j oo How to
—— |Design G

build Your Own

- Custom TV Games

Dy Davld L. Helserman

No. 1101
$15.95

How to
| Design G

led Your Own

Custom TV Games

By David L. Heiserman

TAB TAB BOOKS Inc.

BLUE RIDGE SUMMIT, PA. 17214

FIRSTEDITION

FIRST PRINTING—NOVEMBER 1978
SECOND PRINTING—APRIL 1980
THIRD PRINTING—APRIL 1981

Copyright © 1978 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect
totheuse of the information herein.

Library of Congress Cataloging in Publication Data

Heiserman, David L. 1940-
How to design and build your own custom TV games.

Includesindex.
1. Video games—Equipment and supplies—Design and
constructionr—Amateur's manuals. |. Title.
TK9971.H44 688.7'28 78-11389
ISBN 0-8306-9859-0
ISBN 0-8306-1101-0 pbk.

] How to
—— | Design &
DUIId Your Own
Custom TV Games

Dedication

This book is dedicated to the growing number of young women
who have the motivation and courage to join the ranks of skilled
digital electronics technicians and engineers.

Other TAB books by the author:

No. 714 Radio Astronomy for the Amateur
No. 841 Build Your Own Working Robot
No. 971 Miniprocessors: From Calculators to Computers

Preface

America is a nation accustomed to fads. Novel ideas and products
catch on rather quickly, sweeping the country with new products and
services. More often than not, these fads gradually change form or
fade away with time.

TV games had all the earmarks of being one of these fads at
first. Once the idea caught on, video game products captured the
fancy of all sorts of people —people willing to put out $50, $60 or, in
some cases, more than a $100 to play the fascinating little games in
their own homes.

But it appears that TV games are here to stay. The games are
becoming more sophisticated and diverse, and product sales
skyrocket every Christmas. What's more, commercial, coin-
operated versions have already transformed the game arcade indus-
try into something totally new and different. It now seems that video
games are replacing the pinball machine as America’s number-one
arcade game.

This is a book about TV games. It shows how they work and,
more importantly, how to design and build custom versions. This
book is not merely a collection of complete TV game circuits. To be
sure, there are a number of complete game circuits presented as
design examples; the real emphasis is on designing and building
custom TV games. In fact the reader will loose much of the fun of the
whole thing by simply copying the circuits shown here.

The whole idea of the book is to release the reader’s creative
nstincts, transforming them into custom games that are a delight to

the designer as well as others who have an opportunity to enjoy
them.

The game systems as they are presented here might seem
rather cumbersome compared to the slick, cassette-programmed
game systems on the market today. But how creative can one be
with someone else’s prescribed programs? Sure it is possible to get a
dozen games on one program tape, but it really doesn’t take long to
want more. The game-design scheme presented in this book is
wholly open-ended —there is no real limit to the number and types of
games that can come from it. It's all a matter of learning how to
design the games and exercising some degree of creativity and
imagination.

It is not necessary to have a great deal of know-how concerning
digital electronics to begin the work in this book. The first few
chapters have been planned with the digital novice in mind. As the
work progresses, however, the need for learning more about basic
digital electronics becomes more apparent. Unfortunately, a book of
this size cannot stand up as both a design manual for video games and
a text book on basic digital electronics.

While the information regarding game design is thus adequate
for building custom games of any sort, a reader not fully acquainted
with basic digital electronics will eventually become lost without the
aid of a good digital reference text. This, however, should not
discourage a beginner in the digital business. Rather, it should
provide some motivation and direction for learning more about digital
electronics in general.

What better way to learn digital electronics than by seeing each
newly learned fact transformed into moving image on the TV
screen?

David L. Heiserman

Contents

Special Notes to the Readercccccveicericinnsiennsssnsincisseneivenees 9

1 Television and Television GAMEScccervevervsnisanesns vesvenens 11
The TV Raster—The Basic Video Game System—How to Use
This Book—Locating Parts—Assembling the Systems

2 The Sourcebox Unit.......... veennnnnes rereeesnneneeennntansnns SUURRR |
Sourcebox Organization—Power Supply—Horizontal Source
Board—Vertical Source and Composite Video Board—The RF
Modulator—Some Mechanical Considerations

3 Building Static Figures............ PO T r OO OO0 . 39
Lines and Bars Directly From the Count Sources—The Line/Bar
Tinkerbox—Building Widely Separated Parallel Lines and
Bars—Building Rectangles—Combining Any Numbers of Static
Figures on the Screen—Some Interesting Patterns From Static-
Figure Components

4 Building More-Complex Static Figures.............. verervneeres . 19
Complex-Figure Tinkerbox—The Address Matrix Concept—
Matrix Operations From 64-Celi Generators—Multiplying the
Number of Identical Images on the Screen

5 Building Motion-Control Circuits.........ccccevereeesenssenrenenans .. 137
Motion-Control Tinkerbox—Simple Piayer-Controlled Motion—A
Game of Tag—Adding “inertia” to the Player Controls—Manual
Control of Complex Figures—Automatic Figure Motion

6 Some Useful Game Control Schemes........ccceeeeeeieeanens weeee 181
Game Start/Reset Controls—Figure-Contact-Sensing Circuits—
Initializing Figure Motion Controls—A Basic Missile Attack
Game—Programming Variable [nitiai Positions, Speed and
Direction—The Tagalong Feature

10
11

12

A Collection of War GaMeScccersnresnnnecssrararsssassssasssssnnes 233
Missile Attack ll—Torpedo Attack—Dogfight

Programmable Position and Motion Controls................c... 307
A Programmable Figure Position Control —Universal Position
Programmers—Nine Holes of Golf—Ambush—Stormtrooper At-

tack

Scoring and TimeKeeping ...cvseresssnnmsssnsssensosaresaassanssannas 381
Generating Numeric Characters—Digit-Generator CerUItS—
Scorekeeping Circuits—Timekeeping Circuits—Retrofitting Scor

ing and Timekeeping to Existing Games

Figure Rebound Effectsc.cccccrcmnccnnerernnsnvoncens S e 417
A Flexible Rebound Control System—A Pinball Game

Animation and Rotation of Complex Figures........c.cceereunes 451
Figure Animation—Figure Rotation——Combining Rotation and Fi-

gure Motion Across the Screen -,

Sound Effects..........eu.... U, e 495

Tones From the V-Count Signals—Sounds From Sources Other
Than V-Count Sources

Appendices
1-Binary Outputs.............. R —— TR S veeeeee D07
2-Digital Integrated Circuits.............. vmsesenessninsnsensanranas 519
Index........ R — T T crorTTTT OO OO oY 541

Special Notes to the Reader

» FCC regulations prohibit connecting the output of any rf
source to an external antenna. The antenna must be com-
pletely disconnected from the TV receiver before any of
the video circuits described in this book are connected to
the set via rf modulators.

» While most of the circuits in this book have been orginated
by the author, one or more circuits, techniques, and names

of games may be covered by current U.S. patents and
trademarks.

Chapter 1

Television and Television Games

Television has been an important part of home life in America for
better than 25 years now, but television games, in their most popular
forms, have been around for only a few years. It might seem that TV
games could have been invented in the very early days of TV
technology, but they were not. Why not? Because the right kind of
game technology wasn’t available at an affordable cost until recently.

This chapter describes the technologies of TV and TV games,
showing in a very general way how modern TV games are interfaced
with conventional TV receivers. Without at least a basic understand-
ing of the interfacing problems, an experimenter can have little hope
for designing custom TV games. One might be able to duplicate
some of the specific game circuits shown in this book, but without
that overall view of what-the system is doing, the whole point of
investing money in this book will be lost.

THE TV RASTER

In the simplest terms, the TV raster is that pattern of fine
horizontal lines that can be seen on the screen of a TV receiver. The
set generates these lines whether it is tuned to a station or not. The
raster generating process is built into the TV set itself.

Asindicated in Fig. 1-1a, the raster is drawn on the screen, one
horizontal line at a time, beginning near the upper left-hand corner
and progressing toward the lower right-hand corner. Each horizon-
talline is drawn on the screen from left to right. As the beam reaches

11

the right-hand edge, it is first blanked off and then sent back to the
left-hand edge to begin the next scanning operation.

This horizontal scanning operation continues until the beam
reaches the lower right-hand edge, at which time it is blanked off and
returned to the top to begin a new framing sequence.

The raster as it appears on the screen is thus a series of straight
lines that result from two different kinds of operations: a relatively
fast horizontal scan, combined with a relatively slow vertical scan.
The horizontal scanning is responsible for moving the beam from left
toright, and the vertical scanning is responsible for setting each line
a bit below the previous one.

Figure 1-1b shows the sort of sawtooth waveform that is used
for both horizontal and vertical scanning. As the sawtooth level rises
with time, the beam responds by moving a proportional distance
across the screen. Two such waveforms are required, one for the
horizontal- and another for the vertical-scanning operations.

The only difference between the horizontal- and vertical-
sawtooth waveforms is their frequency. The horizontal sawtooth
waveform runs at a frequency on the order of 15,750 Hz, while the
vertical version runs at about 60 Hz. It can be reckoned from these
figures that there are 262.5 horizontal scan lines for each vertical
scan. The American television scheme, however, uses an interlaced
scanning technique calling for two complete vertical scans for one
frame.

The framing rate is thus 30 Hz, and there are 525 horizontal
lines (262.5 on the first field and another 262.5 on the interlaced
field) in each complete frame.

None of the TV game schemes in this book use interlaced
scanning, so the figures relevant to our purposes are the 15,750 Hz
horizontal-scanning rate and the 60-Hz vertical-scanning rate.

The horizontal- and vertical-sawtooth waveforms are gener-
ated within the receiver by the horizontal and vertical oscillators.
When receiving a TV signal from a broadcast station or TV game
system, these oscillators must be synchronized in order to hold the
picture together properly. Vertical rolling or horizontal tearing of a
video signal are familiar signs of a loss of sync from the incoming
video signal.

Figure 1-1c shows a typical video signal as it arrives from a
conventional TV station. The horizontal-sync pulses ride in a pig-
gyback fashion on the horizontal-blanking pulses. Since there are far
more horizontal-scanning operations than vertical ones, it follows
that the composite video signal is dominated by horizontal sync and
blanking pulses.

12

i 5 UNITS ~i

T PR g~ —
—_——]
—==——t— — = "1 SCANLINES

/*/
A -
UNITS HORIZONTAL
RETRACE
X
SCAN
RETRACE

HORIZONTAL FREQUENCY = 15,750 Hz
VERTICAL FREQUENCY = 60 Hz

B

HORIZONTAL
SYNC

BL“"“*#LMHZJLJ S W |
WHITE—> VERTICAL

/ HORIZONTAL SYNC AND BLANK

BLANK
VIDEO C
INFORMATION
HOR. > HOR.
OSC. AMP
A HORIZONTAL
HORIZONTAL DEFLECTION COIL
" SYNC
VIDEO VIDEO
—)‘ L.
TUNER DETECTOR AMP
AND
IF STAGES
VERTICAL VIDEO
SYNC ™ AND
BLANKING
y SIGNALS VERTICAL
DEFLECTION
COIL
VERT. o | VERT.
0SsC. AMP

Fig. 1-1. Generating the TV raster. (a) The basic raster as it appears on the
screen. (b) The sawtooth waveform characteristic of horizontal and vertical
raster scanning. (¢) A composite video waveform. (d) TV receiver block diagram
showing sections relevant to TV games.

13

The broad vertical sync and blanking pulse in Fig. 1-1c carries
horizontal-sync pulses along its top. This is a feature that is neces-
sary for maintaining horizontal sync during the relatively long verti-
cal retrace time. Without maintaining horizontal sync during this
time, the picture would tend to be torn out of sync in the upper
left-hand corner of the screen, the place where the beam is located
when it is no longer blanked.

The block diagram in Fig. 1-1d shows the portions of a TV
receiver that are especially relevant to TV games. Horizontal- and
vertical-sync pulses are taken from the video amplifier and are used
for synchronizing their respective sawtooth oscillators. Once the
sawtooth waveforms have been amplified, they are applied to sets of
coils (the yoke) around the neck of the CRT. The magnetic fields
thus generated are responsible for positioning the electron beam.

The actual video information and blanking signals are applied to
the cathode of the CRT to modulate the brightness of the beam. The
blanking pulses have a polarity that cuts off the beam completely.
Lower voltages create varying degrees of gray and white. Referring
to the composite video waveform in Fig. 1-1c, the “black” voltage
levels are near the top, while the “whites” are near the bottom.

The video information, tucked between each horizontal-
blanking pulse, thus creates shades of gray, the lower the voltage
level, the whiter the spot on the screen.

This is hardly a complete description of the TV system, but it
does touch upon those principles relevant to understanding the
operation of TV games. Readers interested in more details about TV
systems should consult a good TV textbook.

THE BASIC VIDEO GAME SYSTEM

The whole point of the video game system is to create images
on the screen that have shapes and motions relevant to a particular
game scheme. These images, however, must be created in the
context of a conventional TV system, and that means generating
horizontal- and vertical-sync/blank pulses as well as game video
information.

It turns out that the game system must be under the control of
its sync pulses at all times, so it is important to have a reliable and
accurate source of such pulses, not only for operating the game, but
also for controlling the beam on the screen of a conventional TV
receiver.

The whole game system is ultimately synchronized by a crystal
oscillator. In this particular case, the oscillator runs at 14 MHz. The

14

14-MHz pulses from the oscillator operate a 9-bit binary counter that
ultimately yields the 15,750-Hz pulses required for horizontal syn-
chronization. During the counting interval, however, the
horizontal-count circuit generates a distinctive pattern of binary
numbers that actually indicate the horizontal position of the beam on
the screen. See Fig. 1-2.

The 15,750-Hz output of the horizontal-counting circuit clocks
yet another 9-bit binary counter, the vertical-count circuit. This
circuit utlimately produces the necessary 60 Hz vertical-sync pulse,
but in the meantime, it also generates a 9-bit binary code that
indicates the vertical position of the beam on the screen.

In a manner of speaking, then, the TV game system always
knows exactly where the beam is situated on the CRT screen. A pair
of 9-bit binary numbers indicate the coordinates in a manner quite
similar to the x, y coordinates of a conventional graphing scheme.

Since the game system knows where the beam s located at any
given moment, it is possible to generate white or black video levels
to create images on the CRT.

Notice in Fig. 1-2 that the sync pulses, blanking pulses, and
game video information are combined to create the composite video
signal. The only step remaining after that is to place the signal onto
an rf carrier that will feed it through the tuner section of a conven-
tional receiver. The rf modulator, incidentally, can be omitted from
the system if the composite signal is applied directly to the video
amplifier in the TV set. This calls for some surgery on the receiver
circuitry, and many experimenters are unable or unwilling to do that
sort of job.

As far as this book is concerned, the bulk of the circuits blocked
out in Fig. 1-2 is the same for every game. Only the game video
generator and external game controls change. Most of the circuitry
is thus built into a permanent unit called the Sourcebox unit. This
particular part of the system is described in great detail in Chapter 2.
The remainder of the book deals with experiments, examples, and
design hints for the game video generator and external game con-
trols, units that are plugged into the standard Sourcebox.

HOW TO USE THIS BOOK

This book leads the prospective TV game designer through a
series of experiments, examples, and hints that are all intended to
make game design possible and fun for just about anyone willing to
make the effort. Generally speaking, the material (or “lessons,” if
you will) are presented in order of importance. It would be difficult,

15

‘weibep 3o0iq walsAs sweb AL oseq ay) ‘2-1 ‘B4

TVNDOIS SIOHLNOD
O3aiA C JAVD
311SOdWOD IYNYILX3
a3aLvINAow O3dIA ANYD HOL1vHINTD
U O3AIA INYD AL
; uNoIS LNNOD AHVYNIEG
3J1ISOdWOD v TYIILHIA
\ . \W Joslg6
SNYIE "1H3IA | 1
YIXIN
03aiA 'NID
L | Y g xzimom_ﬂm INNOD
IYDILHIAA
MNVE IvDILHIA \
"“ONAS
ONAS "LH3A ZH 09 1NNOD
HOLYINAoOW YNVY18 "HOH AHYNIG TVLNOZIHOH
y JosLg6
ONAS "HOH
N3O (ZHN +1)
MNVE ANV INNOD L] 550
- ONAS TYLNOZIHOH
IYINOZIHOH N TVLSAHO
ZH 0S.'St

16

for instance, to begin your study of TV games in the middle of the
book, because each chapter assumes an understanding and some
experience with the ideas presented in all the previous chapters.

Build up the systems one step at a time, performing the
suggested experiments and trying some of your own. Hands-on
experience is the key to designing games of your own, and the only
way to get that kind of experience is by doing the work suggested
here.

LCCATING PARTS

Most of the parts specified in this book are available from stores
such as Radio Shack. In many instances, Radio Shack part numbers
are specified for the benefit of experimenters who are not fully
acquainted with other sources and substitution procedures.

Not all parts are available from Radio Shack, but it is not difficult
to locate them from the many mail-order houses advertising surplus
in newsstand electronics magazines.

ASSEMBLING THE SYSTEMS

There are few specific notes in this book concerning the final
assembly of game circuits. It is left to the experimenter to devise
clever assemblies of his or her own, thereby removing the limita-
tions on fun and imagination that characterize commercially available
TV game systems.

Of course this approach puts something of an extra burden on
the beginner, but what better way to learn than by doing?

17

Chapter 2
The Sourcebox Unit

The Sourcebox unit described in this chapter contains all the cir-
cuitry common to virtually all the TV games described in this book. It
is the interface unit that stands between the game itself and the TV
receiver. The Sourcebox unit, for instance, generates all the sync
and blanking signals that synchronize both the TV raster and the
game operations. Unless this system is built and made to operate
properly, the experimenter cannot hope to make any real progress
in his or her understanding of anything else that follows.

This chapter describes the theory of operation, shows com-
plete circuit detail, and provides some practical hints on construc-
tion. The opening section of Chapter 2 gives the experimenter an
opportunity to test the system.

The block diagram in Fig. 2-1 shows the basic circuits contained
in the Sourcebox unit. The purpose of each block might be self-
evident to anyone who has made a thorough study of the material in
Chapter 1. The following sections of this chapter, however, describe
the purpose and theory of each block in some detail. The construc-
tion hints are inserted at appropriate places in the discussion, rather
than at the end of the chapter.

SDURCEBOX ORGANIZATION

The Sourcebox unit is organized into 10 basic circuits as de-
scribed here:

1. Power supply—The power supply provides DC voltage
levels to all of the circuits in the Sourcebox unit as well as

19

plug-in game modules and the so-called tinkerboxes
(breadboard units intended for self-learning experiments
and game design). With the notable exception of the
+1.5-V supply voltage for the rf modulator, the power
supply gets its power from a standard 120-VAC, 60-Hz
source. ‘

2. 7-MH2z oscillator—This is the master clock oscillator for
the entire TV game system. For best results, this should
be a crystal-controlled, 14-MHz oscillator, followed by a
toggling flip-flop that both divides the crystal frequency by
two and assures a clean, 7-MHz HCLK waveform.

3. Horizontal-count source—The horizontal-count source
generates a 9-bit binary counting code that divides the
game screen into 455 equal horizontal segments. Each
horizontal scan line on the screen is thus divided into 455
discrete sections, each of which is capable of rendering one
bit of horizontal video information.

The nine binary-counting outputs are labeled 1H, 2H,
4H, 8H, and so on through 256H, with 1H being the
least-significant (highest-frequency) output and 256H
being the most-significant output bit.

The horizontal-count source also generates an HRST
(Horizontal ReSeT) pulse that is used for clocking the
vertical-count source and synchronizing the operation of
some game circuits. An inverted version of this positive-
going HRST pulse, designated HRST, is used for generat-
ing horizontal-sync pulses.

4. Horizontal sync and blanking generator—The inverted
HRST pulse from the horizontal-count source is converted
to horizontal sync and blanking pulses in this part of the
Sourcebox unit. The horizontal-sync pulse (HSYNC) ulti-
mately triggers the TV’s horizontal retrace operation. The
horizontal-blanking pulse (HBLANK) is likewise used for
blanking horizontal retrace on the TV screen and for cer-
tain kinds of control operations for the video games.

5. Vertical-count source—The vertical-count circuit is almost
identical to its horizontal counterpart. It generates a 9-bit
binary count that divides the receiver’s raster into 262
vertical segments, or lines. In a manner of speaking, this
circuit provides information regarding the position of the
TV’s beam in the vertical sense.

Like the horizontal-count source, the nine outputs are
labeled 1V through 256V, with 1V being the least-

‘HUN X0QqaoINos auy} jo weibep yooig °1-g ‘b4

HOLYH3ANID
ONINYE
GNV ONAS
an o WOILHIA N
HINVIIS oanvy fe—0 1SHH
-anol JINVDO . 30HNOS |
mi INNOD-TVOILHIA
O30IA ONASA :
1NdNI EN)
YNNILNY |
AL OL < < N2 oW omoa N =
03alA ® 2 gR2p2<< <<
g A HIXIN HIXIW > o 22<<
03aIA ONAS |2
/ 1S4H ’
HOLYINQOW ONASH ===
e O30A ONAS ,_
311SOdNOD -
311SOdNOD e CeTeR
WNOD +——— y . LNNOD-TV.INOZIHOH \
/ | onr
AS+'O3d m.» Alddns HOLVT9SO
HILSVI
(HOLYINQOW HIMOd | OVAOZH \ M LA TN
) Y-S A — HOLVHINTD I 2R m m 22123 3
ONI¥NVIE - 4 %
ONV ONAS 2

AVLINOZIYOH

21

significant bit. The circuit also generates a vertical-reset
pulse (VRST) that is used for clocking the vertical sync and
blanking generator as well as some of the game circuits.

6. Vertical sync and blanking generator—This circuit gener-
ates vertical sync and blanking pulses. The vertical-sync
pulse ultimately initiates vertical retrace of the TV’s elec-
tron beam. The vertical-blanking pulse (VBLANK) is used
for blanking the beam through vertical retrace and operat-
ing some of the game circuits.

7. Sync mixer —The sync mixer circuit combines the horizon-
tal and vertical sync and blanking pulses to create a compo-
site sync signal. This signal is practically identical to the
sync signals from commercial TV stations. There is one
important exception, however; this system does not have
provisions for interlaced scanning. Few video games call
for the higher degree of image resolution that charac-
terizes commercial interlaced scanning.

8. Video mixer—The video mixer combines the sync and
blanking pulses with game video information to provide a
complete, composite video signal.

9. RF modulator—The rf modulator is responsible for
amplitude modulating the composite video signal with an rf
frequency tuned to TV channels 2, 3, or 4. This part of the
Sourcebox unit makes it possible to connect the game
system to the VHF antenna terminals of any standard TV
receiver.

NOTE: FCC REGULATIONS PROHIBIT CONNECT-
ING THE OUTPUT OF ANY RF MODULATORTO THE
TERMINALS OF AN EXTERNAL ANTENNA. The an-
tenna must be disconnected before the modulator is fixed
to the TV receiver.

10. Audio amplifier—The audio for TV games is not carried via
the composite TV signal through the receiver’s own audio
system. Any audio special effects for a TV game are gener-
ated by the game system and merely amplified and repro-
duced by a small loudspeaker in the Sourcebox unit.

POWER SUPPLY

The power supply, illustrated in Fig. 2-2, services both the
Sourcebox unit and external game circuits. This is a conventional IC
power supply, taking its main power from the utility lines and

22

‘weibep oneweayds Addns semod ‘z-2 Bty

(0811-9£2 MOVHS OlavH)

H3141L034 390148 3AVM-1INS V9 'A0S—iHd
(0£21-9£2 ¥OVHS OlQvH)

HOLYIND3IY IOVLIOA VI ‘AS—E ‘2 '} HA

WWOO (10S1-2£2 YOVHS OlavH)
nee ATBW3SSY diNVT NO3N OVA 024—1d
o L WWOD LLSL-E£2 MOVHS O1aVH)
¥O + HIWHOISNYHL INIWY IS VE ‘LA 92i—iL
(8-3WvD) e 9¥51-642 MOVYHS OIQvH)
‘B3y NI+ HOLIMS 319901 1ada—1IS
DAA G +] (9821-0£Z OVHS Olavy)
Ace s ~ 38N4 MO18-MOIS VE—I4
4oLy _ ATBNISSY
NP WIWOD HOLYINCAOW o
(v-3Wvo) €0 J.. . 4y
‘O34 |__no NI+ —+ I
DaAS + = I a
ZHA] “
e [I e S| |
37 ogw WHOO S : ===
Zo + + "
(90A X09304NOS) 1d
‘934 —+ Lo NI+ 5.5 + ov m .._\-I
DAAG + 14 -
1HA ocor ‘8 v-1S

23

converting it to an unregulated +18 VDC. Transformer T1 steps
down the 120 VAC from the line cord to about 12.6 VAC at its
secondary. The system is fused by F1, and then the lower AC
voltage is rectified by a full-wave bridge rectifier assembly, BR1.

The +18-V peaks from the bridge circuit are then filtered to an
unregulated 18 VDC by C1 before the voltage is applied to three
+5-V, 1-A regulators, VR1 through VR3. The DC output from VR1
supplies its regulated 5-V level to circuits within the Sourcebox unit,
including the audio amplifier. This particular +5-V source is also
accessible to the outside for operating relatively low-power circuits.

The regulated outputs from VR2 and VR3 are used only for
powering external game circuits and design breadboards. Some of
the more involved video games described later in this book call for
using all three voltage regulators to their maximum 1-A capacity. In
fact any experimenter contemplating designs for very elaborate
games should count on constructing an outboard 5-V regulated
supply capable of providing an additional one or two amps.

The rf modulator assembly, described in more detail later in this
chapter, uses a separate 1.5-V AA battery as a power supply. Using
a battery for this particular application ensures a clean, ripple-free
modulated video waveform. For the sake of convenience, the bat-
tery supply for the rf modulator is switched on and off by means of
the same toggle switch that applies 120 VAC to the 5-V power
supply section.

The line cord is fed through the back of the Sourcebox housing,
using a plastic strain relief (Radio Shack 278-1636) to prevent abra-
sion of the insulation and possible strain on the connections to the
switch and power transformer.

Power switch S1 should be mounted at some convenient place
on the front panel of the Sourcebox housing, preferably under the
neon POWER ON indicator lamp.

Power transformer T1 should be mounted on the bottom,
inside surface of the Sourcebox housing. The rectifier assembly,
fuse and fuse holder, and all four filter capacitors can be mounted toa
small perfboard or custom PC board. This compact power supply
board can then be mounted near the power transformer, using
insulated standoffs to prevent any short-circuit conditions to the
Sourcebox housing.

The 5-V regulator assemblies tend to run a bit hot at times. To
reduce the chances of destroying them by overheating, it is a good
idea to mount them directly to the inside surface of the metal
Sourcebox housing, or toaffix a small heat sink to each of them. See
the dimensions for one of the three heat sinks in Fig. 2-3. Similar

24

e
1Il

1/1"

2"

TAB /

COMM
\ -~ I
\%n\l‘
e HOMEMADE
HEAT SINK

5-V
REGULATOR

|~
INPUT

COMM ouTPUT

Fig. 2-3. Recommended heat sink for the voltage regulators.

heat sinks are available commercially, but it is rather easy to cut and
bend custom versions from standard 1/16-in. aluminum stock.

HORIZONTAL SOURCE BOARD

Figure 2-4 is a complete schematic diagram for the circuit that
generates all the horizontal counting, sync, blanking, and reset
pulses. This particular circuit board also holds the audio amplifier IC,

25

not because the audio signal is part of the horizontal system, but
because there is little space for putting it anywhere else in the
Sourcebox unit.

The entire circuit can be mounted on a standard 44-pin, 4- by
4-inch card, such as a Radio Shack 276-153. In fact all of the circuits
and systems described in this book can be built onto such a board and
then plugged into the appropriate edge-card connector (Radio Shack
276-1551). The numbers in parentheses in Fig. 2-4 indicate card pin
numbers arbitrarily assigned to the card-and-connector assembly.

The heart of the horizontal system, and indeed the video game
as a whole, is the 14-MHz oscillator circuit. This little circuit is made
up of a crystal cut to about 14 MHz and TTL digital inverters IC7-A
and IC7-B. Actually the crystal should have a frequency rating as
close as possible to 14.3 MHz, although the system will allow values
within 2% of 14.3 MHz. James Electronics supplies an ideal crystal
for the job (14.31818 MHz). Order part number CY144, James
Electronics, 1021 Howard Ave., San Carlos, CA 94070.

Although the oscillator is basically a digital circuit, the
waveforms from IC7-A and IC7-C appear sinusoidal on an oscillos-
cope. The toggled J-K flip-flop, IC1-A, isolates the oscillator from
the rest of the circuitry and divides the 14.3-MHz frequency by two.
The output of IC1-A is thus a quasi-sinusoidal waveform having a
frequency close to 7.015 MHz. This is the system’s HCLK signal.

IC2, IC3, and IC1-B make up the 9-bit horizontal-count source.
IC2 and IC3 are ordinary 4-bit binary up counters connected so that
they generate an 8-bit binary count. IC1-B is a toggled J-K flip-flop
that generates the 9th bit. Note that the outputs of these counters
are labeled 1H through 256H, the labels used so frequently through-
out this book.

The nine horizontal-count sources are connected directly to
output terminals, but there is a selection of five of them that also go
to the inputs of IC4, an 8-input NAND gate. This is all part of a circuit
that restricts the counting range of the horizontal-count source to
455 HCLK pulses. A 9-bit counter without this resetting circuit
would count 511 states.

The resetting circuitry senses a count of 454 at IC4, generating
a negative-going pulse at the D input of IC5A. IC5A is an edge-
triggered D flip-flop which sets its Q output to the D-input logic level
whenever its CLK input shows a positive-going edge. IC5-A is
clocked by HCLK in this case; and as long as the horizontal-count
source is generating numbers less than 454, the Q output of IC5-A
remains at a logic-1 level. The complemented output from Q is at
logic 0 at the same time.

26

One HCLK pulse after the count reaches 454, however, IC5-A
loads its Q output with a logic-0 level and the Qoutput takes on a
logic-1 level. This condition immediately clears all nine bits from the
horizontal-count source to zero, thus restarting the 455-step opera-
tion all over again.

The signal from the Q output of IC5-A is thus a negative-going
pulse that lasts for one HCLK pulse interval and occurs at the very
beginning of each horizontal-count cycle. A positive-going version of
that same pulse, HRST, is directed to 1C2, IC3, and the plug
assembly leading to the outside world.

The circuit build around the four 2-input NAND gates of IC6 are
responsible for generating the horizontal blanking (HBLANK) and
inverted horizontal sync (HSYC) pulses. IC6-B and IC6-C make up
what is commonly known as a R-Sflip-flop. Whenever the negative-
going HRST pulse is directed to the pin-10 input of IC6-C, the output
of that same IC is set to a logic-1 level. The device remains in that
state while the horizontal-count source is cleared and restarted. The
moment the count reaches 80, as determined by the 16H and 64H
inputs to IC6-A, this flip-flop circuit is reset so that the pin-8 output
of IC6-C returns to logic 0. This point then remains at logic 0 until
another HRST pulse occurs.

The real significance of the output of IC6-C is that it generates
the system’s HBLANK pulse, a positive pulse that begins as the
horizontal-count circuit is reset to zero and ends 80 HCLK pulses
later. Ultimately the beam on the TV screen will be blanked off
through this 80-pulse, horizontal blanking interval.

The horizontal sync pulse is generated at IC6-D. This NAND
gate is normally gated off by the logic-0 level from IC6-C. Whenever
IC6-C is generating an HBLANK signal, however, IC6-D is open to
the 32H signatl at its pin-12 input. An inverted version of 32H thus
appears at the output of IC6-D, but only through the horizontal
blanking interval. See the waveforms in Fig. 2-5.

Looking at the HBLANK and HSYNC sequence in detail, the
positive HBLANK pulse begins first. Thirty-two clock pulses later,
the inverted HSYNC pulse begins, lasting through count 64.
HBLANK finally endsat count 80. The overall effect is a combination
of horizontal blanking and sync pulses that work very much like their
counterparts in a commercial TV broadcast signal.

The only purpose of audio amplifier IC8 is to amplify any
special-effects sounds and match the circuit to an 8-ohm
loudspeaker. Since audio special effects are not described until
Chapter 10, the volume control and loudspeaker need not be con-
nected at this time.

27

IC1—7476 DUAL IC4—7430 8-INPUT

J-K FLIP-FLOP NAND
IC2, 3—7493 4-BIT IC5—7474 DUAL-D
14-MHz XTAL BINARY COUNTER FLIP-FLOP
10F
R1
3309 3309 (43)
HCLK (42) (41) (40) (39)
) Y+ 1H 2H 4H 8H
y T
1
IC7-A 15, 12y |
9| 8] 11
A B8 € D
CKB
M cKA ez
RO1 RO2
10] 5] 2f 3
R3
2.2K
. .
2 R4
3 zzx% |
2 14 Pﬁﬂ) 14 HRST
256H = P
128H —»=— IC4 8 12 9
6 D Q
64H =3
oH-=12] = 11 64H >
, | ICE-A
a8 16H >
i

28

IC6—7400 QUAD IC8—LM386 AUDIO
2-INPUT NAND AMP
IC7—7404 HEX NOTES:
(1) NUMBERS IN PARENTHESES

INVERTER
INDICATE PLUG CONNECTION

NUMBERS T
(2) = L COMM; =5V (34)
= 256H

(38) (37) (36) (39)
16H 32H 64H 128H SR2
Y Y 2.2K

0—17
. 9 P
12] ol s8] 11 1Y 11
A B C D
1]CKB gl 1C1-B
14 IC3 -
CKA RrotRro2] |ip
10 5] 2| 3 —3K
C
13] g
- _HRST
= (33)

32

H
4 / +5V
6 | (it o
1C6-B .01 10uF
COMM uF —| 16V
(22,23)

[on

= 11 —
121 1c6.0 HSYNC

IC6-C }oa 3 32)

w[—-

10 —<
H BLANK

(30)

Fig. 2-4. Horizontal source board schematic diagram.

29

H-COUNT ¢ 32 64 80

Fig. 2-5. Horizontal blanking and sync waveforms.

The volume control, speaker, and amplifier arrangement are
shown in more detail in Fig. 2-6. Control R5 should be mounted on
the front panel of the Sourcebox, while the loudspeaker can be
positioned at any convenient place inside the box.

VERTICAL SOURCE AND COMPOSITE VIDEO BOARD

The circuit in Fig. 2-7 shows the complete schematic diagram
for the vertical-count source and composite video generator. The
vertical-count source consists of IC1, IC2, IC3, IC4-A, and IC5. The
remainder of the circuit is responsible for composite video opera-
tions.

The vertical-count source is a 9-bit binary counter made up of
two 4-bit counters and a toggled J-K flip-flop, IC3. The natural
counting range for a 9-bit counter is between 0 and 511; but like the
horizontal-count generator, this circuit is fixed so that it counts a
much more limited range. _

Note that the two counters, IC1 and IC2, are cleared by the Q
output of IC5, while the J-K flip-flop (IC3) is cleared to zero by the Q
output of IC5. IC5 is a positive-edge triggered D flip-flop having a Q
output that takes on the logic level of its D input whenever the CLK
input shows a positive-going edge. The flip-flop in this case is
clocked by HRST from the Horizontal Source board—at a frequency
very close to 15,750 Hz.

NAND gate IC4-A keeps the D input to IC5 pulled up to logic 1
most of the time, so the repeated HRST pulses at the CLK input
keep the Q output of IC5 fixed at logic 1 most of the time. Thereisa
time, however, when the D input to IC5 is set to logic 0: when the
1V, 4V and 256V inputs to IC4-A show logic 1 at the same time. This

30

condition represents count 261 from the vertical-count source, and it
is responsible for clearing the counters back to zero.

The vertical-count section thus generates 260 different pat-
terns representing that many vertical lines on the screen.

The vertical-blanking and sync pulses are generated in a fashion
almost identical to the corresponding horizontal section. One differ-
ence is that this circuit is built around a flip-flop triggered by
pesitive-going, rather than negative-going, pulses.

The VBLANK generating flip-flop is composed of NOR gates
IC6-A and IC6-B. The pin-4 output of IC6B is at logic 0 most of the
time, rising to logic 1 only when a VRST (vertical reset) pulse occurs
at the Qoutput of IC5. This pulse sets the pin-4 output of IC6-B to
logic 1 and, as described earlier in this section, clears the vertical-
count source to zero.

The VBLANK signal remains at this logic-1 level until the 16 V
signal at the input of IC6-B goes to logic 1. This action returns the
pin-4 output of IC6-B to zero and, infact, forces it to remain at 0 until
another VRST pulse occurs.

The VBLANK signal thus goes to logic 1 the instant the vertical
counters are reset to zero, and it remains in that condition until the
counters increment to count 16. VBLANK can then be described as
a positive-going pulse that lasts 16 HRST pulses.

AUDIO IN
> AV
R5* (9)

20 %q—9>_ 1)
Ic8 _‘ H
c4
l L * 80 LOUDSPEAKER
- (SUCH AS RADIO

* MOUNTED ON SHACK 40-246)

SOURCEBOX ENCLOSURE

Fig. 2-6. The complete audio amplifier system.

31

(24)
1V

(25) (26) (27)
2v 4V 8y

IC5

Y \(
| 12] 9] 8] 1n
A B [}
CKB 4 -
p d IC1
HRST 120 Rot RO?
4 10] 5 QL 3
h +5V
[= 2 V BLANK
3] ea (35)
256V _!
(BRI} IR C I 10P
4V (1-8) 2 N I
w12 13 4A}> D

32

(32)
(28) (29) (30) (31) 256V

16V 32V 64V 128V
Y \v

CKB 1 ic2
——4c d Ic3
12 KA Ro1 RO2 6
10] 5] 2 3] _
K
12 13 C
| N — T8

CSYNC

+5V
R1

33012

CVID
(16)

R2
22K

IC1, 2—7493 4-BIT BINARY
COUNTER
IC3—7476 DUAL J-K FLIP-FLOP
IC4—7410 TRIPLE 3-INPUT NAND
IC5—7474 DUAL-D FLIP-FLOP
VIDEO IC6, 9—7402 QUAD 2-INPUT NOR
IC7—7486 QUAD EXCLUSIVE-OR
IC8—74125 QUAD 3-STATE BUFFER

Fig. 2-7. Vertical source and composite video board schematic.

33

A

' V BLANK |_

| | VSYNC

8 16
V-COUNT

o
F-S

Fig. 2-8. Vertical blanking and sync waveforms.

The vertical-sync pulse, VSYNC, is generated at IC4-B. This
particular designation does not appear on the schematic, however,
because it is never used alone anywhere else in the system.

IC4-B has an output that remains at logic 1 as long as VBLANK
is at 0. When VBLANK rises to logic 1, indicating it is time to blank
the vertical retrace on the TV screen, IC4-B allows 4V and an
inverted version of 8V to pass. The result at the output of IC4-Bisa
negative-going pulse that begins a count 4V and ends at 8V. This is
the vertical-sync pulse. See the VBLANK and VSYNC pulses illus-
trated in Fig. 2-8.

The remaining circuitry in Fig. 2-7 is responsible for combining
both the horizontal- and vertical-sync and blanking pulses, and then
working the composite sync waveform together with the game
video.

The horizontal- and vertical-sync pulses are effectively com-
bined in the EXCLUSIVE-OR gate, IC7-A. The output of this gate,
shown in Fig, 2-9(a), shows the 15,750-Hz horizontal sync pulses in
a positive-going, active-high format until the vertical-sync pulse
occurs. At that moment, the horizontal pulses switch to an active-
low format, providing the effect of a serrated vertical-sync pulse, an
effect that is necessary for maintaining horizontal sync through
vertical sync and retrace.

IC7-B serves merely as an inverter for obtaining an inverted
version of this composite sync signal.

The horizontal- and vertical-blanking pulses are ORed together
in IC9-C and IC9-D, and then these combined signals are ORed with
the game video in IC9-B. The output of IC9-B is thus a combination

34

of horizontal- and vertical-blanking pulses and any game video
applied from external circuitry to IC9-A.

These two sets of waveforms—the composite sync from IC7-B
and video and blanking pulses—are finally amplitude modulated at
the 3-state buffer, IC8-A. A precise analysis of this operation is left
to experimenters who have some experience with Boolean algebra.
The overall effect, however, is shown in Fig. 2-9(b).

The composite video waveform in Fig. 2-9(b) clearly shows
three distinct voltage levels. The highest voltage level, about +5V,
is the domain of the blacker-than-black sync pulses. At the other
extreme is the white-video information, at about 0V. Black-video
information and the blanking pulses fall between these two ex-
tremes, occuring only when the 3-state buffer is put into its high-
impedance state by the output of IC6-D.

The vertical- count and composite-video board in Fig. 2-7 can
be assembled on the same kind of 44-pin edge card that the horizon-
tal section is. Both boards should be situated in their respective
edge-card connectors in the Sourcebox housing.

HORIZONTAL-
SYNC PULSES

/N

L/—v_\j
VERTICAL (QUTPUT IC7-A)
SYNC
BLACKER LG
THAN BLACK —=- »~~ PULSE
BLACK —
WHITE ——e
BLANKING
PEDESTAL VIDEO
B INFO

(OUTPUT IC8-A)

Fig. 2-9. Composite waveforms. (a) Composite sync. (b) Composite video to the
maodulator.

35

SOURCE BOX

HORIZONTAL BOARD INTERFACE
PLUG RF
VE\RTICAL BOARD / o
/

T\ / 7

11 1] [1

[=HEIE
““//'7—%?

/ 5V POWER SUPPLY
POWER REGULATORS
TRANSFORMER
FRONT VIEW
(PANEL REMOVED)
PIN 44 —eF3-=~ PN 1
ANTENNA
CONNECTION \
< 44-PIN !
EDGE-CARD
o CONNECTOR
LINEICORD (INTERFACE PLUG)
REAR VIEW

Fig. 2-10. Suggested cabinet layout for the Sourcebox unit.

THE RF MODULATOR

The rf modulator is responsible for modulating the composite
video (CVID) from the vertical/video board at a VHF frequency that
can be selected on TV channels 2, 3, or 4. In a word, the whole idea

36

is to get all this video, sync, and blanking information into a conven-

tional TV receiver.

It is possible to build VHF modulators from scratch, but consid-
ering the fact these little circuits are now commercially available for

MOD IN = rf MODULATOR INPUT

CViD = UNMODULATED COMPOSITE VIDEO
GAME VID IN = INPUT FROM ANY EXTERNAL GAME CIRCUIT

PIN FUNCTION PIN FUNCTION

1 +5V-A 23 COMM

2 +5V-8 24 Vv

3 HBLANK 25 2v

4 HRST 26 4V

5 +5 V (SOURCEBOX)| 27 8V

6 nc 28 16V

7 nc 29 32v

8 nc 30 64V

9 audio in 31 128V

10 nc 32 256V

11 nc 33 nc

12 | COMP SYNC 34 256H

13 | MOD IN 35 128H

14 | CVID 36 64H

15 nc 37 32H

16 | GAME VID IN 38 16H

17 | nc 39 8H

18 ne 40 4H

19 | VRST 41 2H

20 | VBLANK 42 1H

21 nc 43 HCLK

22 | COMM 44 +5 V-A
NOTE:

COMP SYNC = UNMODULATED COMPOSITE SYNC

MOD IN AND CVID ARE NORMALLY SHORTED TOGETHER

Fig. 2-11. Listing of power supply terminals and signals that must be present at

the interface plug.

37

about $10, the job of building one from scratch is hardly worth the
trouble.

Suitable modulators are now being used by microprocessor
enthusiasts who want to interface their computer systems witha TV
display. So the best source of modulators is the amateur computer
shops now springing up all over the country. At the time of this
writing, Radio Shack is planning to offer a suitable modulator in the
near future. Although it is intended specifically for use with that
company’s microprocessor system, it would serve our purposes
quite well.

Mount the modulator inside the Sourcebox unit, as far as
possible from the master clock and crystal (to avoid possible rf
interference between the two).

SOME MECHANICAL CONSIDERATIONS

All of the Sourcebox circuitry fits quite nicely into Radio Shack’s
“compact” 5%-by 9- by 4%-inch cabinet (Radio Shack 270-281). See
Fig. 2-10.

The two major circuit boards can be inserted into 44-pin edge-
card connectors mounted vertically on the inside rear surface of the
cabinet. The rf modulator is likewise mounted on that surface, using
a 2-terminal, feedthrough TV antenna connector (Radio Shack 274-
663). The power supply components are mounted inside the cabinet
as described earlier in this chapter.

What has not been adequately described thus far is the means
for getting access to the horizontal- and vertical-counting signals as
well as any other system inputs and outputs that are vital to the
operation of game systems. The most convenient way to interface
the Sourcebox with the outside world is by means of another 44-pin
edge-card connector that feeds through the back of the cabinet.

All of the connections between the Sourcebox and outside
world are made through this connector. Its solder connections are
inside the cabinet, connected to the appropriate signal sources as
suggested in Fig. 2-11. Getting access to these signals from the
outside world is thus a simple matter of plugging the appropriate 4-
by 4-inch 44-pin PC card into the plug on the back of the cabinet.

No matter how you choose to arrange the circuitry for the
Sourcebox unit, bear in mind that you must have convenient access
to the supply voltages and signal connections listed in Fig. 2-11.

38

Chapter 3
Building Static Figures

For the purposes of this book, static figures are considered any
figures, no matter how simple or complex, that do not move on the
screen. Such figures, in the context of TV games, can represent
game boundaries, obstacles and nonmoving targets.

A static figure, incidentally, does not have to be a visible one.
Invisible figures can add an extra bit of challenge to an otherwise
too-simple game; but more importantly, invisible lines and rectan-
gles can serve as “windows” for confining other images to a field that
is smaller than the TV screen.

Static figures, whether visible or not, play invaluable roles in
TV-games technology; and it turns out that building static figures can
be a fascinating and rewarding pastime in itself.

This chapter describes a number of basic techniques for build-
ing static lines, bars, and rectangles, while the following chapter
takes up the special subject of building complex static figures (cir-
cles, figures with diagonal lines, images of people, rocket ships,
cars, etc.).

Each technique is illustrated with several specific examples,
and the reader will find the procedures used many times and in many
different ways throughout the book. It is important to bear in mind,
however, that the purpose of this book is to provide some guidelines
for creating original TV games and displays. For that reason, alone,
it is just as important to understand the essence of each figure-
building technique as it is to see how the specific examples work.

39

None of the figure-building techniques is really any better than
the others under all possible circumstances. The most appropriate
technique depends on the size, position, general configuration, com-
plexity of the figure, and the role the figure is to play in the display.

The selection of a figure-building technique thus calls for an
intelligent decision on the part of the experimenter, so it is important
to study this entire chapter and the one that follows before making a
firm commitment to the circuit for an original TV-game display.

A prudent student of TV-game technology will breadboard the
circuits as they are encountered in these chapters. Of course it takes
longer to become acquainted with all the circuits this way, but this
doing-while-reading approach makes the learning process much
easier, more effective, and a whole lot more fun. Try building the
specific examples first, then test your understanding by attempting
to create a few static images of your own.

LINES AND BARS DIRECTLY FROM THE COUNT SOURCES

One of the simplest and most straightforward ways to create
simple lines and bars on the screen is by combining the wave-forms
already available from the Sourcebox unit. All of the horizontal-count
outputs quite naturally generate alternate black and white vertical
bars or lines on the screen, while the vertical-count outputs create
horizontal bars.

Figure 3-1 summarizes five different horizontal- and vertical-
count signals as they appear on the TV screen. To view the figures
as shown here, simply connect a jumper wire between the desig-
nated horizontal- or vertical-count output and the GAME VID IN
terminal on the Sourcebox unit. This procedure, incidentally, as-
sumes the CVID and MOD terminals on the Sourcebox unit are
jumpered together as described in the previous chapter.

Note that the 256H display shows a vertical black bar that
almost reaches the center of the screen. This is a clear indication
that the 256H signal is at logic 0 through the first half of each
horizontal trace. (A logic-0 video signal always creates a black area
on the screen, and a logic-1 signal creates a white area).

The figure for 128H shows twice as many vertical bars as the
256H signal does. The reason is rather easy to understand: the
128H frequency is twice that of the 256H count source. And in a
similar manner, each lower-order H output shows about twice as
many bars as the one preceding it. Qutputs 8H, 4H, 2H, and 1H are
not shown here because the lines are too fine and closely spaced to
make a meaningful picture in the book. Look at them on your own TV
screen, however.

40

A figure for 256V is not shown here because it does not make a
very interesting picture. It is at logic 0 through all but the last four
lines of the display. Figure 3-1 does show what you should expect to
see from 128V, 64V, 32V, and 16V.

While inspecting these figures for yourself, take careful note of
the fact that the bars for 64H and 64V are very close to the same
size. The same is true for 32H and 32V, 16H and 16V, etc. From
64H and 64V downward, the lines are about the same size when
comparing an H output with its vertical counterpart.

There is, however, an obvious difference between the sizes of
the bars for 128H and 128V, and 256H and 256V. Keep these facts in
mind for a time when you will be considering your own figure-
building procedures.

An experimenter can be justifiably proud of his system when
seeing these basic horizontal- and vertical-count bars for the first
time. A lot of work and money has gone into building the Sourcebox,
and this is the first solid result of all that work. But looking at these
bars and lines can become rather boring after a while. So now it is
time to begin using these lines and bars as mere building blocks for
creating more-useful and interesting figures.

THE LINE/BAR TINKERBOX

Figure 3-2 shows a schematic diagram, physical layout, and
parts list for a breadboard system we shall call the Line/Bar Tinker-
box. It is simply a selection of ICs that are most useful for creating
certain lines and bars at desired positions on the screen. The main
purpose of this Tinkerbox is to let the experimenter find out exactly
what IC devices are necessary for building a desired line or bar on
the screen. After taking careful note of how it is done with the
Tinkerbox, the experimenter can transfer the ideas to a permanent
cirucit.

The ICs are plugged into a standard breadboard and bus-strip
assembly. (See the parts list in Fig. 3-2 for catalog numbers.) The
breadboard assembly is connected to the Sourcebox unit via a
multiconductor cable or bundle of wires. These wires are connected
to the Sourcebox output connector by means of a standard 22-pin
edge-card PC board. Figure 3-3 shows a connection diagram that
corresponds with the Sourcebox output terminal configuration de-
scribed in Chapter 2.

To get a feeling for what the Tinkerbox can do and how touse it,
connect the circuit shown in Fig. 3-4a. In this case, 256H is con-
nected to pin 1 of IC3, the 8-input NAND gate. If a test jumper is

4

256H

64H

16H

128H

32H

42

|
R
e

S
128V 64V
32v 16V

Fig. 3-1. Video images available directly from the horizontal and vertical-count
sources.

connected from that input point and the GAME VID IN terminal on
the Sourcebox, the screen will show the usual 256H pattern.

But once that same signal passes through the NAND gate, the
blacks and whites are reversed. In digital terms, a NAND gate witha
single input works like a logic inverter—it reverses the logic-1and -0
levels.

The signal from the NAND gate is then passed through an
inverter circuit where the waveform is reversed once again. This
operation brings the signal back to its original phase, thus creating an
image on the screen that is in all respects the same as that created by
the original 256H waveform.

Any horizontal- or vertical-count waveform can be applied to
the input of the circuit in Fig. 3-4a, and emerge in its original form
from the output of the inverter circuit, IC1-A.

43

IC2

IC1
14
1 2
5>06
1 8
—aa

3
9
11 10 10
8
13 12 12
7 __ 13

Integrated Circuits =

IC1—7404 HEX INVERTER

IC2—7420 DUAL 4-INPUT NAND 10
1C3—7430 8-INPUT NAND S 1)
IC4—7400 QUAD 2-INPUT NAND g
1 Ic3
2| N -
3 k 6
14 _—
4
8
5
9
6 7 8
10
11
12 =
12
11
13 |
EE——
7
HARDWARE —

2 EA. EXPERIMENTER IC SOCKET BOARD (RADIO_SHACK 276-172)
1 IC SOCKET BUS STRIP (RADIO SHACK 276-173)
1 44-TERMINAL EDGE CARD (RADIO SHACK 276-153)

Fig. 3-2. Most-used ICs for the Line/Bar Tinkerbox assembly. Other useful IC's
include a 7486 quad EXCLUSIVE-OR and a 7402 quad 2-input NOR gate.

44

So what is accomplished by the simple circuit in Fig. 3-4a? Not
much in terms of building images for TV games. But the circuit does
clearly demonstrate two important facts: a NAND gate inverts logic
levels (and hence reverses blacks and whites), and doubly inverting
3 signal returns it ot its original phase.

SECOND IC SOCKET
souRcesox EDGECARD BOARD FOR ICS
SONNECTOR (USED AS PLUG)
N \ BUS STRIP
— jo——i \ ICSOCKET
BOARD
+sy <20 i
comm <22
COMM
1H e -
2) 2H
aH) 4H
(39)
8H = 8H
16H - . 16H
32H = 32H
64H @5) 64H
128H = 128H
256H b 256H
HRST -l HRST
HBLANK HBLANK
(24)
v v
2v () 2v
(26)
e a4V
35 e 8v
28
16V :29; 16V
o 32V
ziz) 64V
128V (:;) 128V
256V ——0" - 9) 256V
VRST ‘20; VRST
RECANR (VBLANK
MOD 13) JUMPER MOD AND
cv10 (4 .| CviD TOGETHER
(16) FOR NORMAL OPERATION
GAME VID
N GAME VID IN
—— 27.eneTHS OF ———
SOLID HOOKUP WIRE
APPROX. 12- TO 18-INCH LONG

Fig. 3-3. Signal and power supply connections between the Sourcebox unit and
Tinkerbox assembly. Note that the Sourcebox MOD and CVID terminals are
connected together at the Tinkerbox.

45

Now wire the circuit in Fig. 3-4b. There are two inputs in this
instance. The waveform from 256H is applied to an inverter circuit
and then to one input of the 8-input NAND gate. The other input,
128H, goes directly to a second input of the NAND gate. The little
screen figures accompanying the diagram in Fig. 3-4b show the
patterns appearing on the TV screen as GAME VID IN is connected
to various test points.

The essential point to note in Fig. 3-4 is the fact that the output
figure shows a white bar only where the white bars for 256H and
128H overlap. In digital logic terminology, this circuit ANDs to-
gether the two signals appearing at the input of the NAND gate.

It is impossible to build the single white bar generated as the
output of this circuit from any one horizontal-count output.

What would happen if both inputs are inverted before applying
them to the NAND gate? Figure 3-4c demonstrates the answer to
that question. The NAND gate does the same job as before, but now
the whites for 256H and 128H overlap only at the right-hand edge of
the screen.

Play with this basic idea, using various combinations of inverted
and noninverted H inputs to the NAND gate. You might be puzzled
with some of the results at this point, but the exact procedures for
generating a vertical line at one desired place on the screen are
outlined in great detail later in this section.

Incidentally, if you happen to stumble across some patterns that
look especially useful or interesting for later work, take careful note
of the circuit connections. Keep the results recorded in a notebook
for future reference.

Figure 3-5 shows some similar tricks with the vertical-count
signals. In Fig. 3-5a, the inputs are 128V and 64V; and as in the case
of the horizontal demonstrations, the overall result is a white bar
appearing at the location where the white bars at the inputs overlap.

White playing with various combinations of V signals, re-
member that 256V is not a very useful or interesting waveform. An
inverted version of the 256V signal has little noticeable effect on
these demonstrations, while a noninverted version applied to the
input of the NAND gate blanks out just about all the useful working
area of the screen.

The Tinkerbox, as described to this point, can be the source of
a whole evening’s entertainment for you. Your family and friends
might not be overly impressed with the results at this time, but as
long as you are having fun with the system and learning things as you
progress, that is all that really counts.

46

256H
DR l 256H
8 2
I3 3 Ay (INPUT AND OUTPUT)
\ OUTPUT L
256H
A
i 25oM
2 3 —_— _
o : 256H+128H [. 256H
] IC1-A
128H 8 , 2
128H
OuUTPUT
"I 256H-128H
1 B outrun)
B
256H
256H 2 3 / -
4|> 5 [
. 8 | 2 _
128H 128H
<7 outPuT
256H-128H o
256H+128H
(OUTPUT)

Fig. 3-4. Some vertical lines and bars from the Tinkerbox assembly. (a) A
twice-inverted 256H signal yields a 256H pattern on the screen. (b) ANAND gate
followed by an inverter combine two different horizontal-count signals such that
the resuftant is a white area where two white areas of the original signals overlap.
(c) Another example of creating a moderately narrow, vertical white bar where
two input signals have overlapping white areas.

47

The NAND gate, followed by an inverter circuit, performs an
essential operation as far as building static figures is concerned. In
the first place, you have already seen that this circuit yields an output
that shows a white bar wherever the white bars at the input of the
NAND gate overlap. And now it is time to study a second essential
feature of this NAND/invert combination.

Any black or white bar from one of the basic horizontal- or
vertical-count sources is always divided equally by a black/white
alternation of the next-lower-order signal. Although this might seem
to be a rather obscure fact at the moment, it is important you
understand it thoroughly. So try an example with your Tinkerbox
arrangement.

Feed a 256H signal to the input of the NAND gate and note the
signal on the TV screen as generated at the output of the inverter. It
should be the now-familiar 256H vertical pattern: a black space
turning to white just left of center. Now apply the next lower-order
H signal, 128H, to a second input of the inverter. That new
waveform should cut the 256H pattern in half. It divides the white
portion of 256H into equal-sized black and white—black first, then
white.

This demonstrates the fact that any basic horizontal- or
vertical-count display has its white section(s) cut in half by a black/
white alternation of the next-lower-count input. The black section of
256H is, incidentally, being cut in two also. But since this particular
NAND/invert combination yields only overlapping white areas, the
division of the black section cannot be seen on the screen.

To check your understanding of this principle, what do you
suppose will happen when you add a third input, specifically 64H, to
the NAND gate circuit? If 256H and 128H are already there, the 64H
input should cut the white area of 128H in half—black first, then
white.

The next-lower-order H signal is 32H; and if it is included as a
fourth input to the NAND gate, it cuts the bar in half again. This
procedure can continue until all eight inputs on the NAND gate are
used.

While running this experiment, notice that the white bar on the
screen seems to grow narrower as each input is added. Further-
more, it is narrowing from the left-hand side. The right-hand side is
remaining fixed. Bear this effect in mind while considering the next
set of experiments.

Remove all inputs to the 8-input NAND gate except 256 H. The
image on the screen should then be the standard black-to-white
256H signal. Apply the 128H signal again, but run it through an

48

1
B4V —————————=

IC1-A

8 2
Ic3 64V
/OUTPUT

128V+64V 128V+64V
(OUTPUT)

A

1
128 ————————
4 -
v >d | oA
V1 e Yo & E 64V
IC1-B /OUTPUT

128V+54V) —
128V+64V

B

Fig. 3-5. Some horizontal lines and bars from the vertical-count sources. (a) A
wide white bar at the bottom of the screen representing the area where white
arecas of 128V and 64V overlap. (b) Building a broad, horizontal bar just below the
center of the screen.

inverter first. The inputs to the NAND gate are now 256H and 128H.
How has this inversion of the 128H signal influenced the pattern on
the screen?

The white portion of the 256H signal is cut in two by a white/
black alternation this time. Recall that connecting a noninverted
version of 128H to the NAND gate also cut the white portion of the
256H image in two, but with a black-to-white alternation.

Continue adding inverted versions of the H-count signals to the
NAND gate until all eight inputs are used. If you are adding these
inputs in decreasing order—from 128H to 64H, to 32H, to 16H,
etc. —you will see that the white bar on the screen narrows in from
the right-hand side.

As far as the line-building effect on the TV screenis concerned,
adding a noninverted version of the next-lower-order H input nar-

49

rows the bar from the left-hand side, while adding an inverted
version of the next-lower-order H input narrows the bar from the
right. There is no reason why you cannot use combinations of
inverted and noninverted H inputs to place a white bar in virtually any
position in the white field of the basic 256H pattern. And if you want
the bar to appear on the left-hand side of the screen, begin with 256H
instead of 256H. Furthermore, you can set the width of the white bar
by the number of H inputs you use: the larger the number of
H-count inputs, the narrower the bar becomes.

Now you are in a position to try some design work of your own.
Remove all inputs to the NAND gate and use a grease pencil to mark
a point on the TV screen where you want a vertical line to appear.
Indicate the desired width too.

Apply the 256H signal to the NAND gate. If your mark is in the
white area, that is the proper input signal. If your mark is in the black
area, however, you must apply 256H to the NAND gate (by running
it through an inverter before applying it to the NAND gate).

Once you have the mark in a white field, add 128H to the NAND
gate. Again, if the mark appears in the resulting white field, you are
ready to add the next-lower-order signal, but if it is in a black area,
128H must be run through an inverter before applying it to the
NAND gate.

Continue this procedure, adding successively lower-order H
inputs, inverting them when necessary, until the resulting white bar
has the position and width you indicated with the grease pencil on the
screen. Allowing a small percentage of placement error, you will be
able to place a single vertical line of any desired width anywhere on
the screen.

This entire process can be summarized as a recipe for building a
vertical line or bar, using the NAND/invert circuit on the Tinkerbox
assembly.

Recipe for a Vertical Line or Bar

Begin with a white screen, assuming it is actually a full-screen
vertical bar.

1. Is that big bar to be narrowed in from the left or right?
If from the left, use 256H
If from the right, use 2560

2. Is the resulting white bar to be further narrowed from the
left or right?
If from the left, use 128H _
If from the right, use 128H

50

3. Is the resulting white bar to be further narrowed from the
left or right?
If from the left, use 64H
If from the right, use 64H

Continue including more H inputs, in decreasing order, until the
desired line width and position is achieved. Remember that including
aninverted H input narrows the bar from the right-hand side, while
including a true (noninverted) H input narrows the bar from the left.
Always begin with 256H and work one H input at a time toward 1H,
but use as few inputs as possible to simplify the final circuit design.

After mastering the preceding technique for placing a vertical
bar or line at any desired position on the screen, building horizontal
bars will seem quite simple. Use the same combination of an 8-input
NAND gate followed by an inverter, but apply vertical-count signals
to the input of the NAND gate.

Begin the process with 128V. (256V isn't very useful because
its first white-to-black alternation takes place only four lines before
vertical blanking begins at the bottom of the screen.) If the desired
horizontal line is to appear in the white portion of 128V, you are
ready for the next step. But if the line is to be in the black region of
128V, invert that signal before applying it to the NAND gate.

Continue adding inverted or noninverted V-count inputs, in
decreasing order, until the resulting white bar has the desired
position and width. Note that adding a noninverted V-count input
narrows the bar from the top, and adding an inverted version of the
same signal narrows the bar from the bottom.

To check your understanding of the horizontal-bar-building
procedure, make a grease-pencil mark on the screen where you
would like a horizontal bar to appear. Then begin adding inverted or
noninverted V-count inputs to the NAND gate, beginning with 128V
and working downward through the lower-order V-counts signals.

The process can be summarized in a recipe for building a
horizontal line or bar.

Recipe for a Horizontal Line or Bar

Begin with a white screen, assuming it is actually a full-screen
horizontal bar.
1. Is that big bar to be narrowed from the bottom or top?
If from the top, use 128V
If from the bottom, use 128V
2. Is the resulting white bar to be further narrowed from the
top or bottom?

51

If from the top, use 64V
If from the bottom, use 64V
3. Is the resulting white bar to be further narrowed from the
top or bottom?
If from the top, use 32V___
If from the bottom, use 64V

Continue using more V inputs, in decreasing sequence, until the
desired horizontal line width and position is achieved. Bear in mind
that including another inverted V input narrows the white bar from
the bottom, while including another noninverted V input narrows the
bar from the top.

While experimenting with this general procedure for building
vertical or horizontal lines, you might have noticed what happens
whenever you skip over one of the lower-order signals. Try it. You
will find that skipping one input in the normal sequence of high-to-
lower-order inputs causes a pair of parallel lines to appear on the
screen. Take note of this fact because it might be helpful to you later
on.

BUILDING WIDELY SEPARATED PARALLEL LINES AND BARS

Single white vertical or horizontal lines might be useful for
certain game designs, but it is more often desirable to create a pair of
widely separated parallel lines. A case in point concerns building the
border lines for many playing-field type games. Such a border can be
built from a combination of widely separated horizontal and vertical
lines.

Building a four-sided border figure is getting ahead of the
discussion, however. You must first learn how to put a pair of parallel
lines of any desired width and spacing you choose on the screen.

This procedure involves three basic steps. First, use the
NAND/invert scheme on the Tinkerbox to create one of the two
lines. Note the required inputs, then use the same circuit to create
the second line. Finally, reduce the two circuits to their simplest
possible circuit form and combine them in a Tinkerbox ORing circuit.
Use the diagrams in Fig. 3-6 as a reference for studying and experi-
menting with this procedure in greater detail.

Suppose you want to place two parallel vertical lines on the
screen. The two lines can have any desired width and relative
position.

Begin by building one of the two lines, using the NAND/invert
circuit shown in Fig. 3-6a. Do this by using the Recipe for a Vertical
Line or Bar described earlier in this chapter.

52

IC4 IC1-A
HORH —
INPUTS
AS NEEDED | — |
— OUTPUT
(SINGLE VERTICAL
— LINE)
A
LINE1
@TO4H
INPUTS) (caD
L_‘}
LINE 2
(2TO4H {
INPUTS) L
OUTPUT
(PARALLEL VERTICAL
B LINES)

Fig. 3-6. Building white vertical lines and combining them into a single video
signal. (a) Circuit for determining the horizontal-count specifications for each
line. (b) Combining two simplified versions of the line-generating circuit.

Once you have formed this line, take careful note of the exact
H-count inputs you used, and show whether each of them should be
inverted or noninverted.

Unless you are trying to build an extremely narrow line, you
won't really need more than four combinations of inverted and
noninverted inputs to the NAND gate. If it turns out that the line
requires only two inputs, transfer the connections to the 8-input
NAND gate over to one of the 2-input NAND gates in IC4. (Refer to
Fig. 3-2 for the appropriate pin numbers.) If the line calls for threeor

53

four inputs, transfer the NAND connections to one of the 4-input
NAND gates in IC2. The idea here is to (1) free the 8-input NAND
gate for building another line and (2) reduce the circuit to the
simplest possible gate configuration.

With the first vertical line designed and reduced to the simplest
possible NAND gate circuit form, repeat the entire process for the
second vertical line. When you are finished with this part of the
project, you should have two separate NAND-gate circuits, one for
each of the two vertical lines.

All that remains to be done is to combine the two on the TV
screen at the same time. Figure 3-6b shows how this is done. Simply
connect the outputs of the two line-generating NAND gates to the
inputs of a 2-input NAND gate. That final NAND operation effec-
tively combines the two line signals in alogic ORing fashion, yielding
an image on the screen showing both of your designated vertical
lines. Note that there are no inverters used past the line-forming
NAND gates.

While you are working with this particular parallel-line circuit,
connect GAME VID IN to the inputs of the final NAND-gate stage.
You will find that the inputs to this gate each carry one of the lines
you built—but the image has the blacks and whites reversed. You
will see a black vertical line on a white field. The lesson here is that a
NAND gate can OR together two signals if they are in an inverted
form. This effect takes advantage of something called De Morgan’s
theorem from basic texts on digital electronics.

After you're convinced you understand how to create parallel
vertical lines of any relative width and spacing on the screen, draw an
exact diagram of your final circuits for future reference and try the
same procedure for building pairs of horizontal lines. First build the
lines separately, using the 8-input NAND gate and inverter, then
transfer the circuit to smaller NAND-gate devices. Combine the two
lines as shown in Fig. 3-6b. Refer to the Recipe for a Horizontal Line
or Bar as necessary.

Building Intersecting Horizontal and Vertical Lines

The Line/Bar Tinkerbox assembly can be used for creating
intersecting horizontal and vertical lines. Suppose, for example, the
experimenter wants to build a tic-tac-toe pattern on the screen. This
is essentially a pair of vertical and a pair of horizontal parallel lines
combined into one picture. And if the lines are fixed at the extreme

edges of the screen, it appears they are creating a border for many
different kinds of TV games.

54

Creating intersecting parallel lines, both horizontal and vertical,
is a simple matter of extending the Tinkerbox techniques already
described in this chapter. First build the lines one at a time, using the
8-input NAND gate and inverter system. Keep track of the “formu-
1a” for each line, then reduce them to simpler NAND-gate inputs.

Next combine the vertical lines as shown in Fig. 3-6, and then
combine the two horizontal lines in the same fashion. All that remains
to be done at that point is to combine the two sets of parallel lines into
one image. Figure 3-7 shows how this can be done.

Figure 3-7a shows the most straightforward technique for
combining pairs of horizontal and vertical parallel lines. The ideais to
build the horizontal and vertical parallel lines separately as described
in the previous section of this chapter. Then combine the two sets of
lines by first inverting them and then applying them to separate
inputs of a 2-input NAND gate. The output of that final NAND-gate
stage yields the composite image.

While this might be the most straightforward technique, itis not
the most efficient. It is possible to do the same job using the circuit in
Fig. 3-7b.

To understand how the circuit in Fig. 3-7b works, let’s assume
you have used the recipes for vertical and horizontal lines to get the
line-generating specifications—the combinations of inverted and
noninverted count inputs for each of the four lines. After reducing
these input specifications to the point where you are using the
simplest possible input NAND gates for each line, simply connect
the outputs of the four NAND gates to a 4-input NAND gate. You will
find that the output of that final NAND-gate circuit creates an image
identical to the output of the more complicated looking circuit in Fig.
3-7a:

In fact it is possible to use the general circuit in Fig. 3-7b to
combine any number of differentlines on the screen. Simply build the
horizontal and vertical lines separately, reduce the input NAND gate
circuits to their simplest form, and then connect the outputs of each
of the line-generating NAND gates to an output NAND gate. If the
output NAND gate happens to be a 7430 8-input NAND gate, it is
possible to combine as many as eight different combinations of
horizontal and vertical lines into one image.

The circuits in Fig. 3-8 show the author’s circuits for generating
the tic-tac-toe pattern and a full-screen border for many different
kinds of video games. The circuits are essentially identical, the only
difference being the spacing of the pairs of horizontal and vertical
parallel lines. Of course it is possible to create the same patterns, but

55

"SIBQ |B2IUOA puB {RIUOZUOY §O Siied oM} BuiIqWOoD 10§ SN0 jusjeanb] /- “Big

B/-€ 'OId Ni SY 3WVS
1ndino

/

an3id »ovg
NO S3NIT 3LIHM

a3Q033N sy
S31LYD ANVYN

A

g

—— S1NdNI
—— ¥ 3NIT

—— S1NdNI
—— £ 3N

1ndino

~— S1NdNI

j——— 2 3ININ

———S1NdNI

A¢

—=1 3N S3INI

ATINO v
S3INIT 13TTVHVYd
TVAINOZIHOH
¥ 3NN
Q3Jd33N sV
S1NdNI A
€ 3NN
2 3NIN
Q3033N svY
\ SINdNI H
ATINO L 3NN

IWLNOZIHOH agNy S3NITIVOILHIA

IvOILY3A 40 SHIvd
ONILOISHILNI

137vdvd

56

with black lines on a white background, by inverting the composite
signal before applying it to the GAME VID IN terminal of the
Sourcebox unit.

Figure 3-7b is a key circuit in designing all kinds of video games
and effects, so it should be clearly marked for future reference.

Building Narrow Lines More Efficiently

One of the features of the line-building procedure outlined thus
far in this chapter is that the width of the line depends on the number
of horizontal- or vertical-count inputs used. The narrower the line is
supposed to be, the more inputs one must use.

Now this calls for using a lot of inputs to make very narrow
lines. It would be nice if there were some way to modify the
technique to reduce the number of count inputs required for making
narrow lines. Fortunately, there is such a technique, and it quite
often reduces the number of inputs to just two or three.

Figure 3-9 shows a Tinkerbox technique for generating narrow
lines. Use the 8-input NAND gate to determine the inputs required
for setting the position of the line. If you are working with a vertical
line, adjust the position of the white bar so that its left-hand edge
marks the place where the narrow line is to begin. When working
with vertical lines, the narrow line will begin at the top of the
position-determining white bar.

After setting the starting point of the narrow line as shown in
Fig. 3-9a, remove the output inverter stage, and connect the output
of the NAND gate to a combination RC and logic circuit as shown in
Fig. 3-9b.

The output from the final inverter stage in Fig. 3-9b is a white
line that begins at the same time the original white bar does, but it
ends at some time equal to or less than the original bar. The duration
(or width) of the line is determined by the time constant of compo-
nents R and C.

One convenient way to fix the width of the line is by setting R
equal to 470 ohms and then varying the value of C until the line has
the desired width. For vertical lines, the value of C will be on the
order of 0.002 uF. The value of R can be changed a little bit too, but
it should always remain between 100 and 470 ohms for the most
reliable operation.

In summary, the starting point of the narrow line is determined
by the starting point of a white bar, a white bar that is developed by
one of the recipes for vertical or horizontal bars. The cutoff time of
the line is then determined by the values of R and C in Fig. 3-9b.

57

LINOHIO XO8Y3IMNIL oy | 310
2ISvE OL a3aav 991 'sol (v) ZT £l
AG+ 0 $D] pue ‘g9] ct
‘8-201 40 SLNdNI a3snNN (g) 8 6 ASL
AS+ OL SOI TV ¥L Nid (2) 8-90 3+l

WNOO OL SOI TV £ Nid (1) S3LON 5 RN hee
[AV9

9 = 1 .

voor c A8ZL
g-20!

1ndL1nNo T | 8
ur 9 m 6
9 gla-1ol
2
P] 0-10i
HYl
v
T | gond © e
v)
(] r H8el
2z
WLOL SOl i OA D H9s2
ANVN LNdNI-8 0EP2—SD1 *€DI 4

ANVN LNdNI-v TYNa 0262—901 ‘20t V-0l
HILHIANI X3IH v0pZ—10I

58

‘saweb AL Auew Jojuianed Jepioq v (q) ‘ebewi 201-0el-on Y (B) "saulf ojesed jo sired Buiuiquiod sindso 4o suoneoydde awog "g-¢ ‘Bi4

1IN2YID

XO8Y3IMNIL OISvE OL
asqav 991 ‘L1 ‘'sot (v)

NS+

O1 /21 SOl ‘€Dl ‘v-20!
40 SLNdNI a3snNn (€)
AS+ 0L S2I TV i Nid (2)
WIWOO 0L SO 1TV £ Nid (1)

SALON
€l
(LNd1nO)
AHQS8 4
8 or
g-¢o! 6
V101 8219
aNVN
1NdNI-8 0ErZ—L01 ‘SO ‘€I
aNvN

1NdNI-¥ TIvNa 02vL—<cOi
HILYIANI X3H $0rL—901 ‘10|

SOl

€0l

AY
A8
A9L
AcE
AV9

ABcl

HY
H8

Hee

5901
z v £
9 g-991 +
3
7 el €1
Nm v-90I 0}
RN aa——
t 410l
W
2|
—]
6
3101 WAMHQ
S
a-10l
2-19) v
9
S g0\ ¢

L

Hy9
HB8C L
H9Se

59

NAND GATE

AS REQUIRED
HORV ——of
INPUTS AS ————— ; ie1-4
NECESSARY — (OUTPUT)
2 WHITELINE
A OR BAR
NAND
GATE 1 —e IC1-A
—_ L] c
HORV] . 3 > 2D° - 2
lN!;LsJTS_D)___l \ 3 I >WH° ITE
ROW LIN
NECESSARY 1C4-A R NARROW RINE
4700
B C ~ 002 uf FOR VERTICAL
= LINES, ABOUT 1uf
FOR HORIZONTAL LINES

Fig. 3-9. An RC technique for generating very narrow white lines. (a) Setting up
the starting point of the line. (b) Modifying the circuit to make the line as narrow as
desired.

Any line that is narrowed by this RC technique can be combined
with other lines by first removing the output inverter and then
applying the signal to one input of a NAND gate, the NAND gate
used for combining lines from a number of line-generating circuits.
See the example in Fig. 3-10.

Building Broad Bars More Effectively

Anyone who has now experimented with the basic Tinkerbox
technique for generating lines and bars might be picking up another
shortcoming to the system: it is all but impossible to make a white
bar that crosses the dividing line between black 256H and white
256H.

The dividing line between the black and white areas of the basic
256H pattern is a unique point in the overall horizontal-count se-
quence. At that particular point, every H-count signal switches from
logic 1 to logic 0. They all make a transition from white to black. The
significance of this fact is that it requires some special logic trickery
to make a wide white bar extend continuously through this unique
dividing line; and that particular bit of trickery hasn’t been fully
described yet.

60

-131u8d J0 Wb 1SN[Jeq [EoIaA 9pIM K|B1BIOPOW B PUB USBIOS 3} JO 8PIS PUBY-}a) ay) Jesu

1
BUI| [BOIUAA MOLIBU B S| JNS8) 8y | *Jayabo) aWwayds aull-moLIBU DY 8Ly pue unoiw Buneseusb-auy oiseq ay; Buisn oL-€ D1y &)

ann
MOYHYN
3NN
3am ann
MOYHYN
el V10l
(LndLno) Z1
- H8Z !
£l = 4 }
L € Hos2
3NIT 3aIM t

The same sort of problem occurs when attempting to create a
broad white horizontal bar that extends through the dividing line of
the basic 128V image.

The technique for generating relatively broad white bars, either
vertical or horizontal, is the subject of this section. Besides allowing
the experimenter to build broad white bars across the center of the
screen, this technique often offers a more efficient option to building
broad white bars anywhere on the screen. L

The basic idea, illustrated in Fig. 3-11, is to build a simple R-S
flip-flop from a pair of 2-input NAND gates. To see how this circuit
works, suppose the Rand S inputs are normally at logic 1. If indeed
this is the case, momentarily pulling the S input down to logic 0 sets
the Q input to logic 1, and Q remains at logic 1, even after S returns
to logic 1. The only valid way to return the Q output to logic 0 once
againis topull the R input to logic 0 for a moment. And after that, the
Q output remains at logic 0 until the S input sees another logic-0
pulse. .

In summary, the Q output is set to logic 1 whenever the S input
is pulsed with alogic-Olevel, and Q s returned to logic 0 only when R
is pulsed to logic 0. The Q output, as its name implies, is merely an
inverted version of the Q output.

What is the significance of this circuit in the context of building
broad white lines on the TV screen? It means that a white bar can be
initiated at one point on the screen and terminated at any other point
to the right of it. It is a matter of coming up with two narrow-line
signals, one that switches on the white line and another that switches
it off.

Suppose, for example, you have built a Tinkerbox circuit that
draws two parallel vertical lines on the screen. The width of the lines
isn’t really important, just as long as they don’t overlap. Now con-
nect the output of the NAND gate generating the line on the left to
the S input of the flip-flop, and connect the output of the NAND gate
generating the second line to the R input. You will find that the Q
input of the flip-flop circuit generates a broad white, vertical bar that
begins when the left-hand line begins and ends where the right-hand
line begins.

Any technique you use to generate a pair of parallel lines can be
applied here. The resulting white bar will always cover the space
between the beginning of the first and last lines. This rule holds as
long as (1) the two original parallel lines do not overlap and (2) there
are only two parallel lines.

Figure 3-12 shows one of the author’s circuits for building a
white vertical bar that extends across the center of the screen.

62

IC4-A

— 1
S —— 3 Q
2
[__‘ (OQUTPUT)

Fig. 3-11. A basic R-S flip-flop circuit and relevant waveforms.

IC2-A defines the starting point of the bar. Viewed on the TV
screen, the output of this NAND gate appears as a relatively narrow
black bar just left of the center of the screen. IC2-A thus defines the
starting point of the white bar being generated in this example.

IC2-B in Fig. 3-12 generates the end-of-bar signal. Looking at
the output of this NAND gate on the screen, it appears as arelatively
narrow black bar just right of the center of the screen. Combining
these two black-bar signals in the R-S flip-flop ICs 4-A and 4-B,
yields the final result.

The same R-S technique can be applied to the task of generating
broad vertical bars. The only real difference is that the inputs to the
first set of NAND gates come from vertical-count sources rather
than horizontal-count sources.

Try building some broad white bars, both horizontal and vertical
ones, until you are confident you can handle the R-S flip-flop proce-
dure.

63

A slightly different approach to generating broad white bars
calls for a special IC device, a 7474 dual D flip-flop. Figure 3-13
shows the basic layout and truth table for this nice little device.

In the context of drawing wide bars on the screen, the D-type
flip-flop works like a short-term memory circuit that remembers
whatever logic level (1 or 0) is present at its D input the instant its
CLK input makes a transition from 1 to 0. The Q output responds
directly to any changes at the D input as long as CLK is at logic 0. As
soon as CLK returns to logic 0, however, the circuit “remembers”
the D input it saw just before that 1-to-0 transition took place at
CLK. D remains fixed at that output level until CLK is pulled up to
logic 1 again.

The simple circuit in Fig. 3-14 is just one example of how a D
flip-flop can be used for generating a wide, white vertical bar on the
screen. The D input in this instance is an inverted version of the
256H signal. The CLK input is 128H.

Whenever 128H is at logic 1 (white) any logic level present at
the Dinput is transferrred immediately to the circuit’s Q output. The
first time 128H goes white in Fig. 3-14, it so happens 256H is white;
thus, the circuit generates a white bar that begins as 128H goes
white the first time.

The output then remains white while 128H makes an alterna-
tion from white to black. The second time 128H goes white, 256H
has switched to olack, so the output of the D flip-flop circuit is
switched to logic 0 (black on the screen). .

It is left to the experimenter to decide whether the R-Sor
D-type flip-flop is best under specific conditions. Neither is better
under all circumstances.

Building Broad Bars and Multiple Parallel Lines by Foldover

There is yet another technique for building bars and parallel
lines on the screen. This technique still uses the basic Tinkerbox
approach to getting things started, but it calls for an additional IC to
complete the job.

Understand from the outset that this foldover technique is
useful only under certain circumstances described later in this sec-
tion. Usually it is simpler and mgre effective to use a straight
Tinkerbox, RC-modified, or flip-flop-modified technique. The fold-
over procedure is presented here for two reasons: first, it com-
pletes the list of possible ways to generate bars and lines; and
second, it introduces a digital principle that will become especially

64

‘Pus Sy saxy g-gJl pue Jeq
oy} Jo uiod Bunues ey ssuLBlep Y-z "anbiuyoa) doy-dy} §-Y eyl Buisn sieq Buissoso-1ejued ‘apim Bunelsausy z1-¢ "Bi4

AS+ O} ¢1 NId 1V (2)
WWOD OL £ SNId 11V (1) :S3LON
HzE

VLOL SOl €
aNVN

g-10l1 & 1NdNI-¢ avnD 00vL—vI
aNVN

1NdN!I-¥ TvNa 0cyL—<2l

H3I1LHIANI X3H v0r.—10I

nd1no) HY9

HvdaA

H8Zl

Vv-+0I

Vel 1 S 1 k2515

v-10l

65

14

7474 DUAL 5 9
D FLIP-FLOP —I L -
2—D Q Q D12
3— CLK CLK |—11
4—QgP PO—10
1—gc Q @ clo—13
I
6 8 7

P|c|p|ck| a @ [mope

o|i|x]| x [1 |o |PresET

i |o[x| x || o1 [cLEAR

V|| a | 1]o [READI

1{i]lo| » § o|1 [READO

|| 1]|x]| O [lQt-iGt-1 MEMORY

Fig. 3-13. The 7474 dual D flip-fiop circuit and truth table. (The Xs designate

“don't care” conditions, while the arrows indicate the need for a positive-going

level change).

TM
— 2 5 =
256H ——D Qp—VBAR 256H
TO CVID

LOWER-ORDER 3
H INPUT
I

Flg. 3-14. Using the D flip-flop to generate a board, center-crossing verucal bar.

66

important when attempting to build more-complex figures such as
racing cars, people, airplanes, rockets, tanks, and so on.

To see how the foldover procedure works, suppose you have
built a vertical white line using 256H, 128H, 64H, and 32H. As
shown in Fig. 3-15a, these inputs occupy all four inputs of a 4-input
NAND gate on the Tinkerbox assembly. If the output of this gate is
run through an inverter before it is applied to GAME VID IN, it
generates a moderately narrow white line that is just a bit left of
center. See Fig. 3-15b.

Now modify the inputs to the line-generating NAND gate by
running them through a set of EXCLUSIVE-OR gates (a 7486 quad
2-input EXCLUSIVE-OR). As long as the control input to the 7486

1 2 1
256H > WHITE VERTICAL
2
o q g BARLEFTOF
128H *—’3 . ! :}__7_{>O, CENTER
4H >c (OUTPUT)
5
sIN_6
32H —{>O-'_ A

7486
QUAL EXCLUSIVE-OR

4
128H p
+—> 2] 8 8
3 41 10 4 7 (OUTPUT)
64H |

9 8[5
5 $l 1 CONTROL = 0:
32H 11 WHITE BAR
13 LEFT OF CENTER
7
CONTROL = 1
= WHITE BAR
CONTROL B RIGHT OF CENTER

Fig. 3-15. The basic foldover bar-drawing technique. (a) Circuit for establishing
the size and position of the left-hand half of the image. (b) Final circuit for
doubting or folding over the original image.

67

IC is connected to COMM (at logic 0) the white line appears at the
same place on the screen it had before the EXCLUSIVE-OR gates
were installed. But connecting that control line to +5V (logic 1), the
line shifts to the right of center.

What is happening here is a reversal of the horizontal-count
sequence as the NAND gate sees it. Reversing or inverting the
outputs from any digital counter circuit makes it appear to count
backwards. So when the controlinput to the EXCLUSIVE-OR gates
is a logic 0, the NAND gate sees the H-count inputs arriving in their
normal up-coming sequence. Setting the control input to logic 1,
however, creates the effect of a counter that is running backwards.
In a sense, the NAND gate is fooled into reacting as though the
horizontal count is running from right to left across the screen.

Now connect the control input of the circuit to 256H. You will
find a pair of parallel vertical lines on the screen. This image is
something like a mirror image. The line on the left is the real image,
and the one on the right is its reflection. Unfortunately the dividing
line is at the point where 256H changes from black to white, and that
point is always a bit left of center.

Used with H-count line drawings, the foldover technique yields
a double pattern, with the right-hand half being a mirror image of the
left-hand side.

The trick works even better with vertical-count signals because
the 128V dividing line is closer to the center of the screen.

Create any pattern of horizontal parallel lines on the left side of
the screen, thenrun the inputs to their line-generating NAND gates.
Using 256H as the control input, the result is a mirror image on the
right side of the screen. Try using 128H as the control and you will
find the pattern repeating itself several times across the screen.

This foldover technique can be used for generating a broad
white bar if the inputs to the line-generating NAND gate are
specified so that they create a white bar that ends at the line where
256H changes from black to white. The mirror image of a white bar
ending at that line effectively extends the bar across that pointand an
equal distance into the right-hand side of the screen. The same sort
of thing happens when folding over a horizontal white bar.

Using the foldover technique is purely optional at this point.
The flip-flop techniques are equally effective and often more effi-
cient. Compare the two methods as shown in Fig. 3-16. Both circuits
generate exactly the same horizontal white bar across the center of
the screen. The scheme in Fig. 3-16a uses a R-S flip-flop, while the
one in Fig. 3-16b uses the foldover technique.

68

12

IC1—7404 HEX INVERTER
IC2—7420 DUAL 4-INPUT NAND
1C4—7400 QUAD 2-INPUT NAND

1
2
4
L 13
i 9 A
IC1-B Fl 5

IC2-B

IC2-A

IC4-A
6

HBAR

I’: (OUTPUT)
L

IC4-B

IC1-B
128V 3[::>£5
6av | 1, C5A

3
l2
32V

A
hoIC2A crea
2 1
: 6 1IN\2
HBAR
(OUTPUT)

1IC1—7404 HEX INVERTER
IC2—7420 DUAL 4-INPUT NAND
IC5—7486 QUAD EXCLUSIVE-OR

B

Fig. 3-16. Equivalent circuits for generating a wide, center-crossing white bar. (a)
Flip-flop version. (b) Foldover version.

69

(@ (b) (c)

Fig. 3-17. The structure of a rectangle. (a) Vertical component. (b) Horizontal
component. (¢) Rectangle resulting from ANDing the two components.

BUILDING RECTANGLES

Recall that the basic Tinkerbox technique for building vertical or
horizontal bars calls for logically ANDing together white areas. The
scheme uses a NAND gate followed by an inverter circuit, and the
resulting image is a white bar that exists wherever the white areas of
the input signals overlap. Building a rectangular figure on the screen
is a matter of first building two white bars, one vertical and the other
horizontal. The two signals are then ANDed together such that the
resulting image represents the area where their white areas over-
lap. See the example in Fig. 3-17.

The white vertical bar in Fig. 3-17ais a generated by any one of
the bar-generating techniques described in the previous section.
The horizontal bar in Fig. 3-17a is generated in a similar fashion,
using combinations of vertical-count inputs, of course.

These two signals are then combined in yet another NAND/
invert combination on the Tinkerbox breadboard. The image on the
screen represents the area where the two white bars overlap. It is
always a rectangular figure.

In a very real sense, a rectangle is formed on the screen by
specifying its horizontal and vertical coordinates. The vertical coor-
dinate in this case is a vertical white bar, and the horizontal coordi-
nate is a horizontal white bar. It doesn’t make any difference how
these bar coordinates are generated; if they are ANDed together
with a NAND/invert combination, the result is a white rectangle on
the screen.

Of course the output could be taken ahead of the inverter
portion of this circuit to produce a black rectangle on a white field.

Figure 3-18 shows a model circuit for generating a rectangle of
just about any dimensions anywhere on the screen. The vertical and
horizontal coordinates are generated by a straightforward NAND-
gate procedure, using the Tinkerbox components. The outputs of

70

these line-generating NAND gates are inverted, then applied to a
2-input NAND gate, If the rectangle is to be white on a black field,
the signal from the 2-input NAND gate is run through yet another
inverter before applying it to GAME VID IN.

One good way to build a rectangle is to sketch its outline on the
TV screen with a grease pencil. Then work with the Tinkerbox
circuit to build a white vertical bar that runs down through the
rectangle drawing, fitting the position and width as closely as possi-
ble. That operation specifies the rectangle’s vertical component.
Write down the H-input specifications and repeat the operation,
generating a horizontal bar that fits the rectangle’s specified position
and height. Again, mark down the V-input specifications.

Reduce the two circuits to their simplest NAND-gate forms and
feed their outputs to a 2-input NAND gate and inverter as shown in
Fig. 3-18. If you've specified the vertical and horizontal inputs
properly, there’s your rectangle on the screen.

This rectangle-building procedure can be summarized as fol-
lows.

Recipe for Building a Rectangle or Square

1. Build a horizontal white line or bar as described in Recipe
for a Horizontal Line or Bar. The position of that bar

_1
2
H-COUNT | —=
INPUTS —_ IC4-A
5
—1 Ic2-A
9
—| 'c28 IC1-B
10
V-COUNT / —]
INPUTS J2]
A3

Fig. 3-18. A basic circuit for building rectangles.

71

determines the horizontal position of the rectangle or
square, and its horizontal width determines its final width.

2. Build a vertical white line or bar as described in Recipe for a
Vertical Line or Bar. The position of this bar or line deter-
mines the vertical position of the rectangle, and its horizon-
tal height fixes the height of the final product.

3. If the 8-input NAND gate is used for building these two
lines or bars, transfer them to simpler NAND gates. A line
or bar requiring four inputs, for example, can be transfer-
red to one section of the dual 4-input NAND gate.

4. Run the outputs of the two sets of NAND gates through
INVERT gates and then to the inputs of a 2-input NAND
gate.

5. Invert the output of that 2-input NAND gate and apply the
resultant signal to CVID—and presto! There’s the square
or rectangle. This step, incidentally, is responsible for
creating a white square on a black field. The situation can
be easily reversed (same square, but black on a white field)
by omitting the final inverting operation—take the CVID
from the ouput of the 2-input NAND gate described in
step 4.

Try building some rectangles of your own, specifying a variety
of dimensions and positions on the screen. If you want to make some
very small rectangles, you will find the RC line-generating technique
is simpler than the basic NAND-gate approach.

Sculpturing Rectangles

There is an alternate procedure for building a rectangle that
sometimes saves some time and is perhaps more fun to use. First
build the basic rectangle circuit shown in Fig. 3-18, but without
specifying the exact horizontal- and vertical-count inputs. The
screen should be completely white at this point in the procedure, and
it is convenient to assume the circuit is generating a full-screen white
rectangle.

Next, apply a 256H or 256H signal to one input of IC2-A. The
full-screen rectangle will narrow in from one side or the other,
depending on the phase of the 256H signal you use. Then apply a
128V or 128V signal to one input of IC2-B, and the white rectangle
will shrink down from the top or bottom, again, depending on the
phase of the 128V signal you use.

Then apply an inverted or noninverted 128H signal to another
input of IC2-A and watch the rectangle narrow even more. Apply a

72

64V or 64V signal to a second input of IC2-B to make the rectangle
pull down farther from the top or up from the bottom.

Continue adding more H and V inputs to their respective NAND
gates until the resulting rectangle has the relative dimensions and
position you desire. I've called this asculpturing technique because it
gave the experimenter a feeling of sculpturing or trimming a figure
on the screen.

The general procedure for sculpturing arectangle on the screen
can be summarized in a basic “recipe.”

Recipe for Sculpturing a Rectangle or Square

Begin with a white screen, assuming it is actually a full-screen,
white rectangle.

1. Is that big white rectangle to be narrowed in from the left
right?
If from the left, use 256H
If from the right. use 256H

2. Is the resulting vertical bar to be reduced down from the
top or upward from the bottom?
If from the top, use 128V
If from the bottom, use 128V

3. Is the resulting white square to be further narrowed from
the left or right?
If from the left, use 128H
If from the right, use 128H

4. Now is that white rectangle to be reduced downward from
the top or upward from the bottom?
If from the top, use 64V ___
If from the bottom, use 64V

5. The white square can be sculptured further by alternately
reducing its horizontal and vertica! size and position.

Simplifying the Final Rectangle Circuit

All of the rectangle-building circuits described thus far use at
least three inverter circuits, one from each of the line-generating
NAND gates and one at the output of the NAND gate that combines
the two lines. This circuit is quite appropriate when experimenting
with various ways to build a desired rectangle, but there happens to
be a simpler way to do the same job. This simpler operation calls for
using an IC that is not included on the Tinkerbox parts list, but it
ought to be specified in any final circuit that is to be part of a
permanent game system.

73

H-COUNT | —

INPUTS
(OUTPUT)
3
V-COUNT | — =
INPUTS ¥4-7402

QUAD 2-INPUT NOR

Fig. 3-19. A simplified rectangle-building or sculpturing circuit

Rather than inverting the output of each line-generating circuit,
applying the signals to a NAND gate and then inverting the result,
simply take the outputs directly from the line-generating NAND
gates and apply them to the inputs of a 2-input NOR gate—one
section of a 7402 quad 2-input NOR IC package. Compare the basic -
Tinkerbox rectangle-generating circuit in Fig. 3-18 with the
simplified NOR-gate version in Fig. 3-19.

The circuit in Fig. 3-19 takes advantage of one of De Morgan's
logic theorems that says two signals can be ANDed together by
performing a NOR operation on inverted logic inputs. Well, the
signals from the line-generating NAND gates are really inverted
versions of the lines they are to generate, (Note that those outputs
generate black lines on a white field.) So running them directly to a
NOR gate yields an ANDed output; and that’s exactly what the
rectangle-building operation is based on.

NOR gates are used quite frequently throughout this book
where it is necessary to AND together signals that are already in an
inverted state. Using that one NOR gate eliminates the need for at
least three inverter circuits.

COMBINING ANY NUMBER OF STATIC FIGURES ON THE SCREEN

Single lines, bars, and rectangles — the sort of figures described
throughout this chapter—have little value in themselves. Two or

74

more of these basic static figures must be combined on the screen to
make up a more useful and interesting game pattern.

Speaking in digital terms, the process of combining two or more
static figures on the screen is a matter of ORing together the
individual elements. In terms of Tinkerbox technology, this means
running the output of each figure-generating circuit to a separate
input of a NAND gate. If the output of that NAND gate is then
inverted, the resulting signal is a composite image.

The circuit in Fig. 3-20 shows how four different static figures
can be combined into a single, composite video waveform. The
procedure takes advantage of De Morgan's theorem, where a
NAND gate performs an OR operation if the inputs are in an inverted
form.

Most of the line, bar, and rectangle generators in this chapter
yield inverted signals (black and white) anyway, so the NAND-gate
circuit is the most convenient and efficient one for this particular job.
Note that the output of the NAND gate is an “upright” or white-on-
black signal.

SOME INTERESTING PATTERNS
FROM STATIC-FIGURE COMPONENTS

Figure 3-21 shows a variety of circuits that create some fas-
cinating images on the screen. The basic idea is to combine a certain
horizontal-count input with a vertical-count input of the same order,
64H with 64V, for instance.

The circuits built around NAND gates produce a regular pattern
of squares on the screen. If the video signalis taken directly from the
output of this NAND gate, the result is a set of black squares on a

>

o0}

hid

WHITE-ON-BLACK
COMPOSITE IMAGE
ouTt

V2-7420

BLACHK-ON-WHITE
STATIC FIGURES
IN

e}

Fig. 3-20. Combining two or more figures into a single video signal

75

BLACK-ON-WHITE

SQUARES
16H WHITE-ON-BLACK
16V SQUARES

Y4-7400 1/6-7404
16H
CHECKER D
Va-7486

16H
16V

%

¥-7486

b‘CHECKERBOARD
1 WITHIN

8H ¥4-7400 CHECKERBOARD

8v

:

v4-7486

16H — |
16V ___|

y

P 1/6-7404

DO—DOCHECKERBOARD
— WITHIN
V4-7400 1/6-7404 SQUARES

8H
8v

?

Va-7486

Fig. 3-21. A few circuits for generating some special static-figure effects.

white background. If, on the other hand, the signal from the NAND
gate is inverted before applying to GAME VID IN, you will find white
squares on a black background.

Combining a pair of horizontal- and vertical-count signals at the

inputs of an EXCLUSIVE-OR gate produces a very distinctive
checkerboard pattern.

76

Whether you use the NAND-gate squares or EXCLUSIVE-OR
checkerboard, the pattern becomes finer as the input signals de-
crease in order. A 32H, 32V checkerboard pattern, for instance, is
much more coarse than one generated from 8H, 8V inputs.

Checkerboards within checkerboards, checkerboards within
squares, squares within checkerboards, and so on make some fas-
cinating images on the screen. Many of them are potentially useful
tor special effects in TV games you will want to develop later on.

77

Chapter 4
Building
More-Complex Static Figures

While it is possible to achieve a wide range of static patterns using
the principles outlined in the previous chapter, they generally lack
the interest that typifies some of the better TV games on the market
teday. The line and bar patterns are all made from straight lines and
right angles; and building something as geometrically simple as a
triangle calls for an exceedingly complex Line/Bar Tinkerbox cir
cuit.

This chapter presents one basic approach to building static
figures of all kinds, geometric figures as well as an unlimited variety
of far-more-interesting figures such as rockets, airplanes, tanks,
people, guns, and so on. And to some extent, it is possible to use this
technique to build up some of the more complicated line, bar, and
rectangle figures described in the previous chapter.

Although this chapter presents only one basic approach, I think
you will find it is adequate for just about any figure-building problem
you might ever encounter. The range of possible figures that can be
built is really limited only by your own understanding of how the
scheme works and, of course, your own imagination.

Follow the discussions carefully and in the sequence as pre-
sented here. You might get the impression you are studying a
textbook from time to time, but if you work out the specific examples
and then try a few of your own, you'll have a lot of fun learning how to
build complex figures on the TV screen.

This technique, incidentally, can be extended later on to include
some animation and figure-motion effects. So the figures you create

79

oo COMM| =

D3
D4
1 D5
z D6
_ 2] o7 _lo
4 4 D& M
> 6 S
— D9
o P, 21 — D10
-2 8 8 20— D11
10 10 19— D12
12 12 18— D13
1 11 17— D14
13 13 16— D15 -
7 IC2 15 \Ce PO E:_E
= IC1—7404 HEX INVERTER = |so St Isz Tsa

1C2—7400 QUAD 2-INPUT NAND
1C3-—7430 8-INPUT NAND
1C4—7486 QUAD EXCLUSIVE-OR
IC5—74150 16:1 MULTIPLEXER

1% 14 13 n

Fig. 4-1. Most-used IC components for the Complex-Figure Tinkerbox.

as part of the discussions in this chapter can be modified at a later
time so that they can be moved freely around the screen. Keep a
good set of notes concerning the specifications for interesting and
potentially useful figures. Such notes will prove invaluable when you
decide to work out a TV game of your own.

COMPLEX-FIGURE TINKERBOX

Assemble a Tinkerbox assembly similar to the one described in
Chapter 3 for building lines, bars, and rectangles. As indicated in the
parts list in Fig. 4-1, you need at least one 7450 16: 1 multiplexer and
a 7486 quad EXCLUSIVE-OR in addition to the inverters and NAND
gates prescribed for the Line/Bar Tinkerbox. There will be a need
for as many as four 7450 multiplexers for performing the more
advanced experiments in this chapter. But since these large 24-pin
ICs take up so much space on the breadboard, it is a good idea to
attach them to the board only as they are needed.

80

For the sake of readers who have no special knowledge of
digital electronics, the operation of the 16:1 multiplexer circuit calls
for some special consideration. The truth table in Fig. 4-2 repre-
sents the operation of a 74150 16:1 multiplexer IC. Note that the
device has 16 separate data inputs, labeled DO through D15. There
is a single output, however, M. Then notice there are four select
inpats, SO through S3, and a chip-enable input, CE. All of those
terminals, plus two more for +5V and COMM, add up to 24 pins.

According to the truth table in Fig. 4-2, the M output of this IC
is always at logic 1 whenever the CE input is atlogic 1. The Xsin the
select columns mean those inputs are not relevant as long as CE=1.
The CE input, in effect, is capable of disabling the chip altogether—
as long as CE=1, to be specific. Setting the CE input to logic O thus
enables the IC for its normal multiplexing operations.

Suppose the 'CE input is set to logic 0. Whenever that is the
case, output M is equal to an inverted version of one of the 16 D
inputs. Furthermore, the D input that appears inverted at the M
output depends on the status of the select inputs. If the select inputs
are all set to logic 0, for instance, an inverted version of input DO

ouT

INPUTS PUT
CE| B3308 | M
1 XXX X 1
o| ocoo |DO
o| ooo1 |D1
0 0010 [D2
0 0011 D3 Fig. 4-2. Operating truth table for the
(¢ 0100 D4 74150, 16:1 digital multiplexer. ~
0 0101 D5
ol o110 | D6
0 0111 {D7
0 1000 | D8
0 1001 D9 _
0 1010 {D10
0 1011 D11
o| 1100 |D12
0 1101 |D13
0 1110 | D14
0 1111 D15

81

appears at M. If, on the other hand, the select inputs are set to
binary 0001 (83=0, S2=0, S1=0, S0=1), output M is equal to an
inverted version of the D1 input.

The S columns in Fig. 4-2 actually represent a 4-bit binary
counting sequence from binary 0000 (decimal 0) through binary 1111
(decimal 15). The D inputs are labeled with numbers running from 0
through 15, and it is no coindicence that setting a particular binary
number at the S inputs causes the corresponding D input to appear
inverted at M.

A 16:1 multiplexer thus directs one of 16 different inputs to a
single output, depending on the 4-bit number applied to the S inputs.
If the select inputs happen to be connected to a 4-bit binary counter,
the D outputs would appear at M in sequence—in a scanning-like
fashion, And that, dear reader, is a clue to how a multiplexer can be
used for generating complex figures on the TV screen.

Just to get the Complex-Figure Tinkerbox going, connect the
circuit shown in Fig. 4-3. Note that select inputs S0, S1, S2, and S3
are connected to horizontal-count signals 32H, 64H, 128H, and
256H respectively. These counting signals cause the multiplexer to
deliver inverted versions of the D inputs, in sequence from DO
through D15, to the Moutput. Also note that the CE input is
connected to COMM in order to permanently enable the multiplex-
ing action. Connect the M output directly to GAME VID IN as shown
in Fig. 4-3.

At this point in the experiment, the screen is blank, or should be
blank if everything is going well. Then connect the D8 input, pin 23,
to COMM. A white bar should appear down the middle of the screen.
Its width should correspond to the width of the bars for a 32H signal.

Now remove the COMM jumper from D8 and connect it to
other D-input terminals on the multiplexer, inputs D7 (pin 1), D9 (pin
22), and D10 (pin 21). What happens to the bar? It appears at a
different place on the screen each time the COMM jumper is moved
to a different D-input location. You will notice that the bar does not
appear when connecting inputs D8, D7, and D6 to COMM. The bar
is being generated by the multiplexer in those three instance, but it
so happens the bar is in the horizontal blanking interval. All other
inputs fix the location of this vertical white bar in some visible area of
the screen.

Using the multiplexer as shown in Fig. 4-3 divides the screen
horizontally into 16 equal segments. Each of these segments repre-
sents one of the inputs to the multiplexer IC. The DO input is active
during the segment where 256H, 128H, 64H, and 32H are all equal

82

e,

=
S 24 12 | =
D1—7
D2—i6
D3—5
D4—— 4
D5— 3
D6 —1 2 3 TO
TO COMM D7 — 1 10 f—== GAME VID IN
(LOGIC O) D8 — 23 (OUTPUT)
AS DESIRED D9 — 22
D10— 21
D11—-20 !C5
D12 — 19
D13 —{ 18
D14 —i 17
|__D15—{ 16
—4J9
CE
= 15|14|131511|
S0 S1 .82 S3
|
TO H- OR V-COUNT
SOURCES (SEE TEXT)

Fig. 4-3. Pinout and nomenclature for the 74150 multiplexer.

to logic 0, the point in the horizontal-count format that initiates the
horizontal blanking interval. The blanking interval continues through
the time the multiplexer is scanning D0, D1, and D2. But once the
count reaches a point where the multiplexer is scanning the D3
input, the horizontal blanking interval is over. Segments represent-
ing inputs D3 through D15 thus appear in the useful working area of
the screen.

When you connected the D8 input to COMM (logic 0), nothing
really happens until the H-count inputs to the multiplexer reached
the D8 scanning position. At that moment, an inverted version of the

83

logic level applied to D8 (logic 1) was delivered to the GAME VID IN
connection on the Sourcebox, thus generating a white line. A bit of
white video appeared on the screen each time the horizontal trace
reached a point where it selected the D8 input of the multiplexer.
Moving the logic-0 input around to other D-input positions moved
the active region to different locations on the horizontal trace.

Incidentally, any D input that is not connected anywhere acts as
a logic-1 input. All D inputs that are not connected to COMM (logic
0) thus generate black areas on the screen, and that is why this
experiment shows a single white bar on a black field.

Connect more than one D input to logic 0 and note the effect. It
is possible to fill the screen with white bars if all 16 inputs are
connected to COMM.

It is rather convenient to think of this multiplexer scheme as a
type of memory circuit. The memory is capable of holding 16 bits of
data, and each of the 16 data locations are addressed in sequence by
the signals appearing at the multiplexer’s S inputs.

Bear this in mind while substituting vertical-count inputs for the
horizontal-count inputs at S0, S1, S2, and S3. Be sure to connect the
highest-order V-count input to S3, the next-higher V-count to S2,
and so on down the line to S0. Scrambling the sequence at this point
might cause more confusion than anything else.

THE ADDRESS MATRIX CONCEPT

Since each of the 16 D inputs on the multiplexer represents 1 of
16 different combinations of 1s and Os applied to the S inputs, it is
possible to organize those 16 locations into a matrix pattern.

The experiments suggested in the previous section of this
chapter assumed a matrix 1 unit wide and 16 units long. There was
one string of 16 discrete segments across or down the screen,
depending on whether the S inputs were connected to horizontal- or
vertical-count sources.

What.do you suppose happens to the D-input addressing if two
of the S inputs, say SO and S1, are connected to H-count inputs,
while the two remaining S inputs, S2 and S3, are connected to
V-count inputs? to be more specific, try this: connect SO to 16H, S1
to32H, S2to 16V, and S3 to 32V. Instead of generating a string of 16
segments, you end up with a 4 x4 matrix or graph. See Fig. 4-4a.

The H-count pulses determine the horizontal positions on this
little matrix, while the V-count pulses determine the vertical coordi-
nates. Position D10, for instance, is enabled whenever the two
H-count pulses show the decimal equivalent of 2 and the two V-count
signals are at decimal 2.

84

To get a better feeling for what is happening here, make the
connections to the multiplexer as prescribed in Fig. 4-4b. Every one
of the D-input positions that are cennected to logic 0 (COMM)
generates a white area on the screen. (Remember that the multip-
lexer inverts the data.) So the image on the screen should corres-
pond to the drawing in Fig. 4-4b.

Certainly there are more than one of these “Block-C” figures on
the screen. That is a clear indication that the system is generating
the little matrix pattern a number of times for each horizontal and
vertical scan cycle.

If you are beginning to get a grasp of what is going on here, you
should be able to predict what will happen if you connect the D6 input
(pin 2) to logic 0. Try it. That operation should fill in the black area
designated D6 in Fig. 4-4b, converting the white block-C figure into

H-COUNT
0 1 2 3

o

po(DI1 |D2|D3

D4|D5|D6|D7

D8| DS |DIO | Dil

V- COUNT
o

w

Di2| DI3 | DI4 | DIS

Fig.4-4. The simplest 4 x4 figure
S0=164 D1 = 0-PIN7 matrix. (g) The basic matrix format.
S1=32H D2=0-PIN6 (b) Specifications for a simple figure

= =5 generated by the 4 x 4 matrix cir-
S2=16V D5=0-PIN3 cuit.

S3=32Vv D9 =0-PIN 22
B D10 = 0-PIN 21
MTO GAME VID IN

DI |D2} D%

g!

ol

P

D5

|

[e e
] R
o
©
<>
o
)
=

.%m
g
)
-
i

85

a white rectangle. Remove the grounding wire to D5 and note the
effect. You'll get backward block-Cs on the screenif you have left D6
connected to logic 0.

Play around with the logic levels at locations D1, D2, D5, D8,
D9, and D10, and note the results. Keep arecord of the connections
that generate a pattern you think might be useful in the future. Avoid
tampering with the matrix blocks surrounding the sides and bottom
of the figure—unless you want the white areas of one matrix to butt
up against white areas of another one.

Try running the Moutput of the multiplexer through an inverter
before applying the signal to the GAME VID IN. You will find that the
blacks and whites are then reversed on the screen. Maybe some-
time you will have a need for a black block-C on a white field.

Windowing the Matrix Display

Having a number of identical figures on the screen at the same
time might create some interesting visual impressions, but it is often
confusing and usually undesirable to show more than one particular
complex figure on the screen at any given time. Eliminating all but
one of the matrix figures is a matter of building a window around the
figure in the desired area of the screen.

Figure 4-5 shows the standard 16-cell matrix circuit, including a
windowing feature built around IC5. Note that the output of IC5 is
connected directly to the CE input of the multiplexer. As long as this
terminal is at logic 0, the multiplexer circuit generates its matrix
video at M. The entire multiplexing operation is inhibited, however,
when the output of the NAND gate rises to a logic-1 level.

Now notice that the inputs to IC3 are horizontal- and vertical-
count sources. An astute reader will recognize the fact that this
NAND operation is identical to the rectangle-building circuit de-
scribed in Chapter 3. And that’s precisely what is involved in win-
dowing the matrix display: building a rectangle that encloses one of
the matrices and eliminates all the others.

Connect the circuit shown in Fig. 4-5, using window and ad-
dress inputs as follows: S0=32H, S1=64H, S2=32V, S3=64V; with
window inputs 128H, 256H, and 128V. With no connections to the D
inputs, you should see a white square in the lower right-hand quad-
rant of the screen. Now the fun begins.

The square on the screen represents the 4 x4 matrix shown in
Fig. 4-4a. Since the output of the multiplexer is now inverted before
itis applied to GAME VID IN, it follows that logic-1 levels applied to
the D inputs creates white matrix cells on the screen. The matrix is

86

+5VT
to—ls 24 12
D1—7
D2—6 74150
03 —l5 MULTIPLEXER
D4-—{4
D5— 3
D6—{2 B
DATAINPUTS | D7—1
(MATRIX LOCATIONS) | pg— 23 10
D9—{ 22 MVID
10 —] 21 IC5 (OUTPUT)
D11~ 20 =
D12 — 18
D13 —] 18
(3.3 e
WINDOW 3114 -
INPUTS 4 CE
H- AND V- 2 g
COUNT SIGNALS | 77 = 15} 14|13|11|
AS NECESSARY [17] S0 S1 S2 S3
-1 = Ve)
ic3 “ADDRESS"” INPUTS

Fig. 4-5. The basic 16-cell matrix generator circuit.

row filled with white cells because any unconnected input ofa TTL
IC automatically assumes a logic-1 condition.

Connect a single jumper wire to COMM and touch the free end
to various D inputs on the multiplexer. You will find that applying a
logic-0 level to the D inputs in this fashion causes the corresponding
matrix cell on the screen to go black. Connect the jumper to DO
through D15 in succession, and you will see a black square moving
through the matrix as you go.

Building Complex Images in the 4x4 Windowed Matrix

Building complex figures using the circuit in Fig. 4-5 is a matter
of eliminating white cells by connecting their corresponding D inputs
10 logic 0. And if you are really putting your heart into the project,
you can have a good hour or so of fun playing with this scheme.

87

Figure 4-6 shows some complex figures that will help you get
the experiment started. The black portions of the figure indicate D
inputs that are to be connected to logic 0 (COMM). The white cells
represent D inputs that aren’t connected to any sort of input at all.

As usual, it is a good idea to keep notes concerning the input
specifications for the figures you create.

After playing with this circuit for a while, try making the figures
smaller. To cut the size of the matrix in half, shift the S inputs to the
multiplexer to lower-order H- and V-count sources: SO0=16H,
S1=32H, S2=16V, S3=32V. You will have to reduce the size of the
window, too, otherwise you will end up building four identical figures
inside that original window space. The window can be reduced by
adding inverted or noninverted versions of 64H and 64V to the
window inputs of IC3.

The basic matrix described thus far is made up of 16 cells
arranged in a 4 x4 pattern. It is possible to alter the configuration to
generate 16-cell matrices that are either 2x8 or 8 x2. (The first digit
indicating the number of horizontal cells and the second indicating
the number of vertical cells.)

Figure 4-7 shows the specifications for generating these two
different kinds of 16-cell matrices. The 2x8 matrix is generated by
connecting SO to 32H, S1 to 32V, S2 to 64V, and S3 to 128V. The
circuit in this case uses only one H-count select input and three
V-count inputs, hence it is longer than it is wide.

Changing the width-to-height ratio also alters the shape of the
required window. Note the changes as specified in the window data
in Fig. 4-7a.

If you ever want to create a complex pattern within an 8x2
matrix as in Fig. 4-7b, simply reorganize the select and window
inputs as prescribed in that figure.

In either case you can still eliminate white cells by connecting
the designated D input to logic 0, and retain a white cell by making no
connection at all to that particular D input.

Carefully compare the shapes, select, and window specifica-
tions for the matrix-generating circuits in Figs. 4-4a and 4-7. All 3
have a total of 16 cells. That’s quite apparent. But note a more subtle
feature. The matrices must have a width-by-height product equal to
16. For example, it is not possible to build a 3x5 matrix using this
16-cell scheme. You donot have to use all the cells (the figure in Fig.
4-4b happens to occupy a 2x3 space), but you must be able to
account for all of them in the basic matrix pattern.

Work with this basic 16-cell format, changing select and window
specifications, until you are certain you understand how it works. As

88

SELECT: S0 =32H WINDOW: 256H
S1 =64H 128H
S2 =32v 128V
83 =64V
D INPUTS: LOGIC 0 (COMM) YIELDS
BLACK CELL

LOGIC 1 (NO CONNECTION)
YIELDS WHITE CELL

DO pE} B2 D3 OO DE} D2 D3
‘54| 05| D6 [BZ| |B% D5 D6 | D7
=p&| D9 | DIO B ; D9 | DIO| DI
DI2 [DI3{ DI DIS DI2| DI3 | DI4 | DI5

po|DI | D2 B3 |28 DI |D2| D3

T
I

D4 Ep%] D6 B¢ D4 E654 D6 | D7

ps | Do plo{BiE| |D8| Do [mig] DII
DI2 | Di3i D4} 0I5 pI2| D13 | DI4 | DI

Fig. 4-6. Some experimental figures for the 16-cell matrix generator. All of these
figures use a 4 x 4 format.

soon as the experiments seem to be getting a bit dull, move on to the
next stage of the project, generating extended matrices.

Extending the Matrix

After experimenting with the basic 4 X4 matrix for a while, you
will come to the conclusion that it is incapable of generating a very
wide selection of interesting figures. The versatility, resolution, and
overall quality of TV-game images is directly proportional to the

89

‘2% 8(q) '8 x g (e) v x v uey) soyio swayed w paziuebio sedueWw |[83-91 *L-4 ‘Bid

XiHIVN ¢ X 8 XIHIVIN 8 X ¢
cla(via| g |2ig| g |oidjed|8a a Gida | ¥id
laloea|sa|vaea|2a)| la|oa ¢lg | 2ld

1130 XMovig =20 NcE = €S I1d | 0Id
77130 3LHM = | A9 HBZlL = ¢S
a34yIN03d sV Agcl HY9 = IS 6d | 8d
0HO I 'SINANI @ H952 ‘MOANIM H2ZE =0S :10313S
20 | Sa
v
Ga | +va
130 %0V18 = 0 A8ZL = €S calza
7130 31LIHM = L HY9 AV9 = ¢S

0HO L 'S1NdNI @ H9SC ‘MOANIM Hee =0S ‘10313S

90

number of cells available in the matrix, and unfortunately, the basic
16-cell matrix is a bit too elementary to be of much use.

It turns out, however, that it is possible to apply a simple
matrix-extension procedure to double the number of cells in any
basic matrix. Using this procedure, for instance, immediately trans-
forms the 4 x4 matrix shown in Fig. 4-4a into a 32-cell, 4x8 matrix
(See Fig. 4-8).

One of the special features of the matrix-extension technique
used in this book is that it does not call for adding any hardware to the
basic matrix-generating circuit. The circuit for generating the 32-cell
matrix in Fig. 4-8 is exactly the same as that described in connection
with the 16-cell circuit in Fig. 4-5.

Thus it is possible to double the essential qualities of a matrix-
generating circuit without having to add more hardware. And that is
one fine example of applied engineering efficiency.

The only real difference between the specifications for a basic
16-cell matrix and its 32-cell extended version is the D-input format.
Whereas a basic matrix calls for inputs of either logic 0 or 1, the
extended version calls for logic 1, 0, and inverted/noninverted
vertical-count signals. Compare the D-input specification for the
4x8 extended matrix in Fig. 4-8 with those for the basic 4 x4 matrix
in Fig. 4-6.

Rather than launching a highly technical theory of operation at
this point, it is better (in this case anyway) to try the scheme first.

Using the circuit shown in Fig. 4-5, modify its select and
window specifications as prescribed in Fig. 4-8. Do not make any
connections to the D inputs at this time.

After carrying out this initial setup procedure, you should find a
4x16 white rectangle resting in the lower right-hand quadrant of the
screen. This is the extended 4 X8 matrix having all D inputs equal to
logic 1.

Connect one end of ajumper wire to logic 0 (COMM) and touch
the other end to the multiplexer’s D0 input. You will find two black
squares appearing on the screen. One is in the DO position of the
matrix and the other is in the DOE position. Here is the first
important point. A logic-0 level applied to any one of the 16 D inputs
on the multiplexer creates 2 black squares. One of these squares
appears in the designated D-input position, while the other appears
in the corresponding extended-matrix position.

Tap the logic-0 jumper wire to all 16 D inputs in succession and
note how it eliminates 2 cells at one time. Of course you can connect
all 16 D inputs tologic 0 and end up blacking out all 32 matrix cells—2
at a time.

91

SELECT: S0 = 16H
S1=32H
S2 =16V
D4|D5|D6| D7 S3 =32V

DO| DI | D2 | D3

WINDOW: 256H
D8 | D9 | DIO| DII e

64H
DI2| DI3 | DI4| DIS 128V

DOE| DIE |D2E| D3E | P INPUTS:
1, 0, 64V, OR 64V,

D4E|DSE|D6E|D7E| AS REQUIRED

D8E| DOE|DICE| DIIE

DI2E| DI3E|DI4E| DISE

4 x 8 EXTENDED MATRIX

Fig. 4-8. A 4 x 8 extended matrix from a basic 16-cell circuit. The Select,
Window and D-input specifications are merely examples.

Note that the extended-matrix pattern in Fig. 4-8 shows the
usual 16 cells arranged in a 4 X4 pattern at the top of the rectangle.
The bottom half of the rectangle is composed of another 4 x4 matrix
with cells designated DOE, D1E, D2E, etc. The “E” suffix indicates
an extended matrix cell, and whenever one of the cells in the top half
of the matrix is blackened by setting that D input to logic 0, its
extended counterpart in the bottom half of the matrix is also black-
ened.

While this procedure for generating two black squares at the
same time is a cute trick, it isn’t really very useful (unless the figure
you want to create happens to be a symmetrical one). So here is the
clincher. Remove any logic-0 connections to the D inputs of the
multiplexer and connect one end of the jumper wire to the 64V
source. Connect the other end of this jumper to the DO input of the
multiplexer, and presto! There is a single black square in matrix
position DO. You are no longer getting the two-square effect you
found when connecting the D inputs to logic 0.

Try touching this 64V source to the multiplexer’s D inputs, one
at a time and in succession. You will be able to blacken any one of the

92

16 cells in the upper half of the matrix. But notice that it is not
possible to darken any of the extended-matrix cells in the lower half
of the rectangle.

Next, run the 64V source through an inverter to obtain a 64V
signal. Connect that 64V signal to the D inputs of the he multiplexer and
note the response on the screen. It turns out that 64V inputs darken
cells in the lower half of the rectangle, leaving those in the upper half
unaffected.

Connect various combinations of logic 0, 64V, and 64V to the D
inputs of the multiplexer. Observe the response in each case, and
continue experimenting in this fashion until you are convinced you
understand the behavior of this valuable extended-matrix technique.

The general rules for designing figures using the extended-
matrix technique go something like this:

« If a cell in the top half of the matrix and its extended
counterpart in the bottom half are to be white, make no
connections to that position on the multiplexer’s D inputs.

poloi | o2l b3 SELECT: SO = 16H

S1 =32H
S§2 = 16V
D4 | D5 | D6 | D7 S3 =32V

D8 __Bg__-bﬁ DIl WINDOW: 256H

: 128H
64H
128Y

D3E| DINPUTS: D9 =0

= 2 D10=0
1DTE D4 =64V
3 D5 =V
D6 =64V
ell= D137 64V
D14 = 64V
DI2E |DI3E |DI4E|DISE A

D INPUTS NOT DESIGNATED
HERE ARE TO BE AT
LOGIC 1

Fig. 4-9. Specifications for a stylized S figure built withina4 % 8 extended matrix.

93

* If a cell in the top half of the matrix and its extended
counterpart inthe bottom half are to be black, connect that
position on the multiplexer’s D inputs to logic 0.

» If a cell in the top half of the matrix is to be black and its
extended counterpart in the bottom half of the matrix is to
be white, connect a noninverted 64V source to the approp-
riate D input on the multiplexer.

*» If a cell in the top half of the matrix is to be white and its
extended counterpart in the bottom half of the matrix is to
be black, connect an inverted 64V source to the appropriate
D input on the multiplexer.

This set of rules for designing static figures with the
extended-matrix scheme might seem very complicated at first, but it
can become rather obvious after playing with the circuits for a while.

Figure 4-9 shows the matrix pattern, select, window, and
D-input specifications for generating a stylized S figure. Note that
the specifications for the D inputs follow the general rules outlined
above. Cells DOand DOE, for example, are both white, so thereis no
need to make any connection to the DO input of the multiplexer.
Locations D9 and D9E, on the other hand, are both black, so the D9
input on the multiplexer is connected to logic 1.

Cell positions D13 and D13E have opposite colors: D13 is black
and its extended counterpart, D13E, is white; so a noninverted 64V
signal is applied to the D13 input of the multiplexer. And finally, D4
and D4E are to be white and black respectively, so an inverted 64V
signal is fed to the D4 connection on the multiplexer.

The two figures in Fig. 4-10 are examples of some 4x8
extended-matrix designs you might like to try. The question-mark
figure is especially fun to see on the screen. You might want to use it
as arather novel response to some sort of questionable moveina TV
game later on.

After studying and applying this extended-matrix technique for
awhile, you will find it rather easy to design figures of your own. Just
copy the matrix pattern in Fig. 4-8 and blacken the appropriate cells
with a pencil. Of course you don’t have to use the same select and
window specifications shown in the examples here, but if you decide
to change them, bear in mind that the matrix cannot be any larger
than the one specified in these examples. Try it. You'll find it too tall
tofit on the screen. So it is possible to make the matrix much smaller
by reducing the horizontal- and vertical-count specifications. Then,
too, you can shift the position of the matrix by changing the window
specifications.

94

XUEW g X 8 Papualxa
uB U1 Hd STemu (Q) "xujew papuaixe 8 x { eyl ul suew uonsenb v (g) ‘sainbly xujew-popusixa jo sajdwexa seyund "01-¢ ‘614

3cia|3viaj3eial32ia| 3110{3010| 36G {380

374|390 |350|3va (360|320 [31 {300 —p—
e = = 35ia{3via[3cia| 3210

0=sta [S8 | via | g1a | 2ia fira-|oia |6 | sa | 8 —
0=¢€10 == e e — — 3110|3010/360} 380
0=110 28| 90 |GG va [€d {20 | 1d | 0a = —
AZE=010 =] F———] == e .x =
0= 6Q AY9 A9l = €S Eay Wn@ 350 waﬂ

0= .a ASZI HY9 = 2S P —— =
AZE= SQ HBzl HZE = IS 30 1320 310 | 300
0= €Q SLNdNIQ H9SZ ‘MOANIM H9I =0S :103713S —— T
SIq| $10 | €10 200

v lia [olgFea{ea

0=513 0=0L0 A¥9=5G ABZH AZE =€S e —
A¥9 =10 0=63 Av9 =0 HY9 A9 =¢S L0 [SA 184 va
AY9=€10 0=80 0=¢€qQ H8zZL HZE = IS =—=—— .
0=213 A¥9=:0 A¥9=¢2d H9se H9 = 0S == S5

AY9=11d 0=90 0=0C0 :S1NdNIQ IMOGNIM 10313S B ——

95

Sketch the figure you want by darkening the appropriate cells
on the matrix pattern, adjust the select and window as desired, and
specify the D inputs according to your sketch and the four
extended-matrix rules described earlier in this section.

It is often helpful to build the original figure using a relatively
large-scale matrix. After you are satisfied with the specifications,
scale it down to size by lowering the order of the select inputs. The
question mark in Fig. 4-10a, for example, turns out to be a rather
large figure when built according to the select and window specifica-
tions shown in that diagram. It can be reduced in size a considerable
amount by setting the select specifications to 4H, 8H, 4V, and 8V,
then setting the window to something like 256H, 128H, 64H, 32H,
16H, 126V, 64V, and 32V. The V-count signal to the D inputs should
be 16V and 16V, rather than 64V and 64Vused for the larger
version.

While you are having fun with this question mark, why not try
something else? Use the small-figure select and D inputs as just
described. But instead of using the 8-input NAND gate to generate
the little window, try replacing the NAND gate with an
EXCLUSIVE-OR gate. Run 32H and 32V signals to the inputs of the
EXCLUSIVE-OR gate, and connect the output of that gate to the CE
terminal of the multiplexer. Cute, eh?

Folding Over an Extended Matrix

The matrix-extension procedure doubles the number of cells
available for building matrix-oriented figures. That particular
technique has no restrictions on the type of figures that can be
generated, and it calls for no more hardware than is required for a
basic matrix-generating circuit.

A matrix foldover scheme described here doubles the number
of cells once again. A basic 4 x4 matrix, for instance, can be doubled
to a 4 x8 pattern by means of the matrix-extension procedure, and it
can then be doubled to an 8x8 matrix by applying a foldover
technique.

There are some restrictions on the kind of figure that can be
generated under foldover conditions, however, and the technique
requires some additional EXCLUSIVE-OR gates. In spite of the
restrictions and extra hardware, the foldover technique pays off
quite often.

The diagrams in Fig. 4-11 show the 8x8 extended foldover
matrix pattern as well as the extra circuitry that must be added to the
basic 4 X4 matrix generator in Fig. 4-5.

96

-sejdwexe 1snf aJe suoneayoads Indui-q pue ‘MOpPUIA 108|138 "INoud Joje1auab
1192-91 OISEq 8Y) WOJ) XUJBW 'SA0P|0) papudlxa g x g ue Buneaso Joy Ainono [euonppe pue wisned xiew “Li-y b4

d3dind3d sv

‘AY9 ‘'AP9 ‘0 ‘L SLNdNI G

‘S-v 'OId OL €S AZE
IVOLLN3A LINDYID
40 Y3AaNIVN3Y

Zs ASL
S1NdNt 10313S
H3IXINAILINW
oL HZE

H¥9

H9l

H3A0C0104 G3AN3LX38 X 8

AcE = €S
A8cl A9l = ¢S
H8Zl H¥9 4 HeE = IS
H9SZ ‘MOAONIM HV9 4 HOL = 08 11D313S
H3210) 43¢10143P10|43510| 3S1A] 3¥I0| 3¢1a| F<la
4380| 436043010 43110/ 3110 | 30i0| 364 | 380
4340| 4360|4390(4320) 320 |390 | 364 | 3+4
430Q| 4310|4320(43¢0| 3¢0 | 324 3ia | 300
4210| 410 | 4¥l0| 4G1a| S1a | +id | €1 | 2id
480 46Q(401a|d11G| 11Q | 01| 640 | 84
4%¥0| 46a}490|44a(L0 | 90| Q| vA
400| 410| 4240|4ea| €0 |20 | 10 | OCQ
XIHLVIN

N
=]

A cursory study of the matrix pattern in Fig. 4-11 will show that
the original 4 x4 matrix is situated in the upper left-hand quadrant.
The designations for each of the cells in this quadrant correspond
exactly to the D inputs of the multiplexer in Fig. 4-5.

Then notice that the lower left-hand quadrant of this matrix is an
extended version of the upper left-hand quadrant. The left-hand half
of this 8x8 matrix, in other words, is simply the 4x8 extended
matrix described in the previous section of this chapter.

The right-hand half of this matrix is the folded portion. The
foldover cells all have an “F” suffix to clearly indicate they belong to
the folded half of the matrix.

Compare the designations of the cells in the left-hand half of the
matrix with those on the right and you will find that the right-hand
half of the diagram is really a mirror image of the other half. The
folded cell D3F, for instance, is one cell to the right of the center line,
while its originating counter-part, D3 is just left of center. D0 is in
one upper corner, while the folded version of it appears in the
opposite upper corner,

The fact that the right-hand half of this 8 X8 matrix is a mirror
image of the left-hand half means that any figure using this format
must be symmetrical around the vertical center line. While this
might seem to be a rather severe restriction at first, it turns out that
a great many interesting and useful figures do, indeed, have a
symmetrical (mirror-image) quality. Look ahead to Fig. 4-12 for one
good example.

All that is required for achieving the foldover effect in this case
is to run the 16H and 32H signal through EXCLUSIVE-OR gates
before applying them to the SO and S1 select terminals of the
multiplexer. One input of each of the EXCLUSIVE-OR gates is
connected to 64H. So when 64H is at logic 0, noninverted versions of
16H and 32H appear at select inputs SO and S1. When 64H switches
to logic 1, however, SO and S1 see inverted versions of 16H and
32H.

The circuit thus generates the normal matrix and extended-
matrix patterns as long as 64H is at logic 0, but as soon as 64H rises
to logic 1, it effectively reverses the horizontal scanning operation.
Along the first row of cells, for instance, S0 and S1 see binary levels
representing a normal count of 0, 1, 2, and 3. At the end of D3,
though, the EXCLUSIVE-OR gates begin reversing the count: 3, 2
1, 0. A reversed image thus appears along the right-hand half of the
matrix.

Connect the basic 4 x4 matrix-generating circuit shown in Fig.
4-5, then add the two EXCLUSIVE-OR gates as shown in Fig. 4-10.

98

o |51 | p2| 03 |3 o2r | oiF [por | SE-ECT
D DI 310 0 | S0 = 16H F 64H
S1=32HF 64H
D4 | D5 | D6 | D7 |D7F |D6F |D5F [D4F e
83 =32v
D8 | D9 | DIO| DIt |DIIF |DIOF|D9F P8F |\winoow: 256H
128H
pi2 {013 | DI4 | DIS [DISF |DI4F|DI3F [Di2F 128V
DOE | DIE | 62 | D3E |D3EF [D2EF{DIEF |DoEF| ° Vo D0 =S
= v : D2 =64V
D4E | D5E | D6E| D7E |D7EF |DEEF DSEF D4EF D3 =64V
= D6 =64V
DSE | DSE [DIOE [DI IE |DIIEF|DIOERDSEF|DSEF Dy =64V
D12 =64V
s D13 = 64V
DI2E [DI3E [DI4E |DISE |DISEF DMEFIDI3EF e

Fig. 4-12. Figure and specifications for a racing car, using the 8 x 8 extended
foldover matrix circuit.

Finally, set the select and window specifications as shown. (The
select statement SO=16H F 64H can be interpreted as meaning, “SO
equals 16H folded by 64H").

Using these specifications, you will find a large white square
near the lower right-hand corner of the screen.

To begin getting a feeling for how this 8 x8 extended foldover
matrix works, connect the D inputs of the multiplexer to logic zero,
beginning with DO and working up toward D15. When you connect
DO to logic 0, you should see four black squares appearing at DO,
DOF, DOE, and DOEF. In fact four black squares should appear
anytime one of the multiplexer’s D inputs is connected to a logic-0
source. The four squares represent the original D position, its
extended counterpart, and foldover versions of both the original and
extended squares.

Whenever any of the D inputs are connected to 64V, you should
see a pair of black squares in the upper half of the matrix. The one on
the right side is a mirror-image of the one on the left. And in the same
fashion, connecting any of the multiplexer’s D inputs to an inverted
version of 64V creates a pair of black squares in the bottom half of the
matrix.

The four rules for generating a 4 x8 extended matrix pattern
apply here; so if you have mastered the earlier procedure, you are
fully prepared to begin building extended foldover patterns.

99

The diagram in Fig. 4-12 is one example of an 8 x8 extended
foldover figure. The idea here is to build a figure of a racing car for a
couple of different TV games. Using the select, window, and D
inputs specified in that figure generates a rather large version of the
car; so after you've tried building it for yourself (and maybe making a
few style modifications), reduce its size by scaling down all of the
specifications a notch or two.

Why not try designing a few more interesting and potentially
useful figures that are symmetrical about a vertical center line? Try a
rocket, for instance, or some stars, squares with black centers, and
triangles.

Figure 4-13 shows the matrix and circuitry for converting the
8x8 extended foldover matrix to one having symmetry about a
horizontal center line. Three lower-order horizontal-count inputs go
to select inputs S0, S1, and S2, while S3 sees a folded version of
16V. Note that the 32V signal that is used for generating the
extended-matrix effect must also be folded before it is applied to the
appropriate D inputs of the multiplexer circuit.

An example of an 8x8 extended, horizontally folded image is
shown in Fig. 4-14. As with every matrix-generated figure in this
chapter, it can be reduced in size by scaling down all the vertical- and
horizontal-count inputs. Using the specifications given in Fig. 4-14,
the airplane occupies most of the lower right-hand quadrant of the
screen.

Figure 4-15 shows yet another version of the 64-cell extended
foldover matrix built around the circuit in Fig. 4-5. In this instance
the matrix is configured as a 4 X16, with symmetry about the vertical
axis. Using the select, window, and data specifications shown here,
this particular matrix is quite useful for building missile images. See
the suggested missile in Fig. 4-16.

See if you can apply your understanding of how the foldover
principle works to generate a missile image that fits into a 16x4
matrix that is folded along the horizontal center line.

MATRIX OPERATIONS FROM A 32-CELL GENERATOR

The circuit in Fig. 4-5 is a basic 16-cell matrix generator. By
applying extended-matrix and matrix foldover procedures, it is pos-
sible to build 32-cell and 64-cell matrices. The only restriction on the
kinds of figures it can generate is that the 64-cell version is good only
for making symmetrical figures.

And while it is a lot of fun to play with the system just described,
personal experience with it shows that other people sometimes have

100

-A|[RIUOZLIOY PAPIO} St 1BU) XUIBW POPUBIX3 8 X § U JOj SUONBIYI0ads ejdwes pue ‘Unduid ‘uonenbyuod ximew ‘el-v ‘614

a3diNnd3ayd Sy AP9 4 ASL = €S
‘A9 4 ACE A82CL H¥9 = ¢S
‘AY9 4 AZE HszL HZE = 1S
0°‘L:SINdNI @ H9S2 -MOANIM H9l = 0S 1D313S
0 ACE 420 | 39al4sa |3val 4ea | 42a] 410 |d00
S1NdNI d
4aial 4vial 4eial4z1a] A11a| Jo1a| d6a | 480
AP
3320l4390| 43cal43ta| 43¢a|432a|4310] 4300
es 43610143140l s3sK0H32ia|4311a0|4301a0| 4360} 4380
N9t
3510/ 3v1a|3c1a321a] 3116| 3010|360 | 380G
o m 4 H¥9
nz 320 |39a|3sa|3+a| 3ca|3za|31a |300
QFE
= L ce
ww_ S H gia lvialcialzial nojola| ea | 8a
c
a3 (os HOl Jaloalsa|val|ealzal| ta]oa

(AHL3IWWAS TV.LNOZIHOH)
XIH1VAN H3A0Q104 aIaN3LX3 8 X 8

101

Do D {p2} 03|04 05| et 7 | SEECT

S0 = 16H
og | 09 [Diof ot |01z | 013| D4 D5 | o =3
- S3 = 16V F 64V
DOE | DIE | D2E| D3E| D4E| D5E| D6E| D7E WINDOW: 256H
D8E | DOE |DICE |DIIE [DI2E [DI3E |DI4E |DISE :ggc

DSEF|DOEF |DIOEF|DI IEF|DI2EF|DI3EF|DIEFDISEF | D INPUTS:
DO =0 D8 =3zv

DOEF |DIEF D2EF|D3EF |D4EF|DSEF |DEEF|D7EF| D1 =32V D9 =32V
D2 =0 Di0=32v
D3 =0 D11=32v
D8F (DSF |DIOF |DIIF |DI2F DI3F [DI4F |DISF | o) _ a0y D14 = 30y
D6 =0 Dis=32v
DOF (DIF [D2F| D3F|D4F|DSF [D6F [D7F | p; - gy

Fig. 4-14. Figure and specifications for an airplane, using a horizontally folded,
8 x 8 extended matrix.

trouble identifying the object presented on the screen. Even with 64
cells available for building an image, the resolution is often so coarse
that others might, indeed, have trouble seeing what the image is
supposed to represent. When this is the case, itis time to move up to
a matrix generator that yields a higher resolution.

The circuit in Fig. 4-17 uses two 16:1 multiplexer circuits. The
basic system generates 32 cells. (Note that there are 32 D inputs,
labeled DO through D31.) If the matrix-extension technique is
applied to this circuit, the number of available cells rises to 64. And if
the foldover technique is also used, the system can generate a
128-cell symmetrical figure.

This system represents a 2:1 increase in image resolution over
the basic 16-cell circuit in Fig. 4-5.

IC6 and IC6 are identical ICs. In fact they are the same multi-
plexer IC used for all of the complex-figure circuits already described
in this chapter. Note, however, that this system has five select
inputs, SO through S4, while each multiplexer IC has input provisions
for only four.

We can take care of the four basic select inputs on each multi-
plexer IC by connecting them in parallel: pin 15 of IC5 to pin 15 of
IC6, pin 14 of IC5 to pin 14 of IC6, and so on. The parallel-connected
select inputs on the two multiplexer ICs then go to system-select
inputs SO through S3.

]

102

SELECT: SO =8HF 16H
S1 =8V

S2 =16V
D2 | D3 [D3F |D2F i

DO [DI | DIF |DOF

WINDOW: 256H
D4 | D5 [DSF |D4F o

64H
D6 | D7 | D7F |D6F =oH]
128V

D8 | D9 | DSF |D8F

D INPUTS: 1, 0, 64V, 64V,
DIO | DI |DIIF |DIOF AS REQUIRED

DI2 | DI3 |DI3F|DI2F

D4 | DIS |DISF|DI4F

DOE| DIE |DIEF |DOEF]

D2E| D3E |D3EF|D2EF

D4E| DSE |DSEF| D4E

D6E | D7E |D7EF|DEEF

8H
DSE | D9E |D9EF [D8EF
16H
DIOE |DIIE |DIIEF|DIOER
8V
DI2E |DI3E |DI3EFDI2EF
16V S2
DI4E|DISE |DISEFIDI4EF]
32v S3

4 x 16 EXTENDED
FOLDOVER MATRIX

Fig. 4-15. Matrix configuration, circuit, and sample specifications for a 4 x 16
oxtended, foldover matrix.

103

rf D1 | DIF |DOF SELECT:

= E S0 =8H F 16H
52| D3 |D3F|D2F| g gy

S2 =16V
- B4 | D5 | D5F [D4F $3 =32v

o6 | o7 | D7F |DSF WINDOW: 256H

128H

——— = 64H
08 D9 | DoF | DBF 320
—— s 128V
B0 DIl | DIIF |DIGF
== : D INPUTS:
- D12 DI3 DI3F [pizF Do =0
s S D2 =0
 Dig foris D4 =64V
= DS OISR as D8 =64V
e = =4 D10 = 64V
SOE DIE |DIEF |DOEF D11 = 8av
—*:_: :i'-T‘_-,‘ =H D12 = g‘t_\i
-D2E | D3E |D3EF|D2EF D13 = 64V

— - D14 = 64V
D4E|D5E|DSEF{D4E D15 =64V

D6E {D7E |D7EF|D6EEF|

D8E | DSE |DSEF|DBEF

= DIOER

DIOE [GHE DIlEF
DI2E |DI3E DIBEEDIZEF]

DI4E[D! ;Bisng

Fig. 4-16. A vertical missle figure built within a 4 x 16 extended foldover matrix.

Using this kind of parallel selection, the two multiplexers are
always selected exactly the same way. If the system-select inputs
happen to select D2 on IC5 (pin 6), it must also be selecting D18 (pin
6) on IC6. As far as system-select inputs SO through S3 are con-,

104

cerned, they select the same data input on both ICs at the same
time. The scheme works very much like a two-deck rotary switch.

What, then, is the role of the S4 input? Ultimately, the purpose
of the S4 input is to make certain the two multiplexers are never
enabled at the same time. If this 5th-bit input happens to have a
logic-0 level, for instance, it can enable multiplexer IC5 and disables
IC6. Setting select input 54 to logic 1, on the other hand, makes it
possible to disable IC5 and enable I1C6.

ICs 5 and 6 are thus both disabled at the same time; or,
according to the logic state of S4, one is enabled while the other is
disabled. It is not possible to enable both multiplexers at the same
time. (Both multiplexers are disabled by the window inputs, a circuit
described a bit later in this section.)

Now consider all five system-select inputs at the same time. As
long as the S4 select input is at logic 0, the status of the four
lower-order select inputs (SO through S3) select one of the 16 data
inputs to IC5. An inverted version of that particular input to IC5
appears inverted at pin 10 of that IC. IC6, however, is disabled at
that time. And though select inputs SO through S3 might be selecting
one of the 16 inputs to IC6, pin 10 of that IC remains fixed at logic 1,
the disabled output condition.

IC5 and IC6 change roles when S4 goes to logic 1. IC6 then
outputs its selected data to its pin-10 connection, and IC5 is disabled.

Data inputs D0 through D15 are thus relevant only as long as
select input S4 is at logic 0. In a similar fashion, data inputs D16
through D31 are selected only as long as select input S4 is at logic 1.

There are effectively 32 different data inputs to this system.
One of these 32 different inputs appears at the input side of the
output NAND gate, IC2-C, depending on the 5-bit binary code
appearing at the system’s select inputs. There is a one-to-one
correspondence between the 5-bit binary code presented at the
select inputs and the data input being selected. Setting the select
inputs to binary 20 (10100), for example, selects data input D20.

The window input works much the same way as all the other
figure-windowing circuits described earlier in this chapter and in
Chapter 3. In this instance, however, the window circuit keeps both
multiplexers disabled until the proper horizontal and vertical count is
reached. At that moment, on multiplexer IC or the other is enabled,
depending on the logic level of select input S4.

Extended 64-Cell Matrices

The circuit in Fig. 4-17 is the starting point for a number of
complex-figure matrix configurations. Connect this circuit on your

105

HERER

sa
¥a
€a

ca
1a
0a

a—]

€S
gs 2 10313S

1S

a0l e— t2a cor €

v f— 020 v

S}— 610 S

9l— sia 9

L}— 21Q L

gl—9ta e

1t H

€l €l

4! 4!

Si St

2 w2 ey we

)

0S

106

“J0jes8usb xujeW [j82-2¢ 915eq B 10} {INdND

L1-y Big

(Lnd1no)
8

ol

30

$.H
2-201

61—
w

ol

91
Al
81
61
0c
lc
(44
€e

-—

(oY)
—

-~
-—

g-2ol
3
9 L4 - V-1l
4 i
ﬁ 1 48 .
€
€
30 V-2l m To] _
6 L
— 180 Lo 9l}— s1a
L oeq — L}— p10
| 620 8t— €10 8
L gzq 6Lt— z1a S,ﬁ
— 220 02— 13 €0l
L 920 12— oita
L szg 22— &g
L v2a g2t— 8a
. ¢2a L— 20
L 220 2l— 9a

MOGONIM

107

breadboard arrangement, then use the specifications shown in Fig.
4-18 to generate an extended 8 x8 matrix.

After assembling this particular circuit (using the specifications
in Fig. 4-18, but leaving all the D inputs unconnected) you should see
a white square pattern on the screen.

Connecting any one of the D inputs to logic 0 then creates alittle
black square at the corresponding matrix position. From this point,
you can generate any complex figure you choose, using the same
general procedures outlined for the 32-cell extended-matrix circuits.

Figure 4-19 shows the specifications for generatingthe figure of
a little dog. This nonsymmetrical figure has far more detail than is
possible with any of the figure-generating circuits described in the
first part of this chapter. And of course that is the whole point of
using this more complex matrix-generator circuit.

While working with this extended 8 X8 matrix pattern, bear in
mind that your select specifications determine the size of the matrix,
the window specifications determine the position on the screen, and
the D inputs determine the pattern itself.

You can have a lot of fun generating your own figures within this
matrix. Spend a great deal of time playing with it, sharpening your
ability to generate any desired figure as quickly and effectively as
possible. Time spent on the project at this point will pay off big

DO| DI [D2| D3| D4| D5 | D6 | D7 | SELECT: S0 =8H
S1=6H
SH

S3=8vV
54 =16V

D8 | D9 |DIO (DIl [DI2 | DI3 | DI4 | DIS

Di6 | DI7 | DI8 | DI9 |D20| D21 |D22 | D23
WINDOW: 256H

128H
B4H
128V
DOE | DIE | D2E | D3E |D4E | D5E |DEE | DTE a4V

D24 | D25 (D26°| D27 |D28 | D29 | D30 | D3|

D8E | DOE [DICE |DIIE |DI2E|DI3E |DI4E |DISE | D INPUTS: 1, 0, 32V, 32V
AS REQUIRED

DI6E |DI7E |DISE [DISE [D20E|D2IE |D22E [D23E

D24E D25E [D26E [D27E [D28ED29E ID30E D3 IE

Fig. 4-18. Matrix configuration and sample specifications for a 16 x 4 extended
matrix.

108

po | DI “D&| D5 | D&} OF
Epa | 09 |DRID DI3 | DI4 | DI&:
Di6 | DI7 | DIg-{ Dig | D2 | D2F D22 (D23
- [p24| D25 |D26 {D27{D28 D29 | D30 | D3I
DOE | DIE |D2E | D3E {D4E | DSE [D6E| D7E
DSE | D9E |DIOE | DI IE [DI2E [DI3E [DI4E DISE
DIGE |DI7E |DIBE [DI9E [D20E]DRIE [D22EPR3E)
D24E |D25E [26E [D27E |DR8E|D29E P30 P3IE
SELECT: S0=8H WINDOW: 256H
S1 = 16H T28H
S2 = 32H 64H
$3 = 8V 128V
S4 =16V 64V
DINPUTS: D2 =32V D16 =32V
D3 =32V D18=0
D4 =32V DI19=0
D6 =0 D20=32V
D7 =0 D21=32V
D8 =32V D22=32V
D10 =32V D23 =32V
DI1=32V D24=0
D14=32V D26=0
D15=0 D27 =0
D28 = 32V
D31 =32V

Fig. 4-19. Figure of a dog built within a 8 x 8 extended matrix.

109

dividends later on when you are attempting to design video games.
Be sure to keep a careful record of your work, including drawings
and specifications.

Figure 4-20 shows how the extended 64-cell square matrix can
be transformed into a 16 x4 matrix format. This long and narrow
matrix can be useful for generating game figures such as side views
of ships, cars, and aircraft. See the two examples in Fig. 4-21.
NOTE: The complex figure generated by the programming connec-
tions in Fig. 4-21a calls for 21 connections from the 8V source. Since
the Sourcebox can deliver sufficient power for only 20loads, the load
must be divided by means of the buffer circuit shown in Fig. 4-21a.
The 8V Sourcebox connection goes to the input of the first inverter.
The output of one of the two other inverters goes to about half the
8V connections specified for this figure. The other half come from
the output of the third inverter.

The horizontally oriented 16 x4 matrix can be likewise restruc-
tured to form a vertical, 4 X 16 matrix. See Fig. 4-22. This particular
matrix might not be very useful as it is specified here, but it becomes
an invaluable starting point for building a highly desirable 8 x16
extended foldover matrix described in the following section.

Before leaving this discussion of extended 64-cell matrices, it is
important to see how they differ from the 64-cell extended foldover
versions described in the opening sections of this chapter.

At first glance, 8 X8 extended foldover matrix in Fig. 4-13 might
appear identical to the 8 X8 extended matrix in Fig. 4-18. Likewise,
the vertical 4 x 16 extended foldover matrix in Fig. 4-15 looks much
like the 416 extended matrix in Fig. 4-22.

Since these matrices have the same number of cells and the
same general dimensions, why would an experimenter ever resort
to the versions that use the more complicated circuit in Fig. 4-17?
The simpler circuits are using a foldover technique to double the
number of matrix cells, and that means the figures must be symmet-
rical about the foldover line. The matrices generated by the more
complicated circuit in Fig. 4-17, on the other hand, do not use this
foldover scheme; therefore, the figures are not limited to those
having a symmetrical display. The nonsymmetrical figure of a dogin
Fig. 4-19, for instance, cannot possibly be built within the 8x8
extended foldover matrix in Fig. 4-13. Figures using the matrix in
Fig. 4-13 must be symmetrical about a horizontal line running
through the middle of it.

A Useful 128-Cell, Extended Foldover Matrix
Adding a 7486 quad EXCLUSIVE-OR IC package to the circuit
in Fig. 4-17 makes it possible to generate alarge foldover matrix that

110

“XIJEW PapUaIXa ¢ X 91 B 10} suoneaywads ajdwes pue uoieinbyuo) “0z-v 614

AV9

AV = ¥S

ABZL Hze = €S

HY9 HoL = 2S

a3yIND3Y SV ‘A8 ‘A8 AIL HSZl H8 = 1S
‘01 :S1NdNI G AZE

HSS¢ ‘MOANIM

HY =0S '103713S
XIH1vN Q3AN3LX3 ¢ x 9t

31€Q|30¢d{3620|3820|3.20(3920|3520| 3+20|13¢20|3220| 3120(302q| 361a(3810|3210|391d

3S10|314| 3€10(3210 3110|3010/ 360|380 (320 (390|360 |3+A|3€q | 320

310 | 3040
Ied|oed| 620|820 | 20| 920|520 | ¥2a | e2d

22Q| 12a| 02a| 6la | 8la | 210 | 91d

SId| vid| 1| 2G| 11d| 010 | 60

80| 20(9a(Ga| +a|eaf2eaf 1d|oa

111

AB=%10 A8= 120 0= /4
AB=€ld A8=020 A8= SQ
A8=21Q A8=6iQ A8= ¥d
0=1€a0 A8=11d A8=810 AB= €0 v
A8=0€d AB=010d A8=.1Q A8= 2O
A8=1.20 A8= 60 0=91Q A8= Id
A8=920 0= 80 A8=6id A8= 0Q:SLNdNIQ 11noyIO ¥3d4nd
S1NndNi d
ONINIVWIH OL A8
Aeg
A9 Ay =¥S X0830HNOS
A8cL H2E = €S SLNdNI d SATIML WOoHd4
HY9 HIL =2S 1N08v OL A8 A8
HezL H8 = 1S
H9SZ ‘MOGNIM HY =0S .10313S
31£0{3000/3620/382013£20| 392035 20/3v2q[3 £20/3220 3210/394
3cia3via| 3¢ia 32iq) 311a| 30iq| 360 [3EG|32G| 390 310 {300
iealoca| 620 22a| 9za| s2a|vea|eea|zea “Zla | oia
gia| vlalcia naloa| ea | saf Laf 9a WLESE

112

“JOAUP pue Jed Buisel B Jo 8iyoid (q) "SHNOJID seAup SE Buljoe sieuaaul 1o} ™
pOBU 8y} 10N "OULBWIGNS JO JBLIED JEIOIE UE J0 2nBLy (B) "Xujew papuaixa & x 91 8y} UM HIng sainby aydwes "1 2-v ‘6t -

-

0=51a
0=1ed 0=tld NOILO3NNOD ON HO
0=0eq A8=ELd ‘L 01901 1V 38 OL 3V
0=620 A8=2Ld Q3LSIN LON 38V LVHL
A8 =820 A8=iLd S1NdNI @ 'HIEW3W3Y
A8=52a A8=0Ld
A8=ted A8= 60 A9
0=€20 A8= 80 Azt q
o=2ea A8= . V9 AV =S
0=120 A8= SQ ABZH HZE = €S
Ag=020 A8= 2a Hbo HoL = 2s
o=za A8= 1L H82L H8 = 1S

0=91d 0= 00 :SINdNId H9S2 :MOANIM HP=0S ‘10313S

31¢a|3020{36203920) 3220392035203 veq3c2d 3720| 3120{3024) 3610) 381q) 3210| 39IQ

3gial3+ia 3cia| 32ia] 311a| 30ia| 360 {38a {320 [390|3sA|3HA|3Iea (320 A1 UOP

1c0| ogal 620 820|220 | 920| sza|vaalezazaa} 12a 02a| ela| sia f 2107 91a;

1)

“Mlll
g
5

cia| via| elaf z1a| 1a| oia} 60

9a} sai va| ea

|

DO | Dl |D2 | D3| SELECT: SO=8H
St = 16H
D4| D5|D6 | D7 S2 =8V
S3 = 16V
p8 | D9 | DIO|DII S4 =32V
WINDOW: 256H

DI2| DI3 | DI4 | DI5 123H
2

32H
Dl6 | Di7 [DI8 | DI9 128V

n

|

[o2]
I

020| D21 | D22 | D23 —
D INPUTS: 0, 1, 64V, 64V,

AS REQUIRED

D24 (D25 | D26 |D27

D28{D29|D30 (D3I

DOE| DIE|D2E |D3E

D4E|D5SE | DEE| D7E

DBE| DSE |DIOE |DIIE

DI2E|DI3E DI4E |DISE

Di6E |DITE|DIBE|DIOE

D20E D2IE |D22E|D23E

D24E|D25E | D26E|D27E]

D28E[D29E [D3OE|D3IE

4 x 16 EXTENDED
MATRIX

Fig. 4-22. Configuration and sample specificationsfora4 x 16 extended matrix.
is perhaps one of the most useful of all. Connected to the basic
64-cell circuit as indicated in Fig. 4-23, the EXCLUSIVE-OR circuit
expands the matrix to a 8x16 format.

The matrix in Fig. 4-23 is a folded matrix that requires sym-
metry about the vertical line running through its center, but in actual

114

practice it turns out that an experimenter can generate a vast variety
of interesting and useful video game figures with it. How about that
cowboy figure specified in Fig. 4-24?

Turn your imagination loose on this matrix and see how many
fascinating symmetrical figures you can generate. The principles for
designing figures around this 8x16 extended foldover matrix with
vertical symmetry are much the same as those for working out

0o
DI | D2 | D3 |D3F| D2F | DIF OOF| ([oo
S1=16H F 32H
04 | D5 | 06 | D7 | D7F| DEF |DSF |D4AF o _ 8
S3 =16V
D8| D9 | DIO | DIl |DNF|DIOF|D9F | DEF 84 =32V
WINDOW: 256H
12| D13 | D14| 15 |DISF|DI4F |DI3F |DIZF o
64H
Die| 017 | D18 | D19 [DISF|D18F [DI7F|DIEF 128V
64V
D20| D21 | D22 D23 PR3F|022F D2IF [D2OF| |
D24| D25| D26 | D27 [027F|026F [D25FDear| A5 REQUIRED
p28| 029 | D30 |D31 |D3IF |D30F [D29F [D2EF
DoE| DIE | D2E | D3E |D3EF|D2EF PIEF [DOER
D4E| D5E | D6E | D7E |D7EFDGEF [DSEF D4EF]
peE | DSE |DIOE |01 1E|DIIEF [DIGEF|DOEFDBEF
DI2E |DI3E |DI4E |DISE [DISEFDMEF [DIBEFIDI2ER
DI6E |DI7E |DISE [D19E [DoEFDIsEF [DI7EFDIER
DRCE|DRIE D22k D23k PeeresEF|DRIEFDRcEF
16V S3
D24E|D25E |[D26E P27E F 4EF
av sS4
D28E |D2oE [D30E [D3IE PREF (pEEF
8 x 16 EXTENDED
FOLDOVEF MATRIX

Fig. 4-23. Configuration, circuit, and sample specifications for an 8 x 16 ex-

tended foldover matrix.

115

g SELECT.
] D3 |D3F 1 DIF |DO
ooim: D2 | D3 | D3F | O2F | DIF |DOF S —
S1=16H F 32H
D4 | D5 | D6 | D7 | D7F | D6F | DSF |DAF| sp =gy
= e ~ | sa-1ev
| D8 [D8 | DIO | DIl [DIIF |DIOF | DSF | DBF| S4 =32V
e R — 1 WINDOW: 256H
.] DI5 |DISF |DI4F | DI3F | DI2F 128H
o BaH
DI9 |DIOF |DIBF | DITF [DI6F 128v
64V
D20 | B2F | D22 | D23 |D23F [022F |D2IF |D20F| D INPUTS:
. D1 =0
D24 | 028|026 | D27 |D27F |D26F [D25F|D24F gi =24V
. . D5 =84V
D28 | $2¢1 D30 {D3! |D3IF |D3OF [D29F |D28F D8 =0
T D9 =64V
DOE | DIE | D2E | D3E |D3EF | D2EF | DIEF | DOEF D10 = 64V
-t D11 =64V
D4E | D5E | D6E | D7E |D7EE |D6EF |DBEE |D4EF D12=0
_ D13 = 64V
| D14 =64V
DBE| D9E |DIOE | DHE |DIIEF | DIOEF|DOEF [DBEF e
. D16 =0
DI2E | DI3E | DI4E | DISE |DISEF|DI4EF |DI3EF|DIZEF] D17 = 64V
— D19 =§T_v
DISE | DITE | DISE | DISE [DISEF |DISEF | DITEF | DIGEF 820 =64V
. 21=0
: D22 = 64V
D20E|D2IE |D22E|DZ3E |D23ERD22EF | DRIEF|D20EH D23 = 5aV
D24 =64V
D24E |D25E |D26E |D27E [D27 EHD26EF |D25EF|D24EF D25 =0
D26 = 64V
D28E |D29E |D30E |D3IE [DIIEF (DIOEFID29EFD2R D27 =64V
D29 = 64V
D30 = 64V
D31 = 8V

Fig. 4-24. A cowboy figure built within an 8 x 16 extended foldover matrix.

116

symmetrical figures in the earlier section entitled Folding Over an
Extended Matrix. The only difference here is that you are working
with twice as many cells.

Figure 4-25 shows the 128-cell extended foldover matrix
oriented horizontally. The axis of symmetry in this case is a vertical
line through the center of the image. Set up this matrix, using the
EXCLUSIVE-OR circuit and specifications shown in Fig. 4-25. Then
work out some figures of your own, bearing in mind that the right-
hand half of the images must be mirror images of the left-hand half.

Further Experiments With the 32-, 64-, 128-Cell System

If you have been performing the experiments suggested in this
chapter thus far, you most likely have the know-how and confidence
necessary for generating other matrix formats. What's even more
important is that you ought to be coming up with additional ideas you
want to try, perhaps more-novel ideas than you have time to work
on.

Suppose, for instance, you are thinking about putting more than
one kind of complex figure on the screen. How do you go about it?
Well, you certainly have to build two different figure-generating
circuits, one for each figure you want to put on the screen. After
that, you must effectively OR together their outputs before applying
the signal to the GAME VID IN terminal of the Sourcebox unit.

Exactly how you should go about ORing together these signals
depends on whether they emerge from the figure-generating sys-
tems as white on black or black on white. All of the multiplexers in
this chapter generate inverted, black-on-white signals, but the in-
verter connected to the output of the multiplexer in Fig. 4-5 and the
NAND gate at the outputs of the multiplexers in Fig. 4-17 reverse
the image so that it is properly shown as a white matrix on a black
background.

These “upright” signals can be ORed together (combined on
the screen) by first running them to separate inputs of a common
NORIC. The output of that NOR gate can then be inverted to yield a
composite video signal having the proper white-on-black format.

If you are confused about any procedure for combining complex
figures on the screen, you ought to review the material in the section
entitled COMBINING ANY NUMBER OF STATIC FIGURES ON
THE SCREEN in Chapter 3. The procedures described there can be
carried over to the circuits in this chapter.

MATRIX OPERATIONS FROM 64-CELL GENERATORS

The idea of expanding the cell-generating capacity by adding
more multiplexer circuits can be extended indefinately. Each new

117

multiplexer provides 16 more basic cell locations. Most experimen-
ters, however, begin questioning the feasibility of expanding the
complex-figure generating system beyond a certain point.

Is the ability to create alarge and highly detailed pattern worth
the trouble of working with all the multiplexer hardware? Only you
can answer that question. It depends on what you are trying to do
and what it's worth to you in the long run.

This section deals with an especially useful 64-cell generator. It
is built around four 16:1 multiplexer ICs, thus giving the experi-
menter 64 data-input programming terminals. As described earlier
in this chapter, any basic multiplexer-type figure generator can be
easily modified to double the number of matrix cells. In this particular
case, the experimenter has access to 128 cells. Then the user might
elect to use a foldover scheme, thereby extending the number of
cells to 256.

It turns out that this 64-, 128-, 256-cell matrix system is
adequate for generating some of the most popular figures found on
commercial TV games: cowboys, baseball players, tanks, aircraft of
all sorts, an endless variety, really. Just look at some of the patterns
used as examples through the remainder of the section.

The 64-Cell Generator Circuit

The 64-cell generator circuit in Fig. 4-26 uses four 16:1 multi-
plexer ICs. The 4 lower-order select inputs to the system, SO
through S3, select one of the 16 data inputs on each multiplexer. And
the demultiplexer circuit, IC9, is responsible for enabling one of the
four multiplexers, depending on the status of the two higher-order
select inputs, S4 and S5.

The system is windowed and the outputs of the multiplexers
are NANDed in a fashion identical to the 32-cell generator in Fig.
4-17.

The purpose of the four inverters, IC1-A through IC1-D, re-
quire some special explanation. It is a fact of TTL technology that
most ICs in that family are capable of driving up to 20 other TTL-
type circuits. Normally a gate drives far less than 20 others, so the
problem of overloading the output never becomes an important
design factor.,

When using the matrix-extension technique (expanding the cell
count from 64 to 128 in Fig. 4-26) one of the H- or V-count outputs
from the Sourcebox unit might have to drive 20 or 30 D inputs at the
same time. Whenever a particular complex-pattern circuit calls for
driving more than about 15 D inputs from the same source, that
source ought to be buffered. And that’s the purpose of IC1.

118

"XUJEW JBAO PIO} POpUBIXe g X 91 B 10} SUOREDY0adS a|dWes pue ‘unolm ‘uonesnbyuo) "sz- ‘B4

XIH1VA H3A0Q104
Q3aN3L1X3 8 x 9t

{43v2| 4302|4392 |4322| 4382| 4362|430¢| 431¢ | e | 30¢ (362 | 382 | 3L2 | 392 | 362 | IPC
4391 | 4321 4381|4361 |4302]| 4312 |4322|43¢2| 3€2 322 | Je mom. 3pt | 381 | 3L1 | 391
438 | 436 | 4301| 4311|4321 | 43¢ |43b1 |43 s1| 3G |3yt | 3¢l | 320 | 311 |301 | 36 | 38
430 | 431|432 | 43¢ |43b (436 (439|432 (32 (39 |36 (3v | 3¢ | 32 | 31 | 30
db2 | 462 | 492 |dL2 | 482 [462 |dog [die | 1e (o€ |62 [B2 | L2 |92 | G2 | V2
491 | 421 | 481 | 461|402 | dI2 |de2 |(dg2 | g2 (22 (12 (02 | &I | 81 Ll | 9l
48 | 46 | 401 [d1t | del | d€1 [dbt | 461) 61 |+ el | 2l i | ol 6 8
40 | 41 | d2 [de | db | 46 | 49 ! 42| 2 9 S 14 e 2 | 0

a3yind3y sy
‘ACE ‘A9E ‘I ‘0 NI VLV
NCE
AP9
ASzL
Hez
H9G2 MOANIM
A9L = ¢S
A8 =E€S
HY9 4 HZE = ¢S
H¥9 4 HIL = 1S

H¥9 4 H8 = 0S8 103138

€S

2s

IS

0s

A9L

A8

HZE

HIL

HY9

H8

119

+5V

COMM
S0
—T
E S1
- S2
I 12| 24
(]
=K 115
54 —13
% b IC5
€N
DO —8
D1 —{7
D2 —6
D3 —5
D4 —i4
D5 —3
D6 —2
7 —1
1
== D8 —23
= e D9 —22
z |] D10—] 21
0] = D11—20
a 5
P D12—{ 19
2| L D13—]18
—:—;— D14—{17
I D15—|16 -
14 A15) 3} 13
16 9 g
10
ico 11
8 12
| 74155—DUAL 1:4 e —
L DEMUI TIPLEXER

The ein connection comes from the appropriate H- or V-count
source. As far as that source is concerned, it has only one load
connected to it. IC1-A inverts that signal, producing a useful e
source that can drive up to 20 D inputs. The output of IC1-A is
inverted by IC1-B to yield a noninverted “e” source that can likewise
drive up to 20 D inputs. The last 2 inverters perform the same
function as the first 2, providing 20 additional sources of inverted and
noninverted figure-expansion signals.

Suppose, for example, a particular expanded matrix pattern
calls for 25 32H inputs and 22 32H signals. The 32H signal from the

120

+5V T
1
12|24 12{24 12|24
=t 12 14
13 13 13
1 11 11
IC6 IC7 IC8
D16—{8 D32— 8 D4s— 8
D17—7 D33— 7 D49—1 7
D18—16 D34 —6 D50— 6
D19—5 D35 —5 D51—15
D20 — 4 D36 — 4 D52— 4
D21 —|3 D37— 3 D53—1 3
D22 —2 D38 —2 D54 — 2
D23 —{1 D39 — 1 D55— 1
D24 — 23 D40 — 23 D56 —1 23
D25 —] 22 D41 — 22 D57 —1 22
D26 — 21 D42 — 21 D58 — 21
D27 — 20 D43 — 20 D59 — 20
D28 — 19 D44 —19 D60 —1 19
D29 —{ 18 D45 — 18 D61 —1 18
D30 —17 D46 — 17 De2—{ 17
D31 —16 047116 D63~ 16 10—L
T |
2
T ' 4 |tC10-A
5
(OUTPUT)

Fig. 4-26. Circuit for a basic 64-cell matrix generator.

Sourcebox unit can be connected to the e terminal. Then 11 of the
22 32H signals can be tapped off the output of IC1-A, 12 or 13 of the
32H signals can be tapped from the output of IC1-B, and the remain-
der of the 32H and 32H signals can be taken from the outputs of
IC1-C and IC1-D respectively.

Some 8x16 Expanded Matrices

Figure 4-27 shows a vertically oriented, 128-cell matrix that can
be easily generated by the circuit in Fig. 4-26. If you build this circuit
and use the SELECT and WINDOW data prescribed here, you will

121

ol 1|23 4a|s| el 7
sl ofw|luujnr|i3|ia|is
e | 17|18 19f20 21| 22| 27
24| 25 (26 |27 |28 29| 30| 3
32 (33 |34 (35 36|37 38/ 39
40 | 41 | 42 | 43| 44| 45| 46 | a7
48 | 49| 50| 51 | 52|53 | 54| 55
56 | 57|58 | 59|60 61 | 62| 63
OE | 1E | 2E [3E | 4E | 5E | 6E | 7E
8E | 9E | 10E | HE | 12E| 13E | 14E | 15E
I6E| I7E | I18E | I19E | 20E| 2IE | 22€ | 23E
24E | 25E | 26E | 27E | 28E | 29E | 30E | 3IE
32E | 33E | 34E | 35E | 36E | 37€ | 38E | 39E
40E | 4IE |42E |43E | 44E | 45| 46E | 47E
48E| 49E | 50E | 5IE | 52E | 53E | 54E | 55
S6E | 57E | 58E | S9E | 60E | 6IE | 62E | 63E

SELECT: S0 =8H
St =16H
S2 =32H
S3 =8V
S4 = 16V
S5 =32V

WINDOW: 256H
128H

64H

128V

DATA IN: 1, 0, 64V, 64V,
AS REQUIRED

Fig. 4-27. Configuration and sample specifications for an 8 x 16 extended

matrix.

find a rather large white rectangle occupying the lower right-hand
quadrant of the screen. Connecting any of the D inputs to logic 0
creates a black cell in the corresponding matrix position and in its
extended location as well.

The two examples in Fig. 4-28 include a rather novel footprint
and the profile of a cowboy. While the footprint might not be very

122

useful for building a TV game, it certainly illustrates some of the fun
you can have creating video graphics with this system.

Figure 4-24 illustrated a way to build the image of a cowboy.
The circuit was much simpler in that case, but it was using a foldover
technique that demanded a symmetrical pattern. The profile in Fig.
4-28b, however, is a nonsymmetrical version of the same hombre.

It is possible to spend many, many hours playing with this
matrix-generating scheme. If you want to make the figures smaller,
simply scale down the SELECT, WINDOW, and D INPUT specifi-
cations one or two orders of magnitude. Cutting each of the specifi-
cations in half, for instance, cuts the size of the image in half.

Play with this system as long as you want. Just because you are
having fun with it doesn’t mean you aren’t learning anything. Keep
track of your experiments, noting both your failures and successes.
That information will prove invaluable later on.

The extended matrix can be adjusted to form a horizontally
oriented, 16x8 pattern. See the suggested specifications and pat-
tern in Fig. 4-29.

The display in Fig. 4-30 merely shows one example of how the
16 x8 extended matrix can be used. The image in this instance is a
battleship or destroyer. Of course it can be modified slightly to
transform it into a submarine or aircraft carrier.

This matrix is good for any sort of relatively complex, horizon-
tal, nonsymmetrical figure.

A 256-Cell, Extended Foldover Matrix

The foldover scheme applied to the 128-cell matrix just de-
scribed yields a 256-cell matrix. The example in Fig. 4-31 shows the
rather simple additional circuitry and the left-hand half of an ever-
popular tank image.

When you build the circuit and wire it to the specifications
shown in Fig. 4-31, you will find a full tank image, with its right-hand
half being a mirror image of the portion shown here. It is often
advisable to show only the nonfolded half of such patterns, but for no
reason other than drawing pictures with 256 cells becomes rather
tedious. Besides, all the necessary information is contained in the
original portion.

MULTIPLYING THE NUMBER OF IDENTICAL IMAGES ON THE SCREEN

While a single complex figure can play a vital role in most kinds
of TV games, it is often desirable to display a number of identical
complex figures on the screen. Take for example the mines for a
minefield game or cars in an auto racing game.

123

SELECT: WINDOW:

S0 = 8H 256H
S1 = 16H 128H
alojwlinu{iz|liz3lials S2 = 32H 64H
: . S3 =8V 128V
16 t7 i8 19 | 20} 2t 221 23 S4 =16V
S5 = 32V

242512627 | 28| 29|30} 31 | pppuTs:

. DO =0 D33 =64V
=32 | 33 1 34| 38| 36| 37| 38¢ 39 DI =0 D34=0
= ' D2 =64V D35 =64V
| ; D3 =64V D37 = 64V
40-] 41 | 42 | 43| 44| 45| 46 | 47 Dt otV Don ooy
D5 =64V D39=0
D6 =64V D40 =0

g D7 =0 D41=0
86|57 58|59 |60 61 | 62} 63 D8 =0 D42=0
- f 1 1 D9 =0 D43=6aV
' OE L IE | 2E | 3E | 4E | 5E | 6E [7E{ D10=64V D44 =64V
i ! : D11 =64V D45 = 64V
D13 =64V D46 =64V
D14 =64V D47 =0

)] S DI5=0 D48=0
ISE} 176 | IBE | I9E | 20E| 2IE [22E{ 23E DI6=0 D49 =64V

48 | 49| 50 | 51 | 52| 53 | 54| 55

8e | 9] 10E | 1IE l2E_t$E 14E | 15E

—f— mmmefememfes—d D17=0 D50 =64V
-24E | 25E | 26E | 27E | 28E | 29E | 3BE] IE D18 =64V D51 =64V
. == = 4 D20 = 64v D52 =64V
326 |33€.|34E | 35€ | 36E 37e | 38e {30g| D21=0 DS3=64v
- s =i ! D22 =0 D54 =0
. T - ES D23 =0 D55 =0
40E F41E | 42E [43E | 44E | 45E| 46E | 47E Dea=o D56=0
e o — 025=0 D57 = 64V
-48E] 49E | SOE | SIE.| 52E | 53E | 54E | 55E D27 = 64v D58 = 64V
: Rl SRR S S - D28 = 64V D59 = 64V
'58E | 67E | 58E- | Bog | eor | éie | 62e [e3e D29 = 64V D60 = 64V
D30 =64V D61 =64V
D31=0 D62=0
D32 =0 D63 =0

A

‘L'he procedure for generating a single complex figure can re-
quire quite a number of IC devices as clearly demonstrated through-
out this chapter. There is no need, however, to build one complete
matrix generator circuit for each figure that is to appear on the
screen—at least not as long as the figures are all identical,

It turns out that one complex-figure generator is sufficient for
creating any number of identical images on the screen. The general

124

SELECT: WINDOW:

0 T A S0 =2H 2856H
- ~] s1=4H 128H
S3=2v 32H
s 1 17] 18 S4 = 4V 128V
S5 =8V 64V
; 32v
e el D INPUTS:
DO =0 D38=0
32 | 33 | 34 DI =0 D33=0
D4 =0 D40 =0
40 | 41 | 42 D5 =0 D41 = 16V
D6 =0 D43 = 16V
48 | 49] 50 D7 =0 D45 = 16V
D8 =16V D46 =0

3|

D12 =16V D47 = 16V
D13=16V D48=0
D14=0 D51 = 16V
D15=0 D52 =0
D16 =0 D53 = 16V
D17 = 16V D55 =16V
D20 =0 D56 = 0
D21 =0 D57 =0
D22 =0 D60 = T6V
D23=0 D62 = 16V
D24 =0 D63 =0
D25=0

D29 =0

3 D30 =0

40E | 41E | 42E [43E | 44E | 45E| 4BE | 47E D31=0

D32 =0

D33 =0
3E | S4E | 55E =
48E ! 49E | 50E | SIE | S2E | 53E D34 = 16V

56| 57 | 58 | 59

pE| {E| 2E | 3E }'2

8 | 9€ | 10E | HE }'{2

16E | ITE | IBE | ISE

24E | 25E | 26E | 27E

32E |33E | 34E | 35E

D36 = 16V
S6E | 57E | 58E | 59E | 60E | 6IE | 62E | 63E D37 =0 B

Fig. 4-28. Sample complex figures in the 8 x 16 extended matrix. (a) Left
footprint. Folding this figure by means of 64H creates a pair of footprints—left
and right. See circuit in Fig. 4-31. (b) Profile of a cowboy.

ideais to first build the circuit for generating the desired figure, using
the techniques already described in this chapter. Then some rather
simple logic circuits can be added to the window inputs to create any
number of the figures on the screen and in any desired pattern.
To get a first-hand, practical view of this procedure, build up
any of the simpler complex-figure circuits and display the image on

125

"XUleW pepuaIxe g x gl 10} suoneoyoads sjdwes pue vonenByuo) ‘62-v ‘B4

AVS
AgcL A9l =GS Hee=¢S
Q34in03Y SvY H8Zt A8=79S HOL =15

‘AZE ‘A2E ‘0 't NI vivad HOSZ ‘MOGNIM HP9=€S H8 =05 :1D3A13S

3¢9 | 329 319 | 309 | 365 [385 | 326 | 395 | 365 | ILS | 3eS | 326 | 3IS [306G |36 | 38Y

3.6 | 39| 35t | 3bv | 3¢t |32 |31y |30+ |36¢ |38 |3LE |39 |ISE |3bE | 3e€|32¢€

3i¢ | 30g| 362|382 | 322 |392 |3s2|3b2|3¢2 (322 | 32 (302 [361 | 381 [321 |39I

3G | 3bl1| 3e1| 321 | 31 (301 | 36| 38| 32 | 39|35 |3y [3€| 32| 3 |30

€9 | 29|19 | 09 | 65 |8S .G |96 | SS | ¥S | €S | ¢S i | 0OS | 6v | BY

b |ob | sv| bbb |ct |20 | 1b |Ob |68 |8 | Le [98 | S€ | bE | €€ | 2€

Ie |og | 62 | 82 | L2 |92 [G2 | P2 | g2 |22 |12 | OC | 61 8l Ll 9l

Sl 14 €l 2l] Ol 6 8 L 9 S 14 € [4 | 0]

126

the screen without any windowing. You will find that your figure is
repeated a number of times in closely spaced rows and columns.

The pattern of images on the screen might be rather interesting
without the benefit of windowing, but itis hardly useful in the context
of a TV game. What remains to be done is selectively window some
of those images, leaving some in place and eliminating the others.

As is so often the case in this TV-game business, there are
several different approaches to selecting the figures that are to
appear on the screen. Study all the approaches presented here,
doing as much hands-on experimenting as possible.

Bar and Rectangle Windowing

Figure 4-32 shows in a block diagram fashion how the image-
windowing circuitry is interfaced with a complex-figure matrix
generator, The 8-input NAND gate normally shown as the window
input for the complex-figure generators in this circuit is simply
replaced with a different sort of windowing circuit.

] § 2 3 4 L} 8 7 8 9| O 1 [12 | 13§43

t6 | 17 | 18| 19| 20| 28 | 22| 23 |24 |25 | 28| 27| 28 | 29 |30 | Bt

32 (33 (34|35 |36 |37 | 38|39|40| 41 | 42| 43 | 44 | 43 | 48 | 47

48 | 49 | S0 | 91 | 52 | 83 | 54 | S5 | 56 | 57 | 58| 59 | €0 | €) | 62 | 63

OE | IE | 2E | 3E | 4E | 8E | 6E | 7E | 8E [SE | IOB| HE | (2E |I3€ | 4" [1BE-

I6E | ITE | IBE | ISE | 20€ | 2I€ | 22E | 23E | 24€ | 283€ | 26E | RTE | 28E | 29E | 30E | 3IE

32E | 33E | 34E | 35E | 36E | 37E | 38E | 39E | 40E | 41E | 42E | 43E | 44E | 45E (46E [3TE

48E | 49E | SOE | SIE | S2E | 53€ | S4€ | SSE [86E | STE | 36€ | 59€ | 60€ | 6lE | 862€ | 63

J

SELECT So=2H WINDOW: 256H D INPUTS: DO -0 D13=0 D26=0 D47=0

S1=4H 128H ol = D14=0 D27=0 D48=8V
§2 = BH B4H D2 =8Y DI5=0 D28=8V D50 =@V
$3 = 16H 324 D3 =8V DI6=8V D29=8V DS2=8V
S4=2v 128Y D4 =8V D17=8/ D30=8V D53=8YV
S5 =4V 64V D5 =8V D18=8V D31=8V D54 =BV

168V D6 =8Y D19=0 D32=8V D56 =RV

=0 D20=0 D33=8V D58=0V
DE =0 D21=0 D36=8V D60=EV
=BV D22=8V D37=8V D62=EV
D10 = D23=0 D42=8V D63 =8V
D11 =8V [D[24=8V D45 =8V
D12 =8V D25=8V D46=8V

Fig. 4-30. Figure of a battleship built in a 16 x 8 extended matrix.

127

FOLDOVER CIRCUIT

a8 | a9 {50 | 51 [52|58 :_:g_é 3}{
56 | 57 /sa‘: 59 | 60 | 61 ezhea
oE| 1E{2E|3E{acime] ee | 7E
8e | 9t | 10E | nE | 126 e} 4] e
I6E| ITE | 1BE | I9E | 20E| 2IE]| 228 | 28&
24E | 25€ | 26€ | 27€ | 28E | 29E | 0E | 31
32 |33€ | 34€ | 35€ | 36 | 37€ | 38€ | 39E
40E | 4IE |42E |43E |44E| 45€| 46€ | 47€
a8e| a9t | 80g | SIE | 52€ | 53€|54E | 55€
56€ | 57€ | 88E | 59€ | 60E | 61€ | 626 | 63E
S0

2H

'jD_.g
4H i

) >
8H _

SELECT: SO =2H F 16H
S1=4H F 16H
S2=8HF 16H
83 =2V
S4 =4V
S5 =8V

WINDOW: 3Z56H

D INPUTS:

128H
64H
32H
128v
64V
32v

DO =16V
D1 =16V
D2 =0
D3 =16V
D4 =0
D5 =0
D8 =16V
D9 =16V
D10=0
D11 =16V
D12 = 16V
D13=0
D14=0
D15 =16V
D16 = 16V
D17 =16V
D18=0
D19 = 16V
D20 = 16V
D21 =0
D22 =0
D23 =16V
D24 = 16V
D25 = 16V
D26 =0
D27 = 16V
D28 = 16V
D29 = 16V
D30 =0
D31 =16V
D32 = 16V
D33 = 16V

D34 =0

D35 = 16V
D42 = 16V
D45 = 16V
D46 = 16V
D47 = 16V
D50 =16V
D52 = 16V
D53 = 16V
D54 = 16V
D55 = 16V
D56 = 16V
D57 = T6V
D58 =0

D59 = 16V
D60 = 16V
D61 = 16V

Fig. 4-31. Circuit, specifications, and half drawing of a tank figure. The half

drawing is adequate for determining the specifications for any folded image.

Any of the circuits for generating broad bars and rectangles
(see Chapter 3) can also serve as window generators for a complex-
figure generator. The result is a regular pattern of identical complex
figures on the screen. Use any of the bar or rectangle generators

128

described in Chapter 3, but make certain they deliver a black-on-
white signal to the CE input of your multiplexer in the complex-figure
generator.

Let’s look at that last statement a little closer. The multiplexer
(complex-figure generator) is windowed ON whenever its CE input
is pulled down to logic 0. This principle has been used in all of the
examples thus far in this chapter. The multiplexer is thus enabled
whenever the windowing circuit generates a logic 0. Or in other
words, the complex figure will appear on the screen any time the
windowing circuit shows a black bar or rectangle.

Of course the windowing black bar or rectangle must have a size
equal to or greater than that of the figure itis controlling. Making the
windows too small cuts off part of the figure, while making the
windows too large allows two or more of the figures to appear
hooked together. (The latter condition might be something of an
advantage in certain instances, however).

You ought to be anxious to experiment with this idea now; so
start by building the matrix generator circuit in Fig. 4-5, making 7o

H AND Y INPUTS
AS NECESSARY

s NP

.

2

OUTPUT

|
TO CE
OF
MULTIPLEXER

IMAGE COMPLEX-FIGURE
WINDOWING GENERATOR
CIRCUIT CIRCUIT

WINDOW
SIGNAL

Fig. 4-32. Block diagram of circuitry for repeating complex figures on the screen.

129

connections to the window inputs for the time being. If you use the
select and D-input specifications in Fig. 4-33a, you will find the
screen filled with rows and columns of hooked-together Xs. (It gives
the visual impression of a small checkerboard pattern, however).

If you are having trouble visualizing the Xs, window downtoa
single figure with 256H, 128H, 64H, 32H, 128V, 64V, and 32V. Now
you should see a single X figure as shown in Fig. 4-33a. Remove all
these window inputs before going on to the next step of this experi-
ment.

Now the idea is to selectively eliminate some of the Xs, leaving
behind a distinct pattern of them. First try applying 32H and 32V to
the windowing NAND gate. You should find that half the Xs are
eliminated, getting rid of the confusing, hooked-together feature.
What is left is a regular pattern of horizontal and vertical X lines.

Including 64H and 64V with the 32H and 32V sources already
connected to the window inputs increases the spacing between the
rows and columns of Xs. See this particular set of window specifica-
tions in Fig. 4-33b.

Now remove the windowing NAND gate, IC3, from the circuit
and replace it with a 2-input EXCLUSIVE-OR gate. As described in
connection with Fig. 3-21, you will be creating a checkerboard
pattern, a checkerboard pattern of little Xs in this case. See the
circuit and specifications in Fig. 4-33c.

Try the windowing circuit in Fig. 4-33d for a touch of special
interest, then try any of the other bar or line generators from
Chapter 3.

When you think you have mastered the art of setting patterns of
identical, square matrix figures on the screen, move on to figures
built within rectangular matrices. Most rectangular matrices de-
scribed in this chapter use the extension technique, or a combination
of extension and foldover. Such figures can be repeated any number
of times on the screen using the bar-and-rectangle windowing pro-
cedures. You will find, however, that you must be careful when
selecting the H- and V-count specifications for the windowing cir-
cuitry.

As an example of repeating the image of an extended foldover
matrix, try the racing car figure in Fig. 4-12. Reduce the size of the
basic figure matrix two orders of magnitude as indicated in Fig. 4-34.
With no windowing at all, the little car appears repeated a large
number of times on the screen. But the figures are hooked together
in a fashion that makes the image about useless.

The little figures can be separated by eliminating alternate rows
and columns of them. The circuit in Fig. 4-34 shows the specifica-

130

SMALL Xs
SELECT: SO =8H WINDOW:
St = 16H NONE OR ANY
gp—gy OF THE CIRCUITS
DINPUTS: D1=0 D8 =0
D2=0 D11=0
D4=0 D13=0
ALL OTHER D INPUTS D7=0 D14=0
NOT CONNECTED OR AT
LOGIC 1 A
32H —;
32V =
i 4 32H
64V 3
32V —i
= cE TOCE OF
TO CE OF
a——cd Ic5 IC5
B C
32H
32V 7\
1 14
3
2 TO CE OF
Ic4-8 |7 MULTIPLEXER
4 IC2-A s
64H 6 1
5 —
64V
7 D

Fig. 4-33. Initial experiments with the line/rectangle pattern-repeating technique.
(a) Matrix configuration and sample specifications for an X figure. (b) Windowing
circuit for creating rows and columns of figures. (c) Circuit for generating check-

erboard patterns of figures. (d) Circuit for generating an interesting pattern of
figures.

131

SMALL RACING CARS (USE CIRCUITS IN FIGS. 4-5

AND 4-11)
SELECT: SO = 4H F 16H

S1=8HF 16H

S2 =4V

S3 =8V

WINDOW: 32H, 32V D INPUTS: DO=T6V D9 =16V
D1=0 D12 =16V
D2=16V D13 =16V
D3 =16V D14 =16V
D6 = 16V

Fig. 4-34. Specifications for generating regular rows and columns of little racing
cars.

tions for doing this particular windowing job. Note that the smallest
H-count window input is one step larger than the largest H-count
specification used for generating the figure. To be more specific, the
figure-generating multiplexer circuit uses H-count inputs 4H, 8H,
and 16H. The next larger H-count signal, 32H, is thus just large
enough to cover the racing car figure.

By the same token, the V-count windowing should begin with
the V-count signal that is one step larger than the largest V-count
used for generating figure. The largest V-count for the figure in this
instance is 16V, the extension inputs to the D connections. The 32V
signal is thus the appropriate one for windowing the images horizon-
tally.

The field of cars can be limited to one part of the screen by
including 256H and 128H at the windowing inputs. The two addi-
tional windowing inputs restrict the field of cars to a vertical “race
track” situated just left of center.

A general rule for windowing complex figures is emerging from
this discussion. Always begin windowing, using H- and V-count
signals one step higher than the largest used for generating the basic
figure.

If the basic figure is built within a 4 X8 matrix, for example, and
the largest H- and V-count signals used for generating that figure are
4H and 8V respectively, the windowing should begin with 8H and
16V,

Windowing for Irregular Patterns of Identical Figures

While the notion of windowing a basic complex figure to get a
particular pattern of rows and columns serves some useful purposes

132

for TV games, many other games call for patterns of identical figures
that are not in regular rows and columns. It is often more desirable to
create irregular, or even random, patterns of identical figures,
something that cannot be done with the bar-and-rectangle window-
ing approach.

It is possible to generate a complex pattern of complex, but
identical, figures by windowing a figure-generating multiplexer cir-
cuit with yet another multiplexer circuit. In other words, the window
generator is, itself, a complex figure generator.

Figure 4-35 illustrates this particular approach to generating
some complex patterns. IC5 and IC6 are both 16:1 multiplexer
circuits. IC6 generates the basic complex figure as described in the
first sections of this chapter. The inputs to SO through S3 determine
the dimensions of the complex figure, while information at the D
inputs determine what the figure will be.

IC5is a similar kind of circuit that generates a matrix of its own.
The dimensions of this pattern matrix are determined by H- and
V-count signals applied to pattern-select inputs WSO through WS3,
while the pattern, itself, is determined by the data applied to the field
pattern data inputs WO through W15.

Electrically speaking, the two multiplexer circuits are virtually
identical. They play two entirely different roles in the pattern-
generating process, however. IC6 generates the basic figure, while
IC5 determines where and how many identical figures appear on the
screen.

To see how this scheme works, program IC6 to generate the
simple X pattern in Fig. 4-33a. As long as there are no connections to
the inputs of IC5 and the pattern window NAND gate, you will see
the basic X pattern repeated all over the screen.

Now connect the pattern select inputs to IC5 as specified in Fig.
4-35: WSO = 32H, WS1 = 64H, WS2 = 32V, and WS3 = 64V.
There will be no obvious change in the pattern on the screen,
however, until one or more of the W inputs to IC5 is connected to
logic 0. Every time you connect one of those W inputs to logic 0, you
will find some of the figures eliminated from the screen.

IC5, itself, is serving the function of a complex figure
generator. The “figure” in this instance is the desired pattern of cars
on the screen. A logic 1, or no connection, to a W input allows the
basic figure to appear at the corresponding matrix location. Setting a
W input to logic 0, on the other hand, eliminates a figure at the matrix
location. Using inverted or noninverted versions of 128H creates an
extended window matrix. Figure 4-36 shows the specifications for

133

‘usoned xa1dwod Aue oy sebewn ajdynw Buibueue 104 IN01d oiseq ‘Ge-p B4

1nd1no A “

15313S 10313S
34nol4 NH3LIVd
[———\ —"—
=s 2= =
€S 2S5 1S 0S Ay Db
_ _ _ ® 02rL-2
Liferfvise _u _..... _M_m ¢
Ee) Ele) 9
6 pb— 6 lo—
91 —sia 9t ——GIM
& —ria iHt—em
8l —¢€1Q 8t [—EIM e
6l —z1a 6L F—2tM
0z —11a 02 — LM
1z —ota 12 —om 2
22 (—ea 22 —6M 5
1] S o L == T
. €2 ea @ Lo €2 s 3
- b f—2a0 T — bp—m 3
m m
2 l—oa o Z—om 3
> P4
9l g —sa o ol €l—sm o
0Sivs v —ta OSiPL b —pm W.
S b—c¢a S —em
9 |—=za 9 l—zm
L }—1a L b—1m
8 (——o0a 8 —OoMm
h.& [£4 ;.& ve
l_r
AG+

il

MOGNIM
NY3Livd

134

generating a large X figure that is, itself, made up of smaller X
figures. Using the circuit in Fig. 4-35, IC6 generates the little Xs,
and IC5 determines the big X pattern. The designated pattern
window inputs restrict the pattern to a single large X on the screen.
If you understand how the basic complex-figure generators
work, you can apply that knowledge to the complex-pattern
generator. Any of the complex-pattern generators described in the
first part of this chapter can be used as window generators. It is
possible, if not altogether practical, to create a 256-cell figure matrix
using the circuit in Fig. 4-26, and then repeat that figure anywhere
within another 256-cell windowing matrix. The result would be a
full-screen, complex pattern of identical complex figures.

SMALL X FIGURE (USE CIRCUIT IN FIG. 4-35)

SELECT: SO0=8H WINDOW: FROM IC5

S1 =16H
S2 =8V
S3 =16V

DINPUTS: D1=0 D8 =0
D2=0 D11=0
Da=0 Di13=0
D7=0 D14=0

LARGE X PATTERN

SELECT: WS0 =32H WINDOW: 256H

WS1 = 64H 128H
WS2 = 32V 128V
WS3 = 64V

WINPUTS: W1=0 W8 =0
W2=0 WI11=0
W4=0 W13 =0
W7=0 W14=0

Fig. 4-36. Example of arranging a complex figure into a complex pattern, alarge
X built from smaller Xs.

135

You must play with this scheme for a while to get a real
understanding of how it works. Keep it simple at first, starting with
the circuit in Fig. 4-35, then move on to one that uses two multiplex-
ers for generating the basic figure and one for determining the
repeated pattern.

It is important to master this technique now. Later chapters
dealing with complete games, and the motion of figures assume an
understanding of the complex-figure and pattern-generating
schemes.

136

Chapter 5

Building Motion-Control Circuits

Motion makes TV games. Without some player-controlled and au-
tomatic motion, today’s video game business would not exist. Given
the choice between a system that only generates complex static
figures and one that generates very simple figures that move, most
people would choose the system that includes the motion feature.

The figures for the original table tennis, squash, and hockey
games were exceedingly simple—merely rectangles and lines. But
the player-controlled paddle motion and the automatic ball motion
gives these games their real appeal. No one seems to care whether
the ball is round or square. Motion makes the game.

You can build some good video games around the player-
controlled and automatic motion circuits described in this chapter.
There is no real need to generate the complex figures featured in
Chapter 4. A

At some point in your experience with custom video games,
however, you will most likely find that adding one or two complex
figures makes the games more fun and interesting.

Work through the descriptions and experiments in this chapter,
carefully noting the special features of each one. There are a number
of options offered here, and that implies that some motion-control
circuits are better than others under certain circumstances.

Get a good understanding of all the motion circuits now, and you
will be able to design more effective and efficient game circuits later
on.

137

(@)

+VCce
16
ck XL E 2 ge
ENAB —40 >
u/D 5 — MIM
L 11 ,
- PA % g o o
W) pg — = aB (&5
w E 1 6 =
C =) PC— —— QC 8 =
= 9 7 ®
PD — —— QD
8‘ INPUTS
COMM lm - o MOOE
74191 S J o

PRESETTABLE BINARY

UP/DOWN COUNTER | ' X X X || STOP CONT

16-PIN DIP 0 0 0 1 NORMAL UP COUNT
o] [} | NORMAL DOWN COUNT
o X | X LOAD P INPUTS
]
1 —DIS VCCl—— 14
2—4THR DIS}— 13
3—cv THRl— 12
TIMER
A 4 —{RST cVl— 11
5 —ouT RST}— 10 T"‘gER
6 —|TRIG OUT— g
(®) 7 —{COMM TRIG}—— g
556 DUAL TIMER
14-PIN DIP
¢ \J
1 —]COMM vcc[—38
2—TRIG DISF—7
3—OUT THR[—6
4—RST CVf—s
555 TIMER
8-PIN DIP

138

SPECIFIED SUBSTITUTE
FIRST SECOND
556 555 555
I 7
2 6
3 5 N. A.
4 4
5 3
6 2
7 i 1
8 2
9 3
10 N.A. 3
(" 5
12 6
13 7
14 8 8
(©

Fig. 5-1. Some ICs used for the first time. (a) Pinout and function table for the
74191 counter. (b) Pinouts for the 556 and 555 timers. (€) A chart showing how to
substitute two 555 timers for a single 556 dual time. Numbers indicate pin
numbers.

MOTION-CONTROL TINKERBOX

If you have been performing the experiments outlined in Chap-
ters 3 and 4, you should have at hand a good assortment of NAND,
NOR, and invert gates. You will need them for the motion-control
Tinkerbox.

In addition, you will need some 555 monostable multivibrators
(timers or the 556 dual timers), a few more 7493 counters such as
those used in the Sourcebox, and some 74191 presettable up-down
binary counters. Study the diagrams in this chapter, making up a list
of ICs you might have to order now.

You will need the timers for performing the experiments in the
first part of this chapter, but fortunately, they aren’t difficult to find
these days. You might have to send away for the 74191 counters, but
here you have some lead time because they aren’t required for a
while,

Figure 5-1 shows the pinouts for the 555 and 556 timers and the
74191 counter. Most fo the circuits described in this call for using
556 dual timers. You can, however, substitute two 555s by making
the changes in pin numbers as indicated on the chart in Fig. 5-1.

The counter in Fig. 5-1a is in its normal counting mode
whenever the ENAB input is at logic 0, the loadinput, L, is at logic 1,

139

and clock pulses are applied to the CLK input. The counter counts up
or down, depending on the logic level applied at the U/D terminal.
Setting U/D tologic 0 lets the counter count up, and setting it to logic
1 makes it count down, or backwards.

The counter can be preset to any desired count by applying the
desired binary count at the preset inputs, PA through PD, and
pulling the L input down to logic 0.

. The counting operation can be stopped and held at any desired
count by raising the ENAB input to logic 1. Counting then resumes
from that point as soon as ENAB is returned to 0.

The ripple-clock, RC, and maximum/minimum, M/M, outputs
perform special cascading and output control functions that will be
described in detail when considering the actual circuits that use
them.

SIMPLE PLAYER-CONTROLLED MOTION

Let’s get some motion on the screen as quickly and simply as
possible. To do this, tinker together the circuit shown in Fig. 5-2.

This circuit generates a narrow horizontal or vertical bar on the
screen. The horizontal version can be moved vertically anywhere on
the screen by means of the 500 k{2 potentiometer control, R1. And
when you build the vertical version, you will find you can move that
bar horizontally across the screen.

The heart of this system is a 555 timer. The circuit in Fig. 5-2
calls for using one-half of a 556 dual timer which, in essence,
performs the job of a single 555 device.

The monostable timing is initiated by the HRST or VRST pulse
from the Sourcebox unit, and the actual amount of timing is deter-
mined by R1, R2, and C2. When generating a movable horizontal
bar, trigger the circuit from VRST and fix the values of R2 and C2 to
3.3k and 0.047 pF. To generate a movable vertical bar, initiate the
timer from HRST and fix the values of R2 and C2 at 33 k(2 and 100
pF. Note that potentiometer R1, the motion control adjustment, is
500 kQ in either case.

So here is what happens: A vertical or horizontal reset pulse
initiates the monostable timing. It sets the pin-5 output terminal
from logic 0 to logic 1, where it remains until the timing interval is
over. If the circuit is triggered by HRST, this timing interval takes
place with every horizontal scan line. Triggering the circuit from
VRST causes the timing to take place once each vertical frame.

The NAND gate (IC3-A), inverter, and associated RC compo-
nents make up a pulse-shortening circuit that functions exactly as

140

‘UeaIos By} uo eull & jo uosod [BOILSA 10 [RIUOZLOY ey} jsnipe Jasn ayl Bumea) 103 inonD “2-G “Bi4

471 =¢€D

4740 =20 ‘Me'E=¢YH
1SHA = L1NdNI 13S3Y ‘HYQ TVLINOZIHOH 319VAOW /
47 $00° = €9
4d 001 = 2D ‘Mee = ¢ed - 47 1o
1SHH = 1NdNI 13S3Y :Hvg VOILHIA 31aYAON et 10
anwn |7
1NdNI-Z avno 00v.—E0!
H3IWIL TVNA 955—2DI
vea |€
= H3ILYIANI X3H vOrL—IDI
VOLY v-Eo1 . v-10I
EESQOA s L \ z 9 3 13534
9 p € /1 g ; vt 4!
g-10l vi |I_ |
) AL
005
1q

141

described in Chapter 3, Building Narrow Lines More Effectively.
Without the pulse-shortening feature, you would find that the circuit
generates a broad white bar that begins at the top or left-hand side of
the screen and extends for a distance fixed by R1. While this might
create an interesting, and perhaps potentially useful visual effect,
the adjustable-width white bar has little application for player-
controlled motion.

The pulse-shortening circuit effectively generates a narrow
white bar that always occurs at the end of the broad, adjustable-
width bar image from the timer.

Timing resistor R3 has a value of 470 ohms for both the movable
horizontal and vertical line. Capacitor C3, however, should be fixed
at about 0.004 uF for the movable vertical bar and at 1 uF for a
horizontal bar.

Build the circuit shown in Fig. 5-2, setting the values first for a
movable horizontal bar and then again for a movable vertical bar. You
can, of course, adjust or modify any of the recommended values of
R2, C2, and C3 to create any special position and size effects. Just
bear in mind that R2 and C2 influence the position and motion of the
bar, while C3 determines its width.

A movable line that spans the entire height or width of the
screen has limited usefulness for ordinary video games. The next
phase of the development, then, is to window the line, restricting its
size a bit. Try the circuit in Fig. 5-3.

The circuit in Fig. 5-3 generates an image that is quite familiar
to anyone who has observed or played with commercial video
games. If you don't feel a bit of excitement when you see what you
are creating on the screen with this circuit, you are probably missing
the spirit of this whole enterprise.

All you have to dois rig up the circuit in Fig. 5-2 to generate a
movable horizontal bar, then window it with some H-count signals.
The NOR gate in this instance effectively ANDs together the mova-
ble bar and window signals, yielding an image that looks very much
like the paddle devices for countless video games on the market
today.

Note that the “paddle” is movable along a fixed vertical path.
The vertical position of the image is determined by the setting of R1,
while the window specifications determine the fixed horizontal posi-
tion and width. Capacitor C3 and resistor R3 in the monostable
circuit fix the height of the “paddle.”

After playing with this circuit for a while, you might want to
reorient it to create a “paddle” that is movable along a fixed horizon-

142

IC1(FIG. 5-2)
3 4

1C4—~7430 8-INPUT NAND
= IC5—7402 QUAD 2-INPUT NOR

14 I1C5-A

; 1
(OUTPUT)

WINDOW
INPUTS

iw N;

pry
-

-
N

|
]

Fig. 5-3. Circuit for windowing the line generated by the circuit in Fig. 5-2.

tal path. What's involved in making that modification? Simply modify
the circuit in Fig. 5-2 to create amovable vertical line, then window it
with V-count signals from the Sourcebox Unit.

The circuit in Fig. 5-3, combined with the appropriate movable
line generator in Fig. 5-2, is the basis for virtually all player-
controlled motion of simple lines or rectangles along a fixed horizon-
tal or vertical path.

Many video game designs, however, call for full horizontal ard
vertical control. The circuit in Fig. 5-4 is the basis for such a scheme.

The ¢ircuit in Fig. 54 is simply a composite of two motion
control circuits. The portion of the circuit built around timer IC2-A is
a vertical-line generator, while the portion built around IC2-B is a
horizontal-line generator. Both lines can be positioned by means of
their respective controls, R1 and R4.

The two movable lines are ANDed together to yield a rectangle
signal that can be positioned anywhere on the screen. Control R1
moves the rectangle in a horizontal direction, while R4 moves it in
the vertical direction.

Working with this relatively simple circuit ought to conjure up a
whole lot of ideas for custom video games that require full control of
motion by at least one player. In fact you are now in a position to
develop the first and simplest sort of TV games—a game of tag.

143

L
(1nd1ino)

NS+

a-eol O-€Ql =
, , 4 4710
L 8 ot 40004 | <L
200 =
2L 6
v-20I
_ 3
2= S v-101
voLY “_mwoo. v-£0I 1 2
S € 2 S I 1SHH
\MEE 148
9 £ ; a3 vl
O-10I a-101 i
8%
005
gl

JOHINOD NOILISOd AS+
IVANOZIHOH

144

SUOIDANP [ED1LIBA PUE [BIUOZLIOY U} YIog ul 8{Bueloss B @A0W O} J8SN 8yl SMO|[e 18y} UNoo v ¢~ “Big

AM1p0° 4

5o o
= O

ONVN 1NdNI-Z QVND 00b2—€DI T
H3IWIL VNA 956—20 a-201
HILHIANI XIH HOPL— LI co S o m
L z or g s Lo
HA
ct €l Y 14 > 6 8 8
o/ ME'E -
9 ? 5] Su1 TouiNoo Nowsod 9O

=r 6_ 8-€01 e S = VOILHIA

4-101
M00S

145

A GAME OF TAG

Pursuit games are among the most popular kinds of video
games. Here is your chance to build one of them based on the
player-controlled motion circuit described in the previous section of
this chapter.

The game calls for building two independent player-controlled
motion circuits, one for player A an one for player B. The outputs of
the two circuits are essentially ORed together so that each player
can see and control the motion of his own little rectangle on the
screen.

Referring to the circuit in Fig. 5-5, player A’s circuit consists of
timers IC1-A and IC1-B, pulse-shortening circuits IC3-A, IC5-C,
IC3-B, and IC5-D, and NOR gate IC6-A. Player A controls the
horizontal position of his square by means of R1 and the vertical
position by means of R3.

Player B'’s circuit is identical to that of Player A: timers IC2-A
and IC2-B, pulse-shortening elements IC3-C, IC5-E, IC3-D, and
IC5-F, and NOR gate IC6-B. The horizontal and vertical motion
controls in this case are R5 and R7.

The outputs of the two players’ circuits (player A from pin 1 of
1C6-A and player B from pin 4 of IC6-B) are ORed together by means
of the NOR/invert operation of IC6-C and IC4-A. The signal at that
output point is a white-on-black signal containing the video informa-
tion for positioning the little rectangles for both players.

Of course it would be possible to let the two players chase each
other around the screen, counting on human judgement to deter-
mine when a “tag” is made. One additional IC lets the machine
determine a “tag.”

The “tag” detector in this instance is NAND gate IC4-B and one
section of a dual J-K flip-flop, IC7-A. Now this contact-response
circuit is the subject of a more detailed discussion later in this book,
but since it adds a nice feature to the basic game, you ought to
incorporate it at this point.

Briefly, you can see that IC4-B senses a condition where the
players’ little rectangles touch one another. The two inputs to this
gate are positive-going pulses, each indicating the position of the two
rectangles. When they are at least partially superimposed, the
output of IC4-B suddenly drops from its normal logic-1 state to logic
0 (where it remains, incidentally, until the players move their re-
ctangles apart).

The instant the output of IC-B, the contact detector, shows a
transition from logic 1 to 0, it clocks the flip-flop to a condition where

146

its Q output is set to logic 0. This Q output from IC7-A is connected
to the reset inputs of all four timer circuits. And when Q is set to zero
by the contact detector, it disables all four timers, sweeping the
rectangles into the systems horizontal and vertical blanking regions.

Whenever the two rectangles touch, then, they both disappear
from the screen. That is a clear indication that contact has been
made. Resetting the game is a matter of first adjusting at least one of
the motion controls to a different pesition, and then striking the
RESET switch.

Striking the RESET pushbutton sets the Q output of IC7-A
back to logic 1. This enables the timers to allow another “tag” play to
begin. One of the controls must be changed before hitting the
RESET button, however. Without changing one of the controls, the
system would remain in its “tag” mode and the rectangles could not
appear on the screen.

A somewhat refined and more challenging version of this tag
game is presented in a later chapter.

The circuit in Fig. 5-5 uses only seven ICs. These ICs and the
associated components (except the player controls) can be mounted
on the standard plug-in board. (Radio Shack 276-153). Using the pin
numbers specified in parentheses, the board can be plugged directly
into the Sourcebox unit.

The two sets of player controls can be mounted in separate
projectboxes. Cables running between the circuit board and project
boxes require only three wires: one for +5V and one to each of the
two fixed timing resistors (R2 and R4 for player A, and R6 and R8 for
player B).

The players can toss a coin to see who is “it,” then that player
chases the other around the screen until a “tag” is made. The players
can then switch roles. Obstacle and timing circuits described later in
this book can enhance the quality of the game quite a bit. This one,
though, represents the simplest sort of TV game that has any real
playing interest.

ADDING “INERTIA" TO THE PLAYER CONTROLS

The player-controlled positioning circuits described thus far in
this chapter have an unrealistic quickness about them. It is possible
to drive the rectangle across the screen in a mere fraction of a
second. The simple modification described here gives the controls
some inertia, lending a more realistic kind of motion to the rectangle.

The circuit in Fig. 5-6 is built around the monostable timer that
is used in all previous player-controlled circuits. The timing interval,
however, is adjusted in this instance by R7 instead of R1.

147

d014-dINd
A IVNQA 9LyL—LDI

HON
1NdNI-2 avnod eov.—90!
"H3ILH3IANI X3H $#082—G0lI

ONYN

1NdNI-¢ avND 00v.— ‘€01
HIWILL IvNa 955—2 ‘101

14}

_ €l I

¥

g0l
ot g-60l
g £
= LSHA
(61)
LT T o
ﬁ 17
143A & g
¥ H3AVId see M V-0l
2d v
Vet S . [4 TR)
€ .
¢ o 1SHH
||.._P AG0S v-50I
b1 3]
won v+~
HIAVId S+
AG+

(1)

148

-Bey j0 aweb ajdwis e o) ynaud a18jdwo) G-G By

149

T _ 2
WNOD
T 10
2
T
8-20l
o1]
8
LT = |0
N
g H3IAYd l_|8
¢ €
HOH
g 43AVd see 1 Ve
M00S 94 P
080l &y |
\, - 9
ot
N T
3
L As+

This technique takes advantage of the fact that a 555-type timer
can be adjusted by means of a voltage level applied to its control
voltage input (pins 3 or 11 on the dual 556 version).

Generally speaking, pulling the control voltage input closer to
the positive supply voltage potential lengthens the timing interval.
Pulling it closer to ground, on the other hand, shortens the timing
interval.

Thus it is possible to set the basic timing range by means of R1,
R2, and C2, then vary the timing around that point by changing the
voltage level to the control voltage input.

Set up the circuit in Fig. 5-6, omitting capacitors C7 and C8 for
the time being. Connect a temporary jumper wire to the wiper arm of
control R7.

Connect the loose end of the jumper wire to COMM, and adjust
trimpot R1 so that the white vertical line appears at the extreme
left-hand edge of the screen. Then connect the jumper to +5V
instead of COMM. Adjust R1 until the vertical white line appears on
the extreme right-hand side of the screen.

You might have to repeat this operation a couple of times to get
a perfect response. The line should appear at the left-hand edge of

+5V

| ..:F“
S500K
TRIMPOT
‘h
< R2
122k & <
5T}
2§
1411C1-A 14 =z g
r\ 6 5 = i
HRST : c L
g 2 PN2 2E
= A L ic3A @ 2
R8 a5
HORIZONTAL . } B9 3] c2a |2 20
POSITION SR " z
CONTROL 500K - o
c7 c8 A~C2
470uF 220u 100pF
7

-

*ADD C7; C8 ONLY AFTER =
ADJUSTING R1 (SEE TEXT)
VERTICAL POSITION CONTROL CIRCUIT 1S IDENTICAL
EXCEPT C2 = 0.047uF

Fig. 5-6. Adding the impression of inertia to a horizontal or vertical positioning
control.

150

the screen when the wiper arm of R7 is to COMM, and it should
move to the extreme right-hand side when the wiper arm of R7 is to
+5V.

Once you have set the position of R1 to your satisfaction, don’t
move it again. Remove the jumper from R7 and position the line on
the screen by means of that control.

With this preliminary alignment job out of the way, insert
capacitors C7 and C8 as shown in Fig. 5-6. As you adjust R7 now,
you will find that the line responds as through it has some “slop” or
inertia. The line’s response, in other words, is not immediately
coupled to changes at the position control.

While the values of “inertia” resistors R8 and R9 are critical to
the alignment of the timer, the values of C7 and C8 are not. You can
change the values of those capacitors to get the amount of inertia you
want. The larger the values of C7 and C8, the more inertia the line
seems to have,

The vertical positioning circuits can be modified in a similar
fashion, triggering with VRST and changing the value of C2 from 100
pF to 0.047 uF. The initial alignment procedure is the same one
already described for the “sloppy” horizontal position control circuit.

MANUAL CONTROL OF COMPLEX FIGURES

The material in this section describes one technique for moving
complex figures to any desired point on the screen. This technique is
an extension of the rectangle-motion scheme already discussed in
this chapter. But rather than using a monostable multivibrator to
generate the object itself, the monostable effectively “tells” a
counter when to begin counting or when to reset to zero. The
timer-controlled counter then provides select and windowing infor-
mation for a matrix generator—any cf the complex figure matrix
generators in Chapter 4.

Figure 5-7 shows a simplified block diagram and a complete
schematic for a circuit that lets the player move any complex figure in
a vertical direction.

Monostable multivibrator IC2-A is triggered on each time a
VRST pulse appears at its TRIG input. Or to put it in the context of
the TV raster, this timer begins timing each time the raster reaches
the bottom of the screen.

The timer’s output remains at logic 1 through the vertical-
blanking interval and into some portion of the vertical-scanning
interval determined by the values of C2, R2, and R1. A very similar
timing circuit in Fig. 5-2 generates a horizontal line that can be

151

ANVN LNdNI-8 0€v.—LOI

ELEAR HILNNOD L19-¥ £6vL— ‘€D
= = HINWIL T¥NQA 955201
HOLVHINID = HILHIANI X3H $O¥L—10I -
XIH1VW 40] 5 T
Dol — | 03uinoau sv 47240 u_&o./_\zzoo
8 — SLNdNI WA 2 4| 10
oy L 7 [oNv ANNOO-H
H g ‘
L2l 2 AD
- T 4 £
L] a0 I v-20!
6 SOP_MWU,,Mk - _
1 48 INILA S 9 1SHA
[o1 ¢z o| t@oule |z v v_ v-10I
¥l oo WM ey
o— | Wwod ab— $hee
ro! : < z| 3005
Z
P g 288 ¢%aP 1y
_m:mmﬁ —m:mmﬁ
NOILISOd | pqs4
(voLLEaA
5283 2sg% ASHH
® < < :
ss¢ s £z <

152

‘sainby xa|dwod ajgesow Ajjeowsan Buipiing

10} weibeip %00iq [B48U9D) (q) “JOUOD UOROUI [BDILIA 10} WieBeIp 1IN0 D1seg (B) “sa:nby xajdwiod Jo 0400 [enuey /-G ‘B4

0O3AIA
3dNOI
X3TdWOO
JTEVYAON

S

ATIvOILHIA HE

H¢
HY
H8
H91

HCE q3uinb3y sv

H¥9
H8Zl
H9Sse

HO1VvH3IN3O
XIH1vN

¥ "LdVHO
338

AN

1NNOO-H

X08304NOS WOH4H viva

H3INNOD
(WA) NOILOW
IVDILHIA H3IWIL
INILA
| . |V26 Ol

ul v 'Ol14

£l v-20l
WASZI W

e]
x»mw INILLA
JOHLNOD

WASL HIAVId
WA8 NOILISOd T¥DILHAA
WAY
WAZ
WAL 1SHH 1SHA

153

moved up and down the screen. The output of the timer in this
instance, however, clears a set of two counters (IC3 and IC4) and
holds the outputs at zero.

As soon as the timing interval is over, the output of IC2-A drops
to logic 0, and the two counters are allowed to count in response to
HRST signals from the Sourcebox unit.

The counters continue running through the remainder of the
vertical-scanning interval—until a VRST signal marks the end of a
frame.

The two counter ICs actually generate an alternate set of
V-count pulses. These signals have the same frequency and count-
ing format as the V-count signals from the Sourcebox. But rather
than beginning their count from VRST, these motion-control
V-count signals begin the moment IC2-A completes its timing inter-
val. To distinguish these motion-control V-count signals from their
counterparts from the Sourcebox, the motion-control vertical-count
signals are labeled 1VM, 2VV, 4VM, and so on through 128VM.
(256VM is not included in this format because 256V signals are
rarely used in generating any of the complex figures described in
Chapter 4.)

IC7, an 8-input NAND gate, is included in Fig. 5-7 only for
experimental purposes. It is normally part of the windowing circuit
for a complex-figure matrix generator.

Set up the circuit in Fig. 5-7a, and connect the output of IC7 to
the CE connection of a multiplexer. You can then use this motion-
control scheme to position any complex figure along a vertical line.
See an example in Fig. 5-8.

The circuit in Fig. 5-8 generates the figure of a rocket that can
be positioned and moved up and down on the screen by means of the
VERTICAL POSITION control, R1.

Note from the complex-figure specifications in Fig. 5-8 that the
matrix generator is seeing its SO input as 4H folded by 8H. Both of
these horizontal-count signals come directly from the Sourcebox.
The vertical-select inputs, however, come from the vertical-motion
control circuit, 4VM, 8VM, and 16VM.

The circuit thus generates a 4x16 extended foldover matrix
that derives its horizontal components directly from the Sourcebox
and its vertical components from the counters in Fig. 5-7a.

Once you get the vertical movable rocket image on the
screen, you can adjust its range of motion by selecting alternate
values of C2 and R2. You will also find that changing either or both of
the inverted VM connections to the window section of the circuit
modifies the range of vertical control.

154

-ainByy 195001 8|qEAOW AjjEien B Bupjew Joj weibep 300|q pue suopesyoeds ‘g-G ‘bi4

JNILA - WABEL
WNABZH \ﬂ
WAYY
Si-¥ ‘G-¥ "SOI WAYS v2-G ‘B14
1NdiNG XIHLVW HIAO-G104 waze v-20I
g3anaLx3 = V.-G Big v-101
91 X ¢ tg] 8101
WAZE vol W
ol ETTITY

JOYLINOD

) ‘ WAY NOILISOd
Ht9 §>M,_>m TVOILHIA
I
NACE =S1d i
WACE = v1d 1SHH N
NAZE=€10 HISZ _ _ Lsdn

WAZE =210 ~ HBZL HY9 HcE HIl 8 Hpy

/
WAZE = 110 _
NAZE =010 X0g30HN0S WOH4
WAZE = 80 WABZL HZE WA9L = €8
WAZE = v WAYY HY9 WAS = 2S
0=2a 3NILA Heel WAY = 1S

0=004:S1ndNI d H9L H9SZ :MOANIM HB8 4 H ¥ = 0S 103138

155

You can actually build any of your favorite complex figures and
move them vertically on the screen by simply substituting VM
connections for the V-count specifications you specified for static
complex figures.

Of course you can introduce some “intertia” into the vertical
motion by modifying the timer circuit to work like that shown in Fig.
5-6.

The basic vertical-motion control circuit in Fig. 5-7 will play a
vital role in all the table tennis games described later in this book.

The circuit for generating complex figures that are manually
adjustable in the horizontal directions is practically identical to the
vertical-motion circuit. The basic idea, in fact, is exactly the same.

As shown in Fig. 5-9a, a monostable multivibrator is triggered
by the HRST signal, a pulse that occurs at the end of each horizontal
scan. And although the horizontal-motion counters (IC’s 5, 6, and
8A) receive HCLK pulses continuously, the timer holds the HM
count at zero until the HTIME output of IC2-B drops to zero. At that
moment, the HM counters begin running, generating a delayed
version of the standard horizontal-count signals.

You can build any of the complex-figure generators described in
Chapter 4, then attach it to this horizontal-motion control circuit as
shown in the block diagram in Fig. 5-9b. Note that all of the
horizontal-count specifications come from the horizontal-motion
counters, while the vertical-count specifications come from the
Sourcebox.

The player canadjust or move the complex figure back and forth
across the screen by means of the HORIZONTAL POSITION
control, R3. As in the case of the vertical-motion-control circuit, the
range of horizontal motion can be modified by selecting alternate
values of R4 and C4.

Figure 5-10 shows the block diagram and basic matrix specifica-
tions for generating a racing-car figure. The car in this instance is
movable in the horizontal directions. You can use the same general
scheme, however, to generate a horizontally movable version of any
complex figure you choose.

Figure 5-11 is a complete schematic diagram for the movable
racing car, including the matrix-generating circuit. This particular
circuit will be used later in this chapter for making a popular racing
game,

Using the pin numbers designated in parentheses, this circuit
can be permanently mounted to a plug-in card (Radio Shack 276-153)
and plugged into the receptacle on the Sourcebox Unit.

156

The HORIZONTAL POSITION control, R1, should be
mounted to a small project box and wired to the main circuit at pins 5
and 6. If touching this little box causes distortion of the displayed
figure, run an additional wire from the box, itself, to circuit COMM.

The figure can be viewed alone by connecting the inverted
output of the multiplexer to card pin 16 (GAME VID IN). When this
circuit is used as part of alarger game format, however, you will take
the output from pin 15.

After mastering the technique for building circuits that allow
vertical or horizontal motion of any complex figure, you should be
able to generalize the procedure to build circuits having both verti-
cally and horizontally controlled motion of any complex figure.

To achieve manual control over both vertical and horizontal
positioning, simply build the two circuits in Figs. 5-7aand 5-9a, using
their VM and HM outputs for the V- and H-count specifications. Any
figure generated by the procedures outline in Chapter 4 can be
moved in this fashion.

It is important to experiment with this motion-control scheme
until you grasp some of its more subtle features and master them.
Proper windowing and range of horizontal and vertical motion can
cause some headaches for anyone who has not done their homework
with this system.

The player-controlled motion circuits presented thus far in this
chapter merely represent the simplest and most straight-forward
approaches. There is yet another procedure for achieving player-
controlled motion that will be described in the last sections of this
chapter. The circuits you have worked with to this point are quite
suitable for simpler games that regire alow budget and not-too-close
control over the figure being moved.

The motion-control scheme later has the disadvantages of
higher cost and greater circuit complexity, but it has the distinct
advantages of precision control and versatility, versatility in the
sense that it can be used for both player-controlled and automatic
motion. And what’s more, the circuit yet to be described is most
suitable for controlling motion from a stored program.

Itis thus a good idea to study this entire chapter before deciding
which kind of player-controlled motion circuit is most suitable for a
particular custom TV game. A bit more time invested in study and
experimentation will pay off in the long run.

AUTOMATIC FIGURE MOTION

A TV game without automatic motion isn’t really a very good
TV game at all. In fact it is automatic motion that separates tradi-

157

(8-S "OI1d)

LO10L 3wiH _
—-— dOT3-dINd M- ¥NQA 9Lv2—8DI . ——
e H3LNNOD LI8-¥ £65.—9 ‘SOl o o
HI |Hl H3IWIL ¥NQa 955—2O! d 08/\ 470
7oL _ YILYIANI XIH 00pL—LO e €0
90[_*[so .ﬂ.
b
e €20l -
£l gL = 9 :
- ‘ INLH | 6 1SUH
o] o0— @101 oL el 2 oL el ¢ S wee Vi[Ol vt
IWH9Se = £
dlo— o— 7
whe 90l vl ol vl
Stlo "o -] O v_wwm
|om v e et Sl e [8]6 et *
I b ASH
AS+ 1l 111 NOILISOd-|. y
2B 2 IR = TVLNOZIHOH
WH9S2 mm z = £ 2
2
M1OH

158

saunby xaidwod ajqeaow Ajjeuozuoy Buipying
Joy weiberp yoo|q esausy) () "(0AUOO UONOW [BIUOZLIOY 10} INUHD Jiseg (e) 'sainbyy xajdwoo Jo 101u0d jenuely 6-G bi4

H31NNOD
HOLVHINID (WH NOILOW
XIHLVYIN TVLNOZIHOH HIWIL
3WILH . ,
— v6 m<.w_ou“ <m%m oo_m
3IHUNDIS-XITINOD 5 o

IJ18VAONW .

ATIVINOZIHOH [SOl etk
WH952Z m

\

Al WH8z1 JOH1INOD
nS D. WHY9 * ANILH * H3AVd

AY Q3yino3Y Sy WHZE WIDH 154+ NOILISOd TVINOZIHOH
A8 INNOO-A WHIL

A9l WH8

AcE WHY

AP9 WHS g

A8cl WH1L

X0830HNOS WOYS viva

159

tional board games from video games. Consider, for example, some
of the programmable TV game systems on the market today. They
boast of hundreds of different video games; yet, a good many of
those same games could be played equally well on a sheet of paper.
Games relying on automatic motion give TV games the special
popularity they enjoy today.

A Simple GCircuit for Vertical Motion

The simplest kind of video-motion-control circuit is one that

involves vertical motion only. The simplicity of this form of automatic
motion belies its usefulness, however. This simple circuit, combined
with some player-controlled motion and interesting complex figures
leads the experimenter to a wide variety of interesting games.
Follow the discussion and experiments carefully, and you will most
likely get a good impression of what you might be able to do on your
own.
The circuit in Fig. 5-12 allows the player to adjust the vertical
direction and speed of a simple rectangular figure. The heart of the
circuit is a free-running oscillator built around one section of a 556
timer. The values are selected so that the oscillator runs at approxi-
mately 60 Hz. There is no synchronization with the vertical-count
sequence in the Sourcebox, so it is possible to vary the oscillator
frequency above and below that 60-Hz rate.

The primary purpose of IC2 and IC3 is to window the vertically
moving rectangle so that it appears as a rectangle, rather than a
narrow horizontal bar. Build this circuit and note the video signal as it
is taken from pin 2 of inverter IC2-A. You will find a white horizontal
bar that moves upward or downward on the screen at a rate deter-
mined by the setting of R2.

You should be able toadjust R2 so that the bar stands still at any
desired point on the screen. There might be a slight drift in one
direction or another, but remember that this is the simplest, and not
the most precise, vertical-motion circuit.

Whenever you make the bar stand still on the screen, the
oscillator is running at the system’s vertical framing rate, about
60-Hz rate.

Adjust R2 a bit one way or another and you will find the bar
moving upward on the screen. The farther you move the control in
that direction, the faster the motion. Whenever the bar is moving up
the screen, the oscillator is running a bit slower than the 60-Hz
vertical framing rate; and the faster the bar moves, the farther the
frequency is from 60-Hz.

160

-ainBy 1eo ejqeAcw Ajeiuozuoy B Bunjew oy weibelp soolq pue suoneoyidads ‘01-S ‘big

WH95Z
g HSZ!
L1-v 'S-v "SDI4
ndLn 9
Lol XIHLYW NS A ' WH V6-5 ‘DI
H3IAO-Q104 N “ g a-20l
a3anN3Lx3 L2 _— 3101
8x8 ~*“Aner| aor Lo mw
~ WH8 90! JNILH
- SOl IOH1INOD
- “ WHY NOILISOd
m_ IVAINOZIHOH
W1OH 1SHH
ASZL AVS AZE ASL A8 AV
ASZL WHYO
A9t =60 AZE IWILH WHSZL
A9L =90 AY9 WHZE NHOSZ “MOANIM
A9 = €0 A8 = €S
ASL=¥10 A9L=2a Ab = 2S
A9l = €10 0=10 WHOL 4 WHB = 1S
A9L =210 ASL =00 ‘SINdNIQ WHSL 4 WHY = 0S :103713S

161

(1

(@)] < Ri1 CONTROL 8HM

(43) !
w15

- 5 12 |3 10

3 IC2-A 2

IC1—7404 HEX INVERTER

IC2—556 DUAL TIMER

IC3, 4—7493 4-BIT BINARY COUNTER
IC5—7476 J-K FLIP-FLOP

IC6—7430 8-INPUT NAND

IC7—7486 QUAD EXCLUSIVE-OR
IC8—74150 16:1 MULTIPLEXER

32HM

s MOUNTRi
7 (1) EXTERNALLY

HORIZONTAL
500K POSITION

——|(5)
JUMPER AT

I1 |12 8 |11]5 l 12{9

R2 ! » IC3 1
3.3K
|4 14 ; —9 14

Q
b
71

O1uF

c2

~100pF I,_.l
7

AY|

L MOD CVID
(13) (14)

162

(28) !

6V

+5V

IC1-E

|\14
11[)100

24 12 =
18
)—
ouT
*‘% b9 D8 -
13

(29) =2V __1 15283] Xici-
(30)@ 181311 Y12
IC1-D @128y 3 G
{>c = OUTPUT
8 6L 2 av 8v
2 6
IC1-C 1
1
128HM 2
)
4 o
=ic7-8
JH5V L
1|——I—5)
8 |11 s =
4I
IC4 16 1IC5-A
2 14 | 1+
[2 [s 10 1 Bty
3 'O 10uF 01uF
743
o8 HTIME *? 256

NUMERALS IN PARENTHESES
INDILATE CARD PIN NUMBERS

Fig. 5-11. Complete circuit diagram for building a horizontally movabte car

Whenever you adjust R2 so that the bar moves downward, you
are really setting the oscillator frequency above 60-Hz. The faster
the downward motion, the farther the frequency is above 60-Hz.

So what you have here is a variable frequency oscillator that has
a middle frequency of about 60-Hz. Varying the frequency either
way from that 60-Hz point causes the figure to move up or down the
screen at a rate determined by the deviation from the basic 60-Hz
rate.

Use the windowing inputs to IC3 to narrow the bar in the
horizontal direction. With the values shown in Fig. 5-12, you should
be able to see a nice square if you window the bar with 256H, 128H,
and 64H.

The vertical height of the rectangle is determined by the value
of R7. Reducing the value of R7 reduces the height of the rectangle,
and increasing its value increases the height of the rectangle. Unfor-
tunately, any change in the value of R7 causes a change in the
oscillator’s frequency. So whenever you change the value of R7 to
change the height of the rectangle, you must change the value of R6
by a proportional amount, but in the opposite direction.

Play with the values of R7 and R6 to alter the height of the
rectangle and yet maintain complete control over the direction and
speed of vertical motion.

Resistors R1 and R2 fix the range of speed control that is
possible with R2. If these values are too small, you will find that the
control is too sensitive, making the rectangle move so fast that it
creates an unintelligible visual impression. Tinker with the values of
R1 and R2 to get the range of speed control that seems most
suitable.

If you would like to indulge in a bit of mathematics, consider the
following equation: s = 06-f, where s is the time it takes the re-
ctangle to make an excusion up or down the screen and f is the
frequency of the oscillator. If s is a negative number, it means the
figure moves downward, but if s is positive, the figure moves
upward.

What, then, is the oscillator frequency if the figure is to move
upward and cross the screenin about 1 second? Solving the equation
and substituting +1 for s yields 59 Hz. What is the operating
frequency if the rectangle is to move downward across the screen in
1 second? Rearranging the equation to solve for f: f = 60-s; and
substituting —1 for s yields f = 60-(— 1) or 61 Hz.

The real reason for indulging in this bit of algebra s to show that
most games require a maximum deviation of 1 Hz around the basic 60

164

‘Jonuod uonoanp pue paeds (eatueA siduns v “Z1-G big

GNVN LNdNI-8 0Evy.—EDI —

HILHIANI X3IH v0vL—20l ‘
HIWIL TVNQA 956— 4O 47250 Wb W
= = 10 £y
T M lﬁ s a33ds
€01
g-2ol L 5 \moanm sy f z W2 TvOILH3A
1ndLno € — H et M |m||2>>.|.VW wm_om
’ ° v % v-10i
v e :
2
8 1 S
- vi] ¥ w b
M0Lp % - mm

NS+

165

Hz framing rate. That adds up to a 2 Hz bandwidth, or a maximum
deviation of 2 Hz out of a possible 61 Hz. (Moving the figure any
faster than one excursion per second is seldom necessary).

The percentage of change of frequency, then, is on the order of
3%, well within the guaranteed 2% frequency stability of the 556
timer device.

Now suppose you want to use the same kind of circuit for
automatic horizontal control. That means you should build the same
kind of circuit, but using timing values that set the oscillator’s base
frequency at 15,750 Hz, the basic horizontal scan rate.

As in the case of the vertical-motion-control circuit, the time
required for making an excursion across the screen is given by
s = 15,750-f, where fis the oscillator frequency. If s turns out to be
a negative number, it means the figure moves to the left. A positive
value for s means the figure moves to the right. But let’s get to the
point of all this.

If you should want a 1-second interval for moving the rectangle
horizontally across the screen, you should be able to vary the
oscillator frequency 1 Hz above or below 15,750 Hz—between
15,749 Hz and 15,751 Hz. The maximum percentage of change in
this case is only slightly greater than one-tenth of 1%. Unfortunately
the 556 timer and your regulated power supply cannot possibly hold
that kind of tolerance.

Trying to build a horizontal-motion-control circuit around the
scheme in Fig. 5-12 will be a great disappointment. It is virtually
impossible to get a stable figure on the screen.

It is also difficult to use the circuit in Fig. 5-12 for generating
complex figures as described in connection with the positioning
controls (Fig. 5-9a, for instance). The problem here is that the
oscillator would have to run at the HRST frequency of about 15,750
Hz, and we have just gone through the mathematical agony of
showing that the oscillator isn’t stable enough to get smooth control
at that frequency.

Then, too, the vertical speed control does not lend itself to
convenient digital control, the sort of control that is necessary when
the speed and direction of vertical motion is to be determined by the
game circuit, rather than by a player.

The circuit in Fig. 5-12 is thus wholly suitable for player-
controlled motion of simple lines, bars, and rectangles in the vertical
directions. It does not work very well for horizontal motion of any
kind, vertical motion of complex figures, or vertical motion that is
controlled by the game circuit itself.

166

Fortunately there is an alternate scheme that overcomes all
three of these disadvantages. The principle involved here is com-
monly called slipping-counter motion. The idea is to build a horizon-
tal- or vertical-counter circuit that is practically identical to those in
the Sourcebox unit. The second counter circuit, however, runs out
of sync with those in the Sourcebox. In effect, the images created by
this slipping counter moves across the screen by virtue of the fact
they are out of sync with the Sourcebox counters creating the raster
pattern.

Slipping-Counter Vertical Motion Control

Figure 5-13 shows the basic circuit for vertical-slipping-counter
motion. In a physical sense, it is a very simple circuit, composed of
only three IC devices: two 74191 presettable 4-bit binary counters
and a 7400 2-input NAND gate.

Recall from the discussions in Chapter 2 that the Sourcebox unit
generates a vertical-scanning field composed of 261 lines. Sixteen of
these lines are lost in the vertical retrace interval, but the point is
that the vertical-count generator in the Sourcebox counts out 261
HRST pulses per vertical frame.

Now if you could build another vertical-count generator that
counts out 261 HRST pulses per cycle, you would have a second
source of vertical-count pulses. This new counter would run at the
same rate as the one in the Sourcebox, but its reset point could occur
anywhere in the vertical field. This circuit, in other words, would run
at the same frequency as the one in the Sourcebox, but out of
phase—out of phase anywhere between 0 and 260 HRST vertical-
clocking intervals.

Next, suppose you use this out-of-phase vertical-count
generator to create images on the screen. That image would be
motionless on the screen, but it could be shifted up or down,
depending onits phase relationship with the vertical-count generator
inthe Sourcebox. The greater the phase difference between the two
counters, the greater the amount of shifting.

As an example, let the slipping counter in Fig. 5-13 run at the
same frequency as the vertical-count generator in the Sourcebox.
But let the slipping counter run out of phase to the extent that it
reaches a count of 100 while the corresponding vertical counter in
the Sourcebox is at count 150. The slipping counter would thus be
cycling 50 HRST pulses behind the Sourcebox counter, and any
image created from the vertical-count outputs of the slipping counter
would appear 50 scan lines lower on the screen than the same image
created from the vertical-count outputs of the Sourcebox.

167

‘uonoelIp pue peads [ed1UeA J0} [021u0d Jeunod-Buiddys v e1-G Biy

gl o1] dn
2l olo |11 ||®
i ifr{ofi m
ol o|l1 o1
6 1o o] JOIS
8 [olo o1 NMOQ
l i1]1]o m
GNVYN LNdNI-2 avND 00%2—EDi m n_v A_u “ w o
H3LINNOD AYYNIE 118+ L61v2—2 ‘1O -——0OA8
AINo3 | oAI[oaz[oar|oAs | Now3HIa
- |1vwo3a anv o
= a33ds
OAZ
‘l.l.lloi
:w 5 6l o] 1| st #w:m 6 lo i lst
9 ain__ ad od 8d vd —ou an ad 9d 8d vd - ST
v-€2I v 1ol
L 2ol
z1 vzl —
€ z WIN ao 90 80 VO WA ao 0D 80 vo [71
= glor Z] o] 2| ¢ B[o1 [o] 2| €
ST
Ww w W = ~ [o2] & [
@ N O ~ < < < <
< < <€ < L g
£ £z 2 As+ =2

168

Alter the phasing so that the slipping counter reaches a count of
100 while the corresponding Sourcebox counter is at 50, and you will
find the image shifted 50 scan lines higher on the screen. The
slipping counter in this case is running 50 HRST pulses ahead of the
Sourcebox vertical-count generator.

An image created by the VM outputs of the vertical slipping
counter will be motionless on the screen as long as the frequency is
identical to that of the vertical-count generator in the Sourcebox, but
let the frequencies be different, and you will find the image moving
up or down the screen.

Suppose the slipping counter has some provision for altering
the number of HRST pulses it includes in one vertical frame. If this
counter has a counting capacity of 262 instead of the usual 261, it
resets one scan line later per frame. The overall effect is that any
image created from the slipping-counter outputs moves down the
screen at a slow but steady rate.

There are two ways to consider this kind of motion effect. Both
lead to the same conclusion, anit is left to the reader to use the point
of view that suits his own way of thinking.

One way to explain the steady downward motion just described
is to consider that the slipping counter is running one HRST pulse
farther out of phase each time one vertical frame is completed. And
since the position of the image is determined by phase relationship
between the slipping counter and Sourcebox, a continuous change in
that phase relationship produces the effect of a steady motion.

Another way to look at the situation is to consider that the
slipping counter runs at a slightly different frequency than its coun-
terpart in the Sourcebox. If the slipping counter is cycling at 262
pulses per frame instead of 261, that means it is running at a slightly
lower frequency. The slipping counter, in other words, is running
out of sync with the Sourcebox counter. And since it is running at a
slightly lower frequency, the image “rolls” downward on the screen.

Setting the slipping counter to count out 260 HRST pulses,
instead of the 261 pulse-interval from the Sourcebox, the image will
appear to move upward on the screen. The idea here is that the
slipping counter is running at a higher frequency.

The direction of motion is thus determined by whether the
slipping counter is cycling at a higher or lower frequency than the
corresponding counter in the Sourcebox. If the slipping counter is
running at a higher frequency (short counting) the image moves
upward, and if the slipping counter is running at a lower frequency
(long counting) the image moved downward . Of course the image is
motionless as long as the two frequencies are the same.

169

Now the greater the frequency difference, the faster the appa-
rent motion becomes. If the slipping counter is set so that it short-
counts four pulses per frame, it moves upward about four times as
fast as it does when short counting just one pulse per frame. Long
counting four pulses per frame, by the same line of reasoning, makes

- the image move downward rather rapidly.

The table in Fig. 5-13 shows five 4-bit words that can be loaded
into the vertical-motion-slipping-counter circuit. When that number
is 1001 (decimal 9) the slipping counter runs at the same frequency
as the vertical-count generator in the Sourcebox unit, and the result
is a motionless image on the screen.

Loading decimal 8, 7, 6, or 5, however, forces the slipping
counter to long-count by 1, 2, 3, or 4 HRST pulses per frame,
yielding an image that moves downward at the rate of 1, 2, 3, or 4
scan lines per frame. (Since there are 60 frames completed each
second, it is possible to calculate the time it takes the image to move
down the screen.)

According to the table in Fig. 5-13, loading the decimal equiva-
lents of 10, 11, 12, or 13 causes the image to move upward. The
counter actually short-counts by 1, 2, 3, or 4 scan lines per frame in
this instance.

All of this discussion merely indicates what the circuit in Fig.
5-13 does. Now it is time to investigate exactly how it does the job.

Anyone familiar with the fundamentals of digital electronics
ought to recognize the two-counter portion of the circuit as an 8-bit
synchronous binary counter. The counters are clocked by the HRST
input to pin 14 of both IC’s. Note, however, that the counters are
disabled thrugh the VBLANK interval by means of the VBLANK
signal applied to the G (enable) input of IC1. The circuit is thus
allowed to count at the HRST rate only as long as VBLANK is at logic
0—at all times except through the VBLANK interval.

The 2-input NAND gate normally shows a logic-1 output, drop-
ping to logic 0 only when the counter outputs reach a maximum count
of 11111111, At that instant, the 2-input NAND gate sees a pair of
logic-1 inputs, and its output drops to 0.

Whenever the output of IC3-A drops to logic 0, the two counter
ICs are loaded with a certain set of binary numbers. IC2 is always
loaded with 0000 virtue of the fact that its preset inputs are perma-
nently tied to logic-0 common. IC1, however, is loaded with what-
ever 4-bit number appears at its preset inputs, PA through PD, and
that number is the motion code described in the table accompanying
the diagram in Fig. 5-13.

170

So what happens here is that the counter advances to its
maximum count (11111111, or decimal 256) where it is immediately
reloaded to the number appearing at the preset inputs of ICI,
anywhere between 5 and 13. If the VC inputs show 1001, for
instance, the counter replaces 11111111 with 00001001, or decimal
9, It then counts up to 11111111, with a 16-count pause whenever
the VBLANK interval occurs. The total number of counting intervals
in 1 complete cycle is thus 261, exactly equal to the number of
counting intervals generated by the Sourcebox vertical-count cir-
cuit. An image using the VM outputs stands still on the screen.

If the VC inputs are altered to show a binary number other than
9, the slipping counter has more or fewer counts per cycle. Loading
binary 8, for example, forces the slipping counter to work with one
additional HRST pulse per cycle. In effect, this increases the cycle
time, or in other words, decreases the frequency. The result in this
instance is that images generated by the VM outputs appear to move
upward on the screen.

Loading numbers larger than 9 shortens the counting cycle of
the slipping counter, thereby making it cycle at a higher frequency.
Any image using the VM outputs appears to move down the screen.

Construct the circuit in Fig. 5-13, and make your initial tests of
taking the video from one of the higher-order VM outputs, 32VM or
64VM for instance. The horizontal bars on the screen should stand
still when loading 1001 at the VC inputs. Then they should move
upward rather slowly when loading 1010 or 1011. The bars move at
the same speed, but upward, when loading 1000 or 0111 at the VC
inputs.

You are now in a good position to generate bars, lines, rectang-
les, and complex figures that show continuous vertical motion. Use
any of the procedures outlined in Chapters 3 and 4, substituting the
VM signals where you would normally specify the Sourcebox
V-count signals. Use the Sourcebox H-count signals in the usual
fashion until you have built the horizontal slipping counter described
in the section that follows.

If you have been conducting the vertical-motion experiments as
recommended thus far in this chapter, you are probably acutely
aware of the fact that the procedure for changing the speed and
direction of motion for the slipping counter is somewhat more awk-
ward that of the oscillator-controlled motion circuits.

The slipping-counter technique does not lend itself to direct
control by means of a simple variable resistor, whereas the simpler
control circuits do. The closing section of this chapter describes a

rather simple circuit for achieving potentiometer control over slip-
ping counters. But in instances where a player is to have manual
control over vertical speed and direction, the control circuit in Fig.
5-12is the better choice, assuming, of course, the image is a simple
line, bar, or rectangle.

The digital speed and direction control feature of the slipping-
counter circuit, on the other hand, is the better choice in games
calling for automatic or machine control of vertical speed and direc-
tion. The slipping-counter technique is also the only option open
when the figure is more complex than a simple line, bar, or rectang-
le.

Master the fundamentals of both vertical-control circuits and
you will be fully prepared to handle any game-designing situation
calling for vertical motion.

Slipping-Counter-Horizontal-Motion Control

While the experimenter might have several options when it
comes to selecting vertical-motion-control circuits, no such options
exist for controlling the speed and direction of horizontal motion.

One might think the vertical-motion circuits described in this
chapter could be modified to suit the needs for horizontal motion.
The idea might be to simply substitute HCLK for HRST and
HBLANK for VBLANK. This is not the case at all. Merely substitut-
ing H-count parameters for V-count parameters creates an image on
the screen that is, first, quite confusing and, second, practically
useless.

The primary feature of horizontal counting is that the slipping
counter must not be permitted to change its count length with every
horizontal line. The horizontal-slipping counter must be loaded with
its stop code for every visible scan line on the screen. If this is not
done, the experimenter sees a series of diagonal lines, rather than
straight vertical lines, moving across the screen.

The horizontal-slipping counter must see its stop code at all
times except during one particular scan line, preferably one that
occurs during vertical blanking.

If the horizontal-slipping counter is then loaded with a number
that retards the horizontal timing, the vertical line will appear to
move to the right. That retarded count, however, must occur only
once during the scanning field.

On the other hand, shortening the count during one particular
scan line makes the vertical line appear to move to the left. Again,
the counter must see its stop code at any other time.

172

The circuit in Fig. 5-14 represents the basic horizontal-slipping
counter. It is, indeed, the only horizontal-motion circuit used
throughout this book.

ICs 1, 2, 3 and 5 in Fig. 5-14 perform the same general function
as the vertical-slippng counter in Fig. 5-13. They are responsible for
counting out a horizontal-count cycle of nine bits, four bits each for
IC1 and IC2, and a ninth bit from the J-K flip-flop, IC5.

The 3-input NAND gate, IC5-A, senses the counter overflow of
111111111, or decimal 511. The starting point for the stop code in
this case is binary 10010010, or decimal 137. Take the difference
between these 2 figures and you end up with a counting cycle that is
374 pulses long. That is the number of pulses required for making a
horizontally movable figures appear motionless on the screen.

Anastute reader, however, might note that this number is quite
different from the counting cycle of the horizontal-count generator in
the Sourcebox unit. Recall that the Sourcebox generates a 454-pulse
horizontal cycle.

The answer to this particular situation concerns the fact that
HBLANK is applied to the enable input of IC1 in Fig. 5-14. The
occurrence of this positive pulse disables the horizontal-slipping
counter at the end of each scan line—for 80 HCLK pulses. So if you
drop those 80 HCLK pulses from the Sourcebox interval, you end up
with 374 HCLK pulses that occur while the horizontal lines are
visible on the screen. That is the same number of pulses that emerge
each cycle from the slipping counter set for a motionless figure.

Any figure having its horizontal components generated by the
horizontal-slipping counter thus appears motionless on the screen as
long as that counter is being loaded with a 374 HCLK cycle.

Now notice from Fig. 5-14 that the five higher-order bits are
always loaded as 01000. The clearing input of IC3-A and the preset
inputs of IC2 are always fixed for loading those values, no matter
what the motion code might be,

The peculiar feature of the horizontal-slipping counter is that
the stop code—the four lower order bits loaded at the preset inputs
of IC1—must be loaded at the end of each horizontal cycle. If
something other than the stop code is loaded each cycle, the circuit
generates moving diagonal lines rather than moving, straight vertical
lines.

A motion code other than the stop code is loaded only during
one particular scan line that occurs during vertical retrace on the
screen. IC4 and IC6 in Fig. 5-14 take care of this situation.

173

HC 1 MM 13
) Ic1 ;
HBLANK— g upD L &0
VBLANK 1| [T O[T “
v —2] i
2V~ T7 4 |79 |12
4 1 _
4V—5— 8 16
8V—— IC4 -
Ice | 14 15 1410 []
2 [5]17]] 2
JHC oyl
2HC = T: +5V
4HC

IC1, 2—74191 4-BIT COUNTER
IC3—7476 DUAL J-K FLIP-FLOP
IC4—74157 QUAD 2:1 DATA SELECTOR
IC5—7410 TRIPLE 3-INPUT NAND
IC6—7430 8-INPUT NAND

IC4 is a quad 2:1 multiplexer. It is a circuit that works very
much like a 4-pale double-throw selector switch. When its input at
pin 1 is at logic 1, the inputs at pins 3, 6, 10, and 13 appear at its
outputs (pins 4, 7, 9,-and 12 respectively). Note that these inputs are
fixed at the circuit’s stop code for the four lower-order bits: 1001. So
aslong as the signal at pin 1 of IC4 is at logic 1, the slipping counter is
loaded with its stop cnde.

174

s s
ii\ﬁr% 256HM
—mgg 3
] 4 6
5
_L IC5-A |7
3|216|7 h6]8 = S 113 =
MM 2 —9 Qs
Ic2
uD L 4
15[1 [10[9 [5Q 11
16,
o] LI~
C P
Tan
SPEED AND
DIRECTION | 8HC|4HC |2HClIHC
o1 o]l
Blol1|7lo
RGHT &f| o | 1 |1]I
I lolo|o
STOP I o O]l
TR
: o
cerr A | T8

Fig. 5-14. A slipping-counter control for herizontal speed and direction.

Setting the pin-1 control at logic 0, however, shifts the outputs
to the four inputs appearing at pins 2, 5, 11, and 14. Since the logic
level at pin 1 is determined by the output of a NAND gate, 1C6, it
follows that the system sees something other than the stop code
only when all inputs to the NAND gate are at logic 1. And these
inputs come from VBLANK and a selection of V-count signals from

the Sourcebox.

+5V

.02uF
COMM *%
(22)

— PIN NUMBERS

NUMBERS IN PARENTHESES
ARE SUGGESTED PC CARD

176

s =
I TITCT 5 &
=3 = S Gd
]] e~ ™
g/ 5|8 g oo
!
' |
3| 2|le]|7hels 3|2 }
Hok () '
14 12 14
HBLANK IC1
3 TR
2 ® 4 Sgrerer 5o ° 4T T |
5]
o B 4| 7] 9] 12 ~ = J
(27) 4Vt 6 16
26) 2V -]
‘(25)) wal | (592 511143 610138 I
1| = |
1
1HC .
2HC ‘> l>
4HC = 20
8HC -
s
> 2 3 3
®)|©] 0]e ;
] 3 |2
HRST | 3 2 6 7 16 8|
4 14 - 12 14
VBLANK __ 1 o
(20) o 40
I 5] [OF F9,, 1S[[[©
(18)2VC —mm
(19)4VC —m
(21)8VC —» =

s
2z (34)
g 256 oA
28 o
8
~ 10
11 HM
(32)
I L
el7[el8] o T Ry L
g 15
Ic2
16
K019 [59 11 4 IC7-A
14
= 256HM
302 (33)
= HML
(31)
- VML
g E (30)
5 & 3
= 6
& VMRST
~ L (@)
5 7 1C8B
6 17 hel 1
IC4 12
IC1, 2, 3, 4—74191 4-BIT BINARY
9 [5 O COUNTER
|C5—7430 8-INPUT NAND
IC6—74157 QUAD 2:1 DATA
SELECTOR
IC7—7476 DUAL J-K FLIP-FLOP
|C8—7410 TRIPLE 3-INPUT NAND

Fig. 5-15. Schematic diagram for a slipping-counter motion control circuitboard

177

To make a long story short, IC6 responds to the one line during
VBLANK where 1V, 2V, 4V, and 8V all at logic 1 at the same time. It
is only during this one particular line that the horizontal-slipping
counter can count a cycle that is longer or shorter than the stop-code
cycle.

Now suppose you have set the HC inputs of the slipping counter
to 1000, a code that makes the counter run one extra pulse. When
that one critical scan line occurs during the VBLANK, the counter
long-counts to set the reset point one HCLK pulse to the right. The
system then automatically injects the stop code, creating a motion-
less vertical line that is shifted one HCLK interval to the right of
where it was on the previous frame. Since this shifting takes place
once during each frame, the vertical bar moves gradually to the
right, one HCLK interval per frame, or 60 HCLK intervals per
second.

Motion to the left is accomplished in much the same fashion,
except the slipping counter is forced to short-count during that one
critical line in the VBLANK interval. The table accompanying the
schematic diagram in Fig. 5-14 summarizes the horizontal-motion
codes for this system.

Construct the circuit in Fig. 5-14 and try it for yourself. You can
create logic-0 at the HC inputs by connecting the points to COMM.
You can create a logic-1 input by connecting a jumper to +5V, but
that isn’t really necessary with these TTL circuits, because no
connection at all lets the inputs assume a logic-1 condition.

You can use any one of the HM outputs for this experiment,
simply connecting one of them to GAME VID IN. The MM (max/
min) output of IC2 makes a nice take-off point for a video signal too.

A Complete Slipping-Counter-Motion-Control Board

The vertical- and horizontal-slipping-counter circuits can be
easily assembled on a single PC card, providing the experimenter
with a universal digital-motion card. This card can be used for
experiments aimed at getting a better understanding of slipping-
counter motion control. But equally important, it can be used as a
motion control board for any number of TV game circuits. A bit of
time and effort invested in such a board will pay big dividends later in
your work.

The universal slipping-counter motion board, shown in Fig.
5-15, has provisions for digitally controlling the speed and direction
of both vertical and horizontal motion. Input connections to the
Sourcebox unit include HCLK, HBLANK, HRST, VBLANK, and

178

vertical-count signals 1V, 2V, 4V, and 8V. Of course +5V and
COMM should be included on this list.

The control inputs are 1HC, 2HC, 4HC, and 8HC for horizontal
motion, and 1VC, 2VC, 4VC, and 8VC for vertical motion. The
motion-control codes for these two sets of inputs are included in
Figs. 5-14 and 5-13 respectively.

The slipping-counter outputs are designated 1HM through
256HM for horizontal counting, and 1VM through 128VM for verti-
cal counting. These outputs can be used for generating lines, bars,
rectangles, and complex figures, as described in Chapters 3 and 4.
Merely substitute the HM signals for H-count specifications and VM
signals for the corresponding V-count specifications.

The scheme is left programmable to some extent. The idea
here is to give the experimenter the greatest possible amount of
flexibility with this one circuit board. To operate the system in the
normal fashion, merely connect the HMRST output to HML, and
VMRST to VML. (Leaving these points “programmable” allows the
experimenter to insert other kinds of reset circuits that initialize the
position of the movable figure.)

Chapter 6

Some Useful Game Control Schemes

Automatic motion is indeed the hallmark of video games, but au-
tomatic game sequencing runs a close second. Most TV games
employ automatic start-up and stop features, for example. Then
there are other kinds of events and sequences of events that occur
during a game, some manually controlled and others automatic.

Consider the control schemes for a basic table tennis game.
The game sequence is usually initiated manually by depressing a
RESTART pushbutton, but it generally ends automatically as one
player reaches a certain score. In some instances, the ball-serving
sequence is initiated manually, while in other versions of the same
game, the ball is served manually. But in either case, the serving
sequence is terminated automatically as one player misses the ball.
These operations are examples of game control schemes.

Study the circuits in this chapter carefully. A proper under-
standing of them will make it easier for you to understand the control
features of sample games presented later in this book, and it will
certainly make the process of designing your own games more fun,
easier, and more efficient.

GAME START/RESET CONTROLS

Most TV games begin with some kind of initial action some-
where on the screen, and by the same token, most games include a
critical point where the system is to be reset to begin another cycle
of one game or begin a new game altogether.

181

These start and reset operations can be wholly manual, fully
automatic, or a combination of the two. In any case, start and reset
controls are generally built around a flip-flop circuit.

The flip-flop circuits in Fig. 6-1 are properly classified as R-S
flip-flops. To be more precise, the circuit in Fig. 6-1a is an R-S
flip-flop, while the one in Fig. 6-1b is an R-S flip-flop. The outputs in
both examples are compliments of one another, oneis always at logic
1, while the other is at logic 0.

The R-Sflip-flop in Fig. 6-1a is set and reset by means of
negative-going (active-low) input pulses. Whenever the START
input is pulled down to logic 0 and STOP is held at logic 1. the PLAY
output goes to 1 and the PLAY output switches to logic 0. Aslong as
STOP remains at logic 1, the outputs hold, or remember, this
condition, even after START returns to logic 1.

The outputs can then be reversed only by pulling STOP down to
logic 0, while holding START at logic 1.

The R-S flip-flop in Fig. 6-1b works exactly the same way, but in
this case the inputs are active high. The outputs are set and reset by
means of positive-going pulses at the START and STOP inputs.
Whenever START is pulled up to logic 1, for instance, the PLAY
output responds by going to logic 1. At that same time, PLAY goes
to logic 0. The circuit then remains in that particular output state as
long as STOP remains at logic 0. The START input can switch
between 1 and 0 any number of times, but PLAY remains at logic 1 as
long as STOP is held at 0.

You will find the simple arrangements in Fig. 6-1 appearing one
or more times in just about every full-scale TV game presented in
this book. The only real difference between the two circuits is the
polarity of their input waveforms. One uses negative-going pulses,
while the other uses positive-going pulses. The choice of using one
circuit or the other depends largely on the polarity of the input pulses
that are available from the circuits that operate them.

Manual Start Switch Circuits

Many games begin with a player depressing a start pushbutton,
and in some instances, cycles within a game are initiated that way.
The circuits in Fig. 6-2 show how to interface a START pushbutton
with the flip-flop circuits in Fig. 6-1.

The circuit in Fig. 6-2a is the simplest of the three. In this case,
resistor R1 keeps the START logic level normally pulled up to logic
1. Depressing the START button pulls that logic level down to logic
0, where it remains until the button is released. Any contact bounce

182

IC1-A

START
@

I
STOP

IC1-B

IC2-A
Il LAY
START

(b)

n _'_D*— o
STOP 1C2-B

Fig. 6-1. Start/reset circuits. (a) ARS flip-flop triggered by negative-going
pulses. (b) is R-S flip-flop triggered by positive-going pulses.

will appear at the output of this circuit, but it is effectively “filtered”
by the flip-flop stage that follows it.

Since the signal from the circuit in Fig. 6-2a is an active-low,
START level, it can be directly connected to the START input of the
flip-flop in Fig. 6-1a.

The start circuit in Fig. 6-2b is a bit more complicated. In this
case, however, depressing the START button generates a START
pulse having a duration roughly equal to the time constant of R2 and
C1. The button must be released before it is possible to generate
another START pulse.

This circuit will show some contact-bouncing effects, but again,
the flip-flop following that stage will eliminate these undesirable
effects. The active-low nature of the pulse from this start circuit
makes it directly compatible with the flip-flop in Fig. 6-1a.

The start circuit in Fig. 6-2c uses a 555-type timer to generate
the START pulse. If the LOCK input is fixed at logic 1, this circuit
generates a clean, positive-going pulse each time the START button

183

is depressed. The button must be released before it is possible to
generate another pulse.

The width of the pulse in this case is determined by the values of
R3 and C2. Using the values shown here, the pulse duration is on the
order. of 10 ms.

The LOCK input makes it possible to lock out the START
button action as long as LOCK is at logic 0. This is a handy feature in
games where it is desirable to prevent a player from initiating a
certain playing cycle until something else takes place.

The fact that the circuit in Fig. 6-2c generates an active-high,
positive-going pulse makes it directly compatible with the flip-flop
circuit in Fig. 6-1b.

Comparing the features of the three circuits in Fig. 6-2, the one
in Fig. 6-2a is the simplest, but it should not be used in instances
where an automatic reset action might take place before the player
has a chance to release the START pushbutton.

The circuit in Fig. 6-2b should be used where there is a possibil-
ity that automatic reset will occur before the START button is
released. It does not have any provision for automatic lockout.

The circuit in Fig. 6-2¢ has none of the disadvantages of the two
other circuits, plus it features an optional lockout input. (If the
lockout feature isn’t to be used, that terminal should be connected to
+5V.)

When selecting the circuit most appropriate for your game
design, consider the complexity, polarity of the outputs, and re-
quirements of the game.

These three circuits, incidentally, can be used in the same ways
for manually resetting game operations. Simply switch the START
and START labels to STOP and STOP respectively.

Automatic Stop Circuits

Games, or cycles within games, can be stopped or reset au-
tomatically by means of the circuits in Fig. 6-3. These are both
pulse-generating circuits: The active-high STOP pulse from the
circuit in Fig. 6-3b is directly compatible with the flip-flop circuit in
Fig. 6-1b, while the active-low output from the circuit in Fig. 6-3ais
compatible with that in Fig. 6-1a.

In both cases, the stopping action is initiated whenever a given
set of sfop conditions are met within the system. IC1-A in Fig. 6-3a,
for example, normally shows a logic-1 output. Whenever all the
inputs to this NAND gate find their way to a logic-1 state (presuma-
bly at the time all the conditions for automatic resetting are met), the

184

‘2iNjea) INONO0| Ay} UM Jojeseuab
yess asind saysod v (o) “Jojessusb asind wels v (q) “juswabueise youms a(dwis v (B) "SINDII0 UOIIMS LBIS [BNUBN 2-9 "Bty

(0)
%001
4710 WWOO } 1dvis
2 =~
= = =
5ia lsy
470
HHL [%e]
14viS ool _Il
wor L w sez gAee
g ey QoA o WE G
e +/H voLY
2y
14viS \
gl Y
v-20! 4

[30]

<,

v-101

185

output of that gate suddenly drops tologic 0. This transition from 1 to
0 initiates a short, active-low pulse at the STOP output.

The STOP pulse from the circuit in Fig. 6-3a lasts only as long
as the time constant of C1 and R1 allow. To get another pulse, one or
more of the input parameters must return to logic 0. And after that,
another pulse can be generated when all the inputs go to logic 1 once
again.

The circuit in Fig. 6-3b uses a 555-type timer to generate an
active-high STOP pulse. This pulse is initiated whenever the de-
vice’s TRIG and RST inputs see a transition from logic 0 to logic 1.
The pulse has a duration roughly equal to the product of R1 times C1.
And for most purposes, the values shown in the diagram are suitable
for generating a 10 ms pulse.

The input to the timer circuit makes the critical 0-to-1 transition
whenever the two active-low stop parameters at NOR gate IC2-A
are at logic 0 at the same time. The alternate circuit, made up of
NAND gate IC2-A and an inverter, do the same job, with the
advantage of being able to work with more than two input paramet-
ers at the same time. If you use the NAND/invert combination
(instead of the NOR-gate version) the STOP pulse is initiated
whenever all the active-low stop parameters go to logic 0 at the same
time.

Both of these circuits generate an output pulse whenever the
input stop parameters—conditions sensed within the game cycle—
are met. Both generate a single pulse that can occur again only after
the game has left the reset condition and enters it again.

The RESET output in Fig. 6-3a and the RESET terminal in Fig.
6-3b aren’t used often, but they can be handy in a few instances.
These logic levels merely indicate whether or not the system s inits
reset condition, or to be more precise, whether or not the system s
ready to enter its reset condition.

Either of the circuits in Fig. 6-3 can be used for automatic start
operations as well. It’s all a matter of connecting the pulse outputs to
the appropriate START inputs in Fig. 6-1.

Delayed Start/Stop Operations

It is frequently desirable to insert a time delay between the
moment a particular game response occurs and the initiation of a new
game or game cycle. In a typical table-tennis game, for instance,
there is a short time delay inserted between the time a player misses

186

18w ase siajewesed dois ayy uaym asind Buiob-saysod e Bunesauab 10}
12310 (Q) "1ew e SuoIPUOD UIBLAd usym asind BuloB-aanebau e Buieseusb 10 ynonD (e) 'sunoad dos onewoiny “¢-9 b1

= (Q)

V-1l

SHILINVHVd
4710 WWOO d01S
ot = MO
N _ -3ALLOV
HHL o |
w
sig = _ SH31INVHYd
do1s g
mno 3 ! doLS
o) ﬁ MOT-3AILOV

SH313Nvdvd
dOl1s
HOMH

-IALLOV

187

the ball until the next serve begins.

Figure 6-4 shows a relaible time delay circuit. In this instance, a
negative-going pulse at pin 6 of IC1-A initiates a monostable timing
interval equal to 1.1 times the product of R1 and C1. When that
interval is over, capacitor C2 passes a negative-going pulse to the
trigger input of IC1-B which, in turn, generates a 10-ms positive
pulse.

The positive pulse from IC1-B thus occurs at the end of the time
delay interval, an interval set by the time constant of IC1-A.

The timing can be initiated by any of the start or stop circuits
described thus far in this chapter, provided the trigger input of IC1-A
sees a negative-going or active-low pulse that has a duration less
than the time constant of R1 and C1.

The whole timing operation can be locked out by pulling the
LOCK terminal (pin 4 of IC1-A) to logic 0. This terminal must be
connected to +5V if the lockout feature is not to be used.

A Design Example

Before leaving the subject of start/stop controls, it is important
to take a close look at how these circuits can be combined to yield the
desired control effect. There are countless possibilities, using just
the circuits described here. If you are willing to add a few more gates
and passive components, you will find you are in a position to create
just about any sort of control scheme you will ever want.

The following discussion is intended to lead the reader through
a control design procedure, step by step. Although the discussion is
built around one particular example, the methods employed can be
applied to any sort of design situation for game controls.

The first step is to determine precisely what the control
scheme is supposed to do. A flow chart is helpful here. The flow
chart in Fig. 6-5a illustrates the operation of a start/stop control
scheme that has the following characteristics.

The player is to initiate a game or game cycle by depressing a
START pushbutton. As soon as the button is depressed, it should be
locked out until the cycle is completed. The flow chart thus shows a
manual start operation at the beginning of the cycle, followed im-
mediately by a switch lockout operation.

As the START switch is locked out, the game begins. It isn’t
important what the game is at this point. Whatever the game might
do, there always comes a time when it should be reset. Suppose, for
example, the START switch launches a rocket figure on the screen.
The moment the switch is depressed, the rocket begins to move,

188

“1noxoo| [euondo yum 3ino0 dois/uels pake|ap v -9 “Big

1D1Y 'L = TVAY3LNI AV13d

T T T
4710 L
10 B (0 Rt .
HIWIL TVNQ 955—| I o9
Lvna o] oo
zl| 8101 zl v-io1 [| 929 "©ld Woud
91-9 HO V1-9 "OI4 OL = TG = AV13Q
dO1S HO 14vIS 20N | J1VILINI
AVIZ@ T ry gl /i S) .y
swor |_J WL 0 yzz vl
€H FAS| 8] f
AG+

(1YNOIL1dO)
MO0

(2]
o]
—

and the switch is locked out so that the player cannot launch another
rocket for a while.

Now suppose the rocket misses its target and runs to the edge
of the screen. That is the RESET condition in this particular case.
When that happens, the control system initiates a delay interval,
let’s say a delay of 5 seconds. Nothing more can happen until the
delay interval is over, but as soon as that time period lapses, the flow
chart shows that the START switch is unlocked, thereby making it
possible to restart another launch cycle.

Working out a good flow chart for start/stop controls can save a
lot of hassle, time, and money later on. Time spent working out the
simplest flow chart is thus time well spent. Perhaps equally impor-
tant is the fact that building a flow chart forces you to clarify your
thoughts about what the control system should really do.

After building the flow chart, block out the process, referring to
the control circuits presented in the first part of this section. Figure
6-5b shows a block diagram generated from the flow chart.

The system calls for a manual START switch that can be locked
out. The circuit in Fig. 6-2c fits this notion quite well. And since this
particular start circuit generates positive-going pulses, the R-S
flip-flop in Fig. 6-1b falls into place quite naturally. The inverted
output of this flip-flop is then used for locking out the START switch.

The noninverted output of the R-S flip-flop stage enables the
game, whatever that game might be. The exact nature of the game
isn’t relevant to the procedure at hand, but we can assume it
eventually generates a set of parameters that call for resetting the
controls. This reset parameter output from the game can thus
initiate and automatically stop operation. The circuit in Fig. 6-3a fits
the bill in this case.

The negative-going pulse from the auto stop circuit should then
initiate a time delay of 5 seconds, and when that interval has lapsed,
the positive-going pulse from Fig. 6-4 canreset the start-up flip-flop.
The game is thus restarted and the START switch is enabled so the
player can initiate another cycle.

The block diagram in Fig. 6-5b thus transforms the basic flow
chart into a less abstract form. The next step is to make up a
preliminary schematic diagram.

The preliminary schematic shown in Fig. 6-6 merely replaces
the blocks in Fig. 6-5b with the circuits specified for those blocks.
The primary objective is to see what types of semiconductors are
needed and how many have to be used. There is no real need to
assign pin numbers and component values other than those that are

190

MANUAL
START

LOCK OUT
START SW

Y

START
A GAME

DELAY
Y
UNLOCK
' START SW
START
FIG.6-2¢ I L FIG. 6-1b FIG. 6-3a
PLAY
MANUAL |—3» GAME
START R-S | AUTO
wiTH | STOP| FLIP-FLOP | PLAY STOP
Lockout | ™
A Tocx sTOP
pl py Y FIG. 64
DELAY
.
S TIME
DELAY

Fig. 6-5. Basic flowchart for control circuit designs. (a) A typical scheme using
manual start and automatic reset with time delay. (b) Corresponding block

diagram.

peculiar to the system being designed. In this case, the only unique
control parameter is the length of the reset time delay. We have
specified 5 seconds, so the preliminary schematic shows the values
of R and C that are appropriate for this delay interval,470k() and10
uF.
Another problem became apparent while setting up the prelimi-
nary drawing. This particular scheme ought to have a power-on

191

initializing circuit. Without this power-on feature, the player might
find he cannot initiate the game as soon as power is applied to the
circuit. The flip-flop, in other words, might take on an initial state
whereby the game is enabled and the START switch is locked out.
This leads to the awkward possibility of never being able to get the
game started. Of course different kinds of games present different
start-up conditions, depending on the nature of the game, itself.

The little circuit in Fig. 6-6b shows a power-on reset circuit that
can be inserted between the output of the time delay circuit and the
STOP input of the R-S flip-flop. When power is first applied to the
game, the 0.01-uF capacitor pulls the input of an inverter to logic 0
for several microseconds. The inverter’s output thus rises to logic 1
for that interval, guaranteeing a logic-0 output from the NOR gate.
This pulse is then inverted again and applied to the STOP input of the
R-S flip-flop. Any reset pulses to that flip-flop come only from the
delay circuit, once the system has been initialized after turn-on.

The most important reason for working out a preliminary draw-
ing, however, is to give the designer an opportunity to optimize the
number of IC chips required. As shown in the preliminary drawing in
Fig. 6-6a, the circuit requires a total of 6 ICs: one package each of
2-input NORs, 2-input NANDs, 4-input NANDs and inverters, and
two packages of 556 dual timers. Using so many different kinds of IC
logic packages, however, leaves plenty of spares. See the table in
Fig. 6-6.

Note that the circuit calls for only three inverters, and that
there are three NAND gates left over. Why not replace the inverters
with NAND-gate versions of them. That eliminates one package of
inverters and makes more efficient use of the NAND gates already
available.

Then, too, it is quite likely the game circuit will contain a spare
4-input NAND gate. That kind of gate at the input of the auto-stop
circuit can be eliminated from the control circuit, leaving the job to be
done on the game board, itself. That eliminates another IC package
from the control circuit.

Now the circuit requires only four IC packages. The final stepin
the design procedure is to redraw the schematic, incorporating the
modifications just described. The final circuit appears in Fig. 6-7.

After studying the flow diagram, block diagram, and preliminary
schematic, you should have no trouble understanding the operation
of the control circuit in Fig. 6-7. R8 and C6 make up the power-on
initializing circuit, ensuring the START switch is enabled the mo-
ment power is first applied. Depressing the START switch then
enables the game. And whenever the RESET input indicates a

192

‘G- ‘614 Ui uoneiado Heyomoy) 8y 10} Wesbep onewsyos Areuluyald '9-9 ‘B4

3 t | AQNVN LNdNI-Y
1 z : Y3INIL 95§
€ 1 : 1HIANI
€ t ANVN 1NdNI-2
1 t c HON 1NdNI-2 q
TINM | 530vsDvd| SLNN ERLED
H3IA0LAT 40
HIAWNN 1353
= NO-HIMOd
T AV13a n_okw oH
[03S§
= 4roL =<2
T +]
><._mo
-
— —
{ -
[I dOLS
M % NOLY /7\
4_' ERCLAE]
IAYO

L/

L
H
ly

Lo

T

193

.
R1 2R22K 14 %Ra
' 1™ IC3-A
2.2K s 5 2 114 1
1
C1 4 3
l_‘ O1uF IC1-A 12§
4
START 4]
I
GAME
ENABLE
L

condition in the game that calls for resetting the system, it initiates
the 5-second delay interval at IC2-A. After that interval is over,
IC2-B generates a pulse that ultimately triggers pin 6 of IC3-B to
disable the game and unlock the START switch circuit.

It would be a good idea to dream up a few control systems of
your own, following the procedures outlined here. This same proce-
dure, in a somewhat more elaborate form, is quite necessary for
planning entire game systems. Get the procedure clear in your mind
now, and you’ll find you have a powerful design tool at your disposal
later on.

194

IC1, 2—556 DUAL TIMER
IC3—7402 QUAD 2-INPUT NOR
IC4—7400 QUAD 2-INPUT NAND

14 IC4-A iIC3-C
3 7] 8
10
2
T +5V -
R5 R6 R7 R8
470K 22K 10 1M 22K
¥4 8 9
| IN 13 IC4-B
—— C4 4
- L 6
[IC2-B
5
+ C5
A~ 10uF TNO1uF A~ C6
T T T

Fig. 6-7. Finalized schematic for the control operation described in connection
with the flowchart in Fig. 6-5a.

FIGURE-CONTACT-SENSING CIRCUITS

Most TV games are designed so that they carry out an automa-
tic operation whenever two or more figures come into contact with
one another on the screen. Suppose you are working up an autc
racing game. The cycle begins with your opponents’ cars moving
rapidly across the screen. And your job is to accelerate your car,
moving into the traffic without touching any of the other cars. If you
are setting up this game right, things will start getting a little hairy as

195

you begin moving your car faster than the others—one little slip and
whamo! —you brush against one of the other cars, there is an
explosion, and the game is reset so that you have to start all over
again.

One of the key operations in this particular example is sensing
contact with one of the other racing-car figures. What happens after
that depends on the kind of control circuitry you devise. The impor-
tant thing right now is providing a means for sensing a critical contact
between two or more figures on the screen.

The figures on the screen are generally generated separately,
using the schemes already outlined in Chapters 3 and 4. The images
are ORed together to produce a composite video signal. Contact
sensing must take place ahead of the last ORing operation, and it is
basically an ANDing logic operation.

The little circuit in Fig. 6-8a shows how this contact-sensing
AND operation can be applied when the figure generators output
active-low (black-on-white) data. In this case, both inputs must be at
logic 0 before the NOR gate outputs a logic-1 contact signal. This is
an active-low, or negative-logic, AND operation. Whenever the
images for A and B are not in contact with one another, the CON
output in Fig. 6-8a rests at logic 0. When images A and B touch one
another, however, the CON output begins generating positive-going
pulses at the horizontal scan rate of the system (about 15,750 Hz).

The circuit in Fig. 6-8b shows how the contact-sensing circuit
can be implemented. Images A and B are generated by the approp-
riate combinations of H- and V-count data applied to the inputs of
IC1-A and IC1-B respectively. The outputs of these two NAND
gates represent inverted, or black-on-white, versions of images A
and B. These images are then ORed by means of a NAND gate,
IC2-A. (Remember that inverted signals applied to a NAND gate
yields an ORing effect.) The GAME VID output thus contains the
video information for presenting both images A and B on the screen.

The inputs to IC3-A, however, are taken directly from the two
image-generating NAND gates. IC3-A is the contact sensing circuit
already described in connection with Fig. 6-8a. Whenever images A
and B touch one another on the screen, their video data is lining up
such that the CON output is showing positive active-high pulses.
These pulses cannot occur at any other time.

In short, the circuit in Fig. 6-8b generates video information for
two different images, combines them into a single composite game
video signal and senses any contact between the two images.

The circuit in Fig. 6-8c performs the same function as that in
Fig. 6-8a. In this latter example, however, the video data for the two

196

‘) pue g 10 D puB Y uaamieq 100D Buisuss pue sainby a1y Buikedsip 10}
oy (p) “eiep 0opia ybiy-eAnoe wolj sesind Joeju0d Buiob-aaneBbaN (0) "uaa19s ay) uo SaINBY oM} UBBMISG JOBIUOD Buisuas
pue ejep oapia ay) 6uiheldsiq (q) “erep 03pIA MO|-2AIOE WOJY sasind BuioB-aAnIsod (&) ‘sunouo Buisuss 19eju0o awos 'g-9 *big

=
O
— 3 o
3snd
— = movaniov aan
. [o > :
—" 9 NOO N
v-€0I — Ty v1vd 03dIA
V531 HOIHIAILOY
ain = =
— v QiA
anvo L >3
— m
AHOIH-IALLOY) v-10l
NOD — _
—3
3 v
m
g [® x S3SINd LOVINOD TN
2 HOIH3AILOV w
M NOD Y1va O3dIA
(HDIH-3AILOY) e o =i MOT-3AILOV
aIA INYD e ~
zm vaiA
v-20l P
Y diA i
v-10l

197

images happens to have an active-high (white-on-black) format.
Whenever the video data for these two images rise to logic 1 at the
same time, the CON output generates negative-going (active-low)
contact pulses at the horizontal-scanning rate.

Whether you should use the circuit in Fig. 6-8a or Fig. 6-8c for
sensing contact between two figures depends on whether the availa-
ble image information is active low or active high.

The circuit in Fig. 6-8d is simply another example of how
contact-sensing circuits can be applied. In this instance, it is more
efficient to use the NAND-gate sensing circuit from Fig. 6-8c. Here,
the idea is to sense contact between images A and C or B and C.
Apparently any contact between images A and B is not relevant to
the game.

The video information for images A, B, and C is effectively
ORed at the 3-input NAND gate, IC5-A. The output of this gate is an
active-high composite game signal.

Images A and B are ORed together at IC3-A, and the resulting
active-high signal is applied to one input of the contact-sensing
circuit, IC3-B. The other input to this contact-sensing gate is an
active-high version of image C. Thus if image A or image B (or both)
come into contact with image C, the output of IC3-B generates
negative-going pulses. When neither A nor B are touching image C,
the CON output rests at logic 1.

The circuits in Figs. 6-8a and 6-8c are “universal” contact-
sensing circuits. Figures 6-8b and 6-8d merely illustrate where the
contact sensors are inserted into the game scheme and, incidentally,
two specific applications.

Before leaving the subject of contact sensing, why not try
working out a scheme that includes some contact sensing and an
automatically controlled response. The flow chart in Fig. 6-9arepre-
sents a portion of a game where contact between two images causes
one of them to be blanked from the screen. This might be part of a
target game where the player launches a rocket at a moving target. If
the rocket touches the target, the target is blanked from the screen
until some reset action is initiated.

According to the flowchart, the target (image A) is reset so that
it appears on the screen. The play then begins, and continues until
image B touches the target. When the contact occurs, image A is
blanked from the screen. The circles at the top and bottom of the
flow chart imply that these operations are just part of a larger game
and control scheme.

The flow chart is translated into a block diagram in Fig. 6-9b.
The information for image A must pass through a gate before it is

198

‘weibelp 3ooi1q (q)

'y ebewi Bupjuejq uay) ‘g pue vy sebewl usamieq 1oe1U00 Buisuas 10} UBYIMO] (e) ‘Buisuas 10eU00 10} sjuwexs ubisep v '6-9 614

v
1383y
iy $03dS
ol — 39V
g
gL 8
aNVN
g1-9 ‘OlId .A
do14 (
AaNv)
-dind o — -
ain S-d s
ANVYD
MNVE
(=O) "$03dS
an] MNV1g aiA af—— JOVNI
(QNY) v v
ANYD L v

ANVN

ANVd

AYd

13534

199

combined with the data for image B to produce a composite video
signal. As long as this gate is open, both images can appear on the
screen. Closing the gate, however, blanks image A from the screen,
but lets image B remain.

The blanking operation is controlled by an R-S flip-flop circuit.
In this instance, it is the circuit shown earlier in Fig. 6-1b. Now the

flip-flop is controlled by positive-pulse inputs from the contact sens-
ing circuit and some sort of outside reset circuit.

When the game is reset, the state of the flip-flop is set such that
the A blank gate is open, allowing image A data to appear on the
screen. The first contact-sensing pulse from the contact sensor,
however, sets the flip-flop to a state where the A image is blanked
off.

With the flow chart and block diagram completed, the next step
is to work out a preliminary schematic diagram. This diagram, along
with an analysis of the type and number of logic gates required,
appears in Fig. 6-10a. See if you can properly relate the gate circuits
in Fig. 6-10a with the operations specified in the block diagram.

The final schematic diagram in Fig. 6-10b shows how this whole
operation can be implemented with three ICs.

INITIALIZING FIGURE MOTION CONTROLS

Games and game cycles often begin with certain figures placed
at particular places on the screen. Such figures must be set to those
initial positions whenever some critical event occurs. In the case ofa
table-tennis game, the ball is set to an initial position for serving
purposes. It is then served, and if the player misses it, the ball
travels to one side of the screen where it then disappears, being
served again from the opposite side of the screen. The critical event
in this case occurs when the ball reaches the opposite side of the
screen. When that happens, itis first blanked and then initialized (set
to a particular serving position).

Initializing operations are nearly always used in conjunction
with figures that move around the screen automatically, although
some manually controlled figures use initializing operations as well.

Figure 6-11 shows the basic initializing circuit. It is most often
used with vertical- and horizontal-slipping counters, and the basic
idea is to select one of two different sources of reset pulses for the
counting operation. The two sources of reset pulses are labeled
slipping-counter reset and initializing reset in this case. The slipping-
counter reset pulses come from the slipping-counter circuit itself.
These are the pulses that are normally used for resetting the counter
to achieve the desired speed and direction of motion. They are

200

directed to the loading inputs of the slipping counter whenever the
tnitializing control input is at logic 1.

When the initializing control input is at logic 1, IC1-A is effec-
tively opened so that inverted versions of the slipping-counter reset
pulses emerge from its output. While the initializing control is at logic
1, however, inverter IC2-A switches that logic level to 0, as far as
the pin-9 input of IC1-C is concerned. IC1-C is thus effectively gated
off, thereby preventing any initializing reset pulses from reaching
IC1-B. Setting the initializing control input to logic 1 blocks any
incoming initializing reset pulses, but allows negative-going
slipping-counter reset pulses to appear at the output of IC1-B.
These pulses are applied to the loading line of the slipping-counter
circuit, letting it operate in its normal, motion-generating mode.

Setting the initializing control input to logic 0 completely
changes the situation. In this case, IC1-A is gated off by the logic-0
level appearing at its pin-2 input, but IC1-C is gated on by virtue of
the logic-1 level now appearing at its pin-9 input. Inverted versions
of the initializing reset pulses thus appear at the output of IC1-B.

In short, the circuit in Fig. 6-11 is simply a digital selector
circuit. It selects one of two sources of reset pulses, depending on
the logic level present at the initializing control input.

Note how this selector circuit is applied to a vertical-slipping
counter in Fig. 6-12. As long as the INTC (initializing-control) input
is at logic 1, IC3-B is gated on, and the normal reset pulses from
IC3-A appear at the output of IC3-C and the load inputs of the
counters. The circuit thus operates in its normal slipping-counter
mode as long as INTC = 1.

Changing INTC to logic 0 gates off IC3-A, however, and deliv-
ers an alternate set of reset pulses to the load inputs of the counters.
These reset pulses at the INTP input generally come from the
Sourcebox unit, so they always occur at some particular vertical
position on the screen. And when these pulses are applied to the
slipping counter, it follows that the counter will be reset at that
particular point on the screen.

There can be no motion effect from the slipping counter as long
as it is being reset from INTP, even if the VC inputs are set for fast
motion in either direction. Motion begins only when INTC is set to
logic 1, thereby allowing the counters to be reset in the normal
fashion from 1C3-A.

Why not breadboard the circuit in Fig. 6-12 and try it for
yourself. For the purposes of this experiment, connect VRST from
the Sourcebox through an inverter to the INTP connection.
Whenever the figure is to be initialized (INTC set to logic 0), the

201

v 13S34

y

g din
\
\
NOO
QIA JNVYO
\ VGaIA
vaiag I
S ! ! 1H3ANI
0 ! 1% HON LNdNI-¢
€ L 3 GNVN LNdNI-¢
0 ! 4 GNVN LNdNI-¥
SLINN S3OVYXOVd SLINN
34vdS 40
H3IaWNN

202

-oeWaYos pazijeuld (q) ‘anewsyds Aeunueld (8) '6-9 ‘614 ut swayos Buisuas joejuod ay Joj sweibelp onewayos "04-9 ‘614

ANVN LNdNI-Z2 avnO 00¥Z—€DlI

ANVN LNdNI-Z2 aVNO 20v.—2O! / CEREL g
ANV N LNdNI-b TYNa 0272—10 4
= _ 0L su3iianvavd
3 A% H
8 JOVIAIL g
zZ
10l
m
Tyle) ._u
QiA NV L
v-10l S
SHILIWVHY
> A%H
{ L JOVII V
vl a-2ol ° >
T
_ 7
NG+ Lr

SLIPPING-
COUNTER , oA
RESET ,
Ok
IC1-B
4
6
TO LOAD
IC2-A e CONNECTIONS
g lCI-C OF SLIPPING
8 COUNTER
1 2
A 10
INITIALIZING
CONTROL U
0 = INITIAL INITIALIZING
1= RUN RESET PULSE

Fig. 6-11. Circuit for initializing the position of a figure generated by a slipping
counter.

counters will reset at the bottom of the screen where VRST always
occurs.

Set the VC inputs for any desired direction and speed (see the
data in Fig. 5-13), feed VM128 to GAME VID IN, and use a jumper
wire for grounding INTC.

As long as INTC is grounded (fixed at logic 0), the wide white
bar on the screen should appear fixed at the bottom of the screen.
Whenever INTC is disconnected from ground and connected to +5V
(logic 1), the bar moves in a direction and at a speed determined by
the VC inputs.

You can interrupt the motion and reset the position of the bar to
the bottom of the screen at any time by simply connecting INTC to
ground again. Connecting INTC to logic 0 initializes the position of
the bar figure —initializes its position at the bottom of the screen in
this case.

You can actually initialize the position of the bar anywhere on
the screen you want by choosing a different source of INTP pulses.
Try NANDing together 128V, 64V, 32V, and 16V, for example.
Apply the output of this NAND gate to the INTP connection instead
of VRST. You will find that the broad bar takes on an initial position
just above the center of the screen whenever INTC is set tologic 0.

204

“UNO1IO (0L UOKEBZIERI S) 0} Jejunod Buiddys [eomaa & Buepaiul Zi-9 “Biy

diNI OLNI

=
!

T ON8
ONY
ONZ
nw j||l|o>—
el , nosl slo] Wa
£
2L O HNVIEA
o]
bl 2
A% g L1StH
=== STTST Z1 8] 2 ©
T
]

82LNA
PINA
CEWA
9LNA
SNA
PNA
ZNA
LNA

205

The initializing control can be used with a horizontal-slipping
counter in much the same way it is used with vertical-slipping
counters, See Fig. 6-13a. Using the circuit in Fig. 5-14 as amodel for
horizontal-slipping counters, simply break the connection between
the output of IC5-A (the gate that signals a normal reset) and the load
bus line to pin 11 of ICs 1 and 2 and pin 3 of IC3-A.

Any image generated by the horizontal-slipping counter will be
initialized by INTP in Fig. 6-13a as long as the INTC input is at logic
0. Changing the status of INTP to logic 1 shifts the counter’s reset
operation to the output of IC5-A, thereby allowing the motion
specified by the slipping counter’s VC inputs.

Many TV games call for figures that move with both horizontal
and vertical components of motion. The motion-control board in Fig.
5-15is a natural choice for a circuit in this case; and if the circuitis to
include an initializing feature, a pair of initializing controls, one each
for horizontal and vertical motion, can be inserted in the reset line.

Using the initialization-control circuit described thus far re-
quires three 2-input NAND gates and an inverter, and that would
mean using a total of six NAND gates and two inverters for achieving
initialization control over both vertical and horizontal motion of the
same figure. It is possible to reduce the IC count by replacing the
NAND-gate version of the initializing control with a 74157 quad 2:1
multiplexer. See Fig. 6-13b.

The circuit in Fig. 6-13b uses a single IC package for simultane-
ously controlling the initialization process of a figure having both
vertical- and horizontal-motion components. As long as INTC in Fig.
6-13b is set to logic 0, the multiplexer selects VINTP and HINTP
inputs (initializing pulses) for the vertical- and horizontal-slipping
counters on the motion-control board. The effect in this case is that
the figure generated by these slipping counters stands motionless in
its initial position, regardless of the status of the VC and HC inputs.

Setting INTC in Fig. 6-13b to logic 1, on the other hand, lets the
multiplexer deliver HMRST and VMRST pulses for the ‘HML and
VML inputs of the motion-control board. The figure thus moves in a
direction and at a speed determined by the HC and VC inputs.

Serious experimenters might find it very instructive to bread-
board the initializing-control circuit in Fig. 6-13b and attach it to the
motion-control board in Fig. 5-15. Generate the desired figure from
the VM and HM outputs of the slipping counters while the control
circuit is initializing them. The most convenient source of initializing
pulses is inverted versions of HRST and VRST from the Sourcebox.
Simply apply an inverted version of HRST to the HINTP input in Fig.

206

HORIZONTAL
SLIPPING COUNTER (FIG. 5-14)

PING | g !
IC5-A 3
2 4
PIN 11 IC1, IC2
PIN 3 1C3-A 9

5
A ! 2->of
[ﬁ 8

S

INTC INTP
A
+5V
o N~
VML
l HML |
HMRST 16 J
————3 4
MOTION- 5
CONTROL VMRST
BOARD 6 7
FIG. 5-15 74157
5 QUAD 2:1
15 8| MULTIPLEXER
ezl
2] o a INTC =
E B 0=INITIALIZE
> I 1=RUN

Fig. 6-13. More initialization controls. (a) Interfacing a horizontal slipping counter
to an initialization control circuit. (b) Interfacing a complete motion control circuit
to a horizontal and vertical initialization control that uses a quad 2:1 muttiplexer.

207

6-13b and an inverted VRST from Sourcebox to the VINT input. Of
course the INTC terminal should be grounded to initialize the figure
and hold it steady while you are building it.

Once the figure is built to your own satisfaction, set some
motion-control commands to the VC and HC inputs of Fig. 5-15 and
remove INTC from ground. The figure should then move around the
screen as prescribed by your motion-control inputs.

You should notice that the figure folds over very nicely
whenever it reaches one edge of the screen. If it is moving to the
right, for instance, the front part of the figure will begin appearing at
the left-hand edge of the screen while the tail end is still moving into
the right-hand edge.

This can be a desirable effect in many instances, but there are
occasions where it is important to “hide” a figure. Since the slipping
counters are disabled through the horizontal- and vertical-blanking
intervals, figures cannot be hidden in those spaces. There must be a
way tohide figures on occasions, especially while they are resting in
their initial positions.

Figure 6-14 shows a rather simple control circuit that blanks a
movable figure while it is resting in its initial position. You will note a
flip-flop circuit composed of IC1-A and IC1-C. Whenever a
negative-going RESET pulse occurs, the flip-flop is set so that the
output of IC1-A is at logic 0 and the output of IC1-C is at logic 1. In
this reset condition, the slipping counter sees the initializing reset
arriving at the INTP input. For all intents and purposes, the figure is
stationary in its initial position. At the same time, however, the
logic-0 level from IC1-A gates off the figure-generating logic gate
IC2-B. The image of the initialized figure cannot possibly appear on
the screen.

Applying a negative-going pulse to IC1-A alters the operation,
allowing the slipping counter to run at a rate determined by its
control inputs (not shown in Fig. 6-14) and unblanking the image data
from IC2-B.

Any figure generated by the slipping counter thus disappears
from the screen the moment it is set to its initial position. It then
remains invisible until a cycle is started; then it becomes a visible
moving object on the screen.

An astute reader who has been following this discussion care-
fully might now be seeing some important applications of the circuit
in Fig. 6-14. Doesn’t the operation of this circuit remind you of some
of the missile-launching operations included in some of the more
popular commercial TV games?

208

‘saimes) Bunjue|q ainby pue ‘vonezienul ainby ‘doispuels Butaey 1IN0 [05u0D uoowW B1BIAWOD V¥ “L-9 B4

d1NIt

JL

a-1oi

MNVg

g-c0! v-29l g-10l _

1HV1S
O3aiA N M
Q3.LH3ANI Vool
B

SLAALNO WH ElEl
HO WA

"31NNOD
ONIddITS
AHOH

209

Perhaps it is time to get off the pabulum and on to the meat of
TV-game design. The following section describes a missile-
launching game that incorporates all the control features described
thus far in this chapter. You will find that the game action is rather
nice, but the range of controls is somewhat limited. After describing
this basic missile-attack game, we will return to a further discussion
of more-elaborate initialization controls. These more sophisticated
controls will then add an extra touch of interest and excitement to
the basic missile game.

A BASIC MISSILE ATTACK GAME

The missile attack game described here uses two movable
figures tentatively labeled image A and B. Image B is the attack
missile that moves across the screen horizontally at a fixed speed
and altitude (the altitude and speed will be made programmable later
on.) Image B is the antiballistic missile that is launched vertically by
the player. The object of the game is to hit the attack missile with the
antiballistic missile.

Figure 6-15ais a flow chart for the basic missile attack controls.
The cycle is started as the player launches the antiballistic missile,
image A. Presumably, the attack missile is appearing at the left-hand
side of the screen at the time.

If A = B (if the two images come into contact), the attack
missile is blanked from the screen (BLANK B), and the antiballistic
missile is reset to its initial position near the bottom center of the
screen.

Whether B is hit or not, it continues its horizontal motion across
the screen. If it has been hit, it is blanked (invisible). But in any case,
the motion continues until it reaches the right-hand side of the
screen (B = EDGE). As soon as B reaches the edge of the screen,
it is unblanked so that it becomes visible; and since its left-to-right
motion is continuous, it immediately appearsin its attack position at
the left-hand edge of the screen.

That’s what happens if the player launches B so that it strikes
the attack missile. But what happens if the player misses the missile?

If the player misses the attack missile, image B continues to
move upward until it reaches the top of the screen (A = TOP). At
that moment, the position of that missile is initialized (INITIALIZE
A) and ready for the next attack. If missed, the attack missile
remains visible as it moves to the right-hand edge of the screen.

Of course it is easy to begin beating this game every time since
the attack missile flies at a fixed altitude and speed. You can,

210

‘weibeip »20[q jruoROUNd (q) ‘Heyomold (B) ‘aweb xoene ajissiw a1seq v ' L-9 *Bid
| unvie d
8. (s)
3SN3S 019071 INNOO-H A"/
3903 |ew—
! 3003=49 a. on)
©g-g 'OlJ INAOD NOILO3NNOD QHvOg .
dois W JOHINOO NOILOW = (OW) '
) NOILO3NNOD MNVIENN
dOl4-din4d asN3s 3OV s . X0830HNOS = (5)
sd - ga=v V= a. 1NNOOD-A
e1-9 'Old 1HVIS 089 'Oid
T | e X
3SNIS < LINNOD-A
doL=V i :
© ow) v
INNOD
030IA] 1+ o 3ZVILINI
INVO
| 2101 3OVAI (s)
ANYD u¥a INNOD
H
"o
— (s}
INNODAH .m%romwz_ INNODH
INNOO-WA K
»mms_x_
INH
(51-6 ‘Oid) ST | dOlSs
ouiNoD PEENA 1HVIS INSSIN
1IN dOd-dind e MOviLY =48
NoiLOW -
T M tni| S8 HONNYT JUSSIN
11-9 'Did e1-9 'Ol4 629 ‘014 DILSITIVEILNY = ¥

211

however, add some interest by changing the attack missile’s motion
parameters. But that is the subject of the refinements described
later in this chapter.

The block diagram in Fig. 6-15b shows the main control ele-
ments for this missile attack game. The circuit has only one control
input, the LAUNCH “A” block in the upper left-hand corner of the
diagram. The sole output is the GAME VIDEO terminal at the
center right. Also note that the system uses the slipping-counter-
motion-control board from Fig. 5-15. The vertical counter on that
board fixes the speed and direction of the image A antiballistic
missile, while the horizontal-slipping counter fixes the motion of the
image B attack missile.

The purpose of most of the blocks in Fig. 6-15b can be related to
the flow chart. Some of the blocks perform operations that are
outside the realm of direct control operations, so we ought to take a
moment to look at them a bit closer.

The “A” IMAGE block, for instance, generates the image of the
antiballistic missile. Since this little rectangular figure moves in the
vertical direction only, the only slipping-counter inputs required are
those for generating the figure’s vertical-position information—
some VM count signals from the motion-control board. The figure’s
horizontal position is fixed by H-count pulses from the Sourcebox.

The “B” IMAGE block performs the same general function,
generating the attack-missile image. In this case, the motion is in a
horizontal direction, so this block must include HM inputs from the
motion-control board. V-count signals from the Sourcebox fix the
missile’s vertical position, or altitude.

The game must include provisions for sensing a contact bet-
ween the antiballistic missile and the top of the screen. Recall that
this event occurs only when the missile is fired, but misses the attack
missile. The “top of the screen” is defined by the “A” TOP LOGIC
block, and is based purely on V-count data from the Sourcebox unit.

And finally, there must be some means for sensing a contact
between the attack missile and the right-hand side of the screen.
The “B” EDGE LOGIC block defines the right-hand side of the
screen, and this is a simple matter of NANDing together the approp-
riate H-count signals from the Sourcebox.

A preliminary analysis of the circuit shows that two circuit
boards are required for this particular game. One board is the
motion-control board shown in Fig. 5-15, and the other is the game
control scheme in Fig. 6-16.

Most of the circuitry in Fig. 6-16 can be related directly to the
block diagram and then to specific control circuits described earlier in

212

this chapter. The missile launching and initializing circuits, for exam-
ple, appear at the top of the schematic diagram. The six NAND gates
and two inverters are simply one-for-one combinations of the sim-
pler circuits specified in the block diagram for LAUNCH “A”, R- RS
FLIP-FLOP, and “A” INIT.

IC8-A defines the vertical information for the antiballistic mis-
sile. And using the three VM inputs specified at the input of IC8-A, it
generates a movable horizontal bar that is 32VM pulses tall. The
horizontal position of the antiballistic missile is taken from the point
on the screen where 256H makes the transition from black to white,
near the middle of the screen. This 256H signal from the Sourcebox
is inverted by IC6-C to create a negative-going edge that triggers
the pulse-shortening circuit composed of IC2-C and IC7-E. The
value of C2 determines the width of the image. A value of 0.002 uF is
specified here, but you might want to change that value to generate a
figure width more suitable to your own ideas about how the figure
should look.

The vertical and horizontal components for the antiballistic
missile figure are effectively ANDed together in IC5-A, and an
inverted (black-on-white) version of the figure is sent to a NAND
gate (IC3-C), where it is uprighted and combined with the attack-
missile figure.

The attack-missile figure is generated in a similar fashion. Its
movable horizontal components are defined by the HM inputs to
IC9-A. This particular set of HM inputs create an image that is
32HM pulses long in the horizontal direction. You might want to
double its length by omitting the 32HM connection to IC9-A.

IC2-D is responsible for fixing the altitude of the attack missile.
The inputs in this case are 128V and 64V from the Sourcebox. These
particular inputs, working in conjunction with the pulse-shortening
circuit made up of IC3-A and IC7-B, create a thin horizontal line
about one-fourth the distance from the top of the screen. This fixes
the altitude of the attack missile. The vertical height of the attack
missile can be adjusted by means of C3. IC5-B combines the horizon-
tal and vertical components of the attack-missile figure.

The attack-missile figure must pass through IC4-D before it can
be combined with the antiballistic missile at IC3-C. The image of the
attack missile will indeed appear at GAME VID OUT as long as pin
14 of IC4-D is at logic 1. If there is ever a contact between the two
missile images, as sensed by IC4-A, pin 14 of IC4-D drops to logic 0,
thereby blanking the image of the attack missile from the screen.

The attack missile then remains blanked until its “invisible”
image reaches the right-hand side of the screen, as defined by

213

R1|'_1

AuF 1C6-B 2 |10
22K 3 3
2 1C1-A 6
: c1 4 “Iici s
LAUNCH 5 .
4700 | ‘

12 2

128VM -y 14
64vM =2 I1C8-A
13
32VM =]
I 5

1C6-C
256H.-—| >0—
5 % 10

I1C6-D

c2

A WIDTH 7
11

002uF

64V =

8
- 9
32v e (>CL
1
10

IC6-F

128V '3

256HM —-

128HM —3~

64HM —==

32HM =

256H —=

12" cop 0 L 3
g IC3-A)o-|
c3
14

[\C R

6

IC9-A

7

6
128H-—={ |C8-B
IC1, 2, 3, 4—7400 QUAD

64H—=

2-INPUT NAND
IC5—7402 QUAD 2-INPUT NOR
IC6, 7—7404 HEX INVERTER
IC8—7410 TRIPLE 3-INPUT NAND
1C9—7420 DUAL 4-INPUT NAND

214

14

MOTION CONTROL BOARD
IC1-C
——— 5 7 VOOV
6 (3]
IC2-8 VML %3&2%5?\39—:
4
. 14 +5V
iIC2-A - T
—_— 3 1
VMRST SPEED CONTROL ~
2 1 PROGRAMMING
1
{><> 2 8
12 IC3-C
L | N\ 3 1&
1) GAME VID
IC4-A 2 14
2 IC4-8 out
1S N s S5
14 ‘
lag L
IC3-8 9lica-c
—_ 6] 8
g 10
14
—_— 13
3)
Q 7
O —

Fig. 6-16. Schematic diagram for the basic missile attack game.

215

IC8-B. IC5-C detects any contact between the attack missile and the
right-hand side of the screen, resetting the flip-flop composed of
IC4-B and IC4-C to a state where pin 14 of IC4-D returns to logic 1,
unblanking the attack-missile image once again.

The insert in Fig. 6-16 shows a suggested set of connections for
setting the speed and direction of the two missiles. The speed and
direction of the antiballistic missile are set by the VC connections. In
this case, 8VC must remain connected to +5V (logic 1) to make
certain it always moves upward. (See the vertical direction and
speed specifications in Fig. 5-13.) The three remaining VC connec-
tions are set for a rather high launch velocity. These can be changed
to suit your own ideas about how fast the rocket should rise,
however.

The HC inputs determine the speed and direction of the attack
missile. 8HC must remain at logic 0 to make the missile move from
left to right, but the other HC inputs can be changed to alter the
speed.

Incidentally, the fact that the speed of both missiles can be
changed by modifying the three lower-order VC and HC inputs to the
motion-control board foreshadows some interesting control circuits
tobe described in the next section of this chapter. Wouldn’t it be nice
if the game were expanded so that two players can compete by
manually adjusting the speed of their respective missiles?

The entire circuit in Fig. 6-16 ¢can be constructed on a 44-pin, 4-
by 4-inch circuit board (Radio Shack 276-153). Then the board, along
with the motion-control board described in Fig. 5-15, can be
mounted in a simple Gamebox unit. The Gamebox can then be
plugged into the plug receptacle on the Sourcebox.

PROGRAMMING VARIABLE INITIAL
POSITIONS, SPEED AND DIRECTION

Virtually all of the motion-control circuits described thus far in
this chapter have fixed initial-position parameters as well as a fixed
speed and direction program. It turns out to be rather simple,
however, to make the initial positions, figure speed, and direction
programmable, either by a player or by the internal game-control
system.

Take, for example, the missile-attack game described in the
last section. It is possible to add a lot more interest by making the
attack missile programmable as far as the attack altitude and velocity
are concerned. Of course the direction of attack can be varied as
well, but that wouldn’t be altogether appropriate in this case.

216

Then consider the typical table-tennis game. Whenever the ball
is served, the machine ought to be able to set the ball’s vertical
position and direction just before the serving operation takes place.

The circuits described in this chapter show how to program a
wide variety of initial positions, speeds, and directions. The exam-
ples are oriented toward manual, or player, controls, but it turns out
that the schemes for automatically setting these parameters aren’t
much different.

Programming the Initial Position

The circuit in Fig. 6-17 shows four SPDT switches, labeled A
through D, each connected to one input of an EXCLUSIVE OR gate.
The second input to each of the gates goes to a source of count
pulses from the Sourcebox, 32H, 64H, 128H, and 256H in this
particular example. The outputs of the four EXCLUSIVE OR gates
are NANDed together at a 4-input NAND gate, IC2-A.

One of the most useful properties of an EXCLUSIVE OR gate is
that it can operate as an inverter or noninverter, depending on the
logic level presented to the second input. Consider IC1-D in Fig.
6-17. Whenever the A switch is set toits “1” position, the 32H signal
applied to the other input emerges from the gate with the same
phase as the input. Setting switch A to its “0” position, however,
causes IC1-D to invert its 32H input.

An EXCLUSIVE OR gate thus passes a noninverted version of
its signal input whenever the control input is at logic 1, but it inverts
the signal whenever the control input is at logic 0.

The circuit in Fig. 6-17 is capable of generating vertical bars on
the screen that are 32H wide and positioned at any 1 of 16 different
locations. The table accompanying the schematic shows all possible
combinations of switch settings and the output specifications that
result. If, for example, D = O_v_v_}_ﬁle C =B = A =1, the effect
would be the same as applying 256H, 128H, 64H, and 32H directly to
the inputs of the NAND gate.

If you want to check out this circuit in a rather simple fashion,
run the output of the NAND gate through an inverter and to the
GAME VID IN connection on the Sourcebox. You will indeed find
that you can create a white vertical bar that has a position on the
screen determined by the settings of switches A through D. In a
sense, this circuit is a switch-programmable line generator. Of
course you can apply any combination of H- and V-count inputs to the
four signal inputs to create horizontal and vertical lines. You can also
expand the circuit to accommodate eight signal inputs by using eight

217

switches, four more EXCLUSIVE OR gates, and a 7430 8-input
NAND gate.

The circuits in Fig. 6-18a and 6-18b show how this circuit can be
applied to the missile-attack game. The circuit in Fig. 6-18a lets the
player adjust the horizontal position of the antiballistic missile. The
256H and 128H inputs to IC10-A fix the positions to a region
spanning the middle half of the screen. The player has control over
the position of the antiballistic missile within that range by mampulat-
ing switches SA, SB, and SC. Using three switches in this manner
offers eight different launch positions.

To use this circuit in conjunction with the missile game drawn
up in Fig. 6-16, disconnect IC6-C in that circuit, and connect the
output of IC11-A in its place. Now you will be able to program the
horizontal position of the antiballistic missile, giving you a better
chance of shooting down the attack missile. If you manipulate the
switches quickly enough, you can actually steer the antiballistic
missile while it is in flight.

The circuit in Fig. 6-18b can also be added to the basic missile-
attack game. This circuit, however, controls the altitude of the
attack missile. The altitude is fixed within the upper third of the
screen by the 128V signal that is always inverted by IC12-A before it
is applied to NAND gate IC11-B. A player can vary the altitude of the
attack missile to any one of eight different positions within that range
by means of switches SA through SC.

Incorporating this altitude-programming circuit into the
missile-attack game is a matter of disconnecting IC2-D in Fig. 6-16
and connecting the output of IC11-B to pin 2 of IC3-A.

Of course these are merely two specific examples of how the
position-selection scheme in Fig. 6-17 can be applied. This circuit is
quite useful in any case where you would like to have program
control over the horizontal or vertical position of an object on the
screen.

The same circuit can also be used for defining the initial position
of amovable figure. In this case, the output of the NAND gate is used
as the source of initializing pulses. See the block diagram in Fig.
6-18c.

If you would like to check out the operation of this circuit,
construct the circuit shown back in Fig. 6-13a, then couple the
output of IC2-A in Fig. 6-17 to the INTP input of Fig. 6-13a.

Setting INTC to logic 0, you will find you can program the initjal
position of any figure generated by the slipping counter. The figure
can then be “launched” from that initial position by setting INTC to
logic 1.

218

‘aanbi} @|qeAOW B Jo uonisod jeluozuoy ay) Bumias Ajenuew 1o} YNoNO Y L1-9 ‘B4

QNVN 1NdN!-2 vNQ 02vL—<2Dl
HO-3AISNTIOX3 QVND 98vL—1L01

Hee

HZE-HY9-HBZ 1 *HISZ
HEE-HY9-HBZ1-HISZ
HZE-HY9-HBZ | -HISZ
HZE-HY9-HBZ 1 HISG2
HZE+HY9-HBZ4-HISZ
HZE-HY9-HBZ | *HISZ
HEE-HY9-HBZ|-HISZ
HZE-HY9-HBZ|-HISZ

= s 9

H¥9

O~ R=0 ==

00 —=——00~——
O00O0O————

<

&

Q
ol «| 0

HZE-HY9-HEZ1-HISZ
H2E-HY9-HBZ1-HI5Z
HZE-HY9-H8Z}-HIGS
HEE-HY9-HB2Z1-HIS5e
HZE-HY9-HB2L°HISZ
HEE-HY9-HBZL-HIST
H2E-HY9-HBZ L -HISZ

HZE-HY9-HBZ L *HSSE

H8ZL

>
2
e

H9S¢e

0OO0O—-——00—~—
O00O0————

gjio~-0—-0—-0-—
[~] KeNeNeNoNoNoloNol

m
(8]

SNOILVYDIJIO3dS
1Nndino S1NdNI
HOL1IMS

219

m —_—
91-9 'OI4
v-£2I]
ZNid OL | aetol
1101 m
8 cl
ot
2210l
6
a-z101
v-210l

Ascl

91-9 'OI4
0-20l
OLNIdOL

L
V-1L01

9
vl

Jh
<

Vs

HIL

- of< »

HZEe

8-0101 v

V-010i
H8cl

1 HesZ
143

220

"weiBeip xo0iq Butoepaluj (2) “snissiw soeye ay) Joj Bulwweiboid uonisod feniut (edaA (q) ‘aHISSIw OnsIeqUUE By} Joj Burw
-weiboid uonisod |eluozuoH (e) ‘aweb yoeye sjissiw diseq ayj 104 sesnbiy sy} jo suomsod (el ay) Bulwweibold ‘gL-9 *Biy

221

0
J0HLNOD
ONIZITVILING
3s1Nd 13say A !
H3LNNOD ONIdINS |
I
LSHWA
%)
1SHWH SLNdNI
S1-G ‘Ol L1-9 ‘DI oo [LS
H3LNNOD LINDHID WVHDOHd SLnan
SLNdLNO ONIddINS ONIZITVILING NOILISOd
WAHO WH €] - -¢—— INNOD
Ji_ -AHO -H
A HO TNH 351Nd 13S3y ,

ONIZITVILINI

As described thus far, the circuit in Fig, 6-17 can serve two
purposes: It can be used for adjusting the position of a figure on the
screen by means of some programming switches, and it can be used
for programming the initial position of a movable figure.

Programming Figure Speed and Direction

The circuit for programming the speed and direction of a mova-
ble figure is somewhat simpler than the one used for programming
initial positions. As indicated in Fig. 6-19a, a set of four SPDT
switches can be connected to the VC or HC inputs of a slipping
counter. The appropriate motion codes are listed in the tables in
Figs. 5-13 and 5-14. All this simple switch circuit does is allow the
player to adjust those codes manually.

As an example, suppose you want to be able to adjust the
vertical speed and direction of a movable figure. The vertical compo-
nent of that figure’s motion is generated by a vertical-slipping
counter (Fig. 5-13). Obtaining some control over this motion is a
matter of connecting switches to the VC inputs of that circuit.

If switch A is connected to 1VC, switch B to 2VC, and so on, as
illustratedin Fig. 6-19B, the player can set the figure for a rather fast
downward motion by adjusting the switches for A=1, B =0,
C=1 and D = 0. These settings correspond to the fast-
downward-motion code specified in Fig. 5-13.

This switch circuit can be used with the basic missile attack
game to give the player a choice of speeds for both the attack and
antiballistic missiles. See the diagram in Fig. 6-19b.

The directions cannot be changed in this particular case. The
direction of the two missiles ought to be fixed so that the attack
missile always moves from left to right and the antiballistic missile
moves upward. Thus 8VC is permanently connected to logic 1 and
8HC is always connected to logic 0. The other three inputs in each
case, however, give one or two players a wide range of speeds—
eight different speeds, to be exact.)

The speed of the antiballistic missile, for example, is prog-
rammable by switches SA, SB, and SC. In a similar fashion, the
attack velocity is adjustable by means of switches SD, SE, and SF.

Incorporating this speed-programming circuit into the missile-
attack game is a matter of making the switch connections designated
in Fig. 6-19b to the corresponding VC and HC slipping counter inputs
shown in the insert in Fig. 6-16.

If you have been following these discussions carefully, you
ought to be getting at least a mental impression of some incredibly

222

‘eweb oSS oepy
o1seq ey} Joy ejdwexs uonealddy (q) -l yoyms [enuep (e) “peeds pue uoncesp uonow Buiwwesbosd youms '61-9 Biy

AS+

A4
¥4-5 ANV €15 'SOIJ NI $3000
g NOILO3HIA ANV Q33dS 33S
= (IVLNOZIHOH HO T¥IILH3A)
_ HILNNOD ONIddITS =
DHI e S3IHOLIMS
WYHDOHd 0
HE HO DAL ——
IHz S p033dS JUSSIW o |<//|
3 HOVLLY
t
OHY S
OHZ HO OAZ 0
OH8 o
avosg CRAN
JOHLNOD NOILOW AL b
VS SIHOLIMS
WVHOO0Hd .
Ohe gs) 033dS FNSSIN OHY HO OAP 0
OILSITIVEILNY IYIL
OAP 55 X
A8 0
° OH8 HO OA8 o
AN
1

NG+

223

interesting and exciting TV games. Unlike any of the commercial
fixed or programmable games on the market today, building your
own games gives you a range of game interfacing that grows to any
degree of interest and excitement you choose. You certainly aren’t
limited to a couple of joysticks and one or two pushbuttons. You can
devise games having elaborate control terminals sporting a variety of
programming switches, launch and firing buttons, blinking warning
lights, sirens—the whole works.

You can build your own custom games that are as realistic or
far-fetched as your imagination allows. And as clearly demonstrated
so far in this chapter, it is possible to begin with a rather simple game
format and expand it almost without limit, adding more control
circuits and refining the action as time, knowledge and finances
permit. Try that with a $200 programmable TV game set!

A Simple Program Memory

The prospect of being able to switch-program initial positions,
speeds, and directions can soon lead to a situation where the players
face a bewildering array of switches. While it might be neat to work
with a lot of switches, having to set a lot of switch positions slows
down the action in some cases.

Suppose you devise a game calling for programming the initial
position, direction, and speed of a figure that moves in both the
horizontal and vertical directions. If the player is allowed complete
freedom to choose these parameters, that adds up to 16 different
control switches, 4 each for vertical motion, vertical initial position,
horizontal motion, and horizontal initial position. Now you might like
that idea, but it can be expensive, especially if there are two or more
players equipped with such a control panel.

One way to reduce the number of switches required for this
sort of game is by using a simple switch-position memory circuit. See
Fig. 6-20.

ICs 2 through 5 in this circuit are quad D latches. Any combina-
tion of 1s and Os applied to the four input terminals (pins 2, 3, 6, and
7) will appear immediately at the corresponding outputs (pins 16, 15,
10 and 9) whenever the control inputs (pins 4 and 3) are pulled up to
logic 1. When the control input is then returned to logic 0, the
outputs retain the same logic levels written into them while the
control was at logic 1. The memory circuit is then immune to any
changes in the inputs as long as the control remains at logic 0.

Whenever there is a need to switch-program more than one
motion parameter, then, it is possible to do the job with a single set of

224

four switches. As shown in the example in Fig. 6-20, a player can
enter vertical-motion data by first setting the positions of the data
select switches (SA through SD) to the desired combinations of 1s
and Os and then depressing the LOAD V MOTION pushbutton for a
moment. Depressing that particular button ultimately applies a
logic-1level to the control inputs of IC2, thereby writing that combi-
nation of 1s and Os into the memory. The VC outputs of IC2 then
retain that data until the LOAD V MOTION button is depressed
again,

Vertical-position data can be entered in the same fashion, de-
pressing LOAD V POSITION in this case.

The data from the select switches can be loaded into the output
latches in any desired sequence and at any time. Some specific
examples cited later in this book include some special automatic
controls for locking out the programming operations through certain
critical phases of the game.

THE TAGALONG FEATURE

You might be familiar with commercial TV games that have a
movable figure that can be positioned anywhere on the screen by
means of a player control. This figure, however, also carries a
“missile” of its own. The missile goes wherever the primary figure
goes—at least until the player “launches” it.

For our purposes here, we will refer to this notion of one figure
being carried along by another as a fagalong feature. In a sense, a
secondary figure tags along with a primary movable figure until the
player somehow indicates the secondary figure should “fly” on its
own.
The block diagram in Fig. 6-21a shows how the tagalong feature
can be incorporated with a primary figure that moves in a horizontal
direction. You can see that this particular circuit calls for two
horizontal-slipping-counter circuits, one for the primary figure and
another for the secondary, or tagalong, figure.

For the sake of simplicity, the primary figure has no initialization
circuitry. And since this is the case, the primary slipping counter
generates HM outputs that define a continuous horizontal motion.
(Of course the speed and direction of that motion is determined by
the primary counter’s HC inputs.)

As long as the INTC input to the secondary-figure initialization
circuit is set at logic 0, the secondary slipping counter takes its reset
pulses from HMRSToutput of the primary-figure counter. The
secondary counter is thus synchronized to the primary counter,

225

V1va NOILISOd

v1va NOILOW

TVOILH3A

TVOILH3A

S3IHOLIMS
193138
g-10I <w<o
inot 2 = Hv WA ¢
] l e 0—4¢
Aze oL <m/
° gs 1//@.“.
inve 24 eol -
€ 35S
AR . [Doez [as]
= : 2y f
_ _N— lﬁm 5 v-10l r
6 €] 1P Y C
we'e
O>N|ow. 5 1y
2ol
onp-SH] .
HOLlV1 @
one2 = avno SLv.—S ‘b '€ ‘20l
T __Jer Fm H3LH3ANI X3H ¥0vL—LOI

226

*SUOIOAIP [BIILBA PUE [BIUOZLIOY 8Y} YlOG Ul UOROW JO uonoanp pue paads ‘vomsod [emu Suiuwesbo:d Joy 1nons Aowsw v 02-9 Bi4

a-4ol =
L
le [v NE
o _ IHze——
235 oL e
28 e 5 cT |
Nlu N
$ 3 o we'e WWHmo_I_ L
- —22| wn
g _Iwmm.h B o_o_E = mwmmoA..
C_Ter s g g 182 [z9
Z |3 335
el Tv 5 S A o m
OH1 6| 2
ZT 7 ez |
o9 o1
33 gz Y ey
o N 9
z Z Sl
o€ oHr— 2
>3 3 N
B o1 =
T —Ter 5

227

{A”HYaNOD3S)

Viva 1H3A e—

v

MNVIGH X10H

HNoHID
(AHYANOD3S) + +
43LNNOD NOLLYZITVILINI
ONIddINS ¢ /
TVINOZIHOH [\ WM
(AYVANOD3S)

S1Nd1NO NWH ¢ »
INNOD-A ASHAH

f + dLNi

(AHvYaNOD3s) I

219071 21901 S1NdNI OH
1H3IA 1H3A
AHVANOO3IS AHVINIHd TNH Y
(AHVWIHC) | g SNVIGH
H3LNN
(AHVIHA) 1SHAH wﬂh_) m_mm
CREEel SRRl (AHVAIHd) <~V INOZIHOH w—— 1OH
S1NdLNO WH %
(A"vWIHd)
S1NdNI OH

HONNV1 = |
OLNI

228

ainby Arewyud ay) Joy Anouio uonezieniul Buipnjoul ‘awayos [0uod Buojebe; eleidwod v (Q) L =D .rz._ Aq
paysuNe| [HUN UoHIBIIP [RI0ZUOY B ul 8inbiy Arewiud sy sv.0(i0} a1nBy Arepuooas ay] (B) “sweibeip yoojq Buojebe) “1z-9 ‘614

g
34noId A LSHWA
AHYANOD3S * LSHAH +
HO4 21907 S
g —— G -
SLNALNO WA (51-s 'o1d4) ayvo9a TN
H3ILNNOI ONIddITS — 1IN241D
JHNDId AHVYGNOD3S NOILYZINVILINI
- ——
S1NdLNO WH + + + + + + TNH AdVONOD3S
+&z_x
I < < I I T nﬁz_>%
O O @ 2D m O
s £ 9 5 X LiNoHID
2 8 % Z LSHWA NOLLYZITVILINI
349No14 - AHVWIdY
Advaled @ @ + 1SHWH _
HO4 21901
, G dINIA
T Fyno:ﬂ (51-5 'DI14) ayvosg . -
H3LINNOD ONIddITS SAA
3HNOI4 AHYWIHd
Jw -— la—dLNIH
S1Nd1NO WH R

!

O1Nid

A
H

—
—>
—
—

HTOH —P

|

SLNdNI OH —3

SLNdNI DA

229

forcing the secondary figure to follow the primary figure wherever it
goes. And that is the main feature of the tagalong scheme —force the
secondary counter to work in step with the primary-figure counter.

Whenever the INTC input to the secondary initialization circuit
is set to logic 1, however, the secondary horizontal-slipping counter
begins taking reset pulses from its own reset circuit, thereby letting
it run independent of the primary counter. The secondary figure thus
takes off on its own, running away from the primary figure at a
direction and speed determined by the HC inputs to the secondary
counter.

The secondary figure can be “reattached” to the primary figure
by simply returning INTC to logic 0 once again.

Since both the primary and secondary figures are locked to
horizontal motion only, the vertical data for determining their re-
spective lengths can be taken direction from the Sourcebox V-count
outputs.

A scheme for launching a secondary figure from a primary figure
moving in the vertical direction is identical to the one just described.
The only practical difference is that one should use vertical counters
and vertical-count parameters.

Figure 6-21b is a block diagram of a tagalong system that allows
two-dimensional motion (both horizontal and vertical) for the prim-
ary and secondary figures. The primary figure is initialized by setting
the PINTC input to logic 0. When this happens, the horizontal- and
vertical-slipping counters in the primary figure slipping-counter cir-
cuit are reset by external initialization pulses, HINTP and VINTP.
And if the secondary figure is also initialized at the time (by setting
SINTC to logic 0), the secondary slipping-counter board is seeing
both horizontal- and vertical-reset pulses from the primary initializa-
tion circuit.

The two slipping-counter boards are thus synchronized, and
the initial position of the primary figure is determining the position of
the secondary figure.

Once PINTC is set to logic 1, the primary slipping counter
begins taking reset pulses from its own reset-pulse system, causing
the primary figure to begin moving in directions and at speeds
determined by the VC and HC inputs to the primary figure slipping-
counter board. Since SINTC is still at logic 0, the secondary figure
slipping counter is still taking reset pulses from the primary circuit.
The secondary figure is thus locked to the primary figure, following it
wherever it goes.

Whenever SINTC is set to logic 1, the secondary figure slipping
counter is finally released from the primary circuit. The secondary

230

figure thus departs from its home, moving away in a direction and ata
speed determined by the VC and HC inputs to the secondary figure
slipping counter.

Returning SINTC to logic 0 returns the secondary figure to its
“home” at the primary figure, whether the primary figure has been
initialized or not.

The speed and direction of the secondary figure can be totally
independent of the speed and direction of the primary figure. The
relationships between the speed and direction of the two figures are
strictly determined by the HC and VC inputs of the two pairs of
slipping counters. In some instances, however, you might want the
secondary figure to depart at a faster speed, but in the same direc-
tion as the primary figure. In this case, connect together the 8VC
and 8HC inputs to the two slipping counters. This will lock together
their directions of travel. The settings of their three lower-order VC
and HC inputs then determine the reltive speeds after the secon-
dary figure is launched.

The Torpedo Attack and Dogfight games in Chapter 7 illustrate
the application of tagalong circuits.

231

Chapter 7
A Collection of War Games

It would be possible to devote at least several more chapters to all
sorts of special game controls, first presenting some basic control
circuit and then demonstrating a specific application. But this is a
good time to change the form of presentation, describing a game
first, and then showing some of the special controls it uses.

Although you can certainly build any of the games in this chapter
without referring to anything else in this book but Chapter 2, it would
be wise to complete your study of the entire book first.

For instance, you will notice that the figures used in the war
games described here are more rectangles, and not interesting,
complex figures. You have the option of using the materialin Chapter
4 to generate such figures from the simpler ones used here.

For the sake of overall simplicity, the games in this chapter do
not include any audio and scoring circuits. These, too, can be added
with great effect later on, but of course, you must complete a study
of the material relating to audio effects and scoring first.

And finally, you ought to be aware of figure-rotation effects.
None of the figures in this chapter can be rotated on the screen; so if
you want to add the rotation features, you must study the more
advanced chapter dealing with that particular subject.

Don’t be mislead into thinking the games in this chapter are
overly elementary, however. While these games are, indeed limited
with respect to the finer niceties of video-game technology, their
control schemes are as complex and meaningful as any you will find
anywhere.

233

This chapter strikes at the very heart of TV games, de-
monstrating the essential control features without confusing the
issue with a lot of added features (intended by others to make you
buy the product or to keep on shoving quarters in the slot). You can
add the razzle-dazzle later on it you want.

MISSILE ATTACK Il

Here is an extended version of the Missile Attack game already
described in Chapter 6. This version requires two players, one for
controlling the attack missile and another for controlling the antibal-
listic missile. Player B’s task is to program the path of the attack
missile, then launch it toward a target. The attack missile is always
launched from the left-hand side of the screen and at an initial altitude
programmed by Player B. The target is located at the lower right-
hand corner of the screen, and Player B can strike that target using a
wide variety of programmable velocities, initial altitudes, and rates
of descent.

Player A’s task is to protect the target by launching antiballistic
missiles. The antiballistic missile can be launched only from the
bottom of the screen, but Player A can program the horizontal
position of his missile just prior to launching it.

Neither player has any control over their respective missiles
once they are launched.

This game features a pair of program panels that add special
interest to the whole affair. The players get the impression they are
working with a computerized system in a fashion that is not found on
any commercial TV games. This is not an easy game to play. Itis a
challenging game bound to spark the interest of players who like to
think clearly, act quickly, push buttons, and throw switches.

The Basic Game Plan

The flow chart in Fig. 7-1 outlines the automatic control scheme
for Missile Attack II. Under normal conditions, Player B launches
the attack missile first, presumably setting it on its path toward the
target. Player A then responds by launching the antiballistic missile.

Assuming both missiles are launched and set, the system en-
ters a 4-point-decision-making mode. Suppose the antiballistic mis-
sile strikes the attack missile before anything else happens. (This
would be a score for Player A.) Whenever A = B, the image of the
attack missile flashes on the screen for about one-half second before
it is reset to its initial position again. The antiballistic missile is
immediately reset the moment A = B.

234

‘Il Yoeny 8lISSIN 10} Heyomold “-2 ‘B4

Vv 13534

1394HviL
HSV1d
-

g 13534

-

HSv1d

JUSSIN MOVLLY = 8§
JUSSIW
DILSITIVEILNY = V

v 13S

v
HONNV

235

Now suppose both missiles are launched, but the antiballistic
missile misses the attacker. In this instance, the antiballistic missile
continues its upward path until it reaches the top of the screen
(decision A = TOP). The moment A = TOP, the antiballistic mis-
sile is immediately reset to its initial position at the bottom of the
screen, and Player A is free to reprogram the horizontal position and
launch again,

One of two things happen to the attack missile if the antiballistic
missile misses it. The best thing, as far as Player B is concerned, is
that his missile hits the target in the lower right-hand corner of the
screen. This is the B=TARG condition. When that happens, the
target flashes to indicate a clean hit.

Whether the attack missile hits the target or not, it continues its
path across the screen until it reaches the B=EDGE condition. The
“EDGE” is defined as a line along the right-hand side and bottom of
the screen. If Player A misses the attack missile and Player B misses
the target, the attack missile will either fall short (hit the bottom of
the screen) or overshoot (hit the right-hand side of the screen.)

In any case, the attack missile is immediately reset to its initial
position upon reaching the right-hand edge or bottom of the screen.

The attack missile, incidentally, is blanked from the screen as
long asitis inits initial position. This feature allows Player B to adjust
the initial laurich altitude without tipping his hand to Player A. The
antiballistic missile is never blanked from the screen.

Player Controls

Figure 7-2 shows the control panel and other relevant features
for the antiballistic missile, Player A. Player A adjusts the horizontal
position of the antiballistic missile anywhere in 16 different positions
along the bottom of the screen.

The idea is to set switches SF through SI to 1 of 16 different
combinations of 1s and 0Os, then momentarily depress the LOAD
pushbutton. The figure of the antiballistic missile responds by mov-
ing to the position specified by the switches. A bit of work with these
switches will show exactly how they work.

The antiballistic missile can be launched from its initial position
by depressing the LAUNCH pushbutton. Once the missile is
launched, all switches and buttons are locked out, making it impossi-
ble to change the path of the antiballistic missile until it is automati-
cally reset (by striking the attack missile or the top of the screen).

The attack missile control panel is somewhat more complex
because Player B has more initial parameters to control. See Fig.
7-3.

236

LAUNCH POSITION

ANTIBALLISTIC (:)
MISSILE (PLAYER A) ? Shet N
0
SF

PANEL
LOAD
ANTIBALLISTIC
LAUNCH
~ POSITIONS
16 SWITCH |
COMBINATIONS
1111 0000
LT. EXTREME RT. EXTREME
LAUNGH A POS SF SG sH sl
L} L selsaf sHl s
H -+ 10# 10* 1%
LAUNCH'®. ..'® 09 09 09 0

LOAD

PUSHBUTTON SWITCHES ARE N.O. TYPE
(RADIO SHACK 275-1547)
TOGGLE SWITCHES ARE SPST TYPE
(RADIO SHACK 275-324)

Fig. 7-2. Player A control panel, range of launch positions, and panel schematic.

Player Bs controls are enabled only while the attack missile is in
its blanked, initial position. Player B can set the initial attack altitude
to any one of eight positions in the upper half of the screen by setting
the positions of switches SC, SD, and SE. Setting all three INITIAL
ALTITUDE switches to their 1 positions fixes the maximum al-
titude, while setting them all to their 0 positions fixes the minimum
altitude. There is no need to depress any sort of loading button in this
particular case.

Player B also sets the attack velocity and rate of descent. There
are four possible velocities and rates of descent set by switches SA
and SB. See the chart in Fig. 7-3. Setting the attack velocity is a
matter of first setting SA and SB to the desired positions, then
depressing the VELOCITY pushbutton. The same two switches,

237

-onewayds jsued pue ‘e|ge) uadsep-jo-ales ‘sepniiiie youne| jo abuel ‘lsued jouod g seheld 'e-L ‘Big

JdAL 1SdS 3HY SIHOLIMS 319901 318V INJOSIWALIDOTIA
3dAL ‘O'N 36V SNOLLNEHSN MOTS AN3A v
= moils | of |
: : . . : WNIO3W 1|0
_ thhwm_w 1svd (oo
0 T_ _I_o _I.n IN39S3a/AL10013A | vs |8s
< 2
St P me' O
it 3s o i mﬂa e ALIDOT3A
O _._._ O
ﬁ m o1 NOILISOd
vs 8 Os as ol z" 3 5 VLNOZIHOH IN30s3a
IVILINI a3XI4 o<m omm
S3aNLILTY | IWa™IX3 MO @96@ -@u mv
TVILLINI e INIOSIQ/ALIDOTAA
JUSSIN NS as 3s
WOVLLY ¢l 3wauixa o | HONOVI 0 0§ 0
-l @
13NVd 1
TOHLNOO HONNY 3aNLILTV IVILINI
(8 H3aAVd)

JFUSSIN MOVLLY

238

SA and SB, are used for setting the rate of descent, but that
parameter is loaded into the system by depressing the DESCENT
pushbutton.

The attack missile is thenlaunched by depressing the LAUNCH
pushbutton. Once the LAUNCH button is depressed, Player B is
committed to the path he programmed just prior to the launching
operation. All controls are locked out until the attack missile is
blanked and reset to its initial position.

There are a number of different attack velocities, rates of
descent and initial altitudes that direct the attack missile to the
target. Player B’s task is to come up with one of these proper
combinations that avoids the antiballistic missile. Part of Player B’s
strategy, however, might be to throw Player A out of position with a
false run, then make a deadly strike the next time around.

The Flashing Image Circuit

The only portion of this game that has not beem considered in
some detail in earlier chapters is the one that causes the images to
flash when they are hit. The attack missile flashes whenever the
antiballistic missile hitsit, and the target flashes whenever the attack
missile hits it. In either case, the flashing effect serves as positive
confirmation of a score.

Figure 7-4 illustrates the basic image-flashing circuit that will be
used in a number of different games throughout this book. The IC in
this case is a 556 dual timer. Section IC1-A is connected as a
monostable multivibrator that is triggered into action by a brief
negative-going signal, FLASH START.

The output of IC1-A can be used for resetting or timing other
game operations, but more importantly, this timing allows a free-
running multivibrator to generate a pulsing output signal. Whenever
this oscillator, IC1-B, is gated off, it delivers a logic-0 level to one
input of IC2. In the case of a NOR gate, this means the gate is open,
allowing an inverted version of an IMAGE signal to pass through
uninterrupted.

The moment the oscillator is gated on, however, it generates
sequences of 1 and O outputs, thereby interrupting the IMAGE
signal at the same rate. The overall effect is that the IMAGE is
flashed on and off at a rate determined by the values of R2, R3, and
C2, and for a period of time determined by the values of R1 and C1.

Game Block Diagram

Figure 7-5 shows the three major portions of the Missile Attack
Il game. The first diagram, Fig. 7-5a, represents the main control

239

portion for the antiballistic missile, Player A. Player B’s control
circuitry is blocked out in Fig. 7-5b. The overall game control
scheme is shown in Fig. 7-5c.

Referring to the block diagram in Fig. 7-5a, assume the antibal-
listic missile is in its reset condition, resting at the bottom of the
screen. The ALAUNCH signal is in a logic-1 condition at this time
and the R-S{lip-flop is allowing two things to happen. First, it is
enabling the horizontal position logic circuit so that Player A can
manually adjust the horizontal position of his missile via the switches
on his control panel. Second, the reset flip-flop is in a condition
where the initialization-control circuit is feeding VRST pulses to the
vertical-slipping counter. The significance of this latter condition is
that the slipping counter is synchronized to the vertical-counting
system in the Sourcebox. There is no vertical motion of the antibal-
listic missile.

‘Ine 4 figure logic block is responsible for combining the antibal-
listic missile’s” hoii... *tal data (from the horizontal-position logic
block) and its vertical data (from the VM outputs of the slipping
counter) to create the image on the screen. The antiballistic missile’s
figure signal is designated AFIG in Fig. 7-5a.

As long as the antiballistic missile is in its reset condition, then,
it cannot move in a vertical direction because its vertical slipping
counter is synchronized to the 60-Hz VRST signal from the Sour-
cebox, butit can be manually moved in the horizontal direction by the
control panel and horizontal-position logic circuit.

Player A launches the antiballistic missile by depressing his
LAUNCH pushbutton. This action generates a brief negative-going
pulse at ALAUNCH, setting the R-S flip-flop to its launch mode.
Two things happen then: The horizontal-position logic is locked out
so that the player no longer has control over the missile’s horizontal
position, and the initialization-control circuit is set to allow the
slipping-counter action to take place. The antiballistic missile thus
rises from the bottom of the screen at a rate determined by the VC
programming of the vertical-slipping counter. (The programming for
this counter is not shown in Fig. 7-5a because it is internally fixed at a
relatively fast rate).

All of the circuits blocked out in Fig. 7-5a can be found in earlier
chapters of this book. Look for the R-Sflip-flop, horizontal-position
logic, and initialization-control circuits in Chapter 6. The vertical-
slipping counter is found in Chapter 5, and the figure logic is a simple
variation of the basic figure-generating circuits in Chapter 3.

Figure 7-5b outlines the main control circuits for the attack
missile. This system includes elements that are nearly identical to

240

‘unaso Buiyseyy sbew oiseq auy y-2 “bid

(+01Y) 1L = INWIL HSY 14

[S

J—

— 3

(eyzg + 14202

l

= 31VH HSV1d

JOVINI
ONIHSV14

¢Ol

HON LNdNI-¢ ¢0¥L—2Dl
HIWIL TvNa 956—1DI

ct

eys 8

A

€l

cd
JOVNI

g-101

N

—_—

10

v-10l
i 14V1S

ol

e —— HSV1d

pL Y
14 1

L

NG+

241

31901
LN3OS3A/ALIDON3A

4 LNOXMD01 HONNV
_ 083013A'8S'vS SINNOD
21901 H
1IN -
o Y e "HOH
TIXI<|S 21901 35'as’
2 X Y 30NLILTY 592
l‘m LSHWH IVILINI
WH 1 Gis o19) TJ0HLNOD [*€
o138 | 01901 A/Al asvos > nou —
«g—{ 38NOI4 HILINNOD [WE557] VZIVILINI (=€ d014-dind TN
g JA;\ “ONIAdINS |—— 3] g -t S -H —a g
WA ’ * » 1SHWA 6 + /
HNVIEA HONNV1 8
kmmqs: WNVIgg 1548
N19H _Sod
J1901 IS'HS'DS'4S
NOILISOd
_ A =2
O3V | 01901 H3LINNOD \
~€—35N9O!4 ONIddIS =€ 151 n00 xoo._+ _
V |egd vOILE3A |
/ / o dO1d-dI e
“YZIVILIN -4
WA » e Y It o €— 04HLNOD
1SHH / v
YNV I8A + +
HONNY TV
1SHA Y

242

0j60] swey () "UONIBS BISSIL HIBNY (Q) "UORIBS BISSIW INSIIEAQRUY (B) ‘)i YOBNY B|1SSIN 1o sweibeip xooig '5-2 Bid

JNIL
HSVId HSVd HEV 14 21901
JOVINIL ouvL OUVL=8re—n v =g [* OHvL =8
]
Qin 1907
INVDO 1901) =
o3ai _ 3903 =9 3003 =4H
J
s | omon |7] s 3350 1) ooon |-
su8 = 38Nd i v ety | JOL = V |usd
MNVIg
v | HSV1A :mwﬁm 21901
HSY4 g=v v -
JOVWIB | oy g a=v v
MNVI88

INNOJ H
21901 ¢
OHVL [INNOOA
INNOO H
1007
3903 |mg—
AINNOD A
1INNOD
21901 A
d01
01489
Ol4v

243

the antiballistic missile system as well as a scheme for setting the
vertical and horizontal speeds.

Suppose the attack missile has been reset to the left-hand edge
of the screen. The R-S flip-flop is then in a condition that (1) allows
Player B to set the horizontal velocity and vertical rate of descent
and (2) fixes the initialization control so that the horizontal- and
vertical-slipping counters are synchronized with the Sourcebox
counts.

The velocity and rate of descent parameters actually control the
1VC, 2VC, 1HC, and 2HC controls of the slipping-counter board
(see Fig. 5-15). The other speed/direction controls for this counter
are internally wired to assure right-to-left and top-to-bottom motion
of the attack missile. Player B, in other words, can control only the
rates of motion, and not the directions.

The initial position of the attack missile is fixed in the horizontal
position by the signal from the horizontal-initial-logic block. The
vertical position is determined by the setting of control switches SC,
SD, and SE, assembled by the initial-altitude-logic block.

Once Player B depresses his LAUNCH pushbutton, a brief
negative-going pulse at BLAUNCH switches the condition of the
R-S flip-flop, thereby locking out any further control of the missile
and switching the synchronization of the slipping-counter board for
automatic motion across the screen.

The attack missile remains in motion until a brief positive-going
pulse occurs at the BRST input of the R-S flip-flop. At that moment,
the entire system is returned to its reset state.

Whether the attack missile is launched or in its reset state, its
umage is generated by the “B” figure logic block. The horizontal- and
vertical-counting data for this figure are taken directly from the HM
and VM outputs of the slipping-counter board.

The block diagram in Fig. 7-5c¢ represents the main game-
control system. The top-logic, edge-logic, and target-logic blocks
simply generate information regarding the positions of those ob-
jects. The target-logic data, however, is the only one of these three
that is actually displayed on the screen.

Note that an inverted version of the antiballistic missile figure
(AFIG) is directed to both the A=B and A=TOP logic blocks, while
an inverted version of the attack-missile figure (BFIG) is directed to
blocks A=B, B=EDGE, and B=TARG. These are simply contact-
detection blocks described generally in Chapter 6. A=B generates a
pulse whenever the two missiles come into contact with one
another, A=TOP generates a pulse whenever the antiballistic mis-
sile reaches the top of the screen, B=EDGE generates a pulse

244

whenever the attack missile contacts either the bottom or right-hand
edge of the screen, and B=TARG generates a pulse whenever the
attack missile hits the target.

Much of what remains to be explained in Fig. 7-5¢ can be
determined from the flow chart in Fig. 7-1. The A-reset logic block,
for instance, is responsible for resetting the position of the antiballis-
tic missile whenever A=B or A=TOP. This reset pulse is desig-
nated ARST.

Whenever A=B occurs, the pulse from that block also initiates
a flash-time timer in the A=B flash-time block. This block, in turn,
generates a logic-1 level that entables the A=B flasher. And when
the timing is over, the pulse generator produces a brief pulse that
ultimately resets the position of the attack missile.

The attack missile is also reset the instant it reaches the bottom
or right-hand edge of the screen. The BRST logic block thus gener-
ates a negative-going attack missile reset pulse (BRST) whenever
the A=B flash timing is over or the missile contacts the edge of the
screen.

Whenever the B=TARG block senses a contact between the
attack missile and the target, it also initiates a flash timer. This timer
enables the B=TARG flashing circuit which, in turn, switches the
target-image data off and on in the target-flash block.

Returning to the attack-missile figure for a moment, note the
B-figure flash and blank block has two separate control inputs. The
image data for the attack missile (BFIG) can be completely blanked
off the screen while it is in its reset position. The BBLANK signal
from the attack-missile control system is responsible for this blank-
ing effect.

The same attack missile image, however, is also blanked on and
off by the A=B flash circuit. In either case, the unblanked, blanked,
or flashing image data emerges as the BIMAGE signal.

The BIMAGE, AFIG, and TIMAGE signals are all combined
into the game’s composite figure video at the video-logic block.

The flashing circuits in Fig. 7-5c are all described in connection
with the circuit in Fig. 7-4; the top-, edge-, and target-logic blocks
are variations of the figure generators in Chapter 2. The contact-
sensing circuits are generally described in Chapter 6.

If you have been studying this book diligently, you will find
nothing new here at all.

Circuit Diagrams

Figures 7-6, 7-7, and 7-8 show the circuit diagrams for the
Missile Attack II game. The game calls for four circuit boards, the

245

three just mentioned and a slipping-counter board from Fig. 5-15. Of
course there are two separate control panels that have already been
described in Figs. 7-2 and 7-3.

After studying the game’s flow chart and block diagrams in
some detail, there is little need for a highly detailed description of the
circuits themselves. The overall wiring block diagram in Fig. 7-9 will
prove invaluable when analyzing the operation of the system at the
circuit-board level.

Figure 7-6 shows a board containing most of the control ele-
ments for the antiballistic missile system. ICs 1-A and 6-F, along
with C1 and R7, merely transform the negative-going launch signal
into a brief, negative-going pulse, IC2-A and IC2-C make up the R-S
flip-flop that is set so that pin 3 is at logic 1 and pin 8 is at logic 0
whenever that pulse occurs.

ICs 2-B, 2-D, and 1-B make up the initialization control circuit.
Whenever the antiballistic missile is in its reset position, this circuit
delivers an inverted VRST pulse to the loading input of the vertical-
slipping counter, IC7, and IC8. Whenever the missile is launched,
however, the initialization-control circuit delivers the output of
IC1-D back to the load input of the slipping counter.

The four sections of IC3 determine the pattern of inverted and
noninverted H-count signals for determining the initial horizontal
position of the antiballistic missile. See details in connection with the
circuit in Fig. 6-17. These position-determining signals pass directly
through IC9, a quad D latch, as long as the system is in its reset
condition and the LOAD button is depressed. IC4-A is responsible
for ANDing the launch status information from the R-S flip-flop and
the POS logic level from the player’s LOAD button.

Whenever the LOAD button is released or the missile is
launched, pins 4 and 13 of IC9 go to logic 0, thereby placing the
latches into their memory modes. The horizontal-position data that
existed the moment the circuit is latched then remains fixed at the
inputs of IC5-A.

The position of the antiballistic missile in the horizontal plane is
actually defined by IC5-A. Since this pluse is too wide for generating
the horizontal width of the antiballistic missile, it is shorted in the
circuit made up of IC1-C, IC6-C, R6, and C2. The value of C2 can be
changed to suit the designer’s own impression of how wise the
antiballistic missile figure ought to be.

The height and vertical position of the antiballistic missile are
both determined by the pin-12 output of the higher-order vertical-
slipping counter, IC8. This output is inverted by IC6-D and effec-

246

tively ANDed with the horizontal portion of the image at 1C4-B. The
noninverted version of the missile figure is then inverted by IC6-E
before applying it to other portions of the system.

The circuit in Fig. 7-7 deals mainly with the control aspects of
the attack missile. The launching pulse is formed by IC1-A and IC4-A
in a fashion identical to the launching circuit for the antiballistic
missile. The R-S flip-flop, composed of IC1-B and IC1-C, is set toits
launch condition by the negative-going launch pulse from IC4-A, and
it is reset by a negative-going version of the BRST pulse from the
output of IC4-B.

The initialization-control portion of the attack missile circuit is
embodied in IC8, actually a quad 2:1 multiplexer. Only two of the
four sections are used here, but that is adequate for shifting the
operation of the slipping-counter board (Fig. 5-15) between the
initializing pulses and motion-generating pulses.

The attack-missile system is initialized as long as the output
from IC1-B is at logic 0, thereby directing vertical-synchronizing
pulses to the VMRST and horizontal-synchronizing pulses to
HMRST inputs of the slipping counter.

The vertical-synchronizing pulses are taken from the initial-
altitude circuit, IC7 and IC3-A. Switches SC, SD, and SE on Player
B’s control panel determine the pattern of V-count signals that reach
the inputs of IC3-A. The output of IC3-A then determines where
vertical reset for the attack missile takes place on the screen during
reset.

IC3-B determines the horizontal position of the attack missile
through the reset phase of the operation. This is a position that is
fixed by the inverted H-count inputs to IC3-B, a position at the
extreme left-hand edge of the screen. This position-determining
signal from IC3-B is shortened by IC1-D and IC4-F before it is
applied to the initialization-control circuit, IC8.

As long as the attack missile is in its reset condition, then the
slipping-counter board holds its position as determined vertically by
the output of IC3-A and horizontally by the output of IC4-F.

When the missile is launched, the output of IC1-B changes to a
logic-1 condition, and the vertical- and horizontal-loading signals for
the slipping counter are taken from the VML and HML sources. The
figure is thus free to move across the screen in a direction and at
rates determined by the VC and HC inputs of the slipping-counter
board.

Player A has access to only the two lower-order speed control
mnputs for horizontal and vertical motion. The key to this part of the
circuit lies in the operation of the quad D latch circuit, IC9. Aslong as

247

+5V

R1
2.2K
A LAUNCH
9
- 8
ARST 10] 1C2-C
2
VRST ! I
17 2
IC6-A ~ 1
—_— 3 1IC4-A
POS -

+5V *gx %
o
o
o
o

SF
256H

R3 2.2K

4|13

SG

128H

IC9

SH
64H

12

sI
32H

248

6
ic2-8
14
4L .
IC1-B
S
IC2-D
L
B 1
16 8 159' IC1-D bJ
_q 16 8 11 12 —p- 1
1 ic7 12
—44 4
VBLANK 14
B 14] 15] 1] 0] o] 2 1511 {10 |9
HRST ~ = 1
+5V

AFIG

SELECT
FOR DESIRED
FIGURE WIDTH

IC1, 2—7400 QUAD 2-INPUT NAND
1C3--7486 QUAD EXCLUSIVE-OR
IC4—7402 QUAD 2-INPUT NOR
IC5—7420 DUAL 4-INPUT NAND
IC6—7404 HEX INVERTER

IC7, 8—74191 BINARY COUNTER
IC8—7475 QUAD D LATCH

Fig. 7-6. Schematic diagram for the antibailistic missile control circuit board.

249

1
= A VS
Nﬂﬁ 2s3a mw -
as
9
OHZ—=— 60l Ave
OI_‘ﬂ . o
O>NAJﬂ|
ON |~y - AGZ
91
5
5
9
ISHAH 4] oo -
b MWQ HONNVE
LSHWA <2 _
= O
b
<
2
[l

TNH
YNvgg

- NG+

250

‘DJEOQ 1NDAID [0AUOD B|ISSIW MoBNE 8ul 10} welbelp onewayos *2-2 By

odvL =

HOLY a @vND S4¥.—601
"3AaX3ILINW 1:2 QvND L517.—8DI
Y31H3ANI X3H v0rL—+0l
HO-3AISNTOX3 avNO 98vL—L0I
ANVN LNdNI-8 0ErL—9 ‘SOI

ANVN 1NgNI-P Tvna 0evL—€0!
HON LNdNI-2 avND 20vL—2dl
ANVN LNdNI-¢ avnD 00¥L—LDI

cl

WASE

%

WAZE

WAPS

WABCI

WAZE

WHV9

WH8ZI

| N] S|

W

H9Ge

()

ot

~t- e

H8cL

Hacl

HY9

ASL

3S

251

the attack missile is in its reset condition, the player can load data
from switches SA and SB into this latch by depressing either the
VELOCITY or DESCENT LOAD pushbuttons.

Depressing the VELOCITY button, for example, feeds the
logiclevels from SA and SB into IC9 and through that set of latches to
the 1HC and 2HC outputs. Releasing the VELOCITY button then
latches that 2-bit data in place by allowing the output of IC2-B to fall
to logic 0.

Depressing the DESCENT button, on the other hand, feeds
the logic levels from SA and SB into IC9 and to outputs 1VC and
2VC. This data is latched the moment Player B releases the DES
CENT pushbutton.

The entire latch circuit is fixed in its memory mode whenever
the attack missile is launched. Launching the missile feeds a logic-1
level to pin 2 of IC2-A and pin 5 of IC2-B, placing both halves of the
latch circuit into the memory mode and disabling the effect of the
velocity- and descent-control switches.

Once launched, the attack missile falls at a rate determined by
the data latched at the 1VC and 2VC outputs of IC9, and it travels
horizontally at a rate determined by the 1HC and 2HC outputs of that
same latch. The initial altitude was originally determined by the
settings of switches SC through SE.

While most of the circuitry in Fig. 7-7 deals with controlling the
operation of the attack missile, there is room on the board for a
couple of other circuits.

IC6 fixes the position and size of the target image, while IC5
determines the position and size of the attack missile, itself.

The information from these two 8-input NAND gates is effec-
tively ANDed together in IC2-D to sense contact between the target
and attack-missile images.

The circuit in Fig. 7-8 is mainly responsible for sensing contact
between the images and taking the appropriate action. IC1-A, for
instance, defines the right-hand edge of the screen, while IC1-B
defines the bottom. These two edge-parameters are combined in
IC3-A to yield an active-high (noninverted) definition of EDGE for
the attack missile. These three ICs are embodied in the block labeled
“edge logic” in Fig. 7-5c.

1C8-A defines the top of the screen for the antiballistic missile.
Its active-low (inverted) output is combined with an inverted version
of the AFIG signal in IC4-A to detect contact between the antiballis-
tic missile and the top of the screen.

IC5-A and IC5-C detect contact between the attack missile, the
edge of the screen, and the antiballistic missile, respectively. If

252

there is contact between the attack missile and the edge of the
screen, the output of IC5-A goes to logic 1 and ultimately through
IC3-B as a pulse for resetting the position of the attack missile.

If, on the other hand, there is contact between the two missiles,
the output of IC5-C goes to logic 1. This signal is inverted by IC5-D
and applied to the trigger input of flashing-timer IC7-A. The output
of that timer enables the missile-flashing IC, IC7-B. This rectangular
waveform is inverted by IC2-E and applied to the attack-missile-
logic circuit, IC1-C. When the flashing interval is over, the
negative-going edge of the timing pulse at pin 5 of IC7-A is shaped
and applied as one of two attack-missile-reset pulses to IC3-B.

Contact between the attack missile and the target is sensed by
IC2-D in Fig. 7-7. This pulse is inverted by IC4-C in Fig. 7-8 and
used for enabling the target-flashing timer, IC6-A. The flashing
output from IC6-B modulates the target image from TARG at
IC4-D, where it is then inverted and ORed with the image informa-
tion for the two missiles in IC8-B.

A complete slipping-counter board is an integral part of the
system, as shown in the wiring block diagram in Fig. 7-9. This board
is already described in connection with the circuit diagram in Fig.
5-15. Figure 7-9 merely shows how it is interfaced with the three
game boards just described.

Note carefully the programming of the 4HC, 8HC, 4VC, and
8VC connections to the slipping-counter board in Fig. 7-9. These
connections must be made in order to make the attack missile move
in the proper directions at all times.

Construction and Assembly Hints

Each of the boards described in this section can be built on a 4-
by 4-inch plug-in boards (Radio Shack 276-153) and interconnected
by means of edge-card connectors (Radio Shack 276-1551).

The connections on an additional mother board can be used for
interfacing the game circuits with the Sourcebox unit.

The slipping-counter board should take its +5V source from the
GAME-A power supply in the Sourcebox. The three other boards
can then operate most effectively from the GAME-B power supply.

The two control panels can be built into small aluminum project
boxes.

TORPEDO ATTACK

Here is another two-player war game. One player controls the
motion of an attack craft (AC), and his goal is to lob a torpedo at a

253

256H =
128H-l--—2

64H ==—

12 BFIG.

128V
64V
32v

16V

AFIG »—0

a[1a]

TARG
©
&
=
VVN—
=
T
N
VA

(C6-A IC6-B IC7-A |1

254

TARG

B BLANK 9

Ic2-D tﬂ_ 10 |- .
Ic8-B CLLilE
VID

ARST - T
4 14

-
IC2-E

1

IC3-B
5 BRST
7
|12 9
11 8
43| 1c30 IC3-C
10
%R4 égf
{™M [1 9 T1M
13 [C1—7410 TRIPLE 3-INPUT NAND
IC7-8 |g IC2. 9—7404 HEX INVERTER

R6 1C3—7400 QUAD 2-INPUT NAND
1.5M {C4. 5—7402 QUAD 2-INPUT NOR
n 12 IC6. 7—566 DUAL TIMER
1 * C3 C4 1C8—7420 DUAL 4-INPUT NAND

j\ 1uF /I\J#F

255

s
= I IITXITXI>> =
>
2 3838388 33
[saves [| [||| |]
w o DESC
=2z VEL
QX T ga
= g~
5 8 G SB
= Ll _SC ATTACK MISSILE
=3 SD CONTROL
SE BOARD
(FIG. 7-17)
s
s
Q
o 32H 1
l ALAUNCH
» BRST
2 POS BFIG
o SF BBLANK
; g:', & s B=TARG
el sy | (FIG76) AFIG
259 : ANTIBALISITIC *——‘—"—ARST
zoL|l S MISSILE CONTROL A
TITTd T 1
I I > =
S8IIFE L=

target image located in the lower right-hand corner of the screen.
Unlike the Attack Missile game just described, the aggressor in this
case has full control over his craft during the torpedo run.

The second player’s objective is to defend the target by launch-
ing defense torpedos (DT) at the aggressor’s attack craft. The
horizontal positions of the four defense torpedoes are fixed, but the

256

R "
332825208
I I I >0 = + 0O
i L1 1 1 L1 L1 1 *
VMRST
HMRST 8HC
VML 4HC
HML 8VC
1VC 4VC
2VC SLIPPING COUNTER L
1HC BOARD -
2HC (FIG. 5-15)
256HM
128HM
64HM
32HM
128VM
64VM
32VM
16VM
GAME LOGIC | o GAME
BOARD VIDEO
(FIG. 7-8)
TTTTTT 11
>>2> > 2
2EI83° 3

Fig. 7-9. Wiring diagram for the Missile Attack Il game.

DT player can launch them one at a time in any sequence and any
number of times.

The really unique feature of this Torpedo Attack game, how-
ever, is that it marks our first application of the tagalong feature
described briefly in Chapter 6. The attack craft carries the attack
torpedo in the tagalong fashion. When the aggressor launches his

257

torpedo by depressing a FIRE pushbutton, the attack torpedois free
to move along the path that the attack craft was following at the time.
The AC player must head directly toward the target, fire his tor-
pedo, and then pull away from the target before colliding with it. The
launched torpedo follows the original path to the target.

While the defensive player can, indeed, destroy the attack craft
with a defense torpedo, he cannot destroy the attack torpedo after it
has been fired.

Figure 7-10c shows the four different images that can appear on
the screen at any given moment: DT (defense torpedo), AC (attack
craft), AT (attack torpedo), and the target.

The defense torpedoes can be launched at any time along the
paths shown by dashed lines. The attack craft can be moved in any
direction and at any speed within the viewing area, carrying the
attack torpedo until it is launched by the aggressor. The attack craft
is free to move through the left- and right-hand edges of the screen,
but it “crashes” if it touches the top or bottom. The dotted lines in
Fig. 7-10c indicate one particular AC attack run.

The aggressor has full control over the attack craft except when
one of three reset conditions occur. According to the flowchart in
Fig. 7-10a, the attack craft is automatically reset (and destroyed)
when AC=EDGE1, AC=TARG, or DT=AC. Translating these
choice-point operations into plain English, DT=AC means one of the
defense torpedoes strikes the attack craft, a score in favor of the
defensive player.

AC=TARG means the attack craft itself collides with the target
image. This represents a draw or a score for the defensive player,
depending on whether or not the attack torpedo is still on board the
attack craft. If the torpedo is still on board the attack craft when the
latter collides with the target, both the target and attack craft are
destroyed, a draw sequence. If the torpedo has been launched when
the attack craft collides with the target, however, only the attack
craft is destroyed. Another point for the defensive player.

AC=EDGE]1 is a condition where the aggressor steers the
attack craft too high or low on the screen. The attack craft must
remain between the top and bottom of the screen. Touching either of
these two boundaries destroys the attack craft and represents a
default score for the defensive player.

So according to Fig. 7-10a, the attack craft is flashed on and off,
and reset to a starting position whenever it is hit by one of the
defense torpedoes, hits the top or bottom of the screen, or collides
with the target. The AC reset position, by the way, is at the left-hand

258

edge of the screen, about halfway between the top and bottom. The
attack player has no control over the reset position and timing.

Now suppose the defensive player launches a defense torpedo.
Once launched, a defense torpedo continues its rather rapid upward
motion until one of two events occur: the DT strikes the attack craft
(DT=AC) or the DT images reaches the top of the screen
(DT=TOP). In either case, the DT image is reset immediately and
the defensive player is ready to launch another one.

Figure 7-10b s the flow chart for the attack torpedo. One of two
things must happen after the aggressor launches a torpedo. The
torpedo can strike the target (AT=TARG), causing the target image
to flash and then returning the torpedo to the attack craft. The other
thing that can happen after launching the attack torpedo is that it
misses the target and moves to the top, bottom, or right-hand edge
of the screen. These three edges, designated EDGE2, represent
the limits of the AT’s travel. Hitting any one of them immediately
resets the position of the AT to the attack craft. Thereisnoscore for
either player.

Torpedo Attack Game Panels

Figure 7-11 shows the general layout of the two control panels
for the Torpedo Attack game. The panel for the DT player consists
of four pushbuttons switches, labeled 1 through 4, that launch
defense torpedoes. The numerals represent the four torpedoes
located in the relative positions indicated in Fig. 7-10c.

The defense player can launch any one of the torpedoes at any
time and in any sequence. But a launched torpedo must complete its
cycle (either hitting the top of the screen or the attack craft) before
another can be launched.

The control panel for the attack player, Fig. 7-11b, includes a
pair of controls for steering the attack craft and a FIRE pushbutton
for launching the attack torpedo. The attack player can control the
motion of his craft as indicated by the arrows on the control panel. A
serious experimenter might want to replace the two AC motion
controls with a single two-dimensional joystick control, thereby
making the steering and firing operations somewhat less awkward.

Potentiometer Control of Speed and Direction

All of the slipping-counter speed and direction controls de-
scribed thus far call for inserting a 4-bit binary number that deter-
mines the direction and speed of the apparent motion. The Missile
Attack Il game, for example, lets the player controlling the attack

259

{ 10 13s3d

A

1a
HONNV

0Q3dHOL MOVLLY = LV
0Q3dy0ol 3sSN343a = 14
14VvHO MOVLLY = OV

13s3d

260

“(Ayse[o 10§ PaSIOAR) OB|Q PUB A)IYM) UBBIIS 3y} uo seadde ued Asy) se sebeun awep (0) "ueyIMmOl
He10 oeRy (Q) “Heyomoy YeId xoele pue opadio) 8sudjeg (e) ‘yoeny opsdio] i0j SUONIUYAP PUB SUBUIMOIY ‘OL-L ‘B4

? G
13s34
O
SH1vd 10 X

q 7>\J
WOLLOB fo7cs 25 1s odvl
TELTRE-— N SHY4
I
._.<p _FD_ | I
n w |
— °® . _
o\\ ﬁl' _
g| m *Ioe f
2 oV | o
v ! _oo_
HONNYT 1 11 e
ﬁ“_o iNod b "
L] 1

1V¥ HONNV

o
O
—
\.
. ‘

34IS "1H ANV 1393a3 = ¢3903
WO1108 aNV dO4 = 139303

261

FIRE

0900

DEFENSE TORPEDO (DT)
LAUNCH PANEL

S1 §2 83 sS4

llll
Tty Sy

A ALL SWITCHES N.O. PUSHBUTTONS
(RADIO SHACK 275-1547)

1 o]

ATTACK CRAFT
SPEED

ATTACK CRAFT (AC) SPEED
CONTROLS AND ATTACK
TORPEDO (AT) LAUNCH PANEL

ACV ACH AT LAUNCH

500K l 500K l
Rl H_ Launch

+5V

Fig. 7-11. Control panels for Torpedo Attack. (a) Defense torpedo panel and
schematic. (b) Attack system panel and schematic diagram.

262

missile’s path enter motion data via a set of switches. The control
input in this case is purely digital.

Digital speed and direction controls, however, are not always
the most appropriate. It is often more helpful and realistic to control
the motion of a figure by means of dials—potentiometers, to be more
specific.

Figure 7-12 shows a relatively simple circuit that converts the
digital motion-control input into an analog format. In essence, this
circuit converts the setting of a potentiometer into a 4-bit binary
number for controlling the count length of a slipping counter. Using
this scheme, a player controls the speed and direction of an image by
turning the shaft of the variable resistor, R2.

This elementary sort of A/D converter includes a 4-bit binary
counter (IC4), a monostable multivibrator having an adjustable out-
put timing interval (IC3), a clock-pulse gating circuit (IC2-B), and a
synchronizing-pulse generator (IC2-A and IC1-B). The inputs to the
circuit are a 128V count pulse from the Sourcebox, a 2V count from
Sourcebox, and the main control resistor, R2. The output is a 4-bit
binary word that ultimately determines the speed and direction of
motion of a figure on the screen. The 4-bit output is the one required
for setting the count length of a slipping-counter circuit.

Two such circuits are required where the player is to have
control over both the horizontal and vertical components of motion.
The horizontal control includes the components| shown in the main
schematicin Fig. 7-12. IC5, shown in the insert in Fig. 7-12, must be
added for potentiometer control of the vertical-motion component.

The waveforms in Fig. 7-12 illustrate the operation of the
circuit. Whenever 128V makes a transition from logic 0 to logic 1
(near the middle of the screen), the pulse generator (IC2-A and
IC1-B) generates a negative-going pulse, designated 128P through-
out the remainder of this book.

The monostable multivibrator is programmed such that its
output timing interval is initiated on the trailing edge of the 128P
pulse. See the second waveform in Fig. 7-12. With the pin-3 output
of the monostable circuit thus set to logic 1, 2V pulses at pin 5 of
IC2-B are allowed to pass to the clocking input of the counter circuit,
IC4. The counter then increments at the 2V rate until the timing
interval is over.

When the timing interval is co__ml_)leted, the counter holds its last
4-bit output count until another 128P pulse occurs. That brief pulse
clears the output of the counter to zero, letting the next counting
interval begin from zero.

263

The timing interval of the monostable multivibrator is deter-
mined by the values of R2, R3, and C3. Normally the controls are
adjusted so that the count reaches any number between 5 and 15,
the normal operating range for the binary numbers fed to the speed
and direction control inputs of the slipping counters.

So let’s suppose the player wants to stop the motion of a figure
on the screen. All he has to do is adjust the value of R2 so that the
counter increments to the binary equivalent of 9 (the stop code)
during the monostable’s timing interval. When the 128P pulse oc-
curs, then, the counter is cleared to zero, then allowed to count at
the 2V rate until the timing interval is over. To stop the motion of the
figure, the counting interval should be terminated with the counter
showing an output of 1001 (decimal 9).

The counter then holds that number until 128P occurs once
again. And if the player has not changed the position of the control,
the counter repeats its count-to-9 sequence.

If the player then wants to move the figure to the right at a
relatively high speed, he adjusts the control so that the monostable’s
output timing is a bit shorter, short enough to stop the counting
operation at a number such as 0101 (decimal 5).

If, on the other hand, the player wants to move the figure to the
left, he adjusts R2 for a slightly longer timing interval from IC3,
letting the counter run to perhaps 1101 (decimal 13).

Recall that the horizontal-slipping counter samples its speed
and direction codes during the vertical-blanking interval. This circuit
has its 4-bit output established before vertical blanking occurs, and it
holds that number through blanking and, in fact, all the way to the
end of 128V.

The vertical-slipping counter samples its 4-bit control input
continuously. And since the output of IC4 in Fig. 7-12 spends some
of its time counting, it yields some undesirable and confusing
vertical-motion effects on the screen. Itis thus necessary to load the
output of IC4 into a temporary memory circuit when it is being used
in conjunction with a vertical-slipping-counter circuit. IC5 shown in
the insert in Fig. 7-12 is a quad D latch that performs this function.

The outputs of IC4 are connected to the corresponding inputs
of IC5 for vertical-motion control. The latch is normally in its mem-
ory mode, keeping the four VC outputs stable through the counter’s
up-counting functions. The count output is then updated whenever
the VRST pulse occurs.

The TRIM potentiometer in Fig. 7-12 is used for adjusting the
control range of the main control potentiometer. First set the main

264

‘uonoalIp pue paads Jo 10.juod Jajawonualod Joj SN Zi-L “Big

IWAHILN
ONILNNOD
IVAHILNI ONIWIL vOlI O1 HOLVY1 G a¥ND SLpL—SDl TOHINOD TvOILH3A HO4 aaQY
318¥.LSONOW = $387Nd -

___ __ _ polonie)
phihOiahiigt
L

.

_u|/4|.|| _ 1Nndino

Dm_.m«ﬁw »w..ﬂ(._.wOZO_Z
€01 I719VLSONOW

uL,/l..I_I_I%N_

0000 O1
G34v310 ¥OI H3LNNOD

{

g-c01l

gl 01 mﬁ |

18]

3 —+ w+ m« cl _
08 O¥ D2 Ol
S119 TOHINOD

H3ILNNOO €6vL—PDI

o]

ELdTe

NOI_,\
A2
= 9
L
L

14Yk4

HINWIL S55—ED
AONVN LNdNI QVNO 00¥2—2D LSHA
H3LHIANI X3H $0v2—10 m__
v
) MT] o O3
07,84 i g
L OAC il ml. ¢
DAL 51l .M|I a1
ﬁ
£01
Z]
.
v _ v-10l

M00S

ed| €
M00L 8]
WIHL cd
vL
Oj 9

O-101

S

265

control to one extreme position, then adjust R3 for the desired
maximum speed in that direction. Then set R2 to its opposite
extreme and adjust R3 again for the desired maximum speed. Work
R2 back and forth between its extremes, gradually adjusting the
trimpot for the most useful control range.

The main control, R2, is normally mounted externally on a
separate control panel. The trimpot, however, is mounted to the
circuit board.

Figure 7-13 includes a pair of these motion-control circuits: one
for the horizontal and another for the vertical motion of the attack
craft. Note that the two monostable multivibrators, IC1-A and
IC1-B, share the same 128P inputs,and that R1 controls the horizon-
tal component of motion and R3 controls the vertical component.
Also note that the vertical-speed counter (IC4) is followed by the
latch circuit, IC5.

This potentiometer-controlled motion interface circuit is an
integral part of the attack craft control in the Torpedo Attack game.
It will also be used a number of times in other game systems through
the remainder of this book.

A Complete Tagalong Motion Control System

The attack craft in this game is to carry along an attack torpedo
until the aggressor launches it, presumably toward the target image.
Chapter 6 includes a general description of the tagalong process, but
now it is time to look at one such system in much greater detail.

The schematic diagram in Fig. 7-13 shows the tagalong-control
portion of the system. Eventually we will show that this circuit
interfaces with a pair of slipping-counter-control boards, one for the
primary figure (the attack craft) and another for the secondary figure
(the attack torpedo). See the slipping-counter schematic in Fig.
5-15.

Most of the circuitry in Fig. 7-13 is simply a pair of
potentiometer-controlled elements that generate binary speed and.
direction codes. IC1-A and IC3, of instance, translate the setting of
R1into a 4-bit binary number representing the speed and direction of
afigure in the horizontal plane. IC1-B, IC4, and IC5 do the same sort
of job for motion in the vertical directions.

Now bear in mind that this circuit controls two separate
slipping-counter boards. All of the input and output designations that
include a P character indicate signals to or from the primary-figure
slipping counter, while those including an S character indicate signals
concerned with the secondary figure.

266

Suppose the secondary figure (the attack torpedo in this case) is
supposed to be taging along with the primary figure (the attack
craft). In this instance, the FIRE input to IC6, IC7, and IC9is atlogic
1. This particular logic level sets memory latches IC6 and IC7 to
their “read” modes —they are passing any 4-bit words at their inputs
directly to their outputs. In other words, any change in the 4-bit
words from IC3 and IC5 appears immediately at the outputs of IC6
and IC7 respectively.

The output designations from IC6 and IC7 imply they are 4-bit
motion-control words for the horizontal- and vertical-slipping coun-
ters on the secondary-figure slipping-counter-motion board. 1ISHC
through 8SHC from IC6, for instance, are connected to the 1HC
through 8HC control terminals of the horizontal counter, while 1ISVC
through 8SVC go to their respective vertical-counting-control in-
puts, 1VC through 8VC.

The two 4-bit motion-control words for the primary-figure
slipping-counter board are taken ahead of ICs 6 and 7. These outputs
are designated 1PVC through 8PVC and 1PHC through 8PHC.

As long as FIRE is at logic 1, then, both motion-control boards
see the same sets of motion-control codes, and whatever changes in
motion are prescribed for the primary figure are likewise delivered
to the secondary figure.

____The 2:1 multiplexer, IC9, also works under the control of the
FIRE signal. As long as FIRE=1, slipping-counter synchronizing
pulses for the primary and secondary figure are identical:
PHML=SHML, PVML=SVML. The primary and secondary fi-
gures thus appear at the same place on the screen.

As long as FIRE=1, the player has complete control over the
motion of both the primary and secondary figures by means of
controls R1and R3. And what's more, the secondary figure is always
superimposed on the primary one. The latter follows the former,
wherever it might go.

The picture changes completely, however, when FIREissetto
logic 0. The player still has complete control over the primary figure
as before, but nowlatches IC6 and IC7 are set to their memory
modes. The 4-bit motion-control words appearing at their outputs
are fixed at the values present the moment FIRE changed from 1to
0.

The result is that the secondary figure continues moving in the
direction and at a speed specified at the moment FIRE is changed
from 1 to 0. The player has no control over the motion of the
secondary figure then.

~~
TAGALONG CONTROL BOARD JUMPER WIRES —=—0 0—
THAT CAN BE

NOTE: CONTROLS R1 AND R3 ARE EASILY REMOVED = +5V
NORMALLY LOCATED ON A FOR OTHER GAME
SEPARATE CONTROL PANEL APPLICATIONS _| = CoMM
(FIG. 7-10b, FOR EXAMPLE) =

HORIZONTAL SPEED

128P = - 500K
-
Ri
100K
R2
1459 TRM
4
—
e IC1-A : 4
2 L 6
IC2-B
) 1N
C1.01uF”~
L R3
VERTICAL
speep 900K (oo

AY)

IC1—556 DUAL TIMER

IC2—7400 QUAD 2-INPUT NAND

IC3, 4—7493 4-BIT COUNTER

ICS, 6, 7—7475 QUAD D LATCH

IC8, 9—74157 QUAD 2:1 MULTIPLEXER

268

5 0 % 0
o -k 4 4@
231 2gS
a a E aa aan 5)
1
f |8 } Iy e
3 4 3 4 SHML
2] 2
6 7 6 L7 SvMmL
51 ics 5 S
1 il
8PHC
198 apic\ | 84— '°
= 2PHC = T
1PHC \\ N "
S\ v 2. 15HC
s 3 15 o5HC
{_\X‘—G ic6 P2 asHC
Fa Nl |9 g5HC
—i4
1PV8 13
2PV 1
T 4PVC\ 12= T
5 8PVC 5
—2 16 o’\l“ 2 16 45vc
3 15 e 3 15 Hs5ve
6] IC5 4 . nj‘ 6 ic7 H%asve
4 9 . 7 9 gsve
4 —14
13 L 113
and my [ze
= 88 =
VST T gooe o999
a aoq aoaa a e
- NS @ ~ Q< 0)

Fig. 7-13. Schematic diagram for a complete tagalong control circuit board.

269

At the same time the latches are set to their memory mode, IC9
shifts the synchronizing pulses for the secondary figure from that of
the primary figure toits own set of pulses, SHMRST and SVMRST.

The secondary figure thus flies under its own set of motion
codes and synchronizing pulses until FIRE is set to logic 1 again. The
instant FIRE is returned tologic 1, the secondary figure immediately
snaps back to the primary figure, following the motion codes and
synchronizing pulses specified for the primary figure.

IC8 in Fig. 7-13 is simply the initialization control for the
primary figure. As long as PINTP is at logic 0, this 2:1 multiplexer
circuit directs initial-position pulses, PHINT and PVINT to the
primary-figure’s reset inputs, thus holding the primary figure fixed at
one particular position on the screen. As soon as PINTP is set to
logic 1, the primary figure is free to “fly” under the control of the
4-bit words from IC3 and IC5.

Figure 7-14 shows a complete wiring block diagram for the
tagalong system. The tagalong control board is the one just de-
scribed in connection with the schematic in Fig. 7-13. The two
slipping-counter boards are identical (Fig. 5-15), although board No.
1is reserved for the primary figure and No. 2 for the secondary
figure.

All the wiring between the tagalong-control board and the two
slipping-counter boards is necessary in any tagalong operation. The
experimenter is free to use only those slipping-counter outputs that
are required for a particular game, however.

The slipping-counter boards consume a great deal of power
from the power supply. In fact the two of themin Fig. 7-14 runa 5V,
1A regulator to its limits. One power supply regulator must be
dedicated to these slipping-counter boards, and the power for the
tagalong-control board must be taken from a second regulator cir-
cuit,

Torpedo Attack Block Diagram

We have had to depart from a detailed description of the tor-
pedo game in order to discuss the operation of potentiometer-
controlled speed and direction circuits as well as the basic tagalong
control. It would probably be a good idea to refresh your ideas about
the torpedo game, reviewing the action of the control panels and flow
chart, before resuming this particular discussion.

Figure 7-15a shows the basic block diagram for the defense
torpedo system. A command to launch any one of the four DTs
comes from the DT launch panel goes to the DT horizontal position

270

logic circuit, which determines the DT figure to be displayed. The
same firing pulse from the DT launch panel goes to a simple pulse
generator and releases the initialization operation on a vertical-
slipping counter. The vertical component of the selected DT figure
thus begins moving upward from its initial position at the bottom of
the screen. The rate of motion s internally fixed at a moderately high
speed.

The DT horizontal-position-logic circuit thus determines which
one of the four DTs are fired, while the DT initialization logic and
vertical-slipping counter determine when and how rapidly the DT
figure moves up the screen. The horizontal and vertical components
of the selected DT figure are combined in the DT figure logic block to
form a complete image.

The DT figure continues moving up the screen until a
negative-going DTRST pulse appears at the initialization-logic block.
At that moment, the DT figure is blanked from the screen and the
whole DT system is re-initialized until the defensive player launches
another one.

The attack craft and attack torpedo block diagram is somewhat
more involved. Note first in Fig. 7-15b that this system includes the
tagalong scheme represented by the tagalong control board, the
primary figure slipping counter, and the secondary figure slipping
counter. The video information for the two figures are taken from
their respective slipping counters and formed into images by the AC
and AT figure logic blocks.

A pulse generator taking its input from 128V generates both the
128P and PVINT pulses required for the tagalong scheme.
Whenever the position of the primary figure is to be initialized, its
vertical position is thus fixed at the point where the 128V count
makes a transition from 0 to 1, near the middle of the screen.

The HINTP pulse generator merely fixes the horizontal posi-
tion of the primary figure whenever it is initialized. In this case, the
figure is initialized at the end of HBLANK, or at the left-hand edge of
the screen.

The attack control panel provides horizontal and vertical infor-
mation from a pair of potenitometers or a joystick. These signals
control the motion in the same fashion as R1 and R3 in Fig. 7-13.

The AT flip-flop circuit determines whether the secondary
figure, the attack torpedo, is synchronized with the primary figure or
free to move on its own accord. An ATLAUNCH pulse from the
attack-control panel sets this flip-flop to a condition that allows the
attack torpedo to leave the primary figure. This is accomplished by
setting FIRE to logic 0. The secondary figure then remains indepen-

271

(S1-G 'O14) 3
I "ON agyvog ._Il
H3IINNOD
ONIddITS
IN8 m
>>n_mmmw ll__\h__»mmr o1\% w»m w i
WAdP9— o),¥4 -1 NIA
WAZE—WAZE DAL BAd S 4 quvos
WA9L —_{WASL DHE dHd 8 -dANId\ TOHLNOO
WAdS —|WA8 DHY OHd INYD
WAdY —WAY JHZ OHd 2 3414
WAdZ —INAZ OHI DHd | WOYH
WHJ9SZz —WH9SZ LSHWA LSHINAG II_
s_xn_ommlxnmmm Pwmxn .__m_xa — d8zl
il LSHI
_\,__\q_.n._mwlﬁzvo M10H Hd
WHdzE —WHZE MNV18H
IWHJ9 | —WH9! 1SHH
WHJ8—WHS MNVIgA
WHdb? —WHY AL 1SHA
WHdZ —|WH2 A2
WHd L ——{INH 1 Ay NS+
>® —
2353
A 2ERIL L L
V-AG+ s £
= v0v2-9/1
bOvL-9/} 00y %
ABZL
4821

272

‘waishs Buojebe) a1e|dwod e 10§ wesberp Buuip v1-2 ‘Big

(s1-6 'OI14)

¢ ‘'ON advos

H31NNOOD
ONIddITS

WASBZL—wAg2E OAC
WASYS— nAYO OAL
WASCE—nNAZE OHB
WAS9L —{NA9L DHY

WAS8—WA8 OHe
WASP—|WAY OHI
WASZ—1ANAZ TNA

NWASL—IWAL 1SHIWA
WHS952—WH9s2 ~ TH
WHS952—{WH9S2 LSHINH
WHS9ZLt—{WH82L M10H

WHSY9—INHP XNV IEH
WHSZE—NHZE 1SHH
WHSIL—jnHgL MNVISA

WHS8—NHS AL
WHSb—AHY A2
WHSZ—WHZ AY
WHS I—AH L A8

_|||

OA8

advodg TOHLINOD
ONOTVOVL

t

OAY

s

V-N\G+

OAS8
JASY
[0\ 14
OASL
OHS8
OHSY
OHSe
OH SL
JWAS
1SIWAS
jwys
1SIwys

(E1-2 'OI4)
advosg
JOHLNOD
ONOIVOVL

AC

273

dent of its primary counterpart until an ATRST pulse occurs. The
ATRST pulse resets the flip-flop and returns FIRE to logic 1,
thereby superimposing the AT figure onto the AC figure.

The block diagram in Fig. 7-15c¢ represents the game logic
portion of the system. Studying this block diagram in conjunction
with the two previous block diagrams and the flow chart in Fig. 7-10
should lead to a good understanding of what this part of the system
does.

The target figure, located in the lower right-hand corner of the
screen, is fixed by a set of H- and V-count inputs from the Sourcebox
unit. An inverted version of the target image is then directed to the
AT=TARG logic block which generates a set of pulses whenever
the attack craft figure (AFT) touches the target figure.

Whenever AT=TAGR in this fashion, the logic block sets the
target flash time to indicate a score for the aggressor. The target
image is flashed at arate determined by the TARG FLASH block and
for an interval fixed by TARG FLASH TIME.

At the end of the target flashing time, a pulse generator pro-
duces a pulse that resets the attack-torpedo image back to the
attack-craft image—wherever it might be at the time.

EDGE?2 is not displayed on the screen, but it plays a vital role in
the game. Recall that EDGE2 is defined as the top, bottom, and
right-hand edge of the screen. The EDGE2 logic block generates
this set of invisible boundaries from VBLANK (top and bottom) and
HRST (right-hand edge).

AT=EDGE2 LOGIC compares EDGE2 with ATFIG.
Whenever they coincide, indicating the attack torpedo is running out
of bounds, this block generates a pulse that ultimately resets the
position of the attack torpedo back to the attack-craft figure.

The EDGE1 LOGIC block uses VBLANK to define the invisi-
ble top and bottom boundaries. Whenever the attack-craft figure
(ACFIG) touches one of these two boundaries, the AC=EDGE1
LOGIC block generates a pulse that initiates a flashing time for the
attack-craft image. This represents a default score for the defensive
player. The aggressor has run his craft out of bounds.

The attack-craft figure is also flashed whenever the AC=TARG
block senses contact between the attack craft and the target. Again,
this represents a default score for the defensive player.

And finally, the attack-craft figure is flashed when AC=DT (a
defense torpedo strikes the attack craft). The AC=DT LOGIC block
takes care of this operation.

The AC FLASH TIME is thus set under any one of three
conditions: AC=EDGE1, AC=TARG, and AC=DT. All three in-

274

stances can represent a score for the defensive player because they
lead to a destruction of the attack craft.

A defense torpedo that has been fired is reset under either of
two conditions: AC=DT or DT=TOP. In the first case, the defen-
sive player has successfully stopped an attack by hitting the attack
craft with a torpedo. If a defense torpedo misses its target, how-
ever, it continues its steady upward motion until it reaches the top of
the screen as defined by DT=TOP LOGIC. The TOP in this case is
determined by VBLANK and a TOP PULSE GENERATOR.

The four figures to be displayed (the target, attack craft, attack
torpedo, and defense torpedo) are eombined in the GAME VID
OUTPUT LOGIC block to yield a composite game-video signal.

Torpedo Attack Schematics

The complete Torpedo Attack game system requires three
circuit boards for the tagalong feature, three special game-control
boards, and two player-control panels. As described earlier in this
section, the tagalong feature is made up of a pair of identical
slipping-counter boards (Fig. 5-15) and a tagalong-control board
(Fig. 7-13). Figure 7-14 shows the complete wiring detail for these
three tagalong boards.

The three special control boards for Torpedo Attack are shown
in schematic form in Figs. 7-16, 7-17, and 7-18. The control panels
are described in connection with the schematics and layouts in Fig.
7-11.

The wiring block diagram in Fig. 7-19 shows the wiring detail
between the tagalong assembly, the three special control boards,
and the control panels.

The circuit board in Fig. 7-16 centains all the components for
the DT (defense torpedo) figures. The defense player’s four firing
buttons are connected to inputs S1 through S4. These inputs are
normally pulled up to logic 1 by the four 2.2-k{2 resistors connected
to +5V. Whenever the defense player depresses one of his four
firing buttons, the logic level at the corresponding S input to the DT
control board is forced to logic 0.

IC4-A in Fig. 7-16 functions as an OR gate when used with this
active-low input format. Its main job is to sense the fact that the
defense player has depressed any one of the four firing buttons.

Depressing any one of the four DT firing buttons thus causes
IC4-A to generate a positive-going logic level which is then inverted
to a negative-going level by inverter IC5-C. This negative-going
logic level is then transformed into a brief negative-going pulse by

275

W3LSAS
0d3dyol 3SN343d

(LSv4 dn)

LSHA 1s4y1qa

viva
IVOILH3A

21901 L

34No14 =t
9141a 1a

LOLL LV A4
a3xid 31wy + + 13534
_— 21901 HOLYH3NID
HILNOOD [qwa| NoLLvzZIviLNg 357Nd
T WOILHIA [HONNV
| «— 1a 138 10
* + LSHWA _
1SHH OINVIEA
21901
NOILISOd J3NVd
v1va TVLINOZIHOH TVLINOZIHOH | g HONNV 1d
= NHHL
IS

276

‘wayshs 2160] awey) (9)

"swalsAs opadio) yoene pue yeld oeny (q) ‘weisAs opadio) esuaje((e) oeny opadio| 10} sweibeip 30019 "G4-£ ‘Biy
(a3ed 1xau uo panunuod)

WILSAS O03dHOL MOVLLY HOLVYH3INID
ANV 14YHD MOVLLY 357Nd —— MNY18H
dLNIH
Ol
v WHd
g3INNOD g
21901 ONIddI1IS A B H HOLVH3INID S
34N (04344501 ’ ~Y 387Nd af—— ASCL
1v HOVLLV) .
Did AHVANOOD3S| o, 21z 2 |-
WHS ol 5121z |8
Did >0 ENRRNE LSHA 1SH1V
ov WAd vm Y
"43LNNOD o .
ﬁ o101 " gyans Aw k| 2 ayvos dO74-dI4 TINGD)
34NOI4 (LAVHD SOVL L) I0H1INOD HONNY SOV LIV
ov € 3uN0 1A VAIEd[va ONOW OVl [y v]

TOHLNOD Q33dS vIILH3A OV
JOHLNOO @33dS TVLINOZIHOH OV

WHd AHVIAIYd ﬂ) HONNYILY * +

277

0304IA
3NVO

21901
1Nd1N0
GIA INVYD
A._ 21901 I_A HNVIEA
v HOLVYINIO 219071 21901
55<A|1 13583y [357nd 2 3903+ 1V z 3903
- | SHH
I«H ol41y
p——- L 51907 [€SINNOD-A
S HSV14 | | INILHSYYS (g | OI901 = lg 4] 3unow
L € ouvi OuvL OUVL=LY (opwi| I3owvl
- SINNOD-H

(aded snoiaaid Wolj PBNUINKOD)

278

()

— L HOL1YHINID
dOL=1a 3SINd g
21901] ———— dol MNVIEA
1SH1QO <gf— 1d
I 13S3Y
91901 - -€—9141d
1g=0v <
21901
HSY14 JNIL = =
v HSVY1d OV OHvL=0¥ I» 9140V
-
21901 21901
135Q3=0V ianaa [

279

the pulse generator, made up of IC1-A and IC5-A. That particular
pulse sets the status of a R-Sflip-flop (IC2-A and IC2-B) to its firing
mode~—one where pin 3 of IC2-A is set to logic 1 and pin 6 goes to
logic 0.

Putting this all together, depressing any one of the DT firing
switches ultimately sets the DT system to its firing mode, and aDT
figure is launched. o

The DT system s reset to its initial condition whenever the R-S
fip-flop receives a negative-going DTRST pulse at pin 5 of IC2-B.

The output of the R-S flip-flop controls the operation of a figure
initialization circuit made up of IC2-C, IC2-D, and IC3-A. This part of
the circuit is in the initialization mode whenever a DT figures is not in
flight. In this instance, pin 6 of IC2-B in the R-S flip-flop is at logic 1,
thus allowing an inverted version of VRST to pass through IC2-D
and IC3-A to the loading or reset inputs of a pair of vertical-slipping
counters, IC8 and IC9. This forces the vertical positon of all DT
figures to the bottom of the screen.

Whenever a DT figure is fired, the initialization circuit is
switched to a condition whereby the slipping counters are loaded
with reset pulses from IC3-B. Under this particular set of conditions,
the slipping counters let the DT figure move up the screen at a rate
determined by the hard-wired logic leve:s at preset inputs (pins 15,
1, 10, and 9) of the two slipping counters.

The DT circuitry described to this point merely determined
whether or not a DT figure is fired and how fast it moves up the
screen. The next part of the problem is to see how one of the four
possible DT figures is selected.

The DT figure selection circuitry is built around the four EXC-
LUSIVE OR gates in IC6, the three NAND gates that feed them,
and the 4-input NAND gate at their outputs.

To see how this figure-selection scheme works, suppose the
defensive player depressed the FIRE 1 pushbutton. This action pulls
the logic level of S1 input down to logic 0, causing a logic-1 level to
appear at the output of IC4-A as described previously. The output of
this gate is returned to pins 4 and 13 of IC10, the gate inputs of a 4-bit
data latch. The pattern of logic levels present at the S inputs is thus
latched in IC10, and remains fixed at the outputs of IC10 even after
the player releases the firing button.

In this particular example described here, the defensive player
has depressed the FIRE 1 button on his control panel, so the 4-bit
latch is loaded with a logic 0 at pin 9 of IC10 and logic 1s at the three
remaining outputs.

280

NAND gates IC1-C and IC1-D now see logic-0 levels at one of
their two inputs, thereby guaranteeing logic-1 levels from those two
gates. The output of IC1-B remains at logic 0 because its two inputs
from the latch are still fixed at logic 1.

The EXCLUSIVE OR gates in IC6 then produce a pattern of
inverted and noninverted H-count signals. IC6-B and I1C6-C both
yield inverted versions of their respective H-count inputs, while
IC6-A produces a noninverted version of 128H. Since IC6-D is
permanently wired to invert its 32H input, it follows that the EXC-
LUSIVE OR configuration is producing H-count signals of 256H,
128H, 64H, and 32H. NANDing these four signals together inIC4-B
produces a DT image having its horizontal position determined by
the four H-count parameters just described. That's true if the player
depresses the FIRE 1 button.

The following list summarizes the H-count parameters from
this DT selection circuit whenever the defensive player fires any one
of the four defense torpedoes:

« S1—256H, 128H, 64H, 32H
. S2—Z50M, 128H, 64H, 32H
+ S3—256H, 128H, 64H, 32H
- S4—256H, 128H, 64H, 32H

The output of IC4-B determines the horizontal position, or to
be more specific, it determines which one of the four DT figures are
fired. The output of IC3-B at the vertical-slipping counter then
determines the vertical position of the DT figure. These two figure
parameters are first transformed into pulses by a set of pulse
generators, then applied to IC7-B where they are molded into the
DT figure itself. The value of C2 fixes the vertical height of DT,
while C3 sets in width.

The complete DT figure from IC7-B is inverted by IC7-C and
sent to yet another NOR gate which, in effect, actually functions as a
blanking gate for the DT figure. Some sort of DT figure data appears
continuously at pin 3 of IC7-A, but the logic level at pin 2 is deter-
mined by whether the system is in a firing or DT initializing mode.

A NOR gate of this type is effectively switched off whenever
one of its inputs is at logic 1, a condition that occurs whenever the
R-S flip-flop shows alogic-1level from pin 6 of IC2-B. Recall that this
condition signifies the DT figure is reset to its initial position. The
DT figures are thus blanked from the screen until they are fired.

The circuit in Fig. 7-17 is basically a figure generating board.
IC8 generates the target figure from the selection of H- and V-count
signals shown at its inputs. The ACFIG signal from IC3-A is the

281

C g
4 12 4
5 IC2-B 6 IC2-D 1
DTRST = 13 3

VRST -] =
VBLANK

HRST

R4 2.2K

R2 2.2K
R3 2.2K

282

16 J11 16| 8
12+ L0 12
Ic8 iIC9
[45
1 1ﬂ15l i 10] 9

li C2 1uF
Ica-c o
10

SELECT FOR
DT HEIGHT

|

12L

10 | 11
13

13

12

FORDT =
WIDTH

IC1, 2, 3—7400 QUAD 2-INPUT NAND
IC4—7420 DUAL 4-INPUT NAND
IC5—7404 HEX INVERTER

1IC6—7486 QUAD EXCLUSIVE-OR
IC7—7402 QUAD 2-INPUT NOR

IC8, 9—7419 BINARY COUNTER
1C10—7475 QUAD LATCH

Fig. 7-16. Schematic diagram for the defense torpedo circuit board.

283

composite image for the attack craft. The horizontal component of
this movable figure is determined by the primary-figure HM inputs
to IC5-A. And in a similar fashion, the vertical component comes
from the primary-figure VM inputs to IC5-B. The signals from IC5-A
and IC5-B are sent through pulse generators before they are effec-
tively ANDed by IC3-A. The value of C1 fixes the horizontal length
of the attack-craft figure, while C2 determines its vertical height.

ATFIG from IC3-B is the attack-torpedo figure, which is gen-
erated in a manner identical to that of the attack-craft figure. 1C6-A
determines the horizontal component from the secondary-figure
HM data, and IC6-B fixes the vertical component of the attack
torpedo from secondary-figure VM data. Capacitors C3 and C4
determine the horizontal and vertical size of this figure.

The FIRE output from IC2-C is a logic level that equals 0
whenever the attack torpedo is fired. The ATLAUNCH signal from
the aggressor’s control panel sets the R-S flip-flop (IC2-B and
IC2-C) so that FIRE goes to 0 and remains there until the ATRST
(attack torpedo reset) pulse occurs.

The final Torpedo Attack control board is shown in Fig. 7-18.
This circuit performs most of the game-control functions shown in
the block diagram in Fig. 7-15c. Comparing these two figures, you
should have little trouble matching block diagram functions with the
logic components in the schematic.

AT=TARG logic, for instance, takes place at IC1-B, while
timers IC9-A and IC9-B are responsible for target-flashing effects.
EDGE? is generated by IC4-D, and the AT=EDGE2 function is
performed by IC5-C. The outputs of IC9-A or IC5-C are ultimately
responsible for producing an ATRST pulse at the output of IC7-B.

EDGELl is present at the output of IC6-C, where it is effectively
ANDed with ACFIG in IC3-D to perform the AC=EDGE1 logic
function. AC=TARG takes place at IC4-A, while the AC=DT func-
tion takes place at IC3-C. The three inputs to the AC FLASH TIME
block in Fig. 7-15c appear at IC5-A in Fig. 7-18, and the output of
that particular NOR gate goes to flash timer IC8-A where it initiates
the AC flashing interval.

The figures to be displayed on the screen are combined at
IC5-B and IC1-C. Pin 8 of IC1-C is the game’s composite video
output.

The PINTP logic level from IC6-E is responsible for resetting
the attack craft to an initial position determined by outputs PVINT
(IC7-F) and PHINT (IC7-C). IC1-D and its associated inverters
produce both the PVINT pulse 128P required for the tagalong
system.

284

IC1, 2—7400 QUAD 2-INPUT NAND
IC3—7402 QUAD 2-INPUT NOR
IC4—7404 HEX INVERTER

IC6. 7—7420 DUAL 4-INPUT NAND
1C8—7430 8-INPUT NAND

325VM g 12} 13 7 *NOTES:
16SVM —— 13 = SELECT C1 FOR ACFIG LENGTH
= SELECT C2 FOR ACFIG HEIGHT
~ SELECT C3 FOR ATFIG LENGTH
a B SELECT C4 FOR ATFIG HEIGHT
14
2.2K 3 | 1
s 1C2-A
ATLAUNCH 6
- FIRE
+5V—J
COMM ——

Fig. 7-17. Schematic diagram for the figure board.

285

d.iNId

O-10t

INVYH

=
ELIY = g
[§1e72 20 vo/W 3 N mo— _
2H = v =2
390 grgy 222 8
+ oL s ¢
o 5 WS 1LYzt
ap 20 5 g-801 veor |t
2+ & ot 9
8501 ;T c - 3
4] vl vl £y
5 6 HOLP — WE'E
g v 8-901
T € 9 A
6 14
-% D|41Q
- YNV 1EA
- O30V
H3IWIL TYNA 956—6 '8DI
== D130 Y3 IYIANI X3IH vOvL—L 9D
HON LNJNI-E 31dIHL L2vL~SDI
HON LNdNI-Z QVND Z0v.—¥ '€
F QNVYN LNdNI-Z QVND 00v2—2 'L

WWOD
AS+

286

‘pieoq 9160j ayy Joj wesbeip onewsyss ‘gL-2 64

INIHd

1SH1v

0L 01D = R ~———
INIAd 420

= 4-901
el £
G Oldiv

v-621

vi g 7 OuvL

287

Torpedo Attack Wiring Diagram

Figure 7-19 shows a recommended wiring diagram for this
particular game. The tagalong system shown in this diagram is
actually a composite of the three circuit boards and interconnections
detailed previously in Fig. 7-14. Half the circuitry for this game can
thus be used in other games, including the Dogfight system de-
scribed in the section that follows.

Using six circuit boards and two control panels pushes the
system’s main power supply a bit beyond maximum capacity. Try
operating one slipping-counter board and the tagalong board from
the Game-A supply, and the second slipping-counter and Figure
Boards (Fig. 7-17) from the Game-B supply. That leaves only the
DT and Logic boards as well as the two control panels that must be
operated from an auxiliary 5-V, 1-A supply.

DOGFIGHT

Here is a popular video game adapted for the home experi-
menter. The game requires two players, each controlling the flight
of an aircraft that is capable of firing a missile at the other’s craft. The
players have complete freedom to fly their primary figure anywhere
on the screen. This particular version has no barriers or borders to
restrict the flight.

The special wrinkle in this game is the circuitry required for
making the missile leave the craft at twice the craft’s speed and in the
same direction. This involves the use of a 2 X vector multiplier circuit
which, at first thought, might seem to be rather complicated, but it
turns out that the circuitry isn’t very complicated at all.

The flow charts in Fig. 7-20 show the control sequences for this
Dogfight game. Since the two charts are identical, a careful study of
one of them automatically leads to a complete understanding of the
other.

Suppose both players are piloting their primary figures (their
respective “C” figures) around the screen, carrying their missiles in
atagalong fashion. Now let Player A trigger his missile. According to
the flow chart on the left-hand side of Fig. 7-20, this action sets the
AM (Player A’s missile) mode. One of two things can happen: that
missile figure can come into contact with Player B'’s craft (AM=BC)
or A’s missile flight time expires (AMT=0). In either case, the
missile is inmediately returned to the primary craft (RESET AM)
but if the missile happens to hit the opponent’s craft, the destroyed
craft is flashed for about 1 second.

288

“yoeny opedioy Joj weibewp Buuim ‘61-2 B4

Janvd
sz 04| 08INOD ﬂ.._z:oo
X0g30HN0S - ASH
i T
I5 858, e S oNaviYy . [|2
25 8% 20 |49 by 2 B TR
w —_— = <
Q2222 < |y — on2((EH R
Hi T BEER
Yy Z \ ECIE])15 \
1SYLY [—w WAS9L
s D14LY e WASZE |t
auvogoiog- 23 WASY
VL WASSZ!
T = = IWHSGZE [
Sl g WHSS 79 |-t
a| 8|3 WHSBZ!
1N0 Q1A = [
Inyo WHS95Z WYHOVIQ
w LT
©11-2 Oid) ONILIM YO i-L 'OI4 335
WADZE f
AT JOMWMMM 1af | 2o Wnde
QYO8 TOHINOD ONOWOVL 'v3
o lolo o Qyvog 3WNDI4 WAdSZ! .
=\ | WHJZE (51-5 "oId)
WHdV9 SOYYOS HILINNOD ONIddNS V3 2 o
(91-£ '0id) WHdBZL o8
Quvon L0 e W3LSAS ONOTYOVL 212
WHJOSZ =t 2 3
9]
LI ThErLa ITTLITIRRINT 28
- = H - <
8E§§3238¢ 25582585 2:22z83558588 7
Ar Az Iz S)= 95955 << B
E 5 %

289

SET AM

Fig. 7-20. Flowtharts for Dogfight.

So the overall picture looks something like this. There are two
aircraft flying freely around the screen. A player can fire a missile
from his craft, and that missile figure leaves the primary craft in the
same direction, but at twice the speed. The missile can fly for about 1
second before it is blanked from the screen and returned to the
primary craft. If that missile happens to strike the opponent’s craft
enroute, the opponent’s craft is destroyed (flashed) and the missile
is returned to its primary figure once again.

The game can go on indefinitely because this particular version
has no provisions for keeping score and automatically resetting the
game. These features can be added at a later time.

The two identical control panels are quite simple, consisting
only of a firing button and a set of flight-path controls. The two
potentiometers shown in Fig. 7-21 can be replaced with a joystick
control to produce simpler and more realistic interaction between
the control panels and activity on the screen.

Vector Logic

This Dogfight game is built around two identical sets of tagalong
systems, one set for each player. And that means the experimenter
must be prepared to install four slipping-counter boards (Fig. 5-15)
and two tagalong-control boards (Fig. 7-13).

The secondary figures in both systems tagalong with the prim-
ary figures in the usual fashion until a player launches his missile. The

290

secondary figure then leaves the primary figure, taking on a speed
and direction that is dictated by the set of control data present the
moment the missile is fired. In the case of the Missile and Torpedo
Attack games described earlier in this chapter, the missile leaves the
primary figure with the same speed and direction the primary figure
had at the moment of launching. In this case, however, the missile
leaves in the same direction, but at a faster speed. And that means
the secondary-figure controls must be loaded with speed and direc-
tion data that is entirely different from that of its primary figure.

Figure 7-22 shows a complete analysis of control data that is
entered into any of the slipping-counter schemes described thus far.
There are two relevant mathematical equations that show how fast a
figure moves across the screen and, alternately, how long it takes to
move across the screen.

The velocity (v) is expressed in rather unusual units of screens
per second. It is possible to use other, more conventional units of
speed, such asinches per second, but such units vary with the size of
the experimenter's TV screen. The screens-per-second unit of
speed on the screen.

The velocity of a figure, in either the horizontal or vertical
direction, is determined by the first equation in Fig. 7-22. Note that

PLAYER CONTROL PANEL
@ O (IDENTICAL CONTROLS FOR
BOTH PLAYERS)

FIRE HOR VERT
REPLACE HOR AND VERT
CONTROLS WITH A JOYSTICK
FOR EASIER AND MORE
REALISTIC OPERATION
+5V
COMM

FIRE 500K 500K
Y

TRIG HOR VERT

Fig. 7-21. Control panel and schematic for each player.

291

v=§lg'_~.'.) t=l1/v|

v= FIGURE VELOCITY IN SCREENS/SECOND

M = DECIMAL VALUE OF SPEED CODE ENTERED INTO THE SLIPPING
COUNTERS

C = HORIZONTAL OR VERTICAL COUNT TOTAL
C =245 FOR VERTICAL MOTION
C =374 FOR HORIZONTAL MOTION

t = TIME REQUIRED FOR FIGURE TO CROSS THE SCREEN IN A
HORIZONTAL OR VERTICAL DIRECTION IN SECONDS

VERTICAL | HORIZONTAL | 5 o = MOTION DOWN
CoDE | M N . . OR RIGHT
v < 0 = MOTION UP OR
0000 0 1.4 0.7 22 | 045 LEFT
0001 1 {13 | o8 | 19 | 051
0010 2 |12 | o9 | 17 | ose
0011 3 |oss!| 10 | 15 | oes
0100 4 o8 | 12]| 12 | 082
0101 5 | o6s | 16 | 098] 10
0110 6 | 048] 21 | 073] 14
0111 7 | 032 | 31| o049 20
1000 8 | o016 62 | 024 a1
1001 9 |00 | oo | o 00
1010 | 10 |-0.16 | 62 |-024] 4.1
1011 11 |-032 | 31 |-049] 20
1100 | 12 J|-048 | 21 J-073] 14
1101 | 13 |-064 | 16 |-098| 1.0
1110 | 14 [-08 | 12 [|-12 | 082
111 15 |-096 | 12 |-15 | oes

Fig. 7-22. Vector motion equations and table.

the M variable is a decimal version of the 4-bit binary control word
enteredinto the slipping-counter system. Recall that the stop codeis
1001, or decimal 9. In this instance, M=9 and v turns out to be equal
to 0, a clear indication that entering 1001 into the slipping counter
yields a figure speed of 0. The figure does not move in that particular
up/down or left/right direction.

Variable C is a constant number that reflects the maximum
counting capacity of the slipping-counter circuit. C is thus equal to
245 for the vertical component of motion and it is 374 for the
horizontal component. The v columns in the table show the solutions
to this equation for all possible motion control codes in both the
horizontal and vertical directions. Note that a velocity having a
negative value indicates motion in an upward or left-hand direction.
Positive values of v indicate motion down the screen or to the right.

292

So if a figure happens to be moving with M=6 in the horizontal
direction, it is moving downward and to the left. And since the
downward velocity is 0.48 screens/second and the left velocity is
—0.73 screens/second, it follows that it is moving at a relatively
sharp downward angle. If you are familiar with the mathematical
procedures for drawing vectors and solving them, you can deter-
mine the exact angle and speed.

It is, in fact, quite tempting to digress from the main topic and
indulge ,in some vector analyses of the data in Fig. 7-22. The results
could be quite useful, but the matter is better left to reader’s who
have the knowledge and initiative for doing the job.

Returning to the matter of multiplying the speed components of
the secondary figure, look at the table and circuit in Fig. 7-23. The
left-hand side of the table shows 10 different slipping-counter con-
trols that might be present at the control inputs of the primary-
figure-motion-control board. There are actually as many as 16 possi-
ble motion-control codes, but many of them are invalid in the context
of our 2x vector logic system. The 8 valid codes are for M values
from 5 through 12. The values of 4 and 13 are shown on the table to
tllustrate the nature of the invalid conditions, but the list also should
include 13 through 15 and 0 through 3.

PRIMARY SECONDARY
FIGURE FIGURE
M[3E&2 ve | ovp |53& UM
131101 16 || 32 [INvALID
12 1110 0| ~0481-0.96 |1 1 1 115 2 x SPEED AND DIRECTION
11 |1 01 1|-032|-064 |1 10 1|13 VECTOR MULTIPLIER
10 {1010(~016{-032|1 01 1|11 (IDENTICAL FOR BOTH HORIZONTAL
§11001| 00 §00 (1001|393 AND VERTICAL MOTION})
g(1oo0o0| 016f032(0111]|7
70111 032 064 D101 5
6(0110| 048(096 (00113
S0o101] oe4ff 128|000 1] 1
alo100| 08 | 1.6 |INVALID
T_w‘
=ap!
2p’
1P -l
2P]
Do, ‘; E o'
4P I—(
8P

Fig. 7-23. Vector table and circuit for achieving launch velocities twice that of the
primary figure.

293

The primary-figure control codes are translated into velocities
in the VP column. This data is taken directly from the table in Fig.
7-22. The 2VP column then shows the VP figure multiplied by 2.
Multiplying a velocity vector changes only the speed and not the
direction, so the 4-bit binary words on the right-hand side of the table
in Fig. 7-23 show the control codes that suit the 2VP velocity
figures. Again, this data is taken directly from Fig. 7-22. The M’
column merely translates the control codes into their corresponding
decimal values.

What this table is saying is that when any primary figure is
carrying along a secondary figure with one velocity component of
M=12, the secondary figure should be launched with a velocity
component of M=15. The secondary figure will move away in the
same direction, but with twice the speed of the primary figure.

Primary-figure M figures greater than 12 or less than 3 are
considered invalid because the 2 x transformation calls for M’ values
that are greater or less than a 4-bit binary format allows. A figure
cannot go any faster than 1111 or 0000.

The circuit in Fig. 7-23 shows how the primary-figure data is
translated into a 2x format for its secondary figure. As long as the
primary control data stays within its valid operating range of M=5
through M=12, the circuit performs the prescribed transforma-
tions.

Interfacing this 2x vector circuit with the tagalong control
system is a matter of removing the jumpers specified in Fig. 7-13 and
connecting the PVC outputs of that circuit to the corresponding P
inputs of the 2x vector circuit. The four outputs of the vector circuit
are then connected to their respective PVC’ connections in Fig.
7-13.

A second 2 x vector circuit can then be interfaced with the PH
connections in a similar fashion.

The secondary figure then tags along with its primary figure as
long as the FIRE terminal in Fig. 7-13is at logic 1. Even though the
secondary figure is receiving control data that is different from the
control data for the primary figure, the secondary figure is effec-
tively initialized at the primary figure’s position.

Setting FIRE to logic 0, however, loads latches IC6 and IC7 in
Fig. 7-13 with the 2 x-transformed-control data, and as aresult, the
secondary figure flies away at twice its host’s speed.

Dogfight Block Diagram
The block diagram in Fig. 7-24 represents the Dogfight game
described in this section. The PLAYER A CONTROLS block gener-

294

‘waysAs wbyboq sy jo weibeip yooig “ve-£ "big

aia
ELA)

W3LSAS
ONOTVOVL

m

J1907
QA
3ANVO

dlNIid _
AS+

21901 ,/ o
2IElL 20 4 EL
HSV14 21007 55 <3E HOHE /
58 19/408 |ee—~ = 20O
h * * * 51818 /
— 4 21901 w,_omMzoo
HOLO3A X2
21901 H3AVd
ov=n8 Y3WIL
] we
21907
28=ny 21907
HOLO3A X2
A H3WIL
/ WY
/ T U
$Z23 SIOHINOD
22 00] | q WV
) H3AVId
31907 * « * * m {
DI W3isAs | guv]| ¥
HSV3 21907 ONOTWVOVL
v D140V v 1HIAY
HOHY

295

ates AHOR and AVERT control information continuously. These
lines are simply the potentiometer connections on Player A’s control
panel.

The ATAGALONG system transforms the AHOR and AVERT
signals into motion-control codes for the slipping counters included
in that system. The primary-figure motion codes are taken directly
from the input data, while the secondary-figure codes are modified
by the 2% vector logic block.

Whenever Player A depresses his FIRE button, ATRIG in-
itiates a monostable timer circuit, AM TIMER. This timer im-
mediately releases the secondary figure from its host, causing the
missile to leave the aircraft figure. The blocks labeled ACFIG
LOGIC and AMFIG LOGIC generate the figures for Player A’s
aircraft and missile respectively.

The operation of Player B’s system is identical to this point,
with the video information for his aircraft and missile coming from
BCFIG LOGIC and BMFIG LOGIC.

The AM=BC logic block senses contact between Player A’s
missile and Player B’s craft. Whenever such a contact occurs, it
indicates a score for Player A. The output of AM=BC both resets
the AM TIMER (returning the A missile to AC) and causing the BC
figure to flash on the screen.

The same sort of operations are involved in the BM=AC
scheme. Whenever Player B’s missile strikes Player A’s craft, the
BM=AC LOGIC block generates a pulse that both resets the posi-
tion of Player B’s missile and makes Player A’s aircraft figure flash on
and off.

All four game figures, the two aircraft and two missiles, are
combined into the final GAME VID in the GAME VID LOGIC block.

Dogfight Schematics

Figures 7-25 and 7-26 show the two special control circuit
boards required for this Dogfight game. Most of the circuitry in Fig.
7-251is dedicated to performing the 2 x vector multiplying operations
for both players. This particular circuit board also contains the firing
logic for both players and the 128P generator for the tagalong
systems.

The circuit in Fig. 7-26 contains all the figure-generating logic
as well as the contact and figure-flashing logic.

Before explaining the theory of operation of these two boards,
it is important to realize they are used with two identical sets of
tagalong systems, one system for each of the two players. All input

296

and output designations carrying an “A” prefix denote connections to
Player A’s systems, while those carrying a “B” prefix indicate
connections in Player B’s system.

It might be helpful at this point to look ahead a bit to the wiring
block diagram in Fig. 7-27. You can see the two special Dogfight
boards, the vector and figure boards, servicing two complete
tagalong systems.

Now notice that the vector board in Fig. 7-25 has four of the 2x
vector multiplier circuits described previously in Fig. 7-23. Each
receives a set of four primary-figure-motion-control bits from the
tagalong control boards.

The first of these four 2 vector circuits accepts bits AIPHC
through ASPHC. These are Player A's primary figure horizontal-
motion codes. The outputs from this same circuit, designated
AIPHC’ through AS8PHC’, are the 2x-corrected motion codes for
Player A’s secondary figure horizontal-slipping counter.

The vector circuit having inputs A1PVC through ABPVC gets
its data from Player A’s primary figure vertical-motion control cir-
cuit; and the outputs (A1PVC’ through A8PVC’) go to his secondary
figure vertical-control circuit.

The two remaining vector circuits in Fig. 7-25 perform exactly
the same operation on Player B’s motion-control codes.

IC8-Ain Fig. 7-251is a timer that is programmed for monostable
operation. Whenever Player A despresses his FIRE button, a
negative-going pulse at ATRIG initiates a 1-second output pulse
from IC8-A. This output, labeled AFIRE, is responsible for separat-
ing Player A’s missile from his aircraft. As noted in Fig. 7-27, AFIRE
is connected to the FIRE input on Player A’s tagalong control board.

The timing operation continues until the monostable completes
its normal 1-second interval or a negative-going AMRST pulse
occurs at pin 4. As described in connection with the circuit in Fig.
7-26, this AMRST pulse occurs whenever Player A successfully
shoots down his opponent.

Player B’s firing circuit, built around IC8-B, works the same
way. BTRIG is taken from Player B’s control panel FIRE button, the
BFIRE output separates his missile from aircraft B, and the timer
can be reset immediately by a negative-going pulse at BMRST.

The compact pulse generator made up of IC7-E, IC9-A, and
IC7-F merely generates the 128P pulse required for any tagalong
motion control system. In this case, the 128P pulse services the
tagalong systems for both players.

Since this Dogfight game runs continuously, there is no need for
any sort of game resetting operations, and as a result, it is possible to

297

H3IWIL IvNA 955—8DI

HILHIANI X3H v0vL—L ‘'9'SOI
HO—3AISNTIOX3 AYND 98vL— ‘€Dl
AaNVN LNdNI-2 QYND 00vZ—2 ‘1O

= OAd8Y
= SAdvv
,OAd8Y
T OAd2V
~ OAdIY
L OAdPY
DALY —
DHd8Y =
I - ff—
_ DHdeY
360 V-0l S DHdvY
OHd8Y z B
T 1 OHdev
- € = OHdIv
DHdYY . v-€0I
t 8 lﬁ_m I
o
(/ 2

298

299

PIBOQ J0I08A By} 10} WEIBRID JNBWAYDS 52-2 Bld
i 1SHWNEDIY1E 3YidY L
= =71 T .
wl i
L o + 2o B
. Z| vex |v
el |
- . OlHLY
| m . : i —) .
WL S R AL #e 10)
wmw xmm e £y vL FAS) 1y
L E:
" DAd¥8
et OAdéd
e OAdIg9

LOAdZE ==

1

= —
A256PHM

I.L 14

5
A128PVM

L

A256SHM

Lo,

10

IC1-D

EDg!
8
IC1-C
C
1

s

——
B256SHM

7
3
IC2-A
C

_ 3

4
—»—5
B128SVM

10

—
B256PHM

12
13

B128PVM

1 ACFIG

14

IC5-A

BMFIG

300

BMRST
10 9 b4
13
2 !
IC8-A IceB g 2
$
r—y T
= 9
— 8 GAME VID
10| tc3-C ouT
7
AMRST

IC9-A

T

1C9-B

C1, C2—SELECT FOR ACFIG SIZE AND SH/-\PE
C3, C4—SELECT FOR AMFIG SIZE AND SHAPE
C5,C6—SELECT FOR BMFIG SIZE AND SHAPE
C7,C8— SELECT FOR BCFIG SIZE AND SHAPE

IC1, 2, 3—7400 QUAD 2-INPUT NAND

IC4, 5—7402 QUAD 2-INPUT NOR

IC6, 7—7404HEX INVERTER

1C8, 9—556 DUAL TIMER

Fig. 7-26. Schematic diagram for the figure board.

301

£1-L OId OHdi OHdlg Mmm OHdIV OHdli
NO NMOHS (OAd8 JOAdBE > OAd8Y (OAd8 €1-2 Old NO
sy3dwnr OAdp ONdva ROS OAdbY OAdb NMOHS
3IAOW3H g — L C
OAde ,OAd28 OAd2v ,OAd2 wmwﬂﬁﬁ
(OAdL \OAdIg (OAdLY 1OAdL
(b1-2 ©13) OAd8 OAdeg OAd8Y OAd8 A
W3LSAS OAd¥ OAdvE OAdbY OAdb _n_wmmm_m“_
ONOVOVL OAdE OAd2g OAdav OAGZ SNOIVOVL
SIEEESITE] OAdL OAdIE OAdLY OAdL V HIAVd
L HNOD]
<
@©
>
I
ES alzx
l 8
5
Z
A
5
S1NdNIXO830HNOS ™= o
A8 | Az =
WNOD AY Al

‘woysAs ybyboq ay) Jo) wesbep buuipy L2-2 B4

T WWO9
AG+
10HLNOD TOHLNOD
143A8 H3IAVd H3AVd HOHV
HOHa 8 . v 1H3AY
1o oiyi8 OIHLY
ain
3NVO
TE@ @ Gz2 o) =B 2B
28R g 2z awvos BERE |G
Mrlggsz 23 Mo £22i S
222 E 29 2222
NG+
n X0+ T S =N - -
3252 RER% 2z BORE 2225
<5 23T [dea 3 D a2l o 3 3 g <
o WWWW dgel OB geel MHMW o
INIHd LNIAd et 3148 e EXP
OL NOILO3NNOD 1OHdE el 1OHd8Y 1OHd8
' ,OHd¥ ,OHd¥8 ,OHdPY [OHdp INIHd INIAd
b \OHdZ ,OHdZ8 ,OHd2Y OHdz 0L NOUIINNOD
,OHd L \OHd 18 [OHd LY [OHd}
OHd8 OHdeg OHd8Y OHd8
OHdP OHdY8 OHdPY OHdP
OHdZ OHd28 OHd2V OHd2

303

build the figures from the negative-going edges of the high-order bit
on all four slipping counters. This rather simple procedure is im-
plemented by the eight pulse generator circuits in Fig. 7-26.

The trickiest part of this circuit is interpreting the meaning of
the input designations. A256PHM at pin 1 of IC1-A, for instance,
represents the 256HM output of Player A's primary figure
horizontal-slippng counter. By the same token, A128PVM is Player
A’s 128VM signal from his primary-figure vertical-slipping counter.

The outputs of these two pulse generators are effectively
ANDed together in IC4-A to generate Player A’s primary-aircraft
figure. The selected values of C1 and C2 determined the horizontal
and vertical dimensions of that particular figure. The experimenter is
free to select values that suit his own impression of how large the
aircraft figures should be.

Inputs A256SHM and A128SVM are the high-order counter
outputs from Player A’s secondary-figure slipping counters. After
shortening these pulses with a set of pulse generators, they are
combined in IC4-B to yield the missile figure for Player A.

Player B’s slipping-counter signals are handled in the same
fashion, producing his missile figure from IC5-A and his aircraft
figure from IC5-B.

IC3-A in Fig. 7-26 senses contact between Player B’s missile
and A’s aircraft. This is, in other words, the BM=AC LOGIC shown
in the block diagram in Fig. 7-24. In the same way, IC3-B signals any
contact between Player B’s aircraft and A’s missile.

A contact between a missile and the opponent’s aircraft initiates
a timer circuit which, in turn, causes the image of the stricken
aircraft to flash on and off. Timer IC8-A, for instance, is initiated
whenever B’s missile contacts A’s aircraft. IC8-B is then allowed to
oscillate, alternately gating A’s images on and off at 1C4-D.

IC9-A is another timer that controls oscillator IC9-B. The
action of these two devices is initiated whenever there is contact
between A’s missile and B’s aircraft.

The two pairs of images (Player A’s aircraft and missile, and B’s
aircraft and missile) are combined at IC3-C to yield the games
video-output signal.

AMRST and BMRST are set to logic 0 whenever a missile
scores, thereby returning the missle to its host aircraft.

Dogfight Wiring Diagram

Figure 7-27 shows the wiring diagram for the Dogfight game.
One very important feature that might be easily overlooked is the
fact that the PINTP connections on the two tagalong systems are

304

connected directly to logic 1, or +5V. This connection disables the
primary-figure-initializing circuit so that the game procedes continu-
ously. There is never any condition that calls for initializing the
positions of either primary figure.

This system uses a total of eight circuit boards and two control
panels: two slipping counter and one tagalong control for each
player, as well as a vector and figure board. The tagalong system for
Player A should be operated from the +5V source for Game A, and
the tagalong system for Player B should operate from the Game-B
supply. The vector board, figure board, and two control panels must
then be powered from an auxiliary +5-V, 1-A supply. Of course all
COMM connections should be connected together.

Chapter 8

Programmable
Position and Motion Controls

It is possible to realize some overall savings of time and money by
using programmable figure-generating and motion-control circuits.
The initial investment is larger because programmable circuits are
generally more complicated than those designed for specific game
applications. Being able to use the same circuitry for a number of
different video game formats, however, soon lets the circuit pay for
itself a number of times over.

The circuits described here are close cousins of the fully pro-
grammable TV game computer systems on the market today. The
experimenter isn’t bound to a set of fixed game formats; yet, the
scheme goes a long way toward simplifying game design procedures
and reducing the amount of new hardware for each game. It also
turns out that these little programmable circuits can do some things
that are terribly difficult to do with the motion-control circuits de-
scribed thus far.

The digital device at the heart of this programmable-figure
scheme is the 7485 4-bit magnitude comparator shown in Fig. 8-1.
Basically, the circuit accepts two 4-bit binary words or numbers,
compares their magnitudes, and generates an output specifying
whether one is equal, greater or less than the other.

One of the two input numbers is designated number A, and is
composed of bits A0 through A3, with A0 being the least-significant
bit. The second input number is designated number B, and is com-
posed of bits BO through B3, with B3, with BO being the least-
significant bit.

307

ASSUME CASCADING INPUTS ARE:

Vee (A=B)=1,(A<B)=0,(A>B)=0
IF A =B, THEN OUTPUT (A =B) =1
OUTPUT (A<B)=0

A0O—{10 16 OUTPUT(A>B)=0
Al—ei12
v b IF A < B, THEN OUTPUT (A =B) = 0
OUTPUT (A< B) = 1
B0 —=-19 OUTPUT (A>B) =0
B1—=111
B2 —={14 o
B3 —={1 IF A > B, THEN OUTPUT (A = B) =0
OUTPUT (A< B) =0
CASCADING | A < B2) Wk OUTPUT (A >B) = 1
INPUTS) A>Beia 5| _A< g OUTPUTS
8
COMM
7485 4-BIT
COMPARATOR

Fig. 8-1. Pinout and operating features of the 7485 4-Bit magnitude comparator.

When these two 4-bit numbers are applied to their respective
inputs of the comparator, one of the three outputs switches to a
logic-1 level. If the two numbers are exactly equal, output A=B goes
to logic 1. If number A happens to be greater than B (A=1001 and
B=0101, for example), output A > B goes to logic 1. And finally, if
input A is less than B, output A < B goes to logic 1.

The cascading inputs are used only when the comparator IC is
being used with an identical unit to compare words having eight or
more bits. Otherwise, cascading input A=B should be connected to
logic 1, and the inequality cascading inputs should both be grounded.
Circuits in the following sections of this chapter illustrate all these
operating modes.

A PROGRAMMABLE FIGURE POSITION CONTROL

Chapter 3 deals with the basic circuitry for generating lines,
bars, and rectangles on the screen. The logic-circuit designs in those
instances determine both the size and position of the figures. Such
figures can be placed anywhere on the screen by using the appro-
priate set of H- and V-count inputs from the Sourcebox, but once
they are fixed, it is difficult to change them on a finished circuit board.

The circuit described here is generally more complicated than
any in Chapter 3, but it is rather easy to change the parameters

308

determining the size and position of the figure. In a manner of
speaking, it is a programmable-figure size and position control.

The circuit in Fig. 8-2 shows a complete figure-programming
circuit for either the horizontal or vertical parameters for fixing the
position and size of a line/bar figure on the screen.

The circuit has two sets of inputs. The inputslabeled 1, 2, 4...,
256 go to their respective connections from the H- or V-count
terminals of the Sourcebox unit. If the circuit is being used to
generate horizontal parameters, for example, input 1 goes to 1H,
input 2 goes to 2H, and so on.

A second set of nine inputs labeled 1P through 256P generally
go to fixed 1 or 0 logic levels.

These inputs are continuously compared in IC1, IC2, and
IC4-A. IC1 compares the four lower-order bits, and when they are
equal, it delivers an A=B logic level to IC2 where the 16, 32, 64, and
128 bits are compared. If the first eight pairs of inputs are equal, IC2
then generates an A=B output from its pin-6 connection.

IC1 and IC2 are 4-bit magnitude comparators that are cascaded
to perform 8-bit comparison. The two IC's compare the eight
lower-order H- or V-count signals with the eight corresponding logic
levels at the P inputs. IC4-A, in conjunction with an inverter function
at IC4-B, make up a 1-bit magnitude comparator for the 256 bit. If
the 256 bit from the Sourcebox is the same as the 1 or 0 logic level at
the 256P input, the output of IC4-B goes to logic 1.

IC3-A thus sees two comparison signals. If all eight of the
lower-order bits are equal and the 265-bit inputs are equal, IC3-A
generates a logic-0 level as long as that condition exists.

Putting this information all together, the circuit in Fig. 8-2a
works as a 9-bit magnitude comparator, generating a logic-0 output
only when the signals from the Sourcebox have logic levels that are
identical to those set at the nine P inputs.

Use the circuit in Fig. 8-2a as the basis of an experiment with
the magnitude comparator scheme. Connect the Sourcebox inputs
to the H-count signals and make provisions for either grounding or
connecting the P inputs to +5V. If the PP output is connected
directly to the GAME VID IN connection on the Sourcebox, you will
be working with a fine, black horizontal line on a white background.
Running PP through another inverter before applying the signal to
Sourcebox will generate a white line on a black field.

In any event, you will find you are working with a vertical line
that is 1H wide. To get the experiment started, connect the P inputs
to the following pattern of 1s (+5V or no connection at all) and 0s
(ground connection): 100001010, where the bit on the left is the

309

256P input and the one on the right is the 1P bit. You should find a 1H
line running down the center of the screen.

What is happening here? By programming the P inputs to
100001010, you are asking the circuit to look for that particular
pattern of 1s and Os from the H-count outputs of the Sourcebox. And
since that particular H-count occurs at the center of the screen, it
follows that the comparator circuit generates its output at that
particular moment. See the master counting table in Chapter 2 for
other program patterns.

There are two conditions that will not show a line on the screen.
If the program inputs specify an H-count in the horizontal blanking
region, the comparator generates a line figure, but it is lost in the
blanking region. In the other case, you can program counts that are
larger than the number of H-counts in a line-larger than binary
111000110 or decimal 454. In this instance, you are asking the circuit
to look for a number that Sourcebox never generates, and as a
result, the line is never generated at all.

The same basic ideas apply when using this comparator scheme
with V-count inputs. Here the circuit generates a horizontal line that
is 1V wide and in a position determined by the pattern of logic levels
at the P inputs. As in the case of the horizontal-comparison experi-
ment, programs calling for a line in the vertical-blanking region or
any calling for a line at 100000101 (decimal 261) or more do not
generate visible lines.

So if the circuit in Fig. 8-2a is wired for H-count programming,
you can fix the position of a 1H vertical line anywhere on the screen
between 000000000 (extreme left side) and 11100101 (extreme
right side). The pattern of Os and 1s at the P inputs correspond
exactly to the inputs to a NAND gate as specified in Chapter 3. In
essence, this comparator circuit works as a 9-input NAND gate for
fixing the size and position of a line on the screen. The only differ-
ence here is that the programming can be changed much easier than
for a hard-wired NAND gate.

Once you have built this comparator circuit and you are certain
you understand how to program the P inputs to set the position of the
1H-wide vertical line, set the position to some convenient viewing
place on the screen, and connect the 1P input to the 1H input. Now
input 1 and 1P are both operating from 1H. They are always equal.
The result is a line that is 2H-clock-pulses wide. You can still adjust
the position of the line from program inputs 2P through 256P, but
now the line is wider.

Then connect 2P to input 2 and 2H. With the two lower-order
program inputs thus connected to their respective H-count inputs,

310

‘Butwwelbosd ainby [eoidA

pue [ejuozuoy Joy suoneubisep jndino pue indu) (q) -oneWaYIS INID [BIBUSH (B) Inond Bunwweiboid ainby v "2-g "614

HO-3AISN1OX3 avNO 98v.—v0I
ANVN LNdNI-¢ avnD 00¥L—€0I
HOLVHYdAWOD avNd S8v.—2 ‘1OI

S1NdNI S1NdNI
}es—dA 3ININ s dH
ddA ddH 3ININ
| SLNdNI SLNdNI
F=t— LNNOD-A eet— | NNOD-H
EZ-8 'Oid 3ININ ez-8 Ol 3ININ
S1NdNI
WVYHOOHJ-NOILISOd
by = N
2 B2 8
e e S d8 dv dg dt
. o
b St‘m_m L |pLi m?
v G v
2o == Ko]| 3
. € 9 e
hm—_m-ﬁo__m: SL{EL L OL|OL
| T
952 821 ¥9 2 9l 8 v 2 1
* < * y
X0830HNOS WOoHS
SLINNOS3-A HO -H

311

you will find the line is now 4H wide. Its position is then programmed
by inputs 4P through 256P.

The width of the line can thus be adjusted or programmed by
connecting lower-order program inputs to their respective H-count
inputs: 1P to 1 and 1H, 2P to 2 and 2H, 4P to 4 and 4H, and so on.
The more program inputs wired in this fashion, the wider the line.
The position of that line is then adjusted by the higher-order program
inputs not connected to their respective H-count sources.

As a design example, suppose you want a vertical line 16H wide
just left of center of the screen. The NAND-gate spec1ﬁcat10ns from
Chapter 3 would be 256H, 128H, and 64H, but in this case, the
specifications are as follows: 1P=1=1H, 2P=2=2H, 4P=4=4H,
and 8P=8=8H. To be sure, the comparator scheme calls for more
more circuitry (the circuit in Fig. 8-2a as opposed to a simple 3-input
NAND gate), but the advantage is that the size and position of the
line can be changed by simply altering the P inputs. And as described
later in this chapter, the P inputs can be altered by other circuitry—
the size and position of the line can be changed automatically. That is
virtually impossible with the NAND-gate line-generating scheme in
Chapter 3.

After experimenting with the circuit in Fig. 8-2a for a while, you
will find you can generate sets of parallel lines by fixing certain
program inputs to one particular logic level and connecting the P
inputs on either side of it to their respective H-count signals.

All of this applies equally well when orienting the comparator
circuit around the V-count inputs. Figure 8-2b shows a pair of
comparator circuits in block diagram form. The circuits are identical
in every respect. The one generating horizontal parameters, how-
ever, takes its Sourcebox inputs from the nine H-count lines and
generates an active-low HPP signal. The block generating vertical
data takes its Sourcebox information from V-count and generates a
VPP output signal.

The simple circuits in Fig. 8-3 show several suggested
techniques for combining the horizontal- and vertical-equality sig-
nals. In Fig. 8-3a, the HPP and VPP signals are effectively ANDed
together to yield a white rectangle. The size and position of this
rectangle is determined by the horizontal- and vertical-program
inputs.

The circuit in Fig. 8-3b uses a pair of pulse generators to
overcome a certain disadvantage inherent in the simple ANDing
operation of Fig. 8-3a. Using the bar-positioning scheme described
earlier in this section, you will find that it is difficult to position larger
bars or rectangles exactly where you want them. A bar that is 64H

312

wide, for example, can appear only in one of six different positions,
the same six positions indicated for black and white 64H bars in Fig.
3-1.

The circuit in Fig. 8-3b, on the other hand, allows maximum
precision and flexibility as far as positioning a rectangle of any size is
concerned. The whole business of determining the horizontal and
vertical dimensions of the rectangle is taken from the programming
of the comparators and shifted to the values of the capacitors, C1and
C2. The programming of the comparators fixes the position of the
rectangle with 1H and 1V precision.

While it is difficult to alter the size of a rectangle generated by
the output circuit in Fig. 8-3b, the experimenter (or the game circuit

* SELECT C1 FOR HORIZONTAL SIZE
SELECT C2 FOR VERTICAL SIZE

l— CI.]
IC1-A
e

e HPP 4701} WHITE
HPP = RECTANGLE

=S RECTANGLE O g
P
Wz VIDEO
A L cz* L
ey R2 1C2-8

4700}

HPP, VPP

: VPRST
——
HPRST
Q
VPP FIG OUTPUT
LA
ek

g @7-
————

Fig. 8-3. Combining outputs from horizontal and vertical position programming
circuits. (a) Forming a rather small rectangle figure by effectively ANDing active-
low inputs to a NOR gate. (b) Adjusting the dimensions of a rectangle by
selecting capacitor values in a pair of pulse generators. (c) Using R-S flip-flops to
extend the dimensions of a comparator-programmed rectangle.

313

itself) can have precise control over the position via the comparators’
program inputs. This feature will become especially valuable when
working with ultra-slow-motion controls later in this chapter.

The purpose of the most complex comparator output circuit in
Fig. 8-3c might seem rather obscure at this point, but it is shown

.here for the sake of completeness. The circuit is composed of two
R-Sflip-flops, each having one input taken from a comparator circuit.
The flip-flops are reset by PRST pulses from an external source, and
their outputs are effectively ANDed together by 1C2-A.

The flip-flop composed of IC1-A and IC1-B is set to its active
state whenever it sees an HPP pulse from the horizontal-program
comparator. Presumably, the occurrence of this pulse indicates the
starting point of a figure’s horizontal dimension. That particular
flip-flop then remains active until an external HPRST pulse occurs. If
that reset pulse happens to be an inverted version of HRST from the
Sourcebox, the bar begins at the point HPP occurs and ends at the
right-hand side of the screen.

The vertical portion of this flip-flop circuit, built around IC1-C
and IC1-D, is set in a similar fashion from the VPP signal from a
vertical comparator. It is then reset by an external source such asan
inverted VRST from the Sourcebox. The result in this instance is a
vertical bar that begins when VPP occurs and runs to the bottom of
the screen.

ANDing the outputs of the two flip-flop sections then yields a
rectangular figure having its upper left-hand corner fixed at a point
where HPP and VPP occur at the same time. If the flip-flops are then
reset as described in the foregoing examples (inverted versions of
HRST and VRST) the figure extends to the right and bottom of the
screen. Of course it is possible to use alternate sources of HPRST
and VPRST pulses to adjust the position of the figure's right and
bottom edges.

This particular circuit will be used for programming the size and
position of complex figures as described in Chapter 4.

Figure 8-4 is a suggested circuit for a complete pro-
grammable-position-control circuit. IC1 and IC2 accept horizontal-
counting and programming information, while IC3 and IC4 handle the
vertical programming. The outputs are delivered to pulse
generators where the horizontal dimension of the rectangle is de-
termined by the value of C1 and the vertical dimension by the value
of C2.

The circuit can be assembled on a 40-pin board (Radio Shack
276-153) with plenty of room to spare. The arrangement calls for
using all 40 pins, however.

314

The program inputs can be selected by means of 18 different
toggle switches, one to each of the P inputs. Certainly this would be
a rather awkward scheme for programming the position of the
figure, but it is an alternative that is suitable in some circumstances.
See the suggested input switch circuit in Fig. 8-6.

Figure 8-5 shows an alternative to the comparator positioning
board in Fig. 8-4. The primary advantage of this alternate circuit is
that it requires only 23 pins as opposed to the full complement of 40
pins for the circuit in Fig. 8-4. The trick is to eliminate virtually all of
the H- and V-count inputs by building a set of counters on the
position-control board, itself.

The horizontal counters are IC5 and IC6, and since they are
clocked by 1H and reset by HRST from the Sourcebox, they follow
the basic counting pattern of the H-count system in the Sourcebox.
IC7 and IC8 perform the same function for the vertical-positioning
circuit, being clocked by HRST and reset by VRST from the Source-
box.

Using on-board H- and V-count generators thus eliminates alot
of wiring between the board and Sourcebox. There are some trade-
offs though. The H-count generator (IC5 and IC6) generates count-
ing signals between 2H and 256H. The lower-order 1H bit is not
included in the comparison process in the horizontal section. Omit-
ting the 1H comparison, however, only means that the figure is
positioned with 2H precision. And that doesn’t pose many problems,
in most instances.

There are also only eight bits available for vertical positioning.
In this case, the 256V bit is omitted. Since that particular signal is
seldom useful at all, there is little lost by leaving it out of the
comparison operation.

Also note that the circuit in Fig. 8-5 requires eight ICs, rather
than the seven in Fig. 8-4. And furthermore, you can see that the
alternate circuit generates active-high HPP and VPP signals, rather
than a composite-figure signal. Even so, these are rather minor
compromises, considering how much easier it is to wire the circuit in
Fig. 8-5 into a game system.

Switch Inputs for Figure Positioning

Figure 8-6 is a sketch of a circuit that can be used for entering as
many as 18 position-control bits into either of the circuit boards in
Figs. 8-4 and 8-5. The circuit is drawn specifically for the circuit in
Fig. 8-4, but it can be interfaced with the simpler circuit in Fig. 8-5by
omitting the 1HP position (S9 and R9) and the 256VP position (510
and R10).

315

256H
128H
64H
e
8H
4%H I
v
16]10]12]13}15 16]10[12]13l15
6 3
2 IC1 7 2 IC2
4 5 4
B[ST TT[14] 1 5[9[11[14] 1
COMM .
256HP
1 HP
2HP
4 HP
fgﬁ;
oHP
64HP
123Hq%gv
32
6V
8V -
% "
256V 15 fiolizl 13015 16]10[12] 13115

IC4

N O
&I W

N
4]
[$)]
o<
B

Position Programming From Counters

In the context of the comparator positioning circuits described
thus far in this chapter, it is possible to specify the positioning
information from a switch panel (Fig. 8-6, for example) or from any
other source of logic levels. Some of those “other sources” include

316

IC1, 2, 3, 4—7485 4-BIT COMPARATOR
IC5—7486 QUAD EXCLUSIVE-OR
1C6—7400 QUAD 2-INPUT NAND
IC7—7402 QUAD 2-INPUT NOR

C1 AND C2 DETERMINE
HORIZONTAL AND VERTICAL
SIZE

Fig. 8-4. Circuit diagram for a complete position programming system.

counters, data latches, multiplexer pattern generators, or random
access memories.

Figure 8-7 shows how a set of binary counters can be used for
specifying position data. The essential idea in this case is to vary the
position of a figure each time the circuit is clocked. One phase of the

317

“Jswwesbosd uonisod payyduns v 'g-g "6i4

1SHA
oL [e]z 01 |
80! 5 01 Pvi
i 3
e e [2t Ts [i+]6 624
o=
[8 Isiletfzi]or X
g St el el ol
S [2
vt 2] 5
AN
9 9
Jou]t TvifuiTs _9*_ ﬁv;:_m
gy +8 4 4 8 b 6
4 T o 9. =z
S| e $53%
\
o 1SHH
4710701 [e]z o1 1RE
90! vl SOl vl
v_._ o_:_
HALNNOD AHVYNIS
. s [[e]6 [2t Siv[e [6 2t
L8 €66.—8 "2 "9 'S | 8 ‘ !
- ANOD
HOLVHVANOD [Isiferfz1]o T8 [si]er[z1]os
3ANLINDVW - z ;
118p S8rL—¥ '€ 21D 2ot > E 1ol
ddH
9 T 9
0% 23 135 3 BT [vifit |6
. ! e AG +
N W = o n N
38L% 2353
TV v

318

‘uealos ay) uo ainby e Jo uomsod ey BulwwesBoid oy jeued youms porsebbns v 'g-g ‘B4

10dS
SIHOLIMS 1TV
M HM2e
SHOL1SIS3H TV

ONIWWYHOOHd (SLAALNO dH 6)
ONIWWVYHOOHd TVLNOZIHOH

VOILH3A

Ir.fﬂ ~ - IﬂJ.\ o <> 3 WWOO
_www. thm M:.m HOFW Mmm hmm _Nm H
L I .”u l 1 I L 1S
o o o - o o o
H o0 (o]
T H o [+)]
el IHINIHIG Teqies
814 ¢idg LY ¢ 0lH g 6Y ¢4 S 2H SIY
3 L —— 31— A+

~

319

game sets the counters’ outputs to zero and fixes the position of a
figure at some particular place on the screen. When that phase of the
game is completed, a clock pulse advances the counters, thereby
changing the position information and, ultimately, the position of the
figure on the screen.

This counter input scheme has a wide variety of possible con-
figurations, and the one shown here specifies position information
for just two 4-bit magnitude comparitors, IC1 and IC2. The whole
business can be expanded to accommodate the more complex and
complete position programmers in Figs. 8-4 and 8-5.

IC1 in Fig. 8-7 compares only the four higher-order bits from
the H-count section of the Sourcebox. The horizontal bar it gener-
ates is thus fixed at the 32H width. By the same token, IC2 com-
pares only 16V, 32V, 64V, and 128V from the Sourcebox unit,
thereby generating a VPP signal thatis 16V wide. Let me repeat that
the comparator circuitry can be expanded to handle eight or nine
signals from both the H- and V-count outputs from the Sourcebox.
The idea is limited to four each in this case to (1) make the discussion
simpler and (2) make the point that one does not have to use a full 8-
or 9-bit comparison to do every sort of pattern-programming job.

The counters, sources of positioning information, are IC3 and
IC4 in Fig. 8-7. The counters are cascaded so that they can count
anywhere from 0000 0000 (decimal zero) through 1111 1111 (deci-
mal 255). There are thus 256 possible combinations of positioning
information for the comparators. Any number of counters can be
cascaded in this fashion to accommodate an equal number of inputs to
an expanded comparator scheme.

The J terminals indicate hard-wire jumper positions. The state
of the counters determine the sequence of positions, but the jumper
wires connected between the output of the counters and the inputs
of the comparitors determine what those positions will be.

Capacitors C1 and C2 are merely de-glitching capacitors that
eliminate any transient spikes generated by this particular type of
counter circuit.

The figures in the inserts in Fig. 8-7 suggest some ways for
controlling the counters. The manual clock option provides a simple
and reliable means for debouncing a manual pushbutton input. Each
time the CLK pushbutton is depressed, a monostable multivibrator,
built around IC5, generates a 10-ms pulse that advances the coun-
ters.

The normally closed pushbutton in the manual clear option can
be depressed to clear both counters to their initial zero configura-
tion.

320

*sHNouo indus peisabbng pue onewsydS—sHNLY 18uNod woi Buiuwesboid uonisod -8 "Big

_I||

[, Jros =
19 20 410
+ ot £ [2 ot tle Y3IWIL §56—50I
YILNNOD 118-¥ €6v.— ‘€0
¥OI vl €0l P57 210 4OL1VHYAWNOD L8 S8v.—2 "I
si1Le 6ev|t ' u
{ Is :_m 6 [2t
~
ASH+ = NOILdO ¥V31Z
m L... 0 m M. o0 m NOILdO %0010 TVONVI
2333 2333 = VNNV
10
Aw 0 Aw _ Aﬂ 0 L <pie}
3 : LNdN
[e [v [oiliv]e Ts {¢ nifir]s an 21 5o) Y10
. 470
%90
2ot L/ Y] 4 oL 9 n/O oL
4 2 g .
dd N ———r € 2| /
9 9 . . vy
[Tstetzt]or B Si[ct[e+]or s_L 8 |¥ ez Syee oz
mmw zy 3
ddH= ~
Aaad A A
= o w = N |Z. w
2222 EER

321

For the sake of this discussion, suppose youjumper JP1toJ1H,
JP2 to J2H, JP3 to J3H, and so on down the line to the point where
you connect JP8 to J4V. Upon clearing the counters, then, the two
comparator circuits see 0000 and 0000 as positioning information.
HPP, in other words, will show a logic-1 comparison output
whenever 32H, 64H, 128H, and 256H are all equal to logic 0. The
same is true in this case for the V-count signals specified for IC2.

What should you expect to see on the screen in this example?
Nothing at all. Beginning the horizontal and vertical bars at 0000
places them in the system’s horizontal- and vertical blanking re-
gions. But suppose you now depress the CLK pushbutton several
times (or advance the counter in any other suitable fashion) until the
inputs to IC1 and IC2 are both 1001. This means a 32H-wide vertical
bar from HPP will appear at the point where 256H=1, 128H=0,
64H=, and 32H=1. That happens to specify a bar just a bit right of
center. The same set of four bits going to IC2 would let VPP position
ahorizontal bar across the middle of the screen. If the HPP and VPP
outputs are effectively ANDed together, you end up with a
32H %16V rectangle located just right of center on the screen.

Figure 8-8 indicates the positions of the bars under all possible
combinations of comparator inputs. It turns out that there are 14
uninterrupted vertical positions. (OQut of a possible 16, 1 is lost in
vertical blanking and another is split between the bottom and top of
the screen.) As far as horizontal positioning is concerned, there are
11 uninterrupted positions (3 are lost in horizontal blanking and 2 are
split by the right- and left-hand sides of the screen).

The 32H x 16V rectangle generated by the outputs of the com-
parators in Fig. 8-7 and combined by the NAND gate shown in Fig.
8-8 can be positioned in any one of 154 different, uninterrupted
positions in the screen’s viewing area.

The correspondence between these 154 different positions and
the clocking of the circuit in Fig. 8-7 depends on the arrangement of
jumpers between the counters and comparators. If the jumpers are
connected as specified earlier in this section (JP1to J1H, JP2to J2H,
and so on in that order through JP8 to J4V), clearing the counters to
zero places the figure in the horizontal- and vertical-blanking re-
gions. Clocking the counters causes no noticeable difference until
the count reaches 0010 and IC1 and 0001 at IC2. At that point, a
corner of the rectangle appears in the upper left-hand corner of the
screen. Subsequent clocking operations moves the rectangle to the
right across the top of the screen until it is lost in horizontal blanking
once again.

322

‘u9812s Oy} uo suomsod Jeq fenjoe pue sigaweled indu; BuiuwesBoid-uonisod usameq sdiysuoneiay ‘g-g bHi4

-=— 0l

SNOILISOd
a3LdNYY3LNINN ¥S1
ddH

ddA

SNOILISOd
a3LldNYY3LNINNG Y1

SNOILISOd 2TONYLO3Y
d3LdNYY3LININN LE
/o vovia
*23233222288—
282232823283 5~Hr
IEEERRRERRR
111
OLLL
_.O—w
i
0= HIr
o
0 = HEr &—_—.w
b=Hpyr ‘NIHM ddH &w—m
:n—uo
0100
o AVP— 1000

0=ALr
1 = Acr
L= ALl
0 = AYl :NIHM ddA

323

Four more clock pulses after that, it appears in its full glory
(uninterrupted by the top of the screen) at the left-hand side and
slightly down from the top. The rectangle then moves to the right
with each clock pulse until it is lost in horizontal blanking.

Each clock pulse carries the rectangle to the right across the
screen, and at the end of each of these excursions, it appears at the
left again, but in a lower position. Out of the 256 possible positions
available from the counters, 154 of them expose an uninterrupted
rectangular figure.

The only problem with this scheme is that so many combina-
tions are lost in the blanking regions, but this is where the jumper
option in Fig. 8-7 becomes an asset. The jumper sequence can be
scrambled such that clearing the counters to 0000 0000 places the
rectangle very near the middle of the screen. The next clock pulse
might then position the figure in the upper right-hand corner, and the
clock pulse after that might take it to the lower right-hand corner.
The counters still count in their usual binary sequence, but mixing up
the jumper programming places the figure into positions that do not
necessarily follow an orderly, stepwise pattern. In effect, the figure
can be made to skip around the screen and even disappear from view
at times.

Designing any game around this particular sort of counter/
comparator scheme is a matter of first determining the sequence of
comparator inputs you want, then connecting jumpers in such a way
that an orderly sequence of counts is transformed into your pre-
scribed sequence of positions. The Golf game described later in this
chapter uses this technique for placing the holes and tees of an
18-hole golf game.

Returning now to the fact that the figure can be moved in a
stepwise and orderly fashion across the screen, doesn't it seem
possible this sort of counter/comparator combination can be used for
motion control? Indeed it can. The idea is to set up the programming
so that the figure moves in very small increments across the screen.
The rate of motion is determined by the frequency of the clocking
operation, and the direction of motion is determined by whether the
and comparators for generating figure motion on the screen.

The section that follows deals with circuits that use counters
and comparitors for generating figure motion on the screen.

UNIVERSAL POSITICN PROGRAMMERS

The universal position programmer circuit shown in Fig. 8-9
includes all the features of position programmers described thus far,

324

-Jawiwelboid uomisod [esIaAuN e 1oy ynonD “6-g “Biy

ANVN 1NdNI-2 avND 00vL—L01
HO-3AISNTOX3 QVNO 98vL—900
d07d-diNd X1 vNa 944601
Y31NNOD LI8-t—16Lv.—F ‘€D
HOLYEYIWOD L18-¥ S8vZ—2 "1OI

il

SLNdNI NvHO0Hd

/\
M R28s o s m
S ST VT 91V D
g §dooo ODOoC
€l '
3 1id
= Hia
_me: 6 lot] |st
ot N0
" €0l .
e L YTOW
L[
6 , g1 v |16
z S Y
S [T =
g
[ot [St [et [er[os o S_m;ﬁ_m_ oL
821 ¥9 2E 9L 8 v 2
SLNANI
INNGD-A HO -H i
vV

325

plus a lot, lot more. As shown, the circuit is capable of generating
either a HPP or VPP black bar on the screen, depending on whether
H- or V-count data is applied to the inputs of IC1 and IC2, If these
inputs are from H-count sources 1H through 256H, the circuit
outputs a HPP vertical bar. If the inputs to IC1 and IC2 are from the
V-count sources, it outputs VPP horizontal bars.

IC1 and IC2 are 4-bit magnitude comparators that are basically
used in the same fashion described earlier in this chapter. IC3 and
IC4, used in conjunction with flip-flop IC5-A, make up a 9-bit pre-
settable up/down binary counter system. These counters, among
other things, can be used for counter-position programming as
described in the previous section.

The table in Fig. 8-10 shows the various operating modes for
the counters and interprets them in terms of position-programmer
functions.

The first line of the function table shows a loading function
whereby any 9-bit combination of PD inputs is loaded into the
counters and fed directly to the comparators. If the PD inputs are all
set to logic 0, for instance, this loading operation tells the com-
parators to respond to H- or V-count inputs 0000 0000 0.

As indicated on the first line of the function table, the loading
function is established by simply setting the PL input to logic 0. All
other control inputs are then irrelevant. This function is normally
used in conjunction with the program memory function listed on the
second line. Here the RUN input is fixed at logic 1 and PL is returned
to logic 1. Any 9-bit combination of logic levels loaded into the
counters and_comparators while PL is at logic 0 is then remem-
bered” when PL is set to logic 1. You can change the PD inputs and
clock the circuit if you want, but the stored data will remain in the
system as long as RUN=1 and PL=1. This sort of register of
memory function is not readily available with any of the other
position-programming schemes described to this point.

Before investigating the real implications of this combination of
loading and memory functions, it would be a goodidea to preview the
other two possible operating modes, the ones listed on the last two
lines of the function table. .

The system is taken from its loading mode by setting PL to 1,
and then it can be taken from its memory mode by setting RUN to
logic 0. With RUN=0and PL=1, the counters can be incremented or
decremented by pulses at the MCLK input. Whether the counters
increment (up count) or decrement (down count) depends on the
logic level at DIR. If DIR=0, the counters clock upward, but if
DIR=1, the counters clock downward.

326

CONTROL

INPUTS OPERATING

MODE

LOAD PD INPUTS

PROGRAM MEMORY
INCREMENT (UP COUNT)
DECREMENT (DOWN COUNT)

X = NOT RELEVANT
LOAD 0000 00000 TO CLEAR

© x = x [RUN
- - -+ o [PL
- o X X |DIR
Q2 X X [|MCLK

Fig. 8-10. Function table for the universal position programmer.

A particular count can be stopped and “remembered” by simply
setting RUN to logic 1 at the appropriate time. If desired, the count
can be resumed from that point by simply setting RUN to logic 0
again.

Perhaps the best way to get a good feeling for how the universal
position programmer works is by building the circuit in Fig. 8-9 onto
acircuit board and interfacing it with the input controls shown in Fig.
8-11. Building the position programmer onto a circuit board will not
be a waste of time and effort because it will prove useful in some
TV-game designs later on. The input circuits can be built in a
breadboard fashion so that the parts can be used for other game
purposes.

For the sake of a preliminary set of experiments, connect the
comparator inputs 1 through 128 to their respective H-count signals
from the Sourcebox unit. This will provide an HPP output signal that
ultimately appears as a fine, black vertical line on the screen. The
simple circuit in Fig. 8-12 shows a technique for widening the bar and
changing it to white on black for easier viewing.

Experiments With a Position Programmer

To begin the experiments, set the STOP/RUN switch to the
logic-1 STOP position. Then set the nine PD input switches for some
desired bar position. In the context of the presentation in Chapter 3,
a logic-1 PD input is tantamount to a noninverted H-count signal,
while a logic-0 input yields the effect of using an inverted H-count
input.

Note there is no response on the screen while adjusting the
settings of the PD switches. This feature allows the experimenter to

327

== 64PD
—3 128PD
e 256PD

™~
+5V
SPEED"
! R1
8] sook < R2
VBLANK IR
3
] 22K
4 4
Ic8 STOP
§R3
2 15K 1
6 0
gl e I RUN
200Hz TO 2 kHz _01#[:/[\ |
3 .
22K
1PD PD INPUT
SWITCH PANEL
OI 1
ONE OF 9

Fig. 8-11. Suggested input interface for experiments with the universat position

programmer.

set up the position-programming codes without having the figure
jumping all over the screen. With the PD switches now set to a
desired program combination, momentarily depress the LOAD
pushbutton. You will see the bar on the screen jump immediately to
the position you specified on the PD input switches.

Try a few more positions, first setting the codes on the PD
switch panel and then depressing the LOAD pushbutton. The bar
can indeed be set to any desired position on the screen with 1H

precision.

328

Once you are satisfied you understand the function of the load
and memory scheme, position the bar close to the middle of the
screen, set the UP/DOWN switch to its UP position, and then set
the RUN/STOP switch to RUN. IC8 in Fig. 8-11 is connected as a
free-running multivibrator, and if it is operating properly, you should
see the bar moving to the right across the screen.

The speed of motion depends mainly on the value of R1. If the
multivibrator is running at its lower frequency limit (about 200 Hz)
the bar drifts across the screen rather slowly. If, on the other hand,
R1is set so that the multivibrator runs in the neighborhood of 2 kHz,
the bar makes a complete cycle across the screen in about 4
seconds.

ICS, itself, is enabled only through the VBLANK interval. Note
the VBLANK connection to pin 4 of IC8. While this multivibrator is
enabled, it produces clocking pulses for the counters in Fig. 8-9,
effectively changing the position information for the bar. The
changes take place in an orderly fashion, giving the impression of
rather smooth and continuous motion across the screen. The faster
the multivibrator runs through the VBLANK interval, the faster the
bar advances across the screen.

The direction of motion is determined by the UP/DOWN
switch, a switch that ultimately sets the DIR control input to logic 1
or 0. The bar thus moves to the right across the screen when
UP/DOWN is set to UP, and then the bar moves to the left when
that switch is set to DOWN.

The motion can be stopped, holding the bar at some particular
point on the screen, by setting the RUN/STOP switch to STOP.
The multivibrator continues producing clocking pulses through
every VBLANK interval, but the bar remains motionless on the
screen because the counters are disabled.

WHITE
VERTICAL
BAR

. 14
HPP — s
9

8
2 1c9-C
[10
L5 SELECT —-
o 2 | 1coB 0 FOR
1 7 BAR WIDTH

iC10-A =

Fig. 8-12. A circuit for widening the bar generated by the universal position
programmer.

329

Figure 8-13 shows a set of curves that translate the multivi-
brator’s operating frequency into numbers indicating the speed of
the bar. Those numbers indicate the length of time required for
making one complete cycle of motion across the screen. If, for
example, the system is operating from H-count signals from the
Sourcebox, and the multivibrator is operating at 1 kHz, the Horizon-
tal Motion curve shows that the bar will complete one cycle of
horizontal motion across the screen in about 7.6 seconds.

If the inputs to the comparators in Fig. 8-9 are taken from the
V-count signals from the Sourcebox, the bar moves vertically at a
rate shown by the Vertical Motion curve. In the case of vertical
motion, setting the UP/DOWN switch to UP causes the bar to move
downward, while setting that switch to DOWN causes the bar to
move upward. (If this seems to cause some confusion, simply bear in
mind that the UP and DOWN designations on the direction switch
indicate the direction of the counter, and not the direction of motion.

A Slow-Motion Figure Generator

A thoughtful reader ought to be asking some relevant questions
at this pont. Why should I ever build a figure-motion-control circuit
around a set of counter/comparator circuits when the slipping
counters are simpler? What can this universal position programmer
do that cannot be done with the simpler positioning circuits de-
scribed earlier in this chapter?

Both questions can be answered in the following terms. The
universal position programmer is, indeed, a more complicated sys-
tem than any slipping counter and position programmer. The fact of
the matter is, however, that this universal programmer can perform
some operations that are virtually impossible with the simpler cir-
cuits. .

The case in point is the speed of motion that can be generated
by the programmer circuit in Fig. 8-9. The slipping-counter-
motion-control circuit is analyzed in terms of its operating speeds in
Fig. 7-22. According to that table, the circuit cannot generate figure
speeds less than 6.2 seconds per screen. The minimum cycle time
for the figure is either infinity (figure motionless) or 6.2 seconds.

Using the universal programmer as a motion-control circuit,
however, allows figure-cycling times on the order of 20 seconds. In
essence, the universal programmer can be used as an ultra-slow-
motion generator. Having a figure move across the screen in 6.2
seconds (the greatest amount of time possible with a slipping-
counter arrangement) might be too fast for many game applications.

330

20
19
18 HORIZONTAL SEC/SCR = 7.7/t
179 VERTICAL SEC/SCR = 4.26/t
‘51 f = MULTIVIBRATOR
15 FREQUENCY IN kHz
14 -
13+

> 124

Q2 11

r.-

Q g 104 HORIZONTAL MOTION

Q
% 2 2 VERTICAL MOTION
S g

O w

E — T =
6_.
5_
4
3 il
2 -
1 -
OTTTT7T 7 T T T T T T T T T T

1 2 3 4
MULTIVIBRATOR FREQUENCY

Fig. 8-13. Curves and equations for determining the screen cycle time of a slow
motion figure generator.

Where this is the case, the universal programmer comes to the
rescue.

The circuit in Fig. 8-14 shows a practical motion-control circuit
built around a pair of universal-position programmers. Two of the
circuits in Fig. 8-9 are required in this case, one for controlling
vertical motion and another for controlling the horizontal component
of figure motion.

Both motion circuits are clocked from their own multivibrators:
IC1-A for generating vertical-speed pulses and IC1-B for generating
MCLK pulses for the horizontal-position programmer. The two
position programmers share a common position-initializing circuit
built around IC2-A and IC2-B. The idea here is to load some pre-
scribed position codes into the position programmers whenever a
negative-going pulse occurs at the INT input, pin 1 of IC2-A. All
counting action stops as long as the system remains in this initializing
mode, and the position programmers take their positioning informa-
tion directly from their respective PD inputs.

A negative-going pulse at the system’s MOVE input, however,
sets the PL inputs of the two programmers to logic 1, thereby

331

switching the circuits from their loading mode to their counting
mode. The figure is thus free to move on the screen at speeds
determined by the settings of R1 and R4.

The direction of horizontal motion is set by the logic level at the
H DIRECTION input: .1=left and 0=right. By the same token,
the direction of vertical motion is set by the V DIRECTION input:
1= up and 0 =down.

The figure can be stopped at any point on the screen by setting
the STOP input to logic 1. This action merely stops the motion. It
does not initialize the position of the figure. Setting the STOP input
tologic 1is tantamount to entering the stop code (1001, or decimal 9)
into a slipping-counter motion-control circuit.

As shown in Fig. 8-14, the motion-control circuit is a hybrid
analog and digital system. The speed of motion is determined by the
setting of two potentiometers, a feature that is quite convenient for
many game applications. The direction, stopping, and initializing
controls, however, are purely digital in nature. This, too, is a nice
feature in most instances.

As demonstrated in earlier chapters, however, it is frequently
necessary to control the speed of a figure from some internal cir-
cuitry. Automatic speed control of this sort ought to be digital in
nature. The circuit should be able to accept a binary word that
determines the figure speed.

Compare this situation with the speed-control scheme for a
slipping counter. In the case of a slipping counter, the most natural
way to control the speed of the figure is by entering a 4-bit binary
word. The circuit is basically a digital one. Converting the slipping-
counter motion-control system to one having potentiometer control
is a tricky process calling for an analog-to-digital (A/D) converter
circuit.

The situation is just reversed for the universal position pro-
grammer. This circuit most naturally accepts potentiometer speed
controls. And where it is necessary to control the speed in a digital
fashion, it is necessary to add a digital-to-analog (D/A) converter.
The circuit in Fig. 8-15 shows a simple D/A converter scheme that is
most appropriate for setting the motion speed.

The D/A converter in this case is a binary ladder network
composed of resistors R7 through R12. The PC inputs are eight
possible combinations of 1s and 0s, as shown in the table accompany-
ing the circuit. IC1-A is the same multivibrator having that designa-
tionin Fig. 8-14. Two such circuits are thus required for full vertical-
and horizontal-motion control.

332

‘ssowwelboid uonisod Joyesedwod PUNOIE JiNg JN0JD (0400 uonow [eondesd v “pi-8 By

ANVN 1NdNI-2 avno 00v,—2Ol
HIWIL TvNA 955—1 01

NMOQ =0
— dn=1

NOILOTHIA A

ONIWAYHOOHd
NOILISOd
4<Ez_>* =

SINGNI o NNY
aa 3 °
ad
TN

=== dO1S
JAONW

ddA ~=—- 6-g b3

(6) * F>m+
S1NdN! &,_\,OQ =0
INNOD-A y
ot 1431=1
ONINAYHOOHd "o cu - NOILOTHIA H
NOILISOd | (6) - 20 ,
TVILING H * T < ~Loamo],
S1NdgNl Hid YL 8 9
ad NNY ZlL >
d M2 ey | g0 v-10I
-] 58 B HIONW = : -
ddH 68 ‘B4 : 0 = - LSHA
ALy Wiy vl

© |

S1NdNi !
INNOO-H AG+

s T 2y ig]

Q33dS H M00S Q33dS A M00S

AS+
-

333

The important point, however, is that the D/A converter trans-
lates any one of eight possible combinations of three binary inputs
into a voltage level proportional to the size of the binary number. A
3-bit input of 0000, for example, yields a relatively low voltage at pin
30f IC1-A, thereby making the multivibrator run at a rate faster than
that determined by the setting of R1 alone. As the 3-bit input is
incremented upward toward the slowest speed code (111, or deci-
mal 1), the voltage at pin 3 of IC1-A increases toward +5V, thereby
causing the multivibrator to run at a correspondingly slower speed.

If a figure is to be manually controlled, potentiometer speed
controls are most appropriate, and the circuit in Fig. 8-14 can be
constructed as shown there. If, on the other hand, the figure speed
is to be controlled from some source of 3-bit binary numbers, the
multivibrators in Fig. 8-14 should have control voltage inputs as
modified by the circuit in Fig. 8-15.

When using the circuit in Fig. 8-15, set the PCinputs to 111 and
carefully adjust the speed-trim resistor for the slowest motion you
want to see. Then set the PC inputs to 000 and, if necessary,
readjust the speed-trim resistor for the fastest speed you want.
Switch the PC inputs back and forth between 000 and 111, fine-
tuning the speed-trim potentiometer until you get the two extremes
of motion speed appropriate for the game at hand. Once the speed-
trim resistor is set, it should not be accessible for readjustment from
any of the players’ controls.

Two more bits can be added to this 3-bit speed-control scheme.
One additional bit, designated PC3 in Fig. 8-15 can go to the DIR
connection to control the direction of motion. A fifth bit, PC4, can go
to the STOP connection for determining whether the figure will
move or be stopped on the screen. The 5-bit digital word that results
is thus capable of controlling both the speed and direction of motion.
Of course two sets of these control words are required for both
horizontal- and vertical-motion control.

The three video games described in the remainder of this
chapter illustrate applications of all the position-programming
schemes.

NINE HOLES OF GOLF

The Golf game featured in this section exemplifies the applica-
tion of a counter/comparator circuit as a game programmer. The
game consists of nine different patterns, each setting a different
position of a golf green, hole, and tee. Every time the player
depresses a TEE pushbutton, a different hole, green, and tee
configuration appears on the screen.

334

‘spiom [eybip woly pasds Buyjonuoo 1oy 8|qe) Indul pue ¥NDLID JaUBAU0D Y/ V SL-8 ‘Big

11NdYI0 vIa

dO1S Ol —=»—+0d

IAON =0 JOHLNOD Q33dS Hig O1l—=—¢0d
d0o1S =1 vDd IVLINOZIHOH HO4 g-10I =
40 1 Nid O1 vIQ

NMOQ HO 1HOIH =0 =

dN HO 1431 =1 ‘€0d .
4710 -~
MO1S bt Folﬁr s
of 04t -
m
D rot . o
92 1o wer | L] vo
méy 040 ey 4
Z| 100
1sva 19 000 1 20d
VUD HIOW - 5 S LSHA
g33ds | Q0Q
o =N
vl
2y
MLy
3]
005

WIiHL d33dS

335

As shown in Fig. 8-16, the player has a set of adjustments
labeled UP/DOWN and LEFT/RIGHT. After teeing up the ball by
depressing the TEE pushbutton, the player sets the controls for the
relative speed and direction he wants the ball to take. When he is
satisfied with those adjustments, he then depresses the SWING
pushbutton. That action launches the ball, and it travels across the
screen—presumably toward the green and hole—for a fixed period
of time.

When the ball comes to a stop, the player adjusts the controls
again, then depresses the SWING button. He continues this se-
quence until the ball “falls into the hole.” When he makes the hole,
the game is locked out, and can be resumed only by depressing the
TEE pushbutton again. This action brings the programming feature
into play: the;position of the ball is initialized on a new tee position,
and the player faces an entirely different situation.

The screen diagram in Fig. 8-16 shows just one of the nine
different initial positions for the ball and green. After making the
ninth hole, the 9-hole cycle begins all over again.

Besides demonstrating a compelling application of the
position-programming circuits, this game includes some new ideas
about figure-speed control.

As stated earlier, the ball travels for a fixed period of time after
the player depresses the SWING pushbutton. As long as the ball is
not on the green, it travels at a relatively high velocity, but once on
the green, its speed is cut in half and it moves for a shorter period of
time.

The ball color also changes as it moves onto the green. Nor-
mally the ball appears as a small white square. The green is also
white. But when the ball reaches the green, the ball color changes
from white to black.

The golf game, as described here, has no obstacles on the
course, but the circuit boards include some terminals for adding
obstacles later on. Numerals indicating the hole and score can also be
added at a later time.

Golf Block Diagram

The basic block diagram for this Golf game is shown in Fig.
8-17. When the player operates the TEE switch, the program
counter advances to set up a new position for the green and hole.
The ball position is also initialized at a point determined by the
program counter and BALL H INITIAL POSITION logic.

The ball then remains initialized until the player depresses the
SWING switch. Depressing the SWING switch starts the BALL

336

+5V comm
B . creen
UP/DN WITH

RIL o
HOLE
TEE ;SW'NG BALL

HCONT TEE SWING
(BLACK AND WHITE REVERSED)

VCONT

Fig. 8-16. Control pane! diagram and schematic, and screen diagram for Golf.

TRAVEL TIMER and allows the slipping counter to move the ball in
a direction and at a speed determined by the settings of the player’s
controls. When the ball timing interval is over, the BALL SPEED
CONTROL sets the speed to zero, effectively stopping the ball on
the screen. The ball then moves from that point when the player
depresses the SWING button.

When the ball reaches the green, the BALL ON GREEN circuit
generates logic levels that both change the color of the ball from
white to black and slow down the ball speed and travel time.

The ball can be putted on the green, presumably toward the
hole. And once the SCORE block senses contact between the ball
and hole, it resets the BALL TRAVEL TIMER to stop ball motion
and lock out the SWING switch. The ball cannot be moved then until
the whole system is reinitialized by depressing the TEE switch.

Circuit Boards for Golf

The golf game described in this chapter requires four circuit
boards: those shown in Figs. 8-18, 8-19, 8-20, and a slipping-counter
board from Fig. 5-15. The functional block diagram in Fig. 8-17 and
the wiring diagram in Fig. 8-22 can be quite helpful for learning about
the circuit boards shown here.

The logic board in Fig. 8-18 includes the program counter, ball
initialization control, ball travel timer, and A/D converter blocks
shown on the functional block diagram.

337

‘oD Joj wresbelp 3o0jq uonouny 2 |-g ‘Bl

LNOMO01 m_
, INIL
J3AVHL HOLIMS
‘014 Tve DNIMS
Tva : _ + W.
_ .SINNOO-H | H3LINNOO
| -
1] HO00 N ONIddITS l.II._MMMMML
TIve NOILISOd _
IVILING H A
» t Tive
A | {
D=9) fue NOILISOd STOHINOD
N3O | H=9) WILINIA = mmhmm_,\\,zoo NOILOIHIC
Y L% »| 3HO0S TIve Tva
JOHINOD
NOILISO
o Ol |k A d - NOILVZIVILINI
=3 et N334O TIve
. N334O
Inyo [oaaia
- o s zo_ﬂmon_ | HILINNOO | o | Io:>>m_
310H N33HO WYHOO0Hd mmhl_

338

Depressing the TEE pushbutton on the control panel generates
alogic-0 level that is wired to the TEE input of this logic board. This
action initiates a 10-ms monostable multivibrator action from IC5-A.
The brief pulse from that IC increments the count of the program
counter, 1C9.

IC9 is simply a 4-bit binary counter that is wired to count nine
different binary states, 0000 (decimal 0) through 1000 (decimal 8).
Each time the player depresses his TEE pushbutton, IC5-A gener-
ates a pulse that increments that counter. The program counter’s
outputs are labeled CA through CD, where CA is the least-
significant bit. L

Depressing the TEE switch also sets an R-S flip-flop, com-
posed of IC2-A and IC2-B, to a state where the output of IC2-A goes
to logic 0. This point is wired to the select input of a 2:1 multiplexer,
pin 1 of IC6. As long as pin 1 of IC6 is at logic 0, HINTP and VINTP
initializing pulses are directed to the HML and VML outputs of that
IC. Since these outputs eventually find their way to the slipping-
counter board, it follows that depressing the TEE switch initializes
the slipping counter which, in turn, initializes the position of the ball
on its tee. This circuitry represents the ball initialization control
section of the system.

The ball-travel timer is built around IC5-B in Fig. 8-18. Thisis a
monostable multivibrator that is initiated by a negative-going logic
level from SWING. If the RST input at pin 10 of IC5-B is at logic 1,
depressing the SWING switch starts the timing action.

The SWING input is also connected to the reset input of the R-S
flip-flop, IC2-A, and IC2-B. So when the player depresses the
SWING button on his control panel, the output of IC2-A switches to
logic 1, altering the state of IC6 in such a way that the slipping
counter takes its loading information from HMRST and VMRST. In
other words, if the position of the ball has just been initialized by
depressing the TEE switch, depressing the SWING switch releases
the ball so that it can move across the screen.

Returning to the ball-travel timer, IC5-B, the time of travel is
mainly determined by the values of R11 and C8. The input at pin 11
influences the travel time as well, however. The BG input to this
logic board goes to logic 1 only when the ball is touching the green.
That logic-1 level is inverted to logic 0 by IC3-D and applied to pin 11
of IC5-B through the 3GT TRIM potentiometer, R12. Lowering the
voltage at pin 11 in this fashion shortens the timing interval of the
monostable, thus giving the impression the ball slows down when it
touches the green.

339

_— HTRIM 2
2 R2 100K Ics-c
X 1|_ IC1-B
128V 2
7
IC3A = c2
.o;
T 2 -
VCONT
10
+5V
COMM
3
-’jr 1uF
R6¢e R7
2.2K£2.2K 3
TEE | g
2 g 2 10 i
O1uF = O1uF
IC5-A T
cs L
7 LO1uF 1 14
i« ol 1C2-A
L2
=
o] 128
7

340

Q VU U
I I I X OO0
> > 2> 2>
SEHE LS &5
”H b T
E?gens[b ol 8[11] 5
14 12
d1 Ic7 ‘;‘ ic8
2] 3] 10 roa 3] 10]
14
| Ci1-C 3
IC1- T_
/ 16
2
HINTP —a—
HMRSF——;’ 4 e AV
VINTP —=1 |Cs 7
VMHST——G- — /ML
L9
w L R1g r18
23}% 52 g22K R11 =
2K$0g 470K
IC3-D L_l e
9 Kl;; [13
5 = IC1, 2—7400 QUAD
1210 2-INPUT NAND
TEFNT IC-B IC3—7404 HEX
T C8 INVERTER
= 4.7uF| 1C4, 5—556 DUAL TIMER
IC6—74157 QUAD 2:1
MULT!PLEXER
| 1T iC7, 8, 9—7493 BINARY
BG SWING RST COUNTER

Fig. 8-18. Logic board schematic for Golf

The ball, in other words, travels for a longer period of time off
the green than it does whenit is on the green. R12 can be adjusted to
give a good speed difference between a drive and putt swing.

The RST input to IC5-B is responsible for locking out the
ball-travel timer whenever the ball touches the hole. The ball cannot
be moved once it is in the hole. It can be released only by depressing
the TEE switch, an action which reinitializes the system at a new
point determined by the program counter.

The A/D converter circuitry occupying most of this logic board
in Fig. 8-18 is simply that required for controlling the speed of the
ball from potentiometers. The circuit is taken directly from the
discussion surrounding Fig. 7-12. The HCONT and VCONT inputs
come directly from the potentiometers (or joystick) on the control
panel.

The horizontal portion of the A/D speed control is built mainly
around IC4-A and counter IC7. While the speed is actually controlled
by the RIGHT/LEFT control on the player’s panel, trimmer resistor
R2 is used for calibrating the speed. To adjust this HTRIM control,
set the RIGHT/LEFT potentiometer on the control panel for
maximum right speed, then trim HTRIM for the desired maximum
right speed. Then set the RIGHT/LEFT control to the opposite
extreme and readjust HTRIM for good left motion.

Continue working the RIGHT/LEFT control between its two
extremes, adjusting HTRIM as necessary to get smooth right-and-
left control from the panel.

Work through the same set of adjustments for the UP/DOWN
control on the panel, using VTRIM to calibrate the two extremes. It
is IC4-B, you see, that works with counter IC8 to produce vertical-
ball-motion codes.

The outputs of the A/D converter section are 1IPHC through
8PHC (horizontal speed and direction codes) and 1PVC through
8PVC (vertical speed and direction codes).

The circuit in Fig. 8-19 is called the Figure Board on the wiring
block diagram. This board includes circuitry for converting the
output of the program counter into position information for the hole
and green, detecting contact between the ball and green or ball and
hole, and changing the color of the ball from white to black as it
moves onto the green.

The size and position of the green is determined by comparator
circuits IC7 and IC9, where IC7 determines the horizontal compo-
nent and IC9 fixes the vertical component. These two ICs compare
board inputs CA through CD with horizontal- and vertical-count

342

signals from the Sourcebox unit. Recall that the “C” inputs come
from the program counter on the logic board in Fig. 8-18.

These two comparators are programmed so that the horizontal
positions of the green can be in any one of seven positions on the
right-hand side of the screen. The vertical positions can be any one
of four possible between the top and bottom. That all figures out to
28 possible positions, but the program counter allows only nine of
them. It is left to the reader to analyze the programming as shown in
Fig. 8-19, and perhaps alter it to suit his own notions of where the
green should appear.

IC8 uses the “C” states from the program counter to position
the ball when it is first set on the tee. There are seven possible
positions between the top and bottom of the screen, but only one
horizontal position that is determined by the H-count inputs at
IC5-C.

The initial position information fer the ball is transformed into a
brief pulse by sets of pulse generators, and thenleaves the board as
slipping-counter initializing pulse BHINTP and BVINTP.

The foregoing discussion summarizes the purpose and applica-
tion of the comparator-type programming circuits. Recall that the
holes are counted by the program counter circuit in Fig. 8-18. The
outputs of that counter, CA through CD, are then used as program
inputs to three comparator circuits. The comparators then deter-
mine the relative positions of the green and the initial position of the
ball. All that remains as far as the circuit in Fig. 8-19 is concerned is
to see how the figures themselves are formed.

The horizontal component of the green figure emerges from pin
6 of comparator IC7, and the vertical component of that same figure
comes from pin 6 of IC9. These two outputs are NANDed together
in IC2-B to form an active-low version of the green figure.

The outputs of the comparators also go to an input of two
3-input NAND gates, IC5-A and IC5-B. These two gates are re-
sponsible for generating the little black hole that always appears near
the center of the green. IC5-A generates the horizontal component
of the hole, while IC5-B generates the vertical component.

These two hole components are effectively ANDed together in
IC3-B to generate an active-high version of the hole figure. The
green and hole figures are then combined at IC3-C to produce the
image of a white green with a black hcle in the center of it. Of course
the position of this composite green-and-hole figure is determined by
the programming of comparators IC7 and IC9.

The ball figure is formed by the most-significant-bit outputs of
the slipping-counter board. Each time the horizontal-slipping

343

344

x|
32H 593 |8
| (AT
2
5]| 1C4-A -
1‘ : 2 |
10| 12] 13] 15{16] ¢ |
2
|
= |4 IC7 |
1
\
CD — 9] 11| 14 a__L
CO»
cB »
CA > 15V
10] 12 13'? 161 10]12 13 15 |16
2] 8 12 6
IC9
4 Ic8 T .
o
9] 11 14181 9|111418
14
D>
7

128H

aml—

1
1C6-A
1 12
2 IC5-A
13 6 1 e
IC3-B 3 g IS
IC2-A 8
mE 2| IC1-C
[4 IC5-B 7
5 = =

1
IC1-D o

= TEE
IC6-D
IC1, 2—7400 QUAD 2-INPUT NAND
IC3—7402 QUAD 2-INPUT NOR
1C4—7486 QUAD EXCLUSIVE-OR
IC5—7410 TRIPLE 3-INPUT NAND
IC6—7404 HEX INVERTER
IC7, 8, 9—7485 QUAD COMPARATOR

* NOTE: SELECT C3 FOR BALL WIDTH
SELECT C4 FOR BALL HEIGHT

Fig. 8-19. Figure board schematic for Golf

345

counter is reset, for instance, the 256HM signal makes a negative-
going transition that is transformed into a brief negative-going pulse
by the action of IC1-B and IC6-E. This little pulse fixes the horizontal
component of the ball's image on the screen. IC2-D and IC6-F
perform the same pulse-generating function, determining the verti-
cal component of the ball figure from 128VM.

The two components of the ball image are combined at IC3-A,
producing an active-high ball figure. This figure goes to several
different gates, including IC6-B where it is combined with the
green-and-hole image to create the game’s composite video-output
signal. That particular EXCLUSIVE-OR gate, incidentally, is also
responsible for switching the color of the ball so that it always
appears with a color that is the complement of its background—
white when on a black background, and black when on a white
background.

The ball figure also goes to one input of IC2-A. This gate acts as
a contact sensor that responds whenever the ball touches the hole.
(Recall that the output of IC3-B is the hole figure.)

The primary purpose of the game control board in Fig. 8-20 s to
control the ball motion once it leaves the initial tee position. When
the ballis in its initial position, it is held motionless by the synchroniz-
ing effects of initializing pulses (HINTP and VINTP) to the slipping-
counter circuit. Once the player depresses the SWING button,
however, the ball can move and it is no longer under control of the
initialization circuitry until the player makes the hole and depresses
the TEE button. The game-control board handles the ball's motion
once it is off the initial tee.

The control board does its job by feeding HC and VC speed and
control signals to the slipping-counter board. The action of these
control signals has been described in detail in Chapter 5. It can be
seen from Fig. 8-20 that a complete set, 1HC through 8HC and 1VC
through 8VC, leaves this board.

This circuit is unique among slipping-counter control-word
generators described thus far inasmuch as it can generate any one of
four sets of control words. It can generate a stop code (1001), a
full-speed code, a half-speed code and a special rebound code that
will be used in a later version of this golf game.

ICs 6, 7, 8, and 9in Fig. 8-20 are the selector circuits for these
four speed codes. They are actually dual 4: 1 multiplexers that select
one of four different input logic levels, according to the status of 2-bit
selector inputs at pins 2 and 14 in each case. L

The output of IC2-A goes to_one input of an R-S flip-flop
composed of IC1-C and IC1-D. The RST output of that flip-flop is set

346

QL o
SR *
’ ah ¥
8
= A
; I—INC
IC1, 2—7400 QUAD 2-INPUT NAND i, s
IC3—7404 HEX INVERTER "
IC4, 57486 QUAD EXCLUSIVE-OR _ |5
IC6, 7, 8, 9—74153 DUAL 4:1 + L s L2nc
MULTIPLEXER 12 Jz
RS >,
: [l @
L
1pHE ! 14 »—:n; - ane
ZPHC —4 o IC3-€ ~—{ 10 icr
1Ic3-8 : l
13 °
XK 3 s 14 2 [
1
le -
st
3 T ive
—d |
D R "
1]
3
19
)- 510 2ve
+3v |
COMM
—

4RVC
ORVC

Fig. 8-20. Game Control board schematic for Golf.

347

to logic 1 whenever the player depresses the TEE pushbutton. RST
then remains at logic 1 until the ball makes contact with the hole,
indicating the completion of one hole of golf.

RST is connected to the reset input of the ball travel timer,
IC5-B in Fig. 8-18. So when the ball figure makes contact with the
hole, the ball-travel timer is effectively locked out, making it impos-
sible to move the ball by depressing the SWING pushbutton. This
lack of action is a clear indication the player has been successful at
hitting the hole. o

The only way to unlatch the RST signal is by depressing the
TEE switch, which moves the ball off the hole and to the initial
position for the next hole of golf.

Finally, the ball figure from IC3-A goes through inverter IC6-D
and to one input of NOR gate IC3-D. Here the ball figure is effec-
tively ANDed with the green figure to produce a BG signal, a logic
levelindicating the ballis on the green. This signalis used for slowing
down the speed of the ball and shortening the travel time. Exactly
how this signal shortens the travel time has already been described
in connection with the ball-travel timer circuit in Fig. 8-18. The ball
slowing effect will be described as part of the theory of operation for
the Game Control board that follows.

Before seéing how one of four different sets of control words is
selected, we ought to see exactly what the four options are.

This speed control system must include stop-code words for
the HC and VC outputs. This stop code is necessary for stopping the
motion of the ball whenever the ball-travel timer ends its timing
operation.

There must also be provisions for selecting one of two sources
of ball-speed information, one coming directly from the A/D conver-
ter and another that multiplies the speed from the A/D converter by
two. The two speeds are necessary for running the ball at full speed
until it reaches the green, where the speed should be effectively cut
in half,

Some circuitry in Fig. 8-20 handles the two-speed information
in the same way it is handled for the Dogfight game in Chapter 7. The
idea is to automatically change the speed of the ball vector without
changing its direction, and that is accomplished by means of the
circuit first described in Fig. 7-23.

The circuit in Fig. 8-20 includes two of these 2x speed and
direction multipliers. One of these handles the PHC input data and
the other works with PVC data. Whenever the outputs of these two
circuits are directed through the selectors to the HC and VC out-

348

puts, the ball travels twice as fast as it does when these circuits are
not selected.

In this particular Golf game, the ball's speed data is taken from
the 2 vector multiplier circuits until it touches the green. As soon
as the ball touches the green, the speed and direction data is selected
directly from the PHC and PV Cinputs, giving the impression the ball
speed is cut in half.

These three sources of speed and direction information—the
stop code, 2x vector speed, and normal speed—are the only ones
used in this particular game. There are provisions on the board,
however, for a fourth option.

The fourth option is a rebound effect that is called up whenever
the ball strikes an obstacle on the course. Since the obstacles are not
included in this game format, the rebound circuitry is not used. A
later chapter, however, takes up the subject of rebound effects, and
the obstacle feature will be added to the Golf game at that time.

For the time being, it is sufficient to say that the ball speed and
direction selectors can take their information from the RHC and
RVCinputs. The obstacle contact input, BO, is normally pulled down
tologic 0 by R1; so as long as no connection is made to that input, the
obstacle rebound inputs (the RHC and RVC inputs) are never
selected.

The circuit in Fig. 8-20 thus has provisions for selecting one of
four sources of speed and direction information, but only three are
used in this version of the Golf game.

The sources of ball speed and direction information that reach
the HC and VC outputs are determined by the BT and BG inputs.
For the present time, the special rebound-selecting input, BO, will
be ignored. The function table in Fig. 8-21 shows the relationship
between the BT and BG inputs and the ball-speed and direction
information selected at the HC and VC outputs.

Recall that the BT signal is an active-high logic level that stands
at logic 1 as long as the ball-travel timer is activated. This logic-1
level indicates the ball is supposed to be in motion. The ball is not
supposed to be moving as long as BT=0.

The BG input to the control board is a logic level that indicates
whether or not the ball is on the green. When the ballis NOT on the
green, BG=0, but as soon as the ball makes contact with the green,
BG switches to logic 1.

According to the function table in Fig. 8-21, then, the circuit
selects the slipping-counter stop code (1001) whenever BT=0. The
ball, in other words, should stop moving whenever the ball-travel
timer is not timing a SWING operation.

349

HC OQUTPUTS | VC OUTPUTS BALL MOTION

0 0 | STOP CODE STOP CODE STOP
O | | STOP CODE STOP CODE STOP
I 0 | 2X PHC CODE | 2X PVC CODE |FAST—BALL NOT ON GREEN

| | [.PHC CODE PVC CODE SLOW—BALL ON GREEN

NOTE: THESE FUNCTIONS ASSUME THE REBOUND SELECT
INPUT, BO, IS FIXED AT LOGIC 0

Fig. 8-21. Functions for Golf speed control.

The circuit then selects the 2x vector-multiplier function
whenever BT=1 and BG=0. Interpreting this in terms of game
operations, that means the ball is in flight, but has not yet touched
the green. The ball travels in a direction, but at twice the speed,
dictated by the outputs of the A/D converter.

The selector circuit then takes its data directly from the A/D
converter whenever BT=1 and BG=1. This status occurs
whenever the ball is moving and touching the green. The overall
effect is that it travels in the same direction, but at half the speed, it
has during free flight off the green.

Go!f Wiring Block Diagram

Figure 8-22 shows the wiring block diagram for this particular
Golf game. The system requires four circuit boards of the type
specified throughout this book (Radio Shack’s 276-153 40-pin plug-in
boards).

The power-supply loading can be balanced reasonably well by
operating the slipping-counter board from one supply and the three
remaining boards and control panel from another 1-A supply.

The obstacle inputs are not shown here because they should be
left unconnected for this version of golf. A later chapter will show
how to use these RHC and RVC connections on the control board.

AMBUSH

Ambush is a one-player game that takes advantage of position
programming in a rather unique way. The game is a variation of the
old arcade game where the player is supposed to shoot at bad guys

350

“Jioo Jo} weibelp xo0iq Buup ‘z2-8 b1y

e Bty |
q3aNvd LLeE
TOHINOD |——AS+
—H||< |
1N0 03QIA INVD m_ el gle
* G 513
18
GLNIH rd
GINIA A
154 NS
(61-8 '04) EED (81-8 Bud) OAdl)
QYv0a 3unold a ayvoa 51901 X¥ida .ow% oo%,
fo—
2 Hdb TOHLNOD INVD WO
R DHd e T AGH
. V3 ‘ hal
5(3 | 383393
CHTTTTLLTE D e 1 ZERRRERR
O+ R PR GFAN S OO G @ Tz + Hh N
e LN < o SN x <
£22<<="2E2=zx*F mmw il (51-°Bt4)
A Quvos
X0830HN0S X0Og30UN0S SIS TR ST
LSHWNA
WA9G2
R R RN
xogunos—= S E T 22 mmumm
I > m =
zZ Z
x X

351

popping up at various places in the game area. Scoring is based on
the number of bad guys that are hit during a specified game-playing
time interval.

This Ambush video game is only slightly different in that the bad
guys shoot back. And if one of these villians hits the good guy (the
player, of course), the game is over.

The unique feature of this game in the context of position
programming is that the positions of the bad guys are purely random.
The position information is selected from a high-speed counter that
is “read” only during a brief time when the game calls for displaying a
new bad guy.

While the playing is rather tricky, Ambush is one of the simplest
games presented in this book. From a hardware point of view, it
requires only two circuit boards and a player control panel.

Figure 8-23 shows the control panel, the panel wiring, and one
example of how the playing area looks.

The player can move the good-guy figure vertically on the
screen by means of the MOVE control. The player has no control
over the horizontal position of that figure. It is fixed by the game
logic.

The bad-guy figure can appear anywhere on the left-hand half of
the screen, and shooting the bad guy is a matter of lining up the
vertical position of the good guy and depressing the FIRE pushbut-
ton. If the two figures aren’t lined up vertically—situated directly
across from one another—when the player depressed the FIRE
button, the shot misses, and the player cannot chalk up a score.

Remember, though, that the bad guy shoots back. Whenever
the game circuitry senses the two figures are lined up vertically
(presumably because the player is attempting to shoot the bad guy),
there is a fixed 1/10 second delay before the bad guy fires; and if the
good guy hasn't fired yet and is still in the bad guy’s line of fire, it’s all
over. The bad guy scores a hit and the player must depress the
START button to begin the game all over again.

The general strategy, then, is to shoot at the bad guy while on
the run up or down the screen. Don’t take more than 1/10 second to
line up and shoot, or you'll be dead.

Whenever the player manages to shoot the bad guy, the bad-
guy figure flashes on the screen for a couple of seconds. The flashing
figure then disappears from view, immediately being replaced by
another bad guy at some randomly determined position on the
screen. If the bad guy isn’t shot within about 4 seconds, he disap-
pears without flashing, only to be replaced by another somewhere
else on the screen.

352

MOVE

START FIRE

+5V
MOVE

POS

|

BAD |

Guy !

AREA |
e
GOOD GUY

AREA

Fig. 8-23. Control panel diagram and schematic, and screen diagram for Am-
bush.

Providing the good guy isn’t hit, the game runs for about 3
minutes before it is reset. The player then totals up the number of
successful shots, and depresses the START button to begin another
game.

Ambush Block Diagram and Schematics

The block diagram and schematics for the two special circuit
boards are shown in Figs. 8-24 through 8-26. The wiring block
diagram is in Fig. 8-27. Use all of these figures when studying the
theory of operation of this particular video game.

353

‘ysnquiy 1o} weibep %20iq uonoung

‘¥2-8 b4

1no
aiA
JNVO

aia
INVYO

13839 | | 3wl 1Hv1S
INVYD INVYD SEEN)
i
34149
NOILISOd
“ 1H 99 |= 3dId98 He
| [}
r o198 | WVHOOHd
_ NOILISOd &
i []
NOILISOd
aiA 98 .‘H. HSVY1d O8 |- 11H 98 AG = AD A8
oot
o8 NOILISOd '
M3N HOL34 _.l P s Loy
| NoLIsod TOHINOD
o149 s { NOILISOd
| 09
1SHA

354

Whenever the player depresses the START button on the
control panel, a negative-going logic level at pin 5 of IC1-B in Fig.
8-25 sets the state of a R-S flip-flop. The flip-flop responds by
showing a negative-going edge at pin 3 of IC1-A. That edge-triggers
a pulse-generator circuit composed of IC1-C and IC4-A. The brief
negative-going pulse from that pulse generator triggers IC6-A, the
game’s 3-minute master timer circuit. Depressing the START but-
ton thus initiates a 3-minute monostable timing interval that can be
interrupted only by a logic-0 level to pin 4 of that timer device. Of
course that GHIT input indicates the good guy has been hit.

Now note that the output of the master game timer (IC6-A, pin
5) goes to a pulse generator and then to the resetting input of the R-S
flip-flop (pin 1 of IC1-A). The game is thus reset whenever the
output of IC6-A makes a transition from logic 1 to 0. And that occurs
when (1) the 3-minute game time expires or (2) the good guy is shot.

Depressing the START button also sends a logic 1 level to pin 8
of IC6-B. This enables the monostable so that the good guy can fire a
shot by depressing the FIRE button. The shot is timed by IC6-B so
that it lasts only about 1/10 second, but if GV=BV (good-guy
vertical equals bad-guy vertical), the output of IC1-D registers a hit
in favor of the good guy.

The pulse from IC1-D initiates a 1-second timing interval
(monostable IC7-A) which, in turn, enables the bad-guy flashing
action of IC7-B. A pulse generator connected to the pin-5 output of
the flash timer generates a negative-going pulse and the end of the
flashing time, indicating it is time to call up a new bad guy figure.

Once the game is started, then, the player can fire at any time
by depressing the FIRE pushbutton. If the bad-guy figure happens to
be in the line of fire at the time, the bad-guy figure flashes on the
screen and is replaced by another bad guy a second later.

All of this assumes the good guy isn’t hit first. Whenever the
good guy is hit, the resulting logic-0level at pin 10 of IC6-B locks out
the good guy’s firing circuit. A dead man can't fire a gun, you see.

IC8-A and its associated components in Fig. 8-25 are responsi-
ble for setting the vertical position of the good guy by means of the
MOVE control. A complete description of this “sloppy” control
appears in conjunction with the circuit in Fig. 5-6. The value of C11in
this particular circuit can be selected to fix the vertical size of the
good-guy figure.

IC5-A fixes the horizontal part of the good-guy figure.
Capacitor C12 can be selected to scale the width of that figure. The
vertical and horizontal components of the good-guy figure are thus
available from pin 6 and pin 8 of IC4.

355

| 4 3 TN
3 dici-c
2|CI'A g 3
1 7 Cl 2
ZRéK:: C = AuF 1 4700
- 5
START IC-B 3
Colll WP L)
GV=BV
- =
+5V T
R :lt R6< RJ.,
22K$22k3 M2 Li2,
oo
ekl 8 o 3|’
GFIRE ¢4 _ [10| 1ce-B [13]
0IuF 2
Pt
4
ca
- Tiuk

4] s I lms
1C4-B g <.*:|§oox
VRST 3 6 151 9, 8 cn
<l IC2-
s 3l 1ce-a []35'3¢ A2 6‘%

2K
RIl I RI2| 2 | .0
2.2kt w1t 3 2

ca > co T T .047uF gRIS
4701 F | 220 1| T J 4700
1 =
256H
280 _
640 _
32H
-

Yov

IC5-B in Fig. 8-25 determines when a new bad-guy figure is to
be selected. The input connections to this IC show the new figure is
selected under any one of three game conditions: when the game is
first started, after a dead bad guy goes on to the hereafter, and after
a bad guy has managed to survive on the screen for about 5 seconds.

356

|

14
14 ;ERB | 3 4 6
s s $15MoiC2-A Ic2-8
c3 5
' ce-a T< OluF $Ra
3 2 = 4700

IC1, 2, 3—7400 QUAD 2-INPUT NAND
IC4—7404 HEX INVERTER
1C5—7420 DUAL 4-INPUT NAND

IC6, 7, 8—556 DUAL TIMER
2R8 SR9
. 4 14 3IM 3IM
B 5 10 9 | BG FLASH
| 54
ICT-A —¢ IC7-B 8 IRIO
2 | %»47%
+|cs
T WFT> _T¢6
: .l y.F
! 5 CI3 4 6
IC3-A iC2-B
—1 " IuF3$s
~ I RI6
_ = 470
| ' RIE
13 J14 IC4-E M
] 0

10
9

(-:JN
H o
~\ @
o]
i
[e]
~ @
[1+)
'y
g,.a
=
0

N 8
I ic2-¢ ic2-D

i
|
#
ol
=
-
2
(e}
i

c14 >
4 TuF~

Y

Fig. 8-25. Control board schematic for Ambush.

The circuits for indicating the start of a new game and the end of a
bad guy's death scene have been described already.

1C8-B is responsible for keeping a bad guy on the screen for no
more than 5 seconds. This timer is initiated whenever a new bad guy
appears on the screen, but since it is connected as an interruptable

357

timer, it can be reset anytime a new bad guy appears, whether the
old one managed to live 5 seconds or not. If a bad guy can survive
through the normal timing interval of IC8-B, a pulse generator
composed of IC2-C and IC2-D creates a brief negative-going pulse
that ultimately resets the monostable action once again.

The LOAD output in Fig. 8-25 is normally at logic 0, rising to
logic 1 only long enough to call up a new bad-guy figure. The
remainder of the Ambush circuitry is shown on the Ambush-figure
board in Fig. 8-26.

The special feature of the Ambush game is its ability to generate
bad-guy figures at random positions on the left-hand side of the
screen. 1C4 and IC5 in Fig. 8-26 make up a pair of programmable
position controls. IC4 is responsible for fixing the vertical compo-
nent and IC5 sets the horizontal component of the bad-guy figure. It
is the 4-bit logic levels from IC6, however, that determine the bad
guy’s position.

IC6 is a 4-bit latch, or memory, circuit. The data input in this
case comes from the 1V, 2V, 4V, and 8V connections of the Source-
box. This 4-bit data is loaded into the latch only when the LOAD
input to pins 4 and 13 is at a logic-1 level. This loading condition
occurs only for a brief interval when the control board operations call
for seeing a new bad-guy figure. Once the data is loaded, it is held at
the outputs of IC6 until the control system calls for a new bad-guy
figure.

Since the data inputs to IC6 come from a counter system that is
running continuously, and since the LOAD pulse occurs at some
time that is determined by the game action, it follows that the data
loaded into IC6 is virtually random in nature. In essence, IC6 works
as a random-number generator.

Accepting the notion that IC6 is a random-number generator, it
should become apparent that the horizontal- and vertical-
programming data to IC5 and IC4 occurs in a random sequence. The
bad-guy figure thus appears on the screen at some position deter-
mined strictly by the random number from IC6 and the wiring
between IC6 and the program inputs of IC4 and IC5.

The horizontal and vertical components from IC4 and IC5 are
NANDed together in IC1-A to create a bad-guy figure that measures
16Vx16H. This image is passed through IC2-A, where it can be
flashed whenever the good guy scores a hit. The horizontal and
vertical components of the good-guy figure are combined in IC2-C.
And after that, the two figures are effectively ORed together by
IC2-B and IC1-B to create the game’s video output.

358

All that remains to be discussed is the way the bad guy knows
he is lined up with the good guy so he can fire a shot. IC1-C senses
the alignment of the two opposing figures and generates a negative-
going pulse that initiates monostable timer IC7-A. This particular
timer is set for 0.1 second. And at the end of that time, a second
0.1-second timer (IC7-B) is initiated.

IC1-C senses alignment of the two figures on the screen, IC7-A
inserts a 0.1-second delay, and IC7-B is responsible for making the
bad guy fire a shot. IC1-D in Fig. 8-26 normally shows a fixed logic-1
output, but if the bad guy fires while he is lined up with the good guy,
IC1-D senses this fact and generates a GHIT output.

Recall that a GHIT pulse resets the entire game system,
making it impossible for the good guy to fire another round until the
player depresses the START pushbutton. Without the 0.1-second
delay inserted by IC7-A, the good guy wouldn't stand a chance of
shooting anyone.

Ambush Wiring Diagram

The wiring diagram in Fig. 8-27 indicates this is a rather simple
and inexpensive game to set up. The only calibration adjustment is
fixing the value of R13 in Fig. 8-25. This trimpot works with the
MOVE control to set the range of motion of the good-guy figure.

R13 should be adjusted so that moving the MOVE control
between its two extremes moves the good-guy figure to the top and
bottom of the screen.

The figure board should be operated from one of the +5V
supplies, while the control board and panel can take their supply
voltage from the second source.

STORMTROOPER ATTACK

You are the sole defender of a spacecraft. Eight enemy
stormtroopers begin slowly advancing on your position, and you are
all armed with deadly ray-gun weapons. You must defend your
position, wiping out all eight stormtraopers before they reach your
position.

The screen diagram in Fig. 8-28 shows the initial formation for
this Stormtrooper game. You, the good guy, are located at the
bottom of the screen, and your motion is limited to that part of the
screen. The eight stormtroopers mave straight down the screen
toward you at the rate of about one-screen-per-71 seconds. In other
words, you have only about 60 seconds to kill them off.

The control panel includes a MOVE control that lets the player
move the good guy back and forth along the bottom of the screen, a

359

T T T T T
> > > 2 e 9%‘%3
o 93 ;‘ Y
II | ‘
o _Hil4y 1 9|||4|j
6 %) 6
b
2 1IC4 2 IC5
—=
a
15 8
o] 12 13— o[12T T3] [8

i| 15]10] 9| 5
[
LOAD g2
13 IC6

2|l 3| sf 7| Li2
Iy i 2} L
2V -
4\ 3
8V s

IC1—7400 QUAD 2-INPUT NAND
IC2—7402 QUAD 2-INPUT NOR
IC3—7404 HEX INVERTER

360

15
32H
IC3 Am
+|28H
=256 H
|
Tlic-a 3
2
14
ICI-B -
17
2 GAME VID
10 IC2- ouT
= GV=BV
™~
< <L < <L
R2 :;Rz ::R3 R4 2
TR 10 L o —
5 JC{I 8 9 i3 ICI-D GHIT
AN 13
ICT-A |2 IC7-B {2

j'C —'-LC3

M
I
2
AuF AuF
- Tlu Tlp.
L

IC4,5—7485 4-BIT MAGNITUDE COMPARATOR
IC6—7475 4-BIT LATCH
IC7—556 DUAL TIMER

Fig. 8-26. Figure board schematic for Ambush

START button for beginning a new game and attack sequence, and a
FIRE button that makes the good guy shoot a beam of light at the
stormtroopers.

Depressing the START button initializes the position of all eight
stormtroopers at the top of the screen. Their advance toward the
good guy begins immediately. The stormtroopers are rigged so that
they all fire a volley of shots at the good guy 0.1 second after they
sense one of them is lined up with the good guy. The good guy can
fire at any time by depressing the FIRE button, but he, too, must be
lined up with one of the stormtroopers before scoring a kill.

Whenever the good guy hits one of the stormtroopers, they all
disappear from the screen for about 0.5 second, then reappear with
the dead guy missing from the display. The main object of the game
is to kill them all in this fashion before any one of them reaches the
bottom of the screen.

If any live stormtroopers reach the end of the screen, the good
guy'’s position, the game automatically stops to indicate a win for the
bad guys. The game has to be manually started to begin another
attack sequence.

The game is also terminated in the event the good guy manages
to wipe out all eight stormtroopers. This indicates a win for the good
guy.

This is a fast-paced game that is very difficult to win without a
lot of practice. Until a player masters the game, he might want to
score on the basis of the number of stormtroopers killed in 10
consecutive attack sequences, trying to beat this 10-game sequence
of scores.

Figures 8-29 through 8-33 show the general block diagram,
schematics for the three circuit boards, and a wiring block diagram.
The game takes advantage of the slow-motion feature of pro-
grammable position-control comparators. It is not possible to make
the stormtroopers advance so slowly using a slipping-counter
motion-control scheme.

A second feature of this game is its ability to blank figures from
the screen when they are “hit,” and then keep track of the number of
remaining stormtroopers. Both of these features, extra-slow motion
and selective elimination of figures from the screen, can be de-
veloped into a number of other custom TV-game systems.

Theory of Operation

As indicated on the block diagram in Fig. 8-29, depressing the
START button both starts S MOTION and resurrects all previously

362

‘ysnquy 104 weibeip 3ooiq Buip “22-g Bid

(g2-8 'Bi14)
T3aNVd 1N0
])
o * % m .w.v,_ JNVD
O & |o3|o #
£ < ml |—
= | HSV14
g |
1IHD
A8 =AD
HO
(gz-g By) | QVO1
(92-8 "614)
ayvod AD
10Y1INOD HO52 aygvosg 34Nold
H8ZL
H¥9
———ll iR R
—— 0+ < O+Z&W%9&W%98MMM
X0g304dN0os anMM MM%WHHHMAAAA
< <

363

killed stormtroopers from the S KILL memory. The S MOTION
control block is responsible for generating the downward motion of
the stormtroopers, while the SH LOGIC block generates the hori-
zontal component of those figures. Assuming none of the
stormtroopers have been shot yet, S KILL memory allows all eight
figures to appear on the screen. Outputs from the S MOTION
CONTROL AND S KILL memory are combined in the S FIG logic
block to generate the complete set of stormtrooper figures.

The good guy’s position at the bottom of the screen is fixed by
V-count inputs and G POSITION logic. Motion back and forth across
the screen is controlled by the MOTION control on the panel and the
G MOTION control circuit. The complete good-guy figure is formed
by the G FIG LOGIC block.

Now suppose the good guy is lining up for his first shot at one of
the stormtroopers. The player depresses the FIRE button, and the
G FIRES block generates a 0.5-second signal that is transformed
into the image of a narrow beam by G BEAM logic. This logic circuit
makes the beam appear to come from the good-guy figure and
extend to the advancing front of the stormtroopers. If the good guy
is lined up properly with one of the stormtroopers during that
0.5-second interval, the SH=GH block senses that fact and the HIT
block generates a scoring pulse for the good guy.

A pulse from the HIT block both blanks the stormtrooper
figures at S HIDE (they all seem to take cover when the good guy
fires, and eliminates the figure of the stricken enemy from S KILL
MEMORY. The stormtrooper images reappear with the dead one
missing.

The trickiest part of the game is that the stormtroopers shoot
back at the good guy. Whenever the good guy crosses the path of
any one of the live stormtroopers (sensed by SH=GH), they pause
for 0.1 second before they all fire a beam at the good guy. The TIME
DELAY block inserts this brief delay before initiating the S FIRE
interval. S BEAM LOGIC generates the stormtroopers’ beam
image that appears to come from each of the live stormtroopers and
toward the good guy’s position on the screen.

GHIT logic senses a contact between any one of the
stormtrooper’s beam and the good guy. This spells disaster for the
good guy because a signal from GHIT automatically stops the game,
resetting the position of any remaining stormtroopers to the top of
the screen.

If the good guy is successful in his attempt to kill off all eight of
the stormtroopers, the ALL S DEAD block senses the condition and
ends the game.

364

—
1 STORM TROOPERS
ENENNENENEN
f— . ——
GOOD GUY
_ Y,

(BLACK AND WHITE REVERSED)

O

@ MOVE @

START FIRE

GH POS START FIRE

Fig. 8-28. Control panel diagram and schematic, and screen diagram for
Stormtrooper Attack.

365

The GAME END block also responds to a condition signalled by
the GV=SV block. The GV=SV block is responsible for sensing the
fact that one or more of the live stormtroopers have reached the
good guy’s position,

The figure board shown in Fig. 8-30 contains all the circuitry for
the game’s master R-S flip-flop control, stormtrooper motion,
figure-position information for the good guy, and the good guy’s
firing circuit. o

Depressing the START pushbutton sets the R-S flip-flop,
IC2-A and IC2-B, to a condition that allows counters IC7 and IC8 to
increment (count upward) at a rate determined by VRST, 60 Hz.
These counters provide position-programming information to com-
parators IC5 and IC6. According to the equations in Fig. 8-13, the
counter/comparator system ought to move the stormtrooper
figures through one complete screen cycle in 71 seconds. The
stormtroopers, however, do not have to make one complete cycle
before they reach the good guy’s position. So the actual playing time
is no longer than about 60 seconds.

The signal from pin 6 of IC6 is thus a 1V-wide horizontal line that
moves slowly down the screen. IC4-F inverts this signal and applies
it to a monostable multivibrator, IC9-A, where the position pulse is
transformed into a wider bar that is about 8V wide. This timer
actually sets the height of the stormtrooper figures.

Inverter IC4-A merely inverts the signal so that it has a phase
that is appropriate for some of the control operations on the Control
board in Fig. 8-32.

IC9-B in Fig. 8-30is part of a motion-control circuit described in
Chapter 5. Its GHPOS input comes from the MOTION potentio-
meter and lets the player set the horizontal position of the good-guy
figure. Capacitor C2 is part of a pulse-generator circuit that fixes the
width of the good-guy figure.

The horizontal position of the good guy is fixed by the V-count
inputs to IC1-A, and then transformed into a pulse by IC1-B and
IC4-E. Capacitor C3 fixes the height of the good-guy figure, while
IC1-C is used merely for generating a GV signal for control pur-
poses.

IC3 is the FIRE timer for the good guy. Whenever the player
depresses the FIRE pushbutton, this timer generates a positive
GFP pulse that lasts about 0.5 second.

A RSTpulse at the input of IC2-B signals the end of a game
sequence, generating alogic-0 CLR level that stopsthe counters and
initializes the position of the stormtroopers.

366

“yoeny Jadoonuiiolg Joy welbeip ¥20iq uonound '62-g ‘Bi4

367

;
1N0 IA g
ETN) Y
SNOILYHIdO AND-A00Y = O
+_ SNV O | SNOILVHIdO HIdOOHLNHOLS = S
21901 AD <
S3HI4 © NOILISOd | &
| 1nd1no <€ -, e
A 21901 l S
Wv2a o a
o01 | avag ¢l 0190 ~ Noiow | 7
Wvag s _ “ iy \ ﬁ S Y N 914 9 HO)
i = I *
1SHH
Aviaa | AHOW3W 21901 __
Ho [l - - .
A ﬁ 1HO 34 S Ao HD = HS T e SINNOO-H
T Y i—
f | 11ve _’_
| | 30H | g |01907 mw‘z<wo 'y o | uﬂﬂ@%w | |¢ondand lisH| Noring
ains| s RS Lag: NS = + SH |l 1HVIS
1HVIS
L« 10

11

SINNOD-A 1SHA

y P B .
) S TR S G 1
LHDIZH ANS 00D HO4 €0
88 N60 | pb—J8 s N
HLGIM ANS OOD HO4 20 Yy € o
10313S « 831 201 o Lsun
[$1] - vl —
2 &l I EE] Il
47100 /ﬁ o)
g 11 It [[l Inlule m@.wo_ g =—15Y
P = Hv-col v S v 07 Tetinod
L 901 s9l
AS : 3 Z z
= NI e~ 3 5 5
. ! -201
Vvl “.VE,. .Eo N —GTe T = Jo o o1 [[[ol S\ _ et — LHVLS
24 $)z2
Y e AGH
a ..F n_a o = 2s Nz 4 -
= m £ R < <= m_

368

Noeny Jadoonuiuolg Jo) onewayos preoq amnbi4 0g-g Bi4

H3IWIL TvNa 955—60I

HILINNOD AYVYNIG 1642—8'L0I
HOLVHVdINOD 118- S8¥L—9'SOI
H3LHIANI X3H t0vL—DI

H3IWIL G655—EDI

aNVN LNdNI-¢ avnD 00v.L—20l

& AaNVN LNdNI-€ 31dIYL OLyL—1OI

ACE
Ab9

A82i

I.J_
L

I HO .

R -
S| e uﬁ__o 1] a-601 [
B 2]/ ol S 94 € 1S4
b S ..u&.._ AEES &2l

worvs 8] ¥[Nzz$ wezs 6| €y
241 ouf oy

" GOdH9

369

The Stormtrooper board in Fig. 8-31 keeps track of the live
stormtroopers, generates the horizontal component of the
stormtrooper figures, and senses when they are all killed. IC3 in Fig.
8-31 determines which one of the eight stormtroopers is hit and
changes the state of the appropriate J-K flip-flop, IC6-A through
IC9-B. Information from the “live” flip-flops is then recombined in
IC5 to generate the horizontal component of the remaining
stormtroopers. IC4 senses the condition where all eight
stormtroopers are killed before any of them reach the good guy’s
position at the bottom of the screen.

IC3 and IC5 in Fig. 8-31 make up an addressable de-
multiplexer/multiplexer combination having a set of eight J-K flip-
flops standing between them. The demultiplexer and multiplexer
circuits are addressed from the same source of counting signals:
32H, 64H, and 128H. (The board’s 128H input is inverted by IC2-B
before it is applied as the 128H address bit.) Since the demultiplexer
and multiplexer ICs are operated from the same three address lines,
it follows that they scan their data in precisely the same sequence.

These are 8-line devices. That is to say, the demultiplexer
(IC3) takes a single input line and splits the data into eight scanned
output lines. The multiplexer (IC5) works just the other way around,
accepting eight scanned inputs and reassembling them into a single
output line, SH or SH. The eight outputs from the demultiplexer go
to eight different J-K flip-flops, each representing the dead-or-alive
status of each stormtrooper. The active-high Q output of each
flip-flop then makes up an input line to the multiplexer.

Each address count represents the horizontal position of a
stormtrooper. When the address inputs to the demultiplexer/
multiplexer combination are 32H=64H=128H=0, for example, the
beam on the screen is generating the horizontal component of the
first stormtrooper on the left. When the count changes to 32H=1,
64H=128H=0, the beam is scanning the second stormtrooper from
the left. This demultiplexer/multiplexer scanning process continues
through the eighth address combination, 32H=64H=128H =1, the
point on the screen representing the horizontal position of the last
stormtrooper on the right.

This addressing scheme thus scans the stormtroopers one at a
time, beginning at the left-hand end of the line. In Fig. 8-31, IC6-A
determines the dead-or-alive status of the first stormtrooper, IC6-B
takes care of the second stormtrooper from the left, and so on
through IC9-B that determines the status of the last stormtrooper
on the right.

370

Putting this information all together, the three address lines to
the scanning system causes IC3 to generate a sequence of outputs
representing the horizontal position of each stormtrooper, the flip-
flops determine whether the stormtrooper being scanned is sup-
posed to be dead or alive, and the multiplexer reassembles the
information into a single string of sequential dead-or-alive informa-
tion.

IC2-A uses 128H and 256H inputs to window the line of
stormtrooper figures. This EXCLUSIVE-OR gate makes certain
there are never more than eight stormtroopers on the screen at any
given time, and causes them to appear fairly well centered where the
128H and 256H signals have opposite colors. This windowing infor-
mation from IC2-A is combined with a HIT signal (HIT inverted by
IC2-C) at IC1-B. The interaction between the HIT signal and win-
dow information will be described in a moment.

The stormtrooper information at IC5 is also windowed by the
output of IC2-A, but the windowing information in this case is further
refined by the 8H and 16H inputs to IC1-A. These two additional
windowing parameters reduce the horizontal size of each
stormtrooper to 8H and inserts a 24H blank space between each of
them. The 24H blank is inserted so that the good guy has a chance to
slip between two adjacent stormtroopers without getting shot by
one of them.

Now suppose the game is reset for any one of three reasons: (1)
all eight stormtroopers are successfully killed, (2) any one of them
reaches the bottom of the screen, or (3) the good guy is shot by one
of the stormtroopers. This reset condition sets CLR in Fig. 8-31 to
logic 0, where it remains until the player depresses the START
button to begin another attack sequence. While CLR remains at logic
0, the preset inputs to all eight J-K flip-flops are pulled down to logic
0. And taking for granted that all eight outputs from IC3 are at logic 1
at the time, the flip-flops are all set to a state where their Q outputs
to the multiplexer are at logic 1. Ultimately, this means all eight
stormtrooper figures can appear on the screen. In fact any
stormtrooper figure remains on the screen as long as the Q output of
its corresponding flip-flop is at logic 1.

The flip-flops then remain in their “alive” logic-1 states until a
successful HIT occurs. Whenever the good guy manages to shoot a
given stormtrooper, a HIT pulse occurs at the windowing input (pins
2 and 14) of IC3. The addressing scheme for the demultiplexer
works in such a way that its output is scanning the stormtrooper that
is hit, thereby setting its flip-flop to a logic-0 state. This indicates a

371

IC1—7410 TRIPLE 3-INPUT NAND T
1C2—7486 QUAD EXCLUSIVE-OR 16 gf T

IC3—74155 DUAL 1:4 DEMULTIPLEXER :)
1C4—7430 8-INPUT NAND
1IC5—74151 8:1 MULTIPLEXER I
1C6,7,8,9—7476 DUAL J-K FLIP-FLOP 12
PH 13 1c3 ;
64H _ 3 =
i
15 2
29149
3
La
Ici-B Sl

<
&
3

“dead” stormtrooper, and the multiplexer now sees a logic-0input at
that position on the screen. The figure for that particular
stormtrooper is thus eliminated until the whole game sequence is
reset again.

As far as the player is concerned, he hopes to hit all eight
stormtroopers before the game is automatically reset. If he is suc-
cessful, the Q outputs of all eight flip-flops are finally set to logic 0,
and no stormtrooper figures appear on the screen.

372

\N
13
3 14 ' T
GP-ZIE IC6-A 5 X 14 8
: |c4>_.
[_1. o .
T BALL
10 14 <
IC6-B | 1
q =
— 3
34 a
3 cra '
24 5
‘{g S—¢
3 178 0
a n
— T
3
o | |
L1d 1cea 6] 8 =
2 15
4
5—9 "
8
g 10
[65 ice-8 » 6 w55
9 \ IC5
i3 — 5
3dc 1442 15 st
=2d, co-a 11a 14
5 3
8 =110 12
€4 I1co-B
F‘c’ o] of 7
| CR

Fig. 8-31. Stormtrooper board schematic.

IC4 in Fig. 8-31 is responsible for sensing the condition where
all eight stormtroopers are successfully eliminated. The inputs to
this NAND gate come from the Qoutputs of the flip-flops. When
these active-low outputs all reach a logic-1 state, the output of 1C4
drops to logic 0 to create the BALL signal, one of the three condi-
tions required for resetting the game sequence.

The operation of the Stormtrooper board in Fig. 8-31 is far
more difficult to explain than to use. Any experimenter hoping to

373

design a game having this special figure-eliminating feature—an
elementary memory system—ought to build this game and work
through the circuitry first hand.

The Control board in Fig. 8-32 handles most of the control
functions for the Stormtrooper Attack game. Whenever the game is
in progress, for instance, IC1-A senses an alignment between the
horizontal components of the good guy and any one of the
stormtroopers visible on the screen. Whenever this sort of align-
ment occurs, a negative-going pulse from IC1-A initiates a 0.1-
second monostable timer, IC8-A. And when this short timing inter-
val elapses, the output at pin 5 of IC8-A initiates yet another timing
operation from IC8-B. The timing interval in this case is close to 0.5
second.

What is the purpose of these sequential timers? These timers
are responsible for making the stormtroopers fire at the good guy
whenever he crosses the path of any one of them. The first timer
inserts the crucial 0.1-second delay that gives the good guy a chance
to fire a round and get out of the way. IC8-B then times the interval
the stormtroopers’ ray beam appears on the screen.

Both of these stormtrooper beam timers are disabled
whenever the CLRsignal to them is at logic 0. This particular
condition occurs between the time the game is automatically reset
and the player depresses the START button. The stormtroopers, in
other words, cannot fire at the good guy until the game is started,
thus giving the good guy a chance to take his initial defensive position
without getting blasted off the screen before the attack really starts.
Be careful, though. The stormtroopers might fire a volley the instant
the game is started.

The pulse-generator circuit composed of IC1-B and IC6-A fixes
the width of the stormtroopers beam. The width of the beam can be
selected by the value of C4, the larger the value, the wider the beam.

This pulse generator is put into action on the negative-going
(leading) edge of every SH pulse from the multiplexer circuit in Fig.
8-31. The beam, in other words, always appears to come from the
left-hand edge of an advancing stormtrooper figure. Thus the
stormtroopers are all right-handed, a fact that might help the good
guy’s strategy.

The R-Sflip-flop made up of IC1-C and IC1-D determines
where the stormtroopers’ beams begin and end. The SV signal to
one of the inputs to this flip-flop ensures that the beam always starts
from the line of stormtroopers, and the VRST input makes certain
the beams travel all the way to the bottom of the screen.

374

So there are three basic elements that make up the
stormtroopers’ beams. IC1-A and the two timers determine when
the stormtroopers fire and the duration of their volley, IC1-B and
IC6-A determine the horizontal position and width of each beam,
while IC1-C and IC1-D fix the position and length of the beam in the
vertical plane. All three of these stormtrooper beam parameters are
NANDed together at IC4-A, resulting in the complete video infor-
mation for that part of the game.

A dead stormtrooper, incidentally, cannot fire a round at the
good guy simply because the SHpulse at IC1-B cannot occur. That
particular pulse is eliminated at the Stormtrooper board.

Whenever the good guy depresses his FIRE button, the timer
circuit on the Figure board (IC3 in Fig. 8-30) generates a GFP pulse
that lasts about 0.5 second. This positive-going level is fed to pin 3 of
IC4-B to determine the good guy’s firing-time interval.

The R-S flip-flop built around IC2-B and IC2-C fixes the vertical
length of the good guy’s beam. The SV input to this flip-flop always
starts the good guy’s beam at the line of stormtroopers, and the GV
input ends the beam at the good guy’s position. The good guy’s beam
is actually drawn from the line of stormtroopers to the good guy, but
the visual impression is that the good guy is firing upward on the
screen, and it is a visual impression that is more important in this
case.

The pulse generator composed of IC2-D and IC6-C fix the
horizontal position of the good guy’s beam. The circuit operates from
a GH signal, making the beam appear from the left-hand edge of the
good-guy figure. The good guy, in other words, is a southpaw.

You should be able to see that the good guy’s beam circuit is
practically identical to that of the stormtroopers. The only real
difference is that the stormtroopers fire automatically after a 0.1-
second delay, whereas the good guy fires at any time the play
depresses the FIRE pushbutton.

The good guy’s beam parameters are all combined in IC4-B to
create his beam video signal. The width of the good guy’s beam is
determined by the value of C5.

Thus far we have accounted only for the two beam figures
generated at the Control board. We have yet to see exactly how the
good-guy and stormtrooper video signals are assembled.

___The horizontal and vertical components of the good-guy figure
(GHand GV) are effectively ANDed at IC7-B, then passed to the
blanking gate, IC2-A. An active-low version of the good-guy figure
emerges from IC2-A as long as the pin-1 input to that gate is resting

375

H1aIm Wv3g © HO4 SO
HLQIM WV38 S HO4 #O
10313S «

—
[}
a
>

i
|

>
[72]

!

I

' i -
*—
g-83l | gmo [Z v-e0
| 6 8 S 9
.ﬁ 2 e .ﬁ <

AOLP 2 A222 M22e <K i

R ey “edy 1w
~-A\G ¢

376

“»§oeNY 12do0.IUIOLS J0) DNBWSYIS PIBOg |0JJU0D 2E

g b1y

H3IWIL TvNQa 955—82l

HON LNdNI-¢ avNO 20vL—LOI
H3IIH3IANI X3H $0¥L—80lI

aNVN LNdNI-¥ vNag 02¥.—S2I
ANVN 1NdNI-€ 37dIHL 0L yZ—+DI
ANVN LNdNI-2 avND 00v.—E2 101

1iyg

g HO

]
a-92l 9-901

NICNE

8-¥Jl

A9

~®-d 49

377

atlogic 1. And as long as IC2-A is thus passing the good-guy figure,
that figure is ORed with the other game components at IC5-A.

The pin-1 input of IC2-A drops to logic 0 and blanks the good-
guy figure from the screen whenever he is hit by a beam from one of
the stormtroopers. To see how this blanking feature works, note
that the pin-1 input of IC2-A is controlled by the output of a R-S
flip-flop,IC3-A and IC3-B. A logic-0 input to IC3-B from CLR sets
this flip-flop into a condition that places a logic-1 level at pin 1 of
IC2-A, allowing the good guy figure to appear on the screen. The
good guy, in other words, always appears on the screen whenever
the game is started.

The good guy is blanked from the screen whenever the pin-1
input of IC3-A goes to logic 0. This happens only when one of the
stormtroopers manages to kill the good guy. Recall that IC1-A
senses an alignment between the horizontal components of one of
the stormtroopers and the good guy. This logic-0 signal goes to pin 2
of IC7-A where it is effectively ANDed with the stormtrooper beam
signal from IC4-A. If the stormtrooper beam and alignment of the
good guy and a stormtrooper occur at the same time, the output of
IC7-A goes to logic 1. ~

IC6-F inverts this good-guy-hit signal and sets the R-S flip-flop
to a condition that blanks good guy from the screen. Once the game
is started, good guy remains visible on the screen until he is hit by a
stormtrooper’s beam. If the good guy manages to avoid being hit, his
figure remains on the screen throughout the game.

The stormtroopers’ horizontal- and vertical-figure compo-
nents, SH and SV, are combined at IC7-C and blanked at the
appropriate time by IC7-C. The stormtrooper video signal is then
applied to IC5-A, where it is combined with the beams and good-guy
figure.

Live stormtroopers are blanked off the screen whenever the
good guy fires a round. Note that GFP, the good-guy firing signal, is
applied to one input of IC7-C, creating a logic-1 level that blanks the
stormtrooper figures as long as the 0. 5-second good-guy beam lasts.
The visual impression is that the stormtroopers take cover every
time the good guy fires. Good guy can still hit one of the troopers,
even while taking cover, though.

IC5-B is responsible for sensing a hit between the good guy’s
firing beam and a stormtrooper. This NAND gate merely senses the
simultaneous occurrence of horizontal alignment and the good guy’s
firing pulse. The resulting HIT signal is used for blanking the strick-
en stormtrooper from the screen for the reaminder of the attack

378

yoeuy Jadoosuuolg Joj welbep yoo(q Bup ‘ce-g ‘614

2!‘00 >m+
(g2-g 'Bid)
J3NVd
TOHLNOD
WNOD AGH 4 4 4
@ ||
* + 3 u_ 3|
- 5 3
1H
198 T
TSon ™ (2e-8 "B13)
5 gyvo8 TOHINOD
HS
412
(ie-8'914) - w! 7
ayvos8 — — TM w 978.
< uk J1
H3d00HLWHOLS M_M*m_% dl_ 4‘4
(oc-8 613)
ayvosa 3"NoId
e
4§70

X08304NoSs

LSUA =T
HIGZ —Im-

HE 2! — B
Hbo — I
H2E —3
HO | —T-

HB — 2=
WNOD —3

AG+ —3=

o
<

A9
8
Ay

<

(-4
D
<

379

sequence. (See the application of HIT in connection with the
Stormtrooper board in Fig. 8-31.)

Finally, recall that the game is automatically stopped under any
one of three conditions: (1) all stormtroopers are killed, (2) good guy
is hit, or (3) the line of stormtroopers reaches the good guy’s
position. These three conditions come together at IC4-C in Fig.
8-32. The BALL input from the Stormtrooper board senses when all
troopers are killed off, the output of IC6-F senses the condition
where the good guy is hit, and IC3-D senses the condition where the
vertical components of the stormtroopers and good guy are on the
same level—the stormtroopers reach the good guy's position.

The output of IC4-C goes to logic 1 whenever any one of these
three resetting conditions occurs, and the signal is inverted to the
required RST signal by IC6-E.

Stormtrooper Attack Wiring Diagram

This is a relatively simple game, considering its special slow-
motion and memory features. It can be built around three circuit
boards as shown in Fig. 8-33, and put into action after selecting the
values of C4 and C5 on the Control board.

Since the circuit does not use any of the power-gobbling slipping
counters, the 45V power sources from Sourcebox can be rather
evenly divided between the boards and control panel.

380

Chapter 9
Scoring and Timekeeping

Virtually all fast-action video games call for automatic scoring, and of
course it is nice if timed games have some provisions for displaying
the elapsed time or time remaining for the play. The circuitry is
practically identical in either case, a control circuit that generates
binary numbers for scoring or time and a display circuit that gener-
ates the appropriate numeric figures on the screen.

The control and display circuits described in this chapter can be
retrofit to most of the TV games already outlined in earlier chapters,
and they can be fit into most of the game systems developed in the
remainder of this book. After looking at the basic theory and suggest-
ing some experiments, you will thus find some suggestions for
expanding games you have already built to include scoring and
timekeeping, or both.

Games described in the closing chapters of this book will include
scoring and timekeeping boards as options. What is most important,
however, is that you understand the circuitry thoroughly, making it
possible to apply them effectively and efficiently to game designs of
your own.

GENERATING NUMERIC CHARACTERS

The numerals used for these video games are built around the
familiar 7-segment display that characterizes modern electronic cal-
culators and digital clocks. Figure 9-1a shows this basic 7-segment
format with the standard lower-case letter designations.

381

The a segment is always the one across the top. The alphabeti-
cal sequence then proceeds clockwise through f. Letter g is then
reserved for the horizontal segment through the center of the figure.

The numeral 1 is thus generated by lighting segments b and ¢
only. A 2is generated by lighting segmentsa, b, g, e, and d, whilea 3
ismadeupofa, b, ¢, d, and g. If you have never done so before, work
your way through the standard 7-segment format to see how any
numeral between 0 and 9 can be generated.

Seven-segment display characters (whether in a TV game,
calculator, or digital clock) are normally originated by a BCD word, a
binary-coded version of decimal numbers between 0 and 9. The table
in Fig. 9-1b compares these 4-bit BCD words with their decimal
counterparts and the segments in a 7-segment display that ought to
be lighted or extinguished.

As mentioned in an earlier example, the 3 character is displayed
by lighting segments a, b, ¢, d, and g. Note from the table that the
BCD version of the number 3 is 0011. The corresponding 7-bit
segment output in this particular case is 1111001, where the most-
significant bit is the a segment and the least-significant is the g
segment. The 1s in the segment word represent a lighted segment,
and the Os stand for a darkened segment—one that is not shown.

Study the table in Fig. 9-1b carefully, comparing the 10 BCD
inputs with the segment equivalents and the 7-segment format in
Fig. 9-1a.

The table in Fig. 9-1b is actually the truth table for a standard
BCD-to-7-segment converter IC device. This 7448 device accepts
BCD inputs A through D (a being the least-significant bit) and
generates the corresponding 7-segment format at outputs a through
g Input G can be viewed as an enabling input that must be at logic 0in
order to enable the BCD-to-7-segment conversion process. Setting
input G to logic 1 sets all segment outputs to logic 0, thereby
blanking the figure altogether.

Assuming for the moment that you have a source of BCD
numbers and a 7448 converter for translating those numbers into a
7-segment format, turn your attention to the drawing in Fig. 9-2.
This figure shows how the segments are arranged for a display on
the TV screen. The a segment is a bar that crosses the top of the
figure, the b segment is a vertical bar that appears in the upper
right-hand side, overlapping the a bar in that corner. The c segment
is a vertical bar that is somewhat longer than the b-segment bar,
overlapping the right-hand end of the d-segment bar.

The numeric figures appearing on the screen actually have no
visible breaks between adjacent segments as the displays for most

382

‘suoneubisap uid
Ol 8tv2 8y (0) “ajqey yinay uoisiaauo? (q) ‘1ewwo) 16ip juawbes-z piepuels ey (e) Japaauod wawbaes-2 01a0g v "1-6 By

HILHIANOD o
IN3IWD3S-L OL 08 8hbL
oot O 0000000 |XXXX[1=D
8 LtootLttL|toolL] e
6 —| bLLiLiLLLfoootL]| 8
vl 00001t L|trralf ¢
—or O3 ° Lritirioofotrtof o v
°o— btotLtitotLftLotof s
| L q LtooLitofootLtof ¥ o
ol) LoOLLLLE|LLOO] € o °
Q= z 2 Loritotrttitforoo| 2 —
— —a 0000LLOJLOOO| & al & |
o —r v oLLititiLiLfooo0]| o
onlon Byepoge|vaoal g ©
1NO INawo3s | niaog | &

383

calculators and digital clocks do. This overlapping feature is not
intentional, but rather a natural result of devising the simplest
possible sort of numeric figure generator for video games.

The waveforms accompanying the 7-segment figure in Fig. 9-2
anticipate the theory of operation of the display system. The
waveforms drawn along the bottom of the figure represent three
successive H-counts from the Sourcebox. AOH, for instance, could
be 8H. And if that is the case, A1H is 16H and A2H is 32H.

The V-count waveforms in Fig. 9-2 are drawn vertically, from
the top downward, along the side of the 7-segment figure. These
waveforms represent three successive V-count sources, with AOV
being the least significant. To get a figure having the proper relative
dimensions as shown here, the AOV input should be on the same
count level as the AOH input. If AOH is taken from source 8H, for
instance, AQOV should be taken from the 8V count source.

The 7-segment pattern is thus completely defined in terms of
three successive H-count and three successive V-count signals. The
actual size of the figure is determined by the magnitude of the H- and
V-count signals used. You can build a rather large figure, for exam-
ple, by using 32H and V, 64H and V, and 128H and V. Actually those
specifications generate the largest possible figure.

You can generate a much smaller figure, on the other hand, by
using the H- and V-count sequence of 2, 4, and 8. No matter how
large or small you want to make the figure, just remember that the
proper width-to-height ratio comes about by taking the horizontal-
and vertical-count signals from corresponding sources.

Regardless of the size, the waveforms and figure in Fig. 9-2
shows that segment a can be generated only when all vertical-count
inputs are at logic 0 and A2H is at logic 0. The b segment, on the
other hand, can be displayed only when A2V=0, AOH=A1H=1, and
A2H=0. Then note that it is possible to generate the g segment only
when AQV=A1V=1 and A2V=A2H=0.

You can check your understanding of this display scheme by
making up a truth table that shows which segments are enabled at
the various combinations of H- and V-count inputs.

DIGIT-GENERATOR CIRCUITS

After working your way through the circuits and experiments
suggested in this chapter, you should be able to devise digit displays
having any display format and control scheme you want. For the
purposes of our discussion, however, the display formats are or-
ganized as follows: single digit display, 2-digit numeric display, and

384

H-COUNTS

8 = 3
2 T X

75 Hhs

SINNOD-A
)
A
<

Fig. 9-2. The basic 7-segment video digit, showing relevant H- and V-count
waveforms.

double 2-digit display. These formats cover most video game situa-
tions. Naturally we will describe a numeric character generator
board that is capable of being programmed for any one of the
standard formats. The idea here is to provide a single circuit board
that can be used for a large number of different games.

A Single-Digit Display Circuit

The circuit in Fig. 9-3 is capable of displaying a single-digit
numeric figure having any desired size and position on the screen.
This is a relatively simple circuit that can be assembled on a bread-
board in a short time. So why not build it, connect its output (SCO) to
the video input of the Sourcebox, and play with the circuit while
working your way through the theory of operation.

The numeral to be displayed is presented in BCD form at inputs
A through D to IC6. IC6 is the BCD-to-7-segment code converter
described in Fig. 9-1, and its seven outputs go to various inputs
points on a pair of 8:1 multiplexer ICs, IC7 and IC8.

A

AS—T a3
pl2
| K
B>— c
BCD Ic6 4lI0
INPUTS > =
C> e
o e
D> g
4
A3H—
AqH—
ASH~—
WINDOW SH—
A6V— <
IC6—7448 BCD TO 7-SEGMENT
CONVERTER

IC7, 8--74151 8:1 MULTIPLEXER
IC2—7430 QUAD 8-INPUT NAND

386

4
&
2 6
|
15/ IC7
14
13
12
7 ¢
A < AlH
9 9 b g
ol I <~ AOH o
T CA2V i
<A2H %
<CAOV X
4 9 ; <
3 @_l4 6
2 6 4 500
] 47
15/ IC8
14
13
2
L 7o
= | l6|8

Fig. 9-3. A single-digit numeric character generator

387

IC6 takes care of the task of converting BCD to 7-segment
information, while IC7 and IC8 perform the figure-forming logic
described in connection with the drawings in Fig. 9-2.

Recall from the material in Chapter 4 that such multiplexers can
be programmed to generate complex figures of all sorts. The figure
in this particular case is a 7-segment numeric figure. The eight data
inputs to each of the multiplexers is either an output from the
BCD-to-7-segment converter or logic 0 (ground potential). The
addressing inputs for IC7 and AOH, AlH, and A2V, while the
addressing inputs for IC8 and AQV, A1V, and A2V.

These addressing inputs are the same ones described for the
discussion of Fig. 9-2—three successive H- and V-count signals
from Sourcebox.

Suppose the system is to display numeral 3. The BCD input to
IC6 in this instance is 0011. And according to the truth table in Fig.
9-1b, the outputs atlogic 1 are a, b, ¢, d, and g. Outputs fand e are at
logic 0 in this case.

The a-segment output of IC6 goes to pin 4 of multiplexer I1C8;
so whenever that multiplexer is being addressed in such a way that
the pin-4 input logic level appears at the pin-6 output, an a-segment
logic level appears at SCO. If you have done your homework
suggested earlier in this chapter—making up a truth table relating
the H- and V-count inputs to the generation of 7-segment
information—you will find that the SCO output generates the desig-
nated segment output information at the proper place in the H- and
V-count signals.

And whether you have done this homework or not, you can
breadboard this circuit, apply valid BCD codes to the BCD inputs to
IC6 and find the corresponding 7-segment numeric character ap-
pearing on the screen.

As in the case of any complex-figure generating process, the
figure must be windowed to restrict its image to a single figure on the
screen. Without proper windowing, the figure would appear any
number of times all over the screen.

The windowing process is rather simple, once you have deter-
mined the H- and V-count signals to be used for generating the
character itself. Select three successive H- and V-count signals for
the six address inputs to IC7 and IC8, using the general rules
outlined in connection with Fig. 9-2. After that, apply all higher-
order H- and V-count signals to the window inputs, inverting some of
them as needed for fixing the figure’s position on the screen.

Suppose, for example, you choose tolet AOH=8H, A1H=16H,
and A2H=32H. This decision makes it necessary to set AOV=8V,

388

A1V=16V, and A2V=32V. That takes care of the addressing inputs
for the multiplexers. Now the remaining higher order Sourcebox
signals—64H, 128H, 256H, 64V, 128V, and 265V—must go to the
window inputs of IC2. You will want to invert some of these signals
before applying them to IC2 thereby placing the figure at some
convenient position on the screen. Review the material concerning
figure windowing in Chapter 4 if you find you are getting lost at this
point.

After fixing the address and windowing inputs, you can gener-
ate some figures by applying logic 1 and 0 levels to the BCD inputs.
Connect all four BCD inputs to COMM, for instance, and you should
find a 0 on the screen. The size of the figure is determined by your
selection of address inputs, and its position is fixed by your selection
of inverted or noninverted inputs at the windowing NAND gate, IC2.

Disconnect the grounding wire from input A, leaving the other
three grounded, and you should see a figure 1 on the screen. If you
connect nothing at all to the four BCD inputs, they automatically
assume logic-1 states, resulting in no figure on the screen. You have
most likely discovered this little fact for yourself while setting up the
circuit initially. Just remember that this system responds only to
valid BCD inputs, binary versions of numbers 0 through 9. Any input
number larger than 9 results in either a meaningless figure or none at
all,

If you want to have some more fun with the circuit in Fig. 9-3,
remove all your programming jumper wires from inputs A through D
and replace them with a BCD counter as shown in Fig. 9-4a.

This counter circuit can be clocked, using either the circuit in
Fig. 9-4a or 9-4b. The circuit in Fig. 94b is a 555 timer wired as a
monostable multivibrator. Each time the experimenter depresses
the COUNT pushbutton, the timer generates a 10-ms pulse that
increments the counter, ultimately advancing the count appearing on
the screen. The count can be cleared to O at any time by simply
depressing the CLEAR pushbutton. A numeric display system used
in this fashion is typical of game-scoring operations. Every time a
score pulse (COUNT operation) takes place, the numeral on the
screen advances one unit.

The 555 timer in Fig. 9-4c is connected as a free-running
multivibrator that has a frequency between one pulse every 6 or 8
seconds and 10 Hz, depending on the value of R2. The larger the
value of R2, the slower the oscillator runs.

The circuit in Fig. 9-4¢ can be used as a CLK source for the
counter, making the display increment automatically at the CLK
frequency. The clock can be stopped and started by means of the

389

*821n0s Bupioo}d Buwuni-saly v (0) ‘@ainos Buppod
ejgejsouow v (q) ‘indul seunod gog v (B) “sojeseuab sejoeseyo ubip-a16uis ey uim Bunuswuadxa 10} SN0 awos “$-6 "Biy

AVYO=ACY HP9=Hev
ACE=ALY HZE=HIY
ASL=A0V HIL=HOV :SS3Haayvy

AQSC=AYY HISe=HPY
ABCL=AEY HBZI=HEV :MOANIM

9 = H3IWIL WVYNA SSS—O0LD
EW\ "3ILNNOD A28 06¥L—62)
UVOLY

ot 9 glz

A0
60l

Hv310
LL|8 |6]ct
ol \

AS+

Y

ad 8y

(e-6 'DI14)
g0l 041 o9

iS
gror~Lr [}
ML c dOl1Ss
€ 51 o101 NNY
z
10—
2y g B
Wi Ol o
3Ot vd
>m+ﬁ
==
n::o.H 11 P
- nnoo Y
)2
51 0401| amio
M0 ~=—t
Wi Y SH
ey 8| ¥ wez e

Lrsr

390

STOP/RUN switch, or the display can be cleared to zero by depres-
sing the CLR pushbutton on the counter.

Free-running display counters of this sort are used for display-
ing game times.

A Two-Digit Display Circuit

The single-digit display works fine as long as the score or game
time never exceeds a figure 9. Itis capable of registering single digits
between 0 and 9, but many games call for scoring and timing larger
numbers.

Figure 9-5 shows the general display scheme for a 2-digit video
display. The two digits have identical segment designations, but are
separated by a space that is one digit wide. For most counting and
timing applications, the digit on the left is a 10s digit, while the other
is a units digit.

The scheme for generating the figures is identical to that used
for a single-digit dispaly, except for an A3H signal that is used for

>
B,

A0V

L L<aw

TENS UNITS
a a

Fig. 9-5. A two-digit numeric display, showing relevant H- and V-count
waveforms.

391

distinguishing one digit from the other. Whenever A3H is at logic 0,
the system generates the 10s digit, but when this H-count input
rises to logic 1, the system uses the same circuitry to generate the
units digit.

The circuitry for decoding BCD numbers and generating the
7-segment figures on the screen is identical to the single-digit output
circuit in Fig. 9-3. The windowing circuit is also the same.

Figure 9-6, however, shows how the basic output circuit can be
modified to generate the 2-digit format. IC12 in Fig. 9-6is a quad 2:1
multiplexer circuit that must be used for selecting the BCD words
for the two digits. Whenever the SEL (SELECT) input is at logic 0,
this multiplexer feeds IC6 in Fig. 9-3 the BCD word from counter
IC9, the units counter. As the A3H signal to SEL rises to logic 1,
however, IC12 provides the BCD word from the 10s digit counter,
IC11.

The output circuit in Fig. 9-3 is thus sampling one of two
different BCD words at any given time. It samples and displays data
from IC9 when A3H is low and from IC11 when A3H is high. IC9 and
IC11in Fig. 9-6 are connected as a 2-decade BCD counter system,
and this display scheme merely decodes the BCD numbers and
translates them into the 2-digit screen format in Fig. 9-5.

The counters in Fig. 9-6 can be incremented from either one of
the two circuits in Fig. 9-4a and 9-4b.

Figure 9-6 also shows a set of recommended window, select,
and address specifications for experimental purposes. The address
specifications are three successive H- and V-counts, the select
specification is always the next higher-order H-count, and the win-
dowing is a combination of inverted and noninverted, higher-order
H- and V-counts.

As in the case of the single-digit display, the address inputs
determine the size of the figures and the window specifications fix
the figures’ position on the screen. In this case, the SEL input
distinguishes the 10s from the units digit.

A Dual Two-Digit Display

Many video games call for keeping score for two players. This
means there should be two distinctly different sets of figures on the
screen, generally on in the upper left-hand corner and another in the
upper right-hand corner. The circuit in Fig. 9-7 is capable of doing
this sort of job, presenting two pairs of numbers on the screen. An
added advantage of this particular circuit is that it can also be used for
generating simpler numeric displays. This one circuit board, in other

392

‘66 UBnoIY) 00 Jequnu sejeseuab walsAs siyy “Aeidsip suswnu HGIP-om} 8Y) 10} Indul JBIUNOD BIp-2'V '9-6 ‘614

NIL=NAeV HI9l=HeV
AS=ALY H8=HIV

A95C=ASVY HBCI=HSY
ABCL=AYY HBCI=HPV

AP=A0Y Hy=HOV :SS3HAAVY AYI=AEVY HPF9=HEV MOANIM
Hee -10313S =
= oy o6
HIXIAILINW L2 avnNo LSivL—2LOl HO
H3ILNNOD @08 06¥L—LL ‘601 oS 1z orle IRE qp-6 OId
Woud)
Hev L | g
13s +_ 1ol bl 69l vi LS
— ¢
] ¥31Nn00 | I _l
4 sN3L [S |1t 8 [6 21 S [l [8 [6 [a! ol uv3o
]
€l s34 la clclele
(e w |» ~_ [© |o|® |»
al Ol YIINNOD ~
5 S1INN
O —
. 6 ¢
(e-6 DI4) Sl
901 OL
1NdLNO aog vl
g7]
]
Vet 2

s

393

words, can be used for a wide variety of scoring and timekeeping
situations.

The theory of operation is basically the same as that for the
single and two-digit displays already described. The only difference
is that the BCD to 7-segment decoder, IC6, is fed one of four
different BCD codes at any given moment. These signals come from
four 4:1 digital multiplexers built into IC4 and IC5.

Multiplexers IC4 and IC5 select one of four sources of BCD
numbers according to their select inputs at pins 14 and 2. The A3H
input to the multiplexers sets the blank between the two digits in
each display. The 256H select input separates one 2-digit display
from the other.

Whenever the select inputs to IC4 and IC5 and 00, for example,
the system receives BCD information relative to the 10s digit in the
left-hand display (digit LT). As A3H switches to logic 1 and 256H
remains at 0, the system selects data for the units digit in the
left-hand display (LU). The 10s and units digits in the right-hand
display (RT and RU) are selected when 256H is at logic 1 and A3H is
0 or 1 respectively.

IC2 windows the display with inverted and noninverted ver-
sions of all higher-order H- and V-counts not used elsewhere.
Whether these windowing inputs are to be inverted or non-inverted
depends on where the display figures are to appear on the screen.
Experimenting with the window inputs for a while can lead to some
useful programming information for future design work.

The circuit in Fig. 9-7 can be tested by operating it from two
sets of 2-decade counters such as those shown in Fig. 9-6. In
instances where some of the four digits are never to appear on the
screen, their respective BCD inputs can be left uncommitted, con-
nected to nothing. The resulting logic-1 levels at these inputs blank
the figures from the display.

SCOREKEEPING CIRCUITS

Keeping track of scores for video games is pretty much a
matter of counting certain events—scoring events. The circuit de-
signer merely determines which events are to increase a player’s
score, obtain a logic pulse that represents that scoring event, and
apply it to a counter circuit. Then there should, of course, be some
provisions for clearing the score to zero at the beginning of the next
game. That’s the basic process, anyway.

Scorekeeping can be raised to a rather sophisticated level,
scoring different numbers of points for different kinds of scoring

394

events, scoring more than one player, and making the scoring
process part of the game control.

The Simplest Scoring Scheme

The simplest scoring scheme is one that merely advances a
player’s score one count whenever a particular scoring event oc-
curs. Consider the Golf game in Chapter 8, for instance. A simple
counter circuit can be triggered by the SWING pulse, thus keeping
track of the number of swings in a game sequence.

Figure 9-8a shows a pair of binary counters cascaded to provide
a BCD count from 00 through 99. The scoring event, whatever it
might be, is presented as a brief positive-going pulse. The count
increments on the negative-going edge of that particular pulse. The
circuit is likewise cleared to zero by a positive pulse on the CLEAR
bus. These counters, incidentally, can be cleared and held at zero, in
spite of scoring events, by holding the CLEAR bus at logic 1.

The U outputs in Fig. 9-8a are the units BCD code that is to
operate either the left or right units input to the score pattern
generator in Fig. 9-7. The T outputs from IC2 in Fig. 9-8a are the
10s units.

A pair of counters can be used for scoring two players at the
same time. The block diagram in Fig. 9-8b shows how they can be
interfaced with the complete score figure generator. Player A’s
score increments whenever his particular scoring event occurs, and
B’s increments as his scoring events occur. The two counters in this
instance have a common CLEAR bus. They are both cleared at the
same time and under the same set of circumstances.

The ORing circuit in Fig. 9-8b merely indicates that the output
of the scoring generator is to be ORed with the game’s primary video
information before it is applied to Sourcebox’s video input.

Scoring and Game Control

Many kinds of TV games call for ending a game sequence or
changing the game pattern whenever the score reaches a certain
point. The scoring is an integral part of the game control.

Figure 9-9a shows a typical control circuit for a TV game. It is
mainly an R- S flip- ﬂop that is manually set by depressing a START
pushbutton, and it is reset by an active-low STOP pulse. Depressing
the START button begins the game, and the occurrence of the
STOP pulse ends it. Scoring becomes an integral part of the game
control when STOP is generated by a scoring circuit.

395

oo o< o oo <
3333 FEAEHH
VYY) Vi el
3
5
RTA S A .
RTB o —dr
RTC I o 104 |
I% "
RTD3— i
5
RUA
a2
RUB =
RUC =i
RUD e 6
5
3
i 1c5 |7 |
10
l3 2
A3H —q!s
3o i
256H - L
47 1C3-A F 6] 8
aaram—1[58" 1 &
A5H>————l{>?>E—B—~——-|_ ||
AGH I :

A4V

4
6 IC3- !
YL — ¢ Ic2
o~ gIC3D
A5V 3= ”f
3

A3V>——Q¢
1 7

IC1—7400 QUAD 2-INPUT NAND

1C2—7430 8-INPUT NAND

IC3—7404 HEX INVERTER

IC4, 5—74153 DUAL 4:1 MULTIPLEXER

IC6—7448 BCD TO 7-SEGMENT
CONVERTER

IC7, 8—74151 8:1 MULTIPLEXER

396

0
=
0
<

1=
(=

B S ITF _-’ —
|

[org
15
14 J
13
12
|;l.8 'é‘ —Q
] 13 1 10| 8
12 —aglf- A2V
7 11 - AlH
—_—I 10 —amilf AOH
L 15 —if- AOV
A o e AIV
i |ors l
4 5 14
2 s (c-B sco
L I1c8 = ‘_‘:)_.
3 e
2
L d7

RECOMMENED SPECIFICATIONS

WINDOW: A4H=32H A3V=16V
ASH=64H A4vV=32V
A6H=128H A5V=64V
\ ABV=128V
SELECT: A3H=16H AND 256H
ADDRESS: AOH=2H AQV=2V
A1TH=4H A1V=4V
A2H=8H A2v=8V

Fig. 9-7 A complete dual 2-digit display generator

397

igssﬁces 233 9[' B2 LR o1 27490
I A
TI—SV
+ 12| ol 8l nl sf 12] of 8| ul sl
| |
scone 14 IC1 14 Ic2
EVENT 9
- 2[3] 6lic BEIE
CLEAR i
VIDEO
ouT
DUAL 2-DIGIT SCORING (FIG. 9-7) 2 OR-ING
T3 1] 1 CIRCUIT
al m ol <| m = @ of « wl o
B EEEEEERE EEHEEEERE
SCORE COUNTER SCORE COUNTER GAME VIDEO
(FIG. 9-8) (FIG. 9-8)
PLAYER A PLAYER B SCORE
SCORING EVENT SCORING EVENT CLEARING
EVENT

Fig. 9-8. A simple scoring scheme. (a) A 2-digit score counter. (b) Interfacing two
score counters to the dual 2-digit generator circuit.

Suppose the 2-digit, single player scoring circuit in Fig. 9-8ais
to control this game. Depressing the START button causes the
output of IC3-B in Fig. 9-9a to drop from logic 1 to 0, and the pulse
generator produces a brief pulse that is inverted to a positive-going
pulse from IC4-B. This pulse is applied to the counter’'s CLEAR bus
to clear the two digits to zero.

As the game progresses, the score presumably increments,
advancing the count from IC1 and IC2 in Fig. 9-8a toward some
game-ending score. Now suppose that game-ending score is 25. So
when the 10s counter reaches the binary version of 2 (0010) and the
units counter reaches 5 (0101), the game should stop. In other
words, this game should stop the first time TB=1, UA and UC=1.

The 3-input NAND gate in Fig. 9-9c is wired to sense this
particular count. The output of that gate is normally at logic 1, but
drops to 0 when the counters show the BCD version of 25. At that
moment, the little pulse generator in Fig. 9-9¢ produces a negative-

398

going pulse that is fed to the STOP input of the game control circuit in
Fig. 9-9a, thus stopping the game action and holding the 25 scoring
figure on the screen.

The score is cleared and the game is restarted by depressing
the START button once again.

The basic idea behind the score-stopping control is to sense the
score at which the game is to stop, connecting the counter outputs
that are at logic 1 to the input of a NAND gate. The chart in Fig. 9-9b

+5V
28 o3
START — (cap SCORE
= IC4-A
=55 icac C' 2R1
STOP 'c38 __‘L 4700
START 1
G BCD ToGAME A =
dlopcsa CIRCUIT
0[00DO TENS UNITS
112029901 55_ " g01 K o1o1ﬂ
2lo0010 = 0
3|/0011
4lo100 T8 1€3-D iC4-C o8
510101 Uik _u_o
& |61 2o
2l o 1 T TR uc IC5-A
81000 =
9 /1001 GAME STOPS AT SCORE OF 25
B 15=0001 0101
LTA 1C5-A
LUA 1C3-D
LuUC -
RTA ic4-D STOP
RUA
RUC IC5-B =
GAME STOPS WHEN EITHER PLAYER
SCORES 15
D

Fig. 9-9. Circuits for controlling the game from the scoring. (a) Automatic score
clearing at the start of a game. (b) Score caunter truth table. (c) Stopping the
. game when a single-player score reaches 25. (d) Stopping the game when either
of two players’ score reaches 15.

399

summarizes the output status of a counter at its 10 different counts.
The NAND gate that senses the stop count must be large enough to
handle all the 1s from both the units and 10s counter. A 3-input
NAND gate is normally adequate, but a 4-input gate would be
required in the rather odd case where one might want to stop the
game at score of 47 (0100 from the tens counter and 0111 from the
units counter).

The circuit in Fig. 9-9d shows how to stop a game whenever
one of two player’s score reaches 15. This score-sensing circuit is
used in conjunction with a two-player scoring format such as the one
illustrated in Fig. 9-8b, and the idea is to stop the game and fix the
final scores when either player reaches the winning score.

IC5-A senses the terminal score at the left-hand display and
IC5-B senses the score at the right-hand display. IC3-D effectively
ORs the outputs, generating a logic-1 level when either player
reaches the winning score. That logic level is inverted by IC4-C
before it is applied to a pulse generator and ultimately to the STOP
input of the game-control flip-flop. Of course IC5-A and IC5-B can be
wired to sense any desired terminal score.

The circuit in Fig. 9-10is a complete two-player, 2-digit score-
oriented game control board. It combines all the circuit features
described in Fig. 9-9into a single board. The terminal score for both
players is fixed at 45 in this case. But if the input connections to
IC2-A and IC2-B are jumper wires, this one board can be used for
stopping a game at any desired score having no more than three 1sin
its BCD format.

This board must be interfaced with the score generator in Fig.
9-7 by connecting the counters’ outputs to the corresponding BCD
inputs on the score generator. The PLAY and PLAY terminals from
IC1-A and IC1-B should go to the game’s initialization circuitry. A
later section in this chapter shows this interfacing procedure in
greater detail.

Before leaving the general topic of game control from scoring
circuits, it must be pointed out that the same scheme can be used for
controlling sequences within a single game. Target speeds, for
instance, can be increased when the score reaches a certain point,
and then the game can be ended when a player’s score reaches yet
some higher level.

Weighted Scoring

Many games in the real world call for weighted scoring, making
some game scores count more than others. A touchdown in football,

400

for instance, is worth 6 points, a field goal is worth 3, and a point after
touchdown is good for 1 point. We can do the same thing with video
games.

The circuit in Fig. 9-11 shows a rather simple weighted scoring
circuit. It has nine scoring inputs labeled S1 through S9, and a CLK
output. The CLK output clocks a scorekeeping counter such as any
of those described in the previous two sections of this chapter. The S
inputs accept active-low scoring-event pulses from the game sys-
tem.

Suppose a certain game event calls for scoring 2 points for one
of the players. The game system generates a negative-going pulse
that is applied to the S2 input, and the ultimate result is that two clock
pulses emerge from the CLK output. An event in the same game
might then call for a 4-point score, and in this case the event-scoring
pulse is applied to S4, causing the CLK to generate four output
pulses.

Since the CLK output triggers a counter, it follows that the
player’s score will increment either two or four units, depending on
which scoring event takes place. This circuit actually handles weigh-
ted scores anywhere between 1 and 9. The experimenter has the
option of using any one or all the available weighted-scoring inputs.

To see how this circuit works, use the waveforms in Fig. 9-11
while tracing the action of the ICs. And for the sake of this discus-
sion, suppose a particular scoring event is to increment the player’s
score by 5 points.

When the 5-point scoring event occurs, a negative-going pulse
from the game circuit appears at the S5 input of IC5. This pulse
should last at least 100 us, a requirement that is easily satisfied by
the scoring procedures described in this book.

IC5 is listed as a priority encoder in most digital manuals, but it
also works as a decimal-to-BCD converter. Its inputs and outputs
are both active low, so pulling its pin-2 input down to logic 0 causes
its four outputs to take on aninverted, or active-low, BCD version of
decimal 5. The active-high version of BCD 5 is 01001, and the
active-low version from IC5 is 1010. Pulling pin 2 down to logic 0
thus causes the four outputs to show 1010, where pin 9 is the
least-significant-bit position and pin 14 is the ICs most-significant-bit
output.

A 4-input NAND gate, IC2-B, senses the fact that a scoring
pulse has been applied to IC5 and generates an active-high version of
it. See the IC2-B output waveform. This waveform is applied to a
resettable monostable multivibrator, IC3-A, which generates a posi-
tive pulse having a duration of about 25 us.

401

< @ o0 O
23333
IC1—7400 QUAD 2-INPUT NAND A A '
IC2—7410 TRIPLE 3-INPUT NAND
IC3—7404 HEX INVERTER
IC4, 5, 6, 7—7490 BCD COUNTER
p —
i2] of 8l [s———
|
A SCORE 0 Ica
PLAY -
RI -
22K 2[3[sl
14 3INEG D
IICI-A3 I C) IC3-A 1B
STARTZ olicrc B ™0
OlFR)
5 - = j4ron 2’_3] A
5| o8)o‘.
[| PLAY 1c6
BSCORE
S[e[] s———
| C——

RUA —ast-
RUB g
RU C~ft
RUD =it

OluF le
Sl 1 lo(ici-D [13
Ic3- R3 C2 ‘

470Q

402

« O o
HhH g5 *PROGRAM JUMPER
‘ * WIRES
e
J 12
f"-&lcz-A)’J
Wiy
29 8 Il 5
1C5
149 Z=c3
OluF
2| 3 6| n
TX 3 |‘|;c3-C'
jICZ-B 85I°NS
5 7
[~-C4
Tal o S
14
|° Ic7
—o
2 98 Il 5
P
a2 s
U4 co-c Yol8
Js5 11
= =
g @ © 2 *PROGRAM
L3 L= [JUMPER WIRES

*OMIT JUMPER WIRES FOR
UNLIMITED SCORING

Fig. 9-10. A complete two-player game contiol circuit

403

The pulse from IC3-A always begins at the start of the scoring
waveform. And after being inverted by IC1-D, it is applied to the
pin-11 loading input of IC4, a presettable binary counter. This
counter, in other words, is loaded with the binary output of IC5 the
moment any scoring pulse occurs.

The negative-going pulse from IC1-D also triggers a second
monostable multivibrator, IC3-B, causing it to generate a second 25
us pulse. Note from the waveforms that the pulse from IC3-B
occurs as the first pulse ends.

This second pulse sets an R-S flip-flop composed of IC1-A and
IC1-B. Setting the flip-flop in this fashion snaps the output of IC1-A
to logic 0 and the output of IC1-B to logic 1. These two outputs from
the R-S flip-flop cause two important events to happen simultane-
ously: The logic-0level from IC1-A enables counter IC4 by pulling its
pin-4 enabling terminal to logic 0, and the logic-1 level from IC1-B
opens gate IC2-A so that 1V pulses can appear at the CLK output.

Summarizing the action to this point in the discussion, a
negative-going pulse at any one of the scoring-event inputs creates
an inverted BCD number at the output of IC5, a number represent-
ing how much the scoring should advance. The same input pulse
initiates a sequence of two 25 us pulses, the first loads the counter
and the second starts the counter and lets clock pulses emerge from
the CLK output.

Now the question is this. How does the circuit know when it is
supposed to stop chalking up points? By the time the counter is
enabled at pin 4, a number has already been loaded into the counter’s
preset inputs. Suppose that number is an inverted binary 5, 1010.
The counter, however, interprets this as an active-high input, see-
ing it as binary 10. So when the counter is enabled, it begins counting
upward from 10 at the 1V rate. (Note that 1V is connected to the
pin-14 clock input of IC4.) And when the count reaches the maximum
of binary 15 (1111) the pin-12 max/min output rises to logic 1,
resetting the flip-flop made up of IC1-A and IC1-B. This resetting
action both disables the counter and turns off the gate that has been
allowing CLK pulses to appear.

In short, the number of 1V clock pulses required to make
counter IC4 reach its maximum count is equal to the score value
entered at the S inputs. Pulling S1 to logic 0 makes this circuit
generate one CLK pulse, pulling S2 to logic 0 makes it generate two
CLK pulses, and so on through S9, which causes nine CLK pulses to
occur.

Figure 9-12 shows a pair of weighted-scoring circuits interfaced
with the two-player score counters and figure generators described

404

‘siod 6 pue | UISMIS] SBI00S UBIOYIP SIueAd swEeB Juasayp Buinb so4 o Buuoas payBiem v *11-6 By

SIN3AT ONIHOOS

(43143ANOD @08 OL TYWID3Q)
H3AOON3 ALIHOIH Ly vL—G6D)
HILNNOD AHVNIG 318V113S34d 161pL—1DI
H3IWIL TvNQa 955—¢€0!1
Gl ANVN LN4dNI-v IvNQa 02vL—201
/ HON LNdNi-Z2 avno 20vL—12I1

|.mh|
adool | gmiof - adoor [Tu o favio ||
$0 = ¥ Y P T
- | - L] $21
2l 4 €
i
Q) T|v-g91 [5 _ 2B AT q{o_
6 S 9 8 3
cy3 4 el
sez 1] ~
] T
0 1
i1e Ol €S
-
21 ¥

'Dlll_.l—l.v 3H00S

‘NI sT001

405

2-PLAYER, 2-DIGIT SCORE
GENERATOR —== SCO
(FIG. 9-7)

i [§
LT (4) ¥- LU (4)Y-RT (4} RU (4)#
2-PLAYER SCORING

(FIG. 9-10)
A SCORE B SCORE
T CLK f CLK
WEIGHTED WEIGHTED
SCORE SCORE
(FIG. 9-11) (FIG. 9-11)
PLAYER A PLAYER B
SINPUTS SINPUTS
GAME CIRCUIT

Fig. 9-12. Interfacing the weighted scoring circuits with 2-player scoring and ful
score character generator.

previously in this chapter. Whether used in this particular configura-
tion or any other scoring scheme, the weighted-scoring circuit
merely replaces the CLK or score-event pulse inputs to the scoring
counters.

The Pinball game in Chapter 11 uses the weighted-scoring
scheme in its most sophisticated form.

TIMEKEEPING CIRCUITS

Timekeeping operations are relatively straightforward: Pick up
a 1-Hz source of pulses, apply them to a counter that counts seconds
and minutes, then attack any sort of desired automatic start, stop,
and clearing controls.

Figure 9-13 shows how to generate a precise 1-Hz timing pulse
from the 60-Hz VRST source. The scheme uses two counter circuits
composed of a 7492 cascaded with a 7490. The 7492 is a special
clock-operation binary counter that automatically counts the sequ-
ence 0 through 5, then resets to 0 again. This particular counter

406

serves the dual function of a divide-by-6 frequency counter and a
binary counter for 10s of seconds. In Fig. 9-12, the 7493 is usedas a
divide-by-6 circuit.

VRST pulses applied to the pin-1 input of the 7492 thus emerge
from pin 8 at the rate of 10-Hz (60 Hz divided by 6). The 10-Hz
pulses are then applied to the pin-14 input of a 7490 BCD counter
which is connected as a symmetrical divide-by-10 counter. The 7490
thus divides the 10-Hz signal from the first counter to a precise 1-Hz
waveform having a duty cycle of exactly 50%. This 1-Hz signal
serves as the main clocking source for all timekeeping operations.

The circuit generates its 1-Hz output only as long as the
START input is at logic 0. Whenever START input goes to logic 1 for
any reason, the 1-Hz pulses no longer appear at the output because
the counters are effectively cleared and stopped. Pulling the START
input back down to zero makes the 1-Hz pulses appear once again.

This 60-Hz-to-1-Hz converter, or frequency divider, is incor-
porated in the most useful kind of timekeeping circuit, shown in Fig.
9-14. VRST is applied to pin 1 of IC3, and aslong as the game is inits
PLAY mode, the precise 1-Hz pulse appears at pin 11 of IC5.

IC6in Fig. 9-14 serves the dual purpose of a BCD counter and a
divide-by-10 frequency divider. The 1-Hz pulses appearing at its
pin-14 clocking input increment this counter at the 1-Hz rate, making
its four outputs generate the appropriate BCD code for units of
seconds.

The most-significant-bit output of IC6 changes at a rate of once
every 10 seconds, the input clock rate of 1 Hz divided by ten. This
output pulse clocks IC4, another 7492 divide-by-6 counter. The
three outputs of IC4 increment once every 10 seconds, generating
the 10s-of-seconds cycle of 0 through 5.

I
8 ;r 12 u[s

VRST-#—q 7492 7490

START -2

Fig. 9-13. A simple frequency divider circuit that converts the 60 Hz VRST pulse
from Sourcebox into 1 Hz timing pulses.

VRST, |
e IC3]:O IC5
—a
I1HZ
6| 7 10 2] 3| s| 10
START 14
—B— 3 —
o [ICI-A - PLAY

- Ls. 12 | \“4

l:4 s N [T 1cFo \HL i Tic2-a\3
iy I-

s

X ‘ - —_-7.0?;1.‘: gl < ._._..7

TUPLAY L4700

IC1, 2—7400 QUAD 2-INPUT NAND
IC3, 4—7492 -6 COUNTER
IC5, 6, 7—7490 BCD COUNTER

408

SECONDS UNITS SECOND
<gg¢

TENS MINUTES UNITS
< @

?

(8]
-
n

A

ip=STD

I MUC
= MUD

—= MU

12 9] 8l I 5 1 9

o
]
rT:
©
o
o

l-

|
—q Ice —0 ica

Iy
>

STOP AT [[INPUTS IC2-B
(MIN) || T T2
i MUA +5V
2 MuB +5V
3 MUA MUB
4 Muc +5V
5 MuC MUA

MV INPUTS
AS REQUIRED |_%

na— g lica-c mzo"L—;.éﬁﬁ

cl 3r2B
L4700

Fig. 9-14. Atimekeeping circuit that can measure elapsed game time from 0 min.
00 sec. to 9 min. 59 sec.

409

Considered together, IC6 and IC4 make up a seconds counter
that cycles between 00 and 59 seconds. The pin-8 output of IC4
changes state once each minute, so that pulse is used for clocking
another BCD counter, IC7.

IC7 serves the function of a minutes counter. Its counting range
is between 0 and 9, making it possible for the overall timekeeping
system to count from 0 min. 00 sec. through 9 min. 59 sec. And that
is certainly enough time for executing good TV games.

The counting circuit in Fig. 9-14 can be interfaced with a video
game via the START and STOP control logic. Whenever the game is
to be stopped for any reason, the STOP input momentarily goes to
logic 0, thereby setting the R-S flip-flop to its PLAY state: output of
IC1-A=0and output of IC1-B=1. Setting the output of IC1-B tologic
1in this fashion stops the 60-Hz-to-1-Hz frequency divider IC3 and
IC5), and deprives the remaining counters of clocking pulses. The
counting operation thus stops with IC6, IC4, and IC7 showing the
elapsed time interval. .

The elapsed time then remains stored in the seconds and
minutes counters until the next game cycle is started by momentar-
ily pulling the START input to IC1-A down to logic 0. Triggering the

input in this fashion does two things: It sets the output of
IC1-B to logic 1 so that the 60-Hz-to-1-Hz frequency divider can
begin generating its 1-Hz timing pulses again, and it triggers a pulse
generator (IC1-C and IC1-D) that clears the seconds and minutes
counters to zero.

Whenever a new game cycle is started, then, the timekeeping
outputs are automatically cleared and then begin incrementing at a
1-Hz rate. As described to this point, the circuit in Fig. 9-14 works
like a stopwatch, a pulse at START immediately clears the display
then allows timing to start, and a pulse at the STOP input stops the
counting action and holds the elapsed time display.

Most video games using a timekeeping feature are timed
games. That is, the games are to be automatically stopped after a
certain amount of time has elapsed. The three NAND gates shown in
the insert in Fig. 9-14 can be added to make a time-stop game.

This circuit is simply a NAND gate connected to a pulse
generator. The input NAND gate, IC2-B, senses the time the game
is to be stopped, and IC2-D generates a brief negative-going pulse
that can be applied to the STOP input of IC1-B to stop the counting
and hold the elapsed-time display.

The chart accompanying the circuits in Fig. 9-14 show which
timing outputs should be connected to the inputs of IC2-B. If the
game is to be stopped after 3 minutes, for instance, the inputs to

410

1C2-B should be MUA and MUB from IC7. Once the game is started
by a negative-going pulse at the START input of IC1-A, it runs until
MUA and MUB both go to logic 1 at the end of 3 minutes. The
resulting negative-going pulse from IC2-D then stops the clocking
operation.

If the game, itself, is controlled by the PLAY and PLAY outputs
of IC1-A and IC-1B, the game operation is tied to the clocking
operations, as the timer goes, so goes the game.

Figure 9-15 shows how the timekeeping circuit can be inter-
faced with the figure generator from Fig. 9-7 and the game logic
system.

RETROFITTING SCORING AND TIMEKEEPING TO EXISTING GAMES

Many of the video games described in earlier chapters can be
retrofitted with certain versions of the scoring and timekeeping
circuits presented in this chapter. Retrofitting the circuits is gener-
ally a matter of adding two more circuit boards, calling for little, if
any, surgery on existing systems.

Golf Score and Hole Designation

Perhaps the simplest game to retrofit is the Golf game featured
in Chapter 8. Adding the circuit in Fig. 9-16 to the Golf game

FIGURE GENERATOR
(FIG. 9-7) 560
<« mOE <@OO L@OO
52333 kEkEEE ZZEe
WY *th* AAA
|
<« m OO
S88S gfopp 5395 -
- = 2 L7 T B B] v wuow w
VRST—3=—o i o
TIMEKEEPING CIRCUIT >
(FIG. 9-14) w
=
START—*—% | 57op
] Y
GAME GAME VIDEO il on
SYSTEM o VvID
ouTt

Fig. 9-15. Interfacing the timekeeping circuit with the character generator and
some sort of video game that must be ended after a certain amount of time has
elapsed.

411

provides a nine-hole score between 00 and 99, as well as a numeric
designation of the hole being played.

IC1 and IC2 make up the scoring portion of the game. These
two BCD counters are cascaded to count binary numbers 00 through
99, and they increment each time the pin-14 clock input of IC1 sees a
positive-going pulse from BT, the ball timer in Fig. 8-18. Recall that
this timer outputs a positive pulse each time the player depresses
the SWING pushbutton. So the counter increments one unit each
time the player takes a swing at the ball.

The tally can be reset to zero at the beginning of each game by
depressing the SCORE RESET pushbutton. This pushbutton, of
course, should be added to the Golf control panel.

The BCD outputs of IC1 and IC2 go to the numeric-figure
generator circuit board shown in Fig. 9-7. Using the connections
shown here, the Golf score appears on the screen in the left-hand set
of digits.

The right-hand units numeral on the screen will show which
hole is being played. IC9 in Fig. 8-18 is the hole counter for the Golf
game. Its output is a BCD number between 0 and 8; so if its “C”
outputs were applied directly to the RU inputs on the score figure
generator, the player would see the holes being numbered bet-
ween 0 and 8, instead of the proper 1 through 9.

The count from the Golf hole counter must be corrected by
adding 1 to it. When the hole counter is reset to 0, then, the screen
will show hole number 1. Then when the hole counter generates the
BCD equivalent of 1, the screen will indicate hole number 2, and so
on.

Correcting the hole count is a simple matter of adding binary 1
via an adder circuit. IC3 in Fig. 9-16 is a 4-bit binary adder that is
wired to add 1 to whatever BCD number appears at its Cinputs. The
C inputs in this case are taken form the corresponding C connections
running between the logic and figure boards for Golf. The number is
summed with 1 to yield the corrected hole-number at the RU outputs
of IC3 in Fig. 9-16.

The right-hand 10s (RTA through RTD) are connected to
ground, thus disabling that digit and blanking it from the screen.

IC1 and IC2 thus keep track of the Golf score, while IC3 puts
the hole-count designation into the conventional golf format. All that
remains to be done is combine the main game video with the number
video. IC4-A, IC4-B, and IC4-C in Fig. 9-16 take care of this job by
effectively ORing together the game and number video.

412

“JoD Jo aweb ey} 10) un2utd Bupaquinu-ajoy pue Bupoos 91-6 Bi4

(2-6 'OI1d)
(x0832$4Nn0s 01) 00S
STVHIWNN
HLIM O3QIA (616 D)
&(© (o=l GNYN LNdNI-2 QYND 00vL—+I
] NV H30QV 119-v 8€8v.—€0 =
SN2 YILNNOD QOd 06vz—2 10l UOLb ¢ 13S3W

M3 3400s

—
T
81-8 'OId EOEH_I'M =

8 &%
_._E\.___ 4_ «m «m *o_n_a_o.ﬁ orle [s [z 1NAE I
I] Do 14
T = 2ol g 191 : WOH4
o _ 3
1 S Si |2 |9 |6 n__mmm_vn_ 8 |6 2
(26 "O1d)
it BT B 08 B~
2 el [
mumm mmmm mumu S 6 & mllen_Soj<

413

The input to IC4-A is the Golf video output that normally goes
directly to the Sourcebox. The input to IC4-B is the SCO, or score
video, from the figure-generating circuit in Fig. 9-7. IC4-C then
effectively ORs these two active-low signals to yield a combination of
game and scoring video. The output of IC4-C thus goes to the
GAME VID IN on Sourcebox.

The circuit in Fig. 9-16 can be built into a plug-in board, and it,
along with the board from Fig. 9-7, can be added to the existing
boards for Golf.

Automatic Scoring for Ambush

The Ambush game described in Chapter 8 is a fast-action game
that makes automatic scoring a practical necessity. The scoring
scheme presented here scores as though there are two sides, the
good guy and the bad guys. A 2-digit display in the upper left-hand
corner of the screen keeps track of the total number of bad guys that
appear on the screen, and another 2-digit display in the upper
right-hand corner scores the number of bad guys the player actually
shoots.

Adding the automatic scoring is thus a matter of applying the
two-player scoring circuit from Fig. 9-10. Of course this board must
be interfaced with the standard double-scoring figure generator in
Fig. 9-7. So it turns out that the rather simple Ambush game can be
expanded to include full scoring by adding two more circuit boards.

Figure 9-17b shows the wiring block diagram for interfacing the
two scoring circuits. Connecting the scoring circuitry to the existing
Ambush system is even simpler. Note that there are only three
inputs to the two-player scoring board from the Ambush circuitry: a
START input from the control panel in Fig. 8-22, a LOAD connec-
tion from Fig. 8-25 to the board’s A SCORE input, and a special
connection from pin 5 of IC7-A in Fig. 8-25 to the BSCORE input.

Allow unlimited scoring by removing all six jumper wires shown
in Fig. 9-10.

Depressing the START button on the Ambush control panel
thus starts the game and clears both score displays to zero. Each
time a new bad guy appears on the screen, the PLAYER A score
increments one unit; and each time one of the bad guys is shot, the
PLAYER B score increments. The Ambush game automatically
ends after 3 minutes, leaving the final scores displayed on the
screen.

The Ambush video output is combined with the scoring output
by means of the simple circuit shown in Fig. 9-17a. This circuit uses
three 2-input NAND gates that happen to be uncommitted on the

414

UNCOMMITTED GATES ON

SCORE FIGURE GENERATOR
(FIG. 9-7)

5o . IC1-B FIGURE GENERATOR BOARD
6 -
(FIG. 97 (FIG. 9-7)
5 ’ VID OUT
3 (TO SOURCEBOX)
GAME VID OUT —;[DO‘S 152
(FIG. 8-26) e A
Tz S .2
ITXIT I DD > > > @
TIrosu38832228538%8
| [
. L]
TIL53553532333383
< < g 2 o < g < <C g Q G <

VID OUT
(FIG. 9-17a)

<moo<moo<moo<moo
i B R E EHEEEREEEE
+5V
== 2-PLAYER SCORING BOARD
(FIG. 9-10)
COMM
START A SCORE B SCORE
CONTROL BAD GUY HIT
PANEL LOAD PINS
(FIG. 8-23) | (FIG. 8-25) IC7-A
(FIG. 8-25)
B

Fig. 9-17. Scorekeeping circuit for Ambush.

score-figure generator. Wire IC1 on the score-figure generator as
shown here, applying the SCO terminal from Fig. 9-7 to the inputs of
IC1-B and the GAME VID OUT from Fig. 8-26 to the input of IC1-C

(instead of to the Sourcebox).

Connecting the pin-11 output of IC1-D to the GAME VID IN of
the Sourcebox completes the operation. Ambush with full scoring is

then ready to go to work for you.

415

Chapter 10
Figure Rebound Effects

The classic table-tennis and squash video games rely on a bouncing,
or rebounding, effect. Whenever the ball strikes a paddle or one of
the fixed barriers, it instantly changes its direction of motion.

Such effects are appropriate for a lot of other kinds of video
games as well, and the purpose of this chapter is to provide the
background necessary for working the rebound effect into any de-
sired custom game.

Most of the examples cited here assume the rebounding figure
works from a slipping counter. As pointed out near the end of the
chapter, however, it is just as easy to achieve the same effects witha
figure generated by one of the position programming circuits in
Chapter 8.

The basic idea behind the rebound effect is to sense the mo-
ment a moving object makes contact with a second object, generally
a stationary one, then reverse the horizontal or vertical direction of
the moving object.

Suppose, for example, a ball figure is moving horizontally to the
right. It then strikes a fixed figure on the right-hand side of the
screen and immediately switches direction so that it is moving
horizontally to the left. That is one particular rebound effect. The
same idea can be applied to vertical figure motion, with the object’s
direction of motion switching from up to down as it hits a figure near
the top of the screen.

Figure 10-1 shows an up/down rebound scheme. It includes
figures for generating fixed top and bottom figures as well as a ball

417

MOVE DOWN

TOP TOP
FiG. HIT
VIDEO
e o] s
’ — 3
OTTOM BOTTOM
FIG. HIT
MOVE UP

Fig. 10-1. Basic block diagram for rebound effects.

figure that is made movable from a motion-control circuit. The
outputs of the three figure generators are combined in the game
video circuit to produce a video output for displaying them on the TV
screen.

Whenever the ball figure and top figure meet, however, the
TOP HIT block generates a logic level that sets the ball’s motion-
control circuit for downward motion. Presumably the ball then
moves in a downward direction until it contacts the bottom figure. At
that moment, the BOTTOM HIT block generates a logic level that
makes the motion control circuit move the ball figure upward.

The ball can thus bounce up and down between the top and
bottom figures at a rate determined by the ball’s velocity and the
spacing between the fixed lines.

Of course the same general idea applies to horizontal ball
motion, substituting left and right fixed figures for the top and
bottom ones, and using a horizontal-motion-control circuit. Figure
10-2, however, shows the circuitry for the vertical ball-bouncing
circuit.

The ball figure in this instance is a simple 4H x 4V square, and
the fixed figures are white lines near the top and bottom of the
screen. The horizontal position of the ball figure is fixed near the
center of the screen by the 128H signal being fed to a negative-edge

418

“UNSJIO UOHBASUOWSP pUNogal [ed1uaA v "2-01 "Bi4

H3ILNNOO

ONIddITS
IVOILH3A OL

03s/4 ¥9°0 dN

3 0 L 3

1OVINOD WOL10d

03S/4 ¥9°0 NMOQ

b 0 L 0

1JVINOD dOL

3SNOJS3d

OAL DAC DAY OA8

1N3A3

34NOI4
T1v8
AbXHY

o3aA pac)

INVD An|oh

g9l vy

1OVINOD
3-£01 dO1

OA8 L‘
ONAY -
ONZ ~eT
AL

WoLiog

AS+

VOLre Ly

v-90I

2y g0l
100 HI52
20

a-vol

oATrQH UOLY = 4

iy

V-0l

(H3INNOD ONIddITS
IVOILHIA WOHS)

20l & WASZL
%)

m 240l

2 914 doL *
=]

gvol SOl

g lovinoo V€I 914108 M_ -

A9G2

3-+0I

4-+¥0l

ASZL V-0l
AYS
AcE
ASL
A8

419

pulse generator made up of IC1-B and IC4-D. The vertical, movable
portion of the ball figure comes from another pulse generator (IC1-A
and IC4-C) which gets its input information from the 128V output of a
vertical-slipping counter circuit.

The ball figure is assembled at IC7-A and then inverted by
IC6-B. One portion of this inverted ball signal goes to IC2-A where it
is essentially ORed with the top and bottom figures, and another
portion goes to the bottom and top contact sensing circuits, IC3-A
and IC3-B.

The bottom figure in this case is simply the narrow 256V line,
while the top figure is an 8V white line located about 8V from the top
of the screen. The outputs from both of these fixed-figure
generators are combined with the ball figure in IC2-A to produce the
game’s composite figure video signal.

IC3-D and IC3-C make up an R-S flip-flop. This flip-flop is SET
(output of IC3-D goes to logic 1) whenever IC3-B senses contact
between the ball figure and the top figure. The flip-flop is then
RESET (output of IC3-D goes to logic 0) whenever IC3-A senses
contact between the ball figure and the bottom one.

The table accompanying the circuit in Fig. 10-2 shows how the
top and bottom contacts affect the vertical control word delivered to
the vertical-slipping counter. Whenever top contact occurs, the VC
control code is set to 0101. According to the speed and direction
control table in Fig. 7-22, this means the movable figure (the ball in
this case) is set for downward motion at the rate of 0.64 frames per
second. Whenever bottom contact occurs, the VC control code is
set to 1101, making the ball figure move upward at 0.64 frames per
second.

Constructing the circuit as specified in Fig. 10-2 thus produces
a bouncing-ball effect whereby the ball bounces vertically at a rate of
about 1 Hz.

A FLEXIBLE REBOUND CONTROL SYSTEM

Figure 10-3 shows a circuit that is adaptable for both horizontal
and vertical rebounding of a single figure. There can be as many as
four fixed-figure inputs: bottom, top, right, and left figures.
Whenever the movable figure (FIG) makes contact with any one of
the fixed figures, an R-S flip-flop (IC1-B and IC1-D or IC2-B and
IC2-D)is set to a state that reverses the direction of figure motion. If
the figure is moving to the right and makes contact with the RT
figure, for instance, the flip-flop composed of IC2-B and IC2-D
changes state and ultimately reverses the direction of horizontal
motion.

420

The horizontal- and vertical-motion codes are generated by a
pair of quad 2:1 data multiplexers, IC3 and IC4. The experimenter
can program the directions and rates as desired, and the R-S flip-
flops automatically select the codes whenever a contact takes place.

The UP PROGRAM inputs to IC3 must be connected to a
combination of 1s and Os that will set the figure motion in an upward
direction and at a rate determined by the experimenter. Likewise,
the DOWN PROGRAM inputs fix the rate of motion in the down-
ward direction. The same general idea applies to the RIGHT and
LEFT PROGRAM inputs to the horizontal-motion selector, IC4.

The table in Fig. 10-4 shows the recommended pairs of UP and
DOWN or RIGHT and LEFT program inputs. If the experimenter
programs downward motion using 0101 for example, the UP
PROGRAM should be 1101 after contact is made. Compare the data
in this table with the master-control table in Fig. 7-22.

Figure 10-5 is a block diagram of a complete horizontal- and
vertical-motion rebounding circuit. Inverted versions of the top,
bottom, right, left, and movable figure are generated at the FIGURE
BOARD. The diagram assumes the fixed and movable figures are
ORed to yield the composite-figure video.

The REBOUND CONTROL BOARD (Fig. 10-3) senses any
contact between the movable figure and a rebound object and then
adjusts the horizontal- and vertical-control codes fed to a standard
slipping-counter board (Fig. 5-15). The velocity of the ball is fixed by
the program inputs to the REBOUND CONTROL BOARD.

The circuit in Fig. 10-6 is a sample figure-generator for the
rebound control scheme described here. The figure in this case is a
black field of play surrounded by a white border. A small rectangle,
4H x 4V moves about in the black field, rebounding from the top,
bottom, and sides of the field. The circuit can be built on a bread-
board arrangement in a rather short time. And if the suggested ball
speed programming parameters listed in Fig. 10-6 are fixed at the
designated inputs of the rebound control board, Fig. 10-3, the ball
bounces around at a fairly high speed.

A PINBALL GAME

A video pinball game relies heavily on rebound effects. The
game illustrated here represents only one of many possible pinball
games, and it ties together some of the main features of game
controls, figure generators, and scoring. The main emphasis is on
the rebounding effects, however, with weighted scoring being a
close second.

421

8 _ _ 1DVINOD dOL 1V L
ol LOVINOD NOLLOE 1V 0

>um|N4
>o.v|ow
AJ2C —
>0_lﬂ

€9l

9l
\.—: asiavi gel al nsi niNe! N
—
NVHD0Hd WNVvHODO0Hd dN
NMOQd

422

“JINDJID {0UCD PUNOQe [BIIUSA PUB (BIUOZUOY (BSIBAUN Uy ‘€-01 B4

Wv4d904dd WYHO0Hd
1431 1HOIH

7I>I\J
o8 op 22 9 48 ¥b ”e Yl

Jhl
o | H3IX31dILINW
- cl_ 1:2 AvNo LSLty.—p ‘€Dl
el HON 1NdNI-2 avnd 20v2—2 ‘10|
bl
OH8 5 9)
OHv—gl po1 2
o_._NIM m
OHIl— |
4 1DVINOD 1HDIH 1V |

1OVINOOD 14311V 0

‘s

423

CONTROL CODE
BEFORE AFTER
1 8 4 2 | 8 4 2 | t
DOWNL)| 0 0 | | Y T T R RV
OR @ 8 : 0 0 || I 1 1 |2 or
w 0 | I 0 | w
AUl o I 1 o Il 1 0 o =
o I 1 | I 0 | |
Il 0 0 O I 0 I 0
STOP I 0o o0 | I 0 0 | STOP
IR R
w Y] ! DOWN
I 1 0 O O | I o =
OR 2 | | 0 1 0 | 0 1 [2OR
LEFT 11 I O O 1 0 O W RIGHT
% O I B B o o I 1

Fig. 10-4. Motion code table for rebound effects based on slipping-counter
motion,

Figure 10-7a shows this pinball game as it appears on the
screen. The main playing area is the black rectangle situated near
the center of the screen. The ball is a 4H x 4V square that remains
in the playing area by virtue of the rebounding effects. It rebounds to
the left or right from the white sides of the playing area, and it
rebounds up or down from the five fixed barriers and either of the
two movable paddles near the bottom of the screen.

The player’s control panel is shown in Fig. 10-7b. It consists of
three normally-open pushbuttons labeled PLAY, BALL and PAD-
DLE. Depressing the PLAY button starts the playing action, setting
the ball counter and score to zero. Depressing the BALL button
launches a ball, and depressing the paddle button makes the two
paddle figures move from their normal resting positions at the edges
of the playing field to the center as shown in Fig. 10-7a.

Figure 10-7c shows the wiring diagram for this simple control
panel.

Figure Generator Board for Pinball

The playing field is shown in much greater detailin Fig. 10-8a. A
white line across the top of the screen, labeled TE, is the top of the
playing area, while the line across the bottom, BE, is the bottom of
the playing area. The left and right edges, LE and RE, aren't lines at
all, but rather borders marking the sides of the black playing field.

424

“JINOJID PUNOQa. [BSIBAIUN 8y} 10y weibep Buuwm [e1suen 'G-0L B4

TAH
LSYNH

WA

ASUNA
HHeGZ [—— e —

NASZ| ————

(S1-G 'OId)
advosg
H3LNNOD ONIddITS

AWVYHO0Hd WVHOO0Hd

1431 1HODIY
} \nIl\f'\uJ

< Yy ~ | =
2 b 18 ¥l Y2 ¥b u8 2|12
3HS 2 (2
JHP) 4 *
JHe (e-01 OI19)
51 ayvos ol
JOHLNOD
OA8 1Y
= aNnnog3ay - advod
= 34NOI4
9AZ oL
L) n« oﬂ abas ni nZnvng | 208
WVHO0Hd WvHO0Hd 1no
03aIA

NMOQ dn

425

"MK UORBJISUOWSP PUNOGS [BJIUBA PUB [RJUOZUOY ‘JOIUN0O-p ¥ '9-0 ‘Big

FOVINI N33HOS WHOSGZ

WAs2l

HO-3AISNI0X3 GVNO 98¥L—SDlI
HILHIANI X3H $0v.—¥0i

HON LNdNI-2 @¥ND 20v.—¢€DlI
GNVN LNdNI-2 avND 00v2—2 ‘11

ONINWVHOOHd G33dS
1va 431S399NS

Lb=18|0=us8
L= | L=up
0="2|L=42
0="1(0=4l

0=as|t=n8
L=av|l=n¥
L=Qe|0=nc
0=atL{o=nl

AbS
82l

426

The fixed rebound barriers are labeled A through F, and are
arranged in a symmetrical pattern about the vertical axis of the
playing area.

PL and PR are the player’s left and right paddles as they appear
in their normal resting positions. The dashed figures labeled PL’ and
PR’ indicate the same paddles as they appear when the player
depresses the PADDLE pushbutton on the control panel.

This entire figure—the four edges, fixed barriers, and
paddles—is generated by an 8 x 8 extended foldover-matrix
generator of the type described in Chapter 4. The extension in this
case is from top to bottom, while the foldover is around the vertical
axis. Note, for instance, that the right-hand half of the figure is a
mirror image of the left-hand half. The data programming for the
matrix generator refers to the upper left-hand quadrant, and the
remainder of the figure comes about by extension and foldover.

A
BALL IN J_ SCORE
pLAY | 3 125
BALLT
N pADDLES
PLAY
BALL PADDLE
B

BALLP PLAY PADDLE

b

H, Ho H

BALL | PLAY PADDLE

=

C

Fig. 10-7. A pinball game. (a) Figures appearing on the screen. (b) Player's
control panel layout. (c) Control panel schematic diagram.

427

The waveforms shown in Fig. 10-8a and the matrix-
programming parameters in Fig. 10-8c are vital to this figure-
generating scheme. The truly unique feature, however, is the
technique used for making the top and bottom edges, fixed barriers,
and paddle figures appear as lines instead of the usual matrix squares
and rectangles. This will be explained in connection with the actual
figure-generating circuit in Fig. 10-9.

Note from the image and waveforms in Fig. 10-8a that a white
line appears only where 16V makes a transition from 1 to 0. A line
does not appear each time this sort of transition occurs, but it occurs
only when 16V shows a 1-to-0 change.

The horizontal TE line, for instance, begins as 16V goes from 1
to 0. This line, like all the others, is 4V wide; so its position_and
vertical size are fixed by the vertical-count specifications, 128V,
64V, 32V, 16V, 8V, and 4V. The horizontal length of the TE line, and
indeed the field of play, is one complete 128H cyclelong, centered on
the screen where 256H changes from black to white. Setting this
length is a simple matter of doing an EXCLUSIVE OR operation on
256H and 128H.

The horizontal BE line is generated in a similar fashion. It is
situated vertically where 16V makes - a 1-to-0 transition. But in this
case, the higher-order V-counts are 128V, 64V, and 32V, putting it
near the bottom of the screen. Its horizontal width is also set by an
EXCLUSIVE OR operation on 256H and 128H.

Fixed barrier A occurs where 16V goes from 1 to 0 while the
higher-order vertical counts are at 128V, 64V, and 32V. Barrier B
has the same vertical specifications, but _the two are separated
horizontally by having A occur at 128H and 64H, and B occur at 128H
and 64H. Barrier B is actually nothing more than a mirror image of A.
In fact the right-hand halves of TE and BE are mirror images of their
left-hand halves.

A similar kind of analysis can be applied to any of the lines on the
screen. They all occur at 16V, 8V, and 4V (4V pulses high when 16V
shows a transition) and are separated vertically by various combina-
tions of higher order V-counts 128V, 64V, and 32V.

All of this information is summarized in the D-programming
specifications in Fig. 10-8c. This data sets the positions of all the
figures in the playing area, usingan8 x 8 extended foldover format.
The figures are narrowed vertically to 4V at the output of the matrix
generator, IC7 in Fig. 10-9.

The 16:1 data multiplexer in Fig. 10-9 uses the D-input specifi-
cations derived from the figure and waveforms in Fig. 10-8a. As
indicated by the presence of 128V and 128V in the data program-

428

1
3%
o]

TE

Hn
“o
|
LT LT gy

LE— RE —
3 F
———]
PL p' |pR PR
e— cz=d==>2]
BE L‘
IZBHL | |
ean ! | | | |
O
|
SELO I I D N I G
B TE = TOP EDGE A, B, C, D, E, F = FIXED PADDLES
BE = BOTTOM EDGE | p| = LEFT PADDLE (NORMAL POSITION)
LE = LEFT EDGE pL' = LEFT PADDLE (HIT POSITION)

RE = RIGHT EDGE PR = RIGHT PADDLE (NORMAL POSITION)
pR! = RIGHT PADDLE (HIT POSITION}

C DO = 128V

Da=128V | D8=1 D12 = 128V-P
D1 =128V |D5=128V | D9 =1 D13=0
D2 =728V D6 =128V | D10=0 |D14=0
D3 =1 D7 =128V | D11 =0 | D15=128V-P

Fig. 10-8. Pinball playing area figure. (a) Basic figure and relevant H- and
V-count waveforms. (b) Nomenclature for the Pinball figure. (c) D-input prog-
ramming for the playing-area matrix generator.

ming, the figure is extended vertically by 128V: the upper half of the
figure is generated while 128V is low, and the lower half is generated
while 128V is high. This feature is implemented in Fig. 10-9 by the
128V connection to a number of D inputs to IC7.

The paddle figures are to be in their resting position as long as
the PADDLE button is not depressed, but then they should move to
their center-screen positions when that button is depressed. This

429

effect is shown by the D-input specifications D12 = 128V+Pand
D15 = 128V-P. This effect is implemented in Fig. 10-9 by IC1-A,
IC1-B, and the three inverters associated with them.

Aslong as the PADDLE button is not depressed, the PADDLE
input to the figure board is at logic 1, thereby gating on IC1-A so that
the 128V signal passes through to pin 19 of IC7, the D12 data input.
The same logic level that gates on IC1-A, however, passes through
inverter IC6-C to gate off IC1-B so that pin 16 of IC7 (the D15 input)
sees a logic 0. Depressing the PADDLE button, on the other hand,
sets the PADDLE input to logic 0 to reverse the situation, setting
pin 19 at 0 and pin 16 at 128V.

The programming for D12 and D15 is thus determined by the
status of the player’s PADDLE pushbutton, altering the horizontal
position of the paddle figures accordingly.

So much for the D-input programming for IC7. Now the device
is addressed by appropriate combinations of 32H, 64H, 32V, and
64V. Since the circuit is generating a vertically extended matrix, the
V-count addresses go directly to the two higher-order address
locations, pins 13 and 11 of IC7. The figure is folded in the
horizontal-count direction, however, so the 32H and 64H address
inputs must pass through a pair of EXCLUSIVE OR gates before
applying them to the matrix-generating multiplexer. The foldover
effect makes the horizontal addressing run in the normal up-counting
fashion as long as 128H is low. But when this input goes to logic 1
halfway across the playing area, it reverses the direction of horizon-
tal addressing to create the mirrored left-hand half of the figure.

The EXCLUSIVE OR gates for creating the foldover effect are
IC5-B and IC5-C. The “gear shift” in this instance is the 256H
connection that is common to both of them.

You might find it necessary to study the extension and foldover
effects in greater detail in Chapter 4. Without understanding the
basic principles involved here, there is little hope of understanding
this particular circuit or, more importantly, you will find it virtually
impossible to modify the game or design any of your own.

The pinball figure is not windowed at allin the vertical direction.
It occupies the entire height of the screen. It must be windowed
horizontally, however. And in this case it is windowed by means of
another EXCLUSIVE OR operation on 256H and 128H. These
specifications put the playing area near the center of the screen,
spanning one complete 128H cycle.

The windowing is implemented in Fig. 10-9 by the EXCLU-
SIVE OR gate, IC5-A . After the output of this gate is inverted by
1C6-D, it is applied to the enabling input of IC7 at pin 9.

430

Even after going through all these D-input, addressing, and
windowing steps, the figure information coming from the pin-10
output of IC7 only vaguely resembles that shown in Fig. 10-8a. Aside
from being inverted (blacks and whites reversed) this output shows
groups of 32H x 32V squares instead of 4V lines. What remains to
be done to complete the figure-generating process is to invert the
logic and narrow all the figures to 4V.

IC2-B in Fig. 10-9 uprights the contrast between blacks and
whites, while the inputs to IC3-A narrow the figures to 4V. The
figure information from IC2-B is thus NANDed with 16V, 8V, and 4V
to trim down the height of each element in the playing area to a 4V
level whenever 16V shows a change from 1 to O.

The white sides of the figure are added at IC3-B to create the
basic pinball game figure. Narrowing the white top and bottom
edges, fixed barriers, and paddles to 4V is the unique part of the
operation. The rest of it comes from material already outlined in
Chapter 4.

The little ball figure is generated by the pulse circuits composed
of IC1-C, IC1-D, IC4-A, and IC4-C. It is assembled into a square by
IC4-B. The original information for creating this movable ball figure
comes from a slipping-counter board generating the necessary
256HM and 128VM signals.

The BALL signal from IC4-B is used for control as well as
figure-generating purposes. IC2-A, for instance, NANDs the ball
image with data from the main figure generator to produce a HIT
pulse, a pulse that signals a contact between the ball and any of the
main figures in the playing area.

The ball figure is to be blanked from the screen whenever it is
not in play, so there is a need for a ball-blanking circuit built around
NAND gate IC2-C. The unblanked ball figure is then combined with
the main playing figure in IC2-D, and this composite game figure is
finally combined with the scoring data in IC5-D.

1C5-D, another EXCLUSIVE OR gate, makes the ball count
and scoring figures appear black on the white areas to the left and
right of the main playing area.

The purpose of the ball's control signals and the origin of the
SCO (scoring data) and BBLANK (ball blanking) signals will be
described later.

Before leaving this discussion of the figure board, however, we
must point out the origin of the LT and RT signals from IC8-B and
IC8-C respectively. These two signals represent the two sides of
the main playing area, and are ultimately used for setting the
horizontal-rebounding directions for the ball figure.

431

N
24 12
8
7
6
5
4 1c7
3
2
1
23
l22
0& 10
| 14 20
128V o= 3 1NI42 i9
olicra
ICe-A 18]
4 1C6 B 17
IC6-C 13
e 6 5lic-B B2 St 16
L
——3
| IC6-D
3 MEEGEE
IC6-E
64V 32V

The left and right edges of the playing area are generated as a
single unit at IC5-A and IC6-D. They must be separated for rebound-
ing purposes, however. This is accomplished by gating IC8-C with
256H and IC8-B with a version of 256H that is first inverted by
IC8-A. It makes some sense that the system is generating the
left-hand side of the playing area when 256H is at logic 0 and it is
generating the right-hand half when 256H = 1.

432

256HM

128VM

4»-—»BALL

v

IC1, 2, 8—7400 QUAD 2-INPUT NAND

B ce-F IC3—7420 DUAL 4-INPUT NAND
IC4—7402 QUAD 2-INPUT NOR

12 IC5—7486 QUAD EXCLUSIVE-OR
IC6—7404 HEX INVERTER

Vigv IC7—74150 16:1 MULTIPLEXER

Fig. 10-9. Pinball figure board schematic diagram.

So when 256H is at logic 0, IC8-C is gated off, and the inversion
of IC8-A inverts 256H to gate on IC8-B. The LT output is thus
enabled in its active-low format. When 256H goes to logic 1, signify-
ing the right-hand half of the screen is being serviced, IC8-C is
enabled and IC8-B is effectively switched off.

That completes the theory of operation of the figure-generator
portion of this pinball game.

433

Scoring the Pinball Game

The scoring portion of the pinball game consists of four
7-segment digits. One digit is located near the upper left-hand
corner of the screen to designate which one of five balls is in play at
the moment. A complete game consists of playing five balls which is,
of course, the number used for conventional electromechanical pin-
ball games.

Three other figures, located near the upper right-hand side of
the screen, indicate the score. Scoring in this case can run anywhere
between 000 and 999.

The figure-generating scheme for the ball counter and scoring
is a variation of the 2-player scoring system described in Chapter 9
(the dual 2-digit display). The only difference is that the digits are
grouped differently.

Figure 10-10 shows the numeral format, required waveforms,
and programming. The circuit based on this rationale is in Fig. 10-11.
Since this whole scheme is practically identical to the one already
detailed in Fig. 9-7, itis left to the reader to sort out the finer details.

While the score-figure board in Fig. 10-11 requires little addi-
tional explanation, the score-control board (Fig. 10-12) calls for
some special discussion.

This counting-control board is responsible for keeping track of
which ball is in play and the total score at any given moment. Of
special interest is the section of the circuit labeled WEIGHTED
SCORE CIRCUIT. This pinball game, like its electromechanical
counterparts, scores different amounts according to the type of
contact the ball makes with various figures in the playing area.

The scores in this case canbe 1, 2, or 4 points per contact. The
origins of the weighted-scoring inputs is described in detail when we
get to the theory of the main control board. For the time being, it is
sufficient to say that the three scoring digits—those generated by
IC6, IC7, and IC8 —increment 1, 2, or 4 units whenever certain ball
contacts occur. The theory behind the weighted scoring is described
in connection with the circuit in Fig. 9-11.

IC5 in Fig. 10-12 is the ball counter. This counter is in-
cremented by a BCOUNT pulse, which occurs each time the player
depresses the BALL pushbutton. When the count reaches binary 5,
IC9-A generates a logic-0 level the signals the end of the game (the
END output).

The ball and score counters are all reset to zero by a pulse from
IC9-D, a pulse that occurs whenever the player depresses the PLAY
pushbutton.

434

4V A0V
8V A1V
16V A2V

ETC ETB ETA

=0

128v

32V. 64V =1

UV e S e N e N e Y
Fent e J S N S E
A3H 32H I L_,_
AdH 64H J

128H, 256H 1

Lco

AOH 4H AOV - 4V
AtH - 8H A1V = 8V
A2H = T6H A2V = 16V
A3H = 32H A3V =32V
AdH -~ 64H A4V = 64V
ASH - 1z8H A5V 128V
A6H 256H

AOH 4H —J_‘—[-—
ATH BH——r—

16H, 32H, 64H 1
128H, 256H - 0

Fig. 10-10. Figures, waveforms, and programming for the Pinball “ball in play”
and scoring figures.

In summary, the counter board in Fig. 10-12 keeps track of the
weighted score and increments the ball count. Both counters are
initially cleared to zero by depressing the PLAY pushbutton, the
score counter increments 1, 2, or 4 points whenever the ball in play
makes contact with certain objects in the playing area, and the ball
counter increments each time a new ball is launched. The ball
counter automatically stops the game when the fifth ball is played.

435

LCD

ETC

ETB

ETA

13
IS 14

3
ICl-A

5 [: GI
IC3-D,

jo| |
= —at- AD9
-t A2E
A91
Yo @
) = © ~ m
o < \~ 2 Ao
ol f & Hi < Al
s |8 o < =
 EEEREER B Ag2I
—————————— AQ2 |
©| 3|« -
S
% H2¢
o ————————ati-H $9
o
14]
- mﬂlllllllll!imm
et HOG2
N

436

SR NO S _;’_l/
joo

5y
oL

—t |6V

1C6

—f- BH

w|zs=§a

~=af- 4H

15

J)-bml\)—ﬂ

—k 4V

IO' 9

2]
@

—atf BV

~ NolhO =N H

IIDclo <

IC3-E
T J =

IC1—7400 QUAD 2-INPUT NAND
IC2—7420 DUAL 4-INPUT NAND
IC3—7404 HEX INVERTER

@
o

IC7, 8—74151 8:1 MULTIPLEXER

16 H —Jm—

IC4, 5—74153 DUAL 4:1 MULTIPLEXER
IC6—7448 BCD TO 7-SEGMENT CONVERTER

IC9—74154 4-LINE TO 16-LINE DECODER

Fig. 10-11. Pinball score board schematic diagram.

437

MHPaOQ, END D C B A
Aﬂ ‘ | ! 3 A Jl
2{1C9-A
lesalls L7 2] o] 8 1l s
I
) Ic5 ” ic6
BCOUNT

Z[3[6] 7[10] 2] 3] ¢ 7[1©

W i T

CLK ——
COMM 3 WEIGHTED SCORE ©]
- CIRCUIT e
(FIG. 9-11) o

W
N

[—=(K]
S—>»=12|
H—-

5 [ICo-B 10l 1c9-C 1C9-D
!IL‘§ c2 RI 13
470

Pinball Control Board

The pinball control board in Fig. 10-14 is mainly responsible for
controlling the motion of the ball figure and setting the score. The
ball-rebound and scoring features are summarized in the table in Fig.
10-13a.

The table shows that the vertical motion of the ball does not
change at all if it is moving downward when it makes contact with
TE, the top edge of the playing area. When the ball touches TE while

438

HG6 FE L KJ |

K

Al

|
Ld]
14

Ic? ics
[14] 14

™
OluF

3 61 TLIOI_ 2l 3 61 71!01

IC5, 6, 7, 8—7490 DECADE COUNTER
IC9—7400 QUAD 2-INPUT NAND

Fig. 10-12. Pinball counter board schematic diagram

moving upward, however, its direction is reversed. Neither kind of
contact with TE causes a score.

The second line in the table in Fig. 10-13a shows a more
interesting set of effects whenever the ball makes contact with fixed
barriers A or B (designed A + B). If the ball is moving downward at
the time, making contact with either A or B causes it to change to an
upward direction and score 2 points. Further down the truth table, it
can be seen that the ball traveling upward can contact either of the
same two barriers, change its direction to down and score 4 points.

A brief study of the table in Fig. 10-13a can show the entire
ball-motion and scoring rationale. The technical problem in this case
is to know which barriers, edges, or paddles the ball touches. This
can be done rather easily by means of the 3-line-to-8-line decoder
shown in Fig. 10-13b.

Whenever a hit occurs, but not one of the two sides, this IC is
enabled. (Horizontal rebounding from the left and right sides of the
playing area is handled separately.)

The decoder circuit is addressed from the same three V-counts
used for addressing the vertical portion of the figure matrix
generator in Fig. 10-9. If a hit thus occurs when 128V, 64V, and 32V
are all at logic 0, for example, the ball must be hitting the bottom
edge of the playing area (BE), simply because that is the only figure
being generated when 128V, 64V, and 32V are all at logic 0 at the
same time.

By the same token, suppose a hit occurs while 128V, 64V, and
32V are all at logic 1. The only figures being generated at that
moment are the paddles, PL and PR, or PL’ and PR’. Thus a hit
under those circumstances must be the paddles, and nothing else.

The outputs of the decoder in Fig. 10-13 thus indicate a hit and,
more specifically, a hit against a particular object on the screen. The
only relevant information missing is that telling whether the ball is
moving upward or downward at the time. And that little problem is
solved by using a pair of identical decoders, one that is enabled only
when the ball is moving upward and another that is enabled when the
ball is moving downward. See IC7 and IC8 on the control board in
Fig. 10-14.

Before it is possible to see exactly how the hit and scoring
decoders do their jobs, it is necessary to explain the origins of signals
determining whether the ball is moving upward or downward at the
time. Note the VC outputs in Fig. 10-14. These are the vertical
speed and direction codes for the ball’s slipping-counter circuit.

1VC and 4VC are fixed at a logic-1 level, while 2VC is fixed at
logic 1. According to the vertical-speed control table in Fig. 7-22,
this means the vertical section of the slipping counter will see either
0101 or 1101, where the most-significant bit (8VC) is the only one
allowed to change. It turns out that the ball moves downward at a
rate of about 0.64 frames per second when 8VC=0, and upward at
the same rate when 8VC=1.

The 8VC output of the control board —or more specifically, the
output of IC5-B —determines the ball’s direction of vertical motion:
0 yields down, and 1 yields up.

Now suppose the ball happens to be moving upward. The
output of IC5-B is at logic 1, and the logic-1 level is fed back to the
pin-5 input of NAND gate IC4-A. This particular NAND gate re-
sponds with a logic-0 output only when three conditions are satisfied
at the same time: the ball is moving downward, a hit pulse is taking
place, and the hit is NOT against one of the sides of the playing area.
IC8 is thus the down-motion hit detector and score decoder.

IC7, on the other hand, is the up-motion detector/decoder
which is enabled only when: the ball is moving upward (a logic 1 from
IC5-A), a hit occurs, and the hit is NOT against one of the two sides
of the playing area. The output of IC5-A, incidentally, is always the
complement of that from IC5-B; therefore, it is virtually impossible
to enable IC7 and IC8 at the same time.

The next step in explaining the operation of this system is to
work through the logic standing between the detector/decoders

U2 Jo1osfep WH (9) “ajqe; uonoundy (e) -1010819P WY llequld “€1-01 By

S3SIHLINIYVI NI
SH3IaWNN Nid

(e1)
(

d

)

€

(S1)

aze N9 sz

(1)

1= N O | 10 |<o||\<

o
20

N~
O GO

SSive

t4;

00¥.-*%

S3dis
1iH

v
0 dn ag| dn
0 dn |Hd+,d| dn
0 dn "dd+1d| dn
v Na 3+3a| dn
2 Na a+d| dn
v Na g+v | dn
0 Na 3| dn
0 Na 3g| nNa
0 dn | Hd+1d| Na
0 dn Hd+1d | Na
2 dn 4+3| nNa
L dn a+d| Na
Z dn g+v | Na
0 Na aL| wNa
o O
2 [8»D 8|8z 3
Z2Tnm 2| Zmm
O |340 S |3o00
w1355 3|3A3
4 > 4 aMm=

441

(IC7 and IC8) and the output circuit that determines the ball's
direction of vertical travel (IC5-B).

Suppose the ball is moving upward whenit strikes the bottom of
barrier A. According to the table in Fig. 10-13a, this particular
situation should switch the ball’s vertical motion to downward and, at
the same time, score 4 points.

When the ball is moving downward, the pin-5input of IC4-Ais at
logic 1 as explained earlier. And when the ball hits the A barrier (or
any other one for that matter), the HIT input goes to logic 0, and
inverter IC9-A inverts the signal to a positive-going pulse. Since the
hit is not against one of the sides of the playing area, SIDES is at logic
1, and it turns out that all inputs to IC4-A are at logic 1 as long as the
HIT pulse lasts. This NAND-gate action enables IC8.

From Fig. 10-8, it can be seen that the A barrier is being drawn
on the screen as long as 128V=0, 64V=1, and 32V=0. These
V-count lines to the select inputs of IC8 cause its pin-11 output to
drop to logic 0, the active-low signal state for the decoders. The
pin-5 output of that same IC is fixed at that same time, so NAND gate
IC2-D passes the pin-11 output of IC8 as a positive-going pulse.

This pulse is inverted again by inverter IC9-F, and then goes to
the S4 connection on the weighted-scoring circuit. This accounts for
an additional 4 points on the score readout.

That same negative-going pulse from IC9-F also passes
through NAND gate 1C3-D, emerging as a positive-going pulse to
the pin-6 input of IC5-B. IC5-B is one-half of an R-S flip-flop circuit
that also includes IC5-A. The positive pulse at IC5-B in this case
resets the flip-flop so that two things happen simultaneously: the
output of IC5-B is switched to logic 0, thereby reversing the direc-
tion of motion of the ball, and the output of IC5-B is switched to logic
0, thereby reversing the direction of motion of the ball, and the
output of IC5-A, is switched to logic 1 to enable the downward-
motion decoder, IC7.

Recall that this entire sequence of activity began when an
upward-moving ball hit barrier A. The final results of this action is 4
additional points in the score and changing the direction of ball motion
from up to down.

A similar kind of analysis shows that the decoders and logic
circuits perform all the direction-changing and scoring operations
specified in the table on Fig. 10-13a.

All the operations described for the control board to this point
have concerned the VC outputs and changes in the vertical direction.
It can be seen that changes in the horizontal direction of ball motion is
a bit more straightforward.

442

The outputs controlling the ball's horizontal motion are 1HC
through 8HC in Fig. 10-14. 1HC and 4HC are fixed at logic 1, while
2HC is fixed at logic 0. Only the 8HC bit is concerned with the ball’s
changes in horizontal motion.

The horizontal motion codes to the horizontal portion of the
slipping-counter board are thus 0101 or 1101, depending on whether
the ball is to be moving to the right or left respectively. In either
case, the horizontal velocity is 0.98 screens per second, and
whether the ball is moving to the right or left is determined by the
status of an R-S flip-flop composed of IC5-C and IC5-D.

The inputs to this little horizontal-direction control circuit are
BALL (the ball figure), LT, and RT (signals indicating the two sides
of the playing area.

To see how this circuit works, suppose the ball figure is
moving toward the right. This means the 8HC bit and the output of
IC5-D are at logic 0; and since this is one output of a flip-flop, it
follows that the output of IC5-C is at logic 1. Now there is a contact
between the ball and the right-hand side of the playing area. 1C6-D
senses this particular hit, and generates a positive-going pulse that
resets the flip-flop. This action resets the flip-flop, changing the
direction of the ball’s horizontal motion to the left.

The complementary action takes place as the ball strikes the
left-hand side of the playing area. IC6-C senses the contact and
changes the status of the flip-flop so that the ball moves to the right
again,

If the experimenter finds the ball speed seems too fast, the
vertical- and horizontal-motion codes at 1VC, 2VC, 4VC, 1HC,
2HC, and 4HC can be changed, using the information in the speed-
control table (Fig. 7-22) as a guide. The 8VC and 8HC bits should
remain as shown in Fig. 10-14.

The control circuit board also includes some housekeeping logic
that is mainly concerned with starting and ending the game. Note,
for instance, that the PLAY and BALLP signals from the control
panel each go to a separate R-S lip-flop—IC1-A and IC1-B, and
IC1-C and IC1-D.

Depressing the PLAY pushbutton on the control panel forces
the PLAY input to the control board to logic 0, thus setting the
output of IC1-A to logic 1 and the output of IC1-B to 0. The logic-0
level from IC1-B leaves the board via the CLS connection and
ultimately clears the ball counter and score counter on the score-
counting board (Fig. 10-12). The ball count and score are thus
cleared whenever the player depresses the PLAY pushbutton at the
beginning of a new game sequence.

443

HIT SIDES

§
| 3N 4
8 |i6 o
= T 10 ¢9-B
0
1 |4la iIC7
2 14 -
IC3-A
Ly 2 5—r
4
nsls 3 |
128V -2 l
64V 3
32v ----—J ﬂ 313
5 10
"
'
N Ea ,46 ics |7
L4]1ca-a 00t 5
L RI -1
322'(2
— 8 Lie] |'
END =
[
cis — 9
4|ICI-B 3 12]1C4-B 8 | 14
l—gD B %ICZ-A
9, h B
BALLP 10|/0C Jo—p L?D o)
m I 2 Lol IC9-£
13{1CH-0 3)|ce-A. 5
7 -

11

Y

BCOUNT BBLANK

444

BALL

IC1, 2—7400 QUAD 2-INPUT NAND

IC3—7410 TRIPLE 3-INPUT NAND

1C4—7420 DUAL 4-INPUT NAND

ICS5, 6—7402 QUAD 2-INPUT NOR

IC7, 8—74155 DUAL 2-LINE-TO-4-LINE
DECODER

IC9—7404 HEX INVERTER

Fig. 10-14. Pinball control board schematic diagram.

445

d1ve

WNOD aN3
AS+ 2 T 1Nnooe
AR rzl P RS Is
E < —
Ab9 AbS 5 Qs 28
A2g A2g O w s
s
SEEEEHEE:
Wi WWOD WAB2I
e As+ WH9S2
Ay 327
A2 Ogw
N gR¢ Lol
SRR] e e
ISuH =
WNVIEH

aN3
1NN0o8
IS

2s

S
519

COUNTER BOARD

(FIG. 10-12)

[L

446

Tr I
5338
1
|
4V 8V 32ve4vi2sy > 3
=—BBLANK ﬁ g
BALL_ o
SIDES, FIGURE BOARD
T (FIG. 10-9)
RT
PLAY w '5
0§° :2: é > g o
[]
~ 85 833 o
vID
1 ouT
|E 4
= 5
PANEL |& [—=CCMM
(FIG. 107¢)
e B
@ J'K'" SCORE BOARD
L (FIG. 10-11)
(@M\NRG
EEERNERREREE
GETOoNEEOIELF3E s
t8

F 10-15. Pinball wiring block diagram.

447

Once the PLAY flip-flop is set in this fashion, the only way it can
be reset is by means of a negative-going pulse at the pin-5 input of
IC1-B. Two conditions must be met before this can happen, how-
ever. First, the ball counter must be showing numeral 5 as indicated
by a logic 0 level at the END input and the pin-3 input of NOR gate
IC6-A. Second, the ball must contact BE, the bottom edge of the
screen, as signaled by a negative-going pulse at the pin-9 output of
IC7. This pulse is effectively ANDed with the END pulse at IC6-A to
produce a positive-going pulse that indicates the end of a game
sequence: end of play for the fifth ball in the series.

That same end-of-game pulse is inverted to a negative-going
pulse by inverter IC9-E and finally resets the PLAY flip-flop so that
the next game can be started by depressing the PLAY pushbutton.

Once a game sequence is started, a new ball is Jaunched by
depressing the BALL button. This action sets the R-Sflip-flop
composed of IC1-C and IC1-D. The pin-8 output of IC1-C is thus set
to logic 1, and that logic level is fed to a 4-input NAND gate, IC4-B.

IC4-B considers four different game parameters simultane-
ously, and the only way its output can be set to logic O (its active
state) is by having the following parameters at logic 1: the PLAY
output of IC1-A, the BALL-LAUNCH output of IC1-C, the END
signal from the ball-counting circuit, and the TE contact signal from
pin 10 of IC7. The output of this 4-input NAND gate is normally at
logic 1, dropping to 0 only when all four of these conditions are met.

Whenever the output of IC4-B does drop to logic 0, it sets the
condition of yet another R-Sflip-flop composed of IC2-A and IC2-B.
Setting this particular flip-flop causes the output of IC2-A to go to
logic 1, thereby blanking the ball figure from the screen via the
BBLANK terminal of the control board.

Also note that a logic-0 level from IC4-B, the 4-input NAND
gate, both generates a BCOUNT pulse and resets the BALL-
LAUNCH flip-fiop composed of IC1-C and IC1-D.

What does all this mean? One thing it means is that a newly
launched ball does not appear on the screen until it crosses TE while
moving downward. The flip-flop responsible for blanking the ball
figure is not set until IC7 senses the ball figure crossing TE while
moving downward.

The same signal that unblanks the ball figure serves as a
BCOUNT pulse that increments the ball counter, thus advancing the
ball-count display on the screen. The BCOUNT pulse also resets the
BALL-LAUNCH flip-flop (specifically at pin 13 of IC1-D), preparing
it for the next ball-launching operation.

448

The ball-blanking flip-flop is reset only when the ball crosses BE
(the bottom edge of the playing area) while traveling downward.
This effect is detected by the pin-9 output of IC7, the same one
responsible for resetting the entire game at the end of play for the
fifth ball.

Overall Pinball Block Diagram

A final wiring diagram for the pinball game appears in Fig.
10-15. You will note that the game requires five circuit boards and a
special control panel. Of course you should already have the
slipping-counter board available from previous experiments and
games.

The slipping counter and control boards can be powered from
one of the +5V sources, while the remaining boards ought to be
connected to a second source to avoid overloading any one of the
power supplies.

449

Chapter 11
Animation and
Rotation of Complex Figures

Figure animation and rotation belong to a class of special effects that
is seldom critical to the operation of a video game system. These
effects can, however, lend a special touch of interest that heightens
the players’ sense of reality.

The circuits suggested in this chapter can actually be applied
without reference to any particular game. Most experimenters will
agree that building the complex figures in Chapter 4 offered a unique
opportunity to create some fascinating images on the screen. Now
there is the chance to add the dimension of motion, animation and
rotation, to them.

Figure rotation is a special class of motion calling for rotating the
figure on the screen about an imaginary axis extending at right angles
to the plane of the screen—in and out of the screen. One of the more
common figure rotation effects can be found in connection with a
popular commercial combat game where two tanks chase each other
around the screen. The tank figure moves only in a forward direc-
tion; the player has the ability to rotate the figure, making it possible
to move it in virtually any direction.

This figure-rotation feature is actually a form of animation, but
as demonstrated later in this chapter, it is a form of figure animation
and motion that calls for an unusually high degree of system planning.

An experimenter cannot hope to master the fundamentals of
figure animation and rotation without first getting a complete under-
standing of how complex figures are built in a matrix format. Readers

451

who feel they are not prepared to design animated figures would do
well to study the principles outlined in Chapter 4 once again.

FIGURE ANIMATION

The basic idea behind figure animation (and rotation as well) is
to present a series of figures on the screen in a fashion that creates
the illusion of motion. The scheme might consist of four different
complex figures, each differing from the others in some peculiar
way. And when they are flashed onto the screen in a relatively rapid
sequence, the observer gets the impression of motion or animation.

The idea is identical to filmed animation. In this video situation,
however, the length and complexity of the animated sequence is
necessarily limited by the cost and complexity of the circuitry in-
volved.

So the following discussion presents the basic formula for
generating a simple animated sequence. While the examples are
kept on a rather simple level, the basic scheme can be extended
indefinitely, or at least as far as time, money, and patience can carry
it.

One of the principle IC devices required for generating an
animated sequence is a dual 1-line-to-4-line decoder, 74155. This
particular device has been specified in earlier game systems, but it is
not important to understand its modes of operation in greater detail.

Figure 11-1 shows the 74155 device, first in a functional block
diagram form (Fig. 11-1a), then the pinout (Fig. 11-2b), and finally in
a truth-table form (Fig. 11-1c).

The device is divided into two separate sections as shown in
Fig. 11-1a. As illustrated in the truth tables, any logic level present
at a C input is delivered to one of the four outputs of each section,
depending on the status of select inputs A and B.

Suppose, for example, A=0 and B=1. This select status
selects output Y2 for both sections, delivering an inverted version of
C1 to output 1Y2 and a noninverted version to output 2Y2. A given C
input can appear at one, and only one, of its respective Y outputs.

Setting one of the G inputs to logic 1 effectively turns off the
device, causing all Y outputs for that section to take on a logic-1
condition, regardless of the status of the C input.

As clearly shown in the sections that follow, this decoder device
plays a vital role in altering the data directed to the matrix-generating
schemes already presented in Chapter 4.

Figure 11-2 shows a simple 4-frame animation sequence. The
figure in this case is that of a man walking into or out of the plane of

452

‘sa|ge) yini) (9) noutd (g) wesbelp 21607 (B) 19podep aul-p-01-aun-g [enp SGivs dyl “L-14 "bid

2o 1 1 ot ol
L 2o 1+ oot
L 1+ 2ot oo
L 4 1t 2 |o0]oo0
Lo | xx
EAZ ZAZ LAZOAZ |2 | v @

NOILO3S 2a

378VL HLINYL
Dt 11 ol
L 1D L 1t |ofot
L 4 1ot |oftro
L+ 110 (o0]oo
Lottt || xx
EAL ZAL LALOAL |1D| V 8

NOILO3S 1a
319Vl H1NYL

"H3a003a
INIT-¥-0O1-3INIT-2
avNa Ssive

S o

llﬂlhl\rll, 1

1o (M3IA dOL)
d

h_h\

EAC—

CAC—
LAC —
OAC —

ca

p——2D
—— 20

EAL —
CAl —
LAL—
OAL—

1a

og | sindni

—— oy | 103138
pb—— 19
—— 10

v

L

453

the screen. Inframe 1, his feet are both on the “ground” and his arms
are straight down at his sides. He then takes a step with the left foot
in frame 2, extending his right arm and bending up the left one
slightly. He returns to the basic position once again in frame 3, and
then takes the next step with his right foot in frame 4. Presenting
these four frames in sequence and at a rate of about 2 Hz creates the
illustration of a walking figure.

Any one of these four figures can be generated by the 8 x 8
extended matrix circuit shown in Fig. 4-17. The trick is to generate
all four figures without having to build four separate matrix-
generator circuits.

Notice, for instance, that frames 1 and 3 are identical in every
respect. It is thus possible to generate both of these frames from the
same matrix-generator programming. Frame 2 is obviously different
fromframes 1 and 3, but it is quite similar to frame 4. Frames 2 and 4,
in fact, are simply mirror images of one another, with the mirror axis
running vertically through the middle of the matrix. The significance
of this mirror effect is that frame 4 can be generated from the same
matrix generator for frame 2, but making the horizontal counting
take place in the opposite direction.

To express the differences between frames 2 and 4 in another
fashion, consider the matrix fold-over scheme described in Chapter
4. In that instance, the size of a symmetrical figure could be doubled
in complexity by simply reversing the direction of the matrix addres-
sing half way through the operation. In this case, the direction of
addressing for horizontal counts is reversed through the entire
frame, frame 4.

The four-frame sequence in Fig. 11-2 can thus be digested
down to two basic figures, frames 1 and 2. The programming for the
data fed to the matrix generator takes on one particular form when
generating frame 1, then the datais changed to generate the image in
frame 2. The animation sequence returns to the first set of data
programming to generate frame 3. And finally, two things happen at
once to generate frame 4: The data programming is returned to that
of frame 2 and the direction of horizontal counting is reversed.

So the first step in building an animated video sequence is to
plan the frames, keeping them as simple and as much alike as
possible. The second step is to analyze the frames, attempting to
take advantage of their similarities and reducing the amount of data
programming required.

Ultimately the four frames in Fig. 11-2 will be called up in
sequence, and since there are four frames, the calling operation

454

FRAME 1 FRAME 2
B1 B0 00 01

FRAME 3 FRAME 4
10 11

Fig. 11-2. A simple 4-frame animation sequence.

requires two address lines. The frame addresses, designated B1 and
B0, determine which one of the four frames will appear on the screen
at any given moment. When B1=B0=0, for example, the first frame
should appear on the screen. Then when B1=0 and B0=0, the
second frame should appear, and so on through the sequence. If this
2-bit counting sequence is taken from a binary counter circuit, the
sequencing will take place automatically, thereby generating the
desired animation effect.

The table in Fig. 11-3a shows a complete breakdown of frames
1 and 2 in terms of the data inputs required for an 8 x 8 extended
matrix generator circuit. The procedure for determining the data
requirements is identical to that described in connection with the
basic 8 x 8 extended matrix in Fig. 4-18. The “X” in this case

455

represents the 3rd lowest-order V-count bit used for generating the
figure. It will be assigned a specific V-count designation once we are
in a position to specify the size of the figure.

In Fig. 11-3a, a 0 entry represents a matrix cell that is black in
both halves of the figure. A 1 entry represents a cell that is always
white. The X entries are necessary where the cell is black in the
upper half of the figure, but white in its lower, extended counterpart.
Finally, a Xentry represents a cell that is white in the upper half of
the frame, but black in the lower. There are no other logical pos-
sibilities than these.

After making up the sequence of frames and, hopefully, finding
some similarities that make it possible to reduce the number of
different images, the next step is to generate a figure-generating
data sequence such as that in Fig. 11-3a. If the D inputs specified for
frame 1 are applied to the extended matrix circuit, the image in frame
1 appears on the screen. If, on the other hand, the data specified in
frame 2 is applied to the matrix generator, the figure will appear as
shown in frame 2 of Fig. 11-2.

It ought to be clear at this point that a thorough understanding of
the complex figure schemes in Chapter 4 are all important to video
animation. If you are lost at this point, you must return to the
material in Chapter 4 to get caught up.

Now a careful study of the truth table in Fig. 11-3a should
uncover a number of data inputs that are the same from both frame 1
and 2. The information in Fig. 11-3b summarizes these similarities.
There are 11 instances where the data for frames 1 and 2 are both 0,
and then there are 7 cases where the data is 1 in both frames. Only
D17 and D25 are totally unique, showing 01 and 1X respectively. So
of the two pairs of 32 data inputs required for this particular anima-
tion sequence, there are only 8 different combinations of 0s, 1s, Xs
and Xs. Simplification. That is the key to the successful design of
video animation circuitry.

The eight different combinations are summarized in Fig. 11-3c.
The eight sequences, for the sake of simplicity, are designated
according to the first term in the equality expressions in Fig. 11-3b.
Bear in mind, for instance, that the programming for D1 in Fig. 11-3c
will also apply to data inputs D6 and D26, as specified in Fig. 11-3b.

The next step is to derive some logic circuitry that will alter the
data inputs to a single 8 x 8 extended matrix circuit, distinguishing
frame 1 data from that required for frame 2 by the status of a control
bit, BO. When B0=0, for example, D2 should be equal to logic 0, but

456

A & - o Rl -«
2| g% 2| g%
Z < < Z < <
- oo - o o
[a] w [a] W
0j 00 16| 00
11 X0 17| 0 1
210X 18] 11
3111 19| X X
4 11 20| X X
5/ 00 21| 11
6] X0 221 00
710X 23{ 00
8100 24{ 0 0
9100 250 1 X
10| X X 2| X 0
np 1 271 X X
el 11 8| X X
14 00 30 11
15 00 31 00

B DO=D5=D8=D9=D14=D15=D16 =022 =023 = D24 =D31=0
D1 =D6 = D26

D2 =D7

D3=D4=D11=D12=D18=0D21=030 =1

D10 = D13 = D29

D17
D19 = D20 = D27 = D28
D25

C B0 | Do D1 D2 D3 D10 D17 D19 D25
FRAME1 [0 0 X 0 1 X 0 X 1
FRAME2 1] 0 0 X 1 X 1 X X

Fig. 11-3. Truth-table analysis of the 4-frame animation sequence in Fig. 11-2.
{a) D-input programming for frames 1 and 2. (b) Equations showing data inputs
having identical programming for both primary frames. (c) simplified truth table
for matrix D-input programming.

when B0 is changed to logic 1, input D2 to the matrix generator
should be changed to X.

Making this step calls for a rather experienced outlook on digital
‘logic design. The procedures are rather straight-forward for experi-

457

enced technicians, but a beginner will find the task a rather trouble-
some one at times.

What is the result of all this analysis and simplification? The
answer is contained in the fairly simple circuit in Fig. 11-4. Here we
have the complete circuit for generating the 4-frame animated se-
quence in Fig. 11-2, and also a prime example of how it is possible to
devise some simple circuitry for carrying out what appears at first to
be an exceedingly difficult task. In this particular example, a 4-frame
animated sequence is simplified to a point where it can be im-
plemented with an 8 x 8 extended matrix generator and only four
outboard IC devices.

Comparing the tables in Fig. 11-3 with the circuitin Fig. 11-4, it
can be seen that the data inputs requiring a logic 01in all cases can be
connected together to COMM, while those calling for a constant
logic-1 level can be connected together at +5V. These two simple
operations take care of 18 of the D inputs for both frames.

_Furthermore, the D10 input is always equal to X and D19is at
the Xlevel. The X input in Fig. 11-4 is thus connected directly to
D10, while D19 sees a version of the same input that is first inverted
by IC3-B.

All that remains as far as the D inputs are concerned are those
designated D1, D2, D7, and D25 in Fig. 11-3c. This set of inputs
differs from the others inasmuch as they vary according to the frame
being displayed. Input D1, for instance, is equal to X during frame 1
(B0=0), but must be set at logic 0 through frame 2 (B0=1).

The BO signal—the one distinguishing data for frame 1 from
that of frame 2—is generated by the least-significant output of a 2-bit
binary counter, IC2-A and IC2-B. Whenever B0 is equal to 0, IC3-A
is effectively gate on, and an inverted version of the X signal from
IC3-Bis presented to D1. D1, in other words, is set to X whenever
B0=0 (a condition that satisfies the requirements established for D1
in Fig. 11-3c). Whenever B0 switches to logic 1, however, it gates
off IC3-A and guarantees a logic-0 level at D1. .

The data for D2 is derived in a similar fashion, taking its X data
from IC3-B and frame-select data from the BO output of IC2-A.
When B0=0, then, B0 is equal tologic 1, and IC3 is effectively gated
off to feed a guaranteed logic-0 level to D2. Whenever BO switches
to logic 1, however, B0 is set to logic 0, and D2 sees an X signal.
These conditions meet the requirements spelled out for D2 in Fig.
11-3c.

According to Fig. 11-3c, D25 is simply an inverted version of
the D2 input. That is, D25=1 when D2=0, and D25=X when
D2=X. All thatis necessary for generating the D25 input, then, is an

458

inverting operation between D2 and D25, and that is performed by
IC3-D.

Finally, it can be seen from Fig. 11-3c that D17 is equal to BO.
So the final D connection is one where the BO output of IC2-A is
connected directly to the D17 input of the matrix generator.

The circuit as described to this point is capable of distinguishing
frames 1 and 2. What remains is the procedure for inverting the
direction of horizontal counting in order to produce the mirror
images for frames 3 and 4. This is accomplished by inverting the
H-count inputs to select lines SO, S1, and S2 while B1=1. Anditis a
simple matter of running these H-count levels through EXCLUSIVE
OR gates, IC4-A through IC4-C. Whether these select lines count
forward or in reverse depend on the logic level from IC2-B, counting
forward while B1=0 (frames 1 and 2) and counting in reverse while
B1=1 (frames 2 and 3).

The 2-bit binary counter composed of IC2-A and 1C2-B thus
generates a sequence of four binary numbers, each representing one
of the four frames in the animation sequence. The rate of counting is
fixed by the 555-type astable multivibrator, IC-1. Adjusting the
RATE control sets the animation rate.

The H-count specifications shown in Fig. 11-4 generate a figure
thatis 32H x 32V in size. The recommended window inputs set the
position of the figure near the lower right-hand corner of the screen.
Of course all these H- and V-count signals can come from a slipping-
counter circuit, thereby making it possible to move the animated
figure around the screen while it is going through its walking mo-
tions.

The RUN/STOP input to IC-1 gives the experimenter the
option of fixing the figure in its frame-1 position, while the
BLANK/UNBLANK input to the matrix generator allows the entire
figure to be blanked from the screen.

This particular animation sequence does not call for an applica-
tion of the 2-line-to-4-line decoder described in Fig. 11-1. Before
leaving this discussion of figure animation, we should look at a
somewhat more complicated case where this circuit becomes a
valuable asset.

Figure 11-5 shows an 8-frame animation sequence. The object
in this case is a teeter-totter on a pedestal. Ultimately the eight
frames will be flashed onto the screen in rapid sequence, giving the
visual impression of a teeter-totter action (an action, incidentally,
that is part of a very popular coin-operated TV game).

459

0s

62a'cLg'ora
Z1a

sca

La'2a

820°'22Q'02A'6LA

92a'9Q'tq
0eq‘iea
g81Q'cLa'la’va’ed

1€Q'¥2a’'c2Q'22a'9LA
S1Q'vtQ'6Q'8a’'sa’oq

H8

*H o vepol

g-€Ql

HO-3AISNTOX3 98v.—v2lI
HON LNdNi-2¢ avnd 20rL,—E2l
dO14-did MM Ivna 94vL—ed

H3IWIL §55—I DI

, X

A

AcE

460

‘2-11 "B14 ur @ouanbas uonewiue swel-y ay) Bunpoid 10) unoaY p-11L Biy

SLNdNI
MOANIM

(Z1-% "Bid)
HOL1vH3NIO
XIHLYN
Q3aN3LX3
8x8

J

—

vS
€S

s

e NVIENN =1
U\ MNVIE = 0
——& AS2L
——¢& A9
& H9SZ
——& H82ZL
€ Hp9
———€ A9L
L ——————— <8
l
ot
8
6
o7e]
g-v0l

¢ Hee

———é&— HIL

1g

L

g-¢Ol

el 471 1D

2D
+

vi

St

0g

v-2Ql

i
td

001
€Y

Wi
[4.]
31vy

dOo1S =0
NNY

1l

N

Hee
3]

1
(e}
<

There is some figure distortion introduced in these images, but
it turns out that the distortion is far more apparent when viewing the
static frames than when they are in motion on the screen.

The approach to designing a circuit for this animation sequence
is identical to that of the 4-frame walking sequence described earlier
in this chapter:

1. Draw the basic figure sequence in standard matrix formats
(Fig. 11-5).

2. Reduce the number of images, if possible, by noting
whether any are simple mirror images of others.

3. Assign logic levels to the nonextended portion of the mat-
rices, using an X or X to indicate the third-order H-count
(Fig. 11-6a).

4. Note any D inputs that show identical combinations of

inputs through all the frames (Fig. 11-6b).

Prepare a truth table for each class of D inputs (Fig. 11-6¢).

Devise logic circuits for solving the truth table.

7. Complete the circuit design and assign H- and V-count
parameters for figure size and position on the screen (Fig.
11-7).

It can be seen from the drawings in Fig. 11-5 that half the
figures are mirror images of others. Frame 8, for instance, is a
vertical mirror image of frame 1, and so are frames 7 and 2, 6 and 3,
and 5 and 4. There are thus only four unique frames to be generated
by an 8 X8 extended matrix generator. The mirror-image frames are
generated from the same data circuitry, but with the H-count ad-
dresses running backward instead of forward.

Figure 11-6a shows the logic levels assigned to the matrix
generator’s D inputs for the four basic frames, while the equations in
Fig. 11-6b show those D inputs that are the same.

Figure 11-6¢ summarizes the representative D inputs that
require something other than constant 0, 1, or X. It shows, in other
words, those D inputs calling for some sort of logic manipulation
between the four basic frames.

Now it is time to appreciate the operation of the dual 2-line-to-
4-line decoder described in Fig. 11-1. Note the sequence in Fig.
11-6¢ for DO, D8, D16, and D24. Grouping them together yields a
pattern of logic levels that closely resembles the truth tables in Fig.
11-1. These D inputs to the matrix generator can be derived directly
from a 4-line decoder by applying B0 and B1 to the select inputs, A
and B respectively, feeding the four 2Y outputs through inverters,
and applying X to the C2 input. See this done withIC3-Ain Fig. 11-7.

o m

462

-JoN0}1-18193} © Jo uoissaidwi [ensia ayy SaA1B JBY] 90uaNbas uoKBWILE SWel-g WY ‘G-11 “Bid

8 INVHL
001

¥ INvHd
110

-0 ﬂ E

4 3Nved
101

€ IWVH4
010

9 NV S INVHA
(0135 1333

¢ 3Nvd4d I INVHd
100 000

og tg¢cgd

0g tgcg

463

A further study of the table in Fig. 11-6¢ shows a decoder-type
pattern for D22, D23, D15, and D6. In this instance, a single X
appears in the company of three 0s, and the pattern is that achieved
by inverting the outputs of the 1Y decoder section in Fig. 11-1. So
applying the X input to pin 1 of IC3-B, selecting with B0 and B1, and
inverting the outputs of that particular decoder section yields the
information required for D22, D23, D15, and Ds.

A single dual-decoder package, IC3, is thus capable of generat-
ing programmable data inputs for 12 cells in the animation matrices.
Completing the work specified in Fig. 11-6¢ is then a matter of
manipulating the logic levels already available.

POSITION A

1
2
3
4

O

S
XOOX-“00OO0|(OXOXX/XO0OO|0OXXXOXO0|[oooxo oo x|| FRAME
Coox= xloo | XxXooxxoXo|loxxxxoo0oXxl|oooxoooo| FRAME
Coox=xloo |cooxXoXIXl|Xxoxx0o00|oOXXx00O0O FRAME
Ccoox«X[XIXl|locooxXxoo00o|0cooxxXx0o00 |xxxXXxXo0ooo|FRAME

B[oo=pe=p1s
D1=D2 =D3 = D10 = D21 = D29 = D30 =0
D4 =D11=D12 = D19 = D20 = D28 = X

D17

D22 = D31
D23

D24 = D25
D26

D27 =1

CO|lyoubwWN w0

18 C I'B1 80 | D0 D5 D6 D8 D13 D14 D15 D16 D17 D22 D23 D24 D26
2 FRAMEN 0 0|/X 000 X 0 0 0 0 X 0 0 0O
20 FRAME2l 0 110 0 0 X X X 0 0 X 0 X 0 X
2 FRAMES 1 010 X000 X X X X 0 0 0 X
22 FRAME4 1 1 /0 X X00 0 0 0 0 0 0 X X
23

24

25

26 i

Fig. 11-6. Truth-table analysis of the 8-frame animation sequence in Fig. 11-5.
{a) D-input programming for primary frames 1, 2, 3 and 4. (b) Summary of
equations showing data inputs having identical programming for all four primary
frames. (c) Simplified truth table for the matrix D-input programming.

464

Input D17, for example, uses two X terms that can be derived
by ORing together D8 and D16. IC6-A accomplishes this task, taking
advantage of the fact that inverted data at the input of a NAND gate
yields an OR function. D14 is obtained in a similar fashion, effectively
ORing together D15 and D23. IC7-A and IC4-E work together to OR
D17 and D24 to produce the D26 input.

D5 and D13 could be derived from ORed combinations of other
D inputs, but more for the sake of illustration than anything eise, the
circuit in Fig. 11-7 shows them being generated in a different man-
ner. D5 seems to have a close relatiorship with the B1 frame-select
bit (D5=0 when B1=0, and D5=X when B1=1). Soit is possible to
generate the D5 signal by gating it off while B1=0 and allowing X to
emerge when B1=1. This is a simple AND operation performed by
the NOR gate, IC7-7, operating from inverted versions of Bl and X.

D13, on the other hand, shows Xs as long as B1=0, and it
outputs Os as long as B1 = 1. This is, again, a basic AND operation
that can be carried out by IC7-B.

The data inputs to the 8 x 8 extended matrix generator are
thus completely satisfied for all eight frames of the animation se-
quence. All that remains to be done is force the H-count select inputs
to run in reverse for frames 5 through 8. This is easily accomplished
by the three EXCLUSIVE OR gates, I1C8-A through IC8-C. Select
inputs SO, S1, and S2 run forward as long as B2 is at logic 0—through
the first four frames. As B2 rises to logic 1 through the last four
frames, the H-count data is inverted by the EXCLUSIVE OR gates,
effectively forcing the count at the select inputs to runin reverse and
creating the mirror images of frames 1 through 4.

The rate of the teeter-totter effect is adjusted by the RATE
ADJUST resistor which, in turn, sets the counting frequency of IC2,
the frame counter.

Using the H- and V-count specifications in Fig. 11-7, the
teeter-totter figure measures 32H x 32V and is located near the
lower right-hand corner of the screen. Of course these specifications
can be altered to select any desired size and position.

It is not easy to design and build a video animation sequence.
But the possibilities are unlimited. In fact some experimenters have
chosen to make a hobby of figure animation alone. Animation effects
can add a great deal of interest to TV games, but the designer must
have the experience and patience to do the job in his own way.
Beginners are encouraged to avoid complex animation sequences
until they feel they have the necessary experience and know-how to
take on the job.

465

|

RATE ADJUST
// 16 9
10
R1 R2 IC3-A
'§ 500K
22K 15 1
—q 14 12
13 3
[, 5 15l B0
8
> 4 3 —d>14 o B!
STOP =0 3 ic2 _|B2
RUN 1 8 T
IC1 R3 2
47K
3 10
2
L
1
c1 |
WF T 7
6
g IC3-B
/7
1 5
IC1—555 TIMER
IC2—7493 BINARY COUNTER
IC3—74155 DUAL 2-LINE-TO- 4-LINE - d 2 4
DECODER 8
{C4,5—7404 HEX INVERTER I
IC6—7400 QUAD 2-INPUT NAND
IC7—7402 QUAD 2-INPUT NOR
IC8—7486 QUAD EXCLUSIVE-OR

256H
‘gg: WINDOW
8y INPUTS
14 84V
IC4-A
! 2 D0,D9,D18
IC4-B
3 > D8
IC4-C
5 6
D16 OUTPUT
IC4-D
9 >B D24,D25
D17
D26
1c5-A N 14
1 - D22
(C5-B
3 4 D23
IC5-C
2 >oi'— D15
IC5-D
9 8 D6,07
IC6-B
L4
S D14
5 1
7

Fig. 11-7.

Circuit for producing the 8-frame animation sequence in Fig. 11-5

467

(C5-F
12 13
10
icse| 17 M
™ N DA
32V 8H 16H 32H

X)

Fig. 11-7. Continued.

468

T — D1,02,03,010,021,029,030
D27

D4,C11,012,019,020,028

Y S0
2
32-CELL
MATRIX
8-B
'4C GENERATOR
(Fig. 4-17)
3 S1
5

8V 16V

Fig. 11-7 Continued.

469

FIGURE ROTATION

Being able to move a figure around on the screen is one matter,
but making it appear to turn in the direction of motion is something
else. There are a number of popular TV games on the market today
that feature such rotation effects—an airplane that always turns in
the direction of its motion; a tank figure that rotates and moves in any
direction, but always forward; or a gun that can be rotated and aimed
in any direction.

Figure rotation is a special case of figure animation, but it calls
for even closer preliminary analysis and greater patience and insight
with the circuit design.

Figure 11-8 shows an extremely simple, almost trivial, example
of figure rotation. The image in this case is one that might be
described as an X figure on a black field. The basic position is
represented by frame 1, while frames 2 and 3 show the same figure
rotated clockwise 30° and 60° respectively. A further rotation of 30°
would carry it to a total rotation of 90°; but since this is a completely
symmetrical figure, the 90° rotation looks exactly like frame 1.

The appearance of rotation for this simple figure is thus possible
with three different frames, and those three frames can be gener-
atedby a4 x 4 matrix generator, such as the one shown in Fig. 4-5.
The D inputs for each frame are specified below the drawings. Andin
keeping with the animation processes outlined in the first part of this
chapter, Figs. 11-8b and 11-8¢ show the truth tables and equalities
required for designing the appropriate D-programming circuitry.

DO, D1, and D2 appear in Fig. 11-8b to be inverted outputs
from a 2-line-to-4-line decoder. And indeed they can be generated
that way. See IC3 and IC4 in Fig. 11-9. Input D5is simply logic 1. So
it, along with the four others equal to it, is connected directly to a
+5V source.

These steps complete the D-input programming. All that re-
mains is to apply the select and windowing inputs. Using the specifi-
cations in Fig. 11-9, the little figure measures 32H x 32V and is
located just below and right of the center of the screen.

As the experimenter adjusts the frequency of the 555-type
astable multivibrator, IC1, the 3-count counter (IC2) generates the
sequence 00, 01, 10, 00, 01...at a variable rate. The overall impres-
sion s that the figure rotates clockwise on the screen. The faster the
multivibrator runs, the faster the figure appears to rotate.

The Importance of 90°-Increment Rotation

The matter of rotating complex, nonsymmetrical figures calls
for some techniques that aren’t required for the simpler forms of

470

=R

FRAME 1 FRAME 2 FRAME 3
0
818 00 01 10

Do
D1
D2
D3
D4
Ds
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

S~ 0020 =200 ==0 =200 =
O OO0 = = = s = 2000 =0

B B1 B0 |DO D1 D2 D3 D4 Ds D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

00 1001011001 1 0 1 0 0 1
01 o1 00011111 1 0 0 0 1 0
10 0010111001 1 1 0 1 0 0

C |po=D3=D12=D15
D1 =D7 =D14

D2 = D4 =D11 =D13
D5 = D6 = D9 = D10

Fig. 11-8. A very simple animation/rotation sequence. (a) Figures and corres-
ponding D-input matrix programming. (b) Simplified truth table. (c) List of D
inputs having identical programming through all three frames.

figure animation. To get an appreciation for the situation, suppose
you want to rotate a figure through a full 360° turn at increments of
45°. Now that is a very coarse rotation sequence. The figure will
appear to jump from one 45° angle to the next in a very unrealistic
fashion. But this is simply an example.

471

‘g-11 'Bi4 U1 @ousnbes uopeloluoiewiue 2y} Buleiauab o) UNoAD "6-L 1 ‘B4

1Nndino

aIAnW
-

S1NdNI
MOONIM

(G-¥'614)
HOLVYHINID e
XiHLVIN

T3091 ¢S
1S
0s

010'6a'sa'sa

€1a'11a'vaza

via'za‘ia

siLg'eiaed’oa

MNYIB=0
le——— AV1dSIO =1
—— A9

o—— ABCI

HILHIANI X3H $0vL—vDI
4300030

INIT-#-0L4-3NIT-2 ¥NA SSLPL—EDI

HILNNOD AHVYNIS £6¥.—CDI

Hv9 HIWIL S66—1DI
e—— HBzl _
le—— H95Z :ﬁ\
e——— AZE ==
j——— A9L
jg———— H2E m
le—— HolL
~ _ 8 4 € €Y
Y2 INI [Re]]
£ - 31VIOH = 1
T
o s s L < dOLS =0
0-v0I " p1 € v ~
€91 -
v € 9 etz P
g-v0I
2 w0 ez
b 1o
S . 2y
91
w0 \
Ara) \H
1snrav Aot

31vd NOILVY.LOH

Now if the figure is going to rotate in 45° steps, it follows that
the sequence will use eight animation frames: 0°, 45°, 90°, 135°,
180°, 225°, and 315°. An additional 45° rotation carrics the figure
back te its original 0° position. See the sequence in Fig. 11-10.

From the foregoing discussion of animation sequences, it might
be assumed that one doesn’t need eight different sets of D-input
matrix programs to accomplish this rotation effect. The 180° figure,
for instance, is a vertical reflection of the 0° figure, the 270° figure is
a horizontal reflection of the 90° one, the 135° figure is a vertical
reflection of the 45° version, and finally the 315° image can be
derived by a vertical reflection of the 225° figure. The eight figures
can thus be obtained by performing either a horizontal- or vertical-
reflection operation on just four of them. It would be possible to
generate this sequence by establishing a D-input matrix program for
four of them, then reversing the direction of horizontal or vertical
counting to get the other four.

That’s not too bad. But notice how coarse the rotation effect
would be. The player would not see anything resembling a smooth
rotation. The figure would appear to snap around in 45° intervals.
And overcoming that problem is a matter of rotating the figure in
finer angular increments.

So let’s suppose you try rotating a complex figure in 22%°
increments, cutting the minimum angular increment in half. Does
this double the number of images in the animation/rotation se-
queace? No, it quadruples the number of figures, apparently making

0° 45° 180° 225°
— ~ ~ - —
90° 135¢ 270° 315°

Fig. 11-10. Definitions of rotation through 360 degrees at 45-degree increments.

473

the whole affair four times as complicated! If anything useful is to be
done ‘with this matter of rotating complex figures in a realistic
fashion, there has to be a special trick for simplifying the whole thing.
That trick is 90° rotations.

The previous analysis of the rotation sequence in Fig. 11-10
showed that it could be done with four programmed figures (0°, 90°,
45°, and 225°) by reversing the horizontal or vertical counting to
obtain the other four figures. Using a 90°-shift operation, however,
it is possible to generate all eight figures from just two matrix
programs, the 0° and 45° images.

While the sequence in Fig. 11-10 is built around 45° incre-
ments, it can be seen that the 0° image can be shifted by 90° to get
the images for 90, 180, and 270 degrees, while the 45° image can be
shifted in 90° increments to get the images for 135, 225 and 315
degrees. Using this 90°-shift technique, it is possible to get all eight
frames from the D-input matrix programs for 0° and 45°. And in fact
a 16-frame rotation sequence (22¥2° intervals) can be derived from
just four D-input matrix programs.

Figure 11-11 shows the rationale behind rotating a single 4 x 4
matrix image in 90° increments by varying the select format, rather
than the D-input programming. In this case, the basic 0° matrix is
generated in the usual fashion, applying the least-significant H-count
bit (HO) to SO of the matrix generator, the most-signifcant H-count
(H1) to S1, and so on. The numerals in the matrix cells indicate their
relative positions, with the first digit being the decimal value of select
inputs SO and S1, and the second being the decimal value of the bits
applied to select inputs S2 and S3.

Achieving a 90° clockwise rotation from the basic matrix is a
matter of shifting the counts around the matrix. In the 90° figure, 00
replaces, 03, 03 replaces 33, and so on. Any complex figure con-
structed within the 0° matrix will appear shifted 90° clockwise if it is
again constructed in the 90° matrix.

Making this 90° shift calls for applying the two V-count inputs to
what is normally considered the H-count inputs, SO and S1. Fur-
thermore, the H-count bits are inverted before applying them to S2
and S3 of the matrix generator, effectively reversing their direction
of count.

Another 90° shift in the clockwise direction takes us to the 180°
matrix, where the H- and V-count bits are applied to their usual
select inputs, but inverted to force both to count in reverse. A final
90° shift yields the matrix for 270°. The connections to the select
inputs are similar to those required for the 90° image, but in this case
it is the V-count inputs that run in reverse.

474

00 01 02 03 3020 10 00
1011 12 13 312111 01
20 21 22 23 3222 12 02
30 31 32 33 3323 13 03
0° 90°
S0 = HO S0 = VO
o =H1}H FORWARD o ___V1}VFORWARD
S2= Vo}v FORWARD $2=HO\ peveRsE
S3 = V1 S3 =i
3332 31 30 03 13 23 33
23 22 21 20 02 1222 32
131211 10 01 11 21 31
03 02 01 00 00 10 20 30
180° 270°
S0 = HO S0 = VO
o =m} H REVERSE o1 7 (v REVERSE
S2=V0 S2=H0}
Vo H FORWARD
V1)V REVERSE o i o)

Fig. 11-11. 90-degree shifting matrices and corresponding address specifica-
tions.

What we have here is the ability to rotate any 4 x 4 matrix-
generated figure in increments of 90°. The table in Fig. 11-12a
shows the combinations of H- and V-counts to be applied to the
matrix-select inputs at the four different angles. The angles are
selected by an external source of 2-bit binary numbers, BO and B1.
When BO=B1=0, for example, the figure will be in its basic 0°
position. But when B0=1 and B1=0, the 90° image is selected.

The circuit in Fig. 11-12b shows how the various angle patterns
can be obtained by running the two B inputs through their 2-bit
binary counting sequence. It is really just a set of four 4: 1 multiplexer
circuits, each one providing an output for each of the four select lines
to the matrix generator.

A careful study of the circuit in Fig. 11-12b shows that it
satisfies the truth table in Fig. 11-12a. And since that truth table is
derived from the matrix-rotation scheme in Fig. 11-11, it ultimately
follows that the circuit in Fig, 11-12b will do the job. A single figure

475

*UOHIEI0M JO LIOHDONP pUE 8lBd
oy} BumOIIUOS 1o} 1IN0 Pa1seBBng (o) ‘wesBerp unoxD (Q) “efBuOHE] 1qE! LN L (B) “WNOAO YIUS- 506 PMepUBIS V 2i-| | 'Bid

(5-» B4 40
SLNGN 103738)
HOLVEINDD
XIH LYW
¥ xrOL

ES =

4

IS =

L/
WILWAAN X3IH ¥OrL—EO1
a1 e HIXINILWWN
T L'y WNG ES4PL—2 1D
€l a-€
6 2l
1" J
ot €IA
o % €
¢ € 2D
S
9 £ OA
2 vl
19
o
Z v
si
s €l L1 a-enn
21
' 7
ot € tH
PR 1o—
€ v-E0!
¥y
S ¢
9)—\ < OH
91 8 G+ g
AS+ s

HILNNOD
ISIMMOOTD NMOQVeN L8LYL—SDI
“WIINNOO = ¢ HINLSS O/,
ABMUO0TD = 0
wia ==
+
3
i 9
o LY z
Ol 1= 31Y.10W
A =
ol 0 am.;w
ri \ £ -
91 Z hn MOOL 8
1q o e %
3lve
A+ O
IHOHLAOA [+ 1| o022
LAOALHOH | O L | <08}
LHOHTAOA | L 0 | +06
LAOAMHOH | 0 0 | o
€sesisos |ogia| 1S | V

476

programmed into the D inputs of the matrix generator can be rotated
to any one of four different positions.

The circuit in Fig. 11-12¢ shows a circuit for controlling the
rotation. Adjusting the RATE potentiometer sets the rate of rota-
tion. The logic level presented to the DIR (direction) input deter-
mines whether the figure rotates in a clockwise or counter clockwise
direction.

So how can this 90°-shift procedure be used for simplifying the
rotation of figures through much smaller increments? Rotating a
figure through 45° increments is first a matter of working out two
D-input programs, one for the basic 0° position and another for the
45° position. One additional rotation bit is required for selecting one
of the two basic figures, while the two shown in Fig. 11-12 are
necessary for determining how much either figure is shifted.

The table in Fig. 11-13 shows the rotation sequence for turning
any 4 x 4 matrix figure through a full 360 degrees in a clockwise
direction and at intervals of 45°.

Rotation of an 8 x 8 Figure at 22'2° Intervals

The 45° rotation sequence just described is presented as an
example of how such a scheme should work. For an acceptable visual
impression of relatively smooth rotation, the figure should advance
at angles no greater than 22%°. This section uses a specific exam-
ple, a tank figure, to show how the principles of figure animation and
90° shifting can be combined to transform a very complicated rota-
tion situation into a reasonably simple format.

ROTATION ROTATION
CONTROL STl EFFECT
B1 BO B3

0 0 0 | 0°IMAGE WITH 0° ROTATION 0°
0 0 1 [45° IMAGE WITH 0° ROTATION 45°
0 1 0 | 0°IMAGE WITH 90° ROTATION 90°
0 1 1 |45° IMAGE WiTH! 90° ROTATION 135°
1 0 0 | 0°IMAGE WITH 180° ROTATION 180°
1 0 1 [45° IMAGE WITH 180° ROTATION 225°
1 1 0 | 0° IMAGE WITH270° ROTATION 270°
1 1 1 [45° IMAGE WITH 270° ROTATION 315°

Fig. 11-13. Table of rotation/frame selection for rotation a complex figure through
360 degrees at 45-degree increments.

477

A 00 01 02 03 04 05 06 07 70 60 50 40 30 20 10 00
10111213 141516 17 7161514131211 01
20 21 22 23 24 25 26 27 72 62 52423222 12 02
30 31 32 33 34 35 36 37 73 63 53 43 33 23 13 03
40 41 42 43 44 45 46 47 74 64 54 44 34 24 14 04
50 51 52 53 54 55 56 57 75 65 55 45 35 25 15 05
60 61 62 63 64 65 66 67 76 66 56 46 36 26 16 06
7071727374757677 77 67 57 47 37 27 17 07

0° 90°
77 76 7574737271 70 07 17 27 37 4757 67 77
67 66 65 64 63 62 61 60 06 16 26 36 46 56 66 76
57 56 55 54 53 52 51 50 05 15 25 35 45 55 65 75
47 46 45 44 43 42 41 40 04 14 24 34 44 54 64 74
37 36 35 34 33 32 31 30 03 13 23 33 43 53 63 73
27 2625 24 23 22 21 20 02 12 22 32 42 52 62 72
1716 151413 12 11 10 0111213141516171
07 06 05 04 03 02 01 00 00 10 20 30 40 50 60 70
180° 270°
B 0° 90° 180° 270°
S0=H0 | S0=V0|S0=HO| S0=V0
S1=H1|S1=v1|S1=H1|S1=V1
S2=H2 | S2=V2|s2=H2|S2=V2
S3=V0 | S3=HO0| S3=V0| S3 = HO
S4=V1|S4a=H1|S4=V1|54=H1
S5=V2 | S5=H2|S5=V2| §5 = H2

Fig. 11-14. Matrix rationale for shifting 8 x8 complex figures at 90-degrees. (a)
8x8 matrices with each cell showing the octal equivalent of the applied counting
sequence. (b} Truth-table summary of addressing required for each 90-degree
shift.

Figure 11-14 shows the 90° shifting rationale for an 8 x 8
matrix. The procedure for generating these matrices is identical to
that of the simpler scheme in Fig. 11-11. The number of cells,
however, has been increased substantially.

Using an 8 x 8 matrix generator calls for six select lines,
designated SO through S5. (Compare Fig. 11-14b and the matrix
generator in Fig. 4-17.) Three of the select lines have inverted or
noninverted H-counts applied to them, while the other three have
inverted or noninverted V-counts connected to them. The 90°
shifting is accomplished by varying this pattern of H- and V-count
inputs as shown in Fig. 11-14b.

478

The circuit in Fig. 11-15, derived from the rationale in Fig.
11-14, can be considered a universal 90° rotator for 8 x 8 matrix
figures. The circuit calls for six 4:1 multiplexers, each feeding the
appropriate data to a select input on the matrix generator. The
circuit satisfies the truth table in Fig. 11-15, and that table is based
on the data derived from the basic 8 x 8, 90° shifting requirements
in Fig. 11-14.

So much for the basic 8 x 8 90° shifter. Now consider how it
can be combined with an animation sequence to rotate the figure of a
tank on the screen.

Figure 11-16 shows a tank figure built withinan 8 x 8 extended
matrix. This is a 4-frame animation sequence that can be program-
med at the D inputs of the matrix generator in Fig. 4-17.

Frame 1 shows the tank in its basic 0° position. This is probably
the best tank figure that can be constructed within an 8 X 8 matrix.
Frame 2 then shows the tank figure rotated clockwise by 22.5°. The
image is terribly distorted, but it is the best we can do with a 64-cell
matrix. And besides, the distortion really doesn’t seem so bad to
players lost in the action of a video game.

Frame 3 then shows the tank figure rotated to 45°, an additional
22.5° from that in frame 2. The distortion is somewhat less objec-
tionable in this case.

And finally, frame 4 shows the same figure rotated to 67.5°.

The scheme involves a total of four unique animation frames.
There is no way any one of these frames can be derived from another
by performing any sort of shifting operation. Itis possible, however,
to generate 12 additional frames by rotating each of them through a
complete sequence of 90° intervals. If frame 1 is rotated 90°, for
instance, the impression is that of a tank figure pointing to the right.
Another 90° shift on that same frame yields a total of 180°, thereby
making the tank figure point toward the bottom of the screen. Yet
another 90° shift transforms frame 1 into a tank figure pointing to the
left (a total of 270° angular shift).

This 90°-shifting sequence can be applied to any one of the four
basic frames, producing a total of 16 tank images, images giving the
impression of a full 360° rotation at 22.5° increments.

Before carrying the discussion of 90° shifting any further, it is
necessary to work out the circuit for generating the four frames in
Fig. 11-16. This is done using the same procedures outlined in the
first part of this chapter. The data resulting from this procedure is
summarized in the tables in Fig. 11-17. Figure 11-18 then shows the
appropriate circuitry.

479

€0l

¢l

0-101

91

NS+

OA

cH

€d
cd

tH

OH

$10110US6 XUBW gx § 10} JoYIs 9a.6ep-06 [eSteaun y Gi-L 1 Big

ZHIHOHZA LAOAT L [c0z2
ZAIAOAZHIHOH| O L | Lo
ZHIHOHZALAOA| L 0 | .06
CAMAODACHIHOH | O © o0
GS ¥S €S 2S 1S 0S | 28 €8 | LINIS |
L L 41
HIXIWILINNW L
(ONIWWYHOOYd ¢l L 2 NA €51 #.—b'€'2OH
LndNI-g 2 vl Y3LHIANI X3H $0p2—I1DI
HO4 3NTVA X) Sitb—ae
GS = el
6 2l
Lt
0] A
vl tp—e
S - £
< v
S
9 LA
3-101
el - L a-1o1
oL
vi]
| o 8 8

481

| Bl

0° 22.5°
FRAME 1 FRAME 2

45° 67.5°
FRAME 3 FRAME 4

Fig. 11-16. Four critical frames for rotating a tank figure at 22.5-degree intervais.

There should be no reason to explain the derivation of the
circuit in Fig. 11-18 in great detail because it follows the principles
already outlined for a 4-frame animation sequence.

What is most important here is to combine the 8 x 8 90°, shift-
ing circuit (Fig. 11-15) with the 4-frame animation generator (Fig.
11-18) with the 8 x 8 extended matrix generator in Fig. 4-17.
Figure 11-19 shows how these circuits are combined. If the scheme
is combined with the control circuit in Fig. 11-20, the result is a tiny
8H x 8V tank figure that can be rotated into any one of 16 positions,
in a direction set by the logic level at the DIR input, and at a rate
determined by the setting of the RATE control.

Any custom-designed figure can be worked into this circuit.
The 90° rotator circuit never changes. Only the D-input program-
ming changes. Of course the whole system can be systematically

482

expanded to accommodate more complex and less distorted figures.
If it appears to an advanced experimenter that the complexity of the
whole scheme is getting out of hand, he can resort to using a
programmable read-only memory (PROM). This device is most
often used by engineers who design high-quality commercial video

games calling for fine rotation of complex figures.

COMBINING ROTATION AND FIGURE MOTION ACROSS THE SCREEN

All of the animation and rotation effects described thus far
assume the figure will not move across the screen as the rotation
takes place. It is often desirable to combine rotation and slipping-
counter motion effects to heighten the impression of reality.

« |_IMAGE .
wEE Do = D7 = D26 D16
E E 2 D1 D17
g3y D2 =D10 D18
=0 % D3=D4a=D11=0D22 | D19
aEg o DS D20
0 D6 D21 ;
1 D8 D23 = D30
2 D3 D24 = D25 = D31
3 D12 D27 = D28
4 D13 D29
5 D14 = D20 |
|
6 D15

13 B1BO |D15D21 Do Dy D2D3Ds5D12 D1z D9 D17 D19 D27 D29
1 00 (1 0 XX X1 X1 X 11 1 XX
12 0110 1 XX 1X 1 1 1 X X 1 X 1
13 10 11 X0 11 X X 1 11 X 1 1

11 110X 1111 X 1 X 1 1
15 N ~ - N —_
16 15,05 Xs Os 1s,Xs 15 Xs

e m A X A X]|= = 2 X 22O X=X O X

o><|-‘-n-n-noo><|-‘-‘><-‘><l><|><|-‘><><—‘-'-‘-‘ﬂo°-'-‘-‘-‘XD 67.5°

-
S
..><|><|x|><|_..._._.°_._.o_._...-x_._.x.._‘xxx__.xxx o°

XIx] = X[X[XX XXX = X[= = X[O O X = = X = XXX = XX XX |225

;g B1 BO |D6 D8 D16 D18 [123 D24 D20
21 0 0{X1 1 0 ¥ 1 1
22 01]1x 01 XXX
23 0 1 010 X 1 0 X 1
24 X 1 100 XX X 0 X
25 X
o 5 MIXED
27 1
28 1
29 1
30 0

X

Fig. 11-17. Truth-table analysis of the tank rotation.

SLo—+¢ H3Q0934d
810 *— €L INM-#-0L-3NIT-2 TvNa SSLv2—S #OI
2L H3AX3ILINN
m" 1'% VNA ESLPL—E 2 1D
020 ‘10— €
12
S
9
e vl
2 vl
SLoOo—e¢
80 «t—— £l
6 zl
L
ot
Lol L]
9Q - £
z
v
S
9
9l 8
AS+
2’4

484

g1-11 ‘614 J0) BuiuwueiBoid indur-q ey Gunesoeuab Joy nouD gL-1 1L Bid

Led
62Q ‘v2Q @—

0£Q '£2Q «———

v
e |n
51—t
£l <X
2zl
L
oL =0<y-60Ify
£l 1L p—t
£
¥
g
91 g 9
HILHIANI X3H +0r.—60I
aNVN 1NdNi-2 QvNo 00v—8l
91 g HON LNdNI-2 QVND 20¥L—L ‘94

485

9
Ica-A 10
15 11
14 12
BO—>- 13] I3
B1o>—
13 3 |g 7
10 6
15/ 1c5-A 11 1 IC4B f5
2
14 12 =
N8 16 8 16 T
,717 LT
IC8-A iC8-B
IC8-C IC8-D
vy v
D15 D21 D26 D1 Do
D10 D7

Fig. 11-8. Continued.

486

-» D2

—» D3, D4, D11, D22
T > D12

D29

D9

D19

Fig. 11-8. Continued.

487

2V 4V 8V 2H 4H 8H

llllll S INPUTS

VOVIVZHOHTHZ |” o o)
B3 B3 8x890° ROTATOR
B2 B2 {FIG. 11-15) 8x8
ROTATION = E:A‘EI’,‘JR[I))E(E °
CONTROL GENERATOR
(FIG. 11-20) D-INPUTS (FIG. 4-17)
B1 B1 D-INPUT £0-03;
80 Bo PROGRAMMING
(FIG. 11-18) ?U?pu-r
256H——
128H—»
o 64H——
<3 § E ’8‘ 32H——s{ | wiNDOW
99 |gazgl 2 (58 16H—s [INPUTS
128V —»
0 0000 | o° 0 B4V ——)
225 (0001 |225°| o 32V ——
45 (001045 0
675 | 0011|675 o
90 [0100] 00 | 9o
1125 [0101 |226°| 90
135 Jo110)45° | o0
1575 [0111|675 | 90
180 | 1000 ¢ | 180
2025 | 1001 |225°| 180
225 [1010(|45° | 180
2475 [1011 |675°| 180
270 1100 o | 270
2025|1101 |228°| 270
315 | 111045 | 270
3375 1111|6750 270

Fig. 11-19. Block diagram and code table for rotating the tank figure in either
direction through a full 360 degrees at 22.5-degree increments.

In principle, the rotation schemes are devised as described in
this chapter, and the motion effects are achieved by using the H- and
V-count outputs of a slipping-counter board, rather than those from
the Sourcebox. The only difficult part is coordinating the direction of
motion across the screen with angle of rotation of the figure.

If the tank figure in Fig. 11-16 is set for a 45° rotation, it should
move up the screen and toward the right. If it is rotated to 180°, it
should move straight down.

Coordinating the rotation angle with the direction of motion
across the screen is a matter of translating the angle codes (B3, B2,
B1, and BOin Fig. 11-18) into appropriate speed and direction codes
for a set of horizontal and vertical slipping counters.

488

‘ainby xojdwiod gxg fejiuis 1o yue) ay} Buyjonuod soy unoxD og-11 "By

489

yOvL-9/1

yov.L-9/1

LLS
>>ow Lo
+ 10 L
dia \ LS L 9
2
Mi
N S gee
- L
16172 M
£ b
[0 8
ey
N7
Nrrd Wi 1y
sy

(3]

g29 18 08 5 vy cd

o

s

/1HVY1S

ANGLE* | ROTATION SLIPPING-COUNTER
A | (oeG) CODE MOTION CODES
" B3 B2 B1 B0 [HC HC HC HC|VC VC vC VC
8 4 2 1|8 4 2 1
0 0000 |1 00 1|1 1 1 1
22.5 0001 {0 1 1 1f1 1 1 0
45 0010 (0 11 01 1 0 1
67.5 0011|010 1{1 0 1 1
90 010010 10 0|1 00 1
1125 01010 1o 1]/0 1 11
135 011010 11 0/0 1 0 1
157.5 0111]0 11 1/0 10 O
180 1000 |1 00 1|0 0 1 1
202.5 1001 |1 01 1|0 10 0
225 1010 |1 1 0 o0flo 1 0 1
247.5 1011 |1 1t 0 1[0 1 1 1
270 1100 (1 1 1 01 0o o 1
2925 1101 |1 10 1)1 0 1 1
315 111011 1 0011 1t 0 1
337.5 1111]%+ 0 1 1]1 11 0
B *0° = STRAIGHT UP
8HC | 4HC| 2HC| 1HC | 8VC |4VC| 2vC]1VvC
Do 10 |o |B2|B3|B3| 1] 1
D1 |B3|B3| 1 1 | B3] 1| B3| B2
D2 (B3| 1 | B3| O |B3| 1 o] 1
D3 | B3| 1 o} 1 |B3|B3| t|B2
D4 | B3| 1 | B3 110 o -
D5 | B3| 1 0 B3 |83 1| -
D6 (B3| 1 | B3 B3 | 1 0o{ -
D7 | B3| B3| 1 - 183} 1| B3| -

Fig. 11-21. Truth-table analysis of the relationships between angle of rotation
and direction of motion across the screen. (a) Table of code translations between
rotation codes and slipping-counter motion codes. (b) Summary of slipping-
counter speed control codes as a function of D-input programming for translating

them from rotation-code inputs.

Figure 11-21 shows the truth-table analysis behind such an
angle-to-motion translator. Figure 11-21a specifies the desired set
of rotation angles as well as the rotation codes established for an
8 x 8 matrix figure. See Fig. 11-13. The task is then to relate these
rotation codes with appropriate horizontal and vertical slipping-

counter-contro] codes.

490

"sapo0 peads Jsjunoo-buiddys pue uonejos usamieq uonesues ey Bulwsoped o) wang ‘gz-11 by

4
_ T : T T 1
9L 8 | [ov T8 for T® [ot T8 91 |8 AG+
1 - L - = L i
OHB -—v mn -y S1 S 2 Wl S 2 S 2 HIXILINW
z - ! by o1] a 1 2avNO S4vL—6 8D
OHY @—{L 9 }— 1l vl rrlrA i H3IX3IWILINW
S i 2L Sl Sl 41 L ¥ WNQ ESLPL—LOI
orz «—fs & o1 B:0¢ o O llw voL Y3IXINILINW
L B 2 2 f— z L8ISIY.~9'S FE 2 1D
OHI -— 21 £1— ot — £ € £
vt = ¥ | [4 v dOLS-1t
1 6 Jor it & o1 it & [or [t 3AOW 0
€ AOW
) P
"8 <e8
— 28
3 <28
g <29
Kz o
g <ia
¢
t 08
t z vt ot [t 6 Joi 1 08 |6 [o1 1
sl ¢ g £ b ¢
OAL =— 21 i 1 p— 21 - 2 4
€11 & e 4 e1—4 £1—4 £l
OoNZ =—16 (33 vl — 143 ! 143
0t 1 — 51— 51— Sl —1—
oAr -—z 81 ¢ v * €y —14 2 7 _ [SoT I
. s z— z—H 2
OASla—p Z € __| € — €
€1 ST S & —4 S v ﬂ v
_ 9t E] 9l [] 9l 8 [94 T

A+ AL

491

N .
¥ ,%MOVE
=
g BO B0
B1 B1
MOTION 82 B2
TRANSLATOR
(FIG. 11-22) G .B::_’
B2 le 82
B3 B3
FIGURE
Z|8221L9gl © ROTATION
—|N| | 0 —| qy§| | @ SYSTEM
(FIG. 11-19)
2HM 2H
4HM 4H M.
16HM 16H
SLIPPING- 32HM 32H
COUNTER 64HM 64H
CIRCUIT
(FIG. 5-15) 128HM 28H
2VM 2V
4VM AV
8VM 8v
16VM 16V
32VM 32V
64VM 64V
5 |t7, 128VM 128V
t!I =] [on |
s 2 s =
£ £ = =
y

Fig. 11-23. The translator interfaces with the rotatable figure and slipping-
counter board.

492

The general procedure is to determine the sine and cosine of
the angles, then use the table in Fig. 7-22 to find the closest possible
velocities for each. The sine of the angle determines the vertical
velocity, while the cosine determines the horizontal velocity.

Table 11-21b shows the results of this translation process,
assuming it will be carried out by means of a set of multiplexer
circuits.

The resulting circuit diagram for the angle-to-motion translator
is shown in Fig. 11-22. Figure 11-23 shows how the translator
interfaces with the 8 x 8 rotatable figure and a slipping-counter
board.

A similar approach using universal position programmers
(Chapter 8) would provide a much wider range of figure speeds, but
only at the cost of greater circuit complexity.

493

Chapter 12
Sound Effects

Most commercial video games feature some interesting sound ef-
fects. Such effects are rarely a vital part of the games, themselves,
but they add to the fun of the whole thing.

Rather than presenting a wide variety of sound-generating
circuits that have specific applications, this chapter shows how
certain classes of sounds can be generated, leaving it to the know-
how and imagination of the experimenter to apply them as desired.

TONES FROM THE V-COUNT SIGNALS

Figure 12-1lists some of the frequencies in the audio range that
are available directly from the V-count outputs of the Sourcebox
unit. These tones are available continuously as long as the Source-
box unit is turned on. To get a good idea how these signals sound,
connect any one of them directly to the AUDIO IN pin on the
Sourcebox, adjusting the volume control for a comfortable listening
level.

Steady tones are rarely useful for video games, however, so
there must be some provisions for switching them on and off at the
appropriate times. Figure 12-2 shows an experimental breadboard
circuit for controlling the tone from a negative-going control pulse.

The circuit in Fig. 12-2 is basically a monostable multivibrator
built around a 555-type timer. Whenever switch S is depressed, a
short negative-going pulse is coupled through C1 to the trigger input
of the monostable circuit. Its output from pin 3 then goes to a logic-1

495

V-COUNT | FREQUENCY
OUTPUT (Hz)

1V 7893
2V 3945
v 1973
8V 987
16V 493
32v 247
64V 123
128V 62
256V 62

Fig. 12-1. Approximate frequencies from V-count sources.

level for a period of time determined by the product of 1.1 times the
values of R3 and C2.

Setting the pin-3 output of the 555 to logic 1 in this fashion opens
the 2-input NAND gate, allowing the 4V signal to pass through to the
audio amplifier in the Sourcebox unit. The player thus hears a 1973-
Hz tone which, in this particular case, lasts about 110 ms. The sound
is very much like that of a table-tennis ball hitting a paddle.

Of course the tone duration can be modified by altering the
values of R3 and C2, and the tone frequency can be changed by
selecting a different V-count input.

The circuit is perfectly compatible with any of the video games
that include a figure-contact operation. Most of these operations
generate a negative-going pulse that can be connected to the timer
through C1. R1 and S can be normally omitted in such cases.

This circuit can also be connected to the SWING pushbutton on
the Golf game (Chapter 8). The effect is a “plink” sound every time
the player hits the ball.

Connect this circuit to the HIT terminal in the Pinball game
(Chapter 10), and you will hear the “plink” sound every time the ball
rebounds from one of the barriers or paddles.

It is sometimes desirable to generate more than one “plink”
frequency in a game. Suppose, for example, you want two different
sounds of this sort, each switched on by a different event on the
screen. Figure 12-3 shows how this can be done.

Basically, the circuit ORs together the tones from the two
“plink” circuits. The occurrence of event A switches on ICI-A, and
allows the 4V frequency to pass through IC2-A and IC2-B to the
audio amplifier in the Sourcebox unit. By the same token, the
occurrence of event B switches IC1-B to its active state, allowing
the 8V frequency to pass to the audio amplifier.

496

In this particular example, event A causes the player to hear a
1973-Hz tone that lasts only about 0.1 second. Event B, on the other
hand, causes a 987-Hz tone that lasts about 0.25 second. The overall
effect is a higher-pitched and shorter “plink” sound for event A, anda
lower-pitched and longer “ploonk” sound for event B.

Again, any of the timing values for the monostables and the
V-inputs can be altered to suit your own needs.

Replacing IC2-B, the output that effectively ORs together the
different tones, with a 4-input NAND gate allows the circuit to
respond to four different kinds of events calling for an equal number
of different tones and tone durations.

Deedle-Deedle Sounds

Space games and ray guns call for weird little sounds that cannot
be easily generated from single V-count sources. They can be
created, however, by rapidly alternating between two different tone
sources. See the example in Fig. 12-4,

IC1-Ain Fig. 12- 4 is connected as a free-running multivibrator
having a frequency fixed by the values of R2, R3, and C2. In this
particular case, the frequency is on the order of 4 Hz. This circuit
determines the “deedle-deedle” rate.

The output of IC1-A alternately gates on IC2-C and IC2-B.
Whenever the output of IC1-A is at logic 1, IC2-C is gated on,

/[J +5V v

R1 R2 1N914 R3 Y4-7400
c1 4 8
._| 2 3 TO AUDIO
AuF &

50 555 ©
H ;

T 1 c2_L

ApF T

TONE DURATION = 1.1 R3C2
/7

Fig. 12-2. Experimental circuit for gating V-count tones on and off.

497

R1 R2
22K D1 1M 14
EVENT Ci 4 14 1 -
T gk
1uF o
IC1-A 11— IC2-A
2
1 c2
AuF
» LDS—‘
—15
AUDIO

1C2-B

rRal |
R4
22K o2 T 1w L
EVERT C3 10 8
B —] 8 10 —
ol 1uF s 2 IC2-C
ca

77

7 22uF
IC1—556 DUAL TIMER

1C2——7400 QUAD 2-INPUT NAND
D1, 2—1N914 OR EQUIV

Fig. 12-3. Circuit for combining V-count tones from two different sources.

thereby allowing the 4V frequency to pass. The inverter action of
IC2-A, however, transforms the logic 1 from IC1-A to a zero level
that gates off IC2-B. Whenever IC1-A switches toits 0 output state,
the situation is reversed: IC2-B is gated on to allow the 8V signal to
pass and IC2-C is gated off.

Neither of these frequencies appears at the AUDIO output of
the circuit unless IC3-A is gated on by a logic-1 level at its pin-2
input. And that signal comes from IC1-B.

IC1-B is connected as a monostable multivibrator that is set to
its timing state only when the desired triggering event occurs.
Maybe this event occurs when the player depresses the trigger on
some sort of ray gun. In any event, a negative-going pulse at C1
starts the timing action of IC1-B and allows the “deedle-deedle”
sounds to pass through IC3-A to the audio amplifier.

498

The timing interval for IC1-B is fixed by the values of R4 and
C3. In this example, it is set for about 1 second. The circuit is thus
normally silent. But when the triggering event occurs, IC1-B allows
the “deedle-deedle” sounds to be heard for 1 second.

It is possible to achieve a wide variety of audio effects from this
one simple circuit. The “deedle” frequencies can be altered by
applying different pairs of V-count inputs to IC2-C and IC2-B. The
“Jeedle-deedle” rate can be changed by experimenting with the
values of R2, R3, and C2. And finally, the duration of the funny
sounds can be modified by changing the values of R4 and C3.

SOUNDS FROM SOURCES OTHER THAN V-COUNT SOURCES

Some of the most common sounds for video games are built
around noise or static sounds. Gunshots and explosions are both
good examples of this sort of audio feature.

Figure 12-5is the schematic diagram for a noise generator. The
noise (or static) is generated by the reverse-breakdown of the

4| 14
12
IC1-A AUDIO
bt
TRIGGERING
EVENT R 1Ng14 R4
K 10
v 100K
>l 8 9
c IC1B |42 IC1—556 DUAL TIMER
1uF IC2—7400 QUAD 2-INPUT NAND
13 IC3—7410 TRIPLE 3-INPUT NAND
7

Fig. 12-4. Circuit for creating “deedle-deedle” tones from V-count sources.

499

NOISE

Q1, 2—ANY LOW-POWER NPN
AUDIO TRANSISTOR

Q3, 4—ANY LOW- OR MEDIUM-POWER
PNP AUDIO TRANSISTOR

Fig. 12-5. A basic noise generator for explosion effects.

emitter-base junction of Q1. The breakdown current is controlled at
a safe level by resistor R1. The collector on that same transistor is
not used. But the noise it generates can be amplified by Q2, and then
further amplified and adjusted to TTL logic levels by Q3 and Q4.

Since this circuit generates the noise continuously, its output
must be applied to a control circuit to give the impression of explo-
sions or gunfire. The circuits in Fig. 12-6illustrate two kinds of noise
controls,

The circuit in Fig. 12-6a uses a simple monostable multivibrator
circuit to control the on-time of the noise signal fed to the audio
amplifier. The monostable is set to its active timing mode whenever
the SHOOT input experiences a brief negative-going pulse. The
positive-going timing pulse from pin 3 of the 555 then gates on the
NAND gate, allowing the noise signal to pass to the audio amplifier in
the Sourcebox unit,

The monostable remains in its active condition for a period of
time determined by the values of R2 and C2. In this particular
instance the timing is set for about 0.1 second, giving the impression
of a single gunshot each time a negative-going pulse appears at the
SHOOT input.

The duration of the explosion sound can be lengthened by
increasing the value of R2, thereby giving the impression of a bomb
exploding.

500

The circuit in Fig. 12-6b can create the sound of machine gun
fire. In this instance the noise signal is gated on and off by a
free-running multivibrator. As long as the FIRE input is at the logic-1
level, this oscillator runs at about 4 Hz, gating the NAND gate on and
off, ultimately producing a string of staccato-like noise bursts. The
firing rate can be adjusted by changing the values of R1 or R2, or
both.

Another source of game sounds takes advantage of a simple
digital-to-analog (D/A) converter circuit. The idea s to translate any
source of digital words into a voltage level, and then use that voltage
level to create tones of various frequencies. Such a scheme is useful
for generating buzzing sounds that vary in pitch with the speed of a
figure moving on the screen or whistling sounds for falling bombs.

1N914 § a2
C1 R1 4] 8 %ﬂw
1uF ¢ 22K 2 4 4-7400
u AUDIO
7 ,[
NOISE
A _ch
| AuF
1
/77

+5V —
8 A1
% IES Y4-7400
9_4 3
FIRE 7 3——-—
555 AUDIO

2 NOISE
B
B 1 == 1uF
/77

Fig. 12-6. Circuits for controlling noise sounds. (a) Single gunshots or explo-
sions. (b) Machine gun effects.

"S82IN0S [eUBIP 11g-1 10} JOUBAUOD v (Q) J01B|119S0 pue sindu) 821n0S 19-8 (B) "s82.n0s [eybip Wwou) sauo) Sunesauab ioj synond “z-z | *Biy

€4 SH ZH 64 Ly iy Sid

4710
(Fo 2 W4
M022 Hm
P4t |
oiany_ L
- 3
> .
MOLY)
Iy

440=0
NO+1
3INOL

502

The basic D/A converter is made up of a resistor-ladder net-
work. Two of them are shown in Fig. 12-7. The larger circuit in Fig.
12-7a can accept an 8-bit digital word at inputs PO through P7, while
the simpler one in Fig. 12-7b can be used with 4-bit digital words.

In either case, the voltage appearing at the junction of R3 and
R4 is proportional to the value of the binary number applied to the P
inputs. That voltage level is then used to set the frequency of a
555-type free-running multivibrator. The TONE input to the 555
oscillator is used for gating the sound on and off. When this input is at
logic 1, the tones appear at the AUDIO output connection. Setting
that TONE input to logic 0, however, silences the circuit.

The values of R1, R2, and C1 determine the range of frequen-
cies available from the circuit. The larger these values, the lower the
tones. The P inputs to the ladder network then determine the
frequency within that selected range that will appear at the AUDIO
terminal. While the analog voltage to the CV input of the 555 timer is
proportional to the size of the binary number applied to the P inputs,
it turns out that the selected frequency is inversely proportional to
the binary number. The larger the number, the lower the audio tone.

So if the eight P inputs in Fig. 12-7a are connected to the
outputs of an 8-bit binary counter, the tone sweeps downward when
the counter is counting upward, and the tone sweeps upward when
the counter is counting downward. Figure 12-8 shows a rather
simple circuit for experimenting with the tone generator. The out-

PO P1 P2P3 P4 P5 PG P7
'y
3l 2|6l 7| [16 3l 2| 6] 7| 116
4 134
74191 74191
VRST >3 145
(OR OTHER - 3
V-COUNT 5}8]
SIGNAL)
A sDIR /7%
1=DN
0=UP

Fig. 12-8. An 8-bit counter for generating whistle effects from the circuit in Fig.
12-7a.

503

puts of the 74191 counters interface directly with the P inputs of the
circuit in Fig. 12-7a.

It is possible to generate a lot of interesting sounds by combin-
ing the circuits in Fig. 12-7a and 12-8. It is left to the experimenter to
play with the circuit and come up with sounds that seem fun and
useful for custom TV games.

The smaller D/A converter in Fig. 12-7b is especially useful for
translating the 4-bit VC or HC inputs to a slipping-counter circuit into
audio tones. Simply replace the larger resistor network in Fig. 12-7a
with the simpler one in Fig. 12-7b, and then connect the four P inputs
to the VC or HC terminals of a slipping-counter control. Adjust the
values of R1 and C1 to get the range of frequencies that seem most
appropriate for the game scheme.

504

Appendices

505

Appendix |

This appendix is a complete listing of horizontal- and vertical-count
binary outputs.

507

DECIMAL
H- OR V-COUNT OUTPUTS EQUIVILENT

256 128643216842 1 !
3 0 06 00000 o7 —H AND V BLANKING BEGIN
00001 1
00010 2
00011 3 y
0906 TS V SYNC BEGINS
00101 5 £
00110 6 :
WY1 7 4LV SYNC ENDS
01000 8 Q
01001 9 £
01010 10 §
01011 11 @
01100 12 >
01101 13
01110 14
01111 15
1 DE@ - V BLANKING ENDS
10001 17
10010 18
10011 19
10100 20
10101 21
10110 22
10111 23
11000 24
11001 25
11010 26
11011 27
11100 28
11101 29
P TPy 11110 30
0 000 11111 31
«——H SYNC BEGINS
0 001 00000 32
00001 33
00010 34
00011 35 %)
00100 36 £
00101 37 ‘3’:’
00110 38
00111 39
vy vy gy 01000 40
0 001 01001 41

508

256 12864321684 2 1

0

(=X |

=y —

Y
0

0 01

OCam—

—~ -t

'
1

0

01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
0101
01100
01101
01110
01111
10000
10001
10010
10011
10100

42 ’+——H SYNC

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

<+———H SYNC ENDS

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

H BLANKING

(CONT'D)

H BLANKING ENDS

509

510

256 1286432168421

0O 010 10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

(=1,
(=X
- o
(=1

o
o
-

00000
6oo001
0co010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
1001
1010
1011
1100
1101
1110
1111

[L gy

85
86
87
88
89
90
91
92
93
94
95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127

256 1286432168421

0

Cw

O W—

1

[«X

0 0 00000

ey

o

00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
61011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
1000
1001
1010
1011
1100
1101
1110
c1111

- b A b =& —A =

00000
00001
00010
00011
00100
00101
00110
60111
01000
01001
01010

128
129
130
131
132
133
134
135
136
137
138 @——V CENTER
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170

511

512

256 128643216842 |

0

(=1

0 10 01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101

g yy 11110

010 11111

1 10 00000
00001
00010
0oo011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101

L/
1 10

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

25612864 321684 21

0 1 10 10110 214
10111 215
11000 216
11001 217
11010 218
11011 219
11100 220
11101 221
vy v VY 11110 222
0 1 10 11111 223
0 1 11 00000 224
00001 225
00010 226
00011 227
00100 228
00101 229
00110 230
00111 231
0100¢ 232
01001 233
01010 234
01011 235
01100 236
01101 237
01110 238
01111 239
10000 240
10001 241
10010 242
10011 243
10100 244
10101 245
10110 246
10111 247
11000 248
11001 249
11010 250
11011 251
11100 252
11101 253
P vy 11110 254
0 1 11 11111 255

513

256 1286432 16842 1

1 0 006 006000

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

- -
o O -
o O -

S P

-

-
cw
o=
—-

514

00001
6oo010
00011
6o100
00101
0ot11to
00111
61000
01001
01010
61011
61100
01101
61110
0t111
10000

0001
6o10
0011
6100
06101
0110
6111
1000
1001
1010
1011
1100
1101
1110
1111

00000
00001
060010
60011
60100
00101
60110
00111
01000
01001
61010
61011

256
257
258
259
260
261
262
263
264
265
266 +——H CENTER
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

«—V BLANKING BEGINS

288
289
290
291
292
293
294
295
296
297
298
299

256 12864 321684 2 1

1

— -

-

0

-
-

-

0

01

Oa
- -

10

\]

10

011G0
01101
61110
01111

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

0000
06001
0010
001t1
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

00000
00001
00010
0oo011
00100
00101
00110
60111

0

1000

01001
61010
01011
01100
01101
61110
01111
10000
10001
10010
10011
10100
10101
10110

300
301
302
303
304
305
306
307
308
309
310
31
312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

515

516

256 12864321684 2 1

1

- g

010

‘
-
-

O a—

10111
11000
11001
11010
11011
11100
11101
11110
11111

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

343
344
345
346
347
348
349
350
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

256 12864 3216842 1

1

'y

1

— -

0 0 0000COC

O -
—- -

00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
0t011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
1001
1010
1011
1100
1101
1110
11111

—- ok A s =

00000
00001
00010
00011
00100
60101
00110
00111
01000
01001
01010

384
385
386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
411

412
413
414
415

416
417
418
419
420
421
422
423
424
425
426

517

256 12864 321684 2 1

1 101 01011 427
01100 428
01101 429
01110 430
01111 431
10000 432
10001 433
10010 434
10011 435
10100 436
10101 437
10110 438
10111 439
11000 440
11001 441
11010 442
11011 443
11100 444
i 11101 445
) ‘v 11110 446
1 101 11111 447
1 110 00000 448
00001 449
00010 450
00011 451
00100 452
00101 453
1 110 00110 4544 H BLANK BEGINS

518

Appendix Il
Digital Integrated Circuits

T e T e (P £ o e e T M S e Y e
7400 Quad 2-input NAND
7402 Quad 2-input NOR
7404 Hex inverter
7420 Dual 4-input NAND
7427 Triple 3-input NOR
7430 8-input NAND
7448* BCD to 7-segment converter
7474* Dual D flip-flop
7475* Quad D latch
7476* Dual JK flip-flop
7483* 4-bit binary full adder
7485 4-bit comparitor
7486 Quad EXCLUSIVE OR
7490* Decade counter
7492* +6 counter
7493* 4-bit binary counter
74125 Quad 3-state buffer
74147 Decimal-to-BCD converter
74150 16:1 multiplexer
74151 8:1 multiplexer
74153 Dual 4:1 multiplexer
74154 4-line to 16-line decoder
74155 Dual 2-line to 4-line decoder
74157 Quad 2:1 multiplexer
74191* Presettable binary up/down counter

*designates ICs detailed in this appendix
This appendix lists the digital ICs that are referenced within this

book. Those marked with an asterisk (*) are detailed on sub-
sequent pages.

519

BCD to 7-Segment Converter

DESCRIPTION — The 9358/5448, 7448 and 9359/6449, 74497are TTL,
BCD to 7-Segment Decoders consisting of NAND gates, input buffers and
seven AND-OR-INVERT gates. The 9358/5448, 7448 offers active HIGH,
open-coliector outputs for current-sourcing applications to drive logic
circuits or discrete, active components. Seven NAND gates and one driver
are connected in pairs to make BCD data and its complement available
to the seven decoding AND-OR-INVERT gates. The remaining NAND gate
and three input buffers provide lamp test, blanking input/ripple-blanking
output and ripple-blanking input for the 9358/5448, 7448. Four NAND
gates end four input buffers provide BCD data and its complement and a
buffer provides blanking input for the 9359/6449, 7449.

“The circuits accept 4-bit binary-coded-decimal (BCD) and, depending on
the state of the auxiliary inputs, decodes this data to drive other compon-
ents. The relative positive-logic output fevels, as well as conditions required
at the auxiliary inputs are shown in the truth tables.

The 9358/5448, 7448 circuit incorporates automatic leading and/or trailing
edge zero-blanking control (RBI and RBO). Lamp test (LT) of these types
may be performed at any time when the BI/RBO node is a HIGH level. They
contain an overriding btanking input (B1) which can be used to control the
lamp intensity or to inhibit the outputs.

7448*
|
|
i
\
\
\

PIN NAMES LOADING
A, BC D BCD Inputs 1U.L.
RBT Ripple Blanking Input 1U.L.
T Lamp Test Input 1U.L.
BI/RBO Blanking Input or 26 U.L.
Ripple Blanking Output SU.L.
B Blanking Input 1U.L.
atog Outputs 6U.L.

DIP (TOP VIEW)

LOGIC DIAGRAM

Positive logic: See truth table

% NOT INCLUDED wiTH THE 9339/3449

520

NUMERICAL DESIGNATIONS — RESULTANT DISPLAYS’

TRUTH TABLE 9358/5448, 7448
INPUTS N OUTPUTS —
DECIMAL
OR it|#®i|o|c|B|A 8/RE0| e b |c|a]|e| |0 |noTE
FUNCTION
0 H H L L L L H H H H|H M M L 1
1 Wl x fofjufefm H L mgmfe o] [y t
2 W x Joefufmw]e H NN
3 H| x JL]LjH[H H Hlu|w|u|e e |H
O W[x [o[u]]n H NOOODNDNCD
5 HEEDDIDNE H H e u[u[e] u]n
0 W x Joe[w[w]e H NN
7 ERNDDD H Wliuw]w ool
[W x [Hlele]e H WlH[u[u]Hu[u]H
9 H x H L L H H H H H L L H H
10 W[x |[W[e[H]L H NN
[H| x [H|L{H[H H Lo ulwuleloe]n
12 W | x [W[wu]e]L H NN ECL
3 H x H H L H H H L L H L H H
14 W] x [H][u]w]w H L v o fn][w][n]w
15 W] X [H|W[H]|H H oo e [e[u]e
3] x [x [x[x{xTx L NN 2
L WL [L|L]]L L C oo ool 3
[ag L x [x| x{x[x H W W[w[u][u[H]H 4
NOTES:

(1) Bi/RBO Is wired-AND logic serving as bianking input
{B1) and/or ripple-blanking output (RBO}. The blanking
out (BI) must be open or held at a HIGH level when
output functions O through 15 are desired, and ripple-
blanking input (RBI) must be open or at a HIGH level
If blanking of a decimal O Is not desired. X=input may be
HIGH or LOW,

(2) When a LOW tevel is applied to the blanking input
(forced condltion) all segment outputs go to a LOW level,
regardiess of the state of any other Input condition,

(3) When ripple-blanking input (RE!} and inputs A, 8, C,
and D are at LOW level, with the lamp test input st HIGH
favel, all segment outputs go ta a HIGH level and the
ripple-blanking output (RBO) goes to e LOW level
(response conditlon).

(4) When the blanking Input/rippla-blanking output (a8/

RBO) Is open or held at a HIGH level, and a LOW level
is applied to lamp-test input, all segment outputs go to a
LOW level.

ABSOLUTE MAXIMUM RATINGS (sbove which the useful life may be impaired}

Storage Temperature -65°C to +150°C
Temperature {Ambient) Under Bias -55°C to +125°C
Vee Pin Potential to Ground Pin -05Vto+7.0V
*Input Voltage (dc) -0.5Vto+5.5V
*input Current (dc) ~30 mA to +5.0 mA
Voltage Applied to Outputs (Output HIGH) -0.5 V to +Vg value
Output Current (dc) (Output LOW) +30 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

521

“jes1dA3 948 UMOYS SBN|BA weuodwo) %2013 30 JUepUBdepU! BB 18315 PUB 1858.d
5 1ene| MO 03 O $19% Je8|2 01 Indut MO
% 19A8] HOIH ©1 D sies 18saud 01 andul MO

1 .

:9{60| an13isOd
1%

2

3

oN9 1o 1D 105 ted g 10y

et - owt = . "
‘ L (dO1d-d17d HOV3) gl ;
WvHOVvVIA JILYWIHOS
J Zp o 20§ 243 Za 20y VA
et}
2 W ih %» (MJIA dOL) dia
&)

I

1353w

e am WVYHOVIA NOILIINNOD ANV J1907

-paisinbai jou st Suneb 1nduy aseym suoiesijdde ut Junod abedxoed pue uoiledissip Jamod waisAs ul Buiaes Juedijiubis e ut
1Insa1 ues Aay L ‘sHnond dojy-diyy (pasabblil abpa) pa1eb 0Lyl ‘OLYS/OLNG Ul se $21s1Ia10eIeyd BuID0ID awes ay) aney pLyl ‘bLYS/PLNG BUL
INdino 8yl 01 passassues) ag 10u ||IMm juasasd UONIBWIOHUI PUB JNO P3XI0] S! (@) andui erep ays ‘passed usaq sey abeljon ploysaiyd ndui %900 ayl
1213y “asind ButoB aaiisod ayl JO awW uonisuess 3y} 01 palejas Apdaip 10U st pue asind %9012 Ayt Jo |ana] abeljon e 1e SindJo Bui1abbiay %2019

‘suonesidde
paads ybiy 01 WNtPaws uy asn J0} paubisap aJe Aayy °as|nd %20|d a8yl 40 abpa annlisod ayl uo s3NdINo ayl 03 pasiajsuedl st INdul 8y 1€ uoNewIogu|
sindino D pue D yi0q pue saindui 1asaid pue Jeajd 19211P Yim sdojs-di)y 8dA1 g (enp paJabbiuy a6pa ase vl ‘bLYS/YLNG @Ul — NOILdIYIS3a

doj4-did @ 1en@ «bLYL

522

| 0 a
T—-e (dO)
‘asind ¥20(2 193¢ 8w G = L+ o) ol © %3019
asind ¥o0|d as0seq eWN G = N =
:S31LON
h H H
H h 1
fino | 1natno | and 0 e w
1NndinoO | LNdLNO | LNdNi ' d4v3lo
L+Uy U
(doi4-dijd yoe3) 31avL HLINYL
(ds)
O y3s3ud

{d01d-d17d HOV3) WvYODVIa 219071

523

7475* Quad D Latch

DESCRIPTION — The TTL/MSI 9375/5475, 7475 and 9377/5477, 7477
are latches used as temporary storage for binary information between
processing units and input/output or indicator units. Information present
at 8 data (D) input is transferred to the Q output when the clock is HIGH
and the Q output will follow the data input as long as the clock remains
HIGH. When the clock goes LOW, the information (that was present at the
data input at the time the transition occurred) is retained at the Q output
until the clock is permitted to go HIGH.

The 9375/5475, 7475 features complementary Q and Q output from a 4-bit
latch and is available in the 16-lead packages. For higher component density
spplications the 9377/5477, 7477 4-bit latch is available in the 14-lead
package with Q outputs omitted.

PIN NAMES LOADING
D4,D2, D3, 04 Data inputs 2U.L.
.2 Clock Input Latches 1 & 2 4 UL
P34 Clock Input Latches 3 & 4 4U.L.
Q1,Q2,Q3, Q4 Latch Outputs 10 U.L.
G4, 8y, T3, 04 Complementary Latch Outputs 10U.L.

Note: 1 Unit Loed (U.L.) = 40 uA HIGH/1.6 mA LOW

TRUTH TABLE
(Each Latch)
NOTES:
th | th+t tn, = bit time before clock
negative-going trarisition,
) Q th+1 = bit time after clock
H H negative-going transition.
L L

524

LOGIC DIAGRAM
(EACH LATCH)

Q
O—q

<

H»

TO

OTHER
LATCH r

>

(9375/5475, 7475

ONLY)

o]
cLOCK

o]
DATA

Ot

DIP (TOP VIEW)

Positive logic: See truth table.
NC — No internal connection,

525

WHO43AVM X010

-asynd %0010 se1je swn atg = b+
-@sind %2010 @104eq oI g = N
S3LON

%2019 0 Juepusdepul 8Je 18s8id pUL JO|D

|18n8] MOT 01 D $18S J89|d 0} Indul MO

oas] HOIH 01 D s18s 1880ud O} Indul MO
:0180) 8AIISOd

I %9 %o iy ano lg o tx

Yol H|H
H|1]|H
1| H|

Yo |l 1]

o | M|

L+t th

379VL HiNYL

(M3IA 4O1) dia

WYHOVIA NOILIINNOD ANV D190

*aARIS O] JA1SBW WOSY UOHBWLIONUI J3JsuRLY (p "SIndul M pue [aiqesiq (€ °Jelsew o}

SINdUL 3 PUE [WOS) UOBWIIOMUS JBIUT (Z °JaISewW WOL) SABIS 91B[0S| (L :SMOJ(0} se s uonesado JO aduanbas ay | ‘sUCIIDaS BAEIS Pue Jalsew o
199UU0D YIIYM S101SISUR] FulidNOD By JO B)els Ayl sa1eInBal Os(e asInd 2010 3y 1 °3siNd 420§D 8Y} AQ P3|I0LIUOD 2.8 UONDAS JAISEW YL O) SIndu|
'$3900 a1esedas pue siea|o aesedas ‘siasssd ayesedas YIM doj-di|} aAe|S/iaiseiy Mr 1eNA © S! 9LpL ‘9LYS/9LNG 1SS/T1LL @l — NOILdIYIS3a

doj4-did Mr leng .9L¥L

526

a
Gy

32071

(Os)

Hv31D

D

135344

(d013-¢1 74 HOVI)
WYHOVIQ 21901

‘|[e21dAl 948 UMOYS $BN|BA JUBUOJUIOD

oy v fog

1

"

&
Ke
"‘1_7,_'

#59
£33

=

| uy
xj y, —

»~
‘.
ug

v
g en ot
. oy "o

21
433
a1

(d04-dINd HOV3)
WYHOVIA JILVINIHIS

527

7483* 4-Bit Binary Full Adder

DESCRIPTION ~ The TTL/MSI 9383/5483,7483 is a Full Adder which performs the addition of

two 4-bit binary numbers. The sum () outputs are provided for each bit and the resultant carry

(C4) is obtained from the fourth bit. Designed for medium 10 high speed, multiple.bit, paraliei-

odd/serial-carry applicstions, the circuit utilized high speed, high fan out TTL. The implementation

of a single-inversion, high speed, Derlington-connected serial-carry circuit within each bit minimizes.
the necessity for extensive “‘lookaheed’ and carry-cascading circuits.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)
Storage Temperature’

~65°C to +150°C
Temperature {Ambient) Under Bias ~55°C to +125°C
Ve Pin Potential to Ground Pin -05Vtwo+70V
*Input Voltage (dc) ~-05Vtio+55V

*Input Current (dc)
Voltage Applied to Outputs (Output HIGH)
Output Current (dc) (Output LOW)

~30 mA to +5.0 mA
—0.5 V to +V¢ value

+30 mA

*Either 1nput Voltage limit or input Current limit is sufficient to protect the inputs.
PIN NAMES LOADING
A1.84.A3.83 Data Inputs 4U.L.
A2.82.A484 Data Inputs 1 UL,
CiIN Carry Input 4U.L.
T1.32.X3.14 Sum Outputs 0u.L.
Ca Carry Out Bit 4 5U.L.
1 Unit Load {(U.L.) = 40 uA HIGH/1.6 mA LOW

LOGIC DIAGRAM

Ay B1C)N Ay By A3 B3 :l; B4
Ty X2 I3 Z4 Ca

528

LOGIC SYMBOL CONNECTION DIAGRAM
DIP (TOP VIEW)

111

RN B B I

n—pCm $I0/3483. 7483

Iy 33 Iy X4 €

[TT]

Vee = Pinb
GND = Pin 12

TRUTH TABLE (See Note 1)

INPUT DUTPUT
WHEN WHEN
CiN-0 CiN= 1
WHEN WHEN
Cy=0 Cz=1
A L] A2 /|82 T 2 C2 Iy r2 C2
A3 83 Ag B4 X3 iy C4 r3 3 Caq
L L L L L L L H L L
H L L L H L L L H L
i

L H L L H L L L H L
H H L L L H L H H L
L L H L L H L H H L
H L H L H H L L L H
L H H L H H L L L H
H[M H L L L H H L H
L L L H L H L H H L
H L L H H H L L L H
L H L H H H L L L H
H H L H L L H H L H
L L H H L L H H L H
H L H H H L H L H H
L H H H H L H L H H
H H H H L H H L H H H

NOTE:

1. Input conditions at Aq B4, Bp and Cyy are used to
determine outputs E, and % and the value of the internal
carry Cp. The values at Cp A3 33 Ag, and By, are then used
to determine outputs L3, 5.4 and C4

(M3IA dO1) dia
WYHOVIG NOILLOINNOD

‘MO VWO L/HOIH vTop = (*1°'N) Peo HuN L

TN ot sindinQ
TNy induj %20i)
TNne nduj %201)
TN sindu| auiN-18saYy
TN L syndu| 019Z-19s9Y
ONIGVO1

Op'Op'8p ©
Dcm_b

Vdo

6y

Oy

SAWVN Nid

*Ajsnoaueljnuwis 18534

aJe sdo|j-difj Jnoj} |je ‘13AaMoY .>_u:ou:unwvc_ 81e49dO sJaI1UNOD OAAl Byl ‘apow Siyl uj “sIndino
Qp pue ‘Op ‘8D ays 1e uonesado aAl-Ag-apinip Aleulq uleiqo ol pasn si Indul 0849 ayy
‘uondUNS OMI-AG-IPIAIP 3yl JOJ 1U3Wa|d Aleuiq € se pasn si ¥ do|j-di4 "pasinbal ase SUONI93U
-U0DJ3luY {BUJAIXS OU ‘131UNOD 3A1-AGQ-3PIAIP B PUB J9lunod OMI-AG-3pIAIp e se uolleiado 104 D

*VD indino e pauieIqo si arem asenbs
uai-Ag-apialp e pue andut G849 ayl 1e paidde uayl sy 3unod Indul ayt “Indul V4o syl o1 perosu
-uo02 Ajfeusaixa aq 1snw 1ndino 0D ay: ‘usl Jo Jamod B AQ JUNOD Aleulq e jo uoisiAlp Buliinbaa
suoilesi|dde 18Yl10 JO $1azisayluAs Aouanbaij 10) Palisap Si JUNOD UA-AG-3PIAIP |BDLIIBWWAS B §| °g

*uonlessidde (BWIdAP Jualua|dwod s,aulu J0J JUNO0D OF 84l YyliMm aduepioade ul
pauiRlqo st @duanbas Juno3 e pue ‘1unod Gujwosul 3yl saaladad Indul <mo ay] "wndino Vp ay1 01
Pa128uL0D Ajjeulalxa aq 1snw Indut Dmmo 8yl ‘Jalunod pedap |ewidap Papod Aseuiqe se pasn j| 'y

:sepOow JuN0J Juspuadapu) Isay}

olu) palesedss aQ Aew Junod ayl 8104843y} ‘sabels Buipeadons ayl 01 PaIdBULOD Ajjeusaiul 10U st Y
dojj-dijj woay IndIno ay] °saul| 13sal 19aJ1p paleb ybnosyy ¢ j0 uNO (D) |eWIdeP Papod Aseulq
® 10 043z 12160 01 PauJniaJ aJ8 SINCINO |(B PueR ‘Paliqiyul 3Je sindul JUNOY “JAUNOI BAN-AG-IPIAID
B PUR J31UNOJ OMI-AG-8PIAID ® apIA0JG 01 Paldauuodlalul Ajjeusalul sdojj-di} aaels Jalsews “Jued
IBNP 1N0j O SISISUOD YIIYM JIUNOD 8PRI3Q ® $! 06YL '060S/06E6 ISW/TLL 3ul — NOIL4IYNOSAA

Jajuno) apedaq .06vL

530

(ININ 0L 1353y) By

10432 01 1353w Oy

EL'vulg = ON
0L uld = aNo
S uld = 0

te

(338 -3

| 1

Opp8pYp Oy
08,5 v

08¥¢ 06¥5/08C8
Yoo— n

g i =
o s » 3 M
@ fo—— @ jo— @ @O0~ Yoo
a v .l— 3 . N r v r -
[o % v WVYH9VIg 21901
Iuseesd oq Asu: 8A81 MO © 10 (ens; HOIH ¥ Jowaie 3oy seaeoipuy x 'z W T Tn 5
unes gog 10y 945 andu) 01 parsevuos Yo inding IR ER R 5
‘S3LON H H H Al [
LNNOD X 1 1 X 1fulwln 9
1INNOD 1 X X i LI LN R 3
INAOD | X 1 X 3 LI o I N) 0
INNOD 1 X 3 X L LT N G
HITH | " X X LI LN I g
RN) X W " LN SN L
337 [x 3 7 1) A RN RN] 9
v0 % % 0of My, | (1i6y | 1210y | {110y S oo
1N41no $104N1 13538 ifeino *

1Z 310N 238) LNNOX LTS IN

$378Vv1 HiNYL

11 9:9%) IDNIND IS LNNOD QD8

TO8WAS 21907

531

[€1 ‘v ‘€ ‘Tsuid = "O°'N

g6zl G
[111

Qp 20 80 Yo Oy,
2045 O—1
2602 'Z6vS/2068
Véo Ot
JO8NAS 21901

(M3IA dOL) dIC
WVYHOVIA NOILOINNOD

Ot uid = GNDO
G Uld = I0p

MO YW G L/HDIH Y oY = ("1°'N) PROT M1uN L

TNnot sindinQ 1unod 0p *Op ‘8p ‘Yo
TNy indu) 3201) omm|o
TNne induy 3201) <nb
Nt sindu| 04321359y Oy
ONIaVOT S3WVYN Nid

'saijiuey 2160 7110 Pue L1 Y3m a1gnedwod Aja1adwod sie SIINDAID asayy

*333UN02 XIS-AQ-aPIAIP
2yl JO 13%a1 YUM S3PIOUIOD UONOUNY 13531 8yl I 3lgejreae S| ¥ doy-dily jo asn Juapuadapu|
stndino Op pue Jp ayl e ajgejleae a8 9 pue g JO SUOISIAIP Acuanbasy ‘Ajsnosur)nwig
*J849 1nduy 0y paijdde ase sasind 1unod Indul 3yl ‘43UNOD XIS-AG-aPINIP B SB PasN USYM '8

*31q8) YIna ayl ul umoys se sindino Gp pue JD VD ayl 1e pawioyiad
aie Z| pue 9 ‘z JO SUOISIAIp snoaueljnuing “Vg4o indu) o3 pajdde ase sasind 3unod indul ayy
*38 49 1ndui 01 Pa123uU0d Aj|RUIIIX3 8Q ISNW <m|~:a§o “133UN0J aA|aM)-AG-3PIMP B S8 Pasn UYMW ‘v

- :sapow
juapuadapui oM ul paiesado 8q Aew 1alunod 3yl ‘sdojy-dily Buipaadans ey 03 PAGBULOD Ajjeusaiul
10u st v doy-dijy Wosy IndIno ayd Sy “[an3] MO € 01 sindino dojy-dijy a0y 8yl suaIN1as Ajsnosueljnwis
pue sindug 1UNOD 8yl SUGIYU! YoIym papirosd st aul) 1asal 10ap pajesd y °Jalunod xis-AQ-spiMp
B pue 131UN0d OMI-AQ-3pIAIP B apiAcid 01 PaXdauuodIaIUl AjjBuiaiul Bie YOIyM sdojy-dijy anes
Jaisew 1noy Jo Bunsisuod 1a1uN0Y Aseuig 118-p © 51 Z6YL ‘TEYS/TEE6 ISW/TLL 3uL — NOILJIYOS3a

unog 9+ L26PL

532

do

Va3

{0Y32 13531} 0y
294
3 2 ¥
a0 42 b~
f 2 r 5 I
%0 8y vo

WVH5DVIA 21907

-uNod 01 |9A8} MO € 38 8g Isnw (Z)0y
pue (L)0y sandu} 1eses (y10g J0) JBWLI °E

-p1e3s |9A8} HOIH

1@ eq isnw sindui (Z)0y pue (1)0y
W10q [9AB] MO O3 SINCINO (1€ 18584 OL z
2849 1nduy 0} P8IdBUUOD Vpindino ‘i

‘S3LON
H V1 |nH|WH 1
R EBCAL [
H{H[]H 6
HEEERL] []
W] [[H [
Ay [9
H[W] S
HEELR R v
H K317 €
HLERER [3
H{Vv]] |
A 0
Yo |8 | % [%
1NdinNo £Ter)

(€ pue Z *| S3ION 32S)
378Vv1 H1NYL

533

SAVHOVIAQ NOILDINNOD
€L'L'9‘'pPsuid = O'N

Ol uld = OND

g uid= 20

m

tL 8 621

dodpéovo Oy
840 1
£6¥L "C6VS/E6EE
g Y4 143
TOBWAS 1907

1ot sinding dp *Op ‘8p ‘Yo

ane induy (a6pa 6u106 MO 8A1IDY) 3201D mm_lu
Tne indu) (abpa Buiob pOT 8ADY) 32010 <a|o
N induj osaz-13s9y Oy
ONIQVOT S3IWVN Nid

*sa)jiwey 9160 1@ Pue L1 Yim ajqiedwod Aj21ajdwod ale s3ndiD asay)

*J93unod ybnoayi-ajddu

1G-E Yl JO 13531 YIIM SapIduUl0d uOodUNg 13534 Ayl 31 3|Ge|IBAB SI Y doy-dily Jo asn juapuadapu|

sindino @p pue ‘0D ‘8D ay1 e a|gejiese aie g pue 'y ‘Z JO SUOISIAID Asusnbaig snoauejjnuig
‘849 1ndui 03 patidde ase sasind 3unod Indul ayl ‘Ja3unod ybnosyi-ajddia 31g-¢ e se pasn Uaym T

*a|gel yanu3 ayl up umoys se sindino Gp pue ‘Op ‘8D ‘YD ayt 1e pawioysad ase

g| pue g ‘p ‘Z JO SUOISIAID A|snoauelnwis Vg0 indut 03 payjdde ase sas|ind 1unod Indul ayl .mml.u
Indui 03 pajdauuod Ajjeusalxa aq Isnw Vp indino ‘131unod ybnoayi-ajddis 11q-p e se pasn uaym -t
1sapow
juapuadapul omy ul pajesado aq Aew Jajunod ayl sdojy-dis Buipaadons ayi 01 Paraauuod Ajjeusarul
j0u s) ¥ dojj-dijy wouy Indino ayl Sy °jaAa) MOT € 03 sindino doyj-dijy 1nog ayl suinlas Ajsnoaueljnuils
pue sindui 3unod ayl sHQIYu! YIIYm papiaoad si aul] 13sal 12aap paieb y -1a3unod 1ybia-Ag-apinp
e pue Jajunod omi-AQ-apiaip B apiaoid 03 Paldauuodialul Ajjeusaiul ale YdIym sdojj-dily anejs
/1a1sBW N0y 4o Bunsisuod Jatunod Aseurg ug-p €) E6pL ‘E6VS/E6E6 ISW/ILL 8UL— NOLLAIHIS3A

1uno) fieuig Ng-v LE6¥L

534

{0432 13534) Oy

Yo

WVHOVIQ 21901

*3UNO 03 j8A8] MO] B 38
oq 1snw (Z10y pue (1)0y sanduy 1esés (Y10q 40) Jeunt3 ¢
-e1818 |9AB) HOIH 3@ 8q isnw sinduy (Z)0y
pue (L)0y yioq 1@re) MO O sIndino pe 1eses 0L T
-8 49 1nduy 03 peyseuuod Vpinding L

‘S31O0N
MO VYW 9 I/HDIH VA O = (71°N) peo lun |

ﬂ. [L) H L] uﬂ«..“.
hJ L] H L] vl

H b L) LJ T

Al b H LJ 113

H i Al H i

3 H hJ H 0L

H hJ) L] 8

h hl 3 H 8

H LJ L] hl [3

k) H LJ 3 9

H hl L) s

b b L) hl \4

H L) hl Al £

hJ H b 3 T

H 3 3 k)]

3 h) h) 3 0

Yo %o 3o dp ANNGD

ANdLNO

(€ PUs 2] 310N 905) JIBVL HANYL

535

L6LYL ‘LELVS/LELES
06LYL ‘06L¥S/06LE6

8 uld = GND
91 uld = A

f——— ~
———

] € €
Op % 9 Yp O

Tl] NIW/ XYW 181E8/081C8

4OINQ e §

— <«
Em® B

3 @
ot ¢

TOBWAS 21901

syndui 18531d ayl yim Yibual 1unod ayy BuiAjipows Aldwis Aq siapiap N-01RPOW se pasn aq 0}
$131UNOD 3yl SMOJ(e ain1ea s1y | “Indul 320(2 3y JO Aels 3y 30 Ajluapuadapu) sindut e1ep 3L LRIM
aasbe 03 abueyd jm Indino ay | sindul elep ayl e elep passap ayy Buisaiua pue Indul peo| 8yl uo
MO € 6uiseid Aq aiexs Aue o1 1asaud aq Aew s) ndino ay) ‘ajqewwesboid Ajjny ase S1BIUNOJ asAYL

‘umop 5306 1UN0d ayl ‘HOIH usym !dn sa06 Junoa s\
‘MO UaYM "3unod ayl §0 UOIJAIIP Byl SauIWIABP Indul dnfumop 3y) "HDIH S! 19013 al uaym
Ajuo pabueyd aq pinoys indul djqeud 3y j "sdojy-dilj sAe|s/saisew Oy 3y $1366151 uousues) HO0P
HOIH-03-MO1 € pue indu) 3jqeud ayi 18 MO v ‘Bununod suqiyut indu; sjqeua 3y 18 HOIH V

*$191UN0D (%90)2 3jddu) SNOUOJIYIUASE YIIM pareIdosse Aljeuiiou aie Yorym
say1ds BuUNOD INAINO 3yl B1BUIWINS {|IM UONIRIBAO JO 3POW Sy] "I8W 3J€ SUORIPUod Indu) uaym
12410 O3 YIIM JUapIdu10d abueyd sindino awp 1eys os Ajsnoaueljnuns paxoo(d sdoyy-dily |ie Buiney
AqQ papiaoad si uonesado SNOUOJIYIUAS “131UN0D Aseulq UG-y € st LELYL ‘LELPS/LELEG B 8jtym
*123un02 @O9 € St 06LbL ‘06LYS/06LE6 auL "“sindul paiayynq pue uonesado apedap-B|nw 104
6uipesses ‘j01u0d umop/dn aulj 3jbuls ‘Ali1dey Buniesaid |01IUOD 3jqEUd UM S131UN0) umog
/dn snouosyduAg ase L6LbL ‘LE6LYS/LELEE Pue 06LpL ‘061¥S5/061€6 84l — NOILdIYOS3A

13)unog umoq/dn Kieuig ajgenasald Li6ivL

536

(M3IA dOL) did
WYHOVIA NOILO3INNOD

MO YW 9 L/HOIH v oY = {*1°N) PBOT 3un |

rnot indinQ “uIN/xeW UIN/XeN
1N oL inding jeljesed Qp Op 8o VO
1N oL indinQ %9019 2|ddiy .o/
TN indu| dn/umoQ dN/NG
Nt ndu) %2013 dd
1N e induy a)qeu] 3
anit 1ndu| j9jesed ao‘a’v
TN nduj peo . |
ONIOVO S3WVN Nid

ZHIN 0Z 15e3| 18 aq 01 paajuesenb si pue ZHIN 6T AjeatdAl si Asuanbaig 3o0pP
ndur wnwixepy "uoisIeA Aseuiq 10 apEISP Y J3YMIB JO) MW Gze AlleadAl st uonedissip Jamod

‘uonesedo paads ybiy 103 peayex00| ysi|dwodde o} pasn aq ued ndino 1UNOd WnWiUIW
Jwnwixew 8yl pasn s Buiqeus 1a1esed 31 anduy %30[9 3yl 01 10 ‘pasn s Buyood |ajjesed
121un0d Bupaaddns 3yl 30 1ndui 3|qeud ays 03 andino 200 ajddu ays 6uipas) AQ papeased Ajised aq
UED $I3IUNODD 3YJ "SISIXd UOIIPUOD MO|JIBPUN 1O MO[JIBA0 UB UBYM indui ¥2010 3y} Jo uoisod 13A3|
MO 2yl 01 yipm ul |enba asind 1ndino |3A3)] MO © saonpoud indino o0P ajddis 8yl ‘SMO|}
-J2PUN 10 SMO[JJ3A0 JBIUNOD 3l UBUM XD01D 8yl JO 31PA2 a19jdwod 3uo 01 |enbd Ajerewixosdde
uonesnp e yim asind 1ndino {aA3] HOIH € saonposd 1NdINO 18118] 3Y] "WNOD WhWIUIW WNWIXew
pue 32013 a|ddis ‘uonduny buipedssed 3y wiopad 01 8jqejieAe apew ussq asey sindino omj

537

L6LPL ‘L6LYS/LELES
H3ILNNOD AHVNIS

«—— NMOG 1NN0D
Et ¥1 G610 ¢

M
|
—
E—

4

i

UeBLIIYL PUEB ‘UBBIINOS ‘U811 ‘(WNWILIW) 048Z 'BUO O} UMOP IUNCD ‘P
uqyu) g
A
‘L

"OM] pue ‘euo ‘048z ‘(Wwnuwixew) uaeljtj ‘usslincy 01 dnunod
‘usal iyl Aseulq o3 (3aseid) peo)
:peienysnyl s1 esuenbes BuiMo|j04 oy L

538

Index

Index

A bars & multiple parallel lines 64
Adding inertia to player controls 147 Building
Address matrix concept 84 recipe for rectangle or square71
Ambush 350 rectangles 70
block diagram & schematics 353
retrofit 414 c
wiring diagram 359 Gircuits
Amplifier, audio 22 automatic stop 184
Animation, figure 451, 452 boards for golf 337
Assembling the systems 17 ;
Attack schematics, torpedo 275 diagrams 2
: e » lorp figure contact sensing 195
Audio amplifier 22 flashing im 239
Automatic g image
fi . manual start switch 182
igure motion 157
stop circuits 184 (ST o
64 cell generator 118
B scorekeeping 394
Bars timekeeping 406
broad 60 Combining
&rectangle windowing 127 rotation & figure motion 483
Basic static figures on the screen 74
game plan 234 Complex
missile attack game 210 figures, manual control 151
video game system 14 figure tinkerbox 80
Block diagram images in 4 x 4 windowed
& schematics, ambush 353 matrix 87
golf 336 static figures 79
golf wiring 350 Composite video board, vertical
pinball 446 source 30
torpedo attack 270 Concept, address matrix 84
Board Construction & assembly hints 253
pinball control 438 Control
bars 60 board, pinball 438

541

board, slipping counter

motion 178
figure motion 200
game start/reset 181
player 236
scoring and game 395

system, rebound, flexible 420
Count

sources 40
source, horizontal 20
source, vertical 20
Counters, position programming 316
CRT 14
D
Deedle-deedle sounds 497
Delayed start/stop operations 186
Design example 188
Digit-generator circuits 384
Display
circuit, single digit 385
circuit, two digit 391
dual two-digit 392
Dogfight 288
block program 294
schematics 296
wiring diagram 304
Dual two-digit display 392
E
8 x 16 expanded matrices 118
Experiments with position pro-
grammer 327
Extended
matrix, folding over 96
64 cell matrices 105
Extending matrix 89
F
Figure
animation 451, 452
motion, automatic 157
contact sensing circuits 195

generator board, pinball 424
motion & rotation combining 483

motion controls 200
position control, pro-
grammable 308
rebound effects 417
rotation 470
rotation of 8 x 8 477
Flashing image circuit 239
Flexible rebound control system 420
Foldover 64

Folding over extended matrix 96

542

G
Game

and scoring control
basic missile attack
block diagram
of tag
pinball
plan, basic

scoring, pinball

start/reset controls
Generating numeric characters
Generator

board, pinball figure

circuits, digit

horizontal sync & blanking

395
210
238
146
421
234
434
181
381

424
384
20

matrix operations from 32 cell 100

64 cell

slow motion figure

vertical sync & blanking
Golf

block diagram
nine hole
retrofit
wiring block diagram
H
Horizontal
& vertical count binary out-
puts

& vertical lines, intersecting

count source

line or bar, Recipe

sourceboard

sync & blanking generator
How to use this book

|
Initial position, programming
Interesting patterns from static
figures
Irregular pattern of identical

figures, windowing
L
Lines
& bars
bar tinkerbox
& bars, widely separated
narrow
Locating parts
M

Manual
control of complex figures
start switch circuits

17
330
22

336
334
411
350

505
54
20
51
25
20
15

217

75

127

40

52
57
17

151
182

Matrix
complex images in 4 x 4

windowed 87
display, windowing 86
extended 64 cell 105
extending 89
128 cell extended foldover 110
operations 117
operations from 32 cell

generator 100
256 cell extended foldover 123

Mechanical considerations 38
Missile attack 11 234
Modulator, RF 22, 30
Motion control
slipping counter horizontal 172
slipping counter vertical 167
system, tagalong 266
tinkerbox 139
simple player controlled 140

Multiple parallel lines, broad bars 64

N
Narrow lines 57
Nine hole of golf 334
90 degree increment rotation 470
Numeric character generation 381

0
128 cell extended foldover matrix 110

Osciltator, 7-MHz 20
P
Parts, locating 17
Pinball
block diagram 446
control board 438
figure generator board 424
game 421
game scoring 434
Player
controls 236
controls, adding inertia 147
Position
programmer, experiments 317
programmers, universal 324

programming from counters 316
Potentiometer control of speed &

direction 259
Power supply 19, 22
Program memory 224
Programmable, figure position

control 308
Programming

figure speed & direction 222
initial position 217

various initial positions, speed &

directions 216
R

Raster, TV 11
Rebound

control system, flexible 420

effects, figure 47
Recipe

for building rectangle or square71

for horizontal line or bar 51

for sculpturing rectangles or
square 73

for vertical line or bar 50
Rectangle

circuits 73

building 70

sculpturing 72
Retrofit

ambush 414

goif 411

scoring and timekeeping 411
RF modulator 22, 30
Rotation

figure 470

90 degree increment 470

of 8 x 8 figure 477

S

Scoring

and game control 395

and timekeeping retrofit 411

scheme 395

the pinball game 434

weighted 400
Scorekeeping circuits 394
Sculpturing

rectangles 72

rectangles or squares 73
7-MHz oscillator 20
Simple

circuit for vertical motion 160

player controlled motion 140
Single-digit display circuit 385
64 Cell generator 117
64 cell generator circuit 118
Slipping counter

horizontal motion control 172

motion control board 178

vertical motion contro! 167
Slow-motion figure generator 330

Speed & direction, potentiometer

control 259
Source board, Horizontal 25
Sourcebox organization 19
Sounds

deedle-deedle 497

543

from other sources 499
Static figures 39

complex 79

interesting patterns 75

on the screen, combining 74
Stormtrooper

attack - 359

attack wiring diagram 380
Supply, power 19
Switch inputs for figure positioning315
Sync mixer 22
Systems

assembling 17

basic video game 14

32, 64, 128 cell 117

T

Tag, game 146
Tagalong

feature 225

motion control system 266
Theory of operation 363
32, 64, 128 cell system 117
Timekeeping circuits 406
Tinkerbox

complex figure 80

line/bar 41

motion control 139
Tones from v count signals 495
Torpedo

attack 253

attack block diagram 9 270

attack game panels 259

attack schematics 275

544

attack wiring diagram 288
TV raster 11
Two-digit display circuit 391
256 cell extended foldover matrix 123
U
Universal position programmers 324
v
V count signals, tones 495
Vector logic 290
Vertical
count source 20
line or bar, recipe 50
motion, simple circuit 160
source & composite video
board 30
sync & blanking generator 22
Video mixer 22
w
Windowing
bar & rectangle 127
irregular patierns of identical
figures 127
matrix display 86
Wiring diagram
ambush 359
dogfight 304
stormtrooper attack 380
torpedo attack 288
Weighted scoring 400

Widely separated line & bars 52

