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PREFACE

The purpose of this book, which the author hopes will benefit those in most
levels of electronic endeavor, is to set forth a practical application of pulse
theory. Both hobbyist and specialist have been plagued with misconcep-
tions, and both are susceptible to confused thinking when dealing with
pulse phenomena.

Traditional concepts of pulses, or nonsinusoids, have developed from mathe-
matically rigorous equations of electrical engineering; the nonsinusoid of
electrical power generation and distribution occurs too infrequently, or
with too meager consequence, to merit much more than passing attention.
Unfortunately, this situation is at odds with conditions generally extant in
electronic circuits. Such circuits are often dependent upon the unique
characteristics of waveshapes other than the sinusoid.

If one is to gain insight into the operating principles underlying radar,
computers, the various digital techniques, and other modern pulse applica-
tions, a new approach to pulses is needed. Specifically, one must treat the
nonsinusoid as a respectable electrical parameter; regarding the nonsinusoid
as a necessary evil, or an imperfection in the attempt to attain ideal condi-
tions, must be avoided. Accordingly, this book inverts the outmoded con-
vention; it is now the sine wave which is recognized as the secondary
waveshape.

The author believes that a majority of those engaged in the several depart-
ments of electronics will respond favorably to this book. Technicians,



servicemen, radio-amateurs, and engineers will benefit according to the
particular facets of their interest and background.

Another group which the author feels will find BASIC PULSES very use-
ful is the student, whose present knowledge of electronics enables him to
construct, operate, and service radios, transmitters, amplifiers, and other
equipment. Within the student category are those who have completed
basic instruction courses such as those conducted by the services, technical
schools, and the pre-engineering school curriculum of colleges and
universities.

An important aspect of this book is the relative absence of mathematics.
The treatment is primarily based upon descriptive narration. Pulse phe-
nomena is explained by analogy, through cause and effect relationship, and
in general by means of qualitative rather than quantitative analysis. The
author feels that even those who are mathematically inclined will find this
descriptive approach helpful in converting symbolic logic into practical
electronic circuitry. Of even greater importance, the descriptive treatment
in this volume constitutes an excellent prelude for advanced study.

The author is indebted to the staff of the Stanford University Engineering
Library, who exhibited cordiality as well as competence in aiding the
author locate numerous obscure but important treatises bearing on the sub-
ject of pulses. Public acknowledgement is hereby conferred on my wife,
Anne Lee Gottlieb, for her assistance in the preparation of manuscripts
and in the refinement of the supporting illustrations.

Sunnyvale, California IRVING M. GOTTLIEB
August, 1958
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THE PULSE WAVE DEFINED

Defining the Pulse

It is both interesting and instructive to begin our acquaintance with pulses
by considering the one exception to all waveforms which can never qualify
as a pulse waveform. This unique exception among waveforms is the sinus-
oid or sine wave. The shape of a sine wave is given by a graph, which shows
the vertical displacement a point on a circle makes with respect to its angu-
lar progresses around the circle.

We see a continuous sequence of identical sine waves. This is typical of
the sinusoidal waveform displayed on the screen of an oscilloscope. Whether
a sinusoidal waveform contains one sine wave or many identical sine waves,
the waveform displays no pulse properties.
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The Sine Wave, the Only Waveshape Which Cannot be a Pulse
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. VIR A Smooth Waveform Which
A Wavetrain of [dentical Sinusoids Can Exhibit Pulse Propetties

It is important to keep this in mind: although many waveforms are com-
posed of smoothly curved segments, such waves are not exempted from
classification as pulses, as are true sine waves. For example, the waveform
made up of half circles can, under conditions discussed later, be considered
a pulse waveform. It is a pulse waveform because a frequency-selective
circuit can alter the waveshape and make its pulse characteristics evident.
Of all imaginable waveshapes, only the sine wave is undistorted by fre-
quency discrimination.




THE PULSE WAVE DEFINED
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TYPICAL PULSE WAVEFORMS

ENCOUNTERED IN ELECTRONIC DEVICES

From common experience, the term “pulse” might be associated with
“abrupt,” “sudden,” “brief,” and similar words which signify rapid transi-
tion, or the short persistance of an event. It is indeed helpful to carry such
words into the study of pulses. For the purposes of practical electronics we
may define pulse as follows: any rapid change in voltage or current which
does not represent a whole number of sine waves is a pulse, or a series of

pulses.



THE PULSE WAVE DEFINED

Pulse Properties of Partial Sine Waves

The waveforms illustrated are typical of the pulse waveforms encountered
in electronic devices. It will be shown that the qualifying term “rapid” has
an exact meaning when the definition (page 2) is applied to practical circuits.
First we shall investigate certain waveforms which may be construed to be
sine waves, but which, unlike true sine waves, exhibit properties of the pulse.
The waveforms depicted represent the rectified current monitored at the
output of a half-wave and full-wave rectifier, respectively. These waveforms
are sinusoidal variations, but cannot be referred to as sinusoids or sine
waves according to accepted usage in electrical practice. A partial or incom-
plete sine wave does not possess the immunity from pulse behavior that a
complete sine wave does. Indeed, in a power supply, the design of the filter
which follows the rectifier is facilitated by taking into account the pulse
nature of such “semi” sine waves.

Removed by Rectification inverted by Rectification
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Frequency-Modulated Sinucoid

Pulse Waveforms Containing Sine-Wave Cycles

Other interesting partial or near-sinusoids, more difficult to recognize as
acting pulses than are the rectified sine waves, are shown. They are, never-
theless, pulses if their frequencies or modulations are rapid enough to
significantly effect the circuit under consideration. Even a modulated carrier
is not, from our point of view, a sine wave. Consequently it can display
pulse properties. This viewpoint is not arbitrary, but is formulated upon
the following discussion: Can the waveshape be altered by a frequency
selective circuit? If the decision is affirmative, we are dealing with a pulse
waveform, not a sine wave. For example, if we pass an AM sinusoid wave-
form through a sharply tuned bandpass filter, the modulation envelope
will be removed.



THE PULSE WAVE DEFINED

Linearity and Time
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The test made with a frequency-selective circuit is valid only if such a
purposes, a linear frequency-selective network. If the inductors contain iron
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In terms of our definition of the properties of a pulse, we now ask: “How
rapid is rapid?” Generally, pulses found in electronic equipment will com-
plete their cycles in microseconds or milliseconds. Waveshapes which
endure for longer times, say seconds or minutes, also manifest pulse proper-
ties if their rate of change in amplitude is high. Thus, a square wave which
is off for 1 minute, then on for 1 minute, would generally be classed as a
pulse waveform if the transition between states occurs in a time convenient-
ly measured in microseconds or milliseconds. If the transition required a
number of seconds, or an even greater time, the waveshape would not gen-
erally be considered a pulse. There are, however, exceptions to this rule-of-
thumb approach.
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THE PULSE WAVE DEFINED

Nonsinusoids Which Are Not Pulses

The plate-current increase in an audio-amplifier, as the tube heaters are
attaining operating emissivity, is a function of time. We see that almost
a minute is required for the transition to complete its cycle. The plate-
current-increase waveform is not considered a pulse because its change is
too gradual to merit special attention of frequency-selective circuits within
the amplifier. For example, the interstage coupling capacitors are not
designed to provide easy passage to this waveform, since this would not
gain any desirable operating characteristic. The plate-current increase
waveform is not relevant to this part of the amplifier circuitry. However, a
waveform of this shape which requires 60 microseconds or even 60 milli-
seconds to complete its buildup would invariably exhibit pulse properties.
On the other hand, the waveforms corresponding to low-pitch musical
tones do require consideration of the coupling-capacitor size. Since such
waveforms are generally nonsinusoidal, they are decidedly pulse waveforms.

Plate Current Percent VS Time
100

Percent of Plate Current

TIME IN SECONDS

DURING THE WARM-UP TIME OF A VACUUM TUBE

THE PLATE CURRENT IS A SLOW NONSINE WAVE

Another example of a slow nonsinusoid waveform which would not be
considered a pulse is the variation in voltage delivered to a portable radio
as battery activity diminishes with use. No frequency-selective networks
within the receiver are involved in this relatively slow change. Accordingly,
the graph depicting the fall of battery voltage with time does not, in a
practical sense, represent a pulse waveform.

5



PULSE USES IN ELECTRONIC EQUIPMENT

Relating Pulse Waveforms to Specific Circultry

We see a third example of how to distinguish between a pulse and a non-
sinusoidal waveform. It demonstrates the importance of associating the
considered waveform with specific circuitry sections in evaluating rapidity
of wave transitions. A transition which is slow with respect to one circuit
may be reconsidered when its action in another circuit is analyzed. A good
example of this concept is a Geiger counter in which the Geiger tube is
energized from voltage stored in a capacitor. The design of the frequency-
selective portions of the amplifier which follows the Geiger tube need not
take into account the diminishing capacitor voltage, but only the staccato-
like pulses delivered from the Geiger tube. However, the design of the
circuitry directly associated with the charging of the capacitor and the
load imposed by the Geiger tube are of direct significance with respect to
this slowly diminishing voltage wave.

&= CAPACITOR
DISCHARGE VOLTAGE £

Ta Amplifier

Y

Capacitor Voltage

012345

Time In Minutes

A Geiger Tube Energized from an Qccasionally Charged Capacitor

The capacitor shown is charged by manual actuation of pushbutton switch
S1. This makes and breaks current flow in the primary winding of step-up
transformer T1. The positive cycles of the high-voltage pulses induced in
the secondary winding of T1 are passed by rectifier Y1 to capacitor Cl.
The accumulated charge stored in Cl then energizes the Geiger tube. Due
to the load imposed by the Geiger tube and leakage paths, the capacitor
voltage slowly falls until proper operation of the Geiger tube necessitates
actuation of S1 again.

The relatively slow discharge of the capacitor is, in this example, an impor-
tant factor in the performance of the device. The rate of capacitor discharge
is measured in minutes here, which is rapid relative to the circuit function
of the high-voltage supply. The waveform shown, therefore, is a pulse with
respect to this high voltage supply.



PULSE USES IN ELECTRONIC EQUIPMENT

Sine Wave Distortion in an Iron-Core Conductor

It is not necessary for both voltage and current waveforms to be pulse
waveforms, nor is it required that they be pulse waveforms of the same
shape. If a perfect sine-wave voltage is applied to an iron-core inductor,
the resultant current will be a distorted sinusoid having the general shape
shown (left). In similar fashion, we see (right) the voltage and current
waveforms applied to the deflection coils of a radar cathode-ray tube.

VOLTAGE APPLIED TO INDUCTOR
VOLTAGE APPLIED TO DEFLECTION COILS

AVAVERRS T

RESULTANT CURRENT IN INDUCTOR

AVAVERP W'Y

CURRENT IN DEFLECTION COILS

T

Voitage and Current Waveforms

Are Distorted Because of the Use of Iron-Core Inductors.

From the discussion thus far, it can be seen that most waveforms in electron-
ics are not sine waves, and that most of these nonsinusoids appear in circuits
as pulses. An understanding of pulses provides a better insight into the
operational theory of electronic devices than can be obtained through the
study of ordinary alternating-current principles alone.

7



PULSE USES IN ELECTRONIC EQUIPMENT

Typical Uses of Pulses in Electronics

To understand the importance of pulses, we will study several examples of
pulse techniques employed in actual electronic devices and systems. Radio-
telegraphy was the first pulse application used in electronics. The dots and
dashes of the Morse code represent a significant use of pulses—the com-

munication of information.
/ // i
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RADIO-TELEGRAPHY --- An Early Application of Pulses

 Bacb
RADAR Utilizes Precisely Formed Rectangular Pulses

Radar exemplifies utilization of pulses for making refined time-interval
measurements. (Although the indicated parameter is distance, the quantity
is calibrated from the measured time interval.) Short-duration bursts of
microwave energy are propagated into space at regular intervals. Between
successive bursts, an ultra-sensitive receiver responds to the reflected micro-
wave energy which is returned to the radar site by various objects. The
length of time ensuing between the end of a transmission and the reception
of an echo is interpreted in terms of the distance between the radar set and
the object which reflects a portion of the microwave energy. Both radar and
radiotelegraphy utilize discontinuous wavetrains of high-frequency energy.
The requirements imposed by radar on precision and uniformity of pulse
dimensions are much more severe than those required by radiotelegraphy.

8



PULSE USES IN ELECTRONIC EQUIPMENT

Typical Uses of Pulses in Electronics (contd.)

Television is an anthology of pulse techniques. One pulse technique it

illustrates with special clarity is the process of timing, or synchronizing.

This is necessary in television because the rendition of picture elements

on the receiver cathode-ray tube must be synchronized with the scanning

of the image pickup tube in the studio. The composite television signal

contains pulses which actuate different circuits of the TV receiver.
Honzontal Pulses Vertical Pulses

AR

)
Equalizing Pulses COMPOSITE VIDEO SIGNAL

Television is Based on the Skillful Use of Pulse Techniques

The cathode-ray oscilloscope is probably the most useful single laboratory
measuring instrument. For the oscilloscope to display a true image of the
waveform being monitored during service or design work, the electron
beam which illuminates the phosphorescent screen must be swept across
the screen at a uniform rate. This requirement is met by a deflection-voltage
waveform having a sawtooth shape. The sawtooth wave is a pulse waveform
important in many electronic devices. The leading edge of the sawtooth
deflects the electron beam across the oscilloscope screen at a uniform rate,
from left to right. The trailing edge quickly returns the beam to the left
side of the screen, whereupon a successive sweep commences with the next
leading edge.

SAWTOOTH WAVEFORM APPLIED TO

HORIZONTAL PLATE BY lNTERNALMI

TIME-BASE GENERATOR OF
Signal Generator Lo
OSCILLOSCOPE
The Sawtooth Waveform Provides a Linear Time Base for Qscilloseapes

Besides its use for linear time sweeps, the sawtooth pulse is employed in
signal generators and frequency multipliers because this pulse shape is
very rich in harmonics. The square wave is also employed for these appli-
cations. Pulses so utilized provide numerous harmonic frequencies which
have the desirable property of having the same frequency stability as the
pulse-repetition rate.




PULSE USES IN ELECTRONIC EQUIPMENT

Pulse Techniques in Digital Computer Logic
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The Digital Computer Solves Problems hy
Storing Information Contained in Pulses

Digital computers represent a spectacular application of pulses. The digital
computer can solve fantastically complex problems in minutes or even
seconds. Actually the digital computer is based upon a simple concept—
the storage of bits of information. The properties of the rectangular pulse
are perfect for storage. The rectangular waveshape is produced by the on
or off conditions of electronic switches.
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PULSE USES IN ELECTRONIC EQUIPMENT

Use of Pulses in Counting Devices

The digital counter uses pulses to trigger responsive circuitry into any
one of a large number of possible stable states. Each stable state is indicated
on a panel by illuminated numerals. The number of events entering the
computer is thereby displayed. The display may be timed to show the total
number of events counted over a precise time interval. If the time interval
is 1 second, the display of lighted numbers indicates frequency in cycles
per second. This instrument is extremely useful in developing stable oscil-
lators, designing precise filters, and monitoring the output of frequency
generators where extreme accuracy is needed for laboratory work. Also,
the digital counter is used with various transducers which translate physical
phenomena such as shaft rotation, acoustic parameters, liquid flow rate,
temperature, and other quantities into electrical information. This instru-
ment is an example of the use of pulses in counting and totaling.

: s THE DIGITAL COUNTER Accurately :
Counts Events Whlch Have Been Converted to Electrlcal Pulses

In the illustration, cans moving along a conveyor belt interrupt a beam of
light. The interruptions are converted to electrical pulses by the photo-
electric cell. Each successive pulse is registered onthe indicator panel of
the digital counter.

11



PULSE USES IN ELECTRONIC EQUIPMENT

Unwanted Pulses — Natural and Man-Made

Even if pulses were not deliberately generated in electronic equipment, the
abundance of unintentional pulses would require study of the nature of
pulse phenomena. An example of unintentional pulses is noise. Noise is
inherent in our universe, for wherever the temperature is above absolute
zero, the orbital electrons of atoms, molecules, magnetic domains, crystals,
and other structural components of matter are subjected to thermal agita-
tion which is manifested as noise voltages. Such noise voltages are composed
of randomlyoccurring pulses. A common source of these noise pulses is the
generations in the input circuit of a high-gain amplifier. Indeed, unless
special techniques are used, it is useless to make the sensitivity of an ampli-
fier greater than equivalent levels of signals and noise. Another source of
natural noise is produced by electrical storms and ionospheric disturbances,
collectively known as static.
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Unintentional Pulses Are Produced by Sparks and Ates \R\
in Switching and Commutating Devices.

Man rivals and even exceeds nature as a producer of noise pulses. Almost
every electrical device generates noise pulses which find their way into
electronic equipment via conduction, induction, or radiation. Even in the
simple switch a sharp interferring pulse is produced when it is turned on or
off. We hear the disturbance as a characteristic “click” from our loud-
speakers. Devices which depend for their operation on gaseous conduction,
such as neon tubes, fluorescent lamps, and mercury vapor rectifiers, are
often potent “hash” transmitters. Switching and commutating devices such
as motors and generators produce pulse waveforms of repetitive rather than
randomly occuring pulses. This may alter their capacity to interfere in a
favorable or adverse way, depending upon the electronic equipment sub-
jected to such pulses. Arcs and sparks produce vicious noise pulses. Radia-
tion from a welding arc, or from automobile ignition plays havoc with
television reception.

12



PULSE USES IN ELECTRONIC EQUIPMENT

Noise Pulses from Power Lines

Full-Wave
Rectifier

Transformer

g\‘g Spikes and
Random MNoise

Fluorescent Tube

Gas Diode

SIXTY-CYCLE LINE CURRENT OFTEN RESEMBLES
A PULSE WAVEFORNM

Even a 60-cycle “sinusoidal” power source is often, in practice, a generous
contributor of unintentional pulses which must be taken into account to
prevent malfunctioning of sensitive apparatus. The power-station generator
approximates, but does not produce, a perfect sine wave. Also, there is
sufficient cummulative nonlinearity in the complex of loads consuming
power, to further distort the wave. Furthermore, the arcing, sparking,
switching, commutating, and inductive pickup of atmospheric-earth current
disturbances causes spikes and random noise pulses to be superimposed
upon the “sine wave.” The net result is a wave which often acts as a source
of interference. The sine wave is a very rare occurence. In contrast, the
pulse waveform is extremely common.

13



PULSE USES IN ELECTRONIC EQUIPMENT

Pulse-Measuring Instruments

With waves visually displayed on an oscilloscope, it is possible to measure
time and amplitude parameters. The nature of pulses measured by other
instruments should always be checked on an oscilloscope.

With a vacuum-tube voltmeter the rms values of sine waves can be measured,
and the vtvm can be calibrated to read peak values of voltage. When a
narrow bandpass filter is used in conjunction with a vtvm, the instrument
becomes a selective voltmeter providing accurate information for the fun-
damental and each harmonic frequency. Used with distorted waves, the
vacuum-tube voltmeter requires careful judgment.

amaewwy (NSTRUMENTS FOR

PYLSE-WAVEFORM
ANALYZER A”Al ys,/s

HARMONIC

A distortion analyzer is essentially a tunable narrow-band rejection filter in
conjunction with a vtvm. The level of the composite wave form is measured,
then a measurement is made with the tunable filter adjusted to reject the
fundamental frequency. From the ratio of the two measurements, the dis-
tortion percentage is obtained.

Precise measurements of pulse-repetition rate, frequency, duration, period,
and interval can be made with a digital counter. Using the Fourier theory
of pulse composition, the digital computer can provide much infermation
regarding low-pass, high-pass, bandpass, and rejection filters.

A harmonic analyzer incorporates a vtvm in conjunction with tunable filters
employed in such a way that a quantitative measurement of individual har-
monics may be made. Thus, more detailed information is provided than with
the distortion analyzer, which measures distortion products as a summation
of all harmonics.

14



QUESTIONS

1 What characteristic distinguishes the sine wave from pulse wave
forms?

2 What type of circuit is used to detect the difference between a
pure sine wave and a pulse waveform which bears some resemblance to the
sine wave?

3 Why is the half-sine wave output of a rectifier not considered a
true sine wave? Name some other waveforms which closely resemble sine
waves but which exhibit pulse properties under certain conditions.

4 Why is the charging time of the capacitor in a Geiger counter con-
sidered to be a pulse rather than a “slow” nonsinusoid?

5 List three important uses of pulses in electronics.

6 List three pieces of electronic equipment which make extensive
use of the sawtooth pulse. Describe the use of this pulse waveform in the
cathode-ray oscilloscope.

7 How is the television receiver synchronized with the TV camera
in the studio?

8 List three uses of the digital counter.

9 What is static? How is it dealt with in electronic equipment?

10 Why is the 60-cycle house current which is supposedly a pure sine
wave source sometimes a cause of electrical noise?

15



MEASURING IRREGULAR WAVEFORMS

The Measurement of Pulses

The response of a circuit exposed to pulses depends upon a number of
characteristics possessed by pulse waves. Most of these characteristics deal
with the geometrical measurements of the pulse waveforms. It is necessary
that we agree to the meaning of the various dimensional terms which de-
scribe the visible waveform that might be observed on an oscilloscope or
plotted on paper.

Pulses sometimes occur as individual entities, but more often in groups
called wavetrains. In either case, there are four important elements with
respect to which all pulse measurements are made. These are the baseline,
the leading edge, the peak (or top), and the trailing edge. Note in the
diagram that waveforms above the baseline are designated positive; those
below the Laseline are assigned the negative polarity.

Trailing Edge

Leading Edge

\ Baseline
Leading Edge

THE DIMENSIONS OF THE PULSE WAVEFORM

=\/\VVV\

THE PEAK-TO-PEAK MEASUREMENT

Usually, peak amplitude is measured with respect to the baseline. In some
wavetrains, such as the one shown above, it may not be easy to locate the
baseline with acceptable accuracy. Here, instead of dealing with the peak
amplitude measured from the baseline, we measure from negative peak to
positive peak and designate the value thereby obtained as the peak-to-peak
amplitude of the waveform.

Due to the universality of oscilloscopic measurement techniques, pulses are
generally voltage waveforms. However, pulses may also represent current
or power as a consequence of special measurement procedures or graphical
construction. In such instances, the pulse waveforms should be appro-
priately identified so they will not be construed as voltage excursions.

16



MEASURING IRREGULAR WAVEFORMS
Pulse Rise Time and Decay Time

Decay Time

<—Rise Time

90% of Peak Amplitude

10% of Peak
Amplitude

THE DEFINITION

OF RISE TIME AND DECAY TIME

The steepness of their leading and trailing edges profoundly effect the
behavior of pulses in circuits. It is consequently important that a measure-
ment parameter be established for these pulse characteristics. How shall
we define the steepness of an irregular leading or trailing edge and a trailing
edge of nonconstant slope. The problem is resolved by means of an arbitrary
rule: rise time is the time elapsing between two definite points on the
leading edge. One of these points is that corresponding to 10% of peak
amplitude; the other point is that corresponding to 90% of peak amplitude.
There is a similar definition for the decay time of the trailing edge; decay

time is the time consumed for the trailing edge to decline from 90% of peak
amplitude to 10% of peak amplitude.

17



MEASURING IRREGULAR WAVEFORMS

The Measurement of Pulse Duration

Another important pulse parameter is duration. As the term implies, the
measurement involved is the length of time the pulse persists. Duration
is easy enough to ascertain if the pulse shape is rectangular or square, but
for other pulse shapes we must standardize a definition to avoid ambiguity.
A triangular wave, for example, has a measurable duration along its base,
but zero duration at its peak. Unfortunately, one does not find a consistent
method of defining and measuring duration in the technical literature.

WO PULSE-DURATION MEASUREMENTS OFTEN MADE ! \\
FOR TRAPEZOIDAL WAVES §

Measured at peak value
« di —»l

Either the top or the base measuremen
conveys useful information abou
pulse duration

- S

//

<« dy

Measured along the base P
1

Measured at
90% above
base level

i)
Measured at 10%

10% 4  above base level
or 90% of peak level _
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The duration of pulses having the general shape ofa trapezoid is sometimes
measured along the base of the pulse, but at other times the top of the
pulse defines the duration. A common variation of these two methods
involves the 10% and 909% points on the leading and trailing edges of the
pulse. Under these conditions, the base measurement of duration will be
made across points corresponding to 10% of peak pulse amplitude; similarly,
the top measurement of duration will be made across points corresponding
to 90% of peak pulse amplitude.

0%

$
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MEASURING IRREGULAR WAVEFORMS

Area-Redistribution Method of Measuring Pulse Duration

Another way to establish the position on a nonrectangular pulse for meas-
uring its duration is shown. This is the area-redistribution method. A
rectangle is drawn having the same peak amplitude and the same area as
the original pulse under consideration. The width of this rectangle, meas-
ured to the same time-unit scale as the original pulse, is considered the
duration of the original pulse. The area of the original pulse can be evaluated
by the methods of geometry. For example, the area of a triangular wave is
one-half the product of base times altitude. Of course, it is necessary to
establish a scale of measurement, for example so many milliseconds per inch.

Rectangle with Same Peak

Amplitude and Area as the

A SIMPLE DERIVED
AREA REDISTRIBUTION METHOD DURATION

OF MEASURING PULSE DURATION

In advanced engineering and design, complex formulas are often used to
evaluate one pulse function in terms of another, or several others. Such
relationships are adaptable to any of the pulse-duration definitions, but
must be appropriately modified for the particular definition. The fact that
this is possible indicates the validity of all the methods of defining duration,
providing we supply the whole story, the time in milliseconds or micro-
seconds, as the case may be, plus the method of measurement.
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MEASURING IRREGULAR WAVEFORMS

The Energy Redistribution of a Pulse

There is another method of defining pulse duration. This approach, the
energy-redistribution method, is mathematically more consistent than the
other methods. It is a standardized or normalized rather than arbitrary
means of attaining a duration-measurement method which provides the
same measured quantity regardless of pulse shape. This approach is similar
to the area-redistribution method, but is a little more involved.

(1)2= {——>

(.12 = approx. .5

(.5)2=.25 \

02 =0

VOLTAGE
OR CURRENT

PULSE POWER WAVE

Amplitude in Relative Units
B

Time in Milliseconds mEE— )

The First Step in the ENERGY Redistribution
Method - Conversion of Original Voltage or
Current Pulse into a Curve Representing Power

Assume, as is generally the case, that the pulse shape represents a voltage
or current. We convert this to a wave representing power by squaring a
few amplitude values and plotting the resultant curve. This is because the
power in an electric circuit is proportional to either current squared or
voltage squared. First, the waves are drawn on graph paper. Then, regardless
of actual amplitude in volts or milliamperes, the peak amplitude is desig-
nated as unity, or one. This makes it possible to perform the squaring
computations mentally; thus 1 squared is 1; 1/2 squared is 1/4, 1/3 squared
is 1/9, and so on.

After deriving our power curve, we evaluate the area enclosed by it. If we
have plotted our waves on graph paper, this area can be closely estimated
by counting the number of squares embraced within the power curve. Or
an instrument such as a planimeter can be used. Sufficient accuracy for many
practical situations will be provided by approximating irregular curve
sections with smooth or straight lines.

20



MEASURING IRREGULAR WAVEFORMS

Pulse Duration Derived from the Power Curve

After computing or estimating the area under the power curve, we construct
a rectangle having the same peak amplitude and the same area as the area
under the power curve. The width of this equivalent-area rectangle is defined
as the duration of the original pulse. (The width of the rectangle is readily
obtained by dividing the area under the power curve by the number of graph-
paper squares between the base and peak amplitude.)

Rectangle with Same
Peak Amplitude and
————— — Same Area as Power Wave

=== Power Wave

‘_i DERIVED DURATION

The Second Step in the Energy Redistribution Method--

Conversion of a Power Wave to an Equivalent-Area Rectangle

It is important to understand the logic involved in this computation. The
power curve derived from the original voltage or current pulse is actually
a graph of power plotted against time. Graphically, energy is proportional
to the enclosed area under our power curve. It is the most significant
property common to all pulses, for the various manifestations of pulses are
fundamentally due to energy content and distribution. To standardize a
definition of duration, we circumvent the different energy distributions
corresponding to different pulse shapes. We do this by converting the
energy package, that is, the power curve, to a simple geometrical shape, a
rectangle having a peak amplitude the same as the power curve. We can then
say that the energy contained in a pulse acts very much as an equivalent
energy standardized rectangular pulse. An analagous situation is the center
of gravity of an automobile when the automobile acts as though its distrib-
uted weight exerts its collective influence at the center of gravity.

Despite the different methods of defining duration, they are all useful if
we take care to designate the measurement technique. If the simple baseline
measurement is used, as is very frequently the case, it is important to specify
duration as the baseline value.
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MEASURING IRREGULAR WAVEFORMS

Demonstration of Pulse Measurement

Pulse waveform ifrom

squared values

a
The squared pulse are

equalsA: .
A= 1/2x4x3=

¢ Height = 6/3=2
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Question: Do pulses as well as sine waves have effective or rms values?
Answer: Yes, and in the same sense. The effective or rms value of pulses is
the value which would produce the same heating effect as a d-c voltage or
current of that value.

Procedure: The procedure for finding the rms value of pulses is illustrated.
A near exponential pulse with a peak amplitude of 2 volts is generated, for
our purposes, by a relaxation oscillator.

1. The wave is traced or copied from the oscilloscope screen. In so
doing, the scale, that is, the number of volts per inch, is noted. From this,
the duration of the pulse can be dimensioned as so many volts. This serves
the geometrical purpose of measuring the base line of the pulse in the same
units as the amplitude.

2. Square several amplitude values of the pulse.

3. Draw a new wave using the squared values obtained in Step 2.

4. By means of graphical methods, or with a planimeter, find the area
of the new wave. In our case, the new wave is a triangle with an area equal
to 1/2 the base times the height. Thus the area is 1/2 X 3 X 4 or 6 “square”
volts.

5. Find the average amplitude of the new wave. This is obtained by
dividing the area of the new wave by its base or duration. For the problem
at hand, the average amplitude is equal to 6/3 or 2 volts.

6. Derive the square root of the value found in step 5 to find the rms
value of the original pulse. \/2 = 1.41. (Most pulses have rms ratios of values
other than \/2. It is coincidental that the wave considered here has the same
rms value as the sine wave with the same peak value.)
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TYPES OF PULSE WAVETRAINS

Identical and Nonidentical Pulses

.

“

A WAVETRAIN OF IDENTICAL PULSES

A WAVETRAIN OF NONIDENTICAL PULSES

We have defined and used the important terms of pulses considered as
single entities. These terms are entirely applicable to the pulses comprising
wavetrains in which one pulse after another occurs. However, there are
other pulse characteristics relevant to a series of pulses rather than to
single isolated pulses. Accordingly, we now measure groups of pulses. A
wavetrain of pulses can consist of identical pulses or pulses differing in
some measurement parameter. We see one wavetrain of identical pulses and
one wavetrain of nonidentical pulses.
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TYPES OF PULSE WAVETRAINS

Periodic and Aperiodic Pulses

The two main classifications of pulse wavetrains are periodic and aperiodic
pulses. A third classification, transient pulses, is not so amenable to a specific
definition as the first two, but it merits discussion because of its frequent
usage in technical literature. The periodic wavetrain of pulses is one in
which the time interval between leading edges of successive pulses is the
same. This definition holds for nonidentical as well as identical pulses. In
the case of identical pulses, the definition of periodicity can be extended
by stating that the time interval between corresponding points of successive
pulses is the same. Part C of the illustration is an interesting pulse wave-
train; it is periodic, though not evidently so at first glance.

THE PROPERTIES OF PERIODIC PULSES

@ o 10 us 10 us
identical pulses
n '| -I | | T i
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The periodicity of pulse trains

non-identical pulses
is not always apparent
_l(__]:rl(_l__,l(_ {I— at first sight.
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This definition of periodic pulses is not all-inclusive; strange and unusual
wavetrains of nonidentical pulses can be devised, having a rythmic quality
which classifies them with periodic wavetrains. However, we are concerned
only with rules which apply to the vast majority of cases encountered in
electronic devices. Generally, it will be found that periodic wavetrains
involve either identical pulses (parts A and B), or nonidentical pulses of
simple shape (part C). In part B, the time intervals between corresponding
points of successive pulses in a periodic wavetrain of identical pulses are
the same.
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TYPES OF PULSE WAVETRAINS

Periodic and Aperiodic Pulses (contd.)

A WAVETRAIN OF PERIODIC PULSES

8 8 8
us us HS

A WAVETRAIN OF APERIODIC PULSES

7 17 93
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Aperiodic pulses are those pulse wavetrains which are not periodic. If the
aperiodic pulses are identical, there is no fixed time interval between
corresponding points on successive pulses. If the aperiodic pulses are not
identical pulses, the leading edges of successive pulses are not spaced by
fixed time intervals. We see an aperiodic pulse train made up of identical
pulses. It is readily seen that the intervals between successive pulses vary
in length. As in the case of periodic pulses, we are concerned with a defini-
tion which will hold true in the vast majority of pulse waveforms encount-
ered in practical electronics rather than with academic exceptions. It is
easy to ascertain whether a wavetrain of identical pulses is periodic or
aperiodic. When the wavetrain is made up of nonidentical pulses, one must
exercise caution rather than make a quick visual appraisal. The periodic
waveform shown, for example, is not obviously periodic.

25



TYPES OF PULSE WAVETRAINS

Demonstrating Effect of Time Interval
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Question: How is the rms value of pulses effected when there is a time
interval between successive pulse cycles?
Answer: The procedure is the same as shown on page 22 with an additional
step involved. The result obtained in step 5, page 22, is multiplied by the
factor

duration

duration + interval

In the pulse depicted on page 22, the interval between successive pulses
was zero. Therefore

duration
duration + interval

was equal to unity.
In the pulse train shown, the intervals are equal to the pulse duration.
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TYPES OF PULSE WAVETRAINS

Transient Pulses

@ |

TRANS/ENT DENOTES BRIEFNESS, RANDOMNESS, OR PULSES
WHICH ARE NOT DELIBERATELY GENERATED.

The term “transient” is generally applied to pulses which are generated as
byproducts of pulses more intimately associated with the desired perfor-
mance of the electronic device. Often, transient pulses interfere with the
intended operational mode of the device or system. In another use, we
frequently find transients as extremely brief pulses which may or may not
be intentionally produced. Sometimes the individual pulses of an aperiodic
wavetrain are spoken of as transients. The irregular discharges of lightning
are commonly described as transients. It is not possible to attain a rigid
definition of transients in view of the several connotations of the word
repeatedly found in the technical literature. However, the factor of brief
duration is the underlying common denominator. Shown are transient pulses
which comply with this concept.
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ADDITIONAL PULSE CHARACTERISTICS

Pulse Interval and Pulse-Repetition Rate

Pulse interval defines the length of time elapsing between pulses. This
means time, measured along the baseline from the trailing edge of a pulse
to the leading edge of the successive pulse, A rectangular or square wave
always involves definite pulse intervals, whereas a triangular waveform
has a pulse interval of zero. (In some applications, it is more convenient
to measure pulse interval between pulse peaks, or between other points on
the pulse envelope. This is permissible providing the points of measure-
ment are stated.)

The Pulse Interval is Generally Measured Along
the Baseline.

Pulse Interval ’ bj w

0

— ¢——  One Second —>|

A Pulse Wavetrain with a Pulse-Repetition Rate
of Three Pulses per Second.

An important parameter of periodic pulses is pulse-repetition rate. This
term defines the number of pulses occuring over a definite time span, usually
one second. Pulse-repetition rate denotes the same characteristic of pulses
as the frequency implies in alternating-current practice. As most alternating
current waveforms are pulses, intentional or not, there is no sharp distinc-
tion to help us decide which term is appropriate. Indeed, pulse-repetition
rate and frequency are used interchangeably in technical literature dealing
with pulses. However, pulse-repetition rate is the preferred term when the
pulse characteristic of a waveform is a relevant feature with respect to the
circuit to which it is applied. A pulse entails its complete cyclical excursion
when both positive and negative wave portions are involved (see part C
of the figure). The pulse-repetition rate of this periodic waveform is three
pulses per second not six pulses per second.
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ADDITIONAL PULSE CHARACTERISTICS

Pulse Period Defined
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In a periodic wavetrain of pulses, the time elapsing between corresponding
points on the leading edge of successive pulses is known as the period. For
a given pulse-repetition rate, there is a certain definite period. In fact,
period and pulse-repetition rate are reciprocally related; it is only necessary
to know one in order to compute the other. Period is equal to 1/pulse-
repetition rate. Conversely, pulse-repetition rate is equal to 1/period. Note
that the period of wavetrain is independent of pulse duration, whereas the
pulse interval is determined by pulse duration as well as pulse-repetition
rate. The relationship is: period equals the sum of the pulse interval plus
the pulse duration.

\\\\\
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ADDITIONAL PULSE CHARACTERISTICS

Perlodic Pulse Train Parameters

THE HIGHER THE FREQUENCY OF THE
INPUT SINE WAVES

o / 5 overdriven amplifier circuit
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rectifying diode
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Question: What is the pulse-repetition rate of the resultant pulses produced
by the amplifier shown.

Answer: Sixty pulses per second (the same as the input frequency).
Question: What is the period of the resultant pulses?

Answer: Period = 1/PRR;1/60 = 0.0167 sec.

Question: What is the duration of the pulse train?

Answer: The duration of symetrical pulses is 1/2 of the period. Thus,
duration = 0.0167/2 = 0.0084 sec approximately.

Question: What is the pulse interval?

Answer: The interval and the duration of a symmetrical pulse train, such
as would be derived from a circuit adjusted to clip or limit both half-cycles
equally, are the same. Pulse interval = 0.0084 sec approximately. An inter-
esting observation on the operation of the overdriven amplifier is that the
higher the frequency of the original sine wave, the shorter will be the rise
and decay times of the pulses made from it. It is assumed that the resultant
pulse train from the overdriven amplifier is rectified before the calculations
are made for the various pulse parameters.
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ADDITIONAL PULSE CHARACTERISTICS

The Definition of Duty Cycle

Duty cycle is a term mainly used in conjunction with square or rectangular
pulses in periodic wavetrains. Duty cycle is expressed as a percentage; it is
the ratio obtained by dividing the pulse duration by the period
Pulse duration
Duty cycle = ~— Period X 100

Duty cycle gives us a conception of the power involved in a pulse wavetrain.
A wavetrain of rectangular pulses with very short pulse duration cannot
represent as high an average power as the wavetrain with long duration.
The voltage or current symbolized by part A is off most of the time, whereas
the converse is true of the events depicted in part B.

.......... m#{,

THE CONCEPT OF DUTY CYCLE

A The Duty Cycle is HIGH in This Wavetrain

——)I I(— SHORT DURATION PULSE *)I '(— LONG DURATION PULSE

The Duty Cycle is LOW in This Wavetrain B

The Duty Cycle Is The Active Part Of The Pulse Period

An interesting practical aspect of the concept of duty cycle is found in
radar. The pulsed high-frequency energy has a very low duty cycle.
Although the peak power of a radar transmitter may exceed several
hundred killowatts, the average power may not exceed several hundred
watts. Consequently, the magnetron microwave generator is a physically
small tube. On the other hand, a transmitting power tube employed in a
powerful radio-telegraph transmitter must be designed for a much higher
duty cycle since the on and off times in a pulse wavetrain produced by Morse
code dots and dashes are about equal, if we consider an average based on
the letters in a typical message sentence. Due to the relatively high duty
cycle involved in telegraphy, the physical size of the power transmitting
tube must be sufficient to dissipate the high average power resulting from
the electrical losses in the tube.
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QUESTIONS

1 A time-interval meter indicates a period of .001 second for a periodic
wave derived from an oscillator. Another measurement is made with a
standard frequency source and oscilloscopic Lisajous figures; a frequency
of 1000 cycles is interpreted from the oscilloscope pattern. Can the two
measurement techniques be reconciled, or is an error indicated?

2 What is the period of a 1-mc wave frequency modulated by a 1000
cycles tone?

3 An oscilloscope known to be in good operating condition will not
synchronize on the divided-down ignition pulse obtained from the center
wire of an automobile distributor. When the test is made on another engine,
a steady synchronization is readily obtainable. In terms of wave charac-
teristics, describe a possible cause of the trouble.

4 The power delivered to a load by a half-wave rectifier is found to
be the same for either way the half-wave rectifier is connected, although
the d-c polarity across the load changes. The a-c is derived from the 120-
volt, 60-cycle house supply. Is this an expected result? Discuss.

5 A pulse radar system rated at one-half megawatt is energized by a
d-c power supply which is comparable in size and 60-cycle current drain
to that of an amateur radio-telephone transmitter operating with about 900
watts input. Why isn’t the discrepancy in operating powers reflected in
corresponding differences in their physical size and line current consump-
tions?

6 Where are aperiodic pulses generally encountered?

7 In trouble-shooting an electronic device, a low duty-cycle repetitive
wave should be monitored across the output winding of a transformer
connected to a blocking oscillator. Instead, a high duty-cycle waveform is
displayed on the oscilloscope. Before arriving at conclusions with respect
to the performance of the oscillator, or proceding further, what test should
be made?

8 It is noted that the shape of a wave observed on the oscilloscope
is controlled by the relative amounts of vertical and horizontal amplification
resulting from adjustment of the front panel controls. How can one speak
of “waveshape” when a “square wave” can be changed into a tall narrow
pulse or into a low wide one?

9 Explain why it is generally good practice to use an oscilloscope in
conjunction with a vacuum-tube voltmeter when measuring levels of periodic
a-c waves.

10 How can the rate of rise and decay of sine waves be defined or
assigned values since they vary over the excursion of the wave? Comment
on the effect of frequency on rise and decay.
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FOURIER ANALYSIS OF PULSE CONSTITUENTS

The Composition of Pulses

We have described a great many characteristics associated with the shape
and occurrence of nonsinusoidal waves. However, the visible aspects of
waveforms are the result of many important properties not discernible sep-
arately. A more extensive knowledge is needed to correlate the behavior of
pulses with their shape and occurrence.
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The Composition of a Pulse Waveform from
Harmonically Related Sine Waves

The sine wave is unaffected in shape by frequency-selective circuits. All
other waveshapes can be distorted by circuits exhibiting partiality in fre-
quency response. The sine wave attains this unique immunity because it
consists of one, and only one, frequency. Frequencies are not all affected
to the same degree by a selective circuit. The effect of such frequency dis-
crimination is to change the shape of the nonsinusoid.

What is meant when we say that a nonsinusoid is made up of more than
one frequency? How can this be so when an oscilloscope display of such a
waveform shows but one frequency, the pulse-repetition rate? The figures
on this and the next page depict the manner in which a square wave and a
sawtooth can be formed by the actual combining of two or more frequencies.
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FOURIER ANALYSIS OF PULSE CONSTITUENTS

The Composition of a Sawtooth Wave

A SAWTOOTH TYPE
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As More Harmonies Are Added to the Fundamental, the Resultant
Sawtooth Becomes Smoother.

A sawtooth wave is made up of a fundamental sine wave of given frequency
plus an infinite number of harmonics of the fundamental. The sawtooth wave
is composed of both odd and even harmonics. As more and more harmonics
are added to the fundamental, the peaks are pushed further to the side and
the resultant wave comes to resemble the traditional sawtooth shape. This
fact becomes apparent in the figure, where harmonics beyond the third have

been added to the fundamental waveform.
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FOURIER ANALYSIS OF PULSE CONSTITUENTS

Fourier Analysis of Periodic Pulses

Despite the fact that graphical constructions can be made on paper, it is
natural to question whether actual electrical waves having shapes corres-
ponding to those drawn must contain such frequencies in addition to their
pulse-repetition rates. Indeed, this is the case; the envelope of the non-
sinusoid derives its shape from the mutual effects of two or more frequencies.
The principle underlying the analysis of nonsinusoids was first formulated
by the French physicist, Jean Fourier. Fourier’s Theorem states that pe-
riodic pulses, or nonsinusoids, can be resolved into basic building blocks
consisting of harmonically related sine waves. (We will later extend this
theorem to embrace aperiodic pulses.) The constituent sine waves must
be harmonically related. Our illustrations indicate that nonsinusoids can
not possibly be made up of haphazardly occurring frequencies.
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In order for a harmonic relationship to exist, frequencies must be related
by integral multiplying factors such as 1, 2, 3, 4, 5...etcor 1, 3,5, 7

..etcorl, 2, 4,6...cetc. Note that the number one frequency appears in
all three of these sequences. This, we may say, is the first harmonic. Simi-
larly, the frequency which is two times the first harmonic is designated as
the second harmonic. The number of the harmonic always indicates how
many times higher in frequency it is than the first harmonic. The figure
above depicts several harmonically related sine waves. The first harmonic
has a special significance: it is the fundamental frequency to which all
other harmonics are geared. It should be kept in mind that the very next
order of harmonic after the fundamental is the second harmonic, since the
first harmonic is but another name for the fundamental frequency.

W///////////////////////
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FOURIER ANALYSIS OF PULSE CONSTITUENTS

Some Implications of the Fourier Theorem

One of the implications of the Fourier theorem is that the fundamental
frequency corresponds to the pulse-repetition rate of the periodic wavetrain
of pulses. The pulse-repetition rate of a periodic waveform tells us some-
thing concerning the constituent frequencies of the waveform. All other
frequencies contained in the waveform are simple multiples, or harmonics,
of the fundamental frequency. The illustration shows the relative strength
of harmonics for two pulse shapes. Note that the rectangular wave contains
no even harmonics whereas the sawtooth is made up of both odd and even
harmonics of the fundamental (first harmonic).

}

relative amplitude

HARMONIC
GENERAL DISTRIBUTION OF
THE IMPORTANT HARMONICS IN
TWO COMMON TYPES OF PULSES

Rectan gular Wave

relative amplitude

HARMONIC

Sawtooth Wave

The constituent harmonic frequencies which add up to produce the non-
sinusoid are, in themselves, pure sine waves. This must be so because the
Fourier theorem would enable us to resolve any apparent nonsinusoidal
component of a larger nonsinusoid into its own sine-wave constituents. It
follows, therefore, that the harmonically related building blocks of non-
sinusoids are pure sine waves. An extention of this reasoning tells us, too,
that the only frequency present in a sine wave is the fundamental frequency;
there are no harmonics associated with a pure sine wave.
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THE D-C COMPONENT IN PULSE TRAINS

The D-C Component in Periodic Pulse Trains

Thus far we have not mentioned any basic constituent of the nonsinusoid
other than the harmonically related sine-wave frequencies. We have stated
that the sine wave is the entity from which diverse pulse shapes are built.
Often, however, the Fourier theorem is stated in a form which includes
another element, the d-c component. It is true that a d-c level may be present
in a periodic wavetrain. Let us concern ourselves with two ways in which
a d-c voltage may manifest itself. If the baseline of a wavetrain of pulses
does not divide the positive and negative pulses equally, then one polarity
will exceed the other and we will not have a true alternating-current wave.
This elicits a net d-c level known as the d-c component, with the average
value somewhere between the highest peak value and the baseline. Note
that the d-c component is a direct consequence of the waveshape.

THO WAYS IN WHIH A D VOLTAGE COMPOREHT

CAN BE SHOWN

Area A does not equcll Area B Area A equals Area B

E

Voltage

his Wavetrain Contains an

nherent D-C Component

Another way in which d-c can be present is by superimposition. In this
instance, the baseline of the wavetrain is simply at a d-c potential other
than zero. This condition is easily comprehended by imagining a battery
inserted in series with a pulse generator. When d-c is superimposed upon
a wavetrain, the waveshape is not affected. Even a sine wave can be asso-
ciated with a d-c voltage in this manner. A superimposed d-c¢ level is not
the d-c component sometimes indicated as a constituent of nonsinusoids.
The above shows the two different ways in which d-c can be associated
with periodic pulses.
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THE D-C COMPONENT IN PULSE TRAINS

The D-C Component in Harmonic Combinations
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The illustration shows waveforms containing a fundamental and a second
harmonic component. In both waveforms there is a net d-¢ polarization or
“d-c component” due to the presence of the second harmonic, which causes
the waveform to be nonsymmetrical. The value of the d-c component is such
that the area enclosed between it and the baseline, for the duration of 1
cycle of the waveform, equals the difference of area A minus area B or
area B minus area A of the composite waveform, depending which area is
larger. Therefore the d-c component may be either of positive or negative
polarity. Symmetrical waveforms containing the fundamental and the third
harmonic frequency component have no d-c component.

We have not cited enough instances to justfy any conclusions from these
waveforms. Nevertheless it is true that the properties illustrated demon-
strate a rule which can be mathematically deduced from the Fourier theorem.
This general rule states that only even harmonics can produce a d-¢c com-
ponent, and that odd harmonics do not give rise to a d-c component. Even
harmonics are those of the series 1, 2, 4, 6, 8, etc. Odd harmonics, those of
the series 1, 3, 5, 7, 9, etc cannot combine to disturb the symmetry of a
waveform about its baseline.
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FACTORS DETERMINING WAVESHAPE

Eftect of Harmonic Amplitude on Waveshape

We have suggested ways in which a waveshape can be influenced by its
constituent harmonically related sine waves. As implied in our discussion
of the d-c component, even and odd harmonics make unique contributions
to waveshape. The relative strength of the harmonics, even or odd, exert
a pronounced effect upon the shape of the resultant nonsinusoid.

THE GHANGE OF THE
HARMONIC-COMPONENT AMPLITUDE AFFECTS THE
SHAPE OF THE RESULTANT WAVEFORM
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The amplitude of the fundamental frequency in both waveshapes is the
same, as is the phasing of the third harmonic. The only difference in the
constituent sine waves is the amplitude of the third harmonic. Where the
amplitude of the third harmonic is low, there is relatively little distortion
of the fundamental sine wave. A high-amplitude third harmonic produces
a peaked waveform.
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FACTORS DETERMINING WAVESHAPE

Effect of Harmonic Phase on Waveshape

Another important waveshape-determining factor is the relative phase of
the various harmonics, that is, the time relationship between corresponding
cyclic variations of the harmonics. For example, if all harmonics start at
the same time as the fundamental, they have the same phase as the funda-
mental. This and the following illustration shows the effect of phase on
waveshape. The frequency of the harmonics is always synchronized to the
fundamental, but the phase of each harmonic can be independently influ-
enced by circuitry conditions. Generally, both the amplitude and the phase
of the harmonics are affected by the circuit in which pulses are generated or
to which they are applied.
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"THE RELATIVE PHASES OF THE CONSTITUENT SINE WAVE
OF A PULSE WAVEFORM AFFECT ITS SHAPE
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We show the constituents of a simple nonsinusoid made up of a fundamental
and a second harmonic. The resultant waveshapes owe their differences to
the different phase conditions.
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FACTORS DETERMINING WAVESHAPE

Effect of Harmonic Phase on Waveshape (contd.)

Another Example of the Effect of Harmonic
Phasing on the Shape of a Pulse Waveform
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We see the effect of harmonic-wave phase shift on the resultant waveform,
in a fashion similar to that shown previously. The fundamental and the third
harmonic, rather than the second harmonic, is combined to produce the
resultant waveform. The waveform in part A is the first step in the con-
struction of the square wave. Shifting the phase of the third harmonic in
relation to the fundamental results in the waveshape shown in part B. This
waveform can be recognized as the beginning of the sawtooth.
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WAVE SYMMETRY IN WAVEFORM ANALYSIS

Waveform Analysis from Types of Wave Symmetry

Much regarding the constituents of a nonsinusoid can be seen by inspecting
the waveform for certain conditions of symmetry. We have already dealt
with one type of symmetry; zero-axis symmetry. In zero-axis symmetry, the
baseline divides the positive and negative portions of the waveform equally.

Waveshapes which are symmetrical about a
base/me... asaa//y do not confam even /mrmon/cs.

RESULTANT NONSINUSOID

ZERO-TIME AXIS
=\

SECOND HARMONIC
'ﬁ~\\r

IN PHASE

IHHHM

A Phase Condltlon in Whlch an Even Harmomc does NOT Illsturb
Zero-Axis Symmetry or Produce a D-C Component

Zero-axis symmetry always indicates the absence of the d-c component.
Generally, this implies the absence of even harmonics. However, there is a
phase condition which makes possible the presence of even harmonics
without disturbance of zero-axis symmetry, and the resultant appearance
of the d-c component. A fundamental and a second harmonic, each with
zero phase at the origin, or zero-time axis,are shown. Odd harmonics, no
matter what their relative phases, always combine to produce zero-axis
symmetry.
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WAVE SYMMETRY IN WAVEFORM ANALYSIS

Hali- Wave Symmetry

When Half-Wave Symmetry is Present,
the Waveform Has no Even Harmonics

Zero-Axis Sym %
7

g

.
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Another condition of symmetry which provides useful information con-
cerning the harmonic constituents of a periodic nonsinusoid is the half
wave, or mirror symmetry. This is established by a vertical line dividing
the pulse cycle into two equal portions, identical but transposed from left-
right, as is a mirror reflection. The third sawtooth shown has half-wave
symmetry. The first sawtooth does not have half-wave symmetry because
the leading and trailing edges are not transposed in mirror fashion. Both
of these waveforms have zero-axis symmetry. When half-wave symmetry
is present, no even harmonics are present. There is no exception to this
rule regardless of the phasing of the harmonics.
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WAVE SYMMETRY IN WAVEFORM ANALYSIS

Quarter-Wave Symmetry

An example of the employment of symmetry as an indication of pulse com-
ponents is shown. The wave has all three symmetries. The presence of
zero-axis symmetry excludes the existence of a d-c component. The pres-
ence of half-wave symmetry informs us that no even harmonics are contained
in the wave. The presence of quarter-wave symmetry indicates that the odd
harmonics are all in phase with the fundamental, that is, they start their
cyclic excursions at the zero-time axis along with the fundamental.

SYMMETRY IN PULSE WAVETRAIN REVEALS PERTINENT R
INFORMATION ABOUT THE COMPOSITION OF THE PULSES.

A waveform with zero-axis symmetry A waveform which exhibits half-wave
does not have a DC component symmetry contains no even harmonics

ZERO-AXIS SYMMETRY

In a waveform with quarter-wave symmetry

C any odd harmonics present

HALF-WAVE SYMMETRY

A\

1
are in phase with the fundamental
QUARTER-WAVE SYMMETRY

AN N NN\ A\ A AN NN

A third type of symmetry is that which can be established by an imaginary
vertical axis which divides a half-cycle into two identical portions. An
example of this kind of symmetry (quarter-wave symmetry) is shown in part
C. Even harmonics always produce this symmetry. Odd harmonics produce
quarter-wave symmetry only when they are at zero phase along with the
fundamental. Part C of the illustration shows this phasing condition. The
quarter-wave symmetry does not exist for the odd harmonic wave in
part B. Despite the presence of even harmonics, if odd harmonics are
present, quarter-wave symmetry will generally not exist.
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WAVE SYMMETRY IN WAVEFORM ANALYSIS

Removal of the D-C Component by Circuitry

When a wavetrain of pulses has been passed through a capacitor or through
a transformer, a definite output waveform evaluation is possible regardless
of the composition of the impressed wave. The wave emerging from either
of these components will never contain a d-c component because neither the
capacitor nor the transformer will pass steady-state d-c. They respond to
amplitude changes, not to sustained levels. We see the removal of the d-c
component from a waveform due to passing capacitors and transformers.

REMOVAL OF THE D-C COMPONENT BY

Part A of the figure shows the waveform at the input of a capacitor or
across the primary of a transformer, Part B shows the waveform at the
opposite plate of the capacitor or across the secondary winding of the trans-
former. It is assumed that the size of the capacitor and the characteristics
of the transformer are such that no waveshape modification other than
removal of the d-c component results.

45



WAVE SYMMETRY IN WAVEFORM ANALYSIS

Decreasing the Pulse-Repetition Rate to Zero

THE CONSTITUENT HARMONICS OF THE PULSE TRAIN
ARE SPACED CLOSER AS THE REPETITION

RATE DECREASES
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A periodic wavetrain of pulses can be made up of a fundamental frequency
and a number of harmonics. When the pulse-repetition rate is high, the
spacing between the adjacent harmonics is greater than when the pulse-
repetition rate is low. For example, a periodic pulse train having a pulse
repetition rate of 1000 pulses per second: the harmonic frequencies are
integral multiples of the fundamental, consequently the frequencies com-
prising the waves are 1000 cycles, 2000 cycles, 3000 cycles, 4000 cycles, and
so on. Note that the constituent frequencies of this pulse train are each
spaced 1000 cycles from one another. Suppose now that we lower the pulse-
repetition rate to 100 pulses per second, but still maintain the same pulse-
shape and dimensions. The wavetrain of pulses now comprises the decreased
fundamental frequency of 100 cycles and its series of harmonics, 200 cycles,
300 cycles, 400 cycles, etc. For the lower repetition rate, the constituent
frequencies are spaced by 100 cycles rather than 1000 cycles as in the case
of the higher pulse-repetition rate.
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SINGLE-PULSE CONCEPTS

Decreasing the Pulse-Repetition Rate to Zero (contd.)

The physical significance of zero pulse-repetition rate is that it is in actu-
ality a single isolated pulse. The harmonic constituents of a periodic wave-
train of pulses are spaced closer together as the pulse-repetition rate is low-
ered. The harmonic spacing in the ultimate case of zero pulse-repetition
rate may not be so obvious. However, for the single isolated pulse, the fre-
quencies composing it are present in a continuous spectrum, and we no
longer can speak of its fundamental or its harmonics. Thus, the repetitive
pulsing of a waveform is, in essence, a modulation technique which imparts
spaces in what would otherwise be a continuous spectrum of frequencies.
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the Harmonic Frequency Spectrum is Continuous.

The concept of the single isolated pulse can be useful even if we are dealing
with periodic waveforms. An example of this is found in radar practice
when steep-sided rectangular pulses are generated. A true rectangular pulse
with vertical leading and trailing edges cannot be formed, because no cir-
cuitry will provide uniform response to the infinite number of harmonics
required by this waveshape. It is important, however, that the good approxi-
mation of a perfect rectangular pulse which is actually formed be repro-
duced with acceptable fidelity. The degree of excellence involved in accept-
able fidelity must necessarily vary with the application for which the radar
is designed.
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SINGLE-PULSE CONCEPTS

Harmonic-Distribulion Graph of a Periodic Wave

The graph represents the harmonic distribution of a periodic rectangular
pulsetrain with a pulse-repetition rate of 1000 pulses per second, and a
pulse duration of 2 u sec. This graph enables us to determine the response
required of pulse circuitry to reproduce the pulses without severe distortion.
Note that the preponderance of the area of this graph is contained under
the first large loop. This loop embraces the fundamental and harmonics up
to frequencies equal to the reciprocal of the pulse duration. When the
duration is a small fraction of the pulse interval, as in radar, there are many
harmonics in each loop of the distribution curve. Note that the curve crosses
the zero axis of the graph at 1/D, 2/D, 3/D, etc.,, where D represents the
pulse duration. The area embraced by the first loop is much greater than
the areas under the other loops. This implies fairly good pulse response, if
we disregard all harmonics higher than the simple reciprocal of the pulse
duration, that is 1/D.
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The reciprocal of the pulse duration in our example is 2 p sec, or 500,000
cycles. From this we conclude that a circuit providing a bandpass through-
out the range of 1000 cycles to 500,000 cycles should yield a fairly good
reproduction of the rectangular pulses. The high-frequency end of this
bandpass is independent of the pulse-repetition rate. It is determined only
by the pulse duration. This is true in wavetrains in which pulse duration
is a very small fraction of pulse interval, and usually occurs in pulse-radar
systems. If pulse duration and pulse interval are similar, the pulse-repeti-
tion rate governs the high-frequency response required for preservation of
pulse shape.
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SINGLE-PULSE CONCEPTS

An Aperiodic Pulse-Repetition Rate

Since the aperiodic wavetrain is characterized by on and off states, a similar
modulation effect to that existing in periodic waves prevails. That is, we find
spaces in the spectrum of the constituent sine-wave frequencies. On the
other hand, there being no fixed fundamental frequency, it cannot be pos-
sible to assign actual frequencies to the harmonics. The spaces between
harmonics and the harmonics themselves constantly change. Although the
Fourier theorem remains valid, its practical value is virtually nil if the
aperiodic pulse train is extremely random. However, regardless of the
erratic shifting of harmonic frequencies due to the aperiodic occurence of
the pulses, the relative distribution of harmonics remains the same as long
as the pulse envelope does not change. For example, the third harmonic will
be perhaps twice the strength of the fifth harmonic no matter whether the
temporary rate of pulse occurrence is fast or slow.

An Aperiodic
- Pulse Train ;i
Has no Fixed

%Fundamental !

g Frequency | lle Lowest Frequency Component of the Apnod/c
. %] Wavetrain is a Frequency-Modulated Sine Wave;
* Such a Wave is not a True Sinusoid and Cannot

R e S T

i be Said to have a Definite Rate of Qccurance

Let us now consider the occurrence of a single pulse. After this pulse has
ceased to exist, there is a shock excitation of briefly enduring transient
oscillations. However, after circuit conditions have quieted down, let there
be an occurrence of a second pulse. It does not matter whether the two pulses
are spaced by a minute, a month, or a year, as far as the quality of repro-
duction of the second pulse is concerned. The “pulse-repetition rate” effects
the low-frequency bandwith requirement of narrow pulses such as are
employed in radar, but not the high-frequency response necessary to yield
good pulse reproduction. No matter what the pulse rate is, the large area
of the spectral distribution graph contains those harmonics from the first
(the fundamental) to the harmonic corresponding to the reciprocal of the
pulse duration.
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SINGLE-PULSE CONCEPTS

The Fundamental Waveform in Fact and Theory

The importance of high-frequency harmonics is based upon their contri-
bution to the area under the graph of harmonic distribution. Applying this
concept to the harmonics in the low-frequency region of the required band-
pass, we can eliminate the fundamental frequency and scarcely effect the
area under the curve. Our rectangular wavetrain of periodic pulses is not
adversely affected by rejecting the fundamental. Many lower-frequency
harmonics may be eliminated by the same reasoning. There must be a “fic-
titious” fundamental, if not an actual one: if we have a nonsinusoid com-
prised of the third, fifth, seventh, and ninth harmonic, all of these harmonics
are multiples of a fundamental, whether present or not. In most cases, the
fundamental frequency will be present, and for this reason the Fourier
theorem commonly includes the fundamental as a building block of pulses.
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QUESTIONS

A simplified form of the Fourier harmonic-composition equation is
C:C0+C1+C2+C3+C4+C; ...... etc
where C is the rms value of the periodic a-c wave
where C, is the value of the d-c component
where C, is the rms value of the first harmonic (the fundamental)
and similarly, where C, would be the rms value of the n'* harmonic.

1 A balanced push-pull amplifier cancels even distortion generated by
tube nonlinearity. However, odd distortion does not cancel. Modify the
simplified Fourier equation to apply to the wave monitored across the sec-
ondary winding of the output transformer associated with a push-pull amli-
fier. A single frequency sine wave is impressed at the amplifier input.

2 An ideal single-phase full-wave rectifier produces only even dis-
tortion, assuming the impressed a-c wave is sinusocidal. Modify the simpli-
fied Fourier equation to describe the waveform resulting from such a circuit.

3 The waveform from the full-wave rectifier above is passed through
a filter providing very high attenuation for the fundamental and harmonic
frequencies. Express the result in terms of the simplified Fourier equation.

4 The terms in the simplified Fourier equation cannot be added
arithmetically, but must be combined under the square root sign. Thus, if
we are interested in the net quantitative effect of the harmonics, the Fourier
equation is used in the following form:

C = \/ (Co)z + (C1)2 + (Cg)z + (C3)2 + (C4)Z + (C5)2 .... etc
where the terms have the same significance as in Question 1
What is the rms value of a wave in which the frequency components are
d-c component = 0; fundamental frequency = 10 v; second harmonic = § v;
third harmonic = 3 v; fourth harmonic = 2 v; fifth harmonic = 1 v;

5 It is possible to express the values of the various Fourier terms in
peak as well as rms values, the only requisite being consistency. If rms
values are used, they should be used for all terms involved; similarly peak
values should be used for all terms involved. Prove that the solution to prob-
lem of Question 4 is valid for harmonics expressed in peak values.

6 Show that harmonics which are less than about one-quarter of the
strongest harmonic present in a wave will not greatly affect the amplitude
of the resultant wave.

7 A wave which contains a d-c component from even harmonic dis-
tortion and is also rich in odd harmonics is passed through a video amplifier
with an open diode in the d-c restorer circuit. Represent the emergent wave
in terms of the Fourier equation (Question 1)?

8 What are some of the frequencies on which interference could be
caused by a transmittér tuned to 2.0 mc.?

9 The input level to a class A amplifier is gradually increased. A
point is reached where the plate current suddenly changes from its quiescent
value. What is the predominant order of distortion indicated?

10 A periodic sinusoidal wave is applied to the input of a binary-
type multivibrator circuit. The wave derived from the binary has half the
frequency of the applied signal. How can this be reconciled with the Fourier
equation? Is a harmonic term of % C; indicated? Explain.
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PULSES IN L-C-R CIRCUITS

Pulses in Frequency-Selective Circuits

We have discussed the important fact that pulses are made up of more than
one frequency. In a circuit in which uniform response is accorded the
important harmonics of a pulse, the pulse shape will be substantially pre-
served. Conversely, a circuit displaying partiality in response to the con-
stituent frequencies involved in pulses will distort or modify the shape of
the pulses. Now we consider the nature of the changes imparted to wave-
shapes by frequency selectivity. Although some pulses and some circuits
are so related that negligible distortion of pulse shape occurs, it is generally
necessary to give attention to circuitry arrangements to bring this condi-
tion about. It is also necessary to adapt circuitry to waveform for deliber-
ate changes in pulse shape.

Even a Length of Wire is a Fréquency-SelechVe

- Network at High Frequencies _ ——

Lines of Force

0
Magnetic Field

Distributed
Capacitance

CHASSIS

All practical electric circuits, even simple ones of point-to-point connec-
tions, are in reality complex networks. Even a length of wire possesses the
three circuit parameters: resistance, inductance, and capacitance. We may
have conditioned ourselves to think of these stray or distributed parameters
as negligible. However, pulses commonly involve high frequencies. Short
durations and near-vertical edges are formed by the Fourier addition of a
great many high order harmonics. At these high frequencies, the small
self-inductance of a length of wire or the small capacitance between the
wire and the chassis are as significant as their physical counterparts em-
ployed at lower frequencies. As a matter of fact, the pulse circuit cften

must be designed and adjusted to impart the desired response to both very
Jow and very high frequencies.
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PULSES IN L-C-R CIRCUITS

Shock-Excited Oscillation in an L-C-R Circuit

SHOCK EXCITATION OF AN L-C-R CIRCUIT BY
A TRANSIENT OR PULSE

f=1 t or time
of 1 cycle\

Ceh \
g Oscillatory Waveform

Switch /S\;’itch ,/\ ‘ Partially Damped
Closed Opened R is high

Waveform Damped

Although the stray parameters, as well as the parameters of actual physical
components, combine in complex ways, we can study the effect of pulses
in circuitry by seeing what happens in an L-C-R circuit composed of these
elements in parallel. We see a bench set-up in which a sharp wavefront is
impressed upon the parallel combination of L, C, and R. In the first wave-
form, R is extremely high, or even absent. When the switch is suddenly
opened, the applied voltage abruptly changes from a finite value to zero.
Surprisingly, however, the voltage across the L-C-R circuit does not
simply fall to zero. Rather, it oscillates for many cycles, the amplitude of
each cycle being less than the one which preceded it. The frequency of
oscillation is the resonant frequency of L in conjunction with C. This is
not a violation of the law of conservation of energy.
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PULSES IN L-C-R CIRCUITS

Shock-Excited Oscillation in an L-C-R Circuit (contd.)

The oscillatory wave derives its energy from that stored in the capacitor
and inductor while the switch was in its on position. When the switch is
off, the stored energy undergoes a cyclic exchange between the capacitor
and inductor. As the current flows from capacitor to inductor, and back
again, energy is lost in the resistance of the circuit. This resistance consists
of physical resistor R, plus the inherent resistance in any conductor or
component. The energy loss is responsible for the continuously diminishing
amplitude of successive cycles. Ultimately, all of the originally stored
energy is dissipated as heat in circuit resistance, and the oscillations cease.
The lower the value of resistance R, the more quickly the energy is spent.

y CRITICAL DAMPING ,

IS THE RELATIONSHIP BETWEEN

ENERGY DISSIPATION

Switch

AS THE RESISTANCE R DECREASES IF THE RESISTANCE R DECREASES
THE DISCHARGE VOLTAGE WAVEFORM FURTHER, THE DISCHARGE VOLTAGE
BECOMES eritically damped WAVEFORM BECOMES

1/2 cycle overdamped

At a discrete value of R (or of R in conjunction with the inherent resistances
of both the capacitor and inductor), the oscillation is restricted to a single
half-cycle. This unique relationship between energy storage and energy
dissipation is called critical damping. The wavetrain of many cycles result-
ing from values of R higher than that corresponding to critical damping
is due to under-damping. Conversely, the distorted half-cycle excursion
resulting from values of R lower than that corresponding to critical damp-
ing is said to be an overdamped condition.
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PULSES IN L-C-R CIRCUITS
Sustained Oscillations — Fundamental and Harmonic
An L-C Circuit Resonated at the Pulse-Repetition Rate
Removes Harmonics above the Fundamental Frequency
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The phenomena of shock excitation is called ringing. In many instances
ringing is useful. If the natural ringing frequency is the same as, or is a
harmonic of, the exciting pulses, the ringing may not die down, but may be
sustained. The partial schematic diagram shows a class-C radio-frequency
amplifier in a transmitter. The L-C tank circuit is continuously excited by
strong pulses. These pulses, repetitive at the ringing frequency, synchro-
nize with the shock-excited oscillations and produce a sustained oscillatory
current in the L-C circuit. This oscillatory current is at the fundamental
frequency (f) of the exciting pulses. It is a sine wave because the har-
monics of the fundamental are relatively ineffective in causing current flow
in an L-C circuit not resonated at their frequencies. The same principle
holds true in the partial schematic of the frequency-multiplier shown in
diagram B, above. In this case, 