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I ntroduction 

I MPEDANCE IS AN IMPORT ANT PROPERTY OF ALL AC CIRCUITS 

and of many electrical devices. This property is encountered 

and must be dealt with wherever a signal or power is handled or 

processed, and the technician who has a good understanding of im­

pedance is at home among many of the complexities of electronics. 

From a largely practical point of view, this book surveys the 

subject of impedance-its nature, how it is calculated, and how it 

is measured. And because this is a practical book , every effort has 

been put forth to keep such theoretical discussion as is necessary 

in such form as to be understandable to the average technician. No 

mathematical background beyond the leading facts of algebra, 

trigonometry, and vectors is required, and examples are used gener­

ously to reinforce the discussion. 
The purpose of the book is to impart a good working knowl­

edge of the subject and also to provide a ready reference for the 

technician or student when he needs a quick refresher on some 

aspects of impedance. Obviously, there is much that we have been 

unable to include, but this book should brace the reader for a sub­

sequent study of more advanced texts. 

v 
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Fig. 1-1. Representative ae waveforms. The period is the duration from point 
• to point b in any of these waveshapes. 

zero and reaches maximum negative, holds for an interval, and fi­

nally rises abruptly to zero (this is a square wave). The rectangu­

lar wave in Fig. 1-1(e) is similar to the square wave, except that 

the rectangular wave holds at positive maximum and negative max­

imum for different lengths of time. The sawtooth wave in Fig. 1-1 
(D) is characterized by a slow, usually linear increase from zero 

to maximum positive and a similar change from maximum nega­

tive back to zero, but with an abrupt intermediate change from max­

imum positive to maximum negative. By contrast, the triangular 

wave in Fig. 1-I(E) has a similar angular climb from zero to 

positive maximum and from negative maximum to zero, but an an­

gular, rather than abrupt, change from positive maximum to nega­

tive maximum. Each of these waveshapes has specific applications 

in electronics. 

There can be, and very often are, ac cycles having shapes other 

than those shown in Fig. 1-1. Wave shapes that are asymmetrical­

either vertically or horizontally, or both-are sometimes encoun­

tered. These latter waveshapes are said to be complex. 

Alternating voltage and current are associated in the same 

sense that direct current and voltage are associated. Accordingly, 

alternating current may be thought of in terms of being produced 

by ac voltage, and the flow of alternating current through a resis-
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Table 1-1 . Common Frequency 
Units. 

1 cps z 
1 kHz = 

1 MHz :: 
1 GHz 

1 Hz 
1 000 Hz 
1 ,000,000 Hz 
1 ,000,000,000 Hz 

tor is seen to set up an ac voltage drop across that resistor. The 

alternating voltage cycle resembles the alternating current cycle, 

and vice versa; because of distortion, though, the two might not 

always be exact replicas. 

1 .2 FREQUENCY 

The term frequency (j) denotes the number of complete cycles 

occurring in one second-the number of cycles per second, or hertz; 
thus, hertz is the basic unit of frequency. 

The hertz is not always a practically manageable unit; many 

of the frequencies regularly employed in electronics are extremely 

high by comparison. In microwave practice, frequencies often are 

in excess of 10  billion hertz. Larger units than the hertz therefore 

are required for practical use; these are kilohertz (kHz), megahertz 

(MHz), and gigahertz (GHz). The prefixes kilo, mega, and giga stand 

for thousand, million, and billion. Table 1-1 lists common frequency 

units, and Table 1-2 shows how to convert from one unit to another. 
Example 1 . 1 .  The frequency of Citizens Band channel 9 is 

27.065 MHz. What does this correspond to in kilohertz? 

From Table 1-2, 1 MHz = 106 Hz, or 103 kHz. So, 

f = 27.065 x 1 000 = 27065 kHz. 

Frequency is an important quantity in impedance calculations 

and measurements, since impedance is a frequency-dependent 

property. 

1 .3 PERIOD 

The term period (t) denotes the total time it takes for a voltage 

Table 1-2. Frequency Conversion Factors. 

Hz :: 1 0-3 kHz = 1 0-6 MHz = 1 0-9 GHz 
kHz = 1 03 Hz = 1 0-3 MHz :: 1 0-6 GHz 

MHz = 1 06 Hz 1 03 kHz 1 0-3 GHz 
GHz = 1 09 Hz = 1 06 kHz :: 1 03 MHz 
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or current to complete one full cycle. This is the distance from a 
to b in any of the cycles of Fig. 1-1 .  Obviously, the higher the fre­
quency, the more cycles occurring in one second, and the shorter 
the period of each cycle. Period has a simple relationship to fre­
quency: 

t = 1// ( 1- 1) 

where t is in seconds and / is in hertz. 
Example 1-2.  Calculate the period of a 2 kHz signal . 
From Eq. 1- 1 ,  2 kHz = 2000 Hz. From Eq. 1 - 1 ,  

t = 1/2000 = 0.0005 second. 

Equation 1-1 and the example give time in seconds.  In prac­
tice, however, one second is often a long interval and subdivisions 
of this unit must be used: milliseconds (thousandths of a second, 
abbreviated ms or msec), microseconds (millionths of a second, ab­
breviated JLS or JLSec), and nanoseconds (billionths of a second, ab­
breviated ns or nsec). Table 1-3 gives the periods of some common 
frequencies often employed in impedance measurements. These 
periods are given in the time units used most often with the fre­
quencies noted. 

1 .4 SINE WAVE 

The earliest source of useful amounts of ac power was a rotat-

f 

20 Hz 
30 Hz 
40 Hz 
50 Hz 
60 Hz 

100 Hz 
120 Hz 
400 Hz 
500 Hz 

1000 Hz 
2500 Hz 

1 0  kHz 
20 kHz 

1 00 kHz 
1 MHz 

4 

t 

50 ms 
33.3 ms 

25 ms 
20 ms 

16.7  ms 
10 ms 

8.3 ms 
2 .5  ms 
2.0 ms 
0.1 ms 

400 P.s 
100 p.S 

50 P.s 
1 0  P.s 

1.0 p.S 

Table 1-3. Values of Period for Com­
mon Frequencies. 



ing machine-a generator in which a coil rotating in the unifonn field 
between the two poles of a magnet has a voltage induced across 
it. Simplified for purposes of explanation, the coil could consist of 
a single loop of wire. Across such a coil turning in an imaginary 
circle, the induced voltage increases from zero to maximum posi­
tive and returns to zero as one side of the coil moves past one pole; 
then the voltage goes from zero to maximum negative and returns 
to zero as the same side of the coil moves past the opposite pole. 
Thus, in 360 degrees of coil rotation (one complete revolution), the 
voltage describes the ac cycle: zero, positive maximum, zero, nega­
tive maximum, zero. This pattern is illustrated in Fig. 1-1(A). 

At any instant, the corresponding voltage is proportional to the 
sine of the angle through which the coil has turned, and this is 
responsible for the characteristic wave shape (Fig. l-IA) resulting 
from this action and for the term sine wave. This, of course, is the 
curve of the sine function in trigonometry. The sine wave has great 
utility in electronics. Other waves-a few examples of which ap­
pear in Fig. 1 -1  -are called nonsinusoidal. To find the instanta­
neous voltage (e) at any angle (0) in the rotation of the coil, it is 
necessary only to multiply the maximum value the voltage will at­
tain (EMAX) by the sine of that angle: 

( 1-2) 

where e and EMAX are in the same units (V, m V, ,.,. V). 
Example 1-3. The maximum voltage (positive or negative) 

reached by a certain sine wave is 6.3V .  Calculate the instanta­
neous voltage at 60 degrees. 

The sine of 60 degrees is 0 .866025.  From Eq. 1 -2 ,  

e 6.3(0.866025) 

5 .45V 

Figure 1-2 shows a single sine-wave cycle with voltage plotted 
against the angle of rotation in both degrees and radians. If, as in 
this sketch, a maximum value of 1 V is assumed, the voltage at the 
instant when the angle is 45 degrees (1r/4 radians) is 0 .707V, since 
sin 45 degrees = 0.707, and the instantaneous voltage (from Eq. 
1-2) is 1 x 0.707 = 0.707V. Note that the instantaneous voltage 
is again 0 .707V at 135 degrees, since sin 135 degrees = 0.707 .  

Generators still produce most of our electrical energy, but they 
are seldom found in electronic equipment. A high-grade oscillator 

5 
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- 1  

Fig. 1 -2. A single sine-wave cycle with voltage plotted against the angle of ro­
tation in both degrees and radians. 

employing transistors or tubes also generates a sine wave and has 
no moving parts. Nevertheless, the angles (which originally denoted 
positions of the moving coil in a machine) apply to the oscillator 
signal as well, and must be used in many ac calculations. In mod­
ern practice, however, it is often more convenient to plot the ac 
cycle on a horizontal time axis (as when the signal is presented on 
an oscilloscope screen) and to convert the time units to correspond­
ing angle�. In this connection, Fig. 1-3 shows a single cycle of a 
1000 Hz sine wave. Note that the period here is one millisecond 
(refer to Sec. 1 .3) and that the instantaneous voltage at several in­
termediate instants is noted: 0. 125,  0 .25, 0 .375, 0 .5 ,  0 .625,  0.75, 
0.875, and 1 ms. At any instant I, the angle 8 may be calculated 
in terms of frequency and time: 

8=2 7r j t ( 1-3) 

where 8 is in radians, j in hertz, and t in seconds. 
Example 1-4.  Calculate the angle in degrees at the 0. 125 ms 

point in the 1000 Hz cycle shown in Fig. 1-3. 

6 

Here, 0.125 ms = 0.000125s. From Eq. 1-3, 

8 = 2(3 . 1 416)1000(0.000125) 
= 6 .2832(0. 125) 



= 0.7854 radian 
45 degrees. * 

Example 1-5. Calculate the angle in degrees at the 0 .75 ms 
point in the 1000 Hz cycle shown in Fig. 1-3. 

Here, 0.75 ms = 0.00075sec. From Eq. 1 -3,  

(J 2(3. 1416)1000(0.00075) 
6.2832(0.75) 
4.7122 radians 
270 degrees. 

Observe that the instantaneous voltages in Fig. 1-3 are identi­
cal with those in Fig. 1-2 :  eat 0. 125 ms and 0.375 ms (correspond­
ing to 45 and 135 degrees, respectively) is + 0.707V, and at 0.625 
and 0.875 ms (corresponding to 225 and 315 degrees, respectively) 
is - 0.707V. This shows that Eq. 1-2 may be rewritten to give volt­
age in terms of time: 

e :z: EMAX sin 21f/t ( 1-4) 

-Degrees '"' radians x 57.295. RaQians = degrees x 0.0174533. 

+ 1  

+0.707 
III 
Q) ... 
2i E 
ns 0 Milliseconds ... 0 
� (5 > 

-0.707 

- 1  

Fig. 1-3. A single-cycle 1000 Hz sine wave with the time axis plotted and several 
instantaneous voltages noted. 
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where e and EMAX are in the same units (V, m V,  p. V), j is in hertz, 
and t in seconds. 

Thus, from Eq. 1-4 ,  the instantaneous voltage at 0 .75 ms is equal 
to EMAX sin [2(3 .1416)1000(0.00075)] = EMAX sin 4.7124 radians = 

EMAX sin 270 degrees = - 1(1)  = -IV. The instantaneous volt­
age may be found in this way for any instant in a cycle of any fre­
quency. From this discussion, it should be clear that the expression 
27rjt equals the angle in radians. 

The quantity 27rjin Eq. 1-4 is often encountered in engineer­
ing fonnulas and is frequently abbreviated by the lowercase Greek 
omega (w). This changes Eq. 1-4 to: 

e = EMAX sin wt ( 1-5) 

1 .5 ANGULAR FREQUENCY 

The symbol w, which appears first in Eq. 1-5 and is equal to 
27rj, is the symbol for angular jrequency. This symbol appears in 
a great many ac formulas. 

To grasp the physical significance of angular frequency in this 
sense, we must return to the mechanical ac generator. In this ma­
chine, the conductor rotates through an angle of 27r radians during 
each revolution, since there are 27r radians in a circle, and the an­
gular frequency of the rotating shaft is thus the product of 27r ra­
dians times the number of revolutions per second . The equivalent 
electrical quantity is the product of 27r radians and the ac frequency 
(cycles per second, or hertz, replacing revolutions per second, since 
one electrical cycle is equivalent to one mechanical revolution). As 
in the mechanical example, this is also expressed in radians per 
second. Thus, for 400 Hz: w = 27rj = 2(3 . 1416)400 = 2513 radians 
per second. 

Table 1-4 lists values of w for 23 common frequencies between 
20 Hz and 1 MHz. 

1 .6 AC COMPONENTS AND VALUES 

In its 360-degree (27r radians) excursion, the ac cycle passes 
through a number of voltage or current values. (Theoretically, the 
number of values is infinite .)  Which of these is significant depends 
upon the nature of the application or calculation involved. The four 
tenns which describe the ac component are maximum value. instan­
taneous value. average value. and rms value. 

8 



Table 1-4. Values of Angular 
Velocity T for 23 Common 
Frequencies. 

Maximum Value 

20 
30 
40 
50 
60 

1 00 
120 
1 50 
200 
300 
400 
500 

1000 
1500 
2000 
5000 

1 0  
20 
50 

100 
200 
500 

1 

f 

Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
Hz 
kHz 
kHz 
kHz 
kHz 
kHz 
kHz 
MHz 

w 

1 25.7 
188 .5 
251.3 
314.1 
3n 
628 .3 
754 
942.5 

1256 
1885 
2513 
3 1 42 
6283 
9425 

12 ,566 
31,416 
62 ,832 

125.664 
314,159 
628 ,318 

1 ,256,637 
3 ,141 ,592 
6,283 , 185 

This is the highest positive or negative value reached in the 
cycle. It is also called peak value. It is the value to which a peak­
responding electronic voltmeter (such as the rectifier/amplifier type) 
responds, and it is also the value which determines the no-load out­
put of voltage doublers, triplers, and quadruplers. Many electronic 
circuits are adjusted on the basis of the maximum value of the ac 
signal. 

Instantaneous Value 

This is the value at any selected instant during the cycle. In­
stantaneous voltage or current is sometimes labeled to show its ex­
act point along the horizontal axis, thus we may speak of such values 
as elOo. e2,.. , or i2ms' For a sine wave , e "" EMAX sin 8 ,  and i :; 

[MAY.. sin 8 .  

Average Value 

This is the simple average (arithmetic mean) of all the instan­
taneous values in one cycle, disregarding sign. E AVG :z 0.637 
EMAY..' and [AVG = 0 .637 [MAY..' T�e larger the number of instan-

9 



taneous values that enter into the calculation, the more exact the 
calculation will be. However, without calculus, a phenomenal num­
ber of instantaneous values must be used to obtain the number 
0.637. The average value is the voltage to which amplifier/rectifier­
type electronic voltmeters respond. It is also the value of voltage 
delivered by an unfiltered full-wave rectifier. 

RMS Value 

This is the root mean square value. It is also called the effective 
value, since it is equivalent to the same-numbered dc value in the 
heating effect it creates in a resistance. One rms ampere produces 
the same average heating effect that one dc ampere does: 

ERMS = 0.707 EMAX, and [RMS = 0.707 [MAX" 

The rms value, as its name implies, is equal to the square root 
of the mean of the squares of all the instantaneous values in one 
cycle, disregarding sign. To calculate the rms value: square each 
instantaneous value, but do not include the maximum value; total 
these squares; take the average (arithmetic mean) of this total; ex­
tract the square root of this average. Without calculus, a phenom­
enal number of instantaneous values must be used to obtain the 
number 0.707, which you are free to use without first deriving it. 

The rms value is the one in which most ac voltmeters and am­
meters read, whether or not they actually respond to this value. 
The widely used rectifier-type meter, for example, is average­
responsive, but its scale reads in the more useful rms units. 

Conversions 

Table 1-5 gives multipliers for converting maximum, average. 
and rms values. The use of these conversion factors is straightfor­
ward. To convert 12.6V RMS to average volts, multiply by 1 . 1 1 :  

12 .6 x 1 . 1 1  = 13.99V AVG 

The numbers given in this table and earlier in this section ap­
ply to sine-wave voltages and currents only. The relationships are 
quite different with other waveforms. For instance, in a square 
wave, ERMS = EAVG = EMAX• In a positive-going sawtooth wave, 
EAVG = 0.5EMAX, and ERMS = 0.577 EMAX• This points up the er­
ror possible when instruments calibrated with a sine wave are used 

1 0  



Table 1·5. Voltage and Current Conversions and rms Values. 

?VG = 0.637 EMAX = 0.901 Erms 
= 0.707 EMAX = 1 .11 EAVG Ems 
= 1.414 Erma = 1 .57 EAVG MAX 

tVG = 0.637 'MAX = 0.901 Irma rms 0.707 'MAX 1 .11 tVG 'MAX = 1.414 'rma = 1 .57 AVG 

to check nonsinusoidal current or voltage. The readings of a 
nonpeak-reading electronic voltmeter equipped with an rms scale 
can be considerably in error if used to measure square-wave volt­
age, for example. Likewise, when a sinusoidal quantity under mea­
surement contains harmonics, the error in measurement could equal 
that of the harmonic percentage. (Pure sine waves contain only one 
frequency; presence of harmonics indicates that the wave is not ac­
tually sinusoidal-distortion is thus present.) 

1 .7 DISTORTION AND HARMONICS 

In an ideal sine wave, the instantaneous voltage at any point 
is proportional to the sine of the corresponding angle, and the 
smooth curve of Fig. l -l (A) results. Such perfection is unattain­
able in practice; some variation, however minute, occurs in signals 
from even the most refined sources. A signal that departs from the 
ideal is termed distorted. 

A byproduct of distortion, which is also essentially the nature 
of the distortion, is the presence of harmonics. These are extra fre­
quencies which are exact multiples, even or odd, of the main fre­
quency which is called the fundamental frequency (j). The 
fundamental frequency is regarded as the first harmonic, and the 
others are identified as h2 (2 times f), h3 (3 times f), etc. to show 
whether they are the second harmonic, third harmonic, etc. In most 
instances distortion is considered a defect, since it wastes energy, 
creates discord (as in an audio amplifier), and causes errors in im­
pedance measurements. In a few instances, it serves a useful 
purpose-as in harmonic generators, generators of nonsinusoidal 
waveforms, and certain electronic musical instruments. 

Harmonic distortion is evaluated in terms of the relative 
strengths of harmonic and fundamental components. When a wave 
analyzer is used to measure these components it is tuned succes­
sively to the fundamental frequency and to each of the harmonic 

1 1 
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frequencies, and the voltage amplitude of each of these components 
is read from the indicating meter. From this data, the strength of 
each harmonic may be expressed as a percentage of the strength 
of the fundamental . Thus, the second harmonic content would be 
equal to h.j!, expressed as a percentage. The total harmonic dis­
tortion (the combined distortion due to all harmonics present) would 
be: 

( 1-6) 

The 100 in the equation converts the resulting figure to a percent­
age. When a distortion meter is used, the combined voltage ET 
due to the fundamental frequency and its harmonics is first mea­
sured. Then the fundamental frequency is removed by means of 
a high-Q filter, and the remaining voltage (EH) , which is due to 
harmonics alone, is measured. The total distortion then is cal­
culated: 

( 1-7) 

Professional distortion meters indicate the distortion percentage 
directly on a meter scale and require no calculations. 

It is often not enough to know which harmonics are present 
in a distorted alternating current or voltage and what their ampli­
tudes are; the phase angles between the ftmdamental and individual 
harmonics must also be known (for phase, see Sec. 1.8). In this con­
nection, an exhaustive study of a distorted wave requires Fourier 
analysis, which involves the use of higher mathematics and sophisti­
cated modern instruments. For most practical purposes, however, 
distortion measurements made with a wave analyzer, simple dis­
tortion meter, or oscilloscope (employing the schedule method)· 
will suffice. 

It can be shown mathematically, and also by the practical mix­
ing of signals, that any nonsinusoidal wave is the combination of 
a certain number of sine waves of various frequencies (harmonics) 
and amplitudes. A square wave is the combination of a fundamen­
tal sine-wave frequency and numerous odd-numbered harmonics, 
and a sawtooth wave is the combination of a ftmdamental sine-wave 
frequency and numerous even- and odd-numbered harmonics. The 
more harmonics present, the more closely the complex wave ap-

·Many electronic engineering handbooks and textbooks give detailed instruc­

tions for use of this method. 
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proximates its ideal shape. The frequency of the complex wave it­
self is the same as the fundamental frequency. 

1 .8 PHASE 

The alternations of two separate currents or voltages fall into 
one of three categories: they may be in step with each other; those 
of one may be ahead of those of the other; or those of one may be 
behind those of the other. This condition of being in or out of step 
is termed phase relationship. The three situations just cited-in 
phase, leading phase, and lagging phase-are illustrated in Fig. 1-4, 
which shows the relationship of two, voltages that are in phase and 

+ 

+ 

, .  , 
, 

E, 

E, 

90° 

E, 

0 ..... --"--'*--6,.......-+--"....--
450° or 90° 

Fig. 1 -4. Basic phase relationships of voltages and currents: (A) in phase, (B) 
leading phase, (C) lagging phase. 
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out of phase. These figures serve to illustrate the general condi­
tions; there are theoretically, unlimited combinations of out-of-phase 
quantities. 

In Fig. 1 -4(A), voltages E) and E2 reach all of their values 
at the same instants and so are in phase. Their phase difference thus 
is zero degrees. In Fig. 1 -4(B), E2 reaches each of its values 90 
degrees before E) does. In this case, E2 is said to lead E), and their 
phase difference is 90 degrees. In Fig. 1-4(C), E2 reaches each of 
its values 90 degrees after E) does. In this case, E2 is said to lag 
E), and again their phase difference is 90 degrees. While a phase 
difference of 90 degrees is shown in Fig. 1 -4(B) and (C), the angle 
can be anywhere between less than one degree to 360 degrees. (At 
exactly 360 degrees, of course, the in-phase condition of Fig. 1-4(A) 
is re-established. )  Here, we have followed the common practice of 
indicating phase in degrees, but it can be expressed also in radians 
and in seconds (time). It can also be represented as a fractional part 
of the wavelength, as in communications practice . 

While two voltages are shown in each example in Fig. 1 -4, 
phase relationships also exist between two currents, a voltage and 
a current, or a current and a voltage. Also, in Fig. 1-4, E) and E2 
are shown as different in amplitude, but in practice the two com­
ponents may be the same amplitude or in opposite ratio to that 
shown here. It is important also to note that when harmonic fre­
quencies are present in a wave, these components often are in differ­
ent phase with each other and with the fundamental frequency. 

The term phase shift refers to the change in phase relationship 
resulting from the flow of alternating current through certain 
devices or circuits. For example, at the input terminals of a cer­
tain "black box," current is in phase with voltage in an applied sig­
nal; but in the load connected to the output terminals, the current 
lags the voltage by 60 degrees. Thus, the black box has introduced 
a lagging phase shift. Current passing through a pure inductance 
lags applied voltage by 90 degrees, whereas current flowing into 
and out of a pure capacitance leads applied voltage by 90 degrees. 
In a common-emitter transistor stage or common-source FET stage, 
the output signal voltage is 180 degrees out of phase with the in­
put signal voltage. But in an emitter follower or source follower, 
the output signal voltage is in phase with the input signal voltage. 

Today, most ac energy is transmitted efficiently via three-phase 
systems, although much of it is converted to single-phase by ser­
vice transformers located near the point of use. Where actual three-
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Fig. 1 -5. Three-phase voltage. Three equal-amplitude voltages are spaced 1200 
apart. 

phase energy is available for use in electronic systems, it is valued 
for its uniform (nonpulsating) power, increased efficiency over 
single-phase energy in the operation of electrical machinery such 
as motors, and the ease with which it is filtered. The output of a 
three-phase generator consists of three equal-amplitude voltages 
spaced 120 degrees apart (see Fig. 1 -5); thus, voltage E1 starts at 
o degrees, E2 at 120 degrees, and E3 at 240 degrees. It is conven­
tional to speak of each voltage as a phase (symbolized <1». In a 
balanced three-phase system, the total power is equal to 3 times 
the power (E1 cos 8) in any one of the phases, which because of 
the phase differences is equal to: 

PT = 1 . 732 E 1 cos 8 ( 1-8) 

1 .9 VECTOR REPRESENTATION OF AC COMPONENTS 

It is often convenient to think of an alternating current or volt­
age in terms of a rotating vector. This concept is illustrated by the 
diagram in Fig. 1 -6. 

Here, the length of vector OA is equal or proportional to the 
maximum voltage or current value, EMAX or 1MAX. This vector ro­
tates counterclockwise from 0 to 360 degrees at the rate of 2-rrJ ra­
dians per second. The vertical distance (AB) from the head of the 
vector to the horizontal axis is equal or proportional to the instan­
taneous voltage or current. As the vector rotates, AB increases posi­
tively from zero at 0 degrees to positive maximum at 90 degrees; 
then, as the vector rotates from 90 degrees to 180 degrees, AB 
decreases positively, returning to zero at 180 degrees. As the vec­
tor rotates from 180 degrees to 270 degrees, AB increases nega­
tively from zero at 180 degrees to negative maximum at 270 
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Fig . 1 -6. Vector representation of ac components. 

degrees; then, as the vector rotates from 270 degrees to 360 
degrees, AB decreases negatively from maximum at 270 degrees 

to zero at 360 degrees. One cycle thus has been completed and the 

events are ready to repeat themselves. 

The vector AB is proportional to the sine of the angle 8. Indeed, 

when the diagram is based on a unit circle, AB = sin 8. It follows 

that OB is proportional to cos 8. Thus, when OA is drawn equal to 

EMAX or IMAX, the instantaneous voltage or current AB = oAsin 8. 

This is just another way of writing: e = EMAX sin 8, or i = IMAX 
sin 8 (see Eq. 1-2). Component AB is zero at 0, 180, and 360 degrees; 

maximum positive at 90 degrees; and maximum negative at 270 
degrees. Therefore: sin 0 0  = sin 180 0 = sin 360 0 = 0; sin 90 0 
= sin 270 0 = 1. Thus, the periodically varying length of AB traces 

out the sine of the angle from 0 to 360 degrees and accurately 

describes the sine wave of Fig. 1-I(A). The following general state­

ment describes these relationships: The instantaneous current or volt­
age equals the product of the magnitude of a rotating vector and the 
sine of the angle through which the vector has rotated. At any posi­

tive position of the vector, EMAX sin 8 or IMAX sin 8 is the vertical 

component (y component) of the vector, and EMAX cos () or IMAX 
cos 8 is the horizontal (x component) of the vector. 

The use of vector diagrams to represent alternating currents 
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and voltages is a convenient method for showing both magnitude 
and phase of these components. One could plot the waveforms to 
scale, but the vector diagram saves time and labor. Figure 1 -7 is 
a vector diagram of three out-of-phase voltages. Here, E1 is 5V at 
40 degrees. E2 is 7.5V at 65 degrees, and E3 is 10V at 125 
degrees. The vectors are drawn to scale to indicate the magnitude 
of these components. The same sort of diagram would be employed 
with three currents. 

Each of these voltage vectors has a horizontal (x) component 
and a vertical (y) component. Also, there is a total x component 
(ETOTAL x) and total y component (ETOTAL y) which can be deter­
mined from the data presented by the diagram. Then, there is the 
single voltage (Ex) generated by the three out-of-phase compo­
nents (EI' E2, and E3) which is the resultant of ETOTAL x and 
ETOTAL y. Finally, there is the phase angle 1> of Ex. The following 
schedule shows how these various voltages and the phase angle 
of Ex are calculated. 

= 5 cos 40 0 = 5(0.77604) = 3.88V 
= 7.5 cos 65 0 = 7.5(0.42262) = 3. 17V 
= 10 cos 125 0 = 10( - 0.57358) = - 5. 73V 

3.88 + 3 . 17  - 5.73 = 1 .32V 
= 5 sin 40 0 = 5(0.64279) = 3.21V 

Fig. 1-7. Vector diagram of out-of-phase components. 
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E2y = 
E3y 
ETOTAL Y 
c/> = 

7.5 sin 65 0 = 7.5(0.90631 )  = 6.79V 
10 sin 125 0 = 10(0.81915) = 8. 19V 
3.21 + 6.79 + 8 . 19 = 18 . 19V 
arc tan 18. 19/1 .32 = arc tan 13.78 = 
85.85 0 

ETOTAL y/sin () = 18. 19/sin 85.85 0 = 
18. 19/0.99738 = 18. 14V 

1 . 1 0  AC IN RESISTANCE 

A pure resistance (R) introduces no phase shift. Consequently, 
when as ac voltage is applied to a pure resistance, the resulting 
current flow through the resistance is in phase with the voltage. 
Figure 1 -8(A) illustrates this action. Similarly, when an alternat­
ing current flows through a resistance, the resulting voltage drop 
across the resistance is in phase with the current. 

Pure resistance consumes power but is not frequency­
dependent in its action. There is nothing in a pure resistance that 
causes it to change, with frequency, the amount of opposition it 
offers to current flow. This is not true of reactance (X), which is 
a frequency-dependent opposition to current flow. Unlike resis­
tance, pure reactance consumes no power. The kinds of reactance 
are described in Sec . 1 . 1 1, 1 . 12, and 1 . 13. 

In a pure resistance, current is directly proportional to voltage 
and is inversely proportional to resistance, as shown by Ohm's law: 

I = EIR, E = IR, R = Ell ( 1-9) 

where I is in amperes, E in volts, and R in ohms. 
Although Ohm's law in this form is commonly associated with 

dc, it applies to ac as well, so long as the resistance is considered 
pure. (Ohm's law for ac circuits is often written with Z replacing 
the R; thus: I = EIZ, E = IZ, and Z = Ell.) 

1 . 1 1  AC IN INDUCTIVE REACTANCE 

When a voltage is applied to a pure inductance (L), current can­
not flow immediately because it is opposed by a voltage of oppo­
site polarity-the counter emf generated by the moving magnetic 
field of the inductor. The current reaches its maximum value some 
time after the voltage has been applied. Voltage applied to an in­
ductance therefore leads current, as shown in Fig. 1 -8(B), and it 
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leads by 90 degrees in a pure inductance. (If unavoidable resistance 
is present, the phase angle is proportionately less than 90 degrees. 
The opposition thus offered by an inductance is termed inductive 
reactance (XL). 

For a given value of inductance, the strength of the counter 
emf is proportional to the rate of change of the applied voltage. 
Therefore, the higher the frequency, the higher the counter emf 
and the higher the reactance. The effective value of the induced 
counter emf is E = 27rJLI. Therefore, the formula for inductive 
reactance is: 

( 1 - 1 0) 

where XL is in ohms, J in hertz, and L in henrys. 
Example 1-6. A 15-henry (15H) inductor is operated in a 400 

Hz circuit. Neglecting any inherent resistance, calculate the reac­
tance at that frequency. 

From Eq. 1-10, 

XL = 27r(400)15  
= 37,6990 
= 37.699K 

A pure inductance consumes no power, since power stored in 
the expanding magnetic field during one quarter-cycle of ac is 
returned to the circuit by the collapsing magnetic field during the 
following quarter-cycle. In a pure inductive reactance, current is 
directly proportional to voltage and inversely proportional to reac­
tance, as shown by Ohm's law: 

where I is in amperes, E in volts, and XL in ohms. 
The sign of inductive reactance is positive. 

( 1- 1 1 )  

Example 1-7. A 60 Hz sinusoidal current of lOrnA rms flows 
through a 2.5 mH inductor. Assuming that this is a pure inductance, 
calculate the voltage drop in millivolts across the inductor. 

20 

Here, 10 rnA = O.OlA, and 2.5 mH = 0.0025H. From Eq. 1-10, 

XL = 2(3. 1416)60(0.0025) 
= 0.9420 



From Eq. 1-1 1 ,  And E = [XL 

= 0.01(0. 942) 
=0.00942V 
=9.42 mV 

1 . 1 2  AC IN CAPACITIVE REACTANCE 

When a voltage is applied to a pure capacitance (C), as to an 
ideal lossless capacitor, a current flows into the capacitor, decreas­
ing in value until the capacitor becomes fully charged, whereupon 
the flow stops. The voltage across the capacitor thus is zero when 
the current is maximum, and vice versa. Current flowing into a ca­
pacitor is proportional to the rate of change of voltage; for an ac 
voltage, this rate of change is maximum when the cycle is passing 
through zero, and is zero when the cycle is maximum. Voltage 
across a pure capacitance therefore lags current. From the other 
point of view, current leads voltage-see Fig. 1-8(C). The current 
leads by 90 degrees. If unavoidable resistance is present, the phase 
angle is proportionately less than 90 degrees. The opposition thus 
offered by a capacitance is termed capacitive reactance (Xc), For a 
given capacitance and voltage, the higher the frequency, the lower 
the reactance. The effective value of capacitor current [ = 27rjCE. 
Therefore, the formula for capacitive reactance is: 

Xc = 1IwC = 1I(27rjC) ( 1-12)  

where Xc is in ohms, j in hertz, and C in farads. 
Example 1-8. A 0.0025 p.F capacitor is operated in a 1 MHz 

circuit .  Calculate its reactance in ohms at that frequency. 
Here, 0.0025 p.F = 2.5 x 10 - 9  F and one MHz = 106 Hz. 

From Eq. 1- 12, 

1 
Xc= ---------------------------

2 x 3 .1416 X 106 x (2.5 x 10-9) 

110.01571 

= 63.70 

A pure capacitance consumes no power, since power stored in 
the electrostatic field of the capacitor during one quarter-cycle, 
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when the capacitor is charging, is returned to the circuit during 
the following quarter-cycle, when the capacitor is discharging. Al­
ternating current flows in and out of a capacitor, not through it. 
In a pure capacitive reactance, current is directly proportional to 
voltage and inversely proportional to reactance, as shown by Ohm's 
law: 

( 1-13)  

where I is in amperes, E in volts, and Xc in  ohms. 
The sign of capacitive reactance, incidentally, is negative. The im­
portance of sign will become clearer later when I discuss the 
complex-number representation of impedance. (For now, I'm ig­
noring this for simplicity.) 

Example 1-9. A sinusoidal 1000 Hz signal of 5V 
R

MS 
is ap­

plied to a 50 pF* capacitor. Neglecting any inherent resistance, cal­
culate the current in milliamperes that flows in and out of this 
capacitor. 

Here, 50 pF = 5 x 10 - 1 1  F; and from Eq. 1-12:  

1 
Xc= 

2(3 . 1416) 1000 (5 x 10 - 1 1) 

= 113 .1416 x 10 - 7  

= 3,183,0910 

1 . 1 3  COMBINED REACTANCE 

Both kinds of reactance-inductive and capacitive-are often 
found in a single circuit. The opposition offered to the flow of al­
ternating current is then the combined effect of the two reactances. 
When the two reactances are in series, the combined reactance is 
the algebraic sum of the two: 

( 1- 14) 

where X, XL' and Xc are all in the same units (ohms, kilohms, 
etc. )  

·The abbreviation pF stands for picofarads. which is the equivalent o f  10-12 F 
or 10 - 6  J.'F. 
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But when the two reactances are in parallel, 

( 1- 1 5) 

The dominant reactive component determines the nature of the 
combined reactance. Thus, where XL = 1000 and Xc = 100, X 
= 100 - 10 = 900 inductive. Similarly, where XL = 250 and Xc 
= 600, X = 25 - 60 = - 350 capacitive. At one frequency­
termed the resonant frequency (fR)-the inductive reactance equals 
the capacitive reactance and, because of the diff erence in sign, the 
two cancel each other, leaving no reactance in the circuit. In that 
case, wL = 1IwC; and, when the values of Land C are known, the 
equivalent equation 27rfL = 1I 27rfC can be rewritten to solve f or 
f, the resonant frequency: 

1 
( 1- 16) 

f 
= 

27rJLC 

where f is in hertz, L in henrys, and C in f arads. 
The inductor and capacitor are c onnected in series in a series­
resonant circuit; they are connected in parallel in a parallel-resonant 
circuit. 

Example 1- 1 0. Calculate the resonant frequency in kilohert z  
of 350 pF and 175 p.H in combination. 

Here, 350 pF = 3.5 x 10-- 10 F, and 175 p.H = 1 .75 x 10 -4 H. 
From Eq. 1 - 16: 

f = 11(2 x 3. 1416jj.5 x 10-10 ( 1 . 75 x 10-4» ) 
= 11 (6.2832)6 . 12 x 10- 14 ) 

1 
6.2832 x (2.475 x 10-7) 

1 
1 .55 X 10-6 

= 645 , 161  Hz 
= 645 . 16  kHz 

From a rewritten form of Eq. 1 - 16, the capacitance required 
to resonate a given inductance at a selected frequency is: 
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1 
( 1- 1 7) 

where C is in farads, f in hertz, and L in henrys. 
Example 1- 1 1 . What value of capacitance in microfarads is 

required to resonate a 10H inductor at 500 Hz? 
From Eq. 1 - 17 :  

C= 1 
4 X 3 . 14162 X 5002 X 10  

1 = 
39.48 x 250,000 x 10 

= 1/98,700 000 = 1 .01 X 10-8 F 
0 .0101 JLF 

Similarly, with the aid of another rewritten form of Eq. 1 - 16, the 
inductance required to resonate a given capacitance at a selected 
frequency is: 

1 
L = ---

4rj2C 
( 1- 18) 

where L is in henrys, f in hertz, and C in farads. 
Example 1 - 12.  What value of inductance in millihenrys is 

required to resonate a 10 pF capacitor at 3500 kHz? 
Here, 10 pF = 10- 1 1  F and 3500 kHz = 3.5 x 106 Hz. From 

Eq. 1 - 18 :  

1 
L 

4 X 3. 14162 x (3.5 X 106)2 X 10- 1 1  

1 = -----------
39 .48( 1 .225 X 1013) 10- 1 1  

1 
39 .48(1 .225 X 102) 
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1 

4.8363 X 103 

2 .07 X 10 - 4  H = 0.207 mH 

It is important to remember that a given capacitance or induc­
tance off ers a diff erent amount of reactance to the fundamental f re­
quency and to each of the harmonics in a complex wave. For 
example, at the second harmonic, capacitive reactance is half the 
value at the fundamental f requency, and inductive reactance is twice 
the value at the f undamental f requency; at the third harmonic, 
capacitive reactance is one-third, and inductive reactance is three 
times; etc. Consequently, when a complex voltage wavef orm is ap­
plied to a reactance, the resulting current can have a quite diff er­
ent wave shape because of the diff erent amounts of attenuation of 
the component f requencies. 

1 . 1 4  AC COMBINED WITH DC 

Frequently, an alternating current is mixed with a steady di­
rect current, or an alternating voltage is mixed with a steady di­
rect voltage. This situation is f ound in the input and output circuits 
of tube and transistor amplif iers (where the dc is a bias current or 
voltage, and the ac is the signal riding on the bias) and the unf iltered 
output of rectif iers (where the ac is the ripple). 

Figure 1 -9 shows two examples. In the upper t�ace, an ac volt­
age alternates about + IV as a mean, rising to + 1 . 5V on positive 
peaks and f alling to + 0.5V on negative peaks. In the lower trace, 
an ac voltage of the same intensity alternates about - 1 V as a mean, 
f alling to - 1 .5V on negative peaks and rising to - 0.5V on posi­
tive peaks. In each instance, the wave is composed of a series of 
instantaneous dc values obtained by f luctuating the dc in some way 
(in a vacuum-tube amplif ier, f or example, an ac gri d voltage swings 
the dc plate current up and down to produce the ac-on-dc signal). 

Regardless of the instantaneous or average values of dc in­
volved, the ac component exhibits only the conventional ac values­
voltage or current-indicated by its dimensions. The rms value of 
each of the two waves in Fig. 1 -9, f or example, is ac 0.707(0.5) = 

0.353V, and it makes no diff erence whether the mean value is + IV, 
as in the upper f igure, or - IV, as in the lower f igure. Theref ore, 
when the ac component is extracted f rom the mixture, as through 

25 



!!l (5 
> 
(,) 

"0 
Q) 
> 
.� � a:: 

III 

g 
(,) 

"0 
Q) 
> 
.� � a:: 

+ 

" 

+ 

Fig. 1 -9 .  At A, the output of a half-wave rectifier; at B, the output of a full-wave 
rectifier, assuming sine-wave ac input . 

capacitor coupling or transfonner coupling, only this ac component, 
and none of the dc, is available in the output. The ac may be sinusoi­
dal or nonsinusoidal. 

It must be noted that at every point in the combined signal, the 
voltage (or current) is the sum of the average dc component (here, 
+ IV or - IV) and the instantaneous ac voltage at that point. Thus, 
at the ac voltage peak, the combined voltage is higher than either 
the average dc or the peak ac, and sometimes this can cause cir­
cuit breakdowns, signal clipping, and other undesirable effects. 

This combination of ac and dc goes under several names, such 
as composite voltage or composite current, fluctuating voltage or fluc­
tuating current, and ac superimposed on dc. 

1 . 1 5  RECTIFIED AC 

There is another way, besides that shown in Fig. 1 -9, that might 
produce an ac signal combined with dc. This is rectification, which 
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produces a pulsating dc wave such as those shown in FjIg. 1 - 10 .  
The wave at A is the result of passing ac through a diode, as shown 
in the circuit diagram of Fig. l - lO(A). This is called half-wave rec­
tification. At B of Fig. 1 -9, a f ull-wave rectified ac signal is shown, 
and the most common circuit for tpis is at Fig. 1 - 10(B). 

Rectified ac has a nonsymmetrical waveshape and therefore 
is always rich in harmonic energy. In the case of a power supply 
the ripple is filtered out and this harmonic energy (as well as energy 
at any ac frequency) is removed. But in some rf circuits this har­
monic energy is useful. An example of this is a f requency multiplier. 

With a sine wave ac input, the rectified signal voltage is higher 
in the case of full-wave rectification, as compared with half-wave, 
if we are interested in the average voltage. The peak voltages are 
the same in either situation but the average voltage is twice as great 
for f ull-wave rectifiers as compared with half-wave rectifiers. 

In full-wave rectification the ripple f requency is twice that for 
half-wave rectification. This makes a f ull-wave bridge especially 
usef ul as a frequency doubler. In power supplies the f ull-wave cir­
cuit gives better regulation and the output is easier to filter . 

• �I 0 0 +  

ae Pulsating de 

0 0 -

0 

ae .-----.-.0 + 

Pulsating de 

Fig. 1 -1 0. At (A), a half-wave rectifier; at (8), a typical full-wave rectifier circuit. 
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1 . 1 6  PRACTICE EXERCISES 

1 . 1 .  Convert 250,500 Hz to megahertz. 
1 .2 . Convert 10 GHz to megahertz. 
1 .3. Convert 3.55 MHz to kilohertz. 
1 .4. Convert 60 Hz to kilohertz. 
1 .5 .  Convert 8 GHz to hertz. 
1 .6 . Calculate the period in microseconds of a 5000 kHz standard­
frequency signal . 
1 .7. Calculate the period in milliseconds of the 60 Hz power-line 
frequency. 
1 .8 . Calculate the period in seconds of the 1540 kHz standard 
broadcast frequency. 
1 .9. Calculate the period in seconds of the 50 Hz power-line fre­
quency. 
1 . 10. Calculate the period in microseconds of a 1000 Hz audio test 
frequency. 
1 . 1 1 .  Calculate the period in milliseconds of the 4000 kHz ama­
teur frequency. 
1 . 12 .  Calculate the period in microseconds of the 540 kHz stan­
dard broadcast frequency . 
1 . 13. Calculate the period in seconds of the 27. 125 MHz (channel 
14) Citizens Band frequency. 
1 . 14 .  Calculate the period in milliseconds of the 10.7 MHz FM in­
termediate frequency . 
1 . 15. Calculate the period in microseconds of the 57 MHz center 
frequency of TV channel 2. 
1 . 16. Calculate the period in seconds of a 1 GHz microwave signal. 
1 . 17 . Calculate the period in milliseconds of a 0.3 GHz microwave 
signal. 
1 . 18 .  Calculate the period in microseconds of an 8 GHz microwave 
signal. 
1 . 19. Calculate the frequency in hertz corresponding to a period 
of O .Ols. 
1 .20. Calculate the frequency in kilohertz corresponding to a period 
of 0.00015s. 
1 .2 1 .  Calculate the frequency in megahertz corresponding to a 
period of 10-5 s. 
1 .22. Calculate the frequency in gigahertz corresponding to a period 
of 10- 10 s. 
1 .23. Calculate the frequency in hertz corresponding to a period 
of 8 .33 ms. 
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1 .24. Calculate the frequency in kilohertz corresponding to a period 
of 0.5 ms. 
1 .25. Calculate the frequency in megahertz corresponding to a 
period of 0.001 ms. 
1 .26. Calculate the frequency in gigahertz corresponding to a period 
of 2 x 10 - 3 ms. 
1 .27 .  Calculate the frequency in hertz corresponding to a period 
of 1000 p,s. 
1 .28. Calculate the frequency in kilohertz corresponding to a period 
of 70 p,s. 
1 .29. Calculate the frequency in megahertz corresponding to a 
period of 10  p,s. 
1 .30. Calculate the frequency in gigahertz corresponding to a period 
of 0.005 p,s. 
1 .3 1 .  A certain sine wave has a maximum value of 162 .6V . Calcu­
late the instantaneous voltage at 45 degrees. 
1 .32. A certain sine wave has a maximum value of 3V. Calculate 
the instantaneous voltage at 260 degrees. 
1 .33. A certain 1000 Hz sine wave has a maximum value of 10V. 
Calculate the instantaneous voltage at the 0 .25 ms point. (Assume 
the positive-going, O-degree point is at the origin . )  
1 .34. A certain 60 Hz sine wave has a maximum value of 162 .6V . 
Calculate the instantaneous voltage at the one second point. (As­
sume the positive-going, O-degree point is at the origin . )  
1 .35. A certain 1 MHz sine wave has a maximum value of 1 V .  At 
which instants in microseconds in the first cycle will the instan­
taneous voltage be - 0.707V? (Assume the positive-going, O-degree 
point is at the origin.) 
1 .36. A certain 400 Hz sine wave has a maximum value of 8 .91V. 
At what instant in milliseconds in the first cycle will the instan­
taneous voltage be + 4.455V? (Assume the positive-going, O-degree 
point is at the origin .) 
1 .37. A certain sine wave has a maximum value of 10V. At the 
15 p,s point, the instantaneous voltage is 9.09V. Calculate the fre­
quency in hertz of this wave. (Assume the positive-going, O-degree 
point is at the origin . )  
1 .38. A certain 1250 Hz sine wave has an instantaneous voltage 
of - 5V at the 0 .5 ms point in the cycle. Calculate the maximum 
voltage of this cycle. (Assume the positive-going, O-degree point 
is at the origin . )  
1 .39. In a 2 .5 MHz sine-wave cycle, at which points in microse-
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conds do the following voltages occur: (a) positive maximum; (b) 
negative maximum? (Assume the positive-going, O-degree point is 
at the origin . )  
1 .40. A certain sine-wave cycle has maximum positive voltage at 
the 1 .25 ms point. Calculate the frequency of this wave. (Assume 
the positive-going, O-degree point is at the origin.) 
1 .4 1 .  Convert 39.5 degrees to radians. 
1 .42 . Convert 5 degrees 15  minutes to radians. 
1 .43. Convert 5.4 radians to degrees. 
1 .44 . Convert 1 .047 radians to degrees. 
1 .45. What is the angle in radians at the 1 0  p's point in a 12 .5 kHz 
sine-wave cycle? (Assume the positive-going, O-degree point is at 
the origin.) 
1 .46. What is the angle in radians at the 1 .67 ms point in a 60 Hz 
sine-wave cycle? (Assume the positive-going, O-degree point is at 
the origin . )  
1 .47. At any frequency , what is the angle in radians in the sine­
wave cycle at (a) maximum positive voltage; (b) maximum nega­
tive voltage? 
1 .48. For a 1 000 Hz sine-wave cycle, express the angle in degrees 
when t = 0 .5 ms. 
1 .49. For a 10 MHz sine-wave cycle, express the angle in degrees 
when t = 0.075 p.s. 
1 .50. Calculate the angular frequency (w) for the following often 
used frequencies: (a) 40 Hz, (b) 1 25 Hz, (c) 800 Hz, (d) 1 00 kHz, 
(e) 540 kHz, (f) 1 380 kHz, (g) 1 .875 MHz, (h) 10 .7 MHz, (i) 27 .085 
MHz, U) MHz. 
1 .5 1 .  What frequency in kilohertz is required for a desired angu­
lar frequency of 1 000? 
1 .52 . Calculate the rms value corresponding to a maximum volt­
age of 1 5V.  
1 .53. Calculate the rms value corresponding to a maximum volt­
age of 2 .37 p.V. 
1 .54 . Calculate the average value corresponding to a maximum 
voltage of 6 .9V . 
1 .55. Calculate the average value corresponding to a maximum 
voltage of 1 0  mY. 
1 .56. Calculate the rms value corresponding to an average volt­
age of 3.3V. 
1 .57. Calculate the rms value corresponding to an average volt­
age of 0 .0001 5V. 
1 .58. Calculate the maximum value corresponding to an rms volt-
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age of 50V. 
1 .59. Calculate the maximum value corresponding to an rms volt­
age of 1 p. V. 
1 .60. Calculate the average value corresponding to an rms volt­
age of 510V. 
1 .6 1 .  Calculate the average value corresponding to an rms volt­
age of 38 mY. 
1 .62 . In the test of a certain oscillator performed with a wave 
analyzer, the following signal voltages are observed: fundamental, 
IV; second harmonic, 1 mY; third harmonic, 0 .25 mY; and fourth 
harmonic, 0. 1 m V. Calculate the harmonic strength in percent for 
(a) 2nd harmonic; (b) 3rd harmonic; (c) 4th harmonic. 
1 .63. From the data in exercise 1 .62, calculate the total distortion 
in percent. 
1 .64. In the test of a certain amplifier performed with a distortion 
meter, the combined voltage is 2 .2V and the total harmonic volt­
age is 1 .45 m V. Calculate the total distortion in percent. 
1 .65. An audio generator is being adjusted for an acceptable total 
distortion of 0.25%. If the output of the generator is set to IV, what 
must be the output voltage in millivolts of the distortion-measuring 
circuit for this percentage? 
1 .66. Calculate the counter emf in volts generated in a 30H induc­
tor carrying 100 rnA at 120 Hz. 
1 .67. Calculate the counter emf in volts generated in a 2.5 mH in­
ductor carrying 1 rnA at 1 MHz. 
1 .68. Calculate the 120 Hz reactance of a 1 5H inductor. 
1 .69. Calculate the 1 MHz reactance of a 100 p.H inductor. 
1 .  70. What inductance is required for 20K reactance at 1000 Hz? 
1 .  7 1 .  At what frequency in hertz will a 20H inductor have a reac­
tance of 10k? 
1 .72. Calculate the voltage drop in volts across a 2H inductor car­
rying 125 rnA at 400 Hz. 
1 .  73. Calculate the current in microamperes passed by a 1 mH in­
ductor when the applied voltage is 250 m V at 2 MHz. 
1 .74. What is the 1000 Hz reactance of an inductor that passes 0.5A 
for an applied voltage of 10V? 
1 .  75. Calculate the inductance in henrys of the inductor in exer­
cise 1 .74. 
1 .  76. Calculate the 1 MHz reactance in ohms of a 0.002 p.F ca­
pacitor. 
1 .77. Calculate the 50 MHz reactance in ohms of a 25 pF capacitor. 
1 .  78. Calculate the 120 Hz reactance in ohms of a 16 p.F capacitor. 
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1 .79. Calculate the 60 Hz reactance in megohms of a 25 pF ca­
pacitor. 
1 .80. At what frequency will a 2 JLF capacitor have a reactance of 
10000? 
1 .8 1 .  Calculate the effective current in milliamperes through a 1 
JLF capacitor at 1000 Hz when the applied potential is 1 V.  
1 .82 . Calculate the voltage required to force a current of 3 rnA 
through a 0 .01 JLF capacitor at 1000 Hz. 
1 .83. Calculate the 400 Hz reactance of a capacitor which passes 
1 rnA at 10V. 
1 .84. Calculate the capacitance in microfarads of the capacitor in 
exercise 1 .83. 
1 .85. Calculate the voltage drop in millivolts across a 0 .025 JLF ca­
pacitor carrying 500 JLA at 2000 kHz. 
1 .86. What capacitance in microfarads will be required to pass 
0.25A relay current at 60 Hz when the applied voltage is 1 15V? 
1 .87. A 500 inductive reactance and a 100 capacitive reactance 
are connected in series. Calculate the combined reactance. 
1 .88. A 500 inductive reactance and a 100 capacitive reactance 
are connected in parallel. Calculate the combined reactance. 
1 .89. (a) Calculate the combined 120 Hz reactance offered by a 20H 
inductor and an 8 JLF capacitor in series. (b) Is the combined reac­
tance inductive or capacitive? 
1 .90. (a) Calculate the combined 1 MHz reactance offered by a 1 
mH inductor and a 0 .01 JLF capacitor in parallel. (b) Is the com­
bined reactance inductive or capacitive? 
1 .91 .  Calculate the resonant frequency in kilohertz of a circuit con­
taining 0.02 JLF and 2 .5 mHo 
1 .92. Calculate the resonant frequency in megahertz of a circuit 
containing 365 pF and 100 JLH. 
1 .93. What capacitance in microfarads is required to resonate a 
5H inductor at 400 Hz? 
1 .94. What capacitance in picofarads is required to resonate a 2 
JLH inductor at 45 MHz? 
1 .95. What inductance in millihenrys is required to resonate a 0.05 
JLF capacitor to 3500 Hz? 
1 .96. What inductance in henrys is required to resonate a 0.25 JLF 
capacitor to 180 Hz? 
1 .97. What is the principal advantage of a full-wave rectifier over 
a half-wave rectifier for power supply use? 
1 .98. Why is a full-wave circuit often used as a frequency doubler? 
(Answers are found in Appendix D. ) 
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�I 

Nature of Impedance 

T HIS CHAPTER SURVEYS IMPEDANCE AND EXAMINES ITS COM­

position and various aspects of its nature_ The subject mat­
ter extends that of Chapter 1 by progressing from the concept of 
reactance developed at the end of that chapter. Illustrative exam­
ples are offered to demonstrate the various methods of calculating 
impedance. 

2.1  IMPEDANCE DEFINED 

Impedance (Z) is the opposition offered to the flow of alternat­
ing current and is expressed in ohms (where applicable, the multi­
ples and submultiples of the ohm also are used : microhms, 
milliohms, kilohms, megohms, etc. ). In this respect, the behavior of 
impedance in an ac circuit is analogous to that of resistance in a 
dc circuit and is described by Ohm's law: 

Z = Ell, I = EIZ, E = IZ (2- 1 )  

where Z is in ohms, E is in volts, and I is in amperes. (Here, Z 
represents an absolute-value (real-munber) impedance. Complex im­
pedances, which are more precise, will be discussed later. )  

Example 2- 1 .  When an emf of 10V rms is applied to a cer­
tain two-terminal black box, a current of 0.75 rnA flows. Calculate 
in kilohms the internal impedance of the black box. 
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Here, 0.75 rnA = 0.00075A. From Eq. 2- 1 : 

Z = Ell 
1010.00075 

= 13,333 ohms 
= 13.33K 

The similarity ends there, however, since impedance, unlike re­
sistance, is frequency dependent and exhibits phase angle. 

In a very broad sense, impedance denotes any opposition that 
is offered to ac. Such a definition would include pure resistance 
and pure reactance. It is for this reason that such terms as resistive 
impedance (for resistance) and reactive impedance (for reactance) are 
sometimes encountered. 

2.2 COMPOSITION OF IMPEDANCE 

Impedance (Z) is the combined effect of resistance (R) and reac­
tance (X). The resistive component is 90 degrees out of phase with 
the reactive component, so R and X cannot simply be added arith­
metically to give the impedance. The vector diagrams in Fig. 2- 1 
show how resistance and reactance combine to form impedance. 

Figure 2-1(A) shows resistance and inductive reactance. Here, 
the impedance vector (Z) is the resultant-the vector sum-of the 
resistance vector (R) and the reactance vector (XL). The phase an­
gle of the resulting impedance is the angle (J between the impedance 
vector and the resistance vector. 

Figure 2-1(B) shows resistance and capacitive reactance. Here, 
the Xc vector is drawn in the opposite direction of the XL vector 
in Fig. 2- l(A) to show that the effect of capacitive reactance is op­
posite to that of inductive reactance. The impedance vector (Z) is 
the resultant-the vector sum-of the resistance vector (R) and the 
reactance vector (Xc). The phase angle of the resulting impedance 
is the angle (J between the impedance vector and the resistance 
vector. 

In Fig. 2-l(C) there is combined reactance (X) consisting of in­
ductive reactance (XL) and capacitive reactance (Xc). This com­
bined reactance X = XL - Xc (see Sec. 1 . 13 ,  Ch. 1 )  and is 
represented by vector x. It is this combined reactance that acts 
with the resistance to form the impedance, represented by vector 
z. The phase angle of the resulting impedance is the angle (J be­
tween the impedance vector and the resistance vector. 
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Fig. 2-1 .  Basic R-C-L-Z relationships with vectors showing how resistance and 
reactance combine to form impedance. 
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Series Circuits 

It is easily seen from the three diagrams in Fig. 2-1 that the 
impedance vector is the hypotenuse of a right triangle whose sides 
are the resistance and reactance vectors. Since, from geometry, 
the hypotenuse equals the square root of the sum of the squares 
of the other two sides: 

Z = JW + X2 (2-2) 

Where Z, R, and X are in ohms. 
In complex algebra, this is written Z = R + jXL or Z = R - jXc­
Equation 2-2 applies to circuits in which resistance and reactance 
are in series. Complex representations of impedances are discussed 
in more detail later. 

Example 2-2. A O. I #-tF capacitor and 10000 resistor are con­
nected in series. Calculate the impedance in ohms (at 1000 Hz) of 
this combination. 

Here, Xc for the O . I #-tF capacitor is 1591.50 (Eq. 1-12, Ch. 1) . 
From Eq. 2-2 : 

Z = ../10002 + 1591.52 
../(1 x 106) + (2.533 x 106) 

= ./3.533 X 106 
= 1879.60 

When there is combined reactance, as in Fig. 2-1 (C), for a se­
ries circuit the combined value X = XL - Xc (Eq. 1- 14, Ch. 1), 
and Eq. 2-2 is rewritten: 

(2-3) 

Example 2-3. A 0.5 #-tF capacitor, IH inductor, and 4700 
resistor are connected in series. Calculate the impedance in ohms 
(at 400 Hz) of this combination. 

Here, XL for the IH inductor is 2513.20 (Eq. 1-10, Ch. l ) and 
Xc for the 0.5 #-tF capacitor is 795.80 (Eq. 1-12, Ch. 1). From Eq. 
2-3: 
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J3 , 170,706 = 1780.60 

Since the diagrams in Fig. 2-1 are right triangles, the solutions 
from trigonometry are easily applied. Thus, the tangent of the phase 
angle (8) of the impedance, being equal to the opposite side divided 
by the adjacent side of the triangle, is equal to XIR: 

tan 8 = XIR = XL / R = Xc IR (2-4) 

where X, Xu and Xc are in ohms. 
When the reactance and resistance are known, the phase angle can 
be found: 

8 = arc tan XIR (2-5) 

where 8 is in degrees, and X and R are in ohms. 
Likewise, sin 8 = XIZ, and cos 8 = RIZ. From this, 8 = arc sin 
XIZ = arc cos RIZ. 

Example 2-4. A 10 mH inductor and 560 resistor are con­
nected in series. Calculate the phase angle of the impedance at 1000 
Hz. 

Here, XL for the 10 mH inductor is 62 .80 (Eq. 1 - 10 ,  Ch. 1 ) .  
From Eq. 2-5, 

8 = arc tan 62.8/56 = arc tan 1 . 1214 
48.275 degrees 
48 degrees, 16  minutes, 30 
seconds. 

The total impedance of similar impedances connected in se­
ries is similar to the total resistance of resistors connected in series: 

Parallel Circuits 

When resistance and reactance are in parallel, the resulting im-
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pedance is: 

Z = RX (2-6) 

where Z, R, and X are in ohms. 
This formula is seen to resemble that for two resistances in 

parallel: REQ = (R)R2)/(R) + R2). But whereas in the resistance for­
mula the product is divided by the sum, in the impedance formula 
(because of the difference between R and X) the product is divided 
by the vector sum. 

Example 2-5. A 20H inductor and 5K resistor are connected 
in parallel. Calculate the impedance in kilohms (at 500 Hz) of this 
combination. 

Here, XL for the 20H inductor is 62,8320 (Eq. 1 -10, Ch. 1) .  
From Eq. 2-6: 

Z = (5000 x 62,832)/ 0002 + 62 ,8322 
(3. 142 x 10B)/ .5 x 10 ) + (3.95 x 109) 
(3. 142 x 10B)/.fJ.975 x 109 
3 . 142 x lOB 
6.305 X 104 

= 48930 
= 4.893K 

As with a parallel-resistance circuit with unequal resistances, the 
impedance of the parallel resistance/reactance circuit is less than 
either the resistance or the reactance. 

For the parallel circuit, the phase angle of the impedance is: 

o = arc tan RIX (2-7) 

where 0 is in degrees, R in ohms, and X in ohms. 
Note that this formula is the reciprocal of the one for the phase 
angle of the series circuit (Eq. 2-5). 

Example 2-6. In the preceding example, XL = 62,8320 and 
R = 5K. Calculate the phase angle of the resulting 48930 im­
pedance. 

From Eq. 2-7, 

o = arc tan 5000/62 ,832 
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arc tan 0.079577 
= 4.549 degrees 

4 degrees, 32 minutes, 56 seconds. 

The equivalent impedance of similar impedances connected in 
parallel is similar to the equivalent resistance of resistors connected 
in parallel: 

1 

Full Depiction 

Equations 2-1 , 2-2, 2-3, and 2-6 give only the magnitude of the 
impedance. In many applications, this quantity is all that is needed. 
A full expression of impedance, however, contains not only the mag­
nitude, but also the phase angle (see Eq. 2-5 and 2-7 for the angle). 
For example: z/e = 35/26 degrees 30 minutes denotes an im­
pedance of 350 at a phase angle of 26 degrees and 30 minutes. 
(Complex algebra provides a more precise representation of this 
situation; we are temporarily putting off discussion of this.) 

When the magnitude Z and phase () of an impedance are given, 
the resistive (R) and reactive (X) components may be determined 
either graphically or through calculation. In the graphic solution 
(Fig. 2-2) , the impedance vector z is drawn to scale forming the 
angle () with the horizontal (resistance) axis. Then, projections are 
made from the tip of the z vector to the horizontal and vertical axes, 
as shown by the dotted lines. The resistance magnitude may then 
be measured along the horizontal axis, and the reactance magni­
tude along the vertical axis. The solution by calculation is based 
on simple right-triangle relationships from trigonometry: 

R = Z cos (), and 
X = Z sin () 

(2-8) 

(2-9) 

Example 2-7. A given impedance is 1500 at 30 degrees. Cal­
culate the resistive and reactive components. 

Here, sin 30 degrees = 0.5 and cos 30 degrees = 0.866025. 
So, from Eqs. 2-8 and 2-9, 

R = 1 50(0.866025) = 129.90 
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x 

X = Z sin 8 

'C======�========7-7R 
R = Z cos8 

Fig. 2-2. Determination of resistance and reactance from impedance and phase 
angle. The resistance magnitude may be measured along the horizontal axis 
and the reactance along the vertical axis. 

x = 150(0.5) = 750 

From Eqs. 2-8 and 2-9, it is apparent that impedance may be 
calculated in terms of resistance and phase angle or reactance and 
phase angle: Z = Rlcos 0, and Z = Xlsin 0. 

2.3 UNIVERSALITY OF IMPEDANCE 

Impedance is found everywhere in the world of electronics. This 
is because resistance and reactance tend to occur together, one of­
ten as a stray effect . Thus, a resistor can exhibit inherent capaci­
tance and inductance, a capacitor can exhibit inherent resistance 
and inductance, and an inductor can exhibit inherent resistance and 
capacitance. It is stray resistance that causes losses in capacitors 
and inductors. In most well built components, the stray quantity 
is negligible when compared with the principal property . When the 
value of the stray is significant, however, the component or device 
must be handled as an impedance, not as a simple resistance or 
reactance. 
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Some of the familiar devices in which impedance is encoun­
tered are antennas and transmission lines; generators, motors, re­
lays and transformer windings; headphones, microphones, 
loudspeakers, and magnetic amplifiers; capacitors, inductors, 
saturable reactors, and resistors (inductively wound); tubes, tran­
sistors, semiconductor diodes, and rectifiers; and control devices. 

2.4 IMPEDANCE OF COMMON BASIC CIRCUITS 

Figure 2-3 shows eight common circuits along with the formulas 
for impedance and phase angle. These are basic arrangements in 
which resistance, capacitance, and inductance are assumed to be 
ideal. Several of these circuits invite special attention and are dis­
cussed individually. 

Figure 2-3(E) shows an ideal sen'es-resonant circuit. Depending 
upon the various values which inductance ( L) and capacitance (C) 
may assume, the circuit may be resonant (exhibiting no reactance), 
nonresonant above the resonant frequency (exhibiting inductive 
reactance), or nonresonant below the resonant frequency (exhibit­
ing capacitive reactance). The phase angle of the inductive reac­
tance is + 90 degrees, and that of the capacitive reactance - 90 
degrees; for frequencies off resonance, the angle is positive if Xc 
is larger than XL' and is negative if XL is larger than Xc- At reso­
nance, since at this point XL = Xc> angle (J is zero. The impedance 
at frequencies off resonance is equal to XL - Xc and is character­
ized by the dominant member of this expression. At resonance, 
therefore, Z is zero-which accounts for maximum current at res­
onance in series resonant circuits. 

Figure 2-3(F) shows an ideal parallel-resonant circuit. In this ar­
rangement, unlike the series-resonant circuit described in the 
preceding paragraph, the impedance at resonance is infinite. This 
accounts for maximum voltage at resonance in parallel-resonant 
circuits. The phase angle of the inductive reactance is + 90 degrees 
and that of the capacitive reactance is - 90 degrees; for frequen­
cies off resonance, the angle is positive if Xc is larger than XL' and 
is negative if XL is larger than Xc' At resonance, since at this 
point XL = Xc' angle (J is zero. The impedance at frequencies off 
resonance is equal to XL - Xc and is characterized by the domi­
nant member of this expression. At resonance, since here XL = 

Xc' the denominator of the impedance formula in Fig. 2-3(F) is 
zero; therefore, the impedance is unmeasurably great. 

While Figs. 2-3(E) and 2-3(F) show ideal series-resonant and 
parallel-resonant circuits, Figs. 2-3(G) and 2-3(H) show correspond-
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z - - -+  L 

z = j R2 + X2L 
XL () :z arc tan -
R 

• Resistance and inductance in 
series 

Z - - -+  R L 

RXL z -
J R2 + X2L 

R () .., arc tan -
XL 

e Resistance and inductance 
in parallel 

R 

Z - - -+  

e Resistance and capacitance 
in series 

c) 
Z - - �  

o 

e Resistance and capacitance 
in parallel 

Fig. 2-3 . Eight common basic circuits with equations for determining impedance 
and phase angle. 
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ing practical circuits. That is, each of the latter circuits contain re­
sistance which occurs in practice in the form of losses in the inductor 
and capacitor. In the series-resonant circuit , Fig. 2-3(G), the off­
resonance impedance is the vector sum of the resistance and com­
bined reactance, and is capacitive below resonance and inductive 
above resonance. At resonance, the combined reactance is zero, 
and only the resistance is left in the circuit. Therefore, at resonance 
Z = R. Current in the practical series-resonant circuit is maximum 
at resonance, but is limited by resistance. The phase angle is de­
termined by the ratio of the combined reactance to the resistance. 
This angle may have any value between zero degrees and 90 
degrees, depending upon the relative amounts of XL' XC' and R. 
At resonance, the phase angle is zero, since here XL = Xc = zero, 
and arc tan OIR = O. 

In the parallel-resonant circuit , Fig. 2-3(H), the off-resonance 
impedance is equal to the reciprocal of the vector sum of the recipro­
cal of the resistance and the combined reactance, and is inductive 
below resonance and capacitive above resonance. At resonance, 
the combined reactance (XL - XC) is zero and only the resistance 
(R) is left in the circuit. Therefore, at resonance, Z = R. The phase 
angle is determined by the relative amounts of XL' Xc' and R, and 
may have any value between zero degrees and 90 degrees. At res­
onance this angle is zero, since here XL = Xc = 0, and (J = arc 
tan R(lIXL - lIXc) = arc tan R(O) = O. 

2.5 IMPEDANCE OF LINEAR DEVICES 

The impedance of devices which consist essentially of one or 
more straight wires, rods, or tubes (so-called linear devices) presents 
a special case. Prominent among such devices are antennas and rf 
transmission lines. In many instances the impedance of these devices 
is purely resistive. 

Antennas 

An operative antenna is characterized by a pattern of station­
ary standing waves along its length. This arrangement of loops and 
nodes constitutes a distribution of current I and voltage E along 
the length, as shown in Fig. 2-4 for a half-wave antenna operating 
at its fundamental frequency . By cutting or lengthening this fig­
ure, one can see what the resulting E and I distribution would be 
on antennas of different lengths, say quarter-wave and full-wave . 

Note that current is maximum at the center of the wire, rod, 
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Fig. 2-4. Current and voltage distribution for a half-wave antenna operating 
at its fundamental frequency. 

or tube, and is zero at the ends, while voltage is zero at the center 
and maximum at the ends. At any point along the length of the an­
tenna, the impedance Z is equal to the ratio of voltage to current 
(E/l) at that particular point. Thus, the impedance is very high at 
the ends (being theoretically inf inite) and is very low at the center 
(being theoretically zero). 

A transmitting antenna is visualized as working against an 
impedance-the radiation resistance-when radiating energy into 
space. The value of radiation resistance (RR) f or a horizontal, half ­
wave antenna is governed by the height of the antenna above 
ground. The reason f or this is the action of that part of radiated 
energy which is ref lected back from the surface of the earth. This 
ref lected energy arrives at the antenna in or out of phase with 
energy that is in the antenna. Depending upon how f ar the ref lected 
energy has had to travel to reach the antenna, it either reduces or 
increases the apparent resistance because of this phase eff ect. Fig­
ure 2-5 shows a plot of theoretical values of radiation resistance 
at the center of a half -wave antenna in free space f or various heights 
f rom zero to two wavelengths above perfectly conducting ground. 
Observe that the higher the antenna, the more closely RR ap­
proaches the theoretical value of 73.20. At the ends of the antenna, 
RR is several thousand ohms. In practical terms, the radiation re­
sistance is that value of resistance which would, if it were inserted 
at the center of the antenna, dissipate energy equal to that ordinarily 
radiated from the antenna. And this is a legitimate concept, f or radi­
ated energy is, in eff ect, energy lost from the antenna-in a sense, 
consumed by it. 

TRANSMISSION LINES 

The purpose of a transmission line is to conduct rf energy from 

45 



1 00 V\ 
90 J I 1\ 80 � /1 /4 \ 1 12 3/4/ '\.1 

73 I / 
70 1/ 1\ J " v 

en 60 
E I .J::. � 

50 C1> I u 
c: 
<0 
iii 

40 ·iii I � 
c: 
.2 

30 tii � :.c <0 a:: 
20 I 1 0  o . 1  . 2  .3 .4 .5 . 6  .7  . 8  . 9  1 .0 1 . 1 1 .2 

Height above ground (wavelengths) 

Fig. 2-5. Radiation resistance of a half-wave horizontal antenna plotted for var­
ious heights from zero to two wavelengths above ground. 

one point (such as a generator) to another point (such as a load) 
with virtually no radiation from the line. In one of its simplest forms, 
this device consists of two parallel wires, with the spacing between 
the wires small compared with one wavelength. Figure 2-6 shows 
such a line connected to an rf generator at one end and to a load 
resistor (R) at the other end. Current flows in opposite directions 
in the two wires, so radiation from the line is effectively canceled. 
The line has distributed inductance and distributed capacitance, 
and from these properties the characteristic impedance (Zo or Zc), 
neglecting the resistance of the wires, can be calculated: 

(2-10) 
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where Zo is in ohms, L in henrys, and C in farads. This quantity 
is termed characteristic impedance, since for a line of given dimen­
sions it has the same Ell value at any point along the line. It is also 
called surge impedance. If the terminating resistance is equal to the 
characteristic impedance, the resistor absorbs all of the energy and 
no standing waves appear on the line. 

For a two-wire line, Zo depends upon the diameter and spac­
ing of the wires: 

Zo = 276 loglo 2SId (2- 1 1 )  

where Zo is the characteristic impedance in ohms, S the center-to­
center spacing of wires in inches, d the diameter of wire in inches, 
and loglo the common logarithm. 

Example 2-8. The diameter of No. 12 solid copper wire is 
0.081 inch. Calculate the characteristic impedance of a two-wire 
line consisting of two No. 12 wires spaced six inches between 
centers. 

From Eq. 2- 1 1 : 

Zo 276 loglo (2 x 
6)/0.081 

= 276 loglo 12/0.081 
= 276 loglo 148 . 15 

276(2 . 1707) 
599 .10 

Note: A pair of 12-gage wires with six-inch spacing is commonly 
called a 6000 line. 

A closer result (599.780) is afforded by the equation Zo = 120 

Spaced parallel wires 

A Termination 

Fig. 2-6. Two-wire transmission line connected to an rf generator and a load 
resistor (termination). 
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arc cosh [0.5(2S/d)], where Zo' S, and d are in the same units as 
in Eq. 2- 1 1  and cosh is the hyperbolic cosine. 

The impedance of an insulated line is somewhat lower from 
that of the open-air line just described. Thus, the three-eighth-inch 
wide "ribbon" used with TV antennas has an impedance of 3000. 
This is because of the effect of the dielectric material. 

Figure 2-7 shows the distribution of current and voltage on an 
unterminated quarter-wave line. From this distribution, it is evi­
dent that various impedances (Z = ElI) are available by tapping 
the line at appropriate points. This is an important convenience 
which will be considered later in Sec. 2-1 1 ,  Methods oj Matching 
Impedance. 

Another well known transmission line is the coaxial type. This 
consists essentially of two concentric conductors, one being a cen­
tral wire and the other a surrounding metal pipe (see Fig. 2-8). A 
coaxial line may be flexible or rigid. For an air-insulated coaxial 
line (inner conductor supported by spaced beads or washers), the 
characteristic impedance is: 

(2- 12) 

where Zo is the characteristic impedance in ohms, d1 the inside di­
ameter of the outer conductor in inches, d2 the outside diameter 
of the inner conductor in inches, and loglo the common logarithm 
function. 

Example 2-9. The inner conductor of a certain air-insulated 
coaxial line is No. 12 copper wire whose outside diameter (OD) is 
0.081 inch, and the inner diameter (ID) of the outer conductor is 
0.25 inch. 

, - -� -- - --
- - - - - - - - - � ...::" -- - - - -

- - -- - --- � .,. - ... .... --

GEN�---- v;. - - - -: 
" �� 

.... ... ... .... --... - ..... --.... - .. _ - - -- -- --
- - - - - - - - - - - � - - - - - - - - - --- -

E 

Fig. 2-7. Current and voltage distribution on an unterminated quarter-wave line. 

48 



Inner conductor 

Outer conductor 

Fig. 2-8. Coaxial-type transmission l ine consisting of two concentric conduc­
tors connected between a generator and a load resistor. 

Calculate the characteristic impedance. 
From Eq. 2-12 :  

Zo ::: 138 loglO 0.25/0.081 
= 138 loglo 3 .0964 
= 138(0.489452) :&: 67.50 

When a coaxial line has continuous insulation between outer and 
inner conductors, the Zo value obtained with Eq. 2-12 must be 
multiplied by 1I../k: where k is the dielectric constant of the insulat­
ing material.  Polyethylene, a common insulator in coaxial lines, has 
a dielectric constant of 2 .3 and requires a multiplier of 1IJ2.3 = 

1 1 1 . 5 1 6  = 0 .659.  Common impedances for commercial 
polyethylene-insulated coaxial cable are 500, 520, 53.50, 730, and 
750. 

2.6 IMPEDANCE OF GENERATORS 

All ac generators have impedance (ZC>. This impedance, how­
ever small ,  is often resistive and is considered to be in series with 
the generator (see Fig. 2-9). Because of the internal impedance, 
the terminal voltage (ETERM) when the generator is delivering cur­
rent to a load will be lower than the generator voltage because of 
the voltage drop across this impedance-ETERM = EG - IZG• 

Like a mechanical generator, an electronic oscillator exhibits 
an internal impedance due to the output impedance of the tubes, 
transistors, or attenuators in the oscillator circuit. This internal im­
pedance is generator impedance in the same sense as in the ac 
machine-since the oscillator is a nonmechanical producer of ac-
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Fig. 2-9. Circuit i l lustrating impedance (ZG) of an ac generator. 

but it is often called oscillator output impedance. 
In practice, one may consider a generator to be any device or 

circuit that delivers a signal or power. This would include not only 
oscillators, multivibrators, machines, and other devices that form 
a signal, but also tubes and transistors and even any branch of a 
circuit that delivers a signal to another branch. 

2.7 LOAD IMPEDANCE 
Every ac load device has impedance (ZL). Examples are loud­

speakers, motors, lamps, heaters, and transmitting antennas. Some­
times, this impedance is resistive only; in other instances, it is a 
combination of resistance and reactance. 

Figure 2-10  shows a simple circuit in which an impedance ZL 
loads an ac generator. In this setup, current must flow through the 
generator internal impedance Ze and the load impedance ZL. This 
current therefore is equal to Ee/(Ze + ZL). It accordingly produces 
one voltage drop (IZe) across the generator internal impedance 
and a second voltage drop (IZL) across the load impedance. The 
voltage EL across the load impedance (EL) thus is somewhat less 
than the internal voltage of the generator, and (neglecting phase 
angle) is equal to EL = (EeZL)/(Ze + ZL)' where E is in volts and 
Z is in ohms. 
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2.8 INPUT AND OUTPUT IMPEDANCE 

Every signal processing device or circuit, such as amplifiers, 
modulators, shapers, and filters, exhibits input impedance (ZIN) 
seen by the applied signal and output impedance (ZOUT) seen by the 
load device. These quantities must be dealt with in the design and 
application of the device, for the input driving-signal requirements, 
loading of the input-signal source, and load-device requirements 
depend upon ZIN and Zour 

Figure 2-1 1  illustrates the concept of a device having simple 
input and output impedances. In many instances, these quantities 
are resistive. In most cases, the input impedance acts as a shunt 
component and the output impedance acts as a series component. 

Some devices, such as amplifiers and filters, which receive and 
deliver signals, have both input and output impedance. Other 
devices, such as oscillators and transmitters, which are in effect 
generators, have only output impedance. Still other devices, such 
as meters and oscilloscopes, have only input impedance. 

2.9 REFLECTED IMPEDANCE 

When an impedance is connected across the secondary termi­
nals of a transformer, a reflection of that impedance appears in the 

I 
+ - - -+  

- - -1' ­
I 
I 
I 

Load ZL EL 
I 
I 
I 

- - -� -

Fig . 2-1 0. Circuit i l lustrating an ac generator feeding a load impedance (ZL) .  
Current must flow through both the generator impedance (Z� and the load 
impedance. 
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- - -, � - �./"J'''' - - :; 
• 

Input � Output ZIN c· ? I :; _ _ ..J.. _ _ _  _ _ _ _ .J'\. 

Circuit or device 

Fig. 2-1 1 .  Illustration of a device having both input and output impedance. 

primary circuit of the transformer. This phenomenon is illustrated 
by Fig. 2-12 ;  here, a resistance RL loads the secondary. Because 
of Ru an apparent resistance, called the reflected resistance, RREFU 
appears in the primary circuit. 

The value of the reflected resistance depends upon RL and the 
turns ratio of the transformer: 

(2- 13) 

where Np is  the number of primary turns, and Ns is  the number 
of secondary turns. 

Fig. 2-1 2. Reflected impedance in the primary of a transformer with resistance 
RL loading the secondary. 
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It is not necessary to know the actual number of primary and 
secondary turns in order to use Eq. 2-13,  but only the turns ratio 
as given by the transformer manufacturer or determined by user 
tests. Thus, a 3 :  1 transformer has three times as many secondary 
turns as primary turns; that is, NslNp = 3, and NpfNs = 0.3333.·  
As an example, assuming an ideal transformer, if  a 10000 resistor 
is connected to the secondary of a transformer having a S : l  turns 
ratio, the reflected resistance at the primary terminals is: RREFL = 
1000(1/S)2 = 1000(0.22) = 1000(0.04) = 40ft If the turns ratio 
were 10: 1 ,  RREFL would be 100. With a stepup transformer, RREFL 
is lower than RL; with a stepdown transformer, RREFL is higher 
than RL; and, with a transformer having a 1 : 1  turns ratio, RREF is 
equal to RL• These facts of performance lead to the general 
equation: 

(2- 14) 

Reflected impedance is of great importance in the technique 
of matching impedances by means of a transformer. 

2 . 1 0  NEED TO MATCH IMPEDANCE 

It is a fundamental axiom of electricity that maximum power 
is delivered by a generator to a load only when the load impedance 
equals the generator internal impedance. For this purpose, any de­
vice that delivers power can be considered a generator. The rela­
tionship is expressed: 

ZL = ZG (for maximum power transfer) (2- 1 5) 

Figure 2-13 illustrates this condition. In the circuit shown in 
Fig. 2-13(A), a variable load resistance (RL) is connected to a SV 
generator having an internal resistance (RG) of SO. Figure 2-13(B) 
shows the performance of the circuit as RL is varied. From this ta­
ble, note that as RL is increased in SO steps, from SO to son, the 
total resistance (RG + RL) of the circuit increases from 300 to 7S0; 
and the corresponding current, I = EI(RG + RL), decreases from 
0. 167 A when RL = SO, to 0.067 A when RL = SOO. Importantly, 
the power (P = FRL) in the load increases from 0.139W when RL 
= SO, to 0.2S0W when RL = 2S0; then, as RL is further increased 
from 2S0 to son, the power decreases from 0.2S0W at 2S0 to 
0.224W at SOO. The power peak thus is at 0.2S0W, the point at 
which RL = RG = 2S0. 
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e 
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0. 1 39 

0.204 

0.234 

0.246 

0.250 

0.248 

0.241 

0.237 

0 . 227 
0.224 

.....- Max 
power 

Fig. 2-1 3. I l lustration of impedance matching. The circuit (A) has a variable 
load resistance connected to a generator. The chart (8) shows the performance 
of the circuit as the resistance (RL) is varied. 

2.1 1 METHODS OF MATCHING IMPEDANCE 

For maximum power transfer, the impedance of a load device 
must equal that of the generator or other source . However, per­
fectly matched components are not always obtainable in practice. 
The output impedance of an amplifier, for example, may be 35000, 
and the loudspeaker which the amplifier must drive may have an 
impedance of 3.20. When generator impedance and load impedance 
do not match, steps must be taken to create a match between them. 
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One technique exploits the phenomenon of reflected impedance ex­
plained in Sec. 2-9 and described under Use of Matching Trans­
former. Principal impedance-matching methods are described in the 
following subsections. In some areas, such as rf impedance match­
ing, the representative method has been presented in each general 
category. 

Use of Matching Transformer 

A transformer may be inserted between a source and load, as 
shown in Fig. 2-14, for the purpose of matching the load impedance 
to the generator impedance. This will be accomplished if the trans­
former has the correct turns ratio. 

To understand how impedances may be matched in this way, 
consider the instance in which RL is a simple resistance. It is well 
known from fundamentals of electricity that, in an ideal trans­
former, the primary voltamperes equal the secondary voltamperes: 
Epfp = EsIs. This means simply that in a stepup transformer, for 
example, the secondary voltage is higher than the primary voltage, 
but the secondary current is proportionately lower than the primary 
current, and that the opposite is true in a step down transformer. 
In Fig. 2-14, transformer T has a 5 : 1  stepup turns ratio. When the 
50 generator (GEN) impresses 2 .5V across the primary winding, 
O.5A flows through the primary, and the primary voltamperes = 

O.SA 
� - - ... 

• 
2.SV 

I 

T _---' 

I 1 5 
I ..... _--, I 
I 

'"--_-+-_-IGEN : 
Fig .  2-14. Impedance-matching transformer. 

O.1 A  
� - - � 

I 12.SV 
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Epfp = 2.5(0.5) = 1 .25 VA. The 5 : 1  stepup gives a secondary 
voltage of 12.5V, and this forces a current of 0 . 1A through the 1250 
load resistor RL. The secondary voltamperes is 12 .5(0 . 1 )  = 1 .25 
V A, which is the same value as that of the primary voltamperes. 
Because the transformer has the correct turns ratio, it matches the 
1250 load to the 50 generator. 

Observe that, although the turns ratio is 5: 1 ,  the impedance 
ratio is 25: 1 .  Thus, the impedance ratio is the square of the turns 
ratio: 

(2- 16) 

And from this relationship, the necessary turns ratio for a required 
matching transformer is the square root of the impedance ratio: 

(2- 1 7) 

Example 2-10.  A 2N361 1  power transistor in the output 
stage of a 5W audio amplifier has a collector impedance of 200. 
What turns ratio must an output transformer have to match this 
amplifier to a 3.20 loudspeaker? 

Here, the impedance ratio Zs/Zp = 3.2/20 = 0. 16.  From Eq. 
2-17 ,  the turns ratio NslNp = ..['(JTb = 0.4, which indicates a 
stepdown transformer with a 0.4 : 1  turns ratio (the secondary has 
0.4 of the turns in the primary). In theory, impedance matching 
with a transformer involves the turns ratio and has little to do with 
the individual impedance of the primary and secondary windings. 

The mention of a matching transformer usually brings to mind 
an iron-core device built for audio frequency use. It should be noted, 
however, that air-core transformers (tuned or untuned) are used 
in some instances for impedance matching at radio frequencies. In­
dividual winding inductance is generally higher at lower frequen­
cies, and lower at higher frequencies. 

Use of Linear Devices 

The impedance of linear devices, such as antennas and trans­
mission lines, is described in Sec. 2 .5 ,  and equations for them are 
given there. The input, output, and characteristic impedances of 
some of these devices enable them to be employed for impedance 
matching at radio frequencies. 
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A common example is the matching of a transmission line to 
a transmitting antenna for the maximum transfer of energy from 
transmitter to antenna. In this application, the transmission line 
is termed a /eeder. Figure 2-1 5(A) shows the connection of a coax­
ial feeder (Zo = 720) to the center of a half-wave antenna, where 
the antenna impedance approximates that of the feeder. At the 
transmitter end, the low-impedance feeder is matched to the im­
pedance of the final amplifier by means of a small pickup coil 
(usually 1 to 3 turns) coupled to the amplifier tank coil, with the 
turns ratio providing the required impedance transfer. A twisted­
pair transmission line sometimes is used in place of a coaxial feeder, 
but with greater losses. 

Figure 2-15(B) shows how resonant open-wire feeders (the 6000 
type) are used to current-feed the center of the antenna. The cen­
ter of the half-wave antenna is a high current point, and properly 
tuned quarter-wave feeders will have a high current at their an­
tenna end. The length of feeders longer than a quarter-wavelength 
must be chosen so that a similar current loop occurs at the end; 
this requires that the feeder length be an even multiple of a quarter­
wavelength. Figure 2-15(C) shows how resonant open-wire feeders 
are used to voltage-feed a half-wave antenna by connecting them 
to one end of the antenna. Either end of the antenna is a high volt­
age point, and properly tuned quarter-wave feeders will have a high 
voltage point at their antenna end. As in the preceding case, the 
length of feeders longer than a quarter-wavelength must be cho­
sen so that a similar voltage loop occurs at the end; this requires 
that the feeder length be an even multiple of a quarter-wavelength. 

A quarter-wave section of open-wire resonant transmission line 
makes a convenient rf impedance-matching transformer of the lin­
ear type. Because of the stationary standing-wave distribution of 
current and voltage along the line, tapping into the line at various 
points can provide a large range of impedances (see Fig. 2-7). Thus, 
a generator and a load may be connected, respectively, to the points 
corresponding to their separate impedance values, and the two 
devices become matched through the corresponding autotrans­
former action. Figure 2-16 shows how a quarter-wave section short­
circuited at one end is used in this manner. 

The input impedance (ZIN) of a line whose length is a quarter­
wave or an odd-numbered multiple of quarter-waves is directly 
proportional to the square of the characteristic impedance of the 
line (Zo) and inversely proportional to the output impedance 
(ZOUT): 
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Fig. 2-1 5 .  Transmission line feeders used for the maximum transfer of energy 
from the transmitter to the antenna: (A) a coaxial feeder is connected to the 
center of a half-wave antenna; (8) a resonant open-line feeder is used to current­
feed the center of a half-wave antenna; (C) a resonant open-line feeder is used 
to voltage-feed a half-wave antenna. 
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1 /4>-' l ine 

Fig. 2-1 6. A quarter-wave section of open-l ine resonant transmission l ine is 
short-circuited at one end and used as an rf impedance-matching transformer. 

(2- 18) 

From this relationship, it is apparent that the characteristic im­
pedance a quarter-wave section must have, in order to match a given 
output impedance (load) to a given input impedance (generator) is: 

(2- 19) 

Example 2- 1 1 . Calculate the characteristic impedance re­
quired for a quarter-wave section to be used between a line im­
pedance (input) of 6000 and an antenna impedance (output) of 720. 

From Eq. 2- 19:  

Zo = "600 x 72 = ..J 43,200 = 207 .850 

After finding Zo with Eq. 2- 19, the required spacing of conductors 
in the section can be found with a rewritten form of Eq. 2- 1 1 : 

s 
d(antilog Zul276) 

2 
(2-20) 

Example 2- 12.  With No. 12 wires (d = 0.081 inch), the re­
quired spacing for the 207.80 is: 

0.081 (antilog 207 .8/276) S = ---------
2 
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0.081 antilog 0.752898 

2 

0.081(5.66106) 
2 

0.45854 

2 

0.229 inch 

Obviously, such close spacing of No. 12 wires (less than a quarter­
inch) in a quarter-wave section would be impracticable in most in­
stances. The remedy would be to increase the term d by moving 
to large-diameter conductors-such as metal rods or pipes. This 
results in the Q-bar matching section shown in Fig. 2-18(B) and de­
scribed later. 

1 /2A antenna 

1 /4A stub ---? 

Shorting bar --? -+-_� 

o Center-fed 

1 /2A antenna 

1 /4A stub -----? 

Shorting bar -? -+---+ 

CD End-fed 

Nonresonant 
feeders 

Nonresonant 
feeders 

Fig. 2-1 7. Quarter-wave stubs are used to match nonresonant feeders to half­
wave antennas: (A) center-fed, (8) end-fed. 
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o Delta matching section 

CD Q-bar matching section 

600n nonresonant feeder 

1 /2)" antenna 

1 /2"  tubes 

- .... 

I I 
*"A -+I 
I I Nonresonant feeder 

� B ---+ 

Fig. 2-1 8. Af impedance-matching transformers: (A) a delta matching section 
provides a gradually increasing impedance; (B) a Q-bar matching section pro­
vides more spacing between conductors. 

A quarter-wave or half-wave section sometimes is used as an 
autotransformer to match a nonresonant feeder to an antenna as 
a load; in this application, the section is called a matching stub. Fig­
ure 2-17 illustrates this application, in (A) to centerfeed the antenna, 
and in (B) to endfeed it. In each instance, the stub is initially reso­
nated by sliding the shorting bar to the proper point along the wires. 

Other linear devices are similarly employed as rf transformers 
for matching nonresonant feeders to antennas. Two of these are 
shown in Fig. 2-18.  In 2- 18(A), the ends of the nonresonant feeder 
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are flared out and attached to points equidistant from the center 
of the half-wave antenna. This matching section, called a delta (from 
its resemblance to the Greek letter A), provides a gradually increas­
ing impedance. At a given operating frequency /, the delta dimen­
sions are: 

A = 1 18// (2-2 1)  

where A is in feet, and / in megahertz. 

And: 

B = 148// (2-22) 

where B is in feet and / in megahertz. 
In 2-18(B), a linear transformer consisting of two parallel 

lengths of half-inch-diameter aluminum tubing is connected between 
the nonresonant feeder and the center of the half-wave antenna. 
The large diameter of these tubes makes possible a more practica­
ble, wider spacing between conductors in a quarter-wave match­
ing section than when wires are used (see Eq. 2-20 and 
accompanying discussion). This arrangement is termed a Q-bar 
matching section . While 0.229 inch spacing is required in a 
600-to-720 matching section employing No. 12 wires, the spacing 
of half-inch-diameter Q-bars is 1 .4 1  inches (approximately 1 13/32 
inches) between centers, a much more manageable dimension. (Of 
course, even larger diameters than a half inch can be used, with 
correspondingly larger sp'acing.) 

A suitable section of coaxial line also may be employed as a 
matching transformer, provided the center conductor and outer 
sleeve can be tapped at the correct points or that a short-circuiting 
disc can be moved along the interior between the center conduc­
tor and inside of the outer sleeve. Neither of these methods are 
very practical; much trial-and-error is required. 

Use of Active Followers 

A /ollower is usually a single-stage amplifier whose output im­
pedance is substantially lower than its input impedance. The max­
imum theoretical voltage gain of a follower is 1 .  The follower is 
useful as a stepdown impedance transformer, and often serves as 
a buffer between a voltage source (generator) and a load device 
that would overload the voltage source. There are three types: cath-
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ode follower (vacuum tube), emitter follower (bipolar transistor), and 
source follower (FET). Figure 2-19 shows circuits of these devices. 
No type of follower, operating correctly, introduces a phase shift. 

Figure 2-19(A) shows the cathode follower. Here, the input im­
pedance equals closely the resistance of the grid-to-ground resis­
tor rc . This resistance is commonly 500K to several megohms, 
and can be made as high as desired, consistent with noise pickup 
and instability. The output impedance is: 

(2-23) 

where ZOUT is the output impedance in ohms, r p the tube plate re­
sistance in ohms, r K the cathode resistance in ohms, and /.L the tube 
amplification factor. 

Example 2- 1 3. Figure 2-19(B) shows the emitter follower. 
In this circuit, the output impedance depends upon the source im­
pedance ZG: 

(2-24) 

where hIE is the input impedance of the transistor in ohms, and hFE 
is the forward-current transfer ratio of the transistor. Both hFE and 
hIE may be measured or taken from the transistor manufacturer's 
specifications. 

Example 2- 14. A type 40400 bipolar transistor has the fol­
lowing ratings: hIE = 6000 and hFE = 200. Calculate the output 
impedance of an emitter follower employing this transistor with 
a l OOK generator. 

From Eq. 2-24: 

100,000 + 600 
ZOUT = -------

1 + 200 

100,600/201 

= 500.50 

The input impedance of the emitter follower itself is equal approx­
imately to hIE + hIFfiE' where RE is the external emitter-to-ground 
resistor. In Fig. 2-19(B) and the preceding illustrative example, if 
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Fig. 2-1 9. Active follower circuits: (A) cathode follower; (8) emitter follower; 
(C) source follower. 
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RE is 3900, a common value, then the input impedance is equal to: 
600 + (200 x 390) = 600 + 78,000 = 78,6000 = 78.6K. 

The source follower in Fig. 2- 19(C) behaves more nearly like 
the cathode follower. In the source follower circuit, the output im­
pedance is: 

(2-25) 

where gFS 
is the forward transconductance of the transistor in 

mhos, ross the output resistance of the transistor in ohms, and rs 
the resistance of the external source resistor in ohms. The input 
impedance is closely equal to the resistance of the gate-to-ground 
resistor, r G . 

Example 2- 15.  A type 40601 MOS field-effect transistor has 
a transconductance of 10,000 micromhos and an output resistance 
of 12K. Calculate the output impedance of a source follower em­
ploying this transistor with a 4700 source resistor. 

Here, gFS 
== 0.01 mho, and ross :0::: 12,000 ohms. From Eq. 

2-25, 

z _ 12,000 x 470 
OUT - [(0 .01 x 12,000) + 1 ]  x 470 + 12,000 

5,640,000 = ---....;..-.;..-----
[( 120 + 1)  470] + 12,000 

5,640,000 

(121  x 470) + 12,000 

5,640,000 = -------
56,870 + 12,000 

5,640,000 

68,870 

= 8 1 .90 

Use of Pad-Type Attenuators 

A pad consists of a combination of resistors so selected and ar-
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ranged that the device, when inserted between a source and a load, 
presents a matching impedance to the source and load and in­
troduces a desired amount of signal attenuation. The source and 
load impedances usually are resistive. Pads are named for the let­
ters their arrangements resemble: L-type, T-type, and pi-type. Figures 
2-20, 2-2 1 ,  and 2-22 illustrate these three types and give the equa­
tions for determining the impedance values. From their shapes, the 
balanced-T is also called an H-type, and the balanced-pi an O-type. 

In any proposed application of a pad, three factors must be de­
termined: the source (generator) impedance (Zs)' load impedance 
(ZL) '  and desired attenuation (0). The attenuation (loss) is ex­
pressed in nepers: 

o = dB/8.686 (2-26) 

where 0 is the loss (attenuation) in nepers, and dB is the loss in 
decibels ( = 10 logloP/P2 = 20 logloE/E2, where P/P2 is the 
output-to-input power ratio, and E/E2 is the output-to-input volt­
age ratio). 

Z1 Z •. , 
Z11  

- AA - - "';.. -. - ....... - - ..... --

Z 4· • Zs - -� .- - - ZL Zs- -� Z � 4- - -3 � 3 • 

Z1I2 .... - ."'A -- - .... --
o Unbalanced e Balanced 

Z1 = J Zs(Zs - ZL) 

Zs 
Z

3 :: 
Zs - ZL 

Zs - ZL 
tanh 8 :I: 

Zs 

Fig. 2-20. L-type pad attenuators: (A) unbalanced and (B) balanced. Equations 
given are for finding impedance values. 
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� 
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.AA "' .. ". "' ''' 

+- - - ZL Zs - - -+ Z � 3 � 

o 

Z1 � 
2 2 

.AAA AA_ � "' v ".  "' ''' 

o Balanced 

Z1 = (ZScoth 8) - Z3 
Z2 = (Lcoth 8) - Z3 
Z3 = J ZSZL cosech 8 

Fig. 2-21 . T pad attenuators: (A) unbalanced and (B) balanced. Equations given 
are for finding impedance values. 

Z3 
��------�VV'�V'A�",�----_�O ��------��""�"''''�------�� 

Z2-'.> �'.> 

�------4-----+-------o� �c_�----���"'�"''''�------� 
o Balanced o Unbalanced 

1 Zl = 

--------------

1 1 

Zstanh 8 Z3 
Z2 = 

1 

ZLtanh 8 Z3 

Z3 = j ZSZL sinh 8 
Fig. 2-22. Pi-type pad attenuators: (A) unbalanced and (B) balanced. Equa­
tions given are for finding impedance values. 
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From these factors, the resistances required in the pad are eas­
ily calculated. In each instance in Figs. 2-20 to 2-22, both balanced 
and unbalanced circuits are shown. The impedance values in each 
of the balanced circuits are determined from those calculated for 
the unbalanced circuit . The hyperbolic functions (sinh, tanh, coth, 
and cosech) may be obtained from a table of hyperbolic functions 
or by use of calculator which offers such functions on its keyboard. 

In each case, the pad equations have been arranged in numeri­
cal order from ZI to Z3; however, the user will find it advisable to 
solve for Z3 first, since ZI and Z2 both depend upon Z3. In each 
circuit, Zu is connected to the output terminals. Likewise Zu the 
load impedance, is the impedance seen when looking into the out­
put terminals of the pad when the source impedance Zs is con­
nected to the input terminals. For continuously variable attenuation, 
as in volume control, the resistances are ganged for simultaneous 
variation. 

Example 2- 16. A 10  dB unbalanced T pad is required to 
operate between a 5000 source and 2000 load. Calculate the re­
quired resistances. From Eq. 2-26, (J = 10/8.686 = 1 . 1513. From func­
tion tables or calculator, coth (J = 1 .2222, and cosech (J = 0.70272 . 

From Fig. 2-2 1 :  

Z3 :;; J 500(200) x 0.70272 :z: .J 100,000 x 0.70272 
:: 316.23 x 0.70272 
". 222.220 

And from Fig. 2-2 1 :  

ZI = (500 x 1 .2222) - 222.22 = 61 1 . 1  - 222.22 :z 388.880 

And from Fig. 2-2 1 :  

Z2 = (200 x 1 .2222) - 222.22 ::z 244.44 - 222.22 s: 22.220 

2.1 2  OTHER ASPECTS OF IMPEDANCE 

Certain evidences and concepts of impedance not touched upon 
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in the preceding sections are described here. These topics are ar­
ranged alphabetically in the subsections below. 

Common Impedance. See mutual impedance-in a circuit . 
Conjugate impedance is an impedance that has the same 

magnitude and the same resistance component as another im­
pedance, but with a reactive component of opposite sign. Thus, if 
XL = Xl' and R) = Rz, then impedances Z) = J R)

z + xLZ and Zz = "R/ + Xc are equal. Impedance Zz' having a negative capaci­
tive reactance, is the conjugate or 21 whose inductive reactance 
is positive. 

Driving-point impedance is the impedance that a network 
or device offers to the generator at the point at which the genera­
tor drives the network. Driving-point impedance is also termed in­
put impedance. 

Equivalent impedance is a term that has several meanings. 
In one sense, it denotes the equivalent series impedance of a par­
allel circuit-that is the impedance of a series circuit which, when 
connected to the same single-phase source, draws current of the 
same magnitude and phase angle as that drawn by the parallel cir­
cuit. In short, any impedance structure that can replace another 
structure without affecting current, voltage, and phase values is 
equivalent to the structure. For example, a certain T network may 
be equivalent to a certain pi network. 

In another sense, an equivalent impedance (through simplifi­
cation by means of Thevenin's or Norton's theorem) is the single 
impedance that corresponds to the combination of several others 
in a circuit. Impedances of the same kind combine in the same man­
ner as resistors. Thus, for impedances in series, ZEQ = Z1 + Zz 
+ Z3 + . . . ZN' And for impedances in parallel, ZEQ = 1/( 1/Z1 + 
1/Zz + 1/Z3 + . . .  + 1/ZN)' This is also known as total impedance 
(ZT)' 

Image Impedance. For a network that connects a genera­
tor to a load, the image impedance (with respect to the load) is the 
total impedance of the generator and matching network, which is 
the same as the characteristic impedance of the generator. With 
respect to the generator, the image impedance is the total im­
pedance of the matching network and load, which is the same as 
the characteristic impedance of the load. For example, with the 
proper load impedance attached to the network at one end, the 
generator sees an image impedance that is equal to the generator 
impedance; and, with the proper generator impedance attached, 
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the load sees an image impedance that is equal to the load im­
pedance. 

Input Impedance. See driving-point impedance. 
Inverse Impedance. See reciprocal impedance. 
Mutual Impedance. There are three common meanings of 

this term: 
In a network. The mutual impedance is the apparent impedance 

(Z = ElI) between any two selected pairs of terminals of the net­
work, with all other terminals open, where I is the current made 
to flow in through one pair, and E is the resulting open-circuit volt­
age across the other pair. 

In a circuit. The mutual impedance is an impedance shared by 
two or more branches (sections or stages) of the circuit . Such an 
impedance-which may consist of a resistor, inductor, capacitor, 
or a combination of two or more of these-often causes signals to 
be undesirably coupled, either forward or backward, between sec­
tions or stages. An example of the trouble sometimes caused by 
such a mutual impedance is the motorboating in an amplifier, trace­
able to the common impedance of a power-supply output filter ca­
pacitor shared by several stages. This is also called common 
impedance. 

Between neighboring antennas. A transmitting antenna (the 
"master") induces a voltage in any other nearby antenna (the 
"slave"). The mutual impedance between two such atennas is ZM 
= - E)II ' where II is the current flowing at a selected point in the 
master antenna, and E2 is the value of applied voltage that would 
be required at a selected point in the slave antenna (if the master 
antenna were not operating) to cause the flow of whatever current 
is observed in the slave as a result of excitation by the master. 

Nonlinear Impedance. Not every impedance obeys Ohm's 
law strictly; in some structures, current does not change linearly 
with a linear change in voltage. In some impedance devices, the 
entire response is nonlinear; in others, the nonlinearity occurs over 
only a part of the response curve. Nonlinear impedance is encoun­
tered in saturable reactors, tubes, transistors, semiconductor rec­
tifiers, ceramic capacitors, voltage-dependent resistors, varactors, 
tungsten-filament lamps, and numerous other devices. 

Poles of impedance are frequencies at which the driving­
point impedance of a two-terminal reactive network is theoretically 
infinite. (Compare zeros of impedance.) 

Reciprocal Impedances. Two impedances (ZI and Z2) are 
termed reciprocal to a third impedance (Z3) when ZIZ2 = zt 
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Reciprocal impedances are also called inverse impedimces. 

Reciprocal of Impedance. The reciprocal of impedance is 
admittance, symbolized by Y and expressed in ohms: Y = liZ. The 
phase angle of an admittance vector is numerically equal to that 
of the impedance vector, but is of the opposite sign. Reciprocal im­
pedance is also called inverse impedance, and has the same relation­
ship to impedance that conductance has to resistance. 

Total impedance in a two-mesh network is the quantity 
E/12 , where E1 is the voltage applied to the first mesh and 12 is 
the resulting current in the second mesh. 

Tube and transistor impedances are resistive internal im­
pedances, and are governed by electrode direct currents and volt­
ages. In tubes, examples are static plate impedance zp = Ep/ip, dy­
namic plate impedance (zp = dep/dip), static screen impedance (zs 
= eslis), dynamic screen impedance (zs = des/dis), static grid im­
pedance (zG = eGliG), and dynamic grid impedance (zG = deGldiG). 

A common example of working with these impedances is the match­
ing of an amplitude modulator to an rf amplifier in a radio trans­
mitter: a certain modulator tube draws a plate current of 500 mA 
at 500V (zp = ep/ip = 50010.500 = 10000), and the rf amplifier 
tube that it is to modulate draws a plate current of 250 rnA at 1000V 
(zp = 1 0000.250 = 40000). To couple the modulator to the am­
plifier for maximum power transfer, the required modulation trans­
former must have an impedance ratio of 1 0000 to 40000, or 1 :4 
(see Sec. 2-1 1).  

Except at high frequencies, the small internal capacitance and 
inductance of tubes does not significantly affect the impedance 
values. The input impedance, as determined by the internal 
capacitances of a vacuum tube whose grid is never driven positive, 
must sometimes be reckoned with in amplifiers operating at the 
upper end of the AF spectrum. 

In the same way, impedances which are largely resistive are 
encountered in transistors, both bipolar and field-effect. Like cor­
responding tube impedances, these too are governed by electrode 
direct currents and voltages. Examples are static collector im­
pedance (ze = Velie)' dynamic collector impedance (ze = dvddie), 

static emitter impedance (ZE = VEliE)' dynamic emitter impedance 
(ZE = dvEldiE), static base impedance (ZB = vBliB), dynamic base 
impedance (ZB = dvBldiB) ,  and others. 

Zeros of impedance are frequencies at which the driving­
point impedance of a two-tenninal reactive network is theoretically 
equal to zero (compare poles of impedance). 
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2. 1 3  POWER FACTOR IN RELATION TO IMPEDANCE 

For an ac circuit or device, the power factor is the ratio of power 
actually consumed (P) to the apparent power ( VA = the simple 
product of volts and amperes): Pf = PIVA . From this relationship, 
it can be seen that the maximum value which pF can have is 1 ,  
and this would occur if, ideally, the power consumed was equal to 
the simple calculated voltamperes. This condition can occur in a 
circuit or device containing pure resistance only (P = VA);  but , 
in a practical ac circuit or device, resistance and reactance both 
are present, so pfhas some value between one and zero. Thus, true 
power for the ac circuit or device is equal to VA Pf (or E1 Pj). 

From basic electricity comes the simple formula for the power 
factor: 

Pf = cos 0 (2-27) 

where 0 is the phase angle between current and voltage. The an­
gle between current and voltage is the same angle between resis­
tance and reactance (see Fig. 2-1) .  Therefore, 

(2-28) 

which is identical to cos 0 (see Fig. 2- 1) .  
While the power factor is  often expressed as a decimal in the 

manner just shown, it is sometimes expressed as a percent: Pf 1 
= 1 00%, pf 0.3 = 30%, etc. 

Example 2- 1 7. Calculate the power factor at 120 Hz of a fil­
ter choke having an inductance of 16H and a resistance of 5800. 

Here, XL = 12,057.60 (Eq. 1-10,  Ch. 1) ,  and Z (the impedance 
of the choke) = 1 2 ,071 .50 (Eq. 2-2). 

From Eq. 2-28: 

Pf = 58011 2,057.6 
= 0.048 

2 . 1 4  Q I N  RELATION TO IMPEDANCE 

Q is the figure of merit or quality factor of an ac device or cir­
cuit. It is the ratio of reactance to resistance: 

Q = XIR (2-29) 

where X and R are in ohms. From this relationship, Q = wLiR and 
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Q = lI(wCR). Q is also equal to tan e (see Fig. 2-17. Q has no theo­
retical limit; as R approaches zero, Q becomes larger without limit. 
In terms of impedance: 

Q = J Z2 - J?2IR (2-30) 

Example 2- 18. A certain 2.5 mH rf choke has a resistance 
of 1250 and a 1 MHz impedance of 15.7K. Calculate the Q of this 
choke at 1 MHz. 

From Eq. 2-3: 

Q = J 15,7002 - 1252/125 
.J 246,490,000 - 1 5,625/125 

= J 246,474,375/125 = 15,699.51125 
= 125.6 

2. 1 5 PRACTICE EXERCISES 

2 . 1 .  Calculate the impedance in ohms of a device that passes 60 
rnA for an applied voltage of 6 .3V. 
2.2.  Calculate the impedance in ohms of a device that passes 30 
,.,.A for an applied voltage of 25 m V. 
2 .3 .  Calculate the voltage drop across a 500 impedance that car­
ries 2 rnA. 
2 .4 .  Calculate the voltage drop across a 3.20 impedance that car­
ries 2A. 
2 .5 .  Calculate the current through a 25000 impedance for an ap­
plied test voltage of 1 V. 
2.6.  Calculate the current through a 160 impedance for an applied 
voltage of 28.3V. 
2 .7 . Convert 13800 to kilohms. 
2.8.  Convert 25,0000 to gigohms. 
2.9.  Convert 580,0000 to megohms. 
2. 10 .  Convert 0.50 to microhms. 
2. 1 1 .  Convert 0 . 10  to milliohms. 
2 . 1 2 .  Convert 935,0000 to teraohms. 
2. 13 .  Convert 1 000K to gigohms. 
2. 14.  Convert 500K to megohms. 
2. 15 .  Convect 100 0 to microhms. 
2 . 1 6 .  Convert 0.05K to milliohms. 
2 . 1 7 . Convert 33K to ohms. 
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2 .18. Convert 53,500K to teraohms. 
2 .19 .  Convert 5 1 63 megohms to gigohms. 
2.20. Convert 1000 megohms to kilohms. 
2.2 1 .  Convert 0 .01  megohm to microhms. 
2 .22. Convert 0.001 megohm to milliohms. 
2 .23. Convert 4.7 megohms to ohms. 
2 .24. Convert 50,000 megohms to teraohms. 
2.25. Convert 1 gigohm to kilohms. 
2 .26. Convert 0.25 gigohm to megohms. 
2 .27. Convert 0 . 1  gigohm to microhms. 
2.28. Convert 0.001 gigohm to milliohms. 
2.29. Convert 2 gigohms to ohms. 
2.30. Convert 0.3 gigohm to teraohms. 
2.3 1 .  Convert 7 teraohms to gigohms. 
2.32. Convert 15 .2 teraohms to kilohms. 
2 .33. Convert 20 teraohms to megohms. 
2 .34 . Convert 0.01 teraohm to microhms. 
2 .35. Convert 0.001 teraohm to milliohms. 
2.36. Convert 0.8 teraohm to ohms. 
2 .37. Convert 1000 microhms to gigohms. 
2.38. Convert 5520 microhms to kilohms. 
2.39. Convert 10,000 microhms to megohms. 
2.40. Convert 20 microhms to milliohms. 
2.4 1 .  Convert 137 microhms to ohms. 
2.42 . Convert 15 ,500 microhms to teraohms. 
2.43. Convert 35 milliohms to ohms. 
2.44 . Convert 1000 milliohms to kilohms. 
2 .45. Convert 150 milliohms to megohms. 
2.46. Convert 10,000 milliohms to gigohms. 
2.47. Convert 1 ,000 ,000 milliohms to teraohms. 
2.48. Calculate the impedance offered by a 1000n resistance and 
a 2500n reactance in series. 
2.49. Calculate the 400 Hz impedance offered by a l OOn resistor 
and 100 mH inductor in series. 
2.50. Calculate the 1000 Hz impedance offered by a 4700n resis­
tor and 0.005 /LF capacitor in series. 
2.5 1 .  Calculate the impedance offered by 3900n resistance, 1000n 
inductive reactance, and 390n capacitive reactance in series. 
2.52. Calculate the 500 Hz impedance offered by a 12H inductor, 
0.01 /LF capacitor, and 180n resistor in series. 
2.53. Calculate the phase angle in degrees of a series circuit con-
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taining 159Hl capacitive reactance and 10000 resistance. 
2 .54. Calculate the phase angle in degrees of a series circuit con­
taining a O .Ol Io'F capacitor and 15K resistor and operated at 1000 
Hz. 
2 .55. An accurate 0.005 Io'F capacitor is available. What value of 
resistance is required in series with this capacitance for a phase 
shift of 45 degrees at 2400 Hz? 
2.56. A precision 10000 resistor is available. What value of capac­
itance in microfarads is required in series with this resistance for 
a phase shift of 60 degrees at 1000 Hz? 
2.57.  At what frequency in hertz will a series circuit of 0.5 1o'F and 
91000 provide a phase shift of 75 degrees? 
2 .58 .  Calculate the phase angle in degrees of a series circuit con­
taining 1 000 inductive reactance and 1000 resistance . 
2 .59. Calculate the phase angle in degrees of a series circuit con­
taining a 0.5H inductor and 10000 resistor and operated at 5 kHz. 
2 .60. Calculate the phase angle in radians of a series circuit con­
taining a lOH inductor and 10K resistor and operated at 800 Hz. 
2 . 6 1 .  What resistance is required in series with a 12H inductor to 
shift phase 45 degrees at 2 kHz? 
2 .62 . At what frequency in hertz will a series circuit of 10 mH and 
1000 provide a phase shift of 30 degrees? 
2 .63. What inductance in millihenrys is required in series with 
47000 to shift phase 40 degrees at 2400 Hz? 
2 .64. Calculate the impedance offered by 10000 resistance and 
25000 reactance in parallel. 
2 .65. Calculate the 1000 Hz impedance offered by a 47000 resis­
tor and 0.005 Io'F capacitor in parallel. 
2 .66. Calculate the phase angle in degrees of a parallel circuit con­
taining 1 5910 capacitive reactance and 10000 resistance. 
2.67. Calculate the phase angle in degrees of a parallel circuit con­
taining a 5.5H inductor and a 20000 resistor and operated at 1000 
Hz. 
2.68. At what frequency in kilohertz will a parallel circuit of 0.002 
Io'F and 10000 resistance provide a 45 degree phase shift? 
2 .69. Calculate the total impedance of the following similar im­
pedances connected in series: 10000, 8000, 3500, and 500. 
2 .70. Calculate the equivalent impedance of the following similar 
impedances connected in parallel: 10,0000, 22500, 10000, 1000, 
and 320. 
2 .71 .  Calculate the R and X components of an impedance 1 50165 
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degrees 15 minutes. 
2 .72. Calculate the R and X components of an impedance 16/45 
degrees. 
2 .73.  Calculate the impedance of a series circuit containing 16000 
inductive reactance and 5400 capacitive re�ctance. 
2 .74. Calculate the 400 Hz impedance of a series circuit contain­
ing 4 /LF and 2.5H. 
2 .75.  Calculate the 1000 Hz impedance of a series circuit contain­
ing 3 140 inductive reactance, 1590 capacitive reactance, and 13.30 
resistance. 
2.76.  Calculate the phase angle in degrees of the circuit in exer­
cise 2 .75. 
2 .77. Calculate the 2500 Hz impedance of a series circuit contain­
ing 30H, 0.01 /LF, and 27000 in series. 
2.78.  Calculate the 500 Hz impedance in milliohms of a parallel 
circuit consisting of 15920 inductive reactance, 10000 capacitive 
reactance, and 39000 resistance. 
2 .79. Calculate the 120 Hz impedance in milliohms of a parallel 
circuit containing 30H, 2 /LF, and 10000 in parallel . 
2.80. Calculate the phase angle in degrees of a parallel circuit con­
taining 2400 inductive reactance, 10200 capacitive reactance, and 
10000 resistance. 
2.81 . Calculate the characteristic impedance of a two-wire trans­
mission line having a distributed capacitance of 50 pF and a dis­
tributed inductance of 100 p.H. 
2 .82 . Calculate the characteristic impedance of a two-wire trans­
mission line made with No. 12 wire (diameter = 0.08 1  inch) with 
two-inch spacing. 
2 .83. Calculate the characteristic impedance of an air-insulated 
coaxial line in which the inner conductor has an outside diameter 
of 0.08 1  inch and the outer conductor has an inside diameter of 0.5 
inch. 
2.84. The dielectric constant of polyethylene is 2 .3.  If the trans­
mission line in exercise 2.83 is filled with polyethylene, what will 
be its characteristic impedance? 
2 .85. A certain transformer has a turns ratio Np/Ns of 0.5. Calcu­
late the reflected impedance seen at the primary terminals when 
a resistance of 5000 is connected to the secondary terminals. 
2.86.  What turns ratio is required in a transformer to match a 320 
load to a 25000 source? 
2.87. What impedance ratio is provided by a transformer having 
a turns ratio NslNp of 10 : l ?  
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2.88. A certain multipurpose matching transformer has taps that 
provide turns ratios NslNp of 2 ,  5, 20, 30, and 50 to 1 .  What im­
pedance ratios does this transformer provide? 
2 .89. What characteristic impedance must a quarter-wave line have 
in order to match an output impedance of 3000 to an input im­
pedance of 75n? 
2 .90 If a certain quarter-wave line has a characteristic impedance 
of 3000, what output impedance will it match to an input impedance 
of 500? 
2 .9 1 .  If a certain quarter-wave line has a characteristic impedance 
of 6000, what input impedance will it match to an output impedance 
of 1000n? 
2.92. In a two-wire, 3000 transmission line, what spacing in inches 
is required between two No. 12 wires (diameter = 0.081 inch)? 
2 .93. Calculate the horizontal (X) and vertical (Y) dimensions for 
a delta impedance-matching section to be operated at 14 MHz. 
2 .94. A type 8628 triode is used as a cathode follower with a 33000 
cathode resistor. The plate resistance of this tube is 4 1 ,0000 and 
the amplification factor is 127. Calculate the output impedance of 
the follower. 
2.95. A type 2N3241A silicon transistor is used as an emitter fol­
lower driven by a 10000 signal source. For this particular transis­
tor, hFE = 500 and hIE = 700. Calculate the output impedance of 
the follower. 
2.96. A type 40603 MOS field-effect transistor is used as a source 
follower with a 2700 source resistor. The output resistance (r 05S) 
for this transistor is 40000 and the forward transconductance (gM 
of gFS) is 10,000 ILmhos. Calculate the output impedance of the 
follower. 
2.97. A 1 5  dB attenuation is introduced by a certain pad.  Convert 
this figure to attenuation in nepers. 
2.98. A three-neper loss is introduced by a certain pad. Convert 
this figure to decibels. 
2 .99. A certain pad has an input voltage of 5V and an output volt­
age of 1 V .  Express this loss in (a) decibels and (b) nepers. 
2 . 1 00.  From Fig. 2-20, Ch. 2 ,  calculate ZI and Z3 for an 
unbalanced-L pad to work between a 5000 source and 1000 load. 
2 . 101 .  From Fig. 2-20, Ch. 2, calculate the resistance values for 
a balanced-L pad to work between a 5000 source and 1000 load. 
2 . 102.  From Fig. 2-2 1 ,  Ch. 2 ,  calculate ZI ' Z2' and Z3 for an 
unbalanced-T pad to work between a 10000 source and 1500 load 
and provide 20 dB attenuation. 
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2 . 10.3.  From Fig. 2-2 1 ,  Ch. 2, calculate the resistance values for 
a balanced-T pad to work between a 10.0.0.0 source and 1 50.0 load 
and provide 20. dB attenuation . 
2 . 10.4.  From Fig. 2-22, Ch. 2, calculate Zp Z2' and Z3 for an un­
balanced pi pad to work between a 50.0.0 source and 20.0.0 load and 
provide 12 dB attenuation. 
2 . 1 0.5. From Fig. 2-22, Ch. 2 ,  calculate the resistance values for 
a balanced pi pad to work between a 50.0.0 source and 20.0.0 load 
and provide 12 dB attenuation. 
2 . 10.6.  A certain impedance ZI = 50.0.0 and another certain im­
pedance Z2 = 1 0.0.0.0. To what third impedance Z3 are these two 
impedances reciprocal? 
2 . 10.7. What admittance Y corresponds to an impedance of 68.407 
2 . 1 0.8 .  Convert 30. mhos admittance to impedance in milliohms. 
2 . 10.9. A certain 8 JLF capacitor has a power factor of 6% at 120. 
Hz. Calculate its equivalent series resistance. 
2 . 1 10. .  The phase angle between current and voltage of a certain 
impedance device is 5 degrees. Calculate the power factor in per­
cent of this device. 
2 . 1 1 1 .  A certain ICC pF capacitor has a 1 MHz Q of 30.0.0. . Calcu-
late the equivalent series resistance of this capacitor. 
2 . 1 12 .  A certain 2 .5  mH inductor has a resistance of 250. What 
is the Q of this inductor at 50.0. kHz? 
2 . 1 13.  What value of impedance will the inductor in exercise 2. 1 12 
present at 50.0. kHz? 
2 . 1 14 .  Calculate the 1 MHz impedance of a 50. pF capacitor hav­
ing a Q of lOCO.. 

(Correct answers are to be found in Appendix D.) 
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3 

§ll 

Impedance Measurements 

N UMEROUS METHODS ARE A V AILABLE FOR THE MEASURE­

ment of impedance; some of these are direct and some are 
indirect. This chapter explains the techniques, providing a reasona­
ble assortment to suit different conditions of instrument availabil­
ity, operator experience, required frequency and impedance ranges, 
desired accuracy, and operator preference. Step-by-step instruc­
tions are given in most instances. 

3 . 1  HINTS AND PRECAUTIONS 

The measurement of impedance, like that of other electrical 
properties, is enhanced by the avoidance of pitfalls that can degrade 
a test. Detailed here are several areas in which technicians very 
often run into trouble. 

Test Frequency 

It is important that an impedance measurement be made at the 
proper frequency, for the Z value is different for each frequency 
even when the reactive component is small. There is no problem 
if the recommended operating frequency of a device or circuit is 
specified beforehand. When no frequency is given, however, the 
test frequency must be chosen on some logical basis; often, this 
will be the frequency at which the device will most probably be 
operated . In some instances, it is desirable to test a unit at several 
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frequencies within a given operating range. 
Common AF tests for impedance are 400 Hz and 1000 Hz. For 

power-supply components, 50, 60, 120, and 400 Hz are customary. 
Common rf tests (not including microwaves) are 100 kHz, 1 MHz, 
and 10 MHz.lt is a mistake, of course, to assume-as some begin­
ners do-that a simple 60 Hz test is satisfactory in all cases. 

Waveform 

A sinusoidal test signal must be used and the harmonic con­
tent of this signal must be as low as practicable (see Sec. 1 .7 ,  Ch. 
1). A good quality signal generator supplies such a signal; but, even 
when such an instrument is used, the waveform should be inspected 
with an oscilloscope or distortion meter to insure that the test setup 
itself does not distort the signal. 

A high harmonic content in the signal can cause meters to give 
false readings with the error sometimes being as high as the har­
monic percentage. 

Generator Impedance 

The internal impedance of the test-signal source must be 
known, since it becomes a part of the measurement circuit, and 
must be accounted for in the calculation of impedance from cur­
rent and voltage. While it is true that the output resistance of a 
signal generator is usually very low with respect to the impedance 
of devices that the generator normally drives, such as amplifiers 
and other high-impedance input circuits, this is not true in all im­
pedance measurements. A signal generator with a 5000 output, for 
example, might be called upon for checking impedances of 500. 

The impedance of most signal generators is resistive and is con­
sidered constant at all frequencies in the range of the instrument. 

Instrument Impedance 

The internal impedance of voltmeters and ammeters becomes 
a part of the test circuit and, as explained in individual tests in this 
chapter, must be accounted for in the calculation of impedance from 
current and voltage. Ideally, the impedance of a voltmeter is high 
to minimize current drawn by this instrument; and the impedance 
of an ammeter is low to minimize voltage drop introduced by this 
instrument. In electronic ac voltmeters and millivoltmeters, the in­
ternal resistance is 1 -10 megohms on all ranges, depending upon 
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make and model: and this is shunted by a capacitance between 20 
pF and 40 pF. The resistance of rectifier-type nonelectronic volt­
meters varies from as low as 100001Y to 50K OIY, depending on 
make and model. The internal resistance of nonelectronic ammeters 
varies from 14000 for a 0.5 rnA instrument to 1 mO for a 50A in­
strument. In transistorized electronic ammeters the internal resis­
tance varies typically from 10K for a 10  IJ.A range to 100 for the 
10  mA range. A digital VOM on its alternating current ranges may 
present resistance varying from 10000 on the 200 IJ.A range to 10 
on the 200 rnA range. Iron-vane ac ammeters have very low resis­
tance, typically 213 milliohms for the 1A range to one milliohm for 
the 50A range. Because of their relatively high operating current, 
iron-vane voltmeters are not generally useful in impedance mea­
surements. Iron-vane instruments are usually limited to operation 
at the power-line frequency. 

Frequency Response of Instruments 

Instruments used for impedance measurements must be ac­
curate at the test frequency. High-grade laboratory-type ac volt­
meter/millivoltmeter instruments of the electronic type retain their 
specified accuracy from five or ten hertz to upper limits of 100 kHz, 
1 MHz, or 10 MHz, depending upon make and model. Special 
models may be employed, with suitable probes, for up to several 
gigahertz with reduced accuracy specified by the manufacturer. Kit­
type electronic ac voltmeter/millivoltmeters usually are guaranteed 
up to one megahertz. Service-type VTVMs typically are rated from 
50 Hz to 1 MHz or higher for ac voltage, depending upon make 
and model, and most are usable to higher frequencies with an rf 
probe. Service-type TVMs typically are rated from 50 Hz to 50 kHz 
for alternating voltage and current, depending upon make and 
model. 

The frequency response of rectifier-type voltmeters and am­
meters is poor for instruments equipped with a copper-oxide recti­
fier; in this type, a negative error usually appears at some point 
between 1 and 5 kHz and increases with frequency. Instruments 
equipped with point-contact rectifiers give better performance, of­
ten being usable up to 1 MHz. Since conventional (nonelectronic) 
VOMs employ rectifier-type meters, the frequency response of such 
multipurpose instruments depends upon the type of rectifier used. 

Iron-vane and dynamometer-type instruments have a limited 
frequency range. The former are usually specified for 60 Hz oper-
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ation, and the latter usually for a narrow band such as 25-125 Hz, 
380-440 Hz, etc. 

When impedance is to be measured at only one frequency, it 
is sufficient to know the accuracy of the instruments at that fre­
quency alone. But when the measurements must be made at several 
frequencies, it is wise to examine the response of the instruments 
throughout the entire band. 

Accuracy of Instruments 

The accuracy of meters, bridges, and other instruments used 
in impedance measurements must be determined, and all im­
pedances found from tests made with these instruments must be 
corrected accordingly. Depending upon make and model, the ac­
curacy of analog-type ac voltmeters and ammeters ranges from 
0 .1  % to ± 5% of full-scale deflection, and the accuracy of the digi­
tal type ranges from ± 0.5% (plus one digit) to ± 1 % (plus one digit) 
for voltage, and ± 0.7% (plus one digit) to ± 1 % (plus one digit) 
for current. For best results, readings should be made in the upper 
quarter of the scale of an analog-type meter whenever possible. 

Depending upon make and model, impedance bridges that 
separately evaluate resistance, capacitance, and inductance, from 
which impedance may be calculated, provide accuracy between 
± 0.05% and ± 5% of the indicated value. 

Operating limits of Test Component 

The test-signal voltage and current must be kept within the 
ratings of the impedance device which is under test. Not only will 
excessive voltage and current damage some components, but the 
response of some of them-such as iron-core inductors-becomes 
nonlinear when the current is too high, and the impedance upon 
such conditions is atypical. 

A general rule is to employ the minimum current and voltage 
that will give reliable results unless otherwise directed by the 
manufacturer of the component or the designer of the test. 

Overdriving 

Excessive test-signal amplitude is to be avoided. Not only is 
an overly intense signal liable to damage the component under test, 
but the distortion it sometimes produces can cause erroneous re­
sponse of the instruments. Overdriving of some devices, such as 
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amplifiers, can result in a false indication of input or output im­
pedance. 

Overloading 

Overloading is the condition in which excessive current is drawn 
at some point in the test setup. A signal generator that is overloaded 
will sometimes cause erratic behavior of an impedance measuring 
circuit. A very common case of overloading occurs when the input 
impedance of a voltmeter in the test setup is too low; the meter 
accordingly draws excessive current and a false indication of test 
impedance may result. 

Lead Length and Dress 

At audio and high rf ranges, the most direct and shortest prac­
ticable leads must be used throughout an impedance measuring 
setup. Moreover, to minimize undesired coupling and capacitance, 
all leads must be kept as far apart as practicable. 

External Fields 

An impedance measuring setup must be protected from any 
interfering electric or magnetic fields. Often, this can be accom­
plished simply by moving all field-producing items-such as mo­
tors, generators, relays, power cords, transformers, and 
chokes-from the vicinity of the setup, or by moving the setup to 
a field-free environment. In other instances, as in the pickup of ra­
dio stations by an rf impedance measuring setup, the setup itself 
must be adequately shielded. 

Internal Fields 

Sometimes interfering fields are produced within an impedance 
measuring setup itself. For example, the magnetic field of a power 
transformer or filter choke in a poorly shielded signal generator 
or other test instrument may cause trouble in the test circuit or may 
upset the operation of an unshielded meter. Also, the magnetic field 
of an inductor under test may penetrate other items, such as meters 
or coupling transformers, in the setup. The remedy is to make a 
preliminary "cleanup" test before any impedance measurements 
are attempted and correct any discovered faults. 

Body Capacitance 

In the low rf and high AF ranges, body capacitance-especially 
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that associated with the operator's hands-can cause erroneous me­

ter readings and sometimes frequency shifts. Often, the rearrang­

ing or shielding of components in an impedance measuring setup 

or the grounding of appropriate points in the circuit will correct 

this nuisance. Sometimes, however, it will be necessary to employ 

tuning wands to achieve distance between the operator and equip­

ment. Each case is an individual one and no universal remedy is 

available. In stubborn cases when standard remedies are of no avail, 

a fixed relationship must be maintained between the equipment and 

the operator; that is, all adjustments must be made with the opera­

tor at the same distance and in the same position. 

A particular nuisance is antenna effect, where the operator's 

body picks up signals from a strong radio station and couples them 

into the test setup. This condition usually is corrected by: choos­

ing another, station-free, test frequency, if permissible; efficiently 

shielding the test setup; or removing the setup to a shielded room. 

Temperature Effects 

Most tests are made at room temperature (in the vicinity of 

70 OF), and the impedance values obtained at that temperature are 

acceptable unless the impedance must specifically be determined 

at some other point. Many test components are not especially tem­

perature sensitive and their measured impedance does not change 

markedly if the ambient temperature fluctuates 10  or 20 degrees 

in either direction. Some components, however, are temperature 

sensitive; these include thermistors, some resistors, capacitors, and 

rf inductors. These components should either be enclosed in a 

constant-temperature chamber during a test of their impedance, 

or they must be protected from hot resistors, transformers, and 

tubes in the test setup. 

Vibration 

Mechanical vibration, from whatever cause, is to be avoided 

in electronic measurements, but it is especially error-producing at 

rf and very high AF ranges where small displacements between 

components, caused by the vibrations, can upset electrical relation­

ships within the impedance measuring circuit. Vibration can also 

cause some meters to malfunction. 

Resonance Effect 

Electrical resonance may show up unexpectedly in an im-
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pedance measuring setup. Thus, an inductor under test may reso­

nate with a coupling capacitor at the test frequency. Sometimes 

this is of no concern; at other times resonance may cause puzzling 

test results. Each case is individual and the operator must deter­

mine whether resonance is harmful and should be eliminated in a 

particular test of impedance. 

Phase Relations 

The operator should be aware of the various phase relations 

in a particular impedance-measuring setup, particularly if tests are 

made in different branches of the circuit; otherwise, some perplex­

ing situations may arise. If, for example, the circuit contains a 

capacitive reactance and an equal amount of resistance in series, 

the voltage across the capacitance (Ec) equals the voltage across 

the resistance (ER); however, the total voltage across the circuit 

does not equal Ec + ER, but is 1 .414 Ec or 1 .414 ER because the 

phase angle here is 45 degrees. Similarly, if a voltage is applied 

to this circuit, neither the capacitor voltage nor the resistor volt­

age will be equal to half this value, but to 0.707 E. If a series­

resonant circuit results from the connection of a test inductor in 

series with a coupling capacitor in the impedance-measuring setup, 

the capacitor voltage (Ec) equals the inductor voltage (EL), but the 

voltage across the circuit (generator voltage) will be much lower 

than either Ec or EL• 

Use of Same Instruments 

Throughout an extended test, such as impedance measure­

ments of the same component at a number of frequencies or bias 

voltages, the same instruments should be used whenever possible. 

If the use of different instruments is unavoidable, their characteris­

tics should be carefully noted and any required corrections made 

to reconcile the results obtained with those obtained with the first 

instruments. 

Often, when signal generators must be changed in order to pro­

vide the full required frequency range, the different output im­

pedances of these instruments will cause trouble. Also, the accuracy 

of one generator may not be identical with that of another at over­

lapping frequencies. 

3.2 VOL TMETERI AMMETER METHOD 

A convenient and uncomplicated method of determining the 
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value of an unknown impedance consists of passing a measured 
current through the impedance, measuring the resulting voltage 
drop across the impedance, and substituting the E and I values in 
the equation: 

Zx = Ell (3- 1 )  

where Zx i s  in ohms, I in amperes, and E in volts. 
Figure 3- 1 (A) shows the preferred test setup. In this arrange­

ment, the internal impedance of the voltmeter (ZM) must be much 
higher than the unknown impedance Zx; otherwise the deflection 
of the ammeter will include both the current flowing through Zx 
and the current taken by the voltmeter. When the voltmeter is an 
electronic instrument (FETVM or VTVM), ZM is several megohms 
and the current it demands is, to all practical intents and purposes, 
infinitesimal. 

Test Procedure for Figure 3-1 (A) 

• Set up test circuit as shown in Fig. 3- 1 (A). 
• Set generator to desired test frequency. 
• Adjust generator output for ammeter deflection in upper 

quarter of scale and record deflection as current I in amperes. 
• Read resulting deflection of voltmeter and record as E in 

volts. 
• Using Eq. 3-1 ,  calculate unknown impedance. 

Example 3- 1 .  When a certain device is tested in the circuit 
in Fig. 3-1(A) and the current is adjusted to 5 rnA, the voltmeter 
reading is 3.2V. Calculate the unknown impedance. 

Here, 5 rnA = 0.005A. From Eq. 3- 1 ,  

Zx = 3.2/0.005 
6400 

When the voltmeter impedance is equal to or is less than Zx' 
this meter cannot be used successfully to measure the voltage drop 
across Zx and must be connected directly to the input of the test 
circuit, as shown in Fig. 3- 1(B), to measure input voltage to the 
circuit. In this latter arrangement, ammeter M2 introduces a volt­
age drop so that the actual voltage E3 across the unknown im­
pedance Zx is not equal to the voltmeter reading (E1 ) but to E1 
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Fig. 3-1 . Voltmeter/ammeter method for measuring an unknown impedance: 
(A) when the impedance of the meter (ZVM) is higher than the unknown im­
pedance (Zx) ;  (8) when the impedance of the meter is equal to or less than 
the unknown impedance. 

minus the voltage drop E2 across the ammeter. E2 may be mea­
sured with a high-impedance voltmeter or it may be calculated: 

(3-2) 

where I is the indicated current in amperes, and RM is the inter­
nal resistance of the meter (measured or taken from the manufac­
turer's literature). 

For the test circuit in Fig. 3-1(B), the equation for unknown 
impedance becomes: 

(3-3) 
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Test Procedure for Figure 3-1 (8) 

• Determine internal resistance of the ammeter and record as 
RM in ohms. 

• Set up test circuit as shown in Fig. 3- l(B}. 
• Set generator to desired test frequency. 
• Adjust generator output for voltmeter deflection in upper 

quarter of scale and record as £1 in volts. 
• Read resulting deflection of ammeter and record as I in 

amperes. 
• Using Eq. 3-2 , calculate £2' 
• Using Eq. 3-3, calculate unknown impedance. 

Example 3-2. A 0-5 rnA ac meter in the test setup in Fig. 
3- l (B} has an internal resistance RM of 2000. When the generator 
output is adjusted for a voltmeter reading (E1 ) of 10V,  the indi­
cated current is 4 .5 rnA. Calculate the unknown impedance. 

Here , I = 4.5  rnA = 0 .0045A. From Eq. 3-2 , £2 = 
0.0045(200} = 0.9V. From Eq. 3-3: 

10 - 0.9 
0.0045 

9. 1 10.0045 
= 2022 .20 

If the voltage drop across M2 were ignored, and Eq. 3- 1 used, 
the calculated impedance would be 2222 .20 (a + 9.9% error). When 
the unknown impedance is largely reactive, the Fig. 3- l (B} method 
becomes less reliable, since E2 and E3 are not then in phase with 
each other, and E1 accordingly will not be equal to their sum (see 
item 17 in Sec. 3 . 1 ) . 

The voltmeterl ammeter method is widely used because most 
laboratories have the necessary meters, although they may not own 
other impedance measuring instruments. This method is usable 
equally well at the AF and rf ranges, provided the meters and gener­
ator have the required frequency capability and that care is taken 
in setting up and operating the test at high frequencies. (See items 
5, 10 ,  13 ,  15 ,  and 17 in Sec. 3 . 1 . ) 

3.3 AMMETER METHOD 

When a reliable source of constant-amplitude ac voltage is avail-
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able to supply a single voltage (or several voltages in selectable 
steps), the voltmeter may be dispensed with in the impedance mea­
suring setup described in the preceding section and only the cur­
rent measured . This arrangement is shown in Fig. 3-2 . 

Here the known voltage is applied to the circuit, which con­
sists of the current meter M (whose internal resistance RM is 
known) and the unknown impedance Zx in series, and the result­
ing current is read. From E and I, the unknown impedance then 
may be calculated: 

(3-4) 

where Zx is the unknown impedance in ohms, E the accurately 
known test voltage, I the indicated current in amperes, and RM the 
internal resistance of the current meter in ohms. 

Test Procedure 

• Determine the internal resistance of ammeter and record as 
RM in ohms. 

• Set up test circuit as shown in Fig. 3-2 . 
• Apply test voltage E and record resulting deflection of cur­

rent meter as I in amperes. 
• Using Eq. 3-4, calculate unknown impedance. 

constant-voltage 
source 

M 

ac 
ammeter 

Fig. 3-2. Ammeter method for measuring an unknown impedance. 
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Example 3-3. A regulated 10V ac source is used in the cir­
cuit shown in Fig. 3-2. The ac meter has a full-scale range of 1 rnA 
and an internal resistance of 600f2. The total deflection is 0.75 rnA . 
Calculate the unknown impedance in kilohms. 

Here I = 0.75 rnA = 0 .00075A. From Eq. 3-4: 

10 x (0.00075 x 600) 
Zx = 

0.00075 

10 - 0.45 

0.00075 = 0.55/0.00075 
= 12 ,7330 

12 .733K 

The ammeter method is simple, but its reliability depends upon 
the constancy of the voltage source. For continuous routine mea­
surements of impedance, a direct-reading ohms scale may be drawn 
for the meter with its calibration being obtained from solutions of 
Eg. 3-4. The ammeter method may be used at the rf as well as the 
AF range, provided that the ammeter has the frequency capability 
and that necessary precautions are taken in wiring and operating 
the circuit (see items 5, 10,  13,  15 ,  and 17 in Sec. 3-1 ) .  In fact, some 
operators employ the special constant IV output of an rf signal 
generator for this test. 

The ammeter method is susceptible to the effects of generator 
internal impedance ZG' Since this impedance is in series with the 
unknown impedance and the ammeter, the current is proportional 
to the total impedance. Unless ZG is very much smaller than Zx 
(for example, Zx = 100 ZG or higher), ZG must be subtracted from 
Eg. 3-4: 

(3-5) 

3.4 VOLTMETER METHOD 

An electronic ac voltmeter/millivoltmeter (FETVM or VTVM) to­
gether with a standard resistor and changeover switch can be used 
to measure impedance over a wide range. Figure 3-3 shows the 
circuit. 
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Fig. 3-3 .  Voltmeter method for measuring an unknown impedance. 

In this arrangement, unknown impedance Zx is connected in 
series with the generator and a low-resistance non inductive resis­
tor R. (Common values used for the resistor are Hl and 10ft) The 
resistance is so low that current flowing through the resistor is de­
termined by the impedance rather than by this resistance. Current 
flowing through the circuit sets up a voltage drop ER across the 
resistor and this voltage is proportional to impedance Zx' Switch 
S allows the meter to be switched to the input (position A) to read 
the applied test voltage EG, or to the output (position B) to read the 
voltage drop Er across the standard resistor. The unknown im­
pedance is determined from these two voltages and the resistance: 

(3-6) 

where Zx and R are in ohms, and EG and ER are in volts. When 
R = 10, Eq. 3-5 reduces to the simple ratio of the two voltages: 

where Zx is in ohms and EG and ER are both in the same units 
(volts, millivolts, etc . ) .  
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Test Procedure 

• Set up test circuit as shown in Fig. 3-3 . 
• Throw switch S to position B. 
• Adjust generator output for an upper-scale deflection on 

selected scale of voltmeter M. Record reading as ER• 
• Without disturbing setting of generator, throw switch S to 

position A. Record new reading of voltmeter as EG• 
• Using Eq. 3-5, calculate unknown impedance from the two 

voltage readings and the resistance. 

Example 3-4. A 100 resistor is used in the test setup in Fig. 
3-3. The readings are EG = 1 .5V, and ER = 1 mY. Calculate the 
unknown impedance in kilohms. 

Here, ER = 1 mV = O.OOlV.  From Eq. 3-5: 

10 x 1 .5 
Zx = 

0.001 

= 15/0.001 = 15,0000 
= 15k 

This method is the most successful at the AF range. Because 
of feed through effects and stray reactances, it is difficult to use 
at frequencies beyond about 5 kHz. 

3.5 SIMPLE, HOMEMADE, 
DIRECT-READING IMPEDANCE METERS 

A self-contained impedance meter that reads directly in ohms 
may be made by calibrating any one of the circuits described in 
the preceding sections and providing a self-contained generator. 
Thus, in the circuit in Fig. 3- l (A), the scale of voltmeter M2 may 
be graduated in ohms based upon a selected value of current indi­
cated by meter M1 .  Similarly, the scale of ammeter M2 in Fig. 
3-1(B) may be graduated in ohms based upon a selected value of 
reference voltage indicated by meter MI .  

In the circuit in Fig. 3-2, the scale of the ammeter may be gradu­
ated in ohms on the basis of the constant generator voltage E. The 
circuit in Fig. 3-3 would operate in a manner similar to that of a 
conventional ohmmeter. That is, with switch S set to position A, 
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the generator output voltage would be initially adjusted for full­
scale deflection of the meter (zero-impedance point); then, with s 
set to position A, a reading lower on the scale would indicate the 
impedance value. The graduations (obtained by calculation or by 
means of known impedances connected successively to the circuit) 
would extend from zero impedance at full-scale deflection to max­
imum impedance near zero deflection. A somewhat simpler method 
is to eliminate the switch and make the initial (zero) setting of the 
meter with the Zx terminals temporarily short-circuited. This 
adaptation of the voltmeter circuit is subject to significant error, 
however, unless Zx is largely resistive, since phase relationships 
between Zx and R otherwise will cause a lower or higher reading 
than is anticipated (see item 17 in Sec . 3. 1 ). 

3.6 RESIST ANCEIBALANCE METHOD 

Figure 3-4 shows a circuit that can be used to measure im­
pedances of all types. In this arrangement, the test signal is ap­
plied through transformer T to a variable resistor R and the 
unknown impedance Zx in series. The same current flows through 
both R and Zx; this current produces a voltage drop (ER = IR) 
across the resistor and another voltage drop (Ez = IZ) across the 
impedance. The electronic ac voltmeter M, either a VTVM or TVM, 
reads ER when switch S is thrown to position A, and reads Ez 
when S is thrown to position B. Transformer T serves only to iso­
late the generator from the circuit to prevent conflicting grounds 

s 

R 

GEN 

M 

Electronic ac 
voltmeter 

Fig. 3-4. Resistance/balance method of measuring an unknown impedance. 
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between the generator and meter, so it need not be of any special 
type as long as it operates well at the test frequency. Performance 
of the circuit is based upon the fact that when the resistance is ad­
justed to the point that ER equals Ez' as noted by flipping switch 
S back and forth as R is adjusted, the resistance at that point equals 
the unknown impedance (R = Zx). If the resistor is provided with 
a dial reading in ohms, the unknown impedance can be read directly 
from the dial; otherwise, the resistor may be disconnected from 
the circuit without disturbing its setting and checked with an ohm­
meter or bridge. The maximum value of the variable resistor should 
equal the maximum impedance expected to be measured. 

Test Procedure 

• Set up test circuit as shown in Fig. 3-4. 
• Throw switch S to position A. 
• Set output of generator for suitable deflection of meter M. 

This deflection is voltage ER" Do not subsequently disturb output 
of generator. 

• Throw switch S to position B. Meter now reads Ez. Observe 
difference between this voltage and value of ER read in step 3.  

• Throw switch S back and forth between positions A and B, 

while slowly adjusting variable resistor R, until deflection of me­
ter M is same at positions A and B. At this point Zz = R and can 
be read directly from resistor dial; or if the dial is uncalibrated, the 
resistor can be disconnected from the circuit and its setting checked 
with an ohmmeter or bridge. 

The resistancelbalance method is versatile. Its impedance ac­
curacy corresponds to the accuracy with which the resistance is 
known. If a special dial is made for a one-turn potentiometer, the 
accuracy will coincide with that of the resistance-calibration source 
used ; if a high-grade multiturn potentiometer is used with a turns­
counting dial , without making an individual resistance calibration, 
an accuracy of 1 % to 2% is possible. Resistance decade boxes need 
no calibration, since they automatically indicate their resistance set­
tings. The accuracy of service-type decade boxes varies from ± 2% 
to ± 5%. Laboratory-type decade boxes afford accuracy as good 
as ± 0.01  %. Wirewound potentiometers, because of their inherent 
inductance, limit impedance measurements to the AF range; high­
grade, frequency-compensated , laboratory-type decade boxes can 
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be used up to 1 MHz or higher; however, in the rf range transfonner 
T must be an air-core or ferrite-core unit. 

3.7 SUBSTITUTION METHOD 

Impedances of the same kind (capacitive or inductive) may be 
compared directly with the setup shown in Fig. 3-5(A). One appli­
cation is a comparison of the impedance of devices with that of a 
standard device in line of production or in receiving inspection . In 
this arrangement, a simple T-network is formed by two lk nonin­
ductive resistors (R1 and R2) and the impedance connected to ter-
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Fig. 3-5. Substitution method for measuring an unknown impedance: (A) to 
measure impedances of the same kind; (8) where voltage readings must be 
in the same units. 
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minals x - x. A test signal of desired frequency is presented to the 
network by the generator (GEN), and the input and output voltages 
of the network are read with the electronic AF/rf voltmeter. When 
switch S is thrown to position A the meter reads input voltage; 
when S is at B, the meter reads output voltage. 

The operating principle is simple: The output voltage (EOUT) 
is proportional to the impedance (Zx) connected to terminals X - X 
and may be set to any selected value-the reference voltage-by 
adjusting the input voltage EIN applied to the network with the im­
pedance in place. The value of the reference voltage is not critical, 
so long as the value selected can be read accurately on the meter 
scale and can reset accurately by adjusting the input voltage . By 
varying the generator output, the output voltage is first adjusted 
to the chosen reference value Eo with a known standard im­
pedance (Zs) in place. The corresponding input voltage is recorded 
as EI1 " Then, the unknown impedance is substituted for the stan­
dard impedance, and the input voltage is adjusted (by varying the 
generator output) to restore the output voltage to the original refer­
ence level. This new input voltage is recorded as E12• At this point, 
the unknown impedance may be calculated in terms of the known 
impedance: 

(3-7) 

where Z is in ohms, and all E's are in the same units (volts, mil­
livolts, etc. ) .  If the operator wants to know only how much larger 
or smaller Zx is than Zs-as in some forms of production testing­
the desired multiplier M (whole number or decimal) may be cal­
culated: 

(3-8) 

Test Procedure 

• Set up test circuit as shown in Fig. 3-5(A). 
• Connect standard impedance Zs to terminals x - x . 
• Throw switch S to position B. 
• Adjust generator output for a selected reference deflection 

of meter M (for example, O .OV). Record this output reading as 
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EOUT 
and the corresponding input reading as Ell '  

• Remove Zs and connect unknown impedance Zx to termi­
nals x - x.  

• Readjust generator output voltage to restore meter reading 
to original EOUT 

value. 
• Throw switch S to position A. Meter now reads new input 

voltage E12• 

• Using Eq. 3-7, calculate unknown impedance Zx from E
ll ' 

E12, and Zs' 
• If only the factor whereby Zx differs from Zs is required, 

use Eq. 3-8. 

Example 3-5. In the test setup in Fig. 3-5(A), the circuit is 
initially adjusted with a 500 impedance (Zs) in place and a refer­
ence voltage (Eo) of 0 . 1  V. The input voltage (EI1 )  at this point is 
2 . 1  V. When the unknown impedance (Zx) is in place, and the test 
signal has been readjusted for the original Eo of 0 .1V,  the new in­
put voltage (EI2) is found to be 1 .77V. Calculate the unknown im­
pedance. 

Here, Eo = 0 . 1V, En = 2. 1V, EI2 = 1 .77V, and Zs = 500. 
From Eq. 3-7, 

Zx = 50[(2 . 1  - 0. 1 )/( 1 .77 - 0 . 1 )] = 50(2/1 .67) 
50( 1 . 1976) 

= 59.90 

Example 3-6. The test setup in Fig. 3-5(A) is employed in 
an incoming inspection to check the deviation of the impedance of 
certain devices from the specified value of 1350. The reference volt­
age (Eo) is set to 0.5V with the standard impedance (Zs) in place; 
the corresponding input voltage (EI 1) is 2.5V. Then, with one of 
the incoming devices (Zx) in place, the input voltage must be set 
to 3V (EI2). By what factor does Zx differ from Zs? 

From Eq. 3-8, M = (2.5 - 0.5)/(3 - 0.5) = 2/2.5 = 0.8. 
Therefore: 

Some AF and rf signal generators are equipped with output con­
trols (or meters) which indicate directly the output voltage of the 
generator. When such a generator is available, the E

I
1 and EI2 
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values may be read directly from the generator and the switching 
arrangement shown in Fig. 3-5(A) can be omitted. This will result 
in the simplified circuit shown in Fig. 3-5(B). When this latter ar­
rangement is used, all voltage readings-as before-must be in the 
same units: volts, millivolts, etc. 

When an rf voltmeter is not available, a radio receiver having 
an internal S-meter may be used when checking rf impedance. A 
desired deflection of the S-meter (for example, center scale) may 
be selected as the Eo reference point, but the actual correspond­
ing rf voltage at the input of the receiver must be known and this 
voltage becomes the Eo in Eq. 3-7 and 3-8. 

3.8 IMPEDANCE BRIDGE 

Most well-equipped laboratories have at least one impedance 
bridge (sometimes called a universal bridge). This is a multirange 
ac bridge for accurately measuring inductance, capacitance, ac and 
dc resistance, and loss factor (power factor, dissipation factor, Q, 
or all of these) .  Impedance may be calculated from the measured 
components. The impedance bridge usually operates at 1 kHz 
provided by a self-contained generator, or at other frequencies 
(usually 20 Hz to 20 kHz) provided by an external generator. 

This method is perhaps most satisfactory when the impedance 
contains a single dominant reactance (that is, the device is basi­
cally an inductor, capacitor, or inductive resistor) and when the ac 
resistance is separately measured with the bridge. When the test 
frequency is low-say 500 Hz maximum-the dc resistance may 
be used. From the measured value of capacitance C or inductance 
L, whichever applies, the reactance is calculated: XL = wL, or Xc z lIwC. From this reactance and the measured ac resistance, the 
impedance is calculated: 

(3-9) 

Alternatively, the resistance component may be calculated from 
the Q value measured with the bridge and the calculated reactance: 

(3- 10) 

Or the resistance may be calculated from the dissipation factor (D) 
measured with the bridge and the calculated reactance: 

(3- 1 1 )  
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Example 3-7. A certain choke coil which is to be used on 
ac only is checked with an impedance bridge at 1000 Hz and found 
to have an inductance of 1 .6H and an ac resistance of 870. Calcu­
late the 1 kHz impedance of this choke. 

Here, XL = 10,0530 (Eq. 1 -10 ,  Ch. 1 ) ,  and R = 870. From 
Eq. 3-9: 

Zx = J 872 + 10,0532 
= .J 7569 + 101 ,062,809 = J 10 ,070,378 
= 10,0530 

Here, as might have been surmised, the resistive component 
is negligible compared with the reactive component. The 1000 Hz 
Q of this choke therefore is ZIR = 10,053/87 = 1 15.5.  

Example 3-8. An electrolytic filter capacitor is checked at 
120 Hz with an impedance bridge. The measured capacitance is 
8.5 JLF and the dissipation factor 0.057. Calculate the 120 Hz im­
pedance of this capacitor. 

Here, Xc = 1 560 (Eq. 1-12 ,  Ch. 1 ) .  From Eq. 3-1 1 ,  R = 
0.057(1 56) = 8.890. And: 

Zx = .J 8.89� + 1 562 = .J 79.03 + 24,336 = -J 24,41 5  = 1 56.20 

3.9 RADIO FREQUENCY BRIDGE 

Whereas the impedance bridge is limited to audio frequency 
use, the radio frequency bridge is especially designed and 
constructed-with low-reactance resistors, adequate shielding, ap­
propriate grounding, and other measures-for operation between 
100 kHz and 250 MHz, depending upon make and model. Some 
rf bridges have a self-contained signal generator; some models re­
quire an external generator and null detector. 

An example is the General Radio 1606-B rf bridge. This instru­
ment has two calibrated balance controls, one for resistance and 
the other for reactance, and the dial of each reads directly in ohms. 
These balances are set separately for null in the same manner that 
the main balance control and power-factor control are set in the 
lower-frequency impedance bridge. From the measured R and X 
values, the unknown impedance may be calculated by means of Eq. 
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3-9. This instrument evaluates rf resistance between zero and 
10000, and reactance between - 50000 and + 50000 at 1 MHz. (At 
other frequencies, the dial reading at null is divided by the frequency 
in megahertz. )  

It is convenient to be able to measure rf resistance directly, 
since this kind of resistance is quite complicated and may be sig­
nificantly higher than either dc resistance or low-frequency ac re­
sistance. Calculation of its value is unreliable. Some of the factors 
that influence the value of rf resistance are skin effect, presence 
of dielectrics, presence of nearby conductors (such as metal shields), 
dc resistance, and stray reactance. 

A special homemade version of the rf bridge is often used by 
radio amateurs for measuring the approximate impedance of com­
ponents used in transmitters, receivers, and antennas. A typical 
circuit of this device is shown in Fig. 3-6. This arrangement is a 
four-arm bridge in which the arms are 50 pF fixed capacitor C) ' 
339 pF variable capacitor Cz' 2400 non inductive resistor R, and 
the unknown impedance Zx connected to terminals x - x. The null 
detector is a simple rf voltmeter consisting of IN67 A germanium 
diode D, 0-50 dc microammeter M, and 0.005 1-tF coupling capaci­
tor C3• An rf voltage of approximately 1 .  75V RMS is required for 
full-scale deflection of this meter. This bridge-driving signal is sup­
plied by an rf oscillator or signal generator connected to coaxial 
input jack f. The unknown impedance is connected to terminals 
X - X by means of short, heavy, straight leads. 

With the unknown impedance connected to terminals X - X, and 
an rf signal of desired frequency coupled into the bridge through 
input jack I, capacitor Cz is tuned for null, as indicated by the 
lowest downward deflection of meter M. At that point, impedance 
Zx is related to the 2400 resistance of standard resistor R by the 
ratio C/Cz' where Cz is the capacitance setting of variable capac­
itor Cz at null. That is, 

( 13- 12) 

where Zx and R are in ohms, and C1 and Cz are in picofarads. 
If the dial of capacitor Cz is a direct reading in ohms from a 

previous calibration of the bridge, the impedance may be read 
directly from the dial at null with no calculations being required. 
The simplest way to calibrate the dial is to connect a number of 
accurate noninductive resistors successively to terminals X - X, bal­
ance the bridge for each resistance, and inscribe that value on the 
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rf input J 

Fig .  3-6. A typical circuit for an rf bridge used to measure the approximate 
impedance of components used in transmitters. receivers. and antennas. 

dial. With the circuit constants shown in Fig. 3-6, variable capaci­
tor C2 will cover the impedance range of 350 to 6000. High im­
pedances are at the low-capacitance end of the dial, and vice versa. 
Table 3-1 gives a sample impedance-vs-capacitance relationship for 
the circuit. These values are based upon a basic tuning range of 
14.7 pF to 339 pF (Millen 19335) and the knowledge that stray ca­
pacitance in the circuit adds at least 5 pF to the settings of the tun­
ing capacitor. With solid construction and good shielding, the bridge 
is useful to 50 MHz. 

3. 1 0  Q-METER METHOD 

An rf impedance may be determined from Q-meter measure­
ments. The procedure is to calculate reactance and resistance 
separately from the Q's and tuning capacitances displayed by the 
Q meter, and then to calculate the impedance from X and R. When 
the usual parallel connection of the unknown impedance to the Q­
measuring circuit is used, X and R are determined in the following 
manner: 

X =  1 . 1591 X 108 

j.tl.C 
(3- 1 3) 
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C2, Including strays 
(picofarads) 

344 
240 
1 20 

80 
60 
40 
24 
20 

Zx 
(ohms) 

35 
50 

1 00 
1 50 
200 
300 
500 
600 

Table 3-1 . Sample I m ped­
ance/CapacItance Relation­
ships. 

where X is the reactance in ohms, ! the test frequency in kilohertz, 
and �C the difference between C) and C2• C) is the tuning capaci­
tance in picofarads required to resonate the Q-measuring circuit 
without the unknown impedance connected, and C2 is the tuning 
capacitance in picofarads required to resonate the Q-measuring cir­
cuit with the unknown impedance connected . When C) > C2, X is 
capacitive ( - ); when C) < C2, X is inductive ( + ) . 

R =  
1 .59 X 108 C)(Q) - Q2) 

fi.�C)2 Q)Q2 
(3. 14) 

where �C and ! are in the same units as in Eq.  3-13.  R is the resis­
tance in ohms, Q) the Q-meter reading when the Q-circuit is reso­
nated without the unknown impedance connected, and Q2 the 
Q-meter reading when the Q-circuit is re-resonated with the un­
known impedance connected. After X and R are determined as de­
scribed above, the unknown rf impedance may be calculated with 
the aid of Eq. 3-9. 

Example 3-9. A certain 100 pF capacitor is tested in a Q me­
ter at 1 MHz. Without the test capacitor, the instrument is reso­
nated with the tuning capacitor of the Q meter set to 400 pF (CJ 
The Q reading (Q) at this point is 250. With the test capacitor 
connected , the instrument is re-resonated with the tuning capaci­
tor at 300 pF (C2) and the corresponding Q reading (Q2) is 75. 
From these C and Q readings the calculated value of Qx is 26.78. 
Calculate the reactance Xc' resistance R, and 1 MHz impedance 
Zx of the test capacitor. 

Here, ! = 1 MHz = 1000 kHz, C) = 400 pF, and �C = 400 
- 300 = 100 pF. From Eq. 3- l3:  
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1 .591 X 108 Xc = 
1000 x 100 
1 .591 x 108/100,000 = 1 .510 

From Eq. 3- 14:  

1 .591 ( 108 ) 400 (250 - 75) R =  

From Eq. 3-9: 

= 

= 

1000 ( 1002 ) 250 (75) 

1 .59 1 ( 108 ) 400 ( 1 75) 

1000 ( 10 ,000) 250 (75) 

1 . 1 137 X 10 1 3  
1 .875 X 10 1 1  

59.40 

Z = ../59 .42 + 1 59 1 2  -'/3528.36 + 2531281 
"/2534809.36 
1 592.20 

The equivalent series resistance of 59.40 and the relatively low 
capacitor Q of 26.78 results in a 1 MHz impedance that is only about 
0.070/0 higher than the reactance of this capacitor at that frequency. 

3. 1 1  USE OF TRANSMISSION LINE 

An rf impedance may be measured with a quarter-wave sec­
tion of a two-wire transmission line, provided the measurement is 
made at the frequency at which the line is a quarter-wave long. (See 
Transmission Lines in Sec. 2 .5 ,  Ch. 2 . )  Figure 3-7 shows two prac­
tical ways of using the transmission-line method . 

In Fig. 3-7(A) a noninductive resistor R is connected by the 
shortest practicable leads to one end of the line . Resistance R is 
equal to the characteristic impedance Zo of the line. The unknown 
impedance Zx is connected by the shortest practicable leads to the 
other end of the line . An rf milliammeter (M 1 )  is inserted in the 
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line close to the transmitting end, and a second rf milliammeter 
(M2) is inserted in the line close to the receiving end. The internal 
resistance of the meters is very low. (RM for a 0 - 1 15 rf milliam­
meter, for example, is approximately 5.50,  and for a 0 - 500 rnA 
instrument is 0.630. )  The test signal from the generator (GEN) is 
loosely coupled into the line by means of a one-turn ring. The gener­
ator must be capable of supplying enough rf energy for an ac­
curately readable deflection of the current meters . The unknown 
impedance is to the characteristic impedance of the line as the cur­
rent at the sending end of the line (read by M 1 )  is to the current 
Iz at the receiving end of the line (read by M2): Zx/ Zo = I R/ Iz . 
From this relationship,  the unknown impedance can be calculated : 

(3- 1 5) 

where Zx is in ohms, and IR and Iz are in amperes. 

Test Procedure 

• Set up test circuit as shown in Fig. 3-7(A). Select resistance 
R equal to the characteristic impedance of the line . 

• Set generator to a frequency corresponding to the wavelength 
at which the line is a quarter wavelength long. 

• Adjust output of generator for accurately readable deflec­
tion of meters M 1  and M2. 

• Read current IR from meter M1 and current Iz from meter 
M2. 

• Using Eq. 3-15,  calculate the unknown impedance. 

Example 3- 1 0. An impedance device Zx is connected to a 
quarter-wave 3000 line in the setup shown in Fig. 3-7(A).  Meter 
M 1  reads 22.5 rnA, and meter M2 5.3 rnA. Calculate the unknown 
impedance. 

Here, Zo = 3000, IR = 22.5 rnA, and Iz = 5.3 rnA. From Eq. 
3- 15:  

Zx = 300 � 
5.3 

= 300 x 4.24 
= 1270 
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Fig. 3-7. Practical uses of the transmission line method to measure impedance: 
(A) using a non inductive resistor; (9) using a dip oscillator. 

A test setup sometimes used by service technicians and radio 
amateurs to check the impedance of a quarter wavelength of trans­
mission line is shown in Fig. 3-7(B). In this arrangement, a dip os­
cillator is inductively coupled loosely to the quarter-wave sample 
through a one-turn coil. The diameter of this coil should be about 
the same as that of the dip-oscillator coil. 

With the receiving end of the line open, the oscillator is tuned 
downward throughout its frequency range. As this is done, several 
dip points (downward deflection of the meter) will be noticed . The 
lowest dip point occurs when the oscillator is tuned to the frequency 
at which the line is a quarter wavelength. At this point, a nonin­
ductive variable resistor R is connected to the line and adjusted 
to the point at which the dip disappears. The resistance at this set­
ting equals the characteristic impedance of the line (Zo = R) and 
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can be read directly from the resistor dial if the latter has previ­
ously been calibrated in ohms. If the resistor dial is not calibrated, 
it may be disconnected and its resistance setting checked with an 
ohmmeter or bridge. 

This is a convenient test, but it requires a rheostat or poten­
tiometer that will operate efficiently at the radio frequency em­
ployed. Since this resistor must be noninductive, the only choice 
for many users will be a small composition potentiometer of the 
volume-control type which is not necessarily designed for rf use. 
Even when solid construction and careful operating techniques are 
employed, the accuracy of measurements may be expected to de­
crease as the frequency increases. (For general precautions, see 
items 5, 10, and 13 in Sec. 3 . 1 .) 

The dip-oscillator method is often used to check the impedance 
of insulated transmission lines such as coaxial cable and TV rib­
bon. In this use, however, it must be remembered that a yardstick­
measured length of such insulated line may not be an electrical 
quarter-wave long, its actual electrical length being longer and de­
pendent upon the kind of dielectric used. For insulated line , a 
quarter-wave (in ft) is equal to 246VI/, where/is the test frequency 
in megahertz and V is the velocity factor for the particular kind 
of line (obtained from the line manufacturer's literature) .  

The utility of the transmission-line method, as illustrated by 
Fig. 3-7, is limited by the length of line that can be handled com­
fortably. Experience shows that the longest line which can be 
worked with under ordinary conditions is about 12 ft, and this would 
correspond to a quarter wavelength at about 20 MHz. Also, the 
shortest length would not be much under a foot (a 9 .5-inch line is 
a quarter-wavelength long at 300 MHz). Therefore, the method ap­
pears to be limited in practice to the frequency range of 20 MHz 
to 300 MHz. Table 3-2 lists quarter wavelengths of line required 
at common frequencies between 20 and 300 MHz.  In case a spe­
cial line must be constructed for impedance measurements, Table 
3-3 shows the spacing of two No. 12 wires (in inches) required for 
four common impedances. 

3. 1 2  USE OF SLOTTED LINE 

At microwave frequencies, impedance may be measured in­
directly by use of a slotted line. Figure 3-8 shows the test setup. 
This is a conventional arrangement: The microwave generator sup­
plies rf energy to the slotted line at the desired test frequency, and 
the unknown impedance Zx is connected to the opposite end of the 
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Table 3-2 . Quarter 
wavelengths of Open­
W i re Transmission 
Line. 

Frequency 
(megahertz) 

20 
30 
40 
50 
60 

100 
200 
300 

Length of 1 /4 Wave 

1 1 ' 1 1  " 
7'1 1 1 12" 
5'1 1 1 /2" 
4'9 1 14" 
3'1 1 3/4" 
2'4 3/4" 
1 '2 1 /4" 
0'9 1 /2" 

line. The carriage is slid along to locate maximum-voltage points 
(maxima or loops) and minimum-voltage points (minima or nodes) 
and these points are indicated by maximum and minimum deflec­
tions of the meter in the detector. The slotted line has a charac­
teristic impedance Zo (for example , 500) specified by its 
manufacturer; and when the line is terminated in this impedance 
(that is Zx = Zo) there are no standing waves and the meter gives 
a steady deflection as the carriage is moved along. When Zx is 
some value other than Zo' loops and nodes are detected, and the 
unknown impedance is determined from the maximum and mini­
mum values and the characteristic impedance: 

(3-16) 

where Zx is the unknown impedance in ohms, Zo the characteris­
tic impedance of the line in ohms, EMAX the loop voltage, and EMIN 
the node voltage. It is not mandatory that EMAX and EMIN be in 
volts, so long as they both are in the same units (volts, millivolts, 
microvolts). Some detectors read in current units and for them the 
multiplier in Eq. 3-16  would be IMAXIIMIN' Still other detectors read 
in arbitrary units, and the ratio would be a simple quotient of the 
two numerical readings. 

Impedance 
Zo (ohms) 

200 
300 
500 
600 

Center-to-Center 
Spacing 
(Inches) 

0.2 15  
0.495 
2.62 
6 

Table 3-3. Spacing of No. 
12 Wire. 
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Test Procedure 

• Set up a test circuit as shown in Fig. 3-8 with an unknown 
impedance connected to the receiving end of the slotted line. 

• With generator and detector operating, slide the carriage 
along to the point at which upward deflection of the meter indi­
cates a loop (voltage or current maximum).  Adjust output of gener­
ator to place this deflection at or near full scale. Record peak 
deflection as EMAX ' 

• Slide carriage along to adjacent point at which a downward 
dip of the meter indicates a node (voltage or current minimum). 
Record bottom of deflection as EMIN" 

• Using Eq. 3-16,  calculate unknown impedance. 

Example 3- 1 1 . A 50n slotted line is used in the setup shown 
in Fig. 3-8. At a loop the voltage is set (by adjusting the generator 
output) to 10 m V. At the adjacent node the voltage is 3 m V. Calcu­
late the unknown impedance. 

From Eq. 3-16: 

10 
Zx = 50 

3 = 50 x 3.33 = 1 66.5n 

Impedance measurement is only one of the uses of a slotted 
line. This basic microwave tool is also used for determining wave­
length, standing-wave ratio (SWR), and insertion loss. General Ra­
dio 's 900-LB slotted line is usable from 300 MHz to 8.5 GHz and 
somewhat beyond. Hewlett-Packard's 81 7 AlB operates from 1 .8 
GHz to 18  GHz. Some slotted lines are essentially a section of air­
dielectric coaxial line; others are essentially a section of waveguide. 

3. 1 3 SWR METHOD 

Often, the detector used with a slotted line (see Fig. 3-8) is a 
direct-reading, standing-wave-ratio (SWR) meter. In this instance, 
the unknown impedance connected to the line may be calculated 
from the observed SWR and the characteristic impedance (Zo) of 
the line: 

(3- 1 7) 
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in impedance 
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Fig. 3-8. Test setup using the slotted l ine to measure impedance at microwave 
frequencies. 

Example 3- 12.  The test setup shown in Fig. 3-8 is operated 
with a 50n slotted line in the same manner as described in Sec. 
3. 12 ,  and the indicated SWR is 1 . 15.  Calculate the unknown im­
pedance. 

From Eq. 3- 17 :  

Zx 50( 1 . 15) 
= 57.50 

Radio amateurs and Citizens Band operators often use a sim­
ple bridge-type SWR meter (either homemade or factory built), and 
the SWR obtained with this instrument at frequencies up to 150 
MHz also may be used with Eq. 3-17  to determine an unknown rf 
impedance. 

3. 1 4  INPUT IMPEDANCE OF AMPLIFIER 

The input impedance (ZIN) of an amplifier may be measured 
by means of a special calibrated input-voltage divider. The test 
setup is shown in Fig. 3-9. 

In this arrangement, the test signal of a selected frequency is 
applied to the input terminals of the amplifier through a calibrated 
variable resistor, Rs' This puts Rs in series with the input im­
pedance (ZIN) of the amplifier.  An electronic ac volt­
meter/millivoltmeter (FETVM or VTVM) is arranged with a switch 
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so that the signal voltage EI to the input of Rs and Z(N in series 
may be read when switch S is at position A, and the signal voltage 
E2 at the amplifier input terminals may be read when S is at B. 
The amplifier is switched ON and is terminated by load resistor RL, 
whose resistance equals the rated output impedance of the ampli­
fier. The generator output voltage EI must be chosen such that 
the amplifier is not overdriven during the test. This impedance 
measurement is based upon the fact that when resistance Rs 
equals amplifier input impedance ZIN' amplifier input voltage E2 
is half of the generator output voltage EI . It is necessary only to 
adjust resistance Rs to the point at which E2 (switch S at position 
B) equals 0.5 EI (switch S at position A), whereupon the value of 
amplifier input impedance may be read from the ohms-calibrated 
dials of Rs. 

Test Procedure 

• Set up test circuit as shown in Fig. 3-9. 
• Load resistance RL must be equal to the rated output im­

pedance of the amplifier and must be capable of handling at least 
twice the rated output power of the amplifier. 

• With variable resistor Rs set to maximum resistance, throw 
switch S to position A and adjust output of the generator to a volt­
age level that will not overload the amplifier. Record voltage as 
E1 •  

• Throw switch S to position B and readjust Rs until meter 
reads half of E1 • Record as E2• 

• Return S to position A and recheck EI • If E( is not exactly 
twice E2, reset resistor Rs, return S to B, and recheck E2. 

• Continue to throw S back and forth between A and B while 
checking the voltage at each position of the switch. 

• When E2 is exactly 0.5 EI ' and EI remains exactly 2E2, the 
resistance setting of variable resistor Rs equals the input im­
pedance of the amplifier: ZIN = Rs. If the Rs dial has previously 
been calibrated in ohms, the impedance may be read directly from 
the dial; otherwise, Rs must be temporarily disconnected and its 
resistance setting checked with an ohmmeter or bridge. 

The input impedance of an amplifier can be measured also by 
the resistance/balance method (see Sec. 3.6 and Fig. 3-4) if the am­
plifier input is placed at Zx in Fig. 3-4. Also, the voltmeter/ammeter 
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method (Sec. 3 .2 and Fig. 3-1 )  and the ammeter method (Sec. 3.3 
and Fig. 3-2) can be used, provided the meters are sensitive enough 
to indicate the low signal levels required (millivolts or microvolts, 
and milliamperes or microamperes). In each of these alternate 
methods of measurement, the amplifier must be switched on. 

3. 1 5  OUTPUT IMPEDANCE OF AMPLIFIER 

Figure 3-10 shows two methods of measuring the output im­
pedance ZOUT of an amplifier. Each employs a variable load resis­
tor Ru but Fig. 3-10(A) employs an electronic ac voltmeter 
(FETVM or VTVM) whereas 3-10(B) requires an ac wattmeter. The 
method selected will depend, in most cases, upon which instrument 
is immediately available. In each instance the amplifier is driven 
by a signal of desired frequency supplied by the generator, and the 
amplitude of this signal is sufficient to drive the amplifier to full 
output without overloading. The amplifier controls are set for max­
imum output. In each instance load resistor RL must be capable 
of handling at least twice the rated output power of the amplifier. 

ResistorNoltmeter Method 

In the arrangement of Fig. 3-1 0(A), voltmeter M is operated 
by the output signal of the amplifier. When switch S is open this 
meter indicates the no-load output voltage E1 • When S is closed 
the meter indicates the voltage E2 for full loading of the amplifier 
by resistor RL. When RL is adjusted to the resistance equal to the 
amplifier output impedance (ZON)'  E2 is 0.5EI ' since under these 
circumstances a 2 : 1  voltage divider is formed by ZOUT and RL in 
series (see Secs. 2.7 and 2 .8, Ch. 2). 

The test procedure consists simply of adjusting RL to the point 
at which E2 = 0.5E1 and reading the output impedance from the 
ohms-calibrated dial of the resistor. If the resistor has not been 
calibrated, it may be temporarily disconnected and its resistance 
setting checked with an ohmmeter or bridge. 

ReslstorlWattmeter Method 

In the arrangement of Fig. 3-10(B) wattmeter M indicates the 
amplifier output power in variable load resistor RL• When the re­
sistance of RL equals the output impedance ZOUT of the amplifier, 
the power in the load is maximum (see Sec. 2.10, Ch. 2). The resis­
tor must be rated to handle at least twice the expected output power 
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Fig. 3-10. Methods of measuring the output impedance of an amplifier: (A) resis­
tor/voltmeter method; (8) resistor/wattmeter method. 

of the amplifier (heavy duty rheostat/potentiometers are available 
for this purpose). 

The test procedure consists simply of adjusting RL for peak 
deflection of the wattmeter. At that point, the resistance setting 
of RL equals the output impedance of the amplifier, and ZOUT can 
be read directly from the ohms-calibrated dial of the resistor. If 
the resistor has not been calibrated ,  it may be temporarily discon­
nected and its resistance setting checked with an ohmmeter or 
bridge. 

The reader must be forewarned that the wattmeter response 
in this test is not sharp, so care must be taken in adjusting resistor 
RL near the peak deflection. In this connection, Fig. 3- 1 1  shows 
the curve for a 20-watt amplifier having an output impedance of 
500. 
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Fig. 3-1 1 .  The typical response curve for the resistor/wattmeter method of mea­
suring amplifier output impedance. 

3.1 6  INPUT AND OUTPUT IMPEDANCE OF RECEIVER 

The input impedance (ZIN) of a radio receiver may be mea­
sured by the input voltage divider method (Sec. 3 . 14 and Fig. 3-9). 
The receiver is substituted for the amplifier in Fig. 3-9, variable 
resistor Rs must be one that will operate satisfactorily at the rf test 
frequency, and load resistance RL equals the output impedance of 
the audio channel. The receiver must be switched on and tuned 
to the test signals. 

The input impedance may be measured also by the resis­

tancelba/ance method (Sec. 3.6 and Fig. 3-4), provided a suitable vari­
able resistor R may be found for the selected rf test frequency. The 
input terminals of the receiver replace Zx in Fig. 3-4. The input 
impedance of receivers is often measured with an rf bridge (see 
Sec. 3.9 and Fig. 3-6). The voltmeter/ammeter method (Sec. 3.2 and 
Fig. 3-1 )  and the ammeter method (Sec. 3.3 and Fig. 3-2) can be used, 
provided the meters are sensitive enough to indicate the low sig­
nal levels (millivolts or microvolts and milliamperes or microam-
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peres) required. In each of these alternate tests, the receiver should 
be switched on. 

The output impedance of a radio receiver may be measured 
by the resistor/voltmeter method described in Sec. 3 . 15  and Fig. 
3- 1O(A). For this purpose, the receiver replaces the amplifier in Fig. 
3-1O(A). A modulated test signal must be employed and the receiver 
must be switched on and tuned to this signal. 

3. 1 7  OUTPUT IMPEDANCE OF OSCILLATOR 

The output impedance of an oscillator or signal generator may 
be measured with the setup shown in Fig. 3- 12 .  In this arrange­
ment, the electronic ac voltmeter/millivoltmeter (FETVM or VTVM) 
is operated by the output signal of the oscillator. When switch S 
is open this meter indicates the no-load output voltage E1 • When 
S is closed the meter indicates the voltage E2 when the amplifier 
is loaded by calibrated variable resistor RL. When RL is adjusted 
to the resistance equal to the amplifier output impedance E2 is 
0.5EI ' since under these circumstances a 2 : 1 voltage divider is 
formed by ZOUT and RL in series (see Secs. 2 .7  and 2.8, Ch. 2).  

The test procedure consists simply of adjusting RL to the point 
at which E2 = 0.5E1' and then reading the output impedance from 
the ohms-calibrated dial of the resistor. If the resistor has not been 
calibrated ,  it may be disconnected temporarily and its resistance 
setting checked with an ohmmeter or bridge. The resistor must 
be able to handle safely at least twice the maximum rated output 
power of the oscillator. 

This method may be employed with equal success to check the 

M 

EJ 
,.. -

� r-� RL C 
Electronic a � ) ... 

S( OSC voltmeterl 
- mil l ivoltmete -
-

c 

-

Fig. 3-1 2. Test setup used to measure the output impedance of an oscillator. 
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output impedance of transmitters, industrial oscillators, diathermy 
machines, and similar equipment. 

When an rf generator is under test, resistor RL and meter M 
both must be capable of operating at the selected test frequency. 
Also, the operator must observe closely all of the special precau­
tions common to rf measurements. (See items 5 ,  10 ,  1 1 ,  12 ,  and 
13 in Sec . 3 . 1 .  

3 . 1 8  IMPEDANCE O F  MECHANICAL GENERATOR 

The impedance ZG of a mechanical generator (rotating ma­
chine) may be measured with the setup shown in Fig. 3- 13 .  In this 
arrangement, as in the one for oscillator measurements described 
in Sec. 3 . 17 ,  the electronic ac voltmeter is operated by the output 
voltage of the generator. When switch S is open this meter indi­
cates the no-load output voltage E1 • When S is closed the meter 
indicates the E2 load voltage (when the generator is loaded by 
calibrated variable resistor RL). When RL is adjusted to the resis­
tance equal to the generator impedance, E2 is 0 .5EI ' because un­
der these circumstances a 2 : 1 voltage divider is formed by ZG and 
RL in series (see Secs. 2 .7  and 2 .8 ,  Ch. 2).  

The test procedure consists simply of adjusting RL to the point 
at which E2 = 0.5E1 and reading the output impedance from the 
ohms-calibrated dial of the resistor. If the resistor has not been 
calibrated, it may be disconnected temporarily and its resistance 
setting checked with an ohmmeter or bridge. The resistor must 
be able to handle safely at least twice the maximum output power 
of the generator. 

The impedance of other ac-producing devices, such as inverters 
and vibrator transformers, can also be measured in this manner. 

Some success is possible in measuring generator output im­
pedance with the resistorlwattmeter method as described in Sec. 3 .15,  
Fig. 3- 10(B), and Fig. 3- 1 1 .  In this scheme, the mechanical gener­
ator replaces the amplifier and signal generator in Fig. 3-1 0(B). 

3. 1 9  IMPEDANCE OF CHOKE COIL 

Iron-core filter chokes are intended to be operated with a speci­
fied amount of dc flowing through them. The inductance of such 
a choke can vary widely under different conditions of zero dc and 
maximum recommended dc, so their impedance should always be 
measured with the recommended amount of direct current flow­
ing simultaneously with the alternating test current. Any of the fol-
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Fig. 3-13 .  Test setup used to measure the impedance of a mechanical 
generator. 

lowing methods may be used to measure choke-coil impedance if 
means are provided for passing a direct current through the choke 
during the measurement: Sec. 3.2,  Fig. 3- 1 ;  Sec. 3.3,  Fig. 3-2; Sec. 
3.4, Fig. 3-3; Sec. 3.6, Fig. 3-4 ; and Sec. 3 .7 ,  Fig. 3-5. Conventional 
filtering and bypassing must be added to these circuits to keep the 
ac test signal out of the dc supply, and vice versa_ The ac test -signal 
amplitude must be no more than 10% of the steady dc level. (See 
Sec. 1 . 14,  Ch. 1 for a discussion of ac combined with dc.) 

For this measurement, some impedance bridges (Sec . 3.8) are 
equipped with input terminals for a dc component, which is often 
obtained from an external battery in series with a dc milliammeter 
and variable resistor. Figure 3-14 shows a typical bridge circuit for 
choke-coil measurement. This is a Hay bridge in which the choke 
coil Lx and its equivalent series resistance Rx are in one arm; rhe­
ostat RJ in the second arm is the reactance balance; rheostat R2 
in the third arm is the resistance balance; and fixed resistor R3 in 
the fourth arm is the ratio resistance which, with capacitor C2' de­
termines the inductance range of the bridge. Capacitor C2 is the 
standard against which the unknown inductance is balanced in the 
Hay bridge. The variable voltage dc supply is shown here as a bat­
tery. The direct current is indicated by dc milliammeter M 1  and 
the ac signal is blocked from the dc circuit by choke L j •  The ac 
null detector, M2, is an electronic ac voltmeter/millivoltmeter 
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(VTVM or TVM), and the circuit dc is blocked from its input by ca­
pacitor C3 (most such voltmeters have a self-contained input ca­
pacitor and do not require C3).  

With B adjusted for the desired direct current through the test 
choke (Ly), the bridge is separately balanced for reactance (adjust­
ment of RI ) and resistance (adjustment of R2) .  At null: 

(3- 1 8) 

where Lx is the inductance of the choke in henrys, RI , R2, and R3 
are in ohms, C2 is in farads, and w = 27rj, where j is the test fre­
quency in hertz. And:  

RI R2 R3 (w C2f 

1 + (w R2 C2)
2 

where R, C2, and w are in the same units as in Eq. 3- 18 . 

(3- 1 9) 

Finally, the impedance is calculated from the inductance and 
resistance values: 

Zx = JHZ + (wL)
2 

(3-20) 

where R and Zx are in ohms, L is in henrys, and w 27rj, with 
j representing the test frequency in hertz. 

Example 3- 13.  A certain power-supply filter choke is 
checked at 120 Hz in the bridge circuit shown in Fig. 3- 14. In this 
circuit, R3 is 40000 and C2 is 1 1o'F. The dc is set to 50 rnA. At null, 
RI is set to 50000 and R2 to 900. Calculate the inductance,  equiva­
lent series resistance, and impedance of this choke. 

Here, j = 120 Hz, w = 754, and C2 = O.OOOOOl F. From Eq . 
3- 18: 

Lx 
5000( 4000)0.000001 = 

1 + (754 x 90 x 0 .000001 )2 
20 = 

1 + (0.06786)2 
20/1 .0046 = 1 9.9H 
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be rated to handle 
this current 

Fig. 3-1 4. A typical bridge circuit used for choke-coil measurement. The cir· 
cuit shown is a Hay bridge. 

From Eq. 3- 19: 

5000(90)4000(754 X 0.000001 )2 
R =----------------------x 1 + (754 x 90 x 0.000001 )2 

== 
= 

1 ,800,000,000 X 0.0007542 
1 + 0. 067862 

1 ,800,000,000 x 0.0000005685 
1 + 0.0046 

1023/ 1 .0046 = 1018.60 

Note: The manufacturer's rating of this choke is 20H, 9000. 
From Eq. 3-20: 

Zx = .11018.62 + (754 x 19.9)2 
Jl ,037,546 + 15,0052 

= J1 ,037,546 + 225 , 150,025 
= .J226, 187,571 

15,0390 
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3.20 IMPEDANCE OF CAPACITOR 

The AF or rf impedance of a capacitor may be measured by 
means of any of the following methods described earlier in this chap­
ter, provided the frequency response of the instruments and com­
ponents is adequate and that the usual precautions are taken at high 
frequencies: voltmeter/ammeter method, ammeter method, voltmeter 
method, resistance/balance method, substitution method, impedance 
bridge, rf bridge and Q-meter method. 

Unless a test frequency is specified, measure AF impedance at 
1000 Hz and rf impedance at 1 MHz and 10  MHz. 

3.21 IMPEDANCE OF LOUDSPEAKER 

The impedance of the voice coil of a loudspeaker may be mea­
sured by means of any of the following methods described earlier 
in this chapter: voltmeter/ammeter method, ammeter method, voltmeter 
method, resistance/balance method, and the substitution method. 

Whichever method is employed, the test-signal voltage must 
be kept low in order to minimize the sound emitted by the loud­
speaker (when quiet is demanded) and to hold voice-coil current 
to a safe minimum. It should be noted that the impedance and the 
dc resistance of a voice coil both are low. Most voice coils have 
80 impedance; however, common values encountered are 3.20, 
3.40, 40, 80, and 160. 

The loudspeaker under test should be mounted in the clear so 
that its cone is not covered but operates in free air. If the loud­
speaker normally is operated in a cabinet or behind a baffle, how­
ever, it should be so mounted for the test, but again with its front 
unencumbered. 

Unless some other test frequency is specified, impedance will 
usually be measured at 1000 Hz. For a complete picture of loud­
speaker impedance, the unit may be measured at closely spaced 
frequencies throughout the AF spectrum. 

3.22 IMPEDANCE OF HEADPHONES 

The impedance of headphones and earplugs is measured in the 
same way as that of loudspeakers. 

Headphones, unlike loudspeakers, are available in several 
different types over a wide impedance range. Communications-type 
magnetic headphones, for example, are often specified as 25000 
or 50000, although lower impedances are available .  
Communications-type crystal headphones can exhibit an impedance 
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of 30K - lOOK. Stereo headphones exhibit low impedance, com­
mon values being 3.20, 40, 80, 160, 320, and 6000. A small ear­
plug, such as those used with hearing aids and shirtpocket transistor 
radios, can present a dc resistance of 2kO - 3kO and an ac im­
pedance of 67000. 

3.23 IMPEDANCE OF NONLINEAR DEVICES 

The small-signal impedance of nonlinear devices is often quite 
different from their dc resistance at a selected operating point. 
These devices include conventional semiconductor diodes and rec­
tifiers, zener diodes, tunnel diodes, transistors, lamp filaments, ther­
mistors, voltage-dependent resistors, and saturable reactors. 

Figure 3-15 shows the test setup. In this arrangement, the di­
rect current Ide for the desired operating point flows through the 
nonlinear impedance device Zx from a variable dc supply shown 
here as a battery. The value of this current is indicated by dc mil­
liammeter MI .  Simultaneously, an alternating current lac is passed 
through the device; this latter current is introduced into the circuit 

Variable 
ac 

supply M1 

Zx 

1 0  ILF 

+ 
_ 71  

B �Variable dc /;:" supply R H 2  

M2 

Electronic 
ac voltmeter 

Imillivoltmeter 

Fig . 3-1 5. Test setup for measuring the impedance of nonlinear devices. 
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by the low-impedance secondary winding of transformer T and is 
supplied by a variable ac supply. The rms value of the current must 
not exceed one-tenth of the value of the direct current. Bypass ca­
pacitor C1 carries the ac around the dc milliammeter. The ac com­
ponent produces a voltage drop Ex across resistor R which is 
proportional to this current, and this voltage is read by the elec­
tronic ac voltmeter/millivoltmeter M2 when switch S is in position 
B. The low resistance of R (10) will in most instances be negligi­
ble with respect to Zx and can be ignored. Meter M2 thus be­
comes a sensitive direct-reading ac milliammeter when S is at B, 

since lac = Ex/R = Ex/1 = Ex (Iac is in amps, and Ex is in volts), 
and milliamperes may be read directly from the voltage scales. 
When switch S is at position A, meter M2 reads the voltage Ez 
across the impedance device. From the two readings of this me­
ter, the unknown impedance may be calculated on the basis of Zx 
= Ej lac' Since lac equals Ex, as has just been shown, Ex may be 
used in place of lac' Then, 

(3-2 1 )  

where E is rms volts and Zx is in ohms. I n  this circuit, capacitor 
Cz isolates meter M2 from the dc component; this capacitor is not 
needed if M2 has a self-contained input capacitor. 

Test Procedure 

• Set up circuit as shown in Fig. 3- 15 .  
• Adjust dc supply for desired operating-point current (IdC) as 

indicated by dc milliammeter MI . 
• Throw switch S to position B to read Ex and adjust ac sup­

ply for the rms value of Ex equal to 0 . 1  ldc' Record as Ex' 
• Throw switch S to position A and read voltage drop across 

impedance. Record as Ez. 
• Using Eq. 3-2 1 ,  calculate unknown impedance. 

Example 3- 14. The impedance of a type IN458A silicon di­
ode is measured at a dc operating point of 100 rnA (Ide>- The al­
ternating test-signal current must not exceed 0 . 1  ldc; that is, it 
must not exceed 10 rnA. This corresponds to Ex = O.OIV. When 
switch S is at position B, Ex = O.OlV. With S at position A, Ez = 
0.75V. Calculate the diode impedance at this 100 rnA dc operating 
point. 
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From Eq. 3-2 1 :  

Zx EzIEx 
0.75/0.01 = 75n 

3.24 COMMERCIAL IMPEDANCE INSTRUMENTS 

This section briefly describes several commercial instruments 
for the evaluation of impedance . This equipment is apart from im­
pedance bridges, rf bridges, and Q meters, and the descriptions 
are arranged alphabetically by name of manufacturer. 

Clarke-Hess Model 273 ESR Meter. A digital instrument that au­
tomatically indicates equivalent series resistance (1 mn to 20D) of any 
type of capacitor from 0.005 JA.F to IF. The test frequency is 1 MHz. 
This instrument will also measure the internal resistance of a 
battery. 

General Radio Type 1602-B UHF Admittance Meter. This is a 
continuously tunable coaxial device which measures complex im­
pedance and admittance. Its frequency range is 40 MHz to 1 .5 GHz, 
and it requires an external generator and external detector. 

The tuning dials and scale multipliers of this instrument per­
mit readings directly in conductance G (reciprocal of resistance) 
from 0.01 to 4000 millimhos, and susceptance {3 (reciprocal of reac­
tance) from - 4000 to + 4000 millimhos. From these values, im­
pedance may be calculated: Zx = J (lJG)2 + (1J{3)2. When a 
constant-impedance quarter-wave line is used with this instrument, 
the dials read directly in resistance and reactance of the impedance 
device under test. From these values impedance may be calculated: 
Zx = J R2 + )(2-. Specified accuracy of the admittance meter for 
both conductance and susceptance is ± 3% (plus 0.2 millimho) for 
zero to 20 millimhos; ± 3J M% (plus 0.2 millimho) above 20 mil­
Ii mhos (where M is the scale multiplier), up to 1 GHz; and ± 5% 
(plus 0 .2  millimho) to 1 .5 GHz. 

General Radio Type 1684 Digital Impedance Meter. A digital in­
strument that separately indicates resistance (1 milliohm to 2 
megohms), capacitance (0. 1  pF to 200 JA.F), and inductance (0 . 1  JA.H 
to 200H). Resistance accuracy is ± 1 % of reading, ± 0.05% full 
scale, ± 10 milliohms. Capacitance accuracy is ± 1 % of reading, 
± 0 .05% full scale, ± 1 pF. Inductance accuracy is ± 1 % of read­
ing, ± 0.05% full scale, ± 1 JA.H. Impedance may be calculated from 
these quantities: Zx = J J.?2 + )(2-. A self-contained generator sup­
plies a 1000 Hz test signal . 
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Hewlett-Packard Model 48l5A R! Vector Impedance Meter. This 
device is a two-metered rf vector instrument, with one meter that 
indicates impedance in ohms and another that indicates the phase 
angle in degrees. The impedance coverage is Hl to lOOK in nine 
ranges. The phase coverage is zero to 360 degrees in two ranges. 

Impedance accuracy is specified as ± 4% of full scale, ± (j/30 
MHz + Z/25K)% of the reading (j = frequency in megahertz, and 
Z = impedance in ohms). 

The self-contained generator is continuously variable from 500 
kHz to 108 MHz in five bands. Frequency accuracy is ± 2% of the 
setting. 

Industrial Model 1 1  00 Impedance Comparator. This instrument 
comprises a four-arm bridge in which two arms are precisely 
matched and the other two arms contain the standard impedance 
Zs and the unknown impedance Zx' When the two impedances 
match, the bridge is in balance and delivers no output . When, on 
the other hand, Zx is lower or higher than Zs' the bridge becomes 
unbalanced in proportion to the difference; it delivers a proportion­
ate output signal which is amplified and presented to a phase dis­
criminator. The latter deflects a meter which indicates the 
percentage by which Zx differs from Zs and shows both magni­
tude and sign. 

This instrument is designed for operation at 1000 Hz, 10 kHz, 
and 100 kHz. It accommodates resistors (30 to 10 megohms), capa­
citors (30 pF to 50 ILF), and inductors (10 ILH to 100H). Full-scale 
ranges of the meter are ± 0.5%, 2%, 5%, and 20%. 

Radiometer Model TRBl l Component Comparator. This instru­
ment affords the direct comparison at 1000 Hz of resistors, capa­
citors, or inductors with a standard. 

Ranges provided are: resistance, 100 to 10  megohms; capaci­
tance, 20 pF to 20 ILF; and inductance, 1 mH to 10H. When re­
quired, a dc polarizing voltage is available, variable from - 50V 
to + 20V. 

Identification of Manufacturers 

Clarke-Hess Communication Research Corp. ,  43 West 16th St. , 
New York, N.Y. 100 1 1 .  

General Radio Company, 300 Baker Ave . ,  Concord, Mass. 01742 . 

Hewlett-Packard Co. ,  195 Page Mill Rd. ,  Palo Alto, Calif. 94306. 

1 24 



Industrial Test Equipment Co. ,  2 1  Yennicock Ave. ,  Port Washing­
ton, N.Y. 1 1050. 

Radiometer. ,  The London Company, 8 1 1 Sharon Drive, Cleveland , 
Ohio 441 45 . 

3.25 PRACTICE EXERCISES 

3. 1 .  In a voltmeter/ammeter test setup the current is 10 rnA and 
the voltage drop 3 . 1 V. Calculate the unknown impedance in ohms. 
3.2. In a voltmeter/ammeter test setup the current is 0.76A and 
the voltage drop 1 .5 mY. Calculate the unknown impedance in mil­
liohms. 
3 .3 .  In a voltmeter/ammeter test setup the current is 1A and the 
voltage drop 0.25V. Calculate the unknown impedance in ohms. 
3.4. In a voltmeter/ammeter test setup the current is 500 p.A and 
the voltage drop 1 V. Calculate the unknown impedance in ohms. 
3.5. In an ac ammeter test setup a constant IV source is used with 
a 0-1 milliammeter having an internal resistance of 5000. Calcu­
late the unknown impedance in ohms when the current is 0.9 rnA. 
3.6. In an ac ammeter test setup a constant IV source is used with 
a 0-1 ammeter having an internal resistance of 0.2 130. Calculate 
the unknown impedance in ohms when the current is 0.5A. 
3.7. In an ac ammeter test setup a constant 10V source is used 
with a 0-10 milliammeter having an internal resistance of 16500. 
Calculate the unknown impedance in ohms when the current is 5.6 
rnA. 
3.8. In an ac ammeter test setup a constant 6.3V source is used 
with a 0-50 milliammeter having an internal resistance of 800. Cal­
culate the unknown impedance in ohms when the current is 40 rnA . 
3.9. In an ac ammeter test setup a constant 12 .6V source is used 
with a 0-100 microammeter having an internal resistance of 34000. 
Calculate the unknown impedance in kilohms when the current is 
75 p.A. 
3 . 10 .  In an ac ammeter test setup a constant 10V source is used 
with a 0-300 microammeter having an internal resistance of 18000. 
Calculate the unknown impedance in kilohms when the current is 
165 p.A. 
3 . 1 1 .  In a voltmeter test setup, using a 100 standard resistor, the 
applied voltage is 6.3V and the voltage drop is 1 . 1  V. Calculate the 
unknown impedance in ohms. 
3 . 12 .  In a voltmeter test setup using a 50 standard resistor, the 
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applied voltage is 10V and the voltage drop is 9.25V. Calculate the 
unknown impedance in ohms. 
3. 13 .  In a voltmeter test setup using a 100 standard resistor, the 
applied voltage is O. lV and the voltage drop is 33 mY. Calculate 
the unknown impedance in ohms. 
3. 14. In a voltmeter test setup using a 250 standard resistor, the 
applied voltage is 1 50 mV and the voltage drop is 2 mY. Calculate 
the unknown impedance in ohms. 
3 . 1 5. In a voltmeter test setup using a 10 standard resistor, the 
applied voltage is 7.5V and the voltage drop is 0 . 1  V. Calculate the 
unknown impedance in ohms. 
3 . 16 .  In a voltmeter test setup using a 10 standard resistor, the 
applied voltage is 10V and the voltage drop is 9.8V. Calculate the 
unknown impedance in ohms. 
3 . 17 .  In a substitution-type circuit using a comparison resistance 
of 100, the output voltage is set initially to 99 m V by setting the 
input voltage to 10V. With the unknown impedance in place, the 
input voltage must be reset to 1 .09V to restore the 99 m V output. 
Calculate the unknown impedance in ohms. 
3 . 18 .  With a certain substitution-type circuit the output voltage is 
0.25V. The initial input voltage is 4.5V and the final input voltage 
is IV. How much higher is the unknown impedance than the com­
parison (standard) impedance? 
3 . 19 .  A certain 250 pF capacitor has a Q at 500 kHz of 1 500. Cal­
culate the ac resistance in milliohms. 
3.20. A certain O . l p.F capacitor has a Q at 100 kHz of 50. Calcu­
late the ac resistance in ohms. 
3.21 .  A certain 1 mH inductor has a Q at 1 MHz of 125. Calculate 
the ac resistance in ohms. 
3.22. A certain 20H inductor has a Q at 1 kHz of 1 39.6. Calculate 
the ac resistance in ohms. 
3.23. A certain 50 pF capacitor has a 1000 Hz dissipation factor 
of 0.0005. Calculate the ac resistance in ohms. 
3.24. A certain 8 p.F capacitor has a 120 Hz dissipation factor of 
0 . 15 .  Calculate the ac resistance in ohms. 
3 .25. With a 3000 transmission-line setup as in Fig. 3-7(A), the 
sending-end current is found to be 10  rnA and the receiving-end 
current is 3.3 rnA . Calculate the unknown impedance in ohms. 
3.26. With a 750 transmission-line setup as in Fig. 3-7(A), the 
sending-end current is found to be 1 .5  rnA and the receiving-end 
current is 1 .8 rnA . Calculate the unknown impedance in ohms. 
3.27. A 500 slotted line is employed in an rf impedance measure-
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ment. The voltage at a maximum point is 10 m V and at the adja­
cent minimum point is 2.2 mY. Calculate the unknown impedance 
in ohms. 
3.2B. A 500 slotted line is employed in an rf impedance measure­
ment. The maxima are 0 . 13V and the minima are 0.09V. Calcu­
late the unknown impedance in ohms. 
3.29. An unknown impedance is connected to a 6000 line and the 
SWR is found to be 1 .05. Calculate the unknown impedance in ohms. 
3.30. With an unknown impedance connected to a 3000 line, what 
SWR value must be obtained for the unknown impedance to be 
BOOm 
3.3 1 .  When a transmission line is terminated in its characteristic 
impedance, what is the resulting SWR value? 
3.32. A certain iron-core choke is tested with a 400 Hz Hay bridge 
(see Fig. 3-14, Ch. 4). At balance RI = 12550, R2 = 520, R3 = 

10000, and C2 = 1 J.'F. Calculate the choke's (a) inductance Lx in 
henrys, (b) resistance Rx in ohms, and (c) impedance Zx in ohms. 
3.33. A certain high-current, low-inductance iron-core choke is 
tested with a 1 kHz Hay bridge (see Fig. 3-14, Ch. 3). At balance 
RI = 9500, R2 = 320, R3 = 1000, and C2 = 0.01 J.'F. Calculate 
the choke's (a) inductance Lx in millihenrys, (b) resistance Rx in 
milliohms, and (c) impedance Zx in ohms. 

(Correct answers are to be found in Appendix D.) 
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I nductance 

I NDUCTANCE IS OFTEN AN IMPORTANT CONSTITUENT OF IM­

pedance. For that reason and because many experimenters wind 
their own inductors and transformers or modify commercial ones, 
this chapter is included for working information on inductance . 

4.1  NATURE OF SELF-INDUCTANCE 

A current flowing in a coil of wire causes a magnetic field to 
build up about the coil with energy being stored in this field . After 
the voltage first is applied, the current builds up (the magnetic field 
expands) slowly to its maximum value, since the increase is opposed 
by a counter emf which is induced in the coil and has a polarity op­
posite to that of the applied voltage. When the applied voltage sub­
sequently is removed, the magnetic field collapses into the coil, in­
ducing a current which flows out of the coil in the direction oppo­
site to that of the original current and returns energy to the external 
circuit. 

When the current is alternating, the amount of opposition the 
coil (inductor) offers to the current is directly proportional to the 
frequency and to a property which is aptly described as electrical 
inertia, since it is this property that causes the coil to oppose any 
rapid increase or decrease in current. This apparent inertia is called 
self-inductance or just inductance. Inductance is measured in henrys 
(H). An inductor has a self-inductance of one henry when a 1 V drop 
is produced across it by a current change of lA per second. Be-
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cause the henry is a large unit for some applications, inductance 
is also measured in millihenrys (thousandths of henrys, abbreviated 
mH), microhenrys (millionths of henrys, abbreviated JLH), and some­
times picohenrys (millionths of microhenrys, abbreviated pH). Ta­
ble 4- 1 shows the relations between these units of inductance. 

All electrical conductors possess inductance; however, wind­
ing a length of wire into a coil greatly increases the inductance (be­
cause this concentrates the magnetic field) so that a desired number 
of henrys can be obtained in a small space. The inductance of a 
simple coil depends upon the length and diameter of the coil and 
the number of turns of wire, as will be shown below. While most 
inductors are coils of some kind, straight wires also possess induc­
tance; and while this inductance is small-as is explained in Sec. 
4-8-it must be taken into account in circuits where even this small 
amount can generate a significant high-frequency impedance. 

4.2 CORElESS SINGLE-lAYER SOLENOID 

A common type of inductor, the single-layer solenoid, consists 
of a coil of wire that is wound with the turns of wire all in one layer 
and without a magnetic core (Fig. 4-1) . Few-turn inductors of this 
type can be self-supporting, that is, air-wound, as illustrated in Fig. 
4-1 (A); coils of many turns are wound for mechanical support on 
a cylindrical dielectric form, as seen in Fig. 4-l(B), or are held to­
gether by cement. The single-layer construction is suitable for rela­
tively small coils; these units are rated in microhenrys. 

For this inductor, the inductance L may be calculated: 

I = (0.2 d 2N 2)/(3d + 91) (4- 1 )  

where d is the diameter of winding in inches, I the length of wind­
ing in inches, and N the number of turns. From this relationship, 
the required number of turns for a desired inductance is: 

N = 
JL(3d + 91) 

0.2 d 2 (4-2) 

Table 4-1 . Conversion Factors for Various Common Inductance Units. 

H z 1 03 mH 
mH 10- 3  H 
�H 10- 6  H 
pH = 1 0 - 12 H 

= 1 06 �H 
1 03 �H 
1 0 - 3 mH 
1 0 - 9  mH 

= 1 012 pH 
1 09 pH 
1 06 pH = 10 - 6  �H 
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o Wound on dielectric form 

Fig. 4-1. The common single-layer solenoid with turns of wire all on one layer 
without a magnetic core: (A) self-supporting, (6) wound on a dielectric form. 

Example 4- 1 .  A certain single-layer solenoid consists of 1 15 
turns of No. 32 enameled wire close wound on a form 0.75 inch 
in diameter. The winding length is one inch. Calculate the induc­
tance in micro henrys. 

Here, N = 1 15, I = 1 ,  and d = 0.75. From Eq. 4-1 :  

= 

0.2 x 0.752 X 1 152 
(3 x 0.75) + (9 x 1 )  

0.2 x 0.5625 x 13 .225 
2 .25 + 9 

= 1487.8111 1 .25 = 132.2 �H 

Example 4-2. A 20 �H single-layer solenoid must be wound 
in the one-inch winding space of a certain one-inch diameter form. 
How many turns will be required? 
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Here, L = 20, I = 1 ,  and d = 1 .  From Eq. 4-2 : 

N = 
)20« 3 x 1 )  + (9 x 1» 

0.2( 12) 

)20(3 + 9) 
0.2 

J 240/0 .2 
.Jf2OO 

= 34.6 turns 

When turns are added to an existing single-layer solenoid and 
the diameter remains unchanged , the value of the resulting in­
creased inductance depends upon whether the new turns increase 
the length of the original inductor or the length remains the same 
as before (by squeezing all the turns into the old length). The same 
applies when turns are removed from a coil to decrease its in­
ductance. 

Same Length 

If the length of the coil remains constant, the inductance in­
creases as the square of the turns. That is, if the turns are multi­
plied n times, the inductance increases n2 times. Conversely, if 
turns are divided by n, inductance is divided by lIn2 • For exam­
ple, doubling the number of turns multiplies the inductance by four, 
the square of two; tripling the number of turns multiplies the in­
ductance by nine, the square of three. Thus, from Eq. 4-1 ,  a 1 I5-turn 
coil (where I = 1 inch and d = 0.75 inch) has an inductance of 132.2 
tLH. If the number of turns is doubled to 230, by using thinner wire 
in the same winding length, the inductance becomes 529 tLH. which 
is four times the original value. Similarly, if the number of turns 
is tripled in the same winding length, L becomes 1 190.25 tLH, which 
is nine times the original value. Conversely, if the number of turns 
is halved to 57.5 in the same winding length, L becomes 33.06 tLH, 
one-fourth of the original value; and if the number of turns is 
reduced one-third to 38.3 in the same winding length, L becomes 
14.7 tLH, one-ninth of the original value. 

Increased or Decreased Length 

In a great many cases, changing the number of turns in a coil 
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will alter its length. If the length increases when the number of 
turns increases, I and N increase while d remains constant. The 
original inductance then is multiplied by a factor slightly greater 
than the multiple. For example, consider the 1 15-turn coil in which 
I = 1 inch, d = 0.75 inch, and L = 132.2 #LH. If the turns are dou­
bled at the same turns-per-inch rate, I becomes 2 inches and L be­
comes 293.89 #LH (2 .22 times the original value); and if the turns 
are tripled, I becomes 3 inches, and L becomes 457.79 #LH (3.46 
times the original value). Conversely, if the length of the coil 
decreases when the number of turns is decreased and the turns are 
halved to 57.5, I becomes 0.5 inch, and L becomes 55. 1 #LH (ap­
proximately 0.417 times, or slightly less than half the original value); 
and, if the turns are reduced to one-third of the original, or 38.3, 
I becomes 0.33 inch, and L becomes 31 .34 #LH (0.24 times, or some­
what less than one-third the original value). Thus, in this variable­
length situation, doubling the turns multiplies inductance by 2 + , 
tripling turns multiplies inductance by 3 + ,  halving turns divides 
inductance by 2 + , and reducing turns to one-third divides induc­
tance by almost 4 + . 

From these examples, it should be clear that for a constant di­
ameter a larger change in inductance is obtained in a single-layer 
coil when added or subtracted turns do not change coil length as 
compared to when the alteration does change length. 

It is a matter of interest that in a single-layer solenoid without 
magnetic core, the maximum inductance that can be obtained with 
a given length of wire results when the ratio of the radius to length 
of the coil is approximately 1 .25. 

4.3 CORElESS MULTilAYER SOLENOID 

High inductance often is obtained by winding a solenoid coil 
in several layers on a bobbin or spool of dielectric material (Fig. 
4-2). The inductance of this coil depends upon length I of the wind­
ing, diameter d of the coil, radial depth DR of the coil, and num­
ber of turns N: 

(4-3) 

where L is the inductance in micro henrys, d the diameter of coil 
in inches, DR = the radial depth of coil in inches, I the length of 
winding in inches, and N the number of turns. 

Example 4-3. A certain 1000-turn multilayer solenoid wound 
on a plastic bobbin has a diameter of 1 .25 inches, a winding length 
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Fig. 4-2. A multi layer solenoid with wire wound around a spool or bobbin of 
dielectric material. 

of 0.75 inch, and a radial depth of 0.5 inch. Calculate the induc­
tance in millihenrys. 

Here, N = 1000, d = 1 .25, I = 0.75 , and DR = 0.5. From Eq. 
4-3 : 

L = 0.2 X 1 .252 x 10002/[(3 x 1 .25) + 
(9 x 0.75) + ( 10  x 0.5)] 0.2 x 1 . 5625 x 10 
312,500/15.5 

= 20, 161 JLH 
20. 16 mH 

Because of the complicated cumulative effects of the dimen­
sions of this coil, the inductance changes rapidly with variations 
in the number of turns. For a given wire size, the number of turns 
per layer remains the same and so does the winding length, but 
diameter d and radial depth DR vary. Thus, if the number of turns 
given in the foregoing example is halved to 500, diameter d is au­
tomatically halved to 0.625 inch, and radial depth DR to 0.25 inch. 
From Eq. 4-3, the new inductance then is 1755.62 JLH ( 1 .  75 mH), 
approximately 8.7% of the original value. 

4.4 COIL WITH STANDARD CORE 

The addition of a core of suitable magnetic material (such as 
iron, powdered iron, ferrite, or nickel alloy) to a coil (Fig. 4-3) in­
creases the coil 's inductance, the inductance ideally, if not always 
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Fig. 4-3. Coils with a magnetic core: (A) open core, (8) closed core. 

so neatly in practice, being multiplied by a number that designates 
the permeability Il of the core material . The permeability of one 
grade of iron is approximately 2000. Special alloys exhibit very high 
values; for example, the permeability of Permalloy is as high as 
100,000. 

The inductance of a coil with magnetic core is given by: 

L = 
_4_.0_6_N'2

_
Il_A_ 

0.27 ( l08) I 
(4-4) 

where L is the inductance in henrys, I the total length of core in 
inches, A the cross-sectional area of core in square inches, N the 
number of turns, and Il the permeability of core material. 

Example 4-4. A 2500-turn coil is wound on a three-inch-long 
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alloy core (I-' = 5000) having a cross-sectional area of 0.25 square 
inch. Calculate the inductance in henrys. 

Here, N = 2500, I-' = 5000, and I = 3. From Eq. 4-4: 

L (4.06 X 25002 x 5000 x 0.25)/( 1 .27 X 108 x 3) 
= 83.25H 

For the same core (material , length, and cross section), the in­
ductance varies as the square of the number of turns. That is , if 
the turns are multiplied n times, the inductance increases n2 times. 
Conversely, if the turns are divided by n, the inductance is divided 
by lIn2. If the number of turns in the foregoing example, for in­
stance, is doubled to 5000, the inductance becomes 333H, four times 
the original value of 83.25H. And if the turns are halved to 1250, 
the inductance becomes 20.8H, one-fourth of the original value. 

4.5 COIL WITH TOROIDAL CORE 

A toroid is an inductor consisting of a coil wound on a toroid 
(ring- or doughnut-shaped core) of suitable magnetic material. The 
toroid has the advantages of small size, high Q, compactness, and­
above all-self-shielding. Also, if the core is made of ferrite or some 
other special magnetic material , the inductor can be operated at 
frequencies of several hundred megahertz. Toroidal construction 
is illustrated by Fig. 4-4. 

The inductance of the toroid is governed by the number of turns 

o Structure 

I I 
� h �  
I I 

e Cross section 

Fig. 4-4. I l lustration of coils with toroidal cores showing (A) structure and (6) 
the cross section . 

1 35 



in the coil; the permeability of the core material; and the height, 
inside diameter, and outside diameter of the core: 

L = 0.01 1684 N2 Jl h logJO (ODlID) (4-5) 

where L is the inductance in microhenrys, N the number of turns, 
Jl the permeability of core material, h the height of the core in 
inches, OD the outside diameter of the core in inches, and ID the 
inside diameter of the core in inches. 

Example 4-5. Fifty turns are wound on a toroid having an 
outside diameter of 0 .75 inch, an inside diameter of 0.25 inch, a 
height of 0. 1875 inch, and permeability of 350. Calculate the in­
ductance of this inductor in millihenrys. 

Here, N = 50, Jl = 350, h = 0 . 1875, OD = 0.75, and 
ID = 0.25. From Eq. 4-5: 

L = (0. 1 1684 X 502 x 350 x 0. 1875) logIO(0.75/0.25) 
= (0. 1 1684 x 2500 x 350 x 0. 1875) loglO 3 
= 19170(0.47712) 
= 9146 JlH 

9. 146 mH 

Adding or removing turns in a toroid increases or decreas&6 
the inductance, respectively, a� the square of the number of turns. 
Thus, if the turns on the same core are multiplied n times, the in­
ductance increases n2 times. Conversely, if the turns are divided 
by n, the inductance is divided by lIn2• This means that doubling 
the turns quadruples the inductance, and removing half the turns 
reduces the inductance to one-quarter of the original value. If the 
inductance is to be doubled, 1 .4 1  times as many turns are required 
(that is, turns must be multiplied by ../2). 

4.6 EFFECT OF DIRECT CURRENT 

The inductance of most core-type inductors is affected to some 
extent by dc flowing through the coil simultaneously with ac. This 
is because the magnetic properties of the core (especially satura­
tion) are altered temporarily by the dc. For that reason, the induc­
tance will have one value with the dc flowing and another without 
the dc. 

The inductance of a core-type coil that, like a filter choke for 
a power supply, is intended to carry dc must always be measured 
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with the recommended direct current applied (see Sec. 3. 19. Ch. 
3 for further details). It is well to remember also that some induc­
tors, which carry no dc in normal use, may exhibit core saturation 
and the consequent inductance change if the ac signal amplitude 
is excessive (see Sec. 3. 1 ,  item 8, in Ch. 3). 

4.7 MUTUAL INDUCTANCE 

When the magnetic fields of coils (either separate or wound 
on the same core) interact, an inductive effect is shared by them. 
This effect is mutual inductance (M). Mutual inductance, like self­
inductance, is measured in henrys and in submultiples of the henry 
(see Table 4-1), and in transformers-where it is of chief interest-is 
evaluated as follows: 

M = 4.06 N\N'2 I-' A 
1 .27 X 108 x I 

(4-6) 

where M is the mutual inductance in henrys, N\ the number of pri­
mary turns, N2 the number of secondary turns, I-' the permeabil­
ity of core material, A the cross-sectional area of core in square 
inches, and I the total length of core in inches. 

Example 4-6. A certain 2 : 1  transformer is wound on a core 
paving a total length of 8 inches, a cross-sectional area of 1 square 
inch, and a permeability of 850. The primary coil has 1000 turns 
and the secondary coil 2000 turns. Calculate the mutual inductance 
in henrys between the coils. 

Here, N\ = 1000, N2 = 2000, I-' = 850, A = 1 ,  and I = 8. 

From Eq. 4-6: 

M = 4.06 x 1000 x 2000 x 850 x 1 
1 .27 X 108 x 8 
6.902 X 109 = 1 .016 X 109 

= 6.79H 

4.8 INDUCTANCE OF STRAIGHT, ROUND WIRE 

It was mentioned in Sec. 4. 1 that even a straight wire possesses 
inductance. In a very long line this inductance can have a surpris­
ingly significant value. In shorter lengths, straight wires exhibit 
small inductance, but even this value can be important at very high 

1 37 



radio frequencies where a tiny inductance and capacitance can form 
a resonant circuit. 

The inductance of a long, straight, round wire (that is, where 
the length is at least 1000 times the diameter) is: 

L = 0.00508 I [In (41/d) - 0.75] (4-7) 

where L is the inductance in microhenrys, I the length in inches, 
d the diameter in inches, and In the natural logarithm. 

Example 4-7. Calculate the inductance of a straight 10 inch 
length of No. 24 wire (wire tables give the diameter as 20. 1  mils, 
that is, 0.0201 inch). 

Here, I = 10,  and d = 0.0201 .  From Eq. 4-7: 

L 0.00508 (10) [In(4 x 10) 10.0201 - 0.75] 

0.00508 (10) (in40/0.00201 - 0.75) 
= 0.0508 [(in 1990) - 0.75] 

0.0508 (7 .596 - 0.75) 
0.0508 (6.846) 
0 .348 ILH 

This is a small amount of inductance; nevertheless, the reac­
tance of this length of wire is 2 18.70 at 100 MHz, enough to pro­
duce a voltage drop of 2. 19V if a 100 MHz current of 10 rnA flows 
through this wire. By comparison, a 10 inch length of much thicker 
No. 12 wire (diameter = 80.81 mils) has an inductance of 0.277 
ILH and a 100 MHz reactance of 1740. From these facts, it can be 
seen that even when resistance is neglected, the impedance of short 
leads can be substantial at very high radio frequencies. 

4.9 IMPEDANCE OF INDUCTOR 

The impedance of an inductor Z = J R2 + WL2 (see Sec. 2.2,  
Ch. 2) .  In an air-core coil operated at 1 MHz or lower, the resis­
tance R is entirely the resistance of the wire in the coil . At high 
radio frequencies, however, the R is the combined in-phase resis­
tance of all the components, including wire resistance, skin effect, 
and other losses. In core-type inductors, core losses combine with 
the wire resistance to determine the full value of R. 

Figure 4-5(A) gives an equivalent circuit of a core-type induc­
tor, with losses shown as series resistance components. Here, L 
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Fig. 4-5. Equivalent circuits of core-type inductors with: (A) losses shown as 
series-resistant components, and (8) losses simplified to the equivalent re­
sistance. 

is the inductance of the coil, Rc the resistance of the wire in the 
coil, RE the eddy-current losses in the core, and RH the hysteresis 
losses in the core. This can be simplified to Fig. 4-5(B) in which 
REQ is the equivalent resistance corresponding to Re, RE, and RH 
together. 

4. 1 0  BASIC INDUCTOR CIRCUITS 

Like resistors and capacitors, indt.1ctors may be connected to­
gether for lower or higher total inductance. Figure 4-6 shows ba­
sic inductor circuits. 

When inductors are connected in series, as in Fig. 4-7(A), and 
positioned so that their fields do not interact (that is, there is no 
mutual inductance between them), the total inductance is: 

(4-8) 

Example 4-8. One each of 20H, 5H, 10H, and 18H induc­
tors are connected in series. Calculate the total inductance. 

From Eq. 4-8: 

LT 20 + 5 + 10 + 18 
53H 

When inductors are connected in parallel, as in Fig. 4-6(B), and 
positioned so that their fields do not interact (no mutual inductance 
between them), the equivalent inductance is: 
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Fig. 4-6. Basic inductor circuits connected in (A) series and (B) parallel. 

1 
L = (4-9) EG 

lIL} + lILz + lIL3 + . . . 11LN 

Example 4-9. One each of 20H, 10H,  250 mH, and 1 H  in­
ductors are connected in parallel. Calculate the equivalent in­
ductance. 

From Eq. 4-9: 

1 
LEQ = 

1120 + 1110 + 110.25 + 111 

1 = 
0.05 + 0.1  + 4 + 1 = 115. 15  = 0 .1942H 

If only two inductors are connected in parallel, the equation 
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for equivalent inductance is simplified to: 

(4- 10) 

Example 4- 10. A 10H and 5H inductor are connected in par­
allel. Calculate the equivalent inductance. 

From Eq. 4-10 :  

10 x 5 

10  + 5 

= 3.33H 

4. 1 1  NATURE OF CAPACITANCE 

Capacitors operate in just the opposite manner from inductors, 
in the sense that it is an electric field that is stored between the 
plates of the device. The electric field is actually in the dielectric 
between the plates (or in the case of certain capacitors, sets of 
plates) .  

When the voltage is first applied, current flows into one plate 
and out of the other. This current eventually goes down to zero 
because the negative plate gets saturated with as many electrons 
as the voltage will allow, and because the positive plate gets 
deprived of as many electrons as the voltage will allow. When the 
current drops to zero, the potential difference between the plates 
has reached its maximum value. 

In the case of an alternating current, the impedance of a ca­
pacitor is inversely proportional to the area of the plates, and directly 
proportional to the distance between the plates. The impedance 
also depends on the material between the plates. Air results in the 
greatest impedance for a given plate area and spacing; substances 
such as polystyrene reduce the impedance to a great extent (that 
is, the capacitance is higher). 

Capacitance is measured in Farads (F), but this is such a large 
unit in practical circuits that smaller units are used: microfarads 
{J,tF) and picofarads (pF). You will occasionally see nanofarads (nF) 
mentioned, but almost never millifarads. Table 4-2 illustrates the 
relationships between the commonly used units of capacitance. 

Any pair of electrical conductors, when brought in close prox­
imity with each other, will exhibit mutual capacitance. This capac-
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F 2: 
",F z: 
pF 

1 06 ",F 
1 0 - 6  F 
1 0 - 12 F 

1 012 pF := 1 06 pF 
10 - 6  ",F 

Table 4-2. Conversion Fac­
tors for Various Common Ca­
pacitance Units. 

itance is usually small , on the order of a few picofarads or even 
less than 1 pF. But it may be considerably more in some cases. 
At vhf and uhf, even a tiny amount of mutual capacitance can cause 
a change in the way a circuit operates. 

In transmission lines, there is capacitance between the conduc­
tors. Open-wire parallel lines have the least capacitance per unit 
length. Two-wire lines with solid dielectric, usually polyethylene, 
have more. Coaxial cables have the greatest capacitance per unit 
length of all . 

4 . 1 2 CAPACITANCE I N  
A L  TERNATI N G-C U RRENT CIRCUITS 

When an alternating current is applied to a capacitor, the cur­
rent leads the voltage by 90 degrees. We might more accurately 
say that the voltage lags the current by 90 degrees. This is shown 
in Fig. 4-7 . 

The capacitor therefore behaves, in a certain sense, exactly op­
posite from an inductor. Whereas the inductor stores energy in the 
form of a magnetic field, the capacitor stores it in the form of an 
electric field . 

Capacitors will pass alternating currents to some extent. They 
will not pass direct currents, ideally, although they can get "leaky" 
and allow a small amount of direct current to pass. In general, the 

Current 

Time 

Voltage 

Fig. 4-7. In a pure capacitance. the current is 90 degrees ahead of the voltage. 
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higher the frequency gets for a given capacitor in a given circuit , 
the lower the impedance becomes. 

The general formula for capacitive reactance is 

where f is the frequency in hertz and C is the capacitance in farads. 
It is often convenient to use megahertz and microfarads; gigahertz 
and nanofarads can be used also. It is important to remember that 
the units cannot be mixed . 

The fact that capacitors will pass alternating current, but not 
direct current, is useful in a variety of circuit applications that I 
will discuss later. 

4. 1 3  DIELECTRIC CONSTANT 

The material between the plates of a capacitor has a great deal 
to do with the actual impedance of the device. Figure 4-8 shows 
a simplified cross-sectional diagram of a capacitor. (Some capaci­
tors actually are constructed this way, but not most.) The surface 
area of the plates affects the capacitance, as does the spacing be-

Wire 
lead � 

Metal 
/ Plate 

� .. �� .. ���.-

Metal 
plate 

� Wire lead 

Fig. 4-8. Simplified cross-sectional diagram of a capacitor. 
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Table 4·3. Dielectric Constants of Various Materials at 
Room Temperature (Approximately 25 Degrees Celsius). 

Dielectric Constant 

Material 1 kHz 1 MHz 100 MHz 

Bakelite 4.7 4.4 4.0 
Balsa wood 1 .4 1 .4 1 .3 
Epoxy resin 3.7 3.6 3.4 
Fused quartz 3.8 3.8 3.8 
Paper 3.3 3.0 2.8 
Polyethylene 2.3 2.3 2 .3 
Polystyrene 2.6 2.6 2.6 
Porcelain 5.4 5.1 5.0 
Teflon 2 . 1  2 . 1  2 . 1  
Water (pure) 78 78 78 

tween them, as previously described .  The dielectric constant also 
affects the capacitance. 

Table 4-3 shows the dielectric constants of some commonly 
used materials in the manufacture of capacitors. Table 4-4 shows 
some of the most commonly used types of capacitors and their ap­
plications. 

It should be noted that capacitance can be increased by con­
necting plates in parallel . This is done with variable capacitors. 

Table 4-4. Capacitor: Common Types of Cepacltors and Their Applications. 

Capacitor Type 
Approximate 

Frequency Range Voltage Range 

Air variable 
Ceramic 
Electrolytic 
Mica 
Mylar 
Paper 
Polystyrene 
Tantalum 
Trimmer 
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If, mf, hf, vhf, uhf 
If, mf, hf, vhf 
af, vlf 
If, mf, hf, vhf 
vlf, If, mf, hf 
vlf, If, mf, hf 
af, vlf, If, hf 
af, vlf 
mf, hf, vhf, uhf 

Frequency Abbreviations 

af: Audio frequency (0 to 20 kHz) 
vlf: Very low frequency ( 10  to 30 kHz) 
If: Low frequency (30 to 300 kHz) 

Med. to high 
Med. to high 
Low to med. 
Low to med. 
Low to med. 
Low to med. 
Low 
Low 
Low to med. 

mf: Medium frequency (300 kHz to 3 MHz) 
hf: High frequency (3 to 30 MHz) 
vhf: Very high frequency (30 to 300 MHz) 
uhf: Ultrahigh frequency (300 MHz to 3 GHz) 



Capacitances in parallel add directly; that is 

when C is the total capacitance and CI ' C2, C3, . • •  , Cn are n capa­
citors connected in parallel. 

In series the situation is different; then the capacitances add 
like inductances in parallel: 

1 
C = -------------

( lIC1) + ( lIC2) + ( lIC
3) + . . .  + ( lICn) 

4. 1 4  MUTUAL AND INTERACTIVE CAPACITANCE 

Any conductor has a certain amount of inherent capacitance, 
just as it has a certain amount of inherent inductance. The best 
example of this is a radio antenna, but even a paper clip at 60 Hz 
has some capacitance. This capacitance exists because of surround­
ing objects, especially the ground and anything metallic or con­
ductive. 

Interactive capacitance can cause problems in electronic cir­
cuits. Hand capacitance is the best example of this . Unless the 
proper precautions are taken for shielding circuit components, hand 
capacitance can alter the frequency of a resonant circuit, and cause 
changes in the gain of an amplifier. This occurs as a result of ca­
pacitance between the operator's hand and the wires and elements 
in the circuit. 

The mutual capacitance between two objects depends on many 
factors in practice, and no complete formula can be given. As ex­
amples, we might consider the following general situations: 

Example 4-1 1 . Given two adjacent conductors, with a cer­
tain mutual capacitance what will happen if a third conductor (as 
shown in Fig. 4-9) is brought near them? 

The capacitance will be increased, and the impedance there­
fore lowered. This will happen to some extent even if the material 
brought near the conductors is not itself a very good conductor. 

Example 4: 12.  What effect will a shielding enclosure have 
on the mutual capacitance among the elements of a circuit? 

The mutual capacitance will be increased for the same reasons 
as given above. This effect is much greater at vhf and especially 
in uhf and microwave circuits. It can actually cause a circuit not 
to function unless this effect is taken into consideration when the 
circuit is designed. 

1 45 



Third � 
conductor 

\ /  
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conductors 

Fig. 4-9. When a third conductor is brought near two adjacent conductors, the 
mutual capacitance between the adjacent conductors increases. 

4. 1 5  TYPES OF CAPACITORS 

There are numerous kinds of capacitors in use today, and each 
has its own special advantages and disadvantages, and its own ideal 
application. The most common kinds of capacitors are the ceramic, 
electrolytic, mica, mylar, polystyrene, and tantalum varieties, along 
with the air variable. Paper capacitors are somewhat out of date. 
There are vacuum-variable capacitors, but they tend to be expen­
sive and are not often seen except in military hardware. 

Capacitors are named in general according to their dielectric 
material ,  so that a ceramic capacitor has a dielectric of porcelain , 
a polystyrene capacitor has a dielectric of polystyrene, etc. The elec­
trolytic capacitor employs a chemical reaction that produces an in­
sulating electrolyte between the conductors. Characteristics of 
various types of capacitors are given in Table 4-4 . 

4. 1 6  BASIC CAPACITOR CIRCUITS 

Capacitors, like resistors and inductors, can be connected to­
gether for various purposes. Parallel combinations of capacitors can 
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Fig. 4-1 0. An example of an application of connecting parallel capacitors to 
obtain greater capacitance than would be possible with a single capacitor. 

be used to obtain higher capacitance than would otherwise be pos­
sible. This can be especially useful in power-supply filtering cir­
cuits in which large amounts of current are drawn. This kind of 
arrangement is illustrated in Fig. 4- 10. 

Capacitors may also be connected in series, which reduces the 
total capacitance. In itself, this is not really all that important, since 
capacitors can be found with extremely small values anyway. But 
it can be useful for another purpose: to increase the amount of volt­
age a capacitor will tolerate. 

Another use for capacitors is in an antenna system, as shown 
in Figs. 4- 1 1(A) and (B). In (A), a single capacitor is connected in 

Radiator 
/ 

Feed l ine 

o 

Feed l ine 

YRadia,o< 
I 
I 

Fig. 4-1 1 .  Examples of series connection of capacitors to raise the resonant 
frequency of an antenna. At (A) is a single capacitor. At (8) are several capa­
citors spaced along the length of the radiator. 
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series with the antenna. This raises the resonant frequency, mak­
ing it possible to use an antenna at various different frequencies, 
depending on the value of the capacitor. At (B), several capacitors 
are employed, connected in various places along the antenna con­
ductor. This allows the use of a longer conductor than would nor­
mally be the case, and gain can be obtained by this means. 

Capacitors are used for offset blocking, to prevent dc from pass­
ing while allowing a signal to pass. This is shown in Fig. 4-12(A). 
In this circuit ,  the capacitor facilitates biasing of the gate of the 
FET without affecting the incoming signal source, except for 
governing the input impedance of the amplifier (by means of the 
resistor). At Fig. 4- 12(B), a capacitor is used for bypass purposes. 
This in fact performs just the opposite function, allowing dc to pass 
through the resistor and provide bias for the emitter of the transis­
tor, but not letting any signal affect its operation. Bypassing can 
also be used for other purposes, such as to reduce radio-frequency 
interference that can be picked up by the speaker leads of stereo 
hi-fi equipment (Fig. 4- 12C). 

4. 1 7  PRACTICE EXERCISES 

4 . 1  Calculate the inductance in microhenrys of a 1 in . diameter 
single-layer solenoid having 30 turns wound in a space of one inch. 
4 .2 .  How many turns will be required for a 100 JLH single-layer 
solenoid having a length of 2 in . and diameter of 1 .5 in.? 
4.3. The turns of a 50 JLH single-layer solenoid are doubled with­
out increasing the length of the coil. What is the final inductance 
value? 
4.4. Sixty turns are removed from a certain gO-turn single-layer 
solenoid. The final inductance is what percentage of the original 
inductance? 
4 .5. Calculate the inductance in millihenrys of a multilayer sole­
noid having 450 turns, diameter of 1 inch , a winding length of 0.5 
inch, and a radial depth of 0.B75 inch. 
4 .6 .  Does doubling the number of turns in a multilayer solenoid 
quadruple the inductance? 
4.7. A 350-turn coil is wound on a core having 3.25 inches total 
length, 0 .25 inch cross-sectional area, and a permeability of BOO. 
Calculate the inductance in henrys. 
4.B. If the core in exercise 4.7 is replaced with one of the same 
length and cross-sectional area but with different permeability, what 
must the new permeability be in order to increase the inductance 
to approximately 4 .B2H? 
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Fig. 4-12 .  At (A) the capacitor is used to allow biasing of an FET amplifier; at 
(8) the bypass capacitor is in an emitter circuit of a bipolar-transistor amplifier. 

4.9 One hundred turns are wound on a toroid having the follow­
ing specifications: OD = one inch, JD = 0.625 inch, h = 0. 1875 
inch, IJ. = 400. Calculate the inductance in millihenrys. 
4 . 10  If the number of turns is tripled in the coil described in exer­
cise 4.9, what will be the final inductance in microhenrys? 
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4 . 1 1  In a certain 1 : 1  coupling transformer, the primary and secon­
dary windings have 500 turns each and they are wound on a core 
having a total length of nine inches, a cross-sectional area of 0.39 
square inches, and a permeability of 2500. Calculate the mutual 
inductance in henrys. 
4.12  The diameter of No. 36 wire is 5 mils (0.005 in.) . Calculate 
the inductance in microhenrys of a straight 2 in. length of this wire. 
4 .13  Calculate the 50 MHz reactance in ohms of the wire in exer­
cise 4. 13.  
4 . 14 One 50 mH, 1000 /tH, and O.OlH inductor are connected in 
series. Calculate the total inductance in millihenrys. 
4.15.  One each 10 mH, 1500 /tH, and 1H,  inductors are connected 
in parallel . Calculate the equivalent inductance in henrys. 
4. 16. How many farads is a O.Ol-/tF capacitor? 
4. 17.  What is the value in microfarads of a 100 pF capacitor? 
4. 18. What is the value in picofarads of a 4.7  /tF electrolytic ca­
pacitor? 
4. 19. What is the primary advantage of a variable capacitor? 
4.20. Calculate the value, in /tF, of a O.Ol /tF and 0.5 /tF capacitor 
in parallel. 
4.2 1 .  Calculate the series capacitance of the same two capacitors. 
4.22. Calculate the reactance, in ohms, of a 4.7 /tF capacitor at a 
frequency of 100 Hz. 
4.23. Calculate the reactance, in ohms, of a 100 pF capacitor at 
a frequency of 1 MHz. 
4.24. Suppose a capacitor hai a reactance of 100 ohms at 2 MHz. 
What is the value of this capacitor in /tF? 
(Correct answers are to be found in Appendix D.) 
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The j Operator 

S 0 FAR, I HAVE DISCUSSED IMPEDANCE AS BEING EITHER IN­

ductive, capacitive, resistive, or some combination of these. 
Inductive and capacitive reactance, are opposites, in the sense that 
they "cancel" each other. But I am afraid I have oversimplified 
things a little, painting a one-dimensional picture when the situa­
tion is really two-dimensional. I did this for a reason-making im­
pedance easier to grasp, by easing into it-but now you will see 
the complete picture. Put your mathematical thinking cap on for 
a while. 

5.1  THE SQUARE ROOT OF - 1 

At first thought, you might want to suppose that the square 
root of - 1 is not defined. This is what they teach you in school, 
before they later tell you that there really is a value equal to the 
square root of - 1 . It is a number that is called "imaginary." 

Actually, all numbers are "imaginary" in the sense that they 
can only be thought of, not touched or seen. You write "3" on a 
piece of paper, but that is a numeral, not a number; it represents 
the number 3, but the number 3 itself is only what you imagine 
it to be. You put 3 apples on a table; you are not looking at the 
number 3, but at apples. So the square root of - 1 is no more or 
less "imaginary" than the number 3. I 'm saying these things so 
you won't get frightened when I tell you that imaginary numbers 
and so-called "real" numbers can be mixed in an infinite number 
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of different ways, yielding numbers known as "complex. "  
So, there is a square root of - 1 .  What is it? It is a number such 

that when multiplied by itself gives - 1 .  Mathematicians call this 
number "i , " presumably to stand for "imaginary. "  Engineers call 
it "j" for a reason I will never know. Perhaps it is because the let­
ter "j" looks less like the number " 1 "  than the letter "i . " 

Thus there is the fundamental equation, j2 = - 1 .  
This imaginary number can be added to other numbers, or mul­

tiplied by other numbers. First, consider multiplication. You might 
have numbers such as 3j, or 500j, or - 50j. 

5.2 POSITIVE AND NEGATIVE IMAGINARY NUMBERS 

There are as many imaginary numbers as there are real num­
bers. You can multiply any imaginary number by any real num­
ber. This results in an imaginary number line (Fig. 5-1 ) .  

In  itself, the imaginary number line is no different from the 
real number line. But imaginary numbers have a way of behaving 
differently from real numbers when they are multiplied or divided. 

Example 5- 1 .  Multiply 3j by 5j. 
You multiply imaginary numbers simply by combining their 

components and mUltiplying: 

3j x 5j = 3 x 5 x j x j = 15 x - I ::: - 15 

Example 5-2. Multiply - 40j by - 8j. 
Again, the same principle holds: 

- 40j x - 8j ::: - 40 x - 8 x j x j ::: 320 x - I - 320 

Example 5-3. Divide 4j by - 2j. 

(4})/( - 2}) ::: (4/2) x (jl}) 

What isj/j? Fortunately, you don't have to worry about this in your 
impedance calculations, so I 'll leave this one up to you to figure 
out. I don't want to spoil your fun by telling you outright. 

5.3 COMPLEX NUMBERS 

You can add real numbers to imaginary numbers, and this gives 
us numbers that are called "complex."  They aren't really that com­
plicated, but I guess mathematicians couldn 't come up with a bet-
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Fig. 5-1 . The imaginary number l ine 
is identical to the real number line, 
except that every real number is 
multiplied by j. 
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ter name for them. So we have quantities like 3 + 5j or 6 - 2j. 
It is customary to put the real number first and the imaginary num­
ber second, when you write the representation of a complex 
number. 

Engineers (and that is what we are) generally write complex 
numbers in the form 3 + j5 or 6 - j2. Why they do this is a mys­
tery to me, but we will use this notation here, since we should fol­
low convention. 

Multiplying and dividing complex numbers is not that difficult, 
but a little practice is helpful. 

Example 5-4. Multiply 3 + j5 by 6 - j2. 

(3 + j5) x (6 - j2) 
3 x 6 + 3 x - j2 + j5 x 6 + j5 x -j2 
18 - j6 + j30 + 10 

= 28 + j24 
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Actually, although this may look complicated , the procedure is sim­
ple. All you need to remember is the rules of multiplication, along 
with the fact that j2 = - 1 . It takes some getting used to, but is 
not hard to grasp intuitively. 

Complex numbers lend themselves to geometric representa­
tion, just as ordinary numbers can be marked off on a number line. 
But complex numbers require a two-dimensional scheme for their 
representation. This is customarily done in the form of a coordinate 
plane, with the real number line being the horizontal axis and the 
imaginary number line being the vertical axis. This is shown in Fig. 
5-2 . 

Complex numbers have interesting properties, but I will not 
get into a detailed discussion of that here. However, it should be 
noted that in the complex-number plane each point corresponds to 
a unique complex number, and any complex number can be 
represented by a single point on the plane. 

Fig. 5-2. The complex-number plane. 
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1 4 -j3 1 = .J, 42 + 32 = J 16 + 9 
= F25 
= 5 

Fig. 5-3. The absolute value of a complex number is the length of its represen­
tative vector in the complex plane. 

We should also note that the absolute value of a complex num­
ber is the length of the vector from the origin of the plane (the point 
o + jO) to the point representing the complex number. An exam­
ple is given in Fig. 5-3. The basic formula for the absolute value 
of a complex number is 

5.4 COMPLEX IMPEDANCES 

I have discussed complex numbers because they lend them­
selves perfectly to the representation of impedance. Scientists 
choose models to fit what they see, and this is no exception. 

Any impedance is a combination of resistance and reactance, 
as you have seen. Resistance can be represented by the real-number 
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line in the complex plane, and reactance by the imaginary-number 
line. Actually, under most circumstances, you only need the posi­
tive part of the real-number line, since resistances are not gener­
ally negative. The positive part of the imaginary number line 
represents inductive reactance, and the negative part represents 
capacitive reactance (Fig. 5-4). 

In the complex representation of impedance, resistance is de­
noted by R and reactance by X. Thus the general form for 
representing an impedance is R + JX. 

Example 5-5. Suppose you have 50 ohms of resistance and 
no reactance whatsoever. What is the complex representation of 
this impedance? 

( Inductance) 

X 

- X  
(Capacitance) 

Fig. 5-4. Half-plane representation for impedance. 
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( Inductance) 

X 

- X  
(Capacitance) 

R (resistance) 

Fig .  5-5. Two examples of complex impedance vectors. 

Since the resistance, R, is 50 ohms, R = 50; since there is no 
reactance, X = O. Thus you would represent this impedance by 
Z = 50 + iO. (You might recognize this as the ideal load for an 
antenna fed by RG-58/U or RG-8/U coaxial cable. )  

Example 5-6. Suppose you have 300 ohms of resistance and 
50 ohms of capacitive reactance. What is the complex representa­
tion of this? 

Since the resistance, R, is 300 ohms, R = 300; the capacitance 
is negative, and therefore X = -i50. So you represent this im­
pedance by Z = 300 - i50 . 

The impedances of Examples 5-5 and 5-6 are shown in the com­
plex plane in Fig. 5-5. 
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Earlier, I defined impedance as a simple real number; for ex­
ample, 50 ohms. I was speaking of the length of the vector from 
the origin of the plane to the point representing the impedance. In 
Example 5-5, the length of this vector is simply the resistive value, 
or 50 ohms. In Example 5-6, you must calculate the length of the 
vector according to the formula 

IZ I = $2 + X2 = .j3002 + ( - 50)2 
= .j90,000 + 2,500 = ./92,500 = 304 ohms 

To simply say that an impedance is 304 ohms is, as you can 
now see, an incomplete representation. Note the pair of vertical 
lines on either side of the Z in the above equation. These lines mean 
the absolute value, or the length, of the impedance vector. 

If the reactance, X, in the above example were positive (induc­
tive) instead of negative (capacitive), the value I Z I  would still be 
304 ohms. This is illustrated in Fig. 5-6. Also shown in Fig. 5-6 
are all of the possible points on the complex plane that could rep­
resent impedances of 304 ohms, in terms of absolute value. You 
could have a noninductive 304-ohm resistor, or you might have a 
perfect 304-ohm capacitor or 304-ohm inductor (remember that 
reactance depends on frequency). The set of points forms a half 
circle on the complex plane. 

Capacitance and inductance are represented by imaginary num­
bers, and this is really appropriate, isn't it, since pure reactance 
does not dissipate power. Reactance merely plays games with 
power. 

5.5 POWER FACTOR 

The phase angle in a complex impedance-that is, the differ­
ence in phase between the current and voltage-is represented by 
the angular position of the impedance vector in the complex plane. 
You saw this in Section 2 .13 ,  but the representation was somewhat 
incomplete since it did not take into account the complex nature 
of impedance. Although you can determine the power factor and 
phase angle without using the complex representation, you can get 
a visual idea if you use the complex plane to illustrate it. 

Suppose you have, as in Example 2-17, a filter choke at 120 Hz. 
Example 5-7. Draw the impedance vector for a filter choke 

having an inductance of 16H and a resistance of 580 ohms. Assume 
the frequency is 120 Hz. 
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(Inductance) 
X 

1 300 + j50 1 = 304 
t::::f::::::t:::::J�I:::i:J ..... � R (resistance) 

- X  
(Capacitance) 

Fig. 5-6. For any particular absolute value of impedance, the representation 
in the complex plane is a half circle, in this case with a radius of 304. 

Referring to Example 2- 17, XL = 12 ,057.6 ohms, and you al­
ready know R = 508 ohms. You now plot this point on the graph. 
Actually, the number 12 ,057 .6 is a little too fine for us to plot on 
a graph of reasonable size, so we should round it off, say to some­
thing like 12, 100 .  Also the number 508 is a little too fine to plot 
on a graph of reasonable size; you can round it off to 510 .  So you 
locate the point R + JX + 510 + j12, l00 on the plane, plot it, and 
draw the vector from the origin 0 + jO to this point on the plane. 
This is shown in Fig. 5-7 . 

The power factor is the cosine of the phase angle, which is the 
angle between the R axis and the vector. This can be measured 
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(Inductance) 
X 

j14,OOO 
510 + j1 2, 100 

j12,OOO 

j1 0,OO 

j8,OOO 

/6,000 

j4,OOO 

/2,000 

-j2,OOO 

-/4,000 

- /6,000 

-/ 8,000 

-/1 0,000 

-=/1 2,000 

-/1 4,000 

- X  
(Capacitance) 

.. cos <P 

.. 510 I(J5102 + 12 ,  1 002) 
"" 0.042 

Fig. 5-7. Example of determination of phase angle by means of plotting a vec­
tor on the complex plane. 

1 60 



with a protractor. Then you can use a calculator and find the co­
sine. This is abundantly clear from the extreme distortion evident 
in Fig. 5-7. 

Actually, if you need great accuracy, it is better to use the 
method of Example 2-17  instead of drawing a line on graph paper 
and measuring its angle relative to the R axis. But it is interesting 
to see impedance and phase angle represented visually, and en­
gineers do occasionally use this method for representing im­
pedances. 

5.6 IMPEDANCES IN SERIES 

Impedances in series add just as vectors add. I will pause here 
and discuss a little vector arithmetic. It is really quite simple. 

To add two vectors Rl + ;Y1 and R2 + ;X2, you simply add 
the constituents, obtaining Rl + R2 + ;X1 + ;X2· 

Example 5-8. Detennine the series combination of 50 + j400 
and 30 - j500. 

You simply add 50 + 30 + j400 - j500 = 80 -j100. This in­
dicates 80 ohms of resistance and - 100 ohms of reactance; that 
is, 100 ohms of capacitive reactance. 

Vector addition can be perfonned geometrically as shown in 
the diagram at Fig. 5-8. The two impedance vectors form two sides 
of a parallelogram. The rest of the parallelogram is constructed and 
the far end of the parallelogram represents the sum of the two 
vectors. 

It is easier to calculate the end point than to graph it; or at least 
it is more accurate algebraically than geometrically. But the geo­
metric representation is very helpful in illustrating the principle 
involved. 

Example 5-9. Detennine the series combination of 50 + j100 
and 50 - j100. 

You add 50 + 50 + j100 - j100 = 100 + jO. There is no reac­
tance in this case. The positive (inductive) and negative (capaci­
tive) reactances exactly cancel. This is a condition of resonance, 
with a resistance of 100 ohms. This would present a standing-wave 
ratio of 2 to 1 for 50-ohm coaxial cable; not a bad mismatch at all, 
as a matter of fact . 

5.7 IMPEDANCES IN PARALLEL 

Parallel combinations of resistances are a little more difficult 
to determine than series combinations. The same is true with im-
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( Inductance) 

X 

"-+-+---1-+--jI-� ........... -+-+-.. R (resistance) 

- X  
(Capacitance) 

7 - j1 
(sum) 

9 

Fig. 5-8. Addition of vectors by the parallelogram method. 

pedances. In fact the determination of parallel combinations of im­
pedance can get a little "messy, "  as a mathematician would call 
it. So we have to be pretty careful when you combine impedances 
in parallel . The vector representation is hard to illustrate geometri­
cally, so you can only use the formulas. 

Impedances in parallel add just like resistances in parallel, 
provided you use the complex representations of the impedances. 
Mathematically, if there are two impedances RI + ;X1 and R;! + 
;X2 in parallel, then the resulting impedance R + ;X is given by 

This looks awfully messy, and , as a matter of fact, it is. When you 
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get into messy equations, you have to go slowly, and be careful . 
Example 5- 1 0. Determine the parallel combination of im­

pedances 50 + j100 and 50 - j100. 
This is an interesting, although simple, case. Using the above 

formula, 

R + ;X 
(50 + j100) (50 - j100) 

50 + j100 + 50 - j100 

50 x 50 + 50 x ( -j100) + 
j100 x 50 �. j100 x ( -j100) 

100 

2500 - j5000 + j5000 + 10 ,000 

100 = 12 ,500/100 + jO = 125 + jO 

That 's a mouthful! But note that the reactances, being equal and 
opposite , cancel .  In either the series or parallel case, when reac­
tances are equal and opposite, they cancel. You will recognize this 
as a condition of resonance . 

When the reactances do not cancel, the situation becomes very 
complicated and I will not get into a discussion of that here, since 
the mathematics is practically overwhelming. 

5.8 ABSOLUTE VALUE OF IMPEDANCE 

The impedance vector has a certain length, which is given by 
the formula 

as we have seen. It is interesting to note that for any given value 
of 1 2 1 ,  with the exception of a short circuit, there can be an infinite 
number of ways in which you might have a certain absolute value. 

Example 5- 1 1 . Name eight ways in which you could have 
an absolute-value impedance, 1 2 1 .  of 5 ohms. 

You may have a resistance of 5 ohms with no reactance ; you 
may have 5 ohms of pure capacitance; or you may have 5 ohms 
of pure inductance. These are the most obvious answers. 

Figure 5-9 shows all eight ways in which this might happen. 
You might have 3 ohms of inductive reactance and 4 ohms of re-
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(Inductance) 
X 

- X  (Capacitance) 

Fig. 5-9. Eight ways to produce an absolute-value impedance of 5 ohms. 

sistance (point A); you might have 3 ohms of capacitive reactance 
and 4 ohms of resistance (point B); you might have 4 ohms of in­
ductive reactance and 3 ohms of resistance (point C); or, you might 
have 4 ohms of capacitive reactance and 3 ohms of resistance (point 
D). This now totals seven different ways. 

The eighth way I will demonstrate by a more complicated 
means, since the above examples were chosen for simplicity. This 
is shown at point E, where there is an inductive, or positive, reac­
tance of 2 .3 ohms and a resistance ot 4.4 ohms. We can calculate: 

I Z I  = JR2 + X2 = J4.42 + 2 .32 
.ji9.4 + 5.3 = )24.7 = 5 

at least as far as significant digits are concerned! Points F, G, and 
H show the first three ways that were mentioned. 

Resistances are not normally negative, and I have not consid-
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ered that here. But it is possible for resistance to be negative. A 
battery or other source of current could cause this. But that sub­
ject is beyond our scope here and will therefore be mentioned only 
in passing. 

5.9 PRACTICE EXERCISES 

5. 1 .  What is the fundamental imaginary number? 
5.2. What is P? 
5.3. What is ( -J)2? 
5.4. What is - (P)? 
5.5. What is the general complex representation of impedance? 
5.6 Suppose you have an antenna with a perfect match for 50-ohm 

cable having a characteristic impedance of 50 ohms. How would 
the impedance of this antenna be represented in complex form? 
5.7 .  What is the complex representation of a 50-mH inductor at 

100 kHz? 
5.8. What is the complex representation of a 50-pF capacitor at 

10 MHz? 
5.9. Draw a diagram showing the impedance vector, in the com­

plex plane, of 50 - j40. 
5. 10 .  Draw a diagram showing the impedance vector, in the com­
plex plane, of 500 + j275. 
5. 1 1 .  How does the complex impedance vector change, in any case, 
as the frequency increases? Assume there is reactance. 
5. 12. How does the complex impedance vector change, in any case, 
as the frequency decreases? Assume there is reactance. 
(Correct answers are found in Appendix D. )  
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Forward and Reflected 
Power, and Antenna Systems 

I N THIS CHAPTER YOU WILL BE LOOKING AT THE CHARACTER­

istics of antenna systems, and how power is radiated by them. 
Impedance matching is often important in the design of antenna 
systems, but not always. 

6. 1 RADIATION RESISTANCE 

When power is radiated from an antenna, there is a certain cur­
rent and a certain voltage at the feed point of the antenna. Sup­
pose that the feed point is at the center of the antenna radiator (Fig. 
6-1) .  The current, a radio-frequency current, can be represented 
by I and the voltage by E. The ratio Ell is called the radiation re­
sistance of the antenna. 

Interestingly, the radiation resistance is a function of only one 
thing: the physical length of the antenna in terms of wavelength 
in free space. Figure 6-2 shows the function of radiation resistance 
versus physical length in free space. This function holds no matter 
what the frequency, for center-fed antennas. 

Figure 6-3 shows the function of radiation resistance for a ver­
tical antenna over perfectly conducting ground. 

In the case of a resonant, half-wave antenna (which we will 
shortly discuss) the radiation resistance is 73 ohms in free space. 
In reality it is usually a little different because of end loading caused 
by trees and other objects in the vicinity. For a vertical, quarter­
wave antenna over a perfectly conducting ground, the radiation re-
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Fig. 6-1 . A center-fed, half-wave radiator. 

sistance is half this value, about 37 ohms. 
An antenna behaves something like a resistor, and this fact is 

useful in understanding the nature of radiation resistance. A resis­
tor dissipates all the power supplied to it in the form of heat. An 
antenna ideally does not dissipate power, but sends it off into space 
in the form of an electromagnetic field. If we have an antenna that 

1 000 

30 60 90 120 1 50 1 80 
Length, degrees 

Fig. 6-2. Radiation resistance versus free-space length, in wavelengths, for 
a center-fed radiator. 
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Fig. 6-3. Radiation resistance versus free-space length, in wavelengths, for 
a vertical radiator fed at the base and mounted over perfectly conducting 
ground. 

is resonant-that is, no reactance is present-then if the radiation 
resistance is R ohms, you could replace the antenna with a nonin­
ductive resistor of value R ohms and the characteristics, as seen 
by the transmitter, would be exactly the same. 

How antennas release energy instead of dissipating it is one 
of those sorts of questions we just can't answer. 

6.2 CHARACTERISTIC IMPEDANCE 

If you have a resonant antenna with a radiation resistance of 
R ohms, there will be no reactance in the antenna, and in this sense 
it is a resonant circuit. It behaves more or less like a coil and ca­
pacitor in parallel, or like a crystal. There is no reactance. But the 
feed line must be of the proper type if there is to be optimum per­
formance. 

Feed lines exhibit a characteristic impedance, and this depends 
on the dimensions of the conductors and the spacing between them, 
and also on the nature of the dielectric material. If the characteris­
tic impedance of the antenna is the same as the radiation resistance 
of the resonant antenna to which it is connected, then the situation 
is optimum. In any other case it is not; the discrepancy may or may 
not be important. 

Table 6-1 shows various commonly available kinds of feed lines 
and their characteristic impedances. Both coaxial cable and parallel­
wire values are given. 
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Most coaxial-cable feed lines have values of either 50 or 75 
ohms, so that they are reasonably matched to resonant half-wave 
antennas fed at the center. 

The characteristic impedance of a feed line depends on its 
dimensions; Figure 6-4 shows the case for coaxial cable and parallel­
wire line. For air-dielectric coaxial line, in which the inside diameter 
of the outer conductor is D and the outside diameter of the inner 
conductor is d (at A) ,  the characteristic impedance is 

Zo = 138 10gIO (DId) 

where D represents the inside diameter of the outer shield, and d 
represents the outside diameter of the inner conductor. 

For an air-dielectric parallel-wire line, the characteristic im-

Table 6-1 . Common Types of Transmission 
Lines and Their Characteristic Impedances. 

COAXIAL CABLES PARALLEL-WIRE LINES 

Type Number Zo' Ohms 

RG-58/U 53.5 
RG-58A/U 50 
RG-59/U 73 
RG-59B/U 75 
RG-8/U 52 
RG213/U 52 

Type Number Zo' Ohms 

TV Ribbon 300· 

Foam-dielectric 
TV Ribbon 300· 

Open-wire, prefab 300 or 
450 · ·  

Open wire, No. 1 2  
spaced 4 inches 500 

Open wire, No. 1 2  
spaced 6 inches 600 

·Zg. is affected by rain, snow, icing, or proximity of conducting objects . • • ,wo types commonly available; No. 1 8  conductors spaced 3/4 inch for 
300 ohms and 1 inch for 450 ohms. 
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Fig. 6-4. Characteristic impedance depends on the physical dimensions and 
the spacing of conductors in a feed line. At (A). coaxial l ine; at (8). parallel­
wire l ine. 

pedance is given by 

Zo = 276 loglO (2s/cl) 

where d is the conductor diameter (it is assumed the two conduc­
tors have the same diameter) and s is the spacing between the 
centers of the two conductors. This is shown at (B). 

When dielectric material other than air is used, and polyethyl­
ene is the most common, the characteristic impedance is lowered. 
The most common type of parallel-wire line is television "twin lead" 
that has a characteristic impedance of about 300 ohms. It is usually 
made from two No. 18 stranded wire conductors, spaced about 3/8 
inch apart, having solid or foamed polyethylene dielectric. Coaxial 
cables are available with solid or foamed polyethylene dielectric. 
Coaxial cables can be obtained in a variety of sizes; the most com­
mon characteristic impedances are 50 ohms and 75 ohms. 

6.3 REAL AND APPARENT POWER 

The ideal situation, as far as an antenna system is concerned, 
is that the antenna have no reactance (that is, that it be resonant) 
and that the radiation resistance of the antenna be equal to the 
characteristic impedance of the feed line. 

But this is usually not the case. Various factors affect the reac­
tance of an antenna; the most common of these is a change in fre­
quency, such as radio amateurs employ. But rain or snow, or icing 
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on the conductors of the antenna, can change the reactance for a 
given frequency. 

When there is reactance in the antenna, or if the radiation re­
sistance is not exactly equal to the characteristic impedance of the 
feed line, some of the electromagnetic field traveling down the feed 
line is reflected back toward the transmitter. The antenna refuses 
to accept and radiate all of the electromagnetic field. This reflected 
field is small by comparison with the forward field if the impedance 
mismatch is small; the reflected field is quite large in proportion 
to the forward field in the event the mismatch is severe. The worst 
case is a short circuit or an open circuit, when in theory all of the 
forward field is reflected. 

Engineers often speak of this forward and reflected field as for­
ward and reflected "power. "  This is not strictly accurate, since 
power is expressed as dissipated energy at a certain rate; power 
does not travel . But let 's use the conventional terms, forward and 
reflected power, since they are commonplace even if not totally ac­
curate. 

Suppose you have a feed line with no loss (the ideal case) and 
a characteristic impedance Zo of 50 ohms. Furthermore suppose 
you have an antenna with a pure resistive impedance of R = 50 
ohms. Then you have a perfect match, and the standing-wave ra­
tio (SWR) is 1 : 1 .  All of the forward, or incident, power is radiated 
by the antenna. 

This kind of ideal situation is rarely the case, although broad­
cast engineers do their best to make it so. The SWR is calculated,  
assuming the antenna has no reactance, as follows: 

SWR = ZoIR 

in case Zo is larger than R, and 

SWR = R1Zo 

in case R is larger than ZOo The lowest possible SWR is therefore 
1 ;  it can be very large in some cases, theoretically as high as in­
finity. The SWR would be theoretically infinite if the line were ter­
minated in a short circuit or an open circuit, and if the line had no 
loss. 

Example 6- 1 .  Calculate the SWR assuming an antenna im­
pedance of 73 ohms and a feed-line characteristic impedance of 50 
ohms. 
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The SWR is RIZo' since R, the antenna impedance, is larger 
than Zo' the characteristic impedance of the feed line. Thus SWR 
= 73/50 = 1 .46. This is not a bad value. Incidentally, a half-wave 
dipole in free space would, at resonance, exhibit exactly this SWR. 

Example 6-2. Calculate the SWR of a 73-ohm dipole antenna 
fed by 300-ohm parallel-wire television transmission line. 

In this case, Zo is larger that R, so the SWR is given by divid­
ing Zo by R: SWR = ZIR = 300173 = 4. 1 1 .  This value is pretty 
bad, but the loss caused by SWR depends on the loss of a trans­
mission line. 

There is another way of defining SWR. That is the ratio of the 
maximum rf voltage on the line to the minimum voltage. Assum­
ing there is no loss in the line, the voltage SWR (VSWR) is the same 
as the SWR as defined above. Mathematically, 

VSWR = EmaxlEmin 

where Emax is the maximum voltage on the line and Emin is the 
minimum voltage on the line. This is shown at Fig. 6-5. 

The SWR can also be defined in terms of current. In this case, 

where Imax is the maximum current along the line and Imin is the 
minimum current. 

The voltage and current definitions are not entirely accurate 
because of losses along the line. In fact the SWR may vary consider­
ably because of line loss. 

EMAX - - - - -
.. 
To 

transmitter 

load 

t 
Feed 
line 

Fig. 6-5. Voltage distribution along a l ine terminated in a resistance different 
from the characteristic impedance. 
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Table 6-2. Common Types of Transmission 
Lines and Their Nominal Loss, In Decibels per 100 Feet. 

COAXIAL CABLES 

Type Number Loss at 2 MHz Loss at 10 MHz Loss at 1 00 MHz 

RG-5B/U 0.5 1 .2 4 .B 
RG-5BA/U 0.5 1 .2 4.B 
RG-59/U 0.5 1 . 1 3.5 
RG-59B/U 0.5 1 . 1 3.5 
RG-B/U 0.23 0 .55 1 .9 
RG-21 3/U 0.23 0.55 1 .9 

PARALLEL-WIRE LINES 

Type Number Loss at 2 MHz Loss at 10 MHz Loss at 1 00 MHz 

TV ribbon 0. 1 7 ' 0.43 · 1 .5 ·  

Foam-dielectric 
TV ribbon 0 . 1 5 ·  0.35 · 1 .3 ·  

Open-wire, prefab 0 . 1 · • 0.2·  • OT · 

Open wire, No. 1 2  
spaced 4 o r  6 inches 0 . 1 · ·  • 0. 1 5 · · • 0.5· · • 
· Loss is increased with rain, snow, or icing, or proximity of conducting objects . • • Loss is the same for 300-0hm or 450-ohm types . • •  · Values are approximate, based on proper installation and absence of con-
ducting objects in vicinity of l ine. 

6.4 LINE LOSS AND SWR 

Line loss has an effect on the VSWR, and also on the SWR as 
measured by instruments. Ideally a feed line would have no loss, 
but in practice they always do. The line loss is measured in decibels 
per unit length. Table 6-2 gives nominal values for various com­
monly used kinds of transmission lines, assuming there has been 
no deterioration of the dielectric material. 

The VSWR (and also the SWR as measured by a reflectometer, 
and also the current SWR) is smaller as the distance from the an­
tenna feed point is increased. It may be the case that the SWR is 
3: 1 at the antenna, for example, but only 2: 1 at the transmitter end 
of the line. This effect takes place because of attenuation of the 
reflected power going back along the line toward the transmitter. 
Therefore, to get a true indication of the SWR in an antenna sys­
tem, it is necessary to measure it at the feed point, where the line 
is connected to the antenna. 
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Actually the situation is very complex in a mismatched feed­
line and antenna system. The reflected power, upon arriving at the 
transmitter, is again returned to the antenna, where it is partially 
reflected again, in the same proportion, and this process happens 
over and over, each time with some of the power being radiated 
from the antenna. The result is a damping of the signal until it be­
comes negligibly small-usually within a few nanoseconds. The mis­
match results in a back-and-forth, damped oscillation along the feed 
line (Fig. 6-6). 

It is not always convenient to measure SWR at the feed point. 
This is especially true if the feed point is suspended in midair, as 
is the case with a dipole having no center support. But it is possi­
ble to determine the SWR at the feed point, knowing the kind of 
line used and the length of the line, and assuming that the line has 
not deteriorated. Figure 6-7 shows how this can be done. The SWR 
is measured at the transmitter end of the line, and the graph can 
then be used to determine the actual SWR at the antenna end of 
the line. It is the SWR at the antenna end of the line that is impor­
tant in determining how much extra loss is caused by the mismatch. 

6.5 EFFECTS OF REFLECTED POWER 

When an electromagnetic field, which I am somewhat inac­
curately (by convention) calling power, is not absorbed by an an-

Toward 
antenna 

Ci> 
'0 :l 

C. E '" 
� f---+---I--�r-----t�-�--7':;......_ .. Tlme 
t;j Qi 
a: 

Toward 
transmItter 

Fig. 6-6 .  Amplitude of reflected power in a feed line not terminated in a per­
fect matCh, as a function of time. Note the directional distinction on the verti­
cal axis. 
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Fig. 6-7. Calculation of feed-point SWR on the basis of transmitter SWR. Find 
the transmitter SWR on the horizontal scale and the l ine loss in dB (perfectly 
matched) on the vertical scale. Then read from the curves to find the actual 
feed-point SWR. 

tenna, it cannot be radiated. Some of it is radiated a few moments 
later, but not all. 

In a transmitter having a fixed output circuit designed for an 
impedance of 50 ohms pure resistive (the most common design for 
fixed-output circuits), reflected power tends to reduce the actual 
output of the transmitter. The greater the mismatch, the worse this 
effect becomes. In the extreme case, where there is a short circuit 
or open circuit at the feed point, the only power put out by the trans­
mitter is the power absorbed by the line loss. Some transmitters 
will actually be damaged by an SWR that high. The final amplifier 
might be burned out because its power has nowhere to go. 

In a mismatched circuit, you must think of real power versus 
imaginary power. The real power is actually absorbed by the an­
tenna; some of this is radiated and some of it is dissipated by the 
ohmic loss in the antenna conductors, ground loss, and loss caused 
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by objects in the vicinity of the antenna. The imaginary power is 
not absorbed by the antenna, but occurs because of the reactance. 
This reactance will be either capacitive or inductive. The greater 
the reactance in proportion to the radiation resistance, the higher 
the SWR will be. The SWR is directly related to the power factor. 

The SWR can have an effect on the line in another way, besides 
causing reflected power. This effect is to increase the line loss. The 
higher the SWR, the more power will be lost in the line, and the 
less will get to the antenna and be radiated. The physics of the sit­
uation is quite complex, but basically this loss takes place because 
the power must traverse the line many more times when the SWR 
is high, as compared to when it is low. In extreme cases, such as 
a perfect match or a pure reactance, the situation is interesting. 
With a perfect match, all of the power reaching the antenna is ab­
sorbed by it . With a dead short or open circuit, the power bounces 
back and forth between the transmitter and the reactive load, un­
til all of it has been absorbed by the line loss! 

If the SWR is not 1 :  1 ,  some additional loss occurs in the trans­
mission line. This additional loss can be figured out if the perfectly­
matched line loss, and the SWR at the feed point, are known. Fig­
ure 6-8 shows how this can be done. 

Some interesting things can be noted from the figure. Even an 
SWR of 3: 1 will cause a loss of only 1 dB, the minimum detectable 
amount, even in a very long line. Also, in a short line, a very high 
SWR will not result in much loss, assuming the transmitter is 
matched to the line. Since line loss increases as the frequency is 
raised, it is more important to have a good impedance match at 
high frequencies, as compared with low frequencies. 

Example 6.3. Calculate the additional loss, caused by an SWR 
of 5: 1 ,  in a feed line having a loss of 6 dB when perfectly matched. 

From the chart, you first locate the 6-dB point on the horizon­
tal axis. Then locate the curve corresponding to a 5: 1 SWR. Then 
reading to the left, you can see that the additional loss is about 1 . 7  
dB. 

Example 6.4. What is the total line loss in the above example? 
The total line loss is 6 + 1 .7, or 7.7 dB. 
Because the loss caused by high SWR on a feed line is often 

overestimated, the above result may surprise you. 
There is another effect of high SWR, however, that can prove 

to be harmful. When the SWR is high, current loops and voltage 
loops appear on the line, spaced 114 wavelength apart (Fig. 6-9). 
The current and voltage values at these loops are higher than they 
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Fig. 6-8. Calculation of sWR-caused loss on the basis of feed-point SWR. Find 
the l ine loss for 1 :  SWR on the horizontal axis; then locate the feed-point SWR 
in the vertical axis. Find the point on the graph where these two data inter­
sect; the additional loss can be read from the family or curves. 

would be in a perfectly matched line. The higher the SWR, the more 
pronounced this effect becomes. 

If the SWR is extremely high, and the transmitter output power 
is near the rated line power tolerance, damage can result. The high 
current can heat up the conductors and melt the dielectric (if the 
line has a dielectric). The high-voltage loops can result in arcing, 
and this may damage the dielectric permanently, or cause improper 
operation of a line having no dielectric. 

While the adverse effects of high SWR are often overstated, it 
is always desirable, from an engineering standpoint, to have the 
line and the antenna as well matched as possible. 
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Fig. 6-9. Current and voltage loops along a mismatched l ine. 

6.6 THE SMITH CHART 

The Smith chart is a special form of coordinate system that 
can be used to plot complex impedances, and also to show which 
combinations of resistance and reactance will result in a certain 
SWR. There is only one way to have an SWR of 1 :  1 ;  there are in­
finitely many ways to have an SWR other than 1 :  1 .  

The resistance coordinates on the Smith chart appear as ec­
centric circular curves, which all come together at the bottom. The 
reactance coordinates are partial circles having variable diameter 
and centering. A simple example of a Smith chart is shown at Fig. 
6-10 .  

Resistance and reactance values can be assigned via these coor­
dinates (which I admit are rather strange). The figure shows a cen­
tral resistance value of 50 ohms, the common impedance for coaxial 
transmission line. But any other value might be used; the value cho­
sen depends on the magnitude of the characteristic impedance of 
the line. 
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Complex impedances appear as points on the Smith chart. Var­
ious points are shown at Fig. 6-1 1 .  Pure resistances, having the 
form R + jO, lie along the resistance line, which is the vertical line 
cutting the chart in half. The top of the line represents a short cir­
cuit and the bottom of the line represents an open circuit. 

Pure reactances, having the form ° + jX, lie on the perimeter 
of the outer circle. Inductive reactance is on the right and capaci­
tive reactance is on the left . Complex impedances, of the form R 
+ jX, lie inside the outer circle. 

The Smith chart can be used to determine the SWR on a trans­
mission line, if the characteristic impedance of the line and the com­
plex impedance of the load are known. Various SWR values 
correspond to circles around the center point. A perfect match cor­
responds to the center point itself; higher and higher SWR values 
are indicated by larger and larger circles; an "infinite" SWR cor­
responds to the outer circle of the chart. Since any circle contains 
infinitely many points, we can see that there are infinitely many 
ways that you can have an SWR greater than 1 : 1 .  

The SWR circles can be precisely found by drawing them 
through points on the resistance line having the corresponding ra­
tio. In Fig. 6-1 1 ,  where the center point (assumed to be the case 
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Fig. 6-10. An example of a Smith chart. 
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Fig. 6-1 1 .  Some impedance points as plotted on a Smith chart. 

for Zo = 50 ohms), the 2 : 1  SWR circle will pass through the 
100-ohm and 25-ohm points. These points are halfway between the 
center point and the outer periphery of the circle. The 3: 1 SWR cir­
cle passes through the 150-ohm and 16.7-ohm points, which are 
2/3 of the way from the center to the outside. The 4: 1 SWR circle 
passes through the 200-ohm and 12.5-ohm points, which are 3/4 
of the way from the center to the outside. The 5: 1 SWR circle passes 
through the 250-ohm and 10-ohm points, 4/5 of the way from the 
center to the outer periphery. This process can be repeated until 
the circles are too close together to be distinguishable from each 
other. 

Smith charts are commercially available in large graph-paper 
form from various sources, and contain much more detail than the 
one shown in Fig. 6-1 1 .  

Even if you know the SWR on a feed line, as measured by a 
refiectometer, you do not necessarily know the value R + jX, un­
less the SWR is 1 :  1 .  But you can use an impedance bridge to find 
the value R + jX, and then determine the SWR from the Smith 
chart. The measurement can be made anywhere along the line and, 
assuming zero line loss, the value R + jX will always fall on the 
same SWR circle. However, the true value for the antenna must be 
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measured at the antenna feed point. As you move the impedance 
bridge farther and farther from the antenna, the value R + jX will 
change, describing points going around and around the circle. 

This is where things get interesting. Suppose you have an an­
tenna with a pure resistance of 100 ohms, connected to a 50-ohm 
lossless line. Then, at the antenna, R + jX = 100 + jO, and the 
point will lie at 100 on the resistance line. As you move the im­
pedance bridge farther from the antenna, the value R + jX will 
move counterclockwise along the 2 :1  SWR circle. When you get 114 
electrical wavelength from the antenna, the value R + jX will be 
180 degrees opposite the point at the antenna, or 25 + jO. As you 
keep going farther and farther from the antenna, the point will con­
tinue counterclockwise, until, when you are 112 electrical wave­
length from the antenna, it will again be at 100 + jO. 

Example 6.5. Suppose you have an antenna of 150 ohms pure 
resistance, connected to a 50-ohm line. What will the value R + 
jX be, at 114 electrical wavelength from the feed point? 

The SWR is 150/50, or 3 : 1 .  Therefore the value will be at the 
point exactly opposite 150 + jO on the 3 : 1  SWR circle. This point 
is 16.7 + jO. 

Example 6.6. Suppose you have the same situation as above, 
but measure the impedance at a distance of 112 electrical wave­
length from the feed point. 

This will result in an impedance all of the way counterclock­
wise from 150 + jO on the 3: 1 SWR circle. This point is the same 
point as 150 + jO. 

6.7 PRACTICAL ANTENNAS AND IMPEDANCE EFFECTS 

There are several different types of practical antenna systems. 
The most common are the half-wave dipole and the quarter-wave 
vertical. We will discuss these first. 

The Half-Wave Dipole 

A half-wave, center-fed dipole is probably the simplest form 
of antenna. It is an electrical half-wavelength long, which is a little 
shorter than the free-space half wavelength. The length of a half­
wave dipole in free space, in feet, is given by 

L = 468// 

where L is the length and / is the frequency in MHz. This is the 
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ideal case, in which the conductor is very thin and there are no ob­
jects in the vicinity of the antenna that might cause end loading 
and lower the resonant frequency. In practice the value is gener­
ally a little less, say on the order of 

L : 4501/ 

but the exact length must be determined by experimentation in each 
case. 

In the ideal case, where the conductor is very thin and there 
are no surrounding objects in the vicinity of the antenna, the cen­
ter point shows an impedance of 73 ohms, purely resistive (Z = 

73 + jO) at the resonant frequency. Below the resonant frequency, 
there is some capacitive reactance, and the resistive component 
decreases. Above the resonant frequency, the reactance is induc­
tive, and the resistive component increases up to a certain point; 
but when the frequency is twice the resonant frequency, the reac­
tance disappears and the antenna is again resonant, but the resis­
tive component is very high. 

The current and voltage distribution for a resonant, half-wave 
dipole antenna are shown at Fig. 6-12. 

Quarter-Wave Vertical 

The quarter-wave vertical differs from the half-wave dipole 
primarily in that the vertical must be operated against a ground 
plane. In the ideal case, this ground plane would be perfectly con­
ducting. At the resonant frequency, such an antenna displays a 
purely resistive impedance half that of a half-wave dipole antenna. 
In complex form, this is 37 + jO. The effects above and below the 
resonant frequency are identical with those of the half-wave dipole. 

In practice, the resonant frequency is affected by surrounding 
objects. However, in the ideal case, the height H, in feet, is given by 

H = 234// 

where / is the frequency in MHz. This assumes a perfectly con­
ducting ground, no surrounding objects, and a very thin radiating 
conductor. In practice, this value may vary considerably. With a 
good ground system, the formula is closer to 

H : 2251/ 
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Fig. &1 2. Current and voltage distribution along a half-wave antenna. 

The resonant frequency of a vertical antenna is much more af­
fected by ground loss than is the resonant frequency of a half-wave 
dipole antenna. A good ground system is essential for the vertical 
antenna to operate efficiently. Losses in the ground can significantly 
raise the resistive value of the load, but the extra resistance-over 
and above 37 ohms-is loss resistance, and power is only dissipated 
and not radiated in the loss resistance. 

Figure 6-13 shows the current and voltage distribution along 
a resonant, quarter-wave vertical antenna over perfectly conduct­
ing ground .  

Example 6.7. Calculate the length, in feet. of a half-wave 
dipole for a frequency of 14 MHz. 

From the formula, L = 468/14 = 33.4 feet. In practice, the 
length would probably be on the order of L = 450/14 = 32 . 1  feet. 
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Fig. 6-13. Current and voltage distribution along a resonant, quarter-wave an­
tenna operating over perfectly conducting ground. 

Example 6.8. Calculate the height, in feet,  of a quarter-wave 
vertical antenna for operation at a frequency of 8.5 MHz. 

From the formula, H = 234/8.5 = 27.5 feet. In practice, the 
height would be on the order of H z 225/8.5 :: 26.5 feet. 

Full-Wave Loop 
A common type of antenna, especially at the higher frequen­

cies, is the full-wavelength loop. This antenna may be fed at any 
point along its perimeter, and may take any shape. The impedance 
varies somewhat depending on the shape; a circular configuration 
results in the highest impedance, and more complex polygon shapes 
result iR lower impedances. In the extreme case (which would never 
be used in practice), the full-wave loop is a half-wave section of 
transmission line, shorted at the far end; this would give a theoret­
ical feed-point impedance of zero. 

The circumference of a full-wavelength loop is given approxi­
mately by 

C = 1 005// 

where C is the circumference in feet and/is the frequency in MHz. 
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If the conductor diameter is relatively large, the formula is more 
nearly 

C = 970lj 

The feed-point impedance of a full-wave loop is about 50 to 75 
ohms, depending on the shape of the loop. The most common 
shapes are the circle, the square, and the triangle (Fig. 6-14) . 

.. --Radiator 

Feed l ine 

14---Radiator 

Feed line 

��- Radiator 

Feed l ine 

Fig. 6-14.  Three common configurations for a ful l-wave loop. 
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Example 6.9. Calculate the circumference of a full-wave loop 
for a frequency of 7.2 MHz. 

From the formula, C = 100517 .3 = 138 feet. If the conductor 
diameter is rather large, the value is closer to C = 133 feet. 

As with other types of antennas, the proximity of objects will 
affect the resonant frequency; so in practical cases these values 
must be taken as approximate, and the precise length determined 
by experimentation. 

The Vagi and Quad 

The Yagi antenna is a dipole with parallel parasitic elements 
near it. There may be one parasitic element, or there may be 
several. The design of Yagi antennas is beyond the scope of this 
book. However, it should be noted that the feed-point impedance 
of the driven element of a Yagi is lowered by the proximity of para­
sitic elements. With one parasitic element, the feed-point impedance 
is cut approximately in half. With two or more parasitic elements, 
the feed-point impedance is cut to one-third or even less, compared 
to the nominal 73 ohms for the half-wave dipole. Figure 6-15  shows 
a typical three-element Vagi. 

The quad antenna is similar to the Vagi, except that full­
wavelength loops are used rather than half-wavelength dipoles. The 
feed-point impedance for the quad is lowered similarly to that in 
the case of the Yagi. Figure 6-16 shows the configuration of a typi­
cal two-element quad antenna. 

Fig . 6-15. A typical three-element Vagi. The driven element is at the center. 
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Fig. 6-1 6. Configuration of a two-element quad antenna. 

The main advantage of the Yagi and quad are that they pro­
duce gain over a half-wave dipole. They also provide directivity. 
In general, the greater the number of elements in a Yagi or quad, 
the greater the gain over the dipole or full-wavelength loop. 

The Longwire 

A unique sort of antenna is known as the longwire. A true long­
wire must be at least several wavelengths long; but for our pur­
poses I will consider any end-fed wire longer than one wavelength 
to be a longwire. 

The impedance at the end of a longwire is always very high­
in theory, infinite, but in practice, on the order of a few hundreds 
or thousands of ohms. The impedance is a pure resistance when­
ever the antenna is an integral multiple of a half wavelength long. 

Longwires also produce gain over the half-wave dipole antenna. 
The longer the wire, the greater the gain. 

Longwires may be fed a quarter wavelength from one end. If 
the wire is an integral multiple of a half wavelength long, the im­
pedance will be purely resistive and rather low-about 50 to 100 
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ohms, depending on the length of the wire. The longer the wire, 
the higher the impedance will be. Figure 6-17  illustrates current 
feed for a longwire having a length of two wavelengths. 

Longwires may also be fed a half wavelength from one end . 
If the wire is an integral multiple of a half wavelength long, the 
feed-point impedance will be very high, but purely resistive. An 
example of this, for a wire three wavelengths long, is shown in Fig. 
6-18. 

Both of the above. cases assume a resonant condition; that is, 
the wires must be exactly an integral multiple of a half wavelength 
long. 

Transmatches and Matching Networks 

Although it is ideal for the transmitter output impedance to ex­
actly match the transmission line characteristic impedance, and also 
for the characteristic impedance of the line to match the antenna 
impedance, this is rarely the case. Small mismatches will not cause 
much of a problem at the antenna feed point; in general, if the SWR 
is 2 : 1  or less, the loss caused by the feed-point mismatch will not 
be of any real consequence. The situation is different at the trans­
mitter output; any mismatch there will cause a reduction in the real 
output of the transmitter. Many transmitters, at least for amateur 
use, have built-in matching networks that can compensate for a mis­
match of up to 2 : 1 .  Some older transmitters have output units that 
will correct mismatches as high as 4 : 1  or even 6 : 1 .  

... �-----------2 wavelengths __ _ _ _ _  ���1 
...--1/4 wavelength 

..... - Feed 
line 

"radiator 

Fig. 6-17. Current feed for a two-wavelength longwire. 
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... 14 ..... ------3 wavelengths--------t ..... 1 

-1 1 /2 
.,..-wavelength 

"'-- Feed 
l ine 

\ Radiator 

Fig. 6-1 8. Voltage feed for a three-wavelength longwire. 

A transmatch is an inductance-capacitance (LC) network, 
provided with a variable capacitor or perhaps two variable capaci­
tors, and occasionally a variable inductor. The adjustment of these 
capacitors and inductors allows the reactive component in the an­
tenna system to be cancelled out. For example, if the input im­
pedance at the transmitter end of the line is 50 + j100 ohms, the 
transmitter can supply -j100 ohms, resulting in an impedance of 
50 + j100 - j100 = 50 + jO ohms as the transmitter "sees" it. 
The transmatch at the transmitter end of the line will not correct 
any mismatch along the line itself, but it will provide the transmit­
ter with the proper operating conditions so that it will work at its 
best. Figure 6-19 illustrates four commonly used types of trans­
matches. 

Impedance matching at the antenna feed poitit is by far the 
more desirable way to provide the transmitter with the proper load. 
This method will not only help the transmitter, but will get rid of 
SWR losses along the transmission line itself. This kind of device 
is essentially a transmatch, but is usually not adjustable. Remote 
antenna tuners are available, and some of them will even tune them­
selves according to the frequency of the input and the dimensions 
of the antenna. 

There are other methods of matching an antenna system to a 
feed line. Assuming there is no reactance in the antenna (that is, 
the antenna is a resonant antenna), but the impedance of the an-
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tenna is not the same as the characteristic impedance of the line, 
you may use: 

1) An impedance transformer; 
2) A delta or gamma matching device; 
3) A quarter-wave section of transmission line. 

The impedance transformer is a simple transformer, similar 
to an audio impedance transformer. Let the antenna impedance be 
represented by R, a pure resistance, and the feed-line characteris­
tic impedance be represented by ZOo Then the turns ratio is cal­
eulated by 

where T is the primary-to-secondary ratio. 
Example 6. 1 0 .  Suppose the antenna impedance, R, is 300 

ohms, and the feed-line characteristic impedance, Zo' is 50 ohms. 
Then what should the primary-to-secondary turns ratio, T, be in 
order to match the impedances? 

From the formula: T = J5FO-16-0-0 = J1i6 = 0.41 

This means that the secondary would have 110 .4 1 ,  or 2.44, times 
the number of turns as the primary. 

Delta and gamma matching devices fire actually transformers 
but they do not use coils of wire. Instead, they use modified sec­
tions of transmission line. The delta match is used with a balanced 
feed line, while the gamma match is used with unbalanced lines. 
Figure 6- 19 illustrates both of these types of matching systems. 
The design details are beyond the scope of this discussion. The 
impedance-transfer ratio is determined by the dimensions of the 
delta match, and by the dimensions and relative conductor di­
ameters of the gamma match. 

The quarter-wave transmission-line matching section operates 
on a somewhat different principle. Given an antenna impedance, 
purely resistive, of R, and a feed-line section impedance of Zo' the 
impedance at the input end of the line will be a pure resistance Rj 
of 

In other words, the characteristic impedance of the quarter-wave 
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" 

Fig. 6-19. Four commonly used types of transmatches. At (A) is a circuit for 
unbalanced loads having low impedance. At (8) is a circuit for unbalanced loads 
having high impedance. At (C) is a circuit for balanced loads having low im­
pedance. At (0) is a circuit for balanced loads having high impedance. 

section must be the geometric mean of the antenna impedance and 
the desired input impedance. 

It should be noted that the section of line must be an electrical 
quarter wavelength. This length is given by the equation 

L = 246V/j 

where L is the length in feet , V is the velocity factor of the line, 
and j is the frequency in MHz. Coaxial lines with solid dielectric 
generally have a velocity factor of 0.66; coaxial lines with foamed 
dielectric have a velocity factor of about 0.80; television "twin lead" 
has a velocity factor ranging from 0.80 to 0.85; and open-wire, par­
aile I line has a velocity factor ranging from 0.90 to 0.95, depend­
ing on the number of spacers per unit length. 

Example 6. 1 1 . Calculate the characteristic impedance of a 
quarter-wave matching section that would be used to match a 
50-ohm transmitter (input) to an antenna with an impedance, purely 
resistive, of 100 ohms. 

give 
From the formula, 50 = Zo2/100. This can be rearranged to 

Z02 = 50 x 100 = 5000 
Zo :: 15000 = 71 ohms 

A 75-ohm length of coaxial cable is pretty close to the needed value 
and would thus be suitable for this purpose. 

Example 6- 12. Calculate the characteristic impedance of a 
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quarter-wave section of transmission line that would be used to 
match a 50-ohm input to a resonant antenna having an impedance 
of 25 ohms. 

gIve 
From the formula, 50 + Zu 2/25. This can be rearranged to 

Z02 = 50 x 25 = 1250 
Zu = 1 1250 = 35 ohms 

This presents a problem, since there are no commercially avail­
able coaxial lines that have this characteristic impedance. However, 
you might connect two 75-ohm lines in parallel to make the match­
ing section; then you would get a line with Zu = 37.5 ohms, which 
is close enough for practical purposes. 

6.8 PRACTICE EXERCISES 
6. 1 .  How is the radiation resistance of an antenna expressed? 
6.2. Using the graph at Fig. 6-2, find the radiation resistance for 
a center-fed antenna in free space having a length of 114 wavelength. 
6.3. Using the graph at Fig. 6-3, find the radiation resistance of 
a vertical radiator in free space that is 0.35 wavelengths long. 
6.4. Calculate the characteristic impedance of a parallel-wire line 
having conductor diameters of 2 mm and a center-to-center spac­
ing of 50 mm. 
6.5. Calculate the characteristic impedance of an air-dielectric coax­
ial cable having an inner conductor diameter of 1 mm and an in­
side diameter for the outer shield of 20 mm. 
6.6. Name all the cases when all of the power will be reflected at 
the termination of a transmission line. 
6 .7 .  When will � of the power be reflected at the termination 
of a transmission line? 
6.8. Suppose an antenna, resonant but with a resistance of 225 
ohms, is connected to a feed line having a characteristic impedance 
of 75 ohms. What is the SWR? 
6.9. Suppose the maximum voltage at a loop along the line is 333 
volts, and the minimum voltage is 66 volts. What is the SWR? 
6 . 10. If the maximum current along a transmission line is 4.4 am­
peres and the minimum current is 3.5 amperes, what is the SWR? 
6. 1 1 .  If the perfectly matched line loss is 3 dB and the SWR is 6: 1 ,  
find the SWR loss using Fig. 6-8 (SWR is at the feed point .) 
6 . 12 .  Suppose the SWR is measured as 6: 1 at the transmitter end 
of the line. Find the SWR loss as in the above example, using Figs. 
6-7 and 6-8. 
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6 .13 .  Find the to�al line loss in the example of Ex. 6. 1 1 .  
6 . 14 .  Find the total line loss in the example of Ex. 6 . 12 .  
6 . 15 .  What potential damaging effects can high SWR have on a 
transmission line? 
6. 16 .  On the Smith chart of Fig. 6-10, draw the SWR circle corre­
sponding to an SWR of 4: 1 .  
6. 17. Suppose you have an antenna of 200 ohms pure resistance, 
connected to a 50-ohm feed line. What will the value R + jX be 
at 114 wavelength from the feed point? 
6 .18 .  In the above situation, if the feed line is 3/4 wavelength long, 
what will the value of R + jX be at the transmitter? 
6. 19. Calculate the length of a half-wave dipole antenna, in prac­
tice, for a frequency of 3.6 MHz. 
6.20. Calculate the height of a quarter-wave vertical, in practice, 
at a frequency of 2 1 . 1  MHz. 
6.21 .  Calculate the circumference of a full-wave loop, having a very 
thin conductor, for a frequency of 14 .05 MHz. 
6.22. What happens to the input impedance of an antenna when 
parasitic elements are added? 
6.23. What is the difference in input impedance, in qualitative 
terms, for a longwire that is voltage-fed as opposed to current-fed? 
6.24. How does a transmatch eliminate the reactance in an antenna 
system? 
6.25. Calculate the primary-to-secondary turns ratio for a trans­
former that will match a 300-ohm line to a 73-ohm resonant antenna. 
6.26. Calculate the primary-to-secondary turns ratio for a trans­
former that will match a 50-ohm line to a 73-ohm antenna. 
6.27. Would a transformer normally be necessary in Ex. 6.26? Why 
or why not? 
6.28. Calculate the characteristic impedance of a quarter-wave sec­
tion of transmission line that would be needed to match a 50-ohm 
transmitter to an antenna having a purely resistive impedance of 
300 ohms. 
6.29. Calculate the characteristic impedance of a quarter-wave sec­
tion of transmission line that would be needed to match a 50-ohm 
transmitter to an antenna having a purely resistive impedance of 
10 ohms. 
6.30. If an antenna has a purely resistive impedance of 200 ohms 
and the quarter-wave section of line has a characteristic impedance 
of 75 ohms, what impedance will appear at the input? 
6 .3 1 .  What would the length, in feet, of a quarter-wave section of 
line be at 14 MHz, assuming a velocity factor of 0.66? 
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General Exercises 

7 . 1 .  Impedance has the following relation to reactance and 
resistance: (a) numerical sum of R and X, (b) algebraic sum, (c) vec­
tor sum, (d) square of sum. 
7.2. When two identical impedances are connected in series the 
total impedance is the: (a) sum of the two, (b) difference between 
the two, (c) reciprocal of the two. 
7.3. When two identical impedances are connected in parallel the 
equivalent impedance is (a) higher than either one, (b) lower than 
either, (c) the square root of the sum of the two. 
7.4. An impedance consists of a reactance and resistance; however, 
a resistance alone is termed an impedance (a) always, (b) only at 
low frequencies, (c) only below 10000, (d) only at radio frequencies. 
7.5. When a resistance and a reactance in series each have the same 
value the resulting impedance is equal to (a) either the resistance 
or the reactance, (b) square root of resistance or reactance, (c) sum 
of resistance and reactance, (d) J2 times the resistance or the 
reactance. 
7.6. At low frequencies the resistance component in the impedance 
of an inductor is (a) resistance of wire in the coil, (b) skin effect, 
(c) quadrature losses. 
7.7. At high radio frequencies the resistance component in the im­
pedance of an inductor is due to (a) resistance of wire in the coil, 
(b) skin effect, (c) in-phase dielectric losses, (d) resistance of fix­
tures, (e) all of these. 
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7.8. The current through an impedance is (a) inversely proportional 
to the voltage, (b) directly proportional to the voltage, (c) neither 
of these. 
7.9. The voltage drop across an impedance is (a) inversely propor­
tional to the current, (b) directly proportional to the current, (c) 
neither of these. 
7 . 10 .  An impedance is (a) inversely proportional to current flow­
ing through it, (b) directly proportional to current, (c) neither of 
these. 
7. 1 1 . If the phase angle is known an impedance may be resolved 
into its R and X components by means of (a) vector diagram, (b) 
trigonometry, (c) either of these. 
7 . 12 .  In an impedance device the phase angle between X and R 
is equal to (a) XR, (b) tan XIR, (c) sin RIX, (d) cos RIX, (e) 
tan - IXIR, (f) sin - IXIR. 
7 . 13 .  For an inductive reactance, doubling the frequency (a) dou­
bles the reactance, (b) halves the reactance, (c) multiplies reactance 
by .f2. (d) multiplies reactance by 1 .5. 
7. 14. For a capacitive reactance, doubling the frequency (a) dou­
bles the reactance, (b) halves the reactance, (c) squares the reac­
tance, (d) divides the reactance by ..[2. 
7. 15 .  In a series RC circuit in which Xc = R, the phase angle in 
degrees is (a) 30, (b) 15, (c) 20, (d) 75, (e) 45. 
7 . 16. In a resonant circuit containing XL and Xc' XL equals (a) 
zero, (b) twice Xc' (c) Xc' (d) 0.5Xc' (e) none of these. 
7 . 17 .  In a circuit containing XL and Xc the combined reactance is 
(a) XL - Xc> (b) XL + Xc> (c) neither of these. 
7. 18 .  The impedance at the center of a horizontal half-wave an­
tenna high above the ground is approximately (a) 480, (b) 730, (c) 
6000, (d) 750. 
7. 19. When a generator drives a load the load impedance is (a) in 
series with the generator impedance, (b) in parallel with the gener­
ator impedance, (c) both of these. 
7.20. When a load impedance ZL is transformer coupled the 
reflected impedance is equal to ZL times (a) turns ratio, (b) 0.5 
turns ratio, (c) square of turns ratio, (d) square root of turns ratio. 
7.2 1 .  When a generator (impedance = ZG) drives a load (im­
pedance = ZL) maximum power is transferred when (a) ZL > ZG. 
(b) ZL = 10ZG, (c) ZL = 0.5ZG, (d) ZL < ZG· 
7.22. The impedance ratio of a transformer equals (a) turns ratio, 
(b) square root of turns ratio, (c) 0.5 turns ratio, (d) square of turns 
ratio. 
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7.23. The turns ratio of a transformer equals (a) impedance ratio, 
(b) square root of impedance ratio, (c) 0.5 impedance ratio, (d) square 
of impedance ratio. 
7.24. The input impedance of a quarter-wave line is (a) directly 
proportional to the square of the characteristic impedance of the 
line, (b) inversely proportional to the square of the characteristic 
impedance, (c) neither of these. 
7.25. Where ZIN and ZOUT are the input and output impedances 
of a quarter-wave line the characteristic impedance of the line equals 
(a) Z

�
ZOUT' (b) , ZIN1ZOUT)' (c) (ZIN ZOUT)2, (d) ZOUT - ZIN (e) 

JZ1N OUT· 
7.26. The characteristic impedance of a solid-dielectric line is (a) 
higher than that of an open-air line, (b) lower than that of an open­
air line, (C) equal to that of an open-air line. 
7.27. In an impedance-matching cathode follower the output im­
pedance is (a) lower than the cathode resistance, (b) higher than 
the cathode resistance, (c) equal to the cathode resistance. 
7.28. In an impedance-matching FET source follower the output 
impedance is (a) lower than the source resistance, (b) higher than 
the source resistance, (c) equal to the source resistance. 
7.29. Attenuation in nepers is (a) lower than decibels, (b) higher 
than decibels, (c) equal to decibels. 
7.30. Power factor equals (a) sin 0, (b) tan 0, (c) cos 0, (d) none of 
these. 
7 .3 1 .  Power factor equals (a) Z/R, (b) R/Z, (c) neither of these. 
7.32. Figure of merit or Q equals (a) R/X, (b) J R/X, (c) R/X2, (d) 
X/R, (e) none of these. 
7.33. The voltage drop across an ac ammeter equals (a) ERw (b) 
E/Rw (c).J ERw (d) E - RM• 
7.34. In the resistancelbalance method of impedance measurement 
the ratio of resistance voltage drop to impedance voltage drop is 
(a) 2, (b) 0.5, (c) 0 . 1 ,  (d) 4, (e) 1 .  
7.35. In the standing-wave method of measuring impedance, the 
unknown impedance is found by multiplying the SWR by the (a) 
characteristic impedance of the line, (b) input impedance of the line, 
(c) output impedance of the line, (d) product of input and output 
impedance of the line. 
7.36. When the load impedance equals the generator impedance 
the load voltage is equal to (a) the open-circuit voltage of the gener­
ator, (b) one-tenth of the open-circuit voltage of the generator, (c) 
half the open-circuit voltage of the generator, (d) none of these. 
7.37. The reciprocal of impedance is called (a) susceptance, (b) 
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reluctance, (c) conductance, (d) admittance, (e) remittance. 
7.38. The reciprocal of resistance is called (a) susceptance, (b) reluc­
tance, (c) conductance, (d) admittance, (e) remittance. 
7.39. The reciprocal of reactance is called (a) susceptance, (b) con­
ductance, (c) reluctivity, (d) admittivity, (e) none of these. 
7.40. Impedance of one gigohm is (a) one million ohms, (b) ten mil­
lion ohms, (c) one thousand megohms, (d) ten billion ohms. 
7.4 1 .  Impedance of one teraohm is (a) 10 120, (b) 101 10, (c) 10180, 
(d)10200. 
7.42. Impedance of one megohm is (a) 10,000K, (b) 1000K, (c) 
lOOK, (d) none of these. 
7.43. Impedance of one milliohm is (a) 0.10 megohm, (b) 0 . 1  kilohm, 
(c) 0 . 100 ohm, (d) 0 .010 (e) 0.00 10. 
7.44. Impedance of one kilohm is (a) 0 .1  megohm, (b) 0.2 megohm, 
(c) 0 .01 megohm, (d) 0 .001 megohm, (e) none of these. 
7.45. Is period the time duration of one cycle? 
7.46. Numerically, is period O . lIft 
7.4 7 .  In a sine-wave cycle, does 0 = 2 ?rft? 
7.48. Does angular velocity equal 6.28 times the frequency? 
7.49. Does one radian equal 58 degrees? 
7.50. In a square wave are maximum value, rms value, and instan­
taneous value equal? 
7 .5 1 .  In an impedance measurement made with a distorted wave 
can the error be as high as the percentage of distortion? 
7.52. Is phase angle equal to the tangent of the reactance-to­
resistance ratio? 
7.53. Does pure resistance introduce only a 1 0 phase shift? 
7.54. Does pure reactance introduce a 90 0 phase shift? 
7.55. At the same frequency, are inductive reactance and capaci­
tive reactance always equal? 
7.56. Does capacitive reactance introduce lagging phase shift? 
7.57. In a resonant circuit containing R, C, and L, does the 
resistance (R) disappear? 
7.58 .  As frequency decreases, inductive reactance decreases and 
capacitive reactance increases? 
7.59. When inductive reactance and capacitive reactance are both 
present in a circuit, the combined reactance is equal to XL - Xc? 
7.60. Impedance is the sum of the squares of resistance and 
reactance? 
7.61 . Do series-impedance circuits and parallel-impedance circuits 
have different equations for total impedance? 
7.62. The horizontal (resistance) component of an impedance is 
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equal to Z sin 8? 
7.63. Are standing waves, usable for impedance measurement, 
present on a transmission line that is terminated in its characteris­
tic impedance? 
7.64. Maximum power is transferred when a generator is termi­
nated in its internal impedance? 
7.65. In most cases, the output impedance of device appears as 
a series impedance? 
7.66. In an impedance-matching transformer the turns ratio equals 
the square of the impedance ratio? 
7.67. The length of an impedance-measuring transmission line can 
be any even multiple of a quarter-wavelength? 
7.68. A suitable section of transmission line is usable as a linear 
transformer for rf impedance matching? 
7.69. Would an advantage of an active follower (tube or transis­
tor) be its ability to provide power gain? 
7.70. A resistor-pad attenuator matches impedance while provid­
ing a desired amount of attenuation? 
7.7 1 .  In conjugate impedance. X has a value common with that 
in another impedance, but a different resistance value is encoun­
tered. Is this statement true or false? 
7.72. Two impedances. Zl ' and Z2' are reciprocal when ZIZ3 = 

Z2? 
7.73. Frequencies at which the driving-point impedance of a two­
terminal reactive network is zero are termed poles of impedance? 
7.74 .  Is power factor equal to the cosine of the phase angle? 
7.75. Figure of merit: or Q is the ratio of reactance to resistance? 
7.76. The ammeter method is convenient for measuring im­
pedance, since the internal resistance of the meter has no effect? 
7.77. Are transmission-line methods of measuring rf impedance 
limited to those high frequencies at which the physical length of 
the line is not prohibitive? 
7.78. Whereas the slotted line is a recognized tool for microwave 
measurements, simpler SWR meters are unacceptable for rf im­
pedance measurements. Is this statement tme or false? 
7.79. When an amplifier drives a load impedance equal to the out­
put impedance of the amplifier, is the load voltage one-half of the 
open-circuit (no-load) output voltage of the amplifier? 
7.80. The impedance of an iron-core filter choke should be meas­
ured with the rated direct current flowing through the choke? 
7.8 1 .  True impedance is always a frequency-dependent property? 
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7.B2. Impedance varies more rapidly with change of the resistive 
component than with change of the reactive component? 
7.B3 .  How many picofarads is a 4.7-JLF capacitor? 
7.B4. Calculate the range in microfarads for a variable capacitor 
having a maximum value of 500 pF and a minimum value of 17 pF. 
7.B5. Find the value, in JLF, of the parallel combination of a 100 
pF, an 0.001 JLF, and an 0.01 JLF capacitor. 
7.B6. Find the series capacitance of the three capacitors above. 
7.B7 .  Find the reactance of an 0.005 JLF capacitor at 4 MHz. 
7.BB. Find the reactance of the same capacitor at 40 MHz. 
7.B9. Suppose a capacitor has a reactance of - 300 ohms at a fre­
quency of 50 kHz. What is its value in JLF. 
7.90. Find the value of ( - 3;)2. 
7.91 .  Find the value of - 30)2. 
7.92. What is the length of the impedance vector for the complex 
representation 50 + j20? 
7.93. What is the length of the impedance vector in the case 50 
- j20? 
7.94. Suppose a pure capacitance of 500 pF is used at a frequency 
of 10  MHz. What is the complex representation of the impedance? 
7.95. In the above example, what would the length of the im­
pedance vector, and its orientation, be? 
7.96. If the SWR at the feed point of an antenna system is 3: 1 ,  and 
the load is a pure resistance, and the line impedance is 300 ohms, 
name the two possible complex expressions for the load impedance. 
7.97. Find the radiation resistance of a center-fed antenna having 
an overall length of 5/B wavelength. 
7.9B .  Find the radiation resistance of a liB-wave vertical radiator 
fed against a perfectly conducting ground. 
7.99. Find the characteristic impedance of a parallel-wire line hav­
ing conductors liB inch in diameter and a spacing of 5 inches center­
to-center. Assume the dielectric is air. 
7. 100. Find the characteristic impedance of a coaxial, air-dielectric 
cable, with an inner conductor 1116 inch in diameter and an outer 
conductor having an inside diameter of 112 inch. 
7 . 10 1 .  What is the practical effect of adding insulation or dielec­
tric material to a transmission line? 
7. 102 .  Why is it important to keep a parallel-wire transmission line 
reasonably clear of obstructions that are conductors? 
7 . 103. An antenna feed line has a maximum voltage of 400V and 
a minimum voltage of 75V. What is the SWR? 
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7. 104. If the above feed line is tenninated in a pure resistance, 
name the two possible complex representations of the load im­
pedance. 
7.105. In a lossless transmission line tenninated in a pure resistance 
equal to the characteristic impedance of the line, how do the cur­
rent and voltage vary at different points along the line? 
7. 106. Can the SWR ever be 1 : 1  when a line is tenninated with a 
load having reactance? 
7. 107 .  What is the SWR on a feed line of Zo = 50 ohms, tenni­
nated in a pure capacitance of 100 pF at 10 MHz? At 20 MHz? 
7 .108. In the above situation, what would the input impedance be, 
assuming the feed line was 114 wavelength long? (Use the complex 
representation.)  What if the line was 112 wavelength long? 3/4 
wavelength? A full wavelength? 
7 .109. What happens to the SWR along a feed line as you get far­
ther and farther from the load? 
(True/False) 
7 . 1 10 .  Radiation resistance is a function of the physical length of 
an antenna. 
7. 1 1 1 . Radiation resistance can be affected by objects in the vi­
cinity of an antenna. 
7 . 1 12. The reactance of a capacitor increases with frequency. 
7. 1 13. The reactance of a capacitor increases with capacitance 
value. 
7 . 1 14. At resonance a circuit is devoid of reactance. 
7 . 1 15 .  Capacitors in parallel add like inductors in series. 
7 . 1 16. Capacitors in parallel add like resistors in parallel. 
7. 1 17. The Smith chart can be used to detennine feed-line SWR. 
7 .1 18. The SWR on a feed line is equivalent for voltage and current. 
7 .1 19. Lengths of transmission line can be used as impedance trans­
fonners. 
7. 120. A high SWR can cause damage to a transmission line. 
(Correct answers are to be found in Appendix D.) 
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Appendix A 

I mpedance Conversion Factors 

TO CONVERT 

FROM TO MULTIPLY BY 
gigohms kilohms 10 - 6 
gigohms megohms 10 - 3 
gigohms microhms 10 - 15 

gigohms milliohms 10 - 12 

gigohms ohms 10 - 9 
gigohms teraohms 103 
kilohms gigohms 106 
kilohms megohms 103 
kilohms microhms 10 - 9 
kilohms milliohms 10 - 6 
kilohms ohms 10 - 3 
kilohms teraohms 109 
megohms gigohms 103 
megohms kilohms 10 - 3 
megohms microhms 10 - 12 

megohms milliohms 10 - 9 
megohms ohms 10 -6 
megohms teraohms 106 
microhms gigohms 1015 
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TO CONVERT 

FROM TO MULTIP LY BY 

microhms kilohms 109 
microhms megohms 1012 

microhms milliohms 103 
microhms ohms 106 

microhms teraohms 1018 

milliohms gigohms 1012 

milliohms kilohms 106 

milliohms megohms 109 
milliohms microhms 10 - 3 
milliohms ohms 103 
milliohms teraohms 1015 

ohms gigohms 109 
ohms kilohms 103 
ohms megohms 106 

ohms microhms 10 - 6 

ohms milliohms 10 - 3 
ohms teraohms 1012 

teraohms gigohms 10 - 3 
teraohms kilohms 10 - 9 
teraohms megohms 10 - 6 

teraohms microhms 10 - 18 

teraohms milliohms 10 - 15 

teraohms ohms 10 - 12 
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Appendix B 

Phase Angle Data 

� () XIR 
(degrees) (radians) 

10 0 . 1 7453 0. 17633 
15 0.26180 0.26795 
20 0.34906 0.36397 
25 0.43633 0.46631 
30 0.52360 0.57735 
35 0 .61086 0.70021 
40 0.69813 0.83909 
45 0.78540 1 .00000 
50 0.87266 1 . 19175 
55 0.95993 1 .42815  
60 1 .04720 1 .73205 
65 1 . 13446 2 . 14451 
70 1 .22 173 2 .74748 
75 1 .30899 3.73205 
80 1 .39626 5.67128 
85 1 .48353 1 1 .43005 
90 1 .57080 00 
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Appendix C 

Abbreviations and 

Symbols Used i n  This Book 

ABBREVIATIONS 

A -amperes; cross-sectional area of a coil 
ac-alternating current 
AF-audio frequency 
AMPL-amplifier 
arc tan-the angle corresponding to a given tangent; also written 

tan - i  
B-battery 
{3-reciprocal of reactance 
C-capacitance; capacitor 
cos-cosine of angle 
cosech-hyperbolic cosecant 
cosh-hyperbolic cosine 
coth-hyperbolic cotangent 
D-distortion; dissipation factor; depth 
d-diameter; differential of 
dB-decibels 
dc-direct current 
E-voltage 
e-instantaneous voltage 
Eac -alternating-current voltage 
EAVG-average value of ac voltage 
Ec-voltage across capacitor 
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EG-generator voltage 
eG-grid voltage 
EH-harmonic voltage 
EL -load voltage; voltage across inductor 
EMAX-maximum value of voltage 
emf-electromotive force 
EMIN-minimum value of voltage 
Eo-output voltage 
Ep-primary voltage 
Ep-plate voltage 
ER-voltage across resistor 
Erms. V rms -effective (root mean square) value of ac voltage 
Es-secondary voltage 
es-screen voltage 
ET-total (or combined) voltage 
ETERM-terminal voltage 
Ex-unknown voltage 
Ez-voltage across impedance 
F-farad; Fahrenheit 
f-frequency; fundamental frequency 
fR-resonant frequency 
G-n x 109; conductance; reciprocal of resistance 
GEN-generator 
gFs-forward transconductance of FET 
GHz-gigahertz 
gM-transconductance 
H-henry 
h-harmonic; height of core 
hFE-forward-current transfer ratio of bipolar transistor 
hIE-input impedance of bipolar transistor 
Hz-hertz 
I-current 
i-instantaneous current 
lac -alternating current 
IAVG-average value of alternating current 
iB-base current 
ic-collector current 
ID-inside diameter 
iE-emitter current 
iG-grid current 
IMAX-maximum value of current 
IM IN-minimum value of current 
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I p-primary current 
ip-plate current 
IpEAK-peak value of alternating current (fPEAK = 1 .414Irms) 
IR-current in a resistance 
IRMs-effective (root mean square) value of alternating current 
Is-secondary current 
is-screen current 
Iz-current in an impedance 
K -ohms x 1000; kilohms 
k-dielectric constant; any constant 
kHz-kilohertz 
I-length of winding 
L-inductance; inductor 
LEQ-equivalent inductance 
In-natural logarithm 
iN-most remote value of inductance 
log-common logarithm, for example, loglO  
LT-total inductance 
Lx-unknown inductance 
M-multiplier; megohms; mutual inductance; meter 
rnA -milliamperes 
mH -millihenrys 
MHz-megahertz 
ms; msec-milliseconds 
m V -millivolts 
n-transformer turns ratio; attenuation ratio 
n-any remote number 
Np-number of primary turns in a transformer 
Ns-number of secondary turns in a transformer 
ns; nsec-nanoseconds 
OD-outside diameter 
P-power 
pF -picofarads 
PI-power factor 
P L -load power 
P T-total power 
Q-figure of merit: Q = XIR; quality factor; symbol for transistor 
R -resistance; resistor 
RAc-alternating-current resistance 
rad-radians 
r H -bias resistor 
Rc-resistance of a coil 
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r E-emitter resistor 
RE-resistive losses due to eddy currents 
REQ-equivalent resistance 
rf-radio frequency 
RG-generator resistance; gate resistance of FET 
rc;-grid resistor 
r K-cathode resistor 
RL -load resistance 
RM-internal resistance of meter 
r ass -output resistance of FET 
r p-plate resistance 
RR-radiation resistance 
RREFL -reflected resistance 
r s-source resistor in FET circuit 
RT-total resistance 
Rx-unknown resistance 
S-switch 
s; sec-seconds 
sin-sine of angle 
sinh-hyperbolic sine 
SWR-standing-wave ratio 
T -transformer 
t-period; time 
tan-tangent of angle 
tanh-hyperbolic tangent 
TV -television 
TVM -transistorized voltmeter 
V -volts; velocity factor; symbol for electron tube 
VA-voltamperes 
vH-base voltage 
vc-collector voltage 
VDR-voltage-dependent resistor 
vE-emitter voltage 
VTvM-vacuum-tube voltmeter 
W-watts 
X-reactance; total reactance ; unknown quantity 
x-horizontal axis 
Xc-capacitive reactance 
XL-inductive reactance 
Y -admittance 
y-vertical axis 
Z-impedance 
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ZH - base impedance 
Zo. Zo -characteristic impedance 
z(-collector impedance 
zE-emitter impedance 
ZEQ-equivalent impedance 
Zc;-generator impedance 
zc;-grid impedance 
ZIN-input impedance 
ZL -load impedance 
ZM-mutual impedance 
ZN-the remotest impedance in a combination 
ZOUT-output impedance 
Zp-primary impedance; plate impedance 
ZREF-reflected impedance 
Zs-standard impedance; secondary impedance; source impedance 
ZT-total impedance 
ZM-internal impedance of voltmeter 
Zx-unknown impedance 

SYMBOLS 

A-difference between two successive values of a quantity; change 
O-angle; phase angle (radians); attenuation (in nepers) 
ct>-phase; phase angle (degrees) 
A-wavelength 
JA.- x 0.000001 ;  amplification factor; permeability; micron 
JA.F -microfarads 
JA.H -microhenrys 
JA.s-microseconds 
1I"-the constant 3. 14 159 + ;  the value of 11" given to nine decimal 

places by a pocket calculator is 3 . 14 1592654 
O-ohms 
w-angular velocity 211"/ 
> -is greater than 
< -is less than 
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Appendix D 

Answers to 

Practice Exercises 

1 . 1 .  0.2505 MHz 
1 .2 .  10,000 MHz 
1 .3 .  3550 kHz 
1 .4. 0.06 kHz 
1 .5. 8 x 109 Hz 
1 .6 .  0.2 p.s 
1 .7. 16.67 ms 
1 .8. 6 x 10- 7  s 
1 .9. 0.02s 
1 . 10. 1000 p's 
1 . 1 1 .  0.00025 ms 
1 . 12 .  1 .85 p.s 
1 . 13 .  3.68 x 10- 8  s 
1 . 14. 9.35 x 10- 5s 
1 . 15. 0 .0175 p's 
1 . 16. 1 x 1O-9s 
1 . 17. 3.33 x 10- 6  ms 
1 . 18. 0.000125 p's 
1 . 19. 100 Hz 
1 .20. 6.67 kHz 
1 .21 .  0. 1 MHz 
1 .22. 10 GHz 

Chapter 1 

1 .23. 120 Hz 
1 .24. 2 kHz 
1 .25. 1 MHz 
1 .26. 0.5 GHz 
1 .27. 1000 Hz 
1 .28. 14.28 kHz 
1 .29. 0. 1 MHz 
1 .30. 0.2 GHz 
1 .3 1 .  1 14.98V 
1 .32. - 2.95V 
1 .33. 10V 
1 .34. Zero volts 
1 .35. 0.625 p's and 0.875 p's 
1 .36. 0.208 ms and 1 .04 ms 
1 .37. 10,000 Hz 
1 .38. - 7.07V 
1 .39. (a) 0 .1  p's, (b) 0.3 p's 
1 .40. 200 Hz 
1 .41 .  0 .689 radian 
1 .42. 0.0916 radian 
1 .43. 309.4 degrees 
1 .44. 60 degrees 
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1 .45. 0.785 radian 
1 .46. 0.6283 radian 
1 .47. (a) 1 .57 radian, 

(b) 4.71 radians 
1 .48. 180 degrees 
1 .49. 270 degrees 
1 .50. (a) 251 .3 

(b) 785.4 
(c) 5026.4 
(d) 628,300 
(e) 3,392,820 
(f) 8,670,540 
(g) 1 . 1 78 x 107 
(h) 6.723 x 107 
(i) 1 .702 x 108 
G) 3.393 X 108 

1 .51 .  6283 kHz 
1 .52 . 10.6V 
1 .53. 1 .67 Il V 
1 .54. 5.67V 
1 .55. 6.37V 
1 .56. 3.66V 
1 .57. 0.000167V 
1 .58. 70.7V 
1 .59. 1 .4 1  Il V 
1 .60. 459.5V 
1 .61 .  34.24 mV 
1 .62. (a) 10% 

(b) 2 .5% 
(c) 1 %  

1 .63. 0 .104% 
1 .64. 6.59% 
1 .65. 2.5 mV 
1 .66. 2261 .9V 
1 .67. 16 .71V 
1 .68. 1 1 .309K 

2 . 1 .  1050 
2.2. 933.30 
2.3. 100 mV 
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1 .69. 628.30 
1 .70. 3. 183H 
1 .71 .  79.5 Hz 
1 .72 . 628.3V 
1 .73. 200 
1 .75. 0.00318H 
1 .76. 79.580 
1 .  77. 127.30 
1 .78. 165.80 
1 .79. 106 . 1  megohms 
1 .80. 79.58 Hz 
1 .81 .  6.28 rnA 
1 .82. 47.74V 
1 .83. 10K 
1 .84. 0.0397 IlF 
1 .85. 1 .59 m V 
1 .86. 5.77 IlF 
1 .87. 400 
1 .88. 12.50 
1 .89. (a) 14.91K 

(b) inductive 
1 .90. (a) 15.950 

(b) inductive 
1 .9 1 .  22.51 kHz 
1 .92. 0.833 MHz 
1 .93. 0.0316 IlF 
1 .94. 6 .25 pF 
1 .95. 41 .35 mH 
1 .96. 3. 13H 
1 .97. The regulation is 

better and the output 
is easier to filter. 

1 .98. Because the output 
frequency is effectively 
twice the input 
frequency. 
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2.4 .  6 .4V 
2.5. 0.4 rnA 
2.6. 1 .77A 



2.7 .  1 .38K 
2.8. 2.5 x 10- 5  gigohms 
2.9. 0.58 megohm 
2 . 10 .  5 x 105 microhms 
2. 1 1 . 100 milliohms 
2. 12 .  9.35 x 10 - 7  teraohm 
2 . 13 .  0.001 gigohm 
2. 14. 0.5 megohm 
2 . 15. 1 x 108 microhms 
2 .16 .  5 x 104 milliohms 
2 . 17 .  33,0000 
2 . 18 .  5.35 x 10 - 5  teraohm 
2 . 19 .  5 . 163 gigohms 
2 .20. 1 x 1 06K 
2 .2 1 .  1 x 1010 microhms 
2 .22. 1 x 106 milliohms 
2.23. 4.7 x 1060 
2 .24. 0.05 teraohm 
2 .25. 1 x 106K 
2 .26. 250 megohms 
2 .27. 1 x 1014 microhms 
2 .28. 1 x 109 milliohms 
2.29. 2 x 1090 
2 .30. 0.0003 teraohm 
2 .3 1 .  7000 gigohms 
2 .32. 1 .52 x 10 10K 
2 .33. 2 x 107 megohms 
2.34. 1 x 1016 microhms 
2.35. 1 x 1012 milliohms 
2.36. 8 x 101 10 
2 .37.  1 x 10- 12 gigohm 
2 .38. 5.52 x 10- 6K 
2.39. 1 x 10-8  megohm 
2.40. 0.02 milliohm 
2 .4 1 .  1 .37 x 1 0 - 40 
2.42. 1 .55 x 10 - 14 teraohm 
2.43. 0.0350 
2.44. O.OOlK 
2.45. 1.5 x 10 - 7  megohm 
2.46. 1 x 10-8  gigohm 
2.47. 1 x 10-9  teraohm 
2.48. 2692 .6Jt 

2 .49. 270.50 
2.50. 32. 17K 
2 .51 .  3947.40 
2.52 . 5870.80 
2.53. 57.85 degrees 
2 .54. 46.7 degrees 
2 .55. 13.26K 
2 .56. 0 . 1591 JtF 
2 .57. 18.745 Hz 
2 .58. 45 degrees 
2 .59. 86.36 degrees 
2 .60. 1 .374 radian 
2.6 1 .  150.79K 
2 .62. 918.9 Hz 
2 .63. 261 .5 mH 
2.64. 928.50 
2 .65. 4649.60 
2 .66. 32 . 15 degrees 
2 .67. 3.31 degrees 
2.68. 29.488 kHz 
2 .69. 22000 
2 .70. 29.590 
2 .71 .  R = 6280 

X = 136.20 
2 .72. R = 1 1 .310 

X = 1 1 .310 
2 .73. 10600 
2.74. 6 183.70 
2.75. 155.60 
2 .76. 85. 1 degrees 
2 .77. 464.88K 
2 .78. 1 .69 milliohm 
2 .79. 0.045 milliohm 
2.80. 72 .59 degrees 
2.81 .  14140 
2.82. 467.40 
2 .83. 109 . 10  
2.84. 71 .90 
2 .85. 1250 
2 .86. 0 . 1 13  to 1 
2 .87. 100 to 1 
2 .88. 4-, 2-, 5-, 400-, 900-, and 

21 1 



2500 to 1 ,  respectively 
2.89 . 1500 
2 .90. 18000 
2.91 . 3600 
2 .92 . 0.494 inch 
2.93. xa = 8.42 ft 

yb = 10.57 ft 
2.94.  289.60 
2.95. 5010 
2 .96. 250.20 
2 .97. 1 . 727 nepers 
2 .98. 26.06 dB 
2.99. (a) - 13.98 dB 

(b) 1 .609 nepers 
2. 100. ZI = 447.20 

Z3 = 5590 
2. 1 0 1 .  Z/2 = 223.60 

Z3 = 5590 
2 . 102 .  ZI 941 .90 

Z2 74.740 

Z3 = 78.290 
2 . 103. Z/2 = 470.90 

Z/2 = 37.370 
Z3 78.290 

2 . 104 .  ZI 17240 
Z2 251 .30 
Z3 = 589. 70 

2 . 105 .  ZI :z 17240 
Z2 = 251 .30 
Zi2 = 294.80 

2 . 1 06. 707. 10  
2 . 1 07. 0.0146 mho 
2 . 1 08. 33.3 milliohms 
2 . 109. 100 
2 . 1 10 .  99.62% 
2. 1 1 1 . 0.530 
2 . 1 12 .  314.2 
2 . 1 13 .  78540 
2 . 1 14 .  31830 
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3. 1 .  3100 
3.2. 1 .97 milliohms 
3.3. 0.250 
3.4. 20000 
3.5. 6 1 10  
3.6. 1 . 790 
3.7. 135.70 
3.8. 77.50 
3.9. 164.6K 
3 .10 .  58.8K 
3. 1 1 .  57.270 
3 . 12 .  5.40 
3. 13 .  30.30 
3. 14. 18750 
3 . 15. 750 
3 . 16 .  1 .020 
3 . 17 .  1000 
3. 18 .  5.67 times 
3.19 .  849 milliohms 
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3.20. 0.3180 
3.2 1 .  50.260 
3.22. 9000 
3.23. 1591 .50 
3.24. 24.870 
3.25. 9090 
3.26. 62 .50 
3.27. 227.30 
3.28. 72.20 
3.29. 6300 
3.30. 2 .67 
3.3 1 .  1 .0 
3.32. (a) Lx 1 .234H 

(b) Rx = 405.30 
(c) Zx 3127.70 

3.33. (a) Lx ::: 0 .95 mH 
(b) Rx 1 .9 milliohms 
(c) Zx = 5.970 



4 . 1 .  15 JLH 
4.2 .  70.7 
4.3. 200 JLH 
4.4. 1 1 . 1  % 
4.5. 2 .49 mH 
4.6.  No 
4.7. 0.964H 
4.8. 4000 
4.9. 1 .79 mH 
4.10 .  7160 JLH 
4. 1 1 . 0.866H 
4. 12.  0.067 JLH 
4. 13. 2 1 .050 

Chapter 4 

4. 14. 61 mH 
4. 15.  0.0013H 
4 . 16 .  10 - 8F 
4 . 17 .  10 - 4  JLF 
4 . 18. 4 .7 x 106 pF. 
4 . 19. It allows adjustment of 

frequency or frequency 
response. 

4.20. 0.51 JLF 
4.2 1 .  0.0098 JLF 
4.22. - 339 
4.23. - 1592 
4.24. 0.0008 JLF 

Chapter 5 

5. 1 .  j, or the square root of - 1 .  
5.2. - 1 . 
5.3. - 1 . 
5.4. 1 .  
5.5. R + lX, where R represents resistance and X represents 
reactance. 
5.6. 50 + jO. 
5 .7 .  0 + j(31 ,400). 
5.8. 0 + j318. 
5.9. Vector should begin at origin and end up in upper right quad­
rant with R = 50, ;X = -j40. 
5. 10. Vector should begin at origin, and end in upper right quad­
rant with R = 500, ;X = j275. 
5. 1 1 . It moves counterclockwise. 
5.12 .  It moves clockwise. 

Chapter 6 

6. 1 .  In ohms, according to the physical length of the antenna. 
6.2 .  Approximately 10 ohms. 
6.3. 0.35 wavelength is 126 electrical degrees; thus radiation re­
sistance is approximately 100 ohms. 
6.4. 469 ohms. 
6.5. 180 ohms. 
6.6. A short circuit, an open circuit, a pure inductive reactance, 
or a pure capacitive reactance at the load end. 
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6.7 .  Only when the load is a pure resistance exactly equal to the 
characteristic impedance of the line. 
6.8. 3: 1 .  
6.9. 5: 1 .  
6. 10. 1 .26: 1 .  
6 . 1 1 . 2 .5 dB. 
6.12.  The SWR loss would be so high that Fig. 6-7 cannot be used; 
the feed-point SWR can 't be found on the chart. 
6. 13. 5.5 dB. 
6. 14. Cannot be determined from charts. 
6.15 .  Overheating of line conductors and possible arcing. This 
might melt or burn dielectric material, causing permanent damage 
to the line. 
6. 16. The circle would be concentric with the outer circle and would 
pass through the points of 200 ohms and 12.5 ohms on the resis­
tance (vertical) axis. 
6.17 .  12.5 + jO. 
6 . 18. The same as in the case of 114 wavelength: 12.5 + jO . 
6 .19 .  130 feet, assuming a small conductor; 125 feet if the con­
ductor is large in diameter. 
6.20. 1 1 . 1  feet for a small-diameter conductor and 10 .7 feet for a 
large conducts diameter. 
6.2 1 .  7 1 .5 feet for a thin conductor and 69 feet for a thick one. 
6.22. It is lowered. 
6.23. Voltage feed results in a pure resistance of a large value; cur­
rent feed results in a pure resistance of a low value. 
6.24. By introducing an equal and opposite reactance. Thus, capaci­
tive reactance of value -;X is cancelled by introducing an induc­
tive reactance of + lX, and vice-versa. 
6.25. 2 .03: 1 .  
6 .26. 0.83: 1 .  This might also be expressed as 1 : 1 .2 1 .  
6.27. No, since the SWR loss in the case of Exercise 6.26 would 
be less than 1 dB no matter what the line type or length. 
6.28. 123 ohms. 
6.29. 22.4 ohms. 
6.30. 28. 1  ohms. 
6.3 1 .  1 1 .6 feet. 

7. 1 .  c 
7.2. a 
7.3. b 

2 1 4 

7.4. d 
7.5. d 
7.6. a 
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7.7 .  e 7.49. False 
7.8. b 7.50. True 
7.9. b 7.51 .  True 
7. 10. a 7.52. False 
7. 1 1 .  c 7.53. False 
7. 12 .  e 7.54. True 
7. 13. a 7.55. False 
7. 14. b 7.56 .  False 
7. 15. e 7.57. False 
7. 16 .  c 7.58. True 
7. 17 .  a 7.59. True 
7. 18. b 7.60. False 
7. 19. a 7 .61 .  True 
7.20. c 7.62. False 
7.2 1 .  e 7.63. False 
7.22. d 7.64.  True 
7.23. b 7.65. True 
7.24. a 7.66. False 
7.25. e 7.67. False 
7.26. a 7.68. True 
7.27. b 7.69. True 
7.28. a 7.70. True 
7.29. a 7.71 . False 
7.30. c 7.72 .  False 
7.31 .  b 7.73. False 
7.32 .  d 7.74. True 
7.33. C I 7.75. True 
7.34. e 7.76. False 
7.35. a 7.77 .  True 
7.36 .  C 7.78. False 
7.37. d 7.79. True 
7.38. C 7.80. True 
7.39. a 7.81 .  True 
7.40. C 7.82. False 
7.4 1 .  a 7.83. 4.7 x lOti pF. 
7.42. b 7.84. Minimum capacitance is 1 .7 X 10 - 5  
7 .43. e /LF; maximum is 5 x 10 - 4  /LF. 
7.44. d 7.85. 0.0 1 1 1  /LF. 
7.45. True 7.86. 9.009 x 10 - 5  /LF, or 90.09 pF. 
7.46. False 7.87. - 7.96 ohms. 
7.47. True 7.88. - 0.796 ohms. 
7.48. True 7.89. 0.01 /LF. 
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7.90. - 9. 
7 .92 53.9. represented as absolute value in ohms. 
7.93. The same as above. 
7.94. 0 - j32 
7.95. The vector would point straight down in the complex plane, 
and would have a length of 32 units, representing the absolute value 
in ohms. 
7.96. 900 + jO and 100 + jO. 
7.97. Using the chart in Chapter 6, the value is about 200 ohms. 
7.98. About 5 ohms. 
7.99. 525 ohms. 
7 . 100. 125 ohms. 
7. 101 . The characteristic impedance and velocity factor are lo­
wered. Also, the addition of dielectric makes installation more con­
venient and maintains constant separation of the conductors. 
7. 102 .  Conducting objects in the proximity of the line will affect 
the characteristic impedance. 
7. 103. 5.33: 1 .  
7 . 104 .  You can 't say since you don 't know the characteristic im­
pedance of the line. 
7. 105 .  The ratio is the same everywhere along the line, and the 
ratio Ell is equal to the line ZOo 
7. 106. No. 
7. 107. At both frequencies the SWR is undefined, that is, arbitrar­
ily high. 
7. 108. This would depend on the frequency. The input impedance 
would appear as a pure inductance at 114 and 3/4 wavelengths from 
the load; and it would be a pure capacitance 112 wavelength and 
1 wavelength from the load . 
7. 109.  It siecreases in practice because of line loss. 
7 . 1 10.  True 
7. 1 1 1 . True 
7. 1 12 .  False 
7 . 1 13.  False 
7 . 1 14. True 
7 . 1 15. True 
7. 1 16.  False 
7 . 1 17 .  True 
7 . 1 18. True 
7 . 1 19. True 
7 .120. True 
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A 
absolute value, I SS, 159 
ac, 1-27 

capacitive reactance In, 21 
components and values of, 8 
de combined with, 25 
inductive reactance in, 1 8  
rectified, 26 
resistance in, 1 8  
vector representation o f  compo­

nents of, 15-18 
active followers, 62 
ammeter method, 88-110, 1 12, 1 1 4, 

120 
amplifier 

input Impedance of, 109-1 1 2  
output impedance of, 1 1 2 

angular frequency, 8 
antenna effect, 84 
antenne system., forward and 

reflected power In, 188-192 
antennas, 44 

full-wave loop, 1 84  
half wave, 45, 46 
half-wave dipole, 181 
Iongwlre, 1 87 
quad, l 88 
quarter-wave vertical, 182 
raonant frequency of, 147 
Vagi, l 88  

attenuators, 88, 67 
average value, 8, 9 

B 
body capacitance, 83 

C 
calibrated variable _Itor, 108 
capacitance, 42 

ac circuit, 142 
body, 83  
mutual and Interactive, 145 
nature of, 141 

capacitive reactence (XC>, 21 
capacitor, 143, 144, 1 47 

I ndex 

impedance of, 120 
basic circuit, 146 
impedance of, 120 
types of, 146 

cathode follower (vacuum tube), 62, 
64 

characteristic impedance (l,,), 46, 
47, 168, 170 

choke coil, Impedance of, 1 1 6, 1 1 9  
coaxial, 48 
coil 

standard core, Inductance of, 133 
toroidal core, inductance of, 135 

complex impedances, ISS, 157 
complex numbers, 152 
complex waveform, 2 
counter emf, 128 
cycle, 1 

o 
delta, 62 
dielectric conltant, 143, 144 
distortion, 1 1  

E 
effective value, 10 
electrical inertia, 128 
eminer follower (bipolar tranliltor), 

62, 64 

F 
feeder, 57, 58 
Fourier analysis, 12 
frM-space length, 167, 168 
frequency (I), 3, 1 1  
frequency response, Inltrumental, 

81 

G 
generator, S, 50, 51 
generator impedance, 411, 51,  80 
geometric mean, 1111 

H 
harmonica, 1 1  

Hays bridge, 1 1 7, 1 1 9  
headphones, Impedance of, 120 
henrys (H), 128 
hertz, 3 

ideal parallel-resonant circuit, 41 
Ideal series-resonant circuit, 41 
imaginary numbers, 151 

positive and negative, 152 
impedance (Z), 33-73, 35, 40, 42, 50 

absolute value of, 159, 1 63, 164 
charecterlstic (l,,), 46, 47, 168, 

170 
commercial measuring In"ru-

ments for, 123 
common, 611 
common basic circuit., 41 
complex, 155 
composition 01, 34 
conjugate, 69 
conversion factors for, 201-202 
driving point, 611 
equivalent, 69 
generator, 49 
half-plana representation of, 1 58  
image, 69 
inductor, 1 38  
input and output, 51 
linear devices, 44 
Ioad, 50 
measurement of, 79-124 
methods to match, 54 
mutual, 70 
nonlinear, 70 
parallel, 161 
poles of, 70 
power fector In retatlon to, 72 
a in relation to, 72 
reactive, 34 
reciprocal, 70, 71 
reflected, 51 
resiatlve, 34 
..,..., 181 
surge, 47 
total, 71 
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universality of. 40 
zeros of. 71 

impedance bridge. 98. 1 20 
impedance meters. 92 
impedance-matching transformers. 

55. 59. 61 
in-phase. 13 
inductance. 42. 1 28-1 48 

effect of dc on. 136 
impedance of. 138 
mutual. 137 
straight round wire. 1 37 

inductive reactance (Lx)' 20 
inductor circuits. 139 
input and output impedance. 51 . 52 
input voltage divider method. 1 14 
instantaneous value. 8. 9 
instruments 

accuracy Of. 82 
impedance of. 80 

internal and external fields. 83 

J 
j operator. 151-165 

L 
lagging phase. 13 
lead length and dress. 83 
leading phase. 1 3  
line loss and SWR. 1 73. I n  
linear devices 

impedance in. 44 
impedance matching. 56 

load impedance. 50. 51 
load reSistor. 47. 49 
loudspeaker. impedance of. 120 

II 
matChing stub. 61 
maxima (loops). 107 
maximum value. 8. 9 
mechanical generator. Impedance 

of. 1 16 
minima (nodes). 107 

N 
nonlinear devices. impedance 01. 

121  
nonsinusoidal. 5 

o 
Ohm's law, 20 
oecillatOf1l. outpu1 impedance 01. 50. 

1 1 5  
overdriving, 82 
overloading. 83 

2 1 8 

p 
pad-type anenuators. 65 
parallel circuits. 37 
parallel impedances. 161 
parallel-resonant circuit. 23 
peak value. 9 
period (t). 2. 3 
permeability. 134 
phase. 13 

difference in. 14 
in-. 13 
lagging. 13 
leading. 13 
shift in. 14 

phase angle. 40. 42. ISO 
phase angle data. 203 
phase relations. 85 
picofarads. 22 
power 

real and apparent. 1 70 
rellected. effects 01. 1 74 

power factor. 158 
pure capacitance (C). 19. 21  
pure inductance (L). 18 .  19. 20 
pure resistance (R). 18. 1 9  

Q 
Q-bar matching section. SO. 62 
Q-meter method. 1 0 1 .  120 
quality lactor (Q). 72 

R 
radiation resistance. 1 68. 167. 168 
radiator. 167 
radio frequency bridge. 99 
reactance (X). 34. 35, 40 

combined. 22 
reactive impedance. 34 
receiver. input and output im-

pedance 01. 1 16 
rectlli8d &c. 26 
rectifier. 26, 27 
rellected impedance. 51 
rellacted resistance. 52 
resistance (R). 34, 35. 40. 42. 46 

rellected. 52 
resistance loading. 52 
resistancelbalance method. 93. 1 10. 

1 14. 120 
resistive impedance. 34 
resistor/vol1meter method. 1 12, 1 15 
resistorlwattmeter method. 1 1 2, 1 16 
resonance effect. 84 
resonant frequency (I�. 23. 147 
rf bridge. 1 20 
rf generator, 47 
rms value, 8. 10  

S 
self inductance. 128 
series circuits. 36 
series impedances. 161 
series-resonant Circuit, 23 
sine wave, ' .  3, 5. 6. 7 
sloned line, 106 
Smith chart, 178-181 
solenoid 

coretess muHilayer, inductance 01. 
132 

coreless single-layer. inductance 
of. 1 29-132 

source follower (FET). 62. 64 
substitution method. 9!>-98. 1 20 
surge impedance, 47 
SWR method. 108 

T 
temperature. 84 
test components, operating limits 01, 

82 
test Irequency, 79 
total harmonic distortion, 1 2  
transmatch. 189 
transmatches and matching net­

works. 188-191 
transmission lines, 103-106 

coaxial. 48. 49. 169. 1 73 
impedance in, 45 
parallel-wire, 169, 1 73 
two-wire. 47 

tube and transistOf1l, Impedance in, 
71 

turns ratio, 52 

U 
universal bridge, 98 

V 
value 

absolute. 1 55 
average, 8, 9 
conversion 01, 10  
effective, 10  
instantaneous, 8, 9 
maximum, 8, 9 
peak, 9 
rms. 8, 10  

vectors, 182 
vibration, 84 
voltmeter method, 90-92, 1 20  
voltmeter/ammeter method, 85-88, 

1 10, 1 1., 120 

W 
waveforms. I ,  80 

complex, 2 
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