A RIDER PUBLICATION

RECEIVING TUBE

SUBSTITUTION

G U I D E
 B

RECEIVING TUBE SUBSTITUTION GUIDEBOOK

 BYH. A. MIDDLETON

FIRST EDITION

JOHN F. RIDER PUBLISHER, INC. 480 CANAL STREET NEW YORK 13, N. Y.

Copyright 1950 by
JOHN F. RIDER

First Printing, December, 1950

Second Printing, December, 1950

All rights reserved. This book or parts thereof may not be reproduced in any form or in any language. zithout permission of the publisher.

Printed in the United States of America

FOREWORD

Reccizing Tube Substitution Guide Book is a greatly enlarged and revised edition of the book Wartime Radio Service published in 1944. This new book lists about 750 receiving tube types and their bases, including all of the following series:

4, 5, 6, 7, and 7L old-style base series
Octal base series
Loctal base series
7-pin miniature series
9 -pin•noval series
Subminiature series.
During the past eight years we have made many tube substitutions. Most of them were easy to make and all resulted in from excellent to reasonable performance. The majority of substitutions shown here have actually been tried. We are passing this information on to you in the belief that it will save you many hours and enable you to make necessary repairs to electronic equipment in spite of shortages. Also, when shortages no longer exist, you will again save time in restoring equipment to its original condition after substitutions have been made.

All substitutions listed here describe in detail the necessary data for changing or rewiring the sockets. It is recommended that in making the circuit changes listed you follow the sequence exactly as indicated in order to avoid any errors in rewiring.

You will note that a few types have no substitutes listed. We do not presume to be infallible. We may have omitted some tube substitutions. If you know of tube substitutions which have been omitted we would like to hear from you about them.

Besides a tube substitution listing we have included other important information that will make this book
even more useful as a substitution guide. In Section 3 we offer a compilation of television receiver filament circuit arrangements including various filament diagrams. These were compiled by John F. Rider Publisher, Inc., to whom we owe thanks for their contribution. The information was taken from the five presently existing Rider TV Manuals. It is hoped that this information will not only aid tube substitution operations, but will prove helpful in connection with TV servicing in the home. A group of servicing suggestions are also included to help in repairing the filaments of burned-out tubes, making adapters, and for the change over of battery-operated radios to electric operation.

Most significant is the last section of this book which covers different charts and tables. A complete listing of the characteristics of receiving tubes and bases and cathode-ray tubes and bases are included in this section. Thus this book, besides serving as a tube substitution guide, also functions as a tube handbook.

We wish to express our appreciation to the American Radio Relay League for their cooperation in permitting us to reprint their receiving tube characteristics charts from their ARRL handbook. In our estimation these are the most complete charts available at this time. To Tung-Sol Lamp Works, Inc., for supplying us with the data on tube classifications, ballast tube and resistor numbering codes, and RTMA resistor, capacitor, and transformer color codes our thanks; also to Sylvania Electric Products; Inc., for supplying us with the data on cathode-ray-tube characteristics; to Federal Telephone and Radio Corp. and Radio Receptor Corp. for their kind cooperation.

November, 1950
H. A. Middleton

TABLE OF CONTENTS

PAGE
SECTION 1 - THE BACKGROUND OF TUBE SUBSTITUTIONS 1
SECTION 2 - RECEIVING TUBE SUBSTITUTION GUIDE 30
SECTION 3 - TELEVISION RECEIVER FILAMENT CIRCUIT ARRANGEMENTS 145
SECTION 4 - SERVICING SUGGESTIONS 170
SECTION 5 - CHARTS AND TABLES 173
RTMA Receiving Tube Ratings 173
Receiving Tube Bases 175
Receiving Tube Characteristics 181
Cathode-Ray-Tube Bases 202
Cathode-Ray Tube Characteristics 204
Cross Index of Army VT Numbers and Commercial Numbers 211
Ballast Tube and Resistor Numbering Codes 213
RTMA Capacitor, Resistor, and Transformer Color Codes 214
Pilot Lamp Table 215
Germanium Crystal Diode Characteristics 215

THE BACKGROUND OF TUBE SUBSTITUTIONS

Were it not for the fact that tube development is a never-ending activity, there would be no purpose in describing the background of tube substitution. The substitution lists contained herein would suffice, for they include practically every tube which is used for receiving purposes serving many different electronic applications. These applications consist of radio receivers of all varieties ($a-m, f-m$, and TV), radar, facsimile (commercial and military), public address amplifiers, record changer amplifiers, test equipment, electronic computers - in fact every kind of equipment with the exception of transmitters, although even there, receiving tubes make their appearance in the speech amplifiers.

The basis of tube substitution is similarity or equivalence between the original and the substitute. The choice of these two words with different connotation is deliberate ; similarity may mean equivalence in some respects but not in all. Thus if two tubes are similar (or identical) in electrical characteristics, one is the equivalent of the other. The use of two tubes, however, to replace one single tube which affords certain facilities, creates a state of equivalence rather than a state of similarity.

This is not intended as a play on words but deals with a very important situation that is developing fast in television receivers. Unwelcome as it may be, it means constructional modifications and even more important, a careful analysis of what suits the purpose. Any attempt to list all the substitutes within the meaning of equivalent as we have described it, would be a monumental task and would more than likely, never see the light of day. We hope, therefore, that the general details of the background of tube substitution given in this section combined with the tube substitution lists and the knowledge possessed by the technician who makes the change (and selects the substitutes) will result in satisfactory substitutions.

An examination of the tube substitution lists will disclose that the substitution of one type for another is not too frequently accomplished by a simple replacement of tubes. Differences in tube characteristics may demand some modifications in the circuit within the apparatus. Sometimes, only a change of socket is needed because of differences in the basing of the substitute tube. In other instances, definite restrictions
are imposed relative to the heater circuits; some substitute tubes may be used only in parallel-wired heaters without any circuit changes, whereas in other instances, a tube substitution is applicable only to series-wired heaters. In some cases, a tube substitution may demand modifications in the cathode, control grid, plate, or screen circuits, or possibly in the power supply, so as to satisfy the needs of the substitute and accomplish the best possible performance. These circuit changes are not listed because they are peculiar to each system.

All of this means that although the lists in this Guide Book give the substitute or substitutes as the case may he, the final selection cannot be made without considering the conditions existing in the equipment which will receive the substitute. Where changes in heater or filament wiring are required, they are described. Changes necessary in the signal electrode circuits such as those of the control grid, screen grid, cathode, and plate so as to attain best possible performance become the function of the technician and are determined by the constants of the specific circuit in which the substitution is made.

As shown in the three series of Rider's Manuals (AM-FM, TV, and PA), many tens of thousands of models of receivers and amplifiers comprise the hundred odd million units which may require substitute tubes.

Fortunately, a certain amount of standardization does exist in receivers and other equipment designed to work with the tubes listed herein. This situation, together with the circuit and operating voltage details given in the above-mentioned manuals and manufacturers' literature affords the technician the opportunity of determining the operating conditions thereby enabling him to establish the correct voltages at the different signal electrodes. A familiarity with these techniques is not difficult to acquire, although we hasten to add that too many differences exist to permit circuit modifications based on guesswork or memory. Schematic wiring diagrams, operating voltage cables, and the tube characteristic charts demand attention if longest tube and component life are desired, and also, if best circuit performance is to be attained with the substitute tube.

Design engineers have their own ways of accomplishing performance with the standard run of tubes. Many substitutes are possible but all will not afford like performance. In listing the substitutions, only those sub-

RECEIVING TUBE SUBSTITUTION GUIDE

stitutions considered practical, that is, which do not demand redesigning of circuits, were included. Many substitutes possess sufficient similarity to the original as to require no changes in either heater wiring or sockets. These are listed with the note "No changes." This does not mean, however, that the signal electrode operating conditions are identical for the original and the substitute. This should be checked in the tube characteristics chart contained in this Guide Book. It only requires a few minutes of time to do this and its results can be very gratifying.

If upon examination, the differences in electrical characteristics between the recommended substitute and the original are more than moderate, changes in the signal electrode operating circuits may be required. Since the plate voltage requirements for tubes in similar categories do not differ greatly, changes are not too frequent in the plate circuits. It is only when battery type and a-c operated tubes are being compared that one finds radical differences in plate and screen voltages. More critical points are the control grid and cathode bias - especially the latter. Small numerical differences in bias voltages (which are related to the plate current) produce great performance differences. For example, a change in bias from -2 volts to -4 volts is only 2 volts, but it represents a change of 100 per cent, and can very materially influence performance. A situation of this kind would demand a change in the value of the bias resistance.

A bias tube may be listed as the substitute for a zero bias tube. Reference to the electrical characteristics will disclose that the grid resistor must be changed; sometimes from 10 megohms to as low as 0.25 megohm. In addition, a cathode resistor of such ohmic value as will develop the bias shown in the tube characteristic chart must be added. Thus, the statement "No changes," does not refer to signal electrode operating conditions, rather to the fact that neither heater wiring nor socket changes are required.

Each substitution is an individual case requiring individual consideration, unless it is definitely known that the original and the substitute are identical in all respects other than heater voltage. Even then, if the substitution is made in a system which involves a state of resonance, realignment will be required. Similar tubes, even identical ones, do not possess identical values of interelectrode capacitance. This difference affects the final value of tuning capacitance. It is very important to bear this in mind when substitutions are made in wideband amplifiers particularly, since here, the interelectrode capacitance (direct and reflected) plays a paramount role in the peaking action. Examples are the video amplifiers in television receivers and the amplifiers in oscilloscopes and the like. In making substitutions it is often necessary to consider the function of the tube and its circuit so as to insure best performance in the circuit. The various types of circuits and functions will now be discussed.

Oscillator Systems

These may be heterodyning arrangements which involve tracking with other tuned circuits, such as in converter systems and separate oscillator and mixer circuits, or nontracking arrangements, such as beatfrequency oscillators. Also, there are the various kinds of multivibrator systems in television receivers. Each of these demands individual consideration.

Combination oscillators and mixers (converters) require substitutes which contain not only the identical number of electrodes as the original, but in addition, the functions of these electrodes must be the same. This immediately limits the number of possible substitutes. The list of tubes, classified by function found at the end of this section, is an aid in this respect. If the required substitutes can not be procured, it does not make sense to redesign the circuit so as to replace a single tube with two individual tubes. That is a design engineer's job. If the oscillator and mixer functions are performed by individual tubes in separate envelopes, then the latitude of substitution is greater, provided that the selection of the substitute tube is made carefully.

The higher the frequency of operation, the more critical is the choice. That is why new tubes are born as operating frequencies increase. Tubes designed for the broadcast band are frequently unsuited for use in the vhf band and most certainly not in the uhf band. Thus, in addition to recognizing the oscillator function, it is also imperative to pay heed to the frequency of operation. If a choice is available, the tube intended for a higher frequency is suitable for a lower frequency, but not vice versa with complete freedom.

Sometimes tubes specifically intended for use as oscillators will not perform properly in that position, it is difficult to account for this, but it is a fact nevertheless. This does not condemn the tube as a tube it can still perform other functions - nor does it mean that another tube of like brand and type will behave in similar fashion. There is no remedy for such failure to function properly - it is simply a statement of fact.

What should be examined when comparing tubes intended for oscillators? Neglecting heater or filament ratings for the moment, these being assumed to be suitable and assuming that the number of circuit electrodes of the substitute original are the same, such details as the grid bias, the plate (and screen) voltages, the plate (and screen) currents, and the transconductance are paramount factors. If the exact duplicate is not available, the substitute tube which requires lower plate and screen voltages (differing only moderately from the original) is preferable to the substitute tube which requires higher plate (and screen) voltages than the original. The tube with the higher transconductance is preferable to the tube with the lower transconductance, everything else being equal. These preferences are more apt to furnish heterodyning voltage

RECEIVING TUBE SUBSTITUTION GUIDE

over the entire band embraced by the receiver, especially if the bias resistor is modified to suit the specifications of the substitute.

R-F and I-F Amplifiers

The general run of r - f and i-f amplifiers utilize tetrodes and pentodes. Since pentodes used as triodes (in a-f amplifiers) are substitutes for triodes, it is important when selecting a substitute to know the manner in which the tube is used in the r-f or i-f amplifier. A triode is a poor substitute for a pentode; if a pentode is used, the substitute should be a pentode. However, if a tetrode is used, the substitute may be either a tetrode or a pentode. Care should be exercised to note if a shield is a part of the tube. An unshielded tube may be substituted for a shielded tube provided that an external shield is used and is grounded properly. Single-ended tubes may be substituted for coubleended tubes, but the reverse may be troublesome. Care must be exercised relative to the control-grid lead dress so as to minimize regeneration.

Sharp cutoff tubes should be replaced by similar tubes; similarly with remote cutoff tubes. However, sharp cutoff tubes may be replaced by remote cutoff types without too much trouble. The avc may be affected somewhat, but this does not interfere with the effectiveness of the receiver. When sharp cutoff tubes replace remote cutoff types, however, some minor problems may arise. Their best location would be in places where the signal level is lowest, for example, in the first stage in either an r-f or i-f amplifier. If distortion is severe on loud signals (due to rectification in the sharp cutoff stage), a divider network may be required so as to reduce the avc bias being applied to the sharp cutoff tube. This is best accomplished at the source of the avc, and might call for a separate avc line to the sharp cutoff tube. It might even be satisfactory to operate the sharp cutoff tube (if it is located at the point of lowest signal level in the amplifier) without any avc, using a low fixed bias.

Where there is a high input signal, sharp cutoff tubes must be used in place of remote cutoff tubes, an auxiliary volume control (or divider) at the front end of the receiver (perhaps in the antenna circuit) may be required. This would be operated only on those channels which cause trouble. A panel switch would control the operation of this signal control element.

Transconductance is the important electrical characteristic to consider in r-f and i-f amplifier substitutions. The higher the mutual conductance is relative to an r-f or i-f transformer the better, assuming that the plate and screen voltage conditions are satisfied or approached. Inability to equal the original tube in transconductance means reduced gain in the stage, but this seldom is a problem in a-m or $\mathrm{f}-\mathrm{m}$ receivers because the average receiver has excess gain for the reception of chain or local broadcasts. The same can be
said about television receivers, provided that the receiver is located in a primary service area. When such a receiver is relatively close to a station, the problem is too much rather than insufficient signal, so that a reduction in r-f or i-f amplification (unless it is too severe) usually can be tolerated. In fringe areas, the situation is different, especially when the received signal levels already border on the inadequate. There it becomes necessary to approach the original, and if this cannot be attained, then it is preferable to select tubes with higher than the original transconductance and to adjust the operating voltages accordingly. General instructions of this kind are given elsewhere in this section.

Where r-f and i-f systems are subject to tube substitutions, realignment of the coupling transformers associated with the input and output circuits of the substitute stage are imperative. Sometimes it may appear that proper performance is being secured without realignment. This should not be accepted as fact without a test to establish if the circuits are peaked properly.

Whether the shift in frequency peaking is upward or downward depends upon the direction of the capacitance change. A reduction in distributed capacitance, which includes the plate-to-cathode (or control grid-to-cathode) capacitance tends to cause peaking at a higher frequency, whereas an increase in distributed capacitance tends to cause peaking at a lower frequency.

Many i-f transformers and some r-f transformers are permeability tuned, utilizing the related distributed capacitance including the tube capacitance to provide the C for the tuned circuit. Because of this, changes in distributed capacitance, due to different tube electrode capacitances, can cause major variations in operating conditions. Whenever possible, substitute tubes should approximate the input-output capacitance of the original tube. This data is found in the tube specification charts of Section 5.

Exception to the need for realignment of r-f and i-f coupling systems is found in those equipments which employ $R-C$ coupling between tubes. While not a common practice, it is to be found in receivers. Sometimes the coupling element consists of a resistive plate load and a tuned grid load for the succeeding tube. The resistive plate load on a substitute tube requires no readjustment, but if the substitution is made in that stage which has a tuned grid load, realignment will be required. Examples of such arrangements are listed elsewhere in this section in connection with $r-f$ and $i-f$ transformer replacement.

Audio Amplifiers

All types of tubes are found in audio amplifiers: triodes, tetrodes, pentodes, pentodes used as triodes, and various kinds of output-stage power amplifiers. Voltage amplifiers are, in the main, resistance-coupled
systems, whereas power amplifiers are transformercoupled. The difference between these two general categories is the plate circuit load, that is, load impedance, and the grid bias.

There are some differences between the signal electrode operating conditions in resistance-coupled amplifiers, their operating voltage or load resistance may differ, but many substitutions are possible without changes. A fair degree of similarity exists between the fundamental designs of these circuits so that it is possible to generalize concerning substitutions. Pentodes can be used in place of triodes and, in turn, triodes may replace pentodes or tetrodes. The load resistances are pretty much the same for all of these tubes since the limitation is set by the plate voltage supply, and this does not differ too greatly in like categories of equipment. Naturally, the ideal condition is when the substitute is used exactly as the original, or the substitute type is the same as the original type.

In the case of triode-type tubes used in audio amplifiers, with the exception of the output stage, the amplification constant of the tube is the pertinent factor. The higher the amplification constant, the higher the stage gain, provided that the internal plate resistance is not too high relative to the load resistance. The higher the internal plate resistance of the tube, relative to the load resistance, the less the amount of signal taken out of the tube will be. The portion of the available signal taken out of the tube is expressed as

$$
\frac{R_{1}}{R_{p}+R_{1}}
$$

where R_{1} is the load resistance in ohms and R_{p} is the internal plate resistance expressed in ohms.

Another matter of concern to keep in mind is that relating to grid bias. Quite a few tubes used in $R-C$ coupled amplifiers as well as in $L-C$ coupled systems are of the zero-bias type. When adequate substitutes are not available and a self-bias tube is used in place of a zero-bias one, provision for the bias must be made in the circuit. This can be in the form of a bypassed cathode resistor. In addition, the grid resistor (grid leak) of the substituted stage will require reduction to perhaps one-thirtieth or one-fortieth of its original value. Zero-bias tubes utilize grid resistors of from 5 to 10 megohms. Self-bias amplifier tubes utilize grid resistors of from 0.1 to perhaps 0.3 megohms. These bias- and grid-resistor references will be found to apply to pentodes and tetrodes as well as triodes. When a zero-bias tube is used in place of a self-bias tube, the above-required changes in circuits are reversed.

In the output stages, for that matter, also in driver stages in audio amplifiers, attention must be paid to the recommended load impedance represented by the output transformer. Not only does it determine output power, which may or may not be important, but it also determines the quality of reproduction. The latter is important.

To begin with, the recommended load impedance for substitute tubes should be the same or less than that for the original. By being less than the original a fair semblance of the original quality will be retained because the tules are working into a higher impedance, that represented by the output transformer already in the device. Power output will be reduced somewhat but quality of reproduction will be retained. If it is impossible to find substitutes which require the same, or a lower load impedance than the original, then a higher rating will have to be accepted, but it should be the closest approximation to the original.

A receiver installation can afford to sacrifice some power for quality. In public address systems, it is a question of how the system is used. If its full-rated power output is seldom used, then it can sacrifice some output for quality. If it is used for the reproduction of speech only, it can afford a greater mismatch than systems which reproduce music and speech. In the last analysis it is a compromise and each individual requirement determines the choice.

In view of the power-handling requirements of the output stage, only those substitutes, both triodes and pentodes, are usable which can handle power. These are interchangeable but only on that basis.

When two individual tubes are used in a push-pull output stage and a substitution is being contemplated for one tube, it should be carried out for both. If the characteristics of the original and the substitute differ markedly, parasitic suppressors may be required in grid and plate leads (if they are not already in the circuit). Fifty-ohm resistors capable of handling the currents involved are adequate. If two individual tubes replace two tubes in a single envelope, such resistors may prove very important because the changes in wiring and lengthening of the leads may cause oscillation.

Negative feedback is used in many audio systems between the output power stage and a preceding stage. Tube substitutions can upset the feedback conditions, especially if the electrical characteristics of the substitute are unlike the original. If audio quality or power over-all gain seems to have suffered too much, the feedback circuit should be checked.

When tube substitutions in a-f driver stages are contemplated, the range of substitutes is more limited than in the case of voltage amplifiers. While tubes designed for the driver stages of a-f amplifiers may be used in other capacities, tules designed for other functions very often are not usable in a driver stage. Because the tube grid in the driver stage is driven into the positive region during certain portions of the signal cycle, the tube which feeds the driver-stage input transformer must be of the correct type for operation with the driver-stage input transformer. In like manner, the driver stage is impedance-matched to the transformer which feeds the succeeding stage. This is another requirement that must be satisfied when the substitute tube is selected from a number of types which possess
the required over-all similarity in electrical characteristics.

Phase-Inverter Stages

Phase-inverter stages present no serious problems in substitution except for the fact that differences between the original and the substitute may demand readjustment of the load resistor so as to arrange that the signals from the phase-inverter stage to the control grids of the succeeding push-pull stage are of like magnitude. If the phase-inverter stage serves just one function, inverting the signal to one of the succeeding push-pull stage tubes, and it is of the same type as its related amplifier tube which feeds the other succeeding push-pull tube, then it may be convenient to substitute like tubes for the phasc inverter and its related amplifier.

Diode Rectifiers (Signal)

Too much need not be said about signal-rectifying diodes. One significant detail is that power rectifiers are not substitutes for signal rectifiers. (They are not shown as substitutes on the list, but the comment is still required.) There is very little to choose from between signal-rectifying diodes for virtually anyone will perform the functions of the others, except perhaps in connection with frequency of operation. The transit time (time taken for the electrons to advance from cathode to plate relative to the period of a cycle of the signal) limits the application of the tube in terns of frequency. Uhf diodes are stuitable for operation at lower frequencies. On the other hand, the low or conventional frequency diodes are not suitable for the rectification of uhf and sometimes even vhf signals, unless so specified.

It is interesting to note that the equivalent of conventional signal-rectifying diodes may be formed out of conventional triodes by tying the grid and plate together thus forming one element. or by tying the plate to the cathode and using the control grid as the second element. Such equivalence is not indicated in the list of substitutions, but it should be kept in mind.

Sometimes multipurpose tubes used in receivers do not employ all of the electrodes. Quite frequently a duo-diode may have its two plates tied together forming a single diode to be used for a single purpose. It is well to try to disconnect one of the plates and to see if the operation is impaired; if not, then the other diode plate may, in conjunction with the common cathode, be used as the substitution diode. Whether or not such is possible depends upon the manner in which the common cathode is being used.

New advances in the design of germanium crystal diodes facilitate.the use of these components as replacements for conventional diode tubes in signal-rectifying and detecting circuits. An important consideration in
this connection is the fact that they require no heater supply and have an average life of over 10,000 hours.

Germanium crystal diodes are usable in vhf and even uhf circuits since their maximum operating frequency is about 500 Mc . They are rated for voltages of from 25 to 200 volts, with peak anode currents up to 200 ma . These components are particularly suitable for detector circuits where their low shunt capacities (of the order of 1 mmf) are advantageous.
The sulstitution of a crystal diode for a conven-tional-type tube is particularly simple because there is no need for a heater supply circuit. A typical use of a 1N34-type crystal diode is illustrated in Fig. 1-1.

Courtesy Sylvania Rlectric Products Inc.
Fig. 1-1. The use of a 1 N34 type germanium crystal diode in the video detector circuit of a television receiver. Notice that the value of the circuit parameters are similar to those found in most video detector stages.

Here the component is shown being used in a videodetector circuit of the type common in most television receivers. The performance of the circuit with the 1N34-type crystal diode depends upon the proper choice of circuit parameters. In most circuits, however, it will be found that there need be no component modifications for grood performance. Conventional-type tubes for which germanium crystal diodes are successful replacements are the $6 \mathrm{AL} 5,6 \mathrm{H} 6,6 \mathrm{~T}$, and 12AL5. In the replacement of duo-diodes not only must the detector function be taken care of, but the sync limiter or other use must also be replaced. This is possible by using a 1 N35-type matched duo-diode crystal component. See the table of geranium crystal diodes in Section 5.

For further information as to the use of germanium crystal diodes in video and f - m detector circuits as well as in other signal rectifiers, see 40 Uses for Germanium Diodes, a booklet obtainable from Sylvania Electric Products, Inc.

Diode Rectifiers (Power)

Power rectifiers are of two types, high-vacuum and gaseous. Normally, high-vacuum rectifiers are interchangeable as are gaseous ones, within the limitations set by the current and voltage ratings of the device.

RECEIVING TUBE SUBSTITUTION GUIDE

Gaseous-type rectifiers frequently may replace vacuumtype rectifiers provided that the electrical characteristics are the same and the related circuit requirements are satisfied. Replacement of high-vacutum rectifiers by the gaseous kind is not recommended except when high currents are involved and when a constant voltage drop in the rectifier is required: the need for high voltage alone is not sufficient.

To take a typical case, the mercury-vapor rectifier requires choke input instead of capacitor input in the filter system. The high current surges which occur with capacitor input would destroy the gaseous tube. Also. gaseous tubes are suitable for the rectification of medium voltages and higher (500 volts output and up) and they are intended for systems wherein high current loads exist and where the variations in current load are large. In the case of a-c-d-c receivers, there are no gaseous equivalents for the high-vacuum types used. Gaseous rectifiers, moreover, are a source of r-f "hash" and, therefore, are not suitable for use in close proximity to circuits susceptible to such radiations.

High-vacuum tubes, on the other hand, are suitable replacements for mercury-vapor rectifiers if the rectifier system can stand the increased voltage drop which occurs in the high-vacuum tube and if the electrical requirements are satisfied. As a rule, the heater current for high-vacuum rectifiers is less than that required for gaseous rectifiers of comparable d-c voltage and current output. Other important electrical requirements to consider are the a-c input voltage, output current, and inverse peak voltage. The last-named term expresses the ability of the tube to withstand the peak voltage between the anode and the cathode during the nonconducting portion of the cycle.

Assuming the lack of recommended substitutes, high-vacuum tubes are suitable for substitution in systems which operate at lower d-c output voltages and currents than the high-vacuum tubes are rated for, provided that the heater requirements are satisfied. Such substitution should be made only in extreme cases when no other means are possible and a system must be restored to operation. For that matter, in such an event, the mercury-vapor kind also can be used provided that there is a choke input in the filter system. This is a MUST conclition.

The substitution of a filament-type rectifier for a cathode-type one introduces certain complications, especially when the remainder of the tubes in the system are of the cathode-heater variety. The difference in heating time would result in the very rapid build-up of the voltage output from the rectifier before the tubes receiving the plate and other voltages were in a conducting state. Thus, the rectifier would be operating for a period of time with practically no load. This results in a high output voltage - much higher than when the load is applied - and could very easily break down the filter capacitors and also some of the bypass capacitors in the equipment receiving its voltage from
the rectifier. Replacing a filament-type rectifier with a heater type causes no complications of this sort.

From a practical viewpoint it seems worthwhile to go to no end of trouble to find a suitable filament-type stibstitute for a filament-type original. This seems easier than changing the voltage rating of all of the filter capacitors and the bypass capacitors for high working voltage units. Of course, if examination of the capacitor voltage ratings and measurement of the rectifier output voltage shows that the momentary peak is within the operating voltage rating of the capacitors, the change can be made without endangering the filter and bypass units. If this is not the case and replacement of the filter and bypass capacitors is not feasible, then the only alternative is to use an increased bleeder load and thus reduce the over-all output voltage from the power supply.

For medium- and low-voltage requirements, selenium rectifiers are far more suitable substitutes for highvacuum rectifier tules than are gaseots tubes. Miniature selenium rectifiers are available in various sizes rated from 50 to 500 ma . The $50-, 65-$, 75 -, and $100-$ ma, sizes will, in most cases, best serve as replacements for half-wave rectifiers in a-c-d-c equipment.

Generally speaking, to replace the vacuum-tube rectifier in a phonograph oscillator, use the selenium rectifier rated for 50 ma , for three-tube amplifiers use the 65 -ma size, for five- or six-tube receivers without a push-pull output, use the $75-\mathrm{ma}$ rectifier, and for sixtube sets and up use the 100 -ma rated one. To replace the $25 Z 5,25 Z 6,35 W 4,35 Y 4,35 Z 3,35 Z 4,35 Z 5,45 Z 5$, 50 Y 6 , and $50 \mathrm{Z7}$, use a 403 D 2625 A type selenium rectifier with a rating of 100 ma .

When a rectifier tube is replaced by a selenium rectifier, a compensating resistor must be inserted into the filament circuit to make up for the resistance drop due to the elimination of the rectifier tulee if its filament was in series with other filaments. The value of this compensating resistor depends upon the rectifying tube that has been replaced. The following table lists the resistance to be used for the tubes mentioned above.

TUBE	RESISTOR (ohms)	WATTS
25Z5	85	15
$25 Z 6$	85	15
$35 W 4$	230	10
$35 Y 4$	230	10
$35 Z 3$	230	10
$35 Z 4$	230	10
$35 Z 5$	230	10
$45 Z 5$	300	10
50 Y 6	330	15
$50 Z 7$	330	15
$117 Z 3$	none required	
$117 Z 6$	none required	

In some sets, the pilot light may be connected across a low-voltage tap on the rectifier tube filament. If this

RECEIVING TUBE SUBSTITUTION GUIDE

is so in the set in which the rectifier tube is being replaced, connect the pilot light across a tapped-down portion of the compensating resistor (about 10 to 25 ohms will do depending upon the current in the filament circuit). A No. 47 pilot light can be used in this case.

When replacing vacuum-tule rectifiers by selenium rectifiers in a-c-d-c portables using battery-type tubes that obtain filament voltages from \mathbf{B} plus through a dropping resistor, reduce the value of the shunt resistor connected from the low end of the filament dropping resistor to the negative point. This will compensate for the increase in filament voltage.
In most cases, a protective resistor should be inserted in series with the selenium rectifier to protect the rectifier and filter capacitors from excessive current peaks cluring operation. The value of this resistor will vary from 5 to 50 ohms depending upon the current load of the rectifier; the higher the load, the smaller the protective resistor needed.

Manufactured adapters will probably be available for use with miniature selenium rectifiers in the future, in the meantime, they can be made fairly easily by using discarded tube bases. Following are instructions for making adapters for a few of the most popular rectifier tubes used in a-c-d-c equipment.

To make an adapter for the $35 Z 5$ used in series circuits:
a) connect a 230 -ohm, $10-\mathrm{w}$ resistor from No. 2 to No. 7 on an octal base
b) connect a 20 -ohm, $1 / 2-\mathrm{w}$ resistor from No. 2 to No. 3
c) connect 25 -ohm, $1 / 2$-w resistor from No. 8 to positive side of rectifier
d) connect No. 5 to negative side of rectifier.

To make an adapter for a $35 Z 5$ used by itself, follow the above steps but delete steps a) and b).

For the 25Z6, 25X6, 35Z6, 50AX6, 50Y6, and the 117 Z 6 when these tules are used by themselves as halfwave rectifiers, make an adapter as follows:
a) connect a 25 -ohm, $1 / 2$-w resistor from Nos. 4 and 8 on octal base to the positive side of the rectifier
b) connect Nos. 3 and 5 to negative side of the rectifier.
If the filaments of these tubes are in a series circuit, then naturally a compensating resistor must be added with the selenium rectifier. This resistor, whose value may be obtained from the table given previously, will le connected between pins No. 2 and No. 7. No resistor is needed when the 117 Z 6 is replaced.

Wideband Amplifiers (Video and Others)

Although referred to earlier in this section, these systems are singled out for elaboration because of their seemingly peculiar conditions of operation. Ex-
amination will show that very low values of plate-load resistance are used and also that the applied plate voltage is very low. much lower than that shown in tule characteristic charts.

This is so because it is necessary to have wide frequency response. Gain in each stage is sacrificed for the attainment of low reflected capacitance and also the creation of suitable resonance. ${ }^{1}$ By means of shunt or series peaking, or both, a wide band of frequencies can be amplified. (This is explained in detail in the book referred to in the footnote.)

Tube substitutions in wideband amplifiers, therefore, require yery serious consideration. The substitute tube characteristics should approximate most closely the complete conditions existing in the original. Interelectrode capacitance is very important. Plate-current, grid-bias, and grid-circuit resistance ratings should be the same. Lead dress must le maintained as much as possible because changes in the position of leads will affect the frequency of resonance and thereby the overall loandwidth of the system. This is very important if socket changes are required.

If possible, all stages should be replaced by like substitutes even if only one stage requires replacement. This is expensive but advantageous. If the facility to check frequency bandwidth exists, then it is possible to confine the replacement to only one stage, the one in which the original tube is bad. Make the frequency run, and if the response is satisfactory after the replacement in that stage, the other stages need not be changed. Such tests can be made by means of a squarewave generator or a sine-wave generator. Usually the limits of response are expressed by the lowest and highest frequency signals which are down not more than 3 db from the top. In some instances, the amplifier design is more critical and the over-all response is expressed in terms of only 1 db down from the top.

Utilization of Sections of Multifunction Tubes

A number of tubes found in television and other equipments comline three and four sets of electrodes in a single envelope, thus performing three or four different functions. Direct substitutions for these tubes may not be available. In that event it is necessary to utilize two individual tubes containing such electrodes as will furnish the facilities originally contained in the single tube which is being replaced. For example, a triple diode-triode such as the 6 T 8 may require replacement. If the original is not available, pairs of substitutes must be used, for example, a 6AL5 and a 12AV6 or a 6AL5 and 6AQ6. These are the recommended combinations, other combinations of a doublediode with a clouble-diode triode, or single diode-triode

[^0]will function satisfactorily. One of these tubes takes over the function of two diodles in the 6T8 and the other tube takes over the function of the remaining diode-triode.

Substitution of two tules for one is not easy; it means adding sockets and perhaps even changing sockets on crowded chassis where space is at a premium. This requires planning of the socket location and the location of shunt and series resistors, so as to keep connecting leads short. But it can be done, and it is a vivid example of how tubes with more electrodes (and capable of more functions) than the original may be used in replacements so long as only the necessary number of electrodes are utilized. Also it is an example of how it may be necessary to utilize several substitute tubes to perform the function of one original. Incidentally, pairs of tubes which can be used in place of other multifunction tubes are listed in an addendum to the tube substitution list. Which combination of substitute tubes fills the replacement of a single original is a matter of individual circuit design. Very many possible substitutions of this kind exist, especially in so far as signal diodes are concerned.

Tube Substitution Techniques

Heater circuits are very significant in connection with tulbe substitutions because tube types are organized in terms of heater voltage. Therefore, it is quite in order to show the techniques involved in arranging tube heater circuits so as to accommodate substitute tubes. Before discussing the methods, however, in fact even before speaking about heater ratings, it might be well to emphasis one very important point, all heater ratings are interpretable in terms of resistance. The ohmic value of a heater is the same when it is operated on direct current or alternating current. Any reference to heater voltage considers the d-c value and rms or effective a-c value as the same. Thus a tube heater rating of 6.3 volts means 6.3 volts d.c. or 6.3 volts rms a.c. The same applies to any other numerical rating. Note: Many battery-operated tubes zeill not function properly on a.c.

Heater current is treated in like fashion. A reference to 0.15 ampere or 150 ma means d.c. or a.c., the latter being the rms value. The rms value is used because it is responsible for the heating effect in filaments and to get equivalent heating in d.c. and a.c., the d-c value must equal the rms a-c value.

While the above statement is true in all conditions associated with resistance, it should not be assumed to apply to all a-c systems regardless of circumstances. For example, the $\mathrm{d}-\mathrm{c}$ value of voltage is related to the peak value of an a-c voltage when insulation resistance is involved. This is important in the operation of capacitors and in connection with the insulation breakdown of rectifier tubes during the nonconducting portion of the cycle.

Heater Ratings versus Heater Circuits

It is common practice among electronic equipment manufacturers to use certain kinds of tubes for certain kinds of equipment. For example, in most a-c-d-c equipment, the tube heaters are connected in series across the line. The same is true when such equipment is intended for battery-operated portable use (the threeway portalles). Other equipments are designed for operation from the a-c power lines only and the heaters are arranged in parallel chains. Still other equipments use a combination of series-parallel systems, as for example, a-c-d-c television receivers.
Sometimes the series chain is singular; sometimes there are a number of chains connected in seriesparallel between different points as shown in the schematics at the end of Section 3. In the parallel systems, several independent parallel chains are used. Usually the rectifiers are wired individually and, in the true sense, are series circuits. The remainder of the tubes are, however, in parallel, all being on one chain or divided among a number of chains fed from individual voltage sources. These too are illustrated in Section 3. Incidentally, the receivers inclucled in that section represent practically every one produced and sold in the years 1938 through October, 1950 as contained in Rider's TV Manuals Volumes 1 through 5.

Parallel Circuits

Parallel chains will accommodate tubes which require equal heater voltage ; they will also accommodate tubes with heater voltage ratings with are lower than that being supplied to the remainder of the tubes. This is shown in Fig. 1-2. The cuirrent rating of the heater is a matter of secondary concern in parallel chains.

Fig. 1-2. Parallel connection of vacuum-tube heaters. The voltage drops across the heaters so connected are equal to the voltage across the secondary of the power transformer as shown.

If the supply voltage source (the heater transformer) is capable of supplying the required current at its rated output voltage, then any reasonable heater current requirement set by the substitute can be satisfied. The only limitation which exists relative to parallel connected heaters is that the output voltage rating of the heater transformer cannot be exceeded. The current through the parallel heater is determined by the resistance of the heater so that, if the voltage is correct, the current will be correct. If the current drain of the substitute heater added to the total current drain of the other tubes in the parallel chain exceeds the current output capabilities of the heater transformer, the

RECEIVING TURE SUBSTITUTION CUHE

voltage will fall on all the heaters. It is possible to operate all receiving tubes at perhaps ten per cent below the normal voltage and current ratings. In special cases this reduction can be exceeded but it is not recommended.

Tule sulbstitutes which bear heater voltage ratings lower than that of the original tube can be applied readily to parallel circuits. All that is needed is to drop the supply voltage to the level demanded by the substitute. The correction must be applied directly in the circuit which feeds the substitute tube. This is shown by the location of R in Fig. 1-3. The amount of volt-

Fig. 1-3. When substituting a tube with lower voltage requirements than the original, a series resistor is added in the branch of the parallel feed in which the tube is placed. The resistor may be a single one as in (A), or two smaller ones as in (B).

age to be dropped is the difference between the supply voltage E and the tube heater requirement E_{1}. Suppose we wish to substitute a 2 B 7 with a 2.5 -volt heater for a 6B7 whose 6.3 -volt heater drew its supply from a filament transformer with an output of 6.3 volts. The difference $E-E_{1}$ is 3.8 volts and this must be dropped at the heater current rating of the substitute tube, namely, 0.8 ampere. The value of the voltage-dropping resistor then is

$$
R=\frac{E-E_{1}}{I}=\frac{3.8}{0.8}
$$

or

$$
R=4.75 \text { ohms or roughly } 5 \text { ohms. }
$$

The power rating of R is

$$
P=I^{1} R=0.8^{2} \times 4.75=3.204 \text { watts }
$$

In the examples cited, the substitute imposes a load that is somewhat greater than the original; the power consumption of the 6B7 heater is 1.89 watts whereas that of the 2B7 is 2.0 watts. To this must be added the power dissipated across the voltagedropping resistor R, for, after all, it is a part of the newly created load. Roughly, this amounts to 3 watts. So, the substitution of a 2 B 7 for a 6 B 7 means the imposition of a 5 -watt load in place of the original 1.89 watts, or an increase in load of 150 per cent.

Normally, the addition of such a load will cause no trouble, but in the event that several tubes require sub-
stitution, the load may be increased to the extent that the voltage drop in the transformer secondary becomes excessive, and the voltage across all of the heaters will be lowered.

Some television receivers utilize a heater voltage supply which is the equivalent of two 6.3 -volt windings in series, with the centertap grounded and acting as a common return path for two parallel chains of 6.3 -volt heaters. This is shown in Fig. 1-4. Each winding furnishes 6.3 volts for its respective chain, but by virtue of a common center connection, the difference of potential between the extremes of the two windings is twice that of each, or 12.6 volts. Consequently, a $12.6-$ volt heater can be used by connecting it across the extremes of the windings.

Fig. 1-4. Filament circuit of the type found in many television receivers. The center tap between the two windings is grounded to serve as a return for the filaments in parallel, each of which receives 6.3 volts from its part of the secondary.

If necessary, more than one tube substitution can be handled in this way. The voltage between the extremes of the two windings is a maximum which cannot be exceeded, therefore, even such an arrangement does not permit the use of a tube which requires more than 12.6 volts (or whatever the voltage happens to be between the two extremes of the windings).

The number of 12.6 -volt tubes which can be handled in the manner shown in Fig. 1-4 is not without limit. The power-handling capability of the two windings is the controlling factor. The substitution of a single 12.6 -volt tule in place of a 6.3 -volt tube is no problem especially when the power consumption is the same for both heaters; more than likely it will not cause any concern even if an increased load is created by the selection of some special type of 12.6 -volt tube.

Series Circuits

The substitution of tules in series-wired heater arrangements hinges upon the following fundamentals of Ohm's law relating to series circuits:

1. In a series circuit there is only one path for the current.
2. The current in a series circuit is equal to the applied voltage divided by the total resistance.
3. The sum of the individual voltage drops in a series circuit equals the applied voltage.
Illustrated in Fig. 1-5(A) are four tube heaters connected in series across a voltage supply source E. Only one path exists for the flow of current I, therefore, the current must be the same in all parts of the circuit,

RECEIVING TUBE SUBSTITUTION GUIDE

that is, in each heater. This immediately establishes the requirement that all heaters connected in series must have similar current ratings. A variation of 10 per cent in heater rating is permissible so long as the heater has a higher rating than the current required by the other heaters in the circuit.

Fig. 1-5. Filaments connected in series (A) may be represented as individual resistances (B), each of which passes the same current determined by the applied voltage divided by the total resistance.

The numerical value of the current is dependent upon the applied voltage E and the total resistance R of all of the heaters, as stated in statement 2. above Since resistances connected in series are additive, the total heater resistance R, is equal to $R_{1}+R_{z}+R_{3}$ $+R_{\natural}$, as indicated in Fig. 1-5(B). If, for the moment, we assume that each heater is rated at 12.6 volts and 0.15 ampere (150 ma), then the resistance of each is 12.6 divided by 0.15 or 84 ohms. The four heaters in series, therefore, represent a total resistance of 336 ohms. Knowing the total R and the required current, the supply voltage necessary to limit the current to the required value is

$$
E=I R
$$

or

$$
E=0.15 \times 336=50.4 \text { volts }
$$

If the voltage drops across each heater (or the voltage required across each heater) are aggregated, it is seen that the sum of the voltage drops equals the applied voltage. Thus are illustrated statements $1 ., 2$., and 3.
In view of what follows it might be well to devote a little more time to the matter of voltage drops and applied voltage, or the possibilities of statement 3 . Current flowing through a resistance will cause a voltage drop across that resistance. If the current flow is the rated value, then the voltage drop numerically is the same as the voltage rating of the resistance. If the resistance is the heater (or filament) of a tube, and the current through it is the rated value, then the voltage drop is equal to the voltage rating of the heater.
We have simplified the problem by deliberately making the applied voltage (which we also can identify as the line voltage) equal to the total of the voltage drops in the load. As a rule, this is not found in practice; the line voltage always exceeds the total of the voltage drops across the tube heaters. This excess voltage is dropped by means of a line voltage-dropping resistor across which there is a voltage drop equal to the difference between the sum of the tube heater voltage drops and the line voltage. For example, if the line
voltage is 117 volts and the total of the tube heater voltage drops is 50.4 volts as in the above case, the line voltage-dropping resistor will drop 117 - 50.4 or 66.6 volts at the value of current which is flowing through the series chain.

Statement 3 still holds, except that now the series line voltage-dropping resistor has been added to the elements (heaters) which comprise the load. This action of the line voltage-dropping resistor may be considered from a different viewpoint. It is the means whereby the line voltage is dropped to that value which equals the sum of the voltage drops across the heater elements. This is not a play on words; it simply presents the relationship between the line voltage and the total heater drops from two angles relative to the purpose of the line voltage-dropping resistor. In one case, the line voltage-dropping resistor is considered a part of the load and, in the other, only the tube heaters are considered to comprise the load. Personally, we prefer the former and shall hold to it in these explanations.

Fig. 1-6. A series chain of four filaments or heaters with a line voltage-dropping resistor. The voltage drop across the line voltage-dropping resistor makes up for the differences between the line voltage and the voltage required by the four heaters.

An example of the above is shown in Fig. 1-6. Here the elements of the load are shown to the right of the vertical dotted line and the applied voltage source is shown to the left. The series system indicates a total heater voltage drop of 50.4 volts at 0.15 ampere and a line voltage of 117 volts. The difference in voltage is dropped across the resistor R. Since the line voltagedropping resistor is in series with the heater chain, the same current will flow through R as through the heaters. The voltage drop across this resistor is, therefore, a function of the current through it and its resistance. Since this voltage drop represents a dissipation of energy, the line voltage-dropping resistor bears a wattage rating in addition to its resistance rating. The power dissipation is a very important factor and must be taken into account in the event of any changes; in fact, it determines the type of resistor element which suits this purpose. The power dissipation in watts is expressed by either $I E, I^{2} R$, or by E^{2} / R, where I is the current in amperes, R is the resistance in ohms, and E is the voltage in volts, exactly the same units as are used for the other Ohm's law calculations.

The ohmic value of R is

$$
\begin{aligned}
R & =\frac{117-50.4}{0.15} \\
& =\frac{66.6}{0.15} \\
& =444 \text { ohms }
\end{aligned}
$$

Its power dissipation is

$$
\begin{aligned}
P & =E \times I \\
& =66.6 \times 0.15 \\
& =9.99 \text { watts (approx. } 10 \text { watts) }
\end{aligned}
$$

or

$$
\begin{aligned}
P & =I^{2} R \\
& =0.0225 \times 444 \\
& =9.99 \text { watts (approx. } 10 \text { watts }) .
\end{aligned}
$$

To prove these figures, the total resistance of the four heaters is 4×84 or 336 ohms; adding this to the 444 ohms resistance of the line voltage-clropping resistor results in a total circuit resistance of 780 ohms. With a current of 0.15 ampere flowing in the system, the applied voltage is $E=0.15 \times(336+444)=117$ volts.

Let us now examine the possible variables in a simple series chain of the kind shown in Fig. 1-6. Statement 3. of Ohm's law relates to an equality between the line voltage (applied voltage) and the total of the voltage drops in the load. No restriction is evident concerning the number of elements (tube heaters) which may comprise the load and across which the total of the heater drops will occur. In the system shown in Fig. 1-6, four elements comprise the heater load. These could be any number provided that the total voltage drop did not exceed the line voltage ; if it equaled the line voltage, then the line voltage-dropping resistor (R in Fig. 1-6) would not be required in the circuit and the system would become the equivalent of Fig. 1-5(A), with more heaters than are shown there.

As a matter of fact, no matter what the total of the rated voltage drops across the heaters in the load is, this value can never exceed the applied (line) voltage, for statement 2 . establishes that the current will adjust itself automatically in accordance with the total resistance and the total applied voltage. For example, if fourteen 12.6 -volt, 0.15 -ampere tubes were used in series across a 117 -volt line, the total resistance would be 1,176 ohms. The current, therefore, would be

$$
\frac{117}{1.176}
$$

or 0.099 ampere, and the voltage clrop across each heater would be 0.099×84 or 8.3 volts. It is obvious that the voltage across these heaters would be insufficient for proper operation of the tubes. Correction of this state would demand a revision of the circuit or an increase in the line voltage; the latter is impractical, so the former is the only solution. It will be treated later.

On the other hand, the need may arise to substitute a lower voltage rated heater for a higher rated one,
such as a 6.3 -volt tube for a 12.6 -volt one. If the rated voltage drop across the series heaters is at least ten times the rated voltage drop across the substitute heater, the latter may be inserted into the string without requiring any correction. Thus, if the total rated voltage drop across the series heaters is 75 volts, and a 6.3 -volt tube is a replacement for a 12.6 -volt heater in the string, the replacement will be subject to a slightly higher voltage (and current) but it will do no harm.

For example, if the original series string consists of a 25 -volt, 0.15 -ampere tulse and four 12.6 -volt, 0.15 ampere tubes, the total resistance of these heaters is 502 ohms. Operation from a 117 -volt line demands a dropping resistor of 227 ohms, making a total load resistance of 779 ohms. Substituting a 6.3 -volt tube for the 12.6 -volt one reduces the heater resistance to 460 ohms, and the total load to 737 ohms. This results in a circuit current of 0.158 ampere, and as a result, the 12.6 -volt tubes are subjected to a voltage of 13.27 volts, the 6.3 -volt tube to 6.6 volts, and the 25 -volt tule to 26.4 volts. None of these voltages are so extreme as to endanger the tubes.

Battery tubes, however, should be treated with more care and every effort should be made to keep the voltage as close to the rated voltages as possible, especially when operation is intended on a-c lines.

Circuit conditions encountered in practice seldom are such that the total voltage drop across the heaters or filaments equals the applied or line voltage. The use of a line voltage-dropping resistor is very common, consequently, any change in the total voltage drop across the load caused by a substitution demands that the drop across the line voltage-dropping resistor be changed, and this means a change in its ohmic value. Whether the latter is done by shunting another resistor across it, by physically changing its length (as happens with line cords), or by substituting a new one of proper ohmic value for the original is determined by whichever is most convenient. If the total voltage drop across the heaters is increased, the drop across the line resistor must be decreased, and vice versa. A typical example follows.

Seven 6.3-volt heaters are in series with a 35 -volt heater. All are rated at 0.3 ampere. The total voltage drop across the heaters is 79.1 volts and the total resistance of the heater load is 264 ohms as shown in Fig. 1-7(A). With a supply of 117 volts, 37.9 volts must be dropped across the line dropping resistor R. At 0.3 -ampere current flow, the ohmic value of R must be 126 ohms and its power dissipation, therefore, is 11.3 watts.

Two 12.6 -volt, 0.3 -ampere tubes must be substituted for two of the 6.3 -volt tubes. The modified circuit is shown in Fig. 1-7(B). Simple calculation of the total voltage drop across the heaters shows an increase of 12.6 volts, therefore, it is obvious that the value of R will have to be decreased. Its value may be determined

RECEIVWG TUBE SUBSTITUTION GULDE

in a number of ways, but a simple procedure is the following

$$
\begin{aligned}
R_{\text {new }} & =\frac{\begin{array}{c}
\text { Original value of } E_{R}-\text { Increased voltage } \\
\text { drop across heaters }
\end{array}}{\text { Current through the system }} \\
& =\frac{37.9-12.6}{0.3} \\
& =84 \text { ohms. }
\end{aligned}
$$

The power dissipation in the new R is

$$
\begin{aligned}
P & =I^{2} R \\
& =0.09 \times 84=7.5 \text { watts }
\end{aligned}
$$

Fig. 1-7. In (A), a series chain of seven 6.3 -volt heaters and one 35 -volt heater requires a line voltage-dropping resistor R of 126 ohms to bring the applied voltage of 117 volts down to the value required by the heaters. When the total voltage drop across the heater is increased by 12.6 volts as in (B), the value of R must be decreased to 84 ohms.

Substituting Low-Current Rated Heaters for Higher-Current Heaters

Suppose that in the circuit of Fig. 1-7(A) two 12.6volt heaters rated at 0.15 ampere must replace two of the 6.3 -volt 0.3 -ampere heaters. Let us select H_{3} and H_{s} as the specific heaters. How would this be accomplished? Two methods are practical, one being simpler than the other. Suppose we treat the more difficult one first.

Since the circuit current is 0.3 ampere and each substitute heater draws only 0.15 ampere, it stands to reason that they just cannot be connected into the circuit as is, otherwise each would be subject to a 100 per cent current overload. However, two such heaters connected in parallel would require 0.3 ampere, and because of the division of currents in a parallel circuit in accordance with the resistance of each branch, connecting these two tubes in parallel would result in 0.15 ampere flowing through each heater. Moreover, the voltage drop across two elements in parallel is the same as that across a single element and, since the total drop across the two 6.3 -volt heaters which are being replaced equals 12.6 volts, the two 12.6 -volt heaters in parallel can replace the two individual 6.3 -volt heaters without changing the total voltage drop across the
string of heaters. This is shown in Fig. 1-8(A). Note that the total drop across the string of 6.3 -volt heaters originally [Fig. 1-7(A)] was 79.1 volts, and that the total drop across the heaters with the two parallel 12.6volt substitutes is 79.1 volts. This means that the line dropping resistor R need not be changed since it is called upon to drop 37.9 volts at 0.3 ampere, the same as in the original circuit.

The other means of accomplishing the substitution is shown in Fig. 1-8(B). Instead of connecting the two

Fig. 1-8. Two methods of substituting 12.6 volt, 0.15 -ampere heaters for 6.3 -volt, 0.3 -ampere ones are shown. In (A), both substitutes are paralleled together, splitting the current and keeping the voltage drop of the system intact; in (B), each heater has its own shunt, thereby drawing its rated current but increasing the total voltage drop of the heaters.
substitute heaters in parallel, they are treated individually and separate current shunts are connected across each one. Since it is desired to split the current equally between the heater and its shunt, the ohmic values of the shunts must equal the resistances which they shunt. This means that $R_{s}=84$ ohms and $R_{s}=84$ ohms, and each dissipates 1.89 watts. [See Fig. 1-8(B)].

However, handling these substitutions in this manner means that the total voltage drop across the string of heaters has been increased by 12.6 volts, since two 12.6 -volt heaters in series total 25.2 volts, and two 6.3volt heaters in series total only 12.6 volts. The increased drop of 12.6 volts must be compensated for by reducing the drop across the line resistor R. Figs. 1-7(A) and 1-8(A) are comparable, as are Figs. 1-7(B) and 1-8(B). In Figs. 1-8(A) and (B), the total line current of 0.3 ampere flows into the junctions of the parallel systems (the parallel heaters in (A), and the heaters paralleled by the shunt resistors in (B), divides equally between the two paths, and then recombines again to equal the 0.3 -ampere line current. Thus, the 0.3 -ampere, 6.3 -volt heaters receive the proper current and so do the two 12.6 -volt, $0.15-\mathrm{am}$ pere heaters.

If four tubes required substitution and they were of like voltage ratings, two pairs of heaters could be paralleled as shown in Fig. 1-8(A). If there were an odd number of substitutions, two heaters could be located in parallel and the odd one would be operated with a shunt as shown in Fig. 1-8(B). As a matter of fact, it is the principle underlying these techniques rather than the actual number of tubes involved which is important. Once the principles are understood, it will be simple to apply them, and in general, the most convenient method should be used depending on the circuit and the components available. For example, the availability of resistors is a determining factor in deciding whether the line dropping resistor will be replaced or if two small resistors will be used for the current shunts. If the substitution demands new sockets, then paralleling of the heaters is no problem, but if the sockets do not require changing to accommodate the substitutes it is more convenient to use the current shunts.

Substituting Higher-Current Heaters for Low-Current Heaters

Suppose the requirement is for the use of higher current heaters in place of lower current heaters in a series circuit. A single 0.3 -ampere heater is to replace one rated at 0.15 ampere in a series string of five 12.6 -volt, 0.15 -ampere heaters and one 25 -volt, 0.15 ampere heater. This substitution is to occur at H_{σ} in Fig. 1-9(A). Several solutions are shown in Figs. 1-9(B) through (G). The choice is determined by which is most convenient and best fits the need. The one fundamental requirement created by such a substitution is that the total line current must be increased to 0.3 ampere so as to serve the increased current demand of the substitute tube. Whether this means that the line current will be limited to 0.3 ampere or increased above that value is determined by the organization of the heaters which form the load. One circuit system [Fig. 1-9(B) and (C)] needs 0.45 -ampere line current, whereas other arrangements can be served by 0.3 ampere; there is no way, however, of satisfying the requirements of the 0.3 -ampere tube with a line current of 0.15 ampere. For comparison, let us keep the constants of the original circuit [Fig. 1-9(A)] in mind. Here we have a total drop of 88 volts across the heaters, and 29 volts across the line dropping resistor at a current flow of 0.15 ampere.

One solution for the substitution is the use of two series paths, one for the 0.15 -ampere heaters and the other serving the 0.3 -ampere heater, as shown in Fig. 1-9(B). In order not to change the total voltage drop in the 0.15 -ampere chain, a resistance (84 ohms) corresponding to that of the heater $\left(H_{s}\right)$ which has been removed is inserted in its stead. This establishes the total voltage drop at the original value of 88 volts and

Fig. 1-9(A). A series chain of heaters each driwing 0.15 ampere in a circuit with a single voltage-dropping resistor.

Fig. 1-9(B). H_{6} of Fig. 1-9(A) has been replaced by a 12.6 -volt, 0.3 -ampere one requiring a separate series circuit and an increase in the current drawn from the line source. Now there are two dropping resistors, one in each branch of the circuit.

Fig. 1-9(C). Same as Fig. 1-9(B) except that the dropping resistor in the longer branch now is a combination of the dropping resistor R and the compensating resistor R_{1} of the previous diagram.
the original line dropping resistor remains intact. Compare Figs. 1-9(A) and (B). Since the drop across the 0.3 -ampere heater is 12.6 volts and the line voltage is 117 volts, a line dropping resistor must be added to this circuit. R_{g} serves this purpose; its ohmic value (348 ohms) is such that it will drop 104.4 volts at 0.3 ampere.

Examination of the two series circuits of Fig. $1-9$ (B) shows that they are actually in parallel since each goes from the 117 -volt line to ground. This is illustrated in the equivalent diagram in Fig. 1-9(B). The total resistance of each of the parallel branches is such that 0.15 ampere flows in one, whereas 0.3 ampere flows in the other.

The equivalent circuit in Fig. 1-9(B) is an important one to understand because it shows the application of two series circuits connected in parallel. Television receivers intended for use on a-c-d-c lines employ such circuit arrangements quite frequently, see Fig. 1-8 and the schematics at the end of Section 3.

A modification of Fig. 1-9(B) appears in (C). The substitution requirement remains the same, but this time the resistance equivalent of the heater which has been removed is not inserted. Instead, the line dropping resistor is changed in value so as to compensate for the reduced total voltage drop across the heaters. With one 12.6 -volt heater removed, it has fallen to 75.4 volts from the original 88 volts. This necessitates an increase in the line resistor R from the original value of 193 ohms to 277 ohms. (This follows from the fact that the heater removed from the string had a resistance of 84 ohms, and in order to maintain the original amount of current in the circuit, this amount of resistance must be added to the line dropping resistor. The change is essentially the transposition of the resistor R_{i}^{*} in Fig. 1-9(B) from its position at the grounded end of the string to the line dropping resistor.) Now the drop across the line dropping resistor is 41.6 volts, or the original 29.6 volts plus the 12.6 volts representing the displaced heater. The second series leg of the circuit is the same as shown in Fig. $1-9(B)$, because its demands have not been changed in any way by the modifications applied to the other series circuit.

Several other interesting details may be mentioned about the arrangements in Figs. 1-9(B) and (C). In the latter, the increase in the value of the line dropping resistor means an increase in power dissipation. The power dissipation in the resistor in (B) is 4.34 watts; the power dissipation in the resistor in (C) is 6.23 watts. However, it is necessary to add to the former the amount dissipated in the resistor R_{1} which has replaced the heater. This power is 1.89 watts, which when added to the 4.34 watts, totals the same amount as is dissipated in the higher value of resistance used in Fig. 1-9(C). At first glance there may appear to be no difference between the two systems, yet there is a substantial difference. It is simply that two resistors, one of 4.34 watts and another of 1.89 watts rating (or whatever may be the wattage ratings selected to afford ample safety factor), are definitely more expensive than a single resistor of such wattage rating as will satisfy a power dissipation of 6.23 watts.

For purposes of comparison let us identify the power dissipation in the system shown in Fig. 1-9(C). The power dissipation in the $150-\mathrm{ma}$ leg is 11.34 watts in the heaters and 6.18 watts in the line dropping resistor R, a total of 17.49 watts. The power dissipated in the 300 -ma circuit is 3.78 watts in the heater and 31.32 watts in the line dropping resistor R_{1}, making a branch total of 35.10 watts. The dissipation in both circuits is the sum of the branch wattages or 52.59 watts.

A third possible arrangement for the substitution is shown in Fig. 1-9(D). In a way, this is a more practical way to connect a 12.6 -volt, 0.3 -ampere heater in place of a 0.15 -ampere heater of like voltage rating. Only one series string is arranged, although it contains two parallel circuits. This system operates in a similar manner to that shown in Fig. 1-8. Of course, the ability to assemble such a circuit depends upon the number of heater elements present. The four heaters H_{2}, H_{J}, H_{4}, and H_{5} are of like constants, therefore, two series pairs connected in parallel result in a system requiring 25.2 volts and 0.3 ampere. In order that heater H_{1} draw only 150 ma , it is shunted with a resistance equal to its own resistance. Thus, the original six tules now are arranged so that they can be assembled into a single series string and supplied with 0.3 ampere of current.

The rearrangement of the $150-\mathrm{ma}$ tubes reduces the total voltage drop across the heaters because the paralleled pair of series heaters draws only 25.2 volts compared to its former 50.4 volts. The result is that the total drop across the heaters is reduced to 62.8 volts. This requires a change in the line dropping resistor to that ohmic value (181 ohms) which will draw 54.2 volts and so drop 117 volts to the 62.8 volts at 0.3 ampere required by the heaters. Relative to the power consumption in such a system, the four series-parallel

Fig. 1-9(D), (E), and (F). Various methods are shown here for shunting the heaters of the circuit shown in Fig. 1-9(A), after the substitution of a 12.6 -volt 0.3 -ampere heater for H_{8}, so that the voltage and current requirements of each heater are satisfied.

Fig. 1-9 (G). Part of a television receiver filament circuit showing the isolating chokes used between the heaters in the scries chain. The shunts shown in dotted lines are unacceptable because they nullify the action of the chokes.

(G)
heaters dissipate 1.89 watts each for a total of 7.56 watts; the 25 -volt heater H_{t} with its shunt consumes 7.5 watts ; the 12.6 -volt 300 -ma heater H_{6} consumes 3.78 watts; and the line dropping resistor consumes 16.26 watts. The total power dissipation of the whole circuit is, therefore, 35.1 watts. A comparison between the total power consumption of the circuit in Fig. 1-9(D) and that in Fig. 1-9(C) illustrates the economy in power consumption possible by a choice of circuits.

A modification of the circuit in Fig. 1-9(D), designed to allow the replacement of a $150-\mathrm{ma}$ heater tube with a $300-\mathrm{ma}$ one, is shown in Fig. 1-9(E). Here, all the heaters are in a single chain with a current shunt across each 150 -ma tube ; the 300 -ma heater H_{6} does not require a shunt. The ohmic value of these shunts is equal to the resistance of each of the shunted heaters. The power consumption of the entire system totals 36 watts made up as follows: each of the shunted $12.6-$ volt heaters with its shunt consumes 3.8 watts, the unshunted 0.3 -ampere tube requires approximately the same amount of power, the 25 -volt shunted heater with its shunt consumes 7.5 watts, and the line dropping resistor consumes 8.7 watts, a total of 35.2 watts. This is slightly more than the consumption of the circuit of Fig. 1-9(D), but it is much less than that required by circuit 1-9(C). As to the relative ease of installation of circuits 1-9(D) or (E), it is a matter of specific circumstances, there being little to choose in terms of power saving.

The reduction of the line voltage-dropping resistor R, in Fig. $1-9(\mathrm{E})$ is significant. It means a smaller unit and one with lower power dissipation rating, making it more convenient to install than larger units.

A simplification of the shunted heaters is shown in Fig. 1-9(F). Instead of individual current shunts, a single shunt K_{i} of suitable value (equal to the combined resistance of the shunted heaters) is connected across the 150 -ma heaters, H_{1} to H_{5}. As indicated in the diagram, this resistance amounts to 502 ohms, which is the aggregate of four heaters of 84 ohms each, and one heater of 166 ohms. The $300-\mathrm{ma}$ heater H_{6} requires no shunt, therefore, it is not included by the common shunt R_{t}.

The use of a common shunt across several tube heaters is not generally applicable to television receivers without taking special precautions. The reason for this is that it is common practice in series-wired television
receivers to isolate one heater from the other by means of isolating chokes [see Fig. 1-9(G)]. These are part of the filament circuit, but their d-c resistance is extremely low. Any attempt to shunt current around these heaters must exclude the choke from the shunted circuit otherwise the effectiveness of the choke will be materially reduced, if not completely nullified. This means that the current shunts shown in dotted lines in Fig. 1-9(G) are undesirable, instead, each tube should be shunted separately and care must be exercised to see that the shunt is connected directly across the terminals of the related heater and does not include the associated choke.

Series-Parallel Circuits

Having described the parallel and the series systems separately, the organization of the series-parallel system should pose no problem. It is doultful that the occasion will arise which requires the design of a complete new heater system, usually, the substitution involves one or two tubes at the most and these can be treated as illustrated in Figs. 1-9 (B) through (G). An example of a series-parallel combination somewhat more complex than the usual is illustrated in Fig. 1-10. To simplify the treatment of this circuit, we will divide the heaters into two strings, and examine each separately.

In string 1, heaters H_{1} and H_{s} require heater current equal to the total line current entering the string. Heaters H_{2} through H_{3}, are alike in their requirements for they draw the same current and voltage, however, the total current drawn by these heaters is less than I_{1} because of the presence of the current shunt R_{1}. Furthermore, we note a number of voltage drops in string 1 indicated by the letter E with subscripts. Voltage drop E_{1} appears across the extreme limits of the string and is equal to E, the line voltage. The presence of the line dropping resistor R in series with the heaters in string 1 indicates that the total voltage drop in the system $E_{1 I}$ is less than the applied voltage. The latter is equal to the sum of E_{11} and E_{12}. In turn E_{11} is composed of the sum of the voltage drops E_{a}, E_{b} and E_{c}.

Suppose, for the moment, that heater H_{1} is rated at 25 volts and 0.8 ampere, heater H_{8} is rated at 12.6 volts and 0.8 ampere, and heaters H_{2} through H_{z} are rated at 12.6 volts and 0.15 ampere. This idenitifies E_{b}
as being 37.8 volts, and E_{11}, therefore, amounts to $25+12.6+37.8$ or 75.4 volts. The line dropping resistor R, therefore, disposes of 41.6 volts at 0.8 ampere. The series-parallel arrangement of heaters H_{2} through H_{i}, without the shunt R_{1} requires only 0.3 ampere, however, the line current is 0.8 ampere. Therefore, shunt R_{1} must bypass 0.5 ampere. Its value can be determined by $R=E / I$, where E is the voltage across the shunt, in this case $E_{b}(37.8$ volts), and I is the current to be shunted through the resistor (0.5 ampere). R_{t}, therefore, is equal to 75.6 ohms.

Fig. 1-10. In a series-parallel arrangement of tube heaters such as shown here, each string should be considered separately to find the requirements of each heater.

The distribution of voltages and currents in string 2 requires no special comment. What has been said so far will make the organization of this string easy to follow with the possible exception of the shunting of heater H_{13} across the series pair H_{11} and H_{12}. This is made possible by virtue of the relative voltage ratings of these three heaters; heaters H_{11} and H_{18} are rated at one-half of that of H_{13}, or the total drop across the series pair H_{11} and H_{12} equals the drop across H_{13}. The total current drawn by H_{11}, H_{12}, and H_{13} must equal the current flowing in the line through H_{s} and H_{10}. Further examples of such circuits will be found in Section 3.

Dual-Heater Voltage and Current Tubes

Some tubes contain dual heaters which are connected in series and tapped at the midpoint, offering three points for connection. They bear one voltage rating when the two heaters are used in series and another voltage rating (half the previous value) when they are connected in parallel. Naturally, the parallel connection bears a current rating which is twice that
of the series rating. Circuitwise, the heaters appear as shown in Fig. 1-11, and are listed in a tube characteristic chart as follows:

Fig. 1-11. Dual heaters such as appear in dual-heater tubes have their midpoint tapped. This makes it possible to connect the heaters either in series or in parallel with each other.

The use of such tubes in a system affords a more convenient means of substitution than the use of single rated heaters for, by simply arranging the heaters in parallel, they can be made to serve in circuits which require the lower of the two voltages and the higher of the two current ratings. By using the tube with series-connected heaters, it will suit the needs of circuits which require the higher voltage rating and the lower current rating.

Fig. 1-12. A defective heater in a dual-heater tube may be replaced by an external resistor equal in resistance to the defective element.

Each of these dual heaters is a resistance and, when the heaters are used in parallel, the resultant resistance is half that of either. When they are used in series, the total resistance is equal to twice that of either. In the event of failure of either heater, the remaining heater is capable of causing sufficient electron emission from the cathode and the tube may be treated as if it had but one heater. If it is a matter of maintaining a certain voltage drop in a heater system, the defective heater may be replaced by an external resistance equal in value to that of the original heater. This is illustrated in Fig. 1-12. It must, of course, be understood that when this external resistance replaces the bad heater it will contribute nothing to the emission.

Resistor Substitution

A number of factors control the substitution of resistors, these are :

RECEIVING TUBE SUBSTITUTION GUIDE

a. Type (wire or processed)
b. Ohmic value
c. Tolerance
d. Wattage rating.

Kelative to the type, wire-wound resistors should not be used in frequency-sensitive circuits unless so stated. The reason for this is the winding has inductance and distributed capacitance. If a resonant peaking circuit contains a carbon resistor in series with the peaking coil, replacing that resistor with a wire-wound unit will change the frequency of resonance, and so alter the operation of the device. Such conditions will be found in wideband amplifiers. In general, therefore, replacement resistors should be of the same type as those which were removed. Carbon resistors are preferable in all high-frequency circuits, unless otherwise indicated. In circuits which are not frequency sensitive, the replacement of a processed resistor by a wire-wound one is satisfactory, except when wire resistors appear in both grid and plate circuits of the same tube. This may result in feedback and oscillation in amplifier circuits which handle reasonable amounts of power. Resonance may be created by means of the related distributed capacitance and the inductance of the resistor.

Concerning the ohmic value, it is assumed that the correct substitution will be made with whatever tolerance is indicated in the reference information that describes the constants of the circuit where the replacement is being made. Data concerning tolerance identifications on processed resistors will be found in Section 5.

Sometimes, a single resistor must be replaced by two resistors or a shunt must be added so as to change the ohmic value of a portion of the circuit in order to satisfy the requirements of a tube substitution. The equivalence between a single resistor and other combinations which can produce the same value is shown in Fig. 1-13.

When resistances are in series, the total resistance is equal to the sum of the individual resistances, no matter how many there are [Fig. 1-13(A)]. The re-

Fig. 1-13. The use of a combination of resistors to produce the same total resistance as a single one is shown in (A), (B), and (C). The total resistance of each of the combinations may be found from the formula beneath it and is equal to the single resistance R shown at the left.
sultant resistance of two resistances in parallel is equal to the product divided by the sum, see Fig. 1-13. The number of resistances which may be placed in parallel is limited by practical considerations. If more than two must be shunted in order to arrive at a certain resultant, the following equation should be used
$\frac{1}{R}=\frac{1}{R_{s}}+\frac{1}{R_{s}}+\frac{1}{R_{i}}+\ldots$ [see Fig. $\left.1-13(\mathrm{C})\right]$.
For the case of three parallel resistors, the resultant reduces to the fraction shown in Fig. 1-13(C).

Sometimes the situation demands that a certain resistance be shunted by another to produce a certain final value. The ohmic value of the shunt is determined as follows

$$
R_{\mathrm{shunt}}=\frac{\text { desired resistance } \times \text { original resistance }}{\text { original resistance }- \text { desired resistance. }}
$$

For example, a 100.000 -ohm load resistance must be reduced to 30,000 ohms in order to suit the new tube used. What shall be the ohmic value of the shunt required for this job? Using the equation given above

$$
\begin{aligned}
R_{\text {shunt }}= & \frac{30,000 \times 100,000}{100,000-30,000}=\frac{3,000,000,000}{70,000} \\
& =43,000 \text { ohms (approx.) }
\end{aligned}
$$

Tolerance ratings, expressed in percentage, are the amounts by which a rated resistance may differ from the actual resistance of the element. A plus tolerance means that the actual value may be higher than the rated value by some amount not exceeding the tolerance figure; a minus tolerance means that the actual value may be lower than the rated value by some amount not exceeding the tolerance. Thus, a 1-megohm resistor rated at +5 per cent means that it may be as high as $1,050,000$ ohms; if the tolerance was - 5 per cent, its value might be as low as 950,000 ohms. Combining a plus tolerance resistor with a minus one is a good way of arriving at a desired resultant when two of like value are not available. There are many resistors that have a plus and minus tolerance rating. Thus, a $1,000-\mathrm{ohm}$ resistor of ± 10 per cent may be as high as 1,100 ohms, or as low as 900 ohms.

The power dissipation in a resistor carrying current may be expressed by any one of the following methods

$$
P=I^{2} R=\frac{E^{v}}{R}=E I
$$

where I is the current flowing through the resistor; R is its ohmic value, and E is the voltage drop across the resistor. In most cases, the wattage rating of a resistor is an important factor. In certain grid circuits, however, where the current is so small as to be negligible, the resistor's power dissipation value is not important. A half-watt rating will be found suitable for all such circuits. However, in those instances when
grid current exists and is used to develop all or part of the grid lias, the wattage rating must be based upon the calculated power dissipation. In general, a maximum safety factor of 100 per cent should be allowed above the calculated value. This means that the wattage rating of the resistor chosen should be equal to twice the calculated power dissipation. Such a factor of safety is more than ample. For example, if the dissipation is 1.2 watts, use a 2 -watt resistor; if it is 3 watts, use a 5 -watt resistor ; if it is 6 watts, use a 10 -watt resistor ; and if it is 13 watts, use a 20 -watt resistor. Note that the required wattage is slightly less than double the calculated value in each case. Thus we see why a 100 -per cent factor of safety is considered a maximum.
A consideration of moment is the possible tube damage resulting when a resistor burns out. If damage can result due to an excessive rise in plate current or voltage, in the event that a resistor burns out, it is advisable to use a resistor which has a higher wattage rating than the one being replaced.
If the occasion arises to replace a resistor in one leg of a balanced circuit, for example, in the plate or grid circuit of a push-pull stage, it may be necessary to replace the resistor in the other leg also so as not to disturb the balanced condition of the circuit elements. When a replacement is made in such a case, both resistors should have not only similar ohmic values, but should be of similar construction and have similar tolerances and wattage ratings as well.

Fixed Capacitor Substitution

The cardinal factors associated with fixed capacitors are the capacitance, $\mathrm{d}-\mathrm{c}$ working voltage, and leakage resistance. The requirements relative to capacitor values are so obvious as to require no discussion other than to mention the equivalence between several arrangements, as shown in Fig. 1-14. Two like-value capacitors in series produce a resultant which is equal to one-half the capacitance of either one. Two or more unlike capacitors in series are treated the same as resistors in parallel. Capacitors in parallel are additive.

The d-c working voltage corresponds to the peak a-c voltage which may be applied to the capacitor. Practically speaking, $\mathrm{d}-\mathrm{c}$ working voltage ratings are somewhat lower than can actually be applied to the capacitor

Fig. 14. Combinations of capacitors which give resultant capacitances equal to that of a single capacitor are shown here with the resultant capacitance of each combination listed below it.
because of the safety factor, but common sense dictates that operations should be carried on within the limits set by the rated working voltage. In view of this situation, care must be exercised against interpreting the d-c working voltage as being the equivalent of the rms or effective value of a-c voltage; if this is done, the probability exists that the peak a-c voltage in the circuit will puncture the capacitor. The correspondence between these different values of voltage is as follows

D-C Working Voltage $=$ Peak A-C Voltage $=$ $1.414 \times$ RMS Voltage.
If by error the rms voltage in a circuit equals the $d-c$ working voltage rating of the capacitors, the peak a-c voltage in those circuits (exclusive of surges) will be 1.414 times higher. If any question arises concerning the rms voltage and the d-c working voltage of a capacitor in a circuit, the rms voltage which is usable may be found from the following equation
RMS Voltage $=\mathrm{D}-\mathrm{C}$ Working Voltage $\times 0.707$.
This is an important consideration in rectifier systems and wherever both a-c and d-c voltages are involved. The input capacitors in capacitance input filter systems should have a d-c working voltage rating which is somewhat higher than the peak voltage available from the plate winding of the power transformer. This will take into account possible surges which may occur. It is well to bear in mind that repeated failure of capacitors at one point in a system is proof of an insufficient voltage safety factor in the selection of the voltage rating. This is especially true when a substituted rectifier is of the filament type, whereas tubes which receive their voltage from the rectifier are of the heater type. In such cases, high voltages will prevail in the rectifier during the time required for the load tubes to reach the conducting state.
If parallel or series capacitor combinations are used as replacement for a single capacitor, care must be taken that the d-c working voltage across each part of the combination is its rated one. For example, if two capacitors are in series the voltage across each should be inversely proportional to their capacitances and together should equal the total voltage across them. When the combination is a parallel one, the same $\mathrm{d}-\mathrm{c}$ working voltage will appear across each capacitor.
The d-c leakage in fixed capacitors is an important item in connection with substitution. For example, capacitors which are intended to isolate one point from another relative to d.c. should have low leakage, which means high insulation resistance. High leakage in coupling capacitors can very materially influence the bias on the grid of the tube connected to the resistor and adversely affect the performance of that tube. In this connection, electrolytic capacitors have the highest leakage, paper dielectric capacitors are lower, and mica or ceramic capacitors have the lowest leakage. Vacuum capacitors are, of course, ideal but their use is limited mostly to high-voltage points in transmitters and similar equipment.

RECEIVING TUBE SUBSTITUTION GUIDE

When working in high-frequency circuits, the substitution should, if at all possibie, be a duplicate of the capacitor being replaced, which in many cases will be a ceramic capacitor. If it is not available, then a mica is the next best choice.

As a means of conserving space, some ceramic capacitors are dual units, that is, the same housing includes a resistor (possibly more than one) which is associated with the operation of the device. Sometimes two such capacitors and a resistor, forming a complete load assembly, may be in one unit. These should be replaced as a unit, but in an emergency, a substitute may be used for only that part of the assembly which has failed. Note: an examination of a circuit may disclose more components than are present physically; some of these "missing" elements may be included in dual units.

I-F Transformer Substitution .

The replacement of i-f transformers is determined by circuit location and circuit constants. The location determines whether it falls within the category of an "input," "interstage," or an "output" transformer. These identifications are found in service notes and parts catalogs. With the exception of receivers which contain only a single stage of i-f amplification, all superheterodynes make use of the aforementioned three general types of transformers. The input and interstage kinds may be interchangable but the output transformer, which feeds a diode demodulator, is of a special design. Therefore, when it is necessary to replace the i-f transformer which feeds the signal to the diode demodulator, every effort should be made to secure a replacement which has been designed to perform that function.

Substantial differences may be found in the numerous varieties of i-f transformers which are employed by receiver manufacturers. Replacement of identical units is possible only by procuring the part from facilities related to the original receiver manufacturer. However, general replacement i-f transformers are suitable substitutes if the proper precautions are exercised when the substitution is made. For example, some i-f transformers used in combination a-m-f-m receivers are of the dual-frequency variety, that is, two different transformers contained in the same can. In other cases, trimmers, or filter elements related to the stage are contained in the same can with the transformers. Examples of these two are shown in Figs. 1-15(A) and (B).

The replacement of such devices by substitutes involves consideration of all of the factors involved. Two individual i-f transformers, an a-m and a separate $\mathrm{f}-\mathrm{m}$ unit, may be connected externally to form the equivalent of the original shown in Fig. 1-15(A). However, if the original contains additional elements
such as resistors and filter capacitors, these must be added in the sulstitution. The same is true of the replacements for either a-m or $\mathrm{f}-\mathrm{m}$ transformers which contain special elements. We are referring particularly to units in which the trimmer capacitor is a combination element, part of it being used in the grid filter system of that stage. This may not become evident in a casual inspection of the device or the schematic, for the symbols representing the filter resistors and capacitors are not necessarily shown as a part of the trimmer. This calls for a careful examination of the transformer and the filter circuits. If the transformer is removed and with it all of the filter elements, then a substitution must consist of a corresponding number of units.

Fig. 1-15. (A) An i-f transformer of the dual-frequency variety found in $a-m-f-m$ receivers. The $a-m$ and $f-m$ windings of the i-f transformer are in series and are contained in the same can; in (B) is shown a unit which contains, besides the i-f transformer, the filter capacitors and trimmers used in the associated circuit.

Relative to the general requirements of i-f transformers, those designed for use with pentodes will serve with any pentode or tetrode. The specific electrical characteristics of all pentode or tetrode i-f amplifiers are not alike, but the differences in i-f transformer performance due to this variable will not be significant if all other requirements are satisfied.

The intermediate frequency is another controlling factor in the selection of a substitute i-f transformer. Several broad categories exist, those used in a-m receivers, those in f-m receivers, and those in television receivers. In each group, the bandwidth requirement is pertinent to the selection of the replacement as is the specific intermediate frequency. Reference to the service data on the receiver is essential; the intermediate frequency used in a receiver does not dis-
close the specific bandwidth conditions in the i-f transformers. In some cases, all transformers are relatively broadband, being closely coupled. In other instances, the over-all broadbanding is accomplished by staggering the i-f peaks in the individual stages.

Concerning the center frequency, i-f transformers intended for a-m receivers have been standardized to four center frequencies, $130 \mathrm{kc}, 175 \mathrm{kc}, 262 \mathrm{kc}$, and 455 kc . From this point on, different types produced by different manufacturers afford different over-all frequency coverage. These vary from a low of about 5 per cent to a high of 40 per cent of the center frequency. For example, one manufacturer may produce an i-f transformer with a center frequency of 455 kc and an over-all tuning range of 50 kc , which is the equivalent of 25 kc each side of the rated center frequency. Some other manufacturer may design his transformers so that the over-all tuning range may be 200 kc , equal to about 40 per cent of the center frequency.

As a rule, the higher the center frequency, the wider is the over-all tuning range, but all makes of i-f transformers of like center frequency do not afford like frequency coverage. In other words, the selection of a transformer demands recognition of the bandwith requirements of the stage wherein it is to be used. Attention must also be paid to the tuning range of a unit if the intermediate frequency in the receiver is not the same as the center frequency of the transformer.

Concerning dual i-f transformers (a-m and $\mathrm{f}-\mathrm{m}$), the generally standardized frequencies found in the i-f systems of such receivers preclude any problems other than the one we referred to earlier, that is, to be certain that all of the filter components which exist inside of the original receiver manufacturer's unit appear in the receiver after the replacement has been made.

Up to this point we have neglected the factor of space relative to i - f transformer substitution. It can well be a problem. If the substitution is a transformer for a transformer, that is, single band for single band, it is not too difficult even if the substitute is larger than the original (which seldom is the case). If a dual band (single can) transformer must be replaced by two individual transformers, however, we have a problem. It is possible to find i-f transformers which are smaller than the usual variety. It takes effort to select the ones needed because several factors must be taken into account, but it can be done.

Power-Transformer Substitutions

The physical size and the electrical ratings are two dominant factors in such substitutions. The limitations caused by size are so obvious as to require no elaboration. Concerning electrical ratings, the first essential is that the transformer afford the same over-all capabili-
ties as the original, that is, its windings should be equal in number to that of the original so as to duplicate the functions of the original. This statement is subject to some slight qualifications which will appear when we discuss the filament windings, but in general, it can be said that the maximum convenience in substitution is attained if the substitute has at least as many different windings of like electrical rating as the original.

So far as physical characteristics are concerned, if the original transformer is shielded completely, the substitution unit should be likewise. If the original employs vertical shield mounting, so should the substitute; if the original has horizontal shield mounting, the replacement should duplicate it. Such attention to shielding will result in freedom from field troubles. Open-core transformers can cause trouble if located close to grid and plate wiring. If they must be used because the exact replacement is not available, the possibility of hum troubles must be recognized.

Each winding bears a voltage and a current rating with supplementary identification concerning the center tap. Although a center tap can be arranged by means of a center-tapped resistor connected across an untapped winding, it is preferable if the tap is a part of the winding. A suitable value for a resistor to be used for a center tap is 100 ohms.

Increasing Heater Voltage Rating. Although it is best if the filament windings on the transformer are the same in number and rating as the original, it is very possible that such replacements will not be available. In that event, the following information will be useful. Filament windings when connected in series furnishes a resultant voltage which is the sum of the voltage ratings of the individual windings. A 2.5 -volt winding in series with another of 5.0 volts will be the equivalent of a voltage source rated at 7.5 volts. Care must be exercised to see that the two windings are connected with the windings aiding each other. An a-c voltmeter connected across the combined windings will indicate if they are aiding or bucking. The current rating of a series winding of this kind is limited to the lower of the two ratings of the individual windings.

For example, if two 6.3 -volt windings, each rated at 1.2 amperes are connected in series aiding, the voltage rating of the two windings is 12.6 volts at 1.2 amperes. If one of these is rated at 0.9 ampere and the other at 1.5 amperes, the current output of the series winding would be limited to 0.9 ampere.

Increasing Heater Current Rating. Windings may be connected in parallel so as to increase the current output rating, provided that each of the windings connected in parallel is rated at the same value of voltage. The current ratings need not be the same; the total current output will be the sum of the two individual current ratings. Care must be exercised to see that the two windings are connected in proper phase, otherwise they will buck each other. An a-c voltmeter connected across one winding while the other is being connected

RECEIVING TUBE SUBSTITUTION GUIDE

in parallel will show whether the phase is correct. If the voltage is reduced, they are bucking.

Relative to the center-tap connection, if two like voltage windings are connected in series, the junction between them can serve as the center tap; individual center taps on the two windings being disregarded. If two unlike voltage windings are connected in series, the midpoint of a 100 -ohm resistor, shunted across the combined windings, can be used as the center tap.

If two winclings are connected in parallel and each of them has a center tap, the two center taps may be connected together to serve as the combined center-tap connection. If only one of two windings in parallel has a center tap, it cannot be used as the center tap to serve both windings, a 100 -ohm center-tapped resistor should be connected across the untapped winding and its midpoint joined to the other center tap, at which point the common connection can be made.

Substitute Heater Windings. If the replacement transformer does not contain all the required heater windings, a supplementary filament transformer, capable of furnishing the required voltage and current, can be used apart from the regular power transformer. Its primary should be connected in parallel with the other transformer.

Half-wave rectifier heater windings do not require center taps. Either end of the winding will serve as the positive output lead with a filament-type tube. Full-wave rectifiers should employ center-tapped heater windings even if the rectifiers are of the cathode type.

Heater-Winding Insulation

As a rule, the voltage breakdown requirements of most heater windings which are a part of the power transformer can be satisfied by a rating of about 2,000 volts since the highest voltage in the system is far less than this amount. In cathode-ray equipment and other systems, it is possible that the cathode may be as much as 4,000 volts above ground and, since it is connected to the center tap of the heater winding, the latter is also above ground by the corresponding amount. This demands that the heater voltage winding be so insulated as to withstand this difference of potential. Sometimes (although very seldom), this requirement may be stated in the specifications. If it is not, it becomes the province of the technician to decide the voltage breakdown requirements of the heater winding.

Rectifier Plate Windings

The conditions surrounding the selection of a substitute power transformer relative to the plate winding are varied, so much so, that it becomes necessary to examine several approaches to the subject. To begin with, the constants of a power transformer utilized in a receiver (or some other kind of equipment) may not
be fully identified in service literature; a part number always is given, and sometimes, the current and voltage ratings of the heater windings are stated on the manufacturer's schematic. If this data is not given, the number required and the current rating of each become evident when reference is made to the schematic wiring diagram of the equipment in which the substitution is to be made. It discloses the number of heater or filament chains, and the voltage and current requirements of each. Summation of these indicates the minimum current ratings of the heater windings. The constants of the plate winding, however, are generally omitted. This means that some way must be found to ascertain the requirements of the plate winding so a proper substitute can be found in the event that an exact replacement from the original equipment manufacturer is not available.

The type of rectifiers and their ratings indicates the maximum voltage and current requirements of the plate winding. Seldom, if ever, are these tubes operated very close to their maximum ratings. Therefore, by noting the limits indicated in the tube characteristic chart, and the practical voltages being applied to the tubes in the system under consideration, it is possible to arrive at the voltage and current ratings of the plate winding. Whether it should be a full-wave winding, that is, center tapped, or a half-wave winding is indicated in the schematic of the equipment and by the organization of the rectifier system as a whole. But it is conceivable that there still may arise problems in establishing the voltage rating of the plate winding in view of the conditions experienced in choke- and capacitor-input filter systems, and because of the manner in which the parts catalogs describe the capabilities of the plate windings of power transformers. Generalizing, we can state that when the input of the power-supply filter system is capacitive, the voltage rating of each half of the power-supply plate winding in a full-wave system can be as much as 10 to 15 per cent lower than the d-c voltage output of the rectifier at the prescribed value of d-c load. This stems from the fact that the input filter capacitance can be charged to approximately the peak value of the a-c voltage applied to the rectifier tubes. Some parts catalogs state the voltage and current ratings based on full-wave operation of the rectifier with capacitance input, whereas many others show the a-c voltage across each half of the plate winding at certain d-c values in terms of choke input. This is a cause of confusion; in one case, the a-c voltage between the center tap and the extremes of the plate winding is less than the d-c voltage output from the rectifier by as much as 8 to 10 per cent, whereas in the other case, the a-c voltage rating of the plate winding may be as much as 10 to 15 per cent higher than the $d-c$ voltage output from the rectifier.

What can be used as a guide in determining the basic requirements of the plate winding? The original
schematic of the equipment should be the first source of information, especially when it is supplemented by a voltage chart which indicates the voltages being supplied by the power supply. If the plate-current requirements of the tubes are not shown in the voltage chart, a reasonable approximation of these current values can be developed from the tube characteristic charts contained herein. Then, allowing for a 10 per cent voltage drop in the filter system of the power supply and perhaps a loss of about 5 per cent of the total output current through the bleeder connected across the power supply, one can arrive at the total current load requirements of the system and the maximum a-c voltage required between the center tap and the extremes of the full-wave plate winding.

These data are naturally subject to variations, but the approach we have described is not too far off the path which must be followed. At least it suggests a way to gather the necessary information.

It may appear, because of the large number of commercial models, that receivers and amplifiers are distinctive in their general requirements. Such is not the case, for all fall into certain groupings and reflect certain general design considerations. It would be foolish to deny that such circuits as shown in Rider Manuals can serve as the guide for substitution requirements. So far as tube heater and signal electrode voltages and currents are concerned, there isn't much difference between the five- or six-tube table models produced by different manufacturers. Individuality appears in the number of tubes, the specific designs of the transformers, the combination of functions and the like, but these play very little part in establishing the requirements of a power supply.

Cathode-Ray-Tube Substitutions

Cathode-ray-tube substitutions are more involved than ordinary receiving tube substitutions, if for no other reason than that the physical dimensions of the various cathode-ray tubes differ, and the replacement of one by another may require substantial physical changes in the cabinet. Nevertheless, substitutions are possible and the following are offered as suggestions. They are to be used in conjunction with the cathode-ray-tube specifications contained in this Guide Book.

1. All picture tube phosphors must be number 4. This is the last digit in the tube type number.
2. Wholly electrostatically operated picture tubes must be replaced with similar tubes. Since these are restricted in screen size, replacement for 7 - and 10 -inch electrostatically deflected and focused picture tubes are very limited.
3. Tubes which employ magnetic deflection and electrostatic focusing have no substitutes among either completely electrostatic or magnetic types. The reverse is, of course, also true, a combination magnetic-deflec-

FOCUS COIL CURRENT RATINGS FOR MAGNETIC
TYPE CATHODE-RAY TUBES

$\mathbf{C - R}$ Tube	Focus Coil Current (Ma)	C-R Tube	Focus Coil Current (Ma)	$\mathbf{C - R}$ Tube	Focus Coil Current (Ma)
10BP4 ${ }^{\text {d }}$	132	14CP4	115*	16MP4	110
10BP4A		14DP4	104	16MP4A	
10CP4	---	14FP4	115*	16QP4	125*
10DP4	---	15AP4	159	16RP4	100*
10EP4	132	15CP4	133	16 SP 4	110
10FP4	115	15DP4	140	$16 S P 4$ A	
10MP4] ---	16 AP4	89	16 TP 4	115*
$10 \mathrm{MP4}$ A		16AP4A		16 UP4	100*
$12 \mathrm{JP4}$	158	16 CP 4	110	16 VP 4	110*
$12 \mathrm{KP4}$ 4) 140	$16 \mathrm{DP4}$	115*	16 WP 4	110*
12 KP 4 A)		16DP4A		16XP4	100*
12LP4	114	16 EP 4	105	16 YP 4	100*
12LP4A		$16 \mathrm{EP4A}$		$17 \mathrm{AP4}$	115*
12QP4	148	16 FP 4	140	19AP4	140
12QP4A		16GP4	100*	19AP4A	
$12 \mathrm{RP4}$	148	$16 \mathrm{HP4}$	110	19DP4) 140
12 TP 4	114	16 HP 4		19DP4A	
12UP4) 114	16 JP 4	120	19EP4	140*
12 UP 4 A \}		16 JP 4 A		19FP4	97-126*
12VP4 $\}$,	16 KP 4	97*	19GP4	107-126*
$12 \mathrm{VP4} 4$		16LP4	110	20BP4	122
$14 \mathrm{BP4}$	115	16LP4A		22AP4	\} 108*

* Types employ RTMA Focus Coil 109 , all others RTMA focus focus coil $\$ 106$.

Courtesy DuMont Labs

tion and electrostatic-focusing type tube cannot be a replacement for either an electrostatically or magnetically deflected and focused picture tube. Since the $7 \mathrm{DP} 4,9 \mathrm{AP} 4,10 \mathrm{DP} 4$, and 12 AP 4 are tubes of this type, they have no replacements except each other.
4. Picture tubes differ in the focusing coil currents, consequently, in some instances the focusing coil for the substitute tube may require more current than for the original. This necessitates modification of the focusing current supply system. Conversely, some substitute tubes may require less current through the focusing coil than the original, in which case a resistor shunted across the coil will serve the purpose. This current shunt can be calculated using the $d-c$ resistance of the focusing coil and the value of the current, just as in the case of heater current shunts. A variable resistance, $2,500-15,000$ ohms, shunted across the coil can be used to determine the value for the fixed resistance shunt. The accompanying table lists the focusingcoil currents for the different magnetic-type cathoderay tubes.
5. Replacing outside coated tubes with metal-cone types (or the reverse) requires care concerning the connection to the coating or the metal cone. The coating usually is connected to ground, whereas the metal cone usually is connected to a high voltage. The original receiver manufacturer's service notes must be consulted.
6. When a large tube is replaced by a smaller one, the characteristics of the substitute should be determined by reference to the characteristic chart; if the

RECEIVING TUBE SUBSTITUTION GUIDE

conditions in the receiver exceed the maximum voltage ratings of the tube, these must be reduced in order to employ the substitute. Usually, those operations are too complicated for the average technician; such substitutions are not recommended.
7. All picture tubes do not utilize like tube basing. See the cathode-ray-tube basing chart in Section 5.
8. Bear in mind that the ion-trap magnets in magnetically focussed picture tubes are not all alike, some call for a single magnet, others for dual magnets; check the cathode-ray-tube characteristics in Section 5.
9. If tube characteristics indicate that the original tube has an external coating furnishing a certain
amount of capacitance and the substitute tube does not, a corresponding value of capacitance should be added to the high-voltage power supply at the high-voltage output terminal. This capacitor must have the appropriate $\mathrm{d}-\mathrm{c}$ working voltage rating.
10. If the ion-trap magnet for the original tube is of the electromagnetic type (coil) and the substitute utilizes a permanent magnet, the coil unit may be left intact (placed in a recess of the cabinet), or it may be replaced ly an equivalent resistance of suitable wattage rating located as closely as possible to the power supply. It should not be disconnected without substituting the equivalent resistance into the current supply circuit.

FUNCTIONAL CLASSIFICATION OF TUBES

APPLICATION		HEATER VOLTAGES									150 MILLIAMPERE HEATER CURRENT		300 MILLIAMPERE HEATER CURRENT	
		1.4	2.0	2.5	6.3				12.6					
	TRIODES	$\begin{aligned} & 26 \\ & 957^{*} \\ & 958^{*} \end{aligned}$	$\begin{aligned} & 1 \mathrm{H} 4 \mathrm{G} \\ & 30 \end{aligned}$	$\begin{aligned} & 27 \\ & 56 \\ & 485 \dagger \dagger \end{aligned}$	$\begin{aligned} & \text { 6AD4 } \\ & \text { 6C4 } \\ & \text { 6J4 } \\ & \text { 6K4 } \\ & \text { 6N4 } \end{aligned}$	7A4 37 76 955 9002	XXL		14A4		$\begin{aligned} & \text { 6AD4 } \\ & \text { 6C4 } \\ & 955 \\ & 9002 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{A4} \\ & 37 \\ & 76 \end{aligned}$	
	DOUBLE TRIODES	3B7/1291		3B7/12914	$\begin{aligned} & \text { 6AH7GT } \\ & \text { 6J6 } \\ & \text { 7AF7 } \\ & \text { 7F7 } \end{aligned}$	7F8			$\begin{aligned} & \text { 12AH7GT } \\ & \text { 12AT7 } \\ & \text { 14AF7/XXD } \\ & \text { 14F7 } \end{aligned}$	$\text { 19J6 } 6$	$\begin{aligned} & \text { 12AH7GT } \\ & \text { 12AT7 } \\ & \text { 14AF7/XXD } \\ & \text { 14F7 } \end{aligned}$	$19 J 6$	$\begin{aligned} & \text { 6AH7GT } \\ & \text { 7AF7 } \\ & \text { 7F7 } \\ & \text { 7F8 } \end{aligned}$	12AT7
$\underset{8}{4}$	TETRODES		1A4T 1DSGT 1ESGT 32	$\begin{aligned} & 24 \\ & 35 \end{aligned}$	36								36	
	PENTODES	1AB5** AAD4 1AD5 1L4 2LC5 1LN5 1NSGT 1P5G 1P5GT 1SA6GT 1 T4 1 U4 1W5* 3E6 959*	1A4P 1B4P 1DSGP 1ESGP 15 34	$\begin{aligned} & \hline \text { 3E6\% } \\ & 57 \\ & 58 \end{aligned}$	6AG5 6AH6 6AK5 6AU6 6BA5 6BA6 6BC5 6BD6 6BH6 6BJ6 6C6 6CB6 6D6 6E7 6J7 6J7G 6J7GT	6K7 6K7G 6K7GT $6 \mathbf{6} 7$ 6S7G 6SD7GT 6SG7 6SG7GT 6SH7 6SH7GT 6SJ7 6SJ7GT 6SK7 6SK7GT 6SS7 6S57GT	6U7G 6W7G 7A7 7AB7 7AD7 7AG7 7AJ7 7B7 7C7 7G7 7H7 7L7 7V7 39/44 77 78	954 956 9001 9003	12AU6 12AW6 12BA6 12BD6 12B7 12J7GT 12K7GT 12SG7 12SH7 12SH7GT 12SJ7 12SJ7GT 12SK7 12SK7GT 14A7/12B7 $14 \mathrm{C7}$	14H7	6BA5 6BH6 6BJ6 657 6S7G 6SS7 6SS7GT 6W7G 7AB7 7B7 7C7 12AU6 12AW6 $12 \mathrm{B7}$ 12BA6 12BD6 12J7GT 12K7GT	12SG7 12 SH 7 12SH7GT 12SJ7 12SJ7GT 12SK7 12SK7GT 14A7/12B7 14C7 14H7 954 956 9001 9003	6AU6 6BA6 6BD6 6C6 6D6 6E7 6 J 7 6J7G 6J7GT 6K7 6K7G 6K7GT 6SD7GT 6SG7 6SG7GT 6SH7	6SH7GT 6SJ7 6SJ7GT 6SK7 6SK7GT 6U7G 7A7 7AG7 7AJ7 7H7 7 L 7 39/44 77 78
?	TRIODES				6AB4						6AB4			
	DOUBLE TRIODES				6 J 6	12AT7			12AT7	19J6\%	12AT7	19 J 6	12AT7	
$\underset{i}{\text { min }}$	PENTODES				6AB7 6AC7 6AGS	6AK5 6AU6 6BC5	$\begin{aligned} & \text { 6BH6 } \\ & \text { 6CB6 } \end{aligned}$		12AU6		$\begin{aligned} & \text { 6BH6 } \\ & \text { 12AU6 } \end{aligned}$		6AG5 6AU6 6BC5 6CB6	
$1.25 \mathrm{~V}$			1.2 V .	tt 3.0 V		- 2.8 V		** 18.9 V						

FUNCTIONAL CLASSIFICATION OF TUBES

APPLICATION		HEATER VOLTAGES								150 MILLIAMPERE HEATER CURRENT	300 MILLIAMPERE HEATER CURRENT		
		1.4	2.0	2.5	5.0	6.3			12.6				
	TRIODES	$\begin{array}{\|l} \hline \text { 1C3 } \\ \text { 1E4G } \\ \text { 1G4GT } \\ \text { ILE3 } \\ 26 \end{array}$	$\begin{aligned} & \hline 1 \mathrm{H} 4 \mathrm{G} \\ & 30 \end{aligned}$	$\begin{aligned} & 27 \\ & 56 \\ & 485 t \dagger \end{aligned}$	01 A	6AESGT 6AD5G 6AFSG 6C5 6C5GT 6F5 6F5G 6FSGT	6 J 5 6J5GT 6KSG 6K5GT 6LSG 6P5GT 6SF5 6SF5GT	$\begin{aligned} & \hline 7 \mathrm{A4} \\ & 7 \mathrm{B4} \\ & 37 \\ & 56 \\ & 75 S \\ & 76 \end{aligned}$	$\begin{aligned} & \hline \text { 12ESGT } \\ & \text { 12F5GT } \\ & \text { 12JSGT } \\ & \text { 12SF5 } \\ & \text { 12SFSGT } \\ & \text { 14A4 } \end{aligned}$	$\begin{aligned} & \text { 6LSG } \\ & \text { 12ESGT } \\ & \text { 12F5GT } \\ & \text { 12J5GT } \\ & \text { 12SF5 } \\ & \text { 12SF5GT } \\ & \text { 14A4 } \end{aligned}$	6AESGT 6AF5G 6ADSG 6 CS 6C3GT 6F5 6F5G	6FSGT $6 J 5$ 6J5GT 6K5G 6K5tT 6PSGT 6 SF5	$\begin{aligned} & \hline \text { 6SF5GT } \\ & \text { 7A4 } \\ & \text { 7B4 } \\ & 37 \\ & \text { 56 } \\ & 75 S \\ & 76 \end{aligned}$
	DOUBLE TRIODES			53		6A6 6AE7GT 6C8G 6F8G 6N7 6N7G 6SC7 6SC7GT	6SL7GT 6SN7GT 6Y7G 6Z7G 7AF7 7F7 12AU7 12AX7 12AY7 79		 12AU7 14F7 12AX7 12AY7 12SC7 12SL7GT 12SN7GT 14AF7 	$\begin{aligned} & \text { 12AU7 } \\ & \text { 12AX7 } \\ & \text { 12AY7 } \\ & \text { 12SC7 } \\ & \text { 12SL7GT } \\ & \text { 14AF7 } \\ & \text { 14F7 } \end{aligned}$	$\begin{aligned} & \hline \text { 6C8G } \\ & \text { 6SC7 } \\ & \text { 6SL7GT } \\ & 627 \mathrm{G} \\ & 7 \mathrm{Fy} \\ & 12 \mathrm{AU7} \\ & 12 \mathrm{AX7} \end{aligned}$	$\begin{aligned} & \text { 12AY7 } \\ & \text { 12SN7GT } \end{aligned}$	
	TETRODES		32	24		36					36		
	PENTODES	$\begin{aligned} & \text { 1L4 } \\ & \text { 1LG5 } \\ & \text { 1U4 } \\ & 959 \end{aligned}$	$\begin{aligned} & \text { 1B4P } \\ & \text { 1ESGP } \end{aligned}$ 15	57		6AU6 6BA5 6BH6 6C6 $6 \mathrm{J7}$ 6J7G 6J7GT 6R6G 6SG7 6SG7GT	6SH7 6SH7GT 6SJ7 6SJ7GT 6W6GT 6W7G 7AB7 7AG7 7AH7 $7 C 7$	7E5 7G7 $7 \mathrm{L7}$ 7T7 7V7 7W7 77 717A 954 956 9001 9003	$\begin{aligned} & \text { 12AU6 } \\ & \text { 12J7GT } \\ & \text { 12SH7 } \\ & \text { 12SH7GT } \\ & \text { 12SJ7 } \\ & \text { 12SJ7GT } \\ & 14 \mathrm{C7} \\ & 14 \mathrm{V7} \end{aligned}$	 6BH6 12SJ7GT 6W7G $14 C 7$ 7AG7 954 7AH7 956 7C7 9001 7ES 9003 12AU6 12J7GT 12SH7 12SH7GT 12SJ7	6AU6 6C6 6J7 6J7G 6J7GT 6R6G 6SG7 6SG7GT 6SH7 6SH7GT 6517 6SJ7GT	$\begin{aligned} & \text { 7L7 } \\ & \text { 7T7 } \\ & 7 W 7 \\ & 77 \end{aligned}$	
4 0 8 3 2 2	TUNING INDICATORS			$\begin{aligned} & \text { 2ES } \\ & 2 G 5 \end{aligned}$		6AB5/6N5 6ADGG 6AF6G 6AL7GT 6E5 6G5 6T5 6U5/6G5				6AL7GT	$\begin{aligned} & \text { 6ES } \\ & \text { 6G5 } \\ & \text { 6TS } \\ & \text { 6U5/6G5 } \end{aligned}$		
	INDICATOR CONTROL					6AE6G				6AEGG			
$\dagger \dagger 3.0 \mathrm{~V} . \quad \bullet 1.25 \mathrm{~V}$.													

receiving tube substitution guide

FUNCTIONAL CLASSIFICATION OF TUBES

APPLICATION			HEATER VOLTAGES										$\begin{aligned} & 150 \text { MILLI- } \\ & \text { AMPPRE } \\ & \text { HEATER } \\ & \text { CCRRENT } \end{aligned}$	$\begin{aligned} & \text { 300 MILLI- } \\ & \text { AMPERE } \\ & \text { HEATER } \\ & \text { CURENT } \end{aligned}$
			1.4	2.0	2.5	5.0	6.3	12.6	18.9	25	35	50		
		TRIODES		$\begin{array}{\|l\|l} \hline \begin{array}{l} 1 H 4 G \\ 30 \\ 31 \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \mathrm{AB} \\ \hline 45 \end{array}$	$\begin{array}{\|c\|} \hline 01 \mathrm{~A} \\ 12 \mathrm{~A} \\ 71 \mathrm{~A} \\ 183 \\ \hline \end{array}$	6A3 $\quad 50 \dagger$ $6 A 5 G$ 6AC5GT 6A4G 6C4			25ACSGT				25AC5GT
		DOUBLE TRIODES	$\begin{array}{\|l\|} \hline 1 \mathrm{G} 6 \mathrm{GT} \\ 3 \mathrm{C} 6 / \mathrm{XXB} \end{array}$	${ }_{19}^{176 G}$			6A6 6Y7G 6ASTG 627G 6E6 79 6N7 6N7GT							627G
		TETRODES		49	46		6AL6G							
		PENTODES		$\begin{aligned} & 1 F 4 \\ & 1 F 5 \\ & 1 F 5 G \\ & 1 G 5 G \\ & 115 G \\ & 33 G \\ & 950 \end{aligned}$	$\begin{aligned} & 2 \text { 2AS } \\ & 3 A 4 \# \\ & 3 C 5 G T * \\ & 3 L E 4 * \\ & 304 \\ & 3 S 4 \\ & 3 V 4 \\ & 47 \\ & 59 \end{aligned}$	257	6A4/LA 6RGG 6AG7 $7 B 5$ 6AK6 38 6ANS 41 6AR5 42 $6 F 6$ 89 $6 F 6 \mathrm{G}$ 89 6 FGGT 6 GKG 6KGT	12A5		$\begin{aligned} & 25 A 6 \\ & 25 A 6 G T \\ & 25 B 6 G \\ & 43 \end{aligned}$			$\begin{aligned} & \hline \text { 6AK6 } \\ & \text { 6G6G } \end{aligned}$	$\begin{aligned} & 6 A 4 / \mathrm{LA} \\ & 12 \mathrm{AS} \\ & 25 A 6 \\ & 25 A 6 \mathrm{GT} \\ & 25 B 6 \mathrm{G} \\ & 38 \\ & 43 \end{aligned}$
		BEAM PENTODES	$\begin{array}{\|l\|l} \hline 105 G \\ 105 G T \\ 175 G T \\ 3 B 5 G T \\ 33 F 4 \\ 3 L 5 S G T \end{array}$		$\begin{array}{\|l\|l\|} \hline \text { 3BGGT* } \\ \text { 3LF4F } \\ \text { 3QSGT } \end{array}$			$12 A 6$ 12 AGT 14 AKT 14 CS 1625		$\begin{array}{\|l} \hline 25 \mathrm{C} 6 \mathrm{G} \\ 25 \mathrm{~L} 6 \\ \text { 25L6GT } \end{array}$	35L6GT 35A5 3585 35 C 5	50AS 50 BS 50 C 50 COG 50 L 6 GT		$\begin{aligned} & \text { 25CGG } \\ & \text { 25L6 } \\ & 25 L 6 G T \end{aligned}$
		DOUBLE PENTODES		1E7G				12L8GT					12L8GT	
		DIRECT COUPLED					$\begin{array}{\|l\|l\|} \hline \text { 6AB6G } & \text { 6BS } \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline \text { 25BS } \\ \text { 25N6GT } \end{array}$				${ }^{2585}$
		beam pentodes					6AUSGT 6BGGGT 6AVSGT 6CD6G 6BG6G		19BG6G	25BQ6GT				19BG6G 25BQ6GT
		$\begin{aligned} & \text { TRIODES OR } \\ & \text { TRIDE CONECTED } \\ & \text { PENTODES } \end{aligned}$					6ARS 6K6GT $6 S 4$ GSNGT 6W6GT 12AUT	$\begin{array}{\|l\|} \hline 12 A U 77 \\ 12 S N 7 G T \\ \hline \end{array}$					12AU7	$\begin{aligned} & 12 \mathrm{AUV} 7 \\ & 12 \mathrm{SN} / \mathrm{GT} \end{aligned}$
- 1.25 V			\% $2.8 \mathrm{~V} . \quad \dagger 7.5 \mathrm{~V}$.											

Courtesy TUNG-SOL Lamp Works, Inc.

FUNCTIONAL CLASSIFICATION OF TUBES

APPLICATION		HEATER VOLTAGES										150 MILLIAMPERE HEATER CURRENT	300 MILLIAMPERE HEATER CURRENT
		1.4	2.0	2.5		6.3	12.6	25	35	70	117		
	GATED BEAM				6BN6		12BN6					12BN6	6BN6
	DIODE TRIODES	1H5G 1H5GT 1L.H4			6Q6G							606G	
	DOUBLE-DIODE TRIODES		$\begin{aligned} & 1 \mathrm{~B} 5 / 25 S \\ & 1 \mathrm{H} 6 \mathrm{G} \end{aligned}$	$\begin{aligned} & \text { 2A6 } \\ & 55 \end{aligned}$	6AQ6 6AO7GT $6 A 76$ $6 A V 6$ $6 A W 7 G T$ $6 B 6 G$ $6 B F 6$ $6 B K 6$ $6 B T 6$ $6 B U 6$								
	$\begin{aligned} & \text { TRIPLE-DIODE } \\ & \text { TRIODES } \end{aligned}$				$\begin{array}{\|l\|} \text { 6R8 } \\ \text { 6S8GT } \end{array}$	6T8	1258GT	19T8\%				$\left\lvert\, \begin{aligned} & 12 \mathrm{SBGT} \\ & 19 \mathrm{~T} 8 \end{aligned}\right.$	GS8GT
	DIODE PENTODES	$\begin{aligned} & \hline 1 \mathrm{LD5} \\ & 106^{*} \\ & 155 \\ & \text { 1SB6GT } \\ & \text { 1T6 } 6^{*} \\ & 1 \mathrm{US} \end{aligned}$			$\begin{aligned} & \text { 6SF7 } \\ & \text { 6SF7GT } \\ & \text { 6SV7 } \end{aligned}$		12SF7GT					12SF7GT	$\begin{aligned} & \text { 6SF7 } \\ & \text { GSV7 } \end{aligned}$
	DIODE POWER PENTODES	1N6G 1N6GT											
	DOUBLE-DIODE PENTODES	1F6 1F7G 1F7GiI		2B7	$\begin{array}{\|l\|} \hline \text { 6B7 } \\ \text { 6B8 } \\ \text { 6B8G } \\ \hline \end{array}$	$\begin{aligned} & \text { 6B8GT } \\ & \text { 7E77 } \\ & \text { 7R7 } \\ & \hline \end{aligned}$	$\begin{aligned} & 12 C 8 \\ & 14 E 7 \\ & 14 \mathrm{R}^{2} \end{aligned}$					$\begin{array}{\|l\|} \hline 12 \mathrm{C8} \\ 14 \mathrm{E} 7 \\ 14 \mathrm{R} 7 \\ \hline \end{array}$	$\begin{array}{ll} \text { 6B7 } & \text { 6B8GT } \\ \text { 6B8 } & 7 E 7 \\ \text { 6B8G } & 7 R 7 \end{array}$
	TRIODE PENTODES				$\begin{aligned} & \text { 6AD7G } \\ & \text { 6F7 } \end{aligned}$	$\begin{aligned} & \text { 6F7G } \\ & \text { 6P7G } \end{aligned}$	12B8GT	25B8GT				2588GT	6 6F7 $^{6 F 7 G}$ 6P7G
	DIODE TRIODE PENTODES	$\begin{aligned} & \text { 1B8GT } \\ & \text { 1D8GGT } \\ & \text { 3A8GT } \end{aligned}$		3A8GT;				25D8GT				25D8GT	
	HALF-WAVE RECTIFIERS POWER PENTODES						12A7	25A7GT					$\begin{aligned} & \text { 25A77 } \\ & { }^{25 A} \end{aligned}$
	HALF-WAVE RECTIFIERS BEAM PENTODES								32L7GT ${ }^{\circ}$	$\begin{aligned} & \text { 70A7GT } \\ & \text { 70L7GT } \end{aligned}$	$\begin{array}{\|l\|} \hline 117 \mathrm{~L} 7 / \\ \text { M7GT } \\ \text { 117N7GT } \\ \text { 117P7GT } \\ \hline \end{array}$	$\begin{aligned} & \text { 70A7GT } \\ & \text { 70L7GT } \end{aligned}$	32L7GT
- 1.25 V			\% 2.8 V .		\# $18.9 \mathrm{~V} . \quad$ - 32.5 V .								

Courtesy TUNG-SOL Lamp Works, Inc.

FUNCTIONAL CLASSIFICATION OF TUBES

FUNCTIONAL CLASSIFICATION OF TUBES

APPLICATION			HEATER VOLTAGES							150 MILLIAMPERE HEATER CURRENT	300 MILLIAMPERE HEATER CURRENT
			COLD CATHODE	1.4	2.5	5.0	6.3	12.6	25		
		DIODES		$\begin{aligned} & \text { 183GT } \\ & \text { 1X2 } \\ & 1 \mathrm{V2} \\ & 1 \mathrm{Y2} \\ & 1 \mathrm{Z2} \end{aligned}$	$\begin{aligned} & \text { 2V3G } \\ & \text { 2X2 } \\ & \text { 2X2/879 } \\ & \mathbf{8 7 9} \end{aligned}$						
		DOUBLE DIODES					6ALS	12ALS		12ALS	6ALS
		DIODES				5V4G	6U4GT 6W4GT		25W4GT		25W4GT
		DIODE CONNECTED					6AS7G			6AS7G	
	※枈	DOUBLE DIODE					6ALS	12ALS		12AL5	6.425
	点学空	DIODES	$\begin{aligned} & \text { 0Y4 } \\ & \text { 0Y4G } \end{aligned}$								
		DOUBLE DIODE	$\begin{aligned} & \text { 0Z4 } \\ & 024 \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathbf{8 2} \\ & \mathbf{8 3} \end{aligned}$						
		GLOW DISCHARGE DIODE	0 A 2 0A3／VR－75 0B2 0B3／VR－90 0C3／VR－105 OD3／VR－150								
		GAS TRIODE	1 C 21		$\begin{aligned} & \text { 2A4G } \\ & \text { 2B4 } \\ & \text { 2C4 } \\ & 885 \end{aligned}$		$\begin{aligned} & \hline \text { 6D4 } \\ & 6 \mathrm{Q} 5 \mathrm{G} \\ & 884 \end{aligned}$				
		GAS TETRODES					$\begin{aligned} & \text { 2D21 } \\ & 2050 \\ & 2051 \end{aligned}$				
		RELAY TUBE	OAS								

SECTION

RECEIVING TUBE SUBSTITUTION GUIDE

This section includes the actual information on the tube substitutions. Four columns are included. The first column lists the tule type for which a substitute is desired. This listing is in numerical and alphabetical order. For example 6CB6 precedes 6CD6 and 6ZY5 precedes 7A4. We have not indicated any difference between metal and glass tubes of the octal type. The tube listed can thus be considered either as metal or a glass type. The letters $G, G T, G T / G, G A$, or $G P$ indicates that the tube has a glass envelope, the $G T$ and $G T / G$ are smaller and newer versions of the G type. The glass tubes, in practically all cases, have the same characteristics as the metal types.

One of the primary differences between the glass and metal tules is that the metal type usually have an internal shield. A pin at the base of these tubes is connected to this shield. In most cases this pin is wired to the common ground or B minus of the set. In a few cases substituting a glass type for a metal type causes the circuit to become unbalanced or feedback occurs due to a lack of proper shielding. Most often this can be overcome by shielding the tule or realigning the set.

The second column lists the various possible substitutes. Quite often more than one substitute is listed for a single tube. In such cases the tulee in the first column is not repeated for each substitute but is listed only once.

The third column lists the performance of each tube. Three performance ratings are shown in this list. These are E for EXCELLENT, G for GOOD, and P for POOR. They define the suitability of a substitute predicated upon its electrical characteristics as compared to those of the original and upon the relationship between the characteristics of the substitute to the constants of the circuit, which was designed to function best with the original. The comparison between the characteristics of the tubes excludes the filament or heater voltage and current ratings. It is assumed that whatever may be the performance characteristics of the substitute - the filament or heater voltages and current are correct, even if it requires certain minor circuit modifications to accomplish this condition.

Concerning the E, G, and I^{\prime} ratings, it stands to reason that those tules which bear E (excellent) ratings are either the exact equivalents differing perhaps in
basing and maybe in filament or heater voltage and current ratings - or so closely approximate the electrical characteristics of the original as to require no significant major modifications. All applicable tube substitutions which might bear an E rating in performance are not shown in the main listing. Some appear on the addendum pages. These represent lastminute additions as the result of information received from television receiver manufacturers and appear at the end of this section.

Concerning the G (good) rating, it reflects more than just moderate differences in tube characteristics between the substitute and the original that is being replaced. It still means a triode substitute for a triode original, or a pentode substitute for a pentode original, and sometimes the conversion of a pentode into a triode, but the plate (and screen) voltage demands of the substitute may be higher than that of the original - or the transconductance or amplification constant of the substitute may be less than the original - all of which means that the circuit demands incorporated in the equipment design are not being met by the substitute tube. Possibly the plate impedance of the substitute is higher or lower, reducing the originally intended over-all amplification; perhaps a slight amount of distortion is added to the signal by the substitute. Yet the sulbstitute may be used even if it is not as good in performance as the original, for again it is a matter of continuing the operation of a device.

Those substitutions which bear P (poor) ratings are used only as a last resort. They represent the extremes in tube substitution when it is a matter of accomplishing a repair job of sorts, rather than none at all because more appropriate substitutes are not available. Of course, modifications can be made in the circuit design and circuit constants so as to accommodate the tule rated poor, in which case, considerable improvement may be accomplished. It must be remembered, of course, that the P rating - or for that matter, the G rating - is not a reflection upon the capalilities of the tube or the brand. It simply means that the tube, so designated in the list. was not intended for use in the type of system for which it is suggested as a sulbstitute. With proper circuit changes, it might, as we said before, become a better performing sulstitute. But whether or not such design changes are warranted is a matter of individual consideration. As
far as circuit modification is concerned, it can be a tedious task. Much depends upon comparative reference data and background knowledge of circuits. Finally such changes are possible only if the cost is acceptable to the owner of the equipment.

The fourth or last column lists the circuit changes that are necessary to make the substitute operate properly. In many cases no change whatsoever is required, the original tube is pulled out and the substitute plugged in. Where the reference "parallel circuits only" or "series circuits only" is found, it refers only to the type of filament circuit arrangement in which the substitute tube can be used.

Original and Substitute Sockets

The tube substitution lists contain illustrations of the original and the substitute tube sockets when the tube interchange involves a change in sockets. These are offered as a convenience in wiring. The views are the bottoms of the sockets and these correspond to the pin locations on the bottom of the respective tube bases. The bottom socket view of the original tube will always be found to the left of the change writeup and will bear the designation "ORIG." The bottom socket view of the substitute tube will always be found to the right of the change writeup and will bear the designation "SUB."

The instructions given between the two illustrations state the respective socket terminals involved in the rewiring operation. In view of the necessity for removing one socket before mounting the other, it is suggested that as each wire is disconnected from the original socket, it be labeled with a tiny tag showing the appropriate socket connection number. These correspond to the pin numbers on the tube base. Then when being rewired to the new socket, all that is required is to solder the numbered lead to the terminal on the socket as stated in the instructions.

Care must be exercised to see that the socket connections are read in accordance with the location of the key as shown on the pages. In order to attain correspondence between the socket mounted on the chassis and the instructions, one or the other should be changed in physical position so that the keys or identifying terminals are in the same relative position. Another precautionary note relates to the grid caps. In many cases capped tubes are replaced by single ended tubes, and vice-versa. The leads must be properly connected. Finally in some substitutions the pin numbers on the original and the substitute are the same, that is, 1 to 1 , 2 to 2,3 to 3 and so on. This is not standard for all the tubes, nor is it standard for all the pins even if it is true for some of them in any one substitution. In other words, the instructions should be read completely. Nothing should be taken for granted.

...... CONTENTS

Nature of Television
Radio Propagation
Basic Antenna Principles
Transmission Lines and Special Antenna Systems
Materials and Methods Used in Installations

High Mast and Tower Installations
Problems Arising in Television Installations
Receiver Adjustments and Service in the Home
Municipal Regulations
Appendix

336 pages

270 illustrations
$\$ 3.60$

GET YOUR COPY NOW!

JOHN F. RIDER, PUBLLSHER, Inc., 480 Canal St., New York 13, N.Y.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
00A	01 A	E	No changes.
	40	G	
01 A	00A	E	No changes.
	O0AA	E	
	01 B	E	
0 A 2	$0 \mathrm{B2}$	P	Where application is not too critical.
0A3	VR75	E	No changes.
0 A 4	1267	E	No changes.
0B2	0 C 3	E	Where space permits. Change socke to octal and rewire as follows:
			No. 1 on miniature to No. 5 on octal 2 5 to 5
$0 \mathrm{B3}$	VR90	E	No changes.
0C3	VR105	E	No changes.
	$0 \mathrm{B2}$	E	Reverse 0B2 to 0C3 procedure.
0D3	VR150	E	No changes.
OY4	0Y4G	E	No changes.
0Y4G	0 Y4	E	Ground pin No. 1
$0 \mathrm{Z4}$	0 Y4	G	No changes.
	$\text { 0Z4A/ } 1003$	E	
	$1005 / \mathrm{CK} 1005$	E	
	$6 \mathrm{X5}$	E	Solder socket terminal No. 2 to chassis. Connect 6 V hot lead to No. 7. Motorolas and some other car radios have filament wired and the 6X5 may be used without making any changes.
	7 Y 4	E	Change socket to loctal and rewire as follows:
			Connect No. 8 on loctal to chassis and No. 1 on loctal to 6 V hot lead.
	84	E	Reverse 84 to 6×5 procedure.
0Z4A	$\begin{aligned} & \text { 0Y4 } \\ & 1005 / \mathrm{CK} 1005 \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	No changes.
1 A3	1B4/1294	E	Where space permits. Change socket to loctal and rewire as follows: No. 1 on miniature to No. 1 on loctal
$1 \mathrm{A4}$	1 B4	E	No changes.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
1 A 7	1D7	P	No changes, unless there is a resistor across 1 A7 filament, which must be removed. 1D7 is rated 2 V 60 mils and draws slightly less than 50 on i.4.
	1 L 6	G	Same as 1A7 to 1U6.
	1 LA6	E	Change socket to loctal and rewire as follows:
	1 LC 6	E	
	1 R 5	G	Make adaptor as follows: Solder rather heavy wires three inches long to all lugs except No. 5 of miniature socket. Break the 1A7, clean out the base and save the cap. Push the wires from miniature socket thru the base pins as follows:
			The octal socket could be replaced by a miniature using the above connections but it is usually hard to find a place to mount it. If 1 R5 squeals, reduce value of oscillator grid resistor to 75000 ohms or less if necessary. This resistor is, connected between terminal No. 5 on the the $1 A 7$ socket and ground or filament.
			An idea we have been using successfully is to dig a trough from pin No. 5 to pin No. 7 on the adaptor, filling this with the graphite preparation made for volume controls, measuring the resistance, and filling the trough until the desired resistance is acquired.
	1 U6	G	Parallel circuits only. Change socket to miniature and rewire as follows: No. 2 on octal to No. 1 on miniature 3 4 to 5 to 4 to 3 $\begin{array}{ll}\text { to } & 7 \\ \text { to } & 6\end{array}$
$1 \mathrm{AB5}$	1 AD 5	G	Parallel circuits only. Change socket to subminiature and rewire as follows:
$1 \mathrm{AC5}$	1 V5	E	No changes.
$1 \mathrm{AD4}$	1 AD5	G	Parallel circuits only.
	1 AE 4	G	Reverse 1AE4 to 1AD4 procedure.
1 AD 5	$1 \mathrm{AB5}$	G	Parallel circuits only. Reverse 1AB5 to 1AD5 procedure.

Pin numbers on 1 AD4 number from right to left from red mark on base, as shown.

1 AF4 1 AF5

	$1 \mathrm{L4}$
	1 T4
	1 U 4
1 AF 5	1 LD5

	1 S 5	G
1 B 3	1 X 2	E
$1 \mathrm{~B} 4{ }^{*}$	1 A 4	E
	1 D 5	E
	1 E 5	E
	32	E
	34	E
1 B 5	1 H 6	E

G
G
P
P

E

E

E

No. 5 to No. 1
2 to 5
3 to 4
Do not use terminal No. 3 for anchor
G No changes. Parallel circuits only.
Rewire as follows:

No chall

Parallel circuits only. Where space permits. Change socket to loctal and rewire as follows:

	No. 1 on miniature	to No.	1	
	3	to	4	
	4	to	3	
	5	to	2	
	6	to	6	
	7	to	8	

G Parallel circuits only. No changes.
E Reverse 1 X2 to 1 B3 procedure.
E No changes.
E Same as 1A4 to 1D5.

E No changes.

Change socket to octal and rewire as follows:

No. 1 on six prong	to No. 2 on octal	
2	to	3
3	to	4
4	to	5
5	to	6
6	to	7

$25 S$	E	No changes.
1 A7	E	Parallel circuits only. No changes.
1 L6	G	Parallel circuits only. Same as 1A7 to 1 U6
1 LA6	E	Parallel circuits only. Same as 1A7 to 1LA6.
1 LC 6	E	

TUBE	sub.	PERF.	CIRCUIT CHANGES NECESSARY
$1 \mathrm{B7}$	1 R5	G	Parallel circuits only. Same as 1 A7 to 1 R5.
	1 U6	G	Parallel circuits only. Same as 1A7 to 1 U 6.
$1 \mathrm{B8}$	1 D 8	E	No changes.
1 C 3	$1 \mathrm{G4}$	G	Where space permits. Change socket to octal and rewire as follows: No. 1 on miniature to No. 2 on octal
	1 LE3	G	Where space permits. Change socket to loctal and rewire as follows: No. 1 on miniature to No. 1 on loctal
1 C 5	1 A5	G	Parallel circuits only. No changes.
	1D8	P	Remove and tape up any wires connected to 6 and 8. No connection to top cap.
	1 LA 4	G	Same as 1A5 to 1LA4. Parallel circuits only.
	1 LB4	G	
	1Q5	G	No changes. Bias different but tone is reasonably good.
	1S4	G	Same as 3Q5 to 3S4, but connect nothing to No. 5 on miniature.
	1 T 5	G	Parallel circuits no changes. Series circuits shunt 35 ohm resistor across filament.
	3Q4	P	Change socket to miniature and rewire as follows:
	3S4	P	
	3Q5	P	Same as 1Q5 to 3Q5.
1 C 6	1 A 6	G	Parallel circuits only. No changes.
	$1 \mathrm{C7}$	G	Same as 1A6 to 1C7. Either series or parallel circuits.
	1D7	G	Same as 1A6 to 1C7. Parallel circuits only.
$1 \mathrm{C7}$	1 A6	G	Reverse 1A6 to 1 C 7 procedure. Parallel circuits only.
	1 C 6	E	Reverse 1A6 to 1C7 procedure.
	$1 \mathrm{D7}$	E	Parallel circuits only. No changes.
1 C 8	1 AE5	G	Parallel circuits only.
	1 E 8	E	No changes.
1 C 21			No practical substitute.

$P \quad$ Change socket to four prong and rewire as follows:

1E5* 1D5
Change socket to four prong and rewire as follows:

1 E7
1 E8

1 F5
32
34
951

1 F5

1 F6

1 F4

1 F7

1 C 8

1A4

1 B4

G No changes.

P
P
P
P
P
No practical substitute.
E No changes.

E

No. 2 on octal
5
7

Change socket to octal and rewire as follows:

No. 1 on five prong
to No. 2 on octal
2
4
3
5

to	3
to	4
to	5
to	7

E Reverse 1 F4 to 1 F5 procedure.
E
Change socket to octal and rewire as follows:
No. 1 on six prong to No. 2 on octal

2
3
4
5
6
cap

TUBE	SUB.	PERF.	CIRCUIT CHA.NGES NECESSARY
1 F 7	1F6	E	Reverse 1F6 to 1F7 procedure.
$1 \mathrm{G4}$	1 C 3	G	Reverse 1C3 to 1G4 procedure.
	1E4	G	No changes.
	1 H 4	P	
	1 LE3	G	Same as 1E4 to 1LE3.
	30	P	Same as 1E4 to 30.
1 G5	1 J 5	G	No changes.
1 G6	1 J 6	P	Parallel circuits only. No changes.
1 H 4	1E4	P	No changes.
	1LE3	P	Same as 1E4 to 1LE3.
	30	P	Same as 1E4 to 30.
1 H 5	1 H 6	P	Connect grid cap to socket terminal No. 6. Connect Nos. 4 and 5 toge
	1 LD5	G	Change socket to loctal and rewire as follows:
	1 LH 4	E	Change socket to loctal and rowire as follows:
	155	G	Change socket to miniature or make adaptor wiring as follows:
$1 \mathrm{H6}$	$1 \mathrm{B5}$	E	Change socket to six prong and rewire as follows:
1 J 5	1 G5	G	No changes.
$1 J 6$	19	E	Reverse 19 to 1J6 procedure.
1 L 4	1 AF 4	G	Parallel circuits only. No changes.
	1SA6	G	Same as 1T4 to 1SA6.
	$\begin{aligned} & 1 \mathrm{~T} 4 \\ & 1 \mathrm{U} 4 \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	No changes.

1L6-ILA6

RECEIVING TUBE SUBSTITUTION GUIDE

3Q4 3 S 4

3Q5
1 LA6

1 A7

1B7

1L6
1LB6

1 LC6
1 R5

In case this substitution squeals on the high frequency end of the dial, change the oscillator grid resistor to 100 M ohms or less if necessary.

1LC5-1LO5
TUBE SUB.
1 LC5

1 LC6

1LD5

1SA6

RECEIVING TUBE SUBSTITUTION GUIDE

PERF.

G
Change socket to octal and rewire as follows:
No. 1 on loctal to No. 2 on octal

2
3
4
6
8

to	8
to	6
to	3
to	4
to	7

G Same as 1 LG5 to 1 L4.
G Same as 1 LG5 to 1 L 4 .
G Change socket to octal and rewire as follows:
No. 1 on loctal

to No. 2 on octal	
to	3
to	6
to	5
to	4
to	7
to	cap

G Reverse 1A7 to 1 LA6 procedure. Parallel circuits only.
G Same as 1 LA 6 to 1 U6.
E No changes.
P Same as 1LA6 to 1LB6.
G Same as 1LA6 to 1 R5.
G Same as 1LA6 to 1 U6. Parallel circuits only.
P Parallel circuits only. Reverse 1AF5 to 1LD5 procedure.
G Change socket to octal and rewire as follows:

G Change socket to miniature and rewire as follows:

G
G
Change socket to octal and rewire as follows:

No. 1 on loctal	to No. 2 on octal	
2	to	3
3	to	4
4	to	5
6	to	8
8	to	7

G
Same as 1 LC5 to 1 S4. Parallel circuits only.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
1 T 4	$1 \mathrm{U4}$	G	No changes.
1 T5	1 A5	G	No changes. 1 T5 pulls 10 mils more but it works OK.
	1 C 5	G	Parallel circuits only. No changes.
	1D8	P	Remove and tape up wires if any anchored on No. 6 and 8. Parallel circuits only.
	1 G4	P	No changes. Emergency works good in most cases.
	1 LA4	P	Same as 1A5 to 1LA4
	$1 \mathrm{LB4}$	P	
	1Q5	G	Parallel circuits only. No changes.
	1S4	G	Same as 3 Q 4 to 3 S 4 parallel circuits only except omit connection No. 8 on octal to No. 5 on miniature.
	304	P	Electric operation only. Same as 3Q5 to 3S4 but connect nothing to No.. 5
	$3 \mathrm{S4}$	P	on miniature.
1 T6	1Q6	E	Rewire as follows:
			No. 3 to No. 2 1 to
	1S6	E	No changes.
1 U4	1AF4	G	Parallel circuits only. No changes.
	1 L 4	G	No changes.
	1S5	G	Rewire as follows:
			$\begin{array}{rll} \text { No. } 5 & \text { to No. } & 1 \\ 2 & \text { to } & 5 \\ 3 & \text { to } & 4 \end{array}$
	1SA6	G	Where space permits. Same as 1T4 to 1SA6.
	1 T4	G	No changes.
1 U5	1S5	E	Rewire as follows:
			No. 2 Reverse 3 and to No. 5 4
1 U6	1 L 6	E	Parallel circuits only. No changes.
1 V	623	E	No changes.
	$12 \mathrm{Z3}$	G	No changes necessary. Series circuits only. Six volts added to the filament string makes no difference.
1 V 2			No practical substitute.
1 V 5	$1 \mathrm{AC5}$	E	No changes.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
1W4	1LA4	G	Where space permits. Reverse 1LB4 to 1W4 procedure.
	1LB4	G	
	$3 E 5$	G	Rewire as follows:

Connect 1 and 7 together

P No changes.
G Where space permits. Change socket to octal and rewire as follows:

Change socket to seven prong and rewire as follows:

No. 1 on six prong to No. 1 on seven prong

	2	to	2 and 3	
$00^{0} 0^{6}$	3	to	4	$\mathrm{O}_{3}{ }^{4}{ }_{5}^{\circ}$
$\mathrm{O}_{2} 50$	4	to	5	$\left(\begin{array}{ll} \\ \hline & 5 \\ \hline & 5\end{array}\right.$
${ }^{\circ} \mathrm{O}$	5	to	6	0
onte.	6	to	7	Sub
	cap	to	cap	

	55	E	Parallel circuits only. No changes.
$2 A 7$	$2 A 7 S$	E	No changes.
$2 B 7$	$6 B 7$	E	Heater voltage - current ratings differ.

3V4 G Parallel circuits only. No changes.

No practical substitute.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
3Q5	3V4	G	Change socket to miniature and rewire as follows:
3S4	3E5	G	Parallel circuits only. Same as 3Q4 to 3E5.
	304	G	No changes.
	3 V 4	G	Same as 3Q4 to 3V4.
3V4	$3 \mathrm{A4}$	P	Parallel circuits only. Reverse 3A4 to 3V4 procedure.
	3E5	G	Parallel circuits only. No changes.
	3Q4	G	Reverse 3Q4 to 3V4 procedure.
4A6			No practical substitute.
5A6			No practical substitute.
5AX4	5 AZ4	G	No changes.
	5U4	G	
	5 V 4	G	
	5W4	G	
	5 Y 3	G	
	$5 \mathrm{Z4}$	G	
5AZ4	$5 \mathrm{AX4}$	G	No changes.
	$5 \mathrm{U4}$	G	
	5 V 4	G	
	5W4	G	
	5 Y3	G	
	5Z4	G	
5R4GY	5T4	G	No changes. Use only where inverse peak voltage does not exceed 450
	5 U4	G	volts per plate.
	5 V 4	P	
	5 Y 3	P	
	5Z4	P	
	5X4	G	Same as 5 T 4 to 5 Y 4
	5 Y 4	P	
	$5 \mathrm{Z3}$		
	80	\mathbf{P}	socket to four prong and rewire as follows:
	83	G	(9) No. 2 on octal to No. 1 on four prong
	83 V	G	(2)
5T4	$5 \mathrm{AX4}$	G	No changes.
	5AZ4	G	
	$5 \mathrm{U4}$	G	
	5 V 4	G	
	5W4	G	
	5 Y3	G	
	$5 \mathrm{Z4}$	G	

5T4-5x4			RECEIVING TUBE SUBSTITUTION GUIDE	
TUBE	SUB.	PERF.	CIRCUIT CHANGES	ARY
5 T 4	5 Y 4	G	Make adaptor as follows: No. 1 on base 2 4 6 8	to No. 1 on top to 8 to 3 to 5 to 7
5U4	5AX4 5AZ4 5 T4 5V4 5W4 5 Y3 5Z4	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.	
	$5 \mathrm{Y4}$	G	Same as 5T4 to 5Y4.	
	$\begin{aligned} & 5 Z 3 \\ & 80 \\ & 83 \\ & 83 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Same as 5R4GY to 5Z3.	
$5 \mathrm{V4}$	5AX4 5AZ4 5T4 5U4 5W4 5 Y3 5Z4	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	No changes.	
	5 Y 4	G	Same as 5T4 to 5Y4.	
	$\begin{aligned} & 5 Z 3 \\ & 80 \\ & 83 \\ & 83 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Same as 5R4GY to 5Z3.	
5W4	5AX4 5AZ4 5 T4 5U4 5 V4 5 Y3 5Z4	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.	
	5 Y 4	G	Same as 5T4 to 5Y4.	
	$\begin{aligned} & 5 Z 3 \\ & 80 \\ & 83 \\ & 83 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Same as 5R4GY to 5Z3.	
5X3	5Z3 80 83 83 V 1275	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.	
5X4	5 T4 5 U4 5V4 5 Y3 5Z4	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Rewire as follows: $\quad \begin{array}{r} \\ \\ \text { No. } \\ 7 \\ 3 \\ 5\end{array}$	$\begin{array}{ll} \text { to No. } & 2 \\ \text { to } & 4 \\ \text { to } & 6 \end{array}$

RECEIVING TUBE SUBSTITUTION GUIDE

6AB4-6AC5G

TUBE SUB. 6AB4 6N4

9002
$6 \mathrm{AB} 5 / 6 \mathrm{~N} 5 \quad 6 \mathrm{E}$ 6U5/6G5

6AB6
6AC6
6B5
G

RECEIVING TUBE SUBSTITUTION GUIDE

PERF.

P Parallel circuits only. Rewire as follows:

Reverse No. 6 and No. 7
Connect No. 1 to No. 5 Remove and tape any wires connected to unused pins.

P Rewire as follows:
Remove and tape up any wires anchored on pins No. 2 and No. 5

P Parallel circuits only. No changes.
P Parallel circuits only. No changes.
G Parallel circuits only. No changes.
G Change socket to six prong and rewire as follows:

7W7 G Change socket to loctal and rewire as follows:

$\begin{array}{llll}6 A C 5 G & \text { 6AC5GT } & \mathrm{E} & \text { No changes. } \\ & 6 \mathrm{AC} 5 \mathrm{GT} / \mathrm{G} & \mathrm{E} & \end{array}$

Remove wires from No. 3 and connect to No. 4. Connect grid lead to No. 5. This pin may be used for anchor. Extend to grid cap.

6K5 G Rewire as follows:
Connect terminal No. 5 to grid cap. This terminal may be used as an anchor.

7B4 G Change socket to loctal and rewire as follows:

6AD6 6AF6 G No changes.

6AD7-6AG6G

TUBE	SUB.	PERF.
6AD7	$6 F 7$	G

RECEIVING TUBE SUBSTITUTION GUIDE

CIRCUIT CHANGES NECESSARY
 Parallel circuits only. Change socket to seven prong and rewire as follows:
 No. 1 on octal to No. 5 on seven prong
 2 to
 (3)

6P7 G Parallel circuits only. Remove wires from No. 5 and extend to grid cap. Rewire as follows:

No. 4	to No. 5	
3	to	4
7	to	3
1	to	7

No changes.
6AF5
6 C 5
6.55 6 P5

6AH7

6N7

6 AF5	6 AD5	G	No changes.
	6AE5	G	
	6 C 5	G	
	6 J 5	G	
	6 P 5	G	
6AF6	6AD6	G	No changes.
6 AF7			No practical substitute.
6AG5	6AJ5	P	Parallel circuits only. No changes.
	$6 \mathrm{AK5}$	G	Parallel circuits only. No changes.
	6 AU6	G	No changes.
	6BC5	G	No changes.
	5590	G	Parallel circuits only. No changes.
	5591	G	
	9001	G	
	9003	G	

No practical substitute.

TUBE	SUB.	PERF.	CIRCUTT C
6AG7	6AK7	E	No changes.
6AH5	$6 A L 6$	G	Rewire as follows:

6L6

$6 \mathrm{AH} 6^{*} \quad$| 6 AJ 5 |
| :--- |
| |
| |

6AS6

6AU6
6BC5
6BD6

EF50

6AE6
6C8

6SN7

7N7

6AJ5
6AG5
6AK5
6AU6

No. 4
1
6
to cap
to 4
to 5
G Rewire as follows:
No.

to No. 3	
to	4
to	5

P Parallel circuits only. No changes.
P
P
Parallel circuits only. Rewire as follows:
Reverse No. 2 and No. 7

	6AU6	P	Parallel circuits only. No changes.
	6BC5	G	Parallel circuits only. No changes.
	6BD6	P	Parallel circuits only. No changes.
	EF50	P	Parallel circuits only. Reverse EF50 to 6BA6 procedure.
$6 \mathrm{AH7}$	6AE6	G	Parallel circuits only. Reverse 6AE6 to 6AH7 procedure.
	6C8	G	Rewire as follows:
			Connect wire from No. 1 to grid cap. Remove wires from No. 2
			No. 8 to No. 2 4 to 8
			Connect wires removed from No. 2 to No. 4.
	6SN7	P	Parallel circuits only. Rewire as follows:
			Reverse No. 2 and No. 3
			Remove wires from No. 4
			No. 5 to No. 4
			6 to Cennect wires removed from No. 4 to No. 6.

Parallel circuits only. Change socket to loctal and rewire as follows:

No. 1 on octal 2 4 5 6 7 8

Parallel circuits only. No changes.
P No changes.
P Parallel circuits only. No changes.

6AJ7-6AM6
6AK7 6AG7 E No changes.

6AL5 6H6

6 AL7
6AM5
6AQ5

6AR5

6AM6
6AH6 6AK6

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6AJ7	$\begin{aligned} & 6 \mathrm{AB} 7 / 1853 \\ & 6 \mathrm{AC} 7 / 1852 \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.
	6SD7	G	Parallel circuits only. No changes.
	6SE7	G	
	6SJ7	G	
	6SK7	G	
	6SS7	G	
	5693	G	
6AK5	6AG5	G	Parallel circuits only. No changes.
	6AH6	G	Parallel circuits only. Connect No. 2 and No. 7 together.
	6AJ5	P	No changes.
	6AU6	P	Parallel circuits only. No changes.
6AK6	6 AR5	G	Parallel circuits only. Rewire as follows:
			Connect No. 2 and No. 7 together

RECEIVING TUBE SUBSTITUTION GUIDE

Connect No. 2 and No. 7 together

G Where space permits. Change socket to octal and rewire as follows: No. 1 on miniature to No. 8 on octal

G Reverse 6AH5 to 6AL6 procedure.
E Rewire as follows:
cap to No. 3

No practical substitute.
Parallel circuits only.
No. 7 to No. 6

P Parallel circuits only. Rewire as follows:
No. 7 to No. 6

G
G

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6AM6	6AU6	G	Rewire as follows:
	6BA6	G	Remove wires from No. 2
	6BD6	G	No. 6

No. 7 to No. 2

6AN6
6AN7
6AQ5

6AQ6 | 6BD7 | G | |
| :--- | :--- | :--- |
| | | |
| | 6AT6 | G |
| | 6AV6 | G |
| | 6BF6 | G |
| | 6BK6 | G |
| | 6BT6 | G |
| | 6BU6 | G |
| 6AQ7 | 6AW7 | G |

6AN5

6 AR5

6AS5
6BF5
6 V 6

6AW7
6AV6
G
G
G
G

No practical substitute.
No practical substitute.
P Parallel circuits only. Rewire as follows:
No. 7
to No. 1
to
7

No. 7
to No. 1

G Parallel circuits only. Reverse 6AS5 to 6AQ5 procedure.
P Parallel circuits only. No changes.
G Where space permits. Change socket to octal and rewire as follows:
No. 1 on miniature to No. 5 on octal

	2	to	8	
	3	to	2	
	4	to	7	
	5	to	3	
	6	to	4	
	7	to	5	

Parallel circuits only. Reverse 6BD7 to 6AQ6 procedure.
G Parallel circuits only. No changes.

G Rewire as follows:

Remove wires from No. 1
No. $2 \quad$ to No. 1
Connect wires removed from No. 1 to No. 4.
Remove wires from No. 3
No. 5 to No. 3
Connect wires removed from No. 3 to No. 6.

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE
6AR5

6AR6

6AR7
6AS5

6AS6

6AS7G
6AT6

SUB.
6AK6

6 AM5

6AQ5

6 AS5
6F6
6G6
6 K 6
6L6
6U6
6 V 6
6W6
6 Y 6
5824
asta

6AN5

6AQ5

6AR5

6BH6
6BJ6 6CB6
6AH6

G
\mathbf{G}
G

No practical substitute.
G Parallel circuits only. Rewire as follows:
Reverse No. 1 and No. 2
5 to 1

7 to 5
G Parallel circuits only. Rewire as follows:
Reverse No. 1 and No. 2 5 and 7

G Parallel circuits only. Rewire as follows:
Reverse No. 1 and No. 2
to $\quad 1$
to 5

P Parallel circuits only. Rewire as follows:
Reverse No. 2 and No. 7

No practical substitute.
G Parallel circuits only. No changes.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6AT6	6AV6	G	No changes.
	6BF6	G	
	6BK6	G	
	6BT6	G	
	6BU6	G	
	6 BD 7	G	Parallel circuits only. Reverse 6BD7 to 6AQ6 procedure.
6AU5	$6 \mathrm{AV5}$	G	Parallel circuits only. No changes.
	6BD5	G	
6AU6 *	6AG5	P	No changes.
	6AJ5	P	Parallel circuits only. No changes.
	$6 \mathrm{AK5}$	P	
	6BA6	G	No changes.
	6 BH 6	G	Parallel circuits only. Rewire as follows:
			Reverse No. 2 and No. 7

	EF50	G	Reverse EF50 to 6BA6 procedure.
6AV5	6AU5	G	No changes.
	6BD5	G	
	6BQ6	G	Parallel circuits only. Reverse 6BQ6 to 6BD5 procedure.
$6 \mathrm{AV6}$	6AQ6	G	Parallel circuits only. No changes.
	6AT6	G	No changes.
6 AW 7	6AQ7	G	Reverse 6AQ7 to 6AW7 procedure.
$6 \mathrm{AX5}$	6AX6	E	Parallel circuits only. Tie Nos. 4 and 8 together.
	6BY5	E	Parallel circuits only. Rewire as follows:
			Connect Nos. 1 and 8 together; also Nos. 3 and 4.
	6W5	G	Parallel circuits only. No changes.
	6X5	G	
	6ZY5	G	
	1274	G	
6AX6	6 AX5	G	Can be used only where No. 4 and No. 8 in 6AX6 are connected together
	6W5	G	without change.
	6X5	G	
	$6 \mathrm{ZY5}$	G	
	1274	G	

EF50

6AU5 6BD5 6BQ6

6AQ6
6AT6
6AQ7
6AX6
6BY5

Reverse No. 2 and No. 7

RECEIVING TUBE SUBSTITUTION GUIDE

6 B6
6SQ7

7B6

7C6

75

2B7
6B7

P No changes.
E No changes.

E
Make adaptor as follows:

No. 1 on base	to No. 1 on top
2	to
3	to
4	to
4	to
5	to
7	to
8	7
Extend No. 2 on top to grid connection.	

E Parallel circuits only. No changes.
G Change socket to loctal ard rewire as follows:
No. 2 on octal to No. 1 on loctal

3
4
5
7
8
cap

to	2
to	5
to	6
to	8
to	4 or

E Same as 6B6 to 7B6. Parallel circuits only.

E
Change socket to six prong and rewire as follows:

E
eater voltage-current ratings differ.

$68 C 7$			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6 BC 7			No practical substitute.
6BD5	6AU5	P	Parallel circuits only. No changes.
	$6 \mathrm{AV5}$	P	
	6BQ6	G	Parallel circuits only. Reverse 6BQ6 to 6BD5 procedure.
6BD6	6AH6	P	Parallel circuits only. No changes.
	EF50	G	Reverse EF50 to 6BA6 procedure.
6BD7	6AQ5	G	Parallel circuits only. Change socket to miniature and rewire as follows: No. 1 on noval to No. 7 on miniature
	6AT6	G	
	6BF6	G	2 to 1
	6 BT 6	G	®®® 3 to 2
	$6 \mathrm{BU6}$	G	
			ORic. 5 to 4
			6 to 6
			8 to 6
6BE6	6 BA 7	G	Change socket to nine pin noval and rewire as follows: No. 1 on miniature to No. 2 on noval 2 to 3
			-(6) 3 to 4
			ORic. 5 to 9 Stict
			6 to 1
			7
	5915	G	No changes.
6BF5	6AQ5	P	Parallel circuits only. No changes.
	6AR5	P	Parallel circuits only. Short No. 7 to No. 1.
6BF6	6BD7	G	Parallel circuits only. Reverse 6BD7 to 6AQ6 procedure.
	$6 \mathrm{BU6}$	G	No changes.
6BF7	6BG7	E	
6BG6	6BQ6	P	Parallel circuits only. Rewire as follows:
			$\begin{array}{cl}\text { No. } 8 & \text { to No. } 4 \\ 3 & \text { to } \\ 8\end{array}$
	6CD6	P	Parallel circuits only. No changes. Sometimes it is necessary to increase wattage rating of screen resistor.
6BG7	6BF7	E	No changes.
6BH6	6BJ6	G	No changes.
	6AS6	G	Parallel circuits only. No changes.
	6 BC 5	P	
	6C B6	G	
6BJ6	6AS6	G	Parallel circuits only. No changes.
	6 BC 5	P	
	6CB6	G	

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6BJ6	6BH6	G	No changes.
6BK6	6AT6	G	No changes.
	6 AV6	G	
	6BF6	G	
	6BT6	G	
	6BU6	G	
6BN6			No practical substitute.
6BQ6	6AVJ	G	Parallel circuits only. Rewire as fullows:
	6 BD5	G	No. 5 to No. 1
			8 to 3
			cap to 5
			4 to 8
	6BG6	P	Parallel circuits only. Rewire as follows:
			No. $8 \quad$ to No. 3
			4 to 8
	6CD6	P	Where extra filament current is available. Parallel circuits only. Rewire as follows:
			No. 8 $\text { to No. } 3$
6BT6	6AQ6	G	Parallel circuits oniy. No changes.
	6BD7	G	Parallel circuits only. Reverse 6BD7 to 6AQ6 procedure.
	6BK6	G	No changes.
6BL6	6BD7	G	Parallel circuits only. Reverse 6BD7 to 6AQ6 procedure.
	6BF6	G	No changes.
€ BY5	6AX5	G	Parallel circuits only. Where No. 1 and Nc. 8 are connected rogether, change connections as follows:
	6W5	G	
	6 X 5	G	
	$6 \mathrm{ZY5}$	G	No. 4 to No. 3
	1274	G	
6 C 4	6AB4	G	Rewire as follows:

Connect No. 5 to No. 1

6J4 P Parallel circuits only. Rewire as follows:

No. 7	to No. 2
1	to
5	to

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6G5	$6 \mathrm{AB5}$	G	Parallel circuits only. No changes.
	6E5	G	No changes.
	6 T5	G	
	6 U 5	G	
6G6	6A4/LA	G	Parallel circuits only. Reverse 6A4/LA to 6F6 procedure.
	$6 \mathrm{F6}$	G	Parallel circuits only. No changes.
	6 K 6	G	
	6V6	G	
	12A6	P	Series circuits only. No changes.
	41	G	Same as 6F6 to 42. Parallel circuits only.
	42	G	
	89	G	Same as 6F6 to 89. Parallel circuits only.
6H4	6H6	G	Parallel circuits only. Rewire as follows:

No. 4 to No. 3
Connect No. 3 and No. 5 together.
Connect No. 4 and No. 8 together.

6U5/6G5	E
6AL5	G
6W5	P
6X5	P
6ZY5	P
7A6	E
$7 Y 4$	P
$7 Z 4$	P

No practical substitute. Parallel circuits only. Rewire as follows:

Nos. 1 and 5	to	6
7	to	1
2	to	7

RECEIVING TUBE SUBSTITUTION GUIDE

6C6	G	Reverse 6C6 to 6J7 procedure.
6D6	E	
6D7	G	Same as 6J7 to 6D7.
6 E 7	G	
$6 \mathrm{J7}$	G	No changes.
6Q7	P	Cut off pins No. 4 and No. 5. Emergency substitution.
6S7	G	Parallel circuits only. No changes.
6SH7	G	Same as 6J7 to 6SJ7.
6SJ7	G	
6SK7	E	
6SS7	G	Same as $12 \mathrm{K7}$ to 12SK7. Parallel circuits only.
6U7	G	No changes.
6W7	G	Parallel circuits only. No changes.

			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6L6	6AL6	G	Rewire as follows:

Connect No. 3 to cap.

6S6-6SC7			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB. P	PERF.	CIRCUIT CHANGES NECESSARY
6S6			No practical substitute.
6SA7	7Q7	G	Same as 12SA7 to 14Q7.
	6SB7Y	G	No changes.
	6SD7	P	Same as 12SA7 to 12 SK 7.
	6SH7	P	
	6SK7	P	
6S8GT			No practical substitute.
6S7	6D6	G	Parallel circuits only. Reverse 6C6 to 6J7 procedure.
	6D7	G	Same as 6J7 to 6D7. Parallel circuits only.
	6E7	G	
	$6 \mathrm{J7}$	G	Parallel circuits only. No changes.
	6K7	G	
	6SJ7	G	Parallel circuits only. Same as $12 \mathrm{K7}$ to 12SK7.
	6SK7	G	
	6SS7	E	Same as 12 K 7 to 12 SK 7.
	6 U7	G	Parallel circuits only. No changes.
	6W7	G	No changes.
	7A7	G	Parallel circuits only. Same as $12 \mathrm{K7}$ to 7B7.
	$7 \mathrm{B7}$	G	Same as 12 K 7 to 7B7.
	7C7	G	
	12 K 7	P	Series circuits only. No changes.
	12 SK 7	P	Series circuits only. Same as 12 K 7 to 12 SK 7.
	14A7/12B7	P	Series circuits only. Same as 12 K 7 to $7 \mathrm{B7}$.
	39/44	G	Parallel circuits only. Same as 6 K 7 to 39/44.
	77	G	Parallel circuits only. Reverse 6C6 to 6 J 7 procedure.
	78	G	
	666	G	
6SB7Y	6BE6	G	Change socket to miniature and rewire as follows:
			No. 1 on octal to No. 2 on miniature 2 to 3
			(9) 3 (0) to 5
			(3) 4 (3) to 6
			(3) 5 (1) 5 to 1
			Onfic. 6 to 2 sue.
			7 to 4
			8 to 7
6 SC 7	6C8	G	Same as 6SC7 to 6F8.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6SJ7	6D7	G	Change socket to seven prong type and rewire as follows:
	6 E 7	G	No. 2 on octal to No. 1 on seven prong
			3 to 4
			(10) 6 to 3 e
			ORtG.O 7 to
			8 to 2
	6J7	E	Same as 12SK7 to $12 \mathrm{K7}$.
	$6 \mathrm{K7}$	G	
	6U7	G	
	6S7	G	Same as 12SK7 to $12 \mathrm{K7}$. Parallel circuits only.
	6W7	G	
	6SK7	G	No changes.
	5693	E	
	6SS7	G	Parallel circuits only. No changes.
	7A7	G	Same as 12SJ7 to 7B7.
	$7 \mathrm{B7}$	G	Same as 12SJ7 to 7B7. Parallel circuits only.
	7C7	G	
6SK7	6AB7	G	Parallel circuits only. No changes.
	6AC7	G	
	6AH6	G	Same as 6SK7 to 6AU6. Parallel circuits only.
	6AK6	G	
	$6 \mathrm{AU6}$	G	Change socket to miniature and rewire as follows:
	6BA6	G	No. 2 on octal to No. 3 on miniature
	6BD6	G	3 to 2
			8 to 5
	6 C 6	G	Reverse 6C6 to 6SJ7 procedure.
	6D6	E	
	77	G	
	78	E	
	6D7	G	Same as 6SJ7 to 6D7.
	6E7	G	
	6 J 7	G	
	6K7	E	Same as 12 SK 7 to 12 K 7 .
	$6 \mathrm{U7}$	G	
	$6 \mathrm{S7}$	G	Same as 12SK7 to 12K7. Parallel circuits only.
	6W7	G	
	6SG7	G	No changes.
	6SH7	G	
	6SJ7	G	No changes.

6SK7-6SN7
TUBE
6SK7

6SL7

6SN7

SUB.	PERF.
6SS7	G
36	G
$39 / 44$	E

RECEIVING TUBE SUBSTITUTION GUIDE

CIRCUIT CHANGES NECESSARY
Parallel circuits only. No changes.
Change socket to five prong and rewire as follows:
No. 2 on octal to No. 1 on five prong 3 and 5 to 4 4 6 7 8

7A7 E Same as 12SJ7 to 7B7.
7B7 E Same as 12SJ7 to 7B7. Parallel circuits only.
7 C 7
G
2C21 P
6C8 G
6F8
G Make adaptor as follows:

No. 1 on base	to	cap on top
2	to	3
3	to	4
4	to	5
5	to	6
6	to	8
7	to	7
8	to	2

6SC7 G If the 6SL7 employs the two cathodes separately this substitution may be
G If the 6SL7 employs the two cathodes separately
6SN 7 G Parallel circuits only. No changes.
6SU7
7F7

6F8
6SC7
6SL7
757
G No changes.
G Change socket to loctal and rewire as follows:

	No. 1 on octal	to No.	4 on loctal	
	2	to	3	
(0)	3	to	2	(9) 3
(3) ${ }^{(3)}$	4	to	5	(3) ${ }^{3}$
(3)	5	to	6	(2) 0
onic.	6	to	7	sue.
	7	to	1	
	8	to	8	

G Same as 6SL7 to 7F7. Parallel circuits only.
E No changes.
P
G Reverse 2C21 to 6SN7 procedure.
G Same as 6SL7 to 6F8. Parallel circuits only.
G Reverse 6SC7 to 6SL7 procedure. Parallel circuits only.
G Parallel circuits only. No changes.
G Same as 6SL7 to 7F7. Parallel circuits only.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY					
6SN7	7F8	G	Parallel circuits only. Change socket to loctal and rewire as follows: $\begin{array}{ll}\text { No. } 1 \text { on octal } & \text { to No. } 1 \text { on loctal } \\ 2 & \text { to } \\ 3\end{array}$					
			(0) 3	to 4				
				to 8				
			(3) 0 5	to 6				
				to 5				
			7	to 7				
			8	to 2				
	5691	P	No changes.					
	5692	G						
6SQ7	6AQ6	G	Same as 6SQ7 to 6AT6. Parallel circuits only.					
	6AT6	G	Change socket to miniature and rewire as follows:					
	6AV6	G	No. 2 on octal	to No. 1 on miniature				
	6BF6	G	3 to	to 2				
	6BK6	G	(0) (3) 4	to 5				
	6BT6	G	5	to 6				
	6BU6	G	0	to 7				
			onic. 7 to	to 4				
			8 to	3				
	6B6	G	Make adaptor as follows:					
			No. 1 on base to	to No. 1 on top to cap				
			2 to					
			3 to	8				
			4 to	4				
			5 to	5				
			7 to	7				
			8 to	2				
	6 C 7	G	Change socket to seven prong and rewire as follows:					
			No. 2 on octal to	to cap on seve	prong			
			(9) 3 to	to 6	$\left(\begin{array}{ccc} 0_{3} & 8^{6} \\ 0_{2} & 8 \\ 0 & 70 \\ 0 & 0 \end{array}\right)$			
			(3) (3) 4 - ${ }^{\text {a }}$	to 4				
			(2) 5 5 to	to 5				
			Onl6. 6 to	to 2				
			7 to	to 1				
			8 to	- 7				
	6Q7	E	Same as 6SQ7 to 6B6.					
	6R7	G	Same as 6SQ7 to 6B6.					
	6SR7	G	No changes.					
	6ST7	G	Parallel circuits only. No changes.					
	6 T 7	G	Same as 6SQ7 to 6B6. Parallel circuits only.					
	6 V 7	G						
	7B6	E	Change socket to loctal and rewire as follows:					
	7E6	G	No. 2 on octal	to No. 3 on loctalto 4 or 7	\cdots			
				to 5				
				to 6				
				to 2				
				to 1				
				to 8				

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6ST7	6SQ7	G	Parallel circuits only. No changes.
	6SR7	G	
	6 T 7	E	Same as 6SQ7 to 6B6.
6 6U7	6SL7	E	No changes.
	6SN7	P	
6SV7	6SF7	G	No changes.
6SZ7	6SQ7	G	Parallel circuits only. No changes.
	6SR7	G	
	6ST7	G	No changes.
6 T 5	2E5	E	Heater voltage-current ratings differ.
	6AB5	G	Parallel circuits only. No changes.
	6E5	G	No changes.
	6G5	G	
	6 U5	G	
6 T 6			No practical substitute.
6 T 7	6B6	G	Parallel circuits only. No changes.
	6Q7	G	Parallel circuits only. No changes.
	6R7	G	
	6SQ7	G	Same as 12Q7 to 12SQ7. Parallel circuits only.
	6ST7	E	Same as 12Q7 to 12SQ7.
	$6 \mathrm{V7}$	G	Parallel circuits only. No changes.
	$7 \mathrm{B6}$	G	Same as 6Q7 to 7B6. Parallel circuits only.
	7 C 6	G	Same as 6Q7 to 7B6.
	12Q7	P	Series circuits only. No changes.
	12SQ7	P	Same as 12Q7 to 12SQ7. Series circuits only.
	75	G	Same as 6Q7 to 75. Parallel circuits only.
	85	G	
6T8*	6R8	G	No changes.
$6 \mathrm{U4}$	6W4	E	No changes.
6U5/6C5	6N5	E	Parallel circuits only. No changes.
6U5/6G5	2E5	E	Heater voltage-current ratings differ.
	6E5	E	No changes.
6U6	6A4/LA	P	Parallel circuits only. Reverse 6A4/LA to 6F6 procedure.
	6AR6	P	Where additional filament current is available. Reverse 6AR6 to 6F6 procedure.

6U6-6V6			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6 U6	$6 \mathrm{F6}$	G	Parallel circuits. No changes.
	6G6	P	
	6 K 6	G	
	6L6	P	
	6V6	G	
	6W6	P	
6 U7	6 AU6	G	Same as 6K7 to 6AU6.
	6BA6	G	
	6BD6	G	
	6C6-77	G	Reverse 6C6 to 6J7 procedure.
	6D6-78	G	
	6D7	G	Same as 6J7 to 6D7.
	6E7	G	
	6K7	G	No changes.
	6 67	G	Same as 6J7 to 6SJ7.
	6SH7	G	
	6SJ7	G	
	6SK7	G	
	6SS7	G	
	6W7	G	
	7A7	G	Same as 6K7 to 7A7.
	7B7	G	Same as 6K7 to 7A7. Parallel circuits only.
	7C7	G	
	7G7	G	
	36	G	Same as 6 K 7 to 39/44.
	39/44	G	
6V4	6X4	E	Reverse 6X4 to 6V4 procedure.
	6X5	G	Where space permits, reverse 6X5 to 6V4 procedure.
6 V 6	6A4/LA	P	Parallel circuits only. Reverse 6A4/LA to 6F6 procedure.
	$6 \mathrm{AD7}$	G	Parallel circuits only. Remove and tape up any wires anchored on pins Nos. 1 and 6.
	6AQ5	G	Reverse 6AQ5 to 6V6 procedure.
	6AR6	P	Where additional filament current is available. Reverse 6AR6 to 6F6 procedure.
	6F6	G	Parallel circuits only. No changes.
	6G6	P	
	6K6	G	
	6 L 6	G	Parallel circuits only. No changes.
	6 U6	G	
	6 Y 6	G	
	7A5	G	Parallel circuits only. Remove and tape up any wires anchored on pins Nos. 1 and 6.

			RECEIVING TUBE SUBSTITUTION GUIDE 6V6-6W7
TUBE	SUB.	PERF.	CIRCUT CHANGES NECESSARY
6V6	7B5	G	Same as 6K6 to 7B5.
	$7 \mathrm{C5}$	G	
	38	G	Same as 6F6 to 38. Parallel circuits only.
	41	G	Same as 6F6 to 41. Parallel circuits only.
	42	G	
	89	G	Same as 6F6 to 89. Parallel circuits only.
6V7	6C7	G	Same as 6Q7 to 6C7.
	6R7	G	No changes.
	6SQ7	G	Same as 12 Q 7 to 12 SQ 7 .
	6SR7	G	
	6T7	G	Parallel circuits only. No changes.
	$7 \mathrm{B6}$	G	Same as 6Q7 to 7B6.
	7C6	G	Same as 6Q7 to 7B6. Parallel circuits only.
	7E6	G	Same as 6Q7 to 7B6.
	75	G	Same as 6Q7 to 75.
	85	G	
6W4	$6 \mathrm{U4}$	E	No changes.
6W5	024	G	No changes. Do not use where AC plate voltage exceeds 250 volts per plate.
	6AX5	G	Parallel circuits only. No changes.
	6AX6	E	Parallel circuits only. Tie No. 4 and No. 8 together.
	6BY5	G	Parallel circuits only. Rewire as follows:
			Connect Nos. 1 and 8 together No. 3 to No. 4
	6X5	G	Parallel circuits only. No changes.
	$6 \mathrm{EY5}$	G	
	626	G	Parallel circuits only. Short Nos. 4 and 8.
	$7 \mathrm{Y4}$	G	Same as 6X5 to 7Y4.
	7 74	G	
	1274	G	No changes. Parallel circuits only.
6W6	6AR6	G	Reverse 6AR6 to 6F6 procedure.
	6L6	G	Parallel circuits only. No changes.
6W7	$\begin{aligned} & 6 \mathrm{C} 6-77 \\ & 6 \mathrm{D} 6-78 \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Parallel circuits only. Reverse 6C6 to 6J7 procedure.
	$\begin{aligned} & \text { 6D7 } \\ & \text { 6E7 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Same as 6J7 to 6D7. Parallel circuits only.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6 X 5	6W5	G	Parallel circuits only. No changes.
	6X4	G	Reverse 6X4 to 6X5 procedure.
	$6 Y 5$	E	Parallel circuits only. Change socket to six prong and rewire as follows:
	074	E	No changes. Do not use where AC plate voltage exceeds 250 volts per plate.
	675	G	Same as 6X5 to 6Y5. Parallel circuits only.
	6Z6	G	Same as 6W5 to 6Z6.
	6ZY5	G	Parallel circuits only. No changes.
	7 Y 4	E	Parallel circuits only. Change socket to loctal and rewire as follows:
	$7 \mathrm{Z4}$	G	Same as 6X5 to 7Y4.
	84	E	Change socket to five prong and rewire as follows:
	1274	G	Parallel circuits only. No changes.
6X6G			No practical substitute.
6Y3G			No practical substitute.
$6 \mathrm{Y5}$	6×5	G	Parallel circuits only. Reverse 6X5 to 6Y5 procedure.
	625	G	Rewire as follows:

Connect Nos. 2 and 6 together.

6AR6	G	Reverse 6AR6 to 6F6 procedure.
6G6	P	Parallel circuits only. No changes.
6K6	G	
6L6	G	
6U6	G	
6V6	G	
7A5	G	Same as 6K6 to 7B5. Parallel circuits only.
7B5	G	Same as 6K6 to 7B5. Parallel circuits only.
7C5	G	

6Y7-6ZY5

TUBE	SUB.	PERF.
$6 \mathrm{YF}^{*}$	6 A 6	G

RECEIVING TUBE SUBSTITUTION GUIDE

CIRCUIT CHANGES NECESSARY

Change socket to seven prong and rewire as follows:
No. 2 on octal to No. 1 on seven prong

3
4
5
6
7
8

G Parallel circuits only. No changes.
6N7

623
$6 Z 4$
路
$6 \mathrm{Z7}$

6 ZY 5

E No changes.
G Parallel circuits only. Change socket to six prong and rewire as follows:

No. 1 on five prong
2
3
4
5
to No. 1 on six prong to 3
to 5
to 4
to 6

E No changes for six volt operation.
G Same as 6Y7 to 6A6. Parallel circuits only.
G Parallel circuits only. No changes.

G
627
1 V
6 Y 5

6 Y5
6A6
6N7
6 Y7
$0 \mathrm{Z4}$
6AX5
6AX6
6BY5

6W5
6X5
6 Y5
6Z5
7 Y4
$7 Z 4$
84 G
1274
G

G

G
G

G

G

625

W5 G Parallel circuits only. No changes.
X5 G Parallel circuits only. No changes.
Y5 G Same as 6X5 to 6Y5. Parallel circuits only.

G Same as 6X5 to 7Y4. Parallel circuits only.
G Parallel circuits only. Tie Nos. 4 and 8 together.
G Parallel circuits only. Rewire as follows:
Connect Nos. 1 and 8 together
No. 3 to No. 4

Same as 6 X 5 to 84. Parallel circuits only.
Parallel circuits only. No changes.

RECEIVING TUBE SUBSTITUTION GUIDE

Connect wires removed from No. 8 to No. 7
Connect No. 4 and No. 7 together.

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
7AB7	1204	E	No changes.
7AD7	7AG7	P	Parallel circuits only. No changes.
	7AH7	P	
	7AJ7	P	
	7AK7	P	
	7B7	P	
	7C7	P	
	7G7	P	
	7H7	P	
	7L7	P	
	7T7	P	
	7V7	P	
7AF7	7F7	G	No changes.
	7N7	G	Parallel circuits only. No changes.
7AG7	$7 \mathrm{AH7}$	G	No changes.
	7B7	P	
	7C7	P	
	7AJ7	P	Parallel circuits only. No changes.
	$7 \mathrm{AK7}$	P	
	7G7	G	
	7H7	G	
	7 L 7	G	
	$7 \mathrm{T7}$	G	
	7V7	G	
7AH7	7AG7	G	No changes.
	7B7	P	
	7C7	P	
	7AJ7	G	Parallel circuits only. No changes.
	$7 \mathrm{AK7}$	P	
	7G7	P	
	7H7	P	
	7L7	P	
	7 T 7	P	
	7V7	P	
7AJ7	$7 \mathrm{AH7}$	G	Parallel circuits only. No changes.
	7AK7	P	
	7 B 7	P	
	7 C 7	P	
	7G7	P	
	$7 \mathrm{V7}$	P	
	7H7	P	No changes.
	7L7	P	
	7T7	P	
7AK7	7AH7	P	Parallel circuits only. No changes.
	7AJ7	P	
	7B7	P	
	7 C 7	P	
	7G7	P	
	7H7	P	
	7L7	P	
	7T7	P	
	$7 \mathrm{V7}$	P	

7B4-7B7			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
$7 \mathrm{B4}$	6AD5	G	Reverse 6J5 to 7A4 procedure.
	6AE5	G	
	6 F 5	G	Change socket to octal and rewire as follows.
	6 J 5	G	Reverse 6J5 to 7A4 procedure.
	$6 \mathrm{K5}$	G	Reverse 6 K 5 to 7B4 procedure.
	6 P5	G	Reverse 6J5 to 7A4 procedure.
	7A4	G	No changes.
	XXL	G	
7B5	$6 \mathrm{AD7}$	G	Parallel circuits only. Reverse 6K6 to 7B5 procedure. Remove and tape up any wires anchored on unused pins.
	$6 \mathrm{F6}$	G	Parallel circuits only. Reverse 6K6 to 7B5 procedure.
	6 K 6	E	Reverse 6K6 to 7C5 procedure.
	$6 \mathrm{L6}$	G	Parallel circuits only. Reverse 6K6 to 7B5 procedure.
	6 66	G	
	6V6	G	
	6 Y 6	G	
	$7 \mathrm{A5}$	G	Parallel circuits only. No changes.
	7C5	G	
	41	G	Change socket to six prong and rewire as follows:
	42	E	No. 1 on loctal to No. 1 on six prong
			8 to 6
$7 \mathrm{B6}$	6B6	E	Reverse 6B6 to 7B6 procedure.
	6Q7	E	Reverse 6Q7 to 7B6 procedure.
	6R7	G	
	6SQ7	E	Reverse 6SQ7 to 7B6 procedure.
	6 T 7	G	Parallel circuits only. Reverse 6Q7 to 7B6 procedure.
	7C6	G	Parallel circuits only. No changes.
	7E6	G	No changes.
	75	E	Reverse 75 to 7E6 procedure.
	85	G	Reverse 75 to 7E6 procedure.
7B7	6C6 6D6	G	Parallel circuits only. Reverse 6C6 to 7A7 procedure.

			RECEIVING TUBE SUBSTITUTION GUIDE	787-7c4
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY	
7B7	6D7	G	Same as 7A7 to 6D7. Parallel circuits only.	
	6E7	G		
	6.57	G	Parallel circuits only. Reverse 6J7 to 7L7 procedure.	
	6K7	G	Parallel circuits only. Reverse 6K7 to 7A7 procedure.	
	6S7	G	Reverse 6K7 to 7A7 procedure.	
	6SH7	G	Parallel circuits only. Reverse 12SJ7 to 7B7 procedure.	
	6SJ7	G		
	6SK7	G		
	6SS7	G	Reverse 12SJ7 to 7B7 procedure.	
	6U7	G	Parallel circuits only. Reverse 6K7 to 7A7 procedure.	
	6W7	G	Reverse 6K7 to 7A7 procedure.	
	7 A 7	G	Parallel circuits only. No changes.	
	$7 \mathrm{C7}$	G	No changes.	
	$7 \mathrm{H7}$	G	Parallel circuits only. No changes.	
	12 J 7	P	Series circuits only. Reverse 6 K 7 to 7A7 procedure.	
	$12 \mathrm{K7}$	P		
	12SG7	P	Series circuits only. Reverse 12SJ7 to 7B7 procedure.	
	12SH7	P		
	12SJ7	P		
	12SK7	P		
	14A7/12B7	P	Series circuits only. No changes.	
	39/44	G	Same as 7A7 to 39/44. Parallel circuits only.	
	77	G	Parallel circuits only. Reverse 6C6 to 7A7 procedure.	
	78	G		
$7 \mathrm{B8}$	6 A 7	G	Reverse 6A7 to 7B8 procedure.	
	6 A 8	G	Reverse as 12A8 to 14B8 procedure.	
	6D8	G	Parallel circuits only. Reverse 12A8 to 14B8 procedure.	
	6 J 8	E	Reverse 12A8 to 14B8 procedure.	
	6 K 8	E		
	7A8	G	Parallel circuits only. No changes.	
	737	G	No changes.	
	757	G	No changes.	
7 C 4	1203A	E	No changes.	
	9006	G	Change socket to miniature and rewire as follows:	
			No. 1 on loctal to No. 3 on miniatu	
			101	

705-7c7

TUBE
7 C 5 $7 C 6$

7C7

PERF.
RECEIVING TUBE SUBSTITUTION GUIDE
SUB. 6AD7 6F6 6G6 6 K 6 6L6 6U6 6V6 6Y6 7A5

7B5

41
42
6B6 6Q7 6R7 6SQ7 6ST7 6 T 7 7B6 12Q7 12SQ7 $12 S R 7$
14B6 P 14E6 75 85 6 C 6 6D6 77 78

G

G G G G G E G

G
G Parallel circuits only. No changes.
G G

G G G

G Parallel circuits only. Reverse 6SQ7 to 7B6 procedure.
G Reverse 6SQ7 to 7B6 procedure.
G
G Parallel circuits only. No changes.
P Series circuits only. Reverse 6Q7 to 7B6 procedure.
P Series circuits only. Reverse 6SQ7 to 7B6 procedure.
P
\mathbf{P}
P

G
G

G
G
G
G
G
G
G Reverse 6K7 to 7A7 procedure.
G Reverse 12SJ7 to 7B7 procedure.
G Reverse 6K7 to 7A7 procedure.
G Parallel circuits only. No changes.
G No changes.
G Parallel circuits only. No changes.

TUBE	RECEIVING TUBE SUBSTITUTION GUIDE		
	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
7 C 7	12 J 7	P	Series circuits only. Reverse 6K7 to 7A7 procedure.
	12 K 7	P	
	12SG7	P	Series circuits only. Reverse 12SJ7 to 7B7 procedure.
	12SH7	P	
	12SJ7	P	
	12SK7	P	
	14A7/12B7	P	Series circuits only. No changes.
	36	G	Same as 7A7 to 39/44. Parallel circuits only.
	39/44	G	
7D7			No practical substitute.
7E5	7 A 4	P	Parallel circuits only. Rewire as follows:
	7B4	P	Remove wires from No. 1
			No. 2 l $\begin{aligned} & \text { 2 and } 7\end{aligned}$
			4 and $6 \quad$ to $\quad 7$
			5 to 6
			Connect wires removed from No. 1 to No. 6
	1201	E	No changes.
7E6	6B6	G	Reverse 6Q7 to 7B6 procedure.
	6Q7	G	
	6R7	G	Reverse 6Q7 to 7B6 procedure.
	6SQ7	G	Reverse 6SQ7 to 7B6 procedure.
	6SR7	G	Reverse 6SQ7 to 7B6 procedure.
	6 T7	G	Parallel circuits only. Reverse 6Q7 to 7B6 procedure.
	75	G	Reverse 75 to 7E6 procedure.
	85	G	Reverse 75 to 7E6 procedure.
	$7 \mathrm{B6}$	G	No changes.
	7C6	G	Parallel circuits only. No changes.
7 E 7	6B8	G	Reverse 6B8 to 7E7 procedure.
	7R7	G	No changes.
7F7	6 C 8	G	Reverse 6C8 to 7F7 procedure.
	$6 \mathrm{F8}$	G	Parallel circuits only. Reverse 6C8 to 7F7 procedure.
	6SC7	G	Reverse 6SC7 to 7F7 procedure.
	6SL7	G	Reverse 6SL7 to 7F7 procedure.
	7AF7	G	No changes.
	7F8	G	Reverse 7F8 to 7F7 procedure.
	7N7	G	Parallel circuits only. No changes.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
7K7	$7 \mathrm{B6}$	G	Rewire as follows:
	7E6	G	No. 2 to No. 7
			3 to 2
			4 to 3
	7X7	G	Rewire as follows:
			Remove wires from No. 2
			No. 3 to No. 2 4 to 3
			Connect wires removed from No. 2 to No. 4
$7 \mathrm{L7}$	$6 \mathrm{J7}$	G	Reverse 6J7 to 7L7 procedure.
	$6 \mathrm{K7}$	G	Reverse 6K7 to 7A7 procedure.
	7A7	G	No changes.
	7G7	G	Parallel circuits only. No changes.
	7H7	G	No changes.
	7T7	G	No changes.
	7V7	G	Parallel circuits only. No changes.
7N7	6C8	G	Parallel circuits only. Reverse 6C8 to 7F7 procedure.
	6F8	G	Reverse 6C8 to 7F7 procedure.
	7AF7	G	Parallel circuits only. No changes.
	7F7	G	Parallel circuits only. No changes.
7Q7	6SA7	G	Reverse 12SA7 to 14Q7 procedure.
7R7	7 E 7	G	No changes.
7S7	6 A 7	G	Reverse 6A7 to 7B8 procedure.
	6A8	G	
	6 J 8	G	Reverse 6J8 to 7J7 procedure.
	6 K 8	G	
	7B8	G	No changes.
	7J7	G	
$7 \mathrm{T7}$	7A7	G	No changes.
	7B7	G	Parallel circuits only. No changes.
	7C7	G	Parallel circuits only. No changes.
	7G7	G	Parallel circuits only. No changes.
	$7 \mathrm{H7}$	G	No changes.
	$7 \mathrm{L7}$	G	No changes.
	7V7	G	No changes.
	1231	G	Parallel circuits only. No changes.

RECEIVING TUBE SUBSTITUTION GUIDE

12AT6-12AY7		RECEIVING TUBE SUBSTITUTION GUIDE	
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
12AT6	$12 \mathrm{AV6}$	G	No changes.
	12BF6	P	
	12BK6	G	
	12BT6	P	
	$12 \mathrm{BU} 6$	P	
	12SQ7	G	Where space permits. Reverse 12SQ7 to 12AT6 procedure.
	12 SR 7	P	
	12SW 7	P	
$12 \mathrm{AT7}$ *	12 AH 7	G	Where space permits. Reverse 12AH7 to 12AT7 procedure.
	$12 \mathrm{AU7}$	G	No changes.
	12AV7	G	Parallel circuits only. No changes.
	$12 \mathrm{AX7}$	G	No changes.
	12AY7	G	
	12 BH 7	G	Parallel circuits only. No changes.
12AU6	12AW6	G	Reverse Nos. 2 and 7.
	12 BA 6	G	No changes.
	12BD6	G	
12AU7*	12AT7	G	No changes.
	12AV7	G	Parallel circuits only. No changes.
	12AX7	G	No changes.
	$12 \mathrm{AY7}$	G	
12AV6	12 AT 6	G	No changes.
	12BF6	P	
	12 BK 6	G	
	12BT6	G	
	$12 \mathrm{BU6}$	G	
12AV7	12AT7	G	Parallel circuits only. No changes.
	$12 \mathrm{AU7}$	G	
	$12 \mathrm{AX7}$	G	
	$12 \mathrm{AY7}$	G	
	12 BH 7	G	
12AW6	12AU6	G	Rewire as follows:
	12 BA 6	G	Reverse No. 2 and No. 7
12AX7	12AT7	G	No changes.
	12AU7	G	
	12AV7	G	Parallel circuits only. No changes.
	12AY7	G	No changes.
	12 BH 7	G	Parallel circuits only. No changes.
12AY7	12AT7	G	No changes.
	12AU7	G	
	$12 \mathrm{AV7}$	G	Parallel circuits only. No changes.

12BU6-12K7

TUBE	SUB.	PERF.
12BU6	12AT6	\mathbf{P}
	12AV6	P
	12 BF 6	\mathbf{G}
	12 BK 6	\mathbf{P}
	12 BT 6	\mathbf{P}
12C8		
	14 E 7	G
	$14 R 7$	G

$12 \mathrm{K7}$
14 A 7 E

1626

12 J 5
$12 S F 5$

12AL5

12 F 5
$12 S F 5$

14 A4

1626

6S7
6W 7

7 B7
7C7
12B7
$12 \mathrm{K7}$

12SG7
12SH7
12SJ7
12SK7

6S7

P P

P
E
G
G
G
E
\mathbf{G}

E
P

RECEIVING TUBE SUBSTITUTION GUIDE

CIRCUIT CHANGES NECESSARY

No changes.

Change socket to loctal and rewire as follows: No. 2 on octal to No. 1 on loctal

3	to	2
4	to	3
5	to	4
6	to	5
7	to	8
8	to	7
cap	to	6

Parallel circuits only. No changes.
Rewire as follows:
No. 4 to No. 3. Connect grid wire to No. 5.
Same as 6F5 to 6SF5.
No practical substitute.
Change socket to miniature and rewire as follows:
No. 2 on octal to No. 3 on miniature

3	to	2	5
4	to	5	es)
5	to	7	0
7	to	4	
8	to	1	

G Rewire as follows:
No. 3
to No. 4
Connect wire from No. 5 to grid cap.
G Same as 12SF5 to 12J5.

G Same as 6J5 to 7A4.
Parallel circuits only. No changes.
Series circuits only. No changes.

Same as 12 K 7 to $7 \mathrm{B7}$ but in series circuits only.

Same as 12 K 7 to 787 but in series circuits only.
Series circuits only. No changes.

RECEIVING TUBE SUBSTITUTION GUIDE

12SA7-12SC7

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
12SF5	12 F 5	G	Reverse 6F5 to 6SF5 procedure.
	12 J 5	G	Rewire as follows: Reverse No. 2 and No. 8 Reverse No. 3 and No. 5
12SF7	12SK7 and Germanium Diode	P	Rewire as follows: $\begin{aligned} & \text { Move wire from No. } 2 \text { to No. } 4 \\ & 6 \text { to } 8 \\ & 8 \text { to } \quad 2 \\ & 4 \text { to } 6 \\ & \text { Remove wires from No. } 5 \\ & \text { Connect No. } 3 \text { and No. } 5 \text { together } \\ & \text { Diode crystal from No. } 3 \text { or } 5 \text { to wires } \\ & \text { removed from No. } 3 \end{aligned}$
12SG7	12AU6 12BA6 12BD6	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Change socket to miniature and rewire as follows:
	$\begin{aligned} & \text { 12SH7 } \\ & \text { 12SJ7 } \\ & \text { 12SK7 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.
12SH7	$\begin{aligned} & \text { 12AU6 } \\ & \text { 12BA6 } \\ & \text { 12BD6 } \end{aligned}$	G	Same as 12SG7 to 12BA6.
	$\begin{aligned} & \text { 12SG7 } \\ & \text { 12SJ7 } \\ & \text { 12SK7 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.
$12 \mathrm{SJ7}$	$\begin{aligned} & \text { 6S7 } \\ & 6 \mathrm{~W} 7 \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{P} \end{aligned}$	Same as 12SK7 to 12K7. Series circuits only.
	$\begin{aligned} & 12 \mathrm{~B} 7 \\ & 14 \mathrm{~A} 7 \\ & 14 \mathrm{C} 7 \end{aligned}$	\mathbf{G}	Change socket to loctal and rewire as follows:
	$\begin{aligned} & 12 \mathrm{~J} 7 \\ & 12 \mathrm{~K} 7 \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Same as 12SK7 to 12K7.
12SK7	$\begin{aligned} & \text { 6S7 } \\ & 6 \mathrm{~W} 7 \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{P} \end{aligned}$	Same as 12SK7 to 12K7. Series circuits only.
	6SS7	P	No changes. Series circuits only.

12SK7-12SQ7

14A5-14E7			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
14A5	12A6	E	Reverse 35L6 to 35A5 procedure.
	1284	P	No changes. Connect No. 4 to No. 7 for best results.
14A7/12B7	6 S 7	P	Reverse $12 \mathrm{K7}$ to 7B7 procedure. Series circuits only.
	6W7	P	
	6SS7	P	Reverse 12SJ7 to 7B7 procedure. Series circuits only.
	$7 \mathrm{B7}$	P	Series circuits only. No changes.
	7C7	P	
	12B7	E	No changes.
	$14 \mathrm{C7}$	G	
	14H7	G	
	1280	G	
	1284	E	
	12 J 7	G	Reverse 12K7 to 7B7 procedure.
	$12 \mathrm{K7}$	E	
	12 SH 7	G	Reverse 12SJ7 to 7B7 procedure.
	12SJ7	G	
	12SK7	E	
14AF7/XXD	12AH7	G	Reverse 12AH7 to 14AF7/XXD procedure.
	14F7	G	No changes.
	14N7	G	Parallel circuits only. No changes.
14B6	7 C 6	P	Series circuits only. No changes.
	12Q7	E	Reverse 6Q7 to 7B6 procedure.
	14E6	G	No changes.
14B8	7 A 8	P	Series circuits only. No changes.
	12A8	G	Reverse 12A8 to 14B8 procedure.
	14J7	G	No changes.
	14S7	G	
14 C 5	14A5	G	Parallel circuits only. No changes.
$14 \mathrm{C7}$	7B7	P	Series circuits only. No changes.
	7C7	P	
	12B7	E	No changes.
	14A7	G	
	$14 \mathrm{H7}$	G	
	1280	G	
	1284	E	
14E6	12Q7	G	Reverse 6Q7 to 7B6 procedure.
	14B6	G	No changes.
14E7	12 C 8	G	Reverse 12C8 to 14E7 procedure.

15-25A6 TUBE 15 17
19C8

1E5

32 34 951

SUB.

J6

57
58
19 TB
19C8

PERF.
G
For battery operation only. Parallel circuits. Change socket to octal and rewire as follows:

No. 1 on five prong to No. 2 on octal

(3) 0^{6}	2	to	3	(3) ${ }^{6}$
(2) 0	3	to	4	(3) ${ }^{\circ}$
(2) 0	4	to	7	
(1) ©anc.	5	to	7	${ }_{\text {Sus }}$
	cap	to		

G Same as 15 to 1B4. Battery operation only. Parallel circuits.

No practical substitute.
No practical substitute.
E Change socket to octal and rewire as follows:

P Rewire as follows:
$\begin{aligned} \text { No. } 8 & \text { to No. } 4 \\ 3 & \text { to } 8\end{aligned}$

G No changes.
G No changes.
G Parallel circuits only. No changes.
No practical substitute.
No practical substitute.
No practical substitute.
G Use as IF or RF amplifier. Does not make good detector.

CIRCUIT CHANGES NECESSARY

8

G
E
Change socket to six prong and rewire as follows:
No. 1 on five prong to No. 1 on six prong

RECEIVING TUBE SUBSTITUTION GUIDE

(3) 0^{6}	2	to	2	0 O
(2) ${ }^{(2)}$	3	to	3)
(1) (3)	4	to	4 and 5	$0 \cdot 0$
Damis.	5	to	6	suo.
	cap	to	cap	

25 B 6	G
25 C 6	G
25 L 6	G

43
Change socket to six prong and rewire as follows:

No. 2 on octal to No. 1 on six prong

2508GT-2525			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
25D8GT			No practical substitute.
25 L6	25A6	G	No changes.
	25B5	G	Reverse 25B5 to 25N6 procedure.
	25B6	G	No changes.
	25C6	G	
	25N6	G	No changes.
	43	G	Reverse 43 to 25L6 procedure.
	5824	E	No changes.
25N6	25B5	G	Reverse 25B5 to 25N6 procedure.
25S	1B5	E	No changes.
25W4	$25 \mathrm{Z6}$	E	Rewire as follows:
			No. 8 to No. 2 3 to 4
			Connect No. 4 and No. 8 together
			3 and 5 together
25X6	$25 \mathrm{Z6}$	G	Where 25X6 is used by itself only. Replace line cord with 310 ohms. No changes.
	50X6	G	When 25X6 is used by itself, replace line cord or filament dropping resistor with 445 ohms. Change socket to loctal and rewire as follows: No. 2 on octal to No. 1 on loctal
			(3) 3 to 3
			(1) 0_{0}^{0} 2 ${ }_{0}$
	50 Y 6	G	Where 25X6 is used by itself, replace line cord or filament dropping resistor with 445 ohms.
	50 Y 7	G	When 25X6 is used by itself, replace line cord or filament dropping resistor
	$50 \mathrm{Z7}$	G	with 445 ohms. Do not use No. 6 for anchor.
25 Y 4			No practical substitute.
25 Y 5	$25 \mathrm{Z5}$	E	No changes.
	$25 \mathrm{Z6}$	E	Same as $25 \mathrm{Z5}$ to 25Z6.
2573			No practical substitute.
25Z4	25Z6	E	No changes. Remove and tape up wires on unused terminals.
$25 Z 5$	6 J 5	P	Connect 60 ohm 5 watt resistor in series with filament circuit, will not work in voltage doubler circuit. If one cathode is used by itself for field excitation connect 4 and 8 together.
	$25 Y 5$	E	No changes.

2807-35A5
$1 F 4$ C
950
1 A4
1 B4
32
951
6G6

12A6

14A5

Use only in conventional circuits where rectifier is first in the string and A.C. is connected to No. 7.

RECEIVING TUBE SUBSTITUTION GUIDE

CIRCUIT CHANGES NECESSARY

changes.
No changes.
No practical substitute.

o. 1 on four prong

Parle circuits only. No changes.
Parallel circuits only. No changes.
No changes. 34 does not make good detector. the same. Use only where 32 L 7 does not have other tubes in series with it.
everse 6 and 8 . Cord is correct

Remove or short out the filament resistor and reverse connections 4 and 5 to socket.

Parallel circuits only. No changes.

No changes.
G
G
G
P Same as 35 A 5 to 35 L 6 but put a 250 ohm 10 watt resistor in series with the filament circuit.

P Same as above but put a 250 ohm 10 watt resistor in series with filament circuit.

P Put 125 ohm 10 W resistor in series with filament.

35L6-3			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
35L6	6G6	P	Put 250 ohm 10 watt resistor in series with filament circuit.
	12A6	P	Insert 150 ohms resistance in series with the filament circuit.
	12J5	P	Insert 150 ohms resistance in series with the filament circuit.
	35A5	E	Change socket to loctal and rewire as follows:
	50A5	G	No. 2 on octal to No. 1 on loctal
			(9) 5 5 to 2 , (8)
			(1) 4 - to 3
			(2) 5 to 6 - 1 (0)
			OR16. 8 to 7 to
			7 to 8
	$35 \mathrm{B5}$	E	Change socket to miniature and rewire as follows:
	50B5	G	No. 2 on octal to No. 3 on miniature
			(9) 3 to 5
			(3) 5 (2) to 1
			Oftie. 7 to 4 to
			8 to 2
			Do not use No. 7 on miniature.
	35 C 5	E	Change socket to miniature and rewire as follows:
	50C5	G	No. 2 on octal to No. 3 on miniature
			(8) 3 (3) to 7
			(9) 0° 4 to 6 -
			(1) 5 2 5 to 2 e
			7 to 4 sue.
			8 to 1
			Do not use terminal No. 5 on miniature.
	50C6	G	No changes.
	50L6	G	
35W4	35 Y 4	E	Where space permits. Reverse 35 Y 4 to 35W4 procedure.
	35Z3	E	
	3525	E	
	$117 \mathrm{Z3}$	G	Where 35W4 is used by itself only. Remove line cord resistor or filament dropping resistor and replace with ordinary line cord. Rewire as follows:
			Remove and tape up any wires on No. 6 No. 7 to No. 6
			Pilot light will not burn. In order to light pilot light, connect 40 ohm 1 watt resistor in series with filament and connect pilot light across it.
35 Y 4	35W4	E	Change socket to miniature and rewire as follows:
			No. 1 on loctal to No. 3 on miniature
			(9) 2 to 5
			(0) 4 (0) to 4
			onic. 8 to 4
	$35 \mathrm{Z3}$	E	No change is necessary but pilot light will not light. Pilot light can be lit by same method as used from $35 Z 5$ to $35 Z 4$.

3525-40
6J7 G
$6 \mathrm{K7} \quad \mathrm{E}$
$6 S 7$ G

6SH7
6SJ7
6SK7 E
6SS7 G
$6 \mathrm{U7} \quad \mathrm{G}$
6W7 G
7A7 E

7H7
7L7 G
7B7 G

7 C 7

00 A
01A
12A

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
$35 \mathrm{Z5}$	$35 \mathrm{Z4}$	E	No change is necessary but pilot light will not light. In order to light the pilot light, put a 40 ohm resistor in series with the filaments and connect the pilot light across it. This resistor must have a 1 watt rating.
	$45 Z 5$	G	No changes.
35Z6	$25 \mathrm{Z6}$	G	No change, unless $35 Z 6$ is used singly in which case put 35 ohm 10 watt resistor in filament string.
	$50 \mathrm{Z6}$	G	No changes. Where a full set of five or six tubes are used, little change in operation will be noted. If $35 Z 6$ is used by itself, this substitution may not be satisfactory.
35/51	24A	G	No changes.
36	$\begin{aligned} & \text { 6C6 } \\ & \text { 6D6 } \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & \mathbf{G} \end{aligned}$	Same as 37/44 to 6D6.
	39/44	G	No changes.
	77	E	Same as 37/44 to 6D6.
	78	G	
37	76	E	No changes.
38	41	G	Parallel circuits only. Reverse 41 to 38 procedure.
	42	G	
39/44	6 C 6	G	Change socket to six prong and rewire as follows:
	6D6	E	No. 1 on five prong to No. 1 on six prong
	77	G	(3) 0^{6} 2 to 2 为
	78	E	
			(1) (5) 5 to 6

G

G
G
RECEIVING TUBE SUBSTITUTION GUIDE

No change is necessary but pilot light will not light. In order to light the pilot light, put a 40 ohm resistor in series with the filaments and connect the pilot light across it. This resistor must have a 1 watt rating.

No changes.
No change, unless $35 Z 6$ is used singly in which case put 35 ohm 10 watt resistor in filament string.

No changes. Where a full set of five or six tubes are used, litule change in peration will be noted. If $35 Z 6$ is used by itself, this substitution may not be satisfactory.

No changes.
Same as $37 / 44$ to 6D6.

No changes.
Same as $37 / 44$ to 6D6.

No changes.

Reverse 6 K 7 to $39 / 44$ procedure.
\qquad

G

G E

G

G r

Reverse 7A7 to 39/44 procedure.

Reverse 7A7 to 39/44 procedure. Parallel circuits only.

No changes.
G No changes.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
56	27	G	No changes.
	485	G	No changes.
56AS	37	E	Parallel circuits only. No changes.
	76	E	
56S	27	E	No changes.
	56	E	
57	58	G	No changes.
57AS	6C6	E	Parallel circuits only. No changes.
	77	E	
57S	57	E	No changes.
	58	E	
58	57	G	No changes. 58 is not a good second detector.
58AS	6D6	E	Parallel circuits only. No changes.
	78	E	
58 S	57	E	No changes.
	58	E	
59	47	G	Reverse 47 to 59 procedure.
	1619	G	$\begin{aligned} & \text { Parallel circuits only. Make adaptor as follows: } \\ & \text { No. } 1 \text { on base } \\ & 2 \end{aligned}$
			3 to 4
			4 to 5
			5 and 6 to 8
			7 to 7
			There are or will be many used 1619 tubes available.
70A7	32 L 7	G	No changes. Where no other tubes in series with the 70 A 7 which has 150 mil filament instead of 0.3 amp .
	70L7	E	Change connection as follows:
			No. 8 to No. 6 6 to 8
			Connect Nos. 7 and 8 together.
			Pilot light will not light but may be lit by same procedure as $50 \mathrm{Z7}$ to 50 Y 6 .
	117 L 7	E	Remove the line cord resistor and replace with straight AC cord. Reverse
	117 M 7	E	connections to 4 and 5.
	117 N 7	E	Remove line resistor cord and replace with straight AC cord.
	117 P 7	E	Remove wire from No. 8
			Move No. 1 to No. 8
			Reverse Nos. 4 and 5
			Move No. 6 to No. 7
			Place No. 8 on No. 6
70L7	32L7	G	Cord is correct. If 32 L 7 is alone in circuit. Reverse Nos. 6 and 8.
	70A7	E	Change connections as follows:
			No. 6 to No. 8
			8 to 6

70L7-			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
70L7	117 L 7	E	Remove line resistor cord and replace with straight AC cord.
	117 M 7	E	Reverse Nos. 4 and 5 Reverse 6 and 8
	117 N 7	E	Remove line cord resistor and replace with straight AC cord.
	117 P 7	E	Reverse Nos 4 and 5
			No. 8 on No. 7
			1 on 8
71A	482	G	No changes. If push-pull circuit, both tubes must be changed to avoid hum.
	483	G	
75	6AQ6	G	Same as 75 to 6AT6. Parallel circuits only.
	6AT6	G	Change socket to miniature and rewire as follows:
	6AV6	G	No. 1 on six prong to No. 3 on miniature
	6BF6	G	2 2 to 7
	6BK6	G	$0^{\circ} \mathrm{O} \mathrm{O}^{6} 3$ to 3
	6BT6	G	
	6BU6	G	$\begin{array}{llll}0 & 5 & \text { to } \\ \text { onic. } & \\ & 6 & \text { to } & 4\end{array}$
			cap to 1
	6B6	E	Change socket to octal and rewire as follows:
	6Q7	E	No. 1 on six prong to No. 2 on octal
	6R7	G	$\bigcirc{ }^{\circ} 2$
			${ }^{3}{ }^{3}{ }_{50}{ }^{3}$ - to ${ }^{\text {a }}$
			6 6 to 6 to 7 eve.
			cap to cap
	6C6	P	Emergency substitution. No changes but considerable loss of volume.
	6SQ7	E	Reverse 6SQ7 to 75 procedure.
	6SR7	G	
	6T7	G	Same as 75 to 6Q7. Parallel circuits only.
	6V7	G	Same as 75 to 6Q7.
	$7 \mathrm{B6}$	E	Change socket to loctal and rewire as follows:
	7E6	G	No. 1 on six prong to No. 1 on loctal
			2 2
			20 40 to 4 (2)
			cap to 3
	7 C 6	G	Same as above. Parallel circuits only.
	85	G	No changes. Sometimes works excellent, other times not so well.
76	6AE5	G	Reverse 6C5 to 37 procedure.
	6C5	E	Reverse 6C5 to 37 procedure.
	6 J 5	G	Reverse 6C5 to 37 procedure.

85-117N7

32 L 7

70A7

70L7

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
85	75	G	No changes.
85AS	85	E	No changes.
89	6K6	G	Same as 6F6 to 89. Parallel or series circuits.
	41	G	Reverse 41 to 89 procedure.
	42	G	Parallel circuits only. Reverse 41 to 89 procedure.
99 V			No practical substitution.
X99	20	G	Parallel circuits only. No changes.
117L7	32 L 7	G	Place 280 -ohm cord or 50 -w resistor in series with filaments. Reverse socket connections Nos. 4 and 5.
	70A7	G	Place 300 -ohm cord or 10 -w resistor in series with filaments. Reverse socket connections Nos. 4 and 5.
	70L7	G	Place 300 -ohm 10 -w resistor in series with filaments. Reverse socket connections Nos. 4 and 5, also 6 and 8.
	117M7	E	No changes.
$\begin{gathered} 117 \mathrm{~L} 7 \\ \text { or } \end{gathered}$	$\begin{gathered} 117 \mathrm{~N} 7 \\ \text { or } \end{gathered}$	E	Make adaptor as follows: No. 1 on base to No. 8 on top
117 M 7	117 P 7	E	2
			3 to 3
			4 to 4
			5 to 5
			7 to 7
			8 to 6
			AC line must connect to No. 7
117L7/M7	25A7	G	Connect 300 -ohm line cord in place of AC cord and change connections as follows:
			Reverse Nos. 4 and 5.
117 M 7	$32 \mathrm{L7}$	G	Same as 117 L 7 to 32 L 7 .
	70A7	G	Same as 117L7 to 70A7.
	70L7	G	Same as 117L7 to 70L7.
117N7	25A7	G	Connect 300 -ohm line cord in place of AC cord and change connections as follows:

No. 6
to No. 7
8
to 6
1
to 8
Reverse Nos. 4 and 5.
RECEIVING TUBE SUBSTITUTION GUIDE

CIRCUIT CHANGES NECESSARY

G No changes.
o changes. Same as 6F6 to 89. Parallel or series circuits. Parallel circuits only. Reverse 41 to 89 procedure.

No practical substitution.
Parallel circuits only. No changes.
Place 280 -ohm cord or 50 -w resistor in series with filaments. Reverse Place 300 -ohm cord or 10 -w resistor in series with filaments. Reverse socket connections Nos. 4 and 5.

Place 300 -ohm $10-$ w resistor in series with filaments. Reverse socket No changes.
follows:

Connect 300 -ohm line cord in place of AC cord and change connections as Reverse Nos. 4 and 5.

Reverse Nos. 4 and 5.
G Remove and tape up any wire anchored on No. 1. Place 280 -ohm cord or 50 -w resistor in series with filaments. Reverse socket connections Nos. 4 and 5. Move No. 8 to No. 1.

G Place 300 -ohm cord or $10-$ w resistor in series with filaments. Reverse socket connections Nos. 4 and 5. Move No. 8 to No. 1 and No. 6 to No. 8.

G Remove and tape up any wires connected to No. 1. Place 300 -ohm cord or 10-w resistor in series with filaments. Reverse Nos. 4 and 5, move No. 8 to No. 1 and short Nos. 7 and 8 together. For use in circuits where AC line is connected to No.7.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
117 N 7	117 P 7	E	No changes.
$117 \mathrm{P7}$	25A7	G	Same as 117N7 to 25A7. Cord or resistor must dissipate 90 w .
$117 \mathrm{Z3}$	35W4	G	Replace line cord with 533-ohm resistor cord. Rewire as follows: $\begin{aligned} & \text { No. } 6 \text { to No. } 7 \\ & \text { Do not use No. } 6 \text { for anchor. } \end{aligned}$
	45Z3	G	Replace line cord with 960 -ohm resistor cord. Rewire as follows. Do not use unused terminals for anchors.
	$117 \mathrm{Z4}$	G	Where space permits. Change socket to octal and rewire as follows:
$117 \mathrm{Z4}$	11723	G	Reverse $117 \mathrm{Z3}$ to $117 \mathrm{Z4}$ procedure.
	$117 \mathrm{Z6}$	E	No change except to remove and tape up any wires which may be anchored to Nos. 3 and 4.
117 Z 6	6X5	P	Connect 200 -ohm 100 -w resistor in series with filament. Use only where Nos. 4 and 8 are tied together.
	$25 \mathrm{Z6}$	G	Connect $\mathbf{3 0 0 - o h m ~ l i n e ~ c o r d ~ o r ~ 5 0 - w ~ r e s i s t o r ~ i n ~ s e r i e s ~ w i t h ~ f i l a m e n t . ~}$
	50Y6	E	No change except that a $450-$ ohm 20 -w resistor or line cord must be used in series with the filament.
	50Z6	E	Connect $\mathbf{2 2 0 - o h m ~ l i n e ~ c o r d ~ i n ~ p l a c e ~ o f ~ A C ~ c o r d . ~}$
	5027	E	Connect 440-ohm line cord in place of AC cord.
182B/482B	$\begin{aligned} & 71 \mathrm{~A} \\ & 183 / 483 \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & \mathbf{E} \end{aligned}$	No changes.
183/483	$\begin{aligned} & 71 A \\ & \text { 182B/482B } \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & \mathbf{E} \end{aligned}$	No changes.
210 T	$\begin{aligned} & \text { VT52 } \\ & 10 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{E} \\ & \mathbf{G} \end{aligned}$	No changes.
485	27	G	No changes in connections but put one inch piece of screen wire doubled in series with one side of filament winding.
	56	G	Same as 485 to 27.
864			No practical substitute.
950	1 F4	G	No changes.
	33	G	Parallel circuits only. No changes.
954	956	E	No changes.

955-1274			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
955	5731	P	No changes.
956	954	E	No changes.
957	958 A	G	Parallel circuits only. No changes.
958A	957	G	Parallel circuits only. No changes.
959			No practical substitute.
FM1000			No practical substitute.
1005/CK1 005	0 Y 4 0Z4A	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.
CK1013	5517	E	No changes.
1201	7E5	E	No changes.
1203	$7 \mathrm{C4}$	E	No changes.
1204	7AB7	E	No changes.
1206	7G8	E	No changes.
1221	$6 \mathrm{C} 6$	E	No changes.
	77	E	
1223	657	E	No changes.
1229	1 A4	E	No changes.
	1 B4	E	
	32	E	
	951	E	
1230	30	E	No changes.
1231	7G7	G	No changes.
	7V7	G	
1232	7G7	E	No changes.
1247			No practical substitute.
1265			No practical substitute.
1266			No practical substitute.
1267	0A4	G	No changes.
1273	7A7	G	No changes.
	7AJ7	G	
	7H7	G	
	7L7	G	
	7T7	G	
1274			Parallel circuits only. No changes.
	6W5	G	
	6ZY5	G	
	6AX6	G	No change necessary but tie Nos. 4 and 8 together if convenient.

TUBE			RECEIVING TUBE SUBSTITUTION GUIDE
	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
1274	6BY5	G	Parallel circuits only. Rewire as follows: Connect Nos. 1 and 8 together No. 3 to No. 4
	6 X 5	E	No changes.
	7Y4	E	Same as 6X5 to 7Y4. Parallel circuits only.
	$7 \mathrm{Z4}$	E	
1275	5X3	G	No changes.
	5Z3	E	
	80	G	
	83	G	
	83 V	G	
1276			No practical substitute.
1280	12B7	G	No changes.
	14A7	G	No changes.
	14 C 7	G	
	14H7	E	
	1284	G	
1284	12B7	G	No changes.
	14 A 7	G	
	14 C 7	G	
	14 H 7	G	
	1280	G	
1291	3B7	E	No changes.
1293	1 LE3	G	Parallel circuits only. No changes.
1294	$1 \mathrm{R4}$	E	No changes.
1299	3D6	E	No changes.
1612	6L7	E	No changes.
1614	6L6	E	No changes.
1619	2 A 5	G	Reverse 2A5 to 1619 procedure.
1620	$6 \mathrm{J7}$	E	No changes.
1626	12E5	G	Parallel circuits only. No changes.
	$12 \mathrm{J5}$	G	
1629			No practical substitute.
1634	12SC7	G	No changes.
1644	12L8	G	No changes.
1654			No practical substitute.
2050	2051	E	No changes.
2051	2050	E	No changes.
5517	CK1013	E	No changes.

5517/CK1013-5691			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
5517/CK1013			No practical substitute.
5590	6AG5	P	Parallel circuits only. No changes.
	6BC5	G	
	5591	G	No changes.
	9001	G	
	9003	G	
5591	$6 \mathrm{BC5}$	P	Parallel circuits only. No changes.
	6AG5	G	
	5590	G	No changes.
	9001	G	
	9003	G	
5608-A	53	E	No changes.
5618	2 E 30	G	Parallel circuits only. Rewire as follows:
	5812	G	Remove wires from No. 4
			No. 1 to No. 4
			6 to 1
			3 to 6
			7 to 3
			5 to 7
			2 to 5
			Connect wires removed from No. 4 to No. 2.
5635			No practical substitute.
5636			No practical substitute.
5643			No practical substitute.
5646			No practical substitute.
5647			No practical substitute.
5654	6AJ5	G	No changes.
	6AK5	G	
5670	$7 \mathrm{F8}$	G	Where space permits. Same as 2C51 to 7F8. Parallel circuits only.
5672	5678	G	No changes.
5676	5677	P	Parallel circuits only. No changes.
5677	5676	G	Parallel circuits only. No changes.
5678	5672	G	No changes.
5679	7A6	E	Where No. 4 is not used on 5679. No changes.
5686			No practical substitute.
5687	6J6	G	Parallel circuits only. Reverse 6J6 to 5687 procedure.
5691	6SL7	E	Parallel circuits only. No changes.
	6SN7	P	No changes.
	5692	P	

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
5692	6SN7	G	No changes.
	5691	P	
5693	6SJ7	E	No changes.
	6SK7	P	
5694			No practical substitute.
5697			No practical substitute.
5702	5784	G	No changes.
5703	5744	P	No changes.
5704			No practical substitute.
5718	5719	P	No changes.
5719	5718	P	No changes.
5722			No practical substitute.
5725	6AJ5	P	No changes.
	6AK5	P	
5726	6X4	G	Parallel circuits only. Rewire as follows:
			2 to 1
5731	955	\mathbf{P}	No changes.
5744	5703	P	No changes.
5783			No practical substitute.
5784	5702	G	No changes.
5785			No practical substitute.
5787			No practical substitute.
5812	2E30	G	No changes.
5823			No practical substitute.
5824	25A6	P	No changes.
	25 B6	E	
	25C6	P	
	25L6	E	
5840	5899	G	No changes.
	5900	G	
	5901	G	
5847			No practical substitute.
5879			No practical substitute.
5896			No practical substitute.
5897	5898	\mathbf{P}	No changes.

5898-XXL			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
5898	5897	P	No changes.
5899	5840	G	No changes.
	5900	G	
	5901	G	
5900	5840	G	No changes.
	5899	G	
	5901	G	
5901	5840	G	No changes.
	5899	G	
	5900	G	
5910			No practical substitute.
5915	6BE6	E	No changes.
5931			No practical substitute.
5932			No practical substitute.
9001	5590	P	No changes.
	5591	G	
	9003	G	
9002	$6 \mathrm{AB4}$	P	Rewire as follows:
			No. 2 to No. 7 5 to $\quad 1$
9003	5590	G	No changes.
	9001	G	
9004			No practical substitute.
9005			No practical substitute.
9006			No practical substitute.
X6030			No practical substitute.
XXFM	7X7	E	No changes.
XXL	6C5	E	Reverse 6 J 5 to XXL procedure.
	6J5	E	Reverse 6J5 to XXL procedure.
	6K7	E	Reverse 6K7 to XXL procedure.
	7 A 4	E	No changes.

ADDENDUM
 receiving tube substitution guide

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6Y7G	79	G	Reverse 6 N 7 to 79 procedure.
79	6 Y 7 G	G	Reverse 6 N 7 to 79 procedure.
1603	6 C 6	E	No changes.
	7700	E	
1611	6 F 6	E	No changes.
7000	$6 \mathrm{J7}$	E	No changes.
7700	6 C 6	E	No changes.
	1603	E	

IDENTICAL TUBES WITH UNLIKE HEATER VOLTAGE AND CURRENT RATINGS
Substitute high voltage tubes for low voltage tubes in series circuits only with suitable shunt resistor when required. Substitute low voltage tubes for high voltage tubes in parallel circuits with voltage dropping resistor in series with filament -- in series circuits with suitable shunt resistor. For all cases see instructions in Section 1. The performance for each substitution is excellent.

TUBE	SUB.	TUBE	SUB.	TUBE	SUB.
2 A 3	6 A 3	$7 \mathrm{B6}$	14B6	14B8	7B8
2 A 5	42	$7 \mathrm{B8}$	14B8	14E6	7 E 6
2 A 6	75	7E6	14E6	14E7	7 E 7
2 A 7	6 A 7	7E7	14 E 7	14 F 7	$7 \mathrm{F7}$
$2 \mathrm{B7}$	6B7	7F7	14F7	14 F 8	7F8
6A3	2 A 3	7F8	14F8	14 J 7	7 J 7
	1276	7J7	14 J 7	14N7	7 N 7
6A6	53	7N7	14N7	14N7	7N7
6 A 7	2 A 7	7Q7	14Q7	14Q7	7Q7
6A8	12A8GT	7R7	14R7	14R7	$7 \mathrm{R7}$
6B7	$2 \mathrm{B7}$	12A8GT	6A8	25B8GT	12B8G
6B8	12 C 8	12B8G	25B8GT	25L6	1632
6 F 5	12F5GT	12 C 8	6B8	30	RK42
6H6	12H6	12F5GT	6 F 5	42	2 A 5
$6 \mathrm{J5}$	12 J 5 GT	12H6	6H6	53	6A6
6.J7	12 J 7 GT	12 J 5 GT	6 J 5	55	85
6 K 7	12 K 7 GT	12 J 7 GT	6 J 7	56	56AS
6 K 8	12 K 8	12 K 7 GT	$6 \mathrm{K7}$		76
6L6	1631	12 K 8	6 K 8	56AS	56
6Q7	12Q7GT	12Q7GT	6Q7		76
6SA7	12SA7	12SA7	6SA7	57	57 AS
6SC7	12SC7	12SC7	6SC7	57AS	57
	1634	12SF5	6SF5	58	58AS
6SF5	12SF5	12SF7	6SF7	58AS	58
6SF7	12SF7	12SG7	6SG7	75	$2 \mathrm{A6}$
6SG7	12SG7	12 SH 7	6SH7	76	56
6SH7	12SH7	12SJ7	6S.J7	85	55
6SJ7	12S.J 7	$12 \mathrm{SK7}$	6SK7	1276	2A3
6SK7	12SK'7	12SL7GT	6SL7GT		6 A3
6SL7GT	12SL7GT	12SN7GT	6SN7GT	1631	6L6
6SN7GT	12SN7GT		1633	1632	25L6
	1633	12SQ7	6SQ7	1633	6SN7GT
6SQ7	12SQ7	$12 \mathrm{SR7}$	6SR7		12SN7GT
6SR7	12SR7	14A4	7A4	1634	6SC7
7 A 4	14A4	14B6	7B6	RK42	30

TELEVISION RECEIVER FILAMENT CIRCUIT ARRANGEMENT

The filaments of the tubes in most television receivers are either arranged in parallel, series and parallel, or series-parallel circuits. It is necessary to know the filament arrangement of a particular television receiver before some of the tubes in the circuit may be substituted because in many cases, a substitution will involve the addition of a resistor (or other circuit component), or the rearrangement of some part of the filament circuit to make for proper tube operating conditions. For example, the substitution of a tube with a 6.3 volt filament for one with a 12.6 volt filament requires the addition of a series resistor or a shunting resistor depending upon whether the filament is in a parallel or a series circuit respectively. (see Section 1).

In the following section all of the information about filament circuits needed to effect successful substitutions is given for most television receivers. The receivers are listed by model number (or chassis number for those sets having no model number) under the name of the manufacturer. In the second column is found the first page number of the section in the Rider Television Manuals in which all of the servicing information as well as schematics for the

Model	Rider Man. Page	туре Cir.	No. of Chains	Sch.
ADMIRAL CORP.				
4H15A, 4H15B, Ch. 20Al; 4J1, Radio Ch.	4-1	P	2	1
4H15S, 4H15SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H16A, 4H16B, Ch. 20Al; 4Jl, Radio Ch.	4-1	\mathbf{P}	2	1
4H16S, 4H16SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H17A, 4H17B, Ch. 20Al; 4J1, Radio Ch.	4-1	\boldsymbol{P}	2	1
4H18C, 4H18CN, Ch. 20B1; 4K1, Radio Ch	4-1	\mathbf{P}	2	1
$\begin{aligned} & 4 \mathrm{H1} 8 \mathrm{~S}, 4 \mathrm{H} 18 \mathrm{SN}, \mathrm{Ch} .30 \mathrm{Al}, 30 \mathrm{B1}, 30 \mathrm{C} 1 \text {, } \\ & \text { 30D1; 4H1, Radio Ch. } \end{aligned}$	3-17	\mathbf{P}	5	3
4H19C, 4H19CN, Ch. 20B1; 4K1, Radio Ch	4-1	P	2	1
$\begin{aligned} & \text { 4H19S, } 4 \text { H19SN, Ch. 30A1, 30B1, 30C1, } \\ & \text { 30D1; 4H1, Radio Ch. } \end{aligned}$	3-17	\mathbf{P}	5	3
$4 \mathrm{H} 115 \mathrm{~S}, 4 \mathrm{H} 115 \mathrm{SN}, 4 \mathrm{H} 116 \mathrm{~S}, 4 \mathrm{H} 116 \mathrm{SN}$, 4H117S, 4H117SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	\mathbf{P}	5	3
4H126A, 4H126B, Ch. 21A1; 4J1, Radio Ch.	4-1	P	2	1
```4H126C, 4H126CN, Ch. 21A1; 4K1, Radio Ch.```	4-1	P	2	1
4H126S, 4H126SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H137A, 4H137B, Ch. 21A1; 4J1, Radio Ch.	4-1	P	2	1
```4H137S, 4H137SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.```	3-17	P	5	3
4H145A, 4H145B, Ch. 20B1; 4J1, Radio Ch.	4-1	P	2	1
4H145C, 4H145CN, Ch. 20B1; 4K1, Radio Ch.	4-1	\mathbf{P}	2	1
4H145S, 4H145SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3

set are given. Under "Type Circuit", a "P" indicates that all of the filaments are in parallel chains across the secondaries of the power and/or filament transformers, an "S, P"indicates that some of the filaments are in parallel chains and some are in series circuits across the line or power transforme r, and " S - P ' indicates that the filaments are in a series-parallel circuit across the line. Where the filament arrangement is either "S,P" or "S-P", the filament circuit is reproduced at the end of this section, and appears with the number shown in the "Schematic" column. The schematics numbered 1-6 are typical of the majority of parallel filament circuits except for the addition of one or two chains similar to those shown. The schematics $7-35$ are reproductions of the " S, P ", and 'S-P' circuits previously referred to.

The number of circuits or chains into which the filaments of any set are divided appears under the "Number of Chains" column. NOTE: The 1 B3 high voltage rectifier circuit has not been included in the number of chains since this rectifier in practically all cases comes off the secondary of the horizontal output transformer.

Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.
ADMIRAL CORP. (Cont'd)				
4H146A, 4H146B, Ch. 20B1; 4J1, Radio Ch.	4-1	P	2	1
4H146C, Ch. 20R1; 4 Kl , Radio Ch.	4-1	P	2	1
4H146S, 4H146SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H147A, 4 H147B, Ch. 20 Bl ; 4J1, Radio Ch	h. 4-1	P	2	1
4H147S, 4H147SN, 4H155S, 4H155SN, Ch. 30A1, 30B1, 30C1, 30D1, 4H1, Radio Ch.	3-17	P	5	3
4H156C, 4H156CN, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1
4H156S, 4H156SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H157A, 4H157B, Ch. 20E1; 4J1, Radio Ch.	4-1	\mathbf{P}	2	1
4H157S, 4H157SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	\mathbf{P}	5	3
4H165A, 4H165B, Ch. 20B1; 4J1, Radio Ch.	4-1	P	2	1
$\begin{aligned} & \text { 4H165S, 4H165SN, Ch, 30A1, 30B1, 30C1, } \\ & \text { 30D1; 4H1, Radio Ch. } \end{aligned}$	3-17	P	5	3
4H166A, 4H166B, Ch. 20B1; 4J1, Radio Ch.	4-1	\mathbf{P}	2	1
4H166C, 4H166CN, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1
```4H166S, 4H166SN. Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.```	3-17	P	5	3
$\begin{aligned} & \text { 4H167A, 4H167B, Ch. 20B1; } \\ & \text { 4J1, Radio Ch. } \end{aligned}$	4-1	P	2	1
4H167C, 4H167CN, Ch. 20B1; 4K1, Radio Ch.	4-1	$\mathbf{P}$	2	1

RECEIVING TUBE SUBSTITUTION GUIDE
Model
Rider
Man. Type No. of Page Cir. Chains Sch.

	Rider
Model	Man. Type No. of
Page Cir. Chains Sch.	

## ADMIRAL CORP. (Cont'd)

4H167S, 4H167SN, Ch. 30A1, 30B1, 30C1, 3-17 P 30D1; 4H1, Radio Ch.

| $8 \mathrm{C} 11, \mathrm{Ch} .30 \mathrm{Al}$; 8C1, Radio Ch. | $2-1$ | P | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $8 \mathrm{C} 11,8 \mathrm{C} 11 \mathrm{~N}, 8 \mathrm{C} 11 \mathrm{~S}, 8 \mathrm{C} 11 \mathrm{SN}, 8 \mathrm{C} 11 \mathrm{~T}$, | $3-17$ | P | 5 | 3 | 8Cl1, 8C11N, 8C11S, 8Cl1SN, 8C11T,

8C11TN, 8C11UL, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.

| $8 \mathrm{C} 12, \mathrm{Ch} .30 \mathrm{~A} 1 ; 8 \mathrm{C} 1$, Radio Ch. | $2-1$ | P | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $8 \mathrm{C} 12,8 \mathrm{C} 12 \mathrm{~N}, 8 \mathrm{C} 12 \mathrm{~S}, 8 \mathrm{C} 12 \mathrm{SN}, 8 \mathrm{C} 12 \mathrm{~T}$, | $3-17$ | P | 5 | 3 | 8C12TN, 8C12UL, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.

8C13, Ch. 30A1; 8C1, Radio Ch. $2-1 \quad P \quad 5 \quad 3$
$8 \mathrm{8C13}, 8 \mathrm{C} 13 \mathrm{~N}, 8 \mathrm{C} 13 \mathrm{~S}, 8 \mathrm{C} 13 \mathrm{SN}, 8 \mathrm{C} 13 \mathrm{~T}, \begin{array}{lllll}3-17 & \mathbf{P} & 5 & 3\end{array}$ $8 \mathrm{C} 13 \mathrm{TN}, 8 \mathrm{C} 13 \mathrm{UL}, \mathrm{Ch} .30 \mathrm{~A} 1,30 \mathrm{~B} 1,30 \mathrm{C} 1$, 30D1; 4H1, Radio Ch.

19A1IS, 19A11SN, 19A12S, 19A12SN, 19A15S, 19A15SN, Ch. 19A1	3-1	P	2	1
$\begin{aligned} & \text { 20X11, 20X12, } 20 \times 122, \text { Ch. } 20 \times 1 \text {; } \\ & \text { 4L1, Radio Ch. } \end{aligned}$	4-38	P	2	1
20X136, 20X145, 20X146, 20X147, Ch. 20 Y1; 4L1, Radio Ch.	4-38	P	2	1
24A12, 24A125, Ch. 20A1	4-1	P	2	1
24A125AN, Ch. 20X1; 4L1, Radio Ch.	4-38	P	2	1
24C15, 24C16, Ch. 20B1	4-1	P	2	1
24X15, 24X15S, 24X16, 24X16S, 24X17S, Ch. 20X1; 4Ll, Radio Ch.	4-38	P	2	1
25Al5, 25Al6, 25Al7, Ch. 21Al	4-1	P	2	1
26X35, 26X36, 26X37, Ch. 24D1; 29X16, 29X17, Ch. 24F1	4-1	P	3	2
$30 \mathrm{Al2}, \mathrm{30A12N} 30 \mathrm{Al} 12 \mathrm{~S},, 30 \mathrm{Al2SN}$,	3-17	P	5	3


30 A 15	$1-1$	$\mathbf{P}$	5	3
30A15, 30A15N, 30A15S, 30A15SA,   30A15SN, 30A15T, 30A15TN, 30A15UL,	$3-17$	$\mathbf{P}$	5	3
Ch. 30A1, 30B1, 30C1, 30D1; 4H1,   Radio Ch.				

Radio Ch.

30 Al 6	1-1	P	5	3
$30 \mathrm{~A} 16,30 \mathrm{~A} 16 \mathrm{~N}, 30 \mathrm{~A} 16 \mathrm{~S}, 30 \mathrm{~A} 16 \mathrm{SN}$, 30A16T, 30A16TN, 30A16UL, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
$30 \mathrm{~B} 15 \mathrm{~S}, 30 \mathrm{~B} 15 \mathrm{SN}, 30 \mathrm{~B} 16 \mathrm{~S}, 30 \mathrm{~B} 16 \mathrm{SN}$, $30 \mathrm{~B} 17 \mathrm{~S}, 30 \mathrm{~B} 17 \mathrm{SN}, \mathrm{Ch} .30 \mathrm{~A} 1,30 \mathrm{~B} 1,30 \mathrm{C} 1$, 30D1; 4H1, Radio Ch.	3-17	P	5	3
$30 \mathrm{C} 15 \mathrm{~S}, 30 \mathrm{C} 15 \mathrm{SN}, 30 \mathrm{C} 16 \mathrm{~S}, 30 \mathrm{C} 16 \mathrm{SN}$, 30C17S, 30C17SN, Ch. 30A1, 30B1, 30C1. 30D1; 4H1, Radio Ch.	3-17	P	5	3
30F15, Ch. 20B1; 4J1, Radio Ch.	4-1	$\mathbf{P}$.	2	1
30F15A, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1
30F16, Ch. 20B1; 4J1, Radio Ch.	4-1	P	2	1

## ADMIRAL CORP. (Cont'd)

30F16A, Ch. 20B1; 4K1, Radio Ch.	$4-1$	$P$	2	1
30F17, Ch. 20B1; 4J1, Radio Ch.	$4-1$	$P$	2	1
30F17A, Ch. 20B1; 4K1, Radio Ch.	$4-1$	$P$	2	1
36X36, 36X37, Ch. 24E1; 39X16, 39X17,	$4-1$	P	3	2

AFFILIATED RETAILERS, INC.

AR-TV-10C, AR-TV-12X, AR-TV-12X	3-1	P	3	4
AR-23-TV-1	3-8	P	3	2
16CX, 816, 816CR	5-1	P	3	4
AIR KING PRODUCTS CO., INC.				
A-1000	2-1	P	3	5
A-1001-A, A-2000, A-2001, A-2002	3-1	P	2	1
12C1, 12T1, 12T2, Ch. 700	5-1	$\mathbf{P}$	2	1
16C1, Ch. 700-1	5-3	$\mathbf{P}$	3	2
16C2, Ch. 700-1	5-3	P	3	2
$16 \mathrm{Kl}, \mathrm{Ch} .700-2 ; 507$, Radio Ch.	5-3	P	3	2
16T1, Ch. 700-1	5-3	P	3	2
712, Ch. 700	5-1	P	2	1
718R, Ch. 700-1	5-3	P	3	2
$\frac{\text { ALLIED PURCHASING CORP. }}{\text { DIV. OF ALLIED STORES }}$				
G-16, V16, 616, 816, Same as Tele-King 616	5-1	P	3	4
910, Same as Tele-King 510	4-1	P	3	4
912, Same as Tele-King 512	3-1	P	3	4
1012, Same as Tele-King 612	3-1	P	3	4

## ALTEC LANSING CORP.

ALC201	$3-1$	$P$	4	6
$202 A$	$4-1$	$P$	3	2
205	$4-2$	$P$	3	2

ANDREA RADIO CORP.

BCO-VJ12-2, Ch. VJ12-2	$2-3$	P	5	3
BCO-VJ15, Ch. VJ15	$2-3$	P	5	3
BT-VK12, Ch. VK12	$2-8$	$P$	5	3
C-VJ12, CO-VJ12, Ch. VJ12, CO-VJ12-2,   Ch. VJ12-2	$2-3$	$P$	5	3
CO-VJ15, Ch. VJ15	$2-3$	$P$	5	3
CO-VK15, Corinthian; CO-VK16, Caronia; $2-8$   Ch. VK15-16	P	5	3	
CO-VK16 Late, Caronia, Ch. VK-19	$2-8$	$P$	5	3
CO-VK16'C", Dynasty, Ch. VK15-16	$2-8$	$P$	5	3

# RECEIVING TUBE SUBSTITUTION GUIDE 

Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.
ANDREA RADIO CORP. (Cont'd)				
CO-VK124, Edgemont, Ch. VKl24	2-8	P	5	3
CO-VK125, Ridgeway, Ch. VK12	2-8	P	5	3
CVK19, Normandy, Ch. VK-19	2-8	P	5	3
CVK-126, Gramercy, Ch. VK12	2-8	P	5	3
T-VJ12, Ch. VJ12	1-1	P	5	3
TVK12, Saratoga; TVK-127, Sharron; Ch. VK12	2-8	P	5	3


701	2-1	P	3	5
702, 113 AM-FM, Radio	2-2	P	3	5
717, 718, 725, Ch. P-101	4-1	P	3	5

## ASSOCIATED MERCHANTS CORP.

AM510, Same as Tele-King 510	$4-1$	$P$	3	4
AM712, Same as Tele-King 712	$4-1$	$P$	3	4

THE ASTATIC CORP.

AT-1, Booster	4-1	P	1
	ATWATER TELEVISION CO.		
135, 513	5-1	P	3


AR-TV-709	2-1	S-P	2	7
TV-12-49, TV-12-50	4-1	S-P	3	8
TV-16-49, TV-16-50, TV-16-51	3-1	P	3	2
TV-1205	5-5	S-P	3	8
TV-1205, Series B	5-1	P	1	
TV-1294	5-5	S-P	3	8
TV-1294, Series B	5-1	$\mathbf{P}$	1	
TV-1605, TV-1615	5-5	S-P	3	8
TV-1649, TV-1650, TV-1651, Series B	5-6	P	3	2
TV-1694	5-5	S-P	3	8
TV-5001	5-2	P	1	
TV-5006	5-2	P	1	
TV-5012	5-2	P	1	
TV-5061, TV-5077	5-2	P	1	
TV-5111	5-2	P	1	

BACE TELEVISION CORP.

$16 \mathrm{RCC}, 16 \mathrm{RCH}, 19 \mathrm{RCC}, 19 \mathrm{RCH}$	$4-1$	P	5	3
$150-\mathrm{D}$	$2-1$	P	5	185
160 C	$2-1$	P	3	5
$160-\mathrm{K}$	$2-1$	P	3	5


Model	Rider   Man.   Page	Type Cir.		Sch.
BACE TELEVISION CORP. (Cont'd)				
160 TM	2-1	P	3	5
190-K, 190-KFD, 190 KHD	2-1	P	3	5
BAGDAD TELEVISION CO., INC.				
19 Tube Set	2-1	P	2	1
BELL TELEVISION, INC.				
$\begin{aligned} & \text { 16DD, } 16 \mathrm{~T}, 16 \mathrm{TD}, 19 \mathrm{DD}, 19 \mathrm{~T}, 19 \mathrm{TD} \text {, } \\ & 1502,1503,2002,2003 \end{aligned}$	4-1	P	3	5
$\frac{\text { BELMONT RADIO CORP. }}{\text { (RAYTHEON) }}$				
Coronet	3-1	S-P	9	10
Observer	3-1	S-P	3	9
A-7DX22-P, Series A	4-1	S-P	3	9
A-10DX22, Observer; A-10DX24, Ch. A, B, C, D; Radio Ch.	3-1	S-P	6	10
B-10DX22, Ch. A, B, C, D; Radio Ch.	3-1	S-P	6	10
C-1102, Ch. 12 AX 22	4-6	P	2	1
C-1104B, Ch. $12 \mathrm{AX27}$	5-1	P	3	2
C-1401, Ch. 14AX21	5-9	P	3	2
C-1602, Ch. 16AX23, 16AX25, 16AX26	5-21	P	2	1
7DX21	2-6	S-P	3	9
7DX21, Series B	2-6	S-P	3	9
10AXF43, Ch. A, B, C, D; Radio Ch.	3-1	S-P	3	9
10DX21, Ch. A, B, C, D; Radio Ch.	2-1	S-P	6	10
$\begin{aligned} & \text { 10DX22, 10DX24, Coronet, Ch. A, B, C, } \\ & \text { D; Radio Ch. } \end{aligned}$	31-1	S-P	6	10
18DX21	2-6	S-P	3	9
18DX21A	2-6	S-P	3	9
21 A21	1-1	P	2	1
22A21, 22AX21, 22AX22	1-25	P	2	1
BENDIX RADIO DIV.				
235 B1	2-1	P	2	1
235 B1, Codes A, B, C, D, E, F, G, H, I, J, K, L, M, MA, MB, MC, MD	3-1	P	2	1
23M1	2-1	P	2	1
325M8, Codes A, B, C, D, E, F, G, H, I, J, K, L, M, MA, MB, MC, MD	3-1	P	2	1
2001, 2002, 2020, 2021; 2000 Series	3-21	P	3	2
2025	4-1	P	3	2
2051	5-1	P	3	2
3001, 3002, 3030, 3031; 3000 Series	3-21	P	3	2
3033	4-1	P	3	2

## RECEIVING TUBE SUBSTITUTION GUIDE




Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.	Model	Rider   Man.   Page	Type Cir.	No. of Chains	Sch.
GAMBLE-SKOGMO, INC.					GAROD RADIO CORP. (Cont'd)				
FA43-8965A, FA43-8965B	3-1	S-P	3	9	2043 T	4-10	P	3	4
FA43-8966	4-1	S-P	6	10	2546 T	4-10	P	3	4
TV43-8908	4-15	P	3	2	2547 T	4-10	P	3	4
TV43-8960	3-10	P	3	2	2548 T	4-10	P	3	4
94TV1-43-8940A	4-21	P	2	1	2549 T	4-10	P	3	4
94TV2-43-8970A, 94TV2-43-8971A	3-17	P	4	6	3912TVFMP; 11 FMT, Radio	1-1	P	4	6
94TV6-43-8953A	5-9	P	3	2	3915 TVFMP; 9FMT, Radio	2-12	P	4	6
GAROD RADIO CORP.					GENERAL ELECTRIC CO.				
10 TZ 20 , Ambassador: 10 TZ 21, Malibu; 10TZ22, Monticello: 10 TZ 23 , Catalina	4-5	P	4	6	HM-171	1-1	P	3	2
					HM-185	1-3	P	3	2
12TZ20, Belvedere; 12TZ21, Claridge; 12TZ22, Caronet: 12TZ23, Carlton	4-5	P	4	6	HM-225, HM-225B	1-14	P	2	1
15TZ24: 15TZ25, 15TZ26, $15 \mathrm{TZ27}$	4-5	P	4	6	HM-226B, HM-226-7A	1-14	P	2	1
19C6,	5-18	P	3	4	$10 \mathrm{C} 101,10 \mathrm{C} 102,10 \mathrm{TI}, 10 \mathrm{~T} 4,10 \mathrm{~T}, 10 \mathrm{~T} 6$	5-1	S-P	2	19
900 Serzes	2-1	P	4	6	12C101, 12C102, 12C105	5-25	S-P	2	19
1000	2-1	P	4	5	12C107, 12C108, 12C109	5-35	S-P	2	20
1042G	3-7	P	3	4	12C107, 12C108, 12C109, B Version	5-35	S-P	2	20
1042 T	4-10	$P$	3	4	12 Kl	5-12	S-P	2	19
1043G	3-7	P	3	4	12 TI	5-25	S-P	2	19
1043T	4-10	$P$	3	4	12T3, 12 T 4	5-35	S-P	2	20
1100	2-1	P	4	6	12T3, i2T4; B Version	5-35	S-P	2	20
1142	4-1	P	3	4	$800 \mathrm{~A}, 800 \mathrm{~B}, 800 \mathrm{C}, 800 \mathrm{D}$	4-1	S-P	2	18
1143	4-1	P	3	4	801, Early, Late	1-28	P	3	2
1200	2-1	P	4	6	802	1-52	$P$	4	6
1244 T	4-12	P	3	4	803	2-1	$P$	4	6
1245 T	4-10	P	3	4	805, Early, S, T, U, W, Versions	3-1	S-P	2	18
1344	4-1	$p$	3	4	806, 807, Early, S, T, U, W, Versions	3-1	S-P	2	18
1345	4-1	P	3	4	809, Early, S, T, U, W, Versions	3-1	S-P	2	18
1346 T	4-11	P	3	4	810	2-11	P	5	5
154*T	4-10	P	3	4	811	2-11	P	5	5
1542 T	4-10	P	3	4	814	2-22	P	5	5
1549 I	4-10	P	3	4	817, S, T, U, W, Versions	4-9	S-P	2	18
	4-1	P	3	4	818	4-24	S-P	2	18
	4-1	P	3	4	820	3-16	$P$	5	5
	4-1	P	3	4	$821, \mathrm{~S}, \mathrm{~T}, \mathrm{U}, \mathrm{W}$, Versions	4-9	S-P	2	18
	4-1	P	3	4	830, Early, R, T, Versions	3-31	P	5	5
	5-15	P	3	4	835, Eariy, R, Versions	3-45	P	4	5
	5-18	P	3	4	$840$	4-34	P	5	5
	4-15	$P$	3	4	901, Preliminary	1-73	P	5	3

## RECEIVING TUBE SUBSTITUTION GUIDE



## RECEIVING TUBE SUBSTITUTION GUIDE



# RECEIVING TUBE SUBSTITUTION GUIDE 

Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.	Model	Rider   Man.   Page	Type Cir.	No. of Chains	Sch.
MOTOROLA INC					$\frac{\text { NORTH AMERICAN PHILLIPS CO., INC. }}{\text { (NORELCO) }}$				
$12 \mathrm{VF} 26 \mathrm{~B}, 12 \mathrm{VF} 26 \mathrm{~B}-\mathrm{C}, 12 \mathrm{VF} 26 \mathrm{~K}$, 12VF26R-C, Ch. TS-23A, TS-23B		$P$	3	4	160, Protelgram	3-1	P		
$12 \mathrm{VK} 11,12 \mathrm{VK} 11 \mathrm{~B}, 12 \mathrm{VK} 11 \mathrm{R}$, Ch. TS-23, TS-23A, TS-23B	4-19	P	3	4	OL YMPIC RADIO \& TELEV. INC.				
$12 \mathrm{VK} 15 \mathrm{~B}, 12 \mathrm{VK} 15 \mathrm{R}, \mathrm{Ch} . \mathrm{TS}-30, \mathrm{TS}-30 \mathrm{~A}$	5-8	P	3	4	DX-214, DX-215, DX-216, Serial No. H-200,001 to H-205,000	4-1	P		
$12 \mathrm{VT} 13,12 \mathrm{VT} 13 \mathrm{~B}, 12 \mathrm{VT} 13 \mathrm{R}$, Ch. TS-23, TS-23A, TS-23B	4-19	$\mathbf{P}$	3	4	$\begin{aligned} & \text { DX-619, DX-620, DX-621, DX-622, } \\ & \text { DX-931, DX-932, DX-950 } \end{aligned}$	5-1	P		
$16 \mathrm{~K} 2 \mathrm{~L}, 16 \mathrm{~K} 2 \mathrm{LB}$, Ch. TS-52	4-19	P	3	4		3-1			
16VK1B, $16 \mathrm{VK1R}$, Ch. TS-52	4-19	P	3	4	TV-104, Cruzair; TV-105, TV-106, Challenger; TV-107, Pacemaker; TV-108, DeLuxe Ten		P		
$16 \mathrm{VK} 7 \mathrm{~B}, 16 \mathrm{VK} 7 \mathrm{R}, \mathrm{Ch}$. TS-16, TS-16A	4-30	P	3	4					
					TV-922	2-1	P		
19F1, 19F1B, 19K1, Ch. TS-67, TS-67A	5-22	P	3	4	TV-922L, DeLuxe Ten	3-1	P	3	2
MULTIPLE TELEV. M	FG. CO				TV-928	2-1	P	4	6
M-1500, M-2000	2-1	P	4	5	TV-944, Beverly; TV-945, Plaza; TV-946, Champion	3-1	P	3	
MR-1500, MR-2000	2-2	$\mathbf{P}$	4	5	TV-947, Baronet; TV-949, TV-950	3-11	P	3	2
MT-1250	2-1	P	4	5	XL-210, XL-211, XL-612, XL-613	5-8	P	3	4
MUNTZ T-V, INC.					PACKARD-BELL CO.				
M-12, Ch. M-158	3-1	P	3	4	1091, Ch. 3091; 1080, Radio Ch.		$P$	3	5
M-20, M-21, M-22, Ch. M-159-A						4-1			
	3-2	P	3	4	001-TV, 2002-TV		P	3	4
M30, Ch. TV16A1; M31, Ch. TV16A2; M31R, M32, Ch. TV16A3	5-1	P	3	4	$2091 \text {-TV, 2092-TV }$	5-3	P	3	4
M-159, Ch.	4-1	$\boldsymbol{P}$	3	4	```2291TV, 2292TV, 2293TV, 2294TV, 2295TV, 2296TV```	4-10	P	3	4
M-159-B, Ch.	3-3	P	3	4	2297-TV, DeLuxe, Standard; 2298-TV	4-16	P	3	4
M-169, Ch.	3-4	P	3	4	$2601-\mathrm{TV}, 2692-\mathrm{TV}$	5-9	P	3	5
M-169, Ch., Revised	4-2	P	3	4		4-5	P	3	
					2981, Ch.				5
NATIONAL CO. ${ }^{\text {INC. }}$				23	2991-TV	4-20	P	3	5
NC-TV-7, NC-TV-7M, NC-TV-7W;   1st Revision   2nd Revision	$\begin{aligned} & 2-1 \\ & 3-1 \\ & 3-3 \end{aligned}$	S-P	2		$3191 \mathrm{TV}, 3192 \mathrm{TV}$	4-2i	P	3	5
		S-P	2	$\begin{aligned} & 23 \\ & 6 \end{aligned}$			P	3	5
		P			3193TV, 3194TV; 10520, R-F Tuner	3-1			
NC-TV-10C	4-1	P	4	6	3381 TV	3-4	P	3	5
NC-TV-10T	4-1	P	4	6	4580 TV	3-12	$\mathbf{P}$	5	1 \& 5
TV-1001, TV-1025	4-1	P	4	6	4691-TV	4-23	P	5	1 \& 5
TV-1201	5-3	P	4	6	10527, R-F Tuner	3-23	P	1	
TV-1226, TV-1601, TV-1625	5-3	P	4	6	PATHE TELEVISION CORP.				
NEW ENGLAND TELE	v. CO.				12-2, Ch. 700	5-4	P	2	1
Custom Console THE NIELSEN TELE	2-1 CORP	P	4	6	$16-21,16-22,16-23,16-24,16-25$   Ch. 700-1	5-9	P	3	2
1018	2-1	P	3	5	PHILCO CORP.				
1618	4-1	$\mathbf{P}$	. ${ }^{3}$	5	$\begin{aligned} & \text { 48-700 } \\ & \text { 48-1000, 48-1000-5, Code 125; } \\ & \text { Code 122 } \\ & \text { Code } 121 \end{aligned}$	2-1	P	3	2
						1-1	P	3	4
NORELCO						2-20	P	3	4
See NORTH AMERICAN PHIL	IPS CO	., INC				2-37	P	3	4

## RECEIVING TUBE SUBSTITUTION GUIDE

Model	Rider Man.   Page	Type Cir.	No. of Chains	Sch.	Model	Rider Man.   Page	Type Cir.	No. of Chains	Sch.
PHILCO CORP. (Cont'd)					PILOT RADIO CORP. (Cont'd)				
48-1001, Code 121	1-17	P	3	4	TV-37U	2-1	S-P	2	27
48-1001, Code 122	1-17	P	3	4	TV-40, TV-42	2-8	P	5	5
48-2500, Code 122; 48-2500, 48-2500-5	1-23	P	3	4	TV-44 Series, TV-46, TV-47	3-1	P	3	5
49-1002	2-70	P	3	2	TV-120 Series, TV-121	3-10	P	3	2
49-1040, Code 121	3-1	P	3	2	TV-125	5-1	$\mathbf{P}$	3	2
49-1040, Code 123	4-3	P	3	2	TV-161	5-1	P	4	6
49-1075	2-70	S, P	4	12	TV-950, TV-952	2-8	P	5	5
49-1075, 49-1076, Code 122	4-25	S, P	4	12	See INTERSTATE SLTORES BUYING CORP.				
49-1076, Code 123; 49-1077, Code 122	4-3	S, P	4	12	RADIO CORP. OF AMERICA				
49-1150, Codes 121A, 121B, 122A, 122B	3-4	P	3	2	(RCA)				
49-1150, Codes 123A, 123B, 124A, 124B	3-19	$\mathbf{P}$	3	2	S1000, Ch. KCS31-1; RC617B, Radio Ch.	5-48	P	3	2
49-1175, Codes 121A, 121B, 122A, 122B	3-4	S, P	4	12	T100, Ch. KCS38	5-65	P	3	2
49-1175, Codes 123A, 123B, 124A, 124B	3-19	S, P	4	12	T120, Ch. KCS34C	5-80	P	3	2
49-1240	2-70	P	3	2	T121, Ch. KCs34C	5-95	P	3	2
49-1240, Code 123	4-25	$\mathbf{P}$	3	2	TRK-5, Ch. KC-3A; RC-429, Radio Ch.	1-1	P	4	5
49-1240, Code 124	4-3	P	3	2	TRK-9, Ch. KC-4A, KC-4C; RC-427A, Radio Ch.	1-14	P	5	5
49-1275	2-70	S, P	4	12					
49-1278, Code 122	4-25	S, P	4	12	TRK-12, Ch. KC-4, KC-4B; RC-427, Radio Ch.	1-14	$\mathbf{P}$	5	5
$\begin{aligned} & \text { 49-1278, Code 123, 49-1279, Code 122; } \\ & \text { 49-1280, Code 121 } \end{aligned}$	4-3	S, P	4	12	TRK-90, Ch. KC-4H; RC-427G, Radio Ch.	1-14	P	5	5
49-1450, Codes 121A, 121B	3-4	P	2	1	$\begin{aligned} & \text { TRK-120, Ch. KC-4F, KC-4J; } \\ & \text { RC-427F, Radio Ch. } \end{aligned}$	1-14	P	5	5
49-1450, Codes 123A, 123B	3-19	P	2	1	TT-5, Ch. KC-3	1-1	P	4	5
49-1450, Codes 123TA, 123 TB	3-23	P	2	1	8PCS41, 8PCS41-B, 8PCS41-C,   Ch. KCS-24B-1, KCS-24C-1	2-1	P	7	$2 \% 6$
49-1475, Codes 121A, 121B	3-4	S, P	4	12					
					8T241, 8T243, 8T244, Ch. KCS-28	3-1	P	3	2
49-1475, Codes 123A, 123B	3-19	S, P	4	12	8T270, Ch. KCS-29; 8TC270, 8 TC271,	3-15	$\mathbf{P}$	3	2
49-1475, Codes 123TA, 123TB	3-23	S, P	4	12	Ch. KCS-29A				
49-1480, Codes 121A, 121B	3-4	S, P	4	12	8TK29, Ch. KCS-32A, KCS-32C; RK-135, RK-135A, Radio Ch.	3-29	P	4	3
49-1480, Codes 123A, 123B	3-19	S, P	4	12					
49-1480, Codes 123TA, 123 TB	3-23	S, P	4	12	8TK320, Ch. KCS33A-1; RK135A-1, Radio Ch.	4-1	$\mathbf{P}$	4	3
50-T1104, Code 123	4-27	P	3	4	8TR29, Ch. KCS-32, KCS-32B; RK-135, RK-135A, Radio Ch.	3-29	P	4	3
50-T1105, 50-T1106	5-1	P	3	4					
					8TS30, Ch. KCS-20J-1, KCS-20K-2	2-11	P	3	5
50-T1400, 50-T1402, 50-T1404	4-27	P	3	4					
50-T1600, 50-T1632, 50-T1633, Code 121	5-17	P	3	4	8TV41, Ch. KCS-25D-1, KCS-25E-2; RK-117A, Radio Ch.	2-26	P	3	5
PHILHARMONIC RADIO TV-1049, TV-1249	$\mathrm{CORP}_{2-1}$	P	4	6	8TV321, 8TV323, Ch. KCS-30-1; RC-616B, RC-616C, RC-616J, RC-616K, Radio Ch.	3-43	P	3	2
PHILMORE MFG. CO	, INC.				9PC41, Ch. KCS24C-1, KCS24D *	4-16	$p$	7	2*6
P30	2-1	$\mathbf{P}$	3	5	9T240, Ch. KCS28; 9 T240K, Ch. KCS28A	4-26	P	3	2
PILOT RADIO CORP.					9T246, Ch. KCS28C, KCS38	4-41	P	3	2
TV-37	2-1	S-P	2	27	9T256, Ch. KCS38C	5-1	P	3	2

## RECEIVING TUBE SUBSTITUTION GUIDE

Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.	Model	Rider   Man.   Page	Type Cir.	No. of Chains	Sch.
RADIO CORP. OF AMERICA (Cont'd)					$\frac{\text { REEVES-SOUNDCRAFT CORP. }}{\text { (VIDEON) }}$				
9T270, Ch. KCS-29, KCS-29C	3-61	P	3	2					
					AR-100	3-1	P	10	$4,5 \& 6$
9TC240, Ch. KCS28B	4-26	P	3	2					
					REGAL ELECTRONICS CORP.				
9TC245, Ch. KCS34B; 9TC247, 9TC249, Ch. KCS34, KCS34B	4-58	P	3	2	CD31, CD36	3-1	P	3	5
9TC272, 9TC275, Ch. KCS-29, KCS-29C	3-61	P	3	2	TV-1030	2-1	P	3	5
9TW309, Ch. KCS41-1; RK135C, Radio Ch	.5-16	P	4	6	TV-1031	2-1	P	3	5
9TW333, Ch. KCS30-1; RC-616N, Radio Ch.	4-73	P	3	2	16 T 31	3-1	P	3	5
					$16^{\prime}$ '36	3-2	P	3	5
9TW390, Ch. KCS31-1; RC617A, Radio Ch.	5-32	$\mathbf{P}$	3	2	1007, 1207, 1208	3-4	P	4	3
621 TS, Ch. KCS-21-1	1-44	$\mathbf{P}$	4	6	1230	3-6	P	3	5
630TS, Ch. KCS-20A, KCS-20C-2	1-76	$\mathbf{P}$	3	5	1607	3-7	P	4	3
$641 \mathrm{TV}, \mathrm{Ch} . \mathrm{KCS}-25 \mathrm{~A}-1, \mathrm{KCS}-25 \mathrm{C}-2$; RK-117A, Radio Ch.	1-117	P	3	5	See REMINGTON RADIO CORP.				
$\begin{aligned} & \text { 648PTK, Ch. KCS-24-1; RK-121A, } \\ & \text { Radio Ch. } \end{aligned}$	1-174	P	5	3	$\frac{\text { REMINGTON RADIO CORP. }}{\text { (REMBRANDT) }}$				
648PV, Ch. KCS-24A-1; RK-121A, Radio Ch.	1-174	P	5	3	Night Watch, Remington	4-1	$\mathbf{P}$	2	1
					80, 130	1-1	P	5	3
721 TCS, Ch. KCS-26A-1, KCS-26A-2	1-232	P	3	2					
					721, 1606, 1606-15	4-1	P	2	1
721 TS, Ch. KCS-26-1, KCS-26-2	1-232	P	3	2					
					1950	2-1	P	2	1
730TV1, Ch. KCS-27-1; RC-610A, Radio Ch.	1-255	P	4	6	1950, Revised	4-1	P	2	1
730TV2, Ch. KCS-27-1; RC-610B, Radio Ch.	1-255	P	4	6	REPUBLIC TELEVISION INC.				
					TL-10	1-1	P	3	2
741 PCS, Ch. KCS-24B-1	2-47	P	7	$2 \& 6$					
					SARKES TARZIAN				
RADIO CRAFTSMEN, INC.					TT2	4-1	P	1	
RC100	4-1	$\mathbf{P}$	2	1	TT3	4-3	P	1	
RADIO MERCHANDISE SALES, INC.					SCOTT RADIO LABS., INC.				
SP-2, Antenna Booster	3-1	P	1		6-T-11	2-1	P	4	6
SP-4, Preamplifier	4-1	P	1		13-A	1-1	P	4	5
$\frac{\text { RADIO \& TELEVISION INC. }}{\text { (BRUNSWICK) }}$					SEARS, ROEBUCK \& CO.				
C-8125, C-8165	4-1	P	3	4	101, Ch. 549.100	5-1	P	3	2
55B, $55 \mathrm{M}, 55 \mathrm{R}, 5 \mathrm{~W}, \mathrm{Ch} .66 \mathrm{Z}$, Canton	2-1	S, P	4	28	112, Ch. 478.289	5-9	$\mathbf{P}$	4	5
506-B, Ch. 66Z, Tibet; L-14, Radio	2-1	S, P	4	28	125, Ch. 478.257	4-1	P	4	6
512, 513	4-1	P	3	4	8132, Ch. 101.854	3-12	P	3	2
702L; 711, Club; Ch. 66Z	2-1	S, P	4	28	8133, Ch. 101.846; 101.829-1, Radio Ch.	2-1	P	3	2
812, 816	4-1	P	3	4	9119, 9120, Ch. 101.865	3-23	P	3	2
911, 922B, 922M	3-1	P	3	5	9120A, Ch. 101.865-1;				
5125, 6165	4-1	P	3	4	9120B, Ch. 101.865-2	4-37	$\boldsymbol{P}$	2	1
					9121, Ch. 101.867	4-10	P	2	1
See BELMONT RADIO	CORP.				9122, Ch. 101.864	3-12	P	3	2

## receiving tube substitution guide



## RECEIVING TUBE SUBSTITUTION GUIDE

Model	Rider Man.   Page	Type Cir.	No. of Chains	Sch.	Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.
STEWART-WARNER ELECTRIC					TECH-MASTER PRODUCTS CO. (Cont'd)				
DIV. OFSTEWART-WARNER CORP.									
					AGC Kit	4-1	P	1	
AVC1, Code 9054B; AVC2, Code 9054-C	3-15	S-P	6	30					
AVC3, Code 9054-B; AVT1, Code 9054-A					BC 1223, Blue Ribbon	4-2	P	3	2
					TVB, Booster Kit	4-6	P	1.	
T-711, Code 9031-A; T-711M,	2-1	$\mathbf{P}$	3	2					
Code 9031-AM; T-712, Code 9031-B; TRC-721, Code 9037-A					16CK, Conversion Kit	4-8	P	1	
					630 TK , Same as RCA 630 TS	1-76	P	1	
$9100-\mathrm{A}, 9100-\mathrm{B}, 9100-\mathrm{C}, 9100-\mathrm{D}$,	3-1	S-P	5	29					
$9100-\mathrm{E}, 9100-\mathrm{F}, 9100-\mathrm{G}, 9100-\mathrm{H}$					930, 1230	3-1	P	3	5
9103-B, 9103-C, 9103-E	4-1	P	2	1	1530, 1630, 1631, 2031	3-2	P	3	5
9104-A, 9104-B, 9104-C	4-22	$\mathbf{P}$	2	1	TELECOIN CORP.				
9106-A, 9106-B	5-1	$\mathbf{P}$	2	1	(TELE-VID				
9108-A, 9108-B	5-15	P	2	1	AR-100, Same as Reeves-Soundcraft AR-100	3-1	P	10	4,5\&6

## STOLLE ENGINEERING \& MFG. CO.

Magic Lantern	$3-1$	$P$	3	4
$4830-12$	$3-2$	$P$	3	5

STROMBERG-CARLSON CO.

TC-10, Manhattan	$4-1$	$P$	2	1
TC-19, TC-19 Rev., TC-19-M5M	$5-1$	$P$	4	5
TC-125	$4-5$	$P$	2	1
TS-15, TS-16, TS-125, Series	$3-1$	$P$	4	5
TV-10L, Ch. 112020, Series 10	$1-1$	$P$	7	$4 \& 6$
TV-10L, Ch. 112020, Series 11	$1-1$	$P$	7	$4 \& 6$
TV-10LW, Ch. 112020, Series 10	$1-1$	$P$	7	$4 \& 6$
TV-10LW, Ch. 112020, Series 11	$1-1$	$P$	7	$4 \& 6$
TV-10PM, Ch. 112025, Series 11;	$1-1$	$P$	7	$4 \& 6$
1220, Ch. 112022, Radio				
TV-10PY, Ch. 112025, Series 11;	$1-1$	$P$	7	$4 \& 6$
1220, Ch. 112022, Radio				
TV-12H1M, TV-12H2A, TV-12H2M,	$1-17$	$P$	3	2

SYLVANIA ELECTRIC PRODUCTS INC.

$1-075$, Ch. 1-139	$4-1$	$P$	2	1
$1-076$, Ch. 1-108	$5-1$	$P$	2	1
$1-090$, Ch. 1-168	$4-16$	$P$	2	1
$1-113,1-114,1-124,1-125$, Ch. 1-139	$4-1$	$P$	2	1
$1-128$, Ch. 1-108	$5-1$	$P$	2	1
$1-177$, Ch. 1-186	$4-14$	$P$	2	1
$1-210$, Ch. 1-139	$4-1$	$P$	2	1

TELECRAFT CORP.
15-Inch Set, See RCA 8TS30 $\quad 2-11 \quad P \quad 3 \quad 5$
TELE-KING CORP.

210,310	$2-1$	$P$	5	3
410	$3-1$	$P$	3	4
416	$5-1$	$P$	3	4
510	$4-1$	$P$	3	4
512	$3-1$	$P$	3	4
612	$3-1$	$P$	3	4
612, Revised	$4-1$	$P$	3	4
616	$5-1$	$P$	3	4
710	$3-1$	$P$	3	4
712	$4-1$	$P$	3	4
716	$5-1$	$P$	3	4
816	$5-1$	$P$	3	4

See ELECTRO-TECHNICAL INDUSTRIES

TELE-TONE RADIO CORP.

7-Inch AC-DC	$2-1$	$\mathrm{~S}-\mathrm{P}$	3	31
TV-149	$2-2$	$\mathrm{~S}-\mathrm{P}$	3	32
TV-208TR	$3-1$	$\mathrm{~S}-\mathrm{P}$	3	17
TV-249	$2-7$	P	4	6
TV-254TR, Ch. TK	$4-1$	P	2	1
TV-255, TV-256, Ch. TS	$4-6$	P	3	2
TV-284, Ch. TJ	$4-12$	P	4	5
TV-284 up to Serial \#C12-127, Ch. TH,	$5-2$	$P$	4	5
TJ				
TV-286, Ch. TJ	$4-12$	$P$	4	5

## RECEIVING TUBE SUBSTITUTION GUIDE



## RECEIVING TUBE SUBSTITUTION GUIDE



## RECEIVING TUBE SUBSTITUTION GUIDE



## WILCOX-GAY CORP. (Cont'd)

OL Series, Serial Nos.Below 26,000	$5-22$	P	3	2
9V Series	$4-1$	$P$	2	1
9W Series	$4-12$	S,P	2	34

ZENITH RADIO CORP.


FILAMENT SCHEMATICS



ALC FILAMENTS SHOWN ABOVE DERIVE THEIR INPUT FROM POWER TRANSFORMERS

RECEIVING TUBE SUBSTITUTION GUIDE


No	TYPE	FUNCTION	NO	TYPE	FUNCTION	No	TYPE
V1	6AU6	RF AMP.	V12	6at6	AUDIO AMP.	V1	6AG5
V2	6ag5	MIXER	V13	2516	AUDIO OUTPUT	V2	6.96
$v 3$	6.56	RF OSC.	Vl 4	12SN7	HORIZ. OSC.	$\nabla 3$	6au6
v4	6ac6	1ST. IF AMP.	V15	12SN7	HORIZ. OUTPIST	$V_{4}$	6AU6
$v 5$	6av6	2ND. IF AMP.	$v 16$	12SN7	VERT. OSC.	V5	6aUb
v6	6av6	3RD. IF AMP.	V17	12SN7	VERT. OLTPIT	V6	GADG
V7	OAL5	VIDEO 2ND. DETECTOR	V18	2520	L.V.RECTIFIER	V7	6AL5
v8	GAU6	VIDEO AMP.	V19	$6 \times 5$	L.V.RECTIFIER	V8	12 AU 7
V9	6av6	VIDEO OUTPLTT	V20	12SN7	fi.v. OSC.	V9	6au6
V10	bavo	RATIC DETECTOR DRIVER	v22	7JP4	PICTURE TUBE	V10	6AL5
V11	6AL5	RATIO DETECTOR					



## RECEIVING TUBE SUBSTITUTION GUIDE


(10)


RECEIVANG TUBE SUBSTITUTION GUIDE

receiving tube substitution guide


RECEIVING TUBE SUBSTITUTION GUIDE



## RECEIVING TUBE SUBSTITUTION GUIDE



	Iuge	Function
$v 1$	6AU6	R.F. Mmplifier
$v z$	6agS	Mixer
$\checkmark 3$	6 CH	Local oscillator
va	6 AU6	First vioce I.f. maplifier
vs	6 AU6	Second video I.f. Anplipier
vos	64.46	Third video I.F. Amplifier
V7	6als	video detector-mutomatic Gain Control
vo	6auc	videc amplifier
V14	sau6	Sync Clipper-D.C. Westorer
v9	gave	4.5 Mc. Retio Detector oriver
V10	6als	Ratio Detector
V18	6at6	Audio mplifier
V19	25L6GT/G	audio Output
Vi3	12SM76T	vertical sweep Generator
V12	12Sm7GT	vertical swoep output
vis	12SMTGT	Horizontal smeop cenerator
V14	$125176 T$	Horizontal smeep output
$v 20$	$12 \mathrm{AU7}$	R.F. High voltage oscillator
$v 21$	18361/8016	High voltage mectifier
$\checkmark 16$	2526GT/G	Low voltage Doubler-D Minus voltage Rectifier
v17	6×56T/G	Voltage Multiplier
$\checkmark 22$	TJP:	Picture Tube



## RECEIVING TUBE SUBSTITUTION GUIDE



NOTE:
MODEL 506.0 (TIOET) PAOVO CAPSSIS FILANENTS APE IN APARALCLC APRANGEMFNT.

PICTURE TUPE
RATIO DET.
AUDIO AMP.
AUDIO OUT:
1ST. VIDEO
1ST. VIDEO IF
2ND
2ND. VIDEO IF
3RD. VIDEO
3RD. VIDEO
VIDEO DET.
VIDEO AMP.
VIDEO AMP. AND DC REST.
SYNC. SEP. AND DC REST.
SYNC. AMP. AND HOR. OSC
HOR. SYNC. DISCR.
HOR. OSC. AND DISCH.
HOR. OUT.
ERT. OSC.
VERT, AMP.
RF AMP.
CONVERTER
CONVERT
RF OSC.
$\mathrm{H} . \mathrm{V}$. osc.


## RECEIVING TUBE SUBSTITUTION GUIDE



## SECTION 4

## SERVICING SUGGESTIONS

## Suggestions For Making Adapters

When they are available, the manufacturer's bases and sockets are the thing to use in making adapters but, when this material is not to be had, we have found the following methods very practical.

There is a molded octal socket sold everywhere, which, with the tinned metal mounting removed, fits into the top of a bakelite octal tube base as if made for the purpose. No. 24 or 26 wires are soldered to the socket and pulled down through the tube base pins, soldered and cut off. Bits of spaghetti should be used to avoid shorts. In the case of 12 K 7 and other tubes with top caps,a hole is drilled in the side of the base opposite the grid pin. A flexible wire with grid clip is brought out through this hole to connect the top cap. In case of substituting a loctal for an octal such as the 1 LA6 for 1A7 the grid lead from tube socket is brought out through this hole to connect the top cap.

In case of substituting a loctal for an octal such as the 1LA6 for $1 A 7$, the grid lead from the tube socket is brought out through the side of the base and an old tube cap soldered on. Always select bakelite bases with eight pins. Most octal tubes have only 7 pins or less, but pin 6 is needed in most adapters.

Another, and we believe, better way to make adapters is to remove the 8 pin wafers from the bases of metal tubes. Use No. 18 tinned wire soldering them in the pins first, preferably by dipping, then bend each one so that it will meet the terminal lug on whatever kind of socket is necessary. All of the socket terminal lugs sit down on the bakelite ridge around the wafer and the wires hold them firmly in place.

If 1 R5 tubes are comparatively plentiful and 1A7's are impossible to secure, an adapter can be made easily and quickly as follows:

Select an 8 pin octal base with metal band. With the pliers remove the metal, leaving the bottom wafer and pins. Cut 5 pieces of No. 18 tinned wire $11 / 4$ inches long, dropping them down into pins $2,3,5,6$, and 7 , bending them over enough to avoid their falling through and then solder the ends. Put a piece of spaghetti $3 / 8$ inch long on the wire from pin 6 and bend it flat down on the wafer and across to the pin 3, then straight up. Push the wires through holes in miniature socket lugs as shown in substitution data, bend wires outward and down, then cut off close, clinch with pliers and solder. This makes a rugged adapter with very little danger of shorts. The same procedure is followed in making an adapter to use a 1 T 4 in place of a 1 N 5 . An 8 pin wafer from the base of a metal tube also makes a good adapter.

Adapters are best soldered by dipping. Melt enough solder in a very small pan or tin can lid over an electric or gas hot plate to just touch the ends of the pins on an octal
base when the guide pin is on the bottom. Use a quarterinch dowel pin or piece of shaft, pushing it down inside the guide pin so that it can be used as a handle. Dip the pins for 3 or 4 seconds then lift it out and dip the ends of the pins in water to cool them quickly. This is very much faster and better than doing it one pin at a time with a soldering iron.

To Repair the Filaments in 150 Ma Tubes
(For Emergency Use Only)
Many $150-$ ma heater tubes can be made to give additional service after they have been burned out, that is, after the filament is open. The necessary parts are: a power transformer with a $50-\mathrm{ma}$ secondary that will deliver 750 volts across the high-voltage winding, seven octal sockets, two loctal sockets, and a chassis pan with room enough to mount them. The connections are very simple, as illustrated in the diagram of Fig. 4-1, and require less than two hours to assemble.


NOTE
BOTTOM VIEW OF SOCKETS ARE SHOWN
FIG. 4-1. Illustrating the setup for filament repair.

We have found by experience that putting the push button in the primary side of the transformer, in addition to protecting the operator from shocks, causes a hotter starting arc to weld the broken filament. The six sockets connected in series are for testing the repaired tubes. Put enough tubes in series to make as close as possible to 115 volts and short the filament connections on the remaining sockets that are left empty. Number 3 octal socket is for a 12SQ7, $6 S Q 7$, and a few other types which have their heater connections on pins 7 and 8.

The operation is as follows. Insert the line plug, turn on the switch, and place the tube to be repaired in the proper socket. A low-wattage lamp drawing. current from the same electric circuit should be in front of the operator. Press the button quickly, making as shor t a contact as possible. If the lamp dims, you have welded the ends of the
heater together. If they are not welded, press the button several more times, while snapping at the tube with the fingers of the other hand. If this does not weld the filaments, allow three seconds to elapse when working with metal tubes and then push the button again. Repeat this, then wait ten seconds and press for the last time. The switch contact should be as short as possible each time.

For 6- and 12-volt glass tubes, the same procedure is employed except that you must observe the tube and continue to press the button at intervals until the filament shows light. For higher voltage tubes such as 50L6, 35L6, 35A5, etc. the button must be held down slightly longer. Success has been obtained in repairing about forty percent of burned out $150-$ ma heater tubes which include 12SA7, 12SK7, 12SQ7, $50 \mathrm{~L} 6,35 \mathrm{Z5}$, and almost all other $12-, 14-, 35-$, and 50 -volt heater tubes. The filaments of tubes having current ratings of less than 150 ma will be completely destroyed when burned in this apparatus, and tubes with high current ratings will overload the transformer severely, although in some cases a repair can be made. If the results are not satisfactory, try using a different transformer. Our experience shows, however, that a 750 -volt secondary is the most satisfactory.

We have had many inquiries about the low-wattage lamp mentioned above. This lamp should be not larger than 40 watts and does not have to be connected to the apparatus. It may be the light in the shop where you are working and serves only to show you when the current has welded the ends of the broken filament in a metal tube. When the high voltage passes through the filament, there is a surge of current lasting only a very small fraction of a second. The transformer draws a rather large amount of current from the electric light line, pulling the voltage down and causing the light to blink or flicker. It is not needed in the case of glass tubes since you are able to see when the filament lights.

The average life of repaired tubes is short. We describe this process for use only in case of emergency and in no case recommend the use of a repaired tube when a new one is available. Even when the tube is not available, a repaired tube should be burned for at least one hour before putting it in a customer's radio.

## 35Z5 Tubes

Possibly most service men know this, but it will bear repeating for the benefit of those who do not. The $35 \mathrm{Z5}$ filament is between pins 2 and 7 with a tap brought out to pin 3. This tap is about 5 volts, from pins 2 to 3 and provides current for the pilot light. Operating the radio with burned out pilot light causes this section to burn out and breaks the filament circuit. Pins 2 and 3 may be shorted together so as to use the remaining 30 -volt filament and the tube may still give long service. Check every burned out 35Z5, and if there is continuity between pins 3 and 7 , the tube is still usable.

If it is necessary to use the pilot light, connect a 25- to 30 -ohm resistor from pins 3 to 2, either on the tube base (be careful that it does not short to metal chassis) or on the socket terminals, and the pilot light will light as usual.

## Substitution of Complete Sets of Tubes

Most of the popular $12-, 35-$, and 50 -volt tubes now in use are nearing the end of their lives. Often a customer comes in and pays for a substitute tube and the necessary rewiring job, only to be back again within a week or ten days with another "impossible to get" tube burned out. He may again go to considerable expense to replace that one and have the same thing happen again.

Since most of the 6- and 25 -volt, 0.3 -ampere tubes are comparatively plentiful, a complete changeover job is more practical and satisfactory. Replace 12 SA 7 with 6SA7, $12 S K 7$ with $6 \mathrm{SK} 7,12 \mathrm{SQ} 7$ with $6 \mathrm{SQ} 7,50 \mathrm{~L} 6$ or 35 L 6 or any of the other 25 -volt, 0.3 -ampere output tubes, and 25 Z 5 with 25Z6. The only necessary changes are in connection with the rectifier tube and replacement of the a-c line cord with a line resistor cord of 130 ohms. Red goes to the switch and black to pins 3 and 5 of the $35 Z 5$ socket after removing the pilot light wire from pin 3. Any wire on pin 4 is removed and taped up, 4 is connected to 8 , the line cord resistor and a 25 -ohm resistor are connected to the wire from pin 3 and the other end of resistor to pin 2.
Changing Battery-Operated Radios For Electric Operation
This is not a job for the novice, but any experienced radio serviceman can make the change with very satisfactory results if there is room on the chassis for an additional tube.

First find a location for the rectifier tube, drill a hole and mount the socket. Remove all battery wires. Connect one side of the line cord to pins 2, 3, and 5 of a 117 Z 6 socket; connect the other side of the cord to the A battery switch, ground the other side of the switch and also pin 7 of the 117 Z 6 .

From pins 4 and 8, the cathodes of the rectifier, connect a $1-\mathrm{w}, 1,500$-ohm resistor, R 1 , to the screen grid of the 3Q5 tube or whatever output tube is used. This is the filter resistor and must have a $20-\mathrm{mf}, 150$-volt capacitor, C 1 , from each end of the resistor to ground for 60 -cycle operation, or 40 mf for 25 -cycle operation.

It is quite likely that you will find one end of each tube filament connected to ground. All of these grounds must be removed and the filaments connected in series as shown in Fig. 4-2. The tubes indicated are for a typical battery-operated receiver. The capacitors and resistors connected to pins 2 and 7 may be left where they are, at least for the present. (We are using pin numbers of octal tubes. If the loctal series is used, the filament pins are usually 1 and 8 instead of 2 and 7. The loctal 1LA6 or 1 LC 6 is the equivalent of the octal 1A7, the loctal 1LN5 or 1 LH4 for the octal 1 H 5 , and the loctal 1LA4 or 1LB4 for the octal 1A5 or 1T5.) If there are more tubes than are shown in the diagram, connect their filaments between the 1N5 and the 1H5.


FIG. 4-2. Typical circuit arrangement for changing battery-operated radio to electric operation using a 117 Z 6 GT rectifier tube.

Connect a 2,500 -ohm resistor between the rectifier cathodes and one side of the filament of the output tube. This is the filament dropping resistor and has a filter capacitor of from 40 to 200 mf connected between its low

## RECEIVING TUBE SUBSTITUTION GUIDE

end and ground. This capacitor should be rated at 25 volts because if a tube burns out the voitage rises and might break down a 6- or 12 -volt rated capacitor. The filament dropping resistor should be 10 watts if mounted above the chassis and at least 20 watts if mounted underneath where it cannot radiate the heat so readily. There is a 2,200 -ohm, 16-w flexible resistor, that seems to be quite plentiful, rather low priced, and is very easy to mount since it is insulated.

Wire in the resistors R4 and R5 permanently, and R3 temporarily as it may have to be changed. If a 1 A5 or 1 T5 is used instead of the 3Q5 or 3B5, resistor R4 is omitted. The purpose of R4 and R5 is to bypass the current passed from plate to filament in the output tube and to avoid overloading the other filaments.

Now check the grid resistors. The resistor from the grid of the output tube should go directly to ground and each of the others to its own negative filament, pin 7. The lower end of the volume control is connected either directly or through a resistor to ground, or to a filament (which has been disconnected from ground). Leave it where it is for trial; however, if there is distortion, try returning it to the filament circuit between the 1A7 and 1 H5 for 1.4 -volt bias, or between the 1 H 5 and 1 N 5 for 2.8 -volt bias, leaving it wherever the tone is best.

Now make up a resistor to take the place of a set of tubes. The resistance of each 1.4 -volt filament is approximately 28 ohms, and for the set shown in Fig. 4-2 should be a total of 140 ohms. If it had a 1 A5 or 1 T5 in the output, the resistance would be 28 ohms less, or 112 ohms. If there should be an additional 1.4 -volt tube, it would be 28 ohms more, or 168 ohms. Connect this resistor from pin 2 of the output tube to ground. Put in the rectifier tube, connect the line cord of the set and then turn it on. The voltage across the resistor should be slightly less than 7
volts. If over 7 volts, replace resistor R3 with a lower value. If under 6.2 volts, replace $R 3$ with a higher value. If you have difficulty in getting the correct filament voltage, remember that increasing the capacitance of C1 at the rectifier increases the voltage, and if this capacitor does not have sufficient capacitance you cannot get the correct voltage.

When the voltage has been adjusted, remove resistor R3 and then insert the tubes. The bypass capacitor C4 may already be in the set. If the capacitors are not in and there is a tendency to distort or oscillate, put them in, and make sure that all No. 1 pins of the tubes are grounded to chassis. If the radio does not have a series capacitor in the antenna, it is necessary to put in a 0.01 mf between the antenna and coil to avoid burning out the coil if the antenna should be grounded.

Many other types of rectifiers may be used instead of the 11726 which was chosen as the example because it does not require a resistor line cord. For 25Z6, use a line-cord resistor of 300 ohms , connecting red to switch, black to pins 3 and 5 , and resistor to pin 2; for 3525 and $35 Z 4$ tubes, use a 540 -ohm resistor cord, connecting black to pin 5 , red to switch, and resistor to pin 2; for a $25 \mathrm{Z5}$ tube, use a 300ohm cord, connecting red to switch, black to pins 2 and 5, resistor to pin 1, pin 6 to ground, and the filter resistor to pins 3 and 4. These are the most popular rectifiers, but several others may be used with the proper line-cord resistor.

The grounding system and physical factors of the receiver to be worked on should be examined before attempting the changeover. Some bugs may be expected on the first job so do not be discouraged if it does not work perfectly right at first; a little patience in trying to get rid of the bugs will be well rewarded. Remember that the filaments of tubes in most battery-operated radios are only d-c operated. Always check the filament conditions of the tubes with which you are working.

## SECTION

## CHARTS AND TABLES

In this section a number of charts and tables are shown that we believe will be very helpful to users of this book. Included in this grouping is a complete listing of receiving tube characteristics and bases and also a separate listing of cathode-ray-tube characteristics and bases. In addition such tabulated matter as RTMA capacitor, resistor, and transformer color codes, ballast tube and resistor number-
ing codes, pilot lamps, and a cross index of Army VT numbers and commercial vacuum-tube numbers are included. The last named chart will not only help ArmedForces personnel but will be of valuable aid to anyone who has surplus Army tubes and desires to identify the equivalent commercial number for possible use or substitution in commercial equipment.

## RTMA RECEIVING TUBE RATINGS

It shall be standard to interpret the ratings on receiving types of tubes according to the following conditions:

## 1. CATHODE

The heater or filament voltage is given as a normal value unless otherwise stated. This means that transformers or resistances in the heater or filament circuit should be designed to operate the heater or filament at rated value for full-load operating conditions under average supply-voltage conditions. A reasonable amount of leeway is incorporated in the cathode design so that moderate fluctuations of heater or filament voltage downward will not cause marked falling off in response; also, moderate voltage fluctuations upward will not reduce the life of the cathode to an unsatisfactory degree.

## A. 1.4-VOLT BATTERY TUBE TYPES

The filament power supply may be obtained from drycell batteries, from storage batteries, or from a power line. With dry-cell battery supply, the filament may be connected either directly across a battery rated at a terminal potential of 1.5 volts, or in series with the filaments of similar tubes across a power supply consisting of dry cells in series. In either case, the voltage across each 1.4 -volt section of filament should not exceed 1.6 volts. With power-line or storage-battery supply, the filament may be operated in series with the filaments of similar tubes.

For such operation, design adjustments should be made so that with tubes of rated characteristics, operating with all electrode voltages applied and on a normal line voltage of 117 volts or on a normal storage-battery
voltage of 2.0 volts per cell (without a charger) or 2.2 volts per cell (with a charger), the voltage drop across each 1.4 -volt section of filament will be maintained within a range of 1.25 to 1.4 volts with a nominal center of 1.3 volts. In order to meet the recommended conditions for operating filaments in series from dry-battery, storage-battery, or power-line sources it may be necessary to use shunting resistors across the individual 1.4 -volt sections of filament.

## B. 2.0-VOLT BATTERY TUBE TYPES

The 2.0 -volt line of tubes is designed to be operated with 2.0 volts across the filament. In all cases the operating voltage range should be maintained within the limits of 1.8 volts to 2.2 volts.

## 2. POSITIVE POTENTIAL ELECTRODES

The power sources for the operation of radio equipment are subject to variations in their terminal potential. Consequently, the maximum rating shown on the RTMA Vacuum Tube Data Sheets have been established for certain design center voltages which experience has shown to be representative. The design center voltages to be used for the various power supplies together with other rating considerations are as given below:

## A. A-C OR D-C POWER-LINE SERVICE IN U.S.A.

The design center voltage for this type of power supply is 117 volts. The maximum ratings of plate voltages, screen-supply voltages, dissipations, and rectifier output currents are design maximums and should not be exceeded in equipment operated at a line voltage of 117 volts.

## B. STORAGE-BATTERY SERVICE

When storage-battery equipment is operated withouta charger, it should be designed so that the published RTMA maximum values of plate voltages, screen-supply voltages, dissipations, and rectifier output currents are never exceeded for a terminal potential at the battery source of 2.0 volts per cell. When storage-battery equipment is operated with a charger, it should be designed so that $90 \%$ of the same RTMA values are never exceeded for a terminal potential at the battery source of 2.2 volts.

## C. "B"-BATTERY SERVICE

The design center voltage " $B$ " batteries is the normal voltage rating of the battery block, such as 45 volts, 90 volts, etc. Equipment should be designed so that under no condition of battery voltage will the plate voltages or dissipations ever exceed the recommended respected maximum values shown in the data for each tube type by more than $10 \%$.

## D. OTHER CONSIDERATIONS

1) Class A Amplifiers

The maximum plate dissipation occurs at the 'zerosignal" condition. The maximum screen dissipation usually occurs at the condition where the peak-input signal voltage is equal to the bias voltage.
2) Class $B$ Amplifiers

The maximum plate dissipation theoretically occurs
at approximately $63 \%$ of the "maximum-signal" condition, but may occur practically at any signal voltage value.
3) Converters

The maximum plate dissipation occurs at the "zerosignal" condition and the frequency at which the oscillator-developed bias is a minimum. The screen dissipation for any reasonable variation in signal voltage must never exceed the rated value by more than $10 \%$.
4) Screen Ratings

When the screen voltage is supplied through a series voltage-dropping resistor, the maximum screen voltage rating may be exceeded, provided the maximum screen dissipation rating is not exceeded at any signal condition, and the maximum screen voltage rating is not exceeded, at the maximum-signal condition. Provided these conditions are fulfilled, the screen-supply voltage may be as high as, but not above, the maximum plate voltage rating.

## 3. TYPICAL OPERATION

For many receiving tubes, the data show typical operating conditions in particular services. These typical operating values are given to show concisely some guiding information for the use of each type. They are not to be considered as ratings, because the tube can be used under any suitable conditions within its rating limitations.

## RECEIVING TUBE SUBSTITUTION GUIDE

## RECEIVING TUBE BASES

The diagrams on the following pages show standard socket connections corresponding to the base designations given in the column headed "Socket Connections" in the classified tube-data tables. Bottom views are shown throughout. Terminal designations are as follows:


Alphabetical subscripts D, P, T and HX indicate, respectively, diode unit, pentode unit, triode unit or hexode unit in multi unit types. Subscript M, T or CT indicates filament or heater tap.

Generally when the No. 1 pin of a metal-type tube in Table 1, with the except:on of all triodes, is shown connected to the shell, the No. 1 pin in the glass (G or GT) equivalent is connected to an internal shield.

## R.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are shown above.


2 D


3N


4AF


$4 B R$


4 F


$4 Y$


2 N

$3 T$


4AH


4 B



46
(3) (3)


$2 T$


4AA


4AJ


4BB



4 H



5A


22


4AB


4 AM


4BC



4J


(2):

5AA

[^1]

4AC


4AD


4AP
4AT

4BJ




4 K





5AB

## RECEIVING TUBE SUBSTITUTION GUIDE

R.m.a. TUBE BaSE DIagrans

Bottom views are shown.


## RECEIVING TUBE SUBSTITUTION GUIDE

R.M.A. TUBE BASE DIAGRAMS

# RECEIVING TUBE SUBSTITUTION GUIDE 

R.M.A. TUBE BASE DIAGRAMS

## Bottom views are shown.

5AM				5AS	
		5BT	$5 B U$	  5C	
					6AX

## RECEIVING TUBE SUBSTITUTION GUIDE

R.M.A. TUBE BASE DIAGRAMS

Bottom viens are shown.


RECEIVING TUBE SUBSTITUTION GUIDE
R.M.A. TUBE BASE DIAGRAMS

		Bottom	e shown.		
		7R			

## RECEIVING TUBE CHARACTERISTICS

TABLE I-METAL RECEIVING TUBES
Characteristics given in this fable apply to all tubes having type numbers shown, including metal tubes, glass fubes with " $\mathbf{G}$ " suffix, and baniam fubes with " $G$ T" suffix.
Characieristics given "G" and "GT" tubes not listed (not having metal counterparts), see (ables II, VII, VIII and IX.

table i-metal receiving tubes - Continued

$\mathbf{T}_{\text {ypo }}$	Name	Socke Connections	Fil. or Heater		Capacitance $\mu_{\mu} \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Mo.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Factor	$\left\|\begin{array}{c} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}\right\|$	PowerOulputWatts	Type
			Volts	Amp.	In	Out	PlateGrid												
$65 F 7$	Diode Variable- $\mu$ Pentode	7AZ	6.3	0.3	5.5	6	0.004	Class-A Amp.	250	- 1.0	100	3.3	12.4	700000	2050	-			65F7
6SG7	Semivariable-u Pentode	8BK	6.3	0.3	8.5	7	0.003	H.F. Amp.	250	- 2.5	150	3.4	9.2	Ovar 1 mag.	4000				6SG7,
6SH7	Sharp Cut-oft Peniode	8BK	6.3	0.3	8.5	7	0.003	Class-A Amp.	250	- 1.0	150	4.1	10.8	900000	4900				$65 \mathrm{H7}$
65574	Sharp Cut-off Pentode	8N	6.3	0.3	6	7	0.005	Cluss-A Amp.	250	- 3.0	100	0.8	3	1500000	1650	2500			6517
$65 \mathrm{K7}$	Variable- $\mu$ Pentode	8 N	6.3	0.3	6	7	0.003	Class-A Amp.	250	- 3.0	100	2.4	9.2	800000	2000	1600			$65 \mathrm{K7}$
6507	Duplex-Diode Triode	80	6.3	0.3	3.2	3.0	1.6	Class-A Amp.	250	- 2.0		-	0.8	91000	1100	100			6507
6SN7	Duplex-Diode Triode	80	6.3	0.3	3.6	2.8	2.40	Class-A Amp.	250	- 9.0	-		9.5	8500	1900	16			6SR7
6557	Variable- $\mu$ Pentode	0 N	6.3	0.15	5.5	7.0	0.004	Class-A Amp.	250	$-3.0$	100	2.0	9.0	1000000	1850				6587
6557	Duplex-Diode Triode	90	6.3	0.15	2.8	3	1.50	Class-A Amp.	250	-9.0			9.5	8500	1900	16			6517
6SV7	Diode R.F. Pentode	7AZ	6.3	0.3	6.5	6	0.004	Class-A Amp.	250	$-1$	150	2.8	7.5	800000	3400				65V77
6527	Duplex-Diode Triode	BO	6.3	0.15	2.6	2.8	1.10	Class-A Amp.	250	-3			1.0	58000	1200	70		-	6587
6T7	Duplex-Diode Triode	7 V	6.3	0.15	1.8	3.1	1.70	Class-A Amp.	250	- 3.0	-	-	1.2	62000	1050	65		T	6T7
6V6	Beam Power Amplifier	7AC	6.3	0.45	2.0	7.5	0.7	Class-A1 Amp. ${ }^{5}$	250	- 12.5	250	4.5/7.0	45/47	52000	4100	218	5000	4.5	6V6
								Class-AB, Amp. ${ }^{6}$	250	-15.0	250	5/13	70/79	60000	3750		$10000{ }^{\text {8 }}$	10.0	
									285	-19.0	285	4/13.5	70/92	65000	3600		8000:	14.0	
1611	Penlode Power Amplifor	75	6.3	0.7				Audio Amp.	Characteristics same as 6F6										1611
1612	Penlagrid Ampliner	75	6.3	0.3	7.5	11	0.001	Class-A Amp.	250	- 3.0	100	6.5	5.3	600000	1100	880	-		1612
1620	Sharp Cut-oft Pentode	7R	6.3	0.3				Class-A Amp.		Characteristics same as 6.17									1620
1621	Power Amplifier Pentode	75	6.3	0.7				Class-AB3 ${ }^{\text {Amp }}{ }^{\text {6 }}$	300	-30.0\|	300	6.5/13	38/69	-	-		$4000{ }^{8}$	5.0	1621
1621	Power Amplifier Pentode	75	6.3					Class-A1 Amp. ${ }^{1}$	330	$50{ }^{*}$			55/59				$5000{ }^{\text {s }}$	2.0	
1622	Beam Power Amplifor	7AC	6.3	0.9	-			Class-A1 Amp.	300	-20.0	250	4/10.5	86/125				4000	10.0	1622
1851	Tolevision Amp. Pentode	7R	6.3	0.45	11.5	5.2	0.02	Class-A Amp.	300	-2.0	150	2.5	10	750000	9000	6750	-	-	1851
5693	Sharp Cut-off Pentode	8 N	6.3	0.3	5.3	6.2	0.005	Class-A Amp.	250	$-3$	100	0.85	3.0	1000000	1650				5693
* Cathode resistor-ahms.		${ }^{1}$ Screen tied to plate.   2 For 6SA7GT use base diagram BAD.					${ }^{3}$ Grid bias-2 valts if seporate osciliator excitation is used.   "Also Type "6SJ7Y."						${ }^{5}$ Values are for single tube.   - Values are for two tubes in push-pull.				7 Max.-signal value.   ${ }^{3}$ Plate-to-plato value.   ${ }^{9}$ Ose. grid leak-Scrn res.		

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES

Type	Namo	Socket Connections	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volis } \end{gathered}$	Screen CurrenMa .	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c\|} \hline \text { Load } \\ \text { Resilstance } \\ \text { Ohms } \end{array}$	Powen Oulput Waft:	Type	
			Volts	Amp.	In	Out	PlaleGrid													
2 C 22	Triodo	4AM	6.3	0.3	2.2	0.7	3.60	Class-A Amp.	300	-10.5			11	6600	3000	20	-		$2 \mathrm{C22}$.	
6A56	Triode Power Ampliflor	$6 T$	6.3	1.0	-			Class-A Amp. ${ }^{4}$	250	-45.0		$\cdots$	60	800		4.2	2500	3.75		
								P.P. Class AB ${ }^{\text {s }}$	325	-68.0	-		80	-	5250		$3000{ }^{\text {6 }}$	15.0	6A5G	
								P.P. Class AB ${ }^{\text {b }}$	325	850*			80	-			5000 \%	10.0		
6AB6G	Direct-Coupled Amplifer	7AU	6.3	0.5			-	Class-A Amp.	250	0			3.0	40000	1800	72	8000	3.5	6AB6G	
	High- $\mu$ Power-Amplifior Triode	60	6.3	0.4		-		Plass-A Amp.	250	0		tput	34.0						6AC5G	
6AC5G								P.P. Class B	250	0	-	-	5.0	36700	3400	125	100009	8.0		
6AC6G	Direct-Coupled Amplifior	7 AU	6.3	1.1			-	Class-A Amp.	100	0	Input		7.0	-	3000	54	4000	3.8	6AC6G	
6ADSG	High- $\mu$ Triodo	60	6.3	0.3	4.1	3.9	3.3	Class-A Amp.	250	- 2.0	-	-	0.9	-	1500	100	ma.	-	6ADSG	
6AD6G ${ }^{10}$	Electron-Ray Tube	7AG	6.3	0.15				Indicator	100		0 for $90^{\circ} ;-23$ for $135^{\circ} ; 45$ for $0^{\circ}$. Targol current 1.5 ma .								GADSG 6AD7G	
6AD7G	Triode-Pentode	8AY	6.3	0.85				Triode Amp.	250	-25.0	-	-	4.0	19000	325	6.0		-		-
6407 G								Pentade Amp.	250	-16.5	250	6.5	34	80000	2500		7000	3.2		
6AE5G ${ }^{10}$	Trioda Amplifior	60	6.3	0.3				Class-A Amp.	95	-15.0			7.0	3300	1200	4.2			6AESG	
6AE6GT ${ }^{10}$	Twin-Plate Triode whih		6.3	0.15	Remote cut-off			Class-A Ámp.	250	- 1.5		-	6.5	25000	1000	25	-	-	6AEGGT	
	Single Grid				Shorp cut-off			Class-A Amp.	250	$-1.5$			4.5	35000	950	33				

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES - Continued

Type	Name	Socket Conneclions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\left\lvert\, \begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}\right.$	Screen Current Ma.	Plate Current Ma.	$\begin{array}{\|c\|} \text { Plale } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c\|} \hline \text { Load } \\ \text { Ressistance } \\ \text { Ohms } \end{array}$	Power Output Watts	Type
			Volts	Amp.	In	Out	PlareGrid												
6AE7GT ${ }^{\text {Co }}$	Twin-Input Triode	7AX	6.3	0.5	-			Driver Amplifior	250	-13.5			5.0	9300	1500	14			6AE7GT
6AFSG	Triode	60	6.3	0.3				Class-A Amplifier	180	-18.0			7.0	$\cdots$	1500	7.4			6AF5G
6AF7G	Twin Electron Ray	8AG	6.3	0.3	-			Indicator Tube											6AF7G
GAGBG	Power-Amplifer Pentode	75	6.3	1.25				Class-A Amplifier	250	-6.0	250	6.0	32		10000		8500	3.75	SAGGG
6AH5G	Beam Power Amplifier	6AP	6.3	0.9	-			Class-A Amplifier	350	-18	250			33000	5200		4200	10.8	6AH5G
6AH7GT	Twin Triode	8BE	6.3	0.3				Converter \& Amp.	250	-9.0	-		121	6600	2400	16	-		6AH7GT
6AL6G	Baam Power Amplifler	6AM	6.3	0.9	-	-		Class-A Amplifier	250	-14.0	250	5.0	72	22500	6000		2500	6.5	6AL6G
6AL7GT	Electron-Ray Tube	8CH	6.3	0.15	-		-	Indicator	Outer	edge of to its ele	any of 1 ctrode.	he three il Similar in	minated ard disp.	-5	d $1 / 16 \mathrm{in}$. min . No patiern	n. outwa with $\qquad$	ard with +5 6 volts grid.	volts	6AL7GT
6AQ7GT	Duplex Diode Triode	8CK	6.3	0.3	2.3	1.5	2.8	Class-A Amplifier	250	- 2.0	-		2.3	44000	1600	70	-		6A07GT
GARG.	Beam Power Amp.	6BO	6.3	1.2	11	7	0.55	Class-A Amplifier	250	-22.5	250	5	77	21000	5400	95			6ARG
6AR7GT	Diode Triode	8 CG	6.3	0.3	1.4	1	2	Class-A Amplifier	250	$-2$			1.3	66500	1050	70		-	6AR7GT
6AS7G	Low-Mu Twin Triode	8BD	6.3	2.5				D.C. Amplifier	135	250*			125	280	7500	2.1			
GAS7G	Low-Mu Twin Triode	880	6.3	2.5				Class-Al Amp. P.P.	250	2500*			100/106	280	2259		$6000{ }^{6}$	13	6AS7G
684G	Triode Power Amplifier	55	6.3	1.0			-	Power Amplifiler			aracleristi	tics same	as Type 6A	3-Table IV					684G
686G	Duplex-Diode High - $\mu$ Triode	7 V	6.3	0.3	1.7	3.8	1.7	Detec:or-Amplifer			haracteris	stics same	as Type 75	-Table IV				-	686G
6BQ6GT	Beam Pentode	6AM	6.3	1.2				Deflection Amp.	250	47*	150	2.1	45		5500				6B96GT
68G6	Beam Power Amplifier	5Bt	6.3	0.9	11	6.5	0.5	Deflection Amp.	400	-50	350	6.0	70	-	6000				6BG6
6 CBG	Twin Triode	8 G	6.3	0.3				Amp. 1 Section	250	-4.5			3.1	26000	1450	38			6C8G
608 G	Pentagrid Converter	8 A	6.3	0.15				Converter	250	- 3.0	100	Catho	de current	13.0Ma.	Anode 9	grid (No.	2) Volts $=2$	$250{ }^{3}$	6D8G
6F8G	Triode-Hexode Converter	80	6.3	0.3	-			Converter	250	$-2.0$				Triode Plate	150 volts				6E8G
- 6 FEG	Twin Triode	8G	6.3	0.6				Ampliner	250	-8.0	-		91	7700	2600	20	$\cdots$		6 F\&G
6G6G	Pentode Power Amplifier	75	6.3	0.15				Class-A Amplifier	180	-9.0	180	2.5	15	175000	2300	400	10000	1.1	
6G6G	Penlode Power Amplifier	75	0.3	0.15				Class-A Amplifier	180	-12.0				4750	2000	9.5	12000	0.25	6G6G
6 H 4 GT	Diode Rectifier	5AF	6.3	0.15		-	-	Delector	100	-	-	-	4.0	$\square$	-	-	-		6H4GT
6 H 8 G	Duo-Diodo High- Pentode	8 E	6.3	0.3	-		-	Closs-A Amplifier	250	-2.0	100		8.5	650000	2400	-			6H8G
$618 \mathrm{G}^{10}$	Triode Heptode	8 H	6.3	0.3			-	Converter	250	$-3.0$	100	2.8	1.2	Anode-g	grid (No. 2)	250 volts	$\mathrm{s}_{\text {max. }}{ }^{3} \mathrm{~m}$		6J8G
$6 \mathrm{~K} 5 \mathrm{GT}{ }^{\text {IM }}$	High $-\mu$ Triode	50	6.3	0.3	2.4	3.6	2.0	Class-A Amplifier	250	- 3.0			1.1	50000	1400	70	,	.	6K5GT
6 KGGT	Pentode Power Amplifier	75	6.3	0.4				Class-A Amplifier				Charac	teristics sam	ne as Type 4	1-Tabla iV				6K6GT
615 G	Itiode Amplifier	60	6.3	0.15	2.8	5.0	2.8	Class-A Amplifier	250	- 9.0	-		8.0	-	1900	17	-		6L5G
6 MGG	Power Amplifier Pentode	75	6.3	1.2				Class-A Amplifier	250	-6.0	250	4.0	36		9500		7000	4.4	6M6G
6 MFG	Pentode Amplifier	7 R	6.3	0.3			-	R.F. Amplifier	250	-2.5	125	2.8	10.5	900000	3400		-		6M7G
6 MEGT	Diode Triode Pentode	8 AU	6.3	0.6				Triode Amplifier	100				0.5	91000	1100				GM8GT
								Pentode Amplifier	100	-3.0	100	$\underline{\square}$	8.5	200000	1900				SM8
6N6G ${ }^{\text {-1 }}$	Diract-Coupled Amplifier	TAU	6.3	0.8				Power Amplifier			aracterist	tics same	as Type 6B	5-Table IV					6N6G
6P5GT:	Triode Amplifier	60	6.3	0.3	3.4	5.5	2.6	Class-A Amplifer	250	-13.5	-	-	5.0	9500	1450	13.8	-	-	6P5GT
6P7 G ${ }^{16}$	Triode-Pentode	70	6.3	0.3				Class-A Amplifier				Char	acteristics s	ame as 6F7-	Table IV				6P7G
6P8G	Triode-Hexode Converter	sk	6.3	0.8	-			Converter	250	$-2.0]$	75	1.4	1.5		riode Plate 1	$00 \mathrm{v}$.	2 ma .		6PBG
6069	Diode-Triode	6r	6.3	0.15				Class-A Amplifier	250	-3.0	-	-	1.2	-	1050	65			606 G
6R6G	Pentode Amplifier	6AW	6.3	0.3	4.5	11	0.007	Class-A Amplifier	250	-3.0	100	1.7	7.0	-	1450	1160	-	-	6R6G
656GT	Remote Cut-off Pentode	5AK	6.3	0.45			-	R.F. Amplifier	250	-2.0	100	3.0	13	350000	4000				656 GT
658GT	Triplo Diode Triode	8 CB	6.3	0.3	1.2	5	2	Class-A Amplifier	250	-2.0			0.9	91000	1100	100			658GT
6SD7GT	Medium Cut-off Pentode	8 M	6.3	0.3	9	7.5	. 0035	R.F. Amplifier	250	-2.0	100	1.9	6.0	1000000	3600		$\underline{-}$		6SD7GT
6SE7GT	Sharp Cui-off Pentode	8N	6.3	0.3	8	7.5	. 005	R.F. Amplifier	250	- 1.5	100	1.5	4.5	1100000	3400	3750	-	-	6SE7GT
6SH7L	Pentode R.F. Amp.	8BK	6.3	0.3	-		-	Class-A Amplifier	100	-1.0	100	2.1	5.3	350000	4000		-		6SH7L
6SL7GT	Twin Triode	8BD							250	- 1.0	150	4.1	10.8	900000	4900				
6SN7GT	Twin Triode		6.3	0.3			-	Closs-A Ampifiner	250	- 2.0	-		2.31	44000	1600	70	-		6SLTGT
	Twin Triode	88 D	6.3	0.6	-	-	-	Class-A Amplifer	250	- 8.0	-	-	9.01	7700	2600	20	-	- 6	GSNTGT

TABLE II-G.3-VOLT GLASS TUBES WITH OCTAL BASES - Continued


TABLE III-7-VOLT LOCK-IN-BASE TUBES
For other lock-in-base types soe Tables VIII, IX, and X

Type	Name	Socket Connections	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Voits } \end{gathered}$	Screen Current Ma.	Plate Current Mo.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Factor	$\left\|\begin{array}{c} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}\right\|$	PowerOutputWalts	Type
			Volts	Amp.	In	Out	PlateGrid												
744	Triode Amplifier	5AC	7.0	0.32	3.4	3	4	Class-A Amplifer	250	-8.0			9.0	7700	2600	20			7 A 4
7 AS	Beam Power Amplifior	6AA	7.0	0.75	13	7.2	0.44	Class-A, Amplifer	125	- 9.0	125	3.2/8	37.5/40	17000	6100		2700	1.9	7A5
7A6	Twin Diode	7AJ	7.0	0.16				Rectifier			Max.	A.C. volts	per plate-	150. Max. O	utput current-	10 ma			746
7 A 7	Remota Cut-off Pentode	8 V	7.0	0.32	6	7	. 005	Class-A Amplifer	250	- 3.0	100	2.0	8.6	800000	2000	1600	-		$7 \mathrm{7A}$
7As	Multigrid Converter	80	7.0	0.16	7.5	9.0	0.15	Converter	250	- 3.0	100	3.1	3.0	50000	Anode	-grid 25	50 volts max	x. ${ }^{1}$	7A8
7AD7	Pentode	8 V	6.3	0.6	17.5	7.5	0.03	Class-A, Amp.	300	68*	150	7.0	28.0	300000	9500	-			7AD7
7 AF7	Twin Triose	8AC	6.3	0.3	2.2	1.6	2.3	Class-A Amp.	250	-10	-		9.0	7600	2100	16			7 AF7
$7 \mathrm{AG7}$	Sharp Cut-off Pentode	BV	7.0	0.16	7.0	6.0	0.005	Class-A, Amp.	250	$250 *$	250	2.0	6.0	750000	4200				7AG7
7 AH7	Pentode Amplitier	8 V	6.3	0.15	7.0	6.5	0.005	Class-A1 Amplifier	250	250*	250	1.9	6.8	1000000	3300				7AH7
784	High- $\mu$ Triode	SAC	7.0	0.32	3.6	3.4	1.6	Class-A Amplifier	250	-2.0			0.9	66000	1500	100	-		784
785	Pentode Power Amplifier	6A:'	7.0	0.43	3.2	3.2	1.6	Class-A Amplifier	250	-18.0	250	5.5/10	32/33	68000	2300	-	7600	3.4	785
786	Duo-Diode Triode	8W	7.0	0.32	3.0	2.4	1.6	Class-A Amplifer	250	- 2.0			1.0	91000	1100	100			786
787	Remote Cul-off Pentode	8 V	7.0	0.16	5	7	. 005	Class-A Amplifor	250	- 3.0	100	2.0	8.5	700000	1700	1200	-		787
788	Pentagrid Converter	8 X	7.0	0.32	10.0	9.0	0.2	Converter	250	- 3.0	100	2.7	3.5	360000	Anode	-grid 25	0 volis max		$7 \mathrm{B8}$
$7 \mathrm{C5}$	Tefrode Power Amplifier	6AA	7.0	0.48	9.5	9.0	0.4	Class-A1 Amplifier	250	-12.5	250	4.5/7	45/47	52000	4100	-	5000	4.5	$7 \mathrm{C5}$
7 Cb	Duo-Diode Triade	8W	7.1	0.16	2.4	3	1.4	Class-A Amplifior	250	- 1.0			1.3	100000	1000	100			$7 \mathrm{C6}$
$7 \mathrm{C7}$	Pontode Amplifier	8 V	7.0	0.16	5.5	6.5	. 007	Class-A Amplifier	250	- 3.0	100	0.5	2.0	2 meg .	1300		-	-	707
$7 \mathrm{D7}$	Triode-Hexode Converter	8AR	7.0	0.48				Convertor	250	-3.0]			Triod	Plate (No. 3	150 v .3 .5 m	ma.			707

TABLE III-T-VOLT LOCK-IN-BASE TUBES-Continued

Type	Name	Sockel Connections	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plafe Supply Volts	Grid Bias	Screen Volis	Screen Current Ma.	Plate Current Mo.	$\begin{array}{\|c\|} \hline \text { Plate } \\ \text { Resistance } \\ \text { Olims } \end{array}$	Transconductance Micromhos	Amp. Factor	$\left.\begin{array}{\|c\|} \text { Load } \\ \text { Resisfance } \\ \text { Ohms } \end{array} \right\rvert\,$	Power Output Wotts	Type
			Volts	Amp.	In	Out	PlateGrid												
7E6	Duo-Diode Triode	8W	7.0	0.32				Class-A Amplifier	250	- 9.0		$\square$	9.5	8500	1900	16	-	-	7E6
$7 E 7$	Duo-Diode Pentode	BAE	7.0	0.32	4.6	4.6	. 005	Class-A Amplifier	250	- 3.0	100	1.6	7.5	700000	1300				$7 E 7$
7F7	Twin Triade	OAC	7.0	0.32		-		Class-A Amplifier ${ }^{\text {2 }}$	250	$-2.0$			2.3	44000	1600	70			7F7
7 Fs	Twin Triade	8BW	6.3	0.30	2.8	1.4	1.2	R.F. Amplifier	250	-2.5	-	-	10.0	10400	5000				7F8
									180	- 1.0			12.0	8500	7000				
$\begin{aligned} & 7 G 71 \\ & 1232 \end{aligned}$	Sharp Cut-off Pentade	8 V	7.0	0.48	9	7	. 007	Class-A Amplifler	250	- 2.0	100	2.0	6.0	800000	4500	-	-	$\cdots$	$\begin{aligned} & 767 / \\ & 1232 \end{aligned}$
$\begin{aligned} & 768 / \\ & 1206 \end{aligned}$	Dual Tetrode	8BV	6.3	0.30	3.4	2.6	0.15	R.F. Amplifier ?	250	- 2.5	100	0.8	4.5	225000	2100	-	-	-	$\begin{aligned} & 768 / \\ & 1206 \end{aligned}$
7H7	Semi-Variable- Pentode	8 V	7.0	0.32	8	7	. 007	R.f. Amplifier	250	-2.5	150	2.5	9.0	1000000	3500	-	-	-	7H7
757	Triode-Heptode Converter	BAR	7.0	0.32				Converiter	250	-3.0	100	2.9	1.3	Triode Plate 250 v. Max. ${ }^{1}$					737
$7 \mathrm{K7}$	Duo-Diode High- $\mu$ Triode	8Bf	7.0	0.32				Class-A Amplifier	250	- 2.0			2.3	44000	1600	70			$7 \mathrm{K7}$
717	Sharp Cul-off Pentode	8 V	7.0	0.32	8	6.5	. 01	Class-A Amplifier	250	$-1.5$	100	1.5	4.5	100000	3100	Cathode Resistor 250 ohms			717
7N7	Twin Triode	BAC	7.0	0.6	$\begin{aligned} & 3.4 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 2.05 \\ & 2.4 \end{aligned}$	$\begin{array}{l\|} \hline 3.0{ }^{3} \\ 3.0 \cdot \end{array}$	Class-A Amplifier ${ }^{2}$	250	-8.0		-	9.0	7700	2600	20		-	7N7
707	Pentagrid Converter	8AL	7.0	0.32			-	Converter	250	0	100	8.0	3.4	800000	Grid No. 1 resistor 20000 ohms				7197
7R7	Duo-Diode Pentode	8AE	7.0	0.32	5.6	5.3	. 034	Class-A Amplifier	250	- 1.0	100	1.7	5.7	1000000	3200	-	- 1		7R7
757	Triode Hexode Converter	8BL	7.0	0.32		二-	-	Converrer	250	- 2.0	100	2.2	1.7	2000000	Triode Plate 250 v. Max. ${ }^{\text {I }}$				757
777	Pentode Amplifer	8 V	7.0	0.32	8	7	. 005	Class-A Amplifer	250	$-1.0$	150	4.1	10.8	900000	4900	-	-	-	757
7V7	Sharp Cuf-off Pentode	8 V	7.0	0.48	9.5	6.5	. 004	Class-A Amplifier	300	160*	150	3.9	10	300000	5800	-	-	-	7V7
7W7	Sharp Cut-off Pentode	8BJ	7.0	0.48	9.5	7.0	. 0025	Class-A Amplifer	300	- 2.2	150	3.9	10	300000	5800			-	767
7X7	Duo-Diode Triode	BB2	6.3	0.3			-	Class-A A mplifier	250	- 1.0			1.9	67000	1500	100	-		7×7
1231	Pentode Amplifier	8 V	6.3	0.45	8.5	6.5	. 015	Class-A Amplifier	300	200*	150	2.5	10	700000	5500	3850	-		1231
1273	Nonmicrophonic Pentode	8 V	7.0	0.32	6.0	6.5	. 007	Class. A ${ }_{1}$ Amplifier	250	$\begin{array}{r}10 \\ -3.0 \\ \hline-10\end{array}$	100	0.7	2.2	1000000	1575	-	- -	-	1273
5679	Twin Diode	7 CX	6.3	0.15			-	V.T.V.M. Rectifjer	100	- 1.0	100	1.8	5.7	400000	2275				5679
XXL	Trinde Oscillator	SAC	7.0	0.32	-	-	--	Oscillator	250	-8.0	-	-	8.0	-	2300	20	-	$\square$	XXI

* Cathode resistor-ohms.

Applied through 20000-ohm dropping resistor.
Each section.
${ }_{3}$ Triod. No. 1.
1 Triode No. 2.
TABLE IV-6.3-VOLT GLASS RECEIVING TUBES

Type	Name	Base	Socket Connections	Fil. or Healer		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	$\begin{array}{\|c} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c} \text { Loed } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Power Oulput Watts	Type
				Volis	Amp.	In	Out	PlateGrid												
$\begin{aligned} & \hline 2 \mathrm{C21/f} \\ & 1642 \\ & \hline \end{aligned}$	Iwin-Triode Amplifior	M.	7BH	6.3	0.6	-	-	-	Class-A Amp.	250	-16.5	-	-	8.3	7600	1375	10.4	-		$\begin{aligned} & \text { 2C21/ } \\ & 1642 \end{aligned}$
									Cless-A Amp.	250	-45			60	800	5250	4.2	2500	3.5	
6 A3	Triode Power Amplifier	M.	40	6.3	1.0	7.0	5.0	16.0	Class $\mathrm{AB}_{1} \mathrm{Amp}^{\text {mad }}$	$\begin{array}{r} 300 \\ 300 \\ \hline \end{array}$	$\begin{array}{r} -62 \\ 850 \end{array}$		dBias Bias	$\begin{aligned} & 80 \\ & 80 \\ & \hline \end{aligned}$	--	-	-	$\begin{aligned} & 3000111 \\ & 500011 \end{aligned}$	$\begin{array}{r} 15 \\ 10 \\ \hline \end{array}$	6 A3
6 644 ${ }^{6}$	Pentode Power Amplifier	M .	5B	6.3	0.3				Class-A Amp.	180	-12.0	180	3.9	22	00000	2500	150	3000	1.5	6A4
6A6	Twin Trione Amplifier	M.	78	6.3	0.8			-	Class-B Amp. P.P	$\begin{aligned} & 250 \\ & 330 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\square$	$\square$	powar	deutis for load, plate	$\begin{aligned} & \text { One fube at } \\ & \text {-to-plate } \end{aligned}$	stated	$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{array}{r} 8.0 \\ 10.0 \\ \hline \end{array}$	6A6
- ${ }^{\text {A } 7}$	Pentagrid Converter	S.	7 C	6.3	0.3	8.5	9.0	0.3	Convomar	250	- 3.0	105	2.2	3.5	360000	Anode gris	1 (No. 2	2) 200 volis	max.	647
GABS/6NS	Elactron-Roy Tube	S.	6R	6.3	0.15				Indicator Tube	180	Cut-off	Grid Bias	$=-12 \mathrm{v}$.	0.5		Target Curren	nt 2 ma .			6AB5/6N5
6AF6G	Electron-Ray Tube Twin Indicator Type	s.	7AG	6.3	0.15			-	Indicator Tube	$\begin{aligned} & 135 \\ & 100 \end{aligned}$		$\begin{aligned} & \text { Ray Co } \\ & \text { Ray Co } \end{aligned}$	trol Voltag trol Volta	$\begin{aligned} & e=81 \mathrm{for} \\ & e=60 \mathrm{for} \end{aligned}$	$\begin{aligned} & 0^{\circ} \text { Shadow } \\ & 0^{\circ} \text { Shadow } \end{aligned}$	Angla. Targe Angle. Targe		$\begin{aligned} & \text { nt } 1.5 \mathrm{ma} . \\ & \mathrm{n} \mid 0.9 \mathrm{ma} . \end{aligned}$		6AF6G
685	Direct-Coupled Power Amplifier	M.	6AS	6.3	0.8	-			Class-A Amp. ${ }^{9}$ Push-Pull Amp.	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{array}{\|c} 0 \\ -13.0 \end{array}$	二	$\begin{aligned} & 61 \\ & 4.51 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	241000	$\underline{2400}$	${ }^{58}$	$\begin{gathered} 7000 \\ 10000 \\ \hline 11 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 20 \end{aligned}$	683

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES-Continued


TABLE V-2.5-VOLT RECEIVING TUBES

Typo	Name	Base	Socket Connections	Fil. or Heater		Copacitance $\mu, \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Ma.	$\|$Plate   Resistance   Ohms	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c\|} \hline \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Power Outpul Walts	Type
				Volts	Amp.	In	Out	PlateGrid												
$25 / 45$	Duodiode	M.	50	2.5	1.35			-	Detector	Al 50 d.c. Volts per plate, cathode ma. $=80$										25/45
$2 A^{2}$	Triode Power Amplifier	M.	4D	2.5	2.5	7.5	5.5	16.5	Class-A Amp.	Characteristics same as Type 6A3, Table IV										243
$2 A 5$	Pentode Power Amplifier	M.	68	2.5	1.75				Class-A Amp.	Characteristics same as Type 42, Table IV										2A5
246	Duplex-Diode Triode	5.	6 G	2.5	0.8	1.7	3.8	1.7	Class-A Amp.	Characteristics same as Type 75, Table IV										2A6
247	Pentagrid Converter	5.	7 C	2.5	0.8			-	Converter	Characteristics same as Type 6A7, Table IV										2 A 7
286	Direct-Coupled Amplifier	M.	7 J	2.5	2.25				Amplifier	250	-24.0	-		40.0	5150	3500	18.0	5000	4.0	2B6
287	Duplex-Diode Pentode	S.	70	2.5	0.8	3.5	9.5	. 007 .	Penlode Amp.	Characteristics same as rype 687-rable IV										$2 \mathrm{B7}$
$2 \mathrm{E5}$	Electron-Ray Tube	5.	6R	2.5	0.8			-	Indicator Tube	Characteristics same as Type 6E5-Table IV										2 E 5
$2 \mathrm{G5}$	Electron-Ray Tube	5.	6R	2.5	0.8				Indicator Tube	Characteristics same as 6U5/6G5-Table IV										2G5
24-A	Tetrode R.F. Amplifior	M.	5 E	2.5	1.75	5.3	10.5	. 007	Screen-Grid R.F. Amplifier	250	- 3.0	90	1.7	4.0	600000	1050	630		-	24-A
									Bias Detector	250	- 5.0	20/45	Plate current adjusted to 0.1 ma . with no signal							
27	Triode Detector-Amplifier	M.	5A	2.5	1.75	3.1	2.3	3.3	Class-A Amp.	250	-21.0		-	5.2	9250	975	9.0	-	L	27
27	Triode Delector.Amplinar	M.							Bias Detector	250	-30.0	$\underline{\square}$	Plate current adjusted 100.2 ma . with no signal							
35/51	Remote Cut-off Pentode	M.	5E	2.5	1.75	5.3	10.5	$.007$	Screen-Grid R.F. Amplifier	250	- 3.0	90	2.5	6.5	400000	1050	420	-	-	35/51
45	Triode Power Amplifier	M.	4D	2.5	1.5	4	3	7	Class-A Amo.	275	-56.0			36.0	1700	2050	3.5	4600	2.00	45
46	Dual-Grid Power Amp.	M.	5 C	2.5	1.75	-	-		Class-A Amp.'	250	-33.0	-		22.0	2380	2350	5.6	6400	1.25	46
46	Dual-Grid Power Amp.								Class-B Amp. ${ }^{3}$	430	0			12	Power output for 2 tubes			5800	20.0	
47	Pentode Power Amplifier	M.	5 B	2.5	1.75	8.6	13	1.2	Class-A Amp.	250	-16.5	250	6.0		60300	2500	150	7000	2.7	47
53	Twin Triode Amplifier	M.	7 B	2.5	2.0				Class-B Amp.	Characteristics same as Type 6A6, Table IV										53
55	Duplex-Diode Triode	5.	6G	2.5	1.0	1.5	4.3	1.5	Class-A Amp.	Characteristics same as Type 85, Table IV										55
56	Triode Amplifier, Detector	S.	5A	2.5	1.0	3.2	2.4	3.2	Class-A Amp.	Characteristics same as Type 76, Table IV										56
57	Sharp Cut-off Pentode	5.	6 F	2.5	1.0				R.F. Amplifier	250	- 3.0	100	$\begin{aligned} & 0.5 \\ & \hline 2.0 \end{aligned}$	2.0	1500000	1225	1500	-	-	57
58	Remote Cut-off Pentode	s.	$6 F$	2.5	1.0	4.7	6.3	. 007	Screen-Grid R.F. Amplifier	250	- 3.0	100		8.2	800000	1600	1280	-	-	58
59	Pentode Power Amplifier	M.	74	2.5	2.0				Class-A Triode ${ }^{\text {4 }}$	250	-28.0	$\overline{250}$	$\underline{-1}$	26.0	2300	2600	6.0	5000	1.25	59
59	Pentode Power Amplifier	M.	74						Class-A Pentode ${ }^{\text {a }}$	250	-18.0	250	9.0	35.0	40000	2500	100	6000	3.0	
RK15	Triode Power Amplifier	M.	$4{ }^{\text {d }}$	2.5	1.75					Characteristics same as Type 46 with Class-B connections										RK15
RK16	Triode Power Amplifier	M.	5A	2.5	2.0	-		-		Characteristics same as Type 59 with Class-A triode connections										RK16
RK17	Pentode Power Amplifier	M.	57	2.5	2.0					Characteristics same as Type 2A5										RK17

${ }^{1}$ Grid connection to cap; no connection to No. 3 pin. ${ }^{2}$ Grid No. 2 tied to plate. ${ }^{3}$ Grids Nos. 1 and 2 tied together. $\quad$ Grids Nos. 2 and 3 connected to plate. ${ }^{5}$ Grid No. $\mathbf{2}$, screen; grid No. $\mathbf{3}$, suppressor.

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES

Type	Name	Base	Socket Connec fions	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Curren Ma.	Plate Current Ma.	$\left\lvert\, \begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}\right.$	Transconductance Micromhos	$\left\lvert\, \begin{gathered} \text { Amp. } \\ \text { Factor } \end{gathered}\right.$	$\begin{array}{\|c\|} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	PowerOutputWatts	Type
				Volts	Amp.	In	Out	$\begin{aligned} & \text { Plate- } \\ & \text { Grid } \end{aligned}$												
1A4P	Voriable- $\mu$ Pontode	S.	4M	2.0	0.06	5	11	. 007	R.F. Amplifier	180	$-3.0$	67.5	0.8	2.3	1000000	750	750	-	-	1A4P
1A4T	Voriable- $\mu$ Tetrode	5.	4K	2.0	0.06	5	11	. 007	R.F. Amplifiar	180	$-3.0$	67.5	0.7	2.3	980000	750	720	-	-	IA4T
1 146	Pentagrid Converter	S.	6 L	2.0	0.06				Converter	180	$-3.0$	67.5	2.4	1.3	500000	Anode grid	d (No. 2	2) 180 max.	volis	IA6
184P/951	Pentode R.F. Amplifier	s.	4M	2.0	0.06	5	11	. 007	R.F. Amplifier	$\begin{array}{r} 180 \\ 90 \end{array}$	$\begin{array}{r} -3.0 \\ -3.0 \end{array}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1500000 \\ & 1000000 \end{aligned}$	$\begin{aligned} & 650 \\ & 600 \end{aligned}$	$\begin{array}{r} 1000 \\ 550 \end{array}$	-	-	1B4P/951
185/25S	Duplex-Dioda Triode	s.	6M	2.0	0.06	1.6	1.9	3.6	Triode Class-A	135	$-3.0$	-		0.8	35000	575	20	-		185/25S

table vi-2.0-volt battery receiving tubes-Continued

Typo	Namo	Daso	Socket Connections	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plale Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Yolts } \end{gathered}$	Screen Curren Ma.	PlateCurrent Ma.	$\left.\begin{array}{\|c\|} \hline \text { Plate } \\ \text { Ressistance } \\ \text { Ohms } \end{array} \right\rvert\,$	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c} \text { Load } \\ \text { Resisfance } \\ \text { Ohms } \end{array}$	$\left\|\begin{array}{l\|} \text { Power } \\ \text { Outpu1 } \\ \text { Watts } \end{array}\right\|$	Type
				Volts	Amp.	In	Out	PlateGrid												
166	Pentagrid Convorter	5.	66	2.0	0.12	10	10		Converter	180	- 3.0	67.5	2.0	1.5	750000	Anota grid (No. 2) 135 max. volts				1 Cb
$1 F 4$	Pentode Power Amplifer	M.	5K	2.0	0.12				Class-A Amp.	135	-4.5	135	2.6	8.0	200000	1700	340	16000	0.34	1154
									R.F. Amplifer	180	- 1.5	67.5	0.6	2.0	1000000	650	650			IF6
1F6	Duplex-Diode Penlode	s.	6W	2.0	0.06	4	9	. 007	A.F. Amplifier	135	-1.0	135	Plate, 0.25 megohm; screen, 1.0 megohm					Amp. $=48$		176
15:	Sharp Cut-off Pentode	5.	5 F	2.0	0.22	2.3	7.8	0.01	R.F. Amplifer	135	-1.5	67.5	0.3	1.85	800000	750	600			15
19	Twin-Triode Amplifier	5.	${ }^{6} \mathrm{C}$	2.0	0.26				Class-B Amp.	135	0		-	$\underline{\square}$	Load olate-to-plata			10000	2.1	19
30	Triode Detector Amplifier	S.	4D	2.0	0.06				Class-A Amp.	180	-13.5	$\cdots$		3.1	10300	930	9.3			30
31	Triode Power Amplifier	5.	40	2.0	0.13	3.5	2.7	5.7	Class-A Amp.	180	-30.0			12.3	3600	1050	3.8	5700	0.375	31
32	Sharp Cut-off Pentode	M.	4K	2.0	0.06	5.3	10.5	. 015	R.F. Amplifor	180	$-3.0$	67.5	0.4	1.7	1200000	650	780	$\underline{-}$		32
33	Pentode Power Amplifier	M	5K	2.0	0.26	8	12	1	Class-A Amp.	180	-18.0	180	5.0	22.0	55000	1700	90	6000	1.4	33
34	Variable- $\mu$ Pentode	M.	4M	2.0	0.06	6	11	. 015	R.F. Amplifior	180	- 3.0	67.5	1.0	2.8	1000000	620	620			34
									Class-A Amp. ${ }^{1}$	135	-20.0		-	6.0	4175	1125	4.7	11000	0.17	
49	Dual-Grid Power Amp.	M.	sc	2.0	0.12				Class-B Amp. ${ }^{2}$	180	0			Power output for 2 fubes				12000	3.5	49
840	Pentode	S.	51	2.0	0.13				Class-A Amp.	180	- 3.0	67.5	0.7	1.0	1000000	400	400	-		840
950	Pentode Power Amplifier	M.	5K	2.0	0.12			$\square$	Closs-A Amp.	135	-16.5	135	2.0	7.0	100000	1000	125	13500	0.575	950
RK24	Triode	M.	4 D	2.0	0.12				Class-A Amp.	180	-13.5			8.0	5000	1600	8.0	12000	0.25	RK24
1229	Tetrode	M.	4K	2.0	0.06					Special Type 32 for low grid-current applications										1229
1230	Triode	M.	40	2.0	0.06	3.0	2.1	6.0		Special Type 30 for low grid-current applications										1230

Discontinued.
${ }^{1}$ Grid No. 2 tied to plate.
${ }^{2}$ Grids Nos. 1 and 2 fied togethor.
TABLE VII-2.0-VOLT BATTERY TUBES WITH OCTAL BASES

Typo	Nama	Socket Connections	Filament		Copacilance $\mu \mu \mathrm{fd}$.			Uso	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Mo.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Factor	$\begin{array}{\|c\|} \text { Load } \\ \text { Resisfance } \\ \text { Ohms } \end{array}$	Powor Oufput Watts	Type
			Volts	Amp.	In	Out	PlateGrid												
1C7G	Heptode	72	2.0	0.06	10	14	0.26	Converter	Characteristics same as Type IC6-Table VI										IC7G
105GP	Variable- $\mu$ Pentodo	5 Y	2.0	0.06	5	11	. 037	R.F. Ampliffar	Characteristics same as Type 1A4P-Table VI										IDSGP
1DSGT.	Variable- $\mu$ Tetrode	5R	2.0	0.06				R.F. Amplifier	180	-3.0	67.5	0.7	2.2	600000	650				1DSGT
ID7G	Pentagrid Converter	72	2.0	0.06	10.5	9.0	0.25	Convertar	Characteristics same as Type 1A6-Table VI										1D7G
IESGP	Pentode Amplifier	5 r	2.0	0.06	5	11	. 007	R.F. Amplifier	Characteristics same as Type 184-Table VI										1ESGP
$1 E 7 G$	Double Pentode Power Amp.	8 C	2.0	0.24				Class-A Amplifor	135	-7.5	135	$2.0{ }^{1}$	6.51	220000	1600	350	24000	0.65	1E7G
IFSG	Pentode Power Amplifier	$6 \times$	2.0	0.12				Class-A Amplifier	Characteristics same as Type 1F4-Table VI										IFSG
$1 F 7 G^{2}$	Duplex-Piode Pentode	7 AD	2.0	0.06	3.8	9.5	0.01	Detestor-Amplifier	Charactaristics same as Type 1F6-Table VI										IF7G
1G5G	Pentode Power Amplifier	$6 \times$	2.0	0.12			-	Class-A Amplifier	135	-13.5	135	2.5	8.7	163000	1550	250	9000	0.55	1656
1H4G	Triode Amplifier	55	2.0	0.06				Detector-Ampliñer	Characteristics same as Type 30-Table VI										1H4G
1H6G	Duplex-Diode Triode	7AA	2.0	0.06	1.6	1.9	3.6	Detector-Amplifier	Characteristics same as TYpe 185-Tade VI										1H6G
1156 *	Pentode Power Amplifior	$6 \times$	2.0	0.12			-	Class-A Amplifier	135	-16.5	135	2.0	7.0	-	950	100	13500	0.45	1J5G
116 G	I win Triode	7 AB	2.0	0.24				Class-8 Amplifier	Characteristics sama as Type 19-Table VI										1J6G
4A6G	Twin Triode	81	2.0	0.12				Class-A, I sectior	90	$-1.5$	-	-	1.1	26600	750	20			
4A6G		82	4.0	0.06				Class-B, 2 sections	90	-1.5		-	$10.8{ }^{3}$				8000	1.0	4A6G

* Discontinued.

${ }^{1}$ Total current for both sections; no signal.

[^2]Max. signal.
Courtesy ARRL Handbook

TABLE VIII-1.5-VOLT FILAMENT BATTERY TUBES
See also Table $X$ for Special 1.4 -volf Tubes

Type	Name	Base	Socket Connections	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plale Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Facto	$\begin{array}{\|c} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	$\left\|\begin{array}{c} \text { Power } \\ \text { Output } \\ \text { M-wotis } \end{array}\right\|$	Type
				Volts	Amp.	In	Out	PlateGrid												
1A5GT	Pentode Power Amplifer	0.	$6 \times$	1.4	0.05				Class-A1 Amp.	90	-4.5	90	0.8	4.0	300000	850	240	25000	115	IA5GT
IA7GT	Penlagrid Converter	0.	72	1.4	0.05			-	Convertar	90	0	45	0.6	0.55	600000	Anode-grid volts 90				IATGT
1485	Pentode R.F. Amplifier	t.	5BF	1.2	0.05	2.8	4.2	0.25	R.F. Amplifier	$\begin{array}{r} 90 \\ 150 \end{array}$	$\begin{gathered} 0 \\ -1.5 \end{gathered}$	$\begin{array}{r} 90 \\ 150 \end{array}$	$\begin{aligned} & 0.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.8 \end{aligned}$	$\begin{array}{r} 275000 \\ 125000 \\ \hline \end{array}$	$\begin{aligned} & 1100 \\ & 1350 \end{aligned}$	-	-	- 1	$1 \mathrm{AB5}$
187GT +	Heptode	0.	72	1.4	0.1	-	-		Converter	90	0	45	1.3	1.5	350000	Grid No. 1 resistor 200,000 ohms				187GT
1B8GT	Diode Triode Pentode	0.	8AW	1.4	0.1	-	-		Triode Amplifier Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ -6.0 \\ \hline \end{array}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	$\underline{24000}$	$\begin{array}{r} 275 \\ 1150 \\ \hline \end{array}$	-	$\overline{14000}$	210	188GT
1C5GT	Pentode Power Amplifier	0.	6X	1.4	0.1	-	-	-	Class-A Amp.	90	-7.5	90	1.6	7.5	115000	1550	165	8000	240	ICSGT
108GT	Diode Triode Pentode	0.	3AJ	1.4	0.1	-	-	-	Triode Amp. Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ -9.0 \end{array}$	90	1.0	$\begin{array}{r} 1.1 \\ 5.0 \end{array}$	$\begin{array}{r} 43500 \\ 200000 \end{array}$	$\begin{aligned} & 575 \\ & 925 \\ & \hline \end{aligned}$	25	-		ID8GT
1E4G	Triode Ampliflor	0.	55	1.4	0.05	2.4	6	2.40	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	-	-	$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11000 \\ & 17000 \end{aligned}$	$\begin{array}{r} 1325 \\ 825 \\ \hline \end{array}$	$\begin{aligned} & 14.5 \\ & 14 \end{aligned}$	-	- 1	1E4G
1G4GT	Triode Amplifier	0.	55	1.4	0.05	2.2	3.4	2.80	Class-A Amp.	90	-6.0	-		2.3	10700	825	8.8	-		1G4GT
IG6GT	Twin Triode	0.	7 AB	1.4	0.1		-	$\square$	Class-A Amp.	90	0			1.0	45000	\| 675	30			1G6GT
1H5GI	Diode High- Triode	0.	5 L	1.4	0.1	1.1	6	1.00	Class-B Amp.	90	0			1/7	34 volts input per grid			12000	675	1G6G
ILA4	Pentode Power Amplifler	1.	5AD	1.4	0.05		-		Class-A Amp.	90	Characteristics same as 1A5GT									ILA4
ILA6	Pentagrid Converter	1.	7AK	1.4	0.05				Convertar	90	0	45	0.6	0.55	Anode Grid Volts 90					ILA6
1184	Pentode Power Amplifier	$\underline{L}$	5 SAD	1.4	0.05				Class-A Amp.	90	-9	90	1.0	5.0	200000	925	-	12030	200	1184
1L86	Heptode Converter	1.	${ }^{\text {B }}$ AX	1.4	0.05				Converter	90	0	67.5	2.2	0.4	Grid No. 4-67.5 v., No. 5-0 v.					1186
ILC5	Remote Cut-off Pentode	1.	7AO	1.4	0.05	3.2	7	. 007	R.F. Amplifier	90	0	45	0.2	1.15	1500000	775	-		$=1$	ILC5
$12 \mathrm{C6}$	Pentagrid Convertor	$t$.	7AK	1.4	0.05	-			Converter	90	0	35.	0.7	0.75		Anode Grid Volts 45				1166
ILD5	Diode Panlode	1.	6AX	1.4	0.05	3.2	6	0.18	Class-A Amp.	90	0	45	0.1	0.6	950000	600	-	$\cdots$	-	ILDS
12 E 3	Triode Ar.rplifier	L.	4AA	1.4	0.05	1.7	3	1.70	Closs-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 0 \\ -3 \end{array}$	-	-	$\begin{array}{r} 4.5 \\ 1.3 \\ \hline \end{array}$	$\begin{aligned} & 11200 \\ & 19000 \end{aligned}$	$\begin{array}{r} 1300 \\ 760 \\ \hline \end{array}$	14.5	-	-	1153
1LG5	Pentode R.f. Amp.	L.	7AO	1.4	0.05				Class-A Amo.	90	0	45	0.4	1.7	1020000	800				11G5
11H4	Diode High $\mu$ Triode	L.	SAG	1.4	0.05	1.1	6	1.00	Class-A Amp.	90	0			0.15	240000	275	65			11 H 4
ILNS	Remote Cut-off Pentode	L.	7AO	1.4	0.05	3.4	8	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	750		-	$-1$	ILN5
INSGT	Remota Cut-off Pentode	0.	5 Y	1.4	0.05	3	10	. 007	Class-A Amo.	90	0	90	0.3	1.2	1500000	750	1160		$\underline{-1}$	INSGT
INGG ${ }^{\text {a }}$	Diode-Power-Pentode	0.	TAM	1.4	0.05				Class-A Amp.	90	-4.5	90	0.6	3.1	300000	800		25000	100	INGG
IPSGT	Pentode	O.	5 Y	1.4	0.05	3	10	. 007	R.F. Amplifer	90	0	90	0.7	2.3	800000	800	640			IPSGI
105GT	Tetrode Power Amplifier	0.	6AF	1.4	0.1	-	-	-	Class-A Amp.	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{array}{\|l\|} \hline-5.0 \\ -4.5 \end{array}$	$\begin{aligned} & 85 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.2 \\ & 9.5 \end{aligned}$	$\begin{array}{r} 70000 \\ 75000 \\ \hline \end{array}$	$\begin{aligned} & 1950 \\ & 2100 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 9000 \\ & 8000 \end{aligned}$	$\begin{array}{r} 250 \\ 270 \\ \hline \end{array}$	1QSGT
IR4/1294	U.h.I. Diode	1.	4A.H	1.4	0.15	--		-	Rectifiter	Max. r.m.s. voltage per plate -30					Max. d.c. oulout current $-340 \mu \mathrm{a}$.					1R4/1294
ISA6GT	Medium Cut-off Pentode	0.	6CA	1.4	0.05	5.2	8.6	0.01	R.F. Amplifiar	90	0	67.5	0.68	2.45	820020	970		,		ISA6GT
1586GT	Diode Penlode	0.	6 CB	1.4	0.05	3.2	3	0.25	Class-A Amp.	90	0	67.5	0.38	1.45	700000	665				15B6GT
ISEGT	Diode Peniode	0.	6 Ca	1.4	0.05		3		R.C. Amplifer	90	0	90	Screan resistor $5 \mathrm{meq} .$, qrid 10 meq.					1 meg.	$110^{2}$	ISB6GY
ITSGT	Beam Power Amplifiar	0.	6AF	1.4	0.05	4.8	8	0.50	Class-A Amp.	90	-6.0	90	1.4	6.5	--	1150	--	14000	170	1T5GT
387/1291	U.h.f. Twin Triode	1.	7BE	$2.8{ }^{\circ}$	0.11	1.4	2.6	2.6	Class-A Amp.	90	0	-	-	5.2	11350	1850	21		- 3	387/1291
1293	U.h.f. Triode	$t$.	4AA	1.4	0.11	1.7	3.0	1.7	Class-A Amp.	90	0			4.7	10750	1300	14	-	- 1	1293
3D6/1299	U.h.f. Tetrode	L.	68B	$2.8{ }^{3}$	0.11	7.5	6.5	0.30	Class-A Amn.	135	-6	90	0.7	5.7	-	2200		13000	500	306/1299
3E6	R.F. Pentode	t.	7 CJ	$\begin{array}{\|l\|} \hline 1.4 \\ 2.8 \end{array}$	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$	5.5	7.5	0.007	Class-A Amp.	90	0	90	1.3	3.8	300000	2100	-	-	- 3	3E6
RK42	Triode Amplifer	5.	40	1.5	0.6		-		Class-A Amp.		Characteristics same as Type 30-Table VI									RK42
RK43	Twin Triode Amplifler	5.	6 C	1.5	0.12				Class-A Amp.	135	-3	-	-	4.5	14500	900	13	-	- R	RK43

table ix－high－voltage heater tubes

Type	Name	Base	Socket Connec－ tions	Heater		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	$\left\|\begin{array}{c} \text { Plafe } \\ \text { Supply } \\ \text { Volts } \end{array}\right\|$	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Yolts } \end{aligned}$	Screen Current Ma．	PlateCurrent Ma．	$\begin{array}{\|c\|} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Transcon－ ductance Micromhos	$\begin{aligned} & \text { Amp. } \\ & \text { Factor } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Load } \\ \text { Resisfance } \\ \text { Ohms } \end{array}$	Power Outpu Watts	Type
				Volts	Amp．	In	Out	Plate－ Grid												
12A5 ${ }^{\text {8 }}$	Pentode Power Amplifier	M．	7F	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	9.0	9.0	0.3	Class－A Amp．${ }^{6}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline-15 \\ -25 \end{array}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & 3 / 6.5 \\ & 8 / 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 / 19 \\ & 45 / 48 \\ & \hline \end{aligned}$	$\begin{aligned} & 50000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2400 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 4500 \\ & 3300 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 3.4 \end{aligned}$	12A5
12A6	Beam Power Amplifier	0.	7AC	12.6	0.15				Class－A Amp．	250	－12．5	250	3.5	30	70000	3000		7500	3.4	12 A 6
12A7	Rectifier－Amplifier	M．	7K	12.6	0.3				Class－A Amp．	135	－13．5	135	2.5	9.0	102000	975	100	13500	0.55	12 A 7
12A8GT	Heptode	0.	8A	12.6	0.15	9.5	12	0.26	Converter	Characteristics same as 648－Table I										12A8GT
12AH7GT	Twin Triode	0.	8 BE	12.6	0.15	Each Triode Sect．			Class－A Amp．	180	－6．5			7.6	8400	1900	16			12AH7GT
12 B 6 M	Diode Triode	0.	6 Y	12.6	0.15		－		Class－A Amp．	250	－ 2.0			0.9	91000	1100	100			1286M
1287 ML	Pentode Amplifier	0.	8 V	12.6	0.15				Class－A Amp．	250	$-3.0$	100	2.6	9.2	800000	2000		$\cdots$		$12 \mathrm{B7ML}$
12B8GT ${ }^{8}$	Triode－Pentode	0.	8 T	12.6	0.3	Triode Section Pentode Section			Class－A Amp．	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{\|l\|} \hline-1 \\ \hline \end{array}$	100	2	$\begin{aligned} & 0.6 \\ & 8 \end{aligned}$	$\begin{array}{r} 73000 \\ 170000 \end{array}$	$\begin{array}{r} 1500 \\ 2100 \\ \hline \end{array}$	$\begin{aligned} & 110 \\ & 360 \end{aligned}$	二		12B8GT
12 Cs	Duplex－Diode Pentode	0.	8 E	12.6	0.15	6	9	． 005	Class－A Amp．	Characteristics same as 688－Table I										$12 \mathrm{C8}$
12ESGT	Triode Amplifior	0.	69	12.6	0.15	3.4	5.5	2.60	Class－A Amp．	250	－13．5			50	－ 1	1450	13.8	－	$\cdots$	12E5GT
12F5GT	Triode Amplifier	0.	5M	12.6	0.15	1.9	3.4	2.40	Class－A Amp．	Characteristics same as 6SF5－Table 1										12F5GT
$12 \mathrm{G7G}$	Duplex－Diode Triode	0.	7 V	12.6	0.15				Class－A Amp．	250	－ 3.0			－	58000	1200	70			12G7G
$12 \mathrm{H6}$	Twin Diodo	0.	70	12.6	0.15			－	Rectifor	Characteristics same as 6 6 Ho －Table 1										12H6
12J5GT	Triode Amplifler	0.	60	12.6	0.15	3.4	3.6	3.40	Class－A Amp．	Characteristics same as 615 －Table 1										12 J 5 GT
$12 \mathrm{J7GT}$	Shapp Cut－off Pentode	0.	7 R	12.6	0.15	4.2	5.0	3.8	Class－A Amp．	Characteristics same as 6 J7－Table I										12 J 7 GT
12K7GT	Remote Cut－off Pentode	0.	7R	12.6	0.15	4.6	12	． 005	R．F．Amplifier	Characteristics same as 6K7－rable 1										$12 \mathrm{K7Gr}$
$12 \mathrm{K8}$	Triode Hexode Converier	0.	8 K	12.6	0.15			－	Converter	Characteristics same as 6 K8－Table 1										12K8
12L8GT	Twin Pentode	0.	8BU	12.6	0.15	5	6	0.70	Class－A ${ }_{1}$ Amp．	180	－ 9.0	180	2.8	13.0	160000	2150		10000	1.0	12L8GT
1207 GT	Duplex－Diode Triode	0.	7 V	12.6	0.15	2.2	5	1.60	Class－A Amp．	Characteristics same as 607－Table 1										1297GT
1258 GT	Triple－Diode Triode	0.	BCB	12.6	0.15	2.0	3.8	1.2	Class－A Amp．	250	－ 2.0	－		0.9	91000	1100	100		－	1258GT
12547	Heptode	0.	8R	12.6	0.15	9.5	12	0.13	Converter	Characteristics same as 65A7－Table I										12SA7
125 C 7	Twin Triode	0.	8 S	12.6	0.15	2.2	3.0	2.0	Class－A Amp．	Characteristics same as 6SC7－Table 1										125 C 7
12555	High－$\mu$ Triode	0.	6AB	12.6	0.15	4	3.6	2.40	Class－A Amp．	Characteristics same as 6SF5－Table 1										125 F 5
12557	Diode Variable－$\mu$ Pentode	0.	7AZ	12.6	0.15	5.5	6.0	． 004	Class－A Amp．	Characteristics same as 6SF7－Table 1										12557
$125 \mathrm{G7}$	Medium Cut－off Pentode	0.	8BK	12.6	0.15	8.5	7.0	． 003	Class－A Amp．	Characteristies same as 6SG7－Tabla ！										125G7
125 H 7	Sharp Cut－off Pentode	0.	8BK	12.6	0.15	8.5	7.0	． 003	H－F Amplifier	Characteristics same as 65H7－Table 1										125H7
12517	Sharp Cut－off Pentade	0.	8 N	12.6	0.15				Class－A Amp．	Charactaristics same as 65J7－Table 1										12517
12SK7	Remote Cut－of Pentode	0.	8 N	12.6	0.15	6.0	7.0	． 003	R．F．Amplifer	Characteristics same as 6SK7－Table I										125K7
12SL7GT	Twin Triode	0.	8BD	12.6	0.15		－		Class－A Amp．	Characteristics same as 65L7 GT－Table il										125L7GT
12SN7GT	Twin Triode	0.	8BD	12.6	0.3				Class－A Amp．	Characteristics same as 65N7GT－Table II										12SN7GT
12507	Duplex－Diode Triode	0.	80	12.6	0.15	3.2	3.0	1.60	Class－A Amp．	Characteristics same as 6507－Table 1										12507
12SR7	Duplex－Diode Triode	0.	80	12.6	0.15	3.6	2.8	2.40	Class－A Amp．	Characteristics same as 6R7－Table 1										12SR7
125 W 7	Duplex－Diode Triode	0.	80	12.6	0.15	3.0	2.8	2.4	Class－A Amp．	250	$-9$		三－	9.5	8500	1900	16			125 W 7
$125 \times 7$	Twin Triode	0.	8BD	12.6	0.3	3.0	0.8	3.6	Class－A Amp．${ }^{\text {i }}$	250	－8		－	9	7700	2600	20	－		125x7
$125 Y 7$	Heptode Converter	0.	8R	12.6	0.15	Osc．－Grid leak 20000 ohms			Converter	250	－ 2	100	8.5	3.5	1000000	450		－		125Y7
14A4	Triode Amplifier	1.	5AC	14	0.16	3.4	3.0	4.00	Class－A Amp．	Characteristics same as 7A4－Table III										14A4
14A5	Beam Power Amplifior	1.	6AA	14	0.16				Class－A Amp．	250	－12．5	250	3．5／5．5	30／32	70000	3000	－	7500	2.8	14A5
$\begin{aligned} & 14 A 7 / \\ & -12 B 7 \\ & \hline \end{aligned}$	Remote Cut－off Pentode	L．	8 V	14	0.16	6.0	7.0	． 005	Class－A Amp．	250	－ 3.0	100	2.6	9.2	800000	2000	－	－		$\begin{array}{\|l\|} \hline 14 A 7 / \\ 12 B 7 \\ \hline \end{array}$
14AF7	Twin Triode	1.	BAC	14	0.16	2.2	1.6	2.30	Class－A Amp．	250	$-10$		－	9	7600	2100	16	－		14AF7
14B6	Duplex－Diode Triode	L．	8W	14	0.16	－	－		Class－A Amp．	Characteristics same as 786－Table III										1486
1488	Pentogrid Converiter	L．	$8 \times$	14	0.16	$\mathrm{lc} 2=4 \mathrm{Ma}$ ．			Convertar	Characteristics same as 7B8－Table III Characteristics same as 6V6－Table I										1488
14C5	Beam Power Amplifier	L．	6AA	14	0.24		－1	－	Class－A Amp．											14 CS

TABLE IX - HIGH-VOLTAGE HEATER TUBES—Continued


TABLE IX-HIGH-VOLTAGE HEATER TUBES-COntinued

tagle X-5pecial receiving tubes

Type	Name	Base	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Uso	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	PlateCurrent Ma.	$\left\lvert\, \begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}\right.$	Transconductance Micromhos	Amp. Factor	Load ResistanceOhms Ohm	Power   Output   Wafts	Type
				Volls	Amp.	1 n	Out	Plale. Grid												
00.A ${ }^{\text {? }}$	Triode Deteclor	M.	40	5.0	0.25	3.2	2.0	8.50	Grid-Leak Det.	45				1.5	30000	666	20	$\cdots$	$\square$	OO-A
O1-A	Triode Detector Amplifler	M.	4 D	5.0	0.25				Class-A Amo.	135	-9.0			3.0	10000	800	8.0			01-A
3Aagt	Diode Triode Pentode	0.	8AS	1.4	0.1	2.6	4.2	2.0	Class A Triode	90	0			0.15	240000	275	65		-	3ABGT
				2.8	0.05	3.0	10.0	0.012	Class-A Pentode	90	0	90	0.3	1.2	600000	750				
385GT	Beom Power Amplifier	0.	7AP	$\left[\begin{array}{l} 1.4 \\ 2.8 \end{array}\right.$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$				Class-A Amp.	67.5	- 7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 6.7 \end{aligned}$	100000	$\begin{aligned} & 1650 \\ & 1500 \end{aligned}$	-	5000	$\begin{aligned} & 0.2 \\ & 0.18 \end{aligned}$	385GT
3C5GT	Power Output Pentode	0.	740	$\begin{array}{r} 1.4 \\ 2.8 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$			-	Class-A Amp.	90	- 9.0	90	1.4	6.0	-	$\begin{aligned} & 1550 \\ & 1450 \end{aligned}$	-	$\begin{array}{r} 8000 \\ 10000 \\ \hline \end{array}$	$\begin{aligned} & 0.24 \\ & 0.26 \end{aligned}$	3C5GT
$3 \mathrm{C6}$	Twin Triode	L.	78w	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$				Class-A Amp.	90	0	-	-	4.5	11200	1300	14.5	-	-	$3 \mathrm{C6}$
3154	Power Amplifiar Pentode	$\underline{L}$	6BA	2.8	0.05				Class-A Amo.	90	- 9.0	90	1.8	9.0	110000	1600		6000	0.30	3LE4
3LF4	Power Amplifier Tetrode	L.	688	$\begin{array}{\|l\|} \hline 1.4 \\ \hline 2.8 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$				Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 75000 \\ & 89000 \end{aligned}$	$\begin{aligned} & 2200 \\ & 2000 \end{aligned}$	-	$\begin{aligned} & 8000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.23 \end{aligned}$	3LF4
305GT	Beam Power Amplifier	O.	TAQ	$\begin{array}{\|l\|} \hline 1.4 \\ \hline 2.8 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	Parallel Filaments Series Filaments			Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 2100 \\ & 1900 \\ & \hline \end{aligned}$	-	8000	$\begin{aligned} & 0.27 \\ & 0.25 \end{aligned}$	3Q5GT
4A6G	Twin Triode Amplifier	0.	81	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.12 \end{aligned}$	Triodes Parallel			Class-A Amp.	90	- 1.5	-		2.2	13303	1500	20	-	,	4A6G
						Both Sections			Class-B Amp.	90	0	-		4.6				3000	1.0	
6F4	Acorn Triode	A.	7BR	6.3	0.225	2.0	0.6	1.90	Class-A Amp.	80	150*			13.0	2900	5800	17	-	-	6 F4
614	U.H.F. Triode	A.	7BR	6.3	0.225	1.3	0.5	1.6	Class-A Amp.	B0	150*			9.5	4400	6400	28	-		614
10	Triode Power Amplifier	M.	4D	7.5	1.25	4.3	3.0	7.00	Class-A Amp.	425	-37.0			18.0	5000	1600	8.0	10200	1.6	10
11/12 ${ }^{7}$	Triode Dotactor Amplifier	M.	4F/4D	1.1	0.25				Cliss-A Amp.	135	-10.5			3.0	15000	440	6.6	二	-	11/12
$20^{7}$	Triode Power Amblifier	5.	4 D	3.3	0.132	2.3	2.3	4.10	Clasi-A Amo.	135	-22.5	$\square$		6.5	6300	525	3.3	6530	0.11	20
$22^{7}$	Tetrode R.F. Amplifer	M.	4K	3.3	0.132	3.5	10	0.02	Class-A Amp.	135	- 1.5	67.5	1.3	3.7	325000	500	160	-		22
26	Triade Amplifiar	M.	40	1.5	1.05	2.8	2.5	8.10	Class-A Amp.	180	-14.5		-	6.2	7300	1150	8.3	-	+	26
$40^{7}$	Triode Vollage Amplifer	M.	4D	5.0	0.25	2.8	2.2	2.00	Class-A Amp.	180	$-3.0$		-	0.2	150000	200	30	-		40
50	Triode Powar Amplifier	M.	4D	7.5	1.25	4.2	3.4	7.15	Class-A Amp.	450	-84.0		--	55.0	1830	2100	3.8	4350	4.6	50

table X-special receiving tubes-Continued

Typo	Nome	ecse	Socke: Connactions	fii. or Hoator		Capacitance $\mu \mu \mathrm{fd}$.			Use	$\begin{array}{\|l\|} \text { Plate } \\ \text { Supply } \\ \text { Volis } \end{array}$	Grid Bias	$\begin{array}{\|c\|} \text { Screen } \\ \text { Volts } \end{array}$	Screen Currenl Ma.	Plate Current Ma.	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{array} \\ \hline \end{array}$	Transconductance Mieromhos	Amp. Factor		Power Watts$\square$	Type
				¢ volts	Amp.	In	Out	PlateGrid												
71.A	Triode Power Amplifier	M.	4D	5.0	0.25	3.2	2.9	7.50	Class-A Amp.	180	-43.0	-	二二	23.0	1750	1700	3.0	4800	0.79	71.4
996	Triode Detector Amplifer	S.	40	3.3	0.063	2.5	2.5	3.30	Closs-A Amp.	90	- 4.5	-	-	2.5	15500	425	6.6		--	99
112A ${ }^{\text {T }}$	Triode Delector Amplifier	M.	4D	5.0	0.25				Class-A Amp.	180	-13.5	-	$\cdots$	7.7	4700	1800	0.5		-	112A
$\begin{aligned} & 18281 \\ & 4828 \\ & \hline \end{aligned}$	Triode Amplifer	M.	4D	5.0	1.25	-	-	-	Class-A Amp.	250	-35.0	-	-	18.0	-	1500	5.0	-	-	$\begin{aligned} & 1828 / \\ & 4828 \end{aligned}$
183/483 ${ }^{\text {7 }}$	Power Triode	m .	4D	5.0	1.25	-	-	-	Class-A Amp.	250	-60.0	-	-	25.0	18000	1800	3.2	4500	2.0	183/483
$485^{7}$	Triode	S.	5A	3.0	1.3		-	$=$	Class-A Amp.	180	- 9.0	-	$\cdots$	6.0	9300	1350	12.5	$\square$		485
864	Triode Amplifer	5.	40	1.1	0.25				Class-A Amp.	90	-4.5	-	-	2.9	13500	610	8.2			864
									Class-A Amp.	250	-3.0	100	0.7	2.0	1.5 meg .	1400	2000		-	
954	Amplifier	A.	3bB	6.3	0.15	3.4	3.0	0.007	Bias Detector	250	-6.0	100	$\square$	Plate curre	entio be adju	justed to 0.1	na. with	no signal		954
955	Triode Defector,	A.								250	- 7.0	-	$\cdots$	6.3	11400	2200	25	-		
955	Amplifier, Oscillator	A.	5BC	6.3	0.15	1.0	0.6	1.40	Class-A Amp.	90	- 2.5		-	2.5	14700	1700	25			955
956	Voriable- $\mu$ Pentode	A.	5BB	6.3	0.15	3.4	3.0	0.007	Closs-A Amp.	250	-2.0   -10.0	100	2.7	6.7	700000	1800	1440		-	956
Os	R.F. Amplifier		SBE	6.3	0.15	3.4	3.0		Mixer	250	$-10.0$	100				Oscillator peor	ak volts	-7 min.		956
957	Triode Detector, Amplifier, Oscillator	A.	5BD	1.25	0.05	0.3	0.7	1.20	Closs-A Amp.	135	$-5.0$	-	-	2.0	20800	650	13.5	-	-	957
$\begin{aligned} & 958 \\ & 958-A \end{aligned}$	Triode A.F. Amplifier, Oscillator	A.	5BD	1.25	0.1	0.6	0.8	2.60	Class-A Amp.	135	- 7.5	-	-	3.0	10000	1200	12	-	-	$\begin{aligned} & 958 \\ & 958-\mathrm{A} \end{aligned}$
959	Penlode Detector, Amplifier	A.	5BE	1.25	0.05	1.8	2.5	0.015	Class-A Amp.	145	- 3.0	67.5	0.4	1.7	800000	600	480	-	-	959
7E5/1201.	U.h.f. Triode	1.	8BN	6.3	0.15	3.6	2.8	1.50	Class-A Amp.	180	$-3$		-	5.5	12000	-	36	-	-	7E5/1201
7C4/1203	U.h.f. Diode	1.	4AH	6.3	0.15				Rectifar			x. r.m.s.	voltage-1		Max.	d.e. output e	current-	8 ma .		7C4/1203
$\begin{aligned} & 7 \mathrm{AB71} \\ & 1204 \\ & \hline \end{aligned}$	Sharp Cut-off Pentode	1.	8 BO	6.3	0.15	3.5	4.0	0.06	Class-A Amp.	250	- 2	100	0.6	1.75	800000	1200	-	-	-	$\begin{aligned} & 7 \mathrm{AB7/} \\ & 1204 \\ & \hline \end{aligned}$
1276	Triode Power Amplifier	M. 1	140	4.5	1.14				Class-A Amp.					haracteristi	tics similar 90	-6A3				1276
1609	Pentode Amplifor	5.	5B	1.1	0.25	-			Class-A Amp.	135	- 1.5	67.5	0.65	2.5	400000	725	300			1609
9004	U.h.t. Diode	A.	48.	6.3	0.15	-	-	-	Delector			Max.	a.c. vollorg	-117.	Max. d.c. out	utput current-	-5 ma.			9004
9005	U.h.f. Diode	A.	5BG	3.6	0.165	-			Datector			Max.	a.c. voltag	-117.	Max. dic. out	utput currant-	-1 ma.			9005
EF-50	Sharp Cul-off Pentode	1.	9 C	6.3	0.3	8	5	0.007	I.F.-R.F. Amp.	250	150*	250	3.1	10	600000	6300		-		EF-50
$\begin{aligned} & \hline \text { GL-2C44 } \\ & \text { GL-464A } \\ & \hline \end{aligned}$	U.h.f. Triode	O.	, Fig. 17	6.3	0.75	-	-	-	Closs-A Amp. and Modulator	250	100*	-	-	25.0	--	7000	-	-	-	$\begin{aligned} & \text { GL-2C44 } \\ & \text { GL-464A } \end{aligned}$
$\begin{aligned} & G L-446 \mathrm{~A} \\ & G L-446 \mathrm{~B} \\ & \hline \end{aligned}$	U.h.f. Triode	0.	Fig. 19	6.3	0.75	-	-	-	Oscillator, Amp. or Converter	250	200*	-	-	15.0	-	4500	45	-	-	$\begin{aligned} & \text { GL-446A } \\ & \text { GL-446B } \end{aligned}$
$\begin{aligned} & 559 \\ & \text { GL-559 } \\ & \hline \end{aligned}$	U.h.f. Diode	0.	Fig. 18	6.3	0.75	-	-	-	Detector or trans. line switch	5.0	-	-	-	24.0	-	-	-	-	-	$\begin{aligned} & 559 \\ & G L-559 \end{aligned}$
NU-2C35	Special Hi-Mu Triode	0.	Fig. 38	6.3	0.3	5.2	2.3	0.62	Shunt Voltage Regulator	8000	-200	-	-	5.0	525000	950	500	-		NU-2C35
VT52	Triode	M. ${ }^{\text {i }}$	- 4D	7.0	1.18	5.0	3.0	7.7	Class-A, Amp.	220	-43.5		-	29.0	1650	2300	3.8	3800	1.0	VT52
$\times 6030$	Diode	1.	Fig. 4	3.0	0.6	-	-1		Noise Diode	90	-		-	4.0	-	-	-	- -		$\times 6030$

TABLE X-SPECIAL RECEIVING TUBES-Continued

Type	Nome	Bose	Socke 1 Connecfions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Piate Supply Yolis	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	PlateResistanceOhms	Transconductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Outpul Walts	Typo
				Voits	Amp.	In	Out	PlateGrid												
XX8	Twin-Triode Frequency Converter	L.	Fig. 9	2.8/	$\begin{aligned} & 0.05 / \\ & 0.10 \end{aligned}$			-	Converter ${ }^{2}$	$90^{1}$	0	-	-	$\begin{aligned} & 4.5^{4} \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11200^{4} \\ & 11200^{5} \end{aligned}$	$\begin{array}{r} 13004 \\ 1300^{5} \\ \hline \end{array}$	14.51	-	-	XXB
				$\begin{gathered} 3.2^{3} / 4 \\ 1.6 \end{gathered}$	$\underline{\square}$						- 3	-	-	$\begin{aligned} & 1.4^{4} \\ & 1.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 19004 \\ & 1900^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 760^{4} \\ & 760^{5} \\ & \hline \end{aligned}$	14.51	-	-	
XXFM	Twin-Diode Triode	L.	8BZ	6.3	0.3	-			Class-A Amp.	250	-1	$\square$	-	1.9	6700	1500	100	-	$\square$	XXFM
XXFm	Twin-Diode Triode	4.	8 Bz	6.3	0.3					100	0		-	1.2	85000	1000	85			
* Cathode resistor-ohms.		1 Both sections.   : Section No. 2 recommended for h.f.o.						${ }^{3}$ Dry battery operation.   4 Section No. 1.			${ }^{5}$ Section No. 2.   - Same as X99. Type V99 is same, but socket connections are $4 E$.							${ }^{7}$ Discontinued.		

TABLE XI-MINIATURE RECEIVING TUBES
Other miniature types in Tables XIII and XV

Type	Name	Base	Sockel Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Sereen } \\ \text { Volts } \end{gathered}$	Screen Curren 1 Ma.	Plate Curren Ma.	$\begin{array}{\|c\|} \hline \text { Plate } \\ \text { Resistonce } \\ \text { Ohms } \end{array}$	Transconductance Micromhos	Amp.   Factor	$\left\lvert\, \begin{gathered} \text { Load } \\ \text { Ressistance } \\ \text { Ohms } \end{gathered}\right.$	Power Outpul Walts	Prototyp
				Volts	Amp.	In	Out	PlatoGrid												
143	H. F. Diode	B.	5AP	1.4	0.15	-	-	-	Detector F.M. Discrim.		Max. a.c. voltage per plato-117.				. Max. output current-0.5 ma.					-
114	Sharp Cut-off Pentode	B.	6AR	1.4	0.05	3.6	7.5	. 008	Class-A Amp.	90	0	90	2.0	4.5	350000	1025	-			INSGT
1R5	Pentagrid Converter	B.	7AT	1.4	0.05	-		-	Convertor	90	0	67.5	3.0	1.7	500000	300	Grid No. 1100000 ohms			IATGT
154	Pentagrid Power Amp.	B.	7 AV	1.4	0.1	-			Class-A Amp.	90	- 7.0	67.5	1.4	7.4	100000	1575		8000	0.270	195GT
		B.		1.4	0.05				Class-A Amp.	67.5	0	67.5	0.4	1.6	600000	625				
155	Diode Pentode	B.	6AU	1.4	0.05				R-Coupled Amp.	90	0	90	Screen resistor 3 meg., grid 10 meg.					1 mag .	0.050	
174	Variable- $\mu$ Pentode	B.	6AR	1.4	0.05	3.6	7.5	0.01	Class-A Amp.	90	0	67.5	1.4	3.5	500000	900				1P5GT
104	Sharp Cut-off Pentode	B.	6AR	1.4	0.05	3.6	7.5	0.01	Class-A Amp.	90	0	90	0.5	1.6	1500000	900	-	-	-	INSGT
105	Diode Penlode	B.	6BW	1.4	0.05			-	Class-A Amp.	67.5	0	67.5	0.4	1.6	600000	625			-	-
2 C 51	Twin Triode	8.	8 CJ	6.3	0.3	2.2	1.0	1.3	Class-A1 Amp.	150	- 2			8.2	-	5500	35		-	$7 \mathrm{F8}$
2E30	Beam Power Pentode	B.	7 CO	6.0	0.7	10	4.5	0.5	Class-A ${ }^{\text {a }}$ Single	250	450*	250	$7.4^{2}$	$44^{2}$	63000	3700	$40^{5}$	4500	4.5	
									Class-A1 Amp. ${ }^{3}$	250	225*	250	14.8:	88.			80 -	$9000{ }^{\circ}$	9	-
									Clast-AB ${ }^{\text {a }}$ Amp. ${ }^{\text {a }}$	250	-25	250	$13.5{ }^{2}$	$80^{2}$	-	-	486	$8000{ }^{\circ}$	12.5	
									Class-AB2 ${ }^{\text {Amp }}{ }^{3}{ }^{\text {a }}$	250	-30	250	$20{ }^{2}$	1202	-	-	$40^{\circ}$	$3800{ }^{\circ}$	17	
3 A4	Power Amplifer Pentode	B.	7BB	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{gathered} 0.2 \\ 0.1 \end{gathered}$	4.8	4.2	0.34	Class-A Amp.	$\begin{aligned} & 135 \\ & 150 \end{aligned}$	$\begin{array}{r} -7.5 \\ -8.4 \end{array}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 14.9^{2} \\ & 14.1^{2} \end{aligned}$	$\begin{gathered} 90000 \\ 100000 \end{gathered}$	1900	-	8000	$\begin{aligned} & 0.6 \\ & 0.7 \\ & \hline \end{aligned}$	-
3A5	H.F. Twin Triode	B.	7BC	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.22 \\ 0.11 \\ \hline \end{array}$	0.9	1.0	3.20	Class-A Amp.	90	- 2.5	-	-	3.7	8300	1800	15	-	-	-
304	Power Amplifer Pentode	B.	7BA	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \\ & \hline \end{aligned}$	Parallel filaments Serias Filaments			Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 2.1 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 100000 \\ 120000 \\ \hline \end{array}$	$\begin{array}{r} 2150 \\ 2000 \\ \hline \end{array}$	-	10000	$\begin{aligned} & 0.27 \\ & 0.24 \\ & \hline \end{aligned}$	305GT
354	Power Amplifior Pentode	B.	78A	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 0.05 \\ \hline \end{array}$	Parallel Filaments   Sories Filaments			Class-A Amp.	90	- 7.0	67.5	$\begin{aligned} & 1.4 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.4 \\ 6.1 \\ \hline \end{array}$	100000	$\begin{aligned} & 1575 \\ & 1425 \end{aligned}$	-	8000	$\begin{aligned} & 0.27 \\ & 0.235 \end{aligned}$	3Q3GT
3V4	Power Amplifier Penlode	B.	6BX	1.4	0.1	Parallel Filaments Serias Filaments			Class-A Amp.	90	- 4.5	90	2.1	9.5	100000	2150		10000	0.27	305GT
				2.8	0.05				Class-A Amp.	90	-4.5	90	1.7	7.7	120000	2000		10000	0.24	
6AB4	Triode R.F. Amp.	B.	5CE	6.3	0.15	2.2	0.5	1.5	Class-A Amp.	250	- 2	-	-	10	-	5500	55	-	-	$\begin{array}{\|c\|} \hline \text { Single unit } \\ 12 \mathrm{AT} 7 \\ \hline \end{array}$
6AG5	Sharp Cut-oft Pentode	B.	7BD	6.3	0.3	-	-	-	Class-A Amp.	$\begin{aligned} & 250 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 200^{*} \\ & 100^{*} \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 800000 \\ & 300000 \\ & \hline \end{aligned}$	$\begin{aligned} & 5000 \\ & 4750 \\ & \hline \end{aligned}$		-	-	6SH7GT
6AH6	Sharp Cut-off Pentode	B.	7CC	6.3	0.45	10	2	0.03	Pentode Amp.	300	$\frac{160^{*}}{160^{*}}$	150	2.5	10	500000	9000	$=$	$\cdots$	-	
SANG	Shap Curor Ponnodo					10	2	0.03	Triode Amp.:	150	160*	-	-	12.5	3600	11000	40	-		6AC7
6AJ5	Sharp Cut-off Pentode	B.	7PM	6.3	0.175	-	-	-	R.F. Amplifier	28	200*	28	1.2	3.0	90000	2750	250	280006		-
									Class-AB Amp. ${ }^{3}$	180	- 7.5	75	2	7	-	$\pm$	-	$28000{ }^{5}$	1.0	
	Sharp Cut-off Pentode	B.	7BD							180	200**	120	2.4	7.7	690000	5100	3500	-	-	
6 aks	Sharp Cul-off Pentode	B.		6.3	0.175	4.3	2.1	0.03	R.F. Amplifier	150	330**	140	2.2	7.0 7.5	420000   340000	4300   5000	$\begin{array}{r}1800 \\ \hline 1700\end{array}$	=	$\underline{\square}$	

TABLE XI-MINIATURE RECEIVING TUBES-Continued

Type	Name	Base	Socke ${ }^{+}$ Conneclions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Us*	Plate Supply Volts	Grid Bios	Screen	Screen Current Ma.	Plate Current Ma.	$\begin{array}{\|c\|} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Transconductance Micromhas	Amp. Factor	$\begin{array}{\|c} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Power Output Wafts	Prototype	
				Volts	Amp.	In	Out	PlateGrid													
6AK6	Power Amplifier Pentode	8.	7BK	6.3	0.15	3.6	4.2	0.12	Class-A Amp.	180	- 9.0	180	2.5	15.0	200000	2300		10000	1.1		
6ALS	U.h.f. Twin Diode	B.	6 BT	6.3	0.3				Detector			Max. r.m.s. voltage-150. Max. d.e. output current-10 ma. ${ }^{1}$								6H6GT	
GANS	Power Amp. Pentode	B.	780	6.3	0.5	9.0	4.8	0.05	Class-A1 Amp.	120	- 6	120	12	35	12500	8000				6AG7	
GANS	Twin Diode	B.	7BJ	6.3	0.2		-		Detector	R.m.s. voltage per plate $=75$ volts; d.c. output $=\mathbf{3 . 5} \mathrm{ma}$. with $\mathbf{2 5 0 0 0}$ ohms and $8 \mu \mu \mathrm{fl}$. load; peak current per plate $=10$ ma.; peak inverse voltage $=210$.										-	
		B.	782	6.3	0.45	7.6	6.0	0.35	Class-A, Amp.	180	-8.5	180	$4.0{ }^{2}$	30 :	58000	3700	29 :	5500	2.0	6V6GT	
6AO5	Beom Power Yotrode	B.	7 BZ	6.3	0.45	7.6	6.0	0.35		250	-12.5	250	$7.0{ }^{2}$	47:	52000	4100	45.	5000	4.5		
									Class-A Triode	250	- 3.0			1.0	58000	1200	70			6T7G	
A06	lode	${ }^{\text {B. }}$	781	6.3	0.15	1.7	1.5	1.80		100	- 1.0	-		0.8	61000	1150	70				
6AR5	Pentode Powor Amp.	B.	6CC	6.3	0.4		-		Class-A Amp.	250	-18	250	$5.5{ }^{2}$	$33^{2}$	68800	2300		7800	3.4	6K6GT	
										250	-16.5	250	5.5 ?	35	65000	2400	-	7000	3.2		
6AS5	Beam Pentode	B.	7 CV	6.3	0.8	12	6.2	0.6	Class- $A_{1}$ Amp.	150	-8.5	110	2/8.5	35/36		5600		4500	2.2	-	
6AS6	Sharp Cut-off Pentode	B.	7 CM	6.3	0.175	4.0	3.0	0.02	Class-A Amp.	120	2	120	3.5	5.5	-	3500	-				
6AT6	Duplex Diode Triode	B.	7B7	6.3	0.3	2.3	1.1	2.10	Class-A Amp. Class-A Amp.	250	- 3			1.0	58000	1200	70	-		60761	
GAU6	Sharp Cut-off Pentode	B.	7BK	6.3	0.3	5.5	5.0	. 0035		250	-1	150	4.3	10.8	2000000	5200				65H7GT	
GAV6	Duodiode Hi-mu Triode	B.	78 T	6.3	0.3				Class-A A Amp.	250	2			1.2	62500	1600	100			6SO7GT	
6896	Remote Cut-off Pentode	B.	7CC	6.3	0.3	5.5	5.0	. 0035		250	68*	100	4.2	11	1500000	4400				6SG7GT	
68A7	Pentogrid Converter	B.	${ }^{\text {BCT }}$	6.3	0.3	9.5	8.3		Convertior	250	- 1	100	10	3.8	1000000	3.5		$\square$		65B7Y	
6806	Remote Cut-off Pentode	B.	7CC	6.3	0.3		-		Class-A Amp.	100	- 1	100	5	13	120000	2350			$\square$	6SK7GT	
6806	Remote Cut-oft Pentode									250	- 3	100	3.5	9	700000	2000					
GEE6	Pentagrid Converter	B.	7 CH	6.3	0.3	Ose. Grid $50000 \Omega$			Converter	250	- 1.5	100	7.8	3.0	1000000	475				6SATGT	
68F6	Duplex-Diode Triode	B.	7BT	6.3	0.3	1.8	1.1	2.0	Class-A $\mathrm{A}_{1}$ Amp.	250	- 9			9.5	8500	1900	16	10000	-	6SR7GT	
68H6	Sharp Cut-off Pentode	B.	7 CM	6.3	0.15	5.4	4.4	0.0035	Class-A ${ }_{1}$ Amp.	250	- 1	150	2.9	7.4	1400000	4600		-		6S57GT	
6856	Remote Cut-off Pentode	B.	7CM	6.3	0.15	4.5	5.0	. 0035	Class-A, Amp.	250	- 1	100	3.3	9.2	1300000	3800		-			
$6{ }_{6} 4$	Triode Amplifier	B.	6BG	6.3	0.15	1.8	1.3	1.60	Closs-A ${ }_{1}$ Amp.	250	- 8.5			10.5	7700	2200	17			6J5GT	
654	U.h.f. Grounded-Grid R.F. Amplifier	B.	7BQ	6.3	0.4	5.5	0.24	4.0	Grounded-Grid   Clast $A_{1}$ Amp.	150	200*	-		$\begin{aligned} & \hline 15.0 \\ & \hline 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4500 \\ & 5000 \end{aligned}$	$\begin{array}{\|l\|} \hline 12000 \\ \hline 11000 \\ \hline \end{array}$	55	-		—	
										100	100*										
856	Twin Triode	B.	7BF	6.3	0.45	2.2	0.4	1.6	Closs-A Amp. Mixer, Oscillator	100		-	-	8.5	7100	5300	38	-		-	
6 N 4	U.h.f. Triode Amplifior	8.	7CA	6.3	0.2	3.0	1.6	1.10	Class-A Amp.	180	- 3.5			12.0		6000	32	-	-	-	
$6 \mathrm{~T} /$	Triple-Diode Triode	8.	9E	6.3	0.45	1.5	1.1	2.4	Class-A, Amp.	250	3	—	-	1.0	5800	1200	70			-	
678	Triple-Diode Triode	B.	$9 E$	6.3	0.45	1.5	1.1	2.4		100	- 1	二		0.8	5400	1300	70	k mo.			
12AL5	Twin Diode	B.	68T	12.6	0.15	2.5	-	-	Detector		R.m.s. voltage per plaper plate-3.0			$\begin{gathered} =117 ; d . \\ 54 ; \text { peak } \\ 1.0 \end{gathered}$	$\begin{aligned} & \text { c. output =9 } \\ & k \text { inverse volt } \end{aligned}$	$\begin{aligned} & 9 \mathrm{ma} \text {. per plo } \\ & \text { ltage }=330 . \\ & \hline \end{aligned}$	; peak			12H6GT	
12AT6	Duplax Diode Triode	B.	7BT	12.6	0.15	2.3	1.1	2.10	Class-A Amp.	250				58000	$1200$	70					
12AT7	Double Triode	B.	9A	6.3	0.3	2.5	0.45	1.45	Class-A ${ }^{2}$ Amp. Each Uníl	250	-2		-		10	10000	5500	55			-
				12.6	0.15	2.5 *	$0.35{ }^{\text { }}$	1.458		180	- 1			11	9400	6600	62		-		
12AU6	Sharp Cut-off Pentode	B.	7 CC	12.6	0.15	5.5	5.0	. 0035	Class-A Amp.	250	$-1.0$	150	4.3	10.8	1 meg.	5200				125H7GT	
12AU7	Twin-Triode Amplifier	B.	9A	6.3	0.3	1.6	0.5	1.5	Class-A Amp.	250	$-8.5$	-	-	10.5	7700	2200	17	$\cdots$	-	125N7GT	
				12.6	0.15	1.6 \%	$0.35 \times$	1.58													
12AV6	Duodiode Hi-mu Triode	B.	7 BT	12.6	0.15				Class-A, Amp.	250	- 2			1.2	62500	1600	100	-		-	
12AW6	Sharp Cut-off Pentode	8.	7 CM	12.6	0.15	6.5	1.5	0.025	Pentode Amp.	250	200*	150	2.0	7.0	800000	5000				-	
I2AWb										250	825*			5.5	11000	3800	42				
12AW7	Sharp Cut-off Pentode	B.	7 CM	12.6	0.15	6.5	1.5	0.025	Class-A, Amp.	250	200*	150	2.0	7.0	0.8 meg .	5000		-	-		
12AX7	Doubla Triode	B.	9 A	12.6	0.15	1.6	0.46	1.7	Class-A Amp.	250	- 2	-	-	1.21	62500	1600	100				
				6.3	0.3	1.6	0.34*	1.78		100	-	-	二	0.5	8000	1250	100	-			
12AY7	Dual Triode	B.	9A	$\begin{array}{r} 12.6 \\ 6.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.15 \\ 0.3 \\ \hline \end{array}$	1.3	0.6	1.3	Class-A Amp. Lo-Level Amp.	250	2700*	100	-	3	-	1750	40	-		12SG7G	
										150			Plate resistor $=20000$ s!. Grid resistor $=0.1$ Meg. V. $6 .=12.5$								
	Remote Cut-off Pentode	B.	7 CC	12.6	0.15	5.5	5.0	. 0035	Clast-A Amp.	250	${ }^{8} 8$ *		4.2	11.0	1500000	4400			-		

TABLE XI - MINIATURE RECEIVING TUBES - Continued

table XII - SUB-miniature tubes - Continued

Type	Name	Base	Socket Connec tion	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$ d			Use	Plate Supply Volis	Gria Bias	Screen Volis	Screen Current Ma.	Plate   Current Ma.	PlateResistanceOhms	Transconductance Micromhos	Amp. Factor	LoadResistanseOhms	Power   Oulput Wafts	Type
				Volts	Amp.	In	Out	Prate- Grid												
2G21	Triode Heptode	1	2	1.25	0.05				Converter	22.5		22.5	0.2	0.3		75	-	-		$2 \mathrm{G21}$
2622	Convertar		:	1.25	0.05				Converier	22.5	0	22.5	0.3	0.2	500000	60				2 G 22
6 K 4	Triode		I	6.3	0.15	2.4	0.8	2.4	Class A Amp.	200	$680^{*}$	-		11.5	4650	3450	16		- 6	6 K 4
1247	Diode	1	2	0.7	0.065				R.F. Probe			Max. a.c. volis - $300 \mathrm{r.m.s}$. D.C. plate current- 0.4 Ma								1247
CK501	Pentode Voltage Amplifier	- 1	$\because$	1.25	0.033				Class-A Amp.	30	0	30	0.06	0.3	To00000		-		-	CK501
CK502	Peniode Output Amplifier	-1	:	1.25	0.033					45	-1.25	45	0.055	0.28	1500000	300				
CK503	Pentode Output Amplifier	-	\%	1.25	0.033				Class-A Amp.	30	0	30	0.13	0.55	500000	400		60000	0.003	CK502
CK504	Pentode Output Amplifier	-	:	1.25	0.033				Class-A Amp.	30	0	30	0.33	1.5	150000	600		20000	0.006	CK503
									Class-A Amp.	30	-1.25	30	0.09	0.4	500000	350		60000	0.003	CK504
CKS0s	Pentode Voirage Amplifier	-	:	0.625	0.03			-	Class-A Amp.	45	-125	30	0.07	0.17	1100000	140	-	-		CK 505
CK506	Pentode Output Amplifier	-	:	1.25	0.05				Class-A: Amp.	45	-4.5	45	0.4	1.25	120000	500	-	30000	0.025	CK506
CK 507.	Penlode Output Amplifier	-	-	1.25	0.05				Closs-A, Amp. Class-A Āmp.	45	-2.5	45	0.21	0.6	360000	500		50000	0.010	CK507
CK509	Triode Voltage Amplifier	-1	"	0.625	0.03					45	0			0.15	150000	160	16	1000000		CK309
CK510	Dual Space-Charge Tatrode	-	"	0.625 -	0.05				Closs-A Amp.	45	0	0.2	$200 \mu \mathrm{x}$	$60 \mu x$	500000	65	32.5	-		CK510
CK512	Low Microphonic Pentode	1	2	0.625	0.02				Voltage Amp. Class-A Amp.	22.5	0	22.5	0.04	0.125	-	160		-		CK412
CK5158X	Triode Voltage Amplifier	-	:	0.625	0.03					45	0			0.15		160	24	1000000		CK5158X
CK520AX	Audio Pentode	1	:	0.625	0.05				Class-A A Amp.	45	-2.5	45	0.07	0.24	-	180		-	0.0045	CK532AX
CK521AX	Audio Pentode	1	-	1.25	0.05				$\begin{array}{\|l\|} \hline \text { Closs-A Amp. } \\ \hline \text { Closs-A Amp. } \end{array}$	22.5	-3	22.5	0.22	0.8	$\underline{-}$	400		-	0.006	CK521AX
CK522AX	Audio Pentode	1	:	1.25	0.02					22.5	0	22.5	0.08	0.3		450			0.0012	CK522AX
CK523AX	Pentode Output Amp.	$\stackrel{1}{1}$	-	1.25	0.03				$\begin{array}{\|l\|} \hline \text { Class-A, Amp. } \\ \hline \text { Class-A Amp. } \\ \hline \end{array}$	22.5	-1.2	22.5	0.075	0.3		360			0.0025	CK523AX
CKS24AX	Pentode Output Amp.	1	-	1.25	0.03				Class-A Amp.	15	-1.75	15	0.125	0.45		300		-	0.0022	CK514AX
CK525AX	Pantode Output Amp.	${ }^{1}$		1.25	0.2	-				22.5	-1.2	22.5	0.06	0.25	-	325		-	0.0022	CKS23AX
CK526AX	Pentode Output Amp.	1		1.25	0.2			-	Class-A Amp.	22.5	-1.5	22.5	0.12	0.45	-	400			0.004	CK526AX
CK527AX	Pentode Output Amp.	1		1.25	0.015				Class-A Amp.	22.5	0	22.5	0.025	0.1		75			0.0007	CK527AX
CK529AX	Shielded Output Pentode	1	-	1.25	0.02			-	Class-A Amp. Detector-Amp.	15	-1.5	15	0.05	0.2	-	275			0.0012	CK529AX
CKS5IAXA	Diode Pentode	1	2	1.25	0.03					22.5	0	22.5	0.04	0.17	-	235				CKS5IAXA
CK533AXA	R.F. Pentode	1	\%	1.25	0.05				Detector-Amp. Class-A Amp.	22.5	0	22.5	0.13	0.42	-	550			-	CKS53AXA
CK556AX	U.h.f. Triode	1	2	1.25	0.125				R.F. Oscillator	135	-5			4.0	$\square$	1600				CK536AX
CK568AX	U.h.f. Triode	1	2	1.25	0.07			-	R.F. Oscillator	135	-6	-		1.9		650				CK568AX
CK569AX	R.f. Pentode	1	2	1.25	0.05				Class-A, Amp.	67.5	0	67.5	0.48	1.8		1100				CK569aX
CK605CX	Sharp Cuf-off Pentode	1	$\cdots$	6.3	0.2			-	Class-A Amp.	120	-2	120	2.5	7.5	-	5000				CK60sCX
CK606BX	Single Diode	1	$?$	6.3	0.15					150 a.c.		-		9.0 de.	-					CK606BX
CK608CX	U.h.f. Triode	1	$:$	6.3	0.2			-	$\begin{array}{\|l\|} \hline \text { Detector } \\ \hline 500-\mathrm{Mc} . \text { Osc. } \\ \hline \end{array}$	120	-2			9.0	$\square$	5000			0.75	CK608CX
CK619CX	Hi-Mu Triode	'	:	6.3	0.2				Class-A, Amp.	250	-2			4.0		4000				CK619CX
CK624CX	Sharp Cut-off Pentode	1	-	6.3	0.2				Class-A Amp.   Class-A Amp.	120	-2	120	3.5	5.2		3000				CK624CX
CK650AX	Sharp Cut-off Pentode	1	2	6.3	0.2					120	-2	120	2.5	7.5		5000				CK650AX
CK5672	Pentode Output Amp.	1	-	1.25	0.05				$\begin{aligned} & \text { Class-A Amp. } \\ & \text { Class-A Amp. } \end{aligned}$	67.5	-6.25	67.5	1.0	2.75	二	625			0.06	CK5672
$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \end{aligned}$	Triode Amplifier	-1	5K	1.4	0.07	-	-	-	Class-A Amp.	45	-4.5	-		0.4	25000	250	6.3	40000	0.0065	$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \\ & \hline \end{aligned}$
HY115 HY145   HY 125	Pentode Voltage Amplifier	-1	5K	1.4	0.07	-	-		Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.5 \\ -1.5 \\ \hline \end{array}$	$\begin{array}{r} 22.5 \\ \hline 45 \\ \hline \end{array}$	$\begin{aligned} & 0.008 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 5200000 \\ & 1300000 \end{aligned}$	$\begin{array}{r} 58 \\ 270 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 370 \\ & \hline \end{aligned}$	-		$\begin{aligned} & \text { HY115 } \\ & \text { HY145 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { HY125 } \\ & \text { HYI5 } \end{aligned}$	Pentode Power Amplifier	$\square$	5K	1.4	0.07				Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{array}{r} -3.0 \\ -7.5 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ 90 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.6 \end{aligned}$	$\begin{array}{\|} 823000 \\ 420000 \\ \hline \end{array}$	$\begin{array}{r} 310 \\ 450 \\ \hline \end{array}$	$\begin{aligned} & 255 \\ & 190 \\ & \hline \end{aligned}$	$\begin{array}{r} 50000 \\ 28000 \\ \hline \end{array}$	$\begin{aligned} & 0.0115 \\ & 0.09 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HY125 } \\ & \text { HY1S5 } \\ & \hline \end{aligned}$
M 4.4	$\frac{\text { Tetrode Power Amplifier }}{\text { Tehinde Voltage Amplifier }}$	${ }^{1}$	:	0.625	0.04				Class-A Amp.	30	0	30	0.06	0.5	130000	200	26	35000	0.005	M54
M74	Tatrode Voltage Amplifier	1	2	0.625	0.02				Class-A Amp.	30	0	-		0.03	200000	110	25			M64
RK61	Gas Triode	1	2	1.4	0.02				Class-A Amp. Radio Cantrol	30	0	7.0	0.01	0.02	500000	125	70			M74
50917 A					0.05					45			-	1.5	-	-		-		RK61
5637	Triode	1	:	6.3	0.15	2.6	0.7	1.4	Radio Control Class-A1 Amp.	100	$820 *$	-	$\square$	1.4	26000	2700	70	-	-	$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$

TABLE XII - SUB-MINIATURE TUBES - Continued

Type	Name	Base	Socket Connecfions	Fil. or Hoaler		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volis } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	Plate   Resistance   Ohms	Transconductance Mieromhos	Amp. Factor	Load   Resistanee   Ohms	$\text { ce } \begin{gathered} \text { Power } \\ \text { Oulput } \\ \text { Watts } \end{gathered}$	Type
				Volts	Amp.	In	Oui	$\begin{array}{\|l\|} \hline \text { Platoo- } \\ \text { Grid } \end{array}$												
$\begin{aligned} & \text { SD828A } \\ & 5638 \\ & \hline \end{aligned}$	Audio Pentode	1	2	6.3	0.15	4.0	3.0	0.22	Class-A1 Amp.	100	270*	100	1.25	4.8	150000	3300	$\square$	-	-	$\begin{aligned} & \text { SD828A } \\ & 5630 \end{aligned}$
$\begin{aligned} & \text { SD828E } \\ & 5634 \\ & \hline \end{aligned}$	Sharp Cut-off Pentode	,	-	6.3	0.15	4.4	2.8	0.01	Class-A1 Amp.	100	150*	100	2.5	6.5	240000	3500		-	-	$\begin{aligned} & \text { SD828E } \\ & 5634 \\ & \hline \end{aligned}$
$\begin{aligned} & \hline 5 N 944 \\ & 5633 \\ & \hline \end{aligned}$	Remote Cut-off Pentode	+	-	6.3	0.15	4.0	2.8	0.01	Class-A1 Amp.	100	150*	100	2.8	7.0	200000	3400		-	-	$\begin{aligned} & \mathrm{SNO44} \\ & 5633 \end{aligned}$
SN946	Diode	1	:	6.3	0.15	1.8		-	Rectifier	150		-		9.0	-	-		-		SN946
$\begin{aligned} & \text { SN947D } \\ & 5640 \\ & \hline \end{aligned}$	Audia Beam Pentode	1	2	6.3	0.45	-	-	-	Class-A1 Amp.	100	-9	100	2.2	31.0	15000	5000	-	3000	1.25	$\begin{aligned} & \text { SN947C } \\ & \mathbf{5 6 4 0} \end{aligned}$
SN948C	Voltage Regulator	1	-	-		$\square$	-	2	Regulator				Perating	oltage $=9$	5; Max. cur	rent $=25 \mathrm{Ma}$				SN948C
SN953D	Power Pentode	1		6.3	0.15	9.5	3.8	0.2	Clast-A Amp.	150	100*	100	4/7.5	21/20	50000	9000		9000	1.0	SN933D
$\begin{aligned} & \text { SN954 } \\ & 5641 \\ & \hline \end{aligned}$	Half-Wave Rectifier	1	2	6.3	0.45	-		-	Rectifier	300	-	-	-	45.0	-	-		-	-	$\begin{aligned} & \hline 5 N 954 \\ & \hline 5641 \\ & \hline \end{aligned}$
SN9558	Dual Triode	1	2	6.3	0.45	2.8	1.0	1.3	Class-A, Amp. ${ }^{\text {a }}$	100	100*	-	-	5.5	8000	4250	34			SN9538
$\begin{aligned} & \text { SN956B } \\ & 5642 \\ & \hline \end{aligned}$	H.V. Halt-Wave Rectifier	-	-	1.25	0.14			--	H.V. Rectifier		Poak	k inverse	V. $=100$	Max. A	Average lp =	2 Ma. Peak	$\mathrm{Ip}=23 \mathrm{~A}$			$\begin{aligned} & \hline \text { SN956B } \\ & 5642 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { SN957A } \\ & 5645 \\ & \hline \end{aligned}$	Triode	${ }^{2}$	2	6.3	0.15	2.0	1.0	1.8	Class-A, Amp.	100	560*	-	-	5.0	7400	2700	20	-	-	$\begin{aligned} & \hline \text { SN957A } \\ & 5645 \\ & \hline \end{aligned}$
SN1006	Triode	1	2	6.3	0.15				Class-A1 Amp.	100	$820^{*}$		I	1.4	29000	2400	70	-	-	SN1006
SN10078	Mixer	,		6.3	0.15	5.0	2.8	0.003	Mixer	100	150*	100	5.0	4.0	230000	900		-		SN1007B


TYpe	Name	Base	Sockel Connec. fions	Cathode	Fil. or Heater		Use	Peak Anede Volfage	Max.   Anade Ma.	Minimum Supply Voltage	Operating Voltage	Operating Ma.	$\begin{gathered} \text { Grid } \\ \text { Resisfor } \end{gathered}$	Tube Voltage Drop	Type
					Volts	Amp.									
OA2	Voltage Regulator	7 -pin 8.	580	Cold			Voitage Regulator	-	-	185	150	5-30	-	-	OA2
OAS	Gas Pentode	7-pin B.	Fig. 33	Cold	-		Relay or Trigger	Plate-750 V., Screen-90 V., Grid-3 V., Pulse-85 V.							OA5
OB2	Voltoge Regulator	7 -pin 8 .	580	Cold	-		Voltage Regulator	-	-	133	108	5-30		-	OB2
$\begin{aligned} & \text { OA4G } \\ & 1267 \end{aligned}$	Gas Triode Starter-Anode Type	6-pin 0.	$\begin{aligned} & 4 V \\ & 4 V \end{aligned}$	Cold	-	-	Cold-Cathode Startor-Anoda Rolay Tube	With 105-120-volt a.c. anode supply, peak slarter-anode a.c. voltage is 70 , peak r.f. voltage 55. Peak d.e. $m a=100$. Average d.c. $m a=25$.							$\begin{array}{\|l\|} \hline \text { OA4G } \\ 1267 \\ \hline \end{array}$
1847	Voltage Regulator	7 -pin B.		-	-	-	Voltage Regulator	-	-	225	82	1-2		-	1847
$1 \mathrm{C21}$	Gas Triode   Glow-Discharge Type	6-pin 0.	4V	Cold	-	-	Relay Tube	125-145	25	660	-			73	1C21
2A4G	Gas Triode Grid Type	7 -pin 0.	55	Fil.	2.5	2.5	Control Tube	200	100	-	-			15	2A4G
6056	Gas Triode Grid Type	8 -pin 0.	60	Hir.	6.3	0.6	Sweep Circuit Oscillator	300	300	-	-	1.0	0.1-10:	19	605 G
284		5 -pin M.	5A	Hir.	2.5	1.4									284
2 C 4	Gas Triode	7 -pin B.	5AS	Fil.	2.5	0.65	Control Tube	Plate volts $=350$; Grid valts $=-50 ;$ Avg. Ma, $=5 ;$ Peak Ma. $=20 ;$ Voltage drop $=16$.							$2 \mathrm{C4}$
2021	Gas Tetrode	7 -pin B.	7BN	Hir.	6.3	0.6	Grid-Controlled Rectifier	650	500	-	650	100	0.1-10 ${ }^{7}$	8	2D21
2021							Relay Tube	400		-	-	-	1.0 \%		
3 C 23	Gas and Mercury Vapor Grid Type	4-pin M.	3G	Fil.	2.5	7.0	Grid-Controlled Rectifier	1000	6000		500	1500	-4.5.5 ${ }^{\text {\% }}$	15	$3 \mathrm{C23}$
604	Gos Triode	7-pin B.	5AY	Hitr.	6.3	0.25	Control Tube	Plate volts =350; Grid volts $=-50 ;$ Avg. Ma. $=25$; Peak Ma. $=100$; Vollage drop $=16$.							6D4
17	Mercury Vapor Triode	4-pin M.	3G	Fil.	2.5	5.0	Grid-Controlled Rectifior	$\frac{7500^{j}}{2500}$	2000	$\overline{-53}$	$\overline{1000}$	500		10-24	17
874	Voltage Regulator	4-pin M.	45				Voitage Regulator	-	-	125	90	10-50	-		874
876	Current Regulator	Mogul					Current Regulator	-	-		40-60	1.7	-		876
884	Gas Triode Grid Type	6-pin 0.	60	His.	6.3	0.6	Swaep Circuit Oscillator	300	300		$\cdots$	2	25000		884
884							Grid-Controlled Rectifier	350	300		-	75	25000		
885	Gas Triode Grid Type	5-pin S.	5A	Hir.	2.5	1.4	Same as Type 884	Characteristics same as Type 884							885

table xili－control and regulator tubes

Type	Name	Base	Socket Connec－ tions	Cathode	Fil．or Heator		Use	Peak Anode Voltage	Max．   Anode Mo．	Minimum Supply Voltage	Operating Voltage	Operating Ma．	$\underset{\text { Resistor }}{\text { Grid }}$	Tube Voltage Drop	Type
					Volts	Amp．									
886	Current Requlator	Mogul	－		二	$\square$	Current Regulator	－		－	40－60	2.05	－	－	886
967	Mercury Vapor Triode	4－pin M．	3G	Fil．	2.5	5.0	Grid－Controlled Rectifior	2500	500	－5 ${ }^{\text {d }}$				10－24	967
991	Voltage Regulator	Bayonet					Voltage Regulator	－	－	87	55－60	2.0	－		991
1265	Voltage Requlator	6 －pin 0.	4AJ	Cold	－	－	Vollaqe Requlator	－	－	130	90	5－30	－	－	1265
1266	Voltage Regulator	6－pin 0.	4AJ	Cold	－	－	Vollage Regulator	－	－	－	70	5－40	－	－	1266
1267	Gas Triode	6 －pin 0.	4 V	Cold	－	－	Relay Tube			Characte	ristics same	as OA4G			1267
2050	Gas Tetrode	8 －pin 0.	8BA	Hir．	6.3	0.6	Grid－Controllad Rectifier	650	500	－	$\cdots$	100	0．1－10 ${ }^{\text {P }}$	8	2050
2051	Gas Tetrode	8 －pin 0	8BA	Hit．	6.3	0.6	Crid－Controlled Rectifior	350	375	－	－	75	$0.1-10^{7}$	14	2051
$\begin{aligned} & \text { 2523NT// } \\ & \text { 128AS } \end{aligned}$	Gas Triode Grid Type	5－pin M．	5A	Hir．	2.5	1.75	Relay Tube	400	300	－	－	1.0	$300{ }^{7}$	13	$\begin{aligned} & 2523 N 1 / \\ & 128 A 5 \end{aligned}$
5651	Voltage Regulator	7－pin B．	5BO	Cold		－	Voltage Regulator	115	－	115	87	1．5－3．5	－	－	5651
KY2．1	Gas Triode Grid Type	4－pin M．	－	Fil．	2.5	10.0	Grid－Controlled Rectifer	－	－	－－	3000	500	－	－	KY21
RK61	Thyratron		－	Fil．	1.4	0.05	Radio－Controlled Relay	45	1.5	30	－	0．5－1．5	37	30	RK61
RK62	Gas Triode Grid Type	4 －pin S．	4D	Fil．	1.4	0.05	Relay Yube	45	1.5	－	30－45	0．1－1．5	－	15	RK62
RM208	Permatron	4－pin M．		Fil．	2.5	5.0	Controlled Rectifier ${ }^{\text {1 }}$	$7500^{2}$	1000	－	－	－	－	15	RM208
RM209	Permatron	4－pin M．	$\bar{\square}$	Fil．	5.0	10.0	Controlled Rectifier ${ }^{1}$	7500：	5000			－	－	15	RM209
OA3／VR75	Voltage Regulator	6－pin 0.	4AJ	Cold		－	Voliage Regulator	－	Som	105	75	5－40	－	$\underline{ }$	OA3／VR75
083／VR90	Voltage Regulator	6 －pin 0.	4AJ	Cold		－	Voltage Regulator	二	－	125	90	5－40	－	－	OB3／VR90
OC3／VR105	Votage Regulator	6 －pin 0.	4AJ	Cold	二	－	Voltage Regulatior	－	$\square$	135	105	5－40	－	－	OC3／VR105
OD3／VR150	Volloge Regulator	6 －pin 0.	4AJ	Cold	二		Voltage Regulator	－		185	150	5－40	－	－	OD3／VR150
KY866	Mercury Vapor Triodr	4－pin M．	Fig． 8	Fil．	2.5	5.0	Grid－Controlled Rectifor	10000	1000	0－150	－	－	－	－	KY866
${ }^{1}$ For use as grid－controlled rectifier or with external magnetic control．RM－208 has characteristics of 866，RM－209 of 872.					${ }^{2}$ When under control peak inverse rating is reduced to 2500.   d At 1000 anode volts．					Grid tied to plate． Peak inverse vollage．		${ }^{6}$ Grid．   7 Megohms．	${ }^{8}$ Grid   ${ }^{9}$ No   Cour	oltage．   se．Tinne   sy ARR	wire leads．   Handbook

## RECEIVING TUBE SUBSTITUTION GUIDE

TABLE XV—RECTIFIERS-RECEIVING AND TRANSMITTING
See also Table XIII-Control and Regulatur Tubes

Type No.	Name	Base	Socket Connec tions	Cathodo	Fil. or Heater		Max.   A.C.   Voltage   Per Plate	D.C. Current Ma.	Max. Peak Voltage		Type
					Volts	Amp.					
BA	Full-Wave Rectifer	4-pin M.	4J	Cold		-	350	350	Tube drop	P 80 v .	G
BH	Full-Wave Rectitier	4-pin M.	4J	Cold		-	350	125	Tube dr	P90 v .	G
BR	Holf-Wave Rectifier	4-pin M.	4H	Cold			300.	50	Tube dr	p 60 v .	$G$
CE-220	Holf-Wave Reclifier	4-pin M.	4P	Fil.	25	3.0		20	20000	100	HV
OY4	Half-Wave Rectifer	5 -pin 0.	4BU	Cold	$\begin{aligned} & \text { Connect Pins } \\ & 7 \text { and } 8 \end{aligned}$		95	75	300	500	G
OZ4	Full-Wave Rectifier	5-pin 0.	4R	Cold			350	30-75	1250	200	G
1	Half-Wave Rectifier	4-pin S.	4 G	Hit.	6.3	0.3	350	50	1000	400	MV
1.v	Half-Wave Rectifer	4-pin S.	4G	Ht.	6.3	0.3	350	50	$\cdots$		HV
183GT/8016	Half-Wove Rectifier	6-pin 0.	3C	Fil.	1.25	0.2	$\underline{-}$	2.0	4000	17	HV
1848	Half-Wave Rectifier	7-pin B.		Cold			800	6	2700	50	G
$1 \times 2$	Half-Wave Rectifier	9-pin B.	Fig. 29	Fil.	1.25	0.2		1	15000	10	HV
122	Half-Wave Rectifior	7-pin B.	7CB	Fil.	1.5	0.3	7800	2	20000	10	HV
2825	Half-Wave Rectifier	7-pin B.	3 T	Fil.	1.4	0.11	1000	1.5	-	9	HV
2V3G	Half-Wave Rectifor	6-pin 0.	$4 Y$	Fil.	2.5	5.0		2.0	16500	12	HV
2W3	Half-Wave Rectifler	5-pin 0.	4X	Fil.	2.5	1.5	350	55	-	-	HV
$2 \times 2 / 87910$	Half-Wave Rectifior	4-pin 5.	4AB	Hir.	2.5	1.75	4500	7.5			HV
2×2-A	Half-Wave Rectifier	4-pin S.	4AB	Same as $2 \times 2 / 879$ but will withstand severe shock \& vibration							HV
$2 Y^{2}$	Half-Wave Rectifier	4-pin M.	4AB	Fil.	2.5	1.75	4400	5.0	,	-	HV
222/G84	Half-Wave Rectifor	4-pin M.	4 B	Fil.	2.5	1.5	350	50	-		HV
3824	Ha,f-Wave Rectifler	4-pin M.	T-4A	Fil.	$\begin{aligned} & 5.0 \\ & 2.5, \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	HV
3825	Half-Wave Rectifier	4-pin M.	4 P	Fil.	2.5	5.0	-	500	4500	2000	G
3 B 26	Half-Wave Rectifer	8 -pin 0.	Fig. 31	Hir.	2.5	4.75		20	15000	8000	HV
DR-3827	Half-Wave Rectifer	4-pin M.	48	Fil.	2.5	5.0	3000	250	8500	1000	HV
5AZ4	Full-Wave Rectifier	5-pin 0.	$5 T$	Fil.	5.0	2.0	Same as Type 80				HV
5R4GY	Full-Wove Rectifior	5-pin 0.	$5 T$	Fil.	5.0	2.0	$\begin{aligned} & 900^{7} \\ & 950^{7} \end{aligned}$	$\begin{aligned} & 1504 \\ & 1757 \end{aligned}$	2800	650	HV
5 T 4	Full-Wave Rectifer	5 -pln 0.	51	Fil.	5.0	3.0	450	250	1250	800	HV
5U4G	Full-Wave Rectifier	8 -pin 0.	$5 \bar{T}$	Fil.	5.0	3.0	Same as Type 5z3				HV
5V4G	Full-Wave Rectifier	8 -pin 0.	51	Htr .	5.0	2.0	Same as Type 83 V				HV
5W4	Full-Wave Rectiffer	5 -pin 0.	57	Fil.	5.0	1.5	350	110	1000	-	HV
$5 \times 3$	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	2.0	1275	30	-	-	HV
5 $\times 4 \mathrm{G}$	Full-Wave Rectifior	8 -pin 0.	50	FH.	5.0	3.0	Same as 523				HV
5 Y3G	Full-Wave Rectifor	5-pin 0.	51	Fil.	5.0	2.0	Same as Type 80				HV
5Y4G	Full-Wave Rectifier	8 -pin 0	50	Fil.	5.0	2.0	Same as Type 80				HV
523	Full-Wave Rectifior	4-pin M.	4 C	Fii.	5.0	3.0	500	250	+1400		HV
524	Full-Wave Rectifor	5-pin 0.	51	Hir.	5.0	2.0	400	125	1100	-	HV
6W4GT	Damper Service	6 -pin 0.	4CG	Hrr.	6.3	1.2		125	2000	600	HV
	Half-Wave Rectifier						350	125	1250	600	
6W5G	Full-Wave Rectifior	6-pin 0.	65	Hir.	6.3	0.9	350	100	1250	350	HV
$6 \times 4$	Full-Wavo Rectifier	7-pin B .	7CF	Htr.	6.3	0.6	325	70	1250	210	HV
$6 \times 5$	Full-Wave Rectifor	6-pin 0.	65	Htr.	6.3	0.5	350	75	$\underline{\square}$	-	HV
6Y3G	Half-Wave Rectifier	5-pin O.	4AC	Htr.	6.3	0.7	5000	7.5	-		HV
6 Y 519	Full-Wave Rectifer	6-pin 5 .	$6 J$	Hit.	6.3	0.8	350	50		-	HV
623	Half-Wava Roctifior	4-pin M.	4 G	Fil.	6.3	0.3	350	50	-		HV
62510	Full-Wave Rectifior	6 -pin 5 .	6K	Hir.	6.3	0.6	230	60	-	-	HV
6ZY5G	Full-Wave Rectifior	6-pin 0.	6S	Htr.	6.3	0.3	350	35	1000	150	HV
$7 Y 4$	Full-Wave Rectifier	$8-\mathrm{pin} \mathrm{L}$.	5AB	Hr.	6.3	0.5	350	60			HV
724	Full-Wave Rectiflor	8-pin L.	5AB	Htr.	6.3	0.9	$\begin{aligned} & 4501 \\ & 325 \end{aligned}$	100	1250	300	HV
1247	Rectifier-Pantode	7 -pin S .	7K	Htr.	12.6	0.3	125	30	-	-	HV
1223	Half-Wove Rectifier	4-pin S.	46	Htr.	12.6	0.3	250	60		-	HV
$12 \mathrm{Z5}$	Voltage Doubler	7 -pin M.	71	Mri.	12.6	0.3	225	60		-	HV
14 Y 4	Full-Wave Reclifier	8 -pin L.	5AB	Htr.	12.6	0.3	$\begin{array}{r} 4501 \\ 3254 \\ \hline \end{array}$	70	1250	210	HV
1423	Hall-Wave Rectifer	4 -pin S.	4G	Htr.	12.6	0.3	250	60	-	-	HV
25A7G 10	Rectifior-Pentode	$8-\mathrm{pin} 0$.	8 F	Htr.	25	0.3	125	75	-		HV
25 W 4	Half-Wave Rectifier	6-pin 0.	4CG	Htr.	25	0.3	350	125	1250	600	HV
25X6GT	Voltage Doubler	7-pin 0.	70	Htr.	25	0.15	125	60	-	-	HV
25Y4GT	Half-Wave Rectifer	6-pin 0.	5AA	Htr.	25	0.15	125	75	-	-	HV
$25 \times 5{ }^{\text {IU }}$	Voltage Doubler	6 -pin S.	6E	Htr.	25	0.3	250	85	-	- -	HV
2573	Half-Wave Rectifer	4-pin S.	4G	Hr.	25	0.3	250	50	-	-	HV
2574	Half-Wave Rectifer	6-pin 0.	5AA	Hir.	25	0.3	125	125	-		HV
2575	Rectifior-Doubler	6 -pin 5 .	6 E	H\%.	25	0.3	125	100	-	500	HV
2576	Rectifior-Doubler	7-pin 0.	70	Hfr.	25	0.3	125	100	-	500	HV
2825	Full-Wave Rectifler	8 -pin L .	5AB	Hr.	28	0.24	$\begin{aligned} & 4507 \\ & 325 \end{aligned}$	100	-	300	HV
3217G7	Rectifier-Tefrade	8 -pin 0.	8 Z	Hitr.	32.5	0.3	125	60		$\underline{\square}$	HV
$35 \mathrm{W4}$	Half-Wave Rectifler	7 -pin B.	5BQ	Htr.	352	0.15	125	100\%	330	600	HV
35 Y 4	Half-Wave Rectifior	8 -pin 0.	5AL	Htr.	352	0.15	235	$\begin{gathered} 60 \\ 100: \\ \hline \end{gathered}$	700	600	HV
3573	Half-Wave Rectifier	8 -pin L.	4Z	Hit.	35	0.15	250	100	700	600	HV
3574GT	Half-Wave Rectifier	6-pin 0.	SAA	Hitr	35	0.15	250	100	700	600	HV
35756	Half-Wave Rectifior	6 -pin 0.	6AD	Ht.	35 :	0.15	125	$\begin{gathered} 60 \\ 100^{8} \\ \hline \end{gathered}$	-	-	HV

RECEIVING TUBE SUBSTITUTION GUIDE
TABLE XV-RECTIFIERS-RECEIVING AND TRANSMITTING - Continued
See also Table XIII-Control and Regulator Tubes

Type No.	Name	Ease	Socket Connections	Cathods	Fil. or Heater		Max. A.C. Volioge Per Plate	D.C. Outpul Current Ma.	Mox. Inverse Peak Voltage	Peak Plate Current Ma.	Typo
					Volts	Amp.					
3526 G	Voltage Doubler	6-pin 0.	70	Hir.	35	0.3	125	110		500	HV
4025GT	Half-Wave Rectifier	6-pin 0.	6AD	Htr.	40:	0.15	125	$\begin{gathered} 60 \\ 100 \\ \hline \end{gathered}$	-	-	HV
4523	Halt-Wave Rectifer	7-pin B.	SAM	Htr.	45	0.075	117	65	350	390	HV
4525GT	Holl-Wove Rectifier	6-pin 0.	6AD	Htr.	45:	0.15	125	$\begin{gathered} 60 \\ 100 \end{gathered}$	-	-	HV
$50 \times 6$	Voltage Doubler	8 -pin 1.	7AJ	Hir.	50	0.13	117	75	700	450	HV
50Y6GT	Full-Wave Rectiliter	7-pin 0.	70	Htr.	50	0.15	125	85			HV
50Y7GT	Voltage Doubler	8-pin L.	8 AN	Hht.	50	0.15	117	65	700		HV
5026G	Voltage Doubler	7-pin 0.	70	Hro.	50	0.3	125	150	-	-	HV
$5027 \mathrm{Cl}^{10}$	Voltage Doubler	8 -pin 0.	BAN	Mr.	50	0.15	117	65		-	HV
7047 GT	Rectifier-Tetrode	8 -pin 0.	8 AB	Hitr.	70	0.15	$125{ }^{3}$	60			HV
70L7GT	Rectifior-Tetrode	8 -pin 0.	BAA	Htr.	70	0.15	117	70		350	HV
72	Half-Wave Rectifler	4-Din M.	4P	Fil.	2.5	3.0	-	30	20000	150	HV
73	Half-Wave Rectifier	- 4 - 0 .	4 Y	Fil.	2.5	4.5	$\square$	20	13000	3000	HV
80	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	2.0	$\begin{aligned} & 350^{4} \\ & 500^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & \hline \end{aligned}$	1400	375	HV
81	Half-Wave Rectifler	4.pin M.	48	FII.	7.5	1.25	700	85	-	-	HV
82	Full-Wave Rectifior	4-pin M.	4 C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wave Rectifier	4 -pin M.	4 C	FI.	5.0	3.0	500	250	1400	800	MY
$83 . \mathrm{V}$	Full-Wave Rectifior	4-pin M.	4AD	Hir.	5.0	2.0	400	200	1100		HV
$84 / 624$	Full-Wave Rectifior	5 -pin 5.	50	Hir.	6.3	0.5	350	60	1000	-	HV
$\begin{aligned} & 11747 \mathrm{GT} / \\ & 117 \mathrm{M} / \mathrm{GT} \end{aligned}$	Rectifler-Tetrode	0 -pin 0.	8 AO	Htr.	117	0.09	117	75	-	-	HV
117 NFGT	Rectifor-Tetrode	8-pin 0.	BAV	Hir.	117	0.09	117	75	350	450	HV
117P7GT	Rectifier-Tutrode	S-pin 0.	sav	Hir.	117	0.09	117	75	350	450	HV
11723	Half-Wave Rectifer	7 -pin 8.	4BR	Hir.	117	0.04	117	90	330	-	HV
1172467	Half-Wave Rectifer	6-pin 0.	5AA	Hr.	117	0.04	117	90	350		HV
1172691	Voltage Doubler	7-pin 0.	79	Atr.	117	0.075	235	60	700	360	HV
217-A ${ }^{111}$	Half-Wave Rectiller	4-pin J.	4AT	Fil.	10	3.25			3500	600	HV
217-6	Half-Wave Rectifer	4-pin J.	4AT	Fil.	10	3.25			7500	600	HV
7225	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.3	5.0	-	250	10000	1000	MY
249-8	Holf-Wave Rectifier	4-pin M.	Fig. 53	Fil.	2.5	7.5	3180	375	10000	1500	MV
HK253	Half-Wave Rectifior	4-pin J.	4AT	Fil.	5.0	10		330	10000	1500	HV
$\begin{aligned} & \text { 705A } \\ & \text { RK-705A } \end{aligned}$	Half-Wave Rectifler	4-pin W.	T-3AA	FII.	$\begin{aligned} & 2.5^{9} \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.0 \\ 5.0 \\ \hline \end{array}$		$\begin{array}{r} 50 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 35000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 375 \\ & 750 \end{aligned}$	HV
816	Half-Wave Rectifler	4-pin S.	4 P	Fil.	2.5	2.0	2200	125	7500	500	MV
836	Half-Wave Rectifer	4-pin M.	4 P	Hir.	2.5	5.0			5000	1000	HV
8601/866	Holf-Wave Rectifior	4-ptn M.	$4 P$	Fit.	2.5	5.0	3500	250	10000	1000	MV
8608	Half-Wave Rectifer	4-pin M.	4	Fil.	5.0	5.0	T	-	8500	1000	MV
866 Jr .	Half-Wave Rectifler	4-pin M.	48	Fil.	2.5	2.5	1250	2503			MV
HYas6 Jr.	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	2.5	1730	$250{ }^{3}$	5000		MV
RK866	Holf-Wave Rectifor	4-pin M.	4 P	Fil.	2.5	5.0	3500	250	10000	1000	MV
$871{ }^{10}$	Half-Wave Rectifior	4-pin M.	4P	Fil.	2.5	2.0	1750	250	5000	500	MV
878	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	7100	5	23000	-	HV
879	Half-Wave Rectifier	4-pin 5.	4P	Fil.	2.5	1.75	2650	7.5	7500	100	HV
872A/872	Half-Wave Rectifior	4-pin d.	4AT	Fil.	5.0	7.5	$\underline{\square}$	1250	10000	5000	MV
9754	Half-Wave Rectifier	4-pin J.	4AT	Fil.	5.0	10.0		1500	15000	6000	MY
$\begin{aligned} & \text { OZ4A/ } \\ & 1003 \end{aligned}$	Full-Wave Rectifier	5-pin 0.	4R	Cold	$\underline{\square}$		$\cdots$	110	880	-	G
$\begin{aligned} & 1005 / \\ & \text { CK } 1005 \end{aligned}$	Full-Wave Rectifier	8 -pin 0.	5AQ	Fil.	6.3	0.1	-	70	450	210	G
$\begin{aligned} & 1006 / \\ & \text { CK } 1006 \end{aligned}$	Full-Wave Rectifier	4-pin M.	4 C	Fil.	1.75	2.25	-	200	1600	-	G
CK 1007	Full-Wave Rectifier	8 -pin 0.	T-9G	Fil.	1.0	1.2		110	980	$\underline{\square}$	G
CK 1009/BA	Full-Wave Rectifier	4-pin M.		Cold	$\cdots$			350	1000		G
1274	Full-Wave Rectifier	6-pin 0.	65	Hir.	6.3	0.6	Same as 7 Y 4				HV
1275	Full-Wave Rectifler	4-pin M.	4 C	Fil.	5.0	1.75	Same as 52.3				HV
1616	Half-Wave Rectifior	4-pin M.	4 P	Fil.	2.5	5.0	$=$	130	6000	800	HV
$\begin{aligned} & 1641 / \\ & \text { RK60 } \end{aligned}$	Full-Wave Rectifier	4-pin M.	T-4AG	Fil.	5.0	3.0	—	$\begin{array}{r} 50 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 4500 \\ & 2500 \end{aligned}$	-	HV
1654	Half-Wave Rectifier	7-pin B .	27	Fil.	1.4	0.05	2500	1	7000	6	HV
5517	Half-Wave Rectifier	7-pin 8.	5BU	Cold	-	$\underline{\square}$	1200	6	-	50	G
5825	Half-Wave Rectifier	4-pin M.	4P	Fil.	1.6	1.25	-	2	60000	40	HV
8008	Malf-Wave Rectifler	4-pin ${ }^{\text {c }}$	Fig. 11	Fil.	5.0	7.5	-	1250	10000	5000	MV
8013 A	Half-Wave Rectifer	4-pin M.	4 P	$F 1$.	2.5	5.0	-	20	40000	150	HV
8016	Half-Wave Rectifier	6-pin 0.	4AC	Fil.	1.25	0.2	-	2.0	10000	7.5	HV
8020	Hall-Wove Rectifier	4-pin M.	4P	FII.	5.0	5.5	10000	100	40000	750	HV
					5.8	6.5	12500	100	40000	750	
RK19	Full-Wave Rectifier	4-pin M.	4AT	Her.	7.5	2.5	1250	2004	3500	600	HV
RK21	Half-Wave Rectifier	4-pin M.	4P	Htr.	2.5	4.0	1250	2004	3500	600	HV
RK22	Full-Wave Rectifier	4-pin M.	T-4AG	Hir.	2.5	8.0	1250	2004	3500	600	HV

[^3][^4]
## CATHODE-RAY TUBE BASES



## RECEIVING TUBE SUBSTITUTION GUIDE

$11 E$

$11 F$








117






14 A

$14 B$







14L


CATHODE-RAY TUBE CHARACTERISTICS
electrostatic types-cathode ray tubes

Type	Heater		Nominal Dimensions		Base		Screen		Maximum Design Center Ratinga				Typical Operating Conditions					
	Volts	Amperes	Diameter Inches	Length Inches			Fluorescence	Peraistence	Anode \#1 Volts	Anode \#2 Volts	Anorle $\$ 3$ Volcs	Anode \#2 to   Deflection   Plate   Peak Volis$\|$	$\left\|\begin{array}{c} \text { Anode \#2 } \\ \text { Volts } \end{array}\right\|$	$\begin{gathered} \text { Anode \#1 } \\ \text { Avg. Vol ts** } \end{gathered}$	Anode : 3 Volts	Grid Aenge Volts*	$\begin{gathered} \text { Deflection } \\ \text { Avp. Volte DC/Inch } \end{gathered}$	
																	D 1-2	D 3-4
$\begin{aligned} & 2 \mathrm{AP1}, \\ & \text { 2AP1A) } \end{aligned}$	6.3	0.6	2	7-7/16	Small She 11   Magnal 11 Pin	$\begin{aligned} & 1118 \\ & 11 \mathrm{~L} \end{aligned}$	Green	Medium	500	1000	$\ldots$	600	$\begin{array}{r} 500 \\ 1000 \\ \hline \end{array}$	$\begin{aligned} & \hline 125 \\ & 250 \\ & \hline \end{aligned}$	$\ldots$	$\begin{aligned} & 15-45 \\ & 30-90 \end{aligned}$	$\begin{aligned} & 115 \\ & 230 \end{aligned}$	$\begin{array}{r} 98 \\ 196 \\ \hline \end{array}$
$2 \mathrm{PP1}$	6.3	0.6	2-1/16	7-5/8	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 12 \text { Pin } \end{aligned}$	$\begin{aligned} & 12 \mathrm{~F} \\ & 12 \mathrm{~F} \end{aligned}$	Green	Medium	1000	2500	....	500	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 150-280 \\ & 300-560 \end{aligned}$	$\ldots$	$\begin{aligned} & 0-67.5 \\ & 0-135 \end{aligned}$	$\begin{aligned} & 115-155 \\ & 230-310 \end{aligned}$	$\begin{array}{r} 74-100 \\ 148-200 \end{array}$
$\begin{aligned} & 3 \mathrm{SPI}, \\ & 3 \mathrm{PPP} 1 A) \\ & 3 \mathrm{AP4}, \end{aligned}$	2.5	2.1	3	11-1/2	Medium 7 Pin	$\begin{aligned} & \text { 7AN } \\ & \text { 7CF } \\ & 7 \mathrm{AN} \end{aligned}$	Green Green White	Medium Medium Medium	1000	1500	$\cdots$	600	600 800 1000 1200 1500	$\begin{aligned} & 170 \\ & 230 \\ & 285 \\ & 345 \\ & 475 \end{aligned}$		$\begin{gathered} 14-40 \\ 14-40 \\ 17-50 \\ 20-60 \\ 22.5-67.5 \end{gathered}$	$\begin{array}{r} 47 \\ 61 \\ 76 \\ 91 \\ 114 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ 58 \\ 73 \\ 87 \\ 109 \\ \hline \end{array}$
$\begin{aligned} & \begin{array}{l} 3 \mathrm{RP} \mathrm{P}_{1} \\ 3 \mathrm{BP} 1 \mathrm{~A}) \end{array}, ~ \end{aligned}$	6.3	0.6	3	10	Medium Shie ll Diheptal 12 Pin	$\begin{aligned} & 144 \\ & 144 \end{aligned}$	Green Green	Medium Medium	1000	2000	$\ldots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{array}{r} 430 \\ 575 \end{array}$	$\ldots$	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 168 \\ & 221 \end{aligned}$	$\begin{aligned} & 123 \\ & 164 \end{aligned}$
${ }^{3} \mathrm{P} \mathrm{P}_{1}$	6.3	0.6	3	10-3/8	Medium   Mafnal 11 Pin, Sleeve	IIC	Green	Medium	1000	2000	$\ldots$	50	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 430 \\ & 575 \end{aligned}$	$\ldots$	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	${ }_{124}^{165.5}$	$\begin{aligned} & \hline 221 \\ & 165 \end{aligned}$
$\begin{array}{\|l\|l\|} \hline 3 \mathrm{P} 11 \\ 3(P P 1 A) \end{array}$	6.3	0.6	3	10-7/16	$\begin{aligned} & \text { Medium She ll } \\ & \text { Diheptal } 12 \text { Pin } \end{aligned}$	$\begin{aligned} & 14 \mathrm{C} \\ & 14 \mathrm{H} \end{aligned}$	Green	Medium	1000	2000	$\ldots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 430 \\ & 575 \end{aligned}$	$\ldots$	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 166 \\ & 221 \end{aligned}$	$\begin{aligned} & 123 \\ & 164 \end{aligned}$
${ }^{36 P 1}$	6.3	0.6	3	9-15/15	Large Mafer   Magnal 11 Pin, Sleeve	11A	Green	Medium	1000	2000	$\ldots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{array}{r} 430 \\ 575 \end{array}$	$\ldots$	$\underset{\substack{\text { 22.5-67.5 } \\ 30-90}}{ }$	$\begin{aligned} & 165.5 \\ & 221 \\ & \hline \end{aligned}$	$\begin{aligned} & 124 \\ & 165 \end{aligned}$
$\begin{aligned} & 3 F P 7 \\ & 3 P P 7 A \end{aligned}$	6.3	0.6	3	10	Medium Shell Dilieptal 12 Pin	$\begin{aligned} & 14 B \\ & 140 \end{aligned}$	Characteristica of Phosphor No. 7		1000	2000	4000	500	$\begin{aligned} & 2000 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 575 \\ & 430 \\ & \mathbf{5 7 5} \end{aligned}$	$\begin{aligned} & 2000 \\ & 3000 \\ & 4000 \end{aligned}$	$\begin{gathered} 30-90 \\ 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 221 \\ & 221 \\ & 295 \end{aligned}$	$\begin{aligned} & 164 \\ & 163 \\ & 217 \end{aligned}$
$\begin{aligned} & 3{ }_{3} \mathrm{CP}_{1} \\ & 3 \mathrm{GPP} 4 \end{aligned}$	6.3	0.6	3	11-1/2	$\begin{array}{\|l\|} \hline \text { Medium She } 11 \\ \text { Mapnal } 11 \text { Pin } \\ \hline \end{array}$	$\begin{aligned} & 11 A \\ & 11 A \end{aligned}$	Green White	Medium Medium	1000	1500	....	500	$\begin{aligned} & 1000 \\ & 1500 \end{aligned}$	$\begin{aligned} & 234 \\ & 350 \end{aligned}$	$\ldots$	$\underset{25-75}{16.5-49.5}$	$\begin{array}{r} 80 \\ 120 \\ \hline \end{array}$	$\begin{array}{r} 70 \\ 105 \end{array}$
$\begin{aligned} & 3 G P 1 A \\ & 3 \in P 4 A \\ & \hline \end{aligned}$	6.3	0.6	3	11-1/2	$\begin{aligned} & \text { Medium Sheil } \\ & \text { Magnal } 11 \text { Pin } \end{aligned}$	$\begin{aligned} & 11 \mathrm{~N} \\ & 1 \mathrm{~N} \end{aligned}$	Green White	Medium Medium	1000	1500	....	550	$\begin{array}{r} 1000 \\ 500 \end{array}$	$\begin{aligned} & 163-291 \\ & 245-437 \end{aligned}$	$\ldots$	$\begin{gathered} 16.5-49.5 \\ 25-75 \end{gathered}$	$\begin{aligned} & 96-96 \\ & 96-144 \end{aligned}$	$\begin{aligned} & \hline 56-84 \\ & 84-126 \end{aligned}$
3.JP1	6.3	0.6	3	10	$\begin{aligned} & \text { Medium Shell } \\ & \text { Diheptal } 12 \text { Pin } \end{aligned}$	$\begin{aligned} & 14 \sqrt{1} \\ & 143 \end{aligned}$	Green	Medium	1000	2000	4000	500	$\begin{array}{r} 500 \\ 2000 \\ 500 \\ 2000 \end{array}$	$\begin{aligned} & 430 \\ & 575 \\ & 430 \\ & 575 \end{aligned}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{gathered} 22.5-67.5 \\ 320-90 \\ 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 120 \\ & 160 \\ & 150 \\ & 200 \end{aligned}$	$\begin{array}{r} 89 \\ 119 \\ 111 \\ 148 \\ \hline \end{array}$
$\begin{aligned} & 3 \mathrm{KP1} 1 \\ & 3 \mathrm{KP} 4 \\ & \hline \end{aligned}$	6.3	0.6	3	11-1/2	Medium Shell Magnal 11 Pin	$\begin{aligned} & 11 \mathrm{M} \\ & 11 \mathrm{M} \end{aligned}$	Green Wite	Medium Medium	1000	2500	$\ldots$	500	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 160-300 \\ & 320-600 \end{aligned}$	$\cdots$	$\begin{aligned} & 0-45 \\ & 0-90 \end{aligned}$	$\begin{array}{\|c\|} \hline 50-68 \\ 100-136 \end{array}$	$\begin{aligned} & 38-52 \\ & 76-104 \end{aligned}$
3481	6.3	0.6	3	8	$\begin{array}{\|l\|} \hline \text { Sma II She I1 } \\ \text { Duodecal } 12 \text { Pin } \\ \hline \end{array}$	12 F	Green	Medium	1000	2500	$\ldots$	500	$\begin{array}{r} 1000 \\ 2000 \\ \hline \end{array}$	$\begin{array}{r} 200-350 \\ 400-700 \\ \hline \end{array}$	$\ldots$	$\begin{aligned} & 0-63 \\ & 0-126 \end{aligned}$	$\begin{aligned} & 140-190 \\ & 280-380 \end{aligned}$	$\begin{aligned} & 130-180 \\ & 260-360 \end{aligned}$
30P1	6.3	0.3	2-3/4	6-1/8	Furopean 9 Pin	9 D	Green	Medium	700	1500	....	550	$\begin{array}{r} 800 \\ 1200 \end{array}$	$\begin{array}{r} 200-320 \\ 240-480 \\ \hline \end{array}$	$\ldots$	$\begin{aligned} & 21-50 \\ & 31-74 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 143-193 \\ 214-290 \\ \hline \end{array}$	$\begin{array}{\|} 89-121 \\ 133-181 \\ \hline \end{array}$
$\begin{aligned} & 3 \text { 3PP1 } \\ & 3 R P 1 A \end{aligned}$	6.3	0.6	3	9-1/8	$\begin{aligned} & \text { Small Shell Duodecal } \\ & 12 \text { Pin } \end{aligned}$	12F.	Green	Medium	1000	2500	$\cdots$	500	$\begin{aligned} & 1000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 165-310 \\ & 330-620 \\ & \hline \end{aligned}$	$\ldots$	$\begin{array}{r} 67.5 \\ 13.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 85 \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 172 \\ & 122 \\ & \hline \end{aligned}$
$\begin{aligned} & 3 \text { SPP1 }^{3 S} \\ & 3 S P_{4} \end{aligned}$	6.3	0.6	$3 \times 1$ 1-1/2	9-1/8	$\begin{aligned} & \hline \text { Small Shell } \\ & \text { Duodecal } 12 \text { Pin } \\ & \hline \end{aligned}$	12 E	Green White	Medium Mediun	1100	2750	$\ldots$	$\ldots$	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 165-310 \\ & 330-620 \end{aligned}$	$\ldots$	$\begin{gathered} 28.5-67.5 \\ 58-135 \end{gathered}$	$\begin{gathered} 73-99 \\ 146-198 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 52-70 \\ 104-140 \\ \hline \end{array}$
5AP1	6.3	0.6	5-1/4	13	Large Wafer   Mapnal 11 Pin, Sleeve	11 A	Green	Medium	1200	2000	$\ldots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 430 \\ & 575 \end{aligned}$	$\ldots$	$\begin{aligned} & 31-57 \\ & 40-74 \\ & \hline \end{aligned}$	93	90
$5 \mathrm{AP4}$	6.3	0.6	5-1/4	13	Larpe Wafer   Mapnal 11 Pin, Sleeve	114	Wite	Medium	1200	2000	$\cdots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 430 \\ & 575 \end{aligned}$	$\cdots$	$\begin{aligned} & 17.6-57 \\ & 22.8-74 \end{aligned}$	93	90
$\begin{array}{\|l\|} \hline 5 \mathrm{BP1} \\ 58 P_{4} \\ 58 \end{array}$	6.3	0.6	5.1/4	16-3/4	Larpe Wafer Marnal 11 Pin	$\begin{aligned} & 11 \mathrm{~A} \\ & 11 \mathrm{~A} \end{aligned}$	Green White	Medium Medium	1000	2000	$\cdots$	500	$\begin{aligned} & 1500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 310 \\ & 425 \end{aligned}$	$\ldots$	20-60	$\begin{aligned} & 63 \\ & 84 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 57 \\ & 76 \\ & \hline \end{aligned}$
58P1A	6.3	0.6	$5-1 / 4$	16-3/4	Nedium Shell Maparil 11 Pin	11 N	Green	medium	1000	2000	$\cdots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	337-450	$\ldots$	$\begin{aligned} & 15-45 \\ & 20-60 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 84 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 \\ & 76 \\ & \hline \end{aligned}$
5RP7A	6.3	0.6	5-1/4	16-3/4	$\begin{array}{\|l\|} \hline \text { Medium She 11 } \\ \text { Magnal ll Pin } \end{array}$	1 N	Characteri P7 Scr	stics of reen	1000	2000	$\ldots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 235-420 \\ & 315-560 \end{aligned}$	$\ldots$	$\begin{aligned} & 15-45 \\ & 20-60 \end{aligned}$	$\begin{aligned} & \hline 52-74 \\ & 70-98 \end{aligned}$	$\begin{aligned} & 47-67 \\ & 63-89 \end{aligned}$

Cormanly used Phosphors off voltage. Supply should be adjustable from 0 to value shown.
Courtesy Syivania Electric Products Inc.
electrostatic types-cathode ray tubes

Type	Heater		Nominal Dimensions		Pase	$\begin{gathered} \text { RalA } \\ \text { Basing } \end{gathered}$	Screen		Maximum Design Center Ratings				Typical Operating Conditions					
	Volts	Amperes	Diameter Inches	Length Inches			Fluorescence	Persistence	Anode \#1 Volts	Anode ${ }^{2} 2$ Volts	Anode \#3 Volts	Anode ${ }^{2}$ to toDeflectionPlatePeak Volts	$\left\|\begin{array}{c} \text { Anode \#2 } \\ \text { Volts } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Anode } \neq 1 \\ \text { Avg. Volts"* } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { Anode }: 3 \\ \text { Volts } \end{array}\right\|$	Grid Range	$\begin{gathered} \text { Deflection } \\ \text { Avg. Volts DC/Inch } \end{gathered}$	
																	D 1-2	D 3-4
$\begin{aligned} & 5 \mathrm{SPP}_{1} \\ & 5 \mathrm{CP4} \end{aligned}$	6.3	0.6	5-1/4	16-3/4	Yedium Shell   Tiheptal 12 Pin	$\begin{aligned} & 14 \mathrm{~B} \\ & 14 \mathrm{~B} \end{aligned}$	Green White	Medium Medium	1000	2000	4000	500	$\begin{aligned} & 2000 \\ & 1500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 575 \\ & 430 \\ & 575 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{gathered} 30-90 \\ 22.5-67.5 \\ 30-90 \\ \hline \end{gathered}$	$\begin{aligned} & 73 \\ & 69 \\ & 92 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 56 \\ & 74 \\ & \hline \end{aligned}$
$5 C P 1 A$	6.3	0.6	5-1/4	16-3/4	$\begin{array}{\|l\|} \hline \text { Medium Shell } \\ \text { Diheptal } 12 \text { Pin } \end{array}$	$\begin{aligned} & 14 \mathrm{~J} \\ & 14 \mathrm{~J} \end{aligned}$	Green	Medium	1000	2000	4000	500	$\begin{aligned} & 2000 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{array}{r} 575 \\ 430 \\ 575 \\ \hline \end{array}$	$\begin{aligned} & 2000 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{gathered} 30-90 \\ 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{array}{r} 73 \\ 69 \\ 92 \\ \hline \end{array}$	$\begin{aligned} & 64 \\ & 56 \\ & 74 \end{aligned}$
${ }^{56 P 1}$	6.3	0.6	5-1/4	16-3/4	Large Wafer Magnal 11 Pin, Sleeve	11A	Green	Medium	1000	2000	....	500	2000	425	$\ldots$	24-5¢	36	72
$\begin{aligned} & 5 \mathrm{Pl} \\ & \hline 5 \mathrm{Pl} \\ & \hline \end{aligned}$	6.3	0.6	5-1/4	16-3/4	$\begin{aligned} & \hline \text { Large Wafer } \\ & \text { Marnal } 11 \text { Pin, Sleeve } \end{aligned}$	$\begin{aligned} & 11 A \\ & 11 A \end{aligned}$	Green White	Medium Medium	1000	2000	....	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{array}{r} 310 \\ 425 \\ \hline \end{array}$	$\cdots$	$15-4.5$ $20-60$	$\begin{aligned} & 63.5 \\ & 84.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 57.8 \\ & 77.0 \end{aligned}$
5HP1A	6.3	0.6	5-1/4	16-3/4	Large Wafer Mapnal 11 Pin, Micanol	11 N	Green	Medium	1000	2000	....	500	$\begin{array}{r} 1500 \\ 2000 \\ \hline \end{array}$	$\begin{array}{r} 337 \\ 450 \\ \hline \end{array}$	$\cdots$	$\begin{aligned} & 15-45 \\ & 20-40 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 84 \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \\ \hline 76 \\ \hline \end{array}$
$\begin{array}{\|l\|} \hline 5 \cdot \mathrm{JPl} \\ 5 \mathrm{JP4} \end{array}$	6.3	0.6	5-5/16	16-3/4	$\begin{aligned} & \hline \text { Medium } \\ & \text { Magnal Il Pin } \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \mathrm{E} \\ & 11 \mathrm{~F} \end{aligned}$	Green White	Medium Medium	100n	2000	4000	500	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 260 \\ & 520 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{gathered} 22.2-51.8 \\ 45-105 \\ \hline \end{gathered}$	95	96
$\begin{aligned} & \text { 5JP1A } \\ & \text { 5JP4A } \end{aligned}$	6.3	0.6	5-5/16	16.3/4	Medium Nharnal 11 Pin	$\begin{aligned} & 115 \\ & 115 \\ & \hline \end{aligned}$	Green Mite	Medium Medium	1000	2000	4000	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 250-472 \\ & 333-630 \\ & \hline \end{aligned}$	$\begin{aligned} & 3000 \\ & 4000 \end{aligned}$	$\begin{aligned} & \hline 34-79 \\ & 45-105 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 58-86 \\ & 77-115 \end{aligned}$	$\begin{aligned} & \hline 58-86 \\ & 77-115 \\ & \hline \end{aligned}$
$\begin{aligned} & 5 L P 1 \\ & 5 L P 4 \end{aligned}$	6.3	0.6	5-5/16	16-3/4	Medium Mapnal 11 Pin, Sleeve	$\begin{aligned} & 11 \mathrm{~F} \\ & 11 \mathrm{~F} \end{aligned}$	Green White	Medium Medium	1000	2000	4000	500	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 250 \\ & 375 \\ & 500 \end{aligned}$	$\begin{aligned} & 2000 \\ & 3000 \\ & 4000 \end{aligned}$	$\begin{array}{c\|} 15-45 \\ 22.5-67.5 \\ 30-90 \\ \hline \end{array}$	$\begin{array}{r} 52 \\ 77 \\ 103 \\ \hline \end{array}$	$\begin{aligned} & \hline 45 \\ & 68 \\ & 90 \\ & \hline \end{aligned}$
$\begin{aligned} & 5 L P 1 A \\ & 5 L P 4 A \end{aligned}$	6.3	0.6	5-5/16	16-3/4	Medium Mmanal 11 Pin, Sleeve	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	Green White	Medium Medium	1000	2000	4000	550	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 282-475 \\ & 376-633 \end{aligned}$	$\begin{aligned} & 3000 \\ & 4000 \end{aligned}$	22.5-67.5   30-90	$\begin{aligned} & \hline 62-93 \\ & 83-124 \end{aligned}$	$\begin{array}{\|l\|} \hline 54-81 \\ 72-108 \\ \hline \end{array}$
$\begin{aligned} & \hline \text { SNP1 } \\ & \text { SNP4 } \\ & \hline \end{aligned}$	2.5	2.1	5-5/16	15-7/8	Large 7 Pin	$\begin{aligned} & \text { 7AN } \\ & \text { TAN } \end{aligned}$	Green White	Medium Medium	1000	1500	....	600	$\begin{aligned} & 1000 \\ & 1500 \end{aligned}$	$\begin{aligned} & 250 \\ & 375 \end{aligned}$	$\ldots$	$\begin{gathered} 16.5-49.5 \\ 15-45 \end{gathered}$	65	50
$\begin{aligned} & \text { 5NP1 } \\ & \text { 5NP4 } \end{aligned}$	6.3	0.6	5-5/16	16-3/4	Larre Wafer Magnal 11 Pin, Sleeve	$\begin{aligned} & 11 \mathrm{~A} \\ & 11 \mathrm{~A} \end{aligned}$	Green White	$\begin{aligned} & \text { Medium } \\ & \text { Modium } \end{aligned}$	1000	2000		500	$\begin{array}{r} 1500 \\ 2000 \end{array}$	$\begin{aligned} & 337 \\ & 450 \end{aligned}$		$\begin{aligned} & 15-4.5 \\ & 20-60 \end{aligned}$	84	76
$\begin{aligned} & \text { 5RP1 } \\ & 5 R P 4 \end{aligned}$	6.3	0.6	5-1/4	16-3/4	$\begin{aligned} & \begin{array}{l} \text { Medium She } 11 \\ \text { Diheptal } 12 \text { Pin } \end{array} \end{aligned}$	$\begin{aligned} & 14 \mathrm{~F} \\ & 14 \mathrm{~F} \end{aligned}$	Green White	Medium Nedium	15550	3500	25500	1200	$\begin{array}{r} 2000 \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & \hline 518 \\ & 528 \end{aligned}$	$\begin{aligned} & 10000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 30-90 \\ & 30-90 \\ & \hline \end{aligned}$	$\begin{aligned} & 30-45 \\ & 36-54 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 30-45 \\ & 36-54 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 5RP1A } \\ & \text { 5RP4A } \end{aligned}$	6.3	0.6	5-2/4	16-3/4	Ahedium She 11 Dilieptal 12 Pin	14 F	Green White	Medium Nedium	15550	3500	25500	1200	$\begin{aligned} & 2000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 518 \\ & 528 \\ & \hline \end{aligned}$	$\begin{aligned} & 10000 \\ & 20000 \end{aligned}$	$\begin{aligned} & \hline 30-90 \\ & 30-90 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 30-45 \\ & 36-54 \\ & \hline \end{aligned}$	$\begin{aligned} & 30-45 \\ & 36-54 \\ & \hline \end{aligned}$
$\begin{array}{\|l\|} \hline 5 S P 1 \\ \text { 5SP4 } \end{array}$	6.3	0.6	5-1/4	18-1/2	Medium Shell   Dilieptal 12 Pin	$\begin{aligned} & 14 K \\ & 14 K \end{aligned}$	Green White	Medium Medium	1000	2000	4000	500	$\begin{aligned} & 1500 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 431 \\ 431 \\ 575 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{gathered} 22.5-67.5 \\ 22.5-67.5 \\ 30-90 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 55 \\ & 69 \\ & 92 \\ & \hline \end{aligned}$	$\begin{array}{r} 48 \\ 59 \\ 79 \\ \hline \end{array}$
SUP1	6.3	0.6	5-1/4	14-3/4	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Duodecal } 12 \text { Pin } \\ \hline \end{array}$	12F,	Green	Hedium	1000	2500	$\cdots$	500	$\begin{aligned} & 1000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 170-320 \\ & 340-640 \end{aligned}$	$\ldots$	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 28-38.5 \\ & 56-77 \\ & \hline \end{aligned}$	$\begin{aligned} & 28-31 \\ & 46-62 \end{aligned}$
5VP7	6.3	0.6	5-1/4	16-3/4	$\begin{aligned} & \text { Medium Shell } \\ & \text { Magnal ll Pia } \end{aligned}$	11 N	Characteristics of Phosphor No. 7		1000	2500	$\cdots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 236-422 \\ & 315-562 \end{aligned}$		$\begin{aligned} & \hline 15-45 \\ & 20-40 \end{aligned}$	$\begin{aligned} & 52-74 \\ & 70-98 \end{aligned}$	$\begin{aligned} & 47-67 \\ & 63-89 \end{aligned}$
5XP1	6.3	0.6	5-1/4	17-5/8	$\begin{aligned} & \text { Medium She } 11 \\ & \text { Diheptal } 12 \text { Pin } \end{aligned}$	14 F	Green	Medium	1550	3500	25500	1200	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 362-695 \\ 362-695 \\ 362-695 \end{array} \end{aligned}$	$\begin{array}{r} 4000 \\ 10000 \\ 20000 \end{array}$	$\begin{aligned} & 30-90 \\ & 30-90 \\ & 30-90 \end{aligned}$	$\begin{array}{r} 72-108 \\ 102-695 \\ 362.695 \\ \hline \end{array}$	$\begin{aligned} & 24-36 \\ & 34-52 \\ & 46-68 \end{aligned}$
$7 \mathrm{EP4}$	6.3	0.6	7	15-1/2	Nedium Shell Magnal 11 Pin	11N	White	Medium	1500	3300	$\ldots$	700	2500	650	$\ldots$	36-84	110	95
$7{ }^{7} \mathrm{PP}_{4}$	6.3	0.6	7	14-1/2	Medium Shell Diheptal 12 Pin	146	White	Medium	1500	4000	$\cdots$	500	3000	810-1200	$\ldots$	36-84	93-123	75-102
$\begin{aligned} & \text { 7JP1 } \\ & \text { 7JP4 } \\ & \hline \end{aligned}$	6.3	0.6	7	14-1/2	$\begin{array}{\|l} \hline \text { Medium Shell } \\ \text { Diheptal } 12 \text { Pin } \end{array}$	146	Green White	$\begin{aligned} & \text { Medium } \\ & \text { Medium } \end{aligned}$	2800	6000	$\cdots$	750	6000	1620-2400	$\ldots$	72-168	186-246	150-204
8EP4	6.3	0.6	8-3/4	16-1/2	Medium Shell Diheptal 12 Pin	146	White	Medium	3100	6600	$\ldots$	750	6000	2000	$\cdots$	72-168	146-198	124-198
9 NPI	2.5	2.1	9	21	Medium 6 Pin	6EN	Green	Medium	1500	5500	....	1500	5000	1150	$\ldots$	45-135	190	175

- Cut-off voltage. Supply should be edjustable from 0 to value shown.
*- Borey value for focus. Voltage should be adjustable about value shown.
Courtesy Sylvania Electric Producta Inc.
electrostatic types-cathode ray tubes

Type	Heater		Nominal Dimensions		Base	$\begin{gathered} \text { RMA } \\ \text { Basing } \end{gathered}$	Screen		Maximum lesigu Center Ratings				Typical Operating Conditions					
	Volts	Amperes	DiameterInches	Length Inchies			Fluorescence	Peraistence	Anode il Volts	Anode 2   Volts	Anode $\# 3$ Volts	$\begin{aligned} & \text { Anode } \# 2 \text { to } \\ & \text { Deflectinn } \\ & \text { Flate. } \\ & \text { Peok Volis } \end{aligned}$	Anode ${ }^{2} 2$ Volte	$\left\|\begin{array}{c} \text { Anode \#1 } \\ \text { Avz. .olta } \end{array}\right\|$	Anode \#3 Volts	Grid Range	$\begin{array}{\|c\|} \hline \text { Deflection } \\ \text { Ave. Volts DC/Inch } \\ \hline \end{array}$	
																	D 1-2	D 3.4
10GP4	6.3	0.6	10	18-1/2	Medium Shell   Diheptal 12 Pin	146	White	Medium	2000	5000	.	500	$\begin{aligned} & 4500 \\ & 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1130-1660 \\ & 1250-1850 \\ & \hline \end{aligned}$	$\ldots$	$\begin{array}{r} 54-126 \\ 60-140 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} 112-149 \\ 125-165 \\ \hline \end{array}$	$\begin{array}{r} 90-127 \\ 100-135 \\ \hline \end{array}$
101 P 4	6.3	0.6	10	19-1/4	Medium Sliell Mineptal $12 \mathrm{P}_{\mathrm{in}}$	145	White	4edium	2 non	5000	$\cdots$	600	$\begin{aligned} & 414001 \\ & 5000 \end{aligned}$	$\begin{array}{r} 960-1440 \\ 1200-1800 \\ \hline \end{array}$	$\begin{aligned} & \hline \ldots . \\ & \ldots \end{aligned}$	$\begin{array}{r} 48-112 \\ 60-140 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 88-120 \\ 110-150 \\ \hline \end{array}$	$\begin{aligned} & \hline 68-92 \\ & 85-115 \end{aligned}$
12PP7	6.3	0.6	12	24	Aledjum Slie II Dilieptale 12 Pin	14 F .	Characteristics of Hiosphor No. 7		2000	4000	8000	1000	2000    4000    3000    4000	$\begin{array}{r} 625 \\ 1250 \\ 937 \\ 1250 \end{array}$	$\begin{aligned} & 4000 \\ & 4000 \\ & 4000 \\ & 8000 \end{aligned}$	$\begin{aligned} & 30-90 \\ & 30-90 \\ & 30-90 \\ & 30-90 \end{aligned}$	$\begin{array}{r} 55 \\ 83 \\ 110 \\ \hline \end{array}$	$\begin{array}{r} 63 \\ 94 \\ 125 \end{array}$
126P7	6.3	0.6	12	22	Medium Shell Diheptal 12 Pin	148	Characteristics of Phosphor No. 7		2000	4000	600 n	1000	$\begin{aligned} & 3000 \\ & 3000 \\ & 4000 \\ & 4000 \end{aligned}$	$\begin{array}{r} 857 \\ 857 \\ 1143 \\ 1143 \end{array}$	$\begin{aligned} & 3000 \\ & \text { K000 } \\ & 4000 \\ & 6000 \end{aligned}$	$\begin{aligned} & \text { 49-147 } \\ & \text { 49-147 } \\ & 65-195 \\ & 65-199 \end{aligned}$	$\begin{array}{r} 73 \\ 89 \\ 97 \\ 108 \end{array}$	$\begin{array}{r} 68 \\ 83 \\ 91 \\ 101 \end{array}$
124P1	6.3	0.6	12	23-1/2	Medium Mapral 11 Pin, Sleeve	11 J	Green	Medium	1500	5510	$\ldots$	10 m	5000	$\begin{gathered} 1150 \\ +25 \% \\ -30 \% \end{gathered}$	....	45-135	19	25
$\begin{aligned} & 144 \mathrm{Pl} \\ & 14 \mathrm{AP4} \\ & \hline \end{aligned}$	2.5	2.1	13-3.8	24-1/4	$\begin{array}{\|l\|} \hline 12 \text { Pin } \\ \text { Peripheral Contact } \\ \hline \end{array}$	$\begin{aligned} & \hline 12 \mathrm{~A} \\ & 12 \mathrm{~A} \\ & \hline \end{aligned}$	Green Minte	Mledium Medium	1800	400	8000	....	$\begin{aligned} & 2000 \\ & 40 \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 4000 \\ & 8000 \\ & \hline \end{aligned}$	$\begin{aligned} & 20-60 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 65 \\ 130 \end{array}$	$\begin{array}{r} 65 \\ 130 \\ \hline \end{array}$
$\begin{aligned} & \hline 20 \mathrm{API} \\ & 20 \mathrm{AP} 4 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{array}{\|l\|} \hline 27-7 / 8 \\ 27-7 / 8 \end{array}$	$\begin{aligned} & 12 \text { Pin } \\ & \text { Periplieral Contact } \end{aligned}$	$\begin{aligned} & \hline 12 \mathrm{~A} \\ & 12 \mathrm{~A} \end{aligned}$	Green White	Medium Medium	$\begin{aligned} & 1800 \\ & 1800 \end{aligned}$	$\begin{aligned} & 4000 \\ & 4000 \end{aligned}$	$\begin{aligned} & 8000 \\ & 8000 \end{aligned}$	$\cdots$	2000   4000   2000   4000	$\begin{array}{r} 500 \\ 1000 \\ 500 \\ 1000 \\ \hline \end{array}$	$\begin{aligned} & 4000 \\ & 8000 \\ & 4000 \\ & 8000 \end{aligned}$	$\begin{aligned} & 200-60 \\ & 40-120 \\ & 20-60 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 5.5 \\ 110 \\ 65 \\ 130 \end{array}$	$\begin{array}{r} 55 \\ 110 \\ 65 \\ 130 \end{array}$
902	6.3	0.6	2	7-1/2	$\begin{aligned} & \text { Sedium Shell } \\ & \text { Octal B Pin } \end{aligned}$	8(1)	Greea	${ }^{\text {Hed }}$ Iediur	3 c	600	$\ldots$	347	$\begin{aligned} & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\ldots$	$\begin{aligned} & 20-60 \\ & 30-90 \\ & \hline \end{aligned}$	$\begin{array}{r} 93 \\ 139 \end{array}$	$\begin{array}{r} 78 \\ 117 \\ \hline \end{array}$
902-A	6.3	0.6	2	7-7/16	Medium She 11 Octal 8 Pin	8 CD	Green	Medium	300	\%on	$\ldots$	347	$\begin{gathered} 400 \\ 600 \end{gathered}$	$\begin{aligned} & 1000 \\ & 150 \end{aligned}$	$\cdots$	$\begin{aligned} & \hline 20-60 \\ & 30-90 \\ & \hline \end{aligned}$	$\begin{array}{r} 93 \\ 139 \end{array}$	$\begin{array}{r} 78 \\ 117 \\ \hline \end{array}$
$\begin{aligned} & 905 \\ & 907 \\ & 909 \end{aligned}$	2.5	2.1	5-1.4	16-1/2	$\begin{aligned} & \hline \text { Lmp She II } \\ & \text { Medium } 5 \text { Pin Micenol } \end{aligned}$	$\begin{aligned} & 5 R P^{\prime} \\ & 5 R P \\ & 5 R P \end{aligned}$	Creen Blue Bluish-White	$\begin{array}{\|c\|} \hline \text { Nedium } \\ \text { Very Shott } \\ \text { Long } \end{array}$	600	2000	....	10 m	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 338 \\ & 450 \end{aligned}$	$\cdots$	$\begin{gathered} 13-39 \\ 17.5-52.5 \end{gathered}$	$\begin{array}{r} 86 \\ 115 \end{array}$	$\begin{aligned} & 73 \\ & 97 \end{aligned}$
905-A	2.5	2.1	5-1/4	16-1/2	$\begin{array}{\|l} \hline \text { Long She Il } \\ \text { Medjum } 5 \text { Pin Aticanol } \\ \hline \end{array}$	58 B	Freen	Medium	600	2000	....	10007	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 338 \\ & 450 \end{aligned}$	$\ldots$	$\begin{array}{r} 13-39 \\ 17.5-52.5 \\ \hline \end{array}$	$\begin{array}{r} 86 \\ 115 \\ \hline \end{array}$	$\begin{aligned} & 73 \\ & 97 \end{aligned}$
$\begin{aligned} & 908 \\ & 910 \end{aligned}$	2.5	2.1	3	11-1/2	Medium 7 Pin	$\begin{aligned} & \text { 7AN } \\ & \text { 7AN } \end{aligned}$	$\begin{array}{c\|} \hline \text { Rluish } \\ \text { Bluish-White } \end{array}$	Very Short Long	1000	1500	$\ldots$	60n	600   800   100   1200   1500   10	$\begin{aligned} & 170 \\ & 230 \\ & 285 \\ & 345 \\ & 475 \\ & \hline \end{aligned}$		$\begin{aligned} & 13-46 \\ & 30-70 \end{aligned}$	$\begin{gathered} 46.3 \\ 62 \\ 77 \\ 94 \\ 115.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 44 \\ 57.8 \\ 72.5 \\ 88 \\ 110 \\ \hline \end{gathered}$
908-A	2.5	2.1	3	11-1/2	Medium 7 Pin	7CE	Blue	Very Short	1000	1500	$\cdots$	500	$\begin{aligned} & \hline 1000 \\ & 1500 \\ & \hline \end{aligned}$	$\begin{array}{r} 287 \\ 430 \\ \hline \end{array}$	$\ldots$	$\begin{gathered} 16.5-49.5 \\ 25-75 \\ \hline \end{gathered}$	$\begin{array}{r} 76 \\ 114 \\ \hline \end{array}$	$\begin{array}{r} 73 \\ 109 \\ \hline \end{array}$
912	2.5	2.1	5-1.4	16-1/2	$\begin{aligned} & \text { Medium } \\ & 5 \text { Pin Micanol } \end{aligned}$	912	Green	Medium	4500	1500	$\cdots$	7000	$\begin{array}{r} 5000 \\ 10,000 \\ 15,000 \\ \hline \end{array}$	$\begin{aligned} & 1000 \\ & 2000 \\ & 3000 \\ & \hline \end{aligned}$		$\begin{aligned} & 27-81 \\ & 31-93 \\ & 35-105 \end{aligned}$	$\begin{aligned} & 306 \\ & 620 \\ & 910 \\ & \hline \end{aligned}$	$\begin{aligned} & 248 \\ & 498 \\ & 745 \\ & \hline \end{aligned}$
913	6.3	0.6	1-5/8	4-3/4	$\begin{aligned} & \text { Small Wafer Octal } \\ & \text { B Pin } \\ & \hline \end{aligned}$	913	Green	Medium	200	500	$\ldots$	250	$\begin{gathered} 25 n \\ 50 \end{gathered}$	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	$\ldots$	$\begin{aligned} & 10-30 \\ & 32-98 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 169 \\ & 363 \\ & \hline \end{aligned}$	$\begin{aligned} & 121 \\ & 254 \\ & \hline \end{aligned}$
914	2.5	2.1	9-1/4	21-1/2	Medium 6 Pin	${ }^{6 B F}$	Green	Hedium	1900	2000	$\cdots$	3 mon	$\begin{aligned} & 1500 \\ & 2500 \\ & 5000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{array}{r} 300 \\ 515 \\ 1030 \\ 1450 \end{array}$		$\begin{aligned} & 25-75 \\ & 25-75 \\ & 25-75 \\ & 25-75 \end{aligned}$	$\begin{aligned} & 75 \\ & 124.5 \\ & 248 \\ & 348 \\ & \hline \end{aligned}$	$\begin{gathered} 58.7 \\ 97.8 \\ 195 \\ 274 \\ \hline \end{gathered}$
914A	2.5	2.1	9-1/4	20-1/1K	Medium 6 Pin	914A	Gireen	Nedium	1900	7 non	$\ldots$	3000	1500   2500   5000   7000	$\begin{array}{r} 320 \\ 550 \\ 1100 \\ 1550 \\ \hline \end{array}$		$\begin{aligned} & 25-75 \\ & 25-75 \\ & 25-75 \\ & 25-75 \\ & \hline \end{aligned}$	69.5   115   231   323	$54 . \mathrm{K}$   91   182   254
$\begin{aligned} & \hline \mathrm{VCR} \\ & 139 \mathrm{~A} \end{aligned}$	4.0	1.1	2-3/4	7-7/8	Furopean	$\begin{aligned} & \hline \mathrm{VCR} \\ & 139 \mathrm{n} \end{aligned}$	Green	Medium	1000	1000	....		$\mathrm{BnO}_{1}$	120-150	$\cdots$	7-16	104	140


Type	Heater		Pulb						$\left\|\begin{array}{c} \text { Ion } \\ \text { Trap } \\ \text { Requi i ed } \end{array}\right\|$	Base	$\begin{aligned} & \text { RMA } \\ & \text { Basing } \end{aligned}$	unf Filter Capacitance Provided by Bull Coating	$\begin{aligned} & \text { Deflection } \\ & \text { and } \\ & \text { Focusing } \\ & \text { Me thod } \end{aligned}$	Maximum Design Center Ratings		Typical Operation			$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$
	Volts	Amperes	Nominal Face Dimensions in Inches	$\begin{aligned} & \text { Lengetli } \\ & \text { in } \\ & \text { Haclies } \end{aligned}$	$\begin{gathered} \text { Con- } \\ \text { struction } \end{gathered}$	Terminal	$\begin{aligned} & \text { Face } \\ & \text { Plate } \\ & \text { Color } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Deflection } \\ \text { Anale } \\ \text { in Uepreses } \\ \text { (Noce 1) } \end{array}$						$\left(\left.\begin{array}{l} \text { Anode } \\ \text { Volts } \end{array} \right\rvert\,\right.$	Accelerator Grid Volts	$\begin{aligned} & \text { Anode } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { Acceler- } \\ & \text { ator } \\ & \text { Grid } \\ & \text { Volts } \end{aligned}$		
3HP7	6.3	0.6	3 Diam.	9-13/16	Glass	Snap	Clear	55	None	Medium Shell $\text { Octal } 8 \mathrm{Pin}$	5AN	None	Mapnetic	5000	200	$\begin{aligned} & \hline 4000 \\ & 5000 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 15-45 \\ & 15-45 \end{aligned}$	3HP7
$3{ }^{3} \mathrm{P} 4$	6.3	0.6	2-9/16 Diam.	10	Cilass	Recessed Small Ball	Clear	42	None	Special 5 Pin	3 NP 4	275 Min, 375 Max.	Marnetic	25000	$\cdots$	24000	$\ldots$	60	3NP4
$5_{5 \times P 4}{ }^{4}$	6.3	0.6	5 Diam.	11-1/8	Glass	Hecessed Small Ball	Clear	53	None	$\begin{aligned} & \text { Medium Shell } \\ & \text { Octal \& Pin } \\ & \hline \end{aligned}$	8 BX	None	Magnetic	8000	300	6000	250	45	5FP4A
5FP7A	6.3	0.6	5 Diam.	11-1/2	Glass	$\begin{aligned} & \text { Fecessed } \\ & \text { Small Ball } \end{aligned}$	Clear	53	None	Medium Sliell Octal 8 Pin	8BX	None	Mapnetic	B000	700	$\begin{array}{r} 4000 \\ 7000 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} 25-70 \\ 25-70 \\ \hline \end{array}$	5FP7A
$5 \mathrm{FP7}$	6.3	0.6	5 Diam.	11-1/8	Glass	Snap	Clear	55	None	Small Wafer Octal 8 Pin with Sleeve	SAN	None	Magnetic	7000	300	$\begin{aligned} & 4000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} 25-75 \\ 25-75 \\ \hline \end{array}$	5FP7
5FP14	6.3	0.6	5 Diam.	11-1/8	Glass	Snap	Clear	55	None	Small Wafer Octal 8 Pin with Sleeve	5AN	None	Marnetic	7000	700	$\begin{array}{r} 4000 \\ 7000 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 25-75 \\ & 25-75 \\ & \hline \end{aligned}$	$5 \mathrm{FP14}$
$5 \mathrm{FP}_{4}$	6.3	0.6	5 Diam.	11-3/4	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cayity } \end{aligned}$	Clear	50	None	$\begin{aligned} & \text { Medium Shell } \\ & \text { Diheptal } 12 \mathrm{Pin} \end{aligned}$	12C1	100 Min, 500 Max.	Note 2	27000	350	27000	200	70	$5 \mathrm{PP}_{4}$
5WP15	6.3	0.6	5 Diam.	11-7/16	Glass	$\begin{aligned} & \text { Mecessed } \\ & \text { Small Covity } \end{aligned}$	Clear	50	None	$\begin{aligned} & \text { Small She 11 } \\ & \text { Duodecal } 7 \text { Pin } \\ & \hline \end{aligned}$	12 Cl	$100 \mathrm{Min}, 500 \mathrm{Max}$.	Note 2	27000	350	20000	200	70	5WP15
$7 \mathrm{AP4} 4$	2.5	2.1	7-1/8 Diam.	13-1/2	Glass	None	Clear	55	None	Medium 5 Pin	5AJ	None	Note 2	35000	No Grid	35000	No Grid	67.5	$7 \mathrm{PP4}$
${ }^{7} \mathrm{FP} 1$	6.3	0.6	7 Diam.	13-1/4	Glass	Snap	Clear	55	None	$\begin{aligned} & \text { Octal } 8 \text { Pin } \\ & \text { with Sleeve } \\ & \hline \end{aligned}$	5AN	None	Mapnetic	7000	675	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	78P1
7BP7	6.3	0.6	7 Diam.	13-1/4	Gilass	Snap	C.lear	55	None	Octal 8 Pin with Sleeve	5AN	None	Magnetic	7000	300	$\begin{aligned} & 4000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ \hline \end{array}$	$7 \mathrm{PP7}$
$7 \mathrm{PP7} 7$	6.3	0.6	7 Diam.	13-1/4	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Ball } \end{aligned}$	Clear	53	None	Medium Shell $\text { Octal } 8 \text { Pin }$	8B入	None	Magnetic	8000	700	$\begin{aligned} & 4000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 25-70 \\ & 25-70 \\ & \hline \end{aligned}$	$78 P 7 \mathrm{~A}$
$7{ }^{\text {CP1 }}$	6.3	0.6	7 niam.	13-7/16	Glass	Snap	Clear	57	None	Medium Shell Octal 8 Pin	6 AZ	None	Note 2	8000	300	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ 45 \\ \hline \end{array}$	7 CP 1
$7 \mathrm{CP4}$	6.3	0.6	7 Diam.	13-7/16	Ginss	$\begin{aligned} & \text { Recessed } \\ & \text { Small Ball } \\ & \hline \end{aligned}$	Clear	57	None	$\begin{aligned} & \text { Medium Shell } \\ & \text { Octal } 8 \text { Pin } \end{aligned}$	6 AZ	None	Note 2	8000	300	6000	250	45	${ }_{7} \mathrm{CP}_{4}$
7 DP 4	6.3	0.6	7-3/16 Diam.	14-1/16	Glass	$\begin{array}{l\|} \hline \text { Recessed } \\ \text { Sinall Cavity } \\ \hline \end{array}$	Clear	50	Double	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Duodecal ? Pin } \\ \hline \end{array}$	12:2	$400 \mathrm{Min}, 1500$ Nax.	Note 2	8000	410	6000	250	45	7DP4
$7 \mathrm{HP4}$	6.3	0.6	7-3/16 Jiam.	13	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Ball } \\ & \hline \end{aligned}$	Clear	50	None	Small Shell Duodecal 7 Pin	1202	500 Max.	Magnetic	8000	410	6000	250	33-77	$7 \mathrm{HP4}$
8AP4	6.3	0.6	8-1/2 Diam.	14-1/4	Hecal	Cone Lip	Clear	54	Sinple	Small Shell Duodecal 7 Pin	12H	None	Marnetic	10000	No Grid	9000	No Grid	27-63	$8 \mathrm{APP}_{4}$
$8 \mathrm{AP4A}$	6.3	0.6	${ }^{8-1 / 2 ~ D i a m . ~}$	14-1/4	Metal	Cone Lip	Gray	54	Single	Small Shell Duodecal 5 Pin	12H	None	Magnetic	9000	No Grid	7000	No Girid	27-63	8AP4A
$9 \mathrm{AP4}$	2.5	2.1	9-1/8 Пiam.	21	Glass	Cap	C.lear	40	None	Medium 6 Pin	6 AL	None	Note 2	7000	250	$\begin{aligned} & 6000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$9 \mathrm{AP4}$
${ }_{9} \mathrm{CP} 4$	2.5	2.1	9 Diam.	15-7/8	Glass	Cap	Clear	$\cdots$	Nosie	6 Pin Base	4 AF	None	Magnetic	7000	No Grid	$\begin{aligned} & 6000 \\ & 7000 \end{aligned}$	No Grid	$\begin{array}{r} 90 \\ 100 \\ \hline \end{array}$	$9^{\text {CP4 }}$
$9{ }^{(1) 7}$	6.3	n.f	9 Diam.	17	Glass	Cap	Clear	55	None	$\begin{aligned} & \text { Octal 8 Pin } \\ & \text { with Sleeve } \end{aligned}$	5AN	None	Magnetic	7000	300	$\begin{aligned} & 4000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	96P7
9.JP1	2.5	2.1	9 Diam.	15-11/16	Filass	Snap	Clear	55	None	Small Wafer Octal   8 Pin witi Sleeve	88月	None	Note 3	5000	No Grid	$\begin{aligned} & 2500 \\ & 5000 \\ & \hline \end{aligned}$	No Grid	$\begin{array}{r} 45 \\ 90 \\ \hline \end{array}$	9.P1
$91{ }^{9} 7$	6.3	0.6	${ }^{4}$ Diam.	14-31/32	Glass	Cap	Clear	55	None	Octal 8 Pin with Sleeve	5 AN	None	Mapnetic	7000	300	4000 4000 7000 7000	$\begin{aligned} & 250 \\ & 125 \\ & 250 \\ & 125 \end{aligned}$	$\begin{aligned} & 55-105 \\ & 30-50 \\ & 60-100 \\ & 30-50 \end{aligned}$	9LP7
9MP7	6.3	0.6	9 niam.	17-1/2	Glass	Cap	Clear	55	None	$\begin{aligned} & \text { Octal } 8 \text { Pin } \\ & \text { with Sleeve } \\ & \hline \end{aligned}$	5 AN	None	Magnetic	7000	300	$\begin{aligned} & 4000 \\ & 6000 \end{aligned}$	250	25-75	9\%P7
10 BP 4	6.3	0.6	10-1.2 Diam.	17-5/8	Glass	$\begin{aligned} & \hline \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	50	Double	$\begin{aligned} & \text { Small She } 11 \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	1212	$500 \mathrm{Min}, 2500 \mathrm{Mlax}$.	Magnetic	10000	410	9000	250	20-60	10BP4
10BP4A							Gray												10 BP 4 A
$10 \mathrm{CP4}$	6.3	0.6	10-1/2 Diam.	16-5/8	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Ball } \end{aligned}$	Clear	50	None	$\begin{aligned} & \text { Sinall Slie } 11 \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	12 D 2	50 Max .	Mapnetic	11000	410	8000	250	30-66	${ }_{10 \mathrm{CP}}$

magettic type cathode ray tubes

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Heater		Rulb						$\left.\begin{array}{\|c\|} \text { Ion } \\ \text { Trap } \\ \text { Resui red } \end{array} \right\rvert\,$	Base	$\begin{array}{c\|} \text { RMA } \\ \text { Basing } \end{array}$	ниf Filter Capacitance Provided by Bulb Coatinp	$\begin{aligned} & \text { Deflection } \\ & \text { and } \\ & \text { Focusing } \\ & \text { Metliod } \end{aligned}$	Maximum DesianCienter Hatings		Typical Operation			$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$
	Volts	Amperes	Nominal Face Dimensions in laclies	$\begin{aligned} & \text { Lengeth } \\ & \text { inches } \\ & \text { nach } \end{aligned}$	Construction	Termical	Face Plate Color	$\begin{gathered} \hline \text { De Clection } \\ \text { Ansle } \\ \text { in Deprees } \\ \text { (Note 1) } \\ \hline \end{gathered}$						$\begin{array}{\|c\|} \text { Anode } \\ \text { Volts } \end{array}$	Accelerator Grid Volts	$\begin{array}{\|l\|l\|} \hline \\ \text { Anode } \\ \text { Volts } \end{array}$	$\square$		
10DP4	6.3	0.6	10-1/2 Diam.	17-5/8	Glas:	Recessed Small Cavity	Clear	50	None	Small Shell   「Modecal 7 Pin	12 C 3	None	Note 2	10000	410	9000	250	36-84	100P4
10EP4	6.3	0.6	10-1/2 lisam.	17-5/8	Glass	Snap	Clear	50	Double	Sma 11 She 11 Duodecal 7 Pin	12 n	. $\cdot$.	Magnetic	11000	330	8000	250	20-65	$10 \mathrm{EP4}$
10 FP 4	6.3	0.6	10-1/2 Diam.	17-5/8	Glass	Hecessed Small Cavity	Clear	50	None	$\begin{aligned} & \text { Sma1d She 11 } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	12 Cl	500 Min, 2500 Max.	Mapnetic	10000	410	9000	250	27-63	10FP4
10KP7	6.3	0.6	10-1/2 Diam.	17-5/8	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	50	None	Small Shel! Duodecal 7 Pin	1201	None	Magre Cic	10000	200	$\begin{aligned} & 7000 \\ & 9000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 27-63 \\ & 27-63 \end{aligned}$	10KP7
$10 \mathrm{MP4}$	6.3	0.5	10-1/2 Diam.	17	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	52	Double	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	12 G	500 Min, 2500 Max.	Mapnetic	10000	No Grid	9000	No Grid	27-63	10WP4
10MP4A							Gray												10MPM
12AP4	2.5	2.1	12-1/16 Diam.	25-3/8	Glass	Cap	Clear	40	None	Medium 6 Pin	${ }^{6} \mathrm{AL}$	None	Note 2	7000	250	$\begin{aligned} & 6000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$	12NP4
$12 \mathrm{CP4}$	2.5	2.1	12-1/16 Diam.	18-5/8	Glass	Cap	Clear	. ${ }^{\text {a }}$	None	6 Pin Base	4 AF	None	Mamnetic	7000	No Grid	$\begin{aligned} & 6000 \\ & 7000 \end{aligned}$	No Grid	$\begin{array}{r} 90 \\ 110 \\ \hline \end{array}$	12CP4
121)7	6.3	0.6	12 Diam.	20-3/4	Glass	Medium Cap	Clear	55	None	Small Wafer Octal 8 Pin with Sleeve	5N0	None	Mametic	7000	300	$\begin{aligned} & 4000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 25-75 \\ & 25-75 \end{aligned}$	120P7
120P7A	6.3	0.6	12 Diam.	19-5/8	Glass	Medium Cap	Clear	50	None	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Medium Shell Octal } \\ \text { B Pin } \end{array} \\ \hline \end{array}$	8 Ba	None	Magnetic	10000	700	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ \\ \hline \end{array}$	$\begin{aligned} & 25-70 \\ & 25-70 \\ & \hline \end{aligned}$	12DP7A
12JP4	6.3	0.6	12 Diam.	17-1/2	Glasa	Snap	Clear	50	None	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Duodecal } ; \text { Pin } \\ \hline \end{array}$	12D1	None	Magnetic	12000	410	10000	250	27-63	12JP4
$12 \mathrm{KP4}$	6.3	0.6	12-7/16 Diem.	17-5/8	Glase	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	54	None	$\begin{aligned} & \text { Small She I1 } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	1212	500 Min, 2500 Max.	Magnetic	12000	410	10000	250	27-63	12KP4
12KP4A	6.3	0.6	12-7/16 Diam.	17-5/8	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Gray	54	None	Small She 11   Duodecsl 5 Pin	1202	$500 \mathrm{Min}, 2500 \mathrm{Max}$.	Magnetic	12000	410	11000	250	27.63	12 KPMA
12 P 4	6.3	0.6	12-7/16 Diam.	18-3/4	Glass	Receased Small Cavity	Clear	54	Double	$\begin{aligned} & \text { Simall She ll } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1212	750 Min, 3000 Max.	Magnetic	12000	410	11000	250	27-63	12194
121P4A							Gray												$12 \mathrm{LP4}$
$12 \mathrm{PP}_{4}$	6.3	0.6	12-7/16 Diam.	17-1/2	Glas:	Receased   Small Ball Cap	Clear	55	Sinple	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	1201	None	Magnetic	12000	410	10000	250	27-63	120P4
120P4A							Gray												120 P 4 A
12RP4	6.3	0.6	12 Diam.	17-1/2	Giass	Recessed   Small Ball Cap	Clear	56	Sinple	$\begin{aligned} & \text { Small Shell } \\ & \text { 1) odecal } 7 \text { Pin } \end{aligned}$	$12 \mathrm{D2}$	$\cdots$	Magnetic	12000	410	10000	250	27-63	12RP4
12SP7	6.3	0.6	12-7/16 Diam.	18-3/4	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Carity } \\ & \hline \end{aligned}$	Clear	55	None	$\begin{array}{\|l\|} \hline \text { Small She } 11 \\ \text { Duodecal } 7 \text { Pin } \\ \hline \end{array}$	1201	None	Magnetic	10000	410	9000	250	27-63	12SP7
12TP4	6.3	0.6	12-7/16 Diam.	18-3/4	Glase	Recessed Small Carity	Clear	54	Double	$\begin{aligned} & \text { Smal1 Shell } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	12D1	None	Magnecic	12000	410	11000	250	27-63	12TP4
12LP4	6.3	0.6	12-7/16 Diam.	18-5/8	Metal	Cone Lip	Clear	54	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	1203	None	Magnetic	12000	410	11000	250	27-63	121P4
121P4A							Gray												12UP4
12UP4B							Gray												12LP48
$12 \mathrm{VP4}$	6.3	0.6	12-3/8 Liam.	18	Gioss	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	55	Double	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Duoderal } 5 \text { Pin } \\ \hline \end{array}$	12G	$750 \mathrm{Min}, 3000$ Max.	Magnetic	12000	No Grid	11000	No Grid	33-77	12VP4
$12 \mathrm{VP4A}$							Gray												12 VPM
14BP4	6.3	0.6	12-1/2 $\times 9-11 / 16$	16-13/16	Glats	Recessed Small Cavity	Gray	65	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1202	$500 \mathrm{Min}, 2000$ Max.	Magnetic	12000	410	11000	250	27-63	14PP4
$14{ }^{1} \mathrm{P}_{4}$	6.3	0.6	12-1/2 $\times 9$-11/16	16-3/4	Glas:	Hecessed Small Cavity	Gray	65	Double	$\begin{array}{\|l\|} \hline \text { Small She } 11 \\ \text { Duodecal } 5 \text { Pin } \end{array}$	1202	1500	Magnetic	14000	410	12000	300	33-77	$14 \mathrm{CP4}$
14DP4	6.3	0.6	12-1/2 $\times$ 9-11/16	16-3/4	Gloss	Recessed Small Cavity	Gray	65	llouble	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Duodecal } 5 \mathrm{Pin} \\ \hline \end{array}$	12D1	None	Magnetic	14000	410	11000	250	27-63	140P4
15AP4	5.3	0.6	15-1/2 Hiam.	20-1/2	Glass	Recessed Small Ball	Clear	52	None	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Duodecal } 7 \text { Pin } \\ \hline \end{array}$	12 G	None	Magnetic	15000	410	12000	250	27-63	15194
15CP4	6.3	0.6	15-1/2 Diam.	21-2,2	Glass	Recessed Small Cavity	c.lent	37	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	12D1	None	Mapnetic	15000	410	$\begin{array}{r} 9000 \\ 15000 \\ \hline \end{array}$	$250+$	45	15CP4

magnetic type cathode ray tubes

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Heater		Bult						$\left\|\begin{array}{c} \text { lon } \\ \text { Trap } \\ \text { Required } \end{array}\right\|$	Base	$\operatorname{man}_{\text {Basing }}$	$\mu \mu$ Filter Capacitance Provided by Bulb Coatinf	$\begin{gathered} \text { Deflection } \\ \text { and } \\ \text { Focusine } \\ \text { Merhod } \end{gathered}$	Maximum Desien Center Ratings		Typical Operation			$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$
	Volts	Amperes	$\begin{gathered} \text { Nominal } \\ \text { Face } \\ \text { Dimensions } \\ \text { in Inches } \end{gathered}$	$\begin{gathered} \text { Lenpth } \\ \text { in } \\ \text { Inches } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Con- } \\ \text { struction } \end{gathered}\right.$	Terminal	$\begin{aligned} & \text { Fuce } \\ & \text { Pluce } \\ & \text { Color } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Heflection } \\ \text { Anple } \\ \text { in Werrees } \\ \text { (Note 1) } \\ \hline \end{gathered}$						$\begin{array}{\|} \text { Anode } \\ \text { Yolct } \end{array}$	Acceler-   ator   Grid   Volts	Anode Volta		Control   Grid   Negative   Volts	
15DP4	6.3	0.6	15-1/2 Diam.	20-1/2	Giass	Fiecessed   Small Ball Cap	Clear	57	Double	$\begin{aligned} & \text { Small Sliell } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1211	Nane	Mapnetic	15000	410	13000	250	27-63	150P4
16AP4	5.3	0.6	15-7/8 Diam.	22-5/15	Netal	Cone Lip	Clear	53	Doulle	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1203	None	Mapnetic	14000	410	$\begin{array}{r} 9000 \\ 12000 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 33-77 \\ 33-77 \end{array} \end{aligned}$	16AP4
16AP4A							Gruy												16AP4A
$16 \mathrm{CP}_{4}$	6.3	0.6	15-7/8 Diam.	21-1/2	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \end{aligned}$	Clear	52	Doulite	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	121	None	Magnetic	15000	410	12000	250	27-63	16CP4
$16 \mathrm{DP4}$	6.3	0.6	15-7/8 Diam.	20-3/4	Glass	Hecessed Small Cavity	Clear	60	Double	Small Shell Muodecal 7 Pin	1201	Nane	Magnetic	15000	410	$\begin{array}{r} 9000 \\ 12000 \end{array}$	250	45	16DP4
16DP4A							Gray												160P4A
16FP4	6.3	0.6	15-7/8 Diam.	19-5/8	Metal	Cone Lip	Clear	60	Double	$\begin{aligned} & \text { Small She II } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1213	None	Mapnetic	14000	410	12000	300	33-77	16EP4
16FP44							Gray												16EP4A
$16 \mathrm{FP}^{4} 4$	6.3	0.5	16-1/8 Diam.	20-1/4	Gless	$\begin{array}{\|l\|} \hline \text { Recersed } \\ \text { Small Ball Cap } \\ \hline \end{array}$	Clear	62	Single	$\begin{aligned} & \text { Sma I1 She II } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	12DI	None	Magnetic	16000	410	13000	250	27-63	16PP4
16GP4	6.3	0.th	15-7/8 Diam.	17-11/16	Metal	Cone Lip	Clear	70	Single	Small Shell Duodecal 5 Pin	1213	None	Magnetic	14000	410	12000	300	33-77	16GP4
161P4	6.3	0.6	15-7/8 Tiam.	21-1/4	Glass	Recessed Small Cavity	Clear	60	Doutle	$\begin{aligned} & \text { Small She 11 } \\ & \text { Duodecal } 5 \text { Pin } \\ & \hline \end{aligned}$	1202	1500 Min, 3500 Max.	Hegnetic	14000	410	12000	300	33-77	$16 \mathrm{HP4}$
1614P4							Gray												$16 \mathrm{HP4A}$
16JP4	6.3	0.6	16-1/8 Diam.	20-3/4	Glass	$\begin{aligned} & \text { Pecessed } \\ & \text { Small Cavity } \end{aligned}$	Clear	60	Doulle	$\begin{aligned} & \text { Small She Il } \\ & \text { Duodece } 15 \text { Pin } \end{aligned}$	1212	$750 \mathrm{Min}, 2000 \mathrm{Max}$.	Magnetic	14000	410	11000	250	27-63	16.5 P 4
16.JP4A							Grey												16.514
16KP4	6.3	0.6	14-3/4 $\times 11-1 / 2$	18-3/4	Glass	Recessed Small Cavity	Clear	65	Single	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	12 D 2	1500	Mapnetic	16000	410	14000	300	33-77	15 KP 4
16LP4	6.3	0.6	15-7/8 Diam.	22-1/4	Glass	Hecessed Small Cavicy	Clear	52	Double	$\begin{aligned} & \text { Smoll Shell } \\ & \text { Uuodecal S Pin } \\ & \hline \end{aligned}$	12ग2	1500 Min, 3500 Max.	Mapnetic	14000	410	12000	300	33-77	$16 \mathrm{LP4}$
$16 \mathrm{LP4A}$							Gray												161P4A
$16 \mathrm{TP4}$	6.3	0.6	16-1/8 Diam.	21-3/4	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \end{aligned}$	Clear	60	Donilile	$\begin{aligned} & \text { Small She II } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1202	$1500 \mathrm{Min}, 3500 \mathrm{Max}$.	Magnetic	14000	410	12000	300	33-77	$16 \mathrm{MP4}$
16MP4							Gray												16MP4A
16094	6.3	0.6	14-3/4 $\times 11-17 / 32$	19.146	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \end{aligned}$	Giray	65	Double	$\begin{aligned} & \text { Sma11 Sle } 11 \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	12DI	None	Magnetic	16000	410	$\begin{array}{r} 8080 \\ 14000 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline 250 \end{aligned}$	27-63	16984
16RP4	6.3	0.6	14-3/4 $\times 11-1 / 2$	18-3/4	Glass	$\begin{aligned} & \text { Recesaed } \\ & \text { Small Cavity } \end{aligned}$	Gray	65	Single	Simall She 11 Duodecal 5 Pin	12D2	1500	Magnetic	16000	410	12000	300	33-79	16RP4
16SP4	6.3	0.6	15-7/8 Dram.	17-5/16	Gless	Recessed Small Cavity	Clear	70	Double	Small Shell Duodecal 5 Pin	12L2	1500 Min, 3500 Max.	Mapnetic	14000	410	12000	300	33-77	16SP4
16.P44A							Gray												16 SP4A
$16 \mathrm{TP4}$	6.3	0.6	16-1/8 Diam.	18-1/8	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \end{aligned}$	Gray	70	Single	$\begin{aligned} & \text { Small Shell } \\ & \text { Thodecal } 5 \text { Pin } \end{aligned}$	12D2	1500	Magnetic	14000	410	12000	300	33.77	$16 \mathrm{TP4}$
16ITP4	6.3	0.6	14-3/4 $\times 11-1 / 2$	18-1/8	Glans	Recrssed Small Cavity	Gray	65	Sinfle	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 5 \text { 'Pin } \end{aligned}$	1201	Nune	Mafnetic	15000	410	12000	300	27-63	$161 \mathrm{P}_{4}$
16VP4	6.3	0.6	15-7/8 Diam.	17-3/16	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Covity } \\ & \hline \end{aligned}$	Gray	70	Sinfle	$\begin{aligned} & \text { Small Shell } \\ & \text { Moodecal } 5 \text { Pin } \end{aligned}$	12 n	None	Mapnetic	15000	410	12000	250	27-63	16VP4
$16 \mathrm{WP4} 4$	6.3	0.6	15-7/8 Diam.	17-3/4	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Gray	70	Double	$\begin{aligned} & \text { Small Shel1 } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1201	None	Mapnetic	15000	410	12000	250	27-63	16WP4
16xP4	6.3	0.6	14-3/4 $\times 11-17 / 32$	18-3/4	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Smnll Cavity } \\ & \hline \end{aligned}$	Gray	65	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Dundecal } 5 \mathrm{Pin} \end{aligned}$	1201	None	thapnetic	15000	410	12000	250	27-63	16xP4
16YP4	6.3	0.6	15-7/8 Diam.	17-5/16	Glass	Recessed Small Cavity	Gray	70	Single	$\begin{aligned} & \text { Small Shell } \\ & \text { Moodecal } 5 \text { Pin } \end{aligned}$	12m	$750 \mathrm{Min}, 2000 \mathrm{Max}$.	Mapnetic	14000	410	12000	300	33-77	16YP4
19AP4	6.3	0.6	18-5/8 Diam.	21-1/2	Matal	Cone Lip	Clear	66	Single	Sma 11 She 11 Duodecal 7 Pin	12 n 3	None	Magnetic	1900n	410	13000	250	27-63	19AP4
19AP4A							Gray												19AP4A

magnetic type cathode ray tubes

	Heater		Bult						$\begin{array}{\|c\|} \hline \text { Ion } \\ \text { Trap } \\ \text { Required } \end{array}$	Base	$\begin{gathered} \text { RMA } \\ \text { Basinf } \end{gathered}$	$\mu \mathrm{f}$ Filter Capacitance Provided by Bulb Coatinf	$\begin{gathered} \text { Defiection } \\ \text { and } \\ \text { Focusing } \\ \text { Mechod } \\ \hline \end{gathered}$	Maximum Desien Center Ratings		Typical Operation			$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$
$\begin{gathered} \text { Type } \\ \text { No. } \end{gathered}$	Volts	Amperes	Nominal Face Dimenaions in Inches	$\begin{aligned} & \text { Lenpth } \\ & \text { in } \\ & \text { Inches } \end{aligned}$	Construction	Terminal	face Plate Color	$\begin{array}{\|l\|} \begin{array}{c} \text { Deflection } \\ \text { Angle } \\ \text { in Dearees } \\ \text { (Note 1) } \end{array} \\ \hline \end{array}$						$\begin{array}{\|l\|l} \text { Anode } \\ \text { Volts } \end{array}$		$\begin{array}{\|l\|l} \text { Anode } \\ \text { Volty } \end{array}$		Control   Grid   Negative   Volts	
190P4	6.3	0.6	18-7/8 Diam.	21-1/2	Glass	Recessed   Small Cavity	Clear	65	Double	$\begin{aligned} & \text { Small She } 11 \\ & \text { Duorecal } 5 \text { Pin } \\ & \hline \end{aligned}$	12 D 2	$1000 \mathrm{Min}, 3000$ Max.	Mapnetic	19000	410	13000	250	26-63	19DP4
19FP4	6.3	0.6	18-7/8 Diam.	22	Glass	Recessed Small Carity	Gray	66	Iouble	$\begin{array}{\|l} \hline \text { Small She ll } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	12 D 1	None	Mapnetic	19000	410	13000	250	27-63	19PP4
19CP4	6.3	0.6	18-7/8 Diam.	21-1/4	Glass	Recessed Small Cavity	Gray	66	Sinfle	$\begin{array}{\|l} \hline \text { Small She ll } \\ \text { Duodecal 5 Fin } \\ \hline \end{array}$	12 n 1	None	Mapnetic	19000	410	13000	250	27-63	19CP4
20 PP 4	6.3	0.6	20 Diam .	28-3/4	Glass	Medium Cap	Clear	54	None	$\begin{array}{\|l\|} \hline \text { Small She ll } \\ \text { Duodecal } 7 \mathrm{Pin} \end{array}$	$12 \mathrm{D1}$	None	Mapnetic	16500	750	$\begin{aligned} & 10000 \\ & 15000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} 25-70 \\ 25-70 \\ \hline \end{array}$	${ }^{208 P 4}$
$22 \mathrm{AP4}$	6.3	0.6	21-11/16 Diam.	22-7/8	Metal	(Cone Lip)	Clear	70	Single	$\begin{array}{\|l\|} \hline \text { Small Sluell } \\ \text { Buodecal 5 } \mathrm{Pin}_{\text {in }} \\ \hline \end{array}$	1213	None	Magnetic	19000	410	14000	300	33-72	$22 \mathrm{AP4}$
22AP4A							Gray												22AP4A
904	2.5	2.1	5-1/16 Diam.	16-1/4	Glass	Cap	Clear	$\cdots$	None	Medium 6 Pin	${ }^{6 A l}$.	None	Note 4	4600	250	$\begin{aligned} & 1000 \\ & 3000 \\ & 4600 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 34 \\ & 35 \\ & 39 \\ & \hline \end{aligned}$	904
5WP11	6.3	0.6	5 Diem.	11-7/16	Glass	Recessed Small Cavity	Clear	50	None	$\begin{aligned} & \text { Small She 11 } \\ & \text { lhoodecal ? Pin } \\ & \hline \end{aligned}$	12.2	100 Min, 500 Max.	Note 2	27000	350	27000	200	42-98	5WP11
7MP7	6.3	0.6	7-3/16 Dism.	12-1/2	Glass	Hecessed Small Cavity	Clear	50	None	$\begin{aligned} & \text { Sma I Shell } \\ & \text { Thodecal } 5 \text { Pin } \end{aligned}$	12D1	None	Magnetic	8000	700	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 27-63 \\ & 27-63 \\ & \hline \end{aligned}$	7MP7
19EP4	6.3	0.6	$17 \times 13-3 / 32$	21-1/8	Glass	Recessed Small Cavity	Gray	65	Single	$\begin{aligned} & \text { Small She } 11 \\ & \text { Duodecal } 5 \text { Pin } \\ & \hline \end{aligned}$	1202	1000 Min, 2500 Max.	Maenetic	19000	410	13000	250	26-63	$19 \mathrm{EPP}_{4}$
16ZP4	6.3	0.6	15-7/8 Diam.	22-1/4	Glass	Recessed Small Cavity	Gray	52	Single	$\begin{aligned} & \text { Small She 11 } \\ & \text { Duodecal 5 Pin } \\ & \hline \end{aligned}$	1212	750 Min, 2000 Max.	Mametic	16000	410	12000	300	33-77	16234
16.3P4A	f. 3	0.6	15-7/8 Diam.	17-3/4	Glass	Recessed Smail Cavity	Gray	70	Sinple	Small She 11 Duodecal 5 Pin	12D2	750 Min, 2000 Max.	Magnetic	16000	410	12000	250	27-63	16WP4A
171944	6.3	0.6	15-3/8 $\times 12-1 / 4$	18-5/8	Glass	Recessed Small Cavity	Gray	65	Single	$\begin{array}{\|l\|} \hline \text { Small She } 11 \\ \text { Duodecal } 5 \mathrm{Pin} \\ \hline \end{array}$	12 D 2	$750 \mathrm{Min}, 2000 \mathrm{Max}$.	Magnetic	15000	410	12000	300	33-77	17AP4
${ }^{17 \mathrm{PP} 4}$	6.3	0.6	15-25/64 $\times 12-9 / 64$	19-5/8	Glass	Recessed Small Cavity	Clear	65	Sinple	Small Sle 11 Duodecal 5 Pin	12122	750 Min, 2000 Max.	Magnetic	16000	410	12000	300	33-77	178P4
17EP4A							Gray												178P4A
10FP4 41	6.3	0.6	10-1/2 Diam.	17-5/8	Glass	Recessed Small Cavity	Gray	54	None	Sma11 Sliell 11 Tuodecal 5 Pin	12 D 2	$500 \mathrm{Min}, 250 \mathrm{Max}$.	Mapnetic	12000	410	11000	250	27-63	10FP4A

Note 1: Horizontal Deflection Angles are given for Rectangular Tubes.
Courtesy SyIvania Electric Products Inc.
Note 2: Mapnetic Deflection, Flectrostatic Focusing.
Note 3: Fiectrostatic and Magnetic Deflection, Magnetic Focusing.
Note 4: Electrostatic and Mapnetic beflection, Electrostatic Focusing

## CROSS INDEX OF ARMY VT NUMBERS AND COMMERCIAL NUMBERS

VT	COMMERCIAL
NUMBER	NUMBER


$\begin{aligned} & \text { VT-1. } \\ & \text { VT-2 } . \end{aligned}$	. . . WE-203A (obsolete)
VT-3.	. . Obsolete.
VT-4A	. . Obsolete.
VT-4B	. . . Commercial 211.
VT-4C	. . . JAN 211.
VT-5	. . WE-215A
VT-6.	. . 212A (obsolete)
VT-7.	. . WX-12 (obsolete)
VT-8.	. . UV-204 (obsolete)
VT-10	. Obsolete.
VT-11	. . . Obsolete.
VT-12	. . Obsolete.
VT-13	. . Obsolete.
VT-14	. . Obsolete.
VT-16	. . Obsolete.
VT-17	. . 860.
VT-18	. . Obsolete.
VT-19	. . 861.
VT-20	. . Obsolete.
VT-21	. . Obsolete.
VT-22	. . 204A.
VT-23	. Obsolete.
VT-24	. . 864.
VT-25	. . 10.
VT-25A	. . . 10 Special.
VT-26	. . 22.
VT-27	. . 30.
VT-28	. . 24, 24A.
VT-29	. . 27.
VT-30	. $01-\mathrm{A}$
VT-31	. 31.
VT-32	. . Obsolete.
VT-33	. . . 33.
VT-34	. . 207.
VT-35	.. $35 / 51$.
VT-36	. . 36.
VT-37	. 37.
VT-38	. . 38.
VT-39	. . 869.
VT-39A	. . 869A
VT-40.	. 40.
VT-41	. . 851.
VT-42	. . 872.
VT-42A	. . 872A (Special fil.).
VT-43	. . 845.
VT-44	. . 32.
VT-45	. 45.
VT-46	. . 866.
VT-46A	. 866A.
VT-47	. 47.
VT-48	. . 41.
VT-49	. . 39/44.
VT-50	. 50.
VT-51	. 841.
VT-52	. . . 45 Special.


VT   NUMBER	COMMERCIAL NUMBER	VT   NUMBER	COMMERCIAL   NUMBER
VT-53	. Canceled (superseded by VT-42A).	$\begin{aligned} & \text { VT-99. } \\ & \text { VT-100 } \end{aligned}$	$\begin{aligned} & \text { 6F8G. } \\ & 807 . \end{aligned}$
VT-54	. 34.	VT-100A.	807 Modified.
VT-55	. 865.	VT-101.	837.
VT-56	. 56.	VT-102.	Canceled.
VT-57	. 57.	VT-103.	6SQ7.
VT-58	. 58.	VT-104. .	12SQ7.
VT-60	850.	VT-105.	6SC7.
VT-62	. 801,801A.	VT-106.	803.
VT-63	. 46.	VT-107..	6V6.
VT-64	. 800.	VT-107A.	6V6GT.
VT-65	. 6C5.	VT-107B.	6V6G.
VT-65A	. 6 C 5 G .	VT-108.	450 TH.
VT-66	. 6F6.	VT-109.	2051.
VT-66A	. 6F6G.	VT-111.	5BP4/1802P4.
VT-67	. 30 Special.	VT-112..	6AC7/1852.
VT-68	. 6B7.	VT-114. .	5 T 4.
VT-69	. 6D6.	VT-115.	6L6.
VT-70	. 6F7.	VT-115A.	6L6G.
VT-72	. 842.	VT-116.	6SJ7.
VT-73	. 843.	VT-116A.	6SJ7GT.
VT-74	. 5Z4.	VT-116B.	6SJ7Y.
VT-75	. 75.	VT-117.	6SK7.
VT-76	. 76.	VT-117A.	6SK7GT.
VT-77	. 77.	VT-118. .	832.
VT-78	. 78.	VT-119. .	2X2/879.
VT-80	. 80.	VT-120. .	954.
VT-83	. 83.	VT-121.	955.
VT-84	. 84/6Z4.	VT-122.	530.
VT-86	. 6 K 7.	VT-123. .	RCA A-5586 (super-
VT-86A	. 6 K 7 G .		seded by VT-128).
VT-86B	. 6K7GT.	VT-124. .	1 A 5 GT .
VT-87	. 6L7.	VT-125. .	1C5GT.
VT-87A	. 6L7G.	VT-126.	6X5.
VT-88	. 6R7.	VT-126A.	6X5G.
VT-88A	. 6R7G.	VT-126B.	6X5GT.
VT-88B	. 6 R7GT.	VT-127. .	Special tube.
VT-89	. 89	VT-127A.	Special tube.
VT-90	. 6 H 6.	VT-128. .	1630 (A-5588).
VT-90A	. 6 H 6 GT .	VT-129. .	304 TL .
VT-91	. 6J7.	VT-130. .	250 TL .
VT-91A	. 6 J 7 GT .	VT-131. .	12SK7.
VT-92.	. 6Q7.	VT-132. .	12 K 8 Special.
VT-92A*.	. 6Q7G.	VT-133.	12SR7
VT-93	. 6B8.	VT-134. .	12 A 6.
VT-93A	. $6 \mathrm{B8} \mathrm{G}$.	VT-135. .	12J5GT.
V'T-94	. 6J5.	VT-135A.	12 J 5.
VT-94A	. 6 J 5 G .	VT-136. .	1625.
VT-94B	. 6J5 Special selec.	VT-137. .	1626.
VT-94C	. 6J5G Special selec.	VT-138. .	1629.
VT-94D	. 6J5GT.	VT-139. .	VR150-30.
VT-95	. 2A3.	VT-140*..	1628.
VT-96.	. 6N7.	VT-141..	531.
VT-96B	$\therefore$ 6N7 Special selec.	VT-142. .	WE-39DY1.
VT-97	. 5W4.	VT-143. .	805.
VT-98.	. $6 \mathrm{U} / 6 \mathrm{G} 5$.	VT-144...	813.

[^5]| VT <br> NUMBER | COMMERCIAL <br> NUMBER | VT <br> NUMBER | COMMERCIAL NUMBER | VT <br> NUMBER | COMMERCIAL <br> NUMBER |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VT-145. | . 5Z3. | VT-185. . | 3D6/1299. | VT-230. . | 350A. |
| VT-146. | . 1N5GT. | VT-186. | Special tube. | VT-231. | 6SN7GT. |
| VT-147. . | . 1A7GT. | VT-187. | 575A. | VT-232. | E-1148. |
| VT-148. | 1D8GT. | VT-188. | $7 \mathrm{E6}$. | VT-233. | 6SR7. |
| VT-149. | . 3A8GT. | VT-189. | 7 F7. | VT-234. | HY-114B. |
| VT-150. . | 6SA7. | VT-190. | 7H7. | VT-235. | HY-615 |
| VT-150A. | 6SA7GT. | VT-191. | 316A. | VT-236. | 836. |
| VT-151. | 6A8G. | VT-192. | 7 A 4. | VT-237. | 957. |
| VT-151B. | 6A8GT. | VT-193. | 7C7. | VT-238. | 956. |
| VT-152. | . 6 K 6 GT . | VT-194. | 7 J 7. | VT-239. | 1 LE 3. |
| VT-152A. | $6 \mathrm{K6G}$. | VT-195.. | 1005. | VT-240. | 710A. |
| VT-153. | . 12 C 8 Special. | VT-196.. | 6W5G. | VT-241. | 7E5/1201. |
| VT-154. | . 814. | VT-197A. | 5Y3GT/G. | VT-243. . | 7C4/1203A. |
| VT-155. | . Special tube. | VT-198A. | 6G6G. | VT-244. | 5 U G. |
| VT-156. | . Special tube. | VT-199. | 6SS7. | VT-245. | 2050. |
| VT-157. | . Special tube. | VT-200. | VR-105-30. | VT-246. | 918. |
| VT-158. | . Special tube. | VT-201. | 25 L 6. | VT-247. | 6AG7. |
| VT-159. | . Special tube. | VT-201C. | 25L6GT. | VT-248. | 1808P1. |
| VT-160. | . Special tube. | VT-202. . | 9002. | VT-249. | 1006. |
| VT-161. | . 12SA7. | VT-203. | 9003. | VT-250. | EF50. |
| VT-162. | . 12SJ7. | VT-204. | HK24G. | VT-251. | 441. |
| VT-163. | 6C8G. | VT-205. | 6ST7. | VT-252. | 923. |
| VT-164. | . 1619. | VT-206A. | 5 V 4 G . | VT-254. | 304 TH . |
| VT-165. | 1624. | VT-207. | 12AH7GT. | VT-255. | 705A. |
| VT-166. | 371 A. | VT-208. | $7 \mathrm{B8}$. | VT-256. | ZP486. |
| VT-167. | . 6 K 8. | VT-209. | 12SG7. | VT-257. | K-7. |
| VT-167A. | . 6 K 8 G . | VT-210. | 1 S 4. | VT-259. | 829. |
| VT-168A. | 6Y6G. | VT-211. | 6SG7. | VT-260. | VR75-30. |
| VT-169. | . 12C8. | VT-212. | 958. | VT-264. | 3Q4. |
| VT-170. | . 1E5-GP. | VT-213A. | 6L5G. | VT-266. | 1616. |
| VT-171. | . 1 R5. | VT-214. | 12 H 6. | VT-267. | 578. |
| VT-171A. | . Loctal Equiv. of | VT-215. | 6 E 5. | VT-268. | 12SC7. |
|  | 1 R5. | VT-216. . | 816. | VT-269. | 717A. |
| VT-172. | . 1S5. | VT-217. | 811. | VT-277. | 417. |
| VT-173. | . 1 T4. | VT-218. | 100 TH. | VT-279. | GY-2. |
| VT-174. | . 3S4. | VT-219.. | Canceled. | VT-280*. | C7063. |
| VT-175. | . 1613. | VT-220. | 250 TH . | VT-281** | HY-145ZT. |
| VT-176. . | . 6AB7/1853. | VT-221.. | 3Q5GT. | VT-282. | ZG489. |
| VT-177. | . 1 LH4. | VT-222. | 884. | VT-283* . | QF-206. |
| VT-178. | . 1 LC 6. | VT-223. | 1 H 5 GT . | VT-284* | QF-197. |
| VT-179. | . 1 LN 5. | VT-224. . | RK-34. | VT-285*. | QF-200C. |
| VT-180*. | . 3LF4. | VT-225. | 307A. | VT-286. | 832A. |
| VT-181. . | . 7Z4. | VT-226. . | 3EP1/1806P1. | VT-287. | 815. |
| VT-182. . | . 3 B7/1291. | VT-227. . | 7184. | VT-288. . | 12 SH 7. |
| VT-183. . | . 1R4/1294. | VT-228. . | 8012. | VT-289.. | 12SL7GT. |
| VT-184. . | . VR90-30. | VT-229. . | 6SL7GT. |  |  |

[^6]
## BALLAST TUBE AND RESISTOR NUMBERING CODES FOR AC-DC RECEIVERS USING 0.3 AMP. SERIES CONNECTED HEATERS

There are two numbering codes now in use for ballast and resistor tubes. Both codes use parts of the type designation to indicate the various divisions of the tube's service. For example, type numbers in the first system (A) might be BKX51DJ or L55B and, in the second system (B), might be 200R44 or 200R. These letter and number combinations are explained by the following examples.

## SYSTEM A



NOTE 1.
"Ballast" action indicates that the pilot lamp shunt resistor has low starting resistance when cold, protecting the lamp filament from the initial current surge, and has much higher resistance when hot, applying full operating voltage to the lamp.

NOTE 2.

Tube Letter	Lamp No.	Volts	Amperes	Bead Color
K	40 and 47	6.3	0.15	Brown
L	44 and 46	6.3	0.25	Blue
$M$	50 and 51	7.5	0.2	White

NOTE 3.
$X$ denotes a 4 pin base and metal shell. $Y$ or $Z$ denote octal bases but with different pin connections. (See Figures $A$ to K.)

NOTE 4.
This number includes the drop in the series resistor plus the drop in the pilot lamp and its shunt. The number represents the difference between the sum of the heater voltages and the line voltage of 117.5 volts. Tubes are made with the following numbers: $98,92,86,80,73,67,61,55,49,42,36,30$, $23,17,11$. The number to be used is the one closest to the voltage difference mentioned above.


All tubes under System B have glass bulbs and 4 pin bases and their type designations start with a number.


EXAMPLE

The numbers 4, 8, or 44, in combination with the preceding letter, indicate the internal tube connections. (See below.)

The letters R, L, or $M$, when followed by a number, indicare the type of pilot lamp which must be used with this tube. See Note 2, using the letter $R$ in place of $K$. (The letter $R$, alone, indicates only a form of internal tube connection without pilot la,np.)
$\rightarrow$ This number indicates the equivalent resistance in ohms of 0.3 ampere. Thus, $200 \times 0.3=60$ volts drop.

A8 or L8 or m8


R44 or 144 or $M 44$


EXAMPLE: $2130 \mu \mu \mathrm{f} . \pm 7 \%, 600 \mathrm{~W} . \mathrm{V}$. (Values for color shown in the above parenthesis)

FIRST DIGIT OF CAPACITANCE IN MICROMICROFARADS	THR	EE DOT CO SECOND DIG CAPACITAN MICROMICRO	CODE	
color	DIGIT NUMERAL	DECIMAL MULTIPLIER	tolerance	working voltage
BLACK	0	1	20\%	-
BROWN	1	10	$1 \%$	100
RED	2	100	$2 \%$	200
ORANGE	3	1000	3\%	300
YELLOW	4	10000	$4 \%$	400
GREEN	5	-	5\%	500
BLUE	6	-	6\%	600
VIOLET	7	-	$7 \%$	700
Gray	8	-	$8 \%$	800
WHITE	9	-	9\%	900
GOLD	-	0.1	-	1000
SILVER	-	0.01	10\%	

## POWER TRANSFORMER LEAD COLOR CODE

Power transformer leads in radio receivers may be identified by the following colors (or color patterns) on the lead coverings.


Courtesy tinG-SOL Lamb Works, Inc.


RESISTANCE VALUE: The nominal resistance value $\ln$ ohms is identified by a three digit symbol. The first two diglts are the first two figures of the resistance value in ohms. The third digit specifies the number of zeros which follow the first two figures.

## I-F TRANSFORMER LEAD COLOR CODE

I-F transformer leads in radio receivers may be identified by the following colors on the lead coverings.

PLATE LEAD	BLUE	GRID (or diode lead)	GREEN
B+ LEAD	RED	GRID RETURN	BLACK

FOR "FUIL-WAVE" TRANSFORMER SECOND DIODE LEAD WILL BE GREEN-BLACK.

## AUDIO TRANSFORMER LEAD COLOR CODE

Interstage and Output Audio Transformer leads in rodio receivers may be identified by the colors on the lead coverings as shown.


In coses where use is made of a single primary and/or a single secondary, the upper half of the diagram indicates the color coding. The brown and yellow leads indicate the start of the primary and secondary windings respectively and will be used in place of the blue and green (as shown) where polarity indications are required.

RECEIVING TUBE SUBSTITUTION GUIDE

PILOT LAMP TABLE					
Lamp No.	Volts	Amperes	Bead Color	Miniature Base	Bulb Type
40	6-8	0.15	Brown	Screw	T-3 1/4
41	2.5	0.50	White	Screw	T-3 1/4
42	3.2	0.35	Green	Screw	T-3 1/4
43	2.5	0.50	White	Bayonet	T-3 1/4
44	6-8	0.25	Blue	Bayonet	T-3 $1 / 4$
45	3.2	0.35	White	Bayonet	T-3 1/4
46	6-8	0.25	Blue	Screw	T-3 $1 / 4$
47	6-8	0.15	Brown	Bayonet	T-3 1/4
48	2.0	0.06	Pink	Screw	T-3 1/4
49	2.0	0.06	Pink	Bayonet	T-3 1/4
50	6-8	0.20	White	Screw	G-3 1/2
51	6-8	0.20	White	Bayonet	G-3 1/2
55	6-8	0.40	White	Bayonet	G-4 1/2
292	2.9	0.17	White	Screw	T-3 1/4
292A	2.9	0.17	White	Bayonet	T-3 1/4
1455	18.0	0.25	Brown	Screw	G-5
1455A	18.0	0.25	Brown	Bayonet	G-5
1490	3.2	0.16	- -	Bayonet	T-3 1/4


|  | GERMANIUM CRYSTAL DIODE CHARACTERISTICS |
| :--- | :---: | :---: | :---: | :---: | :---: |

NOTE: Crystals 1 N48, 1 N51, 1 N52, 1 N63, 1 N64, and 1 N65 are General Electric types, all others are Sylvania types unless otherwise indicated.

* Units are matched in the forward direction at +1 volt so that the current flowing through the higher resistance unit is within $10 \%$ of that in the lower resistance unit. Ratings shown are for each diode.
** Consists of 4 specially selected and matched germanium diodes whose resis tances are balanced within $\pm 2.5 \%$ in the forward direction at 1.5 volts. For additional balance, the forward resistance of each pair of varistor crystals are matched within 3 ohms. Ratings shown above are for each diode.
+ Units are tested in a circuit employing an input of 1.8 volts rms at $40 \mathrm{mc} .70 \%$ modulated at 400 cycles. Demodulated output across a 4700 ohm resistor shunted by a 5 mmf capacitor is a minimum of 1.1 volts peak to peak.
- JAN types
${ }^{+\dagger}$ Consists of four matched low impedance germanium diodes each of which, with a voltage of one volt impressed in the forward direction, will pass a current within one ma of the average current of the four. Ratings shown above are for each diode.


# FIRST SUPPLEMENT RECEIVING TUBE S UBSTITUTION GUIDEBOOK 

BY

H. A. MIDDLETON



JOHN F. RIDER PUBLISHER, INC. 480 CANAL STREET NEW YORK 13, N. Y.

## TABLE OF CONTENTS

Page
SECTION 1 - TUBE SUBSTITUTIONS IN TELEVISION RECEIVERS. ..... 1
Low-voltage Rectifiers ..... 3
High-voltage Rectifiers. ..... 3
Pentode Power Amplifiers. ..... 3
Duo-diode triodes. ..... 4
R-f Pentodes. ..... 4
Twin Triodes. ..... 5
High Power Beam Pentodes. ..... 5
Damper Rectifiers. ..... 6
Twin Diodes. ..... 6
Triple-diode Triodes. ..... 7
Gated Beam Pentodes. ..... 7
High-frequency Triode Pentodes. ..... 7
Examples of Practical Television Tube Substitutions. ..... 8
RCA 630TS. ..... 8
Belmont 18DX21A. ..... 11
SECTION 2 - RECEIVING TUBE SUBSTITUTION GUIDE. ..... 12

Copyright 1951 by JOHN F. RIDER

First Printing, November, 1951 Second Printing, May, 1952
Third Printing, December, 1952
Fourth Printing, May, 1953
Fifth Printing, September, 1953

All rights reserved. This book or parts thereof may not
be reproduced in any form or in any language
without permission of the publisher.

Printed in the United States of America

## FOREWORD

Continued development and improvement of radios, television receivers, and other electronic equipment is to a great extent dependent on new and better vacuum tubes. Because of constant circuit changes and improvements, keeping a current list of tube substitutions for radios and television receivers is almost a never-ending job. Therefore, as the number of new substitutions justify it, supplements such as this one will be published periodically in order to keep your information up-to-date.

There are about 750 new substitutions listed in this supplement. Among these are some of the older tube types that were left out of the original Receiving Tube Substitution Guide Book. Substitutions are also listed here for some of the types for which we then thought were no substitutes. Most of the substitutions listed are for television receivers. When substituting tubes in television receivers, refer to the information given in the article 'Tube Substitutions in Television Receivers" in this supplement.

It is not the object of these instructions to tell you how to improve radios, television sets, and other electronic equipment, but rather to help you in using the tubes you have to replace those that are not available.

It is important to understand that the information here calls for substitutes only. We do
not recommend the use of these tubes when the original type is available. However, when you do not have the original tube types needed to repair electronic equipment, the Receiving Tube Substitution Guide Book and this supplement will prove invaluable to you. They will save you many hours and expedite repairs. In spite of over eight years experience in making and compiling these substitutions, there are no doubt some substitutions not listed here. Although a sincere effort has been made to list all the practical substitutions, to do so is practically an impossibility. We noticed while compiling these substitutions that one substitute served as a thought starter that brought others to mind. It may work the same way for you. You may find a substitute that we do not have listed. If you do work out a good substitute, do not trust your memory, but write it up in a form similar to that used here and attach it to the proper page in your Substitution Guide Book.

In addition to assisting you during times of tube shortages, this substitution information will help you to use tubes you have had on hand for long periods of time. Also, when tubes are plentiful, the information can be used for reconverting in cases where the substitute is less efficient than the original.

November, 1951

## SECTION 1

## TUBE SUBSTITUTIONS IN TELEVISION RECEIVERS

Television sets of a few years ago, with their 7- to 10 -inch picture tubes, used ordinary receiving tubes throughout except for the highvoltage rectifier tubes and, of course, the cath-ode-ray tubes. Consumer demand called upon the ingenuity of the television receiver and tube manufacturers for larger and larger pictures. Along with larger size picture tubes, it was necessary to develop other specialized types of television tubes. Special circuits in television receivers require characteristics in receiving tubes which are different from those of most ordinary radio receiving types.

Consider the use of magnetically deflected picture tubes. The magnetic picture tube requires sweep amplifiers capable of high power output. Tube manufacturers developed special tube types for these circuits which are capable of high plate current without the use of extremely high plate voltages. It is entirely possible that efficient operation in this circuit could have been accomplished by the use of higher output tubes which were already available and by increasing the size and output of the low-voltage power supply. However, the cost of building and maintaining this larger power supply, its greater size and weight, and the added danger are only a few of the reasons why this was not done. By designing new and special tube types, improved performance was made possible, circuits were simplified, and troubleshooting was made easier and safer for the television technician.

Although there are some twenty to thirty stages commonly used in television receivers, there are only about thirteen different tube classifications denoted by manufacturers in common use. There are many variations within each of these thirteen classifications. A large portion of tubes in a given similar classification which are designed for the same circuit application are enough alike to operate in some fashion when substituted for each other without change of circuit components. Sometimes a type designed for one circuit gives
excellent results in another circuit، It is sometimes necessary to make mechanical changes in order to accomplish substitutions.

Because of the similarity of characteristics of many tubes, the more familiar the technician is with the circuit use of, the similarity between, and the satisfactory or unsatisfactory operation of one tube type compared to another, the more versatile and valuable his tube stock becomes. This is true especially in an emergency.

Listed on page 2 are thirteen classifications of tubes used in television receivers along with the commonly used types. Under each classification are listed the majority of individual circuits in which these tubes are used. A careful study of this chart will familiarize you with the tubes used in the most common television receiver circuits and will serve to expedite your service problems.

These listings will serve to indicate the most common usages of the tube types in each classification. Other types that are not listed may come to mind as you look over this list, or you may find additional listings in your Receiving Tube Substitution Guide Book. Differences in circuitry as used by various manufacturers may place some of the tubes into categories other than those shown here. As stated before, the object of the chart is to list the most common types in their most common circuits.

It has been found that substitutions in the front end or in the video strip can be more satisfactorily accomplished in television receivers located in strong signal areas than those located in fringe areas. A very small loss or gain that would go unnoticed when a substitution has been made in a receiver located in a strong signal area might be sufficient to seriously impair the picture quality in a fringe area.

In some areas, fringe conditions may exist on one channel while local conditions exist on another channel. Referring to the classifications

TELEVISION RECEIVER TUBES

Classification	Common Types	Specific Circuits
1. Low-voltage Rectifier	5U4, 5V4, 5Y, , 6AX5, 6X5, 25Z6	Low-voltage rectifier
2. High-voltage Rectifier	1B3, 1V2, 1X2, 1Y2, 1Z2, 5642	High-voltage rectifier
3. Pentode Power Amplifier and Beam Power Amplifier	$\begin{aligned} & \text { 6AQ5, 6F6, 6K6, 6L6, 6V6, } \\ & \text { 6Y6, 7B5, 7C5, 25L6, 35L6, } \\ & 50 \mathrm{~L} 6 \end{aligned}$	Audio output   Vertical sweep output Horizontal sweep oscillator High-voltage r-f oscillator Video output
4. Duo-diode Triode	$\begin{aligned} & \text { 6AT6, 6AV6, 6SQ6, 6BF6, } \\ & \text { 6BK6, 6BT6, 6BU6, 12AT6, } \\ & \text { 12SQ6 } \end{aligned}$	First audio amplifier
5. High-frequency Triode	6AB4, 6C4	Local oscillator in front end Vertical sweep oscillator
6. R-f Pentode	$\begin{aligned} & \text { 6AG5, 6AJ5, 6AK5, 6AU6, } \\ & \text { 6BA6, 6BC5, 6BD6, 6BH, } \\ & \text { 6CB6, 12AU6, 12BA6 } \end{aligned}$	Video i-f amplifier   Sound i-f amplifier   Radio-frequency amplifier   Video output
7. Twin Triode	6BL7, 6F6, 6F8, 6J6, 6SL7, 6SN7, 7F7, 7F8, 12AT7, 12AU7, 12AV7, 12AX7, 12AY7, 12AZ7, 12SN7	Video amplifier   Sync separator   Mixer oscillator   Vertical sweep output
8. High-power Beam Pentodes	$\begin{aligned} & \text { 6AU5, 6AV5, 6BD5, 6BG6, } \\ & \text { 6BQ6, 6CD6 } \end{aligned}$	Horizontal sweep output
9. Damper Rectifier	6AX6, 6V4, 6W4, 12AX4, 25W4	Damper
10. Twin Diode	6AL5, 6H6, 7A6, 12AL5, 12H6	Video detector circuit Horizontal discriminator Sound ratio detector
11. Triple-diode Triode	6R8, 6S8, 6T8	Ratio detector and first audio
12. Gated Beam Pentode	6BN6, 12BN6	FM detector   Vertical sweep oscillator
13. High-frequency Triode Pentode	6U8, 6X8	Oscillator mixer

as specified in the performance column of your Substitution Guide, the substitution of a " $G$ " or " $P$ " classified type in the front end or video strip may impair the picture quality or even cause loss of the picture entirely in the case of the fringe area station while the local stations continue to be received satisfactorily. However, in times of tube shortages, when the original or a substitute with a classification of " $E$ " is unavailable, this would be better than no reception at all.

The lack of uniformity of design and the variability of materials used in the manufacture of the same tube types by different manufacturers may cause premature failure in a given circuit in one run of tubes while a different run will hold up well. A certain run of 6BG6 tubes installed in sets with a 17 -inch picture tube may fail after a week or two because of their lack of power-handling capabilities. Tubes from this same run may give good service in other sets where the power output requirements are less. The same may be found to be true of damper rectifier types where extremely high peak inverse voltages may cause flashover in an inferior run of 6 U 4 types. Low-voltage rectifiers in certain runs have been known to have inefficient filaments, and their output falls off rapidly when used in large-tube sets where output current requirements are high. When your service department finds such a run of tubes on hand, use them in the smaller-tube sets for most reliable service.

## Low-voltage Rectifiers

Requirements for rectifier tubes in the lowvoltage power supply of a television receiver are the same as for those used in ordinary radio receiving equipment, except that higher output current is usually required.

When choosing a substitute, it is only necessary to select a type which has sufficient cur-rent-carrying capacity and a peak inverse voltage rating equal to or greater than the original type. If the substitute type meets these requirements but also has higher filament current requirements that will reach the maximum rating of the available filament transformer winding, it is recommended as a substitute over another type that falls short of output current and does not have at least an equal peak inverse voltage. This is so even though this latter type has the same filament rating as the original tube.

Selenium rectifiers can be used as substitutes for tube-type rectifiers. When substituting with selenium rectifiers in the lowvoltage power supply, it is good practice to use a large safety factor. For example, if the tube rectifier has a rated output current capacity of 225 ma , use at least a $300-\mathrm{ma}$ selenium rectifier or a larger one if space permits. Rectifiers in the low-voltage power supply haye had a high record for failure. Thus, the practice of using at least the next size larger as a substitution will help to eliminate expensive callbacks. Refer to the Receiving Tube Substitution Guide Book for additional information on selenium rectifiers.

## High-voltage Rectifiers

There are only a limited number of types of high-voltage rectifiers being currently produced. When choosing a substitute, use the type that has an equal or higher peak inverse voltage rating than the type for which you are substituting. The output current requirement from these rectifiers is so small that little consideration need be given to this characteristic of the substitute type.

Since there are only a few of this type of tube available, mechanical alterations are frequently necessary when making a substitution. You must either extend the plate lead, install sockets, or do other rewiring. It is sometimes necessary to increase the size of the high voltage shield or modify it in some other way. Make sure that all high voltage leads are properly insulated and that the shield is fastened securely for safety's sake. One of the most difficult substitutions here is for the Sylvania type 5642 because of the small size of this subminiature tube. It is necessary to find space for mounting a tube socket and a shield can.

## Pentode Power Amplifiers

Pentode power amplifier tubes and the small beam power types are generally used in five different circuits in television receivers. They are the audio output stage, the vertical sweep output, the horizontal sweep oscillator, the high-voltage r-f oscillator, and video output stage.

When substituting in the vertical output or high-voltage r-f oscillator circuits, be sure to choose a type whose output is equal to or
greater than the original because of the amount of power involved in these stages. The use of a lower-powered tube than the original can sometimes be made to give from fair to good results by altering the values of the circuit components. The interelectrode capacitances are not generally considered to be a critical characteristic of the tube used in this circuit.

The audio output circuits of television receivers are not different from those used in ordinary radio receivers. Only in cases where high audio power is required from the receiver are substitutions in this stage critical. Component part changes may sometimes be necessary in order to secure optimum output from the substitute tubes.

The video output stage is a wide-band amplifier and is not critical with respect to power output. This is true because it is feeding into a relatively high impedance load. It is important to choose a substitute with similar interelectrode capacitance in order to insure uniform amplification throughout the entire video band. It is better to choose a tube with lower interelectrode capacitance than the reverse. If the substitute tube has lower interelectrode capacitance than the original, over-peaking may result. This can be compensated for by the installation of small carbon resistors across the peaking coils. Their value will vary with the substitution and can be determined by experimentation.

The horizontal sweep oscillator circuit is the least critical of all stages discussed in this section. Therefore, when a receiver utilizes a similar tube in any of the other four stages just mentioned, make the substitution in the horizontal oscillator stage. For example, assume that the vertical output tube is the same type as that used in the horizontal oscillator. If the vertical output tube is to be substituted for, it is usually desirable to transfer the horizontal oscillator tube to the vertical output stage and then substitute for the horizontal sweep oscillator.

## Duo-diode Triodes

Duo-diode triodes are generally used in only one stage of television receivers, namely, the first audio amplifier. This circuit is identical to those used in ordinary radio receivers. When choosing a substitute for this circuit, the main consideration is the amplification factor
of the triode section. Try to choose a substitute that has approximately the same amplification factor for best results. These types are often used only as triodes and no connection is made to the diode terminals. Under these conditions, they can be substituted for with a triode tube having characteristics similar to those of the triode section.

## High-frequency Triodes

These types are generally used in two television circuits, the local oscillator in the front end and the vertical sweep oscillator.

Local oscillator circuits used in television receivers are basically the same as those used in radio receivers. Television oscillators, however, operate at a much higher frequency than do oscillators in ordinary radio receivers. For this reason, they are very critical as to any substitution. Even a very small change in the inductance or capacitance of the circuit may cause the circuit to become inoperative or operate at an incorrect frequency. Leads should be kept as short as possible. This should be kept in mind when making substitutions that require wiring changes. All of the mechanical characteristics of the circuit should be made as similar as possible to the original. Some oscillator tubes have more than one of the pins connected to the same element in the tube. When a substitution is made, the same method of connection should be followed.

The interelectrode capacitance of the substitute tube has a large effect on the circuit operation. The type of oscillator and the physical construction of the circuit afford different tolerances according to the specific case. If the grid-to-plate capacitance is higher in the substitute tube, the oscillator frequency would be lower in proportion to the increase in capacitance. If the capacitance is lower, the oscillator frequency will be higher. If the oscillator slug adjustment will not resonate the circuit to the proper frequency and the interelectrode capacitance is not too far off, it is possible that adjustment of the coils in the circuit will effect satisfactory operation. This, however, is no job for the novice, and, if you are not very sure of exactly how to go about it, let the job go until a satisfactory substitute or the original type becomes available. The adding or removal of a shield in this circuit will sometimes change the effective
circuit capacitance enough to make the difference between satisfactory and unsatisfactory operation.

The vertical sweep oscillator operates at 60 cps so that high-frequency triodes are not actually required for this circuit. However, they are sometimes used for this service. Under these conditions, they are not considered critical as to substitution. The ordinary radio receiving type triode will make a good substitution in this stage. If the local ordinary oscillator in the front end fails and the same type is used in the vertical oscillator stage, place the tube from the vertical oscillator stage into the local oscillator socket and make the substitution in the less critical vertical sweep oscillator stage.

## R-f Pentodes

Radio-frequency pentodes are the most used classification of tubes in television receivers. Because of this, there have been many variations of this type produced. Many of these are of the miniature, seven-pin construction.

In addition to some miscellaneous applications, they are used in four different circuits of a television receiver. These are the radiofrequency amplifier in the front end, the video i-f amplifiers, the sound i-f amplifiers, and the video amplifiers.

The small size of the miniature version of this tube type makes possible higher efficiency circuits at the very high frequencies. Therefore, the substitution of a larger tube designed for operation at lower frequencies will usually not be satisfactory. For example, a 6SH7 could not be used as a substitute for a 6BC5 because of the higher interelectrode capacitance of the larger tube. This, in addition to the greater distributed capacitance in the circuit due to longer leads required when changing the tube socket, would make alignment of the circuit almost impossible.

The radio-frequency stage in the front end is used primarily as an isolation stage between the antenna and the mixer. This stage is required to have a wide pass band so that not too much amplification is possible. This tube is therefore considered to be reasonably noncritical as to substitutions. Even a large difference in the gain of the tube used has little effect on the overall operation of the receiver.

The video i-f strip utilizes three or more
stages of amplification. Of these, the first and the last usually contribute the least to the amplification of the signal. These are, therefore, the least critical as to substitutions. It is suggested that, when substitution is necessary in the $i-f$ strip and where several tubes of identical type are used, that you first attempt a substitution without changing either alignment or component parts. Refer to your Receiving Tube Substitution Guide Book for performance classifications as well as characteristics. Tubes with high transconductance are usually the most satisfactory in this circuit, where amplification requirements are high. Theoretically, when a substitution is made in any of the video i-f stages, complete realignment is mandatory. However, from a practical standpoint, this may not be necessary.

The sound i-f strip has a much narrower bandwidth than the video i-f strip, and the available amplification is ordinarily greater than is required. For this reason, a reasonable reduction in the gain of the sound i-f stage is considered unimportant, making the circuit less critical to substitutions than are the video i-f stages.

It may be found that one of the video i-f tubes in a given receiver is defective and that the tubes used in the sound i-f are of identical types. In this case, replace the defective video stage tube with one of the sound stage tubes and proceed with the substitution in the less critical sound stage.

In the circuits discussed above, it is very important that connecting leads be kept short. When changing a socket, be sure to reconnect the leads the same way as they were originally in order to avoid increasing the distributed capacitance of the circuit and to minimize the possibility of regeneration.

The video output stage is not very critical as to substitutions. If you have a variety of substitutes, it is recommended that you try them all and use the one that produces the best results. If over-peaking is evident in the picture after a substitution has been made, this can be eliminated by shunting the peaking coils with small carbon resistors, as mentioned previously.

## Twin Triodes

Twin triodes have many equivalents and many uses. Some of these are the following:
mixer-oscillator, sync separator, video amplifier, vertical oscillator, horizontal oscillator, and horizontal frequency control.

In its application as mixer-oscillator in the front end, substitution is very critical. It is important to choose a substitute type tube whose interelectrode capacitance is very similar and which was designed for the same circuit. If the interelectrode capacitance is not too different from that of the original, adjustment of the oscillator tuning slug will resonate the oscillator circuit at the proper frequency. For further information on the operation of the oscillator section, refer to the paragraph discussing high-frequency triodes used as local oscillators in the front end. When twin triodes are used (with one triode as the local oscillator and the other as the mixer), so long as the oscillator circuit operates properly with the substitute, the mixer circuit can usually be relied upon to operate equally well. The mixer alignment should be checked and adjusted if necessary.

Sync separators operate at low frequencies and at low power. They are considered noncritical as to substitutions. In making your choice of a substitute for this circuit you need give little consideration to the interelectrode capacitance and to the recommended operating frequency of the type used. Try to choose a type in which the plate current, amplification factor and grid bias are approximately the same as the original.

Video amplifiers are wide-band amplifiers, and, therefore, when choosing a substitute type, select one that has similar interelectrode capacitance in order to insure uniform amplification throughout the entire band.

The vertical oscillator and the vertical output stage functions in television receivers are ordinarily performed by the same tube when a triode is employed. It is important when choosing a substitute for these stages that the substitute type have equal or higher power rating characteristics. All other characteristics are relatively unimportant, and the circuit is generally considered non-critical as to substitutions.

The horizontal oscillator and frequency control circuit functions are sometimes performed by the same tube. The circuits are also considered fairly non-critical as to substitutions. When choosing a substitute for these circuits,
select one that has similar power rating characteristics. The interelectrode capacitance has little effect on the circuit.

## High-power Beam Pentodes

These types, as used intelevision receivers, were especially designed for use with magnetically deflected picture tubes. Effectively, they are redesigned versions of the high-power audio output pentode tubes as used in low power amplifiers. They are highly insulated in order to withstand the high peak voltages in the horizontal output circuit of a television receiver. The high output power needed requires these tubes to be so designed that they draw high plate current while using low operating voltages. When substituting in this circuit, it is important that the substitute be capable of equal or higher output as compared with the original type.

## Damper Rectifiers

Damper rectifiers with indirectly heated cathodes are especially designed for television service and are capable of withstanding high peak inverse voltages and of producing fairly high output currents. When choosing a substitute for the damper stage, be sure that it is capable of withstanding the high voltage without flashover and that it has at least an equal current rating as compared to the original. A high percentage of failure of this tube type is due to flashover between the heater and cathode. If no substitute tube is available that has an equal or higher peak inverse and output current rating, try an ordinary radio power rectifier that has the required output current rating. The filament must be heated by a separate transformer having a breakdown voltage rating of not less than 3,000 volts. When this substitution is made in a transformer-type television receiver, the original filament leads should be disconnected and securely taped. In transformerless receivers, where the damper tube filament is a part of a series circuit, the original filament leads must be disconnected from the socket and reconnected to a resistor of the correct value to properly complete the filament circuit. Data for computing the filament resistor necessary is contained in the Receiving Tube Substitution Guide Book.

## Twin Diodes

Twin diode tubes are generally used in three different television circuits. These are the video detector, the horizontal discriminator, and the sound detector. There is a very limited choice in this classification. It may sometimes be found necessary to use the corresponding diodes in some multi-purpose tube to accomplish substitution in these stages. When this is done, connect all unused elements in the substitute tube to ground. If a substitute tube is not available, any of these circuits can be made operative by the use of a pair of germanium crystal diodes whose current ratings are comparable to the original tube. When a substitution has been made in the sound detector, the last i-f sound stage should be checked for alignment. When a substitute has been made in the video detector, the alignment of the last video i-f stage should be checked and realignment performed if necessary.

## Triple-diode Triodes

Triple-diode triodes especially designed for television receivers are frequently used in the ratio detector and first audio circuits. There are a very limited number in this classification of tubes. The circuits are considered fairly non-critical as to substitutions, but the problem of finding a substitute with the necessary quantity of elements may be difficult. A good substitute, however, is a duo-diode triode having similar characteristics and the addition of a germanium crystal diode to take the place of the missing diode element. Where space is not a factor in the substitution, a combination of two tubes may be used to accomplish the same purpose. When making substitutions of this kind, select a tube with a triode section that has similar characteristics to the original type. Realignment of the last sound i-f stage is ordinarily necessary after this substitution has been made.

## Gated Beam Pentodes

Designed especially for television and f-m receivers, the gated beam pentode is used in the $\mathrm{f}-\mathrm{m}$ detector circuit and in the vertical oscillator circuit. No other tube type can be easily substituted in this circuit. The number
of types available in this classification are very few.

When this tube is not available, it will be necessary to substitute another circuit using conventional tubes. A ratio detector should be substituted for the $\mathrm{f}-\mathrm{m}$ sound detector. The reason for suggesting a ratio detector circuit is that a limiter stage is not usually required. Since the gated beam tube f-m detector does not require the limiter stage, the ratio detector circuit involves fewer circuit changes. This substitution could be accomplished with a triplediode triode tube such as the 6T8 or with a duo-diode triode such as the 6AT6 in conjunction with a germanium diode crystal. It is necessary to change the last sound i-f transformer to a ratio detector transformer and to change any other components necessary for this new circuit.

If the gated beam pentode is used as the vertical oscillator, it will again be necessary to change the circuit when the original type or a similarly classified type tube is not available. Any conventional triode having the required characteristics may be used as the vertical oscillator if the blocking oscillator circuit is employed. Any conventional twin triode with the required characteristics may be used if the multivibrator oscillator circuit is employed.

## High-frequency Triode Pentodes

These types are recent additions to special television types and are for use in the front end as the local oscillator and mixer. Like the high-frequency triode tube used as the local oscillator in the front end, they are very critical as to substitution. The type is composed of two separate sections: a high-frequency triode for use as the local oscillator and a pentode section for use as a mixer. The interelectrode capacitance of any substitution for these types must be very similar to the original. Shielding these types will change the circuit capacitance considerably. Since the variety of these types is very limited, it may be necessary to use two tubes as a substitute. The placement and the length of the connecting leads are a critical consideration when mechanical and wiring changes are required. The older type triode pentodes such as the 6F7, 6AD7, and 6P7 are not capable of operation on television frequencies and cannot be satisfactorily used as substitutes.

## EXAMPLES OF PRACTICAL TELEVISION TUBE SUBSTITUTIONS

RCA 630TS. The following substitutions were made in an RCA 630TS television chassis. This chassis is not only used in RCA television receivers but also in a great many other brand sets.

Before the substitutions were made, all tubes and component parts in the set were carefully checked and found to be in good condition. The chassis was also carefully and completely realigned for peak performance. Suitable test equipment was used to show the differences in the response curves with the original and substitute tubes.

The procedure was as follows: The response curve of the stage in which the substitution was to be made was observed on an oscilloscope and the gain and bandwidth were carefully noted. The substitute tube was then installed and the
difference in response and gain were tabulated. The set was then completely realigned for optimum output. The change in efficiency of operation was then noted. The original tube was then reinstalled and the set was again completely realigned and made ready for the next substitution.

Component parts were changed to adjust the bias and operating voltages of the substitute tube when required. In none of the following substitutions was there enough improvement to justify the use of the substitute rather than the original tube. A change in alignment was necessary in some cases in order to retain the correct response curve. In a few cases it was necessary to readjust the sound traps after making a substitution.

The results of making substitutions for the video i-f amplifiers follow. The original tube was a 6AG5.

RCA 630 TS Video I-f Amplifier Substitutions

Substitute	Stage	Circuit Changes and Results
6AU6	1st, 2nd, 3rd video i-f	No changes. Results equal to original after careful realignment.
6AU6	4th video i-f	This substitution is not recommended.
$6 \mathrm{BC5}$	1st, 2nd, 3rd video i-f	No changes. Results equal to original without realignment.
$6 \mathrm{BC5}$	4th video i-f	No changes. Results equal to the original after careful realignment.
6AK5	All video i-f	No changes. Different heater current but, because of parallel connection, no rewiring required.
6CB6	All video i-f	The cathode and suppressor grids are connected internally in the 6AG5 but these elements are separate on the 6CB6. Connect pins 2 and 7 together on the socket. If pin 2 is used as a tie point on the 6AG5, remove leads from pin. Solder these together and tape. Results equal to original.
9003	All video i-f	No changes. About 5 percent loss in gain after careful realignment.
6AH6	1st, 2nd, 3rd video i-f	Results equal to original after careful realignment.
6 AH 6	4th video i-f	This substitution is not recommended.

RCA 630 TS Video I-f Amplifier Substitutions (cont'd)

Substitute	Stage	Circuit Changes and Results
6BA6	1st, 2nd video i-f	No changes. Results equal to original without realign-   ment.
6BA6	3rd video i-f	No changes. About 20 percent loss in gain after care-   ful realignment.
6BA6	4th video i-f	No changes. About 30 percent loss in gain after care-   ful realignment.   Connect pins 2 and 7 together on socket. Results   equal to original after careful realignment.
6BD6	1st, 2nd, 3rd video i-f	Connect pins 2 and 7 together on socket. Results   equal to original without realignment.

The results of making substitutions for the 1st video amplifier follow. The original tube was a 6 AU6.

RCA 630 TS 1st Video Amplifier Substitutions

Substitute	Circuit Changes and Results
6CB6	No changes. About 10 percent increase in gain.
6AG5	No changes. About 20 percent increase in gain after   careful realignment of 4th video i-f stage.
6AK5	No changes. Heater current differs, but, since par-   allel connection is used, no rewiring required. About   30 percent increase in gain.
6BA6	No changes. Results equal to original without realign-   ment.
6BH6 changes. The suppressor grid and cathode pin	
	connections are reversed but both are connected to   the same point. Results equal to original without   realignment.

The results of making substitutions for the 2 nd video amplifier follow. The original tube was a 6K6.

RCA 630 TS 2nd Video Amplifier Substitutions

Substitute	Circuit Changes and Results
6 F 6	No changes. Heater currents differ, but this is a   parallel circuit. Operates well without change or   adjustment.

## SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

## RCA 630 TS 2nd Video Amplifier Substitutions (cont'd)

Substitute	Circuit Changes and Results
6L6	No changes. Heater currents differ, but this is a   parallel circuit. About 20 percent increase in gain   without adjustment.
6U6	No changes. Heater currents differ, but this is a   parallel circuit. About 20 percent increase in gain   without adjustment.

The results of making substitutions for the first two sound i-f amplifiers follow. The original tube used in the first two stages was a 6BA6.

RCA 630 TS Sound I-f Amplifier Substitutions

Substitute	Circuit Changes and Results
6AU6	No changes. Equal results after realignment.
6BD6	No changes. About 50 percent loss in gain resulted.   This substitution is not recommended in other than   strong signal areas.
9003	No changes. Heater currents differ, but this is a   parallel circuit. About 20 percent loss in gain   resulted.

Because of slight differences in tube characteristics and variations in television receiver circuits and operating voltages, results obtained in every case may not match exactly those results given above. However, diffierences in results should not be too great.

Belmont 18DX21A. A Number of tube substitutions were made in a Raytheon Belmont television set, model number 18DX21A. Exactly the same procedure was used as in the case of the RCA 630 TS. The results of making substitutions for the limiter stage follow. The original tube was a 12AU6.

Belmont 18DX21A Limiter Substitutions

Substitute	Circuit Changes and Results
12BA6	No changes. Operation is equal to the original. Re-   alignment does not improve operation.
12BD6	No changes. About 30 percent loss in gain. Realign-   ment and changes in operating voltages were at-   tempted without satisfaction. If the set is located in   a strong signal area little change will be noticed. Do   not attempt this substitution for fringe area operation.

Belmont 18DX21A Limiter Substitutions (cont'd)

Substitute	Circuit Changes and Results
12AW6	The suppressor grid and cathode are connected to   opposite pins. In this set these elements are con-   nected together; therefore, no change is required.   Substitution gives a 30 percent increase in gain   without realignment and is recommended for fringe   area operation.

The results of making substitutions for the i-f stages follow. The original tubes used were 6BA6's.

Belmont 18DX21A I-f Amplifier Substitutions

Substitute	Stage	Circuit Changes and Results
6AU6	1st i-f	No changes. Results equal to original after careful   realignment.
6AU6	2nd i-f	No changes. About 30 percent increase in gain after   careful realignment. Recommended for fringe area   operation.
6AU6	3rd i-f	No changes. Results equal to original. No realign-   ment required.
6BD6	1st i-f	No changes. About 10 percent loss in gain after   careful realignment.
6BD6	And, 3rd i-f i-f	No changes. Results equal to original after careful   realignment.
6CB6	1st i-f	No changes. Results equal to original after careful   realignment.
6BC5	2nd, 3rd i-f	No changes. Results equal to original after careful   realignment.

In addition to the above, a 19C8 was substituted for the 19 T 8 FM discriminator and first audio amplifier. No changes were required. The only apparent result was a slight loss in audio gain.

As pointed out previously, because of slight differences in tube characteristics and variations in circuits and voltages, the exact results given above may not always be obtained. However, great differences should not be found.

## SECTION 2

## RECEIVING TUBE SUBSTITUTION GUIDE

This section includes the actual information on the tube substitutions. The same format is followed as was used in the Receiving Tube Substitution Guide Book. Four columns are used. The first column gives the tube type for which a substitute is desired. The listing is in numer-ical-alphabetical order. No distinctions are indicated insofar as glass or metal tubes are concerned and the letters G, GT, GT/G, GA, or GP all have been omitted. In most cases, these letters simply indicate a glass type whose characteristics are practically the same as the metal type having the corresponding type number.

Column three lists the performance rating. Substitutions that we have found through practical experience will operate with equal or very nearly equal results compared to the original and those that have equal or nearly equal electrical characteristics are given a performance classification of $E$ for EXCELLENT. Substitutions that we have found to operate satisfactorily, although they do show a distinct loss, or those that have the same functional classification as the tube being substituted for but whose electrical characteristics are from 20 percent to 50 percent different, are classified G for GOOD. Others that are less efficient but which did operate in a fashion and those whose functional classification is different or whose critical characteristics are unlike the original by more than 20 percent are classified $P$ for POOR. These are recommended for emergency use only.

Column four gives the necessary circuit changes. It is impractical to include a listing of component part changes in order to alter the circuit with the substitute tube. The changes would vary widely with the type of circuit and the applied voltages; therefore, information correct for some sets would be grossly incorrect for others. Because of this, substitutions other than those classified $E$ are not completely worked out for you. However, those
substitutions classified G are satisfactory in most cases without component part changes, thus saving the equipment owner added parts and labor changes. A complete discussion covering the technique of computing substitute bias and load resistance is contained in the Receiving Tube Substitution Guide Book. When making changes in component parts, always make a complete record of the original values of the circuit altered, and securely attach it to the chassis of the equipment.

The necessary wiring changes, socket changes, and filament voltage adjustments are described in detail for each substitution listed. The instruction "No changes" indicates that the base wiring for the substitute is the same and that the filament voltage and current ratings are equal. The note "Parallel circuits only" indicates that the filament current ratings of the two tubes are unequal. This note is appended to some types that are not usually used in other than parallel circuits. This has been done to make the information more uniform and less confusing to the novice.

A few substitutions are followed by the note "Series circuits only." In these, the filament current of the substitute is equal to that of the original but the filament voltage is unequal. If the filament voltage of the substitute is higher than the original, then the voltage is reduced on all the other tubes in the circuit. If the substitute has a lower filament voltage rating, the voltage is increased on all the other tubes in the circuit. A series filament resistor is recommended where the increase in voltage amounts to more than five percent. When making substitutions requiring rewiring or socket changes, always make a note showing the original type used and the circuit in which the substitution is made. Then attach the note securely to the chassis.

Some substitutions listed, like the nineprong noval series, have a heater center-tap
connection which permits them to be operated at either 6.3 volts or 12.6 volts. These types are almost always numbered to indicate the higher heater voltage (12AT'7, 12AU7). These types are listed as substitutes for the 6 and 7 series tubes having 6.3 -volt heaters. When this is done the two halves of the noval tube heater are connected in parallel, thus cutting the necessary filament voltage in half and doubling the current required. Depending on the heater current of the type being substituted for, these types may be marked "Parallel circuits only" or they may be usable in either parallel or series circuits. These same tubes may be listed elsewhere as substitutes for 12.6 -volt heater types. Whether these types are used as substitutes for 6.3 -volt or 12.6 -volt tubes, they will be operating at the proper voltage.

Some miniature tubes with 12.6 -volt heaters do not have tapped heaters. These are usually used in series circuits that are connected
directly to the line. Occasionally, a 12.6 -volt winding is provided on the power transformer for the heaters in a parallel circuit.

When substituting for 12.6 -volt tubes in series circuits with 6.3 -volt types having equal current ratings, the increase in voltage spread over all the other tubes is small and need not be considered. However, it is good practice to shunt a small resistor of about 300 ohms across the heater of the 6.3 -volt tube in order to reduce the current flow through it during the time it takes for the tubes to heat. When a transformer winding is provided for the 12.6volt tube and it is desired to use a 6.3 -volt type, this can be done simply by moving one of the socket heater connections to the center-tap of the heater winding.

It should be pointed out that when "electric operation" is referred to in the substitutions which follow, the term is taken to mean nonbattery operation. In other words, the receiver is to operate from the power line.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
0A3	0B3	P	No changes.
$0 \mathrm{Z4}$	6 AX5	E	Rewire as follows:   Connect No. 2 to chassis   Connect No. 7 to 6 volt filament.
	6AX6	E	Rewire as follows:   Connect No. 4 and No. 8 together Connect No. 2 to chassis Connect No. 7 to 6 volt filament.
	6BY5	E	Rewire as follows: No. 3 No. 4 Connect No. 1 and No. 8 together Connect No. 2 to chassis Connect No. 7 to 6 volt filament.

6V4 E Change socket to noval and rewire as follows:


6X4 E Change socket to miniature and rewire as follows:


TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
OZ4	6 Y 5	E	Change socket to six prong and rewire as follows:   No. 3 on octal to No. 3 on six prong   5   to   5   8 to 4   Connect pin No. 1 on six prong to chassis Connect pin No. 6 to 6 volt filament.
	6 Z5	E	Change socket to six prong and rewire as follows:
	6ZY5	E	Same as 024 to 6AX5.
	724	E	Change socket to loctal and rewire as follows: 3 (9)
	1274	E	$\text { No. } 3 \text { on octal }$5 to 6   8 to 7   Connect No. 8 on loctal to chassis and No. 1 on loctal to 6 V hot lead.
$1 \mathrm{A4}$	$\begin{aligned} & 1 \mathrm{~A} 4 P \\ & 1 \mathrm{~A} 4 \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.
1 A5	1 W 4	G	Change socket to miniature and rewire as follows:
			No. 2 on octal   $\begin{array}{ll}\text { to No. } & 7 \text { on miniature } \\ \text { to } & 2 \\ \text { to } & 3 \\ \text { to } & 6 \\ \text { to } & 1\end{array}$
	$\begin{aligned} & \text { 3LE4 } \\ & \text { 3LF4 } \end{aligned}$	$\mathbf{P}$	Electric operation only. Same as 6W6 to 7A5 except do not connect No. 8 on octal to No. 7 on loctal.
1 A 5	3V4	$\mathbf{P}$	Electric operation only. Change socket to miniature and rewire as follows:
			No.   to No. 1 on miniature   Do not use pin No. 5.
1 A 7	1 LB6	G	Change socket to loctal and rewire as follows:
$1 \mathrm{AE4}$	1 L4   1 T4   1 U4	$\begin{aligned} & P \\ & P \\ & P \end{aligned}$	Parallel circuits only. Not satisfactory for oscillator. No changes.
1 AF5	1 U5	G	Parallel circuits only. Change connections as follows:   Remove, connect and tape up any wires connected to No. 2   Connect No. 5 to No. 2   Reverse connections between Nos. 3 and 4

Change socket to four prong and rewire as follows:


No. 2 on octal to No. 1 cap

to	4
to cap	



Required filament voltage for $\mathbf{1 Y 2}$ is $\mathbf{0 . 2 5}$ volt higher but operates satisfactorily in most cases.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
1B3	$1 \mathrm{Z2}$	G	Parallel circuits only. Same as 1B3 to 1X2A Filament voltage 0.25 volts higher. Do not use on large sets where inverse peak voltage exceeds 20,000 volts.
1 C 5	1W4	G	Parallel circuits only. Same as 1A5 to 1W4.
	$\begin{aligned} & 3 \mathrm{LE} 4 \\ & \text { 3LF4 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Change socket to loctal and rewire as follows:
	3V4	G	Change socket to miniature and rewire as follows:
1 F4	1 J 5	G	Change socket to octal and rewire as follows:
	$\begin{aligned} & 33 \\ & 950 \end{aligned}$	$\underset{\mathbf{G}}{\mathbf{G}}$	Parallel circuits only. No changes. No changes.
1 F 5	$\begin{aligned} & 1 \mathrm{J5} \\ & 33 \\ & 950 \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.   Reverse 1 F4 to 1 J 5 procedure, parallel circuits only. Reverse. 1F4 to 1 J 5 procedure.
1G5	1 F4	E	Reverse 1F4 to 1 J 5 procedure.
	1 F5	E	No changes.
	33	G	Reverse 1F4 to 1J5 procedure. Parallel circuits only.
	950	G	Reverse 1F4 to 1J5 procedure.
$1 \mathrm{G6}$	19	G	Parallel circuits only. Change socket to six prong and rewire as follows:
1 H 4	1G4	E	No changes.
$1 \mathrm{H5}$	1 N6	G	Rewire as follows:   Remove, connect, and tape up any wires anchored on No. 4 and No. 6 Connect No. 3 and No. 4 together.   No. 5 to No. 6   Grid lead to No. 5
	1SB6	E	Change connections as follows:   Remove, connect, and tape up any wires anchored on terminals No. 4 and No. 8.

1 U5 G Change socket to miniature and rewire as follows:


1J5-1LE3		SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE	
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
1 J 5	1 F4	G	Reverse 1F4 to 1 J 5 procedure.
	1 F5	G	No changes.
	33	G	Reverse 1F4 to 1J5 procedure. Parallel circuits only.
	950	E	Reverse 1F4 to 1 J 5 procedure.
$1 J 6$	1G6	G	Parallel circuits only. No changes.
$1 \mathrm{L4}$	1 S 5	G	Same as 1 T4 to 1S5
	1 U5	G	Cut off pin No. 4 on 1 U 5.   Rewire as follows:   Connect No, 1 \& 5 together.
1 L 6	1 R 5	G	Reverse connections between No. 5 and No, 6.
	1 U6	G	Connect a 56 ohm $\frac{1}{2}$ watt resistor from terminal No. 1 to No. 7 when used in series circuits. Resistor not required in parallel circuits. No other changes.
$1 \mathrm{LA4}$	3D6/1299	G	Parallel circuits only. Same as 1LB4 to 3D6.
	$\begin{aligned} & \text { 3LE4 } \\ & \text { 3LF4 } \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{P} \end{aligned}$	For electric operation only. Rewire as follows: Remove, connect, and tape up any wires connected to pin No. 7 of 1 LA 4.
	$\begin{aligned} & \text { 3LE4 } \\ & \text { 3LF4 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Parallel circuits only. Change connections as follows: Remove No. 8 lead and connect to No. 7 Connect No. 1 and No. 8 together.
	3V4	P	Electric operation only. Change socket to miniature and rewire as follows:
	3V4	G	Parallel circuits only. Change socket to miniature and rewire as follows:
1LB4	$\begin{aligned} & \text { 3LE4 } \\ & \text { 3LF4 } \\ & \text { 3D6/1299 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{P} \end{aligned}$	Parallel circuits only. Change connections as follows: Remove No. 8 lead and connect to No. 7 Connect No. 1 and No. 8 together.
	3 V 4	P	Same as 1 LA4 to 3V4 for electric operation only.
	3V4	G	Same as 1LA4 to 3V4 for parallel circuits only.
1 LE 3	$1 \mathrm{L4}$	G	Change socket to miniature and rewire as follows:
	1 T 4 $1 \mathrm{U4}$	$\stackrel{\mathbf{G}}{\mathbf{G}}$	No. 1 on loctal
	$\begin{aligned} & 1 \text { LC5 } \\ & 1 \text { LG5 } \\ & 1 \text { LN5 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Rewire as follows:   Remove, connect, and tape up any wires anchored on No. 3. Do the same for No. 4.   Connect No. 2 and No. 3 together.   Connect No. 4 and No. 5 together.



Parallel circuits only. Change socket to miniature and rewire as follows:


No.
1 on loctal
2
3
4
6
8


G
Change socket to octal and rewire as follows:


G
Change socket to miniature and rewire as follows:


No. $\begin{aligned} & 1 \text { on loctal } \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 6 \\ & 8\end{aligned}$	



1 LD5

P
Parallel circuits only. Change socket to octal and rewire as follows


No. 1 on loctal

Connect No. 3 and No. 4 to No. 1
Cap connection not used.

1LH4-IS4
TUBE SUB.
1 LH 43 A 8
TUBE SUB. PERF.

Electric operation only. Change socket to octal and rewire as follows: No. 1 on loctal to No. 2 on octal

.
2
4
6
8

to	6
to	8
to	5
to	7

Connect No. 2 and No. 3 to No. 1 .

1LN5	1 L 4	G
	1 T4	G
	1 U 4	E
	1 LG 5	G
1N5	1 U 5	G

Same as 1 LG5 to 5910.

No changes.
Change socket to miniature and rewire as follows:


G
Change socket to miniature and rewire as follows:


No. 2 on octal
3
4
5
7
to No. 1 on miniature

to No.	1 on miniature
to	2
to	4
to	3
to	7

1 LC5
1 LG5
1 LN5

G Parallel circuits only. No changes.
G Parallel circuits only. Same as 1A5 to 1 W4.
P Same as 1C5 to 3LE4. Same as 1C5 to 3LE4.

Same as 1C5 to 3V4.
Parallel circuits only. Change connections as follows:
No.

to	3
to	1



	1 U	G	Cut off pin No. 4 on 1 U 5 . Connect terminals No. 1 \& No. 5 together.
1 T 5	3 LE 4	G	Parallel circuits only. Same as 1C5 to 3LF4.
	3LF4	G	
	1W4	G	Same as 1A5 to 1W4.
	3V4	P	Electric operation only. Same as 1A5 to 3V4.
$1 \mathrm{U4}$	155	G	Same as 1 T4 to 155.
	1 U5	G	Cut off pin No. 4 on 1U5. Rewire as follows: Connect No. 1 and No. 5 together.
1 V	14Y4	G	Series circuits only. Same as $12 \mathrm{Z3}$ to 14Y4.
	37	G	Change socket to five prong and rewire as follows:
	76	G	
$1 W^{4}$	154	G	Parallel circuits only. Rewire as follows:   $\begin{array}{lll}3 & \text { to No. } 4 \\ 6 & \text { to } & \\ 6\end{array}$   Do not use pin No. 6 as anchor.
$1 \times 2$	1 Y 2	E	Change socket to four prong and rewire as follows:   Nos. 1, 4, 6,\& 9 on noval to No. 1 on four prong. Nos. 2, 5, \& 8 on noval to No. 4 on four prong. Cap on Noval to cap on four prong.
			19

1×2-385
TUBE SUB.

PERF

Change socket to octal and rewire as follows:

$\begin{array}{ll}2,5,7 & \text { to } \\ \text { cap } & \text { to }\end{array}$

G Parallel circuits only. Reverse 1B3 to 1Y2 procedure. Filament voltage will be 0.25 volts high on 1B3 and will serve to shorten its life. A small piece of resistance wire placed in series with the filament will correct this.

E
Change socket to four prong and rewire as follows:


No. 1 on four prong
to No. 2 on noval
cap

Change socket to miniature and rewire as follows:


No. 1 on four prong
to No. 1
4 to
cap to
Connect No. 1, 3, 4, and 6 together.
Connect No. 2, 5, and 7 together.


Do not use where inverse peak voltage exceeds 20,000 volts.
Change socket to noval and rewire as follows:
Nos. $1,3,4, \& 6$ on miniature to Nos. $1,4,6, \& 9$ on noval.
Nos. 2,5, \& 7 on miniature to Nos. 2, 5, \& 8 on noval.
Cap on miniature to cap on noval.


Reverse 1Y2 to $1 \mathrm{Z2}$ procedure.


Nos. $1,3,4,6$ on miniature to No. 2 on octal
rmits. Change socket to octal and rewire as follows:
cap


No. 1 on four prong
4
cap
to 4

Parallel circuits only. Change socket to six prong and rewire as follows:


No. 1 on four prong


G Parallel circuits only. Change socket to five prong and rewire as follows:


No. 1 on four prong 2
3
4

Same as 1Q5 to 1 S 4 .
Change socket to miniature and rewire as follows:

No. 2 on octal	to No. 1 on miniature	
3	to	2
4	to	3
5	to	6
7	to	7
8	to	5

SUB.
PERF.
CIRCUIT CHANGES NECESSARY

3LF4
3 LE4

3LF4

6 A6

6 A7

627

6AN7

6BA7

7A8

6AN7

E

G
G
$\mathbf{G}$

E
$\underset{\mathbf{G}}{\mathrm{E}}$
$\stackrel{E}{\mathrm{E}}$
$\underset{\mathbf{G}}{\mathbf{G}}$

Change socket to miniature and rewire as follows:

No. 1 on loctal	to No. 1 on miniature	
2	to	2
3	to	4
6	to	3
7	to	5
8	to	7

Change socket to octal and rewire as follows:
No. 1 on loctal


No changes.
Same as 3LE4 to 3 Q4.

Same as 3LE4 to 3 Q5.

3Q4	E
3S4	G
3Q5	E
3B5	E
3C5	G
6 Y 7	G
$6 \mathrm{Z7}$	G

G Parallel circuits only. Change socket to loctal and rewire as follows:

G Parallel circuits only. Change socket to noval and rewire as follows: No. 2 on octal


G Change socket to noval and rewire as follows:


No. 1 on seven prong

No. 1 on seven prong to No. 1 on loctal

2
3
4
5
6
7 to No. 4 on noval

3
4
5
cap
6
7
8

to	7
to	1
to	9
to	2
to	8
to	5
to	3



No. 1 on seven prong

2
3
4
grid cap
5
6
7

to No.	4
to	7
to	1
to	8
to	8
to	2
to	9
to	3
to	5



TUBE SUB.
6A8

6AD7
6 U8

PERF.
G


CIRCUIT CHANGES NECESSARY

Parallel circuits only. Change socket to noval and rewire as follows:



6CD6 G Parallel circuits only. Same as 6AR6 to 6BG6. Use only where additional current is available from the filament power supply.

G Parallel circuits only. Change socket to five prong and rewire as follows: No. 1 on octal to No. 4 on five prong.


## 6AU6-6C5



TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6CB6	6 AG5	G	No changes.
	6BC5	G	
	6 AJ5	P	Parallel circuits only. No changes.
	6 AK5	G	
	5590	G	
	5591	G	
	5654	G	
	9001	P	
	9003	P	


	6AU6 6BA6 6BD6	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Change connections as follows:   Reverse connections between terminals 2 and 7.
6CD6	KT66	G	Parallel circuits only. Reverse 6L6 to 6BG6 procedure.
	807	P	Parallel circuits only. Reverse 807 to 6BG6 procedure.
6CG6	6AG5   6AU6   6BA6   6BC5   6BD6	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.
	6AH6 6AJ5 6AK5 5590 5591 5654 9001 9003	G $\mathbf{P}$ $\mathbf{G}$ $\mathbf{P}$ $\mathbf{G}$ $\mathbf{G}$ $\mathbf{G}$ $\mathbf{P}$ $\mathbf{P}$	Parallel circuits only. No changes.
6E6	$\begin{aligned} & \text { 6N7 } \\ & 6 Z 7 \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Parallel circuits only. Same as 3LE4 to 3Q5.
	$6 \mathrm{Y7}$	G	Same as 3LE4 to 3Q5.
6 F 6	6AQ5	G	Parallel circuits only. Change socket to miniature and rewire as follows:



	6AN7	G	Parallel circuits only. Same as 6A8 to 6AN7.
	6BA7	G	Same as 6A8 to 6BA7.
$6 \mathrm{L5}$	6SJ7	G	Parallel circuits only. Same as 6C5 to 6SJ7.
6L6	6BG6	E	Change connections as follows:     No.     3 to cap    8 to 3   4 to 8
	6CD6	E	Parallel circuits only. Same as 6L6 to 6BG6. When making this substitution be sure the filament power supply is capable of supplying an additional 1.6 -ampere load.

6J6-6L6

TUBE	SUB.
$6 J 6$	$6 S L 7$

$6 A 7$

G
6BA7
6SJ7
6BG6
$6 \mathrm{CD6}$
PERF.

SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE
CIRCUIT CHANGES NECESSARY
$P \quad$ Change socket to octal and rewire as follows:


E Parallel circuits only. Where space permits. Change socket to loctal and rewire as follows:


TUBE SUB.

6 L 6	41
	42

KT66
E
E

5881
6SJ7
6 U 8
$6 \times 8$

6 P 7

$\mathbf{G}$
$\mathbf{G}$

PERF.
G
G

6Q7	6AT6	$\mathbf{E}$
	6AV6	$\mathbf{G}$
	6BK6	$\mathbf{G}$
	6BT6	$\mathbf{E}$
	6BU6	$\mathbf{P}$


6R7	6AT6	$\mathbf{P}$
	6AV6	P
	6BK6	P
	$6 \mathrm{BT6}$	P
	6BU6	E
6R8	6 V 8	P
$6 \mathrm{S4}$	12AT7	G
	12AU7	G
	12AV7	G
	$12 \mathrm{AX7}$	G
	12AY7	G
	12BH7	G

Change socket to five prong and rewire as follows:

No. 2 on octal	to No. 1 on five prong	
3	to	cap
4	to	2
$\mathbf{4}$	to	3
7	(3)	
$\mathbf{7}$	to	5
8		4



Parallel circuits only. No changes.
Same as 6C5 to 6SJ7.
Parallel circuits only. Change socket to noval and rewire as follows:


No. $\begin{aligned} & 2 \text { on } \\ & 3 \\ & 4 \\ & 5 \\ & \\ & \\ & \text { cap } \\ & 6 \\ & 7 \\ & \\ & 8\end{aligned}$


Change socket to miniature and rewire as follows:


Parallel circuits only. Change socket to six prong and rewire as follows:
No. 2 on octal


Parallel circuits only. No changes.
$\square$


No. 2 on octal

Same as 6Q7 to 6AT6.

Same as 6T8 to 6V8.
Parallel circuits only. Same as 6S4 to 12BH7.
12AU7
12AV7
$12 \mathrm{AY7}$

12BH7
Rewire as follows:

Remove wires from No. 5.
Connect No. 4 and No. 5 together.
$\begin{array}{lll}\text { No. } 6 & \text { to No. } 7 \\ 9 & \text { to } & 6\end{array}$
Connect wires removed from No. 5 to No. 9.
Reverse No. 2 and No. 3 connections.
Connect No. 3 and No. 8 together.
Connect No. 1 and No. 9 together.

6SA7-6SG7
TUBE SUB.
6SA7 6BA7

6BE6

7A8

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

## PERF. <br> CIRCUIT CHANGES NECESSARY

E

Change socket to noval and rewire as follows:


E
Change socket to miniature and rewire as follows:

	No. 1 on octal	to No.	2	miniature
	2	to	3	
	3	to	5	
(3) ${ }^{(3)}$	4	to	6	(8)
(2) 0	5	to	1	(3)
(1) ${ }^{(8)}$	6	to	2	( )
onis.	7	to	4	sue.
	8	to	7	

G Parallel circuits only. Change socket to loctal and rewire as follows: No. 1 on octal to shield connection on loctal socket to No. 1



The 7A8 heats faster than the other tubes and a 200 ohm $1 / 2$ watt resistor must be connected across the filament terminals 2 and 7 or its life will be very short.

$6 S B 7 Y$	6BA7	E
	6SA7	G
	$7 A 8$	G
		$7 B 8$
	$7 \mathrm{J7}$	P
	7S7	P
	$7 \mathrm{Q7}$	E

E Change socket to loctal and rewire as follows:


$6 S C 7$	12AT7	$\mathbf{P}$
	12AU7	$\mathbf{P}$
	12AY7	$\mathbf{G}$
	12AZ7	$\mathbf{P}$
	12AX7	$\mathbf{E}$

Change socket to noval and rewire as follows:


	12AV7	$P$
	12BH7	$\mathbf{P}$
6SG7		6BA6
	6AU6	E
	6BD6	$\mathbf{P}$

12BH7
6SG7

	12AV7	$\mathbf{P}$
	12BH7	$\mathbf{P}$
6SG7	6BA6	$\mathbf{E}$
	6AU6	P
	6BD6	$\mathbf{G}$

Same as 6SA7 to 6BA7.
No changes.
Parallel circuits only. Same as 6SA7 to 7A8.
Same as 6SA7 to 7A8. Series or parallel circuits.

Parallel circuits only. Same as 6SC7 to 12AT7.

Change socket to miniature and rewire as follows:


\begin{tabular}{|c|c|c|c|c|}
\hline TUBE \& SUB. \& PERF. \& CIRCUIT CHANGES NECESSARY \& \\
\hline 6SH7 \& \begin{tabular}{l}
6AU6 6BA6 \\
6BD6
\end{tabular} \& \[
\begin{aligned}
\& \mathbf{G} \\
\& \mathrm{P} \\
\& \mathbf{G}
\end{aligned}
\] \& Same as 6SG7 to 6BA6. \& \\
\hline 6SJ7 \& \[
\begin{aligned}
\& \text { 6AG5 } \\
\& \text { 6BC5 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{G} \\
\& \mathbf{P}
\end{aligned}
\] \& Change socket to miniature and rewire as follows: \&  \\
\hline \& \begin{tabular}{l}
6 AJ5 \\
6AK5 \\
5591 \\
9001 \\
9003
\end{tabular} \& \[
\begin{aligned}
\& P \\
\& P \\
\& P \\
\& P \\
\& P
\end{aligned}
\] \& Parallel circuits only. Same as 6SJ7 to 6AG5. \& \\
\hline 6SK 7 \& \begin{tabular}{l}
6AG5 \\
6BC5
\end{tabular} \& \[
\begin{aligned}
\& \mathbf{G} \\
\& \mathbf{G}
\end{aligned}
\] \& Same as 6SJ7 to 6AG5. \& \\
\hline \& \begin{tabular}{l}
6 AJ5 \\
6 AK5 \\
6AN5 \\
5591 \\
9001 \\
9003
\end{tabular} \& P
G
P
P
G
G \& Same as 6SJ7 to 6AJ5. \& \\
\hline \& \[
\begin{aligned}
\& \text { 6BH6 } \\
\& \text { 6BJ6 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{G} \\
\& \mathbf{G}
\end{aligned}
\] \& Parallel circuits only. Same as 6SK7 to 6CB6. \& \\
\hline \& 6CB6 \& G \& Change socket to miniature and rewire as follows:

No.

2 \& | 3 on miniature |
| :--- |
| 7 |
| 1 |
| 2 |
| 6 |
| 4 |
| 5 | <br>

\hline 6SL7 \& $7 \mathrm{F8}$ \& $\mathbf{P}$ \& Change socket to loctal and rewire as follows: \&  <br>

\hline \& $$
\begin{aligned}
& 12 \mathrm{AT} 7 \\
& 12 \mathrm{AU} 7 \\
& 12 \mathrm{AX} 7 \\
& 12 \mathrm{AY} 7
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{G} \\
& \mathrm{P} \\
& \mathbf{G} \\
& \mathbf{G}
\end{aligned}
$$
\] \& Change socket to noval and rewire as follows: \&  <br>

\hline \& $$
\begin{aligned}
& 12 \mathrm{AV7} \\
& 12 \mathrm{BH} 7
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{P} \\
& \mathbf{P}
\end{aligned}
$$
\] \& Parallel circuits only. Same as 6SL7 to 12AT7. \& <br>

\hline 6 SN7 \& $$
\begin{aligned}
& 12 \mathrm{AT7} \\
& 12 \mathrm{AU7} \\
& 12 \mathrm{AV7} \\
& 12 \mathrm{AX} 7 \\
& 12 \mathrm{AY} 7
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{P} \\
& \mathbf{G} \\
& \mathbf{P} \\
& \mathbf{P} \\
& \mathbf{P}
\end{aligned}
$$
\] \& Parallel circuits only. Same as 6SL7 to \& <br>

\hline \& $$
\begin{aligned}
& 12 \mathrm{BH7} \\
& 12 \mathrm{SZ7}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{G} \\
& \mathbf{G}
\end{aligned}
$$
\] \& Same as 6SL7 to 12AT7. \& <br>

\hline 6SQ7 \& 6SZ7 \& E \& Parallel circuits only. No changes. \& <br>
\hline
\end{tabular}

6U4	$6 \mathrm{AX5}$	G	No changes.
6U5/6G5	$6 \mathrm{AB5}$   6 N 5	$\mathbf{G}$	Parallel circuits only. No changes.
	6 G 5	G	No changes.
6U6	5881	$G$	Parallel circuits only. No changes.

6SR7-6V8
TUBE SUB. PERF.
6SR7 7B6

7 E 6

7 C 6
85

6S8
6 T8

6V8

6U5/6G5

6U6

6V6

6BG6
6W6
6R8
6 T8

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE
CIRCUIT CHANGES NECESSARY
P Change socket to loctal and rewire as follows:

No. 2 on octal	to No. 3 on loctal	
3	to	4 or 7
4	to	5
5	to	6
6	to	2
7	to	1
7	to	8

P Same as 6SR7 to 7B6.
G Change socket to six prong and rewire as follows:
No. 2 on octal


G Parallel circuits only. Where space permits, change socket to octal and rewire as follows:


G Change connections as follows:
Remove wires from No. 1.

No.	9	to No.
6	to	9
6	to	6
8	to	8
3	to	3
7	to	7

Connect wires removed from No. 1 to No. 2.

P Parallel circuits oniy. Change socket to octal and rewire as follows:
No. ${ }_{8}^{5}$ on octal


G Parallel circuits only. Same as 6L6 to 6BG6.

to No. 1 on miniature

G Parallel circuits only. No changes.
P Reverse 6T8 to 6V8 procedure.


7A7-7C5

TUBE	SUB.
7A7	6 BH 6
	6 BJ 6
7A8	$6 \mathrm{AN7}$

7AF7

7B4

7 B5

B6	6AV6
	6BF6
	6BK6
	6BT6
	6BU6
7B7	6AU6
	6BA6
	6 BC 5
	6BD6
	6BH6
	6BJ6

7 F8

7B6

7C6
6AQ5

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE
PERF.
P Parallel circuits only. Same as 7 B 7 to 6 BH 6 .
$P$
G

G
Rewire as follows:
Remove wires from No. 4
$\begin{array}{ll}\text { No. } 2 & \text { to No. } 4 \\ 1 & \text { to } \\ 2\end{array}$
Connect wires removed from No. 4 to No. 1. Remove wires from No. 5.
No. 7 to No. 5
Connect wires removed from No. 5 to No. 8.
Rewire as follows:
Remove and tape up any wires anchored on terminal No. 3.
Do the same for No. 4 and No. 5.
No. 6 to No. 3
Connect Nos. 4, 5, and 6 together.
E
G
Parallel circuits on

No. 1 on loctal	to No. 3 on miniature
2	to
3	to
6	to
7	to
7	to
8	


G
$\mathbf{G}$
$\mathbf{P}$
$\mathbf{G}$
$\mathbf{G}$
$\mathbf{P}$
$\mathbf{G}$
$\mathbf{E}$
$\mathbf{G}$
$\mathbf{G}$
$\mathbf{G}$
$\mathbf{G}$



Same as 7C6 to 6AQ6.

Parallel circuits only. Same as 7A7 to 6AU6.

Change socket to miniature and rewire as follows:


7AH7	G	No changes.
5590	P	Same as 7A7 to 6AU6.
5591	P	
9001	P	
9003	G	
$6 A N 7$	G	Parallel circuits only. Same as 7A8 to 6AN7.
6AQ5	G	Same as 7B5 to 6AQ5.


TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
7 C 6	6AQ6	G	Change socket to miniature and rewire as follows:
	6AT6   6AV6   6BF6   6BK6   6BT6   6 BU 6	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{P} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{P} \end{aligned}$	Parallel circuits only. Same as 7C6 to 6AQ6.
$7 \mathrm{C7}$	6AU6 6BA6 6 BC5 6BU6	$\begin{aligned} & \mathbf{E} \\ & \mathbf{G} \\ & \mathbf{E} \\ & \mathbf{E} \end{aligned}$	Parallel circuits only. Same as 7A7 to 6AU6.
	$\begin{aligned} & \text { 6BH6 } \\ & \text { 6BJ6 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Same as 7B7 to 6BH6.
	7AB7/1204	P	Rewire as follows:   Remove wires from terminal No. 1   $\begin{array}{ll}\text { No. } & 3 \\ 2 & \text { to No. } \\ 1\end{array}$   Connect wires removed from No. 1 to No. 2   Remove wires from No. 8   No. 7 to No. 8   Connect wires removed from No. 8 to No. 7   No. 6 to No. 5   Do not use terminals No. 4 or No. 6.
	$\begin{aligned} & \text { 7AG7 } \\ & 7 \mathrm{AH} 7 \end{aligned}$	$\begin{aligned} & P \\ & \mathbf{G} \end{aligned}$	No changes.
7 E 6	6AT6 6AV6 6BF6 6BK6 6BT6 6BU6	$\begin{aligned} & P \\ & P \\ & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	Same as 7C6 to 6AQ6.
7 F 8	$7 \mathrm{F8}$ W	E	No changes.
	$\begin{aligned} & 12 A T 7 \\ & 12 A U 7 \\ & 12 A X 7 \\ & 12 A Y 7 \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{P} \\ & \mathbf{G} \end{aligned}$	Same as 7F8 to 12AV7.
	$\begin{aligned} & 12 \mathrm{AV7} \\ & 12 \mathrm{BH} 7 \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{G} \end{aligned}$	Parallel circuits only. Change socket to noval and rewire as follows:
7G8	1206	$\underline{5}$	No changes.
$7 \mathrm{J7}$	6AN7	G	Parallel circuits only. Same as 7A8 to 6AN7.
7N7	$\begin{aligned} & 12 A T 7 \\ & 12 A U 7 \\ & 12 A V 7 \\ & 12 A X 7 \\ & 12 A Y 7 \\ & 12 A Z 7 \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & \mathbf{E} \\ & \mathbf{G} \\ & \mathbf{P} \\ & \mathbf{P} \\ & \mathbf{G} \end{aligned}$	Parallel circuits only. Same as 7N7 to 12 BH 7.

7N7-12A6

TUBE SUB.
7N7 12 BH 7

7Q7

7R7

7S7
7Y4

7 Z4

12A6

6SN7

PERF.

E


## CIRCUIT CHANGES NECESSARY

Change socket to octal and rewire as follows:

No. 1 on loctal	to No. 8 on octal	
2	to	3
3	to	2
4	to	1
5	to	4
6	to	5
7	to	6
8	to	7

E Change socket to noval and rewire as follows:
No. 1 on loctal to Nos. 4 \& 5 on noval


G Parallel circuits only. Same as 14Q7 to 7A8.
G

Change socket to noval and rewire as follows:
No. 1 on loctal

to No. 4 on noval	
to	6
to	7
to	8
to	1
to	2

G

E

E
$6 \times 4$
E

0 Z4

6 AX5

12A5

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

Same as $14 Q 7$ to 7A8. Series or parallel circuits.


Parallel circuits only. Same as 7A8 to 6AN7.
Same as 7 Y 4 to 6AX5. Filament leads need not be connected.
Parallel circuits only. Change loctal socket to octal and rewire as follows:


No. 1 on loctal
to No. 2 on octal
No. 1 on locta


Parallel circuits only. Change socket to miniature and rewire as follows:


Same as 7 Y 4 to $6 \mathrm{AX5}$. Filament leads need not be connected. If required output current exceeds 70 ma . this substitution is not recommended.

G Parallel circuits only. Same as 7Y4 to 6AX5. 6AX5 has lower output current rating. If required current exceeds 70 ma . this substitution is not recommended.

Parallel circuits only. Change octal socket to seven prong and rewire as follows:


TUBE
12A8

	$12 A Z 7$	$P$
	$14 F 8$	$G$
$12 A V 7$	$6 S N 7$	$P$

PERF.
$P$ 7A8

## 12AU7

12AX7
12AY7 12AZ7

6AQ6 12AZ7 14F8

7 F8

6SN7

P
E
E
P

G
G
G
G

P

G
P

Series circuits only. No. 2 on octal


Change socket to noval and rewire as follows:


Do not use socket terminal No. 9 as tie point.
P Parallel circuits only. Same as 12AH7 to 12AU7.

12AZ7 E No changes.

12AW6 6BH6

For 12 volt operation on


Change socket to loctal and rewire as follows:

No. 1 on noval	to No. 3 on loctal	
2	to	1
3	to	4
4	to	2
5	to	2
6	to	6
6	(2)	8
7	(2)	8
8	to	5
9	to	7

P Parallel circuits only. No changes.
For 12 volt operation only. Same as 12AT7 to 14 F8.
Parallel circuits only. Change socket to octal and rewire as follows:


Same as 12AW6 to 6BH6.
Parallel circuits only. No Changes.

For 12 volt operation in parallel circuits only. Same as 12 AT 7 to 14 F 8 .
No wiring changes necessary in series circuits. Install a $300 \mathrm{ohm}, \frac{1}{2}$ watt resistor from terminal No. 3 to terminal No. 4 on the socket.

In parallel circuits disconnect and tape up filament supply lead connected to terminal No. 3. Install new wire from terminal No. 3 to center tap of 12.6 volt filament winding.

## 12AX4-12SF5




14N7 E Same as 12SN7 to 14AF7. Series or parallel circuits.
Change socket to loctal and rewire as follows:


No. 2 on octal
3
4
5
6
7
8
to No. 3 on loctal


12SR7-14B6

TUBE	SUB.
12 SR 7	$6 S T 7$

6 T7

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE
PERF.
P Series circuits only. No changes.
P Series circuits only. Make adaptor as follows:

No.	to No. 1 on top	
2	on base	to
3	cap	
4	to	8
5	to	4
5	to	5
6	to	3
7	to	7
8	to	2

7C6

14X7
12SW7

	6 T 7
	7 C 6
	14 X 7
12 SY 7	12 BE 6

12Z3
14 Y 4

12AU6
12 BA 6
12BD6
12 AT 7
12 AU 7
$12 \mathrm{AX7}$
$12 \mathrm{AY7}$
$12 \mathrm{AZ7}$

12AV7	P
12BH7	G
12AT6	G
12AV6	G
12BF6	P
12BK6	G
12BT6	G
12BU6	P

CIRCUIT CHANGES NECESSARY

P
Series circuits only. Change socket to loctal and rewire as follows
No. 2 on octal

3
4
5
6
7
8


Same as 12 SQ 7 to 14 X 7 .
Series circuits only. Co changes.
Same as 12 SR 7 to 6 T7. Series circuits only.
Same as 12SR 7 to 7C6. Series circuits only.
Same as 12 SQ 7 to 14 X 7 .
Change socket to miniature and rewire as follows:


Change socket to loctal and rewire as follows:
No. 1 on four prong


2
3
4


Same as 7A7 to 6AU6.

Change socket to noval and rewire as follows:


Parallel circuits only. Same as 14AF7 to 12AT7.

Change socket to miniature and rewire as follows:



14N7-33

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
14 N 7	12 BH 7	G	Same as 14AF7 to 12AT7. Series or parallel circuits.
14 Q 7	7A8	G	Series circuits only. Rewire as follows:   Remove wires from terminal No. 5 and tape up. No. 5 to No. 3
	$\begin{aligned} & \text { 12A8 } \\ & \text { 12K8 } \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{G} \end{aligned}$	Change socket to octal and rewire as follows:
	12BA7	G	Change socket to noval and rewire as follows:
	12BE6	G	Change socket to miniature and rewire as follows:
	1488	G	Same as 14 Q 7 to 7A8.
19C8	19V8	G	Reverse 19 V 8 to 19 C 8 procedure.
19 T 8	19V8	G	Reverse 19 V 8 to 19 C 8 procedure.
19V8	$\begin{aligned} & 19 \mathrm{C} 8 \\ & 19 \mathrm{~T} 8 \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	Rewire as follows:   Remove wires from No. 9
25N6	43	P	Same as 6 L6 to 41. Series or parallel circuits.
26Z5W	25X6   25Z6   35Z6	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \\ & \mathrm{P} \end{aligned}$	Parallel circuits only. Change socket to octal and rewire as follows:
33	$\begin{aligned} & \text { 1F5 } \\ & \text { 1G5 } \\ & 1 \mathrm{J5} \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Parallel circuits only. Same as 1 F4 to 1J5.


$50 \mathrm{Y7} \quad \mathrm{P}$

P
P

Rewire as follows:
Remove and tape up wires on No. 3. Do the same for Nos. 4 \& 6
Connect No. 3 and No. 5 together.
Connect No. 4 and No. 8 together.
Do not use terminal No. 6 .
Change socket to loctal and rewire as follows:
No. 2 on octal to No. 1 on loctal


Connect 40 ohm, 1 watt resistor from No. 1 to No. 3.

## 35Z5-50c6

TUBE	SUB.	PERF.
$35 Z 5$	$50 Y 6$	P
	50 Y 7	P
	50 Z 7	P
$40 \mathrm{Z5}$		
45	2 A 5	G
	47	G
$45 \mathrm{Z5}$	35 Y 4	G

50 C 6

## PERF.

P

G
P

14A5 G
35C5

35B5
35C5
50B5
35A5
E

E
E
E

## SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

Same as $35 Z 5$ to 50 Y 7 . Also connect a 40 ohm, 1 watt resistor from No. 2 to No. 6.

Rewire as follows:
Remove and tape up wires on No. 4. Do the same for No. 6 Connect No. 3 to No. 6 .
Connect No. 3 and No. 5 together.
Connect No. 4 and No. 8 together.
Refer to type $45 \mathrm{Z5}$ for substitute.
Parallel circuits only. Same as 2A3 to 2A5.
Parallel circuits only. Same as 2A3 to 47.
Change socket to miniature and rewire as follows:


Do not connect to unused terminals.
G Same as 35 Z 5 to 50 Y 6 .
G Same as $35 Z 5$ to 50 Z7.

35C5
Change socket to octal and rewire as follows:


Place a 250 ohm, 10 watt resistor in series with filament.
G Put a $250 \mathrm{ohm}, 10$ watt resistor in series with filament.
Rewire as follows:
Interchange No. 1 and No. 2 connections.
Interchange No. 5 and No. 7 connections.
Place $100 \mathrm{ohm}, 10$ watt resistor in series with filament.
Same as complete 50B5 to 35C5 procedure. Except that for 50B5 no filament resistor is required.

Change socket to loctal and rewire as follows:


Place $100 \mathrm{ohm}, 10$ watt resistor in series with filament.

35B5

E


No. $\begin{aligned} & 2 \text { on octal } \\ & 3 \\ & 4 \\ & 5 \\ & 7 \\ & 8\end{aligned}$


Do not use No. 7 on miniature. Place 100 ohm, 10 watt resistor in series with filament.

E
Change socket to miniature and rewire as follows:


Do not use terminal No. 5 on miniature. Place 100 ohm, 10 watt resistor in series with filament.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
50C6	50B5	E	Same as 50C6 to 35B5.
50L6	14A5	G	Same as 35 L 6 to 14 A 5 except place a 250 ohm , 10 watt resistor in series with filament.
	50A5	E	Same as 35L6 to 14A5. Except do not add filament resistor.
	50 C 6	E	No changes.
50Y6	50X6	E	Change socket to loctal and rewire as follows:
57	$\begin{aligned} & 35 / 51 \\ & 24 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	Parallel circuits only. Same as 34 to 1D5.
58	$\begin{aligned} & 24 \mathrm{~A} \\ & 35 / 51 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{G} \end{aligned}$	Same as 57 to $35 / 51$
KT66	6AL6	G	Farallel circuits only. Same as 6L6 to 6AL6.
	$\begin{aligned} & \text { 6BG6 } \\ & \text { 6CD6 } \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	Parallel circuits only. Same as 6L6 to 6BG6.
	6 L 6	G	Parallel circuits only. No changes.
71A	12A	P	No changes.
	$\begin{aligned} & 182 \mathrm{~B} / 482 \mathrm{~B} \\ & 183 / 483 \end{aligned}$	$\underset{\mathrm{G}}{\mathbf{G}}$	Parallel circuits only. No changes. If push-pull circuit, change both tubes.
84/6Z4	0Z4	E	Change socket to octal and rewire as follows:
	6 Y 5	G	Parallel circuits only. Change socket to six prong and rewire as follows:
	6ZY5	G	Same as $84 / 6 \mathrm{Z} 4$ to $0 \mathrm{Z4}$ procedure. Parallel circuits only.
89	89 Y	E	No changes.
117 N 7	$\begin{aligned} & 117 \mathrm{~L} 7 \\ & 117 \mathrm{M} 7 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	Make adaptor as follows:    No. 1 on base to No. 8 on top   2 to   3 to   4 to   4 4   5 to   7 to   8 to   8 7   AC line must connect to No. 7.
807	6AL6	G	Reverse 6AL6 to 807 procedure.
	6AR6	G	Parallel circuits only. Reverse 6AR6 to 807 procedure.
	6BG6	E	Change socket to octal and rewire as follows:


TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
807	6CD6	E	Parallel circuits only. Same as 807 to 6BG6. When making this substitution be sure the filament power supply is capable of an additional 1.6 ampere load.
	6 L 6	G	Reverse 6 L 6 to 807 procedure.
1614	6AL6	G	Same as 5881 to 6AL6.
	6AR6	G	Parallel circuits only. Rewire as follows:     No.2 to No. 8    8 to 1   4 to 5    5 to    7    7 to 6
	6BG6	E	Same as 6L6 to 6BG6.
	6CD6	E	Parallel circuits only. Same as 6 L 6 to 6 BG 6 . Use only where addidional current is available from the filament power supply.
	5881	E	No changes.
5642			Substitution can be accomplished by using 1 X 2 ; $1 \mathrm{X} 2 \mathrm{~A}, 1 \mathrm{~V} 2,1 \mathrm{Y} 2,1 \mathrm{Z} 2,1 \mathrm{~B} 3 \mathrm{GT}$ only if space is available for mounting sockets and shield can. Refer to section 1 of book.
	1B3	E	Install octal socket and rewire as follows:   Remove wires connected to the pair of filament leads protruding from one end of the 5642 and reconnect to Nos. 2 and 7 respectively on the 1B3 socket.
			Remove the wires connected to the plate lead protruding from the other end of the 5642 and reconnect to the cap of the 1B3.
	1 X 2	E	Install noval socket and rewire as follows:   Remove wires connected to the pair of filament leads protruding from one end of the 5642 and reconnect to Nos. 1, 4, 6, \& 9 and $2,5, \& 8$ on the 1 X 2 socket respectively.
			Remove the wires connected to the plate lead protruding from the other end of the 5642 and reconnect them to the cap of the 1 X 2 .
	1 Y2	E	Install four prong socket and rewire as follows: Remove wires connected to the pair of filament leads protruding from one end of the 5642 and reconnect to Nos. 1 and 4 respectively.
			Remove wires connected to the plate lead protruding from the other end of the 5642 and reconnect to the cap of the 1 Y 2 .
	$1 \mathrm{Z2}$	E	Install miniature socket and rewire as follows:   Remove wires connected to the pair of filament leads protruding from one end of the 5642 and reconnect to Nos. 1, 3, 4,\& 6 and $2,5, \& 7$ respectively on the $1 Z 2$ socket.
			Remove wires connected to the plate lead protruding from the other end of the 5642 and reconnect to the cap on the $1 \mathrm{Z2}$.
5881	6AD7	P	Parallel circuits only. Remove and tape up any wires anchored on pins Nos. 1 and 6. The 5881 is an industrial type 6L6 with identical characteristics.
	6AL6	P	Parallel circuits only. Rewire as follows: Connect No. 3 to cap.
	6AR6	P	Parallel circuits only. Same as 1614 to 6AR6.
	6 F 6	P	Parallel circuits only. No changes.
	$6 \mathrm{K6}$	P	
	$6 \mathrm{U6}$	P	
	$6 \mathrm{V6}$	P	
	$6 \mathrm{L6}$	E	No changes.
	1614	E	No changes.
XXD			Same as type 14AF7 substitutes.

# SECOND SUPPLEMENT <br> RECEIVING TUBE SUBSTITUTION G U I D E B O O K 

 BYH. A. MIDDLETON


JOHN F. RIDER PUBLISHER, INC. 480 CANAL STREET NEW YORK 13, N. Y.

## Copyright 1954 by JOHN F. RIDER

All rights reserved. This book or parts thereof may not be reproduced in any form or in any language zuithout permission of the publisher.

Printed in the United States of America

## FOREWORD

This Second Supplement to the Receiving Tube Substitution Guidebook, in addition to the original volume and the First Supplement to it, is an accumulation of over twelve years of experience in substituting tubes in radios, television receivers and other electronic equipment. It is a never-ending process which we shall continue in an effort to keep your information as current as possible.

Most of these additional substitutions are for use in television receivers and therefore, because of their critical application in some cases, special consideration should be given your selection when you have a choice of substitutes. A stage-by-stage discussion of the most popular circuits used in television receivers is included in the First Supplement. If there is any question as to whether or not the stage being substituted is a critical one and which characteristics of the substitute should be given special consideration, take a moment to read the article covering the stage in question.

The information herein, in the large part, calls for substitutions only. It is not the object of these instructions to tell you how to improve radios, television receivers and other electronic equipment but rather to help you use the tubes you have, in order to replace those that are not available. Exceptions to the above statement are tubes especially designed as replacements of types where
improvement is needed generally or for specific use such as 5881 for 6L6, 5AW4 for 5U4G, 6CU6 for 6BQ6GT, and the same type numbers in ruggedized tubes designated by an additional ending letter, as 6SN7WGT. Types such as these are designed to improve the life of the tube, the efficiency of the circuit in which they are applied, or both. Characteristics are generally identical to the type they replace. Elements are heavier duty or especially treated in order to withstand greater overloads and construction is more rugged.

Also included in this supplement is a cumulative index indicating the volume and page where the tube you wish to substitute is located.

We have endeavored to list all the practical substitutions. Some, no doubt, have been omitted. When considering substitution, others not listed will likely come to mind. When this happens, write the tube number down immediately in the form used here and attach it in its proper place.

This supplement includes picture tube substitutions. It is recommended that before substitution of picture tube is attempted, a few moments be taken to read over the short article which precedes the picture tube section.

Phoenix, Arizona
January, 1954
H. A. Middleton

## TABLE OF CONTENTS

PageSECTION 1 - RECEIVING TUBE SUBSTITUTIONS
SECTION 2 - PICTURE TUBE SUBSTITUTIONS ..... 13
Substituting Picture Tubes in TV Receivers ..... 13
Picture Tube Substitutions ..... 15
CUMULATIVE INDEX ..... 27
Receiving Tubes ..... 27
Picture Tubes ..... 39

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY			
1B3	1 AX 2	E	Change socket to noval and rewire as follows:			
	1X2A	E		No. 2 on octal 7	$\begin{aligned} & \text { to No. } 2 \text { noval } \\ & \text { to } \end{aligned}$	


1D5GP	1N5GT	G	Parallel circuits - add 10 ohm $1 / 2$ watt resistor in series with filament circuit.
			Series circuits - in addition to above resistors, shunt a 200 ohm 1/2 watt resistor across the combination.
	1 P 5	G	Same as above.
$\begin{aligned} & 1 \times 2 \\ & 1 \times 2 \mathrm{~A} \end{aligned}$	1AX2	E	It may be necessary to increase the filament current by removing the filament resistor or adding a turn to the filament loop.
5AW4	$\begin{aligned} & \text { 5U4 } \\ & \text { 5X4 } \\ & 5 \mathrm{~V} 4 \end{aligned}$	G G G	No changes.
5AZ4	5AW4		
5R4GY	5AW4		
5 T 4	5AW4		
5 U 4	5AW4		
5V4	5AW4		
5W4	5AW4		
5X4	5AW4		
5 Y 3	5AW4		
5 Y 4	5AW4		
5Z3	5AW4		
5Z4	5AW4		
6AB4	6AQ6	P	Rewire as follows:

Remove wires anchored on No. 5 and tape up.
Disconnect No. 2 if grounded.
No. 7
to No. 2
to 7
6 to 1
Connect Nos. 5 and 6 to chassis.


6AV6
P
6BF6
6BK6
6BT6 6BU6

6AF4 6AN4
6CF6
Pins 3 and 7 may be used as tie points for filament and high voltage filter resistors. with filament circuit. Series circuits - in addition to above resistors, shunt a 200 ohm 1/2 watt resistor across the combination.

## Rewire as follows:



Same as above. Parallel circuits only.

6AG5

6AH4-6AK5	
TUBE	SUB.
6AH4	6BL7
	$6 B X 7$

6F6 6K6 6L6 6U6 6V6 6W6 6SN7

12 AU7 12BH7

6AH6

6AM4
6AJ5
6CF6
6AJ8
12AH8

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE
PERF.
$\underset{\mathrm{E}}{\mathrm{E}}$
Parallel circuits only. Rewire as follows.

No. 8	to No. 3
2	to 8



Connect together Nos. $3 \& 6,2 \& 5,1 \& 4$.


E
$\begin{array}{rr}\text { Parallel circuits only. } & \text { Rewire as follows: } \\ \text { No. } 8 & \text { to No. } 3 \\ 2 & \text { to } 8\end{array}$


Connect together Nos. $3 \& 6,2 \& 5,1 \& 4$.
E Parallel circuits only. Change socket to noval and rewire as follows:


No. 1
to No. 2


Connect together Nos. $1 \& 6,2 \& 7,3 \& 8,4 \& 5$.
G Parallel circuits only. Change socket to noval and rewire as follows:

No. 1	to No. 2
2	to
3	to
3	to
4	to
5	7
6	to
7	to
7	3

2
9
4
5
7
8
3


Nos. 1 and 6 are internal connections in the 6 CH 6 tube. Do not use these for tie points.

6AJ4	6AM4	G	No changes.
6AJ5	6 CF 6	P	Parallel circuits only. No changes.
6AJ8	12 AH8	G	This will operate if pins $7 \& 9$ are connected together.   Rewire as follows:   Remove wires from No. 9 and put them on No. 7.
			Remove wires from No. 4 (or 5) and put them on
			No. 9. Connect No. 4 to No. 5.



TUBE 6AK6	SUB.   6AM5	PERF.   G	CIRCUIT CHANGES NECESSARY   Parallel circuits only. Rewire as follows:
6AK8	6 T 8	E	No changes.
6AM4	6 AJ4	E	No changes.
	6AN4	G	Change socket to 7 pin and rewire as follows:   All connections to Nos. 1, 3, \& 4 must go to No. 2. All connections to Nos. $6 \& 9$ must go to No. 6. Then as follows:   No. 2   to No. 5   to 1   to or $/ 87$   to 4
	6Q4	G	
6AM5	6AK6	E	Heater current different, make necessary changes in series circuit. Rewire as follows:   Remove wires from No. 6 and tape up.   No. 6 to No. 7   Connect Nos. 7 and 2 together.
6AN4	6AF4 6T4 6AM4	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.   No changes.   Change socket to noval and rewire as follows:   Connections to No. 2 may be distributed between Nos. 1, 3, \& 4.   Connections to No. 6 may be split up between   Nos. 6 and 9. Then as follows:   No. 4   ${ }_{5}^{1} \& 7$   $\begin{array}{ll}\text { to No. } 8 \\ \text { to } & 7 \\ \text { to } & 5 \\ \text { to } & 2\end{array}$
6AQ5	6BM5	E	No changes.
6AS5	6BM5	G	Parallel circuits only. Same as 6AS5 to 6AQ5.
6AV6	6BT6	G	No changes.
6BA6	6CG6	G	
6BC5	6CF6	G	
6BJ6	$\begin{aligned} & \text { 6BA6 } \\ & \text { 12BA6 } \end{aligned}$	$\underset{\mathbf{E}}{\mathbf{E}}$	Parallel circuits only. No changes. Series circuits only. No changes.




6CG6-6CL6
TUBE SUB. 6CG6 6AM6

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE
PERF. CIRCUIT CHANGES NECESSARY
Rewire as follows:
Remove wires from No. 2.
No. 7 to No. 2


Wires removed from No. 2 connect to No. 6.

TUBE SUB. PERF.

6BE6
6BQ6GT
12AT7
$\mathbf{P}$

G

G

G


G
6BV7 6BW6 $6 B Y 7$ 6CK6

6M5

CIRCUIT CHANGES NECESSARY
Parallel circuits only. Rewire as follows:

No. 8		to No. 3
$2 \& 9$	to $\quad 8$	
6	to $\quad 2$	



If Nos. 1 and 7 are tied together, leave as is; if No. 7 is grounded and No. 1 goes through a bias network, remove the ground from No. 7 and move leads from No. 1 to No. 7.

12AU7 E This substitution utilizes one half of the dual triode as the replacement tube. Change socket to noval and rewire as follows:

Remove and tape up any wires connected to Nos. 1, 4 and 6.

No. 2	to No. $4 \& 5$
3	to 1
5	to
7	to
7	to
8	



12AV7	G	Same as 6J5 to 12AU7. Parallel circuits only.
12AX7	P	Same as 6J5 to 12AT7.
$12 \mathrm{AZ7}$	G	Same as 6J5 to 12AU7. Parallel circuits only.
12 BH 7	G	Same as 6J5 to 12AU7. Parallel circuits only.
6CL6	G	Reverse 6CL6 to 6M5 procedure.




12SK7-19Y3		SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE	
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
12SK7	12SS7	E	No changes, but in series circuits shunt 150 ohm 1 watt resistor across heater terminals, Nos. 2 and 7.
12SQ7	26BK6	G	Series circuits only. Same as $12 S Q 7$ to 12BK6. Add 300 ohm 2 watt resistor across Nos. 3 and 4.
12SS7	12SK7	E	Make necessary circuit changes to provide additional heater current. See page 12, Section 1.
12V6	12A5	G	Change socket to small 7 pin and rewire as follows:
12X4	$6 \times 4$	E	No changes, but add a 20 ohm 5 watt resistor in series with the heater.
	6 X 5	E	Same as 6X4 to 6X5, except to add a 20 ohm 5 watt resistor in series with the heater.
14X7	$19 \mathrm{T8}$	G	Series circuits only. Change socket to noval and rewire as follows:
	19V8	E	Series circuits only. Change socket to noval and rewire as follows:
19AQ5	16A5	G	Change socket to noval and rewire as follows:
	35B5	G	Series circuits only. Some circuit changes may be necessary to provide the extra 15 filament volts. No other changes.
$19 \mathrm{J6}$	6 J 6	E	Rewire as follows:   Disconnect heater terminals, Nos. 3 and 4. Connect these wires to a 125 ohm 3 watt resistor, which may be mounted out of the way. Use a 6 volt filament transformer to light the 6J6.
19X3	19 Y 3	E	No changes.
19 Y 3	19X3	E	No changes.

TUBE

26CG6	26A6	G
	12BA6	G
26D6	$12 B E 6$	$G$

E

E

12BA6

12L8GT

28D7 G
G

Rewire as follows:


No. 1
3 \& 7 6
to No. 7
to 2
to $\quad 1 \& 3$ or 9


No. 6 is heater tap. Do not use as tie point. Add 40 ohm 5 watt resistor in series with the filament.

G Change socket to 7 pin and rewire as follows:
No. 1

1	to NO. 5
$3 \& 7$	to $1 \& 7$
4	to
5	to
5	4
6	to
8	to
8	6



Remove and tape up any wires connected to Nos. 2 and 9. In parallel circuits add a 40 ohm 2 watt resistor in series with one of the filament leads. In series circuits, shunt a 120 ohm 5 watt resistor across the filament leads.

Change socket to octal and rewire as follows:


No. 1
$3 \& 7$
to No. 3

4	to	2
5	to	7
6	to	8
8	to	4



Connections anchored to Nos. 2 and 9 may be placed on the free terminals of the octal socket.

Change socket to noval and rewire as follows:
No. 2 on octal


Change socket to loctal and rewire as follows:

No. 1 on octal	to No. 7 on loctal	
2	to	6
3	to	2
4	to	4
5	to	3
6	to	1
7	to	8

No changes.
Same as 26A6 to 12BA6.
No changes, except to add 90 ohm 2 watt resistor in series with heater. (Parallel circuits only)

28D7-5670
TUBE SUB. PERF.

Rewire as follows:
Remove wires from Nos. 2 and 7 and connect them to a 330 ohm 10 watt resistor. Remove and tape up any wires on No. 1. No. 4 to No. 1
This will work if the requirements for proper operation of the gas rectifier are met. Change socket to octal and rewire as follows:

Remove and tapeup any wires connected to Nos. 1, 4 and 8.
No. 3 on loctal
6
to No. 3 on octal
to 5
to 8


The 6BY5 must be lit from a 6.3 volt 2.0 ampere filament transformer.


## SUBSTITUTING PICTURE TUBES IN TV RECEIVERS

## 1. Connecting the External Conductive Tube Coating to Chassis

When a picture tube that does not have an external conductive coating is substituted for one that has the external coating, it is generally necessary to install a metal finger to make contact with the coating in order to connect it to the chassis. Sometimes this finger is attached to the deflection yoke support bracket. Ordinarily a tube that does not have an external coating has a 500$\mu \mu \mathrm{f}$ capacitor connected from the anode lead to the chassis inside the high-voltage cage. It is normally not necessary to remove this capacitor when substituting a tube that has the external conductive coating.

## 2. Installing a Capacitor from the Anode Lead to the Chassis

When a tube that does not have the external conductive coating is substituted for one that has the external conductive coating, it is often necessary to install a capacitor from the anode lead to the chassis. In the substitutions listed here we have repeated the same value of $500 \mu \mu \mathrm{f}$. Ordinarily this will be satisfactory. In some cases this capacitor will not be necessary. In others best satisfaction may be had with capacitances as high
as $2,000 \mu \mu \mathrm{f}$. This is according to individual cases and can be determined by trial. The most convenient location for this capacitor is inside the highvoltage cage.

## 3. Dimensions

Before attempting any of the substitutions listed here, make sure the substitute tube will fit into the available space. In the magnetic types try to choose a substitute with a neck length similar to the original. Differences in face plate curvatures may make it necessary, in some substitutions listed, to change the mask.

## 4. Change in Anode Connector

Either the ball-type or cavity-type anode connector is used on picture tubes. Instructions specify when a change is necessary.

## 5. Replacement or Deletion of Ion Trap

It is necessary to replace the ion trap with the type required by the manufacturer of the substitute tube. Some tubes do not require an ion trap and are being substituted for others requiring either a single or dual ion trap. In these cases,
the instruction is "Remove ion trap." Other tubes requiring a single ion trap can be substituted for by installing a dual ion trap and vice versa. In these cases instructions are given. Some manufacturers of picture tubes are using a new type gun requiring a single ion trap in tubes that formerly used a gun requiring a dual ion trap. It is therefore important to check the individual manufacturer's specification on the substitute tube being used.

## 6. Electrostatic and Self-Focus Tubes

When using electrostatic or self-focus tubes as substitutions for magnetically focused tubes, it is necessary to remove the focus coil from the neck of the tube and replace it with a magnetic centering device. The focus coil may be left in the receiver circuit-wise, in which case it should be mounted in the cabinet in some position where it magnetic field has no effect on the picture. It may be replaced with a choke or resistor. The picture tube socket may have to be changed when it is necessary to bring out a lead from the focus electrode on the picture tube base except in the case of self-focus or automatic focus types. This lead should be connected to a d-c voltage point in the set which gives best focus. The voltage required normally lies between 50 and 350 volts. Self-focus or automatic focus tubes have a special gun structure within the neck of the tube designed
to focus the tube automatically without the use of an external focus voltage.

## 7. Substituting Electrostatic or Automatic Focus Types with Magnetic Types

When replacing electrostatic focus types with magnetic focus types, discard the magnetic centering device and install a permanent magnet focusing device. This must be mounted on the yoke support with suitable metal brackets. It is practical to replace an electrostatic focus tube using high-focus voltage with a type using low-focus voltage or a self-focus type. When doing this, it is desirable to remove the focus voltage rectifier as a safety measure.

## 8. Differences in the Face Plate

Differences in the face plate of the tube have little effect on whether or not they may be substituted. Dark-faced tubes give better contrast than white-faced tubes. Some tubes are frosted to decrease reflections and others have an aluminized back for better contrast and brightness. Aluminized tubes in some cases have higher anode voltage applied and this voltage should be reduced in accordance with manufacturers' specifications when other than aluminized tubes are substituted. When substituting aluminized tubes for white- or gray-faced tubes, sufficient voltage is usually available for satisfactory operation.

TUBE	SUB.	CHANGES NECESSARY
7HP4	7QP4	Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change anode connector to cavity type. Change ion trap to single.
7NP4	7WP4	Connect external conductive coating to chassis.
7QP4	7HP4	Change anode connector to ball type. Connect external conductive coating to chassis. Change ion trap to double.
TWP4	7NP4	No changes.
8AP4	8AP4A	No changes. Substitute has dark face.
8AP4A	8AP4	No changes. Substitute has white face.
10BP4	10BP4A	No changes. Substitute has dark face.
$\begin{aligned} & \text { 10BP4 } \\ & \text { 10BP4A } \end{aligned}$	10CP4	Change anode connector to cavity type. Remove ion trap.
	10 EP 4	Change anode connector to cavity type.
	$\begin{aligned} & \text { 10FP4A } \\ & 10 \mathrm{FP} 4 \end{aligned}$	Remove ion trap.
10 CP 4	$\begin{aligned} & \text { 10BP4 } \\ & \text { 10BP4A } \end{aligned}$	Only where $1^{\prime \prime}$ greater length is available. Change anode connector to ball type.
	10EP4	Only where $1^{\prime \prime}$ greater length is available. Change anode connector from ball to cavity type. Remove ion trap.
	10FP4   10FP4A	Change anode connector to cavity type.
10EP4	$\begin{aligned} & \text { 10BP4 } \\ & \text { 10BP4A } \end{aligned}$	Change anode connector from ball to cavity type.
	10CP4	Remove ion trap.
	10FP4   10FP4A	Change anode connector from ball to cavity type. Remove ion trap.
10FP4	10FP4A	No changes.
10FP4   10FP4A	$\begin{aligned} & \text { 10BP4 } \\ & \text { 10BP4A } \end{aligned}$	Install double ion trap.
	10CP4	Change anode connector to ball type.
	10EP4	Change anode connector from cavity to ball type. Install double ion trap.
10MP4	10MP4A	No changes.
10MP4A	10MP4	No changes.


TUBE	SUB.	CHANGES NECESSARY
12JP4	$\begin{aligned} & \text { 12KP4 } \\ & \text { 12KP4A } \end{aligned}$	Connect external conductive coating to chassis. Change anode connector to cavity type.
12JP4	$\begin{aligned} & \text { 12LP4 } \\ & \text { 12LP4A } \end{aligned}$	Only where $11 / 8^{n}$ greater length is available. Change anode connector to cavity type. Install double ion trap.
	$\begin{aligned} & \text { 12QP4 } \\ & \text { 12QP4A } \end{aligned}$	Install double ion trap.
	12RP4	Install single ion trap.
	12TP4	Only where $11 / 2^{\prime \prime}$ greater length is available. Change anode connector to cavity type. Install double ion trap.
	12VP4   12VP4A	Change anode connector to cavity type. Install double ion trap.
	12YP4	Only where $1^{\prime \prime}$ greater length is available. Change anode connector to cavity. Install single ion trap. Substitute is electrostatic focus. See No. 6 in picture tube article.
12 KP 4	12KP4A	No changes. Substitute has dark face.
$\begin{aligned} & \text { 12KP4 } \\ & \text { 12KP4A } \end{aligned}$	12JP4	Change anode connector to cavity type.
	$\begin{aligned} & \text { 12QP4 } \\ & \text { 12QP4A } \\ & \text { 12RP4 } \end{aligned}$	Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change anode connector to ball. Install single ion trap.
	12TP4	Only where $11 / 2^{\prime \prime}$ greater length is available. Connect $500-\mu \mu \mathrm{f}$, $20-\mathrm{kv}$ capacitor from anode to chassis. Install double ion trap.
	$\begin{aligned} & \text { 12VP4 } \\ & \text { 12VP4A } \end{aligned}$	Install double ion trap.
	12YP4	Only where $11 / 2^{\prime \prime}$ greater length is available. Install single ion trap. Substitute is electrostatic focus. See No. 6 in picture tube article.
12LP4	12LP4A	No changes. Substitute has dark face.
$\begin{aligned} & \text { 12LP4 } \\ & \text { 12LP4A } \end{aligned}$	12JP4	Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change anode connector to ball type. Remove ion trap.
	$\begin{aligned} & \text { 12KP4 } \\ & \text { 12KP4A } \end{aligned}$	Remove ion trap.
	$\begin{aligned} & \text { 12QP4 } \\ & \text { 12QP4A } \\ & \text { 12RP4 } \end{aligned}$	Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change anode connector to ball type. Change ion trap to single.
	12VP4   12VP4A   12TP4	No changes.
	12YP4	Change ion trap to single. Substitute is electrostatic focus. See No. 6 in picture tube article.
12QP4	12QP4A	No changes. Substitute has dark face.
$\begin{aligned} & 12 \mathrm{QP4} \\ & 12 \mathrm{QP} 4 \mathrm{~A} \end{aligned}$	12JP4	Remove ion trap.
	$\begin{aligned} & \text { 12KP4 } \\ & \text { 12KP4A } \end{aligned}$	Connect external conductive coating to chassis. Change anode connector to cavity type. Remove ion trap.


TUBE	SUB.	CHANGES NECESSARY
$\begin{aligned} & \text { 12QP4 } \\ & \text { 12QP4A } \end{aligned}$	12LP4	Only where $11 / 2^{\prime \prime}$ greater length is available.
	12LP4A	Connect external conductive coating to chassis. Change anode connector to cavity type. Install ion trap.
	12RP4	No changes.
	12TP4	Only where $11 / 2^{\prime \prime}$ greater length is available. Change anode connector to cavity type. Change ion trap to double.
	$\begin{aligned} & \text { 12VP4 } \\ & \text { 12VP4A } \end{aligned}$	Connect external conductive tube coating to chassis. Only where $1^{n}$ greater length is available. Change anode connector to cavity type. Change ion trap to double.
	12YP4	Only where $11 / 2^{\prime \prime}$ greater length is available. Connect external tube coating to chassis. Change anode connector to cavity type. Substitute is electrostatic focus. See No. 6 in picture tube article.
12RP4	12JP4	Remove ion trap.
	$\begin{aligned} & \text { 12KP4 } \\ & \text { 12KP4A } \end{aligned}$	Connect external conductive tube coating to chassis. Change anode connector to cavity type. Remove ion trap.
	$\begin{aligned} & \text { 12LP4 } \\ & \text { 12LP4A } \end{aligned}$	Only where $11 / 2^{\prime \prime}$ greater length is available. Connect external conductive tube coating to chassis. Change anode connector to cavity type. Change ion trap to double.
	$\begin{aligned} & \text { 12QP4 } \\ & \text { 12QP4A } \end{aligned}$	No changes.
	12TP4	Only where $11 / 2^{n}$ greater length is available. Change anode connector to cavity type. Change ion trap to double.
	$\begin{aligned} & \text { 12VP4 } \\ & \text { 12VP4A } \end{aligned}$	Only where $11 / 2^{\prime \prime}$ greater length is available. Connect external conductive coating to chassis. Change anode connector to cavity type. Change ion trap to double.
	12 YP 4	Only where $11 / 2^{\prime \prime}$ greater length is available. Change anode connector to cavity type. Substitute is electrostatic focus. See No. 6 in picture tube article.
12TP4	12JP4	Change anode connector to ball type. Remove ion trap.
	$\begin{aligned} & \text { 12KP4 } \\ & \text { 12KP4A } \end{aligned}$	Connect external conductive tube coating to chassis. Remove ion trap.
	$\begin{aligned} & 12 \mathrm{QP4} \\ & 12 \mathrm{QP} 4 \mathrm{~A} \end{aligned}$	Change anode connector to ball type. Change ion trap to single.
	12RP4	
	$\begin{aligned} & \text { 12VP4 } \\ & \text { 12VP4A } \end{aligned}$	Connect external conductive tube coating to chassis.
	12YP4	Connect external conductive tube coating to chassis. Change ion trap to single. Substitute is electrostatic focus. See No. 6 in picture tube article.
12UP4	12UP4A	No changes. Substitute has dark face.
$\begin{aligned} & \text { 12UP4 } \\ & \text { 12UP4A } \end{aligned}$	12UP4B	Change to single ion trap.
12UP4B	12UP4   12UP4A	Change to double ion trap.
12VP4	12VP4A	No changes. Substitute has dark face.


TUBE	SUB.
$14 B P 4$	$14 B P 4 A$

14CP4

14DP4

14EP4

$14 \mathrm{FP4} 4$	14 BP 4
	14 BP 4 A
	14 CP 4
	14 EP 4

15AP4 15CP4

15DP4
16 CP 4

16LP4 16LP4A 16ZP4

15CP4

15AP4
15DP4
16CP4
16LP4
16LP4A 16ZP4

## SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

## CHANGES NECESSARY

No changes.

No changes.

Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.

Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.

No changes.

Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.

Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.

Connect external conductive coating to chassis.
Change ion trap to single.

Change ion trap to single.

No changes.

Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.

Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.

Connect external conductive coating to chassis.

Change ion trap to double.
Only where $1^{\prime \prime}$ greater length is available. Change anode connector to cavity type. Install double ion trap.

Change ion trap to single.
Only where $1^{\prime \prime}$ greater length is available. Change anode connector to cavity type. Install double ion trap.

Only where $2^{\prime \prime}$ greater length is available. Connect external conductive coating to chassis. Install double ion trap.

Change ion connector to ball type. Remove ion trap.
Change ion connector to ball type. Change ion trap to single.
No changes.
Only where $1^{\text {n }}$ greater length is available. Connect external conductive tube coating to chassis.

TUBE	SUB.	CHANGES NECESSARY
15DP4	15AP4	Install single ion trap.
	$\begin{aligned} & 15 \mathrm{CP} 4 \\ & 16 \mathrm{CP} 4 \end{aligned}$	Only where $1^{\prime \prime}$ greater length is available. Change anode connector to cavity type. Change ion trap to double.
	$\begin{aligned} & \text { 16LP4 } \\ & \text { 16LP4A } \\ & \text { 16ZP4 } \end{aligned}$	Only where $2^{\prime \prime}$ greater length is available. Connect external conductive tube coating to chassis. Change anode connector to cavity type. Change ion trap to double.
16AP4	16AP4A	No changes.
16AP4A	16AP4	No changes.
$\begin{aligned} & 16 \mathrm{AP} 4 \\ & 16 \mathrm{AP} 4 \mathrm{~A} \end{aligned}$	16AP4B	No changes.
16 CP 4	15AP4	Change anode connector to ball type. Remove ion trap.
	15 CP 4	No changes.
	15DP4	Change anode connector to ball type. Change ion trap to single.
	$\begin{aligned} & \text { 16LP4 } \\ & \text { 16LP4A } \\ & \text { 16ZP4 } \end{aligned}$	Only where $1^{\prime \prime}$ greater length is available. Connect external conductive tube coating to chassis.
16 DP 4	16DP4A	No changes.
$\begin{aligned} & \text { 16DP4 } \\ & \text { 16DP4A } \end{aligned}$	16FP4	Change anode connector to ball type. Change ion trap to single.
	$\begin{aligned} & \text { 16HP4 } \\ & 16 \mathrm{HP} 4 \mathrm{~A} \\ & 16 \mathrm{JP} 4 \\ & 16 \mathrm{JP} 4 \mathrm{~A} \end{aligned}$	Connect external conductive tube coating to chassis.
	$\begin{aligned} & 16 \mathrm{MP} 4 \\ & 16 \mathrm{MP} 4 \mathrm{~A} \end{aligned}$	Connect external conductive tube coating to chassis.
16EP4	$\begin{aligned} & 16 E P 4 A \\ & 16 E P 4 B \end{aligned}$	No changes.
$\begin{aligned} & 16 \mathrm{EP} 4 \\ & 16 \mathrm{EP} 4 \mathrm{~A} \\ & 16 \mathrm{EP} 4 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 16AP4 } \\ & 16 \mathrm{AP} 4 \mathrm{~A} \\ & 16 \mathrm{AP} 4 \mathrm{~B} \end{aligned}$	Only where $2-5 / 8^{\prime \prime}$ additional length is available. Change ion trap to double.
16FP4	$\begin{aligned} & \text { 16HP4 } \\ & \text { 16HP4A } \\ & \text { 16JP4 } \\ & \text { 16JP4A } \end{aligned}$	Only where $1^{\prime \prime}$ greater length is available. Connect external conductive tube coating to chassis. Change anode connector to cavity type. Change ion trap to double.
	$\begin{aligned} & \text { 16MP4 } \\ & 16 \mathrm{MP} 4 \mathrm{~A} \end{aligned}$	Only where $2^{n}$ greater length is available. Connect external conductive tube coating to chassis. Change anode connector to cavity type. Change ion trap to double.
16GP4	$\begin{aligned} & \text { 16GP4A } \\ & \text { 16GP4B } \end{aligned}$	No changes.
16HP4	16HP4A	No changes.
$\begin{aligned} & 16 \mathrm{HP} 4 \\ & 16 \mathrm{HP} 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 16JP4 } \\ & 16 \mathrm{JP} 4 \mathrm{~A} \end{aligned}$	No changes.
	$\begin{aligned} & \text { 16MP4 } \\ & \text { 16MP4A } \end{aligned}$	Only where $1^{\prime \prime}$ greater length is available. No changes.
16JP4	16JP4A	No changes.
$\begin{aligned} & \text { 16JP4 } \\ & \text { 16JP4A } \end{aligned}$	$\begin{aligned} & \text { 16DP4 } \\ & \text { 16DP4A } \end{aligned}$	Connect $500-\mu \mu \mathrm{f}, 20 \mathrm{kv}$ capacitor from anode to chassis.
	$\begin{aligned} & \text { 16FP4 } \\ & \text { 16FP4A } \end{aligned}$	Change anode connector to ball type. Change ion trap to single.


16JP4-16RP4	SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE	
TUBE	SUB.	CHANGES NECESSARY
$\begin{aligned} & \text { 16JP4 } \\ & \text { 16JP4A } \end{aligned}$	$\begin{aligned} & \text { 16HP4 } \\ & \text { 16HP4A } \end{aligned}$	No changes.
	$\begin{aligned} & \text { 16MP4 } \\ & \text { 16MP4A } \end{aligned}$	Only where $1^{\circ}$ greater length is available. No changes.
16KP4	16KP4A	No changes.
$\begin{aligned} & \text { 16KP4 } \\ & 16 \mathrm{KP} 4 \mathrm{~A} \end{aligned}$	16QP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.
	16RP4	No changes.
	16TP4	No changes.
	16UP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
	16XP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.
16LP4	16LP4A	No changes. Substitute has dark face.
$\begin{aligned} & \text { 16LP4 } \\ & \text { 16LP4A } \end{aligned}$	15AP4	Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change anode connector to ball type. Remove ion trap.
	15CP4	Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
	15DP4	Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change anode connector to ball type. Change ion trap to single.
	16CP4	Connect $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
	16ZP4	No changes.
16MP4	16MP4A	No changes.
$\begin{aligned} & \text { 16MP4 } \\ & \text { 16MP4A } \end{aligned}$		Same as 16JP4 substitutes.
16QP4	$\begin{aligned} & \text { 16KP4 } \\ & 16 \mathrm{KP} 4 \mathrm{~A} \end{aligned}$	Connect external conductive tube coating to chassis. Change ion trap to single.
	16RP4	Connect external conductive tube coating to chassis. Change ion trap to single.
	16TP4	Connect external conductive tube coating to chassis. Change ion trap to single.
	16UP4	Change ion trap to single.
	16XP4	No changes.
16RP4	$\begin{aligned} & \text { 16KP4 } \\ & 16 \mathrm{KP} 4 \mathrm{~A} \end{aligned}$	No changes.
	16QP4	Change ion trap to double.
	16 TP 4	No changes.
	16UP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
	16XP4	Install $500-\mu \mu \mathrm{f}, 20 \mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	CHANGES NECESSARY
16SP4	16SP4A	No changes.
16SP4A	16SP4	No changes.
$\begin{aligned} & \text { 16SP4 } \\ & \text { 16SP4A } \end{aligned}$	16VP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to ground. Change ion trap to single.
	16WP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
	16YP4	Change ion trap to single.
	16WP4A	No changes.
16TP4	$\begin{aligned} & \text { 16KP4 } \\ & \text { 16KP4A } \end{aligned}$	Only where $1^{\prime \prime}$ greater leugth is available. No changes.
	16QP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.
	16RP4	Only where $1^{* \prime}$ greater length is available. No changes.
	16UP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
	16XP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.
16UP4	$\begin{aligned} & 16 \mathrm{KP} 4 \\ & 16 \mathrm{KP} 4 \mathrm{~A} \end{aligned}$	Connect external conductive tube coating to chassis.
	16QP4	Change ion trap to double.
	16RP4	Connect external conductive tube coating to chassis.
	16TP4	Connect external conductive tube coating to chassis.
	16XP4	Change ion trap to double.
16VP4	$\begin{aligned} & \text { 16SP4 } \\ & \text { 16SP4A } \end{aligned}$	Connect external conductive tube coating to chassis. Change ion trap to double.
	16WP4	Change ion trap to double.
	16WP4A	Connect external conductive tube coating to chassis. Change ion trap to double.
	16YP4	Connect external conductive tube coating to chassis.
16WP4	$\begin{aligned} & \text { 16SP4 } \\ & \text { 16SP4A } \end{aligned}$	Connect external conductive tube coating to chassis.
	16VP4	Change ion trap to single.
	16WP4A	Connect external conductive tube coating to chassis.
	16YP4	Connect external conductive tube coating to chassis. Change ion trap to single.
16WP4A	$\begin{aligned} & \text { 16SP4 } \\ & 16 \mathrm{SP} 4 \mathrm{~A} \\ & 16 \mathrm{VP} 4 \end{aligned}$	No changes.   Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to single.
	16WP4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
	16YP4	Change ion trap to single.

16XP4-17CP4A

TUBE	SUB.
16 XP 4	16 KP 4
	16 KP 4 A

16QP4
16RP4
$16 T P 4$

16UP4
16WP4A

16YP4

16ZP4

17AP4

17BP4

17BP4A
17BP4B
17BP4C

17CP4

17CP4A
17CP4

CHANGES NECESSARY
Connect external conductive tube coating to chassis. Change ion trap to double.

No changes.
Connect external conductive tube coating to chassis. Change ion trap to single.

Connect external conductive tube coating to chassis. Change ion trap to single.

Change ion trap to single.
Change ion trap to double.

Change ion trap to double.

Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.

Same as 16 LP 4 substitutes.

Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis. No changes.

No changes.
Substitute type is self-focus electrostatic. See No. 6 in picture tube article.

Connect external conductive tube coating to chassis.
Connect external conductive tube coating to chassis.

Connect external conductive tube coating to chassis.
Substitute type is self-focus electrostatic. See No. 6 in picture tube article.

No changes.

No changes.

Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
No changes.
Substitute type is self-focus electrostatic.
See No. 6 in picture tube article.

No changes.

No changes.

TUBE	SUB.	CHANGES NECESSARY
17FP4	17FP4A	No changes.
17FP4A	17FP4	No changes.
17FP4   17FP4A	17KP4	No changes. Focus voltage rectifier may be removed as a safety measure.
17HP4	17HP4A	No changes.
17HP4A	17HP4	No changes.
$\begin{aligned} & \text { 17HP4 } \\ & \text { 17HP4A } \end{aligned}$	17KP4	No changes.
	17RP4	No changes.
17JP4	17AP4	No changes.
	178P4	Install $500-\mu \mu \mathrm{f}, 20-\mathrm{kv}$ capacitor from anode to chassis.
	$\begin{aligned} & \text { 17BP4A } \\ & \text { 17BP4B } \\ & \text { 17BP4C } \end{aligned}$	No changes.
	17KP4	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
17KP4	$\begin{aligned} & \text { 17HP4 } \\ & \text { 17HP4A } \end{aligned}$	Original type is self-focus. Substitute is external control electrostatic focus. See No. 6 in picture tube article.
	$\begin{aligned} & \text { 17BP4 } \\ & \text { 17BP4A } \end{aligned}$	Original type is self-focus. Substitute is magnetic focus. See No. 7 in picture tube article.
17LP4	17LP4A	No changes.
$\begin{aligned} & \text { 17LP4 } \\ & \text { 17LP4A } \end{aligned}$	17SP4	No changes.
	17VP4	No changes.
17QP4	17SP4	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
	17UP4	No changes.
17RP4	$\begin{aligned} & \text { 17HP4 } \\ & \text { 17HP4A } \end{aligned}$	No changes.
	17KP4	No changes.
17SP4	$\begin{aligned} & \text { 17LP4 } \\ & \text { 17LP4A } \end{aligned}$	Substitute is external control electrostatic. See No. 6 in picture tube article.
17UP4	17QP4	No changes.
17UP4	17SP4	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
17VP4	$\begin{aligned} & \text { 17LP4 } \\ & \text { 17LP4A } \end{aligned}$	No changes.
	17SP4	No changes.


19AP4-20CP4C		SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	CHANGES NECESSARY
19AP4	19AP4A	No changes. Substitute has gray face.
	19AP4B	No changes. Substitute has gray frosted face.
	19AP4C	No changes. Substitute has gray aluminum face.
	19AP4D	No changes. Substitute has clear frosted face.
19AP4A ${ }_{\text {19AP4B }}$		
19AP4B		
19AP4C		
19AP4D		
19DP4	19DP4A	No changes. Substitute has gray face.
19DP4A	19DP4	No changes. Substitute has clear face.
$\begin{aligned} & \text { 19DP4 } \\ & \text { 19DP4A } \end{aligned}$	19FP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	19GP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to single.
19EP4	19JP4	No changes.
19FP4	$\begin{aligned} & \text { 19DP4 } \\ & \text { 19DP4A } \end{aligned}$	Connect external conductive tube coating to chassis.
	19GP4	Change ion trap to single.
19GP4	19DP4   19DP4A	Connect external conductive tube coating to chassis. Change ion trap to double.
	19FP4	Change ion trap to double.
19JP4	19EP4	No changes.
20CP4	20CP4A	No changes.
	20CP4C	No changes. Substitute has treated face.
	20DP4	No changes.
	20DP4A	Connect external conductive tube coating to chassis.
	20JP4	Connect external conductive tube coating to chassis. Substitute is self-focus electrostatic. See No. 6 in picture tube article.
20CP4A	20CP4	Connect external conductive tube coating to chassis.
	20CP4C	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	20DP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	20DP4A	No changes.
	20JP4	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
20CP4C	20 CP 4	No changes. Substitute has treated face.
	20CP4A	Connect external conductive tube coating to chassis
	20DP4	No changes.


TUBE	SUB.	CHANGES NECESSARY
20CP4C	20DP4A	Connect external conductive tube coating to chassis.
	20JP4	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
20DP4	$\begin{aligned} & 20 \mathrm{CP} 4 \\ & 20 \mathrm{CP} 4 \mathrm{C} \end{aligned}$	No changes.
	20DP4A	Connect external conductive tube coating to chassis.
	20CP4A	Connect external conductive tube coating to chassis.
	20JP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
20DP4A	$\begin{aligned} & 20 \mathrm{CP} 4 \\ & 20 \mathrm{CP} 4 \mathrm{C} \end{aligned}$	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	20DP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	20JP4	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
20FP4	20GP4	Connect external conductive tube coating to chassis.
	20JP4	No changes. Focus voltage rectifier may be removed as a safety measure.
20GP4	20FP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	20JP4	No changes. Focus voltage rectifier may be removed as a safety measure.
20HP4	20HP4B	No changes. Substitute has treated face.
$\begin{aligned} & 20 \mathrm{HP} 4 \\ & 20 \mathrm{HP} 4 \mathrm{~B} \end{aligned}$	20HP4A	Connect external conductive tube coating to chassis.
	20JP4	Connect external conductive tube coating to chassis.
	20LP4	Connect external conductive tube coating to chassis.
21EP4	$\begin{aligned} & 21 \mathrm{EP} 4 \mathrm{~A} \\ & 21 \mathrm{EP} 4 \mathrm{~B} \end{aligned}$	Connect external conductive tube coating to chassis.
	21KP4	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
	21KP4A	Connect external conductive tube coating to chassis. Substitute is self-focus electrostatic. See No. 6 in picture tube article.
21EP4A	21EP4B	No changes. Substitute is aluminized.
$\begin{aligned} & \text { 21EP4A } \\ & \text { 21EP4B } \end{aligned}$	21KP4	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
	21EP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	21KP4A	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
21FP4	21FP4A	Connect external conductive tube coating to chassis.
	21KP4	No changes.
	21KP4A	Connect external conductive tube coating to chassis.


21FP4A-27RP4		SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	CHANGES NECESSARY
21FP4A	21FP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	21KP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	21KP4A	No changes.
21 KP 4	21KP4A	Connect external conductive tube coating to chassis.
21KP4A	21KP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
21WP4	$\begin{aligned} & 20 C P 4 \\ & 20 C P 4 C \end{aligned}$	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	20CP4A	No changes.
	20DP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
	20DP4A	No changes.
	20JP4	Substitute is self-focus electrostatic. See No. 6 in picture tube article.
21ZP4	21ZP4A	Connect external conductive tube coating to chassis.
21ZP4A	21ZP4	Install $500-\mu \mu \mathrm{f}, 25-\mathrm{kv}$ capacitor from anode to chassis.
22AP4	22AP4A	No changes.
22AP4A	22AP4	No changes.
24 AP4	$\begin{aligned} & \text { 24AP4A } \\ & 24 A P 4 B \end{aligned}$	No changes.
24AP4B	$\begin{aligned} & \text { 24AP4 } \\ & \text { 24AP4A } \end{aligned}$	No changes.
27EP4	27GP4	No changes.
	27NP4	No changes.
	27RP4	No changes.
27GP4	27EP4	No changes.
	27NP4	Connect external conductive tube coating to chassis.
	27RP4	Connect external conductive tube coating to chassis.
27NP4	27EP4	No changes.
	27GP4	No changes.
	27RP4	No changes.
27RP4	27EP4	No changes.
	27GP4	No changes.
	27NP4	No changes.

## CUMULATIVE INDEX

The following index contains all the tubes listed in the RECEIVING TUBE SUBSTITUTION GUIDEBOOK, including those given in the First and Second Supplements, for which substitutions are given. Where (0) precedes the page number, the substitution information is given on the page referred to in the original RECEIVING TUBE SUBSTITUTION GUIDEBOOK; where (1) precedes the page number, the substitution information is given on the page referred to in the First Supplement; and where (2) precedes the page number, the substitution information is given on the page referred to in the Second Supplement.

RECEIVING TUBES

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
00A	(0)33	$1 \mathrm{A7}$	(0) 34	$1 \mathrm{C7}$	(0) 37
			(1) 14		
01A	(0) 33			$1 \mathrm{C8}$	(0) 37
		1 A 7	(0) 35		
0A2	(0) 33			1 C 21	(0) 37
		$1 \mathrm{AB5}$	(0) 35		
0A3	(0) 33			1 D 5	(0) 38
	(1) 13	$1 \mathrm{AC5}$	(0) 35		
				1D5GT	(2) 1
$0 \mathrm{A4}$	(0) 33	1 AD 4	(0) 35		
				1D7	(0) 38
0B2	(0) 33	1AD5	(0) 35, 36		
				1D8	(0) 38
0B3	(0) 33	1AE4	(0) 36		
			(1) 14	1E4	(0) 38
0 C 3	(0) 33				
		1AF4	(0) 36	$1 \mathrm{E5}$	(0) 38
OD3	(0) 33				
		1AF5	(0) 36	1 E 7	(0) 38
OY4	(0) 33		(1) 14		
				1E8	(0) 38
0Y4G	(0) 33	1B3	(0) 36		
			(1) 14,15	1F4	(0) 38
0Z4	$\begin{aligned} & (0) 33 \\ & \text { (1) } 13,14 \end{aligned}$		(2) 1		(1) 15
		1B4	(0) 36	$1 F 5$	(0) 38
0Z4A	(0) 33				(1) 15
		$1 \mathrm{B5}$	(0) 36		
1A3	(0) 33			1F6	(0) 38
		187	(0) 36,37		
1A4	(0) 33			1F7	(0) 39
	(1) 14	1B8	(0) 37		
				1G4	(0) 39
1A4	(0)34	1 C 3	(0) 37		
				1G5	(0) 39
1A5	$\text { (1) } 14$	$1 \mathrm{C5}$	(0) 37		(1) 15
			(1) 15		
				1G6	(0) 39
1A6	(0) 34	1C6	(0) 37		(1) 15

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
1H4	(0) 39   (1) 15	1N6	(0) 44,45	1W5	(0) 48
		1P5	(0) 45	1X2	(0) 48
1H5	$\begin{aligned} & \text { (0) } 39 \\ & \text { (1)15 } \end{aligned}$		(1) 18		(1) 19,20   (2) 1
		1Q5	(0) 45		
$1 \mathrm{H6}$	(0) 39		(1) 18	1X2A	(1) 20
					(2) 1
1 J 5	(0) 39	1Q6	(0) 45		
	(1) 16			1 Y 2	(1) 20
		1R4/1294	(0) 45		
1 J 6	(0) 39			1Z2	(0) 48
	(1) 16	1R5	(0) 45		(1) 20
1L4	(0) 39	154	(0) 46   (1) 18,19	2 A 3	(0) 48
	(1) 16				(1) 20
1L6	(0) 40	155	(0) 46   (1) 19	2A4G	(0) 48
	$\text { (1) } 16$				
				2 A 5	(0) 48
1LA4	(0) 40   (1) 16	156	(0) 46	$2 \mathrm{A6}$	
					(0) 48
		1SA6	(0)46		
1LA6	(0) 40, 41		(1) 19	2 A 7	(0) 48
1LB4	$\begin{aligned} & (0) 41 \\ & (1) 16 \end{aligned}$	$1 \mathrm{SB6}$	(0) 46	2B7S	(0) 49
		1 T 4	(0) 46,47   (1) 19	2B25	(0) 49
1LB6	(0)41				
				2 C 4	(0) 49
1LC5	(0) 41,42	175	(0) 47(1) 19		
				2 C 21	(0) 49
1LC6	(0)42				
		1 T 6	(0)47	2 C 22	(0) 49
1LD5	(0) 42,43				
		1U4	(0) 47   (1) 19	2 C 51	(0) 49
1LE3	(0) 43   (1) 16,17				
				2 C 52	(0) 49
		$1 \mathrm{U5}$	(0)47		
1LG5	$\begin{aligned} & \text { (0) } 43 \\ & \text { (1) } 17 \end{aligned}$			2D21	(0) 49
		1U6	(0)47		
				2E5	(0) 49
1LH4	(0) 43   (1) 17,18	1V	$\begin{aligned} & (0) 47 \\ & (1) 19 \end{aligned}$		
				2E26	(0)49
1LN5	(0) 43, 44   (1) 18	1V2	(0) 47	2E30	(0) 49
		1V5	(0) 47	2 E 31	(0) 49
1N5	(0) 44   (1) 18				
		1W4	$\begin{aligned} & (0) 48 \\ & (1) 19 \end{aligned}$	2E32	(0) 49

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
6AD6	(0) 59	6AK7	(0) 62	6AT6	(0) 64,65
6AD7	(0) 60	6AK8	(2) 3	6AU5	(0) 65
	(1) 22				(1) 23
		6AL5	(0) 62		
6AE5	(0) 60		(1) 23	6AU6	(0) 65, 143
	(1) 22				(1) 24
		6AL6	(0) 62		
6AE6	(0) 60		(1) 23	6AV5	(0)65
6AF4	(2) 1	6AL7	(0) 62	6AV6	(0) 65
					(2) 3
6AF5	(0) 60	6AM4	(2) 3		
	(1) 22			6AW7	(0) 65
		6AM5	(0) 62		
6AF6	(0) 60		(2) 3	6AX4	(1) 24
6AF7	(0) 60	6AM6	(0) 62,63	6AX5	(0) 65
6AG5	(0) 60	6AN4	(2) 3	6AX6	(0) 65, 66
	(1) 22				
	(2) 1	6AN5	(0) 63	6B4	(0) 66
6AG6G	(0) 60	6AN6	(0) 63	6B5	(0) 66
6AG7	(0) 60	6AN7	(0) 63	6B6	(0) 66
6AH4	(2) 2	6AQ5	(0) 63	6B7	(0) 67
			(1) 23		
6AH5	(0) 61		(2) 3	6B8	(0) 67
6AH6	(0) 61, 143	6AQ6	(0) 63	6BA5	(0) 67
	(2) 2		(1) 23		
				6BA6	(0) 67
$6 \mathrm{AH7}$	(0) 61	6AQ7	(0) 63		(1) 24
					(2) 3
6AJ4	(2) 2	6AR5	(0) 64		
				6BA7	(0) 67
6AJ5	(0) 61	6AR6	(0) 64		
	(2) 2		(1) 23	6BC5	(0) 67
					(1) 24
6AJ7	(0) 62	6AR7	(0) 64		(2) 3
6AJ8	(2) 2	6AS5	$\text { (0) } 64$ $\text { (2) } 3$	$6 \mathrm{BC7}$	(0) 68
6AK5	(0) 62			6BD5	(0) 68
	(1) 22	6AS6	(0) 64		
	(2) 2			6BD6	(0) 68
		6AS7G	(0) 64		
6AK6	(0) 62   (2) 3			6BD7	(0) 68

SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
6BE6	(0) 68	6BY5	$\begin{aligned} & \text { (0) } 69 \\ & \text { (2) } 4 \end{aligned}$	6E5	(0) 73
6BF5	(0) 68			6E6	(0) 73
6BF6	(0) 68	6BY7	(2) 5		(1) 25
6BF7	(0) 68	6BZ7	(2) 5	6E7	(0) 73
		$6 \mathrm{C4}$	(0)69, 70		
6BG6	(0) 68		(2) 5	6E8	(0) 73
	(1) 24	6C5	(0) 70		(0) 73
6BG7	(0) 68		(1) 24   (2) 5	6F4	
6BH6	(0) 68			6F5	(0) 73, 74
	(1) 24	6C6	(0) 70, 71, 143		
				6 F 6	(0) 74,143
6BJ6	(0) 68,69   (2) 3	$6 \mathrm{C7}$	(0) 71		(1) 25
		6C8		6F7	(0) 74
6BK5	(2) 4	6CB6	(0) 72		(1) 25
6BK6	(0) 69		(1) 25	6F8	(0) 74
6BK7	(2) 4		(2) 5		(1) 25
		6CD6	$\begin{aligned} & (0) 72 \\ & (1) 25 \end{aligned}$	6G5	(0) 75
6BL7	(1) 24   (2) 4		(1) 25		
		6CF6	(2) 6	6G6	(0) 75
6BM5	(2) 4	6CG6	$\text { (1) } 25$	6H4	
6BN6	(0) 69		(2) 5,6		(0) 75
		6CH6		6H5	(0) 75
6BQ6	$\begin{aligned} & (0) 69 \\ & \text { (2) } 4 \end{aligned}$			$6 \mathrm{H6}$	(0) 75
		6CK6	(2) 6		
		6CL6	(2) 6,7	6H8	(0) 75
6BQ7	(1) 24	6CS6 (2) 7			
	(2) 4			6 J 4	(0) 75, 76
6BT6	$\begin{aligned} & \text { (0) } 69 \\ & \text { (2) } 4 \end{aligned}$	6CU6	(2) 7	$6 \mathrm{J5}$	(0) 76
					(1) 25
		6D4	(0) 72		(2) 7
6BU6	(0) 69				
6BW6	(2) 4	6D6	(0) 72	636	$\begin{aligned} & \text { (0) } 76 \\ & \text { (1) } 26 \end{aligned}$
		6D7	(0) 72		
6BX6	(2) 4			6.7	(0) 76, 77, 143
		6D8	(0) 72		
$6 \mathrm{BX7}$	(2) 4			6 J 8	$\begin{aligned} & (0) 77,78 \\ & (1) 26 \end{aligned}$

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	Page	TUBE	PAGE	TUBE	PAGE
6K4	(0) 78	6Q6	(0) 82	6SK7	$\text { (0) } 87,88$ $\text { (1) } 29$
6K5	(0) 78	6Q7	$\text { (0) } 82,83$ $\text { (1) } 27$	6SL7	(0) 88
6K6	(0) 78, 79				(1) 29
	(1) 26	6R4	(0) 83	6SN7	(0) 88, 89
			(2) 8		(1) 29
$6 \mathrm{K7}$	(0) 79, 80	6R6	(0) 83		(2) 8
6K8	(0) 80			6SQ7	(0)89, 90
	(1) 26	6R7	(0) 83		(1) 29
6L4	(0) 80		(1) 27	6SR7	(0) 90
		6R8	(0) 83		(1) 30
6L5	(0) 80		(1) 27		
	(1) 26			6SS7	(0) 90
		6S4	(1) 27		
6L6	(0) 80, 81			6ST7	(0) 91
	(1) 26,27	$6 \mathrm{S6}$	(0) 84	6SU7	(0) 91
6L7	(0) 81	6SA7	(0) 84		
			(1) 28	6SV7	(0) 91
6M5	(0) 81				
	(2) 7	6 65	(0)84	6SZ7	(0) 91
6M6G	(0) 81	658	(1) 27	6 T 4	(2) 8
6M7G	(0) 81	6S8GT	(2) 8	6T5	(0)91
6M8GT	(0) 81	6SB7Y	(0) 84	6T6	(0) 91
6N4			(1) 28	6 T 7	(0) 91
	(0) 81	6SC7	(0) 84,85		
6N5	(0) 81		(1) 28	6 T 8	(0) 91, 143
		6SD7			(1) 30
6N6	(0) 81		(0) 85		(2) 8
6N7	(0)81, 82	6SE7	(0) 85	6U3	(2) 8
6N8	(0) 82	6SF5	(0) 85, 86	6U4	(0) 91
					(1) 30
6P5	(0) 82(1) 27	6SF7	(0) 86		
				6U5/6G5	(0) 91
		6SG7	$\text { (1) } 28$		(1) 30
6P7	(0) 82(1) 27				
				$6 \mathrm{U6}$	(0) 91, 92
		6SH7	$\begin{aligned} & \text { (0) } 86 \\ & \text { (1) } 29 \end{aligned}$		(1) 30
6P8G	(0) 82				
				$6 \mathrm{U7}$	(0) 92
6Q4	(2) 8	6SJ7	$\text { (0) } 86,87$$\text { (1) } 29$	$6 \mathrm{U8}$	(1) 30
6Q5G	(0) 82				(2) 8

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
6V3	(2) 9	7 A 4	$\begin{aligned} & \text { (0) } 97 \\ & \text { (1) } 31 \end{aligned}$	$7 \mathrm{C7}$	(0) 102, 103   (1) 33
6V4	(0) 92	7A5	(0) 97		
6V5GT	(2) 9	7A6		7D7	(0) 103
6V6	$\begin{aligned} & \text { (0) 92, } 93 \\ & \text { (1) } 30 \end{aligned}$	7A7		7E6	(0) 103
6V7	(0) 93		(0) 97,98 (1) 31,32		(1) 33
		7A8	$\begin{aligned} & \text { (0) } 98 \\ & \text { (1) } 32 \end{aligned}$	7E7	(0) 103
6V8	(0) 30, 31				
6W4	$(0) 93$ (1) 31	7AB7	(0) 98,99		(0) 104
	(1)31	7AD7	(0) 99	7F8	(1) 33
6 W 5	(0) 93	7AF7	(0) 99	7G7	(0) 104
6W6	(0) 93		(1) 32		
	$\begin{aligned} & \text { (1) } 31 \\ & \text { (2) } 9 \end{aligned}$	7AG7		7G7/1232	(0) 104
6W7	(0) 93, 94	7AH7	(0) 99	7G8	(1) 33
6x4	(0) 94	7AJ7	(0) 99	$7 \mathrm{H7}$	(0) 104
				$7 \mathrm{J7}$	(0) 104
6X5	(0) 94,95	7AK7	(0) 99		(1) 33
6X6G	(0) 95	7B4	$\begin{aligned} & \text { (0) } 100 \\ & \text { (1) } 32 \end{aligned}$	7K7	(0) 105
6X8	(1)31			7L7	(0) 105
	(2) 9	7B5	$\begin{aligned} & \text { (0) } 100 \\ & \text { (1) } 32 \end{aligned}$		
6Y3G	(0) 95	7B6		7N7	(0) 105   (1) 33,34
6 Y 5	(0) 95		(1) 32	7Q7	$\begin{aligned} & \text { (0) } 105 \\ & \text { (1) } 34 \end{aligned}$
6 Y 6	(0) 95	7B7	$\begin{aligned} & \text { (0) 100, } 101 \\ & \text { (1) } 32 \end{aligned}$		$\begin{aligned} & \text { (0) } 105 \\ & \text { (1) } 34 \end{aligned}$
6 Y 7	(0) 96	7B8		7R7	
6Y7G	(0) 144		(0) 101 (1) 32	7S7	$\begin{aligned} & (0) 105 \\ & (1) 34 \end{aligned}$
6Z3	(0) 96	$7 \mathrm{C4}$	(0) 101	$7 \mathrm{T7}$	(0) 105, 106
6Z4	(0) 96	$7 \mathrm{C5}$	$\begin{aligned} & \text { (0) } 102 \\ & \text { (1) } 32 \end{aligned}$		
$6 \mathrm{Z5}$	(0) 96	7C6	$\begin{aligned} & \text { (0) } 102 \\ & \text { (1) } 33 \end{aligned}$	7V7	(0) 106
$6 Z 7$ $6 \mathbf{Z Y 5}$	$(0) 96$ (0)96			7X6	(0) 106

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
$7 \times 7$	(0) 106	12AX4	(1) 36	12H6	(0) 110
7 Y 4	(0) 106	12AX7	(0) 108	12 J 5	(0) 110
	(1) 34		(1) 36	12J7	(0) 110
7Z4	(0) 106	$12 \mathrm{AY7}$	(0) 108, 109		
	(1) 34		(1) 36	12K7	$\begin{aligned} & \text { (0) } 110,111 \\ & \text { (1) } 36 \end{aligned}$
10	(0) 106	12AZ7	(1) 36		
				12 K 8	(0) 111
10Y	(0) 106	12B4	(2) 9		(1) 36
12A	(0) 106	12B6M	(0) 109	12L8	(0) 111
12A4	(2) 9	12B7	(0) 109	12Q7	(0) 111
					(1) 36
12A5	(0) 107	12B8GT	(0) 109		
				$12 \mathrm{S8}$	(2) 9
12A6	(0) 107	12BA6	(0) 109		
	(1) 34		(1) 36	12SA7	(0)111, 112   (1) 36
12A8	(0) 107	12BA7	(0) 109		
	(1) 35			12 SC 7	(0) 112
		12BD6	(0) 109		(1) 36
12AH7	$\text { (1) } 35$				
		12BE6	(0) 109	12SF5	(0) 113
					(1) 36
12AH8	(2) 9	12BF6	(0) 109		
				12SF7	(0) 113
12AK7	(2) 9	12 BH 7	(0) 109		
			(1) 36	12SG7	(0) 113
12AL5	(0) 107				(1) 37
		12BK6	(0) 109		
12 AT 6	(0) 108			12SH7	(0) 113
	(1) 35	12BN6	(1) 36		(1) 37
	(2) 9				
		12BT6	(0) 109	12SJ7	(0) 113
12AT7	(0) 108, 143   (1) 35	12BU6			(1) 37
			(0) 110		
				12SK7	(0) 113, 114
12AU6	(0) 108	$12 \mathrm{BY7}$	(2) 9		(1) 37
					(2) 10
$12 \mathrm{AU7}$	(0) 108	12BZ7	(2) 9		
	(1) 35			12SL7	(0) 114
		12 C 8	(0) 110		(1) 37
12AV6	(0) 108				
		12 E 5	(0) 110	12SN7	(0) 114
12AV7	(0) 108				(1)37
	(1) 35	12 F 5	(0) 110		
12AW6	(0) 108   (1) 35			12SQ7	(0) 114,115   (1) 37
		12G7G	(0) 110		(1) 37 (2) 10

SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
12SR7	(0) 115   (1) 38	14F7	(0) 117   (1) 39	19X3	(2) 10
				19 Y 3	(2) 10
12SS7	(2) 10	14F8	(0) 117		
			(1) 39	20	(0) 118
12SW7	$\begin{aligned} & \text { (0) } 115 \\ & \text { (1) } 38 \end{aligned}$	14H7	(0) 117	2058	(0) 118
		$14 \mathrm{J7}$	(0) 117	21.7	(0) 118
12SX7	(0) 115		(1) 39		
				22	(0) 118
12SY7	(0) 115	14N7	(0) 117		
	(1) 38		$\text { (1) 39, } 40$	24A	(0) 118
	(2) 10	14Q7	(0) 117	25A6	(0) 118, 119
12V6			(1) 40		
				25A7	(0) 119
12X4	(2) 10	14R7	(0) 117		
				$25 \mathrm{AC5}$	(0) 119
12Z3	(0) 115	14S7	(0) 117		
	(1) 38			25AV5	(0) 119
		14V7	(0) 117		
$12 \mathrm{Z5}$	(0) 115			25B5	(0) 119
		14W7	(0) 117		
14A4	(0) 115			25B6	(0) 119
		14X7	(2) 10		
14 A 5	(0) 116			25B8GT	(0) 119
		14 Y 4	(0) 117		
14 A7	(1) 38			25BK5	(2) 11
		15	(0) 117, 118		
14A7/12B7	(0) 116			25BQ6	(0) 119
		17	(0) 118		
14AF7	(1) 38			25 C 6	(0) 119
		18	(0) 118		
14AF7/XXD (0) 116				25D8GT	(0) 120
		19	(0) 118		
14B6	(0) 116			25L6	(0) 120   (2) 11
	(1) 38	19AQ5	(2) 10		
$14 \mathrm{B8}$	(0) 116	19BG6	(0) 118	25N6	$\begin{aligned} & (0) 120 \\ & (1) 40 \end{aligned}$
14 C 5	(0) 116	$19 \mathrm{C8}$	(0) 118   (1) 40		
				25S	(0) 120
$14 \mathrm{C7}$	(0) 116   (1) 39	19 J 6			
			(2) 10	25W4	(0) 120
14 E 6	(0) 116   (1) 39	19 T 8	$\begin{aligned} & (0) 118 \\ & (1) 40 \end{aligned}$	25X6	(0) 120
				25Y4	(0) 120
14E7	(0) 116, 117	19V8	(1) 40		
				$25 Y 5$	(0) 120


TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
25Z3	(0) 120	35A5	(0) 122, 123	45Z5	(0) 128
					(1) 42
25Z4	(0) 120	$35 B 5$	(0) 123		
				46	(0) 128
25Z5	(0) 120, 121	35 C 5	(0) 123		
				47	(0) 128
25Z6	(0) 121	35L6	(0) 124		
			(1) 41	48	(0) 129
26	(0) 121				
		35W4	(0) 124	49	(0) 129
26A6	(0) 121				
	(2) 11	35 Y 4	$\begin{aligned} & \text { (0) } 124,125 \\ & \text { (1) } 41 \end{aligned}$	50	(0) 129
26A7	$\begin{aligned} & (0) 121 \\ & (2) 11 \end{aligned}$			50A5	(0) 129
		35Z3	(0) 125		(1) 42
			(1) 41		
26BK6	(0) 121			50AX6	(0) 129
		35Z4	(0) 125		
$26 \mathrm{C6}$	(0) 121		(1) 41	50AX6G	(2) 12
26CG6	(2) 11	35Z5	$\text { (1) } 41,42$	50B5	(0) 129
26D6	(0) 121				(1) 42
	(2) 11	$35 \mathrm{Z6}$	(0) 126	50C5	(0) 129
					(1) 42
26Z5W	(1)40	35/51	(0) 126		
			(1) 41	50C6	$\text { (0) } 129$
27	(0) 121				$\text { (1) } 42,43$
28D7		36	(0) 126		
				50L6	(0) 129
	(2) 12	37	(0) 126		(1) 43
28D7W	(0) 122	38	(0) 126	50X6	(0) 130
28Z5	(0) 122	39/44	(0) 126	$50 Y 6$	(0) 130
	(2) 12				(1) 43
		40	(0) 126		
30	(0) 122			$50 Y 7$	(0) 130
		40Z5	(1) 42		
31	(0) 122			50Z6	(0) 130
32	(0) 122	41	(0) 127		
32	(0)122	42	(0) 127, 128	$50 Z 7$	(0) 130
32L7	(0) 122			EF50	(0) 130
		43	(0) 128		
33	(0) 122			52	(0) 130
	(1) 40	45	(0) 128		
			(1)42	VT52	(0) 130
34	(0) 122				
	(1)41	45Z3	(0) 128	53	(0) 130
				55	(0) 130


TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
55S	(0) 130	84/6Z4	(0) 135	958A	(0) 138
			(1) 43		
56	(0) 131			959	(0) 138
		85	(0) 135, 136		
56AS	(0) 131			FM1000	(0) 138
		85AS	(0) 136		
56S	(0) 131			1005/CK1005	(0) 138
		89	(0) 136		
57	(0) 131		(1) 43	CK1013	(0) 138
	(1) 43				
		99V	(0) 136	1201	(0) 138
57AS	(0) 131				
		$\mathbf{X 9 9}$	(0) 136	1203	(0) 138
57S	(0) 131				
		117L7	(0) 136	1204	(0) 138
58	(0) 131				
	(1) 43	117L7/M7	(0) 136	1206	(0) 138
58AS	(0) 131	117M7	(0) 136	1221	(0) 138
58S	(0) 131	117N7	(0) 136,137   (1) 43	1223	(0) 138
59	(0) 131			1229	(0) 138
		117 P 7	(0) 137		
70A7	(0) 131			1230	(0) 138
		117Z3	(0) 137		
70L7	(0) 131, 132			1231	(0) 138
		117 Z 4	(0) 137		
71A	(0) 132			1232	(0) 138
	(1) 43	117 Z 6	(0) 137		
				1247	(0) 138
75	(0) 132	182B/482B	(0) 137		
				1265	(0) 138
76	(0) 132, 133	183/483	(0) 137		
				1266	(0) 138
77	(0) 133	210 T	(0) 137		
				1267	(0) 138
78	(0) 133, 134	485	(0) 137		
				1273	(0) 138
79	(0) 134, 144	807	(1)43, 44		
				1274	(0) 138, 139
80	(0) 134	864	(0) 137		
				1275	(0) 139
81	(0) 134	950	(0) 137		
				1276	(0) 139
82	(0) 134	954	(0) 137		
				1280	(0) 139
83	(0) 134	955	(0) 138		
				1284	(0) 139
83V	(0) 135	956	(0) 138		
		957	(0) 138	1291	(0) 139


TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
1293	(0) 139	5643	(0) 140	5744	(0) 141
1294	(0) 139	5646	(0) 140	5783	(0) 141
1299	(0) 139	5647	(0) 140	5784	(0) 141
1603	(0) 144	5654	(0) 140	5785	(0) 141
1611	(0) 144	5670	(0) 140	5787	(0) 141
1612	(0) 139		(2) 12	5812	(0) 141
1614	(0) 139	5672	(0) 140	5823	(0) 141
	(1)44	5676	(0) 140	5824	(0) 141
1619	(0) 139	5677	(0) 140		
1620	(0) 139	5678	(0) 140	5840	(0) 141
1626	(0) 139	5679	(0) 140	5847	(0) 141
1629	(0) 139	5686	(0) 140	5879	(0) 141
1634	(0) 139	5687	(0) 140	5881	(1) 44
1644	(0) 139	5691	(0) 140	5896	(0) 141
1654	(0) 139	5692	(0) 141	5897	(0) 141
2050	(0) 139	5693	(0) 141	5898	(0) 142
				5899	(0) 142
2051	(0) 139	5694	(0) 141		
5517	(0) 139	5697	(0) 141	5900	(0) 142
5517/CK1013	(0) 140	5702	(0) 141	5901	(0) 142
				5910	(0) 142
5590	(0)140   (2) 12	5703	(0) 141	5915	(0) 142
5591	(0) 140	5704	(0) 141	5931	(0) 142
	(2) 12	5718	(0) 141		
5608-A	(0) 140	5719	(0) 141	5932	(0) 142
5618	(0) 140	5722	(0) 141	7000	(0) 144
5635	(0) 140	5725	(0) 141	7700	(0) 144
5636	(0) 140	5726	(0) 141	9001	(0) 142
5642	(1) 44	5731	(0) 141	9002	(0) 142


TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
9003	$(0) 142$	9006	$(0) 142$	XXD	$(1) 44$
9004	$(0) 142$	KT66	$(1) 43$	XXFM	$(0) 142$
9005	$(0) 142$	X6030	$(0) 142$	XXL	$(0) 142$

## PICTURE TUBES

7HP4	(2) 15	12JP4	(2) 16	14BP4A	(2) 18
7NP4	(2) 15	$12 \mathrm{KP4}$	(2) 16	14CP4	(2) 18
7QP4	(2) 15	12KP4A	(2) 16	14DP4	(2) 18
7WP4	(2) 15	12LP4	(2) 16	14EP4	(2) 18
8AP4	(2) 15	12LP4A	(2) 16	14FP4	(2) 18
8AP4A	(2) 15	12QP4	(2) 16, 17	15AP4	(2) 18
10BP4	(2) 15	12QP4A	(2) 16, 17	15CP4	(2) 18
10BP4A	(2) 15	12RP4	(2) 17	15DP4	(2) 19
10CP4	(2) 15	12 TP 4	(2) 17	16AP4	(2) 19
10EP4	(2) 15	12UP4	(2) 17	16AP4A	(2) 19
10FP4	(2) 15	12UP4A	(2) 17	16CP4	(2) 19
10FP4A	(2) 15	12UP4B	(2) 17	16DP4	(2) 19
10MP4	(2) 15	12VP4	(2) 17	16DP4A	(2) 19
10MP4A	(2) 15	14BP4	(2) 18	16EP4	(2) 19

SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
16EP4A	(2) 19	17AP4	(2) 22	19DP4A	(2) 24
16EP4B	(2) 19	17BP4	(2) 22	19EP4	(2) 24
16FP4	(2) 19	17BP4A	(2) 22	19FP4	(2) 24
16GP4	(2) 19	17BP4B	(2) 22	19GP4	(2) 24
16HP4	(2) 19	17BP4C	(2) 22	19JP4	(2) 24
16HP4A	(2) 19	17CP4	(2) 22	20CP4	(2) 24
16JP4	(2) 19,20	17CP4A	(2) 22	20CP4A	(2) 24
16JP4A	(2) 19,20	17FP4	(2) 23	20CP4C	(2) 24,25
16KP4	(2) 20	17FP4A	(2) 23	20DP4	(2) 25
16KP4A	(2) 20	17HP4	(2) 23	20DP4A	(2) 25
16LP4	(2) 20	17HP4A	(2) 23	20FP4	(2) 25
16LP4A	(2) 20	17JP4	(2) 23	20GP4	(2) 25
16MP4	(2) 20	17KP4	(2) 23	20HP4	(2) 25
16MP4A	(2) 20	17LP4	(2) 23	20HP4B	(2) 25
16QP4	(2) 20	17LP4A	(2) 23	21EP4	(2) 25
16RP4	(2) 20	17QP4	(2) 23	21EP4A	(2) 25
16 SP 4	(2) 21	17RP4	(2) 23	21EP4B	(2) 25
16SP4A	(2) 21	17SP4	(2) 23	21FP4	(2) 25
$16 T P 4$	(2) 21	17UP4	(2) 23	21FPP4	(2) 26
16UP4	(2) 21	17VP4	(2) 23	21KP4	(2) 26
16VP4	(2) 21	19AP4	(2) 24	21KP4A	(2) 26
16WP4	(2) 21	19AP4A	(2) 24	21WP4	(2) 26
16WP4A	(2) 21	19AP4B	(2) 24	21ZP4	(2) 26
16XP4	(2) 22	19AP4C	(2) 24	21ZP4A	(2) 26
16YP4	(2) 22	19AP4D	(2) 24	22AP4	(2) 26
16ZP4	(2) 22	19DP4	(2) 24	22AP4A	(2) 26

## SUPPLEMENT—RECEIVING TUBE SUBSTITUTION GUIDE



# THIRD SUPPLEMENT <br> RECEIVING TUBE SUBSTITUTION G U I D E B O O K 

BY

H. A. MIDDLETON

JOHN F. RIDER PUBLISHERE INC. 116 WEST14th ST., NEW YORK11, N.Y.

JOHN F. RIDER PUBLISHER, INC.

All rights reserved. This book or any parts thereof may not be reproduced in any form or in any language without permission of the publisher.

## Library of Congress Catalog Card Number 51-1704

Printed in the United States of America

## FOREWORD

This Third Supplement to the Receiving Tube Substitution Guidebook, in addition to the original volume and the First and Second Supplements to it, is an accumulation of over 15 years of experience in substituting tubes in radio and television receivers and other electronic equipment. It is a never-ending process which we shall continue in an effort to keep this information as current as possible.

Most of these additional substitutions are for use in television receivers and therefore, because of their critical application in some cases, special consideration should be given your selection when you have a choice of substitutes. A stage-by-stage discussion of the most popular circuits used in television receivers is included in the First Supplement. If there is any question as to whether or not the stage being substituted is a critical one and which characteristics of the substitute should be given special consideration, take a moment to read the article covering the stage in question.

The information herein, in the large part, calls for substitutions only. It is not the object of these instructions to tell you how to improve radios, television receivers and other electronic equipment but rather to help you use the tubes you have, in order to replace those that are not available. Exceptions to the above statements are tubes especially designed as replacements of types where improvement is needed generally or for specific use such as 5881 for 6L6, 5 AW4 for 5U4G, 6CU6 for 6BQ6GT, and the same type numbers in ruggedized tubes designated by an additional ending letter, as 6SNTWGT. Types such as these are designed to improve the life of the tube, the efficiency
of the circuit in which they are applied, or both. Characteristics are generally identical to the type they replace. Elements are heavier duty or especially treated in order to withstand greater overloads and construction is more rugged.

Introduced in this Third Supplement is a EuropeanAmerican and American-European tube substitution guide. Due to the recent heavy influx of British and other European electronic equipment, the demand for a substitution guide for these tubes has been increasing steadily. This is due to the fact that in many instances European tubes are not readily available.

Also included in this supplement is a cumulative index indicating the volume and page where the tube you wish to substitute is located.

We have endeavored to list all the practical substitutions. Some, no doubt, have been omitted. When considering substitution, others not listed will likely come to mind. When this happens, write the tube number down immediately in the form used here and attach it in its proper place.

This supplement includes picture tube substitutions. It is recommended that before substitution of picture tube is attempted, a few moments be taken to read over the short article which precedes the picture tube section.

Phoenix, Arizona
June 1957
H. A. Middleton

## TABLE OF CONTENTS

PAGE
SECTION 1 - RECEIVING TUBE SUBSTITUTIONS ..... 1
SECTION 2 - PICTURE TUBE SUBSTITUTIONS -
Substituting Picture Tubes in TV Receivers ..... 32
Picture Tube Substitutions ..... 34
SECTION 3 - EUROPEAN AND AMERICAN SUBSTITUTIONS -
European-American Substitutions ..... 38
American-European Substitutions ..... 44
CUMULATIVE INDICES -
Receiving Tubes ..... 51
Picture Tubes ..... 64
European Tubes ..... 66

## RECEIVING TUBE SUBSTITUTIONS

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
OB3	1266	E	No changes.
1AB6	1AC6	E	Parallel circuits only. No changes.
1AC5	1AG4	G	Change miniature socket to subminiature socket and rewire as follows:   Change pin No. 4 on miniature to F-pin on subminiature.   No. 2   to G1   to G2   No. 7   to P   No. 5   to $\mathrm{F}+$
1AC6	$1 \mathrm{AB6}$	E	No changes.
1AE5			No practical substitute.
1 AF 4	$1 \mathrm{AJ4}$	G	No changes.
1AF6			No practical substitute.
1AG4	1AC5	G	Reverse 1AC5 to 1AG4 procedure.
1AG5	1AJ5	G	No changes.
	1 AK5	G	No changes.
1AH4	1AK4	E	No changes.
1AH5			No practical substitute.
1 AH6			No practical substitute.
1AJ4	1AF4	G	No changes.
1AJ5	1AG5	G	No changes.
	1 AK5	G	No changes.
1AK4	1AH4	E	No changes.
1AK5	1AG5	G	No changes.
	1AJ5	G	No changes.
1AX2	1B3	E	Change sock et to octal and rewire as follows:
	1X2	E	No changes. Sus
1B3	2B3	P	No changes.
1 C 3	1 E 4	G	Change socket to octal and rewire as follows:   No. 1 on miniature   to No. 2 on octal $\begin{array}{ll} \text { to } & 3 \\ \text { to } & 5 \\ \text { to } & 7 \end{array}$
	1LE3	G	Change socket to octal and rewire as follows:






4BQ7-4CX7

TUBE	SUB.
4BQ7	4 BC 8
	4BK7
	4BS8
	4BZ7
	4BZ8
	$4 \mathrm{CX7}$
4BS8	4BC8
	4BK7
	4BQ7
	4BZ8
	$4 \mathrm{CX7}$

4BU8

$4 \mathrm{BX8}$	$4 \mathrm{BC8}$
	4 BK 7
	$4 \mathrm{BQ7}$
	$4 \mathrm{BS8}$
	$4 \mathrm{BZ8}$
	$4 \mathrm{CX7}$

$4 \mathrm{BZ7} \quad 4 \mathrm{BC} 8$
4BK 7
4BQ7
4BS8
4BZ8 4CX7

4BC8 4BK7 4BQ7 4BS8 4 CX 7 4BC5 4BC8
UB.

THIRD SUPPLEMENT - RECEIVING TUBE SUBSTITUTION GUIDE

PERF.
CIRCUIT CHANGES NECESSARY
$\begin{array}{ll}\mathrm{G} & \text { No changes. } \\ \mathrm{G} & \text { No changes. }\end{array}$ together internally.

G No changes.
No changes.
No changes.
No changes.
No changes. Pins No. 8 and No. 9 are connected together internally.

No practical substitute.
G No changes.
G No changes.
No changes.
No changes.
No changes.
No changes. Pins No. 8 and No. 9 are connected together internally.

G No changes.
G No changes. Remove and tape any wires anchored on pin No. 9.
G No changes.
G No changes.
No changes.
No changes.
No changes. Remove and tape any wires anchored on pin No. 9.
G No changes.
G Rewire as follows:


G Rewire as follows:


Tie pins No. 8 and No. 9 together.


G Rewire as follows:
Tie pins No. 8 and No. 9 together.


G Rewire as follows:


Tie pins No. 8 and No. 9 together.


G Rewire as follows:


Tie pins No. 8 and No. 9 together.



TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY	
5AX4	5AS4	E	No changes.	
	5AW4	E	No changes. If transformer will stand 1.2 amperes more.	
	5 T 4	G	No changes.	
	5U4G	G	No changes.	
	5 U 4GA	E	No changes.	
	5 U 4 GB	E	No changes.	
	5X3	E	No changes. If transformer will stand 1.3 amperes more.	
	5 V 4	E	No changes.	
	5931	E	No changes.	
5AZ4	$5 \mathrm{AX4}$	E	No changes.	
	5V4	E	No changes.	
	5 Y 3	E	No changes.	
	5 Y 4	G	Rewire as follows:   Change pin No. 2 to pin No. 7	
	5Z4	E	No changes.	
5B8			No practical substitute.	
5BE8			No practical substitute.	
5BK7	$\begin{aligned} & \text { 5BQ7 } \\ & \text { 5BZ7 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes. No changes.	
5BR8			No practical substitute.	
5BT8			No practical substitute.	
5CG8			No practical substitute.	
5CL8			No practical substitute.	
5CM8			No practical substitute.	
$5 \mathrm{J6}$			No practical substitute.	
5 T 4	5AS4	E	No changes.	
	5AW4	E	No changes.	
	5R4	E	No changes.	
	5U4	E	No changes.	
	5U4GA	E	No changes.	
	5U4GB	E	No changes.	
	5V4	E	No changes.	
	5931	E	No changes.	
5T8			No practical substitute.	
5U4G	5AS4	E	No changes.	
	5AW4	E	No changes.	
	5U4GA	E	No changes.	
	5U4GB	E	No changes.	
	5 V 3	E	No changes.	
	5931	E	No changes.	
5U4GA	5AS4	E	No changes.	
	5AU4	E	No changes. If transformer will stand 1.5 amperes more.	
	5 AW4	E	No changes.	
	5R4GY	E	No changes.	
	5T4	E	No changes.	
	5U4G	E	No changes.	
	5 U 4 GB	E	No changes.	
	5 V 3	E	No changes.	
	5931	E	No changes.	





6BA8-6BH5	
TUBE	SUB.
$6 B A 8$	$6 A U 8$
	$6 A W 8$
	$6 B H 8$
$6 B C 4$	$6 A J 4$


6BC5	3BC5
6BC8	4BC8
	5BC8
	6BK7
	6BQ7
	6BS8
	6BZ7
	6BZ8
	X155
6BD4A	6BK4
6BD6	$6 \mathrm{DA6}$
	5749
6BE6	3BE6
	6BY6
	5750

6BE7
6BE8

6BG6
6BH5

THIRD SUPPLEMENT - RECEIVING TUBE SUBSTITUTION GUIDE

## PERF. <br> CIRCUIT CHANGES NECESSARY

G No changes.
G No changes.
G Rewire as follows:
Rewire as follows: Change pin No. 1 to pin No. 5


E
Parallel circuits oniy. Install 5-ohm 5-watt resistor in series with filament.

E Parallel circuits only. Install 3.5-ohm 5-watt resistor in series with filament.
Parallel circuits only. Install $1.5-0 h m 5$-watt resistor in series with filament.
G No changes.
No changes.
No changes.
No changes.
No changes.
No changes.
E No changes.
G Reverse 6DA6 to 6BD6 procedure.
G No changes.
E Parallel circuits only. Install 5-ohm 5-watt resistor in series with filament.
G No changes.
E No changes.
No practical substitute.
E Parallel circuits only. Install 1.5-ohm 5-watt resistor in series with filament.
Rewire as follows:
Change pin No.


G No changes.
G Change socket to miniature and rewire as follows:
Change pin No. 1


1
2
3
4
5
6
3
2
3
4
5
6
6
3
to pin No. 6 on miniature. to 1
6 on miniature.
1
2
3
4
5

6BJ6 (Cont.)

G Change socket to miniature and rewire as follows:
Change pin No. 1 to pin No. 6 on miniature.


2
3
4
5
6
3

to	1	
to	7	(1) (1)
to	3	(2) (0)
to	4	(1) (2)
to	5	sus



$6 J 7$

6W7 7
7 C 7

5BR8

6AL6

6BR7

6C6
(Cont.)

G Parallel circuits only. Change socket to octal and rewire as follows:

Change pin No. 2 to grid cap on octal
2
3
4
5
7
8
9

to	No.
to	
to	2
to	7
to	3
to	4
to	5



G Same as $6 B R 7$ to $6 J 7$ procedure.
G Change socket to octal and rewire as follows:

Change pin No. 2

to pin No.	6 on octal
to	7
to	1
to	8
to	2
to	3
to	4


3
4
4
7
7
8
9

E Parallel circuits filament.

G Change socket to octal and rewire as follows:
Change pin No. 1 to pin No. 5 on octal

	Change pin No. 1		5	
(1) ${ }^{(1)}$	3	to	8	(0)(5)
(1) 8	4	to	2	(2) ${ }^{(3)}$
(1) (0)	5	to	7	(1) (0)
OR16	7	to	ca	sua

E Rewire as follows:
Change grid cap on 6BS7 to pin No. 2.
G Change sock et to six pin.
Change pin No. 3 to pin No. 5


| TUBE | SUB. | PERF |
| :--- | :--- | :--- | :--- | :--- |
| 6BS7 |  |  |
| (Cont.) |  |  |




12AU7 G Parallel circuits only. Rewire as follows: Reverse wires connected to No. 5 and No. 9
6CG8 5CG8

6AT8

6X8

6CH6 6132

6 CH 7
6BC8 6BK7 6BQ7 6BS8 6BZ7 6BZ8 X155

No. 1
Rewire as follows:



E No changes.
G Tie pin No. 8 and No. 9 together.
G Tie pin No. 8 and No. 9 together.
No practical substitute.



	Change pin No. ${ }_{3}$		7	
(1)0	4	to	3	
(3) 8	5	to	4	(1) (3)
(1) (1)	7 8	to	5	$\left(\begin{array}{ll}\text { (1) } & \text { (1) }\end{array}\right.$
ORIG	8	to	2	sue

6BD6
6BJ6

G Same as 6DA6 to 6BA6 procedure.
G Parallel circuits only. Change socket to miniature and rewire as follows:


TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6DB6			No practical substitute.
6DC6	6BZ6	G	No changes.
	$6 \mathrm{CB6}$	G	No changes.
	6DC6	G	No changes.
6DE6	6BZ6	G	No changes.
	6CB6	G	No changes.
	6DE6	G	No changes.
6DG6	6K6	G	Parallel circuits only. No changes.
	6V6	G	Parallel circuits only. No changes.
	6W6	E	No changes.
6DN6	6BG6	G	No changes.
	6CD6	E	No changes.
6DQ6	6BQ6	G	No changes.
	6CU6	G	No changes.
6DT6	3DT6	E	Parallel circuits only. Install 5-ohm 5-watt resistor in series with
			filament.
	4DT6	E	Parallel circuits only. Install 4.7 -ohm 5 -watt resistor in series with filament.
6F6	1621	E	No changes.
	1622	E	Parallel circuits only. No changes.
6H6	5679	G	Reverse 5679 to 6 H 6 procedure.
6 J 4	6J4WA	E	No changes.
6 J 5	2C22	G	Reverse 2C22 to 6J5 procedure.
6 J 6	5964	E	No changes.
	6101	E	No changes.
$6 \mathrm{J7}$	1221	E	Reverse 1221 to $6 J 7$ procedure.
	6059	G	Reverse 6059 to 6J7 procedure.
	7000	G	No changes.
6K6	1621	E	Parallel circuits only. No changes.
	5871	G	No changes.
6K7	5732	E	No changes.
6L6	1621	G	Parallel circuits only. No changes.
	1622	G	No changes.
	5881	E	No changes.
	5932	E	No changes.
	6550	E	No changes.
6M5	6BJ5	G	Reverse 6BJ5 to 6M5 procedure.
6N7	1635	E	Parallel circuits only. No changes.
6Q5	884	E	No changes.
6S7	5732	G	Parallel circuits only. No changes.
6SA7	5961	E	No changes.
6SB7Y	5961	G	No changes.
6SG7	6006	E	No changes.
6SH7	6006	G	No changes.
6SJ7	$\begin{aligned} & \text { 6SJ7WGT } \\ & 6006 \end{aligned}$	$\underset{\mathrm{G}}{\mathrm{E}}$	No changes. No changes.



## 8AU8-12AQ5

THIRD SUPPLEMENT - RECEIVING TUBE SUBSTITUTION GUIDE




TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY	
12D4	12AX4	G	No changes.	
12DQ6	12AV5 12BQ6 12 CU 6	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Reverse 12AV5 to 12DQ6 procedure.   No changes.   No changes.	
12 F 8			No practical substitute.	
12G4	$\begin{aligned} & 12 \mathrm{H} 4 \\ & 12 \mathrm{~J} 5 \end{aligned}$	$\underset{\mathrm{E}}{\mathrm{E}}$	Remove, connect, and tape up any wires on pin No. 2. Change socket to octal and rewire as follows:	
	14A4	E	Change socket to octal and rewire as follows:	
12G8			No practical substitute.	
12 H 4	$\begin{aligned} & 12 \mathrm{G4} 4 \\ & 12 \mathrm{~J} 5 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	No changes.   Change to octal and rewire as follows:	
	14A4	E	Same as 14A4 to 12G4 procedure.	
12 J 5	$\begin{aligned} & 12 \mathrm{G} 4 \\ & 12 \mathrm{H} 4 \end{aligned}$	$\underset{\mathrm{E}}{\mathrm{E}}$	Reverse 12G4 to 12 J 5 procedure. Reverse 12 H 4 to 12 J 5 procedure.	
12 J 8			No practical substitute.	
12K5			No practical substitute.	
12L6	$\begin{aligned} & \text { 12W6 } \\ & 1632 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	No changes. No changes.	
12R5	12W6	G		
12SL7	2 C 52	E	Parallel circuits only. No changes.	
12SN7	5814	G	Parallel circuits only. Reverse 5814 to 12SN7 procedure.	
12 U 7			No practical substitute.	
12V6	12CM6	E	Reverse 12CM6 to 12V6 procedure.	
12W6	$\begin{aligned} & 12 \mathrm{~L} 6 \\ & 12 \mathrm{R} 5 \\ & 1632 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	No changes.   Reverse 12R5 to 12 W 6 procedure. No changes.	
12 X 4	12BW4	E	Reverse 12BW4 to 12Y4 procedure.	

14A4-25C5

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
14A4	12G4	E	Reverse 12G4 to 14A4 procedure.
	12H4	E	Reverse 12 H 4 to 14A4 procedure.
$15 \mathrm{A6}$			No practical substitute.
15A8			No practical substitute.
16A5			No practical substitute.
17AV5	6AV5	E	Parallel circuits only. Install 8.7 -ohm 25 -watt resistor in series with filament.
	12AV5	E	Parallel circuits only. Install 7 -ohm 10 -watt resistor in series with filament.
	17DQ6	E	Same as 12CU6 to 12AV5 procedure.
17AX4	$6 \mathrm{AX4}$	E	Parallel circuits only. Install 18 -ohm 20-watt resistor in series with filament.
	12AX4	E	Parallel circuits only. Install 10 -ohm 20 -watt resistor in series with filament.
17C5			No practical substitute.
17CA5	6CA5	E	Parallel circuits only. Install 9 -ohm 20 -watt resistor in series with filament.
	$12 \mathrm{CA5}$	E	Parallel circuits only. Install 10 -ohm 20 -watt resistor in series with filament.
17DQ6	6DQ6	E	Parallel circuits only. Install 9 -ohm 20 -watt resistor in series with filament.
	12DQ6	E	Parallel circuits only. Install 10 -ohm 20 -watt resistor in series with filament.
	17AV5	E	Same as 12CU6 to 12AV5 procedure.
17H3			No practical substitute.
17 Z 3	17AX4	E	Where space permits change socket to octal and rewire as follows: Change pin No. 4 to pin No. 8 on octal
			$\begin{array}{ccc} 5 & \text { to } & 7 \\ 9 & \text { to } & 5 \end{array}$
18A5			No practical substitute.
19AU4	6AU4	E	Parallel circuits only. Install 7 -ohm 30 -watt resistor in series with filament.
	19X3	G	Parallel circuits only. Change socket to miniature and rewire as follows:
19X3	19AU4	G	Parallel circuits only. Reverse 19AU4 to 19X3 procedure.
19X8			No practical substitute.
21A6			No practical substitute.
25AV5	25CU6	G	Reverse 25CU6 to 25AV5 procedure.
	25DQ6	G	Reverse 25DQ6 to 25AV5 procedure.
25AX4	17AX4	E	Parallel circuits only. Install 18 -ohm 10 -watt resistor in series with filament.
	25U4	G	No changes.
	25W4	G	No changes.
25 C 5	$\begin{gathered} \text { 25CA5 } \\ \text { (Cont.) } \end{gathered}$	G	No changes.






6063	6X4	G	No changes.
6064	6 AM6	G	No changes.
6065	6BH6	G	Parallel circuits only. Rewire as follows:   Change pin No. 6 to pin No. $\begin{array}{r}7 \\ 7\end{array}$
6066	6AT6	G	No changes.
6067	$\begin{aligned} & 12 \mathrm{AUT} \\ & 5814 \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	No changes. Parallel circuits only. No changes.
6072	12AY7	G	No changes.
6080	6AS7	G	No changes.
6095	6AQ5 6AQ5W 6005	$\xrightarrow[\mathrm{G}]{\mathrm{E}}$	No changes. No changes. No changes.
6096	$\begin{aligned} & \text { 6AK5 } \\ & 5654 \end{aligned}$	$\underset{G}{E}$	No changes.   No changes.
6097	$\begin{aligned} & \text { 6AL5 } \\ & 5726 \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.   No changes.
6101	6 J 6	G	No changes.
6113	6SL 7	G	No changes.


TUBE	SUB.	PERF.	CIRCUIT CHANGES NEC	ARY	
6132	6CH6	G	No changes.		
6134	$6 \mathrm{AC7}$	G	No changes.		
6135	6 C 4	G	No changes.		
6136	6AU6	G	No changes.		
6137	6SK7	G	No changes.		
6180	$\begin{aligned} & \text { 6SN7 } \\ & 5692 \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	No changes. No changes.		
6186	6AG5	G	No changes.		
6187	6AS6   6AS6W   5725	$\begin{aligned} & \mathrm{G} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	No changes.   No changes.   No changes.		
6189	$\begin{aligned} & \text { 12AU7 } \\ & \text { 12AU7WA } \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	No changes. No changes.		
6201	$\begin{aligned} & \text { 12AT7 } \\ & 6060 \end{aligned}$	$\mathrm{G}$	No changes. No changes.		
6202	6X4	G	No changes.		
6265	6BH6	G	No changes.		
6350	12BH7	G	Rewire as follows:   Change pin No. 2	to pin No.    to    to 2   to 8    7	
6485	6AH6	G	No changes.		
6550	6L6	G	No changes.		
6661	6BH6	G	No changes.		
6662	6BJ6	G	No changes.		
6663	6 AL5	G	No changes.		
6669	6AQ5	G	No changes.		
6677	6CL6	G	No changes.		
6679	12AT7	G	No changes.		
6680	12AU7	G	No changes.		
6681	12AX7	G	No changes.		
7000	6 J 7	G	No changes.		

# SUBSTITUTING PICTURE TUBES IN TV RECEIVERS 

## 1. Connecting the External Conductive Tube Coating to Chassis

When a picture tube that does not have an external conductive coating is substituted for one that has the external coating, it is generally necessary to install a metal finger to make contact with the coating in order to connect it to the chassis. Sometimes this finger is attached to the deflection yoke support bracket. Ordinarily a tube that does not have an external coating has a 500$\mu \mu \mathbf{f}$ capacitor connected from the anode lead to the chassis inside the high-voltage cage. It is normally not necessary to remove this capacitor when substituting a tube that has the external conductive coating.

## 2. Installing a Capacitor from the Anode Lead to the Chassis

When a tube that does not have the external conductive coating is substituted for one that has the external conductive coating, it is often necessary to install a capacitor from the anode lead to the chassis. In the substitutions listed here we have repeated the same value of $500 \mu \mu \mathrm{f}$. Ordinarily this will be satisfactory. In some cases this capacitor will not be necessary. In others best satisfaction may be had with capacitances as high
as $2,000 \mu \mu \mathrm{f}$. This is according to individual cases and can be determined by trial. The most convenient location for this capacitor is inside the highvoltage cage.

## 3. Dimensions

Before attempting any of the substitutions listed here, make sure the substitute tube will fit into the available space. In the magnetic types try to choose a substitute with a neck length similar to the original. Differences in face plate curvatures may make it necessary, in some substitutions listed, to change the mask.

## 4. Change in Anode Connector

Either the ball-type or cavity-type anode connector is used on picture tubes. Instructions specify when a change is necessary.

## 5. Replacement or Deletion of Ion Trap

It is necessary to replace the ion trap with the type required by the manufacturer of the substitute tube. Some tubes do not require an ion trap and are being substituted for others requiring either a single or dual ion trap. In these cases,
the instruction is "Remove ion trap." Other tubes requiring a single ion trap can be substituted for by installing a dual ion trap and vice versa. In these cases instructions are given. Some manufacturers of picture tubes are using a new type gun requiring a single ion trap in tubes that formerly used a gun requiring a dual ion trap. It is therefore important to check the individual manufacturer's specification on the substitute tube being used.

## 6. Electrostatic and Self-Focus Tubes

When using electrostatic or self-focus tubes as substitutions for magnetically focused tubes, it is necessary to remove the focus coil from the neck of the tube and replace it with a magnetic centering device. The focus coil may be left in the receiver circuit-wise, in which case it should be mounted in the cabinet in some position where its magnetic field has no effect on the picture. It may be replaced with a choke or resistor. The picture tube socket may have to be changed when it is necessary to bring out a lead from the focus electrode on the picture tube base except in the case of self-focus or automatic focus types. This lead should be connected to a d-c voltage point in the set which gives best focus. The voltage required normally lies between 50 and 350 volts. Self-focus or automatic focus tubes have a special gun structure within the neck of the tube designed
to focus the tube automatically without the use of an external focus voltage.

## 7. Substituting Electrostatic or Automatic Focus Types with Magnetic Types

When replacing electrostatic focus types with magnetic focus types, discard the magnetic centering device and install a permanent magnet focusing device. This must be mounted on the yoke support with suitable metal brackets. It is practical to replace an electrostatic focus tube using high-focus voltage with a type using low-focus voltage or a self-focus type. When doing this, it is desirable to remove the focus voltage rectifier as a safety measure.

## 8. Differences in the Face Plate

Differences in the face plate of the tube have little effect on whether or not they may be substituted. Dark-faced tubes give better contrast than white-faced tubes. Some tubes are frosted to decrease reflections and others have an aluminized back for better contrast and brightness. Aluminized tubes in some cases have higher anode voltage applied and this voltage should be reduced in accordance with manufacturers' specifications when other than aluminized tubes are substituted. When substituting aluminized tubes for white- or gray-faced tubes, sufficient voltage is usually available for satisfactory operation.

## PICTURE TUBE SUBSTITUTIONS

TUBE	SUB.	CHANGES NECESSARY
7 CP 4	7DP4	Change anode connector to cavity type. Connect external conductive coating to chassis. Change ion trap to double.
7DP4	7 CP 4	Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis. Change anode connector to ball type. Qemove ion trap.
12 KP 4	$\begin{aligned} & \text { 12ZP4 } \\ & 12 \mathrm{ZP} 4 \mathrm{~A} \end{aligned}$	Install single ion trap. Install single ion trap.
12LP4	$\begin{aligned} & 12 \mathrm{ZP} 4 \\ & 12 \mathrm{ZP} 4 \mathrm{~A} \end{aligned}$	Install single ion trap. Install single ion trap.
12QP4	12 ZP 4 12 ZP 4 A	Change anode connector to cavity type. Connect external conductive coating to chassis.   Change anode connector to cavity type. Connect external conductive coating to chassis.
12TP4	12ZP4	Connect external conductive coating to chassis. Change ion trap to single.
122P4	12 KP 4   12 KP 4 A   12LP4	Remove ion trap.   Remove ion trap.   Only where $1-1 / 8$ inch greater length is available. Change ion trap to double.
	12LP4A	Same as for 12LP4.
	12QP4	Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis. Change annode connector to ball type.
	12QP4A	Same as for 12 QP 4.
	12 TP 4	Only where $1-1 / 8$ inch greater length is available. Connect a $500-\mu \mu \mathrm{f}$ $20-\mathrm{kv}$ capacitor from anode to chassis. Change ion trap to double.
	12ZP4A	No changes.
14 HP 4	14QP4	No changes.
14QP4	14 HP 4	No changes.
16AEP4	16 ABP 4	No changes.
17ATP4	17AVP4   17AVP4A	No changes. No changes.
17AVP4	17ATP4   17ATP4A	No changes. No changes.
17QP4	17YP4	No changes.
17YP4	$\begin{aligned} & 17 \mathrm{QP} 4 \\ & 17 \mathrm{QP} 4 \mathrm{~A} \end{aligned}$	No changes.   No changes.
20HP4	$\begin{aligned} & 20 \mathrm{HP} 4 \mathrm{D} \\ & 20 \mathrm{LP} 4 \\ & 20 \mathrm{MP} 4 \end{aligned}$	No changes.   No changes.   No changes.
20LP4	$\begin{aligned} & 20 \mathrm{HP} 4 \mathrm{~A} \\ & 20 \mathrm{HP} 4 \mathrm{D} \\ & 20 \mathrm{MP} 4 \end{aligned}$	No changes.   No changes.   No changes.
20MP4	$\begin{aligned} & 20 \mathrm{HP} 4 \mathrm{~A} \\ & 20 \mathrm{HP} 4 \mathrm{D} \\ & 20 \mathrm{LP} 4 \end{aligned}$	No changes.   No changes.   No changes.
21ACP4	$\begin{aligned} & 21 \mathrm{ACP} 4 \mathrm{~A} \\ & \text { 21AMP4 } \\ & \text { 21AMP4A } \\ & 21 \mathrm{AQP} 4 \\ & 21 \mathrm{AQP} 4 \mathrm{~A} \\ & 21 \mathrm{BSP} 4 \end{aligned}$	No changes.   No changes.   No changes.   Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis.   Same as for 21AQP4.   No changes.
21AFP4	21ASP4   (Cont.)	No changes.


TUBE	SUB.	CHANGES NECESSARY
21AFP4	21YP4	Connect external conductive coating to ground.
(Cont.)	21YP4A	Connect external conductive coating to ground.
21ALP4	21ALP4A	No changes.
	21ALP4B	No changes.
	21ANP4	Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis.
	21ANP4A	No changes.
	21ATP4	No changes.
	21ATP4A	No changes.
21AMP4	21ACP4	No changes.
	21ACP4A	No changes.
	21AMP4A	No changes.
	$21 \mathrm{AQP4}$	Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis.
	21AQP4A	No changes.
21AMP4A	$21 \mathrm{ACP4}$	No changes.
	21ACP4A	No changes.
	21AMP4	No changes.
	21AQP4	Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis.
21ANP4	$21 \mathrm{ALP4}$	Connect external conductive coating to chassis.
	21ALP4A	Connect external conductive coating to chassis.
	21ALP4B	Connect external conductive coating to chassis.
	21ATP4	Connect external conductive coating to chassis.
21AP4	21ZP4	This substitute to be used only when changing from metal to glass picture tube. Mask opening must be enlarged. Change anode connector to cavity type.
	21ZP4B	Same as 21 AP 4 to 21 ZP 4 . Connect external conductive coating to chassis.
21AQP4	$21 \mathrm{ACP4}$	Connect external conductive coating to chassis.
	21ACP4A	Connect external conductive coating to chassis.
	21 AMP4	Connect external conductive coating to chassis.
	21AMP4A	Connect external conductive coating to chassis.
	21AQP4A	No changes.
21AQP4A	$21 \mathrm{ACP4}$	Connect external conductive coating to chassis.
	21ACP4A	Connect external conductive coating to chassis.
	21AMP4	Connect external conductive coating to chassis.
	21AMP4A	Connect external conductive coating to chassis.
	21AQP4	No changes.
21ARP4	21ARP4A	No changes.
	21JP4	No changes.
	21JP4A	No changes.
21ARP4A	21ARP4	No changes.
	$21 . J P 4$	No changes.
	21JP4A	No changes.
21ASP4		Connect external conductive coating to chassis.
	$21 \mathrm{XP} 4$	Connect external conductive coating to chassis.
	21XP4A	Connect external conductive coating to chassis.
	21YP4	Connect external conductive coating to chassis.
	21YP4A	Connect external conductive coating to chassis.
21ATP4	21ALP4	No changes.
	21ALP4A	No changes.
	21ALP4B	No changes.
	21ANP4	Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis.
	21ANP4A	Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis.
	21ATP4A	No changes.
21ATP4A	21ALP4	No changes.
	21ALP4A	No changes.
	21ALP4B	No changes.
	21ANP4	Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis.
	21ANP4A	Connect a $500-\mu \mu \mathrm{f} 20-\mathrm{kv}$ capacitor from anode to chassis.
	21ATP4	No changes.


TUBE	SUB.	CHANGES NECESSARY
21AUP4	21AUP4A	No changes.
	21AUP4B	No changes.
	21AVP4	No changes.
	21AVP4A	No changes.
	21AVP4B	No changes.
21AUP4A	21 AUP4	No changes.
	21AUP4B	No changes.
	21AVP4	No changes.
	21AVP4A	No changes.
	$21 \mathrm{AVP4B}$	No changes.
21AUP4B	21AUP4	No changes.
	21AUP4A	No changes.
	21AVP4	No changes.
	21AVP4A	No changes.
	21 AVP 4 B	No changes.
21AVP4	21 AUP4	No changes.
	21AUP4A	No changes.
	21AUP4B	No changes.
	21AVP4A	No changes.
	21AVP4B	No changes.
21AVP4A	21 AUP4	No changes.
	21AUP4A	No changes.
	21AUP4B	No changes.
	21AVP4	No changes.
	21AVP4B	No changes.
21AVP4B	21AUP4	No changes.
	21AUP4A	No changes.
	21AUP4B	No changes.
	21AVP4	No changes.
	21AVP4A	No changes.
21AYP4	21ASP4	Connect a $500-\mu \mu \mathrm{f} 25-\mathrm{kv}$ capacitor from anode to chassis.
	21 XP 4	No changes.
	21XP4A	No changes.
	21 YP 4	No changes.
	21YP4A	No changes.
21BSP4	21ACPYA	No changes.
21JP4	21ARP4	No changes.
	21ARP4A	No changes.
	$21 \mathrm{JP4A}$	No changes.
21JP4A		
	21ARP4A	No changes.
	21 JP 4	No changes.
21 MP 4	21 YP 4	This substitute to be used only when changing from metal to
		glass picture tube. Mask opening must be altered. Change anode connector to cavity type.
	21YP4A	Same as 21 MP 4 to 21 YP 4 procedure.
21XP4		Connect a $500-\mu \mu f 25-\mathrm{kv}$ capacitor from anode to chassis.
	21XP4A	No changes.
	21YP4	No changes.
	21YP4A	No changes.
21XP 4A	21ASP4	Connect a $500-\mu \mu \mathrm{f} 25-\mathrm{kv}$ capacitor from anode to chassis.
	21 XP 4	No changes.
	21 YP 4	No changes.
	21YP4A	No changes.
21YP4	21YP4A	No changes.
21YP4A	21YP4	No changes.


TUBE	SUB.	CHANGES NECESSARY
24BP4		No practical substitute.
$24 \mathrm{CP4}$	24CP4A	No changes.
	24 QP 4	No changes.
	24 TP 4	No changes.
	24VP4	No changes.
	24VP4A	No changes.
	$24 \times P 4$	Connect a $500-\mu \mu \mathrm{f} 25-\mathrm{kv}$ capacitor from anode to chassis.
24DP4	24DP4A	No changes.
	24YP4	No changes.
	24ZP4	No changes.
24QP4	24 CP 4	No changes.
	24 CP 4 A	No changes.
	24 TP 4	No changes.
	24 VP 4	No changes.
	24VP4A	No changes.
	24XP4	Connect a $500-\mu \mu \mathrm{f} 25-\mathrm{kv}$ capacitor from anode to chassis.
24TP4	24 CP 4	No changes.
	24CP4A	No changes.
	24QP4	No changes.
	$24 \mathrm{VP4}$	No changes.
	24VP4A	No changes
	24XP4	Connect a $500-\mu \mu \mathrm{f} 25-\mathrm{kv}$ capacitor from anode to chassis.
24VP4	24 CP 4	No changes.
	24CP4A	No changes.
	24 TP 4	No changes.
	$24 \mathrm{VP4} 4$	No changes.
	24XP4	Connect a $500-\mu \mu \mathrm{f} 25-\mathrm{kv}$ capacitor from anode to chassis.
24VP4A		No changes.
	$24 \mathrm{CP} 4 \mathrm{~A}$	No changes.
	24TP4	No changes.
	$24 \mathrm{VP4}$	No changes.
	24XP4	Connect a $500-\mu \mu \mathbf{f} 25-\mathrm{kv}$ capacitor from anode to chassis.
24XP4	24 CP 4	Connect external conductive coating to chassis.
	24CP4A	Connect external conductive coating to chassis.
	$24 \mathrm{QP} 4$	Connect external conductive coating to chassis.
	$24 \mathrm{TP} 4$	Connect external conductive coating to chassis.
	$24 \mathrm{VP} 4$	Connect external conductive coating to chassis.
	24VP4A	Connect external conductive coating to chassis.
24YP4	24DP4	No changes.
	24DP4A	No changes.
	$24 Z \mathrm{P} 4$	No changes.
24ZP4	24DP4	No changes.
	24 YP 4	No changes.
27AP4		No practical substitute.
27MP4	27EP4	This substitute to be used only when changing from metal to glass picture tube. Mask opening may be altered. Change anode connector to cavity type.
27SP4	27UP4	No changes.
27UP4	27SP4	No changes.
30BP4		No practical substitute.

## EUROPEAN - AMERICAN TUBE SUBSTITUTION

EUROPEAN	AMERICAN	PERF.	CIRCUIT CHANGES NECESSARY
B36	12SN7	G	No changes.
B65	6SN7	G	No changes.
B152	12AT7	G	No changes.
B309	12AT7	G	No changes.
B319	7AN7	G	No changes.
B329	12AU7	E	No changes.
B719	6AQ8	G	No changes.
D63	6H6	G	No changes.
D77	6AL5	E	No changes.
D152	6AL5	G	No changes.
DA90	1 A 3	E	No changes.
DAC32	${ }_{1} 1 \mathrm{H5}$	E	No changes.
	1LH4	G	Reverse 1LH4 to DAC32 procedure.
DAF91	1LD5	G	Reverse 1LD5 to DAF91 procedure.
	1S5	E	No changes.
	1 U 5	G	Reverse 1U5 to DAF91 procedure.
DAF96	1 AH5	E	No changes.
DC70	6375	G	No changes.
DC80	1E3	E	No changes.
DCC90	3A5	E	No changes.
DD6	6AL5	E	No changes.
DD7	6AL5	G	No changes.
DF33	1 LC 5	G	Reverse 1LC5 to DF33 procedure.
	1LN5	G	Reverse 1LN5 to DF'33 procedure.
	1N5	E	
DF62	1AD4	E	No changes.
DF91	1T4	E	No changes.
DF92	1L4	G	No changes.
DF96	1AF4	G	No changes.
	1AJ4	E	No changes.
DF904	1U4	G	No changes.
DH63	6Q7	G	No changes.
DH77	6AT6	E	No changes.
DH149	7 C 6	G	No changes.
DK32	1 A 7	E	
	1LA6	G	Reverse 1LA6 to DK32 procedure.
DK91	1R5	E	No changes.
DK92	1AC6	E	No changes.


EUROPEAN	AMERICAN	PERF.	CIRCUIT CHANGES NECESSARY
DK96	1 AB6	E	No changes.
DL33	3Q5	E	No changes.
DL35	1 C 5	E	No changes.
DL36	1Q5	E	No changes.
DL91	154	G	No changes.
DL92	3S4	E	No changes.
DL93	3A4	E	No changes.
DL94	3 Y 4	E	No changes.
DL95	3Q4	E	No changes.
DL96	3C4	E	No changes.
DM70	1M3	G	No changes.
DP61	6 AK5	E	No changes.
DY30	1B3	G	No changes.
DY80	1 X 2 A	G	No changes.
EA76	6489	E	No changes.
EAA91	6AL5	G	No changes.
EABC80	$\begin{aligned} & \text { 6AK8 } \\ & \text { 6T8 } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{G} \end{aligned}$	No changes.   No changes.
EB34	6H6	E	Parallel circuits only. No changes.
EB91	6AL5	E	No changes.
EBC33	1639	G	No changes.
EBC90	6AT6	E	No changes.
EBC91	6AV6	G	No changes.
EBF80	6N8	E	No changes.
EC70	5718	G	No changes.
EC80	6Q4	E	No changes.
EC81	6R4	E	No changes.
EC90	6 C 4	E	No changes.
EC91	6AQ4	E	No changes.
EC92	$6 \mathrm{AB4}$	E	No changes.
ECC33	6SN7	G	Parallel circuits only. No changes.
ECC35	6 SL 7	G	Parallel circuits only. No changes.
ECC81	12AT7	E	No changes.
ECC82	$12 \mathrm{AU7}$	E	No changes.
ECC83	12AX7	E	No changes.
ECC85	6AQ8	E	No changes.
ECC91	6J6	E	No changes.




EUROPEAN	AMERICAN	PERF.	CIRCUIT CHANGES NECESSARY
EM34	6 CD 7	E	No changes.
EM80	6BR5	E	No changes.
EN91	2D21	E	No changes.
EQ80	6BE7	E	No changes.
EY51	6X2	E	No changes.
EY70	5641	G	No changes.
EY80	6U3	E	No changes.
EY84	6374	E	No changes.
EZ35	6X5	E	No changes.
EZ80	6V4	E	No changes.
EZ81	6BW4	E	No changes.
EZ90	6X4	E	No changes.
GZ30	5Z4	E	No changes.
GZ32	5V4	E	No changes.
GZ34	5 U 4	G	No changes.
H52	5U4	G	No changes.
H63	6F5	E	No changes.
HBC90	12AT6	E	No changes.
HBC91	12AV6	G	No changes.
HD14	1H5	G	No changes.
HD30	3B4	E	No changes.
HF93	12BA6	E	No changes.
HF94	12AU6	G	No changes.
HK90	12BE6	E	No changes.
HL90	19AQ5	E	No changes.
HL92	50 C 5	E	No changes.
HM04	6BE6	E	No changes.
HY90	35W4	E	No changes.
KBC32	1H6	G	Reverse 1H6 to KBC32 procedure.
KF'35	1E5	E	No changes.
KK32	$1 \mathrm{C6}$	G	Reverse 1C6 to KK32 procedure.
	$1 \mathrm{C7}$	G	No changes.
	1D7	G	Parallel circuits only. No changes.
KL35	1F4	G	Reverse 1F4 to KL35 procedure.
	1F5	G	No changes.
KT32	25L6	G	No changes.
KT63	$\begin{aligned} & 6 \mathrm{~F} 6 \\ & 6.57 \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	No changes. No changes.


EUROPEAN	AMERICAN	PERF.	CIRCUIT CHANGES NECESSARY
KT66	6L6	E	Parallel circuits only. No changes
KT81	$7 \mathrm{C5}$	G	No changes.
KTW63	6K7	G	No changes.
L63	635	G	No changes.
L77	6C4	E	No changes.
LN152	6 AB8	G	No changes.
LZ319	8A8	G	No changes.
N14	$1 \mathrm{C5}$	G	No changes.
N17	354	E	No changes.
N18	3Q4	E	No changes.
N19	3V4	E	No changes.
N77	6 AM5	E	No changes.
N78	$6 \mathrm{BJ5}$	E	No changes.
N144	6AN5	G	No changes.
N148	7 C 5	G	No changes.
N152	21A6	G	No changes.
N329	16A5	G	No changes.
N359	21 A6.	G	No changes.
N709	6BQ5	G	No changes.
PABC80	9AK8	E	No changes.
PCC84	7AN7	E	No changes.
PCC85	9AQ8	E	No changes.
PCF 80	$\begin{aligned} & \text { 8A8 } \\ & \text { 9A8 } \end{aligned}$	$\underset{\mathrm{E}}{\mathbf{G}}$	No changes. No changes.
PCF82	$9 \mathrm{U8}$	E	No changes.
PL21	2D21	E	No changes.
PL81	21A6	E	No changes.
PL82	16A5	E	No changes.
PL83	15A6	E	No changes.
PY80	19X3	E	No changes.
PY81	17Z3	E	No changes.
PY82	19Y3	E	No changes.
QQV03-10	6360	G	No changes.
QQV03-28	6252	G	No changes.
QV05-25	807	G	No changes.
SP6	6AM6	E	No changes.


EUROPEAN	AMERICAN	PERF.	CIRCUIT CHANGES NECESSARY
TD03-10	5861	G	No changes.
U50	5 Y 3	G	No changes.
U52	5U4	G	No changes.
U70	$6 \times 5$	G	No changes.
U78	6X4	E	No changes.
U147	6X5	G	No changes.
U149	7 Y 4	G	No changes.
U154	19 Y 3	G	No changes.
U319	19Y3	G	No changes.
UF41	12AC5	E	No changes.
UBC41	14 L 7	E	No changes.
UCH42	14K7	E	No changes.
W17	1 T 4	E	No changes.
W63	6K7	G	No changes.
W77	6065	E	No changes.
W149	7B7	G	No changes.
W179	6BY7	G	No changes.
X14	1 A 7	G	No changes.
X17	1R5	E	No changes.
X18	1AC6	E	No changes.
X63	6 A 8	G	No changes.
X79	6AE8	E	No changes.
X81	7S7	G	No changes.
X148	7S7	G	No changes.
Y61	6U5	E	No changes.
Z14	1N5	G	No changes.
Z63	6 J 7	G	No changes.
Z77	$\begin{aligned} & \text { 6AM6 } \\ & 6064 \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	No changes. No changes.
Z152	6BX6	G	No changes.
Z179	6BX6	G	No changes.
ZD17	155	E	No changes.
ZD19	1S5	G	No changes.
1F3	1 T 4	E	No changes.
1FD9	1S5	E	No changes.
1 P 10	3SF	E	No changes.
6A7E	6A7	E	No changes.


EUROPEAN	AMERICAN	PERF.	$\quad$ CIRC
6D2	$6 A L 5$	$G$	No changes.
6 F 12	6 AM 6	G	No changes.
8D3	6 AM 6	E	No changes.
30 C 1	8 A 8	G	No changes.
30 L 1	7AN7	G	No changes.


AMERICAN	EUROPEAN	PERF.	CIRCUIT CHANGES NECESSARY
OA2	150 C 2	E	No changes.
OA4	Z300T	E	No changes.
OB2	108C1	G	No changes.
OD3	150 C 3	E	No changes.
OE3	85A1	E	No changes.
OG3	85A2	E	No changes.
1A3	DA90	E	No changes.
1 A 7	$\begin{aligned} & \text { DK32 } \\ & \text { X14 } \end{aligned}$	$\begin{aligned} & E \\ & \mathrm{G} \end{aligned}$	No changes.   No changes.
$1 \mathrm{AB6}$	DK96	E	No changes.
1AC6	$\begin{aligned} & \text { DK92 } \\ & \mathrm{X} 18 \end{aligned}$	$\underset{\mathrm{E}}{\mathrm{E}}$	No changes.   No changes.
1 AD 4	DF62	E	No changes.
1 AF 4	DF96	G	No changes.
1 AH 5	DAF96	E	No changes.
$1 \mathrm{AJ4}$	DF96	E	No changes.
1B3	DY30	G	No changes.
1 C 5	$\begin{aligned} & \text { DL35 } \\ & \text { N14 } \end{aligned}$	$\underset{\mathrm{G}}{\mathrm{E}}$	No changes. No changes.

1C6 KK32 G Rewire as follows. Change socket to six pin.

	2	to	3
(3) 1	5	to	4
(3) (3)	4	to	5
(1) (1)	3	to	6
ORIC	6	to	7

44

AMERICAN	EUROPEAN	PERF.	CIRCUIT CHANGES NECE	ARY	
$1 \mathrm{C7}$	KK32	G	No changes.		
1D7	KK32	G	Parallel circuits only. No changes.		
1E3	DC80	E	No changes.		
1E5	KF35	G	No changes.		
1F4	KL35	G	Rewire as follows: Change to five Change pin No. 1	socket.    to pin No. 2   to 3   to 4   to 5   to 7	
1F5	KL35	G	No changes.		
1H5	$\begin{aligned} & \text { DAC32 } \\ & \text { HD14 } \end{aligned}$	$\underset{\mathrm{G}}{\mathrm{E}}$	No changes.   No changes.		
1H6	KBC32	G	Rewire as follows: Change pin No. 6 to	id cap.	
1L4	DF92	G	No changes.		
1LA6	DK32	G	Rewire as follows:   Change pin No. 1		
1LC5	DF33	G	Rewire as follows:   Change pin No. 1	to pin No. 2   to 3   to 4   to Cap   to 7   to 7	
1 LD 5	DAF91	G	Rewire as follows:   Change pin No. 1   4  	to $\operatorname{pin}$ No. 1   to 3   to 4   to 5   to 6   to 7	
1LH4	DAC32	G	Rewire as follows:	$l$    to pin No.   to 3   to 5   to Cap   to 7	
1LN5	DF33	G	Rewire as follows:   Change pin No. 1	  to pin No.   to    to 3   to 4   to Cap   to 7   to 7	
1M3	DM70	G	No changes.		
1N5	$\begin{aligned} & \text { DF33 } \\ & \text { Z14 } \end{aligned}$	$\underset{\mathrm{G}}{\mathrm{E}}$	No changes. No changes.		
1Q5	DL36	E	No changes.		


AMERICAN	EUROPEAN	PERF.	CIRCUIT CHANGES NEC	ARY	
1R5	$\begin{aligned} & \text { DK91 } \\ & \mathrm{X} 17 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	No changes. No changes.		
154	DL91	G	No changes.		
1S5	$\begin{aligned} & \text { DAF91 } \\ & \text { ZD17 } \\ & \text { ZD19 } \\ & \text { 1FD9 } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{G} \\ & \mathrm{E} \end{aligned}$	No changes. No changes. No changes. No changes.		
1 T 4	$\begin{aligned} & \text { DF91 } \\ & \text { W17 } \\ & \text { 1F3 } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	No changes.   No changes.   No changes.		
1U4	DF904	G	No changes.		
1 U	D AF91	G	Rewire as follows:   4	$\begin{aligned} & \text { to pin No. } 3 \\ & \text { to } \\ & \text { to } \\ & \text { to } \\ & 4 \\ & \hline \end{aligned}$	
1X2A	DY80	G	No changes.		
2D21	$\begin{aligned} & \text { EN91 } \\ & \text { PL21 } \end{aligned}$	$\underset{\mathrm{E}}{\mathrm{E}}$	No changes. No changes.		
3 A 4	DL93	E	No changes.		
$3 \mathrm{A5}$	$\begin{aligned} & \text { DCC90 } \\ & \text { DL99 } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{G} \end{aligned}$	No changes. No changes.		
3B4	HD30	E	No changes.		
3 C 4	DL96	E	No changes.		
3Q4	$\begin{aligned} & \text { DL95 } \\ & \text { N18 } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	No changes. No changes.		
3Q5	DL33	E	No changes.		
354	$\begin{aligned} & \text { DL92 } \\ & \text { N17 } \\ & \text { 1P10 } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	No changes. No changes. No changes.		
3V4	$\begin{aligned} & \text { DL94 } \\ & \text { N19 } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	No changes. No changes.		
5U4	$\begin{aligned} & \text { GZ34 } \\ & \text { H52 } \\ & \text { U52 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.   No changes.   No changes.		
5V4	GZ32	E	No changes.		
5 Y 3	U50	G	No changes.		
5Z4	GZ30	E	No changes.		
6A7	6A7E	E	No changes.		
$6 \mathrm{A8}$	X63	G	No changes.		
6AB4	EC92	E	No changes.		
$6 \mathrm{AB8}$	$\begin{aligned} & \text { ECL80 } \\ & \text { SN152 } \end{aligned}$	$\underset{\mathrm{G}}{\mathrm{E}}$	No changes. No changes.		
6 AE8	X79	E	No changes.		
6AG5	EF96	G	No changes.		


AMERICAN	EUROPEAN	PERF.	CIRCUIT CHANGES NECESSARY
6AJ8	ECH81	E	No changes.
	DP61	E	No changes.
6AK5	EF95	E	No changes.
6AK6	EL91	G	Reverse EL 91 to 6AK6 procedure.
6AK8	EABC80	E	No changes.
6AL5	D77	E	No changes.
	DD6	E	No changes.
	DD7	G	No changes.
	D152	G	No changes.
	EAA91	G	No changes.
	EB91	E	No changes.
	6D2	G	No changes.
6AM5	$\underset{\text { N77 }}{\text { EL91 }}$	E	No changes.
	N144	G	No changes.
6AM6	EF91	E	No changes.
	SP6	E	No changes.
	Z77	G	No changes.
	6 F 12	G	No changes.
	8D3	E	No changes.
6AQ4	EC91	E	No changes.
6AQ5	EL90	E	No changes.
6AQ8	B719	G	No changes.
	$\text { ECC } 85$	E	No changes.
6AT6	DH77	E	No changes.
	EBC90	E	No changes.
6AU6	EF94	G	No changes.
6AV6	EBC91	G	No changes.
6BA6	EF93	E	No changes.
	HMO4	E	No changes.
6BE6	EK90	E	No changes.
6BE7	EQ80	E	No changes.
6BJ5	N78	E	No changes.
6BM8	ECL82	E	No changes.
6BN5	EL85	E	No changes.
6BQ5	EL84	E	No changes.
	N709	G	No changes.
6BR5	EM80	E	No changes.
6BW4	EZ81	E	No changes.
6BX6	EF80		No changes.
	Z152	G	No changes.
	Z179	G	No changes.
6 BY 7	EF85	E	No changes.
	W179	G	No changes.
6 C 4	EC90	E	No changes.
	L77	E	No changes.
$6 \mathrm{CA7}$	EL34	G	No changes.


AMERICAN	EUROPEAN	PERF.	CIRCUIT CHANGES NECESSARY
6 CD 7	EM34	E	No changes.
6CH6	EL821	G	No changes.
6CJ6	EL81	E	No changes.
6CK6	EL83	G	No changes.
6CN6	EL38	E	No changes.
6CQ6	EF92	E	No changes.
6CS6	EH90	E	No changes.
6 E 8	ECH35	E	No changes.
6F5	H63	E	No changes.
6F6	KT63	G	No changes.
6H6	$\begin{aligned} & \text { EB34 } \\ & \text { D63 } \end{aligned}$	$\underset{G}{E}$	Parallel circuits only. No changes. No changes.
655	L63	G	No changes.
6J6	ECC91	E	No changes.
$6 J 7$	$\begin{aligned} & \text { KT63 } \\ & \text { Z63 } \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	No changes. No changes.
6K7	$\begin{aligned} & \text { KTW63 } \\ & \text { W63 } \end{aligned}$	$\underset{\mathrm{G}}{\mathrm{G}}$	No changes. No changes.
6L6	$\begin{aligned} & \text { EL37 } \\ & \text { KT66 } \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	No changes.   Parallel circuits only. No changes.
6M6G	EL33	E	No changes.
6 N 8	EBF80	E	No changes.
6P8G	ECH35	E	Parallel circuits only. No changes.
6Q4	EC80	E	No changes.
6Q7	DH63	G	No changes.
6R4	EC81	E	No changes.
6SL7	ECC35	G	Parallel circuits only. No changes.
6SN7	$\begin{aligned} & \text { B65 } \\ & \text { ECC33 } \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	No changes.   Parallel circuits only. No changes.
6 T 8	EABC80	G	No changes.
6U3	EY80	E	No changes.
6U5	Y61	E	No changes.
6 U 8	ECF 82	E	No changes.
6 V 4	EZ880	E	No changes.
6 X 2	EY51	E	No changes.
6X4	$\begin{aligned} & \text { EZ90 } \\ & \text { U78 } \end{aligned}$	$\underset{\mathrm{E}}{\mathrm{E}}$	No changes.   No changes.
6 X 5	$\begin{aligned} & \text { EZ35 } \\ & \text { U147 } \\ & \text { U70 } \end{aligned}$	E G G	No changes.   No changes.   No changes.


AMERICAN	EUROPEAN	PERF.	CIRCUIT CHANGES NECESSARY
7AN7	B319	G	No changes.
	PCC84	E	No changes.
	30L1	G	No changes.
7B7	W149	G	No changes.
$7 \mathrm{C5}$	KT81	G	No changes.
	N148	G	No changes.
7 C 6	DH149	G	No changes.
757	X81	G	No changes.
	X148	G	No changes.
7 Y 4	U149	G	No changes.
8A8	LZ319	G	No changes.
	PCF80	G	No changes.
	30C1	G	No changes.
9A8	PCF80	E	No changes.
9AK8	PABC80	E	No changes.
9AQ8	PCC85	E	No changes.
$9 \mathrm{U8}$	PCF82	E	No changes.
12AC5	UF41	E	No changes.
12 AT 6	HBC90	E	No changes.
12AT7	B152	G	No changes.
	B309	G	No changes.
	ECC81	E	No changes.
12AU6	B329	E	No changes.
	ECC82	E	No changes.
	HF94	G	No changes.
12AV6	HBC91	G	No changes.
12AX7	ECC83	E	No changes.
12BA6	HF93	E	No changes.
12BE6	HK90	E	No changes.
12SN7	B36	G	No changes.
14K7	UCH42	E	No changes.
14L7	UBC4 1	E	No changes.
15A6	PL83	E	No changes.
16A5	N329	G	No changes.
	PL82	E	No changes.
17Z3	PY81	E	No changes.
19AQ5	HL90	E	No changes.
19X3	PY80	E	No changes.
19 Y 3	U154	G	No changes.
	U319	G	No changes.
	PY82	E	No changes.
21A6	N152	G	No changes.
	N359	G	No changes.
	PL81	E	No changes.


25L6-6489	IRD	SUPP	MENT - RECEIVING TUBE SUBSTITUTION GUIDE
AMERICAN	EUROPEAN	PERF.	CIRCUIT CHANGES NECESSARY
25L6	KT32	G	No changes.
35W4	HY90	E	No changes.
50C5	HL92	E	No changes.
807	QV05-25	G	No changes.
1639	EBC33	G	No changes.
5641	EY70	G	No changes.
5718	EC70	G	No changes.
5840	EF72	G	No changes.
5861	TD03-10	G	No changes.
5899	EF71	G	No changes.
6064	Z77	G	No changes.
6065	W77	G	No changes.
6252	QQV03-28	G	No changes.
6267	EF86	E	No changes.
6360	QQV03-10	G	No changes.
6373	EL70	G	No changes.
6374	EY84	E	No changes.
6375	DC70	G	No changes.
6487	EF70	G	No changes.
6488	EF73	E	No changes.
6489	EA76	E	No changes.

## CUMULATIVE INDEX

The following indices contain all the tubes listed in the Receiving Tube Substitution Guidebook, including those given in the First, Second and Third Supplements, for which substitutions are given.

Where (0) precedes the page number, the substitution information is given on the page referred to in the original Receiving Tube Substitution Guidebook; where (1) precedes the page number, the substitution information is given on the page referred to in the First Supplement; where (2) precedes the page number, the substitution information is given on the page referred to in the Second Supplement; where (3) precedes the page number, the substitution information is given on the page referred to in the Third Supplement.

Page references to European substitutes for American tubes have been included under the respective American tube numbers, and are asterisked. Page references to American substitutes for European tubes are listed in the European Index.

## RECEIVING TUBES

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
00A	(0)33	$1 \mathrm{AB5}$	(0)35	1B3	$\begin{aligned} & (0) 36 \\ & (1) 14,15 \end{aligned}$
01A	(0)33	1AB6	(3) $1,44^{*}$		$\text { (2) } 1$
0A2	(0)33	1AC5	(0)35		(3) $1,44^{*}$
	(3)44*		(3)1	1B4	(0)36
0A3	$\begin{aligned} & (0) 33 \\ & (1) 13 \end{aligned}$	1AC6	(3)1, 44*	1B5	(0)36
0A4	(0)33	1AD4	(3)44*	1B8	$(0) 37$
	(3)44*				
0B2	$\begin{aligned} & (0) 33 \\ & (3) 44^{*} \end{aligned}$	$1 \mathrm{AE} 4$	(0)35, 36	1-3	$\begin{aligned} & (0) 37 \\ & (3) 1,2 \end{aligned}$
			$\begin{aligned} & (0) 36 \\ & (1) 14 \end{aligned}$		
0B3	$\begin{aligned} & (0) 33 \\ & (3) 1 \end{aligned}$	1 AE5	(3)1	1 C 5	(0)37   (1)15   (3)44*
0C3	(0)33	1AF4	$\begin{aligned} & (0) 36 \\ & (3) 1,44^{*} \end{aligned}$	1 C 6	$\begin{aligned} & (0) 37 \\ & (3) 44^{*} \end{aligned}$
0D3	$\begin{aligned} & (0) 33 \\ & (3) 44^{*} \end{aligned}$	1AF5	$\begin{aligned} & (0) 36 \\ & (1) 14 \end{aligned}$		
OE3	(3)44*			$1 \mathrm{C7}$	$\begin{aligned} & (0) 37 \\ & (3) 45^{*} \end{aligned}$
0G3	(3)44*	1AF6	(3)1	$1 \mathrm{C8}$	(0)37
0 Y 4	(0)33	1AG4	(3) 1	1 C 21	(0)37
0Z4	$\begin{aligned} & (0) 33 \\ & (1) 13,14 \end{aligned}$	1AG5	(3)1	1D3	(3)2
		1AH4	(3)1	1D5	(0)38
0Z4A	(0)33	1AH5	(3)1, 44*	1D5GT	(2) 1
1A3	$\begin{aligned} & (0) 33 \\ & (3) 44^{*} \end{aligned}$	1AH6	(3) 1	1D7	$\begin{aligned} & (0) 38 \\ & (3) 45^{*} \end{aligned}$
1A4	(0)33, 34	1 AJ 4	(3) $1,44 *$		
	(1)14	1 AJ5	(3)1	1D8	(0)38
1A5	$\begin{aligned} & (0) 34 \\ & (1) 14 \end{aligned}$	1 AK4	(3) 1	1E3	(3)2, 45*
1A6	(0)34	1AK5	(3) 1	1E4	$\begin{aligned} & (0) 38 \\ & (3) 2 \end{aligned}$
1A7	(0) 34,35   (1)14   (3) $44^{*}$	1 AX 2	(3)1	1E5	$\begin{aligned} & (0) 38 \\ & (3) 45^{*} \end{aligned}$


TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
1 E 7	(0)38	1LF3	(3)2	1V	$\begin{aligned} & (0) 47 \\ & (1) 19 \end{aligned}$
1E8	(0)38	1LG5	(0)43   (1)17		
1F4	(0)38   (1)15   (3)45*			1V2	(0)47
		1LH4	(0) 43   (1) 17,18   (3) $45^{*}$	1V5	(0)47
				1V6	(3)2
1 F 5	(0)38 (1)15	1LN5	$\begin{aligned} & \text { (0) } 43,44 \\ & \text { (1)18 } \\ & \text { (3) } 45^{*} \end{aligned}$	1W4	(0)48
	(3) $45^{*}$				(1)19
1F6	(0)38	1M3	(3)2, 45*	1W5	(0)48
1F7				1X2	(0)48
	(0)39	1N5	(0) 44   (1)18   (3)45*		(1)19, 20
1G4	(0)39				(2)1
1G5	$\begin{aligned} & (0) 39 \\ & (1) 15 \end{aligned}$			1X2A	(1)20
		1N6	(0)44,45		$\begin{aligned} & \text { (2) } 1 \\ & \text { (3) } 46^{*} \end{aligned}$
1G6	$\begin{aligned} & (0) 39 \\ & (1) 15 \end{aligned}$	1P5	$\begin{aligned} & (0) 45 \\ & (1) 18 \end{aligned}$	1Y2	(1)20
				1Z2	(0)48
1H4	$\begin{aligned} & (0) 39 \\ & (1) 15 \end{aligned}$	1Q5	(0)45   (1)18   (3) $45^{*}$		(1)20
				2A3	(0)48
1H5	$\begin{aligned} & (0) 39 \\ & (1) 15 \\ & (3) 45 * \end{aligned}$				(1)20
		1Q6	(0)45		(3)2
		1R4/1294	(0)45	2A4G	(0)48
$1 \mathrm{H6}$	$\begin{aligned} & (0) 39 \\ & (3) 45^{*} \end{aligned}$	1R5			
			$\begin{aligned} & (0) 45 \\ & (3) 46^{*} \end{aligned}$	2A5	(0)48
1J5	$\begin{aligned} & (0) 39 \\ & (1) 16 \end{aligned}$	154		$2 \mathrm{A6}$	(0)48
			$\begin{aligned} & (0) 46 \\ & \text { (1)18, } 19 \\ & \text { (3)46* } \end{aligned}$	2 A 7	(0)48
1 J 6	$\begin{aligned} & (0) 39 \\ & (1) 16 \end{aligned}$				
				2AF4	(3)2
1L4	(0)39   (1) 16   (3)45*	155	(0)46   (1) 19   (3) $46^{*}$	2B3	(3)2
					(3)2
				2B5	(3)2
1L6	$\begin{aligned} & (0) 40 \\ & (1) 16 \end{aligned}$	156	(0)46	2BN4	(3)2
		1SA6	$\begin{aligned} & (0) 46 \\ & (1) 19 \end{aligned}$		
				2B7S	(0)49
1LA4	$\begin{aligned} & (0) 40 \\ & (1) 16 \end{aligned}$	1SB6	(0)46	2B25	(0)49
1LA6	$\begin{aligned} & (0) 40,41 \\ & (3) 45^{*} \end{aligned}$	1T2	(3)2	2 C 4	(0)49
		1 T 4	(0)46, 47   (1)19   (3) $46^{*}$	2C21	(0)49
1LB4	$\begin{aligned} & (0) 41 \\ & (1) 16 \end{aligned}$				
				2 C 22	$(0) 49$ $\text { (3) } 3$
1LB6	(0)41	1 T 5	$\begin{aligned} & (0) 47 \\ & (1) 19 \end{aligned}$	2 C 51	(0)49
1LC5	$\begin{aligned} & (0) 41,42 \\ & (3) 45^{*} \end{aligned}$				(3)3
		1T6	(0)47	2 C 52	(0)49
1LC6	(0)42	1U4	(0) 47   (1) 19   (3) 2,46 *		(3)3
1LD5	(0)42, 43   (3) $45^{*}$			2CB5	(3)3
1LE3	$\begin{aligned} & (0) 43 \\ & (1) 16,17 \\ & (3) 2 \end{aligned}$	105	$\begin{aligned} & (0) 47 \\ & (3) 46^{*} \end{aligned}$	2D21	(0)49   (3)3, 46*
		106	(0)47	2D21W	(3)3

\begin{tabular}{|c|c|c|c|c|c|}
\hline TUBE \& PAGE \& TUBE \& PAGE \& TUBE \& PAGE <br>
\hline 2E5 \& (0)49 \& 3B7 \& (0) 51 \& 4BK7 \& (3) 5 <br>
\hline 2E22 \& (3)3 \& 3B7/1291 \& (0)51 \& 4BN6 \& (3) 5 <br>
\hline 2E26 \& (0)49 \& 3BA6 \& (3) 4 \& 4BQ7 \& (3) 6 <br>
\hline 2E30 \& (0)49 \& 3BC5 \& (3) 4 \& 4BS8 \& (3) 6 <br>
\hline 2E31 \& (0)49 \& 3BE6 \& (3) 4 \& 4BU8 \& (3) 6 <br>
\hline 2E32 \& (0)49 \& 3BN4 \& (3)4 \& 4BX8 \& (3) 6 <br>
\hline 2E35 \& (0)49 \& 3BN6 \& (3)4 \& 4BZ7 \& (3) 6 <br>
\hline 2E36 \& (0)49 \& 3BT6 \& (3)4 \& 4BZ8 \& (3)6 <br>
\hline 2E41 \& (0)49 \& 3BU8 \& (3)4 \& 4CB6 \& (3)6 <br>
\hline 2E42 \& (0)49 \& 3BY6 \& (3)4 \& $4 \mathrm{CX7}$ \& (3)6 <br>
\hline 2G5 \& (0)49 \& 3BZ6 \& (3)4 \& 4DT6 \& (3)7 <br>
\hline 2G21 \& (0)50 \& 3 C 2 \& (3)4 \& 5A6 \& (0)53 <br>
\hline 2G22 \& (0)50 \& 3 C 4 \& (3)4, 46 * \& 5AM8 \& (3)7 <br>
\hline 2S/4S \& (0)50 \& 3C5 \& $$
\begin{aligned}
& (0) 51 \\
& (3) 4
\end{aligned}
$$ \& 5AN8 \& (3)7 <br>
\hline 2T4 \& (3)3 \& \& \& 5AQ7 \& (3)7 <br>
\hline 2 V 2 \& (3)3 \& 3C6 \& (0)51 \& 5AS4 \& (3)7 <br>
\hline 2V3 \& (0)50 \& 3CB6 \& (3)4 \& 5AS8 \& (3)7 <br>
\hline 2W3 \& (0)50 \& 3CE5 \& (3)5 \& 5AU4 \& (3)7 <br>
\hline 2X2/879 \& (0)50 \& 3 CF 6
$3 \mathrm{CS6}$ \& (3) 5

(3) \& 5AV8 \& (3)7 <br>

\hline 2Y2 \& (0)50 \& 3D6/1299 \& (0)51 \& 5AW4 \& $$
\begin{aligned}
& (2) 1 \\
& (3) 7
\end{aligned}
$$ <br>

\hline 2Z2/G84 \& (0)50

(3)3 \& 3DT6 \& (3)5 \& 5AX4 \& $$
(0) 53
$$

(3)8 <br>
\hline $3 A 2$
$3 A 3$ \& (3)3
(3)3 \& 3E5 \& (0)51 \& 5AZ4 \& (0)
(0) 53 <br>
\hline 3A4 \& (0)50 \& 3E6 \& (0)51 \& \& $(2) 1$
$(3) 8$ <br>

\hline \& (3)46* \& 3LE4 \& $$
\begin{aligned}
& (0) 52 \\
& (1) 21
\end{aligned}
$$ \& 5B8 \& (3)8 <br>

\hline 3A5 \& $$
\begin{aligned}
& (0) 50 \\
& (3) 46^{*}
\end{aligned}
$$ \& 3LF4 \& \[

$$
\begin{aligned}
& (0) 52 \\
& (1) 21
\end{aligned}
$$
\] \& 5BE8 \& (3)8 <br>

\hline 3A8GT \& (0)50 \& 3Q4 \& (0)52 \& 5BK7 \& (3)8 <br>
\hline 3AF4 \& (3)3 \& \& (3)5, $46{ }^{*}$ \& 5BR8 \& (3)8 <br>

\hline 3AL5 \& (3)3 \& 3Q5 \& $$
\begin{aligned}
& (0) 52,53 \\
& (3) 46^{*}
\end{aligned}
$$ \& 5BT8 \& (3)8 <br>

\hline 3AU6 \& (3)3 \& 3S4 \& $$
\begin{aligned}
& (0) 53 \\
& (3) 5,46^{*}
\end{aligned}
$$ \& 5CG8 \& (3) 8 <br>

\hline 3AV6 \& (3)3 \& 3V4 \& (0)53 \& 5CL8 \& (3) 8 <br>

\hline 3B2 \& (3)4 \& \& $$
\text { (3) } 5,46^{*}
$$ \& 5CM8 \& (3)8 <br>

\hline 3B4 \& $$
\begin{aligned}
& (0) 50 \\
& (3) 46^{*}
\end{aligned}
$$ \& 4A6 \& (0)53 \& 5 J 6 \& (3)8 <br>

\hline 3B5 \& $$
\begin{aligned}
& (0) 50,51 \\
& (1) 20
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 4 \mathrm{BC} 5 \\
& 4 \mathrm{BC} 8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& (3) 5 \\
& (3) 5
\end{aligned}
$$

\] \& 5R4GY \& \[

$$
\begin{aligned}
& (0) 53 \\
& (2) 1
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

THIRD SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
5 T 4	(0) 53,54 $(2) 1$	$6 \mathrm{AB4}$	$\underset{(2)}{(0) 57,58}$	6 6J4	(2)2
	(3) 8 (3) 8		(3)46*	6AJ5	$\begin{aligned} & (0) 61 \\ & (2) 2 \end{aligned}$
		6AB5/6N5	(0)58		
5 U 4	(0)54	$6 \mathrm{AB6}$	(0)58	6AJ7	(0)62
	(2) 1 (3) 46			6AJ8	$\begin{aligned} & (2) 2 \\ & (3) 47^{*} \end{aligned}$
		6AB7/1853	(0)58		
5U4G	(3)8	6AB8	(3) $9,46 *$	6AK4	(3) 9
5U4GA	(3)8	6AC5G			
			(0)58	6AK5	$\begin{aligned} & (0) 62 \\ & (1) 22 \end{aligned}$
5 U 4 GB	(3) 9	6AC5GT	(0)59		(2)2
5U8	(3) 9				(3)9, 47*
5V3	(3) 9	6AC6	(0)59	6AK6	$(0) 62$
		$6 \mathrm{AC7}$	$\begin{aligned} & (0) 59 \\ & (3) 9 \end{aligned}$		(2)3
5V4	(0)54				(3) $47{ }^{*}$
	(3) $9,46 *$	6AC7/1852	(0)59	6AK7	(0)62
5V6	(3) 9	6AD4	(0)59	6AK8	$\begin{aligned} & (2) 3 \\ & (3) 47^{*} \end{aligned}$
5W4	$\begin{aligned} & (0) 54 \\ & (2) 1 \\ & (3) 9 \end{aligned}$	6AD5	(0)59	6AL5	(0)62   (1) 23   (3) $10,47^{*}$
		6AD6	(0)59		
5X3	(0)54	6AD7	$\begin{aligned} & (0) 60 \\ & (1) 22 \end{aligned}$	6AL6	(0) 62   (1) 23   (3)10
5X4	$\begin{aligned} & (0) 54 \\ & (2) 1 \end{aligned}$	$\begin{aligned} & \text { 6AD } 8 \\ & \text { 6AE5 } \end{aligned}$	$\begin{aligned} & (3) 9 \\ & (0) 60 \end{aligned}$		
			$\begin{aligned} & (0) 60 \\ & (1) 22 \end{aligned}$		
5X8	(3) 9	6AE6	(0)60	6AM4	(0)62
5 Y 3	(0) 55   (2) 1   (3) $9,46 *$				(2) 3
		6 AE7	(3)9	6AM5	$\begin{aligned} & (0) 62 \\ & (2) 3 \\ & (3) 47^{*} \end{aligned}$
		6 AE8	(3)46*		
5Y4	(0) 55	6AF4			
	(3) 9	6AF4	(3)9	6AM6	$\begin{aligned} & (0) 62,63 \\ & (3) 10,47^{*} \end{aligned}$
5Z3	$\begin{aligned} & (0) 55 \\ & (2) 1 \end{aligned}$	6AF5	$\begin{aligned} & (0) 60 \\ & (1) 22 \end{aligned}$	6AM8	(3)10
5Z4	(0)56   (2) 1   (3)9, 46*	6AF6	(0)60	6AN4	(2)3
			(0)60	6AN5	(0)63
6A3	(0)56	6AG5	(0)60   (1) 22   (2) 1   (3) $9,46^{*}$	6AN6	(0)63
6 A 4	(0)56			6AN7	(0)63
6A4/LA				6AN8	
	(0)56	6AG6G	(0)60	6AQ4	
6A5	(0)56				(3) $10,47^{*}$
6A6	$\begin{aligned} & (0) 56 \\ & (1) 21 \end{aligned}$	6AG7	(0)60	6AQ5	(0)63   (1)23   (2) 3   (3) $10,47^{*}$
		6 AH 4	(2)2		
6A7	$\begin{aligned} & (0) 56,57 \\ & (1) 21 \end{aligned}$	6AH5	(0)61		
	(3)46*	6AH6	(0)61, 143	6AQ6	$\begin{aligned} & (0) 63 \\ & (1) 23 \\ & (3) 10 \end{aligned}$
6A8	$\begin{aligned} & (0) 57 \\ & (1) 21,22 \\ & (3) 46^{*} \end{aligned}$		(2) 2 $(3) 9$		
		6AH7	(0)61	6AQ7	(0)63


TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
6AQ8	(3)47*	6B8	(0)67	6BK4	(3)13
6 AR5	(0)64	6BA5	(0)67	6BK5	(2) 4
6AR6	$\begin{aligned} & (0) 64 \\ & (1) 23 \end{aligned}$	6BA6	(0) 67 (1) 24	6BK6	$\begin{aligned} & (0) 69 \\ & (3) 13 \end{aligned}$
6AR7	(0)64		(2) 3   (3)11,47*	6BK7	(2) 4   (3) 13
6AR8	(3)10	6BA7	(0)67		
6AS5	$\begin{aligned} & (0) 64 \\ & (2) 3 \end{aligned}$	6BA8	(3)12	6 BL 4 6 BL 7	$(3) 13$ (1)24
6AS6	(0)64	6BC4	(3) 12		(2) 4
	(3)10	6BC5	(0) 67 (1) 24	6BM5	(2) 4
6AS7	(3) 10		(2) 3 (3) 12	6BM8	(3) $47 *$
6AS7G	(0)64			6BN4	(3)13
6AS8	(3)10	6BC7	(0)68	6BN5	(3)13, 47*
6AT6	(0)64, 65   (3) $10,47^{*}$	6 BC 8	$(3) 12$ $(3) 12$	6BN6	(0)69
		6BD4A	(3) 12		(3) 13
6AT8	(3)10	6BD5	(0)68	6BN7	(1)24
6AU4	(3)10	6BD6	(0)68   (3)12	6BN8	(3)14
6AU5	$\begin{aligned} & (0) 65 \\ & (1) 23 \end{aligned}$	6BD7	(0)68	6BQ5	(3) $47 *$
6AU6	(0)65, 143   (1) 24   (3)11, 47*	6BE6	(0)68   (3)12, 47*	6BQ6	(0)69 (2) 4 (3)14
6AU8	(3) 11	6BE7	(3)12, 47*	6BQ7	(1) 24 (2) 4
6AV4	(3)11	6BE8	(3) 12		(3)14
6AV5	(0)65	6BF5	(0)68	6BR5	(3) $47{ }^{*}$
6AV6	(0)65	6BF6	(0)68	6BR7	(3)14
	(2)3   (3) 11, 47*	6BF7	(0)68	6BR8	(3)14
6AW7	(0)65	6BG6	(0) 68 (1) 24 (3)	6BS5	(3)14
6AW8	(3)11		(3)12	6BS7	(3)14, 15
6AX4	(1)24	6BG7	(0)68	6BS8	(3)15
	(3)11	6BH5	(3)12, 13	6BT6	(0)69
6AX5	$\begin{aligned} & (0) 65 \\ & (3) 11 \end{aligned}$	6BH6	(0) 68 (1)24		(3) 15
6AX6	(0)65, 66		(3)13	6BT8	(3)15
6AX8	(3) 11	6BH8	(3)13	6 BU 5	(3)15
6AZ8	(3) 11	6BJ5	(3) $13,47 *$	6BU6	(0)69
6B4	(0)66	6BJ6	$\begin{aligned} & (0) 68,69 \\ & (2) 3 \end{aligned}$	6BU8	(3) 15
6B5	(0)66		(3) 13	6BV7	(3)15
6B6	(0)66	6BJ7	(3)13	6BV8	(3)15
6B7	(0)67	6BJ8	(3) 13	6BW4	(3) $15,47 *$

THIRD SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
6BW6	(2) 4	6CG8	(3)17	6DN6	(3)20
6BW7	(3)15	6CH6	(2) 6   (3) $17,48^{*}$	6DQ6	(3)20
6BX4	(3)16			6DT6	(3)20
6BX6	(2) 4   (3)16, 47*	$6 \mathrm{CH7}$	(3)17	6E5	(0)73
		6 CH 8	(3)17	6E6	(0)73
$6 \mathrm{BX7}$	(2)4	6CJ6	(3)18, 48*		(1)25
6BX8	(0)69   (2)4	6CK6	$\begin{aligned} & (2) 6 \\ & (3) 48^{*} \end{aligned}$	6E7	(0)73
6BY5				6E8	$\begin{aligned} & (0) 73 \\ & (3) 48^{*} \end{aligned}$
		6CL6	(2)6, 7		
6BY6	(3)16		(3)18	6F4	(0)73
6BY7	$\begin{aligned} & (2) 5 \\ & \text { (3) } 47 * \end{aligned}$	6 CL 8	(3)18	6F5	$\begin{aligned} & (0) 73,74 \\ & (3) 48^{*} \end{aligned}$
		6CM6	(3)18		
6BY8	(3)16	6CM7	(3)18	6F6	$\begin{aligned} & (0) 74,143 \\ & \text { (1)25 } \\ & \text { (3) } 20,48^{*} \end{aligned}$
6BZ6	(3)16	6CM8			
6BZ7	$\begin{aligned} & (2) 5 \\ & (3) 16 \end{aligned}$	6CN6	(3) $18,48^{*}$	6F7	$\begin{aligned} & (0) 74 \\ & (1) 25 \end{aligned}$
6BZ8	(3)16	6CN7	(3)18	6F8	(0)74
6 C 4	$\begin{aligned} & (0) 69,70 \\ & (2) 5 \\ & (3) 16,47^{*} \end{aligned}$	6CQ6	(3)48*		(1)25
		6CQ7	(3)18	6G5	(0)75   (See 6U5)
6 C 5	$\begin{aligned} & (0) 70 \\ & (1) 24 \\ & (2) 5 \end{aligned}$	$\begin{aligned} & 6 \mathrm{CR} 6 \\ & 6 \mathrm{CS} 5 \end{aligned}$	(3)18	6G6	(0)75
			(3)18	6H4	(0)75
6C6	$\begin{aligned} & \begin{array}{l} (0) 70,71,143 \\ \text { (3) } 16 \end{array} \end{aligned}$			6H5	(0)75
6C7	(0)71	6CS6	$\begin{aligned} & (2) 7 \\ & \text { (3) } 19,18^{*} \end{aligned}$	6H6	$\begin{aligned} & (0) 75 \\ & (3) 20,48^{*} \end{aligned}$
6C8	(0)71, 72	6CS7	(3)19	6H8	(0)75
$6 \mathrm{CA5}$	(3)16	6CU5	(3)19	6 J 4	$\begin{aligned} & \text { (0)75, } 76 \\ & \text { (3)20 } \end{aligned}$
$6 \mathrm{CA7}$	(3) $17,47^{*}$	6CU6	$\begin{aligned} & (2) 7 \\ & (3) 19 \end{aligned}$	6 J 5	(0) 76   (1) 25   (2)7   (3) $20,48^{*}$
$6 \mathrm{CB5}$	(3)17			6J	
		$6 \mathrm{CX7}$	(3)19		
$6 \mathrm{CB6}$	(0)72				
	(1) 25 (2) 5	6D4	(0)72	6 J 6	(0)76   (1) 26   (3)20, 48*
	(3) 17	6D6	(0)72		
6CD6	$\begin{aligned} & (0) 72 \\ & (1) 25 \\ & (3) 17 \end{aligned}$	6D7	(0)72	6 J 7	
					$\begin{aligned} & (0) 76,77,143 \\ & \text { (3) } 20,48^{*} \end{aligned}$
		6D8	(0)72		
6CD7	(3) $17,48 *$	6DA6	(3)19	6J8	$\begin{aligned} & (0) 77,78 \\ & (1) 26 \end{aligned}$
6 CE 5	(3) 17	6DB6	(3)20	6K4	(0)78
6CF6	(2)6	6DC6	(3)20	$\begin{aligned} & 6 \mathrm{~K} 5 \\ & 6 \mathrm{~K} 6 \end{aligned}$	(0)78
6CG6	$\begin{aligned} & (1) 25 \\ & (2) 5,6 \end{aligned}$	$\begin{aligned} & \text { 6DE6 } \\ & \text { 6DG6 } \end{aligned}$	(3)20(3)20		(0)78, 79
6CG7					

CUMULATIVE INDEX-AMERICAN RECEIVING TUBES

\begin{tabular}{|c|c|c|c|c|c|}
\hline TUBE \& PAGE \& TUBE \& PAGE \& TUBE \& PAGE \\
\hline 6K7 \& \[
\begin{aligned}
\& (0) 79,80 \\
\& \text { (3) } 20,48^{*}
\end{aligned}
\] \& 6R8 \& \[
\begin{aligned}
\& (0) 83 \\
\& (1) 27
\end{aligned}
\] \& 6SU7 \& \[
\begin{aligned}
\& (0) 91 \\
\& (3) 21
\end{aligned}
\] \\
\hline 6K8 \& \[
\begin{aligned}
\& (0) 80 \\
\& (1) 26
\end{aligned}
\] \& 6S4 \& (1)27 \& 6SV7 \& (0)91 \\
\hline 6L4 \& (0)80 \& 6S6 \& (0)84 \& 6SZ7 \& (0)91 \\
\hline 6L5 \& \[
\begin{aligned}
\& (0) 80 \\
\& (1) 26
\end{aligned}
\] \& 6SA7 \& \[
\begin{aligned}
\& (0) 84 \\
\& (1) 28
\end{aligned}
\] \& 6 T 4 \& \[
\begin{aligned}
\& (2) 8 \\
\& (3) 21
\end{aligned}
\] \\
\hline 6L6 \& (0) 80,81
(1) 26,27 \& 6S7 \& \[
\begin{array}{r}
(0) 84 \\
\text { (3)20 }
\end{array}
\] \& 6T5 \& (0)91 \\
\hline \& \[
\begin{aligned}
\& \text { (1) } 26,27 \\
\& \text { (3) } 20,48^{*}
\end{aligned}
\] \& 6S8 \& (1)27 \& 6T6 \& (0)91 \\
\hline 6L7 \& (0)81 \& 6S8GT \& (2)8 \& 6T7 \& (0)91 \\
\hline 6M5 \& \[
\begin{aligned}
\& (0) 81 \\
\& (2) 7 \\
\& (3) 20
\end{aligned}
\] \& 6SA7
6SB7Y \& \((3) 20\)
\((0) 84\) \& 6T8 \& \[
\begin{aligned}
\& \text { (0)91, } 143 \\
\& \text { (1)30 } \\
\& (2) 8 \\
\& (3) 48^{*}
\end{aligned}
\] \\
\hline \& \& 6SB7Y \& \[
(0) 84
\]
\[
\text { (1) } 28
\] \& \& (3) \(48^{*}\) \\
\hline 6M6G \& \[
\begin{aligned}
\& (0) 81 \\
\& (3) 48^{*}
\end{aligned}
\] \& \& (3)20 \& 6U3 \& \[
\begin{aligned}
\& (2) 8 \\
\& \text { (3) } 21,48^{*}
\end{aligned}
\] \\
\hline 6M7G \& (0)81 \& 6SC7 \& \[
\begin{aligned}
\& (0) 84,85 \\
\& (1) 28
\end{aligned}
\] \& 6U4 \& \[
\begin{aligned}
\& (0) 91 \\
\& (1) 30
\end{aligned}
\] \\
\hline 6M8GT \& (0)81 \& 6SD7 \& (0)85 \& \& \\
\hline 6N4 \& (0)81 \& 6SE7 \& (0)85 \& 6 U 5 \& \[
\begin{aligned}
\& (0) 91 \\
\& (1) 30 \\
\& (3) 48^{*}
\end{aligned}
\] \\
\hline 6N5 \& (0)81 \& 6SF5 \& (0)85, 86 \& \& \\
\hline 6N6 \& (0)81 \& 6SF7 \& (0)86 \& 6U6 \& \[
\begin{aligned}
\& \text { (0)91, } 92 \\
\& (1) 30
\end{aligned}
\] \\
\hline 6N7 \& \[
\begin{aligned}
\& (0) 81,82 \\
\& (3) 20
\end{aligned}
\] \& 6SG7 \& \begin{tabular}{l}
(0)86 \\
(1)28 \\
(3) 20
\end{tabular} \& 6U7 \& \[
\begin{aligned}
\& (0) 92 \\
\& (3) 21
\end{aligned}
\] \\
\hline 6N8 \& \[
\begin{aligned}
\& (0) 82 \\
\& (3) 48^{*}
\end{aligned}
\] \& 6SH7 \& (0)86 \& 6U8 \& \[
\begin{aligned}
\& (1) 30 \\
\& (2) 8
\end{aligned}
\] \\
\hline 6P5 \& \[
\begin{aligned}
\& (0) 82 \\
\& \text { (1)27 }
\end{aligned}
\] \& \& (1)29
(3)20 \& 6 V 3 \& (3) \(21,48^{*}\)
(2) 9 \\
\hline 6P7 \& \[
\begin{aligned}
\& \text { (0) } 82 \\
\& (1) 27
\end{aligned}
\] \& 6SJ7 \& \begin{tabular}{l}
(0)86, 87 \\
(1) 29 \\
(3) 20
\end{tabular} \& 6 V 4 \& \[
\text { (3) } 21
\] \\
\hline 6P8G \& (1)27
\((0) 82\) \& 6SK7 \& (3)20
(0) 8788 \& 6V4 \& (0)92
\[
\text { (3) } 21,48^{*}
\] \\
\hline \& (3)48* \& 6SK7 \& \[
\begin{aligned}
\& \text { (1)29 } \\
\& \text { (3) } 21
\end{aligned}
\] \& 6V5GT \& (2)9 \\
\hline 6Q4
6Q5 \& \begin{tabular}{l}
(2) 8 \\
(3) \(48^{*}\)
\end{tabular} \& 6SL7 \& (0) 88
(1)29

$(3) 21$ \& 6V6 \& $$
\begin{aligned}
& (0) 92,93 \\
& \text { (1)30 } \\
& \text { (3)21 }
\end{aligned}
$$ <br>

\hline 6Q5 \& (3)20 \& \& (3)21, 48* \& 6V7 \& (0)93 <br>
\hline 6Q5G \& (0)82 \& 6SN7 \& (0)88, 89 \& \& <br>
\hline 6Q6 \& (0)82 \& \& (1) 29
(2) 8 \& $6 \mathrm{V8}$ \& (0)30, 31 <br>

\hline 6Q7 \& $$
\begin{aligned}
& (0) 82,83 \\
& (1) 27
\end{aligned}
$$ \& \& (3) $21,48 *$ \& 6W2 \& (3)21 <br>

\hline \& (3)48* \& 6SQ7 \& $$
\text { (0)89, } 90
$$ \& 6W4 \& \[

$$
\begin{aligned}
& (0) 93 \\
& (1) 31
\end{aligned}
$$
\] <br>

\hline 6R4 \& | (0)83 |
| :--- |
| (2)8 |
| (3) $48^{*}$ | \& 6 SR7 \& | (0)90 |
| :--- |
| (1)30 | \& 6W5 \& (0)93 <br>

\hline 6R6 \& (0)83 \& 6SS7 \& (0)90 \& 6 W \& $$
\begin{aligned}
& \text { (1) } 31 \\
& \text { (2) } 9
\end{aligned}
$$ <br>

\hline 6R7 \& $$
\begin{aligned}
& (0) 83 \\
& (1) 27
\end{aligned}
$$ \& 6ST7 \& (0)91 \& 6W7 \& (0)93, 94 <br>

\hline
\end{tabular}

THIRD SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
6 X 2	(3) $21,48^{*}$	$7 \mathrm{B5}$	$\begin{aligned} & (0) 100 \\ & (1) 32 \end{aligned}$	$7 \mathrm{T7}$	(0)105, 106
6 X 4	$\begin{aligned} & (0) 94 \\ & \text { (3) } 21,48^{*} \end{aligned}$			$7 \mathrm{V7}$	(0)106
		7B6	(0) 100   (1) 32	7W7	(0)106
6 X 5	$\begin{aligned} & (0) 94,95 \\ & \text { (3) } 21,48^{*} \end{aligned}$	7B7	(0)100, 101	7X6	(0)106
			(1)32		
6X6G	(0)95		(3)49*	7 X 7	(0)106
6X8	$\begin{aligned} & (1) 31 \\ & (2) 9 \end{aligned}$	$7 \mathrm{B8}$	$\begin{aligned} & (0) 101 \\ & \text { (1) } 32 \end{aligned}$	7 Y 4	$\begin{aligned} & \text { (0)106 } \\ & \text { (1)34 } \\ & \text { (3)49* } \end{aligned}$
6Y3G	(0)95	7C4	(0)101		
6 Y 5	(0)95	7C5	(0) 102   (1) 32   (3)49*	$7 \mathrm{Z4}$	(0)106 $(1) 34$
6Y6					(3) 21
				8A8	(3)49*
6 Y 7	$\begin{aligned} & (0) 96 \\ & (3) 21 \end{aligned}$	7C6	$\begin{aligned} & \text { (0) } 102 \\ & \text { (1) } 33 \\ & \text { (3) } 49^{*} \end{aligned}$	8AU8	(3)22
					(3)22
6Y7G	(0)144			8AW8	(3)22
6Z3	(0)96	7C7	(0)102, 103   (1) 33	8BA8	(3)22
6Z4			(3)21	8BH8	(3)22
	(0)96	7D7	(0)103		
6Z5	(0)96			8BN8	(3)22
6Z7	(0)96	7E6	(0)103	8CG7	(3)22
			(0)103		
6ZY5	(0)96		(1)33	8CM7	(3)22
7A4	$\begin{aligned} & (0) 97 \\ & (1) 31 \end{aligned}$	7E7	(0)103	8CN7	(3) 22
		7F7	(0)103	8CS7	(3)22
7A5	$\text { (3) } 21$	7F8	(0)104	8SN7	(3)22
			(1)33		
7A6	$\begin{aligned} & (0) 97 \\ & (3) 21 \end{aligned}$		(3)21	9A8	(3) $49^{*}$
7A7	$\begin{aligned} & \text { (0)97, } 98 \\ & \text { (1) } 31,32 \end{aligned}$	7G7	(0)104	9AK8	(3) $49^{*}$
		7G7/1232	(0)104	9AQ8	(3)49*
7A8	$\begin{aligned} & (0) 98 \\ & (1) 32 \end{aligned}$	7G8	(1)33	9BM5	(3) 22
7AB7	(0)98, 99	7H7	(0)104	9BW6	(3) 22
7AD7	(0)99	7J7	$\begin{aligned} & (0) 104 \\ & (1) 33 \end{aligned}$	908	(3)49*
7AF7	$\begin{aligned} & (0) 99 \\ & (1) 32 \end{aligned}$			10	(0)106
		7K7	(0)105	10Y	(0)106
7AG7	(0)99	7 L 7	(0)105	12A	
					(0)106
7AH7	(0)99	7N7	$\begin{aligned} & (0) 105 \\ & (1) 33,34 \end{aligned}$	12A4	(2)9
7AJ7	(0)99	7Q7	$\begin{aligned} & (0) 105 \\ & (1) 34 \end{aligned}$		
7AK7	(0)99			12A5	(0)107
				12A6	(0)107
7AN7	(3)49*	7R7	$\begin{aligned} & (0) 105 \\ & (1) 34 \end{aligned}$		(1) 34
$7 \mathrm{AU7}$	(3)21			12A7	(3)22
7B4	(0)100	7S7	(0)105	12A8	(0)107
	(1)32		(3) $49^{*}$		(1)35

CUMULATIVE INDEX-AMERICAN RECEIVING TUBES

\begin{tabular}{|c|c|c|c|c|c|}
\hline TUBE \& PAGE \& TUBE \& PAGE \& TUBE \& PAGE \\
\hline 12AB5 \& (3)22 \& 12AZ7 \& (1)36 \& 12CU5 \& (3)24 \\
\hline 12AC5 \& (3) \(49^{*}\) \& 12B4 \& (2) 9 \& 12CU6 \& (3)24 \\
\hline 12AC6 \& (3) 22 \& 12B6M \& (0)109 \& 12D4 \& (3) 25 \\
\hline 12AD6 \& (3) 22 \& 12B7 \& (0)109 \& 12DQ6 \& (3)25 \\
\hline 12AD7 \& (3)22 \& 12B8GT \& (0)109 \& 12E5 \& (0)110 \\
\hline 12AE6 \& (3) 22 \& 12BA6 \& \[
(0) 109
\]
\[
\text { (1) } 36
\] \& 12F5 \& (0)110 \\
\hline 12AF6 \& (3) 22 \& \& (3) \(49^{*}\) \& 12F8 \& (3) 25 \\
\hline 12AG6 \& (3)22 \& 12BA7 \& (0)109 \& 12G4 \& (3)25 \\
\hline \multirow[t]{2}{*}{12AH7} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& (0) 107 \\
\& (1) 35
\end{aligned}
\]} \& 12BD6 \& (0)109 \& 12G7G \& (0)110 \\
\hline \& \& \multirow[t]{2}{*}{\[
12 \mathrm{BE} 6
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
(0)109 \\
(3)49*
\end{tabular}} \& 12G8 \& (3)25 \\
\hline 12AH8 \& (2) 9 \& \& \& 12H4 \& (3)25 \\
\hline 12AJ5 \& (3) 22 \& 12BF6 \& (0)109 \& 12H6 \& (0)110 \\
\hline 12AK7 \& (2)9 \& 12BH7 \& \[
\begin{aligned}
\& (0) 109 \\
\& (1) 36
\end{aligned}
\] \& 12 J 5 \& (0)110 \\
\hline 12AL5 \& (0)107 \& \& (3)23 \& \& (3)25 \\
\hline 12AQ5 \& (3)22, 23 \& 12BJ7 \& (3) 23 \& 12J7 \& (0) 110 \\
\hline 12AS5 \& (3)23 \& 12BK5 \& (3)23 \& 12J8 \& (3) 25 \\
\hline \multirow[t]{3}{*}{12AT6} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& (0) 108 \\
\& (1) 35 \\
\& (2) 9 \\
\& (3) 49^{*}
\end{aligned}
\]} \& 12BK6 \& (0)109 \& 12K5 \& (3)25 \\
\hline \& \& 12BL6 \& (3)23 \& 12K7 \& \[
\text { (0) } 110,111
\]
\[
\text { (1) } 36
\] \\
\hline \& \& 12BN6 \& (1)36 \& 12K8 \& \\
\hline \multirow[t]{2}{*}{12AT7} \& \multirow[t]{2}{*}{\begin{tabular}{l}
(0) 108,143 \\
(1) 35 \\
(3) \(23,49^{*}\)
\end{tabular}} \& 12BQ6 \& (3)23 \& 12 K 8 \& \[
\begin{aligned}
\& (0) 111 \\
\& (1) 36
\end{aligned}
\] \\
\hline \& \& 12BR7 \& (3)23 \& 12L6 \& (3)25 \\
\hline 12AU6 \& \[
\begin{aligned}
\& (0) 108 \\
\& (3) 49^{*}
\end{aligned}
\] \& 12BT6 \& (0)109 \& 12L8 \& (0)111 \\
\hline \multirow[t]{2}{*}{\(12 \mathrm{AU7}\)} \& \multirow[t]{2}{*}{\begin{tabular}{l}
(0)108 \\
(1)35 \\
(3) 23
\end{tabular}} \& 12BU6 \& (0)110 \& 12Q7 \& (0)111 \\
\hline \& \& 12BV7 \& (3)23 \& \& (1)36 \\
\hline 12AV5 \& (3) 23 \& 12BW4 \& (3)23 \& 12R5 \& (3) 25 \\
\hline \multirow[t]{2}{*}{12AV6} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& (0) 108 \\
\& (3) 49^{*}
\end{aligned}
\]} \& 12BY7 \& \[
\begin{aligned}
\& (2) 9 \\
\& (3) 23
\end{aligned}
\] \& 12 S 8
12 SA \& (2)9

(0)111, 112 <br>

\hline \& \& \& (3)23 \& 12SA7 \& $$
\begin{aligned}
& (0) 111,112 \\
& (1) 36
\end{aligned}
$$ <br>

\hline \multirow[t]{2}{*}{12AV7} \& (0) 108
$(1) 35$ \& 12BZ7 \& (2)9 \& 12 SC 7 \& <br>

\hline \& (3) 23 \& 12 C 5 \& (3) 23 \& 12SC \& $$
\text { (1) } 36
$$ <br>

\hline \multirow[t]{2}{*}{12AW6} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& (0) 108 \\
& (1) 35
\end{aligned}
$$} \& 12 C 8 \& (0)110 \& 12SF5 \& \[

$$
\begin{aligned}
& (0) 113 \\
& (1) 36
\end{aligned}
$$
\] <br>

\hline \& \& 12CA5 \& (3) 24 \& \& <br>
\hline 12AX4 \& (1)36 \& 12CM6 \& (3)24 \& 12SF7 \& (0)113 <br>

\hline 12AX7 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { (0) } 108 \\
& \text { (1) } 36 \\
& \text { (3) } 23,49^{*}
\end{aligned}
$$} \& 12CN5 \& (3) 24 \& 12SG7 \& \[

$$
\begin{aligned}
& (0) 113 \\
& (1) 37
\end{aligned}
$$
\] <br>

\hline \& \& 12CR6 \& (3) 24 \& 12 SH 7 \& ${ }_{(0) 113}$ <br>

\hline 12AY7 \& $$
\begin{aligned}
& \text { (1) } 36 \\
& \text { (3) } 23
\end{aligned}
$$ \& 12 CS 6

12 CT 8 \& (3) 24

(3) 24 \& 12SJ7 \& | (0)113 |
| :--- |
| (1)37 | <br>

\hline
\end{tabular}

THIRD SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
12SK7	$\begin{aligned} & (0) 113,114 \\ & (1) 37 \end{aligned}$	14 E 7	(0)116, 117	19BG6	(0)118
	(2)10	14F7	$\begin{aligned} & (0) 117 \\ & (1) 39 \end{aligned}$	19 C 8	$\begin{aligned} & (0) 118 \\ & (1) 40 \end{aligned}$
12 SL 7	(0)114 (1)37 (3) 25	14F8	$\begin{aligned} & (0) 117 \\ & (1) 39 \end{aligned}$	19 J 6	(2)10
				19 T 8	(0)118
12SN7	$(0) 114$   (1)37	14H7	(0)117		(1)40
	(3) $25,49^{*}$	14J7	$\begin{aligned} & (0) 117 \\ & (1) 39 \end{aligned}$	19V8	(1)40
12SQ7	$\begin{aligned} & (0) 114,115 \\ & (1) 37 \\ & (2) 10 \end{aligned}$	14K7	(3)49*	19X3	$\begin{aligned} & \text { (2) } 10 \\ & \text { (3) } 26,49^{*} \end{aligned}$
		14L7	(3) $49^{*}$	19X8	(3) 26
12SR7	$\begin{aligned} & (0) 115 \\ & (1) 38 \end{aligned}$	14N7	$\begin{aligned} & (0) 117 \\ & (1) 39,40 \end{aligned}$	19Y3	$\begin{aligned} & (2) 10 \\ & (3) 49^{*} \end{aligned}$
12SS7	(2)10	14Q7	(0)117	20	(0)118
12SW7	(0)115   (1) 38		(1)40	$20 \mathrm{J8}$	(0)118
12SX7	(0)115	14R7	(0)117	21 A6	(3)25, 49*
	(0)115	14S7	(0)117		
12SY7	$\begin{aligned} & (0) 115 \\ & (1) 38 \end{aligned}$	14V7	(0)117	21A7	(0)118
12 U 7	(3)25	14W7	(0)117	22	(0)118
				24A	(0)118
12V6	$\begin{aligned} & \text { (2) } 10 \\ & (3) 25 \end{aligned}$	14X7	(2)10	25A6	(0)118, 119
	(3)25	14Y4	(0)117	25A7	(0)119
12W6		15	(0)117, 118		
12X4	$\begin{aligned} & \text { (2)10 } \\ & \text { (3)25 } \end{aligned}$	15A6	(3)26, 49*	25AC5	(0)119
12Z3	$\begin{aligned} & (0) 115 \\ & (1) 38 \end{aligned}$	15A8	(3)26	25AV5	$\begin{aligned} & (0) 119 \\ & (3) 26 \end{aligned}$
	(0)115	16A5	(3) $26,4{ }^{*}$	25AX4	(3)26
12Z5		17	(0)118	25B5	(0)119
14A4	$\begin{aligned} & (0) 115 \\ & (3) 26 \end{aligned}$	17AV5	(3)26	25B6	(0)119
14A5	(0)116	17AX4	(3)26	25B8GT	(0)119
14A7	(1)38	17 C 5	(3)26	25BK5	(2)11
14A7/12B7	(0)116	17CA5	(3)26	25BQ6	(0)119
14AF7	(1)38	17DQ6	(3)26	25C5	(3)26, 27
14AF7/XXD	(0)116	17H3	(3)26	25C6	(0)119
14B6	$\begin{aligned} & (0) 116 \\ & (1) 38 \end{aligned}$	17Z3	(3) $26,49 *$	25CA5	(3)27
		18	(0)118	25CD6	(3)27
14B8	(0)116	18A5	(3)26	25CU6	(3)27
14 C 5	(0)116	19	(0)118	25D8GT	(0)120
14C7	${ }_{(0) 116}$				
	(1)39	19AQ5	$\begin{aligned} & (2) 10 \\ & (3) 49^{*} \end{aligned}$	25DN6	(3)27
14E6	$\begin{aligned} & (0) 116 \\ & (1) 39 \end{aligned}$	19AU4	(3)26	25DQ6	(3)27

CUMULATIVE INDEX-AMERICAN RECEIVING TUBES

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
25L6	$\begin{aligned} & (0) 120 \\ & (2) 11 \end{aligned}$	34	$\begin{aligned} & (0) 122 \\ & (1) 41 \end{aligned}$	50	(0) 129
	(3)26, 50*			50A1	(3)27
25N6	(0)120	35A5	(0)122, 123	50A5	(0)129
	(1)40	35B5	(0)123		(1)42
25S	(0)120	35 C 5	(0)123	50AX6	(0)129
25 U4	(3)27	35L6	(0)124	50AX6G	(2)12
25W4	$\begin{aligned} & (0) 120 \\ & (3) 27 \end{aligned}$	35W4		50B5	(0)129
			$\begin{aligned} & (0) 124 \\ & (3) 50^{*} \end{aligned}$		(1)42
25W6	(3)27			50BK5	(3) 27
25X6	(0)120	35Y4	$\begin{aligned} & (0) 124,125 \\ & (1) 41 \end{aligned}$	50C5	(0)129
25 Y 4	(0)120	35Z3	$\begin{aligned} & (0) 125 \\ & (1) 41 \end{aligned}$		(3) $50{ }^{*}$
25Y5	(0)120			50C6	(0)129
$25 \mathrm{Z3}$	(0)120	35Z4	$\begin{gathered} (0) 125 \\ (1) 41 \end{gathered}$		(1)42, 43
25Z4	(0)120	35Z5	(0)125, 126	50L6	(0) 129   (1) 43
25Z5	(0)120, 121		(1)41, 42	50x6	(0)130
25Z6	(0)121	35/51	(0)126		
26	(0)121	35/51	$\begin{gathered} (0) 126 \\ (1) 41 \end{gathered}$	50 Y	(1)43
26A6	$\begin{aligned} & (0) 121 \\ & (2) 11 \end{aligned}$	36	(0)126	$50 Y 7$	(0)130
				50Z6	(0)130
26A7	$\begin{aligned} & (0) 121 \\ & (2) 11 \end{aligned}$	37	(0)126	$50 Z 7$	(0) 130
		38		$50 \mathrm{Z7}$	(0) 130
26BK6	(0)121	39/44	(0)126	EF50	(0)130
26 C 6	(0)121	40	(0)126	52	(0) 130
26CG6	(2)11	40A1	(3)27	v'52	(0)130
26D6	$\begin{aligned} & (0) 121 \\ & (2) 11 \end{aligned}$	40B2	(3)27	53	(0)130
		40Z5	(1)42	55	(0)130
26Z5w	(1)40	41		55s	(0)130
27	(0)121	42	(0)127, 128	56	
28D7	$\begin{aligned} & (0) 122 \\ & (2) 12 \\ & (3) 27 \end{aligned}$				
		43	(0)128	56AS	(0) 131
		45	$\begin{aligned} & (0) 128 \\ & (1) 42 \end{aligned}$	56S	(0) 131
$\begin{aligned} & 28 \mathrm{D} 7 \mathrm{~W} \\ & 28 \mathrm{Z} 5 \end{aligned}$	(0)122			57	(0) 131
	$\begin{aligned} & (0) 122 \\ & (2) 12 \end{aligned}$	45Z3	(0)128		(1)43
30	(0)122	45Z5	$\begin{aligned} & (0) 128 \\ & (1) 42 \end{aligned}$	57AS	(0) 131
				57S	(0) 131
31	(0)122	46	(0) 128	58	(0)131
32	(0)122	47	(0) 128		(1)43
32L7	(0)122			58AS	(0)131
33	$(0) 122$ $\text { (1) } 40$	48 49	$(0) 129$ $(0) 129$	58S	(0)131

THIRD SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE


TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
5633	(3)28	5725	$\begin{aligned} & (0) 141 \\ & (3) 28 \end{aligned}$	5901	(0)142
5634	(3)28			5910	(0) 142
5635	(0)140	5726	$\begin{aligned} & (0) 141 \\ & (3) 28 \end{aligned}$		(0)142   (3)29
				5915	
5636	(0)140	5727	(3)29		
5637	(3)28	5731	(0)141	5930	(3)29
5638	(3)28	5732	(3)29	5931	$\begin{aligned} & (0) 142 \\ & (3) 29 \end{aligned}$
5641	(3)50*	5744	(0)141	5932	$(0) 142$   (3) 29
5642	(1)44	5749	(3)29		
5643	(0)140	5750	(3)29	5933	(3)29
5646	(0)140	5751	(3)29	5961	(3)29
5647	(0)140	5751WA	(3)29	5963	(3)29
5654	$\begin{aligned} & (0) 140 \\ & (3) 28 \end{aligned}$	5783	(0)141	5964	(3)29
5670	$\begin{aligned} & (0) 140 \\ & (2) 12 \\ & (3) 28 \end{aligned}$	5784	(0)141	5965	(3)29
		$5785 \quad(0) 141$		5992	(3)30
5670WA	(3) 28	5787	$(0) 141$	$6005$	(3) 30
5672	(0)140	$5812$			(3)30
5676	(0)140	5814	(3)29	6006	(3)30
5677	(0)140	5823	(0)141	6046	(3)30
5678	(0)140	5824	$\begin{aligned} & (0) 141 \\ & (3) 29 \end{aligned}$	6057	(3)30
5679	$\begin{aligned} & (0) 140 \\ & (3) 28 \end{aligned}$	5838	(3)29	6058 6059	(3)30 (3)30
5686	(0)140	5839	(3)29	6060	(3)30
5687	(0)140	5840	$\begin{aligned} & (0) 141 \\ & (3) 50^{*} \end{aligned}$	6061	(3)30
5691	(0)140	5847	(0)141	6063	(3)30
5692	$\begin{aligned} & (0) 141 \\ & (3) 28 \end{aligned}$	5861	(3)50*	6064	(3) $30,50^{*}$
5693	(0)141	5871	(3)29	6065	(3)30, 50*
5694	(0)141	5879	(0)141	6066	(3) 30
5697	(0)141	5881	$\begin{aligned} & (1) 44 \\ & (3) 29 \end{aligned}$	6067	(3)30
5702	(0)141	5896	(0)141	6072	(3)30
5703	(0)141	5897	(0)141	6095	(3) 30
5704	(0)141	5898	(0)142	6096	(3)30
5718	$\begin{aligned} & (0) 141 \\ & (3) 50^{*} \end{aligned}$	5899	$\begin{aligned} & (0) 142 \\ & (3) 29,50^{*} \end{aligned}$	6097	(3)30
5719	(0)141	5900	$\begin{aligned} & (0) 142 \\ & (3) 29 \end{aligned}$	$\begin{aligned} & 6101 \\ & 6113 \end{aligned}$	$\begin{aligned} & (3) 30 \\ & (3) 30 \end{aligned}$
5722	(0)141				

THIRD SUPPLEMENT_RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
6132	(3)31	6360	(3)50*	6680	(3)31
6134	(3)31	6373	(3)50*	6681	(3)31
6135	(3)31	6374	(3) $50{ }^{*}$	7000	$\begin{aligned} & (0) 144 \\ & (3) 31 \end{aligned}$
6136	(3)31	6375	(3)50*		
6137	(3)31	6485	(3)31	7700	(0)144
6180	(3)31	6487	(3)50*	9001	(0)142
6186	(3)31	6488	(3)50*	9002	(0)142
6187	(3)31	6489	(3)50*	9003	(0)142
6189	(3)31	6550	(3)31	9004	(0)142
6201	(3)31	6661	(3)31	9005	(0)142
6202	(3)31	6662	(3)31	9006	(0)142
6252	(3)50*	6663	(3)31	KT66	(1)43
6265	(3)31	6669	(3)31	X6030	(0)142
6267	(3)50*	6677	(3)31	XXD	(1)44
6350	(3)31	6679	(3)31	XXFM	(0)142
				XXL	(0)142

PICTURE TUBES

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
7 CP 4	$(3) 34$	10 FP 4 A	$(2) 15$	12 TP 4	$(2) 17$
7 DP 4	$(3) 34$	10 MP 4	$(2) 15$	12 UP 4	$(2) 17$
7 HP 4	$(2) 15$	10 MP 4 A	$(2) 15$	12 UP 4 A	$(2) 17$
7 NP 4	$(2) 15$	12 JP 4	$(2) 16$	12 UP 4 B	$(2) 17$
7 QP 4	$(2) 15$	12 KP 4	$(2) 16$	12 VP 4	$(2) 17$
7 WP 4	$(2) 15$	12 KP 4 A	$(2) 16$	12 ZP 4	$(3) 34$
8 AP 4	$(2) 15$	12 LP 4	$(2) 16$	14 BP 4	$(2) 18$
8 AP 4 A	$(2) 15$	12 LP 4 A	$(2) 16$	14 BP 4 A	$(2) 18$
10 BP 4	$(2) 15$	12 QP 4	$(2) 16,17$	14 CP 4	$(2) 18$
10 BP 4 A	$(2) 15$	12 QPP 4 A	$(2) 16,17$	14 DP 4	$(2) 18$
10 CP 4	$(2) 15$	$(2) 15$	12 RP 4	$(2) 17$	14 EP 4
10 EP 4			14 FP 4	$(2) 18$	
10 FP 4	$(2) 15$			14 HP 4	$(2) 18$


TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
14QP4	(3)34	16YP4	(2)22	19GP4	(2) 24
15AP4	(2) 18	16ZP4	(2)22	19JP4	(2) 24
15 CP 4	(2)18	17AP4	(2) 22	20 CP 4	(2) 24
15DP4	(2) 19	17ATP4	(3)34	20CP4A	(2) 24
16AEP4	(3)34	17AVP4	(3) 34	20 CP 4 C	(2) 24,25
16AP4	(2) 19	17 BP 4	(2) 22	200P4	(2) 25
16AP4A	(2)19	17BP4A	(2) 22	20DP4A	(2) 25
16 CP 4	(2) 19	17BP4B	(2) 22	20 FP 4	(2) 25
16DP4	(2) 19	17BP4C	(2) 22	20GP4	(2) 25
16DP4A	(2) 19	17CP4	(2) 22	20HP4	$\begin{aligned} & (2) 25 \\ & \text { (3) } 34 \end{aligned}$
16EP4	(2) 19	17CP4A	(2) 22	2HP4B	(2) 25
16EP4A	(2)19	17FP4	(2) 23	20LP4	(3) 34
16EP4B	(2) 19	17FP4A	(2) 23	20MP4	(3) 34
16FP4	(2) 19	17HP4	(2) 23	21ACP4	(3) 34
16GP4	(2) 19	17HP4A	(2) 23	21AFP4	(3)34, 35
16 HP 4	(2) 19	17JP4	(2) 23	21ALP4	(3)35
16HP4A	(2) 19	17KP4	(2) 23	21AMP4	(3)35
16JP4	(2) 19,20	17LP4	(2) 23	21AMP4A	(3)35
16JP4A	(2)19, 20	17LP4A	(2) 23	21ANP4	(3) 35
16KP4	(2) 20	17 QP 4	$\text { (2) } 23$	21AP4	(3)35
16 KP 4 A	(2) 20		(3)34	21AQP4	(3)35
16LP4	(2) 20	17RP4	(2) 23	21AQP4A	(3)35
16LP4A	(2) 20	17SP4	(2) 23	21ARP 4	(3)35
16MP4	(2) 20	17UP4	(2) 23	21ARP4A	(3)35
16 MP 4 A	(2) 20	17 VP 4	(2) 23	21ASP4	(3)35
16QP4	(2) 20	17YP4	(3)34	21ATP4	(3)35
16 RP 4	(2) 20	19AP4	(2) 24	21ATP4A	(3)35
16SP4	(2) 21	19AP4A	(2) 24	21AUP4	(3) 36
16SP4A	(2) 21	19AP4B	(2) 24	21AUP4A	(3) 36
16 TP 4	(2) 21	19AP4C	(2) 24	21AUP4B	(3) 36
16UP4	(2) 21	19AP4D	(2) 24	21AVP4	(3) 36
16 VP 4	(2)21	19DP4	(2) 24	21AVP4A	(3)36
16WP4	(2) 21	19DP4A	(2) 24	21AVP4B	(3) 36
16WP4A	(2) 21	19EP4	(2) 24	21AYP4	(3)36
16XP4	(2) 22	19FP4	(2) 24	21BSP 4	(3) 36

THIRD SUPPLEMENT_RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
$21 E P 4$	$(2) 25$	21 YP 4 A	$(3) 36$	24 VP 4 A	$(3) 37$
21 EP 4 A	$(2) 25$	21 ZP 4	$(2) 26$	24 XP 4	$(3) 37$
21 EP 4 B	$(2) 25$	21 ZP 4 A	$(2) 26$	24 YP 4	$(3) 37$
21 FP 4	$(2) 25$	22 AP 4	$(2) 26$	24 ZP 4	$(3) 37$
21 FP 4 A	$(2) 26$	22 AP 4 A	$(2) 26$	27 AP 4	$(3) 37$
$21 \mathrm{JP4}$	$(3) 36$	24 AP 4	$(2) 26$	27 EP 4	$(2) 26$
21 JP 4 A	$(3) 36$	24 AP 4 B	$(2) 26$	27 GP 4	$(2) 26$
21 KP 4	$(2) 26$	24 BP 4	$(3) 37$	27 MP 4	$(3) 37$
21 KP 4 A	$(2) 26$	24 CP 4	$(3) 37$	27 NP 4	$(2) 26$
21 MP 4	$(3) 36$	24 DP 4	$(3) 37$	27 RP 4	$(2) 26$
21 WP 4	$(2) 26$	24 QP 4	$(3) 37$	27 SP 4	$(3) 37$
21 XP 4	$(3) 36$	24 TP 4	$(3) 37$	27 UP 4	$(3) 37$
21 XP 4 A	$(3) 36$	24 VP 4	$(3) 37$	30 BP 4	$(3) 37$
21 YP 4	$(3) 36$				

## EUROPEAN TUBES

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
B36	$(3) 38$	DC80	$(3) 38$	DK92	$(3) 38$
B65	$(3) 38$	DCC90	$(3) 38$	DK96	$(3) 39$
B152	$(3) 38$	DD6	$(3) 38$	DL33	$(3) 39$
B309	$(3) 38$	DD7	$(3) 38$	DL35	$(3) 39$
B319	$(3) 38$	DF33	$(3) 38$	DL36	$(3) 39$
B329	$(3) 38$	DF62	$(3) 38$	DL91	$(3) 39$
B719	$(3) 38$	DF91	$(3) 38$	DL92	$(3) 39$
D63	$(3) 38$	DF92	$(3) 38$	DL93	$(3) 39$
D77	$(3) 38$	DF96	$(3) 38$	DL95	$(3) 39$
D152	$(3) 38$	DH63	$(3) 38$	DL96	$(3) 39$
DA90	$(3) 38$	DH77	$(3) 38$	DM70	$(3) 39$
DAC32	$(3) 38$	DH149	$(3) 38$	DP61	$(3) 39$
DAF91	$(3) 38$	DK32	$(3) 38$	DY30	$(3) 39$
DAF96	$(3) 38$	DK91	$(3) 38$		
DC70					


TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
EA76	(3)39	EF92	(3) 40	H63	(3)41
EAA91	(3) 39	EF93	(3)40	HBC90	(3)41
EABC80	(3)39	EF94	(3)40	HBC91	(3) 41
EB34	(3) 39	EF95	(3)40	HD14	(3)41
EB91	(3) 39	EF96	(3)40	HD30	(3)41
EBC33	(3) 39	EH90	(3)40	HF93	(3)41
EBC90	(3) 39	EK90	(3)40	HF94	(3)41
EBC91	(3) 39	EL33	(3)40	HK90	(3)41
EBF80	(3) 39	EL34	(3)40	HL90	(3)41
EC70	(3) 39	EL37	(3)40	HL92	(3) 41
EC80	(3) 39	EL38	(3)40	HM04	(3) 41
EC81	(3) 39	EL70	(3)40	HY90	(3)41
EC90	(3) 39	EL81	(3)40	KBC32	(3) 41
EC91	(3) 39	EL83	(3)40	KF35	(3) 41
EC92	(3) 39	EL84	(3) 40	KK32	(3) 41
ECC33	(3) 39	EL85	(3)40	KL35	(3) 41
ECC35	(3) 39	EL90	(3) 40	KT32	(3) 41
ECC81	(3) 39	EL91	(3)40	KT63	(3) 41
ECC82	(3) 39	EL821	(3)40	KT66	(3) 42
ECC83	(3) 39	EM34	(3) 41	KT81	(3) 42
ECC85	(3) 39	EM80	(3)41	KTW63	(3) 42
ECC91	(3) 39	EN91	(3)41	L63	(3) 42
ECF82	(3) 40	EQ80	(3)41	L77	(3) 42
ECH 35	(3) 40	EY51	(3) 41	LN 152	(3) 42
ECH81	(3) 40	EY70	(3)41	LZ319	(3) 42
ECL80	(3) 40	EY80	(3)41	N 14	(3) 42
ECL82	(3) 40	EY84	(3)41	N 17	(3) 42
EF70	(3) 40	EZ35	(3)41	N18	(3) 42
EF71	(3) 40	EZ80	(3)41	N19	(3) 42
EF72	(3) 40	EZ81	(3)41	N77	(3) 42
EF73	(3) 40	EZ90	(3)41	N78	(3) 42
EF80	(3) 40	GZ30	(3) 41	N 144	(3) 42
EF85	(3) 40	GZ32	(3) 41	N 148	(3) 42
EF86	(3) 40	GZ34	(3)41	N 152	(3) 42
EF91	(3) 40	H52	(3)41	N329	(3)42

THIRD SUPPLEMENT-RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	PAGE	TUBE	PAGE	TUBE	PAGE
N359	(3)42	U52	(3)43	X81	(3)43
N709	(3)42	U70	(3)43	X148	(3)43
PABC80	(3)42	U78	(3)43	Y61	(3)43
PCC84	(3)42	U 147	(3)43	Z14	(3)43
PCC85	(3)42	U 149	(3)43	Z63	(3)43
PCF80	(3)42	U154	(3)43	Z77	(3)43
PCF82	(3)42	U319	(3)43	Z152	(3)43
PL21	(3)42	UBC41	(3)43	Z179	(3)43
PL81	(3)42	UCH42	(3)43	ZD17	(3)43
PL82	(3)42	UF41	(3)43	ZD19	(3)43
PL83	(3)42	W17	(3)43	1F3	(3)43
PY80	(3)42	W63	(3)43	1FD9	(3)43
PY81	(3)42	W77	(3)43	1P10	(3)43
PY82	(3)42	W149	(3)43	6A7E	(3)43
QQV03-10	(3)42	W179	(3)43	6D2	(3)44
QQV03-28	(3)42	X14	(3) 43	6 F 12	(3)44
QV05-25	(3)42	X17	(3)43	8D3	(3) 44
SP6	(3)42	X18	(3)43	30 C 1	(3)44
TD03-10	(3) 43	X63	(3)43	30L1	(3)44
U50	(3)43	X79	(3)43		


[^0]:    1J. F. Rider and S. D. Uslan, Encyclopedia on Cathode-Ray
    Oscilloscopes and Their Uses, John F. Rider Publisher, Inc., New York, N. Y., 1950, pp. 389-401.

[^1]:    (3)

    3C
    
    3G

[^2]:    Type GV hos TAF bnse.

[^3]:    With input choke of at least 20 herrys.
    ${ }^{1}$ With input choke of at le
    ${ }^{2}$ Tapped for pilof lomps.
    ${ }^{3}$ Per poin with cho
    ${ }^{5}$ With 100 ohms min. resistance In series with plate; witheut series resistor, maximum r.m.s. plate rating is 117 volits.

[^4]:    - Same as $872 \mathrm{AA} / 372$ excepl for heavy -duty push-type base. Filament connected to pins 2 and 3, plate to top cap.
    Choke input.
    Without panel lamp.
    - Using only ene-half of filament.
    ${ }^{10}$ Discentinued.

[^5]:    * Indicates VT number has been canceled.

[^6]:    * Indicates VT number has been canceled.

