Pavic Fivernitwnote

ELECTRICAL ENGINEERS' DATA BOOKS
 volume three

RADIO ENGINEERING

ELECTRICAL ENGINEERS' DATA BOOKS

 VOLUME THREE RADIO ENGINEERING With Special Sections onTELEGRAPHY कீ TELEPHONY

The series planned and edited by
E. B. WEDMORE
M.I.E.E., F.Inst.P., Director of the British Electrical and Allied Industries Rescarch Association

The present wolume compiled and collated by
J. H. REYNER, A.C.G.I., B.Sc. (Hons.)

LONDON

> RAI)IO PRESS LTD.

BUSH HOUSE, STRAND, W.C. 2 1925

AUTHORS PREFACE

The existing information on matters of radio technique, particularly in respect of quantitative data, is somewhat difficult of access, and can ouly be obtnined by reference to expensive textbooks and publications of the various learned societies.

Such details, moreover, aro often highly mathematienl in form, and it is necessary to read a considerable quantity of extraneous matter before the desired information can be extracted.

In order to overcome these defects, Mr. E. B. Wedmore, Director of tho British Electrical and Allied Research Association, conceived the happy iden of a series of data books dealing with each phase of Electrical Enginecring.

The information in the present volume (which is concerned exclusively with radio engineering, and to a small extent telegraphy and telephony) has been collated as a result of a careful study of the principal source of data, and has been presented in a concise form with due reference to the practical value of the various points, while in view of the rapid expansion of radio engineering a certain descriptive matter is included to make the data applicable to new developments.

The primary object of the work, however, is the production, not of another textbook, but of a handy volume of reference which will be indispensable to everyone concerned with the technique of radio.
J. H. R.

Lonnon,
S'cptember, 1025.

RADIO ENGINEERING

CON'TEN'TS

RADIO CALCULATIONS AND MEASUREMENTS

Calculation of inductanco and coil design-Calculation of mutual in-ductance-Calculation of capacity and condenser design-Capacity of aerials-High-frequency resistanco-Radio-frequency measurements - Inductance and capacity, frequency (wave length), rosistance and decrement, currents and voltages - - $1-63$

TUNING AND RADIATION

Laws of oscillating circuits-Tuning and resonance-Damping and decrement-Coupled circuits-Aerials and their characteristicsIRadiation

THERMIONIC VALVES

General theory of the thermionic valve-Representative characteristics of the chief valves in use to-dny-Design of valves-Emission, space charge, amplifieation constant, internal impedance, dissipation-Methods of construction-Dull emitter valves - 100-123

RADIO TRANSMITTERS

Spark transmitters: General-The physics of the spark-Design of spark transmitters. Continuous wave transmitters: Advantages of continuous waves-High-frequency alternators- Frequency changers-Arc transmitters, theory and practice of operationCoupled circuits-Zichen effect-Valve transmitters, simple and practical forms of oscillator-Theory and practice of adjustment for highest efficiency-Use of rectified A.C. for H.'T. supplyCoupled circuits . \quad -

RADIO RECEIVING APPARATUS

Principles of tuning-Design of valvo amplifiers for high and low frequencios-Effect of external impedance on valve character-istics-Resistance, reactance and transformer couplings-Distortionless amplification-Limitations of H.F. amplifiera-Filters -Detectors, crystal and valve-Rectification-Receiving aerial systems-Loop recoption-Bellini-Tosi system-Barrage reception -The Boverage nerial

DESIGN OF MASTS AND AERIALS

Types of mast-Design of self-supporting tower-Design of stayed masts-Tensions and sags in wires- Wind-pressure assumptionsDesign of acrial 190-202

MISCELLANEOUS

Modulation and distortion-Received currents with various lypes of wave-Radio-telephony-Atmospherics: their effect on receiving apparatus and methods of combating them-IIigh-speed reception: conditions necessary for satisfactory working-Remote controlScreening: effects of various forms of electrostatic and electromagnetic screens-Direction finding.

- 202-218

TELEGRAPHY ANI 'TELEPHONY'

TELEGRAPHY

Dirnct sounder system: keys, galvanometers, sounders-Relays-Double current working-Duplex, diplex, and quadruplex workingCommon batteries-Repeaters-Wheatstono automatic system Hughes' type-printing telegraph-Baudot system-Submarino cable telegraphy: growth of current in cable - $\quad 21!-23 \mathrm{~S}$

TELEPHONY

Microphones and receivers-Subscribers' apparatus-Switchboard ap-paratus-Aerinl line construction-Constants of wires employedUnderground cables-Telephone transmission formulx-Attenuation and distortion-Loading - Repeaters-Artificial lines - $238-258$

APPENDIX A.

Mathematical and Miscellaneous Tables.

Weights and mensures-Conversion table-Areas and circumferences of circles-Powers, roots, and reciprocals-Decimal and metric equivalents of inch-Logarithms-Anti-logarithms-Hyperbolic logarithms - Trigonometrical ratios - Hyperbolic functionsDifferential coefficients-List of integrals-Temperature sealesDensity table

Electrical, Mechanical, and Physical Tables, etc.
Electric equivalents of heat units-Properties of steam-Boiling points of liquids-Serew threads-Sizes and weights of sheet metalPower of shafting aud belts-Rotating bodies-Friction torque and stored energy-Lhysical properties of elements-lilectrical and physical properties of metals-Specific gravities-Coeflicients of expansion-Fusible alloys-Thermal resistivities-Properties of resistance materials-Wire gauges-Standards and tables of copper conductors-Aluminium wire-Specific inductive enpacities-Power loss-Electric strength-Resistivity of dielectrics-Delectro-chemical equivalents-Primary cells-Standard cells-Properties of electro-lytes-Temperature limits for electrical machinery-Miscellancous constants-Radiation wave length limits

- xliii-xciii

Electricity and Magnetism.

International symbols-The Greek alphabet-Units-The magnetic circuit-Magnetic properties of iron and steel-Dfiect of electric current-Resistance-Resistivity-Temperature factor for copper -Wheatstone bridge-Galvanometer and shunt-Inductance - Capacity and Condensers - Alternating current-Oscillatory discharge-Mensurement of power - . . - xciv-cxxiii

APPENDIX B.

Wiring Rules, Regulations, etc.

Regulations for the electrical equipment of buildings-B.S. specification for steel-I.E. E. regulations for the electrical equipment of ships (1919) and other npplinaces-Home Oftice regulations on the use of electricity in factories and workshops-Regulations ns to the use of electricity in mines under the Coal Mines Aet

- cxxv-cxev

RADIO ENGINEERING

LIS'I OF ILI,US'TRA'TIONS

Fio. pace:
I. Values of k in Nagaoka's mormura G
2. Value of constant a in rosid's correction 8
3. Value of b in rosa's correction 8
4. toroid witir single layer winding 9
5. multilayeir coil. 9
6. Value of constant s in terms of b / c 9
7. Values of y_{1} 10
8. values of y_{2} 10
9. Values of ya 11
10. spiral of flat stmi 11
11. multilayer mectanaular coil 13
12. flat rectangular coil 13
13. CURVES OF FACTOR h^{\prime} for all coils (TIICK or thin) 1.1
l. l. curves of k^{\prime} for coils of very small section 16
15. types of coil mavang appiomimately equal inductances 17
16. ratio of inductances of square and rectangular coils 17
17. effect of silape of coil on ratio $\frac{r}{L}$ 18
18. correct spacina for mail frequency inductances 19
19. E.M.F. INTRODUCED ENTO COIL ITSELF 20
20. E.M.F. INTRODUCED IN SERIES WITII COIL 20
21. effect of distributed capacity on resistance of colla 21
22. EFFECT OF DEAD ENDS 22
23. illustrating metiod of determining C_{0} 23
24. TWO Wikes, A XeS in LiNe 23
25. Two wires witil axes parallel 24
26. TWO WIRES OVERLAPPING 24
27. Wires of equal lengtit 2.4
28. Wires symmetrically placed 24
29. tivo co-axial solenoivs not concentric 25
30. Co-axial conoentuic solenoids 26
31. Coms of rectangulair sectron 27
32. Variation of k With ajial displacement 27
33. variation of k with angular displacement 27
34. variation of k witif radial displacement 27
35. Condenser with series resistance 30
36. condenser with parallel resistance 30
37. variable condenser 32
38. squark-law condenser 32
39. values of loge N for $\mathrm{N}=10$ to $\mathrm{N}=\mathrm{I}$,(100 37
Fio. 38
10. Values of lode n for $N=10^{3}$ to $N=10^{0}$ 40
41. SIN-wide cage 40
43. variation of capacity of cage aerial with tofe number of 41
WIRES
42
44. Valdes of e in terms of the ratio $\frac{l}{2 h}$ 43
4.) effect on one wire of a second wire at moilt angles .
4(). potentlal of one wire due to a second wire at an angle γ 46
47. effect on one mib of all the othelt ribs 47
4\%. Effect of mast on leid-in 47 47
49. EfFECT OF Mast on capacity 48
50. effect of building on lead-in 48
51. TwO STRIPS FACE to face 53
52. discontinuity in wave-metelr calibration inue to ovelr- hanging turns 57
53. SIMPLE BUZZER WAVE-METER CIRCUIT 57
j-f. buzzer wave-meter circuir arranged for impact exciration 57
55. SOME DETECTING WAVE-METEK CIRCUITS WITH TIEIR RELATIVE aUDIBILITIES 58
50. effect on wave lengtil and decrement of the addition of a detectina circuit to the simple ollevit in fig. 55 58
57. Circuit for producing a standard frequency 59
58. resistance variation method 59
j0. CIRCUIT FOR SUBSTITUTION METHOD 60
G0. inductance sudnt 61
61. capacity shunt 61
62. TRANSFOMER SIIUNT 62
63. Some forms of Radio-frequency currant transfolmer 62
(f4. Vacuo-junction thermocouple 02
65. BOLOMETER ©3
66. types of discharge 64
67. series resonant circut 67
GS. parallel resonant circuit 67
69. vector diagram of parallel circuit $6 S$
70. aeneral case of parallel resonance
68
68
71. parallel circuit
69
69
72. besonance curves for simple sebies circut 69
73. resonance curves for simple parallel circuit. 70
74. reactance diagram for simple serieg circuit
70
70
75. reactance diagram for simple parallel circuit
71
71
7f. simple rejector circuit
7f. simple rejector circuit
71
71
77. reactance diagram for circuit shown in fia. 76 71
78. SIMPLE FORM OF COUPLED CIRCUIT
78. SIMPLE FORM OF COUPLED CIRCUIT
72
72
79. heactance diagram fol circuit shown in fig. 78 72
Fig． 1・スกヒ：
SO．manetic coupling 74
Sl．hLustrating heating of currents in tightly courled circuits 75
S2．Dirbet coupling 76
83．Capacity coutling 76
S4．couplino witil separate circuit 77
Sj̄．Combination of direct and mutual couplina 78
S6．Capacity coupling witil sepaliate circuits 78
S7．General case of combined magnetic and electrostatic coupling 79
SS．heactance diagram for chrcuit shown in fig．S2 SI
S9．reactance diacram for circuit shown in fig．S3 82
90．Wave lengtil diagram 82
91．flequency－wave lenotil conversion chart 83
U2．CURRENT aND voltage distribution on a simple aerial oscil－ lating fundamentally and marmonically 8.4
93．Reactance diagrans for simple and loaded aerials 85
94．SIMPLE DIPOLE OR DOUDLET 87
95．Kink produced in line of force by deceleration of charge 87
9G．production of electirio waves 88
97．SIMPLE OSCILLATOR 89
98．field strengths at given distance from aerial in terms of λ / λ 。 92
99．Radiation resistance of flat－tor aerials 92
100．illostriting the dependence of e on 0 95
101．typical aerial resistance curve analysed into its com－ PONENTS 97
102．EARTH SCREEN 98
103．Valve characteristics 100
104．CIRCUIT FOR IINDING $\mu_{\text {o }}$ AND r_{1} 101
105．APPLETON SLOPEMETER 102
106．double grid valve 103
107．NEGATRON VALVE 103
108．Value of kin equation for l_{f} ． 105
109．Value of K_{1} in end correction formula 106
110．Values of K_{2} n emission formola 106
111．Value of K_{3} in filament current formula 107
112．dissipation of eneroy by anode 107
113．illustrating Vailiation in characteristio witil small anode voltages 109
114．effect on characteristics of dSe of thoriated filament 112
115．SHOWING DECREASED SLORE OBTAINED WITH THORIUM ENUSSION 112
116．ora（mullard） 114
117．DER（M．O．v．CO．） 114
118．п5（в．т．н．） 114
119．Wecovalve（w．e．co．）． 114

xiv

rio. sune
120. V24 (м.о.v. co.) 116
121. DEG (M.O.v. CO.) 116
12\%. Q (м.o.v. co.) 117
123. DEQ (M.O.v. Co.) 117
124. Qx (M.o.v. Co.) 117
125. 124 (3.0.v. co.) 117
126. PAl (mullakd) 119
127. Pas (mullard) 119
128. Pa3 (MOLLARD) 119
129. neũb (m.o.v. Cu.). 110
130. DFAO (MULL.iRD) 120
131. LSl (m.o.v. co.) 120
132. т30 (м.o.v. co.) 121
133. тธั0 (м. o.v. co.) 121
134. т100 (m.o.v. co.) 122
13і. т2 20 (м.о.v. Co.) 122
136. 0250 (MULLARD) 123
137. o500 (mullarn) 123
138. Pirechalked aerial 124
139. 1? Kilowatt disc mischallger 125
140. diagram of quencued spalk gap 126
141. spaiking voltage between nebdie points (in aliz) 127
142. Sparking voltage between balls in alk 127
1.43. CIRCUIT OV SPABK TRANSMITTER 128
144. Values of factor ρ in terms of k 129
145. illustrating build-up and discharge of condenser voltage 130
14G. Value of $\frac{V \text { condenser }}{V \text { Generator }}$ Wtil spark every half-cycle 130
147. hatio of total voltage to voltage pelb gap with quenched SPARK 132
148. SECTION of alexanderson alternator 134
149. DIAGRAM OF GOLDSCHMDT ALTERNATOR 135
150. illustrating stagger of pole pieces on bethenud-latour ALTERNATOR 136
1ūl. JOLY'S FREQUENCY DOUBLER. 137
152. illustizating operation of joly frequency doubler 137
153. PLOUL'S FREQUENCY DOUBLER 138
10̄4. Fiequency trebler 138
155. Simple arc-maintained oscillatoiry circuit 139
156. Chabactemistio of carbon arc 139
157. diaglay of radio-frequency arc generator 140
158. circuit diagram of radio-frequenoy arc generator 140
159. CyCle of operations in an arc transmitter 141
160. View of lyons radio station 143
161. Coupled chedit arc transmutter 144
Fio. pane
162. ILLUSTHATING ZIEIIEN EFFLECT 145
163. CUIRMENT RATIOS IN TERMS OF THE SECONHARY TUNE 146
l(it, SIMPLE VALVE OSCILLATOIt 147
165. OSCILLATION ELLIPSE 147
166. ILLUSTRATING CONDITIONS FOR HIGIS ENFICIENCY WORKING 149
167. VALVE OSCILLATOR WITH CHOKE FEED 151
lGS. VALVE OSCILLATOIZ WITH TUNED GRID 152
169. HARTLEY C'IBCUIT 152
170. Caracity coupled oscillatoir 152
171. ILLUSTRATINO DOUBLE FIGQUENCY EFFECT OBTAINED WITII COUPLED CIHCUITS 153
172. PROVISION OF H.T. SUPRLY NROM RECTIFIED A.C. 154
173. CURIKENT AND VOLTAGE RELATIONS IN RECTIFYING VALVES 154
174. THIKEE-PIIASE BI-PIIASE RECTIFICATION 155
175. PEIRCENTAGE RIPPLE FOR VARIODS RECTIFIER SYSTEAIS (ALL DOUBLE WAVE) 156
176. SKEfETON CIRCUIT AT NOHTIIOLT VALVE PANEL 157
177. ILLUSTRATING CONVEISION OF HIGM FREQUENCY CURRENTS TO UNIUIRECTIONAL PTLASE Hダ MEANS OF RECTIFICATION 159
17S. ILLUSTRATING PIRINCIPLE OF HETERODYNINO 159
179. ILLUSTRATING EFFECT OF GRID ANODE CAPACITY 161
180. CHARACTELISTIC CURVE OF W.E. CO. VALVE UNDER DIFFERENT CONDITIONS OF LOAD 162
1S1. IESISTANCE COUPLED AMPLIFIER 164
182. SHOWING EFHECT OF ANODE IMPEDANCE 165
183. TIIE TUNED ANODE CIICUIT 165
1St. TRANSFORMER COUPLING 166
185. EFFECT OF PRIMARY REACTANCE 167
186. IMPEDANCE AND RESISTANCE CURVES OF A TLLEPIIONE RECEIVER $16 S$
187. AMPLIFICATION CURVES OF MARCONI IDEAL TRANSFOIMER 169
1SS. METHODS OF NEUTRALISING VALVE CAPACITY 170
189. FORMS OF NEUTRALISINO CONDENSER 171
190. VALVE CIRCUIT WITH CONDENSELR FEED CONTROL 172
191. LOW-PASS FILTER 172
192. HIGH-PASS FILTER 172
193. CHARACTERISTIC OF PERIKON DETECTOR 173
194. CIIARACTERISTIC OF CARBORUNDUM DETECTOR 174
195. ILLUSTRATING ACTION OV VALVE AS CUMULATIVE RECTIFIER 175
196. EQUIVALENT CIRCUIT TO FIQ. 195 (a) 176
197. ILLUSTRATING EFFECT OF GRID LEAK 177
198. HUILDING-UY OF CONDENSER WYTII SPARK SIGNALS 178
199. rectification efficiency witil spark sionals 179
200. BUILDING-UP OF CONDENSER WITII C.W. SIGNALS 180
201. RECTIFICATION EFFICIENCY WITH C.W. SIGNALS 180
202. CONTROL OF WORKING POINT BY GRID LEAK 182
203. LOSS OF RECTIFICATION WITH WORKING FOINT TOO LOW DOWN 182
xyi
rus paciz
 183
ご） 18.5
 187
20．HEDKT－SHADED HIAGLAA 187
 185
르）．VECTOK ilaglkams FOR JHART－SHAFED BALANCE 188
？10．ARRANGEMENT AND POLAK HAGRAMS OF BEVERAGE AERIAL 189
\because－ 11 ．SLMPLE SHORT WAVE RECEIVEIR 190
212．DIAGRAM OF MAlBCONI TYPE RClA RECEIVER 191
－213．SELF－SUPYORTING TOWERS 192
？l4．STAYED MAST 192：
－IJ．FORCES ON SELF－SUPPORTING TOWER 193
－216．SECTION OF TUBULAR MAST 195
217．TRIAN゙GTLLAR STRUCTURE 196
－2L．ERECTION OF SMALL MASTS WITH DERRICK 197
219．CATENARY CURVE 197
－2그）．ILLCSTRATING METHOD OF ESTIMATING STAY TENSIUN 198
2）1．VIRIATION OF WIND PlRESSURE WITH ALTITUDE 199
2202 ．PRESSURE ON WIRES DUE TO WIND 200
2以3．TYPE OF AERIAL INSULATOR 201
－2－t．ILLESTRATING EFVECT OF GUAILD RING ON POTENTLAL GRADIENT 201
－2．EGG INSULATOR，SHOWING METIIOD OF MINDING－IN ． 201
シ̈2r．INTERREPTED SINE MODULATION 203
登？TOSIC TRATS 203
 203
 204
ジ引。 S S \＆FK MrDDULATION 204
 205
 206
 207
 207
 210
 211
 212
 212
 213
 213
 214
 214
 $21:$
 216
 216
 217
 217
 219
F゙IO． fack：
249．SOUNDER WORKING WITH INTERMEDLATE STATION 220
2六O．SINGLE CURRENT KEY 220
251．SOUNDER（POST OFFICE PATTERN） 221
252．DIFFERLNTLAL GALVANOMETER（SCHEMATIC DIAGRAM） 222
253．SKELETON DIAGRAM OF POST OFHICE STANDARD RRLAY 223
254．SINQLE CURRENT WORKING WITLI $R G T A Y$（UP－STATIONS SENIIING） 224
255．NOUBLE CURRENT KEV 225
256．CONNECTIONS WITH D．C．KEY 226
257．DOUBLE CURRENT SYSTEM USING D．C．KEYS 227
258．SINGLE CURRENT DUPLEX 228
259．DOUBLE CURRENT DUPLEX 228
2GO．TYPE OF BALANCING NLTWORK 229
2Gl．HIPLEX CIRCUIT：RECLIVING IRRANGEMENTS 229
262．SKELETON DIAGRAM OF QUADHUPLE CIRCUTT 230
263．COMMON BATTERY Si＇STEM 231
乌G4．DOUBLE CURRENT REPLATER 232
205．WILEATSTONE SLIP 233
2GG．MECHANISM OF WHEATSTONE AUTOMATIC TRANSMITTER 233
267．CONNECTIONS UF WHE．ATSTONE TRANSMITTER 235
268．UNDULATOR SLIP（CABLE） 237
269．ALHIVAL CUIVE 238
270．WILTE＇S SOLID BACK MICROPIIONE 239
271．INSET TRANSMITTER 239
272．STANDARI IRECEIVEIR 240
273．DIAGRAM ON SUBSCRIDER＇S APPARATUS（MAGNETO SV゙STEM） 240
274．SUBSCRIBER＇S APPARATUS（C．H．SYSTEM） 241
275．SECTION OF C．B．PLUG 242
276．TELEPHONE RELAV 242
277．JAYES SYSTEM 243
278．repeating coll 244
279．STONE SYSTEM 2.4 .4
280．method of raising pole 2.48
281．raising heavy pole 2.4 S
282．STAYED POLE 249
283．trussed tole 249
284．copper sleeve joint 249
285．method of binding－in 250
286．TWIST SYSTEM 250
287．transposition diagram for twelve－wire route 251
288．section of quadruplex pair cable 251
289．illustrating meanting of transmission formule 255
290．TELEPHONE REPEATETR 256
291．REPEATER NETWORK T CONNECTION 257
292．hepeater networi rectangulal connection 257
293．arapif of the exponential and hyperbolio functions 258

APPENIIIX A.

FIG.
lxxuviii

1. clark standaid cell.
lxaxix
2. Weston cellBritish Graphical Symbols for Resistances, Rhcostuts, Inductanceand Capacily
3. Typical normal induction curves c
4. TYPICAL NORMAL INDUCTION CURVES c
5. histeresis luor ci
6. Curve showing the relation between file exioniant dnd the flux density cii
7. typical culves of total core losses cv
7a. kelationsilip between b and iron loss cvi
8. fleming's rulecviii
9. wheatstone bridge cxi
10. Untverrsal SHuNT cxiii
11. illustrating phase angle cxviii
12. illustrating powek factor cxix
Brilish Standard Graphical Symbols-Measuriny Instruments
13-19. POWER FACTOR MEASUREMENTS cxii
13. THIREE VOLTMETER METHOD cxxiii
14. Thuee ammerer method cxxiii

RADIO ENGINEERING

LIS'T OF TABLES

TABLE: page
I. VAlue of frequincy correction Factor δ 2
II. VALUE OF゙ CONSTANTS PAND Q YN EARTHED WIRE FORNDLAK 4
III. VALUE of spading Factor for pairallei eartiled wires 5
IV. VALUES OF k IN NAGAOKA'S MORMULA 7
v. VALUES OF $y_{1}, y_{2}, A N D y_{3}$ FOIR USE WITH STEFAN'S FORMULEE 12
VI. WIRE TABLES (FINE WIRFS) 20
VII. WAVE I I:NGTH CONSTANT FOR AIR-CORE COIIS 22
VIII. VATAE OE FiN FORMULA FOR MUTUAL INDUCTANCE BETWEEN wwo circles 26
in. Capactiles of variable condensers (macofaliad) 34
x. valdes of constant b for alultiwire aerials 3 S
Ni. Values of y for Cage alrials 41
xil. values of h in aermal capacity formulat 50
xif. values of h_{1} and h_{2} in abrlal capacity formulat 50
Niv. values of $\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{o}}}$ in termis of x. 51
xv. maximom diameter of wirls (cm.) for a ratio $\frac{R_{f}}{R_{0}}=1.01$ 52
xvi. value of $\frac{n_{t}}{1_{n}}$ in teims of $\bar{\beta}$ 53
xvit. value of winding factor k 56
xvili, radiation resistance of flat-top alerials 93
xix. Values of k in "aldebaran" formula 96
xx. effect of eartif on range 96
xil. values of a and b in michardson's equation 104
xxif. valueg of electron affinities of variod substances 110
ximif. valdes of emission in terais of ϕ and t 110
xxiv. aeneral porpose valyes 113
xxv. Low mpedance valves 115
xxvi. hrair mpredance valves 115
xxvir. power valves 118
xxviif. transmitting valves 118
xiti. best stze of squate frame for various wave lengths 186
gix. best spacing witil given size of frame 186
xix
TABJE
XXXI. RELATIVE AUDIBILITY OF DIFFERENT TYPES OF MODULA- TION 204
XXXII. FOR ASCERTAINING THE ACTUAI SREIED OF TRANSMISSION ON WIIEATSTONE ADTOMATIC CIRCUITS 234
XXXIII. WIIES USED FOR AERLAL LINES. 245
XXXIV. SAG AND TENSION FOR ILARD-DRAWN CORILR (FACTOR OF SAFETY 4 AT $22^{\circ} \mathrm{F}$.) 246
XXXV. SAG AND TENSION FOR BRONZE WIRE (FACTOR OF SAFETY 3 AT $\left.22^{\circ} \mathrm{F}.\right)$. 246
xXXVI. DIAMETERS OF POLES (INOHLS) 247
XXXVII, RESISTANCE AND CAPACITY OF UNDERGRODND CABLE 252
APPENDIX A.

1. CONVERSION TABLE ii
2. AREAS AND CIRCUMFERENCES OF CIRCLES vi
11I. POWERS, ROOTS, AND RECIPIROCALS X
IV. INCIIES TO DECIMALS OF A FOOT xii
V. DECIMAL AND MILIIMETRE EQUIVALFNTS OF FRACTIONS OF AN INCII xiii
vi. LOGARITILMS xiv
VII. ANTILOGATITHMS xvi
VIII, NEPERIAN OR HYPERBOLIC LOGARITIMS xviii
1X. NatURAL SINES xxi
x. Natultal Cosines xxii
xi. Natural tangents xxiii
Mil. Natural cotangents xxiv
XIII HYPERBOLIC FUNCTIONS XXV
XIV. Values of g at sea-level and given latitudes $\mathbf{x}]$
XV. SPECIFIC GRAVITY CORRESPONDING TO THE DEOREES OF TIE BAUMF. HYDROMETER AT $15^{\circ} \mathrm{C}$. x]i
XVa. SPECIFIC GRAVITY CORRESPONDING TO THE DEGREES OE TIE BAUME HYDROMETER xlii
XVI. SPECIFIC GRAVITY CORRESPONDING TO TIIE DEGREES OF THE TWADDLE HYDROMETER xlii
XVII. ELECTIRIC EQUIVALENTS OF IEAT UNITS, ETC. x liii
XVIII. THE PROPERTIES OF DRY, SATURATED, AND SURERSATURATED STEAM xlvi
таыा： bage：
NIX．HOILING POINTS OF WATEIR AT DHFPERENT VACEA xlv
XX．BOILING FOINTS OF VARIOUS LIQUIDS AT DIFFERENT VACUA xlv
XXI．STANDARD DIMENSIONS OF B．S．WHITWOHTII AND B．S．FINE SCREW THIREADS xlviii
NXII．HMENSIONS OF HRITISH ASSOCIATION（B．A．）SCREW THREADS xlix
XXIII．WHITWORTH＇S STANDARD THRE．MDS FOR PIPES 1
XXIV SIZES AND WEtGHTS OF METAL SHEETS li
XXV．IIORSE－POWER THAT STEEL SHAFTING WHLL TRANSMIT liv
XNVI．HORSE－POWER THAT LEATHER HELLS WILL THANSMIT，PER INCII OF WIDTH lv
XXVII．FRICTION TORQUE AND STORED ENERGY FOK VARIOUS CLASSES OF MACHINERY lvi
XXVIIY．PIIVSICAL PROPERTIES OF THE ELEMENTS lvii
XXIX．PIIYSICAT PROPERTIES OF VARIOUS METALS lix
XIX．TENSILE STRENGTH，MODULUS OF ELASTICITY AND THEMAAL CONDUCTIVITY 1．
XXXI．COMPOSITION，MELTING POINTS，SPECIFIC GRIVITIES，WEIGITS PEIR CUBIC FOOT AND CUBIC INCH OF VARIOUS ALLOYS 1xi
NKXII．SPECIFIC GRAVITIES AND WEIGHTS OF VARIOUS MATERIALS 1xii
XXXIII．MEAN COEFFICIENTS OF LINEAR EXPANSION OF SOLIDS lxiii
KごXIV．FUSIBLE ALLOY＇S Ixiv
XXXV．THERMAL RESISTIVITY OF VARIOUS METALS，MINERAE， SUBStances，insulating materials，hiquids，Gases，etc． lxv
XXXVI．PIIYSICAL PROPERTIES OF RESISTANCE MATEIRALS lxvi
XXXVII．COMPARISON OF WIRE GAUGES ． ．Ixviii
XXXVIII．bRTTISII STANDARD SIZES OF ANNEALED COPPER WIRES －lxxii
※犬XIX，WEIGHTS IN GRAINS PER YARD OF STANDARD ANNEAIED COPIER WIRE ．．．．．．．．．．ix
XL．AMERICAN WIRE TABLES lxxvii
XLI．AMEIRICAN WIRE TABLES lxxviii
XLIE．ALUMINIUM WIRE ．Ixxix
XLIII IUYSICAL PIROIERTIES OF ALONINIUM AND COPPER frxx
XIIV．POWER LOSSES IN INSULATING MATERIALS lexxii
XLV，SPECIFIC INDUCTIVE CAPACITY ． lxxxiii
XLVI．VOLUME AND SURFACE RESISTIVITY OF SOLID DIELECLRICS lxxaiv
XEVII．ELECTRO－CHEMICAI．EQUIVALENTS lxxyv
XLVIII．CHARACTERISTICS OF PRIMARY CELLS Ixxxvii
XLIX．E，M．F．OF CLARK AND WESTON CELL Ixxxviii
TAHLE rage
L. SPECIFIC ORAVITI, SPECIFIC RESISTANCE AND TEMPERATDRE COEFFICIENT OF ELECTROLIITES xC
L1. I.E.C. TEMPERATURE LIMITS $x \mathrm{ci}$
LII. INTERNATIONAL SYMBOLS xciv
LIII. SIONS FOR NAMES OF UNITS xcv
LIV. Mathematical symbols and roles xevi
LV. THE GREEK ALPHABET xevii
LVI. ELECTRICAL UNITS xcviii
LVL. HYSTERESIS COEFFICIENT FOR VARIOUS MATERIALS ciii
LVIII. IIYSTERESIS LOSS PER CYCLE PER SECOND ciii
LIX. MAGNETIC PROPERTIES OF IRON AND STEEL civ
LX. CONVERSION TABLE: MAGNETIC UNITS civ
LXI. TEMPERATURE FACTOR cx
APPENDIX B.
I. FLEXIMLE CABLES clxi
II. VULCANIZED CABLES clxii
III. IMPREGNATED PAPER AND LEAD COVERED CABLES clxiv
IV. RUBBER INSULATED FLEXIBLE CABLE clev
V. FLEXIBLE CORDS clxvi
vi. Flexible cords clxvii
VII. INSULATION RESISTANCE OF CABLES elxviii
VIII. TEST PRESSURES FOR FLEXIBLE CORDS clxix
IX. INSULATION RESISTANCE OF FLEXIBLE CONDS clxix
X. CAPACITY OF CONDUITS clax
XI. APPROXIMATE FUSING CURRENTS OF COPPER WITES clexin
NII. APPROXIMATE FUSING CURRENTS OF LEAD-TIN ALLOX clxxiii
XIII. STANDARD DIMENSIONS OF STEEL CONDUITS clxxiv
XIV. STANDARD DIMENSIONS OF FITTINGS clxxv
XV. SIZE OF CABLE FOR DSE WITH IIEATING AND COOKINGAPPILANCESclexvi

RADIO COMMUNICATION

SEC'TION I

RADIO COMMUNICATION

RADIO CALCULATIONS AND MEASUREMENTS.

Calculation of Inductance and Coil Design.

The inductance of a circuit is defined as the linkage per unil current, the term " linkage" signifying the product of the flux associated with the circuit, the number of turns of conductor, and a factor which allows for the fact that all the flux does not link with all the turns-i.e., there is a certain flux leakage. The flux is proportional to the product of the area and the number of turns, so that, neglecting the third factor, the inductance varies directly as the area enclosed and as the square of the number of turns. The somewhat involved formulx which follow are all based on this fundamental law with suitable corrections to allow for the third factor.

The flux in a circuit is distributed both in and around the wire. In the case of single wires and simple configurations the flux distribution can be calculated fairly accurately, and, moreover, the flux inside the wire is of appreciable importance. As the frequency varies the flux distribution changes, and consequently the inductance in such cases is dependent or frequency. With coils, on the other hand, the variation in inductance with frequency from this cause is hardly appreciable, because the flux outside the wire is the preponderating factor, and also because the variation, if any, is less than the error inherent in the formulx themselves.

The unit of inductance is the Henry, which is defined in terms of the E.M.F. of self-induction (see Appendix A). This unit, however, is inconveniently large for radio circuits, and it is more usual to expross the small inductances encountered in radio practice in terms of microhenries $(\mu \mathrm{H})$.

In the formulx which follow all inductances are given in microhenries, the linenr dimensions being in centimetres unless otherwise stated.

Long, Straight, Round Wire.-The inductance of such a wire is given by-
where

$$
\begin{aligned}
& \mathrm{L}=0-002 l\left[\log _{e} \frac{4 l}{d}-1+\mu \delta\right], \\
& l=\text { length of wire, } \\
& d=\text { diameter of wire, } \\
& \mu=\text { permenbility of wire. }
\end{aligned}
$$

If $2 l / d$ is less than 1,000 , the term $d / 2 l$ should be added insido the brackets.
δ is a torm involving frequency. Its value varies from \ddagger at low frequonoy to zero at infinite frequency. A table is appended giving the values of δ for a range of frequencies.

HI.

It should be observed that the inductance of a wire has no physical meaning unless the wire is part of a circuit. The formula given above is for a long wire so far removed from its return circuit that any effects of mutual inductance between the go and return leads may be neglected.

There is a slight difference between the values of the inductance at high frequencies according to whether the coil is carrying damped or continuous waves, but the correction only affects the fourth decimal place, and is therefore negligible.

TABLE I.

Value of Frequency Correction Factor δ.
First find $x=0.1405^{d} \sqrt{\frac{\mu f}{\rho}}$,
where
$d=$ diameter of wire,
$\boldsymbol{t}=$ permeability of material,
$\rho=$ specific resistance of material,
$f=$ frequency.
Then δ may bo obtained in terms of x.

x.	δ.	x.	δ.
00	. 250	12	. 059
$0 \cdot 5$	-250	14	. 050
1.0	-249	16	-114
1.5	-247	18	. 039
20	-240	20	-035
$2 \cdot 5$	- 228	25	. 028
30	-211	30	. 024
$3 \cdot 5$	-191	40	. 0175
40	-172	50	. 014
$4 \cdot 5$	-154	60	. 012
5-0	-139	70	. 010
60	-116	80	-009
7.0	- 100	90	-008
80	- 088	100	-007
90	- 078	∞	. 000
100	-070		

Long, Straight, Reclangular Wire:

$$
\begin{equation*}
\mathrm{L}=0.002 l\left[\log _{e} \frac{2 l}{t+w}+\frac{1}{2}+0.2235\left(\frac{t+w}{l}\right)\right] \tag{B.S.}
\end{equation*}
$$

where
$l=$ length of wire,
$t=$ thickness of wire, $w=$ width of wire.

If l is greater than $50(\ell+w)$, the last torm may be noglected. This formula assumes unit permeability of the wire; no frequency correction is practicable with rectangular wire.

The above formula and many of the others which follow are taken from the Circulnr No. 74 of the Bureau of Standards, Washington (Radio Instruments and Measurements). Where such is the case, acknowledgment is made by the letters B.S. in the margin.

Two Parallel Wires-Go and Return:
Round wire:

$$
\begin{equation*}
\mathrm{L}=0-004 l\left[\log _{e} \frac{2 \mathrm{D}}{d}-\frac{\mathrm{D}}{l}+\mu \delta\right] \tag{B_S.}
\end{equation*}
$$

where $\quad D=$ spacing between the wires from centre to centre, l and d are the length and diameter of the wire, μ and δ are as before.
Rectangular wire:

$$
\begin{equation*}
\mathrm{L}=0.004 l\left[\log _{\epsilon} \frac{\mathrm{D}}{t+w}+\frac{3}{2}-\frac{\mathrm{D}}{l}+0.2235\left(\frac{t+w}{l}\right)\right], \tag{B.S.}
\end{equation*}
$$

where $D=$ spacing of wires from centro to centre.
$l=$ length of wire,
t and w are the thickness and width of the wire.
Unit permeability is nssumed, and, as before, the last term may be neglected if $l>50(t+w)$.
These formule assume that tho wires are of the same dimensions. If this is not the case, the inductance must be worked out from the expression $\mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2}+2 \mathrm{M}$, utilising the formule for mutual inductance which are given later. The effect of end connections is also neglected. If this is not permissible, the formula for a rectangle should be omployed.

Rectangle :
Round wire:

$$
\begin{gathered}
\mathrm{L}_{1}=0 \cdot 004\left[(a+b) \log _{e} \frac{4 a b}{d}-a \log _{c}(a+g)-b \log _{\varepsilon}(b+q)+2\left(g+\frac{d}{2}\right)\right. \\
-(a+b)(2-\mu \delta)]
\end{gathered}
$$

Rectangular wire:

$$
\begin{gather*}
\mathrm{L}=0 \cdot 00 \pm\left[(a+b) \log _{c} \frac{2 a b}{t+w}-a \log _{\epsilon}(a+g)-b \log _{e}(b+g)+2 g-\frac{a+b}{2}\right. \\
+0 \cdot 4 \cdot 47(\ell+w)] \tag{B.S.}
\end{gather*}
$$

Here a and b are the sides of the rectangle, and $g=\sqrt{a^{2}+b^{2}}$.
The other symbols have tho same meanings as before. Unit permeability is nssumed in the last formuln.

Circle :
Round wire: $\quad L=0.01257 a\left[\log _{e} \frac{16 a}{d}-2+\mu \delta\right]$,
(Kirchboff.)
where
$a=$ mean radius of circle, $d=$ diameter of wire.
Only valid when $d / 2 a<0.2$.
Rectangular wire: $\mathrm{L}=0.01257 a\left[\log _{e} \frac{35-8 a}{t w}-2\right]$, whore $a=$ mean radius of oircle, t and w are thickness and width of wire.

Thin tepe of width w :

$$
\mathbf{L}=0-01257 a\left[\log _{e} \frac{35 \cdot 85 a}{w}-2\right]
$$

Tube Bent into Circle. Where r_{1} and r_{2} are approximately cqual (as is usually the case) -

$$
\mathbf{L}=0.01257\left[\left(1+\frac{r^{2}}{4 a^{2}}\right) \log \varepsilon \frac{8 a}{r}-2\right],
$$

where

$$
\begin{aligned}
& a=\text { mean radius of circle, } \\
& r=\text { mean of } r_{1} \text { and } r_{2} \text {. }
\end{aligned}
$$

Long, Straight, Thin Tape:
where

$$
\mathrm{L}=0.002 l\left[\log _{\mathrm{c}} \frac{2 l}{w}+\frac{1}{2}-\frac{t}{w}\right],
$$

(Eccles.)

$$
\begin{aligned}
l & =\text { length of tape, } \\
t & =\text { thickness of tape }, \\
w & =\text { width of tape. }
\end{aligned}
$$

Horizontal Earthed Wires.-This case is of frequent occurrence in radio work, the earth providing the return circuit, as in the case of an aerial. For a single wire-

$$
\begin{gathered}
\mathrm{L}=0-002\left[l \log _{e} \frac{4 h}{d}+l \log _{e}\left\{\frac{l+\sqrt{l^{2}+d^{2} / 4}}{\left.l+\sqrt{l^{2}+4 h^{2}}\right\}+\sqrt{l^{2}+4 h^{2}-\sqrt{l^{2}+d^{2} / 4}}} \begin{array}{c}
\\
\left.+\mu l \delta-2 h+\frac{d}{2}\right]
\end{array}\right.\right.
\end{gathered}
$$

where
$h=$ height of the wire above ground,
$l=$ length of wire,
$d=$ diameter of wire,
μ is the permeability of the material,
δ is the frequency correction factor.
If d / l is negligible, the expression may be recast into a more simple form -viz.:

If

$$
\begin{align*}
& \frac{2 h}{l} \equiv 1, \quad \mathrm{~L}=0.002 l\left[\log _{e} \frac{4 h}{d}-\mathrm{P}+\mu \delta\right] \\
& \frac{l}{2 h} \equiv 1, \quad \mathrm{~L}=0.002 l\left[\log _{e} \frac{4 l}{d}-\mathrm{Q}+\mu \delta\right] \tag{B.S.}
\end{align*}
$$

where \mathbf{P} and Q are constants, the values of which are given below.

TABLE II.

Value of Constants P and Q in Earthed Wire Formulat.

$2 h / l$.	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
\mathbf{P}	.	0	0.098	0.190	0.278	0.361	0.439	0.514	0.584	0.651	0.714
0.774											
$l / 2 h$.	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
\mathbf{Q}	\ldots	1.0	1.05	1.10	1.15	1.20	1.25	1.29	1.34	1.38	1.43
	1.47										

[^0]\[

$$
\begin{align*}
& \mathrm{M}=0.002 l\left[\log _{e} \frac{2 h}{\mathrm{D}}-\mathrm{P}+\frac{\mathrm{D}}{l}\right] \text { if } 2 h / l \equiv 1, \\
& \mathbf{M}=0.002 l\left[\log _{e} \frac{2 l}{\mathrm{D}}-\mathrm{Q}+\frac{\mathrm{D}}{l}\right] \text { if } l / 2 h \leqq 1 \tag{B.S.}
\end{align*}
$$
\]

D being the spacing between the wires,
l the length,
P and Q as in the last formula.
Where the spacing of all the wires is the same, and the wires are of the same diameter, the inductance of the combination may be obtained from the following formula:

$$
\begin{equation*}
\mathrm{L}=l\left\{\frac{\mathrm{~L}_{1}+(n-1) \mathrm{M}_{1}}{n}-0.001 \mathrm{k}\right\}, \tag{B.S.}
\end{equation*}
$$

where $\mathrm{L}_{1}=$ inductance per unit length,
$\mathrm{M}_{1}=$ mutual inductance between two adjacent wires ns determined by the formulx just given,
k is a spacing factor, values of which are appended.
In all other cases the required inductance can be worked out from the data given by a process of summation, considering the effect on each wire in turn of all the other wires.

TABLE III.

Value of Spacing Fictor for Parallel Eartimad Wires.

$n=2$	3	4	5	6	7	8	9	10	12	14	16	18	20
$k=0$	-308	-621	-906	1.18	1.43	1.66	1.86	2.05	2.37	2.63	2.85	3.04	3.24

Inductance of Coils.-Except in the case of single turn loops, either circular or rectangular, the inductances of which have already been given, the inductance of coils cannot be computed with accuracy.

In the case of an iufinitely long solenoid an exact formula is available, since all the flux produced must link with the coil at some portion of its length. Hence the linkage is simply -
$=$ flux \times number of turns,
$=\frac{4 \pi}{10} \cdot \frac{\mathrm{I} n}{l} \cdot \pi a^{2} \times n, a$ being the radius of the coil.
And hence the inductance for such a coil, being the linkage per unit current,

$$
=\frac{4 \pi^{2} n^{2} a^{2}}{10 \bar{l}}
$$

All the coils employed in practice, however, fall short of this ideal condition, and consequently corrections have to be introduced.

All the formule which follow are current sheet formulx. That is to say, they are deduced on the assumption that the coil is wound with infinitely thin tape with infinitely thin insulation between the turus (or in the case of multilayer coils the whole cross-section is assumed to be filled with conductor).

Corrections are introduced, therefore, to allow for the configuration of the coil and also a small fraction ΔL is added or subtracted to allow for the difference between the actual winding and the current shect assumption.

This latter correction is specifiod with each formula, but it will be as well to explain here the general principles involved.
(a) For Single Layer Coils.-(i.) Wound with round wire, the inductance is first worked out by the appropriate current shect formula, and n correction, due to Rosa, is applied. This correction is of the form $\Delta \mathrm{L}=$ kan ($\mathrm{A}+\mathrm{B}$), where k, Λ, and B are constants, this quantity $\Delta \mathrm{L}$ being subtracted from tho current sheet inductance.
(ii.) With rectangulnr wire, the inductance is worked out from a suitable mulilayer formula, and a similar correction applied. The correction in this case, however, is very complicated, and since the value of the correction is rarely more than 1 per cent., the labour involved is hardly commensurate with the result gained. A sufficiently accurate estimate may be arrived at by adding a small quantity $\Delta L=k a n(Q$, where k and Q are constants.
(b) For Multilayer Coils.-Here a comparatively simple correction is available, a small quantity $\Delta L=k a n ~ Q '$ being ndded.

Fig. 1.-Values of k in Nagaoka's Tormula.
In all cases it is important to note that the value of the correction only amounts to some 1 or 2 per cent., so that it may of ten be neglected.

Variation of Inductance with F'requency.-The flux distribution throughout the coil alters as the frequency increases, but the exact manner in which it does so is very complex, and no correction is available. The effect is to a large extent neutralised by the effect of the distributed capacity of the coil. The former tends to reduce the inductance of the coil as the frequency is raised, while the latter effect increases the apparent inductance, and becomes increasingly important as the frequency increases. The actual increase at any particular frequency due to this latter cause is given by-

$$
L=L_{0}\left(1+\omega^{2} L C \times 10^{-18}\right)(L \text { and } C \text { being in } \mu H \text { and } \mu \mu F)
$$

Single Layer Coils.-For single layer solenoids, the best formula is that due to Nagaoka-viz.:

$$
\mathbf{L}_{\mathrm{a}}=0-03948 \frac{a^{2} n^{2}}{b} k
$$

where $a=$ radius of coil,
$b=$ length of windiag $=n \mathrm{D}(\mathrm{D}$ boing the pitch),
$n=$ number of turns,
k is a factor allowing for the configuration of the coil. Values of k are plotted against the ratio $2 a / b$ in Fig. 1, the actual figures being given in Table IV.

TABLE IV.
Values of k in Nagaoka's Formula.

$2 a / b$.	k.	$2 a / b$.	k.	$\underline{a} a / b$.	k.
. 00	1000	1.0	. 683	40	-365
. 05	-979	1-1	-667	$4 \cdot 5$	$\cdot 341$
- 10	-959	1-2	-648	50	- 320
- 15	.939	$1 \cdot 3$	-629	5.5	-301
. 20	. 920	1.4	-612	6.0	. 285
$\cdot 25$. 902	1.5	. 595	6.5	. 271
- 30	-884	$1 \cdot 6$	-579	$7 \cdot 0$	-258
. 35	-867	1.7	. 565	$7 \cdot 5$	-247
. 40	-850	1.8	-551	8.0	-237
$\cdot 45$. 834	1.9	. 538	90	-219
. 50	. 818	20	-526	10	-203
. 55	-803	$2 \cdot 2$. 503	12	-179
. 60	. 789	$2 \cdot 4$. 482	15	- 153
. 65	. 775	$2 \cdot 6$. 463	20	-124
-70	. 701	$2 \cdot 8$	-4.45	25	- 105
-75	. 748	30	-429	30	. 0910
. 80	. 735	$3 \cdot 2$. 415	35	. 0808
-85	.723	$3 \cdot 4$. 401	40	-0728
. 90	.711	$3 \cdot 6$	388	45	-0664
. 95	-700	$3 \cdot 8$	-376	50	. 0611
1-00	-688	4-0	-365	100	. 0350

This is a current sheet formula, and applies for round wire wound without any appreciable spacing between the turns. If there is any spacing, a correction must be applied, as has previously been pointed out, and-

$$
\begin{aligned}
\mathrm{L}^{\prime} & =\mathrm{L}-\Delta \mathrm{L} \\
\Delta \mathrm{~L} & =0.01257 a n(\mathrm{~A}+\mathrm{B}) .
\end{aligned}
$$

where
Here A is a constant depending in the ratio d / D, and B depends only on the number of turns. Values of A and B are given in Figs. 2 and 3.

If the coil is wound with rectangular wire-

$$
\mathrm{L}=\mathrm{L}_{s}-0.01257 \frac{n^{2} a v}{b} \mathrm{~S}
$$

where $w=$ radial depth of wire,
$t=$ axial thickness,
a and b are as above,
S is a constant involving the ratio b / w, values of which are given in Fig. 6.
Correction for Spacing:

$$
\mathrm{I}^{\prime}=\mathrm{L}+\Delta \mathrm{L}
$$

where
where

$$
\Delta \mathrm{L}=0.01257 \operatorname{an}\left(0.6 \log _{e} \frac{w+\mathrm{D}}{w+t}\right)
$$

Polygonal coils may be treated as coils of radius equal to the mean of the inscribed and escribed circles.

Fig. 2.-Value of Constant A in Rosa's Correction.

Fig. 3.-Valde of B in Rosa's Correction.
Torus with Single Layer Winding.-A torus is a ring of circular cross. section (sec Fig. 4). Here

If

$$
\begin{aligned}
\mathrm{I} R & =\text { radius of torus to centre of cross-section } \\
a & =\text { radjus of winding } \\
n & =\text { number of turns }
\end{aligned}
$$

$$
\mathrm{L}=0-01257 n^{2}\left[\mathrm{R}-\sqrt{\left.\mathrm{R}^{2}-a^{2}\right]}\right.
$$

Toroid of Reclangular Section :

$$
\mathrm{L}=0.002 n^{2} h \log _{e} \frac{r_{2}}{r_{1}}
$$

where

$$
r_{1}=\text { inner radius of toroid, }
$$

$r_{2}=$ outer radius of toroid,
$h=$ axial depth of toroid.

Fig. 4.-Toroid with Sinale. Layer Winding.

Fig. 5.-Multilayer Coil

Multilayer Coils.-Several formulœ are available here, some being more suitable than others according to the type of coil.

For long coils of few layers, Rosa has derived the following formule:

$$
\mathrm{L}=\mathrm{L}_{s}-0.01257 \frac{n^{2} a c}{b} \mathrm{~S}
$$

Fig. G.-Value of Constant S in Terns of b/c.
whero

$$
a=\text { mean radius of coil, }
$$ $b=$ axial length of coil, $c=$ radial depth of coil,

$\mathrm{L}_{\mathrm{s}}=$ inductance calculated by Nagaoka's formula.
S is a correction dependent on the ratio b / c, values of which are plotted in Fig. 6.
This formula is accurate to within 01 per cent. for long coils, but becomes less accurate as c / a becomes $\equiv 0 \cdot 25$, and $b / a \equiv 5$.

Fia. 7.-Values of \boldsymbol{y}_{1}.
For short coils where b and c are small compared with a, Stefan's formula are more suitable.

If $b>c, \mathrm{~L}_{0}=001257 a n^{2}\left[\left(1+\frac{b^{2}}{32 a^{2}}+\frac{c^{2}}{96 a^{2}}\right) \log _{\epsilon} \frac{8 a}{d}-\mathrm{y}_{1}+\frac{b^{2}}{16 a^{2}} \mathrm{y}_{2}\right]$.

Fig. 8.-Values of y_{2}.
Where $\quad d=\sqrt{ } b^{2}+c^{2}$, and the other terms are as before.
Lf $b<c$, substitute $\frac{\sigma^{2}}{16 a^{2}}$ ys for the last term.
y_{1}, y_{2}, and y_{3} are constants given in Table V. below, the values also being plotted in Figs. 7, 8, and 9.

Correction for Spacing of Windings :

$$
\mathrm{L}_{4}=\mathrm{L}_{0}+0.01257 a_{n}\left[\log _{e} \frac{\mathrm{D}}{d}+0.155\right]
$$

where

$$
\mathrm{D}=\text { pitch of winding, }
$$ $d=$ diameter of wire.

Fig. 9.-Values of y_{3}.
Multilayer coils wound with rectangular wire are rarely used except for transmitting inductances, in which case the spacing is considerable. In such cases the rectangular wire or strip may be translated into equivalent round wire of equal area, and a value of D / d obtained.

Fig. 10.-Spiral of Flat Strip.

Flat Spirals.-If wound with round wire-

$$
\mathrm{L}_{0}=0.01257 a n^{2}\left[\log _{e} \frac{8 a}{c}-\frac{1}{2}+\frac{c^{2}}{96 a^{2}}\left(\log _{e} \frac{8 a}{c}+\frac{43}{12}\right)\right]
$$

where

$$
c=n \mathrm{D},
$$

$$
a=a_{1}+\frac{1}{2}(n-1) \text { D, and } a_{1} \text { is as shown in Fig. } 10 .
$$

If wound with rectangular wire, treat as a disc coil, using Stefan'a formula where

$$
\begin{aligned}
& b=w, \\
& c=n \mathrm{D}, \\
& d=\sqrt{b^{2}+c^{2}} \\
& a=a_{1}+\frac{1}{2}(n-1) \text { D. } \quad \text { (See Fig. 10.) }
\end{aligned}
$$

Correction for Spacing:
$\mathrm{L}=\mathrm{I}_{0}-0.01257 a n(\mathrm{~A}+\mathrm{B})$ for round wire,
$=L_{0}+0.01257 a n Q$ for rectangular wire,
A, B, and Q being correction factors proviously cited.

TABLE V.

Valees of y_{1}, y_{a}, and y for Use witil Stefan's Formule.

b / c or $/ / b$.	y_{1}.	c / b.	y_{3}.	b / c.	y3.
00	$\cdot 500$. 00	- 125	. 00	. 597
. 025	. 525		-	-	
-05	-549	. 05	- 127	05	599
- 10	-592	10	.132	. 10	. 602
-15	.631	15	$\cdot 142$	- 15	. 608
. 20	-665	- 20	. 155	- 20	. 615
-25	. 695	25	-171	. 25	. 624
-30	. 722	-30	-192	-30	633
-35	. 745	-35	. 215	-35	. 843
-40	. 765	. 40	. 242	-40	. 654
. 45	. 782	-45	. 273	-45	-665
. 50	. 796	. 50	-307	50	. 677
. 65	. 808	. 55	. 344	. 55	-690
. 60	. 818	. 60	. 384	. 60	. 702
. 65	. 827	-65	. 427	. 65	-715
-70	. 833	. 70	-474	. 70	729
.75	. 838	. 75	-523	. 75	. 742
. 80	. 842	. 80	- 576	. 80	. 756
. 85	. 845	85	-632	. 85	771
. 90	. 847	. 90	. 690	. 90	-786
. 95	. 848	. 95	. 752	. 95	. 801
1-00	. 848	1.00	. 816	1.00	816

Square Coils-Mullilayer Coils (see Fig. 11):
where

$$
\begin{equation*}
\mathrm{L}=0.008 a n^{2}\left[\log _{e} \frac{a}{b+c}+0.2235 \frac{b+c}{a}+0.726\right] . \tag{B.S.}
\end{equation*}
$$

$a=$ mean side of square,
$b=$ axial width,
$c=$ radial depth,
$n=$ number of turns.
If $b=c$, this becomes-

Correction for Spacing:

$$
\begin{equation*}
\mathrm{L}_{\varphi}=0.008 a n^{2}\left[\log _{e} \frac{a}{b}+0.447 \frac{b}{a}+0.033\right] . \tag{B.S.}
\end{equation*}
$$

$$
\mathrm{L}=\mathrm{I}_{0}+0.008 a_{A}\left[\log _{e} \frac{\mathrm{D}}{d}+0.155\right]
$$

Single Layer Coils :

Round wire:	Put c	$=0$.
Rectangular wire:	Put b	$=n \mathrm{D}$,
c	$=$ radial thickness $=w$.	

In this case, the correction for spacing becornes-

$$
\begin{aligned}
\mathbf{L} & =\mathbf{L}_{0}-0.008 a n(A+B) \text { for round wire }, \\
& =L_{0}+0.008 a n Q \text { for rectangular wire. }
\end{aligned}
$$

Rectangular Coils :
$\mathrm{L}_{0}=0.004\left(a+a_{1}\right) n^{2}\left[\log _{e} \frac{2 a a_{1}}{\dot{b}+c}-\frac{a}{a+a_{1}} \log _{c}(a+g)-\frac{a_{1}}{a+a_{1}} \log _{e}\left(a_{1}+g\right)\right.$

$$
\left.+\frac{2 g}{a+a_{1}}-\frac{1}{2}+0.447 \frac{b+c}{a+a_{1}}\right]
$$

where a and a_{1} are the mean sides of the rectangle, b, c, and n being as above.

Fig. 11.-Multilayer Rectangulaiz Coil.

Fio. 12.-Flat Rectangular Coil.

Correction for Spacing:

$$
\mathrm{L}=\mathrm{L}_{0}+0.004\left(a+a_{2}\right) n\left[\log _{a} \frac{\mathrm{D}}{d}+0.15 \overline{5}\right]
$$

Single Layer Coils :

> Round wire:
> Rectangular wire:

Put $c=0$.
Put $b=n$ D, $c=$ radial thickness.

Flat Rectangular or Square Coils:

$$
\text { Put } \begin{aligned}
a & =a_{0}-(n-1) \mathrm{D} \\
a_{1} & =a_{0}^{\prime}-(n-1) \mathrm{D} \\
c & =n \mathrm{D} \text { (see Fig. 12). }
\end{aligned}
$$

For round wire:
Put $b=0$.
Rectangular wire: \quad Put $b=$ width of strip.
Correotions for apacing in both the above groups of formulas:

$$
\begin{aligned}
& \mathrm{L}=\mathrm{L}_{0}-0.004\left(a+a_{1}\right) n(\mathrm{~A}+\mathrm{B}) \text { for round wire, } \\
& \mathrm{L}=\mathrm{L}_{0}+0.004\left(a+a_{1}\right) n \mathrm{Q} \text { for rectangular wire. }
\end{aligned}
$$

Approximate Formulæ.-For many purposea the accuracy of the formula already given is greater than necessary, and formula giving results correot to

about 2 per cent. are quite adequate. Several such formula are given below.

General Formula:

$$
\begin{equation*}
L=0-2 \frac{n^{2} D_{1}^{2}}{3 \cdot 5 D_{1}+8 b} \times \frac{D_{1}-2 \cdot 25 c}{D_{1}} \tag{Reyner.}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
\mathrm{L} & =\text { inductance in } \mu \mathrm{H}, \\
\mathrm{D}_{\mathbf{1}} & =\text { outside diameter, } \\
b & =\text { length of coil, } \\
c & =\text { radial depth of coil, }
\end{array}\right\} \text { Dimensions in inches. }
$$

This formula is intended for rough-and-ready calculations. It is easily committed to memory, and involves no correction curves. It is accurate to within 2 or 3 per cent. for close wound coils within the limits $c / \mathrm{D}_{1}<0 \cdot 3, b / \mathrm{D}_{1}<2.0$. The first portion only is employed for single layer coils, the second term being a correction to allow for the depth of the winding when multilayer coils are used.

Coursey has also evolved a series of correction curves, based on Nagaoka's formula, whereby this simple expression may be employed with any type of coil-i.e.

$$
\mathrm{L}=0.03948 \frac{a^{2} n^{2}}{b} k^{\prime}
$$

where $\mathrm{L}_{4}=$ inductance of coil in $\mu \mathrm{H}$,
$a=$ mean radius (cms.),
$b=$ axial length (cms.),
k^{\prime} is a constant deponding on the ratio of $\frac{b}{2 a}$ and $\frac{c}{2 a}$, where $c=$ radial thickness of the coil.
For single layer coils k^{\prime} is the same as Nagaoka's factor, values of which were given in Table IV., Fig. 1.

For multilayer coils, the value of k^{\prime} is given in Figs. 13 and 14, the latter being an enlarged portion of Fig. 13, suitable for coils of very small section.

These formulx, again, only apply to closo windings. For spaced windinga the accurate formuln should be employed.

Pancake (Disc) Coils-The inductance of disc coils may be found from Reyner's formula directly. Coursey's curves, however, do not extend below $\frac{c}{2 a}=\frac{b}{2 a}$-i.e., coils of square section.

In order to use these curves, therefore, the inductance may be obtained of an equivalent coil having the same mean diameter, but with b and c interchanged.

This assumption is tolerably accurate whero $\frac{c}{b}$ is not too large, but is somewhat in error for very thin coils. For everyday work, however, this method is satisfactory.

Fig. 15 illustrates some types of equivalent coils.
Rectangular Coils.-As a practical approximation, the inductance of a rectangular or square coil may be taken as equal to that of a circular coil of equal area-i.e.:

$$
\mathrm{D}_{\mathrm{equl} \nabla}=\sqrt{\frac{4 a b}{\pi}}=1 \cdot 128 \sqrt{a b}
$$

where a and b are the mean dimensions of the rectangular coil, $\mathrm{D}_{\text {equiv }}$ is the mean diameter of the equivalent circular coil. If c is the radinl thickness of the coil, $D_{\text {external }}=D_{\text {equiv }}+c$.

(a)

Fio. 15.-Types of Coil maving Approximately Equal Inductances.

It can be shown that when rectangular coils are employed, the greatest inductance is obtained when the coil is square ($a=b$). Professor Howe has worked out curves showing the ratio of the inductance obtainable

Fig. 16.-Ratio of Inductances of Square and Reotangular Coils.
with a square coil to that of a rectangular coil, first whon the area of the two coils is the same, and secondly when the length of wire is the same. Fig. 10 shows the ratios for the two cases in terms of b / a, from which it will be seen that the square coil always gives maximum inductance.
III.

Design of Inductance Coils.- In designing an inductance, the approsimate formula may be employed at first. A certain configuration is assumed, and the number of turns necessary obtained. If this involves the use of too small a wiro, or if in any other respect the result is not satisfactory, the dimensions may then be suitably modified.

If spaced windings are employed, the trial calculations may be based on the approximate formulx, taling, say, 70 per cent. of the value obtained to allow for spacing, the final work being done with the accurate formule.

Excessive distributed capacity gives rise to losses, and therefore suitable spaced windinge should be employed for coils desired to have low loss.

Best Shape of Coil.- The requirement for an efficient coil is that the ratio R
 best ratio of $\frac{b}{\mathrm{D}}$ is dependent on the frequency.

At low frequencies, $\frac{b}{D}$ should be of the order 0.43 . The best type of coil is then a multilayer one, having $c=b$ (i.e., of square section), using an ordinary close winding, the variation of ${ }_{L}^{R}$ being as indicated in Fig. 17.

Fia. 17.-Effect of Sliape of Coll on Ratio $\frac{R}{\mathbf{L}}$.
At higher frequencies, however, the winding should be spaced to avoid excessive eddy current losses (see p. 54). Butterworth has worked out the correct spacing (Phil. Trans., vol. cexxii., A, p. 57) in terms of an argument $z=\frac{830}{\sqrt{\mathrm{~K}_{0}{ }^{\prime} \lambda}}$,
where

$$
\begin{aligned}
\mathrm{R}_{0}^{\prime} & =\text { D.C. resistance of wire per } 1,000 \text { yards }, \\
\lambda & =\text { wave length (metres). }
\end{aligned}
$$

The spacing should then be as indicated in Fig. 18; 20 per cent. departure from this curve produces 5 per cent. increase of R / L.

If this correct spacing is ndopted, then-

$$
\begin{aligned}
\frac{b}{\mathrm{D}} \text { should } & =0.35 \text { for medium frequencies }(z<2), \\
& =0.31 \text { for high frequencies }(z>2)
\end{aligned}
$$

with a single layer winding.
These conditions, however, may involve an unduly large diameter, in which case a multilayer winding may be adopted. The condition for $\frac{b}{D}$ remains unaltered, although, if $z>1$, the resistance of the coil will be greater than that obtainable with a single layer.

When multilayer coils are adopted, the best ratio of b / c is of the order 0.3 to 0.5 , as shown in Fig. 17.

Fig. 18.-Correct Spacing for Higi Frequency Inductances.

For receiving inductances, Table VI. will be of service. With close windings the number of turns may be taken as arca of winding

For transmitting inductances these remarks should be considered in conjunction with those on p. 55.

TABLE VI.
Wire Table (Fine Wires).
Overall Diameter of Wire in Inches.

$S W G$.	Bare.	SSC.	DSC.	SCC.	$D C C$.
20	.036	. 038	. 0395	-042	. 046
21	. 032	. 034	-0355	-038	-042
22	-028	. 030	-0315	-034	. 038
23*	-024	-026	-0275	. 030	. 034
24	. 022	. 0238	-025	. 028	. 032
25*	. 020	-0218	. 023	-026	-030
26	-018	. 0198	-021	. 024	. 028
28	-0148	-0106	. 0178	. 0208	. 0248
30	-0124	. 0139	. 0149	. 0184	-0224
32	-0108	-0123	. 0133	. 0158	. 0198
34	-0092	. 0107	. 0117	. 0142	. 0182
36	-0076	-0091	-0099	. 0116	. 0156
38	- 0060	.0075	-0083	. 0100	-0140
40	- 0048	-0063	. 0071	. 0088	. 0128
41*	-0044	. 0057	-0064	-	-
42*	- 0040	. 0053	-0060	-	-
43	-0036	-0049	-0056	-	-
47	-0020	-0033	-0040	-	

Effect of Coll Capacity.-The several turns of a coil, being at differing potentinla, have a capacity effect between them. The sum of nll these effects is equivalent to a small capacity shunted across the coil. This

Fig. 19.-E.M.F. introduced into Coil Itself.

Fig. 20.-E.M.F. introduced in Series with Coil.
capacity, referred to as the "self" or, more properly, the "distributed" capacity of the coil, exercises an appreciable effect on both the inductance and the resistance of the coil.

The inductance is increased by a small amount, and is given by -

$$
\mathrm{L}=\mathrm{L}_{0}\left(1+\mathrm{L}_{0} \mathrm{C}_{0} \omega^{2} \times 10^{-18}\right),
$$

where $\quad \mathrm{L}_{0}=$ true inductance of the coil in $\mu \mathrm{H}$, $\mathrm{L}=$ effective inductance of the coil in $\mu \mathrm{H}$, $\mathrm{C}_{0}=$ distributed capacity of coil in $\mu \mu \mathrm{F}$.
The effect on the resistance of the coil, however, depends upon its relative position in the circuit. There are two possible cases.
In the first case the E.M.F. introduced into the circuit is introduced into the coil itself (see Fig. 19). Here the distributed capacity is simply in parallel with the tuning capacity, and consequently increases the wave length of the circuit.

[^1]In the second case the E.M.F. is introduced into the circuit in series with the coil; the equivalent circuit is then as shown in Fig. 20. Now the effective resistance of a coil with a parallel condenser is dependent upon the frequency of the current, and approaches infinity when $f=\frac{1}{2 \pi \sqrt{L C}}$. The effective resistance of a coil is thus increased by the distributed capacity by an amount dependont upon the frequency. Fig. 21 is a curve illustrating

Fig. 21.-Effect of Distributed Capacity on Resistance of Corr.
this point. It is the resistance itself which is increased (see p. 68), and not the reactance.

The offective resistance is given by-

$$
\underline{R}_{e f}=\frac{R}{\omega^{2} C_{0}^{2} R^{2}+\left(1-\omega^{2} L_{0} C_{0}\right)^{2}}
$$

L_{0}, C_{0}, and R being in henries, farads, and ohms.
If the frequency at which the coil is being used is not near the resonant frequency of the coil (which is, of course, the general case) -i.e., if ($1-\omega^{2} \mathrm{~L}_{0} \mathrm{C}_{0}$) is not near zero-this expression reduces to-

$$
\mathrm{R}_{\mathrm{ef}}=\frac{\mathrm{R}}{\left(1-\omega^{2} \overline{\mathrm{~L}}_{0} \mathrm{C}_{0}\right)^{2}}
$$

The effective inductance is given by-

$$
L_{\mathrm{e} I I}=\frac{L\left(1-\omega^{2} L C_{0}\right)-C_{0} R^{2}}{\omega^{2} C_{0}{ }^{2} R^{2}+\left(1-\omega^{2} L_{0} C_{0}\right)^{2}} .
$$

The expression may be written $L_{e f f}=L_{0}\left(1+\omega^{2} L_{0} C_{0}\right)$ approximately $=L_{0}\left(1+3.553 \frac{L_{0} C_{0}}{\lambda^{2}}\right)$, provided ($1-\omega^{2} L_{0} C_{0}$) is not near zero.

Dead end effects are occasioned by utilising a portion of the coil only, without isolating the turns not in usc. The circuit then develops into a species of coupled circuit (see Fig. 22), and will

Fig. 22.-Effect of Dead Ends. tune to lwo frequencies. Such a case may be treated by the approprinte methods employed for coupled circuits.

In addition to this effect, however, which may not be very serious, there is the loss in the unused portion of the coil (sec below), and there are also leakage capacity currents from the end of the coil which is at a high radio frequency potential. These effects all detract from the efficiency.
Value of Distributed Capacity.--The capacity of a coil is in any case very small. For single layer close wound coils Howe has shown that C_{0} in $\mu \mu \mathrm{F}$ is of the order of $0.5 r$, where r is the radius of the coil in centimetres. It will be seen that this is very small, and is independent of the number of turns.

Drude has given the following data also for single layer coils:
Natural wave length: where
$\left.\begin{array}{rl}\lambda_{\mathrm{n}} & =2 \mathrm{kl} \\ l & =\text { length of wire } \\ k \text { is a constant given below. }\end{array}\right\}$ metres,

TABLE VII.
Wave Length Constant for Air-Core Colls.

$\frac{b}{\mathrm{D}}=\frac{\text { length of coil }}{\text { winding pitch }} .6$		6	4	3	2	1	0.7	0.3	0.1

$\frac{\mathrm{D}}{\mathrm{d}}=\frac{\text { winding pitch }}{\text { diameter of wire }}$:

1.09	\ldots	\ldots	\ldots	.68	.76	.84	1.00	1.33	1.56	2.08	2.79
1.24	\ldots	\ldots	\ldots	.67	.75	.83	.97	1.27	1.46	1.91	2.57
2.40	\ldots	\ldots	\ldots	-66	.74	.81	.96	1.23	1.41	1.79	2.28

For multilayer coils C_{0} is somewhat larger, but not very much more so; the chief cause of loss in a multilayer coil is the dielectric loss. The wires and dielectric in the middle of the coil are in a comparatively concentrated field, and unless spaced windings are employed, heavy losses may result.

Dielectric Losses in Coils.- This is an important feature in the design of coils. The dielectric of the "distributed " condenser is, of course, the insulation between the turns, and this as a rule is highly absorbing. That is to say, the loss due to dielectric absorption is large. Particular caro must be taken, therefore, in the design of coils required to have low loss. If an ordinary winding is employed, the winding should be left unvarnished, although a thin coat of pure wax may be given in some cases. Even so the loss in the cotton or silk insulation is not negligible, and it is often desirable to space the winding. For receiving purposes several varietics of patent winding have come into use; in one form the wires cross each other at an angle, and successive layers are thus kept apart a distance equal to the thickness of the wire. In another form small fibre spacers are used to keep the auccessive layers adequately spaced.

For transmitting purposes spaced windings are always employed, the spacing factor being of the order 0.2 or lesa, as has already been stated.

The magnitude of the loss due to absorption may be gathered from the following example: Assume that the distributed capacity of a given coil is $50 \mu \mu \mathrm{~F}$, the phase angle being 2° (see p. 29). If the coil is tuned with a capacity of $950 \mu \mu \mathrm{~F}$ to a frequency of 10^{3} ($=3,000$ metres), phase angle ψ of C and C_{0} in parallel $=\frac{50}{950+50} \times 2^{\circ}=6^{\prime}$.

Added resistance $=\frac{\tan \psi}{\omega\left(\mathrm{C}+\mathrm{C}_{0}\right)}=\frac{\tan 6^{\prime}}{2 \pi \times 10^{9} \times 10^{-9}}=2.79$ ohms.

Fia. 23.-Illustrating Method of Determining $\mathrm{C}_{\mathbf{0}}$.
Fig. 23 indicates a method of determining the distributed capacity of a coil. The coil is shunted by a variable condenser, and the wave length observed at various settings of C. By drawing a graph and producing it as shown in the figure, the value of C_{0} may be obtained.

Calculation of Mutual Inductance.

The calculation of mutual inductance is a rather more complicated process than the calculation of the self inductance. For certain simple cases the mutual inductance can be evaluated with a fair degree of accuracy, but in the majority of cases the labour involved is very considerable.

Certain formulo are given here which cover most of the cases met in practico.

Two Parallel Wires:

$$
\begin{equation*}
\mathrm{M}=0.002 l\left[\log _{\frac{2}{\mathrm{D}}}-1+\frac{\mathrm{D}}{l}\right] \tag{B.S.}
\end{equation*}
$$

where

$$
l=\text { length of wires (both equal), }
$$

$$
\mathrm{D}=\text { spacing. }
$$

In the above formula and all that follow, M is given in microhenries, the linear dimensions being measured in centimetres.

Fra. 24.-Two Wires, Axes in Line.
Two Wires, Axes in Line.-(a) Ends touching (Fig. 24):

$$
\mathrm{M}=0.001\left[l \log _{e} \frac{l+m}{l}+m \log _{e} \frac{l+m}{m}\right] .
$$

where l and m are the lengths of the two wires.
(b) Ends separated by a distance z :

$$
\begin{array}{r}
\mathrm{M}=0.001\left[(l+m+z) \log _{e}(l+m+z)+z \log _{e} z-(l+z) \log _{\epsilon}(l+z)\right. \\
\left.-(m+z) \log _{e}(m+z)\right] . \tag{B.S.}
\end{array}
$$

Two Wires with Axes Parallel:

$$
\begin{gathered}
\mathrm{M}=0.001\left[l \log _{\varepsilon} \mathrm{AD}+\mathrm{AD}^{\prime}+m \log _{\varepsilon} \frac{\mathrm{AD}+\mathrm{AD}^{\prime}}{\mathrm{AC}+\mathrm{AC}^{\prime}} \mathrm{BD}+\mathrm{BD}^{\prime}\right. \\
+z \log _{\epsilon} \frac{\left(\mathrm{AD}+\mathrm{AD}^{\prime}\right)\left(\mathrm{BC}+\mathrm{BC}^{\prime}\right)}{\left.\left(\mathrm{AC}+\mathrm{AC}^{\prime}\right)\left(\mathrm{BD}+\mathrm{BD}^{\prime}\right)+\mathrm{AC}+\mathrm{lBD}-\mathrm{AD}-\mathrm{BC}\right],}
\end{gathered}
$$

(Eccles.)
where the dimensions are as indicated on the accompanying figure (Fig. 25).

Fio. 25.-Two Wires with Axes Parallel.

Fig. 26.-Two Wires Overlapping.

Special cases of this formula arise from time to time, and a few of these are appended herewith.

1. Where the two wires overlap, as in Fig. 26, the mutual inductance is given by- $\quad \mathrm{M}=\mathrm{M}_{\mathrm{EFBA}}+\mathrm{M}_{\mathrm{FDBC}}+\mathrm{M}_{\mathrm{FDCA}}$.
2. Where $z=0$, and the two wires are of equal length (Fig. 27):

Fig. 27.-Wires of Equal Lengti.

Fig. 28.-Wires Symmetrically Placed.
3. Where the two wires are symmetrically placed (Fig. 28):

$$
\begin{gathered}
\mathrm{M}=0,002\left[2 l \log _{e}\left\{\frac{l+m+\sqrt{(l+m)^{2}+\mathrm{D}^{2}}}{\mathrm{D}}\right\}+\right. \\
\left.(l+m) \log ^{e}\left\{\begin{array}{l}
l+m+\sqrt{(l+m)^{2}+\mathrm{D}^{2}} \\
m-l+\sqrt{(m-l)^{2}+\mathrm{D}^{2}}
\end{array}\right\}+\sqrt{(m-l)^{2}+\mathrm{D}^{2}}-\sqrt{(l+m)^{2}+\mathrm{D}^{2}}\right]
\end{gathered}
$$

Tivo Equal Parallel Rectangles:

$$
\mathrm{M}=0.004\left\{a \log _{e} \frac{(a+x) y}{(a+z) d}+a_{1} \log _{e} \frac{\left(a_{1}+y\right) x}{\left(a_{1}+z\right) \dot{d}}+2(z+d-x-y)\right\},
$$

(Neumann.)
where

$$
a \text { and } a_{1} \text { are the sides of the rectangles, }
$$

$$
\begin{aligned}
& d=\text { distance apart }, \\
& x=\sqrt{a^{2}+d^{2}} \\
& y=\sqrt{a_{1}^{2}+d^{2}} \\
& z=\sqrt{a^{2}+a_{1}^{2}+d^{2}} .
\end{aligned}
$$

Two Parallel Co-axial Circles.-Let the radii be a and b (a being the smaller), and let the planes be d apart.

Find distances r_{1} and r_{2} -
where

$$
\begin{gather*}
r_{1}=\sqrt{(b+a)^{2}+d^{2}} \\
\tau_{2}=\sqrt{(b-a)^{2}+d^{2}} . \tag{B.S.}\\
\mathbf{M}=\mathbf{F} \sqrt{a b}
\end{gather*}
$$

Then
where F is a constant depending on the ratio r_{2} / r_{1}, values of which are given in Table X. below.

Coils-Co-axial Solenoids (not Concentric):

$$
\mathrm{M}=0.00987 \frac{a^{2} b^{2} n_{1} n_{2}}{2!\times 2 n}\left[k_{1} q_{1}+k_{3} q_{3}\right], \quad \text { (Rosa Girover.) }
$$

Fig. 29.-Two Co-axile Solenoids not Concentric.
where a and b are the radii of the coils (a being the smaller), $2 l$ and $2 m$ are the lengths,

$$
\begin{aligned}
& \left.r_{1}=\sqrt{x^{2}+b^{2}}\right) \text { Sec Fig. 29. } \\
& r_{2}=\sqrt{y^{2}+b^{2}} \int^{2}=\frac{2}{b^{2}}\left(\frac{y}{r_{2}}-\frac{x}{r_{1}}\right) \quad q_{1}=2 l ; \\
& k_{1} \\
& k_{3}=\frac{1}{2}\left(\frac{x}{r_{1}{ }^{5}}-\frac{y}{r_{2}{ }^{5}}\right) \quad q_{3}=a^{2} l\left(3-4 \frac{l^{2}}{a^{2}}\right) .
\end{aligned}
$$

Other terms negligible in engineering practice.

TABLE VIII.

Value of Fin Formula for Mutual Inductance between Two Circifes.

$\frac{r_{2}}{r_{1}}$	F	$\frac{r_{2}}{r_{1}}$	F	$\frac{r_{2}}{r_{1}}$	F	$\frac{r_{2}}{r_{1}}$	F
1.00	$0-00$. 74	1.150	. 48	$4 \cdot 318$	-23	$1 \cdot 17$
-99	0.70×10^{-5}	. 73	1.228	. 47	$4 \cdot 501$. 22	1.22
-98	20	. 72	1.310	- 46	$4 \cdot 69$. 21	1-27
-97	$3 \cdot 7$. 71	1.394	. 45	4.89	-20	$1 \cdot 33$
-96	$5 \cdot 8$	-70	1.491	-44	$5 \cdot 09$	-19	1-39
-95	$8 \cdot 1$	- 69	$1 \cdot 571$	-43	$5 \cdot 30$	-18	1.45
94	1.07×10^{-1}	-68	$1 \cdot 664$. 42	5.51	-17	$1 \cdot 52$
-93	1.36	-67	1.760	. 41	$5 \cdot 74$	-16	1.59
- 92	1.68	-66	1.859	$\cdot 40$	$5 \cdot 97$	-15	$1 \cdot 66$
-91	2.02	. 65	1.962	39	6.21	-14	1.74
-90	2.39	-64	2.068	-38	$6 \cdot 46$	-13	1.83
-89	2.78	. 63	$2 \cdot 177$	- 37	6.72	-12	1.93
-88	3-19	-62	2.290	-36	7.00	-11	2.03
. 87	$3 \cdot 63$	-61	$2 \cdot 407$. 35	7.27	- 10	$2 \cdot 15$
. 86	$4 \cdot 09$	-60	$2 \cdot 527$	-34	$7 \cdot 56$	-09	2.28
. 85	$4 \cdot 57$	- 59	$2 \cdot 652$	-33	7.86	. 08	$2 \cdot 42$
. 84	5-08	-58	$2 \cdot 780$	-32	$8 \cdot 18$. 07	2.58
. 83	$5 \cdot 61$	- 57	2.913	-31	8.50	. 06	2.78
. 82	$6 \cdot 16$	- 56	3.050	$\cdot 30$	8.85	-05	3.00
. 81	6.74	-55	$3 \cdot 191$	- 29	9.20	. 04	$3 \cdot 28$
. 80	$7 \cdot 35$	- 54	$3 \cdot 337$	- 28	$9 \cdot 57$. 03	$3 \cdot 64$
. 79	$7 \cdot 97$	-53	3.487	. 27	9.96	-025	$3 \cdot 87$
. 78	$8 \cdot 63$	- 52	3.643	. 26	1.04×10^{-2}	. 020	$4 \cdot 15$
-77	$9 \cdot 31$	-51	3.803	. 25	1.08	. 015	4.51
-76	1.002×10^{-3}	-50	3.969	-24	1-12	-010	502
75	1.074	$\cdot 49$	4-140				

Co-axial Concentric Solenoids :

$$
\mathrm{M}=0.01974 \frac{a^{2} n_{1} n_{2}}{g}\left[1+\frac{a^{2} b^{2}}{8 g^{4}}\left(3-4 \frac{l^{2}}{a^{2}}\right)\right]
$$

where $\quad 2 l$ and $2 m$ are the lengths of the coils, l being the shorter. a and b are the radii, a being the smaller. $g=\sqrt{b^{2}+m^{2}}$ (see Fig. 30).

Fig. 30.-Co-axial Concentric Solenoids.
The second term is often negligible in comparison with unity. It is often more convenient in a case like this to know the coupling factor $k=\frac{\mathrm{M}}{\sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}}$. This is given approximately by $k=\frac{a^{2} l}{b^{2} m}$.

Coils of Rectangular Section :

$$
M=n_{1} n_{2} M_{0}
$$

where M_{0} is the mutunl inductance between two co-axial circles (or reotangles) located at the centre of the cross-section of the coil (see Fig. 31).

Fig. 31.-Coils of Rectangular Section.

Fig. 32.-Variation of k with Axial Displacement.

This is accurate to about 1 per cent. Further accuracy can only be obtained at expense of an incommensurate amount of labour.

Flat Rectangular or Spiral Coils:

$$
\mathrm{M}=n_{1} n_{2} \mathrm{M}_{0}
$$

whore M_{0} is the mutual inductance between two co-axial rectangles or circles for which-

$$
\begin{aligned}
& a=a_{0}-(n-1) D \text { d for rectangular coils, } \\
& a_{1}=a_{0}^{\prime}-(n-1) D f \text { for circular coils (see Fige. } 10 \text { and 12). } \\
& a=a_{1}+\frac{1}{2}(n-1) D \text {. }
\end{aligned}
$$

Fig. 33.-Variation of k with Angular Displacemint.

Fig. 34.-Variation of k with Radial Displacement'.

Variable Couplings.-Since pancake coils are very common, the variation of coupling factor with the relative positions of the coils is appended.

From these curves it is possible to obtain the mutual inductance, given the self inductances of the individual coils. Or if the coils are to form a variometer, then the inductance of the coils in series is $L=L_{1}+L_{2} \pm 2 M$.

If the coils are connected in parallel, $L=\frac{L_{1} L_{1}-M^{2}}{L_{2}+L_{2} \pm 2 M}$.

Fig. 32 gives the variation of k with the axial distance between the coils, while Figs. 33 and 34 give the variation of k for angular and radial displacements. For simple co-axial rotation, k is proportional to sin θ.

Calculation of Capacity and Condenser Design.

The capacity between two points is the quantity of electricity which has to be transferred from one point to the other to produce unit potential difference. The capacity of an isolated body is the capacity obtained when the second point is removed to an infinito distance.

All parts of a conductor aro at the same potential when no current is flowing, and the charge will distribute itsclf so that this is so. It is only in simple cases, such as spheres and ollipsuids, that the charge also is uniform, but it simplifies calculations to consider the charge uniform and the potential as varying from point to point. This point is referred to later in dealing with the capacity of acrials.

The following formula give the capacities of some of the more common bodies met in practice. All dimensions are in cms., and the capacitics in micro-microfarads ($\mu \mu \mathrm{F}$). An air diclectric is assumed; for any other dielectric the formulæ should be multiplied by the dielectric constant ε.

Isolated Sphere : $\quad \mathrm{C}=1 \cdot 112 r$, where r is the radius.
Concentric Spheres: $\quad C=1 \cdot 112 \frac{r_{1} r_{2}}{r_{1}-r_{2}}$,
where r_{1} is the larger, and r_{2} the smaller radius.
Two Spheres close logether:
Joint capacity:

$$
\mathrm{C}=1 \cdot 112 r\left(1+\frac{x}{6 r}\right)\left(0.3863-\frac{x}{12 r}\right)
$$

Capacity between the two:

$$
\begin{equation*}
\mathrm{C}=\frac{1 \cdot 112 r}{2}\left(1+\frac{x}{6 r}\right)\left(1-2074+\frac{1}{2} \log _{e} \frac{r}{x}+\frac{x}{18 r}\right), \tag{Russell.}
\end{equation*}
$$

where $x=$ distance between nearest points.
If the spheres are so far apart that it is immaterial whether x is measured from the nearest points or between the centres, then the capacity is given by-

$$
\mathrm{C}=\frac{1 \cdot 112 r_{1} r_{2} x}{\left(r_{1}+r_{2}\right) x-2 r_{1} r_{2}}
$$

Capacity of Sphere to Earth:

$$
\mathrm{C}=1 \cdot 112 h r / h-r
$$

where

Isolated Disc :

$$
r \text { is the radius, }
$$

h is the height above earth.

$$
\mathrm{C}=0.708 r, \text { where } r \text { is the radius. }
$$

Co-axial Cylinders:

$$
C=\frac{1 \cdot 112 l}{2 \log _{e} \frac{r_{1}}{r_{2}}}
$$

where r_{1} is the larger and r_{2} the smaller radius.

Two Long Parallel Cylinders far Apart:
where

$$
\mathrm{C}=\frac{1 \cdot 112 l}{2 \log _{\epsilon} \frac{d^{2}}{r_{1} r_{2}}}
$$

Long Parallel Strips :
l is the length, r_{1} and r_{2} are the radii, d is the distanco apart.

$$
\mathrm{C}=\frac{1 \cdot 112}{4 \pi^{2}}\left[1+x+\log _{e}\left(1+x+\log _{e}[1+x]\right)\right]
$$

where

$$
x=\frac{\pi b}{d}
$$

b is the breadth of the strip,
d is the distance apart.
If x is more than 100 -

$$
\mathrm{C}=0.0255(x-4 \cdot 62) . \quad \text { (J. J. Thompson.) }
$$

Plate Condensers :

$$
\mathrm{C}=0.0885 \frac{\varepsilon \mathrm{~A}(n-1)}{d}
$$

where

$$
\mathrm{A}=\text { aren of plate }
$$

$n=$ number of plates,
$\mathrm{K}=$ dielectric constant,
$d=$ distance between plates.
If several dielectrics are employed-

$$
C=0-0885\left(\frac{A(n-1)}{d_{1} / \varepsilon_{1}+d_{2} / \varepsilon_{2}+\ldots}\right)
$$

Edge effect is the slight increase of capacity obtained due to the non-uniform distribution of the field at the edges of the plates. If d is small compared with the dimensions of the plates, the edge effect may be allowed for by incrensing the size of the plates, adding an "additional strip,"

$$
\begin{aligned}
w & =0 \cdot 11 d \text { for platos with straight edges, } \\
& =0.44 d \text { for circular plates. }
\end{aligned}
$$

Variable Condensers :

$$
C=\frac{0 \cdot 1390 \varepsilon(n-1)\left(r_{1}^{2}-r_{2}^{2}\right)}{d}
$$

where $\quad r_{1}$ is the radius of the moving plate,
r_{2} is the small radius on the fixed plates (see Fig. 37),
d is the distance between the plates,
n is the number of plates,
ε is the dielectric constant.
Losses in Condensers.- Condenser losses are of two varieties-conductor loss and dielectric loss. The former is due to the resistance of the plates and leads of the condenser, and is thus equivalent to a series resistance. The power factor, therefore (see Fig. 35), is $\cos \theta=\sin \psi$. It will be seen that tan $\psi=\mathrm{R} \omega \mathrm{C}$, which increases directly with the frequency. The magnitude of the effect may be gathered from the following example: $\mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}=1$ ohm. At a frequency of 50 cycles, the power factor is 3.8×10^{-6}, which is negligible. At 10^{6} cycles, on the other hand, the power factor is 6.3 per cent., which is a
serious loss. Hence it is most desirable to keep down the resistance of the leads and plates in a radio condenser as far as is practicable.

The second source of loss, dielectric loss, is more complex. There is first of all the ordinary leakage through the dielectric, which is in effect a resistance

Fig. 35.-Condenser witif Series Resistance.
shunt across the condenser (Fig. 36). Here if ψ is the phase angle as before, then $\tan \psi=\begin{gathered}1 \\ R \omega C\end{gathered}$. Here the power factor is inversely proportional to the frequency, so that the effect, though appreciable at low frequency, is negligible at high frequency.

Fig. 3G.-Condenser wite Parallel Resistance.

More important is the phenomenon known as dielectric absorption. When a condenser is charged, the initial rush of current is followed by a relatively small more gradual current which appears to soak into the dielectric in some manner.

Similarly, if a condenser is discharged and left for a few minutes, it is found that a further discharge can be obtained, which indicates that a portion of the charge is stored in the dielectric in some manner quite different from the simplo electron displacement which constitutes the ordinary charge. If the condenser is charged and discharged periodically, this dielectric absorption causes heat to be generated in the dielectric. Mathematically, therefore, the loss is considered as due to a fictitious resistance in series with the condenser, and this is often termed the "equivalent series resistance" of the condenser (although this is not a good term, since the power factor is constant and does not increase with frequency, as is the case with a series resistance).

The variation of this loss with frequency is not accurately known, but is approximately inversely proportional to the frequency; this is to be expected, aince at the higher frequencies the time available for the dielectric absorption is less.

As an approximation, therefore, the power factor of a condenser due to this cause is constant. This holds for all forms of concentrated capacity, and also applies to aerials above the radiation band (see discussion of aerial resistances, p. 97).
The Bureau of Standards, Washington, gives the following figures for the power fnctor of various types of condenser measured at 14,500 volts:

It will be seen that the loss due to dielectric absorption only occurs in solid or liquid diclectrics. In air or gases, the loss is negligibly small. When brushing sets in, however, a very rapid increase of loss takes place, and this, of course, at once limits the voltage at which the particular condenser may be employed.
Design of Condensers.-Condensers, as used in transmitting circuits, which have to handle large quantities of energy, are sometimes termed power condensers.

The energy stored in such a condenser is given by $\mathrm{W}=\frac{1}{2} \mathrm{CV}^{2}$, and hence the power handled is $\frac{1}{2} \mathrm{~V}^{2} \mathrm{CN}$, where \mathbf{N} is the number of sparks discharged per second. For a continuous wave system, the power is simply $V \times I$.

If \mathbf{R} is the total resistance of the condenser, then the power lost is given by $\mathrm{P}=\omega \mathrm{CV}^{2} \sin \varphi$, where $\sin \varphi,=\cos \theta$, is the power factor.

Receiving Condensers.-The design of receiving condensers is a relatively simple matter. Adequate insulation coupled with tolerably low loss is the chief factor in the design. Consequently, for standard condensers, air dielectric should be employed, and the space occupied by the supports should be as small as possible.

Variablo condensers are very commonly employed for tuning the various circuits involved. Such a condenser comprises two sets of plates; one set is fixed, while the other sot is mounted on a spindle and arranged to be rotated into the spaces betwcen the fixed plates. Hence in the maximum position the fixed plates completely overlap the moving, while in the

[^2]minimum position there is no overlap, and consequently the capacity is a minimum. It is not quite zero, since there is a small capacity existing between the edges of the two banks of plates, but with good design the minimum value can be reduced to about 3 to 4 per cent. of the maximum.

The most common form of variable condenser employs semicircular plates (see Fig. 37). The capacity of such a condenser has been given on p. 29; the expression may be rewritten in terms of polar co-ordinates, in which case the equation is of the form :

$$
\mathrm{C}=a \theta+b
$$

The increase of capacity is thus directly proportional to the increase in the angle. Now in tuning receiving circuits, the wave length obtained with a constant inductance is proportional to the square root of the enpacity in the circuit. Using the ordinary form of condenser, therefore, the change in wave length produced by the rotation of the moving plates will be proportional to $\sqrt{0}$. It is often advantageous to have a condenser which gives a uniform variation of wave length, and it will be obvious that with such an instrument the capacity must vary as the square of the angle of

Fio. 37.-Variable Condenser.

Fig. 38.-Square-Law Condenser.
rotation. The moving plates are therefore made of the shape shown in Fig. 38, the radius at each point being obtained from the expression:

$$
r=\sqrt{4 a \theta+r_{1}{ }^{2}}
$$

where r_{1} is the radius of the centre boss carrying the spindle.
A third type of variable condenser, of somewhat more limited application, is the type used on decremeters. Here the requirements for a uniform acale are that the percentage change in capacity for a given variation of angle shall be the same at all points of the acale (see p. 73). The condition for this is -

$$
r=\sqrt{2 \mathrm{C}_{0} \varepsilon^{a \theta}+r_{1}^{2}}
$$

where C_{0} is the capacity when $0=0, r_{1}$ is the radius of the spindle boss as before, and a is a constant.

Variation of Capacity with Frequency.-The capacity of a condenser varies with the frequency due to two causes. The first is inherent in the condenser itself, it being found that the current flowing into a condenser in a very short time is slightly less than that obtained when ample time is afforded for the operation. The phenomenon may be a secondary effect of the direct conduction of current through the dielectric, but in any case the apparent
capacity gradually decreases as the frequency is raised, tending to a limit C_{a} at infinite frequency. This capacity C_{0} is called the geometric capacity, and corresponds to the calculated value.

On the assumption that the variation with frequency is due to conduction, the capacity at any frequency is given by-

$$
\mathrm{C}=\mathrm{C}_{0}\left(1+\psi^{2}\right),
$$

where C_{0} is the geometric eapacity, and $\psi=\frac{10^{6}}{12 \omega \mathrm{C}_{0}}$.
The order of the effect may be gauged from the following example: If $\mathrm{C}_{0}=0.001 \mu \mathrm{~F}, \mathrm{R}=10 \mathrm{M} \Omega 2$, then the capacity at $60 \sim=0.00107 \mu \mathrm{~F}$.

For all radio frequencies the effective capacity $=\mathrm{C}_{0}$.
The second cause of variation is the inductance in the leads of the condenser. Due to this cause the apparent capacity varies in accordance with the expression:

$$
\mathrm{C}_{\mathbf{2}}=\mathrm{C}\left[1+\omega^{2} \mathrm{CL} \times 10^{-18}\right],
$$

C and L being in $\mu \mathrm{H}$ and $\mu \mu \mathrm{F}$.
Table IX. gives the values of the capacities of air condensers in terms of the dimensions and number of plates. This table is extracted from Popular Wireless, vol. iv., No. 68.
The figures given in Table IX. are calculated on the assumption that No. 22 S.W.G. metal plates are used. If other gauges of metal are employed, the following corrections must be made:

Thickness of Plates (S.W.G.).
Thichness of Spacing Washer.

$3^{\frac{3}{2}} \mathrm{in}$.	.			$+43$	$+13$	-		8
$\frac{1}{8} \mathrm{in}$.	.		-	$+26$	+ 9	-		6
${ }_{3}{ }^{8} \mathrm{in}$ in.				$+18$	+ 7	-		4
2 mm .				$+65$	$+18$	-		11
3 mm .				+28	+9	-		6

Capacity of Aerials.

This is a rather specialised subject, and in the case of multi-wire aerials is apt to involve rather laborious calculation.

Professor Howo has devoted considerable time and energy to the solution of the problem, and has succeeded in evolving methods whereby exceedingly accurate results can bo obtained, under suitable conditions.

The capacity of an acrinl is composed mainly of the capacity of the wires themselves, and the calculation of this quantity may be effected with reasonable celerity. The figure thus obtained, however, is always too small, and may in extreme cases be only some 50 per cent. of the actual capacity. The proximity of the earth, of masts and buildings, all tend to increase the capacity, and it is the calculation of the effect of these subsidiary factors which entails the extra and somewhat tedious calculations.
These effects cannot, unfortunatoly, bo neglected, but numerical examples are given in the data which follow which will serve to indicate the relative importance of the several corrections.
III.

Condensers (Microfarads). (Air Dielectric)

20 Plates.	$\begin{gathered} 25 \\ \text { Plates. } \end{gathered}$	$\begin{gathered} 30 \\ \text { Plates. } \end{gathered}$		50 Plates.	60 Plates.
-00018	. 00022	. 00027	. 00036	. 00045	. 00054
. 00012	. 00015	. 00018	.00024	-00031	. 00037
.00009	. 00011		. 00018	-00023	. 00028
-00023	. 00029	. 00035	. 00046	-00058	. 0007
. 00013	. 00016	. 0002	.00026	-00033	.0004
. 00029	. 00037	- 00045	. 0006	. 000075	. 00091
. 0002	. 00025	- 0003	. 0004	. 00051	. 00061
. 00015	. 00019	-00023	. 0003	-00038	. 000 ± 6
. 00038	-00047	. 00058	. 00077	. 00097	. 0012
.00021	. 00027	-00032	. 00043	-00055	. 00066
. 00043	.00054	. 00066	. 00088	. 0011	. 0013
-00029	. 00037	. 00045	. 10006	. 00075	-0009
00022	. 00028	. 000034	. 00045	.00057	.00069
-00056	-0007	. 00085	. 0011	. 0014	. 0017
-00031	. 0004	. 00048	. 00064	-00081	. 00097
. 0006	. 00076	. 00091	. 0012	. 0015	. 0019
.0004	. 00051	-00062	. 00083	. 001	. 0012
. 00031	. 00039	-00047	. 00063	. 00079	-00095
. 00077	-00097	-0012	. 0016	. 002	. 0024
-00043	. 00055	. 00066	. 00089	. 0011	. 0013
. 00079	. 00099	. 0012	. 0016	. 002	. 0025
. 00053	. 00068	. 00082	. 0011	. 0014	. 0017
. 0004	. 00051	. 00062	. 00083	. 001	. 0013
. 001	. 0013	- 0016	. 0021	. 0026	. 0032
.00057	. 00073	-00087	. 0012	. 0015	. 0018
. 001	. 0013	. 0015	. 0021	-0026	. 0031
. 00068	. 00086	. 001	. 0014	. 0018	. 0021
. 00052	-00065	-00079	. 0011	. 0013	. 0016
. 0013	. 0017	. 002	. 0026	. 0034	. 0041
. 00074	. 00093	. 0011	. 0015	. 0019	. 0023
0013	. 0016	. 0019	. 0026	. 0032	. 0039
. 00085	. 0011	-0013	. 0017	. 0022	. 0027
. 00004	. 00081	-00098	. 0013	. 0016	. 002
. 0016	. 002	. 0025	. 0033	. 0042	. 005
00091	. 0011	. 0014	. 0019	-0023	. 0028

The method will be described with a fair amount of detail, so that the prin ciples may be applied if desired to more complex cases not specifically referred to here. The method, in bricf, is as follows:

The capacity under consideration is the static capacity, the offective enpacity under working conditions being obtained from this as indicated on p. 83. If an acrinl system is charged to a given static potential, the charge will not be uniform, but will distribute itself so that the potentinl at each and every point is the same. It is more convenient for the purposes of calculation, however, to assume the charge to be uniform and the potential to be varying from point to point. The average potential may then bo determined, and this potential is assumed to be the same as would be acquired by the aerinl under actual physical conditions (i.e., with n non-uniform distribution of charge). The error involved in this assumption is very small and is quite negligible.

If now the aerial is assumed to carry a charge q per unit length, and if tho total length of wire in the aerial is l, then the total charge on the aerial $=l q$.

If the average potential has been determined to bo $V_{a v}$, then capacity $=\frac{l q}{V_{\mathrm{nv}}}$, in electrostatic units (multiply by $1-112$ to convert to $\mu \mu \mathrm{F}$).

The data which follow, therefore, are chicfly concerned with the determination of V_{ar}, and with the additions and subtractions necessitated by the proximity of the earth and foreign bodies.
(1) Capacity of the Aerial itself-Single Wire:

$$
\mathrm{V}_{\mathrm{Bv}}=2\left(\log _{\mathrm{t}} \frac{l}{r}-0.309\right),
$$

whero

$$
\begin{aligned}
& l=\text { length of aerial in centimetres, } \\
& r=\text { radius of wire in centimetres, }
\end{aligned}
$$

and the wire is assumed to carry unit charge per centimetre length.

$$
\text { Hence the capacity } \begin{aligned}
\mathrm{C} & =\frac{\frac{l}{2\left(\log _{e} \frac{l}{r}-0.309\right)} \text { centimetres, }}{} \\
& =\frac{1 \cdot 112 l}{2\left(\log _{e} \frac{l}{r}-0 \cdot 309\right)} \mu \mu \mathrm{F} .
\end{aligned}
$$

The values of $\left(2 \log _{e} \frac{l}{r}-0.31\right)$ may readily be obtained from the \log curves given in Figs. 39 and 40.

Flat Multiple Wire Aerials.-In this case the potential at any point in the aerial is due to the charge on that particular wire plus the effect of the charges on all the other wires. If there are n wires-

$$
\mathrm{V}_{\mathrm{aV}}=2\left\{n\left(\log _{\varepsilon} \frac{l}{d}-0.309\right)+\log _{\frac{e}{r}} \frac{d}{-\mathrm{B}}\right\} .
$$

where

$$
d=\text { spacing of the wires },
$$

$l=$ length of aerial,
$r=$ radius of wire,
B is a constant depending on n, all dimensions being in centimetres.

This formula is not strictly accurate, since it is calculated on the assumption that $V_{a v}$ is the average of the potentials of the middle points of the several wires, but the error involved is small.

Values of the constant B are given below. Values of $\log _{e} \frac{l}{d}$ and $\log _{e} \frac{d}{r}$ may be oltained from the curves given.

Fig. 39.-Values of Lode N for $N=10$ to $N=1,000$.

The capacity of such an aerial, therefore, is given by-

$$
\mathrm{C}=\frac{1 \cdot 112 n l}{2\left\{n\left(\log _{e} \frac{l}{d}-0.309\right)+\log _{\epsilon} \frac{d}{r}-\mathrm{B}\right\}} \mu \mu \mathrm{F} .
$$

The numerator involves n since, in determining the total charge, the total length of wire in the aerial must be taken into account.

TABLE X .
Values of Constant Bin Formula for Capacity of Multinire Aerials.

n	..	.	2	3	4	5	6	7	8	9	10	11	12
B	.	.	0	0.46	1.24	2.26	3.48	4.85	6.40	8.06	0.80	11.65	13.58

$\begin{array}{lllllllllllllll}\text { B } & - & & - & 0 & 0.46 & 1.24 & 2.26 & 3.48 & 4.85 & 6.40 & 8.06 & 0.80 & 11.65 & 13.58\end{array}$ Above $n=12, \mathrm{~B}=2.44(n-6.7)$.

Fia. 40.-Values of Loa N for $\mathrm{N}=10^{3}$ тo $\mathrm{N}=10^{\circ}$.
Four-Wire Box Typa Aerial.-By a similar process of reasoning, the average potential is found to be-

$$
\mathrm{V}_{\mathrm{av}}=2\left\{\log _{e} \frac{l}{r}+\mathrm{Y}\right\},
$$

where

$$
d=\text { spacing of the wires, }
$$

$l=$ length of aerial,
$r=$ radius of wires,
$\mathbf{Y}=\mathbf{a}$ constant depending upon l / d.

Values of Y are given below. In this case, since the total length of wire is $4 l$, the capacity is:

$$
\mathrm{C}=\frac{4 \cdot 448 l}{2 \log _{\epsilon} \frac{l}{r}+\mathrm{Y}} \mu \mu \mathrm{~F}
$$

l / d.	.	20	50	100	150	200
Y	$7 \cdot 58$	$10 \cdot 22$	$12 \cdot 26$	$13 \cdot 48$

Values of $\log _{e} \frac{l}{r}$ can be obtained from the log curves given in Fig. 40.
Capacity of Multiwire Cage Aerials.-The formula for the four-wire box type aerial is obtained by considering the potential of one wire on the system due:
(a) To its own-charge.
(b) To the charges on the other wires.

Since the system is symmetrical, the average potential of any one wire will be the same as that of the whole aerial.

Assuming unit charge per centimetre, the potential due to its own charge will be:

$$
\mathrm{V}=2\left(\log _{\epsilon} \frac{l}{r}-0.309\right)
$$

The potential due to a wire at a distance d is given by-

$$
\mathrm{V}=2\left(\sinh -1 \frac{l}{d}-\sqrt{\left.1+\frac{d^{2}}{l^{2}}+\frac{d}{l}\right)}\right.
$$

and from this the average potential of the wire due to all other wires in the aerial may be obtained.

In the case of a four-wire cage-

$$
\mathrm{V}=2\left(\log _{\epsilon} \frac{l}{r}-0.309\right), \text { due to itself, }
$$

$+4\left(\sinh -1 \frac{l}{d}-\sqrt{\left.1+\frac{d^{2}}{l^{2}}+\frac{d}{l}\right) \text {, due to the two nearest wires, }}\right.$
$+2\left(\sinh ^{-1} \frac{l}{\sqrt{2} d}-\sqrt{1+\frac{2 d^{2}}{l^{2}}}+\frac{\sqrt{ } 2 d}{l}\right)$. due to fourth wire.
The factor Y just given is the evaluation of the quantity $(-0.309+$ last two terms) for different values of $\frac{l}{d}$.

This method may be extended to cages containing more than four wires. For a six-wire cage, the average potential is given by-

$$
\begin{aligned}
\mathrm{V}_{\mathrm{av}}=2 & \left(\log _{e} \frac{l}{r}-0.307\right) \\
& +4\left(\sinh ^{-1} \frac{l}{d}-\sqrt{1+\frac{d^{2}}{l^{2}}+\frac{d}{l}}\right) \\
& +4\left(\sinh ^{-1} \frac{l}{\sqrt{3} d}-\sqrt{1+\frac{3 d^{2}}{l^{2}}}+\frac{\sqrt{3} d}{l}\right)
\end{aligned}
$$

$$
+2\left(\sin l_{1}-1 \frac{l}{2 \bar{d}}+\sqrt{1+\frac{4 d^{2}}{l^{2}}}+\frac{2 d}{l}\right),
$$

Whorr, it hofore, 12 is the spacing of two adjacent wires (see Fig. 41).

Fig. 41.-Six-Wire Cage.
The potential may obviously be written in the form:

$$
\mathrm{V}=2\left[\log _{e} \frac{l}{r}-0.309+f\left(n, \frac{l}{d}\right)\right]
$$

the last two terms being the factor Y. $\mathrm{C}=1.112 \mathrm{nl} / \mathrm{Y}$.

Fí. 42.-Values of Y in Formula for Capacity of Cage Aemals
Tho author has ovaluated Y for cages comprising 6, 9, and 12 wires in terms of l / d, as with the four-wire box acrinl. The results are given in the table appended, and are also plotted in Fig. 42.

Values of Y for other numbers of wires may be obtained by extrapolation or from the formula:

$$
\mathbf{Y}=\left(Y_{4}+0.31\right) \frac{n}{4}-0.31
$$

where Y_{4} is the value of Y for a four-wire cage and $n=$ number of wires.
Values of sinh x are given in Appendix A, and also in Fig. 293.
TABLE XI.
Values of Y for Cage Merials.

Number of Wires:	$l / d=$	20	50	100	150	200
4	-	7.58	$10 \cdot 22$	$12 \cdot 26$	13.48	14-33
6	.	$11 \cdot 53$	$15 \cdot 49$	18.59	20.38	21.65
9	.	$17 \cdot 44$	23.38	28.00	30.72	$32 \cdot 63$
12	.	$23 \cdot 36$	31.28	37-40	41.00	$43 \cdot 61$

It does not pay to increase n indefinitely, unless the spacing is kept constant (i.e., the diameter of the cage is increased).

Fig. 43.-Variation of Capacity of Cage Aerial with tae Number of Wires.

Fig. 43 gives the capacity of a cage aerial 200 feet long with wires 0.042 inch diameter:
(a) With the wires spaced evenly round the circumference of a circle of 42 inches diameter.
(b) With the spacing kept constant at 42 inches.

It will be seen that in the first case a limit is very quickly reached; the oapacity in the second case continues to increase with n, but it is obvious that a limit will shortly be attained.
(2) Effect of Earth.-The formula given so far refer only to the capacity of the acrial in space. Tho proximity of the earth increases the capacity, or, in other words, decroases the value of $V_{a v}$. This decrease may be regarded as due to the effect of an "image " of the actual acrial situated at a distance below the ground equal to the height of the actual aerial above the ground.

To allow for the offect of the carth, therefore, it is necessary to subtract from the value of $V_{a v}$ previously determined a quantity $n E$, where n is the

Fig. 44.-Values of E in Terms of the Ratio $\frac{l}{2 h}$.
number of wires in the aerial and \mathbf{E} is a factor depending on the ratio $l / 2 h$, values of which are given below, and are plotted in Fig. 44.

$$
\begin{array}{ccccccccc}
l / 2 h & \ldots & 20 & 10 & 50 & 4.0 & 20 & 1.0 & 0.5 \\
\mathrm{E} & \ldots & 5.46 & 4.20 & 2.98 & 2.62 & 1.64 & 0.94 & 0.48
\end{array}
$$

For values of $l / 2 h$ less than $0 \cdot 5, \mathrm{E}=l / 2 h$.
(3) Capacity of Lead-In. - The lead-in is considered in conjunction with the romainder of the aerial. There is first of all the capacity of the lead-in by itself (making due allowance for the effect of the earth), and secondly there is the effect of the lead-in on the aerial, and vice versa.

The capacity of the lead-in itself is calculated, from the expression for a single wire.

The potentialdue to the image in the earth is found to be simply equal to the charge on the wire, provided the ond of the wire is more than 3 or 4 feet from the ground. Consequently-

$$
\mathrm{V}_{\mathrm{av}}=2\left\{\log _{e} \frac{l}{\mathrm{r}}-0.809\right\}
$$

If the wire runs down to the ground, however, the potential due to the earth is equal to 1.38 times the charge on the wire, and the above formula must be modified accordingly.
(4) Effect of Lead-In on Aerial, and vice versa.-The average potential of the acrial is increased by the presence of the lead in, and vice versa. Where the two are at right angles, as is usually the case, this increase can be determined by the following formula:
Let $l=$ length of the wire under consideration (uncharged).
$l^{\prime}=$ length of wire at right angles (assumed to carry unit charge per centimetre).
$m=l / l^{\prime}$.
Then potential of l due to l^{\prime} is given by-

$$
\mathrm{V}=\sinh -1 \frac{1}{m} \frac{\sinh -1 m}{m}
$$

The value of this correction is given in Fig. 45. It should be borne in mind that this curve is calculated on the assumption that the wire at right angles

Fig. 45--Effect on One Wire of a Second Wire at Right Angles.
carries unit charge per centimetre, but when applying the method to more complicated cases, in which it may be convenient to assume a greater charge, the potential will be correspondingly greater.

For multiwire acrials, the effect may be deduced by considering the wires all bunched together, and carrying n times the normal charge. This method is not quite accurate, a small correction being necessary owing to the spacing of the wires. This correction is not serious unless the ratio m is small, and tho wires widely spaced. A reasonably accurate correction may be obtained by multiplying the value of V thus obtained by a correction factor-
where

$$
X=1-0.85 n^{\prime} \sqrt{\frac{d^{2}}{l^{\prime}}}
$$

$d=$ spaoing of the wires,
l and l^{\prime} are the lengths of the wires, u^{\prime} is a factor depending on the number of wires n.

$$
\begin{array}{cccccccc}
n & \cdots & \cdots & 2 & 3 & 4 & 5 & 10 \\
n^{\prime} & \cdots & \cdots & 0.5 & 0.89 & 1.25 & 1.54 & 3.29
\end{array}
$$

If the lead-in is not at right angles to the aorial, the curves employed in the calculations on umbrella aerials should be utilised.

Where the lead-in is composed of wires spaced at the top and tapering to a point at the base, Professor Howe has shown that if the angle between the wires is a reasonably acute (i.e., less than about 60°), then the lead-in may be replaced by a series of parallel wires at a distance $d^{\prime}=0 \cdot 36 d$, where d is the spacing of the wires at the top of the acrial.

This formula is also useful in considering fan-shaped acrials.
In the case of T aerials only half of the horizontal portion is considered. When finding the effect of the lead-in on the aerial, l is taken as the half length of the horizontal top. When finding the effect of the aerial on the lead-in, the same procedure is adopted, but the result is doubled.
(5) Effect of the Image of the Lead-In on the Aerial, and vice versa.The image of the lead-in affects the aerial, reducing the average potential, and vice versa. This effect is not large, being of the order of 2 or 3 per cent. in ordinary cases, and it is fortunately readily calculable.

The charge on the image is assumed concentrated at its mid-point. If, then, d is the distance of the aerial from this mid-point, the potential is given by-

$$
V=\frac{\text { charge }}{d}
$$

The charge is, of course, equal to the total charge on the aerial, but is opposite in sign, and hence this correction is negative.

It should be romembered, however, that any masts or buildings in the proximity of the aerial may produce effects far greater than the effect just considered (see p. 46), and unless these effects are to be considered the accuracy obtained by considering the effect of the image of the lead-in is not justifiable.

Summary.-In calculating the capacity of an aerial, therefore, the procedure is as follows:

Horizontal Portion.--Find V_{av} due to-
Charge on wire itself a
Charge on image -b
$\begin{array}{lllllr}\text { Charge on lead-in } & \ldots & . & . . & . & c \\ \text { Charge on image of lead-in } & .- & . & . . & . . & -d\end{array}$
Average potential $=a-b+c-d$
$=\mathrm{M}$
Lead.In.-Find V_{av} due to-
Charge on wire itself, allowing for earth
Charge on horizontal portion f
Charge on image of horizontal portion -g

$$
\begin{aligned}
\text { Average potential } & =e+f-g \\
& =\mathbf{N}
\end{aligned}
$$

If l is the length of the horizontal portion, and h is the length of the lead in, then-
and

$$
\begin{aligned}
\mathrm{v}_{2 \mathrm{v}} & =\frac{\mathrm{M} l+\mathrm{N} h}{l+h} \\
\mathrm{C} & =\frac{h+l}{\mathrm{~V}_{\mathrm{BV}}}
\end{aligned}
$$

When dealing with multiwire nerials, h and l are the total lengthsi.e., n times the geometrical lengths.

Sample Calculation (this example is taken from Professor Howe's original paper).-Find the capacity of an aerial consisting of ten parallel wires 4 feet apart, 600 feet long, and 200 feet high, with ten leading-in wires at the centre converging to a point near tho earth. Radius of wire $=0.048$ inch, $l / d=150 . d / r=1,000$.

Potential of horizontal portion:
(a) Due to charge on wire itself $\mathbf{8 8 \cdot 2}$
(b) Due to image ($l / 2 h=1 \cdot 5$; see Fig. 44) $\quad . \quad-13.2$
(c) Due to charge on lead-in: $m=1 \cdot 5, n=10$, $V=14 \cdot 2$ (see Fig. 45).
Correction for spacing: $\mathrm{V}=\mathbf{1 4 \cdot 2 (1 - 0 . 0 4 6)}$.. $13 \cdot 6$
(d) Duo to image of lead-in (mean distance $=$ $\begin{array}{rllllr}336 \mathrm{fect})=\frac{10 \times 200}{336} & . & . & . & . & -6.0 \\ & \text { Total } & . . & . . & . . & 82.6\end{array}$
Potential of lead-in:
(e) Due to its own charge (here the wires converge; hence they aro treated as parallel and $0 \cdot 36 d$ npart $=1 \cdot 44$ feet) $1 / d=1 \cdot 39$, $d / r=360, \mathrm{~V}=84.8-10$ (duc to earth) $\quad \therefore \quad 74.8$
(f) Due to horizontal portion: $m=0.66$, $V=21.34 \times 2$ (for the two halves).
Correcting for spacing: $V=42.7$ (10.044) .. 40.9
(g) Due to horizontal image: $\frac{10 \times 600}{336} \quad$.. \quad. -17.9
Total 97.8

Hence wo have 10×600 fect at an average potential of $82 \cdot 6$, and 10×200 feet at a potential of 97.8 .

$$
\begin{aligned}
\mathrm{V} & =\frac{82.6 \times 6000+97.8 \times 2000}{8000}=86.35, \\
\mathrm{C} & =\frac{8000 \times 30.5}{86 \cdot 35} \\
& =2825 \text { electrostatic units, } \\
& =2825 \times 1.112=3140 \text { micro-microfarads. }
\end{aligned}
$$

Umbrella Type Aerials.-Here the gencral proceduro is the samo ns before, but there are ono or two extra factors to be tiaken into account.
First of all, the eapacity of each rib is considered, and the total capacity of the top portion is taken as n times this value, where n is the number of ribs. The capacity of the lead-in may then be determined, due to its own charge and due to the charges on the ribs.
Potential of a Rib.-This is made up of the potentials due to-

1. Its own charge.
2. Charges on the other ribs.
3. Charge on vertical wire.
4. Image of ribs.
5. Image of vertical wire.

Potential of Lead-In.-This is made up of the potentials due to-
6. Its own charge.
7. Charges on the ribs.
8. Its own image.
9. Image of the ribs.

Of the above factors, all except Nos. 2, 3, and 7 are straightforward. Nos. 3 and 7 are calculated from the curves given below.

Here, if, as before-

$$
m=\frac{l}{l^{\prime}}=\frac{\text { length of wire under consideration }}{\text { length of wire at an angle } \gamma \text { (charged) }}
$$

then the average potential of tho wire under consideration, due to a unit charge on the wire at an angle, can be determined in terms of both m and γ from Fig. 46.

The potential of the lead-in duo to the ribs is, of course, tation as n times the potential due to one rib calculated by the above process.

Fiq. 46.-Potential of One Wire due to a Second Wire at an Angle γ.

The potential of one rib due to the effect of all the other ribs (No. 2) can be obtained from Fig. 46 by placing $m=1$. Then, by considering all the ribs in turn and finding their relative angles, the effect of all the ribs may be obtained by a simple addition.

Where the number of ribs, however, does not exceed six, the effect on one rib of all the others may be taken directly from Fig. 47, which gives the average potential in terms of the number of ribs and the angle mado with the vertical.

Effect of Masts and Buildings.-A lead-in near an earthed mast will induce a charge on the mast, and this in its turn will affect the average potential of the lead-in. Assume a charge q per centimetre length on the mast.

Then (see Fig. 48) the average potential of the mast will be made up of the potential-

$$
\begin{aligned}
& \text { Due to itself } \quad=a q \\
& \text { Due to its image } \quad=-1 \cdot 38 q \text { (since mast is actually earthed). } \\
& \text { Due to wire }=c \\
& \text { Duo to image of wire }=-d \\
& \text { Total } V \text { of mast }=(a-1 \cdot 38) q+c-d .
\end{aligned}
$$

Since the mast is earthed this must $=0$, and hence q can be found.

Fig. 47.-Effect on One Rib of all the Other Ribs.

Fig. 48.-Effect of Mast on Lead-In.

Then the average potential of the wire-

$$
\begin{aligned}
& \text { Due to itself }=x \\
& \text { Due to its own image }=-1 \\
& \text { Due to charge on mast }=-c q \\
& \text { Due to image of mast }=+d q
\end{aligned}
$$

where c and d have the same values as above. Hence the effect of the mast may be readily determined. It should be noted that this method only appliea if the mast is earthed, and, in general, the capacity is incrensed by from 5 to 20 per cent. according to the proximity of the lead-in to the mast. If the mast is insulated, however, as is becoming increasingly common to-day, the effect is indeterminate.

The increase of capacity varies inversely as the distance between the mast and the lead-in. Fig. 49 shows the increase for a particular case in which the mast was 200 feet high.

Fig. 49.-Effect of Mast on Capacity.
The effect of a building near the lead-in may also be found by a method of images. Here (see Fig. 50) the potential of the wire is due to-

1. Its own charge.
2. Its own image.
3. The image in the wall.
4. The diagonal image.

Of these, the last is the only one which is not quite straightforward. It is best obtained in the following manner:

Consider two wires of length XD nud AY

Effect of CD on $A B$ -
effect of XD-effect of $X C$
Fig. 50.-Effect of Bdilding on Lead.
In. (Fig. 50). The average potential of AY duo to a unit charge on XD can readily be determined, and from considerations of symmetry it can be seen that this is the same as the average potential of the portion AB due to a unit charge on XD. Now the average potential of AB due to XC is also readily determined, so that the effect of CD on AB is obtained by subtraction.

It should be observed that the offect of tho masts and buildings in the neighbourhood of an aerial is very considerable, and may cause an increase of as much as 30 per cent. or more in the capacity of the aerial, which would swamp the comparatively small corrections due to the effect of the earth. Consequently, before commencing any calculations on an aerial, the effect of such foreign bodies should be reviewed generally to determine first whether the effect is likely to be serious, and if so whether it is accurately determinable.

General Data.-When considering complicated notworks wherein varying cross-sections may be involved, the surface density of the charge should be assumed constant (since this is the fundamental assumption on which the formula are based). For example, if the lead-in wires are twice the diameter of the aerial wires, then they should be assumed to have a charge of 2 units per contimetre length if the acrial wires are assumed to carry unit charge.

If the aerial is composed of a network of cages or sausages, the capacity of the cages themselves should be worked out by the usual formula, each wire being assumed to carry unit charge. In calculating the effect of one cage on the other, however, they may be replaced by single wires, each carrying a charge of n units, where n is the number of wires.

Capacity of a Circular Wire.-This is sometimes required. If PQ is an arc of the circle which is small enough to be considered linear, and if θ is the angle subtended at the centre by this arc, then average potential $=$ potential of length $\mathrm{PQ}-2 \log _{e} \tan \theta / 4$.

It may be observed that this average potential is usually about 5 per cent. higher than that of a straight wire of the same length as the circumference, so that the capacity of a wire is reduced by bending it into a circular form.

Approximate Formulæ.-The following approximate formulae are given by the Bureau of Standards, Washington, and are convenient in many cases.

Single Wire Parallel to the Ground:

$$
\begin{aligned}
\mathrm{C} & =\frac{0.2416 l}{\log _{10} \frac{4 h}{d}-k_{1}} \mu \mu \mathrm{~F}, \text { where } 4 h / l \equiv 1 \\
\mathrm{C} & =\frac{0.2416 l}{\log _{10} \frac{2 l}{d}-k_{2}} \mu \mu \mathrm{~F}, \text { where } l / 4 h \overline{<}
\end{aligned}
$$

Here $l=$ length of wire,
$d=$ diameter of wire,
$h=$ height of wire above ground (all dimensions in centimetres).
k_{1} and k_{2} are constants which are plotted below.
Two Horizontal Wires Parallel to the Ground:

$$
\begin{aligned}
\mathrm{C} & =\frac{0 \cdot 4831 l}{\log _{10} \frac{4 h}{d}+\log _{10} \frac{2 h}{\mathrm{D}}-2 k_{1}} \mu \mu \mathrm{~F}, \text { where } 4 h / l \equiv 1 \\
\mathrm{C} & =\frac{0 \cdot 4831 l}{\log _{10} \frac{2 l}{d}+\log _{10} \frac{l}{\mathrm{D}}-2 k_{2}} \mu \mu \mathrm{~F}, \text { where } l / 4 h \equiv 1
\end{aligned}
$$

Here D is the spacing of the wires; the other terms are as above.
Single Vertical Wire (lower end several metres from the ground):

$$
\mathrm{C}=\frac{0 \cdot 2416 l}{\log _{10} \frac{2 l}{d}} \mu \mu \mathrm{~F} \text { (} l \text { and } \bar{a} \text { as above) }
$$

N Wires in Parallel:

$$
\mathrm{C}=\mathrm{C}_{1} \sqrt{\mathrm{~N}-1}, \text { where } \mathrm{C}_{1}=\text { capacity of a single wire }
$$

This formula is approximate only.
III.

50
More accurately-

where | C | $=\frac{0.2416 l n}{p_{11}+(n-1) p_{12}-n k} \mu \mu \mathrm{~F}$, |
| ---: | :--- |
| n | $=$ number of wires, |
| D | $=$ spacing of wires, |
| l | $=$ length of wires, |
| p_{11} | $=\log _{10} \frac{4 h}{d}-k_{1}$ where $4 h / l \risingdotseq 1$, |
| | $=\log _{10} \frac{2 l}{d}-k_{2}$ where $l / 4 h \equiv 1$, |
| p_{13} | $=\log _{10} \frac{2 h}{\mathrm{D}}-k_{1}$ where $4 h / l \risingdotseq 1$, |
| | $=\log _{10} \frac{l}{\mathrm{D}}-k_{2}$ where $l / 4 h \risingdotseq 1$. |

k is a constant plotted below, k_{1} and k_{2} are as before.

TABLE XII.
Values of k.
$\begin{array}{cccccccccccc}n=2 & 3 & 4 & 5 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\ k=-0 & \cdot 067 & \cdot 135 & \cdot 197 & \cdot 256 & -361 & -445 & -515 & -571 & -619 & \cdot 660 & \cdot 704\end{array}$

TABLE XIII.

Values of k_{1} and k_{2}.
$\begin{array}{ccccccccccccc}l / 4 h, 4 h / l & = & 0 & -01 & -2 & -3 & -4 & -5 & -6 & -7 & -8 & -9 & 1 \cdot 0 \\ k_{1} & = & 0 & -001 & -004 & .009 & -016 & -025 & -035 & -045 & -057 & -069 & -082 \\ k_{2} & & 0 & -043 & .086 & -128 & -169 & -209 & .247 & .283 & -318 & .351 & -383\end{array}$
Austin has given the following empirical formula for flat-topped aerials not too elongated nor having wires too widely spaced:

$$
\mathrm{C}=\left(4 \sqrt{a}+0.885 \frac{a}{h}\right) 10-5 \mu \mu \mathrm{~F}
$$

where

$$
a=\text { area in metres }{ }^{2}
$$

$$
h=\text { height in metres }
$$

If $l>8 b$, where b is the breadth, the value given above should be multiplied by a correction factor $k=\left(1+0.015 \frac{l}{b}\right)$.

Capacity between Two Horizontal Wires.-If the wires aro at the same height (h) -

$$
\mathrm{C}=\frac{0 \cdot 1208 l}{\log _{10} \frac{2 \mathrm{D}}{d}-\frac{\mathrm{D}^{2}}{8 h^{2}}} \mu \mu \mathrm{~F},
$$

where D is the spacing between the wires.
If the wires are in a vertical plane, use the same formula with h equal to the mean height. All dimensions in centimetros.

High Frequency Reslstance.

A conductor carrying a current has associated with it a magnetic field which is distributed both in and around the conductor.

If the flux is varying, the portion inside the conductor produces eddy currents in the material of the conductor itself which are in such Ω direction as to oppose the flow of current.

The current, therofore, is unevenly distributed throughout the conductor, tending to flow more in the outside layers, so that the effective resistance of the conductor will incrense with the frequency.

The problem, for all but the simplest cases, is not amenable to any rigid mathematical treatment, but the general laws may be derived and formula obtained, part mathematical, part empirical, which have a certain application in radio engineering.

The increase of resistance is found to depend on the actual dimensions of the wire, the permeability thereof, and the frequency of the current.

For straight wires fairly simple formulo are available which give the ratio of the resistance at frequency f to that of frequency $=0$ (i.e., for direct current). This ratio is written R_{f} / R_{o}.

The problem is still further complicated if the conduotor is wound in a coil, in which case the external flux exercises a considerable influence. The formulx available here are very limited in both application and accuracy.

Straight Round Wire:
where

$$
\text { The ratio } \begin{aligned}
\frac{\mathrm{R}_{\mathrm{f}}}{\mathbf{R}_{\mathrm{o}}} \text { depends on the parameter } x=00995 d & \frac{2 \mu f}{\rho}, \\
d & =\text { diameter of wire (cms.), } \\
f & =\text { frequency of the current, } \\
\mu & =\text { permeability of wire }, \\
\rho & =\text { specific resistance of wire (microhm-cms.). }
\end{aligned}
$$

Having evaluated this parameter, the value of $\frac{R_{f}}{R_{o}}$ may be obtained from Table XIV. below.

For copper wire at 20° C. $x=0 \cdot 107 d \sqrt{f}$.
The formula only applies to circuits in which the wires are far apart, so that the mutual inductance is negligible. Any mutual inductance increases the skin effect by an amount which is not readily calculable, but the cffect is only serious if the wires are very close.

TABLE XIV.
Value of $\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{o}}}$ in Terms of x.

x.	$\frac{R_{\mathrm{f}}}{\mathrm{R}^{\mathrm{o}}}$		x.	$\frac{\mathbf{R}_{\mathrm{f}}}{\mathbf{R}_{\mathrm{o}}}$
. 0	1.000		1.3	1.015
- 6	1.001		1.4	1.020
-8	1-002		1.5	I. 026
$\cdot 9$	$1-003$		$1 \cdot 6$	1.033
1.0	1.005		1.7	1.042
1.1	1.008		1.8	1.052
12	1.011		1.9	1.064

TABLE XIV.-Continued.

x.	R_{f}
2.0	1.078
2.0	1.111
2.2	1.152
2.4	1.201
2.6	1.256
2.8	1.318
3.0	1.385
3.2	1.456
3.4	1.529
3.6	1.603
3.8	1.752
4.0	1.826
4.2	1.899
4.4	1.971
4.6	

	R_{f}
x.	R_{0}
$5-0$	$2 \cdot 043$
$5 \cdot 2$	$2 \cdot 114$
$5 \cdot 4$	$2 \cdot 184$
$5 \cdot 6$	$2 \cdot 254$
$5 \cdot 8$	$2 \cdot 354$
6.0	$2 \cdot 394$
$6 \cdot 2$	2.463
$6 \cdot 4$	2.533
$6 \cdot 6$	$2 \cdot 603$
$6 \cdot 8$	$2 \cdot 673$
7.0	$2 \cdot 743$
$7 \cdot 2$	$2 \cdot 813$
$7 \cdot 4$	$2 \cdot 884$
$7 \cdot 6$	$2 \cdot 954$
78	3.024

Above $x=8$ use formula $\frac{\mathrm{R}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{o}}}=0 \cdot 353 x+0 \cdot 27$.
It is sometimes desired to construct a resistance or other piece of apparatus of which the high frequency resistance is very little different from that at low frequencies. For this purpose the following table has been compiled by the Bureau of Standards, in which are given the largest permissible diameters of various kinds of wire, in order that the ratio $\frac{R_{f}}{\bar{R}_{0}}$ shall not exceed 1-01:

TABLE XV.
Maximum Diameter of Wires (Cm.) for a Ratio $\begin{aligned} & \mathrm{Rf} \\ & \mathrm{R}_{0}=1.01 .\end{aligned}$

λ	3000	1500	500	300	150	100
Material :						
Copper	. 0356	- 0251	. 0145	. 0112	. 0079	- 0065
Silver	-0345	-0244	. 0141	. 0109	. 0077	. 0063
Platinum	- 1120	. 0793	. 0457	. 0354	. 0250	. 0205
Manganin	- 1784	-1261	-0729	- 0564	. 0399	. 0325
Constantan	- 1892	-1337	. 0772	. 0598	. 0423	-0345
German silver	-1942	- 1372	. 0792	. 0614	. 0434	. 0354
Carbon	1.601	1-131	. 8541	. 5060	. 3580	-2920
Iron $\mu=1,000$. 0026	-0019	. 0011	. 0008	. 0006	. 0005
$=500$	-0037	-0026	. 0015	. 0012	. 0008	. 0007
$=100$. 0084	. 0059	. 0034	. 0026	-0019	. 0015

If the ratio $\frac{R_{f}}{R_{0}}$ is required to be $1 \cdot 1$, the values given in the table should be multiplied by 1.78 , while for $\frac{R_{f}}{R_{o}}=1.001$ the values are multiplied by $0-55$. The table, as before, only applies to wires appreciably spaced from any other wires.

Tubular Conductor.-Here it is necessary to evaluato the parameter $\beta=x t \sqrt{2}$, where t is the thickness of the tube and x is the parameter already omployed for wires.
d here is the outside diameter of the tube.
Values of $\frac{\mathrm{R}_{f}}{\mathrm{R}_{0}}$ in terms of β are given in Table XVI.
Strip Conductors.-Where the two conductors of a circuit are in the form of narrow strips with their wido fuces adjacent (see Fig. 51), the ratio R_{f} / R_{0}

Fig. 51.-Two Strips Face to Face.
may be calculated from the same formula as is employed for tubes, t in this case being the thickness of the strips, and d the distance apart.

The formula only holds provided the strips are close togethor; the greater the distance d, the greater becomes the ratio R_{f} / R_{o}, and in the limiting case of a single strip the ratio may be several times as great as that given by the above formula.

For the case where the strips are edge to edge no formula is available.
A single strip of approximately square section may be treated as a round strip of equal area.

TABLE XVI.

Value of $\frac{\mathrm{R}_{f}}{\mathrm{R}_{\mathrm{o}}}$ in Terms of β			
β.	$\begin{aligned} & \mathrm{R}_{\mathrm{f}} \\ & \mathrm{R}_{0} \end{aligned}$	β.	$\mathrm{R}_{\mathbf{1}}{ }^{\text {d }}$
- 0	1.000	22	2-132
- 3	1.001	$2 \cdot 3$	2-248
$\cdot 4$	1.002	$2 \cdot 4$	2-364
-5	1.006	2.5	2.477
-6	1.012	$2 \cdot 6$	2.588
.7	1.021	$2 \cdot 7$	$2 \cdot 697$
. 8	1.036	$2 \cdot 8$	$2 \cdot 803$
$\cdot 9$	1.057	2.9	2.907
1.0	1.086	$3 \cdot 0$	3.010
$1 \cdot 1$	$1 \cdot 123$	$3 \cdot 1$	$3 \cdot 111$
1.2	1-170	$3 \cdot 2$	3.212
1.3	$1 \cdot 229$	$3 \cdot 3$	$3 \cdot 311$
1.4	1.298	$3 \cdot 4$	$3 \cdot 410$
1.5	$1 \cdot 378$	$3 \cdot 5$	$3 \cdot 509$
1.6	$1 \cdot 468$	$3 \cdot 6$	$3 \cdot 608$
1.7	1-566	$3 \cdot 7$	3.706
1.8	$1 \cdot 672$	$3 \cdot 8$	3.804
1.9	1.783	3.9	3.902
2.0	1.898	4.0	4.000
$2 \cdot 1$	2.015	-	-
For values above 4, $\frac{\mathbf{R}_{f}}{\mathbf{R}_{\mathrm{o}}}=\beta$			

Concentric Main with Solid Inner Conductor:

$$
\mathrm{R}_{\mathbf{t}}=\sqrt{\mu \rho f}\left(\frac{1}{a}+\frac{1}{b}\right) \text { per unit length }
$$

(Russell.)
where
a is the radius of the solid conductor,
b is the internal radius of the outer conductor.

High Frequency Resistance of Coils.-The skin effect in coils is a very much more complicated matter. The distribution of the current in the wire depends not only on the flux due to the wire itself, but is also considerably affected by the main coil flux.

The only case in which the skin effect is accurately determinable is that of a long singlo layer solenoid wound with wire of rectangular cross-section.
$\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{a}}}$ is then obtained from Table XVI. in terms of $\beta=2.803 \tau \sqrt{\frac{\mu f}{\rho}}$, τ in this case being the radial thickness of the wire; μ, f, and ρ are as before.

Spaced Windings.-If the ratio $\frac{\text { pitch of winding }}{\text { width of strip }}=\frac{D}{w}$ is greater than unity (i.e., a spaced winding), but is less than 3 , then β may be replaced by $\beta^{\prime}=\beta \sqrt{\frac{w}{\mathrm{D}}}$, where w is the axial width of the wire, and D is the pitch.

Circular Wire. An approximate solution for round wire may be obtaincd by the following method: First find $\mathrm{R}_{f^{\prime}} / \mathrm{R}_{\mathrm{o}}^{\prime}$ for a coil wound with square wire of side equal to the diameter of the round wire.

Then

$$
\frac{\mathrm{R}_{f}}{\mathrm{R}_{\mathrm{o}}}=1+0.59\left[\mathrm{R}_{\ell^{\prime}}^{\prime} / \mathrm{R}_{\mathrm{o}}^{\prime}-1\right] \text { approximntely } .
$$

This formula may be 10 per cent. or more in error.
Sommerfield has given the formula:
where

$$
\frac{\mathrm{R}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{o}}}=\sqrt{\frac{\pi \omega}{2 \rho}}\left\{1+0.276\left(\frac{2 \pi r}{\mathrm{D}}\right)^{2}\right\},
$$

$r=$ radius of wire,
$\omega=2 \pi f$,
$\mathrm{D}=$ pitch of winding.
Multilayer Coils.-Here the problem is wellnigh incalculable. The eddy current losses in the dielectric become of increasing importance, such losses being proportional to f^{3}.

Max Wien has given the following formulx, which, however, do not allow for dielectric loss:

1. If $\frac{b}{a}>16$:

$$
\frac{\mathrm{R}_{f}}{\mathrm{R}_{\circ}}=1+\frac{\pi^{4} r^{\theta} n^{2} \omega^{2}}{b^{2} \rho^{2}}\left\{1-\left(\frac{2 a}{b}\right)^{2}\right\}
$$

where
$a=$ radius of coil,
$b=$ length of coil,
$r=$ radius of wire,
$n=$ number of turns,
$\omega=2 \pi f$,
$\rho=$ specific resistance.
2. Flat coils:

$$
\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{o}}}=1+\frac{\pi^{4} r^{6} n^{2} \omega^{2}}{\rho^{2} \mathrm{D}_{1}^{2}}\left\{1+\frac{3 \mathrm{D}_{2}^{2}}{4 \mathrm{D}_{1}^{2}}\right\}^{2},
$$

where
$\mathrm{D}_{1}=$ outside diameter,
$\mathrm{D}_{2}=$ inside diameter,
the other symbols being as before.
Stranded Wire.- Where multilayer coils have to be employed, stranded wire may sometimes be employed with advantage. This consists of a cable made up of a large number of fine wires, all insulated and so stranded that each wire in turn comes to the outside of the conductor, and so carries its share of the current. The connections to a solid conductor must be made round the circumference, so that the wires collect the current, which is, of course, flowing only on the surface of the solid conductor.

Ordinary close stranding, howover, suffers from serious dielectric loss, and at high frequencies (low wave lengths) the solid conductor is better. The two are equal in the region of 1,000 to 2,000 metres. The most effective conductor is a hollow tube of loosely stranded basket weave, but this is too expensive for ordinary purposes.

Design of Inductance Coils.-As has previously been stated, the design of inductance coils for transmitting purposes involves the reduction of the resistance as far as possible. Professor Fortescue (Journ. I.E.E., vol. lxi., p. 933) has investigated the problem of the design of coils having a minimum ratio of R / L, based, however, on considerations of conductor resistance only. He shows that the ratio of R / L is inversely proportional to the diameter of the coil, but that the shape has little effect within fairly wide limits.

For stranded conductor the best number of strands is given as $n=0.27\binom{\rho \lambda}{\bar{d}_{1}^{3}}\binom{D_{1}}{\mathrm{KN}}$, and for solid conductor the best diameter is $d=0.286 \frac{\mathrm{KN}}{\mathrm{D}_{1}}$ centimetre for comparatively short wave lengths, such that d, when obtained, is $<10 \sqrt{\lambda . \rho}$,
where $\mathrm{D}_{1}=$ outside diameter of coil (cms.),
$d_{1}=$ diameter of single strand (cms .),
$\rho=$ specific resistance of conductor,
$\lambda=$ wave length in metres,
K is a constant, values of which are given in Table XVII. below.
With these values the average value of R / L for coils not too long or too deep is given by-

$$
\begin{aligned}
& \frac{2400}{\mathrm{D}_{1}} \cdot \frac{d_{1}}{\lambda} \text { for stranded conductor; } \\
& \frac{2000}{\mathrm{D}_{1}} \sqrt{\frac{\rho}{\lambda}} \text { for solid conductor. }
\end{aligned}
$$

These formula only apply providing the windings are adequately spaced, the space factor, defined as $\frac{\text { area of conductor (total) }}{\text { area of cross-section of coll }}$, being not >0.2, such a low value being necessary to avoid excessive dielectric losses and sparking between turns.

It is possible, therefore, to make a rough calculation to find tho approximate value of D_{1}, and hence to find the value of n or d above, and thence to design the coil to have the minimum resistance with the proper space factor.

Practical experience scems to indicate that the effective resistance of an inductance, allowing for dielectric loss, is about twice that due to conductor
resistanco only, if reasonable precautions aro taken to reduce such loss as far as possible. In the absence of definite data on the subject, the design of such coils must be largely a matter of practical experience. (Sec also p. 18.)

c / D_{1} :	Value of Winding Eictor K.					
	b / D_{1}.	$\cdot 5$. 75	$1 \cdot 0$	1.25	$1 \cdot 5$
- 0	.	.99	-68	. 52	-43	-37
$\cdot 1$	- .	. 77	-55	4.4	- 37	$\cdot 31$
- 2	- .	.65	-48	. 38	-32	$\cdot 27$
-3		. 57	- 42	-33	- 28	. 24
-4	- ..	. 52	-37	$\cdot 29$	24	21
$b=$ axinl length of coil, $c=$ radial depth of coil,						

Radio Frequency Measurements.

Tho chief measurements required at radio frequencies aro those of inductance, capacity, resistance, and frequency (wave length).

Inductance and Capacily.-The inductance of a coil may conveniently be measured at radio frequencies by connecting a condenser of known capacity in shunt and finding the wave length of the circuit. The inductance may then be obtained from the expression-

$$
\lambda=1884 \sqrt{ } \mathrm{LC},
$$

where

$$
\lambda=\text { wave length in metres }
$$

$$
\mathbf{L}_{2}=\text { inductance in microhenrics, }
$$

$$
\mathrm{C}=\text { capacity in microfarads. }
$$

If tho condenser is variable, the effective inductance may be determined at the actual wave length to be employed; while if a series of readinge are taken, the distributed capacity of the coil may bo determined by the method shown on p. 23.

Capacity measurements are usually mado by a substitution method since a standard capacity is a more commercial proposition than a standard inductance at radio frequencies. A coil is taken and tuned with the given condenser, the wave length being observed. A standard varinble condenser is then substituted for the unknown capacity, and the circuit is adjusted to the same ware length as before, when $\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\mathbf{x}}$.

Variations of these methods to suit parlicular conditions will readily suggest themselves.

Wave Length.-The measurement of wave length is accomplished by means of an accurately calibrated tuned circuit known as a wave meter. The construction of such instruments is relatively simple, the chief factor in the design being the avoidance of overhanging turns which may give rise to discontinuities in the calibration curve. Fig. 52 shows such a case in which the curvo obtained as the condenser is increased is different from that obtained as the condenser is reduced. This effect is due to the fact that the circuit behaves as a coupled circuit, and consequently tunes at two frequencies.

Wave meters may be of two types-radiating and detecting. In the first case a buzzer circuit is suitably coupled to the tuned circuit, so giving
riso to the radiation of damped wave trains which may be detected by the circuit under test. One form of circuit is that shown in Fig. 53, in which the buzzer is direct coupled to the tuned circuit. A second circuit is as shown in Fig. 54. Here the buzzer sets up oscillations in $L_{1} C_{1}$, which in turn set the circuit $\mathrm{L}_{2} \mathrm{C}_{2}$ oscillating. If C_{1} is made large (several microfarads), and L_{1} is composed of one or two turns only, then this circuit is

Fig. 52.-Discontinuity in Wave-Meter Calibration due to Overimanging Turns.
very rapidly damped, and the oscillations in $\mathrm{L}_{2} \mathrm{C}_{2}$ are simply the free oscillations in the circuit, and are independent of $\mathrm{L}_{1} \mathrm{C}_{1}$. This method, known as " impact excitntion," is thus very useful for accurate measurements in that the presence of the buzzer does not affect the wave length of the circuit.

In the second type of wave meter, n detecting circuit is placed in shunt across the condenser. This nffects both the tune and the decrement of the wave-meter circuit, which should therefore be calibrated with its approprinte detecting circuit in position. In particular, the crystal should be of

Fig. 54--Buzzer Wave-Meter Circuit arranged for Impact
Excitation.
a pattern having a rigid contact (such as carborundum) to avoid variations of decrement and tune due to variable resistance effects.

Fig. 55 shows several forms of detecting wave-meter circuits with their relative audibility, while Fig. 56 shows the effect on tuning and decrement for ropresentative examples of the circuits enumerated in Fig. 55. These data are taken from the Circular No. 74 of the Bureau of Standards, Washington.

Standard wave meters may be so designed that the inductance and capacity are accurately calculable or measurable, but it is more usual to build a reasonably accurate instrument and calibrate it from a standard

58

of frequency. One of the principal methods of producing a standard frequency is to design a valve generator which is very rich in harmonics. This generator is then arranged to oscillate at a fundamental frequency of 1,000 cycles, or some such figure, which is accurately controlled by a calibrated tuning-fork. The radio circuits are then tuned to a high harmonic

Fig. 55.-Some Detecting Wave-Meter Circuits witil their Relative Audibilities.
of this frequency-e.g., the hundredth harmonic will give a frequency of 100,000 cycles, which corresponds to 3,000 metres.

Such an arrangement is shown in Fig. 57. The principal portion of the circuit is the " multivibrator," due to Abraham and Bloch. Assume the anode current of one valve $i_{n 1}$ to increase. Then $v_{n_{1}}$ decreases, and with it $v_{\mathrm{g} 2}$, to which it is connected. This causes $i_{a 2}$ to decreaso; v_{az} increases, causing $v_{\mathrm{g} 1}$ to increase, so augmenting the increase of $i_{\mathrm{a}_{1}}$. There is thus a sudden rush of current till $i_{a 2}$ is zero, after which the charges on the grid condensers leak away, and a reverse current rush occurs. The result is n. series of current rushes in the valve circuits, giving a flat-topped wave very rich in harmonics.

The multivibrator frequency is controlled by varying the grid condensers, but this frequency is subject to slight variations. An accurately calibrated tuning-fork is therefore used to keep the frequency constant. The fork is

Fig. 56.-Effect on Wave Length and Decrement of the Addition of a Detecting Circuit to tife Simple Circuit in Fig. 55.
mounted with two coils up against the prongs. The vibration of the fork induces currents in the grid coil which causes augmented currents to flow in the anode coil, and the magnetic effect of these currents sustains the vibration of the fork. There is thus generated a constant (low) frequency, and if the multivibrator is tuned to the same frequency, the tuning-fork
circuits will control the current rushes, so maintaining the fundamental of the multivibrator absolutely constant.

Resistance.-The measurement of the radio-frequency resistance of a circuit is of considerable importance. The measurement of decrement is also in essence a measurement of resistance.

$$
\begin{array}{ll}
R=30.000 \text { ohms } & R_{1}-R_{z}=60,000 \text { ohms } \\
r_{1}=r_{2}=100,000 \text { ohms } & C_{1}-C_{2}=3000 \mu \mu F
\end{array}
$$

Fig. 57.-Circuit for Producing a Standard Frequency.
One simple method of obtaining R_{f} is known as the reactance variation method. A suitable indicating device is inserted in the circuit, and a source of undamped high-frequency E.M.F. is coupled to the inductance, as in

Pig. 58.-Resistance Variation Method.
Fig. 58. The circuit is tuned to resonance, and the current I noted. L or C is then varied, and a different current I_{1} is obtained.

Then

$$
R=X \sqrt{\frac{I_{1}^{2}}{\bar{I}^{2}-I_{1}^{2}}}
$$

where X is the reactance of the circuit under the mistuned condition. When the circuit is tuned X is, of course, zero.

If the reactance is varied by a change of the capacity C -

$$
\mathrm{R}=\frac{\mathrm{C} \sim \mathrm{C}_{1}}{\omega \mathrm{CC}_{1}} \sqrt{\frac{\mathrm{I}_{1}{ }^{2}}{\mathrm{I}^{2}-\mathrm{I}_{1}{ }^{2}} .}
$$

If L is varied-

$$
R=\omega\left(L \sim L_{2}\right) \sqrt{\frac{I_{1}^{2}}{I^{2}-I_{1}{ }^{2}}}
$$

These formulx are obtained on the assumption that the E.M.F. induced in the secondary circuit is the same in each case; hence the coupling must be kept weak. Due allowance must be made for the resistance of the measuring device, and any other extrancous resistance.

Precautions must also be taken to avoid stray capacity couplings, and it is advisable to earth the low potential side of the condenser.

A second method is that known as the resistance variation method. In this case the circuit is tuned to resonance, and the current I noted. A resistance R_{1} is then inserted, and the current I_{1} again observed.

If the R.M.F., as before, is undamped and the coupling is weak, so that the E.M.F. induced may be assumed equal in both cases, then-

$$
\mathrm{R}=\mathrm{R}_{1} \frac{\mathrm{I}_{1}}{\mathrm{I}-\mathrm{I}_{1}}
$$

The resistance employed must be of such a type that its resistance is substantially independent of frequency, and should therefore be made of straight Iengths of fine wires (see p. 52).

The method may be used with damped E.M.F.'s if desired. If the circuit is energised by impact excitation, free oscillations are set up.

The condition is then that the power dissipated in the circuit is the same in each case.

Hence

$$
I^{2} R=I_{1}{ }^{2}\left(R+R_{1}\right), \text { whence } R=R_{1} \frac{I_{1}{ }^{2}}{I^{2}-I_{1}^{2}}
$$

Fig. 59.-Cimcuit for Measuring H.F. Resistance by the Sunstitution Metiod.

If, however, the applied E.M.F. itself is damped, the problem becomes the same as that referred to on p. 73, and may be treated in the same way.

A third method, which can only be applied to a portion of a circuit, is that known as the substitution method. The circuit under consideration is coupled to a source of undamped E.M.F., and is tuned to the requisite frequency.

The portion of the circuit of which the resistance is required is then removed and replaced with a simple variabic resistance. The circuit is retuned, and the resistance adjusted to give the same current as before. This resistance is then equal to that of the portion of the circuit which was removed.

Retuning must be done by means of a condenser of negligible or known resistance.

A circuit for measuring the resistanca of a coil by this means is shown in Fig. ${ }^{5} 8$.

Current Measurement.-Radio-frequency instruments are all constructed on thermal principles, any other form possessing appreciable inductance and capacity, which is undesirable, and gives rise to variable errors depending on frequency.

For currents of $0 \cdot 1 \mathrm{up}$ to 10 amperes a simple hot wire ammeter may bo employed. The wire used must not change its resistance with frequency to any appreciable extent, and must therefore be designed in accordance with the table on p. 52.

Hot wire ammeters are very prone to zero shift. For accurate mensurements, therefore, the instrument should pass a certain current first. The current may then be cut off, and the zero adjusted, due allowance being made for the time taken by the wire to cool.

For larger currents, shunts must be employed. A simple shunt cannot be used, since the shunting effect is dependent on both R and $\omega \mathrm{L}$. Hence either R must be very much greater than L, or vice versa.

The first type of shunt consists of a series of fine wires arranged round the circumference of a disc. With such an arrangement all wires carry an equal current. Hence an ammetor inserted in one of the wires will read 1 n of the true current, n being the number of wires.

Fif. 60.-Indoctance Shunt.

Fio. 6l-Capacity Shunt.

On the other hand, inductance shunts of negligible resistance may be employed, as shown in Fig. 60. Then, provided the inductance and resistance of the ammeter are negligible compared with the radio-frequency reactances-

$$
\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{L}+\mathrm{M}}{\mathrm{M}} .
$$

Similarly, a capacity shunt may be employed as indicated in Fig. 61. In this case-

$$
\frac{I_{1}}{I_{2}}=\frac{C+C_{1}}{C_{1}} .
$$

Current Transformers.-A more usual method of measuring large currents is to use a current transformer, the arrangement being shown in Fig. 62. With such an instrument-

$$
\frac{I_{1}}{I_{2}}=\frac{L_{2}}{M}\left(1+\frac{R_{2}^{2}}{2 \omega^{2} L_{2}^{2}}\right)
$$

R_{2} being the resistance of the secondary circuit, including the ammeter, and is assumed small compared with $\omega \mathrm{L}_{2}$.
This applies only to undamped waves, or waves of decrement less than 003 or so.

Such instruments may be air cored or iron cored. In the former case the two windings may both be wound on a cylindrical former suitably spaced. In certain circumstances, however, it is desirable

Fig. 62.-Transformer Shunt. to employ an iron core. In such a case the secondary is toroidal in form, the primary consisting of a few turns of wire linking with it. Assuming that there is no magnetic leakage (which means that the inductance of the ammeter must be negligibly small), it can be shown that-

$$
\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{n_{2}}{n_{1}}\left(1+\frac{a \mathrm{R}_{2}}{\omega \mathrm{~L}_{2}}\right),
$$

a being a constant depending on the quality of the iron employed (usually slightly less than unity). Since L_{2} is now very large, this correction term is practically negligible, being of the order of 02 per cent. at radio frequencies.

Some forms of current transformer are shown in Fig. 63.

líg. 63.-Some Forms of Radio-Frequency Current Transformer.
Measurement of Very Small Currents.-For small currents a thermocouple may be employed. This is a device in which the heat generated by the passage of the current effects a junction of two dissimilar metals, and an E.M.F. is set up which can be detected with a sensitive galvanometer. Such a device

Fia. 64.-Vacuo-Jenction Thermocouple.
is shown in Fig. 64. The sensitivity depends on the air pressure, so that it is usual to mount these couples in a glass bulb from which the air is exhausted. A reduction of pressure to 0.01 mm . mercury will increase the sensitivity by about twenty-five times. This is due to the reduction of convection
of heat away from the heater wire. Currents as low as 0.1 milliampere may be measured by employing a suitable couple.

If T (${ }^{\circ} \mathrm{C}$.) is the temperature rise at the junction, the E.M.F. $(\mu \mathrm{V})$ produced is given approximately by the equations below :

$$
\begin{array}{lll}
\text { Copper-constantan } & \because & \log _{10} \\
\text { Platinum-plat. } & \mathrm{E}=1 \cdot 14 \log _{10} \mathrm{~T}+1.34 . \\
\text { Platinum (10 per cent.) } & \because & \log _{10} \mathrm{E}=1 \cdot 10 \log _{10} \mathrm{~T}+0.89 .
\end{array}
$$

Austin has devised a couple of the self-heated type, using tellurium and platinum. The radio-frequency current, in passing through this junction, sets up an E.M.F., which is measured with a galvanometer. The impedance of the galvanometer prevents any high-frequency current from passing through it. This couple is said to be very sensitive.

A bridge method of measuring small currents employs a device known as a "bolometer." This consists of a simple Wheatstone hridge, as shown in Fig. 65, in one of the arms of which is a short length of fine wire.

The radio-frequency current is passed through this strip and heats it up, so causing a change in resistance, which throws the bridge out of balance.

Choke coils are provided to confine the AC to the bolometer wire, and a similar wire is inserted in the adjacent arm to balance the effect of the DC current flowing in the bridge.

Voltage Measurements.- Medium and high voltages are usually measured by means of an electrostatic voltmeter of any convenient pattern.
A very useful device for small voltages is the Moullin voltmeter, which consists essentially of a rectifying valve. The applied E.M.F. produces a change of anode current, which, under suitable conditions (such as constancy of filament and anode voltages), is proportional to the voltage applied.

Two types of instrument are made, one employing anode rectification, which can only be used with continuous circuits (e.g., it could not be used to obtain the voltage across one of two condensers in series), while the other, employing cumulative grid rectification, is somewhat less sensitive, but may be used for any type of circuit. The first type will read to 0.02 volt, while the second will read from 0.5 volt to 10 volts.

TUNING AND RADIATION.

Radio communication is very largely concerned with the questions of tuning and resonance. These problems fall into two classes:
(a) Transient phonomena.
(b) Steady state phenomena.

Owing to the increasing use of C.W., many circuit problems are considerably simplified as they fall into class (b). The transient phenomena, however, maintain their importance, and are considered below.

Laws of Oscillatory Circuits.-Consider a condenser Charged to a voltage E, and then discharged through an inductance and resistance in acries. The differential equation to the discharge is-

$$
\mathrm{L} \frac{d^{2} q}{d t^{2}}+\mathrm{R} \frac{d q}{d t}+\frac{q}{\mathrm{C}}=0, \text { where } q=\text { charge on condenser. }
$$

The solution of this equation is-

$$
i=\frac{\mathrm{E}}{2 \beta \mathrm{~L}} \varepsilon^{-\alpha t}\left(\varepsilon^{\beta t}-\varepsilon^{-\beta t}\right)
$$

where $\alpha=\mathrm{R} / 2 \mathrm{~L}$ and $\beta=\sqrt{\alpha^{2}-\frac{1}{\mathrm{LC}}}$
There are three possible conditions:

1. $a^{2}>\frac{1}{\mathrm{LC}}$.

Then

$$
i=-\frac{\mathrm{E}}{\beta \mathrm{~L}} \varepsilon^{-a t} \sinh \beta t
$$

This is known as Ω " non-oscillatory " discharge. The current rises to a maximum and falls away again to zero, as indicated in Fig. 66 (a).

Fig. 66.-Types of Disciarge.
2. $a^{2}=\frac{1}{\mathrm{LC}}$

$$
i=-\frac{\mathbf{E} t}{\mathbf{L}} \varepsilon^{-a t}
$$

This is the case known as " critical damping." The discharge in this case is still unidirectional, but dies away more rapidly [Fig. $6 G(b)$].

$$
\text { 3. } \alpha^{2}<\frac{1}{\mathbf{L} \dot{C}^{.}} \quad i=-\frac{\mathrm{E}}{\omega \overline{\mathrm{~L}}} \varepsilon^{-a t} \sin \omega t
$$

where

$$
\omega=j \beta \sqrt{\frac{\mathrm{~L}}{\mathrm{LC}}-\alpha^{2}}
$$

This is the oscillatory condition, each successive oscillation being smaller than the preceding one owing to the losses in the circuit. The term ε at indicates this gradual decrease or "damping." Fig. 66 (c) shows the form of the current in this case.

Translating these formulis into terms of the actual constants of the circuit, we have-

Non-Oscillatory Discharge:

$$
\mathrm{R}^{2}>4 \mathrm{~L} / \mathrm{C} ;
$$

$$
\text { Current: } i=\frac{\mathrm{E}}{\beta \overline{\mathrm{~L}}} \varepsilon \varepsilon^{-\frac{\mathrm{R}}{2 \mathrm{~L}}{ }^{t} \sinh \beta \ell \text {, }, \text {, }}
$$

Condenser voltage: $\left.v=\frac{\mathrm{E}}{2 \beta} \varepsilon^{-\frac{\mathrm{R}}{2 \mathrm{~L}}{ }^{t}\{(\beta+\alpha) \varepsilon} \varepsilon^{\beta l}+(\beta-\alpha) \varepsilon^{-\beta t}\right\}$.
Dead-Beat Discharge (Critical Damping):

$$
\begin{aligned}
\mathrm{R}^{2} & =4 \mathrm{~L} / \mathrm{C} ; \\
i & =\frac{\mathrm{E}}{\mathrm{~L}} t \varepsilon \varepsilon^{-\frac{\mathrm{R}}{2 \mathrm{~L}} t} \\
v & =-\mathrm{E} \varepsilon^{-\frac{\mathrm{R}}{2 \mathrm{~L}} t}\left(1+\frac{t}{\sqrt{\mathrm{~L}} \overline{\mathrm{C}}}\right) .
\end{aligned}
$$

The maximum current occurs when $t=2 \mathrm{~L} / \mathrm{R}=\sqrt{\mathrm{LC}}$.
Oscillatory Discharge :

$$
\begin{aligned}
& \mathrm{R}^{2}<4 \mathrm{~L} / \mathrm{C} ; \\
& i=\frac{\mathrm{E}}{\omega \mathrm{~L}} \varepsilon^{-\frac{\mathrm{R}}{2 \mathrm{~L}} t} \sin \omega t \\
& v=-\mathrm{E} \varepsilon^{-\frac{\mathrm{R}}{2 \overline{\mathrm{~L}}} t} \sin \left(\omega t+\begin{array}{c}
\omega \\
a
\end{array}\right) .
\end{aligned}
$$

The frequency of the oscillations is-

$$
f=\frac{\omega}{2 \pi}=2 \pi \sqrt{\sqrt{\mathrm{LC}-\frac{\mathrm{R}^{2}}{4 \mathrm{~K}^{2}}} .}
$$

This frequency is the natural frequency of the circuit. It differs slightly from the resonant frequency (see p. (i7) owing to the resistance of the circuit, which is responsible for the term $\frac{\mathrm{R}^{2}}{4 \overline{\mathrm{~L}}^{2}}$. In all practical circuits, however, the resistance is small, so that this difference is hardly appreciable.
The term $\alpha=\mathrm{R} / 2 \mathrm{~L}$ is termed the damping factor or decay coefficient of the oscillation. This quantity is referred to later (p. 73).
III.

Effect of Condenser Leakage. -If the condenser has a leakage $g=\frac{1}{r}$, where r is the insulation resistance, the equations are slightly modified.

$$
\begin{aligned}
& \alpha=\frac{\mathrm{R}}{2 \mathrm{~L}}+\frac{g}{2 \mathrm{C}} \\
& \beta=\sqrt{\frac{1}{4}\left(\frac{\mathrm{R}}{\mathrm{~L}}-\frac{g}{\mathrm{C}}\right)^{2}-\frac{1}{\mathrm{LC}}}
\end{aligned}
$$

The effect, therefore, is to incrense the damping, but tho permissible resistance for oscillations is greater, the condition being-

$$
\left(\frac{\mathrm{R}}{2 \mathrm{~L}}-\frac{g}{2 \mathrm{C}}\right)<\frac{1}{\sqrt{\mathrm{LC}}}
$$

It is interesting to note that if $\mathrm{R} / \mathrm{L}=g / \mathrm{C}$, then the natural frequency and the resonant frequency are equal.

Forced Oscillations.- If instead of charging the condenser to a given value and permitting it to discharge, an alternating E.M.F. is introduced into the circuit, the differential equation becomes-

$$
\mathrm{L} \frac{d^{2} q}{d t^{2}}+\mathrm{R} \frac{d q}{d t}+\frac{q}{\mathrm{C}}=\mathrm{E} \varepsilon^{-m t} \sin (p t+\varphi)
$$

The solution of this is-
where

$$
\begin{aligned}
i & =\frac{\mathrm{E}}{\mathrm{Q}}\left[\varepsilon^{-m t} \sin (p t+\varphi-\theta)-\mathrm{P} \varepsilon-\alpha t \cos (\omega t-\psi)\right] \\
\mathrm{P} & =\frac{\sqrt{p^{2}+\mathrm{Q} \sin \varphi \sin (\varphi-\theta)}}{\omega} \\
\mathrm{Q} & =\sqrt{\left[(\alpha-m)^{2}+\omega^{2}-p^{2}\right]^{2}+4(a-m)^{2} p^{2}} \\
\tan 0 & =\frac{2(\alpha-m) p}{(\alpha-m)^{2}+\omega^{2}-p^{2}} \\
\tan \psi & =\frac{p \cot (\varphi-\theta)+\alpha-m}{\omega}, \\
\alpha & =\text { decay coofficient } \quad \begin{aligned}
& \\
& \omega=2 \pi \times \text { frequency free oscillation as determined by }
\end{aligned} \quad \text { the lavs already given. }
\end{aligned}
$$

The first term in the solution is the forced oscillation, the second term boing the free oscillation. Under normal circumstances the second term dies away very rapidly. If the circuil is adjusted, however, so that the frequency of the free oscillation is the same as that of the forced, the expression reduces to the form:

$$
i=\frac{\mathbf{E}}{\mathrm{Z}} \varepsilon-(m+\alpha) t \sin (\omega t-\gamma)
$$

Tuning and Resonance.

Consider now the steady state conditions.
In any circuit containing L, C, and R, the impedance is given by $\sqrt{ }\left(\mathrm{X}^{2}+\mathrm{R}^{2}\right)$. Under suitable conditions it is possible to adjust the values of L and C so that the reactance $X=0$. This condition is called resonance, and when such a condition obtains the current in the circuit is a maximum, and is in phase with the applied E.M.F.

Series Resonance.-In the ense of a simple circuit containing L, C, and R in series (Fig. 67), the reactance is given by $\mathrm{X}=\left(\mathrm{L} \omega-1 \begin{array}{c}1 \\ \mathrm{C} \omega\end{array}\right)$.
The condition for resonance is thus that $\mathrm{L} \omega=\frac{1}{\mathrm{C} \omega}$; in other words, $\omega^{2} L C=1$. This corresponds to a frequency $f=\frac{1}{2 \pi \sqrt{L C}}$, which is the same as the natural frequency of the circuit, neglecting the effect of resistance. When the constants of a circuit are so adjusted that the natural frequency of the circuit is the same as that of the applied E.M.F., the circuit is said to be "tuned" to the particular frequency. In all" ordinary work the difference between the natural frequency and the resonant frequency is so small that the tuning calculations are all based in the resonant frequency,

Fig. 67.-Series Resonant Circuit.

Fig. 68-Parallel Resonant Circuit.
and the data which follow refer to the tuning properties of various classes of circuits deduced from the consideration of their resonant frequencies.
Parallel Resonance.-This is a very common case in practice, and is illustrated in Fig. 68. The impedance is given by-

$$
\mathrm{Z}=\frac{1}{\sqrt{\left(\omega \mathrm{C}-\frac{\omega \mathrm{L}}{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}}\right)^{2}+\left(\frac{\mathrm{R}}{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}}\right)^{2}}}
$$

The condition for resonance is that-

$$
\omega \mathrm{C}=\frac{\omega \mathrm{L}}{\mathrm{I}^{2}+\omega^{2} \mathrm{~L}^{2}}
$$

This corresponds to a minimum current round the whole circuit, but a maximum current circulating in the portion LC.

This circuit is therefore substantially different from the series circuit.
When this resonant condition obtains, the current is in phase with the voltage, and is given by $I_{r}=\frac{E R}{R^{2}+\omega^{2} L^{2}}$.

The frequency at which resonance occurs depends on the resistance in both the inductive and capacitative arms of the combination, and may be obtained from-

If Rc is small, as is usually the case-

$$
\omega=\sqrt{ }^{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}_{\mathrm{L}}^{2}}{\mathrm{~L}^{2}},}
$$

and if the total resistance in the circuit is negligible-

$$
\omega=\sqrt{\frac{1}{\mathrm{LC}}}
$$

which is the same as for series resonance.
The frequency, howover, under normal conditions does depend to a small extent on the resistance in the circuit, whereas with a series circuit it is independent of R. This should not be confused with the natural frequency, which is the same for both series and parallel connections.
lig. 69 gives the vector diagram for a parallel circuit.
General Case of Parallel Resonance. -The circuit shown in Fig. 70 is the general case of a parallel resonant circuit in series with a simple series circuit.

Fig. 69--Vector Diagram of Parallel Circuit.

Fig. 70-General Case or Parallel Resonance.

Here, if X is the reactance of $L_{X} C_{x}$, and P is the reactance of the parallel combination, then when the circuit as a whole is tuned to the incoming frequency, $X+P=0$.

If it is desired to eliminate some other frequency, then the parallel combination must be so adjusted that $\mathrm{Y}+\mathrm{Z}=0$ for this frequency, where Y and Z are the impedances of the two arms of the parallel combination rospectively.

The desired result is accomplished by tuning $\mathrm{L}_{X} \mathrm{C}_{\mathbf{x}}$ and $\mathrm{L}_{Y} \mathrm{C}_{\mathbf{Y}}$ to the accopted frequency. The impedance of the circuit is then $R_{x}+R_{y}$, the latter term being simall in comparison with the impedance of $\mathrm{L}_{\mathrm{z}} \mathrm{C}_{z}$. At the undesired frequency, however, $\mathrm{L}_{\mathbf{z}} \mathrm{C}_{\mathbf{z}}$ is so adjusted that $\mathrm{Y}+\mathrm{Z}=0$. Under these conditions-

$$
\begin{aligned}
& R_{p}=\frac{Z^{2}}{R_{y}+R_{z}} \\
& X_{p}=\frac{\left(R_{y}-R_{z}\right) Z}{R_{y}+R_{z}}
\end{aligned}
$$

R_{p} and X_{p} being the resistance and reactance of the complete parallel combination. It should bo noted that it is actually the resistance which is high, and not the reactance, which is zero if $\mathrm{R}_{\mathrm{y}}=\mathrm{R}_{\mathrm{z}}$.

The suppressed frequency is obtained from-
which is independent of $L_{\mathbf{x}} \mathrm{C}_{\mathbf{x}}$.

$$
\omega_{z}{ }^{2}=\frac{C_{y}+C_{z}}{C_{y} C_{z}\left(L_{y}+L_{z}\right)},
$$

Parallel circuits'havo some peculiar proporties. If the circuit $\mathrm{LC}_{1} \mathrm{C}_{\mathbf{2}}$ is in resonance (Fig. 71), then the impedance neross the points $A B$ is puroly resistive. If the E.M.F. is supplied across any other two points on the circuit, however, the circuit remains in rosonance. That is to say, Z_{CB}, Z_{BD}, and Z_{CD} are all purely resistive.

The fact that the effective inductance and resistance of a coil depend upon the frequency of the current flowing through the coil has already been referred to (p. 21).

Tho following formula will probably be useful: If f is the resonant frequency of the coil and condenser combination, and f^{\prime} is the frequency at which the circuit is being run-

$$
\begin{aligned}
\mathrm{R}_{\mathrm{et}} & =\frac{\mathrm{R}}{m^{2} \mathrm{R}^{2} \mathrm{C}}+\left(m^{2}-1\right)^{2} \\
\mathrm{~L}_{\mathrm{eff}} & =\mathrm{L} \frac{\mathrm{R}^{2} \mathrm{C}^{\prime}}{m^{2} \mathrm{R}^{2} \mathrm{C}^{\mathrm{C}}+\left(m^{2}-1\right)^{2}}+\left(m^{2}-1\right)^{2} \\
m & =f^{\prime} .
\end{aligned}
$$

Note that at resonance $\mathrm{R}_{\mathrm{cr}}=\frac{\mathrm{L}}{\mathrm{CR}}$.
Another peculiar property of parallel circuits is that if $R_{L}=R_{C}=\sqrt{\frac{L}{C}}$, the reactance of the circuit is zero for all frequencies, and $R=R_{L}$.

Fig. 71.-Parallel Circuit.

Fig. 72.-Resonance Curves for Simple Series Circuit.

Resonance Curves.-If the current in a circuit is obtained over a steadily increasing range of frequencies, including the resonant frequency, a curve may be plotted showing the variation of current with frequency. Such a curve is called a resonance curve, and the representative curves for series and parallel cireuits are given in Figs. 72 and 7?. (See also p. 160.)

These curves illustrate the necessity for keeping the resistance low if sharp resonanco is required, particularly in tho case of parallel resonance.

Reactance Diagrams. -The tuning point or points of a circuit may be obtained by splitting the impedance into its reactive and resistive components in the usual manner. The condition for resonance is then that the

Fia. 73.-Resonance Curves for Simple Paratlel Circoit.
reactive component shall vanish. In this connection the use of the symbol j is extremely useful, since it facilitates the soparation of the real (resistive) and imaginary (reactive) components.

Where the resistance of the circuit is small, however, the investigation of the properties of any particular circuit may be considerably simplified by the use of reactance diagrams. This method, which is very ably denlt with in the Circular No. 74 of the Bureau of Standards, Washington (Radio Instruments and Measurements), consists in splitting the circuit up into several portions. the reactances of which are known. By drawing a curvo

Fig. 74.-Reactange Diagram for Simple Semes Circuit.
of the variation of reactance with frequency for each of the several portions and adding them together, the reactance of the whole circuit may readily be obtained.

Fig. 74 shows the reactance diagram drawn out for a simple series circuit. The reactance of the inductance is $\omega \mathrm{L}$, and is represented by the straight
line rising in value as the frequency increases. The reactance of the condenser is $\frac{1}{\omega \mathrm{C}}$, and is represented by one branch of a hyperbola. The total reactance of the combination is the sum of these two curves. It will be observed that this curve crosses the zero line at one point. This is a tuning point, since the reactance is zero, and it can readily be seen from the figure that at this point $\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$.

Fig 75 shows the reactance diagram for a simple parallel circuit. In this case it is not the reactances of the component parts which have to be added

Fig. 75.-Reactance Diagramfor Simple Parallel Circuit.
together, since the components are in parallel. The susceptances, therofore, are obtained, the susceptance being the reciprocal of the reactance.
The primary curves ploted are thus $\omega \mathrm{C}$ and $\frac{1}{\omega \mathrm{~L}}$, and the total susceptance of the circuit is the sum of these two, and is plotted in the chain dotted line. The full line is the reciprocal of the total susceptance, and thus is the total renctance of the circuit.

lig. 76.-Simple Rejector Circuit'.

Fiu. 77.-Rehctance Diagram fok Circuit shown in lía. 76.

Any form of circuit, no matter how complex, may be treated in a similar manner, provided the resistance is negligible. For example, consider the case shown in Figs. 76 and 77, which comprises a condenser in series with

72

parallel LC combination. X^{\prime} is the reactance of the parallel combination. The dotted line is the reactance of the condenser C_{1} and the full line is the sum of the two, and gives the total reactance of the circuit.

Fig. 78.-Smple Form of Couplen Circuit.
This circuit has a tuning point at A, and an infinito impedance point at B. This property is often useful when it is desired to tune to one frequency and eliminate some other frequency near to the first. By proper design the points A and 13 may be obtained at any desired frequencies. It should bo remembered, however, that the impedance at B is only infinite when $R=0$.

Fig. 79- Reactance Diagram for Circuit shown in Fig. 78.
As a further example, the circuit shown in Fig. 78 may be considered. X^{\prime} is the reactance of the combination of L and C^{\prime} in series combined with M in parallel.
$\frac{1}{\omega C_{1}}$ is the reactance of C_{1}, and the full line is the reactance of the whole combination. This circuit has two tuning points and one infinite point. It is in reality a species of coupled circuit which accounts for the two frequencies (see p. 74).

Damping and Decrement.

The damping of a circuit controls the decay of current with a free oscillation, and also affects the growth or decay of current wherever transient conditions are brought into play.

This factor is measured in terms of the "decrement" of the oscillation, which is the ratio of the peak value of one oscillation to the peak value of the preceding oscillation.

From the equation to a frec oscillation it follows that this ratio $=\varepsilon^{2} \mathrm{~L}^{\mathrm{R}} \mathrm{F}$.
where T is the time of one oscillation $=\mathrm{I} / f$.
It is more convenient to work with the logarithm of this quantity, which is known as the "logarithmic decrement":

$$
\delta=\frac{\mathrm{I}}{2 f \mathrm{~L}}=\pi \frac{\mathrm{R}}{\omega \mathrm{~L}}=\pi \mathrm{R} \omega \mathrm{C}=\pi \mathrm{R} \sqrt{\overline{\mathrm{C}}} .
$$

The importance of this quantity in radio circuits is considerable. In spark transmitters it is obviously desirable to reduce the decrement as far as possible, in order to radiate as much energy as possible. In C.W. transmitters the question of decrement becomes merged into the simple considerations of the resistance of the circuit. It is important, however, in high speed and telephonic working, since the decrement not only controls the decay of the current, but the building up as well.

These points are referred to in detail on pp. 160, 203, and 212 .
Measurement of Decrement.- This really consists in measuring the resistance and finding the decrement from one of the formulx already given.

Provided a continuous oscillation is employed for the measurement, this method is quite accurate. Any convenient method of finding the resistance may be employed (see p. 59).

It is sometimes desired to find the decrement of one of a system of two circuits, one of which is radiating damped waves, and the other is tuned to the same frequency. Here hoth forced and free oscillations exist, having the same frequencies but different decrements. Bjerknes has shown that at resonance-

$$
\mathrm{I}^{2}=\frac{\mathrm{NE}_{0}^{2}}{16 \mathrm{~L}^{2} \alpha \alpha^{\prime}\left(\alpha+\alpha^{\prime}\right)^{\prime}}
$$

where $\quad E_{0}=$ maximum value of impressed E.M.F.,
$\alpha=$ damping exponent of impressed E.M.F..
$a^{\prime}=$ damping exponent of receiving circuit,
$\mathrm{N}=$ number of wave trains per second.
This formula only applies when the coupling between the circuits is very weak. The two circuits, if desired, may be a transmitting and receiving station.

A resistance R is then added, and the decrement of the receiving circuit is thus increased to a^{*}.

Then

$$
\mathrm{I}_{1}^{2}=\frac{\mathrm{NE}_{0}^{2}}{16 \mathrm{~L}^{2} \alpha \alpha^{\circ}\left(\alpha+\alpha^{\circ}\right)^{\circ}}
$$

Rewriting the expression in terms of decrements, letting δ and δ^{\prime} bo the initial decrements of the transmitting and recciving circuits respectively, and δ_{1} the rdded decrement due to R (so that $\delta_{1}+\delta^{\prime}=\delta^{\prime \prime}$), then it may be shown that-

$$
\frac{\mathrm{I}^{2}}{\mathrm{I}_{1}^{2}}=\frac{\delta^{\prime \prime}\left(\delta+\delta^{\prime \prime}\right)}{\delta^{\prime}\left(\delta+\delta^{\prime}\right)}=\frac{\left(\delta^{\prime}+\delta_{1}\right)\left(\delta+\delta^{\prime}+\delta_{1}\right)}{\delta^{\prime}\left(\delta+\delta^{\prime}\right)}
$$

This can be solved if either δ or $\delta^{\prime \prime}$ is known. If not, the problem is complex, but the application is so limited that the solution is not giren here.

Decremeter. - When measuring decrement by the reactance variation method, an instrument known as a decremeter is sometimes employed.

This is simply a suitably calibrated condenser, the plates of which are so designed that the percentage change of capacity for a given scale reading is the same throughout the whole range of the instrument. Hence the value of $\frac{\mathrm{C} \mathrm{CC}_{1}}{\mathrm{CC}_{1}}$ may be read off directly. (See p. 32.)

Coupled Circuits.

It is frequently necessary in radio engineering practice to transfer the energy from one circuit to another. This may be accomplished by coupling together two suitable portions of the circuits either electromagnetically or electrostatically. The laws governing the use of such coupled circuits are of considerable importance. There are two types of coupled circuit to be considered:
(a) Two oscillatory circuits coupled together, one of which is set oscillating, the energy being transferred via the coupling to the secondary circuit. The oscillations in this case aro frec.
(b) Two circuits coupled together, in one of which there is a steady source of alternating E.M.F. The oscillations in this case are forced.

It is found that the two circuits interact, one upon the other, producing a complex tuning system. In order to gauge the extent of this interaction it is necessary to be rble to define the degree of coupling between the two circuits. This is measured in terms of a "coupling factor"-

$$
k=\frac{\mathbf{X}_{\mathrm{m}}}{\sqrt{\mathbf{X}_{1} \mathbf{X}_{2}}}
$$

where $\quad X_{m}=$ mutual or common reactance,
X_{1} and X_{2} are the total similar reactances in the primary and secondary circuits respectively.
The laws of these circuits will now be considered, the case of the free oscillations being considered first.

Fig. 80.-Magnetic Coupling.
(a) Coupled Circuits with Free Oscillations-Magnetic Coupling.-In the case shown in Fig. 80, the coupling is magnetic, and-

$$
t=\frac{\mathrm{M}}{\sqrt{\mathrm{~L}_{1} \mathrm{~L}_{2}}}
$$

The effect of one circuit on the other will be apprecinted from the following considerations: Let the two circuits be oscillating and each carrying a unit current.

The flux in the coil L_{1} is in two portions, one due to itself and the other due to the effect of the other coil. If the two currents in the primary and secondary respectively are in phase, these two fluxes are additive, while if the currents are 180° out of phase the fluxes are in opposition.

For any other phase relationships the total flux linked with the primary coil lies between these two extreme values.

Hence the effective inductance of the primary coil variea between $L_{1}+M$ and $L_{1}-M$. Obviously, therefore, the natural frequency of the primary circuit will bo affected, since this is defined by $f=\frac{1}{2 \pi \sqrt{L_{e n} C_{1}}}$.

In practice it is found that two frequencies are set $u p$ in the circuit, one corresponding to an effective inductance $L+M$ and the other to $L-M$. These two frequencies beat with each other in the usual manner, the net result being a frequency $\frac{1}{2}\left(f_{1}+f_{2}\right)$, modulated by a frequency $\frac{1}{d}\left(f_{1}-f_{2}\right)$.

The current in the secondary is of the same form, and Fig. 81 shows the two currents. It will bo observed that the current envelopes are 90° out of

Fig. 8l.-Illustilatino Beatino of Currents in Tigutly Coupled Circuits.
phase. Hence the physical explanation of the effect is that the energy is transforred from one circuit to the other, and then back ngain, the operation continuing until all the energy in the two circuits has been dissipated.

The effect is not marked as long as the coupling is kopt small, the transfer of energy then being too slow for any appreciable surging to take place.

The effect may be investigated mathematically, the values of the frequencies set up being obtainable in terms of the constanta of the circuit. The problem is complex unless the resistance is neglected, which is genorally justifiable.

In this case-

$$
\begin{aligned}
\mathbf{E}_{1} & =\left(\omega \mathrm{L}_{1}-\frac{1}{\omega \mathrm{C}_{1}}\right) \mathrm{I}_{1}+\mathrm{M} \mathrm{\omega}_{2}, \\
\mathrm{M} \omega \mathrm{I}_{1} & =\left(\omega \mathrm{L}_{2}-\frac{1}{\omega \mathrm{C}_{2}}\right) \mathrm{I}_{2}, \\
\therefore \mathrm{E}_{1} & =\left(\omega \mathrm{L}_{1}-\frac{1}{\omega \mathrm{C}_{1}}\right)+\frac{\omega^{2} \mathrm{M}^{2}}{\omega \mathrm{~L}_{2}-\frac{1}{\omega \mathrm{C}_{2}}} .
\end{aligned}
$$

The tuning points occur when the reactance is zero. Hence, rewriting we have-

$$
\begin{aligned}
& \left(\omega \mathrm{L}_{1}-\frac{1}{\omega \mathrm{C}_{1}}\right)\left(\omega \mathrm{L}_{2}-\frac{1}{\omega \mathrm{C}_{2}}\right)+\omega^{2} \mathrm{M}^{2}=0 ; \\
\therefore & \omega^{4}\left(\mathrm{~L}_{1} \mathrm{~L}_{2}+\mathrm{M}^{2}\right)-\omega^{2}\left(\frac{L_{2}}{\mathrm{C}_{1}}+\frac{\mathrm{L}_{1}}{\mathrm{C}_{2}}\right)+\frac{1}{\mathrm{C}_{1} \mathrm{C}_{2}}=0
\end{aligned}
$$

This is a quadratic in ω, the roots of which aro rather complex if expressed explicitly. They may more readily be obtained, however, in terms of-

$$
\omega_{1}=\frac{1}{\sqrt{\mathrm{~L}_{1} \mathrm{C}_{1}}}, \quad \omega_{2}=\frac{1}{\sqrt{\mathrm{~L}_{2} \mathrm{C}_{2}}}, \quad \text { nnd } k=\frac{\mathrm{M}}{\sqrt{\mathrm{~L}_{1} \mathrm{~L}_{2}}}
$$

Then ω is given by-

$$
\omega=\sqrt{\frac{\omega_{1}{ }^{2}+\omega_{2}{ }^{2} \pm \sqrt{\left(\omega_{1}{ }^{2}-\omega_{2}{ }^{2}\right)^{2}+4 k^{2}} \omega_{1}{ }^{2} \omega_{2}{ }^{2}}{2\left(1-k^{2}\right)} .}
$$

When $\omega_{1}=\omega_{2}$, as is usually the case-

$$
\omega=\frac{\omega_{1}}{\sqrt{1 \pm k}} .
$$

As k approaches 0 , it will be seen that ω approaches ω_{1}; while as k approaches 1 , one of the values of ω approaches $\frac{\omega_{1}}{\sqrt{2}}$, and the other approaches infinity.

A further interesting case arises when $\omega_{1}=\omega_{2}$, and $L_{1}=L_{2}$. Then-

$$
\begin{aligned}
& \omega^{\prime}=\frac{1}{\sqrt{\left(\mathrm{~L}_{1}+2 \mathrm{M}\right) \mathrm{C}_{1}}} \\
& \omega^{a}=\frac{1}{\sqrt{\mathrm{~L}_{1} \mathrm{C}_{1}}}, \text { which is independent of } \mathrm{M} .
\end{aligned}
$$

Fig. 82.-Direct Coupling.

Fig. 83.-Capacity Coupling.

Direct Coupling.-In Fig. 82 a circuit is shown having a portion of the inductance common to both primary and secondary. This is termed direct coupling. It may be treated in exactly the same manner as magnetio coupling, putting-
whence

$$
\begin{gathered}
\mathrm{L}_{1}=\mathrm{L}_{\mathrm{m}}+\mathrm{L}_{\mathrm{a}}, \\
\mathrm{~L}_{\mathrm{s}}=\mathrm{L}_{\mathrm{m}}+\mathrm{L}_{\mathrm{b}}, \\
\mathrm{M}=\mathrm{L}_{\mathrm{m}}, \\
k=\frac{\mathrm{L}_{\mathrm{m}}}{\left.\sqrt{\left(\mathrm{~L}_{\mathrm{m}}+\mathrm{L}_{\mathrm{n}}\right)\left(\mathrm{L}_{\mathrm{m}}+\mathrm{L}_{\mathrm{b}}\right)}\right)}
\end{gathered}
$$

Electrostatic Coupling.-Fig. 83 shows one form of capacity coupling, in which part of the capacity is common to both circuits. By obtaining the equation to the primary impedance, and equating this to zero, as with the case of inductive coupling, a similar expression may be obtained for ω i.e., if -

$$
\omega_{1}=\sqrt{ } \frac{\overline{\mathrm{C}_{\mathrm{a}}+\mathrm{C}_{\mathrm{m}}}}{\overline{\mathrm{~L}}_{1} \mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{m}}}, \quad \omega_{2}=\sqrt{\frac{\mathrm{C}_{\mathrm{b}}+\mathrm{C}_{\mathrm{m}}}{\mathrm{~L}_{2} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{m}}}, \quad k=\sqrt{\left(\frac{\mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}}{\left(\mathrm{C}_{\mathrm{a}}+\mathrm{C}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{b}}+\mathrm{C}_{\mathrm{m}}\right)}\right.}, ~}
$$

then

$$
\omega=\sqrt{\frac{\omega_{1}^{2}+\omega_{2}^{2} \pm \sqrt{\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2}+4 k^{2} \omega_{1}^{2} \omega_{2}^{2}}}{2}}
$$

When

$$
\omega_{1}=\omega_{2}, \quad \omega=\omega_{1} \sqrt{1 \pm k}
$$

As k appronches $0, \omega$ approaches ω_{1}; while as k approaches 1 (i.e., when C_{m} is small), the values of ω are $\sqrt{2} \omega_{1}$ and 0 .

If $\omega_{1}=\omega_{2}$, and $L_{1}=L_{2}$, then-

$$
\begin{aligned}
& \omega^{\prime}=\sqrt{\frac{2 \mathrm{C}_{\mathrm{a}}+\mathrm{C}_{m}}{\mathrm{~L}_{\mathbf{1}} \mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{m}}}} \\
& \omega^{*}=\sqrt{\frac{1}{\overline{\mathrm{~L}}_{\mathbf{l}} \mathrm{C}_{\mathrm{a}}}, \text { which is independent of } \mathrm{C}_{\mathrm{m}} .}
\end{aligned}
$$

Other forms of capacity coupling may be treated by the use of the same formula, the approprinte values being substituted for ω_{1}, ω_{1}, and k.

Values of k, ω_{1}, and ω_{2} for several of the more common types of coupled circuit in use to-day are apponded.

Magnetic Coupling:
Mutual coupling (Fig. S0):

$$
\begin{aligned}
k & =\frac{\mathrm{M}}{\sqrt{{\overline{L_{1}} \mathrm{~L}_{2}}^{2}}} \\
\omega_{1} & =\frac{1}{\sqrt{\mathrm{~L}_{1} \mathrm{C}_{1}}} \\
\omega_{2} & =\frac{1}{\sqrt{\mathrm{~L}_{2} \overline{\mathrm{C}}_{2}}}
\end{aligned}
$$

Direct coupling (Fig. 82):

$$
\begin{aligned}
& k=\frac{\mathbf{L}_{m}}{\sqrt{\left(\mathbf{L}_{\mathrm{m}}+\mathbf{L}_{\mathrm{a}}\right)\left(\mathbf{L}_{\mathrm{m}}+\mathrm{I}_{\mathrm{i},} i\right.},} \\
& \omega_{1}=\frac{1}{\sqrt{ }\left(\mathrm{~L}_{\mathrm{a}}+\mathrm{L}_{\mathrm{m}}\right) \mathrm{C}_{1}} \text {, } \\
& \omega_{2}=\frac{1}{\sqrt{ }\left(L_{b}+L_{m}\right) C_{2}},
\end{aligned}
$$

Frg. 84.-Coupling witil Separate Circuit.
Soparate coupling circuit (Fig. 84):

$$
\begin{aligned}
k & =\sqrt{\mathrm{M}_{1}^{2}} \mathrm{~L}_{1}^{2}+\frac{\mathrm{M}_{2}^{2}}{l \mathrm{~L}_{2}} \\
\omega_{1} & =\frac{1}{\sqrt{\mathrm{~L}_{1} \mathrm{C}_{1}}} \\
\omega_{2} & =\frac{1}{\sqrt{\mathrm{~L}_{2} \mathrm{C}_{2}}}
\end{aligned}
$$

Combination of mutual and direct couplings (Fig. 85):

$$
k=\frac{\mathrm{L}-\mathrm{M}}{\sqrt{\bar{L}_{\mathbf{2}} \mathrm{L}_{2}}}
$$

where L is the common portion, L_{1} and L_{2} are the total inductances in primary and secondary.

$$
\omega_{1}=\frac{1}{\sqrt{L_{1} \mathrm{C}_{2}}} \quad \omega_{2}=\frac{1}{\sqrt{ } \mathrm{~J}_{2} \overline{\mathrm{C}}_{2}}
$$

Fia. 85.-Combination of Direct and Mutual Coupling.

Electrostatic Coupling :

(a) With common capacity (Fig. 83):

$$
\begin{aligned}
k & =\sqrt{\frac{C_{\mathbf{a}} C_{b}}{\left(\mathrm{C}_{\mathbf{a}}+\mathrm{C}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{b}}+\mathrm{C}_{\mathrm{m}}\right)^{2}}} \\
\omega_{1} & =\sqrt{\mathrm{C}_{\mathbf{a}}+\mathrm{C}_{\mathrm{m}}} \frac{\mathrm{~L}_{1} \mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{m}}}{} \\
\omega_{\mathrm{a}} & =\sqrt{\mathrm{C}_{\mathrm{b}}+\mathrm{C}_{\mathrm{m}}} \mathrm{~L}_{2} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{m}}
\end{aligned}
$$

Fig. 86.-Capacity Coupling with Separate Cincutts.
(b) With separate capacities (Fig. 86):
whers

$$
\begin{aligned}
& k=\frac{\mathrm{C}_{\mathrm{B}}}{\sqrt{\left(\mathrm{C}_{1}+\mathrm{C}_{8}\right)\left(\mathrm{C}_{2}+\mathrm{C}_{8}\right)},} \\
& \mathrm{C}_{8}=\frac{\mathrm{C}_{8} \mathrm{C}_{\mathrm{b}}}{\mathrm{C}_{\mathbf{2}}+\mathrm{C}_{\mathrm{b}}} \\
& \omega_{2}=\frac{1}{\sqrt{\overline{\mathrm{~L}}_{1} \mathrm{C}_{1}}} \\
& \omega_{2}=\frac{1}{\sqrt{\overline{\mathrm{~L}}_{2} \mathrm{C}_{2}}}
\end{aligned}
$$

If $\mathrm{C}_{\mathrm{b}}=\infty$ (i.e., is short circuited), $\mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\mathrm{a}}$.

It may be observed that if the primary and secondary of this circuit are tuned to the same frequency, so that $\mathrm{L}_{1} \mathrm{C}_{1}=\mathrm{L}_{2} \mathrm{C}_{2}=\mathrm{LC}$, the system is practically monofrequency. For-

$$
\begin{aligned}
f^{\prime} & =\frac{1}{2 \pi \sqrt{L C}} ; \\
f^{\prime \prime} & =\frac{1}{2 \pi \sqrt{L C}\left(1+\frac{\mathrm{C}_{\mathrm{B}}}{\mathrm{C}_{1}}+\frac{\mathrm{C}_{8}}{\mathrm{C}_{2}}\right)}
\end{aligned}
$$

Now for maximum encrgy transfer $\mathrm{C}_{\mathrm{B}} / \mathrm{C}$ is small (2 $\frac{1}{2}$ or less), so that $f^{\prime}=f^{\prime \prime}$ nearly.

General Casc (Fig. 87):
where

Fig. 87.-General Case of Combined Magnetic and Electrostatic Couplina.

(b) Coupled Circuits with Forced Oscillations.-In the second case, where there is a continuous source of altcrnating E.M.F. in the primary, the phenomena are somewhat simpler. In the first few moments after switching on there exist both forced and free oscillations. The latter, however, rapidly dic away, and the two circuits then behave as a simple transformer, which may be treated according to the ordinary laws of alternating currents. Some of the more useful formula are summarised below.

Inductive Coupling. - The presence of the secondary affects the constants of the primary circuit. If R_{1}^{\prime} and $\mathrm{X}_{1}{ }^{\prime}$ are the equiralent primary resistance and reactance respectively, then-

$$
\begin{aligned}
& \mathrm{R}_{1}^{\prime}=\mathrm{R}_{1}+\frac{\mathrm{M}^{2} \omega^{2}}{\frac{\mathrm{Z}_{2}^{2}}{}} \mathrm{R}_{2} \\
& \mathrm{X}_{1}^{\prime}=\mathrm{X}_{1} \cdot \frac{\mathrm{M}^{2} \omega^{2}}{\mathrm{Z}_{2}^{2}} \mathrm{X}_{3}
\end{aligned}
$$

Exactly similar expressions may be obtained for the equivalent secondary constants.

If the coupling between the two circuits is very close and there is no leakage, then the equivalent inductance of the primary circuit is zero. In practice this condition is never attained, because there is always some leakage, apart from the fact that there is often a portion of the primary inductance which is
not coupled to the secondary. The equivnlent inductance of the primary is thus often known as the "leakage" inductance, and the value of this is of some importance in the design of a circuit. The leakage inductance L_{s} is given by-

$$
\mathrm{L}_{\mathbf{B}}=\mathrm{L}_{\mathbf{1}}-\stackrel{\mathrm{M}^{2} \omega^{2}}{\mathrm{Z}_{2}{ }^{2}} \mathrm{~L}_{2}
$$

It is often more convenient to express this in terms of the coupling factor

Then

$$
\begin{gathered}
k=\frac{\mathrm{M}}{\sqrt{ } \mathrm{~L}_{1} \mathrm{~L}_{2}} \\
\mathrm{~L}_{\mathrm{s}}=\mathrm{L}_{1}\left[1-k^{2}\left(\frac{\mathrm{~L}_{2} \omega \partial}{\mathrm{Z}_{2}}\right)^{2}\right] .
\end{gathered}
$$

It is customary in radio work to tune the various circuits involved. Eithor the primary or the secondary, or both, may be tuned. If the primary is tuned and the secondary liept constant, then the maximum current is obtained by making $\boldsymbol{X}_{1}{ }^{\prime}=0$. If the secondary is tuned, then $\boldsymbol{X}_{2}{ }^{\prime}$ should $=0$.

Hence, for resonance-

$$
\begin{aligned}
& \mathrm{X}_{1}=\frac{M^{2} \omega^{2}}{\mathrm{~L}_{2}{ }^{2}} \mathrm{X}_{2}\left(\mathrm{X}_{2} \text { constant }\right) ; \\
& \mathrm{X}_{\mathrm{a}}=\frac{\mathrm{M}^{2} \omega^{2}}{Z_{1}{ }^{2}} \mathrm{X}_{1}\left(\mathrm{X}_{1} \text { constant }\right) .
\end{aligned}
$$

The optimum condition occurs when both these conditions hold simultaneously. This gives that $\mathrm{X}_{1}\left(\mathrm{R}_{2}-\frac{\mathrm{M}^{2} \omega^{2} \mathrm{R}_{1}}{\mathrm{Z}_{1}{ }^{2}}\right)=0$.

There are two possible conditions:

1. $M^{2} \omega^{2}<R_{1} R_{2}$. This requires an imaginary value of X_{1} to make $\mathrm{R}_{2}-\frac{\mathrm{M}^{2} \omega^{2} \mathrm{R}_{1}}{\mathrm{Z}_{1}^{2}}=0$, so that the condition in this case is that $\mathrm{X}_{1}=0$.
2. $\mathrm{M}^{2} \omega^{2}>\mathrm{R}_{1} \mathrm{R}_{2}$. The condition is then that $\mathrm{R}_{2}-\frac{\mathrm{M}^{2} \omega^{2} \mathrm{R}_{1}}{\mathrm{Z}_{1}}=0$.

Pierce calls these two cases deficient and sufficient coupling respectively. The value of the secondary current in the two cases is given by-

1. Deficient coupling:

$$
\mathrm{I}_{2}=\underset{\mathrm{R}_{1} \mathrm{R}_{2}+\mathrm{M}^{2} \omega^{2}}{\omega \mathrm{M} Z_{1}} .
$$

2. Suficiont coupling:

$$
\mathrm{I}_{2}=\frac{\mathrm{Z}_{1}}{2 \sqrt{R_{1} R_{2}} I_{1} .}
$$

Note that in the second case I_{2} is independent of M.
Capacity Coupling.-The above remarks apply to capacity couplings of the type shown in Fig. 83, if $\frac{1}{\mathrm{C}_{\mathrm{m}}{ }^{2} \omega^{2}}$ is substituted for $\mathrm{M}^{2} \omega^{2}$.

Then

$$
\begin{aligned}
& \mathrm{R}_{1}^{\prime}=\mathrm{R}_{1}+\left(\frac{1}{\mathrm{C}_{\mathrm{m}^{2}} \omega^{2} \mathrm{Z}_{2}^{2}}\right) \mathrm{R}_{2}, \\
& \mathrm{X}_{1}^{\prime}=\mathrm{X}_{1}-\left(\frac{1}{\mathrm{C}_{\mathrm{m}^{2}} \omega^{2} \mathrm{Z}_{2}^{2}}\right) \mathrm{X}_{2} .
\end{aligned}
$$

The resonance relations are as before, with the appropriate substitution.

Resislance Coupling.-Cases sonetimes arise where two circuits are coupled by a resistance which is common to both circuits. Such a circuit would have a resistance in place of C_{m} in Fig. 83. Here-

$$
\begin{aligned}
& \mathrm{R}_{1}^{\prime}=\mathrm{R}_{1}-\frac{\mathrm{R}_{\mathrm{m}}^{2}}{\mathrm{Z}_{2}^{2}} \mathrm{R}_{2} \\
& \mathrm{X}_{1}^{\prime}=X_{1}+\frac{\mathrm{R}_{\mathrm{m}}^{2}}{\mathrm{Z}_{2}^{2}} \mathrm{X}_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& R_{1} \text { and } R_{3} \text { are the total resistances in the primary and } \\
& \text { secondary (including } R_{m} \text {), } \\
& R_{\text {wa }} \text { is the common resistance. }
\end{aligned}
$$

The only possible complete resouant condition here is one of deficient coupling, so that $X_{1}=X_{2}$ must be zero.

$$
\mathrm{I}_{2} \text { then }=\frac{\mathrm{R}_{\mathrm{m}} / \mathrm{K}_{1}}{\mathrm{R}_{1} \mathrm{R}_{2}-\mathrm{R}_{\mathrm{m}}^{2}} 1_{1} \text {. }
$$

Use of Reactance Dlagrams.-The tuning properties of any particular form of coupled circuit may be obtained very simply by drawing a reactance diagram.

The procedure is to find the reactance of the primary circuit, allowing for the effect of the secondary. Tuning or infinite impedance points may then be dotected in the usual manner.

Consider first the case of direct coupling (Fig. 82). The circuit here resolves itself into a condenser C_{1} in series with an inductance L_{a}, and a combination of an inductance L_{m} and the circuit $\mathrm{L}_{\mathrm{b}} \mathrm{C}_{2}$ in parallel. Wach of these components may bo evaluated in the usual way, the complete reactance diagram being as shown in Fig. 88.

Fig. 88.-Reactance Diagram for Circuit shown in Fig. 89.
It will be observed that there are two tuning points on either side of an infinite impedance point. This is a property which is common to all coupled circuits. The infinite impedance point corresponds to the natural frequency of the secondary circuit by itself $=\frac{1}{2 \pi \sqrt{\mathrm{~L}_{2} \mathrm{C}_{2}}}$.
II.

Magnetically coupled circuits may be treated in a similar manner by use of the following substitutions:

$$
\begin{aligned}
& \mathrm{L}_{1}=\mathrm{L}_{\mathrm{m}}+\mathrm{I}_{\mathrm{L}_{2}}, \\
& \mathrm{~L}_{2}=\mathrm{L}_{\mathrm{m}}+\mathrm{L}_{\mathrm{b}} .
\end{aligned}
$$

Capacity couplings may be treated in the same way. Consider the case shown in Fig. 89. ' X ' is the reactance of C_{m} in parallel with C_{b} and L_{2} in

Fig. 89.-Reactance Diagram for Circuit shown in Fig. 83.
scrics. $\quad \mathrm{N}^{*}$ is the reactance of I_{1} and C_{2} in series, and the total reactance is thus as indicated by the full line. Here, again, it will be seen that there are two tuning points on either side of an infinite impedance point.

Tuning Calculations.-The resonant frequency of a series circuit has been seen to be given by $f=2 \pi \sqrt{ }$ LC.

Since $f \times \lambda=c$, the velocity of light $=3 \times 10^{10} \mathrm{cms} . / \mathrm{sec}$., we may deduce the expression-

$$
\begin{gathered}
\lambda=1.884 \sqrt{ } \mathrm{LC}, \\
\lambda=\text { wave length (metres), } \\
\mathrm{L}=\text { inductance (microhenries), } \\
\mathrm{C}=\text { capacity (micro-microfarads). }
\end{gathered}
$$

where

For rapid design the chart given in Fig. 90 will prove useful. Choosing a given capacity and inductance as abscissa and ordinate respectively, the intersection of the two will give the wave length as referred to the diagonal scale-ce.g., $200 \mu \mu \mathrm{~F}$ and $3,200 \mu \mathrm{H}$ give a wave length of 1,500 metres. This chart is a modification of one due to A. J. Gill of the Post Office Engineering Department.

It is often more convenient and is certainly more scientific to refer to the frequency of the oscillation rather than the wave length. This may be obtained by utilising the expressions given above. For convenience a frequency-wavo length conversion chart (Fig. 91) is appended.

Aerials and their Characteristics-Radiation.

There are two main divisions of this subject. First, there are the tuning characteristics of any given aerial system; and, secondly, there are the radiative properties, involving a consideration of the resistances of the aerial system and the losses in the surroundings.

Fig. 90.-Wave Length Diagran.
[To face p. S2, vo!. iii.

Tuning Characteristics.-The induclance and capacity of an aerial system are not concentrated nt one point, but are distributed throughout the whole length of the aerial (apart from any loading coils which may be inserted, the effect of which will bo considered later).

The current or voltage, therefore, will not be uniform over the aerial, but will vary in a sinoidal manner. Fig. 92 shows two possible methods of

The curve may readily be extended to other wavelengths. If the wavelength scale is multiplied by 10, the frequency scale will be divided by 10 and vice vensa; e.g. 5000 metres $=60 \times 10^{4}$ cycles $/ \mathrm{sec}$.
Fig. 91.-Frequency-Wave Lengtii Conversion Citart.
distribution, one corresponding to the fundamental of the aerial, and the other to the third harmonic.

In order to find what the effective values of the inductance and capacity of an aerial are, let L_{o} and C_{o} be the static values calculated from the usual formulx. It has been shown by several investigators that if an N.M.F. is introduced into a system having distributed inductance and cnpacity, the reactance of the system is given by-

$$
\mathbf{X}=-\sqrt{\frac{L_{0}}{\mathrm{C}_{0}}} \cot \omega \sqrt{\mathrm{C}_{0} \mathrm{~L}_{0}}
$$

The reactance diagram for such a system is given in Fig. 93 (a). It will be seen that there are recurring tuning points, and also intermediate points of infinite impedance.

Aerial Oscillating naturally.--These tuning points occur when-
where

$$
\begin{gathered}
\omega \sqrt{ } \mathrm{C}_{0} \mathrm{~L}_{0}=m \pi / 2 \\
m=1,3,5, \text { etc. }
\end{gathered}
$$

Since $f=\omega / 2 \pi$,
whence

- $f=0 / 2 \pi$

$$
\begin{aligned}
f & =\frac{m}{4 \sqrt{\mathrm{C}_{\mathrm{o}} \mathrm{~L}_{\circ}}} \\
\lambda_{0} & =\frac{4 c}{m} \sqrt{\mathrm{C}_{0} \mathrm{~L}_{\mathrm{o}}}, \text { where } c=\text { velocity of light, } \\
& =\frac{1 \cdot 2}{m} \sqrt{\mathrm{~L}_{\mathrm{o}} \mathrm{C}_{0}} \text { metres. }
\end{aligned}
$$

This is termed the natural wave length of the aerial.

(a) Fundamental oscillation.

(b) Third harmonical oscillation.

Fig. 92.-Current and Voltage Distribution on a Simple Aerial Oscillating Fundamentally and Harmonically.

At high frequencies $\sqrt{ } \mathrm{L}_{0} \mathrm{C}_{0}$ approximates to $l / c, l$ being the total length of the nerial, and hence, neglecting the end effect, $\lambda_{0}=\frac{4 l}{m}$.

Referring now to the expression for the reactance-

$$
X=-\sqrt{\frac{L_{0}}{\mathrm{C}_{0}}} \cot \omega \sqrt{\mathrm{C}_{0} \mathrm{~L}_{0}}
$$

this may be expanded in the usual manner-i.e.:

$$
\left.\mathbf{X}=-\sqrt{L_{0}}{\mathrm{C}_{0}}^{\left(\omega \sqrt{\mathrm{C}_{0} \mathrm{I}_{0}}\right.}-\frac{\omega \sqrt{\mathrm{C}_{0} \mathrm{~L}_{\mathrm{o}}}}{3}+\cdots\right)
$$

If $\omega \sqrt{\mathrm{C}_{0} \mathrm{~L}_{0}}$ is small-i.e., provided the aerial is not operating at or near its natural wave length-the remaining terms may be neglected so that-

$$
X=-\frac{1}{\omega C_{0}}+\frac{\omega L_{0}}{3}
$$

Hence, provided λ is not near λ_{0} -

$$
\mathrm{C}_{\mathrm{eff}}=\mathrm{C}_{0} \text { and } \mathrm{L}_{\mathrm{eff}}=\mathrm{L}_{0} / 3
$$

Loaded Aerlal.-From practical considerations, rerials are usually operated at wave lengths several times the natural wave length. (See p. 97.)

(a) Simple aerial.
(b) Aerial with series inductance.
(c) Aerial with series condenser.

Fig. 93.-Reactance Diagrams for Simpie and Loaded Aerials.
In order to tune the acrial, a loading" inductance is inserted in the aerial at the base of the lead-in. This inductance also serves to couple the aerial to the transmitter.

To tune the aerial to n given frequency, therefore, the value of the loading ooil must be such as to satisfy the equation-

$$
\mathbf{X}=\omega \mathrm{L}-\sqrt{\frac{L_{0}}{\stackrel{\mathrm{C}}{0}^{o}} \cot \omega \sqrt{\mathrm{C}_{\mathrm{o}} L_{0}}=0}
$$

Fig. 93 (b) shows the reactance diagrum for a londed acrial such as has just been considered. It will be seen that the frequency al the tuning points is reduced, and also that the harmonics are not integral multiples of the fundamental.

If $\lambda \equiv \equiv \lambda_{0}\left(\omega \sqrt{C_{0} L_{0}}\right.$ small), the equation nbove reduces to-

$$
\omega\left(\mathrm{L}+\frac{\mathrm{L}_{\mathrm{o}}}{3}\right)-\frac{1}{\omega \mathrm{C}_{0}}=0
$$

by the same expansion as before. Hence-

$$
\lambda=1.884 \sqrt{\left(\mathrm{~L}^{2}+\frac{\mathrm{L}_{0}}{3}\right) \mathrm{C}_{0}} \text { metres, }
$$

when L is in $\mu \mathrm{H}, \mathrm{C}$ is in $\mu \mu \mathrm{F}$.
This is only true for values of $\mathrm{L}=2 \mathrm{~L}_{\text {。 }}$ or more. In other cases a correction should be introduced to allow for the subsequent terms of the expansion, which were neglected, the value of λ being multiplied by the factor l below:

$\mathrm{L} / \mathrm{L}_{\circ} 0$	0.1	0.2	0.3	0.4	0.6	0.8	1.0	1.5	2.0
${ }_{h}$	1.103	1.063	1.042	1.030	1.023	1.014	1.009	1.007	1.004
1.003									

Use of Shortening Condenser. - It is sometimes desired to operate an aerial at a wave length lower than the natural. In such a case a condenser is inserted in series with the aerial. The reactance diagram of such a combination is given in Fig. 93 (c). It will be seen that the frequency at the tuning points is increased. The tuning equation in this case is-

$$
\mathrm{X}=-\frac{1}{\omega \mathrm{C}}-\sqrt{\frac{\bar{L}_{o}}{\mathrm{C}_{0}} \cot \omega \sqrt{\mathrm{~L}_{\mathrm{o}} \mathrm{C}_{o}},}
$$

so that, with the same assumptions as before-

$$
\lambda=1.884 \sqrt{ } \overline{\mathrm{C}}_{8} \mathrm{~L}_{\mathrm{o}} / 3,
$$

where

$$
\begin{aligned}
& \mathrm{L}_{o}, \mathrm{C}_{\text {}} \text { are the constants of the aerial, } \\
& \mathrm{C}^{\text {is }} \text { the capacity in series, } \\
& \mathrm{C}_{8} \text { is the capacity of } \mathrm{C} \text { and } \mathrm{C}_{0} \text { in series. }
\end{aligned}
$$

At or around the natural frequency of the aerial the assumptions made in the foregoing equations do not hold. In this case the effective inductance and capacity may also be evaluated, but some ambiguity arises according to whether the aerial is regarded from an electromagnetic or electrostatic point of view. In either case, however, the product of $\mathrm{L}_{\mathrm{eff}} \mathrm{C}_{\mathrm{eff}}$ is the same, and as this is all that is required, the soparate values are not given. When $\lambda=\lambda_{0}$ -

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{fI}} \mathrm{C}_{\mathrm{eff}}=\frac{4}{\pi^{2}} \mathrm{~L}_{0} \mathrm{C}_{0} \\
& \begin{aligned}
& \lambda=1.884 \frac{2}{\pi} \sqrt{L_{0} C_{0}} \\
& \quad=1.2 \sqrt{L_{0} \mathrm{C}_{0}}
\end{aligned}
\end{aligned}
$$

which is the same result as was obtained on p. 8.4.

Measurement of Effective L and C.-The effective inductance and capacity may readily be measured by measuring the wave length of the nerial with two loading coils of different values in circuit. Then-

$$
\begin{aligned}
& \lambda_{1}=1.884 k V\left(\overline{L_{1}+L_{0} / 3}\right) \mathrm{C}_{0^{\prime}} \\
& \lambda_{2}=1.884 k V\left(\mathrm{~L}_{2}+\mathrm{L}_{0} / 3\right) \mathrm{C}_{0^{\prime}}
\end{aligned}
$$

k being the correction on $p .86$. L_{o} and C_{o} aro thus both obtained by solving the two equations.

Radiation from an Aerial.

The fundamental conception of the radiation of electromagnetic wavea was obtained by Hertz from the consideration of an oscillating dipole or doublet. This consists of two small charges, one positive and the other nogative, separated by a distance h. These charges are assumed to oscillate about their middle point in a straight line, the motion of the two charges being in opposite directions at any particular instant (sce Fig. 94).

Fig. 94.-Simile Dipole or Doublet.

Fig. 90̈.-Kink pronuced in Line of Force by Deceleration of Charge.

Considering first of all one charge only. This charge has associated with it lines of force, one of which is shown in Fig. 95. Now suppose that this charge is moving upwards with a velocity v, carrying with it the associated lines of force. Any electromagnetic disturbance will be propagated through the ether with a definite velocity, which velocity is found to be 3×10^{10} centimetres per second, the speed of light. (To make the case more general, the velocity may be assumed to have some other value v^{\prime}, but it is found that in order completely to satisfy the several equations which are deduced, this velocity must be the same as the velocity of light.)

At a given time $t=0$, therefore, the charge q is moving upwards with Ω velocity v. Let the charge now decelerate and come to rest at B. If it had continued to move uniformly upwards, it would, in time t have reached the point C. Because of the finite velocity of the propagation of the disturbance in the ether, it follows that outside a sphere of radius $c t$ the lines of forco emanate from a centre C, since the disturbance resulting from the deceleration of the charge has only travelled a distance cl.

Again, if T is the time occupied by the charge in decelerating from A to B , it follows that inside a sphere of radius $c(t-\mathrm{T})$ the lines of force will radiate from B. In between these two spheres the line of force will be kinked in somo manner in order that it may change its centre, and this hink
is the disturbance which is radiated into space caused by the deceleration of the charge q.

Fig. $9(i$ shows the same diagram considered for the complete doublet, each of the charges accelerating from rest, reaching a maximum velocity, and

Fig. 96.-Production of Electric Waves.
decelerating to rest again. The lines of force outside the shell neutralise each other. Those within the shell may be resolved into two components, one tangential to the shell, and the other radial.

The radial components cancel out, leaving two tangential components, one on the outside and the other on the inside of the shell, these troo being in opposite directions. If the total effect of all the lines of force is considered, the net result will be a series of bands of electric field, first in one direction, and then in the other.

Further, since the doublet continues to oscillate, the first pair of bands will be followed by a second pair, and so on, the distance between successive bands being cT.

Now the time of one complete oscillation of the doublet $=2 \mathrm{~T}=1 / f$, where f is the frequency of oscillation of the charges.

Consequently, the distance between any two bands of electric field in the same direction $=2 c \mathrm{~T}=c / f=\lambda$.

This distanco λ is termed the " wave length " of the wave, and it will bo scen that the wave length and frequency are connected by the simple relation $\lambda \times f=c$.

Associated with the electric fiold by virtue of its motion is a magnetic field, horizontal and in phase with the electric field. It should be noted that the one is simply another manifestation of the other. The electric and magnetic fields do not exist separately, but according to whether the phenomenon is regarded from an electrostatic or electromagnetic point of view, so does one obtain a series of vertical bands of electric field or horizontal bands of magnetic field respectively.

Another important point to note is that tho fields considered are totally separate from the ordinary electric and magnetic fields near the aerial. These fields are 90° out of phase, and, moreover, die away as the square of the distance, whereas it will be found that the true radintive fields are inversely proportional to the first power of the distance away. In the immediate neighbourhood of the aerial, within a distance of a few wave
lengtha, the two fields exist together, but at any appreciable distance the primary fields are absolutely negligible.

Application of Doublet Theory to Aerials.-A simple Hertzian oscillator consists of two plates separated by a wire containing inductance, all the capacity being assumed to be concentrated in the plates themselves. Such a system may readily be investigated by use of the doublet theory.

The more practical case is that of an aerial system, as shown in Fig. 97 (b). This may be takon as the upper half of a Hertzian oscillator, and the doublet theory applied, on the assumption that the capacity is all concentrated in the upper end of the aerial.

This assumption is not always justifinble, as will be seen later, but some of the results obtained on this theory are appended, as they give useful information on the mechanism of the propagation of electric waves.

Simple Hertzian Oscillator.-For a simple oscillator of length $2 h$, having all the capacity concentrated at the ends [Fig. 97 (a)], the field strengths are as below:

Electric field $\varepsilon=4 \pi \sqrt{\bar{k}} \cdot \frac{I}{\lambda} \frac{\lambda d}{} \sin \theta$ electrostatic units.
Magnetic field $J \int=4 \pi \frac{\mathrm{I} h}{\lambda d} \sin 0$ electromngnetic units.
where
I = current in transmilting nerial
$\left.\begin{array}{l}h=\text { height of transmitting aerial } \\ \lambda=\text { wave length }\end{array}\right\}$ in C.G.S. units,
$\lambda=$ wr ve length
$d=$ distance from transmitter,
$0=$ angle with vertical (Fig. 95),
μ and k are the magnetic and electric permeabilitios of the medium.
Thus for air ($\mu=k=1$) the electric field in E.S.U. is oqual to the magnetio ficld in E.M.U. (1 E.M.U. $=c \times 1$ E.S.U.).

Fig. 97.-Sinple Oscillator.

Putting I in ampores, and h, λ, and d in metres, we have for the field strength at the carth's surface $(\sin \theta=1)$:

$$
\varepsilon=377 \frac{\mathrm{I} h}{\lambda d} \text { volts per metre. }
$$

Power Radiated.-The power radiated is given by-

$$
\mathrm{P}=\frac{2}{3} \cdot(4 \pi)^{2} \sqrt{\mu} \begin{gathered}
\mu \\
k
\end{gathered} \lambda^{2} \mathrm{\lambda}^{2} \mathrm{I}^{2}
$$

90
For transmission through air, putting I in amperes (R.M.S.) and h and λ in similar units (metres), this reduces to-

$$
\mathrm{P}=3168 \frac{h^{2}}{\lambda^{2}} \mathrm{I}^{2} .
$$

Practical Form of Aerial.-The simple Hertzian oscillator has a limited application to acroplane work, but the more general type of acrial is one utilising the earth as one plate of the condenser. This is, then, equivalent to the upper half only of a simple osciliator [see Fig. 97 (b)].

For such n case the expressions for ε and \mathscr{T} romain unchanged, h now being the actual height of the aerial, while the power radiated is one-half of its previous value, since it is only the power radiated in a hemisphere abovo the equatorial plane which is effective. Hence-

$$
\mathbf{P}=1584 \frac{h^{2}}{\lambda^{2}} \mathbf{I}^{2} .
$$

These values assume that the capacity is concentrated at the upper end of the aerial.

Radiation Resistance.-When an oscillating current is set up in an aerial, a certain expenditure of power is required in order to maintain the osciliations, owing to the losses set up by the resistance of the conductors, the dielectric losses, etc.; there is, in addition, a portion of the power which produces electromagnetic waves, and is effective in producing useful radiation. The conductor and other losses can all be expressed in terms of an equivalent resistance, so that it is found convenient to express the actual radiation in the same manner. This is done in terms of a fictitious "radiation resistance," which is defined by the relation-

$$
\text { Power radiated }=\text { radiation resistance } \times(\text { current })^{2} \text {. }
$$

In the case of an aerial with concentrated capacity, as just considered, the radiation resiatance is obviously-

$$
\mathrm{R}_{\mathrm{rad}}=1584 \frac{h^{2}}{\lambda^{2}}
$$

Effective Height.-In a practical form of oscillator the current distribution is not uniform, as has just been assumed, since the capacity is no longer concentrated in the end of the aerial.

To allow for this it is customary to assume that the height of the aerial is somewhat less than the actual height, this reduced height being termed the effective height. Values for the effective heights of some forms of acrials are appended.

Single Vertical Wire:
At natural wave leagth: $h=2 l / \pi$.
At a considerably longer wave length: $h=0.7 l$.

Umbrella Aerial:

$\lambda \gg \lambda_{0}: h=1 \cdot 414 h^{\prime}$, where h^{\prime} is the height to the middle of the ribs.
Flat-lopped Aerials.-Picrce has shown (" Electric Oscillations and Electrio Waves," G. W. Pierce) that the doublet formula is not applicable to practical aerials, owing to the fact that the current is not uniformly distributed. He shows that the ordinary correction introduced by the assumption of an effective height is not adequate, and he has accordingly obtained the expressions for $\varepsilon, \mathscr{J} \ell$, and the radiated power by summing the effect of an infinite
number of doublets situated all along the aerial, due allowance being made for the gradualiy diminishing current as the far end of the aerinl is approached. These results have only been applied to single wires and flat-top aerials, but even so they constitute a very valuable contribution to the data on the subject.

The current is assumed to be-

$$
i=\mathrm{I} \sin \frac{2 \pi c}{\lambda} t \sin \frac{2 \pi}{\lambda}\left(\frac{\lambda_{0}}{4}-l\right) .
$$

The first term is tho time variation, the second being the space varintion over the length of the acrial [see Fig. $92(a)$]. The current at the base $(l=0)$ is-

$$
I_{0}=I \sin \frac{\pi \lambda_{0}}{2 \lambda}
$$

On this assumption the values of ε, \mathcal{J}, and P aro found to be-
$[\cos B \cos (A \cos \theta)-\sin B \sin (A \cos \theta) \cos \theta-\cos (A+B)]$,
where

$$
\begin{aligned}
& \mathrm{A}=\frac{2 \pi h}{\lambda}, \\
& \mathrm{~B}=\frac{2 \pi b}{\lambda} \text {, } \\
& b=\text { length of flat top, } \\
& h=\text { height of aerial, } \\
& \lambda=\text { wave length } \text {. } \\
& 0=\text { angle with vertical, } \\
& d=\text { distance away from aerial, } \\
& I_{\text {o }}=\text { current at base of aerial, } \\
& \text { I } \varepsilon=\text { electric field strength (E.S.U.), } \\
& \dot{\mathcal{O}} \mathcal{E}=\text { magnetic field strength (E.M.U.). }
\end{aligned}
$$

When $0=90^{\circ}$-i.e., in the horizontal plane-

The last term is a function of λ / λ_{0}, the other terms being constant. It is thus possible to compare the value of the received field for a given transmitted current I_{0} in terms of λ / λ_{0}. Fig. 98 shows this relation for several values of $\gamma=\frac{b}{h+b}$.

It will be seen that there is a large increase in the field strength around λ_{0}, but that if, as is usual, practical conditions necessitate the use of a wave length several times the natural, there is little to choose. It also indicates that the flat top hinders the radiation from the aerial, its sole use in practice being to increaso the capacity of the acrial so that I_{o} may be increased.

These curves do not take into account the absorption of the waves during transmission (see p. 93).
l'ower Radiuted.-The expressions for radiated power, involving as they do the summation of several series, are rather complicated, bue Professor Pierce has worked out the radiation resistance of single wire and flat-top

Fig. 98.-Field Strengtis at Given Distance from Aerial in Terais of λ / λ_{0}.
acrials in terms of λ / λ_{0} and γ. Since $\lambda_{0}=4 l$, these two factors completely define any particular acrial, and Table XVILI. appended is thus of considerable value. Some of the values in the table have been plotted against λ / λ_{0} in Fig. 99.

Fig. 99.-Radiation Resistance of Flat-Tor Afrials.
The values for power radiated are considerably less than those obtained by the doublet formula, the discropancy being most marked in the case of
single vertical wires ($\gamma=0$), which bears out Professor Pierce's contention that the ordinary assumptions of effective height are inadequate for the purpose.

TABLE XVIII.
Radiation Registance of Flat-Top Aeriata.

$\lambda . / \lambda_{0}$.	$\gamma=0$	-2	$\cdot 3$	-4	-5	- 6	-7	. 8	-9
10	$36 \cdot 6$	33-3	29.7	25.5	$20 \cdot 3$	1.47	9.7	$4 \cdot 9$	1.2
1.2	21.8	$20 \cdot 2$	18.8	15.8	12.4	90	6-0	$2 \cdot 9$. 94
14	15.1	140	12.2	$10 \cdot 5$	$8 \cdot 6$	61	40	20	-70
$1 \cdot 6$	11.0	10-0	9.0	7.8	$6 \cdot 3$	44	2.8	1.4	- 50
1.8	$8 \cdot 3$	$7 \cdot 7$	6.7	6-0	$4 \cdot 7$	$3 \cdot 2$	$2 \cdot 2$	11	-33
20	$6 \cdot 5$	6.1	$5 \cdot 5$	$4 \cdot 8$	3.8	$2 \cdot 7$	1.7	75	-18
$2 \cdot 2$	$5 \cdot 2$	50	$4 \cdot 6$	$3 \cdot 9$	3.0	$2 \cdot 2$	1.4	. 57	-16
$2 \cdot 4$	$4 \cdot 4$	$4 \cdot 2$	3.8	$3 \cdot 2$	$2 \cdot 5$	1.8	1.2	. 48	-14
$2 \cdot 6$	$3 \cdot 8$	$3 \cdot 5$	3.1	$2 \cdot 7$	$2 \cdot 1$	1.5	10	. 42	-12
2.8	$3 \cdot 3$	30	$2 \cdot 6$	$2 \cdot 3$	1.8	$1 \cdot 3$. 86	-37	- 10
$3-0$	2.8	$2 \cdot 5$	$2 \cdot 2$	1.9	1.5	1.1	. 74	-33	-09
3.2	2.5	$2 \cdot 3$	2.0	1.7	$1 \cdot 3$.92	. 64	- 29	-08
$3 \cdot 4$	$2 \cdot 2$	20	1.8	$1 \cdot 6$	$1 \cdot 1$. 84	-55	. 25	. 072
$3 \cdot 6$	20	1.9	1.6	$1 \cdot 4$	10	. 77	. 47	. 22	- 066
3.8	1.75	1.7	1.4	$1 \cdot 3$. 94	. 71	-39	-19	. 060
40	1.62	1.5	1.3	$1 \cdot 1$. 88	. 66	-31	-16	. 055
$4 \cdot 5$	$1 \cdot 30$	1.21	1.05	. 89	. 75	. 54	- 26	- 12	-042
50	1.00	. 92	. 80	-68	. 63	. 42	. 22	. 09	. 032
5.5	. 78	-73	. 65	- 56	-53	. 36	-19	-08	. 025
60	-61	. 54	-49	-44	. 43	-29	-16	07	. 019
70	. 38	. 36	. 33	-32	. 28	. 22	$\cdot 12$. 06	. 013
100	$\cdot 22$	-18	-17	$\cdot 15$	-13	-11	. 07	. 04	-011

In calculating the power radiated, however, an allowance should be made for any ineffective current in the aerial. There are two effects which reduce the effective radintion. The first is that of the masts and stays, in which currents are induced, which in turn radiate waves 180° out of phase with the radiation from the main aerial. To overcome this it is becoming increasingly common to employ insulated masts or to construct the masts of wood.

The second effect is that of simple capacity leakage to carth, the current leaking away in places where it is not effective in producing radiation.

Received Current-Absorption.-If h_{2} is the hoight of the receiving aerial, then the E.M.F. induced therein by a given wave is $\varepsilon \times h_{2}$, where ε is the electric field strength as determined by the formula already given.

The current may be obtained by dividing this value of E by the impedance of the acrial. When the aerial is tuned, as is usually the case, the impedance is simply \mathbf{R}_{2}, so that -

$$
\mathbf{I}_{\mathbf{2}}=\frac{\varepsilon h_{2}}{\stackrel{\mathbf{R}}{2}^{2}}
$$

This formula is correct over short distances only. At longer distances from the transmitter, the waves are attenuated by various processes, and this effect has to be allowed for.

It will be as well to consider at this juncture the propagation of the waves over the earth's surface.

An elentric wavo is propagated in a straight line. Obviously, therefore, if the receiving point is far distant from the transmitting point, the direct ray from the transmitter would normally nover reach the receiver owing to the curvature of the earth. The conducting naturo of the earth would permit of a certain refraction, but this in itself is not sufficient to account for the long-distance transmission known to be possible.

Now investigations have shown the existence of a layer of ionised gas at a considerable height above the earth's surface, and it is assumed that certain of tho waves, leaving the transmitter in an upward direction, are reflected at this layer, and the waves are thus enabled to travel round the curved surface of the earth.

This theory was first investigated by Oliver Heaviside, and the ionised layer of gas is known in consequence as the Heaviside layer.

During the day the sun's rays ionise the air to a considerable extent, the ionisation increasing rapidly as the height above the ground increases. At night, however, the ionisation near the earth disappears, since the ionisation under normal circumstances is a function of the pressure, and the edge of the Heaviside layer thus becomes fairly sharply defined.

During the day a certain absorption takes place, due to the ionisation of the atmosphere, but at night this absorption is considerably less, resulting in distinctly greater received field strength.

Austin and Cohen of the U.S. Navy conducted experiments to obtain data on the attenuation of waves at distances up to 2,000 kilometres, as a result of which they proposed the well-known Austin-Cohen factor:

$$
\varepsilon_{\mathrm{r}}=377 \frac{\mathrm{I} h}{\lambda d} \cdot \varepsilon^{-0.0015} d / \sqrt{\lambda}
$$

where
$\varepsilon_{\mathrm{r}}=$ received field strength (microvolts per metre),
$h=$ height of transmitting aerial (metres),
$\lambda=$ wave length (kilometres),
$d=$ distance from transmitter (kilometres).
If λ is expressed in metres, the expression becomes-

$$
\varepsilon_{\mathrm{r}}=377 \frac{\mathrm{I} h}{\lambda d} \times 10^{3} \cdot \epsilon^{-0.048} d / \sqrt{\lambda .}
$$

This formula only applies over water by daylight. It becomes increasingly inaccurate if d is increased beyond 2,000 kilometres.

At considerably greater distances (5,000 to 15,000 kilometres) the field strength is found to be much greater than would be anticipated from this formula. Fuller has suggested that the correction factor at these ranges should be $\varepsilon-0.0045 d / \lambda 1^{4}, d$ and λ being in kilometres as before.

The most satisfactory theory, however, is that propounded by Professor Howe (Electrician, September 12 and October 10, 1924), who has suggested that at great distances the energy is transmitted in a thin shell between the earth and the Heaviside layer, which then function as a simple transmission line, and may be treated accordingly.

At a distance d from the transmitter there will be a certain quantity of energy contained in a circular zone of radius $r \sin 0$ (Fig. 100). As the distance d increases, $r \sin \theta$ increases, and with it the area of the zone, so that, assuming the energy the same as before, the field strength will be diminished. Beyond $\theta=90^{\circ}$, however, the zone contracts again, and hence the field strength increases, and at the antipodes would be considerably strengthened.

There is, however, the attenuation due to the propagation of the energy over the " transmission line," so that this increase of field strength is counteracted to a large extent, but actually at distances of 19,000 kilometres the field strength does increase.

Fig. 100.-Illustrating the Dependence of ε on 0 .
Assuming a height of 100 kilometres for the Heaviside lnyer, Howe obtains the formula:

$$
\varepsilon=386 \frac{1 / h}{\lambda} \cdot \gamma \cdot 10^{-8} \frac{e^{-\beta d}}{\sqrt{\sin \theta}} \text { volts/centimetres, }
$$

where I, h, and λ have the usual significance.

$$
\gamma^{2}=\frac{\text { power transmitted over line. }}{\text { power radiated at transmitter }} \text {. The power does not com- }
$$ strike the Heaviside layer at a certain critical angle. At this point the power is less than that originally radiated.

$\beta=\frac{r}{240 \pi / t t}$, where $r=$ effective resistance per square centimetre of line (including earth and Heaviside layer); $h_{t}=$ height of Heavisido layer.
$d=$ distance round surface of carth (centimetres).
The s.s. Aldébaran carried out certain experiments at ranges up to $20,000 \mathrm{~km}$., and found that the field strength could be expressed in the form-

$$
\varepsilon=377 \frac{\mathrm{I} h}{\lambda d}-k
$$

where \mathcal{k} is the factor shown in Table X1X. below.
Howe has shown that these results may be obtained from bis theory by giving reasonable values to γ and r. The average values are:

$$
\begin{aligned}
\gamma= & 0.15 \text { by day, } \\
= & 0.25 \text { by night } \\
r= & 25 \text { ohms by day, } \\
& 15 \text { ohms by night. }
\end{aligned}
$$

The formula shows that small changes in r or h_{t} have enormous effect. If r is doubled (or h_{t} halved), the field strength is reduced to $0-005$ of its
former value. This may account for the large variations experienced in practice.

The effect of earth resistance on range has beon determined by Zenneck, relative figures being given in Table XX.

T'ABL心 XIX.
Values of k in "Alderaran" Formula.

d (Kilomelres).	9,000 λ.		11,000 λ.	
	Night.	Day.	Night.	Day.
1,000	. 86	-37	. 89	. 49
2,000	. 775	. 26	. 78	35
4,000	. 615	. 175	. 63	25
6,000	. 49	. 11	. 52	20
8,000	- 40	. 065	-45	- 16
12,000	. 285	-	. 35	-
18,000	. 20	-	. 27	-

TABLE XX.
Effect of Eabtit on Range.
Nature of Earth.
Perfect conductor
Range of 'Transmisson
(Kilometres).
Sea water 1,000

Fresh water or marsb 920

Wet soil 700

Damp soil 560

Very dry soil 55
Standard Values of Field Strength.-A value of the received field strength of 50 microvolts per metro will give a good signal under good conditions. It will not be adequate, howevar, if jamming or atmospherics are heavg. To allow for working under adverse conditions, values of ε_{r}, as below, are taken as standard.

Ship and shore communication: $95 \mathrm{mV} / \mathrm{m}$.

$$
\text { Reliable point-to-point communication: } 150 \mathrm{mV} / \mathrm{m} \text {. }
$$

In view of this definition of satisfactory working conditions it is becoming the practice to rate Ω transmitter in terms of the " metre-amperes" of the acrial. This is simply the product of the effective height and the current at the base of the aerial.

$$
\mathrm{T} h=\frac{\varepsilon_{\mathrm{r}} \lambda d \times 10^{-3} \varepsilon^{0048} d / \sqrt{\lambda},}{377}
$$

where

$$
\mathrm{I} h=\text { metre amperes }(\text { written } \mathrm{m} \times \mathrm{A}),
$$

$$
\varepsilon_{\Gamma}=\text { received field strength (microvolts/metre). }
$$

$\lambda=$ wave length (metres).
$d=$ distance from transmitter to receiver (kilometres).
$h=$ effective height (metres).
Thus, given the $m \times A$ of an aerial system, the range of a station may be estimated, and vice versa.

Penetration of Waves in a Conducting Medium.-The waves are very rapidly attenuated in a conducting medium such as sea water. In such a case the current at a depth x may be determined from the formula:

$$
i=\mathrm{I}_{0} \varepsilon^{-} \sqrt[V]{ }^{/ \frac{2 \pi \omega \mu}{\rho} x} \sin \left(\omega t-\frac{2 \pi \omega \mu}{\rho} x\right)
$$

where

$$
\begin{aligned}
i & =\text { current at depth } x, \\
I_{o} & =\text { curreut at surface, } \\
\mu & =\text { permeability of material, } \\
\rho & =\text { specific resistance of material. }
\end{aligned}
$$

Aerial Resistance and Losses,

The importance of the loss resistances in an acrina may bo judged from the fact that an aerial 800 fect high working on a wave length of 20,000 metres has a radiation resistance of the order of f ohm. The total resistance of the aerinl, however, may be as much as 2 ohms, giving an acrial efficiency only of the order of 12 per cent.
The resistance of an acerial may be resolved into four factors:
(a) Radiation resistance: $\propto \frac{1}{\lambda^{2}}$.
(b) Eddy curront loss and conductor resistance including earth resistance: $\propto \frac{1}{\lambda \frac{1}{2}}$.
(c) Dielectric loss: $\propto \lambda$.
(d) Leakage loss : $\propto \lambda^{2}$.

The resistance of an acrial may be determined for a range of wave lengths around the working point, and a curvo plotted as shown in Fig. 101. This is

Fig. 101.-Typical Aerial Resistance Curve analysed into its Components.
usually done for any new aerial, and it is fairly simple to fit a curve of the form-

$$
\mathrm{A} / \lambda^{2}+\beta / \lambda \frac{1}{2}+\mathrm{C} \lambda+\mathrm{D} \lambda^{2}
$$

to the actual curve. The magnitude of the several components may thus be determined, and should any one term be excessively high, the matter can be investigated. Note that the total resistance has a minimum value which usually occurs when $\lambda=2$ or 3 times λ_{0}.
iII.

Radiation Resistance.-This question has already been discussed on p. 90 , where it was shown to be proportional to $1 / \lambda^{2}$.

Eddy Current and Conductor Loss.-The conductor resistance may rendily be obtained at the particular frequency employed.

Eddy current losses in the carth, masts, and buildings are responsible for a fairly heavy proportion of the losses. Masts and buildings should thus be kept out of the field of the acrial where possible; the earth loss is more important, and is, in fact, the chicf source of loss in many acrials.

The electric field produced by an aerinl is in two portions, one vertical and the other horizontal, due to the flat top. This horizontal field produces eddy current losses in the carth.

There is also n downward radiation from the flat top, which, being ineffective in assisting the main radiation, is to be regarded as a loss. This also gives rise to earth losses.

The loss due to the horizontal field may be reduced by an earth screen. This is a system of wires, as shown in Fig. 102, which extends undernenth

Fig. 102.-Earth Screen.
and on each side of the aerial. Such a system not only reduces the actual resistance of the return path for the aerial current, which in itself effects an appreciable saving, but the field set up by the earth screen is in opposition to that produced by the flat top, so that the earth losses are still further reduced.

Eckersley has shown (Journ. I.E.E., vol. lx, p. 581) that the loss may be continuously reduced by increasing the number of screen wires down to a spacing $d=\ddagger W$, where W is the width of the main acrinl. At or around this point the field set up by the screen wires themsclves begins to cause losses in the earth.

The screen should extend about half the width of the aerial to each side, and at the open end or ends of the aerial.

Dielectric Loss.-This is due to the presence in the field of the acrial of highly absorbing dielectrics, such as trees. The grass under the nerial is an offender in this respect to a considerable extent. A screen is effective here also, inasmuch ns it screens the ground from the vertical field, which is responsible for this loss.

Other attempts liave been made from time to time to reduce the earth loss. The Alexanderson multiple carth system, which has been tried out in America, employs an aerial several miles long having tuning points at
intervals. At thesc points a loading coil is connected between the earth and the aerial, the whole system being tuned to the wave length employed. Leads are taken back to the transmitting building from each of the tuning points. This system reduces the earth resistance itself, but does not affect the other losses.

A system which appears to be a compromise between the two systems just described is the Meissner system, in which earth systems are laid out at a number of points under the aerial, if possible at points of maximum field strength, these several systems being led in by overhead wires to the transmitting building. The currents in the several earth leads are regulated by chokes or condensers. This system is said to give very good results.

Earth screens have a tendency to oscillate at their own natural frequency, and care must be taken to avoid trouble of this nature. This question is dealt with in Cekersley's paper.

Leakage Loss. -This loss is very rarely encountered, and is solely due to bad insulation, or to running the aerial at too high a voltage.

Model Aerials. - Model nerinls may be made to determine the performance of a particular acrial and earth system. If λ is the wave length at which the full-size aerial is to be employed, and if the model is made $1 / s$ full size, then Eckersley has shown that if the resistance is observed at a wave length λ / s, the eddy current loss on the full-sizo acrial will be $1 / \sqrt{ } \bar{s}$ of that observed on the model, the dielectric loss $1 / s$ times as great, while the leakage loss will be the same.

General Considerations.

The design of an aerial is dependent upon a large number of considerations, the cost usually being the deciding factor. The power radinted is proportional to h^{2}, I^{2}, and λ^{-2}. λ is decided by the range of the station, and since considerations of resistance require λ to be a small multiple of λ_{0}, the natural wave length of the aerial is determined within certain limits. The power radiated thus depends upon the product $I^{2} h^{2}$.

The nerial current is proportional to the capacity, which in turn is inveraely proportional to the height. $\mathrm{I}^{2} h^{2}$ is thus to a large extent independent of the height. C, however, does not decrease linearly as h increases, so that this statement is only approximately correct. Moreover, the greater the current the larger are the losses due to conductor and other lossea, and since these are two or three times as great as the radiation resistance, this factor is important. Where an earth screen is employed, however, the effect of this latter is reduced, and the product $I^{2} h^{2}$ is appreciably more constant.

Finally, the power input is limited by the maximum voltage which the aerial will stand, $V=\sqrt{\frac{2 \mathrm{~W}}{C^{-}}}$, and since the insulation of an aerial is an expensive business, this limit is comparatively quickly reached. Hence, to increase the power input, the capacity must be increased.

Generally speaking, therefore, it pays to obtain the requisite capacity nt as great a height as possible, the limit being reached when a gain in aerial efficiency is more expensive than the extra power required to run on a less efficient acrial.

VALVE CHARACTERISTICS AND DESIGN.

The three electrode thermionic valve or triode comprises: (1) A suitable receptacle (usually a glass bulb), which is exhausted to a high degree of vacuum; (2) an incandescent filament of wire which emits electrons; (3) a metal anode surrounding the filament, raised to a positive potential, thereby nttracting the electrons emitted from the filament; (4) a wire grid or mesh interposed between filnment and anode. By virtue of its position, variations of grid potential have considerable effect on the electron stream flowing from filament to anode. Due to the relatively small area, however, it does not act to nn appreciable extent as a collective electrode.

There are two principal characteristics of a triode. One is the variation of the anode current (emission) with anode voltage at a constant grid potential. The second is the varintion of anode current with grid voltage at a constant anode potential.

The form of these two curves is shown in Fig. 103 (a) and (b). The former, which is taken for $v_{\mathbf{g}}=0$, is of the form $i_{\mathrm{a}}=\mathbf{A} v_{\mathbf{n}}{ }^{3 / 2}$ for the lower values of $v_{\mathbf{A}}$.

Fia. 103.-Valve Characteristics.
Later, however, the curve flattens out due to the fact that all the electrons emitted by the filament are attracted to the anode. This phenomenon is known as saturation, and is referred to again on p. 104.

The second characteristic is shown for three values of v_{a}. The current depends on both v_{a} and v_{g}, and for the straight portion in the middle of the curves Vallauri has suggested the equation:

$$
\begin{aligned}
& i_{\mathrm{a}}=a v_{\mathrm{g}}+b v_{\mathrm{a}}+c, \\
& v_{\mathrm{g}}=\text { grid roltage, } \\
& v_{\mathrm{a}}=\text { anode voltage, } \\
& a, b, \text { and } c \text { are constants. }
\end{aligned}
$$

where

Now a is obviously the slope of the anode current-grid voltage ourve, while b is the slope of the anode current-anode voltage curve. Hence-

$$
a=\frac{\partial i_{\mathrm{a}}}{\partial v_{\mathrm{g}}} v_{\mathrm{a}} \text { const } \text { and } b=\frac{\partial i_{\mathrm{a}}}{\partial v_{\mathrm{a}}} v_{\mathrm{g}} \text { const }
$$

The internal anode-filament impedance $r_{1}=\frac{\partial v_{\mathrm{n}}}{\partial i_{\mathrm{a}}}=\frac{1}{i}$.

Amplification Factor.-It will be scen that a given change in v_{g} produces n greater change in i_{a} than would be produced by a similar change in "a. This leads to the conception of the voltage amplification factor of the valve μ_{0} :

$$
\begin{aligned}
\mu_{\mathrm{o}} & =\frac{\text { change in } v_{\mathrm{a}}}{\text { change in } v_{\mathrm{G}}} \text { to produce a given change in } i_{\mathrm{a}}, \\
& =\frac{\partial v_{\mathrm{n}}}{\partial v_{\mathrm{g}} i_{\mathrm{n}} \text { const }}=\frac{\partial v_{\mathrm{a}}}{\partial i_{\mathrm{n}}} \cdot \frac{\partial i_{\mathrm{a}}}{\partial v_{\mathrm{g}}}=\frac{1}{b} \cdot a=\frac{a}{b} .
\end{aligned}
$$

Hence the equation to the current may be written-

$$
i_{\mathfrak{a}}=\frac{1}{r_{i}}\left(v_{\mathbf{B}}+\mu_{\circ} v_{\mathbf{g}}\right)+c
$$

Any of the foregoing parameters of the valve may readily be found from the characteristics. a is usually tolerably constant, but b depends to a large extent on the grid voltage at which the characteristic is taken.

It is customary to specify, thercfore, the average value of $r_{1}=\frac{1}{b}$ when $v_{g}=0$, and the value of $\mu_{\text {o }}$ deduced from this value of b.

The actual amplification of a valve is limited by the impedance in the anode circuit. The effect of this and the several calculations on ralve circuits involving these factors μ_{0} and r_{1} are referred to in the chapters dealing with the particular applications of the valve to practical conditions.

In order to assist in the design of circuits including valves a series of characteristics of the chicf valves in use at the present day is given at the end of this chapter, together with the values of r_{g} and μ_{0}, and other operating data.

Grid Current.-When the grid of a valve becomes positive, a certain current will be attracted to the grid itself.

This current is small (of the order $\frac{2}{2}$ to $5^{1} 0$ of the anode current) owing to tho small area of the grid, but it is nevertheless to be avoided, since it introduces undesirable effects into the circuits connected aoross the grid, and reduces the effectiveness of the valuc. These points will be referred to later. The point at which the grid current commences to flow occurs near zero grid potential, but is often slightly negative.

Fig. 104.-Circuit for Finding μ_{0} and r_{i}.
For any particular valve the yuantities μ_{0} and r_{1} may bo determined experimentally by the use of the circuit shown in Fig. 104. In the first case
the switch S is open, and R_{1} and R_{2} are adjusted till no sound is heard in the telephones. Then-

$$
\mu_{\mathrm{o}}=\frac{R_{2}}{R_{1}}
$$

In the second case \mathbb{R}_{1} and R_{2} remain lixed at any convenient values, and the switch S is closed. If R is then varied ill no sound is heard in the tolephones-

$$
r_{1}=\mathrm{R}\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \mu_{o}-1\right),
$$

R, R_{1} and R_{2} should be of the order of 1,000 to 5,000 ohms.

Fig. 10j.-Arrleton Slopemeter.
Another circuit of use in this connection is the Appleton slopemeter. This is shown in Fig. 105. If the change-over switch is in the position (a) and R_{1} is adjusted till there is no change of current when the key K is closed, then-

$$
\frac{\partial i_{\mathrm{A}}}{\partial v_{\mathrm{g}}}=a=\frac{1}{\mathrm{R}_{1}}
$$

If the switch is in position (b) and the ratio R_{1} / R_{2} is varied till there is no - deflection on closing K, then-

$$
\mu_{0}=\frac{R_{8}}{R_{1}}
$$

Special Forms of Valve.-Valves having two electrodes only (the grid being omitted) are ofteu employed as rectifiers. Since a valve is only conducting when the anode is positive with respect to the filament, it forms a highly efficient rectifier. This subject is roforred to again on p. 153.

Valves have been constructed from time to time with more than threc electrodes. Barkhausen has shown that considerably higher amplification factors may be obtained by the use of two grids.

A circuit utilising such a valve is shown in Fig. 106.
The inner grid is made with an open mesh, while the outer grid has a elose mesh. The total voltage applied to the anode is small-say 30 volts-and a. tapping is taken from this at 20 volts to the second grid.

The combination of the filament, g_{1} and g_{2} act as a simple value having a low $\mu_{0}=$ say 31. The current flowing to the anode in, however, controlled by g_{2}, which, being of close mesh, gives an amplification of, say, 30 . The total amplification is thus $31 \times 30=100$, which could only be obtained with a single grid valve by having a very close grid, necessitating an anode voltage
of the order of 600 , and also a considerable negative potential to avoid excessive grid current.

Similurly, a valve of this type may operate on 1 or 2 volts high tension, giving results equivalent to 20 to 40 volls H.'. with a simple threeelectrode valve.

Fig. 10G.-Double Girid Valve.
The current in such Ω valve is given by--

$$
i=f\left[v_{\mathrm{g} 1}+\frac{v_{\mathrm{gz}}}{\mu_{1}}+\frac{v_{\mathrm{a}}}{\mu_{1} / \mu_{2}}\right]
$$

Another device, due to Scott-Taggart, employs two anodes, and is known as a negatron. One anode is controlled by a grid which is connected to the mainganode, the circuit being as shown in lig. 107.

Frg. 107.-Negatron Valie.
If the potential of the main anode increases, so also does that of the grid, which causes a current to flow to the second or diversion anode. The current to the main anode therefore falls instead of increasing, which gives a negativo resistance effect which may be utilised in any convenient manner.

Design of Valves.

The design of a valvo to comply with a given specification is a somewhat complicated matter, and is dependent to a large extent upon enppirical formule. The following remarks, however, will serve to indicate the methods employed to determine the principal dimensions.

Emission. - The most important property of a valve is the emission of electrons from the filament.

Richardson has shown that the actual emission from a hot filament is given by-

$$
\begin{equation*}
i=A \sqrt{T} \varepsilon^{-b / T} \ldots \tag{1}
\end{equation*}
$$

where A and b areconstants, $T=$ temperature in degrees absolute, $i=$ emission in amperes per square centimetre of cathode surface. Values of A and b for various substances are appended.

TABLE XXI.

Values of Λ and b in Ricimardson's Bquation.

Material.
Carbon (untrented)*
Platinun* $\quad \cdots \quad . \quad 7.5 \times 10^{25}($? $)$
Thorium $20 \times 10^{7} \quad 3.9 \times 10^{4}$
Tungstent $2.36 \times 10^{7} \quad 5.26 \times 10^{4}$
Molybdenum $2.1 \times 10^{7} \quad 50 \times 10^{4}$
Tantalum $1.12 \times 10^{7} \quad 5.0 \times 10^{4}$
Oxide (coated platinum). $8-2.4 \times 10^{4} \quad 1.94-2.38 \times 10^{4}$

Space Charge.-Richardson's equation gives the total emissivity or capability for emitting electrons at any given temperature. In an actual filament, however, the electrons which are cwitted cluster round the filnment and form a negatively charged " cloud," known as the "space charge," which repels all further electrons back into the filament.

The insertion of an anode raised to a suitable positive potential causes some of these electrons to be attracted across the gap, thus reducing the space charge and permitting more electrons to be emitted, the result being a steady flow of current.

Saturation.-The value of this current depends on the configuration of the electrodes and the anode voltage.

With a wire filament and a cylindrical co-axial anode of radius r centimetres raised to a potential V_{a} with respect to the filament-

$$
\begin{equation*}
i_{\mathrm{L}}=\frac{14 \cdot 69}{r} \mathrm{~V}_{\mathrm{a}}^{3 / 2} \times 10^{-6} \text { amperes } \tag{2}
\end{equation*}
$$

per unit length of filament.
For a plane anode at a distance d centimetres from a filament system also substantially plane, the equation becomes-

$$
\begin{equation*}
i_{\mathrm{a}}=\frac{2.33}{d^{2}} \mathrm{~V}_{\mathrm{n}}^{3 / 2} \times 10^{-6} \text { amperes } \tag{a}
\end{equation*}
$$

per unit length of filament.
With a given configuration, therefore, the anode current will increase ns $\mathrm{V}_{\mathrm{a}}^{3 / 2}$, until a point is reached where all the electrons emitted by the filament are attracted to the anode. Further increase can then only be obtained by increasing the temperature of the filament. This total emission or saturation current may be determined from Richardson's equation. In practice

- J. J. Thomson.
\dagger Langmuir.
the total emission of a valve is the saturation anode current obtained with grid and anode connected together (see p. 108).

Design of Filament.--The design of a filament to produce a given emission is complicated by the fact that valve filaments are so short that appreciable end-cooling occurs due to the supports, and the temperature is not uniform over the whole filament. The effect of this and the proper allowance to be made is discussed fully in a prper by Stead (Journ. I.E.E., vol. Iviii.. p. 107).

An approximate method is given in the paper, which applies to tungsten filaments of diameters from 0.0035 to 0.012 centimetre, and operating at temperatures of $2,000^{\circ} \mathrm{K}$. to $2,500^{\circ} \mathrm{K}$., which is the normal range of bright emitting filaments. The procedure is:
l. Assume a value of T_{m}, the temperature of the holtest portion of the filament.
2. Find voltage correction factor-

$$
\delta \mathrm{E}_{\mathrm{f}}=\mathbf{A}-\mathbf{B}
$$

where

$$
\begin{aligned}
& \mathrm{A}=\frac{\mathrm{T}_{\mathrm{m}}-350}{2500} \\
& \mathrm{~B}=0.88-100 d_{\mathrm{f}}
\end{aligned}
$$

where

$$
d_{\mathrm{f}}=\text { filament diumeter in centimetres. }
$$

3. Add $\delta \mathrm{E}_{\mathrm{P}}$ to the voltage E at which the filament is to be run-

$$
\mathrm{E}_{\mathrm{l}}=\mathrm{E}+\delta \mathrm{E}_{\mathrm{f}}
$$

4. Find $l_{\mathrm{f}}=\mathrm{C}_{\mathrm{f}} / \overline{d_{\mathrm{P}}} / \mathrm{K}$, where K is a constant, values of which are given in Fig. 108.

Fig. L08-Value of K in Equation for b_{f}.

This determines the filament length. To obtain the emission it is necessary to obtain the length l_{ρ}^{\prime} of an equivalent filament having a uniform tomperature $=T_{\mathrm{m}}$.

106

5. Find $l_{f}^{\prime}=l_{\mathrm{f}}-\delta l_{\text {, where }} \delta l=\mathrm{K}_{2} \vartheta / d_{!}-0 \cdot 30$. Values of K_{1} are given in Fig. 109.
6. The emission may now be found from $i=\boldsymbol{K}_{2} l_{1}{ }^{\prime} l_{\mathbb{1}}$ amperes, where K_{2} is a constant given in Fig. 110.

The design of the filament is thas amatter of trial and error. Values of ' 1 'n and d_{f} are assumed and the emission obtained. If this is not what is required, suitable modifications of the assumptions are made and the calculalion repented.

The temperature is determined to a large extent by the life. No very definite figures can be given in this connection. A tungsten filament at $2,300^{\circ} \mathrm{K}$. would have a probable life of 1,000 hours or more, while at a temperature of $2.450^{\circ} \mathrm{K}$ the life would be of the order of 300 hours only.

Fig. 109--Value of K_{1} in End Cohrection Formula.

Fio. llo.-Values of K_{2} in Emission Formula.

Filament Current.-The filament current depends upon the $3 / 2$ power of the diameter, and also upon the temperature.

Having seltled the diameter and temperature to produce a given emission, the current may be determined from the equation-

$$
\mathbf{I}_{\mathrm{f}}=\mathbf{K}_{3} d_{\mathrm{f}}^{3 / 2}
$$

where K_{3} is the constant given in Fig. 111.

Fig. lll.-Value of Kg in Filiment Cumbent Fonmula.
The curves as obtained by Stead apply only to tungsten filaments.
For purposes of comparison, however, values of K_{2} have been plotted in Fig. 110 for thorinted and oxide-conted filmments. The construction of these is described later. A dull emitter filnment designed on the lines given will be approximately correct only, since the end-cooling is not necessarily the same.

If the anode circuit is connected to the positive leg of the filament, the emission current itself will heat the filament to a small extent, and this may increase the emission by as much as 25 to 35 per cent.

Fig. 112.-Dissipation of Energy iy Anode.
Design of Anode. -The design of the anode resolves itself into two portions: 1. The satisfying of Langmuir's space charge equation in order that the - necessary emission may bo obtained at the working voltage. This limits the radius of the anode.
2. The provision of aclequate surface to dissipate the heat caused by the bonbardment of the anode by the electrons. The watts dissipated per square centimetre of anckel anode in terms of the temperature are given in Fig. II2, which is taken from n paper by Stead (Journ. I.E.E., vol. lix., p. 427). The watts dissipation is the product of $v_{\mathrm{A}} \mathrm{i}_{\mathrm{a}}$, and the dissipation per square centimetre is calculated on the external surface of the anode only. Tho melting-point of nickel is $1,720^{\circ} \mathrm{K}$., a red heat being obtnined at about $1,300^{\circ} \mathrm{K}$.

Design of Three Electrode Valve. -The provision of a grid between the anode and filament modifies tho strength of the field overcoming the space charge.

Tho total emission may then be determined by considering the grid and anodo as Ω cylinder of the same radius as the grid at a potential $\frac{v_{a}+\mu_{0} v_{g}}{1+\mu_{0}}$.

Hence Langmuir's equntion becomes-

$$
\begin{equation*}
i_{\mathrm{e}}=11 \cdot 69 \frac{l_{\mathrm{g}}^{\prime}}{r_{\mathrm{g}}}\left(\frac{v_{\mathrm{A}}+\mu_{\mathrm{o}} v_{\mathrm{B}}}{1+\mu_{\mathrm{o}}}\right)^{3 / 2} \times 10-0_{\text {amperes }} . \tag{4}
\end{equation*}
$$

where $l_{f}^{\prime}=$ equivalent length of uniformly hot filament, $r_{\mathrm{g}}=$ radius of grid.
Amplification Factor.-Gossling hns discussed tho subject of the design of vnlves in a paper before tho I.L.E. (Journ. I.E.E., vol. Iviii., p. 670), wherein the nmplificntion factor is given ns-

$$
\begin{equation*}
\mu_{o}=\frac{2 \pi n r_{\mathrm{E}} \log \frac{r_{\mathrm{n}}}{r_{\mathrm{E}}}}{\log \frac{1}{\pi n d l}} \tag{5}
\end{equation*}
$$

whero

$$
\left.\begin{array}{l}
n=\text { number of grid wires per centimetre, } \\
r_{\mathbf{a}}=\text { radius of anode, } \\
r_{\mathrm{g}}=\text { radius of grid, } \\
d=\text { diameter of grid wires. }
\end{array}\right\} \text { cms. }
$$

This formula applies to spiral grids, and also to the longitudinal supports of such grids. By a combination of the two a mesh grid may be considered.

It should also be noted that putting $v_{g}=0$ in equation (4) and rewriting, the value of μ_{o} at zero grid volts may be obtnined from-

$$
\begin{equation*}
\left(\mu_{0}+1\right)^{3 / 2}=\frac{14 \cdot 69 l_{\ell}^{\prime}}{r_{K} i_{\circ}} \mathrm{E}^{3 / 2} \times 10^{-0} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
l_{\mathrm{f}} & =\text { equivalent length of filament } \\
r_{\mathrm{g}} & =\text { radius of grid, } \\
\mathrm{L}^{\mathrm{L}} & =\text { anode voltage, } \\
i_{\mathrm{o}} & =\text { nnode current at } v_{\mathrm{G}}=0 .
\end{aligned}
$$

Internal Impedance.-As long ns the grid current is not appreciable, the anode current is proportional to $\mathrm{V}^{3} / 2$. Under theso conditions-

$$
T_{i}=\frac{2}{3} \frac{v_{\mathrm{a}}+\mu_{0} v_{k}}{i_{\mathrm{a}}}
$$

Design of Receiving Valves.--'The above formula and data apply to valves where the anode voltnge is ten or more times that used for the filament. Where this is not so, as is often the ense in recciving valves, tho design is somewhat modified by the non-uniformity of the ficld occasioned by the appreciable difference of potential between the anode and the positive and negative ends of the filament. This causes a reduction in the slope of the curves, the effect being shown in Fig. 113, which will indicate the extent of the

Fig. II3.-Illustirating Variation in Characteristic with Small Anode Voltages.
variation. For further details of the corrections necessary, the reader is referred to tho paper by Gossling previously mentioned.

General.-The following figures may be useful:
Charge on an electron:

$$
\begin{aligned}
e & =4.774 \times 10^{-10} \mathrm{C} . \text { S.U. } \\
& =1.591 \times 10^{-10} \text { Coulomi. }
\end{aligned}
$$

Mass of electron (for infinitely small velocities):

$$
m_{\mathrm{o}}=8.995 \times 10^{-28} \mathrm{gm}
$$

Ratio of charge to mass of electron:

$$
e / m_{0}=1.77 \times 10^{7} \text { E. } 11 . \mathrm{U} . / \mathrm{gm}
$$

The electron evaporation constant or the electron afinity is a measure of the amount of work which an clectron must do to escapo from the surface of a body. If-

$$
\begin{aligned}
& w=\text { work done } \\
& e=\text { charge on electron. }
\end{aligned}
$$

Then the clectron affinity $\varphi=\frac{w}{e}$.

TABLE XXII.
Valdes of Electron Affinities of Various substances.

Substance.	φ in Terms of Equivalent Volls.	Substance.	p in Tcrms of Equivalent Volls.
W	$4 \cdot 52$	Bi	$3 \cdot 7$
$1{ }^{1} \mathrm{t}$	4.4	7,	$3 \cdot 4$
Hg	$4 \cdot 4$	Th	$3 \pm$
Mo	43	Ca	$3 \cdot 4$
C	41	Al	30
Ag	41	Mg	2.7
Cu	40	Li	2-35
Sn	$3 \cdot 8$	N a	1.82
Fe	$3 \cdot 7$	Oxide-coated Pt .	1.55 to 1.9

ρ can also be expressed ns-

$$
p=8 \cdot 6 b \times 10^{5} \text { volts, }
$$

where b is the constant in Richardson's equation.
The total emission from a filament at a given temperature may be obtained if the value of p is known. The table below gives the omission in terms of T and φ, and this table, in conjunction with the preceding one, will serve to indicato the thermionic properties of any particular substance.

TABLE XXIII.
Values of Emission in Terms of p and 'T.
Total Emission in Amperes/Square Centimetres of

Temperalure
(Degrees K゙.).

Cathode Surface

		$p=2$ Volls.	3		4	5
1,000	\cdots	\cdots	25×10^{-3}	20×10^{-9}	20×10^{-13}	20×10^{-18}
1,500	\cdots	\cdots	72	30×10^{-3}	13×10^{-0}	60×10^{-10}
2,000	\cdots	\cdots	40×10^{2}	12	36×10^{-2}	11×10^{-5}
2,500	\cdots	\cdots	46×10^{-5}	43	42×10^{-1}	40×10^{-3}

Valve Manufacture.

The manufacture of a valve is similar in general principles to that of an ordinary electric lamp. The various components are made up and fixed in position on a glass stem. The whole is then mounted in a glass bulb and the air inside is pumped out.

Tho exhaustion in a valve, however, is carricd to a very high degree. Any gos molecules left inside the bulb may be ionised by collision with the rapidly moving electrons, and the positively charged nucleus drifts slowly towards the cathode. This causes a variation of the anode current, which gives rise to a variable characteristic. This is unsatisfantory for commercial working where a constant characteristic is very desirable. The relatively heary positive ions also will bombard the filament, and may in extreme cases cause disintegration thereof.

Not only is it necessary to remove all free gas, but also all "occluded " gas has to be removed as far ns possible. The walls of the bulb and the electrodea themselves absorb small quantitica of gas, and ns the valve warms up in use these gascs escape and cause "softening" of the valve. It is

THE GENERAL ELECTRIC CO., LTD.

Known throughout the world as the

MANUFACTURERS O:

EVERYTHING ELECTRICAL

G
ECOPHONE Wireless Apparatun. Osram Valven, Batteries, Telcphonc and Telegraphic Apparatus. Completc Central Station Equipment. Electric Plant of every description. E'ectric Locomotives, Motor Coach Equipment. Transminsion Lines, Steam Turbinen, Turbo Blowers, Coal and Ore Conveying Plant. Mining Machinery. Gan-Cleaning Plant. Motors, Switch:boardi, Switchsear. "Witton'Kramer"

Portable Electrical Tools, Drilla. Lifting Marnets. Engineering Supplien, Electric Fana, Electric Lisht. ins Supplien, Fixtures and Glansware, Osram Lamps, Robertson Lampa, Arc Lampa and Accensorien. Carbona, Cablen, Conduis. Bells. Sisnalling Apparatun. Heating and Cooking Apparatus. Electro-Medical Apparatua, Traniformera. Advertising Signa, lluminating 'Devices. Inaulatorn, etc.

THE GENERAL ELECTRIC CO., LTD., undertake mechanical and electrical contracts of ayy magnitude, using only plant and apparatus made in its Associated Factories.

WORKS :

ACCESSORIES WORKS
RAILWAY SIGNALLING APPARATUS WORKS
GLASS WORKS
METER WORKS
STEAM TURBINE WOORKS
CONVEYING AND MINING WORKS
CABLE WORKS
HEATING AND COOKING APPAR ATUS WORKS
ENGINEERING WORKS
CARBON WORKS
LAMP BLACK WORKS
BATTERY WORKS
STEEL CONDUIT WORKS
"FREEZOR" FAN WORKS
SWITCHGEAR WORKS
MOULDED INSULATION WORKS
TELEPHONE WORKS
ART METAL WORKS
INSTRUMENT WORKS
OSRAM-G.E.C. LAMP WORKS

Union Works, WEMBLEY, LONDON.
Union Works, WEMBLEY, LONDON. LEMINGTON-ON-TYNE and WEMBLEY.
birmingham.
ERITH.
ERITH.
SOUTHAMPTON.
Tower Works, BIRMINGHAM.
Witton, BlRMINGHAM.
Witton, BIRMINGHAM.
sTOKE, Near Coventry
Wheeleys Lane. BIRMINGHAM.
SIlk Street, SALFORD.
Brook Green, Hammersmith, LONDON.

RESEARCH LABORATORIES, WEMBLEY, MIDDLESEX.

 THE GENERAL ELECTRIC CO., LTD. /lead Office
Magnet House, Kingsway, LONDON, W.C. 2.

KEEP IN TOUCH

with all developments of the industry in which you are interested by reading
THE OLDEST AND LEADING WEEKLY JOURNAL OF ELECTRICAL ENGINEERING. INDUSTRY, SCIENCE, FINANCE

THE ELECTRICIAN

Published every Fridas. Price SIXPENCE.

THE ELECTRICAL TRADES DIRECTORY AND HANDBOOK

The only complete Directory of the Electrical Trades. The best medium between makers and buyers. 43 rd year of issue, published annually on January 30. 1925 issue. 1480 pages. 50,000 entries. Price 25s. net. Inland postage, is.

Annual Subscription, 25s. Post free U.K.

THE "ELECTRICIAN"

 TABLES OF ELECTRICITY UNIDERTAKINGSA compilation of indispensable data and statistics relating to hundreds of British, Colonial, or Foreign Undertakings. $3^{8 t h}$ year of issue. Published annually on May 1. 1925 issue. 170 pages. Price ros net. Postage gd. extra.

Send for Specimen Copy of "The Electrician" to BENN BROTHERS LIMITED

8, BOUVERIE STREET, LONDON, E.C. 4
customary, therefore, to apply a high potential to the anode and grid, and run the filament at a temperature somowht above normal. This causes a henvy electron bombardmont of the electrodes, which thus aro raised to a red hent and deliver up the oceluded gases. The bulb also is heated in an oven at the same time.

Dull Emitter Valves.-Recent developments have been in the direction of reducing the filament power. Special filaments are employed which give the necessary emission at temperatures of $1,200^{\circ}$ to $2,000^{\circ} \mathrm{K}$. only. It is more than ever desirable with this class of valve that the vacuum slanll be very high. beenuse the presence of gas in the valve causes chemical action to take place in the filament, which destroys the dull emitting properties. The successful production of such valves is largely due to the introduction in the bulb of a "getter," which cleans up the gas, not only during exhanstion, hut afterwards, when the valve is in operation. One such getter very Inrgely employed is metallic magnesium. A small piece of this metal is fused on to the anode during construction, and the valve during exhaustion need only be heated to a sufficient temperature to volatilise the magnesium, which then combines with any free gas in the bulb. The most dangerous gases are water vapour, nitrogen, and oxygen, with all of which the magnesium readily combines.

There are two chief forms of dull emitter filaments. One form consists of a thin strip of platinum conted with oxides of calcium, barium, strontium, etc. This type of filament runs at a dull red heat ($1,000^{\circ}$ to $1,400^{\circ} \mathrm{K}$.), and is used in the Wecovalve and similar types.

This type of filament is described in a paper by Arnold (Pliysical Review, 1920, vol. xvi., p. 76).
The standard filament is mado up by preparing solutions of barium carbonate and strontium carbonate or hydroxide in a suitable carricr, such as resin or paraffin. A thin platinum strip is then conted with four conts of each mixture alternately; the process is repeated twice, making sixteen coats in all. The filament is then heated to $1,200^{\circ}$ to burn off all the carrier, and the coating so formed is found to be extremely durable. Arnold gives the following figures:

$$
\begin{aligned}
\mathrm{A} & =8-24 \times 10^{4} \\
b & =1.94-2.38 \times 10^{4} \\
P & =1 \cdot 55-1.9 .
\end{aligned}
$$

A comparison of the emission of this typo of filnment with n pure tungsten filament may bo obtained by referring to Fig. 110.

Arnold also gives the following detnils of other oxide contings:

$$
\varphi
$$

Tho pure CaO coating is unstable, however, and peels off in use.
The second type of filament (as used in the DER and DE3 types) is tho thoriated type. In the manufacture of tungsten filaments it has long been the practice to mix a small percentage of thorium oxide with the tungsten, as this gives a more robust filament. It is found that by heating the filament to $2,900^{\circ} \mathrm{K}$. for one to two minutes, followed by a period of a few minutes at $2,250^{\circ} \mathrm{K}$., a filament is obtrined which will give as large an emission at $1,380^{\circ} \mathrm{K}$. as a puro tungsten filament at $2,000^{\circ} \mathrm{K}$.

The heating at $2,900^{\circ}$ is supposed to drive off all gaseous and solid impurities, after which tho heating at $2,250^{\circ}$ causes the thorium to diffuse to the surface of the filament, constituting a very thin, almost atomic layer of pure thorium.

This will give a satisfactory emission at a much reduced temperature, and it. is found that the wastage of the thorium layer due to emission is made up by further diffusion from the inside of the filament. The property is lost if the filament is run at too high a temperature (above $2,250^{\circ} \mathrm{K}$.), and the thorium layer is destroyed at once by the presence of any appreciablo quantity of free gas, and, consequently, tho pressure is not allowed to exceed 000001 millimetre.

The bulb size is also important. As the anode voltage is increased, stray electrons reach the bulb and ionise the oceluded gases therein. Hence, for

Fig.]le-Effect on Characteristics of Use of 'Thoriated Filament.

Fig. 115. - Showing Decheased Slope obtained with Thurium Emission.
a given bulb size there is a limiting anode voltage, which increases with the size of bulb, and is usually specified on the valve.

A very complete description of this type of valve will be found in a paper by Thompson and Bartlett (Journ. I.E.E., vol. lxii., p. 689), from which the foregoing data have been extracted.

It is found with this type of filament that, owing, it is thought, to some contact potential effect, the anode current at a particular grid voltage is less than that obtained with a tungsten filament.

The slope of the anode-current anode-voltage curve is also somewhat less, and the saturation is more gradual. These effects are fully described in the paper referred to, and are illustrated in Figs. 114 and 115.

Valve Characteristics.

There are on the market a large number of valves of various makes and designations. Some indication is given in the following pages of the characteristics of the most common types. In many cases several valves made by different firms, but intended to be put to the same use, have substantially similar characteristics, and in such case a representativo curve has been drawn. It will be appreciated that in any case tho values given are only average figures, but they sorve to indicate the suitability of n valve for a particular purpose. The author is indebted to the various firins mentioned below for their courtesy in providing the very complete details given.

TABLE XXIV.

General Purpose Valves.

Type.	Maker.	Fil. Volts.	Fil. Amperes.	H.T. Volts.	Internal Impedance (Ohms).	μ_{0}.	Repre. sentative Characteristic:
Ora	Mullard	3-5-4	$0.65-0.75$	30-90	30,000	$8 \cdot 5$	Ora
AR	Ediswnn	-	-	20-50	36,000	$6 \cdot 0$	Ora
R	B.T.H.	-	-	30-80	27,000	$9 \cdot 0$	Ora
PI	Cossor	-	-	20-80	20,000	6. 6	Ora
R	Ediswan	-	-	50-100	25,000	$7 \cdot 5$	B5
R	M.O.V.Co.	-	-	70-100	40,000	9.0	DER
RA	Mullard	-	-	50-100	30,000	$7 \cdot 0$	LEA
$\begin{gathered} \text { P2 (red } \\ \text { top) } \end{gathered}$	Cossor	-	-	60-80	40,000	11.0	DER
DER	M.O.V.Co.	1.8	0-3-0.4	30-70	45,000	$9 \cdot 0$	DER
LF Ora	Mullard	-	-	20-100	30,000	$5 \cdot 0$	ORA
ARDE	Ediswan	-	-	20-50	35,000	$9 \cdot 0$	DER
B3	B.T.H.	-	-	20-80	27,000	$7 \cdot 5$	ORA
B5	B.T.H.	2-5-3	0.06	30-80	17,000	$6 \cdot 0$	B5
DE3	M.O.V. Co.	-	-	20-80	20,000	$5 \cdot 0$	B5
DF Ora	Mullard	-	-	20-100	20,000	$5 \cdot 5$	B5
AR06	Ediswan	-	-	20-50	37,000	10.5	DER
Wecovalvo	Mullard	0.8-1.1	$0 \cdot 25$	20-50	18,000	$4 \cdot 7$	Wecovalve
Wecovalvo	W.E. Co.	-	-	20-50	25,000	6-0	Wecovalve
$\begin{aligned} & \text { P3 (green } \\ & \text { top) } \end{aligned}$	Cossor	-	$0 \cdot 22$	20-60	20,000	6-6	Wecovalve
P4 (blue top)	Cossor	-	-	20-60	40,000	11.0	DER
R5V	M.O.V. Co.	5	07	30-100	40,000	$8 \cdot 0$	DER

Note concerning Characteristic Curves.-The curves given are all static characteristics obtained with zero external impedance in the anode circuit. The dynamic or working characteristic is different, as is explained on p. 162.

The figures in brackets under the several characteristics are the values of grid voltage at which grid current commences to flow. The three chief parameters are:

111

Fio. 116-Ora (Mullard). (-1.) Fig. 117.-DER(M.O.V.Co.). ($+0 \cdot 7$.)

Fin. 118.-B.5 (B.'T.H.). (-0.3.)

Fio. 110.-Wecovalve (W.E.Co.).

1. $a=\frac{\delta i_{\mathrm{n}}}{\delta v_{\mathrm{g}}}=$ slope of the anode current-grid voltage characteristic at the particular grid and anodo voltages employed.
2. $r_{1}=\frac{1}{b}$. This is really the slope of the anode-current anode-voltage characteristic. Its value may be estimated by taking currents (from the curves given) at two values of anode voltago, one on each side of the actual voltage being used, both readings being taken for the value of v_{g} at which the valve is to be operated. Then-

$$
r_{1}=\frac{v_{n}-v_{n}^{\prime}}{i_{a}-i_{a}^{\prime}} .
$$

This parameter varies considerably with grid voltage, nnd also with anode voltage at low values. Hence it is important to obtain the value under nppropriate working conditions. The value of v_{a} should be estimated with due allowance for the voltage drop in the external anodo circuit. The values given in the accompanying tables are all taken at $v_{\mathrm{g}}=0$.
3. $\mu_{0}=\frac{a}{b}=$ voltage amplification factor. The actual amplification factor may be obtained from this as described on p. 162.

TABLE XXV.

Low Impedance Valves.

Type.	Makcr.	$\begin{gathered} \text { Fil. } \\ \text { l'olts. } \end{gathered}$	$\begin{aligned} & \text { Fil. } \\ & \text { Amperes. } \end{aligned}$	$\begin{gathered} \text { H.T. } \\ \text { Volts. } \end{gathered}$	Internal Impedance (Ohms).	$1{ }^{\circ}$.	Representatic Charac teristic.
V24	m.o.V. Co.	50	75	20-50	22,000	60	V24
S3	Mullard	3-4-3-8	. 65	15-50	10,000	40	V24
DEV	m.O.V. Co.	30	. 2	20-40	21,000	5.5	V24
DE6	m.o.V. Co.	1.8	4	30-110	12,000	50	DEA
D.3LF	Mullard	20	- 3	30-100	15,000	70	DE6
D.06L F	Mullard	30	-06	30-100	15,000	7.0	DE6

TABLE XXVI.

IItai Impedance Valves.

(Tho first four valves are particularly suitable as rectifiers for anode rectification. The remainder are suitable for H.F. amplication.)
Type. Maker. Fil. Fil. H.T. $\begin{gathered}\text { Internal }\end{gathered} \begin{gathered}\text { Repre- } \\ \text { Impedance }\end{gathered} \mu_{0}$ sentative

ype.	Maner.	Volts.	Amperes	Volts.	(Ohms).	。	Charac
Q	M.O.V. Co.	5-0	45	50-150	150,000	45	
DEQ	m.O.V. Co.	3-0	2	30-50	100,000	25	DEQ
QX	m.O.V. Co.	50	. 71	30-100	71,500	18	QX
Sis	Mullard	$3 \cdot 6$. 6.5	20-50	170,000	50	Q
R4	M.o.V. Co.	$3 \cdot 8$	$1-2$	40-80	50,000	12	R4
R. 4 B	M.O.V. Co.	3.7	65	40-80	75,000	14	QX
D. 3 HF	Mullard	20	3	40-100	60,000	17	QX
H	Sullard	3-0	. 06	40-100	60,000	17	QX

Fio. 122.-Q (M.O.V. Co.). (-1-5.)

Fio. 123.-DEQ (M.O.V. Co.). (-0.5.)

Fia. 124.-QX (M.O.V. Co.). (-10.)

Fig. 125.-R4 (M.O.V. Co.).

TABLE XXVIl.
 Power Val.ves.

(These valves are intended for low frequency amplification, using high anodo vollages with a considerable negativo grid vollage to avoid grid current and consequent distortion. The last two valves are particularly suitable for resistance capacity amplification.)

							Representative Characteristic.
Type.	Maker.	Fil. Volts.	Fil. A mperes.	$\begin{aligned} & \text { H.T. } \\ & \text { Volls. } \end{aligned}$	Internal Impedance (Ohms).	$\mu_{0}{ }^{\text {. }}$	
PAl	Mullard	$6 \cdot 0$	1.5	200-400	8,500	7-5	PA1
PV2	Ediswan	60	1.5	200-400	11,000	$4 \cdot 5$	PAl
LS2	M.O.V. Co.	60	1.5	200-100	8,000	5-0	PAl
PA2	Mullard	$5 \cdot 5$. 85	100-200	7,000	4.0	PA2
LS5	M.O.V.Co.	$4 \cdot 5$. 8	100-200	6,000	$5 \cdot 2$	PA2
PA3	Mullard	40	. 75	70-150	10,000	4.0	PA3
PV3	Ediswan	40	-7	70-110	25,000	5-0	PA3
LS3	M.O.V. Co.	40	$\cdot 7$	100-200	10,000	45	PA3
PV1	Ediswan	G-0	1.5	300-600	20,000	11.0	LS1
LS 1	M.O.V. Co.	G0	1.5	200-400	15,000	110	LS 1
P5DE	Ediswan	50	. 25	50-150	9.000	50	PA2
DE4	M.O.V. Co.	$3 \cdot 6$	-3	50-150	10,000	70	PA2
DFA0	Mullard	$3 \cdot 5$	-35	$50-100$	5,500	4.5	DFA0
DFAI	Mullard	$5 \cdot 5$	-20	50-100	¢,500	$4 \cdot 5$	DFA0
DFA2	Mullard	$3-5$. 25	$50-100$	7,500	4.5	PA2
DE5	M.O.V. Co.	50	. 22	40-150	7,000	70	PA2
134	B.T.H.	60	-2	40-100	7,500	4.5	PA2

DFA3	Mullard	$5 \cdot 5$	-06	$50-150$	13,000	7.5	PA3
B6	B.T.H.	30	-12	$50-150$	9,000	$6 \cdot 3$	PA3
B7	B.T.H.	6.0	-06	$50-150$	9,000	$6 \cdot 3$	PA3
DFA4	Mullard	$5 \cdot 5$	$\cdot 2$	$100-300$	27,000	20	DE5B
DE5̄B	M.O.V.Co.	$5 \cdot 5$.25	$100-300$	30,000	20	DE5B

TABLE XXVIII.

Transmittino Valves.
(A few representative curves only are given.)
Fil. Fil. Anode DissiType. Maker. Volts. Am- Veres. Volts. patts.
T15 M.O.V.C. $6.0 \quad 10 \quad 400-800$
T30 M.O.V. Co. $7.0 \quad 1.75 \quad 1,000-1,500$
T50 M.O.V. Co. $7.0 \quad 2 \cdot 5 \quad 1,000-2,000$
T100 M.O.V.Co. $100 \quad 3.5 \quad 1,000-2,000$.
T250 M.O.V.Co. $12.5 \quad 5 \cdot 25 \quad 1,000-2,000$
$\begin{array}{llll}\text { O150 Mullard } & 10.0 & 3 \cdot 3 & 1,500-2,500\end{array}$
$\begin{array}{llll}0250 & \text { Mullard } & 12.0 & 5 \cdot 2 \\ 1,500-3,500\end{array}$
0500 Mullard $\quad 19-0 \quad 5-4 \quad 2,500-5,000$

For Radio

MULLARD Valves are produced in a wide range

 of powers for transmitting, rectifying and receiving work.Many land and ship transmitting stations all over the world rely on the superiority of Mullard Valves day after day for efficient operation, and governments and radio engineers have proved by experience that the productions of the largest Valve Factory in Europe are reliable. efficient and robust. Full technical information and specification for any type of wireless valve can be obtained upon application.
The recent amateur trans world radio records established with New Zealand. Australia and America were achieved through "Mullard" Valves.

Adut.-The Mullard Radio Valve Co.. Lid. (T.T.), Nightingale Works, Balham. London, S.W. I 2

for

Everything Electrical

F DISWAN can almost be called the cradle of the electrical industry, and to-day their products cover everything that the Electrical Engineer can require. Here are a few :

Royal "Ediswan" Lamps Junction Boxes.
(Gasfilled, Vacuum and Switchgear. Carbon types).
Accessories.
Accumulators. Instruments.
Meters.
Wireless Sets. Wires and Cables.

Switchboards. Fans.
Heating and Cooking Apparatus.
Dry Cells.
Wireless Valves.
Fixtures.

Every product is British, well designed and thoroughly reliable. Write for catalogues and full particulars to

The Edison Swan Electric Co. Ltd.

 123-25, Queen Victoria StreetE.C. 4

Fig. 12(i.-pal (Mullard).
Fig. 127.-PA2 (Multarn).
(0.)

Fio. 128.-PA3 (Mollard). (-1-5.)

Fia. 129.-DE5B (M.O.V. Co.). (0.)

139

RADIO TRANSMITTERS.

Radin transmitters fall into two main classes. In the first, an oscillating eircuit is made up having a condenser in series with an inductance and a spark gap. The condenser is charged to a high potential which breaks down the gap, with the result that an oscillatory discharge takes place. This system is known as the spark system.

The second system utilises suitable means for supplying energy to the circuit continuously, this system being known as the continuous wave aystem.

The two systoms are essentinlly different, and will therefore be considered separately.

Spark Transmitters.

The simplest form of spark transmitter is shown in Fig. 138. The aerial constitutes the condenser, which is charged to a high potential by the induction coil, and the voltago thus rises

Fig. 138.-Precharged Aerial. until the spark gap breaks down. The condenser then discharges across the gap in an oscillatory fashion, provided that the resistance of the circuit and gap combined is not too high, so radiating a train of waves. These waves will be heavily damped, and will die away after a comparatively fow oscillations, after which the gap will become non-conducting again, nnd the process will be repeated. Since the oscillations will dic away in about $1 / 100,000$ second, there is a considerable interval between the successive sparks, which only occur at a frequency of about 50 per second with an induction coil, or 500 to 1,500 per second if an alternator is employed, as is more usual.

A system such as this, however, employing what is known as a precharged acrial, is prohibited by international convention, because the aerial can oscillate at an infinite number of frequencies from the fundamental ($\lambda=4 l$ approximately) upwards. This would give rise to considerable and unnecessary interference, so that the system is not permitted. The difficulty is overcome by employing a primary tuned circuit containing the spark gap, which is coupled to the aerial in a suitable manner. The wave length is then determined by the closed circuit, and, moreover, since the spark does not occur in the aerial circuit, the decrement of the system is lower, and the waves are not so rapidly damped.

The coupling, however, must not be too tight, as otherwise bents will be set up, as was described on p. 75.
The amount of coupling permissible depends on the type of spark gap employed. It is very desirable that the successive sparks should occur regularly, for under such conditions a clear musical note is obtained in the receiver, which is of great assistance in reading through atmospheric disturbances. To ensure regular sparking it is essential that after each spark the hot gas should be dissipated as rapidly and completely as possible, so that the spark may always occur with the same voltage across the gap.

Plain spark gaps, therefore, are made of non-arcing material, such a zinc or aluminium-not copper-and it is usual to construct them with parallel faces to permit the spark to "wander," and so avoid pitting as far as possible. Uil enclosed gaps aro sometimes employed to increase the cooling of the gap after each spark.

Plain grps, however, are littlo used, except for small powers. The more usual forin of gap is the synchronous type. Here current is supplied by an alternator to a transformer, which steps up the volinge to a suitable value. The spark gap takes the form of a sories of spokes on a dise mounted on the alternator shaft. These spokes pass within a small distance of two fixed electrodes, and at these points a spark occurs. The arrangement is so designed that the spokes are in the correct sparking position just at the moment when the spark is due, which, as will be seen later, is just before the peak of the E.M.F. wave of the alternator. The oscillation takes place, and tho condenser commences to build up again, usually acquiring its

Fig. 139-1 1 -Kilowatt Disc Discharger. (By courlesy of Radio Communication Company.)
sparking potential again one half-cycle or one cycle later. Since the dise is mounted on the alternator shaft, there will be a set of electrodes ready to take the spark overy time. The spark thus always occurs at a definite point in the cycle, and the rotary motion of the dise cools the electrodes, and removes any ionised air, so further assisting the regularity of the sparking. The successive sparks take place between different electrodes on the dise, so that the same electrode is only used once in every ten sparks or so. Fig. 139 shows the dise discharger on a $1 \frac{1}{2}$-kilowatt set mado by the Radio Communication Company.

Quenched Spark Gaps.-The surging of the energy between the primary and secondary circuits, which occurs when the coupling between the two is too tight, could obviously be prevented if by some means the primary circuit were definitely broken after the first surge-i.e., after the energy had been completely transferred to the aerial, and before any retransfer took place. This is accomplished by using a special form of gap built up of a number of sections in series. The individual gaps are very close together, the
spacing being of the order of 0.01 inch, and large cuoling fins are provided. Fig. 140 shows the construction of such a gap. With such a system the cooling facilities are considerably increased, with con-

Fig. 140.- Diagram of Quenched Spark Gap. sequent reduction of ionisation, so that when the spark is extinguished for the first time it cannot rekindle, and no transfer of enorgy is possible. With a gap of this kind the coupling may be made as high ns 15 to 18 per cent., whereas with the ordinary rotary gap it seldom exceeds 5 per cent., a plain gap being still less efficient. Since the transformation efficiency affects the design of the primary circuit, the use of a quenched gap enables a somewhat cheaper construction to be employed.

It is important that the individual gaps should be air-tight. The sparking across the gaps ionises the air, and separates the nitrogen and oxygen, which latter combines with the metal. The remaining nitrogen is less readily ionised, and this, combined with the rapid cooling facilities of the construction, give the gap its quenching properties. The voltage across an individual gap is about 1,200 volts.

The Physics of the Spark.-When the voltage on the condenser rises above a. certain limit determined by the length of tho spark gap, an oscillatory discharge takes place, the current jumping across the gap and forming a spark. This dischargo has been investigated by various scientists, and appears to be intermediate between a glow discharge and a simple are discharge.

The equation to the spark is of the form: $v=a+b / i$.
The resistance, therefore, is of the form: $\mathrm{R}=a / i+b / i^{2}$.
The decrement of a spark train is thus not constant, the waves tending to die nway according to a linear law (the second term usually being small compared with the first), instead of in an exponential manner.

Effective Value of Current in Spark Circuit.- If the current is assumed to be of the form $i=I_{0} \varepsilon^{-a t} \sin \omega t$, then it may be shown that the R.M.S. current is given by-

$$
\mathrm{I}^{2}=\frac{\mathrm{NI}_{0}^{2}}{4 f \delta} \cdot \frac{1}{1+\left(\frac{\delta}{2 \pi}\right)^{2}}=\frac{\mathrm{NI}_{o}^{2}}{4 f \delta} \text { if } \delta \text { is small }
$$

where
$\mathrm{N}=$ number of sparlss per second,
$f=$ frequency of oscillations,
$\delta=$ logarithmic decrement.
Since $I_{0}{ }^{2}=E_{0}{ }^{2} \frac{C}{L}$, the expression may be written: $I^{2}=\frac{N E_{0}{ }^{2} \mathrm{C}}{2 R}$, where C is the capacity of the condenser, and E_{o} is the voltage to which it is charged.

Sparking Voltage.-The actual voltage necessary to produce a spark depends upon (1) the size and shape of the spark surfaces; (2) the nature of the surfaces; (3) the nature and pressure of the gas; (4) the nature of the light illuminating the gap, ionisation being produced by any ultraviolet light present, with corresponding reduction of the sparking voltage.

The lowest sparking voltage for a given longth of gap, is obtained when
the two electrodes are needle points, and Fig. 141 below gives the sparking voltages in air behween needlo points at atmospheric pressure.

Fig. 141.-Sifaring Voltage between Needle Pornts (in Ali).

Fio. 142.-Sparking Voltage between Badls in Ar.
For simple spark gaps omploying spherical electrodes the voltage depends upon the diameter of the balls, as well as the distance apart. Fig. 142
gives the sparking voltages for various sizes of balls and for various lengths of gap. These data are due to Kryo and Lably.

Plane Disc Electrodes.-This is a case of some practical importance, since, as has been seen. spark gaps are usually mado with parallel faces. Baille has given tho following formula:

$$
\mathrm{V}=30 s+1 \cdot 35 \text { kilovolts, }
$$

where s is the length of the gap (cms.). This formula only applies to gaps of the order of 1 millimetre.

Variation of Sparking Voltage with Pressure:

$$
E=E_{0}(0 \cdot 2+0.8 \mathrm{P} / 760) \text { at } 17^{\circ} \mathrm{C}
$$

where E is the voltage at a pressure P millimetres, $\mathrm{E}_{\text {o }}$ is the voltage at the normal pressure (760 millimetres).

Design of Spark Transmitter.

The design of a spark transmitter resolves itself into two portions: the high frequency circuits, and the low frequency circuits supplying the voltage to charge the condenser.

High Frequency Circuits.- A representative circuit for a spark transmitter is given in Fig. 143. There are two high frequency circuits: (a) the aerial circuit, and (b) the closed circuit $\mathrm{L}_{1} \mathrm{I}_{2} \mathrm{C}$ and the spark gap.

Fig. 143.-Circuit of Spark Transmitter.

The first essential is that the condenser C shall be of sufficient size to handle the onergy required. Let η be the efficiency of transformation between the closed circuit and the aerial; the energy stored in the condeuser C is $\frac{1}{2} N^{2} V^{2}$, N being the number of sparks per second. If the aerial energy required is W watts, then-

$$
\mathrm{C}=\sqrt{\frac{2 \mathrm{~W}}{\eta \mathrm{NV}}}
$$

V is determined by the size and type of gap to be employed, so that C is thus obtainable.

The design of the remainder of the circuit then follows from the considerations of tuning. The efficiency of transformation η is the ratio of the power supplied to the acrial circuit to that supplied to the primary circuit,
and thus allows for the losses in the primary. For the $1 \frac{1}{2}$-kilowatt spark set at North Foreland the value of this efficieney is 60 per cent.

Jigger-Degree of Coupling.-The acrial coupling transformer, usually known as the " jigger," is designed generally in accordance with the laws of coupled circuits already discussed (p .75).

Drude has suggested that the correct value of the coupling factor may be determined in terms of the degree of coupling, which is given by-

$$
\begin{aligned}
k^{\prime 2} & =k^{2} \sim\left(\frac{\delta_{1} \sim \delta_{2}^{2}}{2 \pi}\right), \\
r^{\prime} & =\text { degree of coupling }, \\
k & =\text { coupling factor, }
\end{aligned}
$$

δ_{1} and δ_{2} are the decrements of the primary and secondary circuits.
The coupling is loose if $k<\frac{\delta_{1}-\delta_{2}}{2 \pi}$, and is tight if $k>\frac{\delta_{1}-\delta_{2}}{2 \pi}$. The optimum condition for a single wave coupling without any surging occurs when $k=\frac{\delta_{1}-\delta_{2}}{2 \pi}$. In this case the voltage on the secondary (maximum) is one eighth of the maximum voltage in the primary circuit.

Fig. 14--Valdes of Factor ρ in Terms of k.
In general the voltage in the rerial (secondary) circuit depends upon the damping in each circuit, the respective capacitios, and the coupling botween the two circuits. Taylor has shown that the voltage may be expressed in the form:

$$
\mathrm{V}_{\mathrm{Q}}=\rho \sqrt{\frac{\overline{\mathrm{C}_{1}}}{\mathrm{C}_{2}}} \mathrm{~V}_{\mathrm{2}},
$$

and Fig. 144 shows the variation of the constant ρ with the coupling. It will bo seen that little advantage is gained by increasing k beyond 0.1 . The energy transferred from primary to secondary is proportional to ρ^{2}.
$1 I I$.

Choke Coils.-The choke coils L_{5} and L_{8} are for the purpose of preventing the high frequency oscillations from lowing back through the transformer secondary, and causing damage to the windings.

The value of these chokes is about $10,000 \mu \mathrm{H}$ for a set working over a range of 300 to 800 metres. As an additional precnution, the insulation of the end turns of the secondary of the transformer is specially reinforced.

Low Frequency (Charging) Circuit.-When a spark takes place, the secondary of the transformer is momentarily short-circuited. This causes an are to lake place across the spark gap, which causes undesirable burning of the electrodes, apart from the elfect of the short circuit on the transformer itself.

In order to overcome this defect, it is customary to tunc the charging circuit to the frequency of the alternator. The spark is then extinguished at the point where the alternator voltage is zero, and hence does not reignite. It may be remarked in passing that if the low frequency circuit is correctly ndjusted, the spark sounds like the crack of a whip, whereas arcing is immediately distinguishable by a hissing noise.

The method of tuning varies with the conditions. With small sots the reactance of the circuit may be varied by employing a leaky transformer,

(b) Spark every cycle.

Fig. 145.-Ilfustratina Build-up and Discitarge of Condenser Voltage.
the leakage being variable, but the more usual method, used on larger sets, is to provide a separate variable choke coil in series with the primary of the transformer.

The tune of the circuit may readily be obtained from the ordinary transformer laws. If T is the transformation ratio of the instrument, then the transformer with the condenser C across the secondary may be replaced by an equivalent condenser of value CT^{2}.

This neglects the effect of the inductances L_{1}, L_{2}, L_{6}, and L_{0}, which are all very small compared with that of the alternator and choke coil. The circuit
is thus designed so that the inductance of the alternator and the external choke coil tune with the equivalent condenser CT ${ }^{2}$ to the alternator frequency. It may be observed, however, that although the radio frequency inductances may be neglected in determining the size of the low frequency choke, the low frequency tune is very sensitive to the smallest changes in these inductances. A change of wave length thus usually necessitates π readjustment in the value of the low frequency choke.

Fig. 145 shows the rise of the voltage on the condenser, under correctly adjusted operating conditions, with the spark taking place every half-cycle and every cycle. It will be observed that the tuning is slightly sharpi.e., the condenser voltage reaches its maximum just before the alternator voltage is zero. This is so that at the end of the spark train, when the gap opens, the alternator voltage shall bo zero. If this is not the case, arcing may be produced.

Design of Transformer.-When the circuit is tuned and the alternator voltage is E sin $p t$, the voltage across the equivalent condenser is given by-

$$
\mathrm{V}_{\mathrm{c}}=\frac{\mathrm{E}}{p \mathrm{CR}}\left\{\frac{\mathrm{l}}{2 p \mathrm{~L}} \varepsilon^{-\frac{\mathrm{R}}{2 \mathrm{~L}^{t}} \sin p t-\left(1-\varepsilon^{-\frac{\mathrm{R}}{2 \mathrm{~L}} t}\right) \cos p t}\right\}
$$

The first term is the transient term, which rapidly dies away, the ateady state being represented by the second term. In this case, however, the transient term is of importance, since the spark is usually arranged to occur

Fia. 146.-Value of V Condenser with Spark every Half-Cicle.
every half-cycle or every complete cycle. The maximum value of the voltage on the condenser is therefore obtained from this expression in terms of the alternator voltage.

For most practical cases, assuming a spark every half-cycle, this ratio is of the order $1 \cdot 5$. Curves are given in Fig. 146, which show the variation of this ratio with the values of both C and R.

132

The voltage on the actunl condenser C will, of course, be T times this value, and this actual voltage must equal that originally assumed for the spark gap. Hence the transformation ratio 'I' may be calculated.

From the ordinary transformer laws, the primary must lee designed to fulfil the condition-

$$
\mathrm{V}_{\mathrm{eff}}=4 \cdot 4+\mathrm{AB} n_{1} f \times 10^{-8}
$$

where
$A=$ area of core (sq. cms.),
$B=$ llux densily,
$n_{1}=$ number of turns, $f=$ frecurency.
$V_{\text {eff }}$ in this ense is not $\frac{V m n x}{\sqrt{2}}$, since the vollage is not sinusoidal. The following values may be used:

Spark every half-cycle: $V=0.5 \mathrm{Vmax}$.
Spark every cycle: $V=0.55$ Vmax.
Power Factor in Charging Circuit.-If $\frac{\mathrm{L} p}{\mathrm{R}}>6$ nnd $\underset{\pi}{\sim} \mathrm{N}<3$, then Baillie has shown that the power factor is given by-

$$
\cos \varphi=\frac{\left(1-\varepsilon^{-\beta}\right)^{2}}{1+\frac{1}{2 \beta}\left(1-\varepsilon^{-2 \beta}\right)-\frac{2}{\beta}(1-\varepsilon-\beta)}
$$

where

$$
\beta=\stackrel{\mathrm{R}}{2 \mathrm{NL}}, \mathrm{~N} \text { being the number of sparks per second. }
$$

Fig. 147.-Ritio of Total Voltage to Voltage rer Gar with Quenched Srark.

Spark Voltage.-For n plain or rotary gap the spark voltage may be calculated from the formula and tables already given.

In the case of quenched gaps, however, the voltage across the whole gnp
is not n times the voltage across a single gap owing to the leakage capacity to earth. Schuleikin and Freeman have shown that if-

$$
k=\frac{\text { lealsage capacity to earth }}{\text { capacity between adjacent plates }}
$$

then the ratio of the total voltage to that across a single gap is as shown in the curves in Fig. 147. These curves refer to the case where one end of the gap is carthed. If the mid-point of the transformers is carthed, the value of k should be multiplied by 2.

The voltage ncross a single gap may be calculated from the formulx for plane dises given on p. 128.

Continuous Wave Transmitters.

The spark system of generating electromagnetic waves suffers from the disadvantages that it is only radiating energy for a small fraction of the total time, and also, due to the damped character of the wave, tuning is not sharp and considerable interference to other services is caused.

Morcover, the voltage on the aerial for the same power is less for a C.W. than a spark system. Since this is one of the limiting factors in aerial design, a higher power input is obtainable with a given aerial system using C.W. Λ fourth advantage lies in tho fact that the absorption of continuous waves is somewhat less than with spark worbing.

The C.W. system has therefore completely superseded the spark system for long-distance and point-to-point communication. Spark working is, however, still extensively used for ship and shore communication, mainly for two reasons. Firstly, the prime and running costs are smaller, particularly in respect of the receiver, which need only be a simple crystal apparatus. Sccondly, the broad band of a spark transmitter facilitates tuning in, and also enables SOS and similar calls to bo heard even if the ship is not accurately tuned to the correct 600 -metre wave length.

Thero are three main systems in use to-day for generating C.W. Firstly, there is the high frequency alternator, in which, by suitable design, the frequency generated is either that required or some integral fraction thereof. Secondly, there is the are system, in which an electric are suitably connected may be made to sustain oscillations continuously in an ordinary oscillatory circuit. While, thirdly, there is the valve system, employing the regenerative properties of the thermionic valve. These systems will now be considered in detail.

The High-Frequency Alternator System.

There are two main lypes of high frequency alternator. In the first, the Alexanderson allernator, the principlo of the ordinary inductor alternator is extended to the limit. Fig. 148 gives a diagrammatic view of such a machine. The field system is in the form of a hollow ring having a slot on the inside. Inside the ring is a circular field coil, which produces a flux round the cross-scction, as shown in Fig. 148, this flux flowing across the gap or slot previously mentioned.

The rotor is in the form of a thin disc mounted co-axinlly with the field system, the edge of the disc running in the slot in the field system. The rotor dise is not solid, but is toothed, while the inside of the slot in the field system is also provided with corresponding pole pieces round which are wound the armature coils.

134

The rotation of the disc, therefore, alters the distribution of the flux in the gap, the flux in any particular pole piece being a maximum when a tooth of the rotor is in the gap, and a minimunt when in the intermediate position between two tecth. In practice, to avoid air friction, the spaces between the tecth are filled with gun-metal.

By suitable design, very high frequencies may be obtained by this means. Assuming that there are 250 slots on the disc, which is rotating at a speed of 200 r.p.sec. (12,000 r.p.m.), the frequency would be $250 \times 200=50,000$ cycles per second.

This corresponds to a wave length of 6,000 metres. By careful design frequencies of 100,000 may be obtained, but these machines are generally employed for rather lower frequencies. It is not economical to build these

Fig. 148.-Section of Alexanderson Alternator.
machines for small powers, and their chief use is for long-distance communication, requiring powers of 50 to 250 kilowatts, and operating on wave lengths of 6,000 metres and upwards.

On large machines, the machine is totally enclosed and the rotor is run in a vacuum to reduce the air friction, which, at the very high speeds employed, is a considerable source of loss.

The inductance of the armature windings, which are all connected in series, is so designed that it will tune to the particular frequency with the capacity of the aerial, a small external choke coil being inserted for fine adjustment purposes.

Goldschmidt Alternator.-Another very ingenious machine, which is becoming obsolete, is the Goldschmidt alternator. It is well known that the field system of an ordinary alternator has induced therein small E.M.F.'s of double the frequency of the armature. In the Goldschmidt machine these E.M.F.'s are allowed to produce large currents by tuning the ficld
system to the requisito frequency, and consequently they in turn induce E.M.F.'s of triple frequency in the armature. The process may be repeated indefinitely, but tho losses in tho machine begin to increase rapidly after four or five frequency transformations, so the process is not carried any farther.

Fig. 149 illustrates the principle involved. The initial D.C. field current is supplied by a battery or auxiliary generator through the choke L_{0}. This choke is essential in order to provent the double frequency currents from leaking through the supply circuit. The rotor is tuned to the frequency of the alternator f, which is usually of the order of 10,000 cycles per second. These currents induce E.M.F.'s of frequency $2 f$ in the field system, which pass through the circuit $\mathrm{C}_{2} \mathrm{~L}_{2}{ }^{\prime} \mathrm{C}_{2}{ }^{\prime}$, which is tuned with the stator inductance to accopt this frequency. These currents in turn set up frequencies $3 f$ in the rotor, which are accepted by the circuit $\mathrm{L}_{\text {rotor }} \mathrm{C}_{2} \mathrm{C}_{3}$, and these currents

Fig. 149.-Diagram of Goldschmidt Altelenator.
finally react on the stator, producing currents of frequency $4 \int$ in the circuit $\mathrm{L}_{\text {atator }} \mathrm{C}_{1} \mathrm{C}_{\text {aer|n] }}$, the final frequency thus being 40,000 cycles, corresponding to 7,500 metres.

A machine which is in use to a large extent in France is the BethenodLatour alternator. This machine operates on the same principle, but the Lransformations are effected in separate machines on the same shaft. The fiold of the second machine is thus supplied with current of frequency f, so generating currents of double frequency in the rotor, and so on.

One of the chief difficulties in designing high-frequency alternators is the very small space available for each pole. Latour overcomes this difficulty by arranging the poles in several layers in the armature and staggering successive layers. Thus, with three layers the successive poles would each be staggered 120° (electrical).

Fig. 150 illustrates the system. For further details the reader is referred to a paper by Latour (Proc. I. R.E., vol. viii., p. 220).

Speed Regulation.-It is essential with machines of this typo to maintain the speed absolutely constant, as the slightest variation will cause variations in the wave length transmitted. In practice, the variation in frequency is found to be from 10 to 20 cycles in 50,000 , which means that the speed is kept

136

constant to within 005 per cent. This is a remarkably fine performance, which can only be attained by the use of very elaborate regulators.

The starting of such machines is also a very skilled business, since the rotor runs at such a high speed that several critical speeds have to be passed through in the running-up period.

Keying.-The keying on high-frequency alternator may bo effected in a variety of ways. One method is to break the field circuit. A moro usual method is to shorl circuit the alternator. Since the alternator is normally tuned, this calls for less oxpenditure of power than when the short circuit is removed.

A third method, due to Alexanderson, employs a device known as a magnetic key. This arrangement consists of a choke coil having two windings. One of these windings is connected across the alternator terminals; owing to its high inductance at the radio frequency, it does not affect the alternntor. The depression of the key, however, sends a steady D.C. current round the second winding, which saturates the iron, causing the inductance of the main coil to drop to a value of the same order as that without any iron core. This produces a considerable short-circuiting effect on the alternator, and so

Fig. 150.-Illustrating Stagoer of Pole Pieces on BethenonLatour Alemnatoh.
reduces the aerial current. This device has the advantage that it may be employed to modulate the aerial current for telephony, if desired, by passing speech currents round the auxiliary winding.

Frequency Changers.-The cost of a high frequency alternator increases rapidly as the frequency is increased, and it is usually found more economical in practice to generate a somewhat lower frequency and to double or treble the frequency by means of certain special forms of static transformer, known as frequency changers.

One such arrangement is shown in Fig. 151, known as Joly's doubler. The D.C. winding on the centre limb produces a flux round the instrument, as indicated by the arrows. The current from the alternator or other source of supply passes round the two primary windings in series, the effect being to increase the flux in one limb and to decrease it in the other. The D.C. polarising current is arranged to magnetise the iron at the knee of the B-H curve, as shown in Fig. 152. Owing to this asymmetry, the decrease of flux in the bottom limb is greater than the corresponding incrense in the top limb. The secondary windings have an E.M.F. induced in them by the flux pulses, these two E.M.F.'s being in the opposite directions, owing
to the clirections of the windings. Since the values of the flux changes are not the same, however, there will be a resultant E.M.F. induced as a result of the flux pulse.

Since there will bo one flux pulse per half-cycle of the applied E.M.F., the E.M.F. induced in the secondary will be of double frequency. This effect will be clear from Jig. 152 . It will bo scon from Fig. 151 that the primary

Fig. 151.-Joly's Frequency 1)oubler.
circuit is tuncd. This is ossential, as there is a double freduency term in the primary back E.M.F. which has to be suppressed.

Plohl's Doubler.-A somewhat similar arrangement, due to Plohl, is shown in Fig. 153. Here two transformers aro omployed, and tho two circuits are

Fio. 152.-Illustrating Oreration of Joly Frequency Doubler.
placed in parallel across the supply. Hence tho back E.M.F. of each circuit must be the same. If tho transformer \mathbf{A} is again run at the saturation point, the flux pulses in the two halves of the transformer are different. Hence the

138

currents in the two circuits must also be different, in order that the back E.M.F., which is proportional to the product of these two quantities, may be the same. The flux in the second transformer B will thus be due to the resultant of these two current pulses. Since the current pulses are unequal, and the windings in the opposite directions, there will bo a resultant pulse,

Fig. 153.-Plohl's Frequency Joubier.
giving rise to an F.M.F. in the aerial circuit every half-wave, which produces a double frequency as before.

Two doublers may, if desired, be used in series, and in practice this is often done. Owing to the high frequency of tho currents handled by these instruments, the losses are rather heavy, although specially thin shects are employed for the core stampings. The efficiency is usually of the order of 70 per cent.

Fig. 154.-l'requency Trebler.
Frequency Treblers.- An instrument, ascribed to both Clinker and Taylor, has been designed by means of which the frequency may be trebled.

The arrangement is shown in Fig. 154. Two transformers are employed, one being so designed that the current taken by the primary will saturate the iron, while the other is designed never to reach the knee of the curve. Owing to the saturation, the flux in the first transformer will have a flat top, while that in the other transformer will bo of a peaked nature.

Tho two secondary coils are wound in opposition, so that the resultant E.M. 1 . in the secondary will be due to tho difference of these two fluxes. This produces an E.M.F. of three times the applied frequency, as is shown in Fig. 154.

The Oscillating Arc.

The second system for the production of C.W. is tho oscillating arc. Duddell discovered that the ordinary carbon are could be made to sustain oscillatious in a low frequency tuncd circuit placed in shunt across the are, as shown in Fig. 155. Investigation showed this to be due to the peculiar

Fig. 155.-Simple Arc-Maintained Oscillatory Circuit.

Fig. 156.-Cilaracteristic of Carbon Arc.
falling characteristic of the are (Fig. 156). It will be seen that if the are curront increases, the voltage across the arc decrenses, and vice versa. This is the reverse of the effect obtained with a simple resistance; in other words, ns far as variations of voltnge or current are concerned, the are may be considered as having a negative resistance. If this negative resistance effect is made equal to the positive resistance in the circuit, the damping in the circuit will bo reduced to zero, and the oscillations will be maintained indefinitely.

The conductivity of the are depends on the ionisation of the gases therein, which depends upon the temperature. This, again, depends on the current through the arc, so that tho conductivity increases with the current and hence the peculiar falling characteristic is obtained.

Tho simplo arc, as discovered by Duddell, howover, will only oscillate over a very limited range of frequency. In order to sustain oscillations at radio frequencies, it is necessary to provide means of "scavenging" the arc during the period of extinction, removing as far as possible all ionisation of the gas in between the electrodes. To do this, several modifications were introduced by Professor Poulsen, with subsequent improvements by Pederson, Elwell, and others, with the result that frequencies up to 100,000 may be generated by this means. The chief modifications are as follows:

The are is burned in an enclosed chamber in an atmosphero of hydrocarbon vapour, tho thermal conductivity of such gases being greater than that of air. In order further to assist the dissipation of the heat from tho are, the chamber itself is water-cooled. A second modification is the provision of astrong magnetic field at right angles to the are itself for the purpose of blowing out the arc rapidly as soon as the voltage across it falls to zero. While, finally, in ordor to obtain as steady an arc as possible, a copper anode is employed, which has to be water-cooled because of the intonse
heat evolved. The cathode is of non-cored carbon, ind is slowly rotated to ensure even burning.

A general idea of the construction may be obtained from Fig. 157, which illustrates the various components.

The cycle of operations may bo considered in dotail. There are two operations involved in oach cycle. During the first half-cycle oscillating current

Fig. 157.-Diagram of Radio-Frequency Arc Generator.
is set up by the energy stored in tho L.C. circuit. During the second or charging period, energy is drawn from the D.C. supply circuit at the expense of the arc.

Consider the complete circuit shown in Fig. 158. The oscillating circuit LCR is shunted across the arc. $\mathrm{I}_{L_{2}}$ is a choke coil, while R_{2} is the starting resistance, which is usually cut out when the arc is ruaning. Assume

Fig. 158.-Cimcuit Diagram of Radio-limequency Arc Generator.
that the condenser \mathbf{C} is charged so that the terminal \mathbf{A} is positive. It will then discharge through the arc. The current through the arc, therefore, is $i_{\mathrm{a}}=i_{\mathrm{dc}}+i_{\mathrm{B}}$, and the voltage across the are will be reduced, owing to the falling characteristic of the arc. This effect continues until the condenser is fully discharged, when both i_{B} and i_{a} are at a maximum, the voltage across the arc being a minimum.

Tho current then begins to decrease, charging the condenser C in the revorse direction. Tho are current will decrease, and tho voltage acrose it will rise accordingly until tho condenser is completely charged in the opposite direction, when $i_{\mathrm{B}}=0, i_{\mathrm{a}}=i_{\mathrm{dc}}$, and $v_{\mathrm{a}}=v_{\mathrm{dc}}$. This completes the first half-cycle.

The condenser then discharges Ω second time, tho current this time being in the reverse dircction. i_{g} is thus negative, so that the arc current is reduced. The are voltage nccordingly rises, and hence the current drawn from the D.C. mains is less.

The total D.C. current, however, cannot alter appreciably, owing to the choke coil L_{2}, so that the surplus current flows round the oscillatory circuit, assisting the discharge and subsequent charge of the condenser. Hence a certain quantity of energy is extracted from the D.C. supply during this portion of the cyclo.

When the are current reaches a cortain mininum value, the magnetic field extinguishes the arc. This occurs normally just before the oscillating current reaches its maximum. As soon as the oscillating current commences to decrense, however, the D.C. supply decrenses as well, and this cruses a high voltage surge on the choke coil $\mathrm{I}_{1_{2}}$ which re-ignites the arc. The cycle of operations then continues as bofore.

The cycle of events is illustrated in Fig. 159. It will be seen that the reignition voltage is little greater than the extinction voltage. This is due to

Fig. 159.-Cycle of Operations in an Aro Transmittrer.
the fact that the are length increases (due to the blowing-out effect of the magnetic field) as the current decreases, wherens the re-ignition length is the shortest distanco between the olectrodes.

It will be ohserved that the succoss of the cyclo depends on the maintenance of a steady D.C. supply current, and the choko coil L_{2} must be so designed that this condition is fulfilled. It also serves the purpose of preventing the high frequency oscillations from leaking back through the generator, and is thus usually air-cored.

The theory just propounded is based on the assumption that the oscillatory current is just sufficient to extinguish the are nt each oscillation. That is, the maximum value of $i_{A}=i_{\text {de }}$. Hence, if I_{S} is the R.M.S. value of the oscillating current, assumed sinusoidal-

$$
\mathrm{I}_{\mathrm{s}}=\frac{\mathrm{I}_{\mathrm{DC}}}{\sqrt{ }{ }^{2}}=0.707 \mathrm{I}_{\mathrm{DC}} .
$$

This is the most efficient condition of operation, and ares are always adjusted in practico to run under such conditions.

An arc system is usually connected direct to the acrial, which then replaces the condenser C, as indicated by the dotted lines in Fig. 158.

Keying--Spacing Wave.-The are cannot be started and stopped instantancously. Hence, in order to "key " the signals generated, a " marking" wave is radiated when the key is depressed, and an slightly different "spacing" wave when the key is up. These two wave lengths are comparatively close together, being about 1 per cent. different on high-power equipments, so that the interference with other traffic is not as great as would appear at first sight. Moreover, if the modulation of a continuous wave by Morse signals at a moderate speed is investigated, it will be found that the usual system where by the radiation is started and stopped by the koy actually causes more interference than that produced by a spacing wave system, due to the fact that an oscillating system will transfer from one frequency to another without any transient oscillations which cause interference.

The fact that power is being consumed all the time an are is in operation is not a serious disad vantnge, since the cost of the power supplied to the arrial is a very small proportion of the total cost of running a station, most of which consists of capital charges and staffing expenses.
The actunl wave length change is brought about by short-circuiting part of the aerial tuning inductance, or, more usually, by shorting a coil or coils coupled to a portion of the A.T.I., since this method isolates the ley from the high voltages on the acrial.

The power radiated during the spacing period may be absorbed by a dummy acrial having the same constants as the actual acrial, but this use of a " back shunt " is little, if ever, employed except for quite small powers.

An are may also be keyed by using the Aloxanderson magnetic key described on p. 136, particularly if it is desired to transmit telephony.

Operation of Arc.-If the characteristic of an are is plotted for several different are lengths, it is found that the slope of the characteristic decreases rapidly as the arc length decreases. There is thus a critical value of the slopo below which the arc is unable to sustain the oscillations, and the arc length must thus be greater than that corresponding to this critical value. In starting up an arc, therefore, the arc is first struck (all the ausiliaries, such as water, circulation pumps, etc., having first been started). The are length is then gradually increased until the are suddenly commences to oscillate, after which it is adjusted until the oscillating current is $0 \cdot 7$ times tho D.C. feed current, as previously described.

Strength of Magnetic Field.-The magnetic field serves to blow out the are at the extinction point, and it also controls the ionisaton of the gas in the interelectrode space, so controlling the re-ignition point to a large extent. The operation of the are is thus somewhat sensitive to changes in the strongth of the magnetic field. If the field is too weak, the extinction and re-ignition voltages are low, and the effective pulse of D.C. energy per oscillation is reduced. The stronger the magnetic field becomes, the less is the ionisation,
and the higher are the extinction and re-ignition voltages, with consequent increase of efficioncy, until tho pulses become too peaked and far apart, at which point harmonics begin to appear in the generated oscillations.

The time available for the scavenging effect is proportional to $1 / f$, where f is the frequency of the oscillations. Hence B is proportional to $\frac{1}{2}$. Again, the effect of the field is to increase the velocity of ion stream to a point where the continuity is brokon. The field strength required to do this obviously depends on the initial velocity of the ions, which in turn is proportional to the square root of the temperature of the arc. Hence $B \propto \frac{1}{\sqrt{\text { EI }}}$.
B is also dependent on the voltage tending to maintain the are, and also on the number of ions in the arc (in other words, the current), so that B is proportional to EI.

The total of all these effects, therefore, is that-

$$
\mathrm{B}=\frac{k \cdot \mathrm{EI}}{\lambda \sqrt{\mathrm{EI}}}=k \frac{\sqrt{\mathrm{EI}}}{\lambda},
$$

k being a constant depending on the nature of the gas in which the are is burning.

$$
\begin{array}{ll}
\text { For kerosene: } & k=4 \cdot 25 \\
\text { For ethyl alcohol: } & k=8 \cdot 5 .
\end{array}
$$

(Fuller.)
Fig. I60 shows the are equipment in use at the Lyons Radio Station. The large coils are the field coils providing the magnetic field. The control

Fig. 1G0.-View of Lyons Radio Station.
pancl may be seon on the left of the are, while the main aerial tuning inductance is on the extreme right. These arcs deliver over 300 amperes to the aerial.

Are equipment in general is chicfly of sorvice for long-distance communication, omploying wave longths of 5,000 metres upwards. Thoy mny be constructed to handle powers of from 5 to 1,000 Kilowatts. Lower powered equipments may be designed, but the valve is a more convenient unit at lower powers.

The design of are equipments is a highly specialised branch of the subject, and can hardly be considered here. The reader is reforred for further details to "The Poulsen Arc Genorator," by C. F. Elwell (Benn Bros., Ltd.).

Coupled Arc Circuits.-The plain acrial are systom suffers from the disadvantage that tho norial is not a mono-froquency system, and hence the radiated wavo may contain a large proportion of harmonic oscillations. Theso harmonics, and also the undesirable " mush "' usually radiated by high power are stations, may bo reduced to a negligiblo amount by employing a coupled circuit systom. Such a circuit has been installed at the Post Office Radio Stations, at Northolt and Leafield, and the following information relating to the Northolt Station is extracted from a paper by A. C. Warren ("Northolt Radio Station," Journ. I.E.E., vol. Ixii., p. 967), to whom tho compiler is indebted for assistance in preparing this section.

Fig. 161.-Coupled Circuit Arg Transmitter.
The circuit employed is shown in Fig. 161, the values of the various constants being:

$$
\begin{array}{lll}
\mathrm{L}_{1}=2,800 \mu \mathrm{H} . & \mathrm{C}_{2}=5,000 \mu \mu \mathrm{~F} . & \mathrm{R}_{1}=2 \text { ohms. } \\
\mathrm{L}_{2}=2,000 \mu \mathrm{H} . & \mathrm{C}_{2}=7,000 \mu \mu \mathrm{~F} . & \mathrm{R}_{2}=3 \cdot 4 \text { ohms. }
\end{array}
$$

If a secondary circuit is coupled to the primary circuit, it will be equivalent to an impedance Z_{1} ' in the primary circuit, where -

$$
\mathrm{Z}_{1}^{\prime}=\omega_{\mathrm{Z}_{2}^{2}}^{\mathrm{L}_{\mathrm{m}}^{2}}\left(\mathrm{R}_{3}+j \mathrm{X}_{2}\right) \text { by the ordinary transformer laws, }
$$

where R_{2} and X_{2} are the resistance and reactance of the secondary circuit and L_{m} is the common portion of the inductance.

Now, since the frequency is obtained by equating the effective reactance of the primary circuit to zero, the frequency genernted will be a function of Z_{1}^{\prime}. The actual equation is a cubic. Below a certain critical coupling there is only one real root, but above this value there are three real roots.

This may bo mado clear by roferring to Fig. 162. The equation may bo put in the form-

$$
\frac{x+\mathbf{A}}{B^{2}}-\frac{x}{1+x^{2}}=0
$$

where A is a constant depending on the amount of mistuning between the primary and secondary, and $=\left(\omega_{1}-\omega_{2}\right) \frac{R_{2}}{2 L_{2}}, \omega_{1}$ and ω_{2} being the resonant frequencies $=\frac{1}{\sqrt{L_{1} \mathrm{C}_{1}}}$ and $\frac{1}{\sqrt{ } \mathrm{~L}_{2} \mathrm{C}_{2}}$ respectively.
B is a constant dopending on the coupling $=\frac{k \cos \mathrm{~L}_{2}}{\mathrm{R}_{2}}$.
The first expression is a straight line of which the slope is inversoly proportional to the coupling, and the distance from the point O is dependent on the mistune of the secondary.

The second expression gives a curvo as shown, and the roots aro obtained by the points of intersection of the two curves. It will be seen that if the slope of the straight line is greater than the tangent to the curvont O, there can never be more than one root, whatever the value of A. As the coupling is increased, however, the slope of the line decreases until beyond a certain value there are three real roots at values of \mathbf{A} not too far romoved from 0 .

Ziehen Effect.-Hor any particular value of the coupling, howover, grenter than the critical value, there is an unstable condition where the straight line is tangential to the curve. At this point any further increase in the mistune

(a) Coupling less than critical value.
(b) Coupling Ereater than critical value.

Fio. 162.-Illostrating Zienen Effect.
will cause two of the roots suddenly to become imaginary. If the circuit was oscillating, therefore, at a frequency as at P [Fig. 162 (b)] it will suddenly change to n frequency given by the root Q.

This effect has beon termed " Ziohen " (to draw out) by Moller, who has investignted the action in some dotail (Jahrbuch fïr Drahtlose Telegraphie, Decomber, 1920). The phenomenon is observed with any form of coupled circuit, whether arc or valve maintained, provided the frequency of the oscillation is controlled by the constants of the circuit itself. The change of frequency is accompanied by a sudden current change, as will bo seen from Fig. 163.

It will be observed that the higher the coupling the greator is the mistuning permissible before Zichon occurs. The critical coupling below which Zichen is impossible is given by $k=\frac{R_{2}}{\omega L_{2}}$. The quantity B in the frequency equation is thus simply $\frac{k \text { actual }}{k \text { critical }}$.
111.

It is desirable to work above the critical coupling, as below that coupling the resonance curve for the secondary circuit is extremely sharp, and thus small variations in tune (duo to nerial sway, rain, etc.) seriously affect the aerial current.

Beyond the critical coupling the ratio of I_{2} (and thus the efficiency) increases with the coupling. However, this is to some extent balanced by an increased harmonic radintion. It is found that the limiting position of Ziehen is quite definite, and it is possiblo to koy (marking and spacing) in the region of Ziehen, but clear of the limiting position. This is shown in Fig. I63,

Fig. 163.-Curient Ratios in Terms of the Secondary Tune.
and shows the condition under which the station at Northolt actually works. The secondary is tuned to n frequency lower than the primary (but tuned by coming from the higher frequency side), the frequency generated being beloro f_{1}.

The actual coupling used nt Northolt is actually several times the critical coupling, and it has been found that with such couplings and a ratio of L_{2} $\frac{L_{2}}{L_{1}}=3$, the ofliciency, using a coupled circuit, exceeds the efficiency obtained with the arc direct in the aerinl circuit. These conditions, however, necessitate a high voltage on the are, which is not always practicable.

Valve Transmitters.

In the third form of C.W. transmittor the oscillations are maintained by the use of a thermionic valve, and this type of transmitter is rapidly becoming the most important of the three. The theory of operation is, in essence, very simple. The oscillations in a simple tuned circuit die away owing to the damping in the circuit, each oscillation being smaller than the precoding one. If the voltage variations on the condenser of an oscillating circuit are impressed across the grid and filament of a valve, similar but considerably magnified variations will be produced in the anode circuit. If these anode curront variations are suitably coupled to the original oscillating circuit, they may be caused to induce in the said circuit E.M.F.'s in such a direction as to equal, at each oscillation, the voltage lost owing to the damping in the circuit, and the oscillations will thus be continuously austained. In order to accomplish this result it is only necessary that the coupling shall be in the correct direction, and shall exceed a certain critical value. There are thus three possible casos:

1. Coupling in wrong direction. Damping of oscillating circuit increased.
2. Coupling in right direction, but insufficient. Damping of circuit reduced. This process may be continued indefinitely up to the limiting condition when the coupling reaches the critical value.
3. Coupling in right direction and above the critical value. Damping of circuit negative, so that the oscillation builds up instead of decreasing. The increase of current, however, is accompanied by an increase in the losses, which are proportional to $I^{2} R$, so that a limit is ultimately reached when the losses are equal to the total power supplied by the valve.

The design of a valve oscillator, however, involves rather more than the simple consideration of the "feedback" or "reaction" coupling, and the problem will be investigated in more detail.

Simple Valve Oscillator--One of the simplest forms of valve oscillator is that shown in Fig. 164. Here LC is the tuned circuit connected in the anode circuit of the valve, the coil L being coupled to a second coil L^{\prime} connected across the grid and filament.

Assuming now that M has been adjusted to some value slightly greater than the minimum required for oscillation, consider what happens. The grid and

Fig. 164-Simple Valve Oscillator.

Fio. 165.-Oscillation Elhipse.
anode voltages at any instant may be considered as being such that the valve is working on a point P of the claracteristic (see Fig. 165). If v_{g} increases, i_{2} will increase. This will cause an increased voltage drop in the inductance L_{l}, which will reduce the effective anode voltage. The current i_{a} will thus not increase to a value as at P_{1}, but will take up a position as at P_{2}, on a different characteristic curve drawn for the reduced value of v_{a}. The complete cycle of the current during one oscillation, therefore, will follow the ellipse shown dotted in Fig. 165.

The effect of this is to increase the effective length of the straight portion of the characteristic, the larger the inductance (and consequently the voltago drop) the more horizontal being the ellipse, and the greater being the effective straight portion. The oscillation will continue to increase until the voltage variations begin to include the curved portion of the characteristic, at which point any further increase of v_{g} will produce little increase of i_{s}. and the oscillation will automatically limit itself.

A limit to the increase of L is soon reached, however, when the voltage drop is so heavy that the variations of v_{n} are never large enough to sweep over the whole characteristic.

1.18

Oscillatory Current. - The current in the oscillating circuit, assuming that the mean visluc of the anode current i_{0} is half the saturation curront, is given by-

$$
i=\frac{i_{0}}{\mathrm{R}}, ~ / \frac{\mathrm{I}}{\mathrm{C}} \sin \omega t .
$$

This is the upper limit of current under favourable conditions. There is a second limit, however, which is that the maximum value of the oscillating voltage can never exceed the voltage of the battery $\mathrm{B}=v_{0}$. Accopting this as a criterion, the current is given by-

$$
i=v_{\circ} \sqrt{\overline{\mathrm{L}}} \sin \omega t
$$

The actunl value of the current is whichever of the two happens to be the less. If the former limit applies, then the current is inversely proportional to the resistance in the oscillatory circuit. If the second condition is the criterion, then the current is independent of R.

The maximum value of the current is obtained when the two conditions ocour together. Hence-

$$
i_{\alpha} \sqrt{\mathrm{L}}=v_{0} \sqrt{\mathrm{C}} \frac{\mathrm{C}}{\mathrm{~L}} \cdot \therefore \frac{\mathrm{C}}{\mathrm{~L}}=\frac{i_{o}}{\mathrm{R} v_{0}}=\frac{1}{\mathrm{R} r} .
$$

In other words-

$$
r_{1}=\frac{\mathrm{L}}{\mathrm{CL}_{1}}=\text { offective resistance of oscillating circuit. }
$$

It is not always possible to obtain this condition in practice, so it is customary to connect the anode, not to the end of the inductance L, but to some point such that the equivalent resistance of the circuit is equal to the inpedance of the valve. As has been seen (p.69), this does not affoct the tuning of the circuit.

If L_{1} is the tapped portion of the inductance, then the optimum condition is given by-

$$
\mathrm{L}_{\mathrm{I}}=\frac{\sqrt{\mathrm{R} r_{1}}}{\omega}
$$

As an approximation, using single layer coils, if l^{\prime} is the length of the tapped portion, and l is the total length, then $l^{\prime} / l=\frac{\sqrt{\mathrm{R} r_{1} \mathrm{C}}}{\mathrm{L}}$ approximately.

Feed Current.-Under the simple conditions assumed, the feed current flowing in the anode circuit is given by-

$$
i_{\mathrm{a}}=\frac{\overline{\mathrm{I}}}{r_{1}} v \mathrm{R}^{2}+\left(\mathrm{L}-\mu_{0} \mathbf{M}\right)^{2} \omega^{2} \sin (\omega t+\alpha)
$$

where

$$
\begin{aligned}
& \hat{\mathrm{I}}=\text { maximum value of oscillating current, } \\
& \alpha=\frac{\pi}{2}+\tan ^{-1} \omega \mathrm{C} r_{\mathrm{i}}
\end{aligned}
$$

Power in Oscillating Circuit.-The oscillating circuit is usually an acrial, and the useful power is then $I^{2} R^{\prime}$, where R^{\prime} is the resistance of the aerial. For maximum efficiency this resistance should be equal to that of the coil $=R$. Under these conditions the power input to the aerial is-

$$
\begin{aligned}
\mathrm{P}_{\mathrm{A}} & =\frac{\mathrm{V}^{2} \mathrm{R}}{2\left(\mathrm{R}^{2}+\omega^{2} \mathrm{~L}_{1}\right)^{0}} \\
\mathrm{~V} & =\mathrm{R} . \mathrm{M} . \mathrm{S} . \text { value of oscillating voltage. }
\end{aligned}
$$

where

This, as has been seen, is a maximum when-

Hence

$$
\begin{aligned}
\mathrm{L}_{1} & =\frac{\sqrt{\mathrm{R} r_{1}}}{\omega} . \\
\mathrm{I}_{\mathrm{n}}=\frac{\mathrm{V}^{2}}{2\left(\mathrm{R}+r_{i}\right)} & =\frac{\mathrm{V}^{2}}{2 r_{i}}, \text { since } \mathrm{R} \ll r_{1} .
\end{aligned}
$$

It is interesting to note that this is independent of μ_{o}, and is limited by r_{1}. This, again, is limited by the distance between the anode and the grid, which must be sufficient to withstand the potential difference between them, and this constitutes one of the limits to the power which can be handled by a given valve. To increase the power output, several valves may be run in parallel. 'This is referred to later.

High Efficiency Working.-The total power is $\mathrm{I}^{2} \mathrm{R}=\frac{\mathrm{i}^{2} \mathrm{R}}{2}$.
If

$$
\hat{\mathrm{I}}=\frac{i_{o}}{\overline{\mathrm{R}}} \sqrt{\overline{\mathrm{~L}}} \overline{\mathrm{C}}=v_{0} \sqrt{\overline{\mathrm{C}}}, \text { then } \mathrm{I}^{2}=\frac{i v_{0}}{\mathrm{~K}} .
$$

Hence

$$
\text { Power }=\frac{i_{\mathrm{o}} v_{\mathrm{o}}}{2}
$$

The power input to the valve is obviously $i_{o} v_{0}$, so that the maximum efficiency under the conditions stated (sinusoidal voltage and current variations) is 50 per cent.

It is possible, however, to obtain higher efficiencies than this under suitable operating conditions. Fig. 166 shows the relation of the currents and

Frg. IGG.-Illustrating Conditions for Higil Efficiency Workino.

voltages concerned in the oycle of operations. It will be seen that the alternating energy passing to the oscillating circuit is alternately extracted from and returned to the valve each half-cycle.

It is, however, extracted when the voltage is high, and returned when the voltage is low, so that there is a net extraction of energy from the valve each half-cycle, which is supplied by the steady D.C. current.

Now if the steady voltago on the grid is made more negative, the extraction of energy will be less in quantity, but will last for a longer time, the return being greater for a shorter time. So long as the two quantities are equal, the oscillating current will remain the aame. In the second case, however,
the mean anode current is less, so that the energy supplied to the valve is less, with consequent increase of efficiency.

This will be clear from a reference to Fig. 166; the maximum efficiency obtainable in this way is of the order of 85 per cent.

It may be observed, referring to Fig. 166, that the valve is required to supply the maximum current when the voltige on the anode is a minimum. Trans. mitting valves, therefore, must be designed to give full emission at low values of anode voltage. Consequently, if a fault occurs on the circuit, and the valve has to stand the full anode vollage, the emission rises to a value many times in excess of the normal value, and the valvo will be destroyed, the anode melting under the excessive electron bombardment. Steps have to be taken, therefore, to protect the valve from such a contingency.

Grid Control.- It will be clear that the adequate control of the grid potential is an important factor in the operation of a valve transmitter. As the grid is often at a negative potential of 200 volts, a battery control is inconvenient. A very common method utilises the well-known grid-blocking condenser. The effect of inserting a condenser in the grid circuit of a valve is discussed on p. 175, where it is shown that small grid currents flow into the condenser, which thus acquires a negative charge. If a high-resistance leak is shunted across the condenser, this charge will slowly leak away, and the grid automatically acquires a potential such that, at each oscillation, a small grid current flows, sufficient to make up for this loss. This is the best condition for the operation of the valve. For it is obviously desirable that tho grid shall not be positive for more than a small fraction of each cycle, since the presence of any appreciable grid current introduces damping into the oscillating circuit, with consequent loss of efficiency.

Transmitting valves are therefore designed so that, under normal conditions, the maximum voltage variation on the grid required to produce saturation shall only just cause grid current to flow. Even so, with large valve transmitters of 30 to 40 kilowatts, as much as 3 kilowatts may be expended in grid energy.

In adjusting the valve for maximum efficiency, the most convenient method is to increase M slightly; this automatically causes more grid current to flow, and reduces the steady grid potential until a steady stato is again reached.

Coupling required for Self-Oscillation.

The value of the mutual inductance M necessary to sustain oscillations may be found approximately as follows:
The anode oscillating current-

$$
\bar{I}_{\mathrm{n}}=\frac{V_{\mathrm{a}}}{r_{\mathrm{I}}+\frac{\mathrm{L}}{\mathrm{CR}}}=\frac{\mu_{\mathrm{a}} \mathrm{~V}_{\mathrm{g}}}{r_{\mathrm{l}}+\frac{L}{\mathrm{CR}}} .
$$

Hence power in anode circuit-

$$
=\mathrm{V}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}=\frac{\mu_{0} \mathrm{~V}_{\mathrm{g}} \mathrm{~V}_{\mathrm{a}}}{r_{\mathrm{l}}+\frac{\mu_{0}}{\mathrm{CR}}}=\frac{\mu_{0}}{r_{\mathrm{I}}+\frac{\mathrm{L}}{\mathrm{CR}}}(\mathrm{IM} \omega)(\mathrm{IL} \omega)
$$

(where $\mathrm{I}=$ R.M.S. value of osoillating current),

$$
=\frac{\mu_{0}}{r_{1}+\frac{L^{\prime}}{\mathrm{CR}}} \cdot \frac{\mathrm{M}}{\mathrm{C}} \mathrm{I}^{2} \quad \text { since } \omega^{*}=\frac{1}{\mathrm{LC}} .
$$

This must equal the power in the oscillating circuit $=I^{2} R$,
whence

$$
\mathrm{I}=\frac{\mathrm{L}+\mathrm{CR} r_{1}}{\mu_{\circ}}
$$

Other circuits may be treated in a similar manner.
These equations are deduced on the assumption that the resistance of the bnttery B is small compared with r_{1}, which is a legitimate assumption in practice. The effect of any grid current is also neglected. Since valves aro operated in practice under conditions in which appreciable grid current does flow; the value of M thus obtained is a little too low.

A more usual form of circuit for high-power transmitters is that shown in Fig. 167. Here the generator supplying the necessary high tension voltage

Fí. 167.-Valve Oscillator with Choke Feed.
is connected directly across the anode and filament of the vaive through a radio-frequency choke coil $\mathbf{L}_{\mathbf{k}}$. The oscillating circuits are connected in parallel with the supply circuits. The circuit is thus to some extent similar to that employed with an arc, the D.C. supply remaining sensibly constant, variations in the anode voltage of the valve itself being set up by the oscillatory feed current which is superposed upon this steady value. The stendy value of the applied voltage, however, is reflected across the anode blocking condenser C^{\prime}, so that if the inductance L_{k} is made infinite, the circuit rosolves itself into the simpler type of oscillator already considerod. A condenser C_{2} is often inserted across the coil L^{\prime}, not for tuning purposes, but as a phase compensator to ensure that v_{g} is exactly 180° out of phase with v_{a}. The condition for oscillation with this circuit is given by-

$$
\mathrm{M}=\frac{\mathrm{L}_{1}}{\mu_{0}}+\frac{\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right) \mathrm{RC} r_{1}}{\mu_{0} \mathrm{~L}_{1}}\left(1+\frac{\mathrm{L}_{1}}{\mathrm{~L}_{1}}\right)
$$

Tuned Grid Circuit.-Another form of oscillating circuit is shown in Fig. 168. This type of circuit is principally employed for small oscillators, such as are used in receiving circuits. It is unsuitable for power circuits, because to obtain reasonable output the grid voltage variations would be so heavy as to cause saturation long before the anode circuit had developed its full power. The condition for oscillation is given by-

$$
M=\frac{C R r_{1}}{\mu_{0}}
$$

neglecting, as before, the resistance of the battery B.
Electrostatic Coupling.-Instead of a magnetic feedback, the necessary reaction may be obtained by direct or electrostatic coupling. One case
of this is the well-known "Hartley" circuit, which is shown in Fig. 169. This circuit may be analysed in the same way as the previous ones; the filament tapping point must be near the centre point of the inductance L.

Fig. IG8.-Valve Oscillator whtil Tuned Gizid.

Fig. 169.-Hartley Cirodit.

Another form of circuit, employing so-called capacity coupling, is that shown in Fig. 170. The operation of this circuit is really due to a direct coupling. The voltage across L_{1} is divided into two portions by the circuit $L_{3} C_{1}$

Fig. 170.-Capacity Coupled Oscillator.
shunted across it. If C_{1} is kept small, $V_{C_{1}}$ is greator than $V_{L_{1}}$, and consequently $V_{L_{3}}$ must be in the opposite direction to-i.e., 180° out of phase with $\mathrm{V}_{\mathrm{L}_{1}}$, which is the condition requisite for oscillation. Obviously, therefore, oscillations are not possible if $\mathrm{L}_{1} \omega-\frac{1}{\mathrm{C}_{1} \omega}$ is negative.

The condition for oscillations is thus that-

$$
\frac{\mathrm{R}+\left(\mu_{0}-1\right) \omega \mathrm{L}_{1} \mathrm{~L}_{\mathrm{a}}-\frac{\mathrm{L}_{1}}{\omega \mathrm{C}}}{r_{1} \mathrm{C}\left\{\omega\left(\mathrm{~L}_{1}+\mathrm{L}_{\mathrm{s}}\right)-\frac{1}{\omega \mathrm{C}}\right\}}<0
$$

Coupled Valve Circuits.-The Ziehen effect described on p. 145 is also present in the case of a coupled circuit the primary of which is energised by a valve. There is a second condition to be considered here, however. In the case of an arc, the maintenance of the oscillation is to a large extent independent of the value of the inductance. With a valve oscillator, on the other hand, the oscillations can be maintained only if the coupling between the anode and grid circuits is adequate.

The effective value of the primary inductance depends upon which of the two possiblo frequencies the circuit is generating. Under certain conditions the circuit will suddenly jump from one frequency to the other, and this is a phenomenon which must be guarded against in valve transmitters employing coupled circuits.

Consider the curves shown in Fig. 171. The two full-line curvos represent the variations of current in the secondary circuit, as the capacity of that circuit is varied, for the two possible frequencies.

Fig. 171-Illustrating Double Frequency Effect obtained witif
The dotted curves represent the value of $\mu_{0} \mathrm{M}$, which, in order that the oscillations may be sustained, must be greater than $\mathrm{L}+\mathrm{CR} r_{1}$, this critical value being represented by the chain dotted line.

Now nssume that the circuit is oscillating at the lower frequency; the current will be ne given by the curve i^{i}. If the capacity is reduced, the current will fall and A^{\prime} will gradually rise until at the point P, A^{\prime} becomes greater than $\mu_{\mathrm{o}} \mathrm{M}$; this oscillation can therefore no longer be sustained. $\mathrm{A}^{\prime \prime}$, however, is less than the critical value, so that the system suddenly changes over to the other frequency, the current jumping from P to Q . If C is increased again, the system continues to oscillate at the lower frequency until this point R is reached, when $A^{\prime \prime}$ becomes greater than the limit. A^{\prime} is now less than the limit, so the system jumps to the lower frequency again.
This frequency jump is perfectly definite, the frequency jumping up as the capacity is increased, and vice versa.

The critical period where sudden frequency jumps take place may occur at various values of the secondary capacity according to the constants of the circuit, and under certain conditions might occur at the point \mathbf{X}. At such a point the change in frequency would occur with little or no circuit change, so that there would be no indication that anything was amiss.

Provision of High Tension Voltage.-As the production of steady potentials of the order of 5,000 to 10,000 volts by D.C. machines is a somewhat expensive proposition, it is customary to provide the necessary high tension voltage for valve transmitters by employing alternating current which is transformed up to a suitable voltage, and is then rectified by a suitable means. The simple thermionic valve, provided with two electrodes only, provides an admirable means of rectifying the high voltage alternating current.

The circuit employed is as shown in Fig. 172, the current flowing through the top valve when the point A is positive, and through the bottom valve when the point B is positive (i.e., the next half-cycle). Both balves of the

154

wave are thus rectified, such a process being known as double-wave rectifica tion. If only one valve is employed, only one half of the wave is rectifed, this being known as single-wave rectification.

The currents pasaing through the valves charge the condenser C_{1} in the same direction, and the required D.C. supply is drawn off from this condenser, which thus acts as a rescrvoir.

The design of a rectifying circuit consists primarily in finding the capacity of this condenser. As the load is taken from the condenser the voltage falle,

Fig. 172.-Provision of H.T. Supply from Rectified A.C.
being replenished in a series of pulses, so that the voltage is actually slightly pulsating. The larger the condenser the less the ripple, while choke coils L_{1} and L_{2} are inserted to assist atill further in the production of a comparatively stendy voltage.

The action is analysed in more detail in Fig. 173.
Here the full line represents the voltage delivered by the secondary of the transformer. No current will flow through the rectifying valves until the voltage of the transformer is greater than that of the condenser $\mathrm{C}_{\mathbf{2}}$.

Fig. 173.-Current and Voltage Relations in Recifying Valves.

At this point, however, a sudden rush of current will Row through the particular valve, which will continue until the voltage has again fallen below that of the condenser, and the effect of this will be to increase the condenser voltage by a small amount. The voltage will then fall gradually, due to the current taken out of the condenser by the load, and will continue to fall until the next rush of current takes place, either through the same valve if
aingle-wave rectification is employed, or through the other valve with the more usual double-wave rectification.

Fig. 173 is drawn on the latter assumption, all the current pulses being shown on the same side of the axis for clearness.

Now it will be obvious from the figure that the times of charging and discharging the condenser are approximately the same, and equal to $1 / 4 f$, where f is the frequency of the alternator supply.

If V is the initial voltage on the condenser, and R is the resistance of the load circuit, then the decrease of voltage in time $1 / 4 f$ is given by-

$$
v=\mathrm{V}\left(1-\varepsilon^{-\frac{1}{4 / \mathrm{CR}}}\right)
$$

V being the average voltage on the condenser.
This is the maximum variation of voltage, which must be kept within certain limits according to the ripple permissible. The size of the condenser C may thus be determined.

The effect of the choke coils may be determined by the application of the usual alternating current laws.

Several rectifying valves may be, and are, omployed in parallel if the power to be handled is greater than the dissipation of a single valve.

Where a bank of valves is to be employed it is often convenient to use a three-phase supply. By use of suitable connections, as shown in Fig. 174,

Fio. 174.-Turee-Puase Bi-Paase Rectification.
double-wave rectification may be utilised on each phase, thus very considerably reducing the ripple. Hansford has shown (Journ. I.E.E., vol. Ix., p. 854) that under suitable conditions the ripple is reduced to zero. If θ is the electrical angle elapsing between the beginning of the cycle and the beginning of the pulse of current through the rectifier, then the critical angles when no ripple occurs are-

$$
\text { Two-phase (double-wave rectification) } \theta=\frac{\pi}{4}
$$

$$
\text { Three-phase (double-wave rectification) } \theta=\frac{\pi}{3} \text { or } \frac{\pi}{6}
$$

Since $\frac{V_{\text {average }}}{V}=\sin \theta$, these pointa can be expressed in terms of
$\mathrm{V}_{\mathrm{av}} / \mathrm{V}_{\mathrm{max}}$. Fig. 175 shows the percentage ripplo obtained in terms of this ratio for single, two-phase, and three-phase voltages.

Fio. 175.-1 ercentage Ripple for Vabious Rectifier Systems (all Double Wave).

With the circuit given on Fig. 174, n $300 \sim$ ripple is obtained, the supply being $50 \sim$. In an actual case C_{1} and C_{2} were $0.25 \mu \mathrm{~F}$ each, and L was 20 henries.

Keying.-Keying on a valve oscillator may be effected in a variety of ways. ()ne method is to break the H.T. supply, or to reduce it by inserting a high resistance in the feed circuit.

A second method, very often used, is to disconnect the leak in the grid circuit. The grid then builds up to a large negative potential, which stops the oscillation. This method, however, may give rise to "grid tick," the condenser discharging suddenly and building up again. Each discharge permits the valve to oscillate for a fraction of a second, so that a series of ticks are radiated, occurring at intorvals of two or three seconds up to twentyfive or more per second. This may be overcome by breaking or reducing the H.T. supply simultancously.

A third method is to couple the oscillating circuit to the aerial, and control the coupling circuit in some suitable manner.

For all powers above 3 kilowatts, it is advisable to permit the set to oscillate feebly during spacing, instead of stopping the oscillation completely.

Compensating Chokes.-Choke coils are usually inserted in the filament leads which are short-circuited by the depression of the key, so causing an increase in the filament current, which compensates for any voltage drop on the mains when the load is applied, and also allows for the diminution of filament brilliancy which occurs due to the sudden electron emission.

Some details are appended relating to the valve transmitter at the Northolt Radio Station. These details are taken from a paper by A. C. Warren (Journ. I.E.E., vol. lxii., p. 967).

The valve pancl is capable of delivering 40 kilowatts to the aerial. Three water-cooled metal valves are used, each capable of dissipating 5 to 10 kilowatts. Alternatively, six silica valves, dissipating $2 \frac{1}{2}$ kilowatta each, may be employed.

The H.T. supply is obtained from a three-phase bi-phase arrangement, as shown in Fig. 174, which is arranged to deliver a voltage of 8,000 to $\mathbf{1 8 , 0 0 0}$ in 1,000 -volt steps.
" In order to run valves in parallel it is essential that they shall all have the same characteristics. Inequalitios between valves introduce intervalve oscillations or 'spurious ' circuit oscillations. To this end all valves should
have separato filament regulation, and by this means it is possible to equalise the loads carried by each valve.
"The circuit finally employed is shown in Fig. 176. For efficiency the oscillatory grid voltage should be 180° out of phase with the oscillatory anode voltage. This result will be obtained if the impedance of the anode blocking condenser C_{4} is very low compared with the effective impedance of the aerial circuit. The proportions of the circuit for working with three water-cooled metal valves are as follows:

$$
\begin{array}{lll}
\mathrm{L}_{1}=2,000 \mu \mathrm{H} . & \mathrm{C}_{2}=7,000 \mu \mu \mathrm{~F} . & \mathrm{R}_{2}=1,000 \text { obms. } \\
\mathrm{L}_{2}=10,000 \mu \mathrm{H} . & \mathrm{C}_{1}=0 \cdot 3 \mu \mathrm{~F} . & \mathrm{R}_{5}=\text { carbon lamp } \\
\mathrm{L}_{1}=100,000 \mu \mathrm{H} . & \mathrm{C}_{4}=0 \cdot 1 \mu \mathrm{~F} . &
\end{array}
$$

"If the best conditions have been determined for any given circuit constants, then, as this circuit is altered to retain best conditions, we should keep

Fig. 176. Skeleton Cheuit at Northolit Valve Panel.
constant the anode voltage and grid voltage both D.C. and H.F. As the number of valves (N) is increased, the acrial current (I) increases in proportion to the square root of the number of valves. Thus the effectivo anode tap must be decrensed in the same ratio and the capacity of C_{2} must be increased.
"The adjustment of the anode tap does not affect the efficiency within reasonable limits, but determines the output of the set, the anode tap being reduced to increase the output. The value of the grid coupling condenser is determined by the type of valve used, the aerial current, and the value of the grid leak.
" Referring to Fig. 176, C_{2} is the grid coupling condenser, R_{2} the grid leak, and $L_{L_{2}}$ a choke to prevent high-frequency current passing through the grid leak circuit. $\quad \mathrm{C}_{8} \mathrm{R}_{5}$ is a protoctive circuit in case the anode blocking condenser C_{4} should break down (short circuit), and prevents the instantancous current flow from throwing the main H.T. voltage on the valvo grids before the overload relay T operates and makes the set 'dead.' "

For high-powered valve sets, however, the modern tendency is to generate the oscillations with what is known as a master valve. The currents so obtained are then amplified to any required degree by a bank of high-power valves. The advantage of such a system is that the frequency is independent of the acrial, and is thus unaffected by swaying in a high wind, etc.

The frequency of the master valve may be controlled with very great precision; thus the wave length radiated remnins absolutely constant, which enables very selective receiving devices to be omployed.

RADIO RECEIVING APPARATUS.

The design of radio receiving apparatus falls into three main classes:
(a) The aerial system.
(b) The tuning system.
(c) The amplifying system.

Of these, (b) and (c) are to a large extent interdependent.
The Principles of Reception.-The first stage in the reception of electromagnetic waves is the erection of a circuit which will be influenced by the electric fields radiated from the transmitting station. In general, it is found that a good radiator is a good receiver, so that a receiving aerial may, and usually does, consist of a simple vertical wire, with or without a flat top.

Such a system will have induced therein E.M.F.'s due to the electric field of the wave, and in order to obtain the maximum current from these E.M.F.'s the aerial system is tuned to the frequency of the incoming wave, so reducing the rerial impedance to a minimum. This process of tuning is also essential in order to select the particular station required from the whole gamut of electric waves constantly sweeping past the acrial.

Detection of the Received Currents.-These currents, however, are very fecble, and the only instrument capable of detecting such small currents is a telephone receiver, which will respond to currents as low as 5×10^{-9} amperes. Neither the telephone nor the ear, however, will respond to frequencies of the high order used for radio communication, and it is necessary, therefore, first to modulate the radio-frequency currents at an audible frequency, and, secondly, to rectify these currents, so that they are converted into unidirectional pulsating currents. These currents will then give rise to vibrations of the telephone diaphragm in accordance with the impressed modulations.

The modulation may be effected either at the transmitting or the receiving end. In the case of spark or telephony transmitters, the transmitted wave is suitably modulated. A spark transmitter radiates trains of waves at a musical frequency, while with a telephony transmitter the radio-frequency currents are modulated in accordance with speech vibrations.

Fig. 177 illustrates the effect of rectification for a spark train. The arerage value of the currents, even when modulated, is zero until rectification takes place, producing a unidirectional pulse. The aggregate of these pulses, occurring at a musical frequency, produces a musical note in the telephone.

Heterodyning.-The most general system in use to-day, however, particularly for long distances, employs unmodulated continuous waves, and in order to render the received currents audible, some form of modulation has to be introduced at the receiving end. This is accomplished by the process known

TABLE MODEL AR.17 120 OHMS. A.R. 192000 OHMS. Price £5:5:0 Mahogany Trumpet 5s. extra.

"Better Radio Reproduction"

 largely depends upon the Loud Speaker It must be an

The World's Standard Wireless Loud Speaker
Actual users of the AMPLION often after many disappointments with other makes, assert most emphatically that no Loud Speaker compares with an AMPLION for tonal quality, clarity, and freedom from objectionable resonance or distortion. The AMPLION is the outcome of many years' striving for perfection by the originators of the Loud Speaker. Models are popularly priced from 25s. and upwards.
obTAINABLE FROM ALL WIRELESS DEALERS OF REPUTE

Write for illustrated folder, post free, from Patentees and Manufacturers:
Alfred Graham and Company
(E. A. GRAHAM)

St. Andrew's Works, Crofton Park, S.E. 4

WIRELESS CRYSTALS

I specialise in the selection of rectifying minerals. If you reguire crystals of the well-known varieties I can supply you with specimens of the highest obtainable quality at strictly market prices.
If you desire to experiment with rare minerals and chemicals such as Erubescite, Monazite or Selenium, I can supply you at short notice.
My laboratory is specially equipped for tests on the rectification efficiency and general suitability of any crystal submitted.
The following crystals, anongst others, can be supplied packed under dealers' nwn labels.
Bornite
Chalcopyrite
Copper Pyrites
Iron Pyrites
Carborundum
Galena

Molyblenite
Silicon
Tellurium
Zincite (red)
Zincite (yellow)
Zincite (oseillating)
I shall be pleased at any time to forward you price lists and information.

A. HINDERLICH;
1. LECHMERE ROAD,
LONDON • N.W. 2
Telepbone: Willesden 2668

E.P.S.I.
as heterodyning, which consists in introducing into the circuit a second oscillstion at a frequency nearly equal to that of the incoming signal. The two oscillations will then combine and produce beats in the usual way, and these beats may be arranged to occur with any desired frequency. If f_{1} and f_{1}

Rectifiod wave trains.

Telephone currents.
Fig. 177. -Illustrating Conversion of Hioif Freuuency Currents to Unidirectional Pulses by Means of Rectification.
are the frequencies of the signal and local currents respectively, the combination of the two will be a frequency $\frac{f_{1}+f_{2}}{2}$ modulated at a frequency $\frac{f_{1}-f_{2}}{2}$.

Whannanananarananananana Rectifiea

Fig. 178.-Illustratino Princille of Heterodyning.
This, when rectified, will produce currents in the telephone pulsating with n frequency $f_{1}-f_{2}$. The effect is demonstrated in Fig. 178.

Other methods of modulating the received wave have been employed from time to time, but the heterodyne system is by far the most common.

Design of Tuner.

The reactance of a tuned circuil is zero at a particular frequency, but is also comparatively small for n band of frequencies on either side of the resonant point. This may be seen by referring to the resonance curve of a simplo serios circuit (p. 69), in which it will bo seen that apprecinbly large currents are obtained even when the circuit is not quite in resonance.

Consequently, any transmitting stations working on wave lengths close to that of the station being received will set up currents comparable with the actual signal current, and will thus interfere with the reception. The extent of such interference depends upon the width of the resonance curve, the narrower the curve the greater boing the " selectivity."

It is thus of value in designing a tuning circuit to be able to estimate the width of the resonnace curve at a point where the current is $1 / n$ of the resonant value. 'This is given by the expression-

$$
\text { Band width }=\mathrm{W}=\delta \sqrt{n^{2}-1} / \pi \text { cycles, }
$$

where δ is the decrement of the circuit.
The decrement of a single circuil, however, cannot be reduced below $\delta=1:() / f_{\text {, w }}$, where f is the frequency, or the signals lack definiteness and "ringing" occurs. Hence to increase the selectivity the first circuit is loosely coupled to a second circuit timed to the same frequency.

The resonance curve of two coupled circuits is not only narrower than that of a single circuit, but is also more flat topped. This is due to the effect of one circuit on the other (see p. 80). By employing a chain of such circuits, a "band filter " is obtained, having a flat top and a sharp cut off (i.e., steep sides).

If all the circuits are similar the band width of such a filter is given by putting $n^{2 / p}$ for n^{2} in the above formula, p boing the number of circuits.
In addition to tuning the high frequency oscillations, it is possible when receiving C.W. to insert circuits tuned to the note frequency of tho signal. ('This cannot be done with spark systems, the note obtained being composed of a series of pulses which is by no means a pure sine wave, and hence does not lend itself to filtering by resonant circuits.) This practice is becoming increasingly common, one reason being that low frequency amplifiers are more oflicient, a second reason being the cheaper cost. The problem is simply one of convenience and economics of design. Provided the signal strength is sufficient to operate the rectifier efficiently, experiments have shown that high and low frequency tuning are equally effective, but that low frequency tuning is distinctly cheaper.

Economical Proportions of Tuner.-A detecting device operates more officiently on a reasonably strong signal than on a weak one, and hence it is advisable to have a certain high frequency amplification. (But see p. 175.)

Moreover, with the hoterodyno system there aro two different frequencies, one on each side of the heterodyne frequency, each of which will give the same heterodyne note, and a simple note tuned amplifier cannot discriminate between these two.

It is customary, therefore, to provide sufficient high frequency tuning to eliminate one side of the heterodyne band, and then to adopt low frequency tuning to obtain the remaining selectivity desired. The dosign of tuning circuits to have the requisite characteristics may be carried out in accordance
with the principles laid down in the first two sections. The condition for selectivity is simply that $\frac{R}{L}$ shall bo ns low as is practicnble.
la some cases where particular interference on a definite wave length is experienced, circuits possessing infinite impedance points (rejectors) may bo utilised.

Design of Amplifiers.

The next point to be considered is the design of the necessary amplifier. Under this heading also cormes the detector, which is considered later. In many cases the tuning circuits are made an integral part of the amplifier; in such circumstances, a judicious applicntion of the principles just considered, coupled with the essential features of amplifier design, shoukd produce a satisfactory recciver.

The valve may be regarded as an amplifying repeating device, and the design of an amplifier consists in determining the requisite impedances of the input and output circuits in order to obtain the maximum efficiency.

Input Circuit.-The impedance of the input eircuit should theoretically be of the same order ns the internal impedance between the grid and filament of the valve.

The grid filament impedance of Ω valve comprises two factors:
(a) The internal resistance between grid and filament.
(b) The eflective capacity between grid and filament.

The resistance depends to a large oxtent upon the grid potential. With n negative grid, r_{g} is practically infinite, but as soon as the grid becomes positive, grid current starts to flow and the resistance falls rapidly.

Since, however, the grid potential is nearly always zero or negative, the rosistnnce may be taken ns being high, and consequently should be matched with a high impedance input circuit. The actual design of the input circuit, however, is tu some extent controlled by other factors, as will be seen, and the actual condition to be complied with in practice is that the alternating voltage applied to the grid should be as high as possible.
'There is still the effect of the second factor to be considered.
Morecroft has shown that for ordinary receiving valves the capacity between grid and filament with the nnode free is from 6 to $10 \mu \mu \mathrm{~F}$, while that between grid and anode, with the filament free, lies between 3 and $1 \pm \mu \mu \mathrm{F}$. Morecroft calls these the geomelric capacities, in distinction to the effective

Fig. 179.-Illustrating Effect of Grid Anode Capacity.
capacity, which is considorably greater. For, referring to Fig. 179, it will be seen that the alternating voltage charges the condenser $C_{f g}$ to a voltage v_{g} -

It also, however, charges the condenser C_{ga} through the anode circuit.
iII.
and since the anode circuit contains an E.M.T. μv_{g}, where μ is the amplification factor of the valve, the total voltage to which $\mathrm{C}_{\text {ga }}$ is charged is $(\mu+1) v_{\mathrm{g}}$.

The current taken is thus the same as would be taken by an equivalent condenser-

$$
\mathrm{C}_{\mathrm{eff}}=\mathrm{C}_{\mathrm{fg}}+(\mu+1) \mathrm{C}_{\mathrm{ga}}
$$

Now it will be seen later that μ depends upon the impedance in the anode circuit, varying from 0 to μ_{0} where μ_{0} is the voltage amplification factor obtained from the characteristic. Henco $\mathrm{C}_{\mathrm{e} \boldsymbol{f}}$ depencls on the conditions under which the valve is operating. If-

$$
\begin{aligned}
& \mu=6, \text { s } \Omega, \text { and } \mathrm{C}_{\mathrm{gg}}=7 \mu \mu \mathrm{~F}, \\
& \mathrm{C}_{\mathrm{gn}}=0 \mu \mu \mathrm{~F}, \\
& \mathrm{C}_{\mathrm{eq}}=7+(7 \times 9)=70 \mu \mu \mathrm{~F} .
\end{aligned}
$$

The impedance of this at low frequencies is negligibly high -3 megohms at 800 cycles, but at a frequency of 500,000 (600 metres) the impedance is only 7,000 ohms, which exercises Ω very appreciable shunting effect. Hence for bigh frequency amplification it is desirable to use valves having a low interelectrode capacity and also a low amplification factor.

Actually, the effective capacity is only about $S 0$ per cent. of the value given above, due to mutual action between the electrodes.

Working Point on Characteristic-Effective Amplification.-Before considering the output circuit it will be as well to consider the effect of impedance in the anode circuit upon the characteristic and the roplification factor.

Fig. 180.-Characteristic Curve of W.E. Co. Valfe onder Different Conditions of Load.

Fig. 180 shows the characteristic curves of a Western Electric Power valve. The full line is the characteristic as usually taken, with no external impedance in the anode circuit. At -9 volts on the grid and 130 volts on the nnode, the anode current is 7.5 milliamperes. If the grid voltage is increased to -5 volts, the anode current increases to 13 milliamperes.

If, however, the anode circuit contains an impedance of $0,000 \mathrm{ohms}$, the voltage on the anode will be reduced, which will limit the rise of the anode current to 10 milliamperes. Similarly, a decrease in grid volts causes a decrease of current, which is countoracted to some extent by a rise in anodo voltage due to a reduced voltago drop on the external impedance. The net result is that to alternating voltages the charactoristic with an external impedance of 6,000 ohms in the anode circuit is as shown by the dotted linc.

It will be oloserved that this charactoristic is substantially a straight line, but of considerably less slope. Hence the effective amplification is less. Actually, the effective value of the amplification factor is given by-

$$
\mu=\frac{\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}}{\sqrt{\left(\mathrm{R}+r_{1}\right)^{2}+\mathrm{X}^{2}}} \mu_{\mathrm{o}}
$$

where R and X are the resistance and reactance of the external impedance,
r_{1} is the internal impedance of the valve, $\mu_{0}=$ voltage amplification factor.
If the external impedance is a pure resistance-

$$
\mu=\frac{\mathrm{R}}{\mathrm{R}+r_{\mathrm{i}}} \mu_{0}
$$

If the external impedance is Ω pure reactance-

$$
\mu=\frac{\omega \mathbf{L}}{\sqrt{r_{1}^{2}+\omega^{2} L^{2}}} \mu_{0}
$$

assuming $\mathrm{R} \ll \omega \mathrm{L}$, which is usually valid.
In the above formule it is important to note that the value of r_{1} must be taken under the correct working conditions-i.e., v_{a} must be the actual voltage on the anode, allowing for the resistance drop in the impedance.

The value of the grid voltago also affects r_{i}, which increases as the voltage on the grid is made nogativo, and this effect must also be taken into consideration.

Output Circuit.-The output circuit is again designed in accordance with the principle that the external and internal impedances of the valve should bo of the same order, but the question of the officiont repeating of the signal between one valve and the next has also to be considered. It will be best to treat the several possible cases separately.

There are three main types of amplifier:
(a) Resistanco coupled, in which the output circuit is a high resistance, the voltage across which is transferred direct to the grid through a condenser.
(b) Reactance coupled, which is similar to (a), except that a reactance is employed.
(c) Transformer coupled, which is self-explanatory.

Resistance Coupling.-An amplifier of this type is shown in Fig. 181. The variations of anode current produce varying voltages across the resistances R_{3} and R_{4}, whioh are transforred to tho grid circuit through the condensers C_{1} and C_{2}. These condensers are necessary because the steady anode current produces a steady positivo potential across the resistances, and if such were applied to the grid the valve would become inoperative. The grids, therefore, are isolated by means of the condensers shown. A condenser in auch a position, howover, gradually acquires a negative potential under the influence of an incoming signal. This phenomenon is discussed on p. 175, but

164

it will suffice to remark here that to avoid this negative bias from becoming excessive, a high resistanco leak is connected across the grid and filament.

Considering now the general case where R is the resistance in the anode circuit, the anode current-
whence

$$
\begin{aligned}
& i_{\mathrm{n}}=\frac{\mu_{\mathrm{o}} \mathrm{v}_{\mathrm{g}}}{\mathrm{R}+r_{\mathrm{i}}}, \\
& v_{\mathrm{a}}=i_{\mathrm{B}} \mathrm{R}=\stackrel{\mu_{o} v_{\mathrm{g}} \mathrm{R}}{\mathrm{R}+r_{1}}, \\
& \mu=\frac{v_{\mathrm{a}}}{v_{\mathrm{g}}}=\frac{\mathrm{R}}{\mathrm{R}+r_{\mathrm{I}}} \mu_{0} .
\end{aligned}
$$

Hence μ increnses towards μ_{\circ} as R is increased. But the H.T. voltage must be incrensed at the same time, otherwise r_{1} increases and μ falls off.

Fio. 181.-Resistance Coupled Λ mplifier.
It is ensy to show that for a given H.T. voltage the maximum amplification occurs when $\mathrm{R}=r_{\mathrm{i}}$, when $\mu=\frac{\mu_{\mathrm{o}}}{2}$.

This value may bo exceeded by making R greater than r_{1}, provided the H.T. voltage is increased, so that the effective anode voltage, allowing for the drop in the resistance, remains the same.

The economical limit is when R is two or three times r_{1}. R must be so designed as to dissipate $i_{0}{ }^{2} R$ watts continuously, where i_{0} is the mean value of the anode current.

The size of the transfer condensers depends upon the frequency. The impedance of the condenser should be small compared with the grid filament impedance. At low frequencies this requires a condenser of the order of $0-05 \mu \mathrm{~F}$, but a condenser of 200 to $400 \mu \mu \mathrm{~F}$ is satisfactory at radio-frequencies (see also p. 176). The leak should vary from $0.25 \mathrm{M} \Omega$ at low frequencies to $2-3 \mathrm{M} \Omega$ at radio-frequencies.

Subject to the limit imposed upon the net amplification, and the high H.T. voltage required, resistance amplification is a very satisfactory method at low frequencies and for radio-frequencies up to about 300,000 cycles (1,000 metres). Beyond this point the shunting offect of the valve capaoity (anode-filament) begins to exercise an appreciable effect.

Reactance Coupling.-Here, as has been seen, $\mu=\mu_{\circ} \frac{\mathrm{X}}{\sqrt{\left(r^{2}+\mathrm{X}^{2}\right)}}$ The
problem is thus similar to that just considered, but has the advantage that the H.T. does not have to be increased as X is increased, since the resistance drop in the reactance is negligible.

Fig. 182.-Showing Effect of Anode Impedance.
The value of μ / μ_{0} in torms of X / τ_{1} is given in Fig. 182, which also shows the resistance coupled condition. It will be seen that if $\mathbf{X}=2 r_{i}, \mu$ practically $=\mu_{0}$. This type of coupling, therefore, is considerably more efficient, but the fact that the amplification can never oxceed μ_{o} is a serious disadvantage.

Fig. 183.-The Tuned Anode Circuit.
The same remarks concerning frequency apply hero as with resistance coupling, while at radio-frequencies the reactance is furtbor shunted by the distributed capacity of the coil.

This leads to a very common form of coupling known as the tuned anodo systom. A condenser is inserted in parallel with the reactance as shown in

Fig. 183. By varying the condenser the coil can be tuned to the incoming signal, nt which point the impedance of the tuned anode combination is a maximum (tending to infinity if \mathbb{R} is low), and hence the maximum voltage is applied to the grid.

It must be remembered, however, that μ can nover exceed μ_{0}, no matter how large the grid voltage variations.

Transformer Coupling.-The low frequency case will be considered first. The actual circuit is as shown in Fig. 184 (a), neglecting the valve batteries,

(a) Actual circuit

Fig. 184.-'Transformer Coupling.
while the equivalent circuit, in which the secondary impedance is reflecied into the primary circuit by the usual transformer laws, is shown in Fig. 184 (b).

This assumes no magnetising current in the transformer, zero internal impednnce (leakage renctance), nud n resistive secondary load. Then-

$$
v_{\mathrm{g} 2}=\frac{r_{\mathrm{g}} / n^{2}}{r_{1}+r_{\mathrm{g}} / n^{2}} \mu_{\mathrm{a}} v_{\mathrm{g}}=\frac{\mu_{0} r_{\mathrm{g}}}{n^{2} r_{1}+r_{\mathrm{g}}},
$$

where n is the transformation ratio of the transformer.
The actual voltage applied to the grid of the second valve is n times this value, so that-

$$
\begin{gathered}
\mathrm{S}=\frac{v_{\mathbf{g} 2}=}{v_{\mathbf{g} 1}}=\frac{n \mu_{\mathrm{o}} r_{\mathbf{R}}}{n^{2} r_{\mathbf{I}}+r_{\mathrm{g}}}=\frac{\mu_{0} n a}{n^{2}+a}, \\
a=\frac{r_{\mathrm{g}}}{r_{\mathrm{i}}} .
\end{gathered}
$$

Hence, if μ_{0} and n are constant, S increases to a limit $\mu_{0} n$ as a increnses, while, if μ_{0} and a aro constant and n is varicd, S is a maximum when $n=\sqrt{a}$, nt which point $\mathrm{S}=\mu_{\circ} \frac{n}{2}$.

This second case is the practical condition. It is not nlways practicnble to make $n=\sqrt{a}$, but in order to obtain best results it will be seen that r_{g} should be as high as possible, which is accomplished by making v_{go} negativo. This is also desirable from the point of view of distortionless amplification, which is referred to later, and hence low frequency amplifying valves are always designed to work with a large negative grid potentinl.

Now in a practical type of low frequency transformer the leakage reactance and conductor resistanco are negligible, as nssumed, but the magnetising current is not. In order to keep this factor low, the no-load reactance (secondary open) should be high. This reactance is in parallel with $r_{\mathrm{g}} / \mathrm{n}^{2}$ in Fig. 184 (b), and thus reduces v.

Fig. 185 shows the values of S for Ω transformer having $u=4$ coupled to Ω valve of which $\mu_{o}=6$ and $r_{i}=10,000$ in terms of X_{0}, the no-load reactance.

It will be seen that there is little advantage in increasing X_{o} above 20,000 ohms, but that S is very low if X_{o} is too small.

It also shows that although the value of $n=4$ is about right for $r_{g}=25,000$ and is much too low for $r_{g}=10^{\circ}$, yet S in the latter case is distinctly higher, indicaling that it is very important to maintain r_{g} as high as possible.

Fig. 18ú.-Effect of Primary Reactance.

In a practical transformer. the higher the number of secondary turns the greater the leakage reactance, and also the greater the distributed capacity of the winding which reduces the effective transformation ratio. Honce a praction limit is reached with $n=4$ or 5 , this limit being even lower if the value of $a=r_{\mathbf{g}} / r_{1}$ is small.

In practice $\mathbf{X}_{\text {o }}$ is made about twice r_{1}, which for ordinary frequencies gives a no-load inductance of the order of 10 to 20 henries.

High Frequency Transformers.-At high frequencies the problem is somewhat modified. Here there is considerable leakage botween primary and secondary. If k is the coupling factor, then-

$$
\mathrm{S}=\frac{\mu_{0} \omega L \sqrt{\mathrm{~L}_{1} \mathrm{~L}_{2}}}{\sqrt{\omega^{2} \mathrm{~L}_{1}^{2}+r_{1}^{2}}}
$$

neglecting the resistance of the coils.
S thus varies directly os k and $\sqrt{\mathrm{L}_{2}}$, but in n complex manner with L_{1}. Other things being equal, S is π maximum when $\omega L_{i}=r_{1}$, but this usually gives a value of I_{1} which brings the natural period of the coil within the working range.

It is therefore usual to tune L_{1}, under which conditions ωL_{1} becomes $\gg r_{1}$ and the expression reduces to-

$$
\mathrm{S}=\frac{\mu_{0} k \sqrt{L_{2}}}{\sqrt{\mathrm{~L}_{1}}}
$$

Hence L_{1} should bo made as small as possible, down to the limit where the effective resistance of the circuit (L_{1} and C in parallel) $=\frac{\mathrm{L}}{\mathrm{CR}}$ becomes comparable with r_{1}. L_{2} may then be as largo na possible up to the limit when the coil and valve capacilies begin to be troublesome.

168

This limit occurs somewhat early, so that high frequency amplification cannot be made highly eflicient, particularly as a valve with a low value of μ_{0} should be used, ns previously explained.

The trouble may be overcome by tuning L_{2}, but then k must be small to nvoid double frequency effects, which immediately reduces S again.

Such an arrangement, however, is very selective, but requires careful handling.

Telephone Receivers.-The impedance of a telephone receiver varies in a complex manner with frequency. If the diaphragm is clamped, the effective resistance and reactance increase with the frequency. But if the dinphragm is free to move, there is superposed the " motional "resistance and reactance, which becomes very large near the resomant points of the diaphragm. It is

Fig. 186.-Impedance and Resistance Cuives of a Telephone Receiver.
the motional impedance that is of importance, since it is a measure of the energy being transformed into useful work. Fig. 186 illustrates this point.

The design of a telephone is somewhat complex, but empirically it is found best to make the total impedance of the same order as r_{1}.

A high resistance instrument has many turns of fine wire, with a high R and Z , and is thus suitable for inclusion direct in a valve circuit. It is not so robust, however, as a low resistance telephone, which has fewer turns of thicker wire. Such an instrument has a lower impedance, and thus requires to be coupled to the valve circuit through a suitable transformer, which may be designed on the principles just laid down, substituting Z for r_{g}.

This method of treating transformer coupled amplifiers is due to Morecroft, and for further information the reader is referred to "The Principles of Radio Communication," by that nuthor.

Distortionless Amplifleation.-The first essential for the faithful reproduction in the output circuit of the E.M.F.'s applied to the valve is that the working portion of the characteristic shall bo substantially linear. If this is not the case then distortion occurs.

Assume that the characteristic obeys a square law. Then-

$$
\begin{aligned}
& i_{\mathrm{n}}= \mathbf{A}\left[v_{\mathrm{a}}+\mu_{\mathrm{o}}\left(v_{\mathrm{g}}+\mathrm{V} \sin \omega t\right)\right]^{2}, \\
&= \mathbf{A}\left(v_{\mathrm{a}}+\mu_{\mathrm{o}} v_{\mathrm{g}}\right)^{2}+2 \mathrm{~A} \mu_{\mathrm{O}}\left(v_{\mathrm{a}}+\mu_{\mathrm{o}} v_{\mathrm{g}}\right) \mathrm{V} \sin \omega t \\
& \quad+\mu_{\mathrm{o}}^{2} \frac{\mathrm{AV}}{} \frac{V^{2}}{2} \cos (2 \omega t+\pi)+\mu_{0}^{2} \mathrm{AV}^{2} \\
& 2
\end{aligned}
$$

where V_{n} and V_{g} are the steady values.
The third term is of double frequency, and thus introduces distortion. The fourth term is a constant term which will cause an increase of i_{a}. Hence, as a test for distortionless working the applied E.M.F. should be increased. If the anode current increases then distortion is present. With a linear law this fourth term is not present, and hence the average anode current is unaffected by V.

The process of detection also introduces distortion. (See p. 203.)
A second cause of distortion is due to the presence of grid current. As soon as the grid becomes positive the resistance r_{g} becomes comparatively low, introducing heavy damping during part of the cyclo.

To avoid these two causes of distortion, the grid is operated at a negative potential, such that the maximum variation of v_{g} nevercauses any appreciable

Fig. 187.-Amplification Curves of Marconi Ideal Transformer.
grid current. This involves working well down the characteristic, where the law is not linear unless the external impedance is of the same order or greater than r_{1}. Morcover, the anode voltage must be so chosen that with the requisite negative grid voltage the working point on the characteristic falls about midway between zero grid volls and the voltage at which the anode current is reduced to zero. This point occurs at -9 volts in Fig. 180, which has already been referred to.

A third source of distortion is due to the transformers used to couple successive valves together. Here it is essential to maintain the amplification sensibly constant over the working range of frequency. (This, of course, only npplies to specch or music amplification.)

S has been seen to be $=f\left(n_{1} \chi_{0}\right)$. As the frequency increases, n falls off owing to the greater effect of distributed capacity. X_{o}, however, rises, and these two effects tend to neutralise each other.

Hence, with a well-designed transformer S can be maintained constant over a very wide range of frequency. Fig. 187 illustrates a practical case of good design.
'The range of frequency over which amplification should be maintained for faithful speech reproduction is about 500 to 2,000 . Music requires a rather larger band.

Dye has discussed the question of transformer design very thoroughly (Experimental Wireless, vol. ii., Nos. 12, 13, and 14). Ho shows that-

1. The addition of π shunt resistance across the secondary tends to equalise the nmplification at various frequencies. No serious loss of amplification results if this shunt is not less than $0 \cdot 2 n^{2}$ megohms.
2. A shunt capacity across the secondary of a value about $\frac{1,000}{n^{2}} \mu \mu \mathrm{~F}$ will improve the effective amplification ratio. The distributed secondary capacity should be included in this shunt.

Limitations of High Frequency Ampliflers. - Apart from the limitations just referred to, the design of high frequency amplifers is further complicated by the fact that the capacity between grid and anode of the valves

Fig. 188.-Methons of Neutralising Valve Capacity.
causes a certain reaction effect which tends to cause the associated circuits to generate continuous oscillations. This is highly undesirable, since it is not under control.

Blatterman has shown (Radio Review, October, 1920) that no reaction due to internal capacity is possible where tho input and output impedances are pure resistances.

In other cases oscillation may occur under suitable conditions.
(a) Resistance R_{g} in grid circuit; inductance L_{a} in anode circuit.

Oscillation occurs if $\omega^{2} \mathrm{~L}_{\mathrm{a}} \mathrm{C}_{\mathrm{m}} \mathrm{R}_{\mathrm{g}}<r_{\mathrm{l}}$, where C_{m} is the capacity from grid to anode.
(b) If the grid circuit is inductive $=\mathrm{L}_{\mathrm{g}}$, then no matter what the anode impedance, oscillations will result if $\omega^{2} \mathrm{~L}_{5} \mathrm{C}_{\mathrm{m}}<1$.

This is the dangerous case because the frequency of the oscillation is independent of the anode tune, and therefore may be at a totally different frequency.

Various circuits have been devised for overcoming this difficulty of selfoscillation. One, due to Hazeltine, known as the neutrodync, consists in neutralising the effect of the valve capacity by a suitably connected very small external capacity. Consider Fig. 188 (a). Some of the energy in the anode circuit of the second valve is transferred through the anode-filament capacity to the grid circuit, so causing self-oscillations.

To neutralise this a small capacity C_{1} is connected between the anodes of the valves. This permits a amall current to flow through the coil L_{1}, which induces an E.M.F. in the coil L equal and opposite to that due to the feedback through the valve. The condition for this is that $\mathrm{L}_{1} \mathrm{C}_{1}=\mathrm{LC}$.
This requires a very amall value of C_{1}. Several methods may be adopted to produce this small capacity. One form of neutralising condenser comprises two plain wires about \ddagger inch apart over which slides a metal tube

Fig. 189.- Forms of Neutralising Condensete.
(insulated from the wires), as in Fig. 189. The tube may be varied in position till the requisite capacity is obtained. A simpler method still is to run the respective anode leads parallel for a short distance. With such neutralising arrangements it is nost important to keep the wiring well spaced, so that all intercircuit capacitics are under control.

Fig. 188 (b) shows a method of neutralising the solf-capacity of the first valve. The same condition applies-viz., $\mathrm{L}_{1} \mathrm{C}_{1}=\mathrm{LC}$.

Use of Reaction.-Deliberate reaction may be used in certain cases, the grid and anode circuits of a valve being magnetically coupled logether. Then, if the coupling is in the right direction, but is less than the critical value, the decrenient of the circuits is reduced, with consequent sharpening of tune and increase of signal strength.

This process cannot be used to its fullest advantage because, if the reaction is excessive, atmospheric shocks will cause the circuits to oscillate and the signal may temporarily be obscured.

A further difficulty lies in the fact that the variation of the reaction coupling also alters the tune of the circuits, which must be carefully retuned after each variation.

A circuil which has been used to some extent employs a condenser to control the H.F. output of the valve. The anode of the valve is provided with high

172

tension through a choke coil L_{k} (Fig. 13f), while the high frequency oscills. tions pass through the circuit $\mathrm{C}_{1} \mathrm{I}$.

If C_{1} is made small (rbout $100 \mu \mu \mathrm{~F}$ maximum), tho high frequency current can bo controlled in amplitude by simple variation of this oapacity. Any tendency to oscillate is thus under perfect control.

Fig. 190.-Valve Circuit with Condenser Feed Control.
Filters.-It is sometimes desirable to cut off all frequencies above or below a given frequency, and for this purpose netivorks of inductance and capacity or resistance and capacity, known as filters, are employed.

If it is desired to cut off all frequencies ahove a certain value, a low-pass filter is employed, ns shown in Fig. 191.

Fig. 191.-Low-Pass Filtelr.
This cuts off all frequencies above $f=\frac{1}{\pi \sqrt{L C}}$. The impedance of the network is low at any frequency below this frequency, butrises rapidly as the critical point is passed. It should be noted that the arrangement is symmetrical, the two inductnnces at the end being $\mathrm{L} / 2$.

Fig. 192.-Higif-Pass Filter.
Fig. 192 shows a high-pass filter which cuts off all frequencies below $f=\begin{gathered}1 \\ 4 \pi \sqrt{\mathrm{LC}}\end{gathered}$

The conditions already given, however, are inadequate for the complete design of a filter; it is further necessary that the frequencies which are
passed through the filter shall be transmitted along the line without reflection. This is accomplished by making the surgo impednnce of the filter equal to thal of the inputand output circuits, which should therefore be equal.
For a resistance load, this condition demands that $R_{\text {load }}=\sqrt{C}$ for a low-pass filter.

This condition only applies below the critical frequency. In conjunction with the equation for critical frequency, therefore, L and C may thus be solved.

For a high-pass filter, the conclition (which in this case only applies above the critical frequency) is that-

$$
\mathrm{R}_{\text {load }}=\sqrt{\overline{\mathrm{L}}} .
$$

For further information the reader is referred to "Electric Oscillations and Electric Waves " (P'ierce), where the subject is very fully treated.

Detectors.

The simplest form of detector in use to-day is the crystal. Certain combinations of two crystals or a crysta! and a metal exhibit unequal conductivities according to the direction of the voltage applied across them.

Hence, by applying an sinusoidal voltage to such a device, the resultant current is nsymmotrical, giving a resultant unidirectional current.

Obviously, the more complote the suppression of current in one direction the more officient the rectification. The actual rectification, however, depends on the curvature of the voltage-current characteristic at the working point. The question is discussed under the question of valve rectification, the phenomena of rectification with a crystal and n valve (utilising anode rectification) being parallel.

Characteristics of two types of crystal are appended. Fig. 193 shows the variation of current with voltage applied for a Perikon crystal. This comprises a crystal of zincite in contact with a chalcopyrites crystal. It will be seen that a very sharp bend in the curvo occurs at zero applied voltage. Such a combination will thus act as an efficient rectifier without any steady applied F.M.F. This lypo is known ns the "double-contact," "non-polarised " type. Other types of detector employ ono cryatal and a light metallic contact. This typo is known ns the "single-contact" type, the contact usually being in the form of a light spring of fine wire.

Such combinations are very sensitive to contact pressure, and in many cases are subject to loss of sensitivity due to oxidation of the contacts. A certain amount of searching for a sensitive spot is also necessary, though in many cases this occupies very little time.

The most reliable crystal is the carborundum-steel combination. The characteristics of this crystal are shown in Fig. 19.t.

It will be seen that in order to operate at a sensitive spot a polarising voltage of the order of 1 to 1.2 volts is required. Carborundum is an impure silicon carbide, the contact being mado

Fig. 194.-Cimaractemistic of Carborundum Detector. by a tlat steol spring. This combination becomes more sensitive as the pressure increases, which renders it very stable.

The crystal is rather more expensive than the simple types, owing to the fact that the crystal has to be selected from a block of carborundum as delivered from the furnace, and only a comparatively few crystals out of the whole block are of any use. But, when obtained, it constitutes a reliable and sensitive detector, and is the only crystal detector used commercially.

Valve Rectiflcation.-The ordinary valve forms a very convenient detector. There are two methods of employing such a device. The first is to adjust the grid potential so that the valve is operating at the base of the characteristic, where a variation of $v_{\mathbf{g}}$ produces asymmetrical variations of i_{a}, with consequent rectification, as with a crystal. This method is known as anode rectification. It must be remembered that the effective characteristic is not the simple curve obtained with the external anode impedance $=0$. Hence the critical grid voltage will be somewhat more negative than that indicated from the simple characteristic.

It is customary, therefore, when using such a system to employ a low oxternal impedance in the anode circuit, and to utilise a valve having a high internal impedance of the order of 100,000 ohms, and possessing a high amplification factor.

Further, the characteristic is designed to lie well towards the positive side of the zero line.

Hence, when the effective characteristic is drawn out, the slope, though less than that with $Z=0$, is still large, and the current falls to zero with a sharp bend and at a voltage which is not too negative.

Value of Rectifled Current.-For small values of the applied voltage the current through a detector obeys a square law. Hence if $v_{\mathrm{g}}=\mathrm{V} \sin \omega t$, then the change in anode current for a change in grid voltage v_{g} is given by-

$$
\Delta i_{\mathrm{a}}=\frac{\mathbf{V}^{2}}{4} \cdot \frac{d^{2} i_{\mathrm{a}}}{d v_{\mathrm{g}}^{2}} \sin \omega t .
$$

If Z is the radius of curvature of the characteristic-

$$
Z=\frac{\left(1+\frac{d i_{\mathrm{a}}}{d v_{\mathrm{g}}}\right)^{3 / 2}}{\frac{d^{2} i_{\mathrm{g}}}{d v_{\mathrm{g}}{ }^{2}}}
$$

Then the expression may be written :

$$
\Delta i_{a}=\frac{V^{2}}{4} \frac{\left(1+\frac{d i_{a}}{d v_{g}}\right)^{3 / 2}}{Z} \sin \omega t .
$$

Hence, if Z is not varying rapidly, the most sensitive position is that where the alope is greatest-i.e., where the curve is just beginning to straighten out.

Hence, for weak signals a certain high frequency amplification should be employed, to enable the detector to function efficiently.

Rectiflcation of Heterodyne Signals.-This conclusion, however, does not npply to heterodyue reception. Here the applied voltage $v=S \sin \omega_{1} t+$ $\mathbf{H} \sin \omega_{2}$. The detector current is proportional to v^{2}, but the only term which is of interest is the audio-frequency component involving ($\omega_{1}-\omega_{3}$), which is of the form $k \mathrm{SH} \cos \left(\omega_{1}-\omega_{2}\right) t$.

This is a linear function, the current being proportional to the signal, and to the hetcrodyne.

Hence the stronger the heterodyno, the stronger will be the beat note, up to a limit where the characteristic ceases to obey a square law (e.g., in a valve, saturation effects commence).

In this case Appleton and Mary Taylor have shown (Proc. I.R.E., vol. xii., p. 277) that there is an optimum value of heterodync. Most detector characteristics are of the form $i_{d}=\alpha_{o}+\alpha v+\beta v^{2}+\gamma v^{3}-\delta v^{4}$.

If $\mathrm{H} \gg \mathrm{S}$ (the practical case), then the optimum heterodyne strength is independent of S , nud is given by $\mathrm{H}^{2}=2 \beta / 9 \delta$.
lor ordinary receiving valves this is of the order of 2 to 3 volts, a crystal requiring 4 to 5 .

Instead of analysing the characteristic, the optimum valuc of H may be found experimentally by plotting the mean detector current for gradually increasing low frequency voltages. A curve similar to a valve characteristic is obtained, exhibiting a gradual saturation effect. The optimum value of H is that at which the curve has the greatest slope.

Grid Rectification.-A second method of rectification by means of a valve utilises the curvaturo of the grid current characteriatic. To do this Ω condensor is inserted in the grid circuit, and the oscillations of grid voltage cause this condenser to build up to a negative potential. The current flowing in the anode circuit is correspondingly reduced, so producing a pulse of current in the telephones. This method, known as grid rectification, is very largely employed owing to its simplicity and the cumulative action of the building up. The phenomena involved will therefore be considered in greater detail.

Fig. 195.-Illustrative Action of Valve as Cumulative Rectifier.
Consider Fig. 195, in which π condenser C_{1} has been inserted in the grid filament circuit. The oscillating voltage is transferred through the condenser to the grid, which is thus subjected to voltage variations, and the anode current will fluctuate about its mean value.

Now, due to the condenser in the gride circuit, the valve will adjust itself till it is working at a point A on the characteristic [Fig. 195 (b)] at which no grid current is flowing. This point occurs at different potentials with various types of valves, but usually at a small negntive grid voltage.

When the grid is positive, a small current will flow from the filament to the grid. Due to the blocking condenser, however, this current cannot complete its circuit back to the filament, but rewains as a chargo on the condenser C_{1}. The grid therefore becomes slightly negntive relative to its original potential, and takes up a position as at B. During the next half-cycle the grid becomes negative, but returns to tho point 13 , since no further current has flowed into the grid condenser nor has any leaked awny if the valve is bard.

The next positive half-cycle will commence from the point B, and as soon 0.9 the grid voltage reaches the point A, grid current will flow and will cause an incrense in the negative charge on the condenser. The negative half. cycle will have no effect, as before. Each succeeding oscillation, therefore, will cruse the grid to acquire an increasingly negative potential until a point C is reached, where the voltage variation never makes the grid sufficiently positive to allow any grid current to flow. The action then ceases, and the grid is left charged to a stcady negative potential.
The variations of anode current, therefore, do not take place about a stendy point, but about a mean valuo which is decreasing in a series of jerks, and finishes appreciably less than the original value.

The change is detected in the tolephones, which are placed in the anode circuit. It is, however, necessary to reset the device after each train of waves, and to this effect a high resistance is shunted across the condenser (or to ono side of the filmment), which allows the charge to leak away during the comparatively long interval betweon successive trains of waves.

Size of Condenser.--In considering this the circuit may be redrawn, as shown in Fig. 196. Here G is the source of alternating voltage, $\mathrm{C}_{\mathbf{1}}$ is the grid condenser, and C_{2} is the grid filmment capacity of the valve.

Fig. 196.-Equivalent Circuit to Fig. 195 (a).
The voltage applied to the grid is that across C_{2} -

$$
v_{\mathrm{g}}=\mathrm{I} / \mathrm{C}_{2} \omega=v \omega\left(\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}\right) / \mathrm{C}_{2} \omega=\frac{\mathrm{C}_{1}}{\mathrm{C}_{1}+\mathrm{C}_{2}} v .
$$

Hence the voltage on the grid depends on the ratio of C_{2} to C_{2}, independent of frequency, and to obtain best results C_{1} should be large compared with C_{2}, so making $\frac{\mathrm{C}_{1}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$ appronch unity.

The effective value of C_{2} is of the order of 50 to $100 \mu \mu \mathrm{~F}$, and hence C_{1} should not be lower than 200 to $300 \mu \mu \mathrm{~F}$.

There is, however. a contrary effect to be considered. The value of the condenser must be such that it will build up to the full voltage required in the time available. Now the time taken to build up depends on both the capacity C and the leak resistance R .

The full mathematical treatment is distinctly complex, because the building up depends on the grid-current characteristic of the valve, and the treatnent involves both the first and the second differential coofficients.

Fortunately, bowever, certain simplifications can be made in the treatment. There are two operations to be considered:
(a) The building up of the condenser.
(b) The leak away, resetting the device for the next signal.

Fig 197 shows the charging of the grid condenser both with and without a leak. As has been previously explained, it is only when the grid voltage rises above the point where the grid current commences to flow that any charging of the condenser takes place.

The effictive portions of the voltage cycle are accordingly shown shaded in Fig. 197.

Without a leak, the voltage builds up rapidly at first, and less quickly afterwards, gradually acquiring a steady value equal to the maximum amplitude of the applied voltage.

With a leak, on the other hand, the initial rate of building up is not so rapid, due to the leak, and the grid potential falls again during the idle half-cycle from the same cause. This means, however, that in the next halfcycle the shaded area is largor and more

Without leak

With fairly heavy leak
Fig. 197.-Illostrating Effect of Grid Leak. charge is acquired by the grid condenser. The net result is that the building up, although initinlly slower, continues at a more rapid rate than in the first case, and the total time required to build up is found to be very little different, whatever the value of the lenk, within fairly wide limits. Mathematically it may be shown that for this condition to apply $\frac{1}{\mathrm{~K}}$ must be small compared with $\frac{1}{r_{g}}$, where r_{g} is the gridfilnment resistance of the valve, which means that the grid leak cannot be reduced much below 2 megohms.

The building up of the condenser, therefore, is controlled almost entirely by the capncity thereof, the sole function of the grid leak being to arrange for the dissipation of the charge in good time for the next impulse.

The values of C and R many now be investigated.
The method which is adopted here is not strictly correct from n mathematical point of view, but gives a very fair approximation, which agrees with the results obtained by more complex methods. It consists of estimating the time available for charging, and then working out the value of the capacily which will acquire, say, 90 per cent. of its full voltage in the time availablo when a resistance r_{g} is in series.

The capacity of the valve is ignored, because it takes no part in the rectifying action.

The charging time is tho time elapsing between the beginning of the ili.

178

oscillation and the point where the condenser has acquired its maximum voltage, and this is determined empirically.

1. Damped Waves.-Fig. 198 shows the building up of the grid voltage when receiving a spark train. It will be seen that the first three or four

Fí. 198.-Building-dp of Condenser with Spafk Sianals.
oscillations are sufficient to build up the voltage on the condenser, the succeeding oscillations having no effect owing to their rapidly diminishing amplitude. Consequently, the time t available for building up is very small, and is dependent, morenver, on the frequency.

Assuming four effective oscillations and a wave length of 600 metres ($f=500,000$), the time available is-

$$
t=\frac{1}{500,000} \times 4=8 \times 10^{-\theta} \text { seconds. }
$$

Assuming the grid filament resistance of the valve to be 300,000 ohms, which is a reasonable avernge value, the capacity required can be worked out in order that the voltago may build up to a given fraction of the full value during the time available. For a trial calculation the condenser will be assumed to charge up to 90 per cent. of the applied voltage.

Therefore

$$
\begin{aligned}
& v=\mathrm{V}\left(1-\varepsilon-\frac{t}{\mathrm{C} \boldsymbol{r}_{\mathrm{g}}}\right)=\mathrm{V}(1-0 \cdot 1) . \\
& \varepsilon^{-\frac{t}{\mathrm{C} r_{\mathrm{g}}}}=0.1 \\
& \log _{\epsilon} \varepsilon-\frac{\ell}{\mathrm{C} r_{g}}=\log _{\epsilon} 0 \cdot 1 \text {, } \\
& -\frac{t}{U r_{g}}=-2.3026 . \\
& C=\frac{8 \times 10-8}{23 \times 300,000} \text { approximately. } \\
& =11.6 \text { micro-microfarads. }
\end{aligned}
$$

This is, of courso, ridiculously small, and with such a value the major part of the voltage drop would occur on the external condenser. Assuming an effective internal capacity of $80 \mu \mu \mathrm{~F}$, the ratio of the voltage actually applied across the grid v_{g} to the signal voltage v would be-

$$
v_{\text {ec }} / v=\frac{11 \cdot 6}{81 \cdot 6}=0 \cdot 142 .
$$

The vollage acquired by the condenser is only 90 per cent. of this,

Hence $v_{c} / v=0.142 \times 0.9=12.8$ per cent.
As C_{1} is increased the build-up voltage will fall off, but v_{g} / v will increase, and the two effects tend to balance one another.

If the net ratio of v_{c} / v is worked out for various values of C_{1}, the curve shown in Fig. 199 is obtained.

The maximum efficiency occurs at $\mathrm{C}_{1}=40 \mu \mu \mathrm{~F}$, where $v_{c} / v=17$ per cent., while with present-day values of 200 to $300 \mu \mu \mathrm{~F}$ the ratio of v_{c} / v is only about

Fio. 199.-Rectification Efficiency with Spark Signals.
0 per cent. The method is thus very poor for spark reception, and, moreover, becomes increasingly poor as the wave length is reduced.

The size of the leak depends on the condenser. The time available for tho leak away to occur is very nearly $\frac{1}{1000}$ second, assuming a note frequency of 1,000 for convenience. If the condenser is assumed to lose 99 per cent. of its charge in this time, then-

$$
\begin{aligned}
& \varepsilon^{-\frac{t}{\mathrm{CR}}}=0.01 \\
&-\frac{1}{\mathrm{CR}}=\log _{e} 0-01=-4.6 \text { approximately } \\
& \mathrm{R}=\frac{10-3}{4.6 \mathrm{C}}
\end{aligned}
$$

If

$$
\begin{aligned}
& \mathrm{C}=35 \mu \mu \mathrm{~F}, \mathrm{R}=6.2 \text { megohms } \\
& \mathrm{C}=350 \mu \mu \mathrm{~F}, \mathrm{R}=0.62 \text { megohm }
\end{aligned}
$$

This last value, as has previously been shown, is too low for efficient working. It will be seen that the commonly accepted values of to-day are by no means the best as far as spark reception is concerned.
2. Undamped Waves.-With a C.W. signal the time availablo for charging dopends on the grid leak, although in a somewhat indirect manner. Consider Fig. 200, which indicates the building-up process with a C.W. signal. A heterodyne of the same strength as the signal is assumed, but the reasoning is still valid for considerably larger values of heterodyne. It will be observed that, as the amplitude of the signal is steadily increasing for half the heterodyne modulation, the grid has a considerably longer time to build up than in the case of a spark train. Having built up, however,
the charge must lenk away during the remainder of the modulation, so leaving the condenser rendy to build up ngain on the next modulation.

Now it will be found that, with the values in common use to day, the leak awny is not sufliciently rapid. Consequently, as indicated in Fig. 200, the grid does not start to build up until soveral oscillations have clapsed, and this at once limits the time available for building up. From Fig. 200 it will be

Fig. 200.-Building-op of Condenser witil C.W. Signals.
seen that the time available for charging is about one-fifth of the time of one heterodyne modulation. Assuming an 800 -cycle note (the average frequency employed), t is thus $\frac{1}{4000}$ second.

If, as before,

$$
\varepsilon^{-\frac{t}{\mathrm{Cl}}}=0 \cdot 1
$$

$$
\mathrm{C}=\frac{1}{4000} \cdot \frac{10^{12}}{2.3 \times 300,000}=362 \mu \mu \mathrm{~F}
$$

With this value

$$
v_{\mathrm{c}} / v_{\mathrm{g}}=\frac{362}{362+80}=0.82
$$

Hence $v_{\mathrm{c}} / v=0.82 \times 0.9=74$ per cent., which indicates that the method is distinctly more efficient for C.W. working.

Fig. 201.-Rectification Erficiency witil C.IV. Sionals.
The values of v_{c} / v in terms of C have again been worked out, the curve being given in Fig. 201. Here it will be seen that any capacity between 150 and $350 \mu \mu \mathrm{~F}$ is suitable.

The grid leak is usually made ahout 3 megohms. This means that in the time available, which is $\frac{4}{5} \times \frac{1}{800}$ second, the voltage will have dropped to-

$$
\begin{aligned}
v & =\mathrm{V}_{\varepsilon}{ }^{-\mathrm{Cl}} \\
& =\mathrm{V} \varepsilon^{-\frac{10^{12}}{1,000 \times 3,000,000 \times 250}} \\
& =\mathrm{V}_{\varepsilon}-1.33 \\
& =0.26 \mathrm{~V}
\end{aligned}
$$

assuming C to be $250 \mu \mu \mathrm{~F}$, which is the maximum of Fig. 201.
This shows that the charge does not completely leak away in the time available, and hence some such action as was indicated in Fig. 200 will take place. The succeeding heterodyne modulations will thus not cause the grid to build up negative again until the amplitude has risen above the value of 0.26 V quoted above. The maximum value to which the grid builds up is still the maximum value of the applied voltage, and consequently the effective reduction of grid voltage is only some 75 per cent. of the full voltage.

This further reduces the efficiency of the operation from 74 to 55 per cent. The only remedy is to reduce the leak, which, as has been seen, cannot be done, because for values below 2 or 3 megohms the leak begins to exercise an appreciable effect on the charging of the condenser. It will be seen, therefore, that the leak, though necessary, is a distinct evil.

T'elephony.-Telephony reception is similar to C.W. reception, except that for clarity of tone efficient rectificntion must take place with note frequencies as high as 2,000 cycles per second or more. For this purpose it is customary to use a smaller condenser ($200 \mu \mu \mathrm{~F}$ or less in place of the usual 350), which, of course, permits a more rapid build-up. It appears probable that still lower values could bo employed with advantage.

The grid leak is often reduced at the same time, but since the grid leak controls the working point on the characteristic, its value depends to some extent on the type of valve with which it is employed.

Working Point on the Characteristic.-Owing to the presence of the grid leak, the valve does not work at the point of zero grid current, but at some other point which is determined by the value of the grid leak itself.

To elucidate this point reference may be made to Fig. 202, which shows a grid current-grid voltage characteristic. If the filament end of the leak is connected to the negative end of the filament, then a line may be drawn from 0 having a slope such that $\cot 0=R$ (to the same scale as the curve), where R is the resistance of the leak. At any point on this line the voltage and current will bo connected by the relation $\frac{V}{I}=R=\cot \theta$.

Obviously, therefore, where this line intersects the grid-current characteristic will be the working point of the valve.

It will be seen that the smaller the leak the stecper is the line and the farther up the characteristic is the working point. In some cases the leak is connected to the positive filament lead, in which case the leak line originates at B, which for the same value of the leak gives a working point farther up the characteristic.

182

Fig. 202 also indicatos the true nature of the building-up process. There is a permanent grid current flowing, and the incoming oscillation causes variations

Fig. 202.-Control of Working Point by Grid Leak.
of this current. Owing to the curvature of the characteristic, however, these variations are not aymmetrical, and there is an increase in the average grid current, which causes the condenser to build up to a negative potential. In

Fig. 203.-Loss of Rectification with Working Point too Low Down.
the steady state the increnso of grid current is just a little more than the decrease, to make up for the loss due to leakage.
$E \|$ ect of A node Voltage. -The working point on the grid characteristic is also important from its effect on the anode current.

Referring back to Fig. 195, it will be seen that the variations of anode current are perfectly symmetrical, but that owing to the grid condenser action the mean value steadily falls, finishing appreciably lower than the original value 1_{0}.

Fig. 203, however, indicates the state of affairs when the working point on the characteristic is too low down. Here, due to the curvature of the characteristic, the variations of anode current become asymmetrical. The average value of the current is then no longer I_{1}, but I_{2}, which is not appreciably different from 1. In other words, the rectification effect is soriously impaired, and there will be a critical value of the applied voltage at which there is no change whatever in the mean anode current, and no rectification will result.

Tho remedy is to increase the H.T', while the connection of the grid leak to the positivo side of the filament also obvintes the trouble to some extent, because this shifts the working point well up the characteristic.

If the H.T'. is increased so far that the working point occurs on the upper bend of the characteristic, as in Fig. 20t, then the rectification is increased,

Fig. 204.-Increased Rectification at Top of Characteristic.
and not reduced. In this case the final value of the anode current I_{2} is appreciably lower than I_{1}, so giving increased signal strength for the same applied voltage.

Value of Rectifled Current.-For unheterodyucd weak signals the change in anode current is given by-

$$
\Delta i_{\mathrm{n}}=\frac{\mathrm{V}^{2} \frac{d i_{\mathrm{a}}}{d v_{\mathrm{k}}}}{\left(\frac{1}{\mathrm{R}}+\frac{d i_{\mathrm{g}}}{d \mathrm{v}_{\mathrm{g}}}\right) \frac{d^{2} i_{\mathrm{g}}}{d v_{\mathrm{g}}{ }^{2}}},
$$

where R is the leak resistance. Hence this form of detector also obeys a square law.

Optimum Heterodyne.-The remarks on p. 175 referring to heterodyne reception apply also to this method of rectification, in that the detector obeys a linear law with respect to heterodyned signals. As the strength of
the hoterodyne is increased. however, n condition similar to that indicated in Fig. 203 is obtained, so limiting the strength of the hent note.

Appleton (loc. cit.) has shown that the optimum heterodyne strength occurs just before this limiting effect becomes apparent. The actual optimum value is obtainable in terms of the grid current and anode current characteristics, but this is usually not a practical proposition.

The more practical method is to plot, as before, the mean anode current for various values of applied voltage (low frequency A.C. will suffice). The curve so obtained falls rapidly at first, as v_{g} is increased, reaching a minimum where the anode rectilication and the grid rectifieation effects neutralise each other (Fig. 203) and the rectification is nil, after which the curve gradually rises again. The optimum heterudyne strength is that at which the slope of the curve is a maximum, which occurs just before the minimum point, al Ω value of about 1 to $1 \frac{1}{2}$ volts.

Receiving Aerial Systems.

The aerial system is becoming recognised as one of the most important defences against jamming and atmospheric interference. The simple aerial is usually in the form of a horizontal wire at a height of 50 to 200 fect a bove the ground, according to circumstances. The height is the important factor, since $E_{r}=\varepsilon \times h$, the horizontal top serving to provide the necessary capacily, and to a small extent to increase the effective height.

The natural wave length should always be less than that of the station to be received, since a certain londing inductance must be inserted at the base to which the receiver may be coupled.

This limit, however, is only of importance at short wave lengths.
For simple circuits the voltage developed across the loading coil may be tapped across the grid and filament of the first valve (or connected to the detector), but for a circuit in which any selectivity is desired the acrial is tuned and loosely coupled to a secondary circuit.

This may be connected direct to an amplifier or to further tuned circuits, according to the design of the receiver.

Aperiodic Aerial. - A type of nerial sometimes employed comprises a simple aerial having a high resistance (10,000 to 50,000 ohms) inserted instead of an inductance. The voltage variations across this resistance are amplified by a valve, and the currents obtained are then filtered, tuncd, and amplified in the usual way. Several different stations may be received on the same aerial if desired.

Frame Aerials. Another very useful receiving system employs a loop of wire in place of the usual aerinl. The electric field in the ndvancing wave induces E.M.F.'s first in one side of the loop and then in the other. These two E.M.F.'s will be in opposition round the loop, but due to the fact that one side of the loop is affected before the other there will be a slight phase difference, and the result will be that the two E.M.F.'s do not cancel out, but combine to form a resultant.

If tho loop is tuned, appreciable currents will be set up by this E.M.F., which may be coupled to an amplifier in the usual manner.

Obviously, the above reasoning does not hold if the plane of the loop is at right angles to the direction of the received wave, for the electric field then affects both sides of the loop together, and there is no phase difference between the two E.M.F.'s.

Moreover, as the loop is rotated from this zero position, the resultant
E.M. F. will increase to a maximum when the plane of the loop is in the direction of reception, when it will commence to decrease again. The loop is thus directional in its recoption and this property is very valuable.

A frame acrial consists of a loop of soveral turns, in which case the total E.M.F'. is the aggregate of the resultant E.M.F.'s in each turn.

A frame aerinl is equivalent to a vertical aerial of height-

$$
h=2 \pi \mathrm{NH} \frac{\mathrm{~L}}{\lambda} \cos \theta,
$$

where
$\mathrm{N}=$ number of turns,
$\mathrm{H}=$ height of frame,
$\mathrm{L}_{4}=$ width of frame,
$\lambda=$ wave length being received,
$0=$ angle between frame and line of reception.

This neglects the axial thickness of the frame.
A frame, however, is not usually so efficient as an nerial. For maximum efficiency, the internal resistance of the aerial should equal the radiation resistance.

This in practice is difficult of achievement, but the total resistance of a receiving aorial can be reduced to within four or five times the radiation resistance.

With a frame, on the other hand, the radiation resistance is very small, and lence for a reasonablo afficiency R would have to bo impracticably small.

$$
\begin{gathered}
\mathrm{R}_{\text {rad }} \text { for simple aerial }=\frac{4 \omega^{2} h^{2}}{3 c} \\
h=\text { efficient height. } \\
c=\text { velocity of light. } \\
\mathrm{R}_{\text {rad }} \text { for frame }=\frac{4 \omega^{4} \mathrm{~A}^{2} \mathrm{~N}^{2}}{3 c^{2}} \\
\mathrm{~A}=\text { aren. } \\
\mathrm{N}=\text { number of turns. }
\end{gathered}
$$

Tho directional properties of a frame have been seen to be proportional to $\cos 0$. It is often convenient to draw a polar diagram of the reception of a given system, wherein the length of the radius vector at any angle represents the strength of the received signal when the frame is at that angle.

Fig. 205.-Polar Diagram of Simple Frame.
For a simple frame the polar diagram is a "figure of cight," as shown in Fig. 205.

The best size of loop and the spacing of the turns depends upon the wave length, and some indication of the appropriate size for any particular condition may bo gained from the lables attached. The strength of signals received is μ roportioual to $\frac{N A L}{\lambda^{2} R}$.

TABLE XXX.
Best Spacing with Given Size of Frame.

Sidc of Square (Feet).
4
6
8
10
12

Spacing of Turns (Inches).

A syatem which is in considerable use to-day is the Marconi Bellini-'Tosi system, in which two large frames are erected at right angles to each other. The connections from the frames aro led to the field coils of a "radiogoniometer." This instrument consists of two rectangular coils placed symmetrically at right angles, with a third (search) coil rotating inside.

The field coils are connected one to oach loop. Each loop will have E.M.F.'s induced in it by waves passing the system, the relative values depending on the direction of the signal. These E.M.F.'s will set up currents, which in turn will produce in the radiogoniometer a complex system of two magnetic fields at right angles.

The search coil will be affected by the resultant of these two fields, so that as this coil is rotated there will be two definite positions 180° apart where the resultant E.M.F. in the coil is zero, and two further positions 90° from the first whore the E.M.F. is a maximum.

The actual positions of these points depend on the relative strengths of the two fields, which again depond in the first place on the direction from which the particular signal is coming. Hence the rotation of the centre coil of the radiogoniometer has the same effect as rotating one of the large external loops.

This system therefore permits the use of large aerials, the rotation being electrical instead of mechanical. Signals can be received on such a system of a strength comparable with that on an ordinary aerial, thus obviating one of the chief disadvantages of a frame.

A diagram of the system is given in Fig. 206.

Originally it was customary to tune each external loop and employ a weak coupling to the rotating coil, which formed the secondary. The more modern system, however, uses a tight coupling in the goniometer ($k=50$ to 80 per cent.), and the secondary only is tuned. The loss due to the loops not being tuned is to some extent compensated for by the tighter coupling, but the resultant signal strength is weaker than with the tuned systom. This disadvantage is more than outweighed by the simplicity of the arrangement.

Fig. 206.-Bellini-Tosi System.
The design of the secondary is modified by the tight coupling, and the effective inductance has to bo obtained by the usual transformer laws. The leakage inductance of the stator coils should be of the same order as the inductances of the respective loops (which should, of course, be equal for reasons of symmetry). Having decided this, the design of the rotor coil simply consists in arranging that the effective inductance is such as to tune with the condenser employed.

Fig. 207.-Heart-Shaped Diagram.
Heart-Shaped Diagram.--It is sometimes desired to eliminate reception from one direction and to receive signals coming from the opposite direction. This may be accomplished by employing a combination of a frame and an aerial. The aorial receives equally well in all directions. A frame has a figure of eight polar diagram, but the current set up when the frame is
pointing in a given direction is 180° out of plase with that which fows when the frame is rotated through 150°.

This fact is utilised in the "heart-shaped balance," or " barrago " reception. The currents set up in the framo and in the acrial are both allowed to affect a common secondary circuit. In one position of the frame the two currents assist each other, but for a signal from the reciprocal direction the

Fig. 20S.-Connections fon Heart-Shaped Diagram (Untuned Frame).
currents are in opposition. If the two currents are adjusted to the same strength, they will cancel out and givo a zero position. The resulting polar diagram is then a cardioid, as shown in Fig. 207, the reception from one direction being cut off over a wide sector.

It is necessary to adjust not only the atrengths, but the phases of the two currents. If the acrial and frame circuits are both tuned, the balance then

Fig. 209.-Vector Diagrams for Heart-Shaped Balance. only holds for the particular wave length to which they are tuned. This is a disadvantage, and it is more usual to employ an untuned frame tightly coupled to a tuned secondary to which the aerial is also coupled.

The considerably reduced strength on the untuncd frame enables resistance to be inserted in the acrial circuit, which broadens the tune and maintains the balance over an appreciable band of wavo length. Such a circuit is shown in Fig. 208.

Fig. 209 shows the vector diagram for the circuit when balanced. Under such conditions there is no secondary current, and thus no interaction botween frame and acrial.

The frame E.M.T. lags 90° behind the electric ficld, and the current lags 90° behind E_{f} (the framo being untuned and inductivo).

The aerial E.M.F. and current are in phase with the clectric field, and hence by equating I_{a} and I_{f} a complete balance is obtained.

Actually, owing to resistance in the frame, I_{f} does not lag by quite 00°, so that I_{a} is made slightly lcading [Fig. 209 (b)].

The Beverage Aerial.--This is n form of acrial which has vory marked directive properties. It consists of a very long, low, horizontal wire, the length being comparable with the wave length being received, and the height from 10 to 30 feet. It depends for its action primarily on the fact that the electric field $n t$ the receiving point is not quite vertical, but is slightly tilted, the end near the earth lagging behind that at a hoight owing to the fact that the earth is not a perfect conductor.

A wave renching the aerial induces therein a small E.M.F., which propagates a wave along the wire, as with ordinary telephone transmission (see p. 253).

The velocity of this wave, however, is less than the velocity of the radio wave, so that it lags behind to a gradually increasing extent. Due to this lag, it absorbs energy from the wave, and as the lag increases the energy absorption increases, and the K.M.F. induced in the nerial is thus cumulative.

It is necessary, however, to earth the far end of the line through a network having a surge impedance equal to that of the line, as otherwise reflection will occur. The length of the line may be increased until the line wave is 180° behind the radio wave, after which the E.M.F. begins to decrease.

The length at which this condition occurs depends on the constants of the line, which determine the wave velocity.

The principal advantage of this type of aerial is the marked directivity obtained under suitable conditions. If the receiver is situated at A (Fig. 210),

Fig. 210.-Arrangement and Polar Diaghams of Beverage Aerial.
tho reception will be a maximum for waves in the direction BA, but will be zero for waves in the direction $A B$, provided the line is adjusted to have no reflection at the ends. By suitable adjustments the polar diagram can be made very narrow indeed, some ropresentative diagrams being shown in Fig. 210.

Examples of Commercial Receivers.-Fig. 211 is a skeleton diagram of a receiver suitablo for ship and shore communication, where rapid searching on a variety of wave lengths is desirable, and only a comparatively short range of reception is required. Tho wave length range of the receiver may be increased by using large coils with tappings for the lower wave lengths, but dead-end switches should be employed, particularly in the anode circuit, to obviate troubles duo to distributed capacity, as has been proviously mentioned.

Fig. 212 is a diagram of a Marconi type RCLA receiver used for longdistanco traffic.

The various components are as follows:

1. Directional solector- a Bellini-'Tosi arrangement.
2. Phasing panel for operating the aerial systeni as a simple frame, simple aerial, or combination of both (heart shape).
3. H. Tr. tuning and filtering arrangements.
4. Heterodyne oscillator, which is ndjusted to give a beat note of 2,500 cycles sccond.
5. High frequency rectifier employing anode rectification. The point Λ is connected to the filament through a suitable negative battery.
6. Limiter for reducing atmospherics to the same strength as the signal.

Fig. 2ll.-Simple Short Wave Receiver.
7. Low frequency filters tuned with a fixed tune to 2,500 note. The intervalve coupling is variable to increase the selectivity if desired, while a resistance can be introduced into each tuned circuit to broaden the resonance band, thus allowing for slight variations in the noto.
8. Double current bridge (see p. 210).
9. Relay for converting the signals to telegraphic impulses for transmission over a land line.

Instead of 9 and 10 , a second (low frequency) oscillator may be introduced, which heterodynes the 2,500 cycle current to 1,000 or 800 cycles suitable for aural reception.

DESIGN OF MASTS AND AERIALS.

(Prepared by G. H. Farnes and W. F. Smith.)

The mast system of a large transmitting station is the most expensive part of the whole equipment, and the design of the masts constitutes a highly specialised branch of radio engineering. The problems involved are comparativoly simple problems in structural design, and it is not proposed to enter into great detail. The operations involved in the design of various classes of mast will be outlined, however, after which the application of the principles should present no difficulty.

Radio masts are of two types:
(a) Self-supporting towers.
(b) Stayed masts.

An example of the first type is shown in Fig. 213. The structure is capable of standing the londs involved without any stays. Fig. 214 is an example of

Fig. 213.-Self-Supporting Towers.
n stayed mast. This lattor type is distinctly cheaper, tho cost being only one quarter to one-fifth of thal of a self supporting tower.

Against this must be set the considerably grenter ground area required for a stayed mast, but this consideration is usun!ly negligible compared with cost.

Design of Self-Supporting Tower.

A self-supporting tower is simply a cantilever having a distributed wind load and a concentrated pull due to the aerial at the extreme end (Fig. 215).

The worst condition occurs when these two forces act in tho samo direction, and the mast may thus be designed according to the ordinary theory of structures.

The wind load is not uniform, but increases with the height (see p. 198). This factor is the weakest link in the design of masts owing to the incomplete information available. This renders mast design very difficult, and necessitates the use of factors of safoty rather larger than the normal, a figure of 3 to 5 usually boing assumed in such cases.

Design of Stayed Masts.

Stayed masts are of two types:

1. Base rigidly fixed; this involves n maximum bending moment at the ground level.
2. Base pivoted on a ball-and-socket or

Fio. 215.-Forces on Self. Supporting Tower. equivalent joint.

The chief factors in the design of such masts are the determination of the stay stresses and dimensions, and the determination of the size of structure necessary in order that the requisite rigidity may be obtained.

The second type of mast, with the ball-and-socket joint, is assumed to deflect under load as a wholo-i.e., still relaining its linear formation; and if the stays are correctly designed this assumption is. valid.

The first type of mast, however, is equivalent to a cantilever with supports at varying distances, and thus definitely bends.

Assuming that the top of the mast deflects a given amount, then tho denections at the centre stary points would be somewhat less with the built-in mast than with the ball-and-socket joint type.

Both cases are suscoptible to rigid mathematical treatment if the loading is accurately known. The wind pressure, howover, is not known with auy cortainty, so that approximations have to bo resorted to, and it is usual, therefore, to consider the mast as deflecting as a whole without bending.

Calculation of Stay Tensions.-The first stop is to assume a suitable structure for the mast, which may conveniently be done by referring to similar designs. Now the worst condition which the mast has to stand is that when the wind load and the aerial pull are in the same direction. Letnt a height h_{k}.
$\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3} \ldots=$ horizontal components of tensions in stays $1,2,3 \ldots$ $f_{1}, f_{2}, f_{3} \ldots=$ distances from ground of stay points $1,2,3 \ldots$
All these forces are assumed to be in the same plane.
Then

$$
A_{h}+V_{1}+V_{3}+\ldots V_{n}=F_{1}+F_{2}+\ldots F_{n} .
$$

Also, taking moments nout the base-

$$
\mathrm{A}_{\mathrm{h}} \times h+\mathrm{V}_{\mathbf{2}} h_{\mathbf{1}}+\mathrm{V}_{2} h_{2}+\ldots \mathrm{V}_{\mathrm{n}} h_{\mathrm{n}}=\mathrm{F}_{1} f_{1}+\mathrm{F}_{2} f_{\mathrm{a}}+\ldots \mathrm{F}_{\mathrm{n}} f_{\mathrm{n}}
$$

From these equations F_{1}, F_{2}, etc., the resultant horizontal forces at each stay point may be obtained.

The wind load is olstained from the data given on p. 198. The nerial pull is calculable from the weight of the wire by the ordinary catenary laws, due allowance being made for the wind load on the aerial wires.

It is now necessary to calculate the cross-sectional area and initial tensions of the stays required to produce these forces $\mathrm{F}_{1}, \mathrm{~F}_{2}$, etc., under the required wind load.

The acrial tension may be in the same plane as one set of stays, but more usually is along the bisector of the stays (i.e., at 45° with a four-stay mast). If the wind load is assumed to be in the same direction as the aorial pull, then the windward stays will tighten when the mast deflects and the leeward stays will slacken.

Let l and l^{\prime} bo the initial and final lengthe of the stays.
$a=$ radius of stay anchorage.
$\varepsilon=$ deflection.
$h=$ height of stay point.

Then

$$
\begin{aligned}
l^{\prime} & =l\left\{1 \pm \frac{a \varepsilon}{h^{2}+a^{2}}\right\} \text { if the aerinl pull is in the plane of the stays; } \\
& =l\left\{1 \pm \frac{a \varepsilon}{\sqrt{2}\left(h^{2}+\frac{a^{2}}{2}\right)}\right\} \begin{array}{l}
\text { if the acrial pull is at } 45^{\circ} \text { to the plane } \\
\text { of the stays. }
\end{array}
\end{aligned}
$$

The + and - signs refer to the tight and slack stays respectively.
Again, if T_{t} and T_{s} are the tensions in the tight and slack stays respectively, it can be shown that-

$$
\mathrm{T}_{\mathrm{t}}-\mathrm{T}_{\mathrm{B}}=\mathrm{F} \frac{\sqrt{\bar{h}^{2}+a^{2}}}{a}
$$

where the aerinl pull is in the plane of the strys;

$$
=\mathbf{F} \frac{\sqrt{h^{2}+a^{4}}}{a \sqrt{ } 2}
$$

where the acrial pull is at $45^{\circ}, F$ being the resultant horizontal force at the stay point as determined by the original equation.
A value of T_{t} is now assumed. The elongation of the stay due to the deffection of the mast is known, and hence T_{0}, the normal tension in the stay, can be found. Knowing the decrease in length of the slack stays, T_{B} can then be found, which enables $\mathrm{T}_{\mathrm{t}}-\mathrm{T}_{\mathrm{s}}$ to be evaluated.

This value must satisfy the equations just given above, and a process of trinl and error is adopted till the correct tensions are found.

If three stays only are used, the same method is employed with suitable modifications to the formulx, which may readily be deduced.

Design of Structure.-The next step is the design of the structure itself. This really involves the checking of the structure already nssumed. Each section of the mast is treated separately, and the total stress due to bending and compression is calculated. If it transpires that the structure is inadequate, then the whole mast has to be redesigned with a new structure.

Bending.-With rigid masts the bending moment at any section may be obtained by considering the mast as a whole, and employing the Theorem of

Three Moments. The wind load is considered as uniformly distributed on each section. The deflection at each stay point may be neglected, the effect being that the stress obtained is slightly too high.

Fig. 216.-Section of Tubular Mast.
Compressive Stress-Case A: Tubular Mast (with Four Stays).-Consider the top section. The maximum compressive stress will occur at the bottom of the section. The direct compressive load at B (Fig. 216) will be that due to-

1. Dead weight of top section AB.
2. Vertical component of aerial pull.
3. Dead weight of four stays.
4. Vertical component of stay tensions as just determined.

The stress due to bending is given by $\frac{M}{Z}$ when-

$$
\begin{aligned}
& \mathrm{M}=\text { bending moment at section } \mathrm{B}, \\
& \mathrm{Z}=\text { section modulus }=\frac{\text { moment of inertia }}{\text { least radius of gyration }}
\end{aligned}
$$

Then if L is the total vertical lond, and A is the C.S. area of the structure, the total stress is given by-

$$
S=\frac{L(\text { tons })}{A(\text { square inches })}+\frac{M(\text { inch tons })}{Z\left(\text { inch }^{3}\right)}
$$

The allowable stress is given by-

$$
\mathrm{S}=18,000-80 \frac{l}{k} \text { pounds/square inches, }
$$

where
$l=$ length of section,
$k=$ least radius of gyration.
This is an empirical formula based on practical experience, and only applies when l / k is >50.

If $l / k<50$, a fixed safe stress of 14,000 pounds/square inches or 0.25 tons/ square inches should be allowed.

In considering the next section, the direct compressive stress calculated for the first section is increased by -

1. Dead weight of this section.
2. Dead weight of next set of stays.
3. Vertical component of tensions in next set of stays.

The procedure in finding the stress is then the same as above.

196

Proceeding in this manner, the stresses at various sections of the structure can bo determined, and compared with tho allowable stress. If in any caso the allowable stress is exceeded, then π new section must be chosen, and the whole of the calculations ropeated.

Case B : Lattice Masts. With latticed structures there is another condition to allow for in the deaign.

Suppose that the mast consists of three main posts with horizontal and diagonal members forming a triangular section mast. Tho direct

Fig. 217.-Trianoular Structure. compressive stress per single post will be onethird of tho total compressive load. The bending stress, however, is calculated in a slightly different manner. Fig. 217 shows a skoleton plan and elevation of a section of a triangular mast. It is assumed that the wind causes the mast to bend over about the point A (as a fulcrum). This adds a compressive load to this member $=\frac{\mathrm{M}}{d}$, where $\mathrm{M}=$ bending moment over section considered, and $d=$ distance from centre of area of post considered to π line joining the C.A.'s of other two posts.

From these two direct stresses and the sectional area of one post it is possible, as before, to determine the stress in that post. This stress may or may nol agree with that calculated by considering the mast ns a rigid structure, but in the design the higher stress must be taken, and subsequent calculations based on it.

End Shear.-When the mast is subjected to a horizontal wind load, there is shear across the section. This will be a maximum at the stay points, and the worst condition oblains when the mast is rigidly fixed at those points. This condition does not occur in practice, the actual stress being something less than that calculated on this assumption. The shear stress will be the total wind lond on a mast section divided by the cross-sectional area Ω the stay points.

Besides the end shear due to the wind there is a slight end shear due to the compressive load, and this is usually accounted for by increasing the end shear by an amount in accordance with the empirical formula-

$$
\mathrm{S}=\frac{200 \mathrm{~L}}{18,000-80} \frac{l}{k}
$$

where
$S=$ shear in pounds/square inches,
$\mathrm{J}_{1}=$ total compressive load in pounds,
$l=$ length of section in inches,
$k=$ lenst radius of gyration of cross-section in inches.
Design of S mall Masts.- In the majority of cases it will be found that the top section of the mast could bo made of a smaller moment of inertia than the lower section; this has the advantage with high masts that the wind load is reduced. For smaller masts, however, opinion is divided as to the adrisability of varying the sections. With low masts the chief dificulty arises in the erection, and the flexibility of the top portion becomes an important

SEMI AND TOTALLY AUTOMATIC STATIC CONVERTER SUBSTATIONS

150.K. WV. Hewittic Rectifier Light and Power Substation.

HIGH LIGHT LOAD G ECONOMYINRUNNING EFFICIENCY SIMPLICITY OF OPERATION

UNIT CONSTRUCTION NO VIBRATION V LOW MAINTENANCE cosTs
FLEXIBILITY
G ADAPTABILITY FOR RESI. DENTIAL DISTRICTS

HEWITTIC ELECTRIC COMPANY LIMITED MOLESEY ROAD, HERSHAM, WALTON-ON-THAMES, SURREY Tclephone: Esher 603, 601, 605.

Telegrams: "Hcwittic, Walton-on-Thames."

factor. Masts up to approximately 150 fect aro usually raised by means of a derrick (see Fig. 218), and the stays are made off before erection.

(a) Mast ready for erection

(b) Mast during erection

Fig. 2IS.-Erection of Small Masts Witil Derrick.
The initial tension of the stays is thus rather indeterminate, and unequal stay tensions may bring in unknown forces to produce large bending moments. Hence a section which is ample when the mast is in position may not withatand the loads during erection, and due allowance must be made for this factor.

Tension in Wires.

The relation between the sag and the span of a wire hanging under its own weight (or acted upon by a uniform load) is given by the well-known catenary laws. If U is span, then the dip or sag is given by-

$$
y=a\left(\cosh \frac{l}{2 a}-\mathrm{I}\right)
$$

where a is the minimum height of the wire (see Fig. 293 for values of $\cosh x$).

The actual length of the wire is-

$$
l=2 \sqrt{y(y+2 a)}
$$

The tension at P is given by $\mathrm{T}=w(y+a)$, whero $v=$ weight of wire per unit length.

To allow for wind, let w_{1} be the wind load per unit length, and w ' the resultant thrust per unit length due to both wind and weight.

Then, since the wind acts horizontally, $w^{\prime}=\sqrt{w^{2}+w_{1}{ }^{2}}$.
Approximate Formula.-For flat arcs (dip $<\frac{1}{4}$ span) Eccles gives the following formulæ:
where

$$
a=\frac{b^{2}}{8 d^{2}}\left(1+\frac{4}{3} \cdot \frac{d^{2}}{b^{2}-4 d^{2}}\right)=\frac{b^{2}}{8 d^{2}} \text { nearly }
$$

$$
b=\operatorname{span} ; d=\operatorname{dip}
$$

Then

$$
\begin{aligned}
& \text { length } l=b+\frac{1}{24} \cdot \frac{b^{3}}{a^{2}} \\
& \mathrm{~T}=\omega(a+d)=\frac{w b^{2}}{8 d} \text { approx. }
\end{aligned}
$$

For Inclined Spans $\left(0<45^{\circ}\right)$:
If $b=$ horizontal distance between the ends of the wires,
$h=$ vertical distance between the ends of the wires,
$d=$ vertical sag in centre of wire,
$l=$ length of wire.
(a) Wire leaving both supports with downward slope:

$$
\begin{gathered}
a \text { and } l \text { are as above, } \\
\mathrm{T}=w\left\{a+d\left(1+\frac{2 h a}{b^{2}}\right)\right\} .
\end{gathered}
$$

(b) Wire leaving one support with an upward slope:

$$
\begin{aligned}
u & =\frac{b^{2}}{8 d^{2}} \sqrt{1+\left(\frac{h-4 d}{b}\right)^{2}} \\
l & =8 a d / b+b(h-4 d) / 2 a \\
\mathrm{~T} & =8 a^{2} d w / b^{2}
\end{aligned}
$$

A formula which is sometimes useful gives the tension in terms of the slope at the ground level. If a stay of a mast is already in position, by looking

Fig. 220.-Illustrating Method of Estimating Stay Tension.
along the stay the distance c (Fig. 220) may be estimated. (This is usually possible, since masts are built in equal sections.) Then the tension is given by-

$$
\mathrm{T}=w^{\frac{a^{2}+(b-c)^{2}}{2 c}}
$$

where
$\mathrm{T}=$ tension in pounds,
$w=$ weight in pounds per unit length,
a, b, and c are as shown in Fig. 220.
Wind Pressure Assumptions. - The most important factor in mast design is the wind pressure, which is assumed. By taking a value which is unnecessarily high a very expensive structure will result.

It is fairly certain that the velocity of tho wind, and hence the pressure exerted, is greater at a point some distance abovo tho carth than near the carth.

Several equations have been determined to fix this increase, though none of them are claimed to be accurate.

In the Electrician of July 1, 1921, S. P. Wing deduces the following formulæ from experimental results:

$$
P=(000126 h+1 \cdot 16) P_{g}
$$

where $P=$ pressure in pounds per square foot at a point h feet above ground, $\mathrm{P}_{\mathrm{g}}=$ pressure al ground level.

Fig. 2el.-Variation of Wind Pressure witi Altitude.

This expression is plotted in Fig. 221, which gives $\mathbf{P}_{\mathbf{h}} / \mathbf{P}_{\mathbf{g}}$ in terms of the height.

Eccles, however, has suggested that owing to wind eddies near the ground it is safer to assume a uniform wind pressure (equal to that at the top) over the whole mast. A pressure of 30 to 60 pounds per square foot appears to be the usually accepted value to-day.

In calculating the pressure on stay and acrial wires the curves given in Fig. 2:22 will probably bo useful. These figures were obtained by tho National Physical Laboratory.

Calculation of Wind Load.-The wind load is calculated by multiplying the wind pressure by the projected aroa of the mast.

In the case of lattice masts the back of the mast also offers a certain area to the wind, and to allow for this the effective area is taken as about 1.6 limes the projected area of the front face for triangular sections, and 1.8 for square sections.

In calculating the wind load on wires the projected area may bo taken as 0.8 times the diameter of the wire \times length.

Fig. 222.-Pressure on Wikes due to Wind.

Aerial Design.

Tho design of the aerial itself is a comparatively simple matter. The electrical problems concerned are dealt with elsewhere. Having decided the form that the antenna is to take, the mechanical details may readily bo worked out from the usual catenary laws.

The most important feature in aerial design is that of the insulation. Great difficulty is experienced in obtaining suitable insulating materials. The cause of breakdown is not so much the high voltages as the high frequency of the voltages employed.

Porcelain is the only substance which has given satisfaction for this class of work, but even here the smallest crack will allow moisture to enter, and this sets up eddy currents in the insulator which rapidly cause complete breakdown. One type of aerial insulator is illustrated in Fig. 223. The centre porcelain tube is hollow to enable the material to be well moulded and thoroughly dried before glazing. The metallic guard ring at the end is for

Fig. 223.-Type of Aerial insulator.

Fig. Ref. -Illustrating Effect of Guard Ring on Potential Gradient.
the purpose of reducing the potential gradient. Experience shows that a steep potential gradient will cause breakdown even at a comparatively low voltage. From Fig. 224 it will be seen that the guard ring (Curve 2) reduces the gradient. Moreover, any brush discharge will take place from the ring, and not from the porcelain tube, so minimising risk of breakdown.

Insulators may be used in series, but the breakdown voltage for two insulators is only about 50 per cent. greater than that for one, and so in proportion. There is, however, a certain gain in mechanical strength.

Mig. 225. -Egg Insulator, showing Method of Binding-In.
To avoid wasteful oscillations being set up in the stays, these are broken up into short lengths by means of insulators. The egg type of insulator is almost universally used for this purpose. It possesses the advantage that

202

the porcelain is in compression, in which state it is very much stronger than in tension. Moreover, should one break, the stay does not break with it (Fig. 225). Tho leakage path, however, is small, so that this system of insulation is not suitable for very high voltages.

The safe stresses for porcelain vary with the quality, but the following average figures will serve as an indication:

Breaking stress (tension) $\quad=3,000$ to 6,000 pounds per square inch.
$\begin{aligned} \text { (compression) } & =45,000 \text { to } 65,000 \\ \text { Cocfficient'of expansion } & =4 \text { to } 9 \times 10^{-6} \text { per degree Centigrade. }\end{aligned}$

MISCELLANEOUS.

Modulation.

Modulation consists in varying the amplitude of a wave in accordance with some predetermined law.

If a voltage $e=\mathbf{E} \sin \omega t$ is modulated with a sine wave of frequeney $p / \mathbf{2} \boldsymbol{\pi}$, the resultant voltage is-

$$
e=\mathbf{A} \sin \omega t+\mathbf{B} \sin p t \sin \omega t .
$$

The modulation is complete if $A=13$, and, if not, then the percentage modulation is B / A.

When receiving a modulated wave, however, the processes of tuning and dotection each introduce distortion.

Assume that the received E.M.F.-

$$
e_{\mathbf{r}}=\mathbf{A}_{1} \sin \omega t+\mathbf{B}_{1} \sin p t \sin \omega t
$$

This may be written:

$$
e_{\mathrm{r}}=\mathrm{A}_{1} \sin \omega t+\frac{\mathrm{B}_{1}}{2} \cos (\omega-p) t-\frac{\mathrm{B}_{1}}{2} \cos (\omega+p) t
$$

In other words, the modulated wave is equivalent to a fundamental of frequency $\omega / 2 \pi$, and two "side bands" of frequency $\frac{\omega-p}{2 \pi}$ and $\frac{\omega+p}{2 \pi}$ respectively.

The impedance of the tuned acrial circuit will be purely resistive to the fundamental frequency, but the two "side bands" will encounter a reactive impedance, which will thus cause attenuation and phase distortion.

It may be shown that the current in the receiving aerial is actually-

$$
i_{r}=\frac{1}{\mathrm{R}}\left\{\mathrm{~A}_{1} \sin \omega t+\mathrm{B}_{1} \cos p \sin (p t-\varphi) \sin \omega t\right\}
$$

where

$$
\cos \varphi=\frac{1}{\sqrt{i \div \frac{4 p^{2} \mathbf{L}^{2}}{\mathbf{R}^{2}}}}=\frac{1}{\sqrt{\frac{1+4 \pi^{2}}{\delta^{2}} \cdot \frac{p^{2}}{\omega^{2}}}}
$$

This shows that the modulation is less complete than that of the transmitted wave, and there is a phase shift. Moreover, this latter varies with p, so that in speech transmission the phase shift is variable, and distortion

"BECOL" EBONITE is made from the finest Rubber and Sulphur only

Rods, TGubes, Sheets, Mouldings, Accumulator Cases and Wireless Panels

THE BRITISH EBONITE CO.LTD.

 HANWELL, LONDON, W. 7Look for BECOL Trade Mark

THE MOST COMPLETE © UP-TO-DATE BOOK ON THE SUBJECT

INSULATED ELECTRIC CABLES

By C. J. Beaver, M.I.E.E., Director and Chief Engineer, W. T. Glover and C .
Synopsis of Contents.-Development of Electric Cables and General Survey-Materials Conductive, Insulating, Protective Design: Mechanical, Current Carrying and Dielectric Properties-Manufacture : Processes-Testing: Conductivity, Insulation Resistance, Capacity, Dielectric Strength and Dielectric Loss-Installation: Laying, Jointing, Accessories, etc.-Maintenance Cables for Special Purposes: Ship, Colliery, Factory, etc.-Causes of Deterioration: Causes of Failure in Various Types of Cable-Preventive Matters-Standards: B.E.S.A., Home Office, Mining Regulations, Corporation and Fire Insurance Rules-Index.

Crown 4 to. Illustrated. Price approximately $45 i$ - net.
[Ready Autumn, 1925.
ERNEST BENN LTD., 8, BOUVERIE STREET, E.C. 4

[^3]

Ericsson transformers give clear, distortionless amplification. Sturdily made. In two ratios: 1:2, 1:4

" The last word in condenser accuracy" describes Ericsson condensers. Stout vanes, ebonite lops and bottoms. lvorine scales and pointer. With or without vernier. '001 and -0.05.

This fine dual rheostat allows quick changes from dull to bright emitter and vice versa. 6-60 ohms.

Works like silk.

Takethe Guesswork out of Radio

 Use Ericsson PartsW IRELESS is no longer a mystery. It's an exact science. Use ERICSSON parts in any proven circuit and your results will amaze you.

ERICSSON tested Parts are found behind the panels of the mostadvanced experimenters and keen amateurs.

The reason tor their popularity lies in their dead accuracy. The rheostats are dependable to the last ohm, and are wonderfully smooth in action. ERICSSON condensers are bywords for accurate capacity. Agents everywhere.

Write for full information on our famous range of parls, headphones, loudspeakers, sets, crystal and valve, elc.

The British L.M. Ericsson Mfg. Co., Ltd.
67/73 Kingsway, London, W.C. 2

occurs. It will be seen that the higher the decrement δ the less the disLortion.

This effect is demonstrated by the following figures:
$\begin{array}{lllllll}\delta & . & 0.005 & 0.01 & 0.02 & 0.04 & 0.10 \\ \cos \varphi & \cdots & 0.369 & 0.62 & 0.85 & 0.955 & 0.99\end{array}$

Hence low decrement receivers should not be employed for speech reception.

A further source of distortion lies in the detector. The detector current is given by-

$$
i_{\mathrm{d}}=a_{1} e+a_{2} e^{2}+\ldots
$$

Assuming n voltage $e=\mathbf{A} \sin \omega t+\mathbf{B} \sin p t \sin \omega t$ to be applied across the detector, the current will thus be-

$$
i=\frac{a_{2}}{2}\left(\mathrm{~A}^{2}+2 \mathrm{AB} \sin p t+\frac{\mathrm{B}^{2}}{2}-\frac{\mathrm{B}^{2}}{2} \cos 2 p t\right)+\text { radio-frequency terms. }
$$

'There is thus a double frequency term introduced by the action of the detector.

Blatterman (Radio Review, March, 1921) has worked out the actual detector current for a series of different types of modulation.

Five types of modulation are considered, and to facilitato comparison of the results a wave length of 600 metres is assumed with a note frequency of 1,000 cycles per second, and δ_{r} nssumed $=0.02$.

Fig. 226.-Interrupted Sine Modulation.
Interrupted Sine Modulation.-This form of modulation is obtained by supplying the valves with alternating H.T. Thus, radiation only takes place when the anode is positive-i.e., every other half-wave (see Fig. 226).

Double rectified sine
Fig. 227.-Tonic Train.

Pure sine.
Fig. 228.-Pure Sine Modulation.

Note that the modulation of the received current in these two cases is incomplete.

The envelope of the received current is shown in Fig. 226 (b), and indicates the distortion relative to the full line, which represents the current which would be obtained without attenuation or distortion.

Double Sine Modulation.-This is similar to the previous case, but double wave rectification is employed. fhere $=500$, in order to produce a note of 1,000 frequency.

The distortion is indicated in Fig. 227.
Pure Sine Modulation.-This is self-explanatory. The transmitted and received currents are shown in Fig. 228.

Chopped C.W.-This is obtained by definite interruption of the radiation by some suitable means; assuming equal lengtbs of active and quiescent periods. the received current is as in Fig. 229.

Spark Modulation.-A spark transmitter may be considered as a modulated C.W., the expression being of the form:

$$
i_{\mathrm{B}}=\mathrm{I}\left[\mathrm{~S}_{\mathrm{o}}+\mathrm{S}_{1} \sin \left(p t+0_{1}\right)+\mathrm{S}_{2} \sin \left(2 p t+0_{2}\right)+\ldots .\right] \sin \omega t
$$

This expression is not rapidly convergent, but fortunately the terms of the received current become small after ten terms.

Fig. 229.-Ciopped C.W.
This is a case where the received wave is over-modulated.

It is necessary to assume a transmitter decrement, and this is taken as 0.1 . On this assumption, with $f=1,000, \lambda=600, \delta_{r}=0.02$, the distortion and attenuation are as shown in Fig. 230.

These results may be summarised for purposes of comparison on the assumption that the audibility is proportional to the R.M.S. value of the dotector current. So far the maximum values of the currents in the transmitter have been assumed equal.

This is hardly a fair comparison, however, since it is the R.M.S. nerial ourrent which is measured in any transmitting system.

Comparative figures are given, therefore, for both cases.
TABLE XXXI.
Relative Audibility of Different Types of Modulation.
Audibility.

Type of Modulation.

Pure sine	.	\ldots	\ldots	1.0
Spark	.	1.0		
Interrupted C.W.:	\ldots	\ldots	0.341	2.96
Half wave..	\ldots	\ldots	0.936	1.46
Double wave	\ldots	\ldots	0.802	0.697
Chopped C.W.	..	\ldots	1.014	1.25

The results in the last column represent fairly the conditions obtained in practice with n crystal receiver. With a valve receiver, however, employing cumulative grid rectification the longer duration of the currents obtained with pure sine and I.C.W. double wave increases the audibility, while the short duration of the spark trains causes inefficient detection (see p. 179).

The marked superiority of spark transmission vanishes, therefore, when valve reception is employed, and thero is little to choose between the various systems.

Radio Telephony.

This is a branch of the science of radio communication which has developed very rapidly in recent years.

As far as recoption is concerned, the general remarks just made with regard to modulation still apply. To avoid distortion in the tuning circuits, high decrement circuits should be employed, which, of course, renders efficient and selective amplification difficult.

The best form of tuner for this class of work employs a series of filter circuits of the type described on p. 160, giving a uniform amplification over a given band of frequency with a sharp cut off on either side.

Another disadvantage of radio telephony from a commercial standpoint is the comparatively wide band of wave length necessary. The modulation of the carrier wave produces side bands, so that a band of frequency of 3,000 to 6,000 cycles is required. At a medium or long wave length this would require a wide band of wave length, and would cause considerable interference. Hence, telephony is confined to short waves, which at once limits the range for commercial working.

The Western Electric Company havo devised a system which overcomes this defect to a large extent. In this system the carrier wave and one side band are filtered out, and only the second side band is radinted. In order to ronder the speech intelligible, howevor, the carrier wave must be rointroduced at the receiving point, and this is accomplished by employing an oscillating detector, the frequency of the heterodyne oscillation being the same as that of the carrier wave suppressed at the transmitting point.

Fia. 231.-Grid Control Circuit for Radio Telepiony.
Since the side band amplitude is only onc-half that of the carrier wave, the total power to be radiated is only one-quarter of that required with the ordinary system, while the band of wave length required is considerably reduced.

Methods of Modulation.-In all systems, however, the fundamental oscillation has to be modulated in accordance with the speech or music vibrations obtained from a microphone.

There are two main methods of effecting this. In the first the speech currents, suitably amplified, are introduced into the grid circuit of the oscillating valve through a transfurmer. This system is illustrated in Fig. 231. The secondary of the transformer is shunted with a condenser, which forms a low impednnce path for the high frequency oscillations.

The second method, known as the "choke control" method, employs a soparate modulating valve. Both the oscillating and modulating valves are fed from a common source of H.T. through a choke coil $\mathbf{L}_{\mathbf{1}}$ (Fig. 232). Speech

Fig. 232.-Chofe Control Radio-Telephone Transmitter.
variations are impressed on the grid of the modulating valve, which causes variations in the anode current. The current through the choke coil must remain sensibly constant, and hence the feed current to the oscillating valve will be reduced, with consequent reduction of the oscillating current in the aerial. The aerial current is thus modulated in accordance with the speech currents as required. The modulating valve should thus be so designed and operated that the maximum E.M.F. applied to the grid should produce an anode current equal to the mean value of the feed current to the oscillator valve. Hence, if several oscillator valves are employed, a fewer number of modulator valves will suffice.

Microphones.-The simple carbon microphone is by means up to the standard required for the satisfactory transmission of specch and, more particularly, music. Various other types of microphone have been devised, one of the chief desiderata being the elimination of the diapbragm, which introduces resonance effects.

For simplicity, however, the carbon microphone is casily the best, all other types requiring considerable amplification before the resultant currents are of the same order as those in a simple carbon instrument.

The " push-pull" microphone is a development of the carbon transmitter. It consists of two transmitters coupled one on each side of a light diaphragm. In this way a balanced action is obtained which eliminates resonance effects to some extent.

A device employing no diaphragm at all is the flame transmitter. Two platinum electrodes are suitably inserted in a gas flame rendered conducting by means of salts. Sound waves impinging on the flame alter its conduotivity,
and cause n current of varying intensity in the local circuit. This device gives faithful reproduction, but requires careful shielding from draughts.

A similar device is the Tucker microphono, employing very fine, short platinum wires heated to a dull red heat. The air waves then vary the conductivity. The sensitiveness of the dovice is greatly increased by passing a gentle stream of air ovor the hot wires.

An instrument which is very successfully employed by the B.B.C. is shown in Fig. 233. It consists of a thin, flat coil frecly suspended in a powerful magnetic field. The minute movements of this coil produced by the sound waves set up currents which, when amplified, aro of exceedingly good quality. The microphone is so sensitive that the instrument itself as well as the amplifier havo to be mounted on rubber suspensions to eliminate extraneous noises due to vibration.

The valves, in particular, are suspended by

Fig. 233.-Diagram of Magnetophone. light rubber cords.

All microphones have a varying response at difforent frequencies. By suitable design of the amplifying circuits this effect can be compensated for. the result being that the combination is equally sensitive to all frequencies.

Atmospherics.

One of the greatest obstacles to the development of the science of radio communication is the presence of parasitic electrical disturbances known as "atmospherice" or "X's." These disturbances cause loud crackling and roaring noises in the receiver under bad conditions, so much so that the aignal being received may be completely swamped.

Until recently very little was known of these disturbances, but the Radio Research Board has tackled the problem, and oscillographic studies have been made. The result of theso investigations was published by Watson Watt (Wireless World, August 1, 1923), and shows that atmospherice are aperiodic or semiperiodic pulses of comparatively low frequency, some of the more

Fig. 234.-Types of Atmospieric.
general types being shown in Fig. 234. About 30 per cent. are typo (a), 30 per cent. type (b), and the remainder one of the various types shown in (c).

Moullin (Journ. I.E.E., vol. lxii., p. 353) has investigated the effect on the receiver for the various forms of atmospheric pulse, and bas shown it to be twofold. One is the simple effect of the low frequenoy pulse, which

208

iq negligible: the second is the transient oscillation set up by the beginning and ond of the pulso. He shows that the offect produced is proportional to the initial rate of increase of the atmospheric P.M.F., and that tho worst offender is type (a), in which both the commencement and the termination are very abrupt. He shows further that, mathematically, a damped sine wave $e=A \epsilon-\frac{p t}{2} \sin p t$ produces an equivalent offect, where $p=\frac{\pi}{T}$, T being the time from beginning to end of the pulse. He then investigates the effect on several types of recoiver, using this expression as representative of an atmospheric.

Watson Watt and Appleton found that the mean value of p was 3.6×10^{3}, which is of comparatively low frequency. Hence it is only the transient terms produced which are troublesome. These oscillations are at the samefrequency as the signal-i.e., the froquency to which the set is tunedand hence tuning, as such, is useless against this type of interference. The decrement of the circuit, however, is of prime importance.

Tuned Aerial.-For a simple tuned aerial Moullin shows that if the E.M.F. induced in the nerial is $e=\mathrm{F}$ sin ωt, then-

$$
\frac{\text { signal P.D. }}{\text { atmospheric P.D. }}=\frac{\text { E } \pi \omega}{\mathrm{A} \delta p},
$$

where A and p are as above, and $\delta=$ decrement of aerial.
The signal strength is inversely proportional to δ, while the atmospheric P.D. is independent of δ. Hence the lower the decrement of the aerial the greater the signal/X ratio.

Aperiodic Aerial.-This type of aerial was described on p. 18.1. Here the rate of increase of voltage due to an atmospheric is dependent on RC, where R is the resistance in the acrial circuit and C is the capacity. R should be small enough to make the aerial behave to an X as a simple capacity, while at the considerably higher signal frequency it behaves as a simple resistance, the P.D. developed thereon being applied to the valve.

For such a condition RC should be of tho order of $3 / \omega$. Below this value the P.D. due to tho signal falls off, while above this value the P.D. due to the atmospheric rises rapidly. This criterion gives values somewhat lower than those usually employed in practice, R boing 5,000 to 10,000 ohms according to this theory.

Tuned Loop Aerial.-The effect on a loop is the same as on a tuned aerial. Certain atmospherics, however, are known to be propagated vertically downwards, and in this respect a loop may possess an advantage, as will be seen later.

Effect of Amplifier.-If the amplifier decrement is reduced below a certain value, the shock due to an X will cause the receiver momentarily to burst into self-osciliation, which may obscure the signals for some time after the X has finished. Hence it is undesirable to carry the reduction of receiver docrement, by reaction or otherwise, too far. Any efforts in this direction should be directed to the aerial. The product of frequency and decrement should not be <100 to avoid this ringing effect.

Owing to the fact that the X shocks the aerial at its natural frequency, it would appear that a reduction of interference would result from mistuning the aerial slightly. The drop in signal, however, more than balances the increased readability unless the decrement is high, which has been seen to be undesirable.

Effect of Duration of Signal.-The above formula assume that the signal persists long enough to build up to its full value. At high speeds, however, and on long wave lengths this is rarely the case.
Since valve reception is usunlly employed, the most important ratio is that of the quantities of electricity rectified:

$$
\frac{\text { Q signal }}{\mathbf{Q} \text { atmospheric }}=\frac{\mathbf{E} \pi \omega}{\mathbf{A} \delta p}(1+f \delta \mathbf{T}),
$$

where

$$
\begin{aligned}
& f=\text { frequency }, \\
& \delta=\text { decrement, } \\
& \mathrm{T}=\text { duration of signal (seconds). }
\end{aligned}
$$

Hence the ratio of signal energy to atmospheric energy is always greater than that given by the original simple formuln, and the greater fot the greater the immunity from atmospherics. Thus the higher the speed of working the greater the interference.

Where X's are strongly directional, as they aro in some parts of the world, ordinary directional receivers may be employed with good effect.

In any case, a frame may be useful in eliminating " static "-i.e., vertically propagated-disturbances. If the coupling coil to the receiver is made in two equal portions, the mid-point being connected to earth, then any vertical disturbance will affect both sides of the frame simultaneously, and the two E.M.F.'s will flow through the two halves of the coupling coil to earth in opposito directions, and so balance out.

Limiting may also be employed with some effect. Under suitable conditions of anode voltage a rectifying valve may be arranged to saturate with a signal very little stronger than that being received. The effect of an X is thus reduced to the same order as the signal.

High Speed Reception-Remote Control.

In order to record the signals received it is simply necessary to produce sufficient current change in an amplifier to operate a mechanical relay. The local circuit of this relay may bo caused to operate a Whentstone receiver, a creed printer, or any other device. The modern tendency in reception of medium or long distance traffic is to equip a receiving station in the best site available, complete with suitable directional equipment if necessary, and to amplify the received signals sufficiently to operate a relay. The signals are then relayed telegraphically to a central receiving office, which also controls the transmitting station by remote control. The transmitting and receiving stations thus become simple repenter stations, all traffic being handled at the central office. The advantages of such an arrangement are obvious.

If atmospheric conditions are such as to precludo satisfactory recording, then the signals are relayed telephonically to the C.R.O. The personal element then is available, an experienced operator being able to discriminato between X's and signals to the extent of being able to read signals, in extreme cascs, through interference so fierce that the signal cannot be heard by an ordinnry person.

In order to operate a relay, the signals, which arealternating at a frequency of 500 to 2,500 cycles per second, must be again rectified, so producing a unidirectional current throughout the duration of the signal.

The modern practice is to use relays of a robust construction, though more sensitive than telegraph relays, capable of operating on 1 to 2 milliamperes.

As the speed is increased, however, higher currents of from 10 to 20 milliamperes are required. Balancing devices are sometimes employed, using two valves, in one of which the current increases, while that in the other decreases, thus producing a double current offect, enabling a differential relay to bo employed. Such n device is shown in Fig. 235. There are three valves. The first is a simple power amplifier, the second is normally adjusted to supply a current of about 15 milliamperes, while the current from the third is passed round the relay in the opposite direction. During a space the third valve supplies about 30 milliamperes, so giving an effective spacing current of 15 milliamperes. On the arrival of a signal, however, the current in the third valve is reduced to zero; current in the second valve remains steady, so that a ly-milliampere marking current is produced.

The sensitivity of the relay is capable of mechanical control, and the instrument is adjusted to operate at a current only slightly less than that available (which should, however, be several times the minimum required to work the relny). By this means any interference or jamming of a strength appreciably less than the signal is eliminated.

One form of relay is known as the Carpenter relay, a diagram of which is given in Fig. 236. The armature is pivoted in the centre of a magnotic field

Fig. 236.-Carfenter Relay.
supplied by a powerful permanent magnet. A spacing current passed round the armature coil produces a flux distribution through tho armature as at (a) in Fig. 236. There is thus a greater flux at points B and E, and the armature moves to the left. With n marking current the position is reversed. This form of construction gives a robust rolay which moves from contact to contact with a snap. It will operate on currents of 0.2 to 0.5 milliampere.

Other forms of relay are employed which are modifications of the ordinary telegraph relay.

A device which is capable of recording the received signals directly is the McLachlan magnetic drum recorder. This consists of an iron drum carrying a field coil inside. On the drum slides a shoe attached to the recording mechanism. It is found that when current is passed round the field coil, tho magnetisation of the drum produces a pull on the shoe fifty times in excess of that which is to be expected theoretically, and this force is adequate to record the signals recoived directly with an operating current of 2 to 10 mil liamperes only.

Turner has shown (Journ. I.E.E., vol. lxii., p. 192) that the decrement of the circuit exercises considerable effect on the shaping of the signals. The value of the E.M.F. at time T is $e=\mathbf{E}\left(1-\varepsilon-1 \delta^{\prime} T\right)$. If $f \delta T$ is large, the signal rises rapidly and is flat-topped.

The relay operates when the current reaches a certain value, and if $\int \delta T$ is large the shaping is good. As $f \delta{ }^{\prime} \mathrm{T}$ decreases, however, the signal current becomes peaky, and it is impossible to find n value of i_{o} (the current

Fig. 237.-Silaping of Signals witil $f \delta t=2$.
required to operate the relay) for which the shaping is satisfactory. The limit occurs around $f \delta T=2$.

Figs. 237 and 238 illustrate this effect for the letter l. In the first $f \delta T=2$, and the shaping with $i_{0}=0 \cdot 7 i_{\text {dot }}$ is good. In the second $f \delta \mathrm{~T}=1$, and no value of i_{0} can be found to give good spacing of the signals.

Fig. 238.-Silaping with $f \delta \mathbf{t}=1$.
No value of i_{o} can be found which will give good spacing.
Now f is constant, T is inversely proportional to the speed of working, and hence an increase of specd should be accompanied by a decrease of decrement.

Since ringing sets in if $f \delta>100$, there is an automatic limit to the speed for a given wave length, and it is impossible to work at high speeds on very long wave lengths.

Screening.

Screening is of two kinds-natural and artificial. Natural screening is the effect sometimes observed where, in certain localities, the signals from a distant transmitting station are abnormally weak or non-existent, while in other localities even farther away good readable signals are obtainable.

This type of screening is usually due to one of two causes. The first is illustrated by Fig. 239. The penctration of the wave into the earth is small, the major part of the field following the contour of the hill ns shown. At the top the electric field continues to travel onwards in a straight line, but the end near the carth is not vertical, but nearly horizontal.

An ordinary acrial will thus not be affected, and it is only the amall vertical component of the field which produces signals. This type of screening vanishes as the receiving point is removed from under the lee of the hill.

This offect should not be confused with a true shadow effect which is observed if the dimensions of the obstruction are of the same order as the wavo length. The wave then travels round on cach side of the obstruction

Fig. 239.-Illustratina Screening due to a Hill.
(Fig. 240), and the two waves interfere on the far side of the obstruction, and produce a shadow as with light. This effect is usually only observed with short waves, and with very short waves is very marked.

Fig. 240.-Illustrating Prodjction at Shadows.
An artificial screen is a system erected between the receiving system and the transmitter, which absorbs energy from the incoming wave. The current so produced causes re-radiation, which may completely wipo out the effect of the main wave.

There are two types of artificial screen. One form affects the electrostatio field, and the other the electromagnetic field.*

Consider a simple loop circuit, the mid-point of the loop being earthed. There are two ways in which a loop may respond to an electromagnetio wave. The first is the pure loop action, which may be considered as due to the linkago of the loop with the electromagnetic field, while there is also the E.M.F. induced by the electrostatic field in the framo acting as a simple aerial. These two effects respond to different types of screen.

[^4]
214

Electrostatic Screens.-To screen the electrostatic field it is simply necessary to crect a series of simple aerials all round the receiving system.

Barlield (Journ. I.L.E'., vol. Jxii., p. 249) has investigated the effect of various types of screen on a small frame acrial 2 feet 6 inches square.

The sercening was estimated by observing the reduction of field strength produced by the screen.

If $\mathrm{E}_{2}\left(\mathrm{H}_{1}\right)$ is the normal field strength, and $\mathrm{E}_{2}\left(\mathrm{H}_{2}\right)$ is the strength with the screen in position, then-

$$
\mathrm{S}=\text { screening }=\left(1-\frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}\right)=\left(1-\frac{\mathrm{H}_{2}}{\mathrm{H}_{1}}\right)
$$

A simple screen of vertical wires [Fig. 241 (a)] gave a screening effect= S0 per cent. A system of earthed horizontal wires [Fig. 241 (b)] abovo the coil gnve still better results, S in this case being 88 per cent.

Fig. 241-Types af Enectrostatic Screen (all 10 Feet High).
The most efficient screen was a combination of (a) and (b)-a scries of non-closed loops at right angles [Fig. 241 (c)]. This gave a screening of well over 90 per cent.

The above results were obtained with screens of the dimensions shown in the figure, the spacing of the wires being 6 inches. The closer the wires the more effective does the screening become.

Fig. 242.-Effect of Spacing on Screening Ratio.
Tho ratio of $\frac{\mathrm{S}_{\mathrm{d}}}{\mathrm{S}_{\mathrm{o}}}=\frac{\text { screening with spacing } d}{\text { screening with no spacing }}$ is shown in Fig. 242. The over-all length of screen was kept constant, so that as the spacing was increased the number of wires decreased.

Tho essontials of an clectrostatic screen are simply that each side of the screen shall be connected to the opposite side by a good conducting path.

Electromagnetic Screens.-To screen the magnetic field a sories of closed loops were erected. These loops haveinduced therein currents which produce secondary fields in opposition to that of the electric wave. The screening effect thus produced depends on the number and spacing of the loops in a similar manner to that for an olectrostatic screen, as shown in Fig. 242.

It will be obvious that since each side of the screen acts as an aerial, a magnetic screen, such as is described above, will also screen the electric fiold. The converse, however, is not true. In order to screen the magnetic field only, leaving the electric field unaffected, Professor Howe has suggested the system shown in Fig. 243, such a screen being discontinuous in the direction of the electric field.

Wire netting makes a very efficient screen, a 2 -inch mesh giving 89 per cent. screening, while a 1 -inch mesh gives 96 per cent.

It should be observed that the screening effect depends on the provision of closed conducting paths round the object to be screened, and the effect so produced only affects the component of the magnetic field perpendicular to the plane of such paths. A magnotic screen is therefore directional, and to be complete must provide conducting

Fig. 243.-Arrange. ment to Screen Electromagnetic Field only. paths in three planes mutually at right angles.

Complete Screening.-This is difficult to obtain; it is often desirable to protect cortain portions of a receiver from all oxternal influences, and to do so the receiver must bo enclosed completely in a metal box electrically contimuous in every direction, and with no gaps whatever.

Care must be taken that the dimensions of the screen are large compared with the coil or other apparatus to be screened, as otherwise secondary reactions will be set up. Any coils must be at least 3 inches axially and $1 \frac{1}{2}$ inches radially from the screen, or the decrement will be seriously increased.

Direction Finding.

The directional propertics of frame acrials may be utilised to determino the direction of any desired signal. In particular, the bearings of ships at sea may bo obtained, and this branch of navigation is becoming of increasing importance.

The direction finding apparatus simply consists of a frame aerial (suitably calibrated in terms of the cardinal points), together with a suitable amplifier. The set may bo installed on board ship or on land. In the former case bearings may bo taken on any fixed stations of which the true position is known, and the position of the ship deduced therefrom. This method suffers from several disadvantages, however-viz.:
(a) The bearing obtained on the direction finder is relative to the length of the ship, and to obtain the actual bearing the compass bearing of the ship must also bo obtained. In rough weather the rolling of the ship's compass may introduce errors of several degrees.
(b) The various masses of metal in a ship distort the bearings and necessitate a correction curve. Any redistribution of such metallic masses (e.g., after reloading with cargo, etc.) will render the correction curve inaccurato.

If the D.l゙. apparatus is placed on land, these two disadvantages are
obviated, an accurate and constant calibration being possible, giving the bearing relative to true north. Such a bearing, however, must be charged for by the land station, whereas a ship having D.F. gear installed can obtain bearings as often as it chooses.

A single bearing does not fix the position of the ship, and two bearings should be obtained. The position is then given by the intersection of the two. Unless the two bearings intersect at an angle greater than 45°, however, the intersection will be indeterminate, and liable to error.

In such a case a third bearing should be obtained from another direction, ns shown in Fig. 244. The true position is in the centre of the "cocked hat" so obtained, the smalier the hat the more accurate being the position.

Fig. 244.-Method of obtaning Cocked Hat from Three D.f. Stations.

Fig. 245 - Illustrating Error due to Coast Refraction.

Errors in Bearings.-Errors in D.F. bearings arise from two main causes: (a) Geographical factors; (b) transmissional errors (night effect).

Hilly or broken country in the path of the wave will cause distortion, while masses of metal, trees, etc., will also produce errors. If there are any such objects behind the D.F. station, but at a comparatively short distance, errors will be introduced by re-radiation from these objects. Trees are especially undesirable, as the errors are variable, and a belt of trees near the station may give rise to an unreliable sector over which bearinge cannot be given.

In the case of land stations situated on the coast, any bearings making an angle of less than 20° with the coast line are subject to variable error due to coast effect. While if tho station is inland, the bearing is subject to refraction when crossing the coast line, as indicated in Fig. 245.

With a Bellini-Tasi system, if one of the loops has a larger capacity to earth than the other (due to the proximity of buildings, etc.), the bearings will be distorted towards the direction of this loop. Thiserror thus changes cach quadrant, and is known as "quadrantal error." It may be eliminated by reducing the size of the appropriate loop.

For further information for all matters relating to direction finding, the reader is referred to an excellent treatise by R. Keen (" Radio Direction and Position Finding ").

Night Effect.-Bearings by day are usually reliable to $\pm 1^{\circ}$. At night time, however, and particularly round the periods of sunrise and sunset, large errors are experienced.

Eckersley has shown this to be due to the Heaviside layer, and consequently only experienced at distances above 15 to 20 miles.

The electric waves are normally vertically polarised, the electric field being vertical and the magnetic field horizontal. Reflection from the Heaviside layer, however, may be shown to produce a horizontally polarised wave in which the electric field is horizontal, and this affects the frame in its zero position, so causing a distorted bearing. In some cases it is possible to obtain a zero position by a further rotation of the frame past its true zero position, while in others the minimum is so bad that no definito bearing is obtainable.

The effect will be clear from Fig. 246. The direct normally polarised wavo does not affect the frame, nor does the reflected wave, since it does

Fig. 246.-Illustrating Response of Frame to Horizontally Polarised Reflected Ray.
not link with the top and bottom. The horizontally polarised reflected ray does link with the top and bottom, however, and as it is arriving at an angle there is a phase difference between the E.M.F.'s produced in the top and bottom, which gives rise to n resultant E.M.F.

This effect is only obtained by reflection from a sharply defined Heaviside layer, such ns is obtained at night. At sunrise and sunset the layer is in a state of violent turmoil, due to the ionisation or deionisation of the upper atmosphere, and extroordinary variations of bearing may be produced at such periods. The bearing has been known to appear to rotate six times in five minutes.

Eckersley has also shown that the heart-shape balance is upset by this night effect, one side of the heart being distorted, sometimes to the oxtent

(a)

(b)

Fig. 247.-Heait-Sllated Diagram Distonted by Nigut Effecit.
of producing a second zero, but the true zero always remains, due to the fact that the framo is in its maximum position at balance. Fig. 247 shows some distorted heart shapes.

After the bearings have settled down (after the sunset period) the results obtained are tolerably reliable, becnuse it is found that any error duo to uight effect is always necompanied by some abnormal feature, such as very strong signals, fint minima, etc. Hence a normal bearing at night may be assumed to be tolerably correct.

Short Wave Transmission.

Development at the present moment is in the direction of the production of short waves of the order of 15 to 100 metres. These waves are so short that reflectors of dimensions comparable with the wave length ean be constructed, and the radiation can thus be concentrated in a single beam. By the use of such reflectors at both transmitting and recoiving points, the power required can be reduced to something like $8^{1}{ }_{0}$ of that normally required.

Beacon stations have been erected on this principle, which send out a rotnting boam. This beam can be picked up by ships fitted with short wave receivers, and according to the signal received, which is different for different points of the compass, so can the bearing be determined. The absorption with such short wnves, however, is enormous, so much so that two receivers have to be provided, one on each side of the ship.

Quite apart from the use of rellectors, however, enormous ranges have been covered on short waves with very low powers. No reliable data are avaidable as yot, but experience seems to indicate that communicntion will depend very much upon the conditions which prevail in the upper atmosphere, and that continual changes of wave length will be required.

Another difficulty is the production of any apprecinble power in the aerial, duo to the very small capacity thereof, but the Marconi Company have succecded in obtainiug powors of 100 kilowntts and more, and sntisfactory communication has beon established over long distances. It remains to bo soon whether such communication can bo maintained for a reasonably large proportion of the twenty-four hours.

Perhnps the chief advantage of the system lies in the entiro absence of any atmospheric disturbances on these wave longtbs.

TELEGRAPHY AND TELEPHONY'

SECTION II
 TELEGRAPHY AND TELEPHONY

Notw.-Since the telegraphs and telephones in this country are a government monopoly, the information given in this section is limited to data likely to be of use to electrical engineers generally, and radio-engineers in particular. Reference is made to sources of more detailed information should such be desired.

TELEGRAPHY.

(Prepared by A. G. King, Esq.)
Telequsphy is the science of communicating intelligence by means of suitably timed impulses, the various letters and symbols being represented by definito combinations of such impulses.

The simplor systems of telegraphy employ the Morse code. 'Tho various otters and other symbols to bo signalled are represented by combinations of currents of short or long duration, known respectively as dots and dashes.

The Direct Sounder System.

The simplest systom which is employed to any extent is the direct sounder system.
lig. 248 shows the connections of an up and down station working on this principle. Tho up station is sending a current out to line; this passes through

Fig. 248.-Direct Sounder Wohking (Up-Station Sending).
the sounder at the down station, thus producing an audible signal. There is no current in the line when the key is up, and for this reason the system is lsnown as the single curront systom. The several component parts of this circuit are described below.

Fig. 249 shows the connections for three stations working on this principle, an intermedinte station being interposed between the up and down stations.

Fig. 249.-Sounder Working ivitil Intermediate Station.
Of any two stations, tho "up" station is the one nearer London. Hence the intermediate station (l"jg. 249) is an up station with respect to C, but a down station with respect to A.

The Single Current Kicy.-The single current key (Fig. 250) consists of a metallic lever AA, which is pivoted at B. The key is normally held against

Hia. 250.-Single Current Key.
tho back stop D by the spring E. To connect the battery to lino, the knob F is depressed, which opens the back contact D and closes the front contact C.

The top contact of the back stop at \mathbf{D} is formed by means of a screw passing through the lever, so enabling the amount of play to be regulated. The actual contacts are tipped with platinum or gold-silvor, an alloy which does not readily oxidise, во minimising possible trouble due to dirty contacts.

Sounders.-Fig. 251 shows the ordinary pattern of Post Office sounder. There are two coils, AA, wound on soft iron cores and connected in series. The cores are made of aoft tube iron, split to minimise residual magnetism, and rest on a piece of soft iron H called the yoke, thus forming a horse-shoe magnet. A brass lever K is pivoted between two screws E , and is normally held up against stop C by a spring, the tension of which can be varied by menns of a milled headed serew F. B is a soft iron armature fixed at right augles to the lever above the cores. When a current flows through the coils the cores become magnetised, attract the armature, and pull down the lever, thus producing a sharp metallic sound. If correctly adjusted, the instrument
will operate with a current of 55 milliamperes, but the working current in practice is usually between 60 and 80 miliamperes. This pattern is only used for direct working, and has π resistance of 20 ohms.

Polarised Sounder.--With the ordinary type of Post Office sounder a current in cither direction will operate the instrument, but with the polarised type the movement of the armature is determined by the direction of the current. Polnrised sounders are more sensitive than non-polarised instruments.

The polarised sounder is similar in appearance to the ordinary sounder. The soft iron yoke of the latter, however, is replaced by a strong horse-shoe magnet. This produces π polarity in the core equal in value to tho magnetism produced by 40 millinmperes. The magnetism produced in the cores and the tension of an opposing spring exert opposite forces upon the lever of the sounder. According to the direction of the current the magnetism of the core is either augmented or weakened; in the former case the armature is nttracted to the bottom stop, and in the latter case the

Fig. 25l.-Sounder (Post Office Pattern).
tension in the spring overcomes the decreased magnetic pull and the armature is attracted to the upper stop.

The sounder is wound differentially, each winding having a resistance of 500 ohms. The instrument will operate at twenty words per minute with 3 millinmperes.

Galvanometer.-A galvanometer is a simple form of ammeter. It is inserted in telegraph circuits to indicate the direction and, to a certrin extent, the strength of the current at the particular point. The most general typo of instrument, known as the " differentinl galvo," is shown dingrammatically in Fig. 252. This instrument consists of two bobbins, BB, fixed side by side nbout $\frac{1}{\pi}$ inch npart. On a horizontal axis between them swings a soft iron needle A, of U shape, pivoted near the lower end of the U. This needle is magnetised by a pair of permanent magnets, M, placed below it, and swings with its free end uppermost, being kept in that position by the weight of the lowor end of the pointer attached to it, and swinging in front of the dial.

The bobbins are wound with two coils, half of the coil being wound on each bobbin, as indicated in Figg. 252. The windings are identical, each having a resistanco of 50 ohms, with $n 300$ ohm coil in shunt. If equal currents are passed through the windings in opposite directions, the resultant deflection of the needle is nil. This property is utilised in duplex working.

Fio. 252.-Differential Galvanometer (Schematio Diacram).

For ordinary purposes the two windings are connected in series or parallel. With one coil or two coils in parallel the deflection up to about 30° is 1° per 0.4 milliampere. With the coils in scries 1° indicates 0.2 millinmpere.

Relays.-The direct sounder system can only be operated over com. paratively short distances; for working over longer distances a relay is inserted in the circuit. 'This is a delientely adjusted instrument which can be actuated by eurrents too small to operate a sounder. The relay does not itself give readable signals, but its action brings into play a " local" battery, which supplies the current necessary to operate a sounder.

There are two general types of relay used for Morse telegraph circuitsthe polnrised relay, and the non-polarised relny. In the former the direction of the current through the relay determines the direction in which the tongue will move, whilst in the latter the movement of the tongue is always toward the same stop, independent of the direction of the current by which it is netuated.

Post Office Standard Relay.-The Post Oflice standard relny is illustrated in Fig. 253. It contains two electromagnets with soft iron cores. These cores are polarised by n permanent horse-shoe magnet, which is bent round the electromagnets in order to make the whole more compact. The south pole of the permanent magnet is at the top, so that the two ends of the adjacent cores therefore have north polarity, while the two bottom ends have south polarity. Two short soft iron armatures are fixed to n vertical brass spindle,
and oscillate between the cores. A light German silver armature, called the tongue, is attached to the spindle, and moves with the armatures, so waking contact with two studs called the marking and spacing stops, and represented by the letters M and S in Fig. 253. The studs and the tongue

Fig. 253.-Skeleton Diagram of Post Office Standard Relay.
are tipped with platinum or gold-silver alloy. The instrument has differential windings, the ends of one coil being indicated by D and U , and the ends of the other coil are indicated by (I) and (U).

Currents required with coils in parallel:

Currents required with coils in series:

| Standard A | .. | . | .. | 10 to 15 millinmperes. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Standard B | . | . | .. | 15 to $20 \quad$," |

The Single Current System, with Relay.-The connections for single current working are shown in Fig. 254. The relay takes the place of the sounder in diroct working, and a local circuit is added.

Fig. 254.-Sinole Current Working with Relay (Up-Stations Sending).

Double Current Working.

When a relay is used for single current working the tongue is returned to the normal position when the current ceases either by a magnotic bias or, in the case of non-polarised relays, by a spring.

In the double current system a polarised relay is invariably used, but in order to bring the tongue back to the spacing stop after the marking current has ceased a reverse or spacing current is used. This current flows in the opposite direction round the circuit as soon as the marking current censes. It passes through the coils of the relay from \mathbf{D} to (U), thus producing

Fig. 250.-Double Current Key.
an effect opposite to the marking current, so bringing the tongue over to the spacing stop. No bins is necessary, and the tonguc can work centrally between the poles. Double current working has the further advantage that the range of the relay is increased. Changes of adjustment are required in single current working when varying currents are received from stations at different distances, or due to varying leakage on the line; such alterations iII.
are unnecessary in double current working, since, if the marking current varies for any reason, the reversing current will change to the anme extent.

Double current working also counteracts the effects of capacity on long lines or cables. In single current working the enpacity of the line delays the rise of current at the receiving station at the beginning of a signal, and prolongs it at the end, so interfering with the correct shaping of the signals.

Consequently the speed with a single current system is considerably reduced if the line is of a high eapacity. With double current working the time taken by the line to reverse its charge is always the same, so that, although a time lag may be present, the shaping of the signals is preserved.

Double Current Key.-The simple make and break key used for single current working cannot be used for double current circuits. Here it is necessary to employ a reversing key, and the instrument employed is in effect a simple change-over switch.

Fig. 255 shows the construction of such a key. The line terminals are comnected to the two metal strips A and B, which make contact with the

Fig. 256 .-Connections with D.C. Key.
springs G and F when the key is depressed, and with H and F when tho key is up. Since G and F are connected to the negative of the battery, and Fand il to the positive, it will be seen that the depression of the key reverses the position of the battery in the line.

For receiving the key is cut out of circuit by the switch Q, the several possible connections being as indicated in Fig. 256. Fig. 257 gives the connections of a double current system.

Duplex Working.

The systems hitherto described only admit of working in one direction at n time. The duplex system enables messages to be transmitted over a single wire in both directions simultaneously.

The system chiefly employed is the differential duplex. This is based on a relatively simple principle.

The currents aent out from the station are fed to the middle point of the galvanometer, the two coils being connected in series. The current thus splits. Half travels along the line to the distant station, and thence to earth, returning to the battery through one coil of the relay. The other half traverses the relay in the opposite direction, having first passed through a network 12. If this network is so adjusted as to have the same characteristica as the line, the two currents will be equal, and the relay will be unaffected.

Received signals, however, only traverse one coil of the relay which is thus operated.

Fig. 257.-Double Current System usina D.C. Keys.
Keys shown in "receive" position.

Fig. 258.-Single Current Doplex.

Fig. 259.-Double Current Duplex.

Bearing this principle in mind, it will be ensy to follow the arrangements in Figs. 258 and 259, which show the circuits for duplex working on the single current and double current systems respectively.

Fig. 260.-Type of Balancing Networe.

Tho balancing network is simply a resistance with a capacity shunt to balance the resistance and capacity of the line. An arrangement as shown in Fig. 260 is usually employed, since with this system it is possible to obtain a network having appreciably the same time constant as the line, which is of importance.

Diplex Working.

The diplex systom enables two messages to be sent over the same wire in the same direction simultancously.

The principle again is simple. One circuit is a plain D.C. duplex arrangement. In series with the line, however, is a non-polarised relay which is binssed to bo insensitivo to the normal currents. The second message is sent by increasing the voltage of the battery. This does not

Fig. 2G1.-Diplex Circuit: Receiving Arranaements.
affect the polarised relay, which is alrendy operative, and depends for its signals on a change of direction. The non-polarised relay, hovever, previously inoperative, now responds to the increased current, and records the signal.

Fig. 261 shows the receiving arrangements for a diplex circuit. The

transmitting arrangoments are indicated in Fig. 262. The ratio of the voltages for diplex working should le $3 / 1$.

Quadruplex Working.-If the diplex condition is arranged at both onds, four messages may be transmitted simultancously over the same wire. This circuit is known as the quadruplex, and is illustrated in Fig. 262.

Battery Voltages.

The voltage of the battery required may be calculated from the resistance of the line, the resistances of the instruments, and the received current required. The voltage ranges from 24 for local lines up to 120 for longdistance routes, 40 and 80 volts being employed for intermediato distances.

For large towns it is feasible to employ a single battery for all circuits, provided the resistances of the individual lines is not widely different. The limit of discrepancy is about 25 per cent. Sccondary cells are employed in such cases.

For 1).C. working the battery cannot be reversed, however, since there is more than one circuit on tho battery, and a short circuit would occur. Hence

Fig. 2g3.-Common Bitteny System.
a split lonttery is used of double the required voltage, the centre point being earthed, and a simple SC key being employed. Jig. 263 shows a skeleton D.C. simplex set, the up station employing a common battery.

Speed of Working-Repeaters.

The speed of working dopends on the time taken by the signal to build up to the voltago necessary to operate the relay. 'This depends on $\frac{1}{C R}$, where C and R are the capacity and resistance of the line.

Hence- Speed $\begin{aligned} & \propto \frac{1}{\mathrm{CR}} \\ & \propto \frac{1}{l, 2} \text {, since } \mathrm{C} \text { and } \mathrm{R} \text { both depend on } l .\end{aligned}$
Thus the speed of working may be quadrupled by halving the length of the lino. On long lines, therefore, it is the practice to insert a "repeater." This is simply a relay, the local circuit of which retransmits the messago over the remainder of the lino.

Fig. 264 shows a two-way repeater-i.e., one which repeats the messages on both directions.

The question of the received current is dealt with on p. 237. The speed of working over a given line may, however, be obtained from certain empirical

Fig. 2G4.-1)ouble Current Repeater.
formula obtained by A. Eden, which are applicable to British lines working with shunted condensers at the receiving end. Let-
W = speed in words per minute obtainable.
C = total capacity of the line (microfarads).
$\mathrm{R}=$ total resistance of the line (ohms).

Then

$$
\begin{aligned}
\mathbf{W} & =\frac{10,000,000}{C R} \text { for iron aerial line, } \\
& =\frac{12,000,000}{C R} \text { for copper aerial line, } \\
& =\frac{15,000,000}{C R} \text { for copper G.P. covered cable. }
\end{aligned}
$$

The High Speed Wheatstone Automatic System.

In tho automatic system the hand-worked key is replaced by a machine capable of sending the dots and dashes at a maximum rate of 200 to 300 words per minute, and the messages are recorded at the receiving station on a tape. The dots and dashes composing the message to be forwarded must be represented in a particular way by holes punched in a paper slip before they can be transmitted. A portion of the slip is represented in Fig. 265.

The electrical mechanism of the transmitter is shown in Fig. 266. The double current key is replaced by a compound lever DU, the portions D and U being insulated from each other. When the transmitter is started the $\operatorname{arm} \mathrm{V}$ is caused to oscillate, either by a clockwork train or other suitable drive.

If the pin P rises, the arm A rises also, being pulled up by the spring S_{3}. This motion is trancmitted to the rod H. Simultaneously the pin \mathbf{P}^{\prime}
descends, depressing A^{\prime} and moving H^{\prime} to the right. The lever DU is thus moved in a counter-clockwise direction, connecting the battery to line.

The next instant the position is reversed, the lever DU moving clockwise, thus again connecting the battery to line, but in the reverse direction. Thus periodic reversals of current are sent along the line.

Fig. 265.-Wheatstone Slif.
Consider now the effect of inserting a pieco of punched slip, as shown in Fig. 265. The first two combinations, one vertical and one diagonal, represent the letter A (. 一).

When the pin \mathbf{P}^{\prime} rises, the rod M will be free to pass through the first upper hole, and the lever UD will be moved, and will send a " marking " current; when the reverse movement of the rocking arm Y takes place, rod S will be

Fig. 266.-Mechanism of Wheatstone Automatio Transmtter.
free to pass through the first lower hole, and the current sent by DU will be reversed; a dot will therefore have been sent. On the next movement of the rocking arm M will be free to pass through the second upper hole, giving a marking current again. The length of the "spacing " current is thus equal to that of the previous "marking" ourrent. When the rocking arm leaves S free to rise, however, it is prevented from so doing by the paper tape, which is not perforated below the second upper hole. In this case, therefore, the marking current is kept on until the rod S is again free to
rise, which it can do through the sccond lower hole, and the current is then reversed. It will be scen that the marking current is kept on during movements equal to two dots and the space between, and this is equal to the length of n dash. Thus the letter A $(.-)$ has been transmitted. Similarly any desired signal may be sent by running suitably perforated tape through the transmitter. The trpe is pulled through continuously by the wheel W, which engages with the centre holes in the tope.

Tho receiver is in effect an ordinary polarised relay worked by the direct line current, and surmounted by a train of clockwork, which is driven by means of a weight or small electric motor. Its speed of running is regulated by a fly expanding through a rotary motion. Current in a spacing direction through the relay swings the printing wheel against the ink feeding wheel, which dips into an ink reservoir, whilst n reverse current swings the printing wheel into contact with the moring slip, thus printing the signnls.

The coils of the "receiver" are ench wound with two wires, ench having a resistance of 200 ohms. The diagram of connections for π Whentstone set is shown in Fig. 267. One station only is detailed, and a hand key is shown in parallel with the Wheatstone lransmitter.

It is often desired to ascertain the speed of transmission with a Wheatstone transmitter. The following table will prove useful in this connection:

TABLE XXXII.

For ascertaining the Actual Speed of Transmission on Whe.itstone Automatic Circuits.

Direction.-Pass 10 feet of perforated slip (representing fifty average words) through the transmilter, and observe the timo occupied.

| Time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Number of |
| :---: |
| Occupied. | | Words per |
| :---: |
| Occupied. | | Number of |
| :---: |
| Words per |
| Seconds. |

The Hughes Type Printing Telegraph.

The Hughes is a synchronous type printing telegraph, its action being largely mechanical. It is unique in its action in that only one current is required for each character printed. The currents are all of the same duration, but are separated by unequal intervals of time.

Tho operating keyboard consists of fourteen black and fourteen white keys arranged alternately, the arrangement being similar to the keyboard of a piano.

Each transmitting key is connected to one of twenty-eight pins which work in radial slots, the latter being regularly spaced in a horizontal plate. A pivoted lever which is carried on a radial arm passes over the pins, and when a key is depressed it causes the corresponding pin to project above the

Fig. 267-Connections of Wieatstone Transmitter.
surface of the plate, thas causing the lever to move upward when it passes. In this wry n current is sent, vin the line, to the distant station.

Ench station is provided with an identical type wheel, these two type wheels being caused to revolvo in synchronism wath each other and with the radial contact arm, and at any instant the same letter occupies the samo position in relation to the tape.

The passage of tho current attracts the type wheel on to the tape, so printing the particular letter at both tho sending and receiving stations. Which lotter is printed deponds on the particular koy deprossed.

At cach signal a mechanical device is brought into operation, which rectifies any slight lack of synchronism between tho sending and receiving stations.

When a letter has been printed, the time elapsing before the next operation dopends on the order of the letters. If the next letter is proper to a pin some distance away, it can be printed straight away. If it is near the first letter, however, it cannot bo printed till one complete revolution has elnpsed. The operator thus sends his message in a series of jumps, an experienced operator being nble to get three or evon four letters printed per revolution if the run of the letters permits. There are frequent cases, however, where a pause of one complete rovolution must be made, and as the rotating arm only makes 120 revolutions per second, this at once limits the speed on the Hughes system to about thirty words per minute.

The Baudôt System.

This system is extensively employed on British and Continental lines, and is of considerable importance. The principlo of the Baudot system depends on the use of a five-unit code. Each station is provided with a keyboard filted with five keys. When the operator desires to signal any particular letter, be depresses tho appropriate combination of koys. The five keys are connected in turn to tho line, and if a particular key is dopressed, n current impulse is sent along the line. The currents thus sent to line operate electromagnots at the receiving ond, five such relays being connected to line in turn. Thus the position of the armatures of the receiving relays is determined by the position of the sending keys. According to the particular combination, so are certain local circuits operated which select and print on a tape the appropriate character, move the tape forward, and return the armatures to normal. The nerve centre of the system is the " distributor," which comprises a rolating brush sweeping over a series of segments. The five transmitting keys are wired up to five such segments, each key thus boing connected to tho lino in turn. A similar distributor is provided at the receiving point which rotates in synchronism with the first, so that when a particular key is dopressed at the transmitting point, tho approprinte relay is connected to line at the receiver.

As it is imperative that the operator should know the precise moment at which to depress the keys, n time-tnpper or "cadence" is operated by the distributor giving an audible click. Moreover, to prevent the operator from allowing the keys to rise before the distributor branch has passed the last of the five segments, the keys are each locked until the passage of the cadence current, which releases the keys. Since relatively fow contacts are required on the distributor for any one set, it is obviously possible to connect several such sets to the same line. One of the most common instruments is arranged for four complete sets of contacts on the distributor. With suitable arrangements it is possible to transmit in both directions simul-
taneously, and bence, with four-way distributors, eight messages may be transmitted simultancously over one line. The maximum speed of the Baud6t is thirty words per minuto.

Submarine Cable Telegraphy.

The problem of telegraphic transmission through submarine cables is more complex, owing to the fact that the cable has a very large capacity. The growth of current when the key is depressed is thus small, and ordinary Morse signalling is impracticable. On cables, therefore, simple reversals of current are utilised, a current in one direction representing a dot, while the reverso current represents a dash.

Sensitive electromagnetic relays, known as siphon recorders or undulators, aro employed for receiving. These instruments consist of a modified form of d'Arsonval galvanometer, in which a light moving coil is suspended in a strong magnetic field. The received currents causo deflections of this coil, which in turn cause movements of a light silvor siphon. This siphon dips into an inkwell at one end, the other resting on a moving paper tape, so making a continuous ink line.

The received currents deflect the siphon, and cause humps above or below the line, so producing Morse signals.

In practice the current changes in the line are often so sluggish that the siphon never returns to zero between two marka in the same direction, the

tape being as indicated in Fig. 268, but an oxperienced operator is able to read the tape without difficulty.

Growth of C'urrent. - The actual growth of the current in the circuit is of small importance in land line circuits, except over very long lines at high speeds. In submarine work, however, it is of prime importance.

The inductance and leakage in a cable are usually negligible in comparison with the capacity and resistance. On this assumption (seo p. 253)-

$$
\frac{\delta^{2} V}{\delta x^{2}}=\mathrm{CR} \frac{\delta V}{\delta t}, \mathrm{C} \text { and } \mathrm{R} \text { being por unit length. }
$$

Fourier has solved this equation for Ω cable of length l, showing that the current i_{2} at the recoiving end after a time t has elapsed is given by-
where

$$
\begin{gathered}
i_{2}=\frac{\mathrm{V}_{1}}{\mathrm{R} l}\left\{1-2\left(\eta-\eta^{4}+\eta^{3}-\eta^{16}+\ldots\right)\right\}, \\
\eta=\varepsilon^{-\frac{\pi^{2} t}{\mathrm{CR} l^{3}} .}
\end{gathered}
$$

The series inside the bracket is peculiar in that its value is $\frac{1}{2}$ when $t=0$, and remains nearly во until y has fallen to about $\frac{3}{4}$. The value of t_{2} is thus

238

practically zero until l is such that $\eta=$. Fig. 269 shows the growth of i_{9} with time t. Let-

Then
where

$$
\begin{aligned}
& \tau=\text { value of } t \text { when } \eta=\frac{3}{s} . \\
& \qquad-\frac{\pi^{2} \tau}{\text { CR } l^{2}}=\stackrel{3}{4}, \\
& \tau=2.915 \text { (RR } l^{2} \times 10^{-8} \text { seconds, }
\end{aligned}
$$

$\mathrm{C}=$ capacity per unit length in $\mu \mathrm{F}$.
$\mathbf{R}=$ resistance per unit length in ohms.
τ is usually 005 to 0.2 second, which limits the speed of working to about forty words per minute, even on short cables.

Fig. 269.-Arrival Curve.

For fuller trentment concerning telegraphy the reader is referred to H. W. Pendry's "Elementary Telegraphy," and for a detailed exposition of the telegraph systems of the British Post Office to 'T. E. Herbert's "Telegraphy."

TELEPHONY.

The essential principles involved in telephony are simple. The air vibrations occasioned by the speech are caused to affect a device which translates them into electrical vibrations. These currents are transmitted over the line to the receiver, where they cause vibrations of a diaphragm, which in turn set up air waves, and so reproduce the speech. The study of telephony chiefly involves the consideration of the several different methods of effecting the simple processes outlined above, and for this purpose several excellent books have been published, such as Poole's "Practical Telephone Handbook," from which much of the data following has been extracted.

Microphone.-The device used for converting the air waves to electrical vibrations is known as a microphone. For commercial line telephony the carbon microphone is always employed. This depends for its action on the variation of contact resistance between carbon granules according to the pressure. The instrument consists of a small receplacle containing carbon granules, and the speech waves impinge on a diaphragm connected to one side of the receptacle, thus producing variations of pressure, with conse-
quent varintion of the current through the instrument. There are two main types in use at the present day. One, the solid back transmitter, conaists of a small brass eylinder closed at one end. The inside of the base is fitted with n thin carbon disc, which is electroplnted on one side, and soldered to the case. The cover is a thin mica diaphragm, to which is attached a second carbon dise filted in the same manner as the first. The intervening space is filled with carbon granules. The microphone itself, which is inch internal diameter, is fitted into an appropriate case, the mica diapliragm being attached by means of a small serew to the main diaphragm of the

Fig. 270.-White's Solid Back Microrione.

Fia. 271.-Inset Transmitter.
transmitter, which is $2 f$ inches diameter and 0022 inch thick. The construction is detriled in Fig. 270. The resistance is 30 ohms for local circuits, and 55 ohms for (:. B. circuits.

The second form, the inset transmitter, is a complete unit in itself, which is simply slipped into an appropriate case (Fig. 271). It comprises a carbon block screwed to the back of a shallow case. A carbon diaphragm is employed as shown, and tho carbon granules are kept in place in the intervening space by means of a double turn of flannel bound round the outside edge of the carbon block.

Receivers.--The standard Post Office receiver consists of two long bar magnels yoked together at one end. The other ends are fitted with L-shaped polo picees which carry the coils of the instrument.

The whole is assombled in a brass case, the rim of which carries the diaphragm, as shown in Fig. 272. The passage of varying currents through the coils produces vibrations of the diaphragm.

The magnets are of tungsten steel, the diaphragm being of stalloy, 10 mils thick. The coils are wound with 605 turns of 40 S .W.G. single silk-covered tinned copper wire, the total resistance being of the order of 60 ohms .

A good modern receiver will respond to n current of $3 \times 10^{-0} \mathrm{nmperes}$, the power required being from 1 to 2 microwntts at about 800 cycles.

Even so, the energy efficiency is estimated to be as low as 0 I per cent. The actual movement of the diaphragm is of the order of 3×10^{-8} inches.

The permanent magnet is employed to increase the sensitivity. The magnetic pull is proportional to $\frac{\mathrm{B}^{2}}{8 \pi}$. Tho vibration due to a speech current

Fig. 272. -Standard Receiver.
s thus proportional to $(\mathrm{B}+\delta \mathrm{B})^{2}-(\mathrm{B}-\delta \mathrm{B})^{2}=4 \mathrm{~B} \delta \mathrm{~B}$. Hence the response depends not only on δB, but on B. Without a polarising field the telephone is not a practical proposition.

Subscriber's Apparatus.

In outlying districts the magneto system is employed. The skeleton connections are shown in Fig. 273. The generator G is a simple handdriven magneto machine for sending an alternating current along the line. This operates n ringer at the other end, which attracts tho attention of the called subscriber. The magneto is normally short-circuited, owing to

Fig. 273.-Diagram of Subscriber's Apparatus (Magneto System).
its high impedance. When the handle is turned, however, this short circuit is automatically removed, and the ringer is short-circuited instead, thus permitting full voltage to be applied to the line. The removal of the receiver from the switch hook connects up the microphone battery, and also connects the receiver directly across the line.

The microphone is not placed directly in the line circuit owing to the high resistance of the circuit comprising the line and associated apparatus. The current variations in the microphone are thus transferred to the line through
a small transformer or induction coil. The primary, which has a resistance of I ohm, is wound with single silk-covered wire 23 S.W.G., the secondary being wound with 32 S.W.G. to a resistance of 25 ohms. The core is $\mathrm{J}^{\frac{2}{5} \text { inch }}$ in diameter, being composed of soft iron 24 S .IV.G.

The magneto delivers 50 to 75 volts at frequencies of 30 to 40 per second, according to the speed of turning.

For towns, however, where the length of line from the exchange is comparatively short, the central battery system is employed. Here a 24 -volt battery is stationed at the exchauge, and the microphone current is supplied

Fig. 274.-Subscriber's Apparatus (C.B. System).
from this battery via the line. The circuit is shown in Fig. 274. The magneto is dispensed with, since the lifting of the switch hook completes the line circuit, and operates a line relay at the exchange.

The microphone is connected in the line circuit directly in series with the receiver and the secondary of an induction coil. A high resistance microphone (55 ohms) is employed, but even so, the quality of the speech would be poor if it were not for the induction coil. The primary of the coil is connected in series with a condenser across the microphone. The current variations then produce surges in this condenser circuit, which induce E.M.F.'s in the secondary of the coil in the same direction as the E.M.F.'s already existing therein. The quality and strength of the speech is much improved by this device.

A $2 \mu \mathrm{~F}$ condenser is omployed, and a special type of induction coil having a primary winding of 1,400 turns wound to a resistance of 26 ohms, the secondary having 1,700 turns, the resistance being 17 ohms only.

Switchboard Apparatus.

Two subscribers are connected to one another by means of a switchboard in the telephone exchange. The subscriber attracts the attention of the operator, who connects his or her head telephone set to the line, ascertains the number required, completes the requisite connections, and withdraws her set from the lino.

The connections are made by means of plugs and spring " jacks." 'These plugs may be two or three way, the construction of the more usual threeway plug being shown in Tig. 275.

When inserted into a jack tho three insulated sections of the plug make contact with three springs, so completing the connections. The plug pushes the springs aside slightly, and this motion may be utilised to make or break auxiliary circuits if desired. Such jacks are called break jacks,
in distinction to the simple contact lype which are termed branching jacks.

The connecting cords are apt to be troublesome in practice. Threc connections have to be carried in the single cord, and the constant bending is apt to canse failures by breaks or short circuits. The connections are usually made of thin stranded tinsel wires, and a partinl fracture gives an intermittent contact which sets up microphonic noises. To overcome this, cords havo been constructed with concentric insulated spirals of thin steel

Fig. 275.-SEction of C. B. Plug.
tape for the conductor. These have a higher resistance, but are much more reliable. A new form of tinsel cord, however, hns been introduced recently, and is superseding the steel cords.

To attract the operator's attention, electromagnetic relays are employed, which either produce a mechanical indication, or make a local circuit for a visual indication. The former type may be self-restoring, or may be restored by the insertion of the jack in answering the call.

The second type of relay carries a light pivoted armature, which is nttracted to the core on the passage of current. The motion of the armature presses

Fig. 276.-Telepione Relay.
two springs into contact. Several sets of springs may be operated by one relay. Fig. 276 shows an instrument which makes one contact, and breaks one.

There are many different types of relay, and for information concerning windings, etc., the reader is referred to Poole's "Practical Telephone Handbook."

Multiple Switchboards.-In an exchange handling a large number of lines, more than one operator has to be employed. The system then adopted is as follows:

1. Each operator handles the incoming calle of n number of subscribers (this number being anything up to 150 or 200), the connections from which, together with the indicating lamps, etc., are grouped in front of the operator. The operator has a number of cords to enable several calls to be in operation simultaneously.
2. All the lines in the exchange are torminated in jacks, which are stacked in banks arranged in numerical order. The banks are so arranged as to be contained completely in a lateral width of about 10 feet, after which the numbers start ngain. Thus, each number is " multipled" throughout the exohange. An operator receiving a call first plugs one end of a cord into the subscriber's jack, and then plugs the other end into the number required, which, owing to the multipling, is always within reach. She then rings the called subscriber by connecting the line to a motor driven magneto generator.
3. If a subscriber requires connection to Ω subscriber on another exchange, the operator plugs the second end of the cord into a junction jack, which transfers the connection to the distant exchange, where the call is treated as an incoming call, and the connection completed.

There are many details which cannot be considered hero. Reference may, however, be made to the engrged test. If a line or junction is engaged, the alceve of the jnck is connected to a special generator giving a busy back tone. The operator, before completing the connection, touches the jack sleeve with the plug tip to seo whether the line is free or not.

Fig. 277.-Hayes System.

The connection of the soveral lines to the common battery may be accomplished in several ways, two of the principal methods being shown in Figs. 277 and 279.

In the Hayes system the line currents are fed through repeating coils. Any variations of the currents in one line will be transformed into the other line through this agency.

The four repeating coils are all wound on one core in a toroidal form, one such repeater being required for each cord. The windings are about 23 ohms resistance.

Fig. 278 shows the arrangement of such a coil.

The Stone system replaces the repenting coil with n single choke coil. The current then splits in the two lines in inverse proportion to their resist-

Fig. 278.-Repeating Corr.
ances. Any varintion of current in one line is automatically transferred to the other, hecause the total current supplied by the battery must remain

constant owing to the presence of the choke coil, which will not permit any variation.

This system is only used where the lengths of the lines are not too unequal.

Aerial Line Construction.

Hard-drawn bronze wire is now almost aniversally employed for the connecting lines, although copper wire is used on trunk routes.

Table XXXIII. (p.245) gives some particulars of wires in use in this country.

The ohm mile constant is the product of the resistance per mile of a given wire and its weight in pounds. This is constant for a given material.

Since $\frac{\text { ohm mile constant }}{\text { weight in pound } / \text { mile }}=$ resistance per mile, the practice of classifying conductors in terms of their weight per mile has become general.

TABLE XXXIII.
Wires osed for Aerial Lines.

Material.	$\begin{aligned} & 3 \\ & 5 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$						For what Purpose Used.
H.D. copper			W	R	$\mathrm{R} \times \mathrm{W}$	S	
	$4 \frac{1}{2}$	221	800	1.09	878	2,400	Long trunk lines.
	6	191	600	$1 \cdot 46$	878	1,800	Long trunk lines.
	8	156	400	$2 \cdot 19$	878	1,250	Long trunk lines.
	$9{ }_{1} \frac{1}{2}$	135	300	292	878	950	Long trunk lines.
	$11 \frac{1}{2}$	110	200	4.39	878	650	Shorter trunk lines.
	13	95	150	$5 \cdot 85$	878	490	Shorter trunk lines.
	14	78	100	$8 \cdot 72$	878	330	Short trunk and junction lines.
Bronze wire	13	95	150	12.14	1,820	715	Long local lines.
		65	70	26.00	1,820	345	
	18	50	40	$45 \cdot 50$	1,820	200	Local line distribu tion.

(Poole's "Telephone Handbook.")
Sag in Wires.-The sag in a wire depends on the tension. The temperature has considerable effect also, causing expansion of the wire and consequent increase of sag with reduction of tension.

The curve of the wire is a catenary. If the two ends are at the same height, then-

$$
t=\frac{w \times s^{2}}{8 \dot{i}} \text { ncarly }
$$

where

$$
t=\text { tension pounds, }
$$

$s=$ span,
$\boldsymbol{d}=\mathbf{a} \mathrm{g}$,
$w=$ weight of wire in pounds/foot run,
$=0.0189$ for 100 pounds copper,
$=0-00757$ for 40 pounds bronze.
The following empirical data extracted from Poole's "Telephone Handbook" will probably be useful.

The safe sag is given in the tables below for various spans. The tension with this safe sag is also given for 100 pound copper and 70 pound bronze. The tension with another conductor is $T \times \frac{W}{100}$ and $T \times \frac{W}{70}$ respectively, where W is the weight of the conductor in pounds/mile.

T'ABLE XXXIV.
Sag and Tension yor Hard-Drawn Copper (Factor of Safety 4 ат $22^{\circ} \mathrm{l}^{*}$.).

Temperature	Span (Yards).									Tension for 100 Pound Copper (I'ounds)
$\begin{gathered} \text { (Degrecs } \\ F_{.} \text {). } \end{gathered}$	30	40	50	55	60	70	80	90	100	
				Sag	in In	hes.				
20 to 30	$3 \cdot 0$	5-5	$8 \cdot 5$	$10 \cdot 5$	12.25	16.75	22.0	27-75	34.0	75
30 , 40	3.25	$5 \cdot 75$	$9 \cdot 25$	11.25	13.25	18.0	23.5	20.75	36.75	711
40 , 50	3.5	6.25	$10 \cdot 0$	12-0	$14 \cdot 25$	195	25.25	$32 \cdot 0$	$39 \cdot 5$	65
50 , 60	$4 \cdot 0$	6.75	10.75	13.0	$15 \cdot 5$	21.0	$27 \cdot 5$	34.5	$42 \cdot 75$	60
60 , 70	4.25	7.5	11.75	14.25	$17 \cdot 0$	23.0	$30 \cdot 0$	34.75	46.75	55
70 ,, 80	$4 \cdot 75$	$8 \cdot 25$	$13 \cdot 0$	15.75	18.5	25.0	33.0	41.5	$51 \cdot 25$	50
80 ,. 90	5.25	9.25	14.25	17-25	$20 \cdot 5$	28.0	36.5	$46 \cdot 25$	57.0	45
90,100	6.0	$10 \cdot 25$	16.0	19-0	23.0	31.5	41.0	$52 \cdot 0$	64.0	40

TABLE XXXV.
Sag and Tension for Bronze Wire (Factor of Safety 3 at 22° F.).

If the allowable stress at the lowest tomperature has been decided upon, the tomperature required to produce a given tension is given by-

$$
\iota=\frac{l^{2} w^{2}}{24 c}\left(\frac{1}{\mathrm{~T}_{1}^{2}}-\frac{1}{\mathrm{~T}^{2}}\right)+\frac{1}{\mathrm{E} w c}\left(\mathrm{~T}_{1}-\mathrm{T}\right)
$$

where
$\ell=$ temperature in degrecs \mathbf{F}. above minimum,
$\mathbf{T}=$ stress allowed at minimum temperature $\boldsymbol{I}_{\text {mb }}$.
$\mathrm{T}_{1}=$ stress at temperature ($\ell+t_{\text {min }}$),
$\mathbf{E}=$ modulus of elasticity,
$c=$ coefficient of linear expansion,
$l=$ span in feet
$w=$ woight per foot run.
For hard-drawn copper:

$$
\begin{aligned}
\mathrm{T} & =135 \text { for } 100 \text { pound copper, } \\
\mathrm{E} & =17.8 \times 10^{\circ} \\
c & =8.5 \times 10^{-0}
\end{aligned}
$$

For bronzo:

$$
\begin{aligned}
\mathbf{T} & =80 \text { for } 40 \text { pound bronze, } \\
\mathbf{E} & =17.8 \times 10^{\circ} \\
c & =8.87 \times 10^{-6}
\end{aligned}
$$

Poles.-Poles are usually of Norwegian or Swedislı fir, and are rendered wealher-proof by forcing creosote through the pores. If unpainted, about 12 pounds/cubic feet of creosote should bo absorbed. For painted poles only 4 pounds/cubic feet is absorbed, a special process known as "rupining " being carried out. Ithe creosote does not then ooze out, and painting is possible.

The weight of such poles is about ($44+\mathrm{K}$) pounds per cubic foot, whereK $=12$ for creosoted poles,

4 for rupinised poles.
The dimensions of some of the principal poles employed in telegraph conslruction are attached.

TABLE XXXVI.

Dhamethers of Poles (Inches).

(Poole.)
The poles are planted to a depth varying from 4 feet for 24 feet poles to 8 feet for 80 feet poles, but this figure depends to sowe extent on the nature of the ground.

In orecting poles, a stepped holo is first cut; the pole is then lifted by means of ladders, which are moved downwards a little at a time, as
indicated in Fig. 280. For very heavy poles a derrick may be employed (Fig. 2S1).

Fig. 280.-Metiod of Raising Pole.
Ropes.-The safe load on the lifting ropes is important. This may be taken as $W=120 \mathrm{G}^{2}$, where G is the girth in inches, the breaking load being given by $\hat{W}=605 \mathrm{G}^{2}$.

These figures apply to manilla ropes. For hemp ropes the figure is about 20 per cent. less.

Fig. esi.-Raisina Heavy pole.
Stays.-Where there is an umbalanced force due to a bend in the route, a termination, or a wind lond, stays are attached at the point of resultant pull on the pole. They are anchored in the ground to stay blocks in undercut holes, as shown in Fig. 282. If it is impossible to stay the pole owing to lack of space, a trussed pole mny be employed (Fig. 283). In this case the ground resistance of the pole should be increased with stay blocks at A and B.

Stresses in Poles.-The stresses in the poles and stays may be determined by the usual laws, and need not be considered here.

Joints.-Dry joints are usually found satisfactory for telephone work. There are several types of joint. The McIntyre joint consists in slipping a copper tube over the two wires, ns in Fig. 2s4. The whole is then given five or six twists. The tube protects the joint from dust and damp.

For heavier conductors a Britannia joint is employed. The two ends of tho wire aro overlapped and bound with tinned wire, the whole being sweated up afterwards.

Fig. 282.-Stayed Pole.

Fia. 283.-Trussed Pole.

For binding wires to insulators special binding tapes are employed, as the hard copper or bronze is liable, by continual chafing, to destroy the glaze on the insulator. Hence binders of soft copper are employed. Fig. 285 (a)

Fig. 2St.-Cofier Sleeve Joint.
shows a simple bind in. For making off, the wire is first wrupped with a copper tape, and then mado off with binding wire, as shown in Fig. 285 (b).

High Frequency Joinls.- If the wires are carrying high frequency current the joint should always bo sweated, since the current only flows in the surface

(b) Simple make off

Fia. 285.-Method of Bindina-In.
of the wirc; it is thus ossential to make contact all round the wire, and not at one point only.

Transposition.-Cross talk may occur botween lines due to mutunl action. At telophone frequencios this action is chicfly olectrostatic, and may be reduced and often eliminated by transposition of the various wires.

Fig. 286.-Tivist System.
The simplest system is the twist system, whereby four wires, forming two circuits, aro continuously rotated. The capacily effects between each circuit and any other wire is then the same over a long distance, and hence
mutual effects are avoided. Instead of a twist, the wires may run parallel for a short distance, and then change places. This produces the samo effect, and has certain advantages from the erecting point of view. Figs. 286 and 287 illustrate the two systems.

Fig. 287.-Transposition Diagram for Twelve-Wire Route.

Mutual inductive effects are also oliminated if the wires are suitably arranged-e.g., in Fig. 286 the circuits must be 13 and 24 respectively, so forming two loops which are always mutually at right angles.

Underground Cables.

Acrial lines aro being largoly superseded by underground cables. For telegraph work it is essential to keep the capacity between any two wires of a pair as low as possible. To this effect " nir-space" cables are employed. The wires aro insulated with a loose wrapping of papor tape wound round the wire during the munufacture of the cable. The individunl pairs are

Fio. 288.-Section of Quadruplex Pair Cable.
twisted, and the whole cable is also twisted to avoid mutual effects, the spacing between all pairs being kept uniform as far as possible. Finally, the wholo is encased in a lead sheath.

Fig. 288 gives an idea of a four-core cable. It will be scen that there are sixteen main pairs, and five "worming " pairs to fill in the gaps.

The thickness of the sheath should be not less than-

$$
t=0.051+0.038 \sqrt{\frac{\mathrm{~S}}{0.7584},}
$$

S being the area of the unsheathed cable.
TABLE XXXVII.
Resistance and Capacity of Underground Cable.

Weight of Conductor
(Pounds per Mile). 6.5

10
$12 \cdot 5$
20
40
70
100
150
200

Resistance
(Ohms per Mile). 135-] 87.8 $70 \cdot 3$ $43 \cdot 9$ $21 \cdot 9$ $12 \cdot 5$ 8.8 5.8 $4 \cdot 4$

Capacity Wire to Wire (μF^{\prime} per Mile). 08
. 08 -075 -06 -056 -065 065

Cables are made up in four forms, according to the type of core.
(a) Twin core, the wires heing simply twisted together. A number of such twis cores may be twisted to form an n pair cable.
(b) Multiple twin core, in which two twin pairs are twisted to form a core. Two such cores may again be twisted to form a four-pair core, and so on.
(c) Quadruple twin. Here four single pairs are twisted to form a core, and the cable is made up of n such cores. Fig. 288 is on this system.
(d) Screened conductor cable. This is a telegraph cable in which single wires are employed, wrapped with three layers of paper, and covered with soft copper tape 0.3 inch wide and less than 3 mils thick. This screen is connected (by contact) to all other screens and the lead sheath.

Inductance and Capacity of Lines.-Single wire:

$$
\begin{aligned}
\mathrm{C} & =\frac{0.0388}{\log _{10} \frac{2 h}{r}} \mu \mathrm{~F} \text { per mile } \\
\mathrm{L} & =0.0805+0.742 \log _{10} \frac{2 h}{r} \text { millihenries per mile. }
\end{aligned}
$$

Loop line:

where \quad| $h=$ height above ground |
| :--- |
| $d=$ distance apart of wires |
| $r=$ radius of wire. |

These values are for isolated wires, and will be increased by 5 to 20 per cent. by the presence of other wires.

Transmission Formulæ.

The currents and voltages at any point of a telephone transmission line can be obtained from certain fairly simple formulx.

The problem is somewhat complicated by the fact that the constants of the line are uniformly distributed throughout the length thereof. There are two effects to be considered:

1. Drop in potential, due to resistance and inductance.
2. Drop in current, duo to capacity and leakage.

Let $\quad R=$ resistance of line per unit length,
$G=$ leakage of line per unit length $=1$ /insulation resistance.
$\mathbf{L}=$ inductance of line per unit length,
$\mathrm{C}=$ capacity of line per unit length.
Then nt a distance x from the receiving end, the drop of potential over an element $d x$ is-
therefore

$$
d v=i \mathrm{R} d x+\mathbf{L} d x \cdot \frac{d i}{d t^{\prime}}
$$

$$
\frac{d v}{d x}=i \mathbf{R}+\mathbf{L} \frac{d i}{d t}
$$

Similarly,

$$
\frac{d i}{d x}=v \mathrm{G}+\mathrm{C} \frac{d v}{d t}
$$

Let
Then

$$
i=I \sin \omega t .
$$

$$
\frac{d i}{d t}=\mathrm{I} \omega \cos \omega t=j \omega i
$$

Similarly,

$$
\frac{d v}{d t}=j \omega v .
$$

Hence

$$
\begin{aligned}
& \frac{d v}{d x}=i(\mathrm{R}+j \omega \mathrm{~L}) \\
& \frac{d i}{d x}=v(\mathrm{G}+j \omega \mathrm{C})
\end{aligned}
$$

Then

$$
\frac{\partial^{2} v}{\partial x^{2}}=\frac{\partial i}{\partial x}(\mathrm{R}+j \omega \mathrm{~L})=v(\mathbf{G}+j \omega \mathrm{C})(\mathbf{R}+j \omega \mathrm{~L})
$$

Similnrly,

$$
\frac{\partial^{2} i}{\partial x^{2}}=i(\mathrm{R}+j \omega \mathrm{~L})(\mathrm{G}+j \omega \mathrm{C})
$$

If
then

$$
\begin{aligned}
\mathrm{Z}=\mathrm{R}+j \omega \mathrm{~L} \text { and } \mathrm{Y}=\mathrm{G}+j \omega \mathrm{C} \text { and } \sqrt{\mathrm{ZY}}=a \\
\begin{aligned}
& \partial^{2} v=(Z \mathrm{Y}) v . \quad \begin{aligned}
\partial x^{2} & =\left(\mathrm{b}^{2} i\right. \\
& =\alpha^{2} v .
\end{aligned} \\
&=(\mathrm{ZY}) i \\
&=\alpha^{2} i .
\end{aligned}
\end{aligned}
$$

Solving these differential equations-

$$
\begin{aligned}
i & =M \varepsilon a \cdot+N \varepsilon-a x \\
& =\mathrm{P} \cosh a x+\mathrm{Q} \sinh a x \\
v & =\mathbf{Y} \frac{d i}{d x}=\sqrt{\frac{Z}{Y}}\{P \sinh a x+Q \cosh a x\}
\end{aligned}
$$

At the receiving end $i=i_{r}, x=U, v_{\mathrm{r}}=i_{\mathrm{r}} Z_{\mathrm{r}}$, whence the values of P and Q may be solved, giving-

$$
\begin{gathered}
i_{\mathrm{I}}=i_{\mathrm{r}}\left(\cosh a x+\mathbf{Z}_{\mathrm{r}} \sqrt{\mathrm{Y}} \operatorname{Zinh} a x\right), \\
v_{\mathrm{X}}=i_{\mathrm{r}} \sqrt{\mathrm{Z}}\left(\sinh a x+\mathbf{Z}_{\mathrm{Y}} \sqrt{\mathbf{Y}} \cosh a x\right) .
\end{gathered}
$$

Characteristic Impedance.-The apparent impedance at the sending end:

$$
Z_{\mathrm{a}}=\frac{v_{\mathrm{g}}}{i_{8}}=\sqrt{\bar{Z}} \frac{\tanh a l+Z r \sqrt{\frac{Y}{Z}}}{1+Z_{\mathrm{r}} \sqrt{\frac{Y}{Z}} \tanh a l} .
$$

In a very long line $\varepsilon^{-a l} \ll \epsilon^{a l}$ and tanh $a l=1$.
Then

$$
Z_{\mathrm{s}}=\sqrt{\mathrm{Z}}=Z_{\mathrm{o}}
$$

This quantity Z_{a} is called the " characteristic " or "surge " impedance of the line. If-

$$
\begin{aligned}
& Z_{\mathrm{r}}=0 \text { (far end short-circuited), } Z_{\mathrm{B}}=\sqrt{\frac{Z}{\mathrm{Y}}} \text { tanh al, } \\
& Z_{\mathrm{r}}=\infty(\text { far end open }), Z_{\mathrm{B}}=\sqrt{\frac{Z}{\mathrm{Y}}} \operatorname{coth} c l, \\
& Z_{\mathrm{o}}=\sqrt{(\sqrt{\mathrm{Y}} \cdot \tanh a l \times \sqrt{\mathrm{Y}} \operatorname{coth} \mathrm{cl})}=\sqrt{\overline{\mathrm{Y}}},
\end{aligned}
$$

i.e., Z_{0} is the geometric mean between the apparent sending end impedances with $Z_{r}=0$ and $Z_{r}=\infty$.

Attenuation and Distortion.-It has been shown that-

$$
v=\mathbf{N} \varepsilon-a \cdot+\mathbf{M} \varepsilon^{a x} .
$$

If x is measured from the sending end, ε-ax decreases rapidly, and $\varepsilon a x$ increases. The first term represents the forward wave, and the second the reflected wave, which, owing to damping, is usually negligible except at the far end, where it is, of course, important.

The state of affairs is as represented in Fig. 289.
Hence, neglecting reflection,
thereforo

$$
v=\mathbf{N} \varepsilon-\alpha x \text { and } \mathbf{N}=v_{\mathbf{B}},
$$

Now

$$
i={ }_{Z_{\mathrm{a}}}^{V_{\mathrm{B}}} \varepsilon-\alpha{ }^{\text {. }}
$$

$$
\begin{aligned}
a=\sqrt{\mathbf{Z Y}} & =\sqrt{(\mathrm{R}+j \omega \mathbf{L})(\mathbf{G}+j \omega \mathbf{C}}) \\
& =\sqrt{\left(\mathbf{R G}-\omega^{2} \overline{\mathbf{L}}\right)+j(\mathbf{G L} \omega+\mathbf{R}(\omega)} \\
& =p+j q .
\end{aligned}
$$

Hence

$$
\begin{aligned}
v_{\mathrm{x}} & =v_{\mathrm{日}} \varepsilon-\alpha x=v_{\mathrm{B}} \varepsilon-(p+j q) x \\
& =v_{\mathrm{B}} \varepsilon-p x \varepsilon-j q x \\
& =v_{\mathrm{\varepsilon}} \varepsilon-p x\{\cos q x-j \sin q x\}
\end{aligned}
$$

In physical language this menns that the voltage at a distance x from the sending end has been attenuated by a factor ε-pe, and is, moreover, leading on the sonding voltage by an angle $\theta=\tan { }^{-1} q x$.

Fio. 289.-Illustirating Meaning of Transmission Formule.

The factor p is thus termed the "attenuation constant" of the line, and it may easily be shown that-

$$
n=\frac{\mathrm{R}}{2} \sqrt{\mathrm{C}}+\frac{\mathrm{G}}{2} \sqrt{\overline{\mathrm{~L}}} \text { nearly if } \mathrm{L} \omega \gg \mathrm{R}
$$

In order to reduce the attenuation, therefore, p must be kept small. This may be done in soveral ways.

1. Reduco R. This is expensive.
2. Reduce G. This is always kept as low as possible, and the first term R
2
L
C
is in consequence the more important.
3. Reduce C. This is also expensive. In overhead lines C is naturally small, while in underground cables air-space cables are used, as has already beon reen, to keep the capacity low.
4. Increase L. This is a practicablo solution. A limit occurs when $\frac{G}{2} \sqrt{\mathrm{C}}$ becomes appreciable, but up to this limit L may be, and is increased with advantago.

Loaded Lines. -The process of inserting inductance in the lines is known as londing. All long-distance telephone lines are loaded. The loading may bo continuous, obtained by wrapping iron wire round the cable, a method suggested and omployed by Krarup.

The moro genoral method, however, is to insert loading coils at definite points. This method is due to Pupin, and the londing coils are sometimes called Pupin coils. The coils should be spaced according to either of the following rules, which are different ways of expressing the snme thing:
(a) The wave must pass through 6,500 to 7,500 coils in one second (G.P.O.).
(b) $\mathrm{D}^{2} \mathrm{CL}=21$, where-
$\mathrm{D}=$ distance between coils in miles.
$\mathrm{C}=$ capacity per mile ($\mu \mathrm{F}$).
$\mathrm{L}=$ inductanco per mile $(\mu \mathrm{H})_{\mathbf{t}}$ (Wostern Eloctric Company).

It is found in practico that speech is satisfactory if $p l<2 \cdot 5$, and is good if $p l=1-5$, or less.

The insertion of loading coils on overhead wires tends to introduce troublesome cffects due to high voltage surges, and lightning arresters have to be inserted.

Power Transmitted.-The power transmitted is proportional to $v_{\mathrm{g}}{ }^{2}$. Hence, if the received power is to be the same in each case, the transmitted power for a line n times as long as a given line will be ε^{2}, \ln. If $p l=3 \cdot 5$, the ratio of powers required if the length of line is doubled is over 1,000 .

Distortion. Wave Velocity:

$$
q=\sqrt{\frac{\left\{\left(\mathrm{RG}-\omega^{2} \mathrm{LC}\right)^{2}+\omega^{2}(\mathrm{RC}+\mathrm{GL})\right\}^{1}-\mathrm{RG}+\omega \mathrm{CL}^{2}}{2}}
$$

It will be seon that this depends on the frequency. Henco different frequencies will arrive with different phase angles and distortion will occur.

Moreover, the wave length $\lambda=\frac{2 \pi}{q}$ and the wave velocity $=\lambda \times f=\frac{\omega}{q}$. The velocity is thus different for different frequencies, which is a further source of distortion.

Heaviside has shown that if $\frac{\mathrm{R}}{\mathrm{G}}=\frac{\mathrm{L}}{\mathrm{C}}, p$) and the wave velocity are inde. pendent of the frequency. This condition, however, is not economically practicable. The best conditions obtain when L is large, so that the insertion of loading coils is, to a certain oxtent, Ω remedy for distortion as well as attonuation.

The above expression for q is rather involved. Sinco the approximato value of p, the attenuation constant, is fairly easily obtained $\left(\begin{array}{c}\mathrm{R} \\ 2\end{array} \sqrt{\mathrm{~L}}+\frac{\mathrm{G}}{2} \sqrt{\overline{\mathrm{~L}}}\right), q$ may moro readily be deduced from the ex-pression-

$$
q=\sqrt{p^{2}-\left(\mathrm{RG}-\omega^{2} \mathrm{LC}\right)} .
$$

The wave velooity is then obtainable from the formula $v=\frac{\omega}{q}$.

Fig. 290.-Telephone Repeater.

Repeaters.-The introduction of the thermionic valve has rendered possible the use of telephone repenters. Details of some of the experiments made by the Post Oflice on repenters may be obtained from a paper by Sir William Noble on "The Long- Distance Telephone Systen of the United Kingdom " (Journ. I.E.E., vol. lix., p. 389). Fig. 290 gives particulnrs of the pattern eventually adopted. It will bo observed that the output from the valves is introduced across the middle points of a special transformer, one side of which goes to line and the other to a balancing network. This

Fig. 291-Repeater Network T Connection.

Fig. 292.-Repeater Network Rectangular Conaection.
prevents any feeding back of the energy to tho transmitting end, so eliminating howling.

Tho successful operation depends to a large extent on the balancing network. Two types of network may be employed. For the 'T circuit shown in Fig. 291 the impedances Z^{\prime} and $Z^{\prime \prime}$ should be-

$$
\begin{aligned}
& Z^{\prime}=Z_{0} \operatorname{Lanh} \frac{l}{2} p \\
& Z^{\prime \prime}=\frac{Z_{0}}{\sinh p}
\end{aligned}
$$

whore $/_{0}=$ characteristic impedance of actual line
$p=$ altenuation constant of actual line.
$l=$ length of actual line.
For the arrangement shown in Fig. 292 the expressions aro-

$$
\begin{aligned}
& Z^{\prime}=Z_{0} \sinh l p \\
& Z^{\prime \prime}=\frac{Z_{o}}{\tanh ^{l} \bar{l} p}
\end{aligned}
$$

One or other of these types will mateh any given line. If substitution in one set of formule gives an impossible condition (e.g., a negntive resistance), the other type of network should be used.

The values of $\cosh x$, sinh x, ε^{x}, etc., may be obtained from Fig. 293 overleaf. More accurato values are given in Appendix A.

Fig. 293.-Graph of tie Exponential anil Hyperbolic Functions.

For more exact values see Λ ppendix Λ.

APPENDICES

APPENDIX A

APPENDIX A.

British Weights and Measures.

Length.

12 inches
3 feet
6 feet
51 yards
22 yards
220 yards
8 furlongs
6,080 feet
$=1$ foot.
$=1$ yard.
$=1$ fathom.
$=1$ rod, pole or perch.
$=1$ chain.
$=1$ furlong.
$=1$ mile $=1,760$ yards $=5,250$ feet.
$=1$ nautical mile $=1.1515$ mile.

Suriace.

```
144 square inches \(=1\) square foot.
    9 square fcol \(=1\) square yard.
    \(30 \frac{1}{4}\) square yards \(=1\) square pole.
    40 square poles \(=1\) rood.
    4 roods \(\quad=1\) acre \(=4.840\) square yards.
640 acres \(\quad=1\) square mile.
```


Welght (Avoirdupols)

27344 grains	$=1$ dram.
16 drams	$=1$ ounce $=437 \frac{1}{2}$ grains.
16 ounces	$=1$ lb. $=7,000$ grains.
141 bs.	$=1$ stone.
281 lbs.	$=1$ quarter.
4 quarters	$=1$ cwt.
20 cwt.	$=1$ ton.

Weight (Troy).
4 grains $\quad=1$ carat.
24 grains $=1$ pennyweight (dw.)
20 dwt. $\quad=1$ ounce $=480$ grains.
12 ounces $\quad=1 \mathrm{lb}=5,760 \mathrm{graing}$.
Note.-The grain Avoirdupois and the grain Troy are the same.

Mensuration of Surfaces.

Area of triangle $=$ Base $\times \frac{1}{2}$ perpendicular.

$$
\text { circle } \quad . \quad . \quad=\text { Diameter }^{2} \times 7854
$$

$$
\text { soctor of circle } \quad . \quad=\text { Length of arc } \times \frac{1}{2} \text { radius. }
$$

$$
\frac{\text { Number of degrees in arc } \times \text { area of the circle }}{360}
$$

Area of parabola $=$ Base $\times \frac{0}{3}$ height.
Frustum of a parabola..$=\frac{2}{3}$ height $\frac{\text { base }^{3}-\text { top }^{3}}{\text { base }}{ }^{2}-$ top 2
Area of ellipse . . . $=$ Long axis $\times 7854$ short axis.
,, cycloid = Area of generating circlo $\times 3$.
Surface of cylinder $\quad . \quad=$ Area of both ends + length \times circumference.

Mensuration of Solids.

Cylinder $=$ Area of one end \times length.
Sphere $=$ Diameter ${ }^{3} \times 0.5236$.
Segment of sphere $=0.5236 \mathrm{H}\left(\mathrm{H}^{2}+3 \mathrm{R}^{2}\right)$, where $\mathrm{H}=$ height of segurent and $\mathrm{K}=$ radius of the brse of the segment.

Cone or pyramid $=$ Area of baso $\times \frac{1}{3}$ perpendicular hoight.
Frustum of cone or pyramid $=\frac{1}{3} \mathrm{H}(\mathrm{A}+a+\sqrt{\mathrm{A} \times a})$. When A and $a=$ Areas of the ends, $\mathrm{H}=$ Perpendicular height.

Frustum of cone $=0.2618 \mathrm{H}\left(\mathrm{D}^{2}+d^{2}+\mathrm{D} . d\right)$. When D and $d=$ the diameters of each end, $\mathbf{H}=$ Perpendicular height.

Wedge $=$ Area of base $\times \frac{1}{2}$ perpendicular height.
Frustum of wedge $=\frac{1}{2} \mathrm{H}$ (A $+a$), when A and $a=$ Area at each end, $\mathbf{H}=$ Perpendicular height.

Parallopiped or prism $=$ arca of one face \times distance from opposite face.

TABLE I.

Conversion Table.

To convert.
Lengths.

Mils to millimetres		..		00254	39.37
Mils to inches ..	.			0.001	10000
Inches to millimetros				25.4	003937
Inches to centimetres				$2 \cdot 54$	0.3937
Inches to metres				00254	$39-3701$
Feet to centimetres				$30 \cdot 48$	0.032808
Feet to metres				$0 \cdot 3048$	3.2808
Feet to kilometres	\ldots			0.0003048	$3280 \cdot 8$
Feet to nautical miles				0.0001644	60800
Feet to miles	\cdots			0.0001894	5280.0
Yards to metres				0.91449	1.0936
Yards to kilometres				00009144	1093.6
Yards to miles ..				0.0005682	1760.0
Miles to metres				$1609 \cdot 34$	0.00062137
Miles to kilometres				160934	062137
Nautical miles to kilon	tres			1.853	0-5396

TABLE I.-continued.
To convert Mulliply by Reciprocal.

Areas.

r mils to square mils	0.78539	12732
Circular mils to square mllimetres	$0 \cdot 0005067$	1974
Circular mils to square inches	00000007854	1273240
Square inches to square millimetres	6.45-16	000155
Square inches to square centimetres	64516	0-155
Square feet to square metres	00929	10764
Square yords to square metres	0.836126	1.196
Square yards to square miles	00000003228	3097600
Squaro miles to square kilometres	2.59	03861
Square miles to acres	$640 \cdot 0$	000156

Volumes.

Circular mil feet to cubic inches	0000009425	106100
Cubic inches to cubic centimetres	16.387	006104
Cubic feet to cubic metres	0.028317	35-3148
Cubic yards to cubic metres	0.76455	1307
Cubic inches to pints .	0.02886	34.67
Cubic inches to litres	0.016387	61.024
Cubic inches to gallons (Imperial)	0.00361	27711
Cubic feet to litres	$28 \cdot 317$	0.035315
Cubic feet to gallons (Imperial)	6.2358	$0 \cdot 160365$
Cubic yards to litres	764.553	0.001308
Pints to litres	$0 \cdot 5682$	1.760
Gallons (Imp.) to litres	4.5410	0.220216
Ciallons (Imp.) to cubic centimetres	$4 \overline{5} 41$	0.0002202
Gallons (Imp.) to U.S.A. gallons	1-1997	$0 \cdot 8335$

Weights.

Dynes to milligrammes		1.01919	0.98117
Dynes to grammes		000101919	981 -17
Dynes to pounds (av.)		0-000002198	445000
Grains to milligrammes		64.8	0.0154323
Grains to grammes		00648	154323
Grains to ounces (av.)		000229	437.5
Grains to ounces (Troy)		000208	480
Grains to pounds (av.)		000014286	7000
Ounces to grammes		283495	003527396
Ounces to kilogrammes		00283495	35-27396
Pounds (av.) to grammes		453.5924	0.0022046
Pounds (av.) to kilogrammes		$0 \cdot 4535924$	$2 \cdot 204622$
Cwts. to kilogrammes		60.80235	$0 \cdot 019684$
Tons to kilogrammes		1016.047	0.0009842
Tons to U.S.A. tons ($2,000 \mathrm{lbs}$)		$1 \cdot 12$	$0 \cdot 89286$
'Tons to tonneaux ($1,000 \mathrm{kilog}$	ammes)	1.016047	0.9842

To convert	Mulliply by	Reciprocal.
Pressures.		
Pounds per sq. in. to gm. per sq. cm.	70307	0014223
Pounds per sq. in. to bead of water in ft. at $32^{2} \mathrm{~F}$.	230925	04330
Pounds per sq. in. to head of water in metres at $62^{\circ} \mathrm{F}$.	0.70386	$1 \cdot 4207$
Pounds persq. in. to kg. per sq. cm .	0.070307	14223
Pounds per sq. in. to tons per sq. ft .	0064286	15-556
Pounds yer sq. in. to atmospheres	0068	$1+7$
Tons per sq. ft . to head of water in ft . at $62^{\circ} \mathrm{F}$.	3592	$0-0278$
Tons per sq. ft. to head of water in metres at $62^{\circ} \mathrm{F}$.	10.949	009133
Tons persq. ft. to kg . per sq. cm .	1.0937	0.9143
Tons per sq. ft. to atmospheres ...	1.058	0.945
Atmospheres to head of water in inches at $6 \% \mathrm{~F}$.	407 4	0002455
Atmospheres to bead of water in fect at $62^{\circ} \mathrm{F}$.	3395	002945
Atmospheres to head of water in metres at $62^{\circ} \mathrm{F}$.	10.35	00966
Atmospheres to head of mercury in inches	29.92	003342
Atmospheres to head of mercury in millimetres	760	0001316
Atmospheres ($760 \mathrm{~mm} . \mathrm{Hg}$. at $\mathrm{O}^{\circ} \mathrm{C}$.) to bars (dynes per sq. cm.)	$1.0132 .10^{6}$	$0.9871 .10^{6}$
Bars to millibars ..	0.001	1000

Velocities.

Feet per sec. to metres per sec.	03048	3.2808
Feet per sec. to miles per hour	06816	$1 \cdot 4667$
Feet per sec. to kilometres per hour	10973	0.91133
Feet per min. to metres per sec.	000508	196.854
Feet per min. to miles per hour	001136	88
Miles per hour to metres per min.	26.82	0.03729
Miles per hour to kilometres per hour	$1 \cdot 6093$	0.62138
Knots to feet per hour . .	6080	00001644
Knots to metres per hour	1853.13	0.0005396
Knots to miles per hour	$1 \cdot 1515$	$0 \cdot 8684$
Knots to nautical miles per hour	1	1

Weights per Unil Length.
$\begin{array}{llll}\begin{array}{l}\text { Pounds per ft. to kilogrammes per metre. . }\end{array} & 1.48858 & 0.67178 \\ \begin{array}{l}\text { Pounds per mile to kilogrammes per } \\ \text { kilometre }\end{array} & \ldots & 0.28186 & 3.54786\end{array}$

TABLE I.-continued.

To convert Heeights per Unil Volume.

Pounds per cub. ft. to kg. per cub. metro $16020062-43$
Pounds percub. yd. to kg. per cub. metre 05933

Reciprocal.
1.68 G

Power.

to	44.2567	00226
Wntts to H.P.	$00013+1$	746
Watts to kilogrammetres per second	0.102	9. 51
H.P. to foot pounds per second	550	000182
H.P. to foot pounds per minute	33,000	00000303
H.P. to kilogrammetres per second	76.07	00131 +
H.P. to metric horse-power	1.013	0.987

Work and Thermal Units.

Joules to ergs	\cdots	10^{7}	10:
Joules to foot pounds		0.7373	13565
Joules to calorics		0.2386	4-186
Joules to Kilogrammetres		0102	981
Joules to B.Th.U.		$00009+74$	1055
Joules to watt hours (1 joule $=1$ watt.			
Kilogrammetres to foot poun		7.233	0-1383
Kilogrammetres to calories	' ${ }^{\text {- }}$	$2 \cdot 341$	0427
Kilogrammetres to B.Th.U.		0009295	107.56
Foot pounds to B.Th.U.		00012 S 5	77 S
Foot pounds to watt hours	.	00003766	2656
Calories to B.Th.U.		0003968	2519

Miscellaneous.

Pounds of water to litres	$0 \cdot 4536$	220
Pounds of water to gallons	$0-1$	10
Pounds of water to cubic feet	0016037	6243
Anperes per sq. in. to amperes per sq. mm .	000155	645-16
Common to Neperian logarithm	$2 \cdot 3026$	$0 \cdot 43429$
Microhms per in. ${ }^{3}$ to microhms per cm. ${ }^{3}$	2.54	$0 \cdot 394$
Terap. Cocff. per ${ }^{\circ}$ F. to temp. coeff. per ${ }^{\circ}$ C.	1.8	0 5ũ6
Linos per sq. cm. to kilolines per sq. in.	0.00645	155
C.G.S. units to amp. turns per inch	2.02	$0 \cdot 495$
C.G.S. units to amp. turns per cm .	0.7956	$1 \cdot 257$

TABLE II.
Areas and Circtmferences of Circles.

Dis.	Circurs.	Area.	Dia.	Oircum	Area	Dia	Oircum.	Area.
3)	. 0981	. 00077	15	5.1051	2.07	13	13.155	13.772
12	- 1963	. 00307	116	5.301 .1	2. 2365	14	13.351	14.186
	- 2945	. 0069	1.	$5 \cdot 4978$	¢-4052	$4{ }^{5}$	$13 \cdot 547$	14.606
	. 39.27	. 01227	115	5.69 .41	2.58		13.744	15.033
	. 4908	-0192	13	5.8905	2.7611	4	13.94	15.465
	. 559	. 0276	$1+$	6.0868	$2 \cdot 9483$	4.	14.137	15.904
	-687\%	. 0376	2	6.2832	$3 \cdot 1416$	4	14.333	16.394
	. 7854	. 01909	2,	6.4795	3.3410	48	14.59	$16 \cdot 8$
	. 8835	. 0621	2	6.6759	3. 5165	4	11.725	$17 \cdot 257$
	. 9817	.0767	2	$6 \cdot 8722$	37584	4)	14.322	17.72
	1.0799	. 0928	2	7.0656	3.976	41	15.119	18.19
	1.1781	- 1104	2	$7 \cdot 26.19$	$4 \cdot 2$	13	15.315	$18 \cdot 665$
	1.2762	- 1296	2	7-4613	4.4302	41	15.511	19.147
	1.3744	- 1503	2	7.6576	1.6664	5	15.708	$19 \cdot 635$
	1.4726	. 1725	2	7.854	4.9087	5	15.904	$20 \cdot 129$
	1.5708	. 1963		8.0503	$5 \cdot 1573$	5	16.1	$20 \cdot 629$
	1.6689	- 2216	23	$8 \cdot 2467$	5.4119	5	16.296	21. 135
	1.7771	. 2485	2	8-443	5.6723	5.	16.493	21.647
	1.8653	- 2768	2	8.6394	5.9395		16.689	$22 \cdot 166$
5	1.9635	- 3068	213	8.8357	6. 2126	5	16.886	22.63
	2.0616	. 3382	2	9.0321	6. 4918	5	17.082	23.221
	$2 \cdot 159 \mathrm{~S}$. 3712		9. 2284	6.7772	5	17.278	23.758
	2-25S	- 4057	3	9.4248	7.0686		17.474	24-301
	2.3562	- 4417		9.6211	7.3662		17.671	24.85
	2.4543	. 4793	3	9.8175	7.6699	5	17.867	25.406
	$2 \cdot 5.525$. 5185		10.014	7.9798	5	18.064	25.967
	$2 \cdot 6507$. 5591	$3 \ddagger$	10.21	8.2957		18.261	26-535
	$2 \cdot 7.189$. 6013		10.406	8.618	5	18.457	27.108
	$2 \cdot 847$	645	3	10:602	8.9462	5	18.653	27-688
	2.9452	- 0903		10.799	9.2807	6	18.85	28.27
315	3.0431	. 737	$3!$	10.995	9.6211	$6 \frac{1}{4}$	19.24	29.46
	3.1416	. 7854		11.191	9.968	67	19.63	$30 \cdot 67$
1	3.3379	. 8866	35	11.388	10.32	63	20.02	31.91
11	3.5343	. 994	3	11.584	10.679	61	20.42	$33 \cdot 18$
1	3.7306	$1 \cdot 1075$	3.	11.781	11.044	65	20.81	34.47
14	$3 \cdot 927$	1-2271	3	11.977	11.416	63	21.20	35.78
1	$4 \cdot 1233$	1-353	3 s	12.173	11.793	$6{ }_{8}$	21.60	37-12
13	4.3197	1.4848	34.5	12.39	12.177	7	21.99	38.48
1%	$4 \cdot 516$	1.6229	4	$12 \cdot 566$	12.566	71	22.38	39.87
$1 \frac{1}{2}$	4.7124	1.7671	$4 \frac{1}{18}$	12.762	$12 \cdot 962$	71	$22 \cdot 77$	41.28
$1{ }^{9} 8$	4.9087	1.9175	, $\frac{1}{8}$	12.959	$13 \cdot 364$	78	$23 \cdot 17$	42.71

TABLE II．－（contd．）．

Dis．	Circum．	Arca．	Dia．	Circum．	Area．	Dia．	Circum．	Area．
7	23.56	44.17	123	39.66	125.18	173	55.76	24
78	23.95	45.66	12.	40.05	127．67	17\％	56.15	250.94
73	24－34	$47 \cdot 17$	12.	40.44	$130 \cdot 19$	18	$56 \cdot 54$	254.47
78	24.74	$48 \cdot 70$	13	40.84	132.73	1815	56.94	258.01
8	25－13	50.26	13\％	41.23	135.29	$18 \frac{1}{6}$	57.33	261.58
81	25.52	51.84	13.	41.62	137.88	183	57.72	265.13
81	25.91	53.45	$13{ }^{3}$	42.01	140.50	$18 \frac{1}{1}$	58－12	268.80
83	26.31	55.08	13.	42.41	$143 \cdot 13$	18号	58．51	272.41
81	26.70	56.74	138	42.80	145.80	183	58.90	276.11
8 ¢	27.09	58.42	131	$43 \cdot 19$	148.48	187	59.29	27.9 .81
8	27.49	$60 \cdot 13$	$13 \frac{1}{8}$	43.58	151.20	19	59.69	283.53
$8{ }^{3}$	27.88	61.86	14	43.98	153.93	191	80.08	287.27
	28.27	63.62	$14 \frac{1}{1}$	44.37	156.70	19%	60.47	291.04
91	28.60	65.39	147	44.76	159.48	193	60.86	294.83
97	29.06	67.20	143	$45 \cdot 16$	$162 \cdot 30$	19i	61．26	298.64
5	29.45	69.02	14 k	$45 \cdot 55$	165.13	195．	61.65	302.49
9.	29.84	70.88	14 B	45.94	167.98	19.	62.04	306.35
9	30.23	72.75	144	$46 \cdot 34$	170.87	$19 \frac{1}{8}$	62.44	310.24
9	30.63	74．66	14 ¢	46.73	173．78	20°	62.83	314.16
0	31.02	76.58	15	47－12	176．71	204	63.22	318.09
10	31.41	78.54	15交	47.51	179.67	201	63.61	322.06
$10 \frac{1}{4}$	31.80	$80 \cdot 51$	15.	47.91	152.65	203	64.01	326.05
10.	$32 \cdot 20$	82.51	15	48.30	185.66	$20 \frac{1}{12}$	64.40	330.06
103	$32 \cdot 59$	84.51	15，	48.69	188.69	20¢	64.79	$334 \cdot 10$
104	32.98	86.59	15	49.08	191.74	$20 \frac{3}{3}$	65.18	$338 \cdot 16$
105	33.38	88.66	15%	49.48	194.82	$20 \frac{2}{8}$	65.58	$3.12 \cdot 25$
108	$33 \cdot 77$	90.76	158	49.87	197.93	21	$65 \cdot 97$	346.36
$10 \frac{8}{8}$	34－16	92.88	16	50.26	201.06	$21 \frac{1}{4}$	$66 \cdot 36$	350.49
11	34.56	95.08	16六	50.65	$204 \cdot 21$	214	66.76	354.65
118	34.95	97.20	$16 \downarrow$	51.05	207．40	21 复	$67 \cdot 15$	358.84
11	35．34	99.40	163	51.44	210．59	$21 \frac{1}{\text { ¢ }}$	67.54	363.05
11 名	35.73	101－62	$16 \frac{1}{6}$	51.83	213.82	21 閣	67．93	367.28
113	$36 \cdot 13$	103.87	165	52.23	217.07	21.	68.33	371.54
110	36.52	106－14	16.	52.62	$220 \cdot 35$	$21 \frac{1}{5}$	65.72	375.82
11%	36.91	108.43	168	53.01	223．65	22°	$69 \cdot 11$	$380 \cdot 13$
117	37.30	110.75	17	53.40	226.98	222	69－50	384.46
12	37．69	113.09	171 ${ }^{\frac{1}{4}}$	53.79	$230 \cdot 33$	221	69.90	388.82
12t	38.09	115.46	17.	54－19	233.70	223	70.29	$393 \cdot 20$
12t	38.48	117.86	178	54．58	$237 \cdot 10$	22.	70.68	397 －61
$12{ }^{9}$	38.87	$120 \cdot 27$	$17 \frac{1}{3}$	54.97	240－52	225	71.07	402.04
$12 \frac{1}{2}$	39.27	122.71	178	$55 \cdot 37$	243.97	223	71.47	406.49

T.ABLE I1.-(contd.).

Diz.	Circum.	Area.	Dia.	Circum.	Area.	Dia.	Circum.	Ares.
228	71.86	410.97	28	87.96	615.75	331	104.06	861.79
23	$72 \cdot 25$	$415 \cdot 47$	2S $\frac{1}{1}$	8S. 35	621.26	334	104.46	868. 30
233	$72 \cdot 64$	$420 \cdot 00$	2S ${ }_{1}$	88.75	6:6.79	$33{ }^{\frac{3}{3}}$	104.85	874.84
237	73.04	144.55	28	89.14	632.35	33. ${ }^{\text {a }}$	$105 \cdot 24$	881.41
23%	73.43	$429 \cdot 13$	28%	89.53	637.91	335	105.63	888.00
2:3 ${ }^{2}$	$73 \cdot 82$	433.73	$2 S^{5}$	89.93	$643 \cdot 59$	$33 \pm$	106.03	894.62
238	74.22	$438 \cdot 36$	28.1	90.32	649.18	33 s	106.12	901. 25
$23{ }^{3}$	74.61	443.01	287	90.71	654.84	3.4	$106 \cdot 81$	907.92
237	75.00	447.69	29	91.10	$650 \cdot 52$	$34 \frac{1}{4}$	107.20	914.61
24	75-39	$452 \cdot 39$	291	91.49	$666 \cdot 22$	$34 \frac{1}{2}$	107.59	921.32
244	75.79	457.11	29.	91.89	671.95	318	107.99	928.06
24.6	$76 \cdot 18$	461.86	29.3	92.28	677.71	3.15	$108 \cdot 38$	931.82
24	76.57	466-63	29.	92.67	683.49	34	$108 \cdot 77$	941.60
$24 \frac{1}{2}$	$76 \cdot 97$	471.43	295	93.06	689.29	$34 \frac{13}{4}$	$109 \cdot 17$	918.42
248	77.36	476.26	29.	93.46	695.12	$34 \frac{7}{3}$	109.56	955.25
24?	77.75	$481 \cdot 10$	297	93.85	700.98	35	109.95	962.11
243	78-14	485.97	30	94.24	706.86	$35 \frac{1}{8}$	110.34	968.99
25	78.54	$490 \cdot 87$	$30 \frac{1}{8}$	94.64	712.76	357	110.74	975.30
25.	78.93	$495 \cdot 79$	304	95.03	718.69	35	111.13	982.84
251	79.32	500.74	30.	95.42	724.64	351.	111.52	989.80
25	79.71	505.71	30.6	95.82	$730 \cdot 62$	35	111.92	996.78
25.	$80 \cdot 11$	510.70	305	96.21	$736 \cdot 62$	$35{ }^{3}$	112.31	$1003 \cdot 79$
25.5	80.50	$515 \cdot 72$	$30 \frac{1}{7}$	$96 \cdot 60$	742.64	35 㐌	112.70	010.82
25	80.89	$520 \cdot 76$	307	96-99	748.69	36	113.09	017.87
25	81.29	525.83	31	$97 \cdot 39$	754.76	$36 \frac{1}{4}$	113.49	. 96
26	81.68	530.93	311 ${ }^{\frac{1}{7}}$	97-78	760.87	$36 \pm$	113.88	032.06
26 d	82.07	536.04	$31 \frac{1}{4}$	98-17	766.99	36	114.27	1039.19
$26 \pm$	82.46	541.19	31号	98.56	773.14	361	114.66	$1046 \cdot 34$
26	82.86	$546 \cdot 35$	312	98.96	779.31	36	115.06	$1053 \cdot 52$
26.	83.25	551-54	31.	99.35	785.51	$36 \frac{1}{1}$	115.45	060.73
26	83.64	556.76	31	99.74	791.73	$36 \frac{1}{8}$	115.84	1067.96
26 \%	84.03	$562 \cdot 00$	317	$100 \cdot 14$	797.98	37	116.24	1075.21
267	84.43	567-26	32	$100 \cdot 53$	804.25	3718	116.63	1052.49
27	84.82	572.55	$32 \frac{1}{1}$	100.92	810.51	374	117.02	$1089 \cdot 79$
27	85.21	577.87	32.4	101.31	816.86	37	117.41	$1097 \cdot 11$
278	85.60	583.20	32\%	101.71	$823 \cdot 21$	371	117.81	1104.46
27	86.00	588.57	32.	102-10	829.57 835.97	378 378	118.20 118.59	11119.84
$27 \frac{1}{1}$	86-39	593.96	323	102.49	835.97 842.39	37% 37	118.59 118.99	1119.24
27	86.78	$599 \cdot 37$	33.	102.88	842.39 848.83	377 38	118.99 119.38	$1126 \cdot 66$ $1134 \cdot 11$
273	87.17	604.80	327	103.28 103.67	848.83 855.30	38 388	119.38 119.77	1134.11 1141.59
278	87.57	$610 \cdot 26$	33	$103 \cdot 67$	$855 \cdot 30$	381	119.77	1141.59

TABLE II.-(contd.).

Dia.	Circum.	Arca	Dia.	Circum	Area.	Dia.	Circum.	Area.
387	120.16	1149.08	$42 \pm$	132.73	1401.99	46.3	145.29	$1680 \cdot 01$
383	120.56	$1156 \cdot 61$	423	133.12	$1410 \cdot 29$	$46 \frac{3}{8}$	145.69	689.11
38.	120.95	$1164 \cdot 15$	421	133.51	$1418 \cdot 62$	46%	146.08	$1698 \cdot 23$
385్క	121.34	1171.73	423	133.91	$1426 \cdot 99$	46	146.47	$1707 \cdot 37$
38	121.73	1179.32	42^{3}	134.30	$1435 \cdot 36$	46^{3}	146.87	1716-54
387	122.12	1186.94	427	134.69	$1443 \cdot 77$	46\%	147.26	1725-73
39	122.52	1194-59	43	135.08	$1452 \cdot 20$	47	$147 \cdot 65$	1734.94
39\%	122.91	1202. 26	43]	135.48	1460-66	471	148.04	1744-19
397	123.30	$1209 \cdot 95$	$43+$	135.87	$1469 \cdot 14$	47	148.44	1753.45
394	123.70	1217.67	433	136.26	$1477 \cdot 63$	473	148.83	1782.74
391	124.09	1225.42	43.6	136.66	1486-17	$47 \frac{1}{3}$	149.22	172.05
395	124.48	1233.18	435	137.05	$1494 \cdot 73$	478	149.62	$1781 \cdot 39$
394	124.87	240.98	433	137.44	$1503 \cdot 30$	$47 \frac{8}{4}$	150.01	$790 \cdot 76$
39 f	125.27	$1248 \cdot 79$	437	137.83	1511.91	$47 \frac{1}{5}$	150.40	800.14
40	125.66	1256 - 64	44	138.23	$1520 \cdot 53$	48	150.79 151.19	8. 96
401	126.05	$1264 \cdot 50$	443	138.62	1529.19	$48 \frac{1}{81}$	151.19 151.58	818.99 828.46
407	126.45	1272.40	$44 t$	139.01	1537.86	487	151.58 151.97	828.46 1837.95
408	126.84	$1280 \cdot 31$	443	139.40	$1546 \cdot 55$	483	151.97 152.36	$1837 \cdot 95$ $1847 \cdot 45$
40.7	127.23	$1288 \cdot 25$	$44 \frac{1}{4}$	139.80 140.19		48\%	152.36 152.76	1847.45
408	127	$1296 \cdot 22$ $304 \cdot 20$	44% 44%	140.19 140.58	$156+1$ $1572 \cdot 81$	489	152.76 153	1866.55
$40 \frac{1}{4}$	128.41	1312.21	$44 \frac{7}{5}$	140.98	1581-61	483	153.54	1876.14
41	123.80	1320-26	45	141.37	1590.43	49	153.94	855.74
$41 \frac{1}{7}$	129.19	$13: 2$ - 32	45\%	141.76	1599-28	49	154.33	1895.37
41%	129.59	1336.41	$45 \frac{1}{4}$	142.15	$1608 \cdot 16$	$49 \pm$	154.72	1905.04
41通	129.98	1344.52	-153	142.55	1617.04	493.	$155 \cdot 11$	1914.72
$41 \frac{1}{2}$	$130 \cdot 37$	1352.66	45i	142.94	1625.97	493	155.60	1924.42 1934.15
418	130.77	1360.82	450	$143 \cdot 33$	1634-92	495	155.90 156.29	$1934 \cdot 15$ 1943.91
41	131.16	1369.00	4513	143 -72	$16+3.89$	493	156.29 156.68	1943.91 1953.69
411	131.55	1377.21	$45 \frac{1}{8}$	144.12	$1652 \cdot \mathrm{S9}$	498	156.68 157.08	1953.69
42	131.94	1385-44	46	144.51	1661.90	50	157.08	963-50
423	$132 \cdot 33$	1393-70	46 ¢	144.90	$1670 \cdot 95$			

TABLE III.
Powers, Roots and Rectprocais.

n	$n{ }^{2}$	1^{3}	\sqrt{n}	$\sqrt{10 n}$	$3 \sqrt{11}$	$\sqrt[3]{104}$	$\frac{1}{n}$	13
$1 \cdot 10$	12100	1.33100	1.04881	3.31662	1.03228	2.22398	'90909r	1-10
120	$1 \cdot 4400$	1•72800	109545	3.46410	1-06266	$2 \cdot 28943$	-833333	1-20
1-30	1.6900	2-19700	1.1ヶ018	36055	1.09139	2.35134	-769231	1.30
$1 \cdot 40$	1.9600	2.74400	1-18322	3.74166	1.11869	$2 \cdot 41014$	-714286	1.10
150	2-2500	3.37500	x-22474	387298	1-14.75	2.46621	. 666667	150
$1 \cdot 60$	2.5600	4.09600	I 26.491	400000	1-26) 61	2.51984	-625000	1.60
1.70	2.8900	4.91300	1 30384	412311	1-19348	2.57128	$\cdot .588235$	1.70
1.80	32.400	5.83200	1.34164	4.24264	1.21644	2.62074	- 555556	1.80
1.90	3.6100	6.85900	1-37840	4.35890	1.23856	2.66840	-526316	1.90
200	40000	800000	1.4142I	4.47214	1.25992	2.71442	-500000	200
2110	4.4100	9:26100	1-41914	$+58258$	1-28058	2.75893	- 476191	2.10
2.20	4.8 .100	10.6 .480	1.4832 +	4.690 .12	I•30059	$2 \cdot 80204$	- 454546	$2 \cdot 20$
$2 \cdot 30$	5:2900	12.1670	- 51658	$4 \cdot 79583$	1-32001	2.84387	$\cdot 434783$	$2 \cdot 30$
$2 \cdot 40$	5.7600	13.8240	1.54919	489898	1.33887	2.88450	-416667	2.40
250	6.2500	15.6250	1-58114	500000	1-3573	2.92402	$\text { - } 100000$	250
260	6.7600	17.5760	1-61245	5.09902	1.35707	2.96250	-384615	$2 \cdot 60$
2.70	7-2900	19.6830	1.64317	5.19615	1-39248	300000	'370370	2.70
2.80	7.8400	21.9520	1-67332	5.29150	1-40946	303659	-357142	2.80
2.90	8.4100	24.3890	1.70294	538516	1.42604	3.07232	-344828	$=.90$
300	9.0000	27.0000	$1 \cdot 73205$	5.47723	1.4.4225	$3 \cdot 20723$	-333333	300
3.10	9.6100	29.7910	1•76068	556776	1.45810	3.14138	-322581	3.10
$3 \cdot 20$	10.2400	32.7680	1.78885	565685	1.47361	3.17480	'312500	3.20
3.30	10.8900	35.9370	1.81659	5.74.156	1.48881	3.20753	-303030	$3 \cdot 30$
3.40	11.5600	39.3040	x.8439 1	5.83025	1.50369	3.23961	-294118	3.40
350	12.2500	42.8750	1.87083	5.91608	1.51829	327107	-285714	350
3.60	12.9600	46.6560	1.89737	6.00000	1-53262	330193	-277778	3.60
3.70	13.6900	50.6530	1-92354	6.08276	1.54668	3.33222	-270270	370
3.80	14.4400	54.8720	1.94936	6.16441	1.56049	3.36198	-263158	380
3.90	15.2100	593190	1.97484	6.24500	1.57406	3.39121	-256410	390
400	16.0000	64,0000	2.00000	6.32456	1.58740	3.41995	-250000	400
4.10	16.8100	68.9210	2.02485	6.40312	1.60052	3.44822	-243902	$4 \cdot 10$
4.20	17.6400	74.0880	2.04939	6.48074	1.61343	3.47603	$\cdot 238095$	4.20
$4 \cdot 30$	18.4900	79 5070	207364	6.55744	1.62613	3.50340	-232558	430
440	19.3600	85.1840	2.09762	$6.633=5$	1.6386.4	3.53035	$\cdot 227273$	+40
450	20.2500	91.1250	2.12132	6.70820	1.65096	3.55689	-222222	450
4.60	21.2600	97-3360	214476	678233	1.66310	3.58305	-217391	4.60
$4 \cdot 70$	22.0900	103.823	216795	6.85565	167507	3.60883	-212766	4.70
4.80	23.0 .100	110.592	$2 \cdot 19089$	6.92820	1.68687	3.63424	- 208333	4.80
+90	24.0100	117.649	2.21359	7.00000	1.69850	3.65931	. 204082	490
500	25.0080	125.000	2.23607	7.07107	1-70998	$3 \cdot 68.403$	-200000	500
$5 \cdot 10$	26.0100	132.651	2.25832	714143	1.72130	3.70843	-196078	510
520	27.0400	$140 \cdot 608$	2.28035	7.21110	1.73248	3.73251	-192308	$5 \cdot 20$
$5 \cdot 30$	28.0900	148.877	2.30217	7-28011	1.74351	3.75629	- 188679	530
540	29:1600	$157-464$	2.32379	7.34847	1.75441	3.77976	-18518s	$5 \cdot 40$
550	30:2500	166.375	2.3452	7.41620	:76517	3.80295	-181818	553

table III.-Powers, Roots and Reciprocals-(continued).

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt{10 n}$	$\sqrt[3]{ } \sqrt{n}$	$\sqrt[3]{108}$	$\frac{I}{n}$	n
$5 \cdot 60$	31-3600	175.616	2.361643	7.48331	1.775^{81}	3.82986	- 178571	5-60
$5 \cdot 70$	32.4900	185.193	2.38747	754983	1.78632	3.84850	- 175439	5.70
5.80	33.6.400	295.112	2.40832	7.61577	1.79670	3.87088	-172484	5.80
$5 \cdot 90$	34.8100	205.379	2.42899	7.68115	1.80679	3.89300	- 169492	590
800	36.0000	216.000	2.44949	774597	1.81712	3.91487	- 166667	600
$6 \cdot 10$	37-2100	226.981	$2 \cdot .1$ fic, 82	781025	1.82716	3.93650	- 163934	6.10
6.20	$38 \cdot 4400$	$238 \cdot 328$	$2 \cdot 48998$	7.87401	1.83709	3.95789	-161290	6.20
6.30	39.6900	250047	$2 \cdot 50998$	7.93725	1.84691	3.97906	-158730	6.30
6.90	40.9600	262.144	2.52982	$8 \cdot 00000$	2.85664	4.00000	-156250	6.40
650	42:2500	274.625	$2.5495 \mathrm{x}$	$8 \cdot 06226$	1.86626	402073	-153846	650
6.60	43.5600	287.106	$2 \cdot 56905$	$8 \cdot 12.40 .4$	1.87578	4.01824	-151515	6.60
$6 \cdot 70$	4.1.8900	$300 \cdot 763$	$=58844$	$8 \cdot 18535$	1.88520	4.06155	-149294	6.70
6.80	$46 \cdot 2.100$	3×4.432	2.60768	$8 \cdot 24621$	1.89454	$4.08 \pm 6 \sqrt{3}$	-147059	6.80
6.00	47.6×00	$32 S-509$	2.62679	$8 \cdot 30662$	$1 \cdot 20378$	4.10157	- 1.14928	6.90
700	49.0000	343000	$2 \cdot 6.4575$	8.36660	1.9) 293	4.82129	- 142857	700
10	$50 \cdot 4100$	$357.9 \mathrm{II}$	2.6645^{8}	842615	1.92300	4.14082	- 1.40845	$7 \cdot 10$
20	518400	$373 \cdot 248$	2.68328	$8 \cdot 48528$	- 93098	416017	- 138889	$7 \cdot 20$
7.30	53.2900	389017	2.70185	$8 \cdot 54400$	1.93988	4×7934	- 136986	$7 \cdot 30$
$7 \cdot 40$	547600	405:224	2-72039	$8 \cdot 60=33$	1-94870	4.19834	- 135×35	$7 \cdot 40$
7.50	$56 \cdot 2500$	421.875	$2.7386 x$	$8 \cdot 66025$	1.95743	4.21716	- 133333	750
7.60	$57 \cdot 7600$	438976	$2.7568 \mathrm{r}$	8.71780	1.96610	4.23582	- 131579	$7 \cdot 60$
770	$59: 2900$	456.533	$2.77+89$	8.77496	1-97468	4.25432	-129870	7-70
7.80	$60 \cdot 8400$	$474 \cdot 552$	2.79285	883176	$1 \cdot 98319$	4.27266	-128205	7.80
7.90	62.4100	493.039	$2.8106 y$	8.88819	1.99163	$4 \cdot 29084$	$\cdot \mathrm{I} 26582$	7.90
800	$6.4 \cdot 0000$	512.000	2.82843	8.14427	2.00000	430887	- 225000	800
$8 \cdot 10$	$65 \cdot 6100$	$53 \mathrm{I} \cdot 44 \mathrm{x}$	2.84605	9.00000	2.00830	432675	. 123457	8.80
$8 \cdot 0$	67-2400	$55:-368$	2.86356	9.05539	2.01653	434448	- 128951	8.20
8.30	68.8900	571.787	2.88097	9.11043	2.02369	$4 \cdot 36207$	-120482	8.30
$8 \cdot .10$	$70 \cdot 5600$	592704	2-89828	916515	203279	+.37952	- 119048	8.40
850	72.2500	614.125	2.91548	9.21954	20.4083	139683	-117647	850
8.60	739600	636056	2.93258	927362	2.04860	4.41 .400	-116279	8.60
$8 \cdot 70$	756900	$658 \cdot 503$	2.94958	932738	205671	$4+3105$. 114943	8.70
8.80	774400	681477	$2-06648$	938083	2.06456	444796	-113636	8.80
8.90	79:2800	70.96	2.98329	$9 \cdot 13398$	2.07235	4.46474	-112360	8.90
800	81.0000	729.000	3.00000	9.48683	2.08008	$+18140$	-11111	900
9.10	82.8100	753.571	3.01662	9.53939	2.08776	449794	- 109890	910
9.20	84.6400	778.688	3.03315	9.59166	2.00538	451436	- 108696	$9 \cdot 20$
930	86.4900	80.4357	30.1959	9.64365	$2 \cdot 10294$	453065	- 107527	9.30
940	88.3600	830.584	306591	9.69536	2.11045	+ 5.5468	- 106383	9.40
850	90.2500	857.375	3.08221	974679	2.11791	4.56290	-105263	950
9.60	92.1600	$88+736$	3.09839	979796	2.12532	4.57386	$\cdot 104167$	9.60
970	94\%0900	912.673	3.11448	9.84886	2.13267	4.59470	-103093	9.70
9.80	96.0400	941.192	3.13050	9.89949	$=13997$	4.610 .44	-102041	9.80
9.90	98.0100	970.299	314643	9.94987	$=14723$	4.62607	-101010	9.90
1000	100.000	1000:00	3.16228		2.15443		-100000	1000

TABLE IV.-Inches to Decmals of a Font.

In.	0	1/32	1/16	3/32	$\frac{1}{8}$	5/32	3/16	7/32	t	9/32	5/16	11/32	$\frac{1}{2}$	13/32	7/16	15/32
0	-0000	26	0052	0078	-010.4	-0130	. 0156	-0182	0208	. 0234	0260	. 0286				
1	-0833	-0859	-0885	.0911	-0937	-096.	-0990	'1016	-1042	-1068	-1094	1120	-1546	-1172		.0391 1224 2057
2	-1667	1633	-1719	-1745	1778	-1797	-1823	-1849	-1875	'1901	'1927	-1953	- 979	-2005	203:	-2057
3	-2500	25:6	2552	2578	-2604	-2630	- 2656	${ }^{2682}$	12708	2734	2760	${ }_{2786}$	2812	2005 2839	-2038 2865	2057 2891
4	. 3333	-3350	. 3385	3411	3.337	346.4	-3400	'3516	35.12	. 3568	-3594	3620	-3646	-3672	-3698	3724
5	- 4867	4193	4219	4245	- 4271	- 4207	--323	+349	4375	$1{ }^{1} 01$	4127	-4453	+479	4505	4531	3724 4557
8	-5000	${ }^{-5026}$	-5052	-5078	-5104	5130	-5t56	S_{182}	-5208	-5234	- 5260	5286	5312	5339	'5365	1557 5391
7	.5833	${ }^{58} 59$	-5885	5911	-5937	${ }^{-5964}$	'5930	. 6016	-6012	-068	-6094	. 6120	-61.46	6172	6198	. 6224
8	-6667	-6693	. 6719	. $67+5$. 6771	-6797	.6823	. 6849	-6875	'tigar	6927	. 6953	- 1979	-7005	-7031	7057
9	.7500	'7526	7552	7578	-7604	7630	.7656	'7682	7708	-773+	7760	7786	-7812	7839	7865	7895
10	. 8333	-8359	. 8385	- ${ }^{4} 111$. 8437	-8464	. 8490	-8516	-8542	. 8568	8594	-8620	-8646	-8672	8698	8724
11	-9167	'9193	${ }^{9219}$	'9245	'9271	-9297	'9323	'9349	9375	9401	-9427	'9453	9479	9505	-953:	'9537
In.	$\frac{1}{2}$	17/32	9/16	19/32	5	21/32	11/16	23/32	1	25/32	13/16	27/32	$\frac{7}{1}$	29/32	15/16	$31 / 32$
0	-0.417	0.443	0+69	$0+95$	-0521	-0547	'0573	0599	'06:5	-665	067	. 0703	-0729	0	.078r	${ }^{0} \mathrm{OBO}$
1	-1250	-1276	-1302	- 328	- 354	1380	+1,406	1432	1458	${ }^{1} 1484$	1510	-1536	1562	1589	-1615	-164:
2	-2083	2109	2135	-2161	-2188	221	-22.40	析	2292	2318	-344	-237	2396	2.	${ }^{2} 4.48$	-2474
3	-2987	-29+3	2969	-2995	3021	30+7	3073	'3099	'3125	3151	3177	$\cdot 3203$	3229	3-55	3281	3307
4	- 3750	37\%6	3802	3828	. 3854	${ }^{3} 880$	-3906	'3932	'3958	${ }^{3} 19^{8} 4$	4010	- 4036	. 1062	4089	4125	4141
8	-4583	${ }^{4} 609$	4635	-4661	-4688	4754	-4740	4766	4792	-4818	4844	- 4870	4896	19:2	-4948	4974
8	-5417	544 4	'5469	-5495	-5521	-5547	-5573		-5625	-5651	.5677	- 5703	. 5729	5755	-5781	-5807
7	-6250	-627	6302	6328	. 6354	-6380	-6406	. 6432	-6+58	${ }^{-6}{ }_{4} 84$	6510	-6536	-6562	6589	. 6615	.6541
8	${ }^{7} 788$	7109	7135	7161	-7188	-7214	7-40	7266	7292	7318	-7344	-7370	-7396	7422	74.48	-7474
10	-7917	79+3	7969	7995	-8021	-8047	8073	-8099	. 8125	8151	-8177	-8203	. 8229	8255	-82815	-8307
10	-8750	-8776	8802	-8828	-8854	-8880	. 8906	-8932	. 8958	${ }^{89} 8{ }_{4}$	'2010	-9036	-9062	${ }^{-9089}$	9185	.9848
11	$\cdot 9583$	-9609	9635	9661	.9683	-9714	9740	${ }^{2} 9765$	9792	-9818	98.4	.9870	9896	-9922	'9948	-9974

TABLE V．
Decimal and Millmetre Equivalents of Fractions of an Inch．

Fractions of antinch	Decimals．	Millimetres．	Fractions of an inch．	Decimals．	Millimeres．
6＇	． 015625	$0 \cdot 395$		． 515625	13－0968
3	． 031250	0.793	等	－531250	13.4937
6	－046875	1.185	$3{ }^{32}$	－546875	$13.809 t$
${ }^{1} 18$	－ 062500	1.5875	\％	－562500	14.287
216	．078125	1.985	\％	－578125	14.6843
12	． 093750	$2 \cdot 381$	嵝	－593750	15.08125
\％if	－ 109375	$2 \cdot 765$	12	－609375	15.4781
$1 / 8$	－ 125000	3－1749	\％3／8	－625000	15.875
梅	－ 140625	$3 \cdot 565$	1%	－640625	162718
3^{5}	－ 156250	3.968	\％	－656250	16．66875
31	.171875	4.345	12	－671875	17.0656
	－ 187500	4.7624	1	－687500	17.462
84	－ 203125	5．165	38	－703125	17.8593
	－ 218750	5.556	$3{ }^{3}$	－718750	18.25625
1.	－ 234375	$5 \cdot 855$	\％ 27	． 734375	18.653125
$1 / 4$	－250000	$6 \cdot 3499$	$3 / 4$	． 750000	19－050
17	－265625	6.7468	14	－765625	19.4468
？	－ 281250	7－143	51	． 781250	19.84375
है	－ 296875	7.5406	${ }^{\text {g }}$	－796875	20.2406
	－ 312500	7.9374	$\frac{13}{13}$	－812500	20.637
趾	－ 328125	8.3343	20	－828125	21.0343
31	－343750	8.731	${ }^{6 \frac{1}{2}}$	－843750	21.43125
3	－359375	$9-1281$	87	－859375	21.828125
3／8	－375000	$9-5248$	7\％	－875000	22.225
虽	－390625	9.8218	87	－ 890625	22.6218125
$4{ }^{1}$	－ 406250	$10 \cdot 300$	$3{ }^{3}$	－906250	23－01875
Ef	421875	$10 \cdot 7156$	$\frac{85}{85}$	－ 921875	234156
棘	－ 437500	11－1120	＋	． 937500	23.812
8	－453125	11.5093	6	－953125	24－209375
${ }^{\text {¢ }}$	－ 468750	11.91	1	－968750	24．60625
3.1	． 484375	12.3031	4	－ 984375	25003125
1／2	－ 500000	12.700	1	1－000000	25.400

TABLE VI.-Logarithms.

	0	1	2	3	4	5	6	7	8	9	2		8 B
	0000	00.43	cos6	0128	01			0294	334	0374	4812	172125	293337
1							0645					17 21	
12					0934		1004		1072		$\begin{array}{lll}3 & 7 & 1 \\ 3 & 6 & 1\end{array}$	1721 1619	232629
13	1139	1873			1271	1303	1335		99		361		
14	1461 2761			1553	15		1931				3	2 15 18 21 1 14 17 20	$\begin{array}{llll}21 & 24 & 27 \\ 20 & 22 & 29\end{array}$
16	20	2068	20	2122	21	2	2201	2227	$2 \geq 53$	2279	35	13	21
17													
18							2695						
19			2 S 33			2	29こ3	29.	2967		2	91113	
20		30	3054	30							2		51719
21					33								
22			34	3483			3541				z	8101	
23				3674		3711	37-9	3747			2	791	
24											245		6
25												7810	
26							4249	4265			2	7810	
27					43	4					-		
28		4457			45			45	24		23	8 9 6 7	4
29													
30		4756									13		
31													11111
32						511	5132				13	$\begin{array}{lll}5 & 7 & 8 \\ 5 & 6 & 8\end{array}$	$\begin{array}{lll}11 & 11 \\ 10 & 12\end{array}$
33													
34						537	5391						
35	54	54			5		5				12	$\begin{array}{lll}5 & 6 & 7 \\ 5 & 6 & 7\end{array}$	I
36													
37													
38 39											12	6	910 910
40		60	60									45	89
41													
42		6243			627	6284							
43	63	6345	63					6405	6415	6425	2	4	789
44													
45	6532	6542	6551	6561	6571					6618		456	7
46		6637	66.46	6656	6665	6					123	456	
47													
48	6 S		683	6839		6857	6S66	65	$688 .$	65	12	$\begin{array}{llll}4 & 4 & 5 \\ 4 & 4 & 5\end{array}$	7
49		69			6937		6955		69			4.45	
50		69									123	34	67
51		70		718									
52			7)	7893			72		硣	12	45	
53		72	72	7	727	72	7,29	730	73	731	,	1345	667
54	73	7332	734	7348	7356	73^{64}	7372	738	7388	739	22	3	7

Note.-To convert Common Logarithms to Hyperbolic Logarithms multiply by 2.30258509 .

TABLE VI.-(contd.).

Note.-To convert Common Logarithms to Hyperbolic Logarithms multiply by 2'30258509.

TABLE: VII.-ANTILOGARItMms.

TABLE VIT.-(contd.).

TABLE: VIII.

Neperian or Ilyperbolic Looneitums.

	0	1	2	3	4	E)	6	7	8	9	123	6	89
10	$000 \cdot 30$	0100	-19S	0296	0.92!	O.4SS	OF_{3}	0677	0770	086	10192	45 57	77686
1	0075	1006	113		1310			1570	1035	17.40	$\begin{array}{cccc}9 & 17 & 26 \\ 8 & 16 & 24\end{array}$	35445	7078
	- 1323	19	198		2151		$2 \mathrm{j11}$	2390	2:69	25	81624	32404	$\begin{array}{ll}6 & 6472\end{array}$
$1 \cdot 3$	$0 \cdot 2$	2700	2776	2 S 52	2927	3001	3075	3148	32211	32	71522	\% 374	25967
1		3436			36.46		37	3853	3920	3988		35	-
1		41:1	4187	4253	43		\%	4511	4574	4637	613192	$26{ }^{2} 23$	$5 \quad 5258$
16	$0 \times$	4762	4 S 24		49-47			5128	5188	5247	612 is	243036	$42+855$
17												2329	
18	0.5378	5933		6043	cog ${ }^{\circ}$	H15			6313	6366	51116	2227	84349
1.9	0.6419			6575	6627	667	29	678	683 :	6581	51015	$20 \quad 263$	64146
2.0	00^{0}	$6{ }^{6} 8$	703		7129			7275	7324	73	510 ± 5	2024	39
$2 \cdot 1$ 22	- 0				7608 So6s				7793 8242 812	828	5	923 82 21 2	$\begin{array}{lll}33 & 3742 \\ 1 & 3649\end{array}$
23				9	8502	85		SC	S67 1	871	4	7212	- 3438
2.4												620	97
2.5			92	9282	2	9361			9478	9517	48812	162024	273135
26	-9	959		9670	9705	97.4	97		9858	9895	4811	151923	263034
		99	Ò					0188			4711	15 18	5
28		-		3	a.l 38		0508		0578		4711	141821	$25 \quad 28 \quad 32$
2.9	10647				078.4				0919	095 ?		1417	17
50	109	14	1053		1119	1151	11	1217	12	1282	3	13	$23=6 \quad 30$
					14						3	15	222529
32		1663	16			1757	181	$15_{4} 8$	1878		3	121515	$1{ }^{2} 1$
S'3	1-19	1969	20	2030		2090	211	2149	2179	22	3	12 15 : 8	212427
								2442	70		3	215	$\begin{array}{lll}20 & 23 & 26\end{array}$
35					2641	2669	2698	2726	2754	2782	$\begin{array}{ll}3 & 6\end{array}$	1114	-22 25
36					2920	2947	2975	, 002	3029	3056	35	1114	- 225
3.7			31				3244			24		- 1	
38			3		3453	34	3507	3533	3558	3584	35		82123
39									3813	38	35		82023
4		3888	39			398%	401	4036	4061	408	$\begin{array}{llll}2 & 5 & 7\end{array}$	10	172022
		4134				4 31	4255	4279	430			12	$7{ }^{7} 192$
1		4375	4398	418	4	4469	4493	4516	4540	4563	25	912	61921
4	1.4		4633				4725		4770	479	25	912	$6 \quad 1821$
							4951						
4		5063	5085		5129	51	5173	51	5217	523	21	$\begin{array}{lllll}9 & 11 & 1 & 1\end{array}$	$5 \begin{array}{llll}5 & 18 & 20 \\ 5 & 17 & 10\end{array}$
4	1		5304			53	5390		5433	545	24	- 11	51719
	1.5	5497	55	5539	55			5623				10	\%
4	1. 5688	5707	5728	5748	5769			5831	5851	5872	24	8	
4	- $5^{89} 92$	5913	5933	5953	5974	5994		6034	6054	607	$2 \begin{array}{llll}2 & 4\end{array}$		
50	16094	6114	6134	6154	6174	6194	62	6233	6253	6273	2 46	81012	141618
51	$1^{\prime} 6292$	6312	6332		6371	6390	6409	6429	6448	4 46	246	10	618
t. 2	1.6467	6506	6525	6544	6563	6582	6601	6620	6639	6658	2	$8 \quad 1011$	131517
53	16677	66	6715	6734	6752	6771	6790	68	6827	6845	,	7	1517
54	1686	6882	6901	6919	6					7029	2.45	7.9	315

Note-To convert Hyperbolic Logarithms to Common Logarithme multiply by $0 \cdot 4342948$.

TABLE VIII.-(continued).

	O	1	2	3	4	5	6	7	8	8	123	456	789
5	17047	7066	7084	7102	71	7135	7156	7174	7192	7210	245	911	131416
5	17228	7246	7263	72 S 1	72	7317	7334	7352	7370	7387	24	911	121416
8.	17405	742	7440	7457	74	7492	7509	7527	7544	7561	235	910	121476
58	117579	7596	7613	7530	7647	7664	7081	7099	7716	7733	23	910	121415
5	1.775 c	7760	778 j	7800	7817	7831	7851	7867	$7 \mathrm{SS}_{4}$	7901	$2 \begin{array}{lll}2 & 5\end{array}$	7810	121315
6	1:91S	7934	7951	7967	7984	8001	8017	8034	8050	8066	3	8	121315
6	- 8u83	Sos	8116	8132	8148	8165	8	8197	8213		J	6810	
6	18245	8262	$8=78$	8294	8310	$83=6$	8342	8358	8374			6810	1111314
6	188405	8421	8437	S453	8469	8455	8 sco	8516	8532	8547	3	688	111314
6	18	85	8594	86	8625	8641	8656	S672	8687		3	68	111214
6	1.8715	8733	8749	8764	8779	8795	8810	8825	$8 \mathrm{~S}_{4} \mathrm{O}$		23	68	111214
6	1.8871	8886	890:	8916	893!	8946	8961	8976	8991	9006	23	6889	111214
6	-902		9051	90	90S 1	9095	91	91	9	91	3	67	3
6	19169	91	9199	9213	9228	9242	9257			930	3	67	101213
	19315	933	9344	9359	93	9357	9402	9416	94	9445	3		10 12:3
7.0	1.9459	947	9488	95	9516	9530	9544	9559	9573	9587	1.3	67	011
7	1.9601	9615	9629	9643		9671	9685	9699	9713	9727	3	67	
7	19741	9755	9769	9782	9796	9810	9824	9838	9851	9865	3	67	2
7	19870	9892	9906	99	9933	7947		9974	9988	0001	3	57	-
7	20015	∞	00		0	OOS2	00	0109	0122			57	1112
7	20149	01	0176	0159	0202	0215	0220	0242	0255	02	3	57	91112
7	20281	0295	0308	0321	0334	03	0360	\bigcirc	0	03	,	57	91012
7	20		0.438		0.64		0.190	$00^{\circ} \mathrm{O} 3$	os 16				
7	20541	05	0567	0580	0592	0605	0618	0631	0643			56	91012
	20×60		0694	0707	0710	0732	0744	O757	0769	078		5	91011
8	20794	0807	0819	0832	nS	0857	0869	-882	0894	0906	3	56	91011
	20	09	0	09	0	0980			1017		12	56	91011
8.2	2'10,41	1054	106	1078	10	1102	1	1126	1138	1150	124	5667	91011
8	2.116 ${ }^{\text {a }}$	1175	1187	1190	121	122	1235	1247	1258	1270		56	81011
8	2	1294	1306	1315	1330	1342	1353	1365	1377				81011
${ }^{3}$	2'1401	1412	1424	1436	1448	145	1471	1483	1494		124	5667	89811
8	21518	1529	1541	15	1564	1576	1587	1599	1610		123	$3{ }^{3} 566$	8910
5	21633	16	1656	1668	167	1691	17	1713		1736	123	35	8910
8-8	2.1748	1759	1770	1782	1793	$1 \mathrm{SO}_{4}{ }^{4}$,	r 27	1835	18.	123	5	8910
89	21861	1872		18	1905	1917	192	1939	1950	196	123	+	8910
9	21972	19	1994	2006	2017	2028	2039	20	2061	207	123	467	89
	$2 \cdot 2083$	20	210	21	2127	2138	2		2170	2181	123	345	8910
92	22192	2203	2214	2225	2235	2246	2257	2268	12,9	228	$1 \geq 3$	45	8910
$9 \cdot 3$	2.2309	2311	2322	7332	2343	2354	2364	2375	2386	2396	3	45	10
	2.2407	24	26	2439	2450	2.60	2471	2481	2492	2502	123	34	
	2.25		2534	2544	2555	2565	2576	2586	2597	2607	123	45	9
9.	2.2618	2628	2638	2640	2659	2070	26Sc	2690	2701	2711	123	45	9
$0 \cdot 7$	$2 \cdot 272$	2732	2742	2752	2762	2773	2783	2793	2803	2814	123	4	789
98	2.2824	2834	2844	2854	2865	2875	2885	2895	2905	2915	3	3.45	7889
99.	2:2925	2935	2946	2956	2966	2976	2986	2996	3006	3016	3	45	789

Tal followina are tae values of powers of e:-

27183	ϵ^{-1}	0.3699	ci) 16.85	$\mathrm{f}^{-1} 0.6065$	ci 1.6457	c-1 0.Cos5
7.3891	E^{-3}	$0: 3553$	E) 4.4816	$\epsilon^{\text {-i }} 0.2231$	c) 13956	$e^{-1} 0.7165$
20056	E^{-3}	004979	c) 12.182	$\epsilon^{-\frac{1}{1}} 000031$	ct 12340	t-1 07-8s
5+ 578	ϵ^{--}	0.010j2	$i^{2} 33.14$	$\mathrm{E}^{-\frac{3}{2}} 00.0 \mathrm{j} 02$	ct 12214	$\epsilon^{-\frac{1}{t}} 00.8187$
145.41	f- ${ }^{\text {- }}$	- 0067jS	c) 12840	$\mathrm{e}=10.7788$	c) 1154	$\mathrm{c}_{-1}^{-1} 0 \mathrm{os} 465$
103.43	${ }^{-1}$	0.002479	c) 17331	$\epsilon^{-1} \quad 0.8825$	c) 11596	c-t 0.8069
10966	c^{-1}	0.0009119	ete 10645	$\epsilon-\frac{1}{\text { tr }} 09794$	et 1.1731	$e_{\text {e-1 }} 0.88825$
2981.0	ϵ^{-}	0.0003335	f H 10317	$\epsilon^{-\frac{1}{17}} 00.9692$	ct 1675	c^{-1}-1-824s
8103.	ϵ^{-*}	0.0001254			citiloge	$c-160 \mathrm{nO}, 3$
23026	E^{-14}	0.0000154				
23.1407	ϵ^{-}	43214×10^{-8}		E- $\bar{i} \quad 20-5 S \times 10^{-1}$	¢5 21933	$e^{-1} 4559 \times 10^{-1}$
535:491	$6^{-2 \%}$	$1867 \times$	${ }^{3 \pi} 1113^{2}$	e- $\frac{27}{2}$ \$9S $3 ; \times \ldots$	¢ $\frac{3.7}{4} 10557$	$\epsilon-\frac{1 \pi}{6} 947-8 x$
$12 \mathrm{j94} 7$	$6^{-9 \pi}$	So $699 \times$	¢ $\frac{8 \pi}{2} 25760$		$\epsilon \frac{17}{4} 5075:$	$\epsilon^{-\frac{8 \pi}{6}} 1970 x$
256752	- π	$3457 \times$	$\varepsilon \cdot 75900 \cdot 6$		$\epsilon 244 \% 5$	$\epsilon^{-\frac{17}{4}} 4096 \times$ "
6633627	$6^{-6 \pi}$.1507x "	$\varepsilon^{\frac{0 \pi}{2}} 1379406$	¢ $-\frac{7 \%}{2}$-725x	$\epsilon^{9} 9117+48$	

TABLE \quad IX.

Natural Sines.

Note.-For values above 45° use Cosine Table-e.g., $\sin 60^{\circ}=$ $\cos \left(90-60^{\circ}\right)=\cos 30^{\circ}$.

TABLE X.

Nateral Cosines.

	${ }^{\prime}$	${ }^{\prime}$	12	18		30	36	4	48	$54{ }^{\prime}$		23	4	5
0	1.000		$\begin{aligned} & 1 \text { nooo } \\ & \text { nesuly } \end{aligned}$		$\begin{aligned} & 1 \text { : } 020 \\ & \text { "ealy. } \end{aligned}$	9999	9999	9999	9999	9999		0		0
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 999 \mathrm{~S} \\ & 9994 \\ & 9986 \end{aligned}$	$\begin{aligned} & 9993 \\ & 9993 \end{aligned}$	$\begin{aligned} & 9998 \\ & 9993 \\ & 995.4 \end{aligned}$	$\begin{aligned} & 9997 \\ & 9992 \end{aligned}$	$\begin{aligned} & 9997 \\ & 9991 \end{aligned}$	$\begin{aligned} & 9997 \\ & 9990 \\ & 9981 \\ & \hline \end{aligned}$	$\begin{aligned} & 9990 \\ & 9980 \end{aligned}$	$\begin{aligned} & 9996 \\ & 9989 \\ & 9979 \\ & \hline \end{aligned}$	$\begin{aligned} & 9988 \\ & 9978 \end{aligned}$			$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ \hline \end{array}$	+	1
5	$\begin{aligned} & 9962 \\ & 9945 \end{aligned}$		$\begin{aligned} & 9973 \\ & 9959 \\ & 9942 \end{aligned}$	$\begin{aligned} & 9972 \\ & 9957 \\ & 99+80 \end{aligned}$	$\begin{aligned} & 9971 \\ & 9955 \\ & 9938 \end{aligned}$	$\begin{aligned} & 99 \\ & 99 \end{aligned}$	$\begin{aligned} & 9968 \\ & 9952 \\ & 9934 \end{aligned}$	$\begin{aligned} & 9966 \\ & 9951 \\ & 9932 \end{aligned}$	$\begin{aligned} & 9965 \\ & 9949 \\ & 99.0 \end{aligned}$	$\begin{aligned} & 9963 \\ & 9947 \\ & 9928 \end{aligned}$		$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$		1 2 2
$\begin{aligned} & 7 \\ & 8 \end{aligned}$		$\begin{aligned} & 99 \\ & 99 \\ & 08 \end{aligned}$	$\begin{aligned} & 9898 \\ & 987: \end{aligned}$	$\begin{aligned} & 9895 \\ & 9869 \end{aligned}$	$\begin{aligned} & 9917 \\ & 9893 \\ & 9866 \end{aligned}$			$\begin{aligned} & 9910 \\ & 9885 \\ & 9857 \end{aligned}$	$\begin{aligned} & 9882 \\ & 9 S_{54} \\ & \hline \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2	2 2 2
10									9823	\bigcirc		1		3
$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$		$\begin{aligned} & 9813 \\ & 9778 \\ & 9740 \end{aligned}$	$\begin{aligned} & 97 \\ & 97 \end{aligned}$	$\begin{aligned} & 9 \text { So6 } \\ & 9770 \\ & 9732 \end{aligned}$	$\begin{aligned} & 9803 \\ & 9767 \\ & 9728 \end{aligned}$	$\begin{aligned} & 9763 \\ & 9724 \end{aligned}$	$\begin{aligned} & 9796 \\ & 9759 \\ & 9720 \end{aligned}$	$\begin{aligned} & 9792 \\ & 9755 \\ & 9715 \end{aligned}$	$\begin{aligned} & 9751 \\ & 9711 \end{aligned}$	$\begin{aligned} & 9748 \\ & 9707 \end{aligned}$		$\begin{array}{ll} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{array}$	2 3 3	3
$\begin{aligned} & 16 \\ & 18 \\ & 16 \end{aligned}$							9532		$\begin{array}{r} -9668 \\ 9622 \\ 9573 \\ \hline \end{array}$	$\begin{aligned} & 9617 \\ & 9568 \end{aligned}$		$\begin{array}{ll} 1 & 2 \\ 2 & 2 \\ 2 & 2 \end{array}$	3 3 3	4 4 4
$\begin{aligned} & 17 \\ & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \\ & 94 \end{aligned}$	$\begin{aligned} & 9558 \\ & 9505 \\ & 9449 \end{aligned}$	$\begin{aligned} & 9553 \\ & 9500 \\ & 9+44 \end{aligned}$	$\begin{aligned} & 95+8 \\ & 9494 \\ & 943 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 9542 \\ & 9189 \\ & 9432 \end{aligned}$	$\begin{aligned} & 9537 \\ & 94 \mathrm{S3} \\ & 9426 \end{aligned}$	$\begin{aligned} & 9+78 \\ & 9.4=1 \end{aligned}$	$\begin{aligned} & 9527 \\ & 9472 \end{aligned}$	$\begin{aligned} & 9466 \\ & 9409 \end{aligned}$	$\begin{aligned} & 9516 \\ & 9461 \\ & 9403 \end{aligned}$		$\begin{array}{ll} 2 & 3 \\ 2 & 3 \\ 2 & 3 \end{array}$	4 4 4	4 5 5
20	93	93		9					93	2		2	4	5
$\begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 9336 \\ & 9272 \\ & 9205 \\ & \hline \end{aligned}$	$\begin{aligned} & 93 \\ & 92 \\ & 91 \end{aligned}$	$\begin{array}{r} 9323 \\ 9259 \\ 9198 \\ \hline \end{array}$	$\begin{aligned} & 9317 \\ & 9252 \\ & 9884 \end{aligned}$		$\begin{aligned} & 9304 \\ & 9239 \\ & 9171 \end{aligned}$	92	$\begin{aligned} & 9225 \\ & 9157 \\ & \hline \end{aligned}$	$\begin{aligned} & 9219 \\ & 9150 \\ & \hline \end{aligned}$	$\begin{aligned} & 9278 \\ & 9212 \\ & 9143 \end{aligned}$		$\begin{array}{ll} \mathbf{2} & \mathbf{3} \\ \mathbf{2} & 3 \\ \mathbf{2} & 3 \end{array}$	4 4 5	5 6 6
$\begin{aligned} & 24 \\ & 28 \\ & 26 \end{aligned}$			$\begin{array}{\|l} 9121 \\ 9048 \\ 8973 \end{array}$		$\begin{aligned} & 9107 \\ & 9033 \\ & 8957 \end{aligned}$	$\begin{aligned} & 90 \\ & 89 \end{aligned}$	$\begin{array}{r} 9018 \\ 89.42 \end{array}$	$\begin{aligned} & 9085 \\ & 9011 \\ & 8934 \\ & \hline \end{aligned}$	$\begin{aligned} & 9003 \\ & 8926 \end{aligned}$	8918		$\begin{array}{ll} 2 & 4 \\ 3 & 4 \\ 3 & 4 \end{array}$	5 5 5	6 6 6
$\begin{aligned} & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 8910 \\ & 8 S 29 \\ & 8746 \end{aligned}$	$\begin{aligned} & 8902 \\ & 8821 \\ & 8738 \end{aligned}$	$\begin{aligned} & 8894 \\ & 85: 3 \\ & 8729 \end{aligned}$	$\begin{aligned} & 8886 \\ & 8805 \\ & 8721 \end{aligned}$	$\begin{aligned} & 8878 \\ & 8796 \\ & 8712 \end{aligned}$	$\begin{aligned} & 87 S 8 \\ & 8704 \\ & \hline \end{aligned}$	$\begin{aligned} & 8780 \\ & 8695 \end{aligned}$		876	$\begin{aligned} & 8 S_{38} \\ & 8755 \\ & 8649 \end{aligned}$		$\begin{array}{ll} 3 & 4 \\ 3 & 4 \\ 3 & 4 \end{array}$	5 6 6	7 7 7
30	86	86	86.4	86	8625	86	8					34	6	7
$\begin{aligned} & 31 \\ & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & 8572 \\ & 8480 \\ & 8387 \end{aligned}$	$\begin{aligned} & 8563 \\ & 8471 \\ & 8377 \end{aligned}$	$\begin{aligned} & 8462 \\ & 8368 \end{aligned}$	$\begin{aligned} & 8545 \\ & 8453 \\ & 8358 \end{aligned}$	$\begin{aligned} & 8536 \\ & 8443 \\ & 8348 \end{aligned}$	S434 S339	$\begin{aligned} & 8425 \\ & 8329 \end{aligned}$	S508 8415 8120	$\begin{aligned} & 8496 \\ & 8310 \end{aligned}$	$\begin{aligned} & 8490 \\ & 8396 \\ & 8300 \end{aligned}$		$\begin{array}{ll} 3 & 5 \\ 3 & 5 \\ 3 & 5 \end{array}$	6 6 6	8 8
$\begin{aligned} & 34 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 8290 \\ & 8192 \\ & 8090 \end{aligned}$	$\begin{aligned} & 8281 \\ & 8181 \\ & 8050 \end{aligned}$	$\begin{aligned} & 8171 \\ & 8070 \end{aligned}$	$\begin{aligned} & 8.21 \\ & 8161 \\ & 8059 \end{aligned}$	$\begin{aligned} & 8251 \\ & \text { S151 } \\ & \text { So49 } \end{aligned}$	$\begin{aligned} & 8141 \\ & 8141 \\ & 80 j 9 \end{aligned}$	$\begin{aligned} & S_{13} \\ & \text { So2 } 2 \end{aligned}$	$\begin{aligned} & 8221 \\ & 8121 \\ & 8018 \end{aligned}$	$\begin{aligned} & 8111 \\ & 8007 \\ & \hline \end{aligned}$	8202 8:co 7997		$\begin{array}{ll} 3 & 5 \\ 3 & 5 \\ 3 & 5 \end{array}$	7	5 8 9
$\begin{aligned} & 37 \\ & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & 7986 \\ & 7880 \\ & 7771 \end{aligned}$	$\begin{aligned} & 7976 \\ & 7869 \\ & 7760 \end{aligned}$	$\begin{aligned} & 7965 \\ & 7859 \\ & 7749 \end{aligned}$	$\begin{aligned} & 7955 \\ & 7848 \\ & 7738 \end{aligned}$	$\begin{aligned} & 7944 \\ & 7837 \\ & 7727 \end{aligned}$	$\begin{aligned} & 7934 \\ & 7 S 26 \\ & 7716 \end{aligned}$	$\begin{aligned} & 7815 \\ & 7705 \end{aligned}$	$\begin{aligned} & 7804 \\ & 7694 \end{aligned}$	$\begin{aligned} & 7793 \\ & 7683 \end{aligned}$	$\begin{aligned} & 7891 \\ & 7782 \\ & 7672 \end{aligned}$		$\begin{array}{ll} 4 & 5 \\ 4 & 5 \\ 4 & 6 \end{array}$	7	9 9 9
40		76	76	76	7615	76	759	75	757	7559		4	8	9
$\begin{aligned} & 41 \\ & 12 \\ & 43 \end{aligned}$	$\begin{aligned} & 7547 \\ & 7431 \\ & 7314 \end{aligned}$	$\begin{aligned} & 7536 \\ & 7420 \\ & 7302 \end{aligned}$	$\begin{aligned} & 7524 \\ & 7408 \\ & 7290 \end{aligned}$	$\begin{aligned} & 7513 \\ & 7396 \\ & 7278 \end{aligned}$	$\begin{aligned} & 7501 \\ & 7355 \\ & 7266 \end{aligned}$	$\begin{aligned} & 7490 \\ & 7373 \\ & 7254 \end{aligned}$	$\begin{aligned} & 7478 \\ & 7361 \\ & 7242 \\ & \hline \end{aligned}$	$\begin{aligned} & 7+66 \\ & 7349 \\ & 7230 \end{aligned}$	$\begin{aligned} & 7455 \\ & 7537 \\ & 7218 \end{aligned}$	7443 7325 7206		$\begin{array}{ll} 4 & 6 \\ 4 & 6 \\ 4 & 6 \end{array}$	8	10 10 10
44	7193	7181	7169	7157	7145	71.33	7120	7108	7096	7053		46	8	10

N.B - Numbers in difference columns to be subtracted, net added. For values nbove 45° use Sine Table.

TABLE XI．
Natural Tangents．

	0^{*}	${ }^{\text {8 }}$	12	18	24°	30＇	30^{\prime}	42＇	48	64	123	4	6
$0{ }^{-}$	0000	0017	－0035	0052	－070	0087	0105	0122	0140	0157	369	12	14
1	0175	0192	0209	0		0262	0279		0314	0332	$\begin{array}{lll}3 & 6 & 9\end{array}$	12	5
2	－0349	0367	－354	0.	$0 \div$	0437	O4 54	0.472	0489	－ 0507	3669	12	15
3	O524	0542	－559	0577	0594	0612	0629	0647	066.4	0682	36	12	15
4	0699	0717	0734	0； 52			0805	08	os	O8＇57	36	12	5
5	0S75	0892	0910	0928	0945	0963	ogSi	O998	1016	1033	$\begin{array}{llll}3 & 6 & 9\end{array}$	12	5
c	－1051	1069	1086	1104	1122	1139	1157	1175	1192	1210	3 3 669	12	15
7	1228	12.46	1263	128	1299	1317	1334	1352	1370	1388	6	12	5
8	1	8423	1448	1459	1477	1495	1512	1530	1548	1566	6	12	5
9	－ 158	1602	1620	16；8	1655	1673	1691	1709	1727	1745	369	12	15
10	1	1781	1799	1817	1835	1853	1871	18	1908	1926	$\begin{array}{lll}3 & 6 & 9\end{array}$	12	5
11	19	1962	1980	1995	20.6	2035	2053	2071	20S9	21107	369	12	5
12	21	2144	21	2180	2199	2217	2235	2254	2272	2290	36	12	5
18	2309	2327	2345	2364	2382	2401	2419	2438	2456	2475	$\begin{array}{lll}3 & 6 & 9\end{array}$	12	15
14	2	25	2530	2549	2568	25S6	2605	26こ3	26.42	661	6	12	6
15	${ }^{2} 679$	269	2717	2736	2754	2773	2792	2811	2830	2849	3 3 669	13	16
16	2867	2886	2905	2924	2943	2962	2981	3000	3019	3038	$\begin{array}{llll}3 & 6 & 9\end{array}$	13	16
17	3057	3076	3096	3115	3134	3153	3172	3191	3	3230	$3{ }^{3} 6610$		16
18	32	3269	3288	3307	3327	3346	3365	33	340.4	3424	$\begin{array}{llll}3 & 6 & 10\end{array}$	13	16
19	－ 3443	3463	34	3502	35^{22}	35	3561		36co	3620	3610	13	17
20	30.40	3659	3679	3699	37：9	3739	3759	3779	3799	38	$\begin{array}{llll}3 & 7 & 10\end{array}$	13	17
21	－3839	3859	3879	3899	39	3939	3959	3979	4000		7	13	7
22	40.40	4061	4081	4101	4122	4142	4163	4183	4104	$42=4$	$\begin{array}{lll}3 & 7 & 10\end{array}$	14	17
23	42.45	4265	4286	4307	4327	4348	4369	4390	＋4：1	4431	$\begin{array}{llll}3 & 7 & 10\end{array}$	14	17
24	4452	4873	4494	4515	4536	4557	4578	4599	4621	46.42	4710	14	18
25	4663	4684	170¢	4727	4748	4770	4791	$4{ }^{4} 13$	4834	4856	4711	14	18
26	－487	4899	4921	49.42	4964	4986	5008	5029	505：	5073	＋ 711	15	18
27	＇50	5117	5139	5161	518	5206	5228	5250	5272	295	4711	15	8
28	5317	5340	5362	5354	5407	5430	5452	5475	5498	5520	4811	15	19
29	55	5566	55^{89}	5612	50－5	5658	5681	570.4	5727	5750	4812	15	19
30	577	5797	58	58	5S67	5800	5914	59	5961	5985	4812	16	20
31	6009	6032	6056	60So	6104	6128	$6: 52$	6176	620	62こ4	） 812	16	20
32	－6249	6273	6297	6322	6346	6371	6395	6420	6445	6469	4 S 12	16	20
33	6494	6519	6514	6569	6594	6619	6644	6669	6694	6720	4 S 13	17	21
34	67.45	6771	6796	6822	68.17	6873	6899	6924	6950	60976	$4 \quad 913$	18	21
35	7002	7028	7054	7050	7107	7133	7159	7186	7212	7239	＋913	18	22
36	7265	7292	7319	7346	7373	7400	7427	7454	7481	7508	$\begin{array}{llll}5 & 9 & 14\end{array}$	18	23
37	7536	7563	7590	7618	7686	7673	7701	7729	7757	7755	59814	18	23
58	7513	78.41	7869	$7{ }^{7} \mathrm{SgS}$	79こ6	7954	7983	SOL2	8040	8069	5 10． 14	19	24
39	Sogs	8127	Sı56	Sis5	8214	8243	8273	8302	8332	8，61	5 10 15	20	24
40	8391	8.421	8.451	8．4 8 8	8511	8541	8571	S60：	8632	S662	51015	20	25
41	8693	8724	8754	8785	8516	S347	8878	S910	S941	S972：	$5 \quad 1016$	31	20
42	9004	9036	9067	9099	913：	9163	9195	9228	9260	9293	S 11116	21	
43	9325	9358	9391	9424	9457	9490	9523	9356	9590	2623	6 11		2 S
44	9657	9691	9725	9759	9793	9827	9861	9896	9930	9965	61117	23.	29

Note．－For valueg aluve 45° usc Cotangent Table

TABLE XII.
Natural Cotangents.

	O^{\prime}	6	12'	18^{\prime}	24'	30	36	42'	48'	54	Difference-columat not useful here, owing to the rapidity with which the value of the cotaugent changer.	
$0{ }^{\circ}$	Inf.	$573 \cdot 0 \cdot 280.5$		$191^{\circ} \mathrm{O}$	143*	11.46	$5 \cdot 49$	Si 5_{5}	7:62	63.66		
1	57:29	52.0S	析	407		3 S	$35 \cdot 80$	33^{-69}	$31 \cdot 82$	$30^{* 14}$		
2	25.64	$27 \cdot 27$	26.03^{\prime}	$24^{\prime} 90$	23.86	22.901	2202	$21 \cdot 20$	20.45	19.74		
3	19.08		17.89	1734		16.35	15 Sg	15.46	1506	14.67		
4	14.30	13.95	$3^{\prime 62}$	330	13	1271	12.43	$2 \cdot 16$	1191	1160		
5	1143	1220	099	10.78	10.5	10.39	1020	1002	9845	9677		
6	9.5147	3572	2052	0579	9152	7769	6427	5126	3863	2636		
7	S 1443	0285	$\underline{915 S}$	So62	6996	5958	4947	3962	3002	2066		
8	7-1154	0264	9395	S548	7720	6912	6:22	5350	4596	3859		
9	6.3138	2432	1742	1066	0.405	975 S	9:24	8502	7894	7297		
10	5.6713	6:40	5578	5026	4486	3955	3435	2924	2.122	1929	123	45
11	5.1446	0970	0504	00.45	9594	9:52	S716	8= 88	7867	7453	74.125	296370
12	47046	6646	6252	586.4	$5+83$	5107	4737	4374	4015	3662	$\begin{array}{lllllll}63 & 125 & 188 \\ 53 & 107\end{array}$	252314
13	43315	2972	2635	2303	1976	1653	1335	102?	0713	-408	$53 \quad 107 \quad 1601$	214267
14	4.0108	$9 \mathrm{SiL}_{2}$	9520	9232	8947	8667	8391	SitS	78.48	7583	$\begin{array}{llll}46 & 93 & 139\end{array}$	S6 232
15	37321	7062	6SO6	6554	6305	6059	5816	5576	5339	5105	41823216	163204
16	3.4574	4646	$44=0$	4197	3977	3759	3544	333)	3122	2914	$36 \quad 72 \quad 108$	144180
17	3'2709	25	2305	2106	1910	17 tG	1524	1334	1146	O961	$\begin{array}{lll}32 & 6.4 & 96\end{array}$	129161
18	30777	0595	0415	0237	0061	9887	9714	9544	9375	9203	298588871	115 144
19	29042	S5\% 8	8716	8556	8397	8239	8083	7929	7776	7625	$26 \quad 52 \quad 781$	104130
20	27475	7326	7179	7034	6889	6746	6605	6.64	6325	6.87	24 47 71 2	95 118
21	2.6051	5916	5782	56.49	5517	5386	5257	5129	5002	4876	$\begin{array}{lll}22 & 43 & 65\end{array}$	S7 108
22	2.4751	46.7	450.4	$43 \mathrm{~S}_{3}$	426?	4142	4023	3906	37 So	3673	$20 \quad 40 \quad 60$	$79 \quad 99$
23	2.3559	344 ${ }^{3}$	3332	$3^{2} 2 \mathrm{C}$	3109	2998	2 SS 9	2781	2673	2566	18 37 55	$74 \quad 92$
24	2.2460	2355	2251	2148	2045	$19+3$	IS_{42}	1742	1642	1543	$17834{ }^{17}$	
25	2.1445	13.45	1251	1155	1060	0965	oS72	0778	0686	0594	16	$63 \quad 78$
26	2.0503	0413	0323	0,233	0145	0057	9970	$9 \mathrm{S8}_{3}$	9797	9711	$\begin{array}{lll}15 & 29 & 44\end{array}$	$58 \quad 73$
27	1 9626	9542	9458	9375	9292	9210	9128	9047	8967	8887	$\begin{array}{lll}14 & 27 & 41\end{array}$	5568
28	1-8807	8728	S650	8572	8495	8.48	$83+1$	8265	8190	8115	$\begin{array}{llll}13 & 26 & 38\end{array}$	51.64
29	1-8040	7966	78931	$78 . \mathrm{cc}$	77.17	7675	7603	7532	7461	7391	$12 \quad 24 \quad 36$	48
30	17.321	7251	$7: 82$	7113	70.45	6977	6909	6842	6775	6709	11 23 34 11 21 32	$45 \quad 56$
31	16643	6577	6512	64.47	6383	63:9	6255	6191	6128	6066	$\begin{array}{llll}11 & 21 & 32\end{array}$	$43 \quad 53$
32	1.6003	5941	5 SSO	5818	5757	5697	5637	5577	5517	5458	10	$40 \quad 50$
33	1.5399	5340	5282	5224	5166	5108	5051	4994	4938	4882	$10 \quad 19 \quad 29$	$\begin{array}{ll}38 & 48\end{array}$
34	1.4826	4770	4715	4659	4605	4550	4496	4442	4388	4335	$\begin{array}{lll}9 & 18 & 27\end{array}$	36
35	1.42 St	4229	4176	$41=1$	4071	4019	396S	3916	$3{ }^{36} 5$	3814	$\begin{array}{llll}9 & 17 & 26\end{array}$	$34 \begin{array}{ll}34 & 43\end{array}$
36	1.3764	3713	3663	3613	3564	3514	3465	$3+16$	3367	3319	$8 \quad 16 \quad 25$	33 41
37	1.3270	3222	3175	3127	3079	3032	2985	29,8	$2 \mathrm{S92}$	2846	$\begin{array}{llll}8 & 16 & 23\end{array}$	$31 \quad 39$
38	12799	2753	270 S	2663	2617	2572	2527	2482	2437	2393	S $15 \quad 23$	$30 \quad 38$
39	1.2349	2305	2261	2218	2174	2131	2088	20.45	2002	1960	7 14 22	$29 \quad 36$
40	1.1918	1575	1833	1792	1750	1708	1667	1626	1585	1544	$7 \begin{array}{llll}7 & 14 & 21\end{array}$	28 $\quad 34$
41	11504	1463	1423	1383	1343	1303	126.3	1224	1184	1145	$\begin{array}{llll}7 & 13 & 20\end{array}$	$26 \quad 33$
42	$1 \cdot 1106$	1067	1028	0990	0951	0913	0875	0837	0799	0761	$\begin{array}{llll}6 & 13 & 19\end{array}$	$25 \quad 32$
43	1.0724	0686	0649	0612	0575	0538	0501	0464	0428	0392	$\begin{array}{llll}6 & 12 & 18\end{array}$	$25 \quad 31$
44	$1 * 0355$	03	OzS_{3}	0247	0212	0176	0141	0105	0070	0035	$6 \quad 12$	24

N.B.-Numbers in difference columns to be subtracted, not added.

For values abo:e 45° use Tangent Table.

Hyperbolic Functions.

Relations between hyperbolic and trigonometric functions
$j=1-1$

Also

$$
\begin{aligned}
& \cos \} x=\cosh x \\
& \sin f^{x}=j \sinh x
\end{aligned}
$$

$$
\begin{aligned}
\sin (a+j b) & =\sin a \cos j b+\cos a \sin h b \\
& =\sin a \operatorname{cosin} b+j \cos a \sinh b
\end{aligned}
$$ giving bhe lypleal conaplex form $z+1 y$

TABLE XIII.

Hyperbolic Fuxctions.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2 \& \& 0.00 \& 0.01 \& 0.02 \& 0.03 \& 0 ON \& 0.05 \& 0.06 \& 0.07 \& 0.08 \& 008

\hline 1. \& ainh tanb \& $$
\begin{aligned}
& 0.00000 \\
& 1.00001 \\
& 0.0000 \mid
\end{aligned}
$$ \& $$
\begin{aligned}
& 10001 \\
& 0.0100
\end{aligned}
$$ \& $$
\begin{array}{r}
1.00021 \\
\times 10.02000
\end{array}
$$ \& $$
10000
$$ \& $$
\begin{aligned}
& 1.0009 \\
& 0.000
\end{aligned}
$$ \& $$
\begin{aligned}
& 1.0113 \\
& 0.0500
\end{aligned}
$$ \& $$
1.0018
$$ \& 1002 \& $$
\begin{aligned}
& 1.0037 \\
& 0.0708
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.0001 \\
& 1.001 \\
& 0.089
\end{aligned}
$$

\hline \multirow[t]{2}{*}{1.1} \& ainh \& A. 1.0050 \& 1. 600 \& 1.0072, \& 0.1301
1.008 \& 1.00 \& 1.011 \& 0.1607
1.0125 \& 0.170
1.01 \& 0.13 \& 0.1911
1.0181

\hline \& tanb \& 0.0997 \& 0.1096 \& 0.1194: \& 0.1293 \& 1321 \& a. 1488 \& - 159 \& . 169 \& . 1781 \& 0.1878

\hline \multirow[t]{2}{*}{0.2} \& ninb cosh \& 0 20130 \& 0.2115 \& 0.2218
1.024

a \& 0.272
1.020 \& 0. 2427 \& a 2596
1.0314 \& 0.2629
1.0340 \& \& 0.2937
1.0395 \& - 29811

\hline \& tanh \& 0.18710 \& 0.2070 \& 21051 \& 0.226 \& . 2335 \& 0.24 \& 0.23 \& 0.2636 \& O. 2720 \& 0.2521

\hline \multirow[t]{2}{*}{0.3} \& ninh \& 0.3015
10.15
0 \& 0.3150
1015 \& . 3235 \& 0.3360
1.0549 \& 0.1469 \& 0.3572

1.0610 \& | 0.3675 |
| :--- |
| 1.065 | \& 0.3788 \& 0.3422 \& a 1 ACa

\hline \& ts \& 0.2913 \& 3001 \& 3095 \& 0.318 \& 3275 \& , \& 0.3452 \& 0. 3510 \& 1622 \& 3 ild

\hline \multirow{3}{*}{0.4} \& sin! \& - 1108 \& 1216 \& 4350 \& 0.43 \& . 1343 \& . 465 \& \& \& 0.429 \& 0.51098

\hline \& cosin \& 0811 \& 0852 \& O8 25 \& 1.093 \& 1.cost \& 1.1030 \& \& \& 1.11 \& . 1225

\hline \& tont \& 38000 \& 3895 \& \& 0.405 \& 131 \& 0. 4210 \& 0.4301 \& 0.4382 \& 410 \& 0.4512

\hline
\end{tabular}

TABLE XIlI.-(contd.).

TABLE XIII.-(contd.).

'TABLE NII.-(contd.).

List of Differential Coefficients

If $y=x^{n}$.

$$
, y=\sin \theta, \quad \frac{d y}{d x}=\cos \theta
$$

$$
, y=\cos \theta, \quad \frac{d y}{d x}=-\sin \theta
$$

$$
, y=\tan \theta, \quad \frac{d y}{d x}=\sec ^{2} \theta
$$

$$
, y=\cot \theta,
$$

$$
y=\sec \theta
$$

$$
\because y=\operatorname{cosec} \theta
$$

$$
, y=\sin ^{2} \frac{x}{a}
$$

$$
" y=\tan ^{-1} \frac{x}{a}
$$

$$
\because y=\sec ^{-} \frac{x}{a}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=n x^{n-1} \\
& \frac{d y}{d x}=\cos \theta . \\
& \frac{d y}{d x}=-\sin \theta . \\
& \frac{d y}{d x}=\sec ^{2} \theta . \\
& \frac{d y}{d x}=-\operatorname{cosec}^{2} \theta \\
& \frac{d y}{d x}=\tan \theta \sec \theta=\frac{\sin \theta}{\cos ^{2} \theta} \\
& \frac{d y}{d x}=-\cot \theta \operatorname{cosec} 0=-\frac{\cos \theta}{\sin ^{2} \theta} \\
& \frac{d y}{d x}=\frac{1}{\sqrt{a^{2}-x^{2}}} \\
& \frac{d y}{d x}=-\frac{1}{\sqrt{a^{2}-x^{2}}} \\
& \frac{d y}{d x}=\frac{a}{a^{2}+x^{2}} \\
& \frac{d y}{d x}=-\frac{a}{a^{2}+x^{2}} \\
& \frac{d y}{d x}=\frac{a}{x \sqrt{x^{2}-a^{2}}} \\
& \frac{d y}{d x}=-\frac{a}{x \sqrt{x^{2}-a^{2}}} \\
& \frac{d y}{d x}=e^{x} \\
& \frac{d y}{d x}=a e^{a x}
\end{aligned}
$$

" $y=\cos ^{-1} \frac{x}{a}$,
" $y=\cot ^{-1} \frac{x}{a}$,

$$
" y=\operatorname{cosec}^{-1} \frac{x}{a}
$$

, $y=e^{x}$,
,$y=e^{a x}$,
, $y=a^{x}$,
, $y=\log x$,

List of Integrals.

(Logarithms are to the base e unless otherwise stated). Rational Algebraic Integrals

$$
1 \int x \ln d x=\frac{x+\cdots}{n+1} \text { when } \operatorname{mix}-1
$$

$$
2 \int \frac{d x}{x}-\log x
$$

$$
3 \int(a x+b) \bmod x=\frac{(a x+h)-1}{a(m+1)} \text { when } m \neq-1
$$

$$
4 \int \frac{d r}{a x+b}=\frac{1}{a} \log (a x+b)
$$

$$
5 \int \frac{x d x}{a x+b}=\frac{1}{a^{2}}(a x+b-b \log (a x+b))
$$

$$
6 \int \frac{x A x}{(a x+b)},-\frac{1}{a^{1}}\left(\frac{b}{a x+b}+\log (a x+b)\right)
$$

$$
7 \int \frac{x+d x}{a x+b}-\frac{1}{a^{2}}\left(\frac{(a x+b) 1}{2}-2 b(a x+b)+b 1 \log (a x+b)\right)
$$

$8 \int \frac{x^{2} d x}{(a x+b)^{x}}=\frac{1}{a^{1}}\left(a x+b-\frac{b^{\prime}}{a x+b}-2 b \log (a x+b)\right)$
$9 \int \frac{d x}{j(a x+b)}=\frac{1}{b} \log \frac{x}{a x+b}$
$10 \int \frac{d x}{x(a x+b)^{i}}=\frac{1}{b(a x+b)}+\frac{1}{b^{2}} \log \frac{x}{a x+b}$
$11 \int \frac{d x}{x^{2}(a x+b)}=-\frac{1}{b x}+\frac{a}{b^{2}} \log \frac{a x+b}{x}$
$12 \int \frac{d x}{x^{x}(u x+b)^{2}}=-\frac{3 a x+b}{b^{2} x(a x+b)}+\frac{2 a}{b^{2}} \log \frac{a x+b}{x}$
$13 \int \frac{d z}{x^{2}+a^{3}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
$14 \int \frac{d x}{x^{x}-a^{3}}=\frac{1}{2 a} \log \frac{x-a}{x+a}-\frac{1}{a} \tan h^{-1} \frac{a}{x}$ $\int \frac{d x}{a x^{2}+b}$ reduces to 16 or 17 by taking the factor $\frac{1}{a}$ outside the integral sign.
$15 \int \frac{d x}{\left(a x^{2}+b\right)^{m}}-\frac{x}{2(m-1) b\left(a x^{2}+b\right)^{m-2}}$

$$
+\frac{2 m-3}{2(m-1) b} \int \frac{d x}{\left(a x^{2}+b\right) m^{-1}} \text { when mpl }
$$

$16 \int \frac{x d x}{\left(a x^{2}+b\right)^{m}}=-\frac{1}{2(m-1) a\left(a x^{2}+b\right)=-1}$ when $m \ln$
$17 \int \frac{x d x}{a x^{1}+b}=\frac{1}{2 a} \log \left(a x^{2}+b\right)$
$18 \int \frac{x^{2} d x}{a x^{2}+b}=\frac{x}{a}-\frac{b}{a} \int \frac{d x}{a x^{2}+b}$
$19 \int \frac{x^{2} d x}{\left(a x^{2}+b\right) m}=-\frac{x}{2(m-1) a\left(a x^{2}+b\right)=-1}$
$+\frac{1}{2(m-1) a} \int \frac{d x}{\left(a x^{2}+b\right)^{\infty-t}}$ when mw1
$20 \int \frac{d x}{\alpha x^{2}+b}=\frac{k}{3 b}\left(\sqrt{3} \tan ^{-1} \frac{2 x-k}{k \sqrt{3}}\right.$

$$
\left.+\log \frac{k+x}{\sqrt{k^{2}-k x+x^{1}}}\right)
$$

$21 \int \frac{x d x}{a x^{3}+b}=\frac{1}{3} \frac{1}{a} k\left(\sqrt{3} \tan ^{-1} \frac{2 x-k}{k \sqrt{3}}\right.$

$$
\left.-\log \frac{k+x}{\sqrt{k^{2}-k x+x^{2}}}\right)
$$

$22 \int \frac{d x}{x\left(a x^{x}+b\right)}=\frac{1}{b n} \log \frac{x^{n}}{a x^{2}+b}$ Lot $X=a x^{2}+b x+c$ and $q=b^{2}-4 a c$
$23 \int \frac{d x}{x}=\frac{1}{\sqrt{q}} \operatorname{los} \frac{2 a x+b-\sqrt{q}}{2 a x+b+\sqrt{q}}$ when $q>0^{\circ}$
$24 \int \frac{d x}{X}=\frac{2}{\sqrt{-q}} \tan ^{-1} \frac{2 a x+b}{\sqrt{-q}}$ when $\eta<0$ For the case $q=0$. use formula 9 with $m=-2$
$25 \int \frac{d z}{X^{0}}=-\frac{2 a x+8}{(n-1) d X^{a-1}}-\frac{2(2 n-3) a}{Q(n-1)} \int \frac{d x}{X^{0}-1} \operatorname{mbgn}_{n \rightarrow 1}$
$26 \int \frac{x d x}{X}-\frac{1}{2 a} \log x-\frac{b}{2 a} \int \frac{d x}{X}$
$27 \int \frac{(m x+n) d x}{X}=\frac{m}{2 a} \log x+\frac{2 a n-\delta m}{2 a} \int \frac{d x}{X}$
$28 \quad \int \frac{x^{2} d x}{X}=\frac{x}{a}-\frac{b}{2 a^{2}} \log x+\frac{b^{2}-2 a c}{2 a^{2}} \int \frac{d x}{X}$
Ietegrals Involving $\sqrt{a x+b}$

$$
\int \sqrt{a r+b} d x
$$

$$
\int \frac{d x}{\sqrt{a x+b}}
$$

$$
\int(a x+b) \cdot \sqrt{a x+b} d x
$$

$$
\int \frac{d x}{(a x+b)=\sqrt{a x+b}}
$$

$29 \int x \sqrt{a x+b} d x=\frac{2(3 a x-2 b) \sqrt{(a x+b)}}{15 a^{2}}$
$30 \int x \sqrt{a x+b} d x-\frac{2\left(15 a^{1} x^{\prime}-12 a b x+8 b 1\right) \sqrt{(a x+b)}}{105 a!}$
$31 \int x \infty \sqrt{a x+b} d x-\frac{2}{a(2 m+3)}(x \infty \sqrt{(a x+b) 1}$

$$
\left.-m b \int z a-1 \sqrt{c z+b} d z\right)
$$

$32 \int \frac{\sqrt{a x+b} d x}{x}=2 \sqrt{a x+b}+\sqrt{b} \log \frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}}$
$33 \int \frac{\sqrt{a x+b}}{x} d x=2 \sqrt{a x+b}-2 \sqrt{-b} \tan ^{-1} \sqrt{\frac{a x+b}{-b}}$ when $b<0$
For the case b $=0$. unc formula 4
$34 \quad \int \frac{\sqrt{a x+b} d x}{x=}=-\frac{1}{(m-1)^{b}}\left(\frac{\sqrt{(a x+b)}}{x^{a-1}}\right.$

$$
\left.+\frac{(2 m-5) a}{2} \int \frac{\sqrt{a x+b} d x}{x=-1}\right) \text { when } m \neq 1
$$

35

$$
\int \frac{x d x}{\sqrt{a x+b}}=\frac{2(a x-2 b)}{3 a^{2}} \sqrt{a x+b}
$$

$36 \int \frac{x^{2} d x}{\sqrt{c x+b}}=\frac{2\left(3 a^{1} x^{2}-4 a b x+8 b^{2}\right)}{15 a^{2}} \sqrt{a x+b}$
$37 \int \frac{x a d x}{\sqrt{a x+b}}-\frac{2}{a(2 m+1)}\left(x=\sqrt{a x+b}-m b \int \frac{x^{m-1} d x}{\sqrt{a x}+1}\right)$

$$
\int \frac{d x}{2 \sqrt{a x}+b}-\frac{1}{\sqrt{b}} \operatorname{iog} \frac{\sqrt{a x+b}-\sqrt{b}}{\sqrt{a x+b}+\sqrt{b}} \text { when } b>0
$$

$$
\text { For the case of - 0, uso formula } 4
$$

0

$$
\begin{aligned}
& \int \frac{d x}{x=\sqrt{a x+b}}--\frac{\sqrt{a x+b}}{(m-1) b x-1} \\
& \quad-\frac{(2 m-3) a}{(2 m-2) b} \int \frac{d x}{x=-1 \sqrt{a x+b}} \text { when } m \times 1
\end{aligned}
$$

Integrals Involving $\sqrt{x^{1} \pm a^{2}}$ and $\sqrt{a^{2}-x^{2}}$
(These aro spocial casos of the more goneral integrala Efonin the next section.)

$$
\begin{equation*}
\int \sqrt{x^{2} \pm a^{2}} d x=\sqrt[3]{ }\left[x \sqrt{x^{2} \pm a^{2}} \pm a^{2} \log \left(x+\sqrt{x^{1} \pm a^{1}}\right] \cdot\right. \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0} \sqrt{a^{2}-x^{2}} d x-15\left(x \sqrt{a^{2}-x^{2}}+a^{1} d n^{-1} \frac{x}{a^{2}}\right) \tag{43}
\end{equation*}
$$

$$
\int \frac{\sqrt{a^{1} \pm x^{2}}}{x} d x=\sqrt{a^{1} \pm x^{1}}-a \log \frac{n+\sqrt{a^{1} \pm x^{2}}}{x}
$$

50

$$
\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x-\sqrt{x^{2}-a^{1}}-a \cos ^{-1} \frac{a}{x}
$$

51

$$
\int \frac{\sqrt{x^{7} \pm a^{x}}}{x^{2}} d x=-\frac{\sqrt{x^{2} \pm a^{2}}}{x}+\log \left(x+\sqrt{x^{1} \pm a^{1}}\right)
$$

-In thesu iormulas we may replace

$$
\begin{aligned}
& \log \left(x+\sqrt{x^{2}+a^{2}}\right) \text { by } \sinh h^{-1} \frac{x}{a} \\
& \log \left(x+\sqrt{x^{1}-a^{2}}\right) \text { by } \cosh ^{-1} \frac{x}{a} \\
& \log \frac{a+\sqrt{a^{5}+x^{3}}}{x} \text { by } \sinh ^{-1} \frac{a}{x} \\
& \log \frac{a+\sqrt{a^{1}-x^{2}}}{x} \text { by } \cosh ^{-1} \frac{a}{x}
\end{aligned}
$$

$$
\int \frac{\sqrt{a^{2}-x^{3}}}{x^{3}} d x-\frac{\sqrt{a^{3}-x^{7}}}{x}-\cos ^{-1} \frac{x}{a}
$$

$$
\begin{equation*}
\int \frac{x d x}{\sqrt{a^{1}}-x^{2}}=-\sqrt{a^{2}-x^{2}} \tag{53}
\end{equation*}
$$

54

$$
\int \frac{x d x}{\sqrt{x^{3} \pm a}}, \sqrt{x^{3} \pm a}
$$

55

$$
\int \frac{x^{v} d x}{\sqrt{x^{\prime} \pm a^{4}}}-\frac{x}{2} \sqrt{x^{3} \pm a^{1}} \neq \frac{a^{n}}{2} \log \left(x+\sqrt{x^{2} \pm a^{n}}\right)
$$

56

$$
\int \frac{x^{2} d x}{\sqrt{a^{2}-x^{1}}}-\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{1}}{2} \sin ^{-1} \frac{x}{a}
$$

$$
\begin{equation*}
\int \frac{d x}{x \sqrt{x^{2}-a^{1}}}=\frac{1}{a} \cos ^{-1} \frac{a}{x} \tag{57}
\end{equation*}
$$

58

$$
\int \frac{d x}{x \sqrt{a^{1} \pm x^{1}}}=-\frac{1}{a} \log \left(\frac{a+\sqrt{a^{1} \pm x^{2}}}{x}\right)
$$

$$
\int \frac{d x}{x^{2} \sqrt{x^{1} \pm a}}- \pm \frac{\sqrt{x^{2} \pm a^{1}}}{a^{2} x}
$$

60

$$
\int \frac{d x}{x^{1} \sqrt{a^{2}-x^{2}}}=-\frac{\sqrt{a^{2}-x^{1}}}{a^{2} x}
$$

$61 \int \sqrt{\left(x^{3} \pm a^{2}\right)^{2}} d x=k\left[x \sqrt{\left(x^{2} \pm a^{2}\right)^{2}} \pm \frac{3 a^{1} x}{2} \sqrt{x^{2} \pm a^{1}}\right.$

$$
\left.+\frac{3 a^{4}}{2} \log \left(x+\sqrt{x^{1} \pm a^{2}}\right)\right]
$$

$$
\begin{equation*}
\int \sqrt{\left(a^{2}-x^{2}\right)^{2}} d x-16\left[x \sqrt{\left(a^{2}-x^{2}\right)^{0}}+\frac{3 a^{1} x}{2} \sqrt{a^{2}-x^{1}}\right. \tag{62}
\end{equation*}
$$

63

$$
\int \frac{d x}{\sqrt{\left(x^{2} \pm u^{2}\right)^{1}}}-\frac{ \pm x}{a^{2} \sqrt{x^{2}+\overline{a^{2}}}}
$$

$$
\left.+\frac{3 a^{4}}{2} \sin ^{-1} \frac{x}{a}\right]
$$

64

$$
\int \frac{d x}{\sqrt{\left(a^{2}-x^{2}\right)}}-\frac{x}{a^{2} \sqrt{a^{2}-x^{2}}}
$$

Integrals involving $\sqrt{a x^{2}+b x+c}$
Let $X=a x^{1}+b x+c$ and $Q=b^{2}-4 a c$

- See note on previous page.
$71 \int \frac{d z}{X^{\sqrt{x}}}-\frac{1}{\sqrt{-c}} \sin -\frac{b x+2 c}{x \sqrt{q}}$ whon $c<0$
$72 \int \frac{d x}{x \sqrt{X}}=-\frac{2 \sqrt{X}}{b x}$ when $c=0$
73

$$
\begin{aligned}
\int \frac{d x}{(m x+n) \sqrt{x}} & =\frac{1}{\sqrt{k}} \log \left[\frac{\sqrt{k}-m \sqrt{x}}{m x+n}\right. \\
& \left.+\frac{b m-2 a n}{2 \sqrt{x}}\right] \text { when } k>0
\end{aligned}
$$

$74 \int \frac{d x}{(m x+n) \sqrt{X}}-\frac{1}{\forall-k} \operatorname{sln}^{-1}$

where k
-an
${ }_{.} 6 \quad \int \frac{d x}{x^{1} \sqrt{X}}-\frac{\sqrt{X}}{c x}-\frac{b}{2 c} \int \frac{d x}{x \sqrt{X}}$

$$
\begin{equation*}
\int \sqrt{X} d x=\frac{(2 a x+b) \sqrt{x}}{4 a}-\frac{q}{8 a} \int \frac{d x}{\sqrt{x}} \tag{77}
\end{equation*}
$$

$$
\begin{equation*}
\int x \sqrt{\bar{X}} d x=\frac{X \sqrt{X}}{3 a}-\frac{b(2 a x+b) \sqrt{X}}{8 a^{2}}+\frac{b q}{1 c a^{2}} \int \frac{d x}{\sqrt{x}} \tag{78}
\end{equation*}
$$

$$
\begin{equation*}
\int x \sqrt{X} d x=\frac{(0 a x-5 b) x \sqrt{X}}{24 a^{2}} \tag{79}
\end{equation*}
$$

$$
+\frac{\left(5 b^{2}-4 a c\right)(2 a x+b) \sqrt{x}}{04 a^{2}}-\frac{\left(5 b^{2}-4 a c\right)}{128 a^{2}} \int \frac{d x}{\sqrt{x}}
$$

$80 \int \frac{\sqrt{X} d x}{x}=\sqrt{x}+\frac{b}{2} \int \frac{d x}{\sqrt{X}}+c \int \frac{d x}{x \sqrt{x}}$
S1 $\int \frac{\sqrt{x} d x}{m x+n}=\frac{\sqrt{x}}{m}+\frac{b m-2 a n}{2 m^{2}} \int \frac{d x}{\sqrt{X}}$

$$
+\frac{a n^{\prime}-b m n+c m^{\prime}}{m^{\prime}} \int \frac{d x}{(m x+n)^{2} \sqrt{x}}
$$

$82 \int \frac{\sqrt{X} d x}{x^{3}}=-\frac{\sqrt{X}}{x}+\frac{b}{2} \int \frac{d x}{x \sqrt{X}}+a \int \frac{d x}{\sqrt{X}}$
$83 \int \frac{d x}{X \vee X}=-\frac{2(a x+b)}{a v \sqrt{X}}$
$84 \int X \sqrt{X} d x=\frac{2(2 a x+b) X \sqrt{X}}{8 a}$

$$
-\frac{3 q(2 a x+b) \sqrt{X}}{64 a^{3}}+\frac{3 q^{2}}{128 u^{2}} \int \frac{d x}{\sqrt{K}}
$$

Miscellaneous Irrational Integrals
85

$$
\int \sqrt{2 a x-x^{1}} d x=\frac{x-a}{2} \sqrt{2 a x-x^{1}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x-a}{a}
$$

86

$$
\int \frac{d x}{\sqrt{2 a x}-x}=\cos ^{-1} \frac{a-x}{a}
$$

$$
\int \sqrt{\frac{m x+n}{a x+b}} d x-\int \frac{(m x+n) d x}{\sqrt{m x^{2}+(b m+a n) x+b n}}
$$

then uso formula 68

> Logarithmic Integrals

$$
\int \log \cdot x d x=x \log \cdot \frac{x}{a}
$$

$$
\int \log x d z=x(\log x-1)
$$

$$
\int x=\log , x d x-x^{m+1}\left(\frac{\ln R_{\Delta} x}{m+1}-\frac{\operatorname{loQ_{\Delta }p}}{(m+1)^{2}}\right)
$$

$$
\int_{\text {Exponential Integral }}^{\infty} x \infty \log x d x=x \infty\left(\frac{\log x}{m+1}-\frac{1}{(m+1)^{\prime}}\right)
$$

$$
\begin{equation*}
\int a=d x=\frac{a:}{\log a} \tag{92}
\end{equation*}
$$

$$
93
$$

$$
\int e^{x} d x-e^{x}
$$

$$
\int x c^{x} d x=e^{x}(x-1)
$$

$$
\int x m e=d x-x \infty_{e} n-m \int x x^{\infty-i e v d x}
$$

Thigonometric Integrals

N.B.-In these formulas m and n are positice integers unless otherwise indlcated.

$$
\int \sin x d x=-\cos x
$$

97

$$
\int \sin ^{2} x d x=3 / 2(x-\sin x \cos x)
$$

$$
\int \sin =x d x-\int\left(1-\cos ^{1} x\right)^{\frac{0-1}{2}} \sin x d x \text {, when } n \text { ls odd }
$$

Then expand $\left(1-\cos ^{2} x\right)^{\frac{-1}{2}}$ and use formula 109

$$
\int \sin \cdot x d x-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \iint_{\text {when } n \text { is oven }}^{\sin ^{-3} x d x}
$$

100

$$
\int \frac{d x}{\sin x}=-\frac{\cos x}{(n-1) \sin \theta^{-1} x}+\frac{n-2}{n-1} \int \frac{d x}{\sin n^{-2} x}
$$

$$
\text { when } n \text { is odd. } \ngtr 1
$$

101

$$
\int \frac{d x}{x \ln ^{*} x}=\int \csc x d x \text { when } n \text { is ovon. }
$$

Then use formula 128
102

$$
\int \cos x d x=\sin x
$$

103

$$
\int \cos ^{2} x d x=34(x+\sin x \cos x)
$$

may bo reducod to integrals given above by the use of the following reductiou formulas, in wheh r and s are auy integere positive or negative.

$$
\begin{aligned}
& \int \sin x \cos x d x-\frac{\cos ^{-1} x \sin \cdot 6 x}{r+s} \\
& \\
& \quad+\frac{s-1}{r+3} \int \sin x \cos \cdot-1 x d x \text { when } r+s+0
\end{aligned}
$$

$$
\int \sin x \cos x d x=-\frac{\sin ^{r-1} x \cos \cdot \cdot 1 x}{r+s}
$$

$$
+\frac{r-1}{r+s} \int \sin -1 x \cos x d x \text { when } r+3,0
$$

$$
\int \sin ^{\prime} x \cos \theta x d x-\frac{\sin \cdot{ }^{\prime}+x \cos ^{*+1} x}{r+1}
$$

$$
+\frac{3+r+2}{r+1} \int \sin r+1 x \cos x d x \text { when } r,-1
$$

$$
\int \sin x \cos \cdot x d x=-\frac{\sin n^{++1} x \cos \cdot{ }^{* 1} x}{s+1}
$$

$$
+\frac{s+r+2}{s+1} \int \sin x \operatorname{cos\cdot c} x d x \text { whon } s x-1
$$

116

$$
\int \tan x d x=-\log \cos x
$$

$$
\int \tan =x d x=\frac{\tan ^{-1} x}{n-1}-\frac{\tan ^{-1} x}{n-3}+\frac{\tan -1 x}{n-5}
$$

$$
\int \tan =x d x=\int\left(\sec ^{2} x-1\right) \frac{0-1}{2} \tan x d x \text { when } n \text { is odd. }
$$

Then expand (sec $\left.x^{2}-1\right) \frac{1}{1}$ and uso formula

119

$$
\int \cot x d x=\log \sin x
$$

$$
\begin{align*}
\int \mathrm{cue}=x d x=-\frac{\cot -1}{n-1} x & \frac{\cot -1 x}{n-3}-\frac{\cot -1 x}{n-5} \tag{120}\\
& \cdots \cdots \pm \cot x \pm x \text { when } n \text { fs oven }
\end{align*}
$$

$$
\begin{equation*}
\int \cot =x d x-\int\left(\csc ^{1} x-1\right)^{\frac{n-1}{2}} \cot x d x \text { when } n \text { is odd. } \tag{121}
\end{equation*}
$$ Then expand (csc $\left.x^{1}-1\right)^{\frac{x-1}{1}}$ and use formula 131

$$
\int \sec x d x-\log (\sec x+\tan x)
$$

$$
\begin{equation*}
\int \sec ^{1} x d x-\tan x \tag{123}
\end{equation*}
$$

$124 \iint \sec ^{0} x d x-\int\left(\tan ^{2} x+1\right)^{\frac{\pi-3}{3}} \sec ^{1} x d x$ when n ls ovon Thon oxpand $\left(\tan ^{\prime} x+1\right)^{\frac{n-1}{1}}$ and uso formula 132 $\int \sec \cdot x d x-\int \frac{d x}{\cos ^{\circ} x}$ when n is odd, and use formula 106

$$
\begin{equation*}
\int \operatorname{cosec}^{2} x d x=-\cot x \tag{126}
\end{equation*}
$$

$$
\begin{equation*}
\int \operatorname{cosec} x d x=\log (\operatorname{cosec} x-\cot x) \tag{127}
\end{equation*}
$$

$128 \iint \operatorname{cosec}^{n} x d x=\int\left(\cot ^{2} x+1\right)^{\frac{-1}{x}} \operatorname{cosec}^{2} x d x$ when n is even. Then oxpand (cot' $r+1)^{\frac{\%}{T}}$ and uso formula 130

$$
\left.\begin{array}{l}
\int \sec \cdot x \tan x d x-\frac{\sec x}{n} \\
\int \operatorname{cosec} x x \cot x d x=-\frac{\operatorname{cosec} a x}{n}
\end{array}\right\} \text { wheren ls any constant } 0
$$

$134 \iint \frac{d z}{a+b \sin x}=\frac{-1}{\sqrt{a^{2}-b i}} \sin -\frac{b+a \sin x}{a+b \sin x}$ when $a^{\prime}>b^{\prime}$
135
$\int \frac{d x}{a+b \sin x}=\frac{+1}{\sqrt{b^{1}-a^{2}}} \log \frac{b+a \sin x-\sqrt{b^{1}-a^{1}}(\cos x)}{a+b \sin x}$

13G

$$
\begin{equation*}
\int x^{3} \sin x d x=2 x \sin x+\left(2-x^{2}\right) \cos x \tag{141}
\end{equation*}
$$

$$
\begin{equation*}
\int x \cos x d x=\cos x+x \sin x \tag{142}
\end{equation*}
$$

144

$$
\begin{equation*}
\int_{\text {Inverso Trigonometric integrals }} x^{\prime} \cos x d z-2 x \cos x+\left(x^{\prime}-2\right) \sin z \tag{143}
\end{equation*}
$$

$$
\int \sin ^{-1} x d x=x \sin ^{-1} x+\sqrt{1-x^{x}}
$$

145

$$
\int \cos ^{-1} x d x=x \cos ^{-1} x-\sqrt{1-x^{2}}
$$

146

$$
\int \tan ^{-1} x d x=x \tan ^{-1} z-\log \sqrt{1+x_{2}}
$$

$$
\int \cot ^{-1} x d x=x \cot ^{-1} x+\log \sqrt{1+2}
$$

$$
\begin{aligned}
\int \sec ^{-1} x d x & =x \sec ^{-1} x-\log (x+\sqrt{x-1}) \\
& =x \sec ^{-1} x-\cosh h^{-1} x \\
\int \operatorname{cosec}^{-1} x d x & =x \operatorname{cosec}^{-1} x+\log \left(x+\sqrt{x^{2}-1}\right) \\
& =x \operatorname{cosec}^{1} x+\cosh -1 x
\end{aligned}
$$

Hyperbolic Integrals
150

$$
\int \operatorname{sinb} x d x=\cosh x
$$

152. $\int \operatorname{sech}^{2} x d x=\tanh x$.
153. $\int \frac{d x}{\sqrt{a^{2}+x^{2}}}=\sinh ^{-1} \frac{x}{a}=\log \left\{x+\sqrt{x^{2}+a^{2}}\right\}$
154. $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\cosh ^{-1} \frac{x}{a}=\log \left\{x+\sqrt{x^{2}-a^{2}}\right\}$
155. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\frac{1}{a} \tanh ^{-1} \frac{x}{a}=\frac{1}{2 a} \log \frac{a+x}{a-x}$

Quadratic Equation.
If $\quad a x^{2}+b x+c=0$
Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
To find the sum of any number of terms in an arithmetical progression.
Let a be the first term n the number of terms l the last term S the sum d the common difference.

$$
S=\frac{n}{2}(a+l)=\frac{n}{2}[2 a+(n-1) d]
$$

To find the sum of any number of terms in a gcometrial progression.
Let r be the common ratio.

$$
S=a \frac{r^{n}-1}{r-1}
$$

Combinations and Permutations.
The combinations of C of n things r at a time $={ }_{n} C_{r}$

$$
{ }_{"} C_{r}=\frac{1 n}{\operatorname{lr} / n-r}={ }_{n} C_{n-r}
$$

The permutations P of n things r at a time $={ }_{n} P_{r}$

$$
\begin{gathered}
{ }_{n} P_{n}=n(n-1)(n-2)---3.2 .1=1 n \\
{ }_{n} P_{r}=n(n-1)(n-2)--(n-r+1)=n_{r} \\
{ }_{n} P_{r}={ }_{n} C_{r} \times 1 r
\end{gathered}
$$

Binomial Theorem.

$$
(1 \pm x)^{\prime \prime}=1 \pm n x+\frac{n(n-1)}{1.2} x^{2} \pm \frac{n(n-1)(n-2)}{1.2 \cdot 3} x^{3}+\ldots
$$

Maclaurin's Theorem.

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{1 \cdot 2} f^{\prime \prime}(0)+\cdots
$$

$x 1$
Taylor's Theorem.

$$
f(x+h)=f(x)+h f(x)+\frac{h^{2}}{1 \cdot 2} f^{\prime \prime}(x)+\ldots
$$

Values of π.

$$
\begin{aligned}
\pi & =3.14159265 \\
\frac{\pi}{4} & =0.78539816 \\
\frac{\pi}{180} & =0.01745320 \\
\pi^{2} & =9.86960440 \\
\pi^{3} & =31.00627668 \\
\frac{1}{\pi} & =0.31830989 \\
\frac{1}{\pi^{2}} & =0.10132118
\end{aligned}
$$

TABLE XIV.

Values of g at Sea Level and Given Latytudes.

Subtract 001 from g for approximately every 33 motres of height above sca level, and add if below sea level.

$$
\begin{aligned}
g \text { at London } & =981 \cdot 17 \mathrm{~cm} . \text { per sec. per sec. } \\
& =32 \cdot 1912 \text { feet per sec. per sec. }
\end{aligned}
$$

Conversion of Thermometric Scales.

Temperaturo Frhrenheit $=\frac{\circ}{\circ}$ (temp. Cent.) +32.
Centigrade $=\frac{\delta}{\delta}$ (temp. Fahr.- 32)
Alternately.
To convert tomp. Fahr. to Cent., - Add 40, multiply by 5 , and subtract 40.
." " ," Cent. to Fahr.,-Add 40, multiply by $\frac{n}{5}$, and subtract 40.

Absolute zero $=-273 \cdot 1 \mathrm{deg} . \mathrm{C} .=-491 \cdot 6 \mathrm{deg} . \mathrm{F}$.
$\mathbf{T}_{\text {abs }}=273.1+$ deg. C.
$\mathrm{T}_{\mathrm{abs}}=459 \cdot 6+$ deg. F .

TABLE XV.

Specifio Gravity corresponding to tie Degrees of tere Baume Hydrometer, at $15^{\circ} \mathrm{C}$.
(For specific gravities less than 1.)

Degrees Baume.	$S p . G r$.	Degrees Baumé.	Sp. Gr.	Degrees Baưnc.	$S p$. Gr.
10	1.000	28	0.889	46	0.800
11	0.993	29	0.883	47	0.796
12	0.986	30	0.878	48	0.791
13	0.979	31	0.873	49	0.787
14	0.973	32	0.867	50	0.783
15	0.967	33	0.862	51	0.778
16	0.960	34	0.857	52	0.774
17	0.953	35	0.852	53	0.770
18	0.947	36	0.847	54	0.766
19	0.941	37	0.842	55	0.762
20	0.935	38	0.837	56	0.758
21	0.929	39	0.832	57	0.754
22	0.923	40	0.827	58	0.750
23	0.917	41	0.823	59	0.746
24	0.911	42	0.818	60	0.742
25	0.905	43	0.814	61	0.738
26	0.900	44	0.809	62	0.735
27	0.894	45	0.804		

Note.-The following formula enables degrecs Baumé to bo converted into specific gravities :-
Specific gravity $=\frac{140}{\text { Degreas Baumé }+130}$
Conversoly, the specific gravity may be converted into degrees Baumé by tho equation :-

Degrees Baumé $=\frac{140}{\text { sp. gr. }}-130$
For liquids heavier than water.
Specific gravity $=\frac{145}{145-\text { Degrees Baumé. }}$
A hydrometer may bo tested by placing it in water at 4 deg . C. If it registers 1 , it is correct.

TABLE XV（A）．
Shecific Giravity corresponding to the Degrees of the Badme Hydrometfr．
（For sureific gravities greater than l．）

Degrees	$s p$ ．	Degrees	Sp．	Degrees	$S p$ ．	Degrees	Sp．
Buıumé．	Gr．	Baumé．	Gr．	Baumé．	Cr．	Baumé．	Gr．
0	1000	19	1147	37	1337	55	1.596
1	1007	20	1157	38	1349	56	1.615
2	1.014	21	1.166	39	$1 \cdot 361$	57	1.634
3	1.020	22	1176	40	1.375	58	1.653
4	1028	23	1－185	41	1－388	59	1.671
5	1.034	24	$1 \cdot 195$	42	1.401	60	1.690
6	1.041	25	1.205	43	1.414	61	1.709
7	1049	26	1215	44	1.428	62	1.729
S	1057	27	1.225	45	1.442	63	1.750
9	1004	28	1.235	46	1.456	64	1.771
10	1.072	29	1245	47	1.470	65	1.793
11	1080	30	1.256	48	1.485	66	1.815
12	1.085	31	1.267	49	1500	67	1.839
13	1096	32	1.278	50	1515	68	1.854
14	$1 \cdot 104$	33	1.289	51	1.531	69	1.885
15	$1 \cdot 113$	34	$1 \cdot 300$	52	1.546	70	1.909
16	$1-121$	35	$1 \cdot 312$	53	1－562	71	1.935
17	1－130	36	1324	54	1．578	72	1.960
18	1－138						

TABLE XVI．
Specific Gravity corresponding to Degrees on the Twadnele Hydrometer．

珹飏		会范		品荡	道荢		总富		
1	1005	2.1	11120	47	$1 \cdot 235$	80	140	126	1.63
8	1010	25	1．125	48	$1 \cdot 240$	82	$1 \cdot 41$	128	164
3	1015	20	1130	48	$1 \cdot 34$	84	1.42	130	16.5
4	$1{ }^{-620}$	27	1．135	50	1．250	86	1.43	132	166
5	1025	28	1140	91	$1 \cdot 255$	83	1.4	134	1.67
6	1.030	29	1145	5	1 1200	90	1.45	136	1．68
7	1．035	30	1150	53	1205	92	1.46	138	1.69
8	1.040	31	1.155	54	$1 \cdot 270$	94	1.47	$140{ }^{-}$	170
9	1045	32	1．160	55	1：275	96	1.48	142	$1 \cdot 71$
10	1.050	33	1.165	56	$1 \cdot 50$	93	$1 \cdot 49$	144	$1 \cdot 72$
11	1055	34	1．170	57	$1 \cdot 25$	100	1.50	146	$1 \cdot 73$
יㅡㄴ	1 －000	35	$1 \cdot 175$	58	$1 \cdot 290$	102	1.51	148	1.74
13	1.065	36	1180	59	$1 \cdot 295$	104	$1 \cdot 52$	150	175
14	1.070	37	1185	60	1300	100	1.53	159	1＇76
15	1.075	38	－1．190	62	1.31	103	$1 \cdot 54$	154	$1 \cdot 77$
16	1.080	：39	1195	64	1．32	110	$1 \cdot 35$	150	$1 \cdot 78$
17	1．085	40	1：200	60	$1 \cdot 33$	112	$1 \cdot 50$	155	$1 \cdot 79$
18	1．090	11	1．205	68	$1 \cdot 34$	114	1.57	160	$1 \cdot 80$
18	1.045	42	1－210	70	$1 \cdot 35$	116	1.58	162	1.81
20	$1 \cdot 100$	43	$1-15$	72	$1 \cdot 36$	118	1.59	164	1.82
21	$1 \cdot 105$	4.	1－290	74	$1 \cdot 37$	120	$1 \cdot 60$	106	1.88
22	1.110	45	$1 \cdot 2: 5$	76	$1 \cdot 38$	129	1．01	168	1.84
23	1115	$4{ }^{4}$	1．230	78	1.30	124	$1 \cdot 62$		

TABLE XVII.

Electric Equivalents of Heat Units, \&e.

Unit.	Equivalent value in other units.	Unit.	Equivalent value in other units.
1 k.w. hour $=$	$\left\{\begin{array}{l} 1,000 \text { watt hours. } \\ 1-34 \mathrm{~h} . \mathrm{p} . \mathrm{hours} \text {. } \\ 2,656,400 \mathrm{ft} . \mathrm{b} . \\ 3,600,000 \text { joules. } \\ 3,440 \text { heat units. } \\ 366,848 \text { k.g.m. } \\ 0.229 \mathrm{lb} . \text { coal oxi- } \\ \text { dised with per } \\ \text { fect cfficiency. } \\ 3 \text { lb. water evapo- } \\ \text { rated at } 212^{\circ} \mathrm{F} . \\ 22 \cdot 9 \text { lb. of water } \\ \text { raised from } 62^{\circ} \\ \text { to } 212^{\circ} \mathrm{F} . \end{array}\right.$	$1 \mathrm{h.p}=$.	746 watts. 0.74 k .w. 33,000 ft. lb. per minute. 550 ft . lb. per sec. 2,580 heat units per hour. 43 hent units per minute. 0.71 heat units per second. - 172 lb . coal oxidised per hour. 2.25 lb . water eva-
1 h.p. hour $=$	$\begin{aligned} & 0.74 \text { (i k.w. hour. } \\ & 1,980,000 \text { ft. lb. } \\ & 2.580 \text { heat units. } \\ & 273.740 \text { k.g.m. } \\ & 0.172 \mathrm{lb} \text {. coal oxi- } \\ & \text { dised with per- } \\ & \text { fect efliciency. } \\ & 2.25 \mathrm{lb} \text {. water eva- } \\ & \text { porated at } 212^{\circ} \mathrm{F} . \\ & 17.2 \mathrm{lb} \text {. of water } \\ & \text { raised from } 62^{\circ} \\ & \text { to } 212^{\circ} \text { F. } \end{aligned}$	1 joule $=$	porated per hour at $212^{\circ} \mathrm{F}$. $\left\{\begin{array}{l} \text { l watt second. } \\ 0000000278 \mathrm{k} \cdot \mathrm{w} . \mathrm{hr} . \\ 0.102 \mathrm{k} \cdot \mathrm{~g} \cdot \mathrm{~m} . \\ 0.00094 \text { heat unit. } \\ .73 \mathrm{ft} . \mathrm{lb} . \end{array}\right.$
$1 \mathrm{k} . \mathrm{w} .=$	$\left\{\begin{array}{l} 1,000 \text { watts. } \\ 134 \mathrm{~h} . \mathrm{p} . \\ 2,656,400 \mathrm{ft} \text {. } \mathrm{lb} \text {. per } \\ \text { hour. } \\ 44,240 \text { ft. lb. per } \\ \text { minute. } \\ 737 \text { ft. lb. per } \\ \text { second. } \\ 3,440 \text { heat units } \\ \text { per hour. } \\ 57.3 \text { heat units per } \\ \text { minute. } \\ 955 \text { heat units per } \\ \text { second. } \\ 0.229 \mathrm{lb} \text {. coal oxi- } \\ \text { dised per hour. } \\ 3 \text { lb. water evapo- } \\ \text { rated per hour } \\ \text { at } 212^{\circ} \mathrm{F} \text {. } \end{array}\right.$	$1 \mathrm{ft} . \mathrm{lb} .=$ 1 watt $=$	\qquad 1 joule per second. $000134 \mathrm{~h} . \mathrm{p}$. 0001 k.w. 3.44 heat units per hour. 0.73 ft . lb . per sec. $0-003 \mathrm{lb}$. of water evaporated per hour. $44 \cdot 24$ ft. lb. per minute.

xliv

TABLE XVII.-continued

TABLE XIX.
Boiling Points of Water at Different Vacua.
$\left.\begin{array}{cccc}\begin{array}{c}\text { Vacuum } \\ \text { Millimetres }\end{array} & \begin{array}{c}\text { Vacuum } \\ \text { Inches } \\ \text { of Mercury. }\end{array} & \text { of Mercury. } & \begin{array}{c}\text { Temperature } \\ \text { Centigrade. }\end{array} \\ 756 & 29.74 & 0.0 & \text { Temperature } \\ \text { Fahrenheit. }\end{array}\right]$

TABLE XX.
Boiling Points of Various Liquids at Different Vaoda.

$\because I_{0}=\varepsilon$ woy tnejs pojemiles Kap jo ＇7I 1 jo idospues	＊	
 	\pm	－
$7+4=$ ＇ก पL＇\＆แ vo！̣⿺ 	$\stackrel{\text { き }}{ \pm}$	
－ 10101 „ะЕ шоя ләјем $\frac{10}{}$ ๆ1 1 jo dum ostex 	＝	
＇Jo onimeajumol	\pm	－$\dot{\sim}$ 人 innoo inno
6y． 51 ＋ annssard åney－ ＇ut＇Ls 20 d ＇sqt ul 	2	¢mo

pajemies Kıp jo वा 130 kulosưy	\％	
－зววృ ગฺ̣กว u！ureวรs jo＇q1 1 jo วunfo 1	\pm	
$7+4=$ sat je meวrs ou ก＇TLI＇g ut wolat 	＋＋	
וס oz wosj raves jo 	\cdots	
＇30 onnteradusi	\pm	
$\text { -6g.tı }+$ anssord วincg＝ ut bs iad＇sqt ut aunssadd aın！osqy	2	

人口

\qquad

\qquad

 $\stackrel{\underset{m}{n}}{\stackrel{m}{m}}$䓂 no

[^5]
－These values are taken from The Enlarged Callendar Steam Tables by permission of the Author and the Publishers Messrs．Arnold \＆Co． \dagger Absolute tempsrature $(\mathrm{T})=1+459^{-6} \mathrm{~F}$
if The vacuum is referred to a barometric pressure of 30° of mercury at $62^{\circ} \mathrm{F}$ ，

TABLE X゙XI.
Standahd Jimensions of B.S. Whitworth and B.S. Fine Screw Timeads.

Nominal dia. of Screiv.		Number of Threads per inch.		Core Diameter. inches.		Cross.Sectional Area at bollom of thread of boll, sq. in.	
inches.	inches.	B.S.W.	B.S.F.	B.S.W.	B.S.F.	B.S.W.	B.S.F.
${ }^{3} 7$. 2188	-	28	-	1731		. 0235
1	. 2500	20	26	1860	2007	-0272	. 0316
\%	-2813		26	-	2320		. 0423
1	-3125	18	22	2411	. 2543	. 0458	. 0508
$\frac{8}{8}$	-3750	16	20	-2950	-3110	. 0683	. 0760
\cdots	-4375	14	18	-3460	-3664	. 0940	- 1054
2	-5000	12	16	-3933	4200	-1215	1385
	. 5625	12	16	- 4558	. 4825	-1632	- 1828
1	-6250	11	14	. 5086	. 5335	- 2032	2235
	. 6875	11	14	-5711	-5980	. 2562	-2790
	-7500	10	12	-6219	-6433	- 3038	- 3250
16	. 8125	10	12	-6844	. 7058	-3679	-3913
$\frac{7}{8}$. 8750	9	11	-7327	$\cdot 7586$	- 4216	. 4520
-18	. 9375	9	-	-7952	-	-4966	-
	1.0000	8	10	-8399	. 8719	-5540	5971
$1 \frac{1}{1}$	1.1250	7	9	. 9420	9827	-6969	7585
$1 \frac{1}{1}$	$1 \cdot 2500$	7	9	1.0670	1-1077	. 8942	.9637
*12	$1 \cdot 3750$	6	8	1-1616	1.2149	10597	11592
14	1.5000	6	8	1.2866	13399	1.3001	1.4100
${ }^{15}$	1.6250	5	8	$1 \cdot 3689$	$1 \cdot 4649$	1.4718	1.6854
13	1.7511	5	7	1.4939	1.5670	1.7528	1.9285
${ }^{*} \frac{1}{8}$	1.8750	4.5	-	1.5904	-	1.9866	-
2	2.0000	45	7	1.7154	18170	2.3111	25930
* 21	$2 \cdot 1250$	$4 \cdot 5$	-	1.8404	-	$2 \cdot 6602$	
21	$2 \cdot 2500$	4	6	1.9298	20366	2.9249	3.2577
- 2.	2-3750	4	-	2.0548	-	3.3161	-
2.	2.5000	4	6	2.1798	$2 \cdot 2866$	3.7318	4-1065
* 26	$2 \cdot 6250$	4		$2 \cdot 3048$	-	$4 \cdot 1721$	
$2 \frac{1}{3}$	2.7500	$3 \cdot 5$	6	$2 \cdot 3841$	2.5356	$4 \cdot 4641$	5.0535
-27	2.8750	$3 \cdot 5$	5	$2 \cdot 5091$	7	4.9445	-
3	3.0000	35	5	26341	2.7439	5-4-96	5.9133

[^6]TABLE XXII.
Dimensions of British Assoclation (B.A.) Screw Trreads.

Designating Number.	Full Diameter. Bolt and Nut.		Approx. No. of Threads per inch.	Core Diameter Bolt and Nut. $m m$.	Approx. Cross-Sec. Area at Bottom of Thread. sq. mm.
	mm.	inches.			
0	60	. 236	25.4	4.80	18.10
1	53	-209	28.2	$4 \cdot 22$	13.99
2	4.7	-185	31.3	3-73	10.93
3	$4 \cdot 1$	-161	$34 \cdot 8$	3-22	$8 \cdot 14$
4	36	-142	$38 \cdot 5$	2.81	6.20
5	32	126	43.1	$2-49$	$4 \cdot 87$
6	2.8	110	$47 \cdot 9$	$2 \cdot 16$	$3 \cdot 66$
7	25	. 098	$52 \cdot 9$	1.92	2.89
8	$2 \cdot 2$. 087	59.1	1.68	$2 \cdot 22$
9	19	. 075	$65 \cdot 1$	1.43	1.61
10	1.7	. 067	$72 \cdot 6$	1.28	1.29
11	1.5	.059	81.9	1.13	100
12	13	. 051	$90 \cdot 7$	$0-96$	0.72
13	$1 \cdot 2$. 047	102-0	0.90	$0 \cdot 64$
14	10	. 039	1100	0.72	0.41
15	0.90	-035	1210	0.65	0.33
16	$0 \cdot 79$. 031	-	$0-56$	$0 \cdot 25$
17	0.70	. 028	-	050	0.20
18	0.62	. 024	-	0.44	0.15
19	0.54	. 021	-	0.37	0.11
20	0.48	. 019	-	0.34	0.09

TABLE XXIII.
Whitworth's Standard Threads for Pipes.

Dimensions in inches.			Number of threads per inch.
Nominal bore of pipe.	Diameter of pipe.	Diameter at boltom of thread.	
$\frac{1}{8}$	-382	336	28
$\frac{1}{4}$	-518	-451	19
\%	656	. 589	19
$\frac{1}{4}$. 826	.734	14
\%	- 902	. 811	14
1	1114	. 949	14
$\frac{7}{8}$	$1 \cdot 189$	1097	14
1	1309	1192	11
$1 \frac{1}{3}$	1492	1.375	11
11	1.65	1.533	11
11	$1-745$	$1 \cdot 628$	11
13	1.882	1.765	11
13	2022	1.965	11
13	216	2042	11
$1{ }^{2}$	2245	2128	11
2	2347	223	11
21	2467	2351	11
$2\}$	2587	$2 \cdot 47$	11
23	$2 \cdot 794$	$2 \cdot 678$	11
21	3	2.882	11
25	3124	3009	11
27	3-247	3.13	11
27	3367	3.251	11
3	$3 \cdot 485$	3.368	11
31	$3 \cdot 698$	3.581	11
$3 \frac{1}{2}$	3912	3.795	11
33	4.125	4.008	11
4	4.340	+223	11

TABLE XXIV

Sizes and Weights of Metal Sieets.

Size			Thickness		Weight: lus. per Sq. Foot			
S.IV.G.	Birmingham Sheet Gauge		Inches	Mm.	Alu. minium	Brass	Copper	Steel
	Old Siyle	Legali=ed Igr 4						
310	4039	1	'375	9.53	5.26	16.4	$17 \cdot 3$	15.2
			372	9.45	$5 \cdot 22$	16.3	$17 \cdot 2$	$15^{\circ} \mathrm{O}$
$\begin{aligned} & 2 / 0 \\ & 1 / 0 \end{aligned}$			- 353	$8 \cdot 96$	+96	15.5	16.3	14.3
			-348	$8 \cdot 84$	489	15^{-2}	$16 \cdot 1$	14.1
		2	-324	8.23	455	$14^{\prime 2}$	149	13.1
			-315	8 800	4.42	13^{-8}	14.5	12.7
1		3	$\cdot 312$	793	$4 \cdot 38$	137	14.4	12.6
			-300	7.62	421	${ }^{13.1}$	13.8	$12 \cdot 1$
			$\cdot 289$	7.34	4.06	$12 \cdot 7$	13.3	11.7
	38		- 280	$7 \cdot 11$	3.93	12.3	12.9	$11 \cdot 3$
2			$\cdot 278$	7.06	3.90	12.2	128	II-2
			-276	7.01	3.87	12.1	12.7	11'I
3	37	4	$\cdot 270$	6.86	379	12.8	12.5	10.9
			- 252	6.40	354	18.0	11.6	10.2
	36		.250 .258	6-39	3.51	10.9	11.5	10.1
4	35		$\cdot 238$	6-05	3.34	10.4	18.0	9.62
		5	$\cdot 232$	5.89 5.66	3.26	10.2	$10 \cdot 7$	9.38
			- 223	5.66	313	9.76	103	9.02
5	34		$\cdot 216$	5.49	303	946	9.96	8.74
	33	6	$\cdot 212$	5.38	2.98	$9-92$	978	$8 \cdot 59$
			- 200	5.08	2.81	8 8-76	923	$8 \cdot 10$
6			- 198	5.03	2.78	867	9.13	8.01
			198 .187	4.88 4.75	2.70 2.62	8.41 8.19	885	7.76
	32	7	$\cdot 187$ $\cdot 182$.18	4.75 4.62	2.62 2.56	8.19 7.97	$8-62$ 8.40	756 7.36
7			- 176	4.47	$2 \cdot 47$	$7 \cdot 71$	8.12	$7 \cdot 11$
8	31		- 166	4.22	$2 \cdot 33$	7.27	7-65	6.71
		8	- 160	4.06	$2 \cdot 25$	7.01	738	6.48
	30		- 157	3.99	2.20	6.88	724	6.35
9			- 150	3.81	$2 \cdot 11$	658	6.92	608
		9	-144	3.66	2.02	6.35	6.64	5.82
	29		- 140	3.56	1.97	6.13	6.45	5.66
10			-136	3.45	1.91	$5 \cdot 96$	$6 \cdot 28$	5.50
		10	- 128	3.25 3.18	1.80	5.61	5.90	$5 \cdot 18$
	28		-125	3.18	1.76	5.48	$5 \cdot 76$	5.06
II			-124 -116	3.15 2.95	1.74 1.53 1.57	5.43 5.08	5.72 5.35	5.02 4.64
	27		+116	2.95 2.85	1.53 1.57 1.56	5.08 4.91	5.35 5.17	4.69 4.54
12		II	-111	2.82	1-56	486	$5 \cdot 12$	4.49
	26		-104	2.64	1.46	456	480	4.21
			- 100	2.54	$1 \cdot 41$	$4 \cdot 38$	461	4.05
1714		12	-099	2.51	$1 \cdot 39$	434	457	4.00
	25	13	-092	2.34	$1 \cdot 29$	403	$4 \cdot 24$	3.72
			-090	2.29	1.26	394	4-15	3-64
			. 088	2.24	1.24 1.15	3.85	4.06	356
	24		-082	2.08	$1 \cdot 15$	3.59	3.78	33^{2}
			-080	203	$1 \cdot 12$	350	$3-69$	324

The above weights are subject to a variation of 2 per cent.

TABLE XXIV-continued.

Size			Thickness		Weight: lbs. per Sq. Foot			
S.W.G.	Birmingham Sheet Gauge		Inches	Mm.	Alumiнiцт	Brass	Copper	Steel
	Old Style	Legalszed 1914						
15	2322	14	. 078	1.98	170	3.42	S. 60	3.16
			-077	I-96	1.08	3.37	3.55	3.12
		15	-072	I.83	I 01	3.15	3.32	2.91
			-070	1.78	0.982	3.06	3.23	2.83
16	2120		-068	1.73	0.955	2.98	3.14	2.75
			. 065	1.65	9.914	2.85	3.00	2.63
			-064	1.63	$0 \cdot 900$	2.80	2.95	2.59
	19		-063	1-60	0.885	$2 \cdot 76$	2.91	2.55
		16	-062	1.58	0.871	$2 \cdot 72$	2.86	2.51
17	18	17	- 0 GO	1.53	0.843	2.63	2.77 2.58	2.43
			. 056	1.42	0.786	2.45	$2 \cdot 58$	2.27
	1716		. 055	- 40	0.773	2.41	2.54 2.35	2.22 2.06
18		18	-051	1-30	$0 \cdot 716$	2.23	2.35	2.06
			. 050	- 27	0.702	2.19	2.31	2.02
	15		-048	1-22	0.675	2.10	2.22	1.94
		19	. 047	1-19	0.660	2.06	2.17	$\begin{array}{r}1.90 \\ \\ \hline\end{array}$
19			-044	$1 \cdot 12$	0.618	1.93	2.03	$\begin{array}{r}1.78 \\ \hline 7.70\end{array}$
	14		. 042	1-07	0.590 0.562	1.84 1.75	1.94 r .85	1.70 1.62
		20	. 040	1.02 0.991	0.562 0.548	1.75 1-71	1.85 1.80	1.62 1.58
20	13		. 038	$0 \cdot 965$	0.534	1.66	1.75	1.54
		21	-036	0.914	0.506	1.58	1.66	1.46
	12		.035	0.899	0.492	1.53	1.62	1.42
21			-032	0.813	0.449	1.40	1.48	1.29 $\mathbf{r} .25$
	11	22	.031	0.793	0.435	1.36	1.43	1.25
22		23	-028	0.711	0.393	1.23	1.29	1.13
23	10		-027	-0.686	0.379	1.18 1.09	1-25	1.09 1.01
	9	24	-024	0.610	0.337	x-05	1-11	0.970
			-023	-0.584	0.323	$1 \cdot 01$	1.06	0.930
24	8	25	-022	0.559	- 309	0.964	1.01	0.890
			. 021	0.533	0.295	0.920 0.876	0.969	0.850
25	7	26	. 020	0.508 0.483	0.281 0.267	0.876 0.832	0.922 0.876	0.809 0.769
26		27	.019	0.483 0.457	0.267 0.253	0.832 0.791	-0.083	-0.728
			-017	0.432	0.239	0.745	0.784	0-688
27	6		- 0164	0.417	0.230	0.718	0.756	0.664
			- 0160	0.406	0.225	0.701	0.738	0.647
28	5	28	. 0156	0.397 0.376	0.219 0.208	0.683 0.648	0.720 0.683	0.631 0.599
			-0148	0.376	-0.208	0.648	0.683 0.645	
			-0140	- 356	-. 196	0.613	0.645 0.641	0.566 0.563
293031	4	29	- $\mathrm{-}$-139	0.353 0.346	-195 - 191 0.198	0.609 0.596	0.64 I 0.627	0.562 0.550
			- 0134	0.346 0.315	- $0 \cdot 174$	0.596 0.543	0.627 0.572 0.567	0.502
		30	-0123	0.312	0.173	0.539	0.567	0.498
			- -120	0.305 0.294	0.169 0.163	0.525 0.508	0.553	0.486 0.469
			-0116	$0 \cdot 294$	0163	0.508	0.535	0.469

The above weights are subject to a variation of 2 per cent

TABLE XXIV-continued.

The above weights are subject to a variation of 2 per cent.

TABLE XXV.
Horse. Power that Steel Shafting will Transmit.

	Diameter of Shaft in inches.								
	11	13	2	21	23	3	4	6	8
	Horse-Pouner Transmille\%.								
50	33	$5 \cdot 3$	8.0	109	$15 \cdot 6$	27	64	216	512
60	$4 \cdot 0$	$6 \cdot 4$	$9 \cdot 6$	$13 \cdot 1$	18.8	32	77	259	614
70	47	$7 \cdot 5$	112	$15 \cdot 2$	21.9	38	89	302	717
80	54	$8 \cdot 5$	128	17.4	25.0	43	102	346	819
90	6.0	$9 \cdot 6$	14.4	19.6	28.1	49	115	389	922
100	6.7	10.7	16.0	21.8	31.2	54	128	432	1024
110	$7 \cdot 4$	11.8	$17 \cdot 6$	23.9	344	59	141	475	1126
120	8.1	12.9	192	26.1	37.5	65	154	518	1229
130	$8 \cdot 7$	139	20-8	283	$40 \cdot 6$	70	166	562	1331
140	$9 \cdot 4$	15.0	$22 \cdot 4$	30-5	$4 \mathrm{~S} \cdot 8$	76	179	605	1434
150	$10 \cdot 1$	161	24.0	$32 \cdot 6$	46.9	81	192	648	1536
160	10 S	171	$25 \cdot 6$	34.8	50.0	86	205	691	1638
170	11.5	18.2	27.2	37.0	53.1	92	218	734	1741
180	12.2	$19 \cdot 3$	28.8	$39 \cdot 2$	$56 \cdot 3$	97	230	778	1843
190	12.8	20.4	$30 \cdot 4$	$41 \cdot 3$	59.4	103	243	891	1945
$\underline{200}$	135	214	$32 \cdot 0$	$43 \cdot 5$	62.5	108	256	864	2048
225	15.2	24-1	36.0	49.0	$70 \cdot 3$	122	288	972	2304
250	16.9	26.8	$40 \cdot 0$	$54 \cdot 1$	78.1	135	320	1080	2500
275	18.6	29.5	4.10	593	85.9	149	352	1188	$\underline{2816}$
300	203	32-2	48.0	$65 \cdot 3$	93.7	162	384	1296	3072
325	21.9	348	52.0	70%	101.6	176	416	1404	3328
350	$23 \cdot 6$	37.5	56.0	76.2	1094	189	448	1512	$35 \% 4$
375	$25 \cdot 3$	$40 \cdot 2$	600	81.6	117.2	203	480	1620	3840
400	27.0	$42 \cdot 9$	64.0	87.0	125.0	216	512	1728	4090
425	28.7	$45 \cdot 6$	68.0	$92 \cdot 5$	132.8	230	544	1836	4352
450	$30 \cdot 4$	48.2	72.0	97.9	$140 \cdot 6$	243	576	1944	4608
475	$32 \cdot 1$	$50 \cdot 9$	760	1034	$148 \cdot 4$	257	693	2052	4864
500	337	$53 \cdot 6$	800	1088	$156 \cdot 2$	270	640	2160	5120

TABLE XXVI.
Horse-Power that Leather Belts will transmit, ter nnch of Widtb.

츤	Best Oak-tanned Belis.			Best Link or Chain Belts.					
$\begin{aligned} & \text { nen } \\ & \hline \end{aligned}$	Single Belifs.	Light Double Belfs.	Heavy Double Belts.	in.	in.	in.	in.	${ }_{\text {in }}^{\substack{\text { in } \\ 3 \\ \hline}}$	in.
100	015	0.21	027	013	0.15	0-17	0.20	0.24	0-27
200	$0 \cdot 30$	0.42	055	0.25	029	035	040	0.47	0.55
300	045	064	0.82	039	044	052	060	$0-71$	082
400	13.1i]	0.85	109	$0 \cdot 51$	058	069	0.80	0.95	109
500	076	1.06	1.36	064	0.73	056	100	1.18	136
600	0.91	1.27	164	0.76	0.87	104	1-20	1.42	164
700	106	1.49	1.91	0.89	1.02	1.21	140	165	1.91
800] 21	170	2.18	0.92	1.16	1.38	1 60	1.89	$2 \cdot 18$
900	13 i	1.91	245	105	1.31	1.55	1.80	2-13	245
1000	151	2-12	2.73	127	1.45	1.73	200	2.36	273
1100	1.67	233	300	140	$1 \cdot 60$	1.90	220	2.60	300
1200	1.82	$2 \cdot 55$	$3 \cdot 27$	1.53	1.75	207	240	2.84	3.27
1300	1.97	2.76	355	1.65	1.89	225	2 60	307	3-55
1400	2.12	297	382	1.78	204	2.42	2.80	3.31	3-82
1500	227	318	409	1.91	218	259	300	3-55	409
1600	242	339	4.36	204	233	2.76	$3-20$	3.78	4.36
1700	2.58	361	$4 \cdot 64$	$2 \cdot 16$	$2 \cdot 47$	2.94	340	402	464
1800	2.73	3.82	4.91	2.29	$2 \cdot 62$	3.11	360	$4 \cdot 25$	4.41
1900	2.88	403	5.18	$2 \cdot 42$	2.76	328	380	4.49	5-18
2000	303	4.24	545	255	$2 \cdot 91$	345	400	4.73	5-45
2100	318	445	5.73	267	305	363	$4 \cdot 20$	4.96	5-73
2200	333	4.67	600	2.80	$3 \cdot 20$	3 S0	4.40	5.20	600
2300	349	4.88	6.27	2.93	3-35	3.97	460	5.44	6-27
2400	$3 \cdot 64$	509	$6.5 \overline{5}$	305	3-49	415	4.80	567	6-55
2500	379	$5 \cdot 30$	682	3-18	364	432	5.00	5.91	582
2600	394	552	709	324	378	449	520	6.15	7.09
2700	409	573	7.36	328	3.85	$4 \cdot 66$	$5 \cdot 40$	6.38	736
2800	424	5.94	$7 \cdot 64$	331	3.86	4.73	$5 \cdot 60$	6.62	764
2900	$4 \cdot 39$	6.15	7.91	$3 \cdot 32$	3.87	4.78	5.80	6.85	7.91
3000	4.50	6.36	8.18	331	3.86	4.75	5.97	709	8-18
3100	4.60	6.58	8.45	330	3.85	4.73	5.96	733	8-45
3200	4.69	6.79	8.70	328	3.82	4.71	$5 \cdot 94$	737	8.73
3300	4.77	700	8.86	324	377	470	592	7.35	8.88
3400	4.84	7.21	8.96	3-19	3-71	4.64	$5 \cdot 87$	7.32	886
3500	4.90	7.31	906	3-13	361	450	$5 \cdot 78$	7.26	$8-80$
3600	4.95	740	9-16	305	$3 \cdot 50$	$4 \cdot 37$	5.67	716	8.73
3700	499	$7 \cdot 48$	9.24	296	$3 \cdot 39$	426	5.55	701	858
3800	503	$7 \cdot 54$	9.29	2.84	$3 \cdot 28$	415	5.41	687	841
3900	506	$7 \cdot 60$	934	2.72	$3 \cdot 13$	402	520	670	$8 \cdot 27$
4000	508	$7 \cdot 64$	937	258	$2 \cdot 95$	384	501	6.48	804
4200	510	$7 \cdot 70$	9.35	227	255	337	4.52	$5-98$	7.51
4500	507	7.69	9.27	164	1.77	245	3.68	5.05	655
5000	4.82	$7 \cdot 42$	8.75	0.42	$0 \cdot 55$	031	1.56	2.78	4.32

Physical Properties of the Elements.
TABLE XXVIII.
Atomio Weioet, Specifio Gravity, Specifio Heat, Meltrio Point, Bollng Point.

Name.	Symbol.	Alomic Weight.	Specific Gravity.	Specific teat, $0^{\circ} \mathrm{C}$. 10 $100^{\circ} \mathrm{C}$.	Melting Point, ${ }^{\circ} \mathrm{C}$.	Boiling Point, ${ }^{\circ} \mathrm{C}$.
Aluminium	Al	$27 \cdot 1$	26	0.212	658	1800
Antimony	Sb	$120 \cdot 2$	6.69	00495	632	1500**
Argon	A	39.9	1.40	-	-188	-186.9
Arsenic	As	74.96	$5 \cdot 73$	$0-083$	850*	360*
Barium	Ba	13737	3.75	0068	850*	-
Bismuth	Bi	208.0	9.78	0030	268	1430*
Boron	B	11.0	255	0307	2350*	-
Bromine	Br	79-92	3-15	$0-107$	-73	63
Cadmium	Cd	1124	$8 \cdot 67$	0055	$320 \cdot 7$	762
Calcium	Ca	4007	1.52	0.180	810	-
Carbon	C	12.00	3.51	0.310	>3600	volatilises
Cerium	Ce	$140 \cdot 25$	7.02	0045	650*	--
Chlorine	Cl	3546	1.51	0.226	-101	- 34
Chromium	Cr	5200	6.92	0.0998	<1775	2200
Cobalt	Co	58.97	8.71	$0 \cdot 106$	1500	-
Copper	Cu	63.57	8.89	0-0933	1083	2300
Fluorine	F	1900	114	-	-223	-187
Gold	Au	197.2	19.25	$0-031$	1050	2240
Helium	He	3.99	-	-	<-271	-267
Hydrogeu	H	1.008	0070	-	-259	-252
Iodine	I	126.02	48	0054	113.5	250
Iridium	Ir	193.1	22.42	0032	1950**	2600
Iron	Fe	55-8	7.7	(1.115	1530	2450
Lead	Pb	$207 \cdot 1$	1136	0.031	$327 \cdot 4$	1500
Lithium	Li	6.94	0534	0.85	180	1400
Magnesium	Mg	24.32	1.72	0.246	651	1100
Manganese	Mn	54.93	7.4	$0 \cdot 122$	1260	1900
Mercury .	Hg	$200 \cdot 6$	13.55	0.033	-3885	360

Physical Properties of the Elements-Table XXVIII. (Continued).

Name.	Symbol.	Alomic Il'eight.	Specific Gravily.	Specific Heat. $0^{\circ} \mathrm{C}$. 10 $100^{\circ} \mathrm{C}$.	Mrlting Ioint, ${ }^{\circ} C$.	Boiling Point, ${ }^{\circ} \mathrm{O}$.
Molyb. denum	Mo	960	8.5	0.066	2500*	3620
Nickel	Ni	5 Sis	89	$0 \cdot 109$	1452	2330
Nitrogen	N	140	0.83	-	-214	-1044
Osmium	Os	1909	225	0031	2500	-
Oxygen	0	1600	1-1t	-	-218	-181.4
Palladium	Pd	1067	114	0.071	1550	2.550
Phosphorus	P	3104	2.34	0.19	44	287
Platinum	Pt	195-?	21.52	$003 ?$	1775	2450
Potassium.	1	391	0.87	0.170	621	667
IRhodium	Rh	1029	12.4	0.058	2000	-
Rubidium	RL	8545	1.53	-	3 s 5	196
Ruthenium	$\mathrm{k} \cdot$	1017	123	0.061	1800	--
Sclenium	Sc	792	4.55	0084	217	665
Silicon	Si	283	2.10	$0-183$	1420	-
Silver	Ag	10788	$10 \cdot 6$	0056	968	1955
Sodium	Na	2300	0.97	0.283	976	742
Strontium	Sr	8763	254	-	a bout900*	-
Sulphur .	S	3207	205	0.163	114.5	450
Tantalum.	Ta	181.5	16.6	0.036	2850*	-
Tellarium.	Te	1275	6.25	0048	525¢	1400
Thallium.	'Tl	204.0	11.85	00335	294	1280
Ihrorium	Th,	$232 \cdot 4$	110	00276	\ddagger	-
Tin	Sn	1190	$7 \cdot 40$	0056	232	2270
Titarium	'I'i	481	$3 \cdot 5$	0.112	1800**	-
Tungutan	W	18.40	18.85	0.035	<3000 S	37001
Virnnium	U	$2: 35$	18.7	0.028	1700*	-
Vamindiarn.	V	610	55	0.115	1700*	-
\%irar:	\%/n	(15.37	$7 \cdot 20$	0093	419	930
Zisroniturn	\%r	$90 \cdot 6$	4.14	0066	1700	-

- Jinerertala
- Almat lufudida. Ifurnalu of Standards gives - $1700^{\circ} \mathrm{C}$.
\% 1 hoe $13 A^{\circ}$ J Jurean of Standaris gives $+52^{\circ} \mathrm{C}$.
4 Whawtain. ISubeall of staudards gives $3400^{\circ} \mathrm{C}$.

Physical Properties of Various Metals.

TABLE XXIX.
Specific Resistance, Relative Conductivity, Temperature Cuefficient of Resistance and Electrochemical Equivalent.

Metal.	Specific Resistance at $18^{\circ} \mathrm{C}$. Microhms per cm^{2}	$\begin{gathered} \text { Relative } \\ \text { Conulurtivity } \\ \text { Copper }=100 \end{gathered}$	Temperature Coefficient. $0^{\circ} 10100^{\circ} \mathrm{C}$.	Electrochemical equivalent. Grammes per ampere-hour.	
Aluminium	294	600	. 00380	0.337 (3) \|	
Antimony	4050	4.1	-00389	-	
Bismuth	1190	14	.00420	2586 (3)	
Cadmium	7 - 5	223	. 00419	2096 (2)	
Copper, drawn ,, annealed	$\left.\begin{array}{l} 178 \\ 1.69^{*} \end{array}\right\}$	1000	. 00428	$\left\{\begin{array}{l}11186(2) \\ 2372(1)\end{array}\right.$	
G" annealed				(2372 (1)	
Gold	242	76.8	.00393 ${ }^{\text {c }}$	2.451 (3)	
Iridium	530	32 6	-	2399 (3)	
Iron, wought	12.00	22-1§	.00625	[0.695 (3)	
Lead . .				1.042 (2)	
Lead . .	$2^{\text {(1) }} 80$	8.5	. 00411	$3 \cdot 860$ (2)	
Magnesium	4.35	38.8	. 00381	0-454 (2)	
Mercury	94-30	1.75	. 00720	$\left\{\begin{array}{l}373 \\ 7 \\ \hline 16 \\ \text { (2) }\end{array}\right.$	
Nickel				746 (1)	
Nickel	11.8	238	00622	1094 (2)	
Platinum Wire (pure)	$110 \dagger$	154	. 00350	$\{1816$ (4)	
				36	
" annealed	8.98 ${ }_{+}$	-	. 00247	-	
Silver	$1 \cdot 66$	1036	00377	4025 (1)	
Tantalum	145	$10 \cdot 2$	00330	$1 \cdot 350$ (5)	
Thallium	17.6	$0 \cdot 6$	00400	254 (3)	
Tin	11.3	140	00440	1 1-109 (4)	
	113	140	0040	(2.219 (2)	
Tungsten	50	336	00510	3431 (2)	
Zinc	6.10	314	00370	1.219 (2)	

[^7]TABLE XXX.
Tensile Strenoti, Modolos of Elasticity, and Tiermal Conductivity.

Metal.	Tensile Strength, lbs. per sq. in.	Modulus of Elasticity. lbs. per sq. in	Thermal Conduclivity, cal. per cm^{3} per ${ }^{\circ} \mathrm{C}$. per sec.
Aluminium, H.D. wire	24,000 to 33,000	10,000,000	0.51
Antimony	-	-	0044
Bismuth .	-	-	0019
Cadmium		-	$0 \cdot 22$
Copper, H.D. wire	55,000 to 63,000	18,000,000	0.89
Gold, wrought	20,000 to 30,000	8,000,000	0.70
Iron, cast	19,500	16,000,000	0095
, wrought	50,000 to 80,000	29,000,000	- 167 to 207
Lead ..	1,800 to 2,500	720,000	0084
Magnesium	20,000 to 30,000	-	0.37
Mercury	-	25,000 000	0015
Nickel	40,000 to 85,000	25,000,000	014
Platinum, wrought	30,000 to 50,000	24,000,000	0.16
Silver, wrought . .	40,000 to 45,000	!,800,000	1.10
Steel, wire	50,000 to 300,000	30,000,000	0108
Tantalum	130,000	,-500,00	-
Tin, cast	5,000	3,500,000	0.15
Tungsten, wire	600,000	, -	
Zinc, sheets	16,000	13,400,000	0.26

TABLE XXXI.

Composition, Melting Points, Specific Gravities, Whights rer Cubic Foot, and Cubic Inch of Various Alloys.

 Alloy.

TABLE XXXII.
Specifyc Gravities and Weights of Various Matering. Specific Gravity $\times 62.28=$ weight of cubic foot in lbs.

Substance.	Specific Gravity.	Weight of a cubic foot. lbs.	Substance.	Specific Gravity.	Weight of a cubic foot. lbs.
Acid, acetic. .	106	66	Ivory ..	1.83	114
, oxalic..	1.64	102	Lignum vite Lime, quick		
, fluoric	1 -50	93		133	83
" hiydro-	$1 \cdot 20$	75		843	53
", nitric..	1.22	76	Mahogany. Spanish		
, sulphuric	1.85	115		86	531
Air 001293	-08072	Marble ..	$2 \cdot 72$	169
Alcohol, pure ., proof 50%	79	49	Mica	2.80	- 174
- pralcohol	. 93	58	Naphtha ..	85	53
Amber	1.08	67			
Asbestos, starry	307	191	Oak, English Oil, linseed	70-104 .94	43-64 59
Ash, European	-52-95	321-59	, olive ..	. 915	57
Asphaltum ..	$\cdot 91$	57			
.. ..	165	103	Petroleum Pine, yellow	. 89	551
				- 50	32
Beeswax	97	60	Plaster of Paris	1-18	73
Benzine	S3	51 k	Plumbago ..	210	131
Boxwood . .	1-8	80	Porcelain ..	$2 \cdot 30$	143
Carbon, retort	350	219	Quartz	$2 \cdot 66$	166
Chalk	2.50	156			
Cork	24	15	Red-leadResin	8.94	557
				109	68
Ebony	1.21	$75 \frac{1}{4}$	Sand	190	118
Emery	400	249	Slate	2.8	174
			Spermaceti	. 94	ธ3
Jir, Spruce . .	$\cdot 35-60$	213-37 ${ }^{1}$	Spirit, rectified 95% alcohol	- 82	51
Glass, Crown	249	155			
, flint..	3.078	192	Talc ..	$2 \cdot 7$	168
", optical	$3 \cdot 45$	215	Tallow	94	59
, window	$2 \cdot 64$	164	$\begin{array}{ll}\text { Tar . } & \\ \text { Teak }\end{array}$	1.02	64
Gutta percha	. 98	61		-62	38 ¢
Gypsum ..	2-17	135	Turpentine..	. 87	54
Horn	$1 \cdot 69$	105	Water	1.00	62
				1.03	64
Ice . . India rubber, pure	-92	57	Walnut, English	-63-.71	39-44
	. 93	58			

TABLE XXXIII.
Mean Coefficients of Linear Expansion of Solids.*
$\left(l=l_{a}(1+a \quad l)\right.$, where $a=$ the coeff. of linear expansion. The coefficient of cubical expansion $=32$).

Substance.	Coeff. of exp. (a) per ${ }^{\circ}$ C. $\times 10^{6}$	Suhstance.	Coeff. of exp. (a) per ${ }^{\circ} C . \times 10^{6}$	
Aluminium	25.5	Phosphor Bronze, 96.6		
Antimony	120	Cu. 2 Sn .02 P . ..	16 s	
Bismuth	$15 \cdot 7$	Plntinum-Iridium, 10 Ir.	S. 7	
Carbon (graphite)	7.9	Platinum-Silver, 33 Pt .	150	
Cadmium .	28.8	Solder, 2 Pb . $1 \mathrm{Sn} ., 50^{\circ} \mathrm{C}$.	250	
Cobalt	123			
Copper	16.7	Miscellaneous.		
Gold	139	Cement and Concrete	10 to 14	
Iridium	6.5	Ebonite	tit to 77	
Iron (cast)	102	Glass .	5.7 to 9.7	
", (wrought)	11.9	Gutta-Percha	198	
Steel	10.5 to 11.6	Ice, 10° to $0^{\prime \prime}$	$50 \cdot 7$	
Lead	$27 \cdot 6$	Marble, white Carrara,		
Nickel	12.8	$15^{\circ} \mathrm{C}$.	$1+$ to 35	
Palladium	11.7	Paraffin Wax, $0^{\circ}-40^{\circ} \mathrm{C}$.	c. 110	
Platinum	$8 \cdot 9$	Porcelain ..	25 to 34	
Selenium, $40^{\circ} \mathrm{C}$.	368	Quartz (crystal), \|	axis	7.5
Silver	18.8	,", ", $\frac{1}{}$ nxis	137	
Tin	214	Silica (fused), $0^{\circ}-30^{\circ} \mathrm{C}$.	$0 \cdot 42$	
Tungsten, $27^{\circ} \mathrm{C}$.	4.4	" \quad, $0^{\circ}-100^{\circ} \mathrm{C}$.	0.50	
	$7 \cdot 3$	". $\quad 0^{\circ}-1000^{\circ} \mathrm{C}$.	0-54	
Zinc	$26 \cdot 3$	Slate		
Alloys.		Woods.		
Brass, 66 Cu .347 n . ${ }^{\text {a }}$	189	Becch (along grain)	c. 3	
Bronze, 32 Cu .2 Zn .5 Sn .	17.7	, (across grain)	c. 60	
Constantan	170	Oak (along grain) .	c. 5	
Duralumin	22.6	Mahogany (along grain)	c. 3	
German Silver, 60 Cr.		Pine" (across grain)	c. 40	
$15 \mathrm{Ni} .25 \mathrm{Zn} .,\left(50^{\circ} \mathrm{C} .1\right.$	184	Pine (along grain) ..	c. 5	
Gunmetal (Admiralty)	18.1	, (across grain) .-	c. 34	
Nickel Stcel, 10\% Ni.	130	Ash (along grain) .-	c. 9	
," ", 20\% Ni.	19.5	Maple and Walnut		
" " $360 \% \mathrm{Ni}$.	120	(along grain)	c. $\begin{array}{r}6 \\ \text { c. } 48\end{array}$	
", ", 36 Ni . (Invar) \dagger	$0 \cdot 9$	Do. (across grain)	c. 48	
., " $40 \% \mathrm{Ni} . .$.	6.0			

[^8]
Fusible Alloys.

Fusible alloys, having a melting point below $100^{\circ} \mathrm{C}$. are made by melting together lead, tin, bismuth, and cadmium. The melting points of these metals are :-

Lead	\cdots	\cdots	$327^{\circ} \mathrm{C}$.
Tin	\cdots	\cdots	$232^{\circ} \mathrm{C}$.
Bismuth..	\cdots	$268^{\circ} \mathrm{C}$.	
Cadmium	\cdots	$320^{\circ} \mathrm{C}$.	

The following table shows the composition of some fusible alloys and their melting points :-

TABLE XXXIV.
Fusible Alloys.

Alloy.	$\begin{gathered} \text { Lead } \\ \% \end{gathered}$	$\underset{\%}{\operatorname{Tin}}$	$\begin{gathered} \text { Bismuth } \\ \% \end{gathered}$	$\underset{\%}{\text { Cadmium }}$	Melting Point ${ }^{\circ} \mathrm{C}$.
Wood's	25	$12 \cdot 5$	50	12.5	65
Lipowitz's . .	27	13	50	10	65
FusibleAlloy	27.5	10	27.5	$34 \cdot 5$	75
". ${ }^{\text {a }}$	25	50	50	25	86
Lichtenberg's	30	20	50	-	91
Arcet's . ${ }^{\text {a }}$	25	25	50	-	94
Rose's	28	24	48	-	95
Newton's ..	312	18.8	50	-	94
Eutectic of	32	16	52	-	96

TABLE XXXV.

Thermal Resistivity of Various Metals, Mineral Substances, Insulating Materials, Liquids, Gases, etc.

Note:-
t watt $=0.2390 \mathrm{~g}$-cal. per sec.
B.Th. U $=252 \mathrm{~g}$-cal.

1 g-cal. -0.00397 B.Th. U.
1 B. Th. U. \Rightarrow ross watt-sec,

1 g-cal. $=4 \cdot 184$ watt-sec.
Ta transverse.
$\mathrm{L}=$ longitudinal
TABLE XXXVI- Pilysical Propertifs of Resistance Materials,
ohms per in. ${ }^{3}=0.394$ ohms per $\mathrm{cm} .^{3}$
ohms per circular mil foot $=0.02 \times$ microhms per cm^{3}
ohms per square mil foot $=4.73 \times$ microhms per $\mathrm{cm} .^{3}$

Name of Material	Approximate Comprsition	Sp. Resistance		Temp Coeficicoit per ${ }^{\circ} \mathrm{C}$.	Cocff of Expansion PCr ${ }^{\circ} \mathrm{C}$.	Tensile Streneth tons per 39. in.	Melling pornt ${ }^{\circ} \mathrm{C}$.	Specifie Heal	Spercifir Gravil)	Maximum Working Temper.sfure ${ }^{\circ} \mathrm{C}$.	
		Microhms per cm^{3}	${ }^{a t}$								
* Brightray tCromaloy IV	$80 \mathrm{Ni} ; 20 \mathrm{Cr} .$	$\begin{aligned} & 103 \\ & 100 \end{aligned}$	16	00019 000083 (average)	-00015		$\begin{aligned} & 1375 \\ & 1380 \end{aligned}$	$0 \cdot 106$	8.35	1100	
			20					-	B. 35	1100	
- Redray .	$85 \mathrm{Ni} ; 15 \mathrm{Cr} . .$.	93	16	-000253	-000015	55	${ }^{13} 80$	$0 \cdot 108$	$8 \cdot 28$	1000	
\dagger Cromaloy III	"	93	20	-0001 2 (average)	-		${ }^{1380}$	-	8.25	1050	
\&Kroniore	$\begin{aligned} & \mathrm{Ni} \cdot \mathrm{Cu} \\ & \mathrm{Bo} \mathrm{Ni} ; 15 \mathrm{Cr} \text {; } \\ & 5 \mathrm{Fe} \end{aligned}$	90	20	$\begin{gathered} \text { (average) } \\ \text {.000186 } \end{gathered}$	$\overline{-N}_{000164}$	47	1400	$-$	$\begin{aligned} & 8: 5 \\ & 8: 27 \end{aligned}$	1100	
- Cilowray		100	16	. 000.42		47				800	
\uparrow Cromaloy 11	" \# .	110	20	00012 (average)	-	-	-	-	B-15	1000	
\ddagger Nichrome	$\mathrm{Ni}-\mathrm{Cr}-\mathrm{Fc}$	100	24	,0017	-	-	1480	-	8.15	1000	
l\|Nickel Chrome			15	000.12 0007 r		47	8550	-	8.15	1000	
*Dulray .		87	16		0000071	43	1490-	0.113	8.13	500	
¢No. 193 Alloy	$\mathrm{Ni}-\mathrm{Fe}-\mathrm{Cr}$	8784	24	$\begin{aligned} & 00072 \\ & 00076 \end{aligned}$	-	-			8.1378.13	650400	
- Ferrozoid	$30 \mathrm{Ni} ; 70 \mathrm{Fe}$		16		.0000071	42	1490	0.113 0.098			
*Ferry	$40 \mathrm{Ni}, 60 \mathrm{Cu}$	48	16	-000022 $0000: 8$	$\begin{gathered} 0000146 \\ - \end{gathered}$	39	1250		$8 \cdot 9$$8 \cdot 9$	$\begin{aligned} & 300 \\ & 550 \end{aligned}$	
! Advance		49	24				-	0.098 -			
\\|Eureka	$\underset{40}{70 \mathrm{Ni} ;} 26 \mathrm{Cu} ;$		15	-0000:2	.0000144	40	1250	$0 \cdot 10$	$8 \cdot 9$	300	
Constantan											
*Corranil .											
			16	. 00056	-00004 4	$40 \cdot 7$	1400	$0 \cdot 106$	8.8	500	

TABLE XXXVII.
Comparison of Wire Gadees.

No.	American or Brown \& Sharme's	Olil Ens lish or Loudon	Hirmınghain or Stubs	$\begin{aligned} & \mathrm{W} \text { \& M. } \\ & \text { and } \\ & \text { Roebling } \end{aligned}$	$\begin{gathered} \text { New } \\ \text { British } \\ \text { Standard } \end{gathered}$	U.S. Standard
0000	460	454	+54	393	. 400	406
000	40964	425	425	362	372	375
00	36480	380	380	331	348	344
0	. 32495	340	340	307	324	313
1	28930	300	300	283	300	281
2	25763	284	284	263	276	266
3	22942	259	259	244	252	250
4	20431	238	236	225	232	234
5	18194	220	220	207	212	219
6	. 16202	203	203	192	. 192	203
7	14428	180	180	177	176	188
8	12849	. 165	165	162	160	. 172
9	11443	148	148	. 148	144	156
10	. 10189	134	134	. 135	128	. 141
11	. 09074	. 120	120	. 120	. 116	125
12	08081	. 109	. 109	105	104	109
13	07109	. 095	095	092	. 092	0938
14	06408	083	. 083	080	080	0781
15	.05706	072	. 072	072	. 072	. 0703
16	. 05082	065	. 065	. 063	064	. 0625
17	. 04525	058	. 058	054	. 056	. 0563
18	. 04030	049	. 049	. 047	. 048	0500
19	. 03589	040	042	041	. 040	. 0438
20	. 03196	035	035	. 035	. 036	0375
21	. 02846	. 0315	032	032	. 032	. 0344
22	. 025347	. 0295	. 028	. 028	. 028	0313
23	. 022571	. 027	025	025	. 024	. 0281
24	. 0201	025	022	. 023	. 022	0250
25	. 0179	. 023	020	020	. 020	. 0219
26	. 01594	. 0205	. 013	. 018	. 018	. 0188
27	. 014105	. 01875	016	. 017	. 0164	. 0172
28	. 012641	0165	014	016	. 0148	0156
29	011257	. 0155	013	015	. 0136	0141
30	010025	01375	012	014	. 0124	0125
31	. 008928	. 01225	. 010	. 0135	. 0116	. 0109
32	. 00795	. 01125	009	. 013	. 0108	. 0102
33	00708	01025	008	. 011	. 010	. 0094
34	0063	0095	007	010	. 0092	0086
35	. 00561	. 009	005	. 0095	. 0084	0078
36	005	0075	. 004	. 009	. 0076	0070
37	00445	. 0065 0085	. 0068	0066
38	. 003965	. 00575	008	. 006	. 0063
39	003531	. 005 0075	. 0052*
40	. 003144	. 0045		007	. 0048

TABLE XXXIX.
Weights in Grains fer Yard of Standard Annealed Copple Wires.

Diameter.	Weight.	Diameter.	Weight.
Inch. 00010	Grains per yard. 0.06358 0095	Inch. 0.0072	Graine per yard. 3.296
00012	0.00358 009156	0.0076	$3 \cdot 296$ 3672
$0-0014$	$0 \cdot 1246$	0.0080	4069
00018	$0 \cdot 1628$	0.0084	4.486
$0 \cdot 0018$	0.2080	0.0088	4.924
0.0020	02543	0.0092	$5 \cdot 381$
0.0022	$0 \cdot 3077$	0.0096	5.860
0.0024	$0 \cdot 3662$	0.0100	6.358
0.0026	$0 \cdot 4298$	0.0104	6.877
0.0028	0.4985	00108	7-416
0.0030	0-5722	0.0112	7.976
0.0032	0.6511	0.0116	8.555
00036	0.8240	0.0120	9156
0.0040	1.017	0.0124	9•776
0.0044	$1 \cdot 231$	0.0130	1074
0.0048	1.465	0.0136	11.76
0.0052	1.719	0.0142	12.82
00056	1.994	0.0148	13.83
00080	2.289	0.0156	15.47
00064	2.604	0.0164	$17 \cdot 10$
00068	2.940	00172	18.81
		0.0180	20.60

Bare Annealed Copper Wire.

The following has been extracted from British Standard Specification No. 128 (1922):-

Note.-See also B.S.S. No. 7 for Insulated Annealed Copper Conductors for Power and Light, Vol. I.
(a) International Standards of Resistance for Copper.

The following Standards have been fixed by the International Electrotechnical Commission :-
(i) At Ω temperature of $20^{\circ} \mathrm{C}$. the resistance of Ω wire of standard annealed copper one metro in length and of a uniform section of one square millimetre is $1 / 58$ ohm (0017241 .. ohm).
(ii) At a temperature of $20^{\circ} \mathrm{C}$. the density of standard annealed copper is 8.89 grammes per cubic centimetre.
(iii) At a temperature of $20^{\circ} \mathrm{C}$. the "constant-mass " temperature coefficient of resistance of standard annealed copper, measured between two potential points rigidly fixed to the wire, is $0.00393=1 / 254 \cdot 45 \ldots$. per degree C. (and at 60° ㅎ. is $0.0022221=1 / 450.025 \ldots$ per dogree F.)
(iv) As a consequence, it follows from (i) and (ii) that at a temperature of $20^{\circ} \mathrm{C}$. the resistance of a wire of standard anncaled copper of uniform section one metre in length and weighing one gramme is $(1 / 58) \times 8.89$ $=0.15328$. . ohm.

(b) Coefficient of Linear Expansion of Standard Annealed Copper.

The coefficient of linear expansion of standard annealed copper, between $60^{\circ} \mathrm{F}$. ($15 \cdot 6^{\circ} \mathrm{C}$.) and $68^{\circ} \mathrm{F}$. ($20^{\circ} \mathrm{C}$.) is 000000944 per ${ }^{\circ} \mathrm{F}$. $(0.0000170$ por $1^{\circ} \mathrm{C}$.)
(c) Density of Standard Annealed Copper at $60^{\circ} \mathrm{F}$.

The density of standard annealed copper at a temperature of $60^{\circ} \mathrm{F}$. is S.892015, and the weight of one cubic foot of copper 555.1108 lbs .
(d) Resistance of a Conductor at $60^{\circ} \mathrm{F}$.

For the purpose of calculating Table XXXVII the resistance of a conductor of standard annealed copper at $60^{\circ} \mathrm{F}$., 1,000 yards in length, and of a uniform cross-sectional area of one square inch, has been taken as 0.0240079 ohm.
(e) Constant for ascertaining the Sectional Area of a Wire from the Weight per Yard.

The constant for ascertaining the sectional area, expressed as a part of a square inch, from the weight in grains por yard of a plain wire can be taken na 0.000012353 .

(f) Constants for converting Values from British to Metric Measure.

The following constants, being the Board of Trade legal values, havo been adopted in the preparation of tables below :-
$1 \mathrm{inch}=2.54$ centimetres.
7,000 grains $=453 \cdot 592$ grammes.
1 grain $=0.0648$ grammes.
$15 \cdot 432$ grains $=1$ gramme.
The following constants are based on these :-
1 ohm per 1,000 yards $=1.09361$ ohms per kilometre.
1 lb . per 1,000 yards $=0.496055 \mathrm{kgs}$. por kilometre.
(g) Deflnition of Annealed Wire.

The term " annoaled " shall imply a wire which will satisfy the following requiroments:-

A sample wire of 10 inches long shall be slowly and steadily stretched, and shall show without fracture a nimimum elongation as follows :00076 inch diameter and under 15 per cent. Above 00076 to 0020 inch diameter .. 20 per cent. A bove 0020 inch diameter 30 por cent.

(h) Formulæ for calculating Resistance of Wires.

The resistance of a plain standard annealed copper wire at a temperature of $60^{\circ} \mathrm{F}$. is $\frac{1943 \cdot 53}{\mathrm{~W} \text {. }}$ ohms per 1,000 yards. The resistance of a tinned wire at n temperature of $60^{\circ} \mathrm{F}$. from 00076 inch diameter up to and including 0.036 inch diameter is $\frac{1982 \cdot 40}{\mathrm{~W} .}$ ohms per 1,000 yards; and the resistance of a tinned wire 0038 inch diameter and nbove is $\frac{1962.97}{11}$ ohms per 1,000 yards.

The value of the denominator (W) in each of the above vulgar fractions is the weight por yard, in grains, of the wiro under test.

The weights per yard in grains of wires from 00010 to 0.0180 inch diameter are given in Table XXXIX.

Ixxii
TABLE XXXVIII.
Britisir Standard Sizes of Ansealed Copper Wires,

$\begin{gathered} \text { Super- } \\ \text { seded } \\ \text { S.W.G. } \\ \text { Size. } \end{gathered}$	Standard Diametcr.		Calculated Sectional Area.		Weight per 1,000 yards. Pounds.	Standard Resistance at $6^{\circ} \mathrm{F}$,		Curgent ratims Amperes (a)	
	Inch,	$m m$.	Square Inch.	Square mim.		$\begin{aligned} & \text { Per } 1000 \text { yds } \\ & \text { Ohms. } \end{aligned}$	Per it 	1.000 pc So In.h	I.I.E.
50	0010	0254	. 0000007854	0005067	009083	30568	3365000	0007	
49	. 0012	-0305	. 0000011310	$\cdot 10072!7$	-013079	21230	1623000	.0011	
	-0014	. 0356	-0000015394	- Ooron932	-017803	15596	876000	-0015	
48	- 0016	. 0406	. 000002011	-0012972	. 02325	11941	513500	0020	
	-0018	. 0457	-000002545	. 00016417	-02943	9+35	320600	-0025	
47	. 0020	. 0508	. 000003142	-002027	.03633	76.12	210300	.0031	
	. 0022	. 0559	-000003801	. 002452	-04396	6316	$1,13{ }^{\text {t } 60}$.0038	
46	0024	. 0610	. 000004524	. 002919	. 05232	5307	101440	0045	
	. 0026	. 0660	. 000005309	-0n3425	-06r 40	4522	73650	-0053	
45	-0028	. 0711	-000006158	- 003973	.07121	3599	54750	. 0061	
	-0030	.0762	-000007 (ryy	-004560	-05175	3.396	11550		
44	. 0032	. 0813	-000008042	005189	. 09301	2985	32090	0080	
43	. 0036	-0914	. 000010179	. 006567	11752	2359	20010	-0101	
42	. 0040	. 1016	. 000012566	. 008107	- 14533	19105	13146	0125	
41	. 0014	-1118	-000015205	-0098I0	-17585	15789	8979	. 0152	
40	0048	- 1219	. 000018096	011675	. 2093	13267	6430	0180	
39	-0052	$\cdot 1321$	-00002124	. 013701	2456	1130-5	4603	- 0212	
	-0056	-1422	-00002463	-0r5890	-2848	9747	3422	-0246	
38	.0060 .0064	.1524 .1626	. 000002827	. 018241	.3270 .3720	8491 $746-3$	2597	. 0282	

			¢5 ¢ల	艮へすが	잉 ¢¢0ㅇㅇㅇㅇ
		¢్లnd		®osio	๙

8． 8
앙 いが范

Nore．－The sizes printed in heaty type are Primary Slandard Sizes recommended for adoption whenever possible．
The sizes printed in ordinary typ：are Secondary Standard Sizes to which prelerence should be given when Primary sizes do not meet
The sizes printed in italies are not recommended for general use

03575
03924
04289
04670
05067 근 숭

06818这 o

N 숭劄送 $\stackrel{\circ}{4}$ － 18292 00003632 00004072 00004536 00005027 00005542 0000605_{2} 00006648 00007238 00007854 00008495 00009161 －00009852 00010568 00011310
00012076 －00013273 00014527 80～ －000191IJ 0002112 NH .0002835

（Continued on next page．）
TABLE XXXVill-Britisit Standatd Slzes uy Annealid Copper Wires- (continued).

$\begin{aligned} & \text { Super- } \\ & \text { seded } \\ & \text { S.W.G. } \\ & \text { Size. } \end{aligned}$	Standard Diumeter.		Calculated Sectional Area,		Wcight per 1,000 yards. Pornils.	Stanaurd Resistance at $60^{\circ} \mathrm{F}$.		Current raling Ampora B	
	fuch.	mm_{1}	Square Inch,	Square min		$\begin{gathered} \text { Pcr } 1000 \mathrm{yds} \\ \text { Ohms. } \end{gathered}$	$\begin{aligned} & \text { Por } 16 . \\ & \text { Oems. } \end{aligned}$	$\begin{aligned} & 1,000 \text { per } \\ & \text { Sq. Inch. } \end{aligned}$	I.E.E.
25	020	5080	-0003142	. 2027	3633	7642	21.03	3142	
	. O 21	-5334	-0003464	. 2235	4006	$69 \cdot 31$	17305	3.66 .4	
24	. 022	5588	0003801	2453	4396	B3 16	14366	3801	
	. 023	58.42	-0004155	-2680	+805	$57 \% 8$	12.026	4555	
23	. 024	. 6090	.0004524	2919	5232	53.07	10144	4524	
	. 025	6350	0004909	-3167	5677	$48.9 r$	8615	4909	
	. 026	6604	-0005369	-3425	6140	45-22	7365	5309	
	. 027	6858	-0005726	- 3964	6-62I	41-93	6.333	5726	
22	028	7112	0006158	3973	7121	38.99	5475	6158	25
	-0:9	-7366	. 0006605	- 4261	7639	36-35.	4758	6605	
	-030	7620	-0007069	4560	$8-175$	3390	4155	'7069	
21	-032	. 8128	. 000 S042	5189	9301	29 S5	3209	S042	33
	-0.3.	.8636	-0009079	5858	10.500	26.4	2.518	. 9079	
20	. 036	9144	0010179	6567	11.772	2359	2004	10179	40
	.038	. 9652	00113+1	-7313	13.116	$21 \cdot 17$	r 6140	I. 1341	
19	. 040	10160	. 0012566	. 8107	14.533	19-105	13146	$1 \cdot 2566$	53
	.0.42	I 0668	. 0013854	. 9938	16.023	17.329	1.0815	1.3854	
	-0.4	I-1I76	-0015205	-9810	I7.585	15.789	3978	1 5205	
	. 0.46	I 1684	, 0015610	1.0732	19.220	$1+46$	7516	I. 6619	
18	. 048	12192	. 0018096	1.1675	20.93	13.267	6340	18096	72
	. 050	I-2700	-0019635	1.2663	23-7T	12-227	${ }^{5} 3$ S 5	1.9635	
	. 052	I-3208	.002124	1.3701	24.56	11.305	4603	2.124	

17	.054 .056	1.3716 1.4224	.002290 .002463	1.4776 15890	26.49 28.48	10.483 9.747	$\begin{array}{r} -3958 \\ 3422 \end{array}$	$\begin{aligned} & 2290 \\ & 2463 \end{aligned}$	98
	. 058	I.4732	.002642	I 7046	30.56	9.057	2974	2642	129
16	. 060	1-5240	-002S27	1.8241	$32 \cdot 70$	S fl_{1}	2597	2.827	
	. 084	1.6256	. 003217	20755	3720	7463	2006	3217	
	. 068	I.7272	.003632	2.3430	42.00	6.611	$15 \% 40$	3.632	
15	.072	1.8288	. 004072	26268	47.09	5897	-12523	4.072	163
	.076	1.9.304	. 00.4536	20267	$52 \cdot 46$	5212	10087	4.536	
14	. 080	2.0320	. 005027	32429	5813	4776	. 08216	5027	19
	. 084	$2 \cdot 1336$.005542	35753	64.69	4332	. 06760	5.542	
13	. 088	$2 \cdot 2352$	-006082	39239	70-3-1	39.47	.05612	60.9	23
	. 092	2.3368	. 006648	42888	76.88	3612	. 04698	60.13	
	.096	$2 \cdot 438$ +	. 007238	46698	83.71	3.317	. 03962	7-338	
	- 100	2.5400	. 007854	5.0671	90.83	$3 \cdot 057$.03365	7.854	
12	104	2.6416	. 008495	54805	9824	2826	. 02877	8495	28
	. 108	$2 \cdot 7432$.00916I	59102	10594	$2 \cdot 62 I$. 02.174	9161	
	II2	2.8448	-009852	6.3561	11394	2347	.02739	9.852	
11	. 116	2.9464	-010568	6.8183	12929	2972	.018587	10.568	32
	-120	3.0780	. O11310	72966	13079	$2 \cdot 123$. or6230	11.310	
	-12.4	$3 \cdot 1496$.012076	7-7911	139.66	I. 9850	- OI +2, 35	12.076	35
10	- 128	$3 \cdot 2512$	- 012868	83019	14882	1.8657	. 012537	12868	
	-132	$3 \cdot 3528$. OI 3685	8.8289	158.26	1.7514	. O110S5	13.685	
	- 136	3'454-4	-OI 4527	93721	168.00	1.6527	. 009837	14.527	
	- 170	$3 \cdot 5560$	-OI 5394	99315	178.03	15596	.008-60	15.394	
9	. 144	3.6576	. 016286	105071	$1883+$	$1+741$.007827	16286	38

Nore. - The sizes printed in heavy type are Primary Slandard Sizes recommended for adoption whenever possible.
(Continued on next page.)
Table XXXVIII-Brtish Standard Stzes of Annealed Copper. Wires.-(continued),

$\begin{aligned} & \text { Supor- } \\ & \text { seded } \\ & \text { S.W.G. } \\ & \text { Size. } \end{aligned}$	Standard Diamelir.		Calculated Sectional Arca.		Weight per 1,000 yards. Pounds.	Standard Resistunce at $60^{\circ} \mathrm{F}$.		Current rating Amperes @	
	1 nch 0	mın	Square Inch.	Square mm,		$\begin{gathered} \text { Fer } 1000 \mathrm{yds} . \\ \mathrm{Ohms} . \end{gathered}$	$\begin{aligned} & \text { Per ib } \\ & \text { Ohms } \end{aligned}$	$\begin{aligned} & \text { 1,000 per } \\ & \text { Sg Inch. } \end{aligned}$	IEEE.
	$\cdot 14 *$	$3 \cdot 7592$	017203	IT.0989	198.95	I'3955	2007014	17.203	
	-152	3.8605	-OT8146	IT.7070	209 ?	I 3231	. 006305	18.1.46	
8	100	40640	02011	12.9717	2325	11941	005135	2011	44
	-158	42672	. 022217	14.3013	256	1.0830	-004225	22.17	
7	$\cdot 176$	$4 \cdot 4704$	02433	15.6958	2 SI 4	9868	-003507	$24 \cdot 33$	48
	- 84	4.6736	-02659	17.1551	30-5	'9029	. 0029.36	26.59	
6	-192	4.8788	02895	18.6792	334.8	8292	002476	2895	53
5	212	5.3848	03530	22.7134	408.2	6801	0016661	3530	60
4	232	$5 \cdot 8928$	04227	272730	4889	5679	0011617	42.27	65
3	- 252	64008	01988	32-1780	576.8	4814	0008345	4988	74
2	276	7.0104	05983	385990	691.9	4013	0005800	5983	83
1	300	7.6200	0;069	40.6037	817.5	-3396	0004155	7069	92
1/0	324	8.2296	08245	53.1921	9535	2912	0003054	82.45	102
2/0	348	8.8392	09511	$61 \cdot 3643$	11000	2524	0002295	$95 \cdot 11$	114
$3 / 0$	-372	9.4488	10869	70.1202	$1256 \cdot 9$	2209	00017574	10869	123
$4 / 0$	400	$10 \cdot 1600$	- 12566	81.0732	$1453 \cdot 3$	-19105	00013146	$125 \cdot 66$	135
$5 / 0$	432	10.9728	- 14657	94.5638	16951	-16379	-00009663	14657	150
$6 / 0$	4 4 4	11.7856	-16909	109.0921	1955.5	14198	-00107260	16909	165
$7 / 0$	500	12.7000	-19635	126.6769	22710	-12227	. 00005385	196.35	178

[^9]
TABLE XL.

American Wire Tables. Detals of Standard American Bare Annealed Copper Strande.*

B. \& 5 riauge.	Circular Mills (nominal).	Number and Diameter (in inches) of Wires in Serand.	Diam-eter of Strand. Inches.	Weight in lbs.		Resistance (obms) at $60^{\circ} \mathrm{Fah}$.	
				$\begin{aligned} & \text { Per } 1,000 \\ & \text { feet. } \end{aligned}$	Per mile.	$\begin{gathered} \text { Per } 1,000 \\ \text { fect. } \end{gathered}$	Per mile.
-	2000000	127/-125	1625	6117	32300	0005250	002772
	1750000	91/139	1529	5417	28600	0005924	0.03128
-	1500000	91/-128	1.408	4602	24300	0.1014987	003689
	1250000	91/117	1.287	3839	20270	0008367	0.04412
	1000000	91/105	1. 155	3097	16350	001038	0.05480
-	950000	91/-102	1.122	2917	15400	001100	005817
-	800000	91/-100	$1 \cdot 100$	2807	14820	001145	0.06044
-	850000	61/118	1.062	2619	13830	001227	0.06477
-	800000	61/114	1.026	2447	12920	001314	006940
-	750000	61/111	999	2320	12250	0.01398	0.07380
-	700000	61/107	963	2155	11380	001492	0.07876
-	650000	61/-103	927	1994	10530	0.01610	0.08500
-	600000	61/099	891	1845	9740	001743	009204
-	550000	61/095	. 855	1699	8970	001893	009994
-	500000	37/-116	. 812	1527	8060	002074	0-1095
-	450000	37/110	.770	1371	7240	002292	0.1210
-	400000	37/-104	728	1227	6480	002581	0.1363
-	350000	37/097	679	1066	56311	0.02966	0.1566
	300000	37/090	630	918.6	4850	003443	0.1818
	250000	37/082	574	$762 \cdot 1$	4024	004152	$0 \cdot 2192$
0000	211600	19/105	525	642.0	3390	0.05174	0.2732
000	167772	19/094	470	513.3	2710	0.06149	0.3247
00	133079	19/084	420	4100	2165	007703	$0 \cdot 4067$
0	105625	19/075	375	327.6	1730	009661	0.5101
1	83694	19/066	330	253.8	1340	0.1247	0.6586
2	66358	$7 / 097$	291	201.5	1064	$0 \cdot 1566$	0.8272
3	52624	$7 / 087$. 261	$162 \cdot 1$	856	0-1947	1.028
4	41738	$7 / .077$	231	127.3	672	0.2487	1.313
5	33088	$7 / 069$	207	101.9	538	0.3096	1635
6	26244	7/061	183	79.74	421	0.3960	2.091
8	16512	$7 / 048$	144	49-33	260.5	06398	3378

Hard-drawn strands will have a resistance 2% higher than above.
Weights may vary 2% up or down.
Resistance may vary 2% up.
Note.-A Circular Mil is a unit of area equal to the area of a circle 1 mil in diameter. Such a circle bas an area of $0.7854\left(\frac{\pi}{4}\right)$ square mil. Hence 1 circular mil equals 0.7854 sq. mil. A wire 10 mils in diameter has a cross-sectional area of 100 circular mils, or 78.54 square mils.

[^10]
TABLE NLI.

American Wire Tables.

Dimensions, W'oights, ctc., of Pure Soft Copper Wire.

B. \& S. Gauge.	$\begin{aligned} & \text { Diameter } \\ & \text { Anll: } \\ & (d) \end{aligned}$	Anea.		Weight.		Resistance at $60{ }^{\circ} \mathrm{F}$	
		$\begin{aligned} & \text { Circular } \\ & \text { Mils. }\left(L^{2}\right) \\ & 1 . \mathrm{Mil}^{2}= \\ & 001 \mathrm{in} . \end{aligned}$	Sq inclics (diam. in inches) $\times .7854$	$\begin{aligned} & \text { Lbs. per } \\ & 1.000 \mathrm{ft} . \end{aligned}$	$\begin{aligned} & \text { Lbs. per } \\ & \text { Mile. } \end{aligned}$	$\begin{aligned} & \text { Ohms per } \\ & 1.000 \mathrm{ft} \end{aligned}$	Ohms per Mile.
000000	580.0	336400	0.264210	1017	5370	-03034	. 1602
00000	516.5	266772	0-209520	806.6	+259	.03825	- 2020
0000	460.0	211600	0.166190	639 y	3378	-04823	-2547
000	409.6	167772	0.131770	507-3	2678	-06082	. 3212
00	$364 \cdot 8$	133079	0.104520	402.4	2124	-07669	- 4050
0	325.0	105625	0.082958	319.4	1686	. 09661	-5102
1	289.3	83694	0.065733	253.0	1336	- 1219	. 6440
2	257.6	66358	0.052117	$200 \cdot 6$	1059	-1538	-8122
3	229.4	52624	0051331	1591	$840 \cdot 1$	- 1939	1.024
,	$204 \cdot 3$	+1738	0032781	126.2	666.3	2445	1-291
5	181.9	33088	0025987	$100 \cdot 0$	528.2	-3085	1.629
6	162.0	26244	0020612	79.35	419.0	. 3890	2.054
7	14.3	20822	$0 \cdot 016354$	62.96	$332-4$	-4901	2.588
8	128.5	16512	0.012969	+9.92	2636	.6181	3.264
9	114.4	13087	0.010279	39.57	208.9	. 7798	4.118
10	$101 \cdot 9$	10384	00081553	31.39	165.8	-9828	S. 190
11	90-7	8226.5	0.0064611	24.87	$131 \cdot 3$	1.241	$6 \cdot 551$
12	80.8	6528.6	00051276	19.74	104.2	1.563	8.255
13	72.0	5184.0	00040715	15-69	82.78	1.969	10.40
14	64.1	4108.8	0.0032271	12.42	65.59	$2 \cdot 185$	13.12
15	57.1	3260.4	0.0025607	9.8 .58	52.05	3.130	1653
16	50.8	25806	00020268	7.802	41.20	3.956	20.89
17	$45 \cdot 3$	$2052 \cdot 1$	0.0016117	6.204	32.76	4.973	26-28
18	40.3	1624.1	0.0012756	4.910	25.93	6.283	33.18
19	35-9	1288.8	0.0010122	3-897	20.57	7.917	41.81
20	32.0	10240	$0 \cdot 00080425$	3.096	16.35	9.966	52.63
21	28.5	812.25	0.00063794	2.456	12.97	12.56	66.36
22	$25 \cdot 3$	610.09	0.00050273	1.935	10.22	15.95	84.20
23	22.6	510.76	$0 \cdot 00040115$	1.5.4	8.154	19.98	105.5
24	20.1	404.01	000031731	1.222	6.450	25.26	133.4
25	17.9	$320 \cdot 11$	$0 \cdot 00025165$	0.9684	5.115	31.85	168.2
26	15.9	$252 \cdot 81$	000019856	0.7644	4.036	40.37	213.2
27	14.2	201.64	000015837	0.6097	3.219	50.62	267.3
38	12.6	158.76	000012469	$0 \cdot 4800$	2.534	64.29	3395
29	11.3	127.69	000010029	0.3861	2.038	79-74	422.1
30	$10 \cdot 0$	100.00	$0-000078540$	0.3023	1.596	102.1	539.0
31	8.93	79.74	0000062631	$0-2+11$	1.273	128.0	675.9
32	7.95	\&3.20	0000049639	0.1911	1.009	161.5	852.8
33	7.08	50.13	0.000039369	0.1516	0.8002	203.6	1075
34	6.30	39.69	0.000031173	0.1200	0.6336	257.1	1358
35	$5 \cdot 61$	31.47	0.000024718	0.09515	$0 \cdot 502 \downarrow$	324.4	1713
36	5.00	2500	$0 \cdot 000019635$	0.07559	03991	408.3	21.56
37	$4 \cdot 45$	19.80	0.000015553	0.05987	0.3161	515.5	2722
38	3.96	15.68	0.000012316	0.04741	0.2503	$650 \cdot 8$	3437
39	3.53	12.46	$0 \cdot 0000097868$	0.03768	0.1989	818.8	4324
40	3.14	9.86	0-0000077432	0.02981	0.1574	1135.0	5466

TABLE XLII

Aluminium Wirf.

S.W.G. Sizes.

Size of WireS.I'G.	Diam. Ins.	Sectional Area Sq. ins.	Resistance at $20^{\circ} \mathrm{C}$. (hard draien)		Weight		$\begin{gathered} \text { Carrent } \\ \text { for so } \begin{array}{c} \text { pise } \end{array} \\ .4 \text { mos } . \end{gathered}$
			$\begin{aligned} & \text { Ohms per } \\ & 1,000 \text { ft. } \end{aligned}$	Ohms per mile	Lbs. per 1,000 ft.	Lbs. per mile	
7/0	-500	- 196	0.069	0.366	231	1215	212
6/0	-464	- 169	0.080	0.425	199	1050	193
3/0	432	-147	0.092	0.487	173	909	176
410	$\cdot 400$	- 126	0.108	0.570	148.	780	158
3/0	$\cdot 372$	- 109	0.125	0.658	28	674	142
2/0	348	-095 1	0.143	0.755	112	590	129
0	-324	-0825	0.165	0.870	97.0	511	117
1	-300	-0707	$0 \cdot 192$	1.015	83°	43^{8}	106
2	. 276	-0598	9.227	$1 \cdot 20$	70.8	371	94
3	$\cdot 252$	-.0499	0.272	$1 \cdot 44$	59^{-7}	309	83
4	$\cdot 232$	-0423	$0 \cdot 321$	1-70	50.0	262	74
5	$\cdot 212$	-0253	0.385	2.03	4^{1-6}	219	65
6	-192	-02S9	0.470	$2 \cdot 48$	$34^{\circ} \mathrm{O}$	179	57
7	- 176	-0243	0.560	2.96	$28 \cdot 6$	151	50
8	-160	-0201	0.673	357	23.6	125	44
9	-144	-0163	0830	4.40	19.1	101	3^{6}
10	-128	. 0129	105	5.56	15.1	79.8	32
11	+116	- 0106	$1 \cdot 28$	6.77	12.4	65.6	28
12	-104	-00849	$1 \cdot 27$	8.46	10.9	52.7	24
13	-092	-00665	$2 \cdot 04$	10.8	$7 \cdot 8$	41/2	20
14	-080	-00503	$2 \cdot 70$	14.3	5.9	$31^{\prime 2}$	17
15	-072	-00407	$3 \cdot 33$	$17 \cdot 6$	$4 \cdot 8$	25.3	14
16	-064	-00322	4:23	22.3	$3 \cdot 8$	20.0	12
17	-056	-00246	5.50	29.2	2.89	15.3	10
18	-048	-00181	7.50	$39 \cdot 6$	$2 \cdot 13$	11'2	$8 \cdot 1$
19	- 040	-00:26	10.8	57.0	1.48	780	$6 \cdot 3$
20	-036	-00102	133	70.4	1120	6.31	5.4
21	. 032	-000804	16.9	89.3	0.94	$4 \cdot 99$	49
22	-028	-0006:6	22.0	116.5	0.72	382	38
23	-024	-000452	30.0	1590	0.53	2.80	$3 \cdot 1$
24	-022	-000380	35\%	189.0	0.45	$2 \cdot 36$	$2 \cdot 7$
25	-020	$\cdot 000314$	43.4	229.0	0.37	1.95	2.4

The abnve resistances and weights are subject to a variation of 2 per cent.

TABLE XLIIT.

Physical Properties of Atcminium and Copprr.

Chemical Symbol .-	.	Aluminium. A.l.	Copper. Cu
Atomic Weight (oxygen $=16$)	-	27-1	6357
Position in Electro-chemical series	-	14	33
Melting Point ${ }^{\circ}$ Cent.		658	1083
." .. - Fahr.	-.	1216	1988
Specific Heat (water - 1) at $20^{\circ} \mathrm{C}$. cals.		0214	0095
Specific Thermal Conductivity cals. per ${ }^{\circ} \mathrm{C}$. p sq . cm. per cm. per sec.		0504	0895
Approximate Relative Heat Conductivity (silv $=100 \%)$		50	90
Coefficient of Linear Expansion, per ${ }^{\circ} \mathrm{C}$.		-000024	00000167
" ${ }^{\text {n }}$. ${ }^{\text {e }}$.		0.0000133	-000000945
Specific Gravity, rolled or drawn	.	2'71	889
Tensile Strength, Hard Drawn wire (No. 10 s.w.g.), lb. /sq. in.		26,000	50,000
Annealed wire (No. so s.w.g.), Jb. /sq. in.	.	14,000	29,000
Modulus of Elasticity, lb. per sq. in.		$10 \times 10^{\circ}$	17.5×10^{1}
Elastic Limit as percentage of tensile strength		70 per cent.	75 per cent.
Specific Resistance in microhms ger Annealed cm . cube at $20^{\circ} \mathrm{C}$. $\left(68^{\circ} \mathrm{F}\right.$.) ... Hard Drawn		$\begin{aligned} & 2.8159 \\ & 2.8735 \end{aligned}$	$\begin{aligned} & 1.7241 \\ & 17585 \end{aligned}$
Specific Resistance in microhms per, Annealed in. cube at $20^{\circ} \mathrm{C}$. $\left(68^{\circ} \mathrm{F}\right.$.) ... J Hard Drawn		$\begin{aligned} & 1.1086 \\ & 1 \cdot 1313 \end{aligned}$	$\begin{aligned} & 0.6788 \\ & 0.6924 \end{aligned}$
Ohms per metre-gramme at $20^{\circ} \mathrm{C}$.) Annealed ($68^{\circ} \mathrm{F}$.)		$\begin{aligned} & 0.0762 \\ & 0.0777 \end{aligned}$	$\begin{aligned} & 0.1533 \\ & 0.1564 \end{aligned}$
Resistance of solid Conductor, 1,000 . Annealed$\begin{array}{ll}\text { yds. long by } \\ \text { ohms }\end{array}$		$\begin{aligned} & 0.0399 \\ & 00407 \end{aligned}$	$\begin{array}{r} 0.0244 \\ 00249 \end{array}$
Coefficient of increase of Resistance, Per ${ }^{\circ} \mathrm{C}$. with Temperature $\quad . \quad$ S Per ${ }^{\circ}$ F.	\cdots	$\begin{aligned} & 000390 \\ & 000278 \end{aligned}$	$\begin{aligned} & 0.00393 \\ & 0.002221 \end{aligned}$
Weight per 1,000 yds. by isq. in. cross section lb.		3.510	11.520
For H.D. Conductors of equal resistance -			
Ratio of diameters ..	*	1.28	10
Ratio of sectional areas	1.64	10
Ratio of weight-	*	0.50	10
For H.D. Conductors of equal temperature rise-			
Ratio of diameters ..	*	1.18	10
Ratio of sectional areas .-	-	139	1.0
Ratio of weight	-	0424	$1 \cdot 0$

Current Carrying Capacity of Aluminium Conductors.

Flat bars-C $=k \mathrm{~A}^{045} \mathrm{~S}^{05}$
where C is the current in amperes.
A is the sectional area in sq. ins.
S the perimetor in ins.
$k=258$ for a $20^{\circ} \mathrm{C}$. temperature rise, and 329 for a $30^{\circ} \mathrm{C}$. temp. rise.
Round rod- $\mathrm{C}=k \mathrm{D}^{1} 4$
where D is the diameter in ins., and $k=442$ for $20^{\circ} \mathrm{C}$. rise and 563 for $30^{\circ} \mathrm{C}$. rise.
Bare Cable- $\mathrm{C}=k \mathrm{~A}^{0.45} \mathrm{D}^{0.5}$
where A is the effcctivo section of the aluminium in sq. ins. (neg. lecting tho stecl section in π stsol-cored cable), D is tho overall diameter in ins., and $?=493$ for a $20^{\circ} \mathrm{C}$. rise and 626 for a $30^{\circ} \mathrm{C}$. rise.

Speclinc Inductive Capacity.

The Specific Inductive Capncity or Permittivity of n substance is tho ratio of the capacity of n condenser when its plates are separated by this substance, to tho capacity of n similar condenser when its plates are in n vacuum. The S.I.C. is taken as unity for a vacuum, but that of air at atmospheric pressure is very nearly unity, and may bo taken as unity for all practical purposes.

The Specific Inductive Capacity is also called the Dielectric Constant or Dielectric Cocfficient.

The dielectric constant of most dielectrics remains fairly colstant up to frequencies of 10,000 , after which it begins to drop, but in the case of good dielectrics such as ebonite, mica, etc., it varies very little over tho whole range up to $1,000,000$ cycles. In the case of gutta perchn, however, the dielectric constant falls off rapidly at low frequencies, then becoming more constant.

It is essential, in measuring the dielectric constant, to use mercury electrodes so as to eliminate air films.

Sec Tables XLIV. and XIV.

Electric Strength.

Investigations made by the Electrical Research Association have shown that the methods of test, which havo been omployed in the past for tho determination of electric strongth, do not pormit of comparison between different classes of dielectrics, and in consequence no reliable data are at present available. Figures for electric strength would be misleading, and for this reason are not given here.

For comparative purposes it is necessary that tests on the various materia's should be carried out in a standardized manner, and the following conditions must bo specified :-

Temperature, relative humidity, thickness of material, time and manner of application of the potential, size and shape of electrodes.
Tho Electrical Research Association has such a specification under consideration.

For further data, see page 1, Vol. II.

Power Losses in Insulating Materials.

From researehes cneried unt by the American Telephone and Telegraph Co. and the Western Jhectric Co. Inc..* it has been shown that a satisfactory measure of power loss in a dielcetric is the product of plase angle and dielectric constant. In the case of ordinary insulation, where the object is to provide a mechanical support or separator, this product is a true mensure of the energy loss per unit volume. In the case of a condenser, where the object is to obtain a given capacity, the phase difference alone determines the power lose, since in this crese the effect of the smaller volume of dielectric is exactly balanced by the smaller volume of dielectric required. The data in Table XLIV were obitnined by the resistance variation method as given in the Bureat of Standards Circular No. 74, mercury electrodes bring used.

TABLE KLIV.
Dielectric Constant, Phase Dhference and their Product, at Various Frrequrncies.

Muterial.		Frequency Cycles per sce.	Dislectric Constant.	Phase Difforence. Degrees.	Product.
Phenol Fibre A	*	295.000	5-9	29	171
		500.000	5.8	20	168
		670,000	$5 \cdot 7$	29	16.5
		1,040,000	56	33	18.5
Phenol Filire B	-.	100,000	$5 \cdot 8$	22	127
		500,000	56	25	140
		675.000	$5 \cdot 6$	28	$14 \cdot 6$
		975.000	50	28	157
Phenol Filre C	*	200,000	54	21	11.3
		395,00n	$5 \cdot 4$	22	11.8
		685.000	$5 \cdot 3$	23	122
		975,000	$5 \cdot 2$	24	12.5
Phenol Fibre D	\cdots	194.000	54	42	22.7
		500.000	52	39	203
		695.000	$5 \cdot 2$	39	203
		1,0กก,000	5.1	3.8	19.4
Wood (Oak)	*	3C0, 0 co	32	21	6.7
		425.000	33	20	6.6
		635,000	33	22	73
		1.060,000	33	24	79
Wnod (Maple)		500.000	44	19	8.4
Wood (Birch)	.	500,000	52	37	192
Mard Rubber	.	210.000	30	0.5	1.5
		440,000	30	0.5	15
		710,000	30	0.1	1.5
		1.126.000	30	0 O	18
Flint Glass	\cdots	500.000	70	$\bigcirc 24$	1.68
		720.000	70	024	1.68
		800.000	70	023	161
Plate Glass	\cdots	500,000	9.8	04	2.7
Cobalt Glass	\cdots	500.000	73	0.4	$2 \cdot 9$
Pyrex Rilass	.	rnomen	$4 \cdot 9$	ก. 21	1.18

[^11]
TABLE XLV.

Speciptc Inductive Capacity.

Substance	s.i.c.	Substance	s.I.C.
SOLIDS.		LIQUIDS.	
Asphale	2.56	Alcohol, methyl	${ }^{35.4}$
Carcite		\%, ${ }^{\text {amyl } 20^{\circ}}$:	16.0
Carbon		Benzzine $20^{\circ} \mathrm{C}$ C. -.	2.28
Cambric, Varnished	4-5-5-5	Beñol $74{ }^{\circ} \mathrm{C}$.	2.18
	4to 16 $2-3.5$		2.29
	${ }_{2}^{2} 5$	Bromine or	
	4.5-5.5	Carbon Tetrachloride, 18°	2.25
Fiuorite"	6.8	Chlorotorm	$5 \cdot 2$
Glass, common	3-3.25	Ethyl Acetate	
	¢-8	*) Ether a ${ }^{\text {a }}$	80.9
Gütespercha	4	Glycrerine	39
(1) bigh frequescy	246	Nitroberrxine, $7^{\circ}{ }^{\circ}$	34
Gypsum	$6 \cdot 3$	Oil, Castor . ${ }^{\text {a }}$	${ }^{4.8}$
İce (-20 ${ }^{\text {a }}$ C.)	93.9	" Linseed .	${ }_{3}^{3,5}$
Indiarubber pure vulcanized	${ }_{2}^{2 \times 12}$.. ${ }^{\text {Olive }}$ Yarafin ${ }^{\text {a }}$	${ }^{3 \cdot 2}$
.. ${ }_{\text {bard }}$,", Sparm ${ }^{\text {a }}$.	
Ivory". . ${ }^{\text {aru }}$.	6.9	,', Transformer	
Marble	$8 \cdot 3$	Peitroleum Spirit ..	
Mica (Muscovite)	7	Toluenc, $a=00 \mathrm{x}$	${ }^{2.3}$
(amber nornal)	${ }_{6}$	Turpentine, commercial	
Päper, dry siver) ..	${ }_{2}{ }^{2} \cdot 2 \cdot 8$	Water, at $14^{\circ} \mathrm{C}$ C. \quad.	83.8
paraffined	37	Nyicne ${ }^{\text {at } 25^{\circ} \mathrm{C}}$.	75.7 8.4
Päraftn wax		aylene $\quad . \quad$..	
Pitch ..	${ }^{8} .8$		
Porcelain	14-68	GASES.	
Pressboard, dry	2.5-4		
Quariz.. oild	4.7 7 -	Air at about 760 mm . pressurc	-000900
Quariz..	${ }_{\substack{3.5 \\ 2.5}}$	Carbon dioxide (760 mm .)	1.000989
Rock Salt	5.6	Chlorine (liquid)	
Selenium (16°)	6.3		
Shellac, h.f. .		Hydrogen (760 mm.)	
Silk"(density i.5r)	2 $45-6-4.9$	Nitrogen (760 mm .)	1.0000606
Silica, fused Slate		Niturous oxide (liquid) $(760 \mathrm{~mm}$.	1.42 ${ }_{\text {1.001129 }}$
Slate ${ }_{\text {Sulphur }}$	${ }_{3}^{6 \cdot 5-7 \cdot 5}$		1.000547
Sylvin.	49	(liquid)	
Vaseline	2,2		
Varnished cloth, yellow	5		
Wood (treated) ..	3-3.5		

TABLE XLVI.

Voldme and Surface Resistivity of Solid Dielectrics.*

- U.S. Bureau of Standards. Scientific Paper, No. 234, by H. L. Curtis.

Note.-(1) Filling material, paper; condensing agent, Aromonia.
(1) Filling material, vegetable fibre: condensing agent, Caustic Soda.
(${ }^{2}$) Filling material, vegetable fibre; condensing agent, Ammonia.
The catalytic agent has a marked influence on the final product, and the binding material induences the surface resistivity.

TABLE XLVII

Electro-Chemucal Equivalents.

Electro-Chemical Series of Metals.

1.--Potrssium +	7-Cadmium	13-Copper
2-Sodium	S-Nickel	14 -Mercury
3-Magnesium	9-Cobalt	15 -Silver
4-Manganese	10 -Lead	10 -Platinum
5-Zinc	11 -Tin	17-Gold
6-Iron	$12-$ Bismuth	18 -Antimony -

Primary 2 Cells.

The principal characteristics of primary cells are given in Table XLVIII.

Two-fluid Chromic Acid Cell.

In the single-fluid type of bichromate cell there is local action between the zinc and the chromic acid, the zinc being consumed even when amalgamated. In the Fuller cell, used in the U.S.A., the amalgamated zinc is imnsersed in a sulphuric acid solution contained in a porous pot, the chromic acid solution and carbons being in the outer chamber, whereby tho zinc is not appreciably consumaed.

Standard Cells.

The Clark Cell.-This cell is a B.O.T. standard. There are a large number of modifications in existence, but in principle they do not vary. Its principal defect is its large tomperature coefficient (00011). Professor Catheart's form of Clark cell has a temperature coefficient of only 000038 per ${ }^{\circ} \mathrm{C}$. The Hibbert cell consists of chlorides instead of sulphates of zinc and ,yrucrem and has a tomperature coelficient of 0.0011 per ${ }^{\circ} \mathrm{C}$.

The formula for calculating the E.M.F. of a standard Clark cell at various temperatures is :-
$\mathrm{E}_{t}=14326-11 \cdot 9(t-15) 10^{1}-0.07(t-15)^{2} \mathrm{IC}-1$, where $1 \cdot 4326$ is the voltage at $15^{\circ} \mathrm{C}$.
TABLE XLVIII.
Citaracteristics of Primary Cells.

Name of Cell.	E.M.F.	Anode.	Cathode.	Electrolyte.	Depolariser.	Internal Resistance.	Chemical Reaction.
Ciark	$\begin{gathered} 1.133 \\ \text { at } 15^{\circ} \mathrm{C} . \end{gathered}$	Zinc	Diercury	Zine Sulphate, or Chloride	Mercurous Sulphate. or Chloride	-3-5	$\mathrm{Zn}+\mathrm{Hg}_{2} \mathrm{SO}_{4}=$
Westor	$\begin{aligned} & 1 \cdot 083 \\ & \text { at } 20^{-1} \mathrm{C} . \end{aligned}$	Cadınium	Mercury	Cadmium Sulphate	Mercurous Sulphate	900	$\mathrm{Cd}+\mathrm{CdSO}_{\mathrm{CdSO}}^{4}+\underset{\mathrm{Cd}}{\approx}$
Bunsen	19	Zinc	Carbon	$\begin{aligned} & \text { Dilute } \\ & \mathrm{H}_{\mathrm{z}} \mathrm{SO}_{4} \end{aligned}$	Strong Nitrie Acid	-1-2	$\begin{array}{r} \mathrm{Zn}+\mathrm{H}_{3} \mathrm{SO}_{4}+2 \mathrm{HNNO}_{1}= \\ \mathrm{ZnSO} \\ 4 \end{array}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}$
Grove	1.9	Zinc	Platinum	$\begin{aligned} & \text { Dilute } \\ & \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$	Sirong Nitric Acid	$\cdot 1-2$	Same as for Bunsen
Leclancté	147	Zinc	Carbon	Salammoniac	Manganese Diokide	1-3	$\begin{aligned} & \mathrm{Zn}+2 \mathrm{NH}_{4} \mathrm{Cl}+2 \mathrm{MnO}{ }_{2}= \\ & \mathrm{ZnCl} \\ & \mathrm{Nn} \end{aligned}+2 \mathrm{NH}_{2}+\mathrm{H}_{1} \mathrm{O}+\mathrm{Mn}_{n} \mathrm{O}, ~ l$
Bichromate	2.0	Zinc	Carboa	$\begin{aligned} & \text { Dilute } \\ & \mathrm{H}_{2} \\ & \text { SO } \end{aligned}$	Bichroniate of Potash	'5-1'5	$\begin{aligned} & 3 \mathrm{Zn}+2 \mathrm{CrO}_{2}+6 \mathrm{H}_{1} \mathrm{SO}_{4}= \\ & \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{ZnSO}_{1}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Daniell	1-1	Zinc	Couper	Zinc Sulphate	Copper Sulphate	$2-5$	$7 \mathrm{n}+\mathrm{CuSO}_{\mathrm{Zn}}^{\mathrm{SO}}+\mathrm{Cu}$
Dry .. .	1.5	Zinc	Carbon	Salammoniac	Mangancse Dioxide	-1-5	Sanue as for Leclanctic
Edison-Lelande	0.25	Zinc	Copper -Oxide	Sodium or Polassium Hydroxide	Cuprous Oxide	-2-1.0	$\begin{array}{r} \mathrm{Zn}+{ }^{2} \mathrm{NaOH}+\mathrm{CuO}= \\ \mathrm{Na}, \mathrm{ZaO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cu} \end{array}$

Fig. 1 shows a standard Clark cell, and Table XLIX gives the E.M.F. at various temperatures.

TABLE XLIX.
E.M.f. of Clark and Weston Cells at Various Temperatubes.

Temp. ${ }^{\circ} \mathrm{C}$.	Clark. volts.	W'eston. volls.	Temp. ${ }^{\circ} \mathrm{C}$.	Clark. volts.	Weston. volts.	$\begin{aligned} & \text { Temp. } \\ & \begin{array}{c} \text { © } \mathrm{C} . \end{array} \end{aligned}$	Clark. volls.	Weston. volls.
5	1.4436	10187	12	14359	1.0186	19	1.4282	1.0183
6	$1-4425$	10187	13	14348	1.0185	20	1.4271	1.0183
7	14414	10187	14	14337	1.0185	21	1.4260	1.0183
8	14403	10187	15	14326	1.0184	22	14240	1.0182
9	$1-4392$	10186	16	1.4315	10184	23	1.4238	1.0182
10	14381	10186	17	1.4304	1.0184	24	1.4227	1.0181
11	14370	1.0186	18	1.4293	1.0184	25	14216	1.0181

$[$ H. Tinsley \& Cu.
Fig. 1.-Clark Standard Cell, $3^{*} \times 1^{*}$.

The IFeston Cell.

The Weston or Cadmium cell is also a B.O.T. standard and is used in proference to the Clark cell. It has a temperature coefficient of only about 000004 per ${ }^{\circ} \mathrm{C}$., and is depolarized much more quickly than the Clark cell. It has a large temperature-time lag.

The E.M.F. at various temperatures is calculated from the formula :-$\mathrm{E}_{r}=10183-40.6(t-20) 10^{6}-0.95(t-20)^{2} 10^{-6}+0.01(\imath-10)^{3} 10^{-6}$ where $10183=$ the voltage at $20^{\circ} \mathrm{C}$.

Table XLIX gives the E.M.F. at various temperatures.
Fig. 2 shows a Standard Weston cell.

$\mathrm{M}=\mathrm{Mercury}$.
$\mathrm{P}=$ Mercurous Sulphato Paste.
$\mathrm{C}=$ Crystals of Cadmium Sulphate.
$\mathrm{S}=$ Saturated Solution of
Cadmium Sulphate.
$A=$ Cadmium and Mer. cury Amalgam.

Fig. 2.-Weston Cell.
TABLE 1.
SPECIFIC GRAVITY；SPECIFIC RESISTANCE AND TEMPERATURE COEFFICIENT OF ELECTROLYTES $18^{\circ} 0$ $\rho=$ resistivily in ohms per cm．${ }^{3}$ at $18^{\circ} 0$ ．

\％Strength	Sulphturie Acid．$\mathrm{H}_{3} \mathrm{SO}_{4}$			Nitr：c Acul． $\mathrm{H}_{\mathrm{N}} \mathrm{VO}_{3}$			Hydrochloric Acid． 1 Cl ．			$\begin{gathered} \text { Silter Nutrate, } \\ \lambda_{R} N O_{3} \end{gathered}$			Potassium Hydrate KOH．		
by weight	ρ	$\begin{aligned} & \text { Tcmf: } \\ & \mathrm{Cocff}^{\circ} \mathrm{C} \\ & \mathrm{H}_{\mathrm{per}}{ }^{2} . \end{aligned}$	Sp，Gr．	ρ		Sp．G7－	ρ	$\begin{gathered} \text { Tcmp } \\ \text { Coeff }^{\circ} \\ Y_{\text {Oper }}{ }^{\circ} \mathrm{C} \end{gathered}$	Sp，Gr．	p	Templ Coeff： her	Sp．Gr．	ρ	（Temp． Coeff \％per ${ }^{\circ} \mathrm{C}$	Sp，Gr．
5	4.82	$1 \cdot$	1．033	390	$1 \cdot 5$		2.55	$1 \cdot 6$	1．0242	393	$2 \cdot 2$	1•0．43	5.84	19	1.045
10	2－57	13	1.069	2.18	14	1.055	1．59	1.6	1.0190	21.4	$2 \cdot 2$	1.090	3.19	1.9	1.092
15	1．65	14	1－105	1.64	$1 \cdot 4$	$1 \cdot 059$	135	1.6	1．0744	14.7	$2 \cdot 2$	$1 \cdot 411$	236	19	1.41
20	154	2＇5	1.43	1.41	$1 \cdot 4$	1－121	${ }^{1.32}$	29	t－100t	${ }^{11-6}$	$2 \cdot 1$	1－197	201	20	1.192
25	140	15	1.182	131	$1 \cdot 4$	1．154	1／39	1.5	1．1262	9.50	$2 \cdot 1$	1.257	2． 56	$2 \cdot 1$	1．242
30	136	1.6	$1 \cdot 223$	1－28	14	1．187	1.52	1－5	1.1524	8.11	$2 \cdot 1$	1.323	185	$2 \cdot 3$	1295
35	${ }^{1} 39$	1.7	1：264	1／31	14	1．220	170	15	1．1775	$7 \cdot 18$	$2 \cdot 1$	1．396	197	$2 \cdot 4$	$1 \cdot 349$
40	1 4.48	1.8	1－307	1－37	1－5	1.253	195	$2 \cdot 5$	1－2007	6.44	$2 \cdot 1$	1.479	$2=3$	27	1.406
50	1．87	$1 \cdot 9$	${ }^{13} 399$	1．59	1.6	1.320	－			5.44	$2 \cdot 1$	1．677	－		1.528
60	2.70	$2 \cdot 1$	1－503	1.96	1.6	1．377	－	－	－	4．80	$2 \cdot 1$	1．919	－	－	－
70	4．66	$2 \cdot 6$	${ }^{1} \cdot 616$	2－54	$2 \cdot 5$	$1 \cdot 424$	－	－	－－	－	－		－	－	－
Bo	$9 \cdot 13$	$3 \cdot 5$	$1 \cdot 733$	3－76	13	1.465	－	－	－－						
\％Strength by ueight．	Zine Sulphate．Z_{n} SO			Maghesiun Sutphate． $\mathrm{Mg}_{\mathrm{g}} \mathrm{SO}_{4}$			$\begin{gathered} \text { Conper Sulphate. } \\ \text { Cu So. } \\ \hline \end{gathered}$			$\begin{gathered} \text { Sodium Chloride. } \\ \text { Na Cl. } \\ \hline \end{gathered}$			$\begin{gathered} \text { Sal-ammonac. } \\ \mathrm{NH}_{4} \mathrm{Cl} . \\ \hline \end{gathered}$		
	ρ	$\left\lvert\, \begin{aligned} & \text { Temp，} \\ & \text { Coeff．} \\ & \text { \％per }{ }^{\circ} \mathrm{C} .\end{aligned}\right.$	Sp，Gr．	ρ	$\left\lvert\, \begin{gathered} \text { Temb: } \\ \text { Cooff: } \\ \text { \%per }{ }^{\circ} \mathrm{C} . \end{gathered}\right.$	Sp，Gr．	p	$\left\lvert\, \begin{gathered} \text { Tomp: } \\ \text { Cooff } \\ \text { \%por }{ }^{\circ} \mathrm{C} \end{gathered}\right.$	Sp．Gr．	ρ	$\left\lvert\, \begin{gathered} T c m p, \\ C o e f f: \\ \% p e r \end{gathered}\right.$	Sp，Gr．	ρ	$\left\lvert\, \begin{gathered}\text { Tenp，} \\ \text { Cosff：} \\ \text { \％per }\end{gathered}\right.$	Sp，Gr．
5	523	$2 \cdot 2$	1.052	393	23	－	52－3	2，2．	1050	14.9	$2 \cdot 2$	1.0354	10.9	2.0	－
10	31.4	$2 \cdot 3$	$1 \cdot 108$	$24^{4} 1$	24	－	31.4	$2 \cdot 3$	1.103	8.33	$2 \cdot 1$	1－0724	5－67	1.8	－
15	$2{ }^{2+1}$	2.3	1.168 1.236 1	$20 \cdot 9$	25		${ }^{24.1}$	23	$1 \cdot 16$	6.15 5.14	2.1 2.2	1.1205 $\mathbf{1} 501$ 1501	3^{-89}	1.7 1.6	
20 25	21.9 21.4	2.4 2.6	1.236 1.307	20.9 21.2	2.7 $2-9$	－	－	二	二	5.14 4.70	2.2 2.3	$1{ }_{1} 115013$	298 2.50	1.5 1.5	
$\underset{3}{30}$	22．9	30	$1 \cdot 382$	－		－	二	二	－	－	－－	－	－	－	－

I.E.C. Temperature Limits for Electrical Machinery.

Table LI gives the temperature limits and temperature rises for electrical machincry as specified by the International Electrotechnical Commission.*

TABLE LI.

I.E.C. Temperature Limits.

> Nature of Insulation of Winding, or name of part.

Cotton, paper or silk, non-impregnated ${ }^{1}$..

Highest	Highest
permissible	permisissible
observable	
tempcrature.	temperature
rise.	

${ }^{\circ} \mathrm{C}$. 80 ${ }^{\circ} \mathrm{C}$.
" " " impregnated ${ }^{1}$.. 95 5

Enamelled wire ${ }^{1 \text { " }} \quad$.. $\quad . \quad$.. $\quad . \quad 9 . \quad 95 \quad 55$
Mica, asbestos, glass, porcelnin, micanito and similar compositions 115 75
Insulated windings permanently shortcircuited 100 60
Non-insulated windings permanently shortcircuited 110 70
Commutator slip rings 90 50
Bearings 80 40
Iron core immersed in oil 95 55
,. ., in contact with windings.. .. Same as the windings.
" ", not in contact with windings nor immersed in oil, shall not excced that of the windings and in no caso shall it exceed 110

70
${ }^{1}$ Note. Single-lnycr windings. An increase of $5^{\circ} \mathrm{C}$. is permitted in the case of coils, revolving or stationary, with single layer windings when not immersed in oll.

Miscellaneous Constants. \dagger

Elementary electrical charge, charge on
electron
follarge on a particlo $\quad \because \quad . . \quad . . \quad c=1.591 \times 10-10$ emu
Mass of an electron $\quad . \quad . \quad . \quad m=901 \times 10.14 g$
Radius of an electron about $2 \times 10^{-19} \mathrm{~cm}$.
Ratio e / m, small velocities $\quad . \quad . \quad e / m=1.766 \times 10^{2} \mathrm{emug}$ - ${ }^{1}$
Number of molecules per gram molecular
weight (Avogadro constant) $\quad \mathrm{N}=0.062 \times 10^{10}$ (M)

[^12]Number of gas molecules jer $\mathrm{cm}^{3}, 76 \mathrm{~cm}$. 0° C. (Loschmidt's number)
$n=2.705 \times 10^{10}(\mathrm{M})$
Number of gas molecules per $\mathrm{em}^{3}, 0^{\circ} \mathrm{C}$. at 1×10^{6} bars.
Kinetic energy of translation of a molecule at $0^{\circ} \mathrm{C}$.

$$
=2.670 \times 10^{19}
$$

$\mathrm{E}_{o}=5.621 \times 10-14 \mathrm{erg}(\mathrm{M})$
Constant of molecular energy $\mathrm{E}_{0} / \mathrm{T}=$ change of translational energy per ${ }^{\circ} \mathrm{C}$.
Mass of hydrogen atom
Radius of bydrogen molecule, about
Mean free path, ditto, $76 \mathrm{~cm} ., 0^{\circ}$ C., about
Sq. rt. mean sq . velocity, ditto, $76 \mathrm{~cm} .$, $0^{\circ} \mathrm{C}$.
Arithmetical avorage velocity, ditlo, - $76 \mathrm{~cm} ., 0^{\circ} \mathrm{C}$.

Average distance apart of molecules, $76 \mathrm{~cm} .0^{\circ} \mathrm{C}$.
Boltzmann gas constant $=$ constant of entropy equation $=\mathrm{R} / \mathrm{N}=p_{0} \mathrm{~V}_{0} / \mathrm{I}^{\prime} \mathbf{N}$ $=\left(\frac{3}{3}\right) \epsilon$
Volume per mol (e) or gram-molecular weight of ideal gas, $76 \mathrm{~cm} ., 0^{\circ}$ C., (1.01323×10^{6} bars)
Ditto, 1×10^{6} bars, $0^{\circ} \mathrm{C} .(75 \mathrm{~cm}, \mathrm{Hg}) \quad$.
Gas constant: $\mathrm{PV} \mathrm{V}_{n}=\mathrm{RT}, \mathrm{V}_{n s}=\mathrm{vol}_{\mathrm{m}}$. molec. wt, in g when P in $\mathrm{g} / \mathrm{cm} .^{2}, V_{m}$ in cm^{3}
when P in atmospheres, V_{m} in litres. whon P in dynes, V in cm^{3}.
Absolute zero $=0^{\circ}$ Kielvin
$1 \mathrm{bar}=10^{6}$ dynes $/ \mathrm{cm}^{2}=1013 \mathrm{~kg} / \mathrm{cm}^{2}$
Mechanical equivalent of heat, $\lg \left(20^{\circ} \mathrm{C}\right.$.) cal.

Faraday constant..
Velocity of light in vacuo $C=2.99860 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$.
Planck's element of action $\quad . \quad . \quad h=6.547 \times 10^{19} \mathrm{erg} . \mathrm{cm}$. (M)
Rydberg's fundamental frequency $\quad . . \quad V_{0}=328880 \times 10^{26} \mathrm{sec} . .^{1}$.
Rydberg's constant, $V_{o} / \mathrm{C} \ldots \quad . . \quad . \quad \mathrm{N}=109678.7$
Wien's constant of spectral radiation ..
Stefan-Boltzmann constant of total radiation
$=22.412$ litres.
$\mathrm{C}_{2}=1.4312$ for λ in cm . (M)
$\epsilon=2058 \times 10-10 \mathrm{crg} /{ }^{\circ} \mathrm{C}(\mathrm{M})$
$=1.662 \times 10.1 \mathrm{~g}(\mathrm{M})$
10-' cm.
$L=16 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$.
$\mathrm{G}=1.84 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$.
$\Omega=1.70 \times 10^{\circ} \mathrm{cm} / \mathrm{sec}$.
$=3 \times 10 .{ }^{\circ} \mathrm{cm}$.
$k=1.372 \times 10.4 \mathrm{erg} /{ }^{\circ} \mathrm{C}$.
$=22.708$ litres.
$\mathrm{R}=84.780 \mathrm{~g}-\mathrm{cm} . /^{\circ} \mathrm{C}$.
$\mathrm{R}=0.08204 \mathrm{l}-\mathrm{atm} /{ }^{\circ} \mathrm{C}$.
$\mathrm{R}=8.315 \times 10^{7} \mathrm{ergs} /{ }^{\circ} \mathrm{C}$.
$=-273.13^{\circ} \mathrm{C}$.
$=0.987$ atmosphere.
$=4.184 \times 10^{\prime} \mathrm{ergs}$.
$=4 \cdot 184 \mathrm{Joules}$.
$\mathrm{F}=96494$ coulombs.
$\sigma=5.72 \times 10.12 \mathrm{watt} / \mathrm{cm} .^{1}$ (M)

$=1.241 \times 10.4$ volt cm.

Grating space in calcite $\quad . \quad . \quad d=3.030 \mathrm{~A}$
Grating space in rock-salt (Uhler, Cooksey) $=2.814 \times 10-1 \mathrm{~cm}$.
P.D. in volts for X-rays of wave length λ in $\mathrm{cm}=\mathrm{V} \lambda=h c / e$

$$
\text { Note.-(M) }=\text { Millikan, Phil. Mag. 34, I, 1917.) }
$$

British Standard Graphical Symbols for resistances, rheostats,

xciii
INTERNATIONAL SYMBOLS.

Name of quantily.	Symbol.	Symbols recommended for case in which principal symbol is not suitetle.	Name of quantity.	Symbol.	Symbols resommended for case in which principal symbol is not suitable.
		In dimensional	20. Resistivity ..	ρ	
1. Length .	l	equations the	21. Condustance ..	G	
2. Mass .	m	capital letters	22. Quantity of electricity..	Q	
3. Time .. .	t	$L, M, T \text {, are to }$ be employed.	23. Flux-density, electrostatio	D	
4. Angles	a, β, γ		24. Capacity - ..	C	
5. Acceleration of gravity	g		25. Dielectric constant	¢	
6. Work	${ }^{\text {A }}$	W	26. Self-inductance	L	
7. Energy . .	W	$U \dagger$	27. Mutual inductance	M	
8. Power .	P		28. Reactance	X	
9. Etliciency .	η		29. Impedanco -	Z	Script, heavy-
10. No, of turns in unit of time	n		30. Reluctance . . 31. Magnetic Hux . .	S Φ	faced or special type.
11. Temp. Centigrade	t	θ, δ	32. Flux-density, magnetic	B	
12. Temperature absolute	T	Θ	33. Magnetic field	II	
13. Period .	T		34. Intensity of magnetisa-		
14. $2 \pi / T$.. ..	${ }^{\omega}$		35. Pion . . .	J	
15. Frequency ..	f	ν	35. Permeability . . .	μ	
16. Phase displacement	ϕ		36. Susceptibility	κ	
17. Electronaotive forco	E		37. Difference of potential, electric		
18. Current 19. Resistance	I R		electric 38. Magnetomotive force	V	U

Radiation Wave-'ength Limits.

Hertzian waves, longest $1,000,0000 \mathrm{~cm}$.
Infra-red, löngest, restrahlung, focal isolation
Infra-red, spectroscopically studied
0.2 cm .

003 cm .
Visible, longest
0002 cm .
., shortest
0.00008 cm .

Ultra-violet, Lyman, shortest ${ }^{1}$
0.00004 cm .

X-rays, longest
0.000006 cm . 000000012 cm .
y rays $\begin{array}{llllll}\text { longest } & . & . . & . . & . . & . \\ \text { shortest } & . & . & . & . . & \end{array}$
0.000000001 cm .
., shortest

TABLE LIII.
Units.-Signs for Names of Tinits.
Signa for names of electrical units to be employed only after numerical values :-

Name of Unit.			Sign.
1. Ampere		\cdots	A
2. Volt			V
3. Ohm			*
4. Coulomb			C
5. Joule	.		J
6. Watt			W
7. Farad	.	.	F
8. Fienry			H
9. Volt-coulomb			VC
10. Watt-hour ..	.	\ldots	Wh
11. Volt-ampere			VA
12. Ampere-hour			Ah
13. Milliampere	\cdots		mA
14. Kilowatt .			kW
15. Kilovolt-ampere			kVA
16. Kilowatt-hour			kWh

* As a sign for the ohm, one of the two letters O or Ω is provisionally recommended. The letter Ω should no longer be used for megohm.

[^13]
TABLE LIV.

Mathematioal Symbols and Rufees.

| Name. | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{ll}
m \text { sign for milli- } & \mu \text { sign for micro- or micr- } \\
k \text { sign for kilo- } & \text { M sign for mega- or meg- }
\end{array}
$$

1. Ordinary numerals as exponentials shall exclusively be used to represent powers. (In consequence, it is desirable that the expression sin $x, \tan ^{-1} x$, employed in certain countries be expressed by aro $\sin x$, aro $\tan x$).
2. The comma and the full-stop shall be employed for separating the decimals according to the custom of the country, but the separation between any three digits constituting a whole number shall be indicated by a apace and not a full-stop or a comma (1000000).
3. For the multiplication of numbers and geometric quantities, indicated by two letters, it is recommended to use the sign \times, and the full-stop only when there is no possible ambiguity.
4. To indicate dipision in a formula, it is recommended that the horizontal bar of the colon be employed. Nevertheless, the oblique line may be used when there is no possibility of ambiguity ; when necessary, ordinary brackets (), square brackets [], and braces \{ \} may be employed to obtain clearness.

Abbreviations for Weights and Measures.

Length:-m; km; dm; cm; mm; $\mu=0001 \mathrm{~mm}$.
Surface:-a; ha; $\mathrm{m}^{2} ; \mathrm{km}^{2} ; \mathrm{dm}^{2} ; \mathrm{cm}^{2} ; \mathrm{mm}^{2}$. Volume:-l $; \mathrm{hl} ; \mathrm{dl} ; \mathrm{cl} ; \mathrm{ml} ; \mathrm{m}^{3} ; \mathrm{km}^{3} ; \mathrm{dm}^{3} ; \mathrm{cm}^{3}: \mathrm{mm}^{3}$. Mass :-g; t; kg; dg; cg; mg.

TABIE LV.
The Greek Alphabet.

Name.	Large.	Stmall.	Commonly used to designatc.
alpha	A	a	angles, coefficients.
beta	B	β	angles, coefficients.
gamias	Γ	γ	specific grarity.
delta	Δ	δ	
epsilon	E	ϵ	base of hyperbolic logarithms, dielectric constant.
zeta	Z	ζ	co-ordinates, caefficients.
eta	H	η	liysteresis (Steinmetz) coefficient, efficiency
thetr	Θ	θ	angular phase displacement, time constant.
iota	I	t	
kappa	K	κ	susceptibility, constant.
lambda	Λ	λ	conductivity, wave length.
mu	M	μ	permenbility.
nu	N		reluctivity, frequency.
xi . .	5	ξ	output coofficient.
omicron	O	0	
pi . .	II	π	circumference \div diameter.
aigma	Σ	${ }_{\sim}^{\rho}$	resistivity.
tau.	T	τ	time-phase displacement, time constant.
upsilon	r	v	
phi	\$	ϕ	flux, phase displacement.
chi	$\underset{ }{X}$		
psi ..	Ψ	ψ	angular volocity in time.
omegr	Ω	ω	(small), angular velocity in space.

TABLE LVI.

Electrical Units.

Quantily.		Name of Unit.	C.G.S. ElectroMagnetic Units,*	Dimensions of Unit.
Current		Ampere	10^{-1}	$\mathrm{L}^{+} \mathrm{MH}^{1} \mathrm{~T}^{-1}$
Potential		Volt	$10{ }^{4}$	$\mathrm{L}^{\frac{3}{2}} \mathrm{M}^{1} \mathrm{~T}^{-2}$
Resistance		Ohru	10^{7}	LT ${ }^{1}$
Quantity		Coulomb	10^{-1}	L' M
Energy		Joule	10^{7}	$\mathrm{L}^{2} \mathrm{MT}-$
Power		Writ	10^{7}	$\mathrm{L}^{\mathbf{2}} \mathrm{MT}^{-\mathrm{J}}$
Capacity		Farad	10^{-9}	$\mathrm{L}^{-1} \mathrm{~T}^{\mathbf{1}}$
Induction	.	Henry	10^{9}	L

International and B.O.T. Units.

The International Ohm is the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice, 14.4521 grammes in mass, of a constant cross-sectional area, and of a length of 106.300 cm . It is equivalent to $1 \cdot 00052$ C.G.S. Units.

The International Ampere is the unvarying electric current, which, when passed through a solution of nitrate of silver in water, deposits silver at the rate of 000111800 gramme per second.

The International Volt is the electrical pressure, which, when steadily applied to a conductor the resistance of which is one International ohm, will produce a current of one International ampere.

The E.M.F. of a Weston Normal Cell at $20^{\circ} \mathrm{C}$. is 1.0183 International Volts, and that of a Clark Cell at $15^{\circ} \mathrm{C}$. is $\mathbf{1} \cdot \mathbf{4 3 2 6}$ International Volts.

Miscellaneous Units.

A dyno is the force which, acting upon a gramme for 1 second, gives it a velocity of 1 cm . per second.

An erg is the work done by a dyne working through a distance of 1 cm .

[^14]
The Magnetic Circuit.

Unit Magnelic Pole is one of such strength that, when placed at a distance in air of 1 cm . from a similar pole of unit strength, will repel it with a force of 1 dyne. The number of lines of force which pass through a unit mngnetic pole is 4π ($=12.57$).

The Force exerted between two magnetic poles is proportional to the product of their strength, and inversely proportional to the square of the distance between them.

The Magnetic Moment (M) is the product of the distance between the poles and the pole strength of a magnet. $M=m L$.

Tho Intensity of Magnetisation (J) is the magnetic moment per unit volume. $\quad J=\frac{M}{V}$

The Strength of a Magnetic Field at any point is measured by the force with which it acts upona unit magnetic pole. If a pole of strength m is placed in a field of strength H , the force is $m \mathrm{H}$ dynes. If it is then placed at a distance of d centimetres from n second pole of strength n, then the force will be

$$
\frac{m \times n}{d^{2}} \text { dynes. }
$$

The Magnetomotive Force (F) is the product of the current and the number of turns.

$$
\mathrm{F}=\frac{4 \pi}{10} \mathrm{NI}=1.257 \mathrm{NI} \text {, where } \mathrm{NI}=\text { the ampere-turns. }
$$

The Magnetic Field Intensity or Magnetising Force (H) is defined as the m.m.f. per unit length of path.

$$
\begin{aligned}
\mathbf{H}=\frac{\mathbf{F}}{l}=\frac{4 \pi}{10 l} \mathrm{NI} & =\frac{1.257 \mathrm{NI}}{l} \\
& =1.257 \text { ampere-turns per } \mathrm{cm} . \\
& =0.495 \text { ampere-turns per in. }
\end{aligned}
$$

Magnetic Flux (Φ) may be defined as a tube of lines of force which is complete and closed on itself, the number of lines of force being constant throughout. If a section be taken anywhere across the tube the constant number of lines of force will be a defined amount of magnetic flux.

$$
\begin{aligned}
\Phi & =\mu \mathrm{HA} \text { (where } \mathrm{A}=\text { the cross-section). } \\
& =\mu \mathrm{A} \frac{4 \pi \mathrm{NI}}{10 l}=\frac{\mu \mathrm{A}}{l} \quad \frac{4 \pi \mathrm{NI}}{10}=\frac{\mathrm{F}}{\mathrm{R}}=\frac{\text { m.m.f. }}{\text { roluctance }}
\end{aligned}
$$

where R , the Reluctance, $=\frac{l}{\mu \mathrm{~A}}$
The Flux Density (B) is defined as tho flux (Φ) per unit area, perpendicular to the direction of the lines of force.

$$
B=\frac{\Phi}{A}
$$

If the flux is mensured in maxwells, and the area (A) in sq. cm., B is expressed in maxwells per sq. cm. One maxwell per sq. cm. is called a Gauss. B is also expressed in kilolines per sq. cm. or per sq. inch (seo Table LX).

Figs. 3 and 4 give typical normal induction curves for tho usual magnetic matcrials.*

Fig. 3.-Showing typical normal induction curves for the usual commercial magnetic materials formagnetizing forces less than 30 C.G.S. units.

Fig. 4.-Showing typical normal induction curves for the usual commercial magnetic materials for magnetizing forces between 30 and 300 C.G.S. units.

[^15]The Permeability (μ) of a magnetic material is the ratio of the flux density B induced in it to the magnetising field H. 13 represents the total number of lines of force intuced per sq. cm., and H the actual magnetising field operating within the material.

$$
\therefore \mu=\frac{\mathrm{B}}{\mathrm{H}} .
$$

The Magnetic S'usceptibility (k) represents the magnetisability of a material, in which the ratio of intensity J to the magnetising field \mathbf{H} is the measure, so that

$$
I=k H
$$

When k is positive the material is paramagnetic, and when negative the matorial is diamagnetic.

Air is regarded as having unit permeability. Iron, nickel, cobalt, cbromium, manganese and other metals are more permeable than air and are called paramagnetic. Antimony, arsenic, bismuth and phosphorus are less permeable than air and are called diamagnetic.

At ordinary temperatures nickel is magnetic to nbout two-thirds the value of iron. It continues to be magnetic up to about $350^{\circ} \mathrm{C}$., but beyond this it becomes entirely non-magnetic.

Hysteresis (h). If a magnetic body is carricd round a cycle from one stato of magnetisation to another, the magnetisation will lag behind the angnetic force, so that the curve connecting \bar{B} and H will be quite different according to the direction of change of field.

If a complete curve is drawn connecting B with H for a whole cycle from one value of H to any other and then back to the original value of H, the curve connecting B and H will form a closed loop (Fig. 5), the area of which

Fig. $\overline{\text { j }}$.
is a measure of the energy absorbed in carrying the magnetisntion through the cycle. This onergy is known as tho hysteresis loss, and is usually oxpressed in ergs per cm^{3} per cycle.

The slope of the curve $\left(\frac{B}{H}\right)$ indicates the permeability at any point.
Remanence ($\mathrm{B}_{\mathrm{rom}}$) is the magnetisation which exists in the specimen when, during a cycle of magnetisation, the magnetising field is reduced to zero from sume maximum value of H . In Fïg. 5 , $0 B^{\prime}$ is the residual mag. net ism.

Reversal of the magnetising force (H) reduces and finally reverses the flux in the specimen, which is shown by the curve $B^{\prime} C^{\prime \prime} A$.

The Coercive Force $\left(\mathrm{H}_{\mathrm{N}}\right)$ is the demagnetising force necessary to reduce the induction B to zero from any specified value. In Fig. $5 \mathbf{H}_{c}$ is given by OC'.

Coercivity is the demagnetising fore necessary to reduce B to zero from its saturation value.

Steinmetz Coefficient (η).
Dr. Steinmet\% established the relation between the maximum fux density and the energy (hysteresis) loss in the relation

$$
\mathrm{W}_{h}=\eta B_{\max }^{1 \cdot 8} f \text {, ergs per } \mathrm{cm} .^{3}\left(\times 10^{-7}=\text { watts per cm. }{ }^{3}\right)
$$

where W_{h} is the hysteresis loss per cm^{3}.. f the frequency and η a constant depouding on the nature of the magnetic material. The value of the exponent is an average. It has been shown by various authorities that at very low flux densities the energy loss is more nearly represented by 1^{2} than B^{16}. The curve in Fig. 6, due to Dr. Lloyd, for various transformer irons, indicates the general trend with change of flux density.

The co-efticient η varies widely with various materials, from 00007 for good quality silicon-iron to 0025 for hard cast steel (see T'able LVII).

Table LVIII gives the hysteresis loss in watts per in. ${ }^{3}$ and per $\mathrm{cm}^{3}{ }^{3}$ per cycle per second for a value of $\eta=.001$ at various flux densities. To obtain the hysteresis loss at other values of η, multiply by the appropriate value.

Fig. B.-Curve showing the relation between the exponent and the flux density in the formula $W_{h}=\eta \mathrm{B}^{\prime \prime}$.

TABLE LVII.
Hysteresis Coefficient ror Various Materials.

TABLE" LVIII.

Hysteresis Loss per Cycle per Second for $\eta={ }^{\circ} 001$.

B per sq. in.	I'atts lost per in. ${ }^{3}$ per cycle per sec. for $\eta=001$.	B per sq. cm.	U'alls lost per $\mathrm{cm}^{3}{ }^{3}$ per cycle per sec. for $\eta=001$.
35,000	. 0018643	6,000	. 00011093
40000	0023083	7,000	-00014196
45000	. 0027870	8,000	-00017577
50,000	-0032988	9,000	-00021220
55,000	. 0038422	10,000	-00025125
80,000	0044162	11,000	-00029255
70,000	. 0056514	12,000	-00033625
80,000	. 0069975	13,000	-0003822
90,000	-0084487	14,000	-0004303
100,000	0101000	15.000	. 0004805
110,000	- 011647	16,000	. 0005328
120,000	. 013387	17,000	-0005871
		18,000	-0006+33

N.B. - To obtain the watts lost at other values of η. multiply by the appropriate value.
table LiX. Magetic Properties or Iron and Steel.

Material.	\% Carbon	\% Alloying Constituent	State of haraness	$B_{\text {max }}$	Brem	Irem	H.
Swedish Wrought Iron	Trace	二	Very soft	17,400	6,900 10,400	550	08
Piano Steel Wiry .	o.95 ?	-	Anneaied, soft	17,430 14.500	10,400 10,400	${ }^{804}$	- ${ }^{0} 84$
	0.95 ?		Glass, bard	12,600	9,600	760	100
Low Carbon'Steel ..	-06		Quenched 1,000 ${ }^{\circ} \mathrm{C}$. soft	19,800	7,812	625	3.4
High ' ${ }^{\text {Hen }}$	$1 \cdot 2$	-	Quenched $800^{\circ} \mathrm{C}$. hard	15,050	8.060	645	58.0
Haarlem Magnet Steel			Hard	16,900	10,048	800	56.0
Allevard Stecl	0.59	5.5 Wo	Not quenched.	18,700	11,250	900	260
	0.59	5.5 Wo	Quenched $770^{\circ} \mathrm{C}$	17,500	10,500	800	730
Bōhlers Styrian Steel		-	S)ft	17,850	9,950	790	340
Rem̈y Tungsten Steel . .	-	-	Hard	14,000 15,145	7,570 10,175	600 808	75.0 $6 \% 0$
			Very hard	16,070	10.040	800	770
Medium Tungsten Steel	0.89	$308 W_{0}$	Quenched $760^{\circ} \mathrm{C}$. hard	11,000	7.330	572	58.9
Whitworth "	0.51	401 Wo	Quenched $900^{\circ} \mathrm{C}$. hard	-		610	37.0
Molybdenum Steel	$1 / 25$	${ }^{3} 36 \mathrm{Mo}$	Hard $\because \cdots$	10,000 ?	4,651	370	85.0
Chilled Cast Steel	-	-	Chilled at $1,000^{\circ} \mathrm{C}$.	9.000 ?	1,800	220	520
Lodestone . \quad.	-	-		-	-	350	500
High Carbon Steel	$1 \cdot 2$	-	Quenched 905*	-	-	264	480
Cast Iron	-	-		-	-	312	3.8
Manganesc Steel	-	-	Anncaled	-	-	43	245
Grey Cast Iron	-	-	-	-	-	\%50	1367
Tungsten Stecl .,	-		-	-	-	806	71.5
Cbroine Steel ..	-	16 Cr	Tempered	-	-	1,030	230
Chrorne Steel						286	56.0
Alloy Steel	-	$5 \mathrm{Cr}, 3 \mathrm{Mn}$.	Forged	-	-	905	55.8
		${ }^{4} \mathrm{Mlo}$					
Molybitenum Cbromium Stec1*	0.5	${ }_{10} \mathrm{Mo} \mathrm{Mo}_{4} \mathrm{Cr}$.		-			${ }_{78} 36.0$
Nickel Tungsten Steel	-	10 Ni .5 Wo	Quenched			820	
Molyblenum Manganese Stcel	0.5	1 Mn . $=$ Mo	Quenched	-		835	30.6
	-	${ }_{8} 10 \mathrm{Mo}, 1 \mathrm{Mn}$	Quenched	-		855	58.4
Tungsten Stee!	${ }^{0.43}$			-	-	474	37×5
Cobalt Steel		35 Co .	-	-		827	24.6

Eddy Current Losses.

If the cycle of magnetisntion is performed many times per second, the rapid cutting of the lines of induction through the metal gives rise to induced eddy currents (called Foucault currents), which waste energy ; the total losses are therefore greater than the hysteresis losses. The eddy current losses are proportional to the square of the induced currents, and are therefore proportional to $f^{2}, 13^{2}$ and g^{2}, where f is the frequency, and g the form factor of the secondary induced voltage

$$
\left(=\frac{V_{n, 1, s}}{V_{\text {meu. }}}, \text { which for sino wnve }=\frac{\pi}{2 \sqrt{2}}=11107\right) .
$$

\therefore Wddy current losses $=k \cdot f^{2} g^{2} 1^{2}(k$ being a constant for
a particular specimen)
and the Total losses $W=\eta \int B^{16}+k \int^{2} q^{2}\left[3^{2}\right.$. crgs per cm^{3}.
J'ig. 7 shows typical curves of total losses for high and low resistance

Fig. 7.-Showing typical curves of total core losses for the usual materials used in transformer and armature construction.
cvi
stecls as used in transformer and armature construction. High resiatance steels contain about 3% silicon and have low specific gravity (about $7 \cdot 5$) and low core loss. Low resistance stecls are relatively pure iron and have a sp. gr. of about 77 and a coro loss approximately double that of the high resistance materials. Fig $7 a$ shows the relationship between induction density and iron loss for transformer sheet steel at various frequencies.

Fig. 7a.-Curves showing relationship between B and iron lose for transformer sheet steel plates, at various frequencies.

TABLE LX.
Magnetic Units; Conversion Table.

To convert	To	Mulliply by	Reciprocal
Amp. turns per cm. Iength	Arop. turns per inch, l.	$2 \cdot 54$	- 3938
" " " " "	C.G.S. lines per sq. cm.	1.257	0.7956
" " ." ." . .	C.G.S. lines per sq. inch .	8.1	01234
C.G.S. lines per sq. cm .	Amp. turns per incl length ..	2.02	0.495
	Kilo lines per sq. inch. .	0.00645	1550
Ergs per $\mathrm{cm} .^{3}$ per cycle per sec.	Watts per cm. ${ }^{3}$ per cyc per sec.	10^{-7}	107
", " ." " ."	" , kg. " ." "	13×10^{-6}	77×10^{33}
" .. ". "	" ", lb. " " ${ }^{\text {l }}$	5.9×10^{-16}	169×10^{3}
" " " "	\#sec. ., lb. per 50 cycles per	2.95×10^{88}	339×10^{3}

Effect of Electric Current.

(1) The ficld due to a straight wire of infinite length at a distance $r \mathrm{~cm}$. from the axis of the conductor is

$$
\mathrm{H}=\frac{2 i}{10 r} \text { lines per } \mathrm{cr} .
$$

where i is the current in C.C.S. Units $=a m p s \times 10^{-}$.
(2) The field within a long straight solenoid, where the length is large compared with its diameter, is

$$
\mathbf{H}=\frac{4 \pi \mathrm{~N} i}{10} \text { lines per } \mathrm{cm}
$$

(its direction being determined by the right-hand screw rule), where N is the number of turns. At the ends of the solenoid the strength is half that at the middle.
(3) The field due to a closed circular conductor is

$$
\mathrm{H}=\frac{2 \pi r^{2} i}{10\left(\sqrt{r^{2}}+l^{2}\right)^{3}}=\frac{0 \cdot 2 \pi r^{2} i}{\left(\sqrt{r^{2}}+l^{2}\right)^{3}} \text { lines per cm. }
$$

where i is the current carried by the conductor bent in the form of a ring of radius $r \mathrm{~cm}$., and H is the magnetising force at a point along the axis.

$$
\text { When } l=o, \mathrm{H}=\frac{0.2 \pi i}{r} \text {, }
$$

and when l is very great in comparison with r

$$
\mathrm{H}=\frac{0.2 \pi r^{2} i}{l^{3}}
$$

(4) The force on a conductor carrying a current in a magnetic field is

$$
\mathbf{F}=10.2 i \mathrm{Bl} 10^{\mathrm{y}}(\mathrm{~K} g .),
$$

where i is the current in the conductor, B (lines per sq. cm.) is the density of the magnetic field, l is the length of the conductor in cm . The direction of the axis of the conductor is at right angles to the direction of the field. If the direction of i and B form an angle θ, the force is

$$
\mathrm{F}=10 \cdot 2 i \mathrm{Bl} 10^{-8} \sin \theta(\mathrm{~K} g .)
$$

The force F is perpendicular to both i and B and its direction is determined by the right-hand screw rule. The conductor tends to move away from the denser field.

If B is in lines per sq. in., l in inches, and I in amps.,
$\mathrm{F}=8.85 \mathrm{IB} l 10^{a} \sin \theta(\mathrm{lb}$.
(5) If a conductor moving in a magnetic field cuts across the lines of Hlux or a magnetic field moves across a conductor, the instantaneous induced E.M.F. in the conductor is

$$
c=k \mathrm{~B} l v
$$

where B is the flux density, l the length of conductor, v the relative velocity between the flux and the conductor, and k a coefficient dopending on the units employed. When e is in volts, B in lines per sq. cm., l in crn., and v in cm . per second, $k=10^{-8}$.
(6) (a) The relative direction of Hux. E.M.F. nnd motion in a generator may be determined by Fileming's rule, as shown in Fig. 8.

Fig. 8. Fleming's Rule.
The thumb, forefinger and middle finger of the right hand being held at right angles to each other, the hand is placed so that the forefinger is in the direction of the flux, and the thumb in the direction of motion. The middle finger will then indicate the direction of the generated E.M.F.

In the case of a motor, using the left hand, and pointing the forefinger along the direction of the magnetic field, and the middle finger along the direction of the current, the thumb will indicate the direction of the force and therefore the resulting motion.
(b) In the right-hand screw rule, if the current flows in the dircction of rotation of a right-hand screw. the flux is in the direction of the progressive movement of the screw. If the current in a straight conductor is in the direction of the progressive motion of a right-hand screw, then the flux encircles this conductor in the direction in which the serew must be rotated in order to produce this motion.

Resistance.

Ohm's Law.

If $\mathrm{I}=$ the current in amps., $\mathrm{E}=$ the E.M.F. in volts, and $\mathrm{R}=$ the resistance in ohms,

$$
\begin{aligned}
& \mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}} \text { amps.; } \mathrm{L}=1 \mathrm{R} \text { volts; and } \mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}} \text { ohms. } \\
& \text { Watts }=\mathrm{E} I=\frac{\mathrm{E}^{2}}{\mathrm{R}}=\mathrm{I}^{2} \mathrm{I}\left(=24 \mathrm{I}^{2} \mathrm{R} \text { calories }\right) .
\end{aligned}
$$

Resistances in Series and Parallel.

When several resistances are in series, the total resistance is the sum of the separate resistances:

$$
\mathrm{R}=r_{1}+r_{2}+r_{3}+\cdots \cdots
$$

In the case of resistances in parallel, the combined resistance is the reciprocal of the sum of the reciprocals of each resistance :

$$
\mathrm{R}=\frac{1}{\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}+\cdots}=\frac{r_{1} r_{2} r_{3}}{r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}}
$$

The reciprocal of the resistance $\left(\frac{1}{R}\right)$ is the Conductivity.

Resistivity.

Resistivity or Specific Resistance is the resistance between the opposite faces of a substance, $I \mathrm{~cm}$. in length and I sq. cm. in cross-sectional area, and is expressed in ohms or microhms per em. ${ }^{3}$.

The resistance of a substance neglecting temperature is:

$$
\mathrm{I}=\frac{\rho l}{a} \text { ohms. }
$$

Where $\rho=$ the specific resistance, $l=$ the length and $a=$ the cross-sectional area.

Resistivity may be measured by means of a moving-coil voltmeter of resistance r. About 500 volts are applied to the resistance R in series with the voltmeter. If V is the applied voltage and v the reading of the voltmeter then :

$$
\begin{gathered}
\frac{\mathrm{R}}{r}=\frac{\mathrm{V}-v}{v} \\
\mathrm{R}=\frac{r(\mathrm{~V}-v)}{v} \text { ohms. }
\end{gathered}
$$

Temperature Coefflcient.

The resistance of a material varies with temperature, that of pure metals increasing with rise of temperature, and that of insulators decreasing with increase of temperature. The resistance of carbon and electrolytes decreases with riso of temperature. Alloys change less than pure metals, some having a negativo temperature coefficient.

If R is the resistance at any temperature $t, R_{\text {, }}$ the resistance at $0^{\circ} \mathbf{C}$., and a the temperature coefficient per ${ }^{\circ} \mathrm{C}$. :

$$
R=R_{0}(1+a t) \text { ohms }
$$

If R_{1} is the resistance at an initial temperature t_{1}, R the resistance at any other tempernture ℓ, and a the temperature cocfficient at the initial temperature, then:

$$
\begin{aligned}
& \quad \mathrm{R}=\mathrm{R}_{1}\left\{1+a\left(t-t_{1}\right)\right\} \\
& \text { or } t-t_{1}=\frac{\mathrm{R}-\mathrm{R}_{1}}{\mathrm{R}_{1} a}
\end{aligned}
$$

For copper, which has a temp. coeff. of about 0.004^{*} per ${ }^{\circ} \mathrm{C}$. :

$$
t-t_{1}=\frac{250\left(\mathrm{R}-\mathrm{R}_{1}\right)}{\mathrm{R}_{1}}
$$

(The temperature coefficient per degree $F=\$$ that per degree C.).

Table LNI. gives the temperature factor for high conductivity copper from $0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. For use of Table see note at end of Table.

[^16]
TABLE LXII.

Temperature Factor by whicr the Ohserved Value of the Resistanoe of Hinh Conductivity Copper at any Temperature must be moltiplied in order to ascertaln the. Standarid Value at $20^{\circ} \mathrm{C}$.

Teinp.	Factor.	$\begin{gathered} T c m p . \\ C^{\circ} \end{gathered}$	Factor.	$\begin{gathered} \text { Tonp } \\ C^{\circ} \end{gathered}$	Factor.	$\operatorname{Tcmp}_{C^{\circ} p}$	Factor.	Tomp.	Factor.
0	1-0853	20	10000	40	'9271	60	-864	80	809
1	10807	21	$\cdot 9961$	41	-923 ${ }^{8}$	6 r	. 861	81	806
2	1.0761	22	- 9922	12	-920.4	62	.858	82	80.4
3	1.0716	23	-9883	43	9171	63	- 855	83	-801
4	1.0671	24	-9815	44	-9138	6.4	-852	M_{1}	799
5	1.0626	25	-9807	45	-9105	65	849	85	796
6	1.0582	26	'9770	46	-9073	66	8.47	86	794
7	-0538	27	9732	47	9048	67	. 8.44	87	791
8	1.0495	28	-9695	48	-9009	68	-841	88	789
9	1-0.152	29	-9658	49	8977	69	-838	89	-786
10	-10409	30	$\cdot 9622$	50	-8945	70	-835	90	784
12	1.0367	31	'958t	51	-891	71	-833	91	781
12	1-0325	32	-9550	52	. 888	72	. 830	92	779
13	1.0283	33	.9514	53	-885	73	-827	93	777
14	1.02 .11	3.4	-9478	54	882	74	-825	94	774
15	1.0206	35	-9443	55	-879	75	-812	95	772
16	1.0160	36	-9408	56	. 876	76	-819	96	770
17	1.0119	37	-9374	57	-873	77	-817	97	-767
1.8	1.0079	38	-9332	58	.870	78	-814	98	-765
19	10039	39	'9305	59	-867	79	-811	99	763
20	1.0000	40	-9271	60	-864	80	-809	100	760
100	-760	120	-717	$1 \downarrow 0$. 679	: 60	-6.44	180	-613
102	$\cdot 756$	122	-713	142	. 675	162	. 641	182	.61C
10.4	$\cdot 751$	124	-709	1.14	. 672	164	. 638	184	-607
106	747	126	-705	146	. 668	166	. 635	186	-60.4
108	-742	128	-701	148	. 665	168	. 632	188	-602
110	-738	130	-698	150	-661	170	. 628	190	-599
112	-734	132	-694	152	. 658	172	. 625	192	- 596
114	-730	134	-690	154	. 654	174	. 622	194	-593
116	-725	136	-686	156	. 651	176	. 619	196	-590
118	-721	138	.683	158	. 6.48	178	. 616	198	588
120	$\cdot 717$	140	-679	160	-644	180	.613	200	- 989

Note. The value for the temperature cocflicient of annealed high conductivity copper is 00426 , referred to $0^{\circ} \mathrm{C}$. This is equivalent to 00393 , referred to $20^{\circ} \mathrm{C}$. ; or approximately 04 per cent. of the resistance at $20^{\circ} \mathrm{C}$., a figure which is easily remembered and is aufficiently accurate for ordinary work. The Table has been calculated from the exact figure.
Examples of the Use of the Table.-(1) The resistance of a coil of copper strip is found to be $\mathbf{1 4 4}$ ohms when its temperature as indicated by a centigrade thermometer is 27° : What is the standard value-that is to say, the resistance at $20^{\circ} \mathrm{C}$. ?

The factor for $27^{\circ} \mathrm{C}$ is 973 , hence at $20^{\circ} \mathrm{C}$. the resistance will be $\cdot 144 \times 973=140$ ohms.
(2) On anotber day the same coil is measured at a temperature of $12^{\circ} \mathrm{C}$. and found to be 136 ohms.

The factor for 12° is 1033 , hence the standard value will be $136 \times 1033=140$ ohms as before.
(3) After continued use the coil is found to have a resistance of 142 ohms at $36^{\circ} \mathrm{C}$.

The factor for 36° is 941 , hence the resistance at $20^{\circ} \mathrm{C}$. will be $142 \times 941=134$ ohms, showing a considerable fall below the original value of 140 ohms.
Such a decrease indicates either a partial short circuit in the windings or an excessive leakage between the terminals.
(4) A motor armature, of which the standard value is 045 ohms, is found to measure 057 ohms after running at full load for several hours : What is the temperature attained by the windings?

The factor is $\frac{\text { standard value }}{\text { hot value }}=\frac{045}{.057}=.79 ;$ reference to the Table shows that the temperature is $87^{\circ} \mathrm{C}$.

Kirchofl's Laws.

Tho following laws relate to continuous currents in divided circuits ; they cannot be applied to alternating currents :-
(a) The algebraic sum of the currents in all wires which meet at a point $=0$. Currents flowing to a junction are positive, and those from the junction are negntive.
(b) The algobraic sum of the products of current and resistanco in each branch of a network equals the algebraic sum of the electromotive forces of the network.

Wheatstone Bridge.

The Wheatstono Bridge consists essentially of four resistances as shown in Fig. 9 ; a and b are the ratio arms of known resistance, and may be either equal, or as 1,000 to 100 , or as 10 to 1 or 1 to 10 or 100 to 1,000 . The arm τ is an adjustable resistance, and x is the unknown resistance to bo found.

Fig. 9. Wheatstone Bridge.
Tho arm r is adjusted until $\frac{r}{x}=\frac{a}{b}$. When this balance is obtained the current from the battory B will divide between the two parallol circuits and there will be no deflection of the galvanometer G. The best value for the ratio arms is that which makes them most nearly equal to the resistance under test. The keys k_{1} and k_{2} aro placed ono below the other so that on depressing the handle the battery circuit is closed first and opened last.

$$
\text { The unknown resistanco } x=\frac{r b}{a}
$$

A sliding contact may be used to alter the adjustable resistance r. or ndjustment may be clfected as in the Post Ofice Jridge, where a number of resistance coils for the arms a. b and r are mounted in a box across gaps in a heavy brass bar. the gaps being short-circuited by plugs. A resistance is inserted by removing the corresponding plug.

The principle of the Wheatstone Bridge is used in many forms. For A.(. measurencuts the resistances must be mon-inductive, and balance is obtained by the use of a telephone or a vibration galvanometer. In the case of a telephone, balanee is indieated when there is no sound in the telephone.

Galvanometer and Shunt.

Resistance of Gaivanometer and Shunt.

If G and s are the resistances of galvanometer and shunt respectively their joint resistance R is:

$$
\mathrm{R}=\frac{1}{\frac{1}{-\mathrm{G}}+\frac{1}{8}}=\frac{\mathrm{C},}{\mathrm{G}+}
$$

Currents in Galvanometer and Shunt.

If $I, I_{\text {f. }}$ and I are the currents through the battery, galvanometer and shunt respectively, and E is the potential difference:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{i}}=\frac{\mathrm{E}}{\mathrm{G}^{\prime}} \text {, and } \mathrm{I}=\frac{\mathrm{E}}{\delta} \\
& \therefore \frac{\mathrm{I}_{\mathrm{i}}}{\mathrm{~T}_{\mathrm{B}}}=\frac{s}{\mathrm{G}} \text {, or } \mathrm{I}_{\mathrm{G}}={ }_{\mathrm{G}}^{8} \mathrm{r}_{\text {, }} \text { and } \mathrm{T}_{\mathrm{s}}=\frac{\mathrm{C}_{\mathrm{i}}}{8} \mathrm{~T}_{\mathrm{r}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mathrm{I}_{\mathrm{s}}=\mathrm{I}\left(\frac{\mathrm{G}}{\mathrm{G}+\mathrm{s}}\right) \text {, and } \mathbf{I}_{\mathrm{i}}=\mathrm{I}\left(\frac{s}{\mathrm{G}+{ }_{s}}\right) \text { or } \mathrm{I}=\mathrm{I}_{\mathrm{G}}\left(\frac{\mathrm{G}+s}{s}\right)
\end{aligned}
$$

where $\frac{G+s}{s}$ is the "Multiplying I'ower" of the shunt.

Resistance of Shunt to give required Multiplying Power.

The multiplying power (n) is:

$$
n=\frac{\mathrm{G}+\mathrm{s}}{s}=\frac{\mathrm{G}}{s}+1
$$

\therefore the resistance of shunt to give any required multiplying power is

$$
\begin{gathered}
s=\frac{\mathrm{G}}{n-1} . \\
\text { and } \frac{s}{\mathrm{G}}=\frac{1}{n-\mathbf{1}}
\end{gathered}
$$

In shunt boxes the multiplying powers are 10,100 and 1,000 , and they are marked $\%, 3_{5}^{1}$ and $\frac{1}{6}$, being the ratios of the currents passed through G and s; that is, the ratio of the resistances $\frac{s}{\mathrm{G}}$ are $\frac{1}{} \frac{1}{h}$, $\frac{1}{5}$ or $\frac{1}{b} 5$.

Compensating Resistance for Galvanometer and Shunt.

In order to make the joint resistances of the galvanometer and shust equal to that of the unshunted galvanometer, a compensating resistanco (R_{c}) must be added in the main circuit, so that:

$$
\begin{aligned}
\mathrm{G}=\frac{\mathbf{G} s}{\mathrm{G}+s}+\mathrm{R}_{c}, \text { or } \mathrm{R}_{c} & =\mathrm{G}-\frac{\mathbf{G} s}{\mathrm{G}+s}=\mathrm{G}-\frac{\mathrm{G}}{n}=\mathrm{G}\left(1-\frac{1}{n}\right) \\
= & \mathrm{G}\left(\frac{n-1}{n}\right) \text { ohms. }
\end{aligned}
$$

The Ayrton Universal Shunt.

This shunt is so arranged that it can bo used with any galvanometer (Fig. 10).

Fig. 10. Universal Shunt.
With A connected to C the current through tho galvanometer will bo $I_{18}=I \frac{s}{s+G}$, where I is tho battery current.

If A is connected to B instead of C.

$$
\mathbf{I}_{\mathrm{G}}^{\prime}=\mathrm{I} \frac{x}{s+\mathbf{G}}
$$

Therefore $I^{\prime}{ }_{c}=I_{1} ; \frac{x}{s}$
Hence the shunt ratio at any position of B along s is $\frac{x}{8}$ and is independent of the gnlvanometer resistance.

Inductance.
Inductance (L) is the ratio of the magnetic flux linked with and due to a conductor. to the current strongth carried.

The self-induced voltage is proportional to the rato of change of the current in the circuit,

$$
\mathrm{E}=-\mathrm{L} \frac{d \mathbf{l}}{d t}
$$

where L is the coofficient of self-induction.
The magnetic energy stored in a circuit is proportional to the square of the current and is

$$
W=\frac{1}{2} \mathrm{~L} \mathrm{I}^{2} \text { (} \mathrm{L} \text { being in henries and } W \text { in joules). }
$$

cxiv

Helmholtz's Law.

Inductance in a circuit retards the increase of current, and the strength of the current may be calculated at any time after the circuit is closed from the formula

$$
\mathrm{I}=\stackrel{\mathrm{E}}{\mathrm{R}}\left(\mathrm{I}-e^{-\frac{\mathrm{R}^{\prime}}{\mathrm{L}}}\right)
$$

whero I is the current after t seconds, E tho voltage, R the resistance, L the coefficient of self-induction in lenries, and e is the base of the Napierian logarithm ($=2.71828$).

The ratio of t to $\frac{L}{R}$ is called the "Time Constant" of the circuit, and the percontage which the instantaneous value of the current bears to the full value depends upon this ratio.

Inductance of Solenoids.

For a straight coil uniformly wound with n turns of wire per cm. length, provided that the longth of the coil is large compared with its diameter, and that tho winding consists of one layer of thin wire, the inductance is

$$
\mathrm{L}=1.257 n^{2} l \mathrm{~A} 10^{8} \text { henries, }
$$

where n is the number of turns per cm . length. A is the cross-section of the flux in sq. cm ., and l is tho average length of the flux in cm .

The inductance of a long straight coil of several layers of wire and with an iron core of inside radius, a,

$$
\mathrm{L}=4 n^{4} l d^{2} r^{2}\left[1+(\mu-1) \frac{a^{2}}{r^{2}}+\frac{d}{r}+\frac{d^{2}}{3 r^{2}}\right] 10^{4} \text { henries. }
$$

where r is the inside radius of the winding. d is its radial thickness, and μ is the relative permeability of the core with respect to the air. If there is no iron core $a=0$.

Inductance of Transmission Line.

The self-inductance of a single-phase transmission lino is

$$
00805+0.741 \log \left(\frac{d-r}{r}\right) \text { millihenries per mile, }
$$

where d is the distance between centres of conductors, and r is the radius of the conductor.

For overhead lines $(d-r)$ may be taken as d, since r is relatively small. For further data see "Overhead Transmission Lines," page 221, Vol. I.

Mutual Inductance.

When two independent circuits (a) and (b) are near to each other, their electro-magnotic energy consists of three parts: (i) the part due to the linkages of the Hux produced by circuit (a) with the current in (a); (ii) that due to the flux produced by the circuit (b) with the current in (b); and (iii) that due to the current in each circuit linking with the flux produced by the other circuit.

The total energy of the system is

$$
W=\frac{1}{2} L_{a} I_{a}^{2}+\frac{1}{1} L_{b} I_{b}^{2}+I_{a} I_{b} \mathbf{L}_{m}
$$

where $L_{i u t}$ is the coeflicient of mutual inductance (henries) of the two circuils.

$$
\text { Also } e_{n}=-\mathbf{L}_{m} \frac{d \mathbf{I}_{b}}{d t} \text { and } e_{b}=-\mathbf{L}_{m} \frac{d \mathrm{I}_{a}}{d t}
$$

Choking Coil.

The back li.M.F. set up by a choking coil by reason of its self-induction is $\mathrm{E}_{b}=4.44 \mathrm{~N} f \mathrm{BA} \times 10^{8}$ volts,
where $\mathbb{E}_{6}=$ the back E.M.F.
$\mathrm{N}=$ number of turns.
$f=$ frequency.
$\mathrm{B}=$ flux density (lines per om ${ }^{2}$).
$\mathrm{A}=$ area of coro.

Capacity.

Capacity is the ratio of an electric charge on a conductor to the electric potential differonco producing the charge,

$$
\mathrm{Q}=\mathrm{C} \times \mathrm{E} \times 10^{6}
$$

where $Q=$ the olectric charge in coulombs, $C=$ the electrostatic capacity in miorofarads, $\mathrm{E}=$ the potential difference in volts.

If I is the current in amperes passed into a condenser during t seconda $Q=I t$.
The energy stored in a condenser of capacity C farads when charged to a potential difference of F volts is

$$
\mathrm{W}=1 \mathrm{CE} . \text { joules. }
$$

(1 microfarad $=10^{-15}$ olectroruagnetic units $=900,000$ electrostatic units.)
Condensers in Series and in Parallel.
When condensers are placed in parallel tho resultant capacity is equal to the sum of the crapacitios of the condensers.

$$
\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+--
$$

When condensers aro connected in series, tho resultant capacity is the reciprocal of the sum of the reciprocals of the capacity of each condenser.

$$
\mathrm{C}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\cdots}=\mathrm{C}_{3} \mathrm{C}_{2}+\mathrm{C}_{1} \mathrm{C}_{3}+\mathrm{C}_{2} \mathrm{C}_{3}
$$

Speciflc Inductive Capacity.

The Specific Inductive capacity, or dielectric constant, is the ratio of the capacity of a condenser, the plates of which are separated by a given substance, to the capacity of a similar condenser, the plates of which are soparated by a vacuum (soo Table XLV).

Capacity of Plate Condensers.

When a condenser consists of two parallel plates, the capacity is

$$
\mathrm{C}=\frac{\epsilon \mathrm{A}}{4 \pi \hat{i}} \text { clectrostatic units, }
$$

where ϵ is the specific inductivo capacity of the dielectric ($=1$ for air), \mathbf{A} is the total effective aren of the plates in sq. cm., t is the thickness of the dielectric in cm .

The capacity in microfarads is

$$
\mathrm{C}=\frac{\epsilon \mathrm{A}}{4 \pi t\left(9 \times 10^{5}\right)}=0088.2 \times 10^{6} \frac{\mathrm{tA}}{t} \mu \mathrm{~F} .
$$

If the dimensions are in sq. in. and inches,

$$
\mathrm{C}=0.2246 \times 10^{-6} \frac{\mathrm{~A}}{t} \mu \mathrm{~F} .
$$

If, instead of a singlo pair of metal plates, there are \mathbf{N} similar plates with dielectric between, altornato plates leing connected in parallel

$$
\mathrm{C}=008842 \times 10^{\circ} \frac{(\mathrm{N}-1) \in \mathrm{A}}{t} \mu \mathrm{~F} \text { (dimonsions in cm.) }
$$

cxvi

Capacity of Variable Condenser with Semicircular Plates.

If $N=$ the total number of parallel plates,
$r_{1}=$ the outside radius of the plates in cm .
$r_{2}=$ the inner radius of plates in cm .
$t^{2}=$ the thickness of dielectric in cm .
$\epsilon=$ dielectric constant.
Then for the position of maximum capacity (movable plates between the fixed plates),

$$
\mathrm{C}=0.1390 \epsilon \frac{(\mathrm{~N}-1)\left(r_{1}{ }^{2}-\tau_{2}{ }^{2}\right)}{t} \times 10^{\mathrm{ij}} \mu \mathrm{~F}
$$

Capacity of two Coaxial Cylinders.
If $r_{1}=$ radius of outer cylinder in cm .
$r_{2}=$ length of each cylinder \ddot{l} in cm.
$\epsilon=$ dielectric constant.

$$
\text { then } \mathrm{C}=\frac{0.2416 \epsilon l}{\log \frac{r_{1}}{r_{2}}} \times 10^{-i} \mu \mathrm{~F}
$$

The same formula gives the capacity of a single conductor cable with grounded metal sheath (sec below).

Capacity of two Concentric Spheres.

If $r_{1}=$ the inner radins of the outsicle sphere in cm .
$r_{2}=$ the radius of the inside sphere.
$\epsilon=$ the dielectric constant,

$$
\text { then } \mathrm{C}=1.112 \epsilon \frac{r_{1} T_{2}}{r_{1}-r_{2}} \times 10^{-6} \mu \mathrm{~F}
$$

Capacity of Overhead Lines.

The capacity between two parallel overhead conductors is

$$
\frac{00104}{\log \frac{d}{r}} \text { microfarads jer mile }
$$

where d is the clistance between centres of conductors, and r the radius of the conductor (dimensions in inches or cm .).

In 3-phase circuits the capacity between wire and neutral is twice the above value, and will also be twice the above value for the Y-capacity of the line.

The capacity of a single overhead conductor with ground return is

$$
\mathrm{C}=\frac{003882}{\log \frac{2 h}{r}} \mu \mathrm{~F} \text { per mile, }=\frac{0.02413}{\log \frac{2 h}{r}} \mu \mathrm{~F} \text { per km. }
$$

where h is the height of the conductor above the ground.
For furthor data sec " Overhead Transmission Lines," page 225, Vol. I.

Capacity of Cables.

The capacity of a concentric cable, or of a single conductor cable with grounded metal sheath is

$$
\frac{003882 \epsilon}{\log \frac{\mathrm{D}}{d}} \mu \text { F per mile, }
$$

Where ϵ is the specific inductive capacity of the dielectric, D the diameter
over the insulation surrounding the inner conductor, and d the diameter of the inner conductor. This is the same formula as for two concentric cylinders (see above).

The mutual capacity of a twin conductor cable is

$$
\frac{00194 \epsilon}{\log \frac{2 a\left(R^{2}-a^{2}\right)}{r\left(R^{2}+a^{2}\right)}} \mu \text { F per mile, }
$$

where ϵ is the dielectric constant, a is the distance from the centre of the cable to the centre of the conductors, R is the inside radius of the lead sheath and r is the radius of the conductors. The capacity of a single conductor is twice that given by the above formula.

The mutual capacity of a three-phase three-conductor cable is

$$
\log \frac{003882 c}{3 a^{2}\left(\mathrm{R}^{2}-a^{2}, 3\right.} r^{2}\left(\mathrm{R}^{6}-a^{6}\right) \mathrm{F} \text { per milo, }
$$

the dimensions being the same as above. The capacity of a single conductor is twice that given by this formula.

Charging Current.

The capacity or charging current (I_{1}) of a single phase circuit is

$$
\mathrm{I}_{c}=2 \pi f \mathrm{ECin} \mathrm{E}^{1} \text { nmps. }
$$

where E is the pressure between wires at the generator end and C the capacity of the wires in $\mu \mathrm{F}$. Where $f=50$ cycles

$$
I_{r}=000031+\mathrm{EC} \text { amps. }
$$

The charging current of a three phase circuit is $\frac{2}{\sqrt{/ 3}}(=1-155)$ times that of a single phase circuit, with equal spacing between phases.

Alternating Current Circuits.

Inductive Reactance.

In a circuit containing inductance only the current lags 90 deg. behind the applied E.M.F.

$$
\mathrm{L}=2 \pi f \mathrm{~L} \mathrm{I} \text { volts }
$$

where E is the R.M.S. voltage, 1 the current, L the inductance in henries and f the frequency in cycles per second.

$$
\therefore 2 \pi f L=\frac{\mathrm{E}}{\mathrm{~T}} \text { оhnıa }
$$

where $2 \pi f \mathrm{~L}(=\omega \mathrm{L})$ is the inductive renctance.

Impedance.

In n circuit contnining resistance and inductance in scrics, the impedance is

$$
\begin{aligned}
7 & =\sqrt{r^{2}+(\omega L)^{2}} \\
\text { so that } \mathrm{I} & =\frac{\mathrm{l}}{\sqrt{r^{2}+(\omega L)^{2}}}
\end{aligned}
$$

where r is the energy component of tho impedance and $\omega \mathrm{L}$ the wattless component of the impedance.

Admittance is the reciprocal of impedance $=\frac{1}{2}$.

$$
\frac{1}{7}=\sqrt{y^{2}+t^{2}}
$$

where g is the Conductance and b the Susceptance.

Capacity Reactance.

In a circuit containing capacity and resistance in series, the current leads the applied E.M.F. by 90 rleg.. and the impedance is

$$
\eta=\sqrt{v^{2}+\left(\frac{1}{2 \pi f C}\right)^{2} \text { ohms. }}
$$

Where C is in farads, and $\frac{1}{2 \pi f \mathrm{C}}\left(=\frac{1}{\omega \mathrm{C}}\right)$ is the capacity reactance, or condensance.

Inductive and Capacity Reactance.

In a circuit containing inductance, capacity and resistance in series, the impedance is

$$
\eta=\sqrt{\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}}
$$

The condition for the enpreity to annul the inductance is when

$$
\omega \mathrm{L}=\frac{\mathrm{l}}{\omega \mathrm{C}} \text { or } \omega=\frac{1}{\sqrt{\mathrm{LC}}}
$$

That is, when $f=\frac{1}{2 \pi \sqrt{L C}}$.
This condition is called Resonance.

Phase Angle.

In Fig. 11ϕ is the angle of lag, and tan $\phi=\frac{2 \pi f \mathrm{~L}}{r}$

Fig. 11.
That is, the tangent of the angle of lag is equal to the ratio of the in ductive reactance to the rosistance. ϕ is called the phase angle.

Similarly where there is capacity in the circuit, $\tan \phi=\frac{2 \pi f \mathrm{C}}{r}$.
Form Factor.
The form factor is the ratio of the R.M.S. value of the voltage to the mean value.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{R} . \mathrm{M} . \mathrm{B} .}=\frac{\mathrm{E}_{\mathrm{max}}}{\sqrt{2}}=0.7071 \mathrm{E}_{\max } \\
& \mathrm{F}_{\text {,mean }}=\frac{\mathrm{E}_{\text {max }}}{\pi}=\frac{2 \mathrm{~F}_{\text {max }}}{\pi}=0.6366 \mathrm{E}_{\text {max. }} \\
& 2
\end{aligned}
$$

\therefore the form factor for a sine wavo is

$$
\frac{\mathrm{E}_{\mathrm{R}} \mathrm{M} \cdot \mathrm{~s}}{\mathrm{E}_{\text {mean }}}=\frac{0.7071}{0.6366}=1.11
$$

The Ainplitude Factor $=\frac{\mathrm{E}_{\text {mas }}}{\mathbf{E}_{\text {n. Ms. }}}$

Power Factor.

In Fig. 12 KW is the true load, KVA the total or apparent load, and the remaiuing sido of the triangle the wattless load, all in watts.

The ratio between the true watts and the apparent watts (volt amperes) is the power factor, and is the cosine of the angle of lag $(\cos \phi)$.

$$
\begin{aligned}
& \mathrm{KW}=\cos \phi=\text { power factor. } \\
& \mathrm{KVA}=\frac{\text { Wattless load }}{\mathrm{KVA}}=\sin \phi=\text { wattless factor. } \\
& \frac{\text { Wattless load }}{\mathrm{K} W}=\tan \phi
\end{aligned}
$$

Fig. 12.

Oscillatory Discharge.

If the resistance is greater than $\sqrt{\frac{4 \mathrm{~L}}{\mathrm{G}}}$, the circuit will be nonoscillatory, and the discharge will be unidirectional. If r is less than $\sqrt{\frac{4 \mathrm{~L}}{\mathrm{C}}}$, it will bo oscillatory, and the frequency of oscillation will bo $\frac{1}{2 \pi \sqrt{L C}}$.

The expression $\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$ is called the Surge Impedance.
Formulæ for Wave Length, etc.
Wave longth in wetres is
$\lambda_{m}=\frac{v}{f}$, where v is the velocity of light and f the frequency.
$\therefore \lambda_{m}=\frac{299.8 \times 10^{4}}{f}$ motres.
But $\frac{1}{f}=\frac{2 \pi}{\omega}$, where $\omega=2 \pi f$.
$\therefore \lambda_{m}=\frac{299.8 \times 10^{6} \times 2 \pi}{\omega}=\frac{1884 \times 10^{3}}{\omega}=1884 \times 10^{0} \sqrt{\mathrm{LC}}$, where
$\omega=\frac{1}{\sqrt{\overline{L C}}}, \mathrm{~L}$ being in henries and C in farads.
$\therefore \lambda=1884 \sqrt{\text { LC where }} \mathrm{L}$ is in $\mu \mathrm{H}$ and C in $\mu \mathrm{F}$
and $f=\frac{10^{\circ}}{2 \pi \sqrt{ } \mathrm{LC}}=\frac{159,200}{\sqrt{\mathrm{LC}}}$ where L is in $\mu \mathrm{H}$ and C in $\mu \mathrm{F}$.

Measuring Instruments.
British Standard Graphical Symbols.

Ammeter. A Milliammeter. (mA)	Electric Clock, electrically driven from Master Clock.	Synchronised Clock, as above, with Auto-Switch.
Microammeter. $H A$ Voltmeter.	Electric Clock as above, and with Seconds Hand.	Synchronised Clock, as above, but synchro nised throusth Cut-out.
Wattmeter. W Frequency Meter.	Mechanical Clock. Weisht or Sprins driven. electrically synchronised	Self-windin§ Clock.
Power Factor Meter PF	Mechanical Clock, as above, with Cut-out.	Overload Relay: Const.ant Time Limit.
Galvanometer. Gal.		Reverse Power Relay. $\frac{R}{P R}$
Differential Galvanometer. D.Gal.	Synchronised Clock, Synchronisink Coil above, Driving Coil below. 0	Overload Relay, Inverse Time Limit. OR $1 \mathrm{~T}$
Ammeter Shunt.		Reverse Current Relay. $\begin{array}{\|l\|} \hline \frac{R}{C R} \\ \hline \end{array}$

Measurement of Power with Wattmeters.

The diagrams given in Figs. 13 to 19 are self-explanatory, and illustrato the use of single phase wattmeters under various conditions. W is the power to be mensured, and W_{1}, W_{2} and W_{3} are the wattmeter readings.

In the case of four-wire unbalanced load circuits, the connections aro similar to those shown in Fig. 16, except that the pressure windings aro joined to a fourth or neutral wire. Three wattmeters are essential in this case. Three complete elements can be obtrined in one instrument.

With a balanced three-phase system in which the neutral point is not accessible, either two wattmeters can be used, connected as shown in Fig. 17, or the connections can bo made as shown in Fig. 19. Ono wattmeter is sufficient in this case, but, in order to create an artificial neutral point, a "star resistance " is necessary. This star resistance may be self-contained in the instrument, or may consist of an external box. The total power is three times the wattmeter reading, or the scale of the instrument can be arranged to indicate tho total power direct.

> Power Factor Measurement with a Watmeter.
> Power factor $=\frac{\text { Vults } \times \text { amperes } \times \cos \phi}{\text { Volts } \times \text { ampere }}=\frac{\text { True power }}{\text { Apparent power }}=\cos \phi$

From the above it is clear that $\cos \phi$ is equal to the watts divided by the product of the amperes and the volts, consequently the power factor can always be determined by means of an ammeter, a voltmeter, and a wattmeter. In the case of a single-phase system one of each is required, the wattmeter being connected up as shown in Fig. 13. A two-phase system way be dealt with as two single-phase systems. With a balanced threephase load the connections would be as shown in Figs. 18 or 19. In either case the ammeter is connected in one of the lines and the voltmeter to the neutral point-actual or artificial as the caso may be. In the latter case, unless special precautions are taken, a common star resistance cannot bo used for both wattmeter and voltmeter since the arm in parallel, with which the voltmeter is connected, would then have a lower resistance than the other two. In the case of an unbalanced three-phase load the wattmeters are connected as shown in ligs. 16 or 17, and threo ammeters are connected, one in each line. As Ω rule the voltages are sufficiently wellbalanced to warrant the use of a single voltmeter.

It is useful to note that, with tho arrangement shownin Fig. 17, the angle of lag or lead can, in tho case of a balanced three-phase load, be deduced from the ratio of the two wattmeter readings, since :-

$$
\frac{W_{2}}{W_{1}}=\frac{\sqrt{3}}{\sqrt{3}} \frac{E C_{2} \cos (30-\phi)}{\mathrm{E} \mathrm{C} C_{1}} \frac{\cos (30-\phi)}{\cos (30+\phi)}=\frac{\cos (30+\phi)}{\cos (3)}
$$

where W_{1} and W_{2} are the respective wattmeter readings and ϕ the angle of lag of tho system. The load being balanced $\mathrm{C}_{1}=\mathrm{C}_{2}$. At a power factor of unity ($\phi=0$) the two watmeters indicate the same (i.e., $\mathrm{W}_{1}=\mathrm{W}_{2}$). At a power factor of $0-\tilde{z}(\phi=60)$ one instrument indicates zero, and the other all the load. At lower power factors than this tho former wattmeter reverses, and at zero power factor $(\phi=90) W_{1}$ again equals W_{2}, but in this case the two instrmments read in opposite directions.

$$
\boldsymbol{w}=3 w_{I}
$$

Fig. 18.
Threc-Phase (balanced).
Neutral point available.

Measurement of Power by Three Voltmeter and Three Ammeter Methods.

 Three Voltmeter Method.For this measurement three voltmeters, an ammeter and a non-inductive resistance are required.

The non-inductive resistance R is placed in series with the apparatus \mathbf{X}, Which is absorbing the power to be measured, R being about the same resistance as X. The voltmeters V_{1}, V_{2} and V_{3}, and the ammeter a are connected as shown in Fig. 20. The currents taken by the voltmeters must be small as compared with the main current.

The power taken by X is :-

$$
W=\frac{A}{2 V_{1}}\left(V^{2}{ }_{3}-V^{2}{ }_{1}-V^{2}{ }_{2}\right) \text { watts. }
$$

The power factor is equal to :-

$$
\left(V_{3}^{2}-V^{2}{ }_{1}-V^{2}{ }_{2}\right)\left(2 V_{1} V_{2}\right)
$$

A disadvantage of this method is that the result varies as the difference of the squares of the readings.

Three Ammeter Method.

If three ammeters and a voltmeter are used as in Fig. 21 with the noninductive resistance \mathbf{R} in parallel with \mathbf{X}, the power taken by \mathbf{X} is measured by :-

$$
W=\frac{V}{A_{2}}\left(A_{3}{ }_{3}-A^{2}{ }_{2}-A^{2}{ }_{1}\right)
$$

The same disadvantage holds for this as for the three voltmeter method.

Fig. 20.
Three Voltmeter Method.

Fig. 21.
Three Ammeter Method.

APPENDIX B

WIRING RULES, REGULATIONS, ETC.

> Requlations for the Electrical Equipmest of Buldings. (formerly I.E. F. Wiring Rules).

Deflnitions.
(Note-Definitions 1 to 40 have been omitted here: Definitions 44 to 54 will be found under B.S. Specification No. 168. See page 456 , Vol. I.).
41. Systems of W'iring.
A. T'wo-vire.-A two wiro system of wiring is one comprising two conductors between which the load may be connected, the wiring being effected by either of the following methods :
(a) Two-conductor, insulated.-Conductors insulated throughout aro provided for all connections to both poles of the supply, the conductors being soparate, twin, or concentric.
(b) T'uo-conductor, earthed.-Conductors are provided throughout for all connections to both poles of the supply, those connected to one pole being insulated thoughout, and those connected to the other being uninsulated throughout and efficiently earthed. The uninsulated conductor, known as the "external" conductor, completely surrounds the whole length of the other, known ns the "internal" conductor.

Note- Excopt with the consent of the Electricity Commissioners no conductor directly connected to the public supply systom may be earthed.
13. Three-wire.-A three-wire system of wiring is one comprising three conductors, one of which known ns the "neutral " or "middle," is maintained at a potential midway between the potentials of tho other two, referred to as tho "outer " conductors. Part of the load may be connected directly between tho outer conductors, and tho remainder divided as evenly as possible into two parts connected respectively between the widdle and each outer conductor.
C. T'wo-phase Three-wire.-A two-phaso three-wiro system of wiring is one comprising threc conductors between ono of which, known as the "common return," and the other two are maintained respectively alternating differences of potential displaced in phase by one-quarter of a period.
D. Three-phase Threc-wire.-A three-phase three-wire system of wiring is one comprising three conductors between successive pairs of which are maintained alternating differences of potential successivoly displaced in phase by one-third of a period.

[^17]E. Tư-phase Four-uire.-A two-phase four-wire systom of wiring is one comprising four conductors divided into two pairs which have maintained between their conductors niternating differences of potential displaced in phase by one-quarter of a period.

1F. Threc-phase Four-vire.-A threc-phase four-wire system of wiring is one comprising four conductors, three of which are connected as in a three-phase three-wire system, the fourth leing connected to the neutral point of the supply.
42. Balanced.-A three-wire system of generation or supply is said to be "balanced " when :-
A. In a case of direct-current or single-phaso alternating-current systems of generation or supply the loads connected between the middle and ench of the outer conductors are equal.
B. In the case of a three-phase system of generation or supply the load carried by any combination of two conductors is equal to the load carried by any other combination of two conductors.

Note.-In the case of a three-phase four-wire system of generation or supply, in addition to condition (b) above, the loads connected between the middle and each of the outer or "phase" conductors are also equal.

Generating Plant.

55. D!namos and Alternators.-Where an electric supply is generated upon the consumer's or other private premises, the generators, except in the case of extra-low pressure plant having a capacity not excecding 5 kiloratts, shall conform in all respects to the British Standard Specification applicable to such machines.
56. Situation of Generating Plant.-
A. Generators, other than those defined in Regulations 49, 50, 51 and 53, shall be placed in well-ventilated rooms where inflammable or explosive dust or gases cannot accumulate. In situations where indammable materials are stored or handled, generators may be placed only if suitably and adequately protected.
B. Generators shall be placed in positions in which they are not exposed to risk of mechanical injury or to damage from water, steam or oil.
C. No unprotected woodwork or other combustiblo material shall be within a distance of 12 inches (30 cm .) measured horizontally from
or within 4 feot (120 cm .) measured vertically above the generators.
57. Earthing of Generating Plant.-When the supply is nt medium pressure the generating plant shall have its bedplate and frame earthed (see Regulations 96 to 103).
58. General Requirements for Secondary Batteries.-When apparatus is supplied from secondary batteries the same general regulations shall be observed as apply to similar apparatus fed from generators developing the same difference of potential.

59. Arrangement of Sccondary Batteries-

A. Every battery shall be so arranged that a potential difference oxceeding 50 volts does not exist between adjacent colls without adequato protection, and that each cell shall be readily accessible from the top and from at least one side.
B. In a lead-sulphuric acid battery having more than 33 cells, and in a nickel-iron alkaline battery having more than 63 cells, the cells shall be supported on glass or vitreous porcelain insulators. In addition
thereto, the stands shall be insulated where a battery comprises more than 56 lead-sulphuric acid cells or 88 nichel-iron alkaline cells.
C. When acid is used as an electrolyte for the cells, the battery con-necting-bolts, unless of the non-corrosice type, shall be kept covered with petroleum jelly.
D. Cells having containers not sealed or provided with serew-down covers shall bo fitted with apray nrresters.
L. Celluloid shall not bo employed in the construction of non-portable batteries ${ }^{4}$ and where it is used for portable batteries the charging arrangements shall be such that if the cases becomo ignited the risk of a fire spreading shall bo minimized.
60. V'entilation of Secondary Battery Room.-The room in which batteries are placed shall be thoroughly well ventilated.
61. Control of Secondary Batteries.-Suitable means shall be provided for controlling the current with which a battery is being worked. As a minimum this shall compriso an automatic cut-in and cut-out switch and fusible cut-out, or alternatively a circuit breaker with overload and reversecurrent trips.

Switchboards.

62. Situation of Switchboards.-Switchboards shall be placed only in dry situations and in well-ventilated rooms where inflammable or explosive dust or gases cannot accumulate, and they shall be so arranged as to prevent access of acid fumes from batteries to the boards.
63. Gencral Construction of Switchboards.-
A. Switchboards shall be constructed wholly of durable non-ignitable non-absorbent waterials, and all insulation shall be of permanently high olectric strength and insulation resistance.
64. If somi-insulating materials such as marble or slate be used, all conducting parts shall bo insulated from the slate or marble slab with mica or other non-hygroscopic insulating material, except in the case of extra-low-pressure plant having a capacity not excecding 5 kilowatts.
C. Where the frames of switchboards have to be earthed (see Regulations 96 to 103), suitablo terminals shall bo provided to which the earth connection can be made.
1). Tho various live parts shall be so arranged, by suitable spacing or shiclding with non-ignitable iusulating materials, that an are cannot be maintained between any such parts or between such parts and earth.
E. The arrangoment of all parts shall bo such that the connections to all instruments and apparatus can be readily traced.
F. All parts, including connections, shall be readily accessible ; and no fuse shall be fixed on the back of the board.
G. All nuts fixed at the back of switchboards shall bo effectively locked so that they cannot become loose.
H. All omnibus bars and connections on swithboards shall be in accordance with British Standard Specification No. 159.
J. All circuits, instruments and important apparatus shall be clearly and indelibly labelled for iclentification. If detachable name-plates be employed they shall be non-ignitable and, if of metal, shall bo so disposed as not to involve risk of causing short-circuits or earths.
K. The connecting wires to every voltmeter and its pivot lamp (if any) and to every earth lamp shall be protected by a fuse on each insulated pole.
L. Switches shall be so arranged that their blades or moving parts are disconnected from the supply in the " off " position.
M. In every case in which switches and fuses are litted on the same pole, these switches shall bo so arranged that the fuses are disconnected from the supply when their respective switches are in the " off " position.
\therefore. Where a schome of colouring is employed to distinguish switchboard omnibus bars and connections to individual poles or phases, such scheme of colouring shall be in accordance with British Standard Specification No. 158.

Note. - The standard colours adopted for the identitica. tion of cables (seo Regulation S5̄) are different from those specified in Regulation 63 N for switchboard connections.
O. The arrangement of omnibus bars carrying alternating currenta shall be in accordance with British Standard Specification No. 158.
64. Main Switchgear. - Every main switchboard shall be fitted with the following switchgear as a minimum :-

Note.-It is important to distinguish between a fuse in the neutral conductor of a threc-wire system of wiring and Ω fuse in that conductor of a two-conductor insulated wiring circuit which is conneeted to the noutral of a three-wire system of wiring. Seo diagram).
(1) T'wo-wire Systems of W'iring.
A. When only one generator is installed, or when the supply is derived from a single two-wire service from an external source :
(a) For the generator or service main :-
(i.) If a two-conductor insulated system of wiring, either a doublepole overload circuit breaker or a double-polo linked switch with a fuse on each polo.
(ii) If a two-conductor earth system of wiring, either a single-pole overload oircuit breaker or a single-pole switch with a single-pole fuse on the insulated pole.
(b) For each outgoing circuit from the switchboard or main fuses:-
(i) If a two-conductor insulated system of wiring, either a doublopole overlond circuit breaker or a double-pole linked switch with a fuse on ench pole.
(ii) If a two-conductor earthed system of wiring, cither a singlepole overload circuit breaker or a single-pole switch with a singlepole fuse on the insulated pole.
13. When more than one generator is installed, the generators not being arranged to run in parallel, or when the supply is derived from a duplicate two-wire service from an external source:
(a) For each generator or service main :-
(i) If a two-conductor insulated syatom of wiring, oither a doublopolo overload circuit breaker, or a doublo-polo linked switch with n fuso on each polo.
(ii) If a two-conductor earthed systom or wiring, either a singlepolo overload circuit breaker, or a single-pole switch with a singlepole fuse on the insulated pole.
(b) For each outgoing circuit from the switchboard or main fuses :
(i) If atwo-conductor insulated system of wiring, a double-pole change-over switch with either a double-pole overload circuit breaker or a fuse on each pole.
(ii) If a two-conductor earthed systom of wiring, a single-pole chango-over switch with either a singla-polo overload circuit breaker or a fuse on the insulated pole.
C. When more than one generator is installed, the generators being arrangod to run in parnllel:
(a) For each generator, if shunt wound, a circuit breaker with ovorload and reverse-current trips. This circuit breaker shall be :-
(i) If a two-conductor insulated system of wiring. double-pole.
(ii) If a two-conductor earthed system of wiring, singlo-pole.
(b) For oxch generator, if compound wound, a circuit breaker with overload and reverse-current trips, and a single-pole equalizer switch so interlocked with the circuit brenker that this equalizer switch must bo closed beforo the circuit breaker and cannot be opened until tho main circuit is brokon. This circuit breaker shall ba :-
(i) If a two-conductor insulated system of wiring, double-polo.
(ii) If a two-conductor earthed system of wiring, single-pole.
(c) For oach outgoing circuit from the switchboard or main fuses:-
(i) If a two-conductor insulated systom of wiring, either a double-
pole overload circuit breaker or a double-pole linked switch with n fuse on oach pole.
(ii) If a two-conductor earthed system of wiring, either a singlepolo overload circuit breaker or a singlo-pole switch with a singlepole fuse on tho insulated pole.
(2) Three-wire Systems of Wiring.
A. When only two generators each wound for half pressure and acting as balancers are installed, or when tho supply is derived from a threo wire service from nn external source:-

For each gonerntor, or for each side of tho service, oither a double-pole overload circuit breaker or a doublo-polo linked switch with a fuse on each pole.
B. When more than ono generator is installed, tho generators being arranged to run in parallel, whether the machines bo wound for the full pressuro or for half pressure and act as balancers:-
(a) For each generator, if shunt wound, a double-pole circuit breaker with overload and reverse-current trips.
(b) For each generator, if compound wound, a double-pole circuit breaker with overload and reverso-current trips, and a single-pole equalizer switch so interlocked with tho circuit breaker that this equalizer switch must bo closed bofore the circuit breaker and cannot bo opened until the main circuit is brolsen.
C. In the case of A or B above, for caoh outgoing circuit from the switchboard or main fuses :-
(a) If a throe-conductor circuit, either a double-pole overload circuit breaker controlling the outer conductors, or a double-pole
linked switch controlling the outer conductors with a fuse on each onter conductor. A fuse or unlinked switch shall not be included in the neutr-l conductor, but this requirement does not preclude the provision of an isolating link therein for testing purposes.
(b) If a two-conductor insulated circuit taken from the neutral and ono outer, either a double-pole overload circuit broaker, or a doublepole linked awitch with Ω fuse on each pole.
(c) If n two-conductor earthed circuit taken from the neutral and ono outor, either a single-polo overload circuit breakor on that pole which is connected to the outer conductor, or a single-pole switch and single-pols fuse on that pole which is connected to the outer conductor. Duch circuits are only permissible (see Regulation 88) if the neutral conductor of the supply bo known to be earthed at tho source of supply without a circuit breaker or added resistance.
(3) Tuo-phase Three-wire Systems of Wiring.
A. For each generator, or service main when the supply is derived from an external source, either a triple-pole circuit breaker with overload trips on each phase, or a triple-polo linked switch with a fuse on each conductor except the neutral.
B. For each outgoing three-conductor circuit from the switchboard or main fuses, either a triple-polo circuit breaker with overload trips on each phase, or a triple-pole linked switch with a fuso on each conductor except the neutral.
C. For each outgoing two-wiro circuit from the switchboard or main fuses, either a double-polo circuit breaker with overload trip on at least one conductor, or a double-pole linked switch with a fuse on each conductor.
(4) Three-phase Three-wire Systems of Wiring.
A. For each generator, or service main when tho supply is derived from an external source, either n triple-pole circuit breaker with overload trips on at least two phases, or a triple-pole linked switch with a fuse on each conductor.
B. For each outgoing three-conductor circuit from the switchboard or main fuses, either a triple-pole circuit-breaker with overload trips on at least two phases, or a triple-pole linked switch with n fuse on each conductor.
C. For each outgoing two-wire circuit from the switchboard or main fuses to which a supply is given from any two of the three conductors, cither a double-pole overload circuit breaker or a double-pole linked switch with a fuse on each conductor.
(5) Tuo-phase Four-wire Systems of Wiring.
A. For each generator, or service main when the supply is derived from an external source, either a four-pole circuit breaker with overload trips on each phase, or a four-pole linkod switch with a fuse on each conductor.
B. For each outgoing four-conductor circuit from the switchboard or main fuses, either a four-pole circuit breaker with overload trip on at least one conductor of each phase, or a four-pole linked awitch with a fuse on each conductor.
C. For each outgoing two-wire circuit from the switchboard or main fuses, either a double-pole circuit breaker with overlond trip on at least one conductor, or a double-pole linked switch with a fuse on each conductor.

(6) Three-phase Four-wire Syatems of Wiring.

A. For ench generator, or service main when the supply is derived from an oxternal source, a triple-pole circuit breaker with an overload trip on ench phase, or a triple-polo linked switch with a fuse on each phase.
B. For each outgoing three-conductor circuit from the switchboard or main fuses to which a supply is given from the three phases, cither a triple-pole circuit breaker with overload trips on at least two phases, or a triple-pole linked switch with a fuse on each phase.
C. For each outgoing two-wire circuit from the switchboard or main fuses to which a supply is given from one of the threo phases and the neutral when the neutral is known to be earthed at the sourco of supply without a circuit breaker or added resistance, either a single-polo overload circuit breaker, or a single-pole switch and single-pole fuse on that side of the circuit which is connected to one of the three phases. When the neutral is not earthed at the source of supply without a circuit breaker or added resistanco, for each two-wire circuit either a double-pole overlond circuit breaker, or a double-pole linked switch with a fuse on each conductor.
D. For each outgoing four-wire circuit used to supply a distribution board from which three-wire or two-wire circuits radiate, either a triple polo circuit breaker with an overload trip on each phase, or a triplepole linked switch with a fuse on each phase. A fuse or unlinked switch shall not bo included in the noutral conductor, but this requirement does not preclude the provision of an isolating link for testing purposes.
65. Instruments.-Every main switchboard when the supply is not derived from an external source, shall be provided with the following instruments as a minimum :-
A. Two-wire Systems of Wiring.
(a) When only one generator is installed, one ammeter and one voltmetar.
(b) When more than one generator is installed, the generators not being arranged to run in parallel, an ammeter for each generator and one voltmeter for use on any generator; the voltmeter shall be fitted with a linked double-polo multiple-way switch or plug.
(c) When more than one generator is installed, the generators being arranged to run in parallel, an ammeter for each generator, and two voltmeters; also a synchronizing dovico for paralleling purposes if the current bo alternating.

For compound machines the ammeter shall be connceted on the pole opposite to that to which the equalizer connection is made.

One of tho voltmetors shall bo fitted with a linked double-polo multiplo way switch or plug enabling it to be connected to any one generator before the machine is put in circuit; the other voltmeter shall be permanently connected to the omnibus bars.
B. Threc-wire Systems of Wiring.

In addition to the instruments required for two-wire systems, a voltmeter shall be connected between the neutral and each outer omnibus bar ; also a central-zero ammeter if direct current, or central-zero wattmeter if alternating, in the main neutral conductor.
C. Two-phas and Three-phase Systems of Wiring.
(a) When only ono generator is installed, an ammeter on each phase and ono voltmeter.
(b) When more than one generator is installed, the generators being arranged to run in paralicl, an ammeter on each phase for each generator,
two voltmeters and a synchronizing device for paralleling purposes. One of these voltmeters shall bo fitted with Ω linked double-polo multiple way switch or plug enabling it to be connected to ono phase of any one generator before tho machine is put in circuit. The other voltmeter shall be permanently connected to one phase of the omnibus bars. All these voltmeter connections shall be made to the same phase in each case. Note-All instruments should preferably conform to
British Standard Specification No. 89.
66. Earth Testing.-Where private genernting plant is installed, main switchboards shall bo provided with suitable means for indicating the state of the insulation of the system, either by lamps or voltmeters or otherwise, except in the case of extra-low pressuro plant having a capacity not excceding 5 kilowatts.
67. Suilches and Circuit Breakers.-Every smitch, fuse-switch and other circuit-breaker shall comply with the following requirements:-
A. All parts shall be so proportioned that when tho normal working current for which they are designed flows through them continuously their temperature shall not rise above that of the surrounding air more than 36 degrees F. (20 degrees C.) in the case of switches rated below 100 amperes, and 54 degreos F . (30 degrees C.) in the caso of switches rated at 100 amperes or above.
B. Fach fuse switch when opening the circuit as a switch, and each switch, shall break the circuit without permitting an are to be maintained when a current 50 per cent greater than that for which it is rated is flowing under a pressure 50 per cent in excess of the pressure of supply. Each fuse switch when opening the circuit as a fuse, and each circuit breaker, shall comply with Regulation 68 for fusible cut-outs.

Note.-The construction and dimensions of switches and circuit breakers conforming to the requirements of this Regulation aro embodied in British Standard Specifica. tions Nos. 109 and 110, which further provide for completo interchangeability of parts.
C. Erery circuit-opening device shall bo so constructed and arranged that when placed in the off position it cannot accidentally move sufficiently to close the circuit.
D. If the current to be interrupted be sufficiently large to cause damage to the main contacts, suitable arrangements shall be made for the easy renewal of the parts on which the are is formed.
E. The handles and their attachments shall be mechanically strong. and the exposed surface shall consist either entirely of insulating material or of metal. They shall be so designed and arranged that the hand of tho operator cannot accidentally touch live metal or bo injured through an arc arising from the switch or the blowing of an adjacent fusc. They shall not operato through unprotected slots.
F. The bases shall be of durable, non-ignitable, non-absorbent insulating material and shall comply with the following conditions:-
(a) Semi-hygroscopic materials such as slate or marble, if used, shall be free from metallic veins, cracks or other defects.
(b) The slabs shall be planed all over and, if of slate, treated, after drying, with a damp-proof medium, all holes being similarly treated.
(c) Bolts for securing marble or slate slabs to a metallic framework or case shall be insulated from the slabs, and the latter from the framework or case, by non-hygroscopio insulating bushes and washers.
G. When switches are not fixed on a switchboard, the live parts shall bo enclosed by covers of rigid metal or non-conducting, non-ignitable material. In positions in which they are liable to mechanical injury, the covers, unless of rigid metal, shall be protected by a suitable guard. Metal cases shall be well clear of live parts and, if necessary, protection shall be provided to prevent arcing to the casc.
H. All switches fixed in positions exposed to the weather, to drip, or to an oxcessively moist atmosphere, shall be contained in weatherproof cases which shall be provided with cable glands or bushings, or be adapted to receive screwed conduit, according to the way in which the cables entering the fittings are run.

Note.-Suitable glands are embodied in British Standard
Specifintion No. 94, which further provides for completo interchangeability of parts.
J. Fivery electromagnetic circuit breaker shall be provided with suitable raenns of adjustment for determining the current at which it shall open, and shall be so arranged that it caunot be held in against this current.
K. Circuit breakers shall be so arranged and placed that no combustiblo material is endangered by their coming into action.
68. Fusible Cut-outs.
A. For extra low pressure, overy cut-out shall comply with the following requirements:-
(a) All parts other than the fusible metal shall be so proportioned that their temperature shall not rise more than 5.1 degrees F. (30 degrees C.) above that of the surrounding air when the normal working current for which thoy are designed flows through them continuously.
(b) The fusing current, when the time taken for the fuse to blow is one minute (two minutes in the case of a lead-tin alloy fuse), shall be double the carrying capacity of the smallest cable which the fuse controls, provided that no fuse smaller than one rated to blow at 8 amperes need be inserted in any final sub-circuit.

Note. The current-carrying capacities of rubber and paper-insulated cables aro given in Tables II and III respectively (pages clxii and clxiv), and for tho purpose of Regulation 68 the carrying capacity of a diexible cable or cord shall be considered to bo that of a rubber-insulated cable of equal cross-section.

Tables XI and XII (pages clxxii and clxxiii) give the approximate fusing currents for w ires of copper and leadtin alloy respectively.
(c) The base shall be of durable, non-ignitable, non-absorbent insulating material.
(d) The circuit contacts and their terminals shall be so spaced or shielded that an aro cannot be maintained when the fuse blows.
(e) The fuse shall be of such construction, or be so guarded or placed, as to prevent danger from overheating, arcing and tho scattering of hot metal or other substances when it blows.
(f) Fuses shall not be placed in ceiling roses, in switches other than fuse switches or those of the metal-covered type which comply with tho Home Office Regulations, or in wall plugs or sockets. A fuse rated at not more than 5 amperes may, howover, be placed in au intermediate adapter designed for insertion into a wall socket and for
roceiving the pins of a smaller plug connected to a consuming dovice taking 5 amperes or less, provided that in all cases tho wall socket or sockets shall be protected by sub-circuit fuses mounted in accordance with legulation $68(g)$ below. Where such an adapter is used it shall not be sunk below the surface of the wall and its base shall comply with Regulation $6 S$ (c) abovo.
(g) When cut-outs aro not fixed on a switchboard they shall bo grouped on distribution boards or, unless completely enclosod, shall bo contained within cases conforming in all respects to the requirements specified in Regulation 09 below.
(h) Except as provided in Regulation $68 \mathrm{~A}(f)$ above, cut-outs in which the fuses are without removable carriers and aro protected by close-fitting covers shall be used only on extra-low-pressuro circuits and provided that:-
(i) They are ventilated in such a manner that fused metal cannot be ejected.
(ii) The maximum power in the building does not exceod 1,000 watts.
B. For low pressure every cut-out shall comply with the following requirements, in addition to the above requirements $\mathrm{A}(a)$ to (h) :-
(a) It shall be provided with a suitable incombustible and insulating carrier for tho fuse, of such form as to protect a person handling it from shock and burns; and contacts shall bo provided on the carrier to which the ends of tho fuse can be readily attachod.
(b) The baso shall be provided with fixed circuit contacts of such form as to retain the carrier in position in the presonce of vibration.
(c) The bus-bars, fixed contacts, removable contacts and fuses shall be so shielded as to protect a person against contact with livo metal when tho fuse carrier is boing inserted or removed.
(d) Cut-outs for use with low pressure shall bo of two grades designated respectively-" Ordinary Duty" and "Heavy Duty." The term "Ordinary Duty" is applied to a cut-out or a fuse carrior when the maximum short-circuit current in the circuit cannot exceed the following values :-

" Heavy Duty " cut-outs shall be used on circuits whero " Ordinary Duty "cut-outs are inadmissible. Both types of fuso shall break the circuit, under such conditions as are above specified, without damage to the cut-out or its surroundings.
C. For medium pressure every cut-out shall comply with the requirements set out in $\mathrm{A}(a)$ to (h) and $\mathrm{B}(a)$, (b) and (c) above.

Note.-British Standard Specification No. 88, for LowPressure Flectric Cut-Outs, provides for complete interchangeability of parts.
69. Section and Distribution Boards.
A. The general dosign and construction of section and distribution boards shall conform to the requirements of Regulations 63 and 67 so far as they aro applicable. The fuses fitted in section and distribution boards shall conform to the requirements of Regulation 68.
B. Every section or distribution board shall bo contained within a protecting case.
C. In earthed concentric wiring systoms, section and distribution boards shall, in addition to complying with the foregoing conditions, be contained in cases in which provision is made for the following :-
(a) If of metal, the attachment to the case of all external conductors of the concentric cables entering it.
(b) If of wood, a sheet of incorrodible metal, of the same area and shape as tho baso of tho case, interposed between it and tho wall or other support to which it is attached. This sheet of metal shall be not less than $\frac{1}{10}$ inch in thickness and bo electrically and mechanically connected to all the external conductors of the concentric cables entering the case, by means of a metal bar, or rod, or bare wire conductor, of which the resistance shall not bo greater than that of the inner conductor of the cable feeding the board.
D. Tho design, construction and arrangements of the cut-outs and metal box shall be such that an are cannot be set up to the case or between poles when tho fuse is melted by a short-circuit current in accordance with Regulation $68 \mathrm{~B}(\mathrm{~d})$. For the purpose of this test, the metal box and its cover shall be efliciently earthed.
I.. All soft-wood cases shall be lined with non-ignitablo insulating material which shall be clear of all live parts by not less than 1 inch (2.5 cm .) Cases of hard-wood, such as teak, need not bo so lined.
F. Boxes not provided with backs forming an integral portion thereof shall have a non-ignitablo insulating shield betweon their contents and any stricture to which they aro fixed.
G. If glass fronts be provided they shall clear all live parts by not less than 1 inch (2.5 cm .), and such fronts may be regarded as insulating shiclds.
H. All cases fixed in positions exposed to the weather, to drip, or to an abnormally moist atmosphere, shall bo provided with cable glands or bushings (see Note to Regulation 67 H), or bo adapted to receive screwed conduit, according to the way in which the cables entering the cases are run.
J. The cases of section and distribution boards shall be of sufficiently amplo dimensions to allow of easy leading in and access for the attachment of cables, and for conduits and fixing nuts.
K. Where cut-outs are grouped on a board they shall be fixed vertically, and a shield of non-ignitablo insulating material shall be inserted between cut-outs of opposite polarity when placed one above the otber.

Conductors of Cables.

70. Material of Conductors.

A. All conductors, other than the outer conductors of earthed concentric systems, shall be of annealed copper and shall conform to British Standard Specification No. 7.
B. When the insulating covering of the conductor may contain sulphur, each wire shall be efficiently and uniformly coated with tin freo from all impuritics.
71. Standard Sizes of Conductors.
A. The sizes of conductors as given in British Standard Specification No. 7 are recognized as standard.
B. The standard sizes and resistances of conductors for flexible cables and flexible cords aro set out in Tables I and V (pages clai and clxvi) respectively.
72. Minimum Size of Conductor. No cable having a conductor of nominal sectional area less than 00015 square inch ($1 / 044 \mathrm{in}$.) shall be used except for wiring fittings, for which a conductor having a nomina! sectional area not less than 0001 square inch ($1 / 036 \mathrm{in}$.) may be employed Where the design of a fitting renders it impossible to use a conductor of this size, a flexible cord having a conductor of nominal sectional area nol less than 00006 square inch ($14 / 007 \mathrm{Cin}$.) may be used.
73. Maximum Size of Single Wire.-All conductors having a nominal sectional area exceeding 0003 square inch ($1 / 064 i n$.) shall be stranded.
74. Current-carrying Capacily of Conductors.
A. The size of conductors shall be so selected that :-
(a) For lighting, the fall in pressure from the consumer's terminals in the case of a public supply, or from the omnibus bars of the main switchboard controlling the various circuits in the case of private gencrating plant, to any and every point on the installation docs not exceed 1 volt plus 3 per cent. of tho pressure at the consumer's terminals, or omnibus bars as the case may be, when the conducters are carrying the maximum demand under the practical conditions of service.
(b) In no casc, whether for lighting, heating or power, does the current exceed that given in Tables II and III (pages clxii and clxiv)for each size of conductor when tho maximum current referred to in (a) above is being carried.
(c) Regulation 72 is complied with.

Note.-Tables II and III also show the total length cf conductor in circuit thal will give a drop of pressuro of 1 volt when the respectivo maximum currents aro being carricd.
B. In the case of flexible cables and alexible cords, it being advisable to restrict the maximum current, the valucs shown in Table IV (page clxv) and column 9 of Table VI (page clxvii) respectively shall be adopted.

Note-Two ratings are given for flexible cables (Table IV), the lower rating applying to flexible cables supplying portable domestic appliances.

Insulation and Protective Covering of Conductors.

75. Insulation of Conductors.-Except as provided in Regulation 88 (earthed concentric wiring) all conductors shall be insulated either by being carricd on insulators (see Regulation 86) or by the use of insulated cables.
76. Types of Cables.
A. Cables shall bo single, twin, three-core, four-core, concentric or triple concentric in accordance with the dimensions and other requirements of British Standard Specification No. 7, and only approved types shall be employed. The following types have been approved :-

Vulcanized rubber-insulated cables.
(a) Taped as in Regulation 77 (A) and compounded.
(b) Taped as in Regulation 77 (A) and braided.
(c) Sheathed with a elosely-fitting seamless covering of commercially pure lead having a smooth exterior surface and of uniform radial thickness in accordance with British Standard Specification No. 7.
(d) Lead covered as in (c) above, and bedded and armoured, with or without serving or braiding over the armour: the bedding, armouring and serving or braiding (if any) to be in accordance with British Standard Specification No. 7.
(e) Bedded and armoured, with or without serving or braiding over the armour; the bedding, armouring and serving or braiding (if any) to be in accordance with British Standard Specification No. 7.
(f) Encased in a closely fitting covering of brass, copper, or equally hard incorrodible metal in accordance with Regulation 82.
(g) Sheathed with a closely-fitting seamless covering containing not less than 95 per cent. of commercially pure lead (the remainder consisting of rarer metals) and in other respects complying with (c) above.
(h) Covered with tough rubber compound (see Regulation 83). Paper-insulated Cables.
(j) Sheathed with a closely-fitted seamless covering of commercially pure lead having a smooth exterior surface and of uniform radial thickness in accordance with British Standard Specification No. 7.
(k) Lead covered as in (j) above, and bedded and armoured, with or without serving or braiding over the armour; the bedding, armouring and serving or braiding (if any) to be in accordance with British Standard Specification No. 7.
(l) Encased in a elosely-fitting covering of brass, copper or equally hard incorrodible metal in accordance with Regulation 82.
(m) Sheathed with a closely-fitting seamless covering containing not less than 99 per eent. of commercially pure lead (the remainder consisting of rarer metals), and in other respects complying with (j) above.
B. If it be desired to use types of cables insulated otherwise than specified in Regulation 76 (A), sample lengths shall be submitted, together with a report from a recognized testing authority (such as the National Physical Laboratory) as to the behaviour, properties and life of the insulating materials eroployed, for consideration by the Institution of Electrical Enginecrs, with n view to their use being permitted, provisionally or otherwise, if found satisfactory.

Note.-Evidence of insulation resistance alone will not be considered to be sufficient for the purpose of Regulation 76 (B).

The requirements in regard to any additional types of cables that may be permitted will be issued later as a supplement to these Regulations.
C. Of the types of cables specified in (A) above, tho following shall not be used for alternating current except in connection with an earthed concentric system in which the sheathing forms ono conductor:-
(a) Single cables armoured with steel wire or tape or encased in a ferrous sheath.
(b) Single cables encased in brass, copper or equally hard incorrodible metal.
(c) Single, unarmoured, lead-covered cables having a conductor of nowinal sectional area greater than 0.25 square inch.
(d) Single unarmoured cables sheathed with a covering containing not less than 95 per cont. of commercially pure lead (the remainder consisting of rarer metals) and having a conductor of nominal sectional area greater than 025 square inch.

Note.-Where cables of the types referred to in Regulation $76 \mathrm{C}(c)$ and (d) having a nominal sectional area of 0.25 square inch or less are used for alternating current, it is desirable that the lead and return should be placed as near as possible to each other.
77. Vulcanized Rubber-insulated Cables, except Flexible Cords.
A. Vulcanized rubber-insulated cables shall be insulated with a label of pure rubber next to the conductor, an intermediate layer of vulcanizing rubber, and an outer jacket of vulcanizing rubber. These three layers shall together constituto tho dielectric, and its radial thickness shall be in accordance with British Standard Specification No. 7. The dielectric shall be surrounded by a layer of tape, and the whole shall be vulcanized together. In the case of cables having an outer protective covering of "tough rubber" (see Regulation 83) the ta po may be omitted.
B. Braided cables shall have an exterior braiding of homp, cotton or jute, thoroughly impregnated with a protective compound of auch a nature as not to have any deleterious action on the rubber or armouring, as the case may be. The finish of the braiding shall bo smonth and uniform.
78. Paper-insulated Cables.-Paper-insulated cables shall bo insulated with a covering of paper impregnated with a chemically neutral insulating compound. Tho radial thickness of dielectric shall bo in accordanco with British Standard Specification No. 7.
79. Types of Flexible Cords.

Two kinds of insulation for floxible cords aro recognized as standard, viz. :-
(1) High Insulation.
(2) Medium Insulation.

High Insulation flexible cords shall be insulated in one of tho following two ways, and the radial thickness of rubber insulation shall not bo less than that specified in column 2 or column 3 of Table VI (page clxvi) according to tho insulating material used :-
(a) Each conductor, which shall bo composed of plain copper wires, sball be lapped with cotton and shall have two layers of pure rubber overlapped with cotton.
(b) Each conductor, which shall be composed of copper wires officiently and uniformly coated with tin free from all impurities, shall havo one layer of pure rubber and two layers of vulcanizing rubher.
Medium Insulation flexible cords shall bo insulated in one of the following two ways, and the radial thickness of rubber insulation shall not be less than that apecified in column 4 or column 5 of Tnble VI according to the insulating material used :-
(c) Each conductor, which shall be composed of plain copper wires, shall be lapped with cotton and shall have two layers of pure rubber overlupped with cotton.
(d) Each conductor, which shall be composed of copper wires efficiently and uniformly conted with tin free from all impuritics, shall have two layers of vulcanizing rubber.
80. Protective Covering of Flexible Cables and Cords.-Flexible cables and cords shall be provided with one of the following protective coverings, but of these (a) and (b) shall not be used where the cable or cord is liable to the risk of mechanical damage :-
(a) Natural or non-ignitablo artificial silk braiding;
(b) Glacé cotton braiding ;
(c) Hemp, cotton or juto braiding, thoroughly compounded ;
(d) Wire armouring comprising a flexible braiding or spiral of galvanized steel or phosphor bronze wiro in addition to the covering specified in (c) ;
(e) Hard cord braiding in addition to tho covering specified in (c);
(f) Tough rubber compound (seo Regulation 83) applied directly to the insulated core or to two or more such cores laid up together.
81. Twin Flexible Cords.
A. Twin twisted flexiblo cords shall be used only for fixed wiring, fixed fittings, and portable lamp standards; in all other positions, and for all other purposes, flexible cords mado up to a circular or oval section shall bo employed.

Note.-The use of floxiblo cords mado up to a circular
or oval section is recommended for all portable fittings.
B. Medium Insulation (kind 2) flexible cords shall be used only between ceiling roses and pendant fittings and for the internal wiring of fittings.
C. Tho maximum woight carried by a twin twisted flexible cord shall bo as follows :-

Number and dimmeter

$$
\begin{array}{cc}
\text { of wires comprising } & \text { Milximum } \\
\text { conductor. } & \text { permissible weight. } \\
14 / 0076 \mathrm{in} . & 3 \mathrm{lb} . \\
23 / 0076 \mathrm{in} . & 5 \mathrm{lb} . \\
40 / 0076 \mathrm{in} . & 10 \mathrm{lb} .
\end{array}
$$

Note.-Where a weight greater than 10 lb . has to be supported Regulation 104 D. shall apply.
82. Hard Metal Sheathing of Cables.-Cables sheathed as specified in Regulation $76 \mathrm{~A}(f)$ and (l) shall comply with the following requirements :-
A. Tho dielectric shall be surrounded with a closely fitting sheathing of brass, copper or other equally hard and incorrodible metal, the method of application of the sheathing and the nature of the dielectric being such that tho sheathing can be readily removed without damage to tho diolectric. The sheathing shall bo waterlight and wholly metallic, any joints in it being mado by soldering or brazing.
B. The sheathing shall bo of sufficient rigidity to ensure that the cablo will not sag when supported in a horizontal position by clips at 2 ft . (60 cm .) intervals.
C. The sheathing shall bo sufficiently flexiblo to allow of the cable being bent to a radius equal to six times its dinmeter without cracking of the sheathing or damage to the diolectric, and the cablo must reasonably retain its original shape.
D. The sheathing shall bave a minimum thickness of 001 inch for all sizes of conductor up to and including $0-003$ square inch ($1 / 064 \mathrm{in}$.), and of 0.015 inch for all sizes of conductor above 0003 square inch ($1 / 064$ in.) and up to and including 00225 square inch ($7 / 064 \mathrm{in}$.)
83. Tough Rubber Compound.-This covering, whon used as a protection to vuleanized rubber-insulated cables, shall form a closely fitting sheath filling the external irregularitios of the laid-up cores in the case of multicore
cxl
cables, and concentric with the conductor when single core, and aball be capable of ofering a bigh degree of resistance to abrasion, acids, oils and alkalis. The radial thicliness of this sheath shall not be less than that specified in British Standard Specification No. 7.
84. Tests of Dielectric of Cables.
A. The dielectric of cables, except flexible cords (sec Clause D below). insulated with vulcanized rubber or impregnated paper shall withstand the pressure test and other tests specified in British Standard Specification No. 7. Subsequent to such pressure test and whilst the cable is still immersed in water the insulation resistance at a temperature of $60^{\circ} \mathrm{F} .\left(15 \cdot 6^{\circ} \mathrm{C}\right.$.), after one minute's electrification at a pressure of at least 500 volts, shall not be less than that given in Table VII (page clsviii).
B. The insulation resistance of each insulated conductor of a multicore cable, except flexible cords, shall not be less than that given in Table VII for single conductors of the same sectional area.
C. The insulation resistance of the dielectric separating the two conductors of a concentric cable shall not be less than that given in Table VII for single conductors having the same diameter as the inner conductor.
D. The dielectric of multicore flexible cords, except in the caso of High Insulation (see Regulation 79) cords with vulcanized rubber insulation, shall withstand for 15 minutes the alternating pressure ana frequency set out in column 3 of Table VIII (page clxix) for the respective kinds of insulation indicated therein, the flexible cord being in a dry state at the time of test and the test being made between conductors. In the case of High Insulation cords with vulcanized rubber insulation the flexible cord shall have previously been immersed in water for 24 hours and shall be still so immersed at the time of test, and the test shall be taken between each conductor and earth, the conductor or conductors not under pressure being earthed. Subsequent to such pressure test, the insulation resistance of fexible cords with vulcanized rubber insulation at a temperature of $60^{\circ} \mathrm{F}$. ($15 \cdot 6^{\circ} \mathrm{C}$.), after one minute's electrification at a pressure of at least 500 volts, shall not bo less than that given in Table IX (page clxix), this test in the case of the High Insulation kind being made whilst the flexible cord is still immersed in water.

Note.-The above tests are intended to be carried out
at the Cable Manufacturer's works, the pressure boing derived from a source having a rated output of not less than 5 kilowatts. Cables and flexible cords which have to be tested whon immersed in water can be tested before the protective coverings are applied, but, if desired, the pressure test can bo mado on the finished cable, the protective coverings of such cables, however, being thereby damaged.
85. Identification of Cables by Colour.-Where colours are used to distinguish the conductors the following shall be employed (where polarities are indicated they refer to the polarity up to the lamp or other point when the switch is closed) :-
A. For direct-current systems of generation or supply:
(a) Two-wire circuits connected to a two-wire system of wiringRed for positive or switch wire. Black (or blue) for negative.
(b) Two-wire circuits connected to the neutral and ono side only of a threc-wire system of wiring-

Red for outers.
Black (or blue) for neutral.
(c) Two-wire or threo-wire circuits connected to a three-wire system of wiring except as in (b) above.

Red for positive or switch wire.
Black (or blue) for neutral.
White (or yollow) for negative or switch wire.
B. For alternating-current systems of generation or supply:
(a) Single-phase, two-wire system of wiring-

Red for one conductor or switch wire.
Black (or blue) for other conductor.
(b) Single phase, three-wire system of wiring-

Red for one conductor or switch wire.
Black (or blue) for neutral.
White (or yellow) for other conductor or switch wire.
(c) Two-phase, three-wire system of wiring-

Red fur ono phase.
Black (or blue) for neutral.
White (or yellow) for other phase.
(d) Two-phase, four-wire system of wiringRed for one phase.
White (or yellow) for other phase.
(e) Three-phase, three-wire system of wiring-

Each conductor red, white (or yellow) and green respectively.
(f) Three-phase, four-wire system of wiring-

Red, white (or yellow) and green for the three phases. Black (or blue) for neutral.

Note.-The standard colours adopted for the identification of switchboard connections (sce Regulation 63 N) are different from those specified in Regulation 85 for cables.

Installing and Fixing of Conductors and Cables.

86. Bare Conductors.

A. Bare conductors may be used as collector or trolley wires for travelling cranes and similar appliancos, and for battery connections.
B. They shall be supported upon insulators and so spaced that risk of accidental contact between the conductors themselves or between conductors and walls, structural or other metal work, is reduced to a minimum.
C. At each straining point, i.e., at the ends of each conductor, officient straining gear fitted with double insulation shall bo provided.
D. The circuit supplying current to such bare conductors shall, except in the ense of the regulating cells of batteries, be protected by either a circuit breaker or a switch and fuse, as is specified for similar circuits with continuously insulated conductors.
E. Bare conductors extended to positions liable to lightning discharge shall be fitted with lightning arresters on each pole or phase.
F. Wall rosettes or brackets used as supports for span wires shall not be fixed within. 12 inches (30 cm .) of any gas pipe.
G. Except as abovo specificd, bare conductors shall only be used in positions not ordinarily accessible to unauthorized persons and under such circumstances as may be sanctioned by the Fire Office insuring the risk.
87. Cables.

Class L. Taped and Braided Cables.
Taped and braided cables such as are specified in Regulation 76 A (b) may be used without the further protection of conduit or casing provided that :-
(1) They are open to view throughout their length and, in particular, are not installed under floors or within partitions or buried in plastor.
(2) They are kept awny from all structural metal work.
(3) In any position in which they would be liable to mechanical damage, and wherever thoy are within 6 feet abovo the floor, they are adequately protected.
(4) They aro kept away from gas and water pipes.
(5) They are secured by porcelain cleats, or by clips, saddles or clamps which are so spaced as $t o$ prevent the cables coming into contact, and which have smooth or rounded edges that will not indent or damago the braiding.
(G) In damp situations they are spaced not less than $\frac{1}{4}$ inch away from walls, ceilings and floors by means of saddles or cleats which, together with their fixings, are of non-absorbent, non-rusting material.
(7) When passing through floors, walls, partitions or ccilings they are protected by being enclosed in metal, porcelain or other non-absorbent non-ignitable conduits, the ends of winch are bushed or so arranged as to prevent abrasion.
(8) When passing through party walls or fire-resisting floors, the conduits referred to in (7) above are close fitting, and the holes through which they pass aro plugged with fire-ciay or similar non-ignitable material, no space through which fire might spread being left around or insido tho conduits.

Class M1. Metal-sheathed Cables.

Motal-sheathed cablos such as are specified in Regulation 76 A (c), (g), (j) and (m), may be used without the further protection of conduit or casing provided that they are installed in accordance with the above condition (4) and, in addition, provided that :-
(9) They are secured, at intervals sufficiontly short to prevent appreciable sagging of the cable, by clips, saddles or clamps constructed of such material is will not be liable to set up electrolytic action with tho sheathing and having smooth or rounded edges which will not indent or damage the shoathing.
(10) When vertical, cables arc fixed by the same means, with supports at the same intervals, as when horizontal, unless they be inaccessible, when a length not exceeding loft. may be allowed between the supports, provided that the upper support firmly grips the cable or wire and that where there is a change of direction from horizontal to vertical they are brought over a rounded support of a radius not less than six times the external diameter of the sheathing.
(11) Effectual means are taken to ensure that all metallic onvelopes of cablos are officiently earthed and mado clectrically continuous throughout their length by means of soldered joints or, alternatively, by bonding clamps specially designed for the purpose or forming part of joint boxes and similar fittings in which the cables torminate.
(12) The electrical resistance of the metallic envelope of cables in a completo installation, measured between such onvelope nt a point near the main switch and any otheripoint of the installation, does not excecd 2 ohms.
(13) If liable to mechanical damage thoy aro adequatoly protected, having regard to the nature of their shoathing or casing.
(14) In damp situations and where exposed to the weather the saddles and fixtures referred to in (9) abovo aro of non-rusting material.
(15) When passing through steel or iron structural work, the holes through which they pass are bushed to prevent abrasion.
(16) When pnssing through party walls or fire-resisting floors, tho holes through which they pass aro plugged with fire-clay or similar non-ignitablo material.
(17) When run under floors or bohind partitions all connections are mado in boses of ample capacity and of non-absorbent, non-ignitablo matorial (sce Regulation 93 C.)

Class M?. IIard Metal-Shcathed Cables.
Hard metal-shenthed cables such as aro specified in Regulation 76 A (f) and (l) may be used without tho furthor protoction of conduit or casing provided that thoy are installed in accordance with tho abovo conditions (4), and (9) to (17) inclusive.

Class R. Armoured Cables.
Armoured cables such as aro specified in Regulation $76 \mathrm{~A}(d),(c)$ and (k), may bo used without the further protection of conduit or casing provided that they are installed in accordanco with the above conditions (4), (9), (10), (13), (14), nud (17). In addition, when load sheathed such sheathing shall comply with conditions (11) and (12), and whon not lead sheathed the armouring shall so comply.

Class S. Cables covered with Tough Rubber Compound.
Cables protected in accordanco with Regulation 76 A (h) may bo used without the further protection of conduit or casing provided that they are installed in accordance with the above conditions (4), (9), (10), and (13) to (17) inclusive.

Class TI. Conduits serewed.
All classes of cable specified in Regulation 70 A may be enclosed in steel conduits provided that tho conduits are instnlled in accordanco with tho above conditions ($\$$), (13), (1.4), (16), and (17), and, in addition, provided that:-
(18) The conduits, together with their fitlings, aro mado in accordance with British Standard Specification No. 31 and if used for circuits of medium pressuro aro of heavy gauge.
(19) Tho conduits aro mechanically and electrically continuous across all joints therein and aro enrthod in accordance with Regulations 96 to 103.
(20) The olectrical resistanco of tho conduit in a complete installation, measured botweon tho conduit at a point near the main switch and any other point of the installation does not excced 2 ohms.
(21) Ventilating outlets aro provided at tho highest and lowest points of each circuit to allow circulation of air through the conduit.
(22) The conduits of each circuit are erected complete bofore the cables are drawn in.

Note.-Tablo X shows the capacity of conduits for
the simultancous drawing-in of conductors.
(23) Provision is made at the ends of all conduits to prevent abrasion of the covering of cables omerging therefrom.
(24) The onds of conduits where terminating at accossories and fittings are screwed theroto or provided with lock-nuts, or are led into separato blocks, preforably of non-ignitable material.
(25) No elbows or tees, unless of the inspection typo, are used, except at the ends of conduits immediately bohind fittings or accossorics ; and no bend has a radius smaller than $2 \frac{1}{2}$ times tho outside diameter of the conduit.
(26) In damp situations, and where exposed to tho weather, the conduits are welded, brazed or solid drawn.

Class T2. Melal Conduits not screwed.
All classes of cable specificd in Regulation 76 A may be enclosed in conduits of steel or other metal provided that such conduits are installed in accordance with tho above conditions (4). (13), (14), (16), (17), (19), (20), (21), (22), (23), (25), (26), and in addition provided that:-
(27) The ends of the conduits where terminating at accessories and fittings are adequately clampod thereto, or are led into separato blocks, preferably of non-ignitable material.

Note-Plain slip sockets do not comply with the abovo conditions, somo form of screwed or grip joint which will give ample and permanent electrical conductirity and mechanical rigidity throughout being necessary.
Class T3. Non-Metallic Conduits.
All classes of cable specified in Regulation 76 A may bo enclosed in conduits of non-ignitable, non-absorbent, damp-proof material, provided that such conduits are mechanically continuous and strong and are installed in accordanco with the above conditions (4), (13), (14), (16), (17), (21), (22), (23), (25) nnd (27).

Clzss W. Wood Casing.
All classes of cable specified in Regulation 76 A may be enclosed in rood casing provided that :
(28) Wood casing is used only in dry situations.
(29) It is not buried in plaster or cemont, nor fixed in contact with
gas pipes or water pipes or immediately below the latter.
(30) The capping is secured by screws.
(31) If the casing forms part of ornamental woodwork, ready access
is provided to the cables contained therein.
Class Z. Flexible Cords.
High Insulation (kind l) twin or multicoro flexiblo cords such as aro specilied in Regulation 79 may, in addition to being used for pendant and portable nppliancos, bo installed provided that conditions (3) and (4) above are complied with, and also provided that:-
(32) They are used only for low-pressure sub-circuits carrying currents not exceeding 6 amperes from distribution boards.
(3.3) If insulated with pure rubber they are not used in damp situntions.
(34) They aro supported on porcclain or other equally effective in-
sulating cleats fixed at intervals not excceding 3 ft ., such cleats being
so dasigned and placed that the cords aro securely and permanently spaced
away from walls, ceilings and structural metal work.
(35) They aro open to view throughout their length, except where protected in accordance with condition (3) above and conditions (38) and (39) below.
(36) The premisos do not come within the provisions of the Factory and Workshop Acts and tho Coal Mines Regulations Acts.
(37) They are not used in shops, warehouses, or places of public resort.
(38) Whero passing diroctly through floors or division walls they are protected by non-ignitable damp-proof conduits.
(39) Where issuing from fittings and unavoidably passing into ceilings they are onclosed in non-ignitablo tubes terminating in non-ignitablo junction boxes.
88. Earthed Concentric Wiring.
A. Farthed concentric wiring shall only be used when connected to systems of supply:-
(a) So as to derive the supply from the secnnclary side of transformers or converters so arranged that tho public supply system is electrically insulated therefrom; or
(b) In which errthed concentric wiring has been approrod by tho

Electricity Commissioners; or,
(c) Consisting of an independent generating plant.
B. Every earthed concentric installation shall lo so arranged that the internal conductors are protected by a single-pole switch and fuse placed in a position easily accessible to tho consumer and situated as near as possible to :-
(a) The point or points of entry of the service main or to the secondary
of the transformer, in the case of a public supply; or,
(b) The generator, in the caso of Ω privato plant.
C. Regulation $04 B$ shall apply to carthed concentric installations.
D. When the supply is direct current the external conductor shall always be the one nearest to earth potential and shall, where possible, bo negative to the inner conductor ; also tho difference of potential between any two points in the external conductors shall not exceed :-
(a) Seven volts, if tho internal conductors be connected to tho
positive pole of the system; or
(b) One and a half volts, if tho internal conductors be connected
to the negative pele of the system.
Note-As Regulation 88 D is framed with n viow to minimizing the risk of electrolytic action, alternatingcurront installations aro cxempt from its provisions.
E. From the position or positions at which the installation is carthed, conentric wiring shall be employed throughout up to all fixed positions for fitting3 or accessorics. At the positions at which tho external conductor censes to surround the internal conductor the latter shall bo separated from the surface upon which the fitting or accessory is mounted by an incorrodiblo metal plato or terminal box to which tho external conductor is electrically connected. This requirement does not preclude the interposition of a wooden block between tho metal plato and the fitting or accessory mounted thercon, provided that this metal plate covers the principal recess in the wooden block.
F. Where the metal sheathing of a cable is used as one concluctor, the resistance of tho sheathing shall not bo greater than that of tho inner conductor when measured at π tomperature of $60^{\circ} \mathrm{I}$.
G. Joints, howover made, in the external conductor shall bo of such a nature that the conductivity of the conductor is not reduced.
H. All circuits, lamps and applinnces shall bo controlled and pro. tected by single-polo circuit breakors, or switches and fuses which shall bo inserted in tho internal conductor of tho circuit. No circuit breaker, switch or fuse shall bo included in the external conductor.
J. Ordinary accessories may bo used, but if lampholders baving central contacts be omployed, such central contrets shall be connected to the intornal conductor.
K. Jamp fittings may le wired with two separate wires, one being insulated and connected to the internal conductor and the other to the metal work of the fitting.
L. Twin flexible cords may be used between fixed points and portable or pendant fittings. If such flexible cords terminate in plug nnd socket connections these conncctions shall be of cither the concentric or twopin type, and if two-pin plugs bo used, either they shall hove pins of unequal diameter or other means shall be provided to prevent the connections being reversed.
89. Selection of Cable Runs.
A. Cables shall be fixed as far as possible in accessible positions, so chosen that they are not exposed to drip or accumulation of water or oil, or to high temperature from boilers, steam pipes, or other hot objects, or to risk of mechanical damage.
B. The runs shall be selected to accord with the following requirements :-
(a) No rubber-insulated cable shall bo bent to a radius shorter than twice its overall diameter if unarmoured, or to a radius shorter than three times its overall diameter if lead-covered and /or armoured.
(b) No paper-insulated cable (whether armoured or not) shall be bent to a radius shorter than sin times its overall diameter.

Note. - These represent tho permanent bends; the arrangement of the runs must be such that the cable is not subjected to bends of this kind during drawing-in or erection.
90. Bunching of Cables.
A. When installed in wooden casing, eables carrying direct or alternating current may, if desired, bo bunched whatever their polarity, provided that:-
(a) Tho number of cables bunched is not more than 10 if the sectional arca of each cable does not exceed 0007 square inch ($7 / 036 \mathrm{in}$.) ;

6 if the sectional area of any cable exceeds 0007 square inch (7/036in.) but does not exceed 00225 square inch (7/064in.);

4 if the sectional area of any cable exceeds $0-0225$ squaro inch
(7/064in.) but does not exceed 01 square inch ($19 / 083 \mathrm{in}$.) ;
3 if the sectional area of any cablo excecds 01 square inch (19/083in.).
(b) The size of the casing does not exceed that necessary to accommodate the maximum number of cables permissible.
B. When installed in metal conduits, cables carrying direct current may, if desired, be bunched whatever their polarity, but if carrying alternating current they shall always be bunched.

Note.-Where large cables are bunched in casing or con-
duit the current rating given in Tables II, III and IV
should be reduced in order to ensure that the cables are
not overherted.
91. Bell and Telephone Circuils.-Cables which are used in connection with the electric bells, telephone and signalling apparatus, etc., in a building shall be kept away from, and not be installed in the same casing or conduit as, the cables used for the distribution of the electricity supply throughout the building.
92. Cable Sockets and other Connctions.
A. Tho ends of all conductors having a sectional area above 00.4 square inch ($19 / 052 \mathrm{in}$.) shall be provided with a soldering aocket (proferably mado in accordance with British Standard Specification No. 91) of such a sizo that all the strands of the conductor can enter the socket simultaneously.

Note.-It is adrisable that stranded conductors of smaller size than the above should bo fitted with such sockets.
B. Whero a cablo socket or terminal is used the cable shall be so supported that there is no appreciable stross on the socket or terminal.
C. Soldering fluids containing acid or other corrosive substances shall not bo used.
D. When soldering or securing tho ends of conductors to sockets or terminals, tho dielectric shall not be removed farther than is necessary to allow tho conductor to enter and completely fill the socket or terminal and be properly soldered. Dielectric damaged by the application of heat during the process of soldering shall be cut away.
E. The braid, lead, or other covering over tho dielectric, including tho tapo in contact therewith, shall bo cut back at least balf an inch from the end of the dielectric.
F. In tho caso of paper-insulated cablos, the exposed conductor and dielectric shall be protected from moisture by being suitably sealed with insulating compound.
G. The ends of stranded conductors unprovided with cable sockets shall be mado solid by soldering in the caso of all conductors insulated with paper, and, in the case of those insulated with rubber, when tho cables are fixed in damp situations.
93. Connections between Cables.
A. Connections between cables, other than dlexible cords, shall be mado either by soldered joints or by mechanical connectors.
(a) Every joint shall bo easily accessible and mechanically and electrically sound. Tho conductors sball be soldered together, a Glux freo from acid or other corrosive substance being employed, and the resistance of tho soldered joint shall not be greater than that of an equivalent length of tho largest conductor included in the joint. In the case of rubber-insulated cables the joint shall bo lapped with rubbor, to Ω thickness not less than that of tho dielectric, and with waterproofed protecting tapes so as to render it moisture-proof, and if tho cable be sheathed with tough rubber compound the joint shall bo enclosed in a joint box complying with 93 C below, the protective covoring or the cablo being maintained up to n point within such box. In the case of paper-insulated cables, tho joint after being insulated with auitably impregnated tapes shall bo enclosed oitber in a joint box complying with 93 C below, or in a lead sleevo wiped on to the cable sheathings ; the box or sleove, as the case may be, being filled with an insulating compound impervious to moisturo.
(b) Every mechanical connector shall be easily accossible, and shall havo a resistanco not greater than that of an equivalent length of the largest conductor to which tho connector is fixed. It shall bo effectively enclosed in a non-ignitable box complying with 93 C below, the protective covering of the cable boing maintained up to a point within such box and the latter being filled in the case of prper-insulated cables with an insulating compound impervious to moisture.
B. Connections between cables and flexible cords, or between lengths of flexiblo cords, shall in every case be made by means of mechanical connectors shrouded in non-ignitablo insulating material contained within suitable receptacles which, in tho case of lamp fittings, may form part of such fittings and which, if not on the surface of the wall or cciling, shall bo non-ignitable.
C. Joint boxes shall be constructed wholly of durable, non-ignitable, non-absorbent materials, and all insulation shall bo of pormanontly high electric strength and insulation resistance. The live parts shall bo so arranged, by auitable spacing and shiclding with non-ignitable insulating materials, that conductors of opposite polarity or different phase cannot be readily short-circuited. If used in damp situations, joint boxes shall bo woather- and moisture-resisting.

Main Distribution.

94. Control of Main Supply.

A. Every installation shall be adequately protected by suitable controlling apparatus (seo Regulation 64) casily accessiblo to the consumer and situated as near as possible to :-
(a) The point or points of entry of the service main, in the case of a public supply, or
(b) The generator, in the case of a private plant.
B. If the supply undertaking provido and install the controlling apparatus laid down in $94 \mathrm{~A}(a)$, such apparatus if under the control of the consumer need not be duplicated by the latter unless so required by the supply undertaking; but in the case of a private plant, where the house containing the generntor referred to in $94 \mathrm{~A}(b)$ is isolated from the building in which the installation is supplied by this generator, duplicate controlling apparatus shall be installed at the point at which the main cables enter the building.
C. In installations in which the normal working current in any circuit or circuits connected to the main distribution board exceeds 100 amperes there shall be provided, in addition to a fuse or circuit breaker with overload trip, an automatic device whereby the installation or faulty circuit, as the case may be, shall be disconnected in the erent of a leakage to earth. This device may be set to operate with any prescribed value of the leakage current, provided that such ralue does not exceed 100 amperes.
D. Throe-wire circuits supplied from a three-wire system of generation or supply and two-wire circuits whether supplied from a two-wire system, from a three-wire system, from a two- or three-phase four-wiro system or from a three-phase three-wire system of generation or supply, shall bo controlled either by a circuit breaker or by a switch and fuse on each insulated conductor. When more than ono pole is provided with switchgear the circuit breakers or switches shall bo linked.
E. No fuse or unlinked single-pole switch shall be inserted on a main circuit in that conductor of an installation which is connected to earth at the source of supply without a circuit breaker or added resistance, or derives its polarity from a supply conductor so connected. (See diagram in connection with Regulation 64.)

Note.-Any system of supply having a neutral conductor not publicly declared or known to be earthed without circuit breaker or added resistanco shall be considered for the purpose of this Regulation to be a system having an insulated neutral.
F. The neutral conductor of a three-wire or of a threc-phase fourwire system of generation or supply, whether carthed or not, shall never bo interrupted whilo the outer or phase conductors, as the case may be, are closed; consequently, no fuse or unlinked switch may bo included in the neutral conductor. A triple-pole linked switch controlling any circuit shall not connect the outer conductors to the supply bofore connecting tho nutral, or open the neutral before the outer conductors have been opened.
G. Every circuit supplied from all the conductors of a two-phaso systom of generation or supply shall be controlled by a circuit breaker with overload trip on each conductor; or by a switch and fuse on each live conductor and a switch only on the neutral conductor. Tho circuit breakers or switches shall be linked.
H. Every circuit supplied from all the conductors of a three-phase system of generation or supply shall be controlled either by a triplepole circuit breaker with overload trips on at least two phases, unless the neutral conductor is carthed, when trips shall be fitted on all three phases, or by a triple-pole linked switch with a fuse on each of the three conductors. No fuse shall be fixed on the neutral conductor if carthed.
J. In every caso in which single-pole switches are required by theso Regulations they shall be fitted on the same pole throughout the installation.

Note. When a supply is given from an outside sourco through more than one pair of terminals, it is desirable that the pressure between every pair of terminals, and also the extremo pressure, shall be indicated by clear and indelible labels.
95. Sub-division of Circuits.
A. The maximum number of points that may be connected in parallel to a final sub-circuit shall be as follows:-

Where the total rating of the points supplied from the aub-circuit does not exceed

G amperes	10	points	
S	$"$	6	$"$
10	$"$	4	$"$
20	$"$	2	$"$

Final sub-circuits supplying one lamp or appliance are not limited as to current-carrying cupacity.

Note.-In applying this Regulation it should be observed that when the fusing current of the fuse controlling a final sub-circuit exceeds S amperes the smallest cable or flexible cord which is used for any purpose on such circuit must be capable of carrying continuously a current not less than one-nalf of such fusing current (see Regulation G8 A (b) and 'Tables II. III, IV and VI).
B. Erery final sub-circuit shall be connected to a sub-distribution board.
C. Every sub-distribution board shall be connected to a separato way on a main distribution board. Each main distribution board shall in turn be connected cither to a separate way on the main switchboard, or to one why of a distribution board for larger currents, which in turn shall be connected to the main switchboard, or to one way of a distribution board for still larger currents.

The number of such distribution boards intervening between the final sub-circuit distribution boards and the main switchboard will depend upon the size and disposition of tho installation.

Note.-For the purposes of Regulation 95, several distribution boards (whethor main or sub) mny boregarded as a single board, provided that their omnibus bars are connected together by cables of uniform size throughout and tho bars are connceted to the cables through fuses or disconnecting links.

Earthing.

96. Conditions where Earthing is necessary.
A. For all pressures of supply, carthing of metal objects other than the conductors shall be offocted in the following cases:-
(a) In bathrooms, lift shafts, the immediate neighbourhood of running machinery, and all places where even a slight shock might lead to serious accident, all exposed metal liable to become alive should the insulation become defective shall be carthed.
(b) Where any metal liable to become alive should the insulation become defective is so situated that there is risk of accidental contact with earthed metal, it shall either bo protected against such accidental contact or be earthed.
(c) The metal sheathings of cables installed in accordance with Regulation 87 (Class M1 and Class M2) shall be earthed.
B. Where the pressure of supply exceeds the limits of cxtra low pressure (seo Regulation 10)-
(a) If the conditions are such that a person touching any metal liable to become alive should the insulation become defective is likely to bo simultancously making contact with earth, such metal shall be earthed.
(6) All metal conduits installed in accordance with Regulation 87 (Class T1 and Class T2) shall be oarthed as near as conveniently possible to the point of entry of the supply, but isolated lengths of metal conduit need not be earthed except in the conditions specifed in A (a) and (b) above.

Note-A person is likely to bo making contact with earth if standing on a floor which is conducting through damp or otherwise, also if in the immediate neighbourhood of masses of metal connected to earth, e.g., structural steclwork, gas stoves, water taps, etc.

Where the metal cases of switches, distribution boards or other apparalus have to be earthed, special precautions should be taken to guard agninst the risk of shock or burning to anyone when working on live conductors in or adjacent to such apparatus.
97. Damp Plaster and Concrete.-Damp plaster or damp concrete in contact with metal liable to become alive shall be considered, for the purpose of Regulation 96, to form part of such metal.
98. Joints in Metallic Conduits and Sheathings.-When the metallic conduits or sheathings of cables bave to bs carthed, or aro themselves used as earthing connections, every jount in such conduit or sheathing shall be so made that the current-carrying capacity of the joint skall net be less than that of the conduit or sheathing itself.
99. Steel Constructional Work and Muchinery.
A. (a) In buildings of steel frame construction, metal which has to bo earthed may, whero convenient, bo connected to the structural steclwork, provided that such steelwork is itself earthed.
(b) Where the structural steclwork is not earthed, metal which is not earthed and which is liablo to become alivo should the insulation becomo dofectivo shall bo protected from contact with the structure.
13. Where electrical apparatus is mounted on machinery, e.g., cranes and lifts, tho metal covers and frames of such apparatus, and the metal conduits or sheathing of the conductors, shall be consected to the machinery, which shall itself be carthed.

Note.-It is desirable that all steel structures should bo carthed.
100. Position of Metal in Bathrooms. - In bathrooms all exposed metal liable to become alive shall, in addition to being carthed, be placed out of reach of a person standing in the bath. Lampholders shall havo their exposed metal parts efliciently earthed, or, alternatively, all parts liable to be handled when replacing a lamp shall be constructed of insulating matorial.
101. Precautions in Earthing.
A. Great care shall be taken to secure as far as possible that the earthing systems shall be such that the combined resistanco of the earthing lead and of tho earthing system itself is low enough to pormit the passage of the curront necessary to operate the fuse or the earth leakage trip of tho circuit breaker protecting the circuit.
B. Water pipes used as an earthing system shall have metal to metal joints throughout.
C. Pipes conveying gas or an inflammable liquid shall not be used as an earthing system.

Note. - Tho armouring of cables cannot in all cases bo relied upon for the purposo of earthing.
102. Earthing Leads.
A. Fvery conductor used as an earthing lead shall be of high conductivity copper, protected against corrosion by tinuing or otherwise and against mechanical injury, and its sectional area shall not be less than one-half that of the largest of the conductors to bo protected, provided that no conductor of less sectional area than $0004 \overline{5}$ square inch ($7 / 029 \mathrm{in}$.) shall bo used as an carthing lead.
B. All connections of the earthing lead to the installation and to the earthing system itself shall bo easily accessible.
C. If more than one plate or tubular earth be omployed for one earthing system they shall be efficiently and permanently connected together.
D. Wherever an earthing lead is connected to a pipe, conduit, cable sheath, armour or other cylindrical earth a substantial motal clip shall bo used, and the contact surfaces shall be clean. For armoured cables such clips shall bo so designed as to grip firmly the wholo of the wires of the armouring without damage to the insulation. For lead-sheathed armoured cables tho principal contact sliall be with the lead, but tho elip shall bo so designed as to grip the armouring firmly without damage to the lead.

E Tho ends of all earthing leads having a sectional area of 0007 square inch ($7 / 036 \mathrm{in}$.) and above shall bo provided with a soldering socke , preferably made in accordance with British Standard Specification No. 91,
clii
of such a size that all the strands of the conductor can enter the socket simultaneously.
103. Provision of Earthing Terminals.-All current-consuming devices, whether portable or fixed, designed for pressures exceeding 100 volts direct current or 30 volts alternating current, shall be provided with a terminal or other suitablo means for carthing all exposed metal liable to be charged should the insulation become defective.

Fittings.

104. Construction of Fittings.
A. Fittings shall be so designed and constructed that the passages for the insulated conductors are of ample size and are free from rough projections and sharp angles or bends. All outlets shall have wellrounded edges or be bushed.
B. Fittings shall bo so designed, and the insulated conductors so installed, that no stress can be applicd by the conductors to any terminal to which they may be connected.
C. Fittings shall be so designed and fixed that neither dust nor moisture can readily accumulate on live parts.
D. Where a fitting exceeds 10 pounds in weight it shall be supported by several flexible cords so that the maximum weight to which any cord is subjected shall not be greater than that specitied in Regulation 81 C, or other means of support such as a metal chain shall be provided.
E. Open-type fittings shall not be furnished with inflammable shades unless such shades be kept free from contact with the lamps by suitable guards or supports. Celluloid shall not be used for shades or candle-tubes or in any situation near a lamp.
F. Enclosed-type fittings shall bo provided with n. removable glass receptacle arranged to enclose the lamp completely and of such size or construction as to prevent undue heating of the lamp; and if the position of the fitting be such that the glass receptacle is liable to mechanical damage, the glass shall be protected by a suitable wire guard.
G. Fittings, whether fixed or portable, wherever exposed to drip or externally condensed moisture sball be of the weatherproof type.
105. Enclosed Fittings.-Enclosed fittings shall bo used :-
A. In spaces where inflammable or explosive dust or gas is liable to be present or where inflammable goods are stored. In such situations the fittings shall be of strong construction, having airtight external globos of thick glass provided with substantial guards.
B. In positions in which the lamp is either near to, or can swing into contact with, readily combustible materials.

106. Portable Fittings.

A. In all cases where portable metal fittings have to bo carthed in accordance with Regulations 96 to 103 all metal parts shall be connected to earth by means of a third conductor in the flexible cord. If this flexible cord have a metal armouring, this armouring shall, in addition to the aforementioned conductor, Le efficiently connected electrically at one end to the metal frame of the fitting, and at the other end to the earthed metal of the plug-and-socket connection. Such fittings shall have strong metal guards in metallic contact with the rest of the uninsulated metal of those fittings.
B. Portable fittings with non-metallic frames, or the only metal parts of which are the guards surrounding the lamp or lamps, need not bo earthed $\varepsilon 8$ described in 106 A provided that these guards are not, and
cannot come, in metallic contact with the lampholder or lampholders. Such fittings shall be made of treated hard wood, or of some suitable non-ignitable composite material capable of withstanding rough usage in service.
C. Where portable fittings, appliances or accessorics are likely to bo used, the pressure between any two points in one room or compartment shall not exceed 250 volts unless the fittings, appliances or accessories between which there may be a bigher pressure are so situnted that they cannot be brought within G fect of each other.
107. Ceiling Roses.
A. Ceiling Koses shall not be used for pressures exceeding 250 volts.
B. Not more than two pairs of flexible cords shall be attached to one ceiling rose unless it be specially designed for multiple pendants.

Note.-Suitable ceiling roses are cmbodied in British Standard Specification No. 67, which provides for complete interchangeability of parts.
108. Base Blocks.-Where a fitting or accessory has to be mounted upon any surface liable to become damp it shall, unless in contact with the sheathing of an earthed system, be mounted upon a block of treated hard wood or upon some non-hygroscopic material in addition to its own base.

Accessories.

109. Fixing of Accessories.-Regulation 108 shall apply to accessories.
110. Accessories Liable to Arc Prohibited in Certain Situations.-Acces. sories liable to are when operated shall not be installed in position in which inflammable or explosive dust or gas is liable to be present.

111. Lampholders.

A. Lampholders shall comply with the appropriate British Standard Specification, and whero there is no such Specification the following conditions shall apply :-
(a) Lampholders shall bo wholly of non-ignitable material, and all metal parts shall be of robust proportions.
(b) Lampholders in wentherproof portable fittings shall have their uninsulated metal parts in metallic contact with the frames of such fittings.
B. Lampholders in open-type portable fittings shall bo insulated from the fitting by means of insulating nonterial which is of adequate mechanical strength and which will not soften at $302^{\circ} \mathrm{F}$. ($150^{\circ} \mathrm{C}$.), and they shall bo so shiclded by means of similar insulating material that they canmot be touched accidentally by a person using the fitting or replacing a lamp. This shield shall be so extended as to prevent the lamp cap being touched when the lamp is in the bolder.

Note.-Standard bayonet and Goliath lampholders are em-
bodied in British Standard Specifications Nos. 52 and 98 respectively.
C. Switch lampholders shall be provided with further means of control in the same room.
112. Plugs and Sockets.
A. Sockets shall be constructed so that they cannot be accidentally short-circuited whether the plug be in or out, and so that a pin of the plug cannot be made to earth either pole of the socket.
13. Plugs connectod to apparatus which has a rated capacity exceeding 1 ampere, but not exceeding 10 nuperes, shall be constructed with :-
(a) π hand shield, the entry for the flexible coblo being at the sidu of the shield remote from the hand, and, if desired, a switch being fixed adjacent to the socket; or
(b) the plug so interlocked with a switch on the socket that it is impossible to insert or withdraw the plug when the switch is in the " on " position;
provided that every socket, or group of sockets, carrying more than 300 watts shall have a switch in an accessible position.
C. Plugs having a rated capacity exceeding 10 amperes shall bo constructed with a hand shicld, tho entry for the flexible cablo being at the side of the shield remoto from the hand, and shall bo provided with Ω switch immediately adjacent to the socket and preferably interlocked as in Regulation 112 B (b).
D. The clearances of plugs and sockets not interlocked with switches shall be such that an are cannot be maintained if the plug be pulled out while a current 50 per cent greater than that for which the plug and socket are rated is flowing under a pressure 50 per cent. in excess of the pressure of supply.
E. Where the socket is attached to a floor the contacts shall bo below the floor level so that there can be no risk of contact between live metal and the flour covering. Sockets so fitted shall bo provided with a strong incombustible cover, either hinged, or screwed and secured by a chain.
F. The bases of sockets shall be of tough, non-ignitable, non-conducting, non-hygroscopic material, and all live parts shall have such dimensions and clearances as are laid down in British Standard Specifica. tion No. 73.
G. Tho covers of sockets and plugs shall be either of insulating material or of rigid metal well clear of all livo parts or provided with an insulating lining.

Note.-Bases and covers made of hard wood conform to the requirements specificd in Regulation 112 F and G.
H. Weatherproof plugs and sockets shall bo used wherever exposed to rain, drip or externally condensed moisture. Such accessories shall be of specially robust construction and be provided with efficient means to maintain the sockets weatherproof when tho plug is removed therefrom. When a loose cover is employed for this purpose, it shall be anchored to the socket by means of a chain. When the plug isinserted in its socket the combined fitting and its interlocking switch, if any, shall also be weatherproof.
J. If concentric sockets be used on an earthed concentric system of wiring, the centre contact of the socket shall be connected to the insulated conductor.
K. Where tough-rubber-sheathed flexible cord is used, a suitable clamp shall be provided to grip the protecting covering of the flexible cord.
L. When sockets and plugs have provision for carthing, the currentcarrying capacity of the carthing contact shall comply with the requirements in regard to earthing (see Regulations 96 to 103).
M. In places where petrol-driven conveyances aro stored or repaired, plugs and sockets shall be placed not less than 6 feet above the floor level.
N. Lampholder adrpters shall not be used as plug connections for appliances taking more than 2 ampores cach.

Note.-Suitable two-pin plugs and sockets (non-intorlocked) are ombodied in British Standard Specification No. 73, which provides for complete interchangeability of parts.
113. Incandescent Lamps.
A. Incandescent lamps shall be provided with caps of a pattern as follows:-
Up to and including 100 watts .. Standard bayonet (B.C.)
Above 100 watts and not exceeding
200 watts Edison screw (E.S.)
Abovo 200 watts Goliath (G.E.S.)
Note.-Suitable (ioliath lamp caps are embodied in British Standard Specification No. OS.
B. Lamp caps shad, in all cases, bo fixed to the lamps with nonbygroscopic cement, and the apertures in the contact blocks shall bo completely filled with solder.
C. The insulation resistance measured between tho contret blocks and the ring of the cap of an incandeseent lamp shall not be less than 50 megohms.
D. Fittings for lamps shall be so designed as to provide for adequato dissipation of heat from such lamps.
114. Mercury Vapour Lamps.
A. The connections to the terminals of the lamp tubo of mercury vapour lamps shall bo so coustructed that loosening of the contact or overheating cannot occur.
B. Tho resistance and solenoid shall be completely enclosed in a metal case, and any apertures in the case for purposes of ventilation shall be made on the sides only, and be covered with fino wiro gauze.
C. In positions where inflammable or explosive dust or gases aro liable to bo present, mercury vapour lamps shall not be used.

115. Arc Lainps.

A. Are lamps shall havo the whole of their live parts insulated from the frame or case.
13. Except as provided by 115 C below, where the floor immediately underneath an arc lamp is formed of combustible material, or where beated particles of carbon might fall and constitute a danger to persons walking underneath, every such are lamp shall bo provided with a globe or lentern arranged to intercept such falling particles of carbon. Globes of 12 inches (30 cm .) diameter and over shall be contained within wire netting of not greater than 3 inch ($7 \cdot \overline{\mathrm{v}} \mathrm{cm}$.) inesh so arranged as to prevent pieces of broken glass falling therefrom.
C. In situations in which an open are is essential, as in photographic work, the floor immediately underneath the lamp shall, if necessary, be protected from falling particles of carbon by an incombustible covering.
D. If fittod in situations whero combustible material is present, open inverted are lamps shall have metal reflectors rigidly attached beneath the are, which at all times shall be below tho level of the upper edgo of tho reflector. This reffector shall project radially at least 15 inches (38 cm .), and in hazardous risks 21 inches (53 cm), measured horizontally beyond the arc.
E. Arc lamps shall not be fitted in positions in which inflammablo gases may accumulate.
F. Every arc lamp circuit shall be controlled by a fuso and switch on each insulated pole. When more than one pole is insulated the switches shall be linked.
116. Electric Signs.-Every electric sign shall comply with the following requirements:-
A. It shall be readily accessiblo for inspection and attention.
B. Its frame shall be earthed in accordance with Regulation 96.
C. If Regulation 95 is not complied with, the sign shall be connected to the main supply by independent wiring and its circuit shall be controlled by a separate double-pole switch and a fuse on each polo.
D. Where elaborate switching and flashing apparatus is installed a special non-ignitable enclosure shall be provided.
E. If fised in the open air-
(a) It shall be weatherproof;
(b) Only non-ignitable materials shall be used in its construction except for letters and designs, for which hard wood (teak or oak) is permissiblo:
(c) All external wiring shall be of Class R, Class S , Class Tl or Class T3 (sce Regulation S7), and in the case of Class ''l the conduits shall be galvanized.

Motors.

117. Types.
A. Motors may be of any of the types enumerated in British Standard Specification No. 168, or of the immersible type, and all motors rated at more than one brake borse-power shall conform in all respects to that Specification.
B. The frame of every motor shall bo provided with a suitable terminal to which the earthing lead may be connected.
118. Position.
A. Motors shall, wherever possible, be placed in well-ventilated spaces in which inflammable gases cannot accumulate. Where these conditions cannot be complied with, the motors shall be of the flame-proof or pipeventilated typo with inlet and outlet connected to the outer air.
B. Motors fixed in situations in which tho surrounding air exceeds the limit of temperaturo permitted for the cooling air in the appropriato British Standard Specification shall be of special construction, or alternatively of the pipe-ventilated, forced-draught or induced-draught type, connected by ventilating ducts to a source of cool air supply.
C. Motors shall, as far as possible, be placed in positions in which they are not exposed to risk of mechanical injury or to damage from water, steam or oil. Motors necessarily exposed to such conditions shall have suitable types of enclosing frames selected from the standard "types of enclosure "specified in British Standard Specification No. 168 and here defined in Regulations 44 to 54.*
D. Pipe-ventilated, forced-draught and induced-draught motors shall be supplied with air as cool as possible, and the air intakes shall be guarded against the admission of dirt and/or moisture.
[^18]F:. No unprotected woodwork or other combustible material shall bo within a distance of 12 inches (30 cm .) measured horizontally from, or within 4 feet (120 cm .) mensured vertically above, any motor, unless such motor bo of tho totally enclosed, flame-proof or pipe-ventilated type with inlet and outlet connected to the outer air. A metal plato or tray cextending 12 inches (30 cm .) beyond the base of the machino shall be placed under every open-typo machine which is mounted on a floor consisting of wood or other combustible material.

119. Control of Motors.

A. Every motor shall bo protected by efficient means suitably placed and so connected that tho motor and all apparatus in connection therewith may bo isolated from the supply : provided, however, that when ono point of the system of generation or supply is connected with earth, it shall not be necessary 10 disconnect on that side of the syatem which is connected to earth.

Note- In the caso of motors not exceeding one brake horse-power, n plug and socket will be considered to bo an efficient method of isolation from the supply.
B. Evory motor shall be provided with an officient switch or switches for starting and atopping, so placed as to be easily operated by the person controlling tho motor; and every motor having a rating exceeding onehalf horse-power shall in addition be provided with -
(a) Means for automatically opening the circuit if the supply pressure falls sufficiently to causo tho motor to stop;
(b) In the case of direct-current motors a starler or switch for limiting the current taken when starting and accelerating;
(c) In the case of alternating current motors, such starter or switch for limiting tho current taken, when starting and accelerating to tho value (if any) required by tho supply undertaking.
C. In every place in which a machino is being driven by a motor there shall bo means at hand for either switching off the motor or stopping the machine if necessary to prevent danger.

Note- Suitable motor starters aro embodied in the following British Standard Specification:-No. 82, No. 117, No. 140, No. 141, No. 147, No. 155, and No. 167.

Resistances and Machine Control Gear.

Note.-Regulations 120 and 121 do not apply to apparatus having n capacity loss than 60 watts.
120. General Construction.
A. The general construction of all resistances and machino control gear shall be in accordance with the appropriate British Standard Specification.
B. All live parts shall be so guarded as to prevent accidental contact with them.
C. The frame of every resistanco and control gear shall bo provided with a suitable terminal to which the earthing lead can bo connected.
D. Resistances shall be so proportioned and placed that they do not rise to such a temperature as to impair their durability, and they shall bo so disposed within their cases that no accossible part of such cases shull rise to n temperaturo higher than $176^{\circ} \mathrm{F}$. ($80^{\circ} \mathrm{C}$.)
E. Internal connections shall not be soldered, and all such connections, unless self-supporting or rigidly fixed in position, shall be continuously insulated with non-ignitable material or beads.
F. Suitable terminals with cable sockets (preferably mado in accordance with British Standard Specification No. 91) shall be provided for the attachment of external leads, and shall bo so situated that such leads enter the case below the resistances and are not exposed at any point to a high temperature.

121. Position.*

A. All resistances and control gear shall, as far as possible, bo placed :-
(a) In positions in which they will not be exposed to risk of mechanical injury or to damage from water, steam, or oil ;
(b) In well-ventilated spaces in which inflammablo gases or dust cannot aecumulate.
Where necessarily exposed to such conditions, control gear shall in the case of (a) be completely enclosed, and in the caso of (b) be flame-proof; and resistances shall in the case both of (a) and (b) be completely enclosed.
B. All woodwork or other combustible materinl which is within a distance of 24 inches (60 cm .) measured vertically above, or 12 inches (30 cm .) measured vertically below, or 6 inches (15 cm .) measured in any other direction from, the frames or cases containing resistances shall be protected with non-ignitable material.
122. Electric Lifts.-Every lift or hoist operated electrically shall comply with the following requirements :-
A. It shall be operated from a circuit which is independent of the lighting installation.
B. The multicore trailing cable shall comprise the requisite number of conductors to keep the motor wiring and the control and safety devices entirely separate.
C. All cables in the lift or hoist shaft, except trailing cables, shall bo enclosed in metal conduits complying with Regulation 87 (Class Tl or Class T2), the control and motor leads being in separato conduits.

Heating and Cooking Appliances.

123. General Construction of Heating and Cooking Appliances.
A. All appliances shall be so constructed and mounted that their supports and those parts which have necessarily to be handled in their operation cannot becomo heated to π temperaturo exceeding $130^{\circ} \mathrm{F}$. (54° C.). The heating elements shall be of materials durable at the highest temperature to which they attain, and be so arranged that they can be readily replaced.
B. Precautions shall be taken with regard to their surroundinge as in the cnse of non-electrical heating appliances.
C. The support and frame of overy applianco shall bo provided with a suitable terminal to which the carthing lead may be connected.
D. The connections between heating clemonts shall be effected cither by parts of the elements themselves or by matorial having heat-resisting properties similar to thoso of the elements. Tho junction between the clements and switches or external connecting leads shall bo effected without solder by suitable connections, which shall bo so placed that the temperature of no part of the switch or terminal connections can rise a bove 176° F. ($80^{\circ} \mathrm{C}$.)
E. All connections between elements or between eloments and main terminals shall, unless self-supporting, or rigidly fixed in position, bo continuously insulated with suitable non-ignitable material.
F. All live parts of cooking appliances shall be so guarded that the couking utensils cannot be brought into contact with them.
124. Control of Healing and Cooking Appliances.
A. Appliances shall bo protected by a fuse on each insulated pole.

B3. Appliances whether portable or fixed shall be controlled as n whole by a switch, which in the caso of portable nppliances shall be fitted on a wall.
C. Where a switch or switches are fixed on the frame of a portable luminous heating appliance, at leasl one section of the heating eloment shall not be controlled by such switches, so that the luminous heating element is permanently comnected to tho wall-plug or similar dovico in order to indicate that the circuit is not broken and that current is still flowing.
125. Portable Heating and Cooling Appliances.-Portable appliances shall be of such shape or be so weighted that they cannot easily be overturned.
126. Protection of Combustible Matcrials.-Heating and cooking appliances shall not bo fixed near combustible materials unless the latter are suitably protected.

Testing of Completed Installation.

Note.-The following tests are intended to ensure that tho installation is in a satisfactory state at the time of completion. The value of systematically inspecting and testing apparatus and circuits cannot bo too strongly urged, and such periodical tests are essential if the installation is to be maintained in a sound condition and undue deterioration thereof detected. All defects thus discovered should bo made good without loss of time. The attention of consumers should be drawn to the importance of maintaining all apparatus and fittings in a cloan and dry condition.
127. Tests to be carried out.-Boforo an installation is pormanently put into servico the following tests shall bo carried out:-

Insulation Resistance.-

A. The insulation resistance shall bo measured by applying a directcurrent pressure of not less than twice tho working pressuro, but under no circumstances exceeding 500 volts, between earth and the whole system of conductors or any section thereof, with all lamps and fuses in placo, and all switches on. Where main switchboards are installed they may bo excluded from this insulation test, provided that they havo satisfactorily withstood a pressuro test.
B. The insulation resistance of the lighting circuits measured as in A above shall not bo less in megohms than 25 divided by the number of points on those circuits, except that the insulation resistanco of any final lighting sub-circuit need not exceed 1 megohm.
C. Tho insulation resistance between the case or framework and every live part of each individual dynamo, motor, heater, are lamp or other applianco complete with its switch and control gear, regulating resistance and similar accessories, shall not bo less than half a megohm when measured as in A above.

Note. - In addition to tho foregoing tosts, it is advisablo wherever practicablo to take an insulation test botween all the conductors connected to one pole or phase and all the conductors connected to tho other pole or phase of a system, except in the case of concentric systems having an earthed outer conductor.

Continuity of Metal Sheathing.

Tho metal conduits or metallic envelopes of cables in all cases where such methods are used for tho mechanical protection of electrical conductors shall bo tested for electrical continuity, and the electrical resistance of such conduits or sheathing, measured betweon a point near the main switch and any other point of the completed installation, shall not exceed 2 ohms.

Earthing.

(Investigations are being mado with a view to specifying the conditions required for the satisfactory earthing of an installation, and it is proposed to include such a specification in a later edition of these Regulations.)
128. Care Required in Making Additions to Installations-Beforo an addition is mado to an installation caro shall be taken to ascertain whether the existing conductors, switches, etc., affected by the addition are of sufficient capacity for the augmented current which they may have to carry.

> Note- Alternative plug positions are often provided for electric heating appliances, and in such cases it should be ascertained whether the oxisting conductors are of sufficient size to allow of the simultancous use of apparatus connected to more than one plug.
Table I．Flexible Cables：Dimensions and Risistanoe of Coninetors．

Number and Diameter of Whires comprising Conductor					Resistance per 1000 Yards at $60^{*} F$ ． （ $15.6^{\circ} \mathrm{C}$ ．）		
Nomsinal Area 1	Diameler 0.010 inel 2	$\begin{aligned} & \text { Diamclir } \\ & \text { o.012 inch } \\ & 3 \end{aligned}$	Diameler ooros inch	$\begin{aligned} & \text { Dumetcr } \\ & \text { 00029 inch } \\ & 3 \end{aligned}$	Standard 6	Marimuer allorable for Plam Gircs 7	Mastmitm allownble for Tinned Wures 8
$\begin{aligned} & 51 . \text { in. } \\ & 0.1 \\ & 00145 \\ & 0.0225 \end{aligned}$	14U／OIO 1，5／－20 2yb，OR	97－0120	$\begin{aligned} & 60 / .088^{\circ} \\ & 91 / .018^{\circ} \end{aligned}$	－	$\begin{aligned} & \text { ohms } \\ & 1 \cdot 29 \\ & 1 \cdot 64 \\ & 108 \end{aligned}$	$\begin{aligned} & \text { ohms } \\ & =\cdot 34 \\ & 168 \\ & 1 \cdot 11 \end{aligned}$	$\begin{aligned} & \text { ohms } \\ & 2 \cdot 39 \\ & 1 \cdot 3: \\ & \text { :13 } \end{aligned}$
0.03 004 006	－	$\begin{aligned} & 266 / 012 \\ & 368 / .012 \\ & 557 / .012 \end{aligned}$	$\begin{gathered} 117018^{\circ} \\ 163.018^{\circ} \\ 24^{\circ} 018^{\circ} \end{gathered}$	－	$\begin{aligned} & 0.8 .17 \\ & 0.606 \\ & 0.400 \end{aligned}$	$\begin{aligned} & 0864 \\ & 0.618 \\ & 0.408 \end{aligned}$	$\begin{aligned} & 0.881 \\ & 0.631 \\ & 0.486 \end{aligned}$
$\begin{aligned} & 0.075 \\ & 0.11 \\ & 0.12 \end{aligned}$	二	7051．012	$\begin{aligned} & 313 / .018 \\ & 416 / .018 \\ & 482 / .018 \end{aligned}$	$\begin{array}{ll} 121 & 029^{\circ} \\ 150 & 0299^{\circ} \\ 186 & 020^{\circ} \end{array}$	0.326 0.238 0.206	$\begin{aligned} & 0.323 \\ & 0.243 \\ & 0.210 \end{aligned}$	$\begin{aligned} & 0.329 \\ & 0.247 \\ & 0.314 \end{aligned}$
$\begin{aligned} & 0.15 \\ & 0.2 \\ & 0.25 \end{aligned}$	－	二	$\begin{array}{r} \text { 6ro/.018 } \\ 8 \mathrm{ro} 1018 \\ 1017.018 \end{array}$	$\begin{aligned} & 235029^{\circ} \\ & 312.029^{\prime \prime} \\ & 3927^{\circ} 029^{\circ} \end{aligned}$	$\begin{aligned} & 0.163 \\ & 0.122 \\ & 0.097 .4 \end{aligned}$	0.166 0125 o．0993	$\begin{aligned} & 0.169 \\ & 0.127 \\ & 0.101 \end{aligned}$
$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.5 \end{aligned}$	二	－	－	$\begin{aligned} & d 85 \cdot 0=9 \\ & 646 \cdot 029 \\ & 715: 029 \end{aligned}$	$\begin{aligned} & 0.0794 \\ & 0.0591 \end{aligned}$ $0.0 .182$	$00 \$ 10$ 0.0603 0.0491	0.0896 0．0684 0.0501

TABLIE 11.
Yuldanized Jiumbjer Cabmes: Current-carizying Capacty (subject to Voltage Dioly and Cokiesponinng Jill in Prissurf. (See Regulation 68 a (b) Note and $7+\Delta(b)$).

Nominal Area of Conductor	Number and Diameter (in.) of Wires comprising Conductor	Single Cables run in lairs	Concentric or T'uin Cable 4	Threecore Cable.	A pproximate Total Length in Circuit (Lead and Return) for 1-voll Drop with Maximum Permissible Current (Col. 3) 6
$\begin{aligned} & \text { sq. in. } \\ & 0.001 \\ & 0.0015 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 1 / 036 \\ & 1 / 044 \\ & 3 / 029 \end{aligned}$	$\begin{gathered} \text { amps. } \\ 4 \cdot 1 \\ 6 \cdot 1 \\ 7.8 \end{gathered}$	$\begin{array}{r} a m p s . \\ 35 \\ 5 \cdot 2 \\ 67 \end{array}$	amps.	feel 30 30 30
$\begin{aligned} & 0003 \\ & 0003 \\ & 00045 \end{aligned}$	$3 / 036$ $1 / 064$ $7 / 029$	$\begin{aligned} & 12.0 \\ & 129 \\ & 18.2 \end{aligned}$	$10-3$ 11.1 15.7	13.6	$\begin{aligned} & 29 \\ & 29 \\ & 28 \end{aligned}$
$\begin{aligned} & 0007 \\ & 001 \\ & 00145 \end{aligned}$	$7 / 036$ $7 / 014$ $7 / 052$	$\begin{aligned} & 240 \\ & 310 \\ & 37.0 \end{aligned}$	20.6 266 320	$\begin{aligned} & 18 \cdot 0 \\ & 23 \cdot 2 \\ & 27.8 \end{aligned}$	33 39 45
$\begin{aligned} & 0.0225 \\ & 0.03 \\ & 0.04 \end{aligned}$	$7 / 064$ $19 / 044$ $19 / 052$	$\begin{aligned} & 460 \\ & 530 \\ & 640 \end{aligned}$	390 460 550	$\begin{aligned} & 310 \\ & 400 \\ & 47.0 \end{aligned}$	$\begin{aligned} & 55 \\ & 61 \\ & 71 \end{aligned}$
$\begin{aligned} & 0.06 \\ & 0075 \\ & 0.1 \end{aligned}$	$19 / 064$ $19 / 072$ $19 / 083$	83.0 970 1180	710 830 1000	$\begin{aligned} & 59.0 \\ & 69.0 \\ & 83.0 \end{aligned}$	$\begin{aligned} & 83 \\ & 90 \\ & 98 \end{aligned}$
$\begin{aligned} & 0 \cdot 12 \\ & 0 \cdot 15 \\ & 0 \cdot 2 \end{aligned}$	$37 / 064$ $37 / 072$ $37 / 083$	1300 1520 1840	1180 1260 1490	$\begin{array}{r} 900 \\ 105 \cdot 0 \\ 128.0 \end{array}$	$\begin{aligned} & 103 \\ & 112 \\ & 123 \end{aligned}$
0.25 0.3 0.4	$37 / 093$ $37 / 103$ $61 / 093$	2140 2400 2880	$170 \cdot 0$ 188.0 2200	146.0	$\begin{aligned} & 132 \\ & 145 \\ & 162 \end{aligned}$
$\begin{aligned} & 0.5 \\ & 0.6 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 61 / 103 \\ & 91 / 093 \\ & 91 / 103 \end{aligned}$	$\begin{aligned} & 3320 \\ & 3840 \\ & 4610 \end{aligned}$	2490	-	$\begin{aligned} & 172 \\ & 181 \\ & 185 \end{aligned}$
$\begin{aligned} & 0.85 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 127 / 093 \\ & 127 / 103 \end{aligned}$	$\begin{aligned} & 5120 \\ & 5950 \end{aligned}$	-	-	$\begin{aligned} & 190 \\ & 200 \end{aligned}$

Note to Table II.-The figures given in Tablo II apply to single cables run in pairs in iron conduits or in wood casing, and to single cables sheathed with tough rubber compound, and to concentric, twin, and three-core cables of any finish run singly.

The maximum permissible currents (subject to voltago drop) for tho various sizes of conductors up to 1 square inch in cross-sectional area are shown in columns 3, 4 and 5 of tho Table, which allow for a riso in temperaruto of 20 degrees F. (11-1 degrees C.) for rubber-insulated cables. For sizes below 0007 square inch tho Table is based on a current density of 4,000 amperes per square inch.

The Table refers to situations where the temperature of the air does not exceed $80^{\circ} \mathrm{F}$. ($26.6^{\circ} \mathrm{C}$.), nnd thus the normal maximum running temporature is $100^{\circ} \mathrm{F}$. ($37 \cdot 7^{\circ} \mathrm{C}$.). Rubber-insulated cables should not be allowed to attain a temperature higher than $120^{\circ} \mathrm{F} .\left(48.8^{\circ} \mathrm{C}\right.$.) for long periods, or for a short period $130^{\circ} \mathrm{F}$. ($5 \$ 4^{\circ} \mathrm{C}$.). The figures, therefore, in tho latter caso allow of a margin of 30 degrees F . (16.7 degrees C .).

Whore the tomperature of the air exceeds $80^{\circ} \mathrm{F}$. ($\left.26 \cdot 6^{\circ} \mathrm{C}.\right)$, the pormissible curront should bo reduced so that the maximum tomperature of the rubber-insulated cables does not oxceed the figures given above.

The further limitation of the size of conductor by tho permissible drop in voltage is dealt with in Regulation 74A (a).

Note to T'able 1II.-The figures given in Table III apply to single cables run in pairs and to concentric, twin and three-core cables run singly.

The maximum permissible currents (subject to voltage drop) for the various sizes of conductors up to 1 square inch in cross-sectional area aro shown in columns 3,4 and 5 of the Table, which allows for a riso in temperature of 50 degrees F. (27 7 degrees C.) for impregnated-paper cables. For sizes below 0017 square inch the 'Table is based on a current density of 4,000 amperes per square inch.

The Table refers to situations whore tho temperature of the air does not exceed $80^{\circ} \mathrm{F}$. ($26.6^{\circ} \mathrm{C}$.) and thus the normal maximum running temperature is $130^{\circ} \mathrm{F} .\left(544^{\circ} \mathrm{C}\right.$.). Impregnated-paper lead-covered cables for pressures not exceeding 660 volts should not be allowed to attain a permanent temperature higher than $176^{\circ} \mathrm{F}$. ($80^{\circ} \mathrm{C}$.) nnd the figures therofore allow of a margin of 46 degrees F. ($25 \cdot 6$ degrees C.).

Where the temperature of the air exceeds $80^{\circ} \mathrm{F}$. ($26-6^{\prime \prime} \mathrm{C}$.), the permissible current should be reducod so that the maximum temperature of the impregnated-paper lead-covered cables does not exceed the figures given above.

The further limitation of the size of conductor by the permissible drop in voltage is dealt with in Regulation 74A (a).
clxi*
TABLE III.
Imprenatrd-papfr and Clead-covermd Carles: Current-carryina Cafacity (subeet to Volitage Drop) and Corresponding Fall in Pressure.
(See Regulatious 68a (b) Note, nud 74a (b)).

Nominal Area of Conduclor	Number and Diameter (in.) of Wires comprising Conductor	Single Cables run in Pairs 3	Concen- tric or Twin Cable 4	Threecore cable	Approximate Tolal Length in Circuil (Lead and Return) for 1 -voll Drop"
sq. in.		amps.	amps.	amps.	feet
0001	1/036	$4-1$	3.5		30
(1)1015	1/044	$6 \cdot 1$	$5 \cdot 2$	-	30
0-002	3/029	7.8	6.7	-	30
0003	3/036	120	$10 \cdot 3$	-	29
0.003	1/064	12.9	11.1	-	29
00045	7/029	18.2	15.7	13.6	28
0.007	7/036	28.0	40	21.0	27
001	7/044	42.0	36.0	31.0	27
0.0145	7/052	57.0	49.0	430	28
0.0225	7/064	750	65.0	56.0	32
003	19/044	87.0	760	660	35
0.04	19/052	1040	890	760	41
0.06	19/064	1350	116.0	970	48
0075	19/072	1570	1350	1110	52
0.1	19/083	1910	1620	1340	57
$0 \cdot 12$	37/064	2100	177.0	146-0	60
0.15	37/072	246.0	2040	1700	65
0.2	37/-083	2960	2400	2030	72
0.25	37/093	3430	2650	2330	78
$0 \cdot 3$	37/-103	3850	3020	258.0	85
0.4	61/093	4640	35 ± 0	-	95
05	61/103	$540-0$	4050	-	100
0.6	91/093	62.0	-	-	105
075	91/103	7380	-	-	109
0.85	127/093	8150	-		116
10	127/103	9320	-	-	121

[^19]
TA JBLE IV.

Rubber insulated feexibte Cables: Curkent-carbying Capacity.
(Sce Regulation $7 \boldsymbol{4}$ в.)

Nominal Area of Conductor	Marimam Current Permissuble (subject to Vollaye Drop)	
	For Portable Domestic Appliances 2	For other Purposes than those specijied in Col. \sim 3
sq. in. 000	$\underset{16}{(a m p s .}$	$\begin{gathered} a m p s . \\ 2 \downarrow \\ 2 \end{gathered}$
00145	19	28
0.0225	23	35
003	27	41
004	33	49
006	-	(63)
0075	--	74
$0 \cdot 1$	-	90
0 12	-	100
$0 \cdot 15$	-	117
$1 \cdot 2$	-	1.40
0.25	-	163
$0 \cdot 3$	-	184
04	-	¢20
0.5	-	254

Notc- The current values given above are based on calculated areas, allowing 2 per eent. for the laying-up of the wires comprising the stranded conductor.
Flexible Coms: Dhensions and Resistance of Conductors.
(Sere Regulation 71 B.)

Nominal Area	Ordinary Flexible Cords				Fiexiblc Cords with Tough Rubocr Sheatk:ung		
	Nunner and Diameter (in.) of lifircs comprising Coriductor	Resistance per 1000 yards at$60^{\circ} \mathrm{F},\left(15 \cdot 6^{\circ} \mathrm{C} .\right)$			Number and Diameler (in.) of W'ines comprising Corductor 6	Resistance per 1000 ywrds at $60^{\circ} \mathrm{F}$. ($25 \cdot 6^{\circ} \mathrm{C}$.)	
		Standard 3	Maximum allowable for Plain Wircs 4	Marimum allowable for Timed Wiras 5		Standard 7	Maximum allowable 8
$\begin{aligned} & \text { sq. in. } \\ & 0.0006 \end{aligned}$	14/0076	ohms $39-7$	olus $40-5$	ohms $41 \cdot 3$	7/012*	ohms $40 \cdot 5$	ohms $41 \cdot 3$
0001	23/0076	24.2	24.6	25.2	11/012 \dagger	$24 \cdot 6$	25.1
00017	40/0076	13.9	14.2	14.4	16/.012 \ddagger	$14 \cdot 2$	14.4
0003	70/0076	794	S-10	8.26	28/012+	8-10	826
00048	110/0076	505	5-15	525	44.0127	$5 \cdot 15$	$5 \cdot 25$
0007	162/.0076	343	$3 \cdot 50$	357	$65 / .012 \ddagger$	3-0	357

₹ All tinned copper.

Nominal Area of Condiactor 1	TABLE VI. Cords: Thiciness of Lnsulation and Current-oarryeng Capacity. (See Regulations 74 B and 79.)							
	Mintmum Thickncss of Diclectric (Ordinary Flexible Cords)				Flexblic Cords with Tough Rubber Sheathing			Maxinum Curtenf parmassible (subject to Vettage Drop) 9
	High Insulation (Kind t)		Mcdium Insudation (Kind 2)		Thickness of Tough Rubber6	Ovcrall Diameter		
	$\begin{aligned} & \text { Pure } \\ & \text { Kubler } \end{aligned}$	Pure and Vulcant: n g Rubber	$\begin{aligned} & \text { Pure } \\ & \text { Rubber } \end{aligned}$	Vulcanizng Rubbir		250 volls	600 solts	
	2	3	4	5		7	8	
$\begin{aligned} & 59+12 . \\ & 00006 \end{aligned}$	$\begin{gathered} \mathrm{th} \\ 0.020 \end{gathered}$	${ }_{0.033}^{i n}$	${ }_{0}^{\operatorname{in}} 015$	$0^{i n}$	0050	$\begin{gathered} m_{m} \\ 0.200 \end{gathered}$	$\operatorname{lin}_{0.244}$	$\begin{gathered} \text { amps } \\ 12 \end{gathered}$
0.001	0.020	0.034	0015	0029	0050	0.214	0255	20
0.0017	0020	0.035	0015	0030	0050	$0 \cdot 227$	0.267	$3 \cdot 6$
0003	0020	0036	0015	0.031	0050	$0 \div 18$	0.290	6.2
00048	0020	0038	0015	0032	0050	0268	0.30 s	10.0
0007	0020	0039	-	-	0050	0288	0328	120

clxviii
TABLE VII.
Insulation Resistance of Cables.
(See Regnlntion S4 A, h and C .)

Conductur		Minimum Insutation Resistanse, Megohms for a Wile Lenget) at $60^{\circ} \mathrm{F}$. ($\left.15.6^{\circ} \mathrm{C}.\right)^{\circ}$			
Nominal Areas of Cable	Number anid Drameter (in.) of W'res	Rubber-bisuluted Cubics			Paperinsutated Cables 6
		600 megohm firulew ririale	$\begin{gathered} 2 \text { soo- } \\ \text { mesohn } \\ \text { Cradk。 } \end{gathered}$	6fioziolt Grade \ddagger 5	
59.9n.		mrgohms 2000	mevehom, 5000	nicroln 5000	megohms
0001	1/036	$\begin{aligned} & 2000 \\ & 2000 \end{aligned}$	5000 5000		140
00015	1/ 044	2000	5000	5000	141
0002	3/02!	1250	4500	${ }^{+} 500$	140
0003	$3 / 0: 36$	1250	1500	± 500	140
0003	1) 06.4	2 (6)	5000	5000	140
00045	$7 / 029$	1250	4500	4500	140
0007	$7 / 036$	900	4000	4000	140
001	$7 / 044$	900	4000	4000	140
00145	$7 / 052$	900	4000	4000	140
00225	$7 / 064$	900	3500	3500	130
003	19/044	750	3500	3500	125
004	19/052	750	3000	3000	115
006	19/064	750	3000	:1 Hun	100
0075	19/072	600	3000	3000	85
0.1	19/083	600	3000	3000	80
11.12	37/-064	600	3000	3 (ня)	75
0-15	$37 / 072$	600	3000	3000	60
0.2	37/083	600	2500	2500	55
0.25	37/093	600	2500	2500	50
03	37/103	600	2500	2500	50
$0 \cdot 4$	$61 / 093$	600	2500	2500	50
0.5	61/103	600	2500	2500	45
06	91/093	600	2500	2500	40
075	91/103	600	2500	2500	40
0.85	127/093	600	2500	2500	35
10	127/103	600	2500	2500	35

[^20]'CABLE VIII.
'I'est Pressures for Fleximle Cokds.
(See Regulation S\& D.)

Kind 1	Insulating Matcrial 2	Test l'ressure and lirequcncy 3	Nalure of Tesi
		$\begin{gathered} \text { vol/s } \\ \text { I } 500 \mathrm{at} 25-100 \end{gathered}$	
Medium Insulation (2)	Pure Rubler	$\begin{aligned} & 1500 \text { at } 25-100= \\ & 1000 \text { at } 25-100= \end{aligned}$	Between Conductors,
Medium Insula:ion (2)	Vulcanizing reubber	$1500 \times 1=5-100 \sim$	f indry state
High Insulation (T)	P'ure and Vulcanszing Rubber	1010at 25-100 -	In Water, alter 24 hours' immersion

TABLE 1 X .
Inguration Resistance of Flexidle Cords favino Vulcanized Iquble Insulation.
(See Regulation 84 D.)

Nominal Area of Conductor	Number and Diameter (in.) of Wires comprising C'onductor	Minimum Insulation Resistance, Megohms for a Mile Length at $60^{\circ} \mathrm{F} .\left(15 \cdot 6^{\circ} \mathrm{C}.\right)$	
		$\begin{gathered} \text { High } \\ \text { Insulation } \end{gathered}$	Medium Insulation
		3	4
sq. in.			
00006	14/0076	1250	300
0001	23/0076	1250	300
00017	40/0076	1250	300
0003	70/0076	1250	300
00048	110/0076	1250	300
0007	162/0076	900	300

TABLE X．
Capacity of Conduits（Tyfe B，Sorewed，B．S．S．No．31）for this Drawing－in of Conductors．

（See Regulation S7，Class T．1．）										
Size of Conduit			$\frac{1}{2} \mathrm{in}$ ．	首 in．	4 in ．	1 in ．	If in．	14 in.	2 in．	$2 \underline{12}$
Iniernai Diameter（Approximate）			$\begin{gathered} 0.388 \\ \text { in. } \end{gathered}$	$\begin{aligned} & 0498 \\ & \text { in. } \end{aligned}$	$\begin{gathered} 0.606 \\ \text { in. } \end{gathered}$	$\begin{gathered} 0.856 \\ \mathrm{in.} \end{gathered}$	$\begin{gathered} 1 \cdot 106 \\ \mathrm{in} . \end{gathered}$	$\begin{aligned} & 1.34 \\ & \mathrm{in.} \end{aligned}$	$\begin{aligned} & 1.816 \\ & \text { in. } \end{aligned}$	$\begin{gathered} 2 \cdot 316 \\ \text { in. }_{+} \end{gathered}$
Nominal Area of Conductor	Number and Diameter（in．） of Wires comprising C＇onductor	Approximate Orcrall Diameter	－		Inrimum	Numbe	of Con	uctors		
1	2	3	4	5	6	7	8	9	10	11
$\begin{aligned} & \text { si. in. } \\ & 0 \cdot 0015 \\ & 0002 \end{aligned}$	$\begin{aligned} & 1 / 044 \\ & 3 / 029 \end{aligned}$	$\begin{gathered} \text { in. } \\ 0-173 \\ 0.195 \end{gathered}$	2	3 3	5 4	8	一	－	－	－
$\begin{aligned} & 0.003 \\ & 0003 \\ & 0.0045 \end{aligned}$	$3 / .036$ $1 / .064$ $7 / .029$	$\begin{aligned} & 0.215 \\ & 0.197 \\ & 0.226 \end{aligned}$	－	$\stackrel{2}{2}$	4 4 3	8 8 5	$\bar{\square}$	二	－	－

0.007	$7 / 036$	0259	-	-	$\underline{2}$	5	7	-	-	--
001	7/-0.4	0287	-	-	2	+	7	-	-	-
00145	7/052	0317	-	-	-	2	5	1	-	-
0.0225	7/064	0. 359	-	-	-	2	4	7	-	-
0.03	19/044	0303	-	-	-	-	3	5	7	8
0.04	19/052	04.41	-	-	-	-	2	4	7	8
0.06	19/064	$0-513$	-	-	-	-	-	3	5	6
0.075	19/072	05915	-	-	-	-	-	-	4	4
$0 \cdot 1$	19/083	0 Ofi3	-	-	-	-	-	-	3	4
0.12	$37.06 \pm$	0-702	-	-	-	-	-	-	2	3
015	$37 \cdot 072$	0768	-	-	-	-	-	-	2	2
Ninte. - Table X shows the capacity of conduits for the simultancous drawing-in of conductors, but disregard of this Table will not be deemed to be non-compliance widh the Wiring Regulations. The Table applies to 250 -volt, vuleanized rubber, hraided cables in accordance with 13 ritish Standard Specification No. 7, and to conduits, type (B) screwed, which comply with British Standard Specification No. 31. The gronping in one tube of more than two of the larger eables is not recommended, and where it is rone the current rating given in Tables II, III, and IV should be reduced to cosure that the cables are not overheated.										

TABLE XI.
Approximate Fusing Currents of Copper Wires in Free Air* (See Regulation 68 a (b) Note.)

Diameter of Wire 1	Eyuivalent S.II.G. Size 2	Fusing Current 3	Max:muin Safe Working C'urrent (see Note) 4
$\begin{aligned} & \text { inch } \\ & 00092 \\ & 0.010 \\ & 00108 \end{aligned}$	$\begin{aligned} & 34 \\ & 33 \\ & 32 \end{aligned}$	$\begin{array}{r} a m p s \\ 8.6 \\ 9.8 \\ 110 \end{array}$	$\begin{array}{r} \text { amps. } \\ 4.3 \\ 4.9 \\ 5.5 \end{array}$
$\begin{aligned} & 00120 \\ & 00124 \\ & 00148 \end{aligned}$	70 28	$\begin{aligned} & 12.8 \\ & 13.5 \\ & 17 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.8 \\ & 8.6 \end{aligned}$
$\begin{array}{ll} 0018 \\ 0 & 022 \\ 0 & 028 \end{array}$	26 24 24	$\begin{aligned} & 22 \\ & 30 \\ & 41 \end{aligned}$	$\begin{aligned} & 11 \\ & 15 \\ & 21 \end{aligned}$
$\begin{aligned} & 0029 \\ & 0038 \\ & 0040 \end{aligned}$	$\overline{20}$ 19	43 62 73	22 31 37
$\begin{aligned} & 0.044 \\ & 0.048 \\ & 0052 \end{aligned}$	18	$\begin{array}{r} 86 \\ 98 \\ 111 \end{array}$	$\begin{aligned} & 43 \\ & 49 \\ & 56 \end{aligned}$
$\begin{aligned} & 0056 \\ & 00064 \\ & 0072 \end{aligned}$	17 16 15	$\begin{aligned} & 125 \\ & 156 \\ & 191 \end{aligned}$	$\begin{aligned} & 63 \\ & 78 \\ & 96 \end{aligned}$
0080	14	229	115

-See Note under Table XII.

TABLAX XII.
Approximate Fuslng Currents of Thead-Tin Abloy (Lead 75 fer cent., Tin $2 \overline{5}$ fer oent.) Wires in Jiree Air.
(Sce Regulation 68 A (b) Nute.)

Note.-Tables XI and XII refor to wires in free air and of the following lengths:-Copper-2 2 to 34 inches for wires up to 0018 inch diameter ; and not less than 4 inches for larger wires. Lend-Tin Alloy- 2 d to 3 ? inches.

The values given in the Tables may be taken to be correct where the fuse wire passes through an asbestos tube and does not closoly touch the tube, but they do not apply where a substanlial length of the wire is in contact with a porcelain holder. The tendency of the lattor design is to incrense the working eapacity of the fuse, i.e., more current is required to melt the fuse, and if great accuracy is required the fusing current should be determined for the fuse holder in question.

For copper wires, the values of the currents given in Table XI are those necessary to fuso the wiro in one minute, and are not appreciably different for other periods (the current required to fuso the wire in two hours being, in general, over 90 per cont. of that required to melt the wire in one minute.)

For the lead-tin alloy the currents given in Table Xll are thoso necessary to fuse tho wire in two minutes.

In overy case tho relntion between the fusing current and the maximum safe-running curront is based on values which will not produce an excessive temperature under normal running conditions. The actual temperaturerise at the hottest part of the fuse wire will be from 100 to 150 degrees \mathbf{C}. for copper and 50 to 75 degrees C. for the lead-tin alloy.
TABLE XIII.
Standard Dofensions of Steel Conduits.

CONDUIT (Outside Diameter), Size of .. ins.	t	1	4	1	$1 \frac{1}{2}$	11	2.	2 i
Threads per inch ..	18	18	16	16	16	14	14	${ }^{14}$
Depth of Thread ins.	-0356	0356	-0400	. 0400		. 0457	-0457	'0457
Maximum Length of Thread on Ends ins.	$\frac{7}{16}$	$\frac{1}{4}$	$\frac{9}{16}$	H	4	13	${ }_{16}^{16}$	216
Minimum Length of Thread on Ends ins.	i	$\frac{7}{10}$	t	4	18	1	7	1
Nominal Thickness-Class A (Plain) ins.	. 040	. 040	-048	. 048	. 056	.064	. 064	. 072
Minimum Thickness-Class A (Plain) ins.	-036	. 036	044	- 0.44	-05\%	. 060	-060	.068
Nonimal Thickaess-Class B (Serened) ins.	056	.064	072	-072	.072	-880	'092	-032
Minimum Thickness - Class B (Screwed) ins.	-052	- 0 go	-068	-068	-668	'076	-0.88	-88
$\begin{aligned} & \text { Calculated weight per } \\ & \text { ron dt., in ib, un- } \\ & \text { enamelled and not } \\ & \text { including couplers } \end{aligned} \int_{\text {(Plass }} \text { B (Screwed) }$	20	26	37	50	73	100	135	197
	27	39	33	73	93	124	192	212

TABLE XIV.
Standard Dimensions of Fittings.

clexvi
B.S. Specification for Steel Conduits and Fittings fol Electilecal Wiring, No. $31-1923$.
The following are extracts from R.S. Specification No. 31 :

1. Conduit. (a) Two classes of Stecl Conduit for Electrical Wiring are recognized as Standard :-
(lass A.- Plain.
Class B.- Screwed.
Class A consists of light gauge Conduit of the thicknesses and dimensions given in Table XIII. Class A Conduit is either close-joint, brazed, welded or solid drawn. The Coupter joining the lengths of tubing is a sleeve, and neither the ends of the Conduit nor the Coupler are screwed.

In the close-joint tubes, the edges of the stcel strip although brought tightly together in the process of manufacture, are not metallically joined in any way.

Class B consists of heavy gauge Conduit of the thicknesses and dimensions given in Table XIII. Class B Conduit is cither brazed, welded or solid drawn. Both ends of the Conduit are screwed.

Manufacture.

2. Material and Method of Manufacture. -Steel Conduits shall be either close-joint, brazed, welded or solirl drawn as ordered. and shall be of mild steel and free from burrs and internal roughness. The Conduit Fittings (Table XIV) shall bo made of steel or malleable iron. All steel shall havo a tensile strength of not less than 18 tons nor more than 24 tons por square inch of section, and an elongation of not less than 15 per cent. in a length of 8 inches. Malleable castings shall be well annealed and free from internal projections.

For the capacity of conduits, sec Table X of this Appendix.

TABLE XV.

Stze of Cable for dse with Heating and Cooking Appliances.*

Capacity of Appliance. watts	Size of Cable		
	109 volts	220 volts	260 volts
500	1/044"	$1 / 036{ }^{\prime \prime}$	1/036"
1.000	$3 / 036{ }^{\prime \prime}$	1/044"	1/036 ${ }^{\circ}$
1.500	7/ $029^{\prime \prime}$	$3 / 029{ }^{\prime \prime}$	1/044**
$\stackrel{2}{2}, 000$	7/ $0299^{\prime \prime}$	3/029 ${ }^{\prime \prime}$	3/029**
2,500 3,000	7/036"	3/ $036{ }^{\prime \prime}$ 3 3 06.4	$3 / 029{ }^{\prime \prime}$ $3 / 036^{\prime \prime}$
4,000	$71052^{\prime \prime}$	$7 / 029^{\prime \prime}$	7/029**
5,000	7/.064"	$7 / 036{ }^{\prime \prime}$	7/029"
6,000	19/.052"	7/.044"	7/ $036{ }^{\circ}$
7,000	19/052"	7/ $052^{\prime \prime}$	
8,000	19/064**	$7{ }^{\text {7 }} 052^{\prime \prime}$	7/ 052^{*}
9,000	19/072"	7/.064 ${ }^{\text {² }}$	71.052"
10,000	19/072"	7/064"	7/064*

- This Table does not belong to the above, B.S. Specification.

I. Fi E. Reoliations foh the Electrical Equipment of Sups (1919).

Tho following is an abstract of the chief regulations :-

Generating Plant.

Particulars are given of standard steam engines and standard internal combustion engines. The rules in this part have reference to rating regulations, field regulators, general construction, ctc.

Switchboards.

Materials are dealt with generally, on ordinary lines. If semi-insulating matcrials, such ns morble or slate, are used, all conducting parts are to lie insulated from the slate or marble with mien or micanite, and the s!ab is to be similarly insulated as a whole. Omnibus bars and ordinary connecting conductors are to be so proportinned that their avorngo temperature will not rise more than $54^{\circ} \mathrm{F}$. above that of the surrounding air and no part is to rise more than 9 deg. above the average. Schemes of colouring for conductors are specified. In regard to main switchgear, the requirements are set out in a geneial may according to the various systems that may be employed. Means are to be provided for indicating the state of insulation of the system to earth. Fuses are divided into two grades, namely. for ordinary duty and henvy duty. Ordinary duty fuses must protect the circuit without damage when n current 33 times the fusing current flowing under the normal pressure of the circuit is suddenly thrown on. Heavy duty fuses must protect Ω circuit when a current 330 times the fusing current is thrown on.

Conductors.

With regnrd to condluctors, not more than two joints are to be mado during manufacture in any one of the individual wires forming 1,000 yards complete cable, and no joint is to be within 12 in . of any other joint in the same ring and all joints made or manufactured aro to be brazed or electrically welded. No cable is to have a conductor of less sectional area than 00015 sc . in., except for wiring of metal fittings. The sectional aren of the conductor of the cable for such fitlings must not be less than 0001 sq . in. All conductors having an effective sectional area execeding 00033 sq . in. must be stranded. The drop in voltnge allowed is 2 volts plus 3 per cent. in tho case of lighting and 2 volts plus 5 per cent. in the case of power.

The cable omployed may be either vulcanized rubber or paper insulated. Tho V.I.R. cables may be (1) braided, (2) lead covered, (3) lead covered and armoured and (4) braided and armoured. The paper insulated cables may be (1) lead covered and (2) lead covered and armoured. Rules are given in regard to armouring and tests of dielectric. A system of colours is specified for the identification of cables.

Flexible cords are to be insulated with vulcanized rubber and provided with a protective covering of (a) silk braiding, (b) glace cotton braiding, (c) hemp, cotton or jute braiding, thoroughly compounded, (d) wire armouring comprising floxibto brniding or spiral of galvanized stecl or phosphor bronzo wire in addition to the covering specificd in (c), (c) hard cord braiding in addition to tho corering specified in (c), or (f) tough rubber sheathing npplied directly to tho laid-up insulated cores.

The ends of all cables having a sectional area of 0.007 sq . in. and above aro to be provided with a soldering socket. Cables may be (a) run in wood casing (any class of cable) in dry situntions or (b) may be armoured cables and lead covered cables when not run in woodf casing, in which easo they are to be secured by metrl clips having smooth or rounded edges; the electrical resistance between any two points of the metallic envelopes of

clxxviii

such cobles must then not exered 2 ohms. Such clips are to be spaced in accordance with the table given in the Rules. Armoured cables having a sectional orea of 025 sq . in. and upwards may be carried on metal hangers. If cables are expused to mechanical damage the y are to bo protectedby shect iron plating or ly heavy gauge screwed conduit. No elbows are to be used, and mo bend is allowed having a smaller radius than $2 \frac{1}{2}$ times the outside diameter of the conduit. Cobles in machinery spaces or where inevitably exposed to the weather or to the action of sea water are to be lead coverced and may be armoured in addition, with or without braiding over the armour. Braided cables of the same polarity in wood easing may be bunched. Joints daring erection are to be mado by means of joint boxes. All cables passing throngh ducts or watertight bulkhends are to be provided with deck tubes or watertight glands as the ense may be.

Earthing.

Various rules are given of the usual type in regard to sub-division and control of circuits. Earthing connections are to bo of copper having the same sectional area as the working condactor, but not less than 0003 sq . in. for all sizes up to 0007 sq . in . A bove this size Ω combluctor of not less than 0007 sq . in. must be provided for every 50 amperes of working current or part thercof. Rules are given for the prevention of interference with magnetic cosnasses. Certain rules are also given in regard to secondary batteries.

Fittings.

In regard to fittings, rules are given providing for ample passages, freedom from stress on the conductors, avoidance of dust, moisture, etc. All weatherproof fittings, whether fixed or portable, aro to be so protected as to withstand immersion under a 3 ft . head of water before fixing. After fixing they must bo capable of withstanding tho application of a stream of whter ejected from the open end of an ordinary wash deck hose under a. head of 15 ft . for a period of a quarter of Ω minute, the oullet of the hose loing 6 ft . nway from the fitting. Open type fittings are not to be used in spaces where inflammable or explosive dust or gases may be present, or near combustible materials. Weatherproof portable fittings must have all metal parts connected to earth by means of a third conductor in the flexible cord. If this cord is of metal armouring, the armouring may form the earthing conductor, provided it is sufficiently connected at either end. Such fittings aro to have strong metal guards in metallic contact with the rest of the uninsulated metal in these fittings. Open type portable fittings with metal frames must have all their metal parts, other than the lamp holder or lamp holders, connected to earth. Open type portable fittings with non-metal frames need not be earthed, provided that tho gunrds are not in, and cannot come into, metallic contact with the lampholder or lamp holders. Such fittings are to be made of treated hard wood, or of some suitable composition capable of standing rough usage in service. Lamp-holders are to be of the Goliath type for lamps consuming more than 300 watts. Lamp-holdors in open-type portable fittings are to be insulated from the fittings by nueans of insulating material. All plugs and sockets having a rated capacity exceeding 5 amperes are to be provided with an interlock switch.

Motors and other Appliances.

Motors above $\frac{1}{3}$ B.H.P. must conform in all respects with British standardization rules No. 168 of 1923. Motors fitted in compartments in which the temperature is liable to execed $120^{\circ} \mathrm{F}$. nust be either of the pipe-
ventilated type connected by ventilating ducts to the spaces in which the temporaturo is not liable to exceed $120^{\circ} \mathrm{F}$. or of the various forced draught type connected to fans supplying air at or below that temperature.

Switch parts and protectivo dovices of control gears must be so proportioned that their temperalure shall not rise more than $54^{\circ} \mathrm{F}$. above that of the surrounding air when working with normal current. All live parts must be enclosed by metal cosers which are to bo clear of such live parts by not less than in . Those portions of the cover in proximity to working contacts must bo lined with incombustible insulating material. Rosistances must be so proportioned that no accessible part shall rise to n higher temperature than $130^{\circ} \mathrm{F}$.

Those parts of heating and cooking appliances which have to be handled in their operation must not become heated to a temperature execeding $130^{\circ} \mathrm{F}$. All connections between elements and main terminals, unless self-supporting or rigidly fixed, must be continuously insulaied with poreelain beads. All appliances for pressures exceeding 150 volts, whether portable or fixed, must bo provided with a terminal or other suitable means for earthing all uninaulated parts. All appliances are to be protected by a fuse on each insulated pole. They must be controlled na a whole by a switch, which in the case of portable appliances must bo fitted on a bulkhead. Every portable appliance must havo at lenst one section of the element controlled only on the live side of the wall phuy or ather similar connection between the flexiblo conductor and the fixed portion of the circuit. Non-Luminous appliances must be provided with a visual indication to show that current is passing through. No applianee taking more than 1,000 watts is to bo portable.

All apparatus for intornal communications must be emstructed to take the full pressuro of the source of supply, without the interposition of any external resistance: and if the pressure of supply execeds 2% volts. all circuits and accessories must bo designcal in all respects in aceordaneo with the rules for lighting and power circuits.

Some rules are given in regard to lightning conductors and also in regard to wiring for oil ships.

Tho insulation resistanco before putting an installation into service must not be less in megohsus than 10 divided by the ummber of lamps on the circuits, except that the insulation resistance of any final lighting sub-circuit need not exceed 1 megohm. The insulation resistance between the case or framework in overy livo part of each individual dynamo, hoater or other appliance complete must not be less than half a megohm.

Home Office Regulatrons on the Use of Electricity in Facturies and Worksuops.*

Exemptions.-Nothing in Regulations 2, 3, 4, 7, 9. 10, 11, 15, 16. 17. $21,22,23,24,25,26,28,29,30$ and 31 shall npply, unless, on account of special circumstances the Secretary of Stato shall give notico to the occupier that this exemption doos not apply (a) To nny system in which the pressure does not exceed low pressure direct or 125 volts alternating ; (b) in any public supply generating station, to any system in which the pressure between it and earth does not exceed low pressure; (c) in any above-ground sub-station for public supply, to any system not exceeding low pressure.

[^21]clexx
2. Nothing in these Regulations shall apply to any service lines or apparatus on the supply side of the consumer's terminals or to nny chamber containing such service lines or apparatus where tho supply is given from outside under Board of Trade regulations; provided alwnys that no live metal is oxposed so that it may be touched.
3. If the nccupier cnn show, with regard to nny requirement of these Regulations, that the special conditions in his premises are such as adequately to prevent danger, that reguirement shall be deemed to be satisfied; and tho Secretary of State may by Order direct that any class of special conditions delined in the Order shall be deemed for the purposes of all or any of the requirements of these licgulations adecuately to prevent danger. and may revoke such Order.

1. Nothing in theso Requlations shall apply to any process or apparatus used exclusively for electro-chemical or electro-thermal or testing or research purposes; provided such process be so worlied and such apparatus so constructed and protected and such special precautions taken as may be necessary to prevent danger.
2. The Secretary of Sitate, may hy Order. exempt from the operation of all or any' of these Regulations any premises to which any special rules or regulations under any other Act as to the generation, transformation, distribution or use of electrical energy npply; and mny revoke such Order.
3. The Secretary of sitate may, if satisfied that safety is otherwise practically secured, or that exemption is necessary on the ground of emergency or special circumstances, grant sucl exemption by Order, subject to any conditions that may be preseribed therein: and may reroke such Order.
4. Nothing in these Regulations shall apply to domestic factorics or domestic workshops.

Regulations.

1. All apparatus and conductors shall be sufficient in size and power for the work they are called upon to do, and so constructed, installed, protected, worked and maintained as to prevent danger so far as is reasonably practicable.
2. All conductors shall either be covered with insulating material, and further efliciently protected whero necessary to provent dinger, or they shall be so placed and safeguarded as to prevent danger so far as is reasonably practicable.
3. Every switch, switch fuse, circuit-brenker and isolating link shall be: (a) so constructed, placed or protected ns to prevent danger; (b) 80 constructed and adjusted as accurately to make and to maintain good contact; (c) provided with an efficient handle or other means of working insulated from the system, and so arranged that the hand cannot inadvertently touch live metal; (d) so constructed or arranged that it cannot accidentally fall or move into contact when left out of contact.
4. Every switch intended to bo used for breaking a circuit and orery eircuit-breakor shall be so constructed that it cannot with proper care be loft in partial contact. This applies to ench pole of double-pole or multipole switches or circuit-breakers. Every switch intended to be used for breaking a circuit and every circuit-breaker shall be so constructed that an arc cannot accidentally be maintained.
5. Every fuse, and every automatic circuit-breaker used instead thereof, shall be so constructed and arranged as effectively to interrupt the current before it so exceeds the worling rate as to involve danger. It shall be of
such construction or bo so guarded or placed as to provent danger from uverheating, or from areing or the seatteriug of hot metal or other substance when it comes into operation. Every fuse shall be either of such construction or so protected by a switch that the fusible metal may be readily ronewed without danger.
6. Every electrical joint and connection shall be of proper construction as regards conductivity, insulation, mechanical strength and protection.
7. Elficient means, suitably located, sball be provided for cutting off all pressure from every part of a system, as may be necessary to prevent danger.
S. Eflicient means suitably located shall be provided for protecting from excess of current every part of a system, as may be necessary to prevent danger.
8. Where one of the couductors of a systom is connected to eartb, no single pole switch, other than a link for testing purposes or a switch for uso in controlling a generator, shall be placed in such conductor or any branch thereof. A switch, or automatic or other cut-out may, howover, be placed in the connection between the couductor and earth at the genorating station, for uso in testing and omergencies only.
9. Where ono of the main conductors of a systom is bare and uninsulated, such as a bare return of a concentric system, no switch, fuse or circuitbreaker shall bo placed in that conductor, or in any conductor connected theroto, and the said conductor shall be earthed. Novertheless, switches, fuses or circuit-breakors may bo used to break tho connection with the generators or transformers supplying the power; provided that in no caso of bare conductor the connection of the conductor with earth is thereby broken.
10. Every motor, converter and transformer shall be protected by eflicient means suitably placed, and so connected that all pressure may thereby by cut of from the motor, converter or transformer as the case may be, and from all apparatus in connoction therewith; provided, however, that where one point of the system is connected to earth, there shall be no obligation to disconuect on that side of the system which is connected to carth.
11. Evory electrical motor shall be controllod by an eflicient switch or switches for starting and stopping, so placed as to be easily worked by the person in charge of the motor. In every place in which machines aro being driven by any electric motor thero shall be means at hand for either switching off the motor or stopping the machines if necessary to prevent dunger.
12. Livery flexible wire for portablo apparatus, for alternating currents or for pressures above $1 \overline{5} 0$ volts direct current, shall be connected to the system either by ofliciont permanent joints or connections or by a properly constructed connector. In all cases where tho person handling portablo apparatus or pendant lamps with switches, for alternating current or pressures abovo 150 volts direct current, would bo liable to get a shock through a conducting floor or conducting work or otherwiso, if tho metalwork of the portable apparatus became charged, the metal-work must be efficiently earthed; and any flexible mutallic covering of the conductora shall bo itself efficiently carthed and shall not itsolf bo the only earth connection for the metal of the apparatus. And a lampholder shall not re in metallic connection with the guard or other metal-work of a portable lamp. In such places, and in any placo whero the pressuro exceeds low pressure, the portable apparatus and its flexible wire shall bo controlled by efficient means suitably located, and capable of cutting off the pressure,
and tho metal-work shall be offeiently carthed indopendently of any floxible metallic cover of the conductors, and any such floxible covering shall itself bo independently enrthed.
13. The general arrangement of switchboards ahall, so far as reasonably practicable, bo such that (a) all parts which may have to be adjusted or handled arc readily accessible; (b) the courso of every conductor may whero necessary bo readily traced; (c) conductors not arranged for connectiun to the same system are kept well npart, and can where neceasary be readily distinguished: (d) all baro conductors are so placed or protected as to prevent danger from accidental short-circuit.
14. Every switchboard having bare conductors normally so exposed that they may be tonched, shall, if not locnted in an aren or areas sot apart for the purposes theroof, where necessary be suitably funced or enclosed. No person except an authorized persun, or a person noting under his immediate supervision, shall for the purpose of carrying out his duties have access to any part of an area so set apart.
15. All apparatus appertaining to a switchboard and requiring handling shall, so far as practicable. be so placed or arranged as to be operated from the working platform of the switchboard, and all mensuring instruments and indicators connected therewith shall, so far as practicable, be so placed as to be observed from the working platform. If such apparatus be worked or observed from any other place, adequate precautions shall be taken to provent danger.
16. At the working platform of every switchboard and in every switchboard passage-way if there be baro conductors oxposed or arranged to be oxposed when live so that they may be touched, there shall bo a clear and unobstructed passage of ample width and hoight, with a firm and even Hoor. Adequato means of access, free from danger, shall bo provided for overy switchboard passage-way.

The following provisions shall apply to all such switchboard working platforms and passage-ways constructed after Jamuary 1st, 1909, unless the bare conductors, whether overhead or at the sides of the passage-ways, are otherwise adequately protected against danger by divisions or screens or other suitable means:-
(a) Those constructed for low-pressure and modium-prossure switchboards shall have a cloar height of not less than 7 ft . and a cloar width measured from bare conductor of not less than 3 ft .
(b) Those constructed for high-pressure and extra high-pressure switehboards, other than operating desks or panols working solely at low pressure, shall have a clear height of not less than 8 ft . and a clear width measured from bare conductor of not less than $3 f \mathrm{ft}$. 6 in .
(c) Bare conductors shall not be exposed on both sides of the switchboard passage-way unless either (i) the clear width of the passage is, in tho case of low pressure and medium pressure, not less than 4 ft . 6 in., and in the case of high pressure and extra high pressure, not less than 8 ft ., in each case measured botween bare conductors, or (ii) the conductors on one side are so guarded that they cannot be accidentally touched.
18. In overy switchloard for high prossure or extra high pressuro:-
(a) Livery high-pressure and extra high-pressure conductor within reach from tho working platform or in any switchboard passage-way shall be so placed or protected as adequatoly to prevent danger.
(b) The metal cases of all instruments working at high pressure or extra high pressuro shall be cither earthed or completely enclused with insulating covers.
(c) All metal handles of high-pressure nud extra high-pressuro switehes and, whero necessary to prevent danger, all metal gear for working the switches shall be earthed.
(d) When work has to bo dono on any switchboard, then, unless tho switchboard bo otherwise so arranged as to secure that tho work may bo carried out without danger, either (i) tho switchboard shall bo made dend, or (ii) if the said switchboard be so arranged that the conductors thereof can be made dead in sections, and so separated by permanent or romovable divisions or sereens from all adjoining sections of which the conductors are live, that work on any section may be careied out without danger, that section on which work has to be done shall bo made dead.
1y. All parts of generaturs, motors, transformers or other similar apparatus at high prossure or extra high-pressuro, and within reach from any position in which any person employed may require to be, shall be, so far as reasonably practicable, so protected as to prevent danger.
20. Where a high-pressure or extra high-pressiure supply is transformed for use at a lower pressure, or energy is transformed up to above lowpressure, suitablo provision shall be made to guard agninst danger by reason of the power-pressure systom becoming accidentally charged abovo its normal pressure by leakago or contact from the higher-pressuro system.
21. Whero necessary to prevent danger, adequate precantions shall bu taken either by curthing or by other suitable means to prevent any metal other than tho conductor from becoming electrically charged.
22. Adequato precautions shall be taken to prevent any conductor or apparatus from being accidentally or inadvertently electrically charged whon persons are working thereon.
23. Where necessary adequately to provont danger, insulating stands or sereens shall bo provided and kopt permanently in position, and shall be maintained in sound condition.
24. Portable insulating stands, sereens, boots, gloves or other suitable means shall be provided and used when necessary adequately to prevent dangor, and shall be periodically oxamined by an authormed person.
25. Adoquato working space and means of access, freo from danger, shall bo provided for all apparatus that has to bo worked or attended to by any person.
26. Au those parts of promises in which apparalus is placed shall bo adequately lighted to prevent danger.
27. All conductors and apparatus exposed to tho weather, wet corrosion, inthammable surtoundings or explosive atmospliere, or used in any proeess or for any special purpose, other than for lighting or power, shall bo so constructed or protected, and such special precautions shall be taken as may be neecssary adequately to prevent danger in view of such exposuro or use.
28. No person except an athorized porson or a competent person acting under his immediate supervision shall undortako any work where technical knowledge or experience is required in order adequately to avoid danger ; and no person shall work alone in any ease in which tho Scerotary of State directs that ho shall not. No porson except an uuthorized person, or a competent person over $\because 1$ years of age neting under his immediate supervision, shall undertako any repair, alteration, extension, cleaning or such work where technical knowledge or experience is required in order to avoid
danger, and no one shall do such work unaccompanied. Where a contractor is employed, and the danger to be nvoided is under his control, the contractor shall appoint the abthorized person, but if the danger to be avoided is under the control of the occupier, the occupier shall nppoint the authorized person.

2!). Instructions as to the treatment of persons suffering from electric shock sholl be affixed in all premises where electrical energy is generated, transformed or nsed above low-presture, and in such premises, or classes of premises, in which electrical chergy is gencrated, transformed or used at low-pressure, as the Secretary of State may direct.
30. Every sub-station shall be substantially constructed, and shall be so arranged that no person other than an authorized person can obtain access thereto otherwise than by the proper entrance, or can interfere with the apparatus or conductors therein from outside; and shall be provided with eflicient means of ventilation and be hopt dry.
31. Every sub-station shall be mader the control of an authorized person, and none but an authorized person or a person acting under his immediate supervision shall enter any part thereof where there may be dauger.
32. Every underground sulustation not otherwise easily and safely accessible shall bo provided with adequate means of access by a door or trap-door, with a staircase or ladder securely fixed and so placed that no live part of any switchboard or any bare conductor shall be within reach of a person thereon; provided, however, that the means of access to such aub-station shall bo by a doorway and staircase (a) if any person is regularly employed thercin, otherwise than for inspection or cleaning, or (b) if the sub-station is not of ample dimensions and there is therein either moving machinery other than ventilating funs, or extra high-pressure.

Memorandum on Home Office Regulations, dealing with Low-Pressure and Medium-Pressure Switchboards, with special reference to distribution boards and motor starting panels.
It is sometimes overlooked that the term "switchboard " includes all classes of switchboards, from large station switchhoards down to distribution fuse boards for lighting circuits and motor starting pancls. Mistakes sometimes leading to scrious accidents or involving somewhat extensive alterations, have been made by occupiers and others in not considering the conditions under which a switchboard is to be placed, particularly as to whether the conditions permit of the use of (a) an open type switchboard, i.c., one having the conductors expused, or (b) one enclused in a cabinet which bas to be opened for use, thereby exposing the live wetal ; or whether one baving all live motal permanently protected is necessary.
(a) Switchboards for use on systems to which Exemption 1 does not apply, i.e., in which the pressure exceeds 125 volls alternating or 250 volts direct.

Fuse holders which have to be handled whilst live, must be in all cases in accordance with the requiremonts of Regulations 3 (c) and 5 (3rd part). The construction should be such that, in putting the fuse holder in or out of the board, (a) it is impossible for the hand inadvertently to touch any live part cither of the fuse holder itself or of any adjacent live metal on the board, e.g., the fixed contacts, and (6) the hand is screened from the liash should the fuse blow at the moment of being inserted.

All the regulations affecting switchboards are applicable. Thus, a switchboart. whether large or small, if it has bare conductors normally exposed so that they may be touched, must either bo in an area set apart for the
purpose and to which only authorized and competent persons may have access, or it must be suitably fenced or enclosed (Regulation 15).

The alternative method of onclosing the switchboard in a cabinet is very commonly adopted, but even so, the conditions must be carefully considered. Lien if enclosed in a cabinet, the door of which has to be opened for use, thereby exposing bare conductors so that they may be touched, there must be π clear and unobstructed working platform 3 feet wide (Regulation 17). Whether in a cabinet or not, it must be so placed that all upparatus which requires handling is within reach from the working platform (Regulation 16), and there wust be an insulating stand (Regulation 23). Large switchboards are generally placed where all the above conditions can be complied with without difficulty. Smaller switchboards such as distribution fuso boards or motor pauels, cannot, however, always be placed so ns to comply with these requirements. Thus, distribution boards may have to be placed out of reach from the floor, so that there is no working platform, or they may have to be placed over iron foor plates or damp ground where an insulating stand is impracticalale, or they may bo on a works where they may have to be used by persons devoid of any technical knowledge.

Where the requirements referred to cannot be complied with, or where for any reason it is not convenient to comply with them, other means of safety must be adopted. All that is necessary to avoid having to comply with the requirements of these regulations is to provide a switchboard haviug no conductors exposed or arranged to be exposed when live so that they may be touched. Such complete protection is provided in $\mathrm{t}^{1} \cdot 3$ case of certain distribution fuse boards In otbers the protection provided is not entirely complete, but is such that, under the terms of Exemption 3, it may be regarded as "adequate to provent danger." Thus, all live parts are so proteuted that they canmot be inadvertently touched by a jerson handling the fuso holders, although it may be quite possible for hiru to touch them intentionally. As by the terms of the lixemption the responsibility for the adequacy of the protection provided rests with the cecupier, he must take care in adopting such alternative means of safety that it is adequatc. Switchhoards constructed on such lines aro now obtainable from a number of manufacturers, both for small distribution bonrds suitable for lighting circuits or larger ones for puwer circuits, but not all of those purporting to be in compliance with the requirements are adequately protected. Such construction may also elfect comphauce with Regulation 16 (last sentence) in regard to small distribution boards placed out of reach from the ground, provided that adequate means of access, e.g., a stepladder or ladder which ean be securely placed, is available when required. For larger boards placed high up a platform is, however, generally necessary for safe access and working in any case.

Similar protection of all live parts within the cabinct may also be noeessary in the case of motal cabinets, even when placed within reach from an insulating foor of proper width. Thus, if the metal cabinet has a door hinged at the top, the operator has to hold the door open with one band whilst handling the apparatus with the other and he is therefore in connection with earth, despite the insulating stand. With a side-hinged door which can be opened 180° or thereabouts, there may be no need for this protection under these conditions although it is often desirable, or the cabinet may be made of hard wood or other suitable insulating matorial.

Distribution boards enclosed in cabinets, but not otherwise protected (i.c., having livo metal exposed when the door is open) are therefore per-
missible only if placed in accordanco with the requiroments of Regulations 16,17 and 23 ; i.e., they wust be within reach of the ground or working platform, there must be a three.feet space in front and there must be an insulating stand. The cabinet should be preferably made of insulating material, but if of metal, tho door must not bo hinged at the top. For use under any other conditions there should be adequate protection of the live wetal within the cabinet.

The question of accessibility of distribution boards, from the point of view of convenience of operation, is often overlooked. It is not of great consequence in regard to boards containing fuses only and which require handliug only occasionally, as when n fuse requires renewal or a circuit bas to be made dead. If, however, they contain switches for controlling the branch circuits, it is obviously more convenient that they should be readily accessible. Whether containing switches or not, they should not be placed unnecessarily lagh up or otherwise inconveniently. To place them in positions involving danger to the attendant, as over running machinery or close to shafting, as is sometimes done, is contrary to the requirements ef Regulntions 1 and 25.

Similarly, as regards convenience of operation, switches for controlling the branch circuits are better placed uutside the cabinet, so that it is not necessary to open the door evory time a switch has to be turned on or off. If, however, they are within the cabinet, convenionco of operation is sometimes secured by tho switch handles being extended through the base of the cabinet.

There are other types of completely protected switchgear, suitable for use under practically any conditions. Several firms make ironclad switchgear conveniently arranged, so that new panels can be added as required. With such switchgear, the requirements as to the fuses (Regulations 5 and 3 (c)) must be properly arranged for, and no live metnl must be exposed in the fuse chaubers so that it may be touched inadvertently, when the fuse chamber is opened for renewal of a fuse. This may be arranged by the protection of all live metal within the fuse chamber and the use of properly protected switch-fuses; or by the fuses and therefore all tho conductors within the fuse chamber being on the dead side of the switch controlling the circuit, in which case safoty is further ensured if the fuse chamber door is interlocked with the switch so that it cannot be opened until the switch is "off" : or by the use of properly constructed "fuse-switches." Where oil switches are used, there must bo means of making the oil switch dead for examination or repairs (Regulation 7). In some this is provided for by isolating switches, arranged to be operated from outside the casing, and in others by the oil switches being arranged on slides so that they can bo withdrawn from contact with the bus-bars.

Totally enclosed ironclad switchgear for motor panels is now quito common. Here again attention should be paid particularly to the requirements as to renewal of the fuses (see also under Regulation 5).
(b) Switchboards for use on systems to which Exemption 1 applies, i.e. in which the pressure does not exceed 125 volts allernating or 250 volls direct.

A number of the Regulntions do not apply in the case of such systems, and there is consequently greater freedom in the use of switchboards having conductors exposed or arranged to be exposed when live. Thus, Regulations $15,16,17$ and 23 do not apply. At the same time there is no exemption from the requirements of Regulations 1,5 and 14. Regulation 1 very definitely, although in general terins, requires that safoty shall be provided for. Thus, switchboards having live metal exposed, although not required to
be in an area set apart for the purpose, should obviously not be placed where persons are liable to run into them or touch live metal in passing or where engaged in their employmont. There are no specified requirements as to working platforms and passage-ways. Novertheless, theso should be of reasonable width and where there would otherwise be danger of shock to a oarth, insulating Hooring should be provided. Subject, however, to rensonablo precautions being taken, open-type switchboards, motor starting panels etc., are permitted without the full restrictions required in the ease of those for higher pressures. The protection to be afforded will depend very much upun the particular circumstances of each case, and apart from tho question of safety of employees, enclosed type switchgear may be necessary for the protection of the appuratus against damnge. Enclosed type notor control panels are advisable in all cases where there is not plenty of space, and particularly where women are employed. Where machines, driven by motors, have starting panels attuched or otherwise so placed that the workers are liable to touch them when in contact with earth, e.g., laundry or printing machinery or wachine tools, the switchgear should bo of totally enclosed type.

Similarly, distribution fuse bonrds should in general be enclosed in cabinots. Regulation 5 must be complied with. Fuses must be of such a typo or so enclosed as to prevent seattering and must be so constructed that they may bo readily renewed without danger. 'Thoy must be so constructed that the bond is shiolded from the are or hot motal should a fuse blow on being replaced on the board on a short circuit. Unless the distribution board is placed where the persou renewiny a fuse is insulated from earth, either as regards the floor or by reason of the fuses being in a metal eabinet with which ho way be in contact, the fuso holders must also bo so constructed that there is no risk of touching live metal when handling them. The busbare and other live purts within the cabinet need not, however, bo furthor protected. Similarly, if thero aro switches in tho cabinet, so long as they have proper insulated handles no further enclosure of the parts is necessary. Again, distribution fuse boards need not be placed within reach of the ground if this is not convenient, but if they contain switehes in addition it is much better that they should bo placed within convenient reach. To place them in positions involving danger to the attendant, as over-running machinery or close to the shafting, is contrary to the requiroments of Regulation 1 .

Requlations as to the Use of Electricity in Mines under the Coal Mines Act.

I.-Below Ground.

117. Duties.-It shall be the duty of the mine owner, agont, and manager to comply with and onforce the following regulations, and it shall be the duty of all workmon and porsons omployed to conduct their work in accordance with the regulations.
118. Definitions.- "Pressure " means the difference of electrical potential between any two conductors, or between a conductor and earth as read by a hot wire or electrostatic voltmeter.
" Low Pressure " means a pressure in a system normally not exceeding 250 volts whers the electrical energy is used.
" Medium Pressure " means a pressure in a systom normally abovo 250 volts, but not exceeding 650 volte, whero the electrical onergy is used.
"High Pressure" means a pressure in a system normally above 650 volts, but not oxceeding 3,000 volls, whore tho electrical energy is used or supplied.

- Extra-high Pressure " means a pressuro in a systom normally exceeding 3,000 volts, where the electrica! energy is used or supplied.
"System " means an electrical system in which all the conductors and apparatus are electrically comected to a common source of electromotive force.
"Concentric System " means a system in which the circuit in a conductor or conductors, called the inner conductor, is completed through one or more conductors, called the outer conductor, arranged so that the inner conductor is insulated and tho outer conductor is disposed over the insulation of, and more or less completely around, the inner conductor.
" Conductor " means an electrical conductor arranged to bo electrically connected to a systom.
"Apparatus" means electrical apparatus, and includes all apparatus, machines, and fittings in which conductors are used, or of which they form a part.
"Circuit" means an electrical circuit forming a system or branch of a system.
"Covered with insulating material" means adequately covered with insulating material of such quality and thickness that there is no danger.
" Metallic covering " means iron or steol armouring, with or without a lead or other metallic sheath as the conditions of the case may require, or an iron or steel pipe surrounding two or more conductors.
" Bare" means not covered with insulating waterial.
" Live " means electrically charged.
" Dead " means at, or about, zero potontial, and disconnected from any live system.
"Open Sparking " means sparking which, owing to the lack of adequate provision for preventing the ignition of inflammable gas external to apparatus, would ignite such inflammable gas.
" Earthed " means connected to the general mass of earth in such manner as will ensure at all times an immedinte discharge of electrical onergy without danger.
" Earthing system " means an electrical system in which all tho conductors aro earthed.
" Switchgear " means switches or fuses, conductors, and other apparatus in connection therewith, used for the purposo of controlling the current or pressure in any system or part of a system.
"Authorized person " means a person appointod in writing by the managor of the mine to carry out certain duties incidental to the generation, transformation, distribution, or use of electrical energy in the mine, such person being ${ }^{\circ}$ person who is competent for the purposes of the rule in which the term is used.
"Electrician " means a porson appointed in writing by the manager of the mine to superviso the apparatus in the mine and the working thereof, such person being a person who is over $2 l$ years of age, and is competont for the purposes of the rule in which the torm is used.
" Danger" means danger to health or danger to life or limb from shock, burn, or other injury to persons employed, or from fire ore explosion attendant upon the generation, transformation, distribution or use of electrical energy.
"Use " of electricity means the conversion of olectricity into mechanical energy, beat, or light for the purpose of providing mechanical onergy, heat, or light.

119. Notices for M.M. Inspeclor. -Notices shall be sent to the Inspector of the division, on the forms prescribed by the Secretary of Stato, as
follows:-manoly, (i) Notico of the intention to introrluco apparatus into nny mine, or into any ventilating district in any mine. (ii) Notice of the intention to introduce or re-introduce electricity into any mine where the use of electricity has previously been prohibited by Nec. 60 (1) of the 1911 Act. (iii) On or before the 21 st of January in every year an annual return, giving the size and typo of apparatus and any particulars which may bo required by the Secretary of Sitate as the circumstances of its use.

If the Inspector of the division does not object in writing, within one calendar month from the receipt by him of the notice, to the carrying out of either of the intentions specified in the first or second notices, the owner shall be entitled to carry out such intention or intentions. Provided that this regulation shall not apply to telephones and signalling rpparatus.
120. Plan.--A proper plan on the same seale as that kept at the mine in fulfilment of the requirements of the Act shall be kept in the office at the mine showing the position of all fixed apparatus in the minc, other than cables, telephones and signalling apparatus. The sairl plan slatll be corrected as often as mary be necessary to kecp it reasonably up to dato, and it shall be produced to an inspector of mines at any time on his request.
121. Notices to Workmen.-'The following notices, constructed of durable material, shall bo exhibited where necessary: (i) A notice prohibiting any person other than an authorized person from handling or interfering with apparatus. (ii) A notico containing directions as to procedure in case of fire. This notice shall be exhibited in every place containing rpparatus. other than cables, telephones and signalling npparatus. (iii) A notice containing directions as to the restoration of persons suffering from the effects of electric shock. (iv) A notice containing instructions how to communicate with the person appointed under Regulation 128 (a). This notice shall be exhibited at the shaft bottom.
122. Lighting, Telephones, aud Fire Buclicts.- (a) In all places lighted by electricity where a failure of the electric light would be likely to cause danger, one or more safety lamps or other proper lights shall be kept continuously burning. (b) Efficient telephonic or other equivalent means of communication shall be provided for communicating between the place in which the switchgear provided under Regulation 128 (a) is erected and the shaft bottom or main distributing centre in the pit. (c) Fire buckets of suitable capacity, filled with clean dry sand ready for immediato use in oxtinguiahing fires, shall be kept in every place containing apparatus, other than cables, telephones and signalling apparatus.
123. Housing of apparatus and Working Space. -(a) Where necessary to provent danger or mechanical damage, transformers and switchgear shall be placed in a separate room, compartment or box. (b) Unless the apparatus is so constructed, protected and worked as to obviate the risk of fire, no inflammable material shall be used in the construction of any room, compartment or box containing apparatus, or in the construction of any of the fittings therein. Each such room, compartment or box shall be substantially constructed aud shall bo kept dry. (c) Adequate working space and means of access clear of obstruction and free from danger shall be provided for all apparatus that has to be worked or attonded to by any person, and all handles intended to be operated shall bo conveniently placed for that purposo.
124. The Construction of Appuratus and the Insulation of a System.(a) All appatatus and conductory shall be sufficient in size and power for the work they may be called upon to do, and so constructed, installed,

CXC

protected, worked and maintnined as to prevent danger so far as is reasonably practicable. (b) All insulating material shall be chosen with specinl regard to the circumstances of its proposed use. [t shall be of mechnnical strength sufficient for its purpose, ant, so far as is practicable, it shall be of such a character or so protected as fully to maintain its insulating properties under working conditions of temperature and moisture. (c) Ferery part of a system shall be kept efliciently insulated from earth, except that (i) the neutral point of a pulyphase system may be earthed at one point only ; (ii) the mid-roltage point of any system, uther than a concentric system, may be earthed at one point only : and (iii) the outer conductor of a concentric systom shall be earthed. Where any point of a system is earthed it shall be enrthed by comection to an earthing systom at the surface of the mine. (d) Jifficient means shall be provided for indicating any defect in the insulation of n system.
125. Earthing.-(a) All metallic sheaths, coverings, handles, joint boxes, switchgear frames, instrmment covers, switch and fuse covers and boxes, and all lamp holders, unless efliciently protected by an earthed or insulating covering made of lire-resisting material, and the frames and bedplates of generators, transformers and motors (including portable motors) shall bo earthed by comection to an carthing system nt the surface of the mine. (b) Where the eables are provided with Ω metnllic covering constructed and installed in accordnnce with liegulation 129 (e), such metallic covering may be used as a means of connection to the earthing system. All tho conductors of an earthing system shall have a conductivity at all parts and at all joints at least equal to 50 per cent. of that of tho largest conductor used solely to supply the apparatus a part of which it is desired to earth. Provided that no conductor of an earthing system shall have a cross-sectional area of less than 0022 of a square inch. (c) All joints in earth conductors and all joints to the metallic covering of the cables shall be properly soldered or otherwise efficiently made, and overy earth conductor shall be soldered into a lug of each for its terminal connections. No switch, fuse or circuit-breaker shall be placed in any aarth conductor.

This rule shall not apply (except in the case of portable npparatus) to any system in which the pressure does not exceed low-pressure direct current or 125 volts alternating current.
126. Use of IIigh (or Extra-High) Pressure Current.-(a) Where electricity is distributed at a pressuro higher than medium pressure (i) it shall not be used without transformation to medium or low-pressure, except in fixed machines in which the high or extra-high pressure parts are stationary ; and (ii) motors under $20 \mathrm{~h} . \mathrm{p}$. shall be supplied with current through a transformer stepping down to medjum or low pressure. (b) Where energy is transformed, suitable provision shall bo made to guard against danger by reason of the lower-pressure apparatus becoming accidentally charged above its normal pressure by leakage from or contact with the higherpressure apparatus.
127. Suitchgear, etc.*-Switchgear and all terminals, cable ends, cable joints and connections of apparatus shall be constructed and installed so that: (i) All parts shall be of mechanical streugth sufficient to resist rough usage. (ii) All conductors and contact areas shall be of ample currentcarrying eapacity, and all joints in conductors shall be properly soldered or othorwise efficiently made. (iii) The lodgment of any matter likely to

[^22]diminish the insulation and of coal dust on or close to live parts shall he prevented. (iv) All live parts shall be so protected or enelosed as to prevent necidental contret by persons and danger from ares or slourt-circuits, fire or water. (v) Where thero may be risk of igniting gas, coal dust or other inflnmmable material, all parts shall be so protected as too prevent open sparking.
128. Control of the Supply of Current.- (a) Properly constructed switchgear for cutting off the supply of current to the mine shall be providod nt the surface of the mine, and during the time any cable is live a person nuthorized to operate the said switchgear shall he available within ensy reach thereof. Lightning arresters, properly adjusted and maintained, shall be provided where necessary to prevent danger. (b) Efficient means, suitably' placed, slanll be provided for cutting off all pressure from every part of a system as may be necessary to prevent danger. (c) Such efficient means shall be provided for cutting off all pressure antomatically from the part or parts of the system affected in the event of Ω fault, as may be necessary to prevent danger. (d) Every motor slall be controlled by switchgear for starting and stopping, so arranged as to cut off all pressure from the motor and from all apparatus in connection therewith, and so placed as to be easily worked by the person appointed to work the motor. (e) If a concentric system is used, no switch, fuso or circuit brenker shall be placed in the outer conductor, or in any conductor connected thereto, except that, if required, n reversing switch may be inserted in the outer conductor at the place whore tho current is being used. Nevertheless. switeles, fuses or circuitbreakers may bo used to loreak the connection with the generntors or transformers supplying the electricity; provided that the commection of the outer conductor with tho earthing system shall not thereby be broken.
129. Cables.-All enbles, other than flexible cables for portable apparatus and signalling wires, shall comply with the following requirements : (a) They shall be covered with insulating material (except that the outer conductor of a concontric system may lie bare). The lead sheath of leadsheathed cables and the iron or stecl armouring of armoured eables shall be of not less thickness respectively than is recommended by the Engineering Standards Cominittco. (b) They shall be ofliciently protected from mechanical damage and supported at sufficiontly frequent intervals and in such n manner as adequately to prevent danger and damage to the cables. (c) Concentric cables, or two-core or multi-core eables protected by a metallic covering. or single core eables protected by a metallic covering, which shatl contain all the conductors of the circuit, shall bo used (i) where the pressure exceeds low pressure; (ii) where the roadway conveying the cables is also used for mechanical haulage, and (iii) where there may be risk of igniting gas, coal dust or other inflammable materinl. Provided that if the medium pressure d.c. system is used (i) two single-core cables protected by metallic coverings may be used for any circuit if the said metallic coverings are bonded together by earth conductors so placed that the distance between nny two consecutive bonds is not greater than 100 ft . measured along either cable, and (ii) lwo single-core cables covered witl insulating material efliciently protected otherwise than by a metn!lic covering may be used in gnte roads (except in gate roads which are also used for mechanical haulage or where there may be risk of igniting gas, coal dust or other inflammable material) for the purpose of supplying portable apparatus. (d) Cables unprotected by a metallic covering shall bo properly secured by some non-conducting and readily breakable material to efficiont insulators. (e) The metallic covering of every cable shall be (i) electrically continuous throughout; (ii) earthed,
if it is required by Regulation 125 (a) to be earthed, by a connection to tho earthing system of not less conductivity than the same length of the said metallic covering: (iii) efliciently protected against corrosion where necessary: (iv) of a conductivity at all parts and at all joints at least equal to $\overline{0} 0$ per cent. of the conduclivity of the largest conductor enclosed by the said metallic covering and (v) where there may be risk of igniting gas, conl dust, or other inflammable material so constructed as to prevent as far as is practicable any fault in leakage of current from the live conductors from causing open sparking. Provided that where two single-core cablos protected by metallic coverings bonded together in accordance with paragraph (c) of this Regulation are used for a circuit, the conductivity of each of the said metallic coverings at all parts and at all joints shall be at least equal to 25 per eent. of the conductivity of the conductor enclosed thereby. (f) Cables and conductors where joined up to motors, transformers, switchgear and other apparatus shall be installed so that (i) they are mechanically protected by sccurely attaching the metallic covering (if any) to the apparatus, and (ii) the insulating material at each cable end is efficiently sealed so as to prevent the diminution of its insulating properties. Where necessary to prevent abrasion, or to securo gas-tightness, there shall be properly constructed bushes.
130. Portable 1 pparatus.-(a) Flexible cables for portable apparatus shall be two-core or multi-core and covered with insulating material, which shall be efficiently protected from mechanical damage. If a flexible motallic covering be used either as the outer conductor of a concentric system or as a means of protection from mechanical damage, the same shall not alone be used to form an carth conductor for the portable apparatus. (b) Every floxible cable for portable apparatus shall bo connected to the systom and to the portnblo apparatus itself by a proporly constructed connector. (c) At every point where flexible cables are joined to main cablos a switch capable of entirely cutting of the pressure from the flexible cables shall be provided. (d) No lamp-holder shall be in metallic connection with the guard or other metal-work of a portable lamp.
131.-Supervision and Working of Apparatus.-(a) Every person appointed to work, supervise, examine or adjust any apparatus shall bo competent for the work that he is set to do. No person, except an electrician or a competent person acting under his supervision, shall undertake any work where technical knowledge or experience is required in order adequately to aroid danger. (b) An electrician shall be appointed in writing by the manager to supervise the apparatus. If necessary for the proper fulfilment of the duties detailed in the succeeding sections of this rule, the manager shall also appoint in writing an assistant or assistants to the electrician. (c) The electrician shall be in daily attendance at the mine. He shall be responsible for the fulfilment of the following duties, which shall be carried out by him or by an assistant or assistants duly appointed under sulbsection (b): (i) the thorough examination of all apparatus (including tho testing of earth conductors and metallic coverings for continuity) as often as may be necessary to provent danger and (ii) the examination and testing of all new apparatus and of all apparatus re-erected in a now position in the mine before it is put into service in the new position; provided that in the absence of the electrician for more than one day the manager shall appoint in writing an efficient substitute. (d) The electrician shall keep at the mine a log-book made up of daily log-sheets kept in the form prescribed by the Secretary of State. The said log-book shall be produced at any time 10 an inspector of mines on his request. (e) Should there be a fault in any
eircuit the part affected shall be made dead without delay, and shall remain so until the fault has been remedied. (f) All apparatus shall be kept clear of obstruction and free from dust, dirt and moisture as may be necessary to prevent danger. Inflammable or explosive material shall not be stored in any room, compartment or box containing apparatus, or in the vicinity of apparatus. (g) Adequate precautions shall be taken by earthing or other suitable means to discharge electrically any conductor or apparatus, or any adjacent apparatus if there is danger therefrom, before it is handled, and to prevent any conductor or apparatus from being accidentally or inadvertently electrically charged when persons are working thereon. While lamps are being changed the pressure shall bo cut ofl. Provided that this paragraph shall not apply to the cleaning of commutators and slip-rings working at low or medium pressures. (h) Tho person authorized to work an electrically-driven coal-cutter or other portable machine shall not leave the machine while it is working, and shall, before leaving the working place, ensure that the pressure is cut off from the flexible trailing cable which supplies such coal-cutter or other portable machine. Trailing cables shall not be dragged along by the machine when working. (i) Every flexible cable shall be examined periodically (if used with a portable machine, at least once in each shift by the person authorized to work the machine), and if found damaged or defective it shall forthwith be replaced by a spare cable in good and substantial ropair. Such damaged or defectivo cable shall not be further used underground until after it has been sent to the surface and there properly repaired.
132. The use of Electricity where Inflammable Gas is likely to be present.In any part of a mine in which inflammable gas, although not normally present, is likely to occur in quantity sufficient to bo indicative of danger, tho following additional requirements shall bo observed : (i) All cables, apparatus, signalling wires and signalling instruments shall be constructed, installed, protected and worked and maintained so that in the normal working thereof there shall be no risk of open sparking. (ii) All motors shall bo constructed so that when any part is live all rubbing contacts (such as commutators and slip-rings) are so arranged or enclosed as to prevent open sparking. (iii) The pressure shall be switched off apparatus forthwitl if open sparking occurs, and during the whole time that examination or adjustment disclosing parts liable to open sparking is being made. The pressure shall not bo switched on again until the apparatus has been examined by the electrician or one of his duly appointed assistants and the defect (if any) has been remedied or the adjustment made. (iv) Every electric lamp shall bo enclosed in an air-tight fitting, and the lamp globe itself shall be hermetically sealed. (v) A safely lamp shall bo provided and used with each motor when working, and should any indication of fire-damp appear from such safety lamp, the person appointed to work the motor shall forthwith cut off the pressure therefrom and report the matter to a fireman, examiner or deputy or other oflicial.
133. Shot firing.-Current from lighting or power circuils shall not be used for firing shots. (b) Shot-firing cables shall be covered and protected as provided by Regulation $130(a)$ for flexible cables. Adequate precautions shall be taken to prevent them from touching other cables and apparatus.
134. Signalling--(a) Where electricity is used for signalling the pressure in any one circuit shall not exceed 25 volts. (b) Contact-makers shall be so constructed as to prevent the accidental closing of the circuit. (c) Adequate precautions shall be taken to prevent signal and telephone wires from touching cables and other apparatus.

cxciv

135. Electric Re-lighting of Safely Lamps.-(a) All re-lighting apparatus shall be so constructed, worked and maintained ns to preclude the accumulation of explosivo gas within it. (b) Re-lighting apparatus shall not be used in any part of a mine to which Regulation 132 applies. (c) All safety lamps when re-lighted shall bo oxamined beforo being issued.
136. Locomotives.-(a) Haulage by electric locomotives on the overhead trolloy-wire system is prohibited in any mine in which coal is worked. (b) Haulage by electric locomotives on the overhead trolley-wire system may be used in mines other than coal mines, and haulage by storage battery locomotives may be used in any mine, with tho consent in writing first obtained of tho Secretary of State in all cases, nnd subject to such conditions affecting safety as may be preseribed by him.
137. Exemptions. - (a) Any of the requiremonts of this part of these Regulations shall not apply in any case in which exemption is obtained from the Secretary of State on the ground either of emergency or special circumstances, on such conditions as the Socretary of State mny preseribe. (b) The requirements of this part of theso Regulations which relate to the construction of enbles and other apparatus shall not before January lat, 1920, apply to any apparatus which was in use bofore June 1st, 1911, and which had been constructed or had before June 1st, 1911, been adapted so as to comply with the requirements relating to the construction of olectrical apparatus in mines in force before that date, unless the inspector of the division, by written notice served on the owner, agent, or manager ns regards either all or any of the said requirements of the forcgoing rules, so directs. If the owner, agent, or manager within I4 days after the receipt of such notion objects to comply with the requirements specified in the notice, the matter shall be settled in manner provided by the Act for settling disputes.

II.-Above Ground.

The Regulations set out above aro applicable to eloctrical apparalus used above ground, subject to the following amondments :-

1. In Regulation 118 and section (c) of Regulation 131, the words "at the surface of the mine " shall be substituted in every case for the words " in the mine."
2. Regulations 119, 120, 121 (iv), 122 (b), 123 (b), 128 (a), 132, 133, 134 (a), 135, 136 and 137 (b) shall not apply.
3. For Regulation $123(a)$ the following regulation shall be substituted : "Whero necessary to prevent danger or mechanical damage, apparatus shall be placed in a separate room, compartment or box or fireproof construction. Inflammable or explosive material shall not bo stored in any such room, compartment or box."
4. Regulation 125 (b) shall be amended by adding to the end: "Except that in the case of a portable lamp or other apparatus of small current capacity, connected to the system by means of a flexible cable complying with Regulation 130, the cross sectional area of tho oarthing conductor in the flexible cable shall not be required to bo greater than the crosssectional area of either of the live conductors in the same flexible cable."
5. The word "regulation" shall be substituted for "rule" in the second paragraph of Regulation $12 \overline{5}$ (c).
6. For Rogulation 129 the following regulntion shall be substituted: "Unless so placed or otherwise safeguarded as to prevent danger, all cables other than flexible cables for portable apparatus and signal and telephone wires shall comply with the following requirements: (a) They shall be

ZENITH

ZENITE VITREOUS RESISTANCE UNITS, up to $\mathbf{1 2 0 , 0 0 0} \mathbf{c h m s}$ and $20 \mathrm{M} . \mathrm{A}$. for Grid Leaks, and Resistance Capacity Amplifiero.

WIRE WOUND

CONSTANT VALUE

H.T. RECTIFIER AND FILAMENT TRANSFORMERS CHOKE COILS, CONDENSERS, AND REGULATING RESISTANCES

ZENITH MANUFACTURING CO.
Confractors to the Admirally, llar Obfice. A + Ministry, lost Opice, L.C.C., EC
Zenith W'orks, Villiers Road. W'illesden Green, London, N. W'. 2
Tcleßlione: Willesden, 4087/3 Tclegrams:
" Voltaohm, Willroad, London."

Facing fage
British Ebonite Co. Ltd. 202
British L.M. Ericsson Manufacturing Co. Ltd. 197
British L.M. Ericsson Manufacturing Co. Ltd. 203
Edison Swan Electric Co. Ltd. - II9
"Electrician" (Benn Brothers Ltd.) - III
Ernest Benn Ltd. 202
General Electric Co. Ltd. - IIO
Graham (Alfred) and Co. 158
Hewittic Electric Co. Ltd. 196
Hinderlich, A. I 59
Mullard Radio Valve Co. Ltd. II 8
Zenith Manufacturing Co. cxcivE.D. 3

BOOKS ON WIRELESS TELEGRAPHY

RADIO-BEAM AND BROADCAST

By A. H. Morse, A.M.I.E.E. (Lond.), Mem.I.R.E. (New York). The first critical and constructive commentary on the actual development of wireless telegraphy and telephony as shown by the record of British and American patents. The author's wide experience enables him to define very closely the probable lines of future development.

A very valuable asset to every indizidual or firme engaged in zuircless develop. ment."-ELECTRICITY.
" Should be of interest and assistance to all studints of the subject." - Electrical Review.

Demy 8vo. Illustrated. Price 12/6. [Just published.

THE POULSEN ARC GENERATOR

By C. F. Elwell, Fellow of the Institute of Radio Engineers, M.I.E.E., A.M.I.E.E.

> " For the theory of the apparatus and for a description of the forms in zwhich it. together zoith its auxiliaries, have becn developted for commercial use, zoe zould refer our readers to Mr. Elwell's book. In this they zuill find pretty well all there is to be said on the subject."-Engineering.

Demy 8 vo., with 150 Illustrations. Price $18 /-$ net.

PRINCIPLES AND PRACTICE OF WIRELESS TRANS: MISSION

By G. Parr, Demonstrator at the Finsbury Technical College. " Will give a thorough grounding in general principles."-Electricity.
Crown 8vo. Fully illustrated. 5/-net.

WIRELESS TELEGRAPHY AND TELEPHONY

By Professor WV. H. Eccles, D.Sc., A. R.C.S., M.I.E.E.
This book is a classified collection of experience, information, data, formulæ and tables indispensable to designers or investigators in Radio-telegraphy. The great technical development of the subject during the past seven years has naturally increased the proportion of practical data in the forthcoming edition.

Third edition entirely revised and greatly enlarged.
Price approximately $3.5 /-$.
[Ready shortly.
ERNEST BENN LIMITED, 8, BOUVERIE ST., E.C. 4
covered with insulating material (except that the outer conductor of a concentric systom may bo bare). The lead sheath of lead-sheathed cables and the iron or steel armouring of armoured eables shall bo of not less thickness respectively than is recommended by the British Engineering Standards Associntion. (b) Thoy shall bo efficiontly protected from mechanical damage and supported at sufficiently frequent intervals and in such a manner as adequately to prevent danger and damage to the cables. (c) Concentric cables, or two-core or multi-core cables p-otected by a metnllic covering or single-core cables protected by motallic covering which shall contain all the conductors of the circuit, shall be used (i) whero the pressure exceeds low pressure, and (ii) where there may bo risk of igniting coal dust or other inflammable material. Provided that if the medium pressure d.c. system is used two single core cables protected by metallic coverings may be used for anv circuit. (d) Cables unprotected by a metallic covering shall be properly secured to efficient insulators. (e) The metallic covering of every cable shall be (i) electrically continuous throughout; (ii) earthed, if it is required by Regulation $125(a)$ to be earthed, by a connection to the earthing systom of not less conductivity than the same length of tho said motallic covering; (iii) efficiently protected against corrosion where necessary; (iv) of a conductivity at all parts and at all joints at loast equal to 50 per cent. of the conductivity of the largest conductor enclosed by the said motallic covering ; and (v) where there may be risk of igniting coal dust or other inflammable material so constructed as to provent, as far as is practicable, any fault or leakage of current from the live conductors from causing opon sparking. (f) Cables and conductors, whero joined up to motors, transformers, switchgear and other apparatus, shall bo installed so that (i) they are mechanically protected by securely attaching the metallic covering (if any) to the apparatus; and (ii) the insulating material at each cable ond is efficiently scaled so as to prevent the diminution of its insulating propertios. Where necessary to prevent abrasion there shall bo properly constructed bushes."
7. Regulation 130 (c) shall be nmended to read:-"At every point where flexible cables for portable apparatus aro joined to main cables a switch capable of entirely cutting off tho pressure from the flexible cables shall be provided."
8. The second paragraph of Regulation $131(f)$ shall not apply.
9. For Section (h) of Kegulation 131 the following shall bo substituted : "The person authorized to work an electrically driven portable machino shall not leave the machine while it is working, and shall, before leaving the machine, ensure that the pressure is cut off from the flexible trailing cable which supplies such portable machine. Trailing cables shall not bo dragged along by the machine when working."
10. In Section (i) of Regulation 131 the words "repaired or" shall be inserted before "replaced." The last sentence shall not apply.
11. In Regulation 134 (b) the words "used for signalling" shall be inserted after " contact makers."

For the Ministry of Transport's Regulations as to Electrical Power on Tramways, seo page $408, \mathrm{Vol} \mathrm{I}$.

For the Electricity Commissioners' Regulations for Overhead Lines see page 174, Vol I.

BRISTOL: BURLEIGH LTD.
AT THE BURLEIGH PRESS

INDEX 'IO VOL. III.

INDEX TO VOI.. III.

AERTALS, aporiodic, 184

- capacity of, 3G, 15,49
- design of, 201
- elloctive inductanco and capacity of, 84, 87
- loop, 18.
- losses in, 97
- model, 99
- radiation from, 87
- receiving, 184
- resistanco of, 97
- Liming charactoristics of, 82

Aoriallines, construction of, 2.4.4
Aldebaran formula, !5
Alosanderson alternator, 133

- inagnotic key, 136
- multiplo carth, 98

Altornator, Aloxanderson, 133

- Bothenod-Latour, 135
-GoldschmidL, 13.4
- keying wilh 1I.F. machines, 136

Amplification factor, 101, 108, 115

- - ofrect of Ioad on, 162

Amplifers, design of, 161
Anode. doaign of, 107

- rectillcation, 174

Arc, as gonerator of II.IF. oscillations, 140

- adjustmont of, I42
- coupled circuits with, 141
- cycle of operations of, $1 \Perp 1$
- ficld 日trength, 143
- koying arrangoments, 142

Arrival curvo, 238
Artifleial lines, 257
Atmospherics, 207
Attonualion, on tolophonc lincs, 254

- of olcetromagnotic waves, 93, 97

Austin-Cohon factor, 94
Balancing notworks, 229, 257
Band width, 160
Bariago roception, 187
Baudot systom, 236
Boating in coupled circuits, 75, 124
Bellini-Tosi system, 186
Bovorago aorial, 189
Binders, for ovorhead lines, 249
Bolomotor, 63
Buildings, effect on aerial capacity, 46
Bulbs for valvos, sizo of, 112
Capacity, of aorials, 3G, 49

- of circular wiro, 49
- of coils, 20
- of condonsers, 29, 34
- of cylinder, 2 S
- of disc, 28

Capacity, goomotric, 33, 161

- botwcon horizontal wires, 50
- of horizontal wires, 15
- interolcetrodo, 161
- of lead $\ln , 42$
- of ovorhoad lines, 2.52
- of sphero, 28
- of ralves, 161
- variation with froquency, 32

Carborundum crystal, $17 \&$
Carpentor relay, 211
Cathodo, arc, 140
C.13. system, 231, 241

Characteristic impodance, 251
Characteristics, of crystal, 173

- of valvo, 100,113

Chargo, on condonsor, 30

- on olcctron, 109

Charging circuit, design of, 130
Choko, on arc transmitter, 140

- compensating, 156
- control, 206
- smootbing, 154
- on spark transmilter, 130
- on valve oscillator, 151

Coatod fllamente, 111
Coils, capncity of, 22

- dosign of, 18, 67
- diclectric losgos in, 22
- inductance of, 6, 9
- rosistanco of ut II. F', 54

Coudonsors, capacity of, 3.4

- desifn of, 31
- energy stored in, 31
- losses in, 29
- powor factor of, 30
- shortoning, S6
- smoothing, 153
- squaro law, 32
- variable, 29, 32

Coupled circuits, with forced oscillations, 7S, 144, 152

- - offect on resonanco curve, 160
- with frco oscillations, 7.1

Coupliug, eritical value for Ziohen, 145

- dollcient, 80
- degreo of, 129
- direct, 76,152
- factor, 27
- magnetic, 74
- resistanco, 81
- statle, 76, 152
- suflleiont, 80
- in valvo oscillators, 150

Crcosoling of poles, 247
Cross talk. 250
Crystal dotectors, 173
Cumulative grid rectincation, 175

Current, in arc clrcuit, 112

- in detcetor, 174. 183
- growth of in cablo, 237
- moasuroment of, $\mathfrak{i} 1$
- in spark circuit, 126
- Lransformers, GI
- in valvo circuit, 148

Damping, 65, 72
Doad-boat dischargo, Gis
Decromunt, deflnition of, $7 \stackrel{3}{ }$

- offect on atmosphorie's, 208
- - on distortion, 203
- mensuroment of, 59, 73

Decrometor, 73
Degrec of coupling, 129
Detectors, $15 \mathrm{~S}, 173$

- current in, 171,183

Diolcetric absorption, z̀

- losses, in aerlals, 97
- - in coils, 22, 5.1

Diplax working, 229
Vipole. 87
Diroction finding, 215
Disc, capacity of, 28

- dischargor, 125
- sparking voltugo at., 128

Dischargor, synchrounus, 125
Dissipation of onerge by anode, I 117
Distortion, of boarings, 217

- of spooch, 168
- of transmission, 217, 256

Distributed capncity, 22,83

- inductance, 83

Double current working, 225

- हrid valves, 102

Dull omittor valves, 111
Duplex working, 226
Earth, Aloxandorson, 98

- effect on aerial capacily, 42
- Moissner, 99
- resistanco of, 96, 97

Eddy current losses, 98
Edge offect, 29
Efrectivo height, 90
Eflicioncy of couplod circuits, 129
Electric Geld, S8
Eloctron afinity, 109

- chargo on, 109
- mass of, 109

Emission, 104,110
Exponontial functions, 258
Field, eloctric, $88,91,96$

- magnetic, $88,91,96$

Filamont curront, 107
-dosign of, 105
Filters, 106, 172
Flat spirals, inductanco of, 11
Forced oscillations, 66
Frame aorials, 184

- - radiation rcsistance of, 186
- - bost sizo of, 185

Frequoncy chancers, 136

- elfect on amplilication, 169
- natural, 65, 82
- resonant, 82

Fullor factor, 04
Fundamontal wave lenglb, 83
Galvanomoter, dilferontiul, 221
Gap, sumek, 125
Getter, 11 I
Grid, 100

- coutrol, 150, 205
- curront, 101,113
- rectilleation, 175

Gunrd ring, 201
Hityes Eystem, 243
Heart-shapol diagram, 187
IIurtzian oscillator, 89
Jotorodyno, 159

- optimum value of, 175, 183

IIigh-spoed working. 209

- tension voltago, 153

Horizontal wiros, capacity of, 49

- - inductance of, 4

Ifughes typo urinting tolegraph, 234
Ifyperbolic functions, 255
Impact oxcilntion, 57, 60
Imperlance, internal, $100,108,115$

- surgo, 25.1

Inductance, mutual, 23

- solf, 1
— - of coils, 5
- - of overhead lines, 252
- - measuromont of, 56
- - variation with frequency, 2, 6

Induction coil, 124, 241
Insulators, 201
Jacks, 241
Jiggor, 128
Joints, Brittania, 219

- bindors for, 249
- high-froquoncy, 250
- Mcintyre, 218

Key, doublo curront, 226

- singlo curront, 220

Koying, 124, 136, 142, 150
Langmuir's equation, 103, 108
Load shaatbing, thickness of, 252
Limitors, 209
Loading, in nerials, 85

- in telopbone cables, 255

Magnetic drum recorder, 211

- fiold, 88
- - in are transmitter, 143

Magnetophone, 207
Magneto system, 240
Masts, design of, 193

- small, 197

Motro-ampore standard, 9G
Micropbone, 20 f, 239
Model norials, 9 !
Modilation, 202
Moullin voltmetor, 63
Multiple carth, 98

- swilchbonrds, 2.42

Amltivibintor, 5 S
Mutual Inductauce, 23
Nagaokn's formuln, 7
Negalron. 103
Networke, Lalancing, 257
Neutiodyise, 171
Night cllect, 216
Occluded gas, 110,112
Ohin mile constant, 2.4
Optimum hetorodyno, 175, IS3

- wave length, 94
$O=$ cillating are, adjustment of, 1.12
- - coupled circuits with, 111
- - cycle of operations, 141
— - ficld strongth, 1.13
- - koyiug arrangements, 142
- valve, condltion for high efliciency, 1.15
- - of oscillation, 150
- - current in, 14ミ
- - powor in, 14 S

Oscillation ollipse, 1-17
Oscillator, Ilortzian. SS
Oscillatory circuits, luwe of, 6 I
Ovorhanginf turns, 57
Uxide conted flament, 111
Parallel resonanco, 67
lenetration of wares, 87
l'orikon dotector, 173
I'oles, orcection of, 218

- typer of, 2 \{7, 2 19

Porcelain, fafo stress in, 202
Power, in nerial, 99

- in arc, 142
- in condonser, 31
- In tolophono 11no, 255
- in valve, 1.18
- factor, in condonsor, 30
- - in spark circuit, 132

Precharged nerinl, 12.1
Pressure, offect on sparking voltago, 128
Propagation of waves, 87
Quadruplox working, 231
Quenchod spark systom, 125
Radiation from acrinls, 87
-rosistanco, 97,185
Roactance, 6f, 167

- coupling, 1 G. 1
- diagrasu, 70
- variation, 59

Renction, 171

Recoived curront, 201
Reception, principles of, 158
Rectification, anodo, 15.1, 17.1

- crystal, 173
- effect of nnodo volts, 152
- efllelency of, 178
- grid, 175
- necossliy for, 158

Rectified \boldsymbol{A}.C., use \cap f, for II.T. $15 \sharp$
Roctifiers, 173

- curient through, 171,183

12efloction, 251
1Rejectors, 71. 161
Rolnys, 222, 242
Ropentors, 231, 257
Resistance, of coils, 18, $5 \cdot 1$

- of condonsors, 29
- coupling, 163
- high froquency, 51
- radintion, 97, 185
- variation, 60

IResonance, 66,69
12ichardson's equation, 104
Jupining, 247
Sag in wires, 245
Saturation, 100, 104
Scrconling, 212
Solectivily, 160
Self-inductance, 1
Shaping of slguals, 211
Short-wavo worling, 21 S
Shunts, 61
Side hands, 202, 205
Sinc modulatlon, 20.1
Slopemetor, 102
Softening of valves, 110
Soundor, 220
Space charge, 104
Spark gaps, 125

- - physics of, 126
- - voltage across, 126, 133
- transmitters, design of, 128

Stryed innsts, 103
Stays, dosign of, 193

- estimation of ension in, 198

Sfone systom, 2.14
Stranded wiro, 55
Structure, design of, 19-4
Submarino cable morking, 237
Subscribers' apparatus, 2.10
Substitution method, 60
Surge impedance, 254
Switchboard apparatus, 241
Tolephono rccoivers, 168,240
Telephnny, principles of, 238

- radio-, 205

Tension In wires, 197, 2.45
——. variation with tomperature, 246
Thermocouplo, 62
Tonle train, 203
Towers, self-supporting, 193
Transformers, design of, 166

Transformers, bigh frequmncy, 167

- low frequoncy, 166
- for rectifying circuits, 155
- for sparle transmitter's, 1:31

Transmission formulev, 253
Trausposition, 250
Tuning, principles of, 160
Twist system, 250
Inderground cable, 251
Undulator, 237
Ui) and down stations, 230
V.lve bridgo, 211

- oscillators, 146
- condition for high oflicieney. 149
- - coupling required for, 150
- - current in, 148

Valve bildge, power in, 148
Valves, charactirislics of, 100,113

- design of, 103, 10 S
- dull emitting, 110
- manufacture of. 110
- rectifying, 102
- thermionic, 100

Voltage, mensuroment of, 63

- on telegraph circuits, 231

W'a vo length, 56, 58, 97

- - nuturnl, 81, 97
- - relation with frequencs, S8
- meter, 56
- velocity (on wires), 256
- - in ether, 87

Waves, electromagnetic, 87
Zioben effect, 145, 152

[^0]: Inductance of N -Earthed Wires in Parallel.-This is a case of some practical importance in the design of acrials. The calculation involves the knowledge of the mutual inductance between two horizontal earthed wires. This is given by-

[^1]: - Non-stock sizes.

[^2]: - Duc to distance pieces.

[^3]:

[^4]: - In view of the fact that these are manifestations of the same phencmenon, this statement may seem fallacious. The fact, however, is that receiving systems such as loops and coils which may be conveniently considered as being Influenced by the magnetic field of the wave, can be considered from an electrostatic point of view if desired (and on $p .184$ the theory of loop acrials is deduced irom such a view-pcint). Hence it is simply z matter of convenience.

[^5]: －

[^6]: - The Britush Engincering Standards Association recommends that for general use these sizes of B.S.W. screw threads be dispensed with.

[^7]: - At $15.5^{\circ} \mathrm{C}$.
 - Dewar \& Fleming.
 * Mathiessen.
 flyre. Cast-iron, hard $=1.7 . \quad$ Wrought-iron, hard $=5.2$.
 solt $=2 \cdot 3$. \quad " \quad solt $=73$.
 $\|$ The figures in brackets denote the valency" of the metal at which the electro-chemical equivaleats are given.
 I At $20^{\circ} \mathrm{C}$.

[^8]: " Based on Kaye and Laby, "Physical and Chemical Constants."
 \dagger Invar is obtainable in three qualitics, with a range of coefficients of $(-0.3$ to +2.51 $\times 10^{-1}$ at ordinary temneratures.

[^9]: Nore, - The sizes printed in heavy type are Prinary Standard Sizes recommended for adoption whenever possible. The sizes peed.

[^10]: - Manufactured by the British Insulated 太 Helsby Cables, Ltd.

[^11]: - The Bell Sussem Technical Journal, Vol. J, No. 2, Nov. 1922.

[^12]: * Copies of the I.E.C. publications may be obtained from 28 Victoria Street, S.W.t \dagger Smitbsonian Physical Tables, 1920.

[^13]: ${ }^{1} 0.000003^{2} \mathrm{~cm}$. (Millikun-Sauyer, 1919).

[^14]: - The ratio of electrostatic to electro-magnetic units is denoted by v, the value of which is $3 \times 10^{10} \mathrm{~cm}$. per second (the velocity of light). The relation between the two sets of units is as follows:-
 v electro-static units of current -1 electro-magnetic unit.

 For example-
 1 microfarad $=10^{-18}$ electromagnetic units.

 - $10-14 \nu^{2}$ electrostatic units.
 $=10^{-14} \times 9 \times 10^{10}=900,000$ electrostatic units.

[^15]: - Burcau of Standards.

[^16]: - The fgure is actually 0.00393 at $20^{\circ} \mathrm{C}$, and 0.004265 at $0^{\circ} \mathrm{C}$.

[^17]: *Junc, 1914. Reproduced by permission of the Institution of Electrical Engineers.

[^18]: - These have been omitted from these regulations, but will be found in B.S.S. No. 168 on page 456.

[^19]: *With maximum permissible current (Col. 3.).

[^20]: - For (a) Direct-current systems for pressures not varying from earth potential by more than 250 volts.
 (b) Three-phase systems, with centre point earthed, for pressures not more than 500 volls between phases.
 \dagger For pressures not varying from earth potential by more than 660 volts.

[^21]: - This meludes generatang and transforming stations, and disiributoon.

[^22]: - A memorandum states that Switchgear should comply with the British Standard Specificatlons (see pages 2 G 3 et seq.).

