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Preface 

Impedance is an important property of all AC circuits and of 
many electrical devices. This property is encountered and 
must be dealt with wherever a signal or power is handled or 
processed; and the technician who has a good understanding­
of impedance is at home among many of the complexities of 
electronics. 

From a largely practical point of view, this book surveys 
the subject of impedance-its nature, how it is calculated, and 
how it is measured. And because this is a practical book, every 
effort has been put forth to keep such theroetical discussion as 
is necessary in such form as to be understandable to the 
average technician. No mathematical background beyond the 
leading facts of algebra, trigonometry, and vectors is 
required, and examples are used generously to reinforce the 
discussion. 

The purpose of the book is to impart a good working 
knowledge of the subject and also to provide a ready reference 
for the technician or student when he needs a quick refresher 
on some aspects of impedance. Obviously, there is much that 
we have been unable to include, but this book should brace the 
reader for a subsequent study of more advanced texts. 

Rufus P. Turner 
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1/ AC Fundamentals 

This chapter reviews briefly those selected fundamentals of 
alternating-current electricity that are essential to the 
understanding of impedance. This is done with the single aim 
of aiding the reader; hence, the chapter should serve as an 
introduction to the subject or as a refresher, whichever is 
needed. The presentation moves from a simple description of 
alternating current and voltage to a description of alternating 
currents in reactances-reactance being the logical bridge to 
impedance. 

1.1 NATURE OF ALTERNATING CURRENT 

Whereas a direct current (DC) is unidirectional-even 
when sometimes it rises and falls periodically (pulsating 
DC)-an alternating current ( AC) periodically changes its 
direction. An alternating current starts at zero, increases to a 
maximum positive value, decreases through zero to a 
maximum negative value, and returns to zero. This single, 
complete set of changes is termed a cycle. The cycle is 
repeated for as long as current flows. 

A plot of instantaneous values of current against time 
shows how the current varies in a particular AC cycle; the 
shape of this cycle (the waveshape or waveform) depends 
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Fig. 1-1. Representative AC waveforms. The period is the duration from 
point a to point bin any of these waveshapes. 

upon how the current is generated or processed. Common 
examples are shown in Fig. 1-1. Here Fig. 1-l(a) shows a sine 
wave; in this cycle, the changes are gradual. In Fig. 1-l(b). 
however, the current rises abruptly to maximum positive, 
holds for an interval, drops abruptly through zero and reaches 
maximum negative, holds for an interval, and finally rises 
abruptly to zero (this is a square wave). The rectangular wave 
in Fig. 1-l(c) is similar to the square wave, except that the 
rectangular wave holds at positive maximum and negative 
maximum for shorter intervals than the square wave. The 
sawtooth wave in Fig. 1-1( d) is characterized by a slow, 
usually linear increase from zero to maximum positive and a 
similar change from maximum negative back to zero, but with 
an abrupt intermediate change from maximum positive to 
maximum negative. By contrast, the triangular wave in Fig. 
1-l(e) has a similar angular climb from zero to positive 
maximum and from negative maximum to zero, but an 
angular, rather than abrupt, change from positive maxi.mum 

12 



to negative maximum. Each of these waveshapes has specific 
applications in electronics. 

There can be. and very often are, AC cycles having shapes 
other than those shown in Fig. 1-1. The cycles shown in this 
illustration are symmetrical; that is. the positive half-cycle is 
of the same size and shape as the negative half-cycle. But 
waveshapes that are asymmetrical-either vertically or 
horizontally. or both-are sometimes encountered. These 
latter waveshapes are said to be complex. While Fig. 1-1 shows 
only cycles that go first to positive maximum and then to 
negative maximum. the opposite state-going first to negative 
maximum-also exists. 

Alternating voltage and current are associated in the same 
sense that direct current and voltage are associated. 
Accordingly. alternating current may be thought of in terms of 
being produced by AC voltage, and the flow of alternating 
current through a resistor is seen to set up an AC voltage drop 
across that resistor. The alternating voltage cycle resembles 
the alternating current cycle. and vice versa; because of 
distortion. though. the two might not always be exact replicas. 

1.2 FREQUENCY 

The term frequency (/) denotes the number of complete 
cycles occurring in one second-the number of cycles per 
~cond. or hertz; thus, hertz is the basic unit of frequency. 

The hertz is not always a practically manageable unit; 
many of the frequencies regularly employed in electronics are 
extremely high by comparison. In microwave practice, 
frequencies often are in excess of 10 billion hertz. Larger units 
than the hertz therefore are required for practical use; these 
are kilohertz (kHz). megahertz (MHz). and gigahertz (GHz). 
The prefixes kilo, mega. and giga stand for thousand, million, 
and billion. Table 1-1 lists common frequency units. and Table 
1-2 shows how to convert from one unit to another. 

Example 1.1. The frequency of Citizens Band channel 9 is 
27.065 MHz. What does this correspond to in kilohertz? 

From Table 1-2. 1 MHz = 106 Hz, or 103 kHz. So. 

f = 27.065 x 1000 = 27065 kHz. 
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Table 1-1. Common Frequency Units. 

lcps = lHz 
1 kHz = 1000 Hz 

1 MHz = 1.000.000 Hz 
1 GHz = 1.000.000.000 Hz 

Frequency is an important quantity in impedance 
calculations and measurements, since impedance is a 
frequency-dependent property. 

l.3PERIOD 

The term period (t) denotes the total time it takes for a 
voltage or current to complete one full cycle. This is the 
distance from a to bin any of the cycles of Fig. 1-1. Obviously, 
the higher the frequency, the more cycles occurring in one 
second, and the shorter the period of each cycle. Period has a 
simple relationship to frequency: 

t = 1/f (1-1) 

where t is in seconds and f is in hertz. 
Example 1-2. Calculate the period of a 2 kHz signaL 

FromEq. l-1,2kHz = 2000Hz. FromEq.1-1, 

t = 1/2000 = 0.0005 second. 

Equation 1-1 and the example give time in seconds. In 
practice, however, one second is often a long interval and 
subdivisions of this unit must be used: milliseconds 
(thousandths of a second, abbreviated ms or msec), 
microseconds ( millionths of a second, abbreviated µ.s or 
µ.sec), and nanoseconds ( billionths of a second, abbreviated ns 
or nsec). Table 1-3 gives the periods of some common 
frequencies often employed in impedance measurements. 
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Table 1-2. Frequency Conversion Factors. 

Hz= 10- 3 kHz = 10-6 MHz= 10-9 GHz 
kHz = 103 Hz = 10-3 MHz= 10-jj GHz 

MHz= 106 Hz = 103 kHz = 10-3 GHz 
GHz= 109 Hz = 106 kHz = 103 MHz 



These periods are given in the time units used most often with 
the frequencies noted. 

1.4SINEWAVE 

The earliest source of useful amounts of AC power was a 
rotating machine-a generator in which a coil rotating in the 
uniform field between the two poles of a magnet has a voltage 
induced across it. Simplified for purposes of explanation. the 
coil could consist of a single loop of wire. Across such a coil 
turning in an imaginary circle. the induced voltage increases 
from zero to maximum positive and returns to zero as one side 
of the coil moves past one pole; then the voltage "increases" 
from zero to maximum negative and returns to zero as the 
same side of the coil moves past the opposite pole. Thus, in 360 
degrees of coil rotation ( one complete revolution). the voltage. 
describes the AC cycle: zero. positive maximum. zero. 
negative maximum. zero. This pattern is illustrated in Fig. 1-1. 

At any instant. the corresponding voltage is proportional 
to the sine of the angle through which the coil has turned. and 
this is responsible for the characteristic waveshape ( Fig. 1-1) 
resulting from this action and for the term sine wave. This. of 

Table 1-3. Values of Period for Common Frequencies. 

f t 
20Hz 50ms 
30Hz 33.3ms 
40Hz 25ms 
50Hz 20ms 
60Hz 16.7 ms 

lOOHz lOms 
120 Hz 8.3ms 
400Hz 2.5ms 
500Hz 2.0ms 

1000 Hz O.lms 
2500Hz 400µ,s 

lOkHz 100 µ,s 
20kHz 50 µ,s 

lOOkHz 10 µ,s 
1MHz 1.0 µ,s 
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Fig. 1-2. A single sine-wave cycle with voltage plotted against the angle of 
rotation in both degrees and radians. 

course, is the curve of the sine function in trigonometry. The 
sine wave has great utility in electronics. Other waves-a few 
examples of which appear in Fig. 1-1 -are called 
rwnsinusoidal. To find the instantaneous voltage (e) at any 
angle ( 0) in the rotation of the coil, it is necessary only to 
multiply the maximum value the voltage will attain (E MAX) by 
the sine of that angle: 

e = E ~,tAx5in () (1-2) 

where e and E MAX are in the same units ( V. m V, µ, V). 
Example 1-3. The maximum voltage ( positive or negative) 
reached by a certain sine wave is 6.3V. Calculate the 
instantaneous voltage at 60 degrees. 

The sine of 60 degrees is0.866025. From Eq. 1-2, 

e = 6.3(0.866025) 
= 5.45V 

Figure 1-2 shows a single sine-wave cycle with voltage 
plotted against the angle of rotation in both degrees and 
radians. If, as in this sketch. a maximum value of lV is 
assumed, the voltage at the instant when the angle is 45 
degrees (1r/4 radians) is 0.707V. since sin 45 degrees= 0.707, 
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and the instantaneous voltage (from Eq. 1-2) is 
1 x 0.707 = 0.707V. Note that the instantaneous voltage is 
again 0.707Vat 135 degrees. since sin 135 degrees = 0.707. 

Generators still produce most of our electrical energy, but 
they are seldom found in electronic equipment. A high-grade 
oscillator employing transistors or tubes also generates a sine 
wave and has no moving parts. Nevertheless, the angles 
(which originally denoted positions of the moving coil in a 
machine) apply to the oscillator signal as well, and must be 
used in many AC calculations. In modern practice, however, it 
is often more convenient to plot the AC cycle on a horizontal 
time axis ( as when the signal is presented on an oscilloscope 
screen) and to convert the time units to corresponding angles. 
In this connection, Fig. 1-3 shows a single cycle of a 1000 Hz 
sine wave. Note that the period here is one millisecond (refer 
to Sec. 1.3) and that the instantaneous voltage at several 
intermediate instants is noted: 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 
0.875, and 1 ms. At any instant t, the angle 8 may be calculated 
in terms of frequency and time: 

8 =211-ft ( 1,3) 

where 8 is in radians, fin hertz, and tin seconds. 
Example 1-4. Calculate the angle in degrees at the 0.125 ms 
point in the 1000 Hz cycle shown in Fig. 1-3. 

Here, 0.125 ms = 0.000125s. From Eq. 1-3, 

8 = 2(3.1416)1000(0.000125) 
= 6.2832(0.125) 
= 0. 7854 radian 

45 = degrees.* 
Example 1-5. Calculate the angle 
in degrees at the 0.75 ms point in the 1000 Hz cycle shown in 
Fig. 1-3. 

Here, 0.75 ms = 0.00075s. From Eq. 1-3, 

8 = 2(3.1416)1000(0.00075) 
= 6.2832(0.75) 
= 4.7122 rad 
= 270 degrees. 

*Degrees= radians x 57.295. Radians= degrees x 0.0174533. 
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Fig. 1-3. A single-cycle 1000 Hz sine wave with the time axis plotted and 
several instantaneous voltages noted. 

Observe that the instantaneous voltages in Fig. 1-3 are 
identical with those in Fig. 1-2: e at 0.125 ms and 0.375 ms 
(corresponding to 45 and 135 degrees, respectively) is 
+0.707V, and at 0.625 and 0.875 ms (corresponding to 135 and 
315 degrees, respectively) is -0.707V. This shows that Eq. 1-2 
may be rewritten to give voltage in terms of time: 

e = EMAxsin21rft (1-4) 

where e and EMAx are in the same units (V, mV, µ,V), f is in 
hertz, and t in seconds. 

Thus, from Eq. 1-4, the instantaneous voltage at 0.75 ms is 
equal to EMAx sin [2(3.1416)1000(0.00075)] = E MAxsin 4.7124 
rad= E~1Ax5in 270 degrees= -1(1) = -lV. The instanta­
neous voltage may be found in this way for any instant in a 
cycle of any frequency. From this discussion, it should be clear 
that the expression 21rft equals the angle in radians. 

The quantity 21rf in Eq. 1-4 is often encountered in 
engineering formulas and is frequently abbreviated by the 
lowercase Greek omega (w). ThischangesEq. l-4to: 

e = E MAxsin wt (1-5) 
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1.5 ANGULAR VELOCITY 

The symbol w, which appears first in Eq. 1-5 and is equal to 
21rf, is the symbol for angular velocity. This symbol appears in 
a great many AC formulas. 

To grasp the physical significance of angular velocity in 
this sense, we must return to the mechanical AC generator. In 
this machine, the conductor rotates through an angle of 21r 
radians during each revolution, since there are 21r radians in a 
circle, and the angular velocity of the rotating shaft is thus the 
product of 21r radians times the number of revolutions per 
second. The equivalent electrical quantity is the product of 21r 
radians and the AC frequency ( cycles per second, or hertz, 
replacing revolutions per second, since one electrical cycle is 
equivalent to one mechanical revolution). As in the 
mechanical example, this is also expressed in radians per 
second. Thus, for 400 Hz: w = 21rf = 2(3.1416)400 = 2513 
radians per second. 

Table 1-4 lists values of w for 23 common frequencies 
between 20 Hz and 1 MHz. 

1.6 AC COMPONENTS AND VALUES 

In its 360-degree (21r radians) excursion, the AC cycle 
passes through a number of voltage or current values. Which 
of these is significant depends upon the nature of the 
application or calculation involved. The four terms which 
describe the AC component are maximum value, instantaneous 
value, average value, and RMS value. 

Maximum Value 

This is the highest positive or negative value reached in 
the cycle. It is also called peak value. It is the value to which a 
peak-responding electronic voltmeter ( such as the 
rectifier/amplifier type) responds, and it is also the value 
which determines the no-load output of voltage doublers, 
triplers, and quadruplers. Many electronic circuits are 
adjusted on the basis of the maximum value of the AC signal. 

Instantaneous Value 

This is the value at any selected instant during the cycle. 
Instantaneous voltage or current is sometimes labeled to show 
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Table 1-4. Values of Angular Velocity T for 23 Common Frequencies. 

f w 

20Hz 125.7 
30Hz 188.5 
40Hz 251.3 
50Hz 314.1 
60Hz 377 

lOOHz 628.3 
120Hz 754 
150Hz 942.5 
200Hz 1256 
300Hz 1885 
400Hz 2513 
500Hz 3142 

lOOOHz 6283 
1500 Hz 9425 
2000 Hz 12,566 
5000Hz 31.416 

lOkHz 62,832 
20kHz 125,664 
50kHz 314,159 

lOOkHz 628,318 
200kHz 1,256,637 
500kHz 3,141,592 

1MHz 6,283,185 

its exact point along the horizontal axis, thus: e 10°, e" 2' i2ms• etc. 
For a sine wave, e = E MAX sin 8, and i = I MAX sin 8. 

Average Value 

This is the simple average (arithmetic mean) of all the 
instantaneous values in one cycle, disregarding sign. 

EAvG = 0.637 EMAX• and IAvG = 0.637 IMAX· The larger the 
number of instantaneous values that enter into the calculation, 
the more exact the calculation will be. However, without 
calculus, a phenomenal number of instantaneous values must 
be used to obtain the number 0.637. The average value is the 
voltage to which amplifier /rectifier-type electronic voltmeters 
respond. It is also the value of voltage delivered by an 
unfiltered full-wave rectifier. 
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RMS Value 
This is the root mean square value. It is also called the 

effective value, since it is equivalent to the same-numbered oc 
value in the heating effect it creates in a resistance. One rms 
ampere produces the same average heating effect that one DC 

ampere does: 

ERMs = 0.707 EMAx• and /RMs = 0.707 / MAx 

The rms value, as its name implies, is equal to the square 
root of the mean of the squares of all the instantaneous values 
in one cycle, disregarding sign. To calculate the rms value: 
square each instantaneous value, but do not include the 
maximum value; total these squares; take the average 
(arithmetic mean) of this total; extract the square root of this 
average. Without calculus, a phenomenal number of 
instantaneous values must be used to obtain the number 0.707. 
which we are free to use without first deriving it. 

The rms value is the one in which most AC voltmeters and 
ammeters read, whether or not they actually respond to this 
value. The widely used rectifier-type meter, for example, is 
average-responsive, but its scale reads in the more useful rms 
units. 

Conversions 

Table 1-5 gives multipliers for converting maximum, 
average, and rms values. The use of these conversion factors 
is straightforward. To convert 12.6V RMS to average volts, 
multiply by 1. 11: 

12.6 X 1.11 = 13.99VAVG 

Table 1-5. Voltage and Current Conversions and RMS Values. 

EAVG = 0.637 EMAX = 0.901 ERMS 
ERMS = 0.707 EMAX = 1.11 E.wG 
E MAX= 1.414 E RMS= 1.57 E.wG 

IAVG = 0.637 /MAX= 0.901 IRMS 
/RMS= 0.707 /MAxl.11 l,wG 
I MAX = 1.4141 RMS= 1.57 I AVG 
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The numbers given in this table and earlier in this section 
apply to sine-wave voltages and currents only. The 
relationships are quite different with other waveforms. For 
instance. in a square wave. E HMS = E ,m; = E MAX· In a 
positive-going sawtooth wave. E A\"G = 0.5E MAX• and 
EH,,s = 0.577 EMAx· This points up the error possible when 
instruments calibrated with a sine wave are used to check 
nonsinusoidal current or voltage. The readings of a 
nonpeak-reading electronic voltmeter equipped with an rms 
scale can be considerably in error if used to measure 
square-wave voltage. for example. Likewise, when a 
sinusoidal quantity under measurement contains harmonics. 
the error in measurement could equal that of the harmonic 
percentage. (Sine waves are not multiples of any frequency; 
presence of harmonics indicates that the wave is not actually 
sinusoidal-distortion is thus present.) 

1.7 DISTORTION AND HARMONICS 

In an ideal sine wave. the instantaneous voltage at any 
point is proportional to the sine of the corresponding angle, and 
the smooth curve of Fig. 1-l(a) results. Such perfection is 
unattainable in practice; some variation, however minute, 
occurs in signals from even the most refined sources. A signal 
that departs from the ideal is termed distorted. 

A byproduct of distortion, which is at once also the nature 
of the distortion, is the presence of harmonics. These are extra 
frequencies which are exact multiples, even or odd, of the 
main frequency which is called the fundamental frequency ( f) . 
The fundamental frequency is regarded as the first harmonic, 
and the others are identified as h2 (2 times f), h3 (3 times fl, 
etc. to show whether they are the second harmonic, third 
harmonic, etc. In most instances distortion is considered a 
defect, since it wastes energy, creates discord (as in an audio 
amplifier), and causes errors in impedance measurements. In 
a few instances, it serves a useful purpose-as in harmonic 
generators, generators of nonsinusoidal waveforms, and most 
electronic musical instruments. 

Harmonic distortion is evaluated in terms of the relative 
strengths of harmonic and fundamental components. When a 
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wave analyzer is used to measure these components it is tuned 
successively to the fundamental frequency and to each of the 
harmonic frequencies, and the voltage amplitude of each of 
these components is read from the indicating meter. From this 
data, the strength of each harmonic may be expressed as a 
percentage of the strength of the fundamental. Thus, the 
second harmonic content would be equal to f / h2• expressed as a 
percentage. The total harmonic distortion (the combined 
distortion due to all harmonics present) would be: 

(1-6) 

The 100 in the equation converts the resulting figure to a 
percentage. When a distortion meter is used, the combined 
voltage Er due to the fundamental frequency and its 
harmonics is first measured. Then the fundamental frequency 
is removed by means of a high-Q filter, and the remaining 
voltage (EH), which is due to harmonics alone, is measured. 
The total distortion then is calculated: 

l 1-7) 

Professional distortion meters indicate the distortion 
percentage directly on a meter scale and require no 
calculations. 

It is often not enough to know which harmonics are present 
in a distorted alternating current or voltage and what their 
amplitudes are; the phase angles between the fundamental 
and individual harmonics also must be known (for phase, see 
Sec. 1.8). In this connection, an exhaustive study of a distorted 
wave requires a Fourier analysis, which involves the use of 
higher mathematics and sophisticated modern instruments. 
For most practical purposes, however. distortion 
measurements made with a wave analyzer, simple distortion 
meter, or oscilloscope (employing the schedule method*) will 
suffice. 

*Many electronic engineering handbooks and textbooks give detailed 
instructions for use of this method 
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(a) 

(b) 

(c) 

Fig. 1-4. Basic phase relationships of voltages and currents: (a) in phase, 
(b) leading phase, (c) lagging phase. 

It can be shown mathematically, and also by the practical 
mixing of signals, that any nonsinusoidal wave is the 
combination of a certain number of sine waves of various 
frequencies (harmonics) and amplitudes. Thus, a square wave 
is the combination of a fundamental sine-wave frequency and 
numerous odd-numbered harmonics, a sawtooth wave is the 
combination of a fundamental sine-wave frequency and 
numerous even- and odd-numbered harmonics, etc. The more 
harmonics present, the more closely the complex wave 
approximates its ideal shape. The frequency of the complex 
wave itself is the same as the fundamental frequency. 
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1.8PHASE 

The alternations of two separate currents or voltages fall 
into one of three categories: they may be in step with each 
other; those of one may be ahead of those of the other; or those 
of one may be behind those of the other. This condition of being 
in or out of step is termed phase relationship. The three 
situations just cited-in phase, leading phase, and lagging 
phase-are illustrated in Fig. 1-4, which shows the relationship 
of two voltages that are in phase and out of phase. These 
figures serve to illustrate the general conditions; there are, of 
course, almost limitless combinations of out-of-phase 
quantities. 

In Fig. l-4(a), voltages E I and E 2 reach all of their values 
at the same instants and so are in phase. Their phase 
difference thus is zero degrees. In Fig. 1-4 ( b), E 2 reaches each 
of its values 90 degrees before E 1 does. In this case, E 2 is said 
to lead E 1, and their phase difference is 90 degrees. In Fig. 
1-4(c), E2 reaches each of its values 90 degrees after E I does. 
In this case, E 2 is said to lag E 1, and again their phase 
difference is 90 degrees. While a phase difference of 90 degrees 
is shown in Fig. l-4(b) and (c), the angle can be anywhere 
between less than one degree to 360 degrees. ( At exactly 360 
degrees, of course, the in-phase condition of Fig. l-4(a) is 
reestablished.) Here, we have followed the common practice 
of indicating phase in degrees, but it can be expressed also in 
radians and in seconds (time) . 

While two voltages are shown in each example in Fig. 1-4, 
phase relationships also exist between two currents, a voltage 
and a current, or a current and a voltage. Also, in Fig. 1-4, E 1 

and E 2 are shown of different amplitude, but in practice the 
two components may be of the same amplitude or in opposite 
ratio to that shown here. It is important also to note that when 
harmonic frequencies are present in a wave, these 
components often are in different phase with each other and 
with the fundamental frequency. 

The term phase shift refers to the change in phase 
relationship resulting from the flow of alternating current 
through certain devices or circuits. For example, at the input 
terminals of a certain "black box," current is in phase with 
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Fig. 1-5. Three-phase voltage. Three equal-amplitude voltages are spaced 
120° apart. 

voltage in an applied signal; but in the load connected to the 
output terminals, the current lags the voltage by 60 degrees. 
Thus. the black box has introduced a lagging phase shift. 
Current passing through a pure inductance lags applied 
voltage by 90 degrees, whereas current flowing into and out of 
a pure capacitance leads applied voltage by 90 degrees. In a 
common-cathode vacuum-tube circuit, common-emitter 
transistor stage, or common-source FET stage, the output 
signal voltage is 180 degrees out of phase with the input signal 
voltage. But in a cathode follower, emitter follower, or source 
follower. the output signal voltage is in phase with the input 
signal voltage. 

Today. most AC energy is transmitted efficiently via 
three-phase systems, although much of it is converted to 
single-phase by service transformers located near the point of 
use. Where actual three-phase energy is available for use in 
electronic systems, it is valued for its uniform (nonpulsating) 
power. increased efficiency over single-phase energy in the 
operation of electrical machinery such as motors, and the ease 
with which it is filtered. The output of a three-phase generator 
consists of three equal-amplitude voltages spaced 120 degrees 
apart (see Fig. 1-5); thus, voltage E I starts at 0 degrees, E 2 at 
120 degrees. and E 3 at 240 degrees) . It is conventional to speak 
of each voltage as a phase ( symbolized cf,). In a balanced 
three-phase system. the total power is equal to 3 times the 
power (EI cos 8) in either one of the phases, which because of 
the phase differences is equal to: 

Ar= 1.732E Jcos8 (1-8) 
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1.9 VECTOR REPRESENTATION OF AC COMPONENTS 

It is often convenient to think of an alternating current or 
voltage in terms of a rotating vector. This concept is 
illustrated by the diagram in Fig. 1-6. 

Here. the length of vector OA is equal or proportional to the 
maximum voltage or current value. E MAX or I MAx, This vector 
rotates counterclockwise from O to 360 degrees at the rate of 
2rrf radians per second. The vertical distance ( AB) from the 
head of the vector to the horizontal axis is equal or 
proportional to the instantaneous voltage or current. As the 
vector rotates, AB increases positively from zero at O degrees 
to positive maximum at 90 degrees; then, as the vector rotates 
from 90 degrees to 180 degrees, AB decreases positively, 
returning to zero at 180 degrees. As the vector rotates from 180 
degrees to 270 degrees, AB increases negatively from zero at 
180 degrees to negative maximum at 270 degrees; then, as the 
vector rotates from 270 degrees to 360 degrees, AB decreases 
negatively from maximum at 270 degrees to zero at 360 
degrees. One cycle thus has been completed and the events are 
ready to repeat themselves. 

goo 

2ND QUADRANT 1 ST QUADRANT 

3RD QUADRANT 4TH QUADRANT 

Fig. 1-6. Vector representation of Ac components. 
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Fig. 1-7. Vector diagram of out-of-phase components. 

The vector AB is proportional to the sine of the angle 0. 
Indeed, when the diagram is based on a unit circle, AB = sin 0. 
It follows that in the latter case, OB = cos O. Thus, when OA is 
drawn equal to E MAX or I MAX• the instantaneous voltage or 
current AB = OAsin 0. This, of course, is just another way of 
writing: e = EMAX sin 0, or i = IMAX sin O (see Eq. 1-2). 
Component AB is zero at 0, 180, and 360 degrees; maximum 
positive at 90 degrees; and maximum negative at 270 degrees. 
Therefore: sin 0° = sin 180° = sin 360° = O; sin 90° sin 
270° = 1. Thus, the periodically varying length of AB traces out 
the sine of the angle from O to 360 degrees and accurately 
describes the sine wave of Fig. 1-l(a). The following general 
statement describes these relationships: The instantaneous 
current or voltage equals the product of a rotating vector 
times the sine of the angle through which the vector has 
rotated. At any positive position of the vector, E MAX sin O or 
IMAX sin O is the vertical component (y component) of the 
vector, and EMAX cos O or IMAX cos O is the horizontal (x 
component) of the vector. 

The use of vector diagrams to rep sent alternating 
currents and voltages is a convenient method for showing both 

28 



magnitude and phase of these components. One could, of 
course. plot the waveforms to scale, but the vector diagram 
saves time and labor. Figure 1-7 is a vector diagram of three 
out-of-phase voltages. Here. E 1 is 5V at 40 degrees. E 2 7.5V at 
65 degrees. and E:i lOV at 125 degrees. The vectors are drawn 
to scale to indicate the magnitude of these components. The 
same sort of diagram would be employed with three currents. 

Each of these voltage vectors has a horizontal (xl 
component and a vertical (y) component. Also, there is a total 
x component <Eror.\L i,;l and and total y component (ErorAL vl 
which can be determined from the data presented by the 
diagram. Then. there is the single voltage ( E xl generated by 
the three out-of-phase components (E 1, E 2, and E 3) which is the 
resultant of ErorAL x and ErorAL v- Finally, there is the phase 
angle !J> of Ex. The following schedule shows how these various 
voltages and the phase angle of Ex are calculated. 

E 1x = 5 cos 40° = 5(0.77604) = 3.88V 
E 2x = 7.5 cos 65° = 7.5(0.42262) = 3.17V 
E3x = 10cos125° = 10(-0.57358) = -5.73V 
ETOTAL x = 3.88 + 3.17 - 5.73 = 1.32V 
E 1v = 5 sin 40° = 5(0.64279) = 3.21 V 
E 2v = 7.5 sin 65° = 7.5(0.90631) = 6.79V 
E 3v = 10 sin 125° = 10(0.81915) = 8.19V 
ETOTAL v = 3.21 + 6.79 + 8.19 = 18.19V 

iJ> = arc tan 18.19/l.32 = arc tan 13.78 = 85.85° 
Ex= ErorAL v/sin O = 18.19/sin 85.85° = 

18.19/0.99738 = 18.14V 
1.10 AC IN RESISTANCE 

A pure resistance ( R) introduces no phase shift. 
Consequently, when as AC voltage is applied to a pure 
resistance, the resulting current flow through the resistance is 
in phase with the voltage. Figure l-8(a) illustrates this action. 
Similarly, when an alternating current flows through a 
resistance, the resulting voltage drop across the resistance is 
in phase with the current. 

Pure resistance consumes power but is not 
frequency-dependent in its action. There is nothing in a pure 
resistance that causes it to change, with frequency, the 
amount of opposition it offers to current flow. This is not true 
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(a) AC IN RESISTANCE 

E 
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(b) AC IN INDUCTANCE 

E 

90° 

E 

(c) AC IN CAPACITANCE 

Fig. 1-8. Current/voltage/phase relationships with voltage applied to (a) a 
pure resistance, (b) a pure inductance, (c) a pure capacitance. 
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of reactance ( X), which is a frequency-dependent opposition to 
current flow. Unlike resistance, pure reactance consumes no 
power. The kinds of reactance are described in Sec. 1.11, 1.12, 
and 1.13. 

In a pure resistance, current is directly proportional to 
voltage and is inversely proportional to resistance, as shown 
by Ohm's law: 

I = E / R, E = IR, R = E / I (1-9) 

where I is in amperes, E in volts, and R in ohms. 
Although Oran's law in this form is commonly associated with 
DC, it applies to AC as well, so long as the resistance is 
considered pure. (Ohm's law for AC circuits is often written 
withZreplacingtheR; thus: I= E/Z, E = IZ, andZ = E/I.) 

1.11 AC IN INDUCTIVE REACTANCE 

When a voltage is applied to a pure inductance ( L) , 
current cannot flow immediately because it is opposed by a 
voltage of opposite polarity-the counter emf generated by the 
moving magnetic field of the inductor. The current reaches its 
maximum value some time after the voltage has been applied. 
Voltage applied to an inductance therefore leads current, as 
shown in Fig. 1-8(b), and it leads by 90 degrees in a pure 
inductance. (If unavoidable resistance is present, the phase 
angle is proportionately less than 90 degrees. The opposition 
thus offered by an inductance is termed inductive reactance 
(XL). 

For a given value of inductance, the strength of the 
counter emf is proportional to the rate of change of the applied 
voltage. Therefore, the higher the frequency, the higher the 
counter emf and the higher the reactance. The effective value 
of the induced counter emf is E = 21TfLl. Therefore, the 
formula for inductive reactance is: 

XL= wL = 2TTJL (1-10) 

where XL is in ohms, fin hertz, and Lin henrys. 
Example 1-6. A 15-henry ( 15H) inductor is operated in a 400 

Hz circuit. Neglecting any inherent resistance, calculate the 
reactance at that frequency. 
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From Eq. 1-10, 

XL= 27T( 400)15 
= 37,6990 
= 3.7699K 

A pure inductance consumes no power, since power stored 
in the expanding magnetic field during one quarter-cycle of AC 

is returned to the circuit by the collapsing magnetic field 
during the following quarter-cycle. In a pure inductive 
reactance, current is directly proportional to voltage and 
inversely proportional to reactance, as shown by Ohm's law: 

(1-11) 

where I is in amperes, E in volts, and XL in ohms. 
The sign of inductive reactance is positive. 

Example 1-7. A 60 Hz sinusoidal current of 10 mA rms 
flows through a 2.5 mH inductor. Assuming that this is a pure 
inductance, calculate the voltage drop in millivolts across the 
inductor. 

Here, 10 mA = 0.01A, and 2.5 mH = 0.0025H. From Eq. 
1-10, 

XL= 2(3.1416)60(0.0025) 
= 0.9420 

From Eq. 1-11, And E = IXL 

= 0.01(0.942) 
= 0.00942V 
= 9.42mV 

1.12 AC IN CAPACITIVE REACTANCE 

When a voltage is applied to a pure capacitance ( C), as to 
an ideal lossless capacitor, a. current flows into the capacitor, 
decreasing in value until the capacitor becomes fully charged, 
whereupon the flow stops. The voltage across the capacitor 
thus is zero when the current is maximum, and vice versa. 
Current flowing into a capacitor is proportional to the rate of 
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change of voltage; for an AC voltage, this rate of change is 
maximum when the cycle is passing through zero, and is zero 
when the cycle is maximum. Voltage across a pure 
capacitance therefore lags current. From the other point of 
view, current leads voltage-see Fig. 1-8( c). The current leads 
by 90 degrees. If unavoidable resistance is present, the phase 
angle is proportionately less than 90 degrees. The opposition 
thus offered by a capacitance is termed capacitive reactance 
<Xe). For a given capacitance and voltage, the higher the 
frequency, the lower the reactance. The effective value of 
capacitor current I= 2rrfCE. Therefore, the formula for 
capacitive reactance is: 

Xe= 1/wC = l/(2rr/C) (1-12) 

where Xe is in ohms, fin hertz, and C in farads. 
Example 1-8. A 0.0025 µ.F capacitor is operated in a 1 MHz 

circuit. Calculate its reactance in ohms at that frequency. 
Here, 0.0025 µ.F = 2.5 x 10-9F and 1 MHz = 106 Hz. From 

Eq.1-12, 

1 
Xe= 2 X 3.1416 X 106 X (2.5 X 10-9

) 

= 1/0.01571 
= 63.7il 

A pure capacitance consumes no power, since power 
stored in the electrostatic field of the capacitor during one 
quarter-cycle, when the capacitor is charging, is returned to 
the circuit during the following quarter-cycle, when the 
capacitor is discharging. Alternating current flows in and out 
of a capacitor, not through it. In a pure capacitve reactance, 
current is directly proportional to voltage and inversely 
proportional to reactance, as shown by Ohm's law: 

I= E/Xc,E = IXc,Xc= E/1 (1-13) 

where I is in amperes, E in volts, and X c in ohms. 
The sign of capacitive reactance. incidentally, is negative. 

33 



Example 1-9. A sinusoidal 1000 Hz signal of 5V RMs is 
applied to a 50 pF* capacitor. Neglecting any inherent 
resistance, calculate the current in milliamperes that flows in 
and out of this capacitor. 

Here,50pF = 5 x 10-11F; andfromEq.1-12: 

1 
Xe=---------

2(3.1416) 1000 (5 X 10 - 11 ) 

= 1/3.1416 X 10-7 

= 3,183,0910 

1.13 COMBINED REACT ANCE 

Both kinds of reactance-inductive and capacitive-are 
often found in a single circuit. The opposition offered to the 
flow of alternating current is then the combined effect of the 
two reactances. When the two reactances are in series, the 
combined reactance is the algebraic sum of the two: 

(1-14) 

where X, XL, and Xe are all in the same units (ohms, kilohms, 
etc.) 
But when the two reactances are in parallel, 

(1-15) 

The dominant reactive component determines the nature 
of the combined reactance. Thus, where XL = 1000 and 
Xe= 100, X = 100 - 10 = 900 inductive. Similarly, where 
XL= 250 and Xe= 600, X = 25 - 60 = -350 capacitive. At 
one frequency-termed the resonant frequency (j R)-the 
inductive reactance equals the capacitive reactance anc!, 
because of the difference in sign, the two cancel each other, 
leaving no reactance in the circuit. In that case, wL = 1/ wC; 
and, when the values of L and C are known, the equivalent 
equation 21rfL = 1/21r/C can be rewritten to solve for f, the 

*The abbreviation pF stands for picofarads. which is the equivalent of 10-12F 
or 10-6µ.F. 
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resonant frequency: f= 
1 

(1-16) 

where f is in hertz, Lin henrys, and C in farads. 
The inductor and capacitor are connected in series in a 
series-resonant circuit; they are connected in parallel in ~ 
parallel-resonant circuit. 

Example 1-10. Calculate the resonant frequency in 
kilohertz of 350 pF and 175 µ.Hin combination. 

Here, 350 pF = 3.5 X 10-1°F, and 175 µ.H = 1.75 X 10-4H. 
From Eq. 1-16: 

f = 1/2 X 3.1416\13.5 X 10-10(1.75 X 10-4
) 

= 1/6.2832\16.12 X 10-14 

1 
- 6.2832 X (2.475 X 10-1

) 

1 
=-----

1.55 X 10-6 

= 645,161 Hz 
= 645.16kHz 

From a rewritten form of Eq. 1-16, the capacitance 
required to resonate a given inductance at a selected 
frequency is: 

frequency is: C = {1-17) 

where C is in farads, fin hertz, and L in henrys. 
Example 1-11 What value of capacitance in microfarads is 

required to resonate a lOH inductor at 500 Hz? 
From Eq. 1-17: 

C= 1 
4 X 3.14162 X 5002 X 10 

= 39.48 X 250,000 X 10 
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1/98.700.000 
1.01 X 10 8F = 
0.0101 µF 

Similarly. with the aid of another rewritten form of Eq. 1-16. 
the inductance required to resonate a given capacitance at a 
selected frequency is: 

1 
L= 4n·2/2C 

where L is in henrys. fin hertz. and C in farads. 

( 1-18) 

Example 1-12. What value of inductance in millihenrys is 
required to resonate a 10 pF capacitor at 3500 kHz? 

Here. 10 pF = 10- 11F and 3500 kHz= 3.5 x 106 Hz. From 
Eq. 1-18: 

L = 1 
4 X 3.14162 X (3.5 X 106

)
2 X 10- 11 

1 

39.48(1.225 X 10 13)10- 11 

1 
39.48( 1.225 X 102

) 

1 

4.8363 X 103) 

2.07 X 10-"H: -
0.207mH 

It is important to remember that a given capacitance or 
inductance offers a different amount of reactance to the 
fundamental frequency and to each of the harmonics in a 
complex wave. For example, at the second harmonic, 
capacitive reactance is half the value at the fundamental 
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frequency. and inductive reactance is twice the value at the 
fundamental frequency; at the third harmonic, capacitive 
reactance is one-third, and inductive reactance is three times; 
etc. Consequently, when complex voltage waveform is applied 
to a reactance, the resulting current can have a quite different 
waveshape because of the different amounts of attenuation of 
the component frequencies. 

1.14 AC COMBINED WITH DC 

Frequently, an alternating current is mixed with a steady 
direct current, or an alternating voltage is mixed with a steady 
direct voltage. This situation is found in the input and output 
circuits of tube and transistor amplifiers ( where the DC is a 
bias current or voltage. and the AC is the signal riding on the 
bias) and in the unfiltered output of rectifiers (where the AC is 
the ripple). 

Figure 1-9 shows two examples. In the upper trace, an AC 

voltage alternates about + lV as a mean, rising to + 1.5V on 

+1 

-t-05 

-------- \-- ----

-- -- -\- --, (a) 

-------~--
(/) 
I-
.....I 
0 0 
> 
0 
0 

-0.5 

-1 

-1.5 

Fig. 1-9. Two examples of AC superimposed on oc. In (a) the alternating 
voltage is superimposed ori +1V de; in (b) the alternating voltage is 
superimposed on -1 V de. 
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positive peaks and falling to +0.5V on negative peaks. In the 
lower trace, an AC voltage of the same intensity alternates 
about -1 V as a mean, falling to -1.5V on negative peaks and 
rising to -0.5V on positive peaks. In each instance, the wave is 
composed of a series of instantaneous DC values obtained by 
fluctuating the DC in some way (in a vacuum-tube amplifier, 
for example, an AC grid voltage swings the DC plate current up 
and down to produce the AC-on-DC signal). 

Regardless of the instantaneous or average values of DC 
involved, the AC component exhibits only the conventional AC 
values-voltage or current-indicated by its dimensions. The 
rms value of each of the two waves in Fig. 1-9, for example, is 
0.707(0.5) = 0.353V, and it makes no difference whether the 
mean value is +lV, as in the upper figure, or -lV, as in the 
lower figure. Therefore, when the AC component is extracted 
from the mixture, as through capacitor coupling or 
transformer coupling, only this AC component, and none of the 
DC, is available in the output. The AC may be sinusoidal or 
nonsinusoidal. 

It must be noted that at every point in the combined signal, 
the voltage (or current) is the sum of the average DC 
component (here, +lV or -lV) and the instantaneous AC 
voltage at that point. Thus, at the AC voltage peak, the 
combined voltage is higher than either the average DC or the 
peak AC, and sometimes this can cause circuit breakdowns, 
signal clipping, and other undesirable effects. 

This combination of AC and DC goes under several names, 
such as composite voltage or composite current, fluctuating 
voltage or fluctuating current, and AC superimposed on DC. 

1.15 PRACTICE EXERCISES 

1..1 Convert 250,500 Hz to megahertz. 
1.2 Convert 10 GHz to megahertz. 
1.3 Convert 3.55 MHz to kilohertz. 
1.4 Convert 60 Hz to kilohertz. 
1.5 Convert 8 GHz to hertz. 
1.6 Calculate the period in microseconds of a 5000 kHz 
standard-£ requency signal. 
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1.7 Calculate the period in milliseconds of the 60 Hz power-line 
frequency. 
1.8 Calculate the period in seconds of the 1540 kHz standard 
broadcast frequency. 
1.9 Calculate the period in seconds of the 50 Hz power-line 
frequency. 
1.10. Calculate the period in microseconds of a 1000 Hz audio 
test frequency. 
1.11. Calculate the period in milliseconds of the 4000 kHz 
amateur frequency. 
1.12. Calculate the period in microseconds of the 540 kHz 
standard broadcast frequency. 
1.13. Calculate the period in seconds of the 27 .125 MHz 
( channel 14) Citizens Band frequency. 
1.14. Calculate the period in milliseconds of the 10.7 MHz FM 

intermediate frequency. 
1.15. Calculate the period in microseconds of the 57 MHz 
center frequency of TV channel 2. 
1.16. Calculate the period in seconds of a 1 GHz microwave 
signal. 
1.17. Calculate the period in milliseconds of a 0:3 GHz 
microwave signal. 
1.18. Calculate the period in microseconds of an 8 GHz 
microwave signal. 
1.19. Calculate the frequency in hertz corresponding to a 
period of 0.0ls. 
1.20. Calculate the frequency in kilohertz corresponding to a 
period of 0.00015s. 
1.21. Calculate the frequency in megahertz corresponding to a 
period of 10-55. 
1.22. Calculate the frequency in gigahertz corresponding to a 
period of 10-10s. 
1.23. Calculate the frequency in hertz corresponding to a 
period of 8.33 ms. 
1.24. Calculate the frequency in kilohertz corresponding to a 
period of 0.5 ms. 
1.25. Calculate the frequency in megahertz corresponding to a 
period of 0.001 ms. 
1.26. Calculate the frequency in gigahertz corresponding to a 
period of 2 x 10-3 ms. 
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1.27. Calculate the frequency in hertz corresponding to a 
period of 1000 µ.s. 
1.28. Calculate the frequency in kilohertz corresponding to a 
period of 70 µ.s. 
1.29. Calculate the frequency in megahertz corresponding to a 
period of 10 µ.s. 
1.30. Calculate the frequency in gigahertz corresponding to a 
period of 0.005 µ.s. 
1.31. A certain sine wave has a maximum value of 162.6V. 
Calculate the instantaneous voltage at 45 degrees. 
1.32. A certain sine wave has a maximum value of 3V. 
Calculate the instantaneous voltage at 260 degrees. 
1.33. A certain 1000 Hz sine wave has a maximum value of lOV. 
Calculate the instantaneous voltage at the 0.25 ms point. 
1.34. A certain 60 Hz sine wave has a maximum value of 
162.6V. Calculate the instantaneous voltage at the one second 
point. 
1.35. A certain 1 MHz sine wave has a maximum value of IV. 
At which instants in microseconds in the first cycle will the 
instantaneous voltage be -0.707V? 
1.36. A certain 400 Hz sine wave has a maximum value of 
8.91V. At what instant in milliseconds in the first cycle will the 
instantaneous voltage be +4.455V? 
1.37. A certain sine wave has a maximum value of lOV. At the 
15 µ.s point, the instantaneous voltage is 9.09V. Calculate the 
frequency in hertz of this wave. 
1.38. A certain 1250 Hz sine wave has an instantaneous voltage 
of -5V at the 0.5 ms point in the cycle. Calculate the maximum 
voltage of this cycle. 
1.39. In a 2.5 MHz sine-wave cycle, at which points in 
microseconds do the following voltages occur: (a) positive 
maximum; (b) negative maximum? 
1.40. A certain sine-wave cycle has maximum positive voltage 
at the 1.25 ms point. Calculate the frequency of this wave. 
1.41. Convert 39.5 degrees to radians. 
1.42. Convert 5 degrees 15 minutes to radians. 
1.43. Convert 5.4 radians to degrees. 
1.44. Convert 1.047 radians to degrees. 
1.45. What is the angle in radians at the 10 µ,s point in a 12.5 
kHz sine-wave cycle? 
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1.46. What is the angle in radians at the 1.67 ms point in a 60 Hz 
sine-wave cycle? 
1.47. At any frequency, what is the angle in radians in the 
sine-wave cycle at (a) maximum positive voltage; (b) 
maximum negative voltage? 
1.48. For a 1000 Hz sine-wave cycle, express the angle in 
degrees when t = 0.5 ms. 
1.49. For a 10 MHz sine-wave cycle, express the angle in 
degrees when t = 0.075 µ,s. 

1.50. Calculate the angular velocity ( w) for the following 
often used frequencies: (a) 40 Hz, (b)125 Hz, (c) 800 Hz, (d) 100 
kHz, (e) 540 kHz, (f) 1380 kHz, (g) 1.875 MHz, (h) 10.7 MHz, (i) 

27.085 MHz, (j) 54 MHz. 
1.51. What frequency in kilohertz is required for a desired 
angular velocity of 1000? 
1.52. Calculate the rms value corresponding to a maximum 
voltage of 15V. 
1.53. Calculate the rms value corresponding to a maximum 
voltage of 2.37 µ, V. 
1.54. Calculate the average value corresponding to a 
maximum voltage of 6.9V. 
1.55. Calculate the average value corresponding to a 
maximum voltage of 10 mV. 
1.56. Calculate the rms value corresponding to an average 
voltage of 3.3V. 
1.57. Calculate the rms value corresponding to an average 
voltage of 0.00015V. 
1.58. Calculate the maximum value corresponding to an rms 
voltage of 50V. 
1.59: Calculate the maximum value corresponding to an rms 
voltage of 1 µ, V. 
1.60. Calculate the average value corresponding to an rms 
voltage of 510V. 
1.61. Calculate the average value corresponding to an rms 
voltage of 38 m V. 
1.62. In the test of a certain oscillator performed with a wave 
analyzer, the following signal voltages are observed: 
fundamental, lV; second harmonic. 1 mV; third harmonic, 
0.25 mV; and fourth harmonic, 0.1 mV. Calculate the harmonic 
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strength in percent for (a) 2nd harmonic; (b) 3rd harmonic: 
( c) 4th harmonic. 
1.63. From the data in exercise 1.62, calculate the total 
distortion in percent. 
1.64. In the test of a certain amplifier performed with a 
distortion meter, the combined voltage is 2.2V and the total 
harmonic voltage is 1.45 mV. Calculate the total distortion in 
percent. 
1.65. An audio generator is being adjusted for an acceptable 
total distortion of 0.25%. If the output of the generator is set to 
lV, what must be the output voltage in millivolts of the 
distortion-measuring circuit for this percentage? 
1.66. Calculate the counter emf in volts generated in a 30H 
inductor carrying 100 mA at 120 Hz. 
1.67. Calculate the counter emf in volts generated in a 2.5 mH 
inductor carrying 1 mA at 1 MHz. 
1.68. Calculate the 120 Hz reactance of a 15H inductor. 
1.69. Calculate the 1 MHz reactance of a 100 µ,H inductor. 
1.70. What inductance is required for 20K reactance at 1000 
Hz? 
1.71. At what frequency in hertz will a 20H inductor have a 
reactance of lOK? 
1.72. Calculate the voltage drop in volts across a 2H inductor 
carrying 125 mA at 400 Hz. 
1.73. Calculate the current in microamperes passed by a 1 mH 
inductor when the applied voltage is 250 m V at 2 MHz. 
1.74. What is the 1000 Hz reactance of an inductor that passes 
0.5A for an applied voltage of lOV? 
l. 75. Calculate the inductance in henrys of the inductor in 
exercise 1.74. 
1.76. Calculate the 1 MHz reactance in ohms of a 0.002 µ,F 
capacitor. 
1.77. Calculate the 50 MHz reactance in ohms of a 25 pF 
capacitor. 
1.78. Calculate the 120 Hz reactance in ohms of a 16 µ,F 
capacitor. 
1.79. Calculate the 60 Hz reactance in megohms of a 25 pF 
capacitor. 
1.80. At what frequency will a 2 µ,F capacitor have a reactance 
of 10000? 
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1.81. Calculate the effective current in milliamperes through a 
1 µ,F capacitor at 1000 Hz when the applied potential is 1 V. 
1.82. Calculate the voltage required to force a current of 3 mA 
through a 0.01 µ,F capacitor at 1000 Hz. 
1.83. Calculate the 400 Hz reactance of a capacitor which 
passes 1 mA at l0V. 
1.84. Calculate the capacitance in microfarads of the 
capacitor in exercise 1.83. 
1.85. Calculate the voltage drop in millivolts across a 0.025 µ,F 
capacitor carrying 500 µ,A at 2000 kHz. 
1.86. What capacitance in microfarads will be required to pass 
0.25A relay current at 60 Hz when the applied voltage is 115V? 
1.87. A son inductive reactance and a 10n capacitive 
reactance are connected in series. Calculate the combined 
reactance. 
1.88. A son inductive reactance and a 10n capacitive 
reactance are connected in parallel. Calculate the combined 
reactance. 
1.89. (a) Calculate the combined 120 Hz reactance offered by a 
20H inductor and an 8 µ,F capacitor in series. (b) Is the 
combined reactance inductive or capacitive? 
1.90. (a) Calculate the combined 1 MHz reactance offered by a 
1 mH inductor and a 0.01 µ,F capacitor in parallel. (b) Is the 
combined reactance inductive or capacitive? 
1.91. Calculate the resonant frequency in kilohertz of a circuit 
containing 0.02 µ,F and 2.5 mH. 
1.92. Calculate the resonant frequency in megahertz of a 
circuit containing 365 pF and 100 µ,H. 
1.93. What capacitance in microfarads is required to resonate 
a 5H inductor at 400 Hz? 
1.94. What capacitance in picofarads is required to resonate a 
2 µ,H inductor at 45 MHz? 
1.95. What inductance in millihenrys is required to resonate a 
0.05 µ,F capacitor to 3500 Hz? 
1.96. What inductance in henrys is required to resonate a 0.25 
µ,F capacitor to 180 Hz? 

( Correct answers are to be found in Appendix D.) 
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01Nature of Impedance 

This chapter surveys impedance and examines its composition 
and various aspects of its nature. The subject matter extends 
that of Chapter 1 by progressing from the concept of reactance 
developed at the end of that chapter. Illustrative examples are 
offered to demonstrate the various methods of calculating 
impedance. 

2.1 IMPEDANCE DEFINED 
Impedance (Z) is the opposition offered to the flow of 

alternating current and is expressed in ohms (where 
applicable, the multiples and submultiples of the ohm also are 
used: microhms, milliohms, kilohms, megohms, etc.) . In this 
respect, the behavior of impedance in an AC circuit is 
analogous to that of resistance in a DC circuit and is described 
by Ohm's law: 

Z = E/I. I = E/Z. E = IZ (2-1) 

where Z is in ohms, E is in volts, and I is in amperes. 
Example 2-1. When an emf of lOV RMS is applied to a 

certain two-terminal black box, a current of 0.75 mA flows. 
Calculate in kilohms the internal impedance of the black box. 
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Here, 0.75 mA = 0.00075A. From Eq. 2-1: 

Z = E/1 
= 10/0.00075 
= 13,333 ohms 
= 13.33K 

The similarity ends there, however, since impedance, unlike, 
resistance, is frequency dependent and exhibits phase angle. 

In a very broad sense, impedance denotes any opposition 
that is offered to AC. Such a definition would include resistance 
and reactance, which by themselves, of course, are not strictly 
impedances. It is for this reason that such terms as resistive 
impedance (for resistance) and reactive impedance (for 
reactance) are sometimes encountered. 

2.2 COMPOSITION OF IMPEDANCE 

Impedance (Z) is the combined effect of resistance (R) 
and reactance (X). The resistive component is 90 degrees out 
of phase with the reactive component, so R and X cannot 
simply be added arithmetically to give the impedance. The 
vector diagrams in Fig. 2-1 show how resistance and reactance 
combine to form impedance. 

Figure 2-l(a) shows resistance and inductive reactance. 
Here, the impedance vector (Z) is the resultant-the vector 
sum-of the resistance vector (R) and the reactance vector 
( X1,l- The phase angle of the resulting impedance is the angle () 
between the impedance vector and the resistance vector. 

Figure 2-l(b) shows resistance and capacitive reactance. 
Here, the Xe vector is drawn in the opposite direction of the XL 
vector in Fig. 2-l(a) to show that the effect of capacitive 
reactance is opposite to that of inductive reactance. The 
impedance vector ( Z) is the resultant-the vector sum-of the 
resistance vector (R) and the reactance vector (Xcl- The 
phase angle of the resulting impedance is the angle 8 between 
the impedance vector and the resistance vector. 

In Fig. 2-l(c) there is combined reactance (X) consisting. 
of inductive reactance ( X1) and capacitive reactance ( X c). 
This combined reactance X = XL - Xe (see Sec. 1.13, Ch. 1) 
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Fig. 2-1. Basic R-C-L-2 relationships with vectors showing how resistance 
and reactance combine to form impedance. 
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and is represented by vector x. It is this combined reactance 
that acts with the resistance to form the impedance, 
represented by vector z. The phase angle of the resulting 
impedance is the angle O between the impedance vector and 
the resistance vector. 

Series Circuits 

It is easily seen from the three diagrams in Fig. 2-1 that 
the impedance vector is the hypotenuse of a right triangle 
whose sides are the resistance and reactance vectors. Since, 
from geometry, the hypotenuse equals the square root of the 
sum of the squares of the other two sides: 

Where Z, R, and X are in ohms. 
In complex algebra, this is written Z = R + jXL or 
Z = R - jXc- Equation 2-2 applies to circuits in which 
resistance and reactance are in series. 

Example 2-2. A 0.1 µ.F capacitor and moon resistor are 
connected in series. Calculate the impedance in ohms ( at 1000 
Hz) of this combination. 

Here, Xe for the 0.1 µ.F capacitor is 1591.50 (Eq. 1-12, Ch. 
1). From Eq. 2-2: 

z = ,110002 + 1591.52 

= V(l X 106
) + (2.533 X 106

) 

= \!3.533 X 106 

= 1879.60 

When there is combined reactance, as in Fig. 2-l(c), for a 
series circuit the combined value X = XL - Xe (Eq. 1-14, Ch. 
1). and Eq. 2-2 is rewritten: 

Z = VR2 + (X - X ) 2 
L C (2-3) 

Example 2-3. A 0.5 µ.F capacitor, lH inductor, and 4700 
resistor are connected in series. Calculate the impedance in 
ohms ( at 400 Hz) of this combination. 
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Here, XL for the 1H inductor is 2513.20 (Eq. 1-10, Ch. 1) 
and Xe for the 0.5 µ.F capacitor is 795.80 (Eq. 1-12, Ch. 1). 

FromEq. 2-3: 

z = \14102 + (2513.3 - 795.8> 2 

= v220,900 + 1111.52 

= \!220,900 + 2,949,806 
= \/3,170,706 
= 1780.60 

Since the diagrams in Fig. 2-1 are right triangles, the 
solutions from trigonometry are easily applied. Thus, the 
tangent of the phase angle ( 0) of the impedance, being equal to 
the opposite side divided by the adjacent side of the triangle, is 
equal to X/R: 

tanO = X/R = XJR = XdR (2-4) 

where X, XL, and Xe are in ohms. 
When the reactance and resistance are known, the phase angle 
can be found: 

8 = arc tan X/R (2-5) 

where 8 is in degrees, and X and R are in ohms. 
Likewise, sin 8 = X/Z, and cos 8 = R/Z. From this-, 8 = arc 
sin X/Z = arc cos R/Z. 

Example 2-4. A 10 mH inductor and 560 resistor are 
connected in series. Calculate the phase angle of the 
impedance at 1000 Hz. 

Here, XL for the 10 mH inductor is 62.80 (Eq. 1-10, Ch. 1). 

From Eq. 2-5, 

8 = arc tan 62.8/56 
= arc tan 1.1214 
= 48.275 degrees 
= 48 degrees, 16 minutes, 30 seconds. 

The total impedance of similar impedances connected in 
serles is similar to the total resistance of resistors connected 
in series: 
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Parallel Circuits 
When resistance and reactance are in parallel, the 

resulting impedance is: 

z = 
VR2 + X2 

RX 
(2-6) 

where Z, R, and X are in ohms. 
This formula is seen to resemble that for two resistances 

in parallel: REQ = (R1R2)/(R 1 + R2). But whereas in the 
resistance formula the product is divided by the sum, in the 
impedance formula ( because of the difference between R and 
X) the product is divided by the vector sum. 

Example 2-5. A 20H inductor and 5K resistor are connected 
in parallel. Calculate the impedance in kilohms ( at 500 Hz) of 
this combination. 

Here, XL for the 20H inductor is 62,8320 ( Eq. 1-10, Ch. 1) 
From Eq. 2-6: 

Z = ( 5000 X 62,832) /\/50002 + 62,8322 

= (3.142 X 108)/\/(2.5 X 107
) + (3.95 X 109

) 

= (3.142 X 108)/\13.975 X 109 

3.142 X 108 

= 
6.305 X 104 

= 48930 
= 4.893K 

As with a parallel-resistance circuit with unequal resistances, 
the impedance of the parallel resistance/reactance circuit is 
less than either the resistance or the reactance. 

For the parallel circuit, the phase angle of the impedance 
is: 

6 = arc tan R/X (2-7) 

where 6 is in degrees, R in ohms, and X in ohms. 
Note that this formula is the reciprocal of the one for the phase 
angle of the series circuit (Eq. 2-5). 
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Example 2-6. In the preceding example. X1. = 62.8320 and 
R = 5K. Calculate the phase angle of the resulting 4893!1 
impedance. 

From Eq. 2-7. 

(J = arc tan 5000/62.832 
= arc tan 0.079577 
= 4.549 degrees 
= 4 degrees. 32minutes. 56 seconds. 

The equivalent impedance of similar impedances 
connected in parallel is similar to the equivalent resistance of 
resistors connected in parallel: 

1 

Full Depiction 
Equations 2-1, 2-2. 2-3, and 2-6 give only the magnitude of 

impedance. In many applications, this quantity is all that is 
needed. A full expression of impedance. however, contains not 
only the magnitude, but also the phase angle ( see Eq. 2-5 and 
2-7 for the angle). For example: Z/6 = 35/26 degrees 30 
minutes denotes an impedance of 350 at a phase angle of 26 
degrees and 30 minutes. 

When the magnitude Z and phase (J of an impedance are 
given. the resistive (R) and reactive (X) components may be 
determined either graphically or through calculation. In the 
graphic solution ( Fig. 2-2). the impedance vector z is drawn to 
scale forming the angle (J with the horizontal (resistance) axis. 
Then. projections are made from the tip of the z vector to the 
horizontal and vertical axes, as shown by the dotted lines. The 
resistance magnitude may then be measured along the 
horizontal axis, and the reactance magnitude along the 
vertical axis. The solution by calculation is based on simple 
right-triangle relationships from trigonometry: 

R = Z cos 6, and 
X = Zsin 0 

(2-8) 
(2-9) 
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X 

X=Zsin 0 

R=Zcos/1 

Fig. 2-2. Determination of resistance and reactance from impedance and 
phase angle. The resistance magnitude may be measured along the 
horizontal axis and the reactance along the vertical axis. 

Example 2-7. A given impedance is 150!1 at 30 degrees. 
Calculate the resistive and reactive components. 

Here, sin 30 degrees = 0.5 and cos 30 degrees= 0.866025. 
So, from Eqs. 2-8 and 2-9, 

R = 150(0.866025) 
= 129.9!1 

X = 150(0.5) 
= 75!1 

From Eqs. 2-8 and 2-9, it is apparent that impedance may 
be calculated in terms of resistance and phase angle or 
reactance and phase angle: Z = R/ cos 0, and Z = X / sin 0. 

2:3 UNIVERSALITY OF IMPEDANCE 

Impedance is found everywhere in the world of 
electronics. This is because resistance and reactance tend to 
occur together, one often as a stray effect. Thus, a resistor can 
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exhibit inherent capacitance and inductance, a capacitor can 
exhibit inherent resistance and inductance, and an inductor 
can exhibit inherent resistance and capacitance. It is stray 
resistance that causes losses in capacitors and inductors. In 
most well built components, the stray quantity is negligible 
when compared with the principal property. When the value of 
the stray is significant, however, the component or device 
must be handled as an impedance, not as a simple resistance 
or reactance. 

Some of the familiar devices in which impedance is 
encountered are antennas and transmission lines; generators, 
motors, relays, and transformer windings; headphones, 
microphones, loudspeakers, and magnetic amplifiers; 
capacitors, inductors, saturable reactors, and resistors 
(inductively wound); tubes, transistors, semiconductor 
diodes, and rectifiers; and control devices. 

2.4 IMPEDANCE OF COMMON BASIC CIRCUITS 

Figure 2-3 shows eight common circuits with the formulas 
for their impedance and phase angle. These are basic 
arrangements in which resistance, capacitance, and 
inductance are assumed to be ideal. Several of these circuits 
invite special attention and are discussed individually. 

Figure 2-3(e) shows an ideal series-resonant circuit. 
Depending upon the various values which inductance ( L) and 
capacitance ( C) may assume, the circuit may be resonant 
(exhibiting no reactance), nonresonant above the resonant 
frequency ( exhibiting inductive reactance), or nonresonant 
below the resonant frequency ( exhibiting capacitive 
reactance). The phase angle of the inductive reactance is +90 
degrees, and that of the capacitive reactance -90 degrees; for 
frequencies off resonance, the angle is positive if Xe is larger 
than XL, and is negative if XL is larger than Xe. At resonance, 
since at this point XL= X0 angle (J is zero. The impedance at 
frequencies off resonance is equal to XL - Xe and is 
characterized by the dominant member of this expression. At 
resonance, therefore, Z is zerer-which accounts for maximum 
current at resonance in series-resonant circuits. 
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Fig. 2-3. Eight common basic circuits with equations for determining impedance and phase angle. 



Figure 2-3(f) shows an ideal parallel-resonant circuit. In 
this arrangement, unlike the series-resonant circuit described 
in the preceding paragraph, the impedance at resonance is 
infinite. This accounts for maximum voltage at resonance in 
parallel-resonant circuits. The phase angle of the inductive 
reactance is +90 degrees and that of the capacitive reactance 
is -90 degrees; for frequencies off resonance, the angle is 
positive if Xe is larger than XL, and is negative if XL is larger 
than Xe- At resonance, since at this point XL= Xe, angle (J is 
zero. The impedance at frequencies off resonance is equal to 
XL - Xe and is characterized by the dominant member of this 
expression. At resonance, since here XL= Xe, the 
denominator of the impedance formula in Fig. 2-3(f) is zero; 
therefore, the impedance is infinite. 

While Figs. 2-3(e) and 2-3(f) show ideal series-resonant 
and parallel-resonant circuits, Figs. 2-3(g) and 2-3(h) show 
corresponding practical circuits. That is, each of the latter 
circuits contain resistance which occurs in practice in the 
form of losses in the inductor and capacitor. In the 
series-resonant circuit, Fig. 2-3(g), the off-resonance 
impedance is the vector sum of the resistance and combined 
reactance, and is capacitive below resonance and inductive 
above resonance. At resonance, the combined reactance is 
zero, and only the resistance is left in the circuit. Therefore, at 
resonance Z = R. Current in the practical series-resonant 
circuit is maximum at resonance, but is limited by resistance. 
The phase angle is determined by the ratio of the combined 
reactance to the resistance. This angle may have any value 
between zero degrees and nearly 90 degrees, depending upon 
the relative amounts of XL, Xe, and R. At resonance, the phase 
angle is zero, since here XL = Xe = zero, and arc tan O / R = 0. 

In the parallel-resonant circuit, Fig. 2-3(h), the 
off-resonance impedance is equal to the reciprocal of the 
vector sum of the reciprocal of the resistance and the 
combined reactance, and is inductive below resonance and 
capacitive above resonance. At resonance, the combined 
reactance ( XL - Xe) is zero and only the resistance ( R) is left 
in the circuit. Therefore, at resonance, Z = R. The phase 
angle is determined by the relative amounts of XL, Xe, and R, 
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Fig. 2-4. Current and voltage distribution for a half-wave antenna operat­
ing at its fundamental frequency. 

and may have any value between zero degrees and almost 90 
degrees. At resonance this angle is zero, since here 
Xi,= Xr = 0, and fJ = arc tan R(l/X1, - 1/Xc) = arc tan 
R(0) = 0. 

2.5 IMPEDANCE OF LINEAR DEVICES 

The impedance of devices which consist essentially of one 
or more straight wires, rods, or tubes ( so-called linear 
devices) presents a special case. Prominent among such 
devices are antennas and RF transmission lines. In many 
instances the impedance of these devices is resistive. 

Antennas 

An operative antenna is characterized by a pattern of 
stationary standing waves along its length. This arrangement 
of loops and nodes constitutes a distribution of current I and 
voltage E along the length, as shown in Fig. 2-4 for a half-wave 
antenna operating at its fundamental frequency. By cutting or 
lengthening this figure, one can see what the resulting E and I 
distribution would be on antennas of different lengths, say 
quarter-wave and full-wave. 

Note that current is maximum at the center of the wire, 
rod, or tube, and is zero at the ends, while voltage is zero at the 
center and maximum at the ends. At any point along the length 
of the antenna, the impedance Z is equal to the ratio of voltage 
to current (Ell) at that particular point. Thus, the impedance 
is very high at the ends (being theoretically infinite: 
Z = E/1 = E/0 = oc) and is very low at the center (being 
theoretically zero: Z = E/1 = 0/I = 0). 
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A transmitting antenna is visualized as working against an 
impedance-the radiation resistance-when radiating energy 
into space. The value of radiation resistance ( RR) is governed 
by the height of the antenna above ground. The reason for this 
is the action of that part of radiated energy which is reflected 
back from the surface of the earth. This reflected energy 
arrives at the antenna in or out of phase with energy that is in 
the antenna. Depending upon how far the reflected energy has 
had to travel to reach the antenna, it either reduces or 
increases the apparent resistance because of this phase effect. 
Figure 2-5 shows a plot of theoretical values of radiation 
resistance at the center of a half-wave antenna in free space 
for various heights from zero to two wavelengths above 
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Fig. 2-5. Radiation resistance of a half-wave horizontal antenna plotted for 
various heights from zero to two wavelengths above ground. 
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R TERMINATION 

SPACED PARALLEL WIRES 

Fig. 2-6. Two-wire transmission line connected to an RF generator and a 
load resistor (termination). 

ground. Observe that the higher the antenna, the more closely 
RR approaches the theoretical value of 73.2.fl. At the ends of 
the antenna, RR is several thousand ohms. In practical terms, 
the radiation resistance is that value of resistance which 
would, if it were inserted at the center of the antenna, dissipate 
energy equal to that ordinarily radiated from the antenna. And 
this is a legitimate concept, for radiated energy is, in effect. 
energy lost from the antenna. 

Transmission Lines 

The purpose of a transmission line is to conduct RF energy 
from one point (such as a generator) to another point ( such as 
a load) with virtually no radiation from the line. In one of its 
simplest forms, this device consists of two parallel wires, with 
the spacing between the wires small compared with one 
wavelength. Figure 2-6 shows such a line connected to an RF 

generator at one end and to a load resistor (Rl at the other 
end. Current flows in opposite directions in the two wires, so 
radiation from the line is effectively canceled. The line has 
distributed inductance and distributed capacitance, and from 
these properties the characteristic impedance ( 20 or Z cl, 
neglecting the resistance of the wires, can be calculated: 

(2-10) 

where Z0 is in ohms, Lin henrys, and C in farads. This quantity 
is termed charteristic impedance, since for a line of given 
dimensions it has the same EI I value at any point along the 
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line. It is also called surge impedance. If the terminating 
resistance is equal to the characteristic impedance, the 
resistor absorbs all of the energy and no standing waves 
appear on the line. 

For a two-wire line, Z0 depends upon the diameter and 
spacing of the wires: 

(2-11) 

where Z0 is the characteristic impedance in ohms, S the 
center-to-center spacing of wires in inches, d the diameter of 
wire in inches, and log10 the common logarithm. 

Example 2-8. The diameter of No. 12 solid copper wire is 
0.081 inch. Calculate the characteristic impedance of a 
two-wire line consisting of two No. 12 wires spaced six inches 
between centers. 

From Eq. 2-11: 

Z0 = 276log10(2 X 6)/0.081 
= 276 log1012/0.081 
= 276 log10148.15 
= 276(2.1707) 
= 599.lll 

Note: A pair of 12-gage wires with six-inch spacing is 
commonly called a 600O line. 

A closer result (599.780) is afforded by the equation 
Z0 = 120 arc cosh[0.5(2S/d) ], where Z0, S, and d are in the 
same units as in Eq. 2-11 and cosh is the hyperbolic cosine. 

The impedance of an insulated line is somewhat different 
from that of the open-air line just described. Thus, the 
three-eighth-inch wide "ribbon" used with TV antennas has an 
impedance of 3000. 

Figure 2-7 shows the distribution of current and voltage on 
an unterminated quarter-wave line. From this distribution, it 
is evident that various impedances (Z = E / I) are available b 
tapping the line at appropriate points. This is an important 
convenience which will be considered later in Sec. 2-11, 
Methods of Matching Impedance. 

Another well known transmission line is the coaxial type. 
This consists essentially of two concentric conductors, one 
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Fig. 2-7. Current and voltage distribution on an unterminated quarter­
wave line. 

being a central wire and the other a surrounding metal pipe 
(see Fig. 2-8). A coaxial line may be flexible or rigid. For an 
air-insulated coaxial line ( inner conductor supported by 
spaced beads or washers), the characteristic impedance is: 

(2-12) 

where Z0 is the characteristic impedance in ohms, d1 the inside 
diameter of the outer conductor in inches, d2 the outside 
diameter of the inner conductor in inches, and log 10 the 
common logarithm. 

Example 2-9. The inner conductor of a certain 
air-insulated coaxial line is No. 12 copper wire whose outside 
diameter (OD) is 0.081 inch, and the inner diameter (ID) of the 
outer conductor is 0.25 inch. 

INNER CONDUCTOR 

I OUTER CONDUCTOR 

R TERMINATION 

Fig. 2-8. Coaxial-type transmission line consisting of two concentric con­
ductors connected between a generator and a load resistor. 
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Calculate the characteristic impedance. 
From Eq. 2-12: 

20 = 138 log100.25/0.081 
= 138 log1ir'3.1)964 
= 138(0.489452) 
= 67.50 

When a coaxial line has continuous insulation between outer 
and inner conductors, the Z0 value obtained with Eq. 2-12 must 
be multiplied by 1/~ where k is the dielectric constant of the 
insulating material. Polyethylene, a common insulator in 
coaxial lines, has a dielectric constant of 2.3 and requires a 
multiplier of 1/V2.3 = 1/1.516 = 0.659. Common impedances 
for commercial polyethylene-insulated coaxial cable are 500, 
520, 53.50, 730, and 750. 

2.6 IMPEDANCE OF GENERATORS 

All AC generators have impedance (Zc). This impedance, 
however small, is often resistive and is considered to be in 
series with the generator (see Fig. 2-9). Because of the 
internal impedance, the terminal voltage (ETERM) when the 
generator is delivering current to a load will be lower than the 
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Fig. 2-9. Circuit illustrating impedance(ZG) of an AC generator 
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Fig. 2-10. Circuit illustrating an AC generator feeding a load impedance 
(ZJ. Current must flow through both the generator impedance (ZG) and 
the load impedance. 

generator voltage owing to the voltage drop across this 
impedance-ETERM = Ee - IZc. 

Like a mechanical generator, an electronic oscillator 
exhibits an internal impedance due to the output impedance of 
the tubes, transistors, or attenuators in the oscillator circuit. 
This internal impedance is generator impedance in the same 
sense as in the AC machine-since the oscillator is a 
nonmechanical producer of AC-but it is often called oscillator 
output impedance. 

In practice, one may consider a generator to be any device 
or circuit that delivers a signal or power. This would include 
not only oscillators, multivibrators, machines, and other 
devices that form a signal, but also tubes and transistors and 
even any branch of a circuit that delivers a signal to another 
branch. 

2.7 LOAD IMPEDANCE 

Every AC load device has impedance (ZL). Examples are 
loudspeakers, motors, lamps, heaters, transmitting antennas, 
etc. Sometimes, this impedance is resistive only; in other 
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instances. it is classic impedance-that is. a combination of 
resistance and reactance. 

Figure 2-10 shows a simple circuit in which an impedance 
Z1. loads an AC generator. In this setup. current must flow 
through the generator internal impedance ZG and the load 
impedance Z 1_. This current therefore is equal to EG/(ZG + ZL) 

It accordingly produces one voltage drop ( IZG) across the 
generator internal impedance and a second voltage drop ( IZ d 
across the load impedance. The voltage EL across the load 
impedance ( Ed thus is somewhat less than the internal 
voltage of the generator. and (neglecting phase angle) is equal 
to EL= (EGZL)/(ZG + ZL). where E is in volts and Z is in 
ohms. 

2.8 INPUT AND OUTPUT IMPEDANCE 

Every signal processing device or circuit, such as 
amplifiers. modulators, shapers, filters. etc., exhibits input 
impedance (Z1N) seen by the applied signal and output 
impedance (ZouT) seen by the load device. These quantities 
must be dealt with in the design and application of the device, 
for the input driving-signal requirements, loading of the 
input-signal source, and load-device requirements depend 
upon ZIN and ZouT· 

Figure 2-11 illustrates the concept of a device having 
simple input and output impedances. In many instances, these 

Zour -- -, E- _., .. ".1 ... ,--= 
I .. 

OUTPUT INPUT ZtNt• •• ,. 
I - --'--------- --

CIRCUIT OR DEVICE 

Fig. 2-11. Illustration of a device having both input and output impedance. 
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RREF 

1•~•·....----. T 

PAI ~ :==S=EC===: 

Fig. 2-12. Reflected impedance in the primary of a transformer with re­
sistance RL loading the secondary. 

quantities are resistive. In most cases, the input impedance 
acts as a shunt component and the output impedance acts as a 
series component. 

Some devices, such as amplifiers and filters, which 
receive and deliver signals, have both input and output 
impedance. Other devices, such as oscillators and 
transmitters, which are in effect generators, have only output 
impedance. Still other devices, such as meters and 
oscilloscopes, have only input impedance. 

2.9 REFLECTED IMPEDANCE 

When an impedance is connected across the secondary 
terminals of a transformer, a reflection of that impedance 
appears in the primary circuit of the transformer. This 
phenomenon is illustrated by Fig. 2-12; here, a resistance RL 
loads the secondary. Because of RL, an apparent resistance, 
called the reflected resistance, RHEFL' appears in the primary 
circuit. 

The value of the reflected resistance depends upon RL and 
the turns ratio of the transformer: 

RHEFL = RdNp/N5)
2 (2-3) 

where NP is the number of primary turns, and N sis the number 
of secondary turns. 
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It is not necessary to know the actual number of primary 
and secondary turns in order to use Eq. 2-13, but only the turns 
ratio as given by the transformer manufacturer or determined 
by user tests. Thus, a 3: 1 transformer has three times as many 
secondary turns as primary turns; that is, N sJ NP = 3, and 
Np/Ns = 0.3333. * As an example, assuming an ideal 
transformer, if a 1000!1 resistor is connected to the secondary 
of a transformer having a 5: 1 turns ratio, the reflected 
resistance at the primary terminals is: 
RREFL = 1000(1/5) 2 = 1000(0.22

) = 1000(0.04) = 40!1. If the 
turns ratio were 10:1, RREFL would be 10!1. With a stepup 
transformer, RREFL is lower than R1,; with a stepdown 
transformer, RREFL is higher than R1,; and, with a.transformer 
having a 1: 1 turns ratio, RREF is is equal to R1,. These facts of 
performance lead to the general equation: 

(2-14) 

Reflected impedance is of great importance in the 
technique of matching impedances by means of a transformer. 

2.10 NEED TO MATCH IMPEDANCE 

It is a fundamental axiom of electricity that maximum 
power is delivered by a generator to a load only when the load 
impedance equals the generator internal impedance. For this 
purpose, any device that delivers power can be considered a 
generator. The relationship is expressed: 

Z1, = ZG (for maximum power transfer) (2-15) 

Figure 2-13 illustrates this condition. In the circuit shown 
in Fig. 2-13(a), a variable load resistance (R1,) is connected to 
a 5V generator having an internal resistance (RG) of 5!1. 
Figure 2-13(b) shows the performance of the circuit as R1, is 
varied. From this table, note that as R1, is increased in 5!1 
steps, from 5!1 to 50!1, the total resistance ( RG + R1,) of the 
circuit increases from 30!1 to 75!1; and the corresponding 
current, I= E/(RG + R1,), decreases from 0.167A when 
R1, = 5!1. to 0.067A when R1, = 50!1. Importantly, the power 
(P = 12R1,) in the load increases from 0.139W when R1, = 5!l, 
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----,,.--,v9__1 __ 
(a)CIACUIT 

p-G RL 
(OHMS) (OHMS) 

25 5 
25 10 
25 15 
25 20 
25 25 
25 30 
25 35 
25 40 
25 45 
25 50 

(b) PERFORMANCE 

I 
4----+ 

RT 
(OHMS) 

30 
35 
40 
45 
50 
55 
60 
65 
70 
75 

I 

(AMP) 

0.167 
0.143 
0.125 
0.111 
0.100 
0.091 
0.083 
0.077 
0.071 
0.067 

PL 
(WATTS) 

0.139 
0.204 
0.234 
0.246 
0.250 
0.248 
0.241 
0.237 
0.227 
0.224 

1' 
MAX 

POWER 

Fig. 2-13. Illustration of impedance matching. The circuit (a) has a variable 
load resistance connected to a generator. The chart (b) shows the 
performance of the circuit as the resistance (RJ is varied. 

to 0.250W when RL = 25!1; then, as RL is further increased 
from 25!1 to 50!1, the power decreases from 0.250W at 25!1 to 
0.224W at 50!1. The power peak thus is at 0.250W, the point at 
which RL = RG = 25!1. 

2.11 METHODS OF MATCHING IMPEDANCE 

For maximum power transfer, the impedance of a load 
device must equal that of the generator or other source. 
However, perfectly matched components are not always 
obtainable in practice. The output impedance of an amplifier, 
for example, may be 3500!1, and the loudspeaker which the 
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amplifier must drive may have an impedance of 3.2.n. When 
generator impedance and load impedance do not match, steps 
must be taken to create a match between them. One technique 
exploits the phenomenon of reflected impedance explained in 
Sec. 2-9 and described under Use of Matching Transformer. 
Principal impedance-matching methods are described in the 
following subsections. In some areas, such as RF impedance 
matching. the representative method has been presented in 
each general category. 

Use of Matching Transformer 

A transformer may be inserted between a source and load, 
as shown in Fig. 2-14, for the purpose of matching the load 
impedance to the generator impedance. This will be 
accomplished if the transformer has the correct turns ratio. 

To understand how impedances may be matched in this 
way. consider the instance in which RL is a simple resistance. 
It is well known from fundamentals of electricity that, in an 
ideal transformer, the primary voltamperes equal the 
secondary voltamperes: Erir = Esis· This means simply that 
in a stepup transformer, for example, the secondary voltage is 

0.5A 
+--- • 

' 2.5V 
' I 
I 
I 
I 
I 

.___...,..... __ .,GENI 

0.1A 
~--• 

I 

12.SV 

Fig. 2-14. Impedance-matching transformer. 
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higher than the primary voltage, but the secondary current is 
proportionately lower than the primary current, and that the 
opposite is true in a stepdown transformer. In Fig. 2-14, 
transformer T has a 5: 1 stepup turns ratio. When the 50 
generator (GEN) impresses 2.5V across the primary winding, 
0.5A flows through the primary, and the primary 
voltamperes = Eplp= 2.5(0.5) = 1.25 VA. The 5:1 stepup 
gives a secondary voltage of 12.5V, and this forces a current of 
O.lA through the 1250 load resistor Ru The secondary 
voltamperes is 12.5(0.1) = 1.25 VA, which is the same value as 
that of the primary voltamperes. Because the transformer has 
the correct turns ratio, it matches the 1250 load to the 50 
generator. 

Observe that, although the turns ratio is 5: 1, the 
impedance ratio is 25: l. Thus, the impedance ratio is the 
square of the turns ratio: 

(2-16) 

And from this relationship, the necessary turns ratio for a 
required matching transformer is the square root of the 
impedance ratio: 

(2-17) 

Example 2-10. A 2N3611 power transistor in the output 
stage of a 5W audio amplifier has a collector impedance of 
200. What turns ratio must an output transformer have to 
match this amplifier to a 3.20 loudspeaker? 

Here, the impedance ratio ZJZp = 3.2/20 = 0.16. From 
Eq. 2-17, the turns ratio NJ Np= \/o:16 = 0.4, which indicates 
a stepdown transformer with a 0.4: 1 turns ratio (the secondary 
has 0.4 of the turns in the primary). It should be noted, 
however, that impedance matching with a transformer 
involves working with the turns ratio and has nothing to do 
with the individual impedance of the primary and secondary 
windings. 

The mention of a matching transformer usually brings to 
mind an iron-core device built for audio frequency use. It 
should be noted, however, that air-core transformers (tuned or 
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untuned) are used in some instances for impedance matching 
at radio frequencies. 

Use of Linear Devices 

The impedance of linear devices, such as antennas and 
transmission lines, is described in Sec. 2.5, and equations for 
them are given there. The input, output, and characteristic 
impedances of some of these devices enable them to be 
employed for impedance matching at radio frequencies. 

A common example is the matching of a transmission line 
to a transmitting antenna for the maximum transfer of energy 
from transmitter to antenna. In this application, the 
transmission line is termed a feeder. Figure 2-15(a) shows the 
connection of a coaxial feeder (Z0 = 720) to the center of a 
half-wave antenna, where the antenna impedance 
approximates that of the feeder. At the transmitter end, the 
low-impedance feeder is matched to the impedance of the final 
amplifier by means of a small pickup coil ( usually 1 to 3 turns) 
coupled to the amplifier tank coil, with the turns ratio 
providing the required impedance transfer. A twisted-pair 
transmission line sometimes is used in place of a coaxial 
feeder, but with greater losses. 

Figure 2-15(b) shows how resonant open-wire feeders (the 
6000 type) are used to current-feed the center of the antenna. 
The center of the half-wave antenna is a high current point, 
and properly tuned quarter-wave feeders will have a high 
current at their antenna end. The length of feeders longer than 
a quarter-wavelength must so be chosen that a similar current 
loop occurs at the end; this requires that the feeder length be 
an even or odd multiple of a quarter-wavelength. Figure 
2-15(c) shows how resonant open-wire feeders are used to 
voltage-feed a half-wave antenna by connecting them to one 
end of the antenna. Either end of the antenna is a high voltage 
point, and properly tuned quarter-wave feeders will have a 
high voltage point at their antenna end. As in the preceding 
case, the length of feeders longer than a quarter-wavelength 
must so be chosen that a similar voltage loop occurs at the 
end; this requires that the feeder length be an even or odd 
multiple of a quarter-wavelength. 
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(b) OPEN-LINE FEEDER, HALF-WAVE ANTENNA 
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I 
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I 

FROM TRANSMITTER 

(c) OPEN-LINE FEEDER, HALF-WAVE ANTENNA 

Fig. 2-15. Transmission line feeders used for the maximum transfer of 
energy from the transmitter to the antenna: (a) a coaxial feeder is con­
nected to the center of a half-wave antenna; (b) a resonant open-line 
feeder is used to current-feed the center of a half-wave antenna; (c) a reso­
nant open-line feeder is used to voltage-feed a half-wave antenna. 
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A quarter-wave section of open-wire resonant 
transmission line makes a convenient RF impedance-matching 
transformer of the linear type. Because of the stationary 
standing-wave distribution of current and voltage along the 
line. tapping into the line at various points can provide a large 
number of different impedances (see Fig. 2-7). Thus, a 
generator and a load may be connected, respectively, to the 
points corresponding to their separate impedance values, and 
the two devices become matches through the corresponding 
autotransformer action. Figure 2-16 shows how a quarter-wave 
section short-circuited at one end is used in this manner. 

The input impedance (ZIN) of a line whose length is a 
quarter-wave or an odd-numbered multiple of quarter-waves 
is directly proportional to the square of the characteristic 
impedance of the line ( Z0) and inversely proportional to the 
output impedance (Z0uT): 

(2-18 

From this relationship, it is apparent that the characteristic 
impedance a quarter-wave section must have, in order to 
match a given output impedance (load) to a given input 
impedance (generator), is: 

Zo = vz,~OUT (2-19) 

Example 2-11. Calculate the characteristic impedance 
required for a quarter-wave section to be used between a line 

¼>.. LINE 

Fig. 2-16. A quarter-wave section of open-line resonant transmission line 
is short-circuited at one end and used as an RF impedance-matching 
transformer. 
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impedance (input) of 6000 and an antenna impedance 
(output) of 720. 

From Eq. 2-19: 

Z0 = V600 X 72 
= \!43,200 
= 207.850 

After finding Z0 with Eq. 2-19, the required spacing of 
conductors in the section can be found with a rewritten form of 
Eq. 2-11: 

S= 
d(antilog ZJ276) 

2 
(2-20) 

Example 2-12. With No. 12 wires (d = 0.081 inch), the 
required spacing for the 207.80 is: 

S= 
0.081(antilog 207.8/276) 

2 

0.081 antilog 0.752898 

2 

0.081(5.66106) 

2 

0.45854 

2 

= 0.229 inch 

Obviously, such close spacing of No. 12 wires (less than a 
quarter-inch) in a quarter-wave section would be 
impracticable in most instances. The remedy would be to 
increase the term d by moving to large-diameter 
conductors-such as metal rods or pipes. This results in the 
Q-bar matching section shown in Fig. 2-18(b) and described 
later. 

A quarter-wave or half-wave section sometimes is used as 
an autotransformer to match a nonresonant feeder to an 
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antenna as a load; in this application, the section is called a 
matching stub. Figure 2-17 illustrates this application, in (a) to 
centerfeed the antenna, and in (b) to endfeed it. In each 
instance, the stub is initially resonated by sliding the shorting 
bar to the proper point along the wires. 

Other linear devices are similarly employed as RF 

transformers for matching nonresonant feeders to antennas. 
Two of these are shown in Fig. 2-18. In 2-18(a), the ends of the 
nonresonant feeder are flared out and attached to points 
equidistant from the center of the half-wave antenna. This 
matching section, called a delta ( from its resemblance to the 
Greek letter a), provides a gradually increasing impedance. At 
a given operating frequency f, the delta dimensions are: 

A = 118/f 

where A is inf eet, and fin megahertz. 

½.\ ANTENNA 

¼.\ STUB~ 

SHORTING BAR~-+---,.. 

(a) CENTER-FED 

½.\ANTENNA 

¼,\ STUB---'? 

SHORTING BAR~---+­

(b) END-FED 

(2-21) 

NON RESONANT 
FEEDERS 

NON RESONANT 
FEEDERS 

Fig. 2-17. Quarter-wave stubs are used to match nonresonant feeders to 
half-wave antennas: (a) center-fed, (b) end-fed. 
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CENTER OF ANTENNA 

I I 

1+--A---+I 
I I 
I I 
I I 

6000 NONRESONANT FEEDER 

(a) DEL TA MATCHING SECTION 

½,\ANTENNA 

½"TUBES 

I I 

f-A• ! NONRESONANT FEEDER 

B----+ 

(b) Q-BAR MATCHING SECTION 

Fig. 2-18. RF impedance-matching transformers: (a) a delta matching sec­
tion provides a gradually increasing impedance; (b) a Q-bar matching sec· 
tion provides more spacing between conductors. 

And: 

B = 148/f (2-22) 

where B is in feet and f in megahertz. 
In 2-18( b), a linear transformer consisting of two parallel 

lengths of half-inch-diameter aluminum tubing is connected 
between the nonresonant feeder and the center of the 
half-wave antenna. The large diameter of these tubes makes 
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possible a more practicable, wider spacing between 
conductors in a quarter-wave matching section than when 
wires are used (see Eq. 2-20 and accompanying discussion). 
This arrangement is termed a Q-bar matching section. While 
0.229 inch spacing is required in a 600-to-72O matching section 
employing No. 12 wires, the spacing of half-inch-diameter 
Q-bars is 1.41 inches (approximately 113/32 inches) between 
centers, a much more manageable dimension. 

A suitable section of coaxial line also may be employed as 
a matching transformer, provided the center conductor and 
outer sleeve can be tapped at the correct points or that a 
short-circuiting disc can be moved along the interior between 
the center conductor and inside of the outer sleeve. 

Use of Active Followers 

A follower is usually a single-stage amplifier whose output 
impedance is substantially lower than its input impedance. 
The maximum theoretical voltage gain of a follower is one. 
The follower is useful as a stepdown impedance transformer, 
and often serves as a buffer between a voltage source 
(generator) and a load device that would overload the voltage 
source. There are three types: cathode follower (vacuum 
tube), emitter follower (bipolar transistor), and source 
follower (FET.) Figure 2-19 shows circuits of these devices. No 
type of follower, operating correctly, introduces a phase shift. 

Figure 2-19(a) shows the cathode follower. Here, the input 
impedance equals closely the resistance of the grid-to-ground 
resistor r G· This resistance is commonly 500K to several 
megohms, and can be made as high as desired, consistent with 
noise pickup and instability. The output impedance is: 

(2-23) 

where ZouT is the output impedance in ohms, rp the tube plate 
resistance in ohms, r K the cathode resistance in ohms. and µ, 

the tube amplification factor. 
Example 2-13. A cathode follower employs a 6C4 tube 

having an amplification factor of 17, plate resistance of 77000, 
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and using a cathode resistor of 5600. Calculate the output 
impedance. 

From Eq. 2-23: 

7700( 560) 

7700 + ( 560 X 18) 

4,312,000 

7700 + 10,080 

4,312,000 

17,780 

= 242.50 

Figure 2-19( b) shows the emitter follower. In this circuit, 
unlike that of the cathode follower, the output impedance 
depends upon the source impedance ZG: 

ZG + h!E 

1 + hf'E (2-24) 

where h1E is the input impedance of the transistor in ohms, and 
hrn is the forward-current transfer ratio of the transistor. Both 
hf'E and hIE may be measured or taken from the transistor 
manufacturer's specifications. 

Example 2-14. A type 40400 bipolar transistor has the 
following ratings: h1E = 6000 and hrn = 200. Calculate the 
output impedance of an emitter follower employing this 
transistor with a 100K generator. 

From Eq. 2-24: 

100,000 + 600 

1 + 200 

= 100,600/201 
= 500.50 

The input impedance of the emitter follower itself is equal 
approximately to h1g + h1gRg, where RE is the external 
emitter-to-ground resistor. In Fig. 2-19(b) and the preceding 
illustrative example, if RE is 3900, a common value, then the 
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Fig. 2-19. Active follower circuits: (a) cathode follower; (b) emitter 
follower; (c) source follower. 
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input impedance is equal to: 600 + (200 x 390) 
= 600 + 78,000 = 78,6000 = 78.6K 

The source follower in Fig. 2-19(c) behaves more nearly 
like the cathode follower. In the source follower circuit, the 
output impedance is: 

TossTs 
(2-25) 

where gFs is the forward transconductance of the transistor in 
mhos, Toss the output resistance of the transistor in ohms, and 
T8 the resistance of the external source resistor in ohms. The 
input impedance is equal closely to the resistance of the 
gate-to-ground resistor, T G· 

Example 2-15. A type 40601 MOS field-effect transistor has a 
transconductance of 10,000 micromhos and an output 
resistance of 12K. Calculate the output impedance of a source 
follower employing this transistor with a 4 700 source resistor. 

Here, gFS = 0.01 mho, and Toss= 12,000 ohms. From Eq. 
2-25, 

12,000 X 470 

[ (0.01 X 12,000) + l] X 470 + 12,000 

5,640,000 

[(120 + 1)470] + 12,000 

5,640,000 

( 121 X 470) + 12,000 

5,640,000 

56,870 + 12,000 

5,640,000 

68,870 

= 81.90 

Use of Pad-Type Attenuators 

A pad consists of a combination of resistors so selected 
and arranged that the device, when inserted between a source 
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and a load, presents a matching impedance to the source and 
load and introduces a desired amount of signal attenuation. 
The source and load impedances usually are resistive. Pads 
are named for the letters their arrangements resemble: 
L-type, T-type, and pi-type. Figures 2-20, 2-21, and 2-22 
illustrate these three types and give the equations for 
determining the impedance values. From their shapes, the 
balanced-T is also called an H-type, and the balanced-pi an 
O-type. 

In any proposed application of a pad, three factors are 
known preliminarily: the source (generator) impedance (Z5), 

load impedance (ZL), and desired attenuation ( 0). The 
attenuation (loss) is expressed in nepers: 

8 = dB/8.686 (2-26) 

where 8 is the loss ( attenuation) in nepers, and dB is the 
decibels ( = 10 logiJ\/P2 = 20 log 1oE/E2, where P 1/P2 

output-to-input power ratio, and E 1/ E 2 is the output-to-input 
voltage ratio). 

Z1 

(a) UNBALANCED 

Z, = YZs(Zs - ZLl 

Zs z3 = 
Zs- ZL 

z. - ZL tanh (J = -~--
Zs 

+---

z,, 

(b) BALANCED 

Fig. 2-20. L-type pad attenuators: (a) unbalanced and (b) balanced, Equa­
tions given are for finding impedance values. 
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(a) UNBALANCED (b) BALANCED 

Z1 = (Zscoth 8) - Z:i 
Z2 = ( Lcoth 8) - z3 
Z3 = \/ZsZLcosech fJ 

Fig. 2-21. T pad attenuators: (a) unbalanced and (b) balanced. Equations 
given are for finding impedance values. 

From these factors, the resistances required in the pad are 
easily calculated. In each instance in Figs. 2-20 to 2-22, both 
balanced and unbalanced circuits are shown. The impedance 
values in each of the balanced circuits are determined from 
those calculated for the unbalanced circuit. The hyperbolic 
functions ( sinh, tanh, coth, and cosech) may be obtained from 
a table of hyperbolic functions or by use of calculator which 
offers such functions on its keyboard. 

In each case, the pad equations have been arranged in 
numerical order from Z1 to Z3; however, the user will find it 
advisable to solve for Z3 first, since z1 and Z2 both depend upon 
Z3• In each circuit, Zi,, is connected to the output terminals. 
Likewise Zu the load impedance, is the impedance seen when 
looking into the output terminals of the pad when the source 
impedance Z5 is connected to the input terminals. For 
continuously variable attenuation, as in volume control, the 
resistances are ganged for simultaneous variation. 

Example 2-16. A 10 dB unbalanced T pad is required to 
operate between a 500!1 source and 200!1 load. Calculate the 
required resistances. From Eq. 2-26, O = 10/8.686 = 1.1513. 
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(a) UNBALANCED (b) BALANCED 

Z,=------
1 1 

Z5 tanh6 - z;-
~ =------

1 1 
ZL tanh 6 - z;-

Fig. 2-22. Pi-type pad attenuators: (a) unbalanced and (b) balanced. Equa­
tions given are for finding impedance values. 

From function tables or calculator, coth O = 1.2222, and 
cosech O = 0.70272. 

From Fig. 2-21: 

z3 = V'500(200J x 0.10212 
= Vl00,000 x 0.70272 
= 316.23 X 0.70272 
= 222.220 

And from Fig. 2-21: 

21 = ( 500 X 1.2222) - 222.22 
= 611.1 - 222.22 
= 388.880 

And from Fig. 2-21: 
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2.12 ASPECTS OF IMPEDANCE 

Certain evidences and concepts of impedance not touched 
upon in the preceding sections are described here. These 
topics are arranged alphabetically in the subsections below. 

Common impedance. See mutual impedance-in a circuit. 
Conjugate impedance is an impedance that has the same 

magnitude and the same resistance component as another 
impedance, but with a reactive component of opposite sign. 
Thus, if XL= Xe and R1 = R2, then impedances 
Z1 = VR 1

2 + xL
2 and Z2 = VR22 + Xe are equal. Impedance 

Z2, having a negative capacitive reactance, is the conjugate or 
Z1 whose inductive reactance is positive. 

Driving-point impedance is the impedance that a network 
or device offers to the generator at the point at which the 
generator drives the network. Driving-point impedance is also 
termed input impedance. 

Equivalent impedance is a term that has several 
meanings. In one sense, it denotes the equivalent series 
impedance of a parallel circuit-that is the impedance of a 
series circuit which, when connected to the same single-phase 
source, draws current of the same magnitude and phase angle 
as that drawn by the parallel circuit. In short, any impedance 
structure that can replace another structure without affecting 
current, voltage, and phase values is equivalent to the 
structure. For example, a certain T network may be 
equivalent to a certain pi network. 

In another sense, an equivalent impedance (through 
simplification by means of Thevenin's or Norton's theorem) is 
the single impedance that corresponds to the combination of 
several others in a circuit. Impedances of the same kind 
combine in the same manner as resistors. Thus, for 
impedances in series, ZEQ = Z1 + Z2 + Z3 + ... ZN. And for 
impedances in parallel, ZEQ = l/(1/Z 1 + l/Z2 + 1/Z;i + ... 
+ 1/ZN). Thisisalsoknownastotalimpedance (ZT). 

Image impedance. For a network that connects a 
generator to a load, the image impedance ( with respect to the 
load) is the total impedance of the generator and matching 
network, which is the same as the characteristic impedance of 

83 



the generator. With respect to the generator, the image 
impedance is the total impedance of the matching network and 
load, which is the same as the characteristic impedance of the 
load. For example, with the proper load impedance attached 
to the network at one end, the generator sees an image 
impedance that is equal to the generator impedance; and, with 
the proper generator impedance attached, the load sees an 
image impedance that is equal to the load impedance. 

Input impedance. See driving-point impedance. 
Inverse impedance. See reciprocal impedance. 
Mutual impedance. There are three common meanings of 

this term: 
In a network. The mutual impedance is the apparent 

impedance (Z = E/I) between any two selected pairs of 
terminals of the network, with all other terminals open, where 
I is the current made to flow in through one pair, and E is the 
resulting open-circuit voltage across the other pair. 

In a circuit. The mutual impedance is an impedance 
shared by two or more branches (sections or stages) of the 
circuit. Such an impedance-which may consist of a resistor, 
inductor, capacitor, or a combination of two or more of 
these-often causes signals to be miscoupled, either forward 
or backward, between sections or stages. An example of the 
trouble sometimes caused by such a mutual impedance is the 
motorboating in an amplifier, traceable to the common 
impedance of a power-supply output filter capacitor shared by 
several stages. This is also called common impedance. 

Between neighboring antennas. A transmitting antenna 
(the "master") induces a voltage in any other nearby antenna 
(the "slave"). The mutual impedance between two such 
antennas is ZM = -E JI 1, where I 1 is the current flowing at a 
selected point in the master antenna, and E 2 is the value of 
applied voltage that would be required at a selected point in 
the slave antenna (if the master antenna were not operating) 
to cause the flow of whatever current is observed in the slave 
as a result of excitation by the master. 

Nonlinear impedance. Not every impedance obeys Ohm's 
law strictly; in some structures, current does not change 
linearly with a linear change in voltage. In some impedance 
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devices. the entire response is nonlinear: in others. the 
nonlinearity occurs over only a part of the response curve. 
Nonlinear impedance is encountered in saturable reactors. 
tubes. transistors. semiconductor rectifiers. ceramic 
capacitors. voltage-dependent resistors. varactors. 
tungsten-filament lamps. and numerous other devices. 

Poles of impedance are frequencies at which the 
driving-point impedance of a two-terminal reactive network is 
equal to infinity. ( Compare zeros of impedance.) 

Reciprocal impedances Two impedances (Z 1 and Z2) are 
termed reciprocal to a third impedance (Z3) when Z1Z2 = Z/. 
Reciprocal impedances are also called inverse impedances. 

Reciprocal of impedance The reciprocal of impedance is 
admittance. symbolized by Y and expressed in ohms: 
Y = 1/Z. The phase angle of an admittance vector is 
numerically equal to that of the impedance vector, but is of the 
opposite sign. Reciprocal impedance is also called inverse 
impedance, and has the same relationship to impedance that 
conductance has to resistance. 

Total impedance in a two-mesh network is the quantity 
E 1/lz, where E 1 is the voltage applied to the first mesh and 12 is 
the resulting current in the second mesh. 

Tube and transistor impedances are resistive internal 
impedances. and are governed by electrode direct currents 
and voltages. In tubes. examples are static plate impedance 
zp = Ep/ip, dynamic plate impedance (Zr= dep/dip, static 
screen impedance (z8 = esfi 5), dynamic screen impedance 
<zs = desfdi8). static grid impedance (zG = eG/iG), and 
dynamic grid impedance (zG = deG/diGl- A common example 
of working with these impedances is the matching of an 
amplitude modulator to an RF amplifier in a radio transmitter: 
a certain modulator tube draws a plate current of 500 mA at 
500V ( Zp = er/ ip = 500/0.500 = 1000.0), and the RF amplifier 
tube that it is to modulate draws a plate current of 250 mA at 
1000V (Zr= 10000.250 = 4000.0). To couple the modulator to 
the amplifier for maximum power transfer, the required 
modulation transformer must have an impedance ratio of 
1000.0 to 40000, or 1:4 (see Sec. 2-11). 
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Except at high frequencies, the small internal capacitance 
and inductance of tubes does not significantly affect the 
impedance values. The input impedance, as determined by the 
internal capacitances of a vacuum tube whose grid is never 
driven positive, must sometimes be reckoned with in 
amplifiers operating at the upper end of the AF spectrum. 

In the same way, impedances which are largely resistive 
are encountered in transistors, both bipolar and field-effect. 
Like corresponding tube impedances, these too are governed 
by electrode direct currents and voltages. Examples are static 
collector impedance (Zc = vJic>, dynamic collector 
impedance (zc = dvJdic), static emitter impedance 
(zE = vJiE), dynamic emitter impedance (zE = dvF)diE), 
static base impedance (z8 = vsfi 8 ), dynamic base impedance 
(Z8 = dvsf di 8), and others. 

Zeros of impedance are frequencies at which the 
driving-point impedance of a two-terminal reactive network is 
equal to zero ( compare poles of impedance) . 

2.13 POWER FACTOR IN RELATION TO IMPEDANCE 

For an AC circuit or device, the power factor is the ratio of 
power actually consumed (P) to the apparent power 
(VA = the simple product of volts and amperes) : pf = P /VA. 
From this relationship, it can be seen that the maximum value 
which pF can have is one, and this would occur if, ideally, the 
power consumed equaled the simple calculated voltamperes. 
This condition can occur in a circuit or device containing pure 
resistance only (P = VA); but, in a practical AC circuit or 
device, resistance and reactance both are present, so pf has 
some value between one and zero. Thus, true power for the AC 

circuit or device is equal to VA pf ( or EI pf). 
From basic electricity comes the simple formula for the 

power factor: 

pf = cos (J (2-27) 

where 8 is the phase angle between current and voltage. The 
angle between current and voltage is the same angle between 
resistance and reactance ( see Fig. 2-1). Therefore, 

pf= R/Z = R/VR2 + X 2 (2-28) 
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which is identical to cos () ( see Fig. 2-1) . 
While the power factor is of ten expressed as a decimal in 

the manner just shown, it is sometimes expressed as a 
percent: pf 1 = 100%, pf 0.3 = 30%, etc. 

Example 2-17. Calculate the power factor at 120 Hz of a 
filter choke having an inductance of 16H and a resistance of 
5800. 

Here, X1, = 12,057.60 (Eq. 1-10, Ch. 1), and Z (the 
impedance of the choke) = 12,071.50 (Eq. 2-2). 

From Eq. 2-28: 

pf = 580/12,057.6 
= 0.048 

2.14 QJN RELATION TO IMPEDANCE 

Q is the figure of merit or quality factor of an AC device or 
circuit. It is the ratio of reactance to resistance: 

Q = X/R (2-29) 

where X and Rare in ohms. From this relationship, Q = wL/ R 
and Q = 1/(w CR>. Q is also equal to tan() (see Fig. 2-1). Q has 
no theoretical limit; if R were zero, Q would be infinite. In 
terms of impedance: 

(2-30) 

Example 2-18. A certain 2.5 mH RF choke has a resistance 
of 1250 and a 1 MHz impedance of 15.7K. Calculate the Q of 
this choke at 1 MHz. 

From Eq. 2-3: 

Q = \1'15,7002 
- 1252 /125 

= \!246,490,000 - 15,625 /125 
= \1246,474,375 /125 
= 15,699.5 /125 
= 125.6 

2.14 PRACTICE EXERCISES 

2.1. Calculate the impedance in ohms of a device that passes 
60 mA for an applied voltage of 6.3V. 
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2.2. Calculate the impedance in ohms of a device that passes 
30 µ.A for an applied voltage of 25 mV. 
2.3. Calculate the voltage drop across a 50H impedance that 
carries 2 mA. 
2.4. Calculate the voltage drop across a 3.20 impedance that 
carries 2A. 
2.5. Calculate the current through a 25000 impedance for an 
applied test voltage of 1 V. 
2.6. Calculate the current through a 160 impedance for an 
applied voltage of 28.3V. 
2.7. Convert 13800 to kilohms. 
2.8. Convert 25,0000 to gigohms. 
2.9. Convert 580,0000 to megohms. 
2.10. Convert 0.50 to microhms. 
2.11. Convert 0.10 to milliohms. 
2.12. Convert 935,000H to teraohms. 
2.13. Convert 1000K to gigohms. 
2.14. Convert 500K to megohms. 
2.16. Convert 0.05K to milliohms. 
2.17. Convert 33K to ohms. 
2.18. Convert 53,500K to teraohms. 
2.19. Convert 5163 megohms to gigohms. 
2.20. Convert 1000 megohms to kilohms. 
2.21. Convert 0.01 megohm to microhms. 
2.22. Convert 0.001 megohm to milliohms. 
2.23. Convert 4.7 megohms to ohms. 
2.24. Convert 50,000 megohms to teraohins. 
2.25. Convert 1 gigohm to kilohms. 
2.26. Convert 0.25 gigohm to megohms. 
2.27. Convert 0.1 gigohm to microhms. 
2.28. Convert 0.001 gigohm to milliohms. 
2.29. Convert 2 gigohms to ohms. 
2.30. Convert 0.3 gigohm to teraohms. 
2.31. Convert 7 teraohms to gigohms. 
2.32. Convert 15.2 teraohms to kilohms. 
2.33. Convert 20 teraohms to megohms. 
2.34. Convert 0.01 teraohm to microhms. 
2.35. Convert 0.001 teraohm to milliohms. 
2.36.Convert 0.8 teraohm to ohms. 
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2.37. Convert 1000 microhms to gigohms. 
2.38. Convert 5520 microhms to kilohms. 
2.39. Convert 10,000 microhms to megohms. 
2.40. Convert 20 microhms to milliohms. 
2.41. Convert 137 microhms to ohms. 
2.42. Convert 15,500 microhms to teraohms. 
2.43. Convert 35 milliohms to ohms. 
2.44. Convert 1000 milliohms to kilohms. 
2.45. Convert 150 milliohms to megohms, 
2.46. Convert 10,000 milliohms to gigohms. 
2.47. Convert 1.000,000 milliohms to teraohms. 
2.48. Calculate the impedance offered by a moon resistance 
and a 25000 reactance in series. 
2.49. Calculate the 400 Hz impedance offered by ,a lO0!l 
resistor and 100 mH inductor in series. 
2.50. Calculate the 1000 Hz impedance offered by a 47000 
resistor and 0.005 µ.F capacitor in series. 
2.51. Calculate the impedance offered by 39000 resistance, 
10000 inductive reactance, and 3900 capacitive reactance in 
series. 
2.52. Calculate the 500 Hz impedance offered by a 12H 
inductor, 0.01 µ.F capacitor, and 1800 resistor in series. 
2.53. Calculate the phase angle in degrees of a series circuit 
containing 15910 capacitive reactance and 10000 resistance. 
2.54. Calculate the phase angle in degrees of a series circuit 
containing a 0.01 µ.F capacitor and 15K resistor and operated 
at 1000 Hz. 
2.55. An accurate 0.005 µ.F capacitor is available. What value 
of resistance is required in series with this capacitance for a 
phase shift of 45 degrees at 2400 Hz? 
2.56. A precision 10000 resistor is available. What value of 
capacitance in microfarads is required in series with this 
resistance for a phase shift of 60 degrees at 1000 Hz? 
2.57. At what frequency in hertz will a series circuit of 0.5 µ.F 
and 91000 provide a phase shift of 75 degrees? 
2.58. Calculate the phase angle in degrees of a series circuit 
containing lOO!l inductive reactance and l00!l resistance. 
2.59. Calculate the phase angle in degrees of a series circuit 
containing a 0.5H inductor and 10000 resistor and operated at 5 
kHz. 
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2.60. Calculate the phase angle in radians of a series circuit 
containing a lOH inductor and l0K resistor and operated at 800 
Hz. 
2.61. What resistance is required in series with a 12H inductor 
to shift phase 45 degrees at 2 kHz? 
2.62. At what frequency in hertz will a series circuit of 10 mH 
and 100.0 provide a phase shift of 30 degrees? 
2.63. What inductance in millihenrys is required in series with 
47000 to shift phase 40 degrees at 2400 Hz? 
2.64. Calculate the impedance offered by 10000 resistance and 
25000 reactance in parallel. 
2.65. Calculate the 1000 Hz impedance offered by a 47000 
resistor and 0.005 µ,F capacitor in parallel. 
2.66. Calculate the phase angle in degrees of a parallel circuit 
containing 15910 capacitive reactance and 10000 resistance. 
2.67. Calculate the phase angle in degrees of a parallel circuit 
containing a 5.5H inductor and a 20000 resistor and operated 
at lOOOHz. 
2.68. At what frequency in kilohertz will a parallel circuit of 
0.002 µ,F and 1000.0 resistance provide a 45 degree phase shift? 
2.69. Calculate the total impedance of the following similar 
impedances connected in series: 10000, 8000, 3500, and 500. 
2.70. Calculate the equivalent impedance of the following 
similar impedances connected in parallel: 10,0000, 22500, 
1000.0, 1000.0, and 32.0. 
2.71. Calculate the R and X components of an impedance 
150/65 degrees 15 minutes. 
2.72. Calculate the Rand X components of an impedance 16/45 
degrees. 
2. 73. Calculate the impedance of a series circuit containing 
16000 inductive reactance and 540.0 capacitive reactance. 
2.74. Calculate the 400 Hz impedance of a series circuit 
containing 4 µ,F and 2.5H. 
2.75. Calculate the 1000 Hz impedance of a series circuit 
containing 3140 inductive reactance, 1590 capacitive 
reactance, and 13.30 resistance. 
2.76. Calculate the phase angle in degrees of the circuit in 
exercise 2.75. 
2.77. Calculate the 2500 Hz impedance of a series circuit 
containing 30H, 0.01 µ,F, and 27000 in series. 
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2. 78. Calculate the 500 Hz impedance m milliohms of a parallel 
circuit consisting of 15920 inductive reactance, 10000 
capacitive reactance, and 39000 resistance. 
2.79. Calculate the 120 Hz impedance in milliohms of a parallel 
circuit containing 30H, 2 µ.F, and 10000 in parallel. 
2.80. Calculate the phase angle in degrees of a parallel circuit 
containing 2400 inductive reactance, 10200 capacitive 
reactance, and 10000 resistance. 
2.81. Calculate the characteristic impedance of a two-wire 
transmission line having a distributed capacitance of 50 pF 
and a distributed inductance of 100 µ,H. 
2.82. Calculate the characteristic impedance of a two-wire 
transmission line made with No. 12 wire ( diameter ;:=:: 0.081 
inch) with two-inch spacing. 
2.83. Calculate the characteristic impedance of an 
air-insulated coaxial line in which the inner conductor has an 
outside diameter of 0.081 inch and the outer conductor has an 
inside diameter of 0.5 inch. 
2.84. The dielectric constant of polyethylene is 2.3. If the 
transmission line in exercise 2.83 is filled with polyethylene, 
what will be its characteristic impedance? 
2.85. A certain transformer has a turns ratio Np/ N s of O .5 
Calculate the reflected impedance seen at the primary 
terminals when a resistance of 5000 is connected to the 
secondary terminals. 
2.86. What turns ratio is required in a transformer to match a 
320 load to a 25000 source? 
2.87. What impedance ratio is provided by a transformer 
having a turns ratio N sf NP of 10: 1? 
2.88. A certain multipurpose matching transformer has taps 
that provide turns ratios N sf NP of 2, 5, 20, 30, and 50 to 1. What 
impedance ratios does this transformer provide? 
2.89. What characteristic impedance must a quarter-wave line 
have in order to match an output impedance of 3000 to an 
input impedance of 750? 
2.90. If a certain quarter-wave line has a characteristic 
impedance of 3000, what output impedance will it match to an 
input impedance of 500? 
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2.91. If a certain quarter-wave line has a characteristic 
impedance of 6000. what input impedance will it match to an 
output impedance of 10000? 
2.92. In a two-wire. 3000 transmission line. what spacir1g in 
inches is required between two No. 12 wires ( diameter = 0.081 
inch)? 
2.93. Calculate the horizontal (X) and vertical (Y) dimensions 
for a delta impedance-matching section to be operated at 14 
:MHz. 
2.94. A type 8628 triode is used as a cathode follower with a 
33000 cathode resistor. The plate resistance of this tube is 
41.0000 and the amplification factor is 127. Calculate the 
output impedance of the follower. 
2.95. A type 2N3241A silicon transistor is used as an emitter 
follower driven by a 10000 signal source. For this particular 
transistor, hFE = 500 and h1E = 700. Claculate the output 
impedance of the follower. 
2.96. A type 40603 MOS field-effect transistor is used as a source 
follower with a 2700 source resistor. The output resistance 
( r ossl for this transistor is 40000 and the forward 
transconductance (gM of YFs> is 10,000 µmhos. Calculate the 
output impedance of the follower. 
2.97. A 15 dB attenuation is introduced by a certain pad. 
Convert this figure to attenuation in nepers. 
2.98. A three-neper loss is introduced by a certain pad. 
Convert this figure to decibels. 
2.99. A certain pad has an input voltage of 5V and an output 
voltage of lV. Express this loss in (a) decibels and (b) nepers. 
2.100. From Fig. 2-20, Ch. 2, calculate Z1 and Z3 for an 
unbalanced-L pad to work between a 5000 source and 1000 
load. 
2.101. From Fig. 2-20, Ch. 2, calculate the resistance values for 
a balanced-L pad to work between a 5000 source and 1000 
load. 
2.102. From Fig. 2-21, Ch. 2, calculate Z1, Z2, and Z3 for an 
unbalanced-T pad to work between a 10000 source and 1500 
load and provide 20 dB attenuation. 
2.103. From Fig. 2-21, Ch. 2, calculate the resistance values for 
a balanced-T pad to work between a 10000 source and 1500 
load and provide 20 dB attenuation. 
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2.104. From Fig. 2-22, Ch. 2, calculate z1, z2, and z~ for an 
unbalanced pi pad to work between a 500!1 source and 200!1 
load and provide 12 dB attenuation. 
2.105. From Fig. 2-22, Ch. 2, calculate the resistance values for 
a balanced pi pad to work between a 500!1 source and 200!1 
load and provide 12 dB attenuation. 
2.106. A certain impedance Z1 = 500!1 and another certain 
impedance Z2 = 1000!1. To what third impedance Z3 are these 
two impedances reciprocal? 
2.107. What admittance Y corresponds to an impedance of 
68.4!1? 
2.108. Convert 30 mhos admittance to impedance in milliohms. 
2.109. A certain 8 µ.F capacitor has a power factor of 6% at 120 
Hz. Calculate its equivalent series resistance. 
2.110. The phase angle between current and voltage of a 
certain impedance device is 5 degrees. Calculate the power 
factor in percent of this device. 
2.111. A certain 100 pF capacitor has a 1 MHz Q of 3000. 
Calculate the equivalent series resistance of this capacitor. 
2.112. A certain 2.5 mH inductor has a resistance of 25!l. What 
is the Q of this inductor at 500 kHz? 
2.113. What value of impedance will the inductor in exercise 
2.112 present at 500 kHz? 
2.114. Calculate the 1 MHz impedance of a 50 pF capacitor 
having a Q of 1000. 

( Correct answers are to be found in Appendix D.) 
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Impedance 
Measurements 

Numerous methods are available for the measurement of 
impedance; some of these are direct and some are indirect. 
This chapter explains the techniques, providing a reasonable 
assortment to suit different conditions of instrument 
availability, operator experience, required frequency and 
impedance ranges, desired accuracy, and operator 
preference. Step-by-step instructions are given in most 
instances. 

3.1 HINTS AND PRECAUTIONS 

The measurement of impedance, like that of other 
electrical properties, is enhanced by the avoidance of pitfalls 
that can degrade a test. Detailed here are several areas in 
which technicians very often run into trouble. 

Test Frequency 
It is important that an impedance measurement be made 

at the proper frequency, for the Z value is different for each 
frequency even when the reactive component is small. There 
is no problem if the recommended operating frequency of a 
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device or circuit is specified beforehand. When no frequency is 
given, however, the test frequency must be chosen on some 
logical basis; often, this will be the frequency at which the 
device will most probably be operated. In some instances, it is 
desirable to test a unit at several frequencies within a given 
operating range. 

Common AF tests for impedance are 400 Hz and 1000 Hz. 
For power-supply components, 50, 60, 120, and 400 Hz are 
customary. Common RF tests (not including microwaves) are 
100 kHz, 1 MHz, and 10 MHz. It is a mistake, of course, to 
assume-as some beginners do-that a simple 60 Hz test is 
satisfactory in all cases. 

Waveform 
A sinusoidal test signal must be used and the harmonic 

content of this signal must be as low as practicable (see Sec. 
1. 7, Ch. 1). A good quality signal generator supplies such a 
signal; but, even when such an instrument is used, the 
waveform should be inspected with an oscilloscope or 
distortion meter to insure that the test setup itself does not 
distort the signal. 

A high harmonic content in the signal can cause meters to 
give false readings with the error sometimes being as high as 
the harmonic percentage. 

Generator Impedance 
The internal impedance of the test-signal source must be 

known, since it becomes a part of the measurement circuit, 
and must be accounted for in the calculation of impedance 
from current and voltage. While it is true that the output 
resistance of a signal generator is usually very low with 
respect to the impedance of devices that the generator 
normally drives, such as amplifiers and other high-impedance 
input circuits, this is not true in all impedance measurements. 
A signal generator with a 5000 output, for example, might be 
called upon for checking impedances of 500. 

The impedance of most signal generators is resistive and 
is considered constant at all frequencies in the range of the 
instrument. 
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Instrument Impedance 

The internal impedance of voltmeters and ammeters 
becomes a part of the test circuit and, as explained in 
individual tests in this chapter, must be accounted for in the 
calculation of impedance from current and voltage. Ideally, 
the impedance of a voltmeter is high to minimize current 
drawn by this instrument; and the impedance of an ammeter 
is low to minimize voltage drop introduced by this instrument. 
In electronic AC voltmeters and millivoltmeters, the internal 
resistance is l-10 megohms on all ranges, depending upon 
make and model: and this is shunted by a capacitance between 
20 pF and 40 pF. The resistance of rectifier-type nonelectronic 
voltmeters varies from as low as 1000O/V to 50K O/V, 
depending on make and model. The internal resistance of 
nonelectronic ammeters varies from 14000 for a 0.5 mA 
instrument to 1 mO for a 50A instrument. In transistorized 
electronic ammeters the internal resistance varies typically 
from lOK for the 10 µA range to 100 for the 10 mA range. A 
digital VOM on its alternating current ranges may present 
resistance varying from 10000 on the 200 µA range to 10 on 
the 200 mA range. Iron-vane AC ammeters have very low 
resistance, typically 213 milliohms for the lA range to one 
milliohm for the 50A range. Because of their relatively high 
operating current. iron-vane voltmeters are not generally 
useful in impedance measurements. Iron-vane instruments 
are usually limited to operation at the power-line frequency. 

Frequency Response of Instruments 

Instruments used for impedance measurements must be 
accurate at the test frequency. High-grade laboratory-type AC 

voltmeter/millivoltmeter instruments of the electronic type 
retain their specified accuracy from five or ten hertz to upper 
limits of 100 kHz, 1 MHz, or 10 MHz, depending upon make and 
model. Special models may be employed, with suitable probes, 
for up to several gigahertz with reduced accuracy specified by 
the manufacturer. Kit-type electronic AC voltmeter/ 
millivoltmeters usually are guaranteed up to one 
megahertz. Service-type VTVMs typically are rated from 50 Hz 
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to 1 MHz or higher for AC voltage, depending upon make and 
model, and most are usable to higher frequencies with an RF 

probe. Service-type TVMs typically are rated from 50 Hz to 50 
kHz for alternating voltage and current, depending upon make 
and model. 

The frequency response of rectifier-type voltmeters and 
ammeters is poor for instruments equipped with a 
copper-oxide rectifier; in this type, a negative error usually 
appears at some point between 1 and 5 kHz and increases with 
frequency. Instruments equipped with point-contact rectifiers 
give better performance, often being usable up to 1 MHz. Since 
conventional (nonelectronic) VOMs employ rectifier-type 
meters, the frequency response of such multipurpose 
instruments depends upon the type of rectifier used. 

Iron-vane and dynamometer-type instruments have a 
limited frequency range. The former are usually specified for 
60 Hz operation, and the latter usually for a narrow band such 
as 25-125 Hz, 380-440 Hz, etc. 

When impedance is to be measured at only one frequency, 
it is sufficient to know the accuracy of the instruments at that 
frequency alone. But when the measurements must be made 
at several frequencies, it is wise to examine the response of the 
instruments throughout the entire band. 

Accuracy of Instruments 

The accuracy of meters, bridges, and other instruments 
used in impedance measurements must be determined, and all 
impedances found from tests made with these instruments 
must be corrected accordingly. Depending upon make and 
model, the accuracy of analog-type AC voltmeters and 
ammeters ranges from 0.1% to ±5% of full-scale deflection, 
and the accuracy of the digital type ranges from ±0.5% (plus 
one digit) to ±1% (plus one digit) for voltage, and ±0.7% 
(plus one digit) to ±1% (plus one digit) for current. For best 
results, readings should be made in the upper quarter of the 
scale of an analog-type meter whenever possible. 

Depending upon make and model, impedance bridges that 
separately evaluate resistance, capacitance, and inductance, 
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from which impedance may be calculated, provide accuracy 
between ±0.05% and ±5% of the indicated value. 

Operating Limits of Test Component 
The test-signal voltage and current must be kept within the 

ratings of the impedance device which is under test. Not only 
will excessive voltage and current damage some components, 
but the response of some of them-such as iron-core 
inductors-becomes nonlinear when the current is too high, 
and the impedance under such conditions is atypical. 

A general rule is to employ the minimum current and 
voltage that will give reliable results unless otherwise directed 
by the manufacturer of the component or the designer of the 
test. 

Overdriving 

Excessive test-signal amplitude is to be avoided. Not only 
is an overly intense signal liable to damage the component 
Wlder test, but the distortion it sometimes produces can cause 
erroneous response of the instruments. Overdriving of some 
devices, such as amplifiers, can result in a false indication of 
input or output impedance. 

Overloading 
Overloading is the condition in which excessive current is 

drawn at some point in the test setup. A signal generator that 
is overloaded will sometimes cause erratic behavior of an 
impedance measuring circuit. A very common case of 
overloading occurs when the input impedance of a voltmeter in 
the test setup is too low; the meter accordingly draws 
excessive current and a false indication of test impedance may 
result. 

Lead Length and Dress 
At audio and high RF ranges, the most direct and shortest 

practicable leads must be used throughout an impedance 
measuring setup. Moreover, to minimize undesired coupling 
and capacitance, all leads must be kept as far apart as 
practicable. 
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E~ternal Fields 
An impedance measuring setup must be protected from 

any interfering electric or magnetic fields. Often. this can be 
accomplished simply by moving all field-producing 
items-such as motors. generators, relays. power cords, 
transformers. chokes. etc.-from the vicinity of the setup. or 
by moving the setup to a field-free environment. In other 
instances. as in the pickup of radio stations by an RF 

impedance measuring setup. the setup itself must be 
adequately shielded. 

Internal Fields 

Sometimes interfering fields are produced within an 
impedance measuring setup itself. For example. the magnetic 
field of a power transformer or filter choke in a poorly shielded 
signal generator or other test instrument may cause trouble in 
the test circuit or may upset the operation of an unshielded 
meter. Also, the magnetic field of an inductor under test may 
penetrate other items. such as meters or coupling 
transformers. in the setup. The remedy is to make a 
preliminary "cleanup" test before any impedance 
measurements are attempted and correct any discovered 
faults. 

Body Capacitance 

In the low RF and high AF ranges, body 
capacitance-especially that associated with the operator's 
hands-can cause erroneous meter readings and sometimes 
frequency shifts. Often, the rearranging or shielding of 
components in an impedance measuring setup or the 
grounding of appropriate points in the circuit will correct this 
nuisance. Sometimes, however, it will be necessary to employ 
tuning wands to achieve distance between the operator and 
equipment. Each case is an individual one and no universal 
remedy is available. In stubborn cases when standard 
remedies are of no avail, a fixed relationship must be 
maintained between the equipment and the operator; that is, 
all adjustments must be made with the operator at the same 
distance and in the same position. 
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A particular nuisance is antenna effect, where the 
operator's body picks up signals from a strong radio station 
and couples them into the test setup. This condition usually is 
corrected by: choosing another, station-free. test frequency. if 
permissible: efficiently shielding the test setup; or removing 
the setup to a shielded room. 

·Temperature Effects 

Most tests are made at room temperature (in the vicinity 
of 70°F). and the impedance values obtained at that 
temperature are acceptable unless the impedance must 
specifically be determined at some other point. Many test 
components are not especially temperature sensitive and their 
measured impedance does not change markedly if the ambient 
temperature fluctuates ten or twenty degrees in either 
direction. Some components, however, are temperature 
sensitive; these include thermistors, some resistors, 
capacitors. and RF inductors. These components should either 
be enclosed in a constant-temperature chamber during a test 
of their impedance. or they must be protected from hot 
resistors. transformers. and tubes in the test setup. 

Vibration 

Mechanical vibration. from whatever cause. is to be 
avoided in electronic measurements. but it is especially 
error-producing at RF and very high AF ranges where small 
displacements between components, caused by the vibrations. 
can be upset electrical relationships within the impedance 
measuring circuit. Vibration can also cause some meters to 
malfunction. 

Resonance Effect 

Electrical resonance may show up unexpectedly in an 
impedance measuring setup. Thus. an inductor under test may 
resonate with a coupling capacitor at the test frequency. 
Sometimes this is of no concern; at other times resonance may 
cause puzzling test results. Each case is individual and the 
operator must determine whether resonance is harmful and 
should be eliminated in a particular test of impedance. 
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Phase Relations 
The operator should be aware of the various phase 

relations in a particular impedance measuring setup, 
particularly if tests are made in different branches of the 
circuit; otherwise, some perplexing situations may arise. If, 
for example, the circuit contains a capacitive reactance and 
an equal amount of resistance in series, the voltage across the 
capacitance (Ee) equals the voltage across the resistance 
(ER); however, the total voltage across the circuit does not 
equal Ee+ ER, but is 1.414 Ee or 1.414 ER because the phase 
angle here is 45 degrees. Similarly, if a voltage is applied to 
this circuit, neither the capacitor voltage nor the resistor 
voltage will be equal to half this value, but to 0.707E. If a 
series-resonant circuit results from the connection of a test 
inductor in series with a coupling capacitor in the impedance 
measuring setup, the capacitor voltage ( E cl equals the 
inductor voltage (E1), but the voltage across the circuit 
( generator voltage) will be much lower than either E c or EL· 

Use of Same Instruments 
Throughout an extended test, such as impedance 

measurements of the same component at a number of 
frequencies or bias voltages, the same instruments should be 
used whenever possible. If the use of different instruments is 
unavoidable, their characteristics should be carefully noted 
and any required corrections made to reconcile the results 
obtained with those obtained with the first instruments. 

Often, when signal generators must be changed in order to 
provide the full required frequency range, the different output 
impedances of these instruments will cause trouble. Also, the 
accuracy of one generator may not be identical with that of 
another at overlapping frequencies. 

3.2 VOLTMETER/ AMMETER METHOD 

A convenient and uncomplicated method of determining 
the value of an unknown impedance consists of passing a 
measured current through the impedance, measuring the 
resulting voltage drop across the impedance, and substituting 
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the E and I values in the equation: 

Zx = E/1 (3-1) 

where Zx is in ohms, I in amperes, and E in volts. 
Figure 3-l(a) shows the preferred test setup. In this 

arrangement, the internal impedance of the voltmeter ( Z M) 

must be much higher than the unknown impedance Z x; 
otherwise the deflection of the ammeter will include both the 
current flowing through Zx and the current taken by the 
voltmeter. When the voltmeter is an electronic instrument 
(VTVM or TVM), Z~1 is several megohms and the current it 
demands is, to all practical intents and purposes, 
infinitesimal. 

Test Procedure for Figure 3-l(a). 

• Set up test circuit as shown in Fig. 3-1 (a) . 
• Set generator to desired test frequency. 
• Adjust generator output for ammeter deflection in 

upper quarter of scale and record deflection as 
current I in amperes. 

• Read resulting deflection of voltmeter and record as E 
in volts. 

• Using Eq. 3-1, calculate unknown impedance. 

Example 3-1. When a certain device is tested in the circuit 
in Fig. 3-l(a) and the current is adjusted to 5 mA, the 
voltmeter reading is 3.2V. Calculate the unknown impedance. 

Here, 5 mA = 0.005A. From Eq. 3-1, 

Zx = 3.2/0.005 
= 640!1 

When the voltmeter impedance is equal to or is less than 
Zx, this meter cannot be used successfully to measure the 
voltage drop across Zx and must be connected directly to the 
input of the test circuit, as shown in Fig. 3-1 ( b), to measure 
input voltage to the circuit. In this latter arrangement, 
ammeter M2 introduces a voltage drop so that the actual 
voltage E :i across the unknown impedance Z xis not equal to the 
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(a) ZvM>>Zx 
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(b) ZyM~Zx 

M1 

AC 
MMETER 

Zx M2 
AC 

VOLTMETER 

Fig. 3-1. Voltmeter/ammeter method for measuring an unknown im­
pedance: (a) when the impedance of the meter (Zvw is higher than the un­
known impedance (Zx); (b) when the impedance of the meter is equal to or 
less than the unknown impedance 

voltmeter reading (E 1) but to E 1 minus the voltage drop E 2 

across the ammeter. E2 may be measured with a 
high-impedance voltmeter or it may be calculated: 

(3-2) 

where I is the indicated current in amperes, and RM is the 
internal resistance of the meter ( measured or taken from the 
manufacturer's literature). 

For the test circuit in Fig. 3-l(b), the equation for unknown 
impedance becomes: 

(3-3) 
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Test Procedure for Figure 3-l(b) 

• Determine internal resistance of the ammeter and 
record as RM in ohms. 

• Set up test circuit as shown in Fig. 3-1( b). 
• Set generator to desired test frequency. 
• Adjust generator output for voltmeter deflection in 

upper quarter of scale and record as E I in volts. 
• Read resulting deflection of ammeter and record as I 

in amperes. 
• Using Eq. 3-2, calculate E 2• 

• Using Eq. 3-3, calculate unknown impedance. 

Example 3-2. A 0-5 mA AC meter in the test setup in Fig. 
3-l(b) has an internal resistance RM of 2000. When the 
generator output is adjusted for a voltmeter reading (E 1) of 
10V, the indicated current is 4.5 mA. Calculate the unknown 
impedance. 

Here, I = 4.5 mA = 0.0045A. From Eq. 3-2, 
E2 = 0.0045(200) = 0.9V. From Eq. 3-3: 

10 - 0.9 

0.0045 

= 9.1/0.0045 
= 2022.20 

If the voltage drop across M2 were ignored, and Eq. 3-1 
used, the calculated impedance would be 2222.20 (a +9.9% 
error). When the unknown impedance is largely reactive, the 
Fig. 3-1( b) method becomes less reliable, since E 2 and E 3 are 
not then in phase with each other, and E I accordingly will not 
be equal to their sum ( see item 17 in Sec. 3.1) . 

The voltmeter/ammeter method is widely used because 
most laboratories have the necessary meters, although they 
may not own other impedance measuring instruments. This 
method is usable equally well at the AF and RF ranges, pro­
vided the meters and generator have the required frequency 
capability and that care is taken in setting up and operating 
the test at high frequencies. (See items 5, 10, 13, 15, and 17 in 
Sec. 3.1.) 
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Fig. 3-2. Ammeter method for measuring an unknown impedance. 

3.3 AMMETER METHOD 

When a reliable source of constant-amplitude AC voltage is 
available to supply a single voltage ( or several voltages in 
selectable steps), the voltmeter may be dispensed with in the 
impedance measuring setup described in the preceding section 
and only the current measured. This arrangement is shown in 
Fig. 3-2. 

Here the known voltage is applied to the circuit, which 
consists of the current meter M (whose internal resistance RM 
is known) and the unknown impedance Z x in series, and the 
resulting current is read. From E. and I, the unknown 
impedance then may be calculated: 

E - IRM 

I 
(3-4) 

where Zx is the unknown impedance in ohms, E the accurately 
known test voltage, I the indicated current in amperes, and RM 
the internal resistance of the current meter in ohms. 

Test Procedure 

106 

• Determine the internal resistance of ammeter and 
record as RM in ohms. 



• Set up test circuit as shown in Fig. 3-2. 
• Apply test voltage E and record resulting deflection of 

current meter as I in amperes. 
• Using Eq. 3-4. calculate unknown impedance. 

Example 3-3. A regulated lOV AC source is used in the 
circuit shown in Fig. 3-2. The AC meter has a full-scale range of 
1 mA and 0-1 AC an internal resistance of 6000. The total 
deflection is 0.75 mA. Calculate the unknown impedance in 
kilohms. 

Here I= 0.75 mA = 0.00075A. From Eq. 3-4: 

10 X (0.00075 X 600) z --------
x - 0.00075 

10 - 0.45 
0.00075 

= 0.55/0.00075 
= 12.7330 
= 12.733K 

The ammeter method is simple, but its reliability depends 
upon the constancy of the voltage source. For continuous 
routine measurements of impedance, a direct-reading ohms 
scale may be drawn for the meter with its calibration being 
obtained from solutions of Eq. 3-4. The ammeter method may 
be used at the RF as well as the AF range, provided that the 
ammeter has the frequency capability and that necessary 
precautions are taken in wiring and operating the circuit ( see 
items 5, 10. 13, 15, and 17 in Sec. 3-1). In fact, some operators 
employ the special constant lV output of an RF signal 
generator for this test. 

The ammeter method is susceptible to the effects of 
generator internal impedance ZG. Since this impedance is in 
series with the unknown impedance and the ammeter, the 
current is proportional to the total impedance. Unless Zc is 
very much smaller than Zx (for example, Zx = 100 Zc; or 
higher). Zc must be subtracted from Eq. 3-4: 

Zx = E - IR~1 
I 

(3-4) 
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Fig. 3-3. Voltmeter method for measuring an unknown impedance. 

3.4 VOLTMETER METHOD 

An electronic AC voltmeter/millivoltmeter ( VTV:vI or TVM) 

together with a standard resistor and changeover switch can 
be used to measure impedance over a wide range. Figure 3-3 
shows the circuit. 

In this arrangement, unknown impedance Zx is connected 
in series with the generator and a low-resistance noninductive 
resistor R. ( Common values used for the resistor are Hl and 
100.) The resistance is so low that current flowing through the 
resistor is determined by the impedance rather than by this 
resistance. Current flowing through the circuit sets up a 
voltage drop ER across the resistor and this voltage is 
proportional to impedance Zx. Switch Sallows the meter to be 
switched to the input ( position A) to read the applied test 
voltage Ee, or to the output (position B) to read the voltage 
drop Er across the standard resistor. The unknown impedance 
is determined from these two voltages and the resistance: 

(3-5) 
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where Zx and Rare in ohms, and Ee and ER are in volts. When 
R = 10, Eq. 3-5 reduces to the simple ratio of the two 
voltages: 

Zx = EcJER 

where Z xis in ohms and E c and ER are both in the same units 
(volts. millivolts, etc. l. 

Test Procedure 

• Set up test circuit as shown in Fig. 3-3. 
• Throw switch S to position B. 
• Adjust generator output for an upper-scale deflection 

on selected scale of voltmeter M. Record reading as 
ER. 

• Without disturbing setting of generator, throw switch S 
to position A. Record new reading of voltmeter as E c· 

• Using Eq. 3-5, calculate unknown impedance from the 
two voltage readings and the resistance. 

Example 3-4. A 100 resistor is used in the test setup in Fig. 
3-3. The readings are Ee= 1.5V, and ER= 1 mV. Calculate the 
unknown impedance in kilohms. 

Here, ER = 1 mV = 0.001V. From Eq. 3-5: 

10 X 1.5 

0.001 

= 15/0.001 
= 15,0000 
= 15K 

This method is the most successful at the AF range 
Because of feedthrough effects and stray reactances, it is 
difficult to use at frequencies beyond about 5 kHz. 

3.5 SIMPLE, HOMEMADE, DIRECT-READING 
IMPEDANCE METERS 

A self-contained impedance meter that reads directly in 
ohms may be made by calibrating any one of the circuits 
described in the preceding sections and providing a 
self-contained generator. Thus, in the circuit in Fig. 3-l(a), the 
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scale of voltmeter M2 may be graduated in ohms based upon a 
selected value of current indicated by meter Ml. Similarly, the 
scale of ammeter M2 in Fig. 3-l(b) may be graduated in ohms 
based upon a selected value of reference voltage indicated by 
meter Ml. 

In the circuit in Fig. 3-2, the scale of the ammeter may be 
graduated in ohms on the basis of the constant generator 
voltage E. The circuit in Fig. 3-3 would operate in a manner 
similar to that of a conventional ohmmeter. That is, with 
switch S set to position A, the generator output voltage would 
be initially adjusted for full-scale deflection of the meter 
(zero-impedance point); then, with s set to position A, a 
reading lower on the scale would indicate the impedance 
value. The graduations ( obtained by calculation or by means 
of known impedances connected successively to the circuit) 
would extend from zero impedance at full-scale deflection to 
maximum impedance near zero deflection. A somewhat 
simpler method is to eliminate the switch and make the initial 
(zero) setting of the meter with the Zx terminals temporarily 
short-circuited. This adaptation of the voltmeter circuit is 
subject to significant error, however, unless Zx is largely 
resistive, since phase relationships between Zx and R 
otherwise will cause a lower or higher reading than is 
anticipated (see item 17 in Sec. 3.1). 

3.6 RESISTANCE/BALANCE METHOD 

Figure 3-4 shows a circuit that can be used to measure 
impedances of all types. In this arrangement, the test signal is 
applied through transformer T to a variable resistor R and the 
unknown impedance Zx in series. The same current flows 
through both Rand Zx; this current produces a voltage drop 
(ER= IR) across the resistor and another voltage drop 
(Ez = IZ) across the impedance. The electronic AC voltmeter 
M, either a VTVM or TVM, reads ER when switch S is thrown to 
position A, and reads E z when S is thrown to position B. 

Transformer T serves only to isolate the generator from the 
circuit to prevent conflicting grounds between the generator 
and meter, so it need not be of any special type as long as it 
operates well at the test frequency. Performance of the circuit 
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is based upon the fact that when the resistance is adjusted to 
the point that ER equals E 2, as noted by flipping switch S back 
and forth as R is adjusted, the resistance at that point equals 
the unknown impedance ( R = Zx). If the resistor is provided 
with a dial reading in ohms, the unknown impedance can be 
read directly from the dial; otherwise, the resistor may be 
disconnected from the circuit without disturbing its setting and 
checked with an ohmmeter or bridge. The maximum value of 
the variable resistor should equal the maximum impedance 
expected to be measured. 

Test Procedure 

• Set up test circuit as shown in Fig. 3-4. 
• Throw switch S to position A. 

• Set output of generator for suitable deflection of meter 
M. This delf ection is voltage E w Do not subsequently 
disturb output of generator. 

• Throw switch S to position B. Meter now reads E z· 
Observe difference between this voltage and value of 
ER read in step 3. 

• Throw switch S back and forth between positions A and 
B, while slowly adjusting variable resistor R, until 

R-

T 

GEN ill Zx 

I 
I 

Ez 
I 
I 
I 

M 

Fig. 3-4. Resistance/balance method of measuring an unknown im­
pedance. 
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deflection of meter M is same at positions A and B. At 
this point Zx = R and can be read directly from 
resistor dial; or if the dial is uncalibrated, the resistor 
can be disconnected from the circuit and its setting 
checked with an ohmmeter or bridge. 

The resistance/balance method is versatile. Its impedance 
accuracy corresponds to the accuracy with which the 
resistance is known. If a special dial is made for a one-turn 
potentiometer, the accuracy will coincide with that of the 
resistance-calibration source used; if a high-grade multiturn 
potentiometer is used with a turns-counting dial, without 
making an individual resistance calibration, an accuracy of 
1% to 2% is possible. Resistance decade boxes need no 
calibration, since they automatically indicate their resistance 
settings. The accuracy of service-type decade boxes varies 
from ±2% to ±5%. Laboratory-type decade boxes afford 
accuracy as good as ±0.01%. Wirewound potentiometers, 
because of their inherent inductance, limit impedance 
measurements to the AF range; high-grade, 
frequency-compensated, laboratory-type decade boxes can be 
used up to 1 MHz or higher; however, in the RF range 
transformer T must be an air-core or ferrite-core unit. 

3.7 SUBSTITUTION METHOD 

Impedances of the same kind ( capacitive or inductive) 
may be compared directly with the setup shown in Fig. 3-5(a). 
One application is a comparison of the impedance of devices 
with that of a standard device in line of production or in 
receiving inspection. In this arrangement, a simple T-network 
is formed by two lK noninductive resistors (R I and R2) and the 
impedance connected to terminals x-x. A test signal of 
desired frequency is presented to the network by the generator 
(GEN), and the input and output voltages of the network are 
read with the electronic AF /RF voltmeter. When switch S is 
thrown to position A the meter reads input voltage; when S is 
at B, the meter reads output voltage. 

The operating principle is simple: The output voltage 
{EouT> is proportional to the impedance (Zx) connected to 
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terminals x-x and may be set to any selected value-the 
reference voltage-by adjusting the input voltage E IN applied 
to the network with the impedance in place. The value of the 
reference voltage is not critical, so long as the value selected 
can be read accurately on the meter scale and can reset 
accurately by adjusting the input voltage. By varying the 
generator output, the output voltage is first adjusted to the 
chosen reference value E O with a known standard impedance 
(Zs) in place. The corresponding input voltage is recorded as 
En- Then, the unknown impedance is substituted for the 
standard impedance, and the input voltage is adjusted (by 
varying the generator output) to restore the output voltage to 
the original reference level. This new input voltage is recorded 
as E 12• At this point, the unknown impedance may be 
calculated in terms of the known impedance: 

(3-7) 

where Z is in ohms, and all E's are in the same units ( volts, 
millivolts, etc.). If the operator wants to know only how much 
larger or smaller Zx is than Zs-as in some forms of production 
testing-the desired multiplier M (whole number or decimal) 
may be calculated: 

(3-8) 

Test Procedure 

• Set up test circuit as shown in Fig. 3-5(a). 

• Connect standard impedance Zs to terminals x-x. 

• Throw switch S to position B. 

• Adjust generator output for a selected reference 
deflection of meter M ( for example, 0.0V). Record this 
output reading as E our and the corresponding input 
reading as E 11 • 

• Remove Zs and connect unknown impedance Z x to 
terminals x-x. 
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• Readjust generator output voltage to restore meter 
reading to original Eour value. 

• Throw switch s to position A. Meter now reads new 
input voltage E12• 

• Using Eq. 3-7. calculate unknown impedance Zx from 
Ell, E 12• and Zs, 

• If only the factor whereby Zx differs from Zs is 
required. use Eq. 3-8. 

Example 3-5. In the test setup in Fig. 3-5( a), the circuit is 
initially adjusted with a 500 impedance <Zs) in place and a 
reference voltage (E0) of O.lV. The input voltage (Ell) at this 
point is 2.lV. When the unknown impedance (Zx) is in place, 
and the test signal has been readjusted for the original E O of 
O.lV. the new input voltage (E12) is found to be 1.77V. Calculate 
the unknown impedance. 

Here, E0 = O.lV, Ell= 2.lV, E 12 = 1.77V, and Zs= 500. 
From Eq. 3-7. 

Zx = 50[(2.l - 0.1)/(1.77 - 0.1)] 
= 50(2/1.67) 
= 50( 1.1976) 
= 59.90 

Example 3-6. The test setup in Fig. 3-5(a) is employed in 
an incoming inspection to check the deviation of the 
impedance of certain devices from the specified value of 1350. 
The reference voltage (E0) is set to 0.5V with the standard 
impedance (Zs) in place; the corresponding input voltage (E 11 ) 

is 2.5V. Then, with one of the incoming devices (Zx) in place, 
the input voltage must be set to 3V ( E 12). By what factor does 
Zx differ from Zs? 

From Eq. 3-8, M = (2.5 - 0.5)/(3 - 0.5) = 2/2.5 = 0.8. 
Therefore: 

Zx = Zs0.8 

Some AF and RF signal generators are equipped with 
output controls (or meters) which indicate directly the output 
voltage of the generator. When such a generator is available, 
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the E 11 and E 12 values may be read directly from the generator 
and the switching arrangement shown in Fig. 3-5(a) can be 
omitted. This will result in the simplified circuit shown in Fig. 
3-5(b). When this latter arrangement is used. all voltage 
readings-as before-must be in the same units: volts. 
millivolts. etc. 

When an RF voltmeter is not available. a radio receiver 
having an internal S-meter may be used when checking RP 

impedance. A desired deflection of the S-meter (for example, 
center scale) may be selected as the E 0 reference point. but 

(A) 

I 
E, 
I 

GEN I 
I 

I 
I 

X 
Zs 

1' 

I 
Eo 

I 

I 
I 

I X 1 
E, Eo 

'"' X I GEN I , I 

s M 

[D 

ELECTRONIC 
AF/RF 

VOLTMETER 

M 

1 1 I ELECTRONIC 
(Q) I I AF/RF 
~ 0-1----.,,__-+---.---.::JL--_,j VOLTMETER 

I 

CALIBRATED 
OUTPUT 

CONTROL 

(B) 

READ 
FROM 

GENERATOR 
OUTPUT 

CONTROL 

Fig. 3-5. Substitution method for measuring an unknown impedance: (a) 
to measure impedances of the same kind; (b) where voltage readings must 
be in the same units. 
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the actual corresponding RF voltage at the input of the receiver 
must be known and this voltage becomes the E 0 in Eq. 3-7 and 
3-8. 

3.8 IMPEDANCE BRIDGE 

Most well-equipped laboratories have at least one 
impedance bridge (sometimes called a universal bridge). This 
is a multirange AC bridge for accurately measuring 
inductance, capacitance, AC and DC resistance, and loss factor 
(power factor, dissipation factor, Q, or all of these). 
Impedance may be calculated from the measured 
components. The impedance bridge usually operates at 1 kHz 
provided by a self-contained generator, or at other frequencies 
(usually 20 Hz to 20 kHz) provided by an external generator. 
Examples are the Beco 307A; General Radio 1656; Heathkit 
IB-28; and Hewlett-Packard 4260A. 

This method is perhaps most satisfactory when the 
impedance contains a single dominant reactance (that is, the 
device is basically an inductor, capacitor, or inductive 
resistor) and when the AC resistance is separately measured 
with the bridge. When the test frequency is low-say 500 Hz 
maximum-the DC resistance may be used. From the 
measured value of capacitance C or inductance L, whichever 
applies, the reactance is calculated: XL= wL, or Xe= 1/wC. 
From this reactance and the measured AC resistance, the 
impedance is calculated: 

(3-9) 

Alternatively, the resistance component may be 
calculated from the Q value measured with the bridge and the 
calculated reactance: 

R .... c= X/Q (3-10) 

Or the resistance may be calculated from the dissipation 
factor {D) measured with the bridge and the calculated 
reactance: 

R .... c= DX (3-11) 
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Example 3-7. A certain choke coil which is to be used on AC 

only is checked with an impedance bridge at 1000 Hz and found 
to have an inductance of 1.6H and an AC resistance of 870. 
Calculate the 1 kHz impedance of this choke. 

Here, XL= 10,0530 (Eq. 1-10, Ch. 1), and R = 870. From 
Eq. 3-9: 

Zx = \/872 + 10,0532 

= \17569 + 101,062,809 
= \110,070,378 
= 10,0530 

Here, as might have been surmised, the resistive 
component is negligible compared with the reactive 
component. The 1000 Hz Q of this choke therefore is 
Z/R = 10,053/87 = 115.5. 

Example 3-8. An electrolytic filter capacitor is checked at 
120 Hz with an impedance bridge. The measured capacitance 
is 8.5 µ.F and the dissipation factor 0.057. Calculate the 120 Hz 
impedance of this capacitor. 

Here, Xe= 1560 (Eq. 1-12, Ch. 1). From Eq. 3-11, 
R = 0.057(156) = 8.890. And: 

Zx = \/8.892 + 1562 

= V79.03 + 24,336 
= \124,415 
= 156.20 

It is interesting to note that the power factor of this 
capacitor (see Sec. 2.13, Ch. 2) is 5.69%, and that the 
impedance accordingly is only about 0.13% higher than the 
reactance of this capacitor at 120 Hz. At 1000 Hz the same 
capacitor might exhibit a power factor of 30% and an 
impedance of 19.10, which is 11.6% higher than the reactance 
at 1000 Hz. 

3.9 RADIO FREQUENCY BRIDGE 

Whereas the impedance bridge is limited to audio 
frequency use, the radio frequency bridge is especially 
designed and constructed-with low-reactance resistors, 
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adequate shielding. appropriate grounding, and other 
measures-for operation between 100 kHz and 250 MHz, 
depending upon make and model. Some RF bridges have a 
self-contained signal generator; some models require an 
external generator and null detector. 

An example is the General Radio 1606-B RF bridge. This 
instrument has two calibrated balance controls, one for 
resistance and the other for reactance, and the dial of each 
reads directly in ohms. These balances are set separately for 
null in the same manner that the main balance control and 
power-factor control are set in the lower-frequency impedance 
bridge. From the measured R and X values, the unknown 
impedance may be calculated by means of Eq. 3-9. This 
instrument evaluates RF resistance between zero and 10000, 
and reactance between -50000 and +50000 at 1 MHz.(At 
other frequencies, the dial reading at null is divided by the 
frequency in megahertz.) 

It is convenient to be able to measure RF resistance 
directly. since this kind of resistance is quite complicated and 
may be significantly higher than either oc resistance or 
low-frequency AC resistance. Calculation of its value is 

RFINPUT J 

C2 
339 pF 

Fig. 3-6. A typical circuit for an RF bridge used to measure the approximate 
impedance of components used in transmitters, receivers, and antennas. 
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unreliable. Some of the factors that influence the value of RF 

resistance are skin effect, presence of dielectrics, presence of 
nearby conductors (such as metal shields), DC resistance, and 
stray reactance. 

A special homemade version of the RF bridge is often used 
by radio amateurs for measuring the approximate impedance 
of components used in transmitters, receivers, and antennas. 
A typical circuit of this device is shown in Fig. 3-6. This 
arrangement is a four-arm bridge in which the arms are 50 pF 
fixed capacitor C1, 339 pF variable capacitor C2, 2400 
noninductive resistor R, and the unknown impedance Zx 
connected to terminals x-x. The null detector is a simple RF 

voltmeter consisting of 1N67 A germanium diode D, 0-50 DC 

microammeter M, and 0.005 µ.F coupling capacitor C3• An RF 

voltage of approximately l.75VRMs is required for full-scale 
deflection of this meter. This bridge-driving signal is supplied 
by an RF oscillator or signal generator connected to coaxial 
input jack J. The unknown impedance is connected to 
terminals x-x by means of short, heavy, straight leads. 

With the unknown impedance connected to terminals x-x, 
and an RF signal of desired frequency coupled into the bridge 
through input jack J, capacitor C2 is tuned for null, as indicated 
by the lowest downward deflection of meter M. At that point, 
impedance Zx is related to the 2400 resistance of standard 
resistor R by the ratio C/C2, where C2 is the capacitance 
setting of variable capacitor C2 at null. That is, 

( 3-12) 

where Zx and Rare in ohms. and C 1 and C2 are in picofarads. 
If the dial of capacitor C2 is a direct reading in ohms from 

a previous calibration of the bridge, the impedance may be 
read directly from the dial at null with no calculations being 
required. The simplest way to calibrate the dial is to connect a 
number of accurate noninductive resistors successively to 
terminals x-x, balance the bridge for each resistance, and 
inscribe that value on the dial. With the circuit constants 
shown in Fig. 3-6, variable capacitor C2 will cover the 
impedance range of 350 to 6000. High impedances are at the 
low-capacitance end of the dial, and vice versa. Table 3-1 gives 
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Table 3-1. Sample Impedance/Capacitance Relationships. 

C2, including strays Zx 
(picofarads) (ohms) 

344 35 
240 50 
120 100 
80 150 
60 200 
40 300 
24 500 
20 600 

a sample impedance-vs-capacitance relationship for the 
circuit. These values are based upon a basic tuning range of 
14.7 pF to 339 pF (Millen 19335) and the knowledge that stray 
capacitance in the circuit adds at least 5 pF to the settings of 
the tuning capacitor. With solid construction and good 
shielding, the bridge is useful to 50 MHz. 

3.10 Q-METER METHOD 

RF impedance may be determined from Q-meter 
measurements. The procedure is to calculate reactance and 
resistance separately from the Q's and tuning capacitances 
displayed by the Q meter, and then to calculate the impedance 
from X and R. When the usual parallel connection of the 
unknown impedance to the Q-measuring circuit is used, X and 
Rare determined in the following manner: 

X= 
1.1591 X 108 

filC 
(3-13) 

where X is the reactance in ohms, f the test frequency in 
kilohertz, and ac the difference between C1 and C2• C1 is the 
tuning capacitance in picofarads required to resonate the 
Q-measuring circuit without the unknown impedance 
connected, and C2 is the tuning capacitance in picofarads 
required to reresonate the Q-measuring circuit with the 
unknown impedance connected. When C1>C2, X is capacitive 
(-); when C1 <C2, Xis inductive ( +). 
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R 
1.59 X 108c,tQ, - Q2) 

/1AC)2Q,Q2 

( 3-14) 

where ~C and fare in the same units as in Eq. 3-13. R is the 
resistance in ohms. Q1 the Q-meter reading when the Q-circuit 
is resonated without the unknown impedance connected. and 
Q~ the Q-meter reading when the Q-circuit is reresonated with 
the unknown impedance connected. After X and R are 
determined as described above. the unknown RF impedance 
may be calculated with the aid of Eq. 3-9. 

Example 3-9. A certain 100 pF capacitor is tested in a Q 

meter at 1 MHz. Without the test capacitor. the instrument is 
resonated with the tuning capacitor of the Q meter set to 400 
pF (C1L The Q reading 1Q 1) at this point is 250. With the test 
capacitor connected. the instrument is reresonated with the 
tuning capacitor at 300 pF I C2) and the corresponding Q 

reading ( Q2) is 75. From these C and Q readings the calculated 
value of Qx is 26.78. Calculate the reactance Xe, resistance R. 
and 1 MHz impedance Zx of the test capacitor. 

Here. f = 1 MHz = 1000 kHz. C, = 400 pF. and AC = 
400-300 = 100 pF. From Eq. 3-13: 

1.591 X 108 

Xe= 
1000 X 100 

= 1.591/100.000 
= 159111 

From Eq. 3-14: 

1.591( 108)400(250-75) 
R = 

1000(1002)250(75) 

1.591 ( 108)400( 175) 

1000(10.000)250(75) 

1.1137 X 10 13 

1.875 X 1011 

= 59.411 
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From Eq. 3-9: 

z = v'59.42 + 15912 

= \13528.36 + 2531281 
= \12534809.36 
= 1592.20 

The equivalent series resistance of 59.40 and the 
relatively low capacitor Q of 26.78 results in a 1 MHz 
impedance that is only about 0.07% higher than the reactance 
of this capacitor at that frequency. 

3.11 USE OF TRANSMISSION LINE 

RF impedance may be measured with a quarter-wave 
section of a two-wire transmission line. provided the 
measurement is made at the frequency at which the line is a 
quarter-wave long. ( See Transmission Lines in Sec. 2.5, Ch. 2.) 
Figure 3-7 shows two practical ways of using the 
transmission-line method. 

In Fig. 3-7(a) a noninductive resistor R is connected by the 
shortest practicable leads to one end of the line. Resistance R 

is equal to the characteristic impedance Z0 of the line. The 
unknown impedance Z x is connected by the shortest 
practicable leads to the other end of the line. An RF 

milliammeter (Ml) is inserted in the line close to the 
transmitting end, and a second RF milliammeter ( M2) is 
inserted in the line close to the receiving end. The internal 
resistance of the meters is very low. (RM for a 0-115 RF 

milliammeter, for example, is approximately 5.50, and for a 
0-500 mA instrument is 0.630.) The test signal from the 
generator (GEN) is loosely coupled into the line by means of a 
one-turn ring. The generator must be capable of supplying 
enough RF energy for an accurately readable deflection of the 
current meters. The unknown impedance is to the 
characteristic impedance of the line as the current at the 
sending end of the line ( read by Ml) is to the current I z at the 
receiving end of the line (read by M2): Zx/Z0 = IR/12. From 
this relationship, the unknown impedance can be calculated: 

Zx = ZoUJI2) (3-15) 

where Zx isin ohms. and IR and I2 are in amperes. 
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Test Procedure 

• Set up test circuit as shown in Fig. 3-7(a). Select 
resistance R equal to the characteristic impedance of 
the line. 

• Set generator to a frequency corresponding to the 
wavelength at which the line is a quarter-wave. 

• Adjust output of generator for accurately readable 
deflection of meters Ml and M2. 

• Read current IR from meter Ml and current I z from 
meterM2. 

• Using Eq. 3-15, calculate the unknown impedance. 

Example 3-10. An impedance device Zx is connected to a 
quarter-wave 3000 line in the setup shown in Fig. 3-7(a). 
Meter Ml reads 22.5 mA, and meter M2 5.3 mA. Calculate the 
unknown impedance. 

Here, 20 = 3000, IR= 22.5 mA, and 12 = 5.3 mA. From 
Eq. 3-15: 

Z = 300 
22

·
5 

X 5.3 

= 300 X 4.24 
= 12720 

A test setup sometimes used by service technicians and 
radio amateurs to check the impedance of a quarter 
wavelength of transmission line is shown in Fig. 3-7( b). In this 
arrangement, a dip oscillator is inductively coupled loosely to 
the quarter-wave sample through a one-turn coil. The 
diameter of this coil should be about the same as that of the 
dip-oscillator coil. 

With the receiving end of the line open, the oscillator is 
tuned downward throughout its frequency range. As this is 
done. several dip points (downward deflection of the meter) 
will be noticed. The lowest dip point occurs when the oscillator 
is tuned to the frequency at which the line is a quarter 
wavelength. At this point. a noninductive variable resistor R is 
connected to the line and adjusted to the point at which the dip 
disappears. The resistance at this setting equals the 
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DIP OSCILLATOR 

(b) 

Fig. 3-7. Practical uses of the transmission line method to measure im­
pedance: (a) using a noninductive resistor; (b) using a diposcillator. 

characteristic impedance of the line ( Z0 = R) and can be read 
directly from the resistor dial if the latter has previously been 
calibrated in ohms. If the resistor dial is not calibrated, it may 
be disconnected and its resistance setting checked with an 
ohmmeter or bridge. 

This is a convenient test, but it requires a rheostat or 
potentiometer that will operate efficiently at the radio 
frequency employed. Since this resistor must be noninductive, 
the only choice for many users will be a small composition 
potentiometer of the volume-control type which is not 
necessarily designed for RF use. Even when solid construction 
and careful operating techniques are employed. the accuracy 
of measurements may be expected to decrease as the 
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frequency increases. ( For general precautions. see items 5. 10. 
and 13 in Sec. 3.1). 

The dip-oscillator method is of ten used to check the 
impedance of insulated transmission lines such as coaxial 
cable and TV ribbon. In this use. however, it must be 
remembered that a yardstick-measured length of such 
insulated line may not be an electrical quarter-wave long, its 
actual electrical length being longer and dependent upon the 
kind of dielectric used. For insulated line, a quarter-wave ( in 
ftl = 246V /f. where f is the test frequency in megahertz and V 
is the velocity factor for the particular kind of line ( obtained 
from the line manufacturer's literature). 

The utility of the transmission-line method. as illustrated 
by Fig. 3-7. is limited by the length of line that can be handled 
comfortably. Experience shows that the longest which can be 
worked with under ordinary conditions is about 12 ft, and this 
would correspond to a quarter wavelength at about 20 MHz. 
Also. the shortest length would not be much under a foot ( a 
9.5-inch line is a quarter-wave at 300 MHz). Therefore, the 
method appears to be limited in practice to the frequency 
range of 20 MHz to 300 MHz. Table 3-2 lists quarter 
wavelengths of line required at common frequencies between 
20 and 300 MHz. In case a special line must be constructed .for 
impedance measurements, Table 3-3 shows the spacing of two 
No. 12 wires (in inches) required for four common 
impedances. 

Table 3-2. Ouarterwavelengths of Open-Wire Transmission Line. 

FREQUENCY 
LENGTH OF¼ WAVE (megahertz) 

20 11' 11'' 
30 7 ll1t2'' 

40 5, 11 112 ., 

50 4'9¼'' 
60 3' 11-¾'' 

100 2'4-¾'' 
200 1'2¼'' 
300 0, 9112'' 
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Table 3-3. Spacing of No. 12 Wire. 

IMPEDANCE CENTER-TO-CENTER 
SPACING Z0 (ohms) (inches) 

200 0.215 
300 0.495 
500 2.62 
600 6 

3.12 USE OF SLOTTED LINE 

At microwave frequencies, impedance may be measured 
indirectly by use of a slotted line. Figun. 3-8 shows the test 
setup. This is a conventional arrangement: The microwave 
generator supplies RF energy to the slotted line at the desired 
test frequency, and the unknown impedance Zx is connected to 
the opposite end of the line. The carriage is slid along to locate 
maximum-voltage points (maxima or loops) and 
minimum-voltage points (minima or nodes) and these points 
are indicated by maximum and minimum deflections of the 
meter in the detector. The slotted line has a characteristic 
impedance Z0 (for example, 50,{}) specified by its 
manufacturer; and when the line is terminated in this 
impedance (that is Zx = Z0) there are no standing waves and 
the meter gives a steady deflection as the carriage is moved 
along. When Zx is some value other than Z0, loops and nodes 
are detected, and the unknown impedance is determined from 
the maximum and minimum values and the characteristic 
impedance: 

(3-16) 

where Zx is the unknown impedance in ohms, Z 9 the 
characteristic impedance of the line in ohms, E MAX the loop 
voltage, and EMIN the node voltage. It is not mandatory that 
EMAX and EMIN be in volts, so long as they both are in the same 
units (volts, millivolts, microvolts). Some detectors read in, 
current units and for them the multiplier in Eq. 3-16 would be 
IMAx/IMiN· Still other detectors read in arbitrary units, and the 
ratio would be a simple quotient of the two numerical readings. 
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Test Procedure 
• Set up a test circuit as shown in Fig. 3-8 with an 

unknown impedance connected to the receiving end of 
the slotted line. 

• With generator and detector operating, slide the 
carriage along to the point at which upward deflection 
of the meter indicates a loop {voltage or current 
maximum). Adjust output of generator to place this 
deflection at or near full scale. Record peak deflection 

asEMAx· 
• Slide carriage along to adjacent point at which a 

downward dip of the meter indicates a node {voltage 
or current minimum). Record bottom of deflection as 

EMIN· 
• UsingEq. 3-16, calculate unknown impedance. 

Example 3-11. A 500 slotted line is used in the setup shown 
in Fig. 3-8. At a loop the voltage is set { by adjusting the 
generator output) to 10 m V. At the adjacent node the voltage is 
3 mV. Calculate the unknown impedance. 

FromEq. 3-16: 

Zx = 50 _!Q_ 
3 

= 50 X 3.33 
= 166.50 

MICROWAVE 
GENERATOR 

~---' J 

TUNING 
STUB -SLOT 

-l, 

COAXIAL CD CABLE l 

DETECTOR 

CARRIAGE COAXIAL CABLE -
COAXIAL ~---------

CABLE SLOTTED LINE SCALE 
(NOT USED 

IN IMPEDANCE 
MEASUREMENT) 

Fig. 3-8. Test setup using the slotted line to measure impedance at 
microwave frequencies. 
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Impedance measurement is only one of the uses of a 
slotted line. This basic microwave tool is also used for 
determining wavelength. standing-wave ratio (SWR). and 
insertion loss. General Radio's 900-LB slotted line is usable 
from 300 MHz to 8.5 GHz and somewhat beyond. 
Hewlett-Packard's 817AIB operates from 1.8 GHz to 18 GHz. 
Some slotted lines are essentially a section of air-dielectric 
coaxial line; others are essentially a section of waveguide. 

3.13 SWR METHOD 

Often, the detector used with a slotted line ( see Fig. 3-8) is 
a direct-reading, standing-wave-ratio ( SWR) meter. In this 
instance. the unknown impedance connected to the line may be 
calculated from the observed SWR and the characteristic 
impedance ( Z0 ) of the line: 

Zx = Z0 X SWR (..3-17) 

Example 3-12. The test setup shown in Fig. 3-8 is operated 
with a 500 slotted line in the same manner as described in Sec. 
3.12. and the indicated SWR is 1.15. Calculate the unknown 
impedance. 

From Eq. 3-17: 

Zx = 50(1.15) 
= 57.50 

Radio amateurs and Citizens Band operators often use a 
simple bridge-type SWR meter (either homemade or factory 
built), and the SWR obtained with this instrument at 
frequencies up to.150 MHz also may be used with Eq. 3-17 to 
determine an unknown RF impedance. 

3.14 INPUT IMPEDANCE OF AMPLIFIER 

The input impedance (ZIN) of an amplifier may be 
measured by means of a special calibrated input-voltage 
divider. The test setup is shown in Fig. 3-9. 

In this arrangement, the test signal of a selected 
frequency is applied to the input terminals of the amplifier 
through a calibrated variable resistor. R 8• This puts Rs in 
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series with the input impedance (Z1Nl of the amplifier. An 
electronic AC voltmeter/millivoltmeter (VTVM or TVM) is 
arranged with a switch so that the signal voltage E, to the 
input of Rs and Z1N in series may be read when switch Sis at 
position A, and the signal voltage E 2 at the amplifier input 
terminals may be read when S is at B. The amplifier is 
switched ON and is terminated by load resistor RL, whose 
resistance equals the rated output impedance of the amplifier. 
The generator output voltage E I must be chosen such that the 
amplifier is not overdriven during the test. This impedance 
measurement is based upon the fact that when resistance Rs 
equals amplifier input impedance ZIN• amplifier input voltage 
E2 is half of the generator output voltage E ,. It is necessary 
only to adjust resistance Rs to the point at which E 2 ( switch S 
at position B) equals 0.5 E, (switch Sat position A), whereupon 
the value of amplifier input impedance may be read from the 
ohms-calibrated dials of Rs. 

Test Procedure 

• Set up test circuit as shown in Fig. 3-9. 
• Load resistance R1. must be equal to the rated output 

impedance of the amplifier and must be capable of 
handling at least twice the rated output power of the 
amplifier. 

• With variable resistor Rs set to maximum resistance, 
throw switch S to position A and adjust output of the 
generator to a voltage level that will not overload the 
amplifier. Record voltage as E ,. 

• Throw switch S to position B and readjust Rs until 
meter reads half of E,. Record as E 2• 

• Return S to position A and recheck E ,. If E, is not 
exactly twice E2, reset resistor Rs, return S to B, and 
recheck E 2• 

• Continue to throw S back and forth between A and B 

while checking the voltage at each position of the 
switch. 

• When E 2 is exactly 0.5 E" and E, remains exactly 2E 2, 

the resitance setting of variable resistor Rs equals the 
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Fig. 3-9. Calibrated output-voltage dividers are used to measure the input 
impedance of an amplifier. 



input impedance of the amplifier: Z1N = Rs. If the Rs 
dial has previously been calibrated in ohms, the 
impedance may be read directly from the dial; 
otherwise, Rs must be temporarily disconnected and 
its resistance setting checked with an ohmmeter or 
bridge. 

The input impedance of an amplifier can be measured also 
by the resistance/balance method (see Sec. 3.6 and Fig. 3-4) if 
the amplifier input is placed at Zx in Fig. 3-4. Also, the 
voltmeter/ammeter method (Sec. 3.2 and Fig. 3-1) and the 
ammeter method (Sec. 3.3 and Fig. 3-2) can be used, provided 
the meters are sensitive enough to indicate the low signal 
levels required ( millivolts or microvolts, and milliamperes or 
microamperes). In each of these alternate methods of 
measurement, the amplifier must be switched on. 

3.15 OUTPUT IMPEDANCE OF AMPLIFIER 

Figure 3-10 shows two methods of measuring the output 
impedance Zour of an amplifier. Each employs a variable load 
resistor Ru but Fig. 3-lO(a) employs an electronic AC 

voltmeter (VTVM or TVM) whereas 3-lO(b) requires an AC 

wattmeter. The method selected will depend, in most cases, 
upon which instrument is immediately available. In each 
instance the amplifier is driven by a signal of desired 
frequency supplied by the generator, and the amplitude of this 
signal is sufficient to drive the amplifier to full output without 
overloading. The amplifier controls are set for maximum 
output. In each instance load resistor RL must be capable of 
handling at least twice the rated output power of the amplifier. 

Resistor /Voltmeter Method 
In the arrangement of Fig. 3-lO(a), voltmeter M is 

operated by the output signal of the amplifier. When switch S is 
open this meter indicates the no-load output voltage E 1• When S 
is closed the meter indicates the voltage E 2 for full loading of 
the amplifier by resistor RL. When RL is adjusted to the 
resistance equal to the amplifier output impedance (Zo:-,), E 2 is 
0.5E 1, since under these circumstances a 2: 1 voltage divider is 
formed by Zourand RL in series (see Secs. 2.7 and 2.8, Ch. 2). 
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Fig. 3-10. Methods of measuring the output impedance of an amplifier: (a) 
resistor/voltmeter method; (b) resistor/wattmeter method. 

The test procedure consists simply of adjusting RL to the 
point at which E2 = 0.5E 1 and reading the output impedance 
from the ohms-calibrated dial of the resistor. If the resistor 
has not been calibrated, it may be temporarily disconnected 
and its resistance setting checked with an ohmmeter or 
bridge. 

Resistor/Wattmeter Method 
In the arrangement of Fig. 3-l0(b) wattmeter M indicates 

the amplifier output power in variable load resistor RL. When 
the resistance of RL equals the output impedance ZouT of the 
amplifier, the power in the load is maximum (see Sec. 2.10, Ch. 
2). The resistor must be rated to handle at least twice the 
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expected output power of the amplifier (heavy duty 
rheostat/potentiometers are available for this purpose). 

The test procedure consists simply of adjusting R1, for 
peak deflection of the wattmeter. At that point. the resistance 
setting of R1, equals the output impedance of the amplifier, and 
Z0n can be read directly from the ohms-calibrated dial of the 
resistor. If the resistor has not been calibrated, it may be 
temporarily disconnected and its resistance setting checked 
with an ohmmeter or bridge. 

The reader must be forewarned that the wattmeter 
response in this test is not sharp, so care must be taken in 
adjusting resistor RL near the peak deflection. In this 
connection. Fig. 3-11 shows the curve for a 20-watt amplifier 
having an output impedance of 50!1. 

3.16 INPUT AND OUTPUT IMPEDANCE OF RECEIVER 

The input impedance (Z1N) of a radio receiver may be 
measured by the input voltage divider method (Sec. 3.14 and 

20 
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/ 
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I 
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Fig. 3-11. The typical response curve for the resistor/wattmeter method of 
measuring amplifier output impedance. 
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Fig. 3-9). The receiver is substituted for the amplifier in Fig. 
3-9, variable resistor Rs must be one that will operate 
satisfactorily at the RF test frequency, and load resistance R L 
equals the output impedance of the audio channel. The 
receiver must be switched on and tuned to the test signals. 

The input impedance may be measured also by the 
resistance/balance method (Sec. 3.6 and Fig. 3-4), provided a 
suitable variable resistor R may be found for the selected RF 

test frequency. The input terminals of the receiver replace Zx 
in Fig. 3-4. The input impedance of receivers is often measured 
with an RF bridge (see Sec. 3.9 and Fig. 3-6). The 
voltmeter/ammeter method (Sec. 3.2 and Fig. 3-1) and the 
ammeter method (Sec. 3.3 and Fig. 3-2) can be used, provided 
the meters are sensitive enough to indicate the low signal 
levels (millivolts or microvolts and milliamperes or 
microamperes) required. In each of these alternate tests, the 
receiver should be switched on. 

The output impedance of a radio receiver may be 
measured by the resistor/voltmeter method described in Sec. 
3.15 and Fig. 3-lO(a). For this purpose, the receiver replaces 
the amplifier in Fig. 3-lO(a). A modulated test signal must be 
employed and the receiver must be switched on and tuned to 
this signal. 

3.17 OUTPUT IMPEDANCE OF OSCILLATOR 

The output impedance of an oscillator or signal generator 
may be measured with the setup shown in Fig. 3-12. In this 
arrangement, the electronic AC voltmeter /millivoltmeter 
(VTVM or TVM) is operated by the output signal of the 
oscillator. When switch S is open this meter indicates the 
no-load output voltage E 1. When Sis closed the meter indicates 
the voltage E2 when the amplifier is loaded by calibrated 
variable resistor R1,. When RL is adjusted to the resistance 
equal to the amplifier output impedance E 2 is 0.5E 1, since 
under these circumstances a 2:1 voltage divider is formed by 
Z0mand R1,in series (see Secs. 2.7 and 2.8, Ch. 2). 

The test procedure consists simply of adjusting RL to the 
point at which E2 = 0.5E 1, and then reading the output 
impedance from the ohms-calibrated dial of the resistor. If the 
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resistor has not been calibrated, it may be disconnected 
temporarily and its resistance setting checked with an 
ohmmeter or bridge. The resistor must be able to handle 
safely at least twice the maximum rated output power of the 
oscillator. 

This method may be employed with equal success to check 
the output impedance of transmitters, industrial oscillators, 
diathermy machines, and similar equipment. 

When an RF generator is under test, resistor RL and meter 
M both must be capable of operating at the selected test 
frequency. Also, the operator must observe closely all of the 
special precautions common to RF measurements. ( See items 
5.10. 11, 12, and 13 in Sec. 3.1.) 

3.18 IMPEDANCE OF MECHANICAL GENERATOR 

The impedance ZG of a mechanical generator ( rotating 
machine) may be measured with the setup shown in Fig. 3-13. 
In this arrangement, as in the one for oscillator measurements 
described in Sec. 3.17, the electronic AC voltmeter ( VTVM or 
TVM) is operated by the output voltage of the generator. When 
switch Sis open this meter indicates the no-load output voltage 
E 1• When S is closed the meter indicates theE 2 load voltage 
(when the generator is loaded by calibrated variable resistor 
R,) . When R1, is adjusted to the resistance equal to the 

M 

~ 
-- --0 

Ali ~~ ELECTRONIC AC 
osc VOLTMETER/ 

s{ MILLIVOLTMETER --

Fig. 3-12. Test setup used to measure the output impedance of an os­
cillator. 
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Fig. 3-13. Test setup used to measure the impedance of a mechanical 
generator. 

generator impedance, E2 is 0.5E 1, since under these 
circumstances a 2: 1 voltage divider is formed by Zc and RL in 
series ( see Secs. 2. 7 and 2.8, Ch. 2). 

The test procedure consists simply of adjusting RL to the 
point at which E 2 = 0.5E 1 and reading the output impedance 
from the ohms-calibrated dial of the resistor. If the resistor 
has not been calibrated, it may be disconnected temporarily 
and its resistance setting checked with an ohmmeter or 
bridge. The resistor must be able to handle safely at least 
twice the maximum output power of the generator. 

The impedance of other AC-producing devices, such as 
inverters and vibrator transformers, can also be measured in 
this manner. 

Some success is possible in measuring generator output 
impedance with the resistorlwattmeter method as described 
in Sec. 3.15, Fig. 3-lO(b), and Fig. 3-11. In this scheme, the 
mechanical generator replaces the amplifier and signal 
generator in Fig. 3-lO(b). 

3.19 IMPEDANCE OF CHOKE COIL 

Iron-core filter chokes are intended to be operated with a 
specified amount of oc flowing through them. The inductance 
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of such a choke can be widely different under conditions of 
zero DC and maximum recommended DC, so their impedance 
should always be measured with the recommended amount of 
direct current flowing simultaneously with the alternating test 
current. Any of the following methods may be used to measure 
choke-coil impedance if means are provided for passing a 
direct current through the choke during the measurement: 
Sec. 3.2, Fig. 3-1; Sec. 3.3, Fig. 3-2; Sec. 3.4, Fig. 3-3; Sec. 3.6, 
Fig. 3-4; and Sec. 3.7, Fig. 3-5. Conventional filtering and 
bypassing must be added to these circuits to keep the AC test 
signal out of the DC supply, and vice versa. The AC test-signal 
amplitude must be no more than 10% of the steady DC level. 
( See Sec. 1.14, Ch. 1 for a discussion of AC combined with DC.) 

For this measurement, some impedance bridges ( Sec. 3.8) 
are equipped with input terminals for a DC component, which 
is often obtained from an external battery in series with a DC 

milliammeter and variable resistor. Figure 3-14 shows a 
typical bridge circuit for choke-coil measurement. This is a 
Hay bridge in which the choke coil Lx and its equivalent series 
resistance Rx are in one arm; rheostat R1 in the second arm is 
the reactance balance; rheostat R2 in the third arm is the 
resistance balance; and fixed resistor R3 in the fourth arm is 
the ratio resistance which, with capacitor C2, determines the 
inductance range of the bridge. Capacitor C2 is the standard 
against which the unknown inductance is balanced in the Hay 
bridge. The variable voltage DC supply is shown here as a 
battery. The direct current is indicated by DC milliammeter 
Ml and the AC signal is blocked from the DC circuit by choke L 1• 

The AC null detector, M2, is an electronic AC 

voltmeter/millivoltmeter (VTVM or TVM), and the circuit DC is 
blocked from its input by capacitor C 3 ( most such voltmeters 
have a self-contained input capacitor and do not require C). 

With B adjusted for the desired direct current through the 
test choke ( Lx), the bridge is separately balanced for 
reactance (adjustment of R1) and resistance (adjustment of 
R2). At null: 

(3-18) 
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where Lx is the inductance of the choke in henrys, R 1, R2, and 
R3 are in ohms, C2 is in farads, and w = 211-f, where f is the test 
frequency in hertz. And: 

R1R~3( wC2) 
2 

1 + (wR2C2)
2 

(3-19) 

where R, C2, and ware in same units as in Eq. 3-18. 
Finally, the impedance is calculated from the inductance 

and resistance values: 

Zx = VR2 + (wL) 2 ( 3-20) 

where Rand Zx are in ohms, Lis in henrys, and w = 211-f, with f 
representing the test frequency in hertz. 

Example 3-13. A certain power-supply filter choke is 
checked at 120 Hz in the bridge circuit shown in Fig. 3-14. In 
this circuit, R3 is 4000fl and C2 is 1 µ.F. The DC is set to 50 mA. 
At null, R1 is set to 5000fl and R2 to 90fl. Calculate the 
inductance, equivalent series resistance, and impedance of 
this choke. 

c, 

NULL DETECTOR 
(ELECTRONIC AC 
VOLTMETER/MILLI· 
VOLTMETER 

R3 AND L1 PASS THE DC 
COMPONENT AND MUST 
BE RA TED TO HANDLE 

.__ _____ _. THIS CUF'RENT 

Fig. 3-14. A typical bridge circuit used for choke-coil measurement. The 
circuit shown is a Hay bridge. 
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Here, f = 120 Hz, w = 754, and C2 = O.OOO00lF. From Eq. 
3-18: 

= 

5000( 4000) 0. 000001 

1 + (754 X 90 X 0.000001) 2 

20 

1 + (0.06786) 2 

= 20/1.0046 
= 19.9H 

From Eq. 3-19: 

= 

= 

5000(90)4000(754 X 0.000001) 2 

1 + (754 X 90 X 0.000001) 2 

1,800,000,000 X 0.000754 2 

1 + 0.067862 

1,800,000,000 X 0.0000005685 

1 + 0.0046 

= 1023/1.0046 
= 1018.6fl 

Note: The manfacturer's rating of this choke is 20H, 900fl. 
From Eq. 3-20: 

Zx = V1018.62 + (754 X 19.9) 2 

= \il,037,546 + 15,0052 

= Vl.037.546 + 225,150,025 
= V226.187.571 
= 15,039fl 

3.20 IMPEDANCE OF CAPACITOR 

The AF or RF impedance of a capacitor may be measured 
by means of any of the following methods described earlier in 
this chapter, provided the frequency response of the 
instruments and components is adequate and that the usual 
precautions are taken at high frequencies: voltmeter/ 
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ammeter method, ammeter method, voltmeter method, 
resistance/balance method, substitution method, impedance 
bridge ,RF bridge and Q-meter method. 

Unless a test frequency is specified, measure AF 

impedance at 1000 Hz and RF impedance at 1 MHz and 10 MHz. 

3.21 IMPEDANCE OF LOUDSPEAKER 

The impedance of the voice coil of a loudspeaker may be 
measured by means of any of the following methods described 
earlier in this chapter: voltmeter/ammeter method, ammeter 
method, voltmeter method, resistance/balance method, and 
the substitution method. 

Whichever method is employed, the test-signal voltage 
must be kept low in order to minimize the sound emitted by the 
loudspeaker (when quiet is demanded) and to hold voice-coil 
current to a safe minimum. It should be noted that the 
impedance and the DC resistance of a voice coil both are low. 
Most voice coils have 80 impedance; however, common 
values encountered are 3.20, 3.40, 40, 80, and 160. 

The loudspeaker under test should be mounted in the clear 
so that its cone is not covered but operates in free air. If the 
loudspeaker normally is operated in a cabinet or behind a 
baffle, however, it should be so mounted for the test, but again 
with its front unencumbered. 

Unless some other test frequency is specified, impedance 
will usually be measured at 1000 Hz. For a complete picture of 
loudspeaker impedance, the unit may be measured at closely 
spaced frequencies throughout the AF spectrum. 

3.22 IMPEDANCE OF HEADPHONES 

The impedance of headphones and earplugs is measured in 
the same way as that of loudspeakers. 

Headphones, unlike loudspeakers, are available in several 
different types over a wide impedance range. Communi­
cations-type magnetic headphones, for example, are 
usually specified as 25000 or 50000. Communications-type 
crystal headphones can exhibit an impedance of 30K-100K. 
Stereo headphones exhibit low impedance, common values 
being 3.20, 40, 80, 160, 320, and 6000. A small earplug, such 

140 



as those used with hearing aids and shirtpocket transistor 
radios, can present a DC resistance of 2K-3K and an AC 

impedance of 67000. 

3.23 IMPEDANCE OF NONLINEAR DEVICES 

The small-signal impedance of nonlinear devices is often 
quite different from their DC resistance at a selected operating 
point. These devices include conventional semiconductor 
diodes and rectifiers, zener diodes, tunnel diodes, transistors, 
lamp filaments, thermistors, voltage-dependent resistors, and 
saturable reactors. 

Figure 3-15 shows the test setup. In this arrangement, the 
direct current Ioc for the desired operating point flows through 
the nonlinear impedance device Zx from a variable DC supply 
shown here as a battery. The value of this current is indicated 
by DC milliammeter Ml. Simultaneously, an alternating 
current IAc is passed through the device; this latter current is 

-~~ Zx 

VARIABLE 
AC 

SUPPLY M1 

+ 

B ~ARIABLEDC 
~SUPPLY R 1n 

rn 

M2 

ELECTRONIC 
AC VOLTMETER 

/MILLIVOLTMETER 

Fig. 3-15. Test setup for measuring the impedance of nonlinear devices. 
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introduced into the circuit by the low-impedance secondary 
\\inding of transformer T and is supplied by a variable AC 

supply. The RMS value of the current must not exceed one-tenth 
of the value of the direct current. Bypass capacitor C, carries 
the AC around the nc milliammeter. The AC component 
produces a voltage drop Ex across resistor R which is 
proportional to this current. and this voltage is read by the 
electronic AC voltmeter/millivoltmeter M2 (VTVM or TVM) 

when switch Sis in position B. The low resistance of R (lfl) 

will in most instances be negligible with respect to Zx and 
can be ignored. Meter M2 thus becomes a sensitive direct­
reading AC milliammeter when Sis at B, since 

IAc = ExfR = Ex/1 = Ex UAc is in amps. and Ex is in volts). 
and milliamperes may be read directly from the voltage 
scales. When switch S is at position A. meter M2 reads the 
voltage Ez across the impedance device. From the two 
readings of this meter. the unknown impedance may be 
calculated on the basis of Zx = EAc!IAc• Since I Ac equals Ex, as 
has just been shown. Ex may be used in place of I AC· Then, 

(3-21) 

where E is RMS volts and Zx is in ohms. In this circuit, 
capacitor C2 isolates meter M2 from the DC component; this 
capacitor is not needed if M2 has a self-contained input 
capacitor. 

Test Procedure 
• Set up circuit as shown in Fig. 3-15. 
• Adjust DC supply for desired operating-point current 

( I oc> as indicated by DC milliammeter Ml. 
• Throw switch S to position B to read Ex and adjust AC 

supply for the RMS value of Ex equal to 0.1 I 0c- Record 
as Ex. 

• Throw switch S to position A and read voltage drop 
across impedance. Record as E z· 

• Using Eq. 3-21, calculate unknown impedance. 

Example 3-14. The impedance of a type 1N458A silicon 
diode is measured at a DC operating point of 100 mA ( I oc). The 
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alternating test-signal current must not exceed 0.1 Ioc; that is. 
it must not exceed 10 mA. This corresponds to Ex= 0.01V. 
When switch Sis at position B, Ex= 0.0lV. With Sat position A, 

Ez = 0.75V. Calculate the diode impedance at this 100 mA DC 

operating point. 
FromEq. 3-21: 

Zx = E7JEx 
= 0.75/0.01 
= 75,n 

3.24 COMMERCIAL IMPEDANCE INSTRUMENTS 

This section briefly describes several commercial 
instruments for the evaluation of impedance. This equipment 
is apart from impedance bridges, RF bridges, and Q meters, 
and the descriptions are arranged alphabetically by name of 
manufacturer. 

Clarke-Hess Model 273 ESR Meter. A digital instrument 
that automatically indicates equivalent series resistance ( 1 
mil to 20!1) of any type of capacitor from 0.005 µ.F to IF. The 
test frequency is 1 MHz. This instrument will also measure the 
internal resistance of a battery. 

General Radio Type 1602-B UHF Admittance Meter. This is 
a continuously tunable coaxial device which measures 
complex impedance and admittance. Its frequency range is 40 
MHz to 1.5 GHz, and it requires an external generator and 
external detector. 

The tuning dials and scale multipliers of this instrument 
permit readings directly in conductance G(reciprocal of 
resistance) from 0.01 to 4000 millimhos, and susceptance 
,B(reciprocal of reactance) from -4000 to +4000 millimhos. 
From these values, impedance may be calculated: 
Zx = \/(1/G) 2 + (1/,8) 2

. When a constant-impedance 
quarter-wave line is used with this instrument, the dials read 
directly in resistance and reactance of the impedance device 
under test. From these values impedance may be calculated: 
Zx = \/R2 + X2. Specified accuracy of the admittance meter 
for both conductance and susceptance is ±3% (plus 0.2 
millimho) for zero to 20 millimhos; ±3\IM%(plus 0.2 
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millimho) above 20 millimhos (where M is the scale 
multiplier). up to 1 GHz; and ±5% (plus 0.2 millimho) to 1.5 
GHz. 

General Radio Type 1684 Digital Impedance Meter. A 
digital instrument that separately indicates resistance ( 1 
milliohm to 2 megohms). capacitance (0.1 pF to 200 µ.F), and 
inductance (0.1 µ.H to 200H). Resistance accuracy is ±1% of 
reading. ±0.05% full scale, ± 10 milliohms. Capacitance 
accuracy is ±1% of reading, ±0.05% full scale, ±1 pF. 
Inductance accuracy is ±1% of reading, ±0.05% full scale, 
± 1 µ.H. Impedance may be calculated from these quantities: 
Zx = v'R2 + X2

• A self-contained generator supplies a 1000 Hz 
test signal. 

Hewlett-Packard Model 4815A RF Vector Impedance 
Meter. This device is a two-metered RF vector instrument, 
with one meter that indicates impedance in ohms and another 
that indicates the phase angle in degrees. The impedance 
coverage is 10 to lOOK in nine ranges. The phase coverage is 
zero to 360 degrees in two ranges. 

Impedance accuracy is specified as ±4% of full scale, 
±(f/30 MHz+ Z/25K)% of the reading (f = frequency in 
megahertz. and Z = impedance in ohms). 

The self-contained generator is continuously variable from 
500 kHz to 108 MHz in five bands. Frequency accuracy is ±2% 
of the setting. 

Industrial Model 1100 Impedance Comparator. This 
instrument comprises a four-arm bridge in which two arms 
are precisely matched and the other two arms contain the 
standard impedance Z5 and the unknown impedance Zx- When 
the two impedances match, the bridge is in balance and 
delivers no output. When, on the other hand, Zx is lower or 
higher than Z8, the bridge becomes unbalanced in proportion to 
the difference; it delivers a proportionate output signal which 
is amplified and presented to a phase discriminator. The latter 
deflects a meter which indicates the percentage by which Z x 

differs from Z5 and shows both magnitude and sign. 
This instrument is designed for operation at 1000 Hz, 10 

kHz. and 100 kHz. It accommodates resistors ( 30 to 10 
megohms). capacitors (30 pF to 50 µ.F). and inductors {10 µ.H 
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to l00H). Full-scale ranges of the meter are ±0.5%, 2%, 5%, 
and20%. 

Radiometer Model TRB11 Component Comparator. This 
instrument affords the direct comparison at 1000 Hz of 
resistors. capacitors, or inductors with a standard. 

Ranges provided are: resistance, lO!l to 10 megohms; 
capacitance, 20 pF to 20 µ,F; and inductance, 1 mH to l0H. 
When required, a DC polarizing voltage is available, variable 
from -50V to +20V. 

Identification of Manufacturers 

Clarke-Hess Communication Research Corp., 43 West 16th St., 
New York, N.Y. 10011. 

General Radio Company. 300 Baker Ave., Concord, Mass. 
01742. 

Hewlett-Packard Co., 195 Page Mill Rd., Palo Alto, Calif. 
94306. 

Industrial Test Equipment Co., 21 Yennicock Ave., Port 
Washington. N.Y. 11050. 

Radiometer., The London Company, 811 Sharon Drive, 
Cleveland. Ohio 44145. 

3.25 PRACTICE EXERCISES 

3.1. In a voltmeter/ammeter test setup the current is 10 mA 
and the voltage drop 3.lV. Calculate the unknown impedance 
in ohms. 
3.2. In a voltmeter/ammeter test setup the current is 0.76A 
and the voltage drop 1.5 mV. Calculate the unknown 
impedance in milliohms. 
3.3. In a voltmeter/ammeter test setup the current is lA and 
the voltage drop 0.25V. Calculate the unknown impedance in 
ohms. 
3.4. In a voltmeter/ammeter test setup the current is 500 µ,A 
and the voltage drop lV. Calculate the unknown impedance in 
ohms. 
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3.5. In an AC ammeter test setup a constant IV source is used 
with a 0-1 milliammeter having an internal resistance of 
5000. Calculate the unknown impedance in ohms when the 
current is 0.9 mA. 
3.6. In an AC ammeter test setup a constant 1 V source is used 
with a 0-1 ammeter having an internal resistance of 0.213H. 
Calculate the unknown impedance in ohms when the current is 
0.5A. 
3.7. In an AC ammeter test setup a constant lOV source is used 
with a 0-10 milliammeter having an internal resistance of 
16500. Calculate the unknown impedance in ohms when the 
current is 5.6 mA. 
3.8. In an AC ammeter test setup a constant 6.3V source is used 
with a 0-50 milliammeter having an internal resistance of 
800. Calculate the unknown impedance in ohms when the 
current is 40 mA. 
3.9. In an AC ammeter test setup a constant 12.6V source is 
used with a 0-100 microammeter having an internal 
resistance of 34000. Calculate the unknown impedance in 
kilohms when the current is 75 µA 
3.10. In an AC ammeter test setup a constant l0V source is 
used with a 0-300 microammeter having an internal 
resistance of 18000. Calculate the unknown impedance in 
kilohms when the current is 165 µA 
3.11. In a voltmeter test setup, using a 100 standard resistor. 
the applied voltage is 6.3V and the voltage drop is l.lV. 
Calculate the unknown impedance in ohms. 
3.12. In a voltmeter test setup using a 50 standard resistor. 
the applied voltage is l0V and the voltage drop is 9.25V. 
Calculate the unknown impedance in ohms. 
3.13. In a voltmeter test setup using a 100 standard resistor, 
the applied voltage is 0.lV and the voltage drop is 33 mV. 
Claculate the unknown impedance in ohms. 
3.14. In a voltmeter test setup using a 250 standard resistor, 
the applied voltage is 150 mV and the voltage drop is 2 mV. 
Calculate the unknown impedance in ohms. 
3.14. In a voltmeter test setup using a lf! standard resistor, 
the applied voltage is 7.5V and the voltage drop is 0.lV. 
Calculate the unknown impedance in ohms. 
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3.16. In a voltmeter test setup using a Hl standard resistor, 
the applied voltage is l0V and the voltage drop is 9.8V. 
Calculate the unknown impedance in ohms. 
3.17. In a substitution-type circuit using a comparison 
resistance of 100, the output voltage is set initially to 99 mV by 
setting the input voltage to l0V. With the unknown impedance 
in place, the input voltage must be reset to 1.09V to restore the 
99 mV output. Calculate the unknown impedance in ohms. 
3.18. With a certain substitution-type circuit the output voltage 
is 0.25V. The initial input voltage is 4.5V and the final input 
voltage is IV. How much higher is the unknown impedance 
than the comparison (standard) impedance? 
3.19. A certain 250 pF capacitor has a Q at 500 kHz of 1500. 
Calculate the AC resistance in milliohms. 
3.20. A certain 0.1 µ,F capacitor has a Q at 100 kHz of 50. 
Calculate the AC resistance in ohms. 
3.21. A certain 1 mH inductor has a Q at 1 MHz of 125. 
Calculate the AC resistance in ohms. 
3.22. A certain 20H inductor has a Q at 1 kHz of 139.6. Calculate 
the AC resistance in ohms. 
3.23. A certain 50 pF capacitor has a 1000 Hz dissipation factor 
of 0.0005. Calculate the AC resistance in ohms. 
3.24. A certain 8 µ,F capacitor has a 120 Hz dissipation factor 
of 0.15. Calculate the AC resistance in ohms. 
3.25. With a 3000 transmission-line setup as in Fig. 3-7(a), the 
sending-end current is found to be 10 mA and the receiving-end 
current is 3.3 mA. Calculate the unknown impedance in ohms. 
3.26. With a 750 transmission-line setup as in Fig. 3-7(a), the 
sending-end current is found to be 1.5 mA and the 
receiving-end current is 1.8 mA. Calculate the unknown 
impedance in ohms. 
3.27. A 500 slotted line is employed in an RF impedance 
measurement. The voltage at a maximum point is 10 m V and 
at the adjacent minimum point is 2.2 mV. Calculate the 
unknown impedance in ohms. 
3.28. A 500 slotted line is employed in an RF impedance 
measurement. The maxima are 0.13V and the minima are 
0.09V. Calculate the unknown impedance in ohms. 
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3.29. An unknown impedance is connected to a 600fl line and 
the SWR is found to be 1.05. Calculate the unknown impedance 
inohms. 
3.30. With an unknown impedance connected to a 300fl line, 
what SWR value must be obtained for the unknown impedance 
to be 800fl? 
3.31. When a transmission line is terminated in its 
characteristic impedance, what is the resulting SWR value? 
3.32. A certain iron-core choke is tested with a 400 Hz Hay 
bridge (see Fig. 3-14, Ch. 4). At balance R1 = 1255fl, R2 = 52fl, 
R1 = 1000n, and C2 = 1 µ.F. Calculate the choke's (a) 
inductance Lx in henrys, (b) resistance Rx in ohms, and (c) 
impedance Zx in ohms. 
3.33. A certain high-current, low-inductance iron-core choke is 
tested with a 1 kHz Hay bridge (see Fig. 3-14, Ch. 3). At 
balance R1 = 950fl, R2 = 32fl, R1 = 100n, and C2 = 0.01 µ.F. 
Calculate the choke's (a) inductance Lx in millihenrys, (b) 
resistance Rx in milliohms, and (c) impedance Zx in ohms. 

( Correct answers are to be found in Appendix D.) 
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Inductance 

Inductance is often an important constituent of impedance. 
For that reason and because many experimenters wind their 
own inductors and transformers or modify commercial ones, 
this chapter is included for working information on 
inductance. Parallel information on capacitance also might be 
offered, but this would seem superfluous since it is a rare 
experimenter indeed who would have occasion to build his own 
capacitor or modify a manufactured one. 

4.1 NATURE OF SELF-INDUCTANCE 

A current flowing in a coil of wire causes a magnetic field 
to build up about the coil with energy being stored in this field. 
After the voltage first is applied, the current builds up ( the 
magnetic field expands) slowly to its maximum value, since 
the increase is opposed by a counter emf which is induced in 
the coil and has a polarity opposite to that of the applied 
voltage. When the applied voltage subsequently is removed, 
the magnetic field collapses into the coil, inducing a current 
which flows out of the coil in the direction opposite to that of 
the original current and returns energy to the external circuit. 

When the current is alternating, the amount of opposition 
the coil (inductor) offers to the current is directly proportional 
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to the frequency and to a property which is aptly described as 
electrical inertia. since it is this property that causes the coil 
to oppose any rapid increase or decrease in current. This 
apparent inertia is called self-inductance or just inductance. 
Inductance is measured in henrys ( H) . An inductor has a 
self-inductance of one henry when a lV drop is produced 
across it by a current change of lA per second. Because the 
henry is a large unit for some applications. inductance is also 
measured in millihenrys ( thousandths of henrys. abbreviated 
mH). microhenrys ( millionths of henrys. abbreviated µ,H). 
and sometimes picohenrys ( millionths of microhenrys. 
abbreviated pH). Table 4-1 shows the relations. between these 
units of inductance. 

All electrical conductors possess inductance; however. 
winding a length of wire into a coil greatly increases the 
inductance ( because this concentrates the magnetic field) so 
that a desired number of henrys can be obtained in a small 
space. The inductance of a simple coil depends upon the length 
and diameter of the coil and the number of turns of wire, as 
will be shown below. While most inductors are coils of some 
kind. straight wires also possess inductance; and while this 
inductance is small-as is explained in Sec. 4.8--it must be 
taken into account in circuits where even this small amount 
can generate a significant high-frequency impedance. 

4.2 CORELESS SINGLE-LA YER SOLENOID 

A common type of inductor, the single-layer solenoid, 
consists of a coil of wire that is wound with the turns of wire all 
in one layer and without a magnetic core (Fig. 4-1) . Few-turn 
inductors of this type can be self-supporting, that is, 
air-wound, as illustrated in Fig. 4-1 (a) ; coils of many turns are 
wound for mechanical support on a cylindrical dielectric form, 

Table 4-1. Conversion Factors for Various Common Inductance Units. 

150 

H = WmH = 106 µ,H = 1012 pH 
mH = 10-~ H = 10~ µ,H = 109 pH 
µ,H = 10-6 H = 10 ~mH = 106 pH 
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as seen in Fig. 4-1 (bl, or are held together by cement. The 
single-layer construction is suitable for relatively small coils; 
these units are rated in microhenrys. 

For this inductor, the inductance L may be calculated: 

( 4-1) 

where d is the diameter of winding in inches, l the length of 
winding in inches, and N the number of turns. 
From this relationship, the required number of turns for a 
desired inductance is: 

N = ✓ L ( 3d + 90 
0.2d2 

(4-2) 

Example 4-1.A certain single-layer solenoid consists of 115 
turns of No. 32 enameled wire close wound on a form 0.75 inch 

D 
___ j__ 

(a) SELF-SUPPORTING 

(b) WOUND ON DIELECTRIC FORM 

Fig. 4·1. The common single-layer solenoid with turns of wire all on one 
layer without a magnetic core: (a) self-supporting, (b) wound on a dielec­
tric form. 
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in diameter. The winding length is one inch. Calculate the 
inductance in microhenrys. 

Here. N = 115, l = 1, and d = 0.75. From Eq. 4-1: 

L= 
0.2 X 0.752 X 1152 

(3 X 0.75) + (9 X 1) 

0.2 X 0.5625 X 13,225 
2.25 + 9 

= 1487.81/11.25 
= 132.2 µ.H 

Example 4-2. A 20 µ.H single-layer solenoid must be wound 
in the one-inch winding space of a certain inch-diameter form. 
How many turns will be required? 

Here, L = 20, l = 1, and d = 1. From Eq. 4-2: 

N = ✓ 20((3 X 1) + (9 X 1)) 

0.2(12) 

= ✓ 20(3 + 9) 

0.2 

= V240/0.2 
=~ 
= 34.6turns 

When turns are added to an existing_ single-layer solenoid 
and the diameter remains unchanged, the value of the 
resulting increased inductance depends upon whether the new 
turns increase the length of the original inductor or the length 
remains the same as before ( by squeezing all the turns into the 
old length). The same applies when turns are removed from a 
coil to decrease its inductance. 

Same Length 

If the length of the coil remains constant, the inductance 
increases as the square of the turns. That is, if the turns are 
multiplied n times, the inductance increases n2 times. 
Conversely, if turns are divided by n, inductance is divided by 
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1/n2
. For example. doubling the number of turns multiplies the 

inductance by four. the square of two; tripling the number of 
turns multiplies the inductance by nine. the square of three; 
etc. Thus. from Eq. 4-1. a 115-turn coil (where l = 1 inch and 
d = 0.75 inch) has an inductance of 132.2 µ,H. If the number of 
turns is doubled to 230, by using thinner wire in the same 
winding length. the inductance becomes 529 µ,H, which is four 
times the original value. Similarly, if the number of turns is 
tripled in the same winding length, L becomes 1190.25 µ,H, 
which is nine times the original value. Conversely, if the 
number of turns is halved to 57.5 in the same winding length, L 
becomes 33.06 µ,H. one-fourth of the original value; and if the 
number of turns is reduced one-third to 38.3 in the same 
winding length. L becomes 14.7 µ,H, one-ninth of the original 
value. 

Increased or Decreased Length 
In a great many cases, changing the number of turns in a 

coil will alter its length. If the length increases when the 
number of turns increases, l and N increase while d remains 
constant. The original inductance then is multiplied by a factor 
slightly greater than the multiple. For example, consider the 
115-turn coil in which l = 1 inch. d = 0.75 inch, and L = 132.2 
µ,H. If the turns are doubled at the same turns-per-inch rate, l 
becomes 2 inches and L becomes 293.89 µ,H (2.22 times the 
original value); and. if the turns are tripled, l becomes 3 
inches and L becomes 457.79 µ,H (3.46 times the original 
value). Conversely, if the length of the coil decreases when the 
number of turns is decreased and the turns are halved to 57.5. l 
becomes 0.5 inch. and L becomes 55.1 µ,H (approximately 0.417 
times, or slightly less than half the original value); and, if the 
turns are reduced to one-third of the original, or 38.3. l 
becomes 0.33 inch, and L becomes 31.34 µ,H (0.24 times, or 
somewhat less than one-third the original value). Thus, in this 
variable-length situation, doubling the turns multiplies 
inductance by 2+. tripling turns multiplies inductance by 3+, 
halving turns divides inductance by 2+. and reducing turns to 
one-third divides inductance by almost 4+. 

From these examples. it should be clear that for a constant 
diameter a larger change in inductance is obtained in a 
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single-layer coil when added or subtracted turns do not change 
coil length as compared to when the alteration does change 
length. 

It is a matter of interest that in a single-layer solenoid 
without magnetic core, the maximum inductance that can be 
obtained with a given length of wire results when the ratio of 
the radius to length of the coil is approximately 1.25. 

4.3 CORELESS MULTILAYER SOLENOID 
High inductance often is obtained by winding a solenoid 

coil in several layers on a bobbin or spool of dielectric material 
( Fig. 4-2). The inductance of this coil depends upon length l of 
the winding, diameter d of the coil, radial depth DR of the coil, 
and number of turns N: 

(4-3) 

where L is the inductance in microhenrys, d the diameter of 
coil in inches, DR = the radial depth of coil in inches, l the 
length of winding in inches, and N the number of turns. 

Example 4-3. A certain 1000-turn multilayer solenoid 
wound on a plastic bobbin has a diameter of 1.25 inches, 
winding length of 0.75 inch, and radial depth of 0.5 inch. 
Calculate the inductance in millihenrys. 

Here, N = 1000, d = 1.25, l = 0.75, ana dR = 0.5. From 
Eq. 4-3: 
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L = 0.2 X 1.252 X 10002
/ 6 (3 X 1.25) + (9 X 0.75) + (10 X 0.5) 

0.2 X 1.5625 X 10 

= 312,500/15.5 
= 20,161 µ,H 
= 20.16mH 

Because of the complicated cumulative effects of the 
dimensions of this coil, the inductance changes rapidly with 
variations in the number of turns. For a given wire size, the 
number of turns per layer remains the same and so does the 
winding length, but diameter d and radial depth dR vary. 
Thus, if the number of turns given in the foregoing example is 
halved to 500, diameter dis automatically halved to 0.625 inch, 
and radial depth DR to 0.25 inch. From Eq. 4-3, the new 
inductance then is 1755.62 µ,H ( 1. 75 mH), approximately 8. 7% 
of the original value. 

4.4 COIL WITH STANDARD CORE 

The addition of a core of suitable magnetic material (such 
as iron, powdered iron, ferrite, or nickel alloy) to a coil (Fig. 
4-3) increases the coil's inductance, the inductance ideally, if 
not always so neatly in practice, being multiplied by a number 
that designates the permeability µ, of the core material. The 
permeability of one grade of iron is approximately 2000. 
Special alloys exhibit very high values; for example, the 
permeability of Permalloy is as high as 100,000. 

The inductance of a coil with magnetic core is given: 

4.06N2 µ,A 
L=-----

0.27(108)!) (4-4) 

where L is the inductance in henrys, l the total length of core in 
inches, A the cross-sectional area of core in square inches, N 
the number of turns, and µ, the permeability of core material. 

Example 4-4. A 2500-turn coil is wound on a three-inch-long 
alloy core ( µ, = 5000) having a cross-sectional area of 0.25 
square inch. Calculate the inductance in henrys. 
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(b) CLOSED CORE 

Fig. 4-3. Coils with a magnetic core: (a) open core, (b) closed core. 

Here, N = 2500, µ, = 5000, and l = 3. From Eq. 4-4: 

L = 4.06 X 25002 X 5000 X 0.25/1.27 X 108 X 3 
= 4.06 X 6,250,000 X 5000 X 0.25/3.81 X 108 

= 3.1718 X 10!0 
= 3.81 X 108 

= 83.25H 

For the same core ( material, length, and cross section), 
the inductance varies as the square of the number of turns. 
That is, if the turns are multiplied n times, the inductance 
increases n2 times. Conversely, if the turns are divided by n, 
the inductance is divided by 1/n2

• If the number of turns in the 
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foregoing example, for instance, is doubled to 5000, the 
inductance becomes 333H. four times the original value of 
83.25H. And if the turns are halved to 1250, the inductance 
becomes 20.8H, one-fourth of the original value. 

4.5 COIL WITH TOROIDAL CORE 

A toroid is an inductor consisting of a coil wound on a 
toroid (ring- or doughnut-shaped core) of suitable magnetic 
material. The toroid has the advantages of small size, high Q, 
compactness, and-above all-self-shielding. Also, if the core 
is made of ferrite or some other special magnetic material, the 
inductor can be operated at frequencies of several hundred 
megahertz. Toroidal construction is illustrated by Fig. 4-4. 

The inductance of the toroid is governed by the number of 
turns in the coil; the permeability of the core material; and 
the height, inside diameter, and outside diameter of the core: 

( 4-5 l 

where L is the inductance in microhenrys, N the number of 
turns, µ, the permeability of core material, h the height of the 
core in inches, OD the outside diameter of the core in inches, 
and ID the inside diameter of the core in inches. 

Example 4-5. 50 turns are wound on a toroid having an 
outside diameter of 0.75 inch, inside diameter of 0.25 inch, 

(a) STRUCTURE 

I I 
~h~ 
I I 

(b) CROSS SECTION 

Fig. 4-4. Illustration of coils with toroidal cores showing (a) structure and 
(b) the cross section. 
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height of 0.1875 inch, and permeability of 350. Calculate the 
inductance of this inductor in millihenrys. 

Here, N = 50, µ, = 350, h = 0.1875, OD = 0.75, and 
ID = 0.25. From Eq. 4-5: 

L = (0.11684 X 502 X 350 X 0.1875)log 10(0.75/0.25) 
= (0.11684 X 2500 X 350 X 0.1875) log 1ir"3 
= 19170(0.47712) 
= 9146 µ,H 
= 9.146mH 

Adding or removing turns in a toroid increases or 
decreases the inductance, respectively, as the square of the 
number of turns. Thus, if the turns on the same core are 
multiplied n times, the inductance increases n2 times. 
Conversely, if the turns are divided by n, the inductance is 
divided by l/n2

• This means that doubling the turns quadruples 
the inductance, and removing half the turns reduces the 
inductance to one-quarter of the original value. If the 
inductance is to be doubled, 1.41 times as many turns are 
required (that is, turns must be multiplied by \/2). 

4.6 EFFECT OF DIRECT CURRENT 

The inductance of most core-type inductors is affected to 
some extent by DC flowing through the coil simultaneously 
with AC. This is because the magnetic properties of the core 
(especially saturation) are altered temporarily by the DC. For 
that reason, the inductance will have one value with the DC 

flowing and another without the DC. 

The inductance of a core-type coil that, like a filter choke 
for a power supply, is intended to carry DC must always be 
measured with the recommended direct current applied (see 
Sec. 3.19. Ch. 3 for further details). It is well to remember also 
that some inductors, which carry no DC in normal use, may 
exhibit core saturation and the consequent inductance change 
if the AC signal amplitude is excessive (see Sec. 3.1, item 8, in 
Ch. 3). 

4.7 MUTUAL INDUCTANCE 

When the magnetic fields of coils ( either separate or 
wound on the same core) interact, an inductive effect is shared 
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by them. This effect is mutual inductance (Ml. Mutual 
inductance, like self-inductance. is measured in henrys and in 
submultiples of the henry ( see Table 4-1), and in 
transformers-where it is of chief interest-is evaluated as 
follows: 

M = 4.06N1N2 µ,A 
= 1.27 X 108 X l 

'(4-6) 

where M is the mutual inductance in henrys, N I the number of 
primary turns, N 2 the number of secondary turns, µ, the 
permeability of core material, A the cross-sectional area of 
core in square inches, and l the total length of core in inches. 

Example 4-6. A certain 2: 1 transformer is wound on a core 
having a total length of 8 inches, a cross-sectional area of 1 
square inch, and a permeability of 850. The primary coil has 
1000 turns and the secondary coil 2000 turns. Calculate the 
mutual inductance in henrys between the coils. 

Here, N1 = 1000, N2 = 2000, µ, = 850, A = 1, and l = 8. 
From Eq. 4-6: 

M = 4.06 X 1000 X 2000 X 850 X 1 
= 1.27 X 108 X 8 
= 6.902 X 109 = 1.016 X 109 

= 6.79H 

4.8 INDUCTANCE OF STRAIGHT, ROUND WIRE 

It was mentioned in Sec. 4.1 that even a straight wire 
possesses inductance. In a very long line this inductance can 
have a surprisingly significant value. In shorter lengths, 
straight wires exhibit small inductance, but even this value 
can be important at very high radio frequencies where a tiny 
inductance and capacitance can form a resonant circuit. 

The inductance of a long, straight, round wire ( that is, 
where the length is at least 1000 times the diameter) is: 

L = 0.00508 l [In (4l/d) - 0.75] (4-7) 

where L is the inductance in microhenrys, l the length in 
inches, d the diameter in inches, and In the natural logarithm. 
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Example 4-7. Calculate the inductance of a straight 10 in. 
length of No. 24 wire (wire tables give the diameter as 20.1 
mils. that is, 0.0201 inch). 

Here, l = 10, andd = 0.0201. From Eq. 4-7: 

L = 0.00508 (10) [ln (4 x 10)/0.0201 - 0.75] 
= 0.00508 (10) (Zn40/0.00201 - 0.75) 
= 0.0508 [(ln 1990) - 0.75] 
= 0.0508 (7.596 - 0.75) 

0.0508 (6.846) 
= 0.348 µ.H 

This is a small amount of inductance; nevertheless. the 
reactance of this length of wire is 218.711 at 100 MHz, enough to 
produce a voltage drop of 2.19V if a 100 MHz current of 10 mA 
flows through this wire. By comparison, a 10 in. length of much 
thicker No. 12 wire ( diameter = 80.81 mils) has an inductance 
of 0.277 µ.H and a 100 MHz reactance of 17411. From these 
facts. it can be seen that even when resistance is neglected, the 
impedance of short leads can be substantial at very high radio 
frequencies. 

4.9 IMPEDANCE OF INDUCTOR 

The impedance of an inductor Z = \/R2 + wL2 (see Sec. 
2.2. Ch. 2). In an air-core coil operated at 1 MHz or lower, the 
resistance R is entirely the resistance of the wire in the coil. At 
high radio frequencies, however. the resistance R is the 
combined in-phase components due to wire resistance, skin 
effect. and other losses. In core-type inductors, core losses 
combine with the wire resistance to determine the full value of 
R. 

Figure 4-5(a) gives an equivalent circuit of a core-type 
inductor, with losses shown as series resistance components. 
Here, L is the inductance of the coil, Re the resistance of the 
wire in the coil, RE the eddy-current losses in the core, and RH 
the hysteresis losses in the core. This can be simplified to Fig. 
4-5(b) in which REQ is the equivalent resistance corresponding 
to Re, RE, and RH together. 
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(a) 

(b) 

Fig. 4-5. Equivalent circuits of core-type inductors with: (a) losses shown 
as series-resistant components, and (b) losses simplified to the equivalent 
resistance. 

4.10 BASIC INDUCTOR CIRCUITS 

Like resistors and capacitors, inductors may be connected 
together for lower or higher total inductance. Figure 4-6 shows 
basic inductor circuits. 

When inductors are connected in series, as in Fig. 4-7( a), 
and positioned so that their fields do not interact (that is, there 
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(b) PARALLEL CONNECTION 

Fig. 4-6. Basic inductor circuits connected in (a) series and (b) parallel. 
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is no mutual inductance between them), the total inductance 
is: 

( 4-8) 

Example 4-8. One each of 20H, 5H, lOH, and 18H inductors 
are connected in series. Calculate the total inductance. 

From Eq. 4-8: 

LT = 20 + 5 + 10 + 18 
= 53H 

When inductors are connected in parallel, as in Fig. 4-6(b), 
and positioned so that their fields do not interact (no mutual 
inductance between them), the equivalent inductance is: 

1 
LEQ = ----------

1/Ll + l/L2 + l/L3+ ... l/LN ( 4-9) 

Example 4-9. One each of 20H, lOH, 250 mH, and lH 
inductors are connected in parallel. Calculate the equivalent 
inductance. 

From Eq. 4-9. 

= 

1 

1/20 + 1/10 + 1/0.25 + 1/1 

1 

0.05 + 0.1 + 4 + 1 

= 1/5.15 
= 0.1942H 

If only two inductors are connected in parallel, the 
equation for equivalent inductance is simplified to: 

(4-10) 

Example 4-10. A lOH and 5H inductor are connected in 
parallel. Calculate the equivalent inductance 

From Eq. 4-10: 

10 X 5 
LEQ = 

10 + 5 
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= 50/15 
= 3.33H 

4.11 PRACTICE EXERCISES 

4.1. Calculate the inductance in microhenrys of a 1 in. 
diameter single-layer solenoid having 30 turns wound in a 
space of one inch. 
4.2. How many turns will be required for a 100 JLH single-layer 
solenoid having a length of 2 in. and diameter of 1.5 in.? 
4.3. The turns of a 50 JLH single-layer solenoid are doubled 
without increasing the length of the coil. What is the final 
inductance value? 
4.4. Sixty turns are removed from a certain 90-turn 
single-layer solenoid. The final inductance is what percentage 
of the original inductance? 
4.5. Calculate the inductance in millihenrys of a multilayer 
solenoid having 450 turns. diameter of 1 inch. winding length of 
0.5 inch. and radial depth of 0.875 inch. 
4.6. Does doubling the number of turns in a multilayer 
solenoid quadruple the inductance? 
4.7. A 350-turn coil is wound on a core having 3.25 inches 
total length. 0.25 inch cross-sectional area, and a permeability 
of 800. Calculate the inductance in henrys. 
4.8. If the core in exercise 4. 7 is replaced with one of the same 
length and cross-sectional area but with different 
permeability. what must the new permeability be in order to 
increase the inductance to approximately 4.82H? 
4.9. 100 turns are wound on a toroid having the following 
specifications: OD = one inch, ID = 0.625 inch, h = 0.1875 inch, 
JL = 400. Calculate the inductance in millihenrys. 
4.10. If the number of turns is tripled in the coil described in 
exercise 4.9. what will be the final inductance in microhenrys? 
4.11. In a certain 1:1 coupling transformer, the primary and 
secondary windings have 500 turns each and they are wound on 
a core having a total length of nine inches, cross-sectional area 
of 0.39 square inches. and permeability of 2500. Calculate the 
mutual inductance in henrys. 
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4.12. The diameter of No. 36 wire is 5 mils ( 0.005 in.). Calculate 
the inductance in microhenrys of a straight 2 in. length of this 
wire. 
4.13. Calculate the 50 MHz reactance in ohms of the wire in 
exercise 4.13. 
4.14. One each 50 mH, 1000 µH. and 0.01H inductors are 
connected in series. Calculate the total inductance in 
millihenrys. 
4.15. One each 10 mH, 1500 µ,H, and 1H inductors are 
connected in parallel. Calculate the equivalent inductance in 
henrys. 

( Correct answers are to be found in Appendix D. l 
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3/ General Exercises 

5.1. Impedance has the following relation to reactance and 
resistance: (a) numerical sum of Rand X, (b) algebraic sum, 
(c) vector sum, (d) square of sum. 
5.2. When two identical impedances are connected in series 
the total impedance is the: (a) sum of the two, (b) difference 
between the two, ( c) reciprocal of the two. 
5.3. When two identical impedances are connected in parallel 
the equivalent impedance is (a) higher than either one, (b) 
lower than either, ( c) the square root of the sum of the two. 
5.4. An impedance consists of a reactance and resistance; 
however, a resistance alone is termed an impedance (a) 
always, (bl only at low frequencies, (c) only below 1000!1, (d) 
only at radio frequencies. 
5.5. When a resistance and a reactance in series each have the 
same value the resulting impedance is equal to (a) either the 
resistance or the reactance, (b) square root of resistance or 
reactance, (c) sum of resistance and reactance, (d) V2times 
the resistance or the reactance. 
5.6. At low frequencies the resistance component in the 
impedance of an inductor is (a) resistance of wire in the coil, 
( b) skin effect, ( c) quadrature losses. 
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5.7. At high radio frequencies the resistance component in the 
impedance of an inductor is due to (a) resistance of wire in the 
coil. (b) skin effect, (c) in-phase dielectric losses, (d) 
resistance of fixtures, (e) all of these. 
5.8. The current through an impedance is (a) inversely 
proportional to the voltage, (b) directly proportional to the 
voltage. (c) neither of these. 
5.9. The voltage drop across an impedance is (a) inversely 
proportional to the current, (b) directly proportional to the 
current, ( c) neither of these. 
5.10. An impedance is (a) inversely proportional to current 
flowing through it, ( b) directly proportional to current. ( c) 
neither of these. 
5.11. If the phase angle is known an impedance may be 
resolved into its Rand X components by means of (a) vector 
diagram, (b) trigonometry, (c) either of these. 
5.12. In an impedance device the phase angle between X and R 
is equal to (a) XR, (b) tan X/R, (c) sin R/X, (d) cos R/X, (e) 
tan- 1X/R, (f) sin- 1X/R. 
5.13. For an inductive reactance, doubling the frequency (a) 
doubles the reactance, (b) halves the reactance, ( c) multiplies 
reactance by V2, (d) multiplies reactance by 1.5. 
5.14. For a capacitive reactance, doubling the frequency (a) 
doubles the reactance, (b) halves the reactance, (c) squares 
the reactance, ( d) divides the reactance by \/2. 
5.15. In a series RC circuit in which Xe= R, the phase angle in 
degrees is (a) 30, (b) 15, (c) 20, (d) 75, (e) 45. 
5.16. In a resonant circuit containing XL and Xe, XL equals (a) 
zero, (b) twice Xe, (c) Xe, (d) 0.5Xe, (e) none of these. 
5.17. In a circuit containing XL and Xe the combined reactance 
is (a) X1,-Xe, (b) XL+ Xe, (c) neither of these. 
5.18. The impedance at the center of a horizontal half-wave 
antenna high above the ground is approximately (a) 48!1, (b) 
73!1, (C) 600!1, (d) 75!1. 
5.19. When a generator drives a load the load impedance is (a) 
in series with the generator impedance, ( b) in parallel with the 
generator impedance, ( c) both of these. 
5.20. When a load impedance Z1. is transformer coupled the 
reflected impedance is equal to Z L times (a) turns ratio, ( b) 0. 5 
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turns ratio, (c) square of turns ratio. (d) square root of turns 
ratio. 
5.21. When a generator (impedance = Zcl drives a load 
(impedance= Z1,l maximum power is transferred when (a) 
Z1.>Zc;, (b) ZL = l0ZG• (C) ZL = 0.5ZG, (d) ZL < ZG. 
5.22. The impedance ratio of a transformer equals (a) turns 
ratio. (b) square root of turns ratio, (c) 0.5 turns ratio, (d) 
square of turns ratio. 
5.23. The turns ratio of a transformer equals (a) impedance 
ratio. (bl square root of impedance ratio, (c) 0.5 impedance 
ratio. ( d) square of impedance ratio. 
5.24. The input impedance of a quarter-wave line is (a) 
directly proportional to the square of the characteristic 
impedance of the line, ( b) inversely proportional to the square 
of the characteristic impedance, (c) neither of these. 
5.25. Where z,N and ZouT are the input and output impedances 
of a quarter-wave line the characteristic impedance of the line 
equals (a) Z1~ouT• (b) ZIN/ZouT• (c) ZINZou/, (d) ZouT - Z,N 

(el YZ1~ouT· 
5.26. The characteristic impedance of a solid-dielectric line is 
(a) higher than that of an open-air line, (b) lower than that of 
an open-air line, ( c) equal to that of an open-air line. 
5.27. In an impedance-matching cathode follower the output 
impedance is (a) lower than the cathode resistance, (b) higher 
than the cathode resistance, ( c) equal to the cathode 
resistance. 
5.28. In an impedance-matching FET source follower the 
output impedance is (a) lower than the source resistance, (b) 
higher than the source resistance, ( c) equal to the source 
resistance. 
5.29. Attenuation in nepers is (a) lower than decibels, (b) 
higher than decibels, ( c) equal to decibels. 
5.30. Power factor equals (a) sin 8, (b) tan 8, (c) cos 8, (d) 
none of these. 
5.31. Power factor equals (a) Z/R, (b) R/Z, (cl neither of 
these. 
5.32. Figure of merit or Q equals (a) R/X., (b) VRJx, (c) 
R/X2

• (d) X/R, (e) none of these. 
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5.33. The voltage drop across an AC ammeter equals (a) ERM, 
(b) E/RM, (c)JERM, (d) E-RM. 
5.34. In the resistance/balance method of impedance 
measurement the ratio of resistance voltage drop to 
impedance voltage drop is (a) 2, (b) 0.5, (c) 0.1, (d) 4, (e) l. 

5.35. In the standing-wave method of measuring impedance, 
the unknown impedance is found by multiplying the SWR by the 
(a) characteristic impedance of the line, (b) input impedance 
of the line, (c) output impedance of the line, (d) product of 
input and output impedance of the line. 
5.36. When the load impedance equals the generator 
impedance the load voltage is equal to (a) the open-circuit 
voltage of the generator, (b) one-tenth of the open-circuit 
voltage of the generator, (c) half the open-circuit voltage of 
the generator, (d) none of these. 
5.37. The reciprocal of impedance is called (a) susceptance, 
(b) reluctance, (c) conductance, (d) admittance, (e) 
remittance. 
5.38. The reciprocal of resistance is called (a) susceptance, 
(b) reluctance, (c) conductance, (d) admittance, (e) 
remittance. 
5.39. The reciprocal of reactance is called (a) susceptance, 
(b) conductance, (c) reluctivity, (d) admittivity, (e) none of 
these. 
5.40. Impedance of one gigohm is (a) one million ohms, (b) ten 
million ohms, ( c) one thousand megohms, ( d) ten billion ohms. 
5.41. Impedance of one teraohm is (a) 10120, (b) 10 110, (c) 
10180, ( d) 1020!1. 
5.42. Impedance of one megohm is (a) 10,000K, (b) 1000K, (c) 
lOOK, ( d) none of these. 
5.43. Impedance of one milliohm is (a) 0.10 megohm; (b) 0.1 
kilohm, ( c) 0.100 ohm, ( d) 0.010 ( e) 0.0010. 
5.44. Impedance of one kilohm is (a) 0.1 megohm, (b) 0.2 
megohm, (c) 0.01 megohm, (d) 0.001 megohm, (e) none of 
these. 
5.45. Period is the time duration of one cycle? 
5.46. Numerically, is period 0.1/f? 
5.47. In a sine-wave cycle, 0 = 21rft? 
5.48. Does angular velocity equal 6.28 times the frequency? 
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5.49. Does one radian equal 58 degrees? 
5.50. In a square wave are maximum value, RMS value, and 
instantaneous value equal? 
5.51. In an impedance measurement made with a distorted 
wave can the error be as high as the percentage of distortion? 
5.52. Is phase angle equal to the tangent of the 
reactance-to-resistance ratio? 
5.53. Does pure resistance introduce only a 1 ° phase shift? 
5.54. Does pure reactance introduce a 90° phase shift? 
5.55. At the same frequency, are inductive reactance and 
capacitive reactance always equal? 
5.56. Does capacitive reactance introduce lagging phase shift? 
5.57. In a resonant circuit containing R, C, and L, does the 
resistance (R) disappear? 
5.58. As frequency decreases, inductive reactance decreases 
and capacitive reactance increases? 
5.59. When inductive reactance and capacitive reactance are 
both present in a circuit, the combined reactance is equal to 
XL - Xe? 
5.60. Impedance is the sum of the squares of resistance and 
reactance? 
5.61. Do series-impedance circuits and parallel-impedance 
circuits have different equations for total impedance? 
5.62. The horizontal (resistance) component of an impedance 
is equal to Z sin O? 
5.63. Are standing waves, usable for impedance 
measurement, present on a transmission line that is 
terminated in its characteristic impedance? 
5.64. Maximum power is transferred when a generator is 
terminated in its internal impedance? 
5.65. In most cases, the output impedance of a device appears 
as a series impedance? 
5.66. In an impedance-matching transformer the turns ratio 
equals the square of the impedance ratio? 
5.67. The length of an impedance-measuring transmission line 
can be any even multiple of a quarter-wavelength? 
5.68. A suitable section of transmission line is usable as a 
linear transformer for RF impedance matching? 
5.69. Would an advantage of an active follower (tube or 
transistor) be its ability to provide power gain? 
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5.70. A resistor-pad attenuator matches impedance while 
providing a desired amount of attenuation? 
5.71. In conjugate impedance. X has a value common with that 
in another impedance. but a different resistance value is 
encountered. Is this statement true or false? 
5.72. Two impedances. Z1 and z~. are reciprocal when 
Z1Z:l = Z~? 
5.73. Frequencies at which the driving-point imvedance of a 
two-terminal reactive network is zero are termed poles of 
impedance? 
5.74. Is power factor equal to the cosine of the phase angle? 
5.75. Figure of merit: or Q is the ratio of reactance to 
resistance? 
5. 76. The ammeter method is convenient for measuring 
impedance. since the internal resistance of the meter has no 
effect? 
5.77. Are transmission-line methods of measuring RF 

impedance limited to those high frequencies at which the 
physical length of the line is not prohibitive? 
5.78. Whereas the slotted line is a recognized tool for 
microwave measurements, simpler SWR meters are 
unacceptable for RF impedance measurements. Is this 
statement true or false? 
5.79. When an amplifier drives a load impedance equal to the 
output impedance of the amplifier. is the load voltage one-half 
of the open-circuit (no-load) output voltage of the amplifier? 
5.80. The impedance of an iron-core filter choke should be 
measured with the rated direct current flowing through the 
choke? 
5.81. True impedance is always a frequency-dependent 
property? 
5.82. Impedance varies more rapidly with change of the 
resistive component than with change of the reactive 
component? 

( Correct answers are to be found in Appendix D.) 
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Appendix A 

Impedance 
conversion Factors 

TO CONVERT MULTIPLY 
BY 

FROM TO 

gigohms kilohms 106 

gigohms megohms 103 

gigohms microhms 1015 

gigohms milliohms 1012 

gigohms ohms 109 

gigohms teraohms 10-3 

kilohms gigohms 10-6 

kilohms megohms 10-3 

kilohms microhms 109 

kilohms milliohms 106 

kilohms ohms 103 

kilohms teraohms 10-9 

megohms gigohms 10-3 

megohms kilohms 103 

megohms microhms 1012 

megohms milliohms 109 

megohms ohms 106 

megohms teraohms 10 -6 

mecrohms gigohms 10-15 

173 



TO CONVERT MULTIPLY 
FROM TO BY 

microhms kilohms 10-9 

microhms megohms 10-12 

microhms milliohms 10-3 

microhms ohms 10-6 

microhms teraohms 10-18 

milliohms gigohms 10-12 

milliohms kilohms 10-6 

milliohms megohms 10-9 

milliohms microhms 103 

milliohms ohms 10-3 

milliohms teraohms 10-I• 

ohms gigohms 10-9 

ohms kilohms 10-3 

ohms megohms 10-6 

ohms microhms 106 

ohms milliohms 103 

ohms teraohms 10-12 

teraohms gigohms 103 

teraohms kilohms 109 

teraohms megohms 106 

teraohms microhms 1018 

teraohms milliohms 1015 

teraohms ohms 1012 
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(/, 

Appendix B 

Phase Angle Data 

e 
(degrees) (radians) 
10 0.17453 
15 0.26180 
20 0.34906 
25 0.43633 
30 0.52360 
35 0.61086 
40 0.69813 
45 0.78540 
50 0.87266 
55 0.95993 
60 1.04720 
65 1.13446 
70 1.22173 
75 1.30899 
80 1.39626 
85 1.48353 
90 1.57080 

X/R 

0.17633 
0.26795 
0.36397 
0.46631 
0.57735 
0.70021 
0.83909 
1.00000 
1.19175 
1.42815 
1.73205 
2.14451 
2.74748 
3.73205 
5.67128 
11.43005 
oc 
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Appendix c 
Abbreviations 

used in This Book 

A- amperes; cross-sectional area of a coil 
AC- alternating current 
AF- audio frequency 
AMPL- amplifier 
arc tan - the angle corresponding to a given tangent; also 

writtentan-1 

B-battery 
/3- reciptocal of reactance 
C- capacitance; capacitor 
cos - cosine of angle 
cosech- hyperbolic cosecant 
cosh - hyperbolic cosine 
coth- hyperbolic cotangent 
D- distortion; dissipation factor; depth 
d - diameter; differential of 
dB - decibels 
DC- direct current 
E-voltage 
e- instantaneous voltage 
E Ac- alternating-current voltage 
EAvG-averagevalue of Ac voltage 
Ee-voltage across capacitor 
EG- generator voltage 
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ec;-grid voltage 
EH- harmonic voltage 
EL - load voltage; voltage across inductor 
EMAx- maximum value of voltage 
emf - electromotive force 
EMrN- minimum value of voltage 
E0 - output voltage 
E"-primary voltage 
Ep-plate voltage 
ER - voltage across resistor 
ER:vrs, V RMs-effective (root mean square) value of AC voltage 
E5- secondary voltage 
e5 - screen voltage 
E,.-total (or combined) voltage 
E,.ERM- terminal voltage 
Ex- unknown voltage 
Ez-VOltage across impedance 
F - farad; Fahrenheit 
f - frequency; fundamental frequency 
fR- resonant frequency 
G- n x 109

; conductance; reciproc~l of resistance 
GEN - generator 
gFs- forward transconductance of FET 
GHz- gigahertz 
gM- transconductance 
H-henry 
h - harmonic; height of core 
hFE- forward-current transfer ratio of bipolar transistor 
h1E- input impedance of bipolar transistor 
Hz-hertz 
I-current 
i-instantaneouscurrent 
I Ac- alternating current 
I Ave- average value of alternating current 
i8 - base current 
ic- collector current 
ID- inside diameter 
iE- emitter current 
iG - grid current 
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1~1.,x - maximum value of current 
I,11:,;- minimum value of current 
I"- primary current 
i"- plate current 
IPE,,K-peak value of alternating current (!PEAK = 1.4141 R~isl 
111---current in a resistance 
11rns- effective ( root mean square) value of alternating current 
Is- secondary current 
(,-screen current 
lz-Current in an impedance 
K - ohms x 1000; kilohms 
k- dielectric constant; any constant 
kHz-kilohertz 
l - length of winding 
L- inductance; inductor 
LEQ- equivalent inductance 
In-natural logarithm 
l:,; - most remote value of inductance 
log- common logarithm, for example, log,0 

LT- total inductance 
Lx - unknown inductance 
M - multiplier; megohms; mutual inductance; meter 
mA- milliamperes 
mH - millihenrys 
MHz - megahertz 
ms; msec-milliseconds 
mV - millivolts 
n- transformer turns ratio; attenuation ratio 
n - any remote number 
Np- number of primary turns in a transformer 
N 5 - number of secondary turns in a transformer 
ns; nsec-nanoseconds 
OD- outside diameter 
P-power 
pF - picofarads 
pf - power factor 
PL - load power 
PT-total power 
Q - figure of merit: Q = X/R; quality factor; symbol for 

transistor 
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R - resistance; resistor 
RAc- alternating-current resistance 
rad - radians 
r 8 - bias resistor 
Re- resistance of a coil 
r r: - emitter resistor 
RE - resistive losses due to eddy currents 
REQ- equivalent resistance 
RF-radio frequency 
Re;- generator resistance; gate resistance of FET 
r c; - grid resistor 
r K-cathode resistor 
R1. - load resistance 
RM- internal resistance of meter 
r oss- output resistance of FET 
rp-plate resistance 
RR- radiation resistance 
Rar:F1,-reflected resistance 
r 5- source resistor in FET circuit 
Rr - total resistance 
Rx - unknown resistance 
S-switch 
s;sec-seconds 
sin - sine of angle 
sinh - hyperbolic sine 
SWR- standing-wave ratio 
T - transformer 
t- period; time 
tan - tangent of angle 
tanh - hyperbolic tangent 
TV - television 
TVM- transistorized voltmeter 
V - volts; velocity factor; symbol for electron tube 
VA- voltamperes 
v 8 - base voltage 
v c- collector voltage 
VDR- voltage-dependent resistor 
v ~:-emitter voltage 
VTVM - vacuum-tube voltmeter 
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W-watts 
X- reactance; total reactance: unknown quantity 
x- horizontal axis 
Xe- capacitive reactance 
XL - inductive reactance 
Y - admittance 
y- vertical axis 
Z- impedance 
Z8 - base impedance 
Z0; Z

0
-characteristic impedance 

Zc- collector impedance 
zE- emitter impedance 
ZEQ-equivalent impedance 
ZG- generator impedance 
zG-grid impedance 
Z1!\I- input impedance 
ZL-loadimpedance 
Z~-mutual impedance 
Z:-;- the remotest impedance in a combination 
ZouT- output impedance 
Zp- primary impedance; plate impedance 
ZRE,- reflected impedance 
Zs - standard impedance; secondary impedance; source 

impedance 
Zr- total impedance 
Z:v,- internal impedance of voltmeter 
Zx- unknown impedance 

SYMBOLS 

Ll - difference between two successive values of a quantity; 
change 
O---angle; phase angle (radians); attenuation (in nepers) 
<t>-phase; phase angle (degrees) 
>..- wavelength 
µ,- x 0.000001; amplification factor; permeability; micron 
µ,F - microfarads 
µ,H - microhenrys 
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µ,s - microseconds 
1r-the constant 3.14159+; the value of 1r given to nine decimal 
places by a pocket calculator is 3.141592654 
fl-ohms 
w- angular velocity 21rf 

> - is greater than 
< - is less than 
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Appendix D 

Answers to 
Practice Exercises 

1.1. 0.2505 MHz 
1.2. 10,000 MHz 
1. 3. 3550 kHz 
1.4. 0.06 kHz 
1.5. 8 X 109 Hz 
1.6. 0.2 µ.s 

1.7. 16.67 ms 
1.8. 6 X 10-7s 
1.9. 0.02s 
1.10. 1000 µ.s 

1.11. 0.00025 ms 
1.12. 1.85 µ.s 

1.13. 3.68 X 10-8s 
1.14. 9.35 x 10-5ms 
1.15. 0.0175 µ.s 
1.16. 1 X 10-9s 
1.17. 3.33 x 10-6 ms 
1.18. 0.000125 µ.s 

1.19. 100 Hz 
1.20. 6.67 kHz 
1.21. 0.1 MHz 

Chapter 1 

1.22. 10 GHz 
1.23. 120 Hz 
1.24. 2 kHz 
1.25. 1 MHz 
1.26. 0.5 GHz 
1.27. 1000 Hz 
1.28. 14.28 kHz 
1.29. 0.1 MHz 
1.30. 0.2 GHz 
1.31. 114.98V 
1.32. -2.95V 
1.33. l0V 
1.34. Zero volts 
1.35. 0.625 µ.sand 0.875 µ.s 

1.36. 0.208 ms and 1.04 ms 
1.37. 10,000 Hz 
1.38. -7.07V 
1.39. (a) 0.1 µ.s, (b) 0.3 µ.s 

1.40. 200 Hz 
1.41. 0.689 radian 
1.42. 0.0916 radian 
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1.43. 309.4 degrees 
1.44. 60 degrees 
1.45. 0.785 radian 
1.46. 0.6283 radian 
1.47. (a) 1.57 radian, (b) 4.71 radians 

1.48. 180 degrees 
1.49. 270 degrees 
1.50. (a) 251.3 

(b) 785.4 
(C) 5026.4 
(d) 628,300 

( e) 3,392,820 
(f) 8,670,540 

(g) 1.178 X 107 

(h) 6.723 X 107 

(i) 1.702 X 108 

(j) 3.393 X 108 

1.51. 6283 kHz 
1.52. 10.6V 
1.53. 1.67 µ, V 

1.54. 5.67V 
1.55. 6.37V 
1.56. 3.66V 

1.57. 0.000167V 
1.58. 70.7V 
1.59. 1.41 µ, V 
1.60. 459.5V 

1.61. 34.24 mV 
1.62. (a) 10% 

(b) 2.5% 

(C) 1% 

1.63. 0.104% 

1.64. 6.59% 

Chapter2 
2.1. 1050 

2.2. 933.30 
2.3. l00mV 
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1.65. 2.5mV 
1.66. 2261.9V 
1.67. 16.71V 
1.68. 11.309K 
1.69. 628.3!1 

1.70. 3.183H 
1.71. 79.5 Hz 
1. 72. 628.3V 
1.73. 200 
1.75. 0.00318H 
1. 76. 79.580 
1.77. 127.30 
1.78. 165.80 
1.79. 106.1 megohms 
1.80. 79.58 Hz 
1.81. 6.28 mA 
1.82. 47.74V 
1.83. lOK 

1.84. 0.0397 µ,F 
1.85. 1.59 mV 
1.86. 5.77 µ,F 
1.87. 400 
1.88. 12.50 
1.89. (a) 14.91K 

(b) inductive 

1.90. (a) 15.950 

(bl inductive 

1.91. 22.51 kHz 
1.92. 0.833 MHz 
1.93. 0.0316 µ,F 
1.94. 6.25 pF 
1.95. 41.35 mH 

1.96. 3.13H 

2.4. 6.4V 

2.5. 0.4mA 
2.6. 1.77A 



2.7. 1.38K 2.46. 1 x 10-s gigohm 
2.8. 2.5 x 10-5 gigohms 2.47. 1 x 10-9 teraohm 
2.9. 0.58 megohm 2.48. 2692.60 
2.10. 5 x 105 microhms 2.49. 270.50 
2.11. 100 milliohms 2.50. 32.17K 
2.12. 9.35 x 10-1 teraohm 2.51. 3947.40 
2.13. 0.001 gigohm 2.52. 5870.80 
2.14. 0.5 megohm 2.53. 57.85 degrees 
2.15. 1 x 108 microhms 2.54. 46. 7 degrees 
2.16. 5 x 104 milliohms 2.55. 13.26K 
2.17. 33,0000 2.56. 0.1591 µ,F 
2.18. 5.35 x 10-5 teraohm 2.57. 18,745 Hz 
2.19. 5.163 gigohms 2.58. 45 degrees 
2.20. 1 X 106K 2.59. 86.36 degrees 
2.21. 1 x 101°microhms 2.60. 1.374 radian 
2.22. 1 x 106milliohms 2.61. 150.79K 
2.23. 4.7 X 1060 2.62. 918.9 Hz 
2.24. 0.05 teraohm 2.63. 261.5 mH 
2.25. 1 X 106K 2.64. 928.50 
2.26. 250 megohms 2.65. 4649.60 
2.27. 1 x 1014microhms 2.66. 32.15 degrees 
2.28. 1 x 109 milliohms 2.67. 3.31 degrees 
2.29. 2 X 1090 2.68. 29.488 kHz 
2.30. 0.0003 teraohm 2.69. 22000 
2.31. 7000 gigohms 2. 70. 29.590 
2.32. 1.52 X 101°K 2. 71. R = 6280 
2.33. 2 x 107 megohms X = 136.20 
2.34. 1 x 1016 microhms 

2.72. R = 11.310 
2.35. 1 x 1012 milliohms 
2.36. 8 X 10 110 

X = 11.310 

2.37. 1 x 10-12 gigohm 2.73. 10600 
2.38. 5.52 X l0-6K 2.74. 6183.70 
2.39. 1 x 10-s megohm 2.75. 155.60 
2.40. 0.02 milliohm 2. 76. 85.1 degrees 
2.41. 1.37 X 10-40 2.77. 464.88K 
2.42. 1.55 x 10-14 teraohm 2.78. 1.69 milliohm 
2.43. 0.0350 2.79. 0.045 milliohm 
2.44. 0.001K 2.80. 72.59 degrees 
2.45. 1.5 x 10-7 megohm 2.81. 14140 
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2.82. 467.40 
2.83. 109.10 
2.84. 71.90 
2.85. 1250 
2.86. 0.113tol 
2.87. 100 to 1 
2.88. 4-. 2-. 5-, 400-, 900-, and 

2500 to 1, respectively 
2.89. 1500 
2.90. 18000 
2.91. 3600 
2.92. 0.494 inch 
2.93. xa = 8.42 ft 

yb = 10.57 ft 

2.94. 289.60 
2.95. 5010 
2.96. 250.20 
2. 97. 1. 727 nepers 
2.98. 26.06 dB 
2.99. (a) -13.98dB 

( b) 1.609 nepers 

2.100. 2 1 = 447.20 
Z3 = 5590 

2.101. Zif2 = 223.60 
Za = 5590 

Chapter 3 

3.1. 3100 
3.2. 1.97 milliohms 
3.3. 0.250 
3.4. 20000 
3.5. 6110 
3.6. 1.790 
3.7. 135.70 
3.8. 77.50 
3.9. 164.6K 
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2.102. Zl = 941.90 
Z2 = 74.740 
Z3 = 78.290 

2.103. Zif2 = 470.90 
ZJ2 = 37.370 

Z3 = 78.290 

2.104. Zl = 17240 
Z2 = 251.30 
Z3 = 589.70 

2.105. 2 1 = 17240 
Z2 = 251.30 

ZJ2 = 294.80 

2.106. 707.10 
2.107. 0.0146 mho 
2.108. 33.3 milliohms 
2.109. 100 
2. 110. 99.62% 
2.111. 0.530 
2.112. 314.2 
2.113. 78540 
2.114. 31830 

3.10. 58.8K 
3.11. 57.270 
3.12. 5.40 
3.13. 30.30 
3.14. 18750 
3.15. 750 
3.16. 1.020 
3.17. 1000 
3.18. 5.67 times 



3.19. 849 milliohms 
3.20. 0.3180 
3.21. 50.260 
3.22. 9000 
3.23. 1591.50 
3.24. 24.870 
3.25. 9090 
3.26. 62.50 
3.27. 227.30 
3.28. 72.20 

4.1. 15 µ,H 
4.2. 70.7 
4.3. 200 µ,H 
4.4. 11.1% 
4.5. 2.49mH 
4.6. No 
4.7. 0.964H 
4.8. 4000 

5.1. C 

5.2. a 
5.3. b 
5.4. d 
5.5. d 
5.6. a 
5.7. e 
5.8. b 
5.9. b 
5.10. a 
5.11. C 

5.12. e 
5.13. a 
5.14. b 
5.15. e 
5.16. C 

5.17. a 

3.29. 6300 
3.30. 2.67 
3.31. 1.0 
3.32. (a) Lx = 1.234H 

(b> Rx = 405.30 
(C) Zx = 3127.70 

3.33. ( a) Lx = 0.95 mH 
(bl Rx = 11.9 milliohms 
{ C) Zx = 5.970. 

Chapter4 

4.9. 1.79 mH 
4.10. 7160 µ,H 
4.11. 0.866H 
4.12. 0.067 µ,H 
4.13. 21.050 
4.14. 61 mH 
4.15. 0.0013H 

Chapter 5 

5.18. b 
5.19. a 
5.20. C 

5.21. e 
5.22. d 
5.23. b 
5.24. a 
5.25. e 
5.26. a 
5.27. b 
5.28. a 
5.29. a 
5.30. C 

5.31. b 
5.32. d 
5.33. C 

5.34. e 
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5.35. a 5.59. TRUE 
5.36. C 5.60. FALSE 
5.37. d 5.61. TRUE 
5.38. C 5.62. FALSE 
5.39. a 5.63. FALSE 
5.40. C 5.64. TRUE 
5.41. a 5.65. TRUE 
5.42. b 5.66. FALSE 
5.43. e 5.67. FALSE 
5.44. d 5.68. TRUE 
5.45. TRUE 5.69. TRUE 
5.46. FALSE 5.70. TRUE 
5.47. TRUE 5.71. FALSE 
5.48. TRUE 5.72. FALSE 
5.49. FALSE 5.73. FALSE 
5.50. TRUE 5.74. TRUE 
5.51. TRUE 5.75. TRUE 
5.52. FALSE 5.76. FALSE 
5.53. FALSE 5.77. TRUE 
5.54. TRUE 5.78. FALSE 
5.55. FALSE 5.79. TRUE 
5.56. FALSE 5.80. TRUE 
5.57. FALSE 5.81. TRUE 
5.58. TRUE 5.82. FALSE 
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Index 

A Bridge 
137 Abbreviations 177. 178. 179. 180. 181 Hay 

impedance 116 AC 
117.118 cycle 11 radio frequency 

fundamentals 11 universal 116 

nature of 11 
resistance in 29 C 

Accuracy of instruments 96 Calculation of impedance 52 
Admittance 85 Capacitance 
Ammeter method 106. 107 body 100 
Amplifier distributed 59 

input impedance of 128. 129 Capacitive reactance 32.33.46 
output impedance of 131 Capacitor. impedance of 139 

Analysis. Fourier 23 Cathode follower 76. 79 
Angular velocity 19 Characteristic 
Answers to exercises 183-188 impedance 59. 60. 61. 72. 126 
Antenna effect 100 Choke coil. impedance of 136 
Antennas 57.58.59 Circuits 
Aspects of impedance 83 inductor 161. 162 
Attenuator 79 parallel 50 

balanced-T 79 parallel-resonant 35. 56 
L-type 79 resonant 35 
O-type 79 series 48 
pad-type 79 series-resonant 35. 53. 56 
pi-type 79 Coil 
T-type 97 standard core 155 

Average value 19. 20 toroidal core 157 
Combined reactance 34.46 

B Commercial impedance instruments 
Balanced-T attenuator 79 143. 144. 145 
Body capacitance 100 Common impedance 62.83.84 
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Composite Fields 
current 38 external 100 
voltage 38 internal LOO 

Composition of impedance 46 Figure of merit 87 
Conjugate impedance 83 Filter. high-Q 23 
Constant. dielectric 62 Fluctuating 
Conversion factors. current 38 

impedance 173. 174 voltage 38 
Coreless Follower. 76 

single-layer cathode 76. 79 
solenoid 150. 152. 152. 153 emitter 76. 77 

solenoid 154 source 76. 79 
Counter emf 149 Fourier analysis 23 
Current Frequency 13 

composite 38 fundamental 22.24, 34. 36 
fluctuating 38 response of instrument 96 
instantaneous 28 test 95.96 

Cycle. AC 11 Fundamental 
frequency 22.24.36 

D AC 11 

Data. phase angle 175 G Delta 74 
Devices. linear. impedance of 57 Generator 15 
Dielectric constant 62 impedance 62. 96 

Direct current. effect of 158 
Distortion 22 H 

harmonic 22 Harmonic 22 
harmonic. total 23 distortion 22 

Distributed even 24 
capacitance 59 odd 24 
inductance 59 Hay bridge 137 

Divider method. input voltage 133 Headphones. impedance of 140 
Dress. lead 96 Hertz 13 
Driving-point impedance 83.84 prefixes 13 

units 13 

E High-Q filter 23 

Effect 
antenna 100 

Image impedance of direct current 158 83. 84 

resonance 101 Impedance 46 

skin 119 aspects of 83 

temperature 101 bridge 116 

Effective value 21 calculation of 52 

Emf. counter 149 characteristic 59. 60. 61. 72. 126 

Emitter follower 76. 77 common 62.83.84 

Equivalent impedance 51. 83 composition of 46 

Even-numbered harmonics 24 conjugate 83 

External fields 100 conversion factors 173. 174 
defined 45 
driving-point 83.84 

F equivalent 51. 83 
Factor generator 96 

power 87 image 8.184 
quality 87 input 64.65. 72. 77. 79. 83. 84 

Feeder 69 instrument 96. 143 

192 



internal 62.96. 107 
inverse 8.5 
load 63.64. 79.81 
magnitude 51 
matching 66 
measurement 95 
meters 109. 110 
mutual 83. 84 
nature of 4.5 
nonlinear 84. 85 
of capacitor 139 
of choke coil 136 
of generators 62 
of headphones 140 
of inductor 160 
of linear devices .57 
of loudspeaker 140 
of mechanical generator 13.5 
of nonlinear devices 141. 142 
oscillator output 63 
output 64.6.5. 72. 76.77.79 
phase .51 
poles of 8.5. 86 
ratio 68 
reactive 46 
reciprocal 84. 8.5 
reflected 65. 66 
resistive 46 
source 77. 79 
surge 60 
symbol of 4.5 
total 49. 83. 84. 107 
tube & transistor 8.5 
universality of 52 
unknown .104. 105. 106. 107. 

In phase 
Inductance 

distributed 
mutual 
of wire 

Inductive reactance 
Inductor 

108. 113. 120 
2.5 

149. 150 
.59 

157.1.58 
159. 160 

31. 34. 46 

circuits 161. 162 
impedance of 160 

Input 
impedance 64. 6.5. 72. 77. 79. 83. 84 
impedance of amplifier 128. 129 
impedance of receiver 133 
voltage divider method 133 

Instantaneous 
current 
value 
voltage 

Instrument 
accuracy of 

28 
19 
28 

96 

frequency response of 
impedance 
impedance. 

commercial 
Internal 

fields 
impedance 

Inverse impedance 

L 
L-type attenuators 
Lagging phase 
Law. Ohm"s 
Lead 

dress 
length 

Leading phase 
Length. lead 
Linear devices 

impedance of 
uses of 

Load impedance 
examples of 

96 
96 

143. 144. 14.5 

100 
62. 96. 107 

84. 8.5 

79 
2.5 

31. 32. 84 

96 
96 
2.5 
96 

57 
69 

63. 64. 79.81 
63 

126 
140 

Loops (maximal 
Loudspeaker. impedance of 

M 
Matching 

impedance 
section. Q-bar 
stub 
transformer 

Maxima I loops l 
Maximum value 
Measurement impedance 
Mechanical generator. 

impedance of 
Merit. figure of 
Meters. impedance 
Method 

ammeter 
of matching impedance 
Q-meter 
resistance /balance 
substitution 
swr 
voltmeter 
voltmeter /ammeter 

Minima (nodes) 
Mutual 

impedance 
impedance. antennas 
impedance. in a circuit 
impedance. in a network 
inductance 

66 
73. 76 

74 
68 

126 
19 
95 

135 
87 

109. 110 

106. 107 
67.68 

120 
110 
112 
128 
108 

102. 105 
126 

83.84 
84 
84 
84 

1.58. 1.59 
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!'I; R 
Nature Radiation resistance 58.59 

of impedance 45 Radio frequency bridge 117. 118 
of self-inductance 149 Ratio. impedance 68 

Nodes ( minima I 126 Reactance 31. 46. 52 
Nonlinear capacitive 32.33.46 

devices. impedance of 141. 142 combined 34. 46 
impedance 84. 85 inductive 31. 34. 46 

Nonsinusoidal wave 16 Reactive impedance 46 
Norton·s theorem 83 Receiver 

input impedance of 133 

0 output impedance of 133 
Reciprocal impedance 84. 85 

O-type attenuator 79 Rectangular wave 12 
Odd-numbered harmonics 24 Reflected 
Ohm"slaw 31. 32. 84 impedance 65. 66 
Oscillator. resistance 65.66 

output impedance of 63. 134 Resistance 29.46.52 
Output balance method 110 

imprdance 64. 65. 72. 76. 77. 79 in AC 29 
impedance of amplifier 131 radiation 58.59 
impedance of oscillator 134 refected 65. 66 
impedance of receiver 133 Resistive impedance 46 

Overdriving 96 Resonant 
Overloading 96 circuit 35 

frequency 34 
p Rmsvalue 19.21 

Pad-type attenuator 79 Rotating vector 27 
Parallel s circuit 50 

resonant circuit 35. 56 Sawtooth wave 12.22 
Peak value 19 Self-inductance 149. 150 
Period 14 Series 

units 14 circuits 48 
values 15 resonant circuit 35.53.56 

Phase 24 Sine wave 15 
angle data 175 Sinusoidal wave 12 
difference 25 Skin effect 119 
in- 25 Slotted line. use of 126 
lagging 25 Solenoid 
leading 25 coreless 154 
relation 102 Source 
relationship 25 follower 76. 79 
shift 25 impedance 77. 79 
symbol 26 Square wave 12. 22 

Pi-type attenuator 79 Standard-core coil 155 
Poles of impedance 85. 86 Stub. matching 74 
Power factor 86. 87 Substitution method 112 

Surge impedance 60 
Swrmethod 128 

Q Symbols 181. 182 
Q of impedance -15 

bar matching section 73. 76 
( figure of merit! 87 T 
meter method 120 T-type attenuator 79 

Quality factor 87 Temperature effect 101 
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Terminal voltage 62. instantaneous 19 
Test frequency 95.96 maximum 19 
Theorem peak 19 

Norton's 83 rms 19. 21 
Thevenin's 83 Vectors 27 

Thevenin's theorem 83 rotating 27 
Three-phase voltage 26 Velocity. angular 19 
Toroidal-core coil 157 Vibration resonance effect 101 
Total Voltage 

harmonic distortion 23 composite 38 
impedance 49. 83. 84. 107 fluctuating 38 

Transformer. matching 68 instantaneous 28 
Transmission terminal 62 

lines 59. 60 three-phase 26 
line. use of 122 Voltmeter 
lines. coaxial 60 ammeter method 102. 105 

Triangular wave 12 method 108 
Tube & transistor impedance 85 

u w 

Universal bridge 116 
Waveform !J6 
Wave 

Universality of impedance 52 nonsinusoidal 16 
Unknown impedance 104 rectangular 12 
Use of sawtooth 12. 22 

slotted line 126 sinusoidal 12 
a transmission line 122 square 12. 22 
linear devices 69 triangular 12 

Wire inductance of 
V 

159. 160 

Value 
average 19. 20 z 
effective 21 Zeros of impedance 85. 86 
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