
At case temperatures up to 25°C At ambient temperatures up to 25°C At case and ambient temperatures above 25°C	1.8 max	watts
At ambient temperatures up to 25°C	0.5 max	
At case and ambient temperatures above 25°C	See curve	page 80
Temperature Range:	65 to 200	•
Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)		°C
Lead Temperature (101 10 Seconds maximum)	LOO MAA	U
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector ma		
= 0.1 and emitter current = 0) Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1	1 40 min	volts
Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1	7 min	volts
and collector current = 0) Collector-to-Emitter Sustaining Voltage:	6 111211	VOILS
with base open, pulsed collector ma $= 100^{\circ}$, and base		
current $= 0$ With emitter-to-base resistance $= 10$ ohms, and pulsed	90 min	volts
With emitter-to-base resistance $= 10$ ohms, and pulsed		
collector ma = $100*$	140 min	volts
Collector-to-Emitter Saturation Voltage (with pulsed collector $ma = 150^*$ and base $ma = 15$)	0.6 max	volt
Base-to-Emitter Saturation Voltage (with pulsed collector	v.o max	VOIC
$ma = 150^*$ and base $ma = 15$)	1 .2 max	volts
Collector-Cutoff Current:		
With case temperature = 25° C, collector-to-base volts = 90,	0.01	_
and emitter current = 0 With case temperature = 150° C, collector-to-base volts = 90°	0.01 max	μa
and emitter current -0	10 max	μa
and emitter current $= 0$ Emitter-Cutoff Current (with emitter-to-base volts $= 5$ and	10 max	μι
collector current $= 0$	0 .01 max	μa
Thermal Resistance:	05	
Junction-to-case	97 max	°C/watt °C/watt
Junction-to-ambient	350 max	C/ wall

In Common-Base Circuit

Emitter-to-Base Capacitance (with emitter-to-base volt $= 0.5$, collector current $= 0$, and frequency $= 140$ kilocycles)	80 max	pf
Collector-to-Base Capacitance (with collector-to-base volts $= 10$,		x
emitter current = 0, and frequency = 140 kilocycles)	$15 \max$	$\mathbf{p}\mathbf{f}$

In Common-Emitter Circuit


DC Forward Current-Transfer Ratio: With collector-to-emitter volts = 10 and pulsed collector ma = 150* With collector-to-emitter volts = 10 and collector ma = 1 With case temperature = -55°C, collector-to-emitter volts = 10, and collector ma = 10 Small-Signal Forward Current-Transfer Ratio: With collector-to-emitter volts = 5, collector ma = 5, and frequency = 1 kilocycle With collector to comitter volts = 10 collector ma = 50 and	60 to 200 35 min 20 min 50 to 275
With collector-to-emitter volts = 10, collector ma = 50, and frequency = 20 Mc	6 min

* Pulse duration = 300 μ sec; duty factor = 0.018.

283

8 max db

2N2896

TRANSISTOR

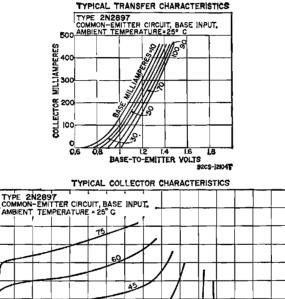
2N2897

Silicon n-p-n type used in a wide variety of small-signal and low-tomedium power applications in military and industrial equipment. It features extremely low leakage characteristics, high pulse beta, high

small-signal beta, very low capacitance, and large gain-bandwidth product. JEDEC No. TO-18 package; outline 12, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage Collector-to-Emitter Voltage:	60 ma x	volts
With base open With base-to-emitter resistance = 10 ohms or less	$45 \mathrm{max}$	volts
With base-to-emitter resistance $= 10$ ohms or less	60 max	volts volts
Emitter-to-Base Voltage Collector Current	7 max	ampere
Transistor Dissingtion:		•
At case temperatures up to 25°C	1 .8 max	
At case temperatures up to 25°C	0.5 max See curve	
Operating (junction) and Storage	-65 to 200	3°
Lead Temperature (for 10 seconds maximum)	255 max	-0
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $ma = 0.1$		
and emitter current - 0)	6 0 min	volts
Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1 and collector current = 0)	7 min	volts
Collector-to-Emitter Sustaining Voltage:		
With base open, pulsed collector ma = 100^* , and base current = 0	45 min	volts
With emitter-to-base resistance = 10 ohms, and pulsed	40 11111	VUIUS
collector ma = 100^* Collector-to-Emitter Saturation Voltage (with pulsed collector	60 min	volts
Collector-to-Emitter Saturation Voltage (with pulsed collector	1 max	volt
$ma = 150^*$ and base $ma = 15$)Base-to-Emitter Saturation Voltage (with pulsed collector	1 max	VOID
$ma = 150^*$ and base $ma = 15$)	1. 3 max	volts
Collector-Cutoff Current:		
With case temperature = 25° C, collector-to-base volts = 60 , and emitter current = 0	0.05 max	щa
and emitter current $= 0$ With case temperature $= 150^{\circ}$ C, collector-to-base volts $= 60$,		•
and emitter current $= 0$ Emitter-Cutoff Current (with emitter-to-base volts $= 5$ and	50 max	μa
collector current = 0	0 .05 max	μä
Thermal Resistance:	07	·
Junction-to-case Junction-to-ambient		°C/watt °C/watt
	000 max	C/ Watu


In Common-Base Circuit

Emitter-to-Base Capacitance (with emitter-to-base volt $= 0.5$.		
collector current = 0, and frequency = 140 kilocycles)	80 max	pf
Collector-to-Base Capacitance (with collector-to-base volts $= 10$.		~
emitter current $= 0$, and frequency $= 140$ kilocycles)	15 max	pf
		~

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:	
With collector-to-emitter volts $= 10$, and pulsed collector	
$ma = 150^*$. With collector-to-emitter volts = 10, and collector ma = 1	50 to 200 35 min
Small-Signal Forward Current-Transfer Ratio:	35 mm
With collector-to-emitter volts = 5, collector ma = 5, and	
frequency = 1 kilocycle With collector-to-emitter volts = 10, collector ma = 50 , and	50 to 275
With collector-to-emitter volts = 10, collector ma = 50, and	
frequency = 20 Mc \dots	5 min

* Pulse duration = 300 μ sec; duty factor = 0.018.

COLLECTOR MILLIAMPERES 2 BASE MICROAMPERES = 0 ٥ 10 20 30 40 60 70 50 COLLECTOR-TO-EMITTER VOLTS 92CM-11178T TRANSISTOR

(2) B

e

Silicon n-p-n type used in a wide variety of small-signal and low-tomedium power applications in military and industrial equipment. It features extremely low leakage characteristics, high pulse beta, high

2N2898

small-signal beta, very low capacitance, and large gain-bandwidth product.

This type has an exceptionally low noise figure of 8 db maximum and offers five levels of beta control from 0.1 ma to 0.5 ampere. JEDEC No. TO-46 package; outline 18, Outlines Section. This type is electrically identical with type 2N2895.

TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and low-tomedium power applications in military and industrial equipment. It features extremely low leakage characteristics high nulse beta high

acteristics, high pulse beta, high small-signal beta, very low capacitance, and large gain-bandwidth product. JEDEC No. TO-46 package; outline 18, Outlines Section. This type is electrically identical with type 2N2896.

TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and low-tomedium power applications in military and industrial equipment. It features extremely low leakage characteristics, high pulse beta, high

small-signal beta, very low capacitance, and large gain-bandwidth product. JEDEC No. TO-46 package; outline 18, Outlines Section. This type is electrically identical with type 2N2897.

TRANSISTOR

Silicon n-p-n type used in switching applications in military and commercial data-processing equipment. This type features high beta and high switching speed at high values of collector current, as well

as low base and collector cutoff currents, low saturation voltages at high values of collector current, and exceptional stability of characteristics. JEDEC No. TO-52 package; outline 20. Outlines Section.

MAXIMUM RATINGS

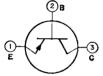
2N2938

Collector-to-Base Voltage	25 max	volts
Collector-to-Emitter Voltage	13 max	volts
Emitter-to-Base Voltage	5 max	volts
Collector Current	500 max	ma
Transistor Dissipation:		
At case temperatures up to 25°C	1 max	watt
At ambient temperatures up to 25°C	0.3 max	watt
At case or ambient temperatures above 25°C	See curve	page 80
Temperature Range:		
Operating	65 to 175	ပံ္ပံ သိုင္
Storage	65 to 200	°C
Lead Temperature (for 10 seconds maximum)	300 max	°C
CUADACTEDISTICS		

CHARACTERISTICS

Collector-to-Emitter Saturation Voltage (with collector ma		
= 50 and base ma $= 1.6$)	0.4 max	volt
Base-to-Emitter Saturation Voltage (with collector $ma = 50$		
and base ma = 1.6)	0.8 to 0.95	volt

വം


2N2899

2N2900

Collector-Cutoff Current: With ambient temperature = 25° C, collector-to-emitter volts = 20, and emitter-to-base volts = 0 With ambient temperature = 150° C, collector-to-emitter volts = 20, and emitter-to-base volts = 0	25 max 25 max	μ a μa
In Common-Base Circuit		
Emitter-to-Base Capacitance (with emitter-to-base volts = 1 and base current = 0) Collector-to-Base Capacitance (with collector-to-base volts = 5 and emitter current = 0)	5 max 4 max	pf pf
In Common-Emitter Circuit		
DC Forward Current-Transfer Ratio: With collector-to-emitter volt $= 0.3$ and collector ma $= 10$ With collector-to-emitter volt $= 0.4$ and pulsed collector ma	125	
$= 50^{*}$ With collector-to-emitter volt = 1 and pulsed collector ma	105	
with collector-to-emitter volt $= 0.4$, pulsed collector ma with collector-to-emitter volt $= 0.4$, pulsed collector ma	60	
= 50*, and ambient temperature $=$ -55°C	65	
Small-Signal Forward Current-Transfer Ratio (with collector- to-emitter volts = 10, collector ma = 10, and frequency = 100 Mc)	6.9	

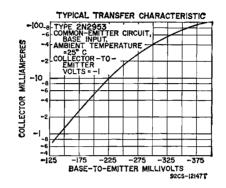
* Pulse duration = 50 μ sec; duty factor = 0.02 or less.

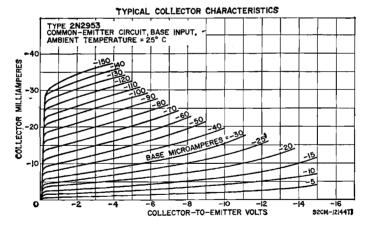
TRANSISTOR

Germanium p-n-p type used in audio-frequency driver-amplifier applications in consumer and industrial equipment. This type features exceptionally high gain under typical operating conditions for driver

2N2953

circuits, excellent linearity of small-signal beta and dc beta over its entire collector-current range, and uniform gain characteristics over the audio-frequency range. All leads are insulated from the case to permit use of the equipment chassis as a heat sink. JEDEC No. TO-1 package; outline 4, Outlines Section.


MAXIMUM RATINGS


Collector-to-Base Voltage	—30 max	volts
Collector-to-Emitter Voltage (with base-to-emitter resistance		
= 10000 ohms or less)	—25 max	volts
Emitter-to-Base Voltage	25 max	volts
Collector_Current		ma
Emitter Current	150 max	ma
Transistor Dissipation:		
At ambient temperatures up to 55°C	120 max	$\mathbf{m}\mathbf{w}$
At ambient temperatures above 55°C	Derate 2.6	mw∕°C
At case temperatures up to 55°C with infinite heat sink	300 max	mw
At case temperatures above 55°C with infinite heat sink	Derate 6.67	mw/°C
At case temperatures up to 55°C with practical heat sink*	225 max	mw
At case temperatures above 55°C with practical heat sink*	Derate 5	mw/°C
Temperature Range:		
Operating (junction) and Storage	65 to 100	°C
Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	65 to 100 255 max	°C
Lead Temperature (for 10 seconds maximum)	65 to 100 255 max	°C °C
Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	65 to 100 255 max	°C °C
Lead Temperature (for 10 seconds maximum)	65 to 100 255 max	သို့င
Lead Temperature (for 10 seconds maximum) CHARACTERISTICS Collector-to-Base Breakdown Voltage (with emitter-to-base	255 max	°C
Lead Temperature (for 10 seconds maximum) CHARACTERISTICS Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -2 and collector ma = -0.05)	65 to 100 255 max 30 min	°C °C volts
Lead Temperature (for 10 seconds maximum) CHARACTERISTICS Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -2 and collector ma = -0.05) Collector-to-Emitter Breakdown Voltage (with base-to-emitter	255 max 30 min	°C volts
Lead Temperature (for 10 seconds maximum) CHARACTERISTICS Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -2 and collector ma = -0.05) Collector-to-Emitter Breakdown Voltage (with base-to-emitter resistance = 10000 ohms and collector ma = -1)	255 max 30 min 25 min	°C volts volts
Lead Temperature (for 10 seconds maximum) CHARACTERISTICS Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -2 and collector ma = -0.05) Collector-to-Emitter Breakdown Voltage (with base-to-emitter resistance = 10000 ohms and collector ma = -1) Emitter-to-Base Breakdown Voltage (with emitter ma = -0.05)	255 max 30 min	°C volts
Lead Temperature (for 10 seconds maximum) CHARACTERISTICS Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -2 and collector ma = -0.05) Collector-to-Emitter Breakdown Voltage (with base-to-emitter resistance = 10000 ohms and collector ma = -1) Emitter-to-Base Breakdown Voltage (with emitter ma = -0.05) Collector-Cutoff Current (with collector-to-base volts = -20	255 max 30 min 25 min 25 min	°C volts volts volts
Lead Temperature (for 10 seconds maximum) CHARACTERISTICS Collector-to-Base Breakdown Voltage (with emitter-to-base volts = -2 and collector ma = -0.05) Collector-to-Emitter Breakdown Voltage (with base-to-emitter resistance = 10000 ohms and collector ma = -1) Emitter-to-Base Breakdown Voltage (with emitter ma = -0.05)	255 max 30 min 25 min	°C volts volts

In Common-Emitter Circuit

Small-Signal Forward Current-Transfer Ratio (with collector- to-emitter volts $=$ -10, collector ma $=$ -10 and frequency		
= 1 kilocycle)	200 min	
Small-Signal Forward Current-Transfer Ratio Cutoff Frequency (with collector-to-emitter volts $= -12$ and collector ma $= -1$)	10	Mc
Extrinsic Base-Lead Resistance (with collector-to-emitter volts $= 10$, collector ma $= -10$, and frequency $= 20$ Mc)	300	ohms
Collector-to-Base Feedback Capacitance (with collector-to- emitter volts = -12 and collector ma = -1)	6.5	pf
		P-

* Thermal resistance of heat sink is less than 50°C/watt.

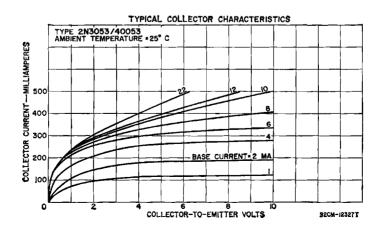
POWER TRANSISTOR

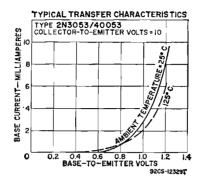
Silicon n-p-n type used in a wide variety of medium-power applications in industrial and commercial equipment. This type is intended primarily for frequencies up to 20 megacycles in small-signal power

2N3053/

40053

circuits. It is designed to assure freedom from second breakdown and features low leakage current and wide beta range. JEDEC No. TO-5 package; outline 6, Outlines Section.


MAXIMUM RATINGS


Collector-to-Base Voltage	60 max	volts
Collector-to-Emitter Voltage: With base open With external base-to-emitter resistance = 10 ohms	40 max	
With external base-to-emitter resistance $= 10$ ohms	50 max	
With base-to-emitter volts = 1.5 volts	60 max	
Emitter-to-Base Voltage	5 max	
Collector Current	0.7 max	ampere
Transistor Dissipation:	5 max	watts
At case temperatures up to 25°C At case temperatures above 25°C	See curve	
Temperature Range:		
Operating and Storage Lead Temperature (for 10 seconds maximum)	-65 to 200	°C
Lead Temperature (for 10 seconds maximum)	235 max	°Č
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $ma = 0.1$)	60 min	volts
Collector-to-Emitter Sustaining Voltage:		
With external base-to-emitter resistance $= 0$ and collector	40 min	volts
$ma = 100^*$ With external base-to-emitter resistance = 10 ohms and	40 mm	voits
collector ma = 100	50 min	volts
Collector-to-Emitter Saturation Voltage (with collector ma	00 11111	10110
= 150 and base ma $= 15$)	1.4 max	volts
= 150 and base ma $= 15$) Base-to-Emitter Saturation Voltage (with collector ma $= 150$		
and base ma = 15) Collector-Cutoff Current (with collector-to-base volts = 30	1.7 max	volts
Collector-Cutoff Current (with collector-to-base volts $= 30$		
and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= 4$ and	0.25 max	μa
Emitter-Cuton Current (with emitter-to-base volts $\equiv 4$ and collector current $\equiv 0$)	0.25 max	
Thermal Resistance (junction-to-case)	35 may	°C/watt
**************************************	JJ IIIAA	C) watt
In Common-Base Circuit		

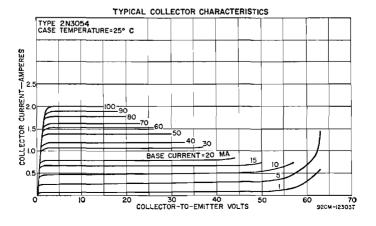
of
of

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 10 and pulsed collector ma = 150°)	50 to 250
Small-Signal Forward Current-Transfer Ratio (with collector-	
to-emitter volts = 10, collector ma = 50, and frequency	
= 20 Mc)	5 min
• Pulse duration = 300 μ sec; duty factor = 0.018.	

POWER TRANSISTOR

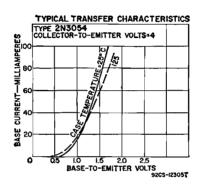
2N3054


Silicon n-p-n type used in a wide variety of intermediate-power applications in industrial and commercial equipment. This type is particularly useful in power-switching circuits, in series and shunt-regula-

tor driver and output stages, and in high-fidelity amplifiers. It is designed to assure freedom from second breakdown and features a special package which permits convenient mounting and effective contact with the heat sink. Outline 33, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage	90 max volts
With base open	55 max volts
With external base-to-emitter resistance $= 100$ ohms	60 max volts
With base-to-emitter volts = 1.5 volts	90 max volts
Emitter-to-Base Voltage	7 max volts
Collector Current	4 max amperes
Base Current	2 max amperes
Transistor Dissipation:	-
At case temperatures up to 25°C	25 max watts
At case temperatures above 25°C	See curve page 80
Temperature Range:	
Operating and Storage	-65 to 200 °C 235 max °C
Lead Temperature (for 10 seconds maximum)	235 max °C



CHARACTERISTICS

Collector-to-Emitter Sustaining Voltage: With external base-to-emitter resistance = 0 and collector		
ma = 100	55 min	volts
With external base-to-emitter resistance $= 100$ ohms and collector ma $= 100$	60 min	volts
Collector-to-Emitter Saturation Voltage (with collector ma $= 500$ and base ma $= 50$)	1 max	volts
Base-to-Emitter Saturation Voltage (with collector ma = 500 and collector-to-emitter volts = 4) Emitter-Cutoff Current (with emitter-to-base volts = 7 and	1.7 max	volts
Thermal Resistance (junction-to-case)	1 max 7 max °0	ma C/watt

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 4 and collector ma = 500) 25 to 100

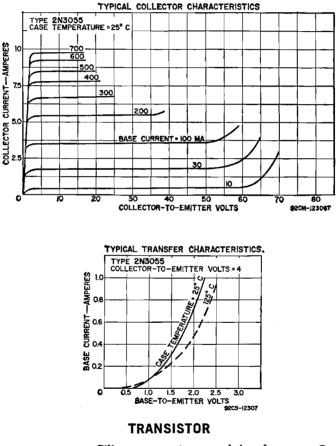
POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of high-power applications in industrial and commercial equipment. This type is particularly useful in power-switching circuits in series and shunt-regulator driver

2N3055

and output stages, and in high-fidelity amplifiers. It is designed to assure freedom from second breakdown and features an exceptionally high dissipation rating. JEDEC No. TO-3 package; outline 5, Outlines Section.

MAXIMUM RATINGS


Collector-to-Base Voltage Collector-to-Emitter Voltage:	100 max	volts
With base open	60 max	volts
With external base-to-emitter resistance $= 100$ ohms	70 max	volts
With base-to-emitter volts $= 1.5$ volts	100 max	volts
Emitter-to-Base Voltage Collector Current	7 max	
	15 max a	
Base Current	7 max ar	mperes
Transistor Dissipation:		
At case temperatures up to 25°C At case temperatures above 25°C	_ 115 max	
	See curve p	bage 80
Temperature Range: Operating and Storage	65 to 200	°C
Lead Temperature (for 10 seconds maximum)	-03 10 200	S. S.
Lead Temperature (for to seconds maximum)	200 IIIax	C
CHARACTERISTICS		
Collector-to-Emitter Sustaining Voltage:		

Collector-to-Emitter Saturation Voltage (with collector		
amperes = 4 and base $ma = 400$) Base-to-Emitter Saturation Voltage (with collector-to-emitter	1.1 max	volts
volts = 4, and collector amperes = 4) \dots	1.8 max	volts
Emitter-Cutoff Current (with emitter-to-base volts $= 7$ and		
collector current = 0	5 max	
Thermal Resistance (junction-to-case)	1.5 max '	'C/watt

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio	(with collector-to-emitter	
volts $= 4$ and collector amperes $=$	· `4)	20 to 70

Silicon n-p-n type used in rf amplifiers in military and industrial high-frequency and vhf communication equipment. It is intended primarily for use in large-signal vhf class C and small-signal vhf class

2N3118

A amplifier circuits. This type features high output power, high collector-toemitter voltage ratings, high gain-bandwidth product, high power gain, and high power dissipation. JEDEC No. TO-5 package; outline 6, Outlines Section.

MAXIMUM RATINGS

	max	volts
Collector-to-Emitter Voltage: With base-to-emitter volts $= -1.5$	max	volts
	max	
Collector Current 0.5	max	ampere
Transistor Dissipation:		
	max	
	max	
	urve	page 80
Temperature Range:		°C
Operating (junction) and Storage	mox	°C O°
Lead Temperature (for 10 seconds maximum)	шал	C
CHARACTERISTICS		
Emitter-to-Base Breakdown Voltage (with emitter ma == 0.1		
Entitle1-10-Base Breakdown Voltage (with entitle1 ma = 0.1	· ·	

and collector current $= 0$)	4 min	volts
Collector-to-Emitter Sustaining Breakdown Voltage (with pulsed collector ma 10* and base current = 0)	6 0 min	volts
Collector-to-Emitter Breakdown Voltage (with base-to-emitter volts = -1.5 and collector ma -0.1)	85 min	volts
Collector-Cutoff Current: With ambient temperature $= 25^{\circ}$ C, collector-to-base volts		
= 30, and emitter current $=$ 0)	0.1 max	μa
With ambient temperature $= 150^{\circ}$ C, collector-to-base volts $= 30$, and emitter current $= 0$)	1 00 max	μa

In Common-Base Circuit

Collector-to-Base Capacitance (with collector-to-base volts $=28$, emitter current $= 0$, and frequency $= 1$ Mc)6 max	pf
--	----

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts - 28 and collector ma == 25) Small-Signal Forward Current-Transfer Ratio (with collector-	50 to 275	
to-emitter volts $=$ 28, collector ma $=$ 25, and frequency		
= 50 Mc	5 min	
Output Power Class C Service**:		
With collector-to-emitter volts = 28, and frequency $= 50 \text{ Mc}$.	1 min	watt
With collector-to-emitter volts = 28, and frequency -150 Mc.	0.4 min	watt
Power Gain Class A Service: (with collector-to-emitter volts		
= 28, collector ma $= 25$, and frequency $= 50$ Mc)	18 min	db

* Pulse duration = 300 μ sec; duty factor = 0.018 or less. ** Input power =: 0.1 watt (with heat sink). † Output power =: 0.2 watt (with heat sink).

TRANSISTOR

2N3119

Silicon n-p-n type used in switching and pulse-amplifier applications. It is intended primarily for use in high-voltage high-frequency amplifiers and high-voltage saturation switches in military and indus-

trial equipment. This type features high collector-to-emitter voltage ratings, fast rise time, and high power dissipation. JEDEC No. TO-5 package; outline 6. Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage	100 max	volts
Collector-to-Emitter Voltage:		
With base-to-emitter volts $= -1.5$		volts
With base open	80 max	volts
Emitter-to-Base Voltage	4 max	volts
Collector Current	0.5 max	ampere
Transistor Dissipation:		-
At case temperatures up to 25°C	$4 \mathrm{max}$	
At ambient temperatures up to 25°C	1 max	watt
_ At case or ambient temperatures above 25°C	See curve	page 80
Temperature Range:		
Operating (junction) and Storage	-65 to 200	°C
Lead Temperature (for 10 seconds maximum)	255 max	°Č

CHARACTERISTICS

Collector-to-Base Breakdown Voltage (with collector ma = 0.10 and emitter current = 0) 100 min Emitter-to-Base Breakdown Voltage (with emitter ma = 0.10 and collector current = 0) 100 min Collector-to-Emitter Breakdown Voltage (with base-to-emitter volts = 1.5 and collector ma = 0.1) 4 min Collector-to-Emitter Sustaining Breakdown Voltage (with base-to-emitter busted collector ma = 10* and base current = 0) 100 min Collector-to-Emitter Saturation Voltage (with base ma = 10 and collector ma = 100) 80 min Base-to-Emitter Saturation Voltage (with base ma = 10 and collector ma = 100) 0.5 ma Collector-current: 1.1 ma	volts volts volts volts volts
With ambient temperature = 25° C, collector-to-base volts = 60, and emitter current = 0 50 max	a na
With ambient temperature $= 150^{\circ}$ C, collector-to-base volts = 60, and emitter current $= 0$. 50 ma: Emitter-Cutoff current (with ambient temperature $= 25^{\circ}$ C,	ι μa
emitter-to-base volts $=$ 3, and collector current $=$ 0) 100 mas	na na
Saturated Switching Turn-on Time (with collector supply volts $= 28$, base ma $= 10$, and collector ma $= 100$)	c nsec
Saturated Switching Turn-off Time (with collector supply volts $= 28$, base ma $= -10$, and collector ma $= 100$)	nse c
Pulse-Amplifier Rise Time (with collector supply volts = 80 and collector ma = 10) 20 mat	nse c

In Common-Base Circuit

Collector-to-Base Car	pacitance (with	collector-to-base	volts		
= 28, collector curr	ent $=$ 0, and fre	quency = 1 Mc)	· · · · · • • • • •	6 max	pf

In Common-Emitter Circuit

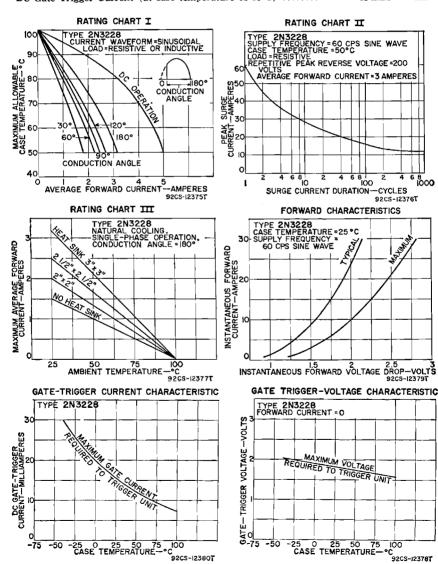
DC Forward Current-Transfer Ratio:		
With collector-to-emitter volts $= 10$ and collector ma $= 10$	40 min	
With pulsed collector-to-emitter volts $= 10^*$ and collector		
ma = 100	50 to 200	
With pulsed collector-to-emitter volts $= 10^*$ and collector	a a t	
ma = 250	20 min	
Gain-Bandwidth Product (with collector-to-emitter volts = 28 , collector ma = 25 , and frequency = 50 Mc)	050 min	77.0
collector $ma = 25$, and frequency $= 50 \text{ Mc}$)	2 50 min	Mc

* Pulse duration = 300 μ sec; duty factor = 0.018.

SILICON CONTROLLED RECTIFIER

2N3228

Diffused-junction n-p-n-p type used in a wide variety of lineoperated power-control and powerswitching applications. It is particularly useful in 117-volt line power-controlled and power-switch-



ing applications requiring a forward current of 3.2 amperes (average value) or 5 amperes (rms value). Outline 33, Outlines Section.

MAXIMUM RATINGS

For sinusoidal ac supply voltage of 50 to 400 cps, with resistive or inductive load.		
Peak Reverse Voltage:		
Repetitive	200 max	volts
Non-repetitive Peak Forward Blocking Voltage (repetitive)	330 max	volts
Peak Forward Blocking Voltage (repetitive)	200 max	volts
Average Forward Current:		
At case temperature of 50°C and conduction angle of 180°	3.2 max an	
For other case temperatures and conduction angles	See Rating C	hart I
Peak Surge Current:		
For one cycle of applied voltage For more than one cycle of applied voltage	60 max an	peres
For more than one cycle of applied voltage	See Rating Ch	art II
Peak Forward Gate Current	2 max an	peres
Peak Gate Voltage:		-
Forward	10 max	volts
Reverse	$2 \max$	volts

Peak Gate Power Temperature Range: Operating (case) Operating (ambient) Storage	-40 to 100 °C See Rating Chart III
CHARACTERISTICS	
Forward Breakover Voltage (at case temperature of 100°C)	200 min volts
Forward Voltage Drop (at forward current = 3 amperes and case temperature = 25°C)	1.5 max volts
Average Blocking Current (at case temperature of 50°C): Forward Reverse	1.5 max ma
DC Gate-Trigger Current (at case temperature of 25°C)	15 max ma

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of aerospace, military, and industrial applications requiring a high degree of reliability. The high current-handling capability of this type and its fast switching speed

make it especially suitable in circuits where optimum circuit efficiency is desired. This type is used in switching-control amplifiers, power gates, switching regulators, dc-dc converters, dc-ac inverters, dc-rf amplifiers, and power oscillators. Outline 45, Outlines Section.

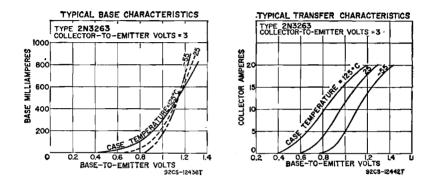
MAXIMUM RATINGS

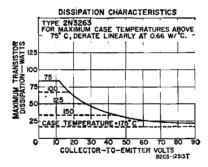
2N3263

Collector-to-Base Voltage	$150 \max$	volts
Collector-to-Emitter voltage (with emitter-to-base volts $= -1.5$)	150 max	volts
Collector-to-Emitter Sustaining Voltage:		
With base-to-emitter resistance $= 50$ ohms or less	110 max	volts
With base open	90 max	volts
Emitter-to-Base Voltage	7 max	volts
Collector Current	25 max an	aperes
Base Current	10 max ar	aberes
Transistor Dissipation	See Dissipation	Ćurve
Temperature Range:		
Operating (junction) and Storage	-65 to 200	°C

CHARACTERISTICS

Emitter-to-Base Voltage (with emitter-to-base ampere $= 0.02$		
and collector current $= 0$) Collector-to-Emitter Sustaining Voltage:	7 min	volts
With collector ampere $= 0.2$ and base current $= 0$	90 min	volts
With external base-to-emitter resistance $=$ 50 ohms or less,		•.
collector ampere $= 0.2$, and base current $= 0$ Collector-to-Emitter Saturation Voltage (with pulsed collector	110 min	volts
amperes $= 15^*$ and base amperes $= 1.2$	0.75 max	volts
Base-to-Emitter Saturation Voltage (with pulsed collector	1 00	14
amperes $= 15^*$ and base amperes $= 1.2$)	$1.60 \max$	volts
With case temperature $= 25^{\circ}$ C, collector-to-base volts		
\sim 80, and base current $=$ 0 With case temperature $=$ 125°C, collector-to-base volts	$4 \mathrm{max}$	ma
with case temperature $= 125^{\circ}$ C, collector-to-base volts $= 80$, and base current $= 0$	4 max	ma
Emitter-Cutoff Current:	4 max	ma
With case temperature - 25°C, emitter-to-base volts	-	
- 5, and collector current $-$ 0 With case temperature $-$ 125°C, emitter-to-base volts	$5 \max$	ma
= 5, and collector current $=$ 0	$5 \max$	ma
Collector Current (with base reversed biased, collector-		
to-emitter volts $=$ 150, and emitter-to-base volts $=$ 1.5) Thermal Resistance (with junction temperature $=$ 100°C,	20 max	m a
collector-to-emitter volts = 40, and collector amperes $= 0.5$)	1.5 max	°C/watt
Saturated Switching Turn-on Time (with dc collector supply		•
volts = 30, turn-on and turn-off base amperes = 1.2, and collecter emperes = 15	0.5 max	
collector amperes == 15) Saturated Switching Storage Time (with dc collector supply	0.5 max	µsec
volts $=$ 30, turn-on and turn-off base amperes $-$ 1.2, and		
collector amperes -15) Saturated Switching Fall Time (with dc collector supply voltage	1.5 max	µsec
= 30, turn-on and turn-off base amperes = 1.2, and collector		
amperes $= 15$)	0.5 max	µsec
ampéres = 15) Second Breakdown Characteristics (safe-operating region):		
Current at second breakdown with collector-to-emitter volts = 75	350 min	ma
Energy at second breakdown with emitter-to-base volts 6 .	000	
collector amperes $= 10$, base-to-emitter resistance $= 20$ ohms,	0 main	mjoules
and inductance $=: 40 \ \mu h$	2 1111	ngoules


In Common-Base Circuit


Collector-to-Base	Feedback	Capacitance	(with	collector-to-		
base volts = 10,	base curre	ent $\hat{=}$ 0, and f	requer	ncy = 1 Mc)	900 max	pf

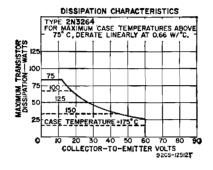
In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:		
With collector-to-emitter volts $= 3$ and pulsed collector	40 min	
amperes $= 5^*$ With collector-to-emitter volts $= 3$ and pulsed collector	40 11111	
amperes $= 15^*$	25 to 75	
amperes $= 15^*$ With collector-to-emitter volts $= 4$ and pulsed collector	~ .	
amperes $= 20$ Gain-Bandwidth Product (with collector-to-emitter volts $= 10$,	20 min	
collector amperes = 3, and frequency = 5 Mc) $\dots \dots \dots$	20 min	Mc

*Pulse duration = 350 μ sec or less; duty factor = 0.02 or less.

POWER TRANSISTOR

Silicon n-p-n type used in a wide variety of aerospace, military, and industrial applications requiring a high degree of reliability. The high current-handling capability of this type and its fast switching speed


2N3264

make it especially suitable in circuits where optimum circuit efficiency is desired. This type is used in switching-control amplifiers, power gates, switching regulators, dc-dc converters, dc-ac inverters, dc-rf amplifiers, and power oscillators. Outline 45, Outlines Section. For curves of transfer characteristics, refer to type 2N3263.

RCA Transistor Manual

MAXIMUM RATINGS

Collector-to-Base Voltage	120 max	volts
Collector-to-Emitter Voltage (with emitter-to-base volts $= -1.5$)	120 max	volts
Collector-to-Emitter Sustaining Voltage:		
With base-to-emitter resistance $= 50$ ohms or less	80 max	volts
With base open	60 max	volts
Emitter-to-Base Voltage	7 max	
Collector Current	25 max ar	nperes
Base Current	10 max ar	
Transistor Dissipation	See Dissipation	Curve
Temperature Range:		
Operating (junction) and Storage	-65 to 200	°C

CHARACTERISTICS

Emitter-to-Base Voltage (with emitter-to-base ampere = 0.02 and collector current = 0) Collector-to-Emitter Sustaining Voltage: With collector ampere = 0.2 and base current = 0 With external base-to-emitter resistance = 50 ohms or less, collector ampere = 0.2, and base current = 0 Collector-to-Emitter Saturation Voltage (with pulsed collector amperes = 15* and base amperes = 1.2) Base-to-Emitter Saturation Voltage (with pulsed collector amperes = 15* and base amperes = 1.2) Collector-clutoff Current;	7 min 60 min 80 min 1.20 max 1.80 max	volts volts volts volts volts
With case temperature = 25° C, collector-to-base volts = 60, and base current = 0	10 max 10 max	ma ma
With case temperature = 25°C, emitter-to-base volts = 5, and collector current = 0 With case temperature = 125°C, emitter-to-base volts = 5, and collector current = 0 Collector Current (with base reversed biased, collector-to-emitter	15 max 15 max	ma ma
volts = 120, and emitter-to-base volts = 1.5) Thermal Resistance (with junction temperature = $100^{\circ}C$, collector-to-emitter volts = 40 , and collector amperes = 0.5)	20 max 1.5 max °C	ma C/watt
Saturated Switching Turn-on Time (with dc collector supply volts = 30, turn-on and turn-off base amperes = 1.2, and collector amperes = 15)	0.5 max	μsec
volts = 30, turn-on and turn-off base amperes = 1.2, and collector amperes = 15) Saturated Switching Fall Time (with dc collector supply voltage	1.5 max	μsec
= 30, base amperes = 1.2, and collector amperes = 15) Second Breakdown Characteristics (safe-operating region): Current at second breakdown with collector-to-emitter	0.5 max	μsec
volts = 75 Energy at second breakdown with emitter-to-base volts = -6_{\circ}	70 0 min	ma
collector amperes = 10, base-to-emitter resistance = 20 ohms, and inductance = 40 μ h	2 min m	joules

In Common-Base Circuit

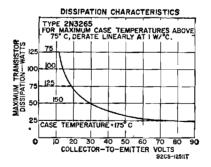
Collector-to-Base Feedback	Capacitance	(with	collector-to-base		
volts - 10, base current =	= 0, and frequ	iency -	= 1 Mc)	9 00 max	pf

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio:

With collector-to-emitter volts = 3 and pulsed collector amperes = 5^*	35	min
amperes $= 5^*$ With collector-to-emitter volts $= 3$ and pulsed collector		
amperes $= 15^*$ With collector-to-emitter volts $= 4$ and pulsed collector	20 to 80	
With collector-to-emitter volts $= 4$ and pulsed collector		
amperes = 20	15 min	
Gain-Bandwidth Product (with collector-to-emitter volts $= 10$,		
collector amperes $=$ 3, and frequency $=$ 5 Mc)	20 m in	\mathbf{Mc}
* Pulse duration = 350 usec or less: duty factor = 0.02 or less.		

POWER TRANSISTOR



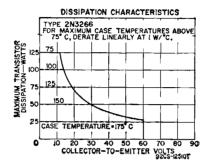
Silicon n-p-n type used in a wide variety of aerospace, military, and industrial applications requiring a high degree of reliability. The high current-handling capability of this type and its fast switching speed

2N3265

make it especially suitable in circuits where optimum circuit efficiency is desired. This type is used in switching-control amplifiers, power gates, switching regulators, dc-dc converters, dc-ac inverters, dc-rf amplifiers, and power oscillators. Outline 46, Outlines Section. This type is electrically identical with type 2N3263 except for the following items:

Transistor Dissipation	See Dissipation Curve
Thermal Resistance (with junction temperature $= 100^{\circ}$ C,	· ·
collector-to-emitter volts = 40, and collector ampere = 0.5)	1 max °C/watt

POWER TRANSISTOR


C THE S

Silicon n-p-n type used in a wide variety of aerospace, military, and industrial applications requiring a high degree of reliability. The high current-handling capability of this type and its fast switching speed

2N3266

make it especially suitable in circuits where optimum circuit efficiency is desired. This type is used in switching-control amplifiers, power gates, switching regulators, dc-dc converters, dc-ac inverters, dc-rf amplifiers, and power oscillators. Outline 46, Outlines Section. This type is electrically identical with type 2N3264 except for the following items:

Transistor Dissipation Thermal Resistance (with junction temperature = 100° C, collector-to-emitter volts = 40, and collector ampere = 0.5) See Dissipation Curve 1 max °C/watt

TRIPLE DIODE

Hermetically sealed germanium type used in high-speed switching service in electronic data-processing systems. Package has the same dimensions as JEDEC No. TO-33: outline 13, Outlines Section. Diode units

are identical with those of type 2DG001. This is a discontinued type listed for reference only.

3746

3907/

3DG001

See List of Discontinued Transistors at end of Technical Data Section for abbreviated data.

in

This

TRANSISTOR

Germanium p-n-p type used in critical switching applications data-processing equipment. 2N404 premium type features excellent stability, reliability, and rugged construction. JEDEC No. TO-5 package;

outline 6. Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage (with emitter open)	25 max	
Collector-to-Emitter Voltage (with emitter-to-base volts $= -1$)	—24 max	
Emitter-to-Base Voltage (with collector open)	—12 max	volts
Collector Current	—200 max	ma
Emitter Current	200 max	ma
Transistor Dissipation:		
At ambient temperatures up to 25°C	150 max	
At ambient temperatures above 25°C	See curve	page 80
Ambient-Temperature Range:		
Operating	—65 to 85	သိုင်
Storage	-65 to 100	°C
Lead Temperature (for 10 seconds maximum)	235 max	°C

CHARACTERISTICS

Base-to-Emitter Saturation Voltage:		
With collector ma $=$ -12 and base ma = -0.4	0.35 max	volt
With collector ma = -24 and base ma = -1	$-0.4 \mathrm{max}$	volt
Collector-to-Emitter Saturation Voltage:		
With collector ma = -12 and base ma = -0.4	0.15 max	volt
With collector ma = -24 and base ma = -1	$-9.2 \max$	volt
Collector-Cutoff Current (with collector-to-base volts $= -12$		
and emitter current $= 0$)	$-5 \max$	μa
Stored Base Charge (with collector ma = -10 and base ma = -1)	1400 max	μa pcoul
In Common-Base Circuit		

Small-Signal Forward-Current-Transfer-Ratio Cutoff Frequency		
(with collector-to-base volts = -6 and collector ma = -1)	$4 \min$	Mc
Output Capacitance (with collector-to-base volts $= -6$		
and emitter current $= 0$	20 max	pf
Input Capacitance (with emitter-to-base volts $= -6$		-
and collector current $= 0$)	20 max	pf

In Common-Emitter Circuit

Forward Current-Transfer Ratio:	
With collector-to-emitter volts = -0.15 and collector ma = -12	30 min
With collector-to-emitter volts = -0.2 and collector ma = -24	24 min

POWER TRANSISTOR

Germanium p-n-p type used in high-fidelity audio-frequency amplifier applications. This type is intended primarily for use in pushpull class B output circuits requiring

40022

low distortion, high power output, and wide frequency response. It can also be used in class A af power amplifiers in driver- or output-stage circuits. This type features high collector current and dissipation capabilities, and exceptional linearily of characteristics over the full range of collector current. JEDEC No. TO-3 package; outline 5, Outlines Section.

MAXIMUM RATINGS * ** ---

Collector-to-Base Voltage Collector-to-Emitter Voltage (with base-to-emitter resistance = 30 ohms) Emitter-to-Base Voltage Collector Current Base Current Transistor Dissipation: At mounting flange temperatures up to 81°C	32 max 5 max 5 max a 1 max 12.5 max	volts amperes ampere
At mounting flange temperatures above 81°C Temperature Range: Operating (junction) and Storage Lead Temperature (for 10 seconds maximum)	-65 to 100	watt/°C °C °C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector ma = -5 and emitter current = 0) Collector-to-Emitter Breakdown Voltage (with collector ma	—32 min	volts
= -200 and base-to-emitter resistance = 30 ohms) Emitter-to-Base Breakdown Voltage (with emitter ma = -200	—32 min	volts
and collector current $= 0$	5 min	volts
Base-to-Emitter Voltage (with collector-to-base volts = -10 and collector ma = -50) Collector-Cutoff Current (with collector-to-base volts = -30)	0.18	volt
and emitter current $= 0$)	-1 max	ma
Collector-Cutoff Saturation Current (with collector-to-base volts $= -0.5$ and emitter current $= 0$)	0.1 max 1.5 max	

In Common-Emitter Circuit

Gain-Bandwidth Product (with collector-to-emitter volts $= -5$		
and collector ampere $= -0.5$	300	kilocycles
DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts $= -2$ and collector amperes $= 1$)	50	

TYPICAL OPERATION IN CLASS B PUSH-PULL AF AMPLIFIER CIRCUIT

DC Collector Supply Voltage Zero-Signal DC Collector Current Zero-Signal Base-Bias Voltage Peak Collector Current Maximum-Signal DC Collector Current Input Impedance of Stage (per base) Load Impedance (speaker voice coil) Power Gain Maximum-Signal Power Output Total Harmonic Distortion Maximum Collector Dissipation (per transistor)	$-14 \\ -50 \\ -0.18 \\ -2.25 \\ -0.716 \\ 43 \\ 424 \\ 10 \\ 5 \\ 5$	volts ma volt amperes ampere ohms ohms db watts per cent watts
Maximum Collector Dissipation (per transistor) EIA Music Power-Output Rating	5 5 18	

TYPICAL OPERATION IN CLASS A AF-AMPLIFIER CIRCUIT

DC Collector Supply Voltage DC Collector-to-Emitter Voltage	-13.2	volts volts
DC Collector Current	0.9	ampere
Peak Collector Current	-1.8	amperes
Input Impedance	15	ohms
Collector Load Impedance	15	ohms
Maximum-Signal Power Output	5	watts
Total Harmonic Distortion	5	per cent
Power Gain	33	db
Maximum Collector Dissipation	12	watts

POWER TRANSISTOR

Germanium p-n-p type used in high-fidelity audio-frequency amplifier applications. This type is intended primarily for use in pushpull class B output circuits requiring low distortion and wide frequency

response. It can also be used in class A af power amplifiers in driver- or outputstage circuits. This type features high dc beta and linear gain characteristics up to five amperes. JEDEC No. TO-3 package; outline 5, Outlines Section.

MAXIMUM RATINGS

40050

Collector-to-Base Voltage	40 max	
Collector-to-Emitter Voltage	-40 max	
Finitter-to-Base Voltage	5 max	
Collector Current	-5 max	
Base Current	—1 max	ampere
Transistor Dissipation:		
At mounting flange temperatures up to 81°C	12.5 max	watts
At mounting flange temperatures above 81°C	Derate 0.66	watt/°C
Temperature Range:		
Operating (junction) and Storage	-65 to 100	ŝ
Lead Temperature (for 10 seconds maximum)	255 max	۰c

CHARACTERISTICS

Collector-to-Base Breakdown Voltage (with collector ma $=$ -5 and emitter current $=$ 0)	40 min	volts
Collector-to-Emitter Breakdown Voltage (with collector ma - -600 and base-to-emitter resistance = 68 ohms)	40 min	volts
Emitter-to-Base Breakdown Voltage (with emitter ma $= -2$ and collector current $= 0$)	—5 min	volts
Base-to-Emitter Voltage (with collector-to-base volts = -10 and collector ma = -50)	0.17	volt
Collector-Cutoff Current (with collector-to-base volts $= -30$ and emitter current $= 0$)	500 max	μa
	—100 ma 1.5 max	µa °C∕watt

In Common-Emitter Circuit

Gain-Bandwidth Product (with collector-to-emitter volts $= -5$		
and collector ampere -0.5) DC Forward Current-Transfer Ratio (with collector-to-emitter	50 0	kilocycles
DC Forward Current-Transfer Ratio (with collector-to-emitter		
volts -2 and collector amperes $=1$)	50 min	

TYPICAL OPERATION IN CLASS B PUSH-PULL AF AMPLIFIER CIRCUIT

DC Collector Supply Voltage Zero-Signal DC Collector Current Zero-Signal Base-Bias Voltage Peak Collector Current Maximum-Signal DC Collector Current Input Impedance of Stage (per base) Load Impedance (speaker voice coil) Power Gain Maximum-Signal Power Output Total Harmonic Distortion	-18 -50 -0.17 -2.8 -0.8 32 4 28 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	volts ma volt amperes ampere ohms ohms db watts per cent
Total Harmonic Distortion	5	per cent
Maximum Collector Dissipation (per transistor)	7.5	watts
EIA Music-Power Output Rating	25	watts

TYPICAL OPERATION IN CLASS A AF-AMPLIFIER CIRCUIT

DC Collector Supply Voltage DC Collector-Emitter Voltage		volts volts
DC Collector Current	0.9	ampere
Peak Collector Current	1.8	ampere
Input Impedance	10	ohms
Collector Load Impedance	15	ohms
Maximum-Signal Power Output	5	watts
Total Harmonic Distortion	5	per cent
Power Gain	36	db
Maximum Collector Dissipation	12	watts

POWER TRANSISTOR

Germanium p-n-p type used in high-fidelity audio-frequency amplifier applications. This type is intended primarily for use in pushpull class B output circuits requiring low distortion and wide frequency

low distortion and wide frequency response. It can also be used in class A af power amplifiers in driver- or outputstage circuits. This type features high dc beta and linear gain characteristics up to five amperes. JEDEC No. TO-3 package; outline 5, Outlines Section. This type is similar to type 40050 except for the following items:

CHARACTERISTICS

••••••••••••		
Collector-to-Base Breakdown Voltage Collector-to-Emitter Breakdown Voltage	50 min 50 min	volts volts
		•

TYPICAL OPERATION IN CLASS B PUSH-PULL AF AMPLIFIER CIRCUIT

DC Collector Supply Voltage Zero-Signal DC Collector Current Zero-Signal Base-Bias Voltage Peak Collector Current Input Impedance of Stage (per stage) Load Impedance (speaker voice coil) Power Gain Maximum-Signal Power Output Total Harmonic Distortion Maximum Collector Dissipation (per transistor) EIA Music Power Output Rating	$\begin{array}{r} -22 \\ -50 \\ -0.17 \\ -3.5 \\ -1.1 \\ 31 \\ 4 \\ 28 \\ 25 \\ 5 \\ 12.5 \\ 45 \end{array}$	volts ma volt amperes amperes ohms db watts per cent watts watts watts
See RCA TUNNEL DIODE CHART starting on page	40054	

See RCA TUNNEL DIODE CHART starting on page 324 for complete data on these tunnel diodes and rectifiers.

303

40051

See RCA TUNNEL DIODE CHART starting on page 324 for complete data on these tunnel diodes.

TRANSISTOR

Silicon n-p-n type designed specifically for use as an oscillator in 27-Mc 5-watt citizens band applications. JEDEC No. TO-39 package; outline 32, Outlines Section,

MAXIMUM RATINGS

40080

Collector-to-Emitter Voltage (with base open) Collector Current Transistor Dissipation:	30 max 250 max	volts ma
At ambient temperatures up to 25°C At ambient temperatures above 25°C Temperature Range:	0.5 max See curve	
Operating (junction) and Storage	to 175	°C
CHARACTERISTICS		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	30 min 10 max	volts µa

TYPICAL OPERATION IN 27-MC RF OSCILLATOR CIRCUIT

Power Output (with	collector supply volts $= 12$ and maximum		
collector $ma = 32$) ,	100 min	$\mathbf{m}\mathbf{w}$

TRANSISTOR

Silicon n-p-n type designed specifically for use as a driver in 27-Mc 5-watt citizens band applications. JEDEC No. TO-39 package; outline 32, Outlines Section.

MAXIMUM RATINGS

Collector-to-Emitter Voltage (with reverse bias between base		
and emitter)	60 max	volts
Emitter-to-Base Voltage (with collector open)	2 max	volts
Collector Current	250 max	ma
Transistor Dissipation:		
At case temperatures up to 25°C	2 max	watts
At case temperatures above 25°C	See curve	page 80
Temperature Range:		-
Operating (junction) and Storage	65 to 175	°C
CHARACTERISTICS		

CHARACTERISTICS

Collector-to-Emitter Voltage (with base-to-emitter volts = -0.5 and collector $\mu a = 100$)	60 min	volts
and collector $\mu a = 100$) Emitter-to-Base Voltage (with emitter $\mu a = 500$ and collector	0 !	14
current $= 0$) Collector-Cutoff Current (with collector-to-base volts $= 15$ and	2 mi n	volts
emitter current $= 0$)	10 max	μa

TYPICAL OPERATION IN 27-MC RF DRIVER CIRCUIT

Power Output	(with collector supply volts $= 12$, maximum		
collector ma =	\doteq 85, and rf power input = 75 mw)	. 400 min	$\mathbf{m}\mathbf{w}$

TRANSISTOR

40082

Silicon n-p-n type designed specifically for use as a power amplifier in 27-Mc 5-watt citizens band applications. JEDEC No. TO-39 package; outline 32, Outlines Section.

MAXIMUM RATINGS

Collector-to-Emitter Voltage (with reverse bias between base and emitter) Emitter-to-Base Voltage (with collector open) Collector Current Transistor Dissipation: At case temperatures up to 25°C At case temperatures above 25°C	60 max volts 2.5 max volts 1.5 max amperes 5 max watts See curve page 80
Temperature Range: Operating (junction) and Storage	
CHARACTERISTICS	
Collector-to-Emitter Voltage (with base-to-emitter volts $= -0.5$ and collector $\mu_a = 500$)	60 min volts

$= -0.5$ and conector $\mu a = 500$	ou min	VOIUS
Emitter-to-Base Voltage (with emitter $\mu a = 500$ and collector		
current = 0	2.5 min	volts
Collector-Cutoff Current (with collector-to-base volts		
= 15 and emitter current $= 0$)	10 max	μa

TYPICAL OPERATION IN 27-MC RF POWER-AMPLIFIER CIRCUIT

Power Output (with collector supply volts $= 12$, maximum		
collector ma \doteq 415, and rf power input $=$ 350 mw)	3 min	watts

TRANSISTOR

Silicon n-p-n type used in a wide variety of small-signal and mediumpower applications in industrial equipment. This type features low noise and leakage characteristics, high pulse beta, high switching

40084

97 max °C/watt 350 max °C/watt

speeds, and a very low output capacitance. JEDEC No. TO-18 package; outline 12, Outlines Section.

MAXIMUM RATINGS

Collector-to-Base Voltage Collector-to-Emitter Voltage:	6 0 max	volts
With base open	40 max	volts
With base open	50 max	volts
Emitter-to-Base Voltage	5 max	volts
Collector Current	1 max	ampere
Transistor Dissipation:		
At ambient temperatures up to 25°C	0.5 max	
At cas' temperatures up to 25°C At ambient or case temperatures above 25°C	1.8 max	
At amblent of case temperatures above 25°C	See curve	page su
Temperature Range: Operating (junction) and Storage	65 to 200	۰C
Lead Temperature (for 10 seconds maximum)	225 10 200	۰č
Lead Temperature (101 10 seconds maximum)	220 max	C
CHARACTERISTICS		
Collector-to-Base Breakdown Voltage (with collector $ma = 0.1$)	6 0 min	volts
Emitter-to-Base Breakdown Voltage (with emitter ma = 0.1)	5 min	volts
Collector-to-Emitter Sustaining Voltage:		
With base open and pulsed collector $ma = 100^{\circ}$	40 mi n	volts
With external base-to-emitter resistance $= 10$ ohms and		
pulsed collector ma = 100^* Collector-to-Emitter Saturation Voltage (with pulsed collector	50 min	volts
Collector-to-Einitter Saturation Voltage (with pulsed collector		14
$ma = 150^*$ and base $ma = 15$) Base-to-Emitter Saturation Voltage (with pulsed collector ma	1.4 max	volts
$= 150^*$ and base ma $= 15$)	1.7 max	volts
Collector-Cutoff Current (with collector-to-base volts = 30	Lilliax	vons
and emitter current $= 0$	0.25 max	μa
and emitter current $= 0$) Emitter-Cutoff Current (with emitter-to-base volts $= 4$ and	0.00 1101	,
collector current $= 0$)	0.25 max	щa
Thermal Resistance:		,

In Common-Base Circuit

Junction-to-case Junction-to-ambient

Emitter-to-Base Capacitance (with emitter-to-base volt $= 0.5$		
and collector current $= 0$	80 max	pf-
Collector-to-Base Capacitance (with collector-to-base volts		-
= 10 and emitter current $=$ 0)	15 max	pf

In Common-Emitter Circuit

DC Forward Current-Transfer Ratio (with collector-to-emitter volts = 10 and pulsed collector ma -150°)	50 to 250	
to-emitter volts = 10, collector ma = 50, and frequency $\approx 20 \text{ Mc}$) Noise Figure (with collector-to-emitter volts = 10, collector	5 m in	
ma = 0.3, generator resistance $= 500$ ohms, circuit bandwidth = 15 kilocycles, and input frequency = 1 kilocycle)	8 max	đb

* Pulse duration = 300 μ sec; duty factor = 0.018.

SILICON RECTIFIER

Hermetically scaled 10-ampere type for use at peak reverse voltages up to 50 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-4 package; outline 2, Outlines Section.

MAXIMUM RATINGS

40108

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage	50 max volts
DC Blocking Voltage	50 max volts
Average Forward Current (at case temperature of 150°C)	10 max amperes
Peak Recurrent Current	40 max amperes
Peak Surge Current (at case temperature of 150°C)	140 max amperes
Maximum Operating Temperature	175 max °C

CHARACTERISTICS

40108R

40109

Maximum Reverse Current:		
Static (at case temperature $= 25^{\circ}$ C)	0.075	
Dynamic (at case temperature $= 150^{\circ}C$)	2.0	
Maximum Forward Voltage Drop (average value)	0.60	

SILICON RECTIFIER

This type is a reverse-polarity version of type 40108. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 10-ampere type for use at peak reverse voltages up to 100 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power sup-

ma ma volt

plies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 40108 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage	· · · · · · · · · · · · · · · · · · ·	100 max	volts
DC Blocking Voltage		100 max	volts

SILICON RECTIFIER

This type is a reverse-polarity version of type 40109. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically scaled 10-ampere type for use at peak reverse voltages up to 200 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers;

40110

40110R

40111

40109R

power supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 40108 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage DC Blocking Voltage	200 max 200 max	volts volts
CHARACTERISTICS		
Maximum Reverse Current: Dynamic (at case temperature = 150°C)	1.5	ma

SILICON RECTIFIER

This type is a reverse-polarity version of type 40110. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 10-ampere type for use at peak reverse voltages up to 300 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers;

power supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and de-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 40108 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

	· · · · · · · · · · · · · · · · · · ·	300 max 300 max	volts volts
CHARACTERISTICS Maximum Reverse Curre Dynamic (at case term	ent: perature = 150° C)	1.5	ma

SILICON RECTIFIER

40111R

40112

This type is a reverse-polarity version of type 40111. JEDEC No. DO-4 package: outline 2. Outlines Section.

SILICON RECTIFIER

Hermetically sealed 10-ampere type for use at peak reverse voltages up to 400 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers:

power supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 40108 except for the following items:

MAXIMUM RATINGS

i ne ça	3							
For	power-supp	ly fre	equency	of	60	cps.	single-	
ohas	e operation,	with	resistive	e or	in	dûcti	ve load	

Peak Reverse Voltage	 400 max	volts
DC Blocking Voltage	400 max	volts
CHARACTERISTICS		

Maximum Reverse Current:

Dynamic			=	150°C)	
- ,	(***	 voin por avair o	_	100 0,	• • • • • • • • • • • • • • • • • • • •

SILICON RECTIFIER

40112R

40113

This type is a reverse-polarity version of type 40112. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 10-ampere type for use at peak reverse voltages up to 500 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers;

power supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide

ma

1.0

variety of other industrial power-control applications. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 40108 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage	500 max	volts
DC Blocking Voltage	500 max	volts
CHARACTERISTICS Maximum Reverse Current: Dynamic (at case temperature = 150°C)	0.85	ma

SILICON RECTIFIER

This type is a reverse-polarity version of type 40113. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 10-ampere type for use at peak reverse voltages up to 600 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers;

40114

40113R

power supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and de-motor power supplies; machine-tool controls; welding and electroplating equipment; de-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 40108 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, singlephase operation, with resistive or inductive load

Peak Reverse Voltage DC Blocking Voltage	600 max 600 max	volts volts
CHARACTERISTICS		
Maximum Reverse Current: Dynamic (at case temperature = 150°C)	0.75	ma

SILICON RECTIFIER

This type is a reverse-polarity version of type 40114. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

.

Hermetically sealed 10-ampere type for use at peak reverse voltages up to 800 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers;

40115

40114R

power supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and

electroplating equipment: dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 40108 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage	 800 max	volts
DC Blocking Voltage	800 max	volts
CHARACTERISTICS		

Maximum Reverse Current:	
Dynamic (at case temperature = 150° C)	0.65

SILICON RECTIFIER

40115R

This type is a reverse-polarity version of type 40115. JEDEC No. DO-4 package; outline 2. Outlines Section.

SILICON RECTIFIER

40116

Hermetically sealed 10-ampere type for use at peak reverse voltages up to 1000 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers:

power supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-4 package; outline 2, Outlines Section. This type is identical with type 40108 except for the following items:

MAXIMUM RATINGS

For power-supply frequency of 60 cps, single-phase operation, with resistive or inductive load

Peak Reverse Voltage	 1000 max	volts
DC Blocking Voltage	1000 max	volts

CHARACTERISTICS

Maximum Reverse Current: Dynamic (at case temperature - 150°C)

SILICON RECTIFIER

40116R

40208

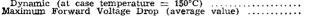
This type is a reverse-polarity version of type 40116. JEDEC No. DO-4 package; outline 2, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 18-ampere type for use at peak reverse volts up to 50 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

0.50

ma



ma

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-5 package; outline 3, Outlines Section.

MAXIMUM RATINGS

Peak Reverse Voltage DC Blocking Voltage Average Forward Current (at case temperature = 150°C) Peak Recurrent Current Peak Regree Current (at case temperature = 150°C) Maximum Operating Temperature	50 max volts 50 max volts 18 max amperes 72 max amperes 250 max amperes 175 max °C	
CHARACTERISTICS		
Maximum Reverse Current: Static (at case temperature = 25° C) Dynamic (at case temperature = 150° C)	0.10	ma

SILICON RECTIFIER

This type is a reverse-polarity version of type 40208. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

TA ISK Hermetically scaled 18-ampere type for use at peak reverse volts up to 100 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power supplies

40209

40209R

40210

40208R

0.65

for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-5 package; outline 3, Outlines Section. This type is identical with type 40208 except for the following items:

MAXIMUM RATINGS

 Peak Reverse Voltage
 100 max
 volts

 DC Blocking Voltage
 100 max
 volts

SILICON RECTIFIER

This type is a reverse-polarity version of type 40209. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

Hermetically scaled 18-ampere type for use at peak reverse volts up to 200 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-5 pack-

volt

age; outline 3, Outlines Section. This type is identical with type 40208 except for the following items:

MAXIMUM RATINGS

40210R

40211

Peak Reverse Voltage . DC Blocking Voltage .	•••••••••••••••••••••••••••••••••••••••	200 max 200 max	volts volts
CHARACTERISTICS			
NC - D - O			

Maximum Reverse Current: Dynamic (at case temperature = 150°C)

SILICON RECTIFIER

This type is a reverse-polarity version of type 40210. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 18-ampere type for use at peak reverse volts up to 300 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

ma

2.5

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-5 package; outline 3, Outlines Section. This type is identical with type 40208 except for the following items:

MAXIMUM RATINGS

Peak Reverse Voltage	•••••••••••••••••••••••••••••••••••••••	300 max	volts
DC Blocking Voltage		300 max	volts

CHARACTERISTICS

Maximum Reverse Current;	
Dynamic (at case temperature $= 150^{\circ}C$)	

SILICON RECTIFIER

40211R

40212

This type is a reverse-polarity version of type 40211. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 18-ampere type for use at peak reverse volts up to 400 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other power-control applications. JEDEC No. DO-5 package; outline

ma

3, Outlines Section. This type is identical with type 40208 except for the following items:

MAXIMUM RATINGS

Peak Reverse Voltage DC Blocking Voltage	400 max 400 max	volts volts
CHARACTERISTICS		
Maximum Reverse Current: Dynamic (at case temperature = 150°C)	2.0	ma

SILICON RECTIFIER

This type is a reverse-polarity version of type 40212. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

EK SK

Hermetically sealed 18-ampere type for use at peak reverse volts up to 500 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

40213

40212R

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-5 package; outline 3, Outlines Section. This type is identical with type 40208 except for the following items:

MAXIMUM RATINGS

Peak Reverse Voltage DC Blocking Voltage	500 max 500 max	volts volts
CHARACTERISTICS		
Maximum Reverse Current: Dynamic (at case temperature = 150°C)	1.75	ma

SILICON RECTIFIER

This type is a reverse-polarity version of type 40213. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON RECTIFIER

Hermetically sealed 18-ampere type for use at peak reverse volts up to 600 volts. This type is used in generator-type power supplies in mobile equipment; dc-to-dc converters and battery chargers; power

40214

40213R

supplies for aircraft, marine, and missile equipment; transmitters, rf generators, and dc-motor power supplies; machine-tool controls; welding and electroplating equipment; dc-blocking service; magnetic amplifiers; and a wide variety of other industrial power-control applications. JEDEC No. DO-5 package; outline 3, Outlines Section. This type is identical with type 40208 except for the following items:

MAXIMUM RATINGS

Peak Reverse Voltage DC Blocking Voltage	600 max 600 max	volts volts
CHARACTERISTICS		
Maximum Reverse Current: Dynamic (at case temperature = 150° C)	1.5	ma

SILICON RECTIFIER

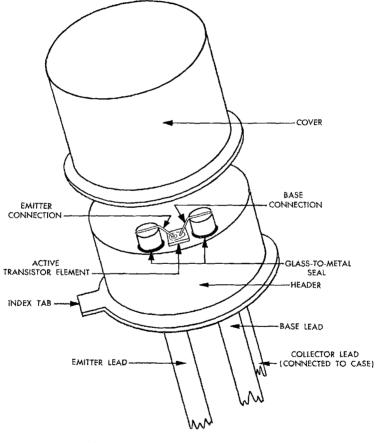
40214R

This type is a reverse-polarity version of type 40214. JEDEC No. DO-5 package; outline 3, Outlines Section.

SILICON CONTROLLED RECTIFIER

40216

Diffused-junction n-p-n-p type used in a wide variety of highcurrent pulse applications. This type is designed to meet stringent military environmental and mechanical specifications. The special high-strength


copper alloy stud can withstand an installing torque up to 50 inch-pounds, JEDEC No. TO-48 package; outline 19, Outlines Section.

MAXIMUM RATINGS

Peak Reverse Voltage:		
Repetitive	600 max	volts
Non-repetitive Peak Forward Blocking Voltage (repetitive)	720 max	volts
Peak Forward Blocking Voltage (repetitive)	600 max	volts
Peak Forward Gate Current	2 max a	mperes
Peak Gate Voltage:		· ·
Forward	10 max	volts
Reverse	5 max	volts
Peak Gate Power	5 max	watts
Average Gate Power	$0.5 \max$	watt
Temperature Range:		
Operating (case)	-65 to 125	°C
Storage	-65 to 150	ŝ

CHARACTERISTICS

Forward Breakover Voltage (at case temperature of 125°C)	600 min	volts
DC Gate-Trigger Voltage: At case temperature of -40°C	3.5 max	volts
At case temperature of -65°C	3.7 max	volts
At case temperature of 100°C At case temperature of 125°C	0.3 min 0.25 min	volt volt
Instantaneous Blocking Current (at case temperature of 125°C):		VOIL
Forward	$10 \max$	ma
Reverse	10 max	ma
DC Gate-Trigger Current:		
At case temperature of -65°C	150 max	ma
At case temperature of 25°C	$80 \max$	ma
At case temperature of 125°C	45 max	ma
Holding Current (at case temperature of 125°C)	8	ma
Thermal Resistance (junction-to-case)	2 max °	C/watt

TYPICAL SILICON SWITCHING TRANSISTOR

SILICON RECTIFIERS

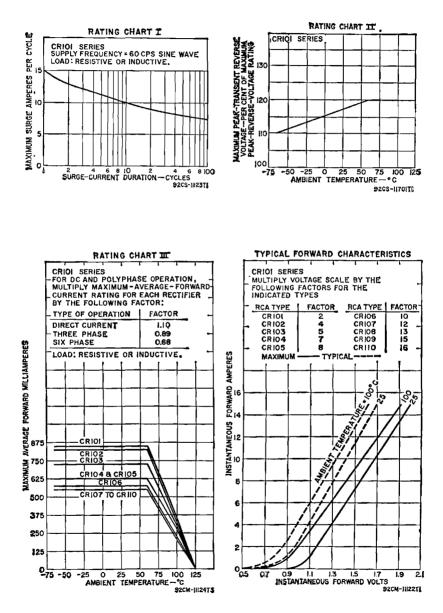
Hermetically sealed types used in power-supply applications at peak reverse voltages up to 10,000 volts. These types consist of seriesconnected silicon rectifier cells shunted by a voltage-equalizing

network and molded into a compact, rugged case of insulating material. The integral resistance-capacitance network equalizes the reverse voltages across the rectifier cells under both steady-state and transient conditions. These types are designed to meet stringent environmental and mechanical specifications. Outline 29, Outlines Section.

Common Parameters
Peak Recurrent Current 5 amperes Surge Current* 15 amperes Maximum Reverse Current: 15
Dynamic (for complete cycle and for operation at maximum ratings) 0.3 ma Static (at maximum rated dc blocking voltage and any temperature within
Ambient Temperature Range (operating and storage)65 to 125°C

MAXIMI	XIMUM RATINGS (Half-wave Rectifier Service)						ACTER- FICS
		ver-supply frequ ration, with re				Max	
RCA Type	Peak Reverse Voltage (volts)	Transient Reverse Voltage** (volts)	RMS Supply Voltage (volts)	DC Blacking Voltage (volts)	Average Forward Current‡ (ma)	Forward Voltage Drop‡ (volts)	Shunt Capaci- tance (pf)
CR101	1200	1440	840	1200	850	1.2	350-600
CR102	2000	2400	1400	2000	825	2.4	175-320
CR103	3000	3600	2100	3000	725	3.0	140-250
CR104	4000	4800	2800	4000	625	4.2	100-175
CR105	5000	600 0	3500	5000	625	4.8	85-160
CR106	6000	7200	4200	6000	575	6.0	70-125
CR107	7000	8400	4900	7000	550	7.2	60-105
CR108	8000	9600	5600	8000	550	7.8	55-100
CR109	9000	10800	6300	9000	550	9.0	45-90
CR110	10000	12000	7000	10000	550	9.6	40-80

* For one-half cycle, sine-wave; for one or more cycles, see Rating Chart I. Superimposed on device operating within maximum voltage, current, and temperature ratings; may be repeated after sufficient time has elapsed for the device to return to the presurge thermal-equilibrium conditions.


** Non-repetitive, for duration of 5 milliseconds maximum. The value given is for ambient temperatures from 60 to 125°C; for ambient temperatures up to 60°C, see Rating Chart II.

 \dagger For ambient temperatures up to 60°C; for temperatures above 60°C, see Rating Chart III.

‡ For complete cycle and for operation at maximum ratings. For instantaneous forwardvoltage drop, see Instantaneous Forward Characteristics Curve.

CR101

SERIES

317

SILICON RECTIFIERS

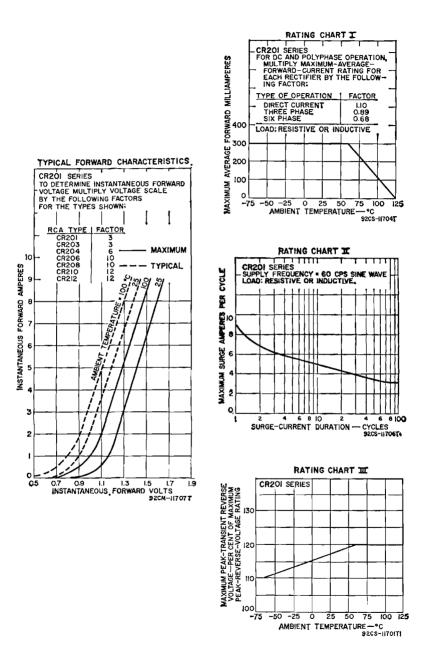
Hermetically sealed types used in power-supply applications at peak reverse voltages up to 12,000 volts. These types consist of seriesconnected, matched silicon rectifier cells molded into a compact, rugged

case of insulating material. The matched cells assure equalization of internal voltages under both steady-state and transient conditions. These types are designed to meet stringent environmental and mechanical specifications. Outline 30, Outlines Section.

Common Parameters	-	
Average Forward Current*		ma
Peak Recurrent Current		amperes
Surge Current**	9	amperes
Maximum Reverse Current:		
Dynamic (for complete cycle and for		
operation at maximum ratings at 100°C)	0.1	ma
Static at maximum rated dc blocking		
voltage and any temperature within		
the operating range:		
$25^{\circ}\hat{C}$	0.01	ma
100°C		ma
Ambient Temperature Range (operating		
and storage)	68	5 to 125°C

MAXIMU	M RATINGS	(Half-wave Re	ectifier Servi	ce)	CHARAC- TERISTIC
		power-supply frequen			Max
RCA Type	Peak Reverse Voitage (voits)	Transient Reverse Voltage‡ (volts)	RMS Supply Voltage (volts)	DC Blocking Voltage (volts)	Forward Voltage Drop‡ (volts)
CR201	1500	1800	1060	1500	1.8
CR203	3000	3600	2 120	3000	3
CR204	4500	5400	3180	4500	3.6
CR206	6000	7200	4240	6 009	6
CR208	8000	9600	5650	8000	6
CR210	10000	12000	7070	10000	7.2
CR212	12000	14400	8 480	12000	9

* For ambient temperatures up to 60°C; for temperatures above 60°C, see Rating Chart I


** For one-half cycle, sine wave; for one or more cycles, see Rating Chart II. Superimposed on device operating within maximum voltage, current, and temperature ratings; may be repeated after sufficient time has elapsed for the device to return to the presurge thermal-equilibrium conditions.

t Non-repetitive, for duration of 5 milliseconds maximum. The value given is for ambient temperature from 60 to 125°C; for ambient temperatures up to 60°C, see Rating Chart III.

‡ For complete cycle and for operation at maximum ratings. For instantaneous forward voltage drop, see Instantaneous Forward Characteristics Curve.

CR201

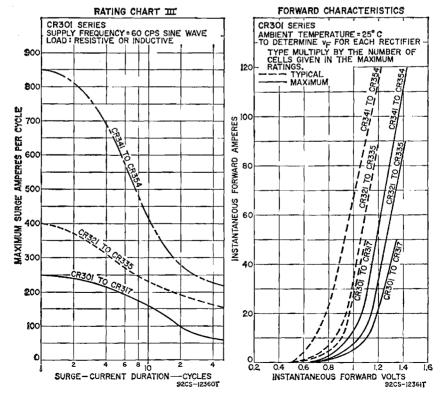
SERIES

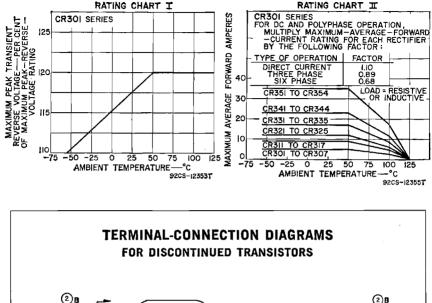
SILICON RECTIFIERS

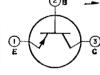
Hermetically sealed fin-mounted types used in power-supply applications at peak reverse voltages up to 9600 volts. These types consist of series-connected silicon rectifier cells shunted by a voltage-equaliz-

ing network. The integral resistance-capacitance network equalizes the reverse voltages across the rectifier cells under both steady-state and transient conditions. These types are designed to meet stringent environmental and mechanical specifications. For instantaneous forward voltage drop for these types, see Instantaneous Forward Characteristics Curve. Outline 47, Outlines Section.

Common Parameters		
Maximum Reverse Current: Dynamic (for complete cycle and for operation at maximum ratings) Static (at maximum rated dc block- ing voltage and any temperature within the operating temperature	1.5 r	na
range)		na µf
Ambient Temperature Range (operat- ing and storage)	—55 to 125	°C

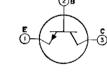

RCA Type of Cells Voltage (volts) Voltage (volts) Voltage (volts) Voltage (volts) Current (amperes) Curent (amperes) Current (amperes) <th></th> <th>MAX</th> <th>IMUM</th> <th>RATINGS</th> <th>(Half-w</th> <th>vave Rect</th> <th>ifier Serv</th> <th>ice)</th> <th></th>		MAX	IMUM	RATINGS	(Half-w	vave Rect	ifier Serv	ice)	
CR302 6 3600 4320 2545 3600 5 7.8 250 CR303 8 4800 5760 3395 4800 5 7.8 250 CR304 10 6000 7200 4240 6000 5 7.8 250 CR305 12 7200 8640 5090 7200 5 7.8 250 CR306 14 8400 10080 5935 8400 5 7.8 250 CR307 16 9600 11520 6785 9600 5 7.8 250 CR311 4 2400 2880 1695 2400 9 14 255 CR313 8 4800 5760 3395 4800 9 14 255 CR314 10 6000 7200 4240 6000 9 14 255 CR315 12 7200 8640 5090 7200 <t< th=""><th></th><th>No. of</th><th>Peak Reverse Voltage</th><th>Transient Reverse Voltage*</th><th>RMS Voitage</th><th>DC Blocking Voltage</th><th>Average Forward Current**</th><th>RMS Forward Current</th><th>Surge Current†</th></t<>		No. of	Peak Reverse Voltage	Transient Reverse Voltage*	RMS Voitage	DC Blocking Voltage	Average Forward Current**	RMS Forward Current	Surge Current†
CR303 8 4800 5760 3395 4800 5 7.8 250 CR304 10 6000 7200 4240 6000 5 7.8 250 CR305 12 7200 8640 5090 7200 5 7.8 250 CR305 12 7200 8640 5090 7200 5 7.8 250 CR306 14 8400 10080 5935 8400 5 7.8 250 CR307 16 9600 11520 6785 9600 5 7.8 250 CR311 4 2400 2880 1695 2400 9 14 255 CR313 8 4800 5760 3395 4800 9 14 255 CR314 10 6000 7200 4240 6000 9 14 255 CR315 12 7200 8640 5090 7200 <	CR301	4	2400	2880	1695	2400	5	7.8	250
CR303 8 4800 5760 3395 4800 5 7.8 250 CR304 10 6000 7200 4240 6000 5 7.8 250 CR305 12 7200 8640 5090 7200 5 7.8 250 CR306 14 8400 10080 5935 8400 5 7.8 250 CR307 16 9600 11520 6785 9600 5 7.8 250 CR311 4 2400 2880 1695 2400 9 14 255 CR313 8 4800 5760 3395 4800 9 14 255 CR314 10 6000 7200 4240 6000 9 14 255 CR315 12 7200 8640 5090 7200 9 14 255 CR314 10 6000 7200 4240 6000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>250</td></t<>									250
CR304 10 6000 7200 4240 6000 5 7.8 250 CR305 12 7200 8640 5090 7200 5 7.8 250 CR306 14 8400 10080 5935 8400 5 7.8 250 CR307 16 9600 11520 6785 9600 5 7.8 250 CR311 4 2400 2880 1695 2400 9 14 255 CR312 6 3600 4320 2545 3600 9 14 255 CR313 8 4800 5760 3395 4800 9 14 255 CR314 10 6000 7200 4240 6000 9 14 255 CR315 12 7200 8640 5090 7200 9 14 255 CR317 16 9600 11520 6785 9600 <t< td=""><td>CR303</td><td></td><td>4800</td><td>5760</td><td>3395</td><td>4800</td><td>5</td><td>7.8</td><td>250</td></t<>	CR303		4800	5760	3395	4800	5	7.8	250
CR305 12 7200 8640 5090 7200 5 7.8 250 CR306 14 8400 10080 5935 8400 5 7.8 250 CR307 16 9600 11520 6785 9600 5 7.8 250 CR311 4 2400 2880 1695 2400 9 14 255 CR312 6 3600 4320 2545 3600 9 14 255 CR313 8 4800 5760 3395 4800 9 14 255 CR314 10 6000 7200 4240 6000 9 14 255 CR315 12 7200 8640 5090 7200 9 14 255 CR316 14 8400 10080 5935 8400 9 14 255 CR317 16 9600 11520 6785 9600 <t< td=""><td>CR304</td><td>10</td><td>6000</td><td>7200</td><td>4240</td><td>6000</td><td>5</td><td></td><td>250</td></t<>	CR304	10	6000	7200	4240	6000	5		250
CR307 16 9600 11520 6785 9600 5 7.8 250 CR311 4 2400 2880 1695 2400 9 14 255 CR312 6 3600 4320 2545 3600 9 14 255 CR313 8 4800 5760 3395 4800 9 14 255 CR314 10 6000 7200 4240 6000 9 14 255 CR315 12 7200 8640 5090 7200 9 14 255 CR316 14 8400 10080 5935 8400 9 14 255 CR317 16 9600 11520 6785 9600 9 14 255 CR321 4 2400 2880 1695 2400 12 18.8 400 CR322 6 3600 4320 2545 3600	CR305	12	7200	8640	5090	7200	5	7.8	250
CR311 4 2400 2880 1695 2400 9 14 255 CR312 6 3600 4320 2545 3600 9 14 255 CR313 8 4800 5760 3395 4800 9 14 255 CR314 10 6000 7200 4240 6000 9 14 255 CR315 12 7200 8640 5090 7200 9 14 255 CR316 14 8400 10080 5935 8400 9 14 255 CR317 16 9600 11520 6785 9600 9 14 255 CR321 4 2400 2880 1695 2400 12 18.8 400 CR322 6 3600 4320 2545 3600 12 18.8 400 CR323 8 4800 5760 3395 4800	CR306	14	8400	10080	5935	8400	5	7.8	250
CR312 6 3600 4320 2545 3600 9 14 255 CR313 8 4800 5760 3395 4800 9 14 255 CR314 10 6000 7200 4240 6000 9 14 255 CR315 12 7200 8640 5090 7200 9 14 255 CR316 14 8400 10080 5935 8400 9 14 255 CR316 14 8400 10080 5935 8400 9 14 255 CR317 16 9600 11520 6785 9600 9 14 255 CR321 4 2400 2880 1695 2400 12 18.8 400 CR322 6 3600 4320 2545 3600 12 18.8 400 CR323 8 4800 5760 3395 4800 <t< td=""><td>CR307</td><td>16</td><td>9600</td><td>11520</td><td>6785</td><td>9600</td><td></td><td>7.8</td><td>250</td></t<>	CR307	16	9600	11520	6785	9600		7.8	250
CR312 6 3600 4320 2545 3600 9 14 255 CR313 8 4800 5760 3395 4800 9 14 255 CR314 10 6000 7200 4240 6000 9 14 255 CR315 12 7200 8640 5090 7200 9 14 255 CR316 14 8400 10080 5935 8400 9 14 255 CR316 14 8400 10080 5935 8400 9 14 255 CR317 16 9600 11520 6785 9600 9 14 255 CR321 4 2400 2880 1695 2400 12 18.8 400 CR322 6 3600 4320 2545 3600 12 18.8 400 CR323 8 4800 5760 3395 4800 <t< td=""><td>CR311</td><td>4</td><td>2400</td><td>2880</td><td>1695</td><td>2400</td><td>9</td><td>14</td><td>250</td></t<>	CR311	4	2400	2880	1695	2400	9	14	250
CR314 10 6000 7200 4240 6000 9 14 250 CR315 12 7200 8640 5090 7200 9 14 255 CR316 14 8400 10080 5935 8400 9 14 255 CR317 16 9600 11520 6785 9600 9 14 255 CR317 16 9600 11520 6785 9600 9 14 255 CR321 4 2400 2880 1695 2400 12 18.8 400 CR322 6 3600 4320 2545 3600 12 18.8 400 CR323 8 4800 5760 3395 4800 12 18.8 400 CR324 10 6000 7200 4240 6000 12 18.8 400 CR325 12 7200 8640 5090 7200	CR312	6	3600	4320	2545	3600		14	250
CR315 12 7200 8640 5090 7200 9 14 25 CR316 14 8400 10080 5935 8400 9 14 25 CR317 16 9600 11520 6785 9600 9 14 25 CR321 4 2400 2880 1695 2400 12 18.8 400 CR322 6 3600 4320 2545 3600 12 18.8 400 CR323 8 4800 5760 3395 4800 12 18.8 400 CR324 10 6000 7200 4240 6000 12 18.8 400 CR325 12 7200 8640 5090 7200 12 18.8 400	CR313	8	4800	5760	3395	4800	9	14	250
CR316 14 8400 10080 5935 8400 9 14 250 CR317 16 9600 11520 6785 9600 9 14 250 CR321 4 2400 2880 1695 2400 12 18.8 400 CR322 6 3600 4320 2545 3600 12 18.8 400 CR323 8 4800 5760 3395 4800 12 18.8 400 CR324 10 6000 7200 4240 6000 12 18.8 400 CR325 12 7200 8640 5090 7200 12 18.8 400	CR314	10	6000	7200	4240	6000	9	14	250
CR317 16 9600 11520 6785 9600 9 14 250 CR321 4 2400 2880 1695 2400 12 18.8 400 CR322 6 3600 4320 2545 3600 12 18.8 400 CR323 8 4800 5760 3395 4800 12 18.8 400 CR324 10 6000 7200 4240 6000 12 18.8 400 CR325 12 7200 8640 5090 7200 12 18.8 400	CR315	12	7200	8640	5090	7200		14	250
CR321 4 2400 2880 1695 2400 12 18.8 400 CR322 6 3600 4320 2545 3600 12 18.8 400 CR323 8 4800 5760 3395 4800 12 18.8 400 CR324 10 6000 7200 4240 6000 12 18.8 400 CR325 12 7200 8640 5090 7200 12 18.8 400	CR316	14	8400	10080	5935	8400	9	14	250
CR322 6 3600 4320 2545 3600 12 18.8 400 CR323 8 4800 5760 3395 4800 12 18.8 400 CR324 10 6000 7200 4240 6000 12 18.8 400 CR325 12 7200 8640 5090 7200 12 18.8 400	CR317	16	9600	11520	6785	9600	9	14	250
CR323 8 4800 5760 3395 4800 12 18.8 400 CR324 10 6000 7200 4240 6000 12 18.8 400 CR325 12 7200 8640 5090 7200 12 18.8 400	CR321	4	2400	2880	1695	2400	12	18.8	400
CR324 10 6000 7200 4240 6000 12 18.8 400 CR325 12 7200 8640 5090 7200 12 18.8 400	CR322	6	3600	4320	2545	3600	12	18.8	400
CR325 12 7200 8640 5090 7200 12 18.8 400	CR323	8	4800	5760	3395	4800	12	18.8	400
	CR324	10	6000	7200	4240	6000	12	18.8	400
CR331 4 2400 2880 1695 2400 17 26.5 400	CR325	12	7200	8640	5090	7200	12	18.8	400
	CR331	4	2400	2880	1695	2400	17	26.5	400

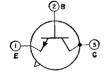

CR301

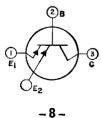

SERIES

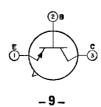
CR333 8 4800 5760 3395 4800 17 26.5 400 CR334 10 6000 7200 4240 6000 17 26.5 400 CR335 12 7200 8640 5090 7200 17 26.5 400 CR341 4 2400 2880 1695 3600 23 36 850 CR342 6 3600 4320 2545 4800 23 36 850 CR343 8 4800 5760 3395 6000 23 36 850 CR344 10 6000 7200 4240 2400 23 36 850	RCA Type	Nø. af Cells	Peak Reverse Voltage (volts)	Transient Reverse Voltage* (volts)	RMS Voitage (voits)	DC Blocking Voltage (volts)	Average Forward Current** (amperes)	RMS Forward Current (amperes)	Surge Current† (amperes)
CR334 10 6000 7200 4240 6000 17 26.5 400 CR335 12 7200 8640 5090 7200 17 26.5 400 CR341 4 2400 2880 1695 3600 23 36 850 CR342 6 3600 4320 2545 4800 23 36 850 CR343 8 4800 5760 3395 6000 23 36 850 CR344 10 6000 7200 4240 2400 23 36 850	CR332	6	3600	4320	2545	3600	17	26.5	400
CR335 12 7200 8640 5090 7200 17 26.5 400 CR341 4 2400 2880 1695 3600 23 36 850 CR342 6 3600 4320 2545 4800 23 36 850 CR343 8 4800 5760 3395 6000 23 36 850 CR344 10 6000 7200 4240 2400 23 36 850	CR333	8	4800	5760	3395	4800	17	26.5	400
CR341 4 2400 2880 1695 3600 23 36 850 CR342 6 3600 4320 2545 4800 23 36 850 CR343 8 4800 5760 3395 6000 23 36 850 CR344 10 6000 7200 4240 2400 23 36 850	CR334	10	6000	7200	4240	6000	17	26.5	400
CR342 6 3600 4320 2545 4800 23 36 850 CR343 8 4800 5760 3395 6000 23 36 850 CR344 10 6000 7200 4240 2400 23 36 850	CR335	12	7200	8640	5090	7200	17	26.5	400
CR343 8 4800 5760 3395 6000 23 36 850 CR344 10 6000 7200 4240 2400 23 36 850	CR341	4	2400	2880	1695	3600	23	36	850
CR344 10 6000 7200 4240 2400 23 36 850	CR342	6	3600	4320	2545	4800	23	36	850
	CR343	8	4800	5760	3395	6000	23	36	850
CR351 4 2400 2880 1695 3600 35 55 850	CR344	10	6000	7200	4240	2400	23	36	850
	CR351	4	2400	2880	1695	3600	35	55	850
CR352 6 3600 4320 2545 4800 35 55 850	CR352	6	3600	4320	2545	4800	35	55	850
CR353 8 4800 5760 3395 6000 35 55 850	CR353	8	4800	5760	3395	6000	35	55	850
CR354 10 6000 7200 4240 2400 35 55 850	CR354	10	6000	7200	4240	2400	35	55	850

Non-repetitive, for duration of 5 milliseconds maximum. The value given is for ambient temperatures from 50 to 125°C; for ambient temperatures up to 50°C, see Rating Chart I on page 322.
 For ambient temperatures up to 50°C; for temperatures above 50°C, see Rating Chart II on page 322.
 For one-half cycle, sine-wave; for one or more cycles, see Rating Chart III. Super-imposed on device operating within maximum voltage, current, and temperature ratings; may be repeated after sufficient time has elapsed for the device to return to the presurge thermal-equilibrium conditions.

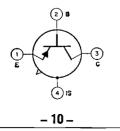



-2-


- 5 -



(2)B


ŝ

LIST OF DISCONTINUED TRANSISTORS

(Shown for reference only; see page 81 for symbol identification.)

				MAXIMU	M RATINGS		CHARA		Maximum Operating	
RCA Type	Terminal- Correction Diagram*	Out- line	V _{CB} (volts)	V _{EB} (volts)	l _o (amperes)	P _T (watts)	Min. h _{FD}	І _{СВ} (µа)	Tempera- ture (C°)	Can be replaced by RCA type
2N105	1	_	25		0.015	0.035	55	-5	55	2N408
2N206	1	4	30	—	0.050	0.075	33	-10		2N408
2N247	2	7	35		0.010	0.080	60	-10		2N412
2N269	1	4	-25	12	0.100 3	0.120	24	5		2N404
2N301	3	5	-40			11	70	-100		2N2869/2N301
2N301	•	5	60		3	11	70	-100		2N2870/2N301A
2N331 2N356	1 4	9	30 20	-12 20	0.200 0.5	0.200 0.100	50 30	-16 5	71 85	2N1638 2N647
2N350	4		20	20	0.5	0.100	30 30	5	85	2N647 2N647
2N358	4		20	20	0.5	0.100	30	5	85	2N647
2N373	- 4 2		25	0.5	0.010	0.100	60	8		2N1638
2N373 2N374	2	7	25 25	0.5 0.5	0.010	0.080	60 60	8	71	2N1638 2N1631
2N374 2N456	3	26	23 40			50	52		95	2N2869
2N457	3	26	60		5	50	52	_	95	2N2869
2N497	5	6	60	8	_	4	12	10	200	_
2N544	2	7		1	0.010	0.080	60	-4	71	2N1638
2N561	3	26	80	—6Õ		50	75	_ '	100	2N2869
2N578	1	9	-20	12	0.400	0.120	10	-5	71	2N412
2N579	1	9	-20	12	0.400	0.120	20	5	71	2N412
2N580	1	9	20	12	0.400	0.120	30	-5	71	2N412
2N583	1	4	18	10		0.120	20	-10	85	2N412
2N584	1	4	—25	—12	-0.100	0.120	40	5	85	2N408
2N640	2	7	34	-1	0.010	0.080	50	5	71	2N1637
2N641	2	7	34	1	0.010	0.080	50	-7	71	2N1638
2N642	2	7	34	1	0.010	0.080	50	7		2N1639
2N643	1	9	30	_2	-0.100	0.120	20	-10		2N705
2N644	1	9		<u> </u>	0.100	0.100	20	-10	71	2N705
2N645	1	9	-30	2	0.100	0.120	20	-10	71	2N705
2N656 2N696	5 5	6 6	60 60	8 5	0.500	4 2	30 20	10	200	
								1	175	-
2N794 2N795	6 6	12	-13	1 4	0.100	0.150	30	-3	85	2N1300
2N795 2N796	6 6	12 12	13 13	<u>-4</u> _4	-0.100 -0.100	$0.150 \\ 0.150$	30 50	3 3	85 85	2N1301 2N1683
2N/50 2N1014		26	-13	60		50	50 75		100	2N2869
2N121		6		1	0.100	0.075		3	- 100	21/2003
2N121		6	25 25	-1 -1	-0.100 -0.100	0.075		-3	85	
2N121		6	25	-1	-0.100	0.075	_	-3	85	
2N121		6	25 25	-1	-0.100	0.075	_	-3	85	
2N142		7	24	5	0.010	0.080	50	-12	71	2N1638
2N142		7	-24	0.5	0.010	0.080	130	-12	71	2N1638
2N145		, 9		1	0.100	0.120	20	-10	85	2N217
2N163		15	34	0.5	-0.010	0.080	75	-16	85	2N1638
2N163		4	34	-0.5	-0.010	0.080	75	-16	85	2N1638
2N163	5 7	15	34	-0.5	J.010	0.080	75	-16	85	2N1638
2N1638		4	34	0.5	0.010	0.080	75	-16	85	2N1638
2N287		34	35	0.3	0.010	0.115	40	12	100	-
3746	8	16	34	0.5	0.20	0.080		16	85	

TUNNEL DIODES

			(8				acterist Tempe)		
RCA Type	Peak Forward Current (ma)	Max Valley Current (ma)	Min Peak-to Valley- Current Ratio	Peak Voltage (mv)	Min Valley Veltage (mv)		Forward Voltage (mv)	Maz Capaci- tance* (pf)	Max Series Resis- tance (ohms)	Rise (ps max.	
1N3128	4.75-5.25	0.6	8:1	40-80	280		445-530	15	3	5000	1000
1N3129	19-21	2.4	8:1	50-100	300		474-575	20	2.5	2000	300
1N3139	47.5-52.5	6	8:1	70-120	350		520-620	25	1.5	500	160
1 N 3847	4.5-5.5	0.75	6:1				430-590	25	3		900
1N384 8	9-11	1.5	6:1				440-600	25	2.5		1800
1N3849	18-22	3	6:1				460-620	30	2	_	600
1 N 3850	45-55	7.5	6:1				530-640	40	1.5		350
1N3851	90-110	15	8:1				540-650	40	1		125
1N3852	4.75-5.25	0.6	8:1	50-90	330		490-560	15	3	-	1200
1N3853	9.5-10.5	1.2	8:1	55-95	350		510-580	15	2.5	-	600
1N3854	19-21	2.4	8:1	65-105	365		530-600	20	2		400
1N3855	47.5-52.5	6	8:1	80-130	380		550-620	25	1.5		200
1N3856	95-105	12	8:1	90-140	390		560-630	25	1	_	75
1N3857	4.75-5.25	0.6	8:1	50-90	330		490-560	8	3	-	600
1N3858	9.5-10.5	1.2	8:1	55-95	3 50		510-580	8	2.5		300
1N3859	19-21	2.4	8:1	65-105	365		530-600				150
1N3868	47.5-52.5	6	8:1	80-130	380		550-620			—	200
40058	47.5-52.5		12:1	200	500		1050	20**		500	33 3
40059	45-55		10:1	<u> </u>	450		1080 —	40**		1000	667
40060	19-21	_	11:1	180	500		1000 —	15**	8	1000	600
40061	18-22		9:1	- 180	450		900 —	30**		2000	1250
40062	9.5-10.5	—	10:1	<u> 180 </u>	500]	10 00 —	10**		1250	1000
40063	9-11	·	9:1	- 180	450		900 —	25**	5	3000	2000
40064	4.75-5.25	-	10:1		500		950 —	8**	18	2000	1250
40065	4.5-5.5	-	8:1	170	420		900 —	20**	12	6000	3000
40076	180-220		15:1	240 typ	600	typ		25*		_	
40077	0.9-1.1	0.15	6:1	60 typ	335			5*1	•		
40878	0.9-1.1	0.18	5:1	60 typ	330	typ	400-550	10**	6	—	

* Includes case capacitance of 0.8 pf.

** Actual recorded capacitance readings are provided with this type. This value minus 0.8 pf determines the junction capacitance.

TUNNEL DIODES

	(at 25°		um Rat ient Te	ings mperati	ire)			
DC Curr (ma) Forward	ent Reverse)issipation (mw) O	Tempera	ient- ture (°C) 1ge Storage	Lead Temperature (°C) (3 seconds maximum)	Material	Out- line	RCA Type
40	70	20	65 to 150 ·	-65 to 175	175	Ge	36	1N3128
55	85	30 -	65 to 150 ·	—65 to 175	175	Ge	36	1N3129
70	100	40 -	65 to 150 ·	—65 to 175	175	Ge	36	1N3130
10	15	5	35 to	o 100	175	Ge	36	1N3847
18	25	15	—35 to	o 1 0 0	175	Ge	36	1N3848
35	50	20	35 to	0 100	175	Ge	36	1N3849
85	125	50	—35 to	o 100	175	Ge	36	1 N 3850
170	250	100	3 5 to	o 100	175	Ge	36	1N3851
10	15	5	— 35 to	o 100	175	Ge	36	1N3852
18	25	10	35 te	o 100	175	Ge	36	1N3853
35	50	20		o 100	175	Ge	36	1N3854
85	125	50	—35 t	o 100	175	Ge	36	1N3855
170	250	100	35 te	o 100	175	Ge	36	1N3856
10	15	5	35 te	o 100	175	Ge	36	1№3857
18	25	10	—35 t	o 100	175	Ge	36	1N3858
35	50	20	—35 t	o 100	175	Ge	36	1 N3859
85	125	50	—35 t	o 1 0 0	175	Ge	36	1 N 3860
0.5ma/pf†	250		30 t	o 85	—	GaAs	38	40058
0.5ma/pf†	250		—30 t	o 85	-	GaAs	38	40059
0.5ma/pf†	100		— 30 t	o 85	—	GaAs	38	40060
0.5ma/pf†	100		—30 t	o 85		GaAs	38	40061
0.5ma/pf†	50		—30 t	o 85		GaAs	38	40062
0.5ma/pf†	50		—30 t		-	GaAs	38	40063
0.5ma/pf†	25	—	30 t		-	GaAs	38	40064
0.5ma/pf†	25		—30 t	o 85		GaAs	38	40065
0.5ma/pf†	400		—30 t		_	GaAs	39	40076
1.6†	2.5		—30 t		—	Ge	38	40077
1.6†	2.5	-	—30 t	0 85	_	Ge	38	40078

† Above 25°C, derate linearly to valley current at 75°C.

‡ Above 25°C, derate linearly to 0 mw at 100°C.

			Electrical Characteristics (at 25°C Ambient Temperature)							
RCA Type	Material	Out- line	Peak Current (ma)	Min Forward Voltage at 1 ma (mv)	Max Reverse Voltage at 10 ma (mv)	Max Reverse Voltage at 30 ma (mv)	Max Capa- citance (pf)			
1N3861	Ge	37	0.1-1	400	170		6*			
1N3862	Ge	37	0.1-1	420	150	300	4*			
1N3863	Ge	37	0.1-0.5	435	150	300	4*			
40054	GaAs	38	1	950	300	_	6**			
40055	GaAs	38	0.5	950	350	→	6**			
40056	GaAs	38	1	950	225		6**			
40057	GaAs	38	0.5	950	275	_	6**			

TUNNEL RECTIFIERS

* Includes case capacitance of 0.4 pf.

** Includes case capacitance of 0.8 pf.

HIGH-CURRENT TUNNEL DIODES

				Characteristics			(at za	O AI	nbient .	Temperature)		
RĈA Type N	Material	Out- line	Peak Current (ma)	Min Peak-to Valley- Current Ratio	Max Peak Voltage (mv)	Min Valley Voltage (mv)	Min Forward Voltage (mv)	Typ Capaci- tance (ufd)	Typ Series Resistance (ohms)	Typ Rise Time (nsec)	Typ Junction Resistance (ohms)	
40066	Ge	2	0.9-1.1	8:1	125	300	490	0.002	0.055	1	0.12	
40067	Ge	2	4.5-5.5	8:1	130	300	490	0.016	0.014	1.5	0.024	
40068	Ge	3	9.0-11.0	8:1	130	300	490	0.045	0.007	2	0.012	
40069	Ge	3	18-22	8:1	130	300	490	0.090	0.0035	2	0.006	
40070	Ge	40	90-110	8:1	130	300	430	0.5	0.0006	2	0.0012	
40079	GaAs	40	180-220	10:1	180	550	-	1.25	0.0002	4	0.001	

TUNNEL RECTIFIERS

DC Cur (ma) Forward		Dissipation ‡ (mw)	Ambient-Temperature (°C) Range Operating and Storage	Lead Temperature (3 seconds maximum)	RCA Type
10	30	10		175	1N386
10	30	10		175	1N386
10	30	10		175	1N386
0.5ma/pf	15	_	35 to 85	_	4005
0.5ma/pf	15		-35 to 85	_	4005
0.5ma/pf	15	_	-35 to 85	-	4005
0.5ma/pf	15		—35 to 85	_	4005

‡ Above 25°C, derate linearly to 0 mw at 100°C.

HIGH-CURRENT TUNNEL DIODES

 Maximum	Ratings (at 25°C Ambient Tem	perature)
Dissipation + (watts)	Ambient-Temperature (°C) Range Operating and Storage	RCA Type
0.45	—55 to 85	40066
1.7	—55 to 85	40067
3.5	-55 to 85	40068
7.0	55 to 85	40069
30.0	-55 to 85	40070
50:0	55 to 85	40079

* Above 25°C, derate linearly to 0 watt at 85°C.

VARACTOR DIODES (V1000 to V7000 Series)

Silicon and gallium arsenide types used in a wide variety of industrial circuits such as frequency multipliers, reactance tuners, rf limiters, parametric amplifiers, rf switches, and rf modulators. These types offer cutoff frequencies to 300 gigacycles and breakdown voltages to 200 volts.

6-VOLT GALLIUM ARSENIDE PARAMETRIC AMPLIFIER TYPES

Minimum Breakdown Voltage at reverse $\mu a = 10$	6	volts
Maximum Dissipation at case temperature $= 25^{\circ}$ C	150*	mw
Storage and Operating Temperature Range	to 150	°C
Case Inductance (typical)	0.35	nh
Case Capacitance (typical)	0.35	\mathbf{pf}

Cutoff Frequency** -	Junction Capacitance?—pf										
(Gc)	8.15-0.3	0.15-0.25	0.2-0.4	0.3-0.6	9.15-0.2	0.2-0.3	0.3-0.4	0.4-0.6			
125	V1000		V1001	V1002	V1003	V1004	V1005	V1006			
150	V1010	-	V1011	V1012	V1013	V1014	V1015	V1016			
175	V1020	_	V1021	V1022	V1023	V1024	V1025	V1026			
200	V1030		V1031		V1033	V1034	V1035	—			
225	V1040		_	_	V1043	V1044	_	_			
250	V1050			_	V1053	V1054		-			
300		V1060					_				

Pill Package (outline 41)

Prong Package (outline 42)

Cutoff Frequency**	Junction Capacitance†—pf											
(Gc)	0.15-0.3	0.15-0.25	0.2-0.4	0.3-0.6	0.15-0.2	0.2-0.3	0.3-0.4	0.4-0.6				
125	V2000	_	V2001	V2002	V2003	V2004	V2005	V2006				
150	V2010		V2011	V2012	V2013	V2014	V2015	V2016				
175	V2020		V2021	V2022	V2023	V2024	V2025	V2026				
200	V2030		V2031	-	V2033	V2034	V2035					
225	V2040		_	-	V2043	V2044	_	_				
250	V2050	_	_	*****	V2053	V2054	—	_				
300	_	V2060	—		_	_						

* Derate linearly to zero at maximum rated temperature.

** Calculated from Q measured at reverse volts = -6 at 10 gigacycles. Cutoff frequency = $\frac{1}{2\pi R_s C_1}$ = Qf where R_s is the series resistance, C_1 is the junction capacitance, and Q is the quality factor at frequency f.

* Measured at reverse volts = -6, frequency = 1 Mc. Junction capacitance = Co $\left(1 - \frac{V}{\phi}\right)^{-n}$ where Co is the capacitance at zero bias, V is the bias voltage, ϕ is approximately 1.1 volts, and n is typically 0.4.

30-VOLT GALLIUM ARSENIDE POWER VARACTORS (Outline 42)

Minimum Breakdown Voltage at reverse current $= 10 \ \mu a$ 30 volts Maximum Dissipation^{*} at case temperature $= 25^{\circ}$ C: For types having $C_1 = 0.2$ to 0.4 pf 300 mw For types having $C_1 = 0.4$ to 0.8 pf 400mw For types having $C_1 = 0.8$ to 1.2 pf 500 mw Storage and Operating Temperature Range-196 to 150 Case Inductance (typical) 0.35Case Capacitance (typical) 0.35

Frequ	ency** GC)	Junction Capacitance‡—pf								
Min	(VR = -30V)	Ú. 2-0.8	8.4-1.2	0.4-1.1	0.2-8.4	0.4-0.8	0.8-1 .2	8.8-1.1		
20	35	V3000	V3001	_	V3002	V3003	V3004	_		
40	65	V3010	V3011		V3012	V3013	V3014	-		
60	100	V3020	V3021		V3022	V3023	V3024			
80	135	V3030	_	V3031	V3032	V3033		V3034		
100	170	V3040	_		V3042	V3043		_		
120	200	V3050			V3052	V3053	_			

45-VOLT GALLIUM ARSENIDE POWER VARACTORS (Outline 42)

Minimum Breakdown Voltage at reverse current 45 volts Maximum Dissipation^{*} at case temperature $= 25^{\circ}$ C: For types having $C_1 = 0.2$ to 0.4 pf 300 mw mw mw $^{\circ}C$ Case Inductance (typical) nh 0.35Case Capacitance (typical) 0.35pf

Freq	Cutoff Frequency** (Gc)		Junction Capacitance+-pf								
Min	Typ (Vr = -45v)	0.2-0.8	0.4-1.2	0.4-1.1	0.2-0.4	0.4-0.8	0.8-1.2	0.8-1.1			
20	40	V3100	V3101		V3102	V3103	V3104				
40	75	V3110	V3111		V3112	V3113	V3114				
60	115	V3120	V3121	—	V3122	V3123	V3124	-			
80	155	V3130		V3131	V3132	V3133		V3134			
100	190	V3140			V3142	V3143	_				

* Derate linearly to zero at maximum rated temperature.

** Calculated from Q measured at reverse volts = -6 at 10 gigacycles. Cutoff frequency = $\frac{1}{2\pi R_s C_1} = Qf$ where R_s is the series resistance, C_1 is the junction capacitance, and Q is the quality factor at frequency f.

 \dagger Measured at reverse volts = -6, frequency = 1 Mc. Junction capacitance = C₀ -n where C_0 is the capacitance at zero bias, V is the bias voltage, ϕ is approximately 1 volt. and n is typically 0.35.

°C

nh

pf

60-VOLT SILICON MICROWAVE POWER VARACTORS (Outline 44)

Minimum Breakdown Voltage at reverse $\mu a = 10$	60	volts
Maximum Dissipation at case temperature $= 25^{\circ}$ C	2.5*	watts
Storage and Operating Temperature Range	-65 to 175	°C
Case Capacitance (typical)	0.6	\mathbf{pf}

Cutoff Frequency**	Junction Capacitance†—pf			
(Gc)	8.6-1.2	1.2-1.8	1.8-2.5	
48	V7000	¥7081	V7102	
60	V7010	V7011	V7812	

75-VOLT SILICON MICROWAVE POWER VARACTORS (Outline 44)

Minimum Breakdown Voltage at reverse $\mu a = 10$	75	volts
Maximum Dissipation at case temperature $= 25^{\circ}$ C	2.5*	watts
Storage and Operating Temperature Range	-65 to 175	°C
Case Capacitance (typical)	0.6	\mathbf{pf}

Cutoff Frequency**		Junction Capacitance†—pf	
(Gc)	0.6-1.2	1.2-1.8	1.8-2.5
35 58	V7100 V7110	V7101 V7111	¥7102 ¥7112

90-VOLT SILICON MICROWAVE POWER VARACTORS (Outline 44)

Minimum Breakdown Voltage at reverse $\mu a = 10$	90	\mathbf{v} olts
Maximum Dissipation at case temperature $= 25^{\circ}$ C	2.5*	watts
Storage and Operating Temperature Range	-65 to 175	°C
Case Capacitance (typical)	0.6	\mathbf{pf}

Cutoff		Junction Capacitance+—pf	
Frequency** (Gc)	8.6-1.2	1.2-1.8	1.8-2.5
30	¥720 0	V7201	¥7202

* Derate linearly to zero at maximum rated temperature.

** Cutoff frequency = $\frac{1}{2\pi R_s C_1}$ where R_s is the series resistance at reverse volts = -6 at 2 gigacycles and C_1 is the junction capacitance at the same voltage.

† Measured at reverse volts = -6, frequency = 1 Mc. Junction capacitance = C₀ $\left(1 - \frac{V}{\phi}\right)^{-n}$ where C₀ is the capacitance at zero bias, V is the bias voltage, ϕ is approximately 0.6 volt, and n is typically 0.35.

125- TO 200-VOLT SILICON UHF POWER VARACTORS (Outline 44)

Maximum Dissipation at case temperature $= 25^{\circ}$ C	7.5*	watts
Storage and Operating Temperature Range	-65 to 175	°C
Case Capacitance (typical)	0.6	\mathbf{pf}

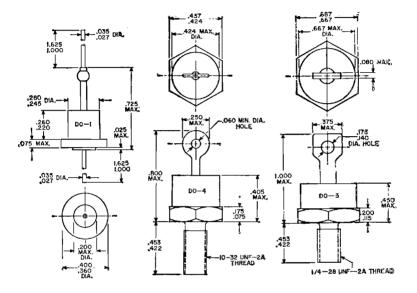
Cutoff Frequency†			Junction	Capacitance‡	—pf		
(Gc)	1-3	2-5	2-4	1-2	2-3	3-5	3-4
30	V6000	V6001	_	V6002	V6003	V6004	
50	V6010	V6011	-	V6012	V6013	V6014	-
70	V6020	V6021	-	V6022	V6023	V6024	
		150-	VOLT T	PES**			
30	V6100	_	V6101	V6102	V6103		V6104
50	V6110		V6111	V6112	V6113	—	V6114
70	V6120	-	V6121	V6122	V6123	-	V6124
		175-1	VOLT T	PES**			
30	V6200	_	V6201	V6202	V6203	_	V6204
50	V6210	-	V6211	V6212	V6213	_	V6214
70	V6220	-	V6221	V6222	V6223	-	V6224
		200-	VOLT T	PES**			
30	V6300		V6301	V6302	V6303	_	V6304
50	V6310	_	V6311	V6312	V6313	_	V6314
78	V6320	_	V6321	V6322	V6323		V6324

125-VOLT TYPES**

125- TO 200-VOLT SILICON VHF POWER VARACTORS (Outline 43)

Maximum Dissipation at case temperature $= 25^{\circ}$ C12*wattsStorage and Operating Temperature Range-65 to 175°CCase Capacitance (typical)1pf

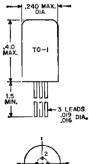
Cutoff Frequency‡	Breakdown Voltage** -	Jun	ction Capacitance‡—	pf
(GC)	(volts)	4-8	4-9	4-10
20	125	_		¥5000
20	158	_	V5100	
20	175	V5200		-
20	200	V5300	_	-

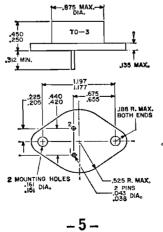

* Derate linearly to zero at maximum rated temperature.

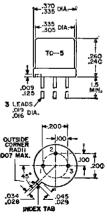
** Minimum breakdown voltage measured at reverse current = 10 μ a.

† Cutoff frequency $= \frac{1}{2\pi R_s C_1}$ where R_s is the series resistance at the specified minimum breakdown voltage (measured at 2 gigacycles) and C_1 is the junction capacitance measured at 1 Mc at the same voltage. ‡ Measured at minimum breakdown voltage, frequency = 1 Mc. Junction capacitance $= C_0 \left(1 - \frac{V}{\phi}\right)^{-n}$ where C_0 is the capacitance at zero bias, V is the bias voltage, ϕ is approximately 0.6 volt, and n is typically 0.4.

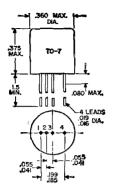
Outlines

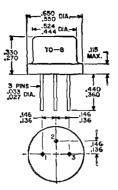

Dimensions in inches

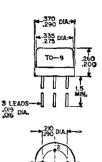

-1-


-2-

- 3 -




-4-

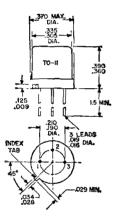


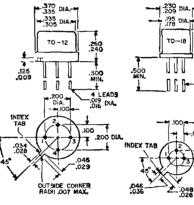
Outlines

-9-

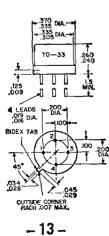
030 MAX

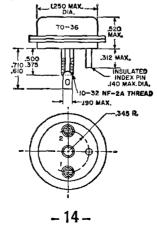
-3 LEADS 019 DIA

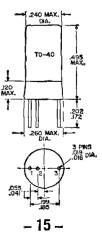

050

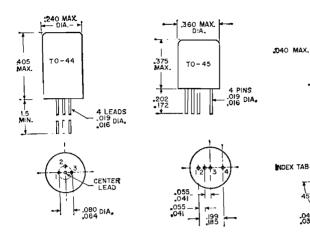

-050

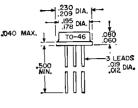
100





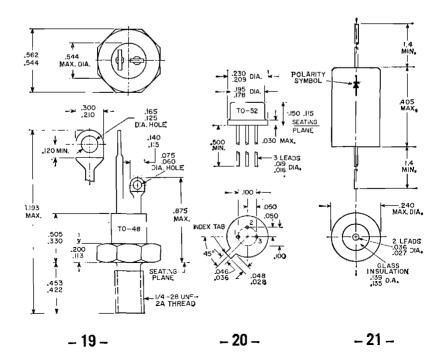

- 10 -

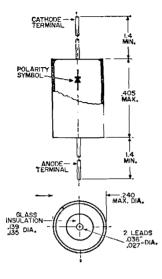

- 11 -

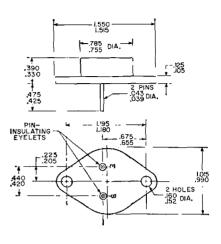

- 12 -

.048

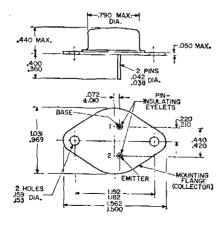
.10**0**

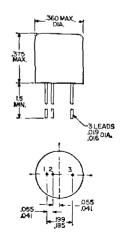

.050



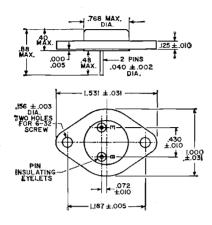


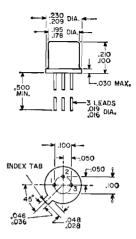
.046

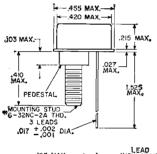

Outlines

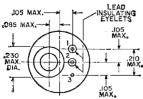


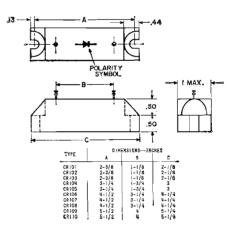
- 22 -



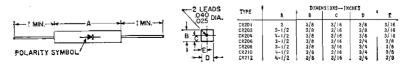


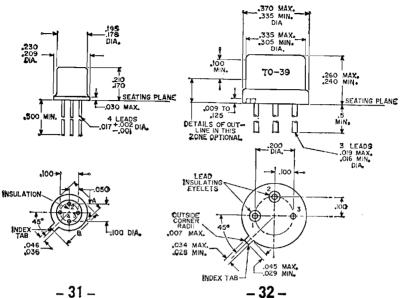

- 25 -

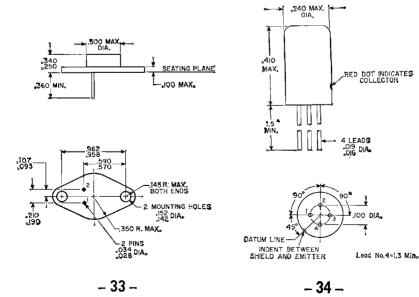


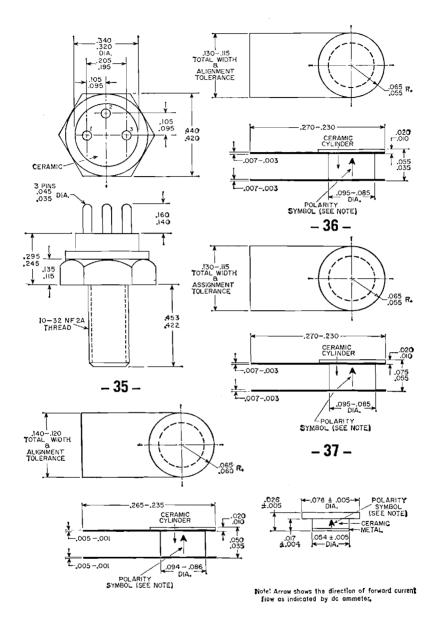

- 27 -

- 26 -



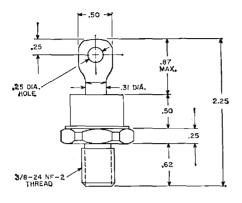


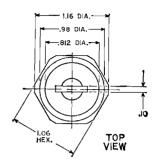

- 29 -

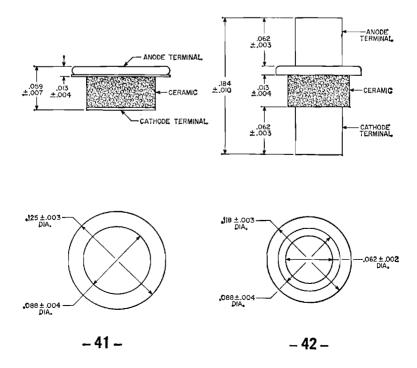


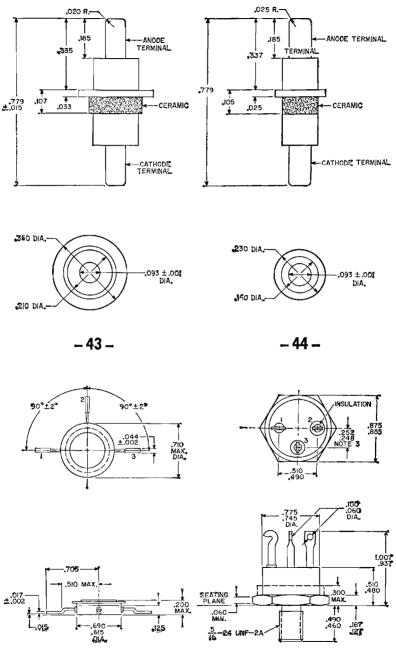
- 30 -

Outlines

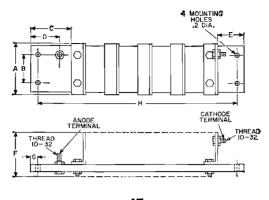








- 40 -



- 45 -

- 46 -

Outlines

- 47 -

DIMENSIONS-INCHES

RCA types	A	В	C	D	E	F	G
CR301 through CR307 CR311 through CR317 CR321 through CR325 CR331 through CR335 CR341 through CR354 CR351 through CR354	2-1/4 2-1/4 3 5-1/2 5-1/2	1-5/8 1-5/8 1-7/8 1-7/8 4 4	2-1/32 2-1/32 2-3/4 2-3/4 3 3	1-5/16 1-5/16 1-3/4 1-3/4 1-29/32 1-29/32	15/16 15/16 1-3/8 1-3/8 1-17/32 1-17/32	2 3-3/8 3-3/8 5-3/8 5-3/8 5-3/8	7/16 7/16 9/16 9/16 5/8 5/8

"H" DIMENSION FOR EACH TYPE IN CR301 FAMILY (inches)

CR301 5-1/4	CR312 7	CR323 11-7/8	CR341 7-11/16
CR302 7	CR313 8-3/4	CR324 14-1/4	CR342 10-1/4
CR303 8-3/4	CR314 10-1/2	CR325 16-5/8	CR343 12-13/15
CR304 10-1/2	CR315 12-1/4	CR331 7-1/8	CR344 15-3/8
CR305 12-1/4	CR316 14	CR332 9-1/2	CR351 7-11/16
CR306 14	CR317 15-3/4	CR333 11-7/8	CR352 10-1/4
CR307 15-3/4	CR321 7-1/8	CR334 14-1/4	CR353 12-13/16
CR311 5-1/4	CR322 9-1/2	CR335 16-5/8	CR353 12-13/16

Circuits

THE CIRCUITS in this section illus-- trate some of the more important applications of RCA semiconductor devices: they are not necessarily examples of commercial practice. These circuits have been conservatively designed and are capable of excellent performance. Electrical specifications are given for circuit components to assist those interested in home construction. Layouts and mechanical details are omitted because they vary widely with the requirements of individual set builders and with the sizes and shapes of the components employed.

Performance of these circuits depends as much on the quality of the components selected and the care employed in layout and construction as on the circuits themselves. Good signal reproduction from receivers and amplifiers requires the use of goodquality speakers, transformers, chokes and input sources (microphones, phonograph pickups, etc.).

Coils for the receiver circuits may be purchased at local parts dealers by specifying the characteristics required: for rf coils, the circuit position (antenna or interstage), tuning range desired, and tuning capacitances employed; for if coils or transformers, the intermediate frequency, circuit position (1st if, 2nd if, etc.), and, in some cases, the associated transistor types; for oscillator coils, the receiver tuning range, intermediate frequency, type of converter transistor, and type of winding (tapped or transformer-coupled).

The voltage ratings specified for capacitors are the minimum dc working voltages required. Paper, mica, or ceramic capacitors having higher voltage ratings than those specified may be used except insofar as the physical sizes of such capacitors may affect equipment layout. However, if electrolytic capacitors having substantially higher voltage ratings than those specified are used, they may not "form" completely at the operating voltage, with the result that the effective capacitances of such units may be below their rated value. The wattage ratings specified for resistors assume methods of construction that provide adequate ventilation; compact installations having poor ventilation may require resistors of higher wattage ratings.

LIST OF CIRCUITS

Page

11-1	3-Volt Portable Radio Receiver	344
11-2	6-Volt Portable Radio Receiver	345
11 - 3	6-Volt Automobile Radio Receiver	346
11-4	12-Volt Automobile Radio Receiver	347
11 - 5	AM/FM Automobile Radio Receiver	348
11-6	Three-Band Radio Receiver	350
11-7	"Front End" for Radio Receiver	351
11-8	Preamplifier for Phono/FM Pickup	352
11-9	Earphone Amplifier	353
11 - 10	Phonograph Amplifier	353
11-11	25-Watt, High-Quality Audio Power Amplifier	354
11 - 12	FM Stereo Multiplex Adapter	355
11 - 13	Stereo Amplifier (3-watt output per channel)	356
11-14	Stereo Amplifier (15-watt output per channel)	357

Circuits

11 - 15	Power Supply for Amateur Transmitter	358
11 - 16	27-Mc Citizens-Band Transceiver	359
11-17	27-Mc, 5-Watt Citizens-Band Transmitter	360
11-18	Video Amplifier	361
11-19	70-Mc Power Amplifier	361
11 - 20	"Front End" for 450-Mc Superheterodyne Receiver	362
11 - 21	30-Mc IF Amplifier	363
11 - 22	Servo Amplifier	364
11-23	100-Kc Power Oscillator	364
11 - 24	27-Mc Crystal Oscillator	365
11 - 25	70-Mc Power Oscillator	365
11 - 26	250-Mc Oscillator	366
11 - 27	DC-to-DC Converter	366
11 - 28	Voltage Regulator, Shunt Type (Regulation 1.5%)	367
11-29	Voltage Regulator, Series Type (Regulation 2%)	367
11-30	Voltage Regulator, Shunt Type (Regulation 0.5%)	368
11 - 31	Voltage Regulator, Series Type (with adjustable output)	368
11 - 32	Astable Multivibrator	369
11-33	Monostable Multivibrator	369
11-34	Bistable Multivibrator	370
11-35	6-Volt Ignition System	371
11-36	12-Volt Ignition System	371
11 - 37	Voltage-Sensitive Switch (used with normally open relay)	372
11-38	Voltage-Sensitive Switch (used with normally closed relay)	372
11 - 39	Shift Register	373
11-40	Electronic Thermostat	374
11-41	Electronic Keyer	375
11 - 42	Grid-Dip Meter	376
11 - 43	Light Flasher	376
11-44	Light-Dimmer Control Using Silicon Controlled Rectifier	377
11 - 45	Code-Practice Oscillator	377
11-46	Photo-Relay	377

MANUFACTURERS OF COILS AND ASSOCIATED MATERIALS

REFERRED TO IN PARTS LISTS

Arnold Magnetics 6050 West Jefferson Blvd. Los Angeles, Calif.

Better Coil and Transformer Inc. Goodland, Ind.

Columbus Process Co. Columbus, Ind.

General Ceramic Corp. Crows Mill Road Keasby, N.J.

General Instrument Co. Automatic Winding Division 65 Governeur Street Newark, N.J.

P. R. Mallory and Co., Inc. 3029 East Washington Street Indianapolis, Ind.

Microtran Co., Inc. 145 East Mineola Avenue Valley Stream, N.Y. Mid-West Coil and Transformer Co. 1642 N. Halstead Chicago, Ill.

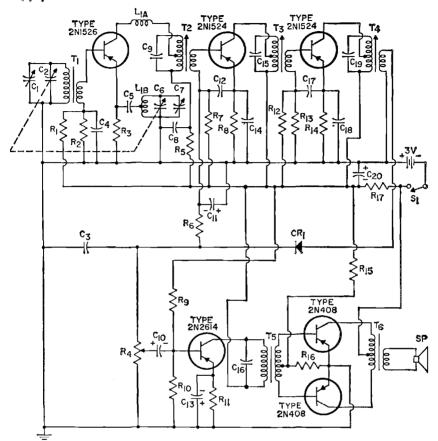
J. W. Miller Co.

5917 South Main Street Los Angeles, Calif.

Radio Condenser Corp.

Davis and Copewood Street Camden, N.J.

Stancor Electronics, Inc. 3501 West Addison Street Chicago, Ill.


Thompson-Ramo-Wooldridge, Inc. Electronic Components Division 666 Garland Place Des Plaines, Ill.

Thordarson

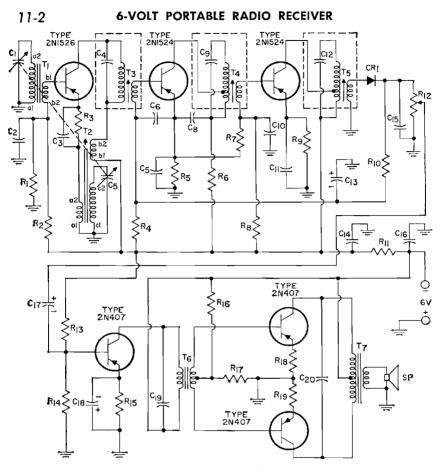
7th and Bellmont Mt. Carmel, Ill.

3-VOLT PORTABLE RADIO RECEIVER

- C₁ = trimmer, 3 to 15 pf C₂, C₈ = ganged tuning capacitor, C₂ = 9.5 to 141 pf, C₈ = 7.2 to 109 pf C₈, C₄ = 0.02 μ f, ceramic C₆ = 0.005 μ f, ceramic C₆ = trimmen 2 to 20 pf
- $C_7 = \text{trimmer}$, 3 to 20 pf C₈, C₁₂, C₁₇, C₁₈ = 0.05 μ f, ceramic
- 3 v.
- $\begin{array}{c} 3 \text{ v.}\\ C_{13}, C_{20} &= 100 \ \mu\text{f}, \text{ electro-lytic, } 3 \text{ v.}\\ C_{15} &= 125 \ \text{pf} \ (\text{part of } T_3)\\ C_{16} &= 0.005 \ \mu\text{f}, \text{ ceramic}\\ C_{19} &= 125 \ \text{pf} \ (\text{part of } T_4)\\ CR_1 &= 1N295 \end{array}$

- $L_{a} =$ oscillator coil; wound from No. 3/44 Litz wire on coil form suitable for on coil form suitable for a No. 10-32 Slug; LiA. 19 turns; LiB. 155 turns, tapped at 8 turns from ground end, tunes with 100 pf at 990 kilocycles Ri₂ R₂ = 10000 ohms,
- 0.5 watt $R_2 = 3900$ ohms, 0.5 watt

 R_{3} , $R_{15} = 1500$ ohms, 0.5 watt


- R4 = volume-control po-

- tiometer R_4) $S_p =$ speaker; voice-coil impedance, 12 to 15 ohms $T_1 =$ antenna transformer; primary, 110 turns of No. 10/41 Litz wire wound on a $\frac{3}{4}$ "-by- $\frac{3}{4}$ " by- $\frac{4}{7}$ " fer-rite rod (pitch, 50 turns per inch); secondary, 6 turns of No. 10/41 Litz

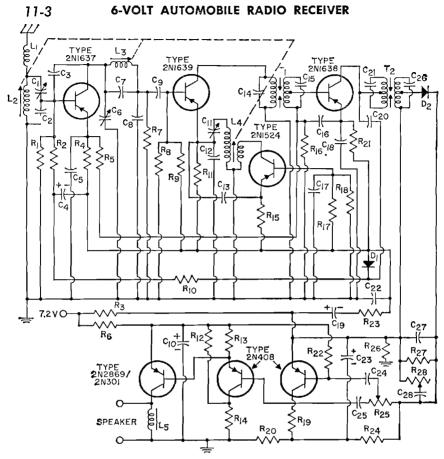
wire wound at the start of the primary; $\mathbf{Q} =$ 100 with transformer mounted on chassis; transformer should tune with 135 pf at 535 kilocycles

- $\begin{array}{l} cycles\\ T_{2} = 1st & if transformer;\\ Thompson-Ramo-Woold ridge EO-13550, or equiv.\\ T_{s} = 2nd & if transformer;\\ secondary & Thompson-$ Ramo-Wooldridge EO- $13551, or equiv.\\ T_{s} = 3rd & if transformer;\\ secondary & Thompson-$ rescondary & Thompson- $transformer;\\ secondary & Thompson-$ condary & Thompson-rescondary & Thompson-resc
- secondary Tho Ramo-Wooldridge EO-
- 13552, or equiv. $T_5 = driver transformer;$ primary impedance, 1000 secondary ohms: im-
- onms; secondary im-pedance, 2000 ohms, cen-ter-tapped $T_{\theta} =$ output transformer; primary impedance, 100 ohms, center-tapped; sec-ender impedance 15 ondary impedance, 15 ohms (to match voice-coil impedance of 12 to 15 ohms)

Circuits

- C1, C5 = ganged tuning capacitor (with trimmers);
 C1 = 18 to 169 pf; C5 = 17 to 88 pf; Radio Condenser No. 903-817 (vernior denser No. 903-817 (vernior denser) nier drive), or equiv. $C_2, C_3, C_{15} = 0.02 \ \mu f, \text{ ceramic}$ $C_4 = 1400 \ \text{pf} \ (\text{part of } T_3)$ $C_6, C_7, C_8, C_{10}, C_{11} = 0.05$

- μf, ceramic


- $\begin{array}{l} \begin{array}{l} \begin{array}{l} \mu f_{s} \ ceramic \\ \mu f_{s} \ ceramic \\ e = 220 \ pf \ (part of T_{4}) \\ C_{12} = 220 \ pf \ (part of T_{5}) \\ C_{13}, \ C_{17} = 10 \ \mu f_{s} \ electro-lytic, 3 \ v. \\ C_{14}, \ C_{16}, \ C_{18} = 100 \ \mu f_{s} \ electro-lytic, 6 \ v. \\ C_{19} = 0.005 \ \mu f_{s} \ ceramic \\ C_{20} = 0.1 \ \mu f_{s} \ ceramic \\ C_{R1} = \ detector \ diode, 1N295 \\ R_{1}, \ R_{16} = 3900 \ ohms, \\ 0.5 \ watt \end{array}$
- $\begin{array}{l} 1.5 & \text{watt} \\ 0.5 & \text{watt} \\ R_2 = 15000 \text{ ohms, } 0.5 \text{ watt} \\ R_3, R_7 = 1800 \text{ ohms, } \end{array}$ 0.5 watt
- $R_4 = 82000$ ohms, 0.5 $R_5, R_{15} = 470$ ohms, = 82000 ohms, 0.5 watt
- $\begin{array}{l} \text{Rs}, \ 115 & = \ 110 \ \text{ohms}, \\ 0.5 \ \text{watt} \\ \text{Rs} &= 560 \ \text{ohms}, \ 0.5 \ \text{watt} \\ \text{Rs} &= 33000 \ \text{ohms}, \ 0.5 \ \text{watt} \\ \text{Rs} &= 390 \ \text{ohms}, \ 0.5 \ \text{watt} \end{array}$

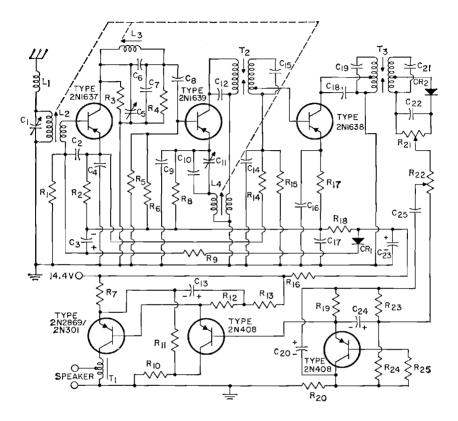
- tentiometer, 5000 ohms,

- tentiometer, 5000 onms, audio taper R₁₃ = 27000 ohms, 0.5 watt R₁₄ = 5600 ohms, 0.5 watt R₁₅, R₁₉ = 3.3 ohms, 0.5 watt S_p = speaker; voice-coil impedance, 3.2 ohms T₁ = antenna transformer; wound on 6-inch-long, 0.330-inch-diameter rod made of General Ceramic made of General Ceramic "Q" material, or equiv; primary, 125 turns of No. 2/38 Litz wire (S. Nysol), 28 turns per inch; sec-ondary, 8 turns of No. 2/38 Litz wire, bifilar wound from start (an end) of primary. $T_2 =$ oscillator coil; con-
- secutively wound in following order: $a_1-a_2 = 5$ turns, $b_1-b_2 = 9$ turns, $c_1-c_2 = 130$ turns of No. 2/38 Litz wire (S. Nysol)

on ¼-inch-diameter coil on ¼-inch-diameter coil form having a ¾-inch-long, ¼-inch diameter, 28-TPI slug made of Gen-eral Ceramic "Q" ma-terial, or equiv. * = 1st if transformer; General Instrument No. E-2749343-AX, or equiv. 4 = 2nd if, transformer; General Instrument No. E-27493-BZ. or equiv.

- Тз
- General Instrument No. E-2749293-BZ, or equiv. s = 3rd if transformer; General Instrument No. Тs
- E-2749293-CY, or equiv. T₀ = driver transformer: primary impedance, 5000 ohms; secondary imped-ance, 2200 ohms, centertapped; Mid-West Coil and Coil and Transformer No. 20AT90, or equiv. $T_7 = output$ transformer;
- primary impedance, 320 ohms, center-tapped; secondary impedance, 3.2 ohms; Mid-West Coil and Transformer No. 20AT89, or equiv.

- $C_1 = 5-80$ pf, variable
- trimmer
- trimmer $C_2 = 820 \text{ pf, mica, 100 v.}$ $C_3 = 2 \text{ pf, mica, 100 v.}$ $C_4 C_{23} = 25 \mu \text{f, electrolytic.}$ 6 v.
- $C_5 C_9 C_{13} C_{16} C_{17} C_{18} = 0.05 \ \mu f$ ceramic disc
- C6 C11 == 100-580 pf, variable trimmer
- $C_7 \approx 270$ pf, mica $C_8 \approx 0.005 \ \mu$ f, ceramic disc $C_{10} C_{22} = 50 \ \mu$ f, electrolytic,
- 6 v.
- $C_{12} = 0.0047 \ \mu f$, ceramic disc $C_{14} \ C_{15} = supplied with \ T_1$
- $C_{10} = 500 \ \mu f$, electrolytic, 3 v.
- $C_{20} = 180 \text{ pf}, \text{mica}, 100 \text{ v}$
- $C_{21} C_{26} =$ supplied with T_{12}
- C_{24} $C_{25} = 1 \mu f$, ceramic disc, 3 v.
- $C_{27} = 0.04 \ \mu f$, ceramic disc, 25 v.C₂₈ - 0.5 μ f, ceramic disc,
- 25 v.
- $D_1 \ D_2 = 1N295$
- $L_1 = 5 \ \mu f$, rf choke


- Sickles Co. and Condenser Corp.
- $L_2 = antenna coil; variable$ inductor tuned with 110 pf; frequency range 535 to 1610 kc; $\mathbf{Q} = 65$ at
- 1610 kc $L_3 = rf$ coil; variable inductor tuned with 600 pf; fre-quency range 535 to 1610 kc; $\mathbf{Q} = 65$ at 1610 kc.
- L₄ == oscillator transformer; La = oscillator transformer; primary, variable inductor tuned with 470 pf; fre-quency range 797 to 1872 kc; $\mathbf{Q} = 65$ at 1872 kc; secondary, 30 turns $\mathbf{L}_{\delta} = -$ output choke; 20 mh;
- 1 ampere, 0.5 ohm max.
- $R_1 = 82000$ ohms, 0.5 watt $R_2 = 2200$ ohms, 0.5 watt
- R₈ == 33 ohms, 0.5 watt
- $R_4 R_{21} = 330$ ohms, 0.5 watt $R_5 R_{10} = 5600$ ohms, 0.5 watt
- $R_6 \equiv 0.33$ ohm, 1 watt

- R7 == 180 ohms, 0.5 watt $\begin{array}{l} R_{3} = 100 \text{ ohms, 0.5 watt} \\ R_{8} = 10000 \text{ ohms, 0.5 watt} \\ R_{11} R_{22} = 1000 \text{ ohms, 0.5 watt} \\ R_{12} R_{13} R_{14} = 68 \text{ ohms, 0.5} \end{array}$
- watt

- watt $R_{15} = 820$ ohms, 0.5 watt $R_{16} = 47000$ ohms, 0.5 watt $R_{17} = 1800$ ohms, 0.5 watt $R_{18} = 8200$ ohms, 0.5 watt $R_{28} = 1200$ ohms, 0.5 watt $R_{28} = 1200$ ohms, 0.5 watt $R_{28} = 1200$ ohms, 0.5 watt $R_{24} = 100000$ ohms, 0.5 watt $R_{25} = volume control, po-$ tentiometer, 100000 ohms $<math>R_{28} = -tope control, poten-$ tentioneter, 100000 ohmsR₂₈ = tone control, poten-tiometer, 10000 ohms
- $T_1 = if transformer, Thomp-$ son-Ramo WooldridgeNo. E010173, General In-strument No. E2740097
- strument No. E2740097AX, or equivalent $T_2 = if$ transformer, Thomp-son-Ramo-Wooldridge No. E010174, General In-strument No. E2740097BX, or equivalent

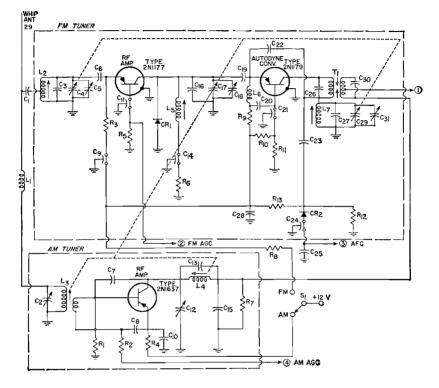
11-4

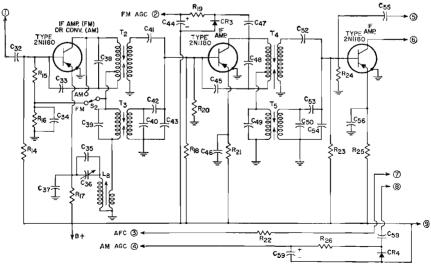
12-VOLT AUTOMOBILE RADIO RECEIVER

- C₁ = 5-80 pf, trimmer C₂ = 2.2 μ f, 3v. C₃ = 25 μ f, electrolytic, 3 v. C₄ C₅ C₁₂ C₁₅ C₁₇ C₂₅ = 0.5 μ f, ceramic disc, 25 v. C₅ C₁₁ = 100-580 pf, trimmer C₈ = 270 pf, mica, 100 v. C₇ = 0.005 μ f, ceramic disc, 25 v. 25 v
- $C_8 = 0.0075 \ \mu f$, ceramic disc,
- 25 v. 25 v. $C_{10} = 180 \mu\mu f, ceramic,$ N-750, negative temperature coefficient
- $C_{12} C_{15} =$ supplied with $T_2 C_{13} = 500 \ \mu f$, electrolytic,

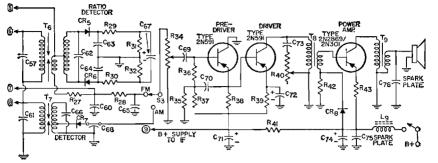
- Constant of the second second
- 25 v.C₂₃ = 100 µf, electrolytic,

- $\begin{array}{l} C_{23}=100\ \mu_1,\ electrolytic,\ 3\ v.\\ C_{24}=100\ \mu_f,\ electrolytic,\ 3\ v.\\ CRi,\ CR_2=1N295\\ L_1=5\ \mu h,\ rf\ choke\\ L_2\ L_5\ L_4=\ tuner\ assembly;\\ manufactured\ by\ F.\ W.\\ Sickles\ Co.\ and\ Radio\\ \end{array}$ Sickles Co., ar Condenser Corp.


- $L_2 = antenna transformer;$ L₂ = antenna transformer; primary, variable induc-tor tuned with 110 pf; frequency range 535 to 1610 kc; Q = 65 at 1610 kc; secondary, 10 turns L₃ = rf coil; variable induc-tor tuned with 600 pf; frequency range 535 to 1610 kc; Q = 65 at 1610 kc.
- kc.
- L₄ = oscillator transformer; primary, variable induc-tor tuned with 470 pf; frequency range 797 to 1872 kc; Q = 65 at 1872 kc; secondary, 30 turns. R₁ = 8200 ohms, 0.5 watt R₂ = 56000 ohms, 0.5 watt R₃ = 15000 ohms, 0.5 watt R₄ = 180 ohms, 0.5 watt R₄ = 180 ohms, 0.5 watt R₈ = 8200 ohms, 0.5 watt R₉ = 8200 ohms, 0.5 watt R₉ = 8200 ohms, 0.5 watt R₁₀ = 820 ohms, 0.5 watt R₁₁ = 82 ohms, 0.5 watt R₁₂ = 120 ohms, 0.5 watt R₁₃ = 68 ohms, 0.5 watt $L_4 = oscillator transformer;$


- $R_{13} = 68$ ohms, 0.5 watt $R_{14} = 5600$ ohms, 0.5 watt

- $\begin{array}{l} R_{15} = 100000 \ \text{ohms}, 0.5 \ \text{watt} \\ R_{16} = 680 \ \text{ohms}, 0.5 \ \text{watt} \\ R_{17} = 470 \ \text{ohms}, 0.5 \ \text{watt} \\ R_{18} = 100 \ \text{ohms}, 0.5 \ \text{watt} \\ R_{21} = 200 \ \text{ohms}, 0.5 \ \text{watt} \\ R_{21} = volume \ \text{control}, \ \text{potentioneter}, 2500 \ \text{ohms} \\ R_{22} = tone \ \text{control}, \ \text{potentioneter}, 1000 \ \text{ohms}, 0.5 \\ R_{28} = 3300 \ \text{ohms}, 0.5 \\ \text{watt} \end{array}$
- watt $R_{24} = 33000$ ohms, 0.5 watt
- $R_{24} = 35000$ online, 0.5 watt $T_1 =$ output transformer; primary impedance, 20 ohms at 500 ma dc; sec-ondary impedance, 4 ohms to metch impedance of to match impedance of voice coil; Columbus Process Co. No. 5383, or equivalent
- $T_2 = if transformer, Thomp$ son-Ramo-Wooldridge No. E014127, General In-strument Co. No. E2742208AX, or equivalent
- $T_3 = if transformer, Thomp-$ son-Ramo-WooldridgeNo. E014128, General In-strument Co. No. E2742208BX, or equivalent



AM/FM AUTOMOBILE RADIO RECEIVER

AM/FM AUTOMOBILE RADIO RECEIVER (cont'd) 11-5

- $C_1 = 18$ pf, ceramic disc. 50 v.
- $C_2 = 5-80$ pf, mica, trimmer $C_8 C_6 C_{10} C_{47} = 5$ pf, ceramic
- disc, 50 v. C₄ C₁₇ C₂₉ = 6-21 pf, tuning
- capacitor $C_6 C_{18} C_{31} = 1-6$ pf, mica,
- trimmer $\mathbf{C}_{\tau} =$ = 1.5 pf, ceramic disc.
- $\begin{array}{l} C_{7} = 1.0 \ p_{-1} \\ 50 \ v. \\ C_{8} \ C_{10} \ C_{23} \ C_{40} \ C_{58} \ C_{69} \ C_{73} = \\ 0.05, \ \mu f, \ ceramic \ disc, \ 50 \ v. \\ C_{9} \ C_{11} \ C_{11} \ C_{21} \ C_{24} \ C_{48} \ C_{68} = 0.002 \\ \mu f, \ feed through, \ 50 \ v. \\ C_{10} = 55-300 \ pf, \ mica, \end{array}$
- trimmer
- $C_{13} = 390$ pf, ceramic disc, 50 v.
- $C_{15} = 0.005 \ \mu f$, ceramic disc. 50 v.
- $C_{10} C_{23} = 4$ pf, ceramic disc, 50 v. 20 = 330 pf, ceramic disc,
- **C**20 50 v. $C_{22} = 2.2 \text{ pf, ceramic disc,}$
- 50 v.
- C_{25}^{50} C_{28}^{50} C_{28}^{51} C_{27}^{51} C_{27}^{51} C_{60}^{50} C_{68}^{68} C_{64}^{69} $= 0.01 \ \mu f$, ceramic disc, 50 v.
- $C_{20} C_{80} = part of T_1$ $C_{27} = 15 pf$, ceramic disc, 50 v.
- $C_{33}C_{45} = 3.3$ pf, ceramic
- $C_{ss} = 180 \text{ pf}$, N750 ceramic $C_{ss} = 80-550 \text{ pf}$, mica,
- trimmer
- $C_{88} C_{41} = part of T_2$
- C₃₉ C₄₀ C₄₂ = part of T₃ C₄₃ C₅₄ = 0.001 μ f, ceramic
- disc, 50 v. $\mu = 10 \ \mu f$, electrolytic. $C_{44} = 25 v.$
- $C_{48} C_{52} = part of T_4$ $C_{49} = 1800 pf \pm 10\%$, ceramic disc

- $C_{50} C_{53} = part of T_5$ $C_{55} = 2 pf, ceramic disc, 50 v.$
- C_{57} C_{62} = part of T_8 C_{58} = 200 pf, ceramic disc,
- 50 v.
- 50 v. $C_{59} = 20 \ \mu f$, electrolytic, 25 v. $C_{54} = 1500 \ pf \pm 10\%$, ceramic disc
- $C_{65} = 0.02 \ \mu f$, ceramic disc, 50 v.

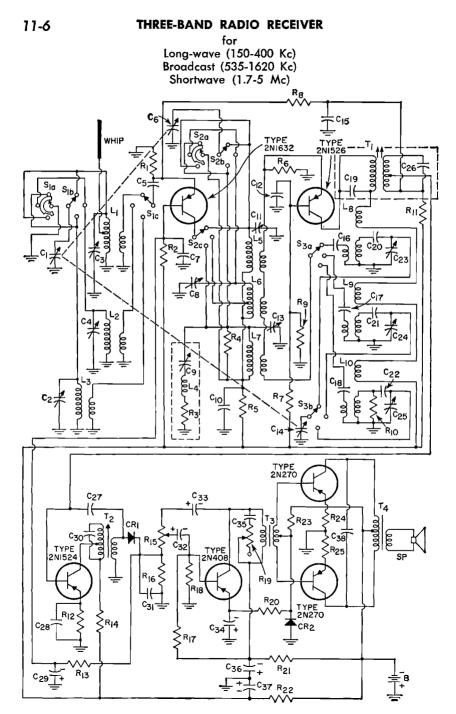
- $\begin{array}{l} \mathbf{C}_{66}^{\text{obs}} = \text{part of } \mathbf{T}_7 \\ \mathbf{C}_{67} = 10 \ \mu\text{f, electrolytic, 3 v.} \\ \mathbf{C}_{70} = 2.2 \ \mu\text{f, ceramic disc,} \\ \mathbf{3} \ \mathbf{v}. \end{array}$

 $C_{71} = 200 \ \mu f$, electrolytic, 25 v. $C_{72} = 100 \ \mu f$, electrolytic,

- 25 v.
- = 500 μ f, electrolytic, C74 25 v.
- $C_{75} C_{76} = \text{spark plate}$ $CR_1 CR_3 CR_4 CR_7 = \text{diode}$,
- 1N295 $CR_2 = AFC$ diode, 1N3182
- or equiv. $CR_5 CR_8 = diode, 1N542$ $CR_8 = diode, 1N1763$ $L_1 = 6.2 \mu h, radio-frequency$

- choke
- $L_2 = antenna \ coil \ for \ FM$ s _ anterna control for function for the second state of the seco equiv.
- L₃ = antenna coll for AM tuner; variable inductor; tunes with 120 pf over the frequency range from 535 to 1610 kc; $Q_0 = 60$ at 1610 kc; secondary 8 turns
- $L_4 = rf$ coil for AM tuner; variable inductor: tunes with 560 pf over the frequency range from 535 to 1610 kc; $Q_0 = 60$ at 1610 kc; no secondary $L_5 = rf$ coil for FM tuner;
- same as L₂ except has no tap
- $m_{\rm s} = {\rm miniature \ radio-fre-}$ quency choke, 1 $\mu{\rm h}$ (ap-Le prox.)
- = oscillator coil for FM tuner; 3 turns No. 16 HF on 0.220-inch form, spaced '4-inch (approx.); core "J" material Arnold A1-336 or equiv.
- $\mathbf{L}_8 =$ oscillator coil for AM tuner; variable inductor; tunes with 470 pf over the frequency range from 797 to 1872 kc; $Q_0 = 45$ 1872 kc; secondary = 45 at - 30 turns
- $L_9 = filter$ choke, 125 μh (approx.)
- $R_{12} R_{22} = 100000$ ohms, \mathbf{R}_1 0.5 watt
- $R_2 R_4 = 560$ ohms, 0.5 watt $R_3 = 390$ ohms, 0.5 watt $R_5 R_{11} R_{18} = 33000$ ohms, 0.5 watt

R₆ R₂₇ R₄₁ = 180 ohms, 0.5 watt


- $R_7 = 68$ ohms, 0.5 watt

- $R_7 = 68$ ohms, 0.5 watt $R_8 = 220$ ohms, 0.5 watt $R_9 = 680$ ohms, 0.5 watt $R_{13} = 4300$ ohms, 0.5 watt $R_{13} = 1$ megohm, 0.5 watt $R_{13} = 1$ megohm, 0.5 watt
- 0.5 watt
- 0.5 watt $R_{17} R_{29} = 1500 \text{ ohms}, 0.5 \text{ watt} R_{18} R_{23} = 2200 \text{ ohms}, 0.5 \text{ watt} R_{19} R_{20} = 5600 \text{ ohms}, 0.5 \text{ watt}$

- $R_{20} R_{24} = 18000$ ohms, 0.5 watt
- R₂₁ R₂₅ R₃₉ = 470 ohms, 0.5 watt

- $R_{28} = 3900$ ohms, 0.5 watt $R_{30} = 1000$ ohms, 0.5 watt $R_{31} R_{32} R_{37} = 6800$ ohms,
- As $K_{23} = K_{23} = 6000$ of mins, 0.5 watt $R_{34} = \text{potentiometer}$, 100000 ohms, 0.5 watt, audio taper $R_{35} = 62000$ ohms, 0.5 watt $R_{38} = 3300$ ohms, 0.5 watt $R_{38} = 3300$ ohms, 0.5 watt

- $T_2 T_4 = FM$ if transformed Thompson Ramo Wool No. 12080R1 of dridge No. 12080R1 or General Instrument No.
- General Instrument No. E2741166BX or equiv. $T_8 = AM$ if transformer; Thompson Ramo Wool-dridge No. 12414 or equiv. $T_6 = AM$ if transformer; Thompson Ramo Wool-dridge No. 12415 or equiv. $T_6 =$ radio-detector trans-former; Thompson-Ramo-Wooldridge No. 12007B1
- Wooldridge No. 12007R1 or General Instrument Instrument No. E2741166AB or equiv.
- \mathbf{T}_7 $\tau = AM$ if transformer; Thompson - Ramo - Wool-dridge No. 12416 or equiv.
- \mathbf{T}_8 a = driver transformer; primary 8000 ohms at 3 ma dc; secondary 60 ohms; Columbus Process Co. No.
- X5357 or equiv. = output transformer; primary 20 ohms at 700 ma dc; secondary 4 ohms; Columbus Process Co. No. 5383 or equiv.

Circuits

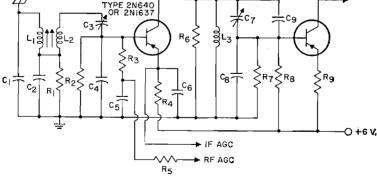
11-6

THREE-BAND RADIO RECEIVER (cont'd)

- B = 9 volts
- $C_1 C_8 C_{14} =$ variable, 26.1 to $\begin{array}{c} 251 \text{ pf} \\ C_2 C_3 C_4 C_{23} C_{24} C_{25} = \text{trimmer}, 3-35 \text{ pf}, \text{Arco 403, or} \end{array}$
- equivalent
- $C_5 = 0.25 \ \mu f$, ceramic disc C₇ C₁₀ C₁₅ C₂₈ = 0.05 \ \mu f, ce-
- ramic disc
- $C_8 C_{11} C_{13} = \text{trimmer, } 1.5\text{-}20 \text{ pf, Arco } 402, \text{ or equivalent} C_{12} C_{28} = 0.01 \ \mu\text{f, ceramic}$ disc
- $C_{10} = 0.0005 \ \mu f$, ceramic disc $C_{17} \ C_{18} \ C_{21} = 0.02 \ \mu f$, ceramic disc

- clisc $C_{19} C_{28} = 350$ pf, part of Ti $C_{20} \simeq 900$ pf, silver mica $C_{21} = 300$ pf, silver mica $C_{22} = 91$ pf, silver mica $C_{27} = 10$ pf, ceramic disc $C_{29} \sim 10$ μ f, 3 volts, electro-latio
- Use $C_{20} = 10 \ \mu x$, c main lytic $C_{20} = 220 \ \text{pf}$, ceramic disc, supplied with T_2 $C_{32} = 2 \ \mu f$, 3 volts, electro-
- lytic
- C83 == 10 µf, 3 volts, electrolytic
- = 100 μ f, 3 volts, electro-C34 = lytic
- $C_{36} = 0.04 \ \mu f$, ceramic disc $C_{36} C_{37} = 100 \ \mu f$, 10 volts, electrolytic
- L1 : 42 µh at 3100 kc, short-
- 1.2 42 μ h at 510 kC, short-wave antenna coil, $Q_0 =$ 75; turns ratio N₁/N₂, 1.67:1; N₂/N₃, 18:1 2: 380 μ h at 1000 kc, broadcast, antenna coil, $Q_0 =$ 184; turns ratio N₁/N₂, 78:1 270 he have L_2
- N_1/N_2 , 78:1 $L_s = 4600 \ \mu h at 270 kc, long wave antenna coil <math>Q_0 =$ 69; turns ratio N_1/N_2 , 91:1 $L_4 = 5 \ \mu$ h, part cf if trap $L_6 = 34 \ \mu h at 3100 kc, short-$

11-7

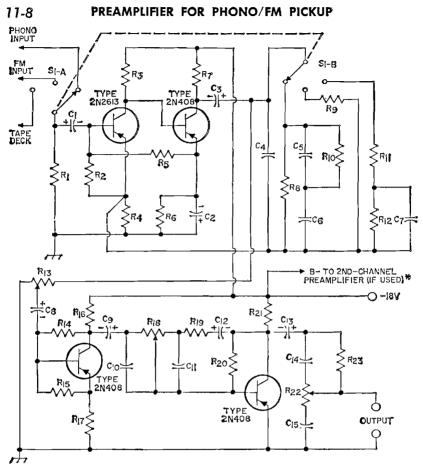

- wave RF coil, $Q_0 == 81$; turns ratio, N_1/N_3 , 87:1 $L_0 == 370 \ \mu h \ at \ 1000 \ kc$, broadcast RF coil, $Q_0 = 80$; turns ratio, N_1/N_2 , 2.5:1; 25:1 N₂/N₃,
- $L_7 = 4200 \ \mu h at 270 kc, long wave RF coil, Q_c = 10;$ turns ratio N₁/N₈, 91:1(measured with 100000ohm shunt)
- $L_8 = 29 \ \mu h \ at 3550 \ kc, \ short wave oscillator coil, <math>Q_0 = 20$; turns ratio N_1/N_2 , 25:1,
- $\mu_{\rm N1/N3}$, 4:1 $\mu_{\rm N1/N3}$ \mathbf{L}_9 $Q_0 = 39$; turns ratio N_1/N_2 , 29:1, N_1/N_3 , 13:1
- $L_{10} = 1100 \ \mu h at 725 \ kc, \ long-$ L₁₀ = 1100 μ h at 725 kc, long-wave oscillator coll, Q₀ = 17; turns ratio N₁/N₂, 21:1, N₁/N₃, 12:1 (measured with 200000-ohms hunt) R₁ = 270 ohms, 0.5 watt R₂ = 150000 ohms, 0.5 watt R₄ = 100000 ohms, 0.5 watt R₄ = 560 ohms, 0.5 watt R₅ - 560 ohms, 0.5 watt

- R6 == 1800 ohms, 0.5 watt
- $R_7 = 18000$ ohms, 0.5 watt $R_8 = 1200$ ohms, 0.5 watt
- R₉ 3300 ohms, 0.5 watt
- $R_{10} = 200000$ ohms, 0.5 watt
- $R_{1i} = 47000 \text{ ohms}, 0.5 \text{ watt}$ $R_{12} = 270$ ohms, 0.5 watt
- $R_{13} = 10000$ ohms, 0.5 watt
- $R_{14} = 1000 \text{ ohms}, 0.5 \text{ watt}$
- R₁₅ == volume control, 1 megohm, reverse log.
- taper R16 - 4000 ohms, 0.5 watt
- $R_{17} = 27000$ ohms, 0.5 watt $R_{18} = 4700$ ohms, 0.5 watt $R_{18} = 4700$ ohms, 0.5 watt
- $R_{19} = tone control, 1$
- megohin, audio taper

- $R_{20} = 560$ ohms, 0.5 watt $R_{21} = 330$ ohms, 0.5 watt $R_{22} = 100$ ohms, 0.5 watt
- $R_{23} = 4.7$ ohms, 0.5 watt
- $R_{24} = 3.9$ ohms, 0.5 watt $R_{25} = 3.9$ ohms, 0.5 watt
- $S_{1a}-S_{3b} = three-section$
- wafer switch
- $S_p = speaker, 3.2$ ohms $T_1 = first if transformer (455)$ kc): double-tuned critical coupling, General Instru-ment No. E-2,749,067EX, or equivalent
- T_2 second if transformer (455 kc): single-tuned, General Instrument No. E-
- (a) AC 1: Single-Funda, General Instrument No. E-2,749,067CX, or equivalent
 Ts = driver transformer: primary 10000 ohms, center tapped; Mid-West Coil and Transformer Co. No. 20AT88, or equivalent
 Ts = output transformer: primary, 250 ohms center tapped; secondary, 3.2 ohms; Mid-West Coil and Transformer Co. No. 20-AT86, or equivalent
 NOTE 1: Components C9, L4, and R3 make up an if trap in the long-wave
- if trap in the long-wave band and are used to im-prove if rejection and
- prove if rejection and signal-to-noise ratio. NOTE 2: For the antenna and rf coils, N_1 refers to the turns of the primary the tilths of the primary winding, N_2 to the tapped portion of the primary, and N_3 to the secondary. For the oscillator coils, N_2 refers to the tank wind-ing, N₂ to the emitter winding, and N₈ to the collector winding.

"FRONT-END" FOR RADIO RECEIVER

With Double-Tuned Antenna and Single-Tuned RF Stage

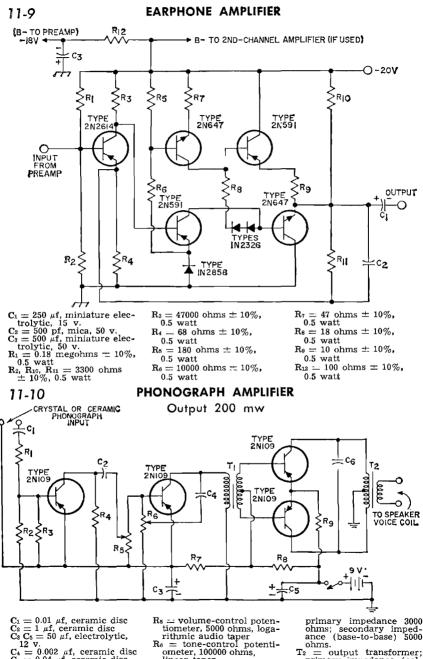

- $C_1 = 3-50$ pf, variable $C_2 = 0.01 \ \mu$ f, ceramic disc,

- $C_2 = 0.01 \ \mu f$, ceramic disc, 25 v. $C_3 = 30-200 \ pf$, variable $C_4 = 1000 \ pf$, mica $C_5 \ C_6 = -0.05 \ \mu f$, ceramic disc, 25 v. $C_7 = 120-450 \ pf$, variable $C_8 = -0.04 \ \mu f$, ceramic disc, 25 v.
- $C_{\theta} = 680$ pf, mica L₁ L₂ = antenna coils, vari-able inductors tuned with 110 pf; frequency range 535 to 1610 kc; Q = 65 at 1610 k, 60 to 65 at 535 kc $L_3 = rf$ coil; variable inductor tuned with 1000 pf; frequency range 535 to

 $\begin{array}{c} 1610 \ \text{kc}; \ Q = 65 \ \text{at} \ 1610 \ \text{kc}. \\ R_1 \ R_4 \ R_5 = 330 \ \text{ohms, } 0.5 \\ \text{watt} \end{array}$

- $R_2 = 82000$ ohms, 0.5 watt
- $R_3 = 2200$ ohms, 0.5 watt
- $R_{\theta}=6800$ ohms, 0.5 watt
- $R_7 = 10000 \text{ ohms}, 0.5 \text{ watt}$
- $R_8 = 1500$ ohms, 0.5 watt
- $R_{\theta} = 1000$ ohms, 0.5 watt

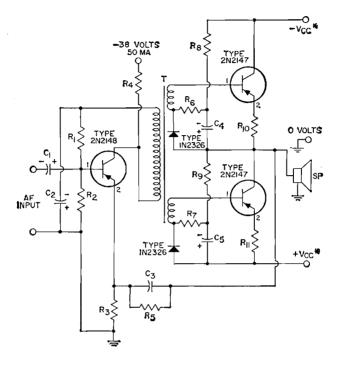
351


- $C_1 = 25 \ \mu f$, miniature electrolytic, 3 v. $C_2 = 50 \ \mu f$, miniature electrolytic, 3 v.
- trolytic, 3 v.
- $C_3 = 50 \ \mu f$, miniature elec-
- trolytic, 15 v. $C_4 = 270$ pf, ceramic, 600 v. C_5 , $C_{15} = 0.05$ µf, ceramic,
- 50 v. C₆ == 0.2 μ f, ceramic, 25 v.
- $C_7 = 0.06 \ \mu f$, ceramic, 50 v. $C_8 = 4 \ \mu f$, miniature electro-
- lytic, 3 v. C₉, C₁₃ = 2 μ f, miniature
- electrolytic, 12 v. $C_{10} = 0.15 \ \mu f$, ceramic, 50 v. $C_{11} = 0.12 \ \mu f$, ceramic, 50 v.
- $C_{12} = 10 \ \mu f$, miniature elec-
- trolytic, 12 v. $C_{14} = 0.003 \ \mu f$, mica, 500 v.
- $R_1 = 1 \text{ megohm} \pm 10\%$,
- 0.5 watt
- $R_2 = 15000 \text{ ohms} 10\%$, 0.5 watt
- $R_3 = 47000 \text{ ohms} \pm 10\%$, 0.5 watt

- $R_4 = 100 \text{ ohms} \pm 10\%$,
- 0.5 watt $R_5 = 0.18 \text{ megohms} \pm 10\%$,
- $0.5 \text{ watt} = 330 \text{ ohms} \pm 10\%$, 0.5 watt
- $R_7 = 1800 \text{ ohms} \pm 10\%$ 0.5 watt
- $R_8, R_{23} = 27000 \text{ ohms} \pm 10\%$ 0.5 watt
- $R_{\theta} = 1000 \text{ ohms} \pm 10\%$ 0.5 watt
- $R_{10} = 1500 \text{ ohms} \pm 10\%$, 0.5 watt
- $R_{11} = 820 \text{ ohms} \pm 10\%$, 0.5 watt
- $R_{12}, R_{20} = 0.1 \text{ megohm} \pm$ 10%, 0.5 watt
- R:3 volume control potentiometer (audio taper). 10000 ohms, 0.5 watt
- $R_{14} = 56000 \text{ ohms} \pm 10\%$, $0.5 \text{ watt} \\ R_{15} = 6800 \text{ ohms} \pm 10\%,$
- 0.5 watt

- - 0.5 watt
- R₁₈ = base control poten. tiometer (linear taper),
- 50000 ohms, 0.5 watt $R_{19} = 2700$ ohms = 10%, 0.5 watt
- $R_{21} = 3300 \text{ ohms} \pm 10\%, 0.5 \text{ watt}$
- $R_{22} = treble control poten-$

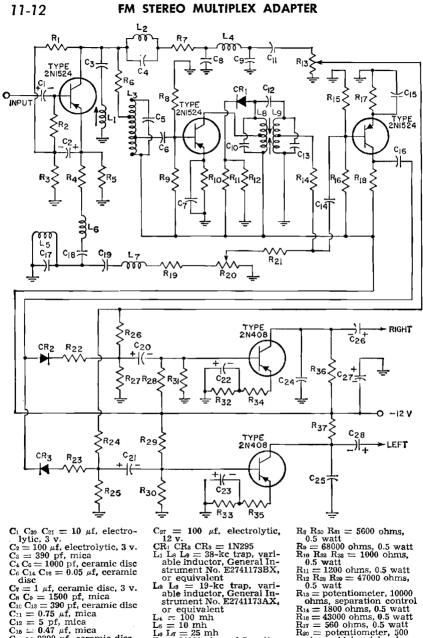
- R₂₂ = treble control poten-tiometer (audio taper), 0.1 megohm, 0.5 watt
 S₁ = 2-pole, 3-position rotary switch
 * If a two-channel sys-tem is used, R₁₅, R₁₅, and R₂₂ should be dual controls, one control sec-tion for each preamplifier, and St should be a 4-pole switch (Centralab No. PA 1012, or equiv.), two poles 1012, or equiv.), two poles per channel. All other components are duplicated in the second preamplifier.


Circuits

- $C_4 = 0.002 \ \mu f$, ceramic disc $C_6 = 0.04 \ \mu f$, ceramic disc $\begin{array}{l} R_1 = 1 \, \text{megohm, 0.5 watt} \\ R_2 = 220000 \, \text{ohms, 0.5 watt} \\ R_3 = 4700 \, \text{ohms, 0.5 watt} \\ R_4 = 1500 \, \text{ohms, 0.5 watt} \end{array}$

- linear taper $R_7 = 680$ ohms, 0.5 watt $R_8 = 27$ ohms, 0.5 watt $R_9 = 33$ ohms, 0.5 watt
- $T_1 = driver$ transformer;
- ohms; secondary imped-ance (base-to-base) 5000 ohms.
- $T_2 = output$ transformer; 2 = output transformer; primary impedance (col-lector - to - collector) 550 ohms; secondary imped-ance to match speaker voice coil

11-11 25-WATT, HIGH-QUALITY AUDIO POWER AMPLIFIER



Performance Specifications: Sensitivity = 0.35 volt rms for 25 watts output Frequency response = 20 to 20,000 cps ± 1 db Input resistance = 180 ohms

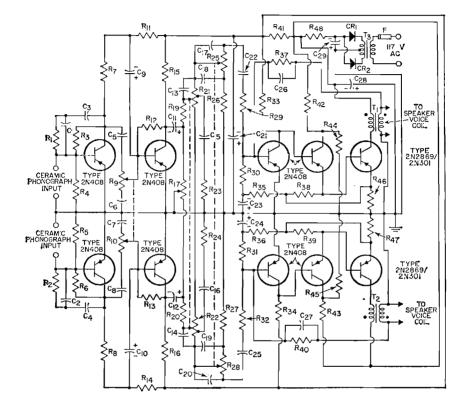
* + V_{ee} , - V_{ee} : Zero-signal value - 22 volts; I = 150 ma,

Maximum-signal value = 20 volts, I = 1 amp.

Circuits

- $C_{17} \approx 2200$ pf, ceramic disc $C_{18} C_{19} = 820$ pf, mica
- \mathbf{C}_{22} \mathbf{C}_{23} = 50 μ f, electrolytic, 3 v.

- $\begin{array}{l} C_{24} C_{25} = 0.01 \ \mu f; \ mica \\ C_{26} C_{28} = 10 \ \mu f, \ electrolytic, \\ 12 \ v. \end{array}$
- or equivalent
- $L_{4} = 100 \text{ mh}$


- Rus = potentioneter, 10000 ohms, separation control Rus = 1800 ohms, 0.5 watt Rus = 3800 ohms, 0.5 watt Rus = 560 ohms, 0.5 watt Rus = potentioneter, 500 ohms, sideband-level con-

- trol
- $R_{24} R_{26} = 75000 \text{ ohms,}$ 0.5 watt $R_{25} R_{27} = 2200 \text{ ohms,}$ 0.5 watt
 - R34 R35 = 47 ohms, 0.5 watt

11-13

STEREO AMPLIFIER

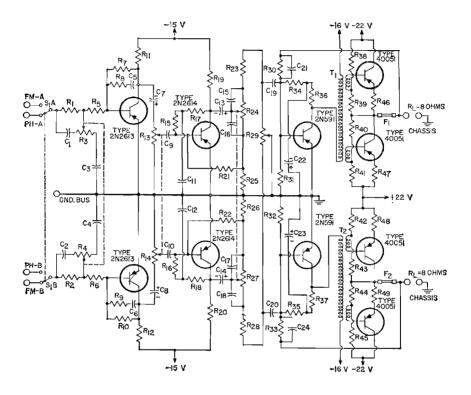
Output 3 Watts per Channel

- $C_1 C_2 C_3 C_4 = 0.02 \ \mu f, mini-$ ature, 100 v.
- C₅ C₈ C₁₇ C₂₀ = 0.1 μf, mini-ature, 100 v.
- $C_6 C_7 = 0.5 \ \mu f$, miniature, 100 v.
- C₉ C₁₀ = 6 μ f, electrolytic,
- 6 v. $C_{11}\ C_{12}$ = 10 $\,\mu f$, electrolytic
- 6 v. $C_{13} C_{14} = 0.001 \ \mu f$, miniature,
- 100 v. $C_{15} C_{18} C_{18} C_{19} = 1 \ \mu f, mini-$
- ature, 100 v. $C_{21} = 1000 \ \mu f$, electrolytic,
- 10 v. C_{22} $C_{25} = 2.2 \ \mu f$, ceramic disc, 3 v.
- $C_{23} C_{24} = 100 \ \mu f$, electrolytic.
- 3 v. $C_{25} C_{27} = 12 \text{ pf, ceramic disc,} 1000 \text{ v.}$
- $C_{28} = 1000 \ \mu f$, electrolytic,
- 15 v.

$C_{20} = 1000 \ \mu f$, electrolytic, 25 v. CR1 CR2 = 1N2859 F - Fuse, 34 ampere, "slo-blo", 2200 but a 57

- $R_1 R_2 = 3300$ ohms, 0.5 watt
- $R_3 R_6 = 220000 \text{ ohms},$ 0.5 watt
- $R_4 R_5 = 10000$ ohms, 0.5 watt
- $R_7 R_8 = 1200$ ohms, 0.5 watt $R_9 R_{10} =$ treble-control dual
- potentiometer, 3000 ohms R₁₁ R₁₄ = 2200 ohms, 0.5 watt R₁₈ R₁₃ = 56000 ohms, 0.5 watt

- $R_{15} = 1500$ ohms, 0.5 watt $R_{17} = balance potentiometer,$
- $R_{17} = 0$ analoge potentioneter, 2500 ohms $R_{19} R_{20} = 180$ ohms, 0.5 watt $R_{21} R_{22} = 100$ dness-control dual potentiometer, 10000 ohms tapped down 3000
- ohms R23 R24 R29 R27 = 330 ohms. 0.5 watt


- $R_{25} R_{28} = bass-control dual$
- potentiometer, 5000 ohms, 0.5 watt
- R30 R31 = 1800 ohms, 0.5 watt
- $\begin{array}{l} R_{33} \; R_{34} = 6800 \; \mathrm{ohms}, \; 0.5 \; \mathrm{watt} \\ R_{35} \; R_{36} = 470 \; \mathrm{ohms}, \; 0.5 \; \mathrm{watt} \\ R_{37} \; R_{40} = 820000 \; \mathrm{ohms}, \end{array}$
 - 0.5 watt

- 0.5 watt R₃₈ R₃₉ = 51 ohms, 0.5 watt R₄₁ \sim 390 ohms, 0.5 watt R₄₂ R₄₃ = 220 ohms, 1 watt R₄₄ R₄₅ = 68 ohms, 0.5 watt R₄₅ R₄₇ = 0.27 ohms, 0.5 watt R₄₅ = 7 ohms, 10 watts T₁ T₂ \sim output transformer, 25 ohms to 4 ohms at 400 cps; Mid-West Coil and Transformer 20A124 or equiv. equiv.
- s = power transformer,117 v. to 48 v., center-tapped (24 v. per wind-ing); Mid-West Coil and T_3 20P21 Transformer or equivalent.

11-14

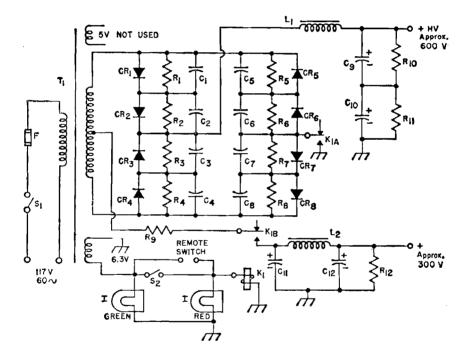
HIGH-QUALITY STEREO AMPLIFIER

Output 15 Watts per Channel

- $C_1, C_2 = 180$ pf, ceramic C₃, C₄, C₅, C₈ = 1800 pf,
- ceramic
- ceramic $C_7, C_8 = 2 \mu f$, electrolytic, 10 v. $C_9, C_{10}, C_{11}, C_{12}, C_{19}, C_{20} = 5 \mu f$, electrolytic, 3 v. $C_{13}, C_{14} = 5 \mu f$, electrolytic, 3 v. $C_{12}, C_{13} = 2 t$ f, electrolytic, 3 v.

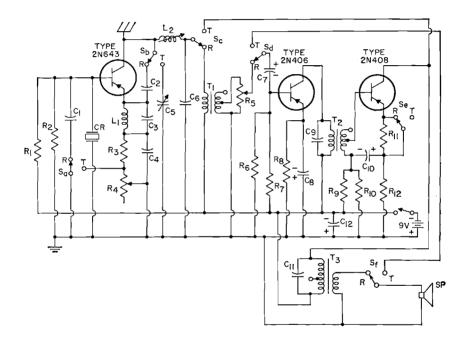
- C_{15}^{0} , $C_{18} = 0.5 \ \mu f$, ceramic C_{16} , $C_{17} = 4 \ \mu f$, mylar C_{21} , $C_{24} = 47 \ pf$, ceramic C_{22} , $C_{23} = 50 \ \mu f$, electrolytic, 3 v.
- F₁, F₂ = fuse, 3 amperes R₁, R₂, R₇, R₁₀ = 1 megohm.
- 0.5 watt
- R_3 , $R_4 =$ treble control, dual potentiometers, 3 meg-ohms, 0.5 watt, audio taper $\mathbf{R}_5, \mathbf{R}_6 = 0.1$ megohm,
- 0.5 watt

- $R_8, R_9 = 0.22$ megohm, 0.5 watt $R_{11}, R_{12} = 4700$ ohms, 0.5 watt


- R₁₃, R₁₄ loudness control. dual potentiometers, 25000 ohms, 0.5 watt, linear taper
- R₁₅, R₁₆ = 0.5 watt = 27000 ohms,
- R17, R18 33000 ohms, 0.5 watt
- $R_{19}, R_{20} = 1000$ ohms.
- 0.5 watt R21, R22 _ 10000 ohms.
- 0.5 watt
- R_{23} , $R_{28} = 270$ ohms, 0.5 watt
- $\mathbf{R}_{24}, \mathbf{R}_{27} =$ bass control, dual potentiometers, 5000 ohms. 0.5 watt, audio taper
- $R_{25}, R_{26} = 39$ ohms, 0.5 watt

- $R_{29} =$ balance control, po- $R_{29} = balance control, pt$ tentiometer, 5000 ohm0.5 watt, S taperRso, Rss = 0.12 megohm,0.5 wattRst, Rss = 1500 ohms,0.5 wattRss, Rss = 12000 ohms,0.5 wattRss, Rss = 1500 ohms,ohms.

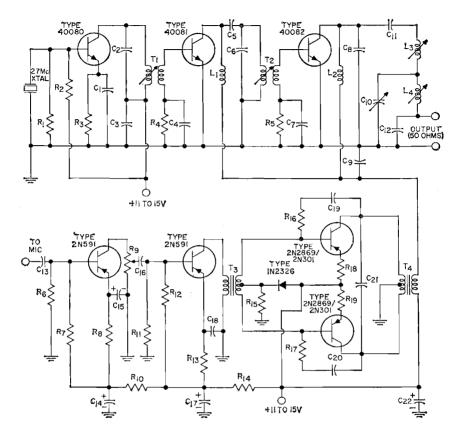
- 0.5 watt $R_{36}, R_{37} = 15000 \text{ ohms,}$ 0.5 watt $R_{38}, R_{40}, R_{45} = 5600 \text{ ohms,}$ 1 watt $R_{39}, R_{44} = 3.9 \text{ ohms,}$ 0.5 watt $R_{46}, R_{47}, R_{48}, R_{49} = 0.27 \text{ ohm,}$ 0.5 wett 0.5 watt
 - $S_1 = selector switch,$ double-pole, doublethrow
 - T1, T2 == driver transformers, Columbus Froces No. X7602, Better Coil and Transformer No. 99A4, or equivalent


POWER SUPPLY FOR AMATEUR TRANSMITTER 11-15

600 Volts; 300 Volts; Total Current 330 Milliamperes (Intermittent Duty)

- C₁ C₂ C₃ C₄ C₅ C₆ C₇ C₈ = 0.001 μ f, ceramic disc, 1000 v. C₈ C₁₀ C₁₁ C₁₂ = 40 μ f, elec-trolytic, 450 v. CR₁ CR₂ CR₃ CR₄ CR₅ CR₅ CR₇ CR₈ = RCA-1N2864 F = Fuse, 5 amperes 1 = indicator lamp
- I= indicator lamp
- $K_1 = rem$ Brumfield= relay; Potter and rumfield KA11AY or
- Brummeid KAIIAY or equiv. L₁ = 2.8 henries, 300 ma; Stancor C-2334 or equiv. L₂ = 4 henries, 175 ma; Stancor C-1410 or equiv. R₁ R₂ R₄ R₆ R₇ R₈ =470 k, 0.5 watt
- $R_0 = 47$ ohms, 1 watt $R_{10} R_{11} = 15000$ ohms, 10 watts
- $R_{12} = 47000$ ohms, 2 watts $S_1 S_2 = toggle switch, single$ pole single-throw
- T = power transformer; Stancor P-8166 or equiv.

27-Mc CITIZENS-BAND TRANSCEIVER


- $C_1 C_6 C_9 = 0.001 \mu f$, ceramic disc
- $C_2 C_3 = 27$ pf, mica $C_4 = 0.02 \ \mu f$, ceramic disc $C_5 = 3-35$ pf, trimmer
- $C_7 = 10 \ \mu f$, electrolytic, 3 v.
- $C_8 C_{10} = 30 \ \mu f$, electrolytic, $3 \ V$.
- $C_{11} = 0.2 \ \mu f$, ceramic disc $C_{12} = 200 \ \mu f$, electrolytic, 10 v.
- CR = crystal, 27.12 Mc (series resonant mode)
- $L_1 = 25 \ \mu h$, radio-frequency choke

- $L_2 = 9$ turns No. 24 enam. close-wound on $\frac{1}{4}$ -inch

- close-wound on ¼-inch form, ferrite slug R₁ = 2200 ohms, 0.5 watt R₂ = 2200 ohms, 0.5 watt R₃ = 240 ohms, 0.5 watt R₄ = regeneration-control potentiometer, 1000 ohms R₅ = volume-control poten-tiometer, 5000 ohms R₆ = 6800 ohms, 0.5 watt R₇ = 56000 ohms, 0.5 watt R₈ = 1000 ohms, 0.5 watt R₉ = 10000 ohms, 0.5 watt R₁₀ = 560 ohms, 0.5 watt R₁₀ = 560 ohms, 0.5 watt

- $\begin{array}{l} R_{12}=27 \mbox{ ohms, } 0.5 \mbox{ watt} \\ S=\mbox{ receive-transmit switch,} \\ six-pole \mbox{ two-position} \\ Sp=\mbox{ speaker, } 14\mbox{ ohm voice} \end{array}$
- coil
- coil $T_1 =$ transformer; primary 10000 ohms; secondary 1000 ohms, center-tapped (one-half secondary used) $T_2 =$ transformer; primary 20000 ohms; secondary 800 ohms, center-tapped (one-half secondary used) $T_2 =$ transformer; primary
- T₃ = transformer; primary
 650 ohms, center-tapped; secondary 16 ohms

27-Mc, 5-WATT CITIZENS-BAND TRANSMITTER

- C₁ = 75 pf, ceramic C₂ = 30 pf, ceramic C₃, C₄, C₇ = 0.01 μ f, ceramic C₅ = 47 pf, ceramic C₆ = 51 pf, mica C₆ = 51 pf, mica
- $C_8 = 24$ pf, mica
- $C_{\theta} = 0.01 \ \mu f$, ceramic
- C₁₀ == variable capacitor, 90 to 400 pf (ARCO 429, or equiv.)
- $C_{11} = 100$ pf, ceramic
- $C_{18} = 220$ pf, ceramic
- $C_{13} = 5 \ \mu f$, ceramic C_{14} , $C_{17} = 50 \ \mu f$, electrolytic,
- 25 v.
- $C_{15} = 10 \ \mu f$, electrolytic, 15 v.
- $C_{16}, C_{18} \equiv 10 \ \mu f$, ceramic
- $C_{19}, C_{20} = 0.2 \ \mu f$, ceramic
- $C_{21} = 0.1 \ \mu f$, ceramic
- $C_{22} = 500 \ \mu f$, electrolytic,
- 15 v. 15 v. 15 v. 15 μf choke, 15 μf 1624 or equiv.) La. (Miller 4624, or equiv.)

L₃ variable inductor (0.75

- K2, K12 == 5100 ohms,

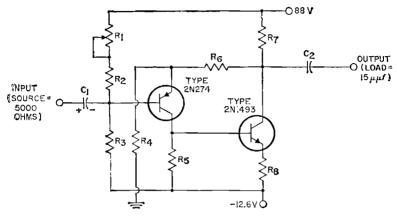
 0.5 watt

 R3 == 51 ohms, 0.5 watt

 R4 == 120 ohms, 0.5 watt

 R5 == 47 ohms, 0.5 watt

 R6 == 0.1 megohm, 0.5 watt

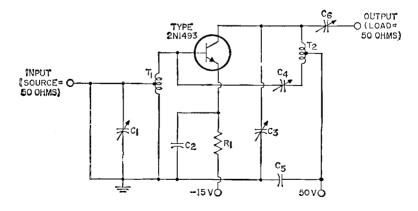

 R7 == 10000 ohms, 0.5 watt

 R6 == 7 2000 ohms, 0.5 watt

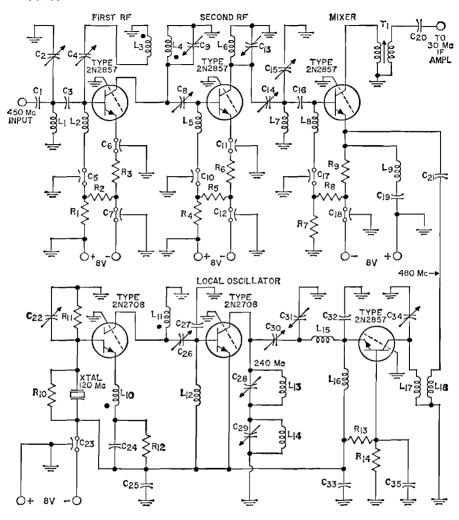
 R6 == 7 potentiometer, 10000 ohms
- ohms
- $R_{10} = 3600$ ohms, 0.5 watt $R_{21} = 15000$ ohms, 0.5 watt
- $R_{13} = 1000$ ohms, 0.5 watt $R_{14} = 1200$ ohms, 0.5 watt $R_{15} = 240$ ohms, 0.5 watt

- R:6, R:7 2700 ohms, 0.5 watt R:8, R:8 = 1.5 ohms, 0.5 watt T: :: rf transformer; pri-mary 14 turns, secondary 3 turns of No. 22 wire wound on ¼-inch CTC coil form having a "green dot" core; slug-tuned (0.75 to 1.2 why C = 100
- coil form having a product of the form having a product of the form of the fo T₂ dot" core; slug-tuned (0.75 to 1.2 μ h); Q = 100 T₃ - transformer; primary:
- 2500 ohms; secondary 200 ohms center-tapped; Microtran SMT 17-SB, or equiv.
- **T**₄ transformer; primary: 100 ohms center-tapped; secondary: 30 ohms

VIDEO AMPLIFIER High Input Impedance, Bandwidth 7.5 Mc, Gain 75



$\mathbf{C}_1 = 10 \ \mu \mathbf{f}$, electrolytic,	between collector of	$R_{*} = 100$ ohms, 0.5 watt
15 v.	2N1493 and ground)	$R_6 = 510$ ohms, 0.5 watt
$C_2 = 0.1 \ \mu f$, paper, 100 v.	$R_2 = 50000$ ohms, 1 watt	$\mathbf{R}_7 = 2000$ ohms, 1 watt
R_1 _ potentiometer, 25000	$R_3 R_6 = 10000 \text{ ohms}$	$R_8 = 20$ ohms, 0.5 watt
ohms (adjust for 40 v.	0.5 watt	

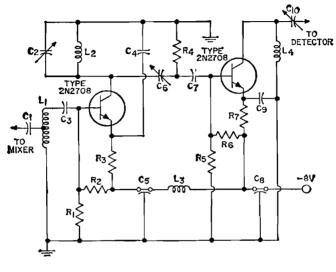

11-19

70-Mc POWER AMPLIFIER

Output 0.5 Watt

C₁ C₃ C₄ C₆ = 3-20 pf, ceramic trimmer C₂ C₅ = 0.01 μ f, 100 v. R₁ = 1000 ohms, 2 watts $T_2=8$ turns of No. 24 enam. wound on CTC $_{26}^{-1}$ -inch ceramic coil form (no slug used), tapped at 2.5 turns

11-20 "FRONT END" FOR 450-Mc SUPERHETERODYNE RECEIVER


- C1, C3, C13, C16 = 50 pf, ceramic disc ceramic disc Ca. Ce, Czs, Cau =- trimmer; 0.8 to 8 pf; JFD type VC20G, or equiv. C4, Cs, C14 == trimmer; 0.3 to 5 pf; tubular ceramic C5, Cs, Co, Cu, Czr = 500 pf, ceramic feedthrough C7, Ca. Cy = - 1000 pf Cr, C₁₂, C₁₃ = 1000 pf, ceramic feedthrough C₁₉ = 75 pf, ceramic disc C₂₀, C₂₄, C₂₅, C₃₅ = 0.005 μ f, ceramic disc
- $C_{21} = 470 \text{ pf}$, ceramic disc $C_{22} = \text{trimmer}$, 3 to 12 pf, tubular ceramic $C_{23} \simeq 0.001 \ \mu\text{f}$, ceramic

- $C_{23} = 0.001 \ \mu f$, ceramic feedthrough C_{26} , C_{25} , $C_{50} = \text{trimmer; 1}$ to 12 pf; JFD type 57G, or equiv. $C_{27} = 24 \text{ pf, ceramic disc}$ $C_{28} = \text{trimmer; 2 to 25 pf;}$ JFD type VC24GY, or equiv. equiv.
- JFD type VC21G, or C_{31}

equiv.

- equiv. $C_{32} = 0.001 \ \mu$ f, ceramic disc La, La⁻ = silver-plated bar stock; length, 2.8 inches; diameter, ¹/₄ inch Ls⁻ = one-half turn of No. 16 solid copper wire, lo-cated ¹/₄ lnch from and parallel to L4 Ls, Le⁻ = silver-plated bar stock; length, 3 inches; diameter, ¹/₄ inch Ls, Le₅ Le⁻ = 0.22 \ \muh; rf choke; J. W. Miller Type 9320-02, or equiv.

Parts List Continued on Page 363

- equiv. $C_{5}, C_{8} = 2000 \text{ pf, ceramic}$ feedthrough
- $C_6 =$ trimmer, 6 to 8 pf, tubular ceramic

 $C_{10} =$ trimmer, 2 to 25 pf; JFD type VC24GY, or

JFD type VC24GY, or equiv. L₁ \equiv 3 μ h; tapped rf coil; ratio of number of turns in over-all coil to the number in section be-tween tap and ground, 1.5 to 1

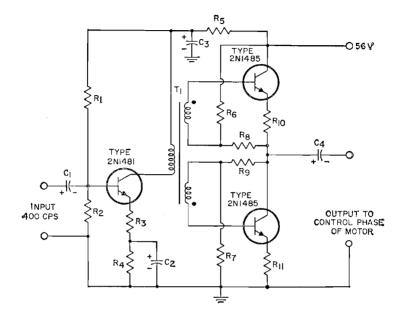
I.2, $L_4 = 2 \mu h$, rf coil $L_3 = 10 \mu h$, rf choke Ri, $R_5 = 18000$ ohms, 0.5 watt R2, $R_6 = 7500$ ohms, 0.5 watt R3, $R_5 = 1000$ ohms,

 $R_3, R_7 = 1000$ ohms, 0.5 watt

 $R_4 = 110$ ohms, 0.5 watt

11-20 "FRONT END" FOR 450-Mc SUPERHETERODYNE RECEIVER (cont'd)

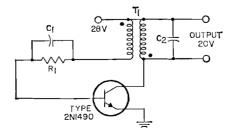
- $L_{10}, \ L_{11} = 5 \ turns \ of \ No. \\ 22 \ wire, \ 0.25 \ inch \ inner \\ diameter, \ coupled \ on \\ same \ coil \ form \\ L_{12} = 1 \ \mu h, \ rf \ choke$ $L_{13} = 1.1 \ \mu h$, rf coil


- Li₄ = 6 turns of No. 22 wire; length, 34 inch; in-ner diameter, 36 inch; in-Lis = 5 turns of No. 22 wire; length, 36 inch; in-ner diameter 1/2 inch; inner diameter, ½ inch
- $L_{16} = 1 \ \mu h$, rf choke
- $a_7 =$ silver-plated bar stock; length, 2 inches; diameter $\frac{1}{4}$ inch $a_8 =$ silver-plate brass L_{17}
- L_{18} length, 1 inch; 1/4 inch; located strip; width, Which, $\frac{1}{4}$ mich, focated $\frac{1}{16}$ inch from and parallel to L_{17} $R_1, R_4, R_7 = 6800$ ohms, 0.5 watt
- $R_{2}, R_{5}, R_{5} = 2700$ ohms, 0.5 watt
- $R_{3}, R_{6}, R_{9} = 1000 \text{ ohms,} 0.5 \text{ watt}$

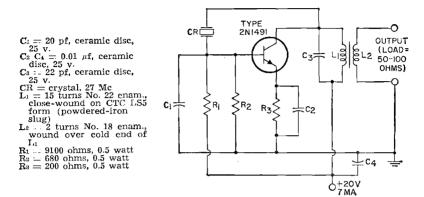
- No. 22 wire wound on . W. Miller type 4500 coil form
- XTAL = 120-Mc oscillator crystal

SERVO AMPLIFIER

Output 6 Watts

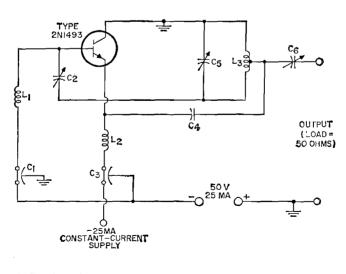


- $\begin{array}{l} \mathbb{C}_1 = 10 \ \mu \mathrm{f}, \ \mathrm{electrolytic}, \\ 15 \ \mathrm{v}. \\ \mathbb{C}_2 = 47 \ \mu \mathrm{f}, \ \mathrm{electrolytic}, \\ 15 \ \mathrm{v}. \\ \mathbb{C}_3 = 20 \ \mu \mathrm{f}, \ \mathrm{electrolytic}, \\ \mathbb{S}_0 \ \mathrm{v}. \\ \mathbb{S}_0 \ \mathrm{v}. \end{array}$
- $\begin{array}{l} R_1 = 68000 \mbox{ ohms, } 0.5 \mbox{ watt } \\ R_2 = 5600 \mbox{ ohms, } 0.5 \mbox{ watt } \\ R_4 = 560 \mbox{ ohms, } 0.5 \mbox{ watt } \\ R_5 = 360 \mbox{ ohms, } 0.5 \mbox{ watt } \\ R_8 = R_000 \mbox{ ohms, } 0.5 \mbox{ watt } \\ R_7 R_8 = 400 \mbox{ ohms, } 0.5 \mbox{ watt } \\ R_{10} R_{11} = 4 \mbox{ ohms, } 1 \mbox{ watt } \end{array}$
- T- driver transformer; core material 0.014-inch Magnetic Metals Corp. "Crystalligned" or equiv.; primary 1500 turns; secondary 450 turns, bifilar wound (cach section 225 turns)


11-23

100-Kc POWER OSCILLATOR

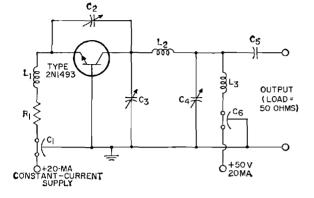
Output 10 Watts



27-Mc CRYSTAL OSCILLATOR Output 4 mw

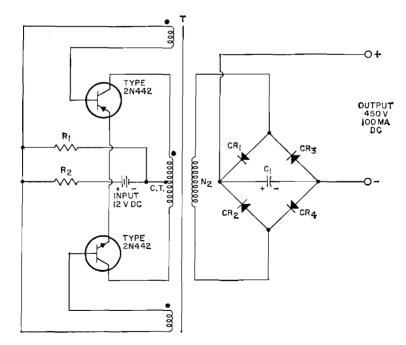
11-25

70-Mc POWER OSCILLATOR Output 0.5 Watt



365

250-Mc OSCILLATOR

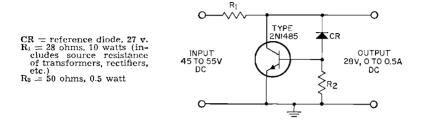

Output 150 mw

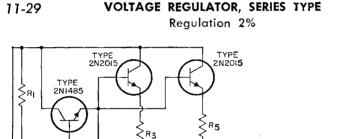
ceramic $C_3 = 3-15$ pf, trimmer, ceramic $C_4 = 4-50$ pf, trimmer, C4 = 4-30 pr, trimmer, ceramic C5 = 0.002 μ f, paper, 100 v. L₁ L₃ = 0.82 μ h, radio-frequency choke L₂ = 1 turn No. 14 enam., 1-inch diameter R₁ = 400 ohms, 0.5 watt

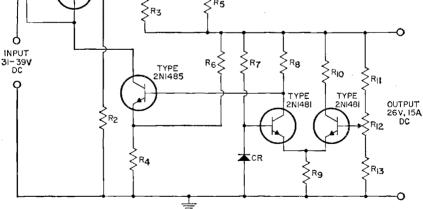
DC-TO-DC CONVERTER

 $\begin{array}{l} C_1 = 10 \ \mu f, \ \text{electrolytic} \\ 500 \ \text{v.} \\ CR_1 \ CR_2 \ CR_3 \ CR_4 = 1N3256 \\ (\text{or } 1N3196) \\ R_1 = 330 \ \text{ohms}, 2 \ \text{watts} \\ R_2 = 5 \ \text{ohms}, 5 \ \text{watts} \\ T_1 = \text{transformer}; \ \text{core}: \ \text{one} \\ \text{hundred} \ 0.014\text{-inch-thick} \end{array}$

E-I laminations of Mag-netic Metals Corp. "Crys-talligned 33," or equiv.; primary: 34 turns, bifilar wound, of AWG No. 16 enameled wire, center tapped (each section 17 bifilar turns); feedback


windings: 5 turns each of AWG No. 26 enameled wire; secondary: 640 turns of AWG No. 26 enameled wire; winding order; primary, feedback windings, secondary.


Circuits

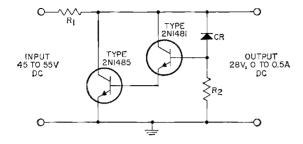

11-28

VOLTAGE REGULATOR, SHUNT TYPE

Regulation 1.5%

- CR = reference diode, 7.5 v., 100 mw.
- $R_1 = 225$ ohms, 5 watts
- $R_2 = 10000 \text{ ohms}, 0.5 \text{ watt}$
- $R_3\ R_5=0.075$ ohm, 5 watts
- (cut to measure from resistance wire)

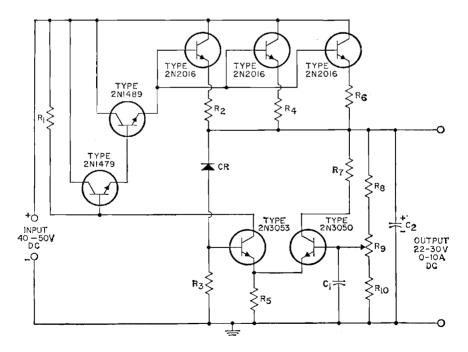
 $\begin{array}{l} R_4 = -60 \text{ ohms, 4 watts} \\ R_4 = -75 \text{ ohms, 5 watts} \\ R_7 = -2200 \text{ ohms, 0.5 watt} \\ R_8 R_0 = -500 \text{ ohms, 2 watts} \\ R_4 = -120 \text{ ohms, 2 watts} \\ R_{11} = -820 \text{ ohms, 1 watt} \\ R_{12} = -\text{potentiometer, 150} \\ \text{ ohms, 0.5 watt} \end{array}$


 $R_{13} = 300$ ohms, 1 watt

NOTE: 2N1485 and 2N2015 transistors must be mounted on heat sink of sufficient size to keep the case temperatures below 100°C.

VOLTAGE REGULATOR, SHUNT TYPE

Regulation 0.5%



 $\begin{array}{l} CR = \mbox{treference diode, 27 v.} \\ R_1 = 28 \mbox{ohms}, 10 \mbox{watts} (in-cludes source resistance of transformers, rectifiers, etc.) } \\ R_2 = 1000 \mbox{ohms}, 0.5 \mbox{watt} \end{array}$

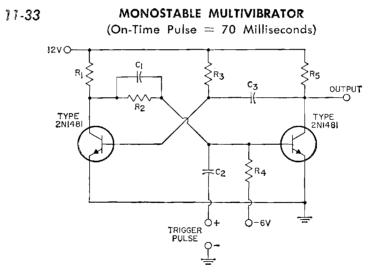
11-31 VOLTAGE REGULATOR, SERIES TYPE With Adjustable Output

Line Regulation within 1.0%

Load Regulation within 0.5%

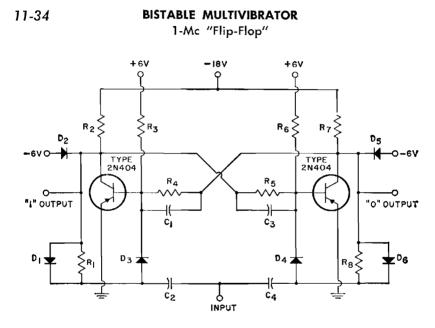


 $\begin{array}{l} R_1 = 1200 \mbox{ ohms, } 0.5 \mbox{ watt} \\ R_2 \ R_4 \ R_3 = 0.1 \mbox{ ohms, } 0.5 \mbox{ watt} \\ R_3 = 2000 \mbox{ ohms, } 0.5 \mbox{ watt} \\ R_5 = 570 \mbox{ ohms, } 0.5 \mbox{ watt} \end{array}$


 $\begin{array}{l} R_7 = 270 \mbox{ ohms, } 0.5 \mbox{ watt} \\ R_8 \ R_{10} = 1000 \mbox{ ohms, } 0.5 \mbox{ watt} \\ R_0 = \mbox{ potentiometer, } 1000 \mbox{ ohms, } 0.5 \mbox{ watt} \end{array}$

ASTABLE MULTIVIBRATOR

(Repetition Rate = 7000 pps)

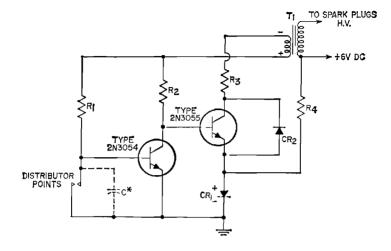

Rep. Rate = $\frac{1}{2(0.7R_2C_1)}$ C₁ C₂ = 0.01 μ f, paper, 25 v, R₁ R₄ = 60 ohms, 5 watts R₂ R₃ = 1000 ohms, 0.5 watt

On-time Pulse $\approx 0.7 R_3 C_8$ $C_1 \approx 0.005 \ \mu f$, paper, 25 v. $C_8 \approx 0.05 \ \mu f$, paper, 25 v.

 $C_3 = 0.01 \ \mu f$, paper, 25 v. $R_1 R_5 = 60 \ ohms$, 5 watts $R_2 = 820 \ ohms$, 0.5 watt

 $\frac{R_3}{R_4} = 1000$ ohms, 0.5 watt $R_4 = 5000$ ohms, 0.5 watt

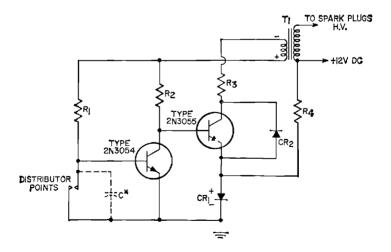
 $C_1 \ C_3 = 180 \ {\rm pf}, \ {\rm mica}, \ 24 \ v. \\ C_2 \ C_4 = 430 \ {\rm pf}, \ {\rm mica}, \ 24 \ v.$


 $\begin{array}{l} D_1 \ D_2 \ D_3 \ D_4 \ D_5 \ D_6 = \mbox{diode}, \\ 1N126 \\ R_1 \ R_8 = 5100 \ \mbox{ohms}, \ 0.5 \ \mbox{watt} \end{array}$

 $R_2 \ R_7 = 1200 \ ohms, \ 0.5 \ watt R_3 \ R_6 = 11000 \ ohms, \ 0.5 \ watt R_4 \ R_6 = 2700 \ ohms, \ 0.5 \ watt$

Circuits

6-VOLT IGNITION SYSTEM

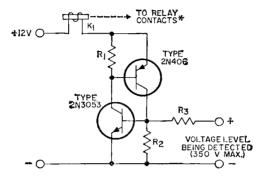

 $\begin{array}{l} CR_1 \ = \ 1N1202A \\ CR_2 \ = \ zener \ diode, \ 90 \ volts, \\ 50 \ watts \\ R_4 \ = \ 50 \ ohms, \ 5 \ watts \\ R_2 \ = \ 2 \ ohms, \ 25 \ watts \end{array}$

 $\begin{array}{l} R_{3}=0.2 \mbox{ ohms, } 25 \mbox{ watts} \\ R_{4}=100 \mbox{ ohms, } 1 \mbox{ watt} \\ T_{1}=\mbox{ ignition coil; } Mallory \\ Type F-12T, \mbox{ or equiv.} \\ {}^{*} \mbox{ The capacitor (conden-} \end{array}$

ser) normally connected across the distributor points in the automobile may be retained in the circuit.

11-36

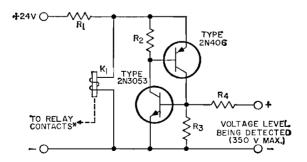
12-VOLT IGNITION SYSTEM


 $\begin{array}{l} CR_1 \ = \ 1N1202A \\ CR_2 \ = \ zener \ diode, \ 90 \ volts, \\ 50 \ watts \\ R_1 \ = \ 100 \ ohms, \ 5 \ watts \\ R_2 \ = \ 7.5 \ ohms, \ 25 \ watts \end{array}$

 $\begin{array}{l} R_{3}=1.0 \mbox{ ohm, 100 watts} \\ R_{4}=200 \mbox{ ohms, 1 watt} \\ T_{1}-\mbox{ ignition coil; Mallory} \\ Type \mbox{ F-12T, or equiv.} \end{array}$

ser) normally connected across the distributor points in the automobile may be retained in the circuit.

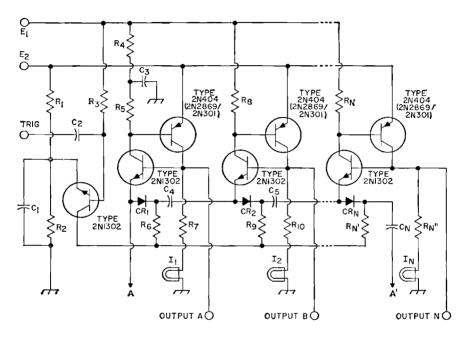
11-37 VOLTAGE-SENSITIVE SWITCH (USED WITH NORMALLY OPEN RELAY)


Relay energizes when voltage level exceeds a predetermined value

 $K_1 = dc relay; 12-volt, 71$ ohm coil; Potter-Brumfield Type PR11DY, orequivalent. $R_1 = 150 ohms <math>\pm$ 10%; 0.5 watt $R_2 = 470 \text{ ohms} \pm 10\%;$ 0.5 watt $R_3 = \text{desired detection-volt-}$ age level x 800 ohms *Relay-contact connections may be arranged to provide the type of control functions desired.

11-38 VOLTAGE-SENSITIVE SWITCH (USED WITH NORMALLY CLOSED RELAY)

Relay de-energizes when voltage level exceeds a predetermined value



 $\begin{array}{l} K \ = \ de \ relay; \ 12-volt, \ 71-\\ ohm \ coll; \ Potter-Brum$ $field \ Type \ PR11DY, \ or \\ equivalent \\ R_{4} \ = \ 75 \ ohms \ \pm \ 10\%, \ 10 \\ watts \end{array}$

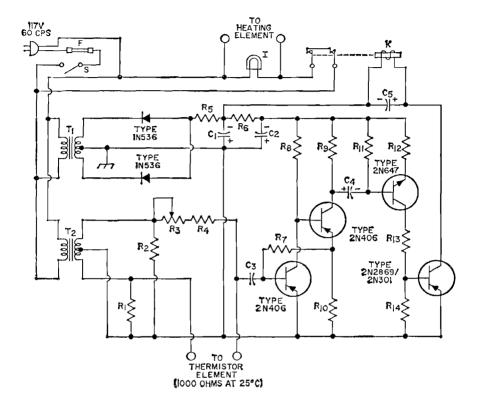
 $\begin{array}{l} R_2 = 150 \text{ ohms} \pm 10\%, \ 0.5 \\ \text{watt} \\ R_3 = 470 \text{ ohms} \pm 10\%, \ 0.5 \\ \text{watt} \\ \text{normalized detection welt} \end{array}$

 $R_4 = desired detection-volt$ age level x 800 ohms *Relay-contact connections may be arranged to provide the type of control functions desired.

SHIFT REGISTER

No. 49; 2-volt, 60-ma (or No. 1488; 14-volt, 150-ma) $R_1 = 1000$ ohms, 0.5 watt (or 680 ohms, 1 watt) $R_2 = 27$ ohms, 0.5 watt (or $R_3 = 1000$ ohms, 0.5 watt $R_4 = 1000$ ohms, 0.5 watt (or

 $\begin{array}{l} 330 \ ohms, \, 0.5 \ watt) \\ R_5, \, R_8, \, R_{10}, \, R_N = 2200 \ ohms, \\ 0.5 \ watt \ (or \ 680 \ ohms, \ 0.5 \ watt) \\ R_6, \, R_8, \, R_{N'} = 560 \ ohms, \ 0.5 \ watt \ (or \ 180 \ ohms, \ 1 \ watt \ (or \ 82 \ ohms, \ 2 \ watts) \end{array}$


Notes:

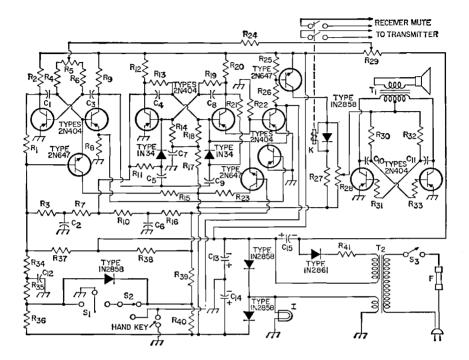
The shift register may use as many stages as desired and may be made regenerative by connecting points A and A'. In addition, the basic circuit can be adapted for operation at many different output-current levels.

The circuit as shown is designed for an output-current level of 40 ma ($E_1 = 12 v$; $E_2 = 9 v$). Transistor types and component values shown in parenthesis indicate the changes necessary for operation at an output-current level of 3 amperes ($E_1 = 27 v$; $E_2 = 24 v$).

ELECTRONIC THERMOSTAT

- C₁, C₂ = 1000 μ f, electrolytic, 25 v. C₃ = 2 μ f, paper, 200 v. C₄ = 100 μ f, electrolytic,

- $\begin{array}{l} C_{4} = 2 & \mu_{1}, \ \mu_{2} & \nu_{1} \\ C_{4} = 100 & \mu_{1}, \ electrolytic, \\ 15 & v. \\ C_{5} = 100 & \mu_{1}, \ electrolytic, \\ 25 & v. \\ F = fuse, 3 \ amp. \\ I = indicator \ lamp; \ 117 \ v., \end{array}$


- I = indicator iamp; 114 v., 6 watts
 K := dc relay; single-pole, single-throw, double-break; 12-volt dc coil, 80 ohms minimum resist-ance; Potter-Brumfield PR3DY or equiv.
- R_1 , $R_2 = 3000$ ohms $\pm 10\%$; 0.5 watt $R_3 =$ variable resistor, 500
- ohms, linear taper, 0.5 watt
- $R_4 =: 330 \text{ ohms} \pm 10\%, 0.5$ watt
- $\begin{array}{l} {\rm R}_5, {\rm R}_{12}, {\rm R}_{14} = 47 \ {\rm ohms} \\ \pm \ 10\%, \ 0.5 \ {\rm watt} \\ {\rm R}_6 \simeq 1000 \ {\rm ohms} \pm \ 10\%, \end{array}$
- 2 watts
- R_7 , $R_9 = 1000$ ohms $\pm 10\%$, 0.5 watt
- $R_8 = 12000 \text{ ohms} \pm 10\%$ 0.5 watt

- $\begin{array}{l} R_{10} = 39 \ {\rm ohms} \pm 10\%, \\ 0.5 \ {\rm watt} \\ R_{11} = 10000 \ {\rm ohms} \pm 10\%, \\ 0.5 \ {\rm watt} \\ R_{18} = 680 \ {\rm ohms} \pm 10\%, \\ 0.5 \ {\rm watt} \\ S = \ toggle \ {\rm switch}; \ {\rm single-throw} \\ {\rm pole, \ single-throw} \end{array}$

Circuits

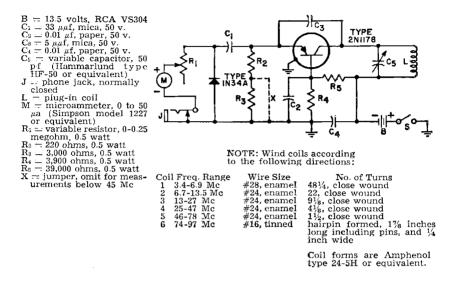
ELECTRONIC KEYER

- C₁, C₃ = 1 μ f, paper (or Mylar), 200 v. C₂ = 0.47 μ f, ceramic, 25 v. C₄, C₈ = 560 pf, ceramic, 600 v. 220 pf, ceramic,
- $C_5, C_9 = 330$ pf, ceramic, 600 v.
- $\begin{array}{l} 600 \text{ v.} \\ \mathbf{C}_{8}, \mathbf{C}_{7} = 0.01 \ \mu\text{f, ceramic,} \\ 50 \text{ v.} \\ \mathbf{C}_{10}, \mathbf{C}_{11} = 0.02 \ \mu\text{f, ceramic,} \\ 50 \text{ v.} \\ \mathbf{C}_{12} = 0.1 \ \mu\text{f, ceramic,} \\ 50 \text{ v.} \\ \mathbf{C}_{13}, \mathbf{C}_{14} = 2000 \ \mu\text{f, electro-lytic,} \\ 150 \text{ v.} \\ \mathbf{C}_{15} = 16 \ \mu\text{f, electrolytic,} \\ 150 \text{ v.} \end{array}$
- 150 v.
- I = indicator lamp No. 47K $\simeq dc relay; coil resistance$ = 2500 ohms; operating current = 4 ma; Potter-Brumfield ML11D,
- or equiv. $\mathbf{R}_1 = 39000$ ohms, 0.5 watt

- $R_{2}, R_{9}, R_{12}, R_{20} = 3900$ ohms,
- 0.5 watt
- $R_{3}, R_{16} = 18000 \text{ ohms},$
- 0.5 watt $R_4, R_6 = 51000$ ohms, 0.5 watt
- $R_5, R_{29} = potentiometer,$ 10000 ohms

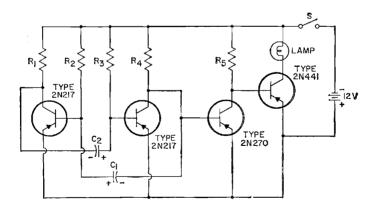
- 10000 ohms R7, R:0 = 22000 ohms, 0.5 watt Rs, R22, R2s = 68 ohms, 0.5 watt R1, R21 = 15000 ohms, 0.5 watt R:3, R:0 = 33000 ohms, 0.5 watt R:4, R18, R20, R32 = 27000 ohms, 0.5 watt R:7 = 68000 ohms, 0.5 watt

- $\begin{array}{l} R_{17} = 68000 \text{ ohms, } 0.5 \text{ watt} \\ R_{24} = 100000 \text{ ohms, } 0.5 \text{ watt} \\ R_{27} = 560 \text{ ohms, } 0.5 \text{ watt} \\ R_{27} = 1200 \text{ ohms, } 0.5 \text{ watt} \end{array}$


- R₂₈ volume-control potentiometer, 50000 ohms R₃₁, R₃₃ = 10000 ohms,
 - 0.5 watt

- $\begin{array}{l} 0.5 \text{ watt} \\ R_{34} = 6800 \text{ ohms, } 0.5 \text{ watt} \\ R_{25} = 8200 \text{ ohms, } 0.5 \text{ watt} \\ R_{26}, R_{39}, R_{40} = 15000 \text{ ohms, } \\ 0.5 \text{ watt} \\ R_{37}, R_{38} = 47000 \text{ ohms, } \\ 0.5 \text{ watt} \\ R_{41} = 10000 \text{ ohms, } 1 \text{ watt} \\ S_1 = \text{ Vibroplex keyer, } \\ \text{or equiv.} \end{array}$

- S1 = Vinoplex Reyer, or equiv.
 S2 = toggle switch, double-pole, double-throw
 S2 = toggle switch; single-pole, single-throw
 T1 push-pull output trans-former (14000 ohm to
 - V.C.)
- T₂ == power transformer, Stancor PS8415, PS8421, or equiv.


GRID-DIP METER

For Measuring Resonant Frequencies from 3.5 to 100 Mc

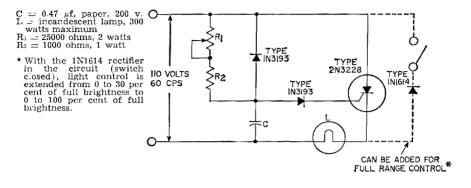
11-43

LIGHT FLASHER 60 Flashes per Minute

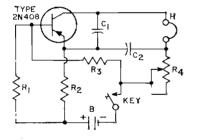
 $\begin{array}{l} C_1 = 25 \ \mu f, \ electrolytic, \ 12 \ v. \\ C_2 = 100 \ \mu f, \ electrolytic, \\ 12 \ v. \\ LAMP = \ bulb, \ 12 \ v, \end{array}$

 $R_5 \simeq 120$ ohms, 0.5 watt S = switch

NOTE: C1 and C2 may be varied to change flashing


rate. Bulbs and other resist-ive loads handling currents up to one ampere may be used, but inductive loads should not be used.

Circuits

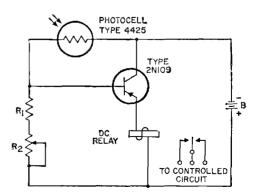

LIGHT DIMMER CONTROL USING SILICON CONTROLLED RECTIFIER

(Half wave)

11-45

CODE-PRACTICE OSCILLATOR

- B = 1.5-4.5 v. (One to three series-connected RCA VS036 dry cells may be used, depending upon the volume level desired.) Cr $C_2 = 0.01$ uf, paper, 150 v. H Headphone, 2000-ohm, magnetic
- $\begin{array}{l} \mbox{magnetic} \\ R_1 & 2200 \mbox{ ohms}, \ 0.5 \ \mbox{watt} \\ R_2 & 27000 \ \mbox{ohms}, \ 0.5 \ \mbox{watt} \\ R_3 & 3000 \ \mbox{ohms}, \ 0.5 \ \mbox{watt} \end{array}$


- R₄ volume control poten-
- tiometer, 50000 ohms, 0.5 watt

11-46

PHOTO-RELAY Operates with Light Increase

- $\begin{array}{l} B = 6 \mbox{ volts, RCA VS317} \\ R_1 = 120 \mbox{ ohms, 0.5 watt} \\ R_2 = \mbox{ potentiometer, 5000} \\ \mbox{ ohms; Mallory U-14 or} \end{array}$ equivalent
- Relay = 1000 ohms, 2.3-mil-liampere operating cur-rent; Sigma type 5F or equivalent

NOTE: The relay mounting frame is at armature potential and should be insulated from a common chassis for safety reasons.

RCA Technical Publications

on Electron Tubes, Semiconductor Products, and Batteries

Copies of the publications listed below may be obtained from your RCA distributor or from Commercial Engineering, Radio Corporation of America, Harrison, N. J.

Semiconductor Products

• RCA SEMICONDUCTOR PRODUCTS HANDBOOK — HB-10. Two binders, each 7%" L x 5%" W x 2%" D. Contains over 1000 pages of looseleaf data and curves on RCA semiconductor devices such as transistors, silicon rectifiers, and semiconductor diodes. Available on a subscription basis. Price \$10.00* including service for first year. Also available with RCA Electron Tube Handbook HB-3 at special combination price of \$25.00.*

• RCA TUNNEL DIODE MANUAL -TD-30 (8%" x 5%")-160 pages. Describes the microwave and switching capabilities of tunnel diodes. Contains information on theory and characteristics, and on tunnel-diode applications in switching circuits and in microwave oscillator, converter, and amplifier circuits. Includes data for over 40 RCA germanium and gallium arsenide tunnel diodes and tunnel rectifiers. Price \$1.50.*†

• RCA SEMICONDUCTOR PRODUCTS GUIDE--3L1010/1L1147 (10%" x 8%") – 12 pages. Contains classification chart, index, and ratings and characteristics on RCA's line of transistors, silicon rectifiers, semiconductor diodes, and photocells. Single copy free on request.

• RCA SILICON POWER TRANSISTORS APPLICATION GUIDE-1CE-215 (10%" x 8%")—28 pages. Describes outstanding features of RCA silicon power transistors and their use in many critical industrial and military applications. Includes construction details, discussion of voltage ratings, thermal stability conditions, and equivalent circuits for power transistors. Price 50 cents.*[†]

• TRANSISTORIZED VOLTAGE REGU-LATORS APPLICATION GUIDE--1CE-254 (10%" x 8%")-12 pages. Describes and discusses transistorized voltage regulators of the series and shunt types. Included are design considerations, step-by-step design procedures, and the solutions to sample design problems. An Appendix contains the derivation of design equations. Price 25 cents.*†

• RCA TRANSISTOR REPLACEMENT GUIDE—1L1115 (10%" x 8%")—36 pages. Contains RCA transistor and rectifier replacement data for more than 1000 portable radio receivers, table radio receivers, tape recorders, and portable equipment of 145 manufacturers. Price 35 cents.*†

• RCA SILICON RECTIFIER INTER-CHANGEABILITY DIRECTORY—1CE-229A (10%" x 8%")—16 pages. Contains replacement information, ratings, characteristics, and physical dimensions for more than 400 silicon and selenium rectifiers. Price 25 cents.*†

• RCA VARACTORS—VAR-100 (10%" x 8%")—8 pages. Contains complete data on RCA's line of silicon and gallium arsenide varactors. Quickselection guide permits easy selection of proper RCA varactor for given frequency-multiplier or parametric• TECHNICAL BULLETINS—Authorized information on RCA semiconductor products. Be sure to mention typenumber bulletin desired. Single copy on any type free on request.

Electron Tubes

RCA ELECTRON TUBE HANDBOOK -HB-3 (73%" x 55%"). Five 21/4-inchcapacity binders. Contains over 5000 pages of looseleaf data and curves on RCA receiving tubes, transmitting tubes, cathode-rav tubes. picture tubes, photocells, phototubes, camera tubes, ignitrons, vacuum gas rectifiers, traveling-wave tubes, premium tubes, pencil tubes, and other miscellaneous types for special applications. Available on subscription basis. Price \$20.00* including service for first year. Also available with RCA Semiconductor Products Handbook HB-10 at special combination price of \$25.00.*

• RADIOTRON[°] DESIGNER'S HAND-BOOK—4th Edition (8³/₄" x 5¹/₂")— 1500 pages. Comprehensive reference covering the design of radio and audio circuits and equipment. Written for the design engineer, student, and experimenter. Contains 1000 illustrations, 2500 references, and crossreferenced index of 7000 entries. Edited by F. Langford-Smith.

• RCA PHOTOTUBE AND PHOTOCELL MANUAL—PT-60 (8¼" x 5%")—192 pages. Well-illustrated informative manual covering fundamentals and operating considerations for vacuum and gas phototubes, multiplier phototubes, and photocells. Also describes basic applications for these devices. Features easy-to-use selection chart for multiplier phototubes. Data and performance curves given for over 90 photo-sensitive devices. Price \$1.50*†

• RCA RECEIVING TUBE MANUAL— RC-22 (8¼" x 5%")—544 pages. Contains technical data on over 1000 receiving-type tubes for home-entertainment use and picture tubes for black-and-white and color TV. Features tube theory written for the layman, application data, selection charts, and typical circuits. Features lie-flat binding. Price 1.25^{+}

• RCA TRANSMITTING TUBES—TT-5 (8¼" x 5%")—320 pages. Gives data on over 180 power tubes having plateinput ratings up to 4 kw and on associated rectifier tubes. Provides basic information on generic types, parts and materials, installation and application, and interpretation of data. Contains circuit diagrams for transmitting and industrial applications. Features lie-flat binding. Price \$1.00*†

• RCA POWER TUBES—PG101F (10%" x 8%")—36 pages. Technical information on 200 RCA vacuum power tubes, rectifier tubes, thyratrons, and ignitrons. Includes terminal connections. Price 60 cents.*†

• RCA RECEIVING-TYPE TUBES FOR INDUSTRY AND COMMUNICATIONS— RIT 104C (10%" x 8%")—44 pages. Technical information on over 190 RCA "special red" tubes, premium tubes, nuvistors, computer tubes, pencil tubes, glow-discharge tubes, small thyratrons, low-microphonic amplifier tubes, mobile communications tubes, and other special types. Includes socket-connection diagrams. Price 35 cents.*[†]

• RCA RECEIVING TUBES AND PIC-TURE TUBES—1275K (10%" x 8%")— 64 pages. New, enlarged, and up-todate booklet contains classification chart, application guide, characteristics chart, and base and envelope connection diagrams on more than 1050 entertainment receiving tubes and picture tubes. Price 50 cents.*†

● RCA PHOTO AND IMAGE TUBES— 1CE-269 (10%" x 8%") -32 pages. Includes concise data on RCA multiplier phototubes, gas and vacuum photo-diodes, and image-converter tubes. Contains response curves for photo and image tubes, sockets and shields for phototubes, and dimensional outlines for photo and image tubes. Price 60 cents.*† • RCA INTERCHANGEABILITY DIREC-TORY OF INDUSTRIAL-TYPE ELECTRON TUBES—ID-1020D (10%" x 8¾")—12 pages. Lists more than 1600 basic type designations for 20 classes of industrial tube types; shows the RCA Direct Replacement 'Type or the RCA Similar Type, when available. Price 35 cents.*†

• RCA PHOTOCELLS -1CE-261A (10%" x 8%") -32 pages. Contains a selection of photocell-circuit diagrams; technical data and characteristic curves of RCA photoconductive, photojunction, and photovoltaic cells; interchange-ability information. Also contains 22 representative circuits. Price 50 cents.*†

• RCA MAGNETRONS AND TRAVEL-ING-WAVE TUBES -MT-301A (10%" x 8%")—48 pages. Operating theory for magnetrons and traveling-wave tubes, application considerations, and techniques for measurement of electrical parameters. Price 60 cents.*†

• RCA PENCIL TUBES— 1CE-219 (10%" x 8%")—28 pages. Contains operating theory for pencil tubes, electrical and mechanical circuit-design considerations, environmental considerations, application considerations, and data for commercial types. Price 50 cents.*†

• RCA CAMERA TUBES-CAM-600 (10%" x 8%")--16 pages. Contains classification charts, defining data and typical characteristics curves for RCA image orthicons and vidicons. Camera tubes recommended for new equipment design are highlighted. Price 50 cents.*†

• RCA INTERCHANGEABILITY DIREC-TORY OF FOREIGN vs. U.S.A. RECEIV-ING-TYPE ELECTRON TUBES—1CE-197C (8%" x 10%")—8 pages. Covers approximately 800 foreign tube types used principally in AM and FM radios, TV receivers, and audio amplifiers. Indicates U.S.A direct replacement type or similar type if available. Price 10 cents.* • RCA STORAGE AND CATHODE-RAY TUBES- 1CE-270 (10%" x 8%")- 12 pages. Includes concise data on RCA display-storage tubes, computerstorage tubes, scan-converters, radechons, oscillograph-type cathode-ray tubes, and special purpose kinescopes. Price 20 cents.*†

• RCA NUVISTOR TUBES FOR INDUS-TRIAL AND MILITARY APPLICATIONS – 1CE-280 (10%" x 3%")—16 pages. Describes unique features of nuvistors and includes tabular data, dimensional outlines, curves, terminal diagrams, and socket information. Price 25 cents.*†

• TECHNICAL BULLETINS -Authorized information on RCA receiving tubes, transmitting tubes, and other tubes for communications and industry. Be sure to mention tube-type bulletin desired. Single-copy on any type free on request.

Batteries

• RCA BATTERY MANUAL—BDG-111 (10%" x 8¾")—64 pages. Contains information on dry cells and batteries [carbon zinc (Leclanché), mercury, and alkaline types]. Includes battery theory and applications, detailed electrical and mechanical characteristics, a classification chart, dimensional outlines, and terminal connections on each battery type. Price 50 cents.*†

• RCA BATTERIES—BAT-134F (10%" x 8%")—24 pages. Technical data on 113 Leclanché, alkaline, and mercury-type dry batteries for radios, industrial applications, flashlights, lanterns, and for photoflash service. Price 35 cents.*†

[°] Trade Mark Reg. U.S. Pat. Off.

^{*} Prices shown apply in U.S.A. and are subject to change without notice.

[†] Suggested price.

Reading List

The following list contains a number of references which should prove helpful to those interested in further information on semiconductor theory and applications.

- Basic Theory and Application of Transistors TM 11-690, U.S. Govt. Printing Office, 1959.
- BETTRIDGE, B. R. Transistors and Crystal Diodes, Wehman Bros., 1954.
- BIONDI, S. J. Transistor Technology, Vol. III. D. Van Nostrand Co., Inc., 1958.
- CALDWELL, W. C. Practical Transistor Servicing, Howard W. Sams Co., Inc., 1960.
- CARROLL, J. M. Transistor Circuits and Applications, McGraw-Hill Book Co., Inc., 1957.
- CONTI, T. Metallic Rectifiers and Crystal Diodes, John F. Rider, Inc., 1958.
- DUNLAP, W. C. Introduction to Semiconductors, John Wiley and Sons, Inc., 1957.
- Evans, J. Fundamental Principles of Transistors, D. Van Nostrand Company, Inc., 1958.
- GREINER, R. A. Semiconductor Devices and Applications, McGraw-Hill Book Co., Inc., 1961.
- JOYCE, M. V. Transistor Circuit Analysis, Addison Wesley Co., Inc., 1961.
- HUNTER, L. P. Handbook of Semiconductor Electronics, McGraw-Hill Book Co., Inc., 1958.
- LEAHRMAN, H. Transistor Techniques, Gernsback Library, Inc., 1957.
- LINVILL, J. G. Transistors and Active Circuits, McGraw-Hill, Inc., 1961.
- Lo, A. W., et al. Transistor Electronics, Prentice-Hall, Inc., 1955.
- LURCH, J. Fundamentals of Electronics, John Wiley and Sons, Inc., 1960.
- MILLMAN, J. Vacuum Tube and Semiconductor Electronics, McGraw-Hill Book Co., Inc., 1958.
- MUELLER, H. Introduction to Electrical Engineering, McGraw-Hill Book Co., Inc., 1957.
- PRESSMAN, A. I. Design of Transistorized Circuits for Digital Computers, John F. Rider, Inc., 1959.
- PULLEN, K. A. Handbook of Transistor Design, Prentice-Hall, Inc., 1961.
- RYDER, J. Electronic Fundamentals and Applications, Prentice-Hall, Inc., 1959.
- SEELY, J. Radio Electronics, McGraw-Hill Book Co., Inc., 1956.
- SHEA, R. F. Transistor Circuit Engineering, John Wiley and Sons, Inc., 1957.
- SHOCKLEY, W. Electrons and Holes in Semiconductors, D. Van Nostrand Co., 1950.
- SHURE, A. Semiconductors and Transistors, John F. Rider, Inc., 1961.
- TERMAN, F. E. Electronics and Radio Engineering, McGraw-Hill Book Co., Inc., 1955.
- TURNER, R. P. Transistor Circuits, Gernsback Library, Inc., 1957.

Index

	~
Absolute Maximum System of Ratings 7	9
Alloy-Junction Transistors 1	ñ
Alpha Characteristic 1	
AM/FM Automobile Radio Circuit 34	
Amplification	
Amplifiers:	Τ
Audio 2	4
Class A 2	
Class AB	
Class B	
Class C	
Differential a	-
Differential	
Direct-Coupled	
Intermediate-Frequency 3	
Neutralized 3	
Phase Inverter 3	
Power	
Push-Pull 28	
Radio-Frequency 3	
Tuned 3	
Unilateralized 33	2
Anode	
Astable Circuits 4	5
Astable Multivibrator Circuit 45, 46	6
Audio Amplifiers 24	4
Audio Amplifier Circuit (25 watt) 35	4
Audio-Power Amplifiers 20	6
Automatic Gain Control	3
Automobile Radio Circuit:	
6-volt	6
12-volt	
Avalanche Voltage	

Paga

Barrier, Energy	6
Beta Characteristic	15
Biasing	18
Bistable Circuits	45
Bistable Multivibrator Circuit 45,	46
Blocking Oscillator	43
Breakdown Voltage 16,	50
Bridge Circuits:	
Single-Phase Full-Wave	54
Three-Phase (Y) Half-Wave	55

Calculation of,	
Heat-Sink Size	51
"Q" (selectivity)	31
Transistor Dissipation	79
Capacitive Division	34
Characteristics:	81
	15
Alpha	15
Beta	15
Dynamic	15
Static	
Chopper-Type Circuits	36
Circuits:	348
AM/FM Automobile Radio	
AND	47
Astable Multivibrator 45,	369
Audio Amplifier (25-watt)	354
Automobile Radio, 6-volt	346
Automobile Radio, 12-volt	347
Bistable Multivibrator 45,	370
Chopper-Type	- 36
Citizens-Band Transceiver	359
Citizens-Band Transmitter	360
Code-Practice Oscillator	377
Crystal Oscillator, 27-Mc	365

Page DC-to-DC Converter Earphone Amplifier 366 353 Eccles-Jordan Multivibrator 46 Electronic Keyer 375 Electronic Thermostat 374 Filter 46 Flipflop 45 FM Stereo Multiplex Adapter 355 "Front End" for Radio Receiv-47 Grid-Dip Meter 376 IF Amplifier (30-Mc) 363 Ignition System: 371 371 Light-Dimmer Control 377 Logic 47 Monostable 46 NAND 48 NOR 47 OR 47 Phonograph Amplifier Photo-Relay 353 377 Portable Radio Receivers 344, 345 Power Amplifier, 70-Mc Power Oscillator: 361 100-Kc 364 70-Mc 365 Power Supply For Amateur Transmitter 358 Radio Receiver, 3-band 350 Regulator: Series 35 35 Shunt Resonant 30 Single-Phase Full-Wave Bridge ... 55 Single-Phase Half-Wave 54 Six-Phase Star 56 373 357 Interphase Transformer 55 Three-Phase (Y) Half-Wave 55 Triggered 46 Video Amplifier 361 Voltage Regulator, Shunt Type: Regulation = 0.5% 367 Regulation = 1.5% 368 Voltage Regulator, Series Type: Adjustable Regulation 368 Regulation = 2%367 Voltage-Sensitive Switches 372Circuit Configurations 11 Circuit Stability 23

Clapp Oscillator

Class A Amplifier

Class AB Amplifier

Class B Amplifier Class C Amplifier

Code-Practice Oscillator (Circuit)

Collector-Characteristic Curve

Colpitts Oscillator

Compensating Diodes

Complementary Symmetry

Controls, Tone and Volume

40

24

24

24 24

378

14

40

74

30

26

Index

Coupling	21
Cross-Modulation	34
Cross-Over Distortion	28
Crystal Oscillator	40
Crystal Oscillator Circuit (27-Mc)	365
Current:	
Cutoff	16
Fault	50
Flow	6
Idling	20
Maximum Average Forward	50
Maximum Surge	50
Peak Recurrent Forward	50
Cutoff, Frequency	15
Cutoff, Current	16
cuton, current	10

Data, Interpretation of	79
Degenerative Feedback	25
Delay Time (ta)	45
Depletion Layer	5
Differential Amplifiers	36
Diffused Transistors	11
Diodes:	
Compensating	74
Tunnel	68
Varactor	73
Voltage-Reference	74
Direct-Coupled Amplifiers	35
Direct Coupling	23
Dissipation, Transistor	79
Distortion, Crossover	28
Division, Capacitive	34
Dress of Circuit Leads	78
Drift-Field Transistor	10
Drivers	26
Dynamic Characteristics	14

Eccles-Jordan Multivibrator Circuit	46
Electrical Connections	76
Electron Flow	5
Emitter	8
Energy Barrier	6
	11
Extrinsic Transconductance	15

Fall Time (tr)	45
Fault Current	50
Feedback	25
Figure-of-Merit	70
Filters	78
Fixed Bias	18
Flipflop Circuit	45
raphop offcut	
FM Stereo Multiplex Adapter (Circuit)	355
Forward Bias	6
Forward Characteristics, Silicon	
Rectifier	50
Forward Current-Transfer Ratio	15
Frequency Compensation	25
Frequency Cutoff	15
"Front End" for Radio Receivers	
(Circuits) 351,	362

G ain-Bandwith Product	15
Gain, Automatic Control	33
Gating Circuits	47

I	Page
Grid-Dip Meter (Circuit) Grown-Junction Transistor	376 10
Half-Wave Single-Phase Circuit Hartley Oscillator Ileat Sinks 5 High-Current Tunnel Diodes	54 40 1, 77 72
dling Current Impedance Coupling Impurities Input Filters Installation, Transistor Intermediate-Frequency Amplifiers Inverse Feedback Inverter, Phase	22
Junctions Junction Transistors	3 10
C Resonant Feedback Oscillator Leakage Currents Letter Symbols, Transistor Light-Flasher (Circuit) Logic Circuits	16 81 376
Materials, Junctions, and Devices Mesa Transistor Monostable Circuits Multivibrator	46
NAND Circuits Negative Feedback Negative-Resistance Characteristic Neutralized Amplifiers Noise Figure Nonsinusoidal Oscillators NOR Circuits N-P-N Structures N-type Material	24 42 47
OR Circuits Oscillation Oscillators: Blocking Clapp Colpitts Crystal Hartley LC Resonant Feedback Nonsinusoidal Pierce RC Resonant Feedback Wien Outlines Overload Protection 5	36 43 40 40 40 37 42 41 41 42
Parallel Arrangement Parametric Diode Peak Recurrent Forward Current Peak Reverse Voltage Phase Inverter Phonograph Amplifier (Circuit) Photo-Relay Circuit	252

Page

p	a	σ	e

F	uge
Planar Transistor	11
P-N Junction	5
P-N-P Structures	7
Point-Contact Transistors	10
Portable Radio Receivers (Circuit) 344,	345
Positive Feedback	10
Power Amplifier, Audio (Class A)	24
Power Amplifier, Audio (Class A)	361
Power Amplifier Circuit (70-Mc) Power Oscillator Circuits:	901
	964
100-Kc	364
70-Мс	365
Power Supply for Amateur Transmitter	
(Circuit)	358
Preamplifiers	352
P-Type Material Pulse Time (t_p)	5
Pulse Time (t _p)	45
Punch-Through Voltage	17
Push-Pull Amplifiers	28
"Q" (Selectivity), Calculation of \dots	31
Gelecuvity), calculation of	31
_	
R adiation Considerations	72
Radio-Frequency Amplifiers	30
Radio-Frequency Amplifiers Radio Receiver, 3-Band (Circuit)	350
Reach-Through Voltage	17
Rectifiers:	
Silicon	49
Tunnel	72
Regenerative Feedback	25
Region, Transition	5
Regulator Circuits:	3
	35
Series	35
Shunt	22
Resistivity	- 3
Resonant Circuits	30
Bewenne Dieg	- 30 - 6
Reverse Bias	53
Ripple	45
Rise Time (tr)	49
S aturation Transconductance	15
Saturation Voltage	17
Second Breakdown	16
Selection Charts	82
Series Arrangement	
Sories Regulator Circuits	35
Series Regulator Circuits Servo Amplifier Circuit	364
Serve Ampimer Circuit	77
Shielding Shunt Regulator Circuits	35
Simult negutator Circuits	33 24
Signal-to-Noise Ratio	24 59
Silicon Controlled Rectifiers	59 60
Characteristics	
Construction	59
Current Ratios	64
Overload Protection	62
Power Control	63
Ratings	61
Series Arrangement	62

Triggering Characteristics

 Triggering Characteristics
 61

 Silicon Rectifiers
 49

 Single-Phase Full-Wave Bridge Circuit
 55

 Single-Phase Full-Wave Circuit
 54

 Six-Phase Star Circuit
 56

 Static Characteristics
 15

 Stereo Amplifier Circuits
 356, 357

 Stored Base Charge
 17

 Structures:
 17

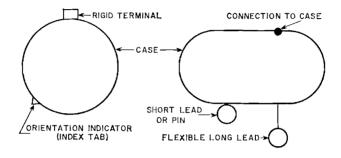
P-N-P 7 Surge Current, Maximum 50

.........

Structures:

N-P-N

P-N-P


61

7

7

Sustaining Voltage Switching Switching Times Symbols, Transistor	
Switching	10
Switching	16
	44
Switching Times	44
Symbols, Transistor	81
Symmetry, Complementary	30
complementary	00
-	
Technical Data	87
Temperature Effects	76
Temperature Effects Testing	
Testing	3
Thermal Considerations	49
Thermal Runaway	49
Thermistor Bias	20
Three Bhose (Double V) and Inter	20
Intee-Flase (Double-I) and Inter-	~-
Thermistor Bias Three-Phase (Double-Y) and Inter- phase Transformer Circuit	55
	55
Thyristor	59
Tone Controls	26
Tone controls	
Thyristor Tone Controls Transconductance, Extrinsic	15
Transfer-Characteristic Curves	14
Transformer Coupling	21
Transistor:	
Ampliantiana	18
Applications	
Applications Characteristics Design and Circuit Configurations	14
Design and Circuit Configurations .	10
Common-Base	11
Common-Collector	13
Common-Base Common-Collector Common-Fmitter Dissipation	12
Dissipation	79
Installation	76
Symbols	81
Types:	10
Alloy-Junction	10
Drift-Field	10
Epitaxial Mesa	11
Grown-Junction	10
Daves	11
Mesa Planar	
Planar	11
Point-Contact	10
Transition Region	5
Triggered Circuits	45
The American Street	
Triggered Circuits	30
Tunnel Diodes	68
Tunnel Diodes	
Tunnel Diodes	68 72
Tunnel Diodes Tunnel Rectifiers Turn-On Time	68 72 45
Tunnel Diodes	68 72
Tunnel Diodes Tunnel Rectifiers Turn-On Time	68 72 45
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time	68 72 45 45
Tunnel Diodes Tunnel Rectifiers Turn-On Time	68 72 45
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time	68 72 45 45
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time	68 72 45 45
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes	68 72 45 45 32 73
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit	68 72 45 45 32
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage:	68 72 45 45 32 73 361
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche	68 72 45 45 32 73 361 50
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche	68 72 45 45 32 361 50 50
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown 16,	68 72 45 45 32 73 361 50
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Breakdown 16,	68 72 45 45 32 73 361 50 50 50
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Breakdown 16,	68 72 45 45 32 73 361 50 50 50 17
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pcak Reverse Punch-through Breakdown	68 72 45 45 32 73 361 50 50 50 17 17
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pcak Reverse Punch-through Breakdown	68 72 45 45 32 73 361 50 50 17 17
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pcak Reverse Punch-through Breakdown	68 72 45 45 32 73 361 50 50 50 17 17
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pcak Reverse Punch-through Breakdown	68 72 45 45 32 73 361 50 50 17 17
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pcak Reverse Punch-through Breakdown	$\begin{array}{c} 68\\72\\45\\32\\3361\\50\\50\\17\\17\\16\\49\end{array}$
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pcak Reverse Punch-through Breakdown	68 72 45 45 32 73 361 50 50 17 17 17
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Peak Reverse Punch-through Reach-through Saturation Sustaining Zener Voltage Reference Diodes Voltage Regulator, Shunt Type	$\begin{array}{c} 68\\72\\45\\32\\3361\\50\\50\\17\\17\\16\\49\end{array}$
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pack Reverse Punch-through Saturation Sustaining Zener Voltage-Reference Diodes Voltage Regulator, Shunt Type	68 72 45 32 361 50 50 50 17 17 16 974
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pack Reverse Punch-through Saturation Sustaining Zener Voltage-Reference Diodes Voltage Regulator, Shunt Type	68 72 45 45 32 73 361 50 50 50 17 17 16 49 367 367
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Peak Reverse Punch-through Saturation Sustaining Zener Voltage-Reference Diodes Voltage Regulator, Shunt Type (Circuit): Regulation = 0.5%	68 72 45 32 361 50 50 50 17 17 16 974
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Peak Reverse Punch-through Saturation Sustaining Zener Voltage-Reference Diodes Voltage Regulator, Shunt Type (Circuit): Regulation = 0.5%	68 72 45 45 32 73 361 50 50 50 17 17 16 49 367 367
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Peak Reverse Punch-through Saturation Sustaining Zener Voltage-Reference Diodes Voltage Regulator, Shunt Type (Circuit): Regulation = 0.5% Regulation = 1.5% Voltage Regulator, Series Type	68 72 45 45 32 73 361 50 50 50 17 17 16 49 367 367
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Peak Reverse Punch-through Reach-through Saturation Sustaining Zener Voltage-Reference Diodes Voltage Regulator, Shunt Type (Circuit): Regulation = 0.5% Regulation = 1.5% Voltage Regulator, Series Type (Circuit):	68 72 45 45 32 73 361 50 50 50 17 16 49 74 867 867
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Peak Reverse Punch-through Reach-through Saturation Sustaining Zener Voltage Regulator, Shunt Type (Circuit): Regulation = 0.5% Regulation = 1.5% Voltage Regulator, Series Type (Circuit): Adjustable Regulation	68 72 45 45 32 73 361 50 50 50 17 17 16 49 367 367 368 368
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pack Reverse Punch-through Saturation Sustaining Zener Voltage-Reference Diodes Voltage Regulator, Shunt Type (Circuit): Regulation = 0.5% Regulation = 1.5% Voltage Regulator, Series Type (Circuit): Adjustable Regulation Regulation = 2%	68 72 45 32 73 361 50 50 17 17 16 49 74 3667 3668 3667
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pack Reverse Punch-through Saturation Sustaining Zener Voltage-Reference Diodes Voltage Regulator, Shunt Type (Circuit): Regulation = 0.5% Regulation = 1.5% Voltage Regulator, Series Type (Circuit): Adjustable Regulation Regulation = 2%	68 72 45 45 32 73 361 50 50 50 17 17 16 49 367 367 368 368
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Peak Reverse Punch-through Reach-through Saturation Sustaining Zener Voltage Regulator, Shunt Type (Circuit): Regulation = 0.5% Regulation = 1.5% Voltage Regulator, Series Type (Circuit): Adjustable Regulation	68 72 45 32 73 361 50 50 17 17 16 49 74 3667 3668 3667
Tunnel Diodes Tunnel Rectifiers Turn-On Time Turn-Off Time Turn-Off Time Unilateralized Amplifier Varactor Diodes Video Amplifier Circuit Voltage: Avalanche Breakdown Pack Reverse Punch-through Saturation Sustaining Zener Voltage-Reference Diodes Voltage Regulator, Shunt Type (Circuit): Regulation = 0.5% Regulation = 1.5% Voltage Regulator, Series Type (Circuit): Adjustable Regulation Regulation = 2%	68 72 45 32 73 361 50 50 17 16 49 74 3667 368 3667 368

KEY TO TERMINAL DIAGRAMS

- A Anode
- B Base
- C Collector
- D₁ Diode Unit No. 1
- D_2 Diode Unit No. 2
- D_3 Diode Unit No. 3
- E Emitter

- F Mounting Flange
- G Gate
- IC Internal Connection
- IS Interlead Shield
- K Cathode
- L Lug
- S Stud

NOTES:

Elongated case symbol denotes "in-line" arrangement of electrode terminals.

Arrow on case of diodes or emitter lead of transistor diagrams indicates direction of "conventional current flow"; electron current flows in a direction opposite to the arrows.