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PREFACE 

This book is concerned with certain aspects of electromagnetic theory 
in their relation to the problems of modern radio and electronics engi-
neering. 

Several years ago, when this book was begun, there was no book 
which even approximately filled the very apparent need for an extensive 
treatment of field and wave theory from the radio engineer's point of 
view; all the needed information was distributed widely throughout 
the literature. Since that time several excellent textbooks have ap-
peared, each of which has filled a part of that need, yet in the present 
volume the purpose, order of presentation, choice of material, and 
emphasis are different enough from those of the others so that it is not 
a duplication of these. 

The present material was first prepared for use in company courses in 
which the students were at the same time starting their practice as 
engineers. The authors also had occasion to use essentially all the 
material of this book in their engineering analysis and laboratory work, 
in addition to trying to understand it from the slightly different point 
of view necessary for presentation in classes to other student engineers. 
The purpose was consequently one in which all the material should 
eventually be useful, either for specific design calculations or con-
ceptually for a better general understanding and extension of techniques 
first learned empirically. Physical understanding was therefore more im-
portant than mathematical rigor, yet the mathematical treatments had 
to be specific enough for usefulness in the required quantitative calcula-
tions. Analogies to any of the well-grounded tools, techniques, or 
concepts of the engineer were to be made use of whenever it seemed that 
these could ease the way into a new and difficult subject. 

Specifically, the most important objectives were the treatments of 
high-frequency circuits, skin effect, and shielding problems, problems 
of wave transmission and reflection, transmission lines and wave guides, 
cavity resonators, and antennas and other radiating systems, given in 
the latter two-thirds of this book; also — and this is important — to 
correlate fields and waves with circuits so that they are all seen as parts 

of a consistent whole. For study of these it is basically necessary only 
to present Maxwell's equations as the set of laws which apply, and then 

get on with the job. However, sad experience has made the authors 
believe that unless the preliminary introduction to the field equations is 
more extensive than a mere presentation, all further studies based upon 
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vi PREFACE 

them are to an extent unsatisfying and insecure. Early chapters are 
consequently devoted to the less interesting job of presenting the basic 
laws in some detail, raising and answering some of the questions that 
the student will otherwise inevitably raise for himself. 

This textbook is designed for students who have had the usual engi-
neering mathematics courses through the calculus, but not necessarily 
any additional subjects such as vector analysis or extensive courses in 
differential equations. The required additional mathematics and vector 
language are woven into the presentations of physical laws and procedure 
in this text as much as seemed practicable, so that the strong comple-
mentary relations between the physics and mathematics might be made 
evident. 
The first chapter is introduced to bridge certain gaps; in mathe-

matics, between basic calculus and some of the mathematical tools 
required for the study of field and wave theory; in concept, between 
straightforward application of Kirchhoff's laws and the approximations 
and defined quantities of high-frequency circuits and transmission line 
problems. Elementary differential equation solutions, the Fourier 
series, and the use of complex exponentials are thus introduced with 
circuit and transmission line problems as oscillation and wave examples. 
The purpose is not, however, to present in completeness all important 
information on radio circuits and transmission lines. Since the material 
in the first chapter was designed for an average engineer or student who 
has heard of many of these items but is not completely prepared on some 
of them, it may be boring to one well acquainted with the techniques 
treated and should therefore be ignored or only skimmed; for one not 
at all familiar with any of the material, the objectives may be found to 
be too much for one chapter, and it should be supplemented by other 
textbooks. An engineer primarily interested in the high-frequency 
applications may also deal more lightly with Chapter 5, and parts of 
Chapters 2, 3, and 6. One primarily interested in the electromagnetics 
of the lower frequencies will, on the other hand, find the first six chapters 
of most value. These chapters may, in fact, be considered as a fairly 
complete discussion of the electromagnetics underlying electrical engi-
neering up to the higher frequencies, and including an introduction to 
them. 
The system of units used throughout is the mks system of practical 

units, which has fortunately received common acceptance during the 
past few years for engineering presentations of electromagnetic subjects. 
However, the laws are first introduced in the older systems of units 
(electrostatic and electromagnetic) so that students may have enough 
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familiarity with these to use effectively the many valuable books and 
articles employing the older systems. 
The authors wish to express their thanks for suggestions, corrections, 

and other valuable help in the preparation of this textbook to many 
students and members of the staff of the Advanced Engineering Program 
of the General Electric Company, and especially to Mr. J. F. McAllister. 

SIMON RAMO 

JOHN R. WHINNERY 

Schenectady, New York 
March, 1944 
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1 
OSCILLATION AND WAVE FUNDAMENTALS 

1.01 Introduction 

This text is concerned with electromagnetics, particularly that 
underlying oscillations and waves. Before introducing the laws of 
electricity and magnetism for serious study, it will be necessary to dis-
cuss some ideas and mathematics that have to do with oscillations and 
waves generally. This will be done by using simple circuits and con-
ventional uniform transmiRsion lines as examples. When this is done, 
the objective is not to present the theory of circuits and lines as such. 
Indeed the theory underlying both comprises a good part of the text. 
The purpose of this chapter i,s to illustrate (and for some readers to 
review) a point of view toward oscillations and waves needed for the 
rest of the text. Specifically the objectives are: 

1. To present a clear picture of the energy relations in oscillating 
systems. 

2. To point out criteria relating energy properties of a system to 
band width, impedance, etc., for later comparison purposes with cavity 
resonators. 

3. To clarify the concepts of waves, particularly in regard to such 
properties as phase velocity, reflection, and characteristic impedance. 

4. To point out common properties of transmission lines according to 
the conventional distributed constant approach for later comparison 
with properties of waves in space and in wave guides. 

5. To present or review some fundamental mathematics necessary 
for the study of oscillations and waves throughout the book. 

6. To develop approximate methods of analysis based upon the physi-
cal picture of the phenomena, so that these may be used in the later, 
more difficult problems. 

SIMPLE CIRCUITS AS EXAMPLES OF OSCILLATING SYSTEMS 

1.02 Free Oscillations in an Ideal Simple Circuit 

Let us start with the simplest possible circuit for electrical oscillations, 
an ideal condenser connected across an ideal inductance. Consider 
first free oscillations, assuming that an amount of energy was supplied to 

1 
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2 OSCILLATION AND WAVE FUNDAMENTALS [Art. 1.02 

the combination at some instant (for example, by placing a charge on the 
condenser) and that from that time on there is no connection to the 

outside. Energy may be stored in the system in 
two forms: 

1. Magnetic energy in the inductance. This 
is analogous to kinetic energy in mechanics and 
has the value 

(IL = LI2 [1] 

where I is the current flowing through the induct-
ance L. 

2. Electric energy in the capacitance. This is analogous to potential 
energy in mechanics and has the value 

tic = lcv2 [2] 

where V is the voltage across the condenser C. 
The presence of energy in the condenser implies a voltage across the 

condenser, and a consequent rate of change of current and stored mag-
netic energy in the inductance. Similarly, the presence of magnetic 
energy requires a current flowing in the inductance, and a consequent 
rate of change of voltage and stored electric energy in the condenser. 
We are led then to expect oscillations, since the presence of energy in one 
form requires a rate of change of energy in the other. It is also necessary 
that the total energy in the system must be a constant, the same at all 
instants, since there is no connection to the outside and ideal dissipation-
less conditions are assumed. 

Before going further with purely physical reasoning, let us write an 
equation for the instantaneous current in the circuit. By Kirchhoff's 

laws, the sum of the induction voltage, L —dI and the condenser voltage 
dt 

— must be zero. 

L —dl ± —1 fi dt = 
dt C [31 

If this equation is differentiated with respect to time, it becomes a true 
differential equation. 

(121 I 
— — = u 

C 
or 

d2I 

dt2 = — LC [4] 
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The differential Eq. (4) is called the simple harmonic motion equation. 
This is probably the simplest and most common of all differential equa-
tions. It will probably be so familiar that the reader will wonder why 
we do not immediately write down the answer to the equation. The 
objectives here, however, are not to obtain answers to these simple and 
well-known problems, but rather to freshen up old techniques and to 
develop new ones for the much more interesting problems that lie ahead. 

1.03 Solution to the Simple Harmonic Motion Equation by 
Assumed Series 

The differential equation to be solved is 1.02(4); 

d21 

de = LC 

The method to be shown first for solution of this simple differential 
'equation is one which will be necessary for later less familiar equations, 
such as the Bessel equation. The method merely recognizes that the 
solution to a given differential equation can often be expanded in a power 
series. Conversely, we may assume a general power series at the begin-
ning, and determine what form its coefficients must have if the series is 
to be a solution for the equation. The required form may be recogniz-
able as the expansion for a known function. At any rate the entire 
series, if convergent, may always be used as the solution. 

Let us then assume that the solution to (1) will be some series of the 
form 

Differentiating, 

And again, 

[1] 

I = ao ait a2t2 + a3t3 -F • • • [2] 

d2I 

dl = a - F 2a2t -F 3a3e 4a4t3 

2. la2 + 3 • 2a3t + 4 • 3a4g2 -I- • • • 
= 

These series forms may be substituted in (1) to determine the require-
ments on the coefficients in order that the series may satisfy that 
equation. 

2 • la2 + 3 • 2a2t + 3a4t2 ± 5 • 4a5t3 -I- 6 • 5a6t4 -I- • • • 

1 
= — —LC (ao alt a2t2 ast3 a4t4 + • • .) 
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It may not be obvious at once, but a little study shows that if the above 
equation is to be true for all values of t, coefficients of like powers of t 
must be equal on the two sides of the equation. That is, 

ao  
— 

2 • 1LC 

aa —   
3 • 2LC 

a2 ao  
= 

4 • 3LC — 4! (LC)2 

a3  
a5 = 

5 • 4LC — 5! (LC)2 

ao  
ao —   

6 • 5LC 6! (LC)3 

= a5  

7 • 6LC 7! (LC)3 

and generalizing, 

a2n = 
a2n-2  (— 1 )na0 

(2n) (2m — 1)LC — (2n) ! (LC)" 

a2n-1  (— 
azni-1 — 

(2n ± 1) (2n)LC (2n ± 1) ! (LC)" 

Notice that the requirements placed upon the constants of the series 
by substituting in the differential equation have related all constants 
either to ao or al, but there is nothing relating these two to each other 
or to anything else. This seems promising, for two independent solu-
tions and two arbitrary constants are required for a second degree differ-
ential equation. Let us write now the assumed series (2), using these 
constants. 

g2 e to  1 = ao [1   
2! LC + 4! (LC)2 6! (LC)3 + ] [3] 

[ e  + (aie-fiT) g e e  
L(LC) 3! (LC)" + 5! (LC)" 7! (LC)" + • • •] 

Comparison with any tables of series shows that the first quantity in 
brackets has the form of the series expansion for a cosine function and 
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the second for a sine. That is, 

X2 X4 

2! 4! 

X3 X5 

sin x = x — — — 
3! 5! 

• • • 

• • • 

[4] 

[51 

So (3) may be written 

/ = ao cos G-2.1--7E) ai'ViZ sin (á) 

Since al is arbitrary, the entire quantity ai'Vidê may be replaced by C2 
to stress the point that it is an arbitrary constant. Let us at the same 
time repla.ne ao by C1 and define 

1  
-‘/Lc [6] 

/ = C1 cos (»pi + C2 sin coot [7] 

This expression is a solution to the differential equation. It has two 
independent functions and two arbitrary constants. All is now known 
except the values of these constants. These cannot be determined until 
more information is given about the manner of starting oscillations in 
the circuit. 

1.04 Solution of the Simple Harmonic Motion Equation by 
Assumed Sinusoids 

The simple harmonic motion differential equation has been solved by 
assuming a series solution, determining the form required of that series 
by the differential equation, and identifying the resulting series as a 
sinusoidal function. Now, we might have guessed at the beginning 
that the solution would have been of a sinusoidal form. Although the 
frequency was not known, we might have assumed a solution of the form 

/ = C1 cos coot + C2 sin coot [1] 

where coo has to be determined. It remains to be seen if a function of 
this form can satisfy the differential equation which is 

d21 
dt2 = LC 

[2] 
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to include these in the circuit equations rigorously, yet let us first use 
physical knowledge to develop an approximate method which will give 
the first order effect of the losses, provided that losses are small. The 

point of view will be extremely useful in later 
analyses of cavity resonators and wave guides. 

If losses are small, physical intuition tells us 
that the natural period of oscillation will be 
changed little, and over a short period of time 
the solution will be very nearly that for the ideal 
circuit. The major correction will be a long-time 
decrease in the amplitude of oscillation due to 
the energy lost. 

It is common experience to find exponential changes for a physical 
quantity which decreases (or increases) at a rate proportional to the 
amount of that quantity present. The power loss, or rate of energy 
decrease, for this example, is proportional to the amount of energy in the 
system. It would consequently be reasonable to expect an exponential 
damping factor to appear in the expressions for currents and voltages. 
As a first order correction, the expression for current obtained previously 
(Prob. 1.05) might be assumed to be multiplied by some negative 
exponential 

Fla. 1.06. 

/ = Ae—at cos (coot ± [1] 

The energy in the circuit may be calculated at an instant when it is all 
in the inductance 

LA2 _ 
U = (/„,„,,)2 = 2 e 2at [2] 

Within the limits of the assumption of relatively small losses, the nega-
tive rate of change of this stored energy over several cycles is merely the 
average power loss. 

dU 
[3] 

From (2), 

dU LA2 
= —2a e-2ag = —2aU [4] 

So, by combining (3) and (4), 

WL 
[5]= 
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the second for a sine. That is, 

X2 X4 
cos z= 1 — — — — • • • 

2! 4! 

X 3 X 5 

sin x = x — 3—! + —5! — • • • 

[4] 

[5] 

So (3) may be written 

/ = ao cos (---t ) ai.V'.EC sin ei--) 

Since al is arbitrary, the entire quantity ai'VETY may be replaced by C2 
to stress the point that it is an arbitrary constant. Let us at the same 
time replace ao by C1 and define 

1  

Then 

[6] 

I = C1 cos (Jot + C2 sin coot [71 

This expression is a solution to the differential equation. It has two 
independent functions and two arbitrary constants. All is now known 
except the values of these constants. These cannot be determined until 
more information is given about the manner of starting oscillations in 
the circuit. 

1.04 Solution of the Simple Harmonic Motion Equation by 
Assumed Sinusoids 

The simple harmonic motion differential equation has been solved by 
assuming a series solution, determining the form required of that series 
by the differential equation, and identifying the resulting series as a 
sinusoidal function. Now, we might have guessed at the beginning 
that the solution would have been of a sinusoidal form. Although the 
frequency was not known, we might have assumed a solution of the form 

I = C1 cos coot ± C2 sin coot [1] 

where coo has to be determined. It remains to be seen if a function of 
this form can satisfy the differential equation which is 

d21 I 

dt2 = LU [2] 
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If I is given by (1) 

dl 
— —wo (CI sin coot — C2 cos wot) 
dt 

d2 
d72 = —4,8(C1 cos wot ± C2 sin coot) 

Substitute (1) and (3) in (2) 
1 

—‘0(C1 cos coot + C2 sin coot) = — 17„ (C1 cos coot C2 sin coot) 

If 

[31 

[4] 

the equation is satisfied. This value of (.4 is exactly that defined in 
Eq. 1.03(6). 
Thus it is demonstrated that if we can guess the form of a solution to a 

differential equation, substitution of this form into the equation will 
determine whether or not it is a solution and will give values for any 
non-arbitrary constants, such as coo above. This method is one of the 
most useful for solution of differential equations in engineering. 

1.05 Solution of the Simple Harmonic Motion Equation by 
Assumed Exponentials 

As a final attack on the differential equation for simple harmonic 
motion we shall attempt a solution in terms of exponentials. The wis-
dom of this will shortly be demonstrated. Suppose we try 

I = Aie et A2e—et [1] 

then 
d2 e 
dt2 = lee + A 2e—Pg) 

Substitute these in Eq. 1.03(1) 

or 

where j 

1 
p2(A 1 ept A2e—Pt) = — LC A1e t A2e—Pt) 

2 
P = 1 

P =3 = .1.coo 
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This substitution indicates that (1) is a solution to the simple har 
monic motion equation, provided that p = jcoo, 

/ = A lefue A2e—icue [2 

Next let us remind ourselves of the identities 

= cos x j sin x [3 

= cos x — j sin x [4 

These are most conveniently verified by considering the series expon 
sion for an exponential. 

Y2 Y3 
eV = + y ± — — -I- • • • 

2! 3! 

SO 
X2 X3 

eie = 1 ± jx — — j !d- • • • 

X2 X4 X3 XS 
= — + + • • •) — + + • • .) 

By comparing with Eq. 1.03(4) and Eq. 1.03(5) these latter series ar 
quickly identified as those for cosine and sine respectively, thus verifyin, 
(3). The corresponding demonstration for (4) is identical to this. 

If the identities (3) and (4) are substituted in (2), 

/ = (Ai + A2) cos (Oa i(Ai — A2) sin coot 

Since A1 and A2 are both arbitrary, this may be written exactly in th 
previous forms, 

= CI cos (Jot + C2 sin coot [.! 

For many purposes it will be convenient to use the solution in the fort 
of (2) instead of changing to (5). This use of exponentials to replac 
sinusoids will be the subject of later discussion. 

Problem 1.05. Show that an alternative expression equivalent to Eq. 1.05(5 
or Eq. 1.05(5) is 

I -= A cos (coot + ctt) 

Relate A and 4, to CI and C2. 

1.06 Natural Oscillations with Losses — Approximate Method 
The circuit analyzed previously was ideal. Suppose we now wish t 

consider the effect of the finite losses which must of necessity be preset 
in the circuit. As will be shown in the next section, it is a simple mattc 
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to include these in the circuit equations rigorously, yet let us first use 
physical knowledge to develop an approximate method which will give 
the first order effect of the losses, provided that losses are small. The 

point of view will be extremely useful in later 
analyses of cavity resonators and wave guides. 

If losses are small, physical intuition tells us 
that the natural period of oscillation will be 
changed little, and over a short period of time 
the solution will be very nearly that for the ideal 
circuit. The major correction will be a long-time 
decrease in the amplitude of oscillation due to 
the energy lost. 

It is common experience to find exponential changes for a physical 
quantity which decreases (or increases) at a rate proportional to the 
amount of that quantity present. The power loss, or rate of energy 
decrease, for this example, is proportional to the amount of energy in the 
system. It would consequently be reasonable to expect an exponential 
damping factor to appear in the expressions for currents and voltages. 
As a first order correction, the expression for current obtained previously 
(Prob. 1.05) might be assumed to be multiplied by some negative 
exponential 

FIG. 1.06. 

I = ii.e—at cos (wot + 4)) [1] 

The energy in the circuit may be calculated at an instant when it is all 
in the inductance 

U = i-L(rm ax)2 = e-2ag [2] 

Within the limits of the ossumption of relatively small losses, the nega-
tive rate of change of this stored energy over several cycles is merely the 
average power loss. 

From (2), 

dU 
- Tit = WL 

dU LA2 

—Crt = —2a —2— e-2at = —2tEU 

So, by combining (3) and (4), 

WL 
= 2U 

[3] 

[4] 

[5] 
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Define the quality factor or Q of the circuit as the quantity 

Q coo (Energy stored in circuit) woU 

Average power loss - WL [6] 

ir (Energy stored in circuit)  
[7] 

Energy lost per half cycle 

Then (5) may be written 
CO0 

a = — 
2Q 

The exponential decay is thus expressible in terms of the quantity Q. 
The damping is also described sometimes as a logarithmic decrement, 
which is the relative amount by which the amplitude of oscillation 
decreases in one period. 

Ae' — Ae—a(g+T)  
= Ae — 1 C ar aT 

' 

provided aT is small compared with unity, or 

• wo 2irfo „, 1 ir 
• 2Q 2Q fo Q 

Finally, let us interpret these results for a circuit with losses distributed 
as in Fig. 1.06. The current flow through the series combination of R 
and L is expressed by 

I = A cos (coot ± 4,) 

(neglecting any exponential damping for a few cycles). The energy 
stored in the circuit is the maximum energy in the inductance, 

U = —2 A2 

[8] 

[9] 

and the average power loss in resistance R is 

RA2 
WR = 4R(Imax)2 = 

2 

So Q, defined by (6), is 
wo(LA2) cool, 

QL - RA2 R [10] 

This is the familiar expression for Q used to describe the excellence of an 
inductance, cuLIR calculated at resonance. It is to be used in (8) or (9) 
to give attenuation constant or logarithmic decrement. 
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Problem 1.06. (a) If losses are present owing to a conductance G = 1/Ri 
shunted across the condenser instead of a series resistance in the inductance, show 
that the Q to use in the general expressions Eq. 1.06(8) and Eq. 1.06(9) is 

onC R1 

(b) If losses arise from both series resistance in L and shunt conductance across C, 
demonstrate that the Q to use in the general expressions may be found from the 
individual Q's defined previously. 

1 1 1 

1.07 Natural Oscillations with Losses; Solution from Circuit 
Equations 

The exact solution to the circuit of Fig. 1.06 will now be obtained to 
check the approximate results of the previous article. 

dI 1 
L — -F —fi dt = 

dt 

is the exact equation of the circuit. Differentiating, 

d21 di I 
L c.7  - F R = [1] 

Following the method of Art. 1.05, assume a solution of exponential 
form, 

/ = AO' [2] 

If this is substituted in (1) and the resulting equation is solved for p, 
it is found that 

R 1 
13 = --2L 2 LC [3] 

Since for low-loss circuits (R/2L)2 will be less than 1/ LC , it will be 
convenient to write (3) as 

R j I R2C 
p = — — — = —ce jcotç [4] 

2L VF,c, 4L 

where 
R wo 

= = [5] 
2L 2Q 

1 j R2C 
con 4L = wo - (FQ-1 [6] 
= 

Q denotes cooL/R as in Eq. 1.06(10), and wo is l// i. 
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The two possible values of p from (4) supply the two independent 
solutions needed for the second degree differential equation. Substitute 

these in (2). 
I = A le(-"±lwi;)t A2e(-"--i4)t 

e'd[Aiejw.ot A2e-idol 

By substitutions similar to those of Art. 1.02, an alternative expression is 

= ('[Ci cos wt -I- C2 sin wilt] [71 

A comparison with the approximate analysis of Art. 1.06 shows that 
the same damping coefficient (5) is obtained. The natural frequency is 
different from wo by (6), but this difference is small for low-loss (high-Q) 

circuits. 

Problem 1.07. Obtain exact results for the cases solved approximately in 
Probs. 1.06(a), (b), showing for these also that Q may be used as an indication of 
the usefulness of the approximate results. 

1.08 Forced Oscillations in an Ideal L-C Circuit 
In previous examples, it was assumed that oscillations in the simple 

resonant circuit were free oscillations caused only by an initial deposit of 
energy in the circuit. In most practical cases, however, the circuit is 
continuously excited by a source of sinusoidal voltage. As the first 
example of such forced oscillations, consider the loss-free parallel L-C 
circuit excited by a sinusoidal voltage of constant magnitude (Fig. 1.08). 

The total current flow from the source r, 
is the sum of currents in the two im-
pedances. The equations for these two e 

currents are iz 
v tut 

7. di', 
= V sin we [11 

f12 dt = V sin cot [2] Flo. 1.08. 

Current may be obtained from (1) by integrating directly and from (2) 

by differentiating. 
V 

LI' = — cos cot + Ci [3] 

— =wV cO5cAt [4] 

The constant term in (3) merely represents a possible constant D-C 
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term flowing through the inductance, which is of no interest to the A-C 
problem so long as constant elements (linear systems) are assumed. 
Thus the total current 

= .11 + 12 = V (we — eu) cos cot [5] 

The above relations, of course, check the well-known behavior of 
simple circuits. The current in the inductance has a phase lag of 90° 
with respect to its voltage, whereas the current in the capacitance has a 
90° phase lead with respect to the voltage. The total current is leading 
(the total circuit acts as a capacitance) if coC > (1/wL) and is lagging 
(total circuit acts as an inductance) if (1/wL) > wC. If wC = 1/coL 
there is no current to be supplied by the source; under this condition the 
current flow to the inductance is at every instant exactly equal and oppo-
site to the current flow to the capacitance. The frequency for which this 
condition occurs is the natural frequency found previously, 

1 
coC — or 

°IL 
= — co 
V LC' 

[6] 

At this natural frequency the energy inside the system is a constant 
and merely passes back and forth from inductance to capacitance, and 
no energy need be supplied by the source at any instant of time. For a 
frequency lower than this resonance frequency, the maximum energy 
stored in the inductance is greater than the maximum energy stored in 
the capacitance, so that this excess energy must be supplied from the 
source during one part of the cycle, but will be delivered back to it 
unharmed during another part. This excess reactive energy from the 
inductance makes the circuit appear as an inductive load. to the source. 
Similarly, for frequencies greater than the resonant frequency, the 
maximum energy in the capacitance is greater than the maximum 
energy in the inductance, and the excess reactive energy that must be 
supplied to the capacitance causes the circuit to appear as a capacitive 
load to the source. 
At the resonant frequency, the energy stored in the circuit is the 

maximum energy of the capacitance, or the maximum energy stored in 
the inductance, since both are equal. • 

U = iCV2 

For later use, let us write this from (6) in terms of coo. 

U = IL 
2coo _ 

172 
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1.09 Approximate Input Impedance at Resonance with Losses 
Considered 

If the parallel circuit has losses in the coil or condenser, these may ix 
taken into account from physical consideration of the energy relations; 
before attempting an exact analysis by the circuit equations. 
At resonance, the energy stored in the tuned circuit is given by 

Eq. 1.08(7). From the definition of Q given in Eq. 1.06(6), the powei 
loss at resonance is u wo wi,= 2Q _ [1 

Q  L 

The source must supply to the circuit this amount of power. Th( 
circuit then looks like a high-resistance R, of value such that 

V2 
W = -27?; [2 

By comparing with (1), 

Ri = Q 
[3 

The approximations of reasonably low losses will be recognized in th 
above reasoning, for we have taken the expression for energy stored a 
that developed from the loss-free case. In this picture, the major par 
of the energy is stored in the circuit and passes back and forth from th 
inductance to the capacitance. Only the small amount of power los 
in the process need be supplied by the source. The resulting curren 
flow to supply this loss component causes the circuit to have a high bu 
finite input impedance in place of the infinite input impedance founl 
previously. 

Problem 1.09. (a) Write alternative forms for Eq. 1.09(3) in terms of circui 
reactances at resonance. 

(b) Write Eq. 1.09(3) in terms of: a series resistance in L, a shunt resistance acroE 
C, both series and shunt losses. 

1.10 Approximate Input Impedance near Resonance 
The physical reasoning may be extended to give the behavior of th 

circuit approximately for a small departure from resonance. First i 
may be concluded that the major change will appear as a reactive con 
ponent added to the admittance as frequency is changed to a value suc 
that the capacitive and inductive reactive currents no longer cance 
To a first approximation, the input power supplied will be constant, s 
that the conductive portion of the admittance may be considered cor 
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stant and equal to that calculated at resonance in Art. 1.09. We justify 
this by recognizing that any loss entering from a parallel conductance 
will not change at all with frequency, and although that arising from a 
resistance in series with inductance will change with frequency, this is a 
uniform change, not comparable with the change in the differences of 
large quantities which affects the reactive current. Then 

[1] 

The susceptance portion of the admittance is approximately that calcu-
lated without losses. 

Si = (coC — 

Let co = coo(1 8). Then 

‘002 

= ceC (1 — 
co ) 

Si = [ (1 6) +1 8] 

For frequencies near resonance, 3 < 1, 

(1 8)-1 _'•••' 1 — 8 

and 

si 28.NriL- [2] 

By comparing (1) and (2), it is evident that the frequency shift for 
which the susceptance becomes equal to the conductance, a common 

measure of circuit " sharpness," is 

1 
= — 

2Q 

The Q of the circuit is consequently identified with the band width 
or sharpness of the circuit. At a frequency such that susceptance and 
conductance are equal, Gi = Si, the magnitude of input admittance 

yi = „ve  + = ‘7:22 

[3] 

[4] 

In terms of impedance, the impedance at this frequency is 1/Nri its 
value at resonance. 
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USE OF COMPLEX EXPONENTIA.LS 

1.11 Solution of the Circuit Differential Equation in Terms of 
Complex Exponentiala 

The approximate results of the previous articles for the circuit rela-
tions when dissipation is included will now be verified by direct solution 
of the differential equation of the circuit. If a voltage V cos cot is 
applied to a circuit containing R, L, and C in series, the equation to be 

solved is 

dl 1 
L --c—it + RI + f I dt = Vcoscot [1] 

But (see Eqs. 1.05(3), (4)) 
eicoe e—icot 

cos cut =  2 [2] 

If we assume the current to have the steady state solution 

I = Ael't Be—j`" [3] 

The result of substituting in (1) is 

1 
jcoL(Aeiwe A— Be—i`")± R(Aeiwt+ Be— - iwt) — (eiwt — Be—ice) 

jcoC 

= [e.d. e--Jwti [4] 
2 

Following previous reasoning, this equation can be true for all values 
of time only if coefficients of tic" are the same on both sides of the 
equation, and similarly for 

1)] V 
A[R j (cold — — = — 

coC 2 

1)] V 
B[R — j (coL — — = — 

coC 2 

[5a] 

[5b1 

The complex quantity in the bracket of (5a) may be called Z and 

written in its equivalent form 

' where 

1 
Z = R j (coL — 

1z1 = \fR2 ± _ \ 2 
coCi 

[6] 



16 OSCILLATION AND WAVE FUNDAMENTALS [Art. 1.11 

and 

Similarly, 

Then, 

le = tan_i  R 

(w.L - 
i \ 
LC) 

1 
R - j (wL - (.0-7) = IZIe-ill' 

V . 
A = e-34' 

21ZI 

V . 
B=—iPIel 

21Z 

[7] 

(A and B are conjugates: they have the same real parts and equal and 
opposite imaginary parts.) Substituting in (3), 

y [el('-e) ± e-1('-‘1 [8] 
/ - 

I ZI 2 

By comparing with (2), 
V 

I = -- cos (wt - e) IZI [9] 

This final result gives the desired magnitude and phase angle of the 
current with respect to the applied voltage. That information is 
contained in either of the constants A or B, and no information is given 
in one which is not in the other. B is of necessity the conjugate of A, 
since this is the only way in which the two may add up to a real current, 
and the final exact answer for current must be real. It follows that half 
of the work was unnecessary. We could have started only with Veiwt 
in place of the two-term expression which is exactly equivalent to 
V cos wt. For current, there would then be only 

V • 
/ =  [10] 

IZI 

Although this cannot actually be the expression for current, since it is a 
complex and not a real quantity, it contains all the information we wish 
to know: magnitude of current, V/IZI, and its phase with respect to 
applied voltage, 1p. The procedure for obtaining the steady state solu-
tion to differential equations with applied sinusoids may then be sum-
marized as below. The steps will be verified by a check of the previous 
steps in the exact solution. 
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1. Write sinusoidal applied voltage as Ve t. 

2. Replace dIldt by jcd, f I dt by //jw. 

3. Solve for current in the resulting algebraic equation. The answer 

will in general be complex. 
4. By writing the complex current in its form showing magnitude and 

phase angle, the desired information is obtained. 
The method, as outlined, is used by electrical engineers so generally 

that they have come to think quite naturally in terms of the complex 
impedance, Z, of the circuit, often without recalling that they are in 
reality solving a differential equation for its steady state solution. 

Problem 1.11. Show that Eq. 1.11 (10) need not be regarded simply as a repre-
sentation of the true expression for current but may actually be an exact expression, 
provided only that it be understood that I is the real part of the complex expression 

eie4-4). Sometimes this relationship is expressed by writing 
IZI 

I = Rel—v eie"4—#)} 
IZI 

1.12 Use of Complex Quantities in Power Calculations 

The preceding article demonstrated the basis for using ejw as a repre-
sentation for cos wt. The consequent simplification of problems involv-
ing impressed sinusoidal quantities will be apparent throughout the 
book. However, we must remember one trap that awaits us if we use 
this notation improperly in non-linear expressions. For linear equa-
tions, one may use elwe in place of the equivalent.cosine or sine term in a 
completely straightforward fashion, interpreting information of magni-
tudes and phase angles as demonstrated in the previous article. More 
care must be exercised for non-linear expressions, the most common of 
which arises in the calculation of instantaneous power, requiring a prod-

uct of terms. 
. Given a sinusoidal voltage across an impedance 

V --- V„, cos (wt — ch) [1] 

and a sinusoidal current flow through the impedance 

I =1m cos (wt — 4)2) [2] 

These are properly represented in complex notation as follows. 

V = V„,6 [3] 

/ = /.6i(("--4'2) [4] 
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The power flow at any instant is given by 

= VI 

There is certainly a strong temptation to multiply the expressions (3) 
and (4) together to give 

W = V„,/niel(w"')ei(' 02) = V„,/„,ei(2' 01—es) 

This is the complex representation for a quantity 

W = V,,J„, cos (2cot — cfn — 442) 

[5] 

[6] 

This result is incorrect. It must be incorrect since the average power 
in (6) is zero, regardless of the phase angle oi or 4.2. The correct expres-
sion for instantanedus power is certainly given by multiplying (1) 
and (2) 

Wi = VI = V„,l7n cos (cot — 01) cos (cut — 02) 
but 

cos A cos B = ¡[cos (A — B) ± cos (A + B)] 
SO 

VJ V1  
= „„, cos (ct'l 021 , ,„,,i cos (2cot — — 02) [7] 

2 2 

Equation (7) differs mainly from the result of (6) in that it does have 
the average power in its familiar form: product of voltage, current, and 
cosine of the phase angle. (M appears since V„, and ./„, are peak values, 
not rms.) 

The use of (3) and (4) in the product expression for power is incorrect 
simply because the expressions (3) and (4) are not the true expressions 
for voltage and current, but merely representations for them. We 
would not have invited such a difficulty had the true mathematical 
equivalents (Prob. 1.11) been written: 

V = Re [V m€1'} 

I = Re [I„,ei('] 

Then instantaneous power, 

{Re [V „,ei 1}{Re [I niel(' 01} 

To evaluate W1, we could write these as cosines and proceed as before. 
The foregoing may seem to be an argument for retaining the notation 
Re [ell but this will not be done because of the obvious unwieldiness 
of the expressions. We shall use only eie't with the real operator under-
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stoo. d, or merely say that this is a representation for cos wt. Care must 
then be used for any products of these exponentials. 
The exact expression for instantaneous power may be written in com-

plex notation. For the following demonstration, let us denote complex 
quantities by a wavy line above the symbol, and conjugates by an 

asterisk. 
If = Vmejoi 

and 
r* = V 

then 
f1* = vinimei(01-02) 

and 
P*i = 

Then the exact equivalent of (7) in complex notation is 

W = i-Re{e*+ [17 eilg 

and the average power, or constant component of this, 

Way = 4Re = -1-Re *I] 

FOURIER SERIES 

[8] 

[9] 

1.13 Circuits with Non-Sinusoidal Periodic Voltages 

• All forced oscillations studied so far have consisted of sinusoids. Con-
sider a more general oscillation which is periodic, returning once each 
cycle to any selected reference, or stated mathematically, 

f (t) = f (t — T) 

This might be of any arbitrary form, such as is indicated by Fig. 1.13. 
Such a wave shape of voltage, if applied to a circuit, will act to that 
circuit as a superposition of a group of pure sinusoidal voltages. The 
wave may be replaced by a fundamental and its harmonics. The method 

FIG. 1.13. Periodic wave of arbitrary shape. 

of finding the amplitude of these is the very neat method of Fouriei 
analysis, mid the theorem that proves the truth of the foregoing state-
ments is the Fourier theorem, which it is assumed the reader has agreeè 
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with in another study. What follows here is not a proof of the validity 
of a Fourier series expansion for a general periodic function, but merely 
a demonstration which shows the manner of obtaining the coefficients. 
This will be extremely useful when we later add up series to represent 
known functions along boundaries in field problems. 
By admitting the possibility of writing the periodic function f(t) 

as a series of sinusoids consisting of a fundamental and its harmonics, 

At) = ao -I- al cos cot ± a2 cos 2cut + a3 cos 3cot -I- • • • 

+ b1 sin cot + b2 sin 20.4 ± b3 sin 3cut • • • [1] 

At the moment, the coefficients have not been determined. The 
manner of finding them is based upon the so-called orthogonality prop-
erty of sinusoids. This property indicates that the integral of the prod-
uct of any two sinusoids of different frequencies, over an interval in 
which they are commensurate (for example, from -7r to 7r, or 0 to 27-) 
shall be zero. That is, 

However, 

2w 

ifO nWn 
2,, j sin mx sin nx dx = 0 [2] 
0 mpin 
2r 

cos mx cos nx dx = 0 

sin mx cos nx dx = 0 
O  or m=n 

efo2r 2r 

COS2 mx dx = f  sin2 mx dx = ir 
0 

[3] 

Thus if each term in (1) is multiplied by cos mot, and integrated from 
0 to 27, every term on the right will be zero except that term containing 
a.. That is 

fo2r 2r 

f (t) cos mot d(cot) = f an cos2 mot d(cot) 
o 

By (3), the integral on the right has the value asir, or 

a. 1 
ir fo2ir 

= - 
f(t) cos n(wt) d(cot) [4] 

Similarly, to obtain b., each term in (1) is multiplied by sin mot and 
integrated from 0 to 27. Then, 

b. = -1 f 2' f(t) sin n(cot) d(cot) [5] 
ir o 

, 
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Finally, to obtain the constant terni ao, every term is inte-
grated directly over a period, and all terms on the right disappear, 
except that containing ao. 

2r 

fo2rf(t) d(cot) f ao d(cot) = 2,rao 
o 

ao = —1 f 2x f(t) d(cot) [6] 
2r 0 

This merely states that ao is the average of the function f (t). 
Before discussing the method in general terms further, let us tie it 

down by application to a very simple example. 

+ f 

Fra. 1.14. Periodic wave of rectangular shape. 

4-

1.14 Fourier Analysis of a Square Wave Voltage 

Let us find by Fourier analysis the coefficients of the frequency com-
ponents in the square wave shape of Fig. 1.14. Voltage is V over half 
the period T, and zero over the remaining half. 

Since 

when 

27-
= 27rf = — 

T 

cot = 

= 

The integral 1.11 (6) shows that the constant term, ao, is 

1 1 +T/2 
ao — f f (t) d(cot) = f V d(cot) = [1] 

2/1- 2 

This is clearly the average value of the wave. The integral 1.13(5) 
gives the coefficient 14,. 

1 r 1 f ÷212 
= r- f(t) n(cot) d(cut) = —7r V sin n(cot) d(cot) -= 0 [2] 

—T/2 
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Thus all coefficients of the sine terms are zero. This could have been 
foreseen by noting that the above function is an even function, that is, 
f(—t) = ¡(t), and so could not be made up of any sine terms, which are 
odd functions. 

Finally, the an terms, by Eq. 1.13(4), 

1 '+r 
— j  f(t) cos mot d(cot) = —1 J +r/2 V COS nod d(cut) 

-T/2 r , 7   

a„ = n-7 [sin n(cot)Tr/2 
V 

-r/2 

The value of (3) is zero if n is even, is + (2V/nr) if n is 1, 5, 9, etc., 
and is — (2V/nr) if n is 3, 7, 11, etc. Thus the series expansion in 
sinusoids of the square wave voltage of Fig. 1.14 may be written 

f(t) = — — [cos cot + • • . [4] 
7 

V 2 V cos &A cos 5cut cos 7cot ] 

2 1" 3 5 7  

The current which flows when such a voltage is applied to a circuit is 
found by determining the currents due to the individual terms of (4) 
and superposing these. There will be, in general, a component of current 
of a frequency corresponding to each frequency component of the Fourier 
expansion. These, when added, give the wave shape of current. Such 
a procedure is straightforward and will not be carried further here. 

Notice that it requires an infinite number of terms to represent truly 
the square wave shape of voltage. Often a high degree of approxima-
tion to the desired wave shape is obtained when only a finite number of 
terms is used. However, for functions with sharp discontinuities, many 
terms may be required near the sharp corners, and the theory of Fourier 
series shows that the derivative of the series may not even converge to 
the derivative of the function, although the integral of the series does 
converge to that of the function.' 

Problem 1.14. Simplify the general expressions for Fourier coefficients found in 
Art. 1.13 for: 

(a) Even functions of t. 
(b) Odd functions of L. 
(c) Functions of a variable x, in terms of a period 1. 

= 

UNIFORM TRANSMISSION LINES AS EXAMPLES OF 

WAVE SYSTEMS 

[31 

1.15 The Ideal Transmission Line 

To illustrate waves, we shall consider the uniform transmission line. 
The results developed are of importance themselves, since transmission 
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lines are used in all modern high-frequency applications. Results will 
also be used for later comparison with more general electromagnetic 
wave phenomena. The approach used in this chapter is the conven-
tional one, starting from distributed inductance and capacitance along 
the line. It is true that this in a sense is jumping ahead of the story, for 
in a later chapter on guided waves the transmission line differential equa-
tions will be derived from rigorous considerations of electromagnetic 
theory. Nevertheless, the approach to be used here is easy to visualize 
and is satisfactory for the present purpose. 
A transmission line may be made up of parallel wires, of parallel 

plates, of coaxial conductors, or in general of any two conductors sepa-
rated by a dielectric material. In conventional analyses, we think in 
terms of a current flowing in the conductors, equal and opposite in the 
two conductors if measured at any given transverse plane, and a voltage 
difference existing between the conductors. The current flow is affected 
by a distributed series inductance representing the back induced voltage 
effects of magnetic flux surrounding the conductors; the voltage between 
conductors acts across a distributed shunt capacitance. There are also 
loss terms which will be neglected for 
this first analysis of the ideal case. Inci-
dentally, this does not relegate the re-
sults to a position of only academic   
interest, for many high-frequency trans-
mission line problems have loss terms I -b. 1+ dz 

which are truly negligible. f / 
Consider a differential length of I I—Infer:7 s2LI dz 

line, dz, including only the distributed L1 T 
inductance, L per unit length, and the ' Fro. 1.15. 
distributed capacitance, C per unit 
length. The length dz then has inductance L dz and capacitance 
C dz (Fig. 1.15). The voltage drop or negative change in voltage 
across this length is then equal to this inductance multiplied by the time 
rate of change of current. For such a differential length, the voltage 
change along it at any instant may be written as the length multiplied 
by the rate of change of voltage with respect to length. Then 

av 
Voltage change — dz — (L dz)— [1] az at 

Note that time and space derivatives are written as partial deriva-
tives, since the reference point may be changed in space or time, in 

completely independent fashion. 
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Similarly, the decrease in current across the element at any instant is 
merely that current which is shunted across the distributed capacity. 
This is given by the capacity multiplied by time rate of voltage. Partial 
derivatives are again called for. 

av 
Current change = —a dz = — (C dz) — 

az at 

The length dz may be cancelled in (1) and (2) 

K=az  —L —at 

aï av 
az " at 

[2] 

[3] 

[4] 

Equations (3) and (4) are the fundamental differential equations for 
the analysis of the ideal transmission line. They may be combined to 
give equations containing voltage alone or current alone. To accom-
plish this, differentiate (3) partially with respect to distance, (4) with 
respect to time. 

a2 v a21 

= L 
az2 t92 at 

a21 82v 

at az = at2 

[51 

[6] 

Since partial derivatives are the same taken in either order, (6) may 
be substituted directly in (5). 

a2 v a2 v 

= LC 
az2 at2 

This differential equation is known as the wave equation. An 
exactly similar equation may be obtained in terms of current by differen-
tiating (4) with respect to z, (3) with respect to t, and combining 

azi 821 
— = LC — 
8z2 at2 

1.16 Solutions of the Wave Equation 

The differential equation to be solved, Eq. 1.15(7), may be written 

a2v 1 a2v 
az2 = y2 at2 

[8] 

[1] 
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where 

—1 = LC 
v2 

Unlike the differential equations met previously in this chapter, this is a 
partial differential equation. A direct attack on the equation to yield a 
general solution is not easy, but a simple check shows that any function 
whatever in the variable (t — z/v), is a solution. That is, 

• 2 
V = F — [21 

is a solution to (1). This may be verified, say, by letting (t — sly) = x. 

Then 

av av ax av av ax 
= ai and — as = ax a— at axz 

But 

ax ax 
—at = 1 and  

so, repeating the process, 
a2v a2v a2v 1 a2v 

= and — = -- 
at 2 ax 2 & 1,2 ax2 

By comparing the two equations (3), (1) is verified. 
It is necessary to show next what is meant by the statement that the 

solution (2) represents a wave. This may be done in two or three 

equivalent ways. 
1. Note that if the voltage is observed as a function of time in the 

plane z = 0, this is merely V = F(t 0) = F(t). If we now go to a 
plane z = zi, we find exactly the same function of time, but delayed by 
the time zi /v. That is, the value of V at z = 0, and time t will be found 
at z = z1 at a time t (WO. The time zi/v is the time necessary to 
propagate the effects over the distance z1 with velocity v. 

2. If we were to move along the line with any given point on a travel-
ing wave, the observed value of voltage would be constant. By noting 
(2), it is seen that this is accomplished if t — (z/v) is maintained con-
stant. Thus as time increases, say from t to t At, we must move in 
the positive z direction a distance Az = y At. Again, y is identified as 
the velocity of any part of the wave in the positive z direction. 

Only one solution of the second degree differential equation has been 
given. A second solution may be written as any function of t (z/v) 

[31 
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and checked by methods exactly similar to those used for the first solu-
tion. This is identified as a wave traveling in the negative z direction 
with velocity v. A complete solution to (1) is then 

V = — + F2 ( [4] 

where 

1 
[5] 

1.17 Relation between Voltage and Current in the Ideal Line 

The solution of the differential Eq. 1.15(7) for voltage has been 
obtained as Eq. 1.16(4). Since current satisfies the sanie differential 
equation as does voltage, the solution for current must have the same 
form. 

I = — f2 -z-v) [1] 

The first term in this solution also represents the function fi traveling 
with velocity y and unchanged shape in the positive z direction; the 
second term represents the function 12 traveling in the negative z direc-
tion with velocity y and unchanged shape. The velocity is given in 
terms of the distributed constants of the line by Eq. 1.16(5). 
By substituting (1) and Eq. 1.16(4) in Eq. 1.15(3), 

— —1 PI — + —1 + = — L — .5) ± ± 5)] 
v vv v 

In the above, the primes indicate derivat'ves with respect to t — (z/y). 
The positively traveling wave of current may be related directly to the 
positively traveling wave of voltage. 

L f ; = F ; — 

or 

[2] 

[3] 

Any constant term arising from the integration of (2) to obtain (3) is 
ignored since the present interest is only in wave phenomena. 

Similarly, by relating the negatively traveling wave of current to the 
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negatively traveling wave of voltage 

12(t+ ) — F2 (t + 
v L v 

so that (1) may be written 

I = 1[F, (t _ - F2 ( + VI 
zo  vjJ 

27 

[4] 

[6] 

where vL is replaced by Zo. By substituting the value of y from 

Eq. 1.16 (5), 

1 
Zo = vL =—vc [6] 

The current in the positively traveling wave is then obtained by divid-
ing the voltage of the positively traveling wave by the constant Zo; 
current in the negatively traveling wave is the negative of the voltage 
of the negatively traveling wave divided by Zo. Zo is the characteristic 
impedance or surge impedance of the line. For the ideal line it is a 
purely real quantity and is given in terms of the distributed constants 
of the line by any of the three forms of (6). We shall show in a later 
chapter that for an ideal line, the velocity y must be equal to the velocity 
of light in the dielectric material of the line. 

1.18 Reflection and Transmission at a Discontinuity 

Most transmission line problems are concerned with discontinuities. 
For example, a uniform transmissibn line of known characteristic imped-
ance may be connected to another 
of different characteristic imped-
ance, to a load impedance, or to   
some other type of discontinuity. FIG. 1.18. Transmission line terminated 

We shall only assume for present in z2. 

purposes that at the point of the 
discontinuity, an impedance Z2 can be calculated representing the ratio 
of voltage to current for the loae, transmission line arrangement, or 
whatever else may be connected to a line of known characteristic 
impedance, Z1 (Fig. 1.18). 
By Kirchhoff's laws, total voltage and current must be continuous 

across the discontinuity. The total voltage in the line may be regarded 
as the sum of voltage in a positively traveling wave, equal to V1 at the 
point of the discontinuity, and voltage in a reflected or negatively travel-
ing wave, equal to V; at the discontinuity. The sum of V1 and V; 
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must be V2, the voltage appearing across Z2. 

± V; = V2 [1] 

Similarly, the sum of currents in the positively and negatively travel-
ing waves in the line, at the point of discontinuity, must be equal to the 
current /2 flowing into Z2. 

/1 ± = /2 [2] 

But recall from Art. 1.17 that /1 is obtained by dividing V1 by Z1, 
/; by dividing V; by —Z1. Also, by definition of Z2, 

y V2 
/2 = 

z/2 

So (2) may be rewritten 

Vi V; V2 
[3] Z1 — Z1 = Z2 

By combining (1) and (3), we may find the ratio of voltage in the 
negatively traveling wave to that in the positive, 

V; _ Z2 —  K — 1  

V1 Z2 ± K + 1 

where 

Z2 
K = — 

Z1 
[4] 

This is the reflection coefficient in temp of voltage, since it is the voltage 
in the reflected wave compared to that in the incident wave. 

Similarly from (1) and (3), we may find the ratio of voltage trans-
mitted to Z2 to that in the incident wave. 

V2 2Z2 2K 

— Z2 ± Z1 K + 1 

This is called the transmission coefficient in terms of voltages. 
Similarly, by referring to the relations between currents and voltages, 

I; Z1 — Z2 1— K 
[6] 

/1 + Z2 K + 1 

12  2Z1 2  

/1 = Z2 4- Z1 K + 1 

The most interesting, and probably the most obvious, conclusion 
from the above relations is this: there is no reflected wave if the termi-

[5] 

[7] 
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nating impedance is exactly equal to the characteristic impedance of the 
line. All energy in the incident wave is then transferred to the imped-
ance Z2 which cannot be distinguished from a line of infinite length and 

characteristic impedance Zi = Z2. 
Other applications of these general relations to many types of prob-

lems will be found throughout the book. It might be emphasized here 
that the above relations give ratios to quantities in the incident or posi-
tively traveling wave, although any meters placed in the transmission 
line would measure total quantities, incident plus reflected. 

1.19 Application of Traveling Wave Ideas to Some Simple 

Problems 
(a) Direct-current voltage applied to an infinite line. Consider the case 

of a D-C voltage V, suddenly applied to an ideal line of infinite length 
(Fig. 1.19a). The line starts to charge to voltage V, the wave front 

Áv  
z.vt 

FIG. 1.19a. D-C voltage suddenly applied to an infinite line. 

traveling with the velocity y = 1/N/a Since there is never any dis-
continuity, there is never any reflected wave, and the only current is 
that flowing in the positive wave, V/Zo. This then is a D-C current 
flowing to the charges which appear on the line as voltage moves along. 
At any time t after impressing the voltage, there is voltage V and current 
V/Zo in the line up to the point z = yt, and no voltage or current beyond. 

(b) Suppose now that the infinite line of part (a) is suddenly con-
nected to a D-C voltage V, the voltage now being applied not at one end 
but rather at the center of the line. The part of the line to the right 
of the center must experience the same charging caused by the positive 
traveling wave as was described in (a). The line to the left must, from 
symmetry, have exactly the same experience as the line to the right, 
except, of course, that its wave will be a negative traveling wave since 
the direction to the right has been taken as positive. The voltages on 
each side, at the same distance from the source, must be identical at 
every instant. The currents must be equal but opposite at correspond-
ing points since positive current is taken as current flowing in the posi-
tive direction. This checks with the voltage and current relations of 
Art. 1.17 where with the positively traveling wave's current taken as 



30 OSCILLATION AND WAVE FUNDAMENTALS [Art. 1.19 

V/Zo, the negatively traveling wave's current naturally comes out to be 
— V/Zo. 

(c) Direct-current voltage applied to a shorted line. Suppose that the 
D-C voltage is applied to a line which is not infinite in length, but is 
shorted at some point, z = 1 (Fig. 1.19b). We know that finally infinite 
current will flow if V is maintained. However, the mechanism of current 
build-up is at least interesting. After voltage is applied to the line, 

t.o I 

1.19b. D-C voltage suddenly applied to a shorted line. 

everything proceeds as in (a) until the time that the wave reaches the 
short circuit. At the time the incident wave with voltage V appears 
across the short circuit, which demands zero voltage, a reflected or 
negatively traveling wave is sent back of voltage (— V), so that the 
sum of voltages in the two waves is indeed zero. Since current in the 
negative traveling wave is the negative of voltage divided by Zo, this 
is — (— V/Zo) or + V,/Z0 and so adds directly to the current in the 
positive traveling wave. This reflected wave then moves to the left, 
leaving a wake of zero voltage and a current equal to 2V/Zo behind it. 
As soon as the reflected wave has traveled back to the source, it brings 
the zero voltage condition back to this point so that the D-C voltage 
must send out a new wave of voltage V down the line, with associated 
current V/Zo, making a total current in the line 3 V/Zo at this time. 
Current then builds up to infinity in the step manner indicated by 
Fig. 1.19b. The time T is the time for a wave to travel one way down. 
the line, 

T = - 

(d) Shorting of a charged line. Consider a transmission line open on 
both ends and charged to a D-C potential, V. If one end is shorted, 

o  

 -1 to 

1.19e. Charged line of length / suddenly shorted. 

as by the switch in Fig. 1.19c, a wave of voltage ( — V) must be started 
down the line, since this wave must add to the D-C condition V to give 
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zero at the short circuit. The current connected with the wave is then 
— V/Zo. When this wave reaches the open end, there must then be 
started a reflected wave such that total current at this open end is zero. 
Current in this reflected wave must then be + V/Zo. Because current 
in a negatively traveling wave is the negative of voltage divided by Zo, 
this will require a voltage — V for the reflected wave. Thus the wave 
traveling to the right wipes out the original D-C voltage; that traveling 
back causes it to appear on the other side. The current required for 
the interchange of charge flows through the short during the entire time. 

R=Z«, 

o 2T 

R>Z0 

2T IT 6T 

R<Z0 

2T 

4T 6T 

Fla. 1.19d. Charged line of length / suddenly connected to a resistor. 

As soon as the reflected wave arrives back at the source, the line is 
charged up in the opposite direction with no current flowing in the line, 
so the process may repeat in the opposite direction. Current and volt-
age relations are indicated in Fig. 1.19c. It is evident that this is an 
oscillating system. The problem will be considered by another method 

in a later section. 
(e) Charged line connected to a resistor. If the charged line of (c) 

is connected to a resistor instead of a short circuit, the amount of wave 
started down the line may be determined as follows. 
The voltage across the resistance is the sum of the D-C voltage of the 

line and the voltage in the wave, 

VR = V ± Vi [1] 

The current flowing into the resistor is merely the negative of current 

for the positively traveling wave. 

IR 

or 
VR 
R — Z0 

By combining (1) and (2) 

vR = v  R  

R Z0) 

[2] 

[3] 
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For example, if R = Zo, the voltage appearing across the resistance 
at the first instant is half the D-C voltage of the line, as is the voltage 
appearing in the traveling wave. When this wave reaches the open end 
of the line, the current zero requirement produces a reflected wave whose 
voltage is equal to and in the same direction as that in the incident wave, 
as found by the reasoning of part (d). Thus in the case of R = Zo, the 
original wave wipes out half the voltage, and the corresponding current, 
— V/2Zo, is that which flows through R. The reflected wave wipes out 
the remaining half of the voltage and, of course, reduces current to zero. 
When this wave reaches R = Zo there is no further reflection, so all is 
still. Current wave shape is shown in Fig. 1.19d. Also shown are 
currents for R > Zo and R < Zo. 

1.20 Approximate Attenuation in Lines with Losses 

All previous results have applied to ideal transmission lines. If 
losses are present but small, as in many practical cases at high frequen-
cies, the first correction due to these losses may be approximated. The 
method is similar to that used in finding the exponential decay with time 
for natural oscillations in a lossy circuit. This method will also be 
invaluable for later analyses of wave guides. It assumes that the 
behavior is given primarily by the solution obtained with losses com-
pletely neglected; and that the main correction is obtained by taking 
currents and voltages the same as in the ideal case, but allowing them to 
encounter the known resistances and conductances. 
The major correction due to losses will appear as an attenuation down 

the line. Assuming that this attenuation is exponential of the form e—", 
the previous solutions for voltage and current may be multiplied by such 
exponentials. Consider only a positively traveling wave. 

and 

V = e--"F — 

1 
I = e"F — 

[1] 

[2] 

The power transferred down the line by this wave at any point and 
any instant is merely the product of V and I. 

2 
WT = VI = Go [F — 3-)] watts 

V [3] 



Art. 1.20] ATTENUATION IN LINES 33 

The time average power transfer across any point along the line is 

found by averaging [F — Let the average of this be K. Then 

Ke-2" 
(WT)av Zo [4] 

The rate of decrease of this average power transfer with distance along 
the line must correspond to the average power loss in the line per unit 
length. 

d(Wr)av 
(WL)av = dz 

or 
(WL)av  

a — [5] 
2 ( WT )av 

To the extent of the approximations inherent in the above analyses, the 
attenuation factor a is then given by the average power loss per unit 
length divided by twice the average power transferred down the line. 

If the current (2) flows through a resistance R per unit length, it 
produces a loss 

Ke-2" 
— 2a = 2a (WT),, 

Zo 

e-2az 2 

WB = I2R = [F — 1--) ] R 

Since K is defined above as the average of [F — .]2, the average 

loss in the resistance is 

RK 
(WR)av = -2 e-2az watts/unit length 

Zo [61 

If the voltage of the line, (1), appears across an imperfect dielectric 
such that there is a conductance G per unit length, the loss produced is 

W = V2G = Ge-2" [F _ 
or 

(W0)„„ = KGe-2" watts/unit length 

The total loss per unit length is the sum of (6) and (7). 

(WL)., = Ke-2az [ziR 8 

[7 
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If (4) and (8) are substituted in (5), 

R GZ0 
a = — 

2Z0 2 

The attenuation is obtained by this approximate analysis in terms 
of the constants of the line. All other properties of the line (characteris-
tic impedance, velocity of propagation, etc.) are assumed to be given well 
enough by results of the previous analyses of the loss-free case. 

Units of a as given by (9) are in nepers per unit length. The particu-
lar unit length to use is determined by that used to measure R and G. 
To convert nepers to decibels, multiply by 8.686. 

1.21 Ideal Line with Applied Sinusoidal Voltages 

Much of the preceding discussion has involved little restriction on the 
type of variation with time of the voltages applied to the transmission 
lines. Most practical problems are concerned entirely or at least 
partially with sinusoidal time variations. If a voltage which is sinus-
oidal in time is applied at z = 0, it may be represented by the exponen-
tial (see Art. 1.11) 

[9] 

Viz=0 = F(t) = Vieic" [1] 

then the corresponding positively traveling wave is written 

Similarly, a negatively traveling wave is written 

Vfe (`±» 

Or the total solution, made up of positive and negative traveling waves, 
..s 

V = eiwt [Vie-17 + Vfêi] [2] 

The corresponding current, from Art. 1.17, is 
eiwt r .= ..1 

= -i--Zo Lve-'7 — Tile37 [3] 

For problems in which we shall be concerned throughout with sinusoidal 
quantities, it is not necessary to write the factor eic" explicitly each time, 
since it will always be understood that all terms are multiplied by this 
factor. We rewrite (2) and (3), omitting it. 

= ve—oz v;eoz 
1 

I= V— [ le-50» - 
Zo 

[4] 

[5] 
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co 
— [6] 

The quantity (3 is called the phase constant of the line, logically so, 
since ez measures the phase angle of a voltage or current in a single wave 
for any point z, with respect to voltage or current at that same instant 
at z = O. Moreover, if voltage and current are observed at any point z, 
they will be found exactly the same at points such that ez differs from 
that of the first point by multiples of 27r. The distance between pointa 
of like current and voltage is called a wavelength, X. By the above 
reasoning, 

or 

Finally, the velocity y may be termed a phase velocity since it is the 
velocity with which a point of constant phase (total phase, cot — e) 
moves. That is, to maintain 

cot — elz = Constant 

dz 

from (6). More will be said about phase velocity later. 

Problem 1.21 (a). Show that the input impedance of an ideal transmission line 
of characteristic impedance Zo and length I terminated in an output impedance ZLis 

= G „ o Z1, cos 131 ± jZo sin '41 Zi  
Zo COS -FiZL sin 

Problem 1.21 (b). When two transmission lines are to be connected in cascade, 
a reflection of the wave to be transmitted from one to the other will occur if they do 

z, 
t, 

Flo. 1.21. Matching section for matching Z1 to Z3. 

not have the same characteristic impedances. Show from the relations of Art. 1.21 
and Problem 1.21(a) that a quarter-wave line matching transformer (Fig. 1.21) 
will cause the first line to see its characteristic impedance Z1 as a termination and 

thus eliminate reflection in transfer if /313 = 7r/2 and Z2 = 
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1.22 Shorted Lines; Standing Waves 

Suppose a transmission line, shorted at one end, is excited by sinusoidal 
voltage at the other. Let us select the position of the short as the refer-
ence, z = O. Voltage and current at any point along the line may be 
written as the sum of an incident and a reflected wave, as in Eqs. 1.21(4) 
and 1.21 (5). The short imposes the condition that at z = 0, voltage 
must always be zero. From Eq. 1.21(4), 

viz=c, = v1 + y; 
For this to be zero, V; must be the negative of Vi. This result could be 
obtained as well from the general results for reflections at a discontinuity 
by setting Z2 = 0 in Eq. 1.18(4), or merely by physical reasoning which 
shows that no energy is absorbed by the short circuit, so all energy 
brought by the incident wave must appear in the reflected wave. The 
two waves of equal energy in the same line must have equal voltages. 
These must be in opposite directions at the short to add to the required 
zero voltage. 

If -V; = — Vi is substituted in Eqs. 1.21 (4) and 1•21 (5), 

V = Vi[e—ji3z — = —2jVi sin pz [1] 

Vi • • 
/ = — [e-313z ± eel = 2 — cos ez [2] 

Zo Zo 

The above results, typical for standing waves, show the following. 
1. Voltage is always zero not only at the short, but also at multiples 

of X/2 to the left. That is, 

X 
V = 0 at — = nir or 

2 

2. Voltage is a maximum at all points for which 13z is an odd multiple 
of 7/2. These are at distances odd multiples of a quarter wavelength 
from the short circuit. 

(2m ± 1)7r (2m ± 1)X 
V = maximum at —13z = 2 or z = 

4 

3. Current is a maximum at the short circuit and at all points where 
voltage is zero; it is zero at all points where voltage is a maximum. 

4. Current and voltage are not only displaced in their space patterns, 
but also are 90° out of time phase, as indicated by the j appearing 
in (1). 

5. The ratio between the maximum current on the line and the maxi-
mum voltage is Zo, the characteristic impedance of the line. 
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6. The total energy in any length of line a multiple of a quarter wave-
length long is constant, merely interchanging between energy in the 
electric field of the voltages and energy in the magnetic field of the 
currents. 

0 

FIG. 1.22. Standing waves of voltage and current along shorted line. 

To check the energy relation stated above, calculate the magnetic 
energy of the currents at a time when the current pattern is a maximum 
and voltage is zero everywhere along the line. Current is given by (2). 
The energy is calculated for a quarter wavelength of the line. 

L P 
Um =  ° 1112 dz = —Lnti ° coo dz 

—X/4 —X/4 4 
21/L [ z 11 

= — sui 25z 
Zo 2 4e x/4 

Since $ = 27/X by 1.21(7), the above is simply 
vfLx 

Um = 2 
420 [3] 

The maximum energy stored in the distributed capacity effect of the 
line is calculated for the quarter wavelength when the voltage pattern is 
a maximum and current is everywhere zero. Voltage is given by (1). 

o c o 
UE = f 1V12 dz — if 4n sin2 dz 

'4 -X/4 2 —A/4 

= 2CVÎ _ cvfx sin2 [4] 
2 4e X/4 4 

By the definition of Zo, (3) may also be written 

x Tex 
u = = UR [51 

Thus the maximum energy stored in magnetic fields is exactly equal 
to that stored in. electric fields 90° later in time. It could actually be 
shown that the sum of electric and magnetic energy at any other part 
of the cycle is equal to this same value. This suggests a considerable 
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amount of similarity with the parallel resonant circuit treated in Arts. 
1.08, 1.09, and 1.10. The similarity may be used to yield some very con-
venient ways of looking at shorted lines as the equivalent of tuned cir-
cuits for many practical problems. For example, whenever the line 
is shorted at a distance of 

(2n — 1)X 
/ = • n = 1, 2, 3 • • • [8] 

4 

from the source, the input impedance becomes very high. The source 
is then located at a current node and a voltage loop and the line is 
spoken of as resonant. When losses are considered it will be found that 
comparisons of stored energy with energy dissipated per radian will lead 
to a value of Q which can be used as a means of gaging the variation of 
impedance near resonance just as in simple circuits. 

Also, given any section of line, shorted on both ends, there are an 
infinite number of natural frequencies for which, as required by the 
boundary conditions, the voltage nodes will fall on the ends of the line. 
This will occur whenever 

nX 
/ = [9] 

Problem 1.22. Find the Q and the input impedance of a shorted quarter wave-
length line, using the approximate loss formulas of Art. 1.20. 

1.23 Combinations of Natural Modes to Fit Initial Conditions 

In this section we shall demonstrate a technique which will be one of 
the most widely useful methods for solution of field and wave problems 
to come later. The method makes use of a summation or series of har-
monic solutions to a wave problem to fit imposed boundary or initial 
conditions, just as in Art. 1.13 a series of sinusoids was used to fit any 
arbitrary periodic functions. 
As the example, let us consider a problem quite similar to that solved 

by a straightforward traveling wave analysis in Art. 1.19d. For this 
problem, imagine the open-circuited transmission line, first charged to a 
D-C voltage Vo, and then shorted at both ends simultaneously at a 
specified instant of time. The voltage distribution at the instant of 
shorting is then known (zero at each end and a constant equal to Vo 
at all other points, as sketched in Fig. 1.23a). It is desired to find the 
current and voltage behavior at all later times. 

In Art. 1.22 it was noted that natural sinusoidal oscillations for a line 
of length /, shorted at both ends, occur at all frequencies for which the 
line is a multiple of a half-wave long. From the results of Eq. 1.22(9). 
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one of these natural sinusoidal modes of oscillation may be written. 
For voltage, 

where 

M7r-Z 
Vin = Amei"..i sin 

Wm = 27rf„, 
MTV M T = 

[1] 

[2] 

The time of travel of a wave down the line is T = 1/V. The results of 
Art. 1.22 also reveal that the corresponding current is 90° out of time and 
space phase with voltage and has the magnitude of voltage divided by 
Zo. That is, 

• mrz 
= e•'`''..t cos [3] Zo 

Now, let us form a solution to the transmission line equations from the 
sum of all solutions of the form of (1). The basis for this step may be 
traced to the fact that the sum of solutions to a linear differential equa-
tion is also a solution. The transmission line differential equations are 
linear, and (1) is a solution. Adding, 

2172 3712 
V = A lef""g sin ± A26.5""t sin — + A3eic"t sin — • • • [4] 

and the corresponding sum of (3) for current, 

271-z 3/rz 
= — [A lei""t cos --/-2 A2elue cos — + A3eiwe cos — -F • • -] [5] 
Zo 

The amplitudes A1, A2, • • • A. are still arbitrary. They may be deter-
mined from the known initial condition by expanding the known initial 
voltage distribution with distance as a Fourier series. 
The previous introduction of the Fourier series was for use with 

periodic time functions. Certainly its use is not restricted to time as its 
variable (see Prob. 1.14c), for a periodic function of any variable (for 
example, distance) may be expanded in a similar series of sinusoids. 
The usefulness for functions which are to be represented over a certain 
limited range, although these functions are not necessarily periodic, is 
also well known. For example, if we wish to represent the rectangular 
function of distance shown in Fig. 1.23a, we require only that this repre-
sentation be accurate over the limited range 0 to 1. This rectangle might 
then be considered as one rectangle from a repeating periodic function 
such as that of time sketched in Fig. 1.14. The fact that the series 
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actually represents a function that repeats indefinitely causes no worry 
since we do not care what happens outside the range 0 to /. 

V Vo 

Z.() z 4 

(a) 
Fia. 1.23. 

_vo  .•_, z., 
(b) 

The results of changing previous Fourier coefficients for time functions 
to a form suitable for use with z, taking 2/ as the period, are 

1 
ao = - f f (z) dz 

21 

1 +1 nrz 
= - f f (z) cos — dz 
1 _1 

1 +1 nz 
= - f f (z) sin r —1 dz 
1 _1 

Since it is immaterial what happens to the function outside the bounds 
of the line, It us write a series for the odd function of Fig. 1.23b, which 
at least represents the initial voltage distribution over the length 0 to 1. 
This will then have sine terms only (see Prob. 1.14b), and 

where 

on, - f , . — az 
/ 0 

f(z) = Vo, O < z < / and f(z) = 0 at z = 0, z = / 

2!Tr nirZ 2170 1 nrz 
= 7 V o SIII CIZ — — • — cos — 

o nr 1 

2 V o 
= [1 - cos mir] 

fir 

Since cos mir is -1 if n is odd, and + 1 if n is even, 

= 0, n even 

4V0 
b. = , n odd 

fir 

o 

[6] 

[7] 

[8] 

[9] 
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Thus the Fourier series representing the initial voltage distribution 
over the line may be written 

V 4V0 1.rsin rz ± _1.: sin 37rz + _1 sin 57rz + . . .1 
[10] 

• e=o r L / 3 / 5 / 

But at t = 0, the series (4) reduces to 

V = A1 sin!! + A2 sin 2-72 -F A3 Bill 3-1r3 + • • • l [11] 
t=0 / / / 

By a term-by-term comparison between (10) and (11) it is seen that all 
the even coefficients, A2, A4, etc., must be zero. For the odd coefficients, 

4V0 4V0 4V0 
Ai = — A3 = • • An = ir 3ir ror 

Now that the coefficients are determined, the complete series expres-
sions for voltage and current at any time may be written 

. 3irt 

4V0 7r2 e' r 37rz el r 57rz / 

V = — - sin — — sm — • • • [12] 
7r 3 5 1, 

.3rt .5et 
4:1170 /1.1 71"3 1 437 37rz 5irz , = e cos -7 — cos —, -- cos —, • • • 

3 5 
[13] 

These series forms may be used to calculate current or voltage at any 
point z along the line at any time t after closing the shorting switches. 
The desired accuracy determines the number: of terms that must be 
retained. It is especially interesting to note the current through the 
short circuit at the end, by letting z = 0 in (13), 

.3rt .5art 
4/V0 j11 .1 7 .1 7 

I =  je ± 3 — — ± • • • [14] 
z=c, heir L 3 5 

art 

Recalling that je' r is a representation for sin ii-tir (Art. 1.11), and, com-
paring with the Fourier analyses for square waves in this article and in 
Art. 1.14, it is found that (14) is the Fourier series for such a square 
wave of current as a function of time. The result for current, if ex-
amined carefully, is then found to be exactly the same as that obtained 
by a traveling wave reasoning for the similar example of Art. 1.22. 
The value of this method cannot be fully appreciated by a single 

example. There will be many other examples in later chapters in which 
a series of separate solutions will be formed to fit known boundary or 

initial conditions. 
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1.24 Transmission Lines with Losses. Solution by Differential 
Equations for Sinusoidal Voltages 

We have obtained an attenuation factor for the line by an approximate 
method in Art. 1.20. Let us now examine the effect of a series resistance 
and a shunt conductance more carefully by inserting the effects directly 
into the differential equations of the line. 

If series resistance and shunt conductance are of importance in the 
transmission lines, the voltage drop along the line must include the 
resistance drop as well as the inductance drop of Eq. 1.15(3). Simi-
larly, the leakage current must include the conductance as well as 
capacitance current shunted across the line. Instead of Eqs. 1.15(3) 
and 1.15(4) we then have 

av ar 
Ts = —L -it — RI [11 

aï av 
[2] az at 

If steady state sinusoidal conditions with respect to time are con-
sidered, of the form ejet, time derivatives may be replaced by jw, and 
total derivatives written for distance since there are then no other 
derivatives. 

dV 
dz— (R jwL)I 

dl 
— — (G jcue)V 
dz 

Differentiate (3) with respect to z and substitute (4). 

or 

d2v dI— (R jcoL) — = (R jcoL)(G jcoC)V 
dz2 dz 

[3] 

[41 

d2 V 
(122 = 7 2v 

[5] 
where 

72 =-(R+ jcaL)(G jwC) [6] 

The solution to (5) is in terms of exponentials, 

V = Ae— Yz Be+73 [7] 

as can be verified by substituting (7) in (5). 
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An examination of (6) shows that 7 must be complex in the general 
case. Let us write the real part as a, the imaginary part as 13. By (6), 

-y = a ± je3 = 1/(R ± jcoL)(G jwC) 

If (7) is rewritten using a and 13, 

V = Ae—aze—elz BeazejOz 

[81 

[91 

This expression for voltage is quite similar to that of Eq. 1.21(4) 
for sinusoidal waves in ideal lines, except that there is now an attenua-
tion term on both the forward and backward traveling waves, a is 
called the attenuation constant, 13 the phase constant, and -y the propa-
gation constant. The relation between these results and those of 
previous expansions is best seen by a binomial expansion of (8), valid 
when R/wL <1 and G/coC <1. Then 

1 [R ± jcoLRG ± jcaCjI R-F 5 = --L --i--- 

2 

N C .I d- Gol 

or 

-F jciArL7' [1 RG  
G2 R2  

4‘02LC 8w2C2 + 8w2L2 

IL 
tto è 

a r2.2 
2 

2 ê 

 ± G2 ±  R2 1 
L 4w2LC 8w2C2 8w2L2 

[10] 

Equation (10) is seen to be of exactly the same form as Eq. 1.20(9). 

Equation (11) shows that is so little different from the value coViC 
[Eq. 1.21(8)], at least for low-loss lines, that it is usually sufficiently 

accurate to use this value. 

[12] 
h 

If the above approximations are not sufficiently good, it is possible to 
calculate more accurate values by obtaining the real and imaginary 

parts of (8). 
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As for current, solve by substituting (7) in (3) 

/ — R j 7 cuL [Ae— Yz — Bel 

or 

where 

I _1 [Ae—aze—oz _ Be"eiez] 
Zo 

Zo — R juld jcoL 
7 G jcoC 

Zo may again be thought of as the characteristic or surge impedance 
of the line, since it relates voltage and current in a single wave and is the 
impedance of a line of infinite length. However, it is now complex. 
Equation (14) may also be subjected to a binomial expansion and higher 
order terms neglected, subject to the condition that RicuL < 1 and 
Glue <1. Then 

[13] 

Z o NIR iwL G lojc 

_ 
.e(i .  3G2 RG .¡G R 
-é -r 8w2L2 8w2c2 4(02Lc «"T". 3 2coL 

The major correction is the reactance term which now appears in Zo. 
However, for many practical lines it is sufficiently good to neglect all 
corrections and use only 

[14] 

Zo 

[15] 

[16] 

When this is not accurate enough, approximate corrections may be 
added by (15), or the value calculated from the complete expression (14). 

1.25 Velocities of Wave Propagation 

In Art. 1.16 it was shown that for a perfectly conducting transmission 
line, a voltage applied to the line at one point will appear later in time, 
reproduced exactly in wave shape, along the line at some distance from 
the source. This conclusion was obtained from the form of the solution 
to the differential equation of the line. A certain velocity y, a quantity 
appearing in the original differential equation 

a2v i a2v 
az2 at2 
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was taken as the velocity of the wave. This again came naturally out 
of the solution, once itwas decided to label it as a traveling wave. 
Now this velocity y is, for perfect conductors, entirely independent of 

the shape of the wave. It is the velocity of the wave front or peak, or 
of any other point of the wave which makes a convenient marker. For 
a steady state, sinusoidally varying voltage with time, it may be a bit 
difficult to conceive of a ready means of putting a marker on one loop 
and following it down the line, distinguishing it from those before and 
after it. But still, the velocity y is the velocity with which an imaginary 
observer would have to move to see always the same instantaneous value 
of voltage or current. Since this says, in effect, that the observer main-
tains the same phase angle along the infinite stretch of sine wave, the 

velocity was called a phase velocity. 
The situation described is not always true in a wave guiding system. 

In a transmission line with dissipation and in general electromagnetic 
wave guiding systems, there will in general be a change of wave shape 
in a complex wave put into the system by the source. This is explained 
and analyzed by thinking of any impressed voltage or current as made up 
of a series of sinusoidally varying quantities of such frequencies and 
amplitudes as are necessary to depict the true wave form faithfully. 
Then, as this group of sine waves progresses down the line, there will in 
general be a difference in the various phase velocities of the various sine 
waves. They will change their relative positions (" faster " waves will 
speed ahead, " slower " ones fall back) and, as in a dissipative line, 
change their amplitudes in a way which varies with their frequencies. 
The resultant wave at some distant point along the line may be very 
different in appearance from that which went in. 

It thus becomes difficult always to decide just what is to be meant by 
wave-front velocity or any velocity associated with some marker on the 
true complex wave. The phase velocity still is a readily applied concept 
as before. It still is associated with steady state sine waves and so is a 
useful thing in analysis. But it should be recognized that the phase 
velocity will in general vary with frequency. 

Often in radio problems, the wave being transmitted consists of a 
bundle of sine waves covering a frequency band which is small compared 
with the average frequency. An example is the two-term combination: 

sin (coo — 3.co)t ± sin (coo + àco)t [1] 

If the above represents the transmitted voltage, then the voltage every-
where along the path (assuming no amplitude change) is 

sin [(coo — ,C,co)t — (eo — 643)x] ± sin [(coo + co)t — (eo 3.(3)x] [2] 
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in which fi is to be regarded as a function of frequency as indicated by 
the use of àe to go with Aco. 

Expression (2) may be changed to 

2 cos (3.cot — àfix) sin (cot — fix) 

which shows that the resultant voltage on the line at any point may be 
pictured as a high-frequency wave whose amplitude varies at a low-
frequency rate. The envelope of the wave, in other words. is 

cos (wt — ex) [3] 

It varies sinusoidally with both time and distance and thus may be 
regarded as a traveling wave. It is readily seen that the velocity of an 
imaginary observer who stays on the same point of the envelope is 

dco 
= — 
° de [4] 

This is called the group velocity. Since the phase velocity [Eq. 1.24(12)] 
is 

the group velocity is seen to be 

vo 

CO 

VP = — 

vp 

co dv 
1 — 

V p dco 

[5] 

[6] 

1.26 Summary of Uniform Line Equations 

Transmission line information in this chapter has been included for 
the specific purpose of presenting a wave point of view for later use. 
There was consequently no attempt at completeness in the information 
for one who is interested primarily in transmission line results; but to 
increase the usefulness of the book in this respect the most often used of 
the equations are summarized in Table 1.26. It should be noted, how-
ever, that for detailed design of transmission lines, circle diagrams and 
transmission line charts often provide the most convenient forms for 
using this information. 



TABLE 1.26 

Quantity General Line Ideal Line Approximate Results for Low-Loss Lines 

Propagation constant v(R + j co L)(G + jwC) 
.7 = a ± e jcu 4/Lb (See a and 61 below) 

Phase constant 13 Im(y) wvii-e, = Lo = Ir 
v x 

...vreri RG + G2 R2 1 + 
L 4.21,c sec, sevj 

Attenuation constant a Re(7) o R _L GZ0 
—F 2Z0 2 

Characteristic imped- 
ance Zo 

_IR + ia, T, 
NI G + .i.c 

Input impedance Zi 

Impedance of shorted 

zo rZL cosh yl ± Zo sinh 7/1 zo rZL cos fil ± jZo sin 6/1 

al cos 01 + j sin 011 
Zo[ 

Lz. cosh yl + ZL sinh 14 .1 
z0 tenu  yl 

Lz. cov pi + jZL sin tilj 
jZo tan 131- line cos fil + jal sin fil] 

Impedance of open line Zo coth yl —jZo cot 0/ z lcos el + jai sin 6/1 
9_«/ cos fil +j sin fil] 

Impedance of quarter- 
wave line 

Impedance of half-wave 
line 

z_rZi, sinh al + Zo cosh all Z,2) 
ZL 

ZL 

++ z 
" Lz. sinh «/ + ZL cosh a/ ] 

zo rZL cosh «/ + Zo sinh all 

o [Zo zL z L 4. Ji r z 
LZ0 cosh a/ ± ZL sinh LI « 

zzo i.ood.:i 

LZ0 + ZL«/J 
Voltage along line V(z) Vi cosh -yz — liZo sinh yz Vi cos th — jIcZo sin Liz 

Current along line ¡(z) Vi 
Ii cosh 7z — — sinh yz 

Zo 
V. lc cos Or — j --2 sin 6z 
Zo - 

Reflection coefficient KR ZL — Zo ZL — Zo 
Z 1, + ZO Z y + Zo 

standing wave ratio 
1 ± IKRI 1 ± IK RI 
1 — IKRI 1 — 'Kai 

R, L, G, C Distributed resistance, inductance, conductance, 
capacitance per unit length. 
Length of line. 

Subscript i denotes input end quantities. 
Subscript L denotes load end quantities. 

z Distance along line from input end. 
X Wavelength measured along line. 
y Phase velocity of line equals velocity of light in dielectric of 

line for an ideal line. -4 



2 
THE EQUATIONS OF STATIONARY ELECTRIC 

AND MAGNETIC FIELDS 

2.01 Introduction 

Static electric and magnetic fields are of great interest to radio engi-
neers. The equations describing these fields are probably used more 
often than those of varying fields. One reason for this is that even at 
very high frequencies, the electromagnetics of static fields suffices to 
explain many phenomena and yield sufficiently accurate quantitative 
results. In still other high-frequency problems, the distribution of the 
fields may be exactly the same as in certain other static problems. By 
reviewing these familiar static fields, we also hope to understand better 
the philosophy of all fields and circuits and to introduce tools which will 
prove invaluable when we are confronted with changing field problems. 
The first few chapters of this text will present a set of equations which 

will include all the knowledge of electromagnetics necessary to solve 
most radio engineering electromagnetic problems: radiation from an 
antenna, propagation of waves in space and along transmission lines, 
the special case of static fields, etc. Now, we might quite logically 
present merely a set of general differential equations at the beginning as 
the fundamentals of electricity and magnetism. From these could then 
be derived the relations applicable to fields which do not vary with time, 
and the results could be checked with knowledge and ideas of static 
fields. Such an approach will actually be used later in obtaining the 
low-frequency circuit equations (Kirchhoff's laws) from the general 
differential equations, but the opposite approach will be more valuable 
here; that is, we shall take familiar experimental results in electrostatics 
as the starting point and seek to derive the most useful equations that 
will describe the experimental results. 

If we begin the study of fields from some observed law which may be 
regarded as fundamental, the statement of the law should be made as 
general as possible so that it will be useful to describe a variety of con-
ditions. We should always be critical of this procedure, since these 
" laws " represent generalizations from several experiments, all of which 
are special in nature; there is nothing to assure us, in extending them 
from the range of magnitudes and conditions in which they were deter-
mined to an entirely new set of magnitudes and conditions, that the 

48 
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phenomena predicted will actually ever be observed until these too are 
checked by special experiment. Once checked, the derived form of the 
relation might just as well have been the fundamental law. In fact we 
might have started from that point had we thought of it first. In 
applied physics it is particularly necessary to find a large number of these 
derived relations, since it is seldom convenient to use the law in its origi-
nal form for all design or analysis. There are often so many of these 
forms that the engineer in using a dozen different relations for as many 
separate problems may be quite unaware that many of these relations are 

in reality equivalent. 
To study static fields some experimental " laws " will be taken as 

fundamental. By transformations, definitions, and generalizations, 
other forms of the law will be obtained, which may be more general or 
more convenient to use for certain problems. We shall extend the laws 
developed from macroscopic systems to the infinitesimal, and so obtain 
differential equations with which we may study continuous variations 
from point to point, as well as discrete systems. Once this extension has 
been justified, the differential equation will be the most valuable tool for 

the study of fields. 
As the discussion proceeds, it will be noticed that directions appear as 

frequently as magnitudes in the statement of the laws, so that quite 
naturally it will be necessary to use a short-cut vector notation to save 
time, space, and many words. It will soon be discovered that this notar 
tion permits many short cuts in manipulation, and, most important of 
all, leads to a very superior way of thinking about electric and magnetic 

effects. 

STATIC ELECTRIC FIELDS 

2.02 The Problem of Static Electric Fields 

The problem which must be solved in static electric field theory is 
that of obtaining relations which involve the geometrical configurations 
of conductors and dielectrics, the distribution of charges on the con-
ductors and in the dielectric medium separating them, the potential 
differences between conductors, and the field distribution in the dielec-
tric. Several or all of these factors will enter into the determination of 
capacitance between conductors, the maximum gradient in insulation, 
the amount of field between deflecting plates in an oscilloscope, the 
amount of shielding which a grid provides in a vacuum tube, or the accel-
erating force on an electron in an electron gun. 

Essentially, the problem is one of equilibrium. We require a knowl-
edge of the forces that act on charges, thus making them move to even-
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tuai equilibrium positions, and we must know the manner in which 
conductors and dielectrics affect the charge distribution and the field 
distribution. 

2.03 Force between Electric Charges; Electrostatic Units 
We shall take as the starting point for electrostatics the experimental 

law of Coulomb, which gives the force between two electric charges. 
The law includes the following information: 

1. Like charges repel, opposites attract. 
2. Force is proportional to the product of charge magnitudes. 
3. Force is inversely proportional to the square of the distances 

between charges. 
4. Force is dependent upon the medium in which the charges are 

placed. 
5. Force acts along the line joining the charges. 
This information may be written as an equation. 

f _ k q1422 
61.2 

[1] 

In this equation, f is defined as the force of attraction acting on the 
line between charges, qi and q2 represent the charges in magnitude and 
sign, r is the distance between charges, e is a property of the medium 
which may be called the dielectric constant, and k is a constant of pro-
portionality which must be included for the present, since we have not as 
yet defined units. 
The equation may be written so that the direction of the force is 

included. 

giq2 
I = 

er-
[2] 

The bar above f denotes that force is a directed quantity, or vector. 
That is, it has both magnitude and direction. The magnitude is given 

q1q2 by the numerical value of k 762- which in itself implies no direction, and 

it is accordingly called a scalar quantity. The direction of is given by 
a vector of unit length pointing from one charge directly toward the 

other, and the sign of —q1q2. Thus if qi and q2 have opposite signs, 
qlq2 is positive, J has exactly the direction of etr, and the force is 

from one charge directly toward the other. If qi and q2 have the same 
sign, —qiq2 is negative, j has exactly the opposite direction to rir, and 
the force is from one charge directly away from the other. This is 
merely the statement of opposite charges attracting, likes repelling. 
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Vectors such as a,. are known as unit vectors and will be useful through-
out the study of fields, since they serve to indicate direction without 
interfering with magnitudes. 

Equation (1) may be made to define a system of units. If a unit 
charge is defined as that charge which repels an exactly similar charge 
with a force of 1 dyne when the two are placed 1 cm apart in a vacuum, 
a system of units is defined such that k/c 1. In this system of units, 
the dielectric constant of vacuum is further defined as unity, so that 
k is also unity. For reasons which appear when other units are con-
sidered, dielectric constants referred to vacuum as unity will be denoted 

by e'. 
The system based upon the above definitions is known as the electro-

static system of units (eau), and the unit of charge is called the stat-
coulomb. It will be the basis for all subsequent definitions and equa-
tions encountered in the study of electrostatics in this chapter. Later, 
in the study of magnetic fields, it will be convenient to define a new 
system. In still later problems a third system, a practical system of 
units, will be used, which will actually be our preferred system. It is 
necessary to understand all these systems well if the engineer is to use 
the present reference books on electricity and magnetism with ease, for 
formulas are given in the system most convenient, or at least what 
appears most convenient to that author. To keep confusion to a mini-
mum, the formulas of the text will eventually be restricted to the practi-
cal system after the various systems have been explained and discussions 
reduce to the matter of solving practigal problems. 

2.04 Electric Field Intensity 

If the unit charge as now defined is placed at a distance r from a charge 
q in vacuum, the force law shows that it experiences a force q/r2 dynes. 
In the more general case, any charge placed in the vicinity of a system of 
charges experiences a force whose magnitude and direction are functions 
of the amounts and positions of all charges of the system. A region so 
influenced by charges is called a region of electric field. The force per 
unit charge on a positive test charge at a point is defined as the strength 
of electric field or electric intensity at the point, provided the test charge 
is so small that it does not disturb the original charge distribution of the 
system. Since the force on the test charge has direction as well as 
magnitude, the electric intensity is a vector. The electric intensity or 
electric field vector is then defined by 

E = — [1] 
Lq 

where j is the force acting upon the infinitesimal test charge, Aq. 
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The electric field intensity arising from a point charge, q, in any 
medium is given by the force law Eq. 2.03 (2). In esu, 

Since a,. is the unit vector directed from the point toward the charge 
q, --dr is directed away from the charge, so that the electric field 
vector points away from positive charges and toward negative charges. 

2.05 Displacement Flux 

Equation 2.04(2) shows that the electric intensity is dependent upon 
the medium in which the charge is placed. Suppose a new vector quan-
tity is defined, independent of the medium. Define the displacement 
15 by 

D = 

The displacement for the point charge then becomes 

[1] 

[2] 

The displacement at any point is thus a function of Charge and posi-
tion alone; consequently the charge may be thought of as giving rise to 
so much displacement in its surrounding medium. Each charge may be 
considered as a source of displacement flux or lines of flow in the medium, 
and according to this concept, D is an electric flux density, with the 
important property that, unlike electric intensity, it is independent of 
medium. 

Take, for example, an imaginary spherical surface with charge --1-q 
at its center. At each point on the sphere there are q/r2 lines of dis-
placement flux per unit area passing radially outward, so that emanating 
from the entire sphere there are 47q lines, regardless of the size of sphere 
or the medium in which the charge is placed. 

2.06 Gauss's Law 

In Art. 2.05, it was found that the total flux emanating from a sphere 
of any radius with charge q at the center was 47rq lines. As a first step 
in reducing Coulomb's law and the accompanying definitions to most 
useful form, it will be helpful to become more general. Consider a 
volume of any shape containing charges. If one of these point charges, 
q, is considered (Fig. 2.06), the field intensity and displacement can be 
calculated for any point on the surface by equations of previous articles. 
Thus at point P, D is q/r2. (When a quantity normally a vector 
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appears without the bar, it signifies that magnitude alone is being con-
sidered.) If O is the angle between D and the normal to the surface at P, 
the amount of flux passing through 
an elemental surface dS is 

q --- dS cos 

dS cos O is the area dS', the com-
ponent of dS normal to D. From 
the definition of solid angle, the solid 
angle da subtended by either dS or 
dS' is dS'/r2; so then the amount Fla. 2.06. Charge 
of flux passing through the elemen-
tary surface is el To obtain total 
displacement flux, this expression is integrated over all the surface, which 
amounts to integrating M. The result is then 4/rq. So 

and arbitrary 
surrounding surface. 

D cos O dS = 4rq [1] 

D is the magnitude of the displacement at any point on the surface, dS 
is an elemental area at that point, and O is the angle between the dis-

placement vector and the normal to the surface. f is used to denote 

a surface integral, the integral of a quantity over a given surface. 
If the elemental surface dS is represented by a vector, the equation 

may be written more simply. Define a as the vector which represents 
that elemental area. Its magnitude is dS, and its direction is that of the 
outward normal to the surface. Then replace D dS cos O by D • dR. 
The product just defined is called the dot product of two vectors, or 

the scalar product, since it results by definition in a scalar D dS cos 0, 
which is the product of the magnitude of one vector by the projection 
of the other upon it. Gauss's law of (1) may then be written 

D • dg = 4irq [2] 

The q considered was only one of the charges of the system, but since 
it might have been located at any point inside the surface, and since 
fields arising from several charges may be superposed, the q of (2) may 
be considered as the sum of all charges enclosed by the system. In 
particular, when the charge is distributed throughout the region with a 
charge density, or charge per unit volume, p, at any point, the total charge 
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enclosed is the volume integral of this charge density. Equation (2) is 
then written 

erv 
given volume. 

Rigorous proofs for Gauss's law may be found in several of the refer-
ences,' but this demonstration should give a clear picture of the concept 
of flux. Once one has learned to think of lines of flux emanating from 
a point charge radially in all directions, then it seems that the amount of 
flux passing through any imaginary enclosing surface must be constant, 
since no flux lines are created or destroyed in passage. 

fs D•d,.9 = 41-f p dV [3] 

denotes volume integral, or integral of a quantity throughout a 

Fla. 2.07. Vector A and its rectangular components. 

2.07 Scalar or Dot Product of Vectors 
The vector operation defined in the last article is important since there 

is often occasion to multiply one vector by the projection of the other 
upon it. That is, if A and fl are vectors (of magnitudes A and B) 
with an angle of O between them, AB cos O is of interest. This has been 
written as À • B. (Read A dot B.) This product may now be ex-
pressed in terms of the components of À and n along the coordinate axes. 
A unit vector has already been defined in the statement of Eq. 2.03 (2). 

If az, az are three such unit vectors having the directions of the three 
axes in rectangular coordinates, and if Az, Ain and A, are the magnitudes 
of the components of A along these axes, À may be written 

À = AA, A„a„ Aza, 

The addition of the three component vectors to obtain 3 is performed 
according to ordinary engineering ideas of vector addition (Fig. 2.07). 

In this text we shall mean the general references of Appendix A, if specific 
references are not given in a footnote. 
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The dot product is 

• B = (AA. ± ± Az(%) • (BA + BA) 

If the multiplication is carried through term by term, with the dot 
product between component vectors retained: 

A. B = A.Bzaz • ax AzBez • az,,, etc. 

The terms àx • âz, ail • ây, àz • etz are unity by definition of the unit 
vectors and the dot product. The terms nx • ày, tty • etz, etc., are zero 
since the angle between any of these unit vectors and either of the other 
two is 90°. The scalar product then reduces to 

AB Z + A yBy + A ez [1] 

2.08 Tubes of Flux 
The concept of flux passing through an area obviously does not have 

to be limited to electric phenomena. If D is any vector function of 
space, the product of the magnitude of D 
at any point by an element of area perpen-
dicular to D at that point may be called the 
flux of D passing through that area. The 
total flux flowing through a surface is given 
by the surface integral 

e= f D•dig [1] Flo. 2.08. Tube of flux. 

As before, the convention is to regard the vector representing the ele-
ments of area as pointing outwards. 

Consider a surface (Fig. 2.08), bounded by two planes, Si and 82, 
perpendicular to the field vector at two points, and a surface 83 always 
parallel to the direction of the field vector. If there is no charge en-
closed, Gauss's law gives 

fsi n• + f re•ds+ f D • a = 0 [2] 

Since 83 is always parallel to D, there is no flux flowing out through 83. 

So 

fs3 D • = o [3] 

fs D • e  = — f 13 • cl;g [4] 
i s, 
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This equation states that the flux passing through the plane Si is 
that which comes out of the plane 82, so that total flux across any cross 
section of the tube is a constant. Such a tubular region may be called 
a-tube of flux. To study the field intensity distribution, it is sometimes 
helpful to draw out many of these tubes, the size of area being so selected 
that the flux through the area is one unit. Lines are often used to 
represent the tubes, and the tubes loosely called lines. Thus the smaller 
the spacing of these lines, i.e., the more lines per square centimeter, the 
stronger the flux density at that point. 
We have agreed that lines of flux emanate from charges and are con-

tinuous in regions without charge; consequently the lines of force for 
an electrostatic field must begin on a charge and end on a charge. To be 
consistent with the convention already adopted, the line is said to begin 
on a positive charge and end on a negative charge. 

2.09 Charges on Conductors 

If expressions for the field in differential equation form are to be 
obtained, it is important that boundary conditions for application to 
their solutions be well understood. Conducting metal surfaces will 
often form these boundaries. 

Conductors are defined as those materials which readily permit a 
current flow, or motion of charges. So if charges are placed on or in 
conductors, they will move about as long as there is the slightest electric 
field producing a force upon them. After they have reached equilibrium, 
the necessary condition for a static field to exist, all the electric field 
inside the conductor or tangential to its surface must have disappeared. 
If there were charges in the body, Gauss's law would require an electric 
field in the vicinity of these charges, so that this is an impossible con-
dition for the static case. All the charge in electrostatics must then 
reside on the surface and must be distributed so that the component of 
electric field intensity tangential to the surface and the total electric field 
intensity inside the material surface of the conductor are zero. 

2.10 Boundary between Conductors and Dielectrics 
Determination of the charge on a conductor which bounds a given 

electric field demonstrates the application of Gauss's law to a case much 
more difficult to study directly from Coulomb's law. Consider the 
imaginary surface indicated in cross section by the dotted lines of 
Fig. 2.10. There can be no flux through the surface dS' since it is sub-
merged in the metal, below the surface. The distance h can be made as 

small as we like compared with dS, since dS must be only an infinitesi-
mal distance outside the metal, de must be only an infinitesimal dis-
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tance inside. So then the flux passing through all surfaces containing h 
can be macle negligible. This leaves the total flux to pass through the 
surface dS. By Gauss's law this flux must be 47r times the charge 
enclosed, which is pa dS. (pa is the surface 
charge density, or charge per unit area.) 
Thus  , ,ds Dielectnc 

 -... •••• 
EtE (IS --= 47pa dS  s‘...:-.. ......-.-

Or 

Metal 

h 

¿E =-- 47rp. [1] FIG. 2.10. Cross section, show-

E is the electric intensity normal to the ing surface separating a dielec-

surface, which is the total E in the pres- 
tric and a conductor. 

ent case since there can be no component tangential to the sur-
f ace of the conductor. The result is directly due to the requirement 
that 4Ir lines of flux leave each unit positive charge, and that D and E 
are normal to the conductor surface external to the conductor, zero , 
inside the conductor. The result may be used to find the amount of 
electric flux leaving a conductor at every point if the charge distribution 
on the conductor is known, or conversely, to evaluate the charge that 
must be induced on a conductor at every point when a known distribu-

tion of electric field ends on this conductor. 

2.11 Diverging and Converging of Flux Lines 

Gauss's law was derived from Coulomb's law which was determined 
by experiment on systems of finite size. Let us extend it to an infinitesi-
mally small system. Equation 2.06(3) may then be written: 

fD • dR 47r f pdV 
him s — hm v RI 
Av—,0 ¿IV t,v___,0 A V 

The right side is, by inspection, merely 47rp. The left side is the amount 
of displacement flux per unit volume flowing out of an infinitesimal 
volume. This will be defined as the divergence of displacement, 

abbreviated div D. Then 

div r) = 4/rp [21 
_ 

To make the picture clearer, consider the infinitesimal volume as a 
rectangular parallelepiped of dimensions ¿Ix, Ay, az as shown in Fig. 2.11. 
To compute the amount of flux leaving such a volume element as 
compared with that entering it, note that the flux passing through any 
face of the parallelepiped can differ from that which passes through the 
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opposite face only if the displacement perpendicular to those faces varies 
from one face to the other. If the distance between the two faces is 
small, then to a first approximation the difference in any vector function 
on the two faces will simply be the rate of change of the function with 

distance times the distance between 
faces. 

If the displacement vector at the center 
r,y,z has components D., Dv, D., 

//X 

Fla. 2.11. 

D. 

D. 

Ax apx 
= 2 2 D. + ax 

Ax apz 
= D. — 

2 ax 

[31 

The displacement flux flowing out the front face is Ay Az D.1 x-1-7  

and that flowing in the back face is Ay Az D.1 à., leaving a net flow out 

of Ax 4 Az —aDz . Similarly for the y and z directions, so that net flux 
ax 

flow out of all the parallelepiped is 

04, 
X Ay Az —  Ax Az —  &c Ay Az 

ax ay az 

By Gauss's law, this must be 4/rp Ax Ay Az. So, in the limit, 

apx apy aD, [4] 
ax ay as 

An expression for div D in rectangular coordinates is obtained by com-
paring (2) and (4). 

ap al) ap, 
div D = + + [5] ax ay az 

It will be convenient to define a vector operator V (pronounced del) 

in rectangular coordinates as 

a a a 
V = — + ay— + 

ax ay as 
[6] 

Consider the expansion for the dot or scalar product, Eq. 2.07(1), and 
the definition of V above. Then (5) indicates that div D can correctly 
be written as V • D. It should be remembered that V is not a true 
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vector but rather a vector operator. We need not worry about its 
meaning except when it is operating on another quantity in a defined 
manner. The divergence represents the first of several of these opera-

tions to be defined. 

Finally 

D apx+ ap OD. 
v • = + Ox ay az 

[71 

v • D div = 47rp [8] 

The divergence is made up of space derivatives of the field, so (8) is 
evidently a differential equation derived by generalizing from the previ-
ous laws for comparatively large systems. It will be so important that 
we should become accustomed to looking at it as an expression for Gauss's 
law generalized to a point in space. The physical significance of the 
divergence must be clear. It is, as defined, a description of the manner 
in which a field varies at a point. It is the amount of flux per unit 
volume emerging from an infinitesimal volume at a point. With this 
picture in mind, (8) seems a logical extension of Gauss's law. Since 
Gauss's law was in turn derived from Coulomb's force law, the above 
equation may be considered as a differential equivalent of Coulomb's 

law. 

2.12 Divergence Theorem 
If Eq. 2.11(2) is integrated over any volume, 

cliv D dV 471- f p dV [1] 

Replace the last term by its equivalent from Gauss's law, Eq. 2.06(3). 

f, div DdV = f D • dS [2] 

Although this relation has been derived from a consideration of D, a 
little thought will show that it is a direct consequence of the definition 
of divergence and so must hold for any vector field. For if divergence 
of any vector is considered as a density of outward flux flow from a point 
for that vector, then it seems that the total outward flux flow from a 
closed region must be obtained by integrating the divergence through-

out the volume. If P is any vector 

fy divPdV = f V• PdV = f P • dig [3] 

This relation is known as the divergence theorem or Gauss's theorem (as 
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distinguished from Gauss's law of Art. 2.06) and will be useful later in 
manipulating vector equations in order to arrive at their most useful 
forms. Note that the theorem is true for any continuous vector func-
tion of space, regardless of the physical significance of that vector. 

2.13 Conservative Property of Electric Fields 

Before proceeding very far in attempts to build up pictures and 
quantitative relations for electrostatic fields, we should pause to look 
into the very important matter of energy. The field may be checked 
with ideas of conservation of energy, to determine, for example, whether 
the energe of the electrostatic field is a function merely of its state at 

any given time, or whether it depends upon the 
E4.1 manner in which that state occurred. We no 

doubt already feel certain that the energy of 
dl an electrostatic field depends only upon the 

amounts and positions of the charges, and not 
ir  . on how they grew; the inverse square law tells q3 

Q, us that this must be so. 
The force on a small charge Aq moved from 

• Q, 
Q1 1 e. infinity to a point P in the vicinity of a system 

2.13 of charges: qi at Qi, q2 at Q2, q3 at Q3, etc., may 
Fla. . 

be calculated at any point along its path. Con-
sider, for example, the work integral arising from q1. The work is the 
integral of force component in the direction of the path, multiplied 
by differential path length (Fig. 2.13). 

U1 = — f Am cos 0 dl 
er2 

But dl cos O is dr, so the integral is simply 

f e. PQI A qq1 dr = —  err2 

Similarly, for contributions from other charges, so that the total work 
integral is 

U = f PQ1 « j-2 dr — Q2 -à--¿e2 dr — fP422 Iqqa dr • • • /7.2 Jo Er 

Integrating, 

TI (Aq)ql (AO q2 (q)q3 
= + ± +... Ell 

€PQ1 e P(22 €PQ3 

Equation (1) shows that the work done is only a function of final 
positions and not of the path of the charge. This conclusion leads to 
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another: if a charge is taken around any closed path, no net work 
done. Mathematically this is written 

fE.e=o [2] 

In the study of magnetic fields, we shall find corresponding work inte-
grals which are not zero. 

2.14 Electrostatic Potential 

To solve the differential field equations, it is often convenient to 
introduce mathematical tools known as potential functions, which may 
aid materially during the solution but which need not appear in the final 
result. It is never necessary to give these mathematical tools physical 
significance though it often may be desirable. We are already quite 
familiar with the potential function of electrostatics, and in this case 
it may easily have more significance for us than the fields, which were 
themselves only defined concepts to describe the situation in a region 
containing charges. 
The common potential function in electrostatics is a scalar quantity 

defined so that the difference in this function between two points P 
and Q is given by the integral 

431:, - CDQ= f E•c7i [1] 

The physical significance that may be attached to it is now apparent, 
for (1) is an expression for the work done on a unit charge in moving it 
from P to Q. The conclusion of the preceding article that the work in 
moving around any closed path is zero shows that the potential function 
defined is single valued; that is, corresponding to each point of the field 
there is only one value of potential, though the potential may, of course, 
vary from point to point. 
Only a difference of potential has been defined. The potential of any 

point can be arbitrarily fixed and then the potentials of all other points 
in the field found by application of the definition to give potential differ-
ences between all points and the base. .This base is quite arbitrary since 
the potential differences alone have significance. For example, in certain 
cases it may be convenient to define the potential at infinity as zero and 
then find the corresponding potentials of all points in the field; for the 
determination of the field between two conductors, it will be more con-
venient to select the potential of one of these as zero. 

If the potential at infinity is taken as zero, it is evident that the 
potential at the point P in the system of charges, Art. 2.13, is given by 
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U of Eq. 2.13(1) divided by ,Ciq so 

q2 q3  
cl) — +... 

e PQ1 e P (22 e 1:123 

Generalizing to the case of continuously varying charge density, 

pdV 
= fir E r 

[2] 

[3] 

p is the charge density, and the integral signifies that a summation 
should be made similar to that of ‘(2) but continuous over all space. 
There are, of course, arbitrary added constants if the potential at infinity 
is not taken as zero. 
At once there is evidence of the usefulness of the potential tool, for 

4) is obtained by simple scalar addition; it would have been necessary 
to perform corresponding vector additions to obtain fields directly. 
Since the fields can be obtained simply from the potential, the work of 
obtaining electric fields from charges is simplified. We shall next show 
how this may be done. 

2.15 Gradient 

If the definition of potential difference is applied to two points a 
distance dl apart, 

dcl) = --2 • al [1] 

eTt may be written in terms of its components and the defined unit 
vectors (Art. 2.07). 

= dx dy dz [2] 

Expand the dot product according to Eq. 2.07(1) 

dc1, = — (E dx Ey dy Ez d,z) 

Since is a function of x, y, and z, the total derivative may also be 
written 

dcl, = — ax ± — ay ± — az 
ax ay az 

From a comparison of the two expressions, 

at 
Ey = --

ay [3] 
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84) 
az 

ad, 04. al 
E =az— 

ax ay az 

or 

E = — grad 4, [51 

where grad 43, an abbreviation of the gradient of cl), is a vector showing 
the direction and magnitude of the maximum space variation in the 
scalar function c13, at any point in space. It is the maximum variation 
that is represented because the gradient is the vector sum of the varia-
tions in all three directions. 
The vector operator V was defined by Eq. 2.11(6). Then grad fri, 

may be written as Ve. if the operation is interpreted 

_ ad, 
vci) nx—ax + ay —ay + az—az 

[4] 

and 

[6] 

E = —grad c1, —174. [7] 

Problem 2.15. Demonstrate that the gradient of I>, as defined by Eq. 2.15 (6), 
is indeed a vector representing magnitude and direction of the maximum space 
variation of 4›. 

2.16 Equipotentials 

All points of a field having the same poténtial may be thought of as 
connected by equipotential surfaces. The distribution and spacing of 
these equipotential surfaces can be used to describe the field. The elec-
tric field vector must be perpendicular to these surfaces at every point, 
for if there were the slightest component tangential to the surface, say 
Et, then two points de apart would have a potential difference Et« 
which would violate the condition for an equipotential surface. This 
was the same requirement considered in Art. 2.09 for conducting sur-
faces, so it follows at once that all conducting surfaces in electrostatics 
must be equipotential surfaces. 

If the potential were to vary in one direction only, say x, as in a po-
tential difference applied between two infinite parallel conducting planes 
perpendicular to the x axis, the electric field, or negative gradient of 
potential, would be entirely in the x direction. The equipotential sur-
faces would be perpendicular to the x axis, or parallel to the conducting 
planes, as would be expected from symmetry. 
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In the general case the field will vary in all directions, the equipoten-
tial surfaces will not be planes, and the gradient will be made up of com-
ponents in the x, y, and z directions having magnitudes proportional to 
the variation of potential in those three directions. 

2.17 Laplace's and Poisson's Equations 

It will often be convenient to work directly with potentials instead of 
fields, since the specified conditions of the problem, i.e., the boundary 
conditions, may be given in terms of potentials (say the voltage applied 
between two conductors). 

If the value of .E from Eq. 2.15(7) is substituted in Eq. 2.11(2), and if 
Et is constant throughout the region, 

—div (grad (13) = — V • VI, = 47-2  
E' 

But from the equations for divergence and gradient in rectangular 
coordinates [Eqs. 2.11(7) and 2.15(6)] 

824, a2 cp a24) 

V • V<I) = - [1] 
aX2 aY2 az2 

So 
824, 324, 824, 47rp 

— 2- = -7- [2] ax2 ay az2 e 

This is the differential equation which relates potential variation at any 
point to the charge density at that point. It is known as Poisson's 
equation and is often written 

where 

V24, V • ( Vc1)) div (grad cl)) [4] 

In the special case of a charge-free region, Poisson's equation reduces 
to 

or 

47rp 
v24, 

E 
[31 

4924, (124) a24) 

aX2 aY2 ± 822 = ° 

V24) = 

which is known as Laplace's equation. 

[5] 
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Any number of possible configurations of potential surfaces will 
satisfy the requirements of (3) and (5). All are called solutions to these 
equations. It is necessary to know the conditions existing around the 
boundary of the region in order to select the particular solution which 
applies to a given problem. It can be shown mathematically that once 
p is given at every point in a region and (1) is given at every point on the 
surface surrounding the region, only one potential distribution is possible. 

Equations exactly similar in form to (3) and (5) are found in many 
branches of physics. In fact we shall discover later that they are true 
not only when the function is a static potential; for example, the func-
tion may be the static field strength vectors or certain of their com-
ponents. Laplace's and Poisson's equations are of first importance in 
getting answers to all problems in which static electric and magnetic 
effects are involved. The ability to choose solutions of these equations 
is fundamental in arriving at the final solutions to the common prob-
lems discussed in Art. 2.02. For that reason the next chapter will be 
devoted almost entirely to a discussion of the techniques of building up 
solutions to these equations to fit boundary conditions that are likely to 

occur in practical problems. 

STATIC MAGNETIC FIELDS 

2.18 Magnetic Field of a Direct Current 

In the first part of this chapter the concept of the electric field was 
developed from the experimental observation that a charge in the vicinity 
of other charges experiences a force. Experimentally, it can also be 
determined that a loop carrying current will be acted on by a force if it is 
brought in the vicinity of another current or system of currents. The 
region in which such forces exist is spoken of as a region of magnetic 
field. Now, of course, the study of magnetism may be approached from 
various standpoints; we shall find it most advantageous to study it as an 
effect due to current flow. In this chapter we shall limit ourselves to a 
discussion of the concepts of magnetic fields due to unchanging currents, 
i.e., static currents, just as earlier in the chapter the discussion was 
limited to the electric field effects of static charges. As before, the con-
clusions and concepts will be applicable not only to static currents, but 
also to low-frequency problems and to many high-frequency situations 
in which the field distribution will later be shown to be identical with 

those of stating. 
Experimental measurements show that the force betweel two or more 

static current elements is dependent upon the following factors. 
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1. Direction of current flow. 
2. Magnitude of currents. 
3. Distances between currents. 
4. Orientation of currents. 
5. Shape and size of current path. 
A comparison of these and the corresponding factors for electric 

charges in Art. 2.03 warns us that the force law for currents will not be 
written so simply as that for charges. Current is a vector, i.e., it has 
direction, to mention one complicating factor; the orientation of the 
current vectors must appear in the force law. It will be convenient 
therefore to define a field strength for magnetic fields before attempting 
to write the force law. The electric field intensity was defined in terms 
of force on a small charge. The magnetic intensity, or magnetic field 
vector 11, is defined in terms of the force on a small current element 

such that 

df = I dli.t'H sin 0 [1] 

1.1 is a function of the medium. known as permeability, i is the current 
flowing in the element dl, H is the magnitude of the magnetic intensity, 
O the angle between ell and H, and df the magnitude of the force on the 
current element. The direction of df is along the perpendicular to the 
plane containing dl and /7 and in the direction of advance of a right-hand 
screw if Fll is rotated into R. This equation enables one to measure field 
strength at any point, this field strength presumably arising from a dis-
tribution of currents in the neighborhood, although, of course, it may be 

due to permanent magnets. 
The remainder of the information obtained experimentally is contained 

in a second law relating the field to the currents which produce it. 
Although this law is probably correctly credited to Biot, it is more 
commonly known as Ampère's law, so we shall use that designation. 

The law is • 
dl' sin 4, 

[2] dH = r2 

As in Fig. 2.18a, dl' is a contributing current element having current 
r is the magnitude of the vector from the element to the point at which 

H is to be determined, 4, is the angle between dl' and r, and dH is the 
magnitude of the contribution to H from the element dl'. The direction 
of dH is given by the normal to the plane containing ire and f, and by the 
direction of advance of a right-hand screw if d'  is rotated into r. 

If a simple vector notation is introduced, these laws may be written 
clearly in a vector form that includes these clumsy direction laws. Both 
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laws involve a vector which is perpendicular to the plane -containing two 
other vectors and has as magnitude the product of the magnitude of one 
and the component of the second perpendicular to the first. Thus if C 
is the vector resulting from the combination of two such vectors A 

(a) 

Fla. 2.18. 

(b) 

and /"J (Fig. 2.18b), define C = A. X T3 as a vector product of the two 
vectors 21 and B. C is a vector perpendicular to the plane containing 
and /I, of magnitude AB sin O and having a direction given by the 
direction of advance of a right-hand screw if A. is rotated into n. From 
this definition it is seen that 

ilXn= —13.XX 

Now we may write (1) and (2) as 

crt" = kW X et [3] 

dH —   [4] 
r2 

är is the usual unit vector pointing from de to dl. el was the contribu-
tion to H at a point from the element cr. Total H must be found by 
summing• up vectorially the contribution from all such elements in the 
system. Although the vector property has been attached quite natu-
rally to ai' above, it may as well be given to the current, which has the 
same direction as ar . In subsequent discussions, the vector property 
will be given to either, depending upon convenience. 

H f  de X a, 
[5] r2 

Equations (3) and (4) define the field strength H, which expresses the 
manner in which a current experiences a force and the amount of that 
force. Equation (5) is often considered the fundamental experimental 
law. That is to say, it was deduced from experiments on actual systems 
and serves to correlate measurements on all such systems. 
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2.19 Electromagnetic System of Units 

Current is regarded as a motion of charges; since a unit for electric 
charge has been defined, there is also defined a unit for current in the 
electrostatic system. For the study of magnetic fields a new system of 
units is commonly defined. For this system of units, we shall first set 

1 for vacuum. Two other quantities must now be defined: unit 
current and unit magnetic field intensity. Equations 2.18(3) and 
2.18(5) give two relations between these quantities; force in Eq.2.18 (3) 
is measured in dynes; all distances are in centimeters. Thus, with no 
constant factors in these equations, the two relations fix units for the 
two quantities. In terms of complete systems, unit current flowing in a 
circular loop of wire of 1-cm radius in vacuum produces field strength 
of 271- at its center (see Art. 2.35); this would then exert a force of 2ir 
dynes per cm of conductor element carrying unit current at right angles 
to such a field in vacuum. 
The above system is known as the electromagnetic system of units 

(emu). The unit current is called an abampere. The electromagnetic 
system of units will be used exclusively in all subsequent discussions of 
magnetic fields in this chapter. Later, as was promised when the elec-
trostatic units were introduced, a single practical system of units will be 
used to correlate all formulas for application to practical problems. But, 
it is worth while repeating that we allow the reader some experience 
with the electromagnetic system of units before restricting our discus-
sions to the practical system, for many valuable texts as well as articles 
use the former system. 

2.20 Vector or Cross Product of Vectors 

The vector multiplication defined in Art. 2.18 may be expanded in 
terms of component vectors as was the scalar product of Art. 2.07. For 
if A and n are given in terms of the unit vectors and the components 
along the three coordinate axes, 

X /73 = (AA, -I- A ray Azriz) X (Bxax Byny Bzaz) [1] 

From the definition of the vector product and a consideration of the 
coordinate system, Fig. 2.20, it should be evident that 

etx X ay = Etz = —ay X ax 

ay X az = a = —az X ay 

az x a. = a = —a. X az 

az X a. = 0 = ay X ; = à. X az 

Notice that coordinates were purposely selected so that the sign of the 
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unit vectors resulting fiora the product of one 
succeeding unit vector, in the order 
xyz, is positive. Such coordinate 
systems, known as right-handed sys-
tems, should always be selected to 
prevent confusion in signs. To check 
for a right-handed system, rotate one 
axis into the succeeding axis in order 
of writing; a right-hand screw given 
that motion should then progress in 
the positive direction along the third 
axis. Then 

unit vector and the 

X 

FIG. 2.20. A right-handed system of 
rectangular coordinates. 

z (A,Bz— AzBy) + Ety(AzBz — AzBz)d- tiz(AzBy— AyB.) [2] 

Note that this quantity may also be written as the determinant: 

etz rty 

/I X T3 = Az Ay Az [3] 

Bz By Bz 

2.21 Line Integral of Magnetic Field; The Curl 
We now have available expressions which relate the field distribution 

to the current distribution, and it might appear that we have generalized 
sufficiently and can proceed to the more fruitful question of applying 
these equations to the solution of actual problems. But we are not yet 
satisfied. There are many other ways of stating these fundamental rela-
tions and the ability to get quick answers to electromagnetic problems 
depends upon being able to choose the best statement of the governing 
law for that case. Moreover, the understanding of electromagnetic 
theory is enhanced by one's ability to state it and see it " frontwards, 
backwards," or if necessary, even " sidewise." 
A law which is sometimes given as a fundamental starting point for 

magnetic fields is that of Biot and Savart, stating that the line integral 
around any closed path is 4r times the current enclosed. 

firLa = 4/r/ 
This relation certainly cannot divulge any information not contained 

in Ampère's law, Eq. 2.18(5), if both are correct, for since field intensity 
at any point is given in terms of currents from Ampère's law, it could be 
integrated about any closed path to obtain the line integral in terms of 
current enclosed. Although both contain the same information, this 
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integral form of the law will many times be more convenient to use than 
the previous form, especially when a certain kind of geometrical sym-
metry exists in a problem. For this reason it will be desirable to derive 
it from Ampère's law. It is necessary to go through a somewhat rocky 
mathematical path to show the desired equivalence, and it is not our 
purpose to engage in rigorous mathematical proofs merely for the exer-
cise. Present interest is rather in concepts which will be valuable when 
we are confronted with a practical problem. However, a convenient 
proof of the equivalence between (1) and Eq. 2.18(5) involves the intro-
duction of several concepts which will be useful in later problem solu-
tions, and it is mainly for this reason that the following several articles 
and problems will be devoted to that proof. 
Once before (Art. 2.11) in writing a relation that involved a closed 

integral, we were able to use the expression to obtain a differential equa-
tion. The matter there concerned the relation between the integral of 
flux diverging from a volume of space and the total charge contained in 
that volume. The procedure was simply to let the volume shrink to so 
small a size that it was sufficiently accurate to replace the total charge 
by the charge density times the volume element. In this way a very 
handy term called divergence was introduced as the integral of outgoing 
flux per unit volume. When the divergence was evaluated and equated 
to 47 times the charge density, a differential equation resulted which 
actually is capable of serving as a more convenient starting point in 
many problems than the integral expression from which it was obtained. 

Similarly, if we now take (1) and apply it to a very small loop — one 
so small that it is sufficiently accurate to replace the current linked by 
the loop by the current density times the small area — it will be possible 
to derive another extremely useful differential equation and introduce 
another descriptive vector term. Thus, from (1) we may write 

fFl • in = 4ri • AS [2] 

where AS is the vanishingly small area and I. is the vector current flow 
per unit area. In the limit a vector called the curl may be defined by 

lim f 17 • cU = (curl 17) • àS [31 

Before anything is said about the direction of the curl of a vector and its 
physical significance, let us go over a very simple example. 
Take as the infinitesimal surface a rectangle in cartesian coordinates 
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parallel to the xy plane (Fig. 2.21). 

fII • a = ày Hy - - Hyl. + Hz ly 

Now to an accuracy that becomes increasingly better as ,Cix and iy 
go to zero, 

Hz 

SO 

= Hz 
1/1-à1/ 

aHz1 
+ — ; Hy 

aY 
= 

x-1-tkx 

f ax ay / 

aH 
+ ax 

axlx 

Fie. 2.21. 

[4] 

Now this quantity (8H/ax) — (811z/ay) is a measure of the amount 
of line integral per unit area lying in a plane perpendicular to the z 
axis. It tells us how much the magnetic field is curling about a small 
area in the xy plane where the infinitesimal area vanishes to zero. In a 
similar way, the curling around infinitesimal areas in the other two planes 
could be evaluated and would become finally 

iz aHv 
[Curl ri].= — 

az 

arix aH. 
[Curl L, = [5] 

az ax 
• aH arix 

[Curl /7]. = — 
ax ay 

where the subscript denotes the direction of the perpendicular to the 
plane in which the elementary area lies. This set of equations gives a 
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differential expression for each component of the curl and clears up the 
question of direction. Equation (5) may be written also 

ail. ariyi _ raHz aHz] _ rally alizi 
[6] 

If the result is compared with the definition of the operator Eq. 2.11 (6) 
and the expansion for the cross product in rectangular coordinates, 
Eq. 2.20(3), then it is evident that 

Curl 11-.vx11.-

ri. ay az 
a a a _ 
ax ,ay az 
H. Hy Hz 

[7] 

This vector operation is read" del cross H " and defined to give the result 
of (5). From (2), (4), and (5) the following differential equations may 
be written 

_ ail. ally) 
iim f H • dl = ( - dy dz = 47rix dy dz 
AS->0 x ay az 

hm f li • a = ( —) dx dz = 47riy dx dz 
às-g) v az ax 

lii. dx rii.cw = fax, _arix\ _y = 
, d 47riz dx dy 

As-+o J 2 \ ax ay / 

[8] 

Multiplying the first by 0,x, the second by 01„ etc., and adding, the 
second and third columns give, from (6), 

V X H = 47ti [9] 

2.22 The Work Integral for Magnetic Fields 

When the current density is zero at some point of a magnetic field, 
Eq. 2.21 (9), 

VXR=0 , [1] 

Under such circumstances the magnetic field is non-curling or irrota-
tional, just as is true of electrostatic fields, for a quick glance through 
Art. 2.13 and the definitions of Art. 2.21 should make it evident that 

V X 2 = 0 [2] 

In general, however, for magnetic fields 

V X H -- 47ri 
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The greater the current density, the greater the curling of the magnetic 
field, or in the form of Eq. 2.21 (1), the greater the total current enclosed 
in the path, the greater the value of the work integral. This means that 
in a magnetic field where the current density is not everywhere zero, a 
motion of conductors carrying the D-C currents (unchanging in time) 
through some arbitrary paths and back to the original positions will, in 
general, require the expenditure of energy. Surely, the final field must 
be the same as the original if currents are maintained constant, and the 
final and original field energy storage must be equal; the equations show 
that energy must have been used up just the same. Of course, this does 
not mean that conservation of energy is violated in this case; the corre-
sponding energy term will appear in induced effects acting on the currents 
of the system, which effects will be studied in later chapters. 

2.23 Vector Magnetic Potential 
The curl of a field introduced in Art. 2.21 will prove useful in the 

development of Eq. 2.21(1) from Ampère's law. This law in vector 
form, Eq. 2.18(5), gives the magnetic field at point x, y, z. It may also 

be written 
f I' at' x  

[1] 

is the current in a contributing element Fie at point (xl, y', z') and is the vector running from dl' to point x, y, z. 

— x') + ay(y — yr) — a') 

r = — x')2 — Y')2 e)2 

It may be shown that 

C-ii'r3><P__ grad (1r) 
[2] 

and also that 

grad (--) X --= curl (217 ) — -1 curl -cie r r [3] 

But the curl of a' is zero, so that finally 
II = curl f/' (21) = V X [4] 

where 

f 1' e. [5] 
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The integral A is a vector function of space whose curl gives the mag-
netic field intensity. It will be called a magnetic potential because when 
differentiated in a certain way it yields the magnetic field, and more 
properly the vector magnetic potential to distinguish it from other mag-
netic potentials that can be thought up by analogy with the electrostatic 
potential and which are not vectors. 

In a continuous current distribution throughout a region, of current 
per unit area ti, A may be written 

= fdV 
v r 

and 

[6] 

So far as this derivation is concerned, Ampère's law (1) has simply 
been written in two steps by mathematical maneuvers. That is, (6) 
and (7) together are the equivalent of (1). 

Problem 2.23. Derive Eqs. 2.23(2) and 2.23(3) and explain why it can be said 
that curl r is zero. 

2.24 Divergence of Magnetic Field 

Magnetic field intensity has been written as the curl of a vector, A. 
Its divergence is then 

v•H=v•vx,1 [1] 

The result, in rectangular coordinates, is 
82 A z a2 A a2 A z a2 A z a2 A z 

y • I/ = — — O2 Ay 0 [2] 
Ox ay ax az ay az ay ax az ax as ay 

since 
02 .92 

, etc. 
ax ay ay ax 

Notice that the evaluation of the divergence of the curl of A was inde-
pendent of the value of A, so then the divergence of the curl of any 
vector is identically zero. 
A major difference between electric and magnetic fields is here appar-

ent, for unlike the electric field, the magnetic field must have zero 
divergence everywhere. That is, when the magnetic field is due to 
currents, there are no sources of magnetic flux which correspond to the 
electric charges as sources of electric flux. Fields with zero divergence 
such as these are consequently often called source free fields. 
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Magnetic field concepts are often developed from an exact parallel 
with electric fields by considering the concept of isolated magnetic poles 
as sources of magnetic flux, corresponding to the charges of electrostatics. 
The result of zero divergence still seems entirely applicable since such 
poles have never been isolated, but seem to appear in nature as equal 
and opposite pairs. In other words, it is correct to write 

V • É" = o 

where n is called the magnetic flux density and 

= [ 31 

2.25 Differential Equations for Vector Magnetic Potential 
We are now in a position to derive the expression for curl 17 in terms of 

the currents of the system, which was written without proof in Art. 2.21. 
To do so, let us make good use of the vector magnetic potential. 

vx/7—vx vx2T [11 

from Eq. 2.23(7). The identity 

VX VX 2i= —V22T-F V(V•Z) [2] 

will often be useful; it can be easily verified by the definitions given so 
far and the further definition for rectangular coordinates, 

vz;i: = v2A. ± v2Ay v2A. 

It may be proved that if A is defined by Eq. 2.23 (6), 

V • = 0 141 

There remains then only 

v x 17 = — V2iT 

Note that from the definition of A, Eq. 2.23 (6) 

ix dV 
A. = 

r 

[31 

[5] 

[6] 

This should be compared with Poisson's equation and the integral expres-
sion for potential in electrostatics 

p dV 4/rp 
(I) = v24, 

et [7] 
E r 

Although these equations were obtained from a consideration of the 
properties of electrostatic fields, the first of these two equations (7) 
may be considered as the solution in integral form of the second, for any 
scalar functions (1, and p / . Consequently by direct analogy between 
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(6) and (7), we write 

CPAz = —47rix [8] 

Similarly for the other components, so that by making use of (3), 

V22i. = —47r(Etzix aziz) = —411 [9] 

Finally, from (5) 

Curl /7 ==-- V X H = 4/rti [10] 

Problem 2.25(a). Prove that Eq. 2.25 (2) is correct. 

[Problem 2.25(b). Remembering Eq. 2.23(6), show that 

V • X. =—fi•gradz,,,,, (-1) dV 

where x, y, z, is the point at which A and ri are being studied and x', z' is the point 
of location of the current density i. 

Problem 2.25(e). Show that 

V • (SP) SV • 5 + • Vs 

Problem 2.25(d). Using the results of the two previous problems, show that 
Eq. 2.25(4) is correct. 

2.26 Stokes' Theorem 

Just as the divergence should be thought of as a flux flow per unit 
volume, the curl should be thought of as a line integral per unit area, at 

a point in space. Just as the divergence theorem 
(Art. 2.12) states that the total flux flow out of 
any volume may be obtained by integration of 
the divergence throughout that volume, there is 
another theorem which states that the line inte-
gral around any surface may be obtained by inte-
grating the normal components of the curl 

over that surface. If the surface is broken up into a large number of 
infinitesimal areas as shown in Fig. 2.26, it is known from the definition 
of curl that for each of these infinitesimal areas 

fH • a = curl H • dS 
If contributions from infinitesimal areas are summed over all the 

surface, the line integral must disappear for all internal areas, since a 
boundary is first traversed in one direction and then later in the oppo-
site direction in determining the contribution from an adjacent area. 
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The only places where these contributions do not disappear are along the 
outer boundary, so that the result of the summation is then the line 
integral of the vector around the boundary. 

f 1 7 • (71 =Purl'? • CIS E--- f v x II • eg [11 

This relation is known as Stokes' theorem, and as with the divergence 
theorem, holds for any vector field. 

2.27 Derivation of Integral Law of Biot and Savart 
From Stokes' theorem, the line integral of magnetic field around any 

path may be obtained. Combining Eqs. 2.25 (10) and 2.26(1), 

f11 • = f (firti) • (F.S 47-1 [1] 

/ is the current enclosed by the path. This is the equation stated in 
Art. 2.21 without proof. We have now shown that it follows from 
Ampère's law, Eq. 2.18(5), and in doing so, have introduced a vector 
potential for magnetic fields which will be useful in subsequent field 

problems. 

2.28 Scalar Potentials for Magnetic Fields 
Suppose we had stubbornly attempted to derive the magnetic field 

as the gradient of a scalar potential, as was done for the electrostatic 

field, say, 
= grad 4). 

The curl of H from Eq. 2.21 (7) would then be 

àx Zty az 
a a a 

v x = ax ay 
ae„, act?, a.em 
ax ay az 

Now if this is expanded it will be found that it is identically zero [because 
of the cancellation of terms like (824)„,/axay) — (a24,„dayax)]. Since the 
curl of the gradient is identically zero for any vector field, we cannot 
hope to specify a field which does not have zero curl as the gradient of a 
scalar potential. When a field is properly expressible as the gradient of 
a scalar potential, the line integral of that field between any two points 
is independent of the path, and the line integral about any closed path 
is zero. 
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Of course, it is true that in a current-free region V XH= 0 and II 
may be derived as the gradient of a scalar potential throughout such a 
region. This magnetic scalar potential will satisfy Laplace's equation, 
just as would the electrostatic potential in a region containing no charges. 
Such a potential is useful whenever one is interested in a region con-
taining no currents, given the conditions at all boundaries of that region. 
The vector magnetic potential, valid as it is for either current-free or 
current-carrying regions, has more general usefulness. 

2.29 Uniqueness of the Vector Magnetic Potential 

In electrostatics there were any number of scalar potential functions 
whose gradients gave the same electric field; all these potentials differed 
by a constant which, having zero gradient, could change the potential 
without affecting the field. In a similar but perhaps a bit more complex 
way, it should be clear that there are ever so many vector potentials 
whose curls will be nevertheless all the same. All these vector potentials 
will differ by the addition of some function whose curl is zero. For ex-
ample, we found in Art. 2.28 that the curl of the gradient of any scalar 
always turns out to be zero no matter what scalar function is considered. 
Thus if A is a vector whose curl is equal to the magnetic field intensity 
H, then A -F VII, (where 1,e is any scalar function) will also be such a 
vector. It appears that, just as the arbitrary constant in the scalar 
electric potential was chosen as a matter of convenience, so might v' be 
chosen to arrive at the most convenient function for the vector magnetic 
potential. 
We are quite accustomed to handling the constant in the scalar electric 

potential with ease, to make one or another conductor the iero potential 
electrode and to find the fields, without being held up by worry over 
the question of uniqueness. Whenever the vector magnetic potential 
is used later in this text, the conditions necessary to fix on one of the 
many functions having the same curl will be considered further. For 
instance, in defining (1. and A from 

p--f 7 
(I) = f d 

r, 

idV 
4.1 = r 

the volume is all space in each, and the charge and current distributions 
are assumed to be known and definite. Evidently in this case there are 
no questions of uniqueness, arbitrary constants, or gradients of scalars — 
the functions cr, and A are definitely determined. But this only means 
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that we have automatically chosen to fix these arbitrary factors. We 
might, for example, have written 

4, = r p 
jv Er 

= r dV ve 

v r 

and the magnetic and electric fields would have been the same. It is 
important to remember that though the potentials are of use in simplify-
ing the mathematics or often the whole approach to many problems in 
electromagnetie,s, their successful use comes best after the " feel " for 
their properties is obtained by working many examples. This we shall 
endeavor to make possible during later parts of the text. 

SIMPLE APPLICATIONS OF THE THEORY 

2.30 Field about a Charged Cylindrical Conductor 

It is important that as much unnecessary work as possible be elimi-
nated by consideration of geometrical symmetry whenever it exists in 
physical problems. In an infinitely long conductor of circular cross 
section charged uniformly with charge q per unit length (Fig. 2.30) 
symmetry requires that the electric field must be entirely radial and 
unvarying with angle. Gauss's law requires that the flux passing 
through an imaginary cylindrical surfacé at any - --- - - — 
radius r be 47rq per unit length, so the flux per unit .' .. \ 
area at r becomes / / o  

D,. = — = — 
4rq 2q 
27rr r [1] i 

i 
% \  

" 1 
,....._.i 
‘ 

i 

% 

i 
‘ / \ / 

....,... __ ....." 

Fin. 2.30. Charged 
cylinder. 

and 

2q 
= 

Er 
[2] 

Notice that this result is independent of the diameter of the charged 
cylinder. 

2.31 Boundary between Two Dielectrics 
The boundary between two dielectrics may be investigated with the 

aid of Gauss's law and the requirement that the electric field integral 
about any closed path be zero. If there is no charge on the boundary, an 
imaginary small surface as indicated by the dotted line of Fig. 2.31 must 
enclose no charge. If subscript n denotes components normal to the 
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surface of area AS, 

àS D17, àS(—D2 ) = O [1] 

or 

D,. 
AS LE.,  

D2" 

FIG. 2.31. Cross section, show-
ing surface separating two dielec-

trics. 

Dln = D2n 

fiEin = e2n [2] 

If a charge q is taken around a closed 
path having A/, half its total length, on 
each side of the boundary, the work 
done is 

—Iii qEit Al qE2t = 

or 
E11 = E21 [3] 

The subscript t denotes components tangential to the surface. 
Thus the conditions at the boundary between two dielectrics are: 

normal components of displacement and tangential components of elec-
tric intensity must be equal on the two sides of the boundary; in other 
words, both are continuous. In general, then, the direction of D or E 
will change in crossing the boundary between dielectrics of different 
dielectric constant. 

Problem 2.31. If the field vector makes an angle 01 with the normal in region 1 
of the above example, what angle does it have in region 2?, 

2.32 The Dipole 

A study of the field due to a dipole, a 
pair of equal but opposite charges sepa-
rated by a very small distance, will be of 
interest in later work on radiation. 
By definition, the electric moment 177, 

of a dipole is a vector whose magnitude 
is given by the product of one of the 
charges and the distance between the two, 
and whose direction is given by the direc-
tion of the line drawn from negative to 
positive charge. If the dipole is as shown 
in Fig. 2.32, the potential at P is the sum 
of contributions from the two charges. 

_q 

Fla. 2.32. Dipole and distant 
point P. 

q 1 

s' \ri r2/ 
[1] 
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And, if the distance 1 is small compared with r, this is 

ql cost+ m cos 0 
— 

sr- ér2 

e • 
[2] 

The electric field due to the dipole is 

É = — VcI) 

In Art. 2.38 an expression for gradient in spherical coordinates is given. 

/a ci:.\ 84\ /  1  al,\ 

vc1) Ur) " —ae sin 0 04,) 

Then if the dipole is parallel to the polar axis of spherical coordinates 

a 2m cos 0 
= 

Or ér3 

1 a 
E0 — 

r ae 

m sin 
e'r3 [3] 

1  a ci• 
— rsin0 

Problem 2.32(a). Extend the concept to a shell or cap of thickness t with a 
constant distribution of charge density -Fp, on one side and —A, on the other, showing 
that 

= 

where is the solid angle subtended by the entire shell at point P, and M is defined 
as I Ps-

Problem 2.32(b). Find the field from an axial quadripole formed by two dipoles 
of the same moments but opposite sign removed from each other by a distance /2 in 
the direction of the dipole moments. 
Problem 2.32(c). Repeat for a quadripole formed by separating the equal and 

opposite dipoles by a distance /2 normal to the dipole moments. 

2.33 Energy of an Electrostatic System 

The work required to move a charge in the vicinity of a system of 
charges was discussed in the study of the electrostatic potential. The 
work done must appear as energy stored in the system, and consequently 
the potential energy of a system of charges may be computed from the 
amount and position of the charges. If a charge qi is brought from 
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infinity to a point at distance r from charge q, the work done was shown 
to be 

gq 
E 

r 

Then for a large number of charges 

[1] 
2 m e r 

The factor M appears since n and m are each summed over all the parti-
cles, and by this convention each contribution of energy is included twice. 

In (1) it is apparent that the term for which q, = qn, will cause diffi-
culty. It is the energy of an isolated point charge, and the value of 
rn,„, is zero. This says that the energy required to locate any finite 
amount of charge at a point is infinite. Such a conclusion is not incor-
rect; rather, it is an expected result since to build up charge at a point 
involves infinite repelling forces between the additional charge being 
introduced and the amount already there. Actually (and, in fact, 
almost for this very reason) we do not have charges concentrated at 
points; instead, there always is a certain amount of space distribution. 
Recognition of this suggests that an expression for energy more useful 
than (1) may be obtained. 

If it is noted from Eq. 2.14(2) that the potential at the mth charge is 

cem = e rn m 
then (1) may be written 

UE = [2] 

Or, extending to a system with continuously varying charge density p 
per unit volume 

(JE = fP4 dV 

This expression may be altered to 

[3] 

1 • 
UR f D • grad c1, dV = f D •2 dV [4] 

87r Leff y 

This result seems to say that the energy is actually in the electric field, 
each element of volume dV appearing to contain the amount of energy 

1 
d UE D •R dV [5] 
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The right answer is obtained if this " energy density" picture is used. 
Actually, we know only that the total energy stored in the system will be 
correctly computed by the total integral of (4). 

It is interesting to check these results against a case with which we are 
already familiar. Consider a parallel, plate condenser of capacity C 
and a voltage between plates of V. The energy is known to be %CV' 
which is commonly obtained by integrating the product of instantaneous 
current and instantaneous voltage over the time of charging. The 
result may also be obtained by integrating the energy distribution in the 
field throughout the volume between plates according to the concepts of 
(4) and (5). For plates of area A closely spaced so that the end effects 
may be neglected, the magnitude of field at every point in the dielectric 
is E ,-- Vid (d = distance between plates). 
Hence 

Stored energy 

D = 

= §1-7-r Ad e ) ) 

M v2 . c v2 
2, 4ird 2 

[6] 

Problem 2.33. Remembering that div = 47-p, derive Eq. 2.33(4) from 2.33(3). 
(Hint. In order to evaluate certain surface integrals which may appear, consider 
the surface at infinity, since this is a surface including all the energy.) 

2.34 Energy of a Magnetostatie System 

It is possible to derive an expression (this is done in several of the 
references) similar to Eq. 2.33(5) for the energy stored in the magnetic 
field:• 

UH = f D. •H dV [1] 
871- v 

It is useful to note that when the field is entirely due to static currents 
and the permeability of the medium is constant, the energy storage may 
also be expressed in rather simple fashion in terms of the magnitude and 
distribution of the currents. For the simple case of a magnetic field due 
to current I in a single circuit, 

UH --= LI2 [2] 

where L is a constant, the inductance of the circuit, that depends upon 
the space distribution of the current. We postpone a discussion of this 
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constant until later chapters, but the student should, by consulting the 
references, satisfy himself that (2) is valid for the situation described. 

2.35 Magnetic Field at the Center of a 
Circular Current Loop 

Ampère's law may be used in finding the field 
at the center of a circular current loop. 

/ • 
/ • 
/ 

I 

I 

1 
I I 

• / 
\ / 

.. ../I • dE - lie X r• 
r3 

Fla. 2.35. Circular loop In this case simplification arises since r is 
carrying current. 

always constant (equal to a, the radius of the 
loop), err and i are perpendicular so that the cross product reduces to 
re, and all the contributions di/ have a common direction normal to 
the plane of the loop. Thus a scalar sum may be substituted for the 
vector sum. 

I (adO) 
dH - 

a2 

H = - ao = rI — 
a o 

I f 2T , 27 

 a 
[1] 

2.36 Magnetic Field of a Straight Current 

This case may also be solved from Ampère's law, but symmetry per-
mits the use of the integral law of Biot and Savart to obtain the answer 
at once. The line integral of H about any closed path surrounding the 
wire is 4rI. Symmetry requires that H have only a tangential compo-
nent Ho and no variations with 0. So if the path of integration is 
taken as a circle at radius r from the center of the wire, 

41-1 2/ 
H4, = -2.7rr = T. [1] 

Problem 2.36. Find the field at any point inside an infinitely long solenoid 
having n turns per centimeter, in terms of solenoid current I. 
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have been done by an ordinary transformation of variables. However, 
if it had been desirable from the start to carry through some other 
coordinate system, we would merely have defined the expressions for 
scalar product, vector product, gradient, divergence, and curl in terms 
of that coordinate system. To eliminate either the transformation of 
variables or the reconstruction from the beginning each time a new 
coordinate system is considered, it will be more convenient to obtain 
general expressions for the defined vector operations which give the form 
of these operations in rectangular coordinates, cylindrical coordinates, 
spherical coordinates, or in any system which is an orthogonal system. 

Fm. 2.37a. System of 
circular cylindrical coor-

dinates. 

Fm. 237b. System of spherical 
coordinates. 

The intersection of two surfaces is a line; the intersection of three 
surfaces is a point; thus the coordinates of a point are usually given as 
the three parameters referring to three sets of surfaces such that the 
parameter attached to a particular surface is constant along that surface. 
If the lines of intersection of these surfaces are at right angles, the system 
is said to be orthogonal. In this book we shall use only rectangular, 
cylindrical, and spherical coordinates, all of which are orthogonal. In 
rectangular coordinates the three planes x = xi, y = yi, z = z1 inter-
sect at a point which is designated by the coordinates xi, Yi, zi. In 
cylindrical coordinates (only circular cylinders being considered here) 
the surfaces are (a) a set of circular cylinders (r = constant), (b) a set 
of planes all passing through the axis (0 = constant), (c) a set of planes 
normal to the axis (z = constant). Coordinates of a point are then 
given by ri, 4, zi (Fig. 2.37a). 

In spherical coordinates the surfaces are (a) a set of spheres (r --
constant), (b) a set of circular cones about the axis (0 = constant), 



(c) a set of planes all passing through the polar axis (gt, = constant). 
The intersection of sphere r = r1, circùlar cone 0 = 01, and plane 
through the polar axis 4, = 4)1 gives a point whose coordinates are said 

to be (r1, 01, 4,1) as shown in Fig. 

d/ 2.37b. All the coordinate systems 
2  

drawn are right-handed systems (see 
(q,q q3) dz, Art. 2.20). 

Suppose a point in space is thus de-
fined in any orthogonal system by the 
coordinate surfaces q, q2, q3. These 
then intersect at right angles and a set 

Fm. 2.37c. Element in arbitrary of three unit vectors, , Et2, rl3, may be 
orthogonal curvilinear coordinates, placed at this point. These should 

point in the direction of increasing co-
ordinates. (Fig. 2.37c.) The three coordinates need not necessarily ex-
press directly a distance (consider, for example, the angles of spherical 
coordinates) so that the differential elements of distance must be ex-
pressed: 
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dl, 

dli = h1 dqi, dl2 = h2 dq2, dl3 = h3 dq3 [1] 

where h1, h2, h3 in the most general case may each be functions of all 
three coordinates, ql, q2, q3. 

Scalar and Vector Products. A reference to the fundamental defini-
tions of the two vector multiplications will show that these do not change 
in form in orthogonal curvilinear coordinates. Thus, for scalar or dot 
product 

A. Li = AlB1+ A,B, + A3B3 
and for the vector or cross product 

i a2 
Al A2 A3 

B1 B2 B3 

[2] 

[31 

When one of these vectors is replaced by the operator V, the above ex-
pressions do not hold, as will be shown below. 

Gradient. According to previous definitions, the gradient of any 
scalar 4, will be a vector whose component in any direction is given by 
the change of 4, for a change in distance along that direction. Thus 

v = 7. + a2  a3  
uqi n2 uq2 n3 oq3 [4] 
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Divergence. Divergence requires the evaluation of the outgoing flux 
per unit area for a small volume. As in Art. 2.11, a small volume ele-
ment is chosen, having its six sides lying in the surfaces 

dqi . dgi dq2 dq2 dg3 dqs 
41 ql ; q2 ; q2 ; q3 ; qS -T-

2 2 2 2 2 2 

The volume of the element is then hih2h3 dgi dq2 dq3. If D is the value 
of displacement vector at the center of the element, it may be written 

+ a2D2 + n3D3. The flux passing through any elemental 
area perpendicular to D1 at qi, 42, 43 is then d4.1 lqi = Di (h2h3 dq2 43). 
For general curvilinear coordinates, not only the field components but 

also the area of cross section of an elemental volume may vary with the 
coordinate. So, now 

dei 
dgi a (I) ih2h3 42 dg3) 

= Dih2h3 dq2 clq3 — 2 OD. 
• 

, dal = Dih2h3 dq2 dq3 471 aaqi (Dih2h3 dq 43) go- 

The net net outgoing flux for these two sides is thus 

a 
del gi+ dje — d 1 = (Dih2h3 42 43) dgi. 

Similarly, for the other two directions, so that finally V • D. net flux 
flow divided by the volume, is expressed by 

1  ra(h2h3 dq2 dq3 D1) ± 

v • D — hih2h3 dq2 dq3 L 
or 

V' • D 
_ r=  1  a (h2h3Di) -E 0(1h1312) + a (h2h1D3)] 

[5] 
hi.h2h3 L aqi ag2 aq3 

As an example, consider the case of spherical coordinates 

dli = dr 

d12 = r dO 
d13 = r sin O *I 

and 

SO 

= 1 
h2 = r 
1/3 = r sin 

a 
y•D—  a° r 2sin 1 [ aar (r2 sin O Dr) ± —a (r sin 0 D0) ± — (r Do)] ad, 

- °  

. 1 —a (7.2 DT) + 1  a (sin 0 D0) + 1 ape 
r2 Or r sin 0 30 r sin e 04 

[61 
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Curl. Just as the development of the divergence in rectangular 
coordinates from Art. 2.11 was generalized above to fit any general 
orthogonal system, so does the revision of the curl from Art. 2.21 follow 
in an exactly similar fashion to give 

721 az rt3 

h2h3 he' hih2 

vxH= a a a [7] 

ag2 aq3 

h2e2 h3H3 

Divergence of the Gradient. By combining the general expressions for 
gradient and divergence (4) and (5) 

V • V4, = V24, 

(h2h3 aci) ± a (h3hi al) 

hih2h3 Laql.\ h1 8qil 48q2\ h2 8q21 

± a ihlh2 acb\-1 

aq3‘ h3 8q31.1 

V2 of Vectors. For expressions such as V2ii. in curvilinear coordinates, 
where differentiation is to be performed on a vector, it is necessary to 
consider a definition more general than that of Art. 2.25 (unless as in 
that article we use only rectangular coordinates). By definition, 

V2Z. = v• (VA) [9] 

where 

_ 03  VA= .  ni —hi aqi + az h2 aq2 -t-
"3 .q.3 

For example, in spherical coordinates 

0aA aA 

ar r ae r sin o 84 

There appear such terms as 

aX a 
— = — [arAT + aeAe + agsAol 
ar ar 

aA, art Me ane aAh an 

ar ar ar ar ar ar 

[8] 

[101 
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We cannot neglect the variation of the unit vectors ar, no, àd, with 
r, 0, (1), for it is evident that although the magnitudes always remain 
unity, the directions of the unit vectors may change with changes in any 
of the coordinates. (Such a situation is not true of the simpler, rec-
tangular coordinate unit vectors.) 

de 

(region of dotted circle, 
expanded) a de w de 

FIG. 2.37d. 

In spherical coordinates, note that there is no change in direction of 
any of the three unit vectors if r alone is changed, but consider a small 

art, 
change in O and its effect on rte. The vector — dO from Fig. 2.37d ao 
is seen to have a magnitude of dO and a direction given by —à,.. Thus 

aztwao = —a,.. 
Problem 2.37. (a) From studies such as that of Fig. 2.37d, find all other partials 

of unit vectors in Eq. 2.37(10) and complete V2;1- for spherical coordinates. 
(b) Find V2À. for cylindrical coordinates. 

2.38 Summary of Useful Vector Relations 
From the general equations for all orthogonal systems, the forms of 

the vector operations in these three most common systems are found to 

be as follows. 

Rectangular Coordinates 

= x, q2y, q3 = Z 

h1 = 1, h2=1, h3 = 1 

ad, act. ad) 
vcp = az— +a.— + — ax - ay as 

• aD ar) aD, 
v • D = 

Ox ay az 



3 
SOLUTIONS TO STATIC FIELD PROBLEMS 

BASIC CONSIDERATIONS IN SOLVING FIELD PROBLEMS BY 

DIFFERENTIAL EQUATIONS 

3.01 Introduction 

Chapter 2 presented the laws of electricity and magnetism for systems 
with no time variations, and the concepts of such static systems. It was 
noted at the beginning of that chapter that it is often necessary to solve 
problems involving the laws of static systems, not alone for cases involv-
ing D-C potentials and direct currents but also for the many cases to be 
discussed later when the results of static solutions may be applied 
directly to the high-frequency problems of more interest to radio 
engineers. 

If the problem is the solution of a static system, the desired result may 
be the actual distribution of fields or potentials, as for instance when the 
maximum gradient is desired for purposes of calculating breakdown volt-
age between a given set of electrodes. If the static solution is to be used 
in studying motion of electrons, it will be desir ed to find the field strength 
at a given point in space so that forces exerted on the electrons may be 
calculated at that point. If it is desired to use static solutions for the 
calculation of inductances and capacitances, or the impedance of a trans-
mission line, it is first necessary to find the field distribution around the 
desired geometric configuration. Thus the first step must always be the 
calculation of field or potential at a given point or at all points about the 
electrodes, transmission line, or circuit element of interest. This will 
then be the goal of the present chapter. The use of the field calculations 
in arriving at the solutions to complete problems of various types will be 
considered in later chapters. 
The distribution of fields may be desired in regions containing charges, 

in regions containing currents, or in regions free from both charges and 
currents. If charges are present in free space, they cannot be in equilib-
rium, but must be in motion; consequently this part of the problem 
would require a study of the motion of charges in fields. The solution 
for a current-carrying region is of specific interest when it is desired to 
calculate the impedance of a circuit element. This aspect of the prob-
lem will then be reserved until we may include the effect of frequency on 

92 
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We cannot neglect the variation of the unit vectors tt„ ao, ad, with 
r, 0, 4,, for it is evident that although the magnitudes always remain 
unity, the directions of the unit vectors may change with changes in any 
of the coordinates. (Such a situation is not true of the simpler, rec-
tangular coordinate unit vectors.) 

de 

°.„ d 

(region of dotted circle, 
expanded) 

FIG. 2.37d. 

In spherical coordinates, note that there is no change in direction of 
any of the three unit vectors if r alone is changed, but consider a small 

art° 
change in O and its effect on ao. The vector —  do from Fig. 2.37d 

ao 
is seen to have a magnitude of c10 and a direction given by —a,.. Thus 
arie/ao = —a,.. 

Problem 2.37. (a) From studies such as that of Fig. 2.37d, find all other partials 
of unit vectors in Eq. 2.37(10) and complete V22i- for spherical coordinates. 

(b) Find V22i for cylindrical coordinates. 

2.38 Summary of Useful Vector Relations 

From the general equations for all orthogonal systems, the forms of 
the vector operations in these three most common systems aré found to 
be as follows. 

Rectangular Coordinates 

qi = x, q2 = Y, 43 = z 

h1 = 1, h2 = 1, h3 = 1 

a cl. _ a cl) _ act, 
Vie = I i x — + ay — + az — 

ax ay at 

- aDz aDy aDz  
V • D = ± — + 

ax ay at 
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(ailz ally) (aHx ariz) a y-- . _ (ariv v x = - — -à7 + ay as — ax + (tz 

824, 824, a2 

V24) 8- x 2 -ay 2 az2 

• (aaz anz 
All partials of unit vectors — —, etc.) are zero. 

ax ay 

Cylindrical Coordinates 

qz = 

= 1, h2 = r, 

1 ad) 

ar r az 

_ a aD4, apz 
v • D = -r —ar  rad, az 

xri ar [i aH41 
— + 

L; az 
ao[ r — 

az 

q3 = z 

h3 = 1 

la( al a24, a24, v24, r 
r ar ar r2 ace az2 

All partials of unit vectors are zero except 

an, — = 
act, 

Spherical Coordinates 

a (1, act, ào 
— - — 
a r r ae r sin 

1 a a 
V • 1) = (r2Dr) r sin 0 ao (sin °Do) +r Or rein 0 

aH.1 

ar J 

arix\ 

ay 

1. a(rHo li ) 1 a t] 
± a.[ r Or r ay5 

an. _ _ 
— —ar 

r a 
oLao (H4, sin 0) — 

± .fir 1 air 
r Lsin 0 ao 

a it, 

e 

axe] 

ad, J 

1 aDe 

— —ar (rH.)] no —r L—ar (r110) — 80 
a 1 r° 

_ 11 I I MI I I à 11 1 Mil 1111 • 
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1 a tr2 .94,\  1  a (sin e ati\  1  a24, 
'1' 72 —aA ar 7". r2 sin 0 80 at)) r2 sin2 0 ace 

All partials of unit vectors are zero except 

an,. 
= 6'6 = —ar 

an, arte a-eto — = sin 0 — = (to cos° — = — sine+ Ito cos 0) 
act. 

Vector Identities. Most of the following vector identities have ap-
peared in previous discussions. They will be useful throughout the 
book. 4, and tj, represent any scalar quantities, A and fl any vector 
quantities. 

V(4' +')= + 
v • (21 + n) = v•z+ v•É 
✓x(x+É)= vxx +vxij 
v(rbtP) = 
• (IPA) = A. viP +V/ 17 • 
v • (21><T3)=B•vxg.—À•vxD 
✓x (4,21) = V(1) X À ± (13 V XX. 

✓X(AXB)=À-V• — By • iT ± (T3 • vg — (51" v):i3" 
v • v4, = v2q, 
v•vx2T=o 
✓X V(1)=0 

✓X VX2i= V(V•21)— V2Z 
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SOLUTIONS TO STATIC FIELD PROBLEMS 

BASIC CONSIDERATIONS IN SOLVING FIELD PROBLEMS BY 

DIFFERENTIAL EQUATIONS 

3.01 Introduction 

Chapter 2 presented the laws of electricity and magnetism for systems 
with no time variations, and the concepts of such static systems. It was 
noted at the beginning of that chapter that it is often necessary to solve 
problems involving the laws of static systems, not alone for cases involv-
ing D-C potentials and direct currents but also for the many cases to be 
discussed later when the results of static solutions may be applied 
directly to the high-frequency problems of more interest to radio 
engineers. 

If the problem is the solution of a static system, the desired result may 
be the actual distribution of fields or potentials, as for instance when the 
maximum gradient is desired for purposes of calculating breakdown volt-
age between a given set of electrodes. If the static solution is to be used 
in studying motion of electrons, it will be desir ed to find the field strength 
at a given point in space so that forces exerted on the electrons may be 
calculated at that point. If it is desired to use static solutions for the 
calculation of inductances and capacitances, or the impedance of a trans-
mission line, it is first necessary to find the field distribution around the 
desired geometric configuration. Thus the first step must always be the 
calculation of field or potential at a given point or at all points about the 
electrodes, transmission line, or circuit element of interest. This will 
then be the goal of the present chapter. The use of the field calculations 
in arriving at the solutions to complete problems of various types will be 
considered in later chapters. 
The distribution of fields may be desired in regions containing charges, 

in regions containing currents, or in regions free from both charges and 
currents. If charges are present in free space, .they cannot be in equilib-
rium, but must be in motion; consequently this part of the problem 
would require a study of the motion of charges in fields. The solution 
for a current-carrying region is of specific interest when it is desired to 
calculate the impedance of a circuit element. This aspect of the prob-
lem will then be reserved until we may include the effect of frequency on 

92 
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the distribution of current through the conductors. There remain the 
cases involving distributions in charge-free and current-free regions. All 
field distributions may then be obtained by a solution of the one differen-
tial equation, Laplace's equation. 

Laplace's equation has universal application throughout applied 
physics, and the mathematics of its solution has received a great amount 
of attention. There are consequently many special methods available 
for its solution. Despite the importance of this problem to radio engi-
neers, it would be impossible to attempt completeness here in considering 
all these methods. We shall study here solutions applicable to certain 
simple and very useful geometrical configurations, stressing those 
methods of solution which will best provide background for similar types 
of solutions in wave problems to follow. 

3.02 Distribution Problems Which Involve Laplace's Equation 

In the previous chapter, Laplace's equation appeared first to relate 
the derivatives of the electrostatic scalar potential 4, at any point in 
charge-free space. 

v24, =_ o [1] 

A solution to this equation which satisfies the boundary conditions of the 
specified electrode configurations and applied potentials will be an equa-
tion giving the potential as a function of the space coordinates. 
In electrostatics, the potential is not the only quantity which satisfies 

Laplace's equation. Certain components of the electric field vector 
also are distributed in space in accordance with this relation. This is 
easily shown by recalling a few basic relations from the previous chapter. 
The work integral for electric fields led to the expression 

VXÉ=0 

If the curl of this equation is taken (see Art. 2.38), 

V X vxE=o 
or 

V(17 • R) — V2R = 

For a charge-free region Eq. 2.11 (8) becomes 

V • E =o 
so that 

v2E = o [2] 

The last expression is a vector equation which in general involves de-
rivatives of unit vectors and may not be simple in form. (See Art. 2.37.) 
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However, in rectangular coordinates, 
v22 = a. v2Ez ± v2Ey al v2Ez 

so that 
v2E. 0, v2E = 0, vz.E. = 0 [4] 

Thus for a charge-free region, each of the three components of electric 
field intensity in rectangular coordinates satisfies Laplace's equation. 
Expansion of V22 in cylindrical coordinates shows that the axial com-
ponent of E also satisfies Laplace's equation. That is, in cylindrical 

coordinates 
v2Ez 0 [61 

(but this is not true of Er and Ea,). It may often be more convenient to 
use these components of field directly in Laplace's equation than to use 
the potential, as will be illustrated later by example. 

[3] 

TABLE 3.02 

APPLICATION OF LAPLACE'S EQUATION 

Rectangular Cylindrical Spherical 
Condition Quantity Coordinates Coordinates Coordinates 

Electrostatic scalar 
Charge-free region I potential 4. e 

(static case) 1 Electric field 
intensity Ex,E,,E, E, 

Vector magnetic 
potential Ax,AshAs A, 

Current-free region I Magnetic field 
(static case) 1 intensity Hz,Hv,11: H, 

Magnetic scalar 
potential 

Static currents Current density iz,i,,,i, iz 

Similarly for magnetic fields in a current-fret region, the curl of mag-
netic intensity is zero and a like derivation applies, leading to an equa-
tion similar to (2) for H. Or, by referring to Eq. 2.25(9) with ï = 0, 
the same equation is given for A. 

v217 = o v2À o [61 

It was also pointed out in Art. 2.28 that a scalar potential could be 
employed for magnetic fields in a current-free region; this potential 
satisfies Laplace's equation directly. 

Finally, the problem of D-C distributions in conductors is subject to 
solution by this omnipresent equation. This is so since current density ï 
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is proportional to electric field intensity by Ohm's law 

=crE [7] 

Since the curl of É is zero, so is the curl of I; the divergence of current 
must also be zero under static conditions, so by steps similar to those 
used for E above, 

v2i = [8] 

The above applications are summarized in Table 3.02. 

3.03 Uniqueness of a Solution 
Many possible means of obtaining solutions to Laplace's equation 

will be presented in following sections. It is important to realize that 
when a solution to the equation within a region is obtained, it is the only 
possible solution if it satisfies the boundary conditions about that region. 
To show that this is so, imagine that we are wrong and that there are 
indeed two such possible solutions, (1)1. and 4)2. Since they must both 
reduce to the same potential along the boundary, 

[1] 

along the boundary surface. Since they are both solutions to Laplace's 
equation, 

or 

V24,1 = 0 and V24)2 = 0 

v2(4,1 - 4,2) = [2] 

throughout the entire region. 
In the divergence theorem, Eq. 2.12(3), P may be any vector quantity. 

In particular, let it be the quantity 

— ch) V(4'1 — ch) 
Then 

try V • [(ci — 4'2) 1 7(411 — (1)2)] dV = f R - cl) 2) Vi (el' — (I) 2)] • FS 
From the vector identity (Art. 2.38), 

div (a) = #div A + • grad 1P 

the equation may be expanded to 

fi ((Pt — 2)V2(1— 4'2) dV f [v(4.1- c132)]2 dV 

= f (4,1 - 4,2) v(4,1 - 2) • FS' 



Fla. 3.04. Two coaxial 
conducting cylinders. 
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The first integral must be zero by (2); the last integral must be zero, 
since (1) holds over the boundary surface. There remains 

fv 
[17 (cPi. — (1)2)? dV = [3] 

The gradient of a scalar is a real quantity. Thus its square can only be 
positive or zero. If its integral is to be zero, it can only be zero. 

Verk — 4'2) = 0 [4] 

or 

(41 — 4,2) = Constant [5] 

This constant must apply even to the boundary, where we know that 
(1) is true. The constant is then zero, and (Pi — (P2 is everywhere 
zero, which means that .1)i and 4)2 are identical potential distributions. 
Hence the proof of uniqueness: Laplace's equation can have only one 
solution which satisfies the boundary conditions of the given region. If 
by any sort of conniving we find a solution to a field problem that fits 
all specific conditions and Laplace's equation, we may be sure it is the 
only one. 

Problem 3.03. Prove that if charge density p is given throughout a volume, any 
solution of Poisson's equation, 2.17(3), must be the only possible solution provided 
that it satisfies the boundary conditions around the region. 

3.04 Simple Example: Field between Coaxial Cylinders 

As the first step in the study of problems in which Laplace's equation 
is used to obtain field distributions, it will 
first be applied to a very simple example. 
The student may check the following result by 
taking advantage of the symmetry of the prob-
lem and obtaining fields directly, exactly as in 
Art. 2.30, thus gaining confidence in the use of 
the equation before it is applied to more diffi-
cult geometrical configurations. 
The problem is that of obtaining the field 

distribution between two coaxial conducting 
cylinders of circular cross sections with the 
inner cylinder at zero potential, and the outer at 

potential V. The geometrical symmetry (Fig. 3.04) indicates that 

v2 = 
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should be expressed in cylindrical coordinates (Art. 2.38) 

lof + = n2 = 
• —43 L —P  a— P  = 0 

r Or \ Or/ r2 ao2 az2 

The uniformity along the axis and with respect to azimuthal angle 
means, of course, that nothing changes as the two corresponding coordi-
nates are changed and so the derivatives with respect to z and cp are 
eliminated, leaving 

a f a4,\ 
—ar‘r Or = ° 

or 

Integrating again 

[1] 

[2] 

[3] 

(13 = CI ln r C2 [4] 

The constants C1 and C2 are still quite arbitrary, so that (4) repre-
sents any number of solutions to Laplace's equation, one for each of the 
possible combinations of values for C1 and C2. Conditions on the 
boundary surfaces must determine the proper solution for this case. In 
the present problem, these conditions are: 

(1) = 0 at r = 

c1) = V at r = r2 

Thus 

Solving, 

O = C1 In ri ± C2 

V = C1 in r2 ± C2 

V V ln 

Cl = C2 — 

rj 

In C2) 
In (1.2 

And the potential distribution becomes 

in 
(r2 

rl 

[5] 

[6] 

Problem 3.04. Solve Laplace's equation to give the potential distribution 
between two concentric spheres, the inner at potential zero, the outer at potential V. 
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TECHNIQUES SUITABLE FOR TWO-DIMENSIONAL PROBLEMS 

3.05 Graphical Field Mapping Methods 

For certain configurations it is not possible or at least not desirable to 
obtain a mathematical solution exactly satisfying boundary conditions. 
A very effective graphical method exists which offers a means for obtain-
ing approximate field distributions in a relatively short time. The 
method is particularly chosen for presentation here because it offers one 
of the best aids toward visualizing the distribution problem. It is also 
a very useful engineering tool, since the configurations of electrodes in 
vacuum tubes, electron guns, magnetic deflecting coils, etc., chosen by 
certain practical or mechanical considerations, are often not simple 
mathematical surfaces. 
The method is based upon properties of the fields with which we are 

already familiar It has been shown that the equipotentials and electric 

Fro. 3.05a. Element of 
a field map. 

FIG. 3.05b. Map of fields 
between coaxial conducting 

cylinders. 

field vectors always intersect at right angles, and the concept of flux 
tubes or flux lines having the direction of the electric field vector has been 
explained. Thus for a two-dimensional case, that is, one in which there 
are no variations in one direction so that the field configuration over any 
plane perpendicular to this direction is the same as that over any other 
such plane, the intersections of the equipotential lines and flux lines 
must divide the plane into curvilinear rectangles. Since the amount of 
flux each tube is said to represent (Art. 2.08) is arbitrary, it is conven-
ient to choose the spacing between lines such that the curvilinear rectan-
gles will reduce to curvilinear squares. The amount of flux represented 
by each such tube may then be determined as follows (Fig. 3.05a). If 
the interval between succeeding potential lines à/ apart represents a 



Art. 3.05] GRAPHICAL FIELD MAPPING METHODS 99 

difference of potential Act, the electric field vector or gradient has a 
magnitude 

zit> 

The displacement vector, normal to the equipotential, then has magni-
tude 

D = 
Età 

The flux Alp flowing through the tube bounded by the two lines a and b is 

= D • d s —E',°,4) (Al) = [1] 

All these values are for a unit length perpendicular to the plane 
considered. 
The procedure in making such a plot is to divide the known potential 

difference between electrodes into a certain number of equal intervals 
and to start the small curvilinear squares plot in a region where the field 
may be uniform, or of some form fairly accurately guessed. The plot 
thus proceeds throughout the region, subject to the boundary conditions 
that all conducting surfaces are equipotentials, and that all flux lines 
must enter these conducting surfaces perpendicularly. In first attempts 
to map the region, the condition of orthogonality of flux lines and equi-
potentials should always be placed first. These preliminary attempts 
will then not result in squares, but in curvilinear rectangles in many 
places. The shape of these will indicate how the plot must be revised to 
possess only curvilinear squares. The plot should become quite accurate 
after two or three such revisions. Moderately small divisions should be 
selected for accuracy, and any regions of low field intensity may be 
further subdivided without subdividing the entire plot. 

Before attempting to apply this very useful method, it will be well for 
the student to study plots of actual configurations, and to attempt 
plots of simple regions where the field is known. More detailed instruc-
tions are given in several of the references, with examples of plots. 
Figure 3.05b gives the plot that would be obtained for the coaxial cylin-
ders 'already solved mathematically in Art. 3.04, and Fig. 3.05c gives a 
plot made as a step in determining the characteristic impedance of a 
transmission line whose conductors were so shaped as to make difficult 
an exact mathematical solution. Note from the last example that 
considerations of symmetry may make unnecessary a complete plot; 
a plot of only a quarter of the region gives the complete information. 
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Fla. 3.05e. Map of fields between transmission line conductors of special shape. 

Problem 3.05(a). Map fields between an infinite flat plane conductor and a 
second stepped conductor at potential V with respect to the first. The stepped 
conductor is a parallel plane at height a above the plane for z < 0, and height b for 
z > 0. The step occurs at z = 0. (z is measured parallel- to the planes.) Take 

a/b = 34. 

Problem 3.05(b). Map fields between an infinite flat plane and a cylindrical 
conductor parallel to the plane. The conductor has diameter d and its axis is at 
height h above the plane. Take dlh = 1, %. 

3.06 Introduction to Solution by Complex Function Theory 

A very general mathematical attack for the two-dimensional field 
distribution problem utilizes the theory of functions of a complex vari-
able. A complete treatment cannot be given here, but the method is 
applicable to such a variety of problems that enough of the general 
approach will be given so that the value of the method can be properly 
appreciated. It should be possible from this and the following articles 
to become familiar enough with the theory to study more complete treat-
ments in the references if necessary. 

In the theory of complex variables, the complex notation introduced in 

Chapter 1 is retained, the imaginary number being denoted by j. 

Thus any pure imaginary N/7) may be written as jb, where b is a pure 
real. The sum of a pure real anda pure imaginary, as a -I- jb, is called 
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a complex number. The variable Z = x jy, where both x and y are 
real variables, is known as a complex variable. Now it happens that 

TV = u ± iv 

where u and y are each real functions of x and y, can often be neatly 
expressed as a function of Z, just as any real variable y may often be 
expressed as a function of some other real variable x. 

W = f(Z) [1] 

There are many different complex functions, but the most interesting to 
us are those classed as analytic. These are the most useful since they 
are defined as those functions which make the derivative dW/dZ unique, 
where 

dW AW , f(Z ± AZ) — f(Z) 
tim 

ab Az_Ke Az, tx__>0 AZ 
[2] 

Analytic functions do not include all functions since 

AZ = ± jAy 

has two degrees of freedom and hence may approach zero along any one 
of several paths. It is required that the value of the derivative obtained 
be independent of this path if the derivative is to be unique and the 
function analytic. Among the many properties which result from this 
definition, the most interesting to us will be those embodied in two 
differential equations which will now be derived. 

aw aw az 

Ox = az • ax 

dW az 

= dZ ax 

since W is a function of Z only. But 

aW au ay az 
—+3, • _ = 

ax ax ax ax 
SO 

Similarly, 

dW au . av 

dZ = Oxôx 

1 

ow au . av dW az .dW 

— = —1- 3 —= -- — = 3 ay ay ay dZay dZ 

[3] 

[41 
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If these two values of dW/dZ are to be equal, reals and imaginaties may 
be equated separately, requiring that 

au av 

ax ôy 

au av 

ay ax 

It can be shown that these two equations, known as the Cauchy-Riemann 
conditions, are the necessary conditions that 

u jv = f (x jy) 

be analytic. 
Differentiate (5) with respect to x, (6) with respect to y, and add 

,12, 82, 
0 

aX2 aY2 

This is Laplace's equation in u for two dimensions. 
the differentiations, 

a2v a2v 
- --

ax2 ay2 

[5] 

[6] 

[71 

Similarly, reversing 

[8] 

This is Laplace's equation in y for two dimensions. Thus, since the 
real and imaginary parts of an analytic function of a complex variable 
must each satisfy Laplace's equation, we are in possession of a huge 
store of solutions to the equation in the two-dimensional case. For 
example, take the function 

W = AZ ± B 
or 

u + jv = A (x jy) + B 

where A and B are reals. If real and imaginary parts are separated, 

u = Ax B 

y = Ay 

Both u and y are known from the foregoing theory to be solutions to 
Laplace's equation. Thus both u and y are possible potentials; that is, 
for two different particular problems, u and y will be the functions that 
tell how the potential is distributed. It is not difficult here to see what 
the two particular problems are. For 

(1, = u = Ax B 
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we get a uniform field in the x direction, and for 

4, = y = Ay 

a uniform field in the y direction. In a similar (but more complicated) 

manner 

W = sin Z, W = ln Z, W = .Z2 

give rise to two solutions each to Laplace's equation and thus represent 
potential distributions corresponding to certain boundary conditions. 
The mere possession of a tool for obtaining a large number of solutions 

to Laplace's equation is not sufficient; we must understand how the 
proper one of these solutions is to be chosen for an actual problem. For 
this aspect of the problem, it will be helpful to consider first the physical 
significance that may be attached to u and y. 

3.07 Flow and Potential Functions 

The Cauchy-Riemann conditions, Eqs. 3.06(5) and 3.06(6), if multi-

plied together, give 

C:)(Z) = (Z)(Z) 

These are precisely the conditions necessary to require that the curves 
u = constant and y = constant, plotted in the x-y plane, should inter-
sect at right angles. That this is so is proven in most analytic geometry 
books in something like the following way. For the curves on which 

u is a constant, du = 0 or 

[au a,x , a—u , — ay 
ax ay iu=oonet. = 0 

the equation of a curve whose slope is obviously 

dy 

7/,; 

Similarly, 

u.nonet. au/ay 

dy ay/ax 

dx ay/ay 

For the two curves to intersect at right angles 

I dx 

u-const. dy dx v=const. 

[1] 
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or 

au/ax _ av/ay 

au/ay — ay/ax 

By use of the Cauchy-Riemann conditions, (1) is seen to be identical 

with (2). 
Suppose now that for some problem u is the distribution of potential, 

i.e., the curves u = constant are equipotential lines. Then from the 
orthogonality relation just determined, lines of constant y must intersect 
lines of constant u (equipotentials) at right angles, and may hence be 
properly interpreted as flux lines. The real part of any analytic func-
tion of a complex variable may then be considered as the potential f unc-
tion with the imaginary part as the corresponding flux or flow function, 

f,(x,y)=e, 

1; (x,y). cz 

Z Plane W Plane 

[2] 

Flo. 3.07. Transformations between Z and W plane. 

or the imaginary part might be taken as the potential function (for a 
different problem of course) with the real part as the corresponding flow 
function, each of these situations corresponding to some set of boundary 
conditions. 

This may be better visualized if a complex quantity 

Z (x jy) 

is plotted as the point (x,y) on the Z plane (Fig. 3.07). The coordi-
nates of the point may also be written in polar coordinates as (r,O) where 

r \,/x2 ± y 2, cf, = tan—i 

Strictly spenking, Z on such a plot is the radius vector from the origin 
to the point (x,y) or (r,O) since it is correctly expressed by 

Z = x jy =reie 

This convention is quite familiar to electrical engineers since in the repre-
sentation of voltages and current as complex quantities, these are plotted 
in a similar manner. To be consistent with the nomenclature used in 
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such cases, r may be known as the magnitude and as the phase angle of 

the complex quantity. Similarly, 
w = u ± iv 

is plotted as the point (u,v) on the TV plane. The lines u = constant 
and y = constant are thus two sets of orthogonal lines parallel to the 

u axis and y axis respectively on the W plane. But as 

= f(Z) ---- u -I- iv = f(x iii) 
u = fi(x,y) 
= f2(x,y) 

so the lines u = constant transform to curves on the Z plane given by 
(x,y) = constant. Similarly, y = constant transforms to a second set 

of curves orthogonal to the first set on the Z plane. To summarize, for 

a given function 
TV = f(Z), 

any point (u,v) on the W plane corresponds to some point (x,y) in the 
Z plane. The exact correspondence between the two points is obtained 

directly from the equation 
W = f(Z) 

Every curve u = F(v) in the TV plane corresponds to some curve 

x = Fi(Y) 

in the Z plane; every region in the TV plane corresponds to some region 

in the Z plane. The function 

W = f(Z) 

which accomplishes this transformation from corresponding points and 
regions from W plane to Z plane is often called simply the transforma-
tion. Figure 3.07 shows corresponding curves as described. 

3.08 Identifying the Problem with the Transformation 
As an example of how the curves u = constant and y = constant from 

some transformation 
W = f(Z) 

may be identified with the problem in field theory for which it is a solu-

tion, consider the transformation 

W = cos-1 Z 

or 
u + iv = cos-1 (x jy) [1] 
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It should first be determined that this is an analytic function, and the 
Cauchy-Riemann conditions show that it is. Incidentally, it has been 
found from mathematical study that if W as a function of Z is any of the 
simple functions (algebraic, sinusoidal, hyperbolic, exponential) it is 
always analytic, so we may dismiss this point in following examples. 

Expanding, 

x jy = cos (u jv) = cos u cosh y — j sin u sinh 

x = cos u cosh y 

y = —sin u sinh 

It then follows that 

X2 y2 
  = 1 

cosh2 sinh2 

X2 y 2 

  - 1 
COS2 u sin2 u 

Fla. 3.08. Plot of the transformation u ± iv = cos-1 (x jy). 

[2] 

[3] 

Equation (2) represents a set of confocal ellipses and (3) represents a 
set of confocal hyperbolas, orthogonal to the ellipses. These are plotted 
on Fig. 3.08. Thus the y = constant lines of this transformation could 
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be used to represent equipotentials about a conducting cylinder of ellip-
soidal cross section; the u -- constant lines could be used to represent 
potential lines between two hyperbolic cylindrical electrodes at different 
potentials. With a proper choice of the region, and the function (either 
u or y) to serve as potential along with the particular curve or curves on 
which the potential is to be specified, the transformation W = cos-1 Z 
gives the solution to all the following problems: 

1. Field around a charged elliptic conducting cylinder. 
2. Field between hyperbolic cylinders. 
3. Field between two semi-infinite conducting plates, coplanar and 

with a slit separating them. (This case degenerates from (2) above.) 
4. Field between perpendicular semi-infinite plates separated by a gap. 
5. Field between a plate and a surrounding elliptic cylinder. (The 

plate is a degenerate ellipse.) 
6. Field between a hyperbolic cylinder and a plate. 
Usually an actual problem requires the reverse of the above procedure. 

That is, given the physical shape of electrodes with applied potentials, 
it is desired to find the function 

W = f (Z) 

which will transform the curves corresponding to conducting boundaries 
in the Z plane to lines parallel to one of the axes in the W plane, i.e., to 
u = constant or y = constant lines. This is usually not such a simple 
problem. It will be carried out in some special cases which follow to 
show some of the considerations that may lead to the desired trans-
formation. 

3.09 Examples of Transformations Set Up to Fit Geometrical 
Configurations 

A. Intersection of Planes. Suppose that it is desired to find the field 
distribution in the neighborhood of the angle formed by two intersecting 
grounded conducting planes (Fig. 3.09a). This field presumably arises 
from a difference of potential between this angular conductor and some 
other conductor far removed. If the axes of x and y in the Z plane are 
selected as shown and we wish to make the lines y = constant correspond 
to equipotentials, the zero potential boundary AOB should transform 
to the line y = 0 in the W plane. It appears that this might be accom-
plished by expanding the region inside AOB as the opening of a fan, until 
AOB becomes a straight line. If the polar forms 

Z = rej° 

and 
W = peig' 
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are used, we can deduce that the mathematical expression 

W = (Z)Tia = rT14xeS [1] 

expresses this transformation, since when O = a, = 7r. Thus any 
point lying along the line O = a in the Z plane transforms into a point 

Z Plane 

Y 

W Plane 

Fro. 3.09a. Transformation W = WI* applied to a wedge of angle a. 

along the negative u axis in the W plane. Lines corresponding to 
u = constant and y = constant according to the function 

u ± iv = (x jy)Tia [2] 

thus plot the flux lines and equipotentials respectively for the region 

inside the angle. 
B. Parallel Cylindrical Conductors. Transformations will be deduced 

for a second case, Fig. 3.09e, although here the results are not obtained 
so directly. Consider first a line charge passing through the origin of 
the Z plane (Fig. 3.09b). Start by choosing u as the potential function, y 
as the flow function. Symmetry requires that the constant potentials 
(u = constant) be circles, the flow lines (y = constant) straight lines 
through the origin. The equation for the potential function outside 
the charge must be the same as that for the simple cylindrical conductor 

case (Art. 3.04), 

u = C1 ln r 

Thus whatever transformation is used should give the relation 

u jy --= C (ln r j0) 

Then the transformation 

W =Gin Z 

accomplishes exactly this, since 

ln Z = ln (re) = ln r j0 

[3] 

[4] 
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If the line charge is not on the origin, but at a distance a from it 
(Fig. 3.09c), the problem is redUced to the original case by a simple 
change of variables, so the transformation should now differ from the 
first only in that •Z is replaced by Z — a. 

W C ln (Z — a) [5] 

That this does lead to the desired configuration is shown by expanding 

u + jy = C ln [(x — a)2 + y2] + j tan-1 x _Y 

Y Z Plane 

Line Charge 

o 

2 Plane 

o 

Line 
(Chub 

à 

Y Z Plane 

- 
a 

y +CI 
a 

Flo. 3.09e. Two parallel conducting cylinders. 

The lines u = constant are curves (x — a)2 + y2 = constant, repre-
senting a family of circles with (a,0) as center. The lines y = constant 

y  
become — constant, representing a family of straight lines, all 

x — a 
passing through (a,0). 

If there are next two line charges of opposite sign but equal magni-
tudes, one at x = +a, and the other at x = —a (Fig. 3.09d), the correct 
new transformation can be obtained by superposition; since superposi-
tion holds for both the potential and flow functions, the resultant poten-
tial and flow functions should be the sum of the two from the individual 
line charges. Thus 

W = C[ln (Z — a) — ln (Z + a)] [6] 
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should be the transformation. Expanding and taking the real part, 

C [(x — a)2 -I- y2] 
u = 2 ln [(x a)2 + y2] [7] 

The lines u = constant then correspond to 

(x — a)2 + y2 _ K  

(x + a)2 + y2 

or 

e a(1 K)12 a24K  
1 — K [8] 

This equation for equipotentials is that of a family of circles I;vith 
center at 

= a(1 K) 
x  

1 — K 

and radii 2aNrK/ (1 — K). We might replace any of these constant 
potential circles by a circular conductor of appropriate potential. That 
is, if R is the radius of such a conductor; d the distance of its center from 
the origin, then the values of K and a in terms of R and d can be calcu-
lated from the relations 

a(1 K) 2a*V—K 
— d = R 

1 — K 1 — K [9] 

It follows that (7) can be used to express the equation for equipotentials 
between two parallel cylindrical conductors, as shown in Fig. 3.09e. 
The constant a for this equation is obtainable in terms of dimensions by 
(9); C is obtainable in terms of V0, say by setting u = V0/2 at 
x = d — R, y = 0. The result is 

V0  [(x — a)2 + y2] — ln [(x + a)2 + y211 
u = [10] 

2 ln [d — R — a]2 — ln [d — R + a]2 

where 

a = ed2 _ R2 
3.10 Transformations for Polygons in General 

For the general method of obtaining two-dimensional field distribu-
tions from transformations between complex functions, two specific 
examples have been given in which desired transformations were 
obtained by a combined use of the physical picture and good guesswork. 
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There is a general method which may be applied to any electrode con-
figuration having the form of a polygon with linear sides. For such 
cases Schwarz and Christoffel have shown that a differential equation 
may be written which leads directly to the desired transformation. It 
will not be derived here, nor will all its applications be considered 
thoroughly, but a brief discussion will aid in the appreciation of the 
transformation method generally, and also place the student in an 
advantageous position to read further in the references given. 

Z Plane W Plane 

U I 

Fie. 3.10. Transformation from a general polygon to a straight line. 

Consider any polygon which is the equipotential conducting boundary 
of a region (Fig. 3.10). The desired transformation function should 
transform this boundary into a line u = constant or y = constant in the 
W plane. If the line y = 0 is selected, the vertex P1 in the Z plane will 
correspond to some point u1 in the W plane, P2 to u2, etc. A considera-
tion first of one vertex alone, as P1 and its corresponding point 24, 
shows that the problem is similar to the case of Art. 3.09 where the angle 
formed by the intersection of two planes was straightened out to the 
line y = 0 in the W plane by the function 

W = em or Z = WaIT 

Then 

dZ a e!---1 = 
dW ir 

a is the interior angle as in Art. 3.09. 
In the above transformation, the vertex of the angle is transformed to 

the origin of the W plane. If it is to correspond instead to the point 
it is only necessary to perform a simple change of variables, (W — u1) 
for W above, 

dZ £12 — 
= constant X (W — ui)T 

dW 

[1] 

[2] 
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The extension to a large number of vertices is 

dZ a1 a2 an 
d—w  = K(W — 14)7— (W — u2) 1... (Tv _ un) ir [3] 

Note in particular the phase angle of dZ/dW. As one progresses along 
the u axis, the factors (W — um) can have a phase of only ir if W < 

or 0 if W > um. Thus the factor (W — um) ir changes phase by 
(ir — ani) as W passes through the point um in a direction of increasing W. 
This is the only change in phase of dZ/dW at this point, so it corresponds 
as required to a straightening out of the angle at P. to a straight line at 
Urn. There is no further change in phase of dZ/dW until the next 
singular point is reached, which is as expected since this region corre-
sponds to a straight side of the polygon. 
The desired functional relation between Z and W is obtained by an 

integration of (3). The interior of the polygon in the Z plane then corre-
sponds to the upper half of the W plane. 
The Schwarz transformation is most often used as only one of the 

transformations required for a given problem. For example, two of the 
types of problems for which the Schwarz transformation is useful are: 

(a) In obtaining field distributions between a conducting polygon and 
an infinitesimal wire on the interior, raised to a different potential from 
the polygon. 

(b) In finding field distributions between two separate conductors at 
different potentials, these conductors extending to infinity so that they 
may be considered as closed at infinity (Examples in Table 3.10 are 
of this type.) 

In problems of type (a) the polygon may be transformed to the hori-
zontal axis of an auxiliary plane, say $ plane, and the wire will then 
correspond to some point in the upper half of this plane. The problem 
in the S plane is then that of an infinitesimal wire parallel to a plane and 
may be solved readily (say by the method of images to follow in 
Art. 3.80). This solution for the S plane then corresponds to the trans-
formation from the S to the W plane, and all variables of the S plane 
may be eliminated, leaving W as a function of Z as required. 

In problems of type (b), it is most often convenient to transform one 
of the equipotential boundaries to the left half of the horizontal axis 
in the S plane, the other to the right half; since the solution for field 
distributions between two semi-infinite planes separated by an infinitesi-
mal gap is readily obtained, the problem in the S plane is again easily 
solved. 

Some examples of typical problems with their transformations are 
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listed in Table 3.10. In these W = u ± jv where u is the flux function, 
y the potential functions and thus potential and flux distributions as 
functions of the coordinates x and y are obtainable by separating real 
and imaginary parts of the transformations. 

TABLE 3.10 

Z = x + jy; W = u + jv WHERE U = FLUX FUNCTION, y = POTENTIAL 

= f cosh_i ra 2 ± 1 _ 2a 2exwi a cosh_ir e—kw _ (a 2 j 1)1} 

L 1 - a2 j 1 — a2  

k -= I. 

vo 

,« a 

o 

Z - " [ln (1 + 8) 2a tan-1 ()] 

S - 
ekW + a 

ekw — 1 

h 
Z = - [ekw - kW ± jr] 

71-

x 

TECHNIQUES FOR SOLVING THREE- (OR TWO-) 

DIMENSIONAL PROBLEMS 

3.11 The Product Solution Method for Three-Dimensional 
Problems 

Most of the space given to the two-dimensional problems has been 
used for discussion of the transformation method. The three-dimen-
sional case has no equivalent. However, there is an attack which is 
generally useful for three-dimensional problems — one which is possibly 
even easier to visualize than the two-dimensional transformation 
method. In this method, it is found that solutions may be obtained to 
Laplace's equation for three dimensions (in either rectangular, cylindri-
cal, or spherical coordinates) of a form such that variables are sepa-
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rated. The procedure is the common one for solving a partial differen-
tial equation by assuming that its solution may be expressed as a product 
of functions, each containing only one of the variables of the coordinate 
system used. (For example, in a cylindrical coordinate system, solution 
for potential may be expressed as a product of three functions, one of the 
radial distance r, one of the azimuthal angle 4), and one of the axial 
distance z.) Substitution in the partial differential equation and separa-
tion of variables leads to ordinary differential equations which may be 
solved separately. 

It may seem that elimination at the outset of all solutions not of the 
product form represents a severe limitation, but this is not so since we 
may include a sum or series of these solutions when one alone will not 
permit matching of the boundary conditions. This is permissible since 
the sum of separate solutions to a linear differential equation is also a 
solution of thé equation. The amounts of the individual solutions to be 
added are determined by the boundary conditions in a manner analogous 
to that used to determine the amounts of the individual harmonics to 
add up to a complex wave shape in a Fourier analysis. (See Arts. 1.14 
and 1.23.) 

In following sections we shall then show how to obtain the space har-
monic solutions to Laplace's equation, and how to combine these to fit, 
exactly or approximately, the boundary conditions for many shapes of 
electrodes. Analogy to such a series method will be found in many later 
chapters in the series wave solutions required for solution of the high-
frequency field distribution problems. 

3.12 Cylindrical Harmonica 

A large class of problems of major interest is that in which field dis-
tribution is desired throughout a region having cylindrical symmetry 

about an axis. For example, there 
11:  

VI 1. are the familiar electrostatic electron  -14 I  lenses found in many cathode-ray 
tubes consisting of lengths of coaxial 

Fla. 3.12. Cross section of cylindrically  symmetric electron lens. . circular cylinders end to end. One 
of these is indicated in Fig. 3.12. 

The cylindrical shapes indicate the use of cylindrical coordinates; 
symmetry eliminates variations with 4). Thus Laplace.'s equation 
becomes (Art. 2.38) 

824> +  1 acb a2 cD 
  — 0 

ar2 r az2 
[1] 
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To solve this equation let us try to find solutions of the product form. 
That is, try 

cf. = RZ [2] 

where R is a function of r alone, Z of z alone. Substitute in the differen-
tial equation (1) 

R"Z -1 RZ" = 

R" denotes d2R/dr2, Z" denotes &Z/dê, etc. Separate variables by 
dividing by RZ. 

ZII R" 1 le 
— = -[—R -r—R j 

This equation must be true for all values of r and z. The right side of 
the equation does not contain z, so it cannot vary with z; the left side 
cannot then vary with z either, because the right and left sides must 
always be equal. Similarly, the left side does not contain r, so the right 
side cannot. Both sides must then be a constant, the same constant. 
Let this constant be T2. Two ordinary differential equations then result 
as follows. 

1 d2R 1 dR 

dr2 rR dr = -T2 

1 d2Z ,n2 

Z dZ2 = 1 

[3] 

[4] 

The second equation is the familiar differential equation of simple 
harmonic motion studied in Chapter 1. The solution is then in sinus-
oids if T2 is negative, in hyperbolic functions (or exponentials) if 
T2 is positive. 

(a) First consider (3) with T2 positive so that the solution to (4) is 
in terms of hyperbolic functions. Equation (3) is then 

(12R 1 dR _ T2R = 0 
[5] dr2 r dr 

In Chapter 1, the familiar equation resulting in sinusoids [as (4) 
above] was solved by assuming a solution in the form of a tower series. 
Substitution in the differential equation told the form this series must 
have to be truly a solution of the equation. Similarly, to solve (5), the 
function R may also be assumed to be some series of powers of r. 

R = ao ± air + a2r2 a3r3 -I- • • • 
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or 

co 
R = E aprP 

P=0 
[61 

Substitution of this function in (5) shows that it is a solution if the 
constants are as follows. 

(n2" 

ap = a2m = Ci(-1)" \2 I onos 

(C1 is any arbitrary constant.) That is, 

R = Ci 

(_1) k /TrV" 
2 )  

es=0 (m !)2 — [1 — (L2r) 

iTryi 

2 ) 
[7] (2 52 

is a solution to the differential equation (5). 
The series is not recognized as the series for a simple function, as were 

the series for sines and cosines in Chapter 1, but it is easy to check and 
find that it is convergent, so that values may be calculated for any 
argument (Tr). Such calculations have been made over a wide range 
of values for the argument, the results tabulated, and the function 
defined by the series denoted by Jo(Tr) and called a Bessel function 
(of first kind, zero order; the reason for such specific designation will be 
apparent later). Thus defined, 

Vy 

v 2 G _ +__ 
2 (202 

(—ly(ivrn 
E   m=0 002 

The particular solution (7) may then be written simply as 

R = Cao(Tr) 

[8] 

The differential equation (5) is of the second order and so must have a 
second solution with a second arbitrary constant. (The sine and cosine 
constitute the two solutions for the simple harmonic motion equation.) 
By properly manipulating the series again, a second independent solu-
tion can be obtained. This may be called a Bessel function of second 
kind, order zero, and can have one of several forms. A form easily found 
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in tables is 

No (Y) In (17j)J0 (y) 

— 

v)2ns 
2 "3 ( —1)mG 
- E 

(mD2 
ri ± Li 191 

L 2 3 M j 

The constant ln = 0.5772 • • • is Euler's constant. In general, then, 

R = CiJo(Tr) C2No(Tr) [10] 

is the solution to (5), with 

Z = C3 sinh (Tz) Ci cosh (Tz) [11] 

as the corresponding form for the solution to (4). It should be noted 
from (9) that No(Tr), the second solution to R, becomes infinite at 
r = 0, so it cannot be present in any problem for which r = O is included 
in the region over which the solution applies. 

(b) If T2 is negative, let T2 = T2 or T = jr, where r is real, and (5) 
may be written 

d2R 1 dR _ _ = 
dr2 r dr [12] 

The series (7) is still a solution, and T in (7) may be replaced by j11. 
Since all powers of the series are even, imaginaries disappear, and a new 
series is obtained which is real and also convergent. That is, 

tv \ 4 ivy 

V 2 2--) 2) 
Jo (jy) = 1 4- (--) — + • • • [13] 2 (2!)2 (3!)2 

Values of Jo (jv) may be calculated for various values of y from such a 
series; these are also tabulated in the references. The defined function 
is denoted h(v) in many of the references. Thus a solution to (12) is 

R = .0(jrr) E--- ClIo(rr) [14] 

There must also be a second solution in this case, and since it is usually 
not taken simply as No(jrr), the choice of this will be discussed in a later 
article (3.17). This second solution does become infinite at r = 0, 
however, just as does No(Tr), and so will not be required in the simple 
examples immediately following which include the origin, r = 0, in the 
solution. 
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The solution to the z equation (4) when T2 = — r2 is 

Z = sin (rz) CI cos (rz) [15] 

Solutions of the type (2) with R and Z given by either (10) and (11) 
or (14) and (15) are the cylindrical harmonics sought. They will now 
be applied to several simple examples. 

3.13 Simple Example of a Field Described by One Cylindrical 
Harmonic 

The form of electrode configuration for which a solution is given by 
only one term of any of the product forms obtained above may be 
determined. For example, a special case of the solution to Laplace's 
equation defined by Eqs. 3.12(14) and 3.12(15) is 

c13 = Clo(rr) sin (IT) [1] 

where /0(rr) Jo (jrr). It is seen that 4) = 0 for all values of r, 
both at rz = 0 and rz = ir, so for this solution the region may be termi-
nated by two conducting planes of zero potential at z = 0 and 
z = Z = z-/r. Also, since C is yet arbitrary, it may be fixed by specify-
ing the potential at any point, say 4, = Vo, at r = ro, z = 1/2, then, since 

T = 

7r ro) 
Vo = C/o (2117.°) sin G) = C/0 (T  

or 

C = 
(-7rj 

The arbitrary constant is thus fixed. A curve r = f (z) may be obtained 
showing the complete constant potential surface, = Vo, by setting 

Vo = C/o(rr) sin (rz) [2] 

or 

/0 (rr) sin (Irz) = Jo ("°) T T  T 
The curve satisfying (2) is plotted in Fig. 3.13 from the tabulated 

values of /o(v). If a conducting boundary is placed along this curve and 
maintained at potential Vo, it is then evident that (1) is a proper solu-
tion for this region since all boundary conditions are satisfied. That is, 
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inside the region, 

/0 (771 

.13 Vo — sin (7- ( 7z) 
/o r—r) 

ro 1 

Note in particular that the potential along the axis, which is often of 
major interest, has a simple sinusoidal distribution with z. 

i= o imo 

[3] 

Fla. 3.13. Shape of electrodes for field described by 4, = CI() () sin (!riz) • 

In general, the electrode shapes of an actual physical problem may be 
quite different from the boundary of this example; it is then that other 
terms must be added to build up a potential distribution that will fit the 
actual boundaries. Such examples will follow. 

Problem 3.13. Find the electrode configuration for which the single cylindrical 
harmonic 

4, = Ch(Tr) sinh (Tz) 

gives the solution for potential distribution. 

3.14 Example of a Field Described by a Series of Cylindrical 
Harmonics 

If it is desired to find potential distribution inside a region bounded by 
a circular cylinder at potential Vo and two planes perpendicular to the 
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axis at zero potential (Fig. 3.14a), cylindrical symmetry exists and 
product solutions must be obtainable from Art. 3.12. The necessary 
gaps between electrodes are assumed negligibly small compared to all 
other dimensions. 
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(a) Cylindrical region (//a = 0.25). 

(b) Plot of potential vs. z at r = a. 

(c) Plot of potential vs. z at r = O. 

FIG. 3.14. 

Potential must be zero at z = 0 and z = t for all values of r, which 
helps us to select the proper form of the product solution as follows: 

1. Sinusoidal solutions for z are desired rather than hyperbolic, since 
the latter do not have repeated zeros and such a characteristic of the 
solution is necessary. 

2. Coefficient of the cosine term must be zero since (1, is to be zero at 
z = O. 

3. Periodicity, r, is given by mir//, where m may be any integer from 
zero to infinity, if 4, is to be zero at z = L. 
So 

Z = C3 sin rz = C3 sin (7) 

The corresponding solution for R is Eq. 3.12(14). 

R = ClIo(rr) = CfI0(1 
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Thus all solutions to Laplace's equation of the product form which 
satisfy the symmetry of the problem and the boundary conditions so far 
imposed must be of the form 

= Amio (m7rr) sin (two) 

/ / 

and a series of these harmonics, having amplitudes A. yet to be deter-
mined, will give the potential distribution 4, desired. 

27r‘ /27z 
(I) = Ao ± Ado (7ï.) sin (7) + A210 (T ) sin (-7--) ± • • • 

or 

(mrr) 
cl) = E Anjo sm   

m=0 
111 

An additional boundary condition remains that at r = a, 41 is zero at 
z -= 0 and z = /, but equal to Vo for all other values of z. A plot of this 
distribution of 4, against z at r = a (Fig. 3.14b) results in a square wave 
shape such as was expanded in a Fourier series in Chapter 1. From Eq. 
1.23(10), this function is representable over the range 0 < z < / by the 
series 

4 Vo  1  E (2p — 1  sin r )7z1 

Ir 1 L 
But (1) gives (1)1, as 

co 
(— - 
m7a) (mrz) 

= E Amio  
Tama /11=1 

Since these values of 41,-a must be equal to each other for all values 
of z, they must be equal term by term. That is, corresponding coeffi-
cients of sin (vorz/l) may be equated. 

and 

or 

m --= 2p — 1 

4V0  A (2,_-1)4 r (2p — 1)ral 
L j 7(2p — 1) 

A (2p-1) 
-4V0  

1)7a] 
7(2p — 1)/0 1-(21) L 
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Thus every coefficient is determined and the potential at any point in 
the region is given by substituting these determined coefficients in the 
series (1) 

4 Vo /o (fil-.) sin (1 /0 (-31 sin C-72/ 
cl, — 

3/o(--37ria) 
ir 

or 

Is [  (2p — 1)7rri 
co 4V0 1 j r  (2p — 1)7rz] 

«1* E [2] 
/r(2p — 1) /0 [ sin(2p — lbret] 

1 

A plot of potential distribution along the axis, cI,/Vo versus z at r = 0, 
is given in Fig. 3.14c for a case with a/1 = 0.25. 

3.15 Bessel Functions of Zero Order: Real Arguments 
In the solution of Laplace's equation in cylindrical coordinates, a 

differential equation appeared of the form 

d2R 1 dR 
— — 712R = 0 [1] 

dr2 r dr 

This equation, known as Bessel's equation, is common throughout 
applied physics, and in particular arises in many field problems involving 
cylindrical and spherical configurations. Since a large number of the 
structures of radio engineering, for example, vacuum tube electrodes, 
circular wave guides, and ordinary round wires, have such forms, the 
equation and its solutions will occur frequently throughout the book. 
Although we have already made use of its solutions in the preceding 
examples, we shall now devote some time to a special study of the prop-
erties of its solutions. These solutions to Bessel's equation are called 
Bessel functions. 

Equation (1) is quite similar to the equation of simple harmonic 
motion. This familiar differential equation, 

d2Z K2Z = 0 [2] 
dz2 

was studied in Chapter 1 and found to have solutions in sines and cosines. 

Z = A cos Ks B sin Ks [3] 

The solutions to the Bessel equation, (1), were obtained in Art. 3.12 by a 
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method also used for solving the simple harmonic motion equation — 
the method of assuming a power series and determining coefficients so 
that the differential equation is satisfied. The two independent solu-
tions defined by Eqs. 3.12(8) and 3.12(9) were denoted by Jo(Tr) and 
No(Tr), so that a complete solution to (1) is written 

R = CJ0(Tr) DN0(Tr) [4] 

Since the differential equations (1) and (2) are similar, it may be 
expected that the above solutions are similar to sinusoids, but revised 

1 dR 
somewhat by the presence of the term —r —dr . This is true, for a plot of 

the two solutions Jo (v) and No (v) as functions of y (Fig. 3.15) shows 

Fla. 3.15. Plot of zero order Bessel functions Jo(v) and No(s). 

that both are reminiscent of damped sinusoids. Jo (v) is unity at v = 
and then alternates in sign, actually approaching a sinusoide form as 
becomes very large. 

Jo (v) -4 - Iry ir) cOs — —4 [5] 

N0 (u) is infinite at v = 0, but eventually alternates in sign, and for large 
arguments approaches 

7r 
No(v) —› —irt, sin ( )v — 
v—Ke 

[6] 

Both the functions Jo (v) and No(v), called Bessel functions of zero 
order, first and second kinds respectively, are tabulated extensively in 
references. Some care should be observed in using these references, for 
there is a wide variation in notation for the second solution, and not all 
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the functions used are equivalent since they differ in the values of arbi-
trary constants selected for the series. The No (v) is chosen here to 
agree with Jahnke and Emde, which now provides the best available 
tables. It is equivalent to the Yo (v) used by Watson and by McLachlan, 
and the 70(v), but not the Yo (v), of Gray, Matthews, and MacRobert. 
Of course, it is quite proper to use any one of the second solutions 
throughout a given problem, since all the differences will be absorbed in 
the arbitrary constants of the problem, and the same final numerical 
result will always be obtained; but it is necessary to be consistent in the 
use of only one of these throughout any given analysis. 

3.16 Linear Combinations of Jo and No: The Hankel Functions 

It was found in Chapter 1 that it is sometimes convenient to express 
the solution to the simple harmonic motion equation in terms of complex 
exponentials, which are linear combinations of sines and cosines. Thus 
it is proper to write the solution to Eq. 3.15(2) as 

since 

and 
e—ez = cos kz — j sin kz [2] 

This form is of particular value in the study of traveling waves if eee is 
to be used to represent sinusoidal time variations, for then 

Z = Aleikz Bie—ikz 

eikz ----- cos kz j sin kz 

[1] 

zeiwt = eicut(Aieikz ▪ Bie—ikz) 

=_ Aleicwt+kz) ▪ B iej(wt—kz) 

The first of these terms represents a wave traveling in the negative z 
direction; the second represents a wave traveling in the positive z 
direction. 

Similarly, for the study of wave propagation in cylindrical coordi-
nates, it is convenient to form linear combinations of the Bessel functions 
Jo(Tr) and No(Tr). 

Hg) (Tr) = Jo(Tr) jNo(Tr) 

le (Tr) = Jo(Tr) — jNo(Tr) 

[31 

[4] 

The meaning of these combinations is similar to that of the exponentials. 
This is shown by substituting the expressions for Jo and No at large 
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arguments [Eqs. 3.15(5) and 3.15(6)] in (3) and (4). 

H(v) -)..e [COS (V - 7-r) + j sin (v - 7)] = \I-2- ei(' 7:ir) [5] 
v-b,c0 ry 4 4 7 v 

Ile) (v) _ J [cos ( - 7—r) — j sin (2) —  \P--e—'('— '4) [6] 
v--›00 iry 4 4 ry 

The solution to Eq. 3.15(1) may be written in terms of the linear . 

combinations defined above. 

R = Cillól) (Tr) + Dille) (Tr) [7] 

If this solution is associated with a time function el', 

eiwgli = el1C11-111) (Tr) ± DiHó2) (Tr)] 

For large values of Tr, 

eitaR __> ei(cat+Tr) Die.iiei(cot—T1 
r Tr 

so that the first term represents a wave traveling radially inward and the 
second term represents a wave traveling radially outward. This inter-
pretation of the functions He) and I-/e) will be particularly useful in 
later chapters concerned with wave solutions. 
The functions e l) (v) and He) (y) are called Hankel functions of the 

first and second kinds, respectively. However, it should be emphasized 
that these are not new functions, but merely linear combinations of 
Jo (v) and No (v) and so are also solutions of Bessel's equation. Other 
complete solutions to the Bessel equation might be written 

R = C3J0(Tr) Dale) (Tr) 
[8] 

R = C4ko(Tr) D4I-1? (Tr), etc. 

3.17 Bessel Functions of Zero Order: Imaginary Arguments 

If the constant K of the simple harmonic motion equation is imaginary, 
K = jk or K2 = - k2 where k is real, the solution, in terms of exponen-

tials, is 
Z A2ekz B2e-kz 

Similarly, the constant T of Bessel's equation is often imaginary: 
T = jr or T2 =- -7-2 where r is real. The first solution for this case 
has been studied in Art. 3.12. The series representing Jo(jrr) is real 
and convergent [see Eq. 3.12(13)] and, as noted in that article, is often 
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denoted io(Tr), or 

/o(v) Jo(jv) 

Similarly, the second solution, No (jrr), could be used if desired, but 
here it is more convenient to use for the second solution one of the linear 
combinations of Jo and No defined in the previous article. This is 
mainly to facilitate the satisfying of boundary conditions in a region 
extending to infinity. Consider for instance Eqs. 3.15(5) and 3.15(6) 
with v = . Expansion of these into the hyperbolic function form 
shows that if e' approaches infinity, both Jo (jv') and No (jv') approach 
infinity. 
For the solution in a region extending to infinity the choice of the 

proper combination of Jo (jv') and No (jv') must then be made so that 

4 

3 

ge (iv) 

2 

4,04 

o o  2 u 3 • 4 5 

Ma. 3.17. Plot of zero order Bessel functions of imaginary arguments. 

the combination of the two does not become infinite for v' = co; this 
choice is easily made by noting the linear combination Hg  (y) 
of Eq. 3.16(3) and its value for large arguments, Eq. 3.16(5). For 
= jvt  

r i 1 He) ' = e \ —te 
e—ne Irv' V, 

This combination of the J and N functions becomes zero properly at 
infinity, and since it is not linearly dependent upon Jo (jv), it may always 
be used for the second solution when the argument is imaginary. Thus a 
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complete solution to the equation 

d2R 1 dR 

dr2 r 

may always be written 

R = C2Jo(jlY) iD2Hg)(jrr) 

HP (iv') is always a purely imaginary number (if vl is real), si 
je (iv') is real. J0 (iv') and jHg)(jv') are tabulated in the referenceE 
as functions of y', and curves of these functions are given in Fig. 3.17 
As may be expected, the former is reminiscent of the hyperbolic cosine 
the latter of a negative exponential. 
Again there are differences in notation for these solutions in the refer 

ences. It has been pointed out that /0(V) is widely used to denot4 
J0(jy'). Similarly, the function 

K0 (V) = j (jv') 

is used commonly for the second solution, as in Watson, McLachlan, am 
Gray, Matthews, and MacRobert. /0 and K0 are called modifiec 
Bessel functions of zero order, first and second kinds respectively. 

3.18 Bessel Functions of Higher Order 

The simple Bessel equation 3.15 (1) was derived by assuming .that f 
product solution would satisfy Laplace's equation, first eliminating an: 
variations with angle 44 For certain problems, as, for example, th( 
solution for field between the two halves of a longitudinally split cylirk 
der, it may be necessary to retain the variations in the equation. Th( 
solution may be assumed in product form again, RZFo, where R is 
function of r alone, Z of z alone, and F 4, of (15 alone. Z has solutions ir 
exponentials or sinusoids as before, and Fqs may also be satisfied b3 
sinusoids. 

Z = Aers + Bens [1 

F. = E c,os F sin vo 

The differential equation for R is then slightly different from the zen 
order Bessel equation obtained previously. 

d2R 1 dR 

It is apparent at once that Eq. 3.15(1) is a special case of this mon 
general equation, i.e., = O. A series solution to the general equatioi 



128 SOLUTIONS TO STATIC FIELD PROBLEMS [Art. 3.18 

carried through as in Art. 3.12 shows that the function defined by the 

series 

J9(Tr) = 

Try-I-2m 
œ (-1)m (-2— 
E   ,n_con!r(p±m+i) 

[4] 

is a solution to the equation. 
r(v m 1) is the gamma function of (v m 1) and for y 

integral is equivalent to the factorial of (v m); for y non-integral, 
values of this gamma function are tabulated. If y is an integer n, 

(-2Tr)"+2"' 

J(Tr) = E   [51 
mO m! (n m)! 

Similarly, a second indepeneent solutionl to the equation is 

cos yirJ„(Tr) — J_(Tr) N(Tr) — [6] 
sin vii-

So that a complete solution to (3) may be written 

R = AJ,(Tr) BN,(Tr) [7] 

The constant 1, is known as the, order of the equation. J„ is then called a 
Bessel function of first kind, order v; N, is a Bessel function of second 
kind, order v. Of most interest for this chapter are cases in which 
= n, an integer. 
The solution to (3) may also be written in terms of linear combina-

tions of J„ and N 

R = Alle,1) (Tr) -F Bill,(,2) (Tr) [8] 

where 
1-1S,1) (Tr) = J,(Tr) jN,(Tr) [9] 

and 
H,2 (Tr) = J,(Tr) — jN„(Tr) [10] 

1-41) and H?) are called Hankel functions of order y, first and second 
kinds respectively. 

If T is imaginary, T = jr, (3) becomes 

dr2 r dr r2 
_ + _DR= 0 d2R 1 dR 

1 Rids non-integral, .1_, is not linearly related to J,, and it is then proper to use 
either J-, or N, as the second solution; for 1, integral, N, must be used. Equation (6) 
is indeterminate for y integral but is subject to evaluation by usual methods. 



K(v) = -2 fi+1111,1) (jy) 
[14] 

The solution to (11) may then also be written 

R = A3I„(rr) B2K,(rr) 
[15] 

However, note that I„ and K as defined by (13) and (14) will not always 
satisfy the recurrence formulas given for general Bessel functions in 
following articles.  

3.19 Values for Bessel Functions of Large Arguments 

As the arguments of the Bessel functions become very large, all these 
functions approach more and more closely sinusoidal or exponential 
forms, as in the zero order functions of Arts. 3.15-3.17. These forms are 

follows: called the asymptotic expressions for the Bessel functions. They are as 

2 r 
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If T = jr is substituted in the series definitions for J „(Tr) and .li» (Tr), 
the resulting quantities are found to be either pure reels or pure imagi-
nares if v is an integer, n. Specifically, the quantities 

and [f+IH,(,I) (jy)] are always pure real numbers and are tabulated as 
functions of y in the references. A complete solution to (11) may be written 

R = A2J„(jrr) B2111)(irr) [12] 

Again it is quite common practice to denote the above solutions as follows. 

/„ (y) = j- n./„ (jy) 
[13] 

• f-.405 

J,(v) --9 cos - - - vir 

7ril 4 2 

7V 4 2 

e n (v) —2 el(v-i -I) 
1--)40 Iry 

H2(v) _÷ 2 
i-œ Iry 

1 
.7"Vv(iv) = 1„(v) ev 

0-500 2ry 

[1] 

[2] 

[3] 

[4] 

[5] 

2 2 
isle ) (iv) = - Kv(v) e-v [6] t,- 400 v-3.0 
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3.20 Differentiation of Bessel Functions 

If it is desired to obtain the differential of the Bessel function J0 (u), 
the series definition 3.12(8) may be differentiated term by term. 

(v2)4 (v2)6 GI 

/ V\ d „ d 2 

d—v i.„  ce )1 , 2) (2[)2 (3!)2 (4!)2 

 V f  v\3 5 
G) (-1 )7 

[- . . 

2 1 • 2! 2! 3! 3! 4! 

Comparison with the definition for .I(v), Eq. 3.18(5), shows that the 
result is exactly —Ji(v). That is, 

d 
d—v [Jo(v)] = Ji(v) 

Similarly, it may be shown from the series definitions that the follow-
ing derivative expressions are true for any of the Bessel functions 
Jw(v), N>(v), H 1) (v), or H?)(v). Let R(v) denote any one of these, 
and e, denote (dIdv)[R„(v)]. 

Ró(v) = — Ri(v) [1] 

1 
R(v) = Ro(v) — —v Ri(v) [2] 

ve(v) = vR„(v) — vR„±i (v) [3] 

vR',.(v) = —vR(v) vR,i(v) [4] 

d—v [ireRp(v)] [5] 

d 
d—v [eRp(v)] = ?R i(v) [6] 

Note that 

1 d 
R(Tr) —  [R,(Tr)] —T dr—[R(Tr)] 

d(Tr) 
[7] 

For the I and K functions different forms for the above differentials 
must be used. They may be obtained from the above by substituting 
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Eqs. 3.18(13) and 3.18(14) in the preceding expressions. Some of these 

are 

v/(v) = v/v(v) v/p+i(v) 
[8] 

ve,(v) = —v/v(v) vi,i(v) 

ve(v) vKp(v) — vKm ..i(v) 
[91 

ve(v) = —v.K„(v) — vK,i(v) 

3.21 Recurrence Formulas for Bessel Functions 

By recurrence formulas, it is possible to obtain the value for Bessel 
functions of any order, when the values of functions for any two other 
orders, differing from the first by integers, are known. For example, 
subtract Eq. 3.20(4) from Eq. 3.20(3). The result may be written 

2v 
— Ry(v) = Rp-f-i (v) [1] 

By this equation, if any two of R,1, R,,, and R„+1 are known, the third 
may be found. For instance, if Jo (v) and Ji (v) are known, the equation 
may be used to find .12 (y) ; repeating the process with Ji(v) and .12 (0, 
.13 (y) may be determined, and so on to .any order desired. As before, 
R„ may denote J„ N„ 1-1;1), le) but not I,. or For these, the 
recurrence formulas are 

2v 
—v /p(v) = /›.-1(v) — 

21, 
— K,(v) = Kv+i (v)— K,,_1(v) 

[2] 

[3] 

3.22 Integrals of Bessel Functions 

Equation 3.20(1) may be integrated directly 

fRi (v) dv = —Ro(v) [1] 

Others of the integrals that will be useful in solving later problems are 
given below. R„ denotes J„ N„ le, or H?). 

ft— R,,+1 (v) dv = —v— PR,(v) [2] 

feR,i(v) dv = vvRp(v) [3] 
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f (v) dv 

[OR, (av)R,--1 (3v) — aRv--1 (av)Rp(ey)] a 0 5 [4] a 2 e2 

V2 

f veav) dv = —2 May) — R,i(cev)R,4.1 (av)] 

2 2 
V 

= —2 [R?(av) + — v 2 2) leav)] 
a  [5] 

3.23 Expansion of a Function as a Series of Bessel Functions 

In Chapter 1 a study was made of the familiar method of Fourier 
series by which a function may be expressed over a given region as a 
series of sines or cosines. It is possible to evaluate the coefficients in 
such a case because of the orthogonality property of sinusoids, expressed 
in Art. 1.13. A study of the integrals Eqs. 3.22(4) and 3.22(5) shows 
that there are similar orthogonality expressions for Bessel functions. 
For example, these integrals may be written for zero order Bessel func-
tions, and if a and e are taken as pm/a and pq/a, where p. and pq are 
the mth and qth roots of Jo(v) = 0, that is, Jo(pm) = 0 and Jo(pq) 0, 
pm pq, then Eq. 3.22(4) gives 

frJ o (1)7-2—elJ 0 W) dr = 0, 
\ a / \ a / Pm Ps [1] 

So a function f(r) may be expressed as an infinite sum of zero order 
Bessel functions. 

or 

f(r) = bay (P1 -7.-a) baJo (P2 -1-..a) baJo (Pa ;-) ± • • • 

f(r) = E bnefo 
.-1 a 

[2] 

The coefficients b„, may be evaluated in a manner similar to that used for 
Fourier coefficients by multiplying each term of (2) by rJo(pmr / a) and 
integrating from zero to a. Then by (1) all terms on the right disappear 
except the mth term. 

Ja 
a 

rf (r)J0 (1 dr = f bmr[J 0 Mr dr 
a 0 a 
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From Eq. 3.22(5) 

So 

or 

a a2 
r./8 (P-n-a nr) dr = —2 Ji.(p.) 

fo  

f a rf(r).10(222-) dr = bma2 J2' pm) 
a 2 Ji (Pm) 

2  
b. - rf(r)J0 (13-) dr [4] 

a2J1, (p.) f a a 

Thus the coefficients for the series (2) are determined. Mathematical 
study shows that the series is convergent and properly expresses any 
decently behaved function f(r) over the region r = 0 to r = a. 

Problem 3.23(a). Write a function f(r) in terms of nth order Bessel functions 
over the range 0 to a and determine the coefficients. 

Problem 3.23(b). Determine coefficients for a function f(r) expressed over the 
range 0 to a as a series of zero order Bessel functions as follows. 

f(r) = c,,10 (P-11 

where p,, denotes the mth root of .10' (v) = 0 [i.e., Ji(v) = 0]. 

3.24 Cylindrical Harmonic Series for Radial Matching 

If it is desired to find potential distribution in the interior of a region 
bounded by a circular cylinder and its base at potential zero, and a plane 
perpendicular to the axis at potential Vo (Fig. 3.24a), the use of series is 
similar to that of the example in Art. 3.14, although now a series of 
Bessel functions is required. The gaps are again assumed negligibly 
small compared with all other dimensions. In selecting the proper form 
for the solution from Art. 3.12, the boundary condition that cla = 0 at 
r = a for all values of z indicates that the R function must become zero 

at r = a. Thus we select the Jo functions since the /o's do not ever 
become zero. (The corresponding second solution, No, does not appear 
since potential must remain finite on the axis.) The value of T in 
Eq. 3.12(10) is determined from the condition that 4 = 0 at r = a for 
all values of z. Thus if p. is the mth root of Jo (v) -- 0, T must be 
p,./ a. The corresponding solution for Z is in hyperbolic functions, 
Eq. 3.12(11), but the coefficient of the hyperbolic cosine term must be 
zero since (I is zero at z = 0 for all values of r. Thus a sum of all 
cylindrical harmonics with arbitrary amplitudes which satisfy the sym-
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metry of the problem and the boundary conditions so far imposed may be 
written 

4) = E B„,J0 sinh [1] 
m=1 a a 

The remaining condition is that at z = l, .1) = 0 at r = a and c1, = Vo 
for all other r's. To use this condition it seems advisable to expand such 

o 

f.o 

za 

f=o 

1.0 

#.1r„, 

Axis f/Vo 

o z/1 1.0 

Flo. 3.24a. Cylindrical Fro. 3.24b. Plot of pot,en-
region (1/a = 1). tial vs. z at r = O (1/a =1). 

a function over this plane in terms of Bessel functions as in Eq. 3.23(2). 
For the coefficients, Eq. 3.23(4) is used with f(r) = 0 at r = a and 
f(r) = Vo for 0 < r < a. Then 

2 bw, —  2 f a rV0J0(Pmr 2 V0  
a Ji (Pm) o a PmJi (Pm) 

The above integral was evaluated by Eq. 3.22(3). So 

œ  2 Vo Jo (pi 

m=1 Pm. (Pm) a 

But (1) at z = 1 is 

= E Bm sinh (11 (21)1-1 
m=1 a a 

[2] 

[3] 

Equations (2) and (3) must be equivalent for all values of r. Conse-
quently, coefficients of corresponding terms of Jo(p,,,r/a) must be equal. 
The constant Bm is now completely determined, and the potential at any 



Art. 3.25] DETERMINATION OF AMPLITUDES 13 

point inside the region is 

2 Vo  
= E sinh (P  me) (1 [4 

m=1 
Prai (pa) sinh (-1)1e-) a a 

a 

Potential distribution along the axis is plotted in Fig. 3.24b for a cas( 
with all = 1. 

3.25 Determination of Amplitudes of Cylindrical Harmonics ir 
General 

The specific examples of the preceding articles are special cases â 
more general problems. That is, Art. 3.14 is a special cue of the prob. 
lem: desired the potential distribution inside a region bounded by E 
cylindrical surface over which potential is given as cl, = f(z) at r = 9.0 
and two zero-potential planes perpendicular to the axis and distance 
apart. 
Then 

.10 I (morr) 

= E bm si00 
n émirz\ 

m=1 (morro ) 
0 —) 

1 

[1; 

where 

mrz 
b„, = -2 f f(z) sin — dz [2 

/ 0 

Article 3.24 was a special case of the problem: desired the potentia 
distribution inside a region bounded by a cylinder of radius 7-0 and ilf 
plane base at zero potential, and a second plane surface perpendiculai 
to the axis. Potential is given over the latter plane surface as cl = f (r,` 
at z = l; then 

co sinh (P1  
ro  E dm Jo e mr) 

m-1 (Nil) 7.0 
sinh 

where 

2  ro 
dm = rf(r)Jo (P-' r) dr 

TM(pm) ro 

pm is the mth root of Jo(v) = O. 

[3 
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The series solutions obtained for three-dimensional problems actually 
have an infinite number of terms in general, and the method would be of 
little use if it were necessary to calculate a great many of these terms for 
practical problems. The actual number that must be included will 
depend upon the desired accuracy and the irregularity of the boundaries. 
Often it is only necessary to include three or four terms to give a very 
satisfactory representation of a physical problem. The curves plotted 
in Figs. 3.14c and 3.24b were calculated, using from three to six terms 
of the series. 

=0 

eVo 5 
Origin Axis 

Q3 

Flo. 3.25e. Region of cylindric:al FIG. 3.25b. Plot of potential on axis. 
ro h 

symmetry (i = = 0.3) • 

In many three-dimensional regions over which field distribution is 
required, potentials are not known over any single simple surface, so 
then the integrals (2) and (4) cannot be evaluated to give the coefficients 
of the series of product solutions. Still it is often possible to describe 
field distribution accurately enough in such a region by retaining only 
three or four terms of the series, determining coefficients by selecting as 
many points at which potential is known, and solving simultaneously 
for the coefficients. An example will clarify the procedure. 

Consider an electrostatic electron lens made up of a thick metal elec-
trode with a round hole, midway between two other plane electrodes. 
The inner electrode is at potential Vo and the outer two are at zero 
potential. The lens has cylindrical symmetry about an axis, as shown 
by Fig. 3.25a, so that a series of cylindrical harmonics from Art. 3.12 will 
describe the field. Potential must become zero at z = ±1 if the origin 
is taken at the center; the distribution should be an even, not an odd 
function, so only cosine terms can be present. Retaining four terms of 
the series, potential inside the region may then be described approxi-
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mately by (Art. 3.12) 
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(1) rz 
= ai/o (2i) cos (-21) a2/0 G-1113.) cos (3-27) 

a3/0 (-527) cos (-527) -I- a4/0 (-727) cos (-72'7) [5] 

The four constants, al, a2, a3, a4, may be determined by selecting any 
four points, as Qi, Q2, Q3, Q4, on the inner electrode where = Vo, and 
solving the four resulting equations simultaneously for four a's. In the 
example shown, rel.= = 0.3. The four points selected to determine 

the four constants were 

4> 
1. — = 1 at z = 0, r = ro 
Vo 

2. Vo = 1 at z = h, r = ro 

3. z-,c13 - 1 v o at z = h, r = 1.51-0 

4. —  1 at z = h, r = 3r0 
Vo 

These values substituted in (5) give four separate equations which 
may be solved simultaneously to give: 

al = 1.15 a2 = -0.172 a3 = 0.0211 a4 = 0.00098 

From (5), with these values substituted, potential may be found at any 
point r, z. In particular, a plot of distribution along the axis is shown in 
Fig. 3.25b. 

3.26 Spherical Harmonies 

Consider next a problem whose configuration suggests spherical coor-
dinates, as for example the potential distribution due to two thin 
hemispherical shells at different potentials separated by a gap negligibly 
small compared with the radius (Fig. 3.26a). Laplace's equation in 
spherical coordinates is (Art. 2.38) 

a (sin 0 — 1 a2e. 
1 a2(r(1)) 1 ao  O + „ + , — 
r ar2 r- sin ao r sin- o 
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Axial symmetry eliminates variations with (1), so 

a2(rci›) + 1  a (si.ne a e) 
= o [1] ar2 r sin 0 ao  

[2] 
a2 cl) a e 1a2 e  1  a e 

= 
ar2 Or r 002 r tan o ae 

1 
v. 

o I  
e 

Fia. 3.26a. Two hemi- PIG. 3.26b. Plot of potential vs. e at 
spheres separated by a gap. r = a. 

Assume a product solution, 

= Re 

where R is a function of r alone, 0 of 0 alone, 

1  ?Ire 2e0 ± 7 Re" + • 1  
r tan  

and 

r2R" 2re e" e'  
+  

R R 0 0 tan 0 [3] 

Following previous logic, if the two sides of the equations are to be 
equal to each other for all values of r and 0, both sides can be equal only 
to a constant. Since the constant may be expressed in any non-restric-
tive way, let it be m(m ± 1). The two resulting ordinary differential 
equations are then 

d2R dR 

r2  ± 2r 7/r ni(m + 1)R = ° 

d20 1 de 

The first of these has a solution which is easily verified to be 

R = Cirm C2r—(m+1) 

[4] 

[5] 

[61 
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A solution to the second equation in terms of simple functions is not 
obvious, so as with the Bessel equation, a series solution may be assumed. 
The coefficients of this series must be determined so that the differential 
equation (5) is satisfied and the resulting series made to define a new 
function. There is one departure here from an exact analogue with the 
Bessel functions, for it turns out that a proper selection of the arbitrary 
constants will make the series for the new function terminate in a finite 
number of terms if m is an integer. Thus for any integer m, the poly-
nomial defined by 

1 
Pm (cos 0) — ![ dd (cos 0) (lb 

(COS'  0  ir. 
em  

[ 

is a solution to the differential equation (5). The equation is known as 
Legendre's equation; the solutions are called Legendre polynomials of 
order m. Their forms for the first few values of m are tabulated below. 
It is evident that since they are polynomials and not infinite series, 
their values can be calculated exactly if desired, but values of the 
polynomials are also tabulated in many references. 

Po (cos 0) = 1 

Pi (cos 0) = cos 0 

P2 (COS 0) = 4(3 cos2 0 1) 

P3 (COS 0) = 4(5 cos3 0 — 3 cos 0) 

P4 (COS 0) = 1(35 cos4 0 — 30 cos2 0 ± 3) 

P5(cos 0) = 1(63 cos' O — 70 cos3 O ± 15 cos 0) 

[ 8] 

It is recognized that e = CIP.(cos 0) is only one solution to the 
second-order differential equation (5). There must be a second inde-
pendent solution, which may be obtained in a similar manner, but it 
turns out that this solution becomes infinite for 0 = 0. Consequently 
it .will never be present for any case in which the axis of spherical coor-
dinates is included in the region over which the solution applies. How-
ever, several important situations require their use; when this occurs 
certain of the references should be consulted. 

Returning to the solution for the equation in r, given by (6), we see 
that if field inside the shell is desired, the constant C2 must be zero, 
since potential cannot become infinite at r = 0. If field outside the shell 
is desired, the constant C1 must be zero, since potential cannot become 
infinite at r = co. Thus all spherical harmonics (as these particular 
product solutions to Laplace's equation are called) which satisfy the 
symmetry of the problem of Fig. 3.26a and the boundary conditions so 
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far imposed may be written 

= E(cos 0) 
m=0 

[9] 

co 

tboutaide = E Bntr-(m+1)Pm(cos 0) [10] 

The additional boundary condition remains that at r = a, 4. = 170 for 
0 < 0 < 7r/2; 4= 0 for 7r/2 < 0 < 7 for all values of O. If this f(0) 
is plotted against 0, it has the form of Fig. 3.26b and could be expanded 
in a Fourier series over the region 0 < O < 7r, although in order to 
compare term for term between such a Fourier series and the series (9) 
or (10), it is desirable rather to express the square wave of Fig. 3.26b in 
terms of Legendre polynomials directly. An orthogonality relation for 
these polynomials is quite similar to those for sinusoids and Bessel func-
tions which led to the Fourier series and expansion in Bessel functions 
respectively. 

f ir 
P.(cus 0)P,i (cos 0) sin 0 dO = 0, m n [11] 

It follows that if f(0) is defined between the limits of 0 to ir, it may be 
written 

where 

AO) = aoPo(cos 0) ± cei (cos 0) + a2P2(cOs 0) 1-• • • • 

= E amP„,(cos 0) [12] 
m=0 

2m + 1 
— f (0)P„,(cos 0) sin 0 dO 

2 fo 
For the present problem, 

7r 
f (0) = V0 for 0 0 < -2 

ir 
0 for 2- < 0 < ir 

An integration of (13) for such a f (0) would yield 

1 3 7 1 
f(0) = 4) r=a = Vo 2 ± 4- PI (cos 0) - 2- P3(cos 0) 

[13] 

[14] 

-F 12—• — 11 1 • 3 P5(cos 0) • • .] [15] 
2 • 4 

--
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But (9) gives 

(l'inede 1 r.a -= Ao -I- A laPi (cos 0) -F A2a2P2(cos 0) -I- • • • [16: 

These two expressions must be identical for all values of O; consequently, 
they may be equated term by term and all Am's evaluated. The poten-
tial at any point inside the shell is then given by the series 

1 3 r 7 1 3 
inside = Vo [i ± i a— P1(cos 0) — à • /. i 713 P3 (cos 0) + • • •] [17] 

Similarly, the .series giving potential at any point outside the shell is 
found to be 

a  cll•outside = VO [— + 3 a2 7 1 al 
— — P1 (COS °) — — • — -7i• P3 (cos 0) + • • *] 

2r 4 r2 8 2 r [18] 

3.27 Description of a Field in Spherical Harmonics When the 
Potential Is Specified on a Spherical Boundary 

The example of the previous section was a special case of the more 
general problem: desired the potential distribution when the axially 
symmetric potential is defined everywhere on a spherical surface of 
radius a, by 41,..« = f(0). Then 

amen 
einaide = 2- — Pm(cos 0) [1] ..° e 

,I', am cen+1 
1., I outside — m +1 Pm (COS 0) [2] 
m-0 r 

where 

am  — 2m + 1 fr f(0)Pm (cos 0) sin 0 dB [3] 
2 0 

3.28 Expansion in Spherical Harmonics When Field Is Given 
Along an Axis 

It is often relatively siniple to obtain the field or potential along an 
axis of symmetry by direct application of fundamental laws, yet difficult 
to obtain it at any point off this axis by the same technique. Once field 
is found along an axis of symmetry, expansions in spherical harmonics 

give its value at any other point. Thus if potential, or any component 
of field which satisfies Laplace's equation, is given for every point along 
an axis in such a form that it may be expanded in a power series in z, 
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the distance along this axis, 
co 

c1)1,,,d„ = E bmin [1] 
m 

(power series good for 0 < z < a) 

this axis may be taken as the axis of spherical coordinates, O = 0, so that 
z then coincides with r for O = O. Equation 3.26(9) gives the potential 
distribution for a region containing r = 0. Along the axis O = 0, all 
P„, (cos 0) become unity so that 

4)18-o = E Amen 
mO 

A comparison with (1) shows that Am must be equal to the known bm, so 
that potential is given at any point inside a sphere of radius a by the 
series 

= E b.?"' P„,(cos 0) 
m=o 

[2] 

If potential is desired off the axis outside of this region, the potential 
along the axis must be expanded in a power series good for a < z < 

4' I e-o 
E zmz—fr.14), z > a 

[3] 

Then 4, at any point outside is given by comparison with Eq. 3.26(10). 

= E e„,Pm (cos 0)r-(m+1), r > a [41 
m =o 

3.29 Magnetic Field of Helmholtz Coils at a Point Off the Axis 
As an example of the use of the method of Art. 3.26, let us calculate 

the uniformity of magnetic field over a region around the axis of two 
large coils, placed as shown in Fig. 3.29. Coil cross sections are neg-
ligibly small compared with coil diameters. On the axis, magnetic 
field has an axial component only, and is given simply from Ampère's 
law in a manner similar to that of Art. 2.35. 

1  1  
H, = 271-a21 [[ae n ;4 + (d ± z)2]._ + [a2 + (d _ z)21%] 

21-a21  ri, z(z + 2d)\-% f z(z - 2d)\-"1 _ 
(a2 ± d2)" L\I ± a2 ± d2 j ± \I- + a2 + d2 j j 

The binomial expansion 

(1 + u)-e = 1 - Iti + leu2 - ifflu3 + • • • 

[1] 
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is good for 0 < u < 1. Applied to (1) 

27a2/  
H2 (a 2 d2 [2 ± A- 222 ± A 424 ± • • 6] 

where 

15d2 — 3 (a2 d2) 
412 — 

(a2 d2)2 

Á 15(a2 d2)2 — 210d2(a2 d2) 315d4 
114 • 4(a2 d2)4 

! t 2a   

1 

2d 0 
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Fro. 3.29. Cross section of Helmholtz coils of large radius. 

Since H., axial component of magnetic field, satisfies Laplace's equation 
(Art. 3.02), H. at any point off the axis is given by 

27ra2/  
— (a2 d2)" [2 + A2P2(cos o)r2 + A4P4(cos 0)r4 ± • • I [2] 

For a region very near the origin (r small) the first terms will be the most 
important, so field will be most uniform over this region for the condition 
making 442 = O. This condition is a = 2d as seen for the expression of 
A2 above. 

An attempt to obtain H. at points not on the axis from Ampére's law 
directly would lead to expressions very difficult to integrate. 

3.30 Theory of the Image Method 

Point Image in a Plane. The method of images is useful when it is 
desired to find the field arising from point charges or line charges in the 
vicinity of conductors. The method is suggested by the simplest case, 
that of a point charge near a grounded conducting plane (Fig. 3.30a). 
Boundary conditions require that the potential along the plane be 

zero. The requirement is met if in place of the conducting plane, an 
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equal and opposite image charge is placed at x = —d. Potential at 
any point P is then given by 

1 

4)1) = q r r 
[1] 

This reduces to the required zero potential along the plane since there 
r = 9". Equation (1) then gives the actual potential at any point P to 
the right of the plane when the charge g is at x = d. If the plane is at 

- P a e _- --7 ' I 
9'="-q 7  r_'" I 

-- / ...- -- 1 
r' ...- / I 

- ____I p 

911- d   -Kg 

Fla. 3.30a. Image of a charge in a Fla. 3.30b. Image of a point charge 
conducting plane. in a conducting sphere.. 

any other potential than zero it is necessary only to superpose an 
additional charge on the plane to give the additional potential. The 
above equation is, of course, not correct for potential to the left of the 
plane, since potential is zero there. 

Point Image in a Sphere. Potential distribution due to a point charge 
in front of a conducting sphere can also be solved by an image method, 
but here the imaging is not so obvious. It can be checked to show that 
if a charge g is located at a distance r from the center of a conducting 
sphere of radius a (Fig. 3.30b), the required constant potential condition 
along the boundary of the conducting sphere is satisfied if an image 
charge of ( — ga/r) is placed on the radial line to g at a distance (e/r) 
from the center. The potential at any point P outside the sphere can 
then be calculated from the charge and its image in the absence of the 

conducting sphere. 
Line Images. Field distribution due to a line charge placed near a 

conducting plane is found from the line charge and its image in a manner 
exactly similar to that for the point charge near the plane. For a line 
charge near a conducting cylinder and parallel to its axis, there is also 
an image method. It can be checked to show that for a line charge 
X per unit length parallel to the axis of a conducting circular cylinder, 
and a disttince r from the axis, the required condition of constant poten-
tial over the surface of the cylinder is satisfied by the line charge and 
an image —X placed at a distance (a2/r) from the axis, as shown in Fig. 
3.30c. 
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Multiple Reflections. For a charge in the vicinity of the intersection 
of two conducting planes, as q in the region of AOB of Fig. 3.30d, there 
might be a temptation to use only one image in each plane, as 1 and 2 
of Fig. 3.30d. Although -Fq at Q and —q at 1 alone would give constant 
potential as required along OA, and -Fq at Q and —q at 2 alone would 
give constant potential along OB, the three charges together would give 

4 1 
/eA +qi‘ "r• 

/ I" I / 
/ I \ I \ 1 el >. IS 1 \ i , , -qr• i • 0 

, 4 "I„ I 
;34qt 1 < } 

\, Y \ I xi \ 1 
/ '61-q N.q 

3 

\ 

2-q 

Fia. 3.30c. Image of a line FIG. 3.30d. Multiple images in inter-
charge in a conducting cylinder. secting planes. 

constant potential along neither OA nor OB. It is necessary to image 
these images in turn, repeating until further images coincide, or until all 
further images are too far distant from the region to influence potential. 
It is possible to satisfy exactly the required conditions with a finite num-
ber of images only if the angle AOB is an exact sub-multiple of 360°, as 
in the 45° case illustrated by Fig. 3.30d. 

3.31 Example of the Use of Image Method 

As an example of the application of the image theory, consider the 
following problem. In an electronic device, a beam of electrons is to 
pass between two conducting plates at the same potential. Thus there 
is no field in the space between the plates except that due to the electrons 
themselves. Now, the space charge repulsion between electrons in a 
beam is an important effect, often actually limiting the current that can 
be obtained in the beam. The question arises: is the tendency of the 
beam to spread due to mutual repulsions increased or decreased by 
directing it between the two conducting plates? 

Suppose the beam is of circular cross section of diameter small com-
pared with the distance between plates, very long compared with its 
diameter, and essentially uniform throughout its length in density and 
diameter. Of course, the extent to which the beam can be maintained 
in this condition depends, among other things, upon the answer to the 
question we are asking. Consider now Fig. 3.31 in which the beam is 
much closer to one plate than the other so that the effect of the distant 
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plate may be ignored. We shall consider two points on the edge of the 
beam, P and Q. First, it will be noted that the effect of the electrons 
in the beam is to cause an outward force, i.e., away from the beam axis. 

a - Beam _ 
L _ _ 

Conductor 

  }Image Beam 

Fra. 3.31. Image of an electron beaniin a conducting plane. 

As a matter of fact, the outward field intensity at a radius r from the 
beam center is easily computed if we assume a long beam and use 
Gauss's law as in Art. 2.30. 

47rp 2p 
Ei = —27rr 

where p is the charge density. 
Now the image theory of Art. 3.30 tells us that the effect of the plate 

may be computed exactly by ignoring it and finding instead the field 
caused by an image beam of opposite sign charges. At point P there 
will be an attracting field due to the image beam of 

E2 
2s — a 

2p 

where 2s is the distance between the beam axis and its image axis. At 
point P, the net electric field which acts to spread out the electrons is 

E1 E2 = 2, [1 ±  1 2p  2s  —  
a 2s — a a(2s — a) 

2s  

2s — a 

For 8 = a, where the beam just grazes the plate, the diverging electric 
field at the beam edge adjacent to the plate is twice as great as if the 
beam were far removed from any conductors. 

It is interesting to note that at point Q there is actually a decrease in 
the force causing a divergence of the beam. 

Problem 3.31. Repeat the example of Art. 3.31, making only the substitution 
of a semi-infinite dielectric slab for the plane conductor which is alongside the electron 
beam. This requires, of course, that you first discover how to set up images in the 
dielectric to give the electric field distribution in the space traversed by the beam. 
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MAXWELL'S EQUATIONS AND 

HIGH-FREQUENCY POTENTIAL CONCEPTS 

THE LAWS OF TIME-VARIABLE ELECTRICAL PHENOMENA 

4.01 Introduction 

When the subject material of Chapter 2 was introduced, the objective 
was stated to be the derivation of a group of equatiinis which would 
contain a description of fields due to static charges and static currents. 
It was claimed that in the solution of problems it would be well to have 
several forms for the statement of fundamental laws so that the most 
convenient might be chosen for the problem at hand. A number of the 
techniques involved in this process of selection of equations and their 
subsequent solution were discussed in Chapters 2 and 3. 

In a similar way, an attempt will now be made to present the more 
complex theory that underlies electric and magnetic effects that vary with 
time. Of course, some of this theory is only an extension of the static 
theory. But the additional effects brought in by the varying of charges 
and currents very frequently complicate the solution of problems. In-
stead of presenting the different laws in equation form and giving 
methods of solution in one or two chapters, we shall require the rest of 
the book for the analysis of time-varying systems. In this chapter, a 
consistent set of equations describing varying electric and magnetic 
effects will be obtained. This material will serve as a basis for several 
subsequent chapters in which the equations will be applied to the field 
and wave problems of modern radio. 

4.02 Voltages Induced by Changing Magnetic Fields 

Faraday discovered experimentally that when the magnetic flux 
linking a closed circuit is altered, a voltage, is induced in that circuit 
proportional to the rate of change of flux linking the circuit. This law 
is an experimental law of electricity and magnetism that requires little 
generalization to be widely useful. In the consideration of most circuits 
and electrical machinery it is necessary only to write: 

de 
V = n — [1] 

dt 
147 
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where V is the voltage induced in a coil having n turns, and e is the 
flux linking the coil. The equation may be used directly to find the 
voltage induced by a generator coil moving in a magnetic field that varies 
with space, or to calculate the impedance presented by a coil to an alter-
nating voltage. In the latter case the magnetic field due to the current 
in the coil may be calculated from the laws given in Chapter 2 if the 
frequency is not too high, and from this the flux linking the coil is found. 
Faraday's law applied to this flux permits the calculation of the voltage 
induced to oppose the applied voltage, hence the reactance drop. It 
is only when we are interested in phenomena that go far beyond these 
simple induction experiments, such as, for example, radio waves, that 
we find it necessary to generalize the law further. 

Faraday's law gives a value for voltage induced in a circuit regardless 
of the resistance of that circuit, although, of course, the resulting current 
which flows will depend upon that resistance. It seems reasonable that 
this should be true even if the resistance of that path becomes infinite. 
In other words, the voltage around any closed path in space should be 
given by the rate of change of magnetic fltix through that path. The 
voltage around the path is the line integral of voltage gradient (or 
negative line integral of electric intensity) so we may write this relation 
in terms of fields alone. Now, two sets of units have been defined: one 
applies to electric phenomena and the other to magnetic phenomena. 
The present situation, however, includes both phenomena. Before this 
chapter is over, we shall present all the equations in one consistent set 
of units which will be used throughout the text. For now, a constant c 
will be introduced to take care of the relation between units. Electric 
quantities will be written in electrostatic units and magnetic quantities 
in electromagnetic units just as they were introduced. 

- 
clE • dl = — 

at 

Or, in terms of H, 

fR • = — -1 f c [2] 

The partial derivative with time is used to distinguish it from varia-
tions in space, indicating that the law refers to the time rate of change 
of flux at a fixed region in space. From Stokes' theorem, Art. 2.26, 
and (2) 

fs 
a 

v x É • dig = — - f . ag 
c s 
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If this equation is to be true over any surface, no matter how small, 
the integrands must be equal. 

afi 
v x — 

C at [3] 

The equation just obtained is a generalized differential expression of 
Faraday's law. The distinction should be noted here between this and 
the previous expressions of Chapter 2 for electric fields due to charges. 
There it was shown that the work integral is always zero. 

ifE • ca =0 or VX.R=0 

For electric fields arising from a change in magnetic field, the line 
integral about any path is no longer zero. The curl has a definite value 
given in terms of the time change in magnetic field. It may be recalled 
that the conservative property of the static electric field was derived 
from an energy consideration; hence it may seem that the existence of 
a curl for electric field shown above now violates the conservation of 
energy. This is fortunately not true. The existence of a curl tells 
only that the electric field is no longer conservative in itself if there is 
a changing magnetic field present, for there is then a transfer of energy 
from the magnetic to the electric field. Conservation of energy, in 
other words, tells us that since work is done if an electric charge is moved 
about a closed path in an electric field that comes about from a changing 
magnetic field, this work must have come out of magnetic field energy. 

4.03 Continuity of Charge 

Faraday's law is but one of the fundamental laws for changing fields. 
Certain other laws for electric and magnetic fields were derived in 
Chapter 2, but we should be somewhat suspicious of these, since they 
were determined by experiments on static systems. Let us assume for 
the moment that certain of these can be extended without revision to 
varying systems. Writing together the expressions for divergence and 
curl of electric and magnetic fields (differential expression for Gauss's 
law, Biot's law, Faraday's law) 

V • D = 4wp [1] 

v • 0 [2] 
iafl 

[3] c at 

v x 11 47! [4] 
C 
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ï may be thought of as due to a motion of charges, say a charge density 
p moving with velocity Dp. If p is expressed in electrostatic units and 

in electromagnetic units, we must again introduce the conversion fac-
tor between units, c. In place of (4) we might then write 

v x = 47r () -Pe—I [5] 
\ c / 

With i = pv„, and p in eau, i is in esu; hence the c in (4). 
If these equations are to be applicable to systems which vary with 

time, they should satisfy certain requirements. For one thing, (1), 
(3), and (5) relate the three factors, B, II, and p. An elimination could 
be made to obtain an equation in p alone. We would expect this equa-
tion to show that however p may vary with space and time, it must vary 
in such a manner that total charge in the whole system is conserved. 
For any volume, if charge flows out, the amount inside must decrease. 
If, over the boundary surface, a net charge flows in, the total charge 
inside must increase. Considering a smaller and smaller volume, in 
the limit, the divergence of pi),, or the outward flow of charge per unit 
volume per unit time in space, must be the negative of the time rate of 
change of charge per unit volume at that point. 

ap 
V • (Op) = 77: 

de 

If, however, we take the divergence of (pi),,) from (5) 

V • (Op) = V • (V X //) o 

[6] 

which is not at all what was expected, and seems to indicate that (5), 
borrowed from statics, is not complete. Suppose that to (5) is added 
an additional vector term, P. 

v x = 47 + P 

Then 
C 

V • (Op) = —471- V • To 

If the continuity equation is to be satisfied 

c ap 
V • P 

But from (1) 
ap 1 r aD 

= • at 
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So the added factor must be 

_ laD 
F =-- — —  

C at 

Thus, finally 

+ aD 
y x = 47 (ili--)e) 

c e at 

is an equation which satisfies the requirements for continuity of charge. 

4.04 The Concept of Displacement Current 

In so far as the line integral of magnetic field is concerned, the term 
added to Eq. 4.03(5) might be considered as another current. Since 
it arises from the displacement vector D, it may be called a displacement 
current as distinguished from the f main& current of charge motion, 
conduction or convection current of Eqs. 4.03(4) and 4.03(5). That is, 

4r 
y X 17 = —c + id) 

where 

= convection current density = pf. 

1 an 
= displacement current density = — — • 

47r at 

In the next articles we shall try to see something of the physical signifi-
cance of this new current. For the present let us ask why this current 
was not discovered earlier and why it has not been as common to us as 
convection current. 

If representative calculations are made, it is apparent why the new 
term was not discovered in the experimental measurements checking 
Ampère's law at low frequencies, for its magnitude is very small until 
high frequencies are reached. For example, at a frequency of 106 
cycles per second, field strength of 100 volts per centimeter, dielectric 
constant 5, the displacement current has a value of 2.80 X 10-4 ampere 
per square centimeter. Of course, at zero frequency (static case) the 
displacement current disappears altogether, but there is no violation of 
the continuity equation, since in this special case 

ap ,‘ 

at 

and consequently, 

V • (A) = 
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4.05 Displacement Current in a Condenser 
Now that the displacement current term has been acquired, we should 

be much happier about the problem of varying fields, for it is now pos-
sible to explain certain other things 

s, that should have proved worrisome 
had only conduction current been in-

I A eluded in the law of Biot and Savart. 
Consider, for example, the circuit in-
cluding the A-C generator and the 
condenser of Fig. 4.05. Suppose it 
is required to evaluate the line integral 
of magnetic field around the loop a-b-

Fie. 4.05. Evaluation of el • ell c-d-a. The law from statics states 
that the result obtained should be 

for an A-C circuit with a condenser. 
47r times the current enclosed, that is, 

the current through any surface of which the loop is a boundary. 
Then it is true that if we take as the arbitrary surface through which 
current is to be evaluated one which cuts the wire A, as Si, a finite value 

is obtained for fIl • di. But suppose the surface selected is one which 

does not cut the wire, but instead passes between the plates of the con-
denser, as 82. If conduction current alone were included, the computa-
tion would have indicated no current passing through this surface and 
the result would be zero. The path around which the integral is eval-
uated is the same in each case, and it would be quite annoying to possess 
two different results. It is the displacement current term which appears 
at this point to preserve the continuity of current between the plates of 
the condenser, giving the same answer in either case. 
To show that this continuity is preserved, consider a parallel plate 

condenser of capacity C, spacing d, area of plates A and applied voltage 
Vo sin wt. From circuit theory the charging current 

dV 
= C —= wCV0 cos wt 

dt 

The field inside the condenser has a magnitude E = V/d so the displace-
ment current density is 

id = 

id = 

et aR 
— — 
47r at 

E 
— 0V CO cos Cat 
47rd 
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Total displacement current flowing between the plates is the area of the 
plate multiplied by the density of displacement current. 

Id = Aid = w Vo cos Cdi 
47d 

= coCV0 cos cot 

This value for total displacement current flowing between the con-
denser plates is then exactly the same as the value of charging current 
flowing in the leads, calculated by the usual circuit methods above. 

4.06 Displacement Current Due to a Moving Charge 

Inclusion of the displacement current term is necessary for a valid 
discussion of another familiar case, that of a point charge in motion 
(Fig. 4.06). Suppose the chigge q is moving with velocity i) toward the 
mathematical loop A around which a conscientious observer is engaged 

in measuring the line integral, f II • di. If he has been given the equation 

f17 • d-1 47r1 

but has never been informed about dis- s. - 
placement current, he is likely to be - 
very unhappy. He has been told that he 
may take any one of the infinite number 
of possible surfaces of which his loop is _ 
the boundary, and after determining cur-
rent passing through that surface, should 

FIG. 4.06. Evaluation of fri • 7.1 
then equate fir • di to 47 times that for charge q moving toward loop A. 

current. Certainly at any instant there seem to be a large number 
of surfaces, such as Si, through which there is no convection current 
(no motion of charge). Thus he feels that the integral must have a 
value of zero. But suppose he were to select the one surface, 82, 
through which the charge q is passing at that instant. There would 
certainly be a current through this surface and a consequent value of 

fir • dl other than zero at that instant. 

This contradiction is again eliminated if the displacement current 
term is included. The line integral will then turn out to be the same no 
matter what surface is selected. In more general cases the contribution 
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to f • di may be part convection and part displacement currents for 

any given surface, and a different fraction convection and displacement 
currents for another surface, but the final result is always the same 
regardless of the surface chosen. 

4.07 Maxwell's Equations 

We have now the four general equations of electricity and magnetism: 

V • D = 4rp 

v • E = o 

v x R = are 
c at 

x H = (4;i ± L15) 
at 

These were first derived by Maxwell and are consequently known as 
Maxwell's equations. They are a complete statement of the relation 
between electric and magnetic fields and the currents and charges which 
give rise to them. 

Specifically the equations give the relations at any point in a medium 
between charge density, conduction current density, and the electric 
and magnetic fields at that point due to the space distribution of currents 
and charges. The equations hold for any point in a medium, whether 
it is conducting or non-conducting, whether a vacuum or some dielectric 
or magnetic material. The E and 11 which appear in the equations 
are the total electric and magnetic fields, not just the contributions from 
the charges and currents at that point. Integral expressions will be 
obtained later which will permit us to calculate É and 11 from a knowl-
edge of the charges and currents of the system. The practical problems 
utilizing Maxwell's equations in following chapters will clarify the theory 
contained in these equations. 

A CLARIFICATION AND A CHOICE OF UNITS 

4.08 Gaussian Units 

Units used so far have been merely those most convenient. In 
Chapter 2 static electric effects and static magnetic effects were con-
sidered separately, so the most convenient separate units (esu and emu 
respectively) were used. In Chapter 3 the choice of units made little 
difference since the problem was essentially one of distribution, and one 
could hardly go wrong. So far in this chapter we have been interested 
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primarily in presenting the concepts of time-varying systems and so have 
again used the most convenient combination of units: esu for electric 
quantities, emu for magnetic quantities. Now that the final set of . 
equations has been obtained, all the results should be stated in a con-
sistent system of units convenient for use throughout the remainder of 
the book. The system of units chosen is the mks system of practical 
units. The other systems commonly used in engineering and physics 
texts will first be summarized; the reason for the units selected will be 
discussed; finally conversions between units will be given so that all 

references may be used without great difficulty. 
If in Maxwell's equations all electric quantities are expressed in esu 

and all magnetic quantities in emu, it is then necessary to introduce a 
conversion factor between units, c, as was done. The system of units 
resulting is known as the Gaussian system of units. The equations 
were written in this system in Art. 4.07. Here D, p, and ï (to be 
consistent with I = pi)) were expressed in esu; re and H were expressed 
in emu. The conversion factor between units, c, has the dimensions 
of velocity and a magnitude which turns out to be the velocity of light 
in free space, as we shall see later. 

4.09 Heaviside-Lorentz Rational Units 

For extensive use of the foregoing equations, the factor 47 may become 
a nuisance. It is then convenient to define a new system of units which 
eliminates the factor 4r from the equations. From the unit charge in 
such a system there must then issue only one line of flux instead of the 
4ir lines found previously for the esu unit charge. Any system in which 
unit charges are chosen so that they are responsible for only one line of 
flux is known as a rational system of units, since it eliminates the irra-
tional number 4r. The first such rational system was used by Heaviside 
and Lorentz, so is called the Heaviside-Lorentz system of units (abbre-
viated hlu). It is based upon the Gaussian system and so retains the 
factor 1/c in the equations. With all quantities in hlu, 

afe 
v • D =p V X É = — — — 

c at 

v • ij = o 
1 (aD) i+ — at 

4.10 Electrostatic and Electromagnetic Units 

It is evident that all quantities might be written in either esu or emu. 
By using the conversion factor c properly, the two forms of the equations 
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are found to be 
are 

esu: V • D = rp V X = 
t7 at 
_ aD 

v • É = o v x = 47rz —ai 

a:135 
emu: V • 13 = 4irc2p V X 2 = 

— at 
aD 

v • É = 0 V X H = 4/ri -F p -at 

4.11 Mks Practical Units 

In all the previously described systems of unite, 

= 
and 

• D = 

and é are unity for free space. A study of the sets of equations fœ 
emu and esu shows that if the requirement that permeability and dielec-
tric constant be unity for free space be removed, all constants 4r and c2 
may be absorbed in them. Then the equations would appear in the 
simplest possible form. We shall perform this simplification, first plac-
ing all quantities in a practical system of units that will be convenient 
for use in engineering, as follows: 

.2 electric intensity in volts/meter. 

p charge density in coulombs/meter3. 

i current density in amperes/meter2. 

fl magnetic intensity in ampere turns/meter (or simply amperes/ 
meter) 

11 magnetic flux density in webers/meter2 (a changing flux of 
1 weber/second generates 1 volt) 

All lengths are measured in meters. 

This set of units is evidently based upon the mks (meter-kilogram-
second) practical system. Using these units, the equations will be 
written with all constants absorbed in the permeability and dielectric 
constant, so that Maxwell's equations appear in their simplest possible 
form. 

V • D p [1] 

V • = 0 [2] 
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ofl 
at [3] 

,aD 
v x — [4] at 

where É = gJi and D = J. 

4.12 Dielectric Constant and Permeability in Rational Mks 

Units 
The use of rational mks units lumps all the inconveniences such as 

4r's and conversion factors in e and p. which must now be re-evaluated. 
Once the dimensions and magnitudes of µ and E for various materials 
have been learned we shall then be prepared to use mks units throughout 
the remainder of the text. Since the units for all other quantities in 
Maxwell's equations have been decided upon, and since it is known that 
p and e must have such values as to maintain the accuracy of the equa-
tions, any information about p. and e can best be obtained by an examina-

tion of those equations. 
Setting D = J in the first of these equations, and recognizing that 

the divergence represents a differentiation with respect to distance, we 

see that 

e(Volts/meter) Coulombs 

Meter Meter3 

or 
Coulombs  Farads 

(Volts) (Meters) Meter 

The dimensions of E are known; its magnitude may next be found by 
converting the above quantities to esu for which we already know the 
relation between electric intensity and charge density for free space. 

Thus, 
(-h- X 10-9 Statcoulomb)  

E — (300 X Statvolts) (1 à 0 X Centimeters) 

9 [Statcoulomb/centimetel 

Statvolt/centimeter2 j 
[1] 

Now, the quantity in the brackets may be identified as p/V • .E which 
for free space, in esu, of course, is %T. Then, if eo denotes e for free 

space (e = EiE0) 

1 
eo = X 10-9 farad/meter 

36T 
[2] 
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By similar steps and by using other Maxwell equations, 

1.40 = 47r X 10-7 henry/meter [3] 

A system of units has now been determined in which Maxwell's 
equations are in the simplest possible form and in which current is in 
amperes, electric fields are in volts per meter, and magnetic fields are in 
ampere turns per meter. Impedances will be in ohms and power in 
watts. The only real disadvantage is that we must remember that j.c 
and e are not unity in vacuum. This is only a small disadvantage since 
it is much easier to remember the two values of go and 60 than the many 
conversion factors between practical, esu, and emu systems of units. 
Moreover, we shall find later that most often tc and e appear in the easily 

remembered combinations 1/N/T.ce and Nri: Je. These are already familiar 

since 1/Vireo is the velocity of light in free space, 3 X 108 meters/ 

second; 1N/7. -re° has dimensions of ohms and is 1207r or about 377 ohms 
(by coincidence, the. well-known co for 60 cycles). 

Problem 4.12(a). By using the divergence theorem show that the bracketed 
expression in Eq. 4.12(1) is indeed equal to %w• as stated. 

Problem 4.12 (b). Derive Eq. 4.12(3). 

4.13 Cgs Practical Units 

The obvious engineering advantages of the mks system of units 
might equally as well have been applied to the equations in cgs (centi-
meter-gram-second) practical units. All equations arrived at in this 
book may be used to obtain answers in cgs units if desired, by using 
the following values of go, eo, and c in place of the values given in Art. 
4.12 for mks units. 

1 
f.0 = X len farad/centimeter. 

367 
= 4r X 10 henry/centimeter. 

1 
— c = 3 X 10" centimeters/second. 

+Toes 

\fio = 1207r 377 ohms. 
Eo 

In Maxwell's equations, the units would then be: 

volts/centimeter. 
coulombs/centimeter3. 
amperes/centimeter2. 

H ampere turns/centimeter. 
fl webers/centimeter2. 
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4.14 Units Conversion Table 
So that all references may be used conveniently, conversions between 

all the above systems of units are tabulated below. It is then necessary 
only to multiply any results in mks rationalized units in this book by 
the factors shown to obtain results in any other desired system of units. 

MITLTIPLY BY To OBTAIN 

1. Coulombs 1 TU abcoulombs 
Coulombs 3 X 109 statcoulombs 

3 X 109 
Coulombs ,-- — 8.46 X 109 hlucoulombs 

V 4/r 

2. Amperes 
Amperes 3 X 109 

abamperes 
statamperes 

3 X 109 
Amperes . v 71 77 :. = 8.46 X 108 hluamperes 

3. Volts 109 abvolts 
Volts 1+15. statvolts 

— 0.0118 Volts hluvolts 
300 

4. Ohms 109 abohms 
Ohms -14- X 10-11 statohms 

4/r 
Ohms —9 X 10-11 hluohms 

5. Farads 9 X 10 11 statfarads 
6. Henrys 109 abhenrys 
7. Watts (joules/second) 107 ergs/second 
8. Volts/meter 3108X 10-4 statvolt/centimeter 
9. Webers maxwells 

10. Webers/meter2 us gauss 

POTENTIALS USED WITH VAR YING CHARGES AND CURRENTS 

4.15 Inadequacy of Scalar Potentials for Non-Static Electric 
Fields 

The set of differential equations known as Maxwell's equations, with 
certain auxiliary relations, gives the complete information for obtaining 
electric and magnetic effects due to currents and charges. It will some-
times be convenient to put the information in a different form by the 
introduction of new variables. In the study of static fields, it was found 
that new functions known as potentials helped in the solution of static 
problems. We might then look for similar potential functions which will 
help in the solution of more general problems. The potential functions 
of static fields were given in terms of integral expressions of charges and 
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currents; the more general potential functions will be given in terms of 
different integral expressions of charges and currents. The static fields 
were obtained from the static potentials by differentiation; time-varying 
fields will be obtained from the new potentials by similar differentiations. 
All new expressions obtained will reduce to the original static expressions 
as time derivatives become zero. 
The static electric field was derivable as the gradient of a scalar po-

tential. When magnetic fields were encountered, it was not always 
permissible to use a scalar potential, since the line integral of magnetic 
field intensity about a closed path was, in general, not zero; that is, the 
field possessed a finite curl. In time-varying effects, the curl of electric 
field intensity is also not zero, but is rather given by Eq. 4.11(3) and 
the èlectric field can no longer be derived as the gradient of a scalar 
potential. 
There have been previous discussions of potential functions which are 

both scalars and vectors. Consequently, let us speculate somewhat on 
the type of potential functions that might be used for electric intensity. 
The magnetic field in the static case was derivable as the curl of a vector 
potential, Z. However, if an attempt were made to obtain É from a 
similar vector function, say by setting 

É=vxP 

it would be found at once that V • É would be everywhere zero since 
div curl P = 0. The divergence should not be zero but should have the 
value given by Eq. 4.11(1). Thus we are faced with this problem: the 
electric intensity for time-varying fields cannot be derived alone as the 
gradient of a scalar potential since this would require that it have zero 
curl, and it actually has a finite curl of value — an/at; it cannot be 
derived alone as the curl of a vector potential, since this would require 
that it have zero divergence, and it actually has a finite divergence of 
value —p/e. 

Since the divergence of magnetic field is zero in the general case as it 
was in the static, it seems that II may still be set equal to the curl of 
some magnetic vector potential, A. Suppose the substitution of 

À is made in Maxwell's equations and an attempt is then 
made to obtain a value for the potential function of electric fields which 
vary with time. For a homogeneous medium in which p and E are con-
stant, Eq. 4.11 (3) becomes 

v x É +  (v x IT) = o 
at 
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or 

_ 
v x[E + g -1= 0 

at 

161 

[1] 

This equation states that the curl of a certain vector quantity is zero. 
But this is the condition that permits a vector to be derived as the 
gradient of a scalar, say (1,. That is, 

alT 
+ — = — V 43 

at 
or 

= — v•t• — g— 
at • 

[2] 

The electric field, É, has consequently been obtained in terms of both 
a scalar and a vector potential. 
To continue the substitutions in Maxwell's equations: in Eq. 4.11(1) 

in Eq. 4.11(4) 

a 
— V2 4' et it (V • /1.) = e 

E 

vxvx,T=i+,[—v(—aci)— »—a21 
at at2 

The vector identity, (Art. 2.38) 

yXVX.éi= V(V • ii) — V2À-

SO 
a2À 

V(7 • /I) V221 = v — e  [4] 
at  at2 

The two equations, (3) and (4), scarcely seem simple. Recalling the 
argument of Art. 2.29, it is realized that A is not unique until it is further 
specified. That is, there are any number of vector functions whose curl 
is the same. It may be shown that it is necessary only to specify the 
divergence of 21 to make it unique, and this may be done according to 
convenience. If the divergence of ;1- is chosen as 

act. 
v • IT = —e t 

[3] 

(3) and (4) then simplify to 
824, 

v2 1.4e = e_ 
at2  
a2À—. 

vr271: = 
at2 

' [5] 

[6] 
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A check to see if these potential functions and equations reduce to the 
familiar static expressions when time derivatives become zero shows that 
fl = V X A, E = - V4, as before, the condition for uniquely specifying 
Á reduces to V •A = 0, and (5) and (6) reduce to the two Poisson equa-

tions, 

v24, _ 
E 

v2 X =_ 

[71. 

[8] 

So 4, and 2T in this special case are seen to be the same potentials selected 
in Chapter 2 except for the camouflage of different units. 

Problem 4.15. Explain why it is necessary only to specify the divergence of 
to make it unique. In other words, if A is to be a vector whose curl is H and whose 

divergence is #, it is the only such vector. 

4.16 The Retarded Potentials 

Equations 4.50(7) and 4.50(8) can be interpreted as saying that ,e is 
due to charges and Á to currents. Thus E must be expressed in terms 
of both 4, and A since electric field may be due either to charges or to 
changes in the magnetic field. The term in 4' includes the effect of 
charges; the term in 21- includes the effect of changing magnetic fields 
as expressed by Faraday's law. This may seem rather matter-of-fact 
and obvious, but it cannot be overemphasized, for it is easy to fall into 
the error of thinking of time-varying effects in terms of a scalar potential 
applied between two points, with electric field given as the negative 
gradient of this potential as in the static case. This must often lead to 
incorrect conclusions, as shown by the general need for two types of 

potentials in the equation for E. 
The solutions of the two equations will be discussed later, but it has 

been shown that the solutions must reduce to the familiar integral expres-
sions for potentials of the static case when time variations disappear. 
The additional terms in the differential equations are time derivatives, 
and so it would be expected that the solutions will differ from those of 
the static case in some fashion resulting from these time terms. This 
results in solutions in integral form quite similar to those of the static 

case, with the exception that the time term appears as a retardation 
effect. That is, it requires some time for an effect to be felt at a point 
if a charge or current is suddenly changed at another point. The poten-
tials are accordingly called the retarded potentials. 
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4.17 Solution of the Potential Equations 

To consolidate our gains, we have now the equations 

a2.1, 

V24' „e = 
at2 

v2'24: _a221 = 
at2 

11= v x21 

E 

air É= — vd, — g— 
at 

These may be considered as expressions equivalent to Maxwell's equa-
tions, but they have the advantage that equations (1) and (2) are 
standardforms of differential equations. Had we attempted to eliminate 
directly in Maxwell's equations to obtain similar expressions containing 
H alone and É alone in terms of charges and currents, we would have 
found no such simple form as this without some such change of variable 
as that which brought in the new variables, À and 

It is necessary to solve the two equations in À and 4.. The special 
case of no variations with time has been considered in Chapter 3. The 
special case of p = 0 and ï = 0 will be especially important since it 
covers radio waves propagating in free space. Later chapters will be 
devoted entirely to this subject. It is possible to obtain solutions to the 
above equations in integral form. Such solutions will be more general 
than those for any of the special cases mentioned and are helpful in 
getting a good picture of varying electrical effects. Although a rigorous 
solution of the equations is possible, it seems better suited to our present 
objectives merely to present the solutions to the equations, making them 
seem reasonable from our knowledge of similar equations of past chap-
ters. The mathematical proof can be found in several of the reference 
books given in Appendix A. 

Consider first (1). If we start with small time variations, or at least 
small compared with space variations, the equation will reduce to 
Poisson's equation of Chapter 2. 

V24' = 

e 

The solution was found to be 

= 1 r pdV 
E .1 /, 47ir 



164 MAXWELL'S EQÉATIONS [Art. 4.17 

Consequently, the solution should reduce to this form as r approaches 
zero. 
On the other hand, in a region where there are no charges, p = 0, the 

equation becomes 
a24, 

v2,z, — E — = 
at2 

This is the wave equation, of which we have already considered the 
special case involving one space derivative only (Chapter 1). The 
solution of the wave equation represents a wave traveling with velocity 

= 1/N717e. Tying together these two bits of information, it seems 
that the contribution to 4. at a point from a charge (pdV) a distance r 
away should be of the same form as in the static case, with the exception 
that the effect requires a finite time, rie, to propagate from the charge 
to the point; hence the contribution to 43 at time t should be calculated 
from the value of (pdV) at time r/y before t, that is, at time t — (r/v). 
Thus, 

dV 
de —  

47rEr 
[pi g_rdV 

(I ) 
fv 4rver 

The bracket with subscript t — (r/v) denotes that for an evaluation of 
4 at time t, the value of p at time t — (r/v) should be used in the integral. 
By direct analogy between the equations in 4 and 2T, the solution for 

A becomes 

= 
[i]t_rdV 

fr 4:r 

This equation shows that A is also calculated by summing contributions 
from all convection currents of the system as before, except that the con-
tribution to 2T at a given point at time t from a current element (idV) 
a distance r away from that point should be calculated with the value of 
current at time r/y before the time t; it required the time r/v to propa-
gate its effect over that distance. 
The velocity y is the velocity of light or electromagnetic waves in the 

homogeneous medium considered and is given in terms of the dielectric 
constant and permeability of that medium by 

1 

v Pe 
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For free space 

1  
y = c = - 3 X 108 meters/second 

In later articles the subscript t - (r/v) will not always be written 
below the bracket. The use of brackets alone will be understood to 
indicate that the function inside is retarded; that is, it is a function of 
t - (r/v) rather than t. 

4.18 Electric and Magnetic Fields in Terms of Vector Potential 

Alone 
Electric and magnetic fields have been expressed in terms of two 

potentials. One of these (4)) is obtained in terms of all charges of the 
system. The other (IT) is obtained in terms of all currents of the system. 
Since by the continuity equation there is a relation between charges 
and currents, there must then be a corresponding relation between Á 
and 4). This has already been used in specifying the divergence of 
(Art. 4.15) 

acI3 
V • A- - E — at 

[1] 

With this relation between A and 4, equations may be written for electric 
and magnetic potential in terms of one potential only. This will result 
in the most convenient form for use of the equations, although it will 
sometimes be desirable to retain both potentials to show more clearly 
the separate effects of charges and currents. 
For steady state conditions, where all quantities vary as ele, (1) 

becomes 

or 

V •A = —jw€4 

1 - 
cics = - (V • A) 

Jo.* 

The equation for electric field is then [Eq. 4.17(4)] 

É -= - V4. - jcomÁ 

or 

É -7-1 V (V • 4.717) - jcoeuT. 
„ice 

and, as before, II = V X A. Electric and magnetic fields are both 
expressed in terms of the one potential, A, defined by Eq. 4.17(6). 
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BOUNDARY CONDITIONS FOR TIME-VARYING SYSTEMS 

4.19 Matching Conditions for Tangential Electric Fields at a 
Boundary 

In Chapter 2 there were obtained, as examples of the use of the laws 
of static fields, the matching conditions to be applied at the boundary 
between two materials. In succeeding chapters we shall be interested 
in the boundary conditions that must be applied for time-varying sys-
tems at the boundaries between two dielectrics, two conductors, or a 
conductor and a dielectric. These may be obtained directly from 
Maxwell's equations. 
The integral form of Faraday's law from which 

an 
vx.n= — --at 

was derived is 

[1] 
s at 

Thus if at the boundary between any two materials an imaginary closed 
path is taken (Fig. 4.19) with its two sides an infinitesimal distance on 

either side of the boundary and A/ long, the line 
integral of electric field is 

Ee l 

Fla. 4.19. 
fE • ci/ = (Et, — Et,),à1 [2] 

Since this path is an infinitesimal distance on either side of the boundary, 
it can include no area, and so can have no contribution from the surface 
integral of changing flux density. Consequently, 

(E ti — EOM = 0 or Eti = Et, [31 

This shows that tangential components of electric field are equal on the 
two sides of the boundary between any two materials. 

4.20 Tangential Magnetic Fields at a Boundary 

The integral form of 

is 

V X 17 .= ti+ —a .5 
at 

fn. dl = f(+ )n‘ • e 
s at 

[1] 
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Just as for the development of Art. 4.19, an imaginary path taken as 
before will include no area, hence no contribution to the surface integral 

on the right, and so again 

Hti •-= [2] 

This shows that tangential components of magnetic field are also equal 
on the two sides of the boundary between any two materials. 

4.21 Tangential Magnetic Fields at a Current Sheet 

It will be seen in later chapters that at high frequencies are found skin 
effect phenomena which effectively concentrate all current near the sur-
face of conductors in a region negligibly small compared with the con-
ductor dimensions. For these cases it is convenient to treat such cur-
rents effectively as current sheets of linear current density J amperes 
per meter. If the small closed path is taken only a small distance inside 
the conductor but still a distance deep enough into the conductors to 

include effectively all the current, there is a contribution to fri • a 
aD 

from the conduction current encircled, although that from f — • deg is s at 

still negligiblé. Then 

— Ht2)dS = Js dS or J5 = Hti — He, [1] 

Js is the component of linear density of current flowing along the con-
ducting boundary normal to the direction of R. 

This is exactly true only for a current sheet of infinitely small thickness. 

4.22 Normal Components of Fields at a Boundary 

The integral form of Gauss's law from 

which 

was derived is 

fD.ds = f pdV 

Dne 

Fla. 4.22. Surface charge pa 
Di on a boundary between two 

media. 

If two very small elements of area AS are considered (Fig. 4.22), one 
on either side of the boundary between any two materials, with a sur-
face charge density pa sitting on the boundfiry, the application of Gauss's 

law to this elemental volume gives 
— D.2)dS = padS 
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or 

= Dni — D7,2 [2] 

For a charge-free boundary, 

= D„, or eiEni = 

and normal components of displacement are continuous. 
Without isolated magnetic charges, a development exactly similar to 

that above shows that always 

= B or = µgins [3] 

4.23 Use of the Boundary Relations for Time-Varying Problems 

The previously discussed boundary relations are of the highest prac-
tical importance in the solution of high-frequency problems. They may 
enter into the problems in a number of ways. For example, the fields 
may be known on one side of a boundary, and the fields on the other 
side may be desired. Or the fields at the surface of a perfect conductor 
may be known, the current and charges on the conductor then being 
given by the boundary relations. But more important than these two 
examples is that the boundary relations are tied up basically with the 
whole technique of finding the distribution of electromagnetic effects 
by solving Maxwell's equations. In general, the problem is always one 
of writing down solutions to these equations and selecting or fitting them 
to the particular problem by making certain that they satisfy the bound-
ary conditions of the space being studied. Hence the boundary relations 
appear directly or indirectly every time a high-frequency problem is 
solved. 
The way in which these relations enter into the solution of a problem 

will be clarified by discussing a more or less general example. We will 
not actually solve this problem, but enough of 
the technique of solution will be gone into so 
that conclusions can be drawn about the ap-
plication of boundary conditions to any prob-
lem. Figure 4.23 shows a space bounded 

Fla. 4.23. Region contain-
everywhere, except at the boundary III, by a mg two dielectrics partially 

enclosed by a conductor. perfect conductor, I, and consisting of two re-
gions of different dielectric materials A and B, 

whose boundary is denoted by II. It is assumed that the space described 
is excited by the impression of suitable boundary fields at III. 

It will be assumed that only the time-varying parts of the phenomena 
are of interest here. To obtain the distribution of fields and currents 
and charges, various solutions of Maxwell's equations are now con-
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sidered, and the process of selection of appropriate types and amounts 
of these solutions is ready to begin. In both regions A and B, we reject 
first of all those solutions which fail to give zero tangential electric field 
on boundary I. Other than this there are no further boundary condi-
tions to apply to the solutions at this boundary. The proof of these 
statements is as follows. Since the conductor is perfect, there would be 
infinite current flow on its surface if there were any but zero tangential 
electric field there. Equation 4.19(3) states that if there is no tangen-
tial electric field at I in the dielectric, there will be no such field at I in 
the conductor. Thus the boundary condition of Eq. 4.19(3) is satisfied, 
and it has exerted its effect in selecting the proper solutions from all the 
candidate solutions. We next see if the other boundary conditions, 
Eqs. 4.21 (1), 4.22(2), and 4.22(3), are automatically satisfied at I as 
implied above. 

Equation 4.22(2) states that there must be a certain charge distribu-
tion on the conductor, if there is to be no normal electric field in the 
conductor. Equation 4.21 (1) states that there must be a certain current 
flowing on the conductor, if there is to be no tangential magnetic field 
in the conductor. Since we know that all fields must vanish in the 
perfect conductor (time-varying effects only being considered), these 
two boundary conditions lead to a knowledge of the conductor's current 
and charge distribution. Notice that they normally are applied, in 
other words, after the solutions have been selected to fit the zero tangen-
tial electric field condition, and so do not take part in defining the solu-
tion. Of course, it is always possible that the whole problem might have 
been stated in reverse: Given a current distribution on I, what are the 
fields everywhere? In this problem, Eqs. 4.21(1) and 4.22(2) would 
obviously constitute constraints on the choice of solutions, but unless 
the current distribution were consistent with the requirements of zero 
tangential electric field on I, the problem proposed could never occur. 
There remains at I the boundary condition expressed by Eq. 4.22(3). 

It is easly seen that this is automatically satisfied by the vanishing 
tangential electric field. The normal magnetic flux density 14. may be 
written, on the boundary, in terms of the component of the curl of the 
tangential electric field Ét on the boundary. 

vxpt = — 
boundary at [1] 

If ;et is everywhere zero on the boundary, then obviously fl,, is likewise 
zero there and Eq. 4.22 (3) becomes consistent with the vanishing of all 
fields in the conductor. 

Next, boundary II must be considered. The solutions previously 
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selected must be tested and possibly rejected or determined so that the 
fields on the boundary II as obtained from expressions in region A or 
region B will be compatible; that is, the boundary conditions of Eqs. 
4.22 (2), 4.22 (3), 4.20 (2) and 4.19(3) must be met. Now, if the tangen-
tial field conditions are satisfied, it will be found that the normal field 
conditions are automatically taken care of. This may be shown in two 
ways. By writing the equation for the normal electric displacement 
vector on the boundary 

v x Rt 
aD. 

boundary at 
[2] 

and considering this result together with (1), it is eviçlent that specifica-
tion of Et and Ht fixes also ./1, and D„ on the boundary. Another and 
perhaps more fundamental way of showing the interdependence of these 
boundary relations and the relation between tangential and normal 
fields is to recognize that the two equations 

v•re=o v•D=o 

may be derived from the two equations 

aD 
v x R = —at x E = — 13 at 

[3] 

[4] 

We refer here, of course, only to the time-varying parts of the fields. 
This derivation is easily carried out and leads immediately to the con-
clusion that any relations, boundary or otherwise, based on (3) must be 
contained in (4). 
That the specification of tangential fields is sufficient to determine the 

normal fields holds also, of course, at boundary III. Here the final 
application of the boundary conditions takes place. Of the solutions 
that have passed the previous boundary tests, the proper amount of 
each is selected to yield the given impressed tangential fields at III. 
Of course, it is evident from (1) and (2) that if normal fields are specified, 
some information is always obtained about the tangential fields, and 
often at a boundary it is convenient and possible to specify a normal 
field component in place of one of the tangential field components. 
To summarize, for time-varying problems, the boundary conditions 

that will in general be used and which are sufficient for any such problem 
are: 
At a perfectly conducting boundary, the tangential electric field must 

be set equal to zero. 
At a boundary between two dielectric media, the tangential electric 

and magnetic fields must be made continuous. 
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Problem 4.23(a). Show that if in free space all phenomena are proportional to 

eiwt, two of Maxwell's equations 
v•D=t) v•b--=13 

may be derived from the other two equations 

v x fi = jw/5 V X = - icon 
Show also that if the tangential fields are known at a boundary under the above 

conditions, the normal fields are also known. 

Problem 4.23(b). Show that if continuity of charge is assumed, 

v.B = o 
V • 1,1 = p 

may be derived from 

and 

ab 
X = ;hp +—at 

an 
X 2 = — —at 

This fact has made it quite common to include only the last two equations in referring 

to Maxwell's equations. 

SUMMARY OF FIELD AND POTENTIAL EQUATIONS FOR 

TIME-VARYING SYSTEMS 

4.24 General Equations and Definitions 
We have now derived two separate forms for the laws of electric and 

magnetic systems with time variations: the differential equation form 
of Maxwell's equations and the statement in terms of retarded poten-
tials. This information is all that is necessary to analyze all the follow-
ing problems of circuits, circuit elements, antennas, resonators, wave 
guides, etc. It is consequently used so often that it is worth while to 
summarize the two statements of the laws with definitions of all quanti-

ties for easy reference. 

DIFFERENTIAL EQUATION Form RETARDED POTENTIAL PORI& 

v • D = p 

v • B = 

ft=vx21 

[Ili _7: dV 
an v x n = - —at II = fi, v  ihrr 

at, fv lole -': (IV V  

V X 17 = i ± — 4) - at 47rEr 

ad) 
V • ii = - E — at 
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DEFINITIONS 

p charge density 

I current density 
In space charge regions, I = eep 
In a conductor, i = /72 (Ohm's law) 

electric intensity (force equation J = qÉ) 
magnetic intensity (force equation 

df = Idt X D) 
magnetic flux density, D 
electric flux density and displacement, 

eE" 
e dielectric constant 
p permeability 

cr conductivity 

1 
• velocity of light in the medium, v = 

e =, e'eo where 90 is the dielectric constant of free 
1 

space, 3 71- X 10-9 

where po is the permeability of free space, 
47r X 10-2 

= PO 

1 
c = — 3 X 108 

‘lr :070 

UNITS 

coulombs/meter3 

ampere/meter2 

volts/meter 

amperes/meter 

webers/meter2 

coulombs/meter2 

farads/meter 

henrys/meter 

mhos/meter 

meters/second 

farad/meter 

henry/meter 

meters/second 

Stored Energy. Two expressions for energy in static fields which were 
derived in Chapter 2 (Arts. 2.33 and 2.34) will be found useful later. 
It will be convenient to have these expressions in inks units. 

Us = 6E2 dV joules 

UH = lf p,H2 dV joules 

4.25 Steady State Alternating-Current Equations 

For steady state A-C conditions in which all factors are assumed to 
vary as e , the field equations are: 

DIFFERENTIAL Equenort FORM 

V • 17) = p 

• = 0 

V X É = 

v><R=ï+joJEÉ 

RETARDED POTENTIAL FORM 

• = v x 
- 1 
E = — V (V • — iced 

iwe 

• = f dV 
4irr 
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4.26 Maxwell's Equations in Several Coordinate Systems 

Rectangular Coordinates 

aD aD y aD 
1. ax — + —ay  +—az = p 

aBx aBy aBz 
2. — — = 

ax ay az 

3. 
aEz _aE, aBx 

ay as = — at 

aEx aEz aBy 
_ 

as ax at 

aEy aE = are, 

ax ay at 

ail, aDx 
4. 

ay — as = + at 

axx ariz api, 

az ax = + at 

aH a . apt, 
iz 

ax ay = ± at 

Cylindrical Coordinates 

a aDgs aDz 
. — — (rDr) + 
r ar 

2. —1 —a (113,) +1 a—Be ± —8B, = 0 
r ar r az 

3 aE, aEz, aB„ .  
r act) az at 

aE„ aEz aBe 
as — —ar — at 

a ,, aEr aB, 
— — — — —= — — 
r ar r ao at 



1. 

174 MAXWELL'S EQUATIONS [Art. 4.26 

4. -  
r al) (3z at 

ail,. ()Hz . °Do _ = 
az ar at 

a axe. . art, - — (ree) - - — = 
r ar r at 

Spherical Coordinates 

1 a 1  a 1 aD4, 
«T:2 (r2Dr) r sin o ao(D0 sin 0) — — p r sin (1 act, 

1 a r2 0 2. ( r-2 - Br) + 1  a (B0 sin 0) +  1  aEo _ 
rsin 0 a0 ar r sin o ao 

aE0 aE ( E. sin 0) .... ___1 . _ r 
rain o Lao ao j at 

li- 1 a& aEo 
r Lsin o ao Or (r4)] = - 71 

E aE,f, -1r-r (rE8) a - -1= - at 
r a ao 

am, . 4. 3D,.1 [ao -a (1-1.b sin 0) 
r s - --] in 0 ao at 

ape 
1 f 1 a. . .H .. — ! (r11,6)1 = i 
-r Lsin 0 aq5 Or . J o ± at 

aHr1 + ape 
-1 [—aar Ma) - 
r 00 j at 



5 
CIRCUIT CONCEPTS AND THEIR VALIDITY 

AT HIGH FREQUENCY 

THE FORMULATION OF A CIRCUIT CONCEPT CONSISTENT 

WITH MAXWELL'S EQUATIONS 

5.01 Introduction 

From the preceding chapter we have a set of laws, Maxwell's equa-
tions, that contains the core of the classical theory of electricity and 
magnetism. The applications of these to most problems is not difficult, 
speaking of concepts alone. There are plenty of mathematical difficul-
ties — inability to integrate certain forms or to solve certain differential 
equations — but the ideas behind everything in modern radio, in so far 
as they depend on classical electricity and magnetism, should always 
be clarified by proper reference to Maxwell's equations. Our purpose 
for the remainder of the book is to study the systems and phenomena 
important to radio by means of these laws. They will be made to give 
quantitative design results, exact or approximate, whenever this is pos-
sible, but more important, we shall always use them to understand the 
concepts and physical pictures underlying the phenomena in question. 
Of the many types of problems to be studied, many involve circuits, 

a term that covers a huge percentage of all phenomena with which the 
radio engineer is concerned and with which he associates many of the 
important concepts in electromagnetics. In a circuit problem there is 
often an applied voltage, and there are currents in the conductors of the 
circuit, charges on condensers in the circuit, ohmic losses, and power 
losses by radiation. These effects include almost everything that can 
happen when electric currents, charges, and conductors are let loose. 
The circuit problem is also one of the commonest problems illustrating 
the idea of cause and effect relationships. For these reasons, and, 
most important of all, because the circuit technique is one of the most 
familiar and useful to engineers, this will be the first problem to be in-
vestigated from the starting point of the fundamental laws. 

In this chapter only the concepts and the general techniques of circuits 
are to be studied; quantitative analysis is reserved for the next chapter. 
From the rigorous starting point of the fundamental laws, it will be 
found that for circuits which are small compared with wavelength, this 

175 
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exact approach leads directly to the familiar circuit ideas based upon 
Kirchhoff's laws, and the concepts of lumped inductances and capaci-
tances are sufficient for analysis. For such circuits there would then be 
little need for going beyond Kirchhoff's laws. Although most of the 
circuits the average radio engineer encounters may be of this type, two 
reasons make it necessary to go beyond this stage in the understanding 
of circuit concepts. First, the increasing use of high frequencies in-
creases the uncertainties in the engineering and development of systems 
which are thought up, designed, and experimented upon without suffi-
ciently broad tools. For instance, most notions of circuits came out of 
studies of systems in which the current flows in relatively small cross-
section filaments or wires (and in which the matter of distribution of 
current over this confined path is a secondary effect easily added on 
separately). But at ultra-high frequencies we would like to be able to 
use convenient circuit concepts, without going astray, on circuits which 
have the total current flow distributed over a wider or larger region than 
the physical confines of the circuit materials themselves. Secondly, 
when the radiation of electromagnetic energy is considered at any 
frequency, the radiating system must eventually be understood both 
as to the mechanism of the release of energy and the feeding of the 
antenna by the applied electromagnetic forces. The desire to utilize 
the convenient concepts of applied voltage, impedance, etc., in the 
latter case leads to a combination field-circuit problem, which, with no 
background in the electromagnetics of circuit notions, would be unneces-
sarily difficult even in qualitative thinking. 

5.02 Applied Field and Resultant Current Density 

Perhaps the most important single relation that appears in classical 
circuit theory is Ohm's law, which relates current flow to voltage drop 
in a conductor. This law may be generalized so that it applies to an 
infinitesimal conducting cube and is then written 

= (yE [1] 

Equation (1) relates the current density at a point in a conductor to 
the electric field intensity at that point through the constant u, known as 
the conductivity of the material. The electric intensity E is the total 
electric intensity at the point, not just a portion. The use of total field 
is emphasized now because the equations are to be put in a form suitable 
for exploitation by convenient, well-established circuit ideas. These 
include, near the top of the list, the concepts of applied voltage and 
voltage drops due to capacitive and inductive effects, as well as ohmic 
voltage drops. It should be recalled that in a circuit to which an 
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external voltage has been applied, the notions of circuit theory have us 
subtract from this applied voltage the back voltages or voltage drops 
due to the varying currents of the system and the varying charges of the 
system, leaving a certain net voltage available for the ohmic drop. To 
set the background for an approach to circuit ideas from the field equa-
tions, such a division will be followed in the electric fields and the notions 
of voltages will be arrived at by way of the fields.' 

Thus, E may be made up of one part E0 applied from another system 
(the external generator) and another part E' arising from charges and 
currents in the circuit or system considered. 

= Etc, +E' [2] 

Recall that in Maxwell's equations, Art. 4.07, if all charges and currents 
are included in the equations, the electric intensity R appearing in the 
equations must be total electric intensity. If a system is considered 
which we have decided to call a circuit, and if this is influenced by an-
other system which is the generator or source of applied voltage or 
applied field for the circuit, Maxwell's equations might, of course, be 
applied to the totality of the two systems, including all charges and cur-
rents for the circuit and its generator. Such an approach would be 
unnecessarily complicated if the generating system is, for all practical 
purposes, independent of the driven circuit. This is the case, for 
example, if the circuit obtains its applied field from an influencing 
system which is a distant antenna, a battery, a source of thermal emf, 
or a well-shielded signal generator. It is then easier to divide total 
field into two parts. There is the applied field which does not depend 
upon the charges and currents in the circuit, and there is an induced 
field which arises directly from these charges and currents. The basic 
laws applied only to the charges and currents of the circuit give only 
the amount of the induced field. 

Total field, to be used in Ohm's law, is the sum of applied and induced 
components. 

[3] 

The component E' due to charges and currents in the circuit may be 
stated conveniently in terms of the potentials (Art. 4.16) : 

E' = - cl) — 1.t a#1t. 

This follows closely the procedure of Carson, Bell Syst. Tech. four., 6, 1-17 
(January, 1927). 
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where e is the scalar potential due to charges of the system, 
[IA dV 

(I) 
fir 4irer 

and A is the vector potential due to the currents of the system 

= 
[i] dV  f, 4irr 

Substituting these in (3), 

- = E0 - vd) - 
at 

or 

= - + + —at [4] 
cr 

Equation (4) is the type of cause and effect relationship desired, since 
an applied field E0 results in an ohmic term and terms due to the charges 
and currents of the system. It is the first step in obtaining a circuit 
equation that relates voltages to currents and is based upon rigorous 
field theory. We must now define exactly what is meant by a circuit 
so that (4), which holds at a point in a conductor, may be extended to 
some proper integral relation that is true for a loop or circuit. 

5.03 Applied Voltage and the Circuital Relations 
A circuit will be defined only as a line in space. Of course, if there is 

to be any advantage in looking at the system as a circuit, this line or path 
will usually lie partially or entirely along a conductor. For any point, 
whether in a conductor or not, the relations between cause and effect 
are those derived from Maxwell's equations, Eq. 5.02(4). To obtain a 
circuit equation it is necessary only to integrate this differential expres-
sion along any path that is to be chosen as the circuit. 

fEo•cTi= f—j•z+fv(D•c+fih [1] 

The first term of the equation, P o • cri, is defined as the applied 

voltage of the circuit. More generally, this line integral of 20 between 
any two points a and b (Fig. 5.03) along the path of the circuit will be 
defined as the applied voltage of the circuit between the points a and b. 

Thus, 

fRo • di =-=7. V ba 
a 
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By voltage we shall mean no more than this. It should not be con-
fused with the scalar potential of static fields. 
The defined applied voltage of a circuit brings us to the first of several 

concepts which calls for careful handling to avoid confusion. First let 
us look at the easy case of direct current. Suppose it is made to flow 
in a conducting loop connected across the terminals of a battery. The 
battery voltage causes the current flow, and it is the only thing causing 
such a flow, since there is no electric field due to alternating currents, 
and there is no electric field in the conducting loop due 
to charges. (The capacitances of the battery plates 
and the conductor are neglected as being immaterial 
even if they are not small, since these capacitances, 
once charged, do not enter into current flow con-
siderations.) Usual circuit theory would say that 
the battery applies a voltage between the two ends 
of the loop. Field theory says first that the battery must be 
applying an electric field in the conductor, otherwise there would be no 
current flow there. The two theories harmonize when applied voltage 
between two points is defined as the integral of applied electric field 
between those points. The circuit equations and concepts do not con-
cern themselves with how the battery caused the voltage; neither do 
the field equations concern themselves with how it produced the applied 
field. 

Consider next a closed loop of wire, the wire being of infinitesimally 
small cross-sectional area. Let magnetic flux through this loop be pro-
duced by some independent system which causes'this flux to increase 
uniformly with time. The effect of this constant rate of change is to 
yield. an applied D-C voltage, and by Ohm's law, this yields a certain 
direct current flow. If the field in the loop is oscillating in time, as in 
a receiving antenna excited by the field of a distant transmitting antenna, 
it is again clear that the applied voltage is the integral around the loop 
of the electric field due to the distant transmitter. 
For the applied voltage produced by the battery, we did not know or 

care exactly how it was produced; it was known only that this voltage 
was of a certain amount and was independent of the path chosen for its 
circuit. However, when the applied voltage arises from the field of a 
distant antenna, the amount of this voltage depends very definitely 

upon the path of the circuit. It may be different for different sizes, 
orientations, and positions of the circuit. So, in general, the applied 
voltage around any loop to which the circuit concept is applied may vary 
radically in magnitude as different loops are selected, even when voltage 
is due to the same source. 

FIG. 5.03. 
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With this notion of applied voltage, (1) is definitely suggestive of the 
Kirchhoff circuit equation for a simple series circuit containing resistance, 
inductance, and capacitance. The left-hand member is an applied 
voltage. This results in certain voltage drops expressed by the terms 
on the right. The first of these is an ohmic drop, the second is an 
induced drop from charges, and the third is an induced drop from 
changing magnetic effects. The relationship between these terms and 
the familiar resistance, capacitance, and inductance drops for low-
frequency circuits will next be shown. 

THE APPROXIMATE CIRCUIT EQUATION AND 
CIRCUIT CONSTANTS 

5.04 Inductance of Circuits Small Compared with Wavelength 

If Eq. 5.03(1) is applied to a closed circuit, there results the exact 
equation 

î  v = f — • d- - l ± f — • dl f V cI) • di 
at 

[1] 

It would be difficult to calculate numerical values from the equation in 
this form. Without making certain approximations there is little in (1) 
which shouts the advantages of using circuit concepts. Approximations 
applicable to typical circuits may often be: 

1. Dimensions small compared with wavelength. 

2. Current confined to a small filamentary conductor. 

3. Current the same at all points about the path. 

Let such a concentrated current, 7, be given by I. i is now the 
magnitude of current in amperes, and is the same everywhere about the 
path; ai is a unit vector which gives the direction of current at any 
point. Further, we shall write a new constant that relates total current 
I (instead of current density i) to total electric field. Call this total 
conductivity of, and let its inverse be R'. For 1/ o-, MR' may be written, 
where R' is the resistance per unit length at any point. Since lid and di 
have the same direction at every point (that is direction of current at 
any point is that of its conducting path) 

- 
; • dl = if = RI 

R is the total resistance about the path. 
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The line integral of V 4, about any closed path must be zero, because .51) 
is a scalar potential (see Art. 2.14). 

.f (I, • dt ---- 0 

There remains 

V = IR + --a-P • di 
at 

[2] 

The integral expression for A, Eq. 4.17(6), for the case of current con-
centrated in a thin filament, becomes 

A=f t 47r [3] 

where r, now, is th q distance between dl and dl'. If frequency is so low 
that the time necessary to propagate electromagnetic effects over any 
of the circuit dimensions is negligible compared with a period of the 
changing A-C effects (or in other words, the circuit is small compared. 
with wavelength) retardation may be neglected and A written simply as 

Á = e ide 

J 471-r 

I may be removed from the integral since it is assumed constant about 
the path, but ai must, of course, be retained inside the integral since 
direction of current flow may change along the path. The evaluation 
of the integral then leads to some net directed quantity or vector which 
gives the direction of A and which is dependent only on circuit configura-
tion, not upon magnitude of current. 

cc rtA/ 

If a coefficient, L, is defined as 

L = f bui • di 
[4] 

this will be a constant independent of current, since A by the above 
reasoning is proportional to current. This constant is a scalar and is 
dependent only upon the geometrical configuration and dimensions of 
the circuit. 

Equation (2) may now be written 

dI 
V = IR + L —dt [5] 

die 
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(The time derivative can now be written as a total derivative since only 
time variations of current are being considered.) This is exactly the 
form of the low-frequency circuit equation for a series circuit with resist-
ance and inductance. Let us examine further the defined coefficient L. 
From Stokes' theorem, 

f  uiT • riz(V X ii) • deg 

- Js 

But 

R= V X 41 and 1-3 = 

80 

[6] 

Since f n • co is the amount of magnetic flux passing through the 

circuit, (6) is the exact equivalent of the usual low-frequency definition, 
which defines inductance as the flux linkage per unit current, L = 

It is, of course, not surprising that this result is obtained since the 
assumptions of this article are equivalent to those employed in more 
conventional derivations of this definition of inductance. However, 
the manner of deriving the equivalence here shows clearly the approxi-
mations, leads as we shall see later to new concepts of inductance, and 
is easily adapted to inclusion of new correction terms when the above 
approximations are not good approximations. 

5.05 Capacitance Effects in Circuits Small Compared with 
Wavelength 

The circuit of the preceding derivation was continuous Let us now 
break the circuit at some point. There is then the possibility of the 
accumulation of charge. The break we shall specify as rather small 
compared with other dimensions of the circuit, but plates may be placed 
at the discontinuity, if desired, to increase the possibility of accumulating 
charge. Thus, in spite of the camouflage of careful specification, a 
lumped capacitance has been inserted in an otherwise completely con-
ducting filamentary path. 

In Fig. 5.05 is shown the circuit with discontinuity. It might at first 
seem that the exact differential relation 5.02(4) could again be integrated 
around a closed path, the discontinuity ignored, and the term in V (1) 
eliminated as before. However, if this is done, there is no way of know-
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mg what happens to the term i I cr over the gap, for although current i is 
zero in the gap, so also is cr. This term is thus indeterminate. That it 
need not be zero is evident by recalling that it is the difference between 

applied and induced electric fields, and 
this difference can be made to have any 
value. In particular, consider the special 
case of all gap, that is, just an imaginary 
line in free space. Here, no matter what the 
applied field may be, there are no charges 
and no currents along the path, and so no 
induced field E' at all. 

If a circuit equation is to be written for a lumped capacitance. 

a discontinuous conducting path, it is then 
to be obtained by integrating only over the conductor, from 1 to 2, 
where we know all terms of the equation. Integrating Eq. 5.02(4) 

from 1 to 2, 

where 

Flo. 5.05. Circuit containing 

2 ax 2 a 4, 

22. •a= IR - — • cn - f ai — dl at 1 
:  

dI 
V21 = IR L (4'2 — 41) 

f12 gjf • dl 
L 

[2] 

[3] 

Notice that in (3) the definition of L is somewhat different from that in 
Eq. 5.04(6). It should be noted that the definition (3) for inductance is 
good even for a non-e,ontinuous current path; but the concept of induct-
ance based primarily on flux linkages would require special explaining 
to have meaning for such a case. To make the two definitions identical, 
despite the apparent difference, consider (3) as the general definition; 
then Eq. 5.04(6) is simply a modification of (3) in which there are no 

circuit discontinuities. 
There remains a consideration of (42 — ti). 

f[IAdV = v 47rer 

Retardation may be neglected as before for a circuit small compared 
with wavelength. Then, provided stray capacitance is negligible so 
that distributed charges on the surface of the w re are small compared 
with the charges concentrated at the discontinuity, the value of e2 — 
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is proportional to the total charge q at the discontinuity. Let 1/C be 
that constant of proportionality; 

= - c 
[4] 

The charge at the discontinuity may also be related to current flowing 
toward the discontinuity by 

q = fi dt 

So the circuit equation (2) finally becomes 

V = IR L —dI ± fl dt 
dt C [5] 

This equation is the usual equation written for a low-frequency series 
circuit containing resistance, inductance, and capacitance. The con-
stant C of the factor of proportionality is thus identified directly with the 
low-frequency capacitance. In fact (4) constitutes the usual definition 
for capacitance of a condenser. 

Problem 5.05. Demonstrate for a circuit with capacitive discontinuity that 
the definition of inductance based upon flux linkages may be applied to give a result 
essentially the same as that obtained from the general formula, Eq. 5.05 (3), provided 
the discontinuity is small. 

5.06 Summary of Approximations in Deriving the Approximate 
Circuit Equations 

Starting from a rigorous equation, approximations have been made 
leading to the familiar circuit equations based upon Kirchhoff's laws, 
and the usual definitions of inductance and capacitance. These approxi-
mations were: 

1. Current was assumed concentrated in a thin conducting filament 
of the same value everywhere along the path. 

2. An effect from a change in current at one point in the circuit was 
assumed to be felt instantaneously at all other points of the circuit. 
Circuit dimensions, in other words, were assumed small compared with 
wavelength. 

3. To arrive at the concept of capacitance, the discontinuity was 
assumed very small, and the definition of inductance was made more 
general so as not to require a completely continuous conducting path. 

Of course, it should be recognized that there are practical, important 
cases where the circuit concept utilizing inductance and capacitance 
may be extended so that it is useful although not all the above approxi-
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mations are justified. The extension of circuit theory to include dis-
tributed inductances and capacitances as well as lumped parameters is 
one example of this. Later, we shall consider also inductances in cir-
cuits in which the cross section of current flow is not of infinitesimal 
area, and in which the ideas of inductance and capacitance will still be 
of practical use. 

HIGH-FREQUENCY OR LARGE-DIMENSION CIRCUIT CONCEPTS 

5.07 Extension of the Circuit Inductance Concept 
Of the approximations necessary to obtain the usual low-frequency 

definition of inductance, the assumptions of infinite velocities of propa-
gation and negligible distributed capacities are most directly related to 
frequency. At the higher frequencies, the time required to propagate 

the effect of a change in charge or 
current over the dimensions of the 
circuit may be appreciable compared 
with a period of the changing effects. 
We shall next consider the circuit at 
such frequencies, assuming for the mo-
ment that distributed capacities are 
not yet of importance, so that the current still has effectively the same 

magnitude at all points about the circuit. 
Consider the circuit of Fig. 5.07. With assumed infinite velocities 

of propagation, the effect of a change in current in the element cn at A 
would be felt instantaneously at all other points of the circuit (as at the 
element di' at B), and for steady state sinusoidal time changes, only 
induced voltage drops in time quadrature with the current would be 
obtained at any point of the circuit. However, when finite velocities 
are considered, the time necessary to propagate the effect of a change in 
current at A to any other point B may be great enough so that this 
exact 90° relationship is destroyed. There may then result from the 
changing magnetic effects a component of induced field in phase with the 
current as well as an alteration in the magnitude of the 90° out-of-phase 
component. These corrections might be calculated relatively simply 
if the current were assumed to be all of the same phase and magnitude 
around the circuit; but it must be recognized that this need not always 
be true when retardation is of importance. Retardation enters because 
the time necessary to propagate an effect of changing current at one 
point of a circuit to another point through space is appreciable compared 
with the period of changing current; phase differences between currents 
at different points about the circuit enter because the time necessary 

A 

Fla. 5.07. 
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to propagate changing currents about the conductor of the circuit is 
appreciable compared with a period of changing current. The two 
effects are closely allied. And if current, at any one instant in time, 
varies around the loop, there must be a temporary piling up or a decreas-
ing of charge at various points around the loop. So our suggestion to 
separate retardation effects and distributed charge effects appears of 
doubtful value. 

However, the problem of phase differences and distributed charge is a 
bit difficult until we have had more experience with wave propagation 
along conductors, which is the subject of study in later chapters. We 
know already from the transmission line study of Chapter 1 (and a 
transmission line is an extreme example of a circuit large compared 
with wavelength) that there are often certain conditions under which the 
waves may combine to form a standing wave pattern with current every-
where in phase. Similarly, in certain other circuits large compared with 
wavelength, it will often be possible to have standing waves so that all 
points about these circuits have currents in phase. The following 
analysis, which considers retardation only, and assumes no phase 
differences, is directly applicable to such circuits. But we need not 
attach rigor to the following conclusions because the main objective is to 
indicate the importance of retardation alone in any circuit in a qualita-
tive way whether the currents are in phase and of the same magnitude 
all around the circuit or not. 
With the assumption of a thin filament of current of the same value 

and phase at all points about the circuit, Eq. 5.04(2) still holds, with 
vector potential given by Eq. 5.04(3). 

a 
v = IR + — µ21- • it [1] at 

A = 
47r 

If the current is sinusoidal with time, it may be written 

I = f(t) = Ioeiwe 

Then the retarded value of current is 

[I] = f — r-) = 

Thus (1) becomes 

V = IR + jodoeiwt ff 
iwr 

le tide 
at 

471-r • 

[2] 

[3] 
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From the equivalence, 

cos x — j sin x 

the integral in the above circuit equation may be broken into a real and 

an imaginary part. 

wr — — 
p, cos (—)v de • dl gco sin (- in' • cn 

V 
= I R + jcol f f + if f  1  [4] 

47rr , 47rr 

This equation might then be written as 

V = IRR + Ter) + jcull [5] 

where 

and 

= if 
(cur) —, 

IL cos • —v dl 

47rr 
• Ca henrys 

mr.0 sin (-1 • a 
= If  471-r  ohms 

[6] 

[7] 

Analogy between (5) and the familiar low-frequency circuit equation 
using complex notation, identifies L as inductance, but from (6), L is seen 
now to be a function of frequency.' Its connection with low-frequency 
inductance, which is taken as a constant of geometry independent of 
frequency, becomes apparent if the cosine term in (6) is written in series 

form. 
( 0,27.2 4,4r4 ) cir • di 

L= ¡cif 1— + [81 
2! v2 444 47rr 

At low frequencies (curly very small compared with unity) all terms but 

the first are negligible in the series, so that 

= if or • di 
LLF 4irr 

[9] 

This is actually a well-known formula (Neumann's) for low-frequency 
inductance as a function of circuit geometry, and is, of course, independ-

2 This is not to be confused with the change of inductance with frequency due to 
skin effect phenomena which is another matter and will be studied in the next chapter. 
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ent of frequency.3 At higher frequencies, other terms of the series 
appear as correction terms to this low-frequency value of inductance. 

5.08 Circuit Radiation Resistance 
Let us investigate the additional term IR,. which appears in the circuit 

equation when the frequency is high. This term is in phase with the 
current, just as is the ohmic term IR, and so represents an actual de-
parture of energy from the source. The ohmic term represents energy 
transfer from the source to heat in the conductors. The new in-phase 
term does not represent any such dissipation of electromagnetic energy 
into heat energy, but it does represent an actual energy which leaves 
the circuit and can accordingly be labeled radiated electromagnetic 
energy. In the chapter on radiation, several ways of looking at this 
radiation term and of calculating its magnitude will be studied. For 
the present, we are most interested in the term as a correction term to 
the circuit equations at high frequencies. From this point of view, it is 
convenient to expand Eq. 5.07(7) in its series form, as was done pre-
viously for Eq. 5.07 (6). 

= f f 124.0 (cor w3r3 ± co5r5 

47rr v 3! v3 5! v5 
) di' at [ii 

But since f = 0, the first term (which contains no r) disappears 

entirely and there remains only 
co4r2 co6r4 

Rr = f f  ± 5! v5 [2] ) « di 

R„ because of its similarity to the ohmic term, may be called a radiation 
resistance. 

This radiation resistance, representing an in-phase component of the 
induced voltage due to varying magnetic effects, and the correction to 
inductance or out-of-phase component of induced voltage found in the 
previous article, were direct consequences of retardation. We know, 
of course, that there are other factors which have not been considered, 
so that expressions given for these correction terms should not be taken 
as rigorous. Frequently the changes in current about the path due to 
stray capacity and the differences in phase about the path, both of which 

3 Actually Neumann's formula is of practical use only in calculating mutual in-
ductance, since it has in it the assumption of filamentary currents, and this leads to 
bothersome infinities in evaluation of the self inductance. All this will be cligcussed 
in detail in the next chapter when the objective will be the computation of circuit 
impedance. 
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have been neglected, may be more important than the retardation which 
was considered. In spite of this incompleteness, the foregoing analysis 
does demonstrate the important effects of retardation. 

5.09 Example of Use of Circuit Concepts in an Inductive Circuit 
of Large Dimensions 

When retardation is included in the analysis of an inductive circuit, 
it has been found that a radiation of energy term may be expected. We 
say " may" rather than " must " because so far it has been shown only 
that the electric field component induced by a current element of the 
circuit will not always be 90° out of phase with that current element. 
If the net electric field due to all the circuit's current happens to have a 
component in phase with the current at the point of the circuit where the 
electric field is being evaluated, then there will indeed be radiation. 
It is nevertheless possible to imagine situations (one of which. will be 
met later in the analysis of the ideal transmission line) in which, although 
retardation is included, the electric field still is 90° out of phase with the 
current at that point. This happens because the current itself is not 
uniform in phase and magnitude around the circuit. There are many 
other cases where this beautiful compensation does not take place. 
One such is a circle of current where symmetry makes it possible to have 
constant current around the loop. 

Consider a circular loop of wire having a radius a (Fig. 5.09). The 
magnitude of e is adck. From the definition of the 

dl' 
scalar product, 

di' • di -- a d4) dl cos 4) 

The distance between the elements dl and di.' is 

r = 2a sin -2 

dl 

Fm. 5.09. Circu-
lar current-carrying 

loop. 

Thus, neglecting all but the first term in the expression for radiation 
resistance, Eq. 5.08(2), 

Pco4  
r2 dl' • di R,. - 

24"3 
ea3c04 f dl2ra f in 27 

= — — s' -4) cos 4) do 
67ro3 2 

- 
6v3 

Mira4W4 

= — 
7pr (27ra)i 

6 X 
ohms 
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where 

v 2ary 2.7r 

f w 

For free space surrounding the wire, 110 = 1207r ohms, and 

27 
R,. = 207r2 ( )4— ohms 

X 

As a numerical example, consider a loop with circumference one 
quarter of a wavelength, 

R,. = 207r2(1)4 = 0.773 ohms 

Problem 5.09(a). Obtain in terms of ratio of loop circumference to wavelength 
the first correction term to inductance by Eq. 5.07(8) for the above circular loop of 
wire. 

Problem 5.09(b). The inductance of a certain single loop of wire is five micro-
henrys. Determine the ratio of wire circumference to wavelength for which the 
above correction term is 0.1 microheiuy. 

Problem 5.09(c). Suggest a way to " drive " the circular loop of Fig. 5.09 so 
as to produce an applied electric field, equal in phase and magnitude everywhere 
around the loop, a condition that would yield the assumed uniform current distribu-
tion. 

5.10 Extension of the Circuit Capacitance Concept 

We have seen that the term in the exact circuit equation 5.03(1), 
which gives voltage drop in terms of changing magnetic effects, reduces 
to the ordinary inductance drop at low frequencies, but is really more 
general. At high frequencies, finite velocities of propagation may be 
important enough so that the value of the reactive drop from this term 
is changed, and a new radiated term in phase with the current flow is 
appreciable. It remains to examine similarly the term which gives 
voltage drop in terms of charges. It is always true that the line integral 
of the gradient of (1, must be zero around any closed path, so that a 
circuit with discontinuity must be selected and the integration carried 
only to the terminals of the discontinuity (capacitors) if the term is to 
appear at all. Consideration of such a discontinuity led directly to the 
usual concept of capacitance for low-frequency circuit effects in Art. 5.05. 

Consider the circuit of Fig. 5.10. Charges are again considered as 
concentrated at the discontinuity. That is, we are still neglecting any 
stray capacity effects from distributed charges resting on the surface 
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of the wire. At low frequencies, the electric field at any point, such as 
point P, from these two lumped charges, is always 90° out of time phase 
with the current, so that this component represents no average power 
flow. The energy in the electric field simply oscil-
lates between the source and the surrounding space. 
If the frequency becomes very high, the length of time  

, -- ri_ 
r 2,, 2 

necessary to propagate the effect of charges +q and 1 
—q, at 2 and 1, to P, any other point on the circuit, p . 
may destroy the previous 90° phase relationship. FIG. 5.10. 

it is quite apparent that there will now be a com-
ponent of the electric field due to charges which is in phase with the cur-
rent at any point of the circuit because of this retardation, quite similar 
to that found for changing magnetic effects, and also representing 
a radiation of energy. 

5.11 Considerations Involved in an Exact Approach to Circuits of 
Large Dimensions 

At the higher frequencies, stray capacities become of increasing 
importance, and the assumptions of uniform current distributions and 
no charges on the surfaces of wires may require revision if useful answers 
are to be predicted. The exact circuit equation is always that derived 
in Art. 5.03. 

-172, = f2 1. + f2 , + tf2 v [1] 
with 

cIV 
[2] 

4irr 

f[p] dV  
[3] y tier 

Difficulties in applying these equations arise since the current and 
charge distributions are not known, but are determined by the field 
distributions which are calculated from the retarded potentials which 
depend upon current and charge distribution — a vicious circle! The 
exact solution of this problem is usually of prohibitive difficulty. How-
ever, it is often possible to assume a reasonable current distribution, 
calculating from it the retarded potentials and hence the fields; from 
these the first assumption of current distribution may be corrected, and 
the process repeated until the desired accuracy is reached. This is not 
often done, however, since it is obviously a laborious method, and as 
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soon as frequencies become so high that these distributed capacities are 
important, transmission line theory usually offers a superior way of 
looking at the problem. So we shall talk more about what might be 
called circuits of large dimensions later under the various headings of 
transmission lines, wave guides, resonant cavities, and antennas. 

In calculating the radiation of energy by the use of circuit equations, 
it may be necessary only to consider one step of the above outlined pro-
cedure; that is, reasonable current distributions are assumed and 
radiated energy is calculated from these. If the concept of radiation 
resistance is used, it must be defined properly, and used with care, for 
it is the total energy radiated from the system which has meaning. If 
it is desired to express this radiation by multiplying some radiation 
resistance by the square of a current, it must be remembered that 
current may no longer be the same at all points around the circuit. 
Thus the value of radiation resistance for a given system will depend 
upon the particular current which is selected for this purpose. Actually 
a radiation resistivity could be defined for every point of the system in 
such a way that total energy radiated from the system might be obtained 
by an integration of this radiation resistivity multiplied by the square of 
current density over all the circuit. It is total radiation resistance 
rather than radiation resistivity which is most often used by radio 
engineers. It will be considered more thoroughly in the later chapter on 
radiating systems. 

5.12 Self-Enclosing a Circuit to Prevent Radiation 

When retardation is neglected in the analysis of a circuit, the result 
will inevitably contain no possibility for radiation of energy. When 
retardation is included, then the possibility exists that the answer may 
disclose loss of energy by electromagnetic field leakage (or radiation) 
into the surrounding space. This does not mean that retardation of 
itself, no matter how great, always leads to radiation. 
The emphasis should rather be on the fact that retardation means 

that the electric fields arising from any current element will, in the 
surrounding space, not be 90° out of phase with that current element. 
There is accordingly a possibility always that the total induced electric 
field at any point in the circuit may have a component in phase with the 
current at that point. This possibility passes to actuality in circuits of 
the type discussed so far, in which the current flows in filamentary paths. 
The validity or limits of the common circuit concepts were established 
on the basis of such circuits; but now that this is done, there is no reason 
why we must limit ourselves to these circuits. Useful and well-nigh 
universal though they may be at low frequencies, it is apparent that this 
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loss characteristic, radiation, that rises rapidly with frequency, will 
limit their application. For antennas, devices that are chosen because 
they do indeed " leak" electromagnetic energy to the surrounding 
space, these circuits are candidates. For narrow-band filters, resonant 
circuit impedances, and a host of other conventional circuit applications, 
it is much preferred to have a non-radiating circuit. 
Now there are ways to minimize radiation, even to make it zero for 

all practical purposes. We mention two of them here, not to complete 
the discussion of circuits (because to appreciate these new things fully 
will require techniques of electromagnetic waves that will be discussed 
in following chapters) but rather to make it evident that the story on 
circuits is not complete in this chapter, although its purpose was to ex-
amine circuit concepts. One way to prevent radiation is to enclose com-
pletely the circuit and source by a very good conductor. Such a shield, 
as we shall see in detail later, will stop the elec-
tromagnetic energy leaving the circuit, reflect , 
it, and cause additional electric field in the cir-
cuit that will buck out that undesired induced 
electric field component in phase with the 
current at each point of the circuit. Practi-
cally, the conductivity of the shield cannot 

be infinite, and so some small amount of FIG. 5.12. A self-enclosed 
energy will get through, and the reflected 
electric field will fall short of exactly neu-
tralizing the in-phase component of induced electric field. We cannot 
discuss this problem completely until we have learned more about 
handling the electromagnetic energy as a wave phenomenon. 
Another way to build a circuit so as to minimize radiation is exempli-

fied in Fig. 5.12. Here we deal with cavities, such that for any cross 
section which includes the axis of symmetry we have a circuit of the 
parallel resonant L—C type, consisting of the condenser plates A and B 
closed by the one turn inductance which encloses itself and the condenser. 
Because of the fact (which emerges easily from electromagnetic wave 
studies) that all electromagnetic effects, practically speaking, fail to 
penetrate metals at very high frequencies, the leakage by radiation from 
such a circuit will be negligible. This means that current distribution 
is not uniform but rather such that the net induced electric field at every 
point in the co.nductor is essentially 90° out of phase with the current at 
that point even at very high frequencies when retardation must be and 
is included. Such a circuit is best analyzed as a resonant cavity by the 
use of electromagnetic wave pictures and equations, so we shall leave the 
discussion at this point. We add only that certain concepts which can 

circuit. 
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properly be called " circuit concepts" will be helpful in studying these 
resonant cavities and the fundamental concepts discussed in this chapter 
should not be forgotten when we pass over to the wave method. 

5.13 Mutual Couplings 

In the circuit theory so far only a single mesh was considered. It 
was shown how the electromagnetic equations reduce for the low-fre-
quency case to the familiar circuit equations developed from the single 
Kirchhoff's law for such a single-mesh circuit. For higher frequencies 
it was shown how the retardation effects introduce corrections to the 
values of inductance and capacitance to be used in the circuit equations, 

Fie. 5.13a. Two circuits coupled through inductive effects. 

and may add in-phase terms representing radiation of energy from the 
loop. Until now the very important phase of classical circuit theory 
involving couplings between different circuit meshes has been avoided. 
This coupling may be from mutual inductances, from capacities whose 
fields influence one another, or from conduction links. 

If the coupling is of the form of a mutual inductance, Fig. 5.13(a), 
there is at every point a contribution to the vector potential from the 
currents in both of the loops. For each mesh, the integral circuit equa-
tion is of the form of Eq. 5.03(1), 

• _ a v = f- • dl — f µ21. • di +frt. • a at [1] 

but in calculating the value of Ato use for any point P1 in circuit 1, the 
current /2 must be considered with proper retardation just as in the case 
of the current /1. Induced field at P1 from this changing magnetic 
effect will in general have a component in phase with current due to 
retardation, as well as the usual 90° out-of-phase mutual inductance 
component, thus causing additional radiation of energy. Similarly, in 
calculating the value of A. to use at any point P2 of circuit 2, the current 

with proper retardation must be used as well as 12. 
If the coupling is from charges (usually thought of as a capacitive 

coupling) rather than, or in addition to, the inductive coupling from 
currents, a similar effect arises. Thus to calculate the value of to use 
in the circuit equation for any point P1 in circuit 1 of Fig. 5.13b, contri-
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butions from -1-q2 and. — q2 of circuit 2 must be considered as well as 
+qi and — qi of circuit 1, with proper retardations for each. In general, 
the induced field from these charges of circuit 2 will contribute an addi-
tional component of field in phase with current because of retardation, 
thus presenting further possibility of energy radiation. The situation 
illustrated by Fig. 5.13b is that of condensers in the two meshes insuffi-
ciently shielded to prevent their fields from influencing one another. 

Fla. 5.135. Two circuits coupled 
through capacitive effects., 

Fla. 5.13e. Two circuits 
coupled conductively. 

If the coupling between meshes is of a conductive nature, Fig. 5.13c, 
the general circuit equation holds about each path, and separate equa-
tions, each of the form of (1), would be written for each mesh. At any 
point the value of A and used must be calculated for all charges and 
currents of both meshes, and continuity of charge must be applied at 
the junction, the second Kirchhoff law. 
For any of the above methods of coupling between meshes, the elec-

tromagnetic field approach would reduce at low frequencies to the usual 
classical circuit equations derived from Kirchhoff's laws. At high 
frequencies, the approach is as outlined here, but it must be recognized 
that it is very difficult to apply except for the simplest of configurations. 
The value of the low-frequency circuit approach is emphasized all the 
more by these difficulties, and it is consequently important to recognize 
its assumptions and limitations. Such a true understanding is necessary 
in extending the valuable circuit approach to cases where not all these 
assumptions are strictly justified. 



6 
SKIN EFFECT AND CIRCUIT IMPEDANCE 

ELEMENTS 

6.01 Introduction 
The discussion of the previous chapter justified circuit concepts, like 

inductive and capacitive reactances, as they are universally used and 
understood in conventional circuit analysis. To be sure, it was found 
that the well-known definitions of all these quantities involve approxi-
mations; but, on the whole, for circuits physically small compared with 
wavelength, rigorous approach by Maxwell's equations shows that the 
ordinary methods of circuit analysis stem from correct formulations 
and are accurate. Even at higher frequencies, where the approximations 
become poorer, these circuit concepts are still practical for part if not all 
the problem, although correction terms may have to be used. 
Chapter 5 also discussed the various factors which enter into a rigorous 

analysis of all the effects which may take place in the neighborhood of a 
simple loop of conductor. We shall be satisfied in the present chapter 
to make simplifying assumptions, particularly those approximations 
which permit us to think in terms of an applied voltage around a circuit 
being taken up in impedance drops: ohmic resistance, inductive react-
ance, and capacitive reactance. There is a tremendous range of prac-
tical problems for which these assumptions are justified, and when the 
approximate quantities called resistance, capacitance, and inductance 
have been computed, the electromagnetics of these circuits may be said 
to have been completely worked out. The obtaining of these impedance 
elements will occupy us throughout this chapter. 
Of course, a huge store of knowledge exists on the handling of circuit 

problems once all the equations are set up and the circuit parameters 
computed. This special subject of circuit analysis and synthesis is not, 
however, within the scope of interest of this text and the reader is left 
to consult the numerous sources dealing primarily with such material. 

SKIN EFFECT AND THE INTERNAL IMPEDANCE 

OF A CONDUCTOR, 

6.02 The Importance of Skin Effect in Impedance Calculations 

Many aspects of a phenomenon called skin effect will be important 
throughout the book. This chapter will be concerned mainly with appli-

196 
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cations to impedance calculations for wires and other conductors, yet 
it is important to start with a much broader picture of the subject. 
Skin effect is most often introduced through the example of high-fre-
quency current flow in a solid round conductor, in which it can be 
demonstrated that current flow at very high frequencies is essentially 
concentrated in a thin layer or skin near the surface. Students often 
leave such first introductions to the subject with the impression that 
this is the most important aspect of skin effect, and worse, believe 
erroneously that the above phenomenon is caused by some sort of a 
mutual repulsion between small filamentary current elements in the wire. 

a 

Source Source Source Source 

Region of Region of Region of 
Current Current Currents 

Concentration Concentration from 
Sources B 

Region of 
Currents 

from 
Sources A 

(a) (b) (c) 

6.02abc. Current concentration caused by skin effect 

With such a picture, they expect always to find current seeking the out-
side of any conducting system, an impression that would be unfortunate 
indeed as a preliminary t'o the study of resonant cavities, wave guides, 
shields, etc., in which currents may be concentrated on the inner, not 
outer, walls of the conductors. 
A broad picture of skin effect shows that it is a phenomenon which 

tends to concentrate currents on the surfaces of conductors that are 
nearest to the field sources producing them. Thus in Fig. 6.02a, if 
there is an exciting source A of extremely high frequency near a con-
ducting sheet, current may be essentially concentrated on the side a of 
the sheet; if there is a source B, as in Fig. 6.02b, current may be con-
centrated on the side h; if there are both sources, A and B, Fig. 6.02c, 
there may be currents on the two sides, a due to A and b due to B, for 
all practical purposes completely independent. At such frequencies the 
conducting wall has acted as a complete shield between the sources A 
and B. The reservations " essentially" and " for all practical pur-
poses" will be clearer when we next study the equations of skin effect. 
It will then be seen that penetration of current into the conductor 
decreases gradually, so that current is not actually concentrated in a 
small layer at the surface with no current beneath. In any real conduc-
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tor, current will not actually decrease to zero no matter how thick the 
conductor. This statement should not mask the fact that at the highest 
radio frequencies current density may decrease to one millionth its sur-
face value in a distance of only a few thousandths of an inch, so that any 
practical thickness of any conductor becomes the " practically perfect" 
shield referred to above. 
The general reason for skin effect behavior can be visualized in terms 

of applied and induced voltages. Thus imagine a high-frequency source 
as in Fig. 6.02d, producing an applied electric field E0 
in the neighborhood of the conductor. This must 

3 3'  — cause current flow in the conductor, producing a mag-4^- r 

Source I 1 netic field at right angles to EC). This changing mag-
I 

Eol I netic field produces an induced electric field E' 
I opposite to z„. If a study is made of the two closed 

_ _ ' line integrals, 1-2-3-4-1 and 1-21-3i-4-1, it is found 
2 2 

that more magnetic flux is enclosed in the latter, so 
that induced voltage around this path is the greater, 

Flo. 6.02d. and it may be deduced that the induced field along 
2'-3' is greater than that along 2-3. It follows that 

there is less net field, Ec, E', left to produce current flow. as one 
progresses farther into the conductor. 
Another physical picture of skin effect phenomena will follow from 

the wave concepts of Chapter 7. From such a viewpoint, one can con-
sider the source as a source of waves which impinge upon the conductor. 
Some wave energy is, of course, reflected due to impedance mismatch at 
the discontinuities between air and conductor. Those waves which 
pass into the conductor attenuate at a rate determined by the con-
ductivity of the conductor, just as transmission line waves attenuate in 
a line with high leakage conductance. 
The classical example of current flow in a solid round conductor is 

now seen to be a special case of this general viewpoint; certainly, if the 
conductor is solid, the exciting sources must be on the outside, so current 
will concentrate near the outside. However, if exciting sources are on 
the inside of a hollow conductor, as they are for the outer conductor of 
a coaxial line, current will concentrate on the inner wall of that conduc-
tor. Finally, we might imagine a double coaxial line, as in Fig. 6.02e, 
formed of good conductors and operated at very high frequencies. 
Currents due to the source A are concentrated on the walls a and a'; 
currents due to B are concentrated on the walls b and b'. For all prac-
tical purposes shielding between the two coaxial regions may be con-
sidered as perfect, and phenomena of the two regions are completely 
independent. 
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The general concentration of current into thin layers, as found in skin 
effect phenomena, should have a marked effect on impedances, causing 
them to change with frequency. 
If current is concentrated over B b b' 

a smaller part of the cross section A a a' 

Of a conductor than at low fre-
quencies, the effective conductor A 

cross section is decreased and b 

resistance should increase. Also, 
FRI 6.02e. 

if penetration of fields into the 
conductor becomes less as frequency increases, there should not be as 
much magnetic flux inside the conductor and internal inductance should 
decrease. All these phenomena will be studied quantitatively in ar-
ticles to follow. 

6.03 Equation Determining Current Distribution in a Conductor 

For a quantitative discussion of the impedance of conductors as a 
function of the current distribution there will first of all be required an 
equation which comes from Maxwell's equations and which contains 
only the current density and the coordinates. 

Maxwell's equations are: 

V • r) = p [1] 

V • = 0 [2] 

aD 
v x 11 = + —at [3] 

[4] 
at 

In addition there is Ohm's law, which may be taken as the definition of 
a conductor: 

I = OE' 

where the constant u is the conductivity of the conductor. The current 
density appearing in Maxwell's equations may now be expressed in terms 
of the fields. Not much has yet been said about the charge density p in 
conductors, but an elimination between (3) and (1) makes it possible 
to obtain an equation in p alone which should provide information about 
it. Equation (3) may be rewritten with the aid of Ohm's law to elim-
inate the current density vector. 

aD 
vx11---02±— 

at [5] 
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We now take the divergence of both sides of (5) and recall that the 
divergence of the curl of any vector is identically zero. 

y. (V • /3) + a(y • D) 
0" 

E at 

Divergence of D is given in terms of charge density by the first of Max-
well's equations. Substituting, 

cr ap 
— P — = 
E at [61 

Equation (6) is the desired differential equation in p alone. Its solution, 

_ 
P = Poe e [7] 

shows that any charge density which might exist in a conductor obeying 
Ohm's law must decay exponentially, and at an extremely rapid rate in 
good conductors. Any charges, if ever placed in the interior of such a 
conductor, would flow at once to the surface; consequently, unless we 
quickly think up some means of continuously generating free charges in 
the interior of the metal, the free charge term in Maxwell's equation 
must be zero for all steady state conditions. So, in good conductors, 

V • D = 0 [8] 

This result was a direct consequence of applying Ohm's law, requiring 
that current be directly proportional to electric field. Not all currents 
are of this type. For example, there is the space charge type of current 
that consists entirely of a motion of free charges in space. But currents 
in conductors, in so far as Maxwell's equations and Ohm's law are cor-
rectly used to describe them, will not be accompanied by the presence 
of charge density in the conductors. 

It should be clear to the student that in stating effortlessly that the 
charge density is zero in a conductor, and that the current flows anyway, 
thereby implying that conduction is due to a transfer of charge from 
atom to atom, rather than a flow of free charges, we are not covering 
the whole of the theory of conduction. In fact, this question is pretty 
well avoided. If Ohm's law and Maxwell's equations are true, then the 
conclusions we draw from them are true. This does not rule out the 
presence of various charges in a conductor, but it does say that they 
must in effect add up to zero at every point. As to what goes on inside 
a conductor that makes i proportional to E, that is being left to the 
experts in modern theory of solids. 

Equation (8) may be derived more easily perhaps by limiting the dis-
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cussion to steady state sinusoidal variations with time. If all quantities 
are proportional to el"' then (3) becomes 

V X ri =(i+ jcoe).R [9] 

Again taking the divergence of both sides 

v•vxH=o 
and thus 

V • (u jwe)R = (u ± ju)e) V • É = 
or 

v•E=v•Ii=o 

The equations may be further simplified, since the displacement cur-
rent will never be appreciable in any reasonably good conductor, even 
at the highest radio frequencies. Consider again variations which are 
sinusoidal with time (of the form elwe). The terms to be compared in (9) 
are u and we. The precise values of e for conductors are not known, yet 
most indications show that the range of dielectric constants is much the 
same for conductors as for dielectrics. For platinum, a relatively poor 
conductor, the term we becomes equal to u at about 1.5 X 1015 cps, if 
the dielectric constant is taken as ten times that of free space. This 
frequency is in the range of ultraviolet light. Consequently, for all but 
the poorest conductors (such as earth) the displacement current term is 
completely negligible compared with conduction current at any radio 
frequency. 
There remains 

v x = crE [10] 

The curl of both sides may be taken, and the left side expanded. 

vxvxH - v(v• H) — v2H — ery xÉ 

Values for V • H and V X E are obtained from Maxwell's equations 
(2) and (4), leaving 

v2H = 012 — 
at 

This equation for the variation of H in a conductor is in the form of a 
standard differential equation similar to Laplace's equation, or the wave 
equation. The equation is often called the skin effect or distribution 
equation and may also be derived in terms of 2, taking first the curl of 
(4) instead of (3), and expanding as before to yield 

v22 .= 0.14 _aft— [12] 
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Since i = cr-É, the same equation may be written in terms of current 
density. 

ai v2i= OEIL— at [13] 

When all quantities can be regarded as varying as ei'e, the above 
equations may be written 

V2/7 = jcougH [14] 

V2R = jcocre. [15] 

V2i = jciureti. [16] 

These equations give the relation between space and time derivatives 
of magnetic field, electric field, or current density at any point in a con-
ductor. It remains to solve these differential equations subject to the 
boundary conditions imposed by certain physical shapes of interest for 
practical conductors. 

6.04 Current Distribution in a Wire of Circular Cross Section 

Most common of the conductors used in electrical circuits are round 
wires, wires of circular cross section. If the round wire forms a conduct-
ing path with no very sharp curvatures, as in many circuit applications, 
any small portion, or at least a differential length, may be treated as a 
straight circular cylinder. The current distribution may be computed 
exactly in such a straight cylindrical wire. This is only a first step in 
the problem, for the final interest in the current distribution lies in its 
effect upon impedance of the wire, that is, the resistance and inductance 
of the circuit containing the wire. 

Before applying the distribution equation, let us be reminded that a 
distribution should be expected at high frequencies in which the greatest 
percentage of the current is concentrated near the outside of the wire. 
This follows from the reasoning of Art. 6.02. Since the sources must of 
necessity be applied outside of the solid wire, the current flow in response 
to an applied field induces an increasingly large back field as one pro-
gresses into the conductor, leaving less total electric field to produce 
current flow. As frequency increases, this effect becomes more pro-
nounced, since rate of change of flux, and hence induced voltage, in-
creases. 

It will be assumed that external conditions are applied so that there 
need be no circumferential variations about the wire. If the wire is 
short compared with wavelength, there are only axial currents and no 
variations in the axial direction. The current distribution equation for 
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the axial current, written in cylindrical coordinates with no 
variations is then (Art. 3.12) 

1 di, 

'm r dr = •I' utz 

d2i, di, 2 . 

C-F 2 tz = 
where 

T2 = —jcuper 
or 

T = .CVcome [2] 

A direct comparison of (1) with Eq. 3.15(1) shows that both have 
exactly the form of the zero order Bessel equation, although T is com-
plex. A complete solution may be written, as in Eq. 3.16(8). 

= AJo(Tr) Bile )(Tr.) [3] 

For a solid wire, r = 0 is included in the solution, and then it is necessary 
that B = 0 since a study of H' (Tr) shows that this would become 
infinite at r = 0, even though T is complex. Therefore, 

iz = AJo(Tr) [4] 

The arbitrary constant A may be evaluated in terms of current density 
at the surface. Let 

1) or z 

[1] 

Then from (4) 

and 

= io at r = ro 

A —   
Jo(Tro) 

—  0.i Jo(Tr) 

Jo(Tro) 
[51 

T is complex and it may seem troublesome to find a Bessel function of 
a complex quantity. However, as in cases where we are confronted 
with sines, cosines, and exponentials of complex quantities, we can resort 
to the power series definition for the proper function. Referring to the 
power series for Jo it is seen that the function will have both real and 
imaginary parts if the argument is complex. These may be calculated 

separately. Define 

Ber (y) Real part of Jo(2-44y) 

Bei (y) -= Imaginary part of Jo(r%v) 
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That is, 

Jo(j— y) Ber (y) jBei (y) [6] 

Ber (y) and Bei (y) are tabulated in many references.' Using these 
definitions and (2), (5) may be written: 

. Ber (r\rc) jBei =(r\/') Zo 

Ber (ro\rc:—wcr) jBei (re/coma) 

( [Ber2 (r V -7)140-) c. Bei2 (r .\/-,71.1a)  

jo Ber2 (ro V') Bei2 (r0147.cr) 

[71 

[8] 

— 
Bei (r1/ co/1u) Bei (ro\r(-0,.0)  

Phase of —iz = taril tan' [9] 
io Ber (r•\/7( —)j.o7) Ber (ro 'VcT—.)gcr) 

Let us rewrite the above equations in terms of a new parameter, 
called depth of penetration for reasons to be discussed in the next article 
and defined by 

Then (6) and (7) are 

Phase of = 
io 

tari 

iz 

jo 

1  
[10] 

1/7rhus 

Ber2 C r2 r\ ' Bei2 r\ 

Ber2 ro) Bei2 (‘\/ ro) 
\ 

&2 ro) Bei (/ r) Ber ¡½[ (5 r) Bei (Iro) 
1 Ber ( 

f  N/2 ro\ Ber ¡½ r\ + Bei (V2 ro\ Bei ¡½r\ 

\ a j \ a j a ) \ a j 

Plots of current densities as functions of radius in a round wire are 
shown in Fig. 6.04. Actually the magnitude of the ratio of current 
density to that at the outside of the wire is plotted as a function of the 
ratio of radius to outer radius of wire, for different values of the pa-
rameter (ro/a). Also for purposes of the physical picture, these are 

1 Dwight, " Tables of Integrals," Macmillan, 1934. Mclachlan, " Bessel Func-
tions for Engineers," Oxford, 1934. 

Ber 

[12] 
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interpreted in terms of current distribution for a 1-mm copper wire at 
different frequencies by the figure in parentheses. 

6.05 Current Distribution in a Flat or Plane Conductor; Depth 
of Penetration 

The current distribution plots of Fig. 6.04 show, as predicted, that 
at the highest frequencies, most of the current is concentrated in a thin 

region near the wire surface. For . 23 9 (f =10' cps for 1 nun. diem. Cu. wire) 
these cases the curvature of the 1.0 
wire seems unimportant, and it 
might be expected that the distri-
bution could be predicted accu- I 
rately enough by taking out a 
small portion of the surface, 0.5 

neglecting the curvature, and an-
alyzing it as a plane conductor 
of infinite depth. This is a con-
venient analysis since it may be 
applied to conductors of many 

4 other shapes, so long as curva-

= 2.39 (f -10' cps. for 1 ram. 
Cu. wire) 

Outer Wire 
tures of the surface are large Radius Mis 

compared with the depth over Fro. 6.04. Current distribution in cylin-
drical wire for different frequencies. which most of the current is 

concentrated. We shall consequently next seek the current distribution 
in a plane conductor of infinite depth, with no current variations with 
width or length. This plane conductor of infinite length, infinite 
width, and infinite depth below the surface is described mathematically 
as a semi-infinite solid. 
For the semi-infinite conductor, take the direction of current flow as 

the z direction, the normal to the surface as the x direction. It is as-
sumed that there are no variations in the y or z direction. The current 
distribution equation is then only 

— = jawri. = T2 j3 
dx2 

where 

4 
Outer 
Radius 

r2 /cog« or r = (I + j)\Arfuo- [1] 

A complete solution to this equation is 

= Cie" C2err [2] 

Current density would increase to the impossible value of infinity at 
x = co unless C2 is zero. C1 may be written as the current density at 
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the surface if we let iz = io when x 0. Then 

jz = ioe—(1-11)rz [3] 
If use is made of the quantity (5 defined by Eq. 6.04(10); the above 

may be rewritten 

... e--(1-kn' z e 
8 = e se 8 [4] 

io 

In this form it is apparent that magnitude of current decreases expo-
nentially with penetration into the conductor, and 6 has significance as 
the depth at which current density has decreased to 1/e (about 36.9 per 
cent) of its value at the surface. The phase of current also changes with 

.x 
increasing depth into the conductor according to the factor e 
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FIG. 6.05a. Skin effect quantities for plane conductors. 

It is important to develop a familiarity for values of depth of pene-
tration for different materials at different frequencies, and a study of the 
chart, Fig. 6.05a, is helpful for this. The student should also retain 
these facts: 

1. Depth of penetration is smaller the better the conductor, the higher 
the permeability, and the higher the frequency, since it is inversely pro-
portional to the square root of each of these. 

2. Current does not fail to penetrate below the depth (5; this is merely 
the point at which current densities and fields have decreased to 1/e 
their value at the surface. Later another important significance of this 
quantity will appear. 
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3. The concept as stated here applies strictly only to plane solids. 
However, it may be extended to conductors of other shapes so long as the 
value of ô calculated is much smaller than any curvatures of the surfaces. 
As an example of the last point, it is possible to study high-frequency 

current distribution in the solid round conductor by extending the plane 
analysis. The coordinate x, distance below the 
surface, is (ro — r) for a round wire. Then (4) 
gives 

iz 

jo 
= e 

(7.0 —r) 
8 

In Fig. 6.05b are plotted curves of I iz/io I using 
this formula, and comparisons are made with 
curves obtained from the exact formula, Eq. 
6.04(8). This is done for two cases, ro/S = 2.39 
and ro/S = 7.55. In the latter, the approximate 
distribution agrees well with the exact; in the for-
mer it does not. Thus if ratio of wire radius to 
ô is large, it seems that there should be little 
error in analyzing the wire from the results de-
veloped for plane solids. This point will be pur-
sued later in impedance calculations. 
Another approach would be to consider the 

trigonometric expressions which the Bessel functions approach for large 
arguments. When these expressions are valid (corresponding to argu-
ments greater than about 10) it will be found that the trigonometric 
approximation is precisely the solution to the plane case. 

Problem 6.05. Show that the trigonometric approximations for the Bessel 
functions of large arguments when substituted into the solutions of Art. 6.04 will 
yield precisely the solutions for the plane case of Art. 6.05. 

6.06 Meaning of Internal Impedance 
To extend the results of Arts. 6.04 and 6.05 to impedance calculations, 

it will be well to make first a convenient division of work in the im-
pedance problem. To find total impedance of the circuit, the con-
figuration of the actual conducting path must be known since this affects 
total inductance of the circuit. However, let us divide the inductance 
into two parts, one due to magnetic flux external to the wire, and one 
due to magnetic flux inside the wire itself. The first part is definitely 
dependent upon the shape of the conducting path. The second part is 
nearly independent of the external circuit, unless there are very sharp 
curvatures or other parts of the circuit so close to the wire that the 

1.0 

1,1 

—Actual 
--- Parallel Plane 

Formula 

Wire 
Axis 

Outer 
Radiva 

Fro. 6.05b. Actual and 
approximate (parallel 
plane formula) distribu-
tion in cylindrical wire. 



Fm. 6.06. Wire 
To summarize: with coaxial return  Internal impedance of a wire as 

spaced an infinites- defined as that part of the impedance of the circuit 
imal distance away. due to resistance drop in the wire and reactance drop 

from flux contained inside the wire. 
Internal impedance of the wire may be obtained by dividing the total 

voltage at the surface of the wire by total current in the wire. 
To obtain total impedance of an actual circuit, the external imped-

ance, or reactance due to flux outside the wire, must be added to the 
internal impedance of the wire. 

It should be especially noted that the above is the only intended 
meaning of the internal impedance to be calculated in following articles. 
It should not be interpreted as the impedance of a single wire alone 
without a return path. It should also be remembered that this division 
is strictly an approximation, and there may be circuit configurations, 
such as complicated coils, where it is not particularly useful. 
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current distribution is seriously influenced by the proximity of those 
parts. The external portion of the inductance will be the subject of 
later study. To find internal inductance we shall then proceed with 
the analysis, using as the applied voltage to the wire the voltage at the 
surface of the wire. In an actual problem, this is really a resultant of 

the total applied voltage of the circuit and the in-
Round Wire duced voltage from magnetic flux outside the wire. 

Coaxial That is, the drop due to external inductance has 
Return 

already been subtracted. 
A case in which the internal inductance has impres-

sive meaning may be created by shrinking to zero 
the area available for magnetic flux external to the 
wire. In the limit such a case would result in a co-
axial system as the space between inner and outer 
conductors vanishes. In the limit there would be 
no area ektemal to the conductors in which magnetic 
flux might flow, and so no external inductance. There 
would be left only the internal inductance of the 
inner conductor and its return shield (Fig. 6.06). 

Problem 6.06(a). Consider a single round wire of any finite radius in free space 
carrying a current / with no return path within a finite distance. Show that the 
magnetic flux surrounding the wire, and so the inductance per unit length, is 
infinite. 

Problem 6.06(b). Show that the total magnetic flux and the inductance per unit 
length are infinite for a wire of infinitesimal size if it is carrying current / and its 
return path is removed from it by any finite distance. 
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6.07 Impedance of a Plane Conductor 

The internal impedance for a unit width and unit length of the semi-
infinite plane conductor of Art. 6.05 may now be found easily. Current 
density is given at any point in the conductor by Eq. 6.05(4). Total 
current flowing must be the integral of this from the surface to the 
infinite depth. For a unit width, 

co io& 
J. = f iz dx _ — rioe—ci+i)¡dx (1 D  [1] 

Jo +  

The electric intensity at the surface is given by the current density at 
the surface, 

E = 1. a 

Internal impedance, by the reasoning of Art. 6.06, is found from the 
quotient of this field and the current (1). For a unit length and unit 
width, or (as we shall often refer to it) per unit square 

E (1 ± j)  
Z. ° — [2] 

J. 0.8 
Define 

Z. = R. + jcoLi 
Then 

R — — 1 — 
8 Crb \ a-

1 
coLi = — 

in5 [3] 

The resistance and internal reactance of such a plane conductor are 
equal at any frequency. The internal impedance Z. thus has a phase 
angle of 45°. Equation (3) gives another interpretation of depth of 
penetration 8, for this equation shows that the skin effect resistance of 
the semi-infinite plane conductor is exactly the same as the D-C resist-
ance of a plane conductor of depth 8. That is, resistance of this conduc-
tor with exponential decrease in current density is exactly the same as 
though current were uniformly distributed over a depth 8. 

R., the resistance of the plane conductor per unit square may be 
logically called a surface resistivity. 

Values of depth of penetration and surface resistivity are given below 
for several commonly used materials. Curves of ô and R. versus fre-
quency are plotted in Fig. 6.05a. These values will be used extensively 
throughout the book. 
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Silver 

Copper 

Aluminum 

Brass 

Solder 

CONDUCTIVITY 

MHOS/METER 

6.17 X 107 

5.80 X 107 

3.72 X 107 

1.57 X 107 

0.706 X 107 

PERMEABILITY 

HENRYS/METER 

4r X10-7 

4r X10-7 

4w X 10-7 

4e X 10-7 

4e X10-7 

DEPTH OF 

PENETRATION 

METERS 

o 
0.0642 

0.0660 

0.0826 

0.127 

.185 

SURFACE 

RESISTIVITY 

Cams 
Re 

2.52 X 10-7V:f 

2.61 X10-71/7 

3.26 X 10-71/.f 

5.01 X 10 —71K-i 

7.73 X 10-71/i. 

Problem 6.07(a). Show that the magnetic field at the surface of the semi-
infinite plane conductor, H , is equal in magnitude to J„, current per unit width. 

Problem 6.07(b). Show that for any general orientation of the uni-directional 
current in the semi-infinite plane conductor, magnetic field at the surface is related 
to linear current density 7 in magnitude and direction by 

J =tixR 

is a unit vector normal to the surface and pointing away from the conductor. 

6.08 Impedance of a Round Wire at Very High or Very Low Fre-
quencies 

Very High Frequency. To show the usefulness of impedance formulas 
for a semi-infinite plane solid, we shall obtain from them the internal 
impedance of a round wire at very high frequencies. It has already 
been shown that if the frequency is high enough, the curvature of the 
wire is unimportant. It may then be considered as a plane solid of 
practically infinite depth, and width equal to its circumference. Thus 
if Z., Eq.. 6.07(2), is the internal impedance of the plane solid per unit 

square, —Z. is the impedance for a width 2irro (the circumference). 
27r0 

So, for a round wire of radius 9.0 at very high frequencies, 

or 

Z (1 + i) R8(1 + i) . 
27rrocr8 27r0 

R,  
= (coLi)„ = ohms/meter 

2rro 
[1] 
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where 
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Rs = 1 = \tfil ohms 

The notations notations Z. and R. are used to denote these very high-frequency 
formulas since they are exactly true only when frequency approaches 
infinity The ratio of ro/6, however, serves as an indication of the 
frequencies for which they may be used, as we shall see from the exact 
analysis. 

Very Low Frequency. For very low frequencies, the current has 
essentially a uniform distribution over the cross section (Fig. 6.04), and 
so the D-C resistance formula applies. 

1 
Ro = - 2 ohms/meter [2] 

irre 

By a method discussed in Art. 6.22, the internal inductance for a 
round wire with uniform current distribution can easily be found to be 

(Li)0 = henrys/meter 
87 

[3] 

The first correction term to resistance at moderately low frequencies 
may be obtained from series expansions of the exact results of the next 
article. This leads to 

1 (75)ro 4 
= 1 ±  [4] 

The above equation is good for small values of ro/8 and has an error of 
about 7 per cent at roil& = 2 (that is, for a radius twice the depth of 

penetration). 

Problem 6.08(a). Show that the ratio of very high-frequency resistance to 
D-C resistance of a round conductor of radius ro and material with depth of penetra-

tion ô can be written 

R. ro 

Ro 28 

Problem 6.08(b). By using the approximate formula 6.08 (4), find the value of 
ro/f3 below which R differs from D-C resistance Ro by less than 5 per cent. To 
what size wire does this correspond for 

1. Copper at 10 kc/sec. 

2. Copper at 1 mc/sec. 

3. Brass at 1 mc/sec. 
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6.09 Impedance of Round Wires Generally 

The internal impedance of the round wire at any frequency is found 
from total current in the wire and the electric intensity at the surface, 
according to the ideas of Art. 6.06. Total current may be obtained 
from an integration of current density, as for the plane conductor in 
Art. 6.07; however, it may also be found from the magnetic field at the 
surface, since the line integral of magnetic field around the outside of 
the wire must be equal to the total curient in the wire. 

ffl.di= I 
or 

2irroHOIr =ro = I [1] 

Magnetic field is obtained from the electric field by Maxwell's equa-

tions. 

V X E = —javari [2] 

For the round wire with the assumptions made in Art. 6.04, E. and Ho 
alone are present, and only r derivatives remain, so (2) is simply 

1 dE. = 
jcom dr 

[31 

An expression for current density has already been obtained in Eq. 
6.04(5). Electric field is related to this through the conductivity cr. 

iz io   E Jo(Tr)  
. — —  cr Jo(Tro) [4] 

By substituting in (3) and recalling that T2 = 

— i0T  J(Tr) jo 4(Tr)  

jcomcr Jo(Tro) T Jo(Tro) 

4(Tr) denotes 
d  

d(Tr) Jo(Tr). From (1), 

— 27rroio Ji)(Tro)  
I  

T Jo(Tro) 

The internal impedance per unit length is 

E,1,,° TJ0(Tro)  
Zi = I— = 

271-roo-4(Tro) 

[5] 

[6] 
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This is the complete expression for internal impedance of the wire. 
Zi will be complex since T is complex. 

T =- —jwgcr = 
*Vij-44 

o 

To separate into real and imaginary parts, use Eq. 6.04(6). 

Ber v jBei v = Jo(j— v) 

Also let 

Ber' v jBei' v = (Ber v jBei v) 
dv 

= 3-14 Jó(.1-11)) 

Then (6) may be written 

Zi = R juLi = r  Ber q jBei ql 
irro LBer' iBee qJ 

where 

or 

1 7\ r —fil 

R8 = C7b = 7 

R — Rs  rBer q Bee q 
7,7,0 L (Bel 02 

R.  rBer q Ber' q 
coLi 

Nri rro L (Bel q)2 
These are the expressions for 
resistance and internal react-
ance of a round wire at any 
frequency in terms of the 

parameter q, which is 1/2. 
times the ratio of wire radius 
to depth of penetration. 
Curves giving the ratios of 
these quantities to the D-C 
and to the high-frequency 
values as functions of ro/S 
are plotted in Figs. 6.09a 
and 6.09b. A careful study 

4.0 

3.0 

2.0 

1.0 

o 

— Bei q Ber' qi 

4- (Bee J 
Bei q Bee ql 

± (Bee J 

ohms/meter 

ohms/meter 

[7] 

' 

— 
R 
Ro 

— 

— 

wLi 
Ro 

i I i 

Li 
Li); 

) 1 2 3 4 5 6 7 

Ratio of Radius to Depth of Penetration 

Fm. 6.09a. Solid wire skin effect quantities 
of these will reveal the ranges compared to D-C values. 

of ro/(5 over which it is permissible to use the approximate formulas for 
resistance and reactance. For example, if a 10 per cent error can be 
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tolerated, the high-frequency approximation for resistance, Eq. 6.08(1), 
may be used for ro/b > 5.5; the high-frequency approximation for re-

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

_ 
_ 
_ 
_ 

R • 

_ 
_ 
- 
_ 

_ 
- 
_ atLi _ (wLi) 

t 
I 

t 
1 I 1 

t 
2 4 6 8 10 12 14 

It Ratio of Radius to Depth of Penetration 

6.09b. Solid wire skin effect quantities compared to values from high-
frequency formulas. 

actance, Eq. 6.08(1), may be used for ro/S > 2.2. The D-C resistance 
formula Eq. 6.08(2) may be used for ro/S < 1.5, and the D-C induct-
ance formula Eq. 6.08(3) may be used for ro/3 < 1.9. 

Problem 6.09(a). For small values of Tro (low frequencies) the Bessel functions 
may be approximated by only a few terms of the series (Art. 3.18). 

iti\ 2 1 i A 4 

JO(V) ='.." 1 - W ±  i W 

V) GI 
»V) = —.11(V)  [G G)61 

2! ± 2! • 3!_j 
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Show that these values, substituted in Eq. 6.09(6), lead to the expressions for lover 
frequency resistance and inductance stated in Eq. 6.08(3) and Eq. 6.08(4). 

Problem 6.09 (b). For large values of Tro (high frequencies) the Bessel functions 
may be approximated by the asymptotic forms of Art. 3.19. Show that these, sub-
stituted in Eq. 6.09(6), lead to the expressions for resistance and internal inductance 
at high frequencies obtained in Eq. 6.08(1). 

Problem 6.09(c). From Figs. 6.09a and 6.09b, investigate the ranges of ro/45 
over which it is permissible to use the approximate formulas of Eqs. 6.08(1), 6.08(2), 
and 6.08(3) if the error must be less than 5 per cent. 

6.10 Impedance of a Coated Conductor 

Coated conductors appear in radio applications in the form of tinned 
copper wires, copper-plated iron or iron alloys in vacuum tube leads, 
silver-plated brass in resonant cavities, etc. Most often the problem is 
one of the following. 

1. The coating material may be very thick compared with depth of 
penetration in that material. This requires no analysis since fields and 
currents in the coated metal are then negligible, and the impedance is 
governed only by the metal of the coating; the conductor is as good or 
as bad as a solid conductor of the coating material. 

2. The coating may not be thick enough to prevent currents from flow-
ing in the coated material, but penetration in both materials may be 
small compared with surface cur-
vature so that the surfaces may be 
considered as planes, the coated 
material also being effectively in-
finite in depth. An analysis of 
this second case will follow. 

Fia. 6.10a. Conductor coated with an-
In Fig. 6.10a is shown a plane 

solid material (conductivity 0.2, per-
meability 1.42) of effectively infinite depth coated with another material 
(conductivity al, permeability Ili) of thickness d. Solutions for the 
distribution equations must be found for both media and matched at 
the boundary between the two. The solution in either material is of the 
form of Eq. 6.05(2), but there can be no positive exponential term for 
the lower material since current density must become zero at infinite 
depth. 

iz2 = Ce—Tax 

other conductor. 

(1 + i) , 
± :7) v 7r.//£20"2 

(52 
[1] 

In the coating material both exponentials must be present, but it is 
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convenient to write the solution in terms of hyperbolic functions instead 
of the equivalent exponentials. 

= A sinh rix + B cosh rix 

(1 + j) 
ri — = (1 + [2] 

(31 

For both materials, as in Art. 6.07, 

and 

1 dEz cr dEz 
Hy = = " —  

jaux i dx clx 

Electric and magnetic fields in the two materials are then 

Ez = — e-1"e; Ez, = —1 [A sinh rix B cosh rix] 
0.2 el 

[31 

Hv3 = _2 62z; Hy, = —1 [A cosh rix + B sinh rix] 
72  

The constants may be evaluated since tangential electric and magnetic 
fields are continuous across the boundary (Arts. 4.19 and 4.20). 

Ez, = E52; H 1 = 1114 at x = d 

1.2 
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6.10b. = 0.34. FIG. 6.10c. = 1.6. 
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Skin effect quantities for coated conductors. 
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Then 

A 

[ , — cosh rid Teri sinh rid --t-
T1Cr2  

T201 
cosh Tid — sinh rid 

rio-2 

Total current in the two materials is obtainable from Prob. 6.07(b) 

J=ñXH or 

The impedance per square (per unit width and unit length) is 

From (4) 

E 
Z =  z 

Z — 

J, H 
B 

x.o A ai 

sinh Tid cosh Tid 
Ti I T10-2 

T2 0-1 cosh rid — sinh Tic/ 
Tio-2 

7.7.V 

4.0 

3.0 

2.0  

1.0 
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fi 
(1) d 
(2) 4 

wLi 

lilt Ili, ',II 11,1i lilt 
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Fie,. 6.10d. Skin effect quantities for coated conductor: — = 5. 
12102 

[4] 

[5] 
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But, by the definition of R., Eq. 6.07 (3), this may be written 

sinh r.1d + 1111 cosh rid 

— (1 + i)   [6] 
R„ 

cosh rid -I- sinh rid 
R., 

Curves of ratio of resistance and reactance of this conductor to 
resistance of a conductor made entirely of the coating material are shown 
in Fig. 6.10b, c, and d. The curves are plotted as functions of d/Si, 
which is the ratio of coating thickness to depth of penetration for 
material of the coating (given by Fig. 6.05a). The several values of 
ratio R„/R„ selected correspond approximately to solder on copper, 
silver on brass, and copper on iron. It is seen that in each case the 
composite conductor becomes roughly as good, or as bad, as though the 
coating were of infinite depth, when the coating reaches a thickness 
equal to eh, depth of penetration for the material of the coating. 

6.11 Impedance of Tubular Conductors 

A study of the current distribution in a solid round wire shows that at 
the higher frequencies the inner part of the conducting material plays 
little part in the conduction. There should consequently be little differ-
ence in impedance under such skin effect conditions between a solid 
round wire and a hollow tubular conductor of the same outer diameter. 
Certainly this is true when the wall thickness is very large compared with 
the depth of penetration of the conducting material, and we would use 
• the same high-frequency equation, Eq. 6.08 (1), that was developed for a 
round wire. If this criterion is not satisfied, the finite wall thickness 
must be taken into account. An exact solution day be carried through 
in terms of Bessel functions, but many times the wall thickness is small 
enough compared with wire radius so that the analysis of a flat plane 
conductor of finite thickness may be applied well enough. The result 
for this problem may be lazily found at once by setting conductivity of 
the lower material equal to zero in the result for the composite conductor 
of Art. 6.10. That is, in Eq. 6.10(6), set R.2 = co. Then, the surface 
impedance per square 

cosh rd 
Z = R jceLi = (1 + j)R. [1] 

sinh rd 

= (1 ± DR. coth bd (1 j)] [2] 
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sinh (±2 + sin () 

cosh (2d) — cos C d) 
[31 

For a tubular conductor satisfying the conditions of wall thickness 
small compared with radius of tube these results may be used directly to 
give impedance per unit length by dividing by the circumference. In 
applying these results to tubular conductors in which the exciting 
sources are on the inside, as, for example, the outer conductor of a 
coaxial line, it may not be clear whether inner or outer radius of the 
tube should be used in the formula. Certainly the formula is not exact 
with either, and the assumption is that there is little difference between 
the two radii. However, it seems to make more sense to use inner 
radius for inner exciting sources since fields are applied from the inside, 
and (at high frequencies) currents concentrate on the inner surface. 
Thus, for the tubular conductor 

R„ sinh (-2(1) + sin (-2d) 

cosh (-2c1) — cos (7.5- 
2d) 2717 

R s (2c1) . (2_d) inh sin 

27e [cosh (2d) cos (2d) 

where r = outer radius if fields are applied along outside of tube. 

r = inner radius if fields are applied along inside of tube. 

The high-frequency resistance of the tubular conductor is merely 

R8 

Rhf = (coLi)hf = — 
27r 

[4] 

[5] 

Curves of resistance and internal reactance ratios to high-frequency 
resistance are given in Fig. 6.11b and to D-C resistance are given in 
Fig. 6.11a. , 

Problem 6.11 (a). Show that for a tubular conductor of outer radius ro, inner 
radius ri with voltage applied from the outside, the exact expressions for skin effect 
resistance and reactance are 

R j(wLi) — j-341filia r Jo (Tro)Ign' (Tri) — 4(Tri)Hg) (Tro)1 
2arro 1.4(Tro)Llei(Tri) — .1(Tri)He)'(Tro)J 

Tas in Eq. 6.04(2). 
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Problem 6.11(b). For a case with roló = 1.25 and ri/6 = 1.0, calculate the 
skin effect resistance from the result of the preceding problem and compare with 
that calculated from the approximate expression, Eq. 6.11 (4). 

Problem 6.11(c). Show that the result of Prob. 6.11 (a) may be used for a tubu-
lar conductor with voltage applied at the inner radius, if ro and ri are interchanged. 

6.12 Similitude Relations for Skin Effect 

Very often it is desirable to compare two conductor sizes, or two differ-
ent metals, or coatings, etc., as to their high-frequency impedance. 
From the relations of the preceding articles, or directly from Maxwell's 
equations, certain general similitude relations may be proved. 

1. If two systems are geometrically similar and of the same material, 
the current distributions will be similar, and current densities will be 
equal in amplitude at similar points if the applied voltage to the small 
system is 1/K in magnitude and K2 in frequency that of the large system, 
where K is the ratio of linear dimensions of the large to small system. 

2. The impedance of the small system will be K times that of the large 
system under the conditions of statement 1. 

3. For the distribution of currents and fields to be similar in general, 
two equations must be satisfied.2 

PLELK24 = Peed 

nol,K2cor, = Per SW8 

where the subscripts L and S refer to large and small systems 
respectively. 

CALCULATION OF INDUCTANCE 

6.13 Definition of Mutual Inductance 
A change in the current of a circuit causes changing magnetic effects 

in the region of other neighboring circuits. These changing magnetic 
effects induce electric fields in the 
region of any neighboring circuits and 
consequently voltages around these 
circuits. For the two circuits pic-
tured in Fig. 6.13 a change of the 
current in circuit 1 induces a voltage 
in circuit 2. In the previous chapter we showed how this phenome,,non 
leads to a concept of mutual inductance. Mutual inductance between 
circuit 1 and circuit 2 is defined in conventional circuit theory as the 

2 J. A. Stratton, " Electromagnetic Theory," McGraw-Hill, 1941, p. 489. 

Fla. 6.13. 
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coefficient relating the induced voltage to the changing current. 

„, 
V21 = -1V1 21 -- [1] 

dt 

6.14 Mutual Inductance from Vector Potential 

The electric field at any point induced by changing magnetic effects 
due to the current in circuit 1 (Fig. 6.13) is 

[1] at 

Ai is given in terms of the current in circuit 2 by 

Ál _ r  dV 

Jv 47rr 

Making the assumptions that retardation, displacement currents, and 
distributed effects are all negligible, A.-1 will be proportional at every 
point to total current I. Hence; 

4,* a À-1 7 aI f,‘,11 ca2 
V21  —Je — at  at Ii [31 

Comparing with Eq. 6.13(1) and recognizing the equivalence of aIdat 
with d/i/dt (Art. 5.04) identifies mutual inductance as 

fizÀ-1 

[2] 

M21 =   • [4] 
/1 

This expression is completely analogous to that which was identified as 
self inductance in the previous chapter. 
The use of vector potentials directly is especially helpful in the calcu-

lation or estimate of mutual inductances for current paths having straight 
line portions. Consider, for instance, the rectangular circuits of 
Fig. 6.14a. Examination of (2) shows that A can have only the direc-
tion of the current producing it; induced field 

has the direction of A. Consequently in the system of Fig. 6.14a there 
can be no contribution to voltage in the sides a2 and b2 from current in 
the sides c1 and d1, nor any contribution in the sides c2 and d2 from cur-
rent in the sides al and b1. The picture obtained from visualizing these 
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directive relations is frequently valuable where the circuit configuration 
is quite complex. Often a quick estimate of coupling may be obtained 
by replacing portions of current paths by straight line sections, esti-
mating the coupling from these. 

a 

b, 

d, 

k-x 

d, 

hz 

FIG. 6.14a. Two square coupling loops. 
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/ 18 / 
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1 

6.14b. Parallel current 
elements displaced from one 

another. 

Problem 6.14(a). By integration of Eq. 6.14(4), show that the contribution to 
mutual inductance from two parallel line segments displaced as shown in Fig. 6.145 is 

r f (A + a)« (B b)b}, 
M 1(C c)c(D + d)d (C + D) — (A + B)] — 

Problem 6.14(b). Apply the above result to the calculation of mutual induct-
ance between two square loops used for coupling between open-wire transmission 
lines as shown in Fig. 6.14a. The length of each side is 0.0 meter; the separation 
x is 0.01 meter. Assume that the gaps at which the lines enter are small enough to 
be ignored. 

6.15 Neumann's Form for Mutual Inductance 

When field distribution in the region of the second circuit due to 
current in the first is essentially independent of the manner in which 
current is distributed over the cross sections of conductors in the first 
circuit, this field may be calculated by assuming all the current concen-
trated in a thin filament. The integral expression for A1 in terms of the 
total current /1 flowing in circuit 1 is then 

411 d/1 _ 411 d-11 
J 4rr J 47rr 

[1] 

This value of Al may be substituted in Eq. 6.14(4) for mutual inductance 

M21 = Pi eni • (172 [2] J 47e 

This is Neumann's forna for obtaining mutual inductance between 
circuits. It is the same expression as Eq. 6.14(4), except that it assumes 
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that A1 in the region of circuit 2 may be calculated well enough by con-
centrating the current in circuit 1 in a thin filament. Its use will be 
demonstrated by the example of the next article. 

6.16 Mutual Inductance between Two Coaxial Circular Loops 

Neumann's form, Eq. 6.15(2), will be used to 
  obtain the value of mutual inductance between 

two coaxial loops as pictured in Fig. 6.16. If dl1 is 
any element of circuit 1, and dl2 is any element of 
circuit 2, 

Circuit 2 

Fla. 6.16. Two co-
axial circular loops. 

dl1• d-i2 = d/2 a c10 cos 0 

r = N/d2 -I- (a sin 0)2 -F (a cos O — b)2 

By substituting 0 = ir — 20 and 

4ab 
k2 — d2 (a -F b)2 

the integral then will be found to become 

Ç/2(2 sin2 — 1) do 
M = 1.A4-11) k 

N/1 — k2 sin2 

This can be broken into two integrals. 
irn  do 

M = i‘Vj--tb [( c — k)f   
o L — k2 sin2 

— — V — k2 sin2 dO] 
k 0r 

= p.Vc7b[(-k-2 — K(k) — E(k)] 

where 

E(k) = f e/2  — k2 sin2 dO [1] 
o 

r/2 ckt) 

fo \/1 — k2 sin2 yb 
K(k) = [2] 

The definite integrals (1) and (2) are tabulated in tables3 as functions 
of k and are called complete elliptic integrals of the first and second kinds 

3 Dwight, " Tables of Integrals," Macmillan, 1934. 
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respectively. Thus 

M = iiVd2 -I- (a b)2 [(1 — -k;) K(k) — E(k)] [3] 

where 

Nio/2 -I- (a -I- b)2 

6.17 Mutual Inductance from Flux Linkages 

The expression for mutual inductance may also be written in the 
familiar form based on the amount of flux from current in circuit 1 
which links circuit 2. From Stokes' theorem, Art. 2.26, 

• diz = f WV X Ai] • (122 

But 

k = 2 ab 

V X 21.1 = 

So Eq. 6.14(4) may be written 

jW/ 1 • (b.S.'2 

M21 — 
/1 

[1] 

The surface integral f ail • clog2 is identified as the flux from circuit 1 

enclosed by circuit 2. This flux linkage definition is perhaps the most 
familiar definition for inductance. It is identical with the definition in 
terms of vector potential for a circuit without discontinuities and differs 
very little if the discontinuity is small. Although the two forms are 
equivalent, one may be more convenient than the other under certain 
conditions. 

If inductance is to be calculated from flux enclosed, any of the appro-
priate methods studied in Chapters 2 and 3 may be used for calculating 
fields in the region of circuit 2. For instance, suppose this method were 
applied to the two coaxial circular conductors of Fig. 6.16. H on the 
axis might then be written by application of Ampére's law which, except 
for the present use of mks units, was done in Art. 3.29. 

a211 /1 3 (z\2 
Hz! = —2 a • • •] sea a 21% =  [ 1 [2 ] 

For any point off the axis, it may be written in spherical coordinates as a 
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series of spherical harmonics (Art. 3.28) 

= '12a [1 — P2 (cos 0) ± • • .] [3] 

This expression may then be integrated over the region of circuit 2. 
However, if dia is much greater than b/a (Fig. 6.16), or if b/a is small 
with any value of d, a study of the series terms of (3) shows that H, 
does not vary much over the region of 2. A good approximation to 
inductance will result in these cases by assuming that Hz is constant 
over the area of the second loop. Then, 

¿sir a2b2 
M21 henrys [4] 

— 2 (d2 a2) 

6.18 Mutual Inductance by Reciprocity 
A study of energy considerations would show that voltage induced in 

one circuit by a changing current in a second circuit is the same as the 
voltage induced in the second by the same rate of change of current in 
the first. That is, 

M21 = M12 

For example, if it is desired to calculate voltage induced in the large cir-
cular loop 1 owing to a change in current in the small loop 2 (Fig. 6.16), 
it is not necessary to calculate the flux enclosed by loop 1 from the current 
in loop 2. The mutual inductance calculated in the previous article for 
flux linking circuit 2 due to current in circuit 1 may be used directly. 

6.19 Netunann's Form Applied to Self Inductance 

Self inductance may be considered merely as a special case of mutual 
inductance in that the circuit around which we wish to evaluate the volt-
age induced from changing magnetic effects is the circuit in which the 
current flows which produces these magnetic effects. The basis for 
calculation of self inductance of course rests ultimately on the concepts 
introduced in Chapter 5. These concepts certainly permit the notion of 
self inductance as a special case of mutual inductance. 

It is apparent that certain of the forms derived for mutual inductances 
would not, however, be suitable for calculations of self inductance. For 
example, Neumann's form (Art. 6.15) if applied directly to the calcula-
tion of self inductance, using the same line path for both integrations, 
will always give an answer of infinity, since this corresponds to a calcu-
lation of the inductance of a circuit with an infinitesimal wire. This is 
not an incorrect result. The inductance of any infinitesimal wire is 
indeed infinite (Prob. 6.06b). 
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For a complete computation of self inductance, it is then necessary to 
take into account the finite cross section of conducting paths, and the 
actual distribution of currents over these cross sections. This part of 
the problem has been covered in early sections of the chapter. What 
we want to do now is to compute the external self inductance only, so 
we shall be interested in methods other than Neumann's for such 
calculations. 

6.20 Self Inductance by Selected Mutual Inductance or Flux 
Linkage Method 

In Art. 6.06, it was shown that for any circuit the induced voltage from 
changing magnetic effects, and hence the inductance, may be broken into 
two components, one due to flux inside the wire and the other from flux 
outside the wire. The internal inductance, or contribution from flux 
inside the wire, has been found for different shapes of conductors in 
Arts. 6.07 to 6.11. There remains the contribution from flux outside 
the wire. 

Figure 6.20 shows that the induced voltage about a path taken along 
the surface of the conductor along the inner contour of the loop is 
obtained from flux enclosed by that 
path. This represents the desired 
contribution to inductance from flux 
external to the wire. At a point P 
some distance from the wire, the field 
is much the same for a given cur-
rent in the conductor no matter how 
that current may be distributed over 
the conductor's cross section. For 
such a point it is nearly correct FIG. 6.20. Arbitrary circuit formed 

to calculate field intensity, assum- of a conductor of circular cross 

ing all current concentrated at the section. 

center of the conductor. Similarly, at point Q near the wire the field is 
//27rr (see Art. 2.36), where I is the total current in the conductor, 
regardless of how current is distributed over the cross section of the 
conductor, provided other portions of the conducting path are not near 
enough to disturb the circular symmetry. Field near the wire is then also 
very nearly the same as though current were concentrated at the center. 
We conclude that field at any point inside the loop may be calculated 
approximately by assuming a current concentrated along the axis of the 
wire. The problem of finding contribution to self inductance from exter-
nal flux is then very nearly that of finding the mutual inductance 
between a line current along the axis of the wire and a line circuit 
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selected around the inner surface of the loop. This way of looking at the 
problem shows that we can use mutual inductance formulas for calculat-
ing external self inductance. If desired, of course, we can simply com-
pute the external flux linked by the wire and regard external inductance 
as the flux linkages per unit current. Since it is understood that this 
applies only to external inductance, there will be no need to consider 
any difficulties previously mentioned as attached to Neumann's form. 

6.21 Self Inductance of a Circular Loop 

As an example of the method described in Art. 6.20, which we have 
called the selected mutual inductance method, let us find the self 
inductance of a circular loop of wire. The wire radius is a, and the loop 
radius is r. The contribution to inductance from external flux, given 
by the mutual inductance between two concentric circles of radii r and 
(r — a) may be obtained from Eq. 6.16(3). 

k2 
Lis = µ(2r — a)[(1 — —2) K(k) 7 E(k)] [1] 

k2 — 4r (r — a)  

(2r — a)2 

r = radius of loop 

a = radius of wire 

K(k) and E(k) are complete elliptic integrals of first and second kinds as 
defined by Eqs. 6.16(1) and 6.16(2). If air is very small, k is nearly 
unity, and K and E may be approximated by 

K(k) 1 n ( 4 \ 
\N/ T.17 2 

E(k) 1 
SO 

Lo rµ [In (8-1.a) — 2] henrys [2] 

To find total L, values of internal inductance, as listed in Arts. 6.08 
and 6.09, must be added. 

6.22 Self Inductance by Energy Integrals 

When retardation is neglected, the inductive impedance of a circuit 
does not cause any energy loss. Energy leaves the source to be dis-
tributed in space in the magnetic field. For an A-C source this stored 
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energy in the field is returned to the source later in the cycle. It is 
possible to relate the instantaneous stored energy in the magnetic field 
(Art. 4.24) to the instantaneous current in the conductor of the circuit 
which gives rise to the field. Thus 

= f 4112 dV 
2 V 

[1] 

It is often convenient to make use of this expression to compute the 
inductance of a circuit. Such a method is a good one, of course, if the 
configuration happens to be one for which the distribution function for H 
is easily evaluated and integrated. 

In general, it may be thought that if the value of H is known every-
where, one cannot do better in choosing a method for calculating induct-
ance than the flux linkage approach. This is probably true for the 
external inductance of a circuit. When, as in internal inductance com-
putations, the flux which contributes to 
inductance exists in a current-carrying 
region, there are partial linkages to 
consider, and the flux linkage method 
becomes considerably more complex than 
the stored energy method. 

Consider for example the long cylindri-
cal conductor A with its coaxial return 
conductor B (shown in cross section in 
Fig. 6.22), constituting a complete circuit 
at a frequency low enough so that the 
current is distributed uniformly over the 
conductor cross sections. From sym- Fia. 6.22. Cross section of 

metry, the flux lines are known to be 
circles about the axis. From Biot and 
Savart's law directly we can relate the strength of H everywhere to the 
current. It is found in this way that the flux is zero external to the outer 
conductor since the total current enclosed is zero. H is known in the 
three regions of interest: (1) inside the inner conductor (which yields 
part of the internal inductance), (2) inside the outer conductor (which 
gives the remainder of the internal inductance), (3) in the space between 
conductors (which gives the external inductance). 

coaxial circuit. 

Problem 6.22(a). Find the internal and the total inductance per unit length of 
the circuit indicated in Fig. 6.22, first by the stored energy method and then by the 

flux linkage method. 
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Problem 6.22 (b). Show that the internal inductance per unit length of a solid 
wire carrying low-frequency (thus uniformly distributed) current is (Art. 6.08): 

(Li)0 =— henrys/met« 
871-

6.23 Inductance of Practical Coils 
A study of the inductance of coils at low frequencies involves no new 

concepts but only new troubles because of the complications in geometry. 

e 

9 
Fla. 6.23a. Longitudinal sec- Fia. 6.23b. Cross 

tion of long solenoid. section of a coil. 

nj 
0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Certain cases are simple enough for calculation by a straightforward 
application of previously outlined methods. For example, the induct-
ance of the long solenoid of Fig. 6.23a, neglecting end effects, is found in 
this way to be approximately 

Lo = 7,14R2n2[\ /12 ± R2 _ R] henrys [1] 

where the symbols are as shown in the figure and n is the number of 
turns per meter. 

For the other extreme, for coils whose cross sections are very small 
compared with radius (Fig. 6.23b) the equation for inductance of a 
ring may be used to give approximate results, introducing only the 
number of turns in the coil. From Eq. 6.21 (2) 

81? 
Lo = RN2µ [In (—) — 2 

a 
[2] 

Many practical coil shapes will be such that either of these formulas 
would provide poor approximations. The coil configuration in these 
cases often makes integration so difficult that it is desirable to approxi-
mate inductance from empirical and semi-empirical formulas, such as 
those compiled by the Bureau of Standards. These formulae are 
assumed to be readily available and so will not be repeated here. 

4 Circulaz 74, " Radio Instruments and Measurements," National Bureau of 
Standards. 
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At higher frequencies the problem becomes more complex. When 
turns are relatively close together, the assumption made previously in 
calculating internal impedance (other portions of the circuit so far 
away that circular symmetry of current in the wire is not disturbed) 
certainly does not apply. Current elements in neighboring turns will 
be near enough to produce nearly as much effect upon current distribu-
tion in a given turn as the current in that turn itself. Values of skin 
effect resistance and internal inductance are then not as previously 
calculated. External inductance may also be different since changes in 
external fields result when current loses its symmetrical distribution with 
respect to the wire axis. 

In coils used in radio engineering, the relation between energy stored 
in the field to that dissipated in ohmic losses is often important, so that 
the ratio coL/R, the Q of the coil, is used to compare different coils. This 
factor could be calculated by the methods used earlier in this chapter, 
but for coils at high frequencies, the changes in current distribution just 
discussed must be taken into account. In general, the action from 
currents in neighboring turns always tends to concentrate current in a 
smaller portion of the wire cross section so that the actual resistance is 
always higher than that calculated, assuming symmetrical distributions, 
hence Q is always lower. In making calculations of the Q of coils, it 
must be kept in mind that losses in the insulating forms at high fre-
quencies may still further increase the effective resistance and so decrease 
Q. Some useful guides for estimating Q of coils at high frequencies are 
given in a recent paper' which also contains a bibliography covering 
this field. 

SELF AND MUTUAL CAPACITANCES 

6.24 Definitions of Self and Mutual Capacitances 

According to usual concepts, capacitance between two conductors is 
defined as the charge on either conductor divided by the potential differ-
ence between them. It was this kind of expression that was arrived at 
in Chapter 5, the assumption having been made that charges were 
concentrated at the circuit discontinuities which were called condensers 
or capacitors. Of course, the concept of capacitance was pictured as 
more general, often involving several conductors. It often happens in 
practical problems that more than two conductors influence the electric 
field in their vicinity, and the circuits which connect adjacent conductors 
are thus capacitively coupled. Wherever the more general definition of 

5 H. A. Wheeler, " Formulas for the Skin Effect," Proc. I.R.E., 30, September, 

1942. 
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capacitance applies, the relation between the charges on conductors and 
the differences of potential between them is not so simple as in the two-
conductor case where one has only to say that the charge is equal and 
opposite on the two conductors and proportional to the voltage between 
them. 

For quantitative analysis as well as for the purpose of obtaining a 
better picture of this type of phenomenon, we shall need merely to 
systematize the concepts and the equations with which we have already 
dealt. The ultimate desire in circuit analysis is the relation between 
voltage drops and currents in a network of, impedances. The first step 
is to obtain certain basic relations which will yield the charges on various 
electrostatically coupled conductors in terms of the differences of poten-
tial applied between them. 
Given a system of several conductors each of which may be at any 

potential, consider first one of these. If a charge is placed on this con-
ductor with all others charge free, the potential of the conductor might 
be found from 

p dV 
= [1] 

47rer 

Since this is a linear relation and there is no charge but that on the body 
itself, the potential finally calculated must be proportional to total 
charge on the body. 

(1)11= Pi 1(21 

Suppose next a second conductor is allowed to acquire a charge. Equa-
tion (1) could again be applied to calculate the added potential of body 1 
due to the charge on 2, and this would be proportional to the charge on 2 
(as P21(22). Because of the linear character of causes and effects, super-
position is allowable, and total potential of body 1 is now, 

4,1 = pn.Q1 + pi2Q2 

The process may be repeated as charges are placed on all the bodies in 
turn, so finally an entire set of equations may be written 

4,1 = piiQi + p21(22 + " • PnlQn 

4,2 = 7)12(4 + P22(22 " • PnAn 

= PinQi + P2422 ± • • ' PrertQn 

[2] 

The coefficients p are called the coefficients of potential. 
The linear set of equations (2) may be solved for any of the charges. 



Art. 6.26] ELECTROSTATIC SHIELDING 233 

The results may be written in the form 

Qi = C114"1 C21412 + • • • Cn1. 4'n 

Q2 = Cle2 + C32 4'2 • • • Cnen [3] 

Qn = C1/1 4 '1 + C2n ch  Ginn 411è 

The new coefficients of proportionality C may be called coefficients of 
capacity. That of the form C„ represents the ratio of charge on the rth 
conductor to potential on that conductor with all other conductors 
grounded. It may be called the self capacity of the rth conductor. 
That of the form Cr. represents the ratio of charge induced on conductor s 
to potential on body r, all conductors but r grounded. This may then 
be called the mutual capacitance between r and s, although it is more 
often called the coefficient of induction. 

6.25 Properties of the Coefficients of Capacity and Potential 
A most important relation amongst the coefficients is that 

Cr8 = Csr [1] 

Green's reciprocation theorem6 shows that this must be so, It is also 
possible to show that 

Prs = Par. 

All p's are positive or zero. 

C, is positive or zero. 

Cr.(r s) is negative or zero. 
The sum Cri Cr2 Cr3 ± • • • is zero or positive. 

Problem 6.25. Show that the system of Eqs. 6.24(3), when applied to a simph 
capteitor consisting of two electrodes, reduces to the usual 

Q = CV 

where Q is the charge on either electrode, V is the voltage between them, and C is t 
constant. Also evaluate C in terms of the self and mutual capacitances. 

6.26 Electrostatic Shielding 

The relation between coefficients is brought out clearly by a study oi 
one conductor perfectly shielded by a second. Consider such a con. 
ductor in the spherical condenser of Fig. 6.26a, with an external conduct 
ing body in the vicinity. We know at once that a change in the poten• 
tial of 3 can in no way influence the charge on 1 because of th( 

6 Smythe, " Static and Dynamic Electricity," McGraw-Hill, 1939, Chapter H. 
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completely surrounding grounded conductor 2. Thus C13 = O. Also, 
if all conductors but 1 are grounded, the induced charge on 2 is only 
—Qi, so the equations show that Ci2 = - C11. This equal and opposite 
character of the self and mutual coefficients is a criterion of perfect 
shielding. 

It is not necessary that a shield completely enclose a conductor to 
shield it from a third conductor as above. Thus in Fig. 6.26b, the 
presence of the grounded plane conductor 2 causes less charge to be 
induced on 3 when it is grounded and a given potential is placed• on 1 

2 o 3 

C 2 

FIG. 6.26a. Electrostatic Fio. 6.26b. Partial shielding 
shielding by a grounded by a grounded conducting plane. 

sphere. 

than when the plane is absent. This can easily be seen by constructing 
the images of 1 and 3 below the plane to replace the effect of the plane. 
Then it is evident that the new image conductors result in an induction 
effect on 3 which opposes the original effect of 1. 
The shielding effect of body 2 in Figs. 6.26a and 6.26b would quickly 

disappear if the shield were ungrounded and insulated instead. The 
addition of a new insulated conductor generally causes an increase 
rather than a decrease in capacitance between two conductors, although 
this is not always true. If, for example, the two original conductors are 
concentric spheres, the addition of a third insulated concentric sphere 
between them will have no shielding or other effect on the field between 
conductors. The insulated sphere being an equipotential surface of the 
original field simply assumes that proper potential, induced charge 
appears in equal amounts on both its inside and outside surfaces, and 
the field is, in effect, transmitted from innermost to outermost sphere. 
Obviously, the addition of an insulated conductor to any field in the 
form of an equipotential surface of that field will always result in no 
shielding effect and no increase or decrease of capacity coupling between 
the original conductors of the field. 
That the coupling is most always increased if the added conductor is 

insulated is illustrated by the case of Fig. 6.26b. If the plane is insu-
lated, rather than grounded, the coupling between 1 and 3 will be found 
to be increased. In fact, suppose 1 and 3 are widely separated so that 
their coupling in the absence of the plane (or with the plane grounded) 
would approach zero. Then, if the plane is insulated, the coupling can 
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be shown to approach a constant value, depending upon the distance of 
1 and 3 to the plane 2. Thus the coupling-increase ratio (insulated 
plane to no plane) approaches infinity as the bodies 1 and 3 are increas-
ingly separated. 
From the various foregoing examples it is seen that if a new electrode 

is introduced between or near two others for shielding purposes, it is 
very important that it be truly grounded. It often happens that such 
electrodes, although grounded for D-C, may be effectively insulated or 
floating at radio frequency because of impedance in the grounding leads. 
In such cases the new electrodes do not accomplish their shielding pur-
pose. In fact, as indicated above, they may actually increase capacity 
coupling. 



7 
PROPAGATION AND REFLECTION OF ELECTRO-

MAGNETIC WAVES 

7.01 Introduction 

As soon as Maxwell's equations are applied to physical systems, as in 
the circuits of Chapter 5, it is observed that in general, effects from all 
currents and charges are characterized by a retardation or phase delay. 
The ideas of conventional circuit theory, which assume that the effects 
of currents and charges are felt instantaneously over all the circuit, are 
practically exact if we confine ourselves to circuits or regions small 
compared with wavelength. In a large portion of the problems of 
modern radio engineering, the discussion cannot be restricted to such 
small regions. A study of the fields in the region between a transmitting 
antenna and a receiving antenna, to mention one example, must involve 
a region extremely large compared to wavelength. Efficient antenna 
systems themselves must be at least comparable to wavelength in size. 
At frequencies of the order of billions of cycles per second, almost any 
circuit element large enough to be of practical use must have dimensions 
comparable with wavelength. 

Certain means were indicated in Chapter 5 for correcting the low-
frequency circuit ideas for large circuits. These methods, though 
generally difficult to use and to visualize, enable us to retain useful 
circuit notions for situations in which the problem is still to find the 
relation between what are essentially circuit parameters, such as the 
ratio of input voltage applied between two points to the current flow 
into the system, an input impedance. But not all problems, even of 
those that have the current flow around a loop and applied voltage as 
leading characters, are best studied by continually extending circuit 
ideas as the only and the complete attack. In a vast number of cases 
attention is focused much more on the fields due to the currents and 
charges than on these quantities themselves. In addition we find our 
attention in such problems focused also on the retardation effect. Fi-
nally, it is often found necessary and desirable to use conventional circuit 
notions as a guide, a source of convenient notions, sometimes a stop-gap, 
but decidedly only as one branch of the whole of electromagnetics. 
Another branch is the important one of traveling electromagnetic waves. 
The retardation effect leads directly to the regarding of electromag-

236 
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netic effects as a wave phenomenon. For when currents and charges 
change with time, the fields which they cause also change, but with a 
time delay that depends upon the choice of the distances between the 
point at which fields are being determined and the points at which the 
various charges and currents are located. Thus the effect of this change 
travels outward from the charges or currents with a finite velocity, 
depending upon the configuration of the conductors, and the dielectric 
constant and permeability of the surrounding medium. This is much 
the same situation as that in the transmission lines studied in Chapter 1, 
for a change in current or voltage at one point of a line is not felt instan-
taneously over all the line. Instead, it causes an effect which travels 
away from the point of change with a finite velocity, depending upon 
the distributed inductance and capacitance of the transmission line. 
Waves propagate along a transmission line, according to the simple 

concepts described in Chapter 1, because a change in current in the line 
produces a voltage drop through the distributed inductance of the line, 
and a change in voltage produces a current through the distributed 
capacitance of the line. Similarly, now that displacement currents are 
included in the equations, it is apparent that a change in electric field 
produces a magnetic field in any dielectric medium; through Faraday's 
law we know that a change in magnetic field produces an electric field 
in any medium with finite permeability. By this analogy, such a wave 
propagation of electric and magnetic fields through any medium with 
finite permeability and dielectric constant should well be expected. 
This analogy between transmission line waves and waves in space will be 
seen to be a very complete one and allows us to apply directly many of 
the concepts of energy transmission and reflection developed for trans-
mission lines to the study of waves in general. 
The reader may well ask at this point how we can bring legitimately 

into a discussion of retardation electromagnetics the transmission line 
theory outlined in Chapter 1, when that whole study was based on circuit 
analysis of the conventional type. It is a good question and one that 
will be answered when Maxwell's equations are applied to transmission 
lines; but first skill must be developed in the use of wave ideas to solve 
electromagnetic field problems. 
The retardation effect, when included in the study of circuits, was 

found to result in an energy term in addition to that arising from ohmic 
dissipation. It is a fair guess that this energy leaves the circuit in the 
form of waves. The matter of wave production and propagation and the 
behavior of these waves in and around conductors and dielectrics are 
both parts of a single problem. For convenience in thinking and analy-
sis, the propagation of electromagnetic waves far from conductors will 
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first be studied. This will guide our approach to waves traveling along 
conductors such as transmission lines. Each of these will be an aid to a 
thorough understanding of the mechanism by which generators attached 
to conductors may first produce waves along conductors, and then waves 
in space. Thus finally, electromagnetic waves will be understood 
whether concentrated in a relatively closed path or region (as in circuits), 
flowing along conducting guides (as in transmission lines or wave guides), 
propagating without benefit of guiding boundaries (as in waves in free 
space, far from transmitter, receiver, or the earth), or transferred by con-
ducting boundaries from a source to propagation in free space (as in an 
antenna). 

This first chapter on wave study will be devoted to the ideas of wave 
propagation in unbounded media and reflection of this wave energy at 
discontinuities. This theory applies directly to the propagation of radio 
waves in space, and their reflection from dielectric, conducting, and semi-
conducting objects such as the earth. It will, in addition, form the 
foundation for later study of waves guided or enclosed by all forms of 
conducting and dielectric boundaries, for it will develop pictures of all 
boundary condition problems. The wave concepts of this and the two 
following chapters, quite apart from the electromagnetics, are largely 
applications and extensions of those built up in the first chapter on 
oscillations and waves. The mathematics of these chapters consists in 
the solution of a single differential equation, the wave equation, subject 
to the initial conditions describing the manner in which the wave was 
originated, and the boundary conditions imposed upon it by the dielectric 
and conducting media. 

WAVES IN UNBOUNDED REGIONS 

7.02 The Wave Equation Governing Electric and Magnetic 
Phenomena in a Charge-Free Dielectric 

It has been stated that electromagnetic phenomena in free space may 
frequently best be regarded as wave phenomena. Now Maxwell's equa-
tions must be applied to a free dielectric to see the quantitative nature 
of these effects. Consider a dielectric containing no charges and with 
zero conductivity so that there are no conduction currents in the dielec-
tric. The field equations are then (Art. 4.24) 

V D=o [1] 

V • n = 0 [2] 

are 
v x  [31 
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aD 
v x H = [4] 

= [5] 

= ER [6] 

Notice that for completeness equations (1) and (2) have been included, 
showing zero divergence of the fields, although they are not required if 
the interest is in steady state A-C components (Art. 4.23). If the 
dielectric is homogeneous, isotropic, and linea'r, E and 12 are constants and 
do not have space or time derivatives. 
To attempt a solution of a group of simultaneous equations, it is' 

usually a good plan to separate the various functions of space, such as D 
and fl, to arrive at equations that give the distributions of each. 

First let us take the curl of (3) 
all 

VXVX2= —mVX—at 

Then, expanding, 

v(v • E) — v2E = x (--a1073 

By remembering that V • É = 0 from (1) and that time and space 
partial derivatives may be taken in any order, and obtaining V X R. 
from (4), we find 

or 

_v2E = _ et ( ) (:)±.É 
at at 

a2É 
vaR = ..€ 

at2 [7] 

This is the general form of the wave equation. The form studied in 
Chapter 1 was a simpler special case for one-dimensional scalars. The 
form of (7) applies as well to the magnetic field, as is readily shown by 
taking first the curl of (4) and then substituting (2) and (3). 

y2i/ = ¡Le 
a2ig. 

at2 

From the simple special case of space variation in one dimension only, 
many of the characteristics of electromagnetic waves can be found that 
will aid in studying more complex cases. If variation is only in the 
z direction, the equation is simply 

02H 02H 
—  az2 at2 

[8] 

[9] 
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and this equation was found in Chapter 1 to have a general solution of 
the form 

[10] 

where 

1 

'‘72€ 

The first term of (10) represents the wave or function f traveling with 
velocity y and unchanging form in the positive z direction; the second 
term represents the wave or function 1.2 traveling with velocity y and 
unchanging form in the negative z direction. It will be helpful to antici-
pate following discussions by pointing out that the commonest radio 
waves at some distance from the antenna and the ground are approxi-
mately of this simple form with space variations in one direction only. 
For more general cases involving variations in more than one direc-

tion, the solution of the wave equation is not quite so simple, yet the 
general idea of waves propagating with definite velocities can always be 
obtained from it. Many of these more complicated cases will be treated 
later. 

Problem 7.02(a). Show that the wave equation of the form of Eq. 7.02(7) or 
7.02 (8), applies to scalar potential and vector potential À in a charge-free dielectric. 

Problem 7.02(b). Show that the wave equation may be written directly in 
terms of any of the components of II, É, or À in rectangular coordinates, or to the 
axial component of H, É, or À in any coordinate system, but not to other components, 
such as radial and tangential components in cylindrical coordinates, or any compo-
nent in spherical coordinates. That is, 

82E_ 82H. 
v2E. _   at2 „e V2H, —   , etc. 

at2  
but 

a2E, 
v2Er o - 9 at.. v2H,b o e , etc. 

7.03 Poynting's Theorem for Dielectric Regions 
Simple transmission line waves were primarily of interest because of 

their ability to transfer energy from one point to another. We shall see 
now from the basic equations that all electromagnetic waves are capable 
of energy transfer. The amount and manner of this energy transfer 
depends somehow upon the amount, distribution, and phases of the 
electric and magnetic fields in the wave. This dependence will now be 
investigated. 

Consider a region of a perfect charge-free dielectric which contains no 
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sources of electromagnetic energy. Since the dielectric is assumed 
perfect (no conductivity) there can be no dissipation of energy through 
current flow. Since there are no charges, no energy can be transferred 
to kinetic energy of motion in the charges. If there is a change in the 
stored energy in the electric and magnetic fields in this region, it must 
then have come about by an energy flow through the surface enclosing 
the region. The amount of energy stored in the electric fields of the 
region' is (Art. 4.24) 

€E2 

UE = f — dV 
v 2 

That stored in magnetic fields' is 

UR = f 112 dv 
v 2 

[1] 

[2] 

The negative of the time rate of change of energy stored in the volume, 
which we have agreed must be the energy flowing out of the region per 
unit time, is 

a a 
W = — —at ((I E + U H) = — fv (eE2 µH2) dV 

The partial derivative with time may be taken inside the volume inte-
gral, but note that 

2at (€.2 ) = E at = at 

From Maxwell's equations for a charge-free dielectric 

aD 
—at = vxR 

so 

Similarly, 

and 

a 
(€E2) = É • (v x 17) 

a 
(P112) = R•(v x É) 

W = f  [fi • (V X E') — E' • (V X R)] dV 

[3] 

1 As to the applicability of these expressions to time-varying -phenomena, see 
Stratton, " Electromagnetic Theory," McGraw-Hill, 1941, pages 131-135. 
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The factor within the brackets is identified as V • (R X il) (Art. 2.38). 
So 

W = f V • (Ê X 17) dV 

From the divergence theorem, the volume integral of div (É X must 
be equal to the surface integral of (R X H) over the surrounding bound-
ary. Thus 

w = f (R x ri) . = fP CS 

where 

[4] 

P=Rx11 [5] 

The vector É, defined as R X H, is known as the Poynting vector. 
According to (4), the total energy flow out of the region per unit time is 
the surface integral of this vector over all the boundary surrounding the 
region. Since this has the dimensions qf an energy flow per unit time, 
it is a power flow, and in the practical units used here has the dimensions 
of watts. 

Since total power flow is given by the surface integral of P,P itself 
may be thought of as a surface density of power flow (watts per square 
meter), giving the direction and magnitude of power flow out of any 
volume per unit area at each point of the enclosing surface. This is a 
convenient concept, but it must be emphasized that it has not actually 
been proved by the foregoing derivation. Equation (4) proves only 
that if the surface integral of P is taken over all the surrounding boundary, 
the total power calculated must be that flowing out of the region; it 
does not necessarily follow that P is the actual density of power flow at 
each point. Nevertheless, we shall often use this as a concept, and so 
long as its limitations are realized, it will be a very useful one. 

Equation (4) is a special case of the theorem known as Poynting's 
theorem. Equation (4) was proved for charge-free, perfect dielectric 
regions with no sources. Actually it is much more general than this. 
When we consider a region that includes the source of the waves, imper-
fect conductors, charges, etc., it will be shown that the net power flow 
out of any such region is still given by the surface integral of the Poyn-
ting vector R X H over the surrounding boundary. 

7.04 Uniform Plane Waves in a Perfect Dielectric 

Consider now the simple case in which there are no variations except 
in one direction so that the wave equation has the form written in 
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Eq. 7.02(9) and has solutions of the form of Eq. 7.02(10). We have 
already identified the two possible solutions as waves propagating in the 
positive z direction and negative z direction respectively. If, due to 
some originating cause which is not under discussion here, a wave has 
been started in the positive z direction in an unbounded medium, and 
there is nowhere any discontinuity or object that might cause a reflected 
wave, the wave traveling in the negative z direction will not appear in the 
solution. There is only 

zi) 

If the source in the plane z = 0 is one that causes variations sinusoidal 
in time, then at z = 

Riz=0 = HO eiwt 

At any plane z, from (1), 

[1] 

17 = eiw(t—D [2] 

For the study of sinusoidal time variations, it will be convenient to have 
the factor eiwt understood, so it will henceforth not be written explicitly. 
Moreover, certain quantities, propagation constant 7 and phase con-
stant /3, will prove useful which for the waves under discussion now are 
given by 

ice . 
= = = 3‘" V [3] 

It will often be convenient to allow the factor e-119z to be understood as 
well. Thus in speaking of waves with a propagation constant 7, it will 
be understood that all quantities are multiplied by the propagation func-
tion él't—Yz). Just as time derivatives were replaced previously by jw, 
z derivatives may then be replaced by —y. 
With the above conventions and by remembering that the present 

discussion concerns the type of wave which is uniform over the x-y plane 
(so that a/ax and 0/ay are equal to zero), Eq. 7.02(3) divides into the 
following component equations: 

= —jun.tHx or Ey  — nHx 

—7Ex = —jcup.H, or Ez = 

O = —jon.tHz 

[4] 
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where 

Equation 7.02(4) gives the same relations as (4) and (5) and the 
additional information that 

jweEz = 0 [7] 

The above equations show first, (6) and (7), that there is no component 
of either electric field or magnetic field in the direction of propagation 
for such a uniform plane wave. A study of (4) and (5) shows that total 
electric field and total magnetic field (2 and II) are in time phase, 
mutually perpendicular at every point of the wave and related in magni-
tude by the quantity n. This quantity has the dimensions of an imped-
ance (ohms) and is called the intrinsic impedance of the medium. Had a 
negatively directed wave been considered instead of the positively 
traveling one, the equations (4) to (7) would alter only in certain signs; 
that is, 7 would now become negative and would initiate these sign 
changes. 2 X 17 is entirely in the direction of propagation. Had 
there been a component of electric field or of magnetic field in the direc-
tion of propagation, E X H would have had a component normal to the 
direction of propagation. According to the Poynting theorem this 
would have represented energy transfer in a direction other than the 
direction of propagation. 
The stored energy per unit volume of the dielectric is, in magnetic 

energy, 

UR' = H 2 = 1'2- (H2 ± H2) 
2 2 e 

and in electric energy, 

€E2 e 

UE = — = — (E2 E2) = -E-Là (H2 + H2) 
2 2 e Y 2E y e 

The energy stored in electric field per unit volume at any point of the 
wave is then equal at every instant to the energy stored in magnetic field 
per unit volume at that point. The exact behavior of energy stored in a 

given volume of space can be visualized best by a study of the energy 
flow in and out of that volume as a result of the wave action. If the 
Poynting theorem, Eq. 7.03 (4), is applied to a small rectangular paral-
lelepiped aligned with the direction of propagation (Fig. 7.04), there are 
no contributions to P through any of the sides except the ends ABCD 
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and EFGH, since P is exactly in the direction of propagation. The 
flow through each of these sides at any instant is merely 

W = Area X (Éi X Hi) 

where Éi amd Hi are instantaneous values of É and H. At any instant, 
the power flow through one of these ends will not be the same as that out 
of the other unless the ends are sep-
arated by a multiple of a half wave-
length (flzo = nr). In particular, H 
if the ends are separated by an odd 

É I Z=ZO 

multiple of a quarter wavelength 

(izo — (2n -F 1)7r) , the power flow 
4 

through ABCD is a maximum at the 
instant the flow through EFGH 13 Y 

zero, and there is a net increase of 
FIG. 7.04. Poynting flow through a 

stored energy in the parallelepiped. rectangular parallelepiped aligned with 
A quarter of a cycle later in time the direction of propagation. 

flow through EFGH is a maximum, 
that through ABCD is zero, and there is a net decrease in the energy stored 
in the parallelepiped. Note though that there is never a reversal of the 
Poynting vector P; it always points in the positive z direction since 
and H are in phase, and _both change signs at the same instant. Note 
also that the time average value of power flow through any surfaces, as 
ABCD and EFGH, must be the same no matter what the spacing zo. 
With wave amplitudes E, Ey, H, and Hy, this time average power flow 
per unit area is 

= Time average e X R>z = i(EzH, — E,H.) 

I z o 

Fi I I rZo 

.95 

j_f 2 e n irr2 2 ei" 
= —2 watts/meter2 

For this simple wave, all points in a plane normal to direction of propa-
gation are in time phase. This is the reason for calling such a wave a 
plane wave. We shall later study waves which are not of this type, such 
as spherical waves and cylindrical waves. Since there are also no varia-
tions in magnitude in the plane normal to direction of propagation for 
this simple wave, it may then be further called a uniform plane wave. 
In studies of the wave propagation along transmission lines and dielectric 
or conducting wave guides we shall find plane waves which are not 
uniform. This uniform plane wave may also be called a transverse 
electromagnetic wave if desired, since it has no electric and magnetic field 
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components except those in the plane normal (that is, transverse) to the 
direction of propagation. There are also other transverse electromag-
netic waves which a,re not uniform plane waves. 
Below are summarized the properties found for the uniform plane 

wave. 

1. Velocity of propagation, y = 1/NTI:e. 
2. No electric or magnetic field in direction of propagation. 
3. Total electric field normal to total magnetic field. 
4. Electric field in time phase with magnetic field. 
5. Magnitudes of electric and magnetic field related by 

E = nH 

6. Direction of propagation given by direction of Poynting vector. 

P =Ex 17 

7. Energy stored in electric field per unit volume at any instant and 
any point is equal to energy stored in magnetic fields per unit volume at 
that instant and that point. 

8. Average power flow per unit area through a plane perpendicular to 
the direction of propagation is 

E2 
P, = H2 = —271 watts/meter2 

2 

where the maximum values of the instantaneous fields at any point are 
E and H. 

7.05 Combinations of Uniform Plane Waves — Polarization 

Since the wave equation is a linear equation, any solution to it may be 
built up as the sum of other solutions. Many complex electromagnetic 
wave distributions might, if desired, be considered as made up of a large 
number of the simple plane waves with different magnitudes, phases, 
and directions of propagation. For most purposes this viewpoint is of 
little value except as a concept, and other methods to be given later will 
serve better for actual analysis. However, if we are studying the 
important practical case where a combination of plane waves exists 
such that all have the same direction of propagation, there is a definite 
advantage in considering these as a superposition of the individual plane 
waves and analyzing by obtaining the behavior of each individual wave. 
The orientations of the field vectors in these waves are often described 
by the polarization of the wave. 

For a single uniform plane wave, it has been seen that electric and 
magnetic field vectors are always at right angles and always maintain 
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their respective orientations at every point along the wave. A combina-
tion of plane waves all propagating in the same direction, and with arbi-
trary orientations of the field vectors, is called an unpolarized wave. 
These individual component waves are often of different magnitudes 
and phases as well (Fig. 7.05a). 

If all the plane waves propagating in the same direction have the same 
orientation of the field vectors, the wave is said to be plane polarized. A 
question may arise here as to whether these definitions have to do with 
only one frequency or not. In radio engineering, where the commonest 
dielectric is free space, the propagation constant is independent of fre-

E 
H L. E , I  

, I I 
s,-.. ., . ,.••"' /-. -' E ‘ t \ ) 

(a) (b) (c) (d) (e) 
Unpolarized Vertically Horizontally Elliptically Circularly 

Polarized Polarized Polarized Polarized 

Fm. 7.05. 

quency and the definitions so far stated will be unaffected by frequency 
considerations. However, for a wave made up of two different fre-
quencies with the same propagation direction and same orientation of 
field vectors, one would probably not speak of a plane polarized wave but 
rather two plane polarized waves of same polarization, different 
frequencies. 

In radio engineering, the plane of polarization is customarily defined 
by the orientation of the electric field vector, although in optics the con-
vention is that the magnetic field vector defines the plane of polarization. 
Thus a combination of waves all with electric field vector in the vertical 
plane is said to be vertically polarized according to radio engineer-
ing terminology. If electric vectors of all waves are in the horizontal 
plane, there is said to be horizontal polarization (Fig. 7.05b and c). 

If there is.a combination of two uniform plane waves of the same fre-
quency, but of different phases, magnitudes, and orientations of the field 
vectors, the resultant combination is said to be an elliptically polarized 
wave. To see the reason for this, we may first break each wave into its 
two separate component waves, one with electric vector in the x direc-
tion, the other with electric vector in the y direction. The two x com-
ponents add to produce a wave of given magnitude and phase angle. 
This will be written for this study directly in terms of cosines rather than 
the exponential or complex form. 

Ex = E1 cos w — - 
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The two y components add to produce a wave of different magnitude and 
phase angle. 

Ey = E2 COS [CO Ite] 

In any given plane, say z = 0, these reduce to equations of the form 

= E1 cos cot 

Ey = E2 cos (wt the) 

These are the parametric equations for an ellipse. The terminus of the 
electric 4eld vector then traces an elliptic path in a plane normal to the 
direction of propagation. This is the reason for the name elliptic 
polarization (Fig. 7.05d). 

If the two waves above combine so that total x and y components are 
equal and 90° out of time phase, the ellipse reduces to a circle, and the 
wave is said to be circularly polarized. Thus if 

e = 1—r 2 and E1 = E2 

which is the equation of a circle (Fig. 7.05e). 

REFLECTION OF WAVES FROM CONDUCTORS AND DIELECTRICS; 

THE IMPEDANCE CONCEPT 

7.06 Reflection of Normally Incident Plane Waves from Perfect 
Conductors 

If a uniform plane wave, as studied in Art.7.04, is imagined as a process 
of energy flow through space, then, in considering a plane perfect con-
ductor lying normal to the direction of propagation, we feel instinctively 
that there will be a steady stream of reflected waves resulting from the 
incidence of the initial waves on this plate. It will no longer be possible 
to describe the fields in front of the conductor by the single function of 
t — (z/v). There should now, it seems, be present also a wave which 
travels in the negative z direction; that is, a function of t -F (z/v). 

For one thing, we cannot satisfy the required boundary conditions 
of zero electric field at a given value of z for all values of time with the 
single wave function. Since the fields in free space can be expressed 
as a sum of the two functions, it is seen immediately that to satisfy the 
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boundary conditions there will be just enough of each function so that the 
resultant tangential electric field at the conductor's surface will be zero. 
From another viewpoint, it is readily realized from the Poynting 

theorem that no energy can pass the surface of a perfect conductor. 
This is true because a perfect conductor requires that the component of 
É tangential to the conducting surface must be zero, and thus there can 
be no component of Poynting vector, P --Ex17, normal to the perfect 
conducting surface. All energy associated with the incident wave must 
then be reflected in some manner. Thus it appears that there is in 
addition to the incident wave, a reflected wave traveling in the negative z 
direction, equal in magnitude to the incident wave if it is to contain all 
the energy brought by the incident wave. 

z-o 
Perfect Conductor 

EmainjE,eigze 

Incident Wave--0.-Eiej(wt (3.) 
Reflected Weve-4--- -E ei(" ÷" 

FIG. 7.06. Reflection of a uniform plane wave from a perfect conductor. 

For a single plane wave, select the orientation of axes so that total 
electric field lies in the x direction and include waves traveling both in 
the positive and negative z directions (Fig. 7.06). 

E. = Eei(w"z) E'ei(("1-13z) 

If L = 0 at z = 0 for all values of time, E' = —E. 

E.= E(e-le4 — eiez)eiwg 

eix = cos x j sin x 

Ez = —2jE sin flz eiwt [1] 

E 
From Eq. 7.04(5) liv = --. for a wave traveling in the positive z direc-

tion. For a wave traveling in the negative z direction Eq. 7.04(5) 

but 

So 
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would show that Hy = —Ex/n. 

Hy = effizt—oz) _ eicot-Foz)) 

=_E (e—oz eoz)eiczz 

2E 
— cos elz 

[Art. 7.06 

[2] 

Equations (1) and (2) state that although total electric and magnetic 
fields for the combination of incident and reflected waves are still 
mutually perpendicular in space and related in magnitude by n, they are 
now in time quadrature. The pattern is a standing wave pattern since 
a zero of electric field is always at the conductor surface, and also always 
at ez = —er or z = — nX/2. Magnetic field has a maximum at the 
conductor surface, and there are other maxima each time there are zeros 
of electric field. Similarly, zeros of magnetic field and maxima of electric 

2n + 1 
field are at ez — 2 or z — (2n + 1)X . This situation is 

4 
sketched in Fig. 7.06, a typical standing wave pattern such as was found 
for the shorted transmission line in Chapter 1. At an instant in time, 
occurring twice each cycle, all the energy of the line is in the magnetic 
field; 90° later the energy is stored entirely in the electric field. 

7.07 Transmission Line Analogy of Wave Propagation; the 
Impedance Concept 

The resemblance between the standing wave patterns obtained when 
an electromagnetic wave impinges upon a perfect conductor and for the 
wave in a shorted transmission line is but one indication of the complete 
analogy between the two phenomena. This article will show the basic 
character of this analogy and some of the uses to which it may be put. 
This will only be, however, the beginning of the discussion of the analogy 
between electromagnetic wave behavior and the behavior of circuits and 
lines as analyzed by familiar circuit concepts such as impedance. Such 
discussion will be continued throughout the remainder of the text until, 
as electromagnetic wave phenomena become understood in all possible 
roles, the relation of wave and field ideas to the conventional circuit and 
line ideas is put on a clear and rigorous basis. 
For the present, the points of similarity between the results of the 

preceding rigorous analyses of plane waves and the conventional analysis 
of transmission lines will be pointed out. 
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1. The velocity of propagation of a wave in a uniform transmission 
line was found in terms of the distributed constants of the line, induct-
ance and capacitance per unit length: 

1 
y — meters/sec [1] 

VFC 

The velocity of propagation of a uniform plane wave was found in terms 
of permeability and dielectric constant: 

1 
[2] 

where g has units of distributed inductance, henrys/meter, and e has 
units of distributed capacitance, farads/meter. 

2. In a transmission line, voltage and current associated with a single 
wave at every point are related by the characteristic impedance of the 
line: 

V \ 171, 

For a wave in the negative direction: 

ohms [3] 

For a uniform plane wave in an unbounded medium, electric field and 
magnetic field associated with a single wave are related at every point 
by the intrinsic impedance of the medium: 

E Ez E 

H Hy e 

For a wá,ve in the negative direction: 

Ex Ey 
— —n 

3. For an impedance change at a point in the transmission line, the 
amounts of transmitted and reflected waves were determined from 
the conditions that current and voltage must be continuous (equal) on 
the two sides of the discontinuity. 
For an electromagnetic wave passing from one medium to another, the 

amounts of transmitted and reflected waves are determined from the 
conditions that tangential electric and magnetic fields are continuous on 
the two sides of the discontinuity. 

ohms [4] 
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To complete the analogy rigorously, consider the plane boundary 
between any two media (Fig. 7.07a). Suppose there is a wave in 
medium 1, Eiéj"-' 7") incident upon the boundary. There is a reflected 
wave eeciwg+7"), and a wave transmitted into medium 2, E2euen—Y2z). 
Take the boundary as z = 0; total tangential components of electric 

and magnetic field should be equal on the two sides 
of this boundary: 

Incident Egi = Ea [5] 
Wave:EA Transmitted 

— 4. Wave: E 2, Ht Ha ± Hgj —  Ha [6] 

2.0 

Reflected If in medium 1 Eti/Hti constant = Z1 = 
wave:Ng 

and in medium 2, Eg2/ Ha = Z2, (5) and (6) 
Medium 1 Medium give 

FIG. 7.07a. Reflection 
and transmission at a 
plane boundary be-

tween two media. 

where 

and 

Z2 Z1 K — 1 

Egi Ha — Z2 ± K 1 

Et2 Ht2 2Z2 2K  
Ee1 = — Hel — Z2 + K + 1 

[7] 

[8] 

[9] 

These are completely similar to the equations of Art. 1.18, giving trans-
mitted and reflected current and voltage waves in a transmission line. 
The condition of constant ratio of transverse components of electric 

and magnetic fields over the boundary is apparently automatically 
satisfied for a uniform plane wave normally incident upon the boundary; 
the constant is 17. However, in addition to these simple uniform plane 
waves there are other waves which also will be found to fulfil the require-
ment of constant ratio between tangential electric and magnetic field 
components, and for these the impedance concepts and transmission line 
analogies will also be found valid and useful. In general, for all such 
waves, the wave impedance will always mean the ratio of tangential 
electric field to tangential magnetic field. The convention as to signs 
can be chosen arbitrarily to suit convenience as long as consistency is 
maintained. The sign in the impedance relation will be taken positive 
if the direction of 2, H, and the positive direction of propagation follow 
each other in the order of the coordinates. Thus if the tangèntial elec-
tric field is in the x direction, tangential magnetic field in the y direction, 
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the wave impedance for a wave propagating in the positive z direction is 

E. 
= 

Hy 

If a wave, on the other hand, has as tangential fields Ey and Hz, the 
wave impedance looking in the positive z direction will be expressed by 

E 
= —Zz 

Hz 

Similarly, if the subscript on Z is always understood to mean that the 
direction of that coordinate is considered as the positive direction of 
propagation, 

Ei, Ez 
H—z = Z. Zy 

E, 

For impedances looking in the nega-
tive x, y, or z directions, the signs in 
these equations will of course be 
reversed. 

In a region that contains both in-
cident and reflected waves, the total 
impedance at any plane (ratio of 
total transverse components of E 
and H) may be obtained in terms of 
the length of the region, propagation 
constant through the region, and FM- 7.07b. Region of wave propa-

gation terminated by a second the terminating impedance of the 
region (Fig. 7.07b). The result is medium. 

exactly similar to that developed for input impedance of a transmis-
sion line of general length, propagation constant, and terminating im-
pedance. 

Zi = Zo [ZL cos al + izo sin all 
Zo cos 01 jZL sin ad 

where 1 = length of line or region of wave propagation. 

Zi --- input impedance. 
ZL = terminating or load impedance. 

5 = phase constant. 
Zo = characteristic impedance, or ratio of transverse electric 

field to transverse magnetic field for a single wave. 
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It is quite evident that the impedance concept does not have to be 
applied to electromagnetic waves and that answers to wave problems 
may be obtained without pointing out the analogy to conventional trans-
mission line analysis. The situation is similar to that of the concept of 
R + jX in A-C circuit analysis which is never necessary to the solution 
of an A-C problem but which is of undoubted value in thinking and com-
puting. By making proper use of the impedance concept, not only can 
results from one field be used directly in the other but also the relation 
of one branch of electromagnetics to the other becomes clearer. Credit 
for properly evaluating the importance of the wave impedance concept 
to engineers and making its use clear belongs to S. A. Schelkunoff.2 

7.08 Normal Incidence on Perfect Dielectric 

If a uniform plane wave is normally incident upon a perfect dielectric, 
the transmission line analogy of Art. 7.07 may be applied at once. This 
dielectric is assumed to be infinite in extent beyond the boundary so 
that no multiple reflections need be present for this discussion. Select 
the direction of electric field as the direction of the x axis, and direction 
of propagation for the incident wave as the positive z direction. Then 
in the incident wave there are present only E. and H, and from 
Eq. 7.04(5) 

In the reflected wave 

EL 
= —ni 

yl 

In the wave transmitted to the second dielectric, 

= 772  \2-2 E2 — 
Hy2 F €2 

Then by Eq. 7.07(7) and (8), if K =nilni 

K — 1 

E.1 Ho K+1 

E x2 re. Hy2 2K 

E1 = — K+1 

Note that there is perfect transmission and no reflected wave at all if 
K = 1, that is, if ni = n2. If K <1(ni» n2) there is very little energy 

2 See, for instance, Bell System Tech. Journ., 17, 17, 1938. 

[1] 

[2] 

[3] 

[4] 

[5] 
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transmitted; almost all is reflected. Moreover, the phase relations of 
the reflected wave are exactly the same as those found in Art. 7.06 for 
reflection from a perfect conductor; the standing wave patterns are 
consequently the same as in that case, with a node of electric field and a 
maximum of magnetic field at the reflecting surface. This is true of. a 
wave passing from one dielectric to a second dielectric of much greater 
dielectric constant or smaller permeability. The very high displace-
ment currents at the surface of this second dielectric then have the same 
effect in shorting the electric field and hence producing the wave pattern 
that includes a node in É, as do the conduction currents in the perfect 

conductor. 

Medium 2 
TI2 

H= Standing Wave of Magnetic Field 
E= Standing Wave of Electric Field 
T = Traveling Wave 

FIG. 7.08. Standing and traveling waves upon change of medium (K = n2/1n). 

If K» 1 (n2 » ni), reflection is again almost perfect, but now the 
phase of the reflected wave is opposite to that of the previous case, and 
there is a maximum of electric field and a minimum of magnetic field at 
the surface. This corresponds to a wave passing from one dielectric to 
another of much smaller dielectric constant or greater permeability. 

In any intermediate case for K neither unity, nor approaching zero or 
infinity, the wave is partially reflected and partially transmitted. The 
result is then a combinaiion of a traveling wave plus a standing wave in 
the region of the first medium. The traveling wave portion corresponds 
to the amount of energy transmitted to the second dielectric, and the 
standing wave corresponds to the portion of the incident wave that is 
reflected. This latter standing wave has zeros and maxima exactly at 
half-wave points as before,e but there are now no points in region 1 
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where the total field is always zero since the traveling wave must be 
added. For values of K less than 1, the standing wave component has a 
zero of electric field and a maximum of magnetic field at the discontinu-
ity; for values of K greater than 1, the reverse is true. As K approaches 
unity, the standing wave component becomes smaller, and of course 
disappears at K = 1. 

Several of the above situations are sketched in Fig. 7.08. The com-
plete functions describing the combinations of standing plus traveling 
wave in medium 1 may be written so as to emphasize the factors of trans-
mission and reflection: 

Ex = 2   K r K +1 K — 1 +1 cos 13z] (K > 1) [6] Exi L  

H, [ e +j 
K 
1 1—K = 2 sin ¡3z] (,wt (K > 1) [7] +1 1 + K 

e JP 1 — K sin ezieJe't (K <1) [8] — = Ez 2 r  K  —z .1  
Er1 LK + 1 1 + K 
Hy = 2 I L-  I C. 1 — K cos 13z1 

-11z el`" (K <1) Ho. K +1e—+ 1 + K 

EA. and Hy1 represent field components in the incident wave. 

[9] 

7.09 Elimination of Wave Reflections for Normal Incidence on 
Perfect Dielectrics 

It was found in the previous article that all energy is transmitted, none 
is reflected, if the two dielectric materials have equal intrinsic imped-
ances, fi = f2, or 

. 21 .\17-42 

el e2 
[1] 

However, knowledge of this is of little aid in attaining perfect matching 
since no dielectric materials with permeabilities very much different from 
that of air are known, and if i = Pc then (1) requires that Ei = e2. 
This is a trivial case since it is obvious that there would be no reflection 
if the two materials have identical dielectric constants and permeabilities. 

Recall, though (Prob. 1.21b), that it is possible for a single frequency 
to match perfectly two transmission lines of different characteristic 
impedances by introducing between them a quarter-wave matching 
section. This matching section, or impedance transformer, was a trans-
mission line a quarter wave in length and having a characteristic imped-
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ance equal to the geometric mean of the two characteristic impedances 
to be matched. With this matching section, the wave reflections from 
the two discontinuities arrive with proper mag-
nitudes and phases to cancel completely the back-
ward traveling wave in the original line and ¡Mow 
all energy to be transmitted. 

Similarly, the transmission line analogy shows 
that wave energy of a single frequency may be 
perfectly transmitted between one dielectric ma-
terial and another, if a third dielectric section is 

FIG. introduced at the boundary (Fig. 7.09). This 
mg section for plane 

impedance matching region must be a quarter waves. 

wave in thickness, arid of intrinsic impedance the 
geometric mean of the two intrinsic impedances to be matched. That 
is, 

and 

X3  1 

4 4f1/7-23e; 

P3 = P1P2 

€3 N €152 

7.09. Match-

[2] 

[31 

7.10 Phase Velocities for Waves at Any-Angle of Incidence 
We have considered, in the previous articles, waves normally incident 

upon conductors and dielectrics. When the incidence is at any general 
angle, the problem may of course be solved by the usual method of 
matching tangential field components at the boundary. However, the 
previous analogies and equations may be applied directly if the viewpoint 
of wave propagation is broadened somewhat. In this extension, any 
uniform plane wave propagating with velocity of light in any given direc-
tion may be regarded as a somewhat different wave, propagating in some 
more favorable direction (say normal to a discontinuity) by simply 
altering its phase velocity in the proper manner. 

Consider, in Fig. 7.10, a uniform plane wave propagating in the z' 
direction AO. From the previous analysis of uniform plane waves, it is 
known that this wave will have field components only in transverse 
planes, as aa or da', and these components do not vary in magnitude or 
in phase along these planes. Propagation in the z' direction is with the 
speed of light in the dielectric (1), so that the propagation function is 

'•w , 
= Ee - = Ee 
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And e1 (or W/3) is, of course, the phase velocity in the z' direction. 
That is, if the phase angle is to appear constant to. a fictitious moving 

a I observer, his velocity would be i—o-r 
ITz 'a 

dzt 
b "ry  b "a. — = — 

A \ Ç' r 1 , dt Si \ z,  . , . 
e-----\--V ,i/  e >..,, , 1 l'' Now, the fictitious point Y, 

"As / i 
ae ‘ e.• 

, )Ç i representing intersections of the 
. . ,x . •< ^ e ' \ ----f Medium 1 plane of constant phase aa and . - I 

a/ ., \ I the axis BO, moves in the z 
\ I 

a> / \J  direction (along BO) with veloc-
ity vi/cos O. To see just what 

Fla. 7.10. Uniform plane wave moving at is meant by this statement, 
angle 8 toward a plane. 

consider a plane normal to the 
z direction. Instead of uniformity at every instant there are varia-
tions of electric and magnetic field along this plane, producing a given 
pattern at any instant. In the time that a plane of constant phase aa 
has moved to a'a' over the distance XX', namely, 

txx, = 

VI 

xx' 

the pattern in the plane bb has moved to a new plane b'b'. Thus the 
phase velocity in the z direction e12 is determined by 

But 

So 

till,, = txxi = 
YY' 

Viz 

XX' = YY' cos 

YY'v VI 
V1z = [I] 

XX' cos 0 

And the propagation function in the z direction may be written 

E1 = E'elw( t—ge÷:8) = eel° [21 

In other words, we say that one never knows or cares whether there is 
a miiform plane wave traveling at angle O toward the boundary with 
velocity v1, or a non-uniform wave traveling with angle zero (normal 
incidence) toward that boundary with phase velocity v1/cos O. The 
non-uniformity shows up in E' which is a function (no longer a constant) 
in the plane normal to the newly selected direction of propagation BO. 
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We may obtain this function E' and, indeed, derive (1) and (2) in 
another way by noting in Fig. 7.10 that a distance z', in terms of the 
coordinates x and z, is 

zi = z cos x sin O 

So that the original wave 

Eel(w"'e) = Ee—e'x Bin °Vi(c't — 191z coe 0) 

The distribution function in the x direction, E' of (2), is then given by 
the Eee ° term, and the phase velocity in the z direction, just as 
determined by the previous reasoning is merely 

V1 

131 cos O — cos 

Note. It is equally proper to write the propagation function as 
Ee cos 0 ej(cdt—lie sine) 

and to consider the wave as a pattern Ee—ee 0080 propagating in the x 
direction with velocity 

CO V1 

a, sin O sin O 

In either case, the wave pattern in the plane transverse to the selected 
direction of propagation is not a uniform pattern, and its points are not 
in phase, but so long as the ratio of transverse components of electric to 
magnetic field is a constant, the general expressions for wave reflections 
developed in Art. 7.07 are still valid for analysis, and the transmission 
line analogies are equally valid for quantitative thinking. This use will 
be demonstrated by examples to follow. 

Problem 7.10. Find the group velocity of waves such as those discussed in 
the preceding article (uniform plane waves incident at a boundary at an arbitrary 
angle) in the direction of the normal to the boundary. 

7.11 Incidence at Any Angle on Perfect Conductors 
We shall utilize the concepts of phase velocity and non-uniform 

plane waves to consider a very simple case, that of incidence upon a 
perfect conductor at any oblique angle. No matter what the orientation 
of the field vectors, the wave may be broken into two components, one 
with the electric vector entirely in the plane of incidence, the other with 
the magnetic vector entirely in the plane of incidence. The first of these 
will be said to be polarized in the plane of incidence, the second polarized 
normal to the plane of incidence. These may then be considered 
separately. 
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o x 

2 

FIG. 7.11. Wave polar-
ized with E in plane of 
incidence striking a plane 

boundary at angle V. 

A. Polarization in Plane of Incidence. In 
Fig. 7.11 the angle O is measured from the 
normal to the surface, and the plane of inci-
dence is chosen as the xz plane. The mag-
netic vector lies entirely in the y direction. 
Suppose its magnitude is H. According to 
concepts of the previous article, we can con-
sider this incident uniform plane wave trav-
eling in the AO direction as a non-uniform 
wave traveling in the z direction as follows. 

H o = e-ise el(wt-olz corifo 

E21 = niH cos O e-joix sin ° COB e) 

[1] 

[2] 

E21 = — nil/ sin O e-le'l"in el (""" "'") [3] 

The ratio between transverse components of electric and magnetic 
field is a constant for all values of x, y, and z for this wave, 

E21 

Ho 

so, according to previous arguments, it is quite proper to use the imped-
ance concept with Z1 as the characteristic wave impedance for the wave. 

Since energy cannot be transferred to the perfect conductor, there 
must again be a reflected wave. This is reflected at some yet unknown 
angle O'. To find its phase velocity along any particular direction let us 
look for a moment at both incident and reflected waves as propagating 
in the x direction. Then we see that both waves must travel at the same 
phase velocity in this direction because they must combine everywhere 
along the plane in precisely the same way to satisfy the unchanging 
boundary condition along that plane. 

=nicosO=Zi [4] 

VI 

sin O sin O' 

Another way to state the same reasoning is that a boundary condition 
of zero tangential electric field is imposed by the conductor for all values 
of x and time. This can only be satisfied if 

e-;1312 sin =  

So from either viewpoint it follows that the reflected ray's electric field 
lies in the plane of incidence; that is, there can be no y component of 
propagation. It is also necessary that the angle of reflection be equal 
to the angle of incidence. 

[51 O' = 
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So for the reflected wave = cos 0 C iee ein e ei(e+fio °°°° 

—n1Fri, sin 0 ej1 11O eewt-i-ete cos 

The wave impedance, or ratio of transverse electric to magnetic field in 
this wave, is the negative of that for the incident wave because of the 

difference in direction. 
4 

' HI = —n1 COSO= —Z1 

This is another of the requirements for the results of Art. 7.07 to apply 
here. The wave impedance of the reflecting medium must be zero since 
the perfect conductor requires zero tangential electric field. So from 

Eqs. 7.07(7) and 7.07(9) 
Z2 

K --- 0 

[61 

[71 

[81 

yl 
= 

Exl Hi 

Since II is magnetic field magnitude for the incident wave, the reflected 

wave is 
sin e ei(c4-1-00 cos 01 _ 

"y1 — ",-• EL = —,11/ cos o e—jt3le Bin e ei(wt+e312 COB o 

E21 = — 1H sin O 0—'1131e Bin 0 eiw+Olz Cos e) 

And the resultant wave (incident and reflected) is 

Hy ---- 2H cos (piz cos 0) e-ise en ' eicet 191 

E, =- —2jniH cos° sin (z cos 0) e-eix eiwt [10] 

E, = —2j71111 sin O cos (piz cos 0) e—jeix sin 0 eicat [11] 

These are seen to be standing wave patterns with maxima and minima 
at half-wave points in front of the plane, measured at the phase velocity 

in the direction normal to the plane. That is, there are: 
"I 

Zeros of Ez, maxima of Hy and E, at z .--- —  2 cos 0 

(2n + 1)).1 
Zeros of I I y and E,, maxima of Ez at z = — 4 cos O 

where )%1 = 
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B. Polarization Normal to the Plane of Incidence. The analysis is so 
similar to the previous case that all details need not be repeated, 
The incident wave may be written 

Evi = Ee-jog sine tedt-tie cos 0) 

1121 = —E cos sin e e wi—ele cos 0) 
771 

H,1 = -E sin O e-ele sin 9 ei('-130 cos 6) 
771 

The ratio K = Z2/Zi is zero as before, so that 

[12] 

[13] 

[14] 

E' H 1 
= - -1 [15] 

H21 

The reflected wave is then 
E'1 = Bin e ei(41+1313 coo 0) y 

E = - - cos o e-18,2 sin ej(w1-1-131z Coe 9) 

111 

Hlz1 sin o e-orix sin Oeta +firg COB 0) 
ni 

The resultant of incident plus reflected wave, 

Ey = -2jE sin (Plz cos 0) eiP0e ejw' [19] 

2E 
x = - — cos O cos (thz cos 0) e-ifie en eiwt [20] 

= - —2jE sin O sin (fliz cos 0) e-ilhz aine ei't 
771 

This is again a standing wave pattern in the z direction with: 

n?1/41  
Zeros of Ev and H,, maxima of H. at z - 

2 cos O 

(2n 1)X1 
Zeros of H., maxima of Ev and Hz at z - 

4 cos O 

where XI -= 
f <e7 

It might be argued that the use of the impedance concept, with phase 
velocities in the direction normal to discontinuities, was perhaps no 

1 

[18] 

[21] 
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easier for this simple case (at least so far as the mathematics is con-
cerned) than a straightforward application of the boundary conditions. 
However, the point of view, the physical picture, is much superior. 
When it is grasped for simple cases such as this, it will prove extremely 
valuable for the analysis of more complex cases which will next be 
studied. 

7.12 Incidence at any Angle on a Boundary between Perfect 
Dielectrics 

For a wave crossing a boundary between perfect dielectrics the same 
division of the wave into two components employed in the previous 
article will be followed. 
A. Polarization in Plane of Incidence. The incident wave is identical 

with that described by Eqs. 7.11 (1), (2), and (3). There will be, just as 
for the case of normal incidence, some reflected wave and some wave 
transmitted to the second dielectric material. By the same reasoning 
used to determine the angle of reflection in the previous article, it follows 
that the phase velocities of each of these waves (incident, reflected and 
transmitted) tangential to the surface must be the same. That is, 

y1 V1 V2 

sin 0 = sin O' sin 0" 
[1] 

where O = angle of reflection. 

0" = angle of transmitted ray from normal (angle of refraction). 

In addition to the fact that both the transmitted and reflected rays 
lie in the plane of incidence (no propagation in the y direction), it is now 
known from these conditions that the angle of reflection is equal to the 
angle of incidence, and that the angle of refraction is related to the angle 
of incidence by the following relation (known as Snell's law): 

sin 0" V2 /4E1 
= - 

sin O y1 N I.L2E2 
[2] 

The characteristic wave impedance for the incident wave in medium 1 is 

Z1 = = ni cos 0 
n yl 

That for the reflected wave is just the negative of Z1. The characteris-
tic wave impedance for the wave in medium 2 is 

Z2 = 112 cos 0" 
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The ratio of impedances, 

Z2 K = = 712 cos 0" —  
Z1 ni cos 0 

From (2), this may also be written 

112 2 sin 0 
v K — 1  [3] 

ni cos 

Coefficients for the reflected and transmitted waves are given by 
Eqs. 7.07(7) and (8). 

K — 1 

E 1 H1K+ 1 

E z2 re Ho 2K  

Ee = K + 1 

[4] 

[5] 

From (3), (4), (5), and the incident wave, Eqs. 7.11 (1), (2), and (3), 
transverse components of the reflected and transmitted waves are deter-
mined. The normal components are 

= EL tan 0 [6] 

E 2 = —E.2 tan 0" [7] 

The resultant components of incident plus reflected wave in medium 1 
may be found by adding the previous results. They are given below as 
ratios to the incident wave components. The expressions are written 
so as to make easy an interpretation of the traveling and standing wave 
parts for various values of K. Thus as K approaches unity the standing 
wave part disappears. As K approaches infinity or zero, the appropri-
ate expression below shows the dominance of a particular standing wave 
over the vanishing traveling wave. 

Ex 2 [K + 1 -1- K  1 1 K — 1 ens 13,z] (K > 1) 

1.- K  1 sin p'z] (K > 1) 
Ee =  He r— LK + 1 K + 1 

2 E. r  K - K sin et,z] (K < 1) 
& I'. LK ± 1 1 K 

K 1 — K e_ja,2 +  cos etz] 
(K < 1) 

H [K ± 1 1 K 
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where again 

K — 

13' = 

n2 cos 0 n 
it \ il — (v) sin2 0 

2 

2 Vi 

ni cos 0 ni cos 0 

21- cos O 271-f cos O 
= 

xi vi 

B. Polarization Normal to Plane of Incidence. The incident wave is as 
in Eqs. 7.11(12), (13), and (14). The characteristic wave impedance 
for this incident wave is then 

Eyi Ili 
Z1 = — = — 

Hzi cos 0 

That for the reflected wave is the negative of Z1. That for the trans-
mitted wave is 

E,2 7/2  

Hz2 COS Olt 

So the ratio of impedances is now 

K
Z2 772 cos O n2 cos 0 

—  Zi —   — ni cos 0" 
ni ..\/1 — 

(d) 
—2 sin2 0 
vi 

From Eqs. 7.07(7) and (8) 

LI HL K — 1 la 
E 1 Hxi K + 1 

[8] 

[9] 

y2 II x2 2K  E 

Bo. H xi K + 1 

From (8), (9), (10) and the incident wave, Eqs. 7.11(12) to (14), trans-
verse components of the wave are determined. The normal components 
are 

H:i = HL tan 0 

Hz2 = — He tan 0 

The resultant components of incident plus reflected wave in medium 1 
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are again found by adding the previous results. 

Hz _ 2r e_iify, — 1 sin 0,s] 

— LK + 1 K + 1 
Hz = 2r  1 0,z] 

H51 .= 4 1 LK +1 e ± K+ 1cos 

= 2 r  K  ,,z 1 — K , 
e cos 13 z 

He [K ± 1 ± 1 K 

Hz E r  K 1 - K j cos Orz] 
1 K Hz1 Eta LK + 1 

and again 

K — n2 Cos  

ni Cos 0" 
nz Cos 

v2)2 
ni \11 — sin2 O 'vi 

, 23- cos 0 2711 cos 0 

xi vi 
— 

Problem 7.12. By the concepts of wave propagation for general angles of in-
cidence developed in Art. 7.12, extend the analysis of the quarter-wave matching 
section for eliminating reflection between dielectrics developed in Art. 7.09 for 
normal incidence. That is, without resorting to matching of wave solutions, deter-
. mine the thickness of a matching section and its dielectric constant and permea-
bility if it is perfectly to eliminate reflections for a single-frequency wave incident 
at the angle O upon a plane surface separating two dielectrics of constants el, 
and E2, in, respectively. 

7.13 Total Reflection 

A study of the general results from the previous article for incidence 
on a dielectric at any angle shows that there are several particular angles 
of incidence that are of special interest. First, under what conditions 
might a wave be totally reflected? Previous study has shown that this 
occurs when there is complete mismatch, that is, when the ratio of wave 
impedances K is either zero or infinity. For a wave polarized in the 
plane of incidence, this ratio is given by Eq. 7.12(3). 

f, 2 

— ( 1 ) sin2 
n2  
ni cos 

[1] 

This factor may be made infinite if cos O = 0, but this is a trivial case 
since it represents a wave traveling parallel to the boundary. The 
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factor may become zero at a critical angle such that 

1 —sin2 oc = 

vl P2E2 
sin oc = — = [2] 

V2 gel 

Before investigating this factor further, let us notice the impedance ratio 
K for waves polarized normal to the plane of incidence. Equa-
tion 7.12(8) gives this: 

K n2  COS 0 
2 

2 
— sin 

(v2) • 
VI 

This factor becomes zero for waves traveling parallel to the boundary 
and infinite for waves incident at an angle defined by (2). It is then 
apparent that any type of wave incident at an angle which satisfies (2) 
is totally reflected. A study of the refracted wave makes it clear why 
this should be. 

Consider, for ease of visualization, two dielectrics of the same perme-
ability. Equation (2) then reduces to 

sin Oc = .‘F2 
el 

[3] 

A real solution for 0, exists only if €2 < €1, which means that the wave 
must be passing from one dielectric to another of smaller dielectric con-
stant. Equation 7.12(2) shows that the refracted wave in the second 
medium then makes a larger angle with the normal than the incident 
wave. In particular, it is possible for the transmitted or refracted wave 
to make an angle of 90° with the normal (that is, become tangential to 
the surface) when the incident wave is still at some angle 0, less than 90° 
from the normal. For angles of incidence greater than Oc, the angle of 
refraction could not be determined since (5) would require that it have a 
sine greater than unity. This means, of course, that there is total reflec-
tion over all the range of incident apgles between the critical angle, 
defined by (2), and O = 90°. This is apparent also from the fact that 
imaginary values of the impedance ratios result over all this range. 
When we say that no wave is transmitted across the boundary for 

imaginary values of K, it should not be assumed that there is absolutely 
no field in the region beyond the boundary. It will be noted that when 
K is imaginary, the usual expression can still be written with complete 
correctness for the fields beyond the boundary. These expressions will 
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have an exponential factor which instead of being of the form eies' where 
(3 is a real quantity will be of the form e' where a is real. In other 
words, it is true that no propagating waves extend beyond the boundary; 
the field does penetrate into the second dielectric, but it dies off 
exponentially. 

Since K is imaginary for angles of incidence greater than the critical, 
an inspection of the Eqs. 7.12(4) and 7.12(9) shows that although the 
reflected wave always has a magnitude equal to the incident wave, the 
phase angle can take on various values. In fact if e is the phase of 
E'1/E1 andi,li is the phase of E 1/E51, the phase angles may be obtained 
from Eqs. 7.12(4) and 7.12(9) and the definitions of K. 

tan e — 

tan — 

2 

—2 n cos 0 .\I&) sin2 0 — 1 
  polarization in inci-

dent plane [4] 
cos2 0 — (22)2(-Î -sin 0 — 1) 

Vi 

7- 2! cos O ,\I(v2 sin2 0 — 1 )2 
ni vi  
2 

COS2 o — (2-2 8.1112 e — 1) 
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polarization normal 
to incident plane [5] 

The x component thus has a different phase angle from the y component 
for angles of incidence giving total reflection. So, if wave components 
of both polarization are present in the incident wave, the reflected wave 
under these conditions will be elliptically polarized (Art. 7.05). 

Problem 7.13(a). Calculate the critical angle for an electromagnetic wave 
passing from the following dielectrics into air. 

Material 

Distilled water 
Ethyl alcohol 
Glass (high density) 
Glass (low density) 
Mica 
Quartz 
Petroleum oil 

/e o (ratio of dielectric constant 
to that of air) 

81.1 
25.8 
9 
6 
6 
5 
2.1 

Problem 7.13(6). Show that the phase difference between the two polarization 
components in the reflected wave under conditions of total reflection, ê = ip - 
is given by 

( — 2 /1-121 [ vi tan ) 2 — 1] sin2  

[(ni;)2 — 1] cos GNe2)2 sin2 — 1 
vi 
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Problem 7.13(e). Find the expressions for the fields in the second dielectric 
when the incident angle is such as to yield imaginary K in such form as to disclose 
the exponential decay of these fields with penetration into the second dielectric. 

7.14 Polarizing Angle 

Let us next ask under what conditions there may be no reflected wave. 
That is, under what conditions may the two wave impedances match 
exactly, making K unity, without resorting to an intervening dielectric' 
matching section? For a wave polarized in the plane of incidence, this 
requires setting Eq. 7.13(1) equal to unity. 

2 

4j1 - (2 ) sin2 0 
'Vs  v1  

K — — 1 
ni cos 0 

The solution of this equation results in 

sin O -= [1] 

Similarly, the impedance ratio for waves polarized normal to the plane 
of incidence may be made unity if 

sin O [2] 

For angles of incidence defined by (1) and (2) there would be no 
reflected wave. Let us see what numerical values these angles might 
have in practical cases. There are few if any dielectrics of practical 
importance in radio applications that have permeabilities substantially 
different from that of air. If pi is made equal to 122 in the above equa-
tions, it is seen that (2) can have no real solutions (since sin O = co) 
unless el = e2 as well, which is the trivial case of identical permeabilities 
and dielectric constants. However, (1) may be solved to yield an 
angle O = Op for which there is no reflected wave when the incident wave 
is polarized in the plane of incidence. 

sin Op - 
1 

tan 0, = — 
Ei 

[31 
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(If materials commonly were to have identical dielectric constants and 
different permeabilities, (2) might conversely have a solution whereas 
(1) would have none.) 
Although a wave polarized in the plane of incidence and incident at 

the angle defined by (3) will have no reflected component, a wave 
polarized normal to the plane of incidence and incident at this angle will 
have reflected components. Consequently if a wave containing both 
components is incident at this angle, one component causes reflections 
while the other produces no reflections. The reflected wave is then 
polarized normal to the plane of incidence, even though the incident 
wave was unpolarized. The angle Op defined by (3), or (1) in general, is 
consequently known as the polarizing angle. It is also often known as 
the Brewster angle. 

Notice that K is lass than unity for angles of incidence O < 02, and 
greater than unity for angles of incidence O > Op. An inspection of the 
equations of Art. 7.12 shows that the standing wave patterns change 
form at this angle. Thus in the standing wave pattern there is a mini-
mum of Ez and maxima of Ez and Hy at the dielectric surface for angles 
O < Op. For angles O > Op there is a maximum of Ez and minima of Ez 
and Hy at the boundary. Of course exactly at the polarizing angle the 
standing wave components of Ex, E„ and Hy disappear completely. 

Problem 7.14. For the dielectrics listed in Prob. 7.13(a), determine the polariz-
ing angle for waves passing from each of the dielectrics into air, and also for waves 
passing from air into the dielectrics. 

WAVES IN IMPERFECT CONDUCTORS AND DIELECTRICS 

7.15 Waves in Conducting Materials 

From Poynting's theorem it is known that no energy can be trans-
mitted into a perfect conductor, and so no wave can exist inside such a 
conductor. Furthermore, no fields of any kind, waves or otherwise, can 
be in such a conductor. If the conductivity is not perfect, electric and 
magnetic fields may exist inside the conductor, as was shown in the past 
chapter, and under certain conditions it may be desirable to consider 
these as waves. 
For a conductor, the equations corresponding to Eq. 7.02(3) and 

Eq. 7.02(4), assuming sinusoidal time variations, are 

y X É = —jcobe 

V X H = (cr jcue)2 = jcoe[l E 
jcoe 

It is apparent from these equations that all mathematical manipulations 
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of previous sections are valid if 

= [I ± =°.-] 
3C0E 

is substituted in place of e for solutions applying inside the conducting 
material. In other words, as far as the use of previously derived mathe-
matical relations are concerned, a conductor is simply another dielectric 
with a complex dielectric constant e, and with its conductivity never 
appearing explicitly. Of course, we are interested in more than the 
mathematical relations so we shall return soon to see what this means 
physically. 
Thus taking -y again as the propagation constant for a uniform plane 

wave, Eq. 7.04 (3), 

'Y = iwVi—Lec 

Since E, is complex, 7 will have real and imaginary parts. Thus 

Tej  

e= NieLe ( /1 + er2 — 
2 \ we 

n.2 

e = \ ± 
2 0)2ê 

1) 

The intrinsic impedance for'the conducting material 

nc = =   
[1 + 

.1C0e 

E, 

[11 

[5] 

These values may be substituted in all previous general wave results. 
It is apparent at once that since 7 has real and imaginary parts, there is 
now attenuation as the wave progresses in the conductor 

e-7z = e-ffize-az 

This is as would be expected, since energy is lost by currents flowing in 
the imperfect conductor. Since n, is complex, it follows that electric 
and magnetic fields are not in phase for a uniform plane wave in a con-
ductor as they were in a perfect dielectric. Since K, the impedance ratio 
between ?lc and the intrinsic impedance of a dielectric, will also be com-
plex, any waves reflected by passage from a dielectric to a conducting 
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medium will have phase differences with respect to the incident wave 
• other than the 0° or 180° values found for reflection from perfect dielec-
trics and conductors. 
The special cases of greatest interest are those in which the material is 

either a reasonably good conductor, or a reasonably good dielectric, and 
of these more detailed analysis will follow. 

7.16 Waves in Imperfect Conductors 

An imperfect conductor will be regarded as a conductor in which dis-
placement currents are negligibly small compared with conduction cur-
rents for the frequency of interest but in which the resistivity cannot be 
neglected. That is, 

Then Eq. 7.15(2) reduces to 

(1 + i)\/7—fga. = 1 ± 
3e') 

3 is the depth of penetration used extensively in Chapter 6 and defined 
by Eq. 6.04(10). The propagation function for the wave, 

z .0 
e tz = e ae a 

[1] 

shows that the wave decreases in magnitude exponentially, and has 
decreased to 1/e of its original value after propagating a distance equal 
to depth of penetration of the material. The phase factor corresponds 
to a very small phase velocity, 

co 271-8 
[2] 

e 
where c = velocity of light in free space. 

= free space wavelength. 

Since 3/4 is usually very small (see Fig. 6.05a) this phase velocity is 
usually much less than the velocity of light. 

Equation 7.15(5) gives, for a good conductor, 

= = (1 + Nf1r72 = (1 ± DR8 [31 

R, is the surface resistivity or high-frequency skin effect resistance per 
square of a plane conductor of great depth. Equation (3) shows that 



Art. 7.17] IMPERFECT DIELECTRICS 273 

electric and magnetic fields are 45° out of time phase for the wave propa-
gating in a good conductor. Also, since R. is very small (see Fig. 6.05a) 
the ratio of electric field to magnetic field in the wave is small. 

Since R. is much less than unity for ordinary conducting materials 
(0.014 for copper at 3000 me) and since the intrinsic impedance of most 
dielectrics is much greater than unity (377 for air) the ratio K which 
appears in the reflection formulas for waves incident upon conducting 
boundaries will be very small. 

Tic = — for normal incidence 
n1 

(1 +j)R8 

171 

Reflection from such conductors is then, for most practical cases, accu-
rately enough computed by the results found for a perfect conductor, 
K =- 0. A small amount of energy, of course, is transferred to the imper-
fect conductor to take care of losses due to the current flow in it, and a 
small 90° out-of-phase component is reflected from the surface of the 

conductor. 
The above results make it clear that this wave picture presents another 

way of looking at skin effect phenomena, as was predicted in Art. 6.02. 
The decrease in current density and field strengths as one progresses into 
the conductor may be thought of as the attenuation due to the finite 
conductivity, which corresponds to distributed conductance in a trans-

mission line. 

Problem 7.16(a). Compute the percentage of energy transmitted to a rea-
sonably good conductor when a plane uniform wave is normally incident upon it. 

Problem 7.16(b). Compute the ratio of 90° out-of-phase component to the 
in-phase component in the reflected wave caused by a normally incident wave upon 

a conductor. 

Problem 7.16(c). Calculate values for the results of a and b for incidence 

from air to copper at 30 inc/sec and at 3000 mc/sec. 

7.17 Imperfect Dielectrics 
In a dielectric material with finite conductivity, it is not wise to neglect 

displacement currents as was done for good conductors, since displace-
ment currents will usually be much greater than conduction currents if 
the material is to be useful as a dielectric. Neither can we completely 
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neglect conductive currents if any information is to be obtained on the 
effect of losses. It seems necessary to consider both the conductivity 
and dielectric constant terms in the expressions of Art. 7.15. That is, 
the complex dielectric constant is 

[1] awe 

The properties of a lossy dielectric might be expressed by stating 0-
and E. However, for reasons having to do with measurement and varia-
tion of properties with frequency, it is more common to express the prop-
erties of a dielectric in terms of two quantities, ei and e", such that 

eC = edet [2] 

eo is the dielectric constant of free space in mks units, e' is the familiar 
value of dielectric constant for the material, based on air or space as 
unity, and e" is called the loss factor. By comparing (1) and (2) we 
see that 

cr 367r0  

weo co X 10-9 [3] 

where o• is in mhos per meter. 

The ratio of ¿"le' is also a common constant for dielectrics, since it is a 
direct measure of the ratio of conduction current to displacement current 
in the dielectric. 

= = — 
E WE0E WE 

[4] 

This ratio is often called power factor of the dielectric, although it is 
only an approximation to power factor good for small values of e" /e'. 
Strictly, power factor is defined as 

where 

P.F. = sin 

it e 
tan et. = [5] 

However, since for most useful dielectrics the ratio of conduction to dis-
placement current is less than 0.10, it is satisfactory to use the ratio (4) 
as power factor. 

It should be emphasized that no matter what quantities are used to 
express the properties of a dielectric, 0-, e, e", or P.F., any of these may 
in general be a function of frequency. Unlike the situation for conduc-
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tors, where a value of conductivity cr will hold for all frequencies of 
interest, properties of certain dielectrics given for one frequency may not 
indicate at all the properties at another frequency. 

7.18 Waves in Imperfect Dielectrics 
It will be assumed here that the dielectric is good enough so that con-

duction currents are relatively small compared to displacement currents. 
That is, power factor is assumed to be small. With this assumption, 

o. t/ 

= — 1 
e WE 

Eqs. 7.15(3) and 7.15(4) reduce to 

1(:)2] 
8 ei 

where k = coNlie = 2r/X. 
Thus the exponential expressing attenuation is 

ke"z en. 
e' = e- 2-7 = 

We see that the wave has attenuated to 1/e (about 37 per cent) of its 
original value in a distance 

Xe 
2 

E Ir 

If EitITIEI is small compared with unity, this distance is large compared to 
wavelength. 
From (2) the phase velocity is 

1 

(;)2] 

[3] 

The phase velocity is thus decreased a small amount by the conductivity 

of the dielectric. 
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The intrinsic impedance of the medium is given by Eq. 7.15(5). 

3 (é ét} 

nc  tt + — —7y + [4] 
8 E ZE 

e 

This expression shows a small 90° out-of-phase component between 
electric and magnetic fields in the wave propagating in an imperfect 
dielectric. The ratio between in-phase components is also changed by 
the small correction factor %(6"/E')2. 

If the above complex value of tic is substituted in the impedance ratio K 
in order to determine reflections from the imperfect conductor, K will be 
found to be complex also. This means, of course, that there will be a 
slight effect of the conductivity on the magnitudes of the reflected and 
transmitted components, and that a small phase angle will exist between 
these components and the incident wave. Since this phase angle need 
not be the same for both polarization components, the reflected wave 
may be elliptically polarized if the incident wave contains components 
polarized in both planes. 

7.19 Properties and Classification of Poor Conductors 

Special results have been given for reasonably good conductors and 
reasonably good dielectrics; we wish to know to what materials these 
conclusions may be applied. Practically any metallic conductor has a 
value of Œ/w€ much greater than unity at any radio frequency, so that 
these may be considered reasonably good conductors. Most dielectrics 
or insulating materials in practical use as dielectrics have values of 
cr/w€ (power factor) which are not large compared with unity (say less 
than 0.05), so that the results of Art. 7.18 may be applied to these. 
Some other materials of importance to radio may be considered as 
reasonably good conductors at some radio frequencies and reasonably 
good dielectrics at other frequencies. Such materials are earth and 
sea water. 
Below are listed for certain of these materials the frequency at which 

cricoe = 100. For all frequencies below this, it/we should be very large 
compared with unity so that the results of Art. 7.16 may be applied. 
Also there is tabulated the frequency at which er/w€ = 0.05. For all 
frequencies above this the approximations of Art. 7.18 should be accurate 
enough. For any frequencies between these limits, the exact expressions 
of Art. 7.15 should be used if accurate results are desired. It will be 
recognized that the following values are merely representative since these 
materials vary greatly in electrical properties. 
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MATERIAL 

Sea water 
Fresh water 
Wet earth 
Dry earth 

cr 
CONDUCTIVITY 

MHOS/METER 

4 
10-3 
10-3 

10-3 

FREQUENCY 
AT WHICH 

u/we = 100 
(Art 7.16 valid 
for all lower 

e' frequencies) 

81 8.9 X 106 
81 2.2 X 103 
10 18.0 X 103 
5 0.36 X 103 
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FREQUENCY 
AT WHICH 

U /WC = 0.05 
(Art. 7.18 valid 
for ail higher 
frequencies) 

17,800 X 106 
4.4 X 106 
36 X 106 

0.72 X 106 

7.20 Elimination of. Wave Reflections for Incidence on Good 
Conductors 

For high-frequency applications it is often desirable to reduce or elimi-
nate spurious reflections from metallic objects placed in the vicinity of 
radiating systems. We shall shoe that a thin conducting film may be 
utilized for this purpose if removed a 
quarter wavelength from the metallic 
surface. This example will again serve 
to illustrate the usefulness of the trans-
mission line analogy and impedance 
concepts. 
The uniform plane wave normally 

incident upon a good conductor, (4) of 
Fig. 7.20a, will be considered. It has 
been shown (Art. 7.06) that a standing 
wave pattern is set up due to the combi-
nation of reflected and incident waves, 
so that a quarter wavelength in front of 
the conductor there is a minimum of magnetic field and a maximum of 
electric field. This represents a point of very high impedance, E/H. 
Suppose a given thickness, d, of any material is placed at that point. 
The impedance viewed from the front surface of the material, where 
the wave strikes, may be expressed in terms of the terminating imped-
ance, the thickness, and the propagation constant through that material, 
Eq. 7.07(10). If the back surface of the film is placed exactly at the 
node of magnetic field, the terminating impedance is practically infinite. 
(It is of course exactly infinite if the conductor 4 is perfect.) The im-
pedance at the front surface is then 

Zi = 712 coth -y2 d 

3 S. A. Schelkunoff, " The Electromagnetic Theory of Coaxial Transmission Lines 
and Cylindrical Shields," Bell System Ted. imert., 13, 532 (October, 1934). 

1 

Plane 
Wave - 

Conducting 
Film 

Fro. 

3 4 

Perfect 
' Conductor 

7.20a. Impedance sheet for 
termination of a wave region. 
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For perfect matching and complete elimination of reflections, this 
impedance should be equal to the characteristic wave impedance for the 
wave in the dielectric material 1. For a uniform plane wave this is 
merely 

n2 coth 72 d 

Let us try to accomplish this matching with a film of conductivity cr, 
and of small enough thickness so that 

coth 72 d 
72 d 

The values of Y2 and n2 for a conducting material may be substituted 
from Art. 7.15. 

7/1 [ N/ P2  1 

e2 (1 + 

Jw€21 

ni — 
1 

jcue2 d (1 ± 
ico€2 

The impedance ni is purely real. The right side may only be a pure real 
number for a reasonably good conductor such that unity is negligible 
compared with °Ice. Then 

1 

1 

  1 
/cud % IAE2 (1 + I 

aceE2 

1 
711 = [1] 

02 th 

This corresponds to a thin film of resistive mate-
' rial whose resistance per square is equal to the in-

  trinsic impedance ni. This is analogous in trans-
7.20b. Transmis- mission line terms to the characteristic impedance 

sion line equivalent of of a transmission line placed a quarter wavelength 
Fig. 7.20a. 

in front of a short-circuited end (Fig. 7.20b). 
Since the short-circuited quarter-wave line has infinite impedance, this 
represents perfect matching for a wave approaching from the left. 
Note that the conductivity «2 must be quite small if d is not to be 

unreasonably small in thickness. Thus if the material 1 is air or space 
(77 = 120r ohms), 0-2 must be 28.5 mhos per meter to make d = 0.1 mm. 
This corresponds to a conductivity about 0.5 X 10 times that of 
copper. Note also that the spacing 1 between film and conductor is a 
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quarter wavelength in the dielectric material of 3, so that this spacing 
may be decreased if a material of higher dielectric constant is used. 

X3 1 
= =   [2] 
4 4f Nerii,-3 

The perfect matching was possible because the film, which must absorb 
the incident wave, was placed a quarter wavelength from the conductor 
where the electric field was high. Matching is not possible with a film 
of simple electrical properties if it is attempted to place the film on the 
surface of the conductor itself, since this is a region of low electric field. 
The dielectric and conductivity properties of the film would then be 
unimportant. 

Problem 7.20(a). Show that it is not possible to match the wave impedance 
exactly with any type of conducting film placed directly on the surface of the metal 
so that its terminating impedance is effectively zero. 

Problem 7.20(6). By use of the transmission line analogies, determine the 
spacing between a filin and a good conductor, and the conductivity properties of 
that film if reflections are to be perfectly eliminated for a wave incident at an angle 
O from the normal. 
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GUIDED ELECTROMAGNETIC WAVES 

8.01 Introduction 

In the preceding chapter we were interested primarily in electro-
magnetic waves in boundless dielectrics except in so far as reflecting 
discontinuities were concerned. Now we wish to study specifically the 
behavior of these waves in the immediate vicinity of conducting and 
dielectric boundaries when the configurations of these boundaries have 
the effect of guiding the energy along their surfaces. 

Actually no wave is ever truly free from the effect of conductors and 
dielectrics, although for radio waves in the space between transmitter 
and receiver and at a great distance from the ground, the effects of the 
boundaries may be negligible for all practical purposes. Moreover, the 
problem of reflection of electromagnetic waves from a conductor or 
dielectric is not necessarily a different problem from that to be considered 
here, for it was shown in the past chapter that a uniform plane wave 
striking a plane discontinuity at a given angle of incidence may be 
looked upon as a non-uniform wave propagating parallel to the discon-
tinuity. It might be said then that this non-uniform wave was being 
" guided " parallel to the boundary. No matter what is said, such a 
wave will also have a component of power flow (Poynting vector) normal 
to the boundary, except in certain special cases, so that one cannot think 
freely in terms of straightforward guiding or constraining of the energy 
to travel entirely along the boundary. 
A viewpoint then for guided waves will be that of guiding electro-

magnetic energy primarily along the direction of the guiding system. 
Actually, if there is a transmission line or other form of guide, there 
must be some component of energy flow from the wave into the guiding 
boundary to account for that energy dissipated in the finite conductivity 
of the conductor or dielectric. Nevertheless, the principal energy flow 
(if the line is any good for energy transfer) is along the direction of the 
line. There is certainly no large component of energy flow from the 
line out into space under normal conditions. 
The term guided energy has another implication. It seems to say 

that the wave is definitely following the guide, so that the guide could 
be taken around corners or tied into knots, and the wave would faith-

280 



Art. 8.01] INTRODUCTION 281 

fully follow the path prescribed by the guide. We know that for ordi-
nary transmission lines this is true, at least within certain reasonable 
limits. The transmission line certainly need not take an absolutely 
straight path between the source and its load to insure an energy transfer. 
The qualification. " within certain reasonable limits" was introduced 

above, for if the discontinuities are too abrupt, not all the wave will 
follow the line; some will be reflected and some may actually proceed 
into space, and this is called radiation. The problem of how much of 
a wave will continue along the conductor and how much will pass into 
space is a fairly tough one, requiring special techniques for handling. 
These will be developed in the separate chapter devoted to radiating 

systems. 
It might at first seem queer that any of the wave should follow the 

guiding conductor if it were suddenly to make a sharp bend and go off 
in a direction entirely different from that in which the wave was pre-
viously proceeding. If the first point of view were the only one, merely 
that of a wave propagating energy in the direction of the guide, it might 
seem only a coincidence that this wave and the guide should have the 
same direction at any particular place. Actually this is not the complete 
story, for the two are intimately connected through the current flow in 
the guide and the charges on the guide arising from the magnetic and 
electric fields of this electromagnetic wave. If the conductor changes 
direction, the current flow will not ordinarily be expected to stop oblig-
ingly at that point, but rather tends to follow the conductor. This 
current flow in the new direction in turn generates a new wave in that 
direction, either of the same kind or of a different kind from that which 
existed before the bend. 
Many of these concepts will become clearer as specific examples are 

discussed. The mathematical basis is of course not different from that 
of the past chapter. That is, solutions to the wave equation are required 
which fit the boundary conditions imposed by the conducting and 
dielectric guides. However, we shall be interested here in those solutions 
which represent energy transfer along the direction of the guide and 
which are intimately tied to the guide through some condition of current 
flow, charge induction, or special reflection. Analysis will then be con-
fined mostly to guides which are straight and uniform, assuming that the 
wave will follow these well enough if there are reasonable changes in 
direction without worrying too much about the exact mechanism by 
which it occurs in any particular case. Guiding systems in which an 
important part of the energy does leave the guide at the discontinuities 
must patiently await consideration until the analysis of radiating 

systems is studied. 
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SIMPLE EXAMPLES OF GUIDED WAVES AND WAVE GUIDES 

8.02 Waves Guided by an Infinite, Perfectly Conducting Plane 

The concepts of the last chapter permit us to consider any plane wave 
incident upon a plane boundary as a non-uniform wave propagating 
parallel to the boundary. Consequently many waves might be con-

x sidered as propagating par-
allel to the surface of a 
plane perfect conductor, 
corresponding to waves  in.p 

cident upon this plane from 
.), ./../...7 ";»,-. ./...,,,,,,4...m.,..... a perfect dielectric at dif-

Hy ferent angles of incidence. 
Components for these waves 

y are obtainable from Art. 
7.11. However, for present 
purposes interest is only in 
waves for which energy 

transfer is primarily in the direction of the guide, so that the Poynting 
vector should be parallel to the plane. The only conditions under which 
there is never a component of Poynting vector normal to the plane are 
those which make the components of É and /I/ zero in the direction of 
propagation parallel to the plane. 

Let us this time take the surface of the plane perfect conductor as 
lying in the Y—Z coordinate plane (Fig. 8.02). The results of Art. 7.11 
cannot then be used directly because of the different orientation of the 
coordinate system, but the components for the new orientation are 
easily obtained, and it is desirable to keep the z direction as the direction 
of propagation. For a wave polarized in the plane of incidence, there 
is now a component of H. There would then also be a value of 

Fia. 8.02. Electromagnetic field vectors for a 
wave guided by a conducting plane. 

= (E X R)x 

at some instant of time unless Ez were zero. Similarly, there is a value 
of Ey for the wave polarized normal to the plane of incidence, so that 
there would be a value of Px unless H. were zero. A wave polarized in 
the plane of incidence may exist with E. = 0 only when it is propagating 
exactly parallel to the boundary. The remaining components are then 

H u = H ei(cul—kiz) 
[1] 

niHei(wg—k") [2] 
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where 

w T\I1-4 k1 .= CO = = - V1 
The subscripts 1 are to be used here and throughout the chapter to 
denote constants applying to the dielectric. 
A wave polarized normal to the plane of incidence cannot exist under 

the required conditions of zero P. To make Hz = 0 requires propaga-
tion parallel to the boundary as before; but in this case all field com-
ponpnts reduce to zero by the requirement of tangential electric field 
(Er) zero at the conductor and therefore everywhere, since there are no 
variations with x if propagation is exactly parallel to the conductor. 
The components of the wave defined by (1) and (2) might have been set 

down at once, without reference to results of the past chapter. It 
seems fairly evident that a uniform plane wave propagating parallel to 
the plane perfect conductor should get along all right if its electric field 
is oriented normal to the plane, as is required by the boundary condition 
imposed by the perfect conductor. There are, of course, charges in-
duced on the conducting plane from the normal electric field component 
which ends on it. Also, the magnetic field component, normal to the 
electric field and therefore parallel to the plane, is related to the electric 
field by ni, the intrinsic impedance of the dielectric. It produces a 
current flow in the plane. The amount and direction of this current 

flow (Art. 6.07) are given by 

=ÉxIl 

So that current flow is entirely in the direction of propagation and has a 
magnitude in current per unit width equal to the magnetic field 

[3] 

Thus we see that this wave satisfies a second requirement to be considered 
as a guided wave. It is intimately tied to the conducting plane through 
the induced charges and currents. If the plane were to make a bend, 
there would at least be a tendency for this current to follow the plane, 
inducing a wave traveling in the new direction. 

Before leaving this wave, a more critical examination might be made 
of the reasons for choosing it in preference to all other possibilities. 
Although it was stated that this wave was selected because it had no 
energy flow normal to the plane at any time, no other wave which might 
have been chosen could have any average energy flow normal to the 
plane. That is, on the average, there is as much energy traveling away 
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from the plane in the reflected wave as there is traveling toward the 
plane in the incident wave, for certainly no energy can penetrate the 
perfect conductor. This is further evident in that the components of 
electric and magnetic field producing the Poynting vector component 
normal to the surface are 90° out of time phase for all waves of Art. 7.11, 
striking a conducting surface at any general angle of incidence. Con-
sequently no time average value of Poynting vector normal to the plane 
exists for any of the waves, although there may be a non-zero value at 
any instant, representing first a net power flow away from, and then 
later a net power flow toward the plane. Thus waves which are incident 
ata general angle O and which have a definite standing wave pattern in 
the xy plane could be considered as guided by the plane with a phase 
velocity vi /cos O in the z direction. It is all a matter of point of view, 
and the most convenient point of view is usually determined by the 
mechanism by which the waves are excited. This has not yet been 
studied at all. 

8.03 Approximate Characteristics of a Wave Guided by an Im-
perfectly Conducting Plane 

The plane wave of Art. 8.02, guided by the perfectly conducting plane, 
was found to propagate parallel to the conductor with the velocity of 
light in the dielectric. The wave has an electric field component normal 
to the plane which is ni times the magnetic field component parallel to 
the plane. These field components produce charges on the conductor 
and current flow in the direction of propagation. If the plane is imper-
fectly conducting, these conditions will be disturbed to some extent. 
This case may be solved exactly to determine the effect of the imperfect 
conductivity. However, only for such simple configurations as this is 
it practical to obtain an exact solution. Other more complex, and 
usually more interesting, configurations of guides will require approxima-
tions in order that the problem may be solved. These approximations 
will consequently be developed in this simple case and checked against 
the exact analysis to reveal the conditions under which the approxima-
tions are good approximations. 
The type of approximation to be made is one which will be most useful 

in this and the following three chapters. It is based on the physical 
reasoning that the field distributions will not be changed greatly by the 
presence of a finite rather than an infinite conductivity. The major 
correction to the ideal analysis is the power loss due to current flow in 
the imperfect conductor, and this is calculated by using the currents and 
fields derived for ideal conductors. Other corrections may also be set 
down, such as a change in the value of wave impedance, and the addition 
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of an electric field component in the direction of current flow required 
by the imperfect conductor. It will turn out that for most practical 
cases it will be necessary only to calculate the power loss, but the other 
corrections will be studied here for purposes of enlightenment. 

If the conducting plane which is to guide the wave has a finite conduc-
tivity, it must require some component of electric field in the direction 
of propagation to produce the current flow. This is given at once by 
the impedance of a plane conductor of infinite depth (Art. 6.07) 

E. = Z.J. = R.J.(1 j) 

With the value of J. found in Eq. 8.02(3), 

= (1 -I- j)R.Hy [1] 

R. is the skin effect surface resistivity defined in Art. 6.07. 
The current flow in the plane of finite conductivity also produces a 

finite power loss determinable from the resistance component of the 
conductor impedance and the current flow in the plane. 

jz2R. HRS 
watts/meter2 [2] 

Since a small component of E, is given by (1), and since a component 
of energy flow into the plane accounts for ohmic losses, the wave may be 
considered as a plane wave with its wave front tipped slightly so that 
it is incident at a small but finite angle measured from the plane. The 
tangent of this angle is given approximately by the ratio of E. to E. 
From (1) and Eq. 8.02(2), this ratio is 

Ez (1+ j)R.  

Ex 

R. is very small for reasonably good conductors at all radio frequencies, 
and ni is relatively large, so the above ratio is truly small. (For instance 
it is 3.8 X 10-5 for copper conductor, air dielectric, at 3000 me; it is 

3.8 X 10-5 at 30 mc.) 
Since the wave front is tipped slightly, Ez is actually somewhat less 

than the total electric field, which is related to the magnetic field of the 
plane wave by ni. This difference is extremely slight if the above ratio 
of R./ni is truly small. There must also be a phase velocity along the 
plane slightly different from the velocity of light, since the wave is 
incident at the small angle to the plane. 
The above reasoning shows fairly clearly the type of approximations 

that may be made when conductors are imperfect. Since they will be 
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so useful in all subsequent analysis for guided waves along systems of 
finite conductivity, they are summarized below. 

If conductors are imperfect, but reasonably good, it will usually be 
assumed that: 

1. Transverse components of electric and magnetic field are practically 
the same as though conductors were perfect. 

2. The power loss in the conductor will be found by assuming that for 
a given amount of a wave, current flow is practically the same as though 
the conductor were perfect. This current flow in the conductor of known 
resistance determines the power loss. 

3. The component of electric field required to produce the above 
current is obtained from the current and the known internal impedance 
of the conductor. This is often completely negligible compared with 
other field components. 
These are excellent approximations if: 
1. Displacement currents in the conductor are negligible compared 

with conduction currents (cr/w€ 1). (Otherwise it is not correct to 
use merely R, to determine E„.) 

2. The skin effect resistance of the conductor is extremely small com-
pared with the intrinsic impedance of the dielectric (R8/771 1). 
(Otherwise the relations between transverse components of electric and 
magnetic field will be appreciably disturbed.) 

8.04 Exact Analysis for a Wave Guided by Imperfectly Con-
ducting Plane 

To solve exactly for the behavior of an electromagnetic wave guided 
by an imperfectly conducting plane as a check of the approximate results 
of the previous article, the proper solution of Maxwell's equations 
derived in the previous chapter corresponding to a wave that is incident 
upon a plane boundary could be chosen. However, it is desired to 
acquire the point of view that the waves are being guided along the 
boundary, and to develop a new technique for the study of guided waves. 
We shall again, therefore, start directly from Maxwell's equations. The 
curl relations in the dielectric (medium 1) and in the conductor (medium 
2) are: 

where 

Dielectric V X R = V X H = icoEtE [1] 

Conductor V X É = —j 2H V X 17 = jwa [2] 

0-2) 
Ec E2 (i [3} 

3(0E2 
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The general reasoning of the past article indicates that Ez should be 
included as well as the Hy and Ez components. Offhand we see no 
need for retaining other components, so we shall attempt to satisfy the 
conditions with these three components. If it is possible to satisfy all 
equations and boundary conditions, the number of components retained 
is sufficient. It will be seen that these three are truly sufficient for the 
present problem. 

If there are no variations along the y coordinate, the component 
equations of (1) break into two independent sets, one of which relates 
the three components, Ex, Hy, and Ez (see Art. 4.26). 

aEz 3E, 
— —ax = az 

aHy 

az 
= iwEiEz 

= jcuelEôx 

[4] 

In Art. 7.02 it was shown that the curl equations must combine to 
give the wave equation in E or R. In rectangular coordinates the wave 
equation may be written in terms of any of the components. For H„, 

a2H 
= met —iat2 = 

For no variations with y, 

a2Hy a2H, — = 
ax2 aZ2 

[5] 
co2 

= co2miEi = 

The technique to be employed in this and other guided wave studies 
is to assume at the beginning a function describing propagation in the 
direction of the guide, at the same time retaining the assumption of 
sinusoidal time variations. That is, it will be attempted to satisfy the 
differential equations and the boundary conditions with the function 
describing propagation in the z direction as elw'rz. 7 is the propaga-
tion constant and will have in general real and imaginary parts, repre-
senting attenuation and propagation with a real velocity, respectively. 
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This function, substituted in the wave equation (5), leaves only 
a2H 
ax2 = — (72 + ki)111, 

Define 

= - (,2 + e) 
The solution to the above equation is in terms of exponentials in x. 

Hv = eciw'rz)(Cie—Klz C2eKix) 

In the dielectric, the positive exponential must be absent if K has a 
positive real part; otherwise the fields would become infinite at x = . 
Note that since (1) and (2) have the same form, all equations obtained 

for the dielectric may be applied to the conductor if 14 is replaced by µ2, 
and ei is replaced by ec. However, the negative exponential must be 
absent in the solution which applies to the conductor; otherwise fields 
would become infinite at x = — co. 

= 

Other components follow from (4). 

Hy, = C2eKeeusz) [6] 

,„ cl „ , 
= Ez„ — 72C2 eK2xeciwg-722) 

.1wei jcoE, 

E 21 = e—Kige(jcot—ye) 

jue€1 

K2C 2 • 
E z, = eletge(10.1723) 

3WEc 

[7] 

[8] 

The boundary conditions require that tangential electric and magnetic 
field components be continuous across the boundary (Arts. 4.22, 4.23). 

HY1 = HY, } 

Ezi = Ez2 X = 0 

The continuity of Hy yields 

Cie(i're) = C2eci°1-72z) 

This continuity must exist for all values of z; it can exist only if = 72. 
Let this common propagation constant be denoted 7 from now on. It 
also follows from the above relation that 

C2 •=- Ci 

The continuity of Ez, from (8), now yields 

K1 K2 

[9] 

[10] 
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From the definitions of K1 and Kz, 

= (72 ± w2PiE1) K2 = *V— (? CO2P2Ec) [111 

and (10), the propagation constant may be determined. Summarizing: 

1£2E1 

71 Pee = 12 = 7 = - 
VI (1)2 _ 1 

ec 

CO El 
= — 

V1 ec 

[12] 

[13] 

K2 = '!!"K1 [14] 
El 

8.05 Waves Along a Reasonably Good Conducting Plane 

The exact expressions for propagation constant and field components 
for the wave guided by a conducting plane of any characteristics have 
been obtained, but they are not particularly meaningful in their complete 
form. In order to compare them with the approximate results of Art. 
8.03, it is necessary to make the very practical and excellent approxima-
tion that displacement currents in the conductor are negligibly small 
compared with conduction currents. Results are then limited to reason-
ably good conductors. That is, 

Cr2 
—» 1 
ceE2 

= (1 + r(j2 
;1(0E2 = Jo; 

With these assumptions, it is consistent to assume also that the quantity 
crzbeei is much greater than unity. The propagation constant and the 
constants K1 and K2 of Eqs. 8.04 (12)-(14) accordingly reduce to 

2R tel 
7 = 2 +ficiLl - 42 j - a-Fil3 [11 

ni 

R 
=-- (1 - j)ki —s [2] 

ni 

K2 = 
(1 + j) 

[3] 
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1 
where k1 = co Nre;;;; VeZ7Z, 82  , R8 = N/71-fe£2/0'2. 

v le/121:72 

The expression for propagation constant, (1), shows that there is a 
small attenuation, a. This is small since (Rz/n1)2 is, for good conductors, 
an extremely small quantity. (For copper conductor, air dielectric 
(Rz/ni)2 is 0.48 X 10-12 at 1 me, or 480 X 10-12 at 1000 mc.) There 
is also, as predicted in Art. 8.03, a phase velocity in the z direction 
slightly greater than the velocity of light. 

CO 2R84111 

nip2 Vp = V1 1 ± 4 2 a  [4] 

The difference between this velocity and the velocity of light is seen to 
be extremely small if R8/771 is small. 

Equations 8.04(6) and (7) give the value of wave impedance. This is 

Ez 2R4.1.1? .R1 
[51 Hy jcoEi n1/22 771 

For the condition of R8/'7i 1, the difference between this ratio and that 
for the wave guided by the perfect conductor (ratio of Exi/Hyi = 171) 
is negligibly small. 
From Eq. 8.04(8) and (2) E. in the dielectric is given by 

Ezi _ 
[6] 

HY1 

This is exactly the same result as in Eq. 8.03(1). 
Finally, the average power dissipated in the conductor per unit area 

may be found from the average value of the component of the Poynting 
vector normal to the plane. 

= HvEz lx-o 

Time av (P.) = (HR.) watts/meter2 [7] 

This is the same result as in Eq. 8.03 (2). 
It is found from the exact analysis that the conclusions listed at the end 

of Art. 8.03 are justified, and that the criteria determining the excellence 
of the approximations are that displacement currents in the conductor 
are negligible compared with conduction currents, and that the quantity 
(R„/n1)2 be small compared with unity. The ratio R8/7/1 may be ex-
pressed in at least two equivalent forms. 

R8 ir 142 8 .\ ;22 coei = 
n1 111 Xi 41 0-2 
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Before closing this discussion, there are several interesting character-
istics evident from the previous results which are worth noting. E. 
and E. are 45° out of time phase so that the resultant electric vector 
will lean sometimes forward and sometimes slightly back of the normal. 
Its terminus describes an ellipse. 

All quantities in the dielectric contain the factor 

e--xixeuot-74 

From (1) and (2) this may be written (neglecting 2R4.14/4.i, compared 
with unity) 

k R k R2  R. 
— —jki(z—x) 

ejcute e 

To find the planes of constant phase, it is necessary only to set 

z — — = Constant 
ni 

These planes of constant phase 
then make an angle (i)i with the 
plane, 

ni 
tan =  

Liles of Constant 

.Amplitudej 

Y 

Lines of Constant 
Phase 

I Dielectric 

Conductor 

[8] FIG. 8.05. Wave guided by an imperfect 
conductor. 

The tilt of the planes is forward, as shown by the solid lines of Fig. 8.05. 
Actually this is much exaggerated, since it was found that R8/711 is a 
very small quantity. 44 then differs from 90° by only a very small angle. 
The planes of constant amplitude are obtained by setting 

kiR8X ICIMZ 
± 2 — Constant 

ni 

These make an angle th with the conductor, where 

R2.771 R. 
tan = --2-- — 

niR8 ni 

If R8/ni is a small quantity, the planes of constant amplitude tilt back-
ward and are very nearly parallel with the conductor, as shown by the 
dotted lines of Fig. 8.05. Similarly the planes of constant phase and 
amplitude in the conductor have angles 02 and 4,2 respectively, 

• 
27(32 eki82 

tan 4)2 = ki(52 = tan 4,2 — 2 [10] 
XI fi 

[9] 
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These lines are also sketched in Fig. 8.03. Both quantities are very 
small, but tan ih «tan 412. Both planes of constant phase and constant 
amplitude in the conductor are then nearly parallel to the conductor 
surface, but the angles of the constant amplitude planes are even smaller 
than those of the constant phase planes. The difference between the 
planes of constant phase and planes of constant amplitude may be 
described in terms of a complex direction of propagation, the real part 
of which is normal to the planes of constant phase, and the imaginary 
part normal to the planes of constant amplitude. This concept is often 
used in analyses of waves in imperfect conductors.' 

8.06 Transmission Line Type Wave between Parallel Planes 

A second very simple case for which many important conclusions 
may be obtained without difficult mathematics is that of a wave guiding 
system consisting of a dielectric region between two parallel conducting 
planes of large extent (Fig. 8.06). If the planes may be considered as 

perfectly conducting, they impose 
the boundary condition that all 
electric fields tangential to the two 
conductors must be zero. It is ap-
parent that this requirement is 
again met by a portion of a uni-

Y form plane wave, as in the case of 
the single perfectly conducting 

plane, Art. 8.02. So, a uniform plane wave with Ez only, Hy only, should 
propagate between the conducting planes in the z direction with a phase 
velocity equal to the velocity of light. The electric field passing normally 
between the plates corresponds to equal and opposite charge densities on 
the two plates at a given z plane; the uniform transverse magnetic field 
corresponds to equal and opposite currents flowing in the two plates in 
the z direction. This wave is then identified as the usual transmission 
line type of wave that was considered in the classical transmission line 
theory presented in Chapter 1. It is often called the principal wave. 

If the conductors are not perfect but actually have finite conductivity, 
it would seem safe now to make approximations so long as the con-
ductors are good enough so that the requirements of Art. 8.03 are met. 
(That is, 0.2/co€2>> 1 and R8/771 « 1.) Then field components and 
currents are practically the same as though conductors were perfect. 
The major e,prrection is the power loss in the conductors. This may be 
obtained by assuming that the same current as in the ideal case flows 

1See for example Stratton, " Electromagnetic Theory," McGraw-Hill, 1941. 

Flo. 8.06. 
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through the conductors of known conductivity. Total loss per unit 
length for the two planes is twice that for the single plane as calculated 
in Art. 8.03. For a width b of the transmission line, 

WL = b1Hvi2R8 watts/meter [1] 

The average power transferred through a cross section normal to the 
planes is given by the average value of the axial component of Poynting 
vector, multiplied by the area of cross section. 

H2ab 
WT Av[É X /nab - EH  2 ab - ni watts [2] 

2 

Attenuation constant may be obtained from these two quantities as in 

Eq. 1.20(5) 
WL a = = —Rs nepers/meter 
2WT nia 

The ratio of the voltage between plates to the axial current is obtain-
able from the fields. Thus if we wish to find the voltage of the top plate 
with respect to the bottom, 

V = - f Ezdx = -aEx 
o 

[3] 

The current in the positive z direction in the upper plane, obtained from 
the ñ X 11 rule, is 

= bJ8 = -bIly 

So the ratio, 
V a E. a 
- = - — - [4] 
/z b Hy b 

If this wave is identical with that considered in conventional trans-
mission line theory, these results should be obtainable by the theory of 
Chapter 1. At radio frequencies the transmission line formulas Eq. 

1.17(6) reduce to 

Zo • a 
L T i 

(.; vie 2Z0 

where 

C = capacitance per unit length. 
R = resistance per unit length. 
= velocity of light in the dielectric. 

Zo = characteristic impedance, which gives the ratio of V//z for an 
infinite line. 
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For the parallel planes, C = eib/a farads per meter and y1 = 1/V' 

1 N/i7;;; net 
Zo = = — 

viu b 

This is identical with the ratio of V//2 calculated from the wave solution 
in (4). The resistance per unit length of the line is 

SO 

2R 
R = —2 

a = 
R R. 

2Z0 ani 

Then the attenuation constant also agrees with the results of the wave 
analysis. This is of course as it should be, since the two analyses are 
really equivalent for the transmission line wave under the approxima-
tions made here. We shall show later that this type of principal wave 
is in general one that can be accurately dealt with by the conventional 
transmission line operations, which has been convincingly proved by 
the fact that the same answer is obtained in that way as is gotten by the 
application of Maxwell's equations. 

[5] 

[6] 

8.07 Higher Order Waves between Planes 
The simple transmission line type of wave found in the previous 

article was a uniform plane wave propagating exactly parallel to the 
perfectly conducting planes. This is not the only wave that can propa-
gate between conducting planes. If the expressions of Art. 7.11 for plane 
waves incident upon a conducting plane at some general angle 9 are 
examined, it is noted that in this case there are other mathematical 
planes, removed from the conducting plane by niX1/2 cos 0 (0 is meas-
ured from the normal to the plane), for which electric field components 
tangential to the plane have become zero. Thus, for such a wave, two 
parallel perfectly conducting planes might be placed with just this 
separation and the required boundary conditions would be satisfied, 
This would correspond to the interference pattern caused by waves 
reflected at an angle 0, first, say, from the bottom conducting plane, 
then from the upper conducting plane, etc. (Fig. 8.07). Stating this in 
another way, for any given set of planes with arbitrary fixed spacing, 
there should be some frequencies and some angles of reflection for which 
the boundary conditions could be satisfied by a wave having a component 
of propagation in the z direction. There are any number of such waves, 
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corresponding to different values of n above. All have a definite pattern, 
which is not uniform in planes transverse to the conductors, so they may 
be thought of as higher order waves. They are sometimes called com-
plementary waves as compared to the principal, or ordinary transmission 
line wave. Before looking at these waves further from the point of view 
of reflections, we shall go to the differential equations and determine 
what wave behavior may be expected for such waves. 

It is again assumed that there are no variations in the y direction. 
The curl equations then are found to divide into two independent sets. 
One contains Ez, E., Hy only; the other contains H., H., Ey only. 
These represent two types of waves that may go on independently if 

II I% 11 II 11 a - f- 4,- 7 ()„  
„Y, ,,,,,,,, 

A 

Fla. 8.07. Waves guided by two parallel conducting planes. 

conductors are perfect, since there are no equations relating the two 
sets. The first set contains an É component but no component in 
the direction of propagation; it may be called an E wave. Since it con-
tains transverse components of magnetic field only, no axial component, 
it is also a transverse magnetic (TM) wave. Similarly, the second wave 
may be called an H wave or a transverse electric (TE) wave. 
The two sets of component equations from the curl expressions, with 

éiwg— lz) substituted are 

A 
A /  
/ f.. --

= = jwelE. 

= 2wEiEz 
ax 

aEz 
—"YEz — — ax 

-yEy = 

aEy — 
ax 

ariz , — =yotie, 
ax 

[1] 

[2] 

- 
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The wave equations in terms of Ez and Ey: 

a2Ez 
2 V2E z = —14E, reduces to —ax2 = — (-? + ki )Ez 

a2Ey 
2 

V2E = —ley reduces to —ax2 = — (2 -r- ± ki)Ev I/ 

kf = (02121€1 
The solutions of these equations may be in sinusoids or exponentials 

in x. The requirement of zero Ez and Ey at the two perfectly conducting 
plates requires sinusoids for matching boundary conditions to obtain 
the repetition of zeros. The cosine term may also be eliminated if the 
bottom plate is taken as x = O. 

Ez = A sin kcxeci'") [3] 
Ey = B sin kcxeu'rz) [4] 

where we have defined 
42 = kf ± 72 

[5] 

Since Ey = 0 and Ez = 0 at x = a as well as at x = 0, kc is fixed such 
that there is a half period of the sine wave or a multiple thereof between 
the planes for either of the wave types, 

kc= na»W [8] 

n is any integer. 
Equation (5) may be solved for ..y: 

[7] 

Since kc is a purely real number by (6), there is, for any given dimension 
a and any given integer n, some frequency at which 'y is zero. This 
frequency may be called the cut-off frequency, fc, corresponding to the 
dimension between plates and the particular wave order of interest. 
This is the frequency for which ki is exactly equal to kc. The form is 
the same for both TM and TE waves. 

vikc nvi fc = _ =  
27r 2a [8] 

This corresponds to a wavelength, measured in the dielectric if un-
bounded, 

vi 2a 
[9] 

- 
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The propagation constant may be written in terms of this cut-off 
frequency by substituting in (7). 

-y = kfV(.fe/f)2 — 1 [10] 

For frequencies less than the cut-off frequency ( fc/f) > 1, -y is a real 
number so that the propagation function e-72 represents only attenua-
tion. However, if frequency is greater than the cut-off value given by 
(8), (fa) < 1, -y is a purely imaginary quantity, 

= :70 .= ikiN/1 (f/f)2 [11] 

The propagation function then corresponds to a propagation in the z 
direction with a real phase velocity and no attenuation. 

co VI 
VP 

= =   

N / 1 (fc/f)2 
[12] 

At the cut-off frequency, this velocity is infinite, but it decreases with 
frequency, and at very high frequencies it approaches the velocity of 
light in the medium. The phase velocity is always greater than the 
velocity of light in free space, just as was found in most past cases of 
waves traveling at an angle with respect to the direction in which 
velocity is measured. The group velocity, Eq. 1.25(4), 

2 
deJ 

V = = —v, = VW' (f/.n2 [13] 

Group velocity is zero at the cut-off frequency and increases with 
frequency, approaching the velocity of light and coinciding in magnitude 
with the phase velocity at very high frequencies. 
Now that these propagation characteristics are definitely established, 

we may go back to the picture of waves reflected from the conducting 
planes at an angle, showing the consistency of results from the two points 
of view. The distance between planes of zero tangential electric field 
is, from the relations of Art. 7.11, 

or 

nXi  
a — 

2 cos O 

nXi nvi 
cos a = — = — 

2a 2af 

By comparing with (8), this is 

cos O = — and sin O = — (fc/f)2 [14] 
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So at a frequency equal to cut-off, the wave is passing normally between 
the planes and there is no component of energy flow in the direction 
parallel to the planes. At a frequency greater than f„ Ois finite and the 
wave takes a path as in Figs. 8.07a, b, or c. There is now an energy 
flow in the z direction with velocity 

vi sin O 

= viN/1 — (fc/f)2 

The fictitious point of intersection of a plane of constant phase, as AA, 
and the z direction, 00, moves with velocity 

=-   
sin O  — (Mir 

These agree exactly with the expressions for phase and group velocity 
determined previously in (12) and (13). 
At very high frequencies, cos O is small, corresponding to propagation 

at flat angles or almost exactly in the direction of the guide. The wave 
fronts are then nearly normal to the direction of the guide. 

Notice that the TM wave corresponds to a plane wave incident at the 
angle 0, polarized in the plane of incidence. A TE wave corresponds to 
one polarized normal to the plane of incidence. The change in angle O 
then shows that most of the electric field for the TM wave would be in 
the z direction for frequencies near cut-off (cos O near unity) but in the 
transverse direction for very high frequencies. At any angle 0, the 
ratio of transverse E to H should be 

ET niliy sin 0 
— — Cfc4n2 HT Hy 

For the TE wave, or wave polarized normal to the plane of incidence, 
magnetic field is entirely in the z direction at cut-off and is nearly all in 
the transverse direction at very high frequencies. At any angle 0, 

ET E,  ni  = 
HT .4N/1 — (Mr 

— sin 0 

[15] 

[16] 

Exactly similar expressions could be obtained from the differential 
equation (2) with values of 7 substituted from (11). 
Below cut-off it is impossible to satisfy (14). That is to say that no 

angle of incidence will satisfy the boundary conditions and allow a plane 
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wave to exist without attenuation. The concept of reflected waves 
then requires special interpretation to be useful in studying the higher 
order waves below cut-off. We shall not bother with that here. 

GENERAL ANALYSES OF GUIDED WAVES 

8.08 Waves Guided by Uniform Systems 
With the techniques and general feeling for guided wave behavior 

developed in the study of the preceding simple cases, we can now proceed 
more easily toward the analysis of a   of guides of more interest to 
engineers: coaxial lines, hollow pipe guides, parallel wire lines, etc. 
However, each of these is a special case of the general problem of the 
guiding of energy in a given direction by a uniform system of conductors; 
uniform, that is, in its geometrical configuration in the direction of energy 
guiding. Before taking up specific examples, we shall consequently 
derive certain basic relations and notions that apply to all uniform lines 

or guides. 
To be completely general, the curl relations of Maxwell's equations 

with all components and all derivatives retained should be used to 
describe the electromagnetic behavior in the dielectric of the guiding 
system. The direction of propagation will be taken as the z direction, 
and it will be assumed that propagation behavior in this direction may 
be described by the function 4-7z). Any system of coordinates may 
be used in the plane normal to direction of propagation; because rec-
tangular coordinates are used, let no one think that the discussion is 

limited to rectangular shapes of conductors. 
The curl equations with the assumed functions e(iwe--") are written 

below. The subscript 1 is used to signify quantities in the dielectric of 
the system. 

V X E = 17 X II =j iE 

0E, 
yEy = — jcogiH, [1] 

[2] 

—icoMillz [3] 

'H y = jomiEx ay 
ariz 
az 

au„ arix . = 
az  

[4] 

.icoei.E1, [51 

[61 

It must be remembered in all analysis to follow, that these coefficients 
E, H, Ey, etc., are functions of x and y only, by our agreement to take 
care of the z and time functions in the assumed e(i'd—rz). 
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From the above equations, it is possible to solve for Ez, Evy 
Hy in terms of Ez and H. 

H. = 1  r . aEz arizi 
72 + kf ifiú;EI a— i — -Y -x-i 

H.. _  1  r. aEz aHzi 
72 ± ki 1_31 ax +7-an 
1  r aE. • aHz] Ez = 

72 ± ki L7 ax + iwill ay j 

Hz, or 

[7] 

[81 

[91 

E„ =  1  r aEz . am 
72 -F e I_ 7 ay ±Jwel ax j [10] 

where kî -- co2/11Ei• 

If the dielectric has finite conductivity, cri, it is merely necessary to 

substitute el (1 ± --e ) for Ei in the above expressions (Art. 7.15). 
:Mel 

All waves propagating in the positive z direction according to the 
factor e(iwg-Yz) must have components related by these equations, since 
nothing has been assumed but this factor and Maxwell's equations. 
[For a wave traveling in the negative z direction, substitute -7 for 7 
in (1)-(6) or (7)-(10).] The total electric and magnetic intensities in 
the charge-free regions between the conducting boundaries must also 
satisfy the wave equation (Art. 7.02). 

v2E = _kre v2H = _kfri 
The three-dimensional V2 may be broken into two parts 

v2B- = 
-1- az2 

The last term is the contribution to V2 from derivatives in the axial 
direction. The first term is the two-dimensional Laplacian in the trans-
verse plane, representing contributions to V2 from derivatives in this 
plane. By the assumed propagation function, e--", in the axial direc-
tion, 

a2É 2 

az 

The above wave equations may then be written 
vtE = _ (72 + ide 

vtig = _ (72 + /GDR 
[12] 
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Equations (11) and (12) are the differential equations that must be 
satisfied in the dielectric region bounded by the conductors of the trans-
mission lines or guides. The boundary conditions imposed on these 
differential equations follow from the configuration and the electrical 
properties of the conducting guides. Equations (1) to (6) or (7) to 
(10) then give the relations between any desired components in the wave. 

It will be advantageous to be quite general in studying the types of 
waves that may propagate along the uniform guide, but the generaliza-
tions will be chosen carefully. We recognize, for instance, that any solu-
tion to the wave equation, and so the most general type of propagating 
wave imaginable, may be built up by superposing other simpler solutions 
of the wave equation. One example, in waves guided between planes, 
has already been encountered in which the more complex waves were 
built up from the simplest possible wave solutions: uniform plane waves 
propagating with the velocity of light in the dielectric. The trick was, 
of course, to add these waves in proper amounts and with proper direc-
tions of propagation. However, this method has limitations in useful-
ness because of the numbers of the different waves and different directions 
of propagation that must be retained if the reflections from the guiding 
geometry are at all complex. For the present study it will be desired to 
build up all wave types from basic plane waves defined as uniform in 
phase, though generally non-uniform in amplitude, over the cross-sec-
tional plane, and propagating in the axial direction. The first division 
into types (which have already been met in the parallel plane guides) is 
as follows. 

1. Waves that contain neither electric nor magnetic field in the direc-
tion of propagation. Since electric and magnetic field lines both lie 
entirely in the transverse plane, these may be called transverse electro-
magnetic waves (abbreviated TEM). They are the usual transmission 
line waves and are sometimes known as the principal waves. 

2. Waves that contain electric field but no magnetic field in the direc-
tion of propagation. These are known as E waves, or transverse magnetic 
waves (TM). 

3. Waves that contain magnetic field but no electric field in the direc-
tion of propagation. These are known as H waves or transverse electric 
waves (TE). 

This is one way of dividing up possible wave types and, of course, it is 
often possible to have many waves of each type present at once along a 
given guiding system, although it will be found that certain types of 
guiding systems will not allow all the above types. Any one of the 
allowed waves may exist by itself if it is excited, and if conditions are 
favorable for its propagation. However, there may be more complex 
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propagating waves, and these can be considered as made up of proper 
amounts of the separate basic waves. 

We shall now proceed to a study of these general types separately. 
The general analysis follows quite closely that given by Schelkunoff.2 

8.09 Transverse Electromagnetic or Transmission Line Waves 

The first of the basic wave types to be studied is that with neither 
electric nor magnetic field in the direction of propagation. This has 
been termed a transverse electromagnetic wave. In the simple case of 
propagation between perfectly conducting parallel planes, such a wave 
was identified exactly with the ordinary wave expected from transmis-
sion line theory. It will now be shown that this must be true for any 
general cross section of a uniform guiding line with perfect conductors 
along which this wave type may exist. (The types of guides on which 
it may not exist will be apparent once its characteristics are found.) 
The general relations between wave components as expressed by 

Eq. 8.08(7) to Eq. 8.08(10) show that with E. and Hz zero, then all 
other components must of necessity also be zero, unless 72 ± kj. is at 
the same time zero. Thus, a transverse electromagnetic wave must 
satisfy the condition 

72 ± o 

or 

7 = ±jki = ±j = ±jcoNTi;71 [1] 
vi 

For a perfect dielectric, the propagation constant 7 is thus a purely 
imaginary quantity, signifying that any completely transverse electro-
magnetic wave must propagate unattenuated, and with velocity v1, the 
velocity of light in the dielectric bounded by the guide. 
With (1) satisfied, the wave equations, as written in the form of Eqs. 

8.08(11) and 8.98(12), reduce to 

= o vH=o [2] 

These are exactly the form of the two-dimensional Laplace's equation 
written for E and H in the transverse plane. Since E. and 11, are zero, 
E and H lie entirely in the transverse plane. In Art. 3.02 it was found 
that electric and magnetic fields both satisfy Laplace's equation under 

2 Schelkunoff, " Transmission Theory of Plane Electromagnetic Waves," Proc. 
I .R.E., 25, 1457 (November, 1937). 
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static conditions. Consequently it may be concluded that the field 
distribution in the transverse plane is exactly a static distribution, if it 
can be shown that boundary conditions to be applied to the differential 
equations (2) are the same as those for a static field distribution. The 
boundary condition requires that the electric field at the surface of the 
conductor have normal components only. The line integral of this elec-
tric field between the two conductors, evaluated in the transverse plane, 
may be used as a voltage or potential difference between the lines, corre-
sponding to equal and opposite charges on the two conductors at that 
plane. This is valid because É does indeed satisfy Laplace's equation, 
and so may be thought of as the gradient of a scalar potential which here 
corresponds to voltage. 

If electric field components are normal to the surface of perfect con-
ductors, magnetic field components are entirely tangential. We can 
show this by noting from Eq. 8.06(1) and Eq. 8.06(4) that if E, and H, 
are zero 

and 

jcoel Ez 
z-zy = ex = — [3] 

'Y 711 

E 
[4] 

Jwiti n1 

[The signs of (3) and (4) are for a positively traveling wave; for a 
negatively traveling wave they are opposite.] Study shows that (3) 
and (4) are conditions which require that electric and magnetic field 
be everywhere normal to each other. In particular, magnetic field must 
be tangential to the conducting surfaces since electric field is normal to 
them. The magnetic field pattern in the transverse plane then cor-
responds exactly to that arising from static currents flowing entirely on 
the surfaces of the perfect conductors. 
The above characteristics show that a transverse electromagnetic 

wave may be guided by two or more conductors, or outside a single con-
ductor, but not inside a closed conducting region, since it can have only 
the distributions of the corresponding two-dimensional static problem. 
The above conditions also show that it is possible and completely 

correct to analyze the behavior of this wave from the conventional trans-
mission line point of view, using distributed capacities and inductances 
calculated from D-C conditions. To complete this identity of view-
points, let us arrive at the usual equations written in terms of voltages 
and currents, starting from the known field components. 
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In order- that a definite example may be referred to, consider a line 
consisting of two conductors A and B of any general shape, Fig. 8.09. 
We shall, for the demonstration, be quite general regarding time and z 
functions, merely requiring that Ez and Hz be zero. The voltage be-

tween the two lines may be found by integrating 
electric field over any path between lines, such 
as that shown, 1-0-2. It will have the same 
value no matter what path is chosen, since 
does satisfy Laplace's equation in the transverse 
plane and so may be considered as the gradient of 
a scalar potential in so far as variations in the 
transverse plane are concerned. 

V = — J 2E • ill = — f (Ez dx Ey dy) 
2 

1 1 

Fra. 8.09. Two-conductor 
transmission line with in-

tegration paths. 

But the curl relation, 

Differentiate the above equation with respect to z. 

av _ r2 aEz aEy 

dx dY az 

vxÉ= — an 
at 

shows that if Ez is zero, 

aE aEz aEz aEx, = 
Oz —at and az at 

By substituting these in the above equation, 

av a 2 
-a z = - f (Bv d,x Bz dy) 

A study of Fig. 8.09 reveals that the quantity inside the integral is 
the magnetic flux flowing across the path 1-0-2, per unit length in the z 
direction. According to the usual definition of inductance, this may be 
written as the product of inductance L per unit length and the current I. 

av a 
—az = (LI) = —L 

at [5] 

The above is one of the differential equations used as a starting point 
for conventional transmission line analysis (Art. 1.15). The other may 
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be developed by starting with current in line A as the integral of magnetic 
field about a path a-b-c-cl-a. (There is no contribution from displace-
ment current since there is no Ez.) 

I = fill • ou f (fix dx Hy dy) 

Differentiate with respect to z. 

= ôz f(aarziz — dx + 
az 

From the curl equation, 

aD 
v x H = — 

at 
it follows that if Hz = 0, 

aH = ap _apr and ails =t, 
az at az at 

Substituting, 

aI a 
-i; = — -a-t f (Dx dy — D y dx) 

Inspection of the figure shows that this must be the electric displacement 
flux per unit length of line crossing from one conductor to the other. 
Since it corresponds to the charge per unit length on the conductors, it 
may be written as the product of capacity per unit length and the 
voltage between lines. 

ar Coy 
— at [6] 

Equations (5) and (6) are exactly the equations used as a beginning 
for transmission line analysis, neglecting losses. (Art. 1.15.) It is 
3en that they may be derived exactly from Maxwell's equations pro-
vided the conductors are perfect. So, in this very important case of 
;uiding of electromagnetic energy (transmission lines with negligible 
mperfections in conductivity of conductors), the well-known method of 
tnalysis based upon low-frequency circuit notions gives the correct an-
wer, since it is actually equivalent to an analysis starting from Max-
well's equations, this despite the use of static L's and C's for a problem 
3ertainly not static. It will be seen, however, that there are many other 
arpes of guides for which the rigorous wave equations will appear in 
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quite a different role. Instead of serving as a means of proving the 
L and C approach to be legitimate, for these guides the field approach 
will prove to be the only effective means of analysis, at least until such 
rigorous field analyses divulge a way of properly extending inductance 
and capacitance concepts to these more complex cases. 

Problem 8.09. Demonstrate that although in a TEM wave E' does satisfy 
Laplace's equation in the transverse plane and so may be considered as a gradient 
of a scalar in so far as variations in the transverse plane are concerned, É is not the 
gradient of a scalar when variations in all directions (x, y, and z) are included. 

8.10 Transmission Line Waves Along Imperfect Lines 
It has now been found that a wave with neither electric nor magnetic 

field components in the direction of propagation may propagate along a 
perfect transmission line with the velocity of light in the dielectric sur-
rounding the line. The fields in the transverse plane have exactly a 
static field distribution. Moreover, the classical analysis for such a 
transmission line wave, made in terms of voltage and current along the 
line and the distributed inductance and capacitance calculated at DC, is 
equivalent to one made directly from Maxwell's equations. This con-
clusion might not have been expected, for if one had wished to be 
skeptical, it would have been easy to question the validity of the trans-
mission line equations on at least two counts. 

1. A voltage drop due to current flow through the distributed induct-
ance of the line is calculated, but none is included because of mutual 
effects from any other part of the line; similarly, no mutual charging 
effects are considered. 

2. Inductance and capacitance used in the equations are those calcu-
lated for DC. It might seem doubtful that such constants could be of 
any use for extremely high frequencies; certainly we found that it is 
not permissible to neglect frequency effects when considering lumped 
inductances and capacitances at the highest frequencies in circuit 
equations (Chapter 5). 

The first objection is answered once it is found from the field equations 
that there are no axial field components in the wave, and consequently 
no mutual effects. The second objection is answered by the discovery 
that the field distribution for the wave in the transverse plane is actually 
one corresponding to the static field pattern for that configuration, no 
matter what the frequency may be. The necessary condition is that the 
propagation be with light velocity in the dielectric of the line, a condi-
tion the conventional approach to transmission lines is very happy to 
grant. 

If the transmission line is not ideal, but has resistance and conductance 
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of finite amount, classical transmission. line theory would have us take 
account of these by setting the voltage change along the line equal to a 
resistance plus an inductance drop, and the current change equal to a 
capacitance plus a conductance leakage current (Art. 1.24). 

— (jw/a/ + RI) 
az 

is= — (iwcv GV) 

It is usually assumed that inductance and capacitance calculated on 
the basis of D-C distributions are still used in these equations. Al-
though it is true that a contribution to inductance from the flux inside 
the conductors (the internal inductance of Chapter 6) may now be in-
cluded, that part of the inductance arising from flux in the space between 
conductors is still calculated from the D-C distributions. 

It will now be shown that such an analysis is equivalent to one made 
from Maxwell's equations if a line has uniform conductance but no 
resistance; it will also be shown that if resistance of the conductors is 
important, the two analyses cannot be exactly equivalent. However, 
we should not undermine our confidence in the usual transmission line 
expressions too quickly, for the error will be infinitesimal for efficient 

transmission lines. 
If the transmission line has a dielectric with uniform conductivity 

01, occupying all the space between conductors, previous field analyses 
can be corrected by replacing jomi. by (01 ± iwei) in all results (Art. 
7.15). However, this is exactly what is done in a conventional analysis, 
where jcie for the ideal line is replaced by (G + j(.0C) for the line with 
conductance. For a line with uniform dielectric, G has the same form 
as C, with conductivity in place of dielectric constant. For example, 
in a coaxial line 

G = 27rui, mhos/meter 

ln (ro . 

2,rei c = — farads/meter 
in Co 

r) 

Or, in general, 

(G jcoC) = (cri jomi.) X Function of configuration 
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It follows that the two analyses have then actually considered the 
effect of conductivity of the dielectric in the same manner. 
To clear up a few questions that may remain from the above demon-

stration, note that the quantity 72 ± co2i.tiei appearing in the wave 
equations now becomes 

72 ± co2itiei (1 ± _el) 

iceel 

That is, 

v2zie = 7 2 ± w2itiei (1 ± ) 

iWe 1 

This quantity may be zero as before, since 7 will now have attenuation 
as well as a phase constant. That is, 

7 = ± 

will reduce the above equation to Laplace's equation. Then the same 
conclusions found previously apply. There can be no axial components, 
Ez or Hz; the fields in the transverse plane satisfy Laplace's equation. 
This again checks the validity of the transmission line analysis which 
neglects mutuals and uses distributed constants calculated at DC. 
There is, to be sure, some attenuation of power because of the imperfect 
dielectric, but it will be correctly computed by the ordinary line equa-
tions. 

If the current-carrying conductors of the transmission line have finite 
conductivity, one trouble is immediately apparent. There must be at 
least some small component of electric field in the direction of propaga-
tion to force the current through the conductors. By referring again to 
Eqs. 8.08(7) to 8.08(10), it is seen that with Ez finite, 72 ±  kt must 
then also be finite. The quantity on the right of the wave equation 
cannot then be exactly zero, but must be some small but finite amount. 

Vte = Finite quantity 

This indicates that the field distributions are disturbed from the Laplace 
distributions somewhat by the axial field required to produce current 
flow. It is then no longer correct to calculate values of capacitance and 
inductance from the static distributions. 

Although the nature of an exact analysis from Maxwell's equations is 



Art. 8.10] TRANSMISSION LINE WAVES 309 

apparent, it is difficult to apply to practical lines. One must first obtain 
the wave solutions which apply inside the dielectric and those which 
apply inside the conductor, matching the two at the boundary. The 
difficulties with most geometrical configurations are obvious. Schel-
kunoff has carried through this attack for coaxial lines,' determining the 
extent of the approximations which must be made to reduce the problem 
to the classical analysis. Studies of more general configurations are 
made by the method of successive perturbations. That is, the first 
correction to the perfect conductor case is the required axial electric 
field, which may be estimated simply from the resistivity times the 
approximate current flow. An idea is thus obtained of Ez's distribution 
and magnitude and consequently of V2Ez. A next approximation is 
then obtained for the distribution of Ex, Hy, etc., as well as 7. From 
the new H's thus computed, a new current is computed and the whole 
process is again repeated. From the results of such studies it becomes 
apparent that an exact analysis from Maxwell's equations is fortunately 
unnecessary for lines which are at all efficient for energy transfer. The 
difference in results between such an exact analysis and the usual 
classical analysis including distributed resistance is extremely sma11.4 
The classical transmission line analysis for imperfectly conducting 

boundaries is similar to methods previously introduced in this book, in 
which the first correction arising from the resistance is applied, but the 
major field distributions are assumed essentially unchanged. When 
this type of approximation was used for a wave analysis in Art. 8.03, 
the two criteria for its use were 

1. Displacement currents in the conductor negligible compared to 
conduction currents. 

2. The intrinsic impedance of the dielectric much greater than the skin 
effect surface resistivity of the conductor. 

These are also a measure of the excellence of the conventional trans-
mission line analysis including distributed resistance. Stated in another 
way, such an analysis assumes that transverse electric field components 
in the conductor are negligible compared with the axial, and that axial 
electric field components in the dielectric are small compared with the 
transverse. These are equivalent to the above. Thus 

>> 1 

We2 

35. A. Schelkunoff, "The Electromagnetic Theory of Coaxial Transmission 
Lines and Cylindrical Shields," Bell System Tech. Journ., 13, 532 (October, 1934). 

4J. R. Carson, " The Guided and Radiated Energy in Wire Transmission," 
Journ. A.I.E.E., pp. 906-913, October, 1914. 
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and 

where 
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R.2= and — 0.2 = 
rfet2 

el 

The subscript 1 denotes dielectric, and 2 the conductor. If these 
inequalities are not satisfied, one must then examine critically any results 
predicted by the usual transmission line equations. 

8.11 Transverse Magnetic or E Waves 

In the general conducting guide of uniform section, the first possibility, 
that of a wave with neither electric nor magnetic field in the direction of 
propagation, was found to be the familiar wave of conventional trans-
mission lines. As the next possibility, let us consider what waves may 
exist with electric field but no magnetic field in the direction of propaga-
tion. Because of the presence of axial electric field, these have been 
called E waves. Because magnetic field lies entirely in a plane trans-
verse to direction of propagation, the E waves are also called transverse 
magnetic (TM) waves. Before studying physically what such waves 
represent, let us first determine the characteristics they must have to 
satisfy Maxwell's equations and the boundary conditions imposed by 
the conducting guide which will first be assumed perfectly conducting. 
With the usual assumed propagation constant, e(''78), the axial 

component of electric field which is now present must satisfy the wave 
equation in the form of Eq. 8.08(11). 

VLEz = — (72 + ki)Ez 
where 

lcî= co2piei [1] 

The quantity (72 + kf) should be a constant for any given type of wave. 
Moreover, the value of this constant is determined by the frequency and 
the boundary conditions imposed by the conducting guide, as was found 
in the study of waves between parallel planes. Let us call this constant 
C. 

‘CyEz = — leEz 

kc2 = 7 2 + kf 
[2] 
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The next step is to study the complete boundary conditions that must be 
applied to solutions of this equation in order to determine Icc. 
Assuming that the conducting guides are perfect, Ez at least must be 

zero at the conducting boundaries of the guide. There is naturally a 
question as to whether this is all the boundary condition that is required, 
or whether some other condition must be imposed to insure that tangen-
tial electric field components in the transverse plane also disappear at the 
surface of the conductor. It will next be shown that the single require-
ment of Ez = 0 at the conductor is a sufficient boundary condition, and 
at the same time further information about the wave will be given. Let 
us first write all field components from the general equations of Art. 8.08 
with Hz set equal to zero. (Relations are for a positively traveling 
wave; for a negatively traveling wave, change the sign of -y.) 

iwei aEz 
Hz = k ay 

—jcoei aEz 
„ 

ax 

From the above 

-y aEz 
E. = — j--

y aE, 

EY = k ay 

[31 

Ez= 71- Hy Ey = — H. [4] 
Jcuer >Er 

A study of these relations shows first that the component of electric 
field in the transverse plane is normal to the component of magnetic 
field in the transverse plane. It follows next that the transverse com-
ponent of magnetic field (which is the only magnetic field component for 
a TM wave) is normal to the total component of electric field. 

Recall next that magnetic field must be tangential to the perfectly 
conducting boundary at all points (see Art. 4.23). Since total electric 
field has been shown to be normal to the magnetic field, this total 
electric field is normal to the boundary. This is the only requirement for 
completely satisfying the boundary conditions imposed by the perfect 

conductor. 
Thus the single condition of Ez = 0 along perfectly conducting bound-

aries is the complete boundary condition. The constant lec is determined 
from this boundary condition, thus automatically fixing the propagation 

constant 7. 

7 = — 
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8.12 Propagation Characteristics of TM Waves in Ideal Guides 

Several limitations may be found for kz in Eq. 8.11(2) which will 
affect the type of propagation constant possible for the wave. For one 
thing, if we now limit ourselves to waves in which all points in the trans-
verse plane are in phase, then the derivatives in the transverse plane, 
as expressed by V2z„, can bring in no imaginary or complex numbers. 
The constant id must then be entirely real. 

It can also be shown that le must be a positive number if the wave is 
guided inside a system completely enclosed by conductors. For this 
purpose, use the divergence theorem (Art. 2.12) written in a form 
applicable to the two-dimensional case. 

f (V .P)d,S=fF.di 
0.8. 

is any vector which does not vary in the axial direction; the first 
integral is the integral over the area of the cross section; the second is 
the line integral about the boundary. All vector operations are con-
fined to the transverse plane. Since Ez is not a function of z but merely 
the coefficient of e(2'rz), P may be taken as the vector (E VEZ). 
The integral on the right then disappears if the region is completely 
enclosed by a conductor (as in hollow pipe wave guides) since Ez = 
along the conducting boundary. 

f.. V • (EVE)d8 = 
The quantity inside the integral may be expanded (Art. 2.38): 

f[ (VEz )2 -F EzV2Ez]ciS = 
0.15. 

The value of V2Ez is supplied by Eq. 8.11 (2). Then 

f(VE)2d8 = k f Eus [1] 
Since El and vg are always real and positive, la must also be always 
real and positive. 
From Eq. 8.11 (5), the propagation constant is 

7 = — [2] 

For kz> k1, y is a purely real quantity and so represents attenuation. 
For kz < kl, -y is a purely imaginary quantity and represents propagation 
with a real velocity and no attenuation. The condition under which 
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7 becomes zero, as the transition between the propagating and atten-
uating behavior is reached, may be called the cut-off condition for the 
guide. Thus cut-off is at k1 = kG or 

kei  Icc  
fc [3]2v 2irVii 

27r = [4] 

Equation (2) may now be written in terms of the cut-off frequency. 

• 7 = a = 10/1 — Wfc)2 f < [5] 

7 -= = .110/1 — (fc/f)2 f > f [6] 

The phase velocity corresponding to the real velocity of propagation 

above cut-off is 

The group velocity, 

VI  VP _ • _ 
v 1 — (fc/f)2 

Vg 

dco 
= viv 1 — (fc/f)2 

[7] 

[8] 

Phase velocity is infinite at cut-off frequency and is always greater 
than the velocity of light in the dielectric; group velocity is zero at cut-
off and is always less than the velocity of light in the dielectric. As the 
frequency increases beyond cut-off, phase and group velocities both 
approach the velocity of light in the dielectric. 
The above expressions for phase and group velocities are the general 

ones, having the same form for TM waves in any enclosed uniform 
guiding system, although of course fc will be different for each shape and 
size of guide. This form was obtained in considering the special case 
of Art. 8.07 (higher order waves between parallel planes). We could 
not have predicted from that single example that the form would be 
found so general. 

8.13 Characteristic Wave Impedance of TM Waves 
In Chapter 7, the concept of a wave impedance based upon the ratio 

of the transverse component of electric field to the transverse component 
of magnetic field, was found to be extremely useful in problems of trams-
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mission and 'reflection at discontinuities. For the transverse magnetic 

or E wave, it is evident from Eq. 8.11(4) that this ratio is a constant. 

ET VE1+ .E12, y =   

HT 1/1-4-1- 14, icoei 
This ratio may be considered as the characteristic wave impedance for 
the transverse magnetic or E wave. 

ZTM = . 
2051 

If the value of y from Eq. 8.12(6) is substituted, 

ZTM = niV1 - (Me 

0 
cut-off properties of the wave. That 

Flu. 8.13. Equivalent circuit for is, since ZTM is purely reactive below 
the transverse magnetic wave. 

cut-off, the wave can produce no net 
energy flow down the guide. Above cut-off it is real, allowing energy 
propagation. 

Problem 8.13. Show that the circuit of Fig. 8.13 may be used to represent the 
propagation characteristics of the transverse magnetic wave, if the characteristic 
wave impedance and propagation constant are written by analogy with transmission 
line results in terms of an impedance Z1, and an admittance Y1 per unit length. 

ZTM = VZI/Y1 7 = 

Note the similarity between this and thé circuits of conventional filter sections, 
remembering of course that all constants in this circuit are in reality distributed 
constants. 

[1] 

[2] 
ni = "V/€1. 

This impedance is imaginary (reactive) below the cut-off frequency, 

zero at cut-off, and purely real above cut-off, approaching the intrinsic 

e, , dz impedance of the dielectric at infinite „, ii  
ti ldaire_ . frequency. This is a familiar behavior .----Inror—li i  

fi,d: for the characteristic impedance of fil-

Teld2 ter sections and again emphasizes the 

8.14 Power Transfer in Wave Guides with TM Waves 

The power transfer down the guide has been shown to be zero below 

cut-off, if the conductor of the guide is perfect. Above cut-off it may be 

obtained in terms of the field components by integrating the axial com-

ponent of Poynting vector over the cross-sectional area. 
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Since it was shown that transverse components of electric and mag-
netic field are in phase and normal to each other, the axial component of 
the Poynting vector must be merely the product of these transverse field 

components. 

Time average 

P=Exli 

p z  IETIIHTI 
2 

ET and HT (transverse components) are related by the characteristic 
wave impedance, ZTm so 

Zrm 
Pz = IHTI2 

2 

But from Eq. 8.11 (3) 

1117,12 = = 
co2€2. r(a.EA2 faE.\21 

lA ay ) U;/ j 

[1] 

The factor in the brackets is merely the square of the two-dimensional 
gradient of Ez. By substituting, 

2 2 
T = — 7 I v..-‘we, 2.12 

Then the integral of Pz over the cross section is 

ZT2 2 ZTM irr AICO  
= f II1 T1 2 ("3 = MEd dB WT 

c... 2 214 fc.5. 

[2] 

By substitution from Eq. 8.12 (1), 

ZTMCO2 2 E2ds 

WT 21e 

= z_T m Ea. watts [3] 
277i. Vc z 

Notice that this form of the integral seems to indicate that energy 
transfer increases with square of frequency at frequencies far enough 
above cut-off so that ZTM is substantially constant. This is true if E, 
is kept constant, but more to the point is this interpretation: for a given 
energy transfer, the axial field component, Ez, decreases in magnitude 
with the square of frequency. The transverse field components approach 
a constant value. This sounds reasonable, for consider: as the fre-
quency approaches infinity more and more wavelengths can exist over 
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the. cross section. The phase velocity goes to that of light in free space. 
It is natural that the wave in the center of the guide notices less and less 
of the boundary condition; E. approaches zero and the wave farthest 
from the conducting boundaries, i.e., along the axis, should look more and 
more like a plane wave in free space. This general reasoning is clarified 
by reference again to the specific example of parallel planes (Art. 8.07 and 
Fig. 8.07) where the approach to a plane wave propagating down the 
guide as frequency increases was especially easy to predict. 

8.15 Attenuation Due to Imperfect Conducting Boundaries 

If the conducting boundaries are not perfect, a rigorous analysis 
requires a solution of the differential equations in the metal guides as 
well as in the dielectric, with a matching of tangential field components 
at the boundary between the metal and the dielectric. This technique 
was used in the simple plane case; there we found that if the conductors 
are good conductors, it is necessary to revise only slightly the results 
based upon perfect conductors. Attenuation is the major correction. 
This may be approximated very closely by assuming that currents in the 
actual conductors are the same as those in the perfect conductors. This 
current density is obtainable from the magnetic field at the surface of the 
conductor. By Eq. 8.14 (2), 

coEl 
IHTI= vI ez1 

Since E. is zero at all points along the surface of the conductor, there is no 
tangential derivative of Ez; VE2 consists merely of the derivative normal 
to the conductor. 

wei 
IHr I conductor = 

aEzi 
an conductor 

[11 

This gives the magnitude of the current density in the axial direction. 

Vz I = 1HT conductor 

If the conductor has a skin effect surface resistivity R. per square, the 
above current density will produce losses 

R. , 
WL = f1J.12d1 watts/meter 
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The integral is taken around the contour of the conductor. 

WL—R8w2eî f[—aEzi2dl 
2k! a. 

--- (D2 f 
[21 

The attenuation is approximately the quotient of power loss per unit 
length by twice the power transfer. Power transfer is given by 

Eq. 8.14(3). 

a 
WL 
2WT 

[ [aa.En121 

R.  f  

2ZTMk f S 
e .8. 

[31 

8.16 Attenuation Due to Imperfect Dielectric 
If the dielectric is imperfect, it is only necessary to replace the dielec-

tric constant ei wherever it appears in the equations by the quantity 

el — j --;) where 
e 

it 
e ai , 
—7 — 

WEI 

Eif is the loss factor, Et the dielectric constant on the basis of air as unity. 
The ratio is approximately the power factor (Art. 7.17). If the dielec-
tric is fairly good, the above ratio will be small, 

It 
E 

< 1 
e 

The major correction to previous results is the attenuation. If the 
above value of dielectric constant is substituted in the equation for propa-

gation constant, Eq. 8.12(2), 
ei 

7 = — co2Pel (1 — —7) 
E 

If operation is not so near cut-off that 1 — (fc/f)2 is also very small, thi 
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above may be approximated by the first term in the series expansion 
when ¿Ye' is small. 

if 
.E 

.1 
jki\71 — (fc/n2 [1 E  

2[1 — (fc/f)2]] 

The velocity of propagation is thus unchanged in the first approximation, 
and the attenuation is the real part of the above: 

it , e 
Ict -7 
e  

a 
[1] 

21/1 — (fc/f)2 21/1 — (fc/f)2 

k1 = w <e 71.= 2.-r 
xi 

It is especially interesting to see that the attenuation due to losses in 
the dielectric is of the same form for all shapes of guides. That is, the 
guide and wave type influence this attenuation only as they enter in 
determining the cut-off frequency, and thereby the ratio of (.fc/f). 
There is, of course, a small propagation below cut-off due to an imper-

fect dielectric, meaning mainly that there is a small change of phase 
along the guide below cut-off as compared with the dissipationless case 
in which there is no phase change below cut-off. The characteristic 
wave impedance will also have a small real component below cut-off, a 
small imaginary component above cut-off. 

8.17 Transverse Electric or H Waves 

Let us now study the possible waves that may be propagated with a 
magnetic field component, but no electric field component, in the direc-
tion of propagation. Because of the presence of an axial magnetic field 
component, they are often known as H waves. Since electric field is 
entirely in the plane transverse to direction of propagation, they are also 
called transverse electric (TE) waves. The study of these waves is so 
similar to that of the transverse magnetic waves that much of the detail 
included in the past articles will be omitted here. Before starting the 
analysis, note that a completely transverse electric wave can exist in 
most of the guides to be studied only if conductors are perfect. This is true 
since there is in most of the guides a longitudinal component of current, 
and this will consequently require a longitudinal component of electric 
field if conductivity of the conductors is finite. However, it will repre-
sent only a small, and usually completely negligible, correction to the 
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transverse electric waves to be studied, of the same order as that correc-
tion found when a transverse electromagnetic wave was modified by finite 

conductivity. 
Since Hz is to be present, it must satisfy the wave equation. It may 

be written in the form of Eq. 8.08(12): 
vtriz= (7 2 + knriz = _k2cH z [1] 

The remaining field components may be written in terms of Hz by setting 

Ez = 0 in Eqs. 8.08(7) to 8.08(10). 

y ÔH2 jwMi aHz 
Hz — ax 

From these, 

allz 
Hy = — 1-2 ay 

iwili Ex — /1y 
'Y 

Ez = — 
id ay 

ariz 
Eli= k ax 

icogi 

[2] 

[3] 

It again follows that electric and magnetic field components are normal 
to each other, and that lines of constant Hz correspond to electric field 
lines (see Prob. 8.11). Since electric field lines must enter the surfaces 
of perfect conductors normally, so must the lines of constant H. The 
required boundary condition at the surface of the perfect conductors 
may then be satisfied by requiring that the normal derivative of Hz 

be zero at that surface. 

aHz = 0 at conducting surfaces 
an 

With this requirement, there may be derived an equation similar to 

Eq. 8.12(1). 

[VI/J2dS = lef IndS [4] 
C.8. 

For plane waves, no phase differences are brought in through derivatives 
in the transverse plane, so [VH]2 and e are necessarily positive, and le 
for these waves is again real and positive. It follows that the propagar 
tion constant passes through some cut-off point below which there is 
attenuation only, and above which there is propagation with a real 
velocity and no attenuation. The forms for cut-off frequency, attenua-
tion below cut-off and phase and group velocities above cut-off are 
exactly the same as Eqs. 8.12(3) to 8.12(8). 
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The characteristic wave impedance is somewhat different from that for 
transverse magnetic waves; as seen from (3), 

ET + E: juem 
ZTE = — = 

HT + H: [51 

Note that this is the ratio of EX/H, and — Ev/H. for a positively 
traveling wave; for a negatively traveling wave it is —Ex/Hv and 
+E/H. It may also be written 

ZTE — 
— (fc/f) 2 

71 
[6] 

This impedance is imaginary below cut-off, is infinite at cut-off frequency, 
and is purely real above cut-off frequency, again emphasizing the point 
that energy can be propagated along the ideal guide only at frequencies 
above cut-off. 
The amount of power transfer above cut-off when -y = jti is again 

obtained by integrating over the cross section the axial component of 
the Poynting vector which is given by the transverse field componente. 

Time average 

But 

IHT 12 = 11-n 

ETHT ZTE111 
— 

2 2 

=)2
132[(3a1x-1z 

+ 

Power transfer 

e2 2 = .71! [VH,] 

WT = PAS = ZTES2 01.4 f [VHyrdiS 

0.8. e "C 

By the expression for Eq. 8.12(6) and the equivalence of (4), 

ni(f/G)2 irds 

T 2ZTE J0.8. g 

[7] 

[8] 

The current flow in the conducting boundary has two components in 
the TE wave. There is an axial component of current due to the trans-
verse component of magnetic field, just as in the transverse magnetic 
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wave, but there is in addition a transverse or circulating current due to 
the axial magnetic field. 

I8I= IHTI = 1721'74 

IJ T I = jHzlconductor 
Jladz 

Since the boundary condition re- --fmnr--r --ransair— 
quires the vanishing of the normal eidz j cut/kart* 
derivative offi, at the boundary, 
VHz becomes simply the tangential -  
derivative, ariz/al. Fla. 8.17. Equivalent circuit for the 

transverse electric wave. 
The power loss per unit length 

in a real conductor with surface resistivity R., carrying the above cur-
rent, is 

= f.1-ed [142 + 

= 113- fiii! (.17.4)2 [1 — id(fc/f)2[ [aalliz] }di 

2 

Attenuation due to this loss is 

fCfc/n2e -I- 1/k[1 — (f/n2] [ --1--/zi2}612 
RsZTE 

e — 2 

L. 2th HdS 

[91 

[10] 

Attenuation due to imperfect dielectrics is of exactly the same form as 
for the transverse magnetic waves, since the propagation constant has 

e 
the same form, and attenuation is obtained by substituting Ei (1 — j -7-

e 

for si in the equation for 7. 

Problem 8.17. As in Prob. 8.13, show that the equivalent circuit for transverse 
electric waves in terms of distributed constants is as pictured in Fig. 8.17. 

8.18 Summary of General Results for TM and TE Waves 
Below, in summary form, are the results obtained in the previous ar-

ticles. They are particularly useful in showing the marry simple forms 
that apply to all shapes of guides. 

1. Solve V4E. = —k2e,„ (TM wave) Solve V//,, = — k2cH„ (TE wave) 

Vt, is the two-dimensional Laplacian in the transverse plane. 
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2. Find allowed values of lec from the boundary conditions 

E, = 0 along conducting boundary (TM wave) 

— = 0 along conducting boundary (TE wave) an 

3. Cut-off. 

k,  
fc = 

2w 

2/r 
Xc = — 

'Cc 

4. Attenuation below cut-off. 

a = kcV1 — (f/fe)2 

5. Phase velocity and propagation constant above cut-off. 

vi  
'Y = i  VI — Cfc/fr vp —   

V l — (fc/fr vi 

6. Group velocity above cut-off. 

V9 = vi V1 — (fe/n2 . 

7. Characteristic wave impedance (ohms). 

771  ZTm = si VI — (f/n2 
Zeg — VI. — (fc/f)2 

8. Power transfer above cut-off (watts). 

(WT),,, = Z—e,.., e G f-)2f Eke 
mil c C.B. 

2 
th 

(We) TE = 2Z T E C; )2 lezds 

9. Power loss in imperfect conductors above cut-off (watts/meter). 

(W L)TM = e-4(02f[S12 di 
Ra (02 [1— Cc)2 7 ] r8H.-12 

(WL)TE = i" f lies ± c 4  
L al _I 

10. Attenuation due to imperfect conductor. 

WL 
ac = 

2WT 

11. Attenuation due to imperfect dielectric. 

ad 

ti 
k1 —e, 
e 

2V1 — (f/n2 2V1 — (Mir 

dl 
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The ratios a/kz below cut-off and vp/vi and vg/vi above cut-off are 
plotted in Fig. 8.18, applying to all TM and TE wave types in all shapes 
of closed guides. 

3 

2 

f, = cut-off 

kc'Y, 

frequency 

ccik, 

vvi q 

o it i 

I 
I 

o fe 2 

Fia. 8.18. Frequency characteristics of all TE and TM wave types. 

8.19 General Wave Types in Rectangular Coordinates 
The general solutions for guided waves may be written in rectangular 

coordinates for application to waves between parallel planes, parallel 
bar transmission lines, wave guides of rectangular section, etc. 

For transverse magnetic or E waves, Eq. 8.18(1) in rectangular 

coordinates is 

2 a2Ez 32Ez 
VzvEz a x2 --I- Ty-2- — E =  [1] 

This is a partial differential equation which may be solved by the method 
used in Chapter 3. Assume that the solution may be written as a 
product of two terms, one a function of x only, the other a function of y 

only. 

Ez = XY 

where X = a function of x only. 

Y = a function of y only. 
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Substitute in (1). 

X"Y XV" = —L1XY 
or 

X" Y" 
— — 
X Y 

[2] 

The primes indicate derivatives. If this equation is to hold for all 
values of x and y, since x and y may be changed independently of each 
other, each of the ratios X"/X and Y"/ Y can be only a constant. There 
are then several forms for the solutions, depending upon whether these 
ratios are both taken as negative constants, both positive, or one nega-
tive and one positive. If both are taken as negative, say id and k2y 
respectively, then, 

x" 
- k! 

11 7 

k2y 

The solutions to the above ordinary differential equations are sinusoids, 
and by (2) the sum of id and k2z, is e. 
Thus three forms of the wave solution for rectangular coordinates in 

the transverse plane are listed below, with ei("—Yz) understood. They 
apply as well to Hz in transverse electric or H waves, since Hz satisfies 
an equation identical to (1). 

Ez for TM waves} 
XY [3] 

H, for TE waves 

where X = A cos kxx B sin kxx 

Y = C cos kyy -I- D sin kyy 

or X = A1 cos ke 4- B1 sin kzx 

Y = C1 cosh K0 + DI sinli Ky 

— = 

or X = A2 cosh Kxx + B2 sinh Kxx 

Y = C2 cosh Ky D2 sinh K y 

- + = 
Note that solutions in the form of (6) have a negative value of 0, 

[4] 

[5] 

[6] 
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vhich does not violate previous proofs that la must be positive for solu-
ions applying within a closed region, since (6) would not be applicable 

aside a closed region. 
All other components, Hx, Hy, Ex, and Ey are obtained from the above 

6nd Eqs. 8.08(7)—(10). For a negatively traveling wave, reverse 
he sign of all terms containing -y in those equations. 

Problem 8.19. Discuss the types of geometrical configurations to which each 
>f the forms of Eqs. 8.19(4)—(6) might be applied. 

L20 General Wave Types in Cylindrical Coordinates 
In cylindrical structures, such as coaxial lines or wave guides of circu-

ar section, the wave components will be most conveniently expressed 
n terms of cylindrical coordinates. The two-dimensional Laplacian 
ni, in Eq. 8.18 (1), should be written in cylindrical coordinates. 

a2Ez aEz a2Ez 
vLEz vr24,E z = 

ar2 r ar r2 802 
So that 

a2Ez 1 aEz 1 a2Ez + — + — = — gEz [11 
ar2 r ar r2 802  

For this partial differential equation, we shall again substitute an 
assumed product solution and attempt to separate variables in order to 
obtain two ordinary differential equations. 
Assume 

Ez = RF4, 

where R = function of r alone. 

= function of 0 alone. 

R"Fo eFo F"R —IeRF 

Separating variables, 

R + R = Fo 

The left side of the equation is a function of r alone; the right of 0 alone. 
If both sides are to be equal for all values of r and 0, both sides must 
equal a constant. Let this constant be y2. There are then the two 
ordinary differential equations 

— 
Fo 

1,2 [2] 
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and 
R ir 

r2 — er2 v2 

or 

1 2 

- R = 
r r2 [3] 

The solution to (2) is in sinusoids. By comparing with Eq. 3.18(3), 
it is seen that solutions to (3) may be written in terms of Bessel functions 
of order P. Since Hz for transverse electric or H waves satisfies the same 
equation as (1), solutions to Hz will also be in the same form. Thus, 
with el('-'") understood, 

Ez (for TM waves) } 
= [4] 

Hz (for TE waves) 

R = AJ,(ke) BN,(ker) 
[5] = C cos ve. -I- D sin vq5 

where 

or 
R = Aire (k,r) Bile) (k,r) 

[6] 
F4, = C cos el) ± D sin Kb 

or 

R = A2J,(k,r) B2e,1) (k,r) 

Fd, = C cos v¢, D sin vo [71 

The Hankel function form of (6) is useful when it is desired to look at 
waves as though propagation were in the radial direction, as will be seen 
in the study of radial transmission lines. The form of (7) is useful for 
problems in which the constant k, may be imaginary, since J, and HS» 
of imaginary quantities are tabulated.' 
• Other components, E„Ed„H„ and 114, are obtainable from the above 
solutions by the following equations which are the cylindrical coordinate 
equivalents of Eqs. 8.08(7)-(10). 

Icc ar 
1 [ aE, , jowl all.1 

r ack [8] 

• aL 
E4,= -2 - - -s-- >pi — 

k, r 

[ aE, . 

ar 

6 See Jahnke-Emde, " Tables of Functions," Dover Publications, 1943. 

[9] 
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1 rjomi aEz 

F . aEz arizi 
11`k -i-e!1_3°"—ar r 84) J 

For a negatively traveling wave, reverse the sign of all terms contain-

ing -y in the above. 

Problem 8.20. Demonstrate, making use of the form of Eq. 8.20(7), that a 
solution with Icc imaginary cannot apply inside a closed region. 

• 

8.21 Comparisons of General Wave Behavior and Physical Ex-
planations of Wave Types 

Many characteristics have been found in the past articles for waves 
along uniform guiding systems by mathematical analyses starting from 
Maxwell's equations. It has been found, for instance, that transverse 
electromagnetic waves (waves with no field components in the direction 
of propagation) may propagate along an ideal guide with the velocity 
of light for the dielectric of the guide. In the transverse plane, these 
may have any field distributions which correspond to static field dis-
tributions. Thus such waves may propagate along a system of two or 
more conductors, or outside a single conductor, but not inside any hollow 
pipe, since a static field distribution cannot exist inside an infinitely 
long hollow, closed conductor. Moreover, it has been verified that the 
usual transmission line equations written with distributed inductance 
and capacitance calculated at DC are exact for ideal lines, and the usual 
equations with distributed inductance, capacitance, resistance, and con-
ductance are excellent approximations for any practical transmission 

line efficient for energy transfer. 
So much for these principal or transmission line waves we have known 

of, if without assurance, from the conventional line equations, which 
Maxwell's equations actually verified. In addition, waves have been 
found which could not have been predicted from the classical transmis-
sion line equations based on circuit notions. These waves have either 
electric or magnetic field components in the direction of propagation. 
They may propagate inside closed hollow conductors, but only above 
certain critical or cut-off frequencies for which cross-sectional dimensions 
between conductors are of the order of a half wavelength. Below these 
cut-off frequencies the waves, even if started, attenuate extremely 
rapidly, so that for ordinary transmission lines where spacing between 
conductors is much smaller than a half wavelength, these waves should 
not enter into energy propagation. They may be important at discon-
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tinuities, end effects, or in the radiation field at a long distance from the 
line. However, above the cut-off frequency, these waves may be quite 
satisfactory for energy transfer in any system, and are the only waves 
which may exist inside closed hollow conductors. 

These and other characteristics were obtained by mathematical analy-
sis. It will be profitable to pause now, attempting to understand physi-
cally the basis for this behavior and the comparisons between the 
several types of waves. 

It should ' first be recalled that at the frequencies of interest — at 
least for the profitable use of hollow pipe wave guides — current flow 
in the conducting walls will be completely governed by skin effect. For 
many purposes the conductors may be considered perfect so that there 
is no penetration whatever into the conductors, but all currents and 
charges reside on the surface. Even when actual conductivities of 
practical conducting materials are taken into account, it is found that 
at such frequencies depth of penetration is of the order of 10-4 inch, 
and the outside of the pipe is perfectly shielded from the fields which are 
being retained on the interior. 
For the dielectric space inside the pipe, it should be recalled: 
1. Electric field lines may begin and end on cliarges. If an electric 

field ends on a conductor it must represent a charge induced on that 
conductor. 

2. Magnetic field lines can never end since magnetic charges are not 
known physically. Magnetic fields must always form continuous closed 
paths, surrounding either a conduction current or a changing electric 
field (displacement current). 

3. Electric field lines may form continuous closed paths, surrounding 
a changing magnetic field. 

In a transverse electromagnetic field, by definition, there are no axial 
field components; both electric and magnetic fields must lie in the trans-
verse plane. Since electric field is transverse, it would be impossible for 
magnetic field to surround it without having a component in the axial 
direction. Consequently all magnetic fields must surround axial con-
duction currents and not displacement currents. This is the result 
checked by the analysis for these waves and explains physically why the 
magnetic fields satisfy a Laplacian equation in the transverse plane out-
side of the current-carrying region. Similarly, since magnetic fields 
are transverse, electric fields could not enclose them without having an 
axial component of electric field. Consequently, in a given transverse 
plane, all electric field lines must begin on a certain number of positive 
charges and end on the same number of negative charges. So electric 



Art. 8.21] COMPARISONS OF WAVE TYPES 329 

field also must satisfy Lapla,ce's equation in the transverse plane for the 
region between conductors. 
We can also see quite easily that there can be no transverse electro-

magnetic waves inside hollow closed conductors. Consider, for a specific 
case, the round hollow pipe of Fig. 8.21a. If the conductor of the pipe 
is perfect, magnetic field must be tangential to the conductor. Since 
magnetic field must also form closed lines, any magnetic field line just 
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Fia. 8.21. Field distributions for some waves in a hollow circular cylinder. 

inside the pipe would have to be a closed circle tangential to the pipe. 
It could cut no part of the conductor, and so could surround no con-
duction current. For a wave with no axial electric field, it cannot sur-
round displacement current (or changing electric field). Consequently, 
it cannot exist at all. 

It is evident as an extension of the above reasoning that there may be a 
value of magnetic field inside the pipe if there is an axial electric field, 
since the axial displacement current could then account for magnetic 
field. The electric field might start from positive charges at one section 
of the guide, turn and go down the guide axially, and finally end on 
negative charges farther down the guide. (Fig. 8.21b.) It is recognized 
that such a wave is a transverse magnetic or E wave analyzed in Arts. 
8.11 to 8.16. (The subscript notation will be defined in Chapter 9.) 
Note particularly that since the line integral of magnetic field is propor-
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tional to rate of change of electric flux enclosed, magnetic field for a single 
traveling wave is a maximum, not in the plane where axial electric 
field is a maximum, but rather in the plane where rate of change of 
axial electric field is a maximum as the entire pattern moves down the 
guide. If this wave is symmetrical, there must be only axial current 
flow, produced by the transverse magnetic field at the conductor surface. 
This is also evident by the current which must flow to account for the 
lumps of induced charge. From still another point of view, we have 
agreed that the conducting wall acts as a perfect shield so that no 
magnetic field can exist outside it due to influences on the inside. Thus, 
at any section, there must flow a current in the conductor exactly equal 
and opposite to the axial displacement current inside the guide at that 
section. 

Let us now consider the field distribution for waves with axial magnetic 
field and transverse electric field. First, as in Fig. 8.21c, notice that if 
electric field lines start from positive charges on one side of the hollow 
pipe and go directly across to negative charges on the opposite side, 
magnetic field lines may exist inside the hollow pipe if they surround 
these electric field lines. In this type of wave there must exist currents 
flowing circumferentially between the positive and negative charges at 
any given section in addition to those which flow axially. The former 
are accounted for by the axial magnetic field at the surface of the con-
ductor; the latter are accounted for by the transverse component of 
magnetic field at the surface of the conductor. 

The wave described above is, of course, a transverse electric or H 
wave. However, another wave of this same type may appear if the 
electric field lines in the transverse plane do not end on any charges, but 
always close upon themselves. In this wave (Fig. 8.21d) the electric 
field lines and the magnetic field lines surround each other. There are 
then no charges induced on the conductors and no axial currents. 
There are circulating currents arising from the axial component of 
magnetic field. Since we have found that this axial component becomes 
very small for frequencies far above cut-off, so will the circulating current 
become small, and under this condition there will be but slight losses in 
the guide even though conductors are imperfect. Of course, such a 
situation indicates that the type of wave described is not so intimately 
tied to the guide. If it is attempted to make a bend in such a guide, 
current must flow at the discontinuity, and the new wave generated at 
the bend may be of an entirely different type. Because of this reason 
it is often pointed out that the type of wave is unstable. This is the 
TE0 wave of circular guide which will be studied in more detail later. 
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We might next ask if it is possible to have a transverse magnetic or 
E wave with no charges induced on the guide, but with electric and 
magnetic fields surrounding each other. A little study of this shows that 
although it may be possible for the fields to surround each other on the 
interior of the guide for the higher order TM waves, the field nearest the 
conductor must turn to enter the -conductor normally, thus inducing 
charges as described previously. 

All the above general characteristics will be further clarified in later 
study of the specific waves which may propagate inside guides of circular 
and rectangular shapes. However, the preceding general study is 
particularly important in showing that similar types of waves should 
be found in guides of different cross sections, since the above discussions 
did not require the specification of the shape of guide. 



9 
CHARACTERISTICS OF COMMON WAVE 
GUIDES AND TRANSMISSION LINES 

COMMON TRANSMISSION LINES 

9.01 Coaxial Lines, Parallel Wire Lines, and Shielded Pairs 
From the conclusions of Arts. 8.09 and 8.10 the analysis for ordinary 

transmission line waves along practical transmission systems may be 
correctly made from the distributed circuit constant concepts of Chap-
ter 1. For use of the formulas of Chapter 1, it is necessary to calculate 
values for the inductance, capacitance, resistance, and conductance per 
unit length. The calculation of such constants was studied in Chapter 6. 
However, for convenience, some results for the commonly used trans-
mission lines will be listed. 

Coaxial lines are among the most commonly used of all transmission 
lines, particularly at the higher frequencies. This is largely because of 
the convenient construction and the practically perfect shielding between 
fields inside and outside of the line. The range of impedances that may. 
be obtained most conveniently by coaxial lines (see Table 9.01) is about 
30 to 100 ohms. 

Somewhat higher impedances may be obtained conveniently with 
parallel wire lines, and these find wide application, although the shield-
ing and radiation problems make them undesirable at the highest fre-
quencies. It is also difficult to attain the lowest impedances con-
veniently with them. Unlike the coaxial line, the parallel wire line is a 
balanced line, which is sometimes desirable. 

If the parallel wire line is placed inside a conducting pipe as shield, the 
radiation and shielding difficulties are of course eliminated. The imped-
ance of the line with shield is in general somewhat lower than the same 
line without the shield. The resulting shielded pair is also a balanced 
line, assuming symmetrical location of the lines in the shield. 
The parallel bar transmission line is sometimes used when balanced 

lines of low impedance are desired. Like the parallel wire line, it is not 
perfectly shielded. 

In Table 9.01 are listed some of the constants for the above lines. 
Many of these formulas are approximate, applying at the highest fre-
quencies. For lower frequencies, values of resistance and internal 
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inductance should be calculated by the methods of Chapter 6 and sub-
stituted in the formulas of Chapter 1. 

7 =-- a + je V(1? jcoL)(G jcoC) 

Zo = \I(1? jcoL)  
ohms 

(G jcoC) 

9.02 Coaxial Lines — Higher Order Waves 

In addition to the ordinary transmission line wave in a coaxial line, 
there may exist under certain conditions higher order waves with electric 
or magnetic field in the direction of the line axis. Such 
waves would be expected from the study of the simple 
case of parallel planes, and by the general study of 
waves along uniform systems in Chapter 8, where TM 
and TE waves were found in addition to the princi-
pal or transmission line waves. The general forms 
for the TM and TE waves in cylindrical coordinates 
are listed in Art. 8.20. The boundary conditions Ma. 9.02a. Cross 

section of a coaxial require that Ez for the TM waves be zero at the in- line. 
ner radius and, at the outer radius, assuming perfect 
conductors. (These, of course, refer to radii measured at the bound-
ary between conductors and dielectric, as in Fig. 9.02a.) 
TM waves 

or 

A.J.(kzrc) B.N.(kcri) = 
21.J.(kero) B.N.(kcro) = 

N.(kcri) _ N.(k,ro) 
J.(keri) J.(kcro) [1] 

For TE waves, the derivative of Hz normal to the two conductors must 
be zero at the inner and outer radii. 

C.J4(kcr2) DnArni(kcri) = 

en<ifi(lccro) Dne,(koro) = 

(kzrc) _ Nni(kero) 

4(iccrc) Jn'(koro) [2] 

Solutions to the transcendental equations (1) and (2) determine the 
values of k, for any wave type and any particular values of ri and 7.0. 
For any wave there is a cut-off frequency determined by the value of kc. 

2r 
fe =   or )tz — [3] 

fi kc 
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Solution of the transcendental equations is not simple; cut-off wave-
lengths for some of the TM waves are given in Fig. 9.02b. If the radius 
of curvature is large, the criterion developed for cut-off of higher order 
waves between parallel planes (Art. 8.07) might well be used as a first 
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9.02b. Cut-off wavelengths for some higher order TM waves in coaxial lines. 

approximation. That is, we expect to find the cut-off of the lowest 
order TM wave when the spacing between conductors is of the order of a 
half wavelength in the dielectric of the line, and for the pth order when 
it is p half wavelengths. That is, 

2 
Xc •••-# - (r0 — 7'1) p = 1, 2, 3 • • • 141 

This is verified by Fig. 9.02b for values of ro/ri near unity. 
Probably more important is the lowest order TE wave with circum-

ferential variations. This is analogous to the TE10 wave of a rectangu-
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2r 
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V7-4  (0 i1ei - 

Xi 

All units above are mks. 
ei = eleo = dielectric constant, farads/meter 

¡Li = Alimo = permeability, henrys/meter for the dielectric 

ni = N/eTE-1 ohms 

el' = loss factor of dielectric = aiiroeo 
B, = skin effect surface resistivity of conductor, ohms 

Xi = wavelength in dielectric = X0/Yirp; 

Formulas for shielded pair obtained from Green, Leibe, and Curtis, Bell System 
Tech. Journ., 15, pp. 248-284 (April, 1936). 
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lar wave guide, and physical reasoning from the analogy leads one to 
expect cut-off for this wave type when the average circumference is 
about equal to wavelength. (The later discussion of Art. 9.05 will in-
dicate this clearly.) Solution of (2) reveals this simple rule to be 
within about 4 per cent accuracy for ro/ri up to 5. In general, for the 
nth order TE wave with circumferential variations, 

Zr fro ri\ 

n 2 
Xc e•,.• 

n = 1, 2, 3 • • • [5] 

There are, of course, other TE waves with further radial variations, and 
the lowest order of these has a cut-off about the same as the lowest order 
TM wave. 

Once cut-off is found by solution of (1) and (2) or the above approxi-
mations, propagation characteristics are determined by the expressions 
of Art. 8.18. Of course, for the majority of coaxial line applications, 
dimensions are small enough compared with wavelength so that the 
waves are far below cut-off. They then do not propagate energy, but 
attenuate rapidly so that they are important only at end effects, dis-
continuities, or in the radiation field. For microwave applications, how-
ever, the line size may sometimes be large enough to propagate the cir-
cumferential mode determined by n = 1 in (5). 

COMMON WAVE GUIDES 

9.03 Wave Guides of Circular Cross Section 

If a hollow round pipe with no inner conductor is now considered as a 
system for guiding electromagnetic energy, it is known from previous dis-
cussions that no transverse electromagnetic wave, the principal wave of 
ordinary lines, may propagate in such a guide. However, there is a 
large number of possible waves with either electric or magnetic field in 
the direction of propagation. The basis for analysis of these has been 
laid down in Arts. 8.11 to 8.18. A physical discussion of the various 
wave types has been given in Art. 8.21. It now remains to set down the 
important quantitative relations for guides of circular cross section. 
For a circular guide, cylindrical coordinates will, of course, be se-

lected so that the appropriate solutions for the waves may be taken 
directly from Art. 8.20. There can be no term in 11Mke) since the 
solution must in this case apply at the origin, r = 0 and Nn (0) = co. 
For TM waves, E. is then given by Eqs. 8.18(4) and 8.18(5) with 
B = 0. For TE waves, H. is given by a like expression. Other field 
components for the two types of waves follow from Eqs. 8.20(8) 
to 8.20(11) respectively. General solutions for the two types of waves 
are then as follows. 
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Transverse Magnetic or E Waves Transverse Electric or H Waves 

E, = AJ.(k,r){7 ne °8 n4) am ncp H. = BJ„(k,r)fc . 
8111 no 

14 — —j nf As I. lamn(ke)  Er = j — 13.1..(k,r)fsinn re 
. nnif 

kairfc —cos no lccrfc I. —cos no 

H. = —j —/— Af (kc r){c°8 nciain nxi) e e fen n [1] Ei. = i.,,, 5; /3,4(ke)laci11 °8 nned, [2] 

Er 
Ho = — HrZ TM Ho = 

Er = HoZrif 

ZTE 

Hr = — —„ 
TE 

In all the above expressions eiwt—Yz is understood and 7, ZTAb and 
ZTE are (Art. 8.18): 

f 

ZTM = 771 \1., 

ZTE = 711 
1 

—• 
f2 

For a negatively traveling wave (6.1̀ "+"" understood) (1) and (2) are 
still completely valid in their present form if only the signs of ZTaf and 
ZTE are changed wherever they appear. 

For transverse magnetic waves, the boundary condition of zero electric 
field tangential to the conducting boundary, Ez = 0 at r ----- a, must 
require that 

J(ka) = 0 [3] 

Since the Bessel function .1n(x) has an infinite number of values of x 
for which it becomes zero, (3) may be satisfied by any one of these. 
That is, if pni is the /th root of J(x) = 0, (3) is satisfied if 

(k Pnl 
a [41 

Equation (4) defines a doubly infinite set of possible values for kz, one 
for each combination of the integers n and 1. Each of these combina-
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tions defines a particular wave type by equations (1), in general 
differing from all others in field distributions, cut-off frequencies, and 
propagation properties. A particular E or transverse magnetic wave 
corresponding to two integers n and / is denoted by Eta or T M n1. The 
integer n describes the number of variations circumferentially; the 
integer / describes the number of variations radially. The cut-off wave-
length or frequency for a particular wave type follows from (4). 

27r 27ra 
(Xc)rma = —, = — 

ICc Pn1 

lcc Pn/  
(fc)TAint — _ 

27r \/1. 1 27ra N/i7171. 

[5] 

[6] 

The lowest value of pm is the first root of the zero order Bessel func-
tion, poi = 2.405, so that this Tilfoi wave has the lowest cut-off wave-
length of all transverse magnetic waves in a given circular pipe. From 
(5), this cut-off wavelength is 2.61a. Note that this wavelength is 
measured at velocity of light in the dielectric filling the guide, 1/-VT. . 
For transverse electric or H waves the required boundary condition is. 

that normal derivative of Hz be zero at all conducting surfaces. This 
requires 

J(ka) = 0 

So that if p:a is the /th root of ./(x) = 0, (7) is satisfied by 

(kc)n1 = P;12 

[1 

[8] 

Equation (8) again defines a doubly infinite number of possible TE 
wave types corresponding to all the possible combinations of the inte-
gers n and /, n describing the number of circumferential variations, / the 
number of radial variations. A particular H or transverse electric wave 
type is labeled Hni or TE7a. Cut-off wavelength and frequency are 

27r 
(Xc)Tzni = , a 

Pal 

(fc)TE,a — 

i 
Pni 

27raN/giel 

The lowest value of p:ii is not p:m but rather pli, which is 1.84, so that 
the TEi i wave has the lowest cut-off frequency of all transverse electric 
waves in a given diameter of pipe. From (9) this corresponds to a 

[9] 

[10] 
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cut-off wavelength of 3.41a. This is also a lower frequency of cut-off 
than that found for the lowest order TM wave in a given size pipe. 
Stated in another way, the TE11 wave of a given frequency will prop-
agate in a pipe only 76.6 per cent as big as that required to support a 
TMoi wave of the same frequency. The field distributions in these 
two wave types and others of the more important wave types for a 
circular guide are sketched in Table 9.03. 
Thus the cut-off frequency for a given type of wave is determined by 

the radius of guide a, and by the order (n and 1) through (5), (6) or (9), 
(10). The field distributions for any frequency f are then determined by 
(1) or (2); the phase and group velocities are determined by Eq. 8.18(5) 
and Eq. 8.18(6), attenuation constant below cut-off by Eq. 8.18(4), 
characteristic wave impedance by Eq. 8.18(7). Attenuation due to an 
imperfect dielectric filling the guide is given for all wave types by 
Eq. 8.18(11). For one of the more interesting items, attenuation due 
to imperfect conductors above cut-off, it is necessary to evaluate the 
integrals of Eqs. 8.18(8)—(10). We shall show how this is done for 
a TM,a wave below. 

For a TM ,a wave, the expression for power transfer is obtained by 
substituting the expression for E. in (1) in Eq. 8.18(8). 

WT 
,ZTm (ff. 2 

dS 

(ff)2 (fi)2 f2 ja 2ni f o A2J(k.r) cos2 (rut)) rdr 

The integral of the cos2 term gives a value of ir. The integral of the 
Bessel function is evaluated by Eq. 3.22(5). 

a2 722 
ek.r)r dr o 7 [I? (k .a) ± (1 ± ic-5 --.2)4(k.a)] 

The second term in this integral is zero because of (3). So 

— a2 
v. f  

WT A2J?(Icca) [11] 
4ni 

2 nf —c) fc.e. 
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The power loss per unit length due to the conductors, by Eq. 8.18(9) 

WL 
Rs f \ 2 £(.9Ey 

dl 
2e0,2 \fj .1" 

27r 

R8 (f Id A2.1', 2 (kca) f cos2(74) adO 
271114 f 

Rsira (f 
2'd fe 21.2./.12 (loca) [12] 

By substituting (11) and (12) in Eq. 8.18(10), the attenuation is 

WL R s  1 
ceTM,a nepers/meter [13] 

21VT — ani Gy 
1  

A similar use of the equations gives the attenuation for a TEni wave, 

aTELa = —   
R s  1  Rfy n 2 

1 

t2 
Pni 

— (1)2 f 

Some representative curves of attenuation versus diameter are 

plotted in Fig. 9.03a for different wave types at a fixed frequency; and 
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FIG. 9.03a. Attenuation due to copper losses in circular wave guides at 3000 mc./sec. 
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in Fig. 9.03b, for different waves types in a guide of fixed diameter, 
attenuation is plotted versus frequency. The TEoi wave is inter-
esting since it shows an attenuation which decreases indefinitely with 
increasing frequency. This is logical, since equations (2) show that 
the only magnetic field component tangential to the conductors is Hz, 
if n 0. As frequency increases, Hz decreases for a constant value 
of transmitted energy and approaches zero at infinite frequency. 
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9.03b. Attenuation due to copper losses in circular wave guides; 
diameter = 2 in. 

Currents in the guide walls therefore approach zero; and losses ap-
proach zero. As was pointed out in Alt 8.21, this merely means that 
under such conditions the wave is not tied intimately to the conducting 
walls. Any asymmetry or bending of the guide will, of course, produce 
currents in the walls and a corresponding increase in losses, or may 
even transform the wave into another type than the Ten. While 
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the TE01 wave was used as an example, all TEoz waves behave 
similarly. 

Problem 9.03(d). Derive Eq. 9.03(14) for attenuation of TEni waves in an im-
perfectly conducting guide. 

Problem 9.03(b). Show that for all TM./ waves, the minimum attenuation 
arising from imperfect conductors occurs at a frequency, 

Study the dependence of the value of attenuation at this frequency on fc. (Recall 
that R, is a function of frequency.) 

Problem 9.03(e). For X = 7 cm, select a pipe size to propagate with a reason-
able safety factor the TEn wave, but no other wave type. Compare the dissipative 
attenuation in this TEii wave (copper guide) with the reactive attenuation in the 
next highest order wave. 

9.04 Wave Guides of Rectangular Cross Section 
The waves which may propagate inside a hollow pipe guide of rec-

tangular section are similar to those for a guide of circular cross section 

studied in the last article. The wave types may be written directly 
from the general results for waves in rectangular coordinates, Art. 8.19. 

Transverse Magnetic or E Waves 

= A sin ke sin kyy 

kyf, 
=j — A sin ice cos kyY 

koni 

k 
jkon—xf Hy - - A cos krz sin kyY - f [1] 

= ZTmHy, 

Ey = -ZrmHz 

where again Eiwt-73 is understood, 

and 

Transverse Electric or H Waves 

H, = /3 cos ls.x cos kyy 

nikvf 
E. - j="-` B cos ice sin levy 

. nikdc E, - -3 kd B sin ice cos kyy [2] 

H. = - E, 

ZTB 

ZTM = 771\11 — 
f 

ZTE 

\ 11 — (f-j2 

- (f±) 2 

VI \f 
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If the wave is a negatively traveling one (ei`"+7z understood), (1) and 
(2) are completely correct except that the sign of Znif and ZTE should 
be changed wherever they appear. 

The omission of cosine terms in E, and sine terms in H, was gov-
erned by the boundary requirements that E, = 0 at x = 0 and at 
y = 0 for TM waves, and that 8H2/ax = 0 at x = 0, allz/ay = 0 
at y = 0 for the TE waves. The requirement of E, = 0 at x = a 
and y --- b also fixes kx and kr for TM waves: 

kx ---- — 
a [3] 

The requirement of aH„/Ox --- 0 at x = a and aHz/ay = 0 at y = b 
leads to the same values of kx and ky for TE waves. From Eq. 8.19(4) 
for either TM or TE waves, 

= 
m „)2 („ !„)2 vcc).r. .042 iczy = \i(= + -2  
a 

Then cut-off wavelength and frequency may be written 

2r  2 2ab  
kc \k inr .v(nzb) 2 ± ozar 

=  kc  =  1  \/(212 2 2 

Wiliet \a + 

There are then a doubly infinite number of possible waves of each type, 
corresponding to all the combinations of the integers m and n. An 
E or transverse magnetic wave with m half-sine variations in \the x 
direction and n half-sine variations in the y direction is denoted as an 
E„,,, or TM„„, wave. An H or transverse electric wave with m half-
sine variations in x, n in y, is denoted by H„,„ or TE„,.. Note that by 
(1) and (2) TE waves may exist with either m or n (but not both) 
zero, whereas in a TM wave neither m nor n can be zero or the entire 
wave disappears. The lowest order TE wave, TEio, is of enough 
special engineering interest to be studied in more detail in a following 
article. For the moment, however, we see from (5) that the cut-off 
(free space) wavelength of such a wave is 

[4] 

[5] 

PtclTE,„, = 2a 

[6] 

[7] 

That is, the cut-off frequency is that frequency for which the width 
of the guide is a half wavelength. It does not depend at all on the 
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other dimensions. For the lowest order TM, 

2ab 
(xc)11 

N/a2 b2 

343 

[8] 

For a square, a = b, this is merely N/i a. 
The phase and group velocities, attenuation below cut-off, and atten-

uation due to imperfect dielectrics above cut-off for any wave type 
are given in terms of the cut-off frequency of that wave type by the 
general expressions of Art. 8.18. For attenuation above cut-off due 
to imperfect conductivity, we evaluate the integrals of Eqs. 8.18(8)-(10) 
in a manner similar to that shown for the TM,m, wave in a circular guide, 

Art. 9.03. The results are 

(ac)TE.. = 

(ac)TE., [9] 
bni \/1R -8 0 2 [1 

rw2 ±n2 
(1+ b)(c)2 [1 (fc)2ia`b:  2R,  

f m2 , 
bin - (1)2 a f - -2 - a ± n- JJ 

[10] 

[11] 
(ec)TE.,, — 

all  [.2 L \a/  

bi  Ni1 - (1)2 [m2 CY 

Curves of attenuation versus frequency for several representative 
cases are plotted in Fig. 9.04. Values are again plotted in decibels 
per meter, this being 8.686 times the value of nepers per meter given 
in the formulas (9) to (11). There is no wave in a rectangular guide 
for which attenuation decreases indefinitely with frequency, as there 

is for the TE01 class of waves in the circular guide. 
Several field distributions and other data are- tabulated in Table 

9.04 for the most important waves of a rectangular pipe. It should be 
especially noted that analogous waves for rectangular and circular 
pipes are in general not those having the same subscripts. Thus a 
comparison of these figures with those of Table 9.03 shows that the 
TEio wave in a rectangular guide is analogous to the TEii wave in a 
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circular guide; the TM11 wave in a rectangular guide is analogous to 
the TMoi wave in a circular guide; the TA/12 rectangular is analogous 
to the TAIn circular, etc. 
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FIG. 9.04. Attenuation due to copper losses in rectangular wave guides of fixed 
width. 

Problem 9.04(a). Derive in detail the expressions for attenuation due to im-
perfect conductors, Eqs. 9.04(9)—(11). 

Problem 9.04(6). Are there frequencies of minimum attenuation in TM., and 
TEmn waves in a rectangular guide as there were for TM,a waves in a circular guide? 

Problem 9.04(e). Of the wave types studied so far, those transverse magnetic 
to the axial direction were obtained by setting H, = 0; those transverse electric 
to the axial direction were obtained by setting E2 = 0. For the rectangular wave 
guide, obtain the lowest order mode with Hz = 0 but all other components present. 
This may be called a wave transverse magnetic to the z direction. Show that it 
may also be obtained by superposing the TM and TE waves given previously of 
just sufficient amounts so that Hz from the two waves exactly cancel. Repeat for 
a wave transverse electric to the x direction. The above wave types are also 
called longitudinal section waves. 

9.05 The TEN Wave in a Rectangular Guide 

One of the simplest of all the waves which may exist inside hollow 
pipe wave guides is the TE10 wave in the rectangular guide. It is 
also of great engineering importance, partly for the following reasons. 

1. Cut-off frequency is independent of one of the dimensions of the 
cross section. Consequently for a given frequency this dimension may 
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SUMMARY OF W AVE TYPES FOR RECTANGULAR GUIDES 
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be made small enough so that the TE10 wave is the only wave which 
will propagate, and there is no difficulty with higher order waves which 
end effects or discontinuities may cause to be excited. 

2. The polarization of the field is definitely fixed, electric field pass-
ing from top to bottom of the guide. This fixed polarization may be 

required for certain applications. 
3. For a given frequency the attenuation due to copper losses is not 

excessive compared with other wave types in guides of comparable size. 
Let us now rewrite the expressions from the previous article for 

general TE waves in rectangular guides, Fig. 9.05a, setting m = 1, 
n = 0 and substituting the value of cut-off for this combination. 

rx 
H, = B cos —a 

H, = j (1 \11 - B sin 1-r! 
\2a1 a 

E = —ZTEL 

Hy = O = E. 

ZTE 
711 

_ Glay 
1 

Vp — \ 

/71Z N411 — 

 2 

a) 

vg - 1 xi 2 

2a 

)t,= 2a 

1  
.fe - n   

ha v 

Attenuation due to imperfect dielectric 

ad — 

[6] 

[7] 

[8] 

[9] 

[10] 
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Attenuation due to imperfect conductor 

R,  

bniI — 0 2E- a ‘f 

In the above, vp is phase velocity, vg is group velocity, pi, Ei, and ni are 
permeability, dielectric constant, and intrinsic impedance respectively 
for the dielectric filling the guide. R, is the skin effect surface resis-
tivity of the conducting walls, and el'/Ef is the power factor of the 
dielectric. 

A study of the field distributions (1) to (3) shows the field patterns 
for this wave sketched in Table 9.04. First it is noted that no field 
components vary in the vertical or y direction. The only electric field 
component is that vertical one E, passing between top and bottom of 
the guide. This is a maximum at the center and zero at the conducting 
walls, varying as a half-sine curve. The corresponding charges induced 
by the electric field lines ending on conductors are: 

(a) Charges zero on side walls. 
(b) A charge distribution on top and bottom corresponding to E. 

Pa = —eiEg coulombs/meter' on top 

eiEg coulombs/meter' on bottom 

ac 

FIG. 9.05a. Cross section 
eating transverse current 

around guide in TEle wave. 
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9.05b. Top view indicating longi-
tudinal current flow along guide in TEie 

wave. 

The magnetic field forms closed paths surrounding the vertical electric 
displacement currents arising from Ey, so that there are components 
Hz and H8. Hz is zero at the two side walls and a maximum in the 
center, following the distribution of E. Hz is a maximum at the side 
walls and zero at the center. Hz corresponds to a longitudinal current 
flow down the guide in the top, and opposite in the bottom; H, corre-
sponds to a current from top to bottom around the periphery of the 
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guide. These current distributions are sketched in Figs. 9.05a and b. 

(a) Longitudinal current flow: 

On top J = Hz amperes per meter. 

On bottom J. = —11. amperes per meter. 

(b) Transverse current flow from top to bottom: 

On walls J, = —H l=o amperes per meter. 

On top Jz = —Hz amperes per meter. 

On bottom J. = Hz amperes per meter. 

This simple wave type is a convenient one to study in order to 
strengthen some of our physical pictures of wave propagation. First 
note that this is one of the types predicted by physical reasoning in 
Art. 8.21. Electric field is confined to the transverse plane and so 
passes between equal and opposite charge densities lying on different 
parts of the walls in the same transverse 
plane. Currents flow around the periphery 
of the guide between these opposite charges; 
currents also flow longitudinally down the 8 -«7 /Z.7/ 

guide between a given charge and that of 
opposite sign, a half wave farther down the 
guide. The magnetic fields surround the 
electric displacement currents inside the guide and so must have an 

axial as well as a transverse component. 
We might now look at the problem from a little different angle, 

imagining how an engineer familiar only with transmission line tech-
niques might conceivably arrive at the distribution of fields and currents 
in such a wave guide. Suppose he first imagines a parallel strip trans-
mission line A, as in Fig. 9.05c, with voltage between the two strips, and 
a going and return current in the two strips. The widths w are small 
compared with wavelength. Next suppose he wishes to close in the 
two sides for shielding purposes, recalls that the input impedance of a 
quarter wave shorted line is infinite, and so decides that he may put 
closing sections B along the two sides, so long as these are a quarter 
wavelength along the dimension 1. These should then look like a 
quarter wave shorted line to any currents trying to flow in the direction 
x, so that there are only infinite impedances connected across the two 
sides of the parallel strip line, and the ordinary operation of this line 
should not be interfered with. He has arrived at a minimum overall 
width for his closed section of 2/ w, or somewhat greater than a 
half wavelength, since 1 = X/4. He recognizes, of course, that fields 

w 

Fia. 9.05c. 
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must penetrate into the two closing side sections and a transverse 
current flow will exist in these which is a maximum at the shorted ends 
where voltage is zero, so that all these conclusions correspond to those 
we have obtained previously. Of course, it is apparent that the fields 
in the shorting sides and in the original transmission line are not really 
separated, and the phase velocities along the middle section are changed 
by the side numbers, so that this is not a particularly good way to an-
' alyze this problem, and it will not be pursued further. However, it 
should stress the fact that the idea of wave propagation inside a closed 
wave guide is not at all contrary to ordinary engineering ideas which 
embrace transmission line techniques, once it is recognized that trans-
verse dimensions of these guides must be comparable with wavelength. 

-CZCI,<Z/ZelZ/ZZLIZZ/./../(Z/1/111-1ZIZZ/ZZefe. 

j / \\ :.1 / \ 

/ Y / \ / up= udsin 9 
XV, '.. Di a / 

I t 74 7 Is\ 
\ /// \ \ \ / / -_,,. 

Lieu, sin 0 
,7 /77•7777Y7771717/7/777777/7/" X/7/7777: 

(Top View) 

I 
Fia. 9.05d. Path of uniform plane wave component of 

TEio wave in rectangular guide. 

A third viewpoint follows from that used in studying the higher order 
waves between parallel planes. Here it was pointed out that one could 
visualize the TM and TE waves in terms of plane waves bouncing 
between the two planes at such an angle that the interference pattern 
maintains a zero of electric field tangential to the two planes. Sim-
ilarly, the TE10 wave in the rectangular guide may be thought of as 
arising from the interference between incident and reflected plane 
waves, polarized so that the electric vector is vertical, and bouncing 
between the two sides of the guide at such an angle with the sides 
that the zero electric field is maintained at the two sides. One such 
component uniform plane wave is indicated in Fig. 9.05d. As in the 
result of Art. 8.07, when the width a is exactly X11/2, the waves travel 
exactly back and forth across the guide with no component of propa-
gation in the axial direction. At slightly higher frequencies there is a 
small angle O such that a = X1/2 cos 0, and there is a small propa-
gation in the axial direction, a very small group velocity in the axial 
direction v1 sin 0, and a very large phase velocity vi /sin O. At fre-
quencies approaching infinity, O approaches 90°, so that the wave 
travels down the guide practically as a plane wave in space propagating 
in the axial direction. 

All the above points of view explain why the dimension b should not 
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enter into the determination of cut-off frequency. Since the electric 
field is always normal to top and bottom, the placing of these planes 
plays no part in the boundary condition. However, this dimension b 
will be important from two other points of view. 

(a) The smaller b is (all other parameters constant), the greater is 
the electric field across the guide for a given power transfer, and so the 

danger of voltage breakdown is greater. 
(b) The smaller b is (all other parameters constant), the greater is 

the attenuation due to conductor losses. 
The first point is easily seen since it was shown that the power transfer 

can be written as the integral over the cross-sectional area of E2/ZTE. 
ZTE does not change with b, so as cross-sectional area decreases, E 

must increase, if power is to be constant. 
The second point follows from an approximate picture in which the 

attenuation is roughly proportional to the ratio of perimeter to cross-
sectional area. This picture is a logical one as the conductor losses 
occur on the perimeter, and the power transfer occurs through the 
cross-sectional area. Of course, field distributions enter, and we can 
look at this case more rigorously by noting that if the strength of 
magnetic field is maintained constant as b is decreased, the magnitude 
of currents in the walls is maintained constant. A large part of the 
losses occur along the top and bottom, and this part is consequently 
unchanged as b decreases, but power transfer for this constant H de-
creases directly with b. Therefore the ratio of power loss to power 
transfer increases as b decreases. 

Problem 9.05(a). For Xi --- 10 cm, design a rectangular wave guide with 
copper conductor and air dielectric so that the TEio wave will propagate with a 
30 per cent safety factor (f = 1.30 fc) but also so that the wave type with next 
higher cut-off will be 30 per cent below its cut-off frequency. 

Calculate the attentuation due to copper losses in decibels per meter. 

Problem 9.05(b). Repeat the above for Xi = 5 cm. 
Problem 9.05(c). Design for the same frequency and conditions of (a) except 

that the guide is to be filled with a dielectric having a dielectric constant 4 times that 
of air. Calculate the increase in attenuation due to copper losses alone, assuming 
the dielectric is perfect. Calculate the additional attenuation due to this dielectric, 

if Eil/ei = 0.01. 
Problem 9.05(d). Sketch lines showing direction of total current flow in the 

guide walls for a single traveling TEio wave. 

OTHER WAVE GUIDING SYSTEMS 

9.06 Dielectric Rod or Slab Guides 
The study of waves in the rectangular guide from the point of view of 

plane waves reflected between top and bottom (Art. 9.05) suggests that 
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under certain conditions a wave may be guided without loss of energy 
by a slab of perfect dielectric having no metal boundaries. This follows 
from the concept of total reflection of Art. 7.13, where it was found that 
if a wave traveling in a dense dielectric strikes the boundary of a lass 

. dense dielectric at an angle of incidence 
  greater than a certain critical angle, all 

energy is reflected. This critical angle, 
Eq. 7 13(2), where 1 refers to the dense 
medium and 2 to the less dense medium, is .. • • • 

FIG. 9.06a. Paths of uniform 
plane wave components in 0, = 

[1] a dielectric slab guide. Agiei 

Thus in a dielectric slab as in Fig. 9.06a, which is assumed infinite in 
the direction normal to the paper, suppose that plane waves are excited 
inside the dielectric in some manner so that they travel as shown, striking 
the surface at an angle of incidence, O. If O> Oc all energy will be 
reflected at each reflection and all will be retained in the slab. As with 
other wave guides, there is, for a slab of given thickness, a certain mini-
mum frequency at which such a condition can exist. For frequencies 
lower than this critical frequency, the angle O will be less than 0, and a 
certain amount of energy will be transmitted into the dielectric medium 
2 at each reflection, so that the dielectric does not act as a perfect guide. 
At frequencies higher than the critical, the angle becomes greater than 
0,, and the only fields in medium 2 are reactive fields that decay expo-
nentially from the boundary in the transverse direction. No average 
energy is then transmitted into this region. As the frequency ap-
proaches infinity, O 7/2 and the exponentially decaying fields in 
medium 2 approach zero. The critical frequency is that for which 
O = Oc. A study of the incident and reflected waves at this critical angle 
shows that there is a phase angle of 180° between incident and reflected 
components of magnetic fields parallel to the surface. It follows 
(maybe not obviously) that the slab should be exactly a half wave 
thick, measured at a phase velocity transverse to the slab. 

1  
d — „  

e cos 0 2f\ri-.171cos O 

Substitute the value of O Oc from (1) 

cos O = V1 — sin2 Oc = "V1 — (E2122,441€1) 

So 

[2] 

1  1  
— [3] 

cW 2c/N/T. — (22/1s11)) 2ihei — P2€2 
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Note that if pei ›> ii2€2, the requirement for cut-off is that the slab be 
a half wave thick, measured for the dielectric material of the slab, so 
that such a slab will have exactly the same cut-off frequency as though 
it had conducting walls. If µ2e2 is not negligible compared with µel, 
the guide must be somewhat thicker than a similar slab with conducting 
boundaries in order to have the same cut-off frequency. 

For exact behavior of the guided wave below and above this critical 
frequency it would be possible to utilize further the results of reflections 
at boundaries between dielectrics, but probably it would be as easy to go 
directly to Maxwell's equations and match solutions on the two sides of 
the boundary. For variety, let us do this, not for the above example 
but for a round dielectric rod in a medium of lesser dielectric constant. 

Let us investigate the possibilities of propagating a TM wave with 
circular symmetry in a dielectric rod (medium 1 of Fig. 9.065) surrounded 
by the dielectric medium 2 with no intervening conductors. The proper 
wave solutions may be found from Art. 8.20. If cl) variations are elimi-
nated, y= 0. Since medium 1 includes the origin, only the Jo term 
can be present in this region; otherwise fields would become infinite at 
r = 0. Since medium 2 extends to infinity, only the He) term can be 
present in this solution; otherwise fields would become 
infinite at r = co. The factor eciwg—lz) is, of course, 
understood in all terms. Then, 

Ezi = AiJo(kzir) 

= A2He)(kar) 
[4] FIG. 9.06b. Dielec-

tric rod wave guide. 

Other components follow from the relations of Eqs. 8.20(8) to 8.20(11) : 

where 

= E4,2 = 

En 'YA = J1(kzir) 

iWelA 

141 —  J1(kzir) 

H ri — H r2 = 

E2 = 
ka 

iC0e2A 2 
H,,,2 Hi2) (kc2r) 

ka 

k2ci = 72 ± (42111€1 

422 = 7 2 ± co2m2e2 

[51 

[6] 

[7] 

At the boundary between the two dielectrics, r = a, Ez and Ho must be 



352 WAVE GUIDES AND TRANSMISSION LINES [Art. 9.06 

• continuous. If this requirement is placed in (4) and (5) 

Jo (kcia) eika Hó2) (kc2a)  
[81 (kcia) e2kci H12) (lcc2a) 

We now reason as follows. If the condition under which all energy 
is retained in the rod is sought, and no average energy is to be trans-
mitted into the second medium, it is desired to have a solution corre-
sponding to an exponential decay in the outer medium, and from 
Chapter 3 we find that this is obtained if Icc2 is imaginary, since 4 2) 
of an imaginary quantity is analogous to a negative exponential. The 
requirement is then 

1d2 < 0 

and the critical limiting condition is 

kc2 = 0 [9] 

From (7), the propagation constant under this critical condition is 
,y2 _ c021.42e2 

7 = = ico'VeT—te2 [10] 
Therefore, there is propagation with no attenuation and, under this 
critical condition, at a phase velocity equal to the velocity of light in 
the outer medium. 

If (8) is observed for ka = 0, it is seen that for this critical condition 

Jo(kcia) = 

Denote the /th root of Jo(x) = 0 by poi. Then 

kcia = poi 

But from (6) and (10) 

loci = coN/Plet — P2E2 
So 

Poi 

27raN/miel — 122E2 

The lowest root, poi, is 2.405. 

This above value of critical frequency is seen to be quite similar to 
that of (3), obtained from the wave reflection concept for the slab of 
dielectric, and for iii€1 » 1.42E2 it reduces to the expression for cut-off 
frequency of a TM0 wave in a guide with metal boundaries. 

If the above analysis were followed through in detail, it would be 
discovered that large negative values of kL correspond to very high 
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frequencies, and for these the phase velocity approaches 1/V', or 
the velocity of light for the medium of the rod. The large imaginary 
values of ka require that fields attenuate rapidly as one progresses 
transversely into the outer dielectric, that is, most of the energy is 
confined in the rod. Conversely, for the small values of ka near the 
critical frequency, the fields extend a long distance into medium 2. 
These changes in energy distribution check with results from physical 
reasoning which would lead us to believe that velocity of propagation 
would be determined largely by region 2 near cut-off, and by region 

1 as frequency approaches infinity. 
This is, of course, only a partial treatment of the problem for only 

two of the many waves that may be guided by dielectric rods. How-
ever, the preceding physical pictures of total reflection and the analysis 
based on Maxwell's equations should now supply a definite feeling for 
some of the fundamental properties of such guided waves. 

Problem 9.06(a). Obtain the attenuation due 
to a lossy dielectric for the TMoi wave guided by 
the circular dielectric rod. 

Problem 9.06(b). Consider the propagation 
of waves between two infinite parallel conduct-
ing planes separated by two regions of different 
dielectric constant (Fig. 9.06e). Show that even for perfectly conducting planes, 
an E, component must be present in the principal wave and indicate the extent to 
which the conventional transmission line equations might be in error in predicting 
the characteristics of the principal wave. Assume spacings small compared with 

wavelength. 

Perfectly Conducting Planes 

Fla. 9.06e. 

9.07 Waves Guided by a Single Cylindrical Wire 
A principal or transverse electromagnetic wave may exist outside a 

single perfect conductor, since there is a solution to Laplace's equation 
corresponding to charges on the conductor with electric field lines going 
to infinity, and a single unidirectional current in the conductor. The 
proper cross-sectional field distributions outside the wire, if the wire 
cross section is circular, are 

[11 

A 
— 
nr 

All the properties of the general transverse electromagnetic wave found 
in Art. 8.09 apply, such as the propagation with velocity of light in 

the surrounding dielectric. 

[2] 
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Physically we might think of the wire as the inner conductor of a 
coaxial transmission line with return at infinity. It is evident that in 
a practical case the electric field lines will try to end on any other con-
ductors in the vicinity, milking these the return if possible. The single 
wire is consequently not very promising as an ideal transmission 
system; certainly it is the exact opposite of a well-shielded system. 
There may be certain cases involving the use of wire conductors in 
radio-frequency circuits for which results of an analysis for this case 
are of importance, but the problem is not of enough engineering impor-
tance compared to other guiding systems to warrant a complete analysis 
here. A very excellent and complete analysis of the problem is given 
by Stratton.' Such an analysis shows these interesting points: 

1. TM or TE waves may exist outside the single conductor if the 
conductor is perfect. 

2. If the conductor has finite conductivity, wave solutions inside 
the conductor may be matched to those outside, and it is found that 
any higher order waves having variations with circumference have 
extremely high attenuations. 

3. The wave which remains with no circumferential variations re-
duces to the ideal wave of (1) and (2) as conductivity approaches in-
finity. For very poor conductors or very small conductor radii, the 
attenuation in this wave may be terrific, and its phase velocity may 
depart markedly from the velocity of light in the surrounding dielectric. 

4. As the conductivity of the wire becomes poorer, the fields pene-
trate farther into the conductor. When the conductivity has become 
very small the wire takes on more the characteristics of a lossy dielectric 
and the solution approaches the solution for waves guided by a dielec-
tric rod (Art. 9.06). 

5. The analysis of this case reminds one that there is a transverse 
electromagnetic or principal wave possible for the parallel wire line in 
addition to that already studied. This wave corresponds to like 
charges on the two wires and equal currents in the same direction in the 
two lines, with fields extending outward toward infinity. This is the 
zero-phase-sequence wave of power transmission line experience. 

9.08 Radial Transmission Lines 

Another guide of practical importance consists of two circular, 
parallel, conducting plates, separated by a dielectric and used for 
guiding electromagnetic energy radially (Figs. 9.08a and b). The 
simplest wave that may be guided by these plates is one with no field 

Stratton, " Electromagnetic Theory," McGraw-Rill, 1941. 
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variations circumferentially or axially. There are then no field com-
ponents in the radial direction, but field components E. and Hq, only. 
The component E„ having no variations in the z direction, corre-
sponds to a total voltage E.d between plates. The component Ho 
corresponds to a total radial current 21-rH,, outward in one plate and 
inward in the other. This wave is then exactly analogous to an ordi-
nary transmission line wave and thus derives its name of radial trans-
mission line. 

Input voltage and load 
impedance assumed 

uniformly distributed 
about circumference 

e, ZL 

(a) (b) 

Fla. 9.08. (a) Radial transmission line with input at outer radius. (b) Radial 
transmission line with input at inner radius. 

For the simple wave described above, since there are no radial field 
components, it is possible to base the analysis on the transmission line 
equations, except that L and C now vary with radius. However, we 
already have the wave solutions for fields if results of Art. 8.20 are 
properly interpreted. Since there are no 4) variations, 1, is set equal to 
zero. Since there are no z variations, 'y is also set equal to zero. In 
order to identify terms as waves traveling radially inward or radially 
outward, the form of Eq. 8.20(6) is used. We shall see the reasons for 

this below. The constant kc by Eq. 8.11(5) reduces to k1 = NfiTi; 
since 'y = 0. 

E. = AH(kir) HiLi2) (kir) [1] 

With 7 and = 0, the only other remaining field component in 
Eqs. 8.20(8) to 8.20(11) is H. 

1 0E5 
Hq, = — 

.10/21. Or 

He = [AH?) (kir) BHI2) (kir)] [2] 
711 

The two terms may be identified definitely as waves traveling inward 
and outward by employing the asymptotic expressions of the Bessel 
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functions for large arguments (Art. 3.19). Then 

= j A 
Eglkir..+00  

rkir 
+ Be 

with a similar expression for H. When the above are multiplied by 
e'", the first term will involve ei(e+kir) and the second ewe—kir) so that 
these are identified respectively as waves propagating in the negative r 
and positive r directions. 

The wave impedance of an outward traveling wave may be found by 
taking the ratio of Ez to H4, in (1) and (2) with A = 0. 

71- _ ni Hi?) (kir) 

-r 1/12) (kir) 

This is a function of r. For the inward traveling wave, B = 0, 

ni H(kir) 
Zr — — [4] 

j H  (kir) 

[3] 

The signs of (3) and (4) are chosen in accordance with the convention 
discussed in Art. 7.07. 
With these definitions of impedance it is possible to evaluate the con-

stants A and B and so find fields at any point along the line if any two 
field quantities are given, such as a terminating impedance and an elec-
tric field, two values of magnetic field, two values of electric field, or one 
value of electric field and one of magnetic field. Before giving these 
formulas let us define magnitudes' and phase angles for the complex 
Hankel functions as follows. 

so that 

(x) = Jo(x) jNo(x) = Go(x)e50 x) 

H 2 (x) = Jo(x) — iNo(x) = Go(x)e 10) 

je)(x) = —NI (x) -F j./i(x) = (x)ejes) 

jiii2) (x) = — [—NI (x) — jJi (x)] = —Gi (x)e—iex) 

Go(i) = Vex) + N8(x); 0(x) = tan—'[Arj:(%)] 

G1(x) = V Jî(x) + Nf(x); e(x) tan' [_j i(x) x )] 
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The expressions (1) and (2) then become 

= Go(kir)iliejekir) Be—ie(kirl 

Gi (kir) d , H. — [Ar(,s1r, 

The expressions (3) and (4) become 

Zo(kir)eitsbuce)-0(kir)1 

= Zo(k1r)e—iby(kir)-0(ktr)1 

where 

357 

[5] 

[6] 

[7] 

[8] 

Go(kir) 
Z0(kir) — ni Gi(kir) [9] 

The magnitudes Go and Gi, the phase angles O and e, and the impedance 
Zo are plotted in Fig. 9.08c. 
The constants A and B will now be determined for several different 

cases. The resulting formulas are quite similar to the familiar formulas 
of transmission line theory giving voltages, currents, and impedances in 
terms of input end or loading end values. In the following, the subscript 
of a quantity indicates the quantity is to be evaluated at the value of r 
denoted by the subscript. 

1. Given electric field Ea at r0, magnetic field Hb at rb; for any radius r, 

Go cos (0 — IPb) Go sin (61 — 0)  
E = Ea ,.., 

troa cos (Oa 'lib) ./, Gob COS (Oa — 'Pb) 
[10] 

Gi cos (11, — ea) . Ea Gi sin — 'Pb)  
H = n b „ 

(Jib cos Oa — Vb.! Goa Via cos (Oa — 'Pb) 

2. Given electric fields Ea at ra, Eb at rb; for any radius r, 

Go sin (Ob — 0) Go sin (0 — 0)  
Eb . 

Goa sin (Ob 0) Gob sin (01, — Oa) 
[11] 

H
Eb G1 cos (4, — 0) EaGi  cos (Ob — 4')  

— 
jZob Gib sin (Ob — 00) jZoaGia sin (Ob — 0) 

3. Given magnetic fields Ha at ra, Hb at rb, 

E
Zo„Hc, Go cos (0 — 'Pb) zobrib Go Cos (e  = 
j Goa sin (0. — j Gob sin (1Pa — 'Pb) 
G, sin (4, — Gi sin (11,„ — ip)  

H = Ha Hb — 
G1. si (Via — 'P1Pbb)) Gib sin — 'Pb) 

[12] 
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E, 
4. Input impedance Zi = —E. 1 when load impedance ZL = 

H. IL 
is given, 

= e01 [ZL cos (Oi — eL) + izoi, sin (Oi — OL)  1 zi 
Zu cos ('j —  OL) ± iZL sin (Iiii — 'PL)-] [13] 

5. Input impedance Zi = —E. when output is shorted (ZL = 0). 
Ho i 

sin (Oi — OL)  
Zi = jZoi 

cos Wit — OL) 
[14] 

Ez 
6. Input impedance Zi = —„ when output is open circuited 

i 
(ZL = ). 

cos (01 — 'PL)  
= —jhoi . 

sin — 'PL) 
[15] 

Usually total current and voltage are desired before the problem is 
regarded as completely solved. They can be obtained from the field 
expressions. Total voltage, if a higher potential on the upper plate is 
considered positive, 

V = —EA [16] 

Total current, if outward current in upper plate is considered as positive, 

I = 27eHo [17] 

So that the relation between total impedance and those given above on • 
a field basis, when the input end is at an inner radius, 

d tEz\ 

Z teed = 27e \Ho/ 
< rL [18] 

If the input end is at an outer radius, the convention for positive current 
will be opposite to (17), so 

d (E,) 
Ztotai = — 

27rr 
> rL [19] 

There are many higher order waves possible between the circular 
parallel conducting plates, having variations either with z, with 0, or 
both. If there are variations with z, the plates must be more than a 
half wave apart in order for the wave to propagate, just as was found for 
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the parallel plane transmission lines. The waves having variations 
with but not with z are more interesting since these will again propagate 
for any separation d between plates. In these, one part of the circum- . 
ference may have fields in one direction whereas another part has fields 
in a reverse direction. These waves are of particular interest in sectoral 
electromagnetic horns.2 

Problem 9.08(a). Set up the relations between fields that can exist in a sec-
toral horn, a region bounded by two parallel planes at z = 0, z = d (in cylindrical 
coordinates) and two axial planes cfi = 0, 4> = Assume perfect conductors in 
the boundaries. Find the wave impedances for all wave types and the cut-off fre-
quencies for the waves that exhibit cut-off phenomena. 

î  

FIG. 9.08d. Circular wave Fla. 9.08e. Coaxial line with open 
guide with shorted radial line in radial line in series with outer conductor. 

series with cylinder wall. 

Problem 9.08(b). For a TMoi wave in a circular wave guide it is desired to 
insert a blocking impedance for a given frequency. To do this, a section of shorted 
radial line (Fig. 9.084) is inserted in the guide, its outer radius a chosen so that with 
the guide radius b given, the impedance looking into the radial line is infinite at the 
given frequency. Suppose that the radius b is 1.25 times greater than cut-off radius 
at this frequency for the TM,:,1 wave and find the radius a. 

Problem 9.08(e). It is sometimes required to break the outer conductor of a 
coaxial line for insulation purposes, without interrupting the r-f current flow. This 
may be accomplished by the radial line as shown (Fig. 9.08e) in which a is chosen 
so that with b and the operating wavelength specified, the radial line has zero input 
impedance seen from the line. Find the value of a assuming that end effects are 
negligible, and that 

2wb 
= 1 

Problem 9.08(d). Find the voltage at the radius a in terms of the coaxial line's 
current flowing into the radial line at radius b (Fig. 9.08e). 

9.09 Waves Guided by Conical Systems 

The problem of waves guided by conical systems (Fig. 9.09) is 
important to a basic understanding of waves along dipole antennas and 

2 W. L. Barrow and L. J. Chu, Proc. I.R.E., 27, 51 (1939). 
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in certain classes of cavity res-
onators. In particular, one -`• \ 

/ - ` ,, , very important wave propa- / , , • 
gates along the cones with the 
velocity of light and has no , , 
field components in the radial , 

/ 
direction, and so is analogous , - - Ltnes,-/ 
to the transmission line wave 
on cylindrical systems. This 

Fm. 9.09. Biconical guide. basic wave is symmetric about 
the axis of the guiding cones, so that if the two curl relations of 
Maxwell's equations are written in spherical coordinates with all 
variation eliminated, it is seen that there is one independent set contain-
ing E9 and Ho and Er only: 

.1 a (r.E8) 1 aE,. 
r ar r iwP1I14)= ° 

1 [a 
r sin 

(sin OH4,)] - iwEiEr = o ao 

a (rHo) . 
jweiE0 = 

r ar 

[1] 

[2] 

[3] 

Although we might proceed to a direct attack on these equations, it 
can be checked by substitution that the following solution does satisfy 
the three equations. 

E,. = 0 [4] 

= 7/1 EA 6,;(we-kir) Bej(cot+kil 
sin O 

1 = — [A el(wt— kir) B ei(wt+kil 

sin O 

= (1,N1•. 

[5] 

[6] 

These equations show the now familiar propagation behavior, the first 
term representing a wave traveling radially outward with the velocity of 
light in the dielectric material surrounding the cones, the second term 
representing a radially inward traveling wave of the same velocity. 
The ratio of electric to magnetic field is given by +01 for the positively 
traveling wave, - 01 for the negatively traveling wave. There is no field 
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component in the radial direction, which is the direction of propagation. 
The above wave looks much like the ordinary transmission line waves 

of uniform cylindrical systems. This resemblance is stressed if we note 
that the E0 corresponds to a voltage difference between the two cones, 

ir-00 r-00 de 
V = — f Eor dB = —ni f [Aeicwt—kir) Becot-Fkirl 

00 sin 0 

Oo 
-= 2771 ln cot — Be kil 

2 
[7] 

where the case treated is that of equal angle cones (Fig. 9.09). This is a 
voltage which is independent of r, except through the propagation term, 
epee. Similarly the azimuthal magnetic field corresponds to a current 
flow in the cones, 

I = 27rrH cis sin 

= 2,[Aei(wg—kir) _ BeAuol [8] 

This current is also independent of radius, except through the propaga-
tion term. A study of the sign relations shows that it is in opposite 
directions in the two cones at any given radius. 
The ratio of voltage to current in a single outward traveling wave, a 

quantity which we call characteristic impedance in an ordinary trans-
mission line, is obtained by setting B 0 in (7) and (8): 

ni in cot 00/2 
Z0 — [9] 

ir 

For a negatively traveling wave, the ratio of voltage to current is the 
negative of this quantity. This value of impedance is a constant, inde-
pendent of radius, unlike those defined for a radial transmission line in 
Art. 9.08. We might have guessed this had we started from the familiar 

concept of Z0 as .V.Tjê since inductance and capacitance between cones 
per unit radial length are independent of radius. This comes about since 
surface area increases proportionally to radius, and distance separating 
the cone, along the path of the electric field, also increases proportionally 
to radius. 
So far as this wave is concerned, the system arising from two ideal 

coaxial conical conductors can be considered as a uniform transmission 
line. All the familiar formulas for input impedances and voltage and 
current along the line hold directly with Z0 given by (9) and phase con-
stant corresponding to velocity of light in the dielectric. 

2r 
e = = «A/ ;lei [10] 
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If the conducting cones have resistançe there is a departure from uni-
formity due to this resistance term, but this is usually not serious in any 
practical cases where such conical systems are used. 
Of course a large number of higher order waves may exist in this coni-

cal system and in other similar systems. These will in general have field 
components in the radial direction and will not propagate at the velocity 
of light. We shall consider such general wave types for spherical coordi-
nates later. 

Problem 9.09(a). It has been seen that along cones, cylinders, planes, etc., a 
principal wave can exist in which, at least for perfect conductors, it is possible 
to analyze the problem correctly by dealing with distributed L's and C's per unit 
length, these distributed constants being computed from static field distributions. 
It is not always true that the electric and magnetic field lines over the cross section 
of the wave, for the principal wave, will be as in the static case. This does not 
mean that the distributed constant technique fails for such lines, but it does 
mean that it is no longer exact to use L and C as computed from the static field 
equations. Illustrate the above statement by considering waves propagating sym-
metrically between concentric spheres in the O direction (0/ad, = 0). Show that 
no wave can exist containing only E,. and Ho; Et) must also be present. Show also 
that if the distance between spheres is small compared with wavelength, the presence 
of Ea has a negligible effect on the wave distribution and distributed L and C 
• puted from statics) may be used for good approximate results. 

Problem 9.09(b). Derive the basic characteristics of the principal waves on a 
transmission line consisting of two coaxial, common-apex cones of unequal angles. 

9.10 Wave Guides of Special Cross Section 
There is an interesting point of view that is especially useful in think-

ing about wave guides of certain special shapes. Recall first that it was 
shown in Chapter 8 that the properties of an ideal guide (propagation 
constant, wave impedance, etc.) are determined once the cut-off fre-
quency is determined, and have the same forms for all shapes of guides. 
Thus the analysis of the ideal guide requires only the determination of 
the cut-off frequency. This has been done in previous examples by the 
solution of a differential equation subject to boundary conditions. It 
may be recognized, however, that the cut-off frequency for a given mode 
corresponds to resonance for waves propagating only transversely in the 
given cross section, according to that mode. That is, it is necessary 
only to find the resonant frequency of the two-dimensional problem 
defined by the guide boundary, and this will be the cut-off frequency of 
the guide. (Actually, there will, of course, be an infinite number of 
possible resonances, each corresponding to a cut-off for a given wave 

type.) 
The use of resonance in the two-dimensional problem does give cut-off 

frequency since there are no axial variations at cut-off; all energy does 
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propagate back and forth in the transverse plane. Thus, for example, 
the TEio wave in a rectangular wave guide had a cut-off frequency 

equal to the resonant frequency for a plane wave 
propagating only in the x direction across the guide, 
thus corresponding to a half wavelength in the x 
direction. The TMoi wave in a circular guide had 
cut-off frequency equal to the resonant frequency 
for waves propagating radially with Ez and H. 
These and other similar examples may be verified 
by an inspection of previous results. 
The point of view is useful when guides are being 

studied of such shape that resonance may be ob-
tained simply by approximate methods. Thus in 

Fm. 9.10. Cross sec- Fig. 9.10, the shape of guide is such that region 
tio'n of special wave B, for the simplest mode, can be considered essen-
guide and approximate tially as a capacitor of capacity (for a unit length) 
equivalent circuit for 

cut-off calculation. 

LA Lz 

€i(2d) 
CB — [1] 

The regions A can be considered essentially as inductances, of value (for 
a unit length) 

LA = 1111h [2] 

The approximate equivalent circuit for resonance calculations is thus as 
drawn in Fig. 9.10, and resonant frequency, which is cut-off frequency 
for this mode, is 

1  1 /a 

 /2 27r \Lei Ihd 
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SPECIAL PROBLEMS IN GUIDED WAVE APPLICATIONS 

9.11 Excitation and Reception of Waves in Guides 

The problems of exciting waves in wave guides and of absorbing their 
energy in a receiver are extremely difficult to analyze if exact quantita-
tive analysis is desired. The qualitative picture is not difficult. In 
order to excite any particular desired wave, one should study the wave 
pattern, and then use any of the following methods. 

1. Introduce the excitation in a probe or antenna which is placed at 
the point of maximum electric field, oriented in the direction of the 

electric field. 
2. Introduce the excitation through a loop which is placed at the point 

of maximum magnetic field, the plane of the loop being normal to the 

magnetic field. 
3. Introduce currents from trènsmission lines or other sources in such 

a manner that the desired current directions in the guide walls are forci-
bly excited. (Of course it is true that since currents and fields are 
directly related, any scheme based on exciting currents in the walls 
may, if preferred, be looked upon as a scheme of exciting fields in the 
space, but the viewpoint from currents is often more direct.) 

4. For higher order waves combine as many of the exciting sources as 
are required, with proper phasings. 

Since any of the above exciting methods are in the nature of concen-
trated sources, they will not in general excite purely one wave, but all 
waves which have field components in a favorable direction for the 
particular exciting source. From another point of view, we see that one 
wave alone will not suffice to satisfy the boundary conditions of the guide 
complicated by the exciting source, so that many higher order waves 
must be added for this purpose. If the guide is large enough, several of 
these waves will then proceed to propagate. Most often, however, only 
one of the excited waves is above cut-off. This will propagate down the 
guide, and (if absorbed somewhere) will represent a resistive load on the 
source, comparable to the radiation resistance of antennas which we shall 
encounter further in Chapter 11. The higher order waves which are 
excited, if all below cut-off, will be localized in the neighborhood of the 
source and will represent purely reactive loads on the source. For 
practical application, it is then necessary to add, in the line which feeds 
the probe or loop or other exciting means, an arrangement for matching 
to the load which has a real part representing the propagating wave and 
an imaginary part representing the localized reactive waves. 
The receiving problem is the reverse of the exciting problem, and in 
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general any method which works well for exciting will also work well for 
receiving. 

Circular Cuide Section l, 

Coiucial -1 I  
Line 

FIG. 9.11a. Antenna in end of cir-
cular guide for excitation of TM01 

wave. 

Rectangular Guide (longitudinal 
section through center) -) 

Coaxi-""eldjal" 
Line 

e, e  

Fm. 9.11c. Loop in end of 
rectangular guide for excitation 

of TE10 wave. 

Circular 
Guide 

Rectangular Guide 

Fia. 9.11e. Junction between 
circular guide (TMoi wave) and 
rectangular guide (TEio wave.) 

Rectangular 
Guide 

9.11b. Antenna in bot-
tom of rectangular guide for 
excitation of the TEio wave. 

Circular 
Guide 

Parallel 
Wire Line 

FIG. 9.11d. Parallel wire 
line for excitation of TEii 

wave in circular guide. 

Rectangular 
Guide 

Coaxial Lines 

Pia. 9.11f. Excitation of the 
TEN wave in rectangular guide 
by two oppositely phased an-

tennas. 

Some examples of the several excitation methods listed in 1 to 4 are 
shown in the Figs. 9.11a to 9.11f. In Fig. 9.11a an antenna is used to 
excite a TMoi wave in a circular guide. In Fig. 9.11b a similar antenna 
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is used to excite a TEio wave in a rectangular guide. Note that one end 
of the guide is closed to obtain transmission in one direction only. The 
position of this closed end may be utilized as one variable in the match-
ing process. In Fig. 9.11c, a TEio wave in a rectangular guide is 
excited by a loop. In Fig. 9.11d, a TEn wave in a circular guide is 
excited by the currents of a two-wire transmission line. Similarly, in 
Fig. 9.11e, the TM01 wave in the circular guide is excited by a TE10 
wave in a rectangular guide, and a study of the patterns and reflections 
at the closed end shows that currents in the walls are proper here for 
excitation. Finally in Fig. 9.11f, a TED) wave in a rectangular guide is 
excited by two antennas, properly phased. Further discussion, with 
experimental verification is presented by Southworth.3 

Problem 9.11. Draw the field and current patterns in the lines and guides of 
Figs. 9.11a to 9.11f, and explain the coupling mechanism in each of these figures. 
DisC1188 the impedance matching problem for these cases. 

9.12 Transmission Line Techniques Applied to Wave Guides 
The transmission line analogy for propagation of uniform plane waves 

was developed extensively in previous chapters (Arts. 7.07ff.). This is a 
rigorous analogy and is useful for two major reasons. First, the propa-
gation characteristics of uniform plane waves may be analyzed from 
expressions already developed and well known for transmission lines. 
More important, the well-known transmission line techniques (quarter-
wave matching sections, methods of termination, etc.) may be applied 
directly to plane waves by means of the analogy. 
The above analogy was used as follows. If plane discontinuities 

existed, a direction was chosen normal to those discontinuities, and the 
phase velocity calculated in that direction (even though the wave may 
have been looked at previously as propagating in some other direction). 
The ratio of the component of electric field transverse to the selected 
direction (and therefore parallel to the plane discontinuity) to the trans-
verse magnetic field component was defined as a wave impedance. This 
was the quantity used in place of actual impedance in the transmission 
line equations. The transverse component of electric field was then 
analogous to voltage along a transmission line; the transverse component 
of magnetic field was analogous to current. It should be evident that 
the same analogies may be applied directly to all the guided waves 
studied in this chapter, so long as the guides do not possess discontinui-
ties. Discontinuities can be allowed without interfering with the accu-
racy of the method only if they take the form of a variation in the dielec-
tric of the guide with the discontinuity boundaries always normal to the 

8 G. C. Southworth, Proc. I.R.E., 25, 807-822, July, 1937. 
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direction of propagation and extending over the entire cross section; 
the guide cannot be permitted to change either its shape, section, or 
direction at this point for the wave impedance concept to be directly 
applicable. Other types of discontinuities will require a consideration 
of total quantities. 

Characteristic wave impedances have been defined for each wave 
type. We shall now list some of the resulting transmission line tech-
niques which may be directly applied to wave guides by use of the trans-
mission line analogy with wave impedances. 

For convenience, the wavelength along the direction of the guide will 
be labeled Xg where 

X1 1  — 
N/1 — (lc/ f)2 eti€1.V1 — en' [1] 

The phase constant for all waves, 

27r 
= =coeiN/ 1 — (MD' [2] 

The wave impedance 

Transverse electromagnetic waves ZTEM = ni = — [3] 
€1 

Transverse magnetic (E) waves ZTM = 711\ — (fc/n2 [4] 

Transverse electric (H) waves ZTE —  '11 [5] 

— (fc/f)2 

Notice in particular that the wavelength along the guide for either 
TM or TE waves is always longer than the corresponding wavelength 
for transverse electromagnetic waves, i.e., uniform plane waves and 
transmission line waves. The wave impedance of TM waves is always 
less than the intrinsic impedance of the medium, ni; the wave impedance 
for TE waves is always greater than ni. 

Short-Circuited Guide. A wave guide may be considered as truly 
short-circuited if a conducting plate is placed across the entire section of 
the guide so that the transverse component of electric field is reduced to 
zero over all that section. This corresponds to a shorted transmission 
line, so that at once we may draw the forms of the resulting standing 
wave pattern (Fig. 9.12a). Transverse electric field is zero at the con-
ducting plate and at multiples of )1/4„/2 in front of it. It is a maximum at 
odd multiples of )4/4 in front of the plate. Transverse magnetic field is 
a maximum at the plate and has other maxima at nX0/2; minima at 
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(2m ± 1)X,/4 before the plate. Other phase relations show that Ez 
for TM waves has the same axial distribution pattern as the magnetic 
field, and Hz for TE waves has the same axial distribution pattern as the 
electric field. 

1 

FIG. 9.12a. Standing waves of FIG. 9.12b. Guide 
transverse field components in with dielectric discon-

shorted guide. tinuity. 

Guide with Dielectric Discontinuity. If there is a discontinuity from 
one dielectric to another in a guide (Fig. 9.12b), the amount of reflec-
tion into the first region and the transmission to the second region may 
be determined from the mismatch in impedances Z1 and Z2. The ex-
pressions are: 

K — 1 e, = 
ET2 K+1 HT, 

ET2 2K KHT, 

ETi K + 1= —HT, 

Z2 
K = 

The region (1) then has both a standing wave 
and a traveling wave. The other standard expres-
sions for input impedance, and voltage and cur-
rent along the line, from Chapter 1, may be applied 
to calculation of input impedance on a field basis 
and of values of electric and magnetic fields along 
the guide. -T-

Quarter-Wave Matching Sections. It is of course 

[6] 

possible to match between one section of a guide Flu. 9.12c. Insertion 
of matching section in and another section with different dielectric con-

a guide. 
stant for any of the wave types at any single fre-
quency. This is accomplished by the technique of quarter-wave 
matching sections developed for transmission lines in Prob. 1.21 (b) and 
for plane waves in Art. 7.09. Thus in Fig. 9.12c it is possible to 
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match between the regions 1 and 3, if a region 2 is introduced, a 
quarter wavelength long (measured at the phase velocity in that re-
gion) and having an impedance the geometric mean of those on the two 
sides. Note that in calculating these impedances, the different cut-off 
frequencies for the three sections must be taken into account in (4) 
or (5). 

This matching may be used, f or "instance, in a case where it is desired 
to absorb power in section (3), which may be filled with water or 
some other material with a small but finite conductivity. A quarter-
wave section of a proper material (certain special glasses, for example) 
may then be used to match this section to the portion of the guide with 
air dielectric. 

Elimination of Reflections from Dielectric Slabs. If dielectric slabs 
must be placed in an otherwise uniform guide (for example, because a 
section must be evacuated), these may be designed in certain ways so 
that they cause no reflections, just as may insulators in transmission 
lines. The simplest arrangement is to make the dielectric slabs a half 
wavelength in thickness (X9/2 for the material of the slab). The imped-
ance at the front is then exactly the impedance of the guide following the 
slab. From another point of view, the reflections from the front and 
back surfaces exactly cancel under these conditions. 
The above method of eliminating reflections requires that the dielec-

tric slab be a half wavelength in thickness, measured in the material of 
that slab. For certain applications it may be undesirable to use slabs 
of that thickness. For slabs of any thickness, reflections may be elimi-
nated by cancelling the reflected wave from one slab by that from 
another placed a proper distance from it. For slabs of thickness small 
compared with wavelength, or of a material with properties not too 
greatly different from that of region 1, this spacing is such that the total 
phase angle corresponding to the length of guide between insulators and 
one insulator is very nearly 90°. 

Termination of Wave Guides. Another important technique of trans-
mission lines is the termination of a line by means of a proper resistor to 
eliminate the reflected wave. All energy is completely absorbed accord-
ing to the simple line theory if this resistor is equal to the characteristic 
wave impedance of the line. If the line must be closed at the end, the 
terminating resistor may be placed a quarter wavelength from the 
shorted end, since for perfect conductors the shorted quarter-wave line 
represents an infinite impedance in parallel with the resistance. Simi-
larly, a wave guide may be terminated by a conducting sheet having a 
resistance per unit square equal to the characteristic wave impedance 
of the wave type to be matched. This sheet is placed a quarter wave-
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length from the shorted end (Fig. 9.12d). 

X53 

d3 = --
4 

1 • 
e 

0.2a2 

Notice that the conducting film must be made of some material of 
relatively low conductivity if its thickness is not to be absurdly small. 
That is, for a material like copper, d2 would be only of the order of 10-1° 

meter. 
Problem 9.12. Show, for a TM wave in any shape of guide passing from one 

dielectric material to another, that at one frequency the change in cut-off factor may 
cancel the change in n, and the wave may pass between the two media without 
reflection, even though no intervening matching section is present. Identify this 
condition with the case of incidence at polarizing angle in Art. 7.14. Determine the 
requirement for a similar situation with TE waves and show why it is not practical 

to obtain this. 

9.13 Waves Below Cut-Off 
The higher order waves which may exist in coaxial lines and all waves 

which may exist in hollow pipe wave guides are characterized by cut-off 
frequencies. If the waves are to be used for propagating energy, we are 
of course interested only in the behavior above cut-off. However, the 
behavior of these waves, perhaps we should say " imaginary waves," 
below cut-off is important in at least two practical cases: 

1. Application to wave guide attenuators. 
2. Effects at discontinuities in transmission systems. 
The attenuation properties of these waves below cut-off have been 

developed in the previous analyses. It has been found that below the 
cut-off frequency there is an attenuation only and no phase shift in an 
ideal guide. The characteristic wave impedance is a purely imaginary 
quantity, again emphasizing the fact that no energy can propagate down 
the guide. This is not a dissipative attenuation as is that due to resist-
ance and conductance in transmission systems with propagating waves. 
It is a purely reactive attenuation, analogous to that in a filter section 
made of reactive elements, when this is in the cut-off region. The 
energy is not lost but is reflected back to the source so that the guide acts 

as a pure reactance to the source. 
The expression for attenuation below cut-off in an ideal guide, 

Eq. 8.18(4), may be written 
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-y = a = kc 

del d ¡---e 

Flo. 9.12d. Conducting film 
for terminating a guide. 

,7=1 11•\2 

Vi ?,c 
[1] 
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As fis decreased below fc, a increases from a value of 0 approaching the 
constant value 

27r 
a = — [2] 

Xc 

when (f/fc)2 < 1. This is an important point in the use of wave guide 
attenuators, since it shows that the amount of this attenuation is sub-
stantially independent of frequency if the operating frequency is very 
far below the cut-off frequency. In addition, the amount of this attenu-
ation is determined only by the cut-off wavelength of the guide, which is 
in general proportional to the transverse size of the guide, so that the 
value of a may be made almost as large as one pleases by selecting a low 
cut-off wavelength (small pipe size). Since (1) holds for any wave in 
any shape of guide, it follows that choices of wave type and guide shape 
cannot influence the attenuation constant except in so far as they fix 
the cut-off wavelength X. 
Note that if a wave guide attenuator is designed with (PM <1 so 

that attenuation is independent of frequency, attenuation must neces-
krily be very great in a wavelength since a will be much greater than 
the free space phase constant, 

a 2r/Xc X1 .1 

k1 27r/X1 = >> 

Now let us look for a moment at the relations among the fields of both 
transverse magnetic and transverse electric waves below cut-off. If 
-y = a as given by (1) is substituted in the expressions for field compo-
nents of transverse magnetic waves, Eq. 8.11(3), 

H.. (..fi\ E _ Li „lic) - 1 aEz   aE 
ni el Icc ay e V  17z axz 

Hy i.aEz „ 1 aEz 
ni\fci Elcz ay — (fijci2 ax 

For a given distribution of Ez across the guide section, which is deter-
mined once the guide shape and size and the wave type are determined, 
it is evident from the relations (3) that as frequency decreases, fllz—> 0, 
the components of magnetic field approach zero whereas the transverse 
components of electric field approach a constant value. We draw the 
conclusion that only electric fields are of importance in transverse mag-
netic or E waves far below cut-off. Similarly, only magnetic fields are 
of importance in transverse electric or H waves far below cut-off. 
Suppose a TM wave is excited by some source in a wave guide, extend-

[31 
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ing down the guide a certain distance to a suitable receiver. If the 
frequency is far enough below cut-off so that (f/fc)2 is negligible com-
pared with unity, the entire problem may be looked upon as one of 
electric coupling between the source and the receiver, calculated by D-C 
or low-frequency methods (of course, taking into account the presence 
of the guide as a shield). Similarly, a TE wave between a source and 
receiver in a guide far below cut-off may be looked upon as a problem of 
ordinary magnetic coupling between the source and receiver (of course, 
taking into account the presence of the guide as a shield). That this is 
true may be seen from the following. If the waves are far below cut-off, 
the dimensions of the guide must be small compared with wavelength. 
Fields will then attenuate to a negligible amount in a distance small com-
pared with wavelength. For any such region small compared with wave-
length, the wave equation will reduce to Laplace's equation so that low-
frequency analyses neglecting any tendency toward wave propagation 
are applicable. Only when dimensions of the guide become large enough 
compared with wavelength so that (f/fc)2 is comparable to unity, must 
the tendency toward propagation be considered. That is, the effects of 
magnetic fields must be considered in TM waves, and the effects of 

electric fields in TE waves. 

9.14 Waves in the Vicinity of Cut-Off 
The cut-off frequency for a guide with lossless conductors and dielec-

tric would be a definite frequency at which attenuation would pass from 

a finite value or all lower frequencies 
to a value of zero for all higher fre-
quencies. The phase constant 0 would 
be zero for all frequencies below cut-off 
and finite for all frequencies above. 
Such ideal curves are sketched in the 
heavy curves of Fig. 9.14. It has al- k Ideal cr , with imperfect 

Typical behavior 

ready been shown that imperfect con- i dielectric e 

ductors or dielectric introduce a finite I (not to scale) ,e e 

attenuation at frequencies above cut- ..." 
off, and may also change the phase --
constant somewhat. Similarly, imper- flfc 
feet conductors or dielectrics will act FIG. 9.14. Modification of propa-

to produce a small but finite phase gation characteristics due to losses. 

shift below cut-off and a certain correc-
tion to attenuation. The cut-off frequency under such conditions no 
longer represents a sharp transition but a more gradual change from one 
region to the other. This is indicated by the dotted curves of Fig. 9.14. 

Ideal (3 
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It should be emphasized again that many of the approximate formulas 
developed so far are extremely inaccurate for frequencies very close to 
cut-off. For example, the formulas for attenuation due to imperfect 
conductors or dielectrics, Eqs. 8.18(10) and 8.18(11), will show an incor-
rect value of a = co at f = b. Similarly, phase velocity will appear 
incorrectly to be infinite at f = fz by Eq. 8.18(5). 

9.15 Discontinuities in Lines and Guides 

Higher order waves are also important at discontinuities in transmis-
sion systems. As an example of their occurrence at such discontinui-
ties, consider the step in the parallel plane transmission line of Fig. 9.15a. 
In a transmission line wave (principal wave) between planes there are 
Ey and Hz only, and no variations with y. The perfect conductor por-
tion from (2) to (3) requires that E, = 0 here. If there were only 
principal waves, E, would then have to be zero everywhere at z 
because of the lack of variations with y in the principal wave. There 
could then be no energy passing into the second line A regardless of its 
termination since the Poynting vector would then also be zero across the 

entire plane z = O. Physical reasoning shows 
 3 

that the above situation does not occur gener-
Zog b 2  ally but only in such special cases as when line 

L. tY,z zeoA a A is shorted a half wave from the disconti-
ts 

2.0  nuity. The difficulty is met by the higher 
z„B 1,, 4r,Z.A order waves which are excited at the disconti-

nuity, so that Ey in the principal wave is not 
Fla. 9.15a. Step discon- zero at z = 0, but total E, (sum of principal and 
tinuity in parallel plane 

higher order components) is zero from (2) to transmission line and exact 
equivalent circuit. (3) but not from (1) to (2). For the example 

of Fig. 9.15a the higher order waves excited 
are TM waves since Er, Ez, and Hz alone are required in the fring-
ing fields. For spacings between planes not comparable to wave-
length, these waves are far below cut-off so that their fields are localized 
in the region of the discontinuity. They may consequently be called 
local waves. 
The example considered is one of those which may be solved mathe-

matically, although the solution will not be detailed here. The method 
consists in setting down the series of principal wave and higher order TM 
wave solutions in each region of the line, A and B. The amounts of the 
higher order witves are determined by matching the tangential field com-
ponents across the boundary: total E, in the B region must equal E, 
in the A region from (1) to (2), and must equal zero from (2) to (3) ; 
Hz in the A region must equal Hz in the B region from (1) to (2). The 
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resulting relations between the series may be handled with reasonable 
ease when put in a form such that series tabulated by Hahn4 may be 

used. 
Perhaps the most important information which comes from such an 

exact analysis is the fact that a transmission line equivalent circuit can 
be drawn with line A joined to line B and a lumped admittance placed 
at z = 0 to account for the effects of the local waves. Thus if current 
I (z) is found in either of the planes at any value of z, it has a contribu-
tion /0(z) from the principal wave and a contribution r (z) from all 

local waves. 
1(z) = .10(z) ± (z) [1] 

Now total current must be continuous at the discontinuity z = 0, but 
current in the principal wave need not be since the difference in principal 
wave currents may be made up by the local wave currents. 

/0A (0) + 11A (0) = /0B (0) -I- .n(0) 

or 

/oB (0) — /0,4(0) = ii(0) — n(0) [2] 

However, total voltage in the line as defined from — f2 • dl between 

planes is only that in the principal wave, since a study of the local waves 
shows that their contribution is zero. 

V(z) = Vo(z) 

Continuity of total voltage across the discontinuity . z = 0 then 

requires continuity of voltage in the principal wave. 

V0A (0) ---- V0B (0) -= V0(0) [3] 

Now if an equivalent circuit is drawn for the principal wave only, its 
continuity of voltage but discontinuity of current may be accounted for 
by a lumped discontinuity admittance at z = 0, the current through this 

admittance being 
I0B(0) — 1'mM = Id = Ydv0(0) 

Or, from (2) 
rA(0)- n(0)  

Ya = [4] 
Vo (0) 

4w. C. Hahn, " A New Method for the Calculation of Cavity Resonators," 
Journ. Appt. Phys., 12, 62-68 (January, 1941). 
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The complete analysis& reveals that when local wave values are sub-
stituted in (4), numerical values of I'd may be calculated which are inde-
pendent of terminations so long as these are far enough removed from 

0.25 
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9.15b. Curve of discontinuity capacitance for Fig. 9.15a. 

 e  

Fla. 9.15c. Typical disconti-
nvity in coaxial line. 

Fla. 9.15d. Capaci-
tive diaphragm in rec-

tangular guide. 

Fla. 9.15e. Inductive 
diaphragm in rectangu-

lar guide. 

the discontinuity not to couple to the local wave fields. For Fig. 9.15a, 
with dimensions small compared with wavelength, this admittance turns 
out to be a pure capacitance, values of which are plotted versus step ratio 
alb in Fig. 9.15b, in micromicrofarads per centimeter width of the plane. 
If multiplied by proper circumference, these values may be used to give 
the approximate discontinuity capacitance for corresponding steps in 
coaxial lines (Fig. 9.15c) ; they may also be extended to give numerical 

5 "Equivalent Circuits for Discontinuities in Transmission Lines," J. R. 
Whinnery and H. W. Jamieson, Proc. I.R.E., 32, 98-114 (February, 1944). 
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results for capacitive steps or diaphragms in rectangular wave guides 
with TEio waves. (Fig. 9.15d.) 

In all the above examples the susceptance to be lumped at the dis-
continuity is capacitive. In a case such as the diaphragm extending 
from the sides of a rectangular guide for use with the TEm wave (Fig. 
9.15e), the local waves excited are TE waves. By the reasoning of 
Art. 9.13 the energy in these should be magnetic so that such a discon-
tinuity is inductive rather than capacitive. 

Problem 9.15(a). Determine the form of the proper local waves in the ex-

ample of Fig. 9.15a. Show that voltage between planes, — ecT,/, is zero for each 

of these. 

Problem 9.15(b). Imagine a parallel plane transmission line with two steps 
such as the one in Fig. 9.15a. The first is from spacing b to spacing a; the second 
is removed from the first by a half wavelength and is from spacing a back to b. 
The line to the right of b is perfectly terminated by its characteristic impedance, 
ZoB. If it were not for the discontinuity capacitances, the line to the left of the first 
discontinuity would also be perfectly terminated. Calculate reflection coefficient 
in this line taking into account the discontinuity capacitances from Fig. 9.15b. 
Take a = 1 cm, b = 2 cm, X = 12 cm. 

Problem 9.15(c). Using Fig. 9.15b, calculate an approximate discontinuity 
capacitance for the coaxial line of Fig. 9.15c. Take ri = 0.5 cm, r2 = 1 cm, 
r3 = 1.2 cm. 



10 

RESONANT CAVITIES 

10.01 Introduction 

At extremely high frequencies (wavelengths, say, below 1 meter) 
ordinary lumped circuit elements are hardly suitable for practical use. 
As was seen in Chapter 5, a conventional circuit with dimensions com-
parable to wavelength may lose energy by radiation. In Chapter 6 it 
was found that resistance of ordinary wire circuits may become high 
because of skin effect behavior. Both of these phenomena give rise to 
definite modifications in elements that are to serve as efficient circuits 
for ultra-high frequencies. It is immediately suggested that the circuit 
region should be shielded, completely surrounded by a good conductor, to 
prevent radiation. It is also suggested that the current paths be made 
with as large area as possible. The result is a hollow conducting box 
with the electromagnetic energy confined on the inside.' The conducting 
walls act effectively as perfect shields so that this inner region is per-
fectly shielded from the outside, and no radiation is possible. Since the 
inner walls of the box serve as current paths, the desired large area for 
current flow is provided and losses are extremely small. The resulting 
element is known as a cavity resonator. 

In this chapter we shall study electromagnetic waves in regions closed 
by conductors, with particular application to such cavity resonators. 
It will first be observed that such high-frequency elements might be 
arrived at by extension of conventional transmission line and circuit 
ideas, and that circuit concepts, such as inductance, capacitance, and Q, 
may be used to great advantage in most cavity resonators. Exact 
analyses will be made of certain of the simpler shapes of cavity resona-
tors, and at least approximate analyses will be made of some of the more 
complex shapes of such resonators. All mathematical analyses will be 
based on the solution of Maxwell's equations subject to the boundary 
conditions, and in general will follow directly from the results of the last 
several chapters on propagating waves, since the waves inside the con-
ducting boxes may be considered as standing wave patterns arising from 
reflections of the appropriate traveling waves from the walls of the 
enclosure. 

1 W. W. Hansen, bourn. Appl. Phys., 9, 654-663 (October, 1938). 
378 
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SOME SIMPLE CAVITIES AND LUMPED CIRCUIT ANALOGIES 

10.02 Elemental Analogies Leading to the Concept of Cavity 
Resonators 

Before the solution of the wave equation inside regions closed by con-
ductors is attempted, there are several physical analogies that should 
make the concept of such wave regions more meaningful, particularly 
in their function as" circuits " at ultra-high frequencies. 

For the first analogy, let us consider something which is not ordinarily 
thought of as a cavity resonator, but which certainly may be. This is a 
section of coaxial transmission line shorted at both ends. From the 
transmission line analysis of Chapter 1, it is known that such a shorted 
line may support a standing wave of frequency such that the length of 
line is exactly a half wave. The line may be thought of as resonant at 
that frequency, since the standing wave pattern set up has constant total 
energy in that section.of line, that energy oscillating between the electric 
and magnetic fields of the line. Thus, 
as in Fig. 10.02a, the standing wave of 
voltage has a zero at each end and a A 

maximum at the center. The standing   
wave of current is 90° out of time phase 
with the voltage wave, and has maxima   
at the two ends, a zero at the center. 

Current 
These waves may exist inside this corn- — 
pletely enclosed region without interfer- 

v.huge 

ence from, or radiation to, the outside. 
The shielding is complete if conductors 
are perfect, and practically so for any Fia. 10.02a. Resonant coaxial 

practical conductors at ultra-high f re- 
system and standing waves of 

voltage and current. 
quencies. This viewpoint is verified by 
the previous analyses (Chapter 6) of skin effect phenomena, where it was 
found that depth of penetration at high frequencies is so small (of the 
order of 10-4 inch for copper at 3000 mc/sec) that almost any prac-
tical thickness acts essentially as an infinite thickness. Fields applied on 
the inside of a conducting wall die out to a completely negligible value 
at the outside of the conductor. 

Since the inside of the region is completely shielded from the outside, 
it will be necessary to excite the waves by some source, such as the small 
loop A (Fig. 10.02a), designed to excite the magnetic field of the line at 
its maximum value, or the small probe B introduced at the maximum 
of electric field. If one of these means is used to stimulate• the line 
exactly at its resonant frequency, the oscillations may build up to a large 
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value. In the steady state limit, the exciting source need supply only 
the relatively small amount of energy lost to the finite conductivity of the 
walls, the relatively large stored energy being essentially constant and 
passing back and forth between electric and magnetic fields. If the 
source excites the line at a frequency somewhat off resonance, the ener-
gies in electric and magnetic fields do not balance. Some extra energy 
must be supplied over one part of the cycle which is given back to the 
source over another part of the cycle, and the line acts as a reactive load 
on the exciting source in addition to its small loss component. The 
similarity to ordinarr tuned circuit operation is evident, and it seems 
likely that many of the same considerations concerning effect of losses on 
band width, expressed in terms of a Q, will hold, at least qualitatively. 
The above simple example requires essentially only a knowledge of 

transmission line theory, yet it holds all the fundamental characteristics 
of cavity resonators, and differs from others only in the types of waves 
that are utilized. • 

Since closed resonant cavities take the place of lumped L-C circuits at 
high frequencies, we shall see as a next example how a closed cavity 

might be considered as the 
logical evolution of such a cir-
cuit as it is extended to these 
frequencies. If a parallel reso-
nant circuit with lumped L and 
C, such as that of Fig. 10.02b, is 
to be extended to high frequen-

Fm. 10.02b. Evolution from resonant cir-
cuit with lumped elements to a closed cavity, cies, a decrease must be made 

in the magnitudes of C and L. 
Capacitance may be decreased simply by moving the plates of the con-
denser farther apart. To decrease inductance, fewer and fewer turns 
might be used in the inductance until this has degenerated to a single 
straight wire. Next, to eliminate stray lead inductances, this might 
be moved to the condenser plates and connected directly between them 
at the edges. The final step suggested is the paralleling of many of 
these single-wire inductances about the outside of the plates, until in 
the limit the two plates are connected by a solid conducting wall. We 
are now left with a hollow cylindrical conducting box, completely en-
closed, or in other words, another example of a cavity resonator. 
The above example is, of course, not exactly rigorous. It is signifi-

cant in demonstrating a logical evolution from lumped circuit ideas to 
the concept of cavity resonators, but if only a knowledge of lumped 
circuits without any background in wave phenomena were available, 
there would be reason to doubt that the system arrived at in the limit 
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would even work. Certainly there is a point in the evolution where one 
realizes that the fields of the capacity and the inductances are becoming 
intimately related, and at best it is a problem with distributed rather 
than lumped constants with perhaps mutual impedances also present. 
It would appear safe to conclude that the condenser plates have actually 
been shorted in the limit, so that if any voltage can exist between them, 
it can only exist at the center and must form a standing wave pattern 
inside the box, falling to zero at th shorting walls, and so requiring that 
the box have a diameter at least comparable to wavelength. Here it 
may be protested that the side walls have been imagined to act as an 
inductance. How can there be always zero voltage across these walls 
then, since there is a voltage drop across an inductance whose current is 
changing? The answer involves recognizing that we are speaking of 
total voltage, and that total voltage across any inductance made of a 
perfect conductor must be zero, the applied voltage being exactly 
balanced by that induced from the changing magnetic fields of the 
inductance. But these are all tentative and preliminary pictures. We 
will not try to squeeze further conclusions from the present analogy, 
since it is realized that the wave picture is in reality the correct one and 
will determine whether any particular result or physical picture is legiti-
mate. However, it will prove useful to recall this analogy from time to 
time in seeking circuit ideas that may be employed in discussing resona-
tor behavior. 
A third picture of the electromagnetic energy inside a closed conduct-

ing box that demonstrates the resonant possibilities follows if plane 
waves, started in some manner in such a box, are followed in their 
travels. It is evident that in the general case these will be reflected 
continuously from the walls of the box. Certain ar  4 

di ,  conditions of dimensions proper compared to 
wavelength may exist such that standing wave ••• 2 

patterns may be set up inside the box with 
constant total energy, this energy passing natur- =  
ally between the electric and magnetic fields of d 

3 
the box. The simplest example of this may be 
found in a rectangular box with a plane wave FIG. 10.02c.. Paths of 

bouncing between only four of the walls, as component uniform plane 
waves in a closed resonant pictured in Fig. 10.02c. For the simplest case, 

box. 
this wave may be polarized with electric vec-
tor in the vertical or y direction and with no variations in that 
direction. If the path of the plane wave makes an angle O with the 
normal to side 1, as shown, some general conclusions may be drawn at 
once from the concepts of Chapter 7 without a detailed study of the wave 
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paths. It would be expected, for example, that since the vertical electric 
field should be zero at the conducting sides 1 and 2, the dimension d 
should be a half wavelength measured at the phase velocity in the z 
direction. 

1 
d =  

2.fy pet cos 0 

where pi and ei are the constants for the dielectric filling the guide. 
Similarly, the dimension a should be a half wavelength measured at the 
phase velocity in the x direction, so that the vertical electric field may be 
zero at the two conducting sides 3 and 4. 

[1] 

1  
a = [2] 

gr-VT. —LIE' sin 0 

The top and bottom raise no problem since the only electric field com-
ponent is vertical and so ends on top and bottom normally as required, 
no matter how far apart these are placed. The two conditions (1) and 
(2) might be combined to eliminate 0, giving 

(02 = ()2 (—d 
a [31 

This expression shows that the natural frequency necessary to set up 
the afflumed standing wave pattern is fixed by the dimensions b and d, 

and by the dielectric material filling the box. This 
  expression will be derived in other ways in later i'f -erT( 
I i i tt 1 t ! II! % % articles, where it will be studied more completely. 

,-... • I , N ; / % . For the moment, it should be noted that (3) has „... ..., . ,,,,.,.. 
been derived from wave solutions to Maxwell's 

, l - 
,... . ,.• equations and is therefore completely correct. \ % i / 
, , . / ''' ‘ \I s /," ' A fourth picture, quite similar to the above, sug-

s, 1i I gests that a closed hollow cavity may always be 
considered as a wave guide with shorted ends, at 

FIG. 10.02d. Cylin- least if the configuration is simple enough. Thus a 
drical cavity and conducting cylinder with closed ends as shown in Fig. 
electric field pat- 10.02d may be considered as a circular wave guide, 
tern on a longitudi- and standing waves for any of the wave types of 
nal section plane. 

Art. 9.04 may be set up, so long as the height between 
the closed ends is a half wavelength (or multiple of a half wave) 
measured according to wavelength in the guide. It should be evident 
from this picture and the• previous one that a particular cavity of fixed 
shape and size may have many different modes corresponding to all the 
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wave types that may exist in the corresponding wave guide, and to dif-
ferent integral numbers of half waves between the shorting ends. In 
general, the different modes will have different resonant frequencies. The 
wave shown in the cylinder of Fig. 10.02,d is the standing wave corre-
sponding to a TMoi wave in a circular guide. This concept of standing 
wave guide type waves is one which we shall develop later in studying 
many of the simpler cavities. 
A final analogy that should not be overlooked comes from another 

branch of science. In the study of sound, one finds resonators for the 
sound waves which are quite similar to the cavity resonators for electro-
magnetic waves. This analogy may be appreciated from the pictures 
developed of the standing waves arising because of reflections of waves 
from the box walls. The phenomena of reflections and standing wave 
patterns obviously occur also for sound waves. Mathematically, the 
analogy is quite complete for the determination of resonant frequency 
since wave motion in each case is expressed by the wave equation, and 
certain boundary conditions must be satisfied, boundary conditions for 
field components at the walls in the electromagnetic case and for 
velocity components at the walls in the case of sound. Practically, this 
analogy may be of use in predicting resonant frequencies of an electro-
magnetic cavity resonator if the resonant frequency of a similar shaped 
cavity to sound waves is known. 
Each of the several analogies above supplies background for under-

standing electromagnetic energy storage inside a hollow closed cqnduct-
ing box of practically any shape andfor appreciating the usefulness of this 
arrangement in place of the usual tuned circuit of low frequencies. It 
should be recognized that, except for extraneous holes or leaks that may 
be added in constructing the cavity practically, the region is perfectly 
shielded from the outside, so that there is no radiation to or interference 
from the outside. The behavior of the cavity for frequencies on and 
near resonance will be similar to that of lumped circuits with, as we shall 
see later, extremely high values of Q. A given cavity should have many 
possible modes (actually an infinite number) and for each mode the 
resonant frequency is determined by the mode, the cavity dimensions, 
and.the constants of the dielectric filling the cavity. Coupling to the 
cavity may be either to the electric or the magnetic fields of the mode it is 
desired to excite. 

10.03 Simple Rectangular Box Resonator 

From the general discussion of the previous article, we proceed now to 
a more detailed study of the field, charge, and current distribution in the 
rectangular box resonator which was one of the simple examples of that 



article. This time quantitative knowledge of the waves in rectangular 
wave guides will be employed and consideration given to the standing 
wave patterns of these waves that may be set up inside the hollow 
rectangular conducting box. 

In this and all further resonator studies, a procedure, now quite 
familiar, will be followed. The waves will be studied first by assuming 
perfectly conducting walls for the cavities. We shall then correct for 

the effect of finite conductivity by calculating 
the losses arising from the current flow of the 
ideal wave in the conductors of known con-
ductivity. This procedure was used exten-
sively in the study of the effect of finite 
conductivity on propagating waves in the 
previous two chapters. 
One of the simplest and most useful of the 

wave types in a rectangular wave guide is the 
TE10 wave. This was studied in detail in 

Art. 9.05. If such a wave propagates in the z direction, Fig. 10.03, a reso-
nant standing wave pattern would be expected when the dimension d is 
exactly a half wavelength measured at phase velocity in the guide. From 
Eq. 9.05 (6) 
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r"--- a 

Fla. 10.03. Rectangular 
cavity. 

d — X° —  1  [1] 
2 2/ViLIEIN/1 — (X1/2a)2 

where Ai and el are the constants for the dielectric material filling the 
box. Remembering only that 

(1) may be rewritten 

1  
= 

\r1 —eel 

7r 2 

w2Pei = (02 + 

[2] 

[3] 

Notice that this expression is exactly that obtained by reasoning from 
the plane wave refleCtions, Eq. 10.02(3). It fixes the resonant frequency 
at which the desired standing wave may exist, in terms of the two dimen-
sions a and d, and the constants of the dielectric filling the box. Notice 
that the dimension b does not enter into the expression, since it has no 
effect on the cut-off frequency of the TEio wave. It may be convenient 
to rewrite (3) in terms of the resonant wavelength, measured according 
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to velocity of light in the dielectric material filling the box, 

1 
xi — 

fN/e7171. 
2ad  

[4] vaz  

Notice that for a square prismatic box, a = d, this wavelength is equal to 

The field distributions are of great interest. Relations between field 
components in a single traveling TEio wave are given by Eqs. 9.05(1) 
to 9.05(3). 

385 

7rx 
Hz = B cos —a 

Hz = 03 (ta) N/1 — (X1/2a)2 sin nr: [5] 

Ey (2a/Xi) sin 7—x 
a 

The factor ei(wg—‘32) is understood as multiplier of the above expressions. 
For a wave traveling in the negative z direction, ei("e+ez), only the term 
in Hz has the opposite sign (Art. 9.04). In each case, from Eq. 9.05(6), 

= v 

By substituting from (1), 

v v — (X/2a)2 

[6] 

The sum of positively and negatively traveling waves may be written 
with primes denoting the wave in the negative z direction. 

Hz = (Be—iez± B'elez) cos ne 
a 

B,eiez)i é2a\ (12 s. irx 
= (Be—lez [71 

\Xi/ \2a a 

Ev = — (Be—ii3z ± eil3z)jni (2a 
sin Lax 
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In order that Ev may be maintained zero at the side z 
wave must be equal in magnitude and opposite in sign 
dent wave, or by noting the last equation of (7), B' = 
substitution, /3 from (6), and the further definition, 

2a 
E0 = — 2Bni — 

Xi 

the total field components (7) may be written 

irx 71-2 
Ey --- E0 sin —a sin —d 

.E0 . wX irS 
H z = COS — 

ni 2d a d 

.E0 rX wZ 
H z = j — — cos — S111 — 

ni 2a a d 

These field distributions show first that the component of electric 
field E, is zero as required on the side walls x = 0, x = b, z = 0, and 
z = d. It follows half-sine distributions between the walls and is a 
maximum at the center of the box, x = b/2, and z = d/2. Since Ey 
is the only component of electric field, it enters the top and bottom 
normally, as required. The component Hz is zero at x = 0 and x = b, 
but is a maximum at z 0 and z = d. The reverse is true of Hz, so 
that the magnetic field lines, if drawn out, would form closed lines 
surrounding the vertical displacement currents corresponding to Ey; 
magnetic field is always tangential to the conducting walls. There are 
no variations in any of the components in the vertical direction. 
The charge distribution on the cavity walls is given by the electric 

field ending on these: 

[Art. 10.03 

On sides 

On bottom 

On top 

no charge 

Ps = EiEy 

pz = —elEy 

= 0, the reflected 
of Ey to the ici-
-B. With this 

[8] 

[9] 

Total charge on the bottom is merely the integral of surface charge 
density over the bottom; by (8) and (9), 

d 
wZ 

q = I  E1E0 sin — sin —d dx dz 
Jo do a 

4ad r, 
= — 7 Eino [10] 

7r 

The total charge on the top face is equal to this in magnitude, but of 
opposite sign. 
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The current distribution is given by the components of magnetic field 
tangential to the conducting surfaces. 

Side 1 Jy = - H.1,0 Side 2 4 = 

Side 3 J„ = Hz1z=0 Side 4 J„ = 

Bottom J. = H. J. = -Hz 

Top J. = J. = 

..E0 X1. 2'2 
Or on sides 1 and 2 (J,,)1,,, = — sin —i- [11] 

ni 2a cl 

On s'ides 3 and 4 
.E0 TX 

(IY)3.4 Sin 

2d a 

Notice that this current flow is in the same direction on all sides at any 
instant. The total current flow on all sides is merely the integral of Jy 
over the four sides. 

d a = 2 fJyi dz-1- 2f . J,,m dx 
o '2 o 

2jEoXi rf 2a d d 1 . ir2 1 rx 
o — sin — az f a  sin dx 

ni 0 2d a 

2jEoXI [2d 1 2a 1] 

ni 7 2a 2- 2d 

2jEoXi [d 

irni a d 
. - [12] 

This current does not vary with the vertical dimension y along the side 
walls, but as it turns to flow into the distributed charge on the top and 
bottom, it does decrease in magnitude, falling to zero at the center of top 
and bottom. 
The energy storage and energy loss in the box are also of fundamental 

interest. We may calculate exactly the energy stored in the electric 
fields and in the magnetic fields for the box with perfectly conducting 
walls. In electric fields, 

UE f 
af bf d eiE2 

= dx dy dz 
o o o 2 

At the instant of timé when electric fields are a maximum, Ey /nay be 
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obtained from (8), 

UE 
a rbi  2delEg . _ 2 ? irx rz 

= fo Jo 0 — sm — sin — dx dy dz 
a d 

Ein a , d eiabd ,2 
= — - 0 • - = — .C40 2 [13] 

2 2 8 

The energy stored in the magnetic fields of the box: 
a b d 

UH = f o f o (In -I- d,x dy dz 

r rb rd„,Egx? 
J. J. J. 2„f4 

sin —a cos —d —a2 cos —a sin —d dx dy dz 
I. 2 •71-X 2 7rz 1 2 7rX 2 irz 

— i — EoX — — 
eiabd 2 2 [ 1 

8 4d2 4a2] 

1 
[14] 

But by noting the value of Xi at resonance from (4), under this condition 
the maximum energy stored in the magnetic fields is exactly equal to the 
maximum energy stored in electric fields, 

elabd 2 
UE = 

8 
[15] 

Finally we may obtain an approximation of the power loss in the side 
walls of the box if they are not perfect conductors. This will be done, as 
was stated at the beginning of this study, by assuming that fields and 
currents are essentially the same as for the case of perfect conductivity 
and by calculating the power loss due to these currents flowing in the 
imperfect conductors. The current distributions are given in (11). 
If the magnitude of surface current density, 1JI, is known at a point, 

[J 12 
the power loss at high frequencies per unit area is R., where 

2 

R. equals the skin effect surface resistivity. Total power loss is the inte-
gral of this quantity over all surfaces. 
On sides (1) and (2), 

• bf d R 8 Ei) 
P1,2 = 2 f — -y — sin 2 — dy dz 

o o 2 ni 4a2 d 

R.bdX2  E,2 
8lea2 
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On sides (3) and (4), 
7rx r a b R«.2 .2 x2 c.,  sin 2 —a dx dy 

P3.4 = 2 Jo f o 2 nî 4d 

8 1 Ez _ R ab).2 

8nid2 ° 

On top and bottom, 

af  d R — 8 

Pnie = 2 f 2 [I.fx12 -I- 142] dx dz 
o o 

R.E8g • r a rap 2 wx 2 IC 1 2 IrX 2 72 

— 4n -i sin —a cos —d + —a2 cos —a sin —d dx (lz 
i JoJod 

_ R8E82g r a ± di 

16% Ld ai 

The total power loss, 

PL = P1,2 ± P3,4 ± PT,B 

RA 2 [bd , ab , a , cli 
[16] 

The simple standing wave mode inside a rectangular conducting box 
resonator has been investigated from the point of view of the physically 
real quantities: charges, currents, energies, and fields. Current and 
charge distribution in this mode, as for the simple mode discussed quali-
tatively in Art. 10.02 for a cylindrical box, is very suggestive of a lumped 
LC circuit extended to high frequencies. Equal and opposite charges 
exist on the top and bottom of the box, with charge density a maximum 
at the center, zero at the side walls. Current flows between these 
charges, vertically in the side walls, and laterally in top and bottom, 
decreasing to zero at the center. The electric field is vertical, passing 
between the opposite charges on top and bottom, and so is also a maxi-
mum at the center, zero at the edges. Magnetic fields surround these 
vertical displacement currents. There are no variations in any com-
ponents in the vertical direction. Electric and magnetic fields are in 
time quadrature, and at resonance the total energy inside the resonator 
is a constant, interchanging between the electric and magnetic fields. 
Now that these facts have been established from rigorous field theory, 
there is a basis for drawing correct circuit analogies for resonant cavities. 

Problem 10.03. Sketch lines indicating direction of total current in all walls of 
the box for the mode studied in this article. 
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10.04 Circuit Analogies for Simple Resonator 

The fields, charges, currents, and energies studied in the last article 
are useful for much of our thinking about resonators. Other relations 
are often equally useful and are based upon conventional lumped circuit 
notions. In Chapter 1, the Q of a resonant circuit was useful for com-
paring band width of different circuits, or their excellence as energy 
storage devices. Also the comparison between different resonant circuits 

designed for a given frequency (fixed 'VW) was made on the basis of the 

ratio VT,Gi. Interpreting this need in terms of the resonant cavity, it is 
recognized that the performance of'different cavities resonant at the same 
frequency may be quite different. Part of this difference may be 
expressed in terms of a comparison between power loss and energy stor-
age, and so it is convenient to define a Q. Also, it is not too instructive 
to have an expression merely for stored energy, since at resonance the 
maximum electric energy is exactly equal to the maximum magnetic 
energy, and the actual magnitude of each is dependent upon the level of 
excitation. However, by noting the amount of energy in terms of a 
representative current flowing in the resonator, an equivalent inductance 
may be defined, and by noting the energy in terms of a representative 
voltage, an equivalent capacity may be defined. These will be useful 
for thinking purposes, but of course it must be remembered that the mere 
definition of these quantities does not at once enable us to draw an 
equivalent circuit that will predict all properties of the resonator. 
The value of Q most easily calculated is that which follows directly 

from the definition of Q for a lumped circuit, given in terms of energies 
in Art. 1.06. 

Q 
co (Energy stored) — Average power loss [1] 

Both energy storage and power loss have been calculated, and we may 
substitute from Eqs. 10.03(15) and (16) 

wElabdef 

R.4E,8 [bd + ab + a + d] 

Substituting from Eqs. 10.03(3) and (4) gives 

4R. 
[  (a2 d2)3"  1 

ad 

717 

a3 + d3 (612 + d21 

[2] 
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Note that for a cubic resonator, a b = d, this reduces to the simple 

expression 

2Vir ni 
0Qoube=-- = 12 R. R. 

[31 

Typical magnitudes and usefulness of this Q will be discussed later. 
If it is desired to define the inductance of a cavity by calculating energy 

stored in terms of a representative current, it must first be decided which 
current should be used. The logical choice seems to be the total vertical 
current flowing in the side walls. Then, writing that energy stored in 
magnetic fields should be proportional to an inductance times the square 

of this current, 
uri = 1'14112 

And substituting from Eqs. 10.03(12) and 10.03(14) 

2 + ir2n2 
2EiabdE0 1 L4d2 4a2j 1 

L= • 
8 4E8Xl [d— 

ir2 abd 
= — 2 2 64 a + d 

For a cube, a = b =d, 
ir2 

Leube = Fie — [51 
128 

The choice for an equivalent capacity is possibly not so easy. For 
one thing, it might appear logical to define C so that the product of L 

and C gives resonant frequency by the conventional formula, 

henrys [4] 

1 
co2 = — 

LC 

Thus, using (4) and Eq. 10.03(3), 

64[a2 + 
C = 1 1 

mi/r2abdr2 a d2 

64 ad 

= 7r4 el b 
[61 
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In addition to the above definition, at least two other alternative ones 
suggest themselves: 

1. Capacity defined in terms of stored electrical energy and a repre-
sentative voltage. 

2. Capacity defined in terms of total charge on the plates and a repre-
sentative voltage. 

In the first of these definitions, let us use as representative voltage the 
maximum voltage between top and bottom, the voltage at the center 
of the cavity, 

V = Eob 
and setting 

(JE = -1.--CV2 
from Eq. 10.03(15) 

2 abd L.,2 
C t — 

— Eb2 el 8 eill 

el ad 

= 47 
If the same voltage is used for the second definition, 

q = Cu V 

[7] 

q is given by Eq. 10.03(10) 

i, 4adElEo 4 ad 
C — 72E06 = —7,2 Ei —b [8] 

All the values of capacity calculated in (6), (7), and (8) are different, 
as would be expected, but all are proportional to el (ad /b), the capacity of 
an ideal parallel plate condenser formed by the top and bottom plates. 
If we denote this as Co, 

C = —64 Co = 0.668C0 
71-4 

C' = -I Co = 0.250Co 

4 
C" = - -2- Co = 0.406C0 

ir 

[9] 

If a ratio NrEjó is desired, let us use (4) and the first definition of 
capacity, (6) 

= \ abd ir4b  ii, igiry 
\ C 64 a2 ± d2 X 64eiad 

7ra b 
= ni   64 ‘/a2 ± d2 [10] 
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For a cube, this reduces to 
r3 

\rid cube 64V — 0.342.11 [11] 
C 2 

The approximate losses expressed in Eq. 10.03(16) may be expressed 
in two different ways. For one thing, we might ask about the impedance 
of the device at resonance as seen by the voltage at the center of the box. 
This is analogous to the information needed before a parallel resonant 
circuit is considered as completely described. It is known that at 
resonance the exciting voltage need supply no reactive energy, and the 
average power supplied, which may be written as proportional to a con-
ductance and square of voltage, is equal to that lost in the box. 

PL = 1G172 = 1G(E0b)2 

From Eq. 10.03(16), 

2R.X? [bd ab a cl] 
G — g E02b28  —  

Substitute XI from Eq. 10.03(4). 

R. [(a3 d3) —2b ad... 

G 
th b(a2 + (12) 2 

[12] 

It is interesting to note that this expression may be written in terms of 

Q and N/L/C by (10) and (2) 

74 1 0.377 
G = — [13] 

256 \lid .\17, 

Secondly, a series resistance might be defined so that the losses at 
resonance are proportional to the resistance and square of the total 
current on the side walls. 

PL = i-R1.412 

From Eqs. 10.03(12) and 10.03(16) 

ad 
R 72 b [(d -I- d3) + (a2 + d2)] 

2b  
R — 8 [14] 16 (a2 + d2)2 

We shall finally study typical magnitudes and the significance of the 
quantities defined above. From physical reasoning, it might well be 
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expected that the Q would be more or less proportional to the ratio of 
volume inside the resonator to surface area of the resonator, since the 
former permits energy storage, and the latter power loss. This, of 
course, is useful only for rough comparisons, since the field distributions 
should also be taken into account. However, one would predict from 
such a concept that Q of the simple resonator should increase with b, 
when b is smaller than a or d, since the ratio of volume to surface then 
increases. However, for very large values of b, volume and surface 
should increase almost proportionally. A study of (2) shows that Q is 
proportional to b for small values of b and independent of b for very large 
values of b. The order of magnitude of Q can most easily be obtained by 
use of (3) with air as dielectric and copper or brass as conductor. Thus 
for copper, R8 = 2 X 10-3 ohm at 1000 mc, 1.2 X 10-2 ohm at 3000 mc. 
The two respective values of Q are therefore 140,000 and 23,300. For 
brass at 1000 mc and 3000 mc, the Q is 70,000 and 11,700 respectively. 
A very important question about the Q defined in terms of energy is 

concerned with its relation to band width. For lumped circuits, it was 
found that Q as defined by coL/R gave the relation used in (1), and the 
band width of the resonant device was also.- expressed by the relation 

1 

73 [15] 

Here fo is the resonant frequency, and àf is the difference between fo 

and the frequency at which impedance is 1/Vi times its magnitude at 
resonance. In Chapter 1 it was further found that for low-loss circuits 
this point could be considered as that for which the reactive power 
supplied is equal to the loss power. Thus, if the variation in electric 
and magnetic energies with frequency is the same for the cavity resona-
tor as for the circuit with lumped L and C, the value of Q defined from 
(1) would lead exactly to (15). This need not be true in general, but it 
is usually close enough over the narrow band of the resonator for the 
expression (15) to be useful, at least for qualitative thinking. If Q is of 
the order of 25,000 as suggested by previous calculation, Wilo is 0.002 
per cent, or 60,000 cycles out of 3000 mc. Band width usually spoken of 
is twice the above value calculated from the center to one side. To 
increase the band width it will be necessary to decrease Q, usually by 
loading or adding losses. 

It has been shown in previous expressions that the defined capacity of 
the resonator is of the same order of magnitude as the capacity of an 
ideal parallel plate condenser formed by the top and bottom. The ratio 

to order of magnitude, is around a third of nj, or for air dielectric, 
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around 100 ohms. Of course, actually it is a function of the resonator 
dimensions and may be varied considerably by changing these dimen-
sions. It was also found that the shunt input impedance looking from 

the center of the box is of the order of Q.VEY, as in lumped circuits, and 

the series impedance close to (1/Q)V L/C as in lumped series circuits. 
The shunt impedance is very high (order of megohms) whereas the series 
resistance is very low (order of a few thousandths of an ohm). 
The high Q, high shunt impedance, and low series impedance each 

mean that the cavity resonator is an extremely efficient device for energy 
storage. In any practical case the losses introduced by the coupling 
devices may be more than those in the box itself, so that the calculated 
value of Q may not be obtained. However, as was stressed previously, 
there are no radiation losses to consider as in lumped circuits because of 
the practically perfect shielding afforded by the conducting walls of the 
cavity. 

Problem 10.04(a). For the simple mode in the rectangular cavity studied in 
Art. 10.04 derive expressions for losses and Q if the loss is in the dielectric rather 
than the conducting boundaries. 

Problem 10.04(b). Find the approximate new typical values for Q in the case 
of the copper and brass cavities mentioned in Art. 10.04 if the dielectric, instead of 
being air, is glass with values for and El' of 5 and 0.05 respectively. How much 
is the Q changed if ii = 5 and El' = 0? 

10.05 Other Modes in Rectangular Box Resonators 
It should be evident from the approach to the simple mode in a 

rectangular box resonator that this is only one of the many possible 
modes of electromagnetic oscillation that might be set up inside the box. 
We began by considering the rectangular box as a wave guide, requiring 
for oscillation the condition that a TEio wave propagating in a certain 
direction should see a half wavelength in that direction. Obviously, any 
multiple of a half wave in that direction would have served as well. 
Thus, for a given box, the possibility exists of an infinite number of 
resonant frequencies corresponding to this distance equal to e g/2, 
where p is any integer. 
What now about the possibility of using other waves in the wave guide, 

still considering propagation along one selected direction? There 
should then be the above p values of resonant frequency for each of the . 
TE.. and TM.. modes. Since m, n, and p may each take on integral 
values up to infinity, it follows that a triply infinite set of resonant fre-
quencies corresponds to all the possible wave modes inside the box. 
A certain arbitrariness exists in the selection of the direction of propa-

gation in applying the wave guide type waves to the analysis of the 
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resonator. For instance, in Fig. 10.03, the waves may be regarded as 
TE10 waves, propagating in the z direction as in Art. 10.03. There are 
then half-wave variations in the z and x directions, no variations in the 
y direction. A little study should reveal that exactly the same final field 
pattern would be obtained if we considered this as a TEio wave propa-
gating in the x direction, setting up a standing half-wave pattern in this 
direction. Also, if they direction is considered as the direction of propa-
gation, exactly the same pattern would be found for a TMii wave propa-
gating exactly at cut-off in this direction. This is a possible condition for 
satisfying boundary conditions, since the transverse component of elec-
tric field in a TM wave is zero at cut-off. Expressed mathematically, 
the integer p may be zero for a TM wave when the length of the box is 
made equal to pX0/2, but it may not be zero for a TE wave. 
Thus it is found that if different axes of the box are chosen for the 

direction of propagation, we shall again arrive at the same modes, 
although a given mode which looks like a certain type of guided wave for 
propagation along one axis may look like an entirely different type when 
we change to another axis. 

It is of course possible to arrive at these resonant modes simply by 
starting directly from Maxwell's equations, asking what conditions must 
hold if the boundary conditions at the conductors are to be satisfied, 
and never referring to the study of propagating waves. The other 
approach has been chosen in order to make use of the background of 
guided wave types, and of resonance phenomena arising from inter-
ference between incident and reflected waves developed in transmission 
line studies. 

Problem 10.05. Arrive at the resonant frequencies and field distribution pat-
terns for the waves discussed in Art. 10.05 by starting directly from Maxwell's 
equations. 

10.06 Simple Mode in Cylindrical Resonator 

With the background developed from the detailed study of the simple 
mode in a rectangular box, the relations for the similar mode in a 
cylindrical box may quickly be set down. We should expect to find a 
similar mode, that is, one with the two ends charging up against each 
other, with axial currents flowing in the side wall, with electric fields 
only in the axial direction, and with no field variation in this direction. 
A review of the wave guide type waves for a cylinder reveals a TMoi 
wave as a likely prospect, operating in the cylinder at cut-off to insure 
no variation in the axial direction. The transverse component of elec-
tric field is zero at cut-off, leaving only the axial component, as desired. 
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Relations for the components of this wave at cut-off may be obtained 

from Art. 9.03. 
Ez =, E0J0(kzr) 

jE0 , 
H4, = — i(Ger) 

tli 

poi 2.405 
kz = — 

a a 

Thus the resonant wavelength is 

2,7r 27ra 
xl = — = 2.61a 

tee P01 

The charge density is 

On bottom p8 = €1E8 = eiE0.10(ke) 

On top PS 61E0J0(kcr) 

Total charge, on top or bottom, is 
a a q = fEiE82er dr = 27r€1E0 f Jo(kzr)r dr o o 

This may be integrated by Eq. 3.22(3). 

But 

SO 

q = 2w(0.5191)EiEo [3] 

The current flow on the side walls is entirely in the z direction; on 

the top and bottom it is radial. 

q = 271-€1E0Ji(kza) 

(1c8a) = Ji (2.403) = 0.5191 

[1] 

[2] 

jE0 
On side walls Jz = — Holr-cs = Ji(kza) 

• 

. Eo 
On bottom Jr. = —H. = —3 — Ji(kcr) 

n1 

E0 
On top Jr = Ho = J (kzr) 

n1 

Total vertical current flow in the side walls is 

j 2/r (0.5191)a 
2raJ8 — 27raEo .11(1c8a) 

171 n1 

[4] 

[5] 
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Current 

-Electric Field 
-- -- Magnetic Field 

FIG. 10.06. Sections through a 
cylindrical cavity. 

Current and field directions are sketched 
in Fig. 10.06. 
The energy stored in the cavity at reso-

nance may be found from the energy in 
electric fields at the instant these are at 
their maximum value. 

°EilE12 
UE =hf 27rr dr 

o 2 
a 

= rEihE8f .1(ke)r dr 
o 

where h is the height of the cylinder. 
This may be integrated by Eq. 3.22(5). 

2 
UE = rEihE8 •(-- (het) [6] 

.For the resonant condition, the energy in magnetic fields at their maxi-
mum may be shown to be exactly equal to this. 

If the conducting walls are of imperfect conductors, the power loss 
may be calculated approximately. 

R. r. 
PL = 2rah — 2 1./212 ± 2 jo 2 — 142 2er dr 

The first term represents losses in the side wall, the second in top and 
bottom. Substituting from (4) gives 

El 0E3 
PL = 71-R8 [ah --y ei(ket) + 2 f --2- 4.(lccr)r dr] 

n1 i: ni 

This integration may also be performed through Eq. 3.22(5), recalling 
that J0 (ka) = 0 as the condition for resonance. 

2 raR.E0 2 
PL — 2 J1 (Icca)[h -I- a] 

n1 [7] 

Now we may calculate the values of Q, equivalent inductance (defined 
on basis of energy storage and total vertical current), equivalent capac-

ity (defined so that resonant frequency is given by 1/ (271/Té), the 
shunt conductance, and series resistance of the resonator. The method 
of calculation for each is of course exactly similar to that given in detail 
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in Art. 10.04 for the rectangular resonator. The results are: 

n U 01 Vol 

2U h 
L = =--

1 4r a2 

C = ca2L = Ai --h., 

2P L R. 2ira [1 + 
(Eohr ni h It 

7-, 2P L h , 
-•= — = R8 1/z12 2iraL h 

A study of the above relations shows the same type of behavior 
found for the rectangular resonator. For example, an increase in the 
ratio of volume to surface area increases Q as found for the rectangular 
box. All quantities are of the same order of magnitude, but merely 

multiplied by different geometric factors. 

Problem 10.06(o). Consider a class of cavity resonators which is formed of a 
section of hollow pipe of arbitrary but uniform cross section closed by end plates 
perpendicular to the guide axis. State why, for one simple oscillation mode, the 
resonant wavelength is known once the cut-off wavelength of the pipe as a guide has 

been determined. 
Problem 10.06(b). For the simple mode in a circularly cylindrical cavity 

studied in Art. 10.06 it is desired to determine the first order correction to resonant 
wavelength and Q when a small amount of glass is added to the cavity. Consider 
three cases: (1) a thin plate of glass covering one end of the cavity, (2) a thin film 
of glass lining the cylindrical wall portion of the cavity, (3) a thin coaxial cylinder 
of glass extending from top to bottom of the cavity and of diameter half that of the 

cavity. 

10.07 Simple Mode in Spherical Resonator 
A hollow conducting sphere will also have, among all its resonant 

modes, one which is analogous to the simple modes studied in the past 
articles. One pole of the sphere charges against the other, electric 

field passes between these equal and opposite charges, and current flows 
longitudinally between them, reaching a maximum value at the equator. 
We shall study, somewhat later, the general wave solutions in spheri-

cal coordinates. However, the field variations required for the present 
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mode are relatively simple so that this general study will not be re-
quired. If no variations are oesumed latitudinally, a/ack = 0, the 
two curl relations for the dielectric inside the hollow sphere in spherical 
coordinates break into two sets of equations, one relating Eo, H,„ Ho, 
and the other relating Ho, E , Eo. The mode of present interest will be 
obtained from the latter set. The relations from Maxwell's equations 
relating these are: 

7 —ar (rEll) — = —3'4'114 

r sin 0 a a   0(1-4 sin 0) = jcoeiEr 

l a 
- 7 -Or 10) = iwfiEe 

[1] 

Substitution shows that the following solution satisfies equations (1). 

A sin 0 rsin kir 
cos 01 Ho — 

kir L kir 
—2jA cos O [sin kir 

cos kir] E, = [2] 
(kir)2 L kir 

E0 _ jniA sin 0 r  (kir)2 — 1  sin kir --1- cos 01 
(kir)2 L kir 

where kit  
Assuming perfect conductivity for the spherical shell, Ee 

zero at the radius of the shell, r = a. This requires, by (2) 

(kiar — 1  
sin kia ± cos kia = 0 

kia 

must be 

kia  
or tan kia — [31 

1 — (kia)2 

Roots of this transcendental equation may be found graphically or by 
numerical methods. The first root, other than zero, is at kia = 2.74, or 

2r 
-= 2.74 a = 2.29a [4] 

The representative current for the resonator may be taken where the 
current is a maximum, namely, across the equator. 

_ [sin kia cos kial 
I = 2raHol O=T/2 2rerdi 

(kia)2 kia 

= 21-aA sin kia = 0.389 (21-aA) [51 
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The energy stored at resonance may be calculated from peak energy 

stored in magnetic fields. 

UH far . 11412 27rr2 sin 0 dr 
o o 2 

The value of Hg, is given in (1), and the result of integration may be 

simplified by the requirement for resonance, (3). 

2P17/12 1 -I- (kia)2 
UH -= 3k1 k la sin kia 3 [kia [61 

The approximate dissipation in conductors of finite conductivity, 

having skin effect surface resistivity R„, is 

PL = fol. R811412 2ra2 sin 0 dB 
2 

4R8 2 = 212 sin2 ices watts 
3 

Since current, energy storage, and power loss are given, the circuit 
quantities Q, L, C, and LIC may be found from the definitions of 
Art. 10.04. In all these expressions, the following function of (kka) 

appears 

F Icia 1 -I- (Icia)21 15 

Lsin2 kia kia j 

Then 
F  171 _ 711 - 

(2 - 2(kia)2 R, R, 

aF  
L --= — 0.077 gla 

371-(kia)3 

kia , 
C — rEia 

ar(Fkia)2ni 0.2ini 

R -= 2 = 0.21R. 

Results are again similar to those for either the cylindrical or rectangu-
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lar boxes, with slightly different geometrical multiplying factors. The 
fields are sketched in Fig. 10.07, showing the field and current distribu-
tions described. 

 Electric Field 
-  Magnetic Field 

Section Through Axis Section Through Equator 

FIG. 10.07. Field patterns for simple TMioi mode in spherical resonator. 

10.08 Miscellaneous Mode Types in Cylindrical and Spherical 
Resonators 

Some of the simplest modes of the many that can exist in cavity 
resonators have been studied in detail. Since there are an infinite 
number of mode types for each of the geometrical configurations of 
resonators, we cannot continue to give detailed information on each of 
these. It has already been pointed out that for a rectangular resonator, 
mode types will follow from each of the wave guide types studied in 
Chapter 9. Once the coordinate axes are chosen, any wave type may be 
specified by subscript, showing the number of variations in the x, y, and z 
directions respectively; it will be called a TM wave if it has no Hz com-
ponent and a TE wave if it has no Ez. Thus a TEloi wave has Hz but 
not Ez, has one-half sine variation in the x direction, no variations in the 
y direction, and one in the z direction. 

Similarly, wave types exist in simple cylindrical resonators correspond-
ing to all the wave guide typas of Art. 9.03. Here the commonly used 
order of subscripts unfortunately does not follow the cyclic order of the 
coordinates. Thus, the first subscript usually denotes number of 
variations, the second the r variations, and the third the z variations. 
The notation is the same as for the corresponding wave guide type, with 
the third subscript giving the number of axial variations. Patterns for 
the TMon, TEn 1, and TEon wave are sketched in Table 10.08. The 
T/Ifolo wave is that already studied in Art. 10.06. Of the additional 
waves noted here, the TEon is perhaps the most interesting since it has 
no axial currents flowing in the walls, and no current flowing between 
the end plates and the cylindrical surface. That is, all currents are cir-
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Cross Section 
Through A-A 

Axial Section 

MISCELLANEOUS MODES 

Equatorial Section 

xl 

xl — 

Xi = 1.40a 

cumferential. Thus if a resonator for such a wave 
is tuned by moving the end plate, one does not need 
to worry here about a good contact between end 
plates and the cylinder. For most wave types this 
is an important point since a large current usually 
flows between the cylinder and its ends. 
Of the many waves of a spherical resonator, prob-

ably the one of major interest other than that of Art. 
10.07 has field distribution as sketched in Table 10.08, FIG. 10.08. Cylindri-
labeled TEloi for a sphere. There are only compo- cal resonator with 

nents E0, H, and Ho for this resonator, and again dielectric core. 

no variations with azimuthal angle. Current flows 
latitudinally here instead of longitudinally as in the other wave type 
studied. This wave type may be denoted as a TEloi, and the one 

2/ 

2/ 

(Ura 2") 

2/ 

403 
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studied previously as a TMioi, the subscripts denoting r, 4), and O 
variations respectively, and the classification TM or TE wave being 
fixed by the restriction of magnetic or electric components to the direc-
tions transverse to the radial, namely, the and O directions. 

Problem 10.08. Find the resonant wavelength for a cavity consisting of a sec- . 
tion of circular cylinder terminated by two end plates perpendicular to the axis and 
containing a coaxial dielectric core (Fig. 10.08). Consider only the simple mode in 
which the top and bottom are equally and oppositely charged and the current flow 
is symmetric about the axis. 

SMALL-GAP CAVITIES AND CAVITY COUPLING 

10.09 Foreshortened Coaxial Line Resonators 

The resonators of simple geometrical shape — rectangular, cylindri-
cal, spherical — have been studied so that we might become familiar 
with the phenomenon of resonance in closed conducting cavities, obtain 
some feeling for the relations between these and more familiar resonant 
circuits, and have some practice in manipulating some of the simpler 
wave solutions. Unfortunately, these simple resonators are often not so 
useful as some which are more difficult to analyze, at least if highly exact 
results are desired. A more useful class of resonators for many applica-
tions is that in which the region of maximum electric field appears across 
a short gap, so that the resonator may be used across two closely spaced 
electrodes of typical high-frequency electron tubes. For example, the 
resonator may be excited by a velocity modulated or a current modulated 
beam of electrons passing across this gap. This would be true only for 
the rectangular box or cylindrical box if the height were made as small 
as desired for the gap, but we have found that such proportions would 
result in a resonator of extremely low Q. 
The resonators with short gaps may have many configurations and 

proportions. One of the simplest of these is as shown in Fig. 10.09a 
where the resonance region is located between two coaxial conductors, 
shorted at one end and terminated by a short gap between two conduct-
ing plates at the other end. This is the gap across which a voltage may 
be set up to excite a beam of electrons, or conversely, across which the 
modulated beam of electrons may pass to induce current flow into the 
resonator. Provided that the region B, in the vicinity of the gap, is 
short compared to a wavelength, this region will act mainly as a lumped 
capacity loading on a transmission line represented by the coaxial 
region A. Thus the equivalent circuit is approximately as in Fig. 10.09b. 
For resonance, the impedance looking into the short-circuited trans-
mission line should be an inductive reactance equal in magnitude to 
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the capacitive reactance of the lumped capacity Co. (To be more 
general, it is worth noting that the line might be cut any place we please, 
and if it is to be a self-contained system at resonance, the impedances 
looking in opposite directions should be equal and opposite reactances, 

neglecting losses.) 

Fla. 10.09a. Foreshortened 
coaxial line resonator. 

zo 

FIG. 10.091). Approximate 
equivalent circuit for Fig. 

10.09a. 

The input impedance of a short-circuited transmission line of length 1, 

characteristic impedance Zo, is 
Zi = jZo tan 01 [1] 

This impedance should be equal and opposite to that of the condenser Co, 

Z c [21 
WU o 

or 

1 
Zo tan el wu 

(31 1 = tan l „„) 
LioWU 0 

For a coaxial line (Table 9.01) 
60 To) 

Zo = ln ( — ohms 
v ri 

27r 
= 

[31 

For a given characteristic impedance Zo and end loading capacity Co 
the length of the coaxial line required for resonance is fixed. If Co is so 
small that 1/coCo is much greater than zo, 01 r.4-.7r/2, and the line is 
practically a quarter wave in length. For larger values of Co, the line is 
foreshortened from the quarter-wave value because of this loading. 
The above analysis is only approximate, but is very simple and 

fortunately quite useful for many practical cases. The criteria for use-

fulness should be: 
1. The region B small compared with wavelength. 
2. The region A long enough so that the doubt in the point to which / 

should be measured is unimportant. 

• -0 «..sImolo 
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The method is particularly useful when the region B is not uniform, 
but varies in spacing, and contains glass or other dielectric discontinui-
ties, so long as a reasonably good value for Co of this space may be 
estimated. 

Problem 10.09(a). Prove the statement macle above that for resonance in a 
closed system, impedance at any point should represent opposite reactances looking 
in opposite directions. Show that the same result is obtained for resonance if the 
line is cut at a general point distance z from the condenser Co, and this criterion ap-
plied. 

Problem 10.09(b). Calculate the Q of the resonator of Fig. 10.09a, neglecting 
all losses in the region B. 

Problem 10.09(c). Repeat Prob. 10.09b if losses in region B may be considered 
as a lumped resistance Ro in parallel with Co. Design and calculate the magnitude 
of Q for a resonator with ri = 1 cm, ro = 3 cm, X = 30 cm, C = 2 Atufd, Ro = 10,000 
ohms. 

.  
 C, 

Problem 10.09(d). By extension of the concepts of 
this article, show that the expression for resonant fre-
quency for the resonator of Fig. 10.09c, having total gap 

>i<  ¿  capacity C1, is 

Fla. 10.09c. 131 = tan-1G ofec v  
1  \ 

10.10 Foreshortened Radial Lines 

In Art. 9.08 the transmission line type of wave propagating radially 
between two parallel circular plates was studied. For this wave, equal 
s,nd opposite currents flow radially in the top and bottom plates at a 
given radius, and equal and opposite charge distributions exist on these 
plates. Electric field is only in the axial direction, magnetic field in the 
circumferential direction. These field distributions are reminiscent of 
those for the simple cylindrical resonator, Art. 10.06, and a little study 
of the radial transmission line equations, Art. 9.08, reveals that such a 
resonator is truly the radial analogy of a shorted quarter-wave trans-
mission line. That is, looking radially outward from the center, an 
infinite impedance is seen at the center. (For the simple mode of 
Art. 10.06 it was found that current is zero at the center, voltage is a 
maximum.) Equation 9.08(14) gives the input wave impedance of a 
short-circuited radial line 

sin (0i — OL)  
Zi = jZos [1] 

cos (th — OL) 

This impedance is infinite if ei — OL is ±90°, or an odd multiple of 90°. 
Since ri = 0 at the center, = 0 and a value of OL = 90° fulfils the 
requirement for infinite Impedance. By the curve, Fig. 9.08b, this 
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occurs for a value of kr2 = 2.4, of course the same result for resonance 

obtained in Art. 10.08. 
It follows that a resonator with a small gap at the center, similar to 

that of Art. 10.09 but of different proportions so that radii are greater 
than height, is best looked upon as a radial line foreshortened by capacity 
loading, Fig. 10.10a, rather than a coaxial line as in Art. 10.09. The 
calculation for the loaded coaxial line was fortunately quite simple. The 

corresponding calculation for the radial line 
may be a bit more difficult, but that is no 
excuse for neglecting the foreshortening, 
even though the student may use the old 
excuse, " I didn't know it was loaded." 
Actually, the amount of foreshortening by 
a given capacity may be calculated easily Fla. 10.10a. Foreshortened ra-

dial through the use of the radial trans- dial line resonator. 
mission line equations. As for the coaxial 
line, the impedance of the shorted radial line, looking in at r1, should be 
an inductive reactance equal in magnitude to the capacitive reactance 
of the lumped capacitance. Equation (1) for wave impedance of 
a shorted radial line may be written for this impedance at r1, if the 

line is shorted at r2, 

sin (01 — 02)  
Zi = jZoi 

cos (4,1 — 02) 

This quantity represents the ratio of E to H at r1. The ratio of voltage 
to current, or total impedance looking outward from r1 is 

h E 
Zri = 27rri. 

hZoi sin (01 — 02)  

1 2Tri cos (01 — 02) 

Then, for resonance, 

1 h sin (01 — 02)  

27rri 01 cos (11/1 — 02) 

Most often, the value of r1, h, and C are known, and it is desired to find 
the outer radius r2 for resonance at a given wavelength. 

Let 

[2] 

27rri  

wCZoih 

[3] 

[4] 
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If this quantity is substituted in (3), the resulting equation may be 
solved for 02 

02 = (sin 01 11,1 q cos  
[5] cos 01 — q sin 

Once 02 is found, 27r2/X is read from Fig. 9.08b. 

Problem 10.10(a). Plot a curve of r2 versus X for a radial cavity of height 
1 cm, loaded by a post 1 cm in diameter, which represents a capacitance of 1 pisfd. 

10.10b. Axially symmetric 
resonator. 

L, 

Radial Lit-e-Te"---1-ren 
Beginning C2 
at r2 

FIG. 10.10c. Approximate equiva-
lent circuit for Fig. 10.10b. 

Problem 10.10(b). A radial cavity is loaded at the center by a section as shown 
in Fig. 10.10b. If r2 is relatively small compared with wavelength, it is possible to 
represent approximately the region inside r2 by a lumped circuit equivalent, Fig. 
10.10c. Here C1 is the center post capacitance, L1 is an inductance calculated from 
D-C formulas for the coaxial region of height h1 between radii r1 and 7.2, and C2 is 
approximately the capacitance calculated on the basis of parallel disks spaced h1, 
and of radii ri and r2. If C1 = 1 pied, h1 = 0.5 cm, h2 = 1.0 cm, ri = 0.50 cm, 
r2 = 1.0 cm, find the approximate value of r3 for resonance at X =-• 15 cm. 

10.11 Transition between Coaxial and Radial Resonators 

A study of the figures for the two resonators, foreshortened coaxial in 
Art. 10.09, and foreshortened radial in Art. 10.10, shows that these are 
really not different in physical configuration except in regard to propor-
tions. However, it was implied that in order for a cavity to be thought 
of usefully as a foreshortened coaxial line for the simple mode, the 
length 1, Fig. 10.09a, should be relatively long compared with (r2 — ri); 
in order for the radial line point of view to be useful, the height h of 
Fig. 10.10a (corresponding to 1 above) should be relatively short com-
pared with (r2 — 9.1). The significance, electromagnetically, is that in 
the former the electric field lines in the region A will tend to become 
radial lines, pResing between inner and outer conducting cylinders, 
whereas in the latter they will tend to become axial lines, passing between 
the top and bottom plates. This is illustrated in Fi. 10.11a and c. 
The magnetic field lines in either case are circumferential, but in the 
former case their strength varies with z, whereas in the latter it does not, 
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The above remarks suggest that we have not studied two different 
wave types but rather two different approximate analyses for a given 
wave type, the usefulness of each depending upon the resonator propor-
tions. As the proportions are gradu-
ally changed from Fig. 10.11a toward 
Fig. 10.11c, the field distribution will 
also gradually change from one tendency 
toward the other. An intermediate = 
case is sketched in Fig. 10.11b. For 
such an intermediate case, it may be 
necessary to consider a more rigorous at-
tack than either of the approximate 
analyses provides, and one such attack  1111 J): 
will be reviewed in the following article. 

Before leaving the general comparison 
of the two limiting cases, it is especially 
interesting to note the limit of each as 
the capacity loading is increased to a 
very large value. For both types of res-
onators, the design equations show that 
the resonator region of the coaxial or 
radial line external to the lumped capac-
ity decreases in size as the capacity 
loading increases for a fixed frequency. Fie. 10.11. Transition between 
When loading is so great that the overall foreshortened coaxial line and fore-

shortened radial line. • 
size of the resonator is relatively small 
compared with wavelength, it is permissible to consider the outside por-
tion of line as a lumped inductance, whose value may be calculated from 
the formula for inductance of a coaxial system (Table 9.01). 

henrys (r2 
ri [1] 

Then resonant frequency is given by the familiar equation 

1  

f - 271--ViC 

These are quite obviously the equations we would have written for this 
case of dimensions small compared with wavelength if we had not been 
exposed to resonant cavity theory. However, it is interesting as a con-
nection between the resonant cavities and resonant lumped circuits. It 
is also significant in pointing out that a closed, conducting resonant 
region may be made indefinitely small compared with wavelength if the 

(a) 

(c) 

(b) 

[2] 



Fla. 10.12a. 

410 RESONANT CAVITIES [Art. 10.11 

fields are concentrated in this fashion. Recall that for the simple 
resonators it was found necessary to have at least some dimension com-
parable to wavelength. This cautions against using dimensions based 
upon those simple resonators in seeking estimates of dimensions for cavi-
ties in which there are highly concentrated regions of electric or magnetic 
field. Of course, if a very small resonator were made in this fashion it 
would have a low ratio of L/C and a low Q because of its poor volume to 
surface ratio. It would consequently be a relatively poor resonator for 
many purposes. 

Problem 10.11(a). Show that Eqs. 10.11 (1) and (2) are the limiting equations, 
as C is made very large, for the results of Art. 10.09. 

(b). Repeat for Art. 10.10. 

10.12 The Nature of an Exact Solution 

For resonators of the small-gap type, it is possible to obtain exact 
solutions for certain shapes such as the two examples of Figs. 10.12a 
and b. Such solutions may be desirable when proportions are such that 
approximate results from either Art. 10.09 or Art. 10.10 do not represent 
particularly good approximations. Although space does not permit 
the development of the exact method here, Hahn2 has given one form of 

PIG. 10.12b. 

this in the literature. The basis for the method is, however, similar to 
that discussed previously in connection with other problems, and espe-
cially to the discussion of discontinuities in lines and guides, Art. 9.15. 
Separate solutions to the wave equation are thus added to form a series 
which matches the somewhat complex boundary that could not be 
satisfied by one simple function alone. 

Consider specifically the resonator of Fig. 10.12a. If the mode is 

2 W. C. Hahn, " A New Method for the Calculation of Cavity Resonators," 
Tourn. Appt. Phys., 12, 62-68 (January, 1941). 
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desired with cylindrical symmetry and the high voltage region appearing 
across the gap, study shows that the field components Er, E, and H4, 
only are required. Thus in region A all possible cylindrically symmetric 
wave solutions with these components are written, not forgetting the 
important component corresponding to the radial transmission line mode 
(Art. 10.10). Of course, the second type (N0) Bessel functions are 
absent in the A region solutions due to the axis being contained in this 
region, and the requirement that Er = 0, at z = 0 and z = a, is also 
placed on these solutions. Similarly, all possible cylindrically symmet-
ric wave types in the B region with E,., Ez, and H4„ again including the 
radial transmission line mode, are written with Er made zero at z 
and z = b, and Ez = 0 at r r2 for all waves. The final matching 
conditions are the requirements that total E,. and H4, from the A wave 
solutions be equal to that from the B wave solutions at all points along 
the surfacer --- r1 from z = O to z = a. By means of Fourier series, and 
certain summations tabulated by Hahn, the coefficients of the individual 

waves may be evaluated and resonance conditions found. 
As in Art. 9.15, it is possible to express the effect of the higher order 

waves (those other than the radial transmission line mode) as a lumped 
admittance placed at r = r1. Thus the analysis can be made from an 
equivalent radial transmission line circuit, with a radial line correspond-
ing to region B joined directly to a radial line corresponding to region A, 
with the lumped admittance shunted across the junction at r = r1. 
Although exact calculation of this admittance requires solution of the 
problem outlined above, its order of magnitude may be estimated from 

the curve of Fig. 9.15b: 
Cdr 1 21rr1Cz Eli 

Cd is a lumped capacitance to place at the junction between radial 
lines A and B, and Cv/ is obtained as a function of a/b from Fig. 9.15b. 

10.13 Conical Line Resonators 
The resonators of Arts. 10.09 and 10.10 may be made with relatively 

high Q's, yet with a small gap which can be excited conveniently by an 
electron stream. There are many other physical configurations of 
resonators which will accomplish the same result. One of the most 
interesting of these is the conical analogy to the coaxial and radial line 
cavities already studied. This is shown in Fig. 10.13 where two coaxial, 
conical conducting surfaces with apices adjacent are terminated at 
radius a by a spherical conducting surface. The region inside the con-

ductors is filled with a dielectric of constants pi and €1. 
The basic equations for the principal wave guided by two coaxial cones 
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were presented in Art. 9.09. It was shown that this wave is exactly 
analogous to a transmission line wave along a uniform two-dimensional 
system. Current flows radially along the two cones; voltage difference 
between the two cones at any radius may be talked about conveniently 

Spherical since there is only a O component of 
Conducting electric field, and the wave propagates 

Surface 
radially at the velocity of light for the 

Conical dielectric material surrounding the 
Conducting \ cones. The characteristic impedance Surface _ „ 

Fla. 10.13. Conical line resonator. 

is a constant, independent of radius 
(unlike that for the radial lines) and is 
given by Eq. 9.09.(9). 

00 
Z0 = — ln cot —2 [1] 

Ordinary transmission line equations may now be used with this value 
of Z0 and the known velocity of propagation, at least if losses are 
neglected. Then, if the lumped capacity at the point where the two 
cones approach one another is negligible, resonance will occur when the 
spherical surface is removed by a quarter wavelength from the center 
so that an infinite impedance is seen looking outward from the center. 

Xi  1  
a 

4 [2] 

The field equations show that this is the exact resonance condition for• 
the ideal case of the two cones coming to point apices, with these apices 
removed from one another by only an infinitesimal distance. (They 
must not be touching since the maximum voltage between cones appears 
at this point.) These field distributions for E and H may be obtained 
by superposing a radially outward traveling wave and a radially inward 
traveling wave of equal magnitudes and phases [Eqs. 9.09(5) and 9.09 (6)] 
so that E8 is maintained zero at r = a. Then, 

C cos kir 

sin 0 r 

C  sin kir 

= in sin 0 r 

[3] 

where k1 = toN/PiEi• 
The integrations for energy, losses, and the circuit definition for resona-
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tors give the following results. 

00 
fo = ln cot j. 

2irC 
I = — (maximum current at the spherical boundary) 

301 

U = 6C27rafo (peak stored energy) 

PL — 2 [fa ± (average power loss) 
2•n-R.C2 0.825 

sin 00 

017r  fo  
Q — 4R. 0.825 

fe + sin 00 

2U _ 
L — 1.112 — fo 

V = 2Cfe (voltage between apices) 

0.825 

n 
G = 

V 2 nl esi 

2pL R. rt 0.8251 
ir I ± sin 0.1 

If the capacity between the two apices is not negligible, because of a 
flattening of the apices, introduction of glass, etc., the resonator will, of 
course, have to be foreshortened to compensate for this, just as for the 
coaxial and radial cavities with lumped capacity loading. If the magni-
tude of the lumped capacity at this point is estimated as CO3 the approxi-
mate resonance condition is written in exactly the same form as for the 
coaxial lines, Eq. 10.09(3), 

= tan-1 (-„ -1  
hoC01;0) 

[12] 

where Zo is now given by (1) and = 271-/X1 = 0A/71 

Problem 10.13(a). Find the values for eo that will lead to maximum Q and 
minimum G, Eqs. 10.13(7) and 10.13(10), for the conical cavity. 

Problem 10.13(b). Design a conical resonator for X = 15 cm with the angle 
for maximum Q. Calculate this Q and the value of G if the conductor is copper. 
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10.14 Coupling to Cavities 

The types of electromagnetic waves that may exist inside closed 
conducting cavities have been discussed without specifically analyzing 
ways of exciting these oscillations. Obviously they cannot be excited 
if the resonator is completely enclosed by conductors. Some means of 
coupling electromagnetic energy into and out of the resonator must be 
introduced from the outside. Some of these coupling methods have been 
implied in past articles. All are similar to those discussed in Art. 9.11 
for exciting waves in wave guides. The most straightforward methods 
are: 

1. Introduction of a conducting probe or antenna in the direction of 
the electric field lines, driven by an external transmission line. 

2. Introduction of a conducting loop with plane normal to the mag-
netic field lines. 

3. Introduction of a pulsating electron beam passing through a small 
gap in the resonator, in the direction of electric field lines. 

Input Output 
Resonator Resonator 

Electron 

Zi_Bearn 

Cylindrical 
Coaxial Cavity 
Line 

Loop 

Power Out 

Fm. 10.14a. Couplings to the 
cavities of a velocity modula-

tion tube amplifier. 

10.14b. Magnetic coupling to 
a cylindrical cavity. 

Any of the above methods may also be used for coupling power out of 
the resonator, as well as for introducing power to excite the oscillations 
in the resonator, and it is not uncommon to find all the methods employed 
in a single system. For example, in a velocity modulation device of the 
Klystron type, as pictured in Fig. 10.14a, the input cavity may be 
excited by a probe, the oscillations in this cavity producing a voltage 
across gap g1 and causing a velocity modulation of the electron beam. 
The velocity modulation is converted to conduction current modulation 
by a drifting action so that the electron beam may then excite electro-
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magnetic oscillations in the second resonator by passing through the 
gap g2.3 Power may be coupled out of this resonator by a coupling 

loop and a coaxial transmission line. 
The qualitative performance of the above types of coupling is not hard 

to understand, but quantitative analysis is more difficult, and in certain 
respects has not yet been worked out rigorously. We shall conse-
quently discuss the problem only from an approximate point of view. 
Let us consider specifically the case of a cavity excited by a loop, and 
say, for example, that this loop is introduced near the side wall of a 
cylindrical cavity, Fig. 10.14b. If a current is made to flow in this loop, 
all wave types will be excited which have a magnetic field threading the 
loop. Certainly the simple wave type of Art. 10.06 is one of these since 
it has only a circumferential magnetic field which is a maximum at the 
cylindrical wall of the cavity, and which does not vary in the axial 
direction. However, there are an infinite number of other wave types 
which have a circumferential magnetic field to thread the loop. If one 
of these is near resonance, and the others far from resonance, the one 
nearest resonance will, of course, be excited the most. Those far from 
resonance will be highly reactive and so will be excited little. 

Suppose now the cylinder is designed with dimensions such that the 
simple wave type of Art. 10.06 is near resonance for the operating fre-
quency. This wave type will fit the boundary conditions imposed by 
the perfectly conducting box alone. When the conducting loop is 
introduced, there must be some revision in the field distribution because 
of this loop since the electric field must also be made zero along the 
conductor of this loop (assuming the loop to be perfectly conducting). 
We may think of this as accomplished by superposing higher order waves 

on the main wave until the required boundary condition is met. These 
higher order waves will be, in general, far from their individual resonance 
points, and so will present only reactances to the driving source. Now, 
from a circuit point of view, part of the problem is to find the impedance 
seen by a voltage applied to the loop, or the current which flows for that 
voltage. For a given applied voltage, there must be an equal and 
opposite induced voltage, if the resistance component of the loop is 
negligible. This induced voltage is generated by changing magnetic 
flux enclosed by the loop from all the waves, simple and higher order. 
All the contributions from the latter, as we have seen, will be reactive 
and far from resonance so that the contribution to induced voltage from 
all these may be thought of as the inductive reactance of the loop, of 
course taking account of the nearness of the surrounding conductor. 

3 Brainerd, Koehler, Reich, and Woodruff, " Ultra-Righ-Frequency Techniques," 

Van Nostrand, 1942, Chapter X. 
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The induced voltage from the wave near resonance may be calculated 
by integrating Magnetic flux density for this wave over the area of the 
loop, field distributions being already known. If the loop is small com-
pared with dimensions of the resonator, fields will not vary greatly over 
the area of the loop, so that magnetic field may be assumed constant 
over that area. Induced voltage for this wave with field strength H at 
the position of the loop is then 

Vi = —jwgIHS [1] 

where S is the area of the loop. Total induced voltage is the sum of this 
and the reactance term representing higher order waves, and applied 
voltage is equal and opposite to induced voltage. 

Vo = iwitiHS ± jcoL/L [2] 

IL is the loop current and L is the self inductance of the loop in the 
presence of the shield, representing the reactive effects of all higher order 
waves. At resonance, no reactive energy has to be supplied to the simple 
wave, but only the real energy for the losses in the cavity for this wave. 
Thus the first term in (2) should represent a voltage in phase with current 
of an amount necessary to supply those losses. An expression for power 
loss is given in 

IL(jcoiiiHS) = Power loss = PL 

From Art. 10.06 we may find H and PL for the TMoio wave in the 
cylindrical resonator. 

H = Ho 

PL = 

SO 

or 

jei „ s 
= — Ji(ka) 

r =a fi 

7raRte  
2 4(lcca)(h + a) = —7a(h + a)112R. 

n1 

jonliHSIL = —ra(h + a)112R, 

— ientiS  
H ra(h + a)R, IL [3] 

From (3) H may be obtained in terms of IL, so that the level of excita-
tion of the wave in the cavity is known once the current in the loop is 
known. Also, by substituting in (2), the impedance looking into the 
loop is given. The first term represents the impedance coupled into the 
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loop by the resonator, and the second term represents the self inductance 

of the loop. 
Vo  (coµS)2  

ZL — IL — Ira(h a)R. jai [4] 

We have already discussed a little of the problem of exciting the wave 
off resonance (Art. 10.04). The above expressions of course apply only 
for resonance in the main wave, and for other frequencies the manner in 
which electric and magnetic energies vary with frequency would have to 
be considered since the difference between these two terms must be 
supplied as a reactive energy term in addition to that lumped as the loop 

inductance. 
The above approach was intended to clarify the mechanism of cou-

pling between the loop and the wave in the resonator, and to supply an 
approximate means of analysis. It can be extended in an obvious man-
ner for coupling by loops to other wave types and other resonator shapes; 
it can be extended in a somewhat less obvious manner to coupling by 
probes and antennas. In the simple form described here this coupling 
calculation has been used successfully for practical cavity design from 
the time the problem of cavity coupling first came up. 

Problem 10.14(a). A cylindrical cavity is excited at the resonant frequency 
for its simple (TMoio) mode by a loop in one side of the resonator, and power is 
taken out of a loop of equal size on the other side of the resonator. Set up an ap-
proximation to the coupling problem between input and output. Calculate the 
current to a 70-ohm resistance load across the output when a voltage of 100 volts is 
impressed across the input loop. The loops are 1 cm2 area. The resonator is of 

copper, 10 cm in diameter and 3 cm high. 

Problem 10.14(b). Discuss the problem of coupling to the TMoio mode in a 
cylindrical resonator by a small probe or antenna, covering the points discussed in 

this article for a loop coupling. 

Problem 10.14(c). Write the expression similar to Eq. 10.14(4) for a rectan-

gular and spherical resonator (Arts. 10.03 and 10.07). 



11 
RADIATION 

11.01 The Problems of Radiation Engineering 

Radiation of electromagnetic energy, to an engineer, is important in 
at least two cases. (1) It may be a desired end result if energy is to be 
transferred from a high-frequency transmitter to electromagnetic waves 
in space by means of some antenna system. (2) It may be a leakage 
phenomenon, adding undesired losses to an imperfectly shielded circuit 
or transmission line or to a cavity resonator with holes. 

In order to perform an intelligent job of engineering in either of the 
above radiation problems, it is first desirable to have a good physical 
picture of radiation. In this picture radiation is not a mysterious and 
unknown link between transmitter and receiver, but a phenomenon 
following naturally from the excellent pictures of wave propagation, 
reflection, and excitation built up from familiarity with transmission 
lines and wave guides. It is desirable that this physical picture be con-
crete enough to give qualitative answers to specific questions that may 
arise in either of the above roles of radiation. It is, of course, also 
necessary to have methods available for obtaining quantitative design 
information about the amount of radiation and the effects on the radiat-
ing system. If radiation is the desired product, several or all of the 
following problems may arise in design of the radiating system: 

1. The, field strength at a known distance and in a known direction 
from the radiator excited by a given voltage may be desired. Often the 
relative field strength versus direction, i.e., the directivity pattern, is a 
sufficient answer for this problem. 

2. The total power radiated from the antenna structure when excited 
by a known voltage or current may be desired. (The answer may often 
be expressed in terms of a radiation resistance.) 

3. The input impedance of the radiator to the exciting voltage or 
current may be desired. 

4. The resonant frequency and band width of the radiator may be 
required. Band width questions are often answered if impedance versus 
frequency is known; however, it may be necessary sometimes to know 
the change in the radiation pattern with frequency. 

5. The power dissipated in ohmic losses in the radiator, as compared 
to the power radiated, may be desired. The result may be expressed as 
a radiation efficiency. 

418 
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6. The value of maximum gradient along the antenna may be required 

if corona difficulties are important. 
If radiation is the leakage product, the problems are not essentially 

different, although a knowledge of power lost by radiation is usually 
sufficient. To assure ourselves that it is only in magnitude of importance 
that this differs from radiation as a desired product, it may be recalled 
that it is in the role of a leakage phenomenon that radiation was met 
previously. In Chapter 5, for the rigorous study of circuits, an energy 
loss term appeared which was not accounted for by ohmic dissipation, 
this term being the radiated energy. The term becomes more important 
as the circuit is made large compared with wavelength, suggesting the 
obvious conclusion that a well-designed antenna system is simply a 
circuit made purposely large compared with wavelength to increase the 
importance of radiation. Also, in the study of transmission lines, it 
was pointed out that the waves excited in space by the end effects of a 
transmission line, required for matching to these end effects, may take 
energy from the guided wave of the line. This too is radiation, and to 
obtain it as a major effect it is necessary only to accentuate these end 
effects or to match more closely to the waves in space. This latter point 
of view is excellent, and one that will be developed further. 

Of the six quantitative problems listed above, it is fortunate that 
methods for calculating satisfactory answers to two of the most impor-
tant, directivity pattern and total power radiated, have been available 
for many years. The calculations are usually not of prohibitive diffi-
culty, although they may require graphical integration for many antenna 
configurations. We shall see that the possibility of obtaining good engi-
neering answers to these quantities comes about for the very fortunate 
reason that those two quantities are relatively insensitive to small 
changes in current distributions over the radiating system. Conse-
quently, with a little experience, some very good approximations to 
current distributions may be assumed throughout the radiator; from 
the integral forms of Maxwell's equations (Chapter 4) the fields at any 
point may be obtained if currents throughout the system are given, and 
through Poynting's theorem energy flow may be calculated once fields 
are known. (We shall also see that by a direct extension of the above 
point of view, fields at any point, and consequently energy radiated, 
may be calculated if field distributions are given over some surface 
surrounding the radiator. For certain types of radiating systems we can 
do a better job of assuming fields than currents, so the assumed fields 
will make a good starting point for calculating answers to the first and 
second problems in such cases.) 
The fifth problem, power dissipation, hps also been in fair shape for 

some time, simply because a satisfactory first approximation for many 
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antenna systems is: power dissipated negligible compared with power 
radiated. Then a quite good second approximation may be found by 
integrating losses due to an assumed current distribution over the known 
conductors of the radiating system. This will, of course, be the same 
current distribution assumed for calculation of power radiated if such a 
method is used. 
The information of input impedance is important since the radiator 

must be matched to some transmitter or transmission line, and if one is 
interested in wide-band radiation, as in television or frequency modula-
tion, it is desirable to know how good this match may be over the entire 
band width. Until recently such information was gathered mostly by 
experience, augmented by certain design curves, such as those of Siegel 
and Labus,1 which give satisfactory answers for a certain class of anten-
nas, but which were based upon a development involving many e-ssump-
tions difficult to evaluate. Recently Stratton and Chu' have obtained, 
by means of exact solution of the differential equations subject to 
boundary conditions, results for spheroidal antennas which may be 
considered as good approximations to many antennas of the dipole class. 
However, Schelkunoff3 has developed a somewhat different approach to 
antennas which also leads to answers on input impedance. His method 
is again based rigorously on Maxwell's equations, but is adapted readily 
to antennas of many shapes with approximations which are relatively 
easy to evaluate physically. The method at the same time does an 
excellent job of filling the need for a physical picture useful for qualitative 
thinking, a desired goal mentioned earlier. For this reason, we hope 
over the extent of this chapter to present his approach as a most impor-
tant modern viewpoint toward antenna theory. Since it does not yet 
replace older methods for calculation of energy radiated or directivity 
patterns, but is rather complementary to these, the several useful meth-
ods for radiation calculation will be studied with their relation to this 
viewpoint. 
There remains the question of field gradient in corona problems. It is 

not yet easy to calculate this generally, although approximate results 
for several antenna shapes should be obtainable from the viewpoint of 
Schelkunoff, and quite accurate results for spheroidal antennas should 
follow from the differential equation approach of Stratton and Chu. 

1 E. Siegel and J. Labus, Hochfrequenz. und Electroakustik, 43, 166-172 (1934). 
J. Labue, Hochfrequenz. und Ele,ctroakustik, 41, 17-23 (1933). 

2 L. J. Chu and J. A. Stratton, Jaurn. Appt. Phys., pp. 241-248, March, 1941. 
3 S. A. Schelkunoff, Proc. I.R.E., pp. 493-521, September, 1941. 
S. A. Schelkunoff and C. B. Feldman, Proc. I.R.E., pp. 511-518, November, 

1942. 
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WAVE CONCEPTS OF RADIATION 

11.02 The Nature of an Exact Solution to a Radiation Problem 

The stated problems of radiation engineering cover a multitude of 
characteristics of electromagnetic waves. Some of the phenomena, near 
or directly tied to the conductor, are much like the guided waves of 
previous chapters. Others, far from the radiator, are like the simple 
plane waves of Chapter 7. Without going farther, certain aspects of 
radiation problems may be granted immediately from the experience so 
far accumulated with Maxwell's equations and electromagnetic fields. 
For one thing, the radiator or antenna is a configuration of boundaries 

(generally metallic and highly conducting, although the use of dielectrics 
for some boundary formations is quite possible) to which a driving 
force, such as an electric field between two points, can be applied. This 
force, speaking in terms of the solution by Maxwell's equations, com-
pletes the definition of boundary conditions around the antenna. Cur-
rents, charges, and fields then appear around the source, their relative 
magnitudes and distributions determined by the antenna configuration. 
Electromagnetic waves must also appear in the region surrounding the 
source and the antenna to infinity unless the local system is completely 
surrounded by perfect conductors. Strictly, all boundary conditions 
about the antenna should be considered, such as the earth and neighbor-
ing antennas, excited or unexcited, but the extension in concept is evi-
dent, although it may be impossible mathe-
matically and sometimes unimportant practi-
cally. 

To make these concepts concrete, consider 
a specific example. Figure 11.02 shows two / 

u conducting cones immersed in space. These 
are coaxial and with only an infinitesimal gap %\ 
between their apices, A and B. The voltage 
(the integral of electric field) is specified 
across the gap between A and B. The cones 
end at r = 1. The case will be recognized as an 
antenna of the so-called dipole type, of special 

Flo. 11.02. Axial section 
shape. It may be referred to as the biconical through biconica1 antenna. 
antenna. The thinking, with certain revi-
sions, will apply to antennas of more common shape. All boundary con-
ditions for the problem are given, and if we could pick out the mathe-
matical functions that satisfy Maxwell's equations and fit these bound-
aries, all the questions listed in Art. 11.01 could be answered. 
Now this method of solving for everything at once, fields, currents, 
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charges, and input impedance, is well-nigh impossible mathematically 
except for the very simplest cases. Yet a study of the method will be 
invaluable as: (1) a means for obtaining a firm basis for useful approxi-
mate methods of calculating certain parts to the whole problem, which, 
although used for many years without such backing, can now be applied 
with confidence to more new cases; (2) a means for attacking certain 
other phases of the problem by suggesting practical quasi-exact methods. 
In the problem of Fig. 11.02, the symmetry and form of the conductors 

suggests that spherical coordinates be used and all space divided into two 
regions separated by the fictitious sphere shown dotted in the diagram. 
A series of solutions in spherical coordinates is next written for each 
region, of a form general enough to describe the fields. The constant 
coefficients in these series are evaluated through the boundary conditions 
by a technique similar to that used in Chapter 3, and once the coefficients 
are obtained, the whole problem is solved. These boundary conditions 
are: (1) tangential electric and magnetic fields must be continuous across 
the dotted boundary sphere; (2) the field at infinity must vanish; 
(3) the tangential electric field must vanish over the cones (assuming 
perfect conductivity); (4) the field between cones at their tips is as 
specified by the driving generator. 
The method outlined is mathematically an involved one, but with 

certain approximations it is not an impossible one, and it should empha-
size the fact that the radiation problem has no mystery about it; no 
new effect has been neglected in previous electromagnetic wave studies. 
The problem of solving Maxwell's equations subject to boundary con-
ditions is the one solved for waves guided in a wave guide, or along a 
line, or in a cavity resonator. There may be obvious differences such as 
the complexity of the boundaries in the antenna problem, the region to 
infinity as one boundary, and the more frequent occurrence of sources 
in the form of impressed voltages. These are not fundamental differ-
ences, but differences of detail. 

11.03 The Antenna as a Finite Length Guide with Reflection 
and Radiation at the End 

To continue the discussion of the specific problem of' the biconical 
antenna, it may be recognized that out of the many electromagnetic 
solutions for the region I in Fig. 11.02, two of the waves which appear 
are actually the outgoing and returning principal waves of a conical 
• transmission line studied in Art. 9.09. Assuming perfect conductors, 
such waves have electric field lines perpendicular to the conical surfaces 
and therefore always satisfy the boundary condition along the cones. 
Furthermore, as was shown in Art. 9.09, these waves possess a net inte-
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gral of electric field between cones, even at the origin (between the cone 
apices). Propagation of the principal waves is at the velocity of light 
for the dielectric material between cones, and all transmission line equa-
tions may be used with characteristic impedance given by Eq. 9.09(9). 

Since these principal waves are capable of satisfying the boundary 
conditions along the cones, and the boundary condition of applied volt-
age at their tips specified by the presence of the generator voltage, then 

they will certainly be present in region I 
and may be expected to play a leading role 
in determining the total field, the current, 
and the charge distribution in that region, 
unless the remaining boundary condition, 

. the transition from region I to II, decides . 
/. , \ - otherwise. Let us consider this matter 

, 

1 / \ \ further. First recall that in the above / 7 , \ 

i principal waves, E lines lie in surfaces of t I \ 1 
1 1 I 
\ \ // . ii spheres concentric with the cones' tips, as in \  

. , Fig. 11.03a. If the conical line were to con-( .. , 
. , \ . ,, tinue to infinity, only the outgoing ene of 

Electric Field 
Lines Lying on 

Spherical Surfaces 

be 

20 

1  

Fla. 11.03a. Portion of coni- Fia. 11.03b. First approximation to the equiva-
cal line, lent circuit of a biconica1 antenna of length L. 

the principal waves would be started by the generator. This wave 
would by itself satisfy all boundary conditions and no other waves 
would be needed. Once the cones end, as in the biconical antenna, it 
may be guessed as a first approximation that current must drop to zero, 
and that the returning principal wave will be reflected from the end as 
from the open end of a transmission line. Thus the first approximation 
to an equivalent circuit would be the open-circuited transmission line of 
Fig. 11.03b. Current distribution as a function of radius, from this 
equivalent circuit, would be a simple sinusoid with zero current at the 
open end. However, when the cones come to the abrupt end, the end 
effect must be unsatisfied by waves which can only provide fields along 
the spherical surface. The lack of uniformity which the discontinuity 
introduces calls for the introduction of other, higher order waves with 
more complex distributions, in addition to the reflected or returning 

principal wave. 
The situation is not different in many respects from discontinuities 
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which arise in ordinary guides or transmission lines (Art. 9.15) when a 
change of cross section occurs. Figure 11.03c shows this in a coaxial 
transmission system. In region I there must be two principal waves, 
one traveling towards the change of cross section and one away from it. 
These two waves in I are not sufficient to satisfy the boundary condition 
between I and II because they insist upon a certain distribution of radial 
electric field, one that decreases directly with distance from the axis and 
is not zero anywhere. But the boundary includes, for example, the 
section A-B, over which the radial electric field must be zero. Thus, as 
was discussed in Art. 9.15, there will be local waves started at the bound-
ary in addition to the two principal waves (two of the mathematical 
functions out of the series needed to completely describe the field). 
The term local waves is used for the higher order waves here since the 
dimensions of the cross section in most practical cases cause these waves 

Generator 
A 

Fla. 11.03c. Discontinuity in coaxial line. 

Matched 
Load 

Fro. 11.03d. Disconti-
nuity in conical line. 

to be below cut-off. In region II there is a transmitted principal wave 
and again a series of higher order waves which will be highly localized 
if the cross-sectional dimensions are small compared with wavelength. 

In the conical line case, similar reasoning should apply. Figure 11.03d 
shows a conical transmission system in which such a change of cross 
section occurs. What has been said of the waves in regions I and II of 
the coaxial system of Fig. .11.03c applies, at least in a qualitative way, 
also to the conical system of Fig. 11.03d. Finally, the biconical antenna 
of Fig. 11.02 can be looked upon as a wave guiding system immersed in 
free space, the change of cross section simply being more grandiose than 
in the transmission line examples. The major difference, speaking 
qualitatively and generally, is that since the conducting boundaries are 
absent in region II of the antenna case, then we do not reach into the 
series of waves in that region to pick out a principal term, the trans-
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mitted principal wave of the transmission line type. Instead emphasis 
is placed upon the more complex functions, the higher order waves that 
make up the transmitted or radiated waves filling region II. 

11.04 The Principal Waves' Currents and Fields as the Radiation 

Source 
As the next step in consideration of the biconical antenna, we could 

well set down the mathematical functions and compute amplitudes and 
power flow in the various waves for a number of practical cases. We 
have, however, reached a point in the discussion where reasonable justifi-
cation can be given to the most often used approximate methods which 
are the most practical ones for any but the simplest of antenna struc-
tures, and perhaps for these also. We shall accordingly use the wave 
concepts built up to pale without delay to the approximate methods, 
returning to the exact approach later in the chapter. 

Recall that in the summary of radiation problems, Art. 11.01, it was 
pointed out that calculations of field patterns and radiated power have 
most often been made by integration of effects from assumed current 
distributions about the radiator. From the previous wave study, we 
have now some basis of knowledge about these current distributions — 
at least for the biconical antenna. For, in region I of Fig. 11.02, the 
currents and charges on the conductors and the fields over the spherical 
boundary can be thought of as contributions from the two principal 
waves and the series of higher order waves. Now it can be shown that 
the higher order waves in the biconical antenna have such an amplitude 
distribution between cones that their effect is relatively inappreciable 
except very close to the ends of the cones. The current distribution is 
thus close to sinusoidal, as any combination of the two principal waves 
would require and as was predicted from the first approximation to an 
equivalent circuit, Fig. 11.03b. As the angle between cones approaches 
180°, and the cones degenerate to two thin wires, thé current approaches 
the sinusoidal even more closely. Since fields at any distance from the 
antenna may be considered as a linear superposition of effects from the 
important principal wave current and the less important higher order 
wave currents, an excellent approximation should be the assumption of 
the principal wave or sinusoidally distributed currents alone as a first 

step in calculating radiation fields. 
When radiation calculations are thus made from the principal wave 

current distributions only, do not conclude that the higher order waves 
are completely neglected. For, although they are neglected in region I, 
they are not neglected in region II. If only the two principal waves were 
considered, their reflection at the cone endings would lead to a high volt-
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age or high Eye at r = /, this field being confined to spherical surfaces. 
Just outside the region I there would be no field, thus resulting in an 
impossible discontinuity in tangential electric fields. The fact that 
fields in region II will be obtained by our calculations shows that this 
degree of error is not being made. 
The approximation can actually be co`nsidered as the first step in a 

converging step-by-step method of which we shall later go to the second 
step. These steps are: 

1. Assume only principal waves in region I. 
2. Calculate corresponding higher order waves in region II. 
3. Calculate higher order waves in region I to match radial field com-

ponents of the region II higher order waves obtained in step 2. 
4. Correct back and forth through as many succeeding steps as 

required. 
We consequently leave the wave approach for the time being to con-

sider direct integration methods which amount to calculation of step 2 
from step 1, and although results will not usually be expressed as a series 
of waves, they might be, as will be shown later. Step 1 may start from 
either current or field distribution in the principal wave. The utiliza-
tion of current distributions will be explored first, then field distributions. 
In each case power flow will be computed from the Poynting theorem, 
which must first be proved more generally. 

POYNTING CALCULATIONS WITH CURRENTS ASSUMED 

ON THE ANTENNA 

11.05 Poynting's Theorem on Electromagnetic Power Flow in 
General 

In Art. 7.03 the Poynting vector was introduced, which with certain 
cautions could be interpreted as representing the power flow per unit 
surface. Now, as a preliminary to computation of radiated power from 
an antenna, we need to generalize this notion by showing that the 
integration of P over any closed surface will yield the net power flow 
passing through that surface, and hence the total power leaving the 
bounded volume, even though sources and dissipations may be included 
in the volume. These were left out of the early proof of the theorem, all 
energy flow at that time arising from changes in stored electric and 
magnetic energy. 

Maxwell's equations, written in terms of the total fields, currents, and 
charges of a region, describe the electromagnetic behavior of the region. 
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The two curl equations are: 
r3 

x E  a—at [11 

aD 
vxH=i+ —at [2] 

An equivalence of vector operations, Art. 2.38, shows that 

11 • (v x E) — E • (v x R) = v • (E. x II) [31 

If products in (1) and (3) are taken as indicated by this equivalence and 

added, 
aTe _ _ 

—11 • — —E•—aD —E•i=V•(RXR) [4] 
at at 

Note that if e is constant, 

Similarly, 

1 a(D • E) _1 a(€E2) aD 
2 ' at — 2 at = — • at 

a(T3 • R) 
2 at — • at 

These may be substituted in (4) and all terms integrated over the 
volume enclosed. 

[a t ere 17) + —a t(--1") + E • '71 dV = — f V • (E X R) dv 

From the divergence theorem, Art. 2.12, the volume integral of 
div (R X H) must be the same as the surface integral of E x H over 
the surrounding surface. 

f a CI • II) (15 • E) E' • dV = — f (2 X R) • a [5] 
J v Lat \ 2 at 2 

In this form all terms can be recognized. fv. (15+ E) dV represents the 

energy stored in electric fields in the volume. Similarly, f (12-) dV 
v 2 

represents the energy stored in magnetic fields. The first term must 
then represent the increase in stored magnetic energy per unit time; the 
second must represent the increase in stored electric energy per unit time; 
the third term is the usual ohmic term and so represents energy dissi-
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pated in heat per unit time. (Or, if I is made up of a motion of free 
charges, Pi p, .E • O p represents the energy of acceleration given these 
charges; and if there are sources, E • ï for these sources is of opposite sign 
and will represent energy added by them.) All the net energy term must 
have been supplied externally. Thus the term on the right represents 
the energy flow into the volume per unit time. Changing sign, the rate 
of energy flow out through the enclosing surface is 

w=fP.ds 
where 

[6] 

P--.Ex11 [71 

Although it is known from the proof only that total energy flow out of 
a region per unit time is given by the total surface integral (6), it is often 
convenient to think of the vector P defined by (7) as the vector giving 
direction and magnitude of energy flow at any point in space. Though 
this step does not follow strictly, it will not lead us into any pitfalls for 
our applications. 
With Poynting's theorem, we are in a position to calculate energy flow 

outward from any radiating system for which electric and magnetic 
fields can be found. Before making such actual calculations, some of 
the broad concepts which follow from the theorem may first be con-
sidered. 
The theorem, stating that rate of energy flow out through any closed 

surface is given by the surface integral (6), shows at once that there can 
be no energy flow (and hence no radiation) from any system enclosed 
by a surface over which E is everywhere zero, over which H is everywhere 
zero, or over which P is directed everywhere tangential to this surface. 
Thus for a static charge, there is electric field but no magnetic field, 

hence no Poynting flux and no energy flow outward. The creation of 
the charge is another matter, for at the instant of creation, the changing 
electric effects can cause magnetic field so that the Poynting integral 
might give a value of energy flow outward. 

Similarly, for a steady state direct current flowing in a perfectly con-
ducting system, there is magnetic field, but no electric field so that again 
there is no Poynting flux and no energy flow outward. The transient 
involved in building up this current would yield a value, however, just 
as for the electric charge. If the current is alternating, there is a value 
of E induced by changing magnetic effects. Thus there could be an 
instantaneous value of energy flow out as calculated from the Poynting 
theorem at any instant. However, if frequency is low enough so that 
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times required for propagation of effects about the circuit are truly 
negligible compared with the period of changing current, this would all 
return at a later time as energy flow inward. This does not represent 
radiated energy according to our usual definitions, since for radiated 
energy we infer a net or average flow outward. 
The third case in which no energy can flow outward through a surface 

is that for which the Poynting vector is directed everywhere tangential 
to the surface. This must be true if the region is surrounded by perfect 
conductors, for, by definition, a perfect conductor is one which can 
support no tangential component of electric field. Total electric field 
must be always normal to the surface; hence É X H must always lie 
tangential to the surface, and so no electromagnetic energy can pass 

through the surface. 

Problem 11.05(a). Suppose that in a long straight wire of circular cross 
section a direct current is flowing. There is then an axial electric field throughout 
the wire to overcome the ohmic resistance and a circumferential magnetic field en-
closing the wire. Evaluate the Poynting vector over the wire's surface. Compare 
the result with the r2R loss in the conductor and state what significance, if any, 

should be attached to the result. 

Problem 11.05(b). In this text we are mainly concerned with evaluating the 
average rate of flow of electromagnetic energy through a surface when É and 
have magnitudes which vary sinusoidally in time. Under these circumstances, É 
and components which yield occasional instantaneous non-zero values for É X 17/ 
may be 90° out of time phase. Thus the contribution to average É X H from those 
components will be zero over the cycle. Show that the average power flow through 
a surface may be obtained by integrating ARe(É X 17*) normal to the surface, 
where E and fl are understood to be peak values expressed in complex form, II* 
is the conjugate of fi, and Re denotes rea/ part of. Show that the average radial 
component of the Poynting vector in spherical coordinates is 

(Pr)av = 1-Re(E01-4 — Boe) 

11.06 The Differential Antenna 

In computing radiated power and the field distributions around an 
antenna when current distribution is assumed over the surface of the 
antenna's conductors, the simplest example is that of a linear element so 
short that current may be considered as uniform over its length. Later, 
certain more complex antennas can be considered as made up of a large 
number of such differential antennas with the proper magnitudes and 

phases of their currents. We shall consider only the case in which the 
current varies sinusoidally with time. Accordingly let it be expressed 
by IS' or better yet by its peak value /0 alone with the factor el' 

understood. 
The direction of the current element will be selected as the z direction, 
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FIG. 11.06. Small current 
element at origin of spheri-

cal coordinates. 
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and at the origin of a set of spherical coor-
dinates (Fig. 11.06). Its length is h, and it 
is understood that h is very small compared 
with wavelength. 
Now one way of finding fields once current 

is given is through the retarded potentials 
studied in Chapter 4. Article 4.25 gives a form 
of A suitable for present purposes. Since cur-
rent vector points in the z direction, the vector 
potential can be only in the z direction. For any 
point Q at radius r, Z. of Art. 4.25 becomes simply 

[1] 47rr 

Or, in the system of spherical coordinates, 

hi° . 
A, Az cos 0 = —47r e-11" cos 0 

[2] 
hip 

Ao = —Az sin O —47rr e—ii" sin 0 

where k = wit; = 12E = 2r/X• There is no 4) component of A, and 
there are no variations with 4) in any expressions because of the symmetry 
of the structure about the axis. The electric and magnetic field com-
ponents may be found directly from the components of A by use of the 
other equations listed in Art. 4.25. Thus, 

/oh = e—jkr[i_k ± 
r 772 sin 0 

4r 

= _ikr r2„ , 2 
47 e r2 cos [3] 

Be = e_ikr icop, 4. _ 1 

r j„,r3 1- idsin 0 

To evaluate average energy flow through a surrounding surface, we 
may take any surface we please. In particular, if the surface is very far 
removed from the source, certain terms in the above field expressions are 
negligible compared with others. These might have been dropped at 
once, but they were purposely left in to point out certain characteristics 
of the various components. For the region very near the element (r 
small) the most important term in H4, is that varying as 1/r2. The 
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important terms in Er and Ee are those varying as 1/7.3. Thus in this 
region near the element, magnetic field is very nearly in phase with 
current and Ho may be identified as the usual induction field obtained 
from Ampère's law. Electric field in this region may be identified with 
that calculated for the electrostatic dipole, Art. 2.32. (If current is 
flowing only in one linear direction, a positive charge must accumulate at 
one end, a negative at the other, thus explaining the dipole solution.) 
The important components of electric and magnetic field in this region 
are 90° out of time phase so that these components represent no time 
average energy flow according to the Poynting theorem. 
At very great distances from the source, the only terms important in 

the expressions for E and H are those varying as 1/r. 

jk/oh 
Bo — —47rr sin Cikr 

[4] 

jwdoh sin 0 e—jkr = nH4, — 
47rr 

where n = 
At great distances from the source, any portion of a spherical wave 

surface is essentially a plane wave, so the above characteristics typical 
of uniform plane waves might be expected. E0 and Ho are in time phase, 
related by n, and at right angles to each other and the direction of propa-
gation. The Poynting vector is then completely in the radial direction. 
The time average flow of energy is of interest. The time average of 
the products of any two sinusoids of equal frequency arid of the same 
phase is one-half the product of their magnitudes. So time average Pr, 

n 222 

— 327r2r2 sin 2 0 watts/meter2 

The total energy flow out must be the total surface integral of the 
Poynting vector over any surrounding surface. For simplicity this 
surface may be taken as a sphere of radius r. From Fig. 11.06, 

Way =if!, • a = • PrIrr2 sin° d 0 
o 

nk2gh2 
— sin3 Odü 

16r 0 

—i--— watts 
n7r/12) (h)2 

3 X 
[5] 
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fl=flo=l2Or ohms 

h 2 

W = 407r2n watts [6] 

A radiation resistance may be defined as the resistance which would 
dissipate the same amount of power with this sanie constant current 
flowing. 

So 

W = 1Rr = IRr 

Rr = 807r2 (I-)2 ohms 
X [7] 

11.07 The Long Straight Antenna 

If the antenna length is appreciable compared with wavelength, which 
is true of practical antennas, current may not be considered constant 
over the length. This is readily seen in the reasoning of Arts. 11.02 to 
11.04. The antenna can, however, be broken into a large number of the 
differential elements of the type analyzed in Art. 11.06 and the fields 

from all of these superposed. Although 
-ece fields or potentials, which are proportional 

r" to current, may be superposed, power, „ 
which varies as square of current, may not. /, 
Thus to use the integration method era-/ 

the Poynting method, will require that the 

em-
ployed in Art. 11.06, which we shall call 

total E and 17 be first evaluated at each 
point of the large enclosing sphere. 

Consider first the long antenna in free 
space with voltage applied at its midpoint, 
Fig. 11.07. The resulting antenna is often 

Fm. 11.07. Long straight called a dipole (though admittedly this may 
give excuse for confusion with the infinitesi-
mal dipole solution of Art. 11.06). For thin 

wires, the biconical antenna study of Arts. 11.02 and 11.04 applies di-
rectly, the cone angles approaching zero. We consequently assume a 
sinusoidal distribution of current on the antenna with zero current at 
the ends, following the reasoning of Art. 11.04. This sinusoidal stand-
ing wave of current is in time phase over all the antenna. 

dipole antenna. 
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Then 

I {I. sin [k (1 - z > 0 
= 
In, sin [k(1 z)] z < 

[1] 

From Eq. 11.06(4) the contributions to Ho and Eo at a great distance r" 
from a differential element dz are 

dEo = dHo = j e_11 "" sin 0" nkI 47rr"dz  

r” is the distance from any element to Q, whereas r is the distance from 
the origin to Q. These may be taken so large that the difference between 
r and r" is important only as it affects phase, and is completely insignifi-
cant in its effect upon magnitude. Similarly, the difference between O 
and 0" will be negligibly small. In the phase difference, 

rtt Vr2 z2 - 2rz cos 0 r - z cos 0 

Otherwise, 

Eo = f dE0 

ink/m o 
sin 0e-3" If ejkz cos 0 s• [k(1 z)klz 

47rr -1 

fo eikze°8 sin [k(1 - z)]dz} 
The integral 

eae  
f eux sin (bx Oda; = a2 b2 [a sin (bx c) - b cos (bx c)] 

So 

Eo = = jnklm sin 0e-iler{ .2 2 [C08 (kl cos 0) - cos kg} 
4irr k sin O 

7171m1 k [cos (kl cos 0) - cos kl r 
27r sin e • 

[2] 

Total É and 17 at long distances from the antenna are also at right angles 
to each other and the direction of propagation, in time phase, and related 
by n. So, as with the differential antenna of Art. 11.30, the time average 
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Poynting vector is half the product of field magnitudes. 

Pr  m 87,21,2 
nI2 [cos (ici cos 0) — cos ki 

= -1E011H1 — ] 2 

sin O 

Total power radiated from the long dipole in free space, 

W = f 13 • dig = fPr2er2 sin° dO 
o 

[3] 

nen rif [cos (Id cos 0) — cos 4 2  
do watts [4] 

sin 

Since current varies along the antenna, the value of radiation resistance 
depends upon the current used to define it. Suppose for this case that 
radiation resistance is defined in terms of maximum current, wherever it 
may occur. 

12 R T 

2 

For 
= no = 1207 ohms 

Rr = 60 fc: [cos (kl cos 0) — cos Ice dO 
ohms [5] 

sin 0 

It is possible to evaluate the integral in terms of tabulated functions. 
Graphical integration, however, is often more .convenient. 

Problem 11.07. The following definite integrals are defined and tabulated. 
co 
CO8 X 

Si(X) = fe x Ci (x) = 'Jr — dx 
o e 

Show that the integration result from (5) may be written 

= 601C ± ln 2k1 — Ci(2k1) I- sin 2kl[Si(4k1) — 2Si(2k1)] 

cos 2k1[C ± In (kl) Ci(4k1) — 2Ci(2k1)]) ohms 

C = 0.5772, Euler's constant 

(Hint: Substitute u = cos 61, separate denominator by partial fractions, and note 
lim Ci(x) = C ln x.) 
x—bo 

11.08 Antennas above Earth 

If the earth near an antenna must be taken into account, two very 
difficult problems can result: (1) effect of earth conductivity, (2) effect 
of earth curvature. It is common to assume that the earth is plane and 
perfectly conducting, not alone because it avoids these two difficulties, 
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but also because it gives answers which agree well with actual resulta in 
many practical cases. We shall consequently follow this assumption 
throughout the chapter when it is necessary to consider the presence of 
earth. 

If earth is assumed plane and perfectly conducting, it is then possible 
to account for it by imaging the antenna in the earth. For example, 
given a single cone with axis vertical above earth (Fig. 11.08a), the 
boundary condition of zero electric field tangential to the earth may be 
satisfied by removing the earth and utilizing a second cone as an image 
of the first. The problem then reduces to that of the biconical antenna 
studied previously. Note that current is in the same vertical direction 
at any instant in the two cones. Given a single wire above earth and 

Antenna 

• 
• 

• 
• 

% 

Earth % 1 , / / I 

‘• tr // 
1•••' / 

Image 

Fla. 11.08a. Cone above 
plane conducting earth 

and image cone. 

Antenna 

-n-rrr  
s.. .... 1.-I 4. • 4, -A 

Earth 

Image 

11.08b. Horizontal 
wire above plane con-
ducting earth and image 

wire. 

Antenna 

Earth 

Image 

FIG. 11.08e. Inclined wire 
above plane conducting 
earth and image wire. 

parallel to it, as in Fig. 11.08b, our knowledge of symmetry in the trans-
mission line problem tells us that the condition of electric field lines 
normal to the earth is met by removing the earth and placing the image 
with current in the opposite horizontal direction. Generalizing from 
these two cases, we guess that current direction in the image will be 
selected so that vertical components are in the same direction, horizontal 
components in opposite directions at any instant. An example is shown 

in Fig. 11.08e. 
The technique of replacing the earth by the antenna image, of course, 

gives only the proper value of field above the earth plane. The proper 
value below the perfectly conducting earth plane should be zero. For 
example, given a long straight vertical antenna above earth, excited at 
the base, the image reduces the problem to that solved in Art. 11.07. 
Field strength for maximum current /„, in the antenna is given exactly 
by Eq. 11.07(2) for all points above the earth (0 < 0 < 7r/2), but is zero 
for all points below (7/2 < 0 < 7r). Thus for power integration, the 
integral of Eq. 11.07(4) extends only from 0 to 7/2, and radiation resist-
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ance is just half that for the corresponding complete dipole 

= n4,2 J•712 [cos (kl cos 0) — cos ke 
W — a watts [1] 

47r e, sin 0 

Problem 11.08(a). Prove by a study of the resulting vector potential the same 
vertical direction, opposite horizontal direction rule for image currents given in the 
preceding article. 

Problem 11.08(b). Simpson's rule is useful for evaluation of the radiation 
integrals. If the area to be evaluated is divided into 2m even-numbered portions 
by (2m + 1) lines spaced an equal distance à apart, and values of the function at 
these lines are fo, fi • • •12m+1, then the area under the curve is approximately 

A 
/ = —3 Wo +.6m) + +.f3 ± • • •f2m—i) 2Cf2 ± • • • iitn-2)] 

Evaluate the integral of Eq. 11.08(1) for a vertical quarter-wave antenna above 
earth, kl = w/2, using m = 3 in Simpson's rule. Calculate the radiation resistance 
and check by the result of Prob. 11.07. 

11.09a.• Polar plot of field strength radiation pattern in plane of half-wave 
dipole. 

11.09 Half-Wave Dipole; Quarter-Wave Vertical Antenna above 
Earth 

Article 11.07, in which / = X/4, is of special interest to engineers 
When in free space, the resulting antenna is known as a half-wave dipole 
By Art. 11.08, results may also be applied directly to a quarter-wave 
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antenna placed vertically above earth which may be assumed plane and 
perfectly conducting. The field pattern, Eq. 11.07(2), with kl = 
then reduces to 

(ir cos 01 

601„, e°s 2  
1E01 — r volts/meter [1] 

sin e 

and the Poynting vector, Eq. 11.07(3) 

[COS (1-r- cos 01 2„  2  

Pr —  15ewr2 watts/meter2 [2] 
sin 0 

Fro. 11.09b. Polar plot of power density radiation pattern in plane of half-wave 
dipole. 

Polar plots of the bracketed parts of these two functions versus O are 
shown in Figs. 11.09a and b. They are useful as field and power or 
intensity directivity patterns respectively. They apply to the quarter-
wave antenna above earth only for 0 < O < r/2. 

Radiation resistance for the two cases (see Prob. 11.085) are 

Half-wave dipole in space 
Rr = 73.12 ohms 

Quarter-wave vertical antenna above earth 

Rr = -1(73.12) = 36.56 ohms 

[31 

[4] 



.•38 
RADIATION [Art. 11.10 

THE INDUCED EMF METHOD 

11.10 Induced EMF Method 

At this point we consider an alternative method of calculating power 
radiated from an assumed current distribution on the antenna. This 
method is that which 'arose secondarily out of the discussion of circuit 
notions in Chapter 5. It consequently seems to hold the possibility of 
answering some of the questions about antenna input impedance, but 
although these possibilities are present in concept, they are unfortunately 
not easily realized practically. The method is of practical use only for 
the real part of this impedance, or the power radiation term. For the 
reactive part, the method may be applied conveniently only for a wire of 
infinitesimal cross section, for which it gives the correct but useless an-
swer of infinite reactance. This situation will be recalled as that found 
when it was attempted to calculate inductance of a loop of filamentary 
wire by Neumann's method (Art. 6.15). 

If currents are once assumed, then the rigorous field equations give 
the induced field at every point on the conductor, a part of which is in 
phase with the current at that point. The product of current density 
and in-phase induced electric field may then be integrated over the con-
ductor surface to give the total radiated energy. This should give 
exactly the same answer as integrating the Poynting vector over a 
remote sphere. The reason why should be apparent if it is considered 
that: 

1. Once currents are assumed over the face of the conductor, the fields 
outside are fixed and are determined by the same equations in each ease. 

2. On the surface of the conductor, it is easily seen that since the 
tangential magnetic field strength is 
perpendicular to the current density 
vector and equal to it in magnitude,  I r „,, _ • 

Z the product of in-phase induced elec-
tric field and current density at the FIG. lido. 
surface is actually that part of the 

Poynting vector at the surface which has a non-zero time average of 
outgoing energy. The Poynting theorem in effect states that the time 
average of the integral must be independent of the enclosing surface of 
integration, provided, of course, that there are no sources outside of 
the innermost surface. This last condition is true here since a surface 
enclosing all the conductor surfaces is certain to include all the currents 
and charges. 

Since the method has already been used in Chapter 5, there is little 
more to do but apply it to some more practical cases. Let us develop a 
form useful for long thin dipole antennas (Fig. 11.10). If current on the 
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dipole has a distribution I = lof (z) for which f (z) is not yet specified, 
vector potential at any point z is given as 

+1 f (z')e-jklz-el  

Az = io f_i 4Riz_z-
,, [1] 

Radiated power is obtained from the component of .2" tangential to 
the antenna and in phase with current. We are interested then in the 
real part of E. Referring to Art. 4.?5, this real part of Ez is found to be 

, fa2Az\-1 
Re(Es) — i0.);1 [1M(AZ) ?1"'n  [2] 

The imaginary component of Az, if the standing wave pattern f (zI) is 
assumed all of the same phase, is 

Im (A) 
j/o f+1 f (e) sin klz —  , 

z — — 
47r — el az 

This integral might be evaluated for certain forms of f (z), but it is usu-
ally easier to expand the sine in series form. 

' k2 _ 
Im (A z) jkIo f+1 — — f (z, [ ) 1 — — (z — ± —5! (z — sir — • • .] 

4ir 3! 

If the function f (z') is an even function, as it should be for the symmetri-
cal dipole, the integral from — / to +1 of f(z') multiplied by any odd 
power of z' is zero, and that for f (z') multiplied by any even power of z' 
is twice the integral from 0 to 1. Thus the above integral becomes 

Im (A z) 

= 2jkIo ri f (z,)[i _ .1231 (z2 z'2) (z4 6z2z12 z14) + • • •]dz' 
47r Jo 

The integral can now be broken up into a large number of integrals of 

the form 

a. f(z'rf(z')dz' 0 
[3] 

These are definite integrals and can be evaluated simply to give a 
numerical value for any assumed current distribution. So 

2jk/0 [ k2 
/m(A,) = — — «o — — (z2ao a2) -F —5! (z4ao 6z2a2 al) + • • .1 

471- 3! 
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2jkIO[k2 k4 2 k6 

= — 717—r a0 a0 a2) jig (Z4Cto 6Z2a2 a4) ± • • *j 

Accordingly 

Re(Es) 

2weikIo 2 k2 
= ---- X - [ ao — (z2a0 av ( z4- 

ao 6z2a2 a4) + • • 47 3 10 280 

Re(Es) as calcu ated is the component of induced field from changing 
magnetic effects in phase with current. A component of applied field 
exactly opposite to this must be applied to support the currents. This 
represents a net transfer of power at any point, and the total average 
power in terms of peak current and fields is given by the integral over the 
wire 

r+1 
W = ij hil lEoldz = IIIRe(Ez)clo 

--1 —1 

Since I and Re(Es) are both even functions, this integral is also equiva-
lent to twice the integral from 0 to 1. Substituting the expressions for I 
and Re(Es) and recalling the definition of an, 

mo w= 

nk2Ig[ k2 le , 
'-‘01 a0a2 -r vroa4 34) + • • 37r 5  

Radiation resistance in ternas of /0 is then 

2W 2nk2[ 2 k2 le 
Rr = 0 2 = --3-;- ao — «o«2 («oot4 ± 34) + • • 

For n = no = 120n- ohms, 

[4] 

k2 
Rr = 80k2[a8 — aoa2 -1743, (aoa4 ± 34) • • [5] 

Equation (5) may be applied to symmetrical dipoles of any length by 
calculating the corresponding integrals for an. The results can also be 
used for vertical antennas over plane earth, using 1 as height of antenna 
and taking radiation resistance as half that given by (5), following the 
image rules of Art. 11.08, 
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11.11 Half-Wave Dipole Solution by Induced EMF Method 
As an example of application of the forms developed in Art. 11.10, 

let us check the results of Art. 11.09 for a dipole antenna with 2/ = X/2. 
As before, the current distribution is assumed sinusoidal with phase 

constant a = k = 
f(z) = cos kz 

From Eq. 11.10(3), 

= fX/4 1 COS kédzi = 7 
0 

X/4 
(zir cps kzidzi [(7/2)2 — 0.467 

az k3 ka 

= Rir/2)4 — 12(r/2)2 + 941 0.479 
= (s1)4 cos ké dz' « 

o _ 
c›, 

le 

By substituting in Eq. 11.10(5), 

R,. = 80[1 — 0.0935 + 6.0081 -1-• • • .] 73.2 ohms 

The result checks that arrived at previously in Art. 11.09, by the 
Poynting integration, as it should. The numerical work was relatively 
easy in this example because of the rapid convergence, only three terms 
being required. For longer antennas, more terms will be needed. 

Problem 11.11. Try the induced emf method on a dipole with 2/ = X. Discuss 

the significance of the result. 

11.12 Degree of Approximation in the Induced EMF Method 
There are some worries about the induced emf method which might 

cause us to question its validity even as an approximate method. These 
stem mainly from the finite value of Re(Es) calculated at the surface of 
the perfect conductor, although the conductor requires a total Ez of zero. 
Now it has, of course, been carefully pointed out that the value of Ez 
calculated is only that induced field due to currents and charges on the 
antenna, and, on the surface of a perfect conductor, must be cancelled by 
an equal and opposite applied field. But the distribution of induced Ez 
is fixed once current distribution is assumed. Who is to insure that 
applied field, which may arise in any one of several different ways, shall 
have the proper distribution to do this cancelling? No one, of course, for 
physically the problem is just the reverse. The current distribution 
adjusts itself so that the induced field exactly cancels the applied field 
where required by the conductors, and only to the extent that the 
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assumed current distribution is a good approximation to the actual one, 
is the net integral of applied field found from the assumed distribution a 
good approximation to the exact value. 

As an extreme example, consider the long dipole with applied field 
confined at the small gap across its center, and essentially zero every-
where else. Then induced field along the antenna conductor, which is 
total field there, should itself turn out to be zero and have a value only 
across the gap. From the assumed sinusoidal distribution, the calcu-
lated E. is found to have a value distributed over all the antenna, not 
merely concentrated at the gap. It is not obvious at first glance, but 
only from careful study of the matter, that the integral over the antenna 
will be approximately the same in the two cases, the difference corre-
sponding only to the difference between the assumed current distribution 
and the exact one. 

For final assurance on the degree of approximation, we return to the 
argument of Art. 11.10, showing that for a given current distribution 
assumption the result of power radiated must be the same as that calcu-
lated by the Poynting integration. That is, the degree of approximation 
in the two methods is the same for a given assumed current distribution, 
and both methods would be exact if the exact current distribution were 
known. 

POYNTING CALCULATIONS WITH MIMS ASSUMED NEAR 
THE SOURCE 

11.13 The Philosophy of the Assumed Fields Technique 
If currents and charges are known, or assumed as known, over the con-

ductors of a radiator, then, as has been seen, it is possible to compute the 
fields everywhere in the surrounding space and consequently the radi-
ated energy. Now certainly if the charges and currents are known 
everywhere over the boundaries of a region, then the fields at the bound-
aries are also known. We could rewrite the previous articles, if desired, 
with the emphasis on fields over the radiator as the assumed quantities. 
For example, instead of specifying the charge density at some point on 
the radiator, one could as well specify the normal electric flux density. 
Instead of stating the current density flow on the surface, one might 
write down that the tangential magnetic field is of a certain strength. 
As a matter of fact, in mks units the assumed quantities would be 
identical in every way. It also seems almost evident that it is not 
necessary to know these fields exactly at the conductors of the radiator 
in order to calculate fields elsewhere, but merely on any complete surface 
near the radiator. 
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The approach to radiation calculations which is now to be outlined — 
the computation of fields in space in terms of specified fields on the 
boundaries of the space — is one that was instigated by early workers 
in the theory of radiation.4 Until relatively recently, their methods have 
been of minor interest to engineers, at least as compared with the tech-
nique of starting directly from assumed currents. The reason has simply 
been that the types of radiators most practical in the radio broadcast 
range or even at moderately high frequencies have been such that it was 
more natural to estimate currents and charge densities on the conductors 
than the fields near the source. This was so because the antenna struc-
ture could be looked at approximately as a section of a circuit or an open 
line. The growing use of the extremely high frequencies has brought into 
importance radiators such as horns and open ends of wave guides and 
coaxial lines, or holes in shields (which though physically small are not 
always negligibly small compared with wavelength). For these cases 
it is usually easier to make some estimate of the field distribution over 
the opening than to do the same for the current and charge distribution 
along the conductors of the radiator. 
The assumption of fields in the above examples is simply guided by a 

better physical picture than the assumption of current distribution. 
When the currents and charges are mainly enclosed by the structure, 
attention seems then to go to the field" escaping " through the opening; 
these fields seem to be the desired or undesired product of all that has 
gone on previously inside the structure. At times, for example, the field 
at the opening might be assumed as that from waves approaching the 
opening and continuing on past the disturbance as though the boundaries 
were continuous. Of course, the discontinuity in the guiding would 
actually disturb the outgoing wave, setting up new waves in effect, both 
inside and outside the structure. But frequently these new waves may 
not make enough difference in the field across the opening to prevent a 
reasonably accurate computation of the radiated field. More often, a 
good approximation to the actual field across the opening, as far as sub-
sequent radiation calculations are concerned, may be obtained by assum-
ing that the waves approaching the opening on the inside of the radiator 
are perfectly reflected at the discontinuity or by the surface which con-
tains the opening. In any case, it should be clear that, as with the 
assumed current technique, the assumed boundary fields would lead to 
absolutely correct expressions for the fields in the bounded regions pro-
vided that the assumed fields themselves were completely correct. The 
boundary fields are to be assumed by one reasonable guess or another, 

4 Love, Phil. Trans., [A]197, 1901. 
MacDonald, Proc. Lond. Math. Soc., 10, 1911; Phil. Trans., [A]212, 295 (1912). 
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and the accuracy in computing the radiated field depends then on the 
quality of the original estimates. 

11.14 The Equivalent Current Sheet Method 

Of the several possible ways of formulating the equations for use with 
assumptions of field distributions near the source, the method of this 
article is chosen for the initial study because the work is broken into 
steps, and it is possible to form relatively sound physical pictures for 
each of these steps. A neater but less revealing mathematical formula-
tion will be given in a later article. The present study takes advantage 
of the techniques developed in past studies and follows these stages: 

1. Once the fields arising from the source are assumed over some 
known surface, it is possible to replace the currents and charges of the real 
source by imaginary current sheets over the surface where fields are 
assumed, these being selected to produce the fields assumed at that sur-
face with the actual source removed. (The kinds and amounts of cur-
rents required are discussed later in this article.) 

Conducting 
Sources Plane 

(a) 

Fra. 11.14a. Conducting plane with 
aperture. 

FIG. 11.146. 

2. The problem from this point on is of the same type as that worked 
previously: from some given distribution of currents, fields may be 
found and the radiated energy calculated by Poynting's theorem. 

Suppose, for an example, that the field to the right of the conducting 
plane, region B of Fig. 11.14a, is desired. If the exact current and 
charge sources in the region A to the left of the plane, the sources which 
actually produce the electromagnetic energy, were known, we could 
theoretically solve for the desired field, subject to the boundary con-
ditions of the leaky plane. The mathematics would not be pleasant. 
However, if the field at the surface of the opening arising from those 
sources were known exactly, it would do just as well, as far as region B is 
concerned, to replace the actual currents and charges of region A by 
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fictitious currents and charges lying in the surface of the opening, pro-
vided these could be made to produce the same fields at the opening. 
For, with the conditions over the opening unchanged, and all other 
boundaries of region B unchanged, the proper solution to Maxwell's 
equations in region B would be unchanged. 

In general, the field that must be produced along the selected surface 
may have normal and tangential components of electric field, and nor-
mal and tangential components of magnetic field. However, at any 
boundary it is necessary only to know the tangential magnetic and 
electric fields, for then Maxwell's equations will provide the normal com-
ponents (Art. 4.23). Let us consider then what fictitious currents must 
be placed over the opening in the absence of the actual sources to give 
the same fields in region B that the true sources in region A were causing. 
The problem is easy and old to us in the case of the tangential magnetic 
field. For, as indicated in Fig. 11.14b, a surface current density J on a 
given surface will result in a discontinuity of magnetic field components 
tangential to the surface and normal to J. That is, the difference 
between tangential H on one side of the sheet and that on the other, 

Ha, — Hta = J 

Thus, if the current sheet over the opening in the plane is to replace 
completely the effect of the sources in A which are producing a given Ht 
tangent to the boundary, there must be a current density J on this sheet, 
given by J = Ht in magnitude. The direction will be included if we 

write 

I = x [1] 

where ft. is the unit vector normal to the surface pointing into the 
region B, and 17 is the total magnetic field. Such a current sheet will 
wipe out the tangential magnetic field on the A side of the surface (just 
as though there were no sources in A) but will leave a tangential field as 
before of magnitude J = Ht on the B side. Thus the current sheet is 
exactly as effective as the source, which is now assumed absent, in produc-
ing tangential magnetic field at the boundary. 
Now, the replacing of the sources in so far as they produce tangential 

electric field would be just as quickly done if only there were such a 
thing as magnetic currents. Then we could write that the magnetic 
surface current density H is 

[2] 

Also, by analogy with the magnetic vector potential, which for surface 
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currents is written 
je-dkr 

A=  dS [3] fg 471-r 
there could be defined an electric vector potential, say, 

ifMe"P = dS [4] 
s e47rr 

Maxwell's equations, if there were such things as magnetic current irn 
and magnetic charge pm, would be 

V • D = p. 
V • B = pm 

arj 
x R =—im — — 

at [51 

aD 
x = ± 

and the fields at any distance from the source currents would be obtained 
from the two vector potentials A and P. 

E= —jcqui TolfV(V • 11)—vxP [6] 

1 
= —jcod — V(V • P) -F V X 

./coP 

We have never before written Maxwell's equations to include mag-
netic currents and charges, so there has never been occasion to integrate 
them in terms of the augmented group of potential functions, including 
now the vector electric potential. If anyone does isolate some magnetic 
charges or demonstrate how to achieve magnetic currents, then the 
equations just written should take care of the situation. But effects of a 
magnetic current flow on a surface can be realized. We simply cause a 
tangential electric field along the boundary of a region by some con-
ventional sources on one side of the boundary. Then on the other side 
of the boundary, an observer, not knowing the nature of the sources, 
would have as one perfectly logical and possible cause of the tangential 
electric field some magnetic currents flowing on the surface. If he pro-
ceeded on that basis, computing fields everywhere in his region (by the 
augmented Maxwell equations, of course) he would always get the 
correct answer. 

[7] 
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One misconception may arise at this point. When discussing the 
general application of this technique to practical problems we have 
talked much of " guessing" and " estimating" the field over the 
opening. It may therefore seem that the method of replacing the fields 
by current sheets, necessarily an approximate one, is in error for just the 
reason that magnetic current sheets are never actually found in nature. 
This is entirely incorrect. The approximation comes in any inability, in 
practice, in predicting the exact field over the complete surface bounding 
the region. This surface would include, in Fig. 11.14a, the plane and 
infinity in addition to the hole. If the fields were known exactly, no 
error would be made in replacing tangential fields by surface electric 
and magnetic currents. As a matter of fact, it is of course unnecessary 
to bring in the fictitious current sheets at all, for by (1) fi X 17 could be 
written instead of J in (3), and by (2) — fi X E could be written instead 
of TI in (4). The two vector functions of space, that yield fields at any 
point by the differentiations of (6) and (7), would then contain only 
functions of the fields R and H over the original surface; the fictitious 
current sheets with the new concept of a magnetic current would never 
appear. The completion of such a purely mathematical statement is to 
be given in Art. 11.16. For the present, if the current sheet concept will 
be accepted without worry, we see clearly that the calculations to be 
made are of exactly the same type as those made previously, starting 
from current distributions along the conductors of the radiator. 

Thus, a more detailed breaking down of the steps for this method 
shows this procedure: 

1. Assume intelligently the distribution of electric and magnetic fields 
over a chosen boundary surface. (This should be over a completely 
closed surface, and although from the physical reasoning it seems that 
the closed surface should be one completely surrounding the radiator, 
the mathematical formulation requires that it be one surrounding the 
point where fields are to be calculated. Practically, the difference is not 
important since the region at infinity with zero fields is usually taken as 
part of the closed surface.) 

2. Calculate by (1) and (2) the fictitious electric and magnetic cur-
rents that must flow in this boundary if these are to replace completely 
the actual sources producing the field assumed in step 1. 

3. Calculate corresponding magnetic and electric vector potentials, 
and F by (3) and (4). 
4. Derive corresponding electric and magnetic fields, E and 11, at any 

desired point by (6) and (7). 
5. Calculate radiated power from a Poynting integration. 
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11.15 Example of Assumed Field Method: Radiation from the 
Open End of a Coaxial Line 

The method of radiation calculations from field assumptions may be 
applied to a perfectly conducting coaxial transmission line with open end 
(Fig. 11.15). 

If radial dimensions are small compared with wavelength, the wave 
traveling in the transmission line will be nearly perfectly reflected from 

the end, and the usual low-frequency concepts of 
1P symmetrical tangential magnetic field, radial elec-/i 
/ i tric field, and current zero at the open end will be 

ri / nearly true. For current zero, there is no Ho at 

; the opening, but an E. alone, given by 

V 
Er' =   If ln (b/a) ri [1] 

An assumption for tangential fields at the open-
ing has now been made, and corresponding equiva-
lent current sheets may be found over this open-' 

i 
2 ing. As another portion of the closed surface, 

select the outside of the transmission line, 1-2. If 
FIG. 11.15. Open end the line is perfectly conducting, the tangential elec-

of coaxial line. 
trio field disappears and so no magnetic current 

sheet is required. We shall further assume that current flow away from 
the opening on the outside of the line, like the radiation, is a secondary 
effect. One effect should not alter the other appreciably, so currents on 
the outside of the conductor will now be ignored, although from previous 
chapters we know that such an assumption may be dangerous at some 
wavelengths. The principal waves inside the line will have equal and 
opposite currents and no outside magnetic fields will be caused by them. 
Hence tangential magnetic field will be essentially zero on surface 1-2, 
and we assume that no electric current sheets are required. The 
remainder of the enclosing surface is taken at infinity where all fields will 
have disappeared. There is then only one source, the magnetic current 
sheet in the opening, given in terms of the assumed electric field of the 
opening by Eq. 11.14(2). This requires a circumferential magnetic 
current only. 

M ,t, = Er — — [2] 

For the set of spherical coordinates of Fig. 11.15, the circular sym-
metry eliminates variations with 0. A study of the symmetry shows also 
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that P can have only a 4, component if M has only a circularly symmetric 
cp component. Since there is circular symmetry, any value of 4, may be 
chosen for the point P at which field is calculated. The point P will 
then be chosen in the plane 4, = O. The contribution to F4, at point P 
from a small element r' dr' at radius r', angle 0' on the open trans-

mission line end is then 

M oe—ikr"r' dr1 C 1 ' 
=  cos dF0 41)=---7F-cos 4, dr 

47rru 47r r 

For very large distances from the opening, the difference between r" 
and r is important only as it affects phase differences, and this may be 

found approximately as 

r" = N/r2 r'2 — 2rr' sin 0 cos 01 — sin 0 cos ce 

and 

Ce—ikr r rf b 
= • 

ejlcr, sin Ocoee cos 4,1 dr' 
F 

4irr J a 

By the ASsumption of radial dimensions small compared with wavelength, 
kr' sin 0 cos 4,' is so small that the power series may be substituted for 
the exponential, with only the first two terms retained. 

c e—jkr 2w b 

Fo = — --- — f f [I. + jkr' sin 0 cos 01 cos 4,' do' dr' 
47r r 0 a 

jkC  — e—ikr r' dr' = b jkC e—ikr [52 — al sin 0. [3] -.- .... --- sin O f 
4 r a 8 r 

With A = 0, no variations with 0, and a component of F in the 4, 
direction only, the expressions for electric and magnetic fields of Eqs. 
11.52(6) and 11.52(7) reduce to . 

a a al a 
= — 7. sin 0 a° (F 4, sin 0) -I- 7 iii. (r F 0) 

E --r 

.11 = — j co e acAt, 
So 

jkC e—ikr 
r E = — -- cos 0 [b2 — al 

4 r2 

k2C Cer „ 
E0 = — — —  si O [e- — a2] 

8 r 

wEkC e—er sin O [b2 — a2] = —E0 H4, = — 
8 r 
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In the radiated field at a long distance from the opening, components 
varying only as 1/r are important. Thus electric and magnetic field, 
as usual in the radiation field, are at right angles to each other and to 
radius, are in phase, and are related in magnitude by n. As in the cases 
previously calculated, the PoyntinÉ integration of these fields becomes 
simply: 

= f 1E011/10127n-2 sin 0 dO 

k4c2[b2 err  _ 
sin' 0 dO 

64n 
k4c2[b2 _ a2]27r 

48n [4] 

V 
n = = 120r, S = r[b2 — a2] = Area of opening C = ln (b/ a)  

So 

7 2 v2 r ] watts 
W  - 36() LX 2 ln (b/a) 

Interpreted in terms of an equivalent resistance across the open end, 

V2 180 [X2 ln (b/a1 2 
W — or Rr — ohms 

2/?,. 7r` 

[5] 

[6] 

There are several questions that may arise in an analysis of this type. 
These are brought out clearly by this example. First, a value of radi-
ated power is calculated even though the field distribution across the 
opening was one which neglected the radiation components of field. 
That is, since it assumed a zero value of a magnetic field Ho, there could 
be no Poynting vector and no radiated power from the opening. This is 
exactly analogous to the practice of calculating radiation in conventional 
antennas from an assumed current which is based upon a distribution 
neglecting radiation. In both cases these are the major distributions, 
and slight deviations from this distribution (as must be required if radia-
tion is present) affect the computed field outside very little, especially in 
the radiation field at a long distance from the source. 
The neglect of any currents and charges on the outside of the line may 

also seem severe, for in spite of the neat little justification, we know that 
if there is to be any field along the outside, there must also be charges 
and currents, and the fields calculated in the example will have com-
ponents there. The result is then not quite correct, for the tangential 
electric field at least should be zero along the outside of the perfectly con-
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ducting line. The results could be improved by finding the currents 
caused on the line by the first calculation of fields, and correcting for 
these, repeating until the results are as accurate as desired. However, 
if it is noted that the field components Ho and E0 vary as sin 0, there is 
little tangential field along this line (0 nearly ir) even in the first result, 
except possibly near the end where 0 differs appreciably from 

Finally, it may seem puzzling that the Poynting integration was made 
from 0 = 0 to ir even though the lower half seems shielded by the line. 
Recall, however, that by the assumption, the conductors of the line, as 
well as its opening, are replaced completely by the fictitious currents 
assumed, and so the integration must include all directions. 

Problem 11.15(a). Repeat the above analysis retaining three terms of the 
series, of which only two terms were retained in arriving at Eq. 11.13(3). At what 
diameter to wavelength ratio does the additional term become important? 

Problem 11.15(b). In the open-ended coaxial example, assume an Ho in the 
principal wave at the open end of just sufficient magnitude to account for the energy 
calculated in the first step above. Show that a recalculation of power radiated 
including the effect of this Ho in addition to the Er of the first step leads to a truly 
negligible correction to the first result. Take cross-sectional dimensions small 
compared with wavelength. 

11.16 Other Formulations Utilizing Field Distributions 
There are various methods very closely related to that illustrated in 

Art. 11.15 and which differ in potential accuracy or in formulation. We 
shall describe these very briefly, intending only that the student be not 
unaware of important methods for which there is in this text insufficient 
space. Detailed and excellent treatments of the material which follows 
will be found in the writings of Schelkunoff5 and Stratton and Chu" 

In the first place, it has already been noted (Art. 11.14) that there is 
no need for the exact series of steps in which (1) the boundary fields are 
replaced by current sheets; (2) these are used as integrands in the inte-
grals for the vector potentials; (3) the potentials are differentiated to find 
the field in space. The entire process can be expressed, by a series of 
vector manipulations, directly in the form 

E' = — — f {—jcom(ii x 17)e + x E) X VIP + (fi, • E)v,plds 
4n- 8 

[1] 
, 

17" = —1 f , —iwE(7.1 x 2)11, — (71 X H) X ve — • 11)velds 
47r s 

Schelkunoff, Bell System Tech. Jaurn., 15, 92 (1936); Phys. Rev., 56, 308 (1939). 
6 Stratton, " Electromagnetic Theory." 
Stratton and Chu, Phys. Rev., 56, 99 (1939). 
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2' and II' are fields at any point inside the surface S, E and H are the 
fields on the surface, r is the distance from the differential element dS 
to the point at which 2' and are being evaluated, and 1P = • r/r. 

In deriving (1) assumptions are made throughout that E and H are 
continuous functions. If the example of Art. 11.15 is typical, the 
assumed R and H are very likely not to be continuous over the boundary 
surface. For instance, in Art. 11.15 a magnetic current sheet dropped 
suddenly to zero in turning the corner from the opening to the remainder 
of the boundary surface, 1-2 (Fig. 11.15). Certainly, quite apart from 
assuming fields over the opening which may conceivably be badly off in 
many cases, it is not pleasant to have calculation formulas which reject 
the discontinuous functions at the outset. The difficulty, granted, stems 
from allowing ourselves the liberty of assuming fields over the surface, 
thus allowing the possibility of choosing discontinuous ones in addition to 
what might otherwise be simply termed inaccurate ones. 
Now it may be that the assumption of a discontinuous field is as close 

as we can come to estimating the field. This assumption in itself may 
not be a bad one. Let us not add to its inadequacies, however, by use 
of formulas which by their derivation should not be applied to discontinu-
ous functions. Maxwell's equations, directly integrated to yield (1), 
state that the surface R's and H's cannot be discontinuous unless line 
currents and charges exist along the contour of the discontinuity. Thus 
we are led to more complete forms to replace (1) which include contour 
integrals representing line charges collecting at the discontinuities. 
Thus to the results of (1) should be added contributions 2" and H" as 
follows, the integrals being taken around the contour of discontinuity in 
fields. 

É" vH.JJ 

1  
11" = 47rjwii VIPE • Fil 

[2] 

With these additional terms, results should be the same as would be 
obtained by the method of Art. 11.14, for the line charges were included 
automatically in that formulation since the form of the equations 
included the continuity condition for electric and magnetic charges. 
The forms of (1) and (2) may be useful if many calculations are to be 
made, although the physical picture given by the equivalent currents of 
the previous step-by-step method is very helpful in first attacks on a 
problem. 

Stratton and Chu have derived (2) as a vector analogue to Kirchhoff's 
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theorem. Kirchhoff's theorem gives the value of a scalar quantity at a 
point inside a source-free region closed by a surface over which the 
quantity is completely known. 

, 1 f Rai e—ikr a (e—pc, = — _ _ ds 
4r ,s an r an r 

where cb' is the value of the scalar function at a point inside, distance r 
from a point on the surface where the value is Os. This scalar function 
satisfies the wave equation, 

v20 = _go 

The theorem is useful in studies of sound radiation, and in electro-
magnetic problems for which a scalar quantity may be intelligently 
assumed over a boundary. It might apply for instance to any scalar 
component of electric and magnetic field or vector potential in rectangu-
lar coordinates, but seldom do these lend themselves to intelligent guesses 
as to their distribution. For openings large compared with wavelength, 
as in light diffraction studies, results are not so critically dependent upon 
the boundary field distribution, and the method may be used to 
advantage. 

In addition to these methods, it is possible also to elaborate on the 
method of Art. 11.14. Fields may be assumed over only a part of the 
surrounding surface, as at the open end only of the coaxial line example, 
and corresponding electric and magnetic current sheets may be placed 
only over this part of the surface. Electric and magnetic fields from 
these would then be calculated exactly, subject to the remainder of the 
boundary geometry. For the example of Art. 11.15, there would be the 
boundary condition that tangential electric field be zero along the outer 
surface of the perfectly conducting cylinder. Mathematical difficulties 
usually require that any attempt to do the problem in this manner 
requires approximations resulting in about the same series of steps 
outlined in Art. 11.15. 

SYSTEMIZATION OF POYNTING CALCULATIONS 

11.17 General Formulas Simplified by Common Approximations 
In using the Poynting integration for calculation of radiated power 

from antennas, either from assumed currents or fields at the source, many 
of the same mathematical approximations are introduced each time the 
method is employed. Short cuts are soon discovered and are extremely 
time saving. It will be desirable therefore to place these on a systematic 
basis. Schelkunoff has given this systemization in the literature.7 

7 Schelkunoff, "A General Radiation Formula," Proc. I.R.E., 27, 660-666 
(October, 1939). 
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In the Poynting method, field is usually calculated at a great distance 
from the radiator. The following assumptions are then justified. 

1. Differences in radius vector to different points of the radiator are 
absolutely unimportant in their effect on magnitudes. 

P /,e 2. Differences in direction of the radius vector to 
different points on the radiator are negligible. 

/ 3. All field components decreasing with distance / , 
// , r faster than 1/r are completely negligible compared / 

(' ./i  with those decreasing as 1/r. 
a ,  

4. Differences in radius vector to different points 
'  / / ..t on the radiator for purposes of finding phase differ-

r'1 , 
1._.t 1 e ences are taken as r' cos tP of Fig. 11.17, where r' is 
i/ the radius to the radiating element from the origin, ,,I, 
i ov the angle between r' and r, and r is the radius from r 
Fr the origin to the distant point at which field is to be 

e. 11.17.  
calculated. 

Consider the vector potential at point P, distance r from the origin of a 
radiating system made up of current elements arranged in any manner 
whatsoever, the element a shown at radius r' from the origin being one 
of these. 

î„eiw (t — r"\ , z = fy 4717„ dV 

By the assumptions listed above, and el' understood, 
_ e—jkr r 
A = —A j î eike"" dV' 

u7rr v a 

co 
k = coV;;; = —v 

[1] 

cos = cos 0 cos e' ± sin 0 sin e' cos (4) — 0') [2] 

where 0, 4, and e, 4/ are the angles in spherical coordinates of points p 
and a respectively. The function of r is now completely outside the 
integral; the integral itself is only a function of the antenna configura-
tion, current distribution assumption, and direction in which field is to 
be calculated. Define this integral as the radiation vector N. 

N = fv 
Then 

e—er 

A = N 
47i-r 

[3] 

[dl 
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In the most general case, A, and hence Ñ, may have components in 
any direction. In spherical coordinates, employing the unit vectors, 

e-jkr 
A 

4er 

A study of the equation II = V X 271- in spherical coordinates (Art. 
2.38) shows that the only components which do not decrease faster than 

1/r are: 

An examination of 

a ik 
(Me) i-jre 

a jle 
= -r Ao = - ) 4irre IV e 

E V (V • 71) - - 1 
jc4E 

shows that the only components of É which do not decrease faster than 

1/r are: 

[51 

Note 

So 

jWJJ Ee - 
¿2-sk - e - rh.e E4,= - —e  
4-ffr Eirr 

coN/Tie 2-iar 

wit n 
— — 
4ir 2). 

Since (5) and (6) show that É and fi are in time phase and at right 

angles in space, the Poynting vector 
P=Ex11 

has a time average value 
1 n 1 P ,. = - — x o\2 + \N4,121 
2 2Xr 

Total time average power radiated is 

«W o f2ir 
Prr2 sine de dd) = --n-- 0 27 11N 12 + IN 4121sinedede [81 

o 8).2 o 0 

The expression is independent of r as it should be. 
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The Poynting vector P gives the actual power density at any point. 
However, to obtain a quantity which gives the information of direction 
only, define K, radiation intensity, as the power radiated in a given 
direction per unit solid angle. This is the average value of Pon a sphere 
of unit radius. 

and 

K = 0 012 ± IN 4,12] 
8X2 

7 27 
=ff K sin 0 d0 

o o 

A plot of K against direction may then define the radiation pattern. It 
should be recognized that this is a power radiation pattern and not a 
field strength radiation pattern. 

Circularly Symmetric Currents. If all current in some radiating sys-
tem is circularly symmetric about an axis, this axis may be taken as the 
axis of a set of spherical coordinates. À (hence N) can have a 4. com-
ponent only. 
Then 

K = 2 IN4,12 
and [11] 

W = 27r f K sin 0 d0 
o 

Currents All in One Direction. If current in a radiating system flows 
all in one direction, this may be taken as the direction of the axis of a 
set of spherical coordinates. À (hence N) can have a z component only. 
Then 

N 4, = 0 No = —Nz sin 0 
[12] 

n  K = — 1Nz I2 sin2 0 
8X2 

Useful Relations for Spherical Coordinates. An expression for the angle 
1P in terms of the angles 0, of the point P, and 0', of the element a 
has been given in (2). It sometimes may be desirable to calculate No 
and N 4, from the cartesian components Nx, N, Nz, 

No = (Nx cos cp Ny sin 4)) cos — Nz sin 0 

N4, = —Nx sin Ny cos 4) 
[13] 
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Extension to Include Magnetic Currents. Fictitious magnetic as well 
as electric currents were found useful in calculating radiation from 
assumed fields, and an electric vector potential P was used by analogy 
with magnetic vector potential A. A magnetic radiation vector E may 
be related to vector potential P as /V was to A. Thus, consistent with 
the assumptions listed previously, 

where 

e—ike 
— 
47rr 

E f ¡mega' cos dvi 

V 

[14] 

[15] 

If electric and magnetic field components are now written in the usual 
way in terms of these two vector potentials, the only components not 
decreasing faster than (1/r) are 

e—jkr 
E0 = — j--- 1- ) 

2Xr 

Ed, = (— nNd, Le) 

So the radiation intensity, 

= 8f71/421 L 
No + — 

11 2] 
11.18 Example: Circular Loop Antenna 

It is interesting to check radiation from a circular 
Fig. 11.18, to compare with the value arrived at 
in Art. 5.09 by the method since called the in-
duced emf method. Since there is circular sym-
metry, Eq. 11.17 (11) holds. To compute K we 
notice that Nd, will be the same for any angle ck. - 
It will be calculated for an angle in the plane 
(1) = O. Also Of = In2 everywhere. Then by 

11 Fm. .18 . Ci•rcular 
Eq. 11.17(2) 

cos = sin O cos e 
2w 

No = I 'J o eikaene"e cos o' a de 

= jkirIa2 sin 

[16] 

[17] 

[18] 

loop antenna, 

loop carrying current. 

2r /a f[1 jka sin O cos 01 cos o' 
o 
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For 

or 
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2rnk272I2a4 7 377k2a 412 

W  8)1/42 sin3 dO =  o 3x2 

= 1207r 

W = 107r2/2 C4 71 
X 

watts 

2W 27ra 4 
R,. = = 2072 (—x ) ohms 

This value agrees with the result of Art. 5.09. 

Problem 11.18. Show that the radiation intensity for a half-wave dipole 
antenna is 

„, 15 /2 cos2 cos Co) 2  
sins o 

11.19 Example: Progressive Wave in Straight Wire of Finite 
Length 

If an unattenuated wave is traveling along a straight wire reaching 

from z = 0 to z = t with velocity 1/V, all the wave being somehow 
absorbed at the end so that there is none reflected, Fig. 11.19, such a 
current wave may be represented by 0e '. All current is in one 
direction, so Eq. 11.17(12) may be used. 

t-
sew,/ 

L 
FIG. 11.19. Thin 
wire of length / sup-
porting a progres-

sive wave. 

K - niNz 12 sin2 
8x2 

N z = /0fie—jkz, ejkz' cos e dz' 

o 

10[1 _ e —jkl(1— cos 0) ] 

jk(1 - cos 0) 

2/0 sin [iki (1 - cos 0)] 

INz I 
kl(1 - cos 0) 

sin 

I2,, 2 [—kl (1 - cos 0)] 
2  sin2 

2X2 k2(1 - cos 0)2 

Also, since there is symmetry about the axis, 

sin 2 [ kl 0 — (1 — cos 01 
W = 27rf K sin O dO = 27rf ° I2n  2  sin3 (it) 

o 2)1/42 k2(1 cos 0)2 
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Simplifying and substituting, 

k = 271-/X n = 120/r 

kl 
2. sin' [— (1 — cos 0)] 

W 30/ 2 2of 0 de 
(1 — cos 0)2 

If the above integral is evaluated' 

471 ] 
[ sin — 2/ , 4iii , X 

w  = mg 1.415 -I- in it- — l'i x -I- 47/ 11] 

11.20 Example: Plane Wave Source 

The radiation vector and radiation intensity may be calculated for a 
differential surface element on a uniform plane wave. Such an element 
might be considered as the elemental 
radiating source in radiation calcula-
tions from field distributions, as was 
the differential current element for 
radiation calculations from current dis-
tributions. 4 Jx=-Hy 

The plane wave source, that is, one =E, 
that produces R and 11 of constant Y n 

direction, normal to each other, and 
in the ratio of magnitudes n over 
the area of interest may be replaced by Fm. 11.20. Small plane wave source 
equivalent electric and magnetic cur- and equivalent current sheets. 
rent sheets over that area, Fig. 11.20. 

If 

Ex 

-E, 
É = a„E, and H = ayHt, — 

n 

the equivalent current sheets are 

E, 

If this is a source of infinitesimal area dS (actually it need only be small 
compared with wavelength for following results to hold), the radiation 

8 Stratton, " Elettromagnetic Theory," p. 445. 
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vectors Ñ and E become simply 

Ex dS 
= = —EzdS 

The components in spherical coordinates: 

ExdS ExdS 
No = — — cos it, cos — — sin ct. 

17 17 

—ExdS sin (I) cos O L 4, = —ExdS cos 

According to Eq. 11.17(18) the radiation intensity in this case may be 
given by 

E(d8)2[( cos cos — cos 0)2 + (sin -I- sin cos 0)2] n8x2 

E'2 (de 4 0 
K = cos — 

279%2 2 

COMBINATIONS OF RADIATORS 

[1] 

11.21 The Superposition of Separate Effects and Inclusion of 
Mutual Effects 

The preceding analyses have involved integrations of effects in space 
(or over the antenna surface) due to a distribution of assumed currents 
or fields, so that if there are several complete radiators operating to-
gether, currents might be assumed over the entire group, and a complete 
calculation made for total vector potential "T. (or for the total radiation 
vectors, N and L). However, as a practical thing, the synthesis of 
special antennas is often accomplished by putting together elements for 
which, as isolated antennas, calculations have already been made. Not 
only may some labor be saved in calculating such cases, but it is also 
possible in this way to determine the effects of various changes or addi-
tions to a structure and thus to attain a desired and special radiation 
pattern in space. The problem then is to know how to superpose the 
separate and known radiation characteristics to yield the overall radia-
tion characteristics of the combination. 

If calculations for the potentials or fields from each of the radiators 
operating separately are already available, the fields may be superposed 
to obtain total fields, and, from these, total power by a Poynting integra-
tion. Suppose that in a case with two separate radiators, the component 
fields are known as E4,1, H01, etc., due to radiator 1, and E4,2, H4,2 due 
to radiator 2. The Poynting theorem as written in Prob. 11.05 (b) then 
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gives an average value of P,., 

Pr = 1-RenE0114. — E 40.141.1 fEe211:2 Es621/11 • 
± 1E0241 + E01.142 E01142 E4621411 [11 

The first terni is the power due to the first radiator alone; the second is 
that due to the second radiator alone; the third term is a mutual power 
due to interaction of fields from the two. The mutual term in the above 
statement would be obtained in the induced emf method from com-
ponents of induced fields from charges and changing magnetic effects of 
the first radiator in phase with currents of the second radiator, and vice 
versa. It must be emphasized that current distribution assumptions 
over all radiators are still required for either method, and this may be 
difficult to make when it is necessary to consider the mutual interaction 
of several radiators. The induced emf method gives some clue as to 
this mutual effect upon current distribution, and Carter' has by this 
method calculated mutual effects of parallel linear radiators, interpreting 
the problem of finding relative current distributions between several 

such radiators as a circuit problem. 
Especially important is the problem of identical radiators with similar 

current distributions (though magnitudes and phases of currents in 
individual radiators need not be the same). The radiation vector for 
one of these alone may be calculated as R0. Differences in the distances 
from the radiators to a far removed point where field is to be calculated 
is again important only as it affects phase differences, and not as it 
affects magnitude or direction. Thus the total radiation vector for the 
system of radiators, if these all have the same orientation, may be 

written 

= Ño (ale.; em"ei + C2eer'2008" + • • .) [2] 

CI, C2, etc., are complex numbers giving the relative magnitudes and 
phases of currents in the several individual radiators; 4 4 etc., are 
radii from the common origin to the reference origin of the individual 
radiators; 4,2, etc., are the angles between r, r and the direction of 
the radius from the common origin to the point at which field is to be 
calculated. It follows that the total radiation intensity may be written 
in terms of the radiation intensity K0 for one radiator alone. 

= Ko cieikr; cceei c2eer; cc's" + • • .12 131 

The use of these forms will be clearer from thé examples to follow. 

9 Carter, Proc. I .R.E ., 20, June, 1932. 
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Problem 11.21(a). A section of parallel wire transmission line when properly 
terminated may be approximately considered as two wires along which waves are 
propagating, the currents being opposite in phase at any point along the line. Neg-
lect the radiation from the termination and the mutual effect between the termina-
tion and the lines, and compute the radiated power from the line by the method 
described in Art. 11.21. Use results for a single wire with traveling wave from 
Art. 11.19. 

Problem 11.21(b). Given a radiator with horizontal current elements only 
of radiation intensity Ko, show that if this is placed at a height h above earth which 
may be assumed plane and perfectly conducting, 

K = 4K0 sin (kh coa 0) 

The vertical direction is taken as the axis, O = O. 

Problem 11.21(c). How is the result of Prob. 11.21 (b) revised if the O= 0 axis 
is taken horizontal and the vertical direction defines e = 0? 

Problem 11.21(d). What conclusions similar to those of Prob. 11.21 (b) can 
be derived for antennas with vertical current elements only, if placed with their 
reference origin a distance h above earth? 

11.22 Example: Half-Wave Dipoles Separated by a Quarter 
Wavelength 

Consider two half-wave dipoles separated by a quarter wavelength 
and fed by currents equal in magnitude and 90° out of time phase, as in 
Fig. 11.22a. For a single dipole (Prob. 11.18), 

cos2 
K0 = 15/2  (.,j cos 0) 

ir sin2 0 

For the two dipoles with the origin as shown in Fig. 11.22a, 

Fla. 11.22a. Combination of 
two half-wave dipoles. 

n = v; 

So 

If 

Then 

r2 
7r 

= A/4; =; <75Z = 0 

cos 4 = sin O cos 4) 

/2 = I le-il"r 

K = Koll Cji el Pain e cone 12 

= 4K0 cos2 [-4 (sin 0 cos — 1)] 

A horizontal radiation intensity pattern is plotted in Fig. 11.22b. 
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Problem 11.22. Plot radiation intensity patterns for the following half-wave 
dipole arrays in vertical and horizontal planes. 

(a) Two parallel dipoles fed in phase with equal currents and placed X/2 apart. 
(b) Four parallel dipoles fed in phase with equal currents and spaced X/2 apart. 
(c) Two dipoles placed end to end, fed in phase with equal currents. 
(d) Same as (c) but with four dipoles. 
(e) Same as (d) but with a perfectly conducting reflecting plane parallel to the 

dipoles at distance X/4. 

FIG. 11.22b. Polar plot of relative power intensity radiation for Fig. 11.22a in the 
plane O = 712. 

11.23 Example: Rhombic Antenna 
A rhombic antenne has, oddly enough, the shape of a rhombus, as 

shown in Fig. 11.23. The antenna is fed at 0 and terminated at A by 
the proper resistance so that energy travels along the wires only from 0 
toward A, no reflected waves traveling back from A toward O. This 
may be analyzed as a system of combined elements, the elements having 
energy traveling along them in only one direction. Since the elementE 
do not have the same orientation, addition must be by components. 

1° Donald Foster, Proc. I.R.E., 25, 1327 (October, 1937). 
Bruce, Beck, Lowry, Proc. I.R.E., 23, 24 (January, 1935). 
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The radiation vector for a single wire with energy traveling at the 
velocity of light in only one direction, ./e-jki, has only the direction of 
the wire. (Art. 11.19.) 

1[1 - elk111- coal 

Ns jk (1 - cos e) jk j ‘ej [1] 

The subscript s denotes the direction of the wire, and e is the angle 
between the wire and the radius vector to the distant point (r, 0, 0) at 

Fla. 11.23. Rhombic antenna and selected coordinate system. 

which field is desired. The angles tp for the various elements, in terms 
of the coordinates shown in Fig. 11.23, are found to be 

cos tboc = cos 1PDA = sin 0 cos (4) ± a) 
[2] 

COS %bop = COS IPCA = sin O cos (0 - a) 

The currents at 0 for OC and OD are 180° out of phase. They may 
be taken as I and -I. The currents at the beginning of CA and DA 
(at C and D respectively) are then Ie-ei and -/e-jki. Components of 
radiation vector may now be added, taking into account the differences 
in phase with respect to the common origin O. 

rfoCD0 reD = "DA -= 1 

So 

Nz = cos a [N1 + N2 + N 3ejkic°"°C Noild'oon] 

Ny = sin «[- + N2 -F Neikic°84'00 _ No ikzeoseon] 

N = 
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where 

N(1 ftPoc) 
3k 

N2 -= f (tGoD) 
3k 

I e—iki I 
N3 (=. RIOD) N4 = ;Te e-2'f (4c) jk 

and f(') is defined by (1). 
Define also 

Then 

S = S(eoceop) = (1 - cos th)c) (1 - cos gPoo) 

[1 - - e-ikel-coseopi 

Similarly, 

IS cos a 
=  [cos'ex - COS IkD] 

215 . 
- sin O sin ci) sin « cos a 

jk 

2IS Nsin a(1 - sin O cos 4) cos a) 
jk 

The components of radiation vector in spherical coordinates may be 
written in terms of the cartesian components N. and Ny [Eq. 11.17(13)]. 

2IS 
N y = (N. cos 4) Ny sin 4)) cos 0 = - jk sin a sin cl) cos 0 [6] 

[3] 

[4] 

2IS 
No = (-Nx sin 4) + 372 cos 4)) - jk sin a [cos 4) - sin O cos a] 

The radiation intensity is [Eq. 11.17(9)], 

K = -àfi,2 [IN012 + IN or] 

4/271 
 n 1S12 [sin2 cos2 O -I- (cos 4, - sin 0 cos «)2] sin2 

[5] 

[7] 

[8] 

By trigonometric substitutions in the quantity in brackets, 

4r2n2 

K -  15121[1 - sin 0 cos (4) + «)] [1 - sin 0 cos (4) - a)11 sin2 « 
8X2k2 

4/2n 
= 8—X2k2 I S12[1 — cos IPOCH1 — cos IPODI Sin2 a [9: 
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S, defined by (3), has a magnitude, 

kl kl 
4 sin [-2 (1 — cos ioc)] sin [-2 (1 — cos Ibbon)] 

I $I (1 — cos ioc) (1 — cos Ikon) 

For air, 

24r 
= 120r and k = 7 

240/2 2 
sin2 [—Id (1 — cos 'Mc)] sin2 —kl (1 — cos %hp) 

K — sin a 2 2  
[10] 

ir (1 — cos IPoc) (1 — cos eon) 

where Vicic and 'pop are defined by (2). 
From this expression for radiation intensity, it is seen that for large 

values of k1/2, K may become zero many times (each time cos 1Poc, 
cos ipoi, are unity, or when (k1/2) (1 — cos e) = nr). The radiation 
pattern may then have many lobes. By properly proportioning the 
angle a and the length 1, these lobes may be changed in relative magni-
tude and the directivity pattern altered greatly. 

If a horizontal rhombic antenna is located at height h above a plane 
earth which may be considered perfectly conducting, the result of Prob. 
11.21 (b) may be applied directly to find total radiation intensity. 

K = 4K0 sin2 (kh cos 0) [11] 

Ko is the radiation intensity for a single rhombic by (10). 

Problem 11.23 (a). For a rhombic with / = 3.5X, a = 24°, plot a vertical radia-
tion intensity pattern (in plane cit) = 0) and a horizontal pattern (in plane O = ir/2). 

Problem 11.23(b). How is the vertical pattern revised if the rhombus is placed 
2X above earth? 

ANTENNA CHARACTERISTICS BY DIRECT SOLUTION OF THE 

BOUNDARY PROBLEM 

11.24 The Spherical Antenna Problem 

Early in the chapter the wave concept of radiation, based upon 
Maxwell's equations, was studied. By means of this, and particularly 
by a point of view developed by Schelkunoff, we were able to justify 
certain assumptions of current or field distributions so that engineering 
answers could be obtained to the problems of radiation pattern and 
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total radiated power for many practical antennas. The two methods 
used, the Poynting method and the induced emf method, did not give 
information on problems of input impedance, antenna surface gradients, 
etc., so that for such information we must return to methods based more 
directly on Maxwell's equations. Of these, the most practical is the 
method of Schelkunoff referred to previously, but before developing 
this, the obviously direct and rigorous method discussed in Art. 11.02 
will be explored; that is, solution of Maxwell's equations in differential 
equation form subject to the boundary 
conditions of the antenna and the applied Radial Line 
voltage. from Center 

In following articles a simple example 
will be chosen for which wave solutions 
can be found in a form suitable for applica-
tion of the boundary conditions. The spe- Coaxial Line 

cific problem is that of two hemispheres to center 
separated by a small gap across which the Energy 

driving voltage may be applied (Fig. Fla. 11.24. Spherical antenna 
11.24). In order that this voltage may and possible driving system. 
be applied uniformly about the equator, 
we might imagine such an antenna driven by a radial transmis-
sion line from the center (Art. 9.08), this in turn being connected to a 
coaxial line which might be brought out at one of the poles in order to 
disturb boundary conditions very little. This is mentioned only to 
show that it is practical to excite such an antenna symmetrically, 
although the presence of the line will be ignored in applying boundary 
conditions. I The hemispheres will be assumed of perfect conductors for 
the first approximation, losses due to the finite conductivity being 
obtained as a correction in the approximate manner employed many 
times previously. 
Although results of this problem are possibly of some engineering 

interest, it is studied mainly for purposes of obtaining background and 
appreciation of the method in general, and finally of the results of 
Stratton and Chu who have performed the solution not only for spheres, 
but also for spheroids. The latter may be considered as excellent ap-
proximations to many practical antennas. The wave solutions to be 
studied will also be those required in the method of Schelkunoff. 

11.25 Wave Solutions in Spherical Coordinates 

Maxwell's equations in spherical coordinates are written in Art. 4.26. 
Excellent discussions for complete solutions of these are contained in 
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an article by Schelkunoffl 1 and in Stratton. It is found that solutions 
to the equations in charge-free dielectrics may be separated into three 
types, similar to those wave types selected for study of uniform trans-
mission systems (Art. 8.08). Thus an E or transverse magnetic wave 
may be found with electric field but no magnetic field in the radial direc-
tion. An H or transverse electric wave may be found with magnetic 
field but no electric field in the radial direction. A transverse electro-
magnetic wave may be found with neither electric nor magnetic field 
in the radial direction; this last wave type was that principal wave along 
cones which has been referred to several times in this chapter. For 
axially symmetric systems, 0/4 = 0, the field components for the TM 
and TE wave types separate completely, which is again a similar situa-
tion to that found in cylindrical coordinates and rectangular coordinates. 
The TM wave in this case contains Er, E0, H4, only, and the TE wave 
contains 14 Ho, E4, only. Since the present example, and a large num-
ber of engineering problems, are axially symmetric, we shall study only 
such waves. Also a consideration of the manner of excitation of the 
spherical antenna, Fig. 11.24, shows that TM waves are definitely 
excited by the symmetrically applied voltage across the gap, but no 
reason for any of the TE wave components, H,., Ho, or Eo, can be found. 
The three curl equations containing E0, Er, and Ho with a/4 = 0 are: 

a ,, aEr 
— vein — — = —jcieµ(rH4,) [1] ar ao 
1  'a 

r sin o ao (Ho sin 0) -- jomE,. [2] 

a 
— — (rH4,) = jcoe(rE0) [3] 

ar 

Equations (2) and (3) may be differentiated and substituted in (1), 
leading to an equation in H4, alone. 

a2 1 a  (r [1 a —ar2 114,) 712 sTià T(o (rH 4, sin 0)] k2(rH0) = 0 [4] 

To solve this partial differential equation, we follow the product solution 
technique. Assume 

(1.14) = Re [51 

R is a function of r alone, E) is a function of 0 alone. If this is substituted 
in (4), the functions of r may be separated from the functions of 0, and 

11 Schelkunoff, " Transmission Theory of Spherical Waves," Trans. A.I.E.E., 
57, 744-750 (1938). 
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these must then be separately equal to a constant if they are to equal 
each other for all values of r and O. For a definitely ulterior motive, we 
label this constant n (n -F 1). 

, si   -r n 091 = n(n + 1) [6] 
dO sin dO 

Thus there are two ordinary differential equations, one in r only, one 
in O only. Let us consider that in O first, making the substitution 

u = cos 0; N/1 — u2 = sin O. —d = — sin O —d de du 

Then 

d20 de 1  
(1 — u2) e—re — 2u c-Fic [n (n -F 1) u2]e = [7] 

The differential equation (7) is reminiscent of Legendre's equation 
(Art. 3.26) and is in fact a standard form. This form is 

dy m2 
(1 - x2) -d2Y - 2x — [nn -F 1) — x2 y = 0 [8] 

dx2 dx 1  

One of the solutions is written 

= P(x) 

and the function defined by the above solution is called an associated 
Legendre function of the first kind, order n, degree m. These are 
actually related to the ordinary Legendre functions by the equation 

PI? (x) = (1 — x2)m/2 cimPn(x) [9] den 

As a matter of fact, (8) could be derived from the ordinary Legendre 
equation by this substitution. A solution to (7) may then be written 

= P, (u) = P (cos 0) [10] 

And from (9) 

d 
P!, (cos 0) = — —dO P. (cos 0) 

Thus for integral values of n these associated Legendre functions are 
also polynomials consisting of a finite number of terms. By differentia-
tions according to (9) in Eq. 3.26(8), the polynomials of the first few 
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orders are found to be 

PI) (cos 0) = 0 
PI (cos 0) = sin 0 
P (cos 0) = 3 sin 0 cos 0 [12] 
/1. (cos 0) = e sin 0 (5 cos2 0 — 1) 
P (cos 0) = e sin 0 (7 cos3 0 — 3 cos 0) 

Other properties of these functions that will be useful to us, and which 
may be found from a study of the above, are: 

1. All n (cos 0) are zero at 0 = 0 and 0 = 7r. 
2. P (cos 0) are zero at 0 = 7112 if n is even. 
3. P (cos 0) are a maximum at 0 = r/2 if n is odd, and the value of 

this maximum is given by 
n-1 

(-1) - 2 n!  
P(0) n odd [13] 

2'1 R n 2— 1)! 1 

4. The associated Legendre functions have orthogonality properties 
similar to those of sinusoids and Bessel functions studied previously. 

J.. Pi (cos 0)P1 (cos 0) sin 0 do = 0 1 n 
fo = r[n (cos 0)]2 sin 0 dû 2n(n + 1) 

2n + 1 

[14] 

[15] 

5. The differentiation formula is 

—d [n (cos 0)] =  1-=- [nP1+1 (cos 0) — (n + 1) cos 0 n (cos 0)] [16] 
dO sin 0 n 

Note that only one solution for this second order differential equation 
(7) has been considered. The other solution becomes infinite on the 
axis, and so will not be required in problems such as the present one 
where the region of the axis is included in the solution. 
To go back to the r differential equation obtainable from (6), sub-

stitute the variable R1 = R/V77. 

d2Ri 1 dlii dr2 (n + 4)2] R1 = 0±[k2 

r2 

By comparing with Eq. 3.18(3) it is seen that this is Bessel's differential 
equation of order (n ± ). A complete solution may then be written 

R1 .--- An.41-¡(kr) + B„N„+i (kr) [17] 
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and 

R = 

If n is an integer, these half-integral order Bessel functions reduce 
simply to algebraic combinations of sinusoids.12 For example, the 
first few orders are: 

J1/2 (x) = — sin x r = — —2 cos x 
7rX irX 

2 sm x 
J3 (x) = cos x] 

7rx x 

3 
4(x) = 2 R —1) sin x 

irx x 

3 
— — cos x] 

N i(x) 

• - 

[sin x cos x] 

Nei (x) = — sin 

-F (3 72 —1) cos x] 

[18] 

The linear combination of the J and N functions into Henkel func-
tions (Art. 3.16) represent waves traveling radially inward or outward, 
and boundary conditions will be as found previously for other Bessel 

functions: 
1. If the region of interest includes the origin, N.+1 cannot be present 

since it is infinite at r = co . 
2. If the region of interest extends to infinity, the linear combination 

of J and N into the second Henkel function, Hei = J„.4.4 — 
must be used to represent a radially outward traveling wave. 
The particular combination of Jni _1(kr) and Nn+4 (kr) required for 

any problem may be denoted as Zn+i (kr) and now by combining cor-
rectly (17), (10), and (5), Ho is determined. Er and E0 follow from 

12 A very neat notation for the spherical or half-integral. order Bessel functions 

Nrhas recently come into use. Thus j. (x) denotes 2-e—x in+i (x), and similar small 

letters denote the other spherical Bessel and Henkel functions. (See for example 
Stratton.) We shall not employ this notation since for our limited use of these 
functions it will be preferable to retain the usual Bessel function forms for which re-
currence formulas and rules of differentiation are listed in Chapter 3. 
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(2) and (3) respectively. 

A n 1 = Pn (cos 0)Z„±i (kr) 

Ann (cos 0)  
E9 = jcuer [nZn+i (kr) — krZn_i(kr)] [19] 

AnnZn+i (kr)  
Er = [cos 0 P1 (cos 0) — 13„1 +1 (cos 0)] 

joler% sin O 

These solutions of course represent an infinite number of possible TM 
waves, one for each value of n. For any given problem, as in the present 
one, it will usually be necessary to add many of these waves to fit the 
boundary conditions. 

Problem 11.25. Obtain the field components ek, Ho, H, for the nth order TE 
wave with 81(34, = O. 

11.26 Identity of the First Order TM Wave with the Dipole 
Field 

Let us digress a moment to look at the first order wave defined by 
Eq. 11.25 (19) with n = 1. (Note that for n = 0 there is no wave since 
Et (cos = O.) This will be considered in a region extending to 
infinity, so that the proper Besse' function is a Hankel function of second 
kind to represent only a radially outward traveling wave. 

(kr) = (kr) = 4(kr) — jN”(kr) 

From Eq. 11.25(18), this is 

.11g)(kr) = 7r2kr[eillierkr cos kr) j (sin kr + coksrkr)] 

= e—ikr (17.• —1) 

Thus the three field components reduce to 

ec . [ i li 
Ho = iii — sm 0 —2 — — e—jkr 

r k r kr 

ec . [ i 1 1 
Ea = nAi — sin 0 — _ _ ± e—jkr 

71. k2r2 kr k3r3 

2A 1 e [ i 1] _ 7c 
— Er = J-7--we- —7 cos 0 k2r2 kr 

[1] 
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Compare these with Eq. 11.06(3), the field 
components for a small current element or 
dipole. They are identical if the constant A1 

is identified as lohIcei/4j r. It is interest-
ing, although expected, to find that the solu-
tion for the infinitesimal dipole is one of the 
general TM wave types. It is also promi-
nent in the spherical antenna solution. Elec-
tric field linee for such a wave are sketched in 
Fig. 11.26. 

Fla. 11.26. Axial section 
showing electric field lines Problem 11.26 (a). Study the n = 2 TM wave in first order symmetrical 

and show that it corresponds to a quadrupole field, TM waves. 
i.e., field from two small current elements at right angles. 

Problem 11.26(b). Show that the n = 1 TE wave from Prob. 11.25 corre-
sponds to the field from a small current loop. 

11.27 Superposition of TM Waves to Match Boundary Condi-
tions of Spherical Antenna 

The boundary conditions to be satisfied on the surface of the spherical 
antenna (assuming perfect conductivity for the sphere in the first 
approximation) are: 

1. E9 = 0 at r = a, except across gap. 

2. E9 = applied field across gap, O — — a to —7 -I- a. 
2 2 

The distribution of E9 across the gap is not known, but its integral across 
the gap (which is the same as the integral from 0 to r since E9 is else-
where zero) must be equal to the applied voltage. 

r+a 
vo = f2 Eea clO f Egt dB 

o [1] 

Now if the exact distribution of Ete across the gap were known, the 
function E9 at r = a could be expanded in a series. This series would be 
written in associated Legendre polynomials so that it might be compared 
directly with previous TM wave solutions. Known functions may be 
expanded in terms of these functions in a manner similar to that used 
to expand functions in a Fourier series, a series of Bessel functions, 
Art. 3.23, or a series of ordinary Legendre polynomials, Art. 3.26. The 
formula for the coefficients follows from the orthogonality properties 
of Eqs. 11.25(14) and 11.25(15). 

f(0) = bnn (cos 0) 
n 1 [2] 

47â 
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where 

bn — 2n -I- 1  f (0)P„ (cos 0) sin O dO [3] 
2n (n + 1)j0 

The exact form of the f (0) to be expanded, i.e., Ea, is not known except 
that it is zero everywhere but at the gap. If the gap is truly small, we 
may approximate the answer to the integral (3) by assuming that 
P (cos 0) and sin O do not vary appreciably across the gap. That is, 
assume that n (cos 0) is approximately constant at its maximum value 
given by Eq. 11.25 (13) and'that sin Ois constant at its maximum value of 
unity over the gap. Then, 

2n -I- 1 e a 
bn — 2n (n -F 1) P„ (0) Ea dO 

The latter integral may be found directly from (1). 

b = (2n -I- 1 )/1, (0) Vo 
„  

2n(n -I- 1)a 

and [4] 

Eel, = E bn.1) (cos O) 

The above is exactly correct for an infinitesimal gap, but for any gap of 
finite size it will not give correct coefficients for the highest harmonics 
that vary appreciably over the region of the gap. 
For the wave solution in the space surrounding the antenna, we are to 

add an infinite number of the TM waves found in Eq. 11.25 (19). Fol-
lowing previous reasoning, the Bessel function solution should be the 
Hankel function of the second kind since the region surrounding the 
antenna extends to infinity. Then Ea at r = a from Eq. 11.25 (19) may 
be written 

= E Ann (cos 0)[kal-ei(ka) — (Ica)] [5] 
wea n+1 

By comparing (5) with (4), An may be evaluated. 

wc-a"bn 
An • j[kalei(ka) — nHei(ka)] [6] 

In (4) bn is defined, so An, the arbitrary coefficients of the solution, are 
completely determined in terms of applied voltage and the antenna 
dimensions. Field at any point is now expressed in a series of TM 
waves with determined coefficients. Thus if desired, the field distribu-



Art. 11.28] IMPEDANCE OF SPHERICAL ANTENNA 475 

tion at any radius could be mapped and thus the radiation pattern ob-
tained. However, we shall go directly to the calculation of antenna 
impedance. It is at least evident, though, that E0 and Ho in the radia-
tion field at large distances are zero along the axis and a maximum at 
0 = r/2, since all odd PI (cos 0) (the only ones excited) are zero at 
0 = 0, maximum at 0 = 7/2. 

11.28 Impedance of Spherical Antenna 
The magnetic field H4, is now determined since the coefficients A„ are 

known by Eqs. 11.27(6) and 11.27(4). 

ce' 
= E pl (cos 0)H11(1cr) [1] 

Surface current density is given in terms of the magnetic field at the 
conductor surface 

or 

JO = — HO Ir=a 

Thus total current flow on the antenna at any angle 0 is 

Io = 27a sin OJe -= —27a sin 0/101,„ [2] 

The total current flow away from the gap, at 0 = 7r/2, from (1) and (2) 

—/01 
O..-2 

P.1(0)An (2) 
= 27ra 2_, H(ka) 

n=1 a [3] 

An as defined by Eqs. 11.27(4) and 11.27(6) is proportional to Vo so 
that the ratio of I to Vo may be written as an admittance. 

/ 

v o n=i 

where [4] 

jr (2n + 1) [PI (0)]2 1  
— 

n(n n He!i(ka) 

ka H44(ka) 

As usual n = 
The form of (4) is particularly interesting, since it represents total 

admittance as the sum of a number of admittances, one for each har-
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monic solution corresponding to a given n. This is of the form for the 
admittance of a group of circuits in parallel. Each circuit then cor-
responds to a given harmonic solution and has admittance characteristics 
determined by (4). P„1(0) is defined by Eq. 11.25(13) and the 1-4,2.4 
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FIG. 11.28a. Conductance of individual spherical TM wave orders. 

functions by Eq. 11.25(18) and the usual definition for Hankel func-
tions, 1-1?) (x) = J,(x) — jNa(x). So this admittance characteristic 
may be calculated. Its conductance and susceptance parts are plotted 
against ka for air dielectric (n = 1207r) in Figs. 11.28a and b. Note 
that there are no even harmonics since n (0) = 0 for n even. This 
is as would be expected since PI (cos 0) for n even are all odd functions 
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with respect to the equator and should not be stimulated by a configura-
tion symmetrical with respect to the equator. 
The higher harmonics may be readily approximated: 

jr (2n 1)[P;, (OW ka if ka n y n 
nn2 (n ± 1) 

..., v 

016 
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XI8 

)04 

00 
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Fm. 11.28b. Susceptance of individual spherical TIVI wave orders. 

A study of this equation will show that if an infinite number of n's are 
present, the total Y does not converge since finite contributions to sus-
ceptance are added by the higher n's forever. However, this is only 
true for an infinitesimal gap, for which an infinite susceptance term 
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might be expected. When the gap is finite, a point will be reached at 
which the coefficients b„ (and hence Y.) will begin to decrease, ap-
proaching zero as n approaches infinity This occurs for harmonic 
solutions which vary appreciably in the n (cos 0) function over the 
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FIG. 11.28e. Total admittance, conductance, and susceptance for spherical antenna. 

region of the gap. Consequently, the actual total admittance cannot be 
obtained until the width of the gap is known. However, the form of the 
curve and the order of magnitude of admittance will be changed little 
by missing the point by a few n's above which contributions to Y from 
Y. should cease. Consequently, a representative curve for n = 120r 
is plotted in Fig. 11.28c, using up to n = 19. The conductance or real 
part does converge and so the curve for conductance should be quite 
accurate. 

These conclusions from the admittance curves are of importance. 
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1. Admittance of any mode, Ya, is zero at zero frequency. 
2. For low frequencies (ka < n) admittance is mainly a susceptance 

proportional to frequency, thus representing a pure capacitance: the 
capacitance between the hemispheres. 

3. In the region of ka = n both conductance and susceptance reach 
a maximum. 

4. Input admittance is capacitive at any frequency. 
5. Input conductance at high frequencies approaches a constant value. 
6. Total admittance curve has very flat portions in the neighborhood 

of ka = 2, 4, 6, etc. 

Problem 11.28(a). Show that admittances in a given mode in air approach 
these values at low and high frequencies. 

Y. —*ea/K. ka < n 

Y„ ka n 

where 
(2n + 1 ) (0)12  

— mhos 
120n (n 1) 

Problem 11.28(b). Calculate voltage required to radiate 100 watts at the 
first flat point on the admittance-frequency curve, Fig. 11.28b. 

Problem 11.28(c). Find the point of maximum gradient Er in the antenna, 
and calculate approximately it value in terms of applied voltage. Take ka in the 
vicinity of unity. (Suggestion: calculate only that in the predominant wave mode.) 

11.29 Radiation Efficiency of Spherical Antenna 

The spherical antenna has been assumed to be perfectly conducting, 
but the first order correction for finite conductivity may be made in the 
usual way by finding the losses due to the current flow calculated for the 
ideal conductors, but flowing in the sphere of known conductivity. 
Moreover, to find order of magnitude of these losses, it will be noted 
that at a particular frequency the major part of this loss arises from 
current in the mode which predominates at that frequency. For ex-
ample, in the neighborhood of ka = 1, current is mainly in the n -= 1 
mode. Current density Jo is given by Ho, Eq. 11.28(1). This may be 
written in terms of the admittance defined in Eq. 11.28(4). For the 
nth mode, n (co. 0) 

Jo - Jon /31 (0) 

So in the n = 1 mode, P1 (cos 0) = sin 0, P1(0) = 1. 

VoYi i 
j°1 sn 0 2wa 

[1] 

[2] 
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The average power dissipated in the antenna owing to this current flow-
ing in a conductor of surface resistivity R. is 

.v2 01214 
PL = 2 f 2ra s. in 0 ' ' a d» 

2 

niYii2R„ 7/2 v2 I y 12R 
sin' dO —  11 8 

27r eln 37r 

The average power radiated in the first mode may be written 

VG, L_R 
2 

[3] 

[4] 

where GI is the conductance, or real part of the admittance calculated 
previously. The ratio of power dissipated to power radiated, consider-
ing only this first mode, is then 

PL 2117112R8 
[5] PR 37-G1 

This result may be interpreted 9,s a radiation efficiency. For example, 
at ka = 1, Gl = 0.0125 mho, I = 3.12 X lir4 mho2. Take R. 
for copper at 3000 mc per sec which is 0.014 ohm. The ratio of (5) 
is then 0.742 X 10 corresponding to a radiation efficiency of better 
than 99.99 per cent. 
The above calculation is, of course, only approximate since it has not 

considered total current or total radiation, but in the manner used it 
certainly gives the correct order of magnitude, and assures us of these 
two points: 

1. The antenna is extremely efficient as a radiating device. 
2. The analysis based on perfect conductivity must be exceedingly 

good. 

Problem 11.29(a). Calculate losses more accurately at ka = 1, considering 
more terms in the series, and compare with the above approximate result. 

Problem 11.29(b). Calculate losses approximately in the neighborhood of 
ka = 3. 

11.30 Spheroidal Antennas 
Stratton and Chu" have given not only solutions for spherical 

antennas but also for prolate spheroidal antennas. Such a solution 
includes all spheroidal shapes between the sphere just studied and a thin 
wire (Fig. 11.30a). 
The assumptions of Stratton and Chu are those used in the spherical 

13 Journ. Appt. Phys., March, 1941. 
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antenna of the previous articles. Axial symmetry is assumed, and 
voltage is applied across a very small gap at the center. Results are 
quite similar in nature but different in magnitude from the results for 
the sphere. Input admittance may again be expressed as the sum of a 
large number of input admittances, one for each harmonic mode of 
oscillation of the antenna. However, for large eccentricities (large ratios 
of length to diameter) the resonances of each of these modes are very 
sharp, as contrasted to the broad resonances of the sphere. At a given 
order of resonance (n -- 1, 3, 5, etc.) the other modes are correspondingly 
less important than in the sphere, so that the resonant mode practically 
determines the antenna characteristics in the neighborhood of resonance. 

Fm. 11.30. Transition from sphere to thin spheroidal wire dipole. 

In the limit of an infinitesimally thin wire, the nth mode becomes 
resonant slightly below L = nX/2. These are true resonances in that 
the susceptance component of Yn actually goes through zero and 
becomes inductive for frequencies above resonance, whereas for the 
sphere it is always positive (capacitive). At frequencies much higher 
than resonance, susceptance in the nth mode approaches zero and con-
ductance approaches a small but constant value. This constant value 
is zero in the limiting case of an infinitesimally small wire, the value 
found in Prob. 11.28a in the limiting case of a sphere, and something 
between for medium eccentricities. 
These characteristics result in the final curve for input impedance in 

the neighborhood of the first resonance, as plotted by Stratton and Chu, 
Figs. 11.30b and c. Again it must be realized that the harmonics cannot 
be combined exactly until the exact size of gap and exact distribution of 
applied voltage across the gap is known, yet the form of the curves is 
accurate and magnitudes are very nearly correct unless the gap is in-
finitesimal (in which case an infinite input capacitance must be ob-
tained). The LID = 1 curve is of course the case of the sphere calcu-
lated earlier. 
A study of the curVes shows many features associated with past 

antenna knowledge. The radiation resistance for L/X 0.5 (a half-
wave dipole) is found to be about 72 ohms, near the value calculated 
previously. This varies little for any eccentricity. The condition for 
zero reactance occurs at something less than a half wavelength for long 
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thin wires (about 0.49X or 98 per cent of the antenna length). For 
fatter wires this condition of zero reactance actually may occur for L 
greater than a half wavelength (or at a higher frequency than before). 
In the limit of the sphere there is no place at which input reactance is 
zero; there is always a capacitive component. 
The increase in broadness of the impedance curve is evident for the 

fatter antennas, thus making available the wide band width required 
for television antennas. 

Finally, Stratton and Chu have plotted the actual current distribution 
along the antenna for a thin spheroid (large LID) and found it to vary 
little from the sinusoidal distribution usually assumed in the conven-
tional methods of calculating antennas. 
We will be able to compare some of these results with those obtained 

by Schelkunoff in the later articles. 

11.31 The Biconical Antenna; Equivalent Circuit for Input 
Impedance 

The straightforward solution of Maxwell's equations subject to 
boundary conditions of the antenna has led to results which are of great 
interest, especially those results from the study of spheroidal antennas 
undertaken by Stratton and Chu. However, these results are not easily 
used for antennas of other more general shapes. We consequently 
return to a study of the viewpoint developed by Schelkunoff which is 
particularly rich in physical pictures. The rigorous field analysis in 
this method is performed on the biconical antenna, consisting of two 
coaxial cones placed tip to tip with an infinitesimal gap between apices, 
across which excitation may be applied. The principal and higher 
order waves on these cones have been discussed with reference to this 
problem earlier in this chapter (Art. 11.03). The next step is to show 
that input impedance for the antenna may be calculated exactly from 
an equivalent circuit in which a transmission line of length 1 (the cone 
length) is drawn for the principal wave, and the effect of local waves is 
obtained from a lumped terminating impedance at the end, r = 1. 
The form of solutions for the outer region (Fig. 11.31a) is exactly that 

for the spherical wave types developed in Art. 11.25. That is, axial 
symmetry (a/ao --- 0) will be assumed and only the TM wave com-
ponents Ho, Er, and E0 will be excited; the axis (0 = 0, ir) is included in 
this region, so only the PI (cos 0) functions are required, and n must be 
an integer; the region extends outward to infinity, so the second Hankel 
function will be used for the Bessel function solution. Equation 
11.25(19) may then be used directly for the region r> 1 with Zn+i 
read as 1-1. 
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For the region between the cones, r < 1, there is the principal wave, 
and to this must be added higher order TM waves similar to those in the 
space outside the antenna. The TM waves for this region will, however, 
be somewhat different in form. The Bessel function solution in this 
region can contain only a Jni_i term since /11,i+i becomes infinite at 
r = O. For future purposes note that all field components in these 
higher order waves then disappear at r = 0 since J„±1 (0) = O. More-
over, a second Legendre function solution is required for this region to 

Fla. 11.31a. Biconical 
antenna. 

El 

FIG. 11.31b. Equivalent 
circuit of biconical an-

tenna. 

account for the two boundary conditions of the cones at o = e and 
ir — e. This second solution is usually denoted (21 (cos 0). Its value 
of infinity on the axis does not trouble us since the axis is excluded from 
the dielectric region over which the wave solution is to apply by the con-
ducting cones. Thus with the Bessel function read as J, and an extra 
associated Legendre function, the TM waves applicable to the region 
r < I will be similar to Eq. 11.25(19). The order n (probably better 
written y) is in general not an integer because of the presence of the 
cones.' This is in fact determined by the boundary conditions E0 = 
at O = e, ir — 
The total current flow in the cones is proportional to H. 

1(r) = 27rr sin 01010_0 [1] 

Since 110 in the region of the cones is made up of contributions from the 
principal and complementary waves, so is I. 

1(r) = 10(r) ± (r) [2] 

/0 denotes the current from fields in the principal wave, from the 
higher order waves. The latter is zero at r = 0, since the higher order 

14 It is then possible to use Pe ( — cos 8) as a second independent solution in 
place of Qr (cos 8), as is done by Schelkunoff; he also gives equations in terms of 
the ordinary Legendre functions rather than the associated, since the two are re-
lated by the simple derivative. 
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wave components disappear at the origin. Total current flow into the 
antenna at r = 0 is then only that in the principal wave. 

/(0) = /0(0) [3] 

Now define a total voltage between the two conical conductors as the 
integral of E0 over a surface r = constant. 

ir —0 
V (r) = —r f Eo dO 

A study of this integral for the higher order wave components of E0 
would reveal that the net integral is zero for all such waves at any radius 
and has a contribution only for the principal wave. The corresponding 
situation is readily seen in the higher order waves between parallel planes 
or rectangular wave guides, where the sinusoids representing transverse 
electric fields yield just as much negative as positive contribution to the 
integral of electric field, and so give a net integral of zero. 

• V (r) = V o(r) [4] 

Finally if total current is zero at the end of the antenna with r = 1, 
(2) then requires 

1(1) = 0 or /o(/) = —11(1) [5] 

Thus if an equivalent transmission line circuit is drawn to represent 
the behavior of the principal wave, current in this wave at the end must 
not be zero as was supposed in drawing the first approximation of an 
open-circuited line in Art. 11.03, but has the value given by (5). We 
can assure that this value will be obtained from the equivalent circuit 
by placing an impedance Z. across the line at r = 1 where 

ZL — —/,(/) 

Thus the behavior of the principal wave is exactly described by the 
equivalent circuit of Fig. 11.31b, where Zr. is defined by (6). More-
over, since input current in the principal wave is exactly the total input 
current by (3), and voltage in the principal wave is total voltage every-
where by (4), the input impedance calculated from this principal wave 
equivalent circuit is the total input impedance. Of course it is not 
necessary that total current be zero at the end of the antenna in order 
for the equivalent circuit to be of use. For a finite 1(1), I (1) — is 
the current to be accounted for by the lumped impedance. 
Although the equivalent circuit has been shown to be exact for calcu-

lation of input impedance for any given condition, to show that it is use-

[6] 
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ful requires proof that the impedance ZL defined by (6) is not a function 
of the voltage, and that it can be calculated at least approximately for a 
given antenna system in terms of the dimensions of the antenna. These 
two requirements are met, as will be seen next. 

Problem 11.31(a). Consider a biconical antenna with / = X/4. From the 
approximate value of power radiated from a half-wave dipole in Art. 11.09, find the 
expression for the appropriate value of resistance to use for ZL to account for this 
radiated power, if the reactive part of this is neglected. For a thin antenna 1,/, = 0.1°, 
and a thick antenna ip = 5°, find the values of this resistance. Assuming that the 
resistance does not vary appreciably with frequency over a small range, plot input 
impedance of the antenna over a small range about the resonant length / = X/4 for 
the two antennas. What conclusion do you draw on impedance band width of 

thick antennas versus slender ones? 
Problem 11.31(b). Assuming that the foreshortening of the thin spheroidal 

antennas mentioned in Art. 11.30 is of the proper order of magnitude for the conical 
antenna, what order of reactance component for ZL do you predict for the above 
two antennas? Compare with the resistance component. 

11.32 Radiation Impedance of Biconical Antenna 
In order to calculate ZL in the equivalent circuit of Fig. 11.31b, 

Schelkunoff has shown two methods. In the first method, the complex 
Poynting flow of power from an infinitesimal biconical antenna is com-
puted, and this is interpreted in terms of an input impedance. By 
comparing the result with the expression for input impedance in the 
equivalent circuit with Zo --> co, ZL is identified as 

ZL —   [1] 
G (kl) jF (kl) 

where k = (Wile = 27/X. G(kl) and F (ici) are functions of the electri-

cal length and are plotted in Fig. 11.32a. 
The second method shown by Schelkunoff follows from a more direct 

study of the higher order waves. The matching operation of the wave 
solutions is carried through approximately, in a manner applicable to 
cones of high characteristic impedance. The steps are as follows. 

1. It is assumed that field at a large distance from the antenna is of 
the.same form as that found previously (Art. 11.07) for a dipole antenna. 
This function of O is expanded in a series of Legendre polynomials in 

cos O by the rules used in Art. 11.27. 
2. By noting the limiting case of the wave solutions, Eq. 11.25(19), 

for large values of kr, the unknown coefficient of the nth order term 
may be evaluated by comparing with the corresponding term in the 
series from, step 1. Coefficients are of course proportional to principal 
wave current or voltage. Thus the field in the region r > 1 is in reality 
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1. Input resistance in the neighborhood of the first resonance is close 
to the value 73 ohms for a half-wave dipole (Art. 11.09) regardless of the 
size of the antenna. 
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Fla. 11.32d. Per unit foreshortening of biconical antenna. 

2. Resonance occurs for the antenna somewhat shorter than the corre-
sponding integral number of half waves, this shortening being greater 
for the lower characteristic impedances. A curve of shortening versus 
Z0 for the first three resonances is given in Fig. 11.32d. 

3. Resonance is sharper for high characteristic impedances, again 
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ful requires proof that the impedance ZL defined by (6) is not a function 
of the voltage, and that it can be calculated at least approximately for a 
given antenna system in terms of the dimensions of the antenna. These 
two requirements are met, as will be seen next. 

Problem 11.31(a). Consider a biconical antenna with / = X/4. From the 
approximate value of power radiated from a half-wave dipole in Art. 11.09, find the 
expression for the appropriate value of resistance to use for ZL to account for this 
radiated power, if the reactive part of this is neglected. For a thin antenna iP = 
and a thick antenna 4/ = 5°, find the values of this resistance. Assuming that the 
resistance does not vary appreciably with frequency over a small range, plot input 
impedance of the antenna over a small range about the resonant length / = X/4 for 
the two antennas. What conclusion do you draw on impedance band width of 
thick antennas versus slender ones? 

Problem 11.31(b). Assuming that the foreshortening of the thin spheroidal 
antennas mentioned in Art. 11.30 is of the proper order of magnitude for the conical 
antenna, what order of reactance component for ZL do you predict for the above 
two antennas? Compare with the resistance component. 

11.32 Radiation Impedance of Biconical Antenna 
In order to calculate ZL in the equivalent circuit of Fig. 11.31b, 

Schelkunoff has shown two methods. In the first method, the complex 
Poynting flow of power from an infinitesimal biconical antenna is com-
puted, and this is interpreted in terms of an input impedance. By 
comparing the result with the expression for input impedance in the 
equivalent circuit with Zo —› co, ZL is identified as 

172 

ZL — 
G (kl) jF (kl) 

where k =&We = 21r /X. G(kl) and F (kl) are functions of the electri-

cal length and are plotted in Fig. 11.32a. 
The second method shown by Schelkunoff follows from a more direct 

study of the higher order waves. The matching operation of the wave 
solutions is carried through approximately, in a manner applicable to 
cones of high characteristic impedance. The steps are as follows. 

1. It is assumed that field at a large distance from the antenna is of 
the'same form as that found previously (Art. 11.07) for a dipole antenna. 
This function of O is expanded in a series of Legendre polynomials in 
cos O by the rules used in Art. 11.27. 

2. By noting the limiting case of the wave solutions, Eq. 11.25(19), 
for large values of kr, the unknown coefficient of the nth order term 
may be evaluated by comparing with the corresponding term in the 
series from, step 1. Coefficients are of course proportional to principal 
wave current or voltage. Thus the field in the region r > 1 is in reality 

[1] 
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1. Input resistance in the neighborhood of the first resonance is close 
to the value 73 ohms for a half-wave dipole (Art. 11.09) regardless of the 
size of the antenna. 

4000 

2000 

1000 

e. 800 

• 600 

ti 400 

200 

100 

Z0=1200 1200 

Z.= 1000 1000 

Zo= 700 

600 

700 

Zr= 600 

1200 
1000 — 
700 
600 

.1 .2 .3 .4 .6 .7 .8 

FIG. 11.32c. Input reactance of biconical antenna. 

Z11, 

.3 

.2 

.1 
0.9 
0.8 
1.7 
0.6 

0.5 

0.4 

0.3 

0.2 

01 

p =1 (First Resonance) 

p -3 (Third Resonance) 

p= 2 (Second Resonance) 

I I 
300 600 1000 

Z., Characteristic Impedance, Ohms 

FIG. 11.32d. Per unit foreshortening of biconical antenna. 

2. Resonance occurs for the antenna somewhat shorter than the corre-
sponding integral number of half waves, this shortening being greater 
for the lower characteristic impedances. A curve of shortening versus 
Zo for the first three resonances is given in Fig. 11.32d. 

3. Resonance is sharper for high characteristic impedances, again 
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ful requires proof that the impedance ZL defined by (6) is not a function 
of the voltage, and that it can be calculated at least approximately for a 
given antenna system in terms of the dimensions of the antenna. These 
two requirements are met, as will be seen next. 

Problem 11.31(a). Consider a biconical antenna with / = X/4. From the 
approximate value of power radiated from a half-wave dipole in Art. 11.09, find the 
expression for the appropriate value of resistance to use for ZL to account for this 
radiated power, if the reactive part of this is neglected. For a thin antenna ip = 0.1., 
and a thick antenna ‘p = 5°, find the values of this resistance. Assuming that the 
resistance does not vary appreciably with frequency over a small range, plot input 
impedance of the antenna over a small range about the resonant length / = X/4 for 
the two antennas. What conclusion do you draw on impedance band width of 
thick antennas versus slender ones? 

Problem 11.31(b). Assuming that the foreshortening of the thin spheroidal 
antennas mentioned in Art. 11.30 is of the proper order of magnitude for the conical 
antenna, what order of reactance component for ZL do you predict for the above 
two antennas? Compare with the resistance component. 

11.32 Radiation Impedance of Biconical Antenna 
In order to calculate ZL in the equivalent circuit of Fig. 11.31b, 

Schelkunoff has shown two methods. In the first method, the complex 
Poynting flow of power from an infinitesimal biconical antenna is com-
puted, and this is interpreted in terms of an input impedance. By 
comparing the result with the expression for input impedance in the 
equivalent circuit with Zo —> 00, ZL is identified as 

ZL =   Eli 
G(k1) jF (kl) 

where k = coN/p.E -= 2711X. G(k1) and F(k1) are functions of the electri-
cal length and are plotted in Fig. 11.32a. 
The second method shown by Schelkunoff follows from a more direct 

study of the higher order waves. The matching operation of the wave 
solutions is carried through approximately, in a manner applicable to 
cones of high characteristic impedance. The steps are as follows. 

1. It is assumed that field at a large distance from the antenna is of 
the'same form as that found previously (Art. 11.07) for a dipole antenna. 
This function of O is expanded in a series of Legendre polynomials in 
cos O by the rules used in Art. 11.27. 

2. By noting the limiting case of the wave solutions, Eq. 11.25(19), 
for large values of kr, the unknown coefficient of the nth order term 
may be evaluated by comparing with the corresponding term in the 
series from, step 1. Coefficients are of course proportional to principal 
wave current or voltage. Thus the field in the region r > Z is in reality 
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taken as that field found previously from the integration of effects from 
the assumed sinusoidal distribution of current, but now expanded as a 
sum of TM waves. 

3. Now it is next noted that the TM wave solutions inside the cone 
region approach exactly the corresponding waves in the space outside as 
Zo —> co. Thus for matching of E, across the boundary, the coefficients 
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of corresponding wave orders inside and outside must be equal in the 
limit of Zo = ca since there is no E, component in the principal wave. 
For large but finite values of Zo; the coefficients inside may then be 
taken as equal to those outside to a first approximation. Coefficients of 
higher order waves inside the antenna region are then obtained in terms 
of the principal wave current or voltage. Thus the step 3 of the con-
verging step-by-step method sketched in Art. 11.04 is performed, at least 
approximately. 

4. Since coefficients for Ho of the higher order waves are now deter-
mined, current in the cones due to these is given by Eq. 11.31 (1). Once 
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this current is determined and written in terms of voltage in the principal 
wave at r = 1, ZL is given by Eq. 11.31(6). The method again gives the 
same form as in (1), and 

G(k1) = E b„,4„+.1(k1) 

F (kl) = — E b.../2„,„(kI)N2.+4 (Id) 
m=o 

where 
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[3] 

11.32b. Input resistance of biconical antennas. 

Curves showing the resistance and reactance components of input 
impedance for biconical antennas as a function of length and characteris-
tic impedance are shown in Figs. 11.32b and c. These are calculated 
from ordinary transmission line theory for the equivalent circuit Fig. 
11.31b with ZL defined by the above. These important practical points 

follow. 
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1. Input resistance in the neighborhood of the first resonance is close 
to the value 73 ohms for a half-wave dipole (Art. 11.09) regardless of the 
size of the antenna. 
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2. Resonance occurs for the antenna somewhat shorter than the corre-
sponding integral number of half waves, this shortening being greater 
for the lower characteristic impedances. A curve of shortening versus 
Zo for the first three resonances is given in Fig. 11.32d. 
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demonstrating the broad band input impedance properties of the fatter 
antennas. 

4. In the neighborhood of the second resonance (high driving point 
impedance antennas) input resistance is a definite function of Zo as 
shown by Fig. 11.32b. 

Problem 11.32. Expand the field of a dipole antenna calculated approximately 
in Art. 11.07 in a series of spherical transverse magnetic waves. 

11.33 Antennas of General Shape 

Schelkunoff has extended results of the analysis based on the biconical 
antenna to antennas of other shape. The method is approximate, but if 
antennas are not of too great diameter to length ratio, these approxima-
tions are easy to accept on a physical basis. It is assumed that the same 
equivalent circuit applies (Fig. 11.31b), 
but the shape of the antenna is taken into 
account by considering the antenna as a 

non-uniform transmission line. For ex- Fla. 11.33a. Cylindrical dipole 
ample, if the antenna is cylindrical (Fig. interpreted as a non-uniform trans-

11.33a), the capacity and. inductance per mission line. 

unit length may be obtained approxi-
mately at any radius by considering the values for a cone that would 
just pass through this radius. For small ratios of air (a = antenna 
radius, r = distance along antenna from center), 

2 g 2r 
L • — In —  

ir ir p 
C ire 

2r 
In — 
P 

[1] 

Thus L and C, and hence Zo, are functions of r. 
As a first approximation, all previous curves plotted for the biconical 

antennas may be used, with characteristic impedance taken as an average 
value over the length defined by 

Zo. = —1 er Zo (r) dr [2] 
/ o 

Formulas for the average characteristic impedance for cylindrical, 
spheroidal, and diamond shape longitudinal-sectioned wires are given 
in Table 11.33. 
The first approximation, using only average characteristic impedance, 

might be improved by using the same value of ZL found for the conical 
antenna, employing non-uniform transmission line theory to find input 
impedance. The most important correction is probably the correction 
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TABLE 11.33 

[Art. 11.33 

Antenna 
Shape 

Thin Cylinders 

2a 

Average 
character-
istic 
impedance 

Per-unit 
shortening 
at first 
resonance 

120 (In! — 1) 

Thin Spheroids 

2a 

Diamond Shaped 
Longitudinal Section 

120 ln -/ 
a 

120 In 2/; 

27.08 

Zo. 
5040  

(Zoo +83)2 

27.08 

rrZna 

Per-unit 
shortening 
at second 
resonance 

39.92 
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11.33b. Input resistance for cylindrical dipole antenna. 



Art. 11.34] IMPEDANCE OF ANTENNAS ABOVE EARTH 491 

to resonant length arising from the non-uniformity of the transmission 
line. This may be found approximately by other methods. There is 
found to be a correction to resonant length due to the antenna shape 
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Fro. 11.33c. Input reactance for cylindrical dipole antenna. 

which may be either in the same direction or the opposite direction to 
the correction from the terminating reactance. Approximate formulas 
for the net length at first and second resonances are also listed in 
Table 11.33. 
Non-uniform transmission line theory applied to the cylindrical 

antennas gives the input resistance and reactance curves of Fig. 11.33b 
and casa better approximation than that from using average characteris-
tic impedance and results for biconical antennas. 

11.34 Impedance of Antennas above Earth 

Previous results may be applied to antennas above earth if the earth 
may be assumed perfectly conducting for the first approximation. The 
image of the antenna in the plane perfectly conducting earth then gives 
the corresponding free-space antenna configuration to which previous 



of antenna above plane 
waves in the region of the antenna, it is conducting earth. 
found that current due to these reduces to 

zero as the antenna cross section becomes infinitesimal. This is con-
sistent with the statement made in Art. 11.32 that these waves, in the 
region of the antenna, approach the distribution of the corresponding 
wave orders in the space outside the antenna as characteristic imped-
ance approaches infinity, showing that they are unaffected by the infini-
tesimal conductor. Thus in the limit of infinitesimal cross section, the 
current distribution is sinusoidal. This of course does not mean that the 
higher order waves are unimportant in their effects on field distributions. 

Schelkunoff has plotted total current distributions for biconical 
antennas with a characteristic impedance of 1000 ohms. The figures 
show that the real part of total current is very close to that in the 
principal wave, although the imaginary parts differ appreciably. The 
magnitude of total current still compares quite well with that in the 
principal wave. The deviation will, of course, be more marked as the 
antenna characteristic impedance decreases. 

These results are consistent with the curve of Stratton and Chu which 
shows current in the thin spheroidal antenna to be very close to a sinus-
oidal distribution. 
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theory applies. Input impedance of the actual antenna is then half 
that calculated from the free-space configuration. For example, a 

vertical cylinder above earth is analyzed as a 
cylindrical dipole (Fig. 11.34), and resulting 
input impedance is divided by two. 

It 

e ei I 11.35 Current Distribution Along the 
# 1 Antenna 

In addition to the final and very practical 
t results from the previous curves, one may ask 

about total current distribution and its com-
L_J parison with the principal wave current used in 

FIG. 11.34. Use of image approximate antenna analyses throughout the 
for determining impedance chapter. From a study of the higher order 

Problem 11.35. If current in the higher order waves approaches zero as 
Z0 co, the terminating impedance ZL in the equivalent circuit approaches in-
finity. It seems that the possibility of accounting for radiation in the equivalent 
circuit is then excluded. Demonstrate that such reasoning is faulty. 
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B. NOMENCLATURE 

Listed below are some symbols which we have attempted to use consistently for 
representation of certain quantities whenever they arise. Symbols which appear in ' 
different roles in many different articles, or the transient use of the symbols below 
for other purposes are not listed here, but the use should be clear from specific defini-
tion in the articles where they appear. 

Page where 
symbol appears 

a unit vector (subscript denotes direction) 51 
A vector magnetic potential 73 
É magnetic flux density 75 
e velocity of light in free space 165 
C capacitance 2 
Ci(x) cosine integral 434 
D electric displacement flux density 52 
e base of natural logarithms (2.71828 • • • • ) 6 
É electric field intensity 51 
E(r) complete elliptic integral of second kind 228 
f frequency 
G conductance 10 
h metric coefficient in general coordinates 86 
II magnetic field intensity 66 
HIP (x) Minkel function of order 1/, first kind 124 
He (z) Hankel function of order p, second kind 124 
i current density 70 
I current 2 
/,(x) modified Bessel function of first kind, order 1, 118 
Im imaginary part of • • • • 439 
j V — 1 6 
3 linear current density 210 
Jr(x) Bessel function of first kind, order 9 116 
le CON/FLE 

IC(r) complete elliptic integral of first kind 228 
K.(x) modified Bessel function of second kind, order V 127 
1 length 
L self inductance 2 
L magnetic radiation vector 457 
m, n, p integers 
M mutual inductance 222 
ñ inward unit vector normal to a surface 210 
N.,(x) Bessel (Neumann's) function of second kind, order 1, 117 
Ñ electric radiation vector 454 
13 Poynting vector 242 
Pm (s) ordinary Legendre function of first kind, order m 139 
Pe (x) associated Legendre function of first kind, order n, degree m 469 
q charge 50 
q generalized coordinate 86 
Q quality factor of coil or resonant circuit 9 

radius (coordinate in cylindrical or spherical coordinates) 85 
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Page where 
symbol appears 

R resistance 9 
R. skin effect surface resistivity 209 
Re real part of • • • • 18 
S surface 53 
S susceptance 14 
Si(x) sine integral 434 
t time 
T period 9 
u real part of W, function of a complex variable 102 
U energy 2 
y imaginary part of W, function of a complex variable 102 
✓ velocity 25 
v, phase velocity 46 
vo group velocity 46 
✓ voltage 11 
✓ volume 54 
W power 8 
W complex variable 101 
Y admittece 
x, y, z rectangular coordinates 54 
Z impedance 15 
2 complex variable 101 
Zo characteristic impedance 27 
a attenuation constant 32 
t3 phase constant 35 
7 propagation constant, a + jt3 43 
✓ gamma function 128 
8 skin effect depth of penetration 204 
à variation of a quantity 45 
e dielectric constant 50 
1 « dielectric constant on basis of space as unity, e/eo 52 

eo dielectric constant of space 157 
ti e loss factor of a dielectric 274 
n intrinsic impedance of a dielectric, Ve7;« 244 
O polar angle (colatitude) of spherical coordinates 85 
X wavelength 35 
,u permeability 157 
• permeability on basis of space as unity, phto 66 
ilo permeability of space 158 
Y general order in Bessel equation 127 
7r 3.14159 • • • • 
P charge density 53 
Ps surface charge density 57 
u conductivity 172 
✓ a summation 
O azimuthal angle in cylindrical and spherical coordinates 85 
rt, scalar potential 61 
(.., angular frequency, 2rf 5 
✓ del (nabla), operator in vector notation 58 



INDEX 

A 
Admittance, see Impedance 
Ampére's law, 66 
Angle, critical, 267 

of incidence, 259 
of refraction, 263 
of reflection, 260 
polarizing, 269 

Antenna, above earth, 434, 436, 490 
as finite length guide, 422 
biconical, 421, 435, 482 
circular loop, 457 
conical, 421, 435, 482 
diamond-shaped, 491 
differential, 429 
horizontal, 435 
inclined, 435 
long straight, 432, 435, 458 
loop, 457 
rhombic, 463 
spherical, 466 
spheroidal, 480 
thin, 491 

Antenna arrays, 462 
Antennas, assumed currents on, 419, 426 
assumed fields on, 419, 442, 451 
band width of, 485 
combinations of, 460 
distributed constants of, 489 
equivalent circuit for, 423, 483 
foreshortening of, 488, 491 
formulas for, 453 
general shape, 489 
impedance of, 489, 491 

Aperture, radiation from, 444 
Approximations, in circuit equations, 184 
Approximations in induced EMF 

method, 441 
Attenuation constant, 34, 43, 271, 322 

of TE and TM waves, 322, 338, 343, 
372 

of transmission line waves, 32, 43, 293, 
332 

of waves along a plane, 284, 286 

Band width, of antennas, 485 
of resonant cavity, 394 

Barrow, 360 
Beck, 463 

Bei functions, 203 
Ber functions, 203 
Bessel functions, differentiation of, 130 

expansions in, 132 
higher order, 127 
integrals of, 131 
modified, 117 
of first kind, zero order, 116, 122, 125 
of half-integral order, 470 
of large arguments, 129 
of second kind, zero order, 117, 122, 

125 
recurrence formulas, 131 

Biot, 66, 69, 77 
Biot's law, 66 
Boundary, between conductors and di-

electrics, 56, 166 
between two dielectrics, 79, 166, 263 

Boundary conditions for time-varying 
systems, 166-171 

Brainerd, 415 
Brewster angle, 270 
Bruce, 463 

Capacitance, discontinuity, 376 
distributed, of transmission lines, 332 
in circuits shall compared with wave-

length, 182, 231 
in large circuits, 190 
mutual, 231 
of cavity resonators, 392, 399, 401 

Carson, 177, 309 
Carter, 461 
Cauchy-Riemann conditions, 102 
Cavities, rectangular, 383, 395 - 

resonant, 378-418 
cubic, 391 

small-gap, 404 
Cavity coupling, 414 
Cavity resonators, equivalent circuit for, 

390, 405, 408 
Cgs units, 158 
Charge, continuity of, 149 
Charge density, 53 
Charges, electric, 50 

conservation of, 149 
on conductors, 56 

Chu, 360, 420, 451, 480 
Circuit, self-enclosing, 192, 378 

496 
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Circuit analogies, for cavities, 379 
for simple cavity resonators, 390 

Circuit concepts, 175 
at high frequency, 185, 378, 390 

Circuit impedance elements, 196-236 
Circuit radiation resistance, 188 
Coefficient, reflection, 28 
Coefficients, Fourier series, 20 

of capacity and potential, 233 
Coil inductance, 230 
Conductance, distributed, of transmis-

sion lines, 332 
of spherical waves, 476 

Conducting plane with aperture, 444 
Conduction current, 151 

current modulation, 414 
Conductivity, 94, 176 
Conductors, coated, 215 

cylindrical, electrostatic field about, 79 
flat, 205 
imperfect, TE and TM waves along, 

322 
tubular, 217 
waves in, 270 

Cone above imaging plane, 435 
Convection current, 151 
Coordinate systems, 84, 173 
Coordinates, cylindrical, 85, 173 

wave types in, 325 
orthogonal curvilinear, 84 
rectangular, wave types in, 323 
spherical, 85, 174 

Coulomb's law, 50 
Coupling, between circuits, 194 

to cavities, 414 
Couplings, mutual, 194, 221 
Current, displacement, 151 

in resonant cavities, 387, 397, 400, 
413 

straight, magnetic field of, 84 
Current distribution, 199 
on an antenna, 423, 482, 492 
element radiator, 429 

Current loop, magnetic field center, 84 
Current radiators, circularly symmetric, 

456 
Current sheet method for radiation cal-

culations, 444 
Current sheets, 167, 444 
Currents, equivalent magnetic, 445, 457 
Cut-off, frequencies of waves, 296, 322, 

334, 337, 342, 350, 364 
waves below, 371 
waves near, 373 

Cylinders, coaxial, electrostatic field be-
tween, 96 

D 
Damping coefficient, 9, 11 
Decibels, 34 
Del, 58 
Density of electric charge, 53 
Depth of penetration, 204 
Dielectric constant, 50, 157 

complex, 271 
Dielectric core resonator, 404 
Dielectric discontinuity in wave guide, 

369 
Dielectric rod guide, 349 
Dielectrics, waves in imperfect, 270, 322 
Dipole, electrostatic, 80 

half-wave, 436, 441, 458, 462 
Dipole antenna, 432, 436, 441, 458, 472, 

481, 489 
Direct current, magnetic field of, 65 

pulse, on infinite line, 29 
on shorted line, 30 

Directivity patterns, 436, 437, 463 
Discontinuities in guides and lines, 27, 

369, 374, 424 
Discontinuity, inductive, 376 
Discontinuity capacitance, 376 
Displacement current, 151 
due to moving charge, 153 
in condenser, 152 

Displacement flux 52 
Distribution problems, static, 93 
Divergence, definition, 57 

of electric field, 57 
of magnetic field, 74 

Divergence theorem, 59 

E 
E waves, 295, 310 
EMF method for antenna calculations, 

438 
Energy, electric, 2, 9, 81, 241, 426 

in capacitance, 2 
magnetic, 2, 9, 83, 241, 426 
stored, in cavities, 387, 398, 401 

in circuit, 9 
in lines, 37 

Energy density, in electric field, 83, 241 
in magnetic field, 83, 241 

Equipotentials, 63 
Euler's constant, 434 
Exponentials, complex, 15 

Faraday's law, 147 
Feldman, 420 
Field, applied, 176 
Field distribution, around radiators, 423, 

430, 433, 436, 449, 455, 463 
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Field distribution, in cavities, 402, 403 
in wave guides, 329, 338, 343 

Field equations, for time-varying sys-
tems, 171 

in various coordinate systems, 173 
Field intensity, 51 
Field mapping, 98 
Field strength patterns for antennas, 436 
Fields, assumed over an opening, 445 

at a boundary, 166 
conservative, 60 
electrostatic, 48-65 
in space, from fields on a boundary, 

451 
magnetic, 65 
tangential, 166 

Flow functions, 103 
Flux, electric displacement, 52 

magnetic, 75 
Flux linee, 52 
Flux tubes, 55 
Force, between static current elements, 

65 
on charges, 50 

Foster, 463 
Fourier analysis, applied to transmission 

lines, 39 
of square wave, 21 

Fourier series, 19-22 
Frequency, characteristics, for TE and 

TM waves, 323 
of resonant cavities, 384, 397, 403, 405, 

407, 408 
of simple oscillating circuit, 6 

Functions, analytic, 101 
complex, 100 
orthogonality of, 20, 132, 140, 470 

G 
Gaussian units, 154 
Gauss's law, 52 
Gradient, 62 
on antenna surface, 479 

Guide, biconical, 361, 421 
hollow-pipe, see Wave guide 
parallel plane, 292 
short-circuited, 368 

H 
H waves, 295, 318 
Hahn, 375, 410 
Hankel functions, 124, 471 
Hansen, 378 
Harmonic motion, equation, 3 
Harmonic series, radial matching, 133 
Harmonics, cylindrical, 114, 133, 135 

Harmonics, cylindrical, expansion in, 119 
in Fourier series, 19 
spherical, 137 

expansions in, 141 
Heaviside-Lorentz units, 155 
Helmholtz coils, 142 
Horns, electromagnetic, 360 

Image, electrostatic, 143 
of antenna, 434, 492 
of electron beam, 146 

Image, line, 144 
Impedance, characteristic, of line, 27 

elements of circuit, 196 
input, to L-C circuit, 13 

to transmission line, 35 
internal, 196 
intrinsic, 244 

of conducting materials, 271 
of antennas, 475, 489, 490, 491 
of conductor, 209, 215, 217 
of lines, 27, 44, 293, 332 
of resonant cavity, 393, 399, 401,413 
of round wires, 210, 212 
per unit square, 209 
waves, 244, 313, 320, 322 

Impedance concept, for waves, 248,251 
Incidence, angle of, 259 
Inductance, circular loop, 228 

coaxial circuit, 229 
distributed of transmission lines, 332 
high-frequency, 187 
in circuits small compared with wave-

length, 180, 221, 228 
magnetic energy in, 2 
mutual, between circular loops, 224 
Neumann's formula for, 187, 223, 226, 

438 
of large circuits, 185, 189 
of practical coils, 230 
resonant cavity, 390, 399, 401, 409 

Induction, coefficients of, 233 
Input impedance, to L-C circuit, 13 

to transmission line, 35 
Input reactance, of biconical antennas, 

488 
of cylindrical dipole, 491 

Input resistance, of biconical antennas. 
487 

of cylindrical dipole, 490 
Intensity, field, 51, 66 

radiation, 456 

Jamieson, 376 
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Kirchhoff's law, 2, 176, 180, 184, 195 
Kirchhoff's theorem, 453 
Klystron, 414 
Koehler, 415 

Labus, 420 
Laplace's equation, 64, 93 
Law, Ampère's, 66, 69, 77 

Biot's, 66 
Coulomb's, 50 
Faraday's, 147 
Gauss's, 52 
Kirchhoff's, 2, 176, 180, 184, 195 
of inverse square, 50 
Ohm's, 94, 176 
Savart's, 69, 77 

Legendre functions, associated, 469 
Legendre's equation, 139, 469 

polynomials, 139, 469 
Line, coaxial, radiation from end of, 448, 

451 
Line integral of electric field, 61 

of magnetic field, 69 
Line resonator, coaxial, 404,408 

conical, 411 
Lines, of flux, 52 

transmission, see Transmission lines 
Loading, on radial lines, 407, 408 
Logarithmic decrement, 9 
Loss factor,•274 
Lossy circuits, 7 
Lossy transmission lines, 32, 42, 306 
Love, 443 
Lowry, 463 

MacDonald, 443 
Maxwell's equations, 147-175 

circuital relations from, 178 
in various coordinate systems, 173 

Mks units, 156 

N 
Nepers, 34 
Neumann's formula for inductance, 187, 

223, 226, 438 

O 
Ohm's law, 94, 176 
Operator, vector, 58 
Oscillations, decay of, 9 

forced, 11 
free, 1 
in simple circuits, 1-15 
with losses, 7, 10 

Permeability, 66, 157 
Phase, of current density distribution, 

204 
Phase constant, 35, 43, 243, 332 
Phase velocity, 35, 257, 322 
Planes, waves guided by, 282, 284 
Plane conductor, 205, 209 
Plane wave, radiation source, 459 
Plane waves, 242 
Poisson's equation, 64 
Polarization, circular, 248 

elliptical, 247 
horizontal, 247 
of waves, 246, 260, 262, 263 

Polygons, transformations of, 110 
Potential, electric vector, 446 

electrostatic, 61 
equations for time-varying systems, 

171 
high-frequency concepts of, 147 
retarded, 162 
scalar magnetic, 77 
used with varying charges and cur-

rents, 159-166 
vector magnetic, 73, 78, 160, 446 

Potential difference, 61 
Potential functions, from complex func-

tion theory, 103 
Power calculations, using complex quan-

tities, 17,429 
Power density, polar plot of, 437,463 
Power factor, of dielectrics, 274 
Power flow, in plane waves, 245 
Power loss, in resonant cavities, 389, 398, 

401, 413, 416 
in TE and TM waves, 322 
in transmission lines, 33, 332 
on antenna surface, 480 

Power radiation, general formula, 453-
457 

in complex notation, 429 
Power transfer, in transmission lines, 

33 
in wave guides, 314, 322 

Poynting calculations, for antennas, 426, 
453 

systemization, 453 
Poynting theorem, 240, 426 
Poynting vector, 242, 426 
time average, 429 

Product, cross, 67 
dot, 54 
scalar, 54 
vector, 67 

Product solutions, 113-143 
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Propagation, of electromagnetic waves, 
236-332 

Propagation constant, 43, 243, 312, 322, 
332 

Q (quality factor), of circuit, 9, 10 
practical coils, 231 
resonant cavities, 390, 399, 401, 413 
resonant lines, 38 

Quarter-wave antenna, 437 
Quarter-wave line, 35, 38, 369 
Quarter-wave matching sections, 35, 369 

Radiation, 418-492 
from antennas, see also Antennas 
from aperture, 444 
from circularly symmetric currents, 456 
from current element, 429 
from end of guide, 422,448 
from end of coaxial line, 448, 451 
from parallel wire line, 462 
from single direction currents, 456 
from spherical antenna, 480 

Radiation efficiency, 479 
impedance of biconical antenna, 485 

Radiation intensity, 456, 458, 460, 461, 
462, 465 

Radiation resistance, 188, 190, 432, 434, 
437, 441, 450, 458 

Radiation patterns, 436, 437, 463 
Radiation vector , 454, 461 
Radiators, see also Antennas 

combination of, 460 
mutual effects in, 460 

Reflection, at end of guide, 367, 422 
coefficient of, 28, 252, 254, 261, 262, 

264, 265, 367 
of electromagnetic waves, 248 
of transmission line waves, 27 

Refraction, angle of, 263 
Reich, 415 
Resistance, distributed, of transmission 

lines, 332 
of resonant cavity, 393, 399, 401, 413 
radiation, 188, 190, 432, 434, 437, 441, 

450, 458 
Resistivity, surface, 209 
Resonator, cavity, 378-418 

coaxial line, 404, 408 
conical line, 411 
cylindrical, 396 
modes in, 402 

foreshortened, 404 
radial, 406,408 
rectangular box, 380, 383, 395 

Resonator, rectangular box, modes in, 
395 

spherical, 399 
modes in, 402 

S 
Savart, 69, 77 
Scalar, definition of, 50 
Scalar product of vectors, 53,54 
Schelkunoff, 254, 277, 302, 309, 420, 451, 

453,468 
Schwarz transformation, 111, 113 
Self inductance, of circular loop, 228 
Self inductance calculations, 228 
Series, Fourier, 19 

of Bessel functions, 132 
Series solutions, simple harmonic motion, 

3 
in cylindrical harmonics, 119, 133, 135 
in spherical harmonics, 141 
in spherical waves, 473 

Sheets, terminating, 277, 370 
Shielding, 233 
Siegel, 420 
Simpson's rule, 436 
Skin effect, 196-221 

differential equations, 202 
penetration depth, 204 
similitude relations for, 221 

Spheres, concentric, electrostatic field 
between, 97 

Snell's law, 263 
Solenoid inductance, 230 
Solutions, to Laplace% equation, 92-147 

to simple harmonic motion equation, 
5, 6, 15 

to wave equation, 24 
Southworth, 367 
Step discontinuities, 374 
Stokes' theorem, 76 
Stratton, 221, 241, 292, 420, 459,480 
Superposition, of antenna fields, 460 

of series solutions, see Series solutions 
Surface, equipotentiai, 63 
Surface charge, 57 
Surface integral, of electric flux, 53 
Surface resistivity, 209 
Susceptance, of spherical waves, 477 

TE waves, 295, 301, 318, 321, 336, 341, 
402, 468 

TEio wave, in rectangular guide, 344 
TEM waves, 245, 301, 302 
Three-dimensional static problems, 113-

146 
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TM waves, 295, 301, 310, 321, 336, 341, 
402,468 

Transformations, examples of useful, 
105-113 

in complex plane, 104 
Schwarz, 111, 113 

Transition, between coaxial and radial 
resonators, 408 

Transmission, of waves at discontinuity, 
27, 254, 263-270, 369, 374 

Transmission line, analogy for electro-
magnetic waves, 250, 278, 367 

equations, 46, 47, 292, 302, 332 
techniques applied to guides, 367 

Transmission lines, as tuned circuits, 38 
characteristic impedance of, 27, 44, 

293,332 
charged, connected to resistor, 31 

shorted, 30 
coaxial, 332, 404 
conical, 360, 411, 421 
formulas for, 47, 332 
ideal, 22, 34 
imperfect, 32, 306 
natural modes of, 38 
non-uniform, 489 
parallel wire, 332 
radial, 354-358, 406 
resonant, 38 
shielded pair, 332 
shorted, 36, 404 
uniform, 22 
with losses, 32, 42, 306 

Tubes, of flux, 55 
Two-dimensional static problems 98-146 

U 
Unit square impedance, 209 
Unit vectors, 51, 89 
Units, cgs, 158 

clarification of, 154 
conversion table, 159 
electromagnetic, 68, 155 
electrostatic, 50, 155 
Gaussian, 154 
Heaviside-Lorentz, 155 
mks, 156 
practical, 156, 158 
rational, 155, 157 

' v 
Variables, complex, 101 
Vector, curl of, 69 

definition, 50 
Poynting, 242, 426, 429 
unit, 51, 89 

Vector identities, 91 
Vector operator, 58 
Vector potential, electric, 446 

magnetic, 73, 78, 160, 430, 446 
Vector product, 53, 54, 67, 68 
summary of relations, 89-91 

Velocity, group, 46, 297, 313, 322 
of light in free space, 158 
of waves, 25, 44, 240 
phase, 35, 297, 313, 322 

Velocity modulation tube, 414 
Voltage, applied, 178 

induced by changing 
147 

non-sinusoidal, 19 
on antenna, 484 

Volume integral, 54 

magnetic fields, 

Wave, constant-phase plane for, 291 
progressive, radiation from, 458 
square, 21 

Wave concepts of radiation, 421 
equation, 24, 238 
impedance, 252, 313, 320, 322 
types in rectangular coordinates, 323 

in cylindrical coordinates, 325 
velocity, 25, 44 

Wave guides, 282-377 
biconical, 361 
circular cross section, 335 
conical system, 360, 411, 423 
excitation of, 365 
imperfect conducting plane, 284, 286 
rectangular cross section, 341 
single wire, 353 
special cross section, 363 

Wave types, physical explanation, 327 
Wavelength, see also Frequency 

cut-off, see Cut-off 
of cavity resonance, 384, 397, 403, 405, 

407, 409 
Waves, below cut-off, 371 

complementary, 295 
equivalent circuit for, 314, 364, 374, 

423, 483 
guided, 280 
by plane, 282 
by uniform systems, 299 
reception of, 365 

higher order, 294, 295, 333,424 
matching section for, 257, 369 
near cut-off, 373 
normally incident, 248, 254 
on antenna, 422, 425 
periodic, 19 
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Waves, plane, 242-279 
principal, 292, 301, 302, 374, 422, 483 
radial, 354 
reflected, elimination of, 256, 277, 370 
spherical, 361, 456, 467, 477 
standing, 36, 250 
tilted, on plane wave guide, 291 
transmission line type, 292,302 
transverse electric, 295, 301, 318, 321, 

336, 341, 402, 468 
transverse electromagnetic, 245, 301, 

302 
transverse magnetic, 295, 301, 310, 

321, 336, 341, 402, 468 

Waves, traveling, on transmission line, 
34, 292, 301, 302 

Wheeler, 231 
Whirmery, 376 
Wire lines, parallel, 332, 462 
Wires, of circular cross section, 202, 210, 

212 
Woodruff, 415 
Work integral, for electric field, 61 

for magnetic field, 72 

Zero-phase-sequence wave, 354 


