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PREFACE

This book is concerned with certain aspects of electromagnetic theory
in their relation to the problems of modern radio and electronics engi-
neering.

Several years ago, when this book was begun, there was no book
which even approximately filled the very apparent need for an extensive
treatment of field and wave theory from the radio engineer’s point of
view; all the needed information was distributed widely throughout
the literature. Since that time several excellent textbooks have ap-
peared, each of which has filled a part of that need, yet in the present
volume the purpose, order of Presentation, choice of material, and
emphasis are different enough from those of the others so that it is not
a duplication of these.

The present material was first prepared for use in company courses in
which the students were at the same time starting their practice as
engineers. The authors also had occasion to use essentially all the
material of this book in their engineering analysis and laboratory work,
in addition to trying to understand it from the slightly different point
of view necessary for presentation in classes to other student engineers.
The purpose was consequently one in which all the material should
eventually be useful, either for specific design calculations or con-
ceptually for a better general understanding and extension of techniques
first learned empirically. Physical understanding was therefore more im-
portant than mathematical rigor, yet the mathematical treatments had
to be specific enough for usefulness in the required quantitative calcula-
tions. Analogies to any of the well-grounded tools, techniques, or
concepts of the engineer were to be made use of whenever it seemed that
these could ease the way into a new and difficult subject.

Specifically, the most important objectives were the treatments of
high-frequency circuits, skin effect, and shielding problems, problems
of wave transmission and reflection, transmission lines and wave guides,
cavity resonators, and antennas and other radiating systems, given in
the latter two-thirds of this book; also — and this is important — to
correlate fields and waves with circuits so that they are all seen as parts
of a consistent whole. For study of these it is basically necessary only
to present Maxwell’s equations as the set of laws which apply, and then
get on with the job. However, sad experience has made the authors
believe that unless the preliminary introduction to the field equations is
more extensive than a mere presentation, all further studies based upon

RN



vi PREFACE

them are to an extent unsatisfying and insecure. Early chapters are
consequently devoted to the less interesting job of presenting the basic
laws in some detail, raising and answering some of the questions that
the student will otherwise inevitably raise for himself.

This textbook is designed for students who have had the usual engi-
neering mathematics courses through the calculus, but not necessarily
any additional subjects such as vector analysis or extensive courses in
differential equations. The required additional mathematics and vector
language are woven into the presentations of physical laws and procedure
in this text as much as seemed practicable, so that the strong comple-
mentary relations between the physics and mathematics might be made
evident.

The first chapter is introduced to bridge certain gaps; in mathe-
matics, between basic calculus and some of the mathematical tools
required for the study of field and wave theory; in concept, between
straightforward application of Kirchhoff’s laws and the approximations
and defined quantities of high-frequency circuits and transmission line
problems. Elementary differential equation solutions, the Fourier
series, and the use of complex exponentials are thus introduced with
circuit and transmission line problems as oscillation and wave examples.
The purpose is not, however, to present in completeness all important
information on radio circuits and transmission lines. Since the material
in the first chapter was designed for an average engineer or student who
has heard of many of these items but is not completely prepared on some
of them, it may be boring to one well acquainted with the techniques
treated and should therefore be ignored or only skimmed; for one not
at all familiar with any of the material, the objectives may be found to
be too much for one chapter, and it should be supplemented by other
textbooks. An engineer primarily interested in the high-frequency
applications may also deal more lightly with Chapter 5, and parts of
Chapters 2, 3, and 6. One primarily interested in the electromagnetics
of the lower frequencies will, on the other hand, find the first six chapters
of most value. These chapters may, in fact, be considered as a fairly
complete discussion of the electromagnetics underlying electrical engi-
neering up to the higher frequencies, and including an introduction to
them.

The system of units used throughout is the mks system of practical
units, which has fortunately received common acceptance during the
past few years for engineering presentations of electromagnetic subjeets.
However, the laws are first introduced in the older systems of units
(electrostatic and electromagnetic) so that students may have enough
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familiarity with these to use effectively the many valuable books and
articles employing the older systems.

The authors wish to express their thanks for suggestions, corrections,
and other valuable help in the preparation of this textbook to many
students and members of the staff of the Advanced Engineering Program
of the General Electric Company, and especially to Mr. J. F. MecAllister.

Simon Ramo
g Joun R. WHINNERY

Schenectady, New York
March, 1944







CONTENTS

PAGE

Chapter 1 OSCILLATION AND WAVE FUNDAMENTALS . . . 1

Simple Circuits as Examples of Oscillating Systems . . . . . . . . 1

Use of Complex Exponentials . . . . . . . . . . . ... ... 15

Fourier Series . . . . « v « v v e e e e e e e e e e e e 19

Uniform Transmission Lines as Examples of Wave Systems . . .". 22
Chapter 2 THE EQUATIONS OF STATIONARY ELECTRIC AND

MAGNETIC FIELDS . . . . . . . . . .« « o« v« .. 48
Static Electric Fields . . . . . . . . . . . . . . . ... 49
Static Magnetic Fields . . . . . . . . . . .. ... ... .. 65
Simple Applications of the Theory . . . . . . . . . . ... .. 79
Often-Used Relations in Often-Used Coordinate Systems . . . . . 84

Chapter 3 SOLUTIONS TO STATIC FIELD PROBLEMS . . . . 92
Basic Considerations in Solving Field Problems by Differential Equa-

HONS . . v v v e e e e e e e e e e e e e e e e e e 92
Techniques Suitable for Two-Dimensional Problems Only . . . . . 98
Techniques for Solving Three- (or Two-) Dimensional Problems . . 113

Chapter 4 MAXWELL’S EQUATIONS AND HIGH-FREQUENCY

POTENTIAL CONCEPTS. . . . . . . . .. oL 147
The Laws of Time-Variable Electrical Phenomena . . . . . . . . 147
A Clarification and a Choice of Units . . . . . . . . . . . . .. 154
Potentials Used with Varying Charges and Currents . . . . . . . 159
Boundary Conditions for Time-Varying Systems . . . . . . . . . 166

Summary of Field and Potential Equations for Time-Varying Systems 171

Chapter 5 CIRCUIT CONCEPTS AND THEIR VALIDITY AT

HIGH FREQUENCY . . . . . . . . . . . ... ... 175
The Formulation of a Circuit Concept Consistent with Maxwell’s
Equations . . . . . . . . . ... oo 175
The Approximate Circuit Equation and Circuit Constants . . . . 180
High-Frequency or Large-Dimension Circuit Concepts . . . . . . 185
Chapter 6 SKIN EFFECT AND CIRCUIT IMPEDANCE ELE-
MENTS . . . . o e e e e e e e e e e e e e e 196
Skin Effect and the Internal Impedance of a Conductor . . . . . . 196
Calculation of Induetance . . . . . . . . . . . . o oo ... 221
Self and Mutual Capacitances . . . . . . . . . . . . ... 231



X CONTENTS

PAGE
Chapter 7 PROPAGATION AND REFLECTION OF ELECTRO-
MAGNETIC WAVES . . . . . . .. .. ... ..... 236
Waves in Unbounded Regions . . . . . . . . . .. ... ... 238
Reflection of Waves from Conductors and Dielectrics; The Imped-
ance Concept . . . . . . . . . . . . ... ... 248
Waves in Imperfect Conductors and Dielectrics . . . . . . . . . 270
Chapter 8 GUIDED ELECTROMAGNETIC WAVES. . . . . . . 280
Simple Examples of Guided Waves and Wave Guides . . . . . . . 282
Gernieral Analyses of Guided Waves . . . . . . . . . . .. . .. 299
Chapter 9 CHARACTERISTICS OF COMMON WAVE GUIDES
AND TRANSMISSION LINES . . .. . .. ... ... 332
Common Transmission Lines . . . . . . . ... .. ... .. 332
Common Wave Guides . . . . . . . . . . . .. ... .... 335
Other Wave Guiding Systems . . . . . . . . . . ... .... 349
Special Problems in Guided Wave Applications . . . . . . . . . 365
Chapter 10 RESONANT CAVITIES . . . . . .. ... ..... 378
Some Simple Cavities and Lumped Circuit Analogies . . . . . . . 379
Small-Gap Cavities and Cavity Coupling . . . . . . . . . . .. 404
Chapter 11 RADIATION . .". . . . . . .. .. ... ..... 418
Wave Concepts of Radiation . . . . . . . . .. . ... ... 421
Poynting Calculations with Currents Assumed on the Antenna . . 426
The Induced EMF Method . . . . . . . . . . ... . .... 438
Poynting Calculations with Fields Assumed Near the Source . . . 442
Systemization of Poynting Calculations . . . . . . . . . . . .. 453
Combinations of Radiators . . . . . . . . . . ... .. ... 460
Antenna Characteristics by Direct Solution of the Boundary Problem 466
APPENDIX
A. Some Useful References . . . . . . . . . . .. ... ... 493
B. Nomenclature . . . . . . . . . . . . ... 494




1

OSCILLATION AND WAVE FUNDAMENTALS

1.01 Introduction R

This text is concerned with electromagnetics, particularly that
underlying oscillations and waves. Before introducing the laws of
electricity and magnetism for serious study, it will be necessary to dis-
cuss some ideas and mathematics that have to do with oscillations and
waves generally. This will be done by using simple circuits and con-
ventional uniform transmission lines as examples. When this is done,
the objective is not to present the theory of circuits and lines as such.
Indeed the theory underlying both comprises a good part of the text.
The purpose of this chapter is to illustrate (and for some readers to
review) a point of view toward oscillations and waves needed for the
rest of the text. Specifically the objectives are:

1. To present a clear picture of the energy relations in oscillating
systems.

2. To point out criteria relating energy properties of a system to
band width, impedance, etc., for later comparison purposes with cavity
resonators.

" 3. To clarify the concepts of waves, particularly in regard to such
properties as phase velocity, reflection, and characteristic impedance.

4. To point out common properties of transmission lines according to
the conventional distributed constant approach for later comparison
with properties of waves in space and in wave guides.

5. To present or review some fundamental mathematics necessary
for the study of oscillations and waves throughout the book.

6. To develop approximate methods of analysis based upon the physi-
cal picture of the phenomena, so that these may be used in the later,
more difficult problems.

SIMPLE CIRCUITS AS EXAMPLES OF OSCILLATING SYSTEMS

1.02 Free Oscillations in an Ideal Simple Circuit
Let us start with the simplest possible circuit for electrical oscillations,
an ideal condenser connected across an ideal inductance. Consider
first free oscillations, assuming that an amount of energy was supplied to
1




2 OSCILLATION AND WAVE FUNDAMENTALS [Art. 1.02

the combination at some instant (for example, by placing a charge on the
condenser) and that from that time on there is no connection to the
outside. Energy may be stored in the system in

two forms: 0
1. Magnetic energy in the inductance. This
L% \D ==c is analogous to kinetic energy in mechanics and
F has the value
UL = 3LI* (1]
Fra. 1.02, where I is the current flowing through the induct-

ance L.
2. Electric energy in the capacitance. This is analogous to potential
energy in mechanics and has the value

Ue = 3CV? 12]

where V is the voltage across the condenser C.

The presence of energy in the condenser implies a voltage across the
condenser, and a consequent rate of change of current and stored mag-
netic energy in the inductance. Similarly, the presence of magnetic
energy requires a current flowing in the inductance, and a consequent
rate of change of voltage and stored electric energy in the condenser.
We are led then to expect oscillations, since the presence of energy in one
form requires a rate of change of energy in the other. It is also necessary
that the total energy in the system must be a constant, the same at all
instants, since there is no connection to the outside and ideal dissipation-
less conditions are assumed.

Before going further with purely physical reasoning, let us write an
equation for the instantaneous current in the circuit. By Kirchhoff’s

dI
laws, the sum of the induction voltage, L 5 and the condenser voltage

q
= must be zero.
C

a1
L(E+5fldt—0 [3]

If this equation is differentiated with respect to time, it becomes a true

differential equation.
a1 I
Tl b & =
ETe 0
or
d’1 I

T 7 H




Art. 1.03] SOLUTION BY ASSUMED SERIES 3

The differential Eq. (4) is c¢alled the simple harmonic motion equation.
This is probably the simplest and most common of all differential equa-
tions. It will probably be so familiar that the reader will wonder why
we do not immediately write down the answer to the equation. The
objectives here, however, are not to obtain answers to these simple and
well-known problems, but rather to freshen up old techniques and to
develop new ones for the much more interesting problems that lie ahead.

1.03 Solution to the Simple Harmonic Motion Equation by
Assumed Series

The differential equation to be solved is 1.02(4);
oL 1
d* LC

The method to be shown first for solution of this simple differential
‘equation is one which will be necessary for later less familiar equations,
such as the Bessel equation. The method merely recognizes that the
solution to a given differential equation can often be expanded in a power
series. Conversely, we may assume a general power series at the begin-
ning, and determine what form its coefficients must have if the series is
to be a solution for the equation. The required form may be recogniz-
able as the expansion for a known function. At any rate the entire
series, if convergent, may always be used as the solution.

Let us then assume that the solution to (1) will be some series of the
form

1

I=ao+ ait + azt® + agt® + agt + - - - (2]
Differentiating,
I 2 3
i ay + 2ast + 3azt® + 4ayt
And again,
d?I . n
d'7= 2-1a2+3-2a3t+4-3a4t + ..

These series forms may be substituted in (1) to determine the require-
ments on the coefficients in order that the series may satisfy that
equation.

2. lag + 3 205t + 4 - 3042 + 5 4ast® + 6 - Sagt* + - - -

1
—_ =—R,(ao+a1t+a2t2+a3t3+a4t4+---)
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It may not be obvious at once, but a little study shows that if the above
equation is to be true for all values of ¢, coefficients of like powers of ¢
must be equal on the two sides of the equation. That is,

- Q9
3 2-1LC
%= T 3o0c
Gy = — az - ao
¢ 4.3LC 41 (LC)?
ar = — as _ ay
= T 5.4LC 5! (LC)?
=% _ _ O
3 6-5LC 61 (LC)
=% %
%= TyeLc T T TI(LOY
and generalizing, .
o = — O2n—2 _ (—=1)™ag
2n (2n)(2n — 1)LC ~ (2n)! (LO)"
a - _ agn_1 - (—1)"a1
S (2n + 1)(2n)LC ~ (2n + 1)! (LO)"

Notice that the requirements placed upon the constants of the series
by substituting in the differential equation have related all constants
either to ag or a;, but there is nothing relating these two to each other
or to anything else. This seems promising, for two independent solu-
tions and two arbitrary constants are required for a second degree differ-
ential equation. Let us write now the assumed series (2), using these
constants,

t2 t t
I=a°[1_2!LC+4! (LC)? ~ 6! (LC)3+'”] 3]
\717)[ t 8 + A +]

+ (o (LCY% 3T LCY" T 51 (LO)% T (LO)”

Comparison with any tables of series shows that the first quantity in
brackets has the form of the series expansion for a cosine function and
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the second for a sine. That is,

2 2t
Oosx=1—§i+2i—... [4]
. z2 28
smx=x—?]+5—!—--' [5]

So (3) may be written

t - 4
I=aocos(,—_)+a1\/LCsin( )
vVIC VLC
Since a; is arbitrary, the entire quantity @,V LC may be replaced by C,
to stress the point that it is an arbitrary constant. Let us at the same
time replace ap by C; and define

1
Y7 “
Then
I= Cl CcoS w0t+02 sin wyf [7]

This expression is a solution to the differential equation. It has two
independent functions and two arbitrary constants. All is now known
except the values of these constants. These cannot be determined until
more information is given about the manner of starting oscillations in
the cireuit.

1.04 Solution of the Simple Harmonic Motion Equation by
Assumed Sinusoids

The simple harmonic motion differential equation has been solved by
assuming a series solution, determining the form required of that series
by the differential equation, and identifying the resulting series as a
sinusoidal function. Now, we might have guessed at the beginning
that the solution would have been of a sinusoidal form. Although the
frequency was not known, we might have assumed a solution of the form

I = Cq cos wot + Cg sin wyt [1]

where wg has to be determined. It femains to be seen if a function of
this form can satisfy the differential equation which is
a1 )
ez~ LC ' [2]
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to include these in the-cireuit equations rigorously, yet let us first use
physical knowledge to develop an approximate method which will give
the first order effect of the losses, provided that losses are small. The
point of view will be extremely useful in later
analyses of cavity resonators and wave guides.
L If losses are small, physical intuition tells us
L . that the natural period of oscillation will be
: changed little, and over a short period of time
R the solution will be very nearly that for the ideal
circuit. The major correction will be a long-time
Fig. 1.06. decrease in the amplitude of oscillation due to
the energy lost.

It is common experience to find exponential changes for a physical
quantity which decrcases (or increases) at a rate proportional to the
amount of that quantity present. The power loss, or rate of energy
decrease, for this example, is proportional to the amount of energy in the
system. It would consequently be reasonable to expect an exponential
damping factor to appear in the expressions for currents and voltages.
As a first order correction, the expression for current obtained previously
(Prob. 1.05) might be assumed to be multiplied by some negative
exponential

I = A cos (wot + ¢) (1]

The energy in the circuit may be calculated at an instant when it is all
in the inductance

LA?
U = $L(Iuwe)? = 5= o720t [2]

Within the limits of the assumption of relatively small losses, the nega-
tive rate of change of this stored energy over several cycles is merely the-
average power loss.

aUu

— d_t =W [3]
From (2),
aUu LA2 —2at __
g~ TRy = —U [4]
So, by combining (3) and (4), -
w
a=or [5]
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the second for a sine. That is,

2?2 2t
cosx—1—§i+:4—!—--- [4]
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1
= Vio o
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the circuit.

1.04 Solution of the Simple Harmonic Motion Equation by
Assumed Sinusoids

The simple harmonic motion differential equation has been solved by
assuming a series solution, determining the form required of that series
by the differential equation, and identifying the resulting series as a
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where wg has to be determined. It femains to be seen if a function of
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d’r _ I 5
a2~ LC ' 2l



6 OSCILLATION AND WAVE FUNDAMENTALS [Art. 1.04 '

If I is given by (1)

dI

d'—t' = —wO(Cl sin wol — 02 CcOos wot)

d?1 o .

= —wg(Cy cos wet + Cg sin wet) [3]
Substitute (1) and (3) in (2)

1
—wi(Cy cos wot + Cg sin wot) = — IC (C1 cos wot + Cg sin wyt)
If
1
wp = 7 (4]

the equation is satisfied. This value of wg is exactly that defined in
Eq. 1.03(6).

Thus it is demonstrated that if we can guess the form of a solution to a
differential equation, substitution of this form into the equation will
determine whether or not it is a solution and will give values for any
non-arbitrary constants, such as wg above. This method is one of the
most useful for solution of differential equations in engineering,.

1.05 Solution of the Simple Harmonic Motion Equation by
Assumed Exponentials

As a final attack on the differential equation for simple harmonic
motion we shall attempt a solution in terms of exponentials. The wis-
dom of this will shortly be demonstrated. Suppose we try

I = APt + APt [1]
then
d?I
ds
Substitute these in Eq. 1.03(1)
1
PP(A167 + Ape ™) = — 75 (A1 + Ape™)

= p?(A1e* + Axe™)

or

where j =V —1.
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This substitution indicates that (1) is a solution to the simple har
monic motion equation, provided that p = juwo, '

I = Aot + Ageg it [2

Next let us remind ourselves of the identities
&% =cosz +jsinz , |3
€% =cosz —jsinz - [4

These are most conveniently verified by considering the series expan
sion for an exponential.

2,3
Y Y
e”=1+y+2—!+3—!+"'

so _
2 3
7= 14jr— o —j=

T TR

2?2 . 2 2P
(1—5-!+Z!+"')+J<x—3—!+5—!+"')

By comparing with Eq. 1.03(4) and Eq. 1.03(5) these latter series ar
quickly identified as those for cosine and sine respectively, thus verifyin
(8). The corresponding demonstration for (4) is identical to this.

If the identities (3) and (4) are substituted in (2),

I= (Al + A2) cos wol '+](A1 - A2) sin wol

Since A; and A, are both arbitrary, this may be written exactly in th
previous forms,

I = C; cos wpt + Cs sin wot £

For many purposes it will be convenient to use the solution in the forr
of (2) instead of changing to (5). This use of exponentials to replac
sinusoids will be the subject of later discussion.

Problem 1.05. Show that an alternative expression equivalent to Eq. 1.05(
or Eq. 1.05(5) is
I = A cos (wot + ¢)
Relate A and ¢ to Cy and Co.

1.06 Natural Oscillations with Losses — Approximate Method
The circuit analyzed previously was ideal. Suppose we now wish t

consider the effect of the finite losses which must of necessity be preser

in the circuit. As will be shown in the next section, it is a simple matte
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to include these in the-circuit equations rigorously, yet let us first use
physical knowledge to develop an approximate method which will give
the first order effect of the losses, provided that losses are small. The
point of view will be extremely useful in later
analyses of cavity resonators and wave guides.
L If losses are small, physical intuition tells us
L . that the natural period of oscillation will be
. changed little, and over a short period of time
R the solution will be very nearly that for the idea]
circuit. The major correction will be a long-time
Fic. 1.06. decrease in the amplitude of oscillation due to
the energy lost.

It is common experience to find exponential changes for a physical
quantity which decrcases (or increases) at a rate proportional to the
amount of that quantity present. The power loss, or rate of energy
decrease, for this example, is proportional to the amount of energy in the
system. It would consequently be reasonable to expect an exponential
damping factor to appear in the expressions for eurrents and voltages.
As a first order correction, the expression for current obtained previously
(Prob. 1.05) might be assumed to be multiplied by some negative
exponential

I = Ae cos (wot + ¢) 1

The energy in the circuit may be calculated at an instant when it is all
in the inductance
LA?

U= %L(Imn)z = —é—' ¢ 2at [2]

Within the limits of the assumption of relatively small losses, the nega-
tive rate of change of this stored energy over several cycles is merely the-
average power loss.

daU
= WL [3]
From (2),
dau LA® _, .,
g = TRy e = U [4)
So, by combining (3) and (4),
Wi

*=30 5]
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Define the quality factor or @ of the circuit as the quantity

wo (Energy stored in circuit)  wolU

Q:

(6]

Average power loss T Wy

_ w(Energy stored in circuit)
" Energy lost per half cycle

(71

Then (5) may be written
= 2
a=50 8]
The exponential decay is thus expressible in terms of the quantity Q.
The damping is also described sometimes as a logarithmic decrement,
which is the relative amount by which the amplitude of oscillation
decreases in one period.

Ae™ — AeettD

o= Ae_at =1 - C_aT ) aT
provided T is small compared with unity, or
‘ 2 1
s op 2o 1 _ (0]

2Q 20 fo Q

Finally, let us interpret these results for a circuit with losses distributed
as in Fig. 1.06. The current flow through the series combination of R
and L is expressed by

I = A cos (wot + ¢)

(neglecting any exponential damping for a few cycles). The energy
stored in the circuit is the maximum energy in the inductance,

L2
U= 5 A
and the average power loss in resistance K is
RA?
WR, S %R(Im“)z = ——2—-

So Q, defined by (6), is

0y = OUEAD) _ wol

RAZ R [10]
This is the familiar expression for @ used to describe the excellence of an
inductance, wL/R calculated at resonance. It is to be used in (8) or (9)
to give attenuation constant or logarithmic decrement.
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Problem 1.06. (a) If losses are present owing to a conductance G = 1/R;
shunted across the condenser instead of a series resistance in the inductance, show
that the @ to use in the general expressions Eq. 1.06(8) and Eq. 1.06(9) is

wC _ B
G  wlL
(b) If losses arise from both series resistance in L and shunt conductance across C,

demonstrate that the Q to use in the general expressions may be found from the
individual Q’s defined previously.

Qc =

11,1
Q Q1 Qc
1.07 Natural Oscillations with Losses; Solution from Circuit

Equations
The exact solution to the circuit of Fig. 1.06 will now be obtained to
check the approximate results of the previous article.

dI 1
LE+RI+5fIdt—O

is the exact equation of the circuit. Differentiating,
d’1 dar I
L I +R ¥ S o= [1]
Following the method of Art. 1.05, assume a solution of exponential
form,
I = Ae! (2]

If this is substituted in (1) and the resulting equation is solved for p,
it is found that

__E, EY T ;

P="3L 21) ~ IC (8]

Since for low-loss circuits (R/2L)? will be less than 1/LC, it will be
convenient to write (3) as

B, 1 l—ch—— + jwp 4
P = 2L \/L_C 4L— 24 Jwo []
where
- E _
=92 ‘ g
1 R%C \/ 1Y
14
= —_— —_—_— 1_ —
= Ziev ~ i =~ (ao) °

Q denotes woL/R as in Eq. 1.06(10), and wpis 1/V LC.
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The two possible values of p from (4) supply the two independent '
solutions needed for the second degree differential equation. Substitute
these in (2).

[ = Aottt 4 A e eiet
= A 4 A
By substitutions similar to those of Art. 1.02, an alternative expression is -
I = ¢C, cos wit + Ca sin wqi] 7

A comparison with the approximate analysis of Art. 1.06 shows that
the same damping coefficient (5) is obtained. The natural frequency is
different from wo by (6), but this difference is small for low-loss (high-Q)
circuits.

Problem 1.07. Obtain exact results for the cases solved approximately in
Probs. 1.06(a), (b), showing for these also that Q may be used as an indication of
the usefulness of the approximate results.

1.08 Forced Oscillations in an Ideal L-C Cireuit

" In previous examples, it was assumed that oscillations in the simple
resonant circuit were free oscillations caused only by an initial deposit of
energy in the circuit. In most practical cases, however, the circuit is
continuously excited by a source of sinusoidal voltage. As the first
example of such forced oscillations, consider the loss-free parallel L-C
circuit excited by a sinusoidal voltage of constant magnitude (Fig. 1.08).
The total current flow from the source

Il *12
is the sum of currents in the two im- >
pedances. The equations for these two C_l_
currents are l l
dl Vsin wt L QY L
7 71_; = V sin wt (11 '
1 .
o f Iydt = V sin wt [2] Fic. 1.08.

Current may be obtained from (1) by integrating directly and from (2)
by differentiating.

Ll = .—ZCOSwt+CI [3]
w
162 = wV cos wl [4]

The constant term in (3) merely represents a possible constant D-C
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term flowing through the inductance, which is of no interest to the A-C
problem so long as constant elements (linear systems) are assumed.
Thus the total current
I=Il+Iz=V(wC—'-1")COSwt [5]
oL
The above relations, of course, check the well-known behavior of
simple circuits. The current in the inductance has a phase lag of 90°
with respect to its voltage, whereas the current in the capacitance has a
90° phase lead with respect to the voltage. The total current is leading
(the total circuit acts as a capacitance) if wC > (1/wL) and is lagging
(total circuit acts as an inductance) if (1/wL) > «C. If wC = 1/wL
there is no current to be supplied by the source; under this condition the
current flow to the inductance is at every instant exactly equal and oppo-
site to the current flow to the capacitance. The frequency for which this
condition occurs is the natural frequency found previously,

1 1
wC—wL or w_\/ITC—"_wO [6]
At this natural frequency the energy inside the system is a constant
and merely passes back and forth from inductance to capacitance, and
no energy need be supplied by the source at any instant of time. For a
frequency lower than this resonance frequency, the maximum energy
stored in the inductance is greater than the maximum energy stored in
the capacitance, so that this excess energy must be supplied from the
source during one part of the cycle, but will be delivered back to it
unharmed during another part. This excess reactive energy from the
inductance makes the circuit appear as an inductive load.to the source.
Similarly, for frequencies greater than the resonant frequency, the
maximum energy in the capacitance is greater than the maximum
energy in the inductance, and the excess reactive energy that must be
supplied to the capacitance causes the circuit to appear as a capacitive
load to the source.
At the resonant frequency, the energy stored in the circuit is the
maximum energy of the capacitance, or the maximum energy stored in
the inductance, since b.oth are equal.

U=3CVv?
For later use, let us write this from (6) in terms of wg.
V2
U=

- \Fé [7]
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1.09 Approximate Input Impedance at Resonance with Losses
Considered

If the parallel circuit has losses in the coil or condenser, these may be
taken into account from physical consideration of the energy relations
before attempting an exact analysis by the circuit equations.

At resonance, the energy stored in the tuned circuit is given b
Eq. 1.08(7). From the definition of @ given in Eq. 1.06(6), the powe
loss at resonance is

2
Wi = wU _ V° |C I
Q 2QVL

The source must supply to the circuit this amount of power. Th

circuit then looks like a high-resistance R; of value such that
V2
w oR, [2

Ri‘_"Q\/Z(; [3

The approximations of reasonably low losses will be recognized in th
above reasoning, for we have taken the expression for energy stored a
that developed from the loss-free case. In this picture, the major par
of the energy is stored in the circuit and passes back and forth from th
inductance to the capacitance. Only the small amount of power los
in the process need be supplied by the source. The resulting curren
flow to supply this loss component causes the circuit to have a high bu
finite input impedance in place of the infinite input impedance foun
previously.

By comparing with (1),

Problem 1.09. (a) Write alternative forms for Eq. 1.09(3) in terms of circu;
reactances at resonance.

(b) Write Eq. 1.09(3) in terms of: a series resistance in L, a shunt resistance acros
C, both series and shunt losses.

1.10 Approximate Input Impedance near Resonance

The physical reasoning may be extended to give the behavior of th
circuit approximately for a small departure from resonance. First
may be concluded that the major change will appear as a reactive com
ponent added to the admittance as frequency is changed to a value sue
that the capacitive and inductive reactive currents no longer cance
To a first approximation, the input power supplied will be constant, s
that the conductive portion of the admittance may be considered cor
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stant and equal to that calculated at resonance in Art. 1.09. We justify
this by recognizing that any loss entering from a parallel conductance
will not change at all with frequency, and although that arising from a
resistance in series with inductance will change with frequency, this is a
uniform change, not comparable with the change in the differences of
large quantities which affects the reactive current. Then

1 1 [c
= = g i

The susceptance portion of the admittance is approximately that calcu-
lated without losses.

1 g
S;—(wC—E)—wC"(l—F)

Let w = wp(l +8). Then

c 1
S“=Jz[“+5*‘f:ﬂ
For frequencies near resonance, § < 1,

QA+8)Tx1-—23%

C
Si> 25 \/-; [2]

By comparing (1) and (2), it is evident that the frequency shift for
which the susceptance becomes equal to the conductance, a common
measure of circuit ‘‘ sharpness,” is

and

§ = L 3
- 20 [ ]

The Q of the circuit is consequently identified with the band width
or sharpness of the circuit. At a frequency such that susceptance and

conductance are equal, G; = S;, the magnitude of input admittance
— \@JE
- 7 ? ? — e— —
¥| = V& + 8t = T\ 4]

In terms of impedance, the impedance at this frequency is 1/V/2 its
value at resonance.
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USE OF COMPLEX EXPONENTIALS

1.11 Solution of the Circuit Differential Equation in Terms of
Complex Exponentials

The approximate results of the previous articles for the circuit rela-
tions when dissipation is included will now be verified by direct solution
of the differential equation of the circuit. If a voltage V cos wt is
applied to a circuit containing E, L, and C in series, the equation to be
solved is

dI 1
LEt+RI+Cf1dt_Vcoswt 1]
But (see Egs. 1.05(3), (4))
jwt —~jwt
cos wt = e’_—_{-z__e__ [2]

If we assume the current to have the steady state solution
I = Ae* 4 Be ¢t (3]
The result of substituting in (1) is

joL (A6 — Beiet) + R(Ad® + Bei*t) + ,%c (Aefot — Beiot)
vV _ . .
= 5[e:'w‘ + e"""‘] [4]

Following previous reasoning, phis equation can be true for all values
of time only if coefficients of ¢/“t are the same on both sides of the
equation, and similarly for 77*%.

A[R +j<wL—:o%):|
oo 2)

The complex quantity in the bracket of (5a) may be called Z and -
written in its equivalent form

Z=R+j(wL—-l—)= |Z]e*
wC

2| = \/1; +(wL - ;}5)2 6

[5al

v
2
Z 5b
5 [55]

‘ where
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and
¥ = tan™! i [7]
CRF)
¢ wC
Similarly,
1 .
R —jlwlL — =) = |Z|e7¥
g (w wC) |Z]e
Then,
174 .
= — ¥
A 2]Z] €
v .
—_ — iV
B 2IZ] &

(A and B are conjugates: they have the same real parts and equal and
opposite imaginary parts.) Substituting in (3),
V [eilwt—¥) L e (wt—y)
R
|2] 2
By comparing with (2),

(8]

I= I—ZI cos (wt — ¢) 9]

This final result gives the desired magnitude and phase angle of the
current with respect to the applied voltage. That information is
contained in either of the constants A or B, and no information is given
in one which is not in the other. B is of necessity the conjugate of A4,
since this is the only way in which the two may add up to a real current,
and the final exact answer for current must be real. It follows that half
of the work was unnecessary. We could have started only with Ve’“*
in place of the two-term expression which is exactly equivalent to
V cos wt. For current, there would then be only

= I_szl =9 [10]

Although this cannot actually be the expression for current, since it is a
complex and not a real quantity, it contains all the information we wish
to know: magnitude of current, V/ IZ l, and its phase with respect to
applied voltage, . The procedure for obtaining the steady state solu-
tion to differential equations with applied sinusoids may then be sum-
marized as below. The steps will be verified by a check of the previous
steps in the exact solution.
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1. Write sinusoidal applied voltage as Ve’*".
2. Replace dI/dt by jol, f 7.6 5 5

3. Solve for current in the resulting algebraic equation. The answer
will in general be complex. ‘

4. By writing the complex current in its form showing magnitude and
phase angle, the desired information is obtained.

The method, as outlined, is used by electrical engineers so generally
that they have come to think quite naturally in terms of the complex
impedance, Z, of the circuit, often without recalling that they are in
reality solving a differential equation for its steady state solution.

Problem 1.11. Show that Eq. 1.11(10) need not be regarded simply as a repre-
sentation of the true expression for current but may actually be an exact expression,
provided only that it be understood that I is the real part of the complex expression

v &@=¥),  Sometimes this relationship is expressed by writing
|z

I =Re {Evl ¢ ("’;_‘”}

1.12 Use of Complex Quantities in Power Calculations

The preceding article demonstrated the basis for using ¢’“* as a repre-
sentation for cos wt. The consequent simplification of problems involv-
ing impressed sinusoidal quantities will be apparent throughout the
book. However, we must remember one trap that awaits us if we use
this notation improperly in non-linear expressions. For linear equa-
tions, one may use ¢/“*in place of the equivalent cosine or sine term in a
completely straightforward fashion, interpreting information of magni-
tudes and phase angles as demonstrated in the previous article. More
care must be exercised for non-linear expressions, the most common of
which arises in the calculation of instantaneous power, requiring a prod-
uct of terms.

Given a sinusoidal voltage across an impedance

V =V, cos (wt — ¢1) [1]
and a sinusoidal current flow through the impedance
I = I, cos (wt — ¢2) [2]
These are properly represented in complex notation as follows.
V = Vmej(wt—¢1) 3]

I = Imef(wt—(#z) [4]
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The power flow at any instant is given by
W= VI

There is certainly a strong temptation to multiply the expressions (3)
and (4) together to give

W = VmIme:i(wt—M)ef(wt—m) =V Imei(Zwt—¢x—¢z) (5]
This is the complex representation for a quantity
W = Vuly cos 2ut — ¢y — ¢2) [6]

This result is incorrect. It must be incorrect since the average power
in (B) is zero, regardless of the phase angle ¢; or ¢. The correct expres-
sion for instantanedus power is certainly given by multiplying (1)
and (2)

, Wi = VI = VoI, cos (wt — ¢;) cos (wt — ¢3)
but
cos A cos B = Zcos (A — B) + cos (A + B)]
S0
Vol
2

Volm
W;= cos (¢1 — ¢2) +

2 cos (200 = 1~ ¢2)  [1]

Equation (7) differs mainly from the result of (6) in that it does have
the average power in its familiar form: product of voltage, current, and
cosine of the phase angle. (}4 appears since V,, and I,, are peak values,
not rms.) :

The use of (3) and (4) in the product expression for power is incorrect
simply because the expressions (3) and (4) are not the true expressions
for voltage and current, but merely representations for them. We
would not have invited such a difficulty had the true mathematical
equivalents (Prob. 1.11) been written:

V = Re[Vn,e®!
I = Re[I,¢“" 9]
Then instantaﬁeous power,
Wi = (Re [Vaue’'|}{Re [Lne? =]}
To evaluate W;, we could write these as cosines and proceed as before.
The foregoing may seem to be an argument for retaining the notation

Re [¢’“!] but this will not be done becal}se of the obvious unwieldiness
of the expressions. We shall use only ¢/“* with the real operator under-
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stood, or merely say that this is a representation for cos wt. Care must
then be used for any products of these exponentials.

The exact expression for instantaneous power may be written in com-
plex notation. For the following demonstration, let us denote complex
quantities by a wavy line above the symbol, and conjugates by an
asterisk.

If V = Ve
and
V* = Vme—j""
then

VI* — Vﬁ]mej(dn—%)
and

Then the exact equivalent of (7) in complex notation is

W = 1Re {VI* + [Ver“t[Ie*"]} 8]
and the average power, or constant component of this,
W.. = hRe[VI*] = LRe [V4) [9]

FOURIER SERIES

1.13 Circuits with Non-Sinusoidal Periodic Voltages
. All forced oscillations studied so far have consisted of sinusoids. Con-
sider a more general oscillation which is periodic, returning once each
cycle to any selected reference, or stated mathematically,

JO) =5t - 1)

This might be of any arbitrary form, such as is indicated by Fig. 1.13.
Such a wave shape of voltage, if applied to a circuit, will act to that
circuit as a superposition of a group of pure sinusoidal voltages. The
wave may be replaced by a fundamental and its harmonics. The method

A A
N N

T

Fia. 1.18. Periodic wave of arbitrary shape.

of finding the amplitude of these is the very neat method of Fourie
analysis, and the theorem that proves the truth of the foregoing state
ments is the Fourier theorem, which it is assumed the reader has agreec
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with in another study. What follows here is not a proof of the validity
of a Fourier series expansion for a general periodic function, but merely
a demonstration which shows the manner of obtaining the coefficients.
This will be extremely useful when we later add up series to represent
known functions along boundaries in field problems.

By admitting the possibility of writing the periodic function f(t)
as a series of sinusoids consisting of a fundamental and its harmonics,

f@) = ao + a; cos wt +azcos2wt_+a3cos3wt+ <.
+ by sin wt + by sin 2wt + bz sin 3wt - - - [1]

At the moment, the coefficients have not been determined. The
manner of finding them is based upon the so-called orthogonality prop-
erty of sinusoids. This property indicates that the integral of the prod-
uct of any two sinusoids of different frequencies, over an interval in
which they are commensurate (for example, from —= to =, or 0 to 2x)
shall be zero. That is,

27
f cos mz cos nx dx = 0

0 m#n
2x
f sin mx sin nx dz = 0 [2]
0 m#n
2x
f sin mz cos nx dx = 0

0 m#n or m=n

However,
2% 2x
f cos? mx dr = f sinf? mxdr = = [3]
0 0

Thus if each term in (1) is multiplied by cos nwt, and integrated from
0 to 2m, every term on the right will be zero except that term containing

a,. That is
27

27
f f(t) cos nwt d(wt) = f an cos® not d(wt)
0 0

By (3), the integral on the right has the value a, =, or

27
a, = 1 f(@) cos n(wt) d(wt) (4]
T Jo

Similarly, to obtain b,, each term in (1) is multiplied by sin nwt and
integrated from O to 2x. Then,

27 .

b, = 1 f(@) sin n(wt) d(wt) [5]
T Yo
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Finally, to obtain the constant term ao, every term is inte-
grated directly over a period, and all terms on the right disappear,
except that containing ao.

2x 27
0 ) = fo ao d(f) = 2rap

or
1 2r
a = 5 J@) d(wt) [61
T JO

This merely states that ao is the average of the function f(¢).
Before discussing the method in general terms further, let us tie it
down by application to a very simple example.

v

] i

Fic. 1.14. Periodic wave of rectangular shape.

.-I-—-———--
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'
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+
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1.14 Fourier Analysis of a Square Wave Voltage

Let us find by Fourier analysis the coefficients of the frequency com-
ponents in the square wave shape of Fig. 1.14. Voltage is V over half
the period T, and zero over the remaining half.

Since
w = 2nf = %r
wl=T7
when
T
T2
The integral 1.11(6) shows that the constant term, ay, is
1 +x 1 +r/2 174
%=25J_. J(@) d(wt) ord . V d(wt) 3 [1]

This is clearly the average value of the wave. The integral 1.13(5)
gives the coefficient b,.

+x +x/2
by = % 7(t) sin n(ot) d(wt) = 7—1r f | Vsin ) de) =0 [2]

bt —x/

.
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Thus all coefficients of the sine terms are zero. This could have been
foreseen by noting that the above function is an even function, that is,
J(—t) = f(t), and so could not be made up of any sine terms, which are
odd functions. :

Finally, the a, terms, by Eq. 1.13(4),

1 +r 1 +x/2
a, = - J(t) cos nwt d(wt) = = f V cos nwt d(wt)
T —x ™ —x/2

74 +x/2
a, = — [sin n(wt)] [3]
nw —%/2

The value of (3) is zero if n is even, is +(2V/nx) if nis 1, 5, 9, etc.,
and is — (2V/nx) if n is 3, 7, 11, ete. Thus the series expansion in
sinusoids of the square wave voltage of Fig. 1.14 may be written

) = K+2K[coswt—0083wt+0085wt— cos7wt+“.] 4]
_ 2 T 3 5 7
The current which flows when such a voltage is applied to a circuit is
found by determining the currents due to the individual terms of (4)
and superposing these. There will be, in general, a component of current
of a frequency corresponding to each frequency component of the Fourier
expansion. These, when added, give the wave shape of current. Such
a procedure is straightforward and will not be carried further here.
Notice that it requires an infinite number of terms to represent truly
the square wave shape of voltage. Often a high degree of approxima-
tion to the desired wave shape is obtained when only a finite number of
terms is used. However, for functions with sharp discontinuities, many
terms may be required near the sharp corners, and the theory of Fourier
series shows that the derivative of the series may not even converge to
the derivative of the function, although the integral of the series does
converge to that of .the function.’

Problem 1.14. Simplify the general expressions for Fourier coefficients found in
Art. 1.13 for:

(a) Even functions of ¢.

(b) Odd functions of ¢.

(c¢) Functions of a variable z, in terms of a period 1.

UNIFORM TRANSMISSION LINES AS EXAMPLES OF
WAVE SYSTEMS '
1.15 The Ideal Transmission Line

To illustrate waves, we shall consider the uniform transmission line.
The results developed are of importance themselves, singe transmission
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lines are used in all modern high-frequency applications. Results will
also be used for later comparison with more general electromagnetic
wave phenomena. The approach used in this chapter is the conven-
tional one, starting from distributed inductance and capacitance along
the line. 1t is true that this in a sense is jumping ahead of the story, for
in a later chapter on guided waves the transmission line differential equa-
tions will be derived from rigorous considerations of electromagnetic
theory. Nevertheless, the approach to be used here is easy to visualize
and is satisfactory for the present purpose.

A transmission line may be made up of parallel wires, of parallel
plates, of coaxial conductors, or in general of any two conductors sepa-
rated by a dielectric material. In conventional analyses, we think in
terms of a current flowing in the conductors, equal and opposite in the
two conductors if measured at any given transverse plane, and a voltage
difference existing between the conductors. The current flow is affected
by a distributed series inductance representing the back induced voltage
effects of magnetic flux surrounding the conductors; the voltage between
conductors acts across a distributed shunt capacitance. There are also
loss terms which will be neglected for
this first analysis of the ideal case. Inci- p—dz—
dentally, this does not relegate the re- :
sults to a position of only academic l
interest, for many high-frequency trans- i
mission line problems have loss terms fl Lz . L
which are truly negligible. o ““T“"““‘ :

Consider a differential length of _\ff_i Cdz I:_\L 2 dz
line, dz, including only the distributed -L!—T—JJ-
inductance, L per unit length, and the *  Fia. 1.15.
distributed capacitance, C per unit
length. The length dz then has inductance L dz and capacitance
C dz (Fig. 1.15). The voltage drop or negative change in voltage
across this length is then equal to this inductance multiplied by the time
rate of change of current. For such a differential length, the voltage
change along it at any instant may be written as the length multiplied
by the rate of change of voltage with respect to length. Then

a aI :
I - oV de = —(Ldz) —
Voltage change e 2 (L dz) 7 (1]

Note that time and space derivatives are written as partial deriva-
tives, since the reference point may be changed in space or time, in
completely independent fashion. :
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Similarly, the decrease in current across the element at any instant is
merely that current which is shunted across the distributed capacity.
This is given by the capacity multiplied by time rate of voltage. Partial
derivatives are again called for.

aI av
_ — d = — ——
Current change 5 (C de) 5 [2]
The length dz may be cancelled in (1) and (2)
v al
A
9z at [3]
ol 1%
= = Oy [4]

Equations (3) and (4) are the fundamental differential equations for
the analysis of the ideal transmission line. They may be combined to
give equations containing voltage alone or current alone. To accom-
plish this, differentiate (3) partially with respect to distance, (4) with
respect to time.

?V 2I
_— = -
922 dz ot [5]
I vV
e~ Cor (6]

Since partial derivatives are the same taken in either order, (6) may
be substituted directly in (5).

2
PV _ 18

922 a 7]

This differential equation is known as the wave equation. An
exactly similar equation may be obtained in terms of current by differen-
tiating (4) with respect to z, (3) with respect to ¢, and combining

(8l

1.16 Solutions of the Wave Equation
The differential equation to be solved, Eq. 1.15(7), may be written
#v_ 127
922 o a2

(1
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where

1 _1c

o2 .
Unlike the differential equations met previously in this chapter, this is a
partial differential equation. A direct attack on the equation to yield a
general solution is not easy, but a simple check shows that any function
whatever in the variable (¢ — z/v), is a solution. That is,

V=FQ:9 L

is a solution to (1). This may be verified, say, by letting (¢ — z/v) = .
Then

oV 3V oz 1% oV oz
9dF U g = — =
at dx at az dxr 92
But
ox ox 1
=1 e 2
at a3 »
5o, repeating the process,
*V &V vV 1 9%V
% =3 and —5 =5 —— [3]
at oz 9z v° dx

By comparing the two equations (3), (1) is verified.

It is necessary to show next what is meant by the statement that the
solution (2) represents a wave. This may be done in two or three
equivalent ways.

1. Note that if the voltage is observed as a function of time in the
plane z = 0, this is merely V = F(@+0)=F(@). If wenow gotoa
plane z = 2;, we find exactly the same function of time, but delayed by
the time z;/v. That is, the value of V atz = 0, and time ¢ will be found
at z = z; at a time ¢ + (21/v). The time 2¢/v is the time necessary to
propagate the effects over the distance z; with velocity v.

2. Tf we were to move along the line with any given point on a travel-
ing wave, the observed value of voltage would be constant. By noting
(2), it is seen that this is accomplished if ¢ — (z/v) is maintained con-
stant. Thus as time increases, say from ¢ to ¢ + At, we must move in
the positive z direction a distance Az = v At. Again, v is identified as
the velocity of any part of the wave in the positive z direction.

Only one solution of the second degree differential equation has been
given. A second solution may be written as any function of ¢ + (2/v)
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and checked by methods exactly similar to those used for the first solu-
tion. This is identified as a wave traveling in the negative z direction
with velocity ». A complete solution to (1) is then

V=MG—3+BQ+9 | 4]

b_—:L [5]

VILC

1.17 Relation between Voltage and Current in the Ideal Line
The solution of the differential Eq. 1.15(7) for voltage has been

obtained as Eq. 1.16(4). Since current satisfies the same differential
equation as does voltage, the solution for current must have the same

form.
1=5(t=%) +n(i+2) il

The first term in this solution also represents the function f; traveling
with velocity » and unchanged shape in the positive z direction; the
second term represents the function f, traveling in the negative z direc-
tion with velocity » and unchanged shape. The velocity is given in
terms of the distributed constants of the line by Eq. 1.16(5).

By substituting (1) and Eq. 1.16(4) in Eq. 1.15(3),

o=t - [a-) ()

In the above, the primes indicate derivatives with respect tot — (z/v).
The positively traveling wave of current may be related directly to the
positively traveling wave of voltage.

m053=3m0—3 2

where

. or

z 1 2
— &)= = { — -
N1 <t v) vLF1< v) (3]
Any constant term arising from the integration of (2) to obtain (3) is

ignored since the present interest is only in wave phenomena.
Similarly, by relating the negatively traveling wave of current to the
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negatively traveling wave of voltage

h@+9=—$h0+9 [4]

so that (1) may be written

R T

where oL is replaced by Z,. By substituting the value of » from

Eq. 1.16(5),
L 1 :
N 61

The current in the positively traveling wave is then obtained by divid-
ing the voltage of the positively traveling wave by the constant Zo;
current in the negatively traveling wave is the negative of the voltage
of the negatively traveling wave divided by Zo. Zo is the characteristic
impedance or surge impedance of the line. For the ideal line it is a
purely real quantity and is given in terms of the distributed constants
of the line by any of the three forms of (6). We shall show in a later
chapter that for an ideal line, the velocity » must be equal to the velocity
of light in the dielectric material of the line.

1.18 Reflection and Transmission at a Discontinuity

Most transmission line problems are concerned with discontinuities.
For example, a uniform transmission line of known characteristic imped-
ance may be connected to another
of different characteristic imped-
ance, to a load impedance, or to A Ea
some other type of discontinuity. pig. 1.18. Transmission line terminated
We shall only assume for present in Z,.
purposes 'that at the point of the
discontinuity, an impedance Z3 can be calculated representing the ratio
of voltage to current for the load, transmission line arrangement, or
whatever else may be connected to a line of known characteristic
impedance, Z; (Fig. 1.18).

By Kirchhoff’s laws, total voltage and current must be continuous
across the discontinuity. The total voltage in the line may be regarded
as the sum of voltage in a positively traveling wave, equal to V; at the
point of the discontinuity, and voltage in a reflected or negatively travel-
ing wave, equal to V} at the discontinuity. The sum of V; and V3
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must be V5, the voltage appearing across Z,.
Vi+Vi="V, (1]
Similarly, the sum of currents in the positively and negatively travel-

ing waves in the line, at the point of discontinuity, must be equal to the
current I, flowing into Z,.

L+ =1 (2]

But recall from Art. 1.17 that I, is obtained by dividing V, by Z,,
I by dividing V] by —Z;. Also, by definition of Z,,

So (2) may be rewritten
A et 8

By combining (1) and (3), we may find the ratio of voltage in the
negatively traveling wave to that in the positive,
V{_Zz—Zl_K—l

Vi Zy+2Z, K+1

where

=22 4

This is the reflection coefficient in terms of voltage, since it is the voltage
in the reflected wave compared to that in the incident wave.
Similarly from (1) and (3), we may find the ratio of voltage trans-
mitted to Zs to that in the incident wave. -
Vo 22, 2K
Vi Z:+ 2, K+1

(5]

This is called the transmission coefficient in terms of voltages.
‘Similarly, by referring to the relations between currents and voltages,
L Z-%, 1-K (6]
L Z,+Z, K+1
I 27, 2

I, Z:+2, K+1 7

The most interesting, and probably the most obvious, conclusion
from the above relations is this: there is no reflected wave if the termi-
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nating impedance is exactly equal to the characteristic impedance of the
line. All energy in the incident wave is then transferred to the imped-
ance Z; which cannot be distinguished from a line of infinite length and
characteristic impedance Z; = Zs.

Other applications of these general relations to many types of prob-
lems will be found throughout the book. It might be emphasized here
that the above relations give ratios to quantities in the incident or posi-
tively traveling wave, although any meters placed in the transmission
line would measure total quantities, incident plus reflected.

1.19 Application of Traveling Wave Ideas to Some Simple
Problems

(a) Direct-current voltage applied to an infinite line. Consider the case

of a D-C voltage V, suddenly applied to an ideal line of infinite length

(Fig. 1.19a)., The line starts to charge to voltage V, the wave front

o\
% ZM
z;o j"‘_!
Wz A7,

Fio. 1.192. D-C voltage suddenly applied to an infinite line:

traveling with the velocity v =1 /\/1—36. Since there is never any dis-
continuity, there is never any reflected wave, and the only current is
that flowing in the positive wave, V/Zo. This then is a D-C current
flowing to the charges which appear on the line as voltage moves along.
At any time ¢ after impressing the voltage, there is voltage V and current
V/Zg in the line up to the point z = v, and no voltage or current beyond.

(b) Suppose now that the infinite line of part (a) is suddenly con-
nected to a D-C voltage V, the voltage now being applied not at one end
but rather at the center of the line. The part of the line to the right
of the center must experience the same charging caused by the positive
traveling wave as was described in (a). The line to the left must, from
symmetry, have exactly the same experience as the line to the right,
except, of course, that its wave will be a negative traveling wave since
the direction to the right has been taken as positive. The voltages on
each side, at the same distance from the source, must be identical at
every instant. The currents must be equal but opposite at correspond-
ing points since positive current is taken as current flowing in the posi-
tive direction. This checks with the voltage and current relations of
Art. 1.17 where with the positively traveling wave’s current taken as
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V/Zy, the negatively traveling wave’s current naturally comes out to be
~V/Z,.

(c) Direct-current voltage applied to a shorted line. Suppose that the
D-C voltage is applied to a line which is not infinite in length, but is
shorted at some point, z = [ (Fig. 1.19b). We know that finally infinite
current will flow if V is maintained. However, the mechanism of current
build-up is at least interesting. After voltage is applied to the line,

2 - i o %
p [} Z, ]
| ! b
_EJ txo 2T 4T t—

Fig. 1.195. D-C voltage suddenly applied to a shorted line.

N

everything proceeds as in (a) until the time that the wave reaches the
short circuit. At the time the incident wave with voltage V appears
across the short circuit, which demands zero voltage, a reflected or
negatively traveling wave is sent back of voltage (—7V), so that the
sum of voltages in the two waves is indeed zero. Since current in the
negative traveling wave is the negative of voltage divided by Z,, this
is —(=V/Zy) or +V/Zy and so adds directly to the current in the
positive traveling wave. This reflected wave then moves to the left,
leaving a wake of zero voltage and a current equal to 2V /Z, behind it.
As soon as the reflected wave has traveled back to the source, it brings
the zero voltage condition back to this point so that the D-C voltage
must send out a new wave of voltage V down the line, with associated
current V/Zy, making a total current in the line 3V /Z, at this time.
Current then builds up to infinity in the step manner indicated by
Fig. 1.19b. The time T is the time for a wave to travel one way down:
the line,

T =

S )

(d) Shorting of a charged line. Consider a transmission line open on
both ends and charged to a D-C potential, V. If one end is shorted,

[}
v H
3 .
(] 1
(o l > t=o I

F1a. 1.19¢. Charged line of length ! suddenly shorted.

as by the switch in Fig. 1.19¢, a wave of voltage (— V) must be started
down the line, since this wave must add to the D-C condition V to give
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zero at the short circuit. The current connected with the wave is then
~V/Zo. When this wave reaches the open end, there must then be
started a reflected wave such that total current at this open end is zero.
Current in this reflected wave must then be +V/Z,. Because current
in a negatively traveling wave is the negative of voltage divided by Z,,
this will require a voltage —V for the reflected wave. Thus the wave
traveling to the right wipes out the original D-C voltage; that traveling
back causes it to appear on the other side. The current required for
the interchange of charge flows through the short during the entire time.

o 1,| R=2, Ip R>Z,
P -
{RY Z,

[ 0 2T ° 2T 4T 6T
e R=<Z,

2T
0 [T 6T
Tra. 1.19d. Charged line of length [ suddenly connected to a resistor.

As soon as the reflected wave arrives back at the source, the line is
charged up in the opposite direction with no current flowing in the line,
so the process may repeat in the opposite direction. Current and volt-
age relations are indicated in Fig. 1.19¢. It is evident that this is an
oscillating system. The problem will be considered by another method
in a later section.

(¢) Charged line connected to a resistor. If the charged line of (c)
is connected to a resistor instead of a short circuit, the amount of wave
started down the line may be determined as follows.

The voltage across the resistance is the sum of the D-C voltage of the
line and the voltage in the wave, V1.

Vea=V+V, [

The current flowing into the resistor is merely the negative of current
for the positively traveling wave.

In = -1
or
Ve Vi
R Z 12l

VR=V( R )=—V1E 3]
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For example, if R = Z,, the voltage appearing across the resistance
at the first instant is half the D-C voltage of the line, as is the voltage
appearing in the traveling wave. When this wave reaches the open end
of the line, the current zero requirement produces a reflected wave whose
voltage is equal to and in the same direction as that in the incident wave,
as found by the reasoning of part (d). Thus in the case of R = Zy, the
original wave wipes out half the voltage, and the corresponding current,
~V/2Z,, is that which flows through R. The reflected wave wipes out
the remaining half of the voltage and, of course, reduces current to zero.
When this wave reaches R = Z, there is no further reflection, so all is
still. Current wave shape is shown in Fig. 1.19d. Also shown are
currents for B > Zy and R < Z,,.

1.20 Approximate Attenuation in Lines with Losses

All previous results have applied to ideal transmission lines. If
losses are present but small, as in many practical cases at high frequen-
cies, the first correction due to these losses may be approximated. The
method is.similar to that used in finding the exponential decay with time
for natural oscillations in a lossy circuit. This method will also be
invaluable for later analyses of wave guides. It assumes that the
behavior is given primarily by the solution obtained with losses com-
pletely neglected; and that the main correction is obtained by taking
currents and voltages the same as in the ideal case, but allowing them to
encounter the known resistances and conductances.

The major correction due to losses will appear as an attenuation down
the line. Assuming that this attenuation is exponential of the form € %
the previous solutions for voltage and current may be multiplied by such
exponentials. Consider only a positively traveling wave.

V = eF (t . Z) [1]

L z
I=Z'6 F<t— ) 2]

0 v/

and

The power transferred down the line by this wave at any point and
any instant is merely the product of V and I.

e—2az 2 2
Wp=VI = 7 [F <t = ;):I watts [3]

Zo
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The time average power transfer across any point along the line is

2
found by averaging [F (t - Z):I . Let the average of this be K. Then

Ke—2az
(Wr)ay = Za [4]

The rate of decrease of this average power transfer with distance along
the line must correspond to the average power loss in the line per unit

length.

_ d(WT)av _ Ke 2 _
(WL)av - dz - 2a Z0 - 2a(WT)av
or
(WL)av ]
= o AT, 5
ARETUAW =

To the extent of the approximations inherent in the above analyses, the

attenuation factor « is then given by the average power loss per unit

length divided by twice the average power transferred down the line.
If the current (2) flows through a resistance R per unit length, it

produces a loss
I2 e—2az 7 2 2 .
wa = e = [ # (-]

2
Since K is defined above as the average of [F (t = Z)] , the average

loss in the resistance is
RK
(Wr)ww = —5 €72 watts/unit length [6
0

If the voltage of the line, (1), appears across an imperfect dielectric
such that there is a conductance G per unit length, the loss produeed is

2
VG = Ge 2 [F (t . Z)]

(Wg)ay = KGe 2** watts/unit length [7

We

or

The total loss per unit length is the sum of (6) and (7).

R
(WL)av = K¢ 2* [Zz) i G:I [8
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If (4) and (8) are substituted in (5),

R  GZ,
"2Zo+"7?' [9]

a

The attenuation is obtained by this approximate analysis in terms
of the constants of the line. ~All other properties of the line (characteris-
tic impedance, velocity of propagation, etc.) are assumed to be given well
enough by results of the previous analyses of the loss-free case.

Units of « as given by (9) are in nepers per unit length. The particu-
lar unit length to use is determined by that used to measure R and G.
To convert nepers to decibels, multiply by 8.686.

1.21 Ideal Line with Applied Sinusoidal Voltages

Much of the preceding discussion has involved little restriction on the
type of variation with time of the voltages applied to the transmission
lines. Most practical problems are concerned entirely or at least
partially with sinusoidal time variations. If a voltage which is sinus-
oidal in time is applied at z = 0, it may be represented by the exponen-
tial (see Art. 1.11)

V]eeo = F(t) = Vieiet [1]
then the corresponding positively traveling wave is written

Vle]'w (t—s)

Similarly, a negatively traveling wave is written

V{ejw (H'E)
Or the total solution, made up of positive and negative traveling waves,
V = ¢t [Vle_jT + V{ej7:| 2]
The corresponding current, from Art. 1.17, is
erot —F= 0.9=
I=7[V1e "—Vle"] [3]
0

For problems in which we shall be concerned throughout with sinusoidal
quantities, it is not necessary to write the factor ¢/* explicitly each time,
since it will always be understood that all terms are multiplied by this
factor. We rewrite (2) and (3), omitting it.

V = Vi 4 Vit [4]
1 ] 3

I = — [V — Vieie) [5]
Zo
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where

B = [6]

< €

The quantity g is called the phase constant of the line, logically so,
since Bz measures the phase angle of a voltage or current in a single wave
for any point 2, with respect to voltage or current at that same instant
at z = 0. Moreover, if voltage and current are observed at any point z,
they will be found exactly the same at points such that gz differs from
that of the first point by multiples of 2x. The distance between points
of like current and voltage is called a wavelength, A. By the above
reasoning,

BN = 27
or ,
2%
B = ~ [7]

Finally, the velocity v may be termed a phase velocity since it is the
velocity with which a point of constant phase (total phase, wt — gz)
moves. That is, to maintain

wt — Pz = Constant
d_w_
d B

from (6). More will be said about phase velocity later.

Problem 1.21(a). Show that the input impedance of an ideal transmission line
of characteristic impedance Z and length [ terminated in an output impedance Z 1, is

_ Z 1 cos Bl + jZy sin Bl

Z; =
¢ 0Zocos/sl--}-sz,sinﬁl

Problem 1.21(b). When two transmission lines are to be connected in cascade,
a reflection of the wave to be transmitted from one to the other will occur if they do

I

1 2, —_— Zy

Fia. 1.21. Matching section for matching Z; to Z3.

not have the same characteristic impedances. Show from the relations of Art. 1.21
and Problem 1.21(a) that a quarter-wave line matching. transformer (Fig. 1.21)
will cause the first line to see its characteristic impedance Z; as a termination and

thus eliminate reflection in transfer if 8l = /2 and Z; = V' Z,Z;.
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1.22 Shorted Lines; Standing Waves

Suppose a transmission line, shorted at one end, is excited by sinusoidal
voltage at the other. Let us select the position of the short as the refer-
ence, z = 0. Voltage and current at any point along the line may be
written as the sum of an incident and a reflected wave, as in Egs. 1.21(4)
and 1.21(5). The short imposes the condition that at z = 0, voltage
must always be zero. From Eq. 1.21(4),

Vlz=0 =Vi+ V]

For this to be zero, V] must be the negative of V;. This result could be
obtained as well from the general results for reflections at a discontinuity
by setting Z; = 0in Eq. 1.18(4), or merely by physical reasoning which
shows that no energy is absorbed by the short circuit, so all energy
brought by the incident wave must appear in the reflected wave. The
two waves of equal energy in the same line must have equal voltages.
These must be in opposite directions at the short to add to the required
zero voltage.
If Vi = —V, is substituted in Eqgs. 1.21(4) and 1.21(5),

V = Vile® — &%) = — 2V, sin Bz (1]
AT S S 4
I—Zo[e +e’]—2ZOcosﬂz [2]

The above results, typical for standing waves, show the following.
1. Voltage is always zero not only at the short, but also at multiples
of M/2 to the left. That is,

. A

V=0at —Bz=nr or z= —n§

2. Voltage is a maximum at all points for which 8z is an odd multiple

of /2. These are at distances odd multiples of a quarter wavelength
from the short circuit.

@2m+ D= or 7= — 2m + )N

¥V = maximum at —f8z = ) n

3. Current is a maximum at the short circuit and at all points where
voltage is zero; it is zero at all points where voltage is a maximum,

4. Current and voltage are not only displaced in their space patterns,
but also are 90° out of time phase, as indicated by the j appearing
in (1).

5. The ratio between the maximum current on the line and the maxi-
mum voltage is Zy, the characteristic impedance of the line.
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6. The total energy in any length of line a multiple of a quarter wave-
length long is constant, merely interchanging between energy in the
electric field of the voltages and energy in the magnetic field of the

F1G. 1.22. Standing waves of voltage and current along shorted line.

~

To check the energy relation stated above, calculate the magnetic
energy of the currents at a time when the current pattern is a maximum
and voltage is zero everywhere along the line. Current is given by (2).
The energy is calculated for a quarter wavelength of the line.

L L ° 4v?
U =—f Izdz=—f —5 cos? Bz dz
MT 9 —x/4]] 2J o Z§ .

2V2L [z 1 . :|°
= =+ —sin 262
Z5 127 48 e M4
Since 8 = 27/A by 1.21(7), the above is simply

VLA
u = [3]

The maximum energy stored in the distributed capacity effect of the
line is calculated for the quarter wavelength when the voltage pattern is
a maximum and current is everywhere zero. Voltage is given by (1).

0 0
Ug = ¢ V|2 de = gf 4V7{ sin® Bz dz
2 -4 2 —Al4

1 R CV3i\
= 2CV“’[—Z — — sin? z:l = 21 4
137 15 B Loy n [4]
By the definition of Zy, (3) may also be written
2L V2
UM=YI_L):= 140)‘= Ug [5]
4 —
C

Thus the maximum energy stored in magnetic fields is exactly equal
to that stored in electric fields 90° later in time. It could actually be
shown that the sum of electric and magnetic energy at any other part
of the cycle is equal to this same value. This suggests a considerable




38 OSCILLATION AND WAVE FUNDAMENTALS  [Art. 1.22

amount of similarity with the parallel resonant circuit treated in Arts.
1.08,1.09, and 1.10. The similarity may be used to yield some very con-
venient ways of looking at shorted lines as the equivalent of tuned cir-
cuits for many practical problems. For example, whenever the line
is shorted at a distance of

_ (2n — N

l 2 ;

n=123- 8]

from the source, the input impedance becomes very high. The source -

is then located at a current node and a voltage loop and the line is

spoken of as resonant. When losses are considered it will be { ound that

comparisons of stored energy with energy dissipated per radian will lead

to a value of Q which can be used as a means of gaging the variation of
_impedance near resonance just as in simple circuits.

Also, given any section of line, shorted on both ends, there are an
infinite number of natural frequencies for which, as required by the
boundary conditions, the voltage nodes will fall on the ends of the line.
This will occur whenever

na

b= 19

Problem 1.22. Find the Q and the input impedance of a shorted quarter wave-
length line, using the approximate loss formulas of Art. 1.20.

1.23 Combinations of Natural Modes to Fit Initial Conditions

In this section we shall demonstrate a technique which will be one of
the most widely useful methods for solution of field and wave problems
to come later. The method makes use of a summation or series of har-
monic solutions to a wave problem to fit imposed boundary or initial
conditions, just as in Art. 1.13 a series of sinusoids was used to fit any
arbitrary periodic functions. _

As the example, let us consider a problem quite similar to that solved
by a straightforward traveling wave analysis in Art. 1.19d. For this
problem, imagine the open-circuited transmission line, first charged to a
D-C voltage Vo, and then shorted at both ends simultaneously at a
specified instant of time. The voltage distribution at the instant of
shorting is then known (zero at each end and a constant equal to Vy
at all other points, as sketched in Fig. 1.23a). It is desired to find the
current and voltage behavior at all later times.

In Art. 1.22 it was noted that natural sinusoidal oscillations for a line
of length I, shorted at both ends, occur at all frequencies for which the
line is a multiple of a half-wave long. From the results of Eq. 1.22(9).
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one of these natural sinusoidal modes of oscillation may be written.
For voltage,

mm2

Vi = Apé’®nt sin = [1]
where
mry  mw
wm=27rfm=T=-T [2]

The time of travel of a wave down the lineis = I/v. The results of
Art. 1.22 also reveal that the corresponding current is 90° out of time and
space phase with voltage and has the magnitude of voltage divided by
Zo. That is,

I, = ‘7;1—"' e?nt cos — 3]

Now, let us form a solution to the transmission line equations from the
sum of all solutions of the form of (1). The basis for this step may be
traced to the fact that the sum of solutions to a linear differential equa-
tion is also a solution. The transmission line differential equations are
linear, and (1) is a solution. Adding,

) . 2 . 3
V = A;&“"sin ? + Aze’“? sin _l7r_z + Aze’ sin %’ +--- 4]
and the corresponding sum of (3) for current,

=< [Ale’""" c0s = + Agei® cos 2mz + Aze’“t cos 3mz + - ] (5]
Zy l l l
The amplitudes Ay, Ag, - - - Ay are still arbitrary. They may be deter-
mined from the known initial condition by expanding the known initial
voltage distribution with distance as a Fourier series.

The previous introduction of the Fourier series was for use with
periodic time functions. Certainly its use is not restricted to time as its
variable (see Prob. 1.14c), for a periodic function of any variable (for
example, distance) may be expanded in a similar series of sinusoids.
The usefulness for functions which are to be represented over a certain
limited range, although these functions are not necessarily periodic, is
also well known. For example, if we wish to represent the rectangular
function of distance shown in Fig. 1.23a, we require only that this repre-
sentation be accurate over the limited range O tol. This rectangle might
then be considered as one rectangle from a repeating periodic function
such as that of time sketched in Fig. 1.14. The fact that the series
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actually represents a function that repeats indefinitely causes no worry
since we do not care what happens outside the range 0 to I.

5

vl
1 %
2=0 zel 2=l z=0 =
(@) ®)
Fic. 1.23.

The results of changing previous Fourier coefficients for time functions
to a form suitable for use with z, taking 2! as the period, are

1 +1
= . J(@) dz (6]
+1
Op = ll S(2) cos ?dz (7]
-
1 +1
by = 7 f(2) sin nllz dz (8]
-

Since it is immaterial what happens to the function outside the bounds
of the line, 1ét us write a series for the odd function of Fig. 1.23b, which
at least represents the initial voltage distribution over the length 0 to I.
This will then have sine terms only (see Prob. 1.14b), and

2 l
by = = f (&) sin 7 2z 9
i, I

where
f@) =V, 0<z<l and f(z)=0atz=0,2z=1

1 2 l 13
b,,=ngosinTZ 2 = ——Y—O-—cosnlz
l 0 l l nw lo

nw
Since cos nw is —1if nis odd, and +1 if niseven,

bn, = 0, n even

by, = %,nodd
nw
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Thus the Fourier series representing the initial voltage distribution
over the line may be written

4Vol . w2 1, 3wz 1 , 5wz
= [sm ] +3s1n 7 +5s1n ] +] [10]

t=0 w

But at ¢ = 0, the series (4) reduces to

14

2 3
=Alsin7rTz+Azsin—;r—z+A3sin-?+... [11]
Bya term-by-term comparison between (10) and (11) it is seen that all
the even coefficients, A3, A4, etc., must be zero.  For the odd coefficients,

4V,
Ay =—, Az=—, i Ay =20
T 3r nw

t=0

Now that the coefficients are determined, the complete series expres-
sions for voltage and current at any time may be written

 3xt .5t

AV ot S 3 oy

v=—"2 e{’sinw—z+e sin—7r—z+e sin§7r—z+--- [12]
™ l 3 l 5 1

3t Rl
4Vo| % mz &7 3w ¢  bm
I= Zor [e cos + 5008 + 5 cos—l—+--- [13]

These series forms may be used to calculate current or voltage at any
point z along the line at any time ¢ after closing the shorting switches.
The desired accuracy determines the number of terms that must be

retained. It is especially interesting to note the current through the
short circuit at the end, by letting z = 0 in (13),

LV , i Pra
_&YVol T e e .
o Zor [Je +7 3 +7 5 + ] [14]

I

it

Recalling that je]7 is a representation for sin =¢/7 (Art. 1.11), and, com-
paring with the Fourier analyses for square waves in this article and in
Art. 1.14, it is found that (14) is the Fourier series for such a square
wave of current as a function of time. The result for current, if ex-
amined carefully, is then found to be exactly the same as that obtained
by a traveling wave reasoning for the similar example of Art. 1.22.

The value of this method cannot be fully appreciated by a single
example. There will be many other examples in later chapters in which
a series of separate solutions will be formed to fit known boundary or
initial conditions.
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1.24 Transmission Lines with Losses. Solution by Differential
Equations for Sinusoidal Voltages

We have obtained an attenuation factor for the line by an approximate
method in Art. 1.20. Let us now examine the effect of a series resistance
and a shunt conductance more carefully by inserting the effects directly
into the differential equations of the line. .

If series resistance and shunt conductance are of importance in the
transmission lines, the voltage drop along the line must include the
resistance drop as well as the inductance drop of Eq. 1.15(3). Simi-
larly, the leakage current must include the conductance as well as
capacitance current shunted across the line. Instead of Eqs. 1.15(3)
and 1.15(4) we then have

av a1

~ = ~L5 —RI 1]
al v
%= ~Co — GV [2]

If steady state sinusoidal conditions with respect to time are con-
sidered, of the form ¢’“, time derivatives may be replaced by jw, and
total derivatives written for distance since there are then no other
derivatives.

av .

Fz- = — (R + ]wL)I [3]
dl .

7= ~ @+ [4)

Differentiate (3) with respect to z and substitute (4).

= @+l L = R+ L)@ +jorrV
7 d*v e
prinkad [5]
where
| 7 = (R + joL) (G + juC) [6]
The solution to (5) is in terms of exponentials,
V = Ae"* 4 Betr: 71

as can be verified by substituting (7) in (5).
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An examination of (6) shows that v must be complex in the general
case. Let us write the real part as a, the imaginary part as 8. By (6),

v = a+jB = V(R + joL)(G + juC) [8]

If (7) is rewritten using « and 8,
V = Ae ¢ % | Bl 91
This expression for voltage is quite similar to that of Eq. 1.21(4)
for sinusoidal waves in ideal lines, except that there is now an attenua-
tion term on both the forward and backward traveling waves. « is
called the attenuation constant, 8 the phase constant, and v the propa-
gation constant. The relation between these results and those of

previous expansions is best seen by a binomial expansion of (8), valid
when R/wL <1 and G/wC <K 1. Then

L
R \[EG"

(R + joLllG + joCl} = | —=+—5—

2\F ?
c

— 2 2
- [1 _ RG G R ]
+jeVLC|1 = 2576 t 822 T 822

L
R G"\[E

or

o = + 2 [10]
2 \c
— RG G? R?
p=wVILC [1 T 40?LC T 8w2(C? + 8w2L2] (1]

Equation (10) is seen to be of exactly the same form as Eq. 1.20 9).

Equation (11) shows that g8 is so little different from the value «V LC
[Eq. 1.21(8)], at least for low-loss lines, that it is usually sufficiently
accurate to use this value.

_ 2

N [12]

8= L~ oV
v .
If the above approximations are not sufficiently good, it is possible to
calculate more accurate values by obtaining the real and imaginary
parts of (8).
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As for current, solve by substituting (7) in (3)

1= m [Ae™"* — Be™]
or

I= 21(-) [Aemo%e7P — Benzeif?] [13]
where

_ R+l R+ joL
Zo = v ’\/G+jwc [14]

Zo may again be thought of as the characteristic or surge impedance
of the line, since it relates voltage and current in a single wave and is the
impedance of a line of infinite length. However, it is now complex.
Equation (14) may also be subjected to a binomial expansion and higher
order terms neglected, subject to the condition that R/wL < 1 and
G/wC <« 1. Then

7 = R + joL
°’\/G+jwc

L R? 3G RG @G R
- \EKI t eI s T 4w2LC) = (270 - ﬁ)] -

The major correction is the reactance term which now appears in Z,,.
However, for many practical lines it is sufficiently good to neglect all

corrections and use only
L
Zo = \/: .
0 C [16]

When this is not accurate enough, approximate corrections may be
added by (15), or the value calculated from the complete expression (14).

1.25 Velocities of Wave Propagation

In Art. 1.16 it was shown that for a perfectly conducting transmission
line, a voltage applied to the line at one point will appear later in time,
reproduced exactly in wave shape, along the line at some distance from
the source. This conclusion was obtained from the form of the solution
to the differential equation of the line. A certain velocity v, a quantity
appearing in the original differential equation

PV 1%V

02 1% o
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was taken as the velocity of the wave. This again came naturally out
of the solution, once it'was decided to label it as a traveling wave.

Now this velocity v is, for perfect conductors, entirely independent of
the shape of the wave. It is the velocity of the wave front or peak, or
of any other point of the wave which makes a convenient marker., For
a steady state, sinusoidally varying voltage with time, it may be a bit
difficult to conceive of a ready means of putting a marker on one loop
and following it down the line, distinguishing it from those before and
after it. But still, the velocity v is the velocity with which an imaginary
observer would have to move to see always the same instantaneous value
of voltage or current. Since this says, in effect, that the observer main-
tains the same phase angle along the infinite stretch of sine wave, the
velocity was called a phase velocity.

The situation described is not always true in a wave guiding system.
In a transmission line with dissipation and in general electromagnetic
wave guiding systems, there will in general be a change of wave shape
in a complex wave put into the system by the source. This is explained
and analyzed by thinking of any impressed voltage or current as made up
of a series of sinusoidally varying quantities of such frequencies and
amplitudes as are necessary to depict the true wave form faithfully.
Then, as this group of sine waves progresses down the line, there will in
general be a difference in the various phase velocities of the various sine
waves. They will change their relative positions (“ faster ”’ waves will
speed ahead, “slower” ones fall back) and, as in a dissipative line,
change their amplitudes in a way which varies with their frequencies.
The resultant wave at some distant point along the line may be very
different in appearance from that which went in.

It thus becomes difficult always to decide just what is to be meant by
wave-front velocity or any velocity associated with some marker on the
true complex wave. The phase velocity still is a readily applied concept
as before. It still is associated with steady state sine waves and so is a
- useful thing in analysis. But it should be recognized that the phase
velocity will in general vary with frequency.

Often in radio problems, the wave being transmitted consists of a
bundle of sine waves covering a frequency band which is small compared
with the average frequency. An example is the two-term combination:

sin (wo — Aw)t + sin (wo + Aw)t [1}

If the above represents the transmitted voltage, then the voltage every-
where along the path (assuming no amplitude change) is

sin [(wo — Aw)t — (8o — 8B)] + sin [(wo + Aw)t — (8o + AB)z] [2]
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in which g is to be regarded as a function of frequency as indicated by
the use of AB to go with Aw. )
Expression (2) may be changed to

2 cos (Awt — ABz) sin (et — ﬂx)

which shows that the resultant voltage on the line at any point may be
pictured as a high-frequency wave whose amplitude varies at a low-
frequency rate. The envelope of the wave, in other words. is .

cos (Awt — ABx) (3]

It varies sinusoidally with both time and distance and thus may be
regarded as a traveling wave. It is readily seen that the velocity of an
imaginary observer who stays on the same point of the envelope is
_

dg
This is called the group velocity. Since the phase velocity [Eq. 1.24(12)]
is

Vg

(4]

w
Vp = — [5
» =% 1
the group velocity is seen to be
= Up
Yo = iv)_ dv,, ‘ [6]
vp dw

1.26 Summary of Uniform Line Equations

Transmission line information in this chapter has been included for
the specific purpose of presenting a wave point of view for later use.
There was consequently no attempt at completeness in the information
for one who is interested primarily in transmission line results; but to
increase the usefulness of the book in this respect the most often used of
the equations are summarized in Table 1.26. It should be noted, how-
ever, that for detailed design of transmission lines, circle diagrams and
transmission line charts often provide the most convenient forms for
using this information.




TABLE 1.26

Quantity General Line Ideal Line Approximate Results for Low-Loss Lines
Pr:pigztl_(})_njgonstant V(& ¥ jaL) (G + joC) jwLC (See & and 8 below)
_w_2r _ _RG G* R?
Phase constant 8 Im(y) wVIC =5 =3 R/ 1G [1 w2Le T aC: T 3o
Attenuation constant « Re(y) 0 B + %
2Z, " 2
Characteristic imped- B+ joL L L [1 i ( G R ) ]
ance Z, G + juC c c I\2C ~ Zal

Input impedance Z;
Impedance of shorted
line

Impedance of open line

Impedance of quarter-
wave line

Impedance of half-wave
line

Voltage along line V (2)

Current along line I(z)

Reflection coefficient Kg

Standing wave ratio

z [ZL cosh vl + Z; sinh I
°LZ, cosh vl + Zy sinh 41

Z 0 tanh 'yl

Zy coth v1

z [ZL sinh al + Z, cosh al
°| Zysinh ol + Z, cosh of
Z I:ZL cosh al + Z, sinh al
Zo cosh al + Z1 sinh al

Vs cosh vz — I;Z, sinh vz

I; cosh vz — %sinh-yz
0
Zy, — Zy
Zy+ %
1+ |Kg|
1 — [Kpg

z [ZL cos Bl + jZo sin gl
°LZscos gl +jZ . sin Bl

JZo tan gl

—3jZ, cot gl
4]
ZL
ZL
Vi cos Bz — jI:Zy sin Bz
Iicos Bz —j % sin Bz
0
Zy, — 7,
Z,+ 2,

1+ |Kx|
1 — |Kg|

7 [alcosﬂl+jsinﬂl
°| cos Bl + jal sin Bl
Z![cos Bl + jal sin gl
% ol cos 81 + j sin gl
Zo I:Zo + Zial

Zy + Zoal

a7zl

[92°1 1y
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Distance along line from input end.

Wavelength measured along line.

Phase velocity of line equals velocity of light in dielectric of
line for an ideal line.

R, L, G, C Distributed resistance, inductance, conductance,
capacitance per unit length.

l Length of line.

Subscript ¢ denotes input end quantities.

Subscript L denotes load end quantities.
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THE EQUATIONS OF STATIONARY ELECTRIC
AND MAGNETIC FIELDS

'2.01 Introduction

Static electric and magnetic fields are of great interest to radio engi-
neers., The equations describing these fields are probably used more
often than those of varying fields. One reason for this is that even at
very high frequencies, the electromagnetics of static fields suffices to
explain many phenomena and yield sufficiently accurate quantitative
results. In still other high-frequency problems, the distribution of the
fields may be exactly the same as in certain other static problems. By
reviewing these familiar static fields, we also hope to understand better
the philosophy of all fields and circuits and to introduce tools which will
prove invaluable when we are confronted with changing field problems.

The first few chapters of this text will present a set of equations which
will include all the knowledge of electromagnetics necessary to solve
most radio engineering electromagnetic problems: radiation from an
antenna, propagation of waves in space and along transmission lines,
the special case of static fields, etc. Now, we might quite logically
present merely a set of general differential equations at the beginning as
the fundamentals of electricity and magnetism. From these could then
be derived the relations applicable to fields which do not vary with time,
and the results could be checked with knowledge and ideas of static
fields. Such an approach will actually be used later in obtaining the
low-frequency circuit equations (Kirchhoff’s laws) from the general
differential equations, but the opposite approach will be more valuable
here; that is, we shall take familiar experimental results in electrostatics
as the starting point and seek to derive the most useful equations that
will describe the experimental results.

If we begin the study of fields from some observed law which may be
regarded as fundamental, the statement of the law should be made as
general as possible so that it will be useful to describe a variety of con-
ditions. We should always be critical of this procedure, since these
*laws ”’ represent generalizations from several experiments, all of which
are special in nature; there is nothing to assure us, in extending them
from the range of magnitudes and conditions in which they were deter-
mined to an entirely new set of magnitudes and conditions, that the

48
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phenomena predicted will actually ever be observed until these too are
checked by special experiment. Once checked, the derived form of the
relation might just as well have been the fundamental law. In fact we
might have started from that point had we thought of it first. In
applied physies it is particularly necessary to find a large number of these
derived relations, since it is seldom convenient fo use the law in its origi-
nal form for all design or analysis. There are often so many of these
forms that the engineer in using a dozen different relations for as many
separate problems may be quite unaware that many of these relations are
in reality equivalent.

To study static fields some experimental ‘“laws ” will be taken as
fundamental. By transformations, definitions, and generalizations,
other forms of the law will be obtained, which may be more general or
more convenient to use for certain problems. We shall extend the laws
developed from macroscopic systems to the infinitesimal, and so obtain
differential equations with which we may study continuous variations
from point to point, as well as discrete systems. Once this extension has
been justified, the differential equation will be the most valuable tool for
the study of fields.

As the discussion proceeds, it will be noticed that directions appear as
frequently as magnitudes in the statement of the laws, so that quite
naturally it will be necessary to use a short-cut vector notation to save
time, space, and many words. It will soon be discovered that this nota-
tion permits many short cuts in manipulation, and, most important of
all, leads to a very superior way of thinking about electric and magnetic
effects.

STATIC ELECTRIC FIELDS

2.02 The Problem of Static Electric Fields

The problem which must be solved in static electric field theory is
that of obtaining relations which involve the geometrical configurations
of conductors and dielectrics, the distribution of charges on the con-
ductors and in the dielectric medium separating them, the potential
differences between conductors, and the field distribution in the dielec-
tric. Several or all of these factors will enter into the determination of
capacitance between conductors, the maximum gradient in insulation,
the amount of field between deflecting plates in an oscilloscope, the
amount of shielding which a grid provides in a vacuum tube, or the accel-
erating force on an electron in an electron gun.

Essentially, the problem is one of equilibrium. We require a knowl-
edge of the forces that act on charges, thus making them move to even-
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tual equilibrium positions, and we must know the manner in which
conductors and dielectrics affect the charge distribution and the field
distribution.

2.03 Force between Elc‘:ctric Charges; Electrostatic Units

We shall take as the starting point for electrostatics the experimental
law of Coulomb, which gives the force between two electric charges.
The law includes the following information:

1. Like charges repcl, opposites attract.

2. Force is proportional to the product of charge magnitudes.

3. Force is inversely proportional to the square of the distances
between charges. '

4. Force is dependent upon the medium in which the charges are
placed.

5. Force acts along the line joining the charges.

This information may be written as an equation.

1= -k a2 [1]
€T

In this equation, f is defined as the force of attraction acting on the
line between charges, q; and g, represent the charges in magnitude and
sign, r is the distance between charges, ¢ is a property of the medium
which may be called the dielectric constant, and k is a constant of pro-
portionality which must be included for the present, since we have not as
yet defined units.

The equation may be written so that the direction of the force is
included.

7= -kL%a, 2]
€r

The bar above f denotes that force is a directed quantity, or vector.
That is, it has both magnitude and direction. The magnitude is given
by the numerical value of k q:—rgz which in itself implies no direction, and
it is accordingly called a scalar quantity. The direction of f is given by
d,, a vector of unit length pointing from one charge directly toward the
other, and the sign of —gq;92. Thus if ¢; and go have opposite signs,
—quq2 is positive, f has exactly the direction of @,, and the force is
from one charge directly toward the other. If ¢; and ¢p have the same
sign, —q1¢o is negative, f has exactly the opposite direction to &,, and
the force is from one charge directly away from the other. This is
merely the statement of opposite charges attracting, likes repelling.
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Vectors such as @, are known as unit vectors and will be useful through-
out the study of fields, since they serve to indicate direction without
interfering with magnitudes.

Equation (1) may be made to define a system of units. If a unit
charge is defined as that charge which repels an exactly similar charge
with a force of 1 dyne when the two are placed 1 cm apart in a vacuum,
a system of units is defined such that k/e = 1. In this system of units,
the dielectric constant of vacuum is further defined as unity, so that
k is also unity. For reasons which appear when other units are con-
sidered, dielectric constants referred to vacuum as unity will be denoted
by €. :

The system based upon the above definitions is known as the electro-
static system of units (esu), and the unit of charge is called the stat-
coulomb. It will be the basis for all subsequent definitions and equa~
tions encountered in the study of electrostatics in this chapter. Later,
in the study of magnetic fields, it will be convenient to define a new
system. In still later problems a third system, a practical system of
units, will be used, which will actually be our preferred system. It is
necessary to understand all these systems well if the engineer is to use
the present reference books on electricity and magnetism with ease, for
formulas are given in the system most convenient, or at least what
appears most convenient to that author. To keep confusion to a mini-
mum, the formulas of the text will eventually be restricted to the practi-
cal system after the various systems have been explained and discussions
reduce to the matter of solving practical problems.

2.04 Electric Field Intensity

If the unit charge as now defined is placed at a distance r from a charge
g in vacuum, the force law shows that it experiences a force ¢/r? dynes.
In the more general case, any charge placed in the vicinity of a system of
charges experiences a force whose magnitude and direction are functions
of the amounts and positions of all charges of the system. A region so
influenced by charges is called a region of electric field. The force per
unit charge on a positive test charge at a point is defined as the strength
of electric field or electric intensity at the point, provided the test charge
is so small that it does not disturb the original charge distribution of the
system. Since the force on the test charge has direction as well as
magnitude, the electric intensity is a vector. The electric intensity or
electric field vector is then defined by :

7-J
E=4

where 7 is the force acting upon the infinitesimal test charge, Aq.

(1]
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The electric field intensity arising from a point charge, ¢, in any
medium is given by the force law Eq. 2.03(2).* In esu,

E =5 (-a) 2

Since @, is the unit vector directed from the point toward the charge
g, —a, is directed away from the charge, so that the electric field
vector points away from positive charges and toward negative charges.

2.05 Displacement Flux

Equation 2.04(2) shows that the electric intensity is dependent upon
the medium in which the charge is placed. Suppose a new vector quan-
tity is defined, independent of the medium. Define the displacement
D by :

D=¢E 1}
The displacement for the point charge then becomes
D= rq_'z (—a,) [2]

The displacement at any point is thus a function of charge and posi-
tion alone; consequently the charge may be thought of as giving rise to
so much displacement in its surrounding medium. Each charge may be
considered as a source of displacement flux or lines of flow in the medium,
and according to this concept, D is an electric flux density, with the
important property that, unlike electric intensity, it is independent of
medium.

Take, for example, an imaginary spherical surface with charge 4-¢
at its center. At each point on the sphere there are g/r? lines of dis-
placement flux per unit area passing radially outward, so that emanating
from the entire sphere there are 4wq lines, regardless of the size of sphere
or the medium in which the charge is placed.

2.06 Gauss’s Law

In Art. 2.05, it was found that the total flux emanating from a sphere
of any radius with charge ¢ at the center was 4xq lines. As a first step
in reducing Coulomb’s law and the accompanying definitions to most
useful form, it will be helpful to become more general. Consider a
volume of any shape containing charges. If one of these point charges,
g, is considered (Fig. 2.06), the field intensity and displacement can be
calculated for any point on the surface by equations of previous articles.

Thus at point P, D is g/r®. (When a quantity normally a vector
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appears without the bar, it signifies that magnitude alone is being con-
sidered.) If 6 is the angle between D and the normal to the surface at P,
the amount of flux passing through
an elemental surface dS is

dy = r%dS cos 0

dS cos 0 is the area dS’, the com-
ponent of dS normal to D. From
the definition of solid angle, the solid
angle dQ subtended by either dS or
dS’ is dS’/r*; so then the amount
of flux passing through the elemen-
tary surface is gd2. To obtain total
displacement flux, this expression is integrated over all the surface, which
amounts to integrating d2. The result is then 4rq. So

Fig. 2.06. Charge ¢ and arbitrary
surrounding surface.

f D cos 0dS = 4nq [1]
s

D is the magnitude of the displacement at any point on the surface, dS
is an elemental area at that point, and 6 is the angle between the dis-

placement vector and the normal to the surface. f is used to denote
5

a surface integral, the integral of a quantity over a given surface.

If the elemental surface dS is represented by a vector, the equation
may be written more simply. Define dS as the vector which represents
that elemental area. Its magnitude is dS, and its direction is that of the
outward normal to the surface. Then replace D dS cos § by D - dS.

The product just defined is called the dot product of two vectors, or
the scalar product, since it results by definition in a scalar D dS cos 0,
which is the product of the magnitude of one vector by the projection
of the other upon it. Gauss’s law of (1) may then be written

f D-dS = 4nq - [2]
S

The g considered was only one of the charges of the system, but since
it might have been located at any point inside the surface, and since
fields arising from several charges may be superposed, the g of (2) may
be considered as the sum of all charges enclosed by the system. In
particular, when the charge is distributed throughout the region with a
charge density, or charge per unit volume, p, at any point, the total charge
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enclosed is the volume integral of this charge density. Equation (2)is

then written
fﬁ-dS=47rfpdV 3]
s v

f denotes volume integral, or integral of a quantity throughout a
v .

given volume.

Rigorous proofs for Gauss’s law may be found in several of the refer-
ences,! but this demonstration should give a clear picture of the concept
of flux. Once one has learned to think of lines of flux emanating from
a point charge radially in all directions, then it seems that the amount of
flux passing through any imaginary enclosing surface must be constant,
since no flux lines are created or destroyed in passage.

. ¥

Ayay

Fia. 2.07. Vector 4 and its rectangular components.

2.07 Scalar or Dot Product of Vectors

The vector operation defined in the last article is important since there
is often occasion to multiply one vector by the projection of the other
upon it. That is, if 4 and B are vectors (of magnitudes A and B)
with an angle of 6 between them, AB cos 6 is of interest. This has been
written as A - B. (Read A dot B.) This product may now be ex-
pressed in terms of the components of A and B along the coordinate axes.

A unit vector has already been defined in the statement of Eq. 2.03(2).
If a,, a,, a. are three such unit vectors having the directions of the three
axes in rectangular coordinates, and if Az, Ay, and A, are the magnitudes
of the components of A along these axes, A may be written ,

A=Aa. + Ad, + A,

The addition of the three component vectors to obtain A is performed
according to ordinary engineering ideas of vector addition (Fig. 2.07).

1In this text we shall mean the general references of Appendix A, if specific
references are not given in a footnote.
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The dot product is
A-B= (A8, + Ag, + A.3,) - (B3 + B,a, + B.a,)

If the multiplication is carried through term by term, with the dot
product between component vectors retained:

A- B = A.B.i, - a, + A.B,a. - ay, ete.

The terms a - 8z, Gy - 8y, 3 - d; are unity by definition of the unit
vectors and the dot product. The terms a. - gy, a, - @., etc., are zero
since the angle between any of these unit vectors and either of the other
two is 90°. The scalar product then reduces to

A-B=A,B,+AB,+ A.B, [1]

2.08 Tubes of Flux

The concept of flux passing through an area obviously does not have
to be limited to electric phenomena. If D is any vector function of
space, the product of the magnitude of D
at any point by an element of area perpen-
dicular to D at that point may be called the
flux of D passing through that area. The
total flux flowing through a surface is given
by the surface integral

= f D.d8 [ Fic. 2.08. Tube of flux.
S

As before, the convention is to regard the vector representing the ele-
ments of area as pointing outwards.

Consider a surface (Fig. 2.08), bounded by two planes, S; and S,,
perpendicular to the field vector at two points, and a surface S3 always
parallel to the direction of the field vector. If there is no charge en-
closed, Gauss’s law gives

D-dS+f D-dS+f D.-dS8=0 121
Sy Sg Ss
Since S is always parallel to D, there is no flux flowing out through Ss.
f D-d8=0 3]
Sg

So
j;ﬁ.d5=-fs.5.ds (4]
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This equation states that the flux passing through the plane S; is
that which comes out of the plane S, so that total flux across any cross
section of the tube'is a constant. Such a tubular region may be called
a-tube of flux. To study the field intensity distribution, it is sometimes
helpful to draw out many of these tubes, the size of area being so selected
that the flux through the area is one unit. Lines are often used to
represent the tubes, and the tubes loosely called lines. Thus the smaller
the spacing of these lines, i.e., the more lines per square centimeter, the
stronger the flux density at that point.

We have agreed that lines of flux ecmanate from charges and are con-
tinuous in regions without charge; conscquently the lines of force for
an electrostatic field must begin on a charge and end on a charge. To be
consistent with the convention already adopted, the line is said to begin
on a positive charge and end on a negative charge.

2.09 Charges on Conductors

If expressions for the field in differential equation form are to be
obtained, it is important that boundary conditions for application to
their solutions be well understood. Conducting metal surfaces will
often form these boundaries.

Conductors are defined as those materials which readily permit a
current flow, or motion of charges. So if charges are placed on or in
conductors, they will move about as long as there is the slightest electric
field producing a force upon them. After they have reached equilibrium,
the necessary condition for a static field to exist, all the electric field
inside the conductor or tangential to its surface must have disappeared.
If there were charges in the body, Gauss’s law would require an electric
field in the vicinity of these charges, so that this is an impossible con-
dition for the static case. All the charge in electrostatics must then
reside on the surface and must be distributed so that the component of
electric field intensity tangential to the surface and the total electric field
intensity inside the material surface of the conductor are zero.,

2.10 Boundary between Conductors and Dielectrics
Determination of the charge on a conductor which bounds a given
electric field demonstrates the application of Gauss’s law to a case much
more difficult to study directly from Coulomb’s law. Consider the
imaginary surface indicated in cross section by the dotted lines of
Fig. 2.10. There can be no flux through the surface dS’ since it is sub-
merged in the metal, below the surface. The distance % can be made as
small as we like compared with dS, since dS must be only an infinitesi-
mal distance outside the metal, dS’ must be only an infinitesima)l dis-
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tance inside. So then the flux passing through all surfaces containing A
can be made negligible. This leaves the total flux to pass through the
surface dS. By Gauss’s law this flux must be 4 times the charge
enclosed, which is p; dS.  (ps is the surface
charge density, or charge per unit area.)
Thus

¢E dS = 4mp, dS

or

¢E = 4mp, ] Frgc. 2.10. Cross section, show-
E is the electric intensity normal to the ing surface separating a dielec-
surface, which is the total E in the pres- (GO (B G
ent case since there can be no component tangential to the sur-
face of the conductor. The result is directly due to the requirement
that 4 lines of flux leave each unit positive charge, and that D and E
are normal to the conductor surface external to the conductor, zero .
inside the conductor. The result may be used to find the amount of
clectric flux leaving a conductor at every point if the charge distribution
on the conductor is known, or conversely, to evaluate the charge that
must be induced on a conductor at every point when a known distribu-
tion of electric field ends on this conductor.

2.11 Diverging and Converging of Flux Lines

Gauss’s law was derived from Coulomb’s law which was determined
by experiment on systems of finite size. Let us extend it to an infinitesi-
mally small system. Equation 2.06 (3) may then be written:

. fﬁ -dS 47 f pdV
lim 25— = lim SV 1
av—o AV av—o AV [1]
The right side is, by inspection, merely 4wp. The left side is the amount
of displacement flux per unit volume flowing out of an infinitesimal
volume. This wi_ll be defined as the divergence of displacement,
abbreviated div D. Then

div D = 4mp [2]

To make the picture clearer, consider the infinitesimal volume as a
rectangular parallelepiped of dimensions Az, Ay, Az as shown in Fig. 2,11,
To compute the amount of flux leaving such a volume element as
compared with that entering it, note that the flux passing through any
face of the parallelepiped can differ from that which passes through the
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opposite face only if the displacement perpendicular to those faces varies
from one face to the other. If the distance between the two faces is
small, then to a first approximation the difference in any vector function
on the two faces will simply be the rate of change of the function with

2 distance times the distance between
l Az faces.
! g If the displacement vector at the center
Lox s ax has components D, Dy, D,
§
]
e 14 _ Az 3D,
Ve D- ot g D. + 2 or
/ 0
,r [3]
/
/. Ax aD
rX D =D, —— —
Fia. 2.11. : ‘x—% *T 2 o

_ The displacement flux flowing out the front face is Ay Az D, 4559
2

and that flowing in the back face is Ay Az D,

4z, leaving a net flow out
2

aD :
of Az Ay Az _ax_x . Similarly for the y and z directions, so that net flux
flow out of all the parallelepiped is

x z

a
Ax Ay Az
ox

aD F
Az Ay Az —2 + Az Ay Az
+ Y ay+ Y %

By Gauss’s law, this must be 4mp Az Ay Az. So, in the limit,
oD, oD, 8D

w Ty T 4

An expression for div D in rectangular coordinates is obtained by com-
paring (2) and (4).
4D,

divD = 5

oD,  aD,
+ o + % (5]

Tt will be convenient to define a vector operator V (pronounced del)
in rectangular coordinates as

_ 9 _ @ _d
V—a,ax+a?ay+a,az [6]
Consider the expansion for the dot or scalar product, Eq. 2.07(1), and
the definition of V above. Then (5) indicates that div D can correctly

be written as V- D. Tt should be remembered that V is not a true
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vector but rather a vector operator. We need not worry about its
meaning except when it is operating on another quantity in a defined
manner. The divergence represents the first of several of these opera-
tions to be defined.

8D, , 8D, | oD,

oz - dy +¥ u

v.-D =

Finally
V-D =divD = 4mp (8]

The divergence is made up of space derivatives of the field, so (8) is
evidently a differential equation derived by generalizing from the previ-
ous laws for comparatively large systems. It will be so important that
we should become accustomed to looking af it as an expression for Gauss’s
law generalized to a point in space. The physical significance of the
divergence must be clear. It is, as defined, a description of the manner
in which a field varies at a point. It is the amount of flux per unit
volume emerging from an infinitesimal volume at a point. With this
picture in mind, (8) seems a logical extension of Gauss’s law. Since
Gauss’s law was in turn derived from Coulomb’s force law, the above
equation may be considered as a differential equivalent of Coulomb’s
law.

2.12 Divergence Theorem
If Eq. 2.11(2) is integrated over any volume,

fdideV=47rfpdV [1]
v v ’
Replaee the last term by its equivalent from Gauss’s law, Eq. 2.06 3).
fdideV=fD-dS , 2]
v s

Although this relation has been derived from a consideration of D, a
little thought will show that it is a direct consequence of the definition
of divergence and so must hold for any vector field. For if divergence
of any vector is considered as a density of outward flux flow from a point
for that vector, then it seems that the total outward flux flow from a
closed region must be obtained by integrating the divergence through-
out the volume. If F is any vector

fdivF‘dV=f V-F’dV=fF'-dS [3]
vV \ 4 S

This relation is known as the divergence theorem or Gauss’s theorem (as
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distinguished from Gauss’s law of Art. 2.06) and will be useful later in
manipulating vector equations in order to arrive at their most useful
forms. Note that the theorem is true for any continuous vector func-
tion of space, regardless of the physical significance of that vector.

2.13 Conservative Property of Electric Fields

Before proceeding very far in attempts to build up pictures and
quantitative relations for electrostatic fields, we should pause to look
into the very important matter of energy. The field may be checked
with ideas of conservation of energy, to determine, for example, whether
the energl of the electrostatic field is a function merely of its state at

. any given time, or whether it depends upon the

Vi ,manner in which that state occurred. We no
b doubt already feel certain that the energy of
T an electrostatic field depends only upon the
7 amounts and positions of the charges, and not
B VA on how they grew; the inverse square law tells
/ s .

/ Q us that this must be so.
/ The force on a small charge Aq moved from
A 6:” infinity to a point P in the vicinity of a system

1

Fic. 2.13. of charges: q; at @y, g2 at @2, g3 at @3, etc., may

be calculated at any point along its path. Con-
sider, for example, the work integral arising from ¢;. The work is the
integral of force component in the direction of the path, multiplied
by differential path length (Fig. 2.13).

A d
U, = _f qq1 cos 0 dl

’
er?

But dl cos 6 is dr, so the integral is simply

PQ1 A d
qq ar
U, = _f 7 2

@ €r

.

Similarly, for contributions from other charges, so that the total work

integral is
PQL A PQ2 A PQs A
o [T [Ty [Ty
L] € r2 0 er 0 er
Integrating,
(Ag)qr , (AQ)g2 , (Ag)gs
= . 1
v ¢PQ, + €PQ, + ¢’ PQs + [

Equation (1) shows that the work done is only a function of final
positions and not of the path of the charge. This conclusion leads to
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another: if a charge is taken around any closed path, no net work is
done. Mathematically this is written

fE-d“z=0 (2

In the study of magnetic fields, we shall find corresponding work inte-
grals which are not zero.

2.14 Electrostatic Potential

To solve the differential ficld equations, it is oftén convenient tc
introduce mathematical tools known as potential functions, which may
aid materially during the solution but which need not appear inh the final
result. It is never necessary to give these mathematical tools physical
significance though it often may be desirable. We are already quitc
familiar with the potential function of electrostatics, and in this case
it may easily have more significance for us than the fields, which werc
themselves only defined concepts to describe the situation in a region
containing charges.

The common potential function in electrostatics is a scalar quantity
defined so that the difference in this function between two points F
and @ is given by the integral

P
@P—¢Q=—j;177-d7 [1

The physical significance that may be attached to it is now apparent,
for (1) is an expression for the work done on a unit charge in moving it
from P to Q. The conclusion of the preceding article that the work in
moving around any closed path is zero shows that the potential function
defined is single valued; that is, corresponding to each point of the field
there is only one value of potential, though the potential may, of course,
vary from point to point.

Only a difference of potential has been defined. The potential of any
point can be arbitrarily fixed and then the potentials of all other points
in the field found by application of the definition to give potential differ-
ences between all points and the base. .This base is quite arbitrary since
the potential differences alone have significance. For example, in certain
cases it may be convenient to define the potential at infinity as zero and
then find the corresponding potentials of all points in the field; for the
determination of the field between two conductors, it will be more con-
venient to select the potential of one of these as zero.

If the potential at infinity is taken as zero, it is evident that the
potential at the point P in the system of charges, Art. 2.13, is given by
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U of Eq. 2.13(1) divided by Ag so

2
7ra T 7t 7RG T 2
Generalizing to the case of continuously varying charge density,
pdV
2= [ 25 3]
vy €r

p is the charge density, and the integral signifies that a summation
should be made similar to that of (2) but continuous over all space.
There are, of course, arbitrary added constants if the potential at infinity
is'not taken as zero.

At once there is evidence of the usefulness of the potential tool, for
® is obtained by simple scalar addition; it would have been necessary
to perform corresponding vector additions to obtain fields directly.
Since the fields can be obtained simply from the potential, the work of
obtaining electric fields from charges is simplified. We shall next show
how this may be done.

2.15 Gradient

If the definition of potential difference is applied to two points a
distance dl apart,

dd = —E-d 1]

dl may be written in terms of its components and the defined unit
vectors (Art. 2.07).

=dzd; +dyd, + dz a, [2]
Expand the dot product according to Eq. 2.07(1)
dé = —(E;dz + E,dy + E, dz)

Since ¢ is a function of z, y, and 2, the total derivative may also be
written

0P P %
d® = = dz + — dy + —
axdx—'_ay y+az dz

From a comparison of the two expressions,

¢
E. N
ax
od
E)= —— [3]
Y
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ad
&--5
= 9P ad
d:z_' —_
E= ( +a %3 + az) 4]
or B
E= —grad ® [5]

where grad &, an abbreviation of the gradient of &, is a vector showing
the direction and magnitude of the maximum space variation in the
scalar function ®, at any point in space. It is the maximum variation
that is represented because the gradient is the vector sum of the varia-
tions in all three directions.

The vector operator V was defined by Eq. 2.11(6). Then grad &
may be written as V@ if the operation is interpreted

ad ad
Z a——+ Gy g [6]

and

E=—gradd=—-v® 71

Problem 2.15. Demonstrate that the gradient of ®, as defined by Eq. 2.15(6),
is indeed a vector representing magnitude and direction of the maximum _space
variation of ®.

2.16 Equipote:ntials

All points of a field having the same poténtia,l may be thought of as
connected by equipotential surfaces. The distribution and spacing of
these equipotential surfaces can be used to describe the field. The elec-
tric field vector must be perpendicular to these surfaces at every point,
for if there were the slightest component tangential to the surface, say
E,, then two points df apart would have a potential difference Ed¢
which would violate the condition for an equipotential surface. This
was the same requirement considered in Art. 2.09 for conducting sur-
faces, so it follows at once that all conducting surfaces in electrostatics
must be equipotential surfaces.

If the potential were to vary in one direction only, say z, as in a po-
tential difference applied between two infinite parallel conducting planes
perpendicular to the x axis, the electric field, or negative gradient of
potential, would be entirely in the = direction. The equipotential sur-
faces would be perpendicular to the z axis, or parallel to the conducting
planes, as would be expected from symmetry.
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In the general case the field will vary in all directions, the equipoten-
tial surfaces will not be planes, and the gradient will be made up of com-
ponents in the z, ¥, and z directions having magnitudes proportional to
the variation of potential in those three directions.

2.17 Laplace’s and Poisson’s Equations

It will often be convenient to work directly with potentials instead of
fields, since the specified conditions of the problem, i.e., the boundary
conditions, may be given in terms of potentials (say the voltage applied
between two conductors).

If the value of E from Eq. 2.15(7) is substituted in Eq. 2.11(2), and if
¢’ is constant throughout the region,

—div (grad &) = — V- Vo = —F

But from the equations for divergence and gradient in rectangular
coordinates [Egs. 2.11(7) and 2.15(6)]

PRk S L R
ViVt T2 g
So
%e %@ | o*® 4w
o Twf T T T H

This is the differential equation which relates potential variation at any
point to the charge density at that point. It is known as Poisson’s
equation and is often written :

4mp

Ve = — — (3]

where
Vip = V. (V®) = div (grad ®) [4]
In the special case of a charge-free region, Poisson’s equation reduces
to
?e e P

w2 Tar T

=0
Y

or
V2 = 0 (5]

which is known as Laplace’s equation.
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Any number of possible configurations of potential surfaces will
satisfy the requirements of (3) and (5). All are called solutions to these
equations. It is necessary to know the conditions existing around the
boundary of the region in order to select the particular solution which
applies to a given problem. It can be shown mathematically that once
p is given at every point in a region and @ is given at every point on the
surface surrounding the region, only one potential distribution is possible.

Equations exactly similar in form to (3) and (5) are found in many
branches of physics. In fact we shall discover later that they are true
not only when the function is a static potential; for example, the func-
tion may be the static field strength vectors or certain of their com-
ponents. Laplace’s and Poisson’s equations are of first importance in
getting answers to all problems in which static electric and magnetic
effects are involved. The ability to choose solutions of these equations
is fundamental in arriving at the final solutions to the common prob-
lems discussed in Art. 2.02. For that reason the next chapter will be
devoted almost entirely to a discussion of the techniques of building up
solutions to these equations to fit boundary conditions that are likely to
occur in practical problems.

STATIC MAGNETIC FIELDS

2.18 Magnetic Field of a Direct Current

In the first part of this chapter the concept of the electric field was
developed from the experimental observation that a charge in the vicinity
of other charges experiences a force. Experimentally, it can also be
determined that a loop carrying current will be acted on by a force if it is
brought in the vicinity of another current or system of currents. The
region in which such forces exist is spoken of as a region of magnetic
field. Now, of course, the study of magnetism may be approached from
various standpoints; we shall find it most advantageous to study it as an
effect due to current flow. In this chapter we shall limit ourselves to a
discussion of the concepts of magnetic fields due to unchanging currents,
i.e., static currents, just as earlier in the chapter the discussion was
limited to the electric field effects of static charges. As before, the con-
clusions and concepts will be applicable not only to static currents, but
also to low-frequency problems and to many high-frequency situations
in which the field distribution will later be shown to be identical with
those of statics.

Experimental measurements show that the force betweery two or more
static current elements is dependent upon the following factors.
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1. Direction of current flow.

2. Magnitude of currents.

3. Distances between currents.

4. QOrientation of currents.

5. Shape and size of current path.

A comparison of these and the corresponding factors for electric
charges in Art. 2.03 warns us that the force law for currents will not be
written so simply as that for charges. Current is a vector, i.e., it has
direction, to mention one complicating factor; the orientation of the
current vectors must appear in the force law. It will be convenient
therefore to define a field strength for magnetic fields before attempting
to write the force law. The electric field intensity was defined in terms
of force on a small charge. The magnetic intensity, or magnetic field
vector H, is defined in terms of the force on a small current element
such that

df = Idly/H sin 6 [1]

w4’ is a function of the mediumr known as permeability, I is the current
flowing in the element dl, H is the magnitude of the magnetic intensity,
9 the angle between dl and H, and df the magnitude of the force on the
current element. The direction of df is along the perpendicular to the
plane containing dl and H and in the dircction of advance of a right-hand
serew if dl is rotated into H. This equation enables one to measure field
strength at any point, this field strength presumably arising from a dis-
tribution of currents in the neighborhood, although, of course, it may be
due to permanent magnets.

The remainder of the information obtained experimentally is contained
in a second law relating the field to the currents which produce it.
Although this law is probably correctly credited to Biot, it is more
commonly known as Ampere’s law, so we shall use that designation.
The law is .

’ !
L& sin e 2
T

As in Fig. 2.18a, dl’ is a contributing current element having current
I’, ris the magnitude of the vector from the element to the point at which
H is to be determined, ¢ is the angle between dl’ and r, and dH is the
magnitude of the contribution to H from the element dI’. The direction
of dH is given by the normal to the plane containing di’ and 7, and by the
direction of advance of a right-hand screw if di’ is rotated into 7.

If a simple vector notation is introduced, these laws may be written
clearly in a vector form that includes these clumsy direction laws. Both
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laws involve a vector which is perpendicular to the plane containing two
other vectors and has as magnitude the product of the magnitude of one
and the component of the second perpendicular to the first. Thus if
is the vector resulting from the combination of two such vectors A

™

A
(a) ()
Fic. 2.18.

and B (Fig. 2.18b), define C = A X B as a vector product of the two
vectors A and B. C is a vector perpendicular to the plane containing A
and B, of magnitude AB sin 6 and having a direction given by the
direction of advance of a right-hand screw if 4 is rotated into B. From
this definition it is seen that

AXB=-BxA4

Now we may write (1) and (2) as

df = Idl X W'H 3]
_ I’ w314
I = —dlrzx & 4]

@, is the usual unit vector pointing from dl’ to dl. dH was the contribu-
tion to H at a point from the element dI’. Total H must be found by
summing up vectorially the contribution from all such elements in the
system. Although the vector property has been attached quite natu-
rally to dI’ above, it may as well be given to the current, which has the
same direction as dI’. In subsequent discussions, the vector property
will be given to either, depending upon convenience.

I'dl X a,
n= [—7= g

Equations (3) and (4) define the field strength H, which expresses the
manner in which a current experiences a force and the amount of that
. force. Equation (5) is often considered the fundamental experimental
law. That is to say, it was deduced from experiments on actual systems
and serves to correlate measurements on all such systems.
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2.19 Electromagnetic System of Units

Current is regarded as a motion of charges; since a unit for electric
charge has been defined, there is also defined a unit for current in the
electrostatic system. For the study of magnetic fields a new system of
units is commonly defined. For this system of units, we shall first set
u’ = 1 for vacuum. Two other quantities must now be defined: unit
current and unit magnetic field intensity. Equations 2.18(3) and
2.18(5) give two relations between these quantities; force in Eq.2.18(3)
is measured in dynés; all distances are in centimeters. Thus, with no
constant factors in these equations, the two relations fix units for the
two quantities. In terms of complete systems, unit current flowing in a
circular loop of wire of 1-cm radius in vacuum produces field strength
of 27 at its center (see Art. 2.35); this would then exert a force of 2«
dynes per cm of conductor clement carrying unit current at right angles
to such a field in vacuum.

The above system is known as the electromagnetic system of units
(emu). The unit current is called an abampere. The electromagnetic
system of units will be used exclusively in all subsequent discussions of
magnetic fields in this chapter. Later, as was promised when the elec-
trostatic units were introduced, a single practical system of units will be
used to correlate all formulas for application to practical problems. But,
it is worth while repeating that we allow the reader some experience
with the electromagnetic system of units before restricting our discus-
sions to the practical system, for many valuable texts as well as articles
use the former system.

2.20 Vector or Cross Product of Vectors

The vector multiplication defined in Art. 2.18 may be expanded in
terms of component vectors as was the scalar product of Art. 2.07. For
if A and B are given in terms of the unit vectors and the components
along the three coordinate axes,

Z X E = (A:z(-l:z + Ayay + Az(-lz) X (BI&I + Blla’ll + BZ&Z) [1]

From the definition of the vector product and a consideration of the
coordinate system, Fig. 2.20, it should be evident that

Gy X Gy = 8 = —8y X 8z
Gy X @ = G; = —8; X &
G; X 8y = 3y = —8 X &,

Gy Xz =0 =3, X 8y, =2, X &,

Notice that coordinates were purposely selected so that the sign of the
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unit vectors resulting from the product of one unit vector and the
succeeding unit vector, in the order
xyz, is positive. Such coordinate
systems, known as right-handed sys-
tems, should always be selected to
prevent confusion in signs. To check
for a right-handed system, rotate one ’
axis into the succeeding axis in order

of writing; a right-hand screw given
that motion should then progress in /4
the positive direction along the third f,; 220, A right-handed system of
axis. Then rectangular coordinates.

AX B=a,(4,B.— A,B,) +a,(A.B, — A.B.) + 8.(A.B, — A,B,) [2]

Note that this quantity may also be written as the determinant:

t=ll

s O @
= Ay A, [3]
B, B,

T

AX B =

S h

2.21 Linc Integral of Magnetic Field; The Curl

We now have available expressions which relate the field distribution
to the current distribution, and it might appear that we have generalized
sufficiently and can proceed to the more fruitful question of applying
these equations to the solution of actual problems. But we are not yet
satisfied. There are many other ways of stating these fundamental rela~
tions and the ability to get quick answers to electromagnetic problems
depends upon being able to choose the best statement of the governing
law for that case. Moreover, the understanding of electromagnetic
theory is enhanced by one’s ability to state it and see it “ frontwards,
backwards,” or if necessary, even “ sidewise.”

A law which is sometimes given as a fundamental starting point for
magnetic fields is that of Biot and Savart, stating that the line integral
around any closed path is 4 times the current enclosed.

fﬁ-[ﬁ= 4xl 1]

This relation certainly cannot divulge any information not contained
in Ampére’s law, Eq. 2.18(5), if both are correct, for since field intensity
at any point is given in terms of currents from Ampére’s law, it could be
integrated about any closed path to obtain the line integral in terms of
current enclosed. Although both contain the same information, this
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integral form of the law will many times be more convenient to use than
the previous form, especially when a certain kind of geometrical sym-
metry exists in a problem. For this reason it will be desirable to derive
it from Ampére’s law. It is necessary to go through a somewhat rocky
mathematical path to show the desired equivalence, and it is not our
purpose to engage in rigorous mathematical proofs merely for the exer-
cise.. Present interest is rather in concepts which will be valuable when
we are confronted with a practical problem. However, a convenient
proof of the equivalence between (1) and Eq. 2.18(5) involves the intro-
duction of several concepts which will be useful in later problem solu-
tions, and it is mainly for this reason that the following several articles
and problems will be devoted to that proof.

Once before (Art. 2.11) in writing a relation that involved a closed
integral, we were able to use the expression to obtain a differential equa-~
tion. The matter therc concerned the relation between the integral of
flux diverging from a volume of space and the total charge contained in
that volume. The procedure was simply to let the volume shrink to so
small a size that it was sufficiently accurate to replace the total charge
by the charge density times the volume element. In this way a very
handy term called divergence was introduced as the integral of outgoing
flux per unit volume. When the divergence was evaluated and equated
to 47 times the charge density, a differential equation resulted which
actually is capable of serving as a more convenient starting point in
many problems than the integral expression from which it was obtained.

Similarly, if we now take (1) and apply it to a very small loop — one
so small that it is sufficiently accurate to replace the current linked by
the loop by the current density times the small area — it will be possible
to derive another extremely useful differential equation and introduce
another descriptive vector term. Thus, from (1) we may write

1

fH-d_l=47ri-A_S 2]

where AS is the vanishingly small area and 7 is the vector current flow
per unit area. In the limit a vector called the curl may be defined by

lim B.dl = (curl H)-AS [3]

Before anything is said about the direction of the curl of a vector and its
physical significance, let us go over a very simple example.
Take as the infinitesimal surface a rectangle in cartesian coordinates
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parallel to the zy plane (Fig. 2.21).
fﬁ‘ﬂ = AyHu]H—A: - AxHxlu+Au - AyHy]x+ Az H, |u

Now to an accuracy that becomes increasingly better as Az and Ay
go to zero,

oH o0H
H. =H,| +a—|; H, =H,| +a—2
y+ay ¥ 9 ly z+4az z oz |2
SO
— oH oH
fH-dz=<—”— ")AxAy [4]
oz dy
z H,
(1.y.2) HY
Az
Ay
Hy v
X
Fia. 2.21.

Now this quantity (9H,/dz) — (8H/dy) is a measure of the amount
of line integral per umit area lying in a plane perpendicular to the z
axis. It tells us how much the magnetic field is curling about a small
area in the zy plane where the infinitesimal area vanishes to zero. In a
similar way, the curling around infinitesimal areas in the other two planes
could be evaluated and would become finally

[Curl H], = OH. _ oH,

ay 0z

oH oH

H — x _ 2
(Curl A}, = =% — —= /5

[Curl H), = 9Hy _ O,

dr dy

where the subscript denotes the direction of the perpendicular to the
plane in which the elementary area lies. This set of equations gives a
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differential expression for each component of the curl and clears up the
question of direction. Equation (5) may be written also

oH, oH 9H, oH oH, oH
1 H — dx . z — _1/ - [ x _ z] _z [_y — x
Cur [ ay oz ] T T T e ey |

If the result is compared with the definition of the operator Eq. 2.11(6)
and the expansion for the cross product in rectangular coordinates,
Eq. 2.20(3), then it is evident that

a; a, 8
a a a

Curl H=VX H= = _y B 7
H, H, H,

This vector operation is read ¢ del cross H " and defined to give the result
of (6). From (2), (4), and (5) the following differential equations may
be written

— oH H
lim H-dl=<ayz—a—a;")dydz=4rixdydz
AS—0 YV z

- 0H, 9H, .
A{;ﬂ) H-dl=<az — ax)dxdz=4mydxdz [8]

y
— oH 0H, .

Eﬁ fbm=3f—w)m@=%mu@
A z2

Multiplying the first by a., the second by @, etc., and adding, the
second and third columns give, from (6),

VX H = 4x1 [9]

2.22 The Work Integral for Magnetic Fields

When the current density is zero at some point of a magnetic field,
Eq. 2.21(9),

VXH=0 . 1]
Under such circumstances the magnetic field is non-curling or irrota-

tional, just as is true of electrostatic fields, for a quick glance through
Art. 2.13 and the definitions of Art. 2.21 should make it evident that

VXE=0 2]
In general, however, for magnetic fields
) VX H =4
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The greater the current density, the greater the curling of the magnetic
field, or in the form of Eq. 2.21(1), the greater the total current enclosed
in the path, the greater the value of the work integral. This means that
in a magnetic field where the current density is not everywhere zero, a
motion of conductors carrying the D-C currents (unchanging in time)
through some arbitrary paths and back to the original positions will, in
general, require the expenditure of energy. Surely, the final field must
be the same as the original if currents are maintained constant, and the
final and original field energy storage must be equal; the equations show
that energy must have been used up just the same. . Of course, this does
not mean that conservation of energy is violated in this case; the corre-
sponding energy term will appear in induced effects acting on the currents
of the system, which effects will be studied in later chapters.

2.23 Vector Magnetic Potential

The curl of a field introduced in Art. 2.21 will prove useful in the
development of Eq. 2.21(1) from Ampére’s law. This law in vector
form, Eq. 2.18(5), gives the magnetic field at point z, y, 2. It may also

be written
I'dl’ X7
A= [ =5 i

I’ is the current in a contributing element dl’ at point (z’,y’, 2’) and 7
is the vector running from dl’ to point z, y, 2.

F=t@—2)+ 8y —y) +8.6—2)
r=VE-2)2+ G-y’ +e-2)
It may be shown that

dl’ X ¥ AN
and also that
1\ = i 1
grad (—) X dl' = curl (‘ﬂ—> — = curl dI’ 3]
r T T

But the curl of dl’ is zero, so that finally

H=cur1f1'(‘ﬂ—)=vxz [4]

r

ZEfI'@, | [5]

where
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The integral 4 is a vector function of space whose curl gives the mag-
netic field intensity. It will be called a magnetic potential because when
differentiated in a certain way it yields the magnetic field, and. more
properly the vector magnetic potential to distinguish it from other mag-
netic potentials that can be thought up by analogy with the electrostatic
potential and which are not vectors.

In a continuous current distribution throughout a region, of current
per unit area 7, A may be written

_ v
A=j;1,—r— [6]

H=vxA4 (71

and

So far as this derivation is concerned, Ampére’s law (1) has simply
been written in two steps by mathematical maneuvers. That is, (6)
and (7) together are the equivalent of (1).

Problem 2.23. Derive Egs. 2.23(2) and 2.23(3) and explain why it can be said
that curl dI’ is zero.
2.24 Divergence of Magnetic Field

Magnetic field intensity has been written as the curl of a vector, 4.
Its divergence is then

V-H=v-v X4 1]

The result, in rectangular coordinates, is
%A, A, | A, A, + P4, A,
dxdy drdz dydz Jdydxr dzor Izdy

v-H 0 [2]

since
& 3?2
axdy oyox’

ete.

Notice that the evaluation of the divergence of the curl of A was inde-
pendent of the value of A, so then the divergence of the curl of any
vector is identically zero.

A major difference between electric and magnetic fields is here appar-
ent, for unlike the electric field, the magnetic field must have zero
divergence everywhere. That is, when the magnetic field is due to
currents, there are no sources of magnetic flux which correspond to the
electric charges as sources of electric flux. Fields with zero divergence
such as these are consequently often called source free fields.
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Magnetic field concepts are often developed from an exact parallel
with electric fields by considering the concept of isolated magnetic poles
as sources of magnetic flux, corresponding to the charges of electrostatics.
The result of zero divergence still seems entirely applicable since such
poles have never been isolated, but seem to appear in nature as equal
and opposite pairs. In other words, it is correct to write

v-B=0
where B is called the magnetic flux density and

B=,H 3]
2.25 Differential Equations for Vector Magnetic Potential

We are now in a position to derive the expression for curl H in terms of
the currents of the system, which was written without proof in Art. 2.21.
To do so, let us make good use of the vector magnetic potential.

VXHA=VYX VXA [1]
from Eq. 2.23(7). The identity
VX VXA =—-V2A+ Vv(V-4) [2]

will often be useful; it can be easily verified by the definitions given so
far and the further definition for rectangular coordinates,

- v = §,V%4, + a,V*4, + a,V?4, 3]
It may be proved that if 4 is defined by Eq. 2.23(6),
V-A=0 [4]
There remains then only
VX H=-v4 [5]
Note that from the definition of 4, Eq. 2.23(6)
= [0 6
v T

This should be compared with Poisson’s equation and the integral expres-
sion for potential in electrostatics

av
- Ve = — — [7]

vy €T €

Although these equations were obtained from a consideration of the
properties of electrostatic fields, the first of these two equations ™)
may be considered as the solution in integral form of the second, for any
scalar functions ® and p/e¢’. Consequently by direct analogy between
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(6) and (7), we write

VA, = —4nri, (8]
Similarly for the other components, so that by making use of (3),
VA = —4w (i, + Gyt + G.0,) = —4m1 [9]
Finally, from (5)
Curl H= V X H = 41 [10]

Problem 2.25(a). Prove that Eq. 2.25(2) is correct.
[Problem 2.25(b). Remembering Eq. 2.23(6), show that

— - 1
V-A= _fz.gradzl.”l.,l (—) av
v T

where , y, z, is the point at which A and H are being studied and ', y', 2’ is the point
of location of the current density 7.

Problem 2.25(c). Show that
V-8p)=8V-p+p-VS

Problem 2.25(d). Using the results of the two previous problems, show that
Eq. 2.25(4) is correct.

2.26 Stokes’ Theorem

Just as the divergence should be thought of as a flux flow per unit
volume, the curl should be thought of as a line integral per unit area, at
a point in space. Just as the divergence theorem
(Art. 2.12) states that the total flux flow out of
any volume may be obtained by integration of
the divergence throughout that volume, there is
another theorem which states that the line inte-

Fie. 2.26. gral around any surface may be obtained by inte-

grating the normal components of the curl

over that surface. If the surface is broken up into a large number of

infinitesimal areas as shown in Fig. 2.26, it is known from the definition
of curl that for each of these infinitesimal areas

fH-d_l=cur1H-dS

If contributions from infinitesimal areas are summed over all the
surface, the line integral must disappear for all internal areas, since a
boundary is first traversed in one direction and then later in the oppo-
site direction in determining the contribution from an adjacent area.
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The only places where these contributions do not disappear are along the
outer boundary, so that the result of the summation is then the line
integral of the vector around the boundary.

fﬁ-ﬂ=‘];cur1H'EEj;VXH-d§ (11

This relation is known as Stokes’ theorem, and as with the divergence
theorem, holds for any vector field.

9.97 Derivation of Integral Law of Biot and Savart

From Stokes’ theorem, the line integral of magnetic field around any
path may be obtained. Combining Egs. 2.25 (10) and 2.26(1),

fﬁ-d_l=j;(47ri)'d's=47rl [

I is the current enclosed by the path. This is the equation stated in
Art. 2.21 without proof. We have now shown that it follows from
Ampére’s law, Eq. 2.18(5), and in doing so, have introduced a vector
potential for magnetic fields which will be useful in subsequent field
problems.

2.28 Scalar Potentials for Magnetic Fields .
Suppose we had stubbornly attempted to derive the magnetic field
as the gradient of a scalar potential, as was done for the electrostatic
field, say,
H = grad o,

The curl of H from Eq. 2.21(7) would then be

Gz ay a.
a a a
VX H=| oz 3y o
ad, ad, ad,,
“x oy oz

Now if this is expanded it will be found that it is identically zero [because
of the cancellation of terms like (9% ®,/9zdy) — (8> ®m/dydzx)]. Since the
curl of the gradient is identically zero for any vector field, we cannot
hope to specify a field which does not have zero curl as the gradient of a
scalar potential. When a field is properly expressible as the gradient of
a scalar potential, the line integral of that field between any two points
is independent of the path, and the line integral about any closed path
is zero.
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Of course, it is true that in a current-free region Vv X H = 0 and A
may be derived as the gradient of a scalar potential throughout such a
region. This magnetic scalar potential will satisfy Laplace’s equation,
just as would the electrostatic potential in a region containing no charges.
Such a potential is useful whenever one is interested in a region con-
taining no currents, given the conditions at all boundaries of that region.
The vector magnetic potential, valid as it is for either current-free or
current-carrying regions, has more general usefulness.

2.29 Uniqueness of the Vector Magnetic Potential

In electrostatics there were any number of scalar potential functions
whose gradients gave the same electric field; all these potentials differed
by a constant which, having zero gradient, could change the potential
without affecting the field. In a similar but perhaps a bit more complex
way, it should be clear that there are ever so many vector potentials
whose curls will be nevertheless all the same. All these vector potentials
will differ by the addition of some function whose curl is zero. For ex-
ample, we found in Art. 2.28 that the curl of the gradient of any scalar
always turns out to be zero no matter what scalar function is considered.
Thus if 4 is a vector whose curl is equal to the magnetic field intensity
H, then A + V¢ (where ¢ is any scalar function) will also be such a
vector. It appears that, just as the arbitrary constant in the scalar
electric potential was chosen as a matter of convenience, so might vy be
chosen to arrive at the most convenient function for the vector magnetic
potential.

We are quite accustomed to handling the constant in the scalar electric
potential with ease, to make one or another conductor the zero potential
electrode and to find the fields, without being held up by worry over
the question of uniqueness. Whenever the vector magnetic potential
is used later in this text, the conditions necessary to fix on one of the
many functions having the same curl will be considered further. For
instance, in defining ® and 4 from

on [T
v €T

v

v T

A=

the volume is all space in each, and the charge and current distributions
are assumed to be known and definite. Evidently in this case there are
no questions of uniqueness, arbitrary constants, or gradients of scalars —
the functions ® and A are definitely determined. But this only means
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that we have automatically chosen to fix these arbitrary factors. We
might, for example, have written

d
¢=j°ﬁV+C
1 4

eT

Z=LidV+V¢

r

and the magnetic and electric fields would have been the same. It is
important to remember that though the potentials are of use in simplify-
ing the mathematics or often the whole approach to many problems in
electromagnetics, their successful use comes best after the “feel ” for
their properties is obtained by working many examples. This we shall
endeavor to make possible during later parts of the text.

SIMPLE APPLICATIONS OF THE THEORY

2.30 Field about a Charged Cylindrical Conductor

It is important that as much unnecessary work as possible be elimi-
nated by consideration of geometrical symmetry whenever it exists in
physical problems. In an infinitely long conductor of circular cross
section charged uniformly with charge ¢ per unit length (Fig. 2.30)
symmetry requires that the electric field must be entirely radial and
unvarying with angle. Gauss’s law requires that the flux passing
through an imaginary cylindrical surface at any

———

radius r be 4mq per unit length, so the flux per unit // \;\
area at r becomes Y q \
J
-4
4rq _ 2 ( -7
Dr h 27r B r [1] \\ /I
\ /
and \\\ ///
. - _
E, =+ . [2] Fra. 2.30. Charged
er cylinder.

Notice that this result is independent of the diameter of the charged
cylinder.

2.31 Boundary between Two Dielectrics

The boundary between two dielectrics may be investigated with the
aid of Gauss’s law and the requirement that the electric field integral
about any closed path be zero. If there is no charge on the boundary, an
imaginary small surface as indicated by the dotted line of Fig. 2.31 must
enclose no charge. If subscript n denotes components normal to the
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surface of area AS,

AS Dy, + AS(—D5,) =0 [1]
or .
Dln = D2n
&1 Ein = &Eom 2]
& », If a charge ¢ is taken around a closed
_as __L!f._, path having Al, half its total length, on
== 5—3 each side of the boundary, the work
€ “ done is v

—AlgqE AlqEy = 0
Fia. 2.31. Cross section, show- ¢ + Al qBs:
ing surface separating two dielec- OT

trics. Ey =Ey [3]
The subscript ¢ denotes components tangential to the surface.

Thus the conditions at the boundary between two dielectrics are:
normal components of displacement and tangential components of elec-
tric intensity must be equal on the two sides of the boundary; in other
words, both are continuous. In general, then, the direction of D or E
will change in crossing the boundary between dielectrics of different
dielectric constant.

Problem 2.31. If the field vector makes an angle 6, with the normal in reéion 1
of the above example, what angle does it have in region 27,

2.32 The Dipole P
A study of the field due to a dipole, a y 7/
pair of equal but opposite charges sepa- . //7
rated by a very small distance, will be of ~ ;s
interest in later work on radiation. // s
By definition, the electric moment m & // /

of a dipole is a vector whose magnitude !gv¢” /
is given by the product of one of the P’ h
charges and the distance between the two, "} /¢
and whose direction is given by the direc- | /‘{f\
tion of the line drawn from negative to o/«

positive charge. If the dipoleis as shown g 232 Dipole and distant
in Fig. 2.32, the potential at P is the sum point P.

of contributions from the two charges.

_e(r_1
-6’(7‘1 7‘2) 1
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And, if the distance ! is small compared with r, this is

glcos® mcos@

o [2
The electric field due to the dipole is
E=-ve ‘

In Art. 2.38 an expression for gradient in spherical coordinates is given.

_ (o 19® _ 1 9d
ve=a < >+ o<r 60>+a¢<rsin05;>>

Then if the dipole is parallel to the polar axis of spherical coordinates

E, 6<I>_2mcos0
= ar e
19 msiné
Ey= — - — = —— 3
o r 90 erd 3
1 9P
B, =
V2 rsm06¢

Problem 2.32(a). Extend the concept to a shell or cap of thickness ¢ with a

constant distribution of charge density --p, on one side and — p, on the other, showing
that

= MQ

where @ is the solid angle subtended by the entire shell at point P, and M is define
a8 p,t.

Problem 2.32(b). Find the field from an axial quadripole formed by two dipoles

of the same moments but opposite sign removed from each other by a distance I ir
the direction of the dipole moments.

Problem 2.32(c). Repeat for a quadripole formed by separating the equal and
opposite dipoles by a distance I; normal to the dipole moments.

2.33 Energy of an Electrostatic System

The work required to move a charge in the vicinity of a system of
charges was discussed in the study of the electrostatic potential. The
work done must appear as energy stored in the system, and consequently
the potential energy of a system of charges may be computed from the
amount and position of the charges. If a charge ¢’ is brought from
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infinity to a point at distance r from charge ¢, the work done was shown
to be

’

9

E= "7
€T

Then for a large number of charges

zz Indm (1]

2m 'nf'rnm

The factor % appears since n and m are each summed over all the parti-
cles, and by this convention each contribution of energy is included twice.

In (1) it is apparent that the term for which ¢, = g, will cause diffi-
culty. It is the energy of an isolated point charge, and the value of
Tnm is zero. This says that the energy required to locate any finite
amount of charge at a point is infinite. Such a conclusion is not incor-
rect; rather, it is an expected result since to build up charge at a point
involves infinite repelling forces between the additional charge being
introduced and the amount already there. Actually (and, in fact,
almost for this very reason) we do not have charges concentrated at
points; instead, there always is a certain amount of space distribution.
Recognition of this suggests that an expression for energy more useful
than (1) may be obtained.

If it is noted from Eq. 2.14(2) that the potential at the mth charge is

b, = ¥
n € Tam
then (1) may be written
‘ Ug = %Z Pnm [2]
n

Or, extending to a system with continuously varying charge density p
per unit volume

UE = %f p®dV [3]
v
This expression may be altered to
_ 1 I
UE=—ifD-gradq>dV=—fD-EdV 4]
8rJy 8rJy

This result seems to say that the energy is actually in the electric field,
each element of volume dV appearing to contain the amount of energy

1 - =
dUg = grD-EdV {5]
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The right answer is obtained if this ““ energy density ” picture is used.
Actually, we know only that the total energy stored in the system will be
correctly computed by the total integral of (4).

It is interesting to check these results against a case with which we are
already familiar. Consider a parallel plate condenser of capacity C
and a voltage between plates of V. The energy is known to be }4C V2
which is commonly obtained by integrating the product of instantaneous
current and instantaneous voltage over the time of charging. The
result may also be obtained by integrating the energy distribution in the
field throughout the volume between plates according to the concepts of
(4) and (5). For plates of area A closely spaced so that the end effects
may be neglected, the magnitude of field at every point in the dielectric
is E = V/d (d = distance between plates).

Hence
vV
b=
EV\(V
Stored energy = — Ad ( ) )(—d-)
€A
= <4T)V2——CV2 [6]

Problem 2.33. Remembering that div D = 4p, derive Eq. 2.33(4) from 2.33(3).
(Hint. In order to evaluate certain surface integrals which may appear, consider
the surface at infinity, since this is a surface including all the energy.)

2.34 Energy of a Magnetostatic System

It is possible to derive an expression (this is done in several of the
references) similar to Eq. 2.33 (5) for the energy stored in the magnetic
field: -

UH=Lf§-HdV [1]
81!' v

It is useful to note that when the field is entirely due to static currents
and the permeability of the medium is constant, the energy storage may
also be expressed in rather simple fashion in terms of the magnitude and
distribution of the currents. For the simple case of a magnetlc field due
" to current I in a single circuit,

Up = %le 2]

where L is a constant, the inductance of the circuit, that depends upon
the space distribution of the current. We postpone a discussion of this



84 ELECTRIC AND MAGNETIC FIELDS [Art. 2.34

constant until later chapters, but the student should, by consulting the
references, satisfy himself that (2) is valid for the situation described.

Lo 2.35 Magnetic Field at the Center of a
R \\\ Circular Current Loop
'/ :{e}‘;ﬁ di=rd9  Ampére’s law may be used in finding the field
! = at the center of a circular current loop.
\ ’ —
. 6157y S
Seacoe” g T

Fig. 2.35. Circular loop

2 In this case simplification arises since r is
carrying current.

always constant (equal to a, the radius of the
loop), dl’ and 7 are perpendicular so that the cross product reduces to
rdl’, and all the contributions dH have a common direction normal to
the plane of the loop. Thus a scalar sum may be substituted for the
vector sum,

dH = I(“fo)
a
27
H=£f dg=2_7r_I [1]
aJo a

2.36 Magnetic Field of a Straight Current

This case may also be solved from Ampére’s law, but symmetry per-
mits the use of the integral law of Biot and Savart to obtain the answer
at once. The line integral of H about any closed path surrounding the
wire is 4x]. Symmetry requires that A have only a tangential compo-
nent Hy and no variations with ¢. So if the path of integration is
taken as a circle at radius r from the center of the wire,

4rl 21

$ =9 = (1]

Problem 2.36. Find the field at any point inside an infinitely long solenoid
having n turns per centimeter, in terms of solenoid current I.

OFTEN-USED RELATIONS IN OFTEN-USED COORDINATE SYSTEMS

2.37 Orthogonal Curvilinear Coordinates

When it was necessary to refer to a coordinate system in the preceding
articles, rectangular coordinates were used exclusively. There was
actually no loss in generality in the results obtained, since if it had been
necessary to transfer at any point to a new coordinate system, it could
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have been done by an ordinary transformation of variables. However,
if it had been desirable from the start to carry through some other
coordinate system, we would merely have defined the expressions for
scalar product, vector product, gradient, divergence, and curl in terms
of that coordinate system. To eliminate either the transformation of
variables or the reconstruction from the beginning each time a new
coordinate system is considered, it will be more convenient to obtain
general expressions for the defined vector operations which give the form
of these operations in rectangular coordinates, cylindrical coordinates,
spherical coordinates, or in any system which is an orthogonal system.

a,
P )
’ 'Y s~
!\* \—‘I('}d’ / P N
T2 / e/ \
: | ﬂ~,| / W‘/" 1 \'\50\\
] 1z ! / / v
1 [ ! / v 0
] (U |
Pt i N ! S<a_ v/
r \_:_ﬂ_ : A ~~y/
kY n, / 4
i g 1 - i
Fic. 2.37a. System of Fig. 237b. System of spherical
circular cylindrical coor- coordinates.

dinates.

The intersection’ of two surfaces is a line; the intersection of three
surfaces is a point; thus the coordinates of a point are usually given as
the three parameters referring to three sets of surfaces such that the
parameter attached to a particular surface is constant along that surface.
If the lines of intersection of these surfaces are at right angles, the system
is said to be orthogonal. In this book we shall use only rectangular,
cylindrical, and spherical coordinates, all of which are orthogonal. In
rectangular coordinates the three planes * = z1, y = y1, 2 = 2; inter-
sect at a point which is designated by the coordinates z1, y1, 21. In
cylindrical coordinates (only circular cylinders being considered here)
the surfaces are (a) a set of circular cylinders (r = constant), (b) a set
of planes all passing through the axis (¢ = constant), (c) a set of planes
norma) to the axis (z = constant). Coordinates of a point are then
given by ry, ¢1, 21 (¥Fig. 2.37a).

In spherical coordinates the surfaces are (a) a set of spheres (r =
constant), (b) a set of circular cones about the axis (6 = constant),
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(c) a set of planes all passing through the polar axis (¢ = constant).
The intersection of sphere r = ry, circular cone 6 = 6;, and plane
through the polar axis ¢ = ¢; gives a point whose coordinates are said
to be (r1, 61, ¢1) as shown in Fig.
2.37b. All the coordinate systems
drawn are right-handed systems (see
Art. 2.20).

Suppose a point in space is thus de-
fined in any orthogonal system by the
coordinate surfaces g, gs, q3. These
then intersect at right angles and a set
F1g. 2.37c. Element in arbitr:;ry of three unit vectors, @,, @z, @3, may be
orthogonal curvilinear coordinates. placed at this point. These should

point in the direction of increasing co-
ordinates. (Fig.2.37c.) The three coordinates need not necessarily ex-
press directly a distance (consider, for example, the angles of spherical
coordinates) so that the differential elements of distance must be ex-
pressed:

dly = hidqy, dly = hydgy, dlz = h3dgs Y

where Ry, hg, h3 in the most general case may each be functions of all
three coordinates, q;, g2, ¢s. .

Scalar and Vector Products. A reference to the fundamental defini-
tions of the two vector multiplications will show that these do not change
in form in orthogonal curvilinear coordinates. Thus, for scalar or dot
product

A.B = AB; + A3By + A3B; (2]
and for the vector or cross product

I 4y dp as
Z X E S A1 A2 A3 [3]
B; By B

When one of these vectors is replaced by the operator V, the above ex-
pressions do not hold, as will be shown below.

Gradient. According to previous definitions, the gradient of any
scalar ® will be a vector whose component in any direction is given by
the change of ® for a change in distance along that direction. Thus

ad 0 ad ad
Vd = q, +a + @ 4
hy dqy ? by 9g2 ®hs dq3 g
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Divergence. Divergence requires the evaluation of the outgoing flux
per unit area for a small volume. As in Art. 2.11, a small volume ele-
ment is chosen, having its six sides lying in the surfaces

dq; d91 dgs d92 dgs dgs
91—2, a1+ g 2 gz + as 2,93+2

The volume of the element is then hihohsz dg; dgs dgs.  If D is the value
of displacement vector at the center of the element, it may be written
D = a,D; + a3D; + @3D3. The flux passing through any elemental
area perpendicular to D; at g1, g2, g3 is then dy, o, = D1(hehs dgs dgs).

For general curvilinear coordinates, not only the field components but
also the area of cross section of an elemental volume may vary with the
coordinate. So, now

: d ]
“dyy Im—d—q—' = D1hohs dgz dgz — _;Il — (D1hohs dgs dgs)
2 .

d¥1 a1+

a
d_!! = D1h2h3 dQ2 dQ3 + '_' - (D h2h3 dQ2 dQ3)
2
The net outgoing flux for these two sides is thus

ad
|, + — d¥n a_ql (D1hohsg dgs dgs) dgy

q1—

Similarly, for the other two directions, so that finally V-D = net flux
flow divided by the volume, is expressed by

D= 1 [3(h2h3 dgs dgz D1) .. ]
hihohs dgs dgs g1
or .
= 1 [8(hohsDy) | 8(hihgDs) | 9(hohiDs)
Vb= hihghs [ oq + dg2 i 93 ] el
As an example, consider the case of spherical coordinates
dly = dr hh=1
dly = rdf 50 he=r [6]
dl3=1‘SiD0d¢ h3=rsin0
and
v-D= r2s11n0[ (r® sin 6 D,) +—— (r sin 6 Dy) +— (rD,,,)]

1 9Dy
Dg) + ——— —
in 6 89 rsin @ d¢

_—(2 r)
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Curl. Just as the development of the divergence in rectangular
coordinates from Art. 2.11 was generalized above to fit any general
orthogonal system, so does the revision of the curl from Art. 2.21 follow
in an exactly similar fashion to give

e L T B
hohs  hshy  Rihy .
VXH=| & ) [71

31 gz 9as
hH, heHy; h3Hj
Divergence of the Gradient. By combining the general expressions for
gradient and divergence (4) and (5)
V-V®= Vi

e Co 500) * o O 22
hlh2h3 g1 \ by 9qy dga \ ha 9qs
3 [hihs 8@)]
Z (222 8
+aq3(h3 )]

V2 of Vectors. For expressions such as V24 in curvilinear coordinates,
where differentiation is to be performed on a vector, it is necessary to
consider a definition more general than that of Art. 2.25 (unless as in
that article we use only rectangular coordinates). By definition,

VA = v (v4A) [9]
where
- A A A
VA =a 4 a 4 a
Y hy dgy ? hg 9gs ® hs 9g3

For example, in spherical coordinates

_ 94 @y 9A a, 04
VA=g, = 4222 L 2 22
ar r 06 rsin 6§ 3¢

There appear such terms as

A a
_(9—7-'- = — [d A, 4+ GgAgs + a¢A4,]

04, oa, 9A oa 04
=4 AT G A T, A

aa,,, [10]




Art. 2.38] SUMMARY OF USEFUL VECTOR RELATIONS 89

We cannot neglect the variation of the unit vectors @,, @, 3¢ with
r, 8, ¢, for it is evident that although the magnitudes always remain
unity, the directions of the unit vectors may change with changes in any
of the coordinates. (Such a situation is not true of the simpler, rec-
tangular coordinate unit vectors.)

% o)

@
i d6 (regio