

THE STANDARD MANUAL OF AMATEUR

RADIO COMMUNICATION

 CONTINENTALU.S.A.

PUBLISHED BY THE AMERICAN RADIO RELAY LEAGUE

THERADIO amatedrs HANDBOOK

THE OPERATING ROOM AT THE MAXIM MEMORIAL STATION, W1AW, A.R.R.L. HEADQUARTERS
Separate l-kw. transmitters are installed for each band. Voice transmissions on 1808, 3950, and $14,240 \mathrm{kc}$. follow simultaneous telegraph messages to all amateurs sent on $1800.5,3800,7150$ and $14,254 \mathrm{kc}$. at 7.30 and 11 p.m. CST. Operators "Hal" Bubb (seated) and "Geo" Hart (standing) are always ready for a call from any amateur. See page 423 for further details of W1AW.

SIXTEETHEDTION

THE RADIO

BY TIIE HEADQUARTERS STAFF
OF THE
AMERICAN RADIO RELAY LEAGUE:

published by the american radio relay leagur, inc. WEST HARTFORD, CONNECTICUT

COPYRIGHT 1938 BY THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention. All rights of translation reserved.
First Edition, November, 1926

PRINTED IN U. S. A. BY
THE RUMFORD PRESS
CONCORD, NEW HAMPSHIRE

THE RADIO aMATEUR'S HANDBOOK

 F O R L W O R D

 F O R L W O R D}

Uver half a million copies of The Radio Amateur's Handbook have been distributed to members of the amateur fraternity since the first presentation of the book in 1926. Being devoted to as fast-moving and progressive a science as high-frequency communication, it is only natural that throughout its eminently successful life the Handbook should have been treated to sweeping and virtually continuous modification. Since the beginning, a strenuous attempt has been made to keep the book as up-to-date, accurate and reliable as is humanly possible. Every effort has been made to restrict the material to the treatment of modern, sound and well-tried practice. Having always had somewhat the character of an annual review of time-tried and proven methods in apparatus construction and operation, the Handbook has never provided a place for freaky circuits or methods. As any practicing amateur is well aware, there is an almost infinite number of different ways of accomplishing a given result in his station - some good, some poor and many indifferent. Because of this, the editorial work has been basically that of selection. It has been necessary to eliminate from the enormous wealth of ideas on technique, methods and procedure, all those which have not proved themselves by successful application in practice.

The history of the Handbook has been one of continuous growth. It had its modest beginning in 1925 when Mr. F. E. Handy, the League communications manager, began work on a manual of amateur operating procedure in which it was considered desirable to include a certain amount of technical information. It was published in 1926 and enjoyed immediate success. Mr. Handy revised several successive additions but the rapid progress of the art soon demanded an order of revision which could more correctly be described as rewriting. With the fourth edition in 1928, Mr. Handy was joined in this duty by Mr. Ross A. Hull, the late editor of QST, who was directing the technical development program which the A.R.R.L. was then conducting for the special purpose of designing new apparatus and new
methods which would meet the difficulties imposed upon amateur radio by the provisions of the new international radio treaty to take effect in 1929. Three editions came under this joint authorship. By that time, extremely rapid technical progress was upon us and it became apparent that the Handbook, to serve its purpose, demanded a frequent and comprehensive rewriting of its entire technical material. It was therefore but natural that, with the preparation of the seventh edition in 1930, the technical chapters should be given into the hands of the many technically-skilled specialists comprising the headquarters staff of the League. Since that time the publication has been an annual family affair, the joint product of the headquarters staff, prepared under the editorship of Mr. Hull.

In September of 1938, in the midst of the preparation of this edition, Mr. Hull met accidental death when he came in contact with the high-tension terminals of a plate power supply in his experimental laboratory. Thereby amateur radio lost one of its most brilliant experimenters. His associates have carried the work of revising this edition to completion under the administrative editorship of the undersigned, the League's secretary. To the memory of Ross A. Hull, distinguished amateur, we dedicate this edition.

With a total of nearly thirty printings, the fame of the Handbook has echoed around the world; its success has really been inspiring. Quantity orders have come from many a foreign land; schools and technical classes have adopted it as a text; but most important of all it has become the right-hand guide of practical amateurs in every country of the globe. This success derives, in considerable measure, from the splendid coöperation which we have always received from practicing amateurs everywhere. Since the beginning there has been a continuous inflow of suggestions and contributions of ideas and material which have been invaluable in the development of the Handbook as an authentic treatise on the technique of to-day.

In this 1939 edition, almost every chapter
has seen comprehensive rewriting. Well over two hundred new illustrations have been provided. Several scores of new pieces of apparatus were especially designed and constructed and tested! - for this edition. As usual, the work has been divided a mongst the staff members. Mr. Byron Goodman has contributed a new chapter on elementary radio principles, while we have retained the more advanced treatment of definitions, values and simple computations prepared by Mr. James J. Lamb, the technical editor of QST. Mr. George Grammer, QST's acting technical editor, is responsible for the revision of the chapter on receivers and for the rewriting of the material on antennas. Messrs. Donald H. Mix and Thomas M. Ferrill, Jr., of QST's technical department, are respectively responsible for the difficult chapters on transmitters and on radio telephony, whilst Mr. Mix has also revised the chapter on workshop practice and Mr. Ferrill that on power supplies. Mr. Mix has also rewritten the chapter on assembling a station. The material on vacuum tubes has been modernized by Mr. Clinton 13. 1)eSoto, who also contributes the chapter on instruments and who has brought up-to-date the first two chapters of the book, originally from the pen of Mr. A. L. Budlong. Mr. Goodman has also revised the chapters on keying and on the important topic of emergency equipment, whilst Mr. Handy, our communications manager, has revised those dealing with the A.R.R.L. Communications Department, on operating a station and on message handling. The two chapters on ultra-high frequency working were originally intended to be prepared by Mr. Hull, this being a field in which he was especially interested and qualified. A
considerable quantity of the new u.h.f. apparatus in these chapters had been built or outlined by him before his death. The present revision of these chapters is by Mr. Vernon Chambers, Mr. Hull's laboratory assistant and associate in this work. The actual editorial production of this book has been in the competent hands of Mr. Clark C. Rodimon, QST's managing editor.

A feature of the Kandbook which has been growing steadily in importance is the quite extensive catalog advertising. It is, perhaps, unconventional to make any editorial reference to the very existence of advertising, but this case we believe to be different. To be truly comprehensive as a handbook - to fill all the functions one visualizes with the word "handbook" - this book must bring the reader data and specifications on the manufactured products which are the raw material of amateur radio. Our advertisers have collaborated with us in this purpose by presenting here not mere advertising but catalog technical data. The amateur constructor and experimenter should find it convenient to possess in such juxtaposition both the constructional guidance he seeks and the needed data on available equipment. Both are necessary ingredients of the complete standard manual of amateur highfrequency communication.
It is natural that we shall all feel very happy if the present edition brings as much assistance and inspiration to the amateurs and would-be amateurs as have its predecessors.

> Kenneth B. Wahner
> Managing Secretary, A.R.R.L.

West Hartford
October, 1938

THERADIO AMATEUR'S HANDB00K

(0 N T E N T S

FRONTISPIECF: HIRAU PLRCY MAXIM MEMORIAL STATION, WIAW FOREWORD
THE A IATEUR IIIS CODE OF ETIICS

AIPFENIDK
INDEX
CATALOG ADVERTISING SECTION

Published by The
 american radio
 relay leagule inc.

WEST HARTFORD, CONNECTICUU

THE RADIO amateurs HANDB00K

THE AMATEUR'S CODE

1. The Amateur is Gentlemanly. He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the M.R.R.L. in his behalf to the public and the Government.
2. The Amateur is Loyal. He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.
:B. The Amateur is Progressive. He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.
3. The Amateur is Friendly. Slow and patient sending when requested, friendly advice and counsel to the begimer, kindly assistance and coöperation for the broadcast listener; these are marks of the amateur spirit.
4. The Amateur is Balanced. Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.
5. The Amateur is Patriotic. His knowledge and his station are always ready for the service of his country and his community.

SIXTEENTH EDITION

the story of amateur radio

How It Started - The Part Played by
The A.R.R.L.

Abstract

Amateur radio represents, to some seventy thousand people, the most satisfying, most exciting of all hobbies. Over 50,000 of these enthusiasts are located in the United States and Canada, for it is this continent which gave birth to the movement and which, since the beginning, has represented its stronghold.

When radio broadcasting was first introduced to the public some years ago it instantly caught the fancy of millions of people all over the world. Why? Because it fired their imagination - because it thrilled them to tune in on a program direct from some distant point, to hear speech and music that was at that moment being transmitted from a city hundreds and even thousands of miles away. To be sure there was also a certain amount of entertainment value, and it is true that as the years have passed this phase has become paramount in the minds of most listeners; yet the thrill of "DX" is still a major factor in the minds of hundreds of thousands of people, as witness the present popularity of international short wave reception of foreign programs.

That keen satisfaction of hearing a distant station is basic with the radio amateur but it has long since been superseded by an even greater lure, and that is the thrill of talking with these distant points! On one side of your radio amateur's table is his short-wave receiver; on the other side is his private (and usually homemade) short-wave transmitter, ready at the throw of a switch to be used in calling and "working" other amateurs in the United States, in Canada, Europe, Australia, every corner of the globe! Even a low-power transmitter using nothing more ambitious than one or two receiving-type tubes makes it possible to develop friendships in every State in the Union, in dozens of countries abroad. Of course, it is not to be expected that the first contacts will necessarily be with foreign amateurs. Experience in adjusting the simple transmitter, in using the right frequency band at the right time of day when foreign stations are on the air, and practice in operating are necessary before communication will be enjoyed with
a mateurs of other nationalities. But patience and experience are the sole prerequisites; neither high power nor expensive equipment is required.

Nor does the personal enjoyment that comes from amateur radio constitute its only benefit. There is the enduring satisfaction that comes from doing things with the apparatus put together by one's own skill. The process of designing and constructing radio equipment develops real engineering ability. Operating an amateur station with even the simplest equipment likewise develops operating proficiency and skill. Many an engineer, operator and executive in the commercial radio field got his practical background and much of his training from his amateur work. So, in addition to the advantages of amateur radio as a hobby, the value of systematic amateur work to a student of almost every branch of radio cannot well be overlooked. An increasing number of radio services, each expanding in itself, require additional personnel - technicians, operators, inspectors, engineers and executives - and in every field a background of amateur experience is regarded as valuable.

How did amateur radio start? What developments have brought it to its present status of a highly-organized and widespread movement?

Amateur radio started shortly after the late Guglielmo Marconi had astounded the world with his first experiments proving that telegraph messages actually could be sent between distant points without wires. Marconi was probably the first amateur - indeed, the distinguished inventor so liked to style himself. But a mateur radio as we think of it was born when private citizens first saw in the new marvel a means for personal communication with others and set about learning enough of the new art to build a homemade station. Object: the fun and enjoyment of "wireless" communication with a few friends. Urge: the thrill of DX (one to five miles - maybe!). That was thirty-odd years ago.
Amateur radio's subsequent development may be divided into two periods, the first be-

THE RADIO AMATEUR'S HANDB00K

fore and the second after the World War.
Pre-war amateur radio bore little resemblance to the art as we know it to-day, except in principle. The equipment, both transmitting and receiving, was of a type now long obsolete. The range of even the highest-powered transmitters, under the most favorable conditions. would be scoffed at by the rankest beginner today. No United States amateur had ever heard the signals of a foreign amateur, nor had any foreigner ever reported hearing an American. The oceans were a wall of silence, impenetrable, isolating us from every signal abroad. Even transcontinental DX had to be accomplished in relays. "Short waves" meant 200 meters; the entire wavelength spectrum below 200 metors was a vast silence - no signal ever disturbed it. Years were to pass before its phenomenal possibilities were to be suspected.

Yet the period was notable for a number of accomplishments. It saw the number of amateurs in the United States increase to approximately 4,000 by 1917 . It witnessed the first appearance of radio laws, licensing, wavelength specifications for the various services. ("Amateurs? - oh, yes - well, stick 'em on 200 meters: it's no good for anything; they'll never get out of their own back yards with it.") It saw an increase in the range of amateur stations to such unheard-of distances as 500 and, in come cases, even 1,000 miles, with U. S. amateurs beginning to wonder, just before the war, if there were amateurs in other countries across the seas and if - daring thought! - it might some day be possible to span the Atlantic with 200 -meter equipment. Because all long-distance messages had to be relayed, it saw relaying developed to a fine art -and what a priceless accomplishment that ability turned out to be later when our government suddenly needed dozens and hun-

IN IHE A.R.R.L. IIEADQUARTERS LOBBY
The cahiuets house the A.R.R.L. Museum of Amateur Radio.
dreds of skilled operators for war service! Most important of all, the pre-war period witnessed the birth of the American Radio Relay League, the amateur organization whose fame was to travel to all parts of the world and whose name was to be virtually synonymous with subsequent amateur progress and shortwave development. Conceived and formed by the famous inventor and amateur, the late Hiram Percy Maxim, it was formally launched in early 1914 and was just beginning to exert its full force in amateur activities when this country declared war on Germany and by that act sounded the knell for amateur radio for the next two and one-half years. By presidential direction every amateur station was dismantled. Within a few months three-fourths of the amateurs of the country were serving with the armed forces of the United States as operators and instructors.

Few anateurs to-day realize that the war not only marked the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following declaration of the Armistice, in 1918. The government, having had a taste of supreme authority over all communications in wartime, was more than half inclined to keep it; indeed, the war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. President Maxim rushed to Washington, pleaded, argued; the bill was defeated. But there was still no amateur radio; the war ban continued in effect. Repeated representations to Washington met only with silence; it was to be nearly a year before licenses were again to be issued.

In the meantime, however, there was much to be done. Three-fourths of the former amateurs had gone to France; many of them would never come back. What of those who had returned? Would they be interested, now, in such things as amateur radio; could they be brought back to help rebuild the League? Mr. Maxim determined to find out and called a meeting of such members of the Board of Directors as ho: could locate. Eleven men, several still in uniform, mot in New York and took stock of the situation. It wasn't very encouraging: amateur radio still banned by law, former members of the League scattered no one

THE STORY OF AMATEUR RADIO

knew where, no League, no membership, no funds. But those eleven men financed the publication of a notice to all the former amateurs that could be located, hired Kenneth B. Warner as the Leaguc's first paid secretary, floated a bond issuc among old League members to obtain money for immediate running expenses, bought the magazine QST to be the League's official organ and dunned officialdom until the wartime ban was lifted and amateur radio resumed again. Even before the ban was lifted in October, 1919, old-timers all over the country were flocking back to the Leaguc, renewing friendships, planning for the future. When licensing was resumed there was a headlong rush to get back on the air. No doubt about it now interest in amateur radio was as great as ever!

From the start, however, it took on new aspects. The pressure of war had stimulated technical development in radio; there were new types of equipment, principally the vacuum tube, which was being used for both receivers and transmitters. Amateurs immediately adapted the new apparatus to 200 -meter work. Ranges promptly increased; soon it was possible to bridge the continent with but one intermediate relay. Shortly thereafter stations on one coast were hearing those on the other direct!

These developments had an inevitable result. Watching DX come to represent 1,000 miles, then 1,500 and then 2,000 , a mateurs wondered about that ole debbil ocean. Could we get across? We knew now that there were amateurs abroad. We knew, too, that their listening for our signals was still fruitless, but there was a justifiable suspicion that their unfamiliarity with 200 -meter equipment had something to do with it. So in December, 1921, the A.R.R.L. sent abroad one of our most prominent amateurs, Paul Godley, with the best a mateur receiving equipment available. Tests were run, and thirty American amateur stations were heard in Europe! The news electrified the amateur world. In 1922 another transatlantic test was carried out; this time 315 American calls were logged by European amateurs, and what was more, one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way communication across the Atlantic by amateur radio! It must be possible but somehow we couldn't quite make it. Further increases in power were out of the question; many amateurs already were using the legal maximum of one kilowatt. Better receivers? We already had the superheterodyne; it didn't seem possible to make any very great advance in that direction.

IN TIIE QST WOKKSIIOP
Well, how about trying another wavelength, then? We couldn't go up,but we could go down. What about those wavelengths below 200 meters? The engineering world said they were worthless - but then, they'd said that about 200 meters, too. There have been many wrong guesses in history. So in 1922 the technical editor of QST carricd on some tests between Hartford and Boston on 130 meters. The results were encouraging. Early in 1923 the A.R.R.L. sponsored a series of organized tests on wavelengiths down to 90 meters and it was noted that as the wavelength dropped the reported results were better. A growing excitement began to filter into the amateur ranks. It began to look as though we'd stumbled on something!

And indeed we had. For in November, 1923, after some months of careful preparation, twoway amateur communication across the Atlantic finally became an actuality when Schnell, 1MO, (now W9UZ) and Reinartz, 1XAM, (now W1QP) worked for several hours with 8AB, Deloy, in France, all three stations using a wavelength of about 110 meters!

There was the possibility, of course, that it was a "freak" performance, but any suspicions in that direction were quickly dispelled when additional stations dropped down to 100 meters and found that they, too, could easily work two-way across the Atlantic. The exodus from the 200 -meter region started.

By 1924 the entire radio world was agog and dozens of commercial companies were rushing stations into the 100 -neter region. Chaos threatened until the first of a series of radio conferences partitioned off various bands of frequencies for all the different services clamoring for assignments. Although thought was still centered in 100 meters, League officials at the first of these conferences, in 1924, came to the conclusion that the surface had probably only been scratched, and wisely obtained amateur bands not only at 80 meters, but

THE RADIO AMATLUR'S HANDB00K

at 40 and 20 and 10 and even 5 meters. Many amateurs promptly jumped down to the 40 -meter band. A pretty low wavelength, to be sure, but you never could tell about these short waves. Forty was given a whirl and responded by enabling two-way communication with Australia, New Zealand and South Africa.

How about 20 ? It was given a try-out and immediately showed entirely unexpected possibilities by enabling an east-coast amateur to communicate with another on the west coast, direct, at high noon. The dream of amateur radio - daylight DX! - had come true.

From that time to the present represents a period of unparalleled accomplishment. The short waves proved a veritable gold mine. Country after country came on the air, until the confusion became so great that it was necessary to devise a system of international intermediates in order to distinguish the nationality of calls. The League began issuing what are known as WAC certificates to those stations proving that they had worked all the continents. Over five thousand such certificates have been issued. Representatives of the A.R.R.L. went to Paris and deliberated with the amateur representatives of twenty-two other nations. On April 17, 1925, this conference formed the International Amateur Radio Union - a federation of national amateur societies. We have discovered that the amateur as a type is the same the world over.
Nor has experimental development been lost sight of in the enthusiasm incident to international amateur communication. The experi-mentally-minded amateur is constantly at work conducting tests in new frequency bands, devising improved apparatus for amateur receiving and transmitting, learning how to operate two and three and even four stations where previously there was room enough for only one.

In particular, the amateur experimenter presses on to the development of the higher frequencies represented by the wavelengths below 20 meters, territory only a short time ago regarded by even most amateurs as comparatively unprofitable operating ground. On ten meters, experiments sponsored by the A.R.R.L. in directive transmission resulted in signals from a Cape Cod station being logged for days on end in New Zealand and reported in England, Canada and many parts of the United States; a large number of amateurs now devote a considerable portion of their operating time to "ten" during certain periods of the year when conditions are particularly favorable for this frequency.
The amateur's experience with five meters is especially representative of his initiative and resourcefulness, and his ability to make the most of what is at hand. In 1924 first amateur
experiments in the vicinity of 56 Mc . indicated the band to be practically worthless for distance work; signals at such frequencies appeared capable of being heard only to "horizon range." But the amateur turns even such apparent disadvantages to use. If not suitable for long-distance work, at least it was ideal for "short-haul" communication. Beginning in 1931, then, there took place a tremendous amount of activity in $56-\mathrm{Mc}$. work by hundreds of amateurs all over the country and a complete new line of transmitters and receivers was developed to meet the special conditions incident to communicating at these ultra-high frequencies. In 1934 additional impetus was given to this band when experiments by the A.R.R.L. with directive antennas resulted in remarkably consistent two-way communication over distances of more than 100 miles, without the aid of "hilltop" locations. While atmospheric conditions appear to have a great deal to do with 5 -meter DX, many thousands of amateurs are now spending much of their time in the $56-\mathrm{Mc}$. region, some having worked as many as four or five hundred different stations on that band at distances up to several hundred miles. Recently the radio world has been astounded by conditions whereby transcontinental contacts have been made on five meters, with hundreds of contacts over a thousand miles or so. To-day's concept of u.h.f. propagation was developed almost entirely through amateur research.
Most of the technical developments in amateur radio have come from the amateur ranks. Many of these developments represent valuable contributions to the art, and the articles about them are as widely read in professional circles as by amateurs. At a time when only a few broadcast engineers in the country knew what was meant by " 100% modulation" the technical staff of the A.R.R.L. was publishing articles in QST urging amateur 'phones to embrace it and showing them how to do it. When interest quickened in five-meter work, and experiments showed that the ordinary regenerative receiver was practically worthless for such wavelengths, it was the A.R.R.L. that developed practical super-regenerative receivers as the solution to the receiver problem. From the League's laboratory, too, came in 1932, the single-signal superheterodyne - the world's most advanced high-frequency radiotelegraph receiver. In 1934 the commercial production of r.f. power pentodes came as a result of the A.R.R.L. Hq. technical staff's urging and demonstration of their advantages. In 1936 came the "noise-silencer" attachment for superheterodynes, permitting for the first time satisfactory high-frequency reception through the more common forms of man-made electrical interference. During 1938 the use of transmit-

THE STORY OF AMATEUR RADIO

ters whose frequency could be changed by a continuous panel control became common, along with improved directive antenna systems.
Amateur radio is one of the finest of hobbies, but this fact alone would hardly merit such whole-hearted support as was given it by the United States government at recent international conferences. There must be other reasons to justify such backing. There are. One of them is a thorough appreciation by the Army and Navy of the value of the amateur as a source of skilled radio personnel in time of war. The other is best described by the words "public service."

We have already seen 3,500 amateurs contributing their skill and ability to the American cause in the Great War. After the war it was only natural that cordial relations should prevail between the Army and Navy and the amateur. Several things occurred in the next few years to strengthen these relations. In 1924, when the U. S. dirigible Shenandoah made a tour of the country, amateurs provided continuous contact between the big ship and the ground. In 1925 when the United States battle fleet made a cruise to Australia and the Navy wished to test out short-wave apparatus for future communication purposes, it was the League's Traffic Manager who was in complete charge of an experimental highfrequency set on the U.S.S. Seatle.

Definite friendly relations between the amateur and the armed forces of the Government were cemented in 1925. In this year both the Army and the Navy came to the League with proposals for amateur coöperation. The radio Naval Reserve and the Army-Amateur Net are the outgrowth of these proposals.

The public service record of the amateur is a brilliant one. These services can be roughly divided into two classes: emergencies and expeditions. It is regrettable that space limitations preclude detailed mention of amateur work in both these classes, for the stories constitute some of the high-lights of amateur aecomplishment. As it is, only a general outline can be given.

Since 1913, amateur radio has been the principal, and in many cases the only, means of outside communication in more than one hundred storm, flood and earthquake emergencies in this country. Among the most noteworthy were the Florida hurricanes of 1926, 1928 and 1935, the Mississippi and New England floods of 1927 and the California dam break of 1928. During 1931 there were the New Zealand and Nicaraguan earthquakes, and in 1932 floods in California and Texas; outstanding in 1933 was the earthquake in southern California. In 1934 further floods in California and Oklahoma resulted in notable amateur coöperation. The

1936 eastern states flood, the 1937 Ohio River Valley flood and the 1938 eastern states floodhurricane disaster saw the greatest emergency effort ever performed by amateurs. In all these and many others, amateur radio played a major rôle in the rescue work and amateurs earned world-wide commendation for their

ANOTHEI SECTION OF TIIE WORKSHOP
resourcefulness in effecting communication where all other means failed.

It is interesting to note that one of the principal functions of the Army-Amateur network is to furnish organized and coördinated amateur assistance in the event of storm and other emergencies in this country. In addition, Red Cross centers in various parts of the United States are now furnished with lists of amateur stations in the vicinity as a regular part of their emergeney measures program.

Amateur coöperation with expeditions started in 1923, when a League member, Don Mix, of Bristol, Conn., accompanied MacMillan to the Arctic on the schooner Bowdoin in charge of an amateur set. Amateurs in Canada and the United States provided the home enntact. The suecess of this venture was such that MacMillan has never since made a trip without carrying short-wave equipment and an amateur to operate it.

Other explorers noted this success and made inquiries to the League regarding similar arrangements for their journcys. In 1924 another expedition secured amateur coöperation; in 1925 three benefited by amateur assistance, and by 1928 the figure had risen to nine for that year alone. Each year since then has seen League headquarters in receipt of more and more requests for such service, until now a total of perhaps two hundred voyages and expeditions have been thus assisted. To-day practieally no exploring trip starts from this country to remote parts of the world without

THE RADIO AMATEUR'S HANDB00K

TIIE TEST SECTION IN THE IECEIVING LAB
Part of the transmittidg lah is viaihle through the glans partition.
making arrangements to keep in contact through the medium of amateur radio.

Emergency relief, expeditionary contact, and countless instances of other forms of public service, rendered as they always have been and always will be, without hope or expectation of material reward, have made amateur radio an integral part of our national life.

THE AMEIEICAN IRADIG IBELAY HEAGTE

$T_{\text {he }}$ American Radio Relay League is today not only the spokesman for amateur radio in this country but is the largest amateur organization in the world. It is strictly of, by and for amateurs, is non-commercial and has no stockholders. The members of the League are the owners of the A.R.R.L. and QST.

The League is organized to represent the amateur in legislative matters. It is pledged to promote interest in two-way amateur communication and experimentation. It is interested in the relaying of messages by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of conduct. One of its principal purposes is to keep amateur activities so well condueted that the amateur will continue to justify his existence. As an example of this might be cited the action of the League in sponsoring the establishment of a system of Standard Frequency Stations throughout the United States; installations equipped with the most modern available type of precision measuring equipment, and transmitting "marker" signals on year-'sound schedules to enable amateurs evcrywhere to accurately calibrate their apparatus.

The operating territory of the League is divided into fourteen United States and six Canadian divisions. You can find out what division you are in by consulting QST or the

Handbook. The affairs of the League are managed by a Board of Directors. One director is elected every two years by the membership of each United States division, and a Canadian General Manager is elected every two years by the Canadian membership. These directors then choose the president and vice-president, who are also directors, of course. No one commercially engaged in selling or manufacturing radio apparatus or literature can be a member of the Board or an officer of the League.

The president, viee-president, secretary, treasurer and communications manager of the League are elected or appointed by the Board of Directors. These officers constitute an Executive Committee which, under certain restrictions, decides how to apply IBoard policies to matters arising between Board meetings.
The League owns and publishes the magazine QST. QST goes to all members of the League each month. It acts as a monthly bulletin of the League's organized activities. It serves as a medium for the exchange of ideas. It fosters amateur spirit. Its technical articles are renowned. QST has grown to be the "amateur's bible" as well as one of the foremost radio magazines in the world. The profits QST' makes are used in supporting League activities. Membership dues to the League include a subscription to QST for the same period.

The extensive field organization of the Communications Department coördinates practical station-operation throughout North America.

HEADQUARTEIES

$F_{\text {rom }}$ the humble beginnings recounted in this story of amateur radio, League head-

AT WORK IN THE TRANSMITTING IAB

THE STORY OF AMATRUR RADIO

quarters has grown until now it occupies an entire office building and employs more than three dozen people.

Members of the League are entitled to write to Headquarters for information of any kind, whether it concerns membership, legislation, or general questions on the construction or operation of amateur apparatus. If you don't find the information you want in QST or the Handbook, write to A.R.R.L. Headquarters, West Hartford, Connecticut, telling us your problem. All replies are made directly by letter; no charge is made for the service.

If you come to Hartford, drop out to Headquarters at West Hartford. Visitors are always welcome.

HEADORUAMRTEIRS STATIGN

F_{B}rom 1927 to 1936 the League operated its headquarters station, W1MK, at Brainerd Field, Hartford's municipal airport on the Connecticut River. During the disastrous flood of 1936 this station was devastated. From the spring of 1936 until early summer of 1938 a temporary station was operated at the headquarters offices, at first under the old auxiliary call W1INF and later as W1AW. The call WlAW, held until his death by Hiram Percy Maxim, was issued to the League by a special order of the Federal Communications Commission for the official headquarters station call.

Beginning September, 1938, the Hiram Percy Maxim Memorial Station at Newington, Conn., has been in operation as the headquarters station. Operating on all amateur bands with separate transmitters rated at the maximum legal input of one kilowatt and a system of elaborate antenna relays, this station is heard with good strength in every part of the country. The building in which it is housed was designed by order of the League's Board of Directors as a permanent memorial to the founder-president, Hiram Percy Maxim.

INTERNATIONAL AMATEUR RADIO UNION

The I.A.R.U. is a federation of thirty-three national amateur radio societics in the principal nations of the world. Its purposes are the promotion and coördination of two-way communication between the amateurs of the various countries, the effecting of coöperative agreements between the various national societies on matters of common welfare, the advancement of the radio art, the encouragement of international fraternalism, and the promotion of allied activities. Perhaps its greatest service lies in representing the amateurs of the world at international telecommunications conferences and technical consulting committee (C.C.I.R.) meetings.

The headquarters society of the Union is the

American Radio Relay League. All correspondence should be addressed to 38 LaSalle Road, West Hartford, Conn., U. S. A.

The I.A.R.U. issues WAC (Worked-AllContinents) certificates to amateurs who qualify for this award. The regulations, in brief, stipulate that the applicant must have worked other amateurs in each of the six recognized continental areas of the world, supplying QSL cards or other indisputable proof of two-way contact in connection with his application; and that he must be a member of the member-society of the Union for the country in which he resides. In countries where no meniber-socicty exists the certificate may be secured upon payment of a fee of $50 ¢$ to cover mailing costs. Two kinds of certificates are issued, one for radiotelegraph work and one for radiotelephone. There is a special endorsement for $28-\mathrm{Mc}$. operation.

JOINING THE LEAGUE

The best way to get started in the amateur game is to join the League and start reading QST. Inquiries regarding membership should be addressed to the Secretary, or you can use the convenient application blank in the rear of this book. An interest in amateur radio is the only qualification necessary in becoming a member of the A.R.R.L. Ownership of a station and knowledge of the code are not prerequisites. They can cone later. According to a constitutional requirement, however, only those members who possess an amateur station or operator license are entitled to vote in director elections.

Learn to let the League help you. It is organized solely for that purpose, and its entire headquarter's personnel is trained to render the best assistance it can to you in solving your amateur problems. If, as a beginner, you should find it difficult to understand some of the matter contained in succeeding chapters of this book, do not hesitate to write the Information Service stating your trouble. Perhaps, in such a case, it would be profitable for you to send for a copy of a booklet published by the League especially for the beginner and entitled "How to Become a Radio Amateur." This is written in simple, straightforward language, and describes from start to finish the building of a simple but effective amateur installation. The price is 25 cents, postpaid.

Every amateur should read the League's magazine $Q S T$ each month. It is filled with the latest amateur apparatus developments, "dope" on current expeditions which use short-wave radio for contact with this country, and the latest "ham" news from your particular section of the country. A sample copy will be sent you for 25 cents if you are unable to obtain one at your local newsstand.

gETTING STARTED

The Amateur Bands - Learning the
Code-Obtaining Licenses

THis chapter deals with the two major problems of every beginning amateur - learning the code and getting the necessary federal licenses.

Our Amateur Bands

Many people, because they have never heard anything else, seem to think that "radio" means "broadcasting." To such people a few nights listening in on the high frequencies (wavelengths below the broadcast band) will be a revelation. A horde of signals from dozens of different types of services tell their story to whoever will listen. Some stations send slowly and leisurely. Even the beginner can read them. Others race along furiously so that whole sentences become meaningless buzzes. There are both telegraph and telephone signals. Press messages, weather reports, high frequency international broadcasting of voice and music, transmissions from government and experimental stations including picture transmission and television, airplane dispatching, police broadcasts, and signals from private yachts and expeditions exploring the remote parts of the earth jam the short wave spectrum from one end to the other.
Sandwiched in among all these services are the amateurs, thousands of whose signals may be heard every night in the various bands set apart by International Treaty for amateur operation.
Many factors have to be considered in picking a certain frequency band for a certain job, especially the distance and the time of day when communication is desired. In addition to daily changes, there are seasonal changes, and in addition a long-time change in atmospheric conditions which seems to coincide with the 11 -year cycle of sun-spot or solar activity. The reliability of communication on a given frequency at a given time of day, the suitability of a given band for traffic or DX, the desires of the individual amateur in choosing his circle of friends with whom he expects to make contact on schedule, the amount of interference to be expected at certain hours, and the time of day available for operating -
all influence the choice of an operating frequency.

The $1715-k c$. band, ${ }^{*}$ which carried all a mateur activity before experimenters opened the way to each of the higher frequency bands in turn, always served amateurs well for general contact between points all over the country. There was a short period, during the height of development of the higher frequencies, when activity in this band dwindled, but it is again on the increase.

The band is popular especially for radiotelephone work. Code practice transmissions are made in this band for beginning amateurs and many beginners may be heard in this region making their first two-way contact with each other. The band is one of our "widest" from the standpoint of the number of stations that may be comfortably accommodated. The band is open to amateur facsimile and pictare transmission.

The $5500-k c$. band has, in recent years, been regarded as best for all consistent domestic communication. It is good for coast-to-coast work at night all the year except for a few summer months. It has been recommended for all amateur message-handling over medium distances (1,000 miles for example). Much of the friendly human contact between amateurs takes place in the $3500-\mathrm{kc}$. band. As the winter evening advances, the well-known "skip effect" (explained in detail in Chapter Four) of the higher frequencies has made itself known, the increased range of the "sky wave" brings in signals from the other coast and the increased range also brings in more stations, so that the band appears busier.
The 7000-kc. band has been the most popular band for general amateur work for years. It is useful mainly at night for contacts with the opposite coast, or with foreign countries. Power output does not limit the range of a station to the same extent as when working on the lower frequency bands discussed above. However, the band is more handicapped by congestion in the early evenings and more

[^0] with 'phone permitted $1800-2050 \mathrm{kc}$.

gETTING STARTED

subject to the vagaries of skip-effect and uncertain transmission conditions than are the lower frequency bands, but not to the same extent as the $14-\mathrm{Mc}$. band. The $7000-\mathrm{kc}$. band is satisfactory for working distances of several hundred miles in daylight. It is generally con-
splendid activity. It is the place where one can get by far the most miles per watt.

The $56,000-k c$. or $56-\mathrm{Mc}$. band, made available for amateur experimentation at the request of the League, has for many years been regarded as strictly a local and short-distance

sidered the most desirable night band for general DX work in spite of difficulties due to interference.

The 14,000-kc. or 14-Mc. band is the best frequency to use to cover great distances in daylight. In fact it is the only band generally useful for daylight DX contacts (QSO's) over coast-to-coast and greater distances. Communication over long distances will usually remain good during the early evenings and surprising results can be obtained then, too. Using these higher frequencies there is often difficulty in talking with stations within three or four hundred miles, while greater distances than this (and very short distances within ten or twenty miles of a station) can be covered with case. The reason that 14 -Mc. signals are less useful for general amateur DX late evenings is because the "skip" increases during darkness until the "sky wave" covers greater than earthly distances. The band, while one of the very best for the a mateur interested in working foreign stations without much difficulty from domestic interference, is sometimes subject to sudden fluctuations in transmitting conditions.

The 28,000-kc. (28-Mc.) band is principally an experimental amateur band at the present time. It combines both the long-distance characteristics of the $14-\mathrm{Mc}$. band and some of the local advantages of the $56-\mathrm{Mc}$. band, but its remarkable long-distance characteristics have been the cause of its tremendous growth in popularity. The band is by no means as reliable as those of lower frequency but the performance to be had on it has been becoming progressively better during the last few years. A well-defined seasonal effect produces much better conditions during the fall and spring than at other times of the year. Though the band was a barren waste a few years ago it is now, particularly during fall and spring, full of
band for distances of ten to thirty miles. Because of the cheapness, compactness and ease of construction of the necessary apparatus it has proved ideal for this purpose and many hundreds of stations have operated "locally" there. During the latter part of 1934 , however, experiments with directive antennas by the technical staff of the A.R.R.L. indicated the possibility of surprisingly consistent two-way work over distances of a hundred miles or more, with the result that tremendous impetus was given to experimentation at these frequencies and is expected to continue even stronger in future. Recent "sky-wave" DX work over several thousand miles on this band and the prospect that much more is to come make the band the prize one for the experimenter.

Above 110,000 kc. but little progress has as yet been made. These frequencies have in the past been generally considered useless for communication over any appreciable distance, just as were the frequencies around 56 Mc . But the developments in that region have resulted in creating considerable interest in the still higher frequencies, and during 1939 it is expected that many experimenters will endeavor to exploit them to their utmost for communication purposes. The $112-\mathrm{Mc}$. band, in particular, will probably take over much of the purely local activity hitherto occupying the 56-Mc. band.

Memorizing the Code

There is nothing particularly difficult incident to taking your place in the ranks of licensed amateurs.

The first job you should tackle is the business of memorizing the code. This can be done while you are building your receiver. Thus, by the time the receiver is finished, you will know the characters for the alphabet and will be ready to practice receiving in

THE RADIO AMATEUR'S HANDB00K

order to acquire speed. Speed practice, either by means of a buzzer, or by listening in on your receiver, can be indulged in in odd moments while the transmitter, in turn, is being constructed. The net result of such an organized program should be that by the time the transmitter is finished you will be able to receive the thirteen words a minute required by the government for your amateur operator license, and can immediately proceed to study for the "theoretical" part of your license examination without loss of time.

Memorizing the code is no task at all if you simply make up your mind to apply yourself to the job and get it over with as quickly as possible. The complete Continental alphabet, punctuation marks and numerals are shown in the table given here. The alphabet and all the numerals should be learned, but only the first eight of the punctuation marks shown need be memorized by the beginner. Start by memorizing the alphabet, forgetting the numerals and punctuation marks for the present. Various good systems for learning the code have been devised. They are of undoubted value but the job is a very simple one and usually can be accomplished easily by taking the first five letters, memorizing them, then the next five, and so on. As you progress you should review all the letters learned up to that time, of course. When you have memorized the alphabet you can go to the numerals, which will come very quickly since you can see that they follow a definite system. The punctuation marks wind up the schedule - and be sure to learn at least the first eight - the more com-monly-used ones.

One suggestion: Learn to think of the letters in terms of sound rather than their appearance as they are printed. Don't think of A as "dotdash" but think of it as the sound "dit-dah." B, of course, is "dah-dit-dit-dit," C, "dah-dit-dah-dit" and so on.

Even better will be listening to the characters as they are sent on a buzzer or code practice oscillator, if someone can be found to send to you. Learning the code is like learning a new language, and the sooner you learn to understand the language without mental "translation" the easier it will be for you.

Don't think about speed yet. Your first job

Acquiring Speed by Buzzer Practice

When the code is thoroughly memorized, you can start to develop speed in receiving code transmission. Perhaps the best way to do this is to have two people learn the code together and send to each other by means of a buzzer-and-key outfit. An advantage of this system is that it develops sending ability, too, for the person doing the receiving will be quick to criticize uneven or indistinct sending. If possible, it is a good idea to get the aid of an experienced operator for the first few sessions, so that you will know what well-sent characters sound like.
The diagram shows the connections for a buzzer-practice set. When buying the key it is a good idea to get one that will be suitable for use in the transmitter later; this will save you money.

Another good practice set for two people learning the code together is that using a tube oscillator, as illustrated.

The tube is a 12A7, which combines in one envelope a halfwave rectifier and a pentode.

The 12.6 volts for the heater is obtained from the 115 -volt source by means of a resistor line cord, a special cord containing a resistor in addition to the usual two wires from the plug. The resistor is connected to one of the plug blades, and the opposite end is terminated at the oscillator. Hence, there are three leads emerging from the cord. The resistor wire is distinguished by white covering. It is important that the proper-resistance cord be obtained.

The filter condenser, C_{2} and C_{3}, is a two-section midget electrolytic condenser having a common negative lead and separate positive leads. The common negative lead is connected in the oscillator to the cathode of the pentode section of the 12A7, and to the C connection of the transformer secondary. One of the positive leads of the condenser is connected to the resistor terminal of the line cord and to the resistor R_{2}. The other positive lead connects
to the opposite end of the resistor, and through key and headphones to the B terminal of the transformer. The opposite end of the transformer primary winding, P, is connected to the plate of the pentode scction of the 12 A 7 . The grid resistor and grid condenser, R_{1} and C_{1}, are connected between the grid terminal of the tube (the top cap) and one of the secondary terminals marked G. If the oscillator is completed according to the wiring diagram, and all connections have been carefully checked, failure of the set to oscillate when the key is closed will indicate that the incorrect G terminal of the transformer was chosen, in which case it will merely be disconnected and the other G lead will be substituted. This applies on d.c. if closing the key causes a distinct click in the headphoncs after the tube has warmed for a minute. If a d.c. source is used with the oscillator, the polarity of the plug must be correctly fixed by plugging it in so that the click of the 'phones may be produced by keying the oscillator.

If the pitch produced by the oscillator is found to be too low or too high, it may be varied over a wide range by varying the resistance value of the grid resistor, R_{1}.

In the operation of this code-practice oscillator, care must be taken that neither the wiring of the oscillator, nor the key nor 'phones be allowed to come in contact with ground. Also, the operator must use caution to refrain from being connected between the oscillator or key and a ground connection.

Either the buzzer set or this audio oscillator will give good results. The advantage of the audio oscillator over the buzzer set is that it gives a good signal in the 'phones without making any noise in the room.

After the practice set has been built, and

THE CIRCUIT OF THE CODE PRACTICE SET ILLUSTRATED ABOVE

[^1]

A BUZZER CODE PRACTICE SET ARRANGED AND WIRED IN ACCORDANCE WITH THE CIRCUIT GIVEN BELOW
another operator's help secured, practice sending turn and turn about to each other. Send single letters at first, the listener learning to recognize each character quickly, without hesitation. Following this, start slow sending of complete words and sentences, always trying to have the material sent at just a little faster rate than you can copy easily; this speeds up your mind. Write down each letter you recognize. Do not try to write down the dots and dashes; write down the letters. Don't stop to compare the sounds of different letters, or think too long about a letter or word that has been missed. Go right on to the next one or each "miss" will cause you to lose several characters you might otherwise have gotten. If you exercise a little patience you will soon be getting every character, and in a surprisingly short time will be receiving at a good rate of speed. When you think you can receive 13 words a minute (65 letters a minute) have the sender transmit code groups rather than straight English text. This will prevent you from recognizing a word "on the way" and filling it in before you've really listened to the letters themselves.

After you have acquired a reasonable degree of proficiency concentrate on the less common characters, as well as the numerals and punctuation marks. It is these that prove the downfall of many applicants taking the code examination under the handicap of nervous stress and excitement.

Learning by Listening

While it is very nice to be able to get the help of another person in sending to you while you are acquiring code-speed, it is not always possible to be so fortunate, and some other method of acquiring speed must be resorted to. Under such circumstances, the time-honored system is to "learn by listening" on your shortwave receiver. With even the simplest short-

TIIF CODE-PIRACTICE OSCIILATOK
The grid-leak and grid condenser, K_{1} and C_{1}, may be seen in front of the tube. The tranaformer is benide the tube, with the filter condenser in the right foreground. The connection of the line cord resistor in shown in the foreground, while the four screw terminals include t wo for a key and t wo for headphones.
wave receivers a number of high-power stations can be heard in every part of the world. It is usually possible to pick a station going at about the desired speed for code practice. Listen to see if you cannot recognize some individual letters. Use paper and pencil and write down the letters as you hear them. Try to copy as many letters as you can.

Whenever you hear a letter that you know, write it down. Keep everlastingly at it. T wenty minutes or half an hour is long enough for one session. This practice may be repeated several times a day. Don't become discouraged. Soon you will copy without missing so many letters. Then you will begin to get calls, which are repeated several times, and whole words like "and" and "the." After words will come sentences. You now know the code and your speed will improve slowly with practice.

In "learning by listening" try to pick stations sending slightly faster than your limit. In writing, try to make the separation between words definite. Try to "read" the whole of short words before starting to write them down. Do the writing while listening to the first part of the next word. Practice and patience will soon make it easy to listen and write at the same time. Good operators usually copy several words "behind" the incoming signals.

A word of caution: the U. S. radio communication laws prescribe heavy penalties for divulging the contents of any radiogram to other than the addressee. You may copy anything you hear for practice but you must preserve its secrecy.

Code Practice Helps

There are several code-training courses and mechanical devices on the market designed to assist in building code speed. One such course is based on a special training routine; others are built around automatic sending equipment (either tape or phonograph recordings) which send perfectlyformed code without the help of another person. We heartily suggest that the beginner should examine advertisements for such courses and equipment, especially where difficulty is experienced with more common methods.

Volunteer Code Practice Stations

Each fall and winter season the A.R.R.L. solicits volunteers, amateurs using code only, or often a combination of voice and code transmission, who will send transmissions especially calculated to assist beginners. These transmissions go on the air at specified hours on certain days of the week and may be picked up within a radius of several hundred miles under favorable conditions. Words and sentences are sent at different speeds and repeated by voice, or checked by mail for correctness if you write the stations making the transmissions and enclose a stamped addressed envelope for reply.

The schedules of the score or more volunteer code-practice stations are listed regularly in QST during the fall and winter. Information at other times may be secured by writing League headquarters. Some of the stations have been highly successful in reaching both coasts with code-practice transmissions from the central part of the country.

Interpreting What You IIear

As soon as you finish your receiver and hook it up you will begin to pick up different highfrequency stations, some of them perhaps in the bands of frequency assigned to amateurs, others perhaps commercial stations belonging to different services. The loudest signals will not necessarily be those from near-by stations. Depending on transmitting conditions which vary with the frequency, the distance and the

getting started

time of day, remote stations may or may not be louder than relatively near-by stations.

The first letters you identify probably will be the call signals identifying the stations called and the calling stations, if the stations are in the amateur bands. Station calls are assigned by the government, prefixed by a letter (W in the United States, VE in Canada, G in England, etc.) indicating the country. In this country amateur calls will be made up of such combinations as W8CMP, W1KH, W1AW, etc., the number indicating the amateur call area and giving a general idea of the part of the country in which the station heard is located. The reader is referred to the chapter on "Operating a Station" for complete information on the procedure amateurs use in calling, handling messages, and the like. Many abbreviations are used which will be made clear hy reference to the tables of \mathbf{Q} Code, miscellaneous abbreviations, and "ham" abbreviations included in the Appendix. The table of international prefixes, also in the back of the book, will help to identify the country where amateur and commercial stations are located.

Using a Key

The correct way to grasp the key is important. The knob of the key should be about eighteen inches from the edge of the operating table and about on a line with the operator's right shoulder, allowing room for the elbow to rest on the table. A table about thirty inches in height is best. The spring tension of the key varies with different operators. A fairly heavy spring at the start is desirable. The back ad-

CIKCUIT IDAGRAM OF TIIE CODE-PHACTICE

 OSCILLATORC. $-0.01-\mu \mathrm{fd} . \mathrm{d}$ 600-volt tubular condenger (Sprague). $\mathrm{C}_{2}, \mathrm{C}_{3}-2$-section midget electrolytic condenser, 10 $\mu \mathrm{fl}$. each section 25 volts working (Sprague).
K_{1} - 3-megohm, M-watt resistor (IRC).
$\mathrm{H}_{2}-5000-\mathrm{ohm}, 1$-watt (IRC).
K_{3} - Line cord resistor, 360 ohms.
'I - Transformer 3:1 midget pugh-pull input traneformer ('Thordarson I-6907).

H.LUSTRATING TILE COHRECT POSITION OF THE IIANI ANB FINGERS FOIR TIIE OPERATION GF A TELEGRAPII KEY
justment of the key should be changed until there is a vertical movement of about onesixteenth inch at the knob. After an operator has mastered the use of the hand key the tension should be changed and can be reduced to the minimum spring tension that will cause the key to open immediately when the pressure is released. More spring tension than necessary causes the expenditure of unnecessary energy. The contacts should be spaced by the rear screw on the key only and not by allowing play in the side screws, which are provided merely for aligning the contact points. These side screws should be screwed up to a setting which prevents appreciable side play but not adjusted so tightly that binding is caused. The gap between the contacts should always be at least a thirty-second of an inch, since a toofincly spaced contact will cultivate a nervous style of sending which is highly undesirable. On the other hand too-wide spacing (much over one-sixteenth inch) may result in unduly heavy or "muddy" sending.

Do not hold the key tightly. Let the hand rest lightly on the key. The thumb should be against the left side of the key. The first and second fingers should be bent a little. They should hold the middle and right sides of the knob, respectively. The fingers are partly on top and partly over the side of the knob. The other two fingers should be free of the key. The photograph shows the correct way to hold a key.

A wrist motion should be used in sending. The whole arm should not be used. One should not send "nervously" but with a steady flexing of the wrist. The grasp on the key should be firm, not tight, or jerky sending will result. None of the muscles should be tense but they should all be under control. The arm should rest lightly on the operating table with the wrist held above the table. An up-and-down motion without any sideways action is best. The fingers should never leave the key knob.

THE RADIO AMATRUR'S HANDB00K

Sending

Good sending seems easier than receiving, but don't be deceived. A beginner should not send fast. Keep your transmitting speed down to the receiving speed, and bend your efforts to sending well.

When sending do not try to speed things up too soon. A slow, even rate of sending is the mark of a good operator. Speed will come with time alone. Leave special types of keys alone until you have mastered the knack of properly handling the standard-type telegraph key. Because radio transmissions are seldom free from interference a "heavier" style of sending is best to develop for radio work. A rugged key of heavy construetion will help in this.

Obtaining Government Licenses

When you are able to copy 13 words per minute, have studied basic transmitter theory and familiarized yourself with the radio law and a mateur regulations, you are ready to give serious thought to securing the government combination amateur operator-station license which is issued you, after examination, through the Federal Communications Commission, at Washington, D. C.

Beeause a discussion of license application procedure, license renewal and modification, exemptions, and detailed information on the nature and scope of the license examination involve more detailed treatment than it is possible to give within the limitations of this chapter, it has been made the subject of a special booklet published by the League, and at this point the beginning amateur should possess himself of a copy and settle down to a study of its pages in order to familiarize himself with the intricacies of the law and prepare himself for his test. The booklet, "The Radio Amateur's License Manual," may be obtained from A.R.R.L. headquarters for $25 ¢$ postpaid. From the beginner's standpoint one of the most valuable features of this book is its list of nearly 200 representative examination questions with their correct answers.

A few general remarks:
While no government licenses are necessary to operate receivers in the United States, you positively must have the required amateur licenses before doing sending of any kind with a transmitter. This license requirement applies for any kind of transmitter on any wavelength. Attempts to engage in transmitting operation of any kind, without holding licenses, will inevitably lead to arrest, and fine or imprisonment.

Amateur licenses are free, but are issued only to citizens of the United States; this applies both to the station authorization and the
operator's personal license, with the further provision in the station license that it will not be issued where the apparatus is to be located on premises controlled by an alien. But the requirement of citizenship is the only limitation, and amateur licenses are issued without regard to age or physical condition to anyone who successfully completes the required examination. There are licensed amateurs as young as twelve and as old as eighty. Many permanently bedridden persons find their amateur radio a priceless boon and have successfully qualified for their "tickets"; even blindness is no bar - several stations heard regularly on the air are operated by people so afflieted.

Persons who would like to operate at amateur stations, but do not have their own station as yet, may obtain an amateur operator license without being obliged to take out a station license. But no one may take out the station license alone; all those wishing station lieenses must also take out operator licenses.

Extracts from the basic Communications Act and the complete text of the amateur regulations current at the time this Handbook went to press will be found in the Appendix. Because the regulations are subject to occasional changes or additions, however, it is recommended that your study of them be from the License Manual already mentioned, since this latter publication is always revised, or a "change sheet" incorporated with it, whenever such alterations in our regulations take place.

Canadian Regulations

Canadian amateurs wishing operators' licenses must pass an examination before a radio inspector in transmission and reception at a speed of ten words per minute or more. They must also pass a verbal examination in the operation of amateur apparatus of usual types, must have a working knowledge of procedure, and must have a little operating ability prior to taking the examination. Nothing is likely to be asked which is not covered in this Handbook or the License Manual. The fee for examination as operator is 50 cents and is payable to the Radio Inspector who examines the candidate.

The form for application for station license may be obtained either from a local Radio Inspector's office or direct from the Radio Division, Department of Transport, Ottawa. The applicant must also sign a declaration of secrecy which, as a matter of fact, is executed at the time of obtaining the operator's license. The annual fee for station licenses for amateur work in Canada is $\$ 2.50$.

ELEMENTARY RADIO PRINCIPLES

Current Flow - Conductors and Insulators -
Condensers - Coils - The Tuned Circuit

There are as many different types of radio amateurs as there are phases to this fascinating hobby. Some amateurs are perfectly content to pound brass or use a microphone with only the vaguest conception of how and why their equipment works, while others are not satisfied unless they understand what goes on in the transmitter and receiver, and the space between. The inquisitive amateur will find this chapter one intended to acquaint him with the elementary principles of electricity so necessary to a more complete understanding of radio itself.

Understanding electrical and radio principles involves no greater effort than that necessary to form mental images of the processes involved. A little close reading, coupled with some clear thinking will make a fascinating subject out of one that, at first glance, seems quite involved. If you are something of a Steinmetz or an Einstein you can read right through as you would a novel; if you aren't, ponder over paragraphs until you can explain them to someone else without reference to the text.

Elementary principles are the bricks that serve as the foundation for all technical knowledge - with a smooth and solid foundation, the rest is easy.

FACTS ABOUT ERECTIEGNS

$\mathbf{I}_{F}$$I_{F}$ you remember your highschool chemistry you will recall that all matter - solids, liquids and gases - is made up of fundamental units called molecules, the smallest subdivision of matter. These molecules in turn are found to consist of atoms of the component elements. Molecules and atoms are infinitesimally small, and can't be seen even with the most powerful microscopes. The thing to remember, however, is simply that all matter is made up of molecules which are in turn combinations of atoms of the component elements.

FIG. 301 - LIGIITNING $1 S$ caused by the discharge of electricity that builds up on a cloud reaching a potential high enough to break down the air between the cloud and ground or another cloud. The chargeis bolieved to be caused by fristion of air masses or dunt particles.

Electrons

If atoms could be examined through an infinitely powerful microscope or other means of magnifying them, a striking thing would be observed. You would find that all atoms are made up of particles, or charges, of electricity - nothing more - and that atoms differ from each other only in the number and arrangement of these charges. These charges are called electrons, and the atom has a nucleus composed of both positive and negative electrons, but with the positive predominating so that the nature of the nucleus is positive. Positive electrons are referred to as protons and negative electrons simply as electrons. The electrons and protons of the nucleus are intimately and closely bound together. However, exterior to the nucleus are negative electrons that are not so closely bound and, in many instances, they can be made to leave the immediate vicinity of the nueleus without much urging. These electrons whirl around the nucleus like the planets around the sun, and their orbits are not random paths but geometrically-regular ones determined by the charges on the nucleus and the number of electrons. Ordinarily the atom is electrically neutral, the outer negative electrons balancing the positive nucleus, but when something disturbs this balance electrical aetivity becomes evident, and it is the study of what happens in this unbalanced condition that makes up electrical theory.

ELECTIRONS AT IREST

【T was mentioned above that in some materials it is relatively easy to move the electrons away from the nucleus. There are also many materials in which this is difficult to do. A material in which it is hard to move or displace the electrons by electrical means is said to have a high resistance, and further along you will see why this is also an appropriate term from other standpoints.

the radio amateurs handbook

Static Charges

Peculiarly enough, many of the materials that have a high resistance can be made to acquire a charge (surplus or deficiency of electrons) by mechanical means. You have often heard the "electricity" crackling when you ran your hardrubber comb through your hair on a dry winter day, or have noticed the tiny spark that jumps from your finger tip to a metal object after you have walked across a rug in a dry room. This was caused simply by the friction of the comb passing through your hair and of your shoes passing over the carpet. The spark, in either case, was caused by the attempt of the charge that had built up, to equalize itself. In other words, when you ran the comb through your hair, there was a surplus of electrons left on the comb, forming a charge, and the next time you brought the comb near your hair the charge was in such a hurry to equalize itself that it jumped a short distance through the air. The higher the charge, the greater the distance it can jump. Lightning is nothing more than the same thing on a gigantic scale; clouds pick up a tremendous charge (meteorologists don't agree as to why, but friction of air masses or dust particles is believed to be a contributing factor) and when the charge becomes great enough it breaks over in a blinding flash to ground or to another cloud with the opposite charge. Yes, objects can have either a surplus or a deficiency of electrons - it is called a negative charge if there is a surplus of electrons; a positive charge if there is a lack of them. As with all things in nature, there must always be a balance, and for every negative charge there will be found a similar positive charge, since each electron that leaves an atom to form a negative charge leaves the rest of the atom with a positive charge.

You will have the essence if you remember that these charges or potentials are nothing

SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

$\longrightarrow\{-$ Single-Pole
\rightarrow Double-Pole Switch
\rightarrow Par Double-Pole $\begin{aligned} & \text { Double-throw Switch }\end{aligned}$

Inductor (Fixed Inductance, Coil or R.F. Choke)

Variable
and Tapped

Inductors

Screen-Grid Vacuum Tube

Diode
Vacuum Tube

Triode Vacuum Tube
F. F, - Filament

G-Grid
P-Plate

Pentode x-"Suppressor" Grid connected to filament inside the tube (
more than a lack or surplus of electrons.
If two objects are oppositely charged, a potential difference is said to exist between them, and this difference is measured by an

rlementary radio Principles

electrical unit called the volt. The greater the potential difference, the higher (numerically) the voltage. The difference in electrons between the two objects which causes this potential difference or voltage exerts an electrical pressure or force which is trying to equalize and thus nullify the charges, and for this reason it is often called electromotive force or, simply, e.m.f. But when you become more familiar with it you'll think of it as voltage, remembering that voltage represents the electrical potential difference set up by a surplus or lack of electrons.

Condensers

Right now is a good time to become acquainted with an electrical device you're going to run across quite often in your elcetrical and radio work, the condenser. So far, only simple static charges on combs and clouds have been mentioned. However, if something that has a very high resistance, like glass, mica, oil, or cven air, is made into a thin sheet and a metal plate is placed on either side of the sheet, it will be found that the two plates can be given a charge by connecting them to a source of potential difference such as a battery or other power supply, and the potential difference, or voltage, will be equal to that of the source. The quantily of the charge will depend upon the voltage of the charging source and the capacity of the condenser. The value of capacity of a condenser is a constant depending upon the physical dimensions, increasing with the area of the plates and the thinness and dielectric constant of the insulating material in between.

Capacity is measured in farads, a unit much, too large for practical purposes, and in radio work the terms microfarad (abbreviated $\mu f d$.) and micro-microfarad ($\mu \mu f d$.) are used. The microfarad is one-millionth of a farad, and the micro-microfarad is one-millionth of that.

You can easily demonstrate to yourself the difference in the quantity-holding ability of condensers by taking two of different capacity out of your junk box, touching them one at a time across a 45 -volt B battery to charge them, and then discharging them with a screw-driver across the terminals. The one with the larger capacity will give a fatter spark when it is discharged. Since they were both charged to exactly the same potential - the voltage of the battery - the difference in the discharges was due to the difference in the amount of stored charge.

ELECTHEDNS IN DIOTIGN

T WAB mentioned above that a material in which it is difficult to move the electrons is said to have high resistance. Conversely, a material in which it is easy to move the electrons is said

FIG. 302 - VARIOUS FORMS OF CONDENSERS
The electrolytic condenser at the left front in a low-voltage one used an an audio hy-pass acroan cathode resistors. The long, cylindrical can directly in back houses a higher-voltage electrolytic condenser used in receiver and low-voltage tranemitter powersupply filters. The amall paper (front row, second from left) and the small mica (front row, extreme right) fixed condensers are used in receiver and low-voltage transmitter applications. The small variable condenser in the front row in used in receivers and low-voltage transmitters; the variable condenser with the heavy platem and greater spacing is used in high-power transmitters. The small, compact vacuum condenser is a new type of fixed condonser for transmitting having an oven greater voltage rating than the large variahle condenser and losses low onough so that it may he used in a transmitter tank circuit.
to have low resistance or, more simply, it is called a good conductor. Most of the metals fall into this class, with silver and copper being among the best, followed by aluminum, brass, zinc, platinum and iron, in the order named. Conductors will, of course, conduct electricity regardless of their shape, but in most electrical work the most efficient form of conductor is a round wire, and henceforth when the word "conductor" is used, it should be visualized as a wire.

Current Flow

If a difference of potential exists across the ends of a conductor (by connecting the wire to a battery or generator or other source of voltage) there will be a continuous drift of electrons passing from atom to atom, and an electrical current is said to be flowing. The electrons do not streak from one end of the conductor to the other - their actual movement is quite minute - but it is more like a "bucket brigade" where, instead of firemen handing buckets down the line, atoms pass a potential difference down the line of the conductor until it is neutralized. The current itself is traveling quite fast, close to the speed of light, but the actual electrons themselves move only a short distance.

The current is measured in amperes, and if you wish to visualize that in terms of electrons, try to remember that a current of one ampere

THE RADIO AMATRUR'S HANDB00K

represents nearly 10^{19} (ten million, million, million) electrons flowing past a point in one second; or that a micro-ampere (millionth of an ampere) is nearly 10 million electrons per micro-second (millionth of a second).
insulators. If an insulator is used to separate the plates of a condenser, it is called a dielectric. Poor conductors are good insulators, and vice versa. Insulators are used where it is desired to avoid current flow through a physical connection.

A

B

C

FIG. 303 - A SIMPIE EXAMPLE OF OIIM'S LAW
At A, a single lamp across the 110 -volt line lurna with normal briltiancy, indicating normal current through the lamp.

At B, the two lamp in series give an effective resistance of twice that of a single lamp, and the current through them is therefore only half normal current. This is indicated by half brilliancy of the lamps.

At C. the lamps are connected in parallel, and since the lamps have 110 volts acrom them they burn with normal brilliancy. But wice as much light in given off, so the system must be drawing twice as much current and the effect of the two lamps in parallel is to place a load across the line of half the resistance of onelamp.

The current in a conductor is determined by two things, the voltage across the conductor and the resistance of the conductor. The unit of resistance is the ohm, and, by definition, an e.m.f. of one volt will cause a current of one ampere to flow through a resistance of one ohm. Since the three quantities are interdependent, if we know the values of any two we can easily determine the third by the simple relation known as Ohm's Law (described more

FIG. 304 - WHENever current passea through wire, a magnetic fieldexists around the wire. Ite direction can be traced by means of a amall compans.
in detail in the following chapter). All you need visualize now is the pressure or e.m.f. (volts) forcing a current (amperes) through the resistance (ohms) of the conductor.

Insulators

Materials with a high resistance, like hard rubber, steatite, bakelite, isolantite, mycalex, mica, quartz, sulphur and vacuum are called

Heating Effect

When current passes through a conductor, there is some amount of molecular friction, and this friction generates heat. This heat is dependent only upon the current in the wire and the resistance of the wire. It also is described more in detail in the following chapter. One need only know now that this heat is used in many useful ways, as can be seen by a quick glance around a house or factory equipped with electric heating devices. It also means that electricity cannot be conducted without some loss due to

FIG. 305 - WHEN THE CONDUCTING WIRE IS COILED, THE INDIVIDUAL MAGNETIC FIELDS OF EACI TURN ARE, IN SUCH A DIRECTION AS TO IPRODUCE A FIEIID SIMILAR TO THAT OF A BAR MAGNET
heating effects, which of ten must be taken into consideration.

Magnetic Effects

Any physicist will tell you that moving electrons generate a magnetic field. This magnetic field is exactly the same as the strange force that exists in the vicinity of any magnet and is capable of attracting other magnetic materials. Since a current in a wire is electrons in motion, it is not strange that a magnetic field is found in the vicinity of a conductor with current flowing through it. If the wire is wound in circles to form a coil, the magnetic effect becomes cumulative, and the effect can bè increased still further by placing an iron core within the coil.

There is a converse to this. When a conductor is moved through a magnetic field (or the field is moved past the conductor) electrons in the conductor are forced to move, producing a current. This is something to remember: $A n$ electric current generates a magnetic field about

blementary radio Principles

it and, conversely, an electric current is generated by a magnetic field moving (or changing) past the conductor.

Electric Circuits

You will often see mention of an electric "circuit." It is sufficient to remember that this is simply a complete path along which electrons can transmit their charge. More completely, there will normally be a source of energy - a battery, generator, or magnetic means for inducing current flow - and a load or portion of the circuit where the current is made to do useful work. There must be an unbroken path through which the electrons can transmit their charges, with the source of energy acting as an electron pump and sending them around the circuit. The circuit is said to be open when no charges can move, due to a break in the path. It is closed when no break exists - when switches are closed and all connections are properly made.

Ionizalion in Gases

All conduction does not necessarily take place in solid conductors. If a glass tube is fitted with metal plates at each end, and filled with a gas or even ordinary air (a mixture of gases) at reduced pressure, an electric current may be passed through the gas if a high-enough voltage is applied across the metal terminals. The commonly-used neon advertising signs utilize this principle, since the current flow also generates light, the color depending upon the gas being used. When the voltage is applied across the tube, the positively charged plate attracts a few electrons, which are given considerable velocity due to the acceleration of the electric charge and the fact that the reduced pressure in the tube (less gas) permits the electrons to travel farther before colliding with a gas atom. When they do collide with the atoms, they knock off outer electrons of the gas atom and these electrons also join the procession towards the positive plate, and of course knock off more electrons from other atoms. The atoms that have had an electron or two knocked off are no longer true atoms but ions, and since they have a positive charge (due to the electron deficiency) they are called "positive ions." These positive ions, being heavier than the electrons, travel more slowly towards the negative plate, where they acquire electrons and become neutral atoms again. The net result is a flow of electrons, and hence of current, from negative plate to positive plate. The light given off, it may be mentioned, is considered incidental to the recombination of ions and free electrons at the negative plate. This kind of conduction, made possible by ionization by collision, is utilized in the operation of certain types of gaseous rectifiers, and in
combination with another principle in mercuryvapor rectifiers.

Ionization in Liquids

A very large number of chemical compounds have the peculiar characteristic that when they are put into solution the component parts become ionized. For example, common table salt or sodium chloride, each molecule of which is made up of one atom of sodium and one of chlorine, will, when put into water, break down into a sodium ion (positive, with one electron deficient) and a chlorine ion (negative, with one excess electron). This can only occur as long as the salt is in solution take away the water and the ions are recombined into the neutral sodium chloride. This spontaneous disassociation in solution is of course another form of ionization, and if two wires with a difference of potential across them are placed in the solution, the negative wire will attract the positive sodium ions and the positive wire will attract the negative chlorine ions, and a current will flow through the solution. When the ions reach the wires the electron surplus or deficiency will be remedied, and a neutral atom will be formed. The energy supplied by the source of potential difference is used to move the ions through the liquid and to supply or remove electrons. This type of current flow is due to electrolytic conduction, and the principle was utilized in the now almostobsolete "electrolytic rectifier." It also forms a basis for the construction of the "electrolytic condenser."

Batteries

All batteries depend upon chemical action for the generation of a potential difference across their terminals. The common dry cell (which won't work completely dry) depends upon zinc ions (the metal case of a dry cell is the zinc plate) with a positive charge going into solution and leaving the zinc plate strongly negative. The electrical energy is derived from the chemical energy, and in time the zinc will be used up or worn away. However, in lead storage batteries, such as are used in automobiles for starting, the electrical energy is stored by chemical means and entails no destruction of the battery materials. The water that must be replaced from time to time is lost by evaporation.

It might be pointed out here that the term "battery" is used correctly only when speaking of more than one cell - a single cell is not a battery, but two or more connected together become a battery.

Thermionic Electron Ernission

There is still another method of electric current conduction, one of the most important

THE RADIO AMATEUR'S handBook

in radio because it is the foundation for the whole wonderful family of vacuum tubes used in both reception and transmission. If a suitable metallic conductor, such as tungsten or oxidecoated or thoriated tungsten, is heated to a

FIG. 306 - ILLUSTRATING CONDUCTION BY THERMIONIC EMISSION OF ELECTRONS IN A VACUUM TUBE
One battery is used only to heat the filament to a temperature where it will emit electrons. The other battery places a positive potential on the plate, with reapect to the filament, and the electrone are attractod to the plate. The flow of electrons completes the olectrical path, and current flows in the plate circuit.
high temperature in a vacuum (by passing current through it until it heats to the proper temperature) electrons will be emitted from the surface. The reason that the electrons are freed from this filament or cathode is that it has been heated to a temperature that activates them sufficiently to allow them to break away from the surface. The process is called thermionic electron emission, or simply emission. Once free, these electrons will form a cloud of negative electrons immediately surrounding the cathode which will repel further electrons that try to break through this space charge. A few will be given sufficient velocity to travel some distance from the cathode, but the majority will stay in the vicinity of the cathode. However, if a plate is placed in the vacuum tube, and given a positive charge by connecting a battery between plate and cathode, this plate or anode will attract a number of the electrons that surround the cathode. The passage of these electrons from cathode to anode constitutes an electric current. Some of the electrons that reach the anode may have sufficient velocity to dislodge an electron or two from the plate, and these electrons can be attracted to other positively-charged plates in the vicinity. If there are no other positive plates nearby, the electrons are attracted back to the plate from which they came. The process of dislodging electrons by other fast-moving electrons is called secondary emission. The important thing to remember is that all thermionic vacuum
tubes depend for their operation on the emission of electrons from a hot cathode, and that the current flowing through a vacuum tube is simply the flow of these electrons being attracted to a positively-charged plate or anode.

ELECTIRONS IN MIDTIAN - ALTERNATING CUIRRENT

Thus far only direct current, i.e., current traveling in one direction, has been discussed. This was done to acquaint you with the picture of current flow. However, most electrical and radio work utilizes alternating current, or current that alternates its direction in periodic fashion.

It was suggested that you remember that an electric current can be generated by a magnetic field moving or changing past a conductor. If the magnetic field moves in one direction, the electric current will flow in one direction; if the magnetic field moves in the opposite direction (decreasing is the same thing, in effect) the current will move in the opposite direction. Mechanical methods are used to generate alternating current by this principle, using rotating machinery, and the machines are called alternating-current generators or alternators. Their design is such that the current in the wire (or voltage across the terminals) will go from zero to a peak value and back to zero, and up to a peak value in the opposite direction and back to zero, in what is called a sine wave (see Chapter IV). The length of time that it takes to go through this cycle is called the period; the number of times it goes through this cycle, per second, is called the frequency.

It may be a little difficult at first to visualize how the values of alternating currents and voltages can be obtained, since they vary from one direction to the other, and the average value would be zero in spite of any peak value they might have. Actually, however, it is simplified by defining a current of one ampere as that amount of alternating current which will produce the same amount of heat through a resistance as one ampere of direct current. From this, one volt of alternating current

HIG. 307 - SCHEMATIC REPRESENTATION OF A TRANSFORMER
Alternating current flowing in the primary winding induces a current in the secondary winding. The ratio of the primary voltage to secondary voltage is very nearly equal to the ratio of primary turns to secondary turms.

LLEMENTARY RADIO PRINCIPLES

would force one ampere through a resistance of one ohm. The subject is treated more fully in Chapter IV.

Transformers

If two coils of wire are wound on a laminated iron core, and one of the coils is connectad to a source of alternating current (abbreviated a.c.), it will be found that there is an alternating voltage across the terminals of the other coil of wire, and an alternating current will flow through a conductor connecting the two terminals. The explanation is simple: The alternating current in the first coil, or primary, causes a changing magnetic field in the iron core, and this changing magnetic field causes or induces an alternating current in the second coil, or secondary. The proportion of primary voltage to secondary voltage is very nearly the same as the ratio of primary turns; i.e., twice as many secondary turns as primary turns will give twice as much secondary voltage, etc. The current proportion goes the other way - it is inversely proportional to the turns ratio.

Inductance

When a source of alternating voltage is connected across a coil the coil will not pass as much current as when an equal direct-current voltage is placed across the coil. The reason for this is that when the alternating current is passed through the coil, the magnetic field around the coil will increase and decrease in accordance with the reversals of the alternating current. The varying field, however, will induce a varying voltage back in the coil and the current induced by this varying voltage will always be in the opposite direction to that of the current originally passed through the wire. The result, therefore, is that, because of this property of self-induction, the coil tends constantly to oppose any change in the current flowing through it and hence to limit the amount of alternating current flowing. The effect can be visualized as electrical inertia. In the case of the direct current passing through the coil, the self-inductance only tries to prevent the current flow as it is building up; after the current has come to a steady value the self-inductance has no effect and the current is limited only by the resistance of the wire in the coil.

The inductance of a coil is measured in henrys or, when smaller units are more convenient, the millihenry (one-thousandth of a henry) or microhenry (one-millionth of a henry).

It should be remembered that the higher the frequency of the current the more the inductance will try to prevent its flow. The rate at which the magnetic field cuts the coil affects

FIG. 308 - TWO TYPES OF COIL-CONDENSER CIRCUITS
The connection at the left in called a "parallel" tuned circuit, that at the right a "eeries" circuit. The parallel circuit hae ite maximum impedance at the resonant frequency and hence limite the current flow at that frequency. The sories circuit worke just oppoeitely: the minimum impodance and hence the maximum current occura at the resonant frequency of the circuit.
the self-induced "back voltage" so that it is easy to understand why the retarding force becomes greater as the magnetic field changes more rapidly. The combined effect of frequency and inductance in coils is called reactance or inductive reactance.

Resonance

Consider a coil and condenser connected as in Fig. 308-A, with a source of alternating voltage connected across the circuit. If the frequency of the alternating voltage is low. practically all of the current will pass through the coil, since its reactance is low and the condenser reactance is high at low frequencies. When the voltage-source frequency is high, practically all of the current will flow through the condenser, since its reactance is low and the coil's is high. However, at some point between these two frequency limits there will be a frequency where the coil reactance is equal to the condenser reactance, and it is at this point that the minimum amount of current will flow through the circuit. This is called the "resonance frequency" of the circuit, and follows a simple relation given in Chapter IV.

Exactly the opposite effect takes place with the "series" circuit of Fig. 308-B. Here, when the frequency is low the condenser limits the current flow and when the frequency is high the coil limits it, since the current must pass through both to complete the circuit. However, when the reactances are equal, the maximum amount of current will flow. This frequency is also called the "resonance frequency" and, if the coil and condenser were the same in this series circuit as in the abovedescribed "parallel circuit," the resonance frequencies in the two cases would be the same. However, in the parallel circuit the current would be a minimum and in the other a maximum, at resonance.

If a source of current is connected to a circuit containing inductance and capacity, the condenser will become charged and will dis-

THE RADIO AMATEUR'S HANDBOOK

charge through the coil. The rate of flow of current will be retarded by the inductive reactance of the coil and the discharge of the condenser will not be instantaneous. As the current continues to flow from the condenser into the coil, the energy initially stored in the condenser will become stored in the magnetic field about the coil. When substantially all the energy in the circuit is stored in this field, the field will start to collapse, causing a continued flow of current through the circuit and charging the condenser, but in the opposite direction. Then, when all the energy again is

stored in the condenser, the sequence is repeated in the opposite direction. This process is called oscillation and will occur at the resonant frequency of the coil and condenser combination. The process would continue indefinitely if it were possible to make coils and condensers without resistance, but it isn't, and so the energy is dissipated rapidly in the form of heat caused by the current flowing through the resistance of the coil. The process of the oscillation dying out because of resistance losses is called damping, and is overcome in practical circuits by continuously supplying energy to replace that which is dissipated. It must, of eourse, be supplied at the correct frequency, else it would buck the oscillations and prevent their buidding up. The fact that the coil and condenser combination will respond best to only one frequency is often utilized in radio work since, if either the inductance or capacity is made variable, any resonance frequency can be selected, over the range of variation. "Tuning" a receiver or transmitter generally only means adjusting the circuits to resonance and hence, best response for the desired frequency.

You can demonstrate resonance to yourself by fastening a rubber band to a fountain pen or other suitable weight. Hold the other end of
the rubber band, with the weight dangling, and move your hand up and down slowly over a distance of an inch or two. The weight will move up and down with your hand, the rubber band stretching but little. Now move your hand up and down quite rapidly; the weight will stand still and the band will take all the motion. Experiment with different speeds, or frequencies, and you will find a point where both weight and band will move the most, and you will also observe that you need only supply a small amount of energy to keep the system oscillating. The weight represents inductance (inertia), the rubber band acts like the condenser, and the motion of your hand is the applied voltage or current.

ELESTIRONS IN NHTION-REAMIO FIEEQUENCY

Kou are now familiar with oscillating cir-

 cuits where the energy is stored in the magnetic field of the coil and the electrostatic field of the condenser, and always returned to the circuit. This is true where the frequency is relatively low, but as the frequency is increased to above 20,000 cycles per second or so, it will be found that all of the energy does not return but escapes in the form of electromagnetic radiation. In other words, the energy is radiated into space. Not much escapes from the conventional tuned circuit described above, but if this tuned circuit is replaced by its electrical equivalent in the form of a long wire (see Chapter IV) practically all of the energy will be sent out into space. This radiation of energy through space is the basis of all radio communication, since intelligence can be transmitted if the radiated energy is varied in accordance with telegraph characters or speech syllables, and picked up at the receiver and reconverted into sound.You now have the complete picture of the family of moving electrons, or electricity. Electrons at rest in the form of static (meaning still) charges; electrons moving in one direction forming direct-current flow; electrons moving back and forth at regular periods to form alternating current, and, when the frequency becomes great enough, radiating their energy out into space. One thing is important: The radio-frequency currents in the antenna set up fields of energy which travel through space the electrons themselves are not hurtled through the air. Radio waves travel through space with the speed of light, roughly about 186,000 miles per second, or seven times around the world in one second. Normally traveling in straight lines from the radiating point, radio waves can be bent or refracted in the upper atmosphere and thus transmitted to a point on the opposite side of the earth.

radio circuit equations, TERMS AND DEFINITIONS

Abstract

Now that we have some conception of what an electric current really is and of the different forms in which electricity is to be found, we may proceed to examine its effects in the apparatus which is to be used in radio work.

We have already mentioned that any substance in which an electric current can flow is a conductor and we have also pointed out that some substances conduct more readily than others - they have less resistance. Most of the conductors in radio apparatus - such as wiring, coils, etc. - are required to have the greatest conductivity or the least resistance possible. They are of metal, usually copper. But many of the conductors are actually placed in the circuit to offer some definite amount of resistance. They are known under the general term of resistors and the amount of resistance they (or any conductor) offer is measured in ohms.

(DIINES LANW

When a current flows in any electric circuit, the magnitude of the current is determined by the electromotive force in the circuit and the resistance of the circuit, the resistance being dependent on the material, cross-section and length of the conductor. The relations which determine just what current flows are known as Ohm's Law. It is an utterly simple law but

FIG. 401 - DIAGRAMS OF SERIES, PARALLEI, ANII SERIPS-PARALIEI, RESISTANCE CONNEAIIONS
onc of such great value that it should be studied with particular care. With its formula, carrying terms for current, electromotive force and resistance, we are able to find the actual conditions in many circuits, provided two of the threc quantities are known. When I is the current in amperes, E is the electromotive force in volts and R is the circuit resistance in ohms, the formulas of Ohm's Law are:

$$
R=\frac{E}{I} \quad I=\frac{E}{R} \quad E=I R
$$

The resistance of the circuit can therefore be found by dividing the voltage by the current: the current can be found by dividing the voltage by the resistance: the electromotive force or e.m.f. is cqual to the product of the resistance and the current.

URENINTANCES IN NEIBIES ANID PARALIDEL,

18esistors, like battery cells, may be connected in series, in parallel or in series-parallel. When two or more resistors are connected in series, the total resistance of the group is higher than that of any of the units. Should two or more resistors be connected in parallel, the total resistance is decreased. Fig. 401 and the following formulas show how the value of a bank of resistors in series, parallel or seriesparallel may be computed, the total being between A and B in each case.

Resistances in series:
Total resistance in ohms $=R_{1}+R_{2}+R_{3}+R_{4}$
Rcsistances in parallel:
Total resistance in ohms $=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}}$
Or, in the case of only 2 resistances in parallel,

$$
\text { Total resistance in ohms }=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Resistances in series-parallel:
Total resistance in ohms $=$
$\frac{1}{\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}+\frac{1}{R_{5}+R_{6}}+\frac{1}{R_{7}+R_{8}+R_{9}}}$

THE RADIO AMATRUR'S HANDB00K

ALTERNATING CURRENT VALUES

【N Fig. 402 a curve describing the voltage developed by an alternating-current generator during one complete cycle is shown. This curve is actually a graph of the instantaneous values of the voltage amplitude, plotted against time, assuming a theoretically perfect generator. It

FIG. 402 - REPRESENTING SINE-WAVE ALTERNATING VOLTAGE AND CURRENT
is known as a sine curve, since it represents the equation

$$
e=E_{\text {max }} \sin \omega t
$$

where e is the instantaneous voltage, $E_{\text {max }}$ is the maximum voltage and t is the time from the beginning of the cycle. The term ω, or $2 \pi f$, represents the angular velocity, there being 2π radians in each complete cycle and f cycles per second. All the formulas given for alternating current circuits have been derived with the assumption that any alternating voltage under consideration would follow such a curve.

It is evident that both the voltage and current are swinging continuously between their positive maximum and negative maximum values, and it might be wondered how one can
speak of so many amperes of alternating current when the value is changing continuously, The problem is simplified in practical work by considering that an alternating current has an effective value of one ampere when it produces heat at the same average rate as one ampere of continuous direct current flowing through a given resistor. This effective value is the square root of the mean value of the instantaneous current squared. For the sine-wave form,

$$
E_{\mathrm{off}}=\sqrt{1 / 2 E_{\max }^{2}}
$$

For this reason, the effective value of an alternating current, or voltage, is also known as the root-mean-square or r.m.s, value. Hence, the effective value is the square root of $1 / 2$ or 0.707 of the maximum value - practically considered 70% of the maximum value.

Another important value, involved where alternating current is rectified to direct current, is the average. This is equal to 0.636 of the maximum (or peak) value of either current or voltage. The three terms maximum (or peak), effective (or r.m.s.) and average are so important and are encountered so frequently in radio work that they should be fixed firmly in mind right at the start.

They are related to each other as follows:

$$
\begin{aligned}
& E_{\max }=E_{\text {ofl }} \times 1.414=E_{\text {ave }} \times 1.57 \\
& E_{\text {off }}=E_{\max } \times .707=E_{\text {ave }} \times 1.11 \\
& E_{\text {ave }}=E_{\max } \times .636=E_{\text {off }} \times .9
\end{aligned}
$$

The relationships for current are the same as those given above for voltage. The usual alternating current ammeter or voltmeter gives a direct reading of the effective or r.m.s. (root mean square) value of current or voltage. A direct current ammeter in the plate circuit of

Alternating current	a.c.	Megohm	M
Ampere (amperes)	a.	Meter	m.
Antenna	ant.	Microfarad	$\mu \mathrm{fd}$.
Audio frequency	a.f.	Microhenry	$\mu \mathrm{h}$.
Centimeter	cm .	Micromicrofarad	$\mu \mu \mathrm{fd}$.
Continuous waves	c.w.	Microvolt	
Cycles per second	c.p.s.	Microvolt per meter	$\mu \mathrm{v} / \mathrm{m}$.
Decibel	db	Microwatt	$\mu \mathrm{w}$.
Direct current	d.c.	Milliampere	ma.
Electromotive force	e.m.f.	Millivolt	mv.
Frequency	f.	Milliwatt	mw.
Ground	gnd.	Modulated continuous waves	m.c.w.
Henry	h.	Ohm	Ω
High frequency	h.f.	Power	P.
Intermediate frequency	i.f.	Power factor	p.f.
Interrupted continuous waves	i.c.w.	Radio frequency	
Kilocycles (per second)	kc.	Ultra-high frequency	u.h.f.
Kilowatt	kw.	Volt (volts)	v.
Megacycle (per second)	Mc.	Watt (watts)	w.

radio Circuit rouations, terms and definitions

a vacuum tube approximates the average value of rectified plate current. Maximum values can be measured by a peak vacuum-tube voltmeter. Instruments for making such measurements are treated in Chapter Sixteen.

CDMIPLEX WAVES

lternating currents having the ideal sinewave form just described are practically never found in actual radio circuits, although waves closely approximating the perfectly sinusoidal can be generated with laboratory-type equipment. Even the current in power mains is somewhat non-sinusoidal, although it can be considered sinusoidal for most practical purposes. In the usual case, such a current actually has components of two or more frequencies integrally related, as shown in Fig. 403. The

FIG. 403 - A COMPIEX WAVEANDITS SINE-WAVE Components
lowest and principal frequency is the fundrmental. The additional frequencies are wholenumber multiples of the fundamental frequency (twice, three times, etc.), and are called harmonics. One of double frequency is the second harmonic, one of triple frequency the third harmonic, etc. Although the wave resulting from the combination is non-sinusoidal the wave-form of each component taken separately has the sine-wave form.

The effective value of the current or voltage for such a complex wave will not be the same as for a pure sine wave of the same maximum value. Instead, the effective value for the complex wave will be equal to the square root of the sum of the squares of the effective values of the individual frequency components. That is,

$$
E=\sqrt{E_{1}^{2}+E_{2}^{2}+E_{3}^{2}}
$$

where E is the effective value for the coniplex wave, and E_{1}, E_{2}, etc., are the effective values of the fundamental and harmonics. The same relation also applies where currents of different frequencies not harmonically related flow in the same circuit.

COMEBENED A.C. AND D.C.

here are many practical instances of simultaneous flow of alternating and direct current in a circuit. When this occurs there is a pulsating current and it is said that an alternating

FIG. 404 - PULSATING CURRENT COMPOSED OF ILTERNATING CURRENT SUPERIMPOSED ON DIRECT CURRENT
current is superimposed on a direct current. As shown in Fig. 404, the maximum value is equal to the d.c. value plus the a.c. maximum, while the minimum value (on the negative a.c. cycle) is the difference between the d.c. and the maximum a.c. values. If a d.c. ammeter is used to measure the current, only the average or direct-current component will be indicated. An a.c. meter, however, will show the effective value of the combination. But this effective value is not the simple arithmetical sum of the effective value of the a.c. and the d.c., but is equal to the square root of the sum of the effective a.c. squared and the d.c. squared.

$$
I=\sqrt{I_{\mathrm{ac}}}{ }^{2}+I_{\mathrm{do}_{0}}{ }^{2}
$$

where $I_{\text {so }}$ is the effective value of the a,c. component, I is the effective value of the combination and I_{do} is the average (d.c.) value of the combination. If the a.c. component is of sine-wave form, its maximum value will be its effective value, as determined above, multiplied by 1.414 . If the a.c. component is not sinusoidal the maximum value will have a different ratio to the effective value, of course, depending on its wave form, as discussed in the preceding section.

RUANTITY ENERGY AND IPOWEIR UNITS

In addition to the volt (unit of pressure), ampere (unit of flow) and ohm (unit of resistance), there are three other electrical units which are to be distinguished. These are the coulomb, the unit of quantity (Q); the joule, the unit of work or energy (W); and the walt, the unit of power or rate of work (P).

One coulomb is the quantity of electricity representerl by a current fow of 1 ampere for 1 second. In other words, I coulomb equals I am-pere-second.

One joule represents the work done in moving 1 coulomb against an electrical pressure of 1 volt.

THE RADIO AMATBUR'S HANDBOOK

In other words, it is a current flow of 1 ampere for 1 second between two points having a potential difference of 1 volt.

Power is the rate at which work is done. Hence, one watt is equal to 1 joule per second. In other words, it is the rate of work done when 1 ampere flows between two points having a potential difference of 1 volt. Therefore, power in watts equals volts multiplied by amperes.

Heating Effect and Power (P)

The heating effect of the electric current is due to molecular friction in the wire caused by the flow of electricity through it. This effect depends on the resistance of the wire; for a given time (seconds) and current (amperes) the heat generated will be proportional to the resistance through which the current flows. The power used in heating or the heat dissipated in the circuit (which may be considered sometimes as an undesired power loss) can be determined by substitution in the following equations:

Since	$P=E I$
and	$E=I R$
Therefore,	$P=I R \times I=I^{2} R$
Also, since	$I=\frac{E}{R}$
	$P=\frac{E^{2}}{R^{2}} \times R=\frac{E^{2}}{R}$

P being the power in watts, E the e.m.f. in volts, and I the current in amperes.

It will be noted that if the current in a resistor and the resistance value are known, we can readily find the power. Or if the voltage across a resistance and the current through it are known or measured by a suitable voltmeter and ammeter, the product of volts and amperes will give the power. Knowing the approximate value of a resistor (ohms) and the applied voltage across it, the power dissipated is given by the last formula.

Likewise, when the power and resistance in a circuit are known, the voltage and current can be calculated by the following equations derived from the power formulas given above:

$$
\begin{aligned}
E & =\sqrt{P R} \\
I & =\sqrt{\frac{P}{R}}
\end{aligned}
$$

Just as we can measure power dissipation in a resistance, we can determine the plate power input to a vacuum-tube transmitter, oscillator or amplifier, by the product of the measured plate voltage and plate current. Since the plate current is usually measured in milliamperes (thousandths of amperes), it is necessary to divide the product of plate volts and milli-
amperes by 1000 to give the result directly in watts.

Power With Pulsating Current

In a resistance circuit, the power developed by a pulsating current such as that illustrated in Fig. 404 will be $I_{2} R$ watts, I being the effective or r.m.s. value of the current and R the resistance of the circuit in ohms. In the special case of sine-wave a.c. having maximum value equal to the d.c., which represents 100% modulation of the d.c. by the a.c., the effective value of the a.c. component is $0.707(70 \%)$ of its maximum a.c. value and likewise of the d.c. value. If the two maximum values are each 1 ampere,

$$
\begin{aligned}
I & =\sqrt{1^{2}+} \text { 娄.707} \\
& =\sqrt{1.5} \\
& =1.226 \\
P & =I^{2} R \\
& =1.5 R
\end{aligned}
$$

Hence, when sine-wave alternating current is superimposed on direct current in a resistance circuit the average power is increased 50% if the maximum value of the a.c. component is equal to the d.c. component. If the a.c. is not sinusoidal, the power increase will be greater or less, depending on the alternating-current wave form. This point is discussed further in connection with speech modulation in Chapter Ten.

ELECTIROMAGNETISM

When any electric current is passed through a conductor, magnetic effects are produced. Moving electrons produce magnetic fields. They are in the form of lines surrounding the wire; they are termed lines of magnetic force. These lines of force, in the form of concentric circles around the conductor, lie in planes at right angles to the axis of the conductor.

The magnetic field constituted by these lines of force exists only when current is flowing through the wire. When the current is started through the wire, we may visualize magnetic field as coming into being and sweeping outward from the axis of the wire. And on the cessation of the current flow, the field collapses toward the wire again and disappears. Thus energy is alternately stored in the field and returned to the wire. When a conductor is wound into the form of a coil of many turns, the magnetic field becomes stronger because there are more lines of force. The force is expressed in terms of magneto-motive force ($m . m . f_{\text {. }}$) which depends on the number of turns of wire, the size of the coil and the amount of current flowing through it. The same magnetizing effect can be secured with a great many turns and a weak current or with fewer turns and a greater current. If ten amperes flow in

radio CIRCUIT equations, terms and definitions

one turn of wire, the magnetizing effect is 10 ampere-turns. Should one ampere flow in ten turns of wire, the magnetizing effect is also 10 ampere-turns.

The length of the magnetic circuit, the material of which it is made and the crosssectional area, determine what magnetic flux (Φ) will be present. And just as the resistance of the wire determines what current will flow in the electric circuit, the reluctance (μ) of the magnetic circuit (depending on length, area and material) acts similarly in the magnetic circuit.

$$
\begin{aligned}
& I=\frac{E}{R} \text { in the electric circuit; so } \\
& \Phi=\frac{m \cdot m \cdot f_{i}}{\mu} \text { in the magnetic circuit. }
\end{aligned}
$$

Permeability is the ratio between the flux density produced in a material by a certain m.m.f. and the flux density that the same m.m.f. will produce in air. Iron and nickel have higher permeability an air. Iron has a permeability some 3000 times that of air, is of low cost, and is therefore very commonly used in magnetic circuits of electrical devices.

Inductance (L)

The unit of self-inductance is the henry. A coil has a self-inductance of 1 henry when a rate of current change of 1 ampere per second causes an induced voltage of 1 volt. This basic unit is generally used with iron-core coils (as in power-supply filter circuits), but is too large for convenience in many radio applications. Therefore, smaller units are also used. These are the millihenry ($m h$), equal to one-thousandth henry; and microhenry (μh), onemillionth henry. The practical formula for computing the inductance of air-core radio coils is:

$$
L=\frac{0.2 A^{2} N^{2}}{3 A+9 B+10 C}
$$

where L is the inductance in microhenrys
A is the mean diameter of the coil in inches
B is the length of winding in inches
C is the radial depth of winding in inches N is the number of turns.
The quantity C may be neglected if the coil is a single-layer solenoid, as is nearly always the case with coils for high frequencies.

For example, assume a coil having 35 turns of No. 30 d.s.c. wire on a receiving coil form having a diameter of 1.5 inches. Consulting the wire table, we find that 35 turns of No. 30 d.s.c. will occupy a length of one-half inch. Therefore,

$$
\begin{aligned}
& A=1.5 \\
& B=.5 \\
& N=35
\end{aligned}
$$

and

$$
L=\frac{0.2 \times(1.5)^{2} \times(35)^{2}}{(3 \times 1.5)+(9 \times .5)}
$$

or 61.25 microhenrys.
To calculate the number of turns of a singlelayer coil for a required value of inductance:

$$
N=\sqrt{\frac{3 A+9 B}{0.2 A^{2}} \times L}
$$

More rapid and convenient calculations in designing coils can be made with the A.R.R.L. Lightning Radio Calculator (Type A). Data for iron-core coils are given in Chapter Fifteen. Stated generally, the self-inductance of a coil is inversely proportional to the reluctance of its magnetic circuit and is proportional to the square of the number of turns. If the magnetic circuit is a closed iron core, for instance, the inductance value might be several thousand times what it would be for the same coil without the iron core, the reluctance being that much less than with an air-core. Also, doubling the number of turns would make the inductance 4 times as great.

Inductances in Series and in Parallel

Coils may be connected in series, in parallel, or in series-parallel. If connected in series, the total inductance is increased just as the total resistance is increased with resistances in series, provided the magnetic flux of either coil does not link with the turns of the other. With the same restriction, the total inductance of coils connected in parallel is reduced just as the total resistance is reduced with resistors connected in parallel. Correspondingly, coils may be connected in series-parallel combinations. The equations for inductances in series, in parallel and in series-parallel are the same as those given for resistances, with the proper inductance values substituted for resistance values.

Magnetic Energy Storage (W)

The tendency of coils to prevent changes in current flow gives them the ability to store energy. This energy storage is proportional to the inductance of the coil and to the square of the current.

$$
\text { Energy stored in coil }=\frac{L I^{2}}{2}
$$

where the energy is in joules or watt seconds, L is the inductance in henrys, I is the current in amperes.

This property is of particular importance in the filter systems used for transmitter and receiver power supply which are described in a later chapter.

Inductive Reactance (X_{L})

As we have learned, a coil tends to limit the amount of current which an alternating voltage

THE RADIO AMATEUR'S HANDB00K

can send through it. A further very important fact is that a given coil with a fixed amount of inductance will retard the flow of a high frequency alternating current much more than a low frequency current. We know, then, that the characteristic of a coil in retarding an alternating current flow depends both on the inductance of the coil and on the frequency of the current. This combined effect of frequency and inductance in coils is termed reactance, or inductive reactance.

The inductive reactance formula is:

$$
X_{L}=2 \pi f L
$$

where: X_{L} is the inductive reactance in ohms π is 3.1416
f is the frequency in cycles per second
L is the inductance in henrys
From this it is evident that inductive reactance is directly proportional to frequency and also directly proportional to the value of inductance.

Capacity or Capacitance (C)

The characteristic which permits a condenser to be charged is termed capacity or capacitance. The capacity of a condenser depends on the number of plates in each element, the area of the plates, the distance by which they are separated by the dielectric and the nature of the dielectric. Glass or mica as the dielectric in a condenser would give a greater capacity than air - other things being equal.

The unity of capacity is the farad. A more common term in practical work is the microfarad (abbreviated $\mu \mathrm{fd}$.) while another (used particularly for the small condensers in highfrequency apparatus) is the micromicrofarad (abbreviated $\mu \mu \mathrm{fd}$.). The $\mu \mathrm{fd}$. is one millionth of a farad; the $\mu \mu \mathrm{fd}$. is one millionth of a microfarad.

The formula for the capacitance of a condenser is

$$
\begin{aligned}
C & =\frac{k A(n-1)}{4 \pi d \times 9 \times 10^{5}} \\
& =.0088 \frac{k A}{d}(n-1) 10^{-5} \mu \mathrm{fd}
\end{aligned}
$$

where $A=$ area of one side of one plate (sq. cm.)
$n=$ total number of plates
$d=$ separation of plates (cm.)
$k=$ specific inductive capacity or dielectric constant of the dielectric.
When A is the area of one side of one plate in square inches and d is the separation of the plate in inches,

$$
C=.02235 \frac{k A}{d}(n-1) 10^{-5} \mu \mathrm{fd}
$$

The dielectric constant determines the quantity of charge which a given separation and
area of plates will accumulate for a given applied voltage. The "inductivity" of the dielectric varies as in the table. " k " is the ratio of the capacitance of a condenser with a given dielectric to its capacitance with air dielectric.

Table of Dielectric Constants

Dieletric	" k "	Punctu Kilovolts per cm.	voltage Kilovolts per inch.
Air (normal preasure)	1.00	7.8-9.0	19.8-22.8
Flint Glass	6. to 10	900	2280
Mica	4.6 to 8	1500	3810
Paraffin Wax (solid)	2.0 to 2.5	400	1017
Sulphur	3.9 to 4.2		
C'astor Oil	4.7	150	381
Porcelain	4.4		
Quartz	4.5	-	-
Resin	2.5		
Olive Oil	3.1	120	305
Gutta Percha	3.3 to 4.9	80-200	203-508
Shellac	3.1	-	
Common Glass	3.1 to 4.0	300-1500	762-3810
Turpentine	2.23	110-160	280-406
Dry Oak Wood	2.5 to 6.8		
Formica Bakelite, etc.	5 to 6	-	

A considerable variety of types of condensers is used in radio work. Perhaps the most commonly known type is the variable condenser - a unit comprising two sets of metal plates, one capable of being rotated and the other fixed and with the two groups of plates interleaving. In this case, the dielectric is almost invariably air. Fixed condensers are also widely used. One type consists of two sets of metal foil plates separated by thin sheets of mica, the whole unit being enclosed in molded bakelite. Yet another type - usually of high capacity - consists of two or more long strips of metal foil separated by thin waxed paper, the whole thing being rolled into compact form and enclosed in a metal can. Paper impregnated with oil or Pyranol is used as the dielectric in compact high-voltage units. Units of this type have capacities of from a fraction of a microfarad to four microfarads or more, and voltage ratings ranging from several hundred to several thousand volts.

Electrolytic Condensers

Still another type is the electrolytic condenser, widely used in filters of low-power transmitter plate supplies and in receivers. One plate of these condensers consists of sheets of aluminum or aluminum alloy on which a thin insulating film of aluminum oxide is formed by polarization; that is, by connecting this plate to the positive of a d.c. supply. This electrode is immersed in a liquid electrolyte in a "wet" type condenser, the electrolyte actually serving as the other "plate," to which a conductive connection is made by a second aluminum electrode immersed in the electrolyte. The latter electrode is negative. The electrolyte is usually a solution of borax and

radio Circult equations, terms and definitions

boric acid. The "dry" type electrolytic condenser is similar but has its electrolyte soaked into a strip of gauze separating the filmed and non-filmed electrodes. In both types the thin film is the dielectric which, together with the relatively large plate area achieved by the various methods of construction, gives the electrolytic condenser a very high capacitance in small space. But there is one important difference between electrolytic condensers and the other fixed condensers previously described. The plate on which the film is formed always must be maintained at a positive potential with respect to the other electrode. Hence, these condensers can be used only with steady d.c. or pulsating d.c. voltage applied. Unlike other types of fixed condensers, they cannot be used in circuits carrying only alternating current. They are ordinarily used in capacitances ranging from 5 to 16 microfarads per unit, although a few types have capacitance of $100 \mu \mathrm{fd}$. or more, and have voltage ratings of 25 to 500 volts or higher.

The various types of condensers are usually designated by their dielectric material, or some distinguishing component of the dielectric. Hence, an air-dielectric type is called an "air" condenser, one having paper impregnated with Pyranol is called a "Pyranol" condenser, and so on.

Capacitive Reactance (NC)

We can readily understand how very different will be the performance of any condenser when direct or alternating voltages are applied to it. The direct voltages will cause a sudden charging current, but that is all. The alternating voltages will result in the condenser becoming charged first in one direction and then the other - this rapidly changing charging current actually being the equivalent of an alternating current through the condenser. Many of the condensers in radio circuits are used just because of this effect. They serve to allow an alternating current to flow through some portion of the circuit but at the same time prevent the flow of any direct current.

Of course, condensers do not permit alternating currents to flow through them with perfect ease. They impede an alternating current just as an inductance does. The term capacitive reactance is used to deseribe this effect in the case of condensers. Condensers have a reactance which is inversely proportional to the capacitance and to the frequency of the applied voltage. The formula for eapacitive reactance is

$$
X_{C}=\frac{1}{2 \pi f C_{\mathrm{fd}}}
$$

where X_{C} is the capacitive reactance in ohms π is 3.1416
f is the frequency in cycles per second $C_{\text {fd }}$ is the condenser capacitance in farads.
Where the capacitance is in microfarads ($\mu \mathrm{fl}$.), as it is in most practical cases, the formula becomes

$$
I_{C}=\frac{10^{6}}{2 \pi f C_{\mu \mathrm{fd}}}
$$

10_{6} being $1,000,000$.

Condensers in Series and Parallel

Capacitances can be connected in series or in parallel like resistances or inductances, as shown in Fig. 405. However, connecting condensers in parallel makes the total capacitance greater while in the case of resistance and inductance, the value is lessened by making a parallel connection.

The equivalent capacity of condensers connected in parallel is the sum of the capacities of the several condensers so connected

$$
C=C_{1}+C_{2}+C_{3}
$$

The equivalent capacity of condensers connected in series is expressed by the following formula:

$$
\frac{1}{C}=\frac{1}{C_{1}^{\prime}}+\frac{1}{C_{2}^{\prime}}+\frac{1}{C_{3}}
$$

When but two condensers are connected in series, the following expression can be used

$$
C=\frac{C_{1} C_{2}}{C_{1}+C_{2}^{\prime}}
$$

Where the net capacitance of a series-parallel combination is to be found, the capacitance of

PIG. 105- DIAGRAMS OF SERIES, PARALLEL ANI) SERFES-PARALIEI, CAPACITANCE CONNECTIONS
the series groups can be worked out separately and then added in parallel combination. As is also true in the case of resistances in parallel, the Series-Parallel type Lightning Calculator is a useful aid in making such determinations.

THE RADIO AMATEUR'S HANDB00K

Connecting condensers in series increases the breakdown voltage of the combination although, of course, it decreases the capacitance available. Condensers of identical capacitance are most effectively connected in series for this purpose. Voltage tends to divide across series condensers in inverse proportion to the capacitance, so that the smaller of two series condensers will break down first if the condensers are of equal voltage rating. Before selecting filter condensers the operating conditions, voltage peaks and r.m.s. values should be carefully considered. For further information on this matter see Chapter Fourteen.

Energy Stored in Condensers (W)

As has been previously shown, magnetic energy is stored in coils. Likewise, energy is stored in condensers. But where the amount of energy is associated with current value in the case of the coil, it is associated with e.m.f. in the instance of the condenser. Hence, it is termed electrostatic energy. The amount of energy stored by a condenser is given by this equation:

$$
\text { Energy stored in condenser }=\frac{C E^{2}}{2}
$$

where the energy is in joules (or watt-seconds), C is the capacitance in farads, and E is the e.m.f. in volts. When the capacitance is in microfarads, as is usual in practical cases, the equation is

$$
\text { Energy stored }=\frac{C \mu_{\mathrm{fd}} \cdot E^{2}}{2 \times 10^{6}}
$$

10^{6} being $1,000,000$ and the answer being in joules.

This energy storage relation for condensers, like the energy storage relation for coils, is of importance in power supply filter circuits.

Resistance-Capacitance Time Constant (RC)

If a charged condenser had infinite resistance between its plates, it would hold the charge indefinitely at its initial value. However, since all practical condensers do have more or less definite resistance (through the dielectric and between the connecting terminals), the charge gradually leaks off. Good condensers have a very high "leakage resistance," however, and will hold a charge for days if left undisturbed.

In a circuit containing only capacitance and resistance, the time required for the potential difference between the charged plates of a condenser to fall to a definite percentage of its initial value is determined by the capacitance of the condenser and the value of the resistance. The relation is of practical importance in many circuit applications in amateur transmission and reception, as in time delay with automatic
volume control, resistance-capacitance filters, etc. For the voltage to fall to $37 \%(0.37)$ of its initial value,

$$
t=R C,
$$

where t is the time in microseconds (millionths of a second), R is the resistance in ohms, and C is the capacitance in microfarads. $R C$ should be divided by 1 million to give the answer in seconds. This is called the time constant of the combination. The time required for the voltage to fall to one-tenth (10%) of its initial value can be found by multiplying $R C$, as given above, by 2.4.
Time constant, t, for 90% fall in voltage $=2.4 \frac{R C}{10^{6}}, t$ being in seconds, R in ohms and C in $\mu \mathrm{fd}$.

Impedance (Z)

The combined effect of resistance and reactance is termed impedance in the case of both coils and condensers. The symbol for impedance is Z and it is computed from this formula:

$$
Z=\sqrt{R^{2}+X^{2}}
$$

where R is the resistance and X is the reactance. The terms Z, R and X are all expressed in ohms. Ohm's Law for alternating current circuits then becomes

$$
I=\frac{E}{Z} \quad Z=\frac{E}{I} \quad E=I Z
$$

When a circuit contains resistance, capacitance and inductance, all three in series, the value of reactance will be the difference between that of the coil and that of the condenser. Since for a given coil and condenser the inductive reactance increases with frequency and capacitive reactance decreases with frequency, X_{L} is conventionally considered positive and X_{C} negative.

In finding the current flow through a condenser in an alternating current circuit we can usually assume that $I=\frac{E}{X_{C}}$ ($X C$ being the capacitive reactance of the condenser). The use of the term Z (impedance) is, in such cases, made unnecessary because the resistance of the usual good condenser is not high enough to warrant consideration. When there is a resistance in series with the condenser, however, it can be taken into account in exactly the same manner as the resistance of the coil. The impedance of the condenser-resistance combination is then computed and used as the Z term in the Ohm's Law formulas.

Phase

It has been mentioned that in a circuit containing inductance, the rise of current is delayed by the effect of electrical inertia pre-

RADIO CIRCUIT EQUATIONS, TERMS AND DEFINITIONS

sented by the inductance. Both increases and decreases of current are similarly delayed. It is also true that a current must flow into a condenser before its elements can be charged and so provide a voltage difference between its terminals. Because of these facts, we say that a current "lags" behind the voltage in a circuit which has a preponderance of inductance and that the current "leads" the voltage in a circuit where capacity predominates. Fig. 406 shows three possible conditions in an alternating current circuit. In the first, when the load is a pure resistance, both voltage and current rise to the maximum values simultaneously. In this case the voltage and current are said to be in phase. In the second instance, the existence of inductance in the circuit has caused the current to lag behind the voltage. In the diagram, the current is lagging one quarter cycle behind the voltage. The current is therefore said to be 90 degrees out of phase with the voltage (360 degrees being the complete cycle). In the third example, with a capacitive load, the voltage is lagging one quarter cycle behind the current. The phase difference is again 90 degrees. These, of course, are theoretical examples in which it is assumed that the inductance and the condenser have no resistance. Actually, the angle of lag or lead depends on the ratio of reactance to resistance in the circuit.

Another kind of phase relationship frequently encountered in radio work is that between two alternating currents of identical frequency flowing simultaneously in the same circuit. Even in a circuit of pure resistance the two currents will augment or nullify each other, depending on whether they are in phase

(c) Currext leading Vartage with Pure Capacitancs

FIG. 406 - VOLTAGE AND CURRENT PIIASE RELATIONS WITH RESISTANCE AND REACTANCE CIRCUITS
or out of phase. When two such currents are of the same frequency and in phase they are said to be synchronized, the maximum amplitude of the combination then being the arithmetical sum of the two separate amplitudes. The maximum amplitude will be lessened as the phase differs, reducing to zero amplitude with two equal currents when the phase angle becomes 180 degrees. The latter condition is known as phase opposition.

Power Factor

In a direct current circuit, or in an alternating current circuit containing only resistance, the power can be computed readily by multiplying the voltage by the current. But it is obviously impossible to compute power in this fashion for an alternating current circuit in which the current may be maximum when the voltage is zero; or for any case in which the voltage and current are not exactly in phase. In computing the power in an a.c. circuit we must take into account any phase difference between current and voltage. This is made possible by the use of a figure representing the power factor.

The power factor is equal to the actual power in the circuit (watts) divided by the product of the current and voltage (volt-amperes). In terms of a circuit property, it is equal to the resistance divided by the impedance in the circuit. In the case of a circuit containing resistance only, the ratio is 1 and, hence, the power factor is 100% (unity). If there is reactance only in the circuit (zero resistance), then the power factor is zero. In circuits containing both resistance and reactance the power factor lies between these two values. As instances, a good condenser should have nearly zero power factor as should a good choke coil. Resistors for use in a.c. circuits should, on the other hand, have a power factor of 100%.

Oscillation Frequency - Resonance

It has been shown that the inductive reactance of a coil and the capacitive reactance of a condenser are oppositely affected with frequency. Inductive reactance increases with frequency; capacitive reactance decreases as the frequency increases. In any combination of inductance and capacitance, therefore, there is one particular frequency for which the inductive and capacitive reactances are equal and, since these two reactances oppose each other, for which the net reactance becomes zero, leaving only the resistance of the circuit to impede the flow of current. The frequency at which this occurs is known as the resonant frequency of the circuit and the circuit is said to be in resonance at that frequency or tuned to that frequency.

In practical terms, since at resonance the

THE RADIO AMATEUR'S HANDBOOK

inductive reactance must equal the capacitive reactance, then

$$
X_{L}=X_{C} \text { or } 2 \pi f \mathrm{~L}=\frac{1}{2 \pi f C}
$$

The resonant frequency is, therefore,

$$
f=\frac{1}{\underset{\sim}{0} \pi \sqrt{1 C}} \times 10^{6}
$$

where
f is the frequency in kilocycles per second 2π is 6.28
L_{Δ} is the inductance in microhenrys ($\mu \mathrm{h}$.)
C is the capacitance in micro microfarads ($\mu \mu \mathrm{fd}$.)
The resonance equation in terms of wavelength is

$$
\lambda=1.885 \sqrt{L_{\mu \mathrm{h} .} C_{\mu \mu \mathrm{fd}}}
$$

where
λ is the wavelength in neters
$L_{\mu \mathrm{h}}$. is the inductance in microhenrys
($\mu \mu \mathrm{m}$. is the capacitance in micromicrofarads

LC Constants

From this it is evident that the product of L and C^{\prime} is a constant for a given frequency and that the frequency of a resonont circuit varies inversely as the square root of the product of the inductance and capacitance. In other words, doubling both the capacitance and the inductance (giving a product of 4 times) would halve the frequency; or, reducing the capacitance by one-half and the inductance by one-half would double the frequency; while leaving the inductance fixed and reducing the capacitance to one-half would increase the frequency 40%. To double the frequency, it would be necessary

LCConstantsfor Amateur and Intermediate Frequencies

Frequency Band	L μh.	C $\mu \mu i d$.	$L \times C$
$1750-\mathrm{kc}$.	90	90	8100
$3500-\mathrm{kc}$.	45	45	2025
$7000-\mathrm{kc}$.	22.5	22.5	506.25
$14-\mathrm{Mc}$.	11.25	11.25	126.55
$28-\mathrm{Mc}$.	5.63	5.63	31.64
$56-\mathrm{Mc}$	2.82	2.82	7.91
$450-\mathrm{kc}$.	355	355	126,025

to reduce either the capacitance or the inductance to one-fourth (leaving the other fixed).

The accompanying table gives $L C$ values for reference at amateur-band and superhet intermediate frequencies. This table, in combination with the above general rules, will he of practical use in estimating the constants of tuned circuits for amateur transmitters and receivers. Note that the numerically equal in-
ductance and capacitance values listed are in microhenrys and micromicrofarads, respectively, giving L / C ratios for the three lower frequency amateur bands approximating those usual in receiver tuned circuits. These ratios would be considered relatively "low-C" or "high- L " in transmitter practice (low ratio of capacitance to inductance, or high ratio of inductance to capacitance). Extremely high-(" circuits for these bands would have capacitances greater by 10 times or so, and inductances proportionately smaller. Actual circuits for the three higher-frequency bands would necessarily have to have smaller inductance values because the minimum capacitances attainable in circuits would be larger than those indicated. Practical values are given in the later chapters describing apparatus.

SEIRING AND PARALIEEL. RENONANCE

.ll practical tuned circuits can be treated as either one of two general types. One is the

FIG. 407 - CHARACTERISTICS OF SERIES-IRESOViNI AND PARALIEI,-RENONiNT ©PRCUFTS
series resonant circuit in which the inductance, capacitance, resistance and source of voltage are in series with each other. With a constantvoltage alternating current applied as shown in A of Fig. 407 the current flowing through such a circuit will be maximum at resonant frequency. The magnitude of the current will be determined by the resistance in the circuit. The curves of Fig. 407 illustrate this, curve a being for minimum resistance and curves b and c being for greater resistances.

The second general case is the parallel resonant circuit illustrated in I3 of Fig. 407. This also contains inductance, capacitance and resistance in series, but the voltage is applied in parallel with the combination instead of in series with it as in A. Here we are not primarily interested in the current flowing through the rircuit but in its characteristics as viewed from its terminals, especially in the parallel impedance it offers. The variation of parallel impedance of a parallel resonant circuit with

RADIO CIRCUIT EQUATIONS, TERMS AND DEFINITIONS

frequency is illustrated by the same curves of Fig. 407 that show the variation in current, with frequency for the series resonant circuit. The parallel impedance is maximum at resonance and increases with decreasing series resistance. Although both series and parallel resonant circuits are generally used in radio work, the parallel resonant circuit is most frequently found, as inspection of the diagrams of the equipment described in subsequent chapters will show.

High parallel impedance is generally desirable in the parallel resonant circuit and low series impedance is to be sought in series resonant circuits. Hence low series resistance is desirable in both cases.

Sharpness of Resonance (O)

It is to be noted that the curves become "flatter" for frequencies near resonance frequency as the internal series resistance is increased, but are of the same shape for all resistances at frequencies further removed from resonance frequency. The relative sharpness of the resonance curve near resonance frequency is a measure of the sharpness of tuning or

FIG. 408 - IIOW TIIE VALUE OF Q IS DETERMINEI FIROM THE RESONANCE CUHVE: OF A SINGIE: CIRCUIT
selectivity (ability to discriminate between voltages of different frequencies) in such circuits. This is an important consideration in tuned circuits used for radio work. Since the effective resistance is practically all in the coil, the condenser resistance being negligible, the efficiency of the coil is the important thing determining the "goodness" of a tuned circuit. A useful measure of coil efficiency, and hence of tuned circuit selectivity, is the ratio of the coil's reactance to its effective series resistance. This ratio will be recognized as approximately the reciprocal of the circuit property of power factor previously discussed, and is designated by Q.

$$
Q=\frac{2 \pi f L_{L}}{R}
$$

The value of Q is determined directly from the resonance curve of either a series-resonant or parallel-resonant circuit as shown in Fig. 108. It is given by the ratio of the resonance frequency to the difference between the frequencies at which the series current (for the series-resonant circuit) or the parallel voltage (for the parallel-resonant circuit) becomes 70% of the maximum value. A Q of 100 would be considered good for coils used at the lower amateur frequencies, while the Q of coils for the higher frequencies may run to several hundred. It must be remembered, however, that Q represents a ratio, so that the actual frequency width of the resonance curve would be proportionately greater for a high-frequency circuit than for a low-frequency circuit having the same value of Q.

Radio Frequency Resistance - Skin Effect

The effective resistance of conductors and coils at radio frequencies may be many times the "ohmic" resistance of the same conductors as it would be measured for direct current or low-frequency alternating current. This is largely due to the skin effect, so called because the high-frequency current tends to concentrate on the outside of the conductor, leaving the inner portion carrying little or no current. It is for this reason that hollow copper tubing is widely used in the coils and connections of high-frequency circuits. However, the current may not be distributed uniformly over the surface. With flat conductors the current tends to concentrate at the edges and with square conductors it tends to concentrate at the corners. In addition to the skin effect, dielectric losses due to insulators and resistance losses in other conductors in the field of the conductor contribute to its effective resistance. The effective resistance is measured as the power in the circuit divided by the square of the maximum effective radio-frequency current.

Parallel-Resonant Circuit Impedance (Z)

The parallel-resonant circuit offers pure resistance (its resonant impedance) between

F1G. 09 - TIIE IMPEDANCE OF A PAIRALLEL-RESOVAN'T CIRCUIT SEPARATED INTO ITS REACTANCE ANID RESISTANCE COMPONENTS
The parallel resiatance is equal to the parallel impedance at reaonance.

TIIE RADIO AMATEUR'S IIANDB00K

its terminals at resonance frequency, and becomes reactive for frequencies higher and lower. The manner in which this reactance varies with frequency is shown by the indicated curve in Fig. 409. This figure also shows the parallel resistance component which combines with the reactance to make up the impedance. The reactive nature of parallel impedance at frequencies off resonance is important in a number of practical applications of parallel-tuned circuits, in both transmitters and receivers, and it will be helpful to keep this picture in mind.

The maximum value of parallel impedance which is obtained at resonance is proportional
circuits. It is by such coupling that energy is transferred from one circuit to another. Such coupling may be direct, as shown in A, B and C of Fig. 410, utilizing as the mutual coupling element, inductance (A), capacitance (B) or resistance (C). These three types of coupling are known as direct inductive, direct capacitive, or direct resistive, respectively. Current circulating in one $L C$ branch flows through the common element (C, R or L) and the voltage developed across this element causes current flow in the other $C L$ branch. Other types of coupling are the indirect capacitive and transformer or inductive shown below the others. The coupling most common in high-frequency

c-Resistive circuits is of the latter type. In such an arrangement the coupling value may be changed by changing the number of active turns in either coil or by changing the relative position of the coils (distance or angle between them).

All of the above coupling schemes may be classified as either tight or loose. Coupling cannot, however, be measured simply in "inches" separation of coils. The separation between the coils (distance and angle between axes) and the inductance in each determine the coefficient of coupling.
to the square of the inductance and inversely proportional to the series resistance. (This resistance should not be confused with the resistance component of parallel impedance which has just been mentioned.)

$$
\begin{gathered}
\text { Resonant impedance }=\frac{\left(2 \pi f_{r} L\right)^{2}}{R} \\
\text { Since } \frac{2 \pi f_{r} L}{\mathrm{R}}=Q
\end{gathered}
$$

$$
\text { Resonant impedance }=\left(2 \pi f_{r} L\right) Q
$$

In other words, the impedance is equal to the inductive reactance of the coil (at resonant frequency) times the Q of the circuit. Hence, the voltage developed across the parallel resonant circuit will be proportional to its Q. For this reason the Q of the circuit is not only a measure of the selectivity, but also of its gain or amplification, since the voltage developed across it is proportional to Z. Likewise, the Q of a circuit is related to the frequency stability of an oscillator in which it is used, the frequency stability being generally better as the circuit Q is higher. This is illustrated in practical applications described in subsequent chapters.

Coupled Circuits

Resonant circuits are not used alone in very many instances but are usually associated with other resonant circuits or are coupled to other

Coefficient of Coupling (k)

The common property of two coils which gives transformer action is their mutual inductance (M). Its value is determined by selfinductance of each of the two coils and their position with respect to each other. In practice, the coupling between two coils is given in terms of their coefficient of coupling, designated by k. The coupling is maximum (unity or 100%) when all of the flux produced by one coil links with all of the turns of the other. With air-core coils in radio-frequency circuits the coupling is much "looser" than this, however. It is generally expressed by the following relation:

$$
k=\frac{M}{\sqrt{L_{1} L_{2}}}
$$

in which k is the coefficient of coupling expressed either as a decimal part of 1 , or, when multiplied by 100 , as a percentage; M is the mutual inductance; L_{1} is the self-inductance of one coil; and L_{2} is the self-inductance of the other coil. M, L_{1} and L_{2} must be in the same units (henrys, millihenrys or microhenrys).

Critical coupling is that which gives the maximum transfer of energy from the primary to the secondary. However, the sharpness of resonance for the combination is considerably lessened under this condition. With coupling

radio CIRCUIT equations, TERMS AND DEFINITIONS

greater than critical, the resonance curve has two "humps" appreciably separated. For good selectivity the coupling is therefore made considerably less than the critical value, even though this reduces the amplification or gain. With the coil combinations used in radio receivers, coupling of the order of $k=0.05 \%$ or less is representative, whereas for critical coupling the coefficient might be 0.5% to 1.0%. The value of the coefficient for critical coupling is also related to the respective Q 's of the two coils:

$$
k_{\mathrm{orit}} \cdot \frac{1}{\sqrt{Q_{\mathrm{p}} Q_{\mathrm{t}}}}
$$

where the two Q values are for the primary and secondary, respectively. For instance, if the primary and secondary Q 's are equal, the value of critical k is the reciprocal of the Q for one coil - 0.01 or 1% where each has a Q of 100 . Therefore, for the same values of self-inductance, k becomes smaller as Q becomes higher.

HMPEDANCE MATCHING

IrIr should be kept in mind that, as has been previously mentioned, both single resonant circuits and coupled circuits are used in conjunction with other circuit elements. These other elements introduce resistance into the resonant circuits, and modify the constants that they would have by themselves. In practice it is seldom possible for the amateur to precalculate the effect of such reactions, since the other quantities are usually unknown. In any case, it is usually necessary to arrive at "best conditions" by the practical process of adjustment. However, the foregoing general information is helpful in preliminary design or choice of tuned circuit combinations, and in understanding why certain changes are likely to cause different behavior in circuit performance.

It is a well-known principle in radio circuit design that the maximum gross power of a generator, such as a vacuum tube, will be delivered to its load when the load resistance is equal to the internal resistance of the generator. In other words, maximum power would be taken from the generator when its resistance was exactly matched by the load resistance. Although this particular statement is literally true, it might not describe the most desirable condition of loading. For one thing, the efficiency would be only 50%, half the power being consumed in the generator and half in the load. From the principle, however, has grown up a system of more or less standard practice in designing radio circuits which comes under the broad heading of impedance matching. The term means, generally, that the load impedance
presented to the source is transformed to suit given requirements. This is accomplished by transformers and other coupling devices.

Iron-core transformers are widely used for coupling between load and vacuum-tube in audio-frequency amplifiers, for instance. In such cases the value of proper load resistance (load impedance) for maximum undistorted power output will be given for the tube. This load resistance, it will be noted, is not the same as the rated plate resistance of the tube, which is equivalent to its internal resistance as a generator. A second figure will be given for the actual impedance of the load device to which the tube must supply undistorted power. The matching of this load to the given requirements of the tube is the job of the coupling transformer, the job being to make the actual impedance of the load device appear as the rated load impedance of the tube, so far as the tube is concerned. This requires that the transformer have the proper ratio of secondary to primary turns. The turn ratio will be equal to the square root of the impedance ratio.

$$
\frac{N_{\mathrm{p}}}{N_{\mathrm{p}}}=\sqrt{\frac{Z_{\mathrm{B}}}{Z_{\mathrm{p}}}}
$$

where N_{0} and N_{p} are the numbers of secondary and primary turns, Z_{8} is the impedance of the load device and Z_{p} is the rated load resistance of the tube. This will also be the voltage ratio of the transformer.

Transformers are also used to provide proper impedance matching in radio-frequency circuits, although here the problem is not one of simply choosing a calculated turn ratio. Rather, the right condition is arrived at by adjustment of turns and distance between coils, as shown in the later chapters on transmitters.

Matching by Tapped Circuits

In addition to impedance matching by inductive coupling with tuned circuits, frequent use is made of tapped resonant circuits. Two

A
FIG. 411 - MEPHODS OF TAPPING THE PARALLEL IMIPEDANCE OF RESONANT CIRCUITS FOR IMPEDANCE MATCHING
methods for parallel resonant circuits are illustrated in Fig. 411. In one case (A) the tapping is across part of the coil, while in the other (B) it is across one of two tuning condensers in series. In both cases the impedance between the tap points will be to the total impedance practically as the square of the reactance

THE RADIO AMATEUR'S HANDB00K

between the tap points is to the total reactance of the branch in which the tapping is done. That is, if the coil is tapped in the center the reactance between the tap points will be one-half the total inductive reactance and the impedance between these points will be $(1 / 2)^{2}$ or onefourth the total parallel impedance of the circuit. The same will apply if the tap is made across one of two equal capacitance condensers connected in series. If the condenser across which the tap was made had twice the capacitance of the other, however, the impedance Z_{0} would be one-ninth the total, since the reactance between the tap points would then be but a third - capacitive reactance decreasing as the capacitance is increased.

IVink Coupling

Another coupling arrangement used for impedance matching radio-frequency circuit is that known as link coupling. It is used for transferring energy between two tuned circuits

FIG. 412 - METHODS OF USING IINK COUPLING: FOR IMIDEDANCE MATCIIING;
which are separated by space so that there is no direct mutual coupling between the two coils. It is especially helpful in minimizing incidental capacitive coupling between the two circuits due to the distributed capacitance of the windings, thereby minimizing the transfer of undesired harmonic components of the desired fundamental. Two typical versions of link coupling are shown in Fig. 412. Both represent an impedance step-down from one tuned circuit to the coupling line, and then an impedance step-up from the line to the other tuned circuit.

The arrangement of Fig. 412-A will be recognized as an adaptation of the impedancetapping method previously shown in Fig. 411-A. It is sometimes called auto-transformer link coupling, because the link turns are also included in the tuned-circuit turns. The arrangement of $412-\mathrm{B}$ differs only in that the link turns are separate and inductively coupled to the tuned-circuit turns. The latter system is somewhat more flexible in adjustment than the tapping method, since the coupling at either
end of the line can be adjusted in small steps by moving the link turns with respect to the tuned-circuit coils. Practical applications of such link coupling in various forms are deseribed in Chapter Eight.

FILTEIE CHIBCDITA

Althoc゙gh any resonant circuit is useful for selecting energy of a desired frequency and rejecting energy of undesired frequencies, certain combinations of circuit clements are better

FIG: 413-TYPES OF FIITFKS ANI AIPPROXIMATE CIARACTERISTICS OF HACH
adapted to transmitting more or less uniformly over a band of frequencies, or to rejecting over a baind of frequencies. Such rejecting action is known as attenuation and such combinations are called filters. Filter combinations are basically of three types, as illustrated in the simple forms of Fig. 413. A low-pass filter, as shown in A, is used to transinit energy below a given frequency limit and to attentuatc energy of higher frequencies. Filters of this type are generally used with iron-core coils or filter chokes in plate power supply systems for transmitters and receivers. A combination of inductance and capacitance elements of the arrangement of A is known as a " π " or " $p i$ " section because its appearance resembles that of the (ireek letter. A section of the type illustrated in B is of opposite character to that shown in A, passing frequencies above a designated cut-off limit and attentuating lower

RADIO CIRCUIT EQUATIONS, TERMS AND DEFINITIONS

frequencies and therefore being designated high-pass. The one shown is known as a "T" section, because its form resembles that letter.

A type of filter for transmitting over a band of frequencies and attenuating outside this band is shown in C. A combination giving this action is termed a band-pass filter. The partieular section shown will be recognized as having the same form as the indirect-capacitive coupling arrangement of Fig. 410-D. Similar performance is also obtainable with two tuned circuits inductively coupled. Therefore, such tuned transformers with proper coupling are used as band-pass filters, particularly in the intermediate-frequency circuits of superheterodyne receivers.

A particular combination of series-resonant and parallel-resonant circuit intended to attenuate over a narrow band of frequencies and transmit at frequencies outside that band is shown in D) of Fig. 413. The series-resonant circuit would give a very low shunt path impedance at one particular frequency, while the parallel-resonant circuit in the series path would have high impedance at that frequency. Both would therefore combine to reject or trap out energy over a narrow band of frequencies. Such action is used in wave traps for use with receivers.

A given type of filtering action is increased by using more sections in cascade, or combined effects are obtained by combining different types of filter sections. The subject of filters in all their variations is a highly specialized and complex matter, however, and cannot be covered in further detail here. The interested reader may refer to any standard communication or radio engineering text for further information.

In addition to filters employing only coils and condensers, there are also special types which use piezo-electric crystals (quartz and rochelle salts) as selective elements. These are treated in Chapter Seven.

BIRIIGE DIE NEUTIEALIZING: CIRCUITS

Another special type of circuit widely used in transmitters, and to some extent in receivers, is the bridge circuit. Einploying combinations of inductance and capacitance, it is used especially to neutralize the undesired coupling effect of a capacitance while permitting desired coupling. For instance, bridge combinations are generally used for neutralizing the grid-plate capacitance of triode tubes in transmitter r.f. amplifiers to prevent the feed-back of energy from the plate to the grid circuit. A bridge circuit is also used in the crystal filter of the Single-Signal type superheterodyne to modify the effective shunt capacitance of the
crystal. Such bridge circuits are generally of the forms shown in Fig. 414. When the bridge is balanced, there will be no voltage across one pair of terminals when excitation is applied to the other terminals. In most practical cases two arms of the bridge will be capacitances C_{1}^{\prime}

FIG. 414 - CAIPACITANCE AND INDUCTANCE-CApACITANCE BRIDGE CIRCUITS WIDELY USEI for neutralizing in Transmitters and RECEIVERS
and C_{2} as shown in A, or inductances L_{1} and L_{2} shown in B. In both cases C_{x} is the capacitance to be neutralized, while C_{n} is the capacitance adjusted to obtain the balance. With the capacitance arms of A, balance will be obtained when

$$
C_{n}^{\prime}=\frac{C_{2} C_{x}}{C_{1}}
$$

while with inductance arms of B, balance will be obtained when

$$
C_{\mathrm{n}}=\frac{L_{1} C_{\mathrm{x}}}{L_{2}}
$$

Whell $L_{1}=L_{2}$ in A, or when $C_{1}=C_{2}$ in B, then $C_{n} \times C_{x}^{\prime}$. This represents a desirable condition in practical neutralizing circuits, because balance will be maintained over a wider frequency range of L_{1}, L_{2} or C_{1}, C_{2} tuning.

Bridge circuits are also generally used in resistance, inductance and capacitance measurement. Such bridges usually have calibrated resistances in two arms, and in calibrated resistance, inductance or capacitance in the " n " arm, the unknown being connected in the " x " arm. Another field in which bridges find important applications is wire communication. Standard texts describe a number of these interesting applications. Those just explained
are the ones of greatest practical use to amateurs, however.

CIRCUITS WITII DISTRIBUTEI CONSTANTS-ANTENNAN ANI It.F. CHIDKES

INIn addition to resonant circuits containing lumped capacitance and inductance, there are important tuned circuits which utilize the distributed capacitance and inductance that are inevitable even in a circuit consisting of a single straight conductor. Transmitting and receiving antennas are such circuits and depend on their distributed capacitance and inductance for tuning. A peculiarity of such a circuit is that when it is excited at its resonant frequency the current or voltage, as measured throughout its length, will have different values at different points. For instance, if the wire happens to be one in "free space" with both ends open circuited, when it is excited at its resonant frequency the current will be maximum at the center and zero at the ends. On the other hand, the voltage will be maximum at the ends and zero at the center. The explanation of this is that the traveling waves on the wire are reflected when they reach an end. Succeeding waves traveling toward the same end of the wire (the incident waves) meet the returning waves (reflected waves) and the consequence of this meeting is that currents add up at the center and voltages cancel at the center; while voltages add up at the ends and currents cancel at the ends. A continuous succession of such incident and reflected waves therefore gives the effect of a standing wave in the circuit.

A similar standing-wave or straight-line resonance effect is experienced even when the conductor is wound in a long spiral, or coil having diameter small in proportion to its length. A single-layer radio-frequency choke is such a coil. It offers particularly high impedance between its ends at its resonant frequency and also, as will be presently shown for antennas, at multiples of its fundamental resonant frequency. Either side of these resonance peaks it has fairly high impedance, if it is a good choke, and therefore is useful over a considerable band of frequencies. Practically the same results are obtained with chokes consisting of a number of layer-wound sections, with all the sections connected in series.

Frequency and Wavelength

Although it is possible to describe the constants of such line circuits in terms of inductance and capacitance, or in terms of inductance and capacitance per unit length, it is more convenient to give them simply in terms of fundamental resonant frequency or of
length. In the case of a straight-wire circuit, such as an antenna, length is inversely proportional to lowest resonant frequency. Since the velocity of the waves in space is 300,000 kilometers (186,000 miles) per second, the wavelength of the waves is

$$
\lambda=\frac{300,000}{f_{\mathrm{kc}} .}
$$

where λ is the wavelength in meters and $f_{\text {kce }}$ is the frequency in kilocycles. The electrical length of an antenna is specified in terms of the wavelength corresponding to the lowest frequency at which it will be resonant. This is known as its fundamental frequency or wavelength. As shown in the chapter on Antennas, the physical length is a few percent less than an actual half-wavelength for an ungrounded (Hertz) antenna and a quarter-wavelength for a grounded (Marconi) antenna. This shortening effect occurs because the velocity of the waves is less in a conductor than in space. It is common to describe antennas as half-wave, quarterwave, etc., for a certain frequency ("half-wave $7000-\mathrm{kc}$. antenna," for instance).

Wavelength is also used interchangeably with frequency in describing not only antennas but also for tuned circuits, complete transmitters, receivers, etc. Thus the terms "highfrequency receiver" and "short-wave receiver," or " 75 -meter fundamental antenna" and " 4000 -kilocycle fundamental antenna" are synonymous.

Harmonic Resonance

Although a coil-condenser combination having lumped constants (capacitance and inductance) resonates at only one frequency, circuits such as antennas containing distributed constants resonate readily at frequencies

FIG. 415-STANDING-WAVE CURRENT DISTRIBUTION ON AN ANTENNA OPERATING AS AN oscillatory circuit at its fundamentai. SECOND HARMONIC AND THIRD HARMONIC FREQUENCIES
which are very nearly, although not exactly, integral multiples of the fundamental frequency (or wavelengths that are integral fractions of the fundamental wave length). These frequencies are therefore in harmonic relationship to the fundamental frequency

radio circuit equations, terms and definitions

and, hence, are referred to as harmonics. In radio practice the fundamental itself is called the first harmonic, the frequency twice the fundamental is called the second harmonic, and so on.

Fig. 415 illustrates the distribution of the standing waves on a Hertz antenna for fundamental, second and third harmonic excitation. There is one point of maximum current with fundamental operation, there are two when operation is at the second harmonic and three at the third harmonic; the number of current maxima corresponds to the order of the harmonic and the number of standing waves on the wire. As noted in the figure, the points of maximum current are called anti-nodes (also known as "loops") and the points of zero current are called nodes.

Radiation Resistance and Power

It will be remembered that it was shown that current flow in a conductor was accompanied by a magnetic field about the conductor; and

FIG. 416-STANDING WAVE AND INSTANTANEOUS CURRENT CONDITIONS OF A FOLDED HESO-NANT-LINE CIRCUIT
that with an alternating current the energy was alternately stored in the field in the form of lines of magnetic force and returned to the wire. But when the frequency becomes higher than 15,000 cycles or so (radio frequency) all the energy stored in the field is not returned to the conductor but some escapes in the form of electro-magnetic waves. In other words, energy is radiated. Energy radiated by an antenna is equivalent to energy dissipated in a resistor. The value of this equivalent resistance is known as radiation resistance. Radiation resistance values for antennas of different lengths are given in Chapter Thirteen. Since it is impossible to measure radio-frequency power directly with ordinary instruments, the approximate value of the power in an antenna can be computed by multiplying its assumed radiation resistance by the square of the maximum current (the current at the center of a fundamental Hertz antenna).
Antenna power (watts) = Radiation resistance (ohms) \times Current Squared $\left(\right.$ Amperes $\left.^{2}\right)$

Resonant-Line Circuits

The effective resistance of a resonant straight wire - that is, of an antenna - is seen to be considerable. Because of the power radiated, or "coupled" to the surrounding medium, the resonance curve of such a straight-line circuit is quite broad. In other words, its Q is relatively low. However, by folding the line, as suggested by Fig. 416, the fields about the adjacent sections largely cancel each other and very small radiation results. The radiation resistance is greatly reduced and we have a line-type circuit which can be made to have a very sharp resonance curve or high Q.

A circuit of this type will have a standing wave on it, as shown by the dash-line of Fig. 416, with the instantaneous current flow in each wire opposite in direction to the flow in the other, as indicated by the arrows on the diagram. This opposite current flow accounts for the cancellation of radiation. Furthermore, the impedance across the open ends of the line will be very high, thousands of ohms, while the impedance across the line near the closed end will be very low, as low as 25 ohms or so at the lowest. Hence, such lines can be used for impedance matching, as shown for antenna systems in Chapter Thirteen, as well as for stable oscillator circuits in ultra-high frequency transmitters, as shown in Chapter Twelve. Resonant lines having electrical lengths of odd multiples of a quarter-wavelength, or multiples of a half-wavelength, are also widely used by amateurs for coupling between the transmitter and the radiating portion of the antenna system, as is also shown in Chapter Thirteen on antenna systems.

Matched-Impedance Lines

If a two-wire line were made infinitely long there would be no reflection from its far end when radio-frequency energy was supplied to the input end. Hence, there would be no standing waves on the line and it would be, in effect, non-resonant. The input impedance of such a line would have a definite value of impedance determined, practically, by the size of the wires, their spacing and the dielectric between them. This impedance is called the surge impedance or characteristic impedance. If this line were cut and it was terminated, at a definite distance from the input end, by an impedance equal to the surge impedance of the infinite line, again there would be no reflections from the far end and, consequently, no standing waves. Hence, suiting the surge impedance of the line by the proper terminating load impedance is a practical case of impedance matching. As with the resonant lines mentioned above, matched-impedance lines are also used for coupling amateur transmitters to antenna-

THE RADIO AMATEUR'S HANDB00K

system radiators. The practical design features of these lines are disenssed in ('hapter Thirteen.

MUDLLATION ANID DDETEITHUN

FFor practical communication between our stations it is not enough simply to generate radio-frequency power continuously and radiate it from an antenna. Something must be done before the waves are transmitted to make them carry the messages we wish to convey. Application of this intelligence to the transmitted wave is accomplished by a process

B
FIG. 417 - REPRESENTING TIIE MODULATEI) CURRENT OF A TELEGRAPH WAVE (A) AND SINUSOIDALLY MODULATED SPEECH WAVE (B), AMPLITUDE MODULATION
of molulation. Without such modulation the radio wave would carry no more intelligence to the receiver than would a mail letter containing only a blank sheet of paper. A further processing of the wave must occur in the receiver
-

described separately in the next and subsequent chapters. Only a generalized explanation which suggests their broad principle and shows their kindred nature will be given here.

Modulation is the process of varying the radio wave to impart to it the signal which we wish to transmit; while detection is the process of extracting from the wave the signal imparted to it in the modulating process. In amateur communication the variation applied is in amplitude; that is we use amplitude modulation. The signal may be either speech, for telephony, or the dot-and-dash combinations of the telegraph code. Variations in radio-frequency current generally representative of amplitude modulation by these two types of signal are shown in Fig. 417. Telegraph modulation to form the letter " A " is shown in diagram A, while modulation by a sinusoidal sound is shown in B. It must be emphasized that these pictures, like the one of a complex wave in Fig. 403, do not tell the whole story. They only picture the synthesis wave which actually contains components of more than one frequency.

In reality, each modulated wave shown would contain components of at least three radio frequencies. It is a physical fact that any change in amplitude of a wave results in additional components having frequencies equal to the sum and difference of the original frequency and the modulation frequency. These additional frequencies are called side-band frequencies, while the original frequency component is called the carrier. With hand keying the modulation frequency for telegraphy is relatively low, averaging only a few cycles per second. Hence a telegraph wave in amateur communication requires a relatively narrow communication band (50 cycles and less). With speech, however, the essential modulation frequencies range up to

FIG. 4I8-GENERALIEED SYSTEM FOR MODULATION OR DETECTION, INDICATING THE: ESSENTIAL ELEMENTS
to make the message understandable to our human senses. This is accomplished by a process of detection or, as it is sometimes known, demodulation. Practical methods of modulation and detection by vacuum-type circuits are
approximately 3000 cycles per second and the side-bands extend correspondingly either side of the carrier, so that speech telephony requires a communication band width as great as 6000 cycles (6 kc .).

To accomplish modulation the four essential circuit elements shown in the block diagram of Fig. 418 are necessary. The heart of the system is a detecting element having unilateral or oneway current flow properties. The vacuum tube is such a device, and is universally used for the
purpose. A similar combination is required for is such a device, and is universally used for the
purpose. A similar combination is required for detection when the modulated wave is re-
ceived, also shown by Fig. 418 . In reception of detection when the modulated wave is re-
ceived, also shown by Fig. 418. In reception of speech-modulated waves the side-band com-
ponents intermodulate or beat with the carrier speech-modulated waves the side-band com-
ponents intermodulate or beat with the carrier to reproduce the original modulating signal (speech) in the output.

the radio anatedr's havdbook
 CHAPTER FIVE

Vacuum Tubes

Operating Principles - Types of Amplifiers - Rectifiers - Tube Type Data

THE simplest type of vacuum tube is that shown in Fig. 501. It has but two elements, cathode and plate, and is therefore called a diode. The cathode is heated by the "A" battery and emits clectrons which flow to the plate when the plate is positive with respect to the cathode. The tube is a conductor in one direction only. If a battery is connected with its negative terminal to cathode and positive to plate (the "B" battery in Fig. 501) this flow of electrons will be continuous. But if a source of alternating voltage is connected between the cathode and plate, then electrons will flow only on the positive half-cycles of alternating voltage; there will be no electron flow during the half cycle when the plate is negative. Thus the tube can be used as a rectifier, to change alternating current to pulsating direct current. This alternating current can be anything from the 60-cycle kind to the highest radio frequencies, making it possible to use the diode as a rectifier in power supplies furnishing direct current for our transmitters and receivers or to use it as a rectifier (detector) of radio-frequency current in receivers.

CHARATTEURISTIC CLIRUES

The performance of the tube can be reduced to easily-understood terms by making use of what are known as tube characteristic curves. A typical characteristic curve for a diode is shown at the right in Fig. 501. It shows the currents flowing between the various tube elements and cathode (usually only between plate and cathode, since the plate current is of chief interest in determining the output of the tube) with different d.c. voltages applied to

FHG. 501 - THE DIODE OR TWO-ELEMENT TUBE AND A TYPICAL CIIARACTERISTIC CUTVE:
the clements. The curve of Fig. 001 shows that, with fixed eathode temperatnre, the plate current increases as the voltage between cathode and plate is raised. For an actual tube the values of plate current and plate voltage would be plotted along their respective axes.

With the cathode temperature fixed, the total number of electrons emitted is always the same regardless of the plate voltage. Fig. 501 shows, however, that less plate current will flow at low plate voltages than when the plate voltage is large. With low plate voltage only those clectrons nearest the plate are attracted to the plate. The electrons in the space near the eathode, being themselves negatively charged, tend to repel the similarly-charged electrons leaving the cathode surface and cause them to fall back on the cathode. This is called the space charge effect. As the plate voltage is raised, more and more electrons are attracted to the plate until finally the space charge effect is completely overcome and all the electrons emitted by the cathode are attracted to the plate, and a further increase in plate voltage can cause no increase in plate current. This is called the saturation point.

HOW VACNIM TESEES ANEPMEF

EF a third element, called the control grid or simply the grid, is inserted between the cathode and plate of the diode the space-charge effect can be controlled. The tube then becomes a triode (three-element tube) and is useful for more things than rectification. The grid is usually in the form of an open spiral or mesh of fine wire. With the grid connected externally to the cathode and with a steady voltage from a d.c. supply applied between the cathode and plate (the positive of the " B " supply is always connected to the plate), there will be a constant flow of electrons from cathode to plate, through the openings of the grid, much as in the diode. l3ut if a source of variable voltage is connected between the grid and cathode there will be a variation in the flow of electrons from cathode to plate (a variation in plate current) as the voltage on the grid changes about a mean value. When the grid is made

TIIE RADIO AMATEUR'S IIANDB00K

less negative (more positive) with respect to the cathode, the space charge is partially neutralized and there will be an increase in plate current; when the grid is made more negative with respect to the cathode, the space charge is reinforced and there will be a decrease in plate current. When a resistance or impedance is connected in the plate circuit, the variation in plate current will cause a variation in voltage across this load that will be a magnified version of the variation in grid voltage. In other words there is amplification and the tube is an amplifer.
The measure of the amplification of which a tube is capable is known as its amplification factor, designated by μ (mu). Mu is the ratio of plate-voltage ehange required for a given change in plate current to the grid-voltage change necessary to produce the same change in plate eurrent. Another important characteristic involving plate current change caused by grid voltage ehange over a very small range is mutual conductance, designated by g_{m} and expressed either in milliamperes plate current change per volt grid voltage change (ma. per volt), or as the current to voltage ratio in $m h o s$ (inverse of ohms). Since the plate current changes involved are often very small, the mutual conduetance is also expressed in micromhos, the ratio of amperes plate current change to volts grid voltage change, multiplied by one million. Still another important characteristic used in describing the properties of a tube is the plate resistance, designated τ_{p}. This is the ratio of a small plate voltage change to the plate current change it effects. It is expressed in ohms. These tube characteristies are inter-related and are dependent primarily on the tube structure.

AMPIIFIEIR OPERATION

THE operation of a vacuum tube amplifier is graphically represented in elementary form in Fig. 502. The sloping line represents the variation in plate current obtained at a constant plate voltage with grid voltages ranging from a

FIG. 502 - OIPERATING CHARACTERISTICS OF A VACUUM-TUBE AMPLIFIER
Class-A amplifier operation is depicted.
value sufficiently negative to reduce the plate current to zero to a value slightly positive. Bear in mind that grid voltage is with reference to the cathode or filament. Notable facts about this curve are that it is essentially a straight line (is linear) over the middle section and that it bends towards the bottom (near cut off) and near the top (saturation). In other words, the variation in plate current is directly proportional to the variation in grid voltage over the region between the two bends. With a fixed grid voltage (bias) of proper value the plate current can be set at any desired value.

With negative grid bias as shown in Fig. 502 this point (the operating point) eomes in the middle of the linear region. If an alternating voltage (signal) is now applied to the grid in series with the grid bias, the grid voltage swings more and less negative about the mean bias voltage value and the plate current swings up (positive) and down (negative) about the mean plate current value. This is equivalent to an alternating current superimposed on the steady plate current. At this operating point it is evident that the plate current wave shapes are identical reproductions of the grid voltage wave shapes and will remain so as long as the grid voltage amplitude does not reach values sufficient to run into the lower- or upper-bend regions of the eurve. If this occurs the output waves will be flattened or distorted. If the operating point is set towards the bottom or the top of the curve there will also be distortion of the output wave shapes beeause part or all of the lower or upper half-cycles will be cut off.

The major uses of vacuum tube amplifiers in radio work are to amplify at audio frequencies (approximately 30 to 15,000 eyeles per second) and to amplify at radio frequencies (up to $60,000 \mathrm{kc}$. or higher). The audio-frequency amplifier is generally used to amplify without discrimination at all frequencies in a wide range (say from 100 to 3000 eycles for voice communication), and is therefore associated with non-resonant or untuned circuits. The radio-frequency amplifier, on the other hand, is generally used to amplify selectively at a single radio frequeney, or over a small band of frequencies at most, and is therefore associated with resonant circuits tunable to the desired frequency.

The eircuit arrangement of a typical audiofrequeney amplifier using a triode is shown in Fig. 503. The alternating grid voltage is applied through the transformer T_{1} to the grid eircuit, in series with negative grid bias furnished by a battery. The a.c. component of the plate current induces an alternating voltage in the secondary of the output transformer, T_{2}. This output might go on to another similar audio amplifier for further amplification. In

FIG. 503-A TYPICAL AUDIO-FREQUENCY AMPLIFIER USING A TRIODE TUBE
lieu of the transformer, a pair of head 'phones could be connected in the plate circuit, in which case the alternating plate current component would be reproduced immediately as sound.

STATIC AND DYNAMIC chairacteibistics

$\mathbf{T}_{\text {ube }}$ characteristics of the type shown in Fig. 502 may be of either the static or dynamic type. Static characteristics show the plate current that will flow at specified grid and plate voltages in the absence of any output device in the plate circuit for transferring the plate current variation to an external circuit.

Dynamic characteristics are more useful. In plotting this form of curve a resistance, R_{p}, is connected in series with the battery and plate-cathode circuit of the tube; it represents a load or output circuit. Plate current flowing through R_{p}, causes a voltage drop in the resistor; if the grid voltage is varied, causing a variation in plate current, the voltage drop across R_{p} likewise will vary. If an alternating voltage is applied to the grid-cathode circuit the alternating plate current causes an alternating voltage to be developed across R_{p}. This voltage is the useful output of the tube.

The load impedance or load resistance, R_{p}, may be an actual resistor or a device such as a headset or loud-speaker having a selfimpedance, at the frequency being amplified, of a value suitable for the plate circuit of the tube. In general, there will be one value of R_{p} which will give optimum results for a given type of tube and set of operating voltages; its value also depends upon the type of service for which the amplifier is designed. If the impedance of the actual device used is considerably different from the optimum load impedance, the tube and output device must be coupled through a transformer having a turns ratio such that the impedance reflected into the plate circuit of the tube is the optimum value.

DISTORTION - IIARMONICS

IF the output wave shape is not an exact reproduction of the signal applied to the grid-
cathode circuit, the wave-shape is said to be distorted, as already described. It can be shown that any periodic wave, regardless of its shape, can be resolved into a number of simple sine waves of various amplitudes and phase relationships, but all in harmonic frequency relationship. If the exciting signal is a sine wave, the output wave, when distortion is present, will consist of a fundamental plus second and higher harmonics. In triode amplifiers the second harmonic is the one of most importance.

PAIRALLEL ANI IPUSII-IPULI. AMIPLIFIEIRS

WHEN it is necessary to obtain more power output than one tube is capable of giving, without going to a larger tube structure, two or more tubes may be connected in parallel, in which case the similar elements in all tubes are connected together. The power output will then be in proportion to the number of tubes used; the exciting voltage required, however, is the same as for one tube.

An increase in power output also can be secured by connecting two tubes in push-pull, the grids and plates of the two tubes being connected to opposite ends of the circuit, respectively. Parallel and push-pull operation are illustrated in Fig. 504. A "balanced" circuit, in which the cathode returns are made to the midpoint of the input and output devices, is necessary with push-pull operation. An alternating current flowing through the primary of the input transformer in the push-pull diagram will cause an alternating voltage to be induced in the secondary winding; since the ends of the winding will be at opposite potentials with respect to the cathode connection the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. The plate current of one tube therefore is rising while the plate current of the other is falling, hence the name "push-pull."

FIG. 504 - PARALLEL AND PUSH-PULL AMPLIFIER CONNECTIONS

THE RADIO AMATEUR'S HANDB00K

In push-pull operation the second-harmonic distortion is cancelled in the symmetrical plate circuit, so that for the same output the distortion will be less than with parallel operation. It follows that for a given degree of distortion the push-pull amplifier is capable of delivering somewhat more power than a parallel amplifier.

Voltadie and rodwere AMIPLIFIERS

Amplifiers may be divided broadly into two general types, those whose chief purpose is to give a greatly magnified reproduction of the input signal voltage with regard to power, and those intended to deliver a relatively large amount of power to a load (a loud-speaker, in the case of an audio amplifier, or an antenna, in the case of a radio-frequency amplifier). The former is a vollage amplifier, while the latter is a power amplifier.

In audio circuits, the power tube or output tube in the last stage usually is designed to deliver a considerable amount of audio power, while requiring but negligible power from the input or exciting signal. The power amplification - ratio of output power to power supplied the grid circuit - is consequently very high. such tubes generally require a large grid voltage swing for full power output, however, so that the voltage amplification - ratio of output voltage to signal voltage - is quite low. To get the voltage swing required for the grid of such a tube voltage amplifiers are used, employing tubes of high μ which will greatly increase the voltage amplitude of the signal. Although such tubes are capable of relatively high voltage output, the power obtainable from them is small. Voltage amplifiers are used in the radio-frequency stages of receivers as well as in audio amplifiers.

THIREE FUNDANENTAL AMPLIFIER CLASEIFICATIONS

Class-A Amplifiers

An amplifier operated as shown in Fig. 502 in which the output wave shape is a faithful reproduction of the input wave shape, is known as a Class- A amplifier.

Certain operating conditions distinguish the Class-A amplifier. As generally used, the grid never is driven positive with respect to the cathorle by the exciting signal, and never is driven so far negative that plate-current cutoff is reached. The plate current is constant both with and without an exciting signal. The chief characteristics of the Class-A amplifier are low distortion, low power output for a given size of tube, and a high power-amplification ratio. The plate efficieney - ratio of a.c.
output power to steady d.c. input power is relatively low, being in the vicinity of 20 to 35 percent at full output, depending upon the design of the tube and the operating conditions.

Class-A amplifiers of the power type find application as output amplifiers in audio systems, operating loud speakers in radio receivers and public-address systems, and as modulators in radiotelephone transmitters. Class-A voltage anmplifiers are found in the stages preceding the power stage in such applications, and as radiofrequency amplifiers in receivers.

Class-B Amplifiers

The Class-B amplifier is primarily one in which the output current, or alternating component of the plate current, is proportional to the amplitude of the exciting grid voltage. Since power is proportional to the square of the current, the power output of a Class-B amplifier is proportional to the square of the exciting grid voltage.

The distinguishing operating condition in Class-B service is that the grid bias is set so that the plate current is very nearly zero or cut-off; the exciting signal amplitude can be such that the entire linear portion of the tube's characteristic is used. Fig. 505 illustrates Class-B operation. Plate current flows only during the positive half-cycle of excitation voltage. Since the plate current is set practically to zero with no excitation, no plate current flows during the negative swing of the ex-

HIG. 305-OPERATIGN OF THE CLASS-H AMPLIFIER
citation voltage. The shape of the plate current pulse is essentially the same as that of the positive swing of the signal voltage. Since the plate current is driven up toward the saturation point, it is usually necessary for the grid to be driven positive with respect to the cathode during part of the grid swing. Grid current flows, therefore, and the driving source must furnish power to supply the grid losses.

Class-B amplifiers are characterized by medium power output, medium plate efficiency (50% to 60% at maximum signal) and a moderate ratio of power amplification. They

vacuum tubes

are used for both audio and radio-frequency amplification. As radio frequency amplifiers they are used as linear amplifiers to raise the output power level in radiotelephone transmitters after modulation has taken place.

For audio-frequency amplification, two tubes must be used to permit Class-I3 operation. A second tube, working alternately with the first, must be included so that both halves of the cycle will be present in the output. I typical method of arranging the tubes and circuit to this end is shown in Fig. 506. The circuit resembles that of the push-pull Class-A amplifier; the difference lies in the method of operation. The signal is fed to a transformer T_{1}, whose secondary is divided into two equal parts, with the tube grids connected to the outer terminals and the grid bias fed in at the center. A transformer T_{2} with a similarlydivided primary is connected to the plates of the tubes. When the signal swing in the upper half of T_{1} is positive, Tube No. 1 draws plate current while Tube No. 2 is idle; when the lower half of T_{1} becomes positive, Tube No. 2 draws plate current while Tube No. 1 is idle. The corresponding voltages induced in the halves of the primary of T_{2} combine in the secondary to produce an amplified reproduetion of the signal wave-shape with negligible distortion. The Class-B amplifier is capable of delivering much more power for a given tube size than a Class-A amplifier.

Class-C Amplifiers

The third type of amplifier is that designated as Class C. Fundamentally, the Class-C amplifier is one operated so that the alternating component of the plate current is directly proportional to the plate voltage. The output power is therefore proportional to the square of the plate voltage. Other characteristics inherent to Class-C operation are high plate efficiency, high power output, and a relatively low power-amplification ratio.

The grid bias for a Class-C amplifier is ordinarily set at approximately twice the valuc required for plate current cut-off without grid cxcitation. As a result, plate current flows during only a fraction of the positive excitation cycle. The exciting signal should be of sufficient amplitude to drive the plate current t_{0}, the saturation point, as shown in Fig. 507. Since the grid must be driven far into the positive region to cause saturation, considerable numbers of electrons are attracted to the grid at the peak of the cycle, robbing the plate of some that it would normally attract. This causes the droop at the upper bend of the characteristic, and also causes the plate current pulse to be indented at the top, as shown. Although the output wave-form is badly distorted, at radio frequencies the distortion is
largely eliminated by the filtering or flywheed effect of the tuned output circuit.

Class-C amplifiers are used principally as radio-frequency power amplifiers, and have very little audio-frequency application. Although requiring considerable driving power because of the relatively large grid swing and grid-current flow, the high plate efficiency of the Class-C amplifier makes it an effective generator of radio-frequency power.

GTMMEIR AMEPIMFIEIE CLASEIFICNTIONS

Since the three fundamental amplifier classifications represent three distinct steps in the operation of vacuum tubes, there are intermediate steps which partake of the nature of two of the classifications although not adhering strictly to either. Such "midway" methods of operation can be classified as "AB" and "BC." Only the "AB" type of operation is in general use. The Class-A13 amplifier is a push-pull amplifier in which each tube operates during more than half but less than all the excitingvoltage eyele. Its bias is set so that the tubes draw more plate current than in Class-B operation, but less than they would for Class-A. The plate current of the amplifier varies with the signal voltage, but not as much as in Class-B.

The efficiency and output of the Class-AB amplifier lie between those obtainable with pure Class-A or Class-B operation. Class-AB amplifiers tend to operate Class-A with low signal voltages and Class- B with high signal voltages, thus overcoming the chief objection to Class-13 operation - the distortion present with low-input-signal voltages. The Class-AB amplifier is widely used where it is necessary to obtain a power output of considerable magnitude with a minimum of distortion.

FIG. 306 - THE CLASS-B AUDIO AMPLIFIFH, SIIOWING HOW TIE OUTPUTS OF THE TWG TUBES ARE COMBINED TO GIVE DISTORTIONLESS AMPLIFICATION

tIIB RADIO AMATBUR'S HANDB00K

GENERATING IRADIO FREQUENCY POWER

Becausn of its ability to amplify, the vacuum tube can oscillate, or generate alternating current power. To make it do this, it is only necessary to couple the plate (output) circuit to the grid (input) circuit so that the alternating voltage supplied to the grid of the tube is opposite in phase to the voltage on the plate. Typical circuits for this condition are shown in Fig. 508. In A the feed-back coupling between the plate and grid circuits is inductive (by means of coils), while in B the coupling is capacitive (through a condenser). In the circuit of A the frequency of oscillation will be very nearly the resonant frequency of the tuned circuit $L_{1} C_{1}$, while in B the frequency of oscillation will be determined jointly by $L_{1} C_{1}$ and $L_{2} C_{2}$. At high radio frequencies the inherent plate-grid capacitance of the usual triode tube is sufficient for feed-back in the tuned-grid tuned-plate type circuit of B, so the feed-back condenser shown connected between grid and plate is not necessary.

There are many other arrangements of oscillator circuits but all utilize either inductive or capacitive feed-back. They will be treated in following chapters.

IDETECTION

Since the frequencies used in radio transmission are merely carriers bearing modulation, it is necessary to provide a means for making the signals intelligible. The process for doing this is called detection or demodulation the latter because the modulation envelope is

FIG. 507 - CLASS-C AMPLIFIER OPERATION

in effect detached from the carrier wave and made audible. Taking the case of a modulated wave, such as in radiotelephone transmission, we find there are three ways of operating tubes to perform the function of demodulation. All are essentially the process of rectification, in which the radio-frequency input is converted into direct current which in turn varies in accordance with the audio-frequency modulation
envelope. The first type of detector is the diode, or simple rectifier, the operation of which already has been explained. Multi-element tubes can be operated either as "grid" or "plate" detectors, depending upon whether the rectification takes place in the grid or plate circuits.

Plate Detectors

The circuit arrangement of a typical plate detector is shown at A of Fig. 509. Its operating characteristics are illustrated at A of Fig. 510. The circuit $L_{1} C_{1}$ is tuned to resonance with the radio frequency and the voltage developed

FIG. 508 - TWO GENERAL TYPES OF OSCILLATOR CIRCUITS
across it is applied between the grid and cathode in series with the grid-bias battery. A headset or the primary of a transformer is connected in the plate circuit, a small fixed condenser C being connected across the plate load to by-pass radio frequency. As shown at A in Fig. 510, the negative grid bias voltage is such that the operating point is in the lower-bend region of the curve, near cut-off. With a modulated signal as shown there will be a variation in plate current conforming to the average value of the positive half-cycles of radio frequency. This variation corresponds to the envelope, representing an audio-frequency current super-imposed on the steady plate current of the tube, and constitutes the useful audio output of the detector. When this pulsating current flows through the 'phones their diaphragms vibrate in accordance with it to give a reproduction of the modulation put on the signal at the transmitter.

Grid Detectors

The circuit arrangement of a triode used as a grid detector (also called grid leak detector) is shown in B of Fig. 509. An input circuit tuned

vacuum Tubes

to the frequency of the radio wave is connected so that the r.f. voltage developed across it is applied between the grid and cathode. However, there is no fixed negative grid bias, as in the case of the plate detector. Instead a small fixed capacity (grid condenser) and resistor of high value (grid leak) are connected between tuned circuit and grid. The plate circuit is the same as for the plate detector.

The action of the grid detector is illustrated by the grid voltage - grid current curve of Fig. 510-B. A modulated radio-frequency voltage applied to the grid swings it alternately positive and negative about the operating point. The grid attracts electrons from the cathode, the consequent grid current increasing more during the positive half cycles than it decreases during the negative half cycles of grid swing. Hence there is a rectified grid current flow at modulation frequency whose average value develops a voltage across the grid leak. This audio-frequency variation in voltage across the grid leak causes corresponding variations in plate current reproduced in the 'phones.

Regenerative Detectors

With both the grid and plate detectors just described it will be noted that a condenser is connected across the plate load circuit to bypass radio-frequency components in the output. This radio-frequency can be fed back into the grid circuit, as shown in C of Fig. 509, and re-amplified a number of times. This regeneration gives a tremendous increase in detector sensitivity. If the regeneration is sufficiently

FIG. 509 - DETECTOR CIRCUITS OF TIIREE TYPES
A, plate detection; B, grid detection; C, regenerative grid detection.
great the circuit will break into oscillation, which would be expected since the circuit arrangement is almost identical with that of the

FIG. 510-OPERATING CHARACTERISTICS OF PIATEE AND GRID DETECTORS
oscillator shown in Fig. 508-A. Therefore a control is necessary so that the detector can be operated cither regenerating to give large amplification without oscillation, or to oscillate and regenerate simultaneously. Methods of doing this are described in Chapter Seven.

SUPREIRIREGENEIRATION

The limit to which regenerative amplification can be carried is the point at which the tube starts to oscillate, because when oscillations commence, further regenerative amplification ccases. To overcome this limitation and give still greater amplification, the superregenerative circuit has been devised. Essentially, the superregenerative detector is similar to the ordinary regenerative type but with a comparatively low-frequency super-audible (above audibility) signal introduced in such a way as to vary the detector's operating point at a uniform rate. As a consequence of the introduction of this quench or interruption frequency the detector can oscillate at the signal frequency only when the moving operating point is in a region suitable for the production of oscillations. Because the oscillations are constantly being interrupted, the signal can build up to relatively tremendous proportions, and the superregenerative detector therefore is extremely sensitive. See Fig. 511. The circuit finds its

THE RADIO AMATEUR'S HANDB00K

chief field in the reception of ultra-high-frequency signals, for which purpose it has proved eminently successful.

- اore than three elements may be used to make a tube particularly suitable for certain

FIG. 5ll - AN ELEMENTARY SUPERREGENfirative g:irctit
specialized applications; likewise two or more sets of elements may be combined in one bulb so that a single tube may be used to perform two or three separate functions.

Tubes having four elements are called tetrodes, while if a fifth clement is added the tube is known as a pentode. Many element combinations and structures become possible as the number of electrodes is inereased, but only a few have practical applications.

TETMRADEEG-DEASI TGTBEN

EN the section on tube oscillators it was explained that oscillations could be sustained through transfer of energy from the plate to the grid through the electrostatic capacity existing between plate and grid, the circuit of Fig. 508-B being used as an illustration. This circuit without the feed-back condenser is the one which would also be used if the tube is intended to amplify, but not oscillate, at radio frequencies; that is, the input and output circuits must be tuned to the same frequency. However, the grid plate capacity of the triode roturns so much energy to the grid circuit from the plate that it is impossible to prevent the tube from oscillating.

If a second grid, in the form of an electrostatic shield between the control grid and plate, is adderl the grid-plate capacity can be reduced to a value which will not permit oseillations to occur. The screen grid, as it is called, increases the amplification factor and plate resistance of the tube to values much higher than are attainable in triodes of practicable construction, although the mutual conductance is about the same as that of an equivalent triode. The screen grid is ordinarily operated at a positive potential about one-third that
placed on the plate, and is by-passed back to the cathode so that it has essentially the same a.c. potential as the cathode.

Large screen-grid tubes of the power type are used as amplifiers in transmitting installations. The screen-grid tube can be used as both plate and grid detector, generally showing greater sensitivity than the triode types.

Another type of tetrode, in which the electrostatic shielding provided by the second grid is purely incidental, is built for audio power output work. The second grid (usually called the "screen" although not actually a screen grid) accelerates the flow of electrons from eathode to plate, and the structure gives a higher power sensitivity - ratio of power output to grid-voltage swing causing it - than is possible with triodes. "Beam" power tubes are tetrodes with special element structure so that the electrons are concentrated in desired paths to the plate. The beam principle results in relatively high plate efficiency and power sensitivity, with the effects of secondary emission (described in the following section) overcome. Beam tubes are used both in audio amplifiers and radio-frequency transmitting circuits.

EPENTAIDES

The addition of the screen grid in the ordinary tetrode causes an undesirable effect which limits the usefulness of the tube. Electrons striking the plate at high speeds dislodge other electrons which "splash" from the plate, this phenomenon being known as secondary emission. In the triode, ordinarily operated with the grid negative with respect to cathode, these secondary electrons are repelled back into the plate and cause no disturbance. In the screengrid tube, however, the positively charged screen grid attracts the secondary electrons, causing a reverse current to flow between screen and plate. The effect is particularly marked when the plate and sereen potentials are nearly equal, which may be the case during part of the a.c. cycle when the instantaneous plate current is large.

To overcome the effects of secondary emission a third grid, called the suppressor grid, is inserted between the screen and plate. This grid, being connected directly to the cathode, repels the relatively low-velocity secondary electrons back to the plate without obstructing to any appreciable extent the regular platecurrent flow. Larger undistorted outputs therefore can be secured from the pentode.

Pentode-type sereen-grid tubes are used as radio-frequency voltage amplifiers, and in addition can be used as audio-frequency voltage amplifiers to give high voltage gain per stage. Pentode tubes also are suitable as audiofrequency power amplifiers, having greater

VACLUM TUBES

plate efficiency than triodes and requiring less grid swing for maximum output.

NHLLTI-IPUTEPDNE TYIPES

Igreat many types of tubes have been developed to do special work in receiving circuits. Among the simplest of these are full-wave rectifiers, combining two separate diodes of the power type in one bulb, and twin-triodes, consisting of two triodes in one bulb for ClassB audio amplification. To add the functions of diode detection and automatic volume control - described in Chapter Seven on receivers to that of amplification, a number of types are made in which two small diode plates are placed near the cathode, but not in the ampli-fier-portion structure. These types are known as duplex-diode triodes or duplex-diode pentodes, depending upon the type of amplifier.

The pentagrid converter is a special tube serving as both oscillator and mixer, used in superheterodyne receivers. There are five grids between cathode and plate in this tube; the two inner grids serve as control grid and plate of a small oscillator triode, while the fourth grid is the detector control grid. The third and fifth grids are connected together to form a screen-grid which shields the detector control grid electrostatically from the other elements. The pentagrid converter eliminates the need for special coupling between oscillator and detector circuits.

Another type consists of a triode and pentode in one bulb, for use where the oscillator and first detector are preferably separately coupled; while still another type (the 6L7) is a pentode with a separate grid for connction to an external oscillator cireuit. This "injection" grid provides a means for introducing the oscillator voltage into the detector circuit by electronic means.

Receiving screen-grid tetrodes and pentodes for radio-frequency voltage amplification are made in two types, known as "sharp cut-off" and "variable- μ " or "super-control" types. In the sharp cut-off type the amplification factor is practically constant regardless of grid bias, while in the variable- μ type the amplification factor decreases as the negative bias is increased. The purpose of this design is to permit the tube to handle large signal voltages without distortion in circuits in which gridbias control is used to vary the amplification, and to reduce interference from stations on adjacent frequencies by preventing erossmodulation. Cross-modulation is modulation of the desired signal by an undesired one, and is practically the same thing as detection. The variable- μ type of tube is a poor detector in circuits used for r.f. amplification, hence cross-modulation is reduced by its use.

TVIPEN AF CATHOLDES

0athodes are of two types, directly and indirectly heated. Directly-heated cathodes or filaments used in receiving tubes are of the oxide-coated type, consisting of a wire or ribbon of tungsten coated with certain rare metals and earths which form an oxide capable of emitting large numbers of electrons with comparatively little cathode-heating power. Di-rectly-heated cathodes are used in older audio power-output tubes, power rectifiers, tubes intended for operation from dry-cell batteries where economy of filament current is important, and in all but the smallest transmitting tubes.

When directly-heated cathodes are operated on alternating current, the cyclic variation of current causes electrostatic and magnetic effects which vary the plate current of the tube at supply-frequency rate and thus produce hum in the output. Hum from this source is climinated by the indirectly-heated cathode, consisting of a thin metal sleeve or thimble, coated with electron-emitting material, enclosing a tungsten wire which acts as a heater. The heater brings the eathode thimble to the proper temperature to cause electron emission. This type of cathode is also known as the equipotential cathode, since all parts are at the same potential. The cathode ordinarily is not connected to the heater inside the tube, the terminals being brought out to separate base pins.

HATINGS AND AHARACTEIRETICS

The tables give maximum ratings for the various types of tubes listed. For long tube life, filament or heater voltages should be maintained as nearly as possible at the ratings given (varying not more than 5% either above or below rated voltage) and the maximum plate-supply voltage indicated should not be exceeded. It is important, of course, that the tube be operated with the proper negative bias, as indicated by the tables, applied to the grid.

The important characteristics of the tubes, such as amplification factor, mutual conductance, etc., also are given. In addition, the interelectrode capacitances are listed in the tables of transmitting tubes. Since transmitting tubes of ten are large in physical structure, these capacities are quite high in some types of tubes, limiting their application in very high frequency transmitters, since the tube capacity acts as a shunt across the tuning condenser. The important tube capacities are those between grid and cathode (input capacity), grid and plate, and plate and cathode (output capacity). Input and output capacities of receiving tubes usually are quite small - a few micromicrofarads for most tubes.

THE RADIO AMATEUR'S HANDB00K

Descriptions	Metal Octal	$\begin{gathered} \text { Glass } \\ \text { 6.5 V. } \\ \text { Octal } \end{gathered}$	Glass 6.5 V . Old	$\begin{gathered} \text { Glas8 } \\ 2.5 \mathrm{~V} . \\ \text { Old } \end{gathered}$	$\begin{gathered} \text { Glass } \\ \text { g.0 V. } \\ \text { Octal } \end{gathered}$	$\begin{gathered} \text { Glass } \\ 2.0 \mathrm{~V} . \\ \text { Old } \end{gathered}$
General-Purpose Triode	$\begin{aligned} & \text { 6C5 } \\ & 6 \mathrm{~J} 5 \end{aligned}$	6C5G 6J5G 6L.5G	76	56	1H4G	30
High- μ Triode .	$\begin{aligned} & \text { 6F5 } \\ & \text { 6SF5 } \end{aligned}$	6F5G 6K5G	...	\cdots	\cdots	-
Twin Triodes	6C8G 6F8G	\cdots	. \cdot.
R.F. Amplifier, sharp cutoff	$6 . J 7$ 6SJ7 6W7G	6J7G	$\begin{aligned} & 6 \mathrm{C} 6 \\ & 77 \end{aligned}$	57	1E5G	$\begin{aligned} & \text { 1B4 } \\ & 15 \end{aligned}$
R.F. Amplifier, variable-	$\begin{aligned} & 6 \mathrm{~K} 7 \\ & 6 \mathrm{~S} 7 \end{aligned}$	6K7G 6S7G 6SK7 6U7G	6D6	58	1D5G	$\begin{aligned} & 1 \mathrm{A4} \\ & 34 \end{aligned}$
Twin Diode .	6H6	6H6G	...	-..	. . .	-..
Duplex-Diode Pentode.	6B8	6B8G	6B7	$2 \mathrm{B7}$	1F7G	1 F6
Duplex-Diode G.P. Triode	6R7	$\begin{aligned} & \text { 6R7G } \\ & \text { 6V7G } \end{aligned}$	85	55	1H6G	1B5
Duplex-Diode High- μ Triode	$\begin{aligned} & \text { 6Q7 } \\ & \text { 6SQ7 } \end{aligned}$	6Q7G 6B6G 6T7G	75	$2 \mathrm{A6}$	\cdots	. \cdot.
Pentagrid Converter .	6.48	6A8G 6D8G	6 A 7	2 A 7	$\begin{aligned} & \text { 1D7G } \\ & \text { 1C7G } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} 6 \\ & 1 \mathrm{C} 6 \end{aligned}$
Pentagrid Mixer-Amplifier	6L7	6L.7G	. . .	-••• \cdot
Pentode Power Amplifier	6F6	$\begin{aligned} & 6 \mathrm{~F} 6 \mathrm{G} \\ & 6 \mathrm{G} 6 \mathrm{G} \\ & 6 \mathrm{~K} 6 \mathrm{G} \end{aligned}$	$\begin{aligned} & 42 \\ & (41) \end{aligned}$	2 A 5	1G5G 1F5G 1E7G	$\begin{aligned} & 1 F 4 \\ & 33 \end{aligned}$
Triode Power Amplifier	\ldots	$\begin{aligned} & 6 \mathrm{~B} 4 \mathrm{G} \\ & 6 \mathrm{~A} 5 \mathrm{G} \end{aligned}$	6A3	$\begin{aligned} & 45 \\ & 2.43 \end{aligned}$	31
Triode Power Amplifier, High $-\mu$.	\cdots	6AC5G	…	46	. . .	49
Twin Triode Power Amplifier	6N7	$\begin{aligned} & \text { 6N7G } \\ & 6 \mathrm{Z7} \mathrm{G} \end{aligned}$	$\begin{aligned} & \text { 6A6 } \\ & 79 \end{aligned}$	53	1J6G	19
Direct-Coupled Power Amplifier	6N6MG	6N6G	6B5	. . \cdot	\cdots	\cdots
Beam-Type Power Amplifier	$\begin{aligned} & \text { 6L. } 6 \\ & 6 \mathrm{~V} 6 \end{aligned}$	6L6G 6V6G 6Y6G	. . .	\cdots	\cdots	-•••

FIG. 512 - PREFFRRED RECEIVING TURE TYPES BY FUNCTIONS

BASE CONNECTIONS ANI IPIN NUMBEIEING

Tube bases have from four to eight pins for element connections. In all except the five- and eight-prong types, the two filament or heater pins are heavier than the others, making them readily distinguishable. The pins of all except the 8-pin or octal base are numbered according to the following system: Looking at the bottom of the base or the bottom of the socket, the left-hand cathode pin is No. 1, and the others are numbered consecutively in the clockwise direction, ending with the right-hand cathode
pin. In the octal base, No. 1 pin is to the left of the key, as shown in Fig. 513.

In indicating which element is connected to which base pin, it is customary to use the letters $\mathbf{F} \mathbf{F}$ or H H for filament or heater, C or K for cathode, \mathbf{P} for plate, etc. In multi-grid tubes the grids are numbered according to the position they occupy, the grid nearest the cathode being No. 1, the next No. 2, etc. Some tubes are provided with a cap connection on top, especially when it is desired that the elements connected to the cap have very low capacity to other tube elements.

THE RADIO AMATEUR'S HANDB00K

TYPEN

Practicaliy all the now-used glass tubes can be obtained with octal bases. Such tubes have the suffix " ('" attached to the type number.

 CEIVIN: 'IIBES

[^2]

In some cases theze tubes duplicate in characteristic types in the metal series; when this is so, the tube carries the same number as the corresponding metal tube, but with the suffix " G ". For example, the glass equivalent of the 6 K 7 metal tube is known as the 6 K 7 G . Other " G " tubes duplicate existing types of glass tubes; in still other cases the tube is a new type equipped with an octal base.

There are some seventeen tube designs most popularly in use in pres-ent-day receivers. These seventeen occur more or less completely in six series: metal, 6.3 -volt glass with ortal bases, 6.3 -volt glass with old hases, 2.5 -volt glass with old bases, 2.0 -volt (battery) glass with octal bases, and 2.0 -volt glass with old bases. The currently-used types under these classifications have been arranged in a table of "preferred types," which gives the set designer and constructor a list of the tules most worthy of considcration.

IRECTIFIERS

- Eectifiers for receiving purposes are made with both directly and indirectly-heated cathodes, and are provided with one or two plates depending upon whether the tule is designed for half-wave or full-wave rectification. The tubes may be either of the high-varuum or mer-cury-vapor type. The latter type has a small quantity of mercury added after the air is removed from the tule; when the cathode is heated the mercury vaporizes. When the tube is in operation electrons striking the mercuryvapor molecules dislodge other electrons, "ionizing" the gas. This in-

A

B

FIG. 517 -GONNEGIGNS FOR ACOHV TYPE TLBES, BOTIOM VIEYS - LOOKING AT SHORT END

FIG. 519 - SOCKET CONNECTIONS FOR CATHOHE-RAY TUBFS

II, C and G legends have customary simnificance; A denotes anode; 1 , deflecting plate. Inner rings of bage diagram indicate soeket ronnections; connertions on outer ring indicate bulb cap-type terminals. Views are from bottoms of tubes.

FIG. 516-SOCKET-CONVECIION HACRAMS FOR OC'IAL-HASED 2.0-VOL.' TUBFS
These views are of the lootiom of tabe noeketn or fases. Vomenclature same as in Figs. 514 and 515 ; VC on No. I pin indicater no connection to this pin inside the tube; it is suggested that this aocket connection be grounded, however, to provide for posmible metal-shell tubes in this series. (Vote: In some wascs the tulse may be provided with more pins than are indicated in the above diagrams. This is a mannfacturing ronvenience; the extra pins have no ronnectionm and can be ignored.)

B

C

D

E

FIG, 5IB - BASE IHMPHAMS OF CONTROI, ANO REA:I ITTOR TUBES
A denotes anode; \mathbb{C}, cathode; F, filament; G,grid; S-A, starter-anode. All are octal socketw except C, which is 4 -pin M. Dawhed lines indicate jumper contmeetion inside tube, which cun be wired to rit off power when tube is removed. Views arp of bottoms of sockets.

H
creases the conductivity and results in a lower voltage dropintherectifier. Mercuryvapor rectifiers are likely to fause noise in the receiver, however, so are seldom used for receiving purposes.

High-voltage rectifiers for transmitters are nearly all of the mereury-vapor type, since voltage regulation and efficiency are more importent than in rereiving applications. Rectifiers which are designed to hitndle voltages up to about 500 usually are made with two plates and are called full-wave rectifiers; tubes for higher voltages, however, almost always have but one plate and are known as halfwave rectifiers.

THE RADIO AMATLUR'S HANDB00K

TRANSMITTING TUBES

\mathbf{T}_{H}
ransmitting tubes are simply larger versions of the smaller receiving tubes, adapted for the handling of large amounts of power and for operation at high plate voltages. Receiving

FIG. 520 - SOCKET CONNECTIONS FOK TRANSMITTING TUBES, VIEWED FROM BOTTOM
Legends have same significance as in previous diagrams. Views are of bottoms of sockets.

tubes of the audio power-amplifier type are in fact often used in low-power transmitters and also in the low-power stages of high-power transmitters - hence some receiving types will be found to have transmitting ratings in the tables. Tubes intended particularly for the generation of radiofrequency power are of more rugged construction, and when built for operation at voltages above 750 are universally provided with thoriated tungsten filaments.

Transmitting tubes are generally rated by plate dissipation, which is the amount of power that can be radiated safely as heat by the plate. The power output obtainable depends upon the efficiency of the circuit used. Maximum plate voltage and maximum plate current ratings also are given for the various types.

The characteristics and typical r.f. operating conditions of transmitting tubes suitable for amateur use are given in Tables XIII and XIV. The selection of types for various purposes is discussed in detail in later chapters on transmitter design and construction. In the tables, the tubes have been listed according to plate dissipation ratings. Generally speaking, the higher the plate dissipation rating the greater the power output the tube can deliver. It should be understood, however, that the power output obtainable depends considerably on the way in which the tube is operated; also that at the ligher frequencies certain types of tubes give better performance than others.

TABLE I－METAL RECEIVING TUBES ${ }^{1}$

Trpe	Nome	$\begin{aligned} & \text { Socket } \\ & \text { Connec- } \\ & \text { tions } \end{aligned}$	Cathode	Fil．or Heater		Use	PlateSupdy Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	$\begin{aligned} & \text { Screen } \\ & \text { Current } \end{aligned}$Mo.	$\begin{aligned} & \text { Plate } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	Plate Resist－ ance，Ohms	Mutual Conduct ance Micromhos	Amp．	$\begin{gathered} \text { Load } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	$\begin{aligned} & \text { Power } \\ & \text { Output } \\ & \text { Wotts } \end{aligned}$	Type
				Volts	Amps．												
6A8	Pentagrid Converter	B	Htr．	6.3	0.3	Converter	250	$\begin{aligned} & \hline 3.0 \\ & \hline \text { min. } \\ & \hline \end{aligned}$	100	3.2	3.3	Anode－grid（No．2） 250 volts max．thru $\mathbf{2 0 , 0 0 0 - o h m}$ dropping resistor， 4.0 ma ．					6A8
688	Duplex－Diode Pentode	J	Ht．	6.3	0.3	Pentode R．F．Amplifier	250	－ 3.0	125	2.3	9.0	650000	1125	730	－	\square	688
						Pentode A．F．Amplifier	250	－ 4.5	50	－	0.65				－	－	
6C5	Triode Detector Amplifier	C	Htr．	6.3	0.3	Class－A Amplifer	250	-8.0 -17.0	－	－	Plate current adjusted to 0.2 ma ．with no signal						6C5
6 65	High－μ Triode	D	Htr．	6.3	0.3	Class－A Amplifer	250	－1．3	－	－	0.2	66000	1500	100	－		$6{ }^{6} 5$
		E	Htr．	6.3	0.7	Class－A Pentode	$\begin{aligned} & 250 \\ & 315 \\ & \hline \end{aligned}$	$\begin{array}{r} -16.5 \\ -29.0 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 34 \\ & 49 \end{aligned}$	$\begin{aligned} & 80000 \\ & 75000 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2650 \end{aligned}$	$\begin{array}{r} 900 \\ 800 \end{array}$	$\begin{aligned} & 7000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	6F6
6F6	Pentode Power Amplifier					Class－A Triode ${ }^{3}$	250	－20		－	31	2600	2700	7.0	4000	0.85	
						Push－Pull Closs－AB Amp． Pentode Connection Triode Connection ${ }^{3}$	$\begin{aligned} & 375 \\ & 350 \end{aligned}$	$\begin{aligned} & -26 \\ & -38 \end{aligned}$	250	2.54	$\begin{aligned} & 17{ }^{4} \text { 4 } \\ & \hline 29.5 \end{aligned}$	Power output for 2 tubes at stated load，plate－to－plate			$\begin{array}{r} 10000 \\ 6000 \end{array}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	
$6 \mathrm{H6}$	Twin Diode	F	Her．	6.3	0.3	Rectifier	Max．a．c．voltoge per piote $=100$ r．m．s．Max．output current 4.0 ma．d．c．										6H6
615	Detector Amplifier Triode	C	Her．	6.3	0.3	Class－A Amplifier	250	－ 8			9	7700	2600	20	－	－	615
617	Triple－Grid DetectorAmplifier	G	Htr．	6.3	0.3	Screen－Grid R．R． Amplifier	250	-3.0	100	0.5	2.0	$\begin{aligned} & \text { exceeds } \\ & 1.5 \text { meg. } \end{aligned}$	1225	$\begin{gathered} \hline \text { exceeds } \\ 1500 \\ \hline \end{gathered}$	－	－	6 J 7
						Bias Detector	250	-4.3	100	Cothode current 0.43 ma ．			－	－	0.5 meg．	－	
$6 \mathrm{K7}$	Triple－Grid Voriable－μAmplifier	G	Htr．	6.3	0.3	Screen－Grid R．F． Amplifier	250	－ 3.0	125	2.6	10.5	600000	1650	990	－	\cdots	6K7
						Mixer	250	－10	100			Oscillator peok volts $=7.0$					
6K8	Triode Hexode Converter	B	Her．	6.3	0.3	Converter	250	－ 3	100	6	2.5	Anode－grid（No．2） 100 volts max．， 3.8 ma ．					$6 \mathrm{K8}$
6 6．6	Beam Power Amplifier	K	Hts．	6.3	0.9	Single－Tube lass－A ${ }^{5}$ Amp． Fixed Bias	$\begin{aligned} & 250 \\ & 375 \\ & 375 \end{aligned}$	$\begin{array}{r} -14.0 \\ =9 \\ -17.5 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 125 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 0.7 \\ & 2.54 \end{aligned}$	$\begin{aligned} & 724 \\ & 844 \\ & 57 \end{aligned}$	22500	6000	135	$\begin{array}{r} 2500 \\ 14000 \\ 4000 \\ \hline \end{array}$	$\begin{array}{r}6.5 \\ 4.2 \\ 11.5 \\ \hline\end{array}$	6L6
						$\begin{aligned} & \text { Single-Tube } \\ & \text { Closis. }{ }^{\circ} \text { Amp. } \\ & \text { Self Bias } \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 375 \end{aligned}$	$\begin{aligned} & -13.5 \\ & -11.8 \\ & -9.0 \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \\ & 185 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 3.0 \\ & 0.74 \end{aligned}$	$\begin{aligned} & 75 \\ & 514 \\ & 24 \end{aligned}$	Power Output for 2 tubes．Load plate－to－plote			$\begin{array}{r} 2500 \\ \left.\begin{array}{r} 4500 \\ 14000 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土\right) \end{array}$	6.5 6.5 4.0	
						Push－Pull $A{ }_{1}{ }^{5}$ Fixed Bias Self Bias	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	-16 -16	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 108 \\ & 108 \end{aligned}$	$\begin{aligned} & 1208 \\ & 120 \\ & \hline \end{aligned}$				5000 5000	14.5 13.8 18.	
						Push－Pull AB ${ }_{1}$ Fixed Bias	400 400	-25 -20	300 250	${ }^{68}$	$\begin{gathered} 102^{8} \\ 88: \end{gathered}$				6000 8500	34 26.5	
						$\begin{aligned} & \text { Push-Pull } A B \mathbb{1}^{5} \\ & \text { Solf-Bias } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & \hline \end{aligned}$	-83.5 -19.0	$\begin{array}{r} 300 \\ 250 \\ \hline \end{array}$	7.06 4.6	$112{ }^{\circ}$ 968 1086				6600 8500	32 24	
						Push－Pull AB 2^{5} Fixed Bias	$\begin{array}{r} 400 \\ 400 \\ \hline \end{array}$	-25 -80	$\begin{array}{r} 300 \\ 250 \\ \hline \end{array}$	${ }^{60} 8$	$\begin{array}{r} 108^{\circ} \\ 88 \end{array}$				3800 6000	60 40	
		H	Hts．	6.3	0.3	Screen－Grid R．F． Amplifer	250	－ 3.0	100	5.5	5.3	800000	1100			－	$6 \mathrm{L7}$
6L	Pentagrid Mixer Amplifier					Mixer	250	－ 6.0	150	8.3	3.3	$\begin{aligned} & \text { exceeds } \\ & 1.0 \mathrm{meg} . \end{aligned}$	Oscillator－grid（No．3）voltoge $=-15.0$				
	Direct－Coupled Power	N	Hts．	6.3	0.8	Class－A Amplifor	300	0	－	$6{ }^{5}$	45	24100	2400	58	7000	4.0	
MG	Amolifier					Push－Pull Amolifier	400	－13	－	4.5	40	－	－		10000	20	MG
6N7	Twin Triode Amplifer	L	Her．	6.3	0.8	Class－B Amplifior	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	－	－	Power outpuk is for one tube at stated load，plote－to－plate				$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{array}{r} 8.0 \\ 10.0 \end{array}$	6N7

TABLE 1-METAL RECEIVING TUBES - Continued

TABLE II－6．3－VOLT GLASS TUBES WITH OCTAL BASES—Continued

Type	Name	Socket Connec－ tions	Cathod	Fil．or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma．	Plate Current Ma．	Plate Resist－ ance，Ohms	Mutual Conductance Micromhos	Amp． Factor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amps．												
6D8G	Pentagrid Converter	B	Hir．	6.3	0.15	ConverterAmplifier	$\begin{aligned} & 135 \\ & 250 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -3.0 \\ & \text { min. } \end{aligned}$	$\begin{array}{r} 67.5 \\ 100 \end{array}$	Cathode curront 8.0 Ma ． Cethode current 13.0 Ma ．			Anode grid（No．2）Volts $=135$ Anode grid（No．2）Volts $=250$ through $\mathbf{8 0 , 0 0 0}$－ohm dropping resistor				6D8G
6F8G	Iwin Triode	S	Hitr．	6.3	0.6		250	-8	－	－	93	7700	8600	20		－	6F8G
6G6G	Pentode Power Amplifier	E	Htr．	6.3	0.15	Class－A Amplifier	180	－9	180	2.5	15	175000	2300	400	10000	1.1	
	Pentode Power Amplifier	E	Htr．	6.3	0.15		135	－6	135	2	11.5	170000	2100	360	12000	． 6	6G6G
6J8G	Triode Heptode	B	Htr．	6.3	0.3	Converter	250	-3	100	2.8	1.2	Anode－grid（No．2） 250 volts max．through 20，000－ohm dropping resistor， 5 ma ．					6J8G
6K5G	High－μ Triode	D	Htr．	6.3	0.3	Class－A Amplifier	$\begin{aligned} & 100 \\ & 850 \end{aligned}$	$\begin{array}{r} -1.5 \\ -3.0 \end{array}$	\square	－	0.35 1.1	78000 50000	$\begin{array}{r} 900 \\ 1400 \end{array}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$			6K5G
6K6G	Pentode Power Amplifier	E	Htr，	6.3	0.4	Class－A Amplifier	Characteristics same as Type 41 －Table III										6K6G
6L5G	Triode Amplifier	C	Htr．	6.3	0.15	Cless－A Amplifier	$\begin{array}{r} 135 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} -5.0 \\ -9.0 \end{array}$		二	$\begin{aligned} & 3.5 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1500 \\ & 1900 \end{aligned}$	17 17	二	－	6L5G
6N6G	Direct－Coupled Amplifier	N	Her．	6.3	0.8	Power Amplifier	Characteristics same as Type 685－Table 111							1	－		6N6G
6P7G	Triode－Pentode	T	Her．	6.3	0.3	Triode－Pentode	Characteristics same as Type 6F7－Table III										6P7G
6U7G	Triple Grid Variable－ Amplifier	G	Htr ．	6.3	0.3	R．F．Amplifier	Characteristics same as Type 6D6－Table Ill										6U7G
6V7G	Duplex Diode－Triode	1	Her．	6.3	0.3	Detector－Amplifier	Characteristics same as Trae 85 －Table Ifl										6V7G
6W7G	Triole－Grid Det．Amp．	G	Htr．	6.3	0.15	Class－A Amolifier	250	-3	100	2	0.5	1500300	1225	1850	－	－	6W7G
6Y6G	Beam Power Amolifier	K	Hitr．	6.3	1.85	Class－A Amolifier	135	－13．5	135	3	60	－	7000		2000	3.6	6Y6G
6Y7G	Twin Triode Amplifier	L	Htr．	6.3	0.3	Class－B Amolifier	Characteristics same as Tyde 79 －Table III										6Y7G
6Z7G	Twin Triode Amplifier	L	Htr．	6.3	0.3	Class－B Amplifier	180	0	二	－	$\frac{8.42}{62}$	—	$\underline{\square}$		12000 9000	4.2 2.5	6Z7G
7000	Low－Noise Amplifier	G	Hit．	6.3	0.3	Class－A Amplifier				Characteristics same as Type 617 －Table 1							7000

${ }^{1}$ Refer to Fig．515．No connection to Pin No． 1.
－No－signal value for 2 tubes．
${ }^{3}$ Per plate．
${ }^{4}$ Plate No．1，remote sut－off．
Plate No．2，sharp cut－off．
TABLE III－6．3－VOLT GLASS RECEIVING TUBES

Type	Name	Base ${ }^{\text {a }}$	Socket Connec． tions	Cathode	Fil．or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma．	Plate Current Ma．	Plate Resist－ ance，Ohms		Amp． Factor	Lood Resistance Ohms	Power Outpul Watts	Type
					Volts	Amps												
							Class－A Amolifier	250	-4.5	－	－	6.0	800	5250	4.2	2500	3.2	
6 A3	Triode Power Amplifier	4－pin M．	A	Fil．	6.3	1.0	Push－Pull Amplifier	$\begin{array}{r} 325 \\ 325 \\ \hline \end{array}$	－ 6.8	Fixed Bias Self Bias		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	Power sutput for 2 tubes load plate－to－olate			$\begin{aligned} & 3000 \\ & 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	6A3
64^{1}	Pentode Power Amplifier	5－pin M．	F	Fil．	0.3	0.3	Class－A Amplifier	$\begin{array}{r} 100 \\ 180 \\ \hline \end{array}$	$\begin{array}{r} -6.5 \\ -12.0 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & 1.6 \\ & 3.9 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.0 \\ 29.0 \\ \hline \end{array}$	$\begin{array}{r} 83950 \\ 45500 \\ \hline \end{array}$	$\begin{aligned} & 1800 \\ & 2800 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 11000 \\ 8000 \\ \hline \end{array}$	$\begin{aligned} & 0.31 \\ & 1.40 \\ & \hline \end{aligned}$	6A4
6A6	Twin Triode Amplifier	7－pin M．	T	Htr．	6.3	0.8	Class－B Amplifier	$\begin{array}{r} 250 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		－	Power output is for one tube at staled load，plate－to－plate				$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{array}{r} 8.0 \\ 10.0 \\ \hline \end{array}$	6A6
6 A7	Pentagrid Converter	7－pin S．	P	Hir．	6.3	0.3	Converter	250	$\begin{gathered} 3.0 \\ \text { min. } \end{gathered}$	100	2.2	3.5	｜ 360000	Anode grid（No．2） 200 volts max．， 4.0 ma ．Grid leak， 50000 ohms．				6 A7
6AB5	Electron－Ray Tube	6－pi．S．	Z	Her．	6.3	0.15	Indicator Tube	135	0	Cut－off Grid bias 7.5 v ．		0.5	Target current 4.5 ma ．					$6 \mathrm{AB5}$
685	Direct－Coupled Power Am－	6－pin M．	Y	Her．	6.3	0.8	Class－A Amplifer	300	0		6^{5}	45	241000	2400	58	7000	4.0	6B5
	plifier						Pusin－Putl Amplifier	400	－13		4.5 ＊	40	－	－	－	10000	20	6B5

TABLE III-6.3-VOLT GLASS RECEIVING TUBES - Continued

Type	Name	Base ${ }^{4}$	Socket Connections ${ }^{1}$	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Recirtonce, Ohms	Mutual Conductance Micromhos	Amp. Factor	$\begin{gathered} \text { Lood } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Output Watts	Type
					Volts	Amps												
							Pentode R.F. Amplifier	250	- 3.0	125	2.3	9.0	650000	1125	730	-		687
687	Duplex-Diode Pentode	7-pin S.	O	Htr.	6.3	0.3	Pentode A.-F. Amplifier	250	- 4.5	50		0.65			-	-		6B7
6 C6	Yriple-Grid Delector Amplifier	6-pin S.	J	Htr.	6.3	0.3	Screen-Grid R.F. Amplifier	250	- 3.0	100	0.5	2.0	exceeds 1.5 mes.	1225	exceeds 1500			6C6
							Bias Detector	250	- 1.95	50	Cathode current 0.65 ma .			Plate compling resistor 250000 ohms				
6D6	Triple-Grid Variable- μ Amplifier	6-din S.	J	Htr.	6.3	0.3	Screen-Grid R.F. Amplifier	250	- 3.0	100	2.0	8.2	800000	1600	1280		-	6D6
							Mixer	250	-10.0	100				Oscillator peak volts $=7.0$				
6E5	Electron-Ray Tube	6-pin S.	Z	Htr.	6.3	0.3	Indicator Tube	250	0	Cut-off Grid$\text { Bias }=-8.0 \mathrm{v} .$		0.25	Target Current 4 ma .				-	6 65
6E6	Twin Triode Amplifier	7-din M.	T	Htr.	6.3	0.6	Class-A Push-Pull Amplifier	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	$\begin{aligned} & -20 \\ & -27.5 \end{aligned}$	Per plete -11.5 Per 18.0 Per plate - 18.0			$\begin{aligned} & 4300 \\ & 3500 \\ & \hline \end{aligned}$	$\begin{aligned} & 1400 \\ & 1700 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 15000 \\ 14000 \\ \hline \end{array}$	$\begin{aligned} & 0.75 \\ & 1.6 \end{aligned}$	6E6
6 67	Triode Pentode	7-pin S.	W	Htr.	6.3	0.3	Triode Unit Amplifier	100	- 3.0			3.5	16000	500	8	-		$6 F 7$
							Pentode Unit Amplifier	250	- 3.0	100	1.5	6.5	850000	1100	900	-		
							Pentode Unit Mixer	250	-10.0			2.8	Oscillator peak volts $=7.0$					
6G5	Electron-Ray Tube	6-pin S.	Z	Htr.	6.3	0.3	indicator Tube	250	0	Cut-off Grid Bias 22 v .		0.24	Target Current 4 ms .					6G5
6H5	Electron-Ray Tube	5-D.n S.	Z	Her.	6.3	0.3	Indicator Tube	Some characteristics as Type 6G5 - Circular Pattern										$6 \mathrm{6H5}$
6N5	Electron-Ray Tube	6-pin S.	Z	Her.	6.3	0.15	Indicator Tube	180	0	Cut-off Grid Bias $=-12 \mathrm{v}$.		0.5	Target Current 2 ma.				-	6 N5
605	Electron-Ray Tube	6-pin S.	z	H.	6.3	0.3	Indicator Tube	Same characteristics as Tyoe 6G5 - Tubular Bulb										605
36	Tetrode R.F. Amplifier	5-pin S.	1	Htr.	6.3	0.3	Screen Grid R.F. Amplifier	$\begin{aligned} & 100 \\ & 180 \\ & 250 \end{aligned}$	$\begin{aligned} & -1.5 \\ & =3.0 \\ & -\quad 3.0 \end{aligned}$	55 90 90	$\overline{\overline{1.7}}$	$\begin{aligned} & 1.8 \\ & 3.1 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 550000 \\ & 500000 \\ & 550000 \end{aligned}$	$\begin{array}{r} 850 \\ 1050 \\ 1080 \end{array}$	$\begin{aligned} & 470 \\ & 525 \\ & 595 \end{aligned}$	-	-	36
							Bias Delector	$\begin{array}{r} 100 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} -5.0 \\ -8.0 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 90 \end{aligned}$	-	Plate Current to be adjusted to 0.1 ma . with no signal					-	
37	Triode Detector Amplifier	5-pin S.	H	Hir.	6.3	0.3	Class-A Amplifier	90 180 250	$\begin{aligned} & -6.0 \\ & -13.5 \\ & -18.0 \end{aligned}$	-	-	2.5 4.3 7.5	11500 10200 8400	800 900 1100	9.2 9.2 9.2	-	-	37
							Bias Detector	$\begin{array}{r} 90 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} -10.0 \\ -88.0 \end{array}$	\square	-	Plate Current to be adjusted to 0.2 ma. with no signal					-	
38	Pentode Power Amplifier	5-p n S.	1	Hit.	6.3	0.3	Class-A Amplifier	100 180 250	$\begin{array}{r} -9.0 \\ -18.0 \\ -25.0 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 180 \\ & 250 \\ & \hline \end{aligned}$	1.2 2.4 3.8	$\begin{array}{r} 7.0 \\ 14.0 \\ 29.0 \\ \hline \end{array}$	$\begin{aligned} & 140000 \\ & 115000 \\ & 100000 \end{aligned}$	$\begin{array}{\|c\|} \hline 875 \\ 1050 \\ 1200 \\ \hline \end{array}$	$\begin{array}{\|l\|l} 120 \\ 120 \\ 120 \end{array}$	$\begin{aligned} & 15000 \\ & 11600 \\ & 10000 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 1.00 \\ & 8.50 \\ & \hline \end{aligned}$	38
$\begin{aligned} & 39 \\ & 44 \end{aligned}$	Variable- μ R.F. Amplifier Pentode	5-pin S.	1:	Ht.	6.3	0.3	Screen-Grid R.F. Amp!ifier	$\begin{array}{r} 90 \\ 180 \\ 250 \end{array}$	$\begin{array}{r} 3.0 \\ \text { min. } \end{array}$	90 90 90	1.6 1.4 1.4	5.6 5.8 5.8	$\begin{array}{r} 375000 \\ 750000 \\ 1000000 \\ \hline \end{array}$	$\begin{array}{r} 960 \\ 1000 \\ 1050 \\ \hline \end{array}$	$\begin{array}{r} 360 \\ 750 \\ 1050 \\ \hline \end{array}$	-	-	$\begin{aligned} & 39 \\ & 44 \end{aligned}$
41	Pentode Power Amplifier	6-pin S.	M^{2}	Htr.	6.3	0.4	Cless-A Amplifier	$\begin{aligned} & 100 \\ & 180 \\ & 250 \end{aligned}$	$\begin{array}{r} 7.0 \\ -13.5 \\ -180 \end{array}$	$\begin{aligned} & 100 \\ & 180 \\ & 250 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.0 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 9.0 \\ 18.5 \\ 32.0 \end{array}$	$\begin{array}{r} 103500 \\ 81000 \\ 68000 \end{array}$	$\begin{aligned} & 1450 \\ & 1850 \\ & 2200 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{r} 12000 \\ 9000 \\ 7600 \end{array}$	$\begin{aligned} & 0.33 \\ & 1.50 \\ & 3.40 \end{aligned}$	41
42	Pentode Power Amplifier	6-pin M.	M^{2}	Her.	6.3	0.7	Class-A Amplifier	250	-16.5	250	6.5	34.0	100000	9200	220	7000	3.0	4275
75	Duplex-Diode High- μ Triode	6-pin S.	K	Htr.	6.3	0.3	Triode Amplifier	250	- 1.35	-	-	0.4	91000	1100	100	-	-	
76	Triode Detector Amplifier	5-pin S.	H	Htr.	6.3	0.3	Class-A Amplifier	250	-13.5	-	-	5.0	9500	1450	13.8	-	-	76
							Bias Detector	$250-20.0$		Plate current to be adjusted to 0.2 ma . with no signal								

TABLE III－6．3－VOLT GLASS RECEIVING TUBES—Continued

Tyde	Name	Base ${ }^{\text {4 }}$	Socket Connec tions	Cathode	Fil．or Heater		Use	Plate Supply Voits	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Curren Mo．	$\begin{aligned} & \text { Plate } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	$\begin{aligned} & \text { Plote Resist- } \\ & \text { once, Ohms } \end{aligned}$	Mutual Conduc－ tance Micromhos	Amp．	$\begin{array}{\|c} \text { Lood } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Power Output Watts	Type
					Volts	Amps												
77	Triple－Grid Detector Amplifier	6－pin 5.	J	Htr．	6.3	0.3	Screen－Grid R．F． Amolifier	$\begin{aligned} & 100 \\ & 850 \\ & 85 \end{aligned}$	$\begin{array}{r} 1.5 \\ -3.0 \end{array}$	$\begin{array}{r} 60 \\ 100 \end{array}$	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 9.3 \end{aligned}$	$\begin{array}{r} 650000 \\ 1500000 \end{array}$	$\begin{aligned} & 1100 \\ & 1050 \end{aligned}$	$\begin{array}{r} 715 \\ \hline 1500 \end{array}$	－		71
							Bias Detector	250	－ 1.95	50	Cathode current $=0.65 \mathrm{ma}$ ．Plate coupling resistor $\mathbf{9 5 0 0 0 0}$ ohms							
78	Triple－Grid Variable－μ Amplifier	6－pin 5.	1	Her．	6.3	0.3	Screen－Grid R．F． Amplifier	$\begin{array}{r} 90 \\ 180 \\ 950 \\ 850 \end{array}$	$\begin{gathered} -3.0 \\ \text { min. } \end{gathered}$	$\begin{array}{r}90 \\ 75 \\ 100 \\ 125 \\ \hline\end{array}$	$\begin{aligned} & 1.3 \\ & 1.0 \\ & 1.7 \\ & 9.6 \end{aligned}$	$\begin{array}{r}6.4 \\ 4.0 \\ 7.0 \\ 10.5 \\ \hline\end{array}$	$\begin{array}{r} 315000 \\ 1000000 \\ 800000 \\ 600000 \end{array}$	$\begin{aligned} & 1975 \\ & 1100 \\ & 1450 \\ & 1650 \end{aligned}$	$\begin{gathered} 400 \\ 1100 \\ 1160 \\ 990 \end{gathered}$	－	－	78
79	Twin Triode Amplifer	6－pin 5.	0	Htr．	6.3	0.6	Closs－B Amplifier	180 850 8	0 0		－	Power output is for one tube at stated load，plate－to－plate				$\begin{array}{r} 7000 \\ 14000 \\ \hline \end{array}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	79
85	Duplex Diode Triode	6－pin S．	K	Her．	6.3	0.3	Triode Unit as Class－A Amplifier	135 180 850 80	$\begin{aligned} & -10.5 \\ & -13.5 \\ & -20.0 \\ & \hline \end{aligned}$	－	－	$\begin{aligned} & 3.7 \\ & 6.0 \\ & 8.0 \end{aligned}$	$\begin{array}{r} 11000 \\ 8500 \\ 7500 \end{array}$	$\begin{array}{r} 750 \\ 975 \\ \mathbf{1 1 0 0} \\ \hline \end{array}$	$\begin{aligned} & 8.3 \\ & 8.3 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 95000 \\ & 20000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.160 \\ & 0.350 \end{aligned}$	85
	Triple－Grid Power Amplifier	6－pin S．	L	Htr．	6.3	0.4	Class－A Triode Amplifier	$\begin{aligned} & 160 \\ & 180 \\ & 850 \end{aligned}$	-20.0 -89.5 -31.0 -18.0	－	－	$\begin{aligned} & 17.0 \\ & 90.0 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 3300 \\ & 3000 \\ & 2600 \end{aligned}$	1485 1550 1800	4.7 4.7 4.7	$\begin{aligned} & 7000 \\ & 6500 \\ & 5500 \\ & 500 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.400 \\ & 0.900 \end{aligned}$	89
89							Class－A Pentode Amplifier	100 180 850 80	-10.0 -18.0 -25.0	100 180 850	1.6 3.0 5.5	9.5 980 38.0	$\begin{array}{r} 104000 \\ 80000 \\ 70000 \end{array}$	$\begin{aligned} & 1200 \\ & 1550 \\ & 1800 \end{aligned}$	125 125 125	$\begin{array}{r} 10700 \\ 8800 \\ 6750 \\ \hline \end{array}$	0.33 1.50 1.50 3.40	
							Class－B Triode Amplifier	180	0			Power output is for q tubes at stated load，plate－to－plate				$\begin{array}{r} 13600 \\ 9400 \end{array}$	$\begin{array}{r} 1.40 \\ 2.50 \\ 3.50 \end{array}$	
1603	Triple－Grid Detector	6－pin M．	J	Htr．	6.3	0.3	Class－A Pentode Amplifier	100 850	-3 $-\quad 3$ $-\quad 1$	100 100	0.5 0.5	2.0 2.0	$\begin{aligned} & 1000000 \\ & 1500000 \end{aligned}$	$\begin{aligned} & 1185 \\ & 1295 \\ & \hline \end{aligned}$	$\begin{aligned} & 1185 \\ & 1500 \\ & \hline \end{aligned}$	二	－	1603
	Amplifier （Low Noise）						Class－A Triode Amplifier ${ }^{8}$	$\begin{aligned} & 180 \\ & 850 \\ & 850 \end{aligned}$	－ 5.3 $-\quad 9.0$		－	$\begin{aligned} & 5.3 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 11000 \\ & 10500 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \end{aligned}$	$\begin{array}{r} 1500 \\ 20 \\ 90 \end{array}$	＝	三	
7700	Low－Noise Amplifier	6－pin S．	，	Her．	6.3	0.3	Class－A Amplifier	Characteristics same as 6C6										7700
RK34	Twin Triode Amplifier	$\begin{aligned} & \text { 5- } \sin \mathrm{M} \\ & \text { 7- } \sin \mathrm{M} . \\ & \hline \end{aligned}$	DD	Hit．	6.3	0.8	Class－B Amplifier	$\begin{aligned} & 180 \\ & 300 \end{aligned}$	$\left\lvert\, \begin{aligned} & -6 \\ & -15 \end{aligned}\right.$	二	－	－	Power output for one tube at stated load，plate－to－plate			$\begin{aligned} & 6000 \\ & 10000 \end{aligned}$	$\begin{gathered} 7.2 \\ 19.0 \end{gathered}$	RK34
RK100	Mercury－vapor Triode	6－pin M．	CC	Hit．	6.3	0.6	Amplifier	100	－ 2.5	Cathode（G1）current 250 mo．				90000	50			RK100

> Refer to Fig. 514 . Suppressor grid, connected to cathode inside tube, not shown on base diagram. ${ }^{3}$ Also known as Type LA.

Also known as Type LA
${ }_{5}^{4}$ S．－small；M．－medium；
${ }^{5}$ Current to input plate（ Pi ）．
${ }_{7}{ }^{6}$ Grids Nos． 2 and 3 connected to plate．

TABLE IV－2．5－VOLT RECEIVING TUBES

Type	Name	Base ${ }^{3}$	Socket Connec－ tions	Cathode	Fil．or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ms．	Plate Current Ma．	Plate Resist－ ance，Ohms	Mutual Conduct－ ance Micromhos	Amp． Factor	LoadResistanceOhms	Power Output Watts	Type
					Volts	Amps												
9A3	Triode Power Amplifier	4－pin M．	A	Fil．	9.5	2.5	Class－A Aanplifier	250	－45	－		60.0	800	5250	4.9	2500	3.5	2A3
							Push－Pull Amplifier	$\begin{array}{r} 300 \\ 300 \\ \hline \end{array}$	$\begin{array}{r} -69 \\ -69 \\ \hline \end{array}$	Self－Bias Fixed－Bies		$\begin{array}{r} 40.0 \\ 40.0 \\ \hline \end{array}$	Power Output for 2 tubes Load Plate－to－Plate			5000 3000	$\begin{array}{r} 10.0 \\ 15.0 \end{array}$	
2A5	Pentode Power Amplifier	6－pin M．	M^{2}	Htr，	9.5	7.75	Class－A Amplifier	250	－16．5	250	6.5	34.0	80000	2500	200	7000	3.0	2A5
9A6	Duplex－Diode Triode	6－pin S．	K	Htr．	2.5	0.8	Triode as Class－A Amp．	950	－1．35	－	－	0.4	91000	1100	100	－	－	2A6
$2 A 7$	Pentagrid Converter	7－pin S．	P	Htr．	2.5	0.8	Converter	250	$\begin{gathered} -3.0 \\ \mathrm{~min} . \end{gathered}$	100	2.9	3.5	360000	Anode grid 4.0 ms ．	（No． Gid lea	$\begin{aligned} & 200 \text { max. } \\ & \text { i) } \\ & \text { k, } 50000 \mathrm{~h} \end{aligned}$	volts， hms	2A7
286	Special Power Amplifier	7－pin M．	BB	Htr．	$2 . \overline{5}$	2.25	Amplifier	250	－24．0	－	－	40.0	5150	3500	18.0	15000	4.0	286

TABLE IV-2.5 VOLT RECEIVING TUBES - Continued

Type	Name	Bese ${ }^{3}$	Socket Connections	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	ScreenVolts	Screen Current Ma.	Plate		Mutual		Load		Type
					Volts	Amps						Ma.		Micromhos		Ohms	Watts	
2B7	Duplex-Diode Pentode	7-pin S.	0		2.5	0.8	Pentode Amplifier	Characteristics same as Type 687 - lable III Characteristies same as Type 6E5 - Table III										287
2 E 5	Electron-Ray Tube	6-pin S.	Z	Htr .	2.5	0.8	Indicator Tube Screen-Grid R.F. Amp.											2 E5
24-A	Tetrode R.F. Amplifier	5-pin M.	1	Htr.	2.5	1.75		250	$\begin{array}{r}-3.0 \\ -5.0 \\ \hline-80\end{array}$		1.1	4.0	600000	1050	630			24-A
							Bias Detector	250			Plate current adjusted to 0.1 ma . with no signal							
27	Triode Detector-Amplifier	5-pin M.	H	Htr.	2.5	1.75	Bias Detector Screen-Grid R.F. Amp.	250	$\begin{array}{r} -21.0 \\ \frac{-30.0}{-3.0} \end{array}$	-	5.2							27
								250		-	Piate current adjusted to 0.2 ma . with no signal							
35	Variable- μ A mplifier	5-pin M.	1	Htr.	2.5	1.75		250		90	2.5	6.5	400000	1050	420	-		35
45	Triode Power Amplifier	4-pin M.	A	Fil.	2.5	1.5	Class-A Amplifier	$\begin{aligned} & 180 \\ & 250 \\ & 275 \end{aligned}$	$\begin{aligned} & -31.5 \\ & -50.0 \\ & -56.0 \end{aligned}$	180 250 275	- -	31.0 34.0 35.0	1650 1610 1700	2125 2175 2050	3.5 3.5 3.5	2700 3900 4600	$\begin{aligned} & 0.82 \\ & 1.60 \\ & 2.00 \end{aligned}$	45
46	Dual-Grid Power Amplifier	5-pin M.	G	Fil.	9.5	1.75	Class-A Amplifier ${ }^{\text {d }}$	250	33.0	-	ーー		2380	2350	5.6	6400	1.25	46
								$\begin{array}{r} 300 \\ 400 \\ \hline \end{array}$	0	-	-	Power output for 2 tubes at stated load, plate-to-plate				$\begin{aligned} & 5200 \\ & 5800 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 90.0 \end{aligned}$	
47	Pentode Power Amolifier	5-pin M.	F	Fil.	2.5	1.75	Class-A Amplifier	250	$\begin{gathered} -16.5 \\ \hline 0 \\ 0 \end{gathered}$	250	6.0	31.0 \| 60000		2500	150	7000	2.7	47
53	Twin Triode Amplifier	7-pin M.	T	Htr.	2.5	2.0	Class-B A mplifier Class-A Amplifier	$\begin{array}{r} 250 \\ 300 \end{array}$			-	Power output for 1 tube at stated load, plate-to-plate				$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{array}{r} 8.0 \\ 10.0 \end{array}$	53
55	Duplex-Diode Triode	6-pin S.	K	Htr.	2.5	1.0		250	- 40.0	-	--	8.0	7500	1100	8.3	20000	0.350	55
56	Triode Amplifier، Detector	5-pin S.	H	Htr.	2.5	1.0	Class-A Amplifier	250	-13.5	-		5.0	9500	1450	13.8	-		56
		5-pin S.			2.5	1.0	Bias Detector	250	-20.0	-		Plate	- current adju	ted to 0.2 m	with no	signal		50
57	Triple-Grid Detector Amplifier	6-pin S.	J	Htr.	2.5	1.0	Sereen-Grid R.F. Amplifier Bias Detecto	250	-3.0	100	0.5	2.0	$\begin{aligned} & \text { exceeds } \\ & 1.5 \text { meg. } \end{aligned}$	1295	$\begin{gathered} \text { exceeds } \\ 1500 \end{gathered}$		-	57
							Bias Detector	250	- 1.95	50	Cathod	e current	t $=0.65 \mathrm{ma}$.	Plate	sistor $=$	50000 ohn		
58	Triple-Grid Variable- μ Amplifier	6-pin S.	J	Htr,	2.5	1.0	Screen-Grid R.F. Amp.	250	- 3.0	100	2.0	8.2	800000	1600	1280	-	-	58
							Mixer	250	-10.0	100	-			cillater peak	olts $=7$.			
59	Triple-Grid Power		N	Ht	5	90	Class-A Triode ${ }^{\text {E }}$	250	$\begin{array}{r}-28.0 \\ \hline-18.0\end{array}$	250	9.0	26.0	2300	2600	6.0 100	5000	1.25 3.0	
5	mplifier		N		2.5	2.0	Closs-B Triode ${ }^{\text {a }}$	$\begin{array}{r} 300 \\ 400 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	-		Power output stated load,	for 2 tubes a plate-to-plate		$\begin{aligned} & 4600 \\ & 6000 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 90.0 \end{aligned}$	
RK15	Triode Power Amplifier	4-pin M.	A^{9}	Fil.	2.5	1.75			Characteri	stics same	as Type	$4 \overline{6}$ with	Class-B conne	ctions				RK15
RK16	Triode Power Amplifier	5-pin M.	H	Htr,	2.5	2.0		Cha	racteristics	same as	Type 59	with Clas	Ss-A triode co	nnections				RK16
RK17	Pentode Power Amplifier	5-pin M.	12	Htr.	2.5	2.0				Charac	eristics sa	me as Typ	pe $2 \overline{A 5}$					RK17

1 Refer bo Fig. 514 .
2 Suppressor grid, connected to cethode inside tube, not shown on base diagram.
is
${ }^{3} \mathrm{~S} .-\mathrm{mall} ; \mathrm{M}$. - medium.
'Grid No. 2 tied to plate.
5 Grids Nos. 1 and 2 tied together. ${ }^{6}$ Grids Nos. 2 and 3 connected to plate.

Grid No. 2, screen; grid No. 3, suppressor. Grids Nos. 1 and 2 tied together; grid No. 3 connected to plate. ${ }^{9}$ Grid connection to cap; no connection to No. 3 pin.

TABLE V-2.0-VOLT BATTERY RECEIVING TUBES

Type	Name	Base ${ }^{3}$	Socket Connections	Cathode	Fil. or Heater		Use	Plate	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Mutual Conductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
					Volts	Amps		Volts										
1 A4	Variable- μ Pentode	4-Din S.	D	Fit.	9.0	0.06	R.F. Amplifier	180	-3.0	67.5	0.8	2.3	1000000	750	750	-		$1 \mathrm{~A}^{4}$
1A6	Pentagrid Converter	brpin \$,	V	Fi).	2.0	0.06	Sonverter	180	$\begin{aligned} & -3.0 \\ & \text { min. } \end{aligned}$	67.5	2.4	1.3	500000	Anode 2.3 ma	d (No. Grid Le	$\begin{aligned} & 135 \text { max. } \\ & \text { ak } 50000 \text { oh } \end{aligned}$	volts; ms	1 A6

TABLE V - 2.0-VOLT BATTERY RECEIVING TUBES-Continued

Type	Name	Base ${ }^{3}$	Socket Connections ${ }^{1}$	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Mo.	Plate Resistance, Ohms	Mutual Conductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
					Volts	Amps												
184	Pentode R.F. Amplifier	4-pin S.	D	Fil.	2.0	0.06	Amplifier	180	-3.0	67.5	0.6	1.7	1500000	650	1000	-	-	184
185	Duplex-Diode Triode	6-pin S.	\times	Fil.	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	0.06	Triode Class-A Amplifier Converter	135	- 3.0			0.8	35000	575	20			185
1 C6	Pentagrid Converter	6-pin S.	V	Fil.		0.12		180	$\begin{aligned} & 3.0 \\ & \text { min. } \end{aligned}$	67.5	2.0	1.5	750000	Anode gr 3.3 ma .	(No. 2 Grid Led	$\begin{aligned} & 135 \text { max. } \\ & 50000 \text { of } \end{aligned}$	volts; ms	1C6
1 F4	Pentode Power Amplifier	5-din M.	F	Fil.	2.0	0.12	Class-A Amplifier R.F. Amplifier	135	-4.5	135	2.6	8	200000	1700	340	16000	0.34	1F4
								180	- 1.5	67.5	0.0	2.0	1000000	650	650			1 F6
156	Duplex-Diode Pentode	6-pin S.	EE	Fil.	2.0	0.6	A.F. Amplifier	135	- 1.0	135	Plate resistor 0.25 megohm Screen resistor 1.0 megohm					Voltage Amp. $=48$		
15	R.F. Pentode AmplifierOscillator	5-pin S.	1	Hit.	2.0	0.22	R.F. Amplifier	135	- 1.5	67.5	0.3	1.85		750	600	-	--	15
								$\begin{aligned} & 67.5 \\ & 135 \end{aligned}$	- 1.5	67.5	0.3	1.85	630000	710	450		-	
19	Twin-Triode Amplifier	6-pin S.	U	Fil.	2.0	0.26	Class-B Amplifier		0	-	-		Load plate-to-plate			10000	2.1	19
30	Triode Detector Amplifier	4-pin S.	A	Fil.	2.0	0.06	Class-A Amplifier	$\begin{array}{r} 90 \\ 135 \\ 180 \end{array}$	$\begin{array}{r} -4.5 \\ -9.0 \\ -13.5 \end{array}$	-	\square	3.0	$\begin{aligned} & 11000 \\ & 10300 \\ & 10300 \end{aligned}$	$\begin{aligned} & 850 \\ & 900 \\ & 900 \\ & \hline \end{aligned}$	9.3 9.3 9.3	-	-	30
31	Triode Power Amplifer	4-pin S.	A	Fil.	2.0	0.13	Class-A Amplifier	$\begin{array}{r} 135 \\ 180 \\ \hline \end{array}$	$\begin{array}{r} -22.5 \\ -30.0 \\ \hline \end{array}$	\square	-	$\begin{array}{r} 8.0 \\ 12.3 \end{array}$	$\begin{aligned} & 4100 \\ & 3600 \end{aligned}$	$\begin{array}{r} 925 \\ 1050 \\ \hline \end{array}$	$\begin{aligned} & 3.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 7000 \\ & 5700 \end{aligned}$	$\begin{aligned} & 0.185 \\ & 0.375 \\ & \hline \end{aligned}$	31
32	Tetrode R.F. Amplifier	4-pin M.	D	Fil.	2.0	0.06	Screen-Grid R.F. Amplifier Bias Detector	$\begin{array}{r} 135 \\ 180 \end{array}$	$\begin{array}{r} \hline-3.0 \\ -\quad 3.0 \\ \hline \end{array}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	1.7 1.7	$\begin{array}{r} 950000 \\ 1800000 \end{array}$	$\begin{aligned} & 640 \\ & 650 \end{aligned}$	$\begin{aligned} & 610 \\ & 780 \end{aligned}$	-	-	32
								180	- 6.0	67.5	0.4	Plate current adjusted to 0.2 ma . with no signal						
33	Pentode Power Amplifier Variable- μ Pentode R.F. Amplifier	5-din M.	F	Fil.	2.0	0.26	Class-A Amplifier	180 135	$\begin{array}{r} -18.0 \\ -13.5 \end{array}$	$\begin{aligned} & 180 \\ & 135 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	22.0 14.5	$\begin{aligned} & 55000 \\ & 50000 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1450 \end{aligned}$	$\begin{aligned} & 90 \\ & 70 \end{aligned}$	$\begin{aligned} & 6000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 0.7 \end{aligned}$	33
34		4-pin M.	D ${ }^{\text {? }}$	Fil.	2.0	0.06	Screen-Grid R.F. Amplifier	$\begin{array}{r} 135 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & -3.0 \\ & \text { min. } \end{aligned}$	$\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.8 \\ & 2.8 \end{aligned}$	$\begin{array}{r} 600000 \\ 1000000 \\ \hline \end{array}$	$\begin{array}{r} 600 \\ 620 \\ \hline \end{array}$	$\begin{aligned} & 360 \\ & 680 \\ & \hline \end{aligned}$	-	-	34
	Dual-Grid Power Amplifier	5-din M.	G	Fil.	2.0		Class-A Amplifier ${ }^{4}$ Class-B Amplifier	135	-20.0	- -	--	Power output for 2 tubes at indicated load, plate-to-plate				11000	0.17	49
49						0.18		180	0		\square					12000	3.5	
840	R.F. Pentode	5-din S.	GG	Fil,	2.0	0.130	Class-A Amplifier Class-A Amplifier	180	-3	67.5	0.7	1.0	1000000	400	400		--	840
950	Pentode Power Amplifier Triode Amplifier	$\frac{5-\operatorname{din} M}{4-\operatorname{din} M}$	F	Fil. Fil.	$\frac{2.0}{2.0}$	0.12		135	-16.5	1.35	2.0	7.0	100000	1000	100	13500	0.45	950
RK24						0.12	Class-A Amplifier Class-A Amplifier	180	-13.5	-	-	8.0	5000	1600	8.0	12000	0.25	RK24

${ }^{1}$ Refer to Fig. 514.
${ }^{2}$ Suppressor grid connected to filament inside tube,
not shown on base diagram.
S.- ${ }^{3}$ nall; M.- medium.

Grid No. 2 tied to plate.
Grids Nos, 1 and 2 tied together
TABLE VI-2.0-VOLT BATTERY TUBES WITH OCTAL BASES

Type	Name	Socket Connections	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Voits	Sereen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms		Mutual Conductance Mieromhos	Amp. Factor	Lood Resistence Ohms	Power Output Watts	Type
				Volts	Amps													
1C7G	Pentogrid Converter	A	Fil.	2.0	0.06	Converter	-	-	Characteristics same as Type 1C6-Table V						-	-	-	1C7G
1D5G	Variable μ R.F. Pentode	B	Fil.	2.0	0.06	R.F. Amplifier			Characteristics same as Type 1 A4 - Table V						-	-	-	105G
1D7G	Pentegrid Converter	A	Fil.	2.0	0.06	Converter				recteristi	same as	Type 1	A6 -	able V				107G

TABLE VI-2.0-VOLT BATTERY TUBES WITH OCTAL BASES—Continued

Type	Name	Socket Connections ${ }^{1}$	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Piate Resistance, Ohms	Mutual Conductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Type
				Volts	Amps												
1E5G	R.F. Amplifier Pentode	B	Fil.	2.0	0.06	R.F. Amplifier			Characteristics same as Type 1B4-Table V					$\underline{-}$	-	-	1E5G
1E7G	Double Pentode Power Amp.	C	Fil.	2.0	0.24	Class-A Amplifier	135	-7.5	135	$2.0{ }^{2}$	$6.5{ }^{2}$	220000	1600	350	24000	0.65	1EJG
1 F5G	Pentode Power Amplifier	D	Fil.	2.0	0.12	Class-A Amplifier	-	-	Characteristics same as Type 1F4-Table V					-	-	-	1F5G
1F7GV	Duplex-Diode Pentode	E	Fil.	2.0	0.06	Delector-Amplifier		-	Characteristics same as Type 1 Fo-Table V					-	-	\cdots	1F7GV
1G5G	Pentode Power Amplifier	D	Fil.	9.0	0.12	Class-A Amplifier	$\begin{array}{r} 90 \\ 135 \end{array}$	$\begin{gathered} -6 \\ 13.5 \end{gathered}$	$\begin{array}{r} 90 \\ 135 \end{array}$	$\begin{aligned} & 2.7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.7 \end{aligned}$	$\begin{array}{r} 133000 \\ 1600000 \end{array}$	$\begin{aligned} & 1500 \\ & 1550 \end{aligned}$	$\begin{array}{r} 200 \\ 850 \end{array}$	$\begin{aligned} & 8500 \\ & 9000 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.55 \end{aligned}$	1G5G
1H4G	Triode Amplifier	F	Fil.	2.0	0.06	Detector-Amplifier	-	-	Characteristics same as Tyoue 30-Table V					-	-		1H4G
1H6G	Duplex-Diode Triode	G	Fil.	2.0	0.06	Delector-Amplifier		- 16.	Characteristics same as Type 185-Table V					-	--	-	1H6G
1J5G	Pentode Power Amplifier	D	Fil.	2.0	0.12	Class-A Amplifier	135	-16.5	135	9.0	7.0		950	100	13500	0.45	135G
1 J 6 G	Twin Triode	H	Fii.	2.0	0.24	Class-B Amplifier		-	Choracteristics same as Trpe 19-Table V						-	-	1 J6G

${ }^{1}$ Refer to Fig. 516.
${ }^{2}$ Total current for both sections; no signal.
TABLE VII-1.5-VOLT FILAMENT DRY-CELL TUBES

table VIII—HIGH-VOLTAGE HEATER tUBES

Type	Name	Base ${ }^{3}$	Socket Connections	Heater		Use	Plate Supply Volts	Grid Bias	ScreenVolts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Mutual Conductance Micromhos	Amp. Factor	Lood Resistance Ohms	Power Output Watts	Type
				Volts	Amps												
$12 \mathrm{A5}$	Pentode Power Amplifier	7-pin M.	AA	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	Class-A Amplifier	100 180	-15 -27	100 180	4.0 9.0	$\begin{aligned} & 18 \\ & 40 \\ & \hline \end{aligned}$	-	-	-	$\begin{aligned} & 5000 \\ & 4500 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & 9.8 \end{aligned}$	19A5
		7-pin M.	FF	12.6	0.3	Class-A Amplifier	135	-13.5	135	9.5	9.0	102000	975	100	13500	0.55	$19 \mathrm{A7}$
12 A7	Amplifier	7-pin M.				Half-Wave Rectifier				5 Max.	olts R.M	M.S. Output cu	rrent 30 ma .	Max.			
18	Pentode Power Amplifier	6-pin M.	M^{2}	14	0.3	Class-A Amplifier				Charact	ristics sam	me as Type 2A	A5-Table IV				18
25A6 ${ }^{2546}$	Pentode Power Amplifier	7-pin O .	E ${ }^{\text {a }}$	25	0.3	Class-A Amplifier	95 135 180	-15 -20 -20	95 135 135	4 8 7.5	20 37 38	45000 35000 40000	2000 2450 8500	90 85 100	4500 4000 5000	$\begin{aligned} & 0.9 \\ & 2.0 \\ & 2.75 \end{aligned}$	$\begin{aligned} & 25 A 6 \\ & 25 A 6 G \end{aligned}$

TABLE VIII-HIGH-VOLTAGE HEATER TUBES - Continued

Type	Name	Base ${ }^{3}$	Socket Connections ${ }^{\text {t }}$	Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistance, Ohms	Mutual Conductance Micromhos	Amp. Factor	Load Resistance Ohms	Power Output Watts	Troe
				Volis	Amps												
25A7G	Rectifier-Amplifier	8-pin O .	V^{4}	25	0.3	Class-A Amplifier	100	-15	100	4.0	20.5	50000	1800	90	4500	0.77	
					0.3	Rectifier	125 v. R.M.S. - 75 me . max. output										25A7G
25B5	Direct-Coupled Triodes	6-pin S.	Y	25	0.3	Class-A Amplifier	110	0	110	7	45	11400	2200	25	2000	2.0	25B5
2586 G	Pentode Power Amplifier	7-pin O.	E	25	0.3	Class-A Amplifier	95	-15	95	4	45	-	4000	-	2000	1.75	25B6G
25 L 6	Beam Power Amolifier	7 7-pin O.	K	25	0.3	Class-A Amplifier	110	- 8	110	3.5-10.5	45-48	10000	8000	80	2000	9.2	2516
25L6G	Beam Power Amplifier	7 7-pin O.	K	25	0.3	Class-A Amplifier	Characteristics same as Type 25L6										25L6G
95N6G	Direct-Coupled Triodes	7-pin 0.	N	25	0.3	Class-A Amplifier	110	0	110	7	45	11400	2200	25	2000	2.0	25N6G
43	Pentode Power Amplifier	6-pin M.	M ${ }^{\text {² }}$	25.0	0.3	Class-A Amplifier	$\begin{array}{r} 95 \\ 135 \end{array}$	$\begin{array}{r} -15.0 \\ -20.0 \\ \hline \end{array}$	$\begin{array}{r} 95 \\ 135 \end{array}$	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 34.0 \end{aligned}$	$\begin{aligned} & 45000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2300 \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 4500 \\ & 4000 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 2.00 \\ & \hline \end{aligned}$	43
48	Tetrode Power Amplifier	6-pin M.	M	30.0	0.4	Cless-A Amplifier	96 125	-19.0 -20.0	96 100	9.0	$\begin{aligned} & 52.0 \\ & 56.0 \end{aligned}$	-	$\begin{aligned} & 3800 \\ & 3900 \end{aligned}$	-	1500 1500	2.0 2.5	48

Type	Name	Base ${ }^{2}$	Socket Connections	Cathode	Fil. or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Me.	Plate Current Ma.	Plate Resistance, Ohms	Mutual Conductance Micromhos	Amp. Factor	Lood Resistance Ohms	Power Output Watts	Type
					Volts	Amps												
- 00-A	Triode Detector	4-pin M.	A	Fil.	5.0	0.25	Grid Leak Detector	45	-	-		1.5	30000	666	20	-	-	00-A
$01-A$	Triode Delector Amplifier	4-pin M.	A	Fil.	5.0	0.25	Class-A Amplifier	$\begin{array}{r} 90 \\ 135 \\ \hline \end{array}$	$\begin{array}{r} -4.5 \\ -9.0 \\ \hline \end{array}$			$\begin{array}{r} 8.5 \\ 3.0 \end{array}$	$\begin{aligned} & 11000 \\ & 10000 \end{aligned}$	$\begin{array}{r} 725 \\ 800 \end{array}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	-	-	01.A
F 10	Triode Power Amplifier	4-pin M.	A	Fil.	7.5	1.25	Class-A Amplifier	$\begin{aligned} & 350 \\ & 495 \end{aligned}$	$\begin{array}{r} \hline-31.0 \\ -39.0 \\ \hline \end{array}$			$\begin{aligned} & 16.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 5150 \\ & 5000 \end{aligned}$	$\begin{aligned} & 1550 \\ & 1600 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11000 \\ & 10900 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.6 \end{aligned}$	10
11.12	Triode Delector Amplifier	4-pin M.	A	Fil.	1.1	0.25	Class-A Amplifier	$\begin{array}{r} 90 \\ 135 \\ \hline \end{array}$	$\begin{aligned} & -4.5 \\ & -10.5 \\ & \hline \end{aligned}$	-	-	2.5 3.0	15500 15000	485 440	6.6 6.6	-	-	11-12
20	Triode Power Amplifier	4-pin S.	A	Fil.	3.3	0.132	Class-A Amplifier	90 135	$\begin{array}{r} -16.5 \\ -29.5 \\ \hline \end{array}$	-	-	3.0 6.5	8000 6300	$\begin{array}{r} 415 \\ 525 \end{array}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 9600 \\ & 6500 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.110 \end{aligned}$	20
22	Tetrode R.F. Amplifier	4-pin M.	D	Fil.	3.3	0.132	Screen-Grid R.F. Amplifier	$\begin{array}{r} 135 \\ 135 \\ \hline \end{array}$	$\begin{aligned} & -1.5 \\ & -1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 45.0 \\ 67.5 \end{array}$	$\begin{aligned} & 0.6 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 725000 \\ & 325000 \end{aligned}$	$\begin{array}{r} 375 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 270 \\ 160 \\ \hline \end{array}$	-	-	22
26	Triode Amplifier	4-pin M.	A	Fil.	1.5	1.05	Class-A Amplifier	$\begin{array}{r} 90 \\ 180 \end{array}$	$\begin{aligned} & -7.0 \\ & -14.5 \\ & \hline \end{aligned}$	-		2.9 6.2	8900 7300	$\begin{array}{r} 935 \\ 1150 \end{array}$	$\begin{aligned} & 8.3 \\ & 8.3 \end{aligned}$	-	-	26
40	Triode Voltage Amplifier	4-pin M.	A	Fil.	5.0	0.25	Class-A Amplifier	$\begin{array}{r}135 \\ 180 \\ \hline\end{array}$	-1.5 $-\quad 3.0$	-	\square	0.2 0.2	$\begin{aligned} & 150000 \\ & 150000 \end{aligned}$	$\begin{array}{r} 200 \\ 800 \end{array}$	30 30	-	-	40
4A6G	Twin Triode Amplifier	8 -pin $0 .{ }^{6}$	L ${ }^{3}$	Fil.	4^{43}	0.06	Class-A Amplifier ${ }^{\text {a }}$	90	- 1.5	-	-	$2.2{ }^{4.6}$	13300	1500	20	-	1.0	4A6G
50	Triode Power Amplifier	4-pin M.	A	Fil.	7.5	1.28	Class-A Amplifier	$\begin{array}{r} 90 \\ 300 \\ 400 \\ 450 \end{array}$	$\begin{gathered} 0 \\ -54.0 \\ -70.0 \\ -84.0 \end{gathered}$	-	-	$\begin{aligned} & 4.6^{5} \\ & 35.0 \\ & 55.0 \\ & 55.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \\ & 1800 \\ & 1800 \\ & \hline \end{aligned}$	$\begin{aligned} & 1900 \\ & 2100 \\ & \mathbf{9 1 0 0} \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.8 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8000 \\ & \hline 4600 \\ & 3670 \\ & 4350 \\ & \hline \end{aligned}$	1.0 1.6 3.4 4.6	50
71-A	Triode Power Amplifier	4-pin M.	A	Fil.	5.0	0.25	Class-A Amplifier	$\begin{array}{r} 90 \\ 180 \end{array}$	$\begin{aligned} & -19.0 \\ & -43.0 \end{aligned}$	-	-	10.0 20.0	2170 1750	$\begin{aligned} & 1400 \\ & 1700 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3000 \\ & 4800 \end{aligned}$	$\begin{aligned} & 0.195 \\ & 0.790 \end{aligned}$	71.A
99	Triode Detector Amplifier	4-pin S.	A	Fil.	3.3	0.063	Class-A Amplifier	90	- 4.5	-	-	2.5	15500	425	6.6	-	.	99
112A	Triode Detector Amplifier	4-pin M.	A	Fil.	5.0	0.25	Class-A Amplifier	90 980	$\begin{aligned} & -4.5 \\ & -13.5 \end{aligned}$	-	-	5.0 7.7	5400 4700	$\begin{aligned} & 1575 \\ & 1800 \end{aligned}$	8.5 8.5	-	-	112A

TABLE IX－MISCELLANEOUS RECEIVING TUBES－Continued

Type	Name	Base＊	Socket Connec－ tions	Cathode	Fil．or Heater		Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma．	Plate Current Me．	Plate Resist－ ance，Ohms	Mutual Conduct－ ance Micromhos	Amp． Factor	Load Resistance Ohms	Power Output Watts	Type
					Volts	Amps．												
	Power Triode	4－pin M．	A	Fil．	5.0	1.25	Class－A Amplifier	250	60	－		25	18000	1800	3.2	4500	2.0	183
183		4－pin M．	F	Fil．	5.0	0.30	Class－A Amplifier	110	21.5	110	7	20	41000	1350	55	6000	0.8	257
257	Power Pentode	5－pin M．	H	Fil．	5.0 3.0	1.30	Class－A Amplifier	180	9.0	－		6.0	9300	1350	12.5	－		485
485	Triode	5－pin S．	H	Htr．	3.0	1.30	Class－A Amplifier	$\begin{array}{r}180 \\ \hline 90 \\ \hline 135\end{array}$	9．0 $-\quad 4.5$ $-\quad 9.0$	－	－	2.9 3.9	13500 12700	610	8.9 8.9	－	－	864
864	Triode Amplifier	4－pin S．	A	Fil．	1.1	0.25	Class－A Amplifier	135	-9.0 -3	－	－ 0	3.5	（12700	$\begin{array}{r} 645 \\ 1400 \end{array}$	${ }_{\text {Exceeds }} 8$	－	－	
$954{ }^{\text { }}$	Pentode Delector， Amplifier	Special	A	Htr．	6.3	0.15	Class－A Amplifier	250	－ 3	100	0.7	2.0	Exceeds 1.5 megohms	1400	$\begin{gathered} \hline \text { Exceeds } \\ 9000 \end{gathered}$			954
							Bias Detector Class－A Amplifier	250	－ 6	100		Plate current to be adjusted to 0.1 ma ．with no signal						
$955{ }^{\text {\％}}$	Triode Detector， Amplifier	Special	B	Htr．	6.3	0.16		180	-5 -35	－	－	4.5	D．C．Grid Current App． 1.5 ma ．			20000	0．135	955
							Oscillator Screen Grid R．F． Amplifier	180	$-\frac{35}{3}$	100	1.8	7.				－	0.5	956
956 ＇	Triple－Grid Variable－μ R．F．Amplifier	Special	A	Htr．	6.3	0.15		250	－10	100		－	Oseillator peak voits－7 min．					
1609	Pentode Amplifier	5－pin S．	F	Fil．	1.1	0.25	Mixer Class－A Amplifier											1609
1 Refer to Fig． 514. ${ }^{2}$ M．- medium；S．\rightarrow small． ${ }^{3}$ Cathode terminal is mid－point of filament；use series connection with 4 volts，parallel with 2 volts． ${ }^{4}$ Iriodes connected in parallel． ${ }^{5}$ Iding current，beth plates． ${ }_{6}^{6}$ Refer to Fig． 515. a＂Acorn＂type；miniature unbased tubes for ultra－high frequencies．See Fig． 517.																		

TABLE X －CONTROL AND REGULATOR TUBES

Type	Name	Base ${ }^{1}$	Socket Connec－ tions	Cathode	Fil．or Heater		Use	Peak Anode Voltage	Peak Anode Current ${ }^{3}$	Minimum Starting Voltage	Operating Voltage	Operating Current	Grid Resistor	Tube Voltege Drop	Type
					Volts	Amps．									
OA4G	Gas Triode	6－pin O．	A	Cold			Cold－Cathode Starfer－Anode Relay Tube	With 105－120－volt a．c．anode supply，peak starter－anode a．c．voltage is 70 ， peak r．f．voltage 55							OA4G
2A4G	Thyratron	8－pin 0 ．	B	Fil．	2.5	2.5	Control Tube	200	100		－		－	15	2A4G
874	Voltage Regulator Current Regulator	4－oin M．	C	－－	－－	－－	Coltage Regulator ${ }^{\text {Current Regulator }}$	二－	－	125	90	10－50	－	－	874
876		$\frac{\text { Moin Mogul }}{}$	－		－－			－－	－	－	40－60	1.7	－	－	876
	Gas Triode 6－pin O．						Sweep Circuit Oscillator	300	300	－	－－	2	25000	－	884
884			C ${ }^{10}$	Htr ．	6.3	0.6	Grid－Controlled Rectifier	350	300	－		75	25000	－	
885	Gas Triode Current Regulator	5－pin S．	H^{11}	Her．	2.5	1.4	Same as Type 884			Characteris	ics same as	Type 884			885
886		Mogul	－	二－		－－	Current Regulator ${ }^{\text {j }}$	－－	－	－－	40－60	2.05	－	－	886
KY21	Gas Triode	4－pin M．	－	Fil．	2.5	10.0	Grid－Controlled Rectifier	－－	－	－－	3000	500	－	15	KY21
RK62	Gas Triode	4－pin S．	A^{11}	Fil．	1.4	0.05	Relay Tube ${ }^{6}$	45	1.5	－	30－45	0．1－1．5	ーー	15	RM62
RM208	Permatron	$\frac{\text { 4-pin } M}{4-\text { pin } M}$	－	Fil．	2.5	5.0	Controlled Rectifier ${ }^{\text {a }}$	7500 ＊	1000	－	－	－	－	15	RM208
RM209	Permatron			Fil．	5.0	10.0	Controlled Rectifier	$7500{ }^{\circ}$	5000		－	－	－	15	RM209
VR90	Voltage Regulator	$\frac{7-\text { pin O．}}{\text { 6－pin } \mathrm{O}} \mathrm{l}$	D	－－	－	－	Voltase Regulator	－－	－	125	90	10－30	－		VR90
VR105	Voltoge Regulator Voltage Regulator		E	－	－	－	Voltage Regulator	－－	－	137	105	$\frac{5-30}{5-30}$	－	－	VR105
VR150			E	－－		－	Voltoge Regulator	－	－	180	150	5			VR150

1 M．－Medium；S．－Small；O．－Octal．
 Refer to Fig． 518.

${ }^{3}$ In ma，
Not less than 1000 ohms per grid volt； 500,000
For use in series with power transformer piinary
${ }^{\circ}$ For use as self－quenching super－regenerative detector with high－resistance relay（ $5000-10000$ ohms）in anode circuit． For use as grid－controlled rectifier or with external magnetic
control．RM－908 control．RM－208 has charocteristics of 866 ，RM－209 of 872.
When under control peak inverse rating is reduced to 2500 ．
${ }^{0}$ Sufficient resistance must be used in series with tube to limil current to 30 ma ．
115 Refer to Fig． 515.
Reler to Fig． 514.

TABLE XI-CATHODE-RAY TUBES AND KINESCOPES

${ }^{1}$ Refer to Fig. 519
${ }^{2}$ For current cut-off. Control grid should never be allowed to go positive.
3
Between Anode No.
2 and any deflecting plate.
${ }^{4} \ln \mathrm{mw} . / \mathrm{sq} . \mathrm{cm}$. , max.
${ }_{6}^{3}$ In mm. volt d.c.
${ }^{6}$ Long-persistence screen is distinguished from short-persistence screen
by bluish-white tinge.
${ }^{7}$ The 911 is identical to 906 except for the gun material, which is designed to be especially free from magnetization effects.

TABLE XII - RECTIFIERS - RECEIVING AND TRANSMITTING

Type No.	Name	Base ${ }^{2}$	Socket Connections	Cathode	Fil. or Heater		Max. A.C. Voltage Per Plate	Max. D.C. Output Current Ma.	Max. Inverse Peak Voltage	Max. Peak Plate Current Ma .	Type ${ }^{7}$
					Volts	Amps.					
OZ4	Full-Wave Rectifier	6-pin O.	W ${ }^{\text {c }}$	Cold	-	-	350	30-75	1250	200	G
OZ4G	Full-Wave Rectifier	6-pin O.	W*	Cold	Characteristics same as Trpe OZ4						G
5 T 4	Full-Wave Rectifier	5-pin O.	U	Fil.	5.0	3.0	450	250	1250	800	\checkmark
5U4G	Full-Wave Rectifier	8-pin O .	U4	Fil.	5.0	3.0	Same as Type 5Z3				V
5V4G	Full-Wave Rectifier	8-pin 0.	A^{*}	Htr.	5.0	2.0	Same as Trpe 83V				V
5W4	Full-Wave Rectifier	5-pin O.	A ${ }^{4}$	Fil.	5.0	1.5	350	110	1000	-	V
5×46	Full-Wave Rectifier	8-pin O.	P ${ }^{6}$	Fil.	5.0	3.0	Same as 5Z3				V
5Y3G	Full-Wave Rectifier	5-pin 0.	A ${ }^{\text {+ }}$	Fil.	5.0	2.0	Same as Type 80				V
5Y4G	Full-Wave Rectifier	8-pin 0.	P ${ }^{\text {4 }}$	Fil.	5.0	2.0	Same as Type 80				V
523	Full-Wave Rectifier	4-pin M.	B	Fil.	5.0	3.0	500	250	1400	-	\checkmark
5Z4	Full-Wave Rectifier ${ }^{3}$	5-pin 0.	A ${ }^{\text {a }}$	Her.	5.0	2.0	400	125	1100	-	V
6W5G	Full-Wave Rectifier	6-pin O.	Q ${ }^{4}$	Htr.	6.3	0.9	350	100	1250	350	V
$\begin{aligned} & 6 \times 5 \\ & 6 \times 5 G \end{aligned}$	Full-Wave Rectifier	6-pin O.	Q ${ }^{4}$	Htr.	6.3	0.5	350	75	-	-	V
6ZY5G	Full-Wave Rectifier	6-pin 0.	Q	Htr.	6.3	0.3	350	35	1000	150	V
1923	Half-Wave Rectifier	4-pin S.	R	Htr.	12.6	0.3	250	60	700	-	V
25Z5	Rectifier-Doubler	6-pin S.	E	Htr.	25.0	0.3	125	100	-	500	V
$\begin{aligned} & 25 Z 6 \\ & 25 Z 6 G \end{aligned}$	Rectifier-Doubler	7-pin O.	R ${ }^{\text {d }}$	Htr.	25.0	0.3	125	100	-	500	V
16	Half-Wave Rectifier	4-pin S.	R	Htr.	6.3	0.3	350	50	1000	400	M
$1-V^{5}$	Half-Wave Rectifier	4-pin S.	R	Hir.	6.3	0.3	350	50	-	-	V
80	Full-Wave Rectifier	4-pin M.	B	Fil.	5.0	2.0	$\begin{aligned} & 350 \\ & 400 \\ & 550^{\circ} \end{aligned}$	$\begin{aligned} & 125 \\ & 110 \\ & 135 \end{aligned}$	-	-	V
81	Hall-Wave Rectifier	4-pin M.	C	Fil.	7.5	1.25	700	85	-	-	V
89	Full-Wave Rectifier	4-pin M.	B	Fil.	2.5	3.0	500	125	1400	400	M
83	Full-Wave Reatifier	4-pin M.	B	Fil.	5.0	3.0	500	250	1400	800	M
83-V	Full-Wave Rectifier	4-pin M.	B	Htr.	5.0	2.0	400	200	1100	-	V
84/6Z4	Full-Wave Rectifier	5-pin S.	S	Htr.	6.3	0.5	350	60	1000	-	V
RK60	Full-Wave Rectifier	4-pin M.	B ${ }^{8}$	Fil.	5	3	750	250	2120	-	V
RK19	Full-Wave Rectifier	4-pin M.	B^{8}	Htr.	7.5	2.5	1250	$200{ }^{10}$	3500	600	V
RK21	Half-Wave Rectifier	4-pin M.	A^{88}	Htr.	2.5	4.0	1250	200^{10}	3500	600	V
RK29	Full-Wave Rectifier	4-pin M.	\mathbf{B}^{8}	Htr.	2.5	8.0	1250	$200{ }^{10}$	3500	600	\checkmark
836	Hall-Wave Rectifier	4-pin M.	$A^{\text {8 }}$	Htr.	2.5	5.0	-	-	5000	1000	V
866	Half-W 'ave Rectifier	4-pin M.	A^{8}	Fil.	2.5	5.0	-	$250{ }^{10}$	7500	1000	M
866-A	Half-Wave Rectifier	4-pin M.	A^{8}	Fil.	2.5	5.0	-	250	10000	1000	M
8668	Half-Wave Rectifier	4-pin M.	$A^{\text {a }}$	Fil.	5.0	5.0	-	-	8500	1000	M
866Jr.	Half-Wave Rectifier	4-pin M.	C	Fil.	2.5	2.5	1250	$250{ }^{9}$			M
871	Half-Wave Rectifier	4-pin M.	\mathbf{A}^{8}	Fil.	2.5	2.0	1750	250	5000	500	M
$878{ }^{11}$	Half-Wave Rectifier	4-pin M.	$A^{\text {8 }}$	Fil.	2.5	5.0	7100	5	20000	-	V
87911	Half-Wave Rectifier	4-pin S.	$\mathrm{A}^{\text {B }}$	Fil.	2.5	1.75	2650	7.5	7500	100	V
872	Hall-Wave Rectifier	4-pin J.	$\mathbf{P}^{\text {8 }}$	Fil.	5.0	10.0	-	-	7500	5000	M
872-A	Half-Wave Rectifier	4-pin J.	$\mathrm{P}^{\text {8 }}$	Fil.	5.0	10.0	-	-	10000	5000	M

[^3]${ }^{6}$ With input choke of at least 20 henrys.
${ }^{7}$ M.-Mercury-vapor type; V.-high-vacuum type.
Refer to Fig. 518.
${ }^{9}$ Per pair with choke input.
${ }^{10}$ Condenser input.
${ }^{11}$ For use with cathode-ray tubes.

TABLE XIII - TETRODE AND PENTODE TRANSMITTING TUBES

Type	Max. Plate Dissipstion Wotts	Cathode		Max. Plate Voltage	Max. Screen Voltage	Max. Sereen Dissipa. tion Watts	Interelectrode Copacitances ($\mu \mu \mathrm{Zd}$.)			Base ${ }^{2}$	Socket Connections ${ }^{1}$	Typical Operation	Plate Voltage	Screen Voltage	$\begin{aligned} & \text { Sup- } \\ & \text { pressor } \\ & \text { Voltage } \end{aligned}$	Grid Voltage	Plate Current Ma.	Sereen Current Mo.	Grid Current Mo.	Screen ${ }^{6}$ Resistor Ohms	Approx. Grid Driving Power Walts	Approx. Carrier Output Power Watts	Type
		Volts	Amps.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plate	Plate to Fil.														
1610	6	2.5	1.75	400	200	2	8.6	1.2	13	5-pin M.	F ${ }^{5}$	Class-C Amp.-Oscillator	400	150	-	- 50	22.5	7.0	1.5	-	0.1	5.0	1610
RK56	8	6.3	0.55	300	300	4.5	10	0.2	9.0	5-pin M.	H	Cless-C Amp. (Telegraphy)	300	300		- 40	62	12	1.6		0.1	12.5	RK56
												Class-C Amp. (Telephony)	250	200	-	- 40	50	10	1.6	5000	0.1	8.5	
												Grid-Modulated Amplifier	300	300		-60	27	4.0	2.0		0.11	3.0	
												Class-B Amp. (Telephony)	300	300		- 38	30	4.5	4.0	-	0.2	8.5	
809	10	6.3	0.9	500	250	6	12	0.15	8.5	7-pin M.	G	Class-C Amp. (Telegraphy)	500	250	40	-100	45	12	2.0	-	0.95	16	802
												Grid-Modulated Amplifier	500	200	0	-130	25	8.0	1.0		0.8	4.0	
												Suppressor-Mod. Amp.	500	200	-45	- 90	22	28	4.5	10700	0.5	3.5	
												Class-8 Amp. (Telephony)	500	200	0	- 28	25	7.0			0.18	3.5	
												Class-C Amp. (Telephonr)	400	200	40	- 40	35	17	1.5	12000	0.1	8.0	
$\begin{aligned} & \text { RK23 } \\ & \text { RK255 } \\ & \text { RK25B } \\ & \text { RK45 } \end{aligned}$	10	$\begin{array}{r} 2.5 \\ 6.3 \\ 12.6 \end{array}$	2.0 0.9 0.45	500	250	8	10	0.9	10	7-pin M.	G	Class-C Amp. (Telegraphy)	500	200	45	- 90	55	38	4.0		0.5	22	RK23 RK25 RK25B RK45
												Class-C Amp. (Telephony)	400	150	0	- 90	43	30	6.0	8300	0.8	13.5	
												Suppressor-Modulated Amp.	500	200	- 45	- 90	31	39	4.0	-	0.5	6.0	
												Grid-Modulated Amplifier	500	200	45	-125	34	20	4.0	-	1.3	6.5	
												Closs-B Amp. (Telephony)	500	250	0	- 38	30	12		-	0.24	5.0	
$\begin{aligned} & 837 \\ & \text { RK44 } \end{aligned}$	12	12.6	0.7	500	300	8	16	0.2	10	7-pin M.	G	Class-C Amp. (Telegraphy)	500	200	40	- 75	60	15	4.0	20000	0.4	22	$\begin{aligned} & 837 \\ & \text { RK44 } \end{aligned}$
												Class-C Amp. (Telephony)	400	140	40	- 40	45	20	5.0	13000	0.3	11	
												Suppressor-Modulated Amp.	500		- 65	- 20	30	23	3.5	14000	0.1	5.0	
												Grid-Modulated Amplifier	500	200	40	- 43	30	6.0	0		0.15	5.5	
												Class-B Amp. (Telephony)	500	200	40	- 25	30	12	0		0.1	5.5	
844	15	2.5	2.5	500	180	3	9.5	0.15	7.5	5-pin M.	H	Class-C Amp. (Telegraphy)	500	175	-	-125	25		5.0		-	9.0	844
												Class-C Amp. (Telephony)	500	150		-100	20		-		-	4.0	
												Class-B Amp. (Telephony)	500	180		- 40	20			-	-	3.0	
307A	15	5.5	1.0	500	250	6	15	0.55	12	5-pin M.	J	Class-C Amp. (Telegraphy)	500	250	0	- 35	60	13	1.4	20000		20	
839										S-pin M.		Suppressor-Modulated Amp.	500	200	- 50	- 35	40	20	1.5	14000	-	6.0	307A
	15	6.3	0.8	400	250	5	7.5	0.05	3.8	Special	T	Class-C Amp. (Telegraphy)	400	250		- 60	90	18	0.3	8300	0.18	22	832
												Class-C Amp. (Telephony)	325	210	-	- 50	68	15	1.2	7500	0.06	12	
												Grid-Modulated Amplifier	400	250		-60	55	6.0	0		0.1	7.6	
HY60	15	6.3	0.5	425	200	2.5	11	0.19	10.9	5-pin M.	H	Class-C Amp. (Telegraphy)	425	200	-	-62.5	55	7.0	2.5	32000	0.25	16	
865										S-pin M.	H	Class-C Amp. (Telephony)	325	200	-	- 45	45	8.5	2.0	15000	0.2	10	HY60
	15	7.5	2.0	750	175	3	8.5	0.1	8.0	4-pin M.	1	Class-C Amp. (Telegraphy)	750	125	-	- 80	40	-	5.5	-	1.0	16	865
												Class-C Amp. (Telephony)	500	125	-	-120	40		9.0		2.5	10	
												Class-B Amp. (Telephony)	750	125	-	- 30	29	-	3.0		1.5	4.5	
254A	20	5.0	3.25	750	175	5	4.6	0.1	9.4	4-pin M.	1	Class-C Amplifier	750	175	-	- 90	60	-		-	-	25	254A
RK49	21	6.3	0.9	400	300	3.5	11.5	1.4	10.6	6-pin M.	M^{5}	Cless-C Amp. (Telegraphy)	400	250	-	- 50	95	8.0	3.0	-	0.2	25	RK49
												Class-C Amp. (Telephony)	300	200	-	-45	60	15	5.0	6700	0.34	12	
												Grid-Modulated Amplifier	400	250	-	- 40	55	4.0	0.5	-	0.15	7.0	
												Cless-B Amp. (Telephony)	400	250		- 30	52	5.0	0.1	-	0.5	7.0	

TABLE XIII-TETRODE AND PENTODE TRANSMITTING TUBES—Continued

TABLE XIII - TETRODE AND PENTODE TRANSMITIING TUBES - Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltage	Max. Screen Voltage	Max. Screen Dissipation Watts	Interelectrode Capacitances ($\mu \mu \mathrm{ld}$.)			Base ${ }^{\text {2 }}$	Socket Connections	Typicaf Operation	Plate Voltase	Screen Voltage	Suppressor Voltage	Grid Vollage	Plate Current Ma.	ScreanCurrent Ma.	$\begin{gathered} \text { Grid } \\ \text { Current }^{\text {Mus }} \end{gathered}$	Screen Resistor Ohms:	Approx. Grid Driving Power Watts	Approx. Carrierr Output. Power Watts	Type
		Volts	Amps.				$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.														
												Class-C Amp. (Telegraphy)	2000	400		- 90	180	15	3.0	107000	0.5	260	
813	100	10	5.0	2000	400	22	16.3	0.2	14	7-pin l .	U	Class-C Amp. (Telephony)	1600	400	-	-130	150	20	6.0	21600	1.2	1.75	
										7-pin 3.		Grid-Modulated Amplifier	2000	400		-120	75	3.0		-	-	50	813
												Class-B. Amp. (Telephony)	2000	400	-	- 75	75	3.0		-	-	50	
												Class-C Anno. (Telegraphy)	2000	400		- 100	180	40	6.5	-	1.0	250	
RK48	100	10	5.0	2000	400	22	17	0.13	13	5-pin J.	L	Class-C Anp. (Telephony)	1500	400		-100	148	50	6.5	22000	1.0	165	
RK48	100	10	5.0	200	400	22	17	0.13	13	S-pin J.	L	Grid-Madulated Amplifier	1500	400	-	-145	77	10	1.5	220	1.6	40	RK48
												Class-B Amp. (Teleoheny)	2000	400		- 35	76	6.0	0.35	-	0.28	60	
												Class-C Amp. (Telearaphy)	2000	500	40	- 90	160	45	12		2.0	210	
												Class-C Amp. (Telephony)	1600	500	100	- 80	150	20	4.0	20000	4.0	155	
803	125	10	5.0	8000	600	30	17.5	0.15	29	5-pin J.	L	Supprasron-M.odulated Amp.	2000	-	-110	- 100	80	48	15	35000	2.5	53	803
												Grid-Modulated Amolifier	2000	600	40	- 80	80	20	4.0	-	2.0	53	
												Class-B Amp. (Telephony)	2000	600	40	- 40	80	20	3.0	-	1.5	53	
												Class-C Amp. (Telegraphy)	3500	500	-	-250	300	40	40	-	30	700	
861	400	11	10	3500	750	35	14.5	0.1	10.5	Special	S	Class-C Amp. (Telephomy)	3000	375	-	-200	200	-	55	70000	35	400	861
												Class-B Amp. (Telephony)	3500	500	-	- 50	150	-	4.0	-	15	175	

$$
\begin{aligned}
& \text { Refer to Fig. } 580 \text {. } \\
& \text { M.- medium. Jumbo. } \\
& \text { Plate, grid and screen connections brought out through bulb. } \\
& \text { Terminal } 4 \text { connects to beam-forming plates - connect to ground }
\end{aligned}
$$

[^4]TABLE XIV - TRIODE TRANSMITTING TUBES

Type	Max. Plate Dissipa* tion Watts	Cathode														Plate Current Ms.	D.C.GridCurrent	Approx. Grid Driving Power Watts	Peak Power Output Watts	Approx. Carrier Output Power Wolts	Type
		Volts	Amps.											Voltage	Voltag.						
RK24	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	4-pin S.	C	Class-C Amp.-Oscillator	180	- 45	16.5	6.0	0.5	\cdots	2.0	RK24
RK33	2.5	6.3	0.6	250	20	6.0	10.5	3-2	3-2	2.5	$7 \cdot \mathrm{din} 5$.	V	Class-C Amp.-Oscillator	250	- 60	80	6.0	0.54	-	3.5	RK33
HY615*	5.0	6.3	0.15	250	20	4.0	20	1.4	1.8	0.6	5-pin 0.	See Note 6	Class-C Amp.-Oscillator	250	-9.0	20	4.0	-	-	2.5	HY615
RK34	10^{8}	6.3	0.8	300	80	20	13	4.2	2.7	0.8	7-pin M.	T^{9}	Class-C Amp.-Oscillator	300	- 36	80	20	1.8	-	16	RK34
205D	14	4.5	1.6	400	50	10	7.3	5.2	4.8	3.3	4-pin M.	C	Class-C Amp. (Telesraphy)	400 350	$\frac{-118}{-144}$	45	10	1.5 1.7	$\overline{28.4}$	10	205D
843	15	2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0	5-pi	D	Class-C Amp. (Telegraphy)	450	-140	30	5.0	1.0	28.4	7.5	
84	15	2.5	2.5	450							S-pi		Class-C Amp. (Telephony)	350	-150	30	7.0	1.6	20	5.0	843
- $\overline{\text { K } 59 ~}$	15	6.3	1.0	500	90^{*}	-	25	5.0	9.0	1.0	4-pin M.	W	Class-C Amp.-Oscillator	500	- 60	90 -	14	1.3		32	RK59

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

TABLE XIV — TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Vollage		Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fd}$.)			Basa ${ }^{2}$	Socke! Connec. tions	Typical Operation	Plate Vollage	Grid Voltage	Plate Current Ma .		Approx. Grid Driving Power Watts ${ }^{5}$	Peak Power Watts	Approx. Carrier Output Power Watts	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate to Fil.											
T40		7.5	2.5	1000	115	40	25		4.5		4-pin M.	F	Class-C Amp. (Telegraphy)	1000	-80	115	15	5.0	-	86	T40
140	40	7.5	2.5	1000	115	40	25		4.5		4-pin M.	F	Class-C Amp. (Telephony)	1000	-120	115	22	7.5	346	86	
						35	62	-	-	-	4-pin M.	F	Class-C Amp. (Telegraphy)	1000	-40	115	15	5.0	-	86	IZ40
TZ40	40	7.5	2.5	1000	115	35	62	-	-	-	4-pin M.	F	Class-C Amp. (Telephonv)	1000	- 60	115	22	7.5	346	86	1240
								5.8	6.3	1.8		F	Class-C Amp. (1elegraphy)	1000	- 90	115	20	5.0		86	HY40
HY40	40	7.5	2.25	1000	115	25	25	5.8	6.3	1.8	4-pin M.	F	Class-C Amp. (ielephony)	850	- 90	90	15	3.5	208	59	HY 40
HY57	40	6.3	9.25	800	110	25	50	4.9	5.1	1.7	4-pin M.	F	Class-C Amp. (Telegrophy)	800	-45	100	15	2.0		60	HY57
HY57	40	0.3	2.25	800	110	25	So	4.9	5.1	1.7	4-pin M.	F	Class-C Amp. (Telephonv)	700	-45	90	17	5.0	200	50	HY57
													Class-C Amp. (Telegraphy)	1250	-160	100	12	2.8		95	
RK18	40	7.5	3.0	1250	100	40	18	6.0	4.8	1.8	4-pin M.	F	Class-C Amp. (Telephony)	1000	-160	80	13	3.1	256	64	RK1 8
													Grid-Modulated Amp.	1250	-140	38	0.5	3.8	72	18	
													Class-C Amp. (Telegraphy)	1250	-80	100	30	3.9		90	
RK31	40	7.5	3.0	1250	100	35	-	7.0	10	2.0	4-pin M.	F	Class-C Amp. (Telephony)	1000	- 80	100	28	3.5	280	70	RK31
830	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2	4-pin M.	C	Class-C Amplifier	750	-180	110	18	7.0		55	830
830	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2	4-pin M.	c	Grid-Modulated Amp.	1000	-200	50	2.0	3.0	60	15	830
HK54	50	5.0	5.0	2000	150	30	27	1.9	1.9	0.2	4-pin M.	E	Class-C Amp. (Telegraphy)	2000	-269	130	20	9.0	--.	210	
HK54	50	5.0	5.0	2000		30	27	1.9	1.9	0.2	4-pin M.	E	Class-C Amp. (Telephony)	1500	-150	135	20	7.0	694	156	HK54
													Class-C Amp. (Telegraphy)	1500	-590	167	20	15	-	200	
													Class-C Amp. (Teiephony)	1250	-460	170	20	12	648	162	
HK154	50	5.0	6.5	1500	175	30	6.7	4.3	5.9	1.1	4-pin M.	E	Grid-Modulated Amp.	1500	-450	52	-	5.0	112	28	HK154
													Class-B Amp. (Telephonv)	1500	-265	52	-	5.0	112	98	
UH51 *	50	5.0	6.5	2000	175	-	10.6	2.2	2.3	-	4-pin M.	E	Class-C Amplifier	2000		175	-	-	-	-	UH51
													Class-C Amp. (Telegraphy)	1250	-895	90	15	4.5	-	75	
834*	50	7.5	3.25	1250	100	20	10.5	2.2	2.6	0.6	4-pin M.	E	Class-C Amp. (Telephonv)	1000	-310	90	17.5	6.5	239	58	834
													Class-B Amp. (Telephony)	1250	-115	50	0	3.0	80	20	
													Class-C Amp. (Telegraphy)	1250	-225	100	14	4.8	-	90	
RK32*	50	7.5	3.25	1250	100	25	11	2.5	3.4	0.7	4-pin M.	E	Class-C Amp. (Telephony)	1000	-310	100	21	8.7	280	70	RK32
													Class-B Amp. (Telephonv)	1250	-180	50	-	2.5	84	21	
													Class-C Amp. (Telegraphy)	1250	-120	100	-	-	-	85	
304A	50	7.5	3.25	1250	100	20	11	2.0	2.5	0.7	4-pin M.	E	Class-C Amp. (Telephony)	1000	-180	100	-	-	-	65	304A
													Class-B Amp. (Telephony)	1250	-110	50	-	-	84	81	
													Class-C Amp. (Telegraphy)	1250	-900	100	-	-	-	85	
3048	50	7.5	3.25	1250	100	25	11	2.0	2.5	0.7	4-pin M.	E	Class-C Amp. (Telephony)	1000	-180	100	-	-	-	65	304B
													Class-B Amp. (Telephony)	1250	-110	60	-	- -	100	25	
UH50 *	50	7.5	3.25	1250	125	-	10.6	2.2	2.6	-	4-pin M.	E	Class-C Amplifier	-	-	-	-	一	-	-	UH50
													C̄lass-C Amp. (Telegraphy)	1500	-250	115	15	5.0	--	120	
													Class-C Amp. (Telephony)	1250	-250	100	14	4.6	372	93	
RK35	50	7.5	4.0	1500	125	20	9.0	3.5	2.7	0.4	4-pin M.	E	Grid-Modulated Amp.	1500	-250	50	0	1.7	100	25	RK35
													Class-B Amp. (Telephony)	1500	-180	37	0	2.0	100	25	

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

TABLE XIV - TRIODE TRANSMITTING TUBES - Continued

Type	Max. Plate Dissipetion Wotts	Cathode		Max. Plate Voltage	$\begin{aligned} & \text { Max. } \\ & \text { Plate } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Copacitances ($\mu \mu \mathrm{id}$.)			Base -	Socket Connections	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driviag Power Watts ${ }^{5}$	Peak Power Output Watts	Approx. Carrier Output Power Watts	Type
		Volts	Amps.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
HK354D	150	5.0	10	4000	300	55	29	4.5	3.8	1.1	4-pin J.	N	Class-C Amplifier	3500	-490	240	50	38	-	690	HK354D
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	4-pin J.	N	Class-C Amplifier	3500	-448	240	60	45	-	690	HK354E
MK354F	150	5.0	10	4000	300	75	50	4.5	3.8	1.1	4-pin J.	N	Class-C Amplifier	3500	-368	850	75	50	-	720	HK354F
HD203A	150	10	4.0	2000	250	60	25	-	12	-	4-pin J.	M ${ }^{\text {+ }}$	Class-C Amplifier		-	-	-	-	-	375	HD203A
													Closs-C Amp. (Telegraphy)	2500	-300	800	18	8.0		380	
HF200	150	10-11	3.4	2500	200	50	18	5.2	5.8	1.2	4-pin J.	N	Class-C Amp. (Telephony)	2000	-350	160	20	9.0	1000	250	HF200
H200													Closs-B Amp. (Telephony)	2500	-140	90		4.0	380	80	
T155	155	10.0	4.0	3000	200	60	20	2.5	3.0	1.0	4-pinJ.	N	Class-C Amplifier		-	-	-	-	-	450	T155
F108A	175	10.0	11.0	3000	200	50	12	3.0	7.0	2.0	4-pin J.	N	Class-C Amplifier	3000	-350	200	-	-	-	400	F108A
RK63	200	5.0	10	3000	250	60	37	2.7	3.3	1.1	4-pin J.	N	Class-C Amplifier	3000	-200	233	45	17	-	525	RK63
T814	200	10	4.0	2500	300	80	12	7.0	13	5.5	4-pin J.	M ${ }^{\text {+ }}$	Class-C Amplifier	2000	-400	300	55	30	-	400	T814
T829	200	10	4.0	2500	300	60	27	8.0	14	6.0	4-pin J.	M^{+}	Class-C Amplifier	2000	- 220	300	55	35	-	400	T829
													Class-C Amp. (Telegraphy)	3000	-400	250	98	16	-	600	
HF300	200	11-12	4.0	3000	275	60	23	6.0	6.5	1.4	4-pin J.	N	Class-C Amp. (Telephony)	2000	-300	250	36	17	1540	385	HF300
HFOO													Class-B Amp. (Telephony)	2500	-100	120	0.5	6.0	420	105	
250TH	250	5-5.1	10.5	3000	350	100	32	3.5	3.5	0.3	4-pin J.	N	Class-C Amplifier	3000	- 210	330	55	-	-	750	250TH
250TL	250	5-5.1	10.5	3000	350	50	13	3.0	3.5	0.3	4-pin J.	N	Class-C Amplifier	3000	-400	330	45		-	750	250TL
													Class-C Amp. (Telegraphy)	8500	-200	250	30	15	-	450	
204A	250	11	3.85	2500	275	80	23	12.5	15	2.3	Special	0	Class-C Amp. (Telephony)	2000	-250	250	35	20	1400	350	204 A
													Class-B Amp. (Telephony)	2500	-70	160		15	400	100	
654	300	7.5	15	4000	600	100	29	6.2	5.5	1.5	4-pin J.	N	Class-C Amplifier	2000	-380	500	75	57	-	720	654
3007	300	8.0	11.5	3500	350	75	16	4.0	4.0	0.6	4-pin J.	N	Class-C Amplifier	3500	-600	300	60		-	800	3001
													Class-C Amp. (Telegraphy)	2000	- 200	475	65	25	-	740	
833 *	300	10	10	3000	500	75	35	12.3	6.3	8.5	Special	T	Class-C Amp. (Telephony)	2500	-300	335	75	30	2540	635	833
													Class-B Amp. (Telephony)	3000	- 70	150	2.0	10	600	150	
													Class-C Amp. (Telegraphy)	2500	-250	300	20	8.0	-	560	
849	400	11	5.0	2500	350	125	19	17	33.5	3.0	Special	0	Class-C Amp. (Telephony)	2000	- 300	300	30	14	1700	425	849
													Class-B Amp. (Telephony)	2500	-125	216	1.0	12	720	180	
													Class-C Amp. (Telegraphy)	3500	-400	275	40	30	40	590	
831	400	11	10	3500	350	75	14.5	3.8	4.0	1.4	Special	R	Class-C Amp. (Telephony)	3000	-500	200	60	50	1440	360	831
													Class-B Amp. (Telephony)	3500	-220	146	-	-	640	160	
													Class-C Amp. (Telegraphy)	2500	- $200{ }^{-}$	400	80	-	-	750	450TH
450TH	450	7.5-7.7	12	6000	500	125	30				4-pin J.	N	Class-C Amp. (Telephony)	2500	-250	400	75	-	3000	750	4501H
											4-pin J.		Class-C Amp. (Telegraphy)	2500	-400	400	70	-	-	750	450TL
450 TL	450	7.5-7.7	12	6000	500	75	16	4.0	4.0	0.6	din J.	N	Class-C Amp. (Telephonv)	2500	-400	400	65	-	3000	750	4501L
F100	500	11	25	2000	500	-	14	4.0	10	2.0	Special	R	Class-C Amplifier	2000	-300	500	-	-	-	600	F100
5001	500	8.0	20	4000	600	125	13.5	6.0	4.5	0.8			Class-C Amplifier	2000	-400	450	100	-	-	650	5007

${ }^{1}$ Refer to Fig. 518.
${ }_{3}^{2}$ Mill Wire leads. Ratings at 500 Mc
${ }^{3}$ All Wire leads. Ratings at 500
${ }^{\text {- }}$ Slate connection to top cap. Choper 8 for discussion of grid driving power.

- Hester and cothode connected to usual pins, grid and elate connected to top caps.
${ }^{7}$ Twin triodes. Values correspond to left- and right-hand sections.
${ }^{5}$ Twin triodes. Volues for both sections, in push-pull
${ }^{8}$ Refer to Fig. 514 . RK34 has plate leads coming to top caps, pins 2 and 6 having no connection.
${ }_{10}$ Gaseous discharge tube for use on 110 -volt d.c. Use 500 -ohm re-
sistor in series with No. 1 grid. Ionizing current, 150 to 250 ma.
II Twin triodes. Chatacleristics per section.

WORKSHOP PRactice

Tools - Constructional Methods - Coil Winding
- Benches - Racks - Antenna Masts

n oreat contrast to the early days of amateur radio, component parts, designed especially for the amateur, for every conceivable purpose, are readily available at reasonable prices. In consideration of this, it is seldom possible to economize in the cost of a transmitter or receiver by attempting the construction of component parts such as transformers, condensers, etc., most of which are impossible to duplicate satisfactorily without special machinery.

TOOLS

THe construction of a piece of amatcur equipment thus resolves itself chiefly into proper assembly and wiring of the various components. With a few well-chosen tools, an otherwise tedious piece of work may be simplified so that almost anyone may turn out a neat appearing and well working job. To a certain degree, it may be said that the greater the variety of tools available, the casier and, perhaps, the better the job may be done. It is surprising, however, how many fine pieces of equipment are turned out with only a minimum of common hand tools.

For simple breadboard construction, the following tools are the most important:

[^5]For more extensive construction and metal working, the following additional tools will be found indispensable:

[^6]1 I,ong Shank Screwdriver with screw-holding elip (1/4" blade)
1 set Small Stamped Steel Open Winl Wrenches
1 Wood Chisel ($1 / 2^{\prime \prime}$)
1 Cold Chisel (1/2")
1 pr. Wing Dividers ($8^{\prime \prime}$)
1 Carpenter's Plane ($8^{\prime \prime}$ to $12^{\prime \prime}$)
1 Carpenter's Ratchet 13race
1 Countersink for brace
1 Screwdriver Bit for brace
1 Circle Cutter for brace (adjustable)
1 Taper Reamer for brace ($1,2^{\prime \prime}$)
1 Taper Reamer for brace ($1^{\prime \prime}$)
1 Round Bastard File (coarse, $1 / 2^{\prime \prime}$ or more diam.)
1 Flat File ($12^{\prime \prime}$ - very coarse for fast cutting)
Several smaller files for smoothing; rat-tail, flat, round, square, triangular and half-round
Several small "C" Clamps
Additional Drills: Nos. 18, 21, 28, 29, 33 and 50
Steel Wool
Sandpaper and Emery Cloth (several gradea)
1 Combination Oil Stone for sharpening tools
Several of the pieces of light wood-working machinery often sold in hardware stores and mail order retail stores are ideal for amateur radio work, especially the drill press, grinding head, band and circular saws and joiner. Socket holes may be most easily made by means of punches especially designed for the purpose. However, a complete set of these punches is quite expensive, if those of good quality are selected. Those of inferior quality should be avoided. The idea that machinery is necessary to turn out a good job should be dismissed. Machinery is mentioned here merely as a suggestion to those who are in a position to acquire it.
A few feet of brass or iron strip $1 / 2^{\prime \prime}$ wide by $1 / 16^{\prime \prime}$ thick, $1 / /^{\prime \prime}$ square brass rod, $1 / 4^{\prime \prime}$ diameter brass rod and $1 / 2^{\prime \prime}$ by $1 / 2^{\prime \prime}$ by $1 / 16^{\prime \prime}$ brass angle stock always come in handy for making mounting brackets, panel braces, shaft extensions and other small metal objects.

CITTTING: AND IBENDING NHEET METAI.

$\mathbf{S}_{\text {Heet metal }}$ is normally cut with a hacksaw, following a scratched line as closely as possible, but not so close as to obliterate the line. The rough edge is then trimmed down to the line with a file. Use a square to mark the cutting

THE RADIO AMATLUR'S HANDB00K

line and coarse files for fast cutting. Smooth up the edges with the finer files. A large, coarse round file will cut faster than other types, if used with a combination filing and planing motion. For final finishing of the edges, place a large picce of emery cloth or sandpaper on a Hat surface and run the edge of the metal back and forth over the sheet.

The easiest way to cut a wide sheet of aluminum or alloy is to make seratehes as deep as possible along the line of the cut on both sides of the sheet. Clamp the sheet in a vise and weave back and forth until the sheet breaks at the line. Do not earry the Weaving too far until the break hegins to weaken, otherwise the edge of the sheet may become bent. A pair of iron hars or pieces of heavy angle stock, as long or longer than the width of the sheet, used in the vise will make the job easier. " C " damps may be used to keep the bars from spreading apart at the ends.
bends are made with a similar arrangement. Ther sheet should be seratehed on both sides, as described above, but not too deeply.

DRHIIING: ANID CDTTING: HOD.ES

1
oles should never be drilled without first using a center punch to locate the center of the holes. Mistakes and a ruined panel or chassis may be avoided by first laying out the components on a sheet of heavy paper on which an exact outline of the panel or chassis has been made. Components may be moved about until the most satisfactory arrangement has been found. The various hole centers are then marked on the paper. The paper is transferred to the chassis or panel and fastened with adhesive tape or gummed paper. The hole cenfers are then punched through the paper, avoiding scratches on the metal. In laying out wimensions for any piece of work, make the measurements as accurately as possible. Small arrors in measurement often spell the dif-
forrnce between well-fitting a job and one which requires filing and trimming.

Holes larger than $1 / 8^{\prime \prime}$ or $3 / 16^{\prime \prime}$ should first be drilled with a small drill and then enlarged with successively larger drills until the desired size is reached. lue careful of excessive pres: sure on drills of small size to avoid breaking. Use a taper reamer for holes larger than $1 / 4^{\prime \prime}$ or $516^{\prime \prime}$, especially if a drill press is not availnble. A $1 /^{\prime \prime}$ diameter round tapered file with a coarse cut can be used for reaming by removinit the handle and clamping the handle end in the chuck of a brace. Turn the file counter-clockwise with medium pressure.

For holes larger than $1^{\prime \prime}$ diameter, a hole cuttor, sometimes called a "fly-cutter," is used. When using the adjustable type, try the setting on a block of wood or piece of scrap metal before cutting the chassis or panel to make sure that the size is right. After a hole for a standard size socket or meter has been cut, the disk which forms the center may be saved and used in setting the cutter to the correct point at some time in the future when the need for a hole of the same size arises. Always back up the metal with a piece of wood in using the hole cutter. This is also advisable when using small drills. If a hole cutter is not available, or if a square or irregular shaped hole is required, it may be cut out by drilling a series of small holes as close together as possible, and as close as possible to the inside of the outline mark of the hole. The center may then be knocked out with a cold chisel. Another method which may be used for cutting rectangular holes is to drill a $1 / 2^{\prime \prime}$ hole inside each corner and cut the rectangular hole out with a hacksaw blade. Burrs, which may develop around the edge of a hole when drilling, may be removed by careful use of a large knife or an old wood chisel. Reference should be made to the table showing the drill sizes to be used for clearing or for tapping for various standard size machine screws.

FIC. 601 - © © (ONVFIENT OPERATHVC 'TABLE:
It may loe mapported from the wall or provided with legs as ahown in Fig. 602.

WORKSHOP PRACTICE

Exercise extremb care in using taps, especially in aluminum. Keep the tap at right angles to the surface of the metal surface and reverse the tap whenever it begins to turn hard. Machine oil usually make's tapping much easier. Small taps may wery readily be used in the hand drill, if the drill is shifted into slow speed.

NUMIBEIREID IDIRILI, SIZES

Drilled for | Armber |
| :---: |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |

Diameler (mils)	Hill Clear Screw	Tapping Iron. Sieel or Brass*
28.0)	-	-
221.0	1224	-
213.0		1: -1

20

201.0	-	-
199.0	-	-
196.0	-	-
193.5	$10-32$	-

1

191.0	$10-24$	-
$18!1.0$	-	-
185.0	-	-
$18 . .0$	-	-
180.0	-	

1
177.0
173.0
$1+6!5$
$1+6!.5$
166.0
161.0

161

15
154
154
152
152

149
14
14
14
1
140.5
136.0

136
128
120
120
120
11
11
111
110
104.5
104.0
101.5
104.5
101.5
099.5
098.0
096.0
093.5
003.5
089.0
086.0
082.0
082.0
081.0

081.0		
078.5	-	-
078.0	-	-
073.0	-	$2-56$
070.0	-	-
067.0	-	-
063.5	-	-
059.5	0	-

* Use one size larger drill for tapping bakelite and hard rubber.

CTEANENU ANID FINISIIHNGBMETM.

Darts made of aluminum or alloy may be cleaned up and given a satin finish, aftar all
holes have been drilled, by phacing them in a solution of lye for half to threc-quarters of an hour. Three or four tablespoonfuls of lye should be used to cach gallon of water. If more than one pisce is treated in the same bath, each piece should be separated from the others sio as to expose all surfaces to the solution. Overlapping of pieces may result in spots or stains.

SDLDEIRINA

T Fus: seceret of good soldering is in allowing time for the joint, not the solder, to attain suffieient temperature. Sufficient hoat should be applied so that the solder will molt when it comes in contant with the wire forming the joint without the neressity for touching the soldor to the iron. Soldering paste, if the noncorroding type, is extremely useful when used correctly. ln general, it should not be used for radio work exeept when it is necessary to make the soldered joint with one hand. In this cased, the joint should first be warmed slightly and the soldering paste applied with a piece of wire. Only the soldaring paste which melts from the warmen of the joint should be used. If the soldering iron is clean, it will be possible to piek up a drep of solder on the tip of the iron which can be applied to the joint with one hand, while the other is used to hold the conneeting wires together. 'The use of excessive soldering paste causes the paste to spread over the surface of adjacent insulation causing leakage or breakdown of the insulation. Exeept where ahsolutely necossary, solder should never be depended upon for the mechanical strength of the joint; the wire should be wrapped around the terminals or elamped with soldering terminats.

The tip) of a soldering iron should be kept clean and well-tmmed. If it is necessary to allow the iron to run for long periods without use, a resistance should be inserted in series to prevent the tip from burning up.

AIPEIR:MTMNG TAMENE:

While any standard table or desk may be used for an operating position, a more convenient and attractive arrangement will result if the operating table is built for the purpose. The drawings of Figs. 601, 602 and 603 show two types which have aceommorlations for all of the various operating aecessories such as control switches, key, receiver and power sup)ply, monitor, stationery, etce.

The one shown in l'igs. 601 and 602 was designed by WGHGW. It may be built by anyone pessiessing a fair degree of mechanical skill and with a minimum number of earpenter's tools. There are no complieated joints to make and, for the most part, it is simply a matter of

THE RADIO AMATRUR'S HANDB00K

cutting the material and nailing it together
The top may consist of a single sheet of 3/4-inch 5-ply Douglas fir veneer or several fairly smooth boards fastened together with cleats covered by a sheet of $1 / 8$-inch masonite or pressed wood. Small holes are drilled about six inehes apart along the edges of the masonite which is fastened with small brass escutchcon pins, driving the heads dow'n flush. Brass binding may be used along the edges of the top

The top, may be supported in either of two ways. If permissible, the better plan is to build
when sandpapered and finished with dark mahogany stain, it will make a table of which no one need be ashamed.

The back panel may be the $18^{\prime \prime}$ piece left over after having cut the four-foot panel down to $30^{\prime \prime}$. The rest of the shelves and pigeonholes nay be made of $1^{\prime \prime} \times 12^{\prime \prime}$ pine, which may be bought at the lumber yard surfaced on four sides, ready to be cut and nailed into place. All joints should be nailed with eight-penny finish nails.

The small shelves may be made of wood, or better, by making

FIG. 602 - IEGS MAY BE, PROVIIEI) WIIERE WALL MOUNTING IS IMPOSSIBIE saw cuts in the side pieces about an inch apart and $1 / 8^{\prime \prime}$ deep, to receive pieces of 20 gauge galvanized iron which are slid into them to make shelves that are easily adjustable, to suit one's convenience.

The second type, shown in Fig. 603,
two brackets of $2^{\prime \prime} \times 3^{\prime \prime}$ material, as shown in the sketch, and fasten them to the wall by means of large wood screws driven through the plaster and into the studding of the wall. In this way there are no table legs to get in the way of one's feet. The studding in the walls may be located by tapping along the wall with a hammer until it feels solid. The studding is generally on $16^{\prime \prime}$ centers, hence, having located one stud, it is an easy matter to locate the others by measurement.

If the bracket form of construction is used, it will be necessary to stiffen the top between the brackets. This may be done by nailing a $1^{\prime \prime} \times 3^{\prime \prime}$ piece across the front end of the brackets, and a $1^{\prime \prime} \times 6^{\prime \prime}$ piece across the front of the vertical legs of the brackets, notching it so as to clear the horizontal bracket members.

The more orthodox method of using four legs is shown in Fig. 602. These may be made of $3^{\prime \prime} \times 3^{\prime \prime}$ material, fastened at the top with $1^{\prime \prime} \times 4^{\prime \prime}$ pieces, and with a cross piece at each end about $8^{\prime \prime}$ from the floor and a longitudinal brace between them, as shown by the sketches.

The table should be about $30^{\prime \prime}$ wide, and from 4 to 6 feet long, depending upon one's individual ideas. For best operating convenience the top should be from $29^{\prime \prime}$ to $30^{\prime \prime}$ above the floor.

By buying all lumber surfaced on four sides, the labor of building this table is reduced to a great extent. The greater part of the work will be simply cutting the material and fastening it together. A good grade of pine looks well and,
was designed by W5ClQ. The entire structure is made of $3 / 4^{\prime \prime} \times 12^{\prime \prime}$ smooth lumber. Essential dimensions are given in the drawing. The various compartments may be used as follows:
A. Loud speaker.
B. Antenna tuner.
C. Small monitor.
D. Final amplifier.
E. Exciter stages (two or three).
F. Power supplies (receiver supply included).
G. Receiver.
H. Log, call book, writing paper, etc.
z.

FIG. 603 - ANOTHER TYPE OF OPERATING POSITION PROVIDING SPACE FOR A I.OW-IPWER TRANSMITTER

WORKSHOP PRACTICE

I. Panel for switches controlling 110 v . a.c. power.
J. Key.
K. Tools, QSL's, neon bulb, plug-in coils, etc.

The shelf at L is mainly a support for the bottom of the structure. lt can be used for the speech amplifier and its power unit, and also to accommodate magazines, books and the miscellaneous boxes of screws.

The space $I I$ may be made as a sort of ferdestal setting inside the space for the receiver, and the receiver rests upon it. The writing desk is hinged at the botto m and folds up to hide the receiver, etc.

Panels may be used on the shelves that slide out, if so desired. The top and bottom shelves are put in permanently while the ones in between slide out in ease repairs to the apparatus become necessary.

TIBANEMETTEER IBACK

The present trend in anateur transmitter construction is definitely toward the standard rack and panel type. In this type of construction, illustrated in Fig. 604, the transmitter is made up of units of standard dimensions, each one complete in itself, which are grouped together in suitable order in a vertical frame also of standard dimensions. Each unit is composed of a chassis, preferably of metal, on which most of the components are mounted, and a panel which may be of either metal or wood.

A transmitter following this plan of construction usually requires less floor or table space than other types and is attractive and business-like in appearance. The unit feature permits changes, from time to time, without the necessity of disrupting the entire transmitter or working on it in a restricted space. The usual unsightly connecting wiring may be cabled and run down the inside corners of the vertical members.

Each chassis measures $17^{\prime \prime}$ long, $2^{\prime \prime}$ to $3^{\prime \prime}$ deep and $4^{\prime \prime}$

to $13^{\prime \prime}$ wide according to space requiroments. All pancls are $19^{\prime \prime}$ wide by some multiple of $13 / 4^{\prime \prime}$ high. One sixty-fourth inch is taken off the height of each panel to compensate for any irregularities which might cause cramping of the panels when they are mounted together on the rack. Mounting holes are spaced so that the individual panels will fit when moved up or down to any desired position on the rack in steps of $13 / 4^{\prime \prime}$. This

FIG. 604 - TIIE STANIDARI RACK
A - Side view, 18 - Front viow, C - Top view, I) - Uppor right hand corner detail, F. - Panel and chassis assembly, F, G, 1 - Varionm typen of punel brackets, 1 - A subntilute for the metal chansia.

THE RADIO AMATEUR'S HANDB00K

dimension of 13^{3} " is known as a rack unit. The height of the rack will depend upon the number of panels required and their sizes. Small transmitters may be confined to a small table type rack or to the upper portion of a floor type rack. Standard racks of steel are available in various sizes from the larger amateur radio supply houses. Very practical and inexpensive substitutes of wood may be constructed by the amateur, however.

Reforring to Fig. 604, the rack is constructed entirely of $1^{\prime \prime} \times 2^{\prime \prime}$ stock of smooth pine, spruce or redwood, with the exception of the trimming strips, $M, N, 0$ and P. Nince the actual size of standard $1^{\prime \prime} \times 2^{\prime \prime}$ stoek runs appreciably below these dimensions, a much sturdier job will result if pieess are ohtained rut to the full dimensions.

Tho two matin vertical supporting mombers

 Ac:cEsiblit'T

- Frame of $1^{\prime \prime} \times 2^{\prime \prime}$ or similar mock monnted at rightargips tofall-length pantel. Js - 'Top iew mhowing how tranmmitier maty

distanee of $1 /{ }^{\prime \prime}$ plus the sum of the thickness and width of the matrrial from either end of pieces A and J. This distance will be $31 / 4^{\prime \prime}$ for stock exactly $1^{\prime \prime} \times 2^{\prime \prime}$. The second hole will come $1 / 1_{1}^{\prime \prime}$ from the first, the third $1 / 2^{\prime \prime}$ from the second, the fourth $11 /{ }^{\prime \prime}$ from the third and so on, alternating spacings betwern $1 / 2^{\prime \prime}$ and $11 / 4^{\prime \prime}$ (see detail drawing I), Fig. 604). All holes should be placed $3 / 8^{\prime \prime}$ from the inside edge of the vertical members.

The two vertical members are fastoned together by cross-member K at the top and L at the bottom. These should be of such a lougth that the inside edges of A and J are exactly $171 / 2^{\prime \prime}$ apart at all points. This will bring the limes of mounting holes $18 \frac{1 / 4{ }^{\prime \prime} \text { eenter to center. }}{\text { m }}$ Extending back from the bottoms of the vertical members are pieces G and D) eonnected thgether by cross-members L, Q and E, forming the base. The length of the pieces D and f_{i} will depend upon space requirements of the largest powor supply unit which will rest upon it. The vertical members are braced against the base by liagonal members C'and II. Rear support for heavy unit. placed above the base may be provided by mounting angles on the insides of (' and I, or by connecting them with cross-nembers at suitable heights as shown at F.

To finish off the front of the rack pieces of $1 / 4^{\prime \prime}$ oak strip $(1 I, N, O, P)$ are fastened around the edges with small-head finishing nails. The heads are set below the surface and the hokes pluggel with putty or plastic wood. They should be of such a width that the top and bottom edges of 0 and P^{\prime} respectively should be $1 / 4^{\prime \prime}$ from the first mounting holes and the distance between the inside edges of the vertical strips, N and P, 191/16".

To prevent the screw holes from
are each comprised of two piress (A and B, and I and J) fastoned together at right angles. Each pair of pieces is fastoned together by No. 8 flat hoad screws, countersunk.

Before fastening these pairs together, pieces A and I should be madr exactly the same - ngth and drilled in the proper places for the 1 ounting serews using a No. 30 drill. The length of pieces A, J, B and I should equal the total height of all panels required for the transmitter plus luice the sum of the thickness and width of the material used. If the dimensions of the stock are "xactly $1^{\prime \prime} \times 2^{\prime \prime}$, then $6^{\prime \prime}$ must be addeel to the sum of the panel heights. An inspection of the top and bottom of the rack in the drawing will reveal the reason for this. The first mounting hole should eome at a
woaring out whon panels are changed frequently, $1 / 2^{\prime \prime}$ wide $\times 1 / 16^{\prime \prime}$ or $3 / 32^{\prime \prime}$ thick iron or brass strip may be used to back up the vertical members of the frame. Clearance holes for the mounting screws may be drilled in the wood and the motal strips may be drilled and tapped for matehine screws. Such a metal strip will also serve as a grounding strip between units.

The outside surfaces should be sandpapered thoroughly and given one or two coats of tlat black finish, sandpapering between coats. A finishing surface of two coats of glossy black "Inco" is then applied, again sandpapering betwen coats. It is important to allow each eoat to dry thoroughly before applying the next, or sandpapering.

Since the combined weights of power sup-

WORKSHOP PRACTICE

plies, modulator equipment, ete., may total to a surprising figure, the rack should be provided with rollers or wheels so that it may be moved about when necessary after the transmitter has been assembled. For this purpose, ball bearing roller-skate wheels are exeellent.

Rack Units

As mentioned previously, the various units are built upon an assembly consisting of a panel $19^{\prime \prime}$ wide and a chassis or base $17^{\prime \prime}$ long, as shown in drawing E of Fig. 604. Chassis pans of several standard sizes as well as panels are available from most amateur radio supply houses. Chassis are commonly obtainable in soft steel, aluminum or a zinc alloy. Of these, aluminum or zine alloy, while more expensive, are much easior to work and are definitely recommended where all work must be done with hand tools.

Very arecptable substitutes may be made by covering a pieee of wood, such as oak or a special impregnated wood known commercially as "Trempered Masonite" or "Lamitex," with a thin sheet of aluminum or other metal assembled as shown in drawing l, fig. 604. This sperial type wood also makes excellent pancls since it may be obtained, $1 / 4$ " thick, with an attractive black crystalline finish in standard rack sizes with drilled mounting holes or in undrilled sherets $19^{\prime \prime}$ wide. Even inexpensive 1/4" ply-wood panels will be practical and presentable if given a suflieient number of coats of Hat baek finish to obliterate the grain. No pancl or baseboard of any kind should be depended upon for r.f. insulation if it has been finishod with blaek paint or lacquer which conducts r.f. currents quite readily.

Panels are drilled as shown in drawing I), fig. (io). The holes should be laree chough to pass the No. 8 or No. 10 round head nickeled wood sorews which are used to fastorn the panels in the rack. As the drawings of the twounit and threr-unit panels show, it is not neeressary to drill holes in the panels corresponding to all of the mounting holes, but only a sufficient number to provide adequate strength. Commercial panels are usually notehed instrad of drilled. The simple holes shown are less difficult to make and serve as well. If desired, the notehes may be filed out after the holes are drilled.

Since the panel is called upon to bear the weight of the chassis and that of the equipment mounted upon it, metal panels should be not less than $1 / 8^{\prime \prime}$ thick and wood pancls not less than $1 / 4^{\prime \prime}$ thick. In addition to fastening the lower edge of the panel to the chassis with machine screws, braces should be provided for additional support. Triangular shaped pieces such as those shown in drawing F, Fig. 604, may be cut and bent out of metal sheet or may
be purchased ready to use. A satisfactory substitute may consist of a simple bracing strip of $1 / 2^{\prime \prime} \times 1 / 16^{\prime \prime}$ stock, drilled at one end for the chassis and bent and drilled at the other for the panel, as shown in drawing H. Where space permits, the strip may be bent flat-wise, as shown at G.

Whenever possible, all components should be mounted on the chassis making it necessary to drill the panel only for shaft holes, supporting serews and, possibly, the dials. Condenser shaft holes may be located by taking accurate measurements remembering that the lower edge of the panel and that of the chassis should eoincide when assembled.

lertical Construction

A different type of construction is shown in Fig, filt, A frame of wood, properly braced, is fastened to the panel at right angles. Upon the frame is mounted a vertical breadboard, prefrrably eovered with thin shert metal upon which the apparatus is mounterl. Power-supply apparatus may be placed at the bottom. Tuning condensers are mounted so that the shafts may beextended through the panel. Tubes may be mounted horizontally athough vertical mounting by means of brackets usually will permit shorter leads. If desired, the breadboard may be made in removable sections following raek practice. This type of construction has the advantage that both sides of the mounting board are easily accessible and lends itself very well to enclosed cabinet construction as shown at B. Similar construction may be employed with standard racks by mounting the chassis vertieally instead of horizontally as shown at 6 :

©AME, WINIDINGi

1ools forms $1^{\prime \prime}$ to $21 / 2^{\prime \prime}$ in diameter and $1^{\prime \prime} 2^{\prime \prime}$ to $4^{\prime \prime}$ long, which may be plugged intostandard receiving tube sockets, are standard items of manufacture. These are commonly used for winding coils for low-power transmitters as well as reecivers. Some sizes are available with from four to six prongs. The type to be userl will depend upon eirenit requirements.

Coils for low-power stages, handing twontyfive to thirty watts, can be wound with relatively small wire. When the power to be handhed is fairly large, heavier eonductors must be used, however, to avoid heating. Number 12 or 14 wire, properly spaced, will earry the output of most medium and high power amplifiers without undue heating, especially when the optimum or higher L-C ratio is used. In high- $($? circuits, copper tubing is generally used; sizes of tubing range from $18^{\prime \prime}$ to $1 / 4^{\prime \prime}$ in diameter.

The chief requirements for a good transmitting eoil are that its resistance be low (large conductor and proper proportioning of dimen-

THE RADIO AMATEUR'S IIANDB00K

sions) and that it be mechanically rigid. The turns should not be "floppy" because if vibration oceurs, the inductance will change at the same rate, modulating the output of the transmitter. If the coils are plug-in, it should also be possible to handle them a great deal without getting turns out of place or breaking off terminals. I'lug-in coils larger than those wound on rooriving coil forms usually are provided with (i.R. or "hamana" type plugs fitting into jacks mounted in a strip of bakelite or in sperial standeoff insulators.

Coils for transmitters often are wound on Lrooved ceramic forms avalable from so veral manufacturers. Such inductances are masy to make, and if wound with bare wire can radily bo tapped at any point.

Another type of coil construction utilizes strips of bakelite or similar material $1 / 8^{\prime \prime}$ to $316^{\prime \prime}$ thick, $3 / 8^{\prime \prime}$ to $1 / 2^{\prime \prime}$ wide, drilled at proper intervals to give the desired turn spacing, to support the turns. A coil of this type is illustrated in Fig. 606. Wire between sizes 14 and 10 is commonly used, although the same system may be used for copper tubing. The strips

FIG. 606 - COHL ASSEMBLY FOR WIREOR COPIPEA TUBING COILS
After the eoil is wound the otrips A, H and C are threaded on the wire starting with strip A which has an extra hole.

FIG. h0̄̄ - (XOHLS WOUND ON CELLULOHH STRKIPS. SIGWING: TIE WORKING MATERIALS NEEIDEID FOR CONSTIRUCIION
The coil on the bakelite form in in the midide of the winding proceses, about to be spaced with the heavy atring lefore tightening and cementing.
should be drilled, one strip having one extra hole to take care of the end of the winding, the others having the same number of holes as the number of turns on the coil. The coil itself is wound separately on a form of the proper diameter. The loose coil is then removed and the wire fed through the strips a turn at a time, starting with the strip with the extra hole. It is not difficult to do, although taking a little time. The holes in the strips should be large enough to pass the wire without binding. Aftor threading through the strips, the turns may be fastened firmly in place with Duco cement. The bottom of the coil may be clamped between two strips of bakelite, as shown in the drawing of Fig. 606 and mounted on a third strip which bears the required number of coil plugs. A mounting base may be made identical to strip F except that it should be somewhat wider to take care of the large holes required for the coil jauks, and about $2^{\prime \prime}$ longer to provide for mounting on stand-off insulators. Link windings may be made in a similar manner anvl may be cemented to the inside edges of the coil strips as shown in the drawing.

A third type of coil is shown in Figs. 607 and 608. In this case the supporting strips are celluloid, cemented to the coil turns. A winding form such as a bakelite tube of proper diameter or a collapsible form made of wood shown in Fig. 608 shoukd be covered with several layers of paper; the wire is fastened at one end with a machine screw and nut through the form and wound on to the desired number of turns, after which three or four celluloid strips are slid under the wire at proper intervals around the form. The turns are then spaced by winding string or wire of the proper diameter between them. After spacing, the turns should be tightened up and the other end of the winding fastened to the form. Duco cement is run in between the turns along the celluloid strips and allowed to dry for an hour or two, when

WORKSHOP PRACTICE

another application of cement is made. The second coat should be allowed to dry overnight, after which the turns will be firmly cemented to the celluloid strips. The paper may then be pulled orcut out and the finished coil slid off the form. The coils are quite strong and rigid. Even large-size coppertubing coils can be made liy this method,

FIG. 608-THE WOODEN MANDREI SIIOWN ABUVE IS CONVENIENT IF MANG COIIS AIRE TO HE: WOUNI)
A copper tubing coil just as it comes off the winding form is bhown at the left; the eoil at the right has been "trimmed" and mounted.
although it is generally used with wire coils. Complete coils of the type are available from several manufacturers.

ANTMENET MASTA

.VEHY simple and inexpensive mast is shown in lig. 609. This design has been very popular and issatisfictory for heights up to 35 or 40 feet. In addition to the $2^{\prime \prime} \times 2^{\prime \prime}$ lumber, the only materials required are $5!0^{\prime \prime}$ carriage bolts $516^{\prime \prime \prime}$ long with washers, a few spikes, about 300 ft. No. 12 galvanized iron wire and several small strain insulators. These should be used about every 10 or 12 feet to break the guy wires into sections. Clear, sound lumber should be selected. The mast may be protected by 2 or 3 coats of house paint or, preferably, aluminum paint.
If the mast is to stand on the ground, a couple of stakes should be driven to keep the bottom from slipping. At this point the mast may be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it, from the roof, kerping it vertical. The whole assembly is: light enough for two men to perform the complete copration - lifting the mast, carrying it to its permanent berth and fasteming the guys - with the mast vertical all the while. It is
therefore entirely practicable to put up this kind of mast on a small flat area of roof that would prohibit the erection of one that had to be raised vertical in its final location.

A heavier mast for greater heights is described by W1ALJ and shown in Fig. 610. It can be made forty to sixty fret high, requires only two back guys forming a tripod with the antenna and is cheap to construct.

The material required is as follows:
$1-6^{\prime \prime} \times 6^{\prime \prime} 9$ feet long
$2-4^{\prime \prime} \times 4^{\prime \prime} 1+$ feet long
$1-4^{\prime \prime} \times 4^{\prime \prime} 20$ feet long

2 pieces 20 feot long, $1^{\prime \prime}$ thick, $3^{\prime \prime}$ at bottom emd, tapered to $2^{\prime \prime}$ at top
1 - Top piece $2^{\prime \prime} \times 1^{\prime \prime} 6$ feet long
Lapping bolts:

$$
\begin{aligned}
& 4-5 / 8^{\prime \prime} \times 14^{\prime \prime} \\
& 3-1 / 2^{\prime \prime} \times 7^{\prime \prime} \\
& 3-3 / 8^{\prime \prime} \times 312^{\prime \prime}
\end{aligned}
$$

Reinforeemont bolts to prevent splitting at conds of sticks:
$6-12^{\prime \prime} \times 41 / 2^{\prime \prime}$
$1-1 / 2^{\prime \prime} \times 7^{\prime \prime}$
$2-1 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}$
$3-1 / 4^{\prime \prime} \times 212^{\prime \prime}$
Each bolt requires two washers. large square washers may be used on the lapping bolts and regular round washers on the rein-

 IOOR DIREOTIGN IN IGCATIONS WIFERE SDACE, IS I.I VITEB:

tile radio amatelis handrouk

forcement bolts. The bolts and washers shoukl proferably be galvanized.

The cost of all material for this mast in this locality (southern Rhode Island) was only about $\$ 12$.

> METHOD OF DRIVING PIPE GUY ANCHORS FOR DURABILITY

detall of base piece SCALE $1 / 2^{\prime \prime}=1 "$
lel sections and nail them permanently in place. They should be about one foot long.
7. Get three or four soap hoxes for horses and paint mast if you desire. light gray makes a fine-looking mast.
8. Use at least $1 / 2^{\prime \prime}$ rope for raising any antenma and install a good pulley on top stick.

Guying of this type of mast is neither complicated nor eostly. No. 14 or 12 steel wire will suffice for an ordinary single wire anteman. Small egg type strain insulators are best for breakers due to lapping of guy wire holes. They should be spaced about 12 feet.

As previously mentioned, only two baek guys are neeessary, each of these spaced 120 degrees from the antenna.

There are numerous methods of anchoring the guys but the most common are trees, fences and pipes driven in the ground. The latter method is shown. The guy anchors should be installed at least 30) feet from the base of the mast and driven at least four feet into the grommd.

HIG. 610-A 50-FMOTER OF HUSKY HIG. CONSTRUCTION. ONLY THO GU WHRES AT THE TOP AISE REQUIKEI)

Eight Constructional IIirts

1. Naw sides of bottom piece ($6 \times$ 6) to accommodate lapping of the two 4×4 's. See Figs. 1 and 2 .

Note. - Most so-ealled $4^{\circ} \times 4$'s are usually about $35 / 8^{\prime \prime}$ square.
2. Shed the tops of all pieces to allow rain to run off.
3. Bore neeessary bolt holes in all pieces.
4. Install the reinforeement bolts with washers in ends of all pieees where neeessary and tighten.
5. Lay all pieces on level ground in mast formation and insert bolts. Tighten. all bolts exeept those for lapping the first two parallel 4×4 's with the second 4×4.
6. Cut and fit the intermediate reinforcement pieces used in the two paral-

FIG. GII - THIS TYIPE MAY IBE CARIRIEI TO A IIEIGIIT

92

WORKSHOP PRACTICE

Installation

Dig hole 5 fert deep for 6×6. This piece maty be set in cement or reinforced by filling hole with rocks and tamping dirt around them. Use level to make sure base piece is vertical. Raise: first two parallel 4×4 's, and bolt in place to base picce. Raise remaining 40 -foot section to vertical position beside the parallel 4×4 's. It is not heavy and one man can easily accomplish this. While a brother ham holds the 40 -foot section in place, climb a stepladder and tie a piece of rugged rope or wire loosely around the whole assembly about 2 feet down from the top of the parallel 4×4 's. Hold this in place with a staple driven into one of the parallel $+x+$'s. This will serve as a safety guide while raising the 40 -foot section vertically. Two men take one guy each and walk in opposite directions from base of pole to a distance of about 40 feet. (iet a good hold under bottom of 40 -foot section and raise vertically. Men on end of guys should allow plenty of freedom and yet not allow top to sway more than 12 inches or so. When bottom of this section reaches your waist, start walking up stepladder. If you are rugged, you can handle mast with one hand and hang on to stepladder with the other. However, if you are not rugged, someone should help you during this operation. When 40 -foot section reaches the proper height, slide its base between the 4×4 's and insert the two bolts for this lap. Tighten nuts and the mast is complete.

The mast shown in Fig. 611 was put up by

W91M at a cost of no more than $\$ 8$. Only four persons were needed to put it up and no guy wires were used. It has stood up for a number of years through some strong winds.

A used telephone pole was purchased and delivered for $\$ 5$. A hole $i f t$. deep was dug for it. About 2 ft . from the top, of the pole a $1 / 2^{\prime \prime}$ hole was bored. The lower sertion was raised by hand until ladders could be placed under it which served as gin poles. The top section consisting of 2×4 's was assembled on the ground and a $1^{\prime \prime}$ hole bored about is ft . from the lower end of the top, section. The lower end of the top section was loosely bolted to the top of the lower section and swang up into position, as shown in the sketrh, and spiked in plarer.

FIG. 613-SIIOWING TIIE MANNEIK IN WIIICII TIE, SHIEID IS MOUNTEI IBEIUEEN FINAI, TANK INI ANTENSI GOOPIIVG (:OHIS

FiARAMDM NMIRIIDS

$\boldsymbol{T}_{\mathrm{HE}}$ use of laraday or electrostatic slielding between the final amplifier tank and antenna tank eircuits is diseussed elsewhere. The eonstruction of such a shich will vary with the coil arrangoments of the final stage and the antemat circuit. One type which may be used in most cases is shown in Figs. 612 and 613. It consists of a series of closely spaced parallel rods or wires of size No. 12, or larger, connected together at one end by the $1 / 4^{\prime \prime}$ square brass rod in which the wires are mounted and insulated at the other end by a bakelite strip. In push-pull circuits, two shields, one for each end of the coil, are required as illustrated at B, lig. 614. In cases where a shield in close proximity to the coil will interfere with coil changing, the metal strip may be fitted with plugs and plugged in after the coil is in place as shown at C and D, Fig. (i14.

THE RADIO AMATEUR'S HANDB00K

U.OW CAPACITY NELTMEALIVANG: CONDENNEIBS

- - ow capacity neutralizing condensers for tubes such as the $35 \mathrm{~T}, 808$, 'T55 and other low capacity tubes are not difficult to eonstruct. Two types are shown in Fig. 615. In A, two stand-off insulators are used to support two square or rectangular plates with sufficient spacing to prevent voltage breakdown and of sufficient area to provide somewhat more than the plate-grid capacity of the tube. Values of tube capacity may be taken from the tube tables of Chapter $\overline{5}$ and the capacity may be computed from the formula given in the A_{p} pendix. The capacity may be varied by swinging one plate or the other to one side. A spacer of metal or hakeliteis used to give proper spacing.

The second type requires insulators of different heights, both of which are standard products. The plates shown are round, although this shape is not

strictly necessary. Round plates may be made easily with the hole cutter. A strip of metal $1 / 2^{\prime \prime}$ $\times \frac{3}{3} 2^{\prime \prime}$ or $1 / 8^{\prime \prime}$ holds the top plate. It is tapped for the machine screw which provides the adjustment of capacity. The top plate should be countersunk on the under side for a flat head screw $3 / 16^{\prime \prime}$ or $1 / 4^{\prime \prime}$ in diameter. The end of the

A

B
FIG. 615-1WG I'VPRE OF IAW-(:APACITY NEUITRAIIZING (ANOHENEERS OF EASY CONSTRUCTION
Refer to the text for dimensions.
serew is notched with a hacksaw for an adjusting serewlriver.

(UMI. (PEMENT

Duco cement, obtainable universally at hardware, stationery or five-and-ten-cent stores, is a very satisfactory substance for fastening coil turns. For small coils, however, it is rather thick and a better-looking job will result if it is thinned out with acetone, sometimes referred to as banana oil. If desired, the solution may be made thin enough to permit application with a brush.

CIBACKIN RLNENH

Woon or metal parts may be given a crackle finish by applying one coat of clear Duco or Tri-Scal and allowing it to dry over night. A coat of Kem Art Metal Finish is then sprayed or put on thickly with a brush, taking care that the brush marks do not show. This should be allowed to dry for two or three hours and the part should then be baked in a household oven at 225 degrees for one and one-half hours. This will produce a regular commercial job. This finish comes in several different colors and is produced by the Sherwin-Williams Paint Co. and should be obtainable through any dealers handling Sherwin-Williams proluets.

recelver design and construction

Regenerative and Superheterodyne Types - Modern Circuit Developments of lroted Performance

Tne success of the amateur station is fully as dependent on the receiving equipment as on the transmitter. You can't work stations unless you can hear them. It pays, therefore, to give just as much attention to the choice of a receiver as to the selection of a transmitting layout.

The availability of factory-made communi-cations-type superheterodyne receivers in a wide price range is responsible for the fact that many amateurs prefer to buy rather than build receivers. It must be admitted that the more complicated sets can be purchased nearly as economically as they can be built, and often provide a degree of operating convenience which the home constructor finds it difficult to duplicate. Nevertheless, there is a definite field for home construction, especially where economy is an important consideration. Circuit features not feasible in manufactured sets intended for all types of buyers may be incorporated to increase performance without raising cost. Also, in the home-built receiver it is possible to control those characteristics - the degree of band-spread, for instance, or the type of circuit used - which must be accepted as presented in the manufactured receiver of comparable cost.

The receivers described in this chapter are types adaptable to amateur construction, with proved performance and economy as the keynote. In addition, as much attention as possible has been given to circuits which may be adapted to existing receivers to improve their performance.

TYIPES OF IBECEIVEIRS

IReceivers for amateur communications fro-

 quencies - 1.75 to 30 Mc ., inclusive - are of two general types, regenerative (autodyne) and superheterodyne. The basic arrangements are illustrated by the block diagrams of Fig. 701 . The regenerative receiver may consist simply of a regenerative detector (described in Chapter Five) with or without an audio amplifier, as at Fig. 701-A, or it may incorporate a radiofrequency amplifier preceding the detector, asin $701-\mathrm{B}$. The regenerative receiver is used chiofly because of its low cost, particularly in the simpler types, and because it is relatively easy to construct and put into operation. It is therefore a favorite with beginners.

The superheterodyne receiver, depicted in essential form in Fig. 701-C, is capable of a much higher order of performance and hence is preferred by the more experienced amateur. In it, the frequency of the incoming signal is first changed to a value at which high amplification and more selective circuits can be used, then detected and made audible. Frequency changing is made possible because of the phenomenon of heterodyne action, or the generation of beats. If two signals of differing frequency are applied to the input of a detector, the output will contain not only the two original frequencies but also two new frequencies, one equal to the sum of and the other the numerical difference between the original two. In the superheterodyne, the output of a local oscillator of suitable frequency is applied to the first detector, or mixer, simultaneously with the incoming signal; the resulting beat is then amplified by the intermediate-frequency (i.f.) amplifier, and again rectified (see Chapter Five) by the second detector. The conventional communications-type superheterodyne uses an intermediate frequency in the neighborhood of 455 kc ., and the "difference" frequency or beat is amplified. The local high-frequency oscillator is therefore tuned to a frequency differing from the incoming signal frequency by 455 kc., or whatever i.f. may be used. Common practice is to tune the oscillator 455 kc . higher than the signal, rather than lower, although either tuning may be used.

To make c.w. signals audible, heterodyne action again is used at the second detector through the use of a second local oscillator, the c.w. beat oscillator. The beat-oscillator frequency is adjusted so that it differs from the i.f. by some desirable audio frequency, such as 1000 cycles. It may be set, for instance, to 456 kc., if a $455-\mathrm{kc}$. i.f. is used. The same principle is employed in the reception of c.w. signals by a regenerative detector, the detector being

 IS ASIC I\&EGAIVER 'TYPES. A, SIMIPIE REGENERATIVE: IB, TUNEIS R.I'. REGFENERATIVE; (, SIPERIIETERODNNE:
eharacteristic of its tuned cireuits, in accordance with the fundamental principles of resonant circuits described in Chapter Four. It is also affected by the frequency characteristie of the audio-frequency circuits following the final detector; in fact, audio-frequency selertivity may be quite effective in rases where deliber-ately-tuned audio combinations are used for c.w. telegraph reception.

The selectivity of a rereiver is usually described by an overall resonance curve such as that shown in lig. 702. This curve shows how many times stronger than the desired
made to oseillate at a frequency differing by 1000 rycles or so from the actual frequency of the incoming signal. Without heterodyne action, unmodulated $\because \cdots$. signals would produce no audio response in the detector but would be heard merely as clicks or thumps.

A radio-frequency amplifier at signal froquency may be incorporated in the superhetcrodyne receiver to amplify the signal before mixing and to increase the selcetivity. Fig. 701-C shows sum an amplifier.

IRECEIVER IPEIRFOIRMANGE CHARAGTEIRINTIUN

THe important general characteristics of a recriver are its selectivity, its sensitivity, its stability and its fidelity. These are interdependent, with selectivity the controlling factor. The selectivity is the roceiver's ability to diserininate between signals of different frequencies. The sensitivity is the minimum r.f. voltage input required to give a specified useful output. The stability is the receiver's ability to maintain its output constant over a period of time with constant signal input. The fidelity is the proportionate response through the audio-frequency range required for a given type of communication.

Selectivits

The selectivity of a receiver is its most important characteristic, since it not only determines the receiver's ability to separate a desired signal of one radio frequency from undesired signals of other frequencies, but also it afferts the sensitivity of the recciver, as will be explained later. The selectivity of a given receiver is determined primarily by the resonance
signal an interfering sigmal off resonance must be to give receiver output cqual to that given by the on-resonance desired signal. It should be noted that the response scale of microvolt input ratios is in logarithmie steps. The curve is plotted this way because the logarithmic seale enlarges the input-ratio steps near resonance, where the selectivity characteristic is most important. The logarithmic microvoltage sale also corresponds with a uniform seale of decibel steps, the latter being noted at the right in lig. 702. (Refer to the decibel chart and explanation in the Appendix.) This selectivity curve is for a standard amateur-type communication superheterodyne having 5 or 6 tuned i.f. eireuits with transformer coupling, and represents typical selectivity for 'phone reception. It shows that an interfering signal 1.6 kc . off resonance would have to have twice the strength of the desired signal to give equal output, the curve being twice 1.6 kc . or 3.2 kc . in width at "two times down." It also shows that at 3.75 kc . off resonance the interfering signal would have to be ten times as strong as the desired signal to give equal output, or that the interfering signal of the same field strength would be only one-tenth as effective as the desired signal.

smenilivity

The sensitivity of a receiver is fundamentally limited by what is termed the "noiso level." It is not simply a matter of amplification. Only signals that are readable above the noise background at the receiver output are useful. This noise background has its source in atmospheric distubances or static, in commerrial and domestir electrical equipment, and in the receiver itself. If there should be no external

RECEIVRR DESIGN AND CONSTRUCTION

sources of noise interference, the receiver's own noise level would be the ultimate factor determining the receiver's effective sensitivity. This noise may be composed of hum from the power supply, and of hiss resulting from electronic variations in the conductors of the radiofrequency circuit and from irregularities which are inevitable in the electron flow within the radio-frequency vacuum-tube amplifier or detector. Thus the input circuit noise (thermal agitation), and the first tube noise (shot effect, flicker effect, ionization) remain as the ultimate noise limiting sensitivity, since the noise is amplified subsequently with the signal. This noise takes the form of a "hiss" sound in the output of the receiver.

The minute overlapping impulses which go to make up this hiss noise are uniformly distributed over a given section of the radiofrequency spectrum, and combine in voltage at the receiver output as the square root of the sum of the squares of the individual pulse voltages. Hence, this type of noise is reduced when the width of the frequency pass-band of the receiver is reduced. From this it is evident that the selectivity of the receiver is highly important in determining the effective sensitivity as well as in giving it discrimination against unwanted radio signals. Actually, the noise power output is directly proportional to the receiver's effective band-width, or inversely proportional to its selectivity; while the r.m.s. noise voltage output is proportional to the squareroot of the effective band-width.

For describing the effective sensitivity of a receiver in terms of its own noise level, the term noise equivalent is used. The noise equivalent (N.E.) of a receiver is the c.w. signal input in microvolts required to produce an output equal to the receiver noise output. In amateur type superheterodynes of good modern design the noise equivalent should be below 0.5 microvolt for i.f. selectivity of the order shown by the curve of Fig. 702, and should be well below 0.1 microvolt for receivers with crystal-filter selectivity.

Stability

The stability of a receiver is principally a matter of its ability to stay tuned to a steady signal once the controls have been set, and therefore essentially involves radio-frequency constancy. In regenerative receivers the stability of the detector circuit is of prime consideration, while in superheterodyne receivers oscillator stability is of first importance. The frequency stability requirements become more rigorous with high selectivity, especially in receivers using crystal filters, since variations of but a few cycles can cause a relatively large change in output. The stability is affected by variation in temperature of the circuit elements, mechanical irregularities, supply volt-
age variations, and other factors which require special consideration in designing the circuits.

Fidelity

The fidelity requirement in amateur receivers is essentially different from broadcast receiver requirements, although this is not generally realized, and is set by the minimum required for intelligibility. For c.w. telegraph reception of hand-keyed signals (say up to 30 words per minute) adequate fidelity for intelligible reception can be obtained with selectivity such that the receiver's effective band width (the "measuring stick" for selectivity) is but 50 cycles or less; for 'phone reception with usable intelligibility the band width must be proportionately greater, although still considerably less than for good-quality broadcast reception. It is therefore evident that the most important receiver characteristic is the effective selectivity; for the higher the selectivity, the greater can be the amplification and the higher the effective sensitivity, to the limits imposed by the requirement of intelligible output.

TUNENG SYSTEDE

Mince the amateur frequency-bands comprise narrow slices of territory widely separated, it is not possible to cover them all effectively with one coil and condenser in the tuning system. Many schemes have been evolved to provide interchangeable coils. The use of a special form plugging into a tube socket is almost universal in amateur-built

FIG: 702 - A TYPICAL RECEIVER SELECTIVITY C:UIVE OBTAINED BY PLOTTING MICROVOLTS INI'UT', AT VARIOUS INTERMEDIATE FREQUENGIES, REQUIRED TO GIVE CONSTANT AUDIO OUTPUT; THE TEST SIGNAL IS OBTAINED FROM A STANDARD SIGNAL GENERATOR

THE RADIO AMATBUR'S HANDBOOK

receivers. Coils of this type are pictured later on with the constructional details of the receivers in which they are used.

More complicated receivers, in which a number of tuned circuits must be changed for each range, employ coil switching systems or plug-in "gangs" containing three or four coil units for each range. These units are hardly adaptable for amateur construction and are more economically purchascd than they can be made up by the constructor.

Circuit Constants

The frequency range covered by a coil and condenser combination will be determined by the inductance of the coil across which the capacitance is effective, the minimum value of the effective capacitance and the maximum value of the capacitance. The inductance will, of course, be determined principally by the number of turns, length of winding and diameter of the coil, but will be affected more or less by coupling to another coil and by the presence of shielding and other conductors in its field. For practical purposes the value of inductance calculated either by the formulas given in Chapter Four or by the Lightning Radio Calculator can be taken, provided the shielding is spaced from the coil by a distance equal to the coil radius.

The maximum frequency limit for a given coil will be set by the minimum capacitance, which includes the minimum of the tuning condenser plus the tube and stray circuit capacitance. An allowance of 20 to $30 \mu \mu \mathrm{fd}$. usually can be assumed for this minimum. This is increased by "loading" with a trimmer condenser, or a "tank" condenser, in parallel with the main tuning condenser. There is an almost infinite variety of combinations possible, of course, which accounts for the wide differences in tuning combinations given for receivers of various designs.

Band-Spreading

In amateur receivers it is desirable that the tuning range be adjusted so that practically the whole scale of the tuning dial is occupied by the frequency band in use. This "bandspreading" gives the greatest ease in tuning that is possible with the particular dial or mechanical system employed, and also makes calibration easier because each dial division represents a relatively small frequency interval. The simplest method of band-spreading

B

C

FIG. 703 - ESSENTIALS OF BANIB-SIPREAI TUNING; SYGIEMS
is to use a tuning condenser of such capacity range that the band is just covered by rotating the condenser from minimum to maximum capacity.

The amateur bands are not entirely in harmonic relation, however, and therefore a condenser which spreads one band satisfactorily may not give the same spread on others. In order to make each band cover a large number of dial divisions, the ratio of maximum to minimum capacity must be different for each band.

Several basic band-spreading schemes are shown in Fig. 703. At A is the parallel-condenser method. C_{1} is the tuning condenser, usually with a maximum capacity of about $25 \mu \mu \mathrm{fd} . C_{2}$ is a "band-setting" condenser; its maximum capacity should be at least $100 \mu \mu \mathrm{fd}$. and may be larger. The setting of C_{2} will determine the minimum capacity of the circuit, and the maximum capacity will be the maximum capacity of C_{1} plus the setting of C_{2}. A different maximum-to-minimum capacity ratio can be chosen to give good band-spreading on each band.

The series-condenser method is shown at B. As explained in Chapter Four, the total capacity of two condensers in series is less than that of either. C_{1} again is the tuning condenser. It should have $100 \mu \mu \mathrm{fd}$. or more maximum capacity. C_{2} is the band-setting condenser and is preferably small, perhaps $25 \mu \mu \mathrm{fd}$. The maxi-mum-minimum capacity ratio in the circuit will be determined by the setting of C_{2}. The minimum capacity changes very little for any setting of C_{2}, but the maximum capacity can be varied over quite a range, depending upon the ratios of the capacities of the two condensers.

At C is another arrangement which makes use of a "split-stator" tuning condenser - one with two separate stationary-plate sections and a single rotor. One of the stator sections is made small enough to give good band spreading on the narrower bands, and the second stator section, when connected in parallel with the small stator, will give good spread on the wider bands.

The tapped-coil system at D is used in several manufactured amateur-band receivers and has also been adopted by many amateurs in home-built sets. Condenser C_{1} may be fairly large - $100 \mu \mu \mathrm{fd}$. or so - but will give good spread on any band if the right size of coil is chosen and the tap to which the stator plates of the condenser are connected is made at the right place. Trimmer condenser C_{2} is the

RECEIVER DESIGN AND CONSTRUCTION

"band-set" condenser. It should have a maximum capacity of 25 to $100 \mu \mu \mathrm{fd}$.

Fixed Condensers and Resistors

In both audio- and radio-frequency circuits there will be found fixed condensers connected across resistors, from plate to filament and even across portions of the circuit that appear in the diagram to be directly connected. These are by-pass condensers, provided to give a direct path for audio- or radio-frequency currents and to prevent these currents from flowing through other paths where they might cause undesirable degenerative or regenerative effects. In other cases fixed condensers are used to serve as paths for audio-or radio-frequency currents while preventing the flow of direct current, in which case they are known as coupling or blocking condensers. Small mica or non-inductive paper-dielectric condensers of from $100 \mu \mu \mathrm{fd}$. to $0.1 \mu \mathrm{fd}$. capacity are commonly used for r.f. circuits, while capacities of from 0.01 to several $\mu \mathrm{fd}$. are used in a.f. circuits. The particular size used will be determined by the impedance across which the condenser is connected, being smaller in capacity as the parallel impedance is greater. In the case of r.f. by-passes in circuits intended to transmit audio frequencies, as in the plate circuit of a detector, the capacity must be kept small enough so that the condenser will not by-pass audio frequencies also. Typical values are $0.001 \mu \mathrm{fd}$. and smaller. Audio-frequency bypass condensers, on the other hand, usually have values ranging from $1 / 4 \mu \mathrm{fd}$. to 8 or $10 \mu \mathrm{fd}$.

Fixed resistors are also used, in a wide variety of sizes, to provide bias voltage, to drop plate voltage, to serve as coupling loads in audio circuits and to decouple in both radioand audio-frequency grid- and plate-return circuits. Values for resistors to provide bias voltages and to drop plate voltages depend on the current flowing through them and aredetermined from Ohm's law, as shown previously. Plate- and grid-coupling condenser and resistor values depend primarily on the tube combination with which they are used, values shown in circuits described in this chapter being typical. Decoupling resistor and condenser combinations are not critical as to value. Usually such circuits are necessary only in high-gain amplifiers of two or more stages.

Kadio Frequency Shielding

The purpose of shielding is to confine the magnetic and electrostatic fields about coils and condensers so that those fields cannot act on other apparatus, and to prevent external fields from acting upon them in turn. Chapter Three has explained the nature of these fields. They can be confined by enclosing the apparatus about which the field exists in a metal box.

The effectiveness of the shield depends upon the metal of which it is made and upon the completeness of contact at the joints. At radio frequencies the best shield is one made of a lowresistance non-magnetic metal, such as copper or aluminum, because the losses in it will be low. The high frequency magnetic fields about the apparatus enclosed in the shield cause currents to flow in it, and since the flow of current is always accompanied by some loss of energy the shield in effect causes an increase in the resistance of the tuned circuit. The lower the resistance of the shielding material the lower will be the energy loss. At low frequencies, such as those in the audio range, copper and aluminum are ineffective for shielding.

The increase in resistance caused by shielding also depends upon the proximity of the apparatus inside the shield to the walls. Coils in particular should be spaced from the walls in all directions by a distance at least equal to the coil radius. For this reason small diameter coils are much to be preferred to large ones if the set is to be kept reasonably small. The losses in the shielding due to electrostatic fields are negligible in comparison to those caused by magnetic fields, so condensers can be mounted right on the walls of the shield if desired.

To be effective a shield inust be grounded. Connecting the shielding to a point in the receiver at zero or "ground" r.f. potential, such as the negative side of the plate supply, is usually sufficient.

HEGENERATIVE DETECTOH CIRCUITS

- N the regenerative receiver a number of arrangements of the tickler coil and feed-back control in the detector circuit can be used to give similarly loud signals, but some of them are more convenient and permit adjustment of regeneration without detuning the signal. It is an advantage if the regeneration control is absolutely quiet in action; if it permits a gradual adjustment up to and past the point of oscillation; and if it permits the tube to oscillate gently all across the frequency band on which the receiver is working, without the necessity for touching anything but the tuning control.

Fig. 704 shows the circuits of regenerative detectors of various types. The circuit of A is for a triode tube, with an adjustable resistor in the d.c. plate feed to vary the plate voltage on the tube and thus to control regeneration. If both coils are wound in the same direction, the plate connection is to the outside of the tickler coil when the grid connection is to the outside of the tuned circuit.

The circuit of B is for a screen-grid tube as the detector, regeneration being controlled by

THE RADIO AMATEUR'S HANDB00K

adjustment of the screen-grid voltage. The tickler is in the plate circuit. As in the circuit of A, the portion of the control resistor between the rotating contact and ground is by-passed by a large condenser ($0.5 \mu \mathrm{fd}$. or more) to filter out scratching noise caused by variation in contact resistance when the arm is rotated. The screen-grid detector has somewhat greater gain

FIG. 704 - TRIOIDE AND PENTODE (SCRFEN-GHII) REGENERATIVE DETECTOR CIICUITS
than the triode, but requires more critical circuit adjustment. The tickler should be adjusted so that the tube just goes into oscillation at a screen voltage of approximately 30 volts. The circuit of C is also for a screen-grid type tube, but uses a variable by-pass condenser for regeneration control, the screen-grid voltage being fixed. This condenser usually has a maximum capacitance of 100 or $150 \mu \mu \mathrm{fd}$. When the capacitance is too small the tube does not regenerate, but as it increases towarc maximum the reactance between the positive B side of the tickler and ground become smaller until a critical value is reached wher there is sufficient feed-back to cause oscillation This method of control is quiet and smooth in operation when the size of the tickler and coupling to the grid coil are carefully adjusted.

The circuit of D differs from that of B only in that the feed-back winding is in the cathode-to-ground circuit, being actually part of the tuned circuit coil. This places it effectively in the plate circuit (plate to ground and thence to the cathode), so that the action is much the same. However, the tickler is also in the screen-to-cathode return circuit, and the screen operates to furnish feed-back as a sort of auxiliary plate. Hence a smaller tickler winding is required to give proper regeneration and oscillation. The circuit of E is the same as that of D, except that a separate feed-back winding is used. This eliminates the necessity of tapping the cathode into the main coil.

In all methods it is best that the tickler be mounted or wound at the "ground" end and not the grid end of the tuning coil. In the interests of smooth control it will be found advisable to use just as few turns on the tickler as will allow the tube to oscillate easily all over the tuning range. If the tube starts oscillating with a sudden thump instead of a smooth rushing noise, a different value of grid leak resistance should be tried.

A ONE-TUHE IREGENEIBATIGE RECEIVEIR

THE regenerative receiver's appeal for the beginner lies in its simplicity and low cost. These two features are exemplified in the receiver pictured in Figs. 705 and 707, the circuit diagram for which is given in Fig. 706. ${ }^{1}$ Its simplicity makes it almost certain to work at the first trial, even for a totally inexperienced beginner. Although only one tube is used, many of the requirements for satisfactory a mateur-band operation are met. Through the use of a double-triode tube with one section as detector and the other as audio amplifier, sufficient amplification is provided for good headphone reception. Tuning is made easy because the bands are spread
receiver design and construction

FIG. 705 - A ONE-TURE REGENEIRATIVF, RECFIVER
Coils for the 80 - and 40 -meter bands are shown at the side. The dial in center of panel is the band-spread tunitug control, with regeneration control knob at right and band-get ing control at left
tube socket. The spaced pin of the coil socket is located at the side opposite the primary connections of the audio transformer, so that it is possible to make direct connections to the terminals.

The three condenser rotors are grounded to the aluminum panel. The stators of C_{1} and C_{2} are connected together. A short wire is used to connect the C_{1} stator to the grid end of L_{1}. The grid leak and grid condenser, R_{1} and C_{5}, with terminal leads connected in parallel, are soldered to the stator of C_{2} at one end and to the grid cap of the tube at the other.

For convenience in following the wiring of the set, the diagram is arranged with the socket connections just as they appear from above, so it is not necessary to consult a tube data sheet for the various lug connections.
A four-conductor cable is used for heater and plate power connections, and to fasten the cable to the baseboard a four-lug terminal strip is screwed to the
over most of the scale of the vernier tuning dial.

The receiver is built on a wooden base $63 / 4$ inches long, $51 / 2$ inches deep, and 1 inch thick. The $1 / 16$-inch aluminum panel for the set measures 6 inches high by 7 inches long. The panel is fastened to the base by two $3 / 4$-inch wood screws, and in addition, two angle brackets with $11 / 2$-inch legs are screwed to base and panel to increase the rigidity of the assembly.

The 3-inch vernier dial on the center of the front panel is the band-spread tuning control. The pointer knobat the left is on the bandsetting condenser, C_{1}, while that at the right is the regeneration control condenser knob. The three are mounted in a straight line, with holes centered $21 / 2$ inches apart, three inches above the bottom edge of the panel.

After the panel has been attached to the baseboard and the condensers are in place, the tube socket is mounted on the center of the base. This socket is held to the base, on the mounting pillars supplied with it, by two $11 / 4$-inch wood screws. The key slot is pointed directly toward the rear of the baseboard, as it is shown in the circuit diagram.

The audio transformer and the coil socket are placed somewhat nearer the rear edge of the base. The audio transformer is mounted with primary connections at the side of the receiver and secondary connections near the
board at the rear edge. For the headphone tips, a two-terminal strip is provided, mounted also at the rear edge of the base.

In the diagram, the antenna post of the receiver is shown coupled to the grid end of the coil, L_{1}. Actually, it is not necessary to provide an antenna binding post; this purpose is served by simply twisting the antenna lead-in wire with a piece of insulated wire approximately 6 inches long, the end of which is connected to the grid lug of the coil socket. The insulated twisted wires form a

FIG. 706 - CIRCUIT DAGBAM OF TIIE OVE-TUBE RECEIVEIR

C_{1} - $\mathbf{7 5}-\mu \mu \mathrm{fl}$. band-setting midget condenser (Cardwell ZU75AS).
$\mathrm{C}_{2}-10-\mu \mu \mathrm{fd}$. band-spread midget tuning condenser (Cardwell ZRIOAS).
$\mathrm{C}_{3}-75-\mu \mu \mathrm{fd}$. midget regeneration control condenser (CardwellZU75AS).
C_{4} - Insulated wire-ende, twisted (see text).
$05-0.0001-\mu \mathrm{fd}$. fixed mica condenser (Aerovox).
R_{1} - 2 -megohm, $1 / 2$-watt resistor (IIKC).
RFC - 2.5 -millihenry choke (National R-100).
T_{1} - 3:1 audio transformer (Thordarson T -13A34).

THE RADIO AMATEUR'S HANDB00K

FIG. 707 - REAR VIEW OF THE ONE-TUBE RECEIVEIR, SHOWING WIRING AND ILACEMENT OF l'Al'TS
This view clearly shows the simplicity of the assembly.
"squeal," the cathode tap on the coil should be moved nearer the grid, or top end. If, on the other hand, signals are received but it is found impossible to stop the regenerative whistle by rotating C_{3}, the tap should be moved nearer the ground end of the coil.

The coils are designed so that each amateur band is spread over a large part of the dial range. To set C_{1} to the proper position for coverage of a band, C_{2} should first be set to minimum capacity and C_{1} should be rotated from minimum capacity toward maximum until the high-frequency edge of the amateur band is reached. During active hours it should not be difficult to find the bands. When the position of C_{1} corresponding to the high-frequency edge of the band is found, the condenser should be adjusted to a slightly lower capacity so that a small margin on each end of the band will be available on the tuning dial.

A suitable antenna length is 50 feet, although other lengths may be used. It is desirable that the antenna be non-
coupling condenser, the capacity of which may be increased by increasing the length of wire in the twisted pair. For an antenna of approximately 50 feet, two turns should be sufficient.

Although the heater rating of the 6F8G is 6.3 volts, best operation of the tube in a receiver of this type is obtained with 3 volts. A supply of two dry cells, or the portion of a 6.3 -volt winding between center-tap and one end is quite suitable.

If the specifications given in the coil table are carefully followed, the receiver should operate properly at the first test. Due to differences in the characteristics of tubes of different make, however, it may be found necessary to move the cathode tap on the coil. This tap should be fixed on each coil so that the set goes into regeneration (as indicated by a light rushing noise) near the middle setting of the regeneration control condenser, C_{3}. If it is impossible to hear any signals, particularly during the evening hours, or if 'phone stations can be received without any regenerative

COIL DATA FOR THE ONE-TUBE IRECEIVER
No. Turns

	Total No. Turns	Total Winding Length	Between Tap and Ground
1.75-Mc. band 110	Turns close-wound	12	
3.5-Mc. band	45	Turns close-wound	6
7-Mc. band	14	Turns close-wound	2
14-Mc. band	7	$8 / 1$ inch	2
28-Mc. band	5	8 inch	2

All coils are wound of No. 30 d.s.c. wire on ribbed 5 -prong forms, $11 / 4$-inch diameter by 2 -inch winding length.
resonant on the amateur bands so that no trouble will be experienced in holding the regeneration at a fixed level.

A TWU-TEIBE IR EGENEIRATIVE IRECEIVEIE

Fas. 708,710 and 711 show a two-tube regenerative receiver which is thoroughly practical for everyday station operation. ${ }^{2}$ A pentode regenerative detector is used for maximum sensitivity, followed by a triode audio amplifier for good headphone volume. It may be used with either storage-battery or a.c. filament supply, with a 90 -volt " B " battery recommended for the plate supply. It is inexpensive and simple to construct. The circuit diagram is given in Fig. 709.

With the exception of the controls and the headphone jack, all the parts are mounted on a wooden baseboard with side pieces which raise it part way up the panel, forming a compartment underneath. The baseboard measures 6 by 10 inches and the side pieces 6 by 2 inches; all are made of half-inch thick soft wood, and are fastened together with finishing nails.

The top view of the set shows clearly how the parts are arranged on the baseboard. The sockets for the two tubes project partly through the base, the mounting rings being flush with the top. Each hole should be just large enough - about $11 / 2$ inches in diameter to pass the socket, and the centers should be $21 / 4$ inches back from the panel and $21 / 4$ inches in from the edges of the baseboard. The detector tube socket, at the left, has a tube shield fastened to it. This shield is necessary to
prevent "induction" hum pickup from nearby house wiring. The sockets are held down by small wood screws.

The coil socket is midway between the two tube sockets, and is centered 3 inches behind the panel. This socket is mounted on the small porcelain pillar furnished with it, thus keeping the coilsocket wiring above the baseboard so that connections can be run directly to the various condensers and terminals. The wiring is clearly shown in the photograph, and is further explained in Fig. 712. The antenna condenser, C_{3}, is fastened directly to the baseboard just to the rear of the coil socket. The Fahnestock clips at the rear edge are the antenna and ground terminals.

The only remaining part on top of the baseboard is the audio coupling choke, L_{3}. It is mounted, as shown, just behind the amplifier tube. Holes must be drilled in the base so that the two connection lugs can project through.

HIG. GOB - A PANEI, VIEW OF TIIE TWO-TUBE REGENERATIVE RECEIVER AND SOME OF THE PIUG-IN COIIS

The arrangement of parts on the panel will become clear after inspection of the front and top views. The main tuning condenser, C_{1}, is in the middle, the mounting hole being drilled 4 inches from the bottom edge. The band-setting condenser, C_{2}, and the regenera-tion-control resistor, R_{5}, are at the same height, with $C_{2} 11 / 2$ inches from the left edge of the panel and R_{5} the same distance from

FILAMENT SUPPLY
FIG. 709-CIRCUII DIAGIAM OF THE TWO-TUBE RECEIVER
C_{1} - $35-\mu \mu \mathrm{fd}$. receiving varialsle condenser (HammarIund MC-35-S)
$\mathrm{C}_{2}-140-\mu \mu \mathrm{fd}$. receiving varialle condenser (National Experimenters'Type)
C3 - $\mathbf{7 0 - \mu \mu f f}$. mica trimmer condenner (liammarlund BHT-70)
$\mathrm{C}_{4}-100-\mu \mu \mathrm{fd}$. midget mica condenser (Aerovox)
$\mathrm{C}_{6}-2-\mu \mathrm{fd}$, electrolytic, 450 -volt (Aerovox I'BS-2)
$\mathrm{C}_{6} \mathrm{C}_{7}-100-\mu \mu \mathrm{fd}$. midget mica (Aerovox)
$\mathrm{C}_{8}-0.01-\mu \mathrm{fd}$, tubular paper, 400 -volt (Aerovox)
C 0 - $5-\mu$ fd., 25-volt electrolytic (Cornell-Dulitier ED-2050)
$\mathrm{K}_{1}-5$ megohms, $1 / 2$-watt (I.R.C.)
$\mathrm{R}_{2}-0.5$ megohm, $1 / 2$-watt (I.R.C.)
R3 - 2000 ohms, l-watt (I.R.C.)
$R_{4}-25,000$ ohms, 2-watt (I.R.C.)
R_{5} - $\mathbf{5 0 , 0 0 0 - 6 h m}$ potentiometer (Centralal)
IRFC - 2.5-millihenry r.f. choke (National H-100)
J Open-circuit jack
Sw - S.p.s.t. toggle nwitch
I.3-Audio choke, 1080 henryn at $\mathbf{0 . 5} \mathrm{ma}$. (Thordarann T-52C98)

THE RADIO AMATRUR'S HANDB00K

the right-hand edge. The "B" onoff switch and the 'phone jack, at the left and right respectively, are 1 inch from the bottom of the panel and $21 / 2$ inches in from the edges. The panel is of $1 / 16$ inch aluminum and is 7 by 10 inches.

All the parts on the panel can be mounted directly except the 'phone

TWO-TUBE REGEIVER COII, DATA						
No.	Total Frequency Range, $k c$.	Amateur Band, Mc.	$\begin{gathered} \text { Total } \\ T_{L_{1}} \mathbf{u r n s} \end{gathered}$	Cathode Tap	Band- Spread Tap	$\begin{gathered} \text { Turns, } \\ L_{2} \end{gathered}$
1	1200-3200	1.75	60	4	*	10
2	2650-7000	3.5	27	11/4	*	10
3	5500-15,500	7.0	13	$3 / 4$	8	5
4	9100-27,750	14.0	7	1/2	3	4
5	15,750-47,000	28.0	3	1/3	-	
All coils are wound with No. 24 d.s.c. wire on Hammarlund SWF 5 -prong forms, diameter $11 / 2$ inches. The length of each coil is $11 / 2$ inches. The caps are counted off from the lower terminal (B) of L_{1}. The third column indicates the amateur band for which the coil will give band-spread over most of the tuning dial. Antenna coils are close-wound, separated from L_{1} by about $1 / / 4 \mathrm{inch}$. The direction of winding is unimportant.						
* No tap; C_{1} is connected to the top of L_{1} through a jumper connecting pins D and E in the coil form.						

be insulated by washers which are obtainable for that purpose. Although other materials than aluminum could be used, the panel should be of netal in order to act as a shield between the operator's hand and the receiver circuits. thus preventing "body-capacity" effects which cause a shift in the receiver tuning when the hand is brought near the radio-frequency circuit.

The receiver parts mounted underneath the baseboard can be identified readily in Fig. 711. Although the exact placement of parts is not critical, the general arrangement shown should be followed. A four-wire cable, fastened to the left-hand side-piece in the bottom view, provides connections to the filament and "B" supplies. Fig. 712 gives the socket connections for the detector and amplifier tubes; the detector socket should be mounted with the
heater prongs toward the bottom (rear edge) of the base, while the heater prongs on the amplifier socket should be toward the upper right corner.

The panel serves as the connection between the rotor plates of C_{1} and C_{2}. The other connections in the r.f. circuit are made by bus wire as shown in Fig. 710. The ground connection (B) on the coil socket is made to the rear end-plate of C_{1}. A connection also is brought from the detector shield to this point so that the shield wilt be grounded. The left-hand terminal of R_{5} (viewed from the front) goes to a soldering lug on the baseboard as shown in the top view. This lug is held in place by a machine screw which passes through the baseboard and similarly connects to R_{4} underneath. The center terminal of R_{5}, the moving contact, goes through a hole in the base and thence to the screen-grid terminal of the detector socket. The righthand terminal of R_{5} connects to the panel through a soldering lug which is under one of the woodscrews holding the panel to the base. The wood-screw on the other side holds another soldering lug to which connections can be made from underneath the base.

The grid condenser, C_{4}, and grid leak, R_{1}, are mounted on the upper stator terminal of C_{2}, being soldered directly to the lug. It is desirable to keep the lead to the grid cap of the tube as short as possible, and close to the tube shield, to minimize the induction hum already mentioned.

FIG. 710 - PIAN VIEW OF THE TWO-TUBE RECEIVER

receiver design and construction

Underneath the baseboard, the "L"'shaped piece of bus wire is the common negative-" B " or "ground" connection. It starts at a lug just below the detector socket, to which one side of C_{6} also is connected, and runs up toward the panel to the soldering lug under the screw holding the panel in place.

In connecting condensers C_{5} and C_{9}, be sure that the "plus" terminal on C_{5} goes to the screen-grid prong on the detector socket and on C_{9} to the cathode terminal on the a mplifier socket. The "minus" terminals should connect to the common ground wire.
The winding data on the coils are given in the table, while Fig. 712 illustrates the method of construction. All L_{1} windings are made exactly the same length, $11 / 2$ inches. (I_{1} all except Coil No. 1 the turns must be spaced evenly to fit the length; No. 1 is close-wound. The taps are made by drilling a hole at the appropriate place, feeding the wire through to the proper pin and cutting it off; then a new piece with its end fastened in the same pin (and going back out through the same hole) continues the winding. When the coils are finished, the windings should be coated with Duco cement or similar adhesive along the coil-form ridges.

The main tuning dial is one with a variable "vernier" ratio so that the tuning can be rapid or slow as the operator wishes. The slow movement is desirable for fine tuning.

Pointer knobs and dial plates are used for the band-setting and regeneration controls. The band-setting dial plate has a semi-circular scale with divisions running from 100 at the left-hand side to 0 at the right. The knob should be set so that with the condenser plates all out the pointer is at 100 on the scale. The settings specified later for the amateur bands are given in terms of this type of dial plate and condenser setting.
If a.c. heater supply is to be used tubes with 2.5 -volt heaters are recommended in preference to the 6 -volt types, since the latter usually give some hum in a regenerative receiver. Either the 57 or 58 may be used as the detector, and the amplifier should be a 56 . If a 6 -volt storage battery is to be used for heater supply, the detector tube should be a 6 C 6 or 6 D 6 , and the amplifier a 76.

Fig. 709 shows how to connect two 45 -volt " B "-battery units to the receiver. The " B "

FIG. 711 - BOTTOM VIEW OF TIIE TWO-TUBE RECEIVEI
voltage is not critical; the receiver will, in fact, operate well with only one 45 -volt unit, although the volume will be somewhat reduced as compared with two. A regular "B" eliminator or power pack also can be used but is not particularly recommended, since such a supply frequently introduces "tunable hum" with simple receivers of this type. Tunable hum is caused by the power circuit's tending to act as part of the r.f. circuit at some frequencies and thereby introducing hum on the detector grid.

When a transiormer is used for heater supply, the center-tap of the secondary winding should be connected to ground, as shown in Fig. 709. This connection balances out hum from the filaments. The actual connection may be made to the negative terminal of the " B " battery for convenience.

After the set is completed and the wiring checked, insert the coil which covers the band between 1200 and 3200 kc . ($\mathrm{N} \alpha \mathrm{l}$) in the coil socket, set C_{2} at about half scale, and connect the heater supply, headphones, antenna and ground. After the tubes have lighted, the "B" battery may be connected. Make sure $S w$ is closed.

Now turn the regeneration control knob until the set goes into oscillation. This phenomenon is easily recognizable by a distinct click, thud or hissing sound. The point where oscillation just begins is the most sensitive operating point at that particular tuning-dial sctting. If the set refuses to oscillate, the sensitivity will be poor and no code signals will be heard. It should oscillate easily, however, if the coils are made exactly as shown. At frequencies to which the antenna system is

THE RADIO AMATEUR'S HANDB00K

resonant, however, the antenna may "load" the detector so heavily that it cannot oscillate; this effect may be overcome by reducing the capacity of C_{3}. For any given band of frequencies, adjust C_{3} so that the detector oscillates over the whole range, using as much capacity at C_{3} as is possible. This will give the best compromise between "dead spots" and signal strength.

BOTTOM VIEW OF
DETECTOR SOCKET

BOTTOM VIEW OF AMPLIFIER SOCKET

FIG. 712 - TUBEAND SOCKET CONNECTIONS FOR TIIE 'TWO-TUBE RECEIVER
The method of winding the coils also is indicated.
To cover the 1750 - to $2050-\mathrm{kc}$. amateur band, C_{2} should be set at about 70 on the scale, the exact setting being determined experimentally. Further tuning then should be done with the band-spread dial. The 3500- to $4000-\mathrm{kc}$. band will be found on Coil No. 2 with C_{2} at about 50 on the scale. On Coil No. 3 the band will be found when C_{2} is set at about 45 ; on Coil No. 4 about 60; and on Coil No. 5 about 75 .

A suitable antenna for the receiver would be 50 to 75 feet long, as high and clear of surrounding objects as possible. A ground connection to a heating radiator or water piping will be satisfactory.

Speaker Output Stage for Two-Tube Receivers

If increased audio output for loud-speaker operation is desired with either of the fore-
going receivers, a pentode power stage can be added. This is feasible only with a.c. power supply, since the power stage requires more plate current than can be furnished economically by "B" batteries. The diagram of Fig. 713 shows two different circuits which may be used. That of A employs resistance coupling between the first audio stage in the receiver and the power tube, while B has transformer coupling. In either arrangement, the volume control R_{2} can be replaced by a 500,000 -ohm
$1 / 2$-watt fixed resistor if the receiver's audio
stage already has a volume control. Insta-
bility in the form of "howling" or "motor-
boating" is less likely with the circuit of B.
This form of instability is not unusual in
high-gain audio circuits following a regener-
ative detector, especially with a loud speaker operating at fairly high volume. The trouble is partly electrical and partly acoustical in origin. Sound waves from the speaker aggravate instability by vibrating the tube of
the sensitive regenerative detector circuit with the result that microphonic "howl" builds up. To prevent this trouble, the speaker should be placed and faced so that the sound is least able to affect the detector, and the volume level should be kept as low as possible. The best speaker location should be determined by trial. The audio power unit can be built up on a small base about 3 inches wide to match the particular receiver with which it is to be used. Usually the output transformer is incorporated in the speaker unit, and therefore need not be mounted in the amplifier stage.

TUNED IBAIDID-FIRECQUENCY ADIPIIFIEIES

A radio-frequency amplifiera head of the detector is very desirable. The increase in sensitivity provided by it can be put to good use. A further advantage of such an amplifier is that it isolates the detector from the antenna, reducing the radiation from the detector in an oscillating condition. A radio-frequency amplifier is also of considerable service in the elimination of "dead-spots" - points on the tuning dial at which the antenna, coming into resonance, might otherwise stop the detector from oscillating.

The circuit of a typical tuned r.f. stage is shown in Fig. 714. When the r.f. amplifier uses a screen-grid tube of the variable-mu type (such as the $58,6 \mathrm{~K} 7,6 \mathrm{D} 6$, etc.) its gain can be made adjustable by means of a variable cathode resistor, additional to the usual fixed cathode resistor, as is also shown in Fig. 714. As the value of the resistance in series with the cathode is increased the voltage drop across it rises, making the bias applied to the grid increasingly negative with respect to the cathode and thereby reducing the amplification

RECEIVER DESIGN AND CONSTRUCTION

FIG. 713 - CIRCUITS OF POWER AMPLIFIEIRS FOR TWO-TUBE RECEIVERS, TIIAT OF B BEING; PliEfERIRED
If six-volt filament aupply is usch, a 42 or 6 Fh may be substituted for the 2 A 5 shown.
$\mathbf{R}_{1}-20,000$ obms, 1-watt.
$\mathbf{R}_{2}-500,000$-ohm potentiometer.
$\mathbf{R a}_{3}-\mathbf{2 5 0 , 0 0 0}$ ohms, $1 / 2$-watt .
$\mathrm{R}_{4}-\mathbf{4 0 0}$ ohms, 1-watt.
$\mathrm{C}_{1}-.02 \mu \mathrm{fd}$.
$\mathrm{C}_{2}-1 \mu \mathrm{fd}$.
$\mathrm{Ca}-8 \mu \mathrm{fd} ., 400$ volts.
T-Interstage audio trannformer.
of the stage. Since the space current of the tube falls as the grid becomes more negative, thereby tending to lessen the rate of increase in negative bias with increasing resistance, it is advisable to provide a bleeder resistor from the cathode side of the gain control to a more positive point of the high-voltage supply such as the screen-grid voltage tap. Suitable resistance values for a single r.f. amplifier tube would be 300 to 500 ohms for the fixed cathode resistor, 10,000 ohms for the variable gain control resistor and 50,000 ohms for the bleeder. If the gain of several stages is to be controlled by the one variable resistor, its value can be proportionately less and the bleeder may be omitted.

Rather complete shielding is always required when the input circuit to the r.f. amplifier tube is tuned. For this reason the tuned r.f. type receiver is somewhat more costly and more difficult to build. In one form such a receiver has two separate tuning dials - one for the input circuit to the r.f. tube and one
for the input circuit to the detector. The obvious inconvenience of tuning these two controls has led to the development of receivers in which the two tuning condensers are "ganged." The construction of a receiver of this type is a work requiring a little more skill, and had best be attempted after experience has been gained with the simpler types.

T.R.F. Autodyne with Band-Spread and General Coverage Tuning

A tuned radio frequency regenerative type receiver using shielded plug-in coils, with switching to give a choice of amateur-band spreading or general coverage tuning, is illustrated with its power supply in Fig. 715 and the two succeding photographs. As shown in Fig. 716, the tube line-up consists of a t.r.f. pentode stage, regenerative detector and two audio stages, the output amplifier being a power pentode for loud-speaker operation. The two-section coil switch, $S W_{1}$, operates to connect the ganged main tuning condensers in the r.f. and detector circuits across the whole of each coil for general coverage or aoross part of each coil for amateur band spreading. Each coil unit is equipped with a small compressiontype trimmer condenser (C_{3} and C_{4}) for individual alignment of the circuits, and the r.f. circuit also has a panel-control trimmer, C_{5}, to peak the r.f. tuning and compensate for antenna variations.

As shown in the general view of Fig. 715, at the left of the base are the 6 C 5 first audio amplifier in front and the 6F6 output pentode at the rear, placing the audio circuits well away from the r.f. The double-gang tuning condenser, C_{1}, C_{2}, is in the center, behind the National Type A tuning dial. At the right of this condenser are the sub-base mounted National 6-prong coil sockets, into which the National Type PB10 shielded coil units plug,

FIG. 714 - A TYPICAL RADIO-FREQUENCY AMPLIFIER CIRCUIT WITH BIAS GAIN CONTROL
It is suited to any of the variable- μ r.f. amplifier tubee such an the $58,78,6 \mathrm{D} 6,6 \mathrm{~K} 7$, etc. With nonpentode types the suppressor-grid connection shown would be omitted. The value of the fixed cathode resistor will depend upon the tube type; values of the gain-control and bleeder resistore are discussed in the text.

THE RADIO AMATRUR'S HANDB00K

the r.f. coil unit in front and the detector coil unit to the rear. Alongside these are the 6 K 7 r.f. tube in front and the 6 K 7 detector tube at the back with a baffle shield bent from a piece of $1 / 16$-inch aluminum.

The steel chassis measures 12 by 7 by 3 inches and the electralloy panel 14 by 7 inches. The bottom view of Fig. 717 shows the sub-base arrangement, with the audio volume, regeneration, sendreceive switch, r.f. trimmer and r.f. gain controls along the front of the base, from left to right. The coil-tap switch, $S W_{1}$, is between and slightly to the left of the r.f. and detector tube sockets at the extreme right. The con-trol-grid lead of the r.f. stage runs directly from terminal (1) of the r.f. coil to one contact on this switch and then through a rubber grommet in the base to the tube's grid cap. The grid leak and condenser of the detector, $R_{5} C_{7}$, connect on one side to terminal (3) of the detector coil socket and on the other side to the grid lead, running to the detector tube's grid cap through a rubber grommet in the base. The remaining connections in the r.f. and detector circuits are short and direct. Note that the antenna input leads and the lead from the r.f. plate to the detector coil primary are run through copper braid which is grounded

FIG: 717 - IBOITROM VIEW OF THE T.R.F. AUTOIIYNE
to the chassis, as indicated on the diagram. The coils, which depart from the conventional, should be copied closely. The forms are made from a $36^{\prime \prime}$ dowel, $1^{\prime \prime}$ in diameter, cut into $3^{\prime \prime}$ lengths. The twelve forms are boiled in beeswax until the wood is thoroughly impregnated. Then each piece should be drilled $1 / 4^{\prime \prime}$ deep with a No. 45 drill in the center of each end and at intervals of $1 / 4^{\prime \prime}$ along one side. The holes at the ends are for the screws which hold the forms to the PB10 bases. Inserted in the holes along the sides are $1 / 2^{\prime \prime}$ lengths of No. 12 wire, used as a combination anchorage and terminal connection for the windings.

FIG. 715 - A TUNED RADIO FREQUENCY TYIPE RECEIVER USING SHIELDED PLUG-IN COILS WITH SWITCIIVG FOR AMATEUR BAND-SPIREAIIVG OR GENERAL COVERAGE ON EACH RANGE

The voltage-regulated power supply (at the right) is described in Chapter Fourteen

RECEIVER DESIGN AND CONSTRUCTION

The mica trimmers, adjustments for which may be made through the hole in the top of the can, are mounted at the opposite end. It is important that the rotor ends of these trimmers connect to ground and that the stator ends be held in firmly to the forms by wood screws.

All coils are wound in the same direction. The primary of the detector coil is inter-wound with the grid coil (between turns) on all except the 160 -meter coil, where it is wound over the grid end.

When the wiring has been completed and the first pair of coils has been wound, the receiver is ready for test and preliminary tuning alignment. A calibrated test oscillator or signal generator may be used if available. Otherwise, connect an antenna and tune for signals, starting with the coil switch in the band-spread position. The regeneration control should be advanced to the point where a
slight "plop" and hissing sound indicate that the detector is oscillating. Then the r.f. trimmer, C_{5}, should be adjusted for maximum "hiss," the regeneration control being kept at the point where oscillation just starts. The r.f. gain control should be kept slightly below the full-on position and the audio volume control set to give a suitable output level. After this preliminary lineup, the coil trimmer C_{4} of the detector should be set for detector resonance on a signal having a frequency near the middle of the band, with the main tuning control at mid-scale. Then the r.f. coil trimmer should be set for peak response, with the r.f. trimmer C_{5} near minimum capacitance. The other coils are similarly lined up. It will be noted that the r.f. trimmer adjustment will affect the regeneration setting and shift the detector tuning slightly. For best sensitivity, this trimmer should be set to allow oscillation

(Bottom views of Coil Sockets)

F'IG. 716 - CIRCLIT OF TIE T.R.F. ACTODYNE,

$1.1, L_{2}, L_{3}, L_{4}-R . f$ and detcctor coil windings. (See table.)
$\mathrm{C}_{1}, \mathrm{C}_{2}$ - Dual midget varialble. (100- $\mu \mu \mathrm{ffl}$. per section (Hanmarlund MCD l(NOS).
($\therefore, \mathrm{C}_{4}-30-\mu \mu \mathrm{fl}$ trimmer condensers, one in each coil unit (National M30).
Cis - 100- μ fil. midget condenser (Hammarlumd MC 100s).
(:6- I).01- $\boldsymbol{\mu}$ fl. paper tulsular condenser.
$\mathrm{C}_{7}-100-\mu \mu \mathrm{fd}$. mica fixed condenser.
Cs - $0.002-\mu \mathrm{fd}$. mica fixed comlcner.
C. $-0.001-\mu \mathrm{fd}$. mica fixed conslenser.

Cio - 0.5- $\mu \mathrm{fl}$. paper condenser.
C_{11} - 5- $\mu \mathrm{fd}$. 35 -volt dual electrolytic condenser (Tobe T325).
C_{12}-8- $\mu \mathrm{fd}$. 500-volt electrolytic condenser (Tobe ET58).
$\mathbf{R}_{1}-300$-ohm 16 -watt resistor.
$1 \mathrm{H}_{2}$ - $10,000-\mathrm{ohm}$ potentiometer (r.f. gain control).
K_{3} - 0.25 -megohm $1 / 2$-watt.
\mathbf{k}_{4} - $\mathbf{5 0 , 0 0 0 - o h m} 2$-watt.
k_{5} - 5-megohm 1/2-wate grid leah.
$\mathrm{K}_{6}-10,000$-ohm potentiometer (regeneration control).
$\mathrm{K}_{7}-50,000$-ohm 1 -watt .
K_{8} - 500,000 -ohm volume control.
$\mathrm{K}_{0}-3000$-ohm 1-wate.
K_{10} - $\mathbf{5 0 , 0 0 0 - o h m ~ 3 / 2 - w a t t . ~}$
$\mathrm{K}_{11}-500,000-0 \mathrm{hm}^{1 / 2-w a t t}$.
K_{12} - 500 -ohm 2-watt.
RFC-2.5-mh. r.f. chokes (National R-100).
(HH_{1} - Screen-grid detector audio coupling choke (Thordarson T2927).
SW W_{1} - D.p.d.t. rotary switch (Eby Type 35).
SW' 2 - D.p.d.t. togale switch.
I - Closed circuit jack for 'phones.
at the lowest possible voltage setting of the regeneration control.

A regenerative receiver of this type is susceptible to hum modulation from an inade-quately-filtered power supply, and good voltage regulation is essential for stability. A regulated power supply such as is illustrated with the receiver in Fig. 715 is recommended.

SUIPEIRHETERDIDYNE ISECEIVEIBS

At the beginning of this chapter it was explained that the superhet-type receiver differs from the simpler regenerative autodyne types in that the incoming signal frequency is first converted to a fixed intermediate radio froquency and is then amplified at that frequency prior to audio-frequency detection. This process results in several benefits which make the superhet the preferred type of receiver for communications work. It is possible to secure a great deal more amplification, with stability, at the lower radio frequencies; furthermore, because the amplification is clone at a fixed frequency the sensitivity tends to be more uniform over a wide range of input-signal frequencies. Also, at the intermediate frequencies ordinarily used, much greater selectivity is possible than at signal frequencies; again, the selectivity is practically unaffected by the frequency to which the input circuit may be tuned. Further advantages are greater receiver stability than is possible with the autodyne, accompanied by the ability to handle stronger signals without loss of effective selectivity. Because of the greater selectivity that can be attained, the sensitivity of the superhet receiver can be made higher than that of autodyne types.

In home-constructed superhet receivers, the
T.R.F. AUTODYNE RECEIVER COIL TABLE
$1.75-\mathrm{Mc}$. Bandspread (1150 to 1800 kc . General Coverage
$L_{1}-78$ turns No. 28 d.s.c. close wound, tap(5) 42 t. from ground.
$L_{2}-21$ t. No. 28 d.s.c. closewound.
$L_{3}-25 \mathrm{t}$. No. 28 d.s.c. closewound over grid end of L_{4}. $L_{4}-103$ t. No. 28 d.s.c. closewound tap (6) at 67 t. and (4) at 25 t. from lower end.
3.5-Mc. Bandspread (2.0 to 3.4 Mc. General Coverage)
$L_{1}-51$ t. No. 24 d.s.c. closewound, tap (5) 20 t. from ground.
$L_{2}-13$ t. No. 28 d.s.c. closewound
$L_{3}-19$ t. No. 28 d.s.c. wound over middle of L_{4}.
$L_{4}-51$ t. No. 24 d.s.c. closewound from (3) to (4), tap (6) 20 t. from ground; 18 t. No 28 d.s.c. closewound from (4) to (5).
7-Mc. Bandspread (3.8 to 6.2 Mc. General Coverage)
$L_{1}-21$ t. No. 24 d.s.c. spaced $11 / 4 \mathrm{in}$. long, tap (5) 5 t , from ground.
$L_{2}-10$ t. No. 28 d.s.c. closewound.
$L_{3}-13 \mathrm{t}$. No. 28 d.s.c. wound over grid end of L_{4}.
$L_{4}-21$ t. No. 24 d.s.c. spaced $11 / 4 \mathrm{in}$. long from (3) to (4), tap (6) 5 t. from ground; 13 t. No. 28 d.s.c. closewound (4) to (5).

14-Mc. Bandspread (6.4 to 12.7 Mc. General Coverage)
$L_{1}-14$ t. No. 24 d.s c. spaced $11 / 4 \mathrm{in}$. long, tap (5) 3 t. from ground.
$L_{2}-6$ t. No. 28 d.s.c. closewound.
$L_{3}-8 \mathrm{t}$. No. 28 d.s.c. wound over grid end of L_{4}.
$L_{4}-14$ t. No. 24 d.s.c. spaced $11 / 4 \mathrm{in}$. long from (3) to (4), tap (6) 3 t. from ground; 7 t . No. 28 d.s.c. closewound from (4) to (5).

28-Mc. Bandspread (24 to 45-Mc. General Coverage)
$L_{1}-7$ t. No. 24 d.s.c. spaced $11 / 4 \mathrm{in}$. long, $\operatorname{tap}(5)$ $3 / 4$ t.from ground.
$L_{2}-4$ t. No. 24 d.s.c. closewound.
$L_{3}-4 \mathrm{t}$. No. 24 d.s.c. interwound at grid end of L_{4}.
$L_{4}-7 \mathrm{t}$. No. $24 \mathrm{~d} . \mathrm{s.c}$. spaced $11 / 4 \mathrm{in}$. long from (3) to (4), tap (6) $3 / 4$ t. from ground; 4 t. No. 24 d.s.c. closewound from (4) to (5).

FIG. 718 - ILLUSTRATING THE CONSIRUCIION OF THE: COILS, AS DESCRIBED IN DETAIL IN TIIE TEXT
regenerative principle which contributes so much to the effectiveness of the autodyne receiver can be incorporated to secure a high order of overall performance from a small number of tubes. The superhet receivers in this chapter all employ regeneration in one form or another for this purpose. To a considerable extent, therefore, the success of the receiver will depend upon skill in operation as well as construction, a skill which can be obtained readily by intelligent and observant practice.

In commercial receivers, regeneration usually is avoided in order to make

receiver design and construction

operation simple and convenient. Whether or not regeneration is used, the principles outlined in the following discussion of superhet circuit features are equally valid.

Input Circuits for Best Image and Noise Ratio

A peculiarity of heterodyne action is that one of the two frequencies which are combined may be either higher or lower than the other

FIG. 719 - TUNED ANTENNA COUPLING CIHCLITS TO REDUCE IMAGE RESPONSE AND IMPROVE, SIGNAL-NOISE RATIO
Connections to atandard 5- and 6-prong coil forms are indicated. In general, inductances must be adjumted hy experiment for optimum results. In the parallel-t uned circuits, L_{1} should be of sufficient inductance to resonate on the desired hand in conjunction with Cl_{1} ($100 \mu \mu \mathrm{fd}$.). With series tuning, the number of turns required on Li probably will be amall. La, the link coupling coil, should have from two to five turna, depending upon the band and the input circuit of the particular receiver used.
(by the proper frequency difference) and still give the same beat-frequency output. The oscillator frequency in the superhet receiver usually is made higher than the desired signal frequency by the amount of the intermediate frequency; however, there is possibility of first detector i.f. output from a second signal higher (by the i.f.) than the oscillator frequency. This will occur if there is insufficient selectivity ahead of the first detector to prevent such signals from reaching the mixing circuit. Such undesired signals are referred to as images, and the relative ability of a receiver to discriminate against them is termed its image ratio; that is, the ratio of image-frequency signal voltage
to desired-frequency signal voltage required to give the same receiver output.

Using the conventional $450-465 \mathrm{kc}$. intermediates, image ratios of several hundred are obtainable at the lower amateur frequencies with but one non-regenerative input circuit, but to maintain such ratios above 7000 kc . and especially above 14 Mc ., requires considerably greater input selectivity. Two tuned circuits (one r.f. stage preceding the detector input circuit) will give image ratios ranging from over 10,000 at 1.75 Mc., through approximately 1500 at 3.5 Mc . and 150 at 7 Mc., to only 50 at 14 Mc . Higher ratios can be obtained by using an i.f. of the order of 1600 kc ., but the i.f. selectivity and gain are lower for the same number of stages.

One simple method of improving the image ratio is to tune the antenna circuit, as shown in Fig. 719. The ratios can be made higher by introducing regeneration in the pre-selecting circuits, which has the effect of increasing the strength of the desired signal without affecting the response to the image. One way to introduce this "negative resistance" effect is to connect a separate regenerative circuit in parallel with the superhet's input circuit as shown in Fig. 720, connecting the antenna terminal of a simple regenerative detector to the antenna terminal of the superhet. The regenerative circuit is tuned to the same frequency and operated just below the point of oscillation. Alternatively, the r.f. or first-detector circuit of the superhet can be of the regenerative type, using one of the feed-back arrangements shown for simple regenerative detectors. Regeneration tends to make the gain non-uniform over wide frequency ranges, however, and hence is best applied to amateur-band ranges only, where frequent readjustment with tuning probably will not be required. Commercial practice is to a void regeneration and depend on additional tuned circuits for image suppression.

A simple and inexpensive method of suppressing images that is fairly effective and entirely practical is a wavetrap placed in the antenna circuit and tuned to the image, introducing high impedance right at the unwanted (image) frequency. It is easy to install, as

FIG. 720 - A SEPARATE REGENERATIVE CIRCUIT IMPROVES THE INPUT SELECTIVITY
No constructional changea in either superhet or regenerative detector are required.

the radio amateurs handrook

shown in Fig. 721-A and -I3. For the usual i.f. of approximately $4 \overline{0} 0 \mathrm{kc}$. the images are about 000 kc . higher than the desired-signal frequency. Thus a trap cireuit resonating 900 kc . ahove the signal frequency can be used, introducing only low values of impedance at the amateur-band frequency. Such a trap is broad enough so that it seldom requires adjustment if once set at the center of the frequency range it is desired to eliminate. It can be tuned easily. for maximum suppression of any particular frequency, however. It produces an improvement of at least several times in the signal-toimage ratio.

Capacitive coupling resulting from the stray capacitance of antenna and tuned-circuit coils also aggravates image response. This can be reduced by the use of an electrostatic screen between the two coils, as shown in Fig. 722. The screening can be made up by space-winding No. 24 d.c.c. wire on a cylinder of celluloid temporarily supported on a 3 -inch diameter form, and then treating the winding with liquid Victron, Q-Max or other dielectric "dope." When the winding is thoroughly dry the form is removed and the cylinder cut lengthwise to form a rectangle. The wire ends along one edge are soldered together to a wire for the ground connection, the ends at the other edge being left separated. Such screening is also effective in preventing some noise pickup at the receiver's input circuit.

A tuned antenna circuit or radio-frequency amplifier not only improves the image ratio, but is also effective in improving the signal-tonoise ratio of the receiver. Some compromise is

FIG. 721 - CIRCUITS FOR TWO TYPFS OF WAVETHAP IMAGE LEJECTORS
Type A is fitted with plug-in coils and is intended for use external to the receiver. The coils, L, are wound on $13 / 2$-incli diameter pling-in forms, 30 turns for the 3.5-Mc. range, 14 turns for 7 -Nic., 7 turns for $1 \mathbf{4 - M r}$. The tuning condenser C is a 140 - or $150-\mu \mu \mathrm{fl}$. midget, Sw is a single-pole single-throw shorting switch.
Type B is more adaptable to mounting within the receiver, coupled induetively to the antenna lead an shown or directly in series with the lead. It should he shielded from the receiver input. For rejection of images in the 7- and 14-Mc. ranges, where inage trouble is likely to he most pronounced, the coil L_{1} should have 14 turns on a $1 / 6$-inch diameter form, with a tap at the sixth turn from the "set" end. A single-section three-position tap-switch SW_{1} selects all or part of the coil, or shorta the trap. C_{1} is a 150 $\mu \mu \mathrm{fl}$, midget condenser.

FIG. 722 - A SUGCOESIED ARIANGEMENT FOR BALANCEID INDUI CODUPING WITII A FARADAY SIIFLI) TO MINIMIZE CAPACITY EFFECTS
L_{1} and Is each may be 4 turns or so on a tulpe-base form. The coil sizes and degree of coupling are not especially critical, one combination being satisfactory for all bands.
necessary in reconciling the two considerations of image suppression and sensitivity, however. Image suppression will generally be better as the coupling between antenna and input circuit is looser, while signal-to-noise ratio will be better with closer coupling. The ultimate limit on sensitivity is the noise originating in the first circuit of the receiver, as was pointed out earlier in this chapter. It is therefore im. portant to make the signal voltage in the first tuned circuit as large as possible, to compete with the thermal agitation voltage; and to obtain the best amplification possible in the first stage, to make the signal voltage as large as possible in comparison with the tube-noise voltages in the plate circuit of the first stage. Tube noise is dependent upon the type of tule used, so that proper selection of tubes also is desirable. The 6 K 7 is generally used in r.f. stages, but newer types such as the 1851 and 1852 are somewhat less noisy, so that their installation often will effect an improvement in this respect. However, the input resistance of these tubes is lower than that of the 6 K 7 at the rated grid voltage, so that it is necessary to use greater-than-normal bias to preserve the image ratio. The effective amplification is therefore about the same. A radio-frequency amplifier has more gain than a first detector, which makes the r.f. pre-selector stage advantageous in overcoming tube noise.

Frequency Contersion

The frequency converter (first detector or mixer) is an important part of the superhet receiver. In all practical communications superhets the mixer and oscillator circuits, essential to frequency conversion, are separate. Although sometimes the two functions are performed by a single tube of a special type, in general more satisfactory performance results, especially at the higher frequencies, when separate tubes are used.

Several varieties of both mixer and oscillator circuits may be used, and almost any combination of the two is possible. Fig. 723 shows a number of representative mixer circuits, with

RECEIVER DESIGN AND CONSTRUCTION

the puint at which the uscillator voltage is introduced indicated in each case. In A, the screen-grid tube functions as a plate detector; the oscillator voltage is applied to the grid of the tube in parallel with the tuned input circuit. The conversion gain (ratio of i.f.-voltage output to signal-voltage input) and input selectivity are generally good so long as the sum of the two voltages (r.f. and oscillator) im-

FIG. 723 - heirhesentative mixer on first DETECTOR CIRCUITS
These may he used in conjunction with the oscillator circuits of Fig. 725. A, grid injection; B, suppressor injection; C, cathode injection, all with pentode detectors; D, electron coupling with pentagrid or hexode mixers; E, electron-coupling with $6 L 7$ mixer.
pressed on the grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator voltage required is small and the power negligible. As an alternative to the oscillator coupling condenser shown, the oscillator may be coupled to the screengrid so that the screen-to-control-grid capacity performs the same function as the condenser.

In B the suppressor grid of a pentode-type detector is used as the means for introducing the oscillator voltage into the mixer circuit. The oscillator voltage required, while greater than in the case of control-grid injection, is not critical. The suppressor must be maintained at an average voltage considerably negative with respect to the cathode for good conversion. This, however, lowers the plate impedance of the first detector and tends to lower the gain.

In C the r.f. oscillator voltage is injected into the cathode circuit of the mixer across the bias resistor, giving effective grid modulation. The 100 -ohm resistor in the cathode lead, in series with the $0.01-\mu \mathrm{fd}$. blocking condenser, minimizes undesirable detector reaction. This arrangement gives good conversion gain at the ligher frequencies but may tend to cause excessive regeneration unless the circuit is carefully proportioned. The shortest possible connection between the oscillator and detector cathode should be made and the two circuits should be otherwise isolated by thorough shielding.

A pentagrid-converter tube is used in the circuit at D. Although intended for combination oscillator-mixer use, this type of tube usually will give more satisfactory performance when used in conjunction with a separate oscillator, the output of which is coupled to its No. 2 grid as shown. The circuit gives good conversion efficiency, and because of the electron coupling gives desirable isolation between the mixer and oscillator circuits. This helps prevent "pulling," or change in oscillator frequency with tuning of the mixer input circuit. Pulling of the oscillator frequency is especially undesirable in sets in which the mixer is coupled to the antenna, since a slight change in the antenna constants will affect the oscillator frequency and thereby introduce instability.

Circuit E, using the 6L7 mixer tube, has features which correct to some extent the several deficiencies encountered in conversion circuits of the other types. The space-charge coupling between detector input and oscillator circuits which characterizes the -A7 and -A8 pentagrids is largely eliminated, while the lowering of plate impedance which is characteristic of suppressor injection in a pentode is absent, since the oscillator grid (No. 3) is completely screened and is backed up by a separate suppressor grid. A smaller oscillator voltage is
required for good conversion than with suppressor injection. The value of oscillator voltage can vary over a considerable range without affecting the conversion gain. The lack of critical adjustments and the effective oscillatormixer isolation afforded by this circuit have led to its use in the several complete receivers described in this chapter.

Typical combination mixer-oscillator circuits are shown in Fig. 724. That at A is for pentagrid converters, while B uses the re-cently-developed triode-hexode converter tube, the 6 K 8 . The pentagrid arrangement is not particularly desirable for high-frequency work because the output of the oscillator drops off as the frequency is raised and because the two sections of the tube are not well-enough isolated to prevent space-charge coupling and pulling. The 6K8, really two tubes in one, has a better triode section and overcomes some of the defects of the pentagrids, especially at the higher frequencies. The oscillator circuits in both cases are similar to those discussed in the next section.

Oscillator Circuits - Stability and Tracking

In addition to the "pulling" effects previously emphasized, inherent stability in the high-frequency oscillator is highly important in amateur-band receivers. Variations in oscillator frequency with changes in supply voltage and with heating (drift) are of particular importance. A screen-grid type oscillator has an inherent tendency to maintain constant frequency with changes in supply voltage because of the compensating action when both plate

FIG. 724 - COMBINATION OSCILLATOH-MIXER CIRCUITS USING DUAL-PURPOSE TUBES
A, circuit for pentagrid converters; B, circuit for the 6K8 triode-hexode mixer.

and screen voltages are changed in the same direction. Special arrangements with triode oscillators can be made to give similar results; for instance, the oscillator plate voltage can be taken from a power supply in which tubes are used to maintain a nearly constant output voltage. (See Chapter Fourteen.)

In all these circuits it is essential that the oscillator be shielded from the mixer. Coupling other than by the means intended, especially between the tuned circuits, will result in "pulling" and will render accurate tuning difficult. Several types of oscillator circuits are shown in Fig. 725; in many cases one can be substituted for another without affecting

FIG. 725 - IIIGII-FREQUENCY OSCLLLATOH CIRCUITS
A, electron-coupled oscillator, with output taken from plate circuit; B, screen-grid grounded-plate oscillator; C, triode grounded-plate oscillator; D, triode, tick ler circuit. Coupling to mixer may be taken from points X and Y. In B and C, coupling from Y will reduce pulling eflects, but givea less voltage than from X; it is therefore best adapted to those mixer circuits with small oscillator-voltage requirements. Circuit A is practically free from pulling, but the oscillator output power is low; hence the circuit is hest suited to grid injection in the mixer.
the functioning of the detector or mixing circuit. In triode circuits, the 6J5 tube is to be preferred. The circuit at D with grounded cathode, is helpful in preventing hum modulation of the signal at the highest frequencies.

Where ganged tuning control of oscillator and signal-input circuits is used, it is necessary to maintain a constant frequency difference throughout the tuning range, this difference being equal to the intermediate frequency. For the narrow ranges of the amateur bands, particularly above 7 Mc ., this can be accomplished to a fair extent with equal-capacitance condensers in the several tuning circuits, simply by making the oscillator inductance

reckiver design and construction

FIG. 726 - CONVERTER CIRCUIT TRACKING METHODS
Approximate circuit values for 450- to 465-kc. intermediates with tuning ranges of approximately 2.15 -to-1, C_{1} and C_{2} having a maximum of $140 \mu \mu \mathrm{fd}$, and the total minimum capacitance, including C_{3} or C_{4}, being 30 to $35 \mu \mu \mathrm{fd}$.

Tuning Range	\mathbf{L}_{1}	\mathbf{L}_{2}	C5
1.7-4 Mc.	$50 \mu \mathrm{~h}$.	$40 \mu \mathrm{~h}$.	$0.0013 \mu \mathrm{fd}$.
3.7-7.5 Mc.	$14 \mu \mathrm{~h}$.	$12.2 \mu \mathrm{~h}$.	$0.0022 \mu \mathrm{fd}$.
7-15 Mc.	$3.5 \mu \mathrm{~h}$.	$3 \mu \mathrm{~h}$.	$0.0045 \mu \mathrm{fd}$.
14-30 Mc.	$0.8 \mu \mathrm{~h}$.	$0.78 \mu \mathrm{~h}$.	None used

Approximate valuen for $450-$ to $465-k c$. i.f. with a 2.5-to-1 tuning range, C_{1} and C_{2} being $350 \mu \mu \mathrm{fd}$. maximnm, minimum capacitance imeluding C 3 and C. 4 being 40 to $50 \mu \mu$ fd.

Tuning Range	L_{1}	L3	C5
0.5-1 .5 Mc.	$240 \mu \mathrm{~h}$.	$130 \mu \mathrm{~h}$.	$425 \mu \mu \mathrm{fd}$.
$1.5-4 \mathrm{Mc}$.	$32 \mu \mathrm{~h}$.	$25 \mu \mathrm{~h}$.	$0.00115 \mu \mathrm{fd}$.
	$4.5 \mu \mathrm{~h} .$	$4 \mu \mathrm{~h}$.	$0.0028 \mu \mathrm{fd} \text {. }$
$10-25 \mathrm{Mc}$	$0.8 \mu \mathrm{~h}$.	$0.75 \mu \mathrm{~h}$.	None used

sufficiently smaller than the signal-frequency circuit inductance. For more precise tracking over the tuning ranges, especially at the lower frequencies, a tracking capacitance in series
with the oscillator tuning condenser is used. Two typical arrangements are shown in Fig. 726. As indicated on the diagrams, the tracking capacitance C_{5} commonly consists of two condensers in parallel, a fixed one of somewhat less capacitance than the value needed and a smaller variable in parallel to allow for adjustment to the exact proper value. In practice, the trimmer caparitance C_{4} is first set for the high-frequency end of the tuning range and then the tracking capacitance is set for the low-frequency end. The tracking capacitance becomes larger as the ratio of the oscillator to signal frequency becomes nearer to unity (that is, as the tuning frequency becomes higher). Typical circuit values are given in the accompanying table.

Intermediate-Frequency Amplifiers

The intermediate-frequency amplifier (i.f. amplifier) of a superhet is, as mentioned, simply a tuned radio-frequeney amplifier designed to work at a fixed frequency, generally in the region of 450 to 500 kc ., occasionally around 1600 kc . The tuned circuits of i.f. amplifiers usually are built up as transformers, consisting of a shielding container in which the coils and condensers are mounted. The coils are of the universal-wound or honey-comb type and are very small in size so that the magnetic field will be restricted. Both air-core and powdered-iron-core coils are used, the latter having somewhat higher Q 's and, hence, greater selectivity and gain per unit.

Variable tuning condensers are of the midget type and may have either mica or air dielectric, air-dielectric condensers being preferable for short-wave superhets because their capacity is practically unaffected by changes in temperature. Iron-core transformers may be tuned by varying the inductance (permeability tuning) in which case stability comparable to that of variable air-condenser tuning can be obtained by use of high-stability fixed mica condensers. Such stability is of great importance in highly selective i.f. amplifiers or single-signal superhets equipped with quartz crystal filters because a slight change in tuning capacity can greatly impair the performance of the receiver.

Intermediate-frequency amplifiers usually consist of one or two stages. With modern tubes and transformers, two stages at 455-465 kc. will give all the gain usable, considering the noise level. If regeneration is introduced into the i.f. amplifier - as is described later - a single stage will give enough gain for all practical purposes.

Typical circuit arrangements for three types of transformers are shown in Fig. 727. Alternative methods of gain-control biasing, bypassing and decoupling are indicated. The method of returning all by-passes to the cath-

THE RADIO AMATBUR'S HANDB00K

FIG. 727 - I.F. AMPLIFIFR CIRCUFTS FOK TIIREE TYPES OF TRANSFORMERS. A, DOUBLE-TUNED: B, TRIPLE-TUNED; C, IIIGII-GAIN IRON CORE:
ode shown in C is recommended in high-gain circuits using iron-core transformer units. Where two such stages are used there will be a tendency to instability and oscillation because of the high gain, and careful circuit arrangement is necessary. It is also advisable to use tapped transformers in such cases, thereby reducing the gain per stage but obtaining the increased selectivity which is possible.

Variable Selectirity

Transformers giving variable selectivity are being used to considerable extent in current receivers. One method of accomplishing this is by variable coupling between the coils of the transformers, employing mechanical adjustment, over

FIG. 728 - CIRCUIT OF I.F. TRANSFORMER WITII VARIABLE SELECTIVITY OBTAINED BY ELECTRICAL VARIATION OF MUTUAL COUPLING AND SECONDARY INDUCTANCE

RECRIVER DESIGN AND CONSTRUCTION

tion, which gives it an additional advantage. A wide variety of combinations will be found, including circuits using multi-element tubes which include diode elements, but all are basically the same.

Beat Oscillators for Code Reception

A beat oscillator is always the companion to the second detector in ama-teur-band superhets, being used for heterodyne action in the detector circuit for c.w. telegraph reception. The oscillator circuits themselves are of the same types as those used for the frequency conversion in the high-frequency end of the receiver, but tuned near the i.f. frequency. The oscillator may be coupled to the second detector through a small coupling condenser. One consideration in the beat oscillator which is especially important is that every precaution should be taken to prevent its output, particularly harmonics of its fundamental frequency, from reaching the earlier circuits of the receiver. This is taken care of by proper shielding and filtering of its supply circuits, and by operating it at as low a plate voltage as permissible.

A FIVETTUHE IDOUURLEEIEEGENEIEATTVE NUTPEIEMET

The foregoing discussion has made it plain that for best all-around performance the h.f. oscillator and mixer circuits should use separate tubes, and the same also is true of the second detector and beat oscillator. To keep down the number of tubes in the receiver, therefore, it is necessary to employ regeneration to provide gain and selectivity. The receiver of Fig. 729 is designed on this principle. ${ }^{3}$

Instead of the customary i.f. amplifier a regenerative second detector is used, with a separate beat-frequency oscillator which avoids "blocking" on strong signals, a disadvantage of autodyne detectors. An audio stage provides coupling to the headphones or speaker. The receiver uses an intermediate frequency of 1600 kc . to reduce image response and a regenerative mixer to increase the gain at signal frequency. A high-C high-frequency oscillator circuit is used for stability, and a low-C signal circuit for maximum gain. The oscillator and mixer tuning controls are ganged together.

The mixer is a 6 L 7 G , chosen because of its excellent characteristics and lack of necessity for critical adjustment of oscillator voltage. The high-frequency oscillator is a 6J5G. A 6 K 7 G is used for the second detector because it goes in and out of oscillation smoothly, besides providing sensitivity. The beat-frequency oscillator is a 6 K 7 and the audio amplifier a 6 C 5.

FIG. 729 - TOP VIEW OF TIIE FIVE-TUBE SUPERIIET
The high-frequency oscillator tuning condenser, in the center foreground, is ganged to the mixer circuit in the shield compartment. The i.f. transformer is directly in back of the mixer tubc, and the grid leak and condenser are mounted directly on the grid lead to the second detector. The audio coupling choke and audio anmplificr tube are to the left of the sccond detector. The b.f.o. unit and tulse are directly in back of the drum dial. The oscillator tuning condenser is supported above the chassis by two brass posts.

Fig. 730, the circuit diagram, shows that most of the details are straightforward and conform to usual practice. The No. 3 grid of the mixer tube is coupled directly to the grid of the high-frequency oscillator, and the mixer and oscillator tuning circuits are band-spread by the tapped-coil method. The completeness of tracking will depend on the patience of the builder in getting just the right spread by means of the taps. However, since the mixer padding circuit is adjustable from the panel, it is not necessary to make the two circuits track exactly. If the coil dimensions given are followed closely, the tracking will be quite good.

The mixer regeneration control is a variable resistor placed between two fixed resistors, giving a variation in screen voltage from 50 to 200 volts. The second detector employs a tuned cathode circuit for regeneration. The detector is coupled to the audio tube by means of a 0.1 $\mu \mathrm{fd}$. condenser and a 500-henry choke. Suitable r.f. filtering is used before the high-inductance choke to prevent "motorboating" or "howling."

There is no connection between the b.f.o. and the second detector. This results in slightly-below-optimum coupling between oscillator and detector for strong signals, with consequent "limiter" action. However, the coupling

THE RADIO AMATEUR'S HANDB00K

is just about right for weak signals, which is favorable to the signal-to-noise ratio. If it is found that too much oscillator voltage reaches the second detector, the voltage to the plate of the b.f.o. can be reduced, and if too little oscillator voltage is being fed to the detector the coupling can be increased by bringing a piece of insulated wire near the two circuits. The b.f.o. is made to turn off, for 'phone reception, by bending over one corner of the rotor plate of C_{5}, which shorts with the stator plate in the extreme position.

To facilitate home construction, shielding is reduced to a minimum. The first detector portion of the set is housed in a separate box, $43 / 4^{\prime \prime} \times 614^{\prime \prime} \times 43 / 8^{\prime \prime}$ high, with are movable lid for changing coils. The chassis is made by bending a $91 / 2^{\prime \prime} \times 161 / 4^{\prime \prime}$ piece of $3 / 32^{\prime \prime}$ aluminum into a shallow " U " with $21 / 8$ " sides and fastening on a rear strip and the $1 / 8^{\prime \prime} \times 61 / 2^{\prime \prime} \times$ $13^{\prime \prime}$ panel with $1 / 4^{\prime \prime}$ square brass rod. The photographs show the construction. Care should be taken to make the chassis rigid, to insure sta-
bility. After all the holes have been drilled, the chassis and panel may be given a dull finish by soaking them in a lye solution for about fifteen minutes.

To avoid variable ground paths as the dial is turned, an insulated flexible coupling is used between the dial and the oscillator tuning condenser. This obviates a tendency of the frequency to "jump" as the dial is turned.

Lining up the receiver is relatively easy. If a modulated oscillator is available, set it at around 1600 kc . (the exact frequency is unimportant) and connect its output to the grid of the 6L7 mixer. Then tune the i.f. transformer until the signal is the loudest. The b.f.o. condenser (on the side of the chassis) is set at half scale and the trimming condenser in the shield can is adjusted until a beat is obtained between the b.f.o. and the $1600-\mathrm{kc}$. signal from the signal generator. If no signal generator is available, set the second-detector regeneration control to the point where the detector oscillates and then adjust the b.f.o. until a beat is

FIG. 730 - CIRCUIT DIAGRAM OF THE FIVE-TURE RECEIVER
$\mathrm{C}_{1}-15-\mu \mu \mathrm{fd}$. tuning condenser (Hammarlund HF15).
$\mathrm{C}_{2}-35-\mu \mu \mathrm{fd}$. handaet condenser (Hammarlund HF35).
$\mathrm{C}_{3}-\mathbf{3 5 - \mu \mu \mathrm { fd }}$. tuning condenser (Hammarlund MC-35-S).
$\mathrm{C}_{4}-100-\mu \mu \mathrm{fd}$. handset condenser (Hammarlund HF100).
Cs - 2-plate midget variahle for heat-note adjustment (Sicklen ATR-21).
$\mathrm{C}_{6}, \mathrm{C}_{7}-100-\mu \mu \mathrm{d}$. mica.
$\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}-250-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{13}-0.005-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{14}, \mathrm{C}_{15}-0.01-\mu \mathrm{fd}$., 400 -volt paper.
$\mathrm{C}_{18}-\mathbf{0 . 1 - \mu \mathrm { fd } . , ~ 4 0 0 - v o l t}$ paper.
$\mathrm{C}_{17}-\mathbf{0 . 5 - \mu \mathrm { fd } . 4 0 0 - v o l t}$ paper.
C_{18} - 5- $\mu \mathrm{fd}$., 50-volt electrolytic.
$\mathrm{C}_{19}-\mathbf{0 . 0 0 5 - \mu \mathrm { fd } \text { mion. }}$
$\mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22}-\mathbf{0 . 0 1 - \mu \mathrm { fd } . , 4 0 0 - v o l t}$ paper.
$\mathrm{C}_{23}-\mathbf{0 . 1 - \mu \mathrm { fd } . , 4 0 0 - v o l t}$ paper.
$\mathbf{R}_{1}-500$ ohms, $1 / 2$-watt.
$R_{2}-40,000$ ohms, $1 / 4$-watt.
R8 -0.25 megohm, 3 - $\mathbf{~ m a t t}$.
$\mathbf{R}_{4}-\mathbf{0 . 5 - m}$-mohm potentiometer.
R_{5} - 1000 ohms, l-watt.
$\mathrm{R}_{8}-25,000$ ohms, $1 / 2$-watt.
$\mathrm{R}_{7}, \mathrm{R}_{9}-15,000-\mathrm{hm}$ wire-wound potentiometer. (Yaxley C15MP. Rotor must be insulated from panel.)
$\mathrm{R}_{8}-500$ ohms, I-watt.
$\mathrm{R}_{10}-\mathbf{3 0 , 0 0 0}$ ohms, 10 -watt wire-wound.
$\mathrm{R}_{11}-10,000$ ohms, 1-watt.
$\mathrm{R}_{12}, \mathrm{R}_{13}-15,000$ ohms, 2-watt.
RFC - 2.5-mh. choke.
$\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ - See coil tahle.
L_{5} - 2.5-mh. choke.
$T_{1}-1600-k c$. air-tuned i.f. transformer. (Sickles 8084. The grid lead, which is tapped down on the coil in the transformer an it comes from the manufacturer, must be moved to the stator plates of the grid tuning condenser before the transformer is used.)
$\mathrm{T}_{2},\left(\mathrm{~L}_{4}, \mathrm{C}_{24}, \mathrm{R}_{14}, \mathrm{C}_{8}\right.$) - 1600-kc. h.f.o. unit (Sicklen 6631).
Ch - 500-henry audio impedance (Thordarson T3736).

RECEIVER DESIGN AND CONSTRUCTION

heard. The primary tuning of the i.f. transformer is next adjusted to the point where the regeneration control must be advanced the farthest to maintain oscillation. The primary will then be in tune with the secondary. If later it is found that the i.f. frequency selected falls on some broadcast harmonic or other unwanted signal, a slight readjustment will be necessary.

Adjustment and trimming of the r.f. coils follows the i.f. alignment. With a mixer and oscillator coil wound according to the table and placed in the receiver, set the tuning dial at the low-frequency end of its scale and tune with the oscillator band-set condenser C_{4} until a familiar marker or amateur signal at the low-frequency end of the particular band is heard. This adjustment should be with C_{4} set at about $2 / 3$ full capacity. Tune to the other end of the band to check for the bandspread of the oscillator. If the band does not occupy enough space on the dial, move the tap that goes to the tuning condenser C_{3} down on the coil. If there is too much bandspread, move the tap $u p$ on the coil.

To make the mixer circuit track with the oscillator, first tune in a signal at the high-frequency end of the band and peak the signal with the mixer band-set condenser C_{2}. Then tune in a signal at the low-frequency end of the band and see whether C_{2} has to be increased or decreased to peak the signal. If the capacity has to be increased at the low-frequency end of the band the tuning tap should be moved up on the coil. If the capacity has to be decreased to peak the signal, the tap should be moved down. The adjustments should be not more than a quarter-turn at a time on the 14 - and $28-\mathrm{Mc}$. ranges, but can be half-turns at the other frequencies. The tracking can be made as complete as one cares to go - it is simply a matter of patience. The total number of

FIG: 731-IBOTTOM VIEW GF TIIE FIVE-TUBE IRECEIVEIS
A fiexible shaft is usal to turn the audio volume control at the rear of the set. Any stray coupling is avoided by thus mounting the audio wolume control near the audio tube. The r.f. choke fastened to the buak of the chassis is used to muke the second detector regenerative. "lie switch ncar the drumi dial turns off the plate voltage.
turns is right if C_{2} resonates at about half-scale.
Adjustment to the cathode tap on the mixer coil comes next. It is desirable to have the cathode tap and the antenna coil so proportioned that the mixer goes into oscillation with the regeneration control set at about $2 / 3$ scale. If the mixer goes into oscillation too soon, i.e., with the regeneration control set at something much less than $2 / 3$ scale, the cathode tap should be made lower on the coil. The point at which oscillation takes place can also be varied by loosening the antenna coupling, either by reducing the number of turns in L_{2} or by moving it farther away from L_{1}. All antenna-coil adjustments should be made with the antenna connected to the receiver.

When the "front end" of the receiver is working smoothly it may be worthwhile to experiment a little with the second-detector rathode condenser C_{12}. If oscillation of the second detector takes place at something less than $2 / 3$ setting of the regeneration control, C_{12}

THE RADIO AMATEUR'S HANDB00K

should be made slightly smaller. It will be found that the two regeneration controls interlock slightly when both detectors are being run too close to the oscillating point, but this ean be avoided by running the mixer in a slightly less regenerative condition.

In operation, the second detector is run in a regenerative condition but not oscillating. The b.f.o. is not tuned exactly to the same frequency as the regenerative second detector, but about 1000 cycles to either side. When this is done the signal on one side of zero beat will be louder than on the other side. This condition is only achie ved when the second detector is almost oscillating, and proves very useful in separating two signals quite close together. Although the "single-signal" effect (see later section) obtained in this receiver does not approach that which results from the use of a crystal filter or regenerative $450-\mathrm{kc}$. a mplifier, it does result in an 57 signal on one side of zero beat being reduced to an S4 signal on the other side. A little experimenting with the adjustment will make the operator familiar with the process of adjusting for maximum single-signal effect.

No trouble should be experienced with image response. The presence of images indicates that the antenna coupling is too tight, and loosening it should cure the trouble.

NINGLE-MIGNAI. SELEETIVITY

In ordinary beat-note reception, the same beat note can be obtained from a signal above

FIG. 732 - A GRAPIIICAL ILLUSTRATION OF SIN-GLE-SIGNAL SELECTIVITY. THE SHADED AREA INDICATES TIIE REGION IN WHICII RESPONSE IS OBTAINABLE
as from another below the local oscillator frequency. For instance, if the beat note on a desired signal is 1000 cycles (with the oscillator 1 kc. lower than the signal frequency), another signal 2 kc . lower than the desired signal will also give a 1000 -cycle beat note and interfere as if it were on the same frequency as the desired signal. As shown by Fig. 732, this audioimage interference is eliminated in the singlesignal superhet. This type of receiver resembles the conventional superheterodyne of ordinary selectivity, but has in addition an intermediate circuit in which extremely high selectivity is obtained either by means of a piezo-electric filter (quartz crystal) or by regeneration.

Because of the high selectivity, the signal voltage reaching the second detector drops to a negligible value a few hundred cycles off resonance, especially when the filter circuit is of the quartz crystal type which can be adjusted to reject particularly at one frequency. Hence, with the beat oscillator coupled to the second detector practically only one beat-note response will occur, and this will be for the signal tuned in on the resonance peak of the i.f. circuit. When a receiver of this type is tuned across a signal, it will be heard on only one side of zero beat, instead of on both sides as with receivers of ordinary selectivity. The extreme selectivity also reduces noise and other types of interference. The single-signal superhet should be provided with a means for varying the selectivity so that the receiver will be suitable for the reception of voice as well as c.w. telegraph signals, since a wider band must be passed for faithful reproduction of voice modulation.

Regenerative I.F. Amplifiers

A regenerative i.f. amplifier stage can be used to provide high selectivity combined with high gain in the amateur superhet. Such an amplifier operates in much the same fashion as a regenerative input amplifier or first detector in giving high selectivity. The regenerative amplifier increases the signal at resonance frequency of the i.f. circuit and leaves signals of other frequencies at practically the same amplitude they would have if the amplifier were not regenerative. A representative circuit of an i.f. amplifier of this type is shown in Fig. 733. In addition to the usual input and output transformer windings L_{1} and L_{2}, the input transformer has a feed-back coil L_{3} connected in the plate return circuit between cathode and ground, through the usual by-passed cathode bias resistance R_{1}. This coil is connected so that r.f. current flowing back to the cathode induces voltage in L_{2} in phase with the r.f. voltage on the grid. Regeneration is controlled by R_{2}, which shunts the tickler coil for r.f., through C_{4}. The latter is necessary to prevent

recelver design and construction

variation of R_{2} from varying the d.c. grid bias. Regeneration is maximum when the resistance of R_{2} is all in circuit, and is minimum when R_{2} is zero, shorting the tickler coil.

Selectivity comparable with that obtained with a crystal filter can be obtained with a regenerative i.f. stage. However, the regenerative amplifier is not as stable and does not provide adjustable rejection. The maximum gain is very high and not more than one i.f. stage is advisable in a receiver using such an amplifier. Greatest effective selectivity will result when the tube gain is made relatively low

FIG. 733- HIGH-SELLECTIVITY REGENERATIVE I.F. AMPLIFIER CIRCUIT
L_{1} and $L_{2}-1.2-\mathrm{mh}$. coils of 450 - to $46 \overline{3}-\mathrm{kc}$. i.f. transformer, optimum coupling.
L_{3} - Tickler winding, approximately 20 turns coupled 10 L 2 .
C_{1} and $\mathrm{C}_{2}-50-$ to $100-\mu \mu \mathrm{fd}$. i.f. tuning condensers (air type).
$\mathrm{C}_{3}-0.1-\mu \mathrm{fd}$. tubular by-pass condenser.
$\mathrm{C}_{4}-0.01-\mu \mathrm{fd}$. blocking condenser.
$\mathrm{C}_{5}-0.01$ to 0.1 by -pass condensers.
\mathbf{R}_{1} - $\mathbf{3 5 0}$-ohm cathode resistor.
$\mathbf{R}_{2}-2000-\mathrm{ohm}$ variable resistor (selectivity control).
$\mathrm{R}_{3}-\mathbf{1 0 0 , 0 0 0}$-ohm screen voltage dropping resistor.
(as by using a larger value of cathode resistor, R_{1}), thus preventing strong signals from overloading the stage.

Any method of introducing feedback may be used; the chief requirement is smooth control of regeneration so that the amplifier can be operated near the critical regeneration point where maximum selectivity is secured.

A SIX-TUBE IREGENEIRATIVE SINGLE-SIGNAL IREGEIVEIE

An inexpensive receiver of simple construction, using i.f. regeneration for single-signal reception, is shown in Fig. 734. ${ }^{4}$ Fig. 735 gives the circuit diagram.

The regenerative mixer, a 6 L 7 , is coupled to the anteuna; the oscillator is 6J5 triode. There is a single i.f. stage, using a 6 K 7 and iron-core transformers. The second detector is a 6 C 5 , and the audio output tube, for loud-speaker work, is a 6 F 6 . A 6 C 5 beat oscillator completes the tube complement.

To a void constructional complications, the mixer tuning is not ganged with the oscillator, so that the two circuits must be tuned separately. The mixer tuning condenser, C_{1}, can be used as a volume control. The regeneration control is a variable resistor, R_{2}, in series with the 6 L 7 cathode resistor.

The i.f. gain is controlled by R_{4}, which varies the control-grid bias on the 6 K 7 . The stage is made regenerative by running a short length of wire from the control grid of the 6 K 7 through a hole in the shield can of i.f. transformer T_{2} so that a small amount of energy is coupled back to the grid from the plate. When this is done R_{4} serves as a regeneration control. If the high selectivity afforded by regeneration is not wanted, the regenerative coupling may be omitted.
The headphones plug into the plate circuit of the second detector; the signal level is quite high here and no additional audio amplification is needed. No audio gain control is incorporated in the set, since the various r.f. controls afford quite a range in volume.

Figs. 736 and 737 show the layout, both top and bottom, quite plainly. The chassis is steel and measures 11 by 7 by 2 inches. The bandspread tuning condenser, C_{3}, is at the front center, operated by the vernier dial. At the left is C_{1}, the mixer tuning condenser, and at the right, C_{2}, the oscillator band-setting condenser. The oscillator tube is directly behind C_{3}, with the mixer tube to the left on the other side of a baffle shield which separates the two r.f. sections. This shicld, measuring $33 / 4$ by $43 / 4$ inches, is used to prevent coupling between oscillator and mixer. The mixer coil socket is at the left edge of the chassis behind C_{1}; the oscillator coil socket is between C_{2} and C_{3}.
The i.f. and audio sections are along the rear edge of the chassis. The transformer in the rear left corner is T_{1}; next to it is the i.f. tube, then T_{2}. The transformers are mounted so that the adjusting screws project to the rear where they are easily accessible. With the particular type of transformer used this requires drilling a new hole in the shield of T_{1} so that the grid lead to the 6 K 7 can be brought out the proper side. In T_{2}, the grid lead should be pulled through the side of the ean and brought out the bottom with the other leads, since the grid of the 6C5 second detector comes through the base.

The transformer at the rear right is for the beat oscillator. The $6 \mathrm{C}^{5}$ second detector is directly in front of it and the beat oseillator tube is about midway along the right chassis edge. The 6F6 output tube is in the rear right-hand corner.

Power cord, headphone jack (insulated

THE RADIO AMATEUR'S HANDB00K

FIG. 734 - A SIX-TUBE REGENERATIVE SINGLE-SIGNAI, HECEIVER OF INEXPENSIVE DPSIG:N
A variable-ratio vernier dial (National 'lype B) is used for the fine tuning required with single-signal srlectivity. l'ower supply requirements are 2.2 amperes at 6.3 volis, and 60 milliamperes d.c. at 200-250 volts, forloud-speaker operation. A voltage-regulated supply such as is deacribed in Chapler Fourteen is recommended.
from the chassis) and a tip jack for the speaker are on the rear edge of the chassis. The antenna input terminals are on the left edge, near the mixer coil socket.

The controls along the bottom edge of the panel are, from left to right, the mixer regeneration control, R_{2}, the on-off switch, $S w$, the i.f. gain or regeneration control, R_{4}, and the beat-oscillator vernier condenser, C_{20}. The latter has the corner of one rotary plate bent over so that when the condenser plates are fully interleaved the condenser is short-circuited, thus stopping oscillation.

One side of the heater circuit is grounded, so that only one filament wire need be run from tube to tube. The more conventional method of running heater current through a twisted pair can be used if preferred.

The oscillator-mixer coupling condenser, C_{5}, is mounted from one of its connection tabs on a small ceramic pillar (furnished with one of

FIG. 735. - CIRCUIT DIAGRAM OF TIIE HEGENEIATTIVE S.S. RECEIVEI
$\mathrm{C}_{1}, \mathrm{C}_{2}-50-\mu \mu \mathrm{fd}$. variable (IIammarlund MC-50-S).
$\mathrm{C}_{3}-35-\mu \mu \mathrm{fd}$. variable (National SS-35).
$\mathrm{C}_{4}-\mathbf{7 0}-\mu \mu \mathrm{fd}$. mica trimmer (IIammarlund BRT-70).
$\mathrm{C}_{5}-\mathbf{3 0}-\mu \mu \mathrm{fd}$. isolantite-insulated mica trimmer (National M-30).
Ca-Ci0, inc. - 0.1- $\mu \mathrm{fd}$. paper, 400volt.
$\mathrm{C}_{11}-\mathbf{0 . 2 - \mu f d}$. paper, 400-vole (or larger).
$\mathrm{C}_{12}, \mathrm{C}_{18}-\mathbf{0 . 0 0 5 - \mu \mathrm { fd } . \text { mica. }}$
$\mathrm{C}_{14}-100-\mu \mu \mathrm{fd}$. miea.
$\mathrm{C}_{15}, \mathrm{C}_{16}-0.01$ - $\mu \mathrm{fd}$. paper, $\mathbf{4 0 0 - v o l t .}$
C_{17} - 10- $\mu \mathbf{f d}$. 25-volt electrolytic.
C18-5- μ fd. 25-volt electrolytic.
$\mathrm{C}_{19}-$ Sentext.
Czo - 25-u fd. variable (IIammarlund SM-25).
$R_{1}-300$ ohma. $1 / 2$-watt (see text).
\mathbf{n}_{2} - 100 w -ohm varialble, wirewound.
$R_{3}-300$ ohms, $1 / 2$-watt.
$\mathrm{H}_{4}-25,000-\mathrm{ohm}$ volume control.
$R_{5}-50,000$ ohms, 2-watt .
$\mathrm{R}_{6}-50.000$ ohms, $1 / 2$-watt (I.R.C. Type F).
$\mathbf{R}_{7}-150,000$ ohms, $1 / 2$-watt (I.R.C. Type F).
$\mathrm{H}_{8}-12,000$ ohms, l-watt.
$R_{0}, R_{10}, R_{11}, R_{12}-50,000$ ohms, $1 / 2=$ watt.
$1_{13}-0.5$ megohm, $1 / 2$-watt.
$11_{14}-450$ ohma, l-watt.
$1 \mathrm{~K}_{15}-\mathbf{1 5 , 0 0 0}$ ohms, 1 -watt.
$11_{1}, T_{2}-455-\mathrm{kc}$. interstage-typr i.f. transformers (Sicklem 6501).
T3-455-kc. beat oscillator transformer, with grid condenser and leak (Sickles 6577).
L_{1}-L5, inc. - See coil table.
Jack - Double-circult type.
Sw-S.p.e.t. toggle.

receiver design and construction

the tube sockets) between the oscillator and mixer tube sockets. The antenna series condenser, C_{4}, is mounted between one terminal on the antenna strip and one of the mixer coil-socket prongs. These condensers do not require readjustment in normal operation, hence are screw-driver adjusted from the bottom.

The b.o. coupling condenser, C_{19}, is simply the capacity existing between the grid prong on the 6C5 socket and the adjacent prong on the side away from the plate. This prong, ordinarily unused, is connected to the b.o. as shown in Fig. 735.
The method of winding coils is shown in Fig. 738, and complete specifications are given in the table. All windings are in the same direction. In Fig. 735, the ticklers, L_{3} and L_{5}, have been shown coupled to the grid ends of L_{1} and L_{4}, respectively. This was done purely to make the diagram less awkward; the actual method of construction is given in Fig. 738, with the ticklers coupled to the grounded ends of the grid coils.

Any convenient pin-connection arrangement may be used. Make the connections so that the shortest leads between coil socket and circuit points result.

A test oscillator and 0-1 milliammeter make a suitable combination for i.f. alignment. The i.f. should be aligned without the regenerative connection and with the h.f. oscillator coil out of its socket. A mixer coil should be in place to complete the 6 L 7 plate connection. If no speaker is used either the speaker terminals must be short-circuited to prevent damage to the 6F6, or else the tube must be out of its socket.

Connect the test oseillator output between the $6 L 7$ grid and chassis, with the normal grid connection to C_{1} removed. Connect the milliammeter to a 'phone plug and insert the plug in the headphone jack. Set the oscillator to 455 kc. and adjust the trimmers on T_{1} and T_{2} to give maximum meter reading, with R_{4} set for maximum gain or slightly below. The beat oscillator should be off. Without signal the second detector plate current should be between 0.1 and 0.2 ma.; adjust the test oscillator output so that the reading with signal is about 0.4 or 0.5 ma . As the circuits come into line, reduce the signal input to keep the reading about the same.

After the i.f. is aligned, plug in a set of coils for some band on which there is a good deal of activity. Set the oscillator padding condenser, C_{2}, at approximately the right capacity; with

FIC. 736-PLAN VIEW OF' THE SIX-TUBE SUPERHET
Location of the various parts is discussed in the text.
the coil specifications given, the proportion of total C_{2} capaeity on each band will be about as follows: 1.75 Mc ., 80 per cent; 3.5 Mc ., 75 per cent; 7 Mc., 95 per cent; 14 Mc., 90 per cent; 28 Mc ., 45 per cent. Set the mixer regeneration control, R_{2}, for minimum regeneration - all the resistance in circuit. Connect an antenna and set C_{4} at maximum capacity. Switch the beat oscillator on by turning C_{20} out of the maximum position, and adjust the screw on T_{3} until the characteristic beat-oscillator hiss is heard.

REGENEIAATIVE S.S. HECEIVER COIL DATA					
Band	Coil	Hire Size	Turns	Lenoth	Tap
1.75 Mc.	L_{1}	24	70	Close-wound	-
	L_{2}	24	10	"	-
	L3	24	3.5	"	-
	L_{4}	22	42	"	Top
	L_{5}	22	8	"	
3.5 Mc .	L_{1}	22	35	*	-
	L_{2}	22	7	${ }^{\prime \prime}$	-
	L_{3}	22	2.5	"	-
	L	22	25	1 inch	17
	L_{5}	22	5	Close-wound	-
7 Mc	L_{1}	18	20	1 inch	-
	L_{2}	22	4	Close-wound	-
	L_{3}	22	2	"	-
	L_{4}	18	13	1 inch	6
	L_{5}	22	3	Close-wound	-
14 Mc.	L_{1}	18	11	1 inch	-
	L2	22	4	Close-wound	-
	La	22	2.5	'	-
	L_{4}	18	7	1 inch	2.4
	L_{5}	22	2	Close-wound	
28 Mc .	L_{1}	18	5	1 inch	-
	L_{2}	22	3	Close-wound	-
	L3	22	2.5	"	-
	L_{4}	18	3.6	1 inch	1.3
	Ls	22	1.4	Close-wound	-

All coils $11 / 2$ inches in diameter, on Hammarlund SWF forms. Spacing between coils on same form approximately $1 / 8$ inch. Band-spread taps are measured from bottom (ground) end of LL All coils wound with enamelled wire.

THE RADIO AMATLUR'S HANDB00K

Now tune C_{1} slowly over its scale, starting from maximum capacity. Using the 7 -Mc. coils as an example, when C_{1} is at about half scale there should be a definite increase in noise and in the strength of the signals which may be heard. Continue on past this point until a second peak is reached on C_{1}; at this peak the input circuit is tuned to the frequency which represents an image in normal reception. The oscillator in the receiver is designed to work on the high-frequency side of the incoming signal, so that C_{1} always should be tuned to the peak which occurs with most capacity.

After the signal peak on C_{1} has been identified, tune C_{3} over its whole range, following with C_{1} to keep the mixer circuit in tune, to see how the band fits the dial. With C_{2} properly set, the band edges should fall the same number of main dial divisions from 0 and 100; if the band runs off the low-frequency edge, less capacity is needed at C_{2}, while the converse is true if the band runs off the high edge. Once the band is properly centered on the dial, the panel may be marked at the appropriate point so that C_{2} may be reset readily when changing bands.

Now tune in a signal and adjust C_{1} for maximum response. Advance R_{2} slowly, simultaneously swinging C_{1} back and forth through resonance. As regeneration is increased signals and noise both will become louder and C_{1} will tune more sharply, until finally the mixer circuit will break into oscillation when, with C_{1} right at resonance, a loud carrier will be heard, since the oscillations generated will go through the receiver in exactly the same way as a signal. Always work the mixer somewhat below the critical regeneration point and never permit it to oscillate in practical operation.

FIG. 737 - IBEIOW-CHASSIS VIEW OF TIIE REGENERATIVE S.S. SUPER

If the antenna happens to be nearly resonant in the band, it may not be possible to make the mixer oscillate; on the other hand if the antenna loading is negligible the circuit may oscillate continuously regardless of the setting of the regeneration control. The former condition can be cured by reducing the capacity of C_{4} or by increasing the number of turns on L_{3}. If the mixer oscillates continuously, the opposite remedies are required.

The oscillator-mixer coupling condenser, C_{5}, should be adjusted so that pulling of the oscillator frequency at 14 Mc . is negligible as C_{1} is tuned through resonance with the incoming signal. The setting generally will be with the plates rather far apart. On 7 Mc. and lower there should be no detectable change in beat note as C_{1} goes through the signal peak. A few hundred cycles change is typical of 14 Mc .

After the preceding adjustments have been completed, the i.f. regeneration may be added. The amount of feed-back will be determined by the length of wire inserted in the can containing T_{2}. Optimum selectivity usually will be secured when the regenerative coupling is adjusted so that the 6 K 7 goes into oscillation with the gain control, R_{1}, fairly well "down" -far enough so that it is well below maximum gain and in the region where, without regeneration, its effect on gain is not great. Balance gain and regeneration so that the average signal level, at resonance with peak regeneration, is about the same as with normal i.f. gain without regeneration.

For single-signal c.w. reception, set the beat oscillator so that when R_{4} is advanced to make the i.f. just go into oscillation the resulting tone is the desired beat-note frequency. Then hack off on R_{4} to give the desired selectivity. Maximum selectivity will be secured with the i.f. just below the oscillating point. The "other side of zero beat" will be very much weaker than the desired side.

AUTOMATIC VOLUME CDNTROL

$W_{\text {itu }}$ the wide range of signal levels encountered in high-frequency reception and the severe fading which is practically always prevalent, automatic regulation of the gain of the receiver in inverse proportion to the signal strength is a great advantage, especially in 'phone reception. This is readily accomplished in the superheterodyne by using the average rectified voltage developed by the received signal across a resistance in a detector circuit to vary the bias

recelver design and construction

on the r.f. and i.f. amplifier tubes. Since this voltage is practically proportional to the average amplitude of the detector signal, the gain is reduced as the signal strength is greater. The control will be more complete as the number of stages to which the a.v.c. bias is applied is greater. Control of at least two stages is advisable.

A typical circuit of a diode-triode type tube used as a combined a.v.c. rectifier, detector and first audio amplifier is shown in Fig. 739. One plate of the diode section of the tube is used for signal detection and the other for a.v.c. rectification. The detector diode plate is connected directly to the "high" side of the i.f. transformer secondary, while the a.v.c. diode plate is fed through the small coupling condenser C_{3}. The audio diode load consists of R_{2} and R_{1} in series. The load condenser is split into two sections, C_{1} and C_{2}, to aid in filtering r.f. from the lead which goes through the audio coupling condenser, C_{8}, to R_{8}, the audio volume control, thence to the grid of the triode section of the tube. C_{10} is the usual highcapacity by-pass across the cathode resistor.

The triode section of the tube is used as an audio amplifier, resistance coupling being used on both input and output circuits. R_{9} is the plate load resistor. C_{4} is a mica by-pass which short-circuits any r.f. which may have escaped by the filter in the diode circuit.

The a.v.c. diode load resistor is R_{4}, across which is developed the negative bias resulting from the flow of rectified carrier current. This negative bias is applied to the grids of the controlled stages through the filtering resistors R_{5}, R_{6} and R_{7}.

It does not matter which of the two diode plates is selected for audio and which for a.v.c. The reason for separating the two is to permit the audio diode return to be made directly to the cathode and the a.v.c. diode return to ground. This places negative bias on the a.v.c. diode equal to the d.c. drop through the catlode resistor (a matter of a volt or two) and thus delays the application of a.v.c. voltage to the amplifier grids, since no rectification takes place in the a.v.c. diode circuit until the carrier amplitude is large enough to overcome the bias. Without this delay, the a.v.c. would start working even with a very small signal, which is undesirable because the full amplification of the receiver then cannot be realized on weak signals. In the audio diode circuit this fixed bias must be avoided; hence the return is made directly to the cathode.

Time constant is important in the a.v.c. circuit, and is determined by the $R C$ values in the diode and bias-feed circuits to the controlled stages. In high-frequency reception a large time constant is not desirable because it
prevents the a.v.c. from keeping up with rapid fading. A too-small time constant would tend to "wash out" modulation. The values shown liave been found to be satisfactory in operation.

IIGEIPEIRFDIRMANCE SUPEIRMET WETM IR EGENEIRATIVE FIRNT DETECTDI

The receiver illustrated in Fig. 740 is intended to give maximum performance for the number of tubes and circuits used, while combining good mechanical stability and adapt-

FIG. 738 - METHOI) OF WINDING THE MIXFI AND OSCILLATOR COILS
All windinge are in the same direction.
ability to amateur construction. ${ }^{5}$ It is also designed to accommodate a noise-silencer and crystal filter unit, as described farther on, in case the builder wishes to include all the features available in the modern single-signal type receiver. The circuit line-up, as shown in the diagram of Fig. 741, consists of a regenerative mixer using a 6 L 7 tube, a separate high-frequency oscillator using either a 6D6 glass or 6 K 7 metal tube, an iron-core transformer coupled i.f. stage using a 6 L 7 with dual automatic gain control, a 6H6 duo-diode second detector and a.v.c. rectifier, a 6 D 6 or 6 K 7 i.f. beat oscillator, a 76 or 6 C 5 triode first audio stage and a 42 or 6 F 6 pentode output amplifier. There is also a 6E5 tuning indicator tube which, while not essential to operation of the receiver circuit proper, is an extremely useful adjunct. The receiver operates from a separate power supply, such as the heavy-duty type described in Chapter Fourteen, which must be capable of at least 2.8 amperes at 6.3 volts and 90 ma. at 250 volts d.c.

The injector (No. 3) grid of the 6L7 is capacitively coupled to the cathode of the oscillator. This circuit shows negligible "pulling" effect as the result of mixer input tuning up through the $14-\mathrm{Mc}$. band, and only slight effect at 28 Mc ., provided the coils are properly ad-

THE RADIO AMATEUR'S HANDB00K

justed. The single-control tuning system employs the tapped-coil method of band-spreading and tracking with adjustable air condensers for setting the range. Regeneration in the mixer input circuit is obtained by a cathode circuit feedback coil coupled to the grid coil, regeneration being controlled by a variable resistor acting as an r.f. shunt across this tickler winding. It maintains the electrode voltages
attenuator, backed up by R_{20} for further attenuation. C_{26}, across the 76 grid, is a further aid to keeping r.f. out of the audio circuits and gives some tone-control action to reduce noises of high audio frequency.

The grid of the 6E5 tuning indicator is connected to the audio-diode load rather than to the a.v.c. line. This method of connection permits using the tube as a strength indicator on c.w. signals, since the shadow movement is instantaneous.

The audio circuits require no particular comment. The gain is such that a 'phone signal whose carrier barely moves the tuning indicator will give good loud-speaker strength. Headphone signals are rather more than comfortable level with the audio gain wide open.

The cadmium-plated steel chassis of the receiver is 12 inches by 10 inches by 3 inches deep. As shown in the bottom view of the set, halfinch L-girder strips of aluminum run front to back and across the center under the r.f. circuits to stiffen the chassis. A heavier type of chassis than the kind ordinarily available could be used to good advantage, since mechanical rigidity is of utmost importance in obtaining good electrical stability. Mechanical stability is also aided by
constant and has but slight effect on the mixer tuning, even at the higher frequencies.

Only two points need be mentioned in connection with the i.f. amplifier circuit. The No. 3 grid of the 6L7 is connected in parallel with No. 1 for d.c., but not for r.f., and a voltage divider instead of a simple series resistor is used for obtaining screen voltage. The No. 3 grid is returned to the ground side of the i.f. transformer secondary, where it picks up the a.v.c. voltage along with the No. 1 grid. The rather heavy screen voltage divider maintains the screen at practically constant potential despite the bias applied to the grids, thus increasing the effectiveness of both the manual and automatic gain controls. The manual gain control is bled off the plate supply by the usual method,

One section of the 6 H 6 is used for detection and the other for obtaining a.v.c. voltage. Since the a.v.c. action is limited, it is not necessary to bias the a.v.c. diode to give delay.

The i.f. beat oscillator operates at low plate voltage and is very loosely coupled to the detector. A weak b.o. signal is favorable for the reception of weak signals and tends to limit the beat response on strong ones.

The diode load circuit consists of the resistors R_{18} and R_{19} in series. R_{18} serves as an r.f.
R_{8} - 500,000 olsms, $1 / 2$-watt.
R9-250,000 ohms, $1 / 2$-watt.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-100 \mu \mu \mathrm{fl}$.
$\mathrm{C}_{4}-250 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}-\mathbf{0 . 0 1} \mu \mathrm{fd}$.
$\mathrm{C}_{8}, \mathrm{C}_{9}-0.01$ to $0.1 \mu \mathrm{fd}$.
Cio - 5 to $10-\mu \mathrm{fd}$. electrolytic. the National PW tuning unit, and by the fourcorner mounting coil sockets. The tuned circuit wiring is stiff No. 14 tinned solid copper, except for the grid connectors. Even these should be given attention, especially that of the oscillator. If a glass oscillator tube (6D6) is used, a rubber grommet should be provided to support the grid lead where it passes through the tube shield. Otherwise, slight jarring will cause appreciable jumping of the oscillator frequency as the result of this lead shifting position.

The arrangement of the receiver can be followed quite readily from Figs. 740 and 742. Referring to the top view, the tuning-condenser assembly is centrally mounted, the oscillator condenser being that at the left and the mixer at the right. The air trimmers, C_{3} and C_{4}, are directly behind the tuning condensers, followed in each case by the coil sockets and finally by the tubes. The coil and socket pin arrangement is shown in Fig. 743. This arrangement becomes of some importance at the higher frequencies if the receiver and coils are to be duplicated, since the lead lengths have their influence on the coil design. A baffle shield measuring $41 / 2$ inches high by 6 inches long runs down the center of the chassis from the dial gear box to the rear edge, shielding the oscillator and mixer

recelver desigi and construction

circuits from each other. A similar baffle, $41 / 2$ by $41 / 2$ inches, encloses the oscillator on the other side. This shielding is sufficient to prevent coupling between the two tuned circuits.

Connections from the condenser rotors and from the ground ends of the coils should be made to the chassis with the shortest possible leads. In this case we also have ground leads through the tuned circuit paralleling the chassis grounds to insure good conductivity. But the short, direct grounds to the chassis itself are of prime importance if the set is to be stable in operation, especially with regeneration on the mixer.

Wiring for the oscillator and mixer circuits occupies the rear center section of the chassis, as shown in the bottom view. The parts are wired in so that short connections can be made, using insulating solder-ing-lug strips wherever necessary. The anten-na-ground post assembly is mounted on the back near the mixer socket, with a shielded lead running through a hole in the chassis to the antenna post on the coil socket.

The regeneration control resistor, R_{4}, is mounted on a home-made bracket near the back of the chassis. A flexible coupling and a piece of $1 / 4$-inch round brass rod bring the control out to the front panel. The bracket should be made so that the resistor shaft will line up with the panel hole when ready for mounting. A bearing keeps the extension shaft in place on the panel and helps make the control smooth-turning. It is necessary to mount. the regeneration control in the position shown so that the r.f. trimmer, C_{5}, can be mounted close to C_{1}, and thus make possible a short stator connection between the two.

The first i.f. transformer is in the rear right corner of the chassis. Progressing toward the front, next in line is the 6 L 7 i.f. amplifier tube, second i.f. transformer, 6 H 6 duo-diode rectifier, and 76 audio tube, the latter being in a shield. Sub-chassis wiring, shown to the left in the bottom view, is again simply a matter of fitting in a considerable number of small parts so that short leads are possible. Ground leads once more should be short and directly to the chassis.

FIG. 740 - TOP VIEW OF THE HIGH-PERFORMANCE SAJPERHETT, SHOWING THE I AYOUT OF THE (OMIPNEXTS

In the bottom view, the audio volume control is at the extreme left. It is the righthand control in the right-side-up views, and is mounted on the front of the chassis directly below the audio tube socket. A shielded lead runs from the plate of the 76 along the lefthand bracing girder to the back of the chassis, thence to the right along the rear edge to the 'phone jack. The shield is grounded at several points to prevent r.f. pickup.

The left-hand section of the chassis (top view) contains, in order from front to back, the beat-oscillator transformer, b.o. tube and power output tube. These parts are at the right in the bottom view. The control in the corner is the r.f. gain control.

The beat-oscillator transformer used in the receiver is furnished complete with tuning condenser, grid condenser and grid leak, so that it is only necessary to connect the tube and supply the plate circuit resistors and condensers. If the oscillator circuit is made up from different parts, the values given in Fig. 741 will be satisfactory. The lead from the plate of the b.o. tube runs in shielded wire grounded at several points - to the diode detector plate, coupled through a small condenser mounted right on the appropriate tube-socket prong. This condenser is a home-made affair consisting of two thin brass plates, separated about a sixteenth inch, the facing areas being

FIG. 74 I - THE IIIGH-PERFOHMANCE SUPERIIET CIRCUIT IDIAGRAM. SHELL IIIN TERMINALS OF METAL TUBES ARE ALL GROUNDED TO THE CHASSIS
$\mathrm{C}_{1}, \mathrm{C}_{2}$ - Ganged Condensers, 160uffic each
tuning unit).
$\mathrm{C}_{3}, \mathrm{C}_{4}$ - $50-\mu \mu \mathrm{fd}$. air trimmers (Na C_{3} tional type UM-50)
C_{5} - $25-\mu \mu \mathrm{fd}$. midget variable (IIam-25- $\mu \mu \mathrm{fi}$. midget varia
marlund MC-25-S).
$\mathrm{C}_{6}-50-\mu \mu \mathrm{fd}$. midget mica condenser. $\mathrm{C}_{7}-50-\mu \mu \mathrm{fd}$. midget mica condenser $\mathrm{C}_{7}-100-\mu \mu \mathrm{fd}$. midget mica con $\mathrm{C}_{9}-\mathrm{C}_{20}$, inc. - $\mathbf{0} .01-\mu \mathrm{fd}$. paper con-$\mathrm{C}_{9}-\mathrm{C}_{20}$, inc. - $0.01-\mu \mathrm{fd}$. paper densers, non-inductive. $\mathrm{C}_{21}-140-\mu \mu \mathrm{fd}$. variable (in B.O. unit). 13.O. unit).
$\mathrm{C}_{23}-\mathrm{B} . \mathrm{O}$. coupling condenser, about $5 \mu \mu \mathrm{fd}$. (see text).
 $\mathrm{C}_{27}, \mathrm{C}_{28} \mathrm{CrS}_{29}-\mathbf{0 . 1 - \mu \mathrm { fd } \text { . paper condens- }}$ ers.
C30 $-\mathbf{0 . 5 - \mu \mathrm { fd } \text { . paper condenser. }}$ $\mathrm{C}_{31}-5-\mu \mathrm{fd}$., 25 -volt electrolytic. C_{32} - 25- fd ., 25-volt electrolytic. $\mathrm{C}_{33}-50-\mu \mu \mathrm{fd}$. fixed mica condenser. $\mathrm{R}_{1}, \mathrm{R}_{2}-50,000$ ohms, $1 / 2$ watt. $\mathrm{K}_{3}-500 \mathrm{ohms}, 1 / 2$ watt. \mathbf{R}_{4} - 2000-ohm variable (Centralal) 72-101).
$\mathrm{I}_{5}-15,000 \mathrm{ohms}, 1$ watt.
$R_{6}-50,000$ ohms, 1 watt. $1 \mathrm{R}_{7}-50,000$ ohms, $1 / 2$ watt.
$\mathbf{R}_{8}-300$ ohms, $1 / 2$ watt.
R9-10,000 ohms, 10 watts.
$11_{10}-15,000$ ohms, 1 watt.
$R_{11}-2000$ ohms, $1 / 2$ watt.
R_{12} - $\mathbf{5 0 0 0}$-ohm variable (Centralah 72-110).
$\mathrm{R}_{13}-50,000$ ohnms, 1 watt.
R_{14} - 50,000, $1 / 2$ watt (in B.O. unit).
$1 \mathrm{R}_{15}-10,000$ ohms, 1 watt.
$1 R_{16}-100,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{17}-50,000$ ohms, 1 watt.
$1 \mathrm{R}_{18}$ - $50,000 \mathrm{ohms}, 1 / 2$ watt.
R_{19} - 500,000 ohms, $1 / 2$ watt.
$\mathrm{R}_{20}-\mathbf{1 0 0 , 0 0 0}$ ohms, $1 / 2$ watt.
$\mathrm{R}_{21}, \mathrm{R}_{22}$ - 1 megohm, $1 / 2$ watt.
(I_{23} - 1-megohm variable (Centralab 72-116).
$\mathrm{R}_{24}-2000 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{K}_{25}-50,000$ ohms, $1 / 2$ watt.
R_{26} - 1 megohm, $1 / 2$ watt.
$\mathrm{R}_{27}-450$ ohms, 2 watts.
$\mathbf{R}_{28}-1$ megohm, $1 / 2$ watt.
T_{1} - Air-tuned iron-core i.f. transformer for coupling 6 L 7 converter to 6L7 amplifier (Aladverter $\mathbf{d i n}$ S-2242-A).
T_{2} - Air-tuned iron-core i.f. transformer for coupling 6 L 7 am plifier to diode rectifier (Aladdin plifier to di
L_{1}, L_{2} - See coil table.
L_{3} - Reat-oscillator coil, 465 kc . (in B.O. unit).

J - Double-circuit jack.
All switches single-pole single-throw.

receiver design and construction

adding any appreciable shunt capacity to the diode circuit.

The cathode-ray tuning indicator is mounted on home-made brackets of brass strip so that the top of the tube projects slightly through the panel. The 1 -meg. resistor is mounted on the socket, and the necessary leads are twisted into a cable and carried down through the chassis on the detector side of the central baffe shield. The length of these leads does not matter particularly. Mount the tube with the target side downward (heater pins to the right when viewed from the top) so that the shadow will be at the bottom where it is most easily seen.

The three switches are mounted as follows: At left in panel view, beat oscillator on-off switch; below the tuning dial, B cutoff switch; at right, a.v.c. on-off switch.

Keep the filament wires in the corners of the chassis; this is helpful in preventing hum.

When the wiring has been completed and checked, the i.f. circuits should be aligned before the mixer and oscillator coils are given final adjustment. The intermediate circuits should be tuned exactly to the right frequency, 465 kc ., since the tracking of the oscillator and first detector circuits depends on the intermediate frequency. This is best done with a test oscillator of the type described in Chapter Sixteen. To line up the i.f., clip the oscillator leads on ground and the 61.7 mixer grid - with the coils out of their sockets - set the oscillator to 465 kc ., and adjust the trimmers to give maximum deflection of the 6E5. If the "eye" closes entirely, decrease the test oscillator output or reduce the r.f. gain control so that a definite maximum point can be passed through on each trimmer.

If no test oscillator is available, the c.w. beat oscillator can be used for the purpose. To set the b.o. on the proper frequency, connect a wire to its plate and bring it near the lead-in to a broadcast receiver. Tune the latter to 930 kc . and adjust the beat oscillator until its second harmonic is at zero beat with the station heard. Then couple the b.o. output to the grid of the mixer simply taking a turn around the grid cap should be enough - connect the grid to ground through a resistor of a megohm or so, and line up as already described.

The i.f. should show no

FIC. 742 - UNDERNEATII TIIE IIIGH-PERFORMANCE SUPER'S CIIASSIS
Renistors and by-pans condensers are placed to give ahort, direct connections. Other eamponent are located an dencribed in the text.

THE RADIO AMATEUR'S HANDB00K

HIGI-PERFORMANCE SLPERILEF COII. TABIE
Oscillator, L_{2}
Mixer, L_{1}

Band	Total Turns	Cath. Tap	Band Spread Tap	Total Turns	$\begin{aligned} & \text { B.S. } \\ & \text { Tap } \end{aligned}$	Cath. coil. Turns	$\begin{aligned} & \text { Ant. } \\ & \text { Coil } \\ & \text { Turns } \end{aligned}$
28 Mc.	3.0	1.0	0.25	3.3	0.25	0.8	2
14 Mc .	8.3	2.8	1.5	8.3	1.5	0.8	3
7 Mc .	16.8	4.8	4.0	16.8	4.0	0.4	4
3.5 Mc .	29.3	8.8	11.5	29.3	12.5	0.5	9
1.75 Mc.	50.3	17.8	23.5	55.3	30.5	0.5	12

Oscillator coils are space-wound to occupy a length of $11 / 2$ inches, on $1 \frac{1}{2}$-inch diameter forms. Nixer coils are space-wound to occupy a length of $11 / 4$ inches, on similar forms, except $1.75-\mathrm{Mc}$, coil which is close-wound. Wire is No. 24 d.s.c. The cathode coil on L_{1} is wound in the opposite direction to the grid coil, starting from the ground end of the grid coil. It is very closely coupled to the grid coil. Antenna coils are close-wound, spaced about $1 / 4 \mathrm{inch}$ from grid coil at ground end. Cathode tay on L_{2}, and band-spread tajs on L_{1} and L_{2}, are measured from the ground end of each grid coil.

Specifications are given to the nearest tenth of a turn. The tenths can be measured off quite accurately by making a paper scale equal in length to the circumference of the coil form and dividing it into ten equal parts. Spacing between turns should be adjusted to be as uniforin as possible, and the turns doped in place after the coil is finished. Coil forms are National 6-prong, with corresponding coil sockets.
negligible response as a resonator at other frequencies in this vicinity. To insure active response, the crystal is usually mounted in a holder having an air gap of approximately 0.001 inch between the crystal and one plate.

The crystal serves as the selective series coupling element between the input transformer T_{1} and the output transformer T_{2}. Since the crystal has a seriesresonant impedance of the order of 2500 to 3000 ohms, a step-up is provided in the out put transformer to give an efficient match between the crystal network and the high-impedance tuned grid circuit of the following amplifier. This is obtained either by the auto transformer connection of T_{2} in A, or by the separate primary L_{4} in B and C. For 450 to 465 c. intermediates, L_{3} is of approximately 1.2-millihenry inductance, as is also the secondary of the input transformer, L_{2}, in A and B. In C, input primary L_{1} is approximately 1.2 mh . and C_{1} is a $100-$ $\mu \mu \mathrm{fd}$. variable, while the center-tapped input secondary L_{2} is of approximately $1 / 3$ the primary inductance, to give an impedance step-down from the tuned pri-
but they should work out quite closely with reasonable care in duplication.

QUARTZ CIRYSTAL FMCTERE

T[he quartz crystal filters used in the i.f. amplifiers of single-signal type receivers are of two distinct types. One type permits adjustment of the sharpness of crystal resonance (selectivity) from the maximum usable for c.w. telegraph reception to a minimum which permits reception of telephone signals with fair intelligibility, while the other type has a practically fixed sharpness of resonance. Typical circuits of both types of filters are shown in Fig. 744, A and B being variable band-width circuits while C is a fixed selectivity circuit. In each of the three arrangements shown, the crystal, which is connected in one arm of a bridge circuit, is especially ground to have a series-resonant frequency corresponding to the receiver's intermediate frequency and to have

FIG. 743-THE HIGII-PERFORMANCE SUPERHET'S COIL SOCKET CONNECTIONS AS VIEWED FROM THE TOF
mary L_{1}, and is coupled closely to the latter. In A and $l 3$, the untuned primary L_{1} has approximately 5.5 -millihenry inductance and is closely coupled to L_{2}. In each case the output coupling condenser C_{3}, which allows adjustment to compensate for crystal variations, is of approximately $50-\mu \mu \mathrm{fd}$. maximum capacitance. Since none of the coupling values in the filter circuit is especially critical, a fixed condenser of this capacitance is sometimes used at C_{3}. In all three circuits, the "rejection control" condenser C_{2} has a maximum capacitance of 10 $\mu \mu \mathrm{fd}$. or so and a very low minimum. The switch, $S w$, is used to short out the crystal for "straight" superhet reception with ordinary selectivity. In the construction of such filters, the input and output circuits are shielded from each other.

Variable Selectivity Action

In circuits of the type of A and B, variable selectivity is obtained by adjustment of the variable input impedance, which is effectively in series with the crystal resonator, by means of the "Band Width" control. This control varies $C_{1}(50 \mu \mu \mathrm{fd}$. in A and $100 \mu \mu \mathrm{fd}$. in $B)$, which tunes the balanced secondary circuit of T_{1}. When the secondary is tuned to i.f. resonance, which is also the series-resonant frequency of the crystal, the parallel impedance of the $L_{2}-C_{1}$ combination is maximum and is purely resistive. Since the secondary circuit is center-tapped, one-fourth of this resistive impedance (approximately 25,000 ohms) is in

RECEIVER DESIGN AND CONSTRUCTION

series with the crystal, through C_{3} and L_{4}. This effective resistance lowers the Q of the crystal circuit and makes its selectivity minimum. At the same time, the voltage applied to the crystal circuit is maximum.

When the input circuit is detuned from the crystal resonant frequency, the resistance component of the input impedance decreases, and so does the total parallel impedance. Accordingly, the selectivity of the crystal circuit becomes higher and the applied voltage falls off. At first the resistance decreases faster than the applied voltage, with the result that at first the c.w. output from the filter increases as the selectivity is increased. The output then falls off gradually as the input circuit is detuned farther from resonance and the selectivity becomes still higher. The net result of this behavior is that the filter output for a pure c.w. signal is least when the band width is the greatest (input tuned to resonance), then increases to maximum at medium selectivity, and finally falls off slightly at maximum selectivity. The total variation is only a few decibels, however.

The selectivity can be varied over a range of more than 12 to 1 , at 10 times down, with the crystal filter. The maximum selectivity is more than 35 times that obtained with the crystal filter switched out in typical receivers having two i.f. stages.

Adjustable Rejection

The crystal is connected in the bridge circuit so that counter voltage of controllable phase can be applied to the output side of the filter so as to modify the shape of the crystal's normal resonance curve, both to prevent unselective transmission through the capacitance of the holder and to make the crystal antiresonant for a particular interfering signal in a range from a few kilocycles above to a few kilocycles below the series-resonant frequency.

The capacitive reactance of the crystal electrodes normally resonates with the inductive reactance of the crystal to make this part of the circuit anti-resonant at a frequency approximately 0.5 percent above crystal resonance. By means of the phasing condenser C_{2} the effect of the capacitive reactance of the holder can be modified to shift the anti-resonant frequency, or to make the crystal resonance curve practically symmetrical. Rejection of at least 60 db for interference up to within a few hundred cycles of resonance on either side can be obtained. Fig. 732 illustrates the type of resonance curve obtained with C_{2} set to reject the audio image of a heterodyned c. w. signal.

Rejection is practically independent of bandwidth control. The phasing condenser is sometimes used as a "selectivity" control to
broaden the response in filters of the fixed band-width type (Fig. 744-C) by adjusting its capacitance above or below the rejection region. However, this only serves to by-pass the crystal circuit, in effect, and the phasing condenser is then ineffectual for rejection of interfering signals.

NOISE INTBIR FEIRENCE IREIDUCTHON

DIuch of the interference experienced in reception of amateur signals is caused by domestic electrical equipment and automobile ignition systems. The interference is of two types in its effects. The first is of the "hiss" type consisting of overlapping pulses, similar in nature to the receiver noise previously discussed. It is largely reduced by high selectivity in the receiver, especially for code reception. The second is the "pistol shot" or "machine gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference is usually caused by commutator sparking in d.c. and series a.c. motors, while the "shot" type results from separated spark discharges (a.c. power leaks, switch and key clicks, ignition sparks, and the like).

F1G. 744 - TIIREE TYI'ES OF CRYSTAL FILTER CFRCUITS
Circuits A and \mathbf{B} give varialle band width, while C is a fixed sharpness of resonance circuit. All three have adjustable rejection. Circuit values for 450 to 500 kc . operation are given in the text.

THE RADIO AMATRUR'S HANDB00K

With the "hiss" type, both the effective (r.m.s.) and peak voltage values are reduced as the square-root of the ratio of reduction in receiver effective band-width; but with the "shot" type of interference, while the r.m.s. voltage value varies as the square-root of the effective band-width, the peak value is reduced in direct proportion to the reduction in band-width. This occurs because the damped wave trains resulting from the impulses are prolonged as the selectivity is increased and will overlap if the selectivity is made high enough. This accounts for the continuous "ringing" effect noticed with crystal-filter receivers when there is severe spark interference.

Both "hiss" and "shot" interference may be reduced by use of a receiving antenna system of the "noise reduction" type, where the antenna proper is located remotely from the
noise sources and connected to the receiver by a balanced or shielded transmission line which has small pick-up. Other methods may be applied in the receiver itself.

Noise-Silencing I.F. System

One method which is particularly effective against "shot" type interference is applied to the i.f. circuit of a superhet. This system operates to make the noise pulses "commit suicide" before they have a chance to reach the second detector. Fig. 745 gives the circuit of such a silencer applied to the second i.f. stage. Noise voltage in excess of the desired signal's maximum i.f. voltage is taken off at the grid of the i.f. amplifier, amplified by the noise amplifier stage and rectified by the fullwave diode noise rectifier. The noise circuits are tuned to the i.f. The rectified noise voltage is applied as a pulse of negative bias to the No. 3 grid of the 6L7 used as an i.f. amplifier, wholly or partially disabling this stage for the duration of the individual noise pulse, depending on the amplitude of the noise voltage. The noise amplifier-rectifier circuit is biased, so that rectification will not start until noise voltage exceeds the de-sired-signal amplitude, by means of the "Threshold Control." For reception with automatic volume control, the a.v.c. voltage is also applied to the grid of the noise amplifier to augment this threshold bias. This system of noise silencing gives signal-noise ratio improvement of the order of 30 db (power ratio of 1000) with heavy ignition

FIG. 745 - SILENCER CIHCUIT APPLIED TO THE SECOND I.F. STAGE OF A TYPICAL SUPERIIET. THIS CHRCUIT IS NOT ADAPTABLE TO RECEIVERS IN WIHCII A COMMON BIAS CIRCUIT IS USED FOR I.F. AND AUDIO CONTROL GRIDS. THE NEGA-TIVE-B OF THE HIGH-VOLTAGE SUIPILY MUST BE GROUNDED AT THE FLLTER OUTIUU
$\mathrm{C}_{2}-\mathbf{0 . 0 1}-\mu \mathrm{fd}$. grid by-pass condensers, 200-volt tubular.
$\mathrm{C}_{3}-0.01-$ to $0.1-\mu \mathrm{fd}$. plate by-pass condensers, 400volt tubular.
$\mathrm{C}_{7}-\mathbf{0 . 1 - \mu} \mathrm{fd}$. cathode by-pass condensers, 200 -volt tubular.
Cs - 0.01- to 0.1- μ fi. screen by-pass condensers, 400volt tuloular.
C9-0.25- $\mu \mathrm{fd}$. main ly-pass condenser, 600-volt tubular.
C_{12} - 50- $\mu \mathrm{ffl}$. detector load by-pass, mica midget.
$\mathrm{C}_{13}-50-\mu \mu \mathrm{fd}$. beat osc. coupling condenser, mica midget.
$\mathrm{C}_{14}-\mathbf{0 . 1 - \mu \mathrm { fd } \text { . detector output coupling condenser, }}$ 200-volt tubular.
(21 - 0- to $250-\mu \mu \mathrm{fl}$. noise rectifier load by-pass, mica midget.
$\mathrm{C}_{22}-\mathbf{0 . 1}-\mu \mathrm{fl}$. threshold resistor by-pass, 200-volt tubular.
$\mathrm{C}_{23}-50-\mu \mu \mathrm{fd}$. silencer r.f. by-pase, mica midget.
$\mathrm{K}_{2}-100,000-\mathrm{ohm}$ grid filtering resistor, $1 / 2$-watt.
K_{5} - 350- to 1000 -ohm cathode resistors, $1 / 2$-watt.
$\mathrm{K}_{7}-100,000$-ohm ecreen-voltage dropping resist ora. 1/2-watt.
R_{13} - 500-ohm manual r.f. gain control.
l_{14} - 1-megohm volume control.
$R_{15}-50,000$-ohm detector load resistor, $1 / 2$-watt.
$\mathrm{R}_{23}-20,000-\mathrm{ohm}$ threshold bleeder resistor, 1-watt.
K_{24} - 5000 -ohm threshold control potentiometer, volume-control type.
$1229-100,000-$ ohm noise rectifier Ioad resistor, $1 / 2$ watt.
R30-I-megohm a.v.c. filter resistor, $1 / 2$-watt.
RFC - 20-millihenry r.f. choke.
T_{2} - Double air-tuned i.f. trangformer (Hammarlund AITT-465).
T_{3} and T_{4} - Single air-tuned full-wave diode coupling transformers (Sickles 456-kc.).

RRCEIVER DESIGY AND CONStruction

interference, raising the signal-noise ratio from -10 db without the silencer to +20 db with the silencer in a typical instance.

A Noise-Silencer and Crystal Filter Unit

In a receiver using a crystal filter, application of the noise silencer to a subsequent stage is ineffectual with noise interference of the pulse type, because of the reduction in peak-to-effective-voltage ratio and elongation of the noise wave trains in the high-selectivity circuit. The silencer must be able to get at the noise before this occurs; that is, it must precede the crystal filter. A practical circuit for accomplishing this is shown in Fig. 747. It operates in the same manner as the second i.f. stage arrangement, except that the signal gain of the 6L7 stage is reduced and its noisecontrol sensitivity increased to obtain action at the lower amplification level. This is accomplished by reduced screen voltage obtained from the screen-cathode voltage divider, which also maintains relatively high cathode-drop bias on the signal and silencer grids.

The noise-silencer and crystal filter unit diagrammed in Fig. 747 and shown in Figs. 746 and 748 is especially designed for the "HighPerformance" receiver, but is also adaptable to other receivers using one or two i.f. stages. ${ }^{6}$

The 6 L 7 is an extra i.f. amplifier tube, preceding the crystal filter; the paralleled control grids of the 6L7 and 6.I7 pick up their i.f. exciting voltages from the grid cap which mormally goes to the i.f. tube in the receiver. After passing through the unit, the i.f. signal goes to the grid of the receiver i.f. tube.

The primary of the crystal input transformer, T_{1}, connected in the plate circuit of the 6L7, is untuned. The particular transformer used has its secondary tuned by an air trimmer of the usual type; to get the balanced circuit needed for the crystal filter, and also to provide a selectivity control, a split-stator condenser, C_{1}, is connected across the secondary circuit. C_{2} is the phasing condenser or rejection control. The crystal output transformer, T_{2}, is a single-winding affair, also airtuned, tapped to give a suitable match for the crystal impedance. The tap is coupled to the crystal through a $50-\mu \mu \mathrm{fd}$. fixed condenser. The ground terminal of T_{2} is indicated in the diagram as going to the a.v.c. line in the receiver. In case the unit is applied to another type of receiver which does not have a.v.c., this lead can be connected directly to the chas:sis, in which case C_{11} may be omitted.

In the silencer circuit, the 6 J 7 noise amplifier is biased for normal operation, but its cath--ode is connected to the rotor arm of a variable resistor, R_{8}, so that the bias applied to its grid can be varied between a minimum of three wolts (resulting from the use of the cathode re-

FIG. 746 - TIIE CRYSTAL FHITER AND NOISE:SIIENVEFR UNIT ATTACIIED TO THE IHGHPERFORMANCE SU1PER
The unit bolta to the right-hand aide of the reciver ehassis. No receiver wiring changes are necessary. The various componentare identified in the text.
sistor R_{5}) and a maximum of about 20 volts. R_{8}, by setting the point at which the noise circuit starts to operate, acts as a threshold control. The cathode of the 6116 noise rectifier also is connected to the novable arm of R_{8} to bias the diode plates so that rectification will not take place until the incoming signal or noise reaches the desired level. The switch $S w_{2}$ opens the cathode circuits of both tubes to disable the noise-silencing circuit when desired.
Only the primary of the diode input transformer is tuned. Its secondary is center-tapped so that the diode can be used as a full-wave rectifier. This helps prevent r.f. from getting into the line to the No. 3 grid of the 6 L 7 , where it might upset the action of the silencer. Additional filtering is provided by (' $3, C_{4}$, and RFC.
The chassis is made up of ahuminum, 4 inches wide, 10 inches deep and 3 inches high, to line up with the receiver chassis. The layout permits getting quite short leads from the first i.f. transformer in the receiver and back again into the grid of the i.f. amplifier tube.

Looking at Fig. 746, the crystal filter occupies the left-hand section and the noise silencer the right, with the exception of C_{1}, the selectivity control. The 6 L 7 is in the left rear corner. In front of it is the output transformer, T_{2},

is set at minimum its rotary plates touch the brass and short-circuit the crystal. The "switch" is mounted on a spare hole in the isolantite mounting plate of the condenser.
The r.f. choke in the silencing circuit is mounted on the side of the chassis near the 6 H 6 socket. The whole unit is fastened to the receiver chassis with machine screws; a hole through both furnishes an inlet for filament, B plus, and a.v.c. leads. These are soldered to convenient corresponding leads in the receiver itself; their length is unimportant.

When the wiring of the silencer-filter unit and attachment to the other receiver circuits has been completed, the next step is to align the i.f. circuits to the crystal fre-
FIG. 747 - CIRCUIT DIAGRAM OF THE CR YSTAL FILTER AND NOISE-SILENCER UNIT

[^7]then the crystal socket, and finally, right at the front, the input transformer, T_{1}. The 6L7 plate lead is run through shield braid to prevent coupling to the other wiring. On the righthand side, the 6 J 7 is at the rear right, next is the diode transformer T_{3}, next the 6H6, and finally C_{1}, the crystal selectivity control.

By-pass condensers underneath the chassis are placed so that short connections to the chassis can be made. The phasing condenser, C_{2}, is mounted below deck by one of the brackets furnished for that purpose. An insulating coupling between the condenser rotor and an extension shaft brings the control out to the front. A condenser with an insulating mounting is essential, since neither side of C_{2} can be grounded. The crystal on-off switch, S_{1}, is simply a piece of thin brass cut so that when C_{2}
quency (465 kc .). The i.f. circuit can be first aligned using the crystal in a separate test oscillator circuit as shown in Chapter Sixteen. During this process the silencer threshold adjustment should be in the "off" position. If the i.f. circuit has been aligned previously, using a $465-\mathrm{kc}$. test oscillator, it is not entirely necessary to use the crystal in a separate oscillator circuit and an alternative procedure can be followed. The first step is to find the main peak of the crystal.

Remove the grid cap from the first detector in the receiver and connect the appropriate leads from the test oscillator. Using headphones, with the beat oscillator off, $S w_{2}$ open and $S w_{1}$ open, vary the oscillator frequency slowly while listening closely for the characteristic "plop" or chirp as the oscillator frequency goes through a crystal peak. If more than one peak shows up (usually there is more than one, but not closer than seven or eight, kilocycles to the main peak), it will be necessary to go through the tuning procedure on each in order to determine which is the main peak. The principal one will give the greatest response.

With the test oscillator peaked on the crystal frequency, tune all circuits for maximum deflection of the 6E5. It may be necessary to back off the r.f. gain as the circuits come into line, to keep the deflection within the right operating range. Readjust the test oscillator occasionally to keep the frequency on the crystal peak. To adjust T_{1}, set C_{1} near maximum capacity and line up with the trimmer in T_{1}. When the selectivity control, C_{1}, is set to give maximum response with the crystal "in," the 6E5 deflection should be the same with $S w_{1}$ either closed or open.

To adjust the noise silencer, close $S w_{2}$ and advance R_{8} to about four-fifths maximum.

Again using the test oscillator, adjust the condenser in T_{3} to block off the signal. The point at which blocking occurs will depend upon the signal strength and the setting of R_{8}; use a signal which will deflect the 6E5 to about half scale and keep retarding R_{8} until the signal just blocks off when T_{s} is tuned to resonance. The blocking is very easily seen on the "eye." With a local noise source the adjustment of T_{3} can be made equally well without a signal - possibly better by adjusting for greatest noise suppression.

If no test oscillator is available, a strong incoming signal may be used for lining-up purposes. It should, however, be perfectly steady. A local broadcast harmonic or signal from the freq-meter-monitor is best.

In operation, with the crystal switch, $S w_{1}$, closed (this occurs with the phasing condenser,

fig. 748 - SUB-baSE WIRING OF THE FILTERSILENCER
In most cases, parts are simply placed in convenient locations, using short r.f. leads. The d.c. and filament supply connections to the receiver go through the grommet in the side of the unit.

FIG. 749 - TIIE HICH-PERFORMANCE AMATEUR SUPERIET INCORPORATING VARIABLE-SELECTIVITY CRYSTAL FILTER AND NOISE-SILENCER CIRCUITS
C_{2}, set at minimum, as already described), the crystal is cut out of the circuit and the receiver is simply a "straight" superhet. C_{1} should in that case be set for maximum signal strength. With the switch open, and C_{1} set at the same point, the selectivity is greatly increased and the signal strength unchanged. Tune in a signal to maximum strength, using the 6 E 5 as an indicator, and set the beat oscillator to the desired pitch. Tune the main dial to the same pitch on the other side of zero beat, without touching anything else. This "other side" will be quite weak compared to the right setting. Now vary C_{2} slowly until the beat note disappears, or reaches a very low minimum. This process eliminates the audiofrequency image and is an important setting in obtaining maximum c.w. selectivity. The selectivity can be further increased by tuning C_{1} down in capacity from the resonance setting; maximum selectivity will be found with C_{1} considerably on the high-frequency side of i.f. resonance. At maximum selectivity (C_{1} all out) some decrease in signal strength results, although the decrease is unimportant compared with the increase in selectivity. Should a strong interfering signal still cause trouble, it can often be eliminated by careful adjustment of C_{2}, which moves the point of maximum rejection over a small frequency range. For tuning across the band, and for most communication, the selectivity will be sufficient, with C_{1} set for optimum selectivity - at or slightly higher than resonance - and with C_{2} set for rejection of the a.f. image.

The action of the silencer in taking out strong noise peaks of the auto-ignition type, plus the selectivity of the crystal in reducing

THE RADIO AMATEUR'S HANDB00K

noise of the hiss type, makes it possible to copy weak signals through a noise background which completely masks then with the ordinary superhet arrangement.

".Sere-Sati" Second Detector Noise Silencer
Fig. 750 shows the "see-saw" circuit of B. S. MeCutchen applied to a conventional superheterodyne receiver. ${ }^{7}$ The left-hand diode elements of the 6 H 6 are connected in the usual manner and form the signal detector, R_{1} being the load resistance. The right-hand diode elements, together with the anode bias battery and potentiometer R_{3}, form the noise "gate." The double-pole switch throws the silencer in and out of operation and at the same time prevents the discharge of the anode bias battery through the potentiometer when not in use.

The rectifying action of the normal signal diode builds up a negative voltage across resistance R_{1}. The amplitude of this voltage varies with the modulation of the received signal. If the moving arm of potentiometer R_{3} is moved all the way to the ground end, the righthand diode elements, which are reverse-connected, will build up a positive potential across R_{1}. In this condition the see-saw is in balance; one half cycle of i.f. builds up a negative potential and the next half cycle of i.f. drains it off again, the net result being that no audio signal is produced. If the arm of the potentiometer is moved away from ground, thus applying negative bias to the gate diode, this diode will not function until the amplitude of
the received signal exceeds the bias potential. The correct setting is easily determined in practice by simply reducing the bias until the quality of the received signal begins to be hurt, and then increasing the bias very slightly. When a noise pulse of amplitude in excess of the signal comes in, the gate diode goes into operation and cuts out that portion of the noise pulse which is above the signal level, thus preventing it from being demodulated into an audio pulse.

The purpose of R_{2} is to handicap the signal diode slightly, so that when noise pulses bring the gate diode into operation, it will have a little leverage on its end of the see-saw. This resistance is important, as it not only improves the degree of elimination, but also makes the setting of the potentiometer less critical. In most cases a value of 1000 ohms will be satisfactory, but this depends to some extent on the particular receiver, and it is suggested that a range of values from several hundred to several thousand ohms be tried.

As resistance R_{2} handicaps the signal diode, in the presence of very strong noise interference the gate diode will win out, and a positive resultant audio voltage will tend to be built up across the load resistor R_{1}. To overcome this condition, a leakage diode is connected as shown across R_{1}, to drain off any positive potential. (For further details see QST, July, 1937.)

Noise-and Signal-Limiting Detector Circuil

A circuit which provides amplitude limiting for noise pulses and which also is useful for

H•IG. 751 - NOISE- ANI SIGNAL-LIMITING DIODE DETECTOR CIRCUIT

RECEIVER DESIGN AND CONSTRUCTION

maintaining approximately constant c.w. signal output with fading is shown in Fig. 751. The signal from the last i.f. transformer is detected by the No. 1 diode section, the useful a.f. signal voltage being taken off across the 500,000 -ohm load resistor. The No. 2 diode section of this same tube is effectively in shunt with this resistor, with its anode biased negative with respect to its cathode by the voltage obtained across the $3000-\mathrm{ohm}$ potentiometer. Excessive signals or pulses of noise great enough to cause the voltage across the $500,000-\mathrm{ohm}$ load resistor to exceed the negative bias on D_{2} will cause the No. 2 diode to draw current and present a low impedance across the signal diode load circuit, thus limiting the signal and noise output. In operation, the potentiometer should be adjusted so that the signal output is not distorted in the case of 'phone reception, or is at the desired average level in the case of c.w. telegraph. With this circuit the a.v.c. voltage should be obtained from a separate rectifier. (Adapted from the limiter circuit used in RCA communicationtype receivers.)

Automatic Noise Suppressor Circuit

A second-detector noise limiting circuit which automatically adjusts itself to the received carrier level (J. E. Dickert) ${ }^{8}$ is shown in Fig. 752. The diode load circuit consists of R_{6}, R_{7}, R_{8} (shunted by the high-resistance audio volume control, R_{4}) and R_{5} in series. The cathode of the 6N7 noise-limiter is tapped on the load resistor at a point such that the average rectified carrier voltage (negative) at its grid is approximately twice the negative voltage at the cathode, both measured with reference to ground. A filter network, $R_{1} C_{1}$, is inserted in the grid circuit so that the audio modulation on the carrier does not reach the grid, hence the grid potential is maintained at substantially the rectified carrier voltage alone. The cathode, however, is free to follow the modulation, and when the modulation is 100% the peak cathode voltage will just equal the steady grid voltage.

At all modulation percentages below 100% the grid is negative with respeet to cathode and current cannot flow in the 6N7 platecathode circuit. A noise pulse exceeding the peak voltage which represents 100% modulation will, however, make the grid positive with respect to cathode and the relatively-low plate-cathode resistance of the 6N7 shunts the high-resistance audio output circuit, effectively short-circuiting it so that there is practically no response for the duration of the noise peak over the 100% modulation limit. The system automatically adjusts itself to the carrier level, and squelches noise when no carrier is present.
R_{5} is used to make the noise-limiting tube more sensitive, by applying to the plate an audio voltage out of phase with the cathode voltage so that at the instant the grid goes positive with respect to cathode, the highest positive potential also is applied to the plate, thus further lowering the effective platecathode resistance.

By proportioning the resistors properly, the system can be adjusted to give silencing at any pre-determined modulation percentage. With the constants given, silencing starts at about

FIG. 752 - AUTOMATIC NOISE LIMITING; (IRCUIT FOR SUPERHETI RECEIVERS

[^8]80% modulation, which has been found to give effective noise limiting without introducing objectionable audio distortion. The circuit also is effective in c.w. reception, the time constant of $R_{1} C_{1}$ being suffieiently rapid to follow normal keying speeds. R_{6} may be reduced or even eliminated for more effective silencing in e.w. reception.

Audio Limiter Circuits

A considerable degree of noise reduction in code reception also can be aecomplished by limiter arrangements applied to the output circuits of both superhet and regenerative receivers. ${ }^{9}$ Such limiters also maintain the signal output nearly constant with fading, the effect for both noise and signal limiting being shown in Fig. 753. Diagrams of several output limiter circuits are shown in Fig. 754. In the

THE RADIO AMATEUR'S HANDB00K

circuit of A, a neon tube is connected effectively in parallel with the headset, through the audio transformer T_{1}, and sufficient d.c. volt-

No Limiting
output Limiting A - NOISE

No Limiting 9

Output limiting
output Limiting
B-FADING SIGNAL
FIG. 753 - ILLUSTRATING LIMITER ACTION WITH NOISE-PEAK INTERFERENCE AND WITH A FAIING SIGNAL.
age is applied to the tube so that it will ionize and short-circuit the audio output on peaks exceeding the desired signal level. The tube should have the usual limiting resistor in the base removed. This arrangement is less effective than the others shown. Circuit B employs a triode tube which is operated at practically saturation signal excitation at normal plate voltage, with the output to the 'phones tapped to give a comfortable audio level. Increase in signal strength or noise peaks will then be ineffectual. This is not as satisfactory as the triode circuit of C, in which the tube is operated at reduced plate voltage (approximately 10 volts) so that it sat-
urates at a lower signal level. The arrangement of D has the best limiting characteristics, and is preferred. A pentode audio tube is operated at reduced screen voltage (35 volts or so), so that output power remains practically constant over a grid excitation voltage range of more than 100 -to-1. The output limiter systems are simple and adaptable to most all receivers. However, they cannot prevent noise peaks from overloading previous circuits and do not bring the noise amplitude down below the level of the signal as does the i.f. silencer method. They are ineffectual with shock excitation of a previous high-selectivity circuit. (Refer to article by H. A. Robinson, February, 1936, QST, for details.)

Noise-Suppressor Audio Circuit

The audio noise-suppressor circuit dia-

FIG. 755 - NOISE-SUlPPRESSOR CIRCUIT FOR AUDIO AMPLIFIERS

HIG. 751-OUTIUI LIMITER CIRCUIIS
$\mathrm{C}_{1}-0.25 \mu \mathrm{fl}$.
$\mathbf{C}_{2}-0.01 \mu \mathrm{fd}$.
P-50,000-ohm limiter control (preferably wire wound).
$\mathrm{R}_{1}-0.5 \mathrm{mog}$.
$\mathrm{R}_{\mathrm{z}}-2000$ ohms.
Rs_{8} - 600 ohmm.
$\mathrm{V}_{1}-1$-watt neon tube (ree text).
grammed in Fig. 755 is adapted from the system used in the RCA ACR-111 receiver. As with the systems previously described, it operates on pulse-type noise interference and is adaptable to receivers in which highselectivity circuits are not used prior to the audio amplifier. It may be adapted to regenerative autodyne receivers as well as to superhets. In this circuit, the suppressor is a $6 J 7$ or similar pentode tube whose plate circuit effectively shunts the input of the following audio stage. The audio signal voltage across R_{6}, and consequently across the input circuit of the following stage, will depend on the ratio of the plate impedance of the pentode suppressor tube to the resistance of R_{5}, the series combination being essentially

RECEIVER DESIGN AND CONSTRUCTION

a voltage-dividing network. When the plate impedance is high, the ratio will be high, so that practically the total audio voltage developed across R_{1} and R_{2} will appear across the suppressor tube's plate circuit and be applied to the following stage. With low plate impedance (reduced negative bias on the suppressor), however, the input to the following stage will be practically shorted. In operation, the control-grid bias on the suppressor tube is adjusted just below the point of plate current cut-off by means of the potentiometer R_{7}, so that the desired signal is unimpaired by the suppressor. Then short-duration noise impulses of greater amplitude, tending to make the grid more positive, will cause the suppressor plate impedance to drop to a very low value during each pulse, with a consequent reduction of input to the following stage (and reduction of noise output) during these intervals.

ANTENNA TUNING UNITS

Dbviously the signal to noise ratio will be improved by a means which makes the signal strength at the receiver input as large as

FIG. 756 - THREE TYPES OF CIRCUITS FOR COUPLING ANTENNA TO RECEIVEIR
A, balanced pi-section network; B, single-ended pisection network; C, tuned circuit with taps for matching impedances.
$C_{1}-150-\mu \mu$ f. variable.
$C_{2}-100-\mu \mu$ fd. variable.
$\mathrm{C}_{3}-50-\mu \mu \mathrm{fd}$. variable or larger.
$L_{1}, L_{2}, L_{3}-25$ turns No. 26, spaced to occupy l-inch length on l-inch diameter form; tapped at 2nd, 5th, 9 th, and 15 th turns.
L_{4} - Proportioned to resonate with C_{3} in the desired band.
$L_{5}-3$ or 4 turns wound on L_{4}; see text.

FIG. 757 - RECEIVING-TYPE ANTENNA COUPLER USING TIE CIRCUIT OF FIG. 756-A
A two-section tap-switch is used to vary the inductance of L_{1} and L_{2}. Input and output terminals are mounted on the rear of C_{1} and C_{2}.
possible. This can be done by tuning the antenna system to the incoming signal, a process which is also favorable to the image ratio, as has already been pointed out. A separate antenna tuning unit, designed to couple between antenna and receiver, therefore is a desirable addition to the receiving equipment. It is especially useful when, as is becoming common practice, the transmitting antenna is used for receiving.

Typical couplers of this type are shown diagrammatically in Fig. 756. At A is the balanced pi-section matching network, applicable to antenna systems using two-wire feeders. Specifications suitable for average conditions are given. A unit of this type is shown in Fig. 757. Adjustment is simple; the taps on L_{1} and L_{2} are varied simultaneously so that the same inductance is in use in each branch, with trial settings of C_{1} and C_{2} until the signal strength on the desired frequency is maximum. With the average antenna system the settings are not critical, although slight readjustment may be necessary when going from one end to the other of a wide band.

The single-ended pi-section filter is shown at B. This filter is intended for use with a single-wire antenna or other system worked against ground. The unit of Fig. 757 may be used with the coil on the ground side shorted out.

A parallel-resonant circuit with provision for impedance matching is shown at C^{\prime}. The coil L_{4} should be constructed so that the turns readily may be tapped. The pickup coil, L_{5}, may consist of three or four turns wound around the center of L_{4}, for the usual receiver having approximately 500 -ohm input impedance. The feeder taps on L_{4} should be adjusted for maximum signal strength when C_{3} is tuned to resonance. In case a single-wire antenna is used, L_{5} should be coupled to the bottom of L_{4}, which in turn is connected to ground. The antenna is tapped on L_{4} at the point giving maximum signal as before.

THE RADIO AMATEUR'S HANDROOK

 SIOWIN: 'THBE ANI TUNING UNII

I.expensive superhet typereceivers in which the mixer is coupled to the antenna usually have poor image ratios, especially at 14 and 28 Mr. On the latter band, in fact, even a tuned r.f. stage ahead of the mixer leaves much to be desired in image suppression. Also, it. is often helpful to secure more over-all amplification, with sets having a small number of tubes. A separate preselector stage, adapted to working into the receiver's antema input terminals, is helpful in such cases.
A simple regenerative preselector, suitable for use with practically any type of super-het receiver, is shown in Fig. 758. ${ }^{10}$ Any r.f. pentodetype tube may be used; the circuit is quite similar to that used in the two-tube receiver described earlier in the chapter, but with the parallel-fed plate circuit of the tube capacitycoupled to the receiver antenna-inpnt circuit. Coil switching is used to facilitate band-changing, but plug-in coils may be substituted if desired; the coil assembly shown is a manufactured unit intended for regenerative receivers.

To adjust the circuit so that the desired a mateur band is properly located on the tuning dial when the switch is set at the correct position, mica-dielectric trimming condensers, (2 , are connected in parallel with the tuning coils.

In the circuit diagram, Fig. 759, it will be noted that the antenna is coupled through a variable condenser, C_{1}. This is a mica-dielectric unit of the trimmer type, and is supplied as part of the commercial assembly.

Blocking condenser ('4, resistor R_{1}, and the r.f. choke in series with R_{1} form the cathode bias circuit of the amplifier. No control is specifically provided for r.f. gain, although a $2000-\mathrm{ohm}$ variable resistor could be added in series with the 300 -ohm bias resistor for this purpose if desired. However, a wide range of
amplification is available with the regeneration control resistor, R_{3}, in addition to the range provided by the r.f. gain control in the receiver.
The grid leak and grid condenser are removed from the coil-condenser assembly and replaced by a grid lead approximately $21 / 2$ inches long. The single wire connection to the tuning condenser is left intact. Two lug terminals are provided at the rear of the band switch; the one nearer the tuning condenser is the cathode-tap switch terminal and must be connected to the cathode blocking condenser, C_{4}, while the terminal farther from the tuning condenser is wired through the anterna condenser, C_{1}, to the grid connection of the coil switch. This terminal is used for the antenna connection post on the preselector.
Two lug strips are screwed to the aluminum chassis. One strip with a single lug is used to support the end of C_{6} opposite the plate terminal of the tube, and at the same time to provide a terminal for the connection to the antenna post on the receiver. A second strip, with four insulated lugs, provides anchorage for the other connections which must be insulated from the chassis.

The regeneration control resistor, R_{3}, is mounted directly below the coil switch.

FIG. 759 - CIRCUIT DIAGKAM OF THE REGENerative pheselector
(When a metal tube is nsed the shell should be grounded.)
$\mathrm{C}_{1}-5-25-\mu \mu \mathrm{fd}$. variable mica trimmer.
$\mathrm{C}_{2}-\mathbf{5}-25-\mu \mu \mathrm{fd}$. variahle mica trimmer (one for each coil).
C3-15- μ fd. variable air-tuning condenser.
$\mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{0 . 0 1 - \mu \mathrm { fd } \text { . fixed, thbular paper or mica. }}$
C. 6 - $250-\mu \mu \mathrm{fd}$. fixed mica.
H_{1} - $300-\mathrm{ohm}$, 1-watt carbon.
$\mathrm{H}_{2}-50,000$-ohm, 1 -wate carhon.
$H_{3}-25,000$-ohm receiving-type carbon-element potentiometer.
I.1 - (Browning Lahoratorien Unit). See Coil Table.

HFC: - 2.5-millihenry receiving-type r.f. chokes.

recelver design and construction

Power may be taken from the receiver through a four-conductor cable. If the receiver uses 6.3 -volt tubes, a 6 K 7 tube may be used in the preselector; a 58 may be used if the receiver is equipped with 2.5 -volt tubes.

The preselector should be placed as near the receiver as possible to provide for short connections between its output and the receiver antenna terminals. With the antenna connected to the receiver, some amateur station in the 20 - or 40 -meter band should be tuned in. The antenna connection should then be moved from the receiver to the preselector, and the output of the latter connected to the receiver. Then, with the switch of the preselector set for the band on which the receiver is tuned and the tuning condenser dial set at approximately halfscale, the trimmer on the coil in use should be adjusted for maximum signal strength by means of a screwdriver. If the regenerationcontrol resistor is moved from minimum to maximum screenvoltage position during this adjustment process, it will be found that the preselector can be made to oscillate. In operation, R_{3} should be set just below the oscillating point; at this adjustment, the tuning is quite sharp, the trimmer condenser, C_{2}, then should be set so that the band is centered on the tuning dial.

This procedure, which should be repeated on the other amateur bands, need be followed through only once for a single antenna. However, a change of receiving antennas may necessitate slight readjustment of at least the antenna coupling condenser, and possibly of the various trimming condensers as well. The antenna coupling condenser should be set to give a good balance between sensitivity and freedom from blocking. Because only one antenna condenser is used, the final setting is determined by the general operation of the preselector on all bands, or on the bands on which its operation is considered most important.

SIGNAL STIRENGTH ANH TUNING INIDICATDIRS

A usefol accessory to the receiver is an indicator which will show relative signal strength. Not only is it an aid in giving reports, but it also is helpful in aligning the receiver circuits, in conjunction with a test oscillator or other steady signal.

Three types of indicators are shown in Fig. 761. That at A uses an electron-ray tube, several types of which are available. The grid of
the triode section is usually connected to the a.v.c. line as shown; however, it may also be connected to a diode signal rectifier as in Fig. 741. The particular type of tube to use will depend upon the voltage available for its grid; where the a.v.c. voltage is relatively large, a remote-cutoff type tube should be used in preference to the sharp-cutoff type such as the 6 E 5 . The cathode-ray tuning indicator is an inexpensive addition to a superhet recciver,

FIG: 760 - MOITCOM VIEN OF THE REGENERATIVE PIRESEIECTOR

and is useful for tuning and lining-up purposes. It is not readily calibrated for signal-reporting purposes, however.

In B, a milliammeter is connected in series with the d.c. plate leads to the r.f. and i.f. tubes whose grids are controlled by a.v.c. Since the plate current of such tubes varies with the strength of the incoming signal, the meter will indicate relative signal intensity and may be calibrated in " S " points. The scale range of the meter should be chosen to fit the number of tubes in use; the maximum plate current of the average remote-cutoff r.f. pentode is from 7 to 10 milliamperes. The disadvantage of this system is that the meter reading decreases with increasing signal strength. The sensitivity also is limited and cannot easily be controlled.

THE RADIO AMATEUR'S HANDB00K

The system at B uses a $0-1$ milliammeter in a bridge circuit arranged so that the meter reading and signal strength increase together. The current through the branch containing R_{1} should be approximately equal to the current through that containing R_{2}. In some manufactured receivers this is brought about by draining the screen voltage-divider current and the current to the screens of three r.f. pentodes (r.f. and i.f. stages) through R_{2}, the sum of these currents being about equal to the maximum plate current of one a.v.c. controlled tube. Typical values for this type of circuit are given. The sensitivity can be increased by making R_{1}, R_{2} and R_{3} larger. The initial setting is made with the manual gain control set near maximum, when R_{3} should be adjusted to make the meter reading zero with no signal.

HETEIROTANE C.W. IRECEIPTION

The c.w. beat-note obtained with a hetcrodyne oscillator is a piercing tone of practically a single frequency, with unmodulated c.w. transmission. This is somewhat fatiguing in long sessions of operation, although the pitch may be varied by adjustment of the beatoscillator frequency. The character of the sound as well as its actual audio power may be
improved by adding double-sideband tone modulation in an i.f. amplifier stage preceding the final detector. ${ }^{11}$ This is accomplished by using an audio-frequency oscillator to modulate one of the i.f. amplifier tubes. A practical circuit which has been used successfully to modulate the screen of an i.f. stage following the crystal filter in an S.S. superhet receiver is shown in Fig. 762. The effect is much the same as if the modulation had been applied to the signal at the transmitter. The tone should be heard only when a signal passes through the i.f. amplifier, of course, since the tuned i.f. circuits will not transmit the audio frequency except as sidebands on the signal carrier. The actual audio output from the second detector is greater when the modulated signal is heterodyned by the beat oscillator than for the same signal unmodulated, because additional audio power is produced by beats between the c.w. oscillator and the sidebands produced by the tone modulation, while the aural effect makes the signal sound much louder. The tone modulation should be applied in a stage following the crystal filter; otherwise, the sidebands will be largely attenuated by the selectivity of the filter eircuit. In applying this hetcrotone system to a receiver, particu-

FH: 762 - TIIE IHETEROTONE MODULATOR C.IRCIIT
' \mathbf{l}_{1} - I'ush-pull input type audio transformer.
($\lambda_{1}-0.002-\mu \mathrm{fd}$. fixed condenter (paper).
Ci2 - $\mathbf{3 0 0}-\mu \mu \mathrm{fal}$. urimary tuning condenser (various sizes should be tried until tone is between 500 and 1000 e.p.s.).
(:3-I- to 4-رfil. plate by-pass condenser (paper or electrolytie).
(:4-1-to 1- μ fil. screen-supply hy-pass.
C.5 - $0.002-\mu$ fil. screen-grid r.f. by-pass.
$\mathrm{R}_{1}-100,0 \mathrm{MO}-\mathrm{oh}$ m grid leak.
$11_{2}-100,000-$ ohm plate-voltage dropping and filtering resistor.
$\|_{3}$ - Audio load resistor ($100,000-o h m$ or smaller).
IR 4_{4} - $\mathbf{2 0}, 000$-ohm or smaller cathode resiator.
SW - Single-pole toggle switch (audio "On-G)f").

RECEIVER DESIGN AND CONSTRUCTION

lar care must be taken to prevent output of the tone oscillator from reaching the audio circuits directly, and to prevent c.w. beat oscillator voltage from reaching the carlier i.f. circuits. Otherwise, strong continuous tone output will result whether a signal is present or not.

INn addition to the general recciver servicing suggestions already given, there are a few others for troubles peculiar to superhet type receivers. Generally poor performance, characterized by broad tuning and poor sensitivity, calls for checking of the circuit tuning and alignment as previously described. The procedure is to start with the receiver output (audio) and work back through the second detector, i.f., and high-frequency circuits, in the order named.

In case of oscillation in high-frequency amplifier and first detector circuits, as evidenced by squeals or "birdies" with varying of their tuning, look for poor connections in the common ground circuits, especially to the tuning condenser rotors. Inadequate or defective bypass condensers in cathode, plate and screengrid circuits also can cause such oscillation. In some cases it may be advisable to provide a baffle shield between the stators of pre-r.f. amplifier and first-detector ganged tuning condensers, in addition to the usual tube and inter-stage shielding. A metal tube with an ungrounded shell will cause this trouble. Improper screen-grid voltage, as might result with a shorted or too-low screen-grid series resistor, also could be responsible.

Oscillation in the i.f. circuits, independent of high-frequency tuning and indicated by a continuous squeal when the gain is advanced with the c.w. beat oscillator on, will result from similar defects in i.f. amplifier circuits. Inadequate cathode resistor by-pass capacitance is a very common cause of such oscillation. Additional by-pass capacitance, 0.1 to $0.25 \mu \mathrm{fd}$., usually will remedy it. The same applies to screen-grid by-passes of i.f. tubes.
"Birdies" and " mush" occurring with tuning of the high-frequency oscillator may indicate that it is "squegging" or oscillating simultaneously at high and low frequencies. This may be caused by a defective tube, toohigh oscillator plate or screen-grid voltage, excessive feed-back in the oscillator circuit or excessive gridleak resistance.

Excessive "hiss" may be caused by a defective h.f. or i.f. tube, by an open grid circuit, or by misalignment of high-frequency or i.f. circuits. It may be helpful in some cases to reduce the oscillator screen voltage, in the case of an electron-coupled oscillator, or the plate voltage in the case of a triode. The same
symptoms and remedies apply to the c.w. beat oscillator and its coupling to the second detector, There should be some increase in hiss when the latter is switched on, as a result of the i.f. noise components beating with the carrier it furnishes in the second detector.

High-frequency harmonics from the c.w. beat oscillator will show up as steady "carriers" which tune in like signals. These can be identified by disconnecting the antenna. If they remain the same with antenna on or off, they are almost certainly traceable to the beat oscillator, and are prevented by the design precautions which have been given. Other "birdies" which show up in the operation of the receiver are likely to result from image interference. An image beat with an on-tune signal can be identified in two ways: First, it will seem to tune twice as fast as a proper signal; that is, the beat note will go through the audible range with about half as much tuning dial movement. Second, with a singlesignal receiver an image will "peak" on the opposite side of zero beat to the side on which normal signals peak as the receiver is tuned. The last method gives positive image identification with the receiver's beat oscillator on.

If a receiver equipped with a.v.c. blocks on moderately strong signals when the a.v.c. is supposed to be on, check to make certain that it is in operation. If a separate a.v.c. tube is used, check to see that it has not burned out or failed otherwise. If motorboating occurs with a.v.c., a defective tube, open load resistor or leaky by-pass condenser may be at fault. Insufficient time constant (too-small by-pass capacitance) and inadequate r.f. filtering in the a.v.c. feed circuits also can cause this trouble. On excessively strong signals, sufficient to drive the grid of a controlled tube positive, the same effect is likely where a.v.c. is applied to only 1 or 2 stages. It is not probable with the full range a.v.c. available in the better type receivers.

A similar motorboating effect may occur with high-selectivity receivers, especially where a crystal filter is used. It is most noticeable with a.v.c. in operation. Its source is principally instability in the high-frequency oscillator. Slight changes in plate supply voltage cause the i.f. signal to fluctuate in and out of i.f. resonance as the consequence of this instability. The changes in supply voltage, in turn, are caused by variation in load on the supply with variation of plate current on the stages having a.v.c. applied - so that the oscillator frequency "hunts" about the proper value which would keep the intermediate frequency constant on resonance. This trouble can be eliminated by improving the voltage regulation of the supply and the stability of the oscillator.

THE RADIO AMATBUR'S HANDB00K

DUDGING IRECEIVER HPERFDRMANCE

While complete quantitative information on the characteristics of a superhet would require a number of measurements with laboratory equipment, a qualitative estimate of relative sensitivity, stability and band-spread can be made without special means. These rough checks may be used for comparison of receivers in purchasing manufactured models, or in arguments concerning amateur-built types.

Sensitivity: The limiting factor determining the effective sensitivity of a receiver is its own noise ratio. For a given degree of selectivity (band width) this is determined by the gain in the first circuit. With the antenna disconnected, a rough check on this gain can be made by shorting the first tuned circuit of the receiver, leaving the other circuits unaffected, and noting the variation in noise output on a rectifier-type voltmeter connected across the output terminals. The c.w. beat oscillator should be switched on to furnish a carrier in the second detector of a superhet, gain should be full-on and a.v.c. should be switched off. The noise output should decrease with detuning, showing that the first circuit has appreciable impedance as evidenced by thermal agitation voltage. If it does not decrease, the gain of this circuit is negligible. This test should be made on each frequency band. Little change is likely on 14 Mc., but should become appreciable on 3.5 and 1.7 Mc . The test should be made on r.f. amplifier and detector stages. Unchanged noise with the first detector input shorted would indicate that the first detector is
the principal source of noise and that there is little gain ahead of it.

Stability: With the beat oscillator on and a steady signal tuned in, vary the manual r.f. gain control rapidly. This will affect the oscillator plate supply voltage, as a result of varying r.f. stage plate current load. The beat note should vary but a few hundred cycles. Another check can be made for temperature stability by noting the change in beat note for a quarterhour or so after "cold start" of the receiver. Mechanical stability can be checked by jarring the receiver and pushing against its panel and the sides of its cabinet, noting the shift in c.w. beat note.

Band-Spread: Band-spread on each amateur band can be judged by the tuning rate and the calibration spread. Tuning rate is the average number of kilocycles covered with each rotation of the tuning knob, while calibration spread is the average number of kilocycles represented by each of the smallest tuning scale divisions. Tuning rate of approximately 50 kilocycles per knob rotation is generally satisfactory in high-selectivity s.s. receivers, assuming a knob of "natural" size (approximately 2 -inch diameter). Calibration spread of 10 kc . or less per scale division is satisfactory for reset and logging purposes.

Bibliography

${ }^{1}$ QST, June, 1938. ${ }^{2}$ How To Become a Radio Amateur, Seventh Edition. ${ }^{3}$ QST, March, 1938. © QST, November, 1938. ${ }^{5}$ QST, Aprif, 1936. ${ }^{6}$ QST, October, 1936. ${ }^{7}$ QST, July, 1937. ${ }^{8}$ QST, November, 1938. Q QST, Fobruary, 1936. ${ }^{10}$ QST, September, 1938. ${ }^{11}$ QST, November, 1936.

CHAPTER EIGIIT

TRANSMITTER DESIGN AND CONSTRUCTION

Principles of Transmitter Operation - Considerations in Design
- Determination of Coil and Condenser Dimensions -
Tuning Procedure - Crystal and Electron-
Coupled Oscillators - Construction of Exciters and Amplifiers-
Band-Switching - Gang
Tuning

Abstract

A radio transmitter is a device for converting d.c. or low-frequency a.c. power into power at the high frequencies used in radio communication and delivering it to a suitable radiating system. In the case of a radiotelephone transmitter, the output of the transmitter must be properly modulated at voice frequencies. Besides delivering radio-frequency power to the antenna, an amateur transmitter must be designed to meet certain requirements imposed by present-day operating conditions. It must have high frequency stability; that is, the generated radio frequency must not vary appreciably from a fixed value. Its output must be free from supply-frequency modulation, which means that the signal must sound as though the transmitter were powered from batteries even though the actual source may be the a.c. mains. The latter condition is met by the use of suitable types of power supply. Power-supply design and systems for modulating the output at voice frequencies for radiotelephony will be discussed in later chapters. This chapter will deal only with the radiofrequency circuits of the transmitter.

FUNCTIONAL UNITS

16adio-frequency circuits performing three distinctly different functions are commonly found in amateur transmitters. The oscillator is the fundamental frequency-generating unit. 1t is sometimes used to deliver the radiofrequency power generated to the antenna, although, more often, it is used in conjunction with a power amplifier which increases the
power level at the oscillator frequency before delivering it to the antenna.

The third functional type is the frequency multiplier. As its name implies, it is used frequently as a convenient means of increasing the frequency delivered to it by the oscillator or a preceding frequency multiplying stage. Since the multiplier is seltom used for a multiplication greater than two in amateur transmitters, the term frequency doubler or simply doubler will be encountered most frequently. Frequency doublers are usually followed by a power amplifier which delivers power to the antenna, although instances will be found in which a high-power doubler feeds the antenna directly. Beforc studying these functional circuits in detail, let us consider some of the various units which comnonly comprise these circuits. Most of them will be found in circuits of all three types.

Circuil Compoments

The principal parts which are frequently found in the r.f. circuits of a transmitter are: the tuning condenser, tank coil, grid leak, cathode resistor, series voltage-dropping resistor, voltage divider, filament center-tap resistor, by-pass condenser, blocking condenser, r.f. choke, coupling condenser, coupling link and neutralizing condenser.

Tank Circuits

The basic transmitter circuit, shown in Fig. 801, consists of a vacuum tube with a tuned circuit connected between grid and cathode and another tuned circuit between plate and

THE RADIO AMATRUR'S HANDBOOK

cathode. The condensers C_{1} and C_{2} are termed tuning condensers or tank condensers while the coils L_{1} and L_{2} are referred to as tank coils. The combination of condenser and coil is usually called the tank circuit because of its ability to store energy and deliver it to the load circuit during intervals in which no plate current flows.

The chief functions of the plate tank circuit are to provide a proper load for the tube to which it is connected, to filter out harmonics and, often, to provide a suitable means of

A-singie tube

B-parallel

FIG. B01 - BASIC CIRCUITS
A - For single tube. B - Tubes in parallel. C Tubes in push-pull. $\mathrm{C}_{1}-\mathrm{l}_{1}$ and $\mathrm{C}_{2}-\mathrm{L}_{2}$ comprise the grid and plate tank circuits respectively.
coupling energy to a succeeding stage or to an antenna. In self-controlled oscillator circuits (to be discussed later), the plate tank circuit, or a tank circuit common to both grid and plate also determines the frequency at which the oscillator generates.

The tuned circuit connected to the grid is required to provide a high-impedance between grid and cathode so that maximum r.f. voltage will be delivered to the grid. In many cases, it affords a means of impedance matching.

In r.f. circuits, tubes of the same type may be operated in parallel, push-pull or push-pullparallel for greater power output than that obtainable from a single tube. With parallel operation, the circuit is the same as for one tube since the same elements in each of the
parallel tubes are simply connected together as shown in Fig. 801-B. When tubes are connected in parallel, it is obvious that the total electrode capacity will double; therefore, the parallel connection is not of ten found in higherfrequency circuits where it is important that these capacities be minimized. Tubes of low input and output capacities may be paralleled successfully at the lower frequencies.

The push-pull circuit uses a balanced tank circuit; the center point is at ground potential. The typical circuit is shown in Fig. 801-C. In a circuit of this type, the tube capacities are effectively in series and, therefore, in general, this connection is preferable to the parallel connection for the higher frequencies, although the theoretical power output will be the same with either.

The push-pull-parallel circuit is the same as the push-pull circuit except that two tubes are connected in parallel on each side of the circuit. Since it is usually more feasible to use two tubes of higher power rating than four of a lower power rating, this type of circuit is rare in amateur design. The tube capacities combine to have the same effective value as the capacity of a single tube or twice the effective capacity of the simple push-pull arrangement.

Certain modifications of the basic circuit, which will be discussed later, will be encountered occasionally; certain oscillator circuits make use of a common tank circuit for both grid and plate, while the plate tank circuit of an amplifier or oscillator may also serve as the grid tank circuit of a following stage. Tank circuits may be balanced, if the ground point is at the center of the tank coil or condenser, or unbalanced if grounded at some other point. The principles involved remain the same, however. Since factors involved in the design of the tank circuit depend upon the functional type of circuit in which it is to be used, they will be discussed later in specific relation to each of these types.

Vacuum-tube circuits must be supplied with d.c. voltages from external sources and certain branches must be added to the basic circuit to

FIG. 802 - METHODS OF INTRODUCING GRIDbiasing voltage

TRANSMITTER DESIGN AND CONSTRUCTION

permit introduction of these d.c. voltages without hampering the operation of the r.f. circuit. D.c. voltages to grid or plate or both may be either series-fed or paral-lel-fed, depending upon whether the voltages are fed to the electrode through the associated tuned circuit or through a choke coil effectively in parallel with the tuned circuit.

All components found in transmitter circuits aside from the tank circuits comprising the basic circuit of Fig. 801 and the neutralizing condenser are for the purpose of permitting the introduction of the required potentials to the various electrodes of the tube while limiting the flow of r.f. currents to the basic circuit.

The grid leak, cathode resistor, voltage-dropping resistor and voltage divider are resistances inserted at proper points to adjust the d.c. voltages of the various electrodes of the tube to proper operating values.

Feeding the Grid

As explained in the chapter on vacuum tubes, all oscillators, amplifiers and frequency multipliers require a d.c. biasing voltage hetween grid and cathode. Therefore, a branch must be added to the basic circuit by means of which this d.c. bias may be introduced without interfering with operation of the basic circuit. This may be accomplished by introducing a biasing voltage from an external source, such as a battery or low-resistance power pack connected in series with the grid tank circuit as shown in Fig. 802-A, or by parallel-feeding through an r.f. choke which offers high impedance to the flow of r.f. currents although permitting unimpeded flow of d.c. as shown in Fig. 802-B.

Grid-Leak Bias

Grid bias may also be obtained by means of a resistance connected in any of several ways as shown in Fig. 803. When used in this manner, the resistance is called the grid leak and is designated in the diagrams of Fig. 803 as R_{1}. When the r.f. signal at the grid is of sufficient magnitude to drive the grid positive over a portion of the excitation cycle (as it must in all oscillators and r.f. power amplifiers), rectified grid current flows from grid to cathode, in the manner of a rectifier, and thence through

FIXED BIAS-PARALLEL

FIG. 803-SYSTEMS FOR OBTAINING GRID-
BIASING VOLTAGE FROM GRID LEAK
The path of rectified grid current is shown by arrows
the grid-leak resistance back to grid, as indicated by the arrows, causing a voltage drop between cathode and grid, across the resistance, placing the grid at an average negative potential in respect to the cathode. At A and 13 (Fig. 803), the grid is series-fed. Circuit B is preferred by some because the condenser across the resistance and the resistance itself may have some capacitance to ground and, therefore, raise the minimum capacitance in parallel with the tank coil. The arrangement at A will be found most frequently in low-power oscillator circuits where the pliysical size of the units is small. At C the grid is parallel-fed.

In many instances, it is desirable to provide fixed bias from an external source in addition to that provided by the grid leak so that the grid-biasing voltage will not fall to zero when the r.f. excitation voltage is removed. This fixed biasing voltage may be connected in series with the grid leak as shown at D and E (Fig. 803). The resistance of the external biasing source must be taken into consideration as explained in Chapter 14 because its resistance will have the same effect as that of the grid leak.

In all cases, the rectified grid voltage developed across the grid leak may be calculated by inserting a d.c. milliammeter in the circuit, as indicated in the diagrams, and multiplying this current in milliamperes by the resistance of the grid leak in ohms and dividing by 1000 , adding to this calculated value the value of any fixed bias connected in series with the grid leak to determine the total grid-biasing voltage.

Grid-leak values used in practice vary widely depending upon tube characteristics and the

THE RADIO AMATEUR'S HANDB00K

function of the circuit. They may range from 5000 to 100,000 ohms in oscillator circuits and from 1000 to 20,000 ohms or so in amplifier circuits. Tubes with a high amplification factor usually require the lower values of gridleak resistance. Suitable values for most power tubes are given in the tables in Chapter 5. A
times used in conjunction with the grid leak previously described.

Feeding the Plate

Vacuum tubes also require a supply of d.c. voltage between plate and cathode. This is obtained, of course, from a high-voltage supply, such as a battery, generator or

A-cathode bias-series feed

B-Cathode and grid-leak bias -PARALLEL-FEED

FIG: 804 - METIODS OF OHTAINING IBIASING-VOLTAGF: FROM CA'THODE RESISTANCE.
R_{2} - Cathode biasing resistance.
tube used as a doubler will usually function more efficiently if a higher value of grid-leak resistance is used than when the same tube is used as a straight amplifier.

Two tubes in parallel or push-pull will require a grid-leak resistance of one-half the value recominended for a single tube; four tubes in push-pull-parallel will require onequarter of the value for a single tube. Gridleak bias alone, or in combination with a protective amount of fixed bias, is ideal for most cases of operation since the biasing voltage developed varies with excitation and, therefore, the biasing adjustment is automatic over a fairly wide range of excitation.

Cathode Biasing Resistor

The cathode resistor is used also, under certain circumstances, to provide the grid-biasing voltage. It is connected, as shown in Fig. 804, in such a position in the circuit that not only rectified grid current but also plate current transformer-rectifier system, all of which are discussed in Chap. ter 14. This voltage may be fed to the plate in series with the plate tank circuit, as shown in Fig. 805-A, or in parallel, as shown in Fig. 805-B.

Series Voltage-Dropping Resistor and Voltage Divider

Occasions may arise in which a small amount of power at a lower voltage than that delivered by the power supply is required. The power required may be so small as to hardly warrant the use of a separate power supply for the purpose. In this case, a series voltage-dropping resistor is often used. Typical cases are shown in Fig. 806. At A, a resistance R_{3} is used in series with the screen-grid of a tetrode or pentode tube and the positive terminal of the power unit supplying plate voltage to the tube. At 13, a similar resistance is used to drop the plate voltage applied to a high-power stage to supply the plate of a second tube requiring less plate voltage. The value of resistance required in any case is equal to the drop required in volts divided by the current in amperes drawn by the electrode to be supplied, in these instances the screen at A and the plate at B. The series voltage-dropping resistance is of practical use only in cases where the current drawn by the electrode in series with the resistance is fairly constant or where the voltage drop required is small because voltage regulation is extremely poor. If the current drawn by the electrode supplied through the resistance is cut flows through the resistance as indicated by the arrows. Since the total current flowing through the cathode resistance is much higher than in the case of the grid leak, a lower value of resistance may be used for the same voltage drop. Most of the voltage drop across the cathode resistor is taken from the effective plate voltage which is one of the disadvantages of the system when used in connection with low- μ tubes requiring high biasing voltages. A cathode resistance is some-

fig. 805 - METHODS OF feEding high voltage to plate A-Series feed. B - Parallel feed.

transmitter design and construction

off, the voltage drop through the resistance is zero and full powersupply voltage is applied to the electrode.

This disadvantage is overcome to a certain extent by connecting a second resistor as shown at \mathbf{C} and D (Fig. 806). The combination is known as a voltage divider. The additional resistance draws current through the first, preventing the current through the first falling to zero at any time. While the voltage regulation of the voltage divider is superior to that of the simple series resistor, it is still very poor unless appreciable power is wasted by using resistances of low value. The design of voltage dividers is discussed in detail in Chapter 14.

Center-Tap Resistor

As explained in Chapter 5, all high-power tubes employ directly-heated filaments or cathodes in contrast to the indirectly-heated cathodes found in most receiving tubes and many low-power transmitting tubes. To prevent hum with filament-type tubes it is necessary to return the grid and plate circuits to the electrical center of the filament circuit, as shown in Fig. 807. Most filament transformers are provided with a tap at the center of the secondary winding as shown at A. When no cen-ter-tap is provided, a resistance of 50 to 100 ohms may be used for the same purpose as shown at B.

FIG. 807 - METHIODS OF MAKING RETURY CONNECOIGNS TG FLLAMENT CENTER-TAP TOPREVENT FILAMENT-SUPPLY MODulation

The By-Pass Condenser

The next three circuit components to be discussed are the by-pass condenser, the bloching condenser and the radio-frequency choke. The common function of these is to limit the flow of r.f. currents to the basic circuit of Fig. 801. The by-pass condenser offers a low-impedance path to r.f. currents while it acts as an insulator in d.c. circuits. It may therefore be connected across points in the circuit at which the power supply is introduced as shown at C_{3}, Figs. 802 to 807 , to prevent r.f. currents flowing back into the power supply, or across resistances, which might offer a high-impedance path to r.f. currents, without short-circuiting either the power supply or the resistances. Although little r.f. voltage should appear across r.f. by-pass condensers, condensers with a peak-voltage rating 25 to 50 per cent greater than the d.c. voltage across which it is placed should be chosen as a safety measure;
 when placed across circuits carrying modulation as well as d.c., the peak-voltage rating should be three to four times the d.c. voltage.

Capacity values of bypass condensers are not critical; values between 0.001 and $0.01 \mu \mathrm{fd}$. are commonly used. The largervalues should be used especially when the r.f. circuit is operating at the lower frequencies. Any condenser bypassing a modulated circuit should be limited to 0.002 $\mu \mathrm{fd}$. to prevent by-passing of the higher audio frequencies as well as the r.f. currents. For voltages up to 500 , tubular paper condensers are satisfactory if of the non-inductive type; at higher voltages, molded mica condensers are recommended. A by-pass condenser

FIG, 806 - ILLUSTRATING USE OF SERIES VOLITAGE-IDROPPING; RESISTANCE AND VOITAGE DIVIDER
R_{3} is the voltage-dropping resistance while R_{4} completes the voltage divider.

the radio amateurs handbook

should be connected as close as possible to the point to be by-passed and grounded to the nearest available point on the metal chassis or ground-potential wire.

The Blocking Condenser

A blocking condenser is used for the purpose of insulating a circuit for d.c. and yet permitting the unimpeded flow of r.f. currents. It is found most frequently in parallel-fed circuits such as some of those shown in Figs. 802 to

FIG: 808 - ILILUSTIRATING: ISE (OF (XOHI'IMG; (ONDFNSER ANI) COLI'LING; I.INK (:5-Coupling rapacity. I, 3 - coupling link.
807. The blocking condenser is labelled C_{4}. It permits the flow of r.f. currents through the plate circuit of the tube and yet prevents short-circuiting of the d.c. plate-voltage supply through the tank coil. Its function is actually the same as that of the by-pass condenser although it is considered in a somewhat different sense. Because the blocking condenser should have low capacity to ground when mounted near a grounded metal surface such as the chassis or metal base upon which the transmitter may be constructed, mica condensers are preferable for the purpose. Commonly used values are 0.001 to $0.005 \mu \mathrm{fd}$. Voltage ratings should be similar to those recommended for by-pass condensers.

The Radio-Frequency Choke

The radio-frequency choke is a winding offering high impedance to the flow of r.f. current but low resistance to the flow of d.c. It is used most commonly in parallel-fed circuits where it is inserted in the power-supply feed line to prevent the flow of r.f. currents through the power supply. It is used frequently between the grid of a tube and the grid leak for the same purpose, or to provide a return path for d.c. without short-circuiting the tuned circuit for r.t. It is used as shown in Figs. 802 to 807 where it is labelled r.f.c. The most effective types of r.f. chokes are those which are machine-wound in sections. These are available at reasonable prices from several manu-
facturers. They are designed to be effective at all of the lower-frequency bands used by amateurs.

Coupling Condenser and Link

The coupling condenser is used to couple the plate circuit of one tube to the grid circuit of another. When a condenser is used as the coupling medium between stages of a transmitter, the stages are said to be coupled capacitively. The circuit most frequently encountered is shown in Fig. 808-A where C_{5} is the coupling condenser.

The coupling link is a small winding, L_{3} in Fig. 808-B, coupled inductively to the tank coil. It serves to feed a lowimpedance transmission line coupling two stages of a transmitter. These two components, as well as the neutralizing condenser, will be discussed later at more appropriate points.

HLNETIUNAI, UIRCDITA

The Oscillator

Asmentioned previously, the oscillator is the fundamental frequency-generating unit of the transmitter. All oscillators operate on the principle of energy feedback from the plate circuit to the control-grid circuit as explained in Chapter 5. Common practice, however, divides uscillators into two groups: those in which the oscillation frequency is determined by the circuit constants - called "self-controlled" oscillators - and those in which the frequency of oscillation is principally determined by an electro-mechanical device, the piezo-electric crystal. The latter are called "crystal-controlled" oscillators. The relative ease of securing excellent frequency stability with the crystal oscillator has led to its universal adoption. For that reason self-controlled oscillators will be discussed only briefly.

Self-Controlled Oscillators

Although many circuits and variations are possible, the three shown in Fig. 809 are the most generally satisfactory. These are the Hartley, tuned-plate tuned-grid, and the pushpull tuned-plate tuned-grid.

Tuned-Plate Tuned-Grid Oscillators

The basic circuit of Fig. 801 will be immediately recrgnized in the tuned-plate tuned-grid circuit shown in Fig. 809. The two tank cir-

transmitter design and construction

cuits are not coupled inductively, the grid-plate capacity of the tube being utilized to provide the coupling between the grid and plate circuits.

The grid and plate tank circuits of the t.p.t.g. oscillator are tuned approximately, but not exactly, to the same frequency. The frequency of oscillation is controlled chiefly by the constants of the plate tank circuit. The chief function of the grid tank is that of controlling the feed-back or excitation, although its tuning does have some effect on the frequency. It should be set to a slightly lower frequency than the plate tank in normal operation.

The push-pull arrangement of the same circuit is also shown in Fig. 809.

The Hartley Oscillator

In the Hartley oscillator, the tuned circuit is common to both grid and plate; its ends are

TUNED-PLATE TUNED-GRID

PUSH-PULL T.P.T.G
FIG. 809 - SELF-CONTROLLED OSCILLATGR CIRCUITS
Tank circuit constants should be such that the actual capacity in use will be approximately $500 \mu \mu \mathrm{fd}$. at 1.75 Mc., $350 \mu \mu$ fd. at 3.5 Mc., $250 \mu \mu \mathrm{fd}$. at 7 Mc., 150 $\mu \mu$ fd. at 14 Mc ., and $100 \mu \mu \mathrm{fd}$. at 28 Mc. in the pushpull circuit, the capacity referred to is each section of the condenser.
Coils should be proportioned correspondingly. The grid Ieak, R, whould be adjusted to give the best note and most stable operation as indicated by a monitor. In general, it will be in the vicinity of 10.000 to $\mathbf{2 0 , 0 0 0}$ ohms with medium- μ tubes, and 25,000 to 50,000 ohrms with low- μ tubes.
Grid and plate blocking condengers should be 100 to $250 \mu \mu \mathrm{fd}$; filament by-pass condensers, $01 \mu \mathrm{fl}$.
connected to the grid and plate of the tube. The filament circuit of the tube is connected to the coil at a point between the grid end and the plate end. The frequency of oscillation is determined chiefly by the constants of the tank circuit, $L_{1} C_{1}$. It is influenced to some extent, however, by the interelectrode capacities of the tube, which are connected across the tank. The amount of feed-back or grid excitation is adjusted by moving the tap on L_{1}; as the tap is moved nearer the plate end of L_{1} the excitation increases. With most tubes the proper setting for the tap will be found to be with half to two-thirds the number of turns on L_{1} included between the tap and the plate end.

Frequency Stability

The oscillation frequency of a self-controlled oscillator is dependent not only upon the tank constants, but also upon the tube capacities (which become, in effect, part of the tank), the plate voltage, and the load.

If the tube capacities vary during operation, as they do with heating, the frequency will change. This is also true of the tank constants; the coil, particularly, will show changes in inductance with changes in temperature. These temperature changes cause a continuous shift in frequency, or "creep." Creep can be minimized by operating the tube well below its ratings so that heating is reduced, although there always will be some creep during the period while the tube is warming up.

Frequency changes with changes in plate voltage can be minimized by using a tank circuit having a large capacity-inductance ratio (high-C'). A well-filtered plate supply having good voltage regulation also is essential.

If the oscillator is coupled to an antenna, it is important that rather loose coupling be used so that slight changes in the system caused by swinging wires will not cause the oscillator frequency to shift appreciably.

A self-controlled oscillator always should be built and mounted so that it is insulated, in so far as possible, from mechanical vibration. Vibration of circuit components or tube elements will cause the signal to be modulated.

The Electron-Coupled Circuit

In the electron-coupled circuit, shown in Fig. 810, the control-grid, cathode and screengrid of a screen-grid tube are combined in a Hartley circuit with the screen at ground potential for r.f. voltage. The output of the oscillator is taken from the plate through a separate tank circuit. With a well-screened tube the coupling between the "oscillator" and "output" portions is almost entirely through the electron stream so that capacity effects are absent.

The constants of the grid tank circuit deter-

the radio amateur's handbook

mine the frequency of oscillation while the tuning of the plate tank circuit should have relatively little effect upon the frequency, although accurate tuning to resonance may be required to prevent "chirpy" keying. Resonance is indicated by a dip in plate current.

If frequency stability approaching that of the crystal-controlled oscillator is to be obtained, extreme care must be exercised in the design and adjustment of the circuit. A tube with excellent screening is desirable for use in the e.c.o. Of prime importance is a grid tank
adjust the position of the tap carefully to obtain best results. Sometimes, adjustment of the tap is facilitated by the use of a separate cathode tickler winding as shown in Fig. $810-\mathrm{B}$. This coil should be wound over the ground end of the grid winding to provide tight coupling. The number of turns to be used will run somewhere between one-fifth and one-third of the number of turns on the grid winding.

The value of grid-leak resistance also has some effect upon stability, a value of 50,000 to $100,000 \mathrm{oh} \mathrm{ms}$ being common. The screen voltage must be adjusted carefully and a separate power supply with good voltage regulation is recommended for the oscillator.

For best stability, it is advisable to tune the plate circuit to the second harmonic of the fundamental frequency generated in the grid circuit. Occasionally an untuned r.f. choke is used in the plate circuit as shown in Fig. $810-\mathrm{C}$. The power output of the oscillator is reduced considerably with this arrangement, however.

Unusual care should be exercised in stabilizing succeeding amplifier stages to prevent feedback which may ruin the performance of an otherwise excellent oscillator.

Components should be arranged so that no coupling exists between plate and grid circuits. This is especially important where grid and plate circuits are operated at the same frequency when shielding is invariably necessary.

The tube and associated equipment should be provided with good ventilation and the power input limited to a low value to prevent "creeping" in frequency because of heating. The unit should be provided with a shockproof mounting to eliminate any modulation of the output by physical vibration.

FPIEZO-ELECTREC CRYSTALS

\mathbf{H}_{B} discussing crystal oscillator circuits, it is essential that the reader have some understanding of the properties of the piezo-electric crystals which control the output frequency of most amateur transmitters. Although some other substances could be used, the most suitable material for crystals for transmitting purposes is crystalline quartz. An oscillating crystal is a thin plate cut from raw quartz crystal.

Crystal Cuts

A quartz crystal has three major axes, designated X (electric), Y (mechanical) and Z

TRANSMITTER DESIGN AND CONSTRUCTION

tal is essential for flat grinding. The crystal should be tested frequently for oscillation in the circuit in which it is to be used. If it should stop oscillating during the grinding process, grinding the edges slightly may make it start again. The frequency can be checked by listening to the signal in a receiver and measuring the frequency as described in Chapter 16. When the frequency is within a few kilocycles of the desired value it is well to use a finer grade of carborundum powder for finishing. The FF and FFF or No. 900 grades are suitable
(optic). A plate cut with its major surfaces perpendicular to an X axis is known as an X-cut plate, while plates cut with their major surfaces parallel to an X axis are known as Y-cut plates. In Fig. 811 is a drawing of a quartz crystal of ideal shape with the three major axes indicated. The drawing also shows the way in which X - and Y-cut crystal blanks are taken from the raw crystal.

In addition to the X and Y cuts, many other cuts are possible. Some of these possess special characteristics; for example, the "AT" cut, derived from the Y cut but with the face of the crystal making an angle with the Z axis instead of being parallel to it as shown in the drawing, is a zero-temperature coefficient crystal. Its oscillation frequency is practically unaffected by temperature changes, which is not the case with X- and Y-cut crystals. Another special cut known as the " V " cut also has a temperature coefficient of practically zero.

Crystal Grinding

Reliable crystals are available at reasonable prices, so that the ordinary amateur does not attempt to cut and grind his own crystals. However, it is sometimes desired to change the frequency of an already-ground crystal, so that a working knowledge of the method of grinding crystals often is helpful.

Fig. 812 gives the frequency-thickness relationships for various cuts. A good micrometer such as the Starrett No. $218-\mathrm{C}, 1 / 2$ inch, should be used for making measurements. This tool also can be used to make sure that the crystal is the same thickness at all points and that bumps or hollows are not being ground in.

Grinding can be done by rotating the crystal in irregular spirals on a piece of plate glass smeared with a mixture of No. 200 carborundum and water. Even pressure over the whole area of the crys-

FIG. 812 - FREQUENCY-THICKNESS RELATIGNSHIIS OF X-, Y- AND A T-CUT PLATES

THE RADIO AMATEUR'S HANDB00K

five kilocycles. Should the crystal be followed by a doubler to 14 mc ., the frequency change on the higher-frequency band would be twice as great - enough to shift the signal out of audibility. AT- and V-cut crystals have very low temperature-frequency coefficients, as do some other cuts, so that the frequency change with temperature is practically negligible.

Since some temperature rise occurs in all crystal oscillator circuits developing appreciable power, it is evident that in choosing a crystal frequency near the edge of an amateur band the probable "drift" in frequency must be taken into account, remembering that an X-cut crystal drifts to a lower frequency and a Y-cut to a higher frequency as the crystal warms up. With other than zero-temperature coeflicient crystals it is best not to attempt "crowding the edge" of a band.

Poter Limitations

Heating is greater the greater the amplitude of the crystal vibration; in other words the greater the r.f. voltage across the crystal. When the vibration amplitude is high the internal stresses may be great enough to shatter the crystal, hence the power-handling capabilities of the crystal are limited.

Since the vibration amplitude is a function of the r.f. voltage appearing across the faces of the crystal, it is essential that this voltage be limited to a value safe for the type of crystal used. It is difficult, however, to measure r.f. voltage, so that it is more common to use the r.f. current flowing in the crystal circuit as a measure of the power dissipated. A current of 100 milliamperes (0.1 amp .) r.f. usually is considered safe for X - and Y-cut crystals ground for the $1.75-$ and $3.5-\mathrm{Mc}$. bands. A somewhat lower value is the maximum for 7-Mc. crystals. AT-cut crystals can operate safely with currents as high as 200 ma. The current depends on the plate voltage and type of tube and circuit used.

Crystal Mountings

To make use of the piezo-electric oscillation of a quartz crystal, it must be mounted between two metal electrodes. There are two types of mountings, one in which there is an air-gap of about one-thousandth inch between the top plate and the crystal and the other in which both plates are in contact with the crystal. The latter type is generally used by amateurs. It is essential that the surfaces of the metal plates in contact with the crystal be perfectly flat.

Grit or an oily film on the surface of a crystal will sometimes prevent oscillation. The crystal should be cleaned whenever erratic behavior or non-oscillation gives evidence of a dirty condition. Carbon tetrachloride or alcohol are
the best cleaning fluids. Soap and water will do quite well, however. Handling of the crystal is especially likely to give it an oily surface, and the crystal should always be cleaned after it has been touched by the hands.

A holder having a heavy metal bottom plate with a large surface exposed to the air is advantageous in radiating quickly the heat generated in the crystal and thereby reducing temperature effects. Such a holder is especially advantageous with X - and Y -cut plates.

The type of holder used will have some effect on the frequency of oscillation of the crystal. Different plate sizes, pressures, etc., will cause slight changes, a mounting to perhaps a kilocycle or so, so that if a crystal is being ground to an exact frequency it should be tested in the holder and with the same oscillator circuit with which it will be used in the transmitter.

In the air-gap type of holder, the frequency of oscillation depends to some extent upon the size of the gap between the top plate and crystal. This property can be used to advantage with the AT-cut crystal so that by using a holder with a top plate with closely adjustable spacing a controllable frequency variation can be obtained. A $3.5-\mathrm{Mc}$. crystal will oscillate without perceptible variation in power output over a range of about $5 \mathrm{kc} . \mathrm{X}$ - and Y-cut crystals are not generally suitable for this type of operation because they have a tendency to "jump" in frequency with different air gaps.

ULEMETAL OSCILLATDIt GIIBTHITS

The simplest crystal oscillator circuit is the triode circuit shown in Fig. 813. This circuit is the equivalent of the tuned-plate tuned-grid circuit since the crystal is the equivalent of the tuned-grid tank circuit. When the plate tank circuit is tuned to a frequency slightly higher than the natural frequency of the crystal, the feed-back through the grid-plate capacity of

FIG. 813 - TRIODE CRYSTAL OSCILLATOR
The tank condenser, C_{1}, may he a $100-\mu \mu \mathrm{fd}$. variable, with L_{1} proportioned so that the tank will tunc to the crystal frequency. C2 should be . $001 \mu \mathrm{fd}$. or larger. The grid leak, R1, will vary with the type of tube; high- μ types take lower values, 2500 to 10,000 olims, while medium and low- μ typen take valuen of $\mathbf{1 0 , 0 0 0}$ to $\mathbf{2 5 , 0 0 0}$ ohms.

Transmitier design and construction

the tube excites the grid circuit, and the crystal oscillates at approximately its natural frequency.

The power obtainable from the crystal oscillator will depend upon the type of tube used, the plate voltage, and the amplitude of the r.f. voltage developed as a result of the mechanical vibration. In the simple triode oscillator circuit of Fig. 813, the limit of plate voltage that can be used without endangering the crystal is about 250 volts for X - and Y -cut crystals.

With the r.f. crystal current limited to a safe value of about 100 milliamperes, as measured by an r.f. galvanometer or low-range r.f. ammeter inserted in series with the crystal (at " X " in the diagram) the power output obtainable from triode crystal oscillators is about five watts. The oscillation frequency is dependent to a greater extent on the plate tank tuning than is the case with circuits using tetrodes or pentodes. The simple triode oscillator has been generally superseded by more suitable types.

The Tetrode or Pentode Oscillator

Since the r.f. voltage amplitude (which determines the power output of the oscillator tube) generated by the crystal is limited by the safe vibration amplitude, obviously the greatest power output can be secured without danger to the crystal by choosing a tube of high power sensitivity. The power pentode or "beam" tetrode is such a tube, hence we find that pentodes and beam tubes are widely used as crystal oscillators in amateur transmitters. Along with high power-sensitivity, the presence of the screen grid reduces the grid-plate capacity of the tube so that the feed-back voltage is less than would be the case with an equivalent triode operating at the same plate voltage. As a result, pentode or tetrode crystal oscillators can be operated at higher plate voltages than triodes.

The pentode and tetrode tubes designed for audio power work, such as the $47,2 \mathrm{~A}, 41,42$, $6 \mathrm{~V} 6 \mathrm{G}, 6 \mathrm{~L} 6 \mathrm{G}, 6 \mathrm{~L} 6,48$ and 6 F 6 , are excellent crystal oscillator tubes. For a given plate voltage the crystal heating will be less than with a triode as the oscillator tube; alternatively, for the same amplitude of crystal vibration, higher plate voltages can be used, resulting in greater power output.

Fig. 814 shows a typical pentode or tetrode oscillator circuit. The suppressor or third grid in the pentode is not shown, since this grid normally is connected to the cathode inside the tube and is not connected to a base pin. A tube having an indirectly-heated cathode is shown; of the crystal oscillator tubes in common use only the 47 has a directly-heated cathode or filament. Filament connections for the 47 would be through the usual filament center-
tapped resistor or transformer, with by-pass condensers.

The cathode resistor R_{2} and its associated by-pass condenser C_{4} may be omitted when the tube is operated at low plate and screen volt-

FIG: 814-TETRODE OR IPENTODE CRYSTAL oSCILIATAR
The plate tank is the same as with triode oscillators, Fig. 813. Bypase condensers $\mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} may be, 001 or larger; 01 is a common value for low-voltage operation. Ri should be 10,000 to 50,000 ohms, hest value being determined by trial for the plate voltage and operating conditions chosen. R2 should be 250 to 400 ohms; it may be omitted with 250 volts or less on the plate. C_{5} is described in the text.
ages, in which case the cathode is connected directly to ground. Their use is advisable when the screen voltage exceeds 100 to 125 volts, or in cases where the crystal oscillator is to be keyed. The feedback condenser, C_{5}, may be needed with well-screened tubes in order to insure that the oscillator "starts" under load. This condenser, when trial of the circuit shows that it is necessary, should have a capacity of $1 \mu \mu \mathrm{fd}$. or less, and may be made by facing two small metal plates about one-half inch square about one-quarter inch apart. Just enough capacity should be used to ensure reliable operation; excess feedback may damage the crystal.

Circuit Constants

Typical circuit constants for the tetrode or pentode oscillator are given in Fig. 814. The plate tank circuit should have a fairly large ratio of inductance to capacity (low-C); a tuning condenser having a maximum capacity of $100 \mu \mu \mathrm{fd}$. will be satisfactory. The inductance of the tank coil, L, should be such that the tank circuit will be resonant at the crystal frequency at some setting of C_{1}. Dimensions can be taken from the coil chart given in this chapter. The coils can be wound with smallgauge wire, since the tank current will not be large when handling the amount of power developed by the usual crystal oscillator.

Since quartz is an insulator, the grid circuit must be parallel fed. The grid leak, R_{1}, which provides most of the bias (all, in cases where R_{2} is omitted) may range in value from 10,000

the radio amatrurrs handrook

to 50,000 ohms; there is little difference in output within this range in practical operation, although crystal current is generally lower with the lower values of grid leak. The cathode resistor, R_{2}, should be 250 to 400 ohms for practically all receiving tubes.

In general, it is advisable to operate receiving tubes at about the plate voltage ratings they carry for audio power service. Those having 250 -volt ratings may be operated at voltages as high as 300 provided the plate current is not above the rated value. Excessive input will cause overheating and unstable operation. The 250 -volt tubes should be operated with low screen voltage - 100 to 125 volts - and without the cathode resistor. The screen voltage may be obtained from a voltage divider across the plate supply, or from a simple series voltage-dropping resistor of about 50,000 ohms connected between the plate supply and the screen.

The larger beam tubes - 6 L 6 and 6 L 6 G should be operated at 400 volts on the plate and 250 on the screen for maximum output. The cathode resistor should be used, under these conditions, to prevent excessive plate current and possible damage to the tube should the circuit go out of oscillation. A thermo-galvanometer may be connected in series with the crystal at " X " to measure crystal current. In lieu of such an instrument, a low-current (60-milliampere) dial light may be used; such a light also will act as a fuse in case the crystal current runs dangerously high. The use of such a dial light in regular operation is excellent protection for the crystal.

Tuning Tetrode or Pentode Oscillators

Tuning a tetrode or pentode oscillator is chiefly a matter of obtaining the optimum amount of output power.

Using a plate milliammeter as an indicator of oscillation (a $0-100 \mathrm{ma}$. d.c. meter will have ample range for all low-power oscillators), the plate current will be found to be steady when the circuit is in the non-oscillating state, but will dip when the plate condenser is tuned through resonance at the crystal frequency. Fig. 815 is typical of the behavior of plate current as the tank condenser capacity is varied. As the capacity is increased from minimum, there will be a rather gradual decrease in plate current after oscillations commence. This con-

tinues until the point A is reached, when there will be a sharp rise in plate current, followed by cessation of oscillations. An r.f. indicator, such as a small neon bulb touched to the plate end of the tank coil, will show maximum at point A. However, when the oscillator is delivering power to a load it is best to operate in the region $B-C$, sinee the oscillator will be more stable and there is less likelihood that a slight change in loading will throw the circuit out of oscillation. This is likely to happen when operation is too near the critical point, A. Also, the crystal current is lower in the $13-1$; region.

When power is taken from the oscillator, the dip in plate current is less pronounced, as indicated by the dotted curve. The greater the power output the less is the dip in plate current. If the load is made too great, oscillations will not start. The load may be an antenna or a following amplifier stage; methods of adjusting loading will be considered later in the chapter.

The greater the loading, the smaller the voltage fed back to the grid circuit for excitation purposes. This means that the r.f. voltage across the crystal also will be reduced, hence there is less crystal heating when the oscillator is delivering power than when operating unloaded. For this reason it is possible to operate a loaded oscillator at higher plate voltage than is possible with an unloaded oscillator for the same crystal heating.

Pentode oscillators operating at 250 volts will give 4 or 5 watts output under normal conditions. The beam types 6 L 6 and 6LBC; will give 15 watts or more at maximum plate voltage.

Harmonic Generation - The Tri-Tet

Many circuits have been devised to ohtain harmonic output from the oscillator tube. One of the most successful is the "Tri-tet" oscillator, which utilizes a multi-element tube to act both as oscillator and frequency multiplier. The circuit is shown in Fig. 816, in two versions: arranged for use with pentodes and beam tetrodes. In the Tri-tet oscillator circuit the screen grid is operated at ground potential while the cathode assumes an r.f. potential above ground. The screen-grid acts as the anode of a triode crystal oscillator, while the plate or output circuit is simply tuned to the oscillator frequency or a multiple of it.

If the output circuit is to be tuned to the same frequency as the oscillator, a fairly wellscreened tube must be used, otherwise there may be excessive feedback and danger of fracturing the crystal. The tubes specified in Fig. 816 meet this condition with the exception of the 6 L 6 G and 6 V 6 G , which are recommended

TRANSMITTER DESIGN AND CONSTRUCTION

FIG: 816 - TRI-TET OSCILLATOR CIRCUIT, CSING; PEN'TODES OR BEAM 'TETRODES
C1 and $C_{2}, 100-\mu \mu$ fd, variables, receiver spacing; C_{3}, $\mathrm{C}_{4}, \mathrm{C} 5, \mathrm{C}_{6}, \mathbf{0 . 0 0 1}$ to $0.01 \mu \mathrm{fd}$. by-passes, not critical; $\mathrm{K}_{1}, 50,000$ to 100,000 ohms; $\mathrm{K}_{2}, 400$ ohms for 400 - or 500 -volt operation.
Following specifications for cathode coils, L_{1}, are based on a coil diameter of $11 / 2$ inches and length 1 inch; turns should be spaced evenly to fill the requirch length. For RK-23, IIK-25, 6L6, 6L6G and 6V6G; tubes: 1.75-Me. crystal, 20 turns; 3.5 Mc., 10 turns, 7 Me.. 5 turns. The 61.6G and 6V6G tubes are recommended only for second harmonic operation. For 802, 807, RK-39, and 89 tubes: $1.75-M c$. crystal, 28 turns; 3.5 Mc., 14 turns; 7 Me., 7 turns.

At maximum recommended plate voltages (500 volte for transmitting types, 400 volts for $6 L 6$ and 6L6(;) the acreen voltage should be 250 . The 89 and 6 V 6 ; types may be operated with 300 plate volto and 150 volts on the screen.
The L-C ratio in the plate tank, $\mathrm{L}_{2} \mathrm{C}_{2}$, should lw adjuated so that the capacity in use is 75 to $100 \mu \mu \mathrm{fd}$. for fundamental out put and ahout $25 \mu \mu$ fi. for second harmonic output.
only for harmonic operation in the Tri-tet circuit.

The cathode tank circuit, $L_{1} C_{1}$, is not tuned to the frequency of the crystal, but to a considerably higher frequency. Recommended values for L_{1} are given under the diagram. C'1 should be set as near minimum capacity as is consistent with good output. This reduces the crystal voltage.

With pentode-type tubes having separate suppressor connections, the suppressor may be tied directly to ground or may be operated at about 50 volts positive. The latter method will give somewhat higher output than with the suppressor connected to ground. More
than 50 volts usually docs not increase the output perceptibly. A cathode resistor, R_{2}, always should be used with the beam tetrodes.

Besides harmonic output, the Tri-tet circuit has the feature of buffering action attributable to electron-coupling between crystal and output circuits. This makes the crystal frequency less susceptible to changes in loading or tuning and hence improves the stability.

Tri-tet Circuit Constants and Tuning

The correct cathote tank circuit constants in the Tri-tet oscillator have been described in the preceding section. The constants of the plate tank circuit, $C_{2}^{\prime} L_{2}$, will resemble those of ordinary crystal oscillators. For harmonic generation, the tuning condenser need not have a maximum capacity of more than $50 \mu \mu \mathrm{fd}$., the inductance being proportioned accordingly for the frequency used.

The tuning procedure is as follows: With C_{1} at about three-quarters scale, turn C_{2} until there is a sharp dip in plate current, indicating that the plate circuit is in resonance. The crystal should be oscillating continuously regardless of the setting of C_{2}. Set C_{2} so that the plate current is minimum. The load circuit may then be coupled and adjusted so that the oscillator delivers power. The minimum plate current will rise; it may be necessary to retune C_{2} when the load is coupled, to bring the plate current to a new minimum. Fig. 817 shows typical behavior of plate current with plate condenser tuning.

After the plate circuit is adjusted and the oscillator is delivering power, the cathode condenser C_{1} should be readjusted to obtain optimum power output. The setting of C_{1} always should be as far toward the low-capacity end of the scale as is consistent with good output; it may in fact be desirable to sacrifice a little output since doing so reduces the current through the crystal and thus reduces heating.

The tuning procedure is the same for both fundamental and harmonic operation. The oscillator gives good output on the second harmonic, but the output drops off rapidly on higher harmonics.

With transmitting pentodes or beam tubes an output of 15 watts can be obtained on the fundamental and very nearly as much on the second harmonic.

F1G. 817 - D.C. PLATE CURREN' VS. PLATE 'TUNING, CAPACITY WITII THE TKI-TET OSCILLATOR

the radio amatrur's handrook

Other Typers of Oscillators

Many variations of the foregoing oscillator circuits are in use, mostly designed for harmonic output; nearly all use regeneration in one form or another. Space does not permit their description, and in the long run the operating complications, not only in adjustment but also in changing bands, when the complete transmitter is to operate on more than one frequency, make them less desirable than the simpler circuits.

One further type of circuit is worthy of mention because it has the feature of giving excellent output, within the tube capabilities, with very low crystal current. The diagram is given in Fig. 818. In appearance it resembles the Tri-tet, but with two major differences the crystal is connected between grid and ground instead of between grid and cathode, and the cathode tuned circuit, $L_{2} C_{2}$, is tuned to a lower frequency than that of the crystal.

The plate tank circuit is tuned to the crystal frequency or a harmonic, and is the same in design as the similar circuits in the oscillators already described. In the cathode circuit, a fixed capacity of $100 \mu \mu \mathrm{fds}$. for C_{2} and a $2.5-$ millihenry r.f. choke for L_{2} have been found to work satisfactorily with all amateur-band crystals.

This circuit is a persistent oscillator, gives high output on the fundamental with low crystal current and delivers satisfactory output at the second harmonic; it requires but one tuning control. Ordinary tetrode or pentode oscillators readily can be converted to this circuit simply by inserting the fixed tank circuit in series with the cathode lead. Plate tuning is

FIG. 818 - CRYSTAI. OSCILIATOR CIRCUIT WITH GRID-PLATE CRYSTAL CONNECTION
The screen functions as the plate of a triode oscillator with output taken from the normal plate through a separate tank circuit. Constants are the same as in Fig. 816 with the exception of the cathode tank circuit, $\mathrm{L}_{2} \mathrm{C}_{2}$. C_{2} should be approximately $100 \mu \mu \mathrm{fd}$., fixed; for $1.75-\mathrm{Mc}$. crystals, L_{2}, phould have 90 turna; 3.5 Mc ., 40 turna; 7 Mc. 20 turns; coil dlameter $1 / 2$ inches, length $11 / 2$ inchen.

FIG. 819-PUSH-IPULL CRYSTAL OSCILLATOK CIRCUITS
Circuit values are similar to those in other oscillator circuits. The grid leak. K_{1}, should have half the value normally uged with one tube; the plate tank condenser when split-stator as shown in the diagrams should have in each section the capacity comnionly used for single-tube oscillators ($100 \mu \mu \mathrm{fd}$. per section).
similar to that of the Tri-tet oscillator described in the preceding section.

Push-Pull and Parallel Circuits

The simple triode or tetrode-pentode circuit is readily adaptable to push-pull operation. Typical push-pull circuits are shown in Fig. 819. Circuit constants are similar to those already given except that each section of the split-stator condenser should have the same capacity as the single condenser in the singleended circuits.

Push-pull crystal oscillators are not in general use because they are not so well suited to multi-band transmitters as the single-ended types. The push-pull connection cancels the even-harmonic output. The r.f. voltage across the crystal is higher with the crystal connected between the two grids than with a single tube operating at the same plate voltage, so that for the same crystal heating the power output is not doubled, as might be expected from the fact that two tubes are used. The push-pull oscillator can be used to advantage where the following stage requires balanced excitation, although even in this case suitable coupling methods are available for getting balanced output from a single-ended oscillator.

Tubes also may be used in parallel, but this method of connection also increases the crystal current.

TRANSMITTER DESIGN AND CONSTRUCTION

IR.F. PPDUEIE AMPIIFIEIES

THE purpose of the r.f. power amplifier is to increase the power level of the transmitter output. The output of the oscillator or preceding amplifier is coupled to the grid circuit of the power amplifier by one of a number of methods to be discussed and the r.f. voltage serves to excite the grid of the amplifier. Several stages are sometimes used in cascade, each exciting the following stage, before the output power is of the magnitude desired.

Amplifier tubes as well as oscillator tubes may be connected in push-pull, in parallel or in push-pull-parallel and the d.c. operating voltages are introduced in the same manner as that described earlier in this chapter.

The basic circuits of the amplifier are the same as those shown in Fig. 801. Since the circuit is identical with that for the tuned-plate tuned-grid oscillator (Fig. 809), it is obvious that the stage will oscillate and generate power on a frequency independent of the oscillator or exciting amplifier unless steps are taken to prevent it. Oscillation may be prevented by a process known as neutralization which will be discussed presently.

Capacitive Coupling

Capacitive coupling systems are probably the simplest of all and require the least amount of apparatus. Several systems are shown schematically in Fig. 820. In these circuits, the plate tank circuit of the driver serves as the grid tank for the following stage.

In circuit A, coupling is through condenser C, known as the coupling condenser, from the plate tank of the driver to the grid of the amplifier. The plate of the driver is series-fed; condenser C serves both to provide r.f. coupling and, as a blocking condenser, to insulate the grid of the amplifier tube from the d.c. plate voltage on the driver stage. Grid bias for the amplifier is supplied through an r.f. choke. Since the negative side of the driver plate supply and the positive side of the amplifier bias supply meet at the common filament connection between the two tubes, the coupling condenser C must have insulation good enough to stand the sum of these two voltages without breakdown. The fact that the condenser also is carrying a considerable radio-frequency current makes it desirable that it have a voltage rating giving a factor of safety of at least 2 or 3.

In circuit B the coupling condenser has been

Interstage Conpling Systems

At this point, let us consider the various means which may be enployed to couple the oscillator to a succeeding amplifier or frequency multiplier. The same coupling arrangements are also used between amplifier stages.

Many types of inter-stage coupling have been devised to transfer power efficiently from the driver to the grid circuit of the amplifier. Coupling methods may be divided into three general classes, capacitive or direct, inductive, and transmission line.

The problen of coupling two stages is complicated by the differing characteristics of different types of tubes and hy the use of single- and doubletube stages, the latter often being balanced or push-pull stages. Thus we may have coupling from single tube to single tube, from single tube to push-pull, from push-pull to push-pull, and push-pull to single tube.

Although tubes in parallel may be considered to be equivalent to one tube so far as drawing the circuit is concerned, in actual practice parallel operation may call for modification of the coupling system.

F16. 820 - DIRECT-OR CAPACITY-COUPLED DRIVER AND AMI'LIFIER STAGES
Coupling condenser capacity may be from $50 \mu \mu \mathrm{fd}$. to $0.002 \mu \mathrm{fd}$., not critical, except under conditions deacribed in the text.

THE RADIO AMATEUR'S HANDB00K

moved to the plate circuit of the driver tube and the radio-frequency choke appears at the plate of the driver. This simply shifts the driver to parallel plate feed, and permits the use of series feed to the amplifier grid. In both circuits the excitation can be controlled by moving the tap on the tank coil; the nearer the tap is to the plate end of the coil the greater will be the excitation voltage up to the limit of the driver output.

These circuits have the advantage of simplicity, but have the disadvantage that the interelectrode capacities of both the driver and amplifier tubes are connected across the tuned circuit, thus necessitating a reduction in the $L-C$ ratio of the driver tank circuit and reducing the efficiency at the very high frequencies. They operate quite satisfactorily with ordinary tubes at frequencies of 7 Mc . and lower, and at 14 Mc. with tubes having low interelectrode capacities. The variable tap for regulating excitation is sometimes responsible for parasitic oscillation in the amplifier at a frequency removed from the operating frequency, a condition which is harmful to efficiency and a source of unnecessary interference.

The effect of paralleling the input and output capacities of driver and amplifier tubes can

FIG. 821 - LINK COUPLING, USING A LOW-IMPEIDANCE TRANSMISSION LINE
The link may be twisted lamp cord or consist of a pair of closely-spaced, but not twisted, wires.
be avoided by using circuits like those of Fig. $820-\mathrm{C}$ and -D. Since the ground point is between the two ends of the tank, the tank is "hot" on both ends. The amplifier is coupled from the end opposite the plate of the driver, hence its input capacity is across only part of the driver tank while the output capacity of the driver is across the other part. So far as tuning the driver tank is concerned, these two capacities are in series and the resultant capacity is less than that of either tubc alone.

The difference between C and D is in the method of splitting the tank circuit. In C excitation can be adjusted by moving the ground tap on the coil, while in D excitation is adjusted by varying the relative capacities of C_{1} and C_{2}, keeping the total eapacity constant to maintain resonance.

A balanced driver circuit can be used for coupling to a following push-pull amplifier, as shown in Fig. 820-E. Since the center of a balanced circuit is at zero r.f. potential,there is a phase difference of 180 degrees between the ends of the tank, hence such a tank circuit is suitable for exciting a push-pull amplifier. Excitation can be regulated by adjusting the taps on the tank coil, keeping them equidistant from the center-tap to maintain the balance. A split-stator condenser can be used to balance the circuit, replacing the center-tap on the coil, if desired.

The use of capacity coupling between pushpull stages is shown in Fig. 820-F. The taps are equidistant from the center in this circuit also.

Capacity-Coupling Considerations

Since it consumes power, the grid circuit of the amplifier has a definite impedance (input impedance), which may be high or low according to the type of tube used. A high μ tube usually will have low input impedance, bccause grid current starts to flow at relativcly low exciting voltages. Conversely, a low- μ tube will have relatively high impedance, because a considerably larger r.f. exciting voltage is required for the same grid-current flow. If the driver is to work at optimum efficiency the impedance represented by its loaded tank circuit must lie within definite limits, which may or may not be near in value to the grid impedance of the following stage. The coupling system must transform the grid impedance of the amplifier to a value suitable for loading the driver tube.

With capacity-coupling systems this impedance "matching" is effected by adjusting the position of the excitation tap on the tank coil. The higher the optimum driver load impedance and the lower the amplifier grid input impedance, the nearer the excitation tap will be to the ground point on the tank coil. Con-

TRANSMITTER DESIGN AND CONSTRUCTION

versely, with relatively low driver load resistance and high amplifier grid impedance, the tap will be nearer the high-potential end of the coil. The object, of course, is to deliver as much power as possible to the grid circuit of the amplifier.

While a satisfactory coupling value usually can be obtained, the tap on the coil often introduces a circuit difficulty in that the turns included between tap and ground end of the coil may cause parasitic oscillations which impair the operation of the amplifier as previously mentioned. For this reason it may be necessary to couple directly from the end of the tank, in which case overloading of the driver can be prevented only by the use of a very small coupling condenser, preferably variable for adjustment purposes. This reduces the coupling efficiency.

Link Coupling

At the higher frequencies it is advantageous to use separate tank circuits for the driver plate and amplifier grid. This avoids paralleling the tube capacities across one circuit and, when the two are coupled through an untuned low-impedance transmission line, offers a ready means for adjustment of coupling. This method of coupling also has some constructional advantages, in that separate parts of the transmitter may be constructed as separate units without the necessity for running long leads at high r.f. potential.

The form of transmission-line coupling utilizing a low-impedance line (such as a twisted pair) with coupling loops of a turn or two at each end is popularly known as "link" coupling. The transmission line may be of any convenient length - from a few inches to several feet - without appreciable loss of power in the transfer.

Circuits for link coupling are shown in Fig. 821. The coupling ordinarily is by a turn or two of wire, its ends connected to the twisted pair, closely coupled to the tank inductance. Because of the low impedance of the line, one turn often suffices if the coupling is tight enough; however, sometimes more than one is needed for maximum power transfer. The link should preferably be coupled to the tank circuits at a point of low r.f. potential, as indicated in the diagrams. It is also advisable, especially with high-power stages, to have some means of varying the coupling between link and tank coil. The link turn may be arranged to be swung in relation to the tank coil or, when it consists of a large turn around the outside of the tank coil, can be split into two parts which can be pulled apart or closed somewhat in the fashion of a pair of calipers. If the tank coils are wound on forms, the link may be wound close to the main coil.

With fixed coupling, the only adjustment of excitation is by varying the number of turns on the link. If the coupling between link and tank is variable, change of physical separation of the two coils also will give some adjustment of excitation. In general the proper number of turns for the link must be found by experiment.

Under certain eircumstances, proper impedance matching may require tapping the grid at some point other than the top of the roil.

NEUTIRSM.ITHNG:

As we have already explained, a threcclectrode tube used as a straight radio-frequency amplifier will oscillate because of radiofrequency feed-back through the grid-plate capacity of the tube unless that feed-back is nullified.

Neutralization really amounts to taking some of the radio-frequency voltage from the output or input circuit of the amplifier and introducing it into the other circuit in such a way that it effectively "bucks" the voltage operating through the grid-plate capacity of the tube, thus rendering it impossible for the tube to supply its own excitation. For complete neutralization it is necessary, therefore, that the neutralizing voltage be opposite in phase to the voltage through the grid-plate capacity of the tube and be equal to it in amplitude.

The out-of-phase voltage can be obtained quite readily by using a balanced tank circuit in either grid or plate, taking the neutralizing voltage from the end of the tank opposite that to which the grid or plate is connected. The amplitude of the neutralizing voltage can be regulated by means of a small condenser, the neutralizing condenser, having the same order of capacity as the grid-plate capacity of the tube. Circuits in which the neutralizing voltage is obtained from a balanced grid tank and fed to the plate through the neutralizing condenser are termed grid-neutralizing circuits, while if the neutralizing voltage is obtained from a balanced plate tank and fed to the grid of the tube, the circuit is known as a plate-neutralized circuit.

Plate-Neutralizing Circuits

Soveral plate-neutralizing circuits are given in Fig. 822. In the circuit shown at A the tank coil is center-tapped, with the tank condenser connected across only the upper half of the coil. The neutralizing portion of the coil is connected back to the grid of the tube through the neutralizing condenser, C_{n}. The circuit of B is similar, differing, however, in that the tank condenser is connected across all of the tank coil. This method of connection is prefer-

THE RADIO AMATEUR'S HANDB00K

able in that it tends to keep a better voltage balance over a range of frequencies.

In both the circuits already desmibed the division of r.f. voltage between plate and neutralizing portions of the cireuit has berat by balaneing the tank eoil. The balance also ran be eapacitive, by the use of a split-stator tank condenser with grounded rotor, as shown in l'ig. 822-C. The r.f. potential across the tank coil divides in the same way, a mode (point of zero voltage) appearing at its renter. Hemoer the plate voltage is introduced at the eenter of the coil. The r.f. choke in the plate voltage lead is for the purpose of isolating the center of the eoil from ground for r.f., sinere a ground through a by-pats condenser, if not exartly at the point of zero potential, might catuse circulatimg eurrents which would redure the plate afficienerg of the amplifier.

The fixed condenser betwern the rotor plateo of the tank condenser and ground is not required, hut it has certain advantages which are discussed later in comnertion with the selection of a tank condenser of proper voltage rating.

The push-pull neutralizing circuits shown at D and Eare known as "cross-neut ralized" circuits, the neatralizing condensors being crosscomected from grid of one tube to plate of the other. With proper physical arrangement of parts, a more exact balance ean be obtained with push-pull than with a single tube berause both sides of the rifent are semmetrical. llence these dircuits often are masier to neutrali\%e than single-tube cireuits. The split condenser circuit of E is to be proferred for pushpull amplifiers.

Grial Ventralizalion

Trpical grid-neutrali\%ing circuits are shown in lig. 82:3. They resemble closely the plateneutralizing circuits except that the neutrali\%-
ing voltage is whataed from a babaned input tank and fed to the plate of the tube. Circuit A is used with capacity coupling between driver and amplifier. The grid-coupling eondenser, being large in comparison to the tube and neutralizing caparities in most eirenits. will have negligible effect on the operation of the neutralizing cireuit.
(irid neutralizing systems are well adapted to use with transmission line or link-roupled amplifiers, since the soparate grid tank offers a ready means for whtaining the noutralizing voltage. It maty be somewhat harder to drive a tube with a bilanced input tank, however, bocatuse only half the r.f. voltage developed in the tank is a wailable for the grid-cathode eircuit of the amplifier. This can he overcome to some extent by using the largest possible $L-C^{\prime}$ ratio in the grid tank in order to build up the r.f. voltage to the highest possible value.

From an operating standpoint, plate noutralization usually is to be preferred. The use of grid neutralization is relatively inirequent. and only when some special purpose is served.

Ialues in Ventralizing Cirraits

In all these circuits, by-pass condensers amb parto not particularly a part of the neutradizing arrangement will have the usual values. In most cases the neatralizing voltage will be equal to the r.f. voltage betweon the plate and grid of the tube so that for perfect babmee the capacity required in the neutralizing condenser theoretically will be equal to the grid-plate capacity of the tube being neutralized. If, in the circuits having tapped tank coils, the tap is more than half the total number of turns from the plate end of the coil, the required neutralizing capacity will increase appoximately in proportion to the relative number of turns in the two sections of the coil.

For those tuber having grid and plate connections brought out through the bulb, a condenser having at about half seale or loss a capacity equal to the grid-plate capacity of the tube should be chosen. Where the grid almd plate leats are brought through a common base, the ('n capaeity needed is greater became the tube socket and its associated wiring adds some capacity to the actual inter-elemont eapacities. In such eases a slightly larger condenser should bo used.

When two or more tubes are ennmerted in parallel, the neutralizing eapacity required will be in propertion to the number of taber.

Compmrisom of Venlralizing Circmits

Aside from the considerations already montioned in the diseussion of neutralizing circuits there are certan practical aspects of neutraliang whieh should be kept in mind in deciding what type of circuit to employ. These apply particularly in neutralized single-ended stages.

The most commonly-used circuits are those given in lrig. 822 at \dot{B} and ('. With the splitcoil method at B, exact neutralization can bo ohtained at only one frequeney in a singleended amplifier, because the various strat.
rapacities shanting the eobl destroy the hatance when the circuit is detuned slightly. With detuning, the circuit becomes regenerative and may result in non-linear operation if the amplifier is modulated. For c.w. work, the unhalane is smatl mough wo that satisfactory performance can be obtained. Another disadvantage is the fact that both sides of the single-section tank rondenser are ${ }^{*}$ hat "s that hamb-rapateity effects are marked.

The halanced eondenser arrangement at θ^{\prime} lacks regeneration, but this circuit also is likely to go out of hatane with thming if the platefilament caparity of the the is appreciabla with respect to the eapacity of the condenser section comected across it. At the higher amatedr frequencies, therefore, the cireuit functions best with a tube having low output (apacity, and with a split-stator comdenser having moderately large "in-use" capacity in each section. The afleet of the tube ontput rapacity can be eliminated hy eonneeting a small condenser across the opposite condenser section to simulate a second tube balancing the first. The additional condenser should be adjusted to equal the effeetive output eapaeit. of the tube.

The split eondenser cireuit has two adrantages wer the split coil: the effective iuput raparity of the ciment is smaller, permitting an increase in the L - (' ratio of the grid tank circuit, and harmonics are more effectively suppresised hecanse the comdenser section between plate and filament offers much lower impedance to harmonies than the upper roil section in the circuit of B. The back of regeneration in the split-eondenser cireuit may canse an amplifier nentralized by this method to appear harder to drive than when the split-coil serstem is used, especially if the driver power output is low, berause the regenerative effeet of the latter system tends to maintain the grid current at a higher value under load. Comparisons of the two cireuitsin a properly dexigned transmitter, however, show that with molerate eveitation the same output can be obtained with either despite the differenee in behavior of getid enrents; the spliteondenser cireuit often, in fact, shows better phate efficiency beratuse of the reduction of harmonic output. Since the rotor of the split-stator eondenser is grounded, there are no hand-capacity effects With this eireuit. 'Ther process to be followed in neutralizing will be diselused later in eommertion with tuning and adjustment.

NOIR EEN-AIRIID A.MIPIDRIEIES:

Thes sercening in all transmitting tetrodes and pentodes is sufticiently eomplete to reduce the pate-to-grid capacity to a value which will not permit coupling bie this means: therefore,

THE RADIO AMATEUR'S HANDB00K

neutralization is not necessary and the circuits of screen-grid amplifiers are relatively simple. It should be noted, however, that the receiving type beam tubes, such as the $6 \mathrm{~L} 6,6 \mathrm{~L} 6 \mathrm{G}$, and $6 V^{6} 6$, frequently used in the low-power stages of transmitters, are not sufficiently well screened and require neutralization if input and output circuits are to be tuned to the same frequency. Since the plate-to-grid capacity is very small, difficulty is sometimes encountered in arriving at a neutralizing adjustment which will hold well. To avoid this, the tubes mentioned above are sometimes converted into triodes by connecting screen to control-grid or to the plate. With this connection, operation is similar to that of other triodes.

The operation of a screen-grid amplifier is essentially the same as that of a neutralized triode. Since neutralization is not required, the circuits of screen-grid amplifiers are relatively simple. Typical circuits for tetrodes and pentodes are given in Fig. 824.

The rules for interstage coupling also are applicable to these circuits. Chief points about the screen-grid amplifier are the necessity for thorough grounding of screen (and suppressor) for r.f. through the use of bypass condensers close to the tube itself, and the prevention of stray couplings between input and output circuits.

Screen-grid pentodes and beam tetrodes have high power sensitivity and usually require much less grid driving power for full output than do triodes of comparable ratings. Although these tubes are shielded from internal feedback, their high power sensitivity makes them prone to self-oscillate, so that particular care must be used to prevent feedback external to the tube itself. In cases where low-loss circuits are used, it may be impossible to prevent oscillation unless the input and output circuits are carefully shielded from each other and the input circuit shielded from the tube itself. A

FIG; 824 - I'YPICAI, SCREEN-GRID AMPLIFIER

 CIRCUITSThe upper diagram is used with filament-type screen-grid power tubes such as the $865,860,282-A$, 850, 254-A, 254-13, 807, RK39-47-48, 814, 813 etc. Important points to observe in the operation of the soreen-grid amplifier are that the sereen by-pass condenser, C_{3}, sliould have low impedance at the operating frequency (capacity of at least $\mathbf{. 0 0 2} \mu \mathrm{fd}$. for amatour transmitters) and that the output tank circuit $L_{1} C_{1}$ must beisolated from the input circuit, either by shielding or loy pliysical spacing great enough to prevent feed-hack. By-pass condensers C_{2} and C_{4} may We the usual valucs used in power-tuhe circuits; ,002 μ fl. will be sufficient. Any type of input coupling may be used in place of the capacity coupling shown.

The lower diagram is for use with screen-grid pentodes. It is essentially the same as the upper circuit except for the additional connections for the suppressor grid, which ahould be supplied a mall positive voltage for maximum output. Valuea are the same for similarly-lahelled components in both circuits. C5 should have the same value as Cs.
short cylindrical shield extending from the base of the tube up to a point level with the lower edge of the tube plate is commonly used to shield the plate lead from the grid wiring in the stem and base of the tube.

Old-type screen-grid tubes such as the 865 , 860 and 861 do not have the power sensitivity of the more modern tubes and aro seldom seen in use to-day.

ANIPIDFIEIR GPPERATION

For efficient operation, it is necessary that the grid of a power a mplifier be driven positive during part of the cycle of r.f. excitation voltage. The grid therefore consumes power, and rectified current flows in the grid circuit. The excitation power required depends upon the type of tube, the power output and plate efficiency desired, the grid bias, and to some extent upon the operating frequency. In r.f. amplifiers, the power amplification ratio ordinarily is not very high in comparison with the ratios encountered in audio-a mplifier practice. On the other hand, the plate efficiency is considerably higher than is possible in audio work, because wave-form distortion is not a factor. An r.f. amplifier works into a tuned tank circuit, resonant only to the operating frequency, so that the flywheel effect of the tank eliminates most of the distortion. In any event, distortion of an r.f. cycle is not objectionable in the sense that similar distortion of an audiofrequency cycle is objectionable; even when the amplifier is modulated, r.f. distortion, being at frequencies far beyond audibility, does not affect the audio-frequency modulation. R.f. distortion, however, causes harmonics of the fundamental frequency to be generated, and these harmonics can be radiated to cause unnecessary interference. For example, an amplifier working on a frequency of 3700 kilocycles will have harmonics at $7400 ; 11,100 ; 14,800$

TRANSMITTER DESIGN AND CONSTRUCTION

kc., etc. It is desirable, therefore, to take all possible precautions to prevent the harmonics from being radiated by the antenna, even though they are unavoidably generated by the tube itself.
In all amplifiers provision must be made for applying the r.f. power obtained from the preceding stage, or driver, to the grid-cathode circuit of the amplifier tube, and for supplying a suitable tank circuit in the plate-cathode circuit of the tube so that the power output capabilities of the tube can be realized. With triodes, a neutralizing circuit also is necessary, as already mentioned. Besides circuit considerations, optimum performance is realized only when proper attention is paid to the operating conditions, which include adjustment of grid bias, excitation power, and output coupling.

Parallel and Push-Pull

A power amplifier stage may consist of a single tube, two or more tubes in parallel, or two tubes in push-pull. With parallel operation, the circuit is the same as for one tube, since the same elements in each of the paralleled tubes are simply connected together. it is customary to refer to a single-tube or parallel amplifier as single-ended, while push-pull circuits are known as double-ended, having a tube plate connected to each end of the tank circuit. The push-pull circuit uses balanced tank circuits, a balanced circuit being one in which the ground point is at the center of the tank. Both ends of the balanced tank therefore are at high r.f. potential with respect to ground, or are "hot" - so called because in power amplifier circuits it is possible to draw sparks off parts of the circuit at high r.f. potential. An unbalanced circuit is one in which one end of the tank is connected to ground while the other end is "hot." Balanced tank circuits often are used in neutralizing single-ended amplifiers although, since the tube is connected across only half the circuit, the balance may not be exact. Push-pull circuits, being symmetrical throughout with respect to ground, give excellent balance.

Under similar operating conditions, the power output from two tubes will be the same whether they are connected in parallel or pushpull. The same is true of the power required from the driver.

At the higher frequencies a limit is placed on parallel operation by the shunting effect of tube capacities in increasing the minimum capacity of the circuit to such an extent that a tank circuit of reasonable efficiency cannot be secured. However, at ordinary amateur frequencies several tubes designed for highfrequency work (the types with low interelectrode capacities) can be paralleled successfully.

It is an inherent property of the push-pull comnection that even harmonics are balanced out. Thus only the odd harmonics are present in the output, assuming that the circuit is well balanced and that tubes having identical characteristics are used. The third harmonic, which is the one of greatest importance, is relatively small compared to the second harmonic. Thus push-pull operation is advantageous from the harmonic radiation standpoint.

A push-pull circuit is often easier to handle than a single-ended circuit, especially at high frequencies. This is particularly true of neutralized amplifiers; at 14 Mc. and higher, perfect neutralization is difficult, if not impossible, in a single-ended stage, with any tubes except those having very low interelectrode capacities and with grid and plate leads brought out separatcly, not through the tube base. The symmetry of the push-pull stage balances out the effects of stray capacity between tube elements and between other parts of the circuit, and permits easy and practically perfect neutralization. For this reason many amateurs prefer to use two tubes in push-pull rather than a single tube of twice the power rating.

AMIPIAFIEIE DESIGN

- Egardless of the circuit or type of tube used, certain principles must be observed if the amplifier is to give its best performance. For efficient operation, it is important that the load on the tube be adjusted to the proper value, that sufficient excitation be supplied to the grid, and that the correct value of grid bias be used. In addition, the constants of the plate tank circuit must be correctly chosen.

Tank Circuit Impedance - Coupling Efficiency

So far as the plate efficiency of the tube itself is concerned, it does not matter how the load resistance is obtained; that is, the tube will work equally well into an actual resistor or into a tank circuit having any practicable constants so long as the resistance or impedance represented by the tank is the desired value. However, the distribution of the power output between the tank circuit and the load is affected by the inherent (unloaded) impedance of the tank circuit.

The impedance of the unloaded tank circuit at resonance is equal to $L / C R$, where L is the inductance, C the capacity, and R the effective resistance. The higher the ratio of the unloaded tank impedance to the optimum load impedance for the tube, the greater the proportion of power transferred to the load. The impedance of the tank alone should be at least ten times the optimum load impedance for high transfer

THE RADIO AMATLUR'S IIANDBOOK

efficiency. The unloaded tank impedance can be made high in two ways: by lowering the resistance through the construetion of low-loss coils and by careful placement of parts, or by raising the $L-C^{\prime}$ ratio. With practicable eircuits, it is much easior to obtain high tank impedance by using a high $L_{-(\text {e }}$ matio than by attempting to redued the resistaner, although avery effort should of course he made to reduce losses.

Tanli Impedance and Iharmonic Output

When a high-impedance tank cireuit is used, along with high grid bias and large values of excitation voltage, a large proportion of the power output is on harmonies of the fundamental frequeney. The harmonie power is not uscful for signalling purposes and often is radiated by the anteman system, calusing interforener on other frequencies. Sine our bands are not wholly in harmonic relation, at some operating frequencies this may moan that the transmitter is radiating on a fregurney not assigned to amateurs.

Should the eireuit eonditions be such that the harmonics cause cireutating currents, there is a power loss which reduces the overall efficieney of the amplifier. In general, it will be fomed that any means employed in the output cireuit to redue harmonies also will result in an improvement in afficienes.

Oplimmi" L-C: Ralios

Berause high transfor efficioncy requires high unloaded tank impedanee (high L-f' ratio) while harmonie reduction calls for considerable Hywhel effect and consequently for a fairly large ratio of eapacity to inductanes, in pratiec a eompromise must be made betwern these two romblieting factors. Another eonsideration which militatos against the use of too high an L-f ratio is the fact that considarable flywheel affeet is needed to insura linearity when the amplifier is to be modulated. The importance of linear action is discussed in Chapter Tren. A fair amount of Hywherl offect also improves the stability of the amplifior and makes its tuning more satisfactory.
best enginerering practioe is to adjust the L-f ratio so that under operating eonditions, with the amplifier fully loaded, the tank eireuit "()" is about 12 . The optimum $L-$ ' $^{\text {ratio to be }}$ used then depends upon the relation between the d.e. plate voltage and d.c. plate current in the amplifier stage. For a given power input, the higher the plate voltage and the lower the plate current, the higher the $L-f^{\prime}$ ratio, and vico versa. It is therefore necessary to know only the plate voltage and plate eurrent at which the amplifier is to operato in order to determine the amount of capacity which should be in use in the tank eireuit. The
capacity value is inversely proportional to the frequency or, conversely, directly proportional to the wavelength. The later relation permits rxpressing the required capacity in "micromierofarads per meter" of wavelength. Using round figures (close enough for practical purposes) the wavelengths with which amateurs: are eoncerned are $10,20,40,80$ and 160 moters. For example, if the transmitter is in the 3.nMe. band (80 meters) the required tank capacity would be found by multiplying the " $\mu \mu \mathrm{fd}$. per meter" value by so.
lig. $\$ 25$ is a chart giving $\mu \mu \mathrm{fd}$. per metor as a function of the d.c. plate voltage divided by the plate current (in milliamperes) for various types of eireuits. The circuits themselves will bo discussed later. As an example, suppose an amplifier is intended to be operated at 1500 volts and 150 ma . plate current. The platevoltage plate-current ratio is $1500 / 150$, or 10 . Assuming the eircuit at the top is employed. curve A should be used. For a ratio of 10 , the $\mu \mu \mathrm{fd}$. per meter value as read from curve A is ?.is. For 7 -Mc. output, the tank capacity therefore should be 40×2. 5 , or $100 \mu \mu \mathrm{fd}$; for $14-\mathrm{Mc}$. out put, 20×2.5, or $50 \mu \mu \mathrm{fd}$., and so on. Where double-section or split-stator condensers aro used, the values given by the curve are for rach section of the condenser. The capacity values so obtained are the actual values which should bo used, not simply the maximum capacity of the condenser in the transmitter. If, for cxample, the chart calls for a capacity of $50 \mu \mu \mathrm{fl}$, a $100-\mu \mu \mathrm{fil}$. condenser should tume to resonanee at about half seale.

Malti-hand Opration

The use of one transmitter for work in several hands is customary for obvious reasons. Provided only three adjacent bands are covcred by a single transmitter, it is generally possible to design the tank circuit of the final stage so that the optimum $L_{\text {- }}$ ' ratio is used on each band. However, the limitations of circuit components are such that it is difficult, if not impossible, to use the best tank circuit for each band when the same amplifier must work ovor four or five bands. Particularly, a tank condenser hatving the right minimum-maximum capacity range for $1+$ and $2 \mathrm{~S}-\mathrm{Me}$. operations will not have nearly emough capacity for 1.7 ; Mc., and a condenser suitable for the latter band will not have a low-enough minimuma rapacity for efficient 28 -Mc. work.

Nevertheless, some constructors insist on having data on operating a single amplifier or transmitter on all five bands. To do it, some compromise must be made in the L - (: ratios, so that optimum performance camot be secured at the extremes of the frequencer range. some of the amplifiers to be described in this chapter are examples of such compromise. We

TRANSMITTER DESIGN AND CONSTRUCTION

strongly reemmmend, fowerer, that separato transmitters - or at loast separate final amplifiers - be used when bands of such widelydifferent requirements as 1.7 .5 Mr . and 28 Mc . are to be used. To get optimum $/$ - (Vatios, it may be neressaty to ber simgle-seretion ernadensers on the low frequencies where splitstator eondensers are recommended in the eireuit diagrams: in single-tabe phatementralized cireuits this simply means ehamging the plate tank eireuit from that of Fig. 822-C to 822-l3, and in push-pull cirnuits from lig. 822-E to 822-I). Sine the differeners betwern the neutralizing rireuits are most apparent at the higher frequeneies, the ehamge in cirenit is of less ronsequence at 1.7 .5 and 3.5 Mr and of these bands the one which permits new of the optimum $l_{-}-f^{\prime}$ ration should ler used.

In the amplifiers deseribed in the constructional section of this chapter, optimum capaceity at 1.7 Mc . is obtamed by the use of a fixed paddling mapacity.

Deferminnfion of Tank-f:omdemser loltage Rating

(itaphs showing the values of peak r.f. voltage whirh may be experted arross a tankmondenser sedtion depending upon the power input and tank-eirenit $/-f$ ratios are given in lig. S2fi. If the stage is to be phate-morlulated,
the peak ref. veltage across mach seetion will be twier that shown by the graph for loor; madulation. While the value of tankerendenser "aparits in micromicrofarads-per-meter of wavelength for an optimum $/$ - (" ratio may be determined from the graphs of Fig. 82.), as previously explatued, the graphs of Fig. S26 apply equally to other $/-$ e ration, of course. The raparity is that actually in lise at resollather.

In rirouits making use of a simglespetion tank condenser, the prat ref. voltage menfomed atowe will he the only voltage to appear armas the romelenser plates. far eirenits in Which a split-statar romenser is used with rotor gromuded, the d.e. plate voltage and, if the stage is pate-modulated, the peak audio veltage (egnal to the if.e. plate voltage for 1010^{\prime}; modulation must be added to the peak r.f. poltage por sertion, still bearing in mind that the peak ref. voltage doubles with plate moctulation.

The dec. and at foltages maty be removed from arems the plates of a split-statom comdenser by the use of a blocking eomenser as shown in lig. 827 . This plates the roter at full ghate roltage above grobad, however, reglliting the use of a suitably insulated controb. The comblenser should have a eapacity of 0.001 to 0.002μ efd and a peak voltage rat-

 ovplaimerlin the tovi.

THE RADIO AMATCUR'S HANDB00K

ing of about four times the d.c. plate voltage.
Taking the example previously cited in connection with Fig. 825, i.e. an amplifier operating at 225 watts input (1500 volts, 150 ma.), we obtain an optimum capacity value of 1.25 $\mu \mu \mathrm{fds}$. per meter for a single-section condenser or $2.5 \mu \mu \mathrm{f}$ ds. per meter for each section of a split-stator condenser. The ratio to be used in Fig. 826 for the single-section condenser will be $225 / 1.25$ or 180 , corresponding to a peak r.f. voltage of 1250 . Adding a safety factor of 25%, we obtain a value of 1565 volts. If the stage is to he used for c.w. only, the value
obtained from the graph will be the total voltage across the condenser. If the stage is to be plate-modulated, however, this value must he multiplied by 2 bringing it to 3130 volts.

If a split-stator condenser is to be used, the ratio will be $225 / 2.5$ or 90 , corresponding to a peak voltage of 625 volts. Adding the 25% safety factor brings the voltage per section to 785. If a blocking condenser is used and the stage is not to be plate-modulated, this will be the total voltage across each section of the condenser. If the blocking condenser is used and the stage plate-modulated, the above value must be multiplied by two bringing it to 1570 volts per section. If no blocking condenser is used, the d.e. plate voltage must be added for c.w. operation bringing it to 2656 volts per section (625 plus 1500 plus 25%). With plate modulation, the peak audio voltage (equal to the plate voltage for 100% modulation) must also be added bringing the total voltage per section to 5312 $[(625 \times 2)$ plus (1500×2) plus 25%. The advantage of the use of the blocking condenser is quite apparent. These values are those to be expected with the amplifier loaded. Since a platemodulated stage is always operated with a load, the estimated values should be satisfactory. A c.w. transmitter is sometimes operated without load during the process of tuning. While it is always advisable to tune first with voltage reduced, keying surges sometimes occur which would make it advisable to use a condenser with the same spacing as that determined for plate modulation.

The spacing required to withstand a certain estimated value of voltage will depend upon the design of the condenser. Most manufacturers specify peak-voltage ratings for each of their condensers.

Determining Inductance

Once the required tank capacity for the amplifier and frequency is determined, the tank coil dimensions can be found. This may be done with the help of the $L-C$ and inductance formulas in Chapter Four, or if standard coil forms are used, the charts of Figs. 828 and 829 will give the required number of turns directly. Using the chart which applies for the type of coil form or coil in question, read on the appropriate frequency curve the number of turns required for the tank capacity value already determined. The optimum tank L-C ratio will result.

TRANSMITTER DESIGN AND CONSTRUCTION

FIG. 827 - USE OF BLOCKING; CONDENSER PERMITS Smalier plate spacivg; WITII SPLIT-STATOR CONDENSERS
Condenser control mant loc suitably insulated. (See text.)

Fig. 828 is for coils wound on receiving-type forms having a diameter of $11 / 2$ inches and ceramic forms having a diameter of $1 \frac{3}{4}$ inches and winding length of 3 inches (National XR13). Such coils would be suitable for oscillator and buffer stages where the power to be carried is not over 50 watts. In all cases the number of turns given must be wound to fit the length indicated; the turns should be spaced out evenly either by winding wire or string of suitable size between turns, or, in the case of those having few turns, by hand.

Fig. 829 gives data on coils wound on trans-mitting-type ceramic forms. Five popular types of forms are indicated. In the case of the smallest form, extra curves are given for double-spacing; that is, winding turns in alternate grooves. This is sometimes advisahe in the case of 14 -and $28-\mathrm{Mc}$. coils when only a few turns are required. In all other cases it is assumed that the specified number of turns is wound in the grooves without any additional spacing.

The plate tank circuit, together with the apparatus coupled to it (an antenna or following amplifier stage) constitutes the plate load for the tube. When the tank is tuned to resonance with the exciting frequency, it is practically equivalent to resistance only, so that it is customary to refer to the load circuit as a resist-

ance or impedance. The value of equivalent resistance represented by the tank circuit is dependent upon the ratio of inductance to capacity, upon the inherent r.f. resistance of the coil and condenser making up the tank, and upon the effective resistance coupled into the tank from the external circuit to which it is supplying power. The tank resistance or impedance decreases as the coupling to the external circuit is increased, and also decreases as the ratio of inductance to capacity is decreased.

The value of load resistance or impedance which will give optimum power output and efficiency depends upon the grid bias and excitation voltage.

Measurement of Excitation

Measurement of r.f. excitation voltage is difficult without special apparatus such as a vacuum-tube voltmeter, so it is customary to take the rectified grid current as a measure of the r.f. voltage and power supplied to the grid rircuit of the amplifier. Under a given set of conditions, the higher the grid current the greater is the excitation voltage. However, a change in load resistance or a change in fixed bias or grid-leak resistance will cause a change

FIG. 828 - COIL-W INIDIVG DATA FOR RECEIVING-TYPE FORMS, DIAMETER $11 / 2$ INCIIES

[^9]

HUS. 829-COIL, WINI)ING IDATA FOR CERE-IMIC:TRANSMITTING:TYIPE FORMS
Cirve 1 -cerumir. ferill $21 / 2$-inch effective diameter. 26 grocoves, 7 perinch; Cirva 1s -same an A. Jout with turnm wornd in ullernata m rocoves: Curve C-ceramic form $2^{7 / 8-i n e h ~ e f f e r--~}$ live diameter, 32 grooven. 7.1 turns per inch, appl: Curve 1) - ceramic form t-ineh effective diameter. :8yrooves, 5.85 turna par inch, appl; Curve \mathbb{E} erramicform 5-incheffeelive diameter, 26 gromen. 7 per inch. Coila may low wound with Na. 12 or No. 14 wire.
in the value of d.c. grid enrrent for the same exeitation voltage, so that readings taken under different operating conditions are not comparable.
l'ig. 803 shows how a milliammoter may be rounerted in the eircuit for rading grid elurrent.

Effert of Excitation

A typical set of performance curves, showing power output, power amplifieation ratio, driving power and effiecency as a function of d.e. grid current is show in Fig. 830. Fixed values of load resistance and grid bias are assumed. The curves show that output and efficiency increase rapidly at first as the excitation is inerased, then more slowly. The grid driving power curve rises rapidly beyond the maximum power amplification ratio, showing that a relatively large incroase in excitation is necessary to produce a comparatively small increase in power output and efficiency once the optimum point - just to the right of the bend in the output and efficiency curves - is passed.

Assuming fixed plate voltage and load resistance, there is an optimum bias value which will give best results for every value of excitation voltage. The greater the excitation, the greater should be the bias. The power constumed in the amplifier grid circuit also is greater under these conditions. The grid power, furnished by the driver, is dissipated in the grid-filament circuit of the tube, appearing as heat at the grid, in the bias supply, and also,
particularly at the higher frequencies, as dielectric loss in the glass of the tube.

The curves of Fig. 830 are typical for the neutralized triode amplifier. In the case of the beam tetrodes and pentodes, the power output actually decreases after exeitation execeds a rather critical value. Since the driving power required by tubes of these types is quite small, care must be taken to avoid over-driving.

Efficipney and Ontput

The attainable plate effieieney is of great importaner in determining the operating conditions for the amplifier. If the safe plate dissipation rating of the tube were the only consideration, it would be desirable to obtain the highest possible plate officieney, since the power output would be limited solely by the officieney. loor example, a tube having a plate dissipation rating of 100 watts operating at a plate effieieney of 90% could handle an input of 1000 watts, giving 900 watts output, while the same tube at 70% efficieney could handle an input of only $3: 33$ watts, giving an output of 2333 watts. The plate dissipation - the differenee betwren input and output - is the same ia both cases, 100 watts.

There are othor considerations, however, which limit the useful plate effieiency. Assuming that the total plate input is not to exeered the manufacturer's ratings for the tube, the difference between 70% and 90% efficiency is not so great. For instance, taking the same 100) watt tube and assuming that the 70% efficioney condition corresponds with the rat-

TRANSMITTER DESIGN AND CONSTRUCTION

ings, an efficiency of 90 , $;$ would increase the output to only 300 watts (3:3: watts input). The additional 6 watts of output, an increase of about 27%, would require inordinately large driving power becanse, as shown by Fig. S30, the efficieney inereases very slowly beyoud the optimum point, while the reverse is true of the driving power required.

I second factor which limits the usable officioney is the fact that high values of eflicieney are attained only through the use of high values of load resistaner, which in turn requires the use of very high plate voltage. Not all tubes are suited to operation at plate voltages mueh above their normal ratings, while from an ceonomic standpoint a high-voltage power supply may represent greater cost than the installation of a seeond tabe operating at lower voltage to give the same order of total power output, hut at lower plate afficionce.

Grid Bias

For efficiont tube operation, it is essential that plate comront be drawn in pulses which oecupy only a small part of the complete ref. evele, and that the peak value of the plate current pulse be several times the average d.e. plate current value as read hy a milliammetor. This requirement is mot hy using grid bias considerably larger than that necessary to cut off plate current (without excitation) at the operating der plate voltage. It is customary to operate with grid bias equal to twiee the cutoff value, and where higher than ordinary -flieiency is to be obtaned, with evoln larger values. This method of operation requires correspondingly large grid excitation voltage and power.

Maximum plate efficieney will result whem high bias, large excitation power, and a high

value of load resistamer or impedaner are used. If the excitation is low, both grid bias and plate load impedance mast be redued for maximum output, although the efliciener will hr comparatively low. The greatest power amplification ratio and maximum output with small excitation usually result when the bias is set at the cut-off value. Vinder these conditions the phate efficiency seldom exceeds fifty to sixty prerent. Dlate efficiencies of 75% are nsual when the bias is twier cut-off and the tube is adequately exeited.

(irid-Rins Supply

In notrly all the units shown in this chapter commetions for external grid hias have been indicated. The combination of fixed and loak bias is desirable both for obtaining optimum performance and for tube protection.

Where fixed bias has been indicated, it has been assumed that the bias voltage will be constant under all operating conditions. This is true only when the bias source has negligible interual resistance. " 13 " batteries satisfy this requirement, and when bias of the order of an or 100 volts is all that is needed, one or two tovolt blocks form an inexpernsive and thoroughly practical "()" supply. The life is practically the stme as the sholf life, since no power is taken from the batterios, provided the grid current does not greatly exered the normal current rating of the battery. For standard-si\% blocks, about os milliamperes, and for heavrduty blocks about so milliamperes, will be safogridecurent ratings. The end of useful life. is indicated be a falling off in grid current from the mormal value, evidene that the intermal resistance of the battory is beoming appreciable.

A bias power pack has the advantage of indefinite life, but comparatively high internal resistance. In most cases, howerer, satisfaetory biat parks can be construted. special features in their design are covered in Chapter Fourtren.

Cathode bias, similar to that used with rereising tubes, may be employed, as mentioned previously, when the tube is indirectly heated, or has a separate filament transormer, if of the direetly-heated type. Cathode bias is often used with orystal-owillator tubes, as already doweribed. The method ran be applied to amplifiers, although it has the disadvantage that the plate voltage is reduced by the amome of bias developed in the eathode resistor as rexplained previously; with many tubes a value of eathode resistance which will hold the plate eurent to a safe value without axcitation absorhs far too much voltage under "proating comditions. For this reason, it is most satisfactory with high- μ tubes. A separate fixed-hias sumere is gencrally preferable.

THE RADIO AMATEUR'S HANDB00K

TEINING AN AMIPIIFIEIR

The general method of tuning applies to any type of amplifier or circuit. Triodes, of course, have to be neutralized, while screen-grid tubes do not. Aside from neutralization, the tuning process consists of adjusting the input circuit for maximum excitation, and the output circuit for optimum power output and efficiency.

When triode amplifiers are used, it is essential that the tube or tubes be carefully neutralized before attempting to take power output from the circuit. Neutralization is therefore the first step in the tuning process.

Neutralizing Adjustments

The procedure in neutralizing is the same for all tubes and circuits. The filament of the tube should be lighted and the excitation from the preceding stage should be fed to the grid circuit, but the plate voltage should be off. Couple any r.f. indicator such as a neon bulb or a flashlight lamp connected to a loop of wire, to the plate tank circuit (if a neon bulb is used, simply touch the metal base to the plate terminal) and tune the plate circuit to resonance, which will be indicated by a maximum reading of the r.f. indicator, Then, leaving the plate tank condenser alone, find the setting of the neutralizing condenser which makes the r.f. in the plate tank drop to zero. Turning the neutralizing condenser probably will throw off the tuning of the driver tank slightly, so the preceding stage should be retuned to resonance. In push-pull amplifiers both neutralizing condensers should be adjusted together, keeping their capacities equal.

Now couple the r.f. indicator to the plate tank once more and again tune the plate circuit to resonance. Probably the resonance point will occur at a slightly different setting, and the second reading on the r.f. indicator will be lower than the first one. Retune the preceding stage once more and go through the whole procedure again. Continue until the r.f. indicator gives no reading when the plate tank circuit is tuned in the region of resonance. When this has been accomplished the circuit is neutralized.

The object of neutralizing adjustments is to find the setting of the neutralizing condenser or condensers which eliminates r.f. in the plate circuit when the plate tank is tuned to resonance. It is not at all difficult to neutralize an amplifier after a few practice trials, provided the circuit is laid out properly and provided the neutralizing condenser has the right capacity range. It sometimes happens that while a setting can be found which gives a definite point of minimum r.f. in the plate circuit, the r.f. is not completely eliminated; in such a case
stray coupling between the amplifier and driver tank coils, or stray capacities between various parts of the amplifier circuit tending to upset the voltage balance, probably will be found to be responsible. A better layout with short, widely-spaced leads, or with coils so placed that coupling between them is minimized - usually when the axes of the coils are at right angles - should be tried. Shielding of the amplifier often will eliminate troubles of this sort.

Neulralizing Indicators

In the neutralizing procedure outlined above, the use of a neon bulb or other r.f. indicator has been assumed. In circuits in which the neutralizing bridge is entirely capacitive, as in those circuits using split-stator condensers, touching the neon bulb to a high-potential point of the circuit may introduce enough stray capacity to unbalance the circuit slightly, thus upsetting the neutralizing. This is particularly noticeable with high-power amplifiers, where the excitation voltage is considerable and a slight unbalance gives a noticeable indication. In such cases a flashlight lamp and loop of wire, tightly coupled to the tank coil, may give a more accurate indication of the exact neutralizing point. A thermo-galvanometer similarly connected to a wire loop has considerably greater sensitivity, but is expensive.

A d.c. milliammeter connected to read rectified grid current as shown in Fig. 803 makes a quite sensitive neutralizing indicator. If the circuit is not completely neutralized, tuning the plate tank circuit through resonance will change the tuning of the grid circuit and affect its loading, causing a change in the d.c. grid current. With push-pull amplifiers, or singleended amplifiers using a tap on the tank coil for neutralization, the setting of the neutralizing condenser which leaves the grid current unaffected as the plate tank is tuned through resonance is the correct one. If the circuit is slightly out of neutralization the grid meter needle will give a noticeable flicker. With single-ended circuits having split-stator neutralization the behavior of the grid meter will depend upon the type of tube used. If the tube's output capacity is not great enough to upset the balance, the action of the meter will be the same as in other circuits. With highcapacity tubes, however, the meter usually

FlG. 831 - TYPICAL IBEIIAVIOR OF D.C. PIATE CURRENT WITH TUNING OF AN AMPLIFIER

TRANSUITTER DESIGN AND CONSTRUCTION

will show a gradual rise and fall as the plate tank is tuned through resonance, reaching a maximum right at resonance when the circuit is properly neutralized. A sharp flicker at resonance indicates that the circuit is not neutralized.

Neutralizing Difficulties

If trouble is experienced in getting a triode amplifier completely neutralized, the circuit should be checked over carefully to make sure that all connections are good and that there are no shorted turns in the inductances. Different sizes of neutralizing condensers may also be tricd, sinee circuit conditions vary considerably with different physieal layouts. If a setting of the neutralizing condenser can be found which gives minimum r.f. in the plate tank circuit without completely eliminating it, the chances are that there is some magnetic or capacity coupling between the input and output eireuits external to the tube itself. Short leads in neutralizing circuits are highly desirable, and the input and output induetances should be so placed with respect to each other that magnetic coupling is minimized. Usually this means that the axes of the coils should be at right angles to each other. In some cases it may be necessary to shield the input and output circuits from each other. Magnetic eoupling can be checked for quite readily by disconnecting the tank from the remainder of the circuit and testing for r.f. in the plate tank circuit as the tank condenser is swung through resonance. The preceding stage must be running, of course.

Particularly with single-ended amplifiers there are many stray capacities left uncompensated for in the neutralizing process. The tube, for example, has capacity from grid to filament as well as from grid to plate; likewise there is capacity between plate and filament. Similarly, capacities existing between parts of the socket enter into the picture with tubes having all three elements brought out to the same base. With large tubes, especially those having relatively high interelectrode capacities, these commonly neglected stray capacities can prevent perfect neutralization. Symmetrical arrangement of a push-pull amplifier is about the only way to obtain a practically perfect balance throughout the amplifier.

Adjusting the Grid Circuit

After neutralizing is completed, the next step in the tuning process is that of adjusting the input circuit of the amplifier so that the maximum excitation will be delivered to the grid of the tube from the driver.

First adjust the driver stage plate tank to resonance. In the capacity-coupled systems, Fig. 820, the driver tank is common to the
amplifier grid cireuit so that this one adjustment suffiees to tune the whole system to resonance. With caparity coupling, the one remaining adjustment is to determine the optimum coupling. If excitation is taken through a tap on the coil, the tap should be moved until the grid current is maximum. Each time the tap is moved, the tank condenser should be retuned for minimum plate current. If the excitation is taken directly from the end of the tank eoil, the coupling can be varied by ehanging the capacity of coupling condenser (${ }^{\prime}$.

In the link-coupled systems of lig. 821, two tank eircuits must be tuned: the driver plate tank and the amplifier grid tank. In addition, the coupling between the two must be varied. Adjust the driver to resonance, then tune the amplifier grid tank for maximum grid current, and vary the coupling (with simultancous "touehing up" of each tank) until the highest value of grid current is secured. The coupling can be varied by ehanging the number of turns on one or both links or by varying the separation between a link eoil and the tank coil to which it is coupled.

In adjusting the coupling, wateh should bo kept on the driver plate eurrent. Too tight coupling may overload the driver, while too loose coupling will not give the amplifier the full excitation of which the driver is capable. If it is impossible to load the driver to its normal operating plate current with the tightest coupling available, tapping the grid connection at some intermediate point on the grid tank coil will of ten result in an improvement. If the driver in a capacity-coupled system cannot be loaded sufficiently, a change to link coupling usually will give the greater flexibility neeessary properly to transfer the driving power to the amplifier grid.

Provided the driving stage is capable of adequate power output for exciting the amplifier tube, the grid current should be somewhat higher than that recommended for the set of operating conditions chosen (see Transmitting Tube Tables, Chapter Five), since grid current usually drops when plate voltage is applied. It should be possible to seeure sufficient grid current - at the recommended grid-bias voltage - with the driver working at or below normal plate input. If this cannot be done, the driver is too small or, should the tube evidently be large enough for the job, is not being properly operated. The grid-leak circuit should be tested for excessive resistance.

Plate Tuning

After adjustments to the input circuit have been completed, plate voltage may be applied to the amplifier. In preliminary tuning it is desirable to use low plate voltage to avoid

THE RADIO AMATEUR'S HANDB00K

possible damage to the tube. With excitation and plate voltage applied, rotate the plate tank condenser until the plate current dips: set the condenser at the minimum plate current point, which is resonamere. When the resonamee point is found, the plate voltage maty be increased to its normal value. With the lond - antenna or following amplifier grid riteuit - commected, the roupling between plate tank and load should be adjusted to make the tube take rated pate curment, keeping the tank always in revolane

As the output coupling is inereased, the minimum plate current will anso increase about as shown in Pig. R33. Simultanoonsly, the tuning becones less sharp, becallse of the inreane in effertive rexistaner of the tank. If the load rircuit simulates a resistance, the resor mance setting of the tank condenser will be practically unchanged with loading: this is gencrally the rase sime the lad rimuit itself usually is also thened to resomatmee. A reactive load wach as ath antemba or feeder system which is mot tumed exactly to resunamee) may rame the tank romblonser setting tu rhange appreciably with loading.

As the plate londing is increased, with its areompanying inerease in plate rurrent, the Lrid current usially will fall off whe what, beratuse as more electrons aro drann from the rathorle by the plate, less are available for the grid if the exditing voltage remains eonstant. The derrease in grid current depende upon a number of factors: the value of plate current. the type of tabe, the voltage regulation of the Wriver, the amount of exatation power avalable, and to some extent upon the circuit used. "This last is particularly toue of single-ended amplifiers, as was diserusiod in the section ont neutralizing cirenits.

The signifidant value of grid eurrent is that Which flows when the amplifier is loaded to rated plate current. The grid rurrent figures given in the tube tables of Chapter Five are for lorderl conditions at the recommended bias. Without plate voltage, the grid current may be ronsiderably higher, If, when the plate load is atjusted to rated input, the grid current is lower than the figurespecified for the particular set of uperating comditions used, the driving stage is not delivering sufficient excitation power.

In a properly designed tramsmitter, the grid rurrent usually will not drop more than 25^{5}; of its value without plate voltage applied fo the tube.

As a check on the operation of an amplifier, its output may be measured approximately by coupling an ordinary 110 -volt lamp to the output circuit, The usual methods are shown in Fig. 832. If the phate tank eoil can be tapped rach turn, the leads from the lamp are clipped arrose a few turns at the low-potential part of

the tank, the number of turns used being adjusted wo that the amplifier draws rated plate curent. Alternatively a pickup coil of a few turns maty be inductively coupled to the tank and the coupling adjusted to the same end. A lamp having a power rating about equal to the expected power output of the tramsimiter should be used. Comparison of the brightness of the lamp rompled to the tramsmitter with that of a similar lamp in a 110 -volt socket will indieate whether the amplifier is delivering the output it should. If necessary, lamps may be eromerted in parallel to alowion the desired amount of power.

With reasomably eflicient operating conditions, the minimum plate current with the amplifier unlotaled will be a small fraction of the rated plate current for the tube, usually a lifth or less. If the excitation is low, the "dip" will mot be very marked, but with adequate expitation the plate enment at resmanere without loading is just high enough no that the d.e. pate power input supplies all the losses in the tube and rireuit. The higher the unloaded fank inpedance, the lower the minimum plate rarrent. For this reason, large $L-\mathrm{C}^{\circ}$ ration give bery low values of plate eurrent: conversely, a fairly high-(tank will give somewhat larger values. As an indication of probable efficiencr the minimum plate current value should mot be taken too seriously, however, especially When a fair amount of tank eapacity is in use, becanse in the unloaded condition the cirrulating r.f. current in a high- (" tank is large and, since the losses vary with the eurrent squared, the losses moler mo-load conditions may be rather high compared to those in a vers low-('tank. When the amplifier is alelivering power to a loarl, the rireubating current drops comsiderably amd the tank losses correspondingly recrease, su that under load conditions the actual efficieney is about the same with a tank of optimum L-(ratio as with one having extremely low ${ }^{\prime}$.

FRbquENC, multipliers are universally used
in amateur tramsmitters so that output can be

TRANSMITTER DESIGN ANI CONSTRUCTION

serured on higher-frequemes bamp than that for which the crystal is cut Athough crytals are available for fundamental operation on frequencies as high as the $28-\mathrm{Mc}$. band, the relatively lower eost of the 1.75-, 3.5- and 7 Mr. erystals favors the use of thesu crystal frem quencies, with frequency matipliers for the other bands. In addition, usially it is more convenient, as well as less expensive, in multiband tramsmitters to have all ervisals groumal for one low-frequency bath

The frequency multiplier or harmonic generator is a tube having its plate tank cireuit tumed to a harmonic of the frequency applied to its grid. Otherwise, the circuit is the same as that of an ordinary power amplifier. Its effectiveness as a generator of harmonies depends upon the tube characteristies amd the way in which it is operated. Nince the amateur hands are in even-harmonic relation, the harmonies of chief interest are the second, fourth, eighth, and so on. In practice, the frequency multiplier is inefficient on harmonies higher than the second, so the seeond-harmonic multiplier or doubler is in most eommon use.

Sinee the input and output rircuits of a doubler are mot tuned to the same frequence there is no tendeney toward self-oseillation, even with umentralized triodes. Neutralization of doublers is quite common, however, because the same stage often is used ats a straight amplifier; in addition, neutralization may actually improve the efficiency.

Doubler Operating Comblitions

To obtain maximum output and efficieney from the doubler it is necessary to use high negative grid bias on the tube - considerably more than double cutoff - and excite it with a eorrespondingly high radio-frequency voltage. This accentuates harmonic generation in the plate circuit, as explained in Chapter Five. A low-e tank in the plate circuit is also desirable. In general, a tube having a relatively large amplification factor is to be prefered as a doubler becatuse relatively low biat and excitation voltage will give high distortion. J'me todes, beam tetrodes and high- μ triodes all make good doublers.

The efficiency and output of a doubler can be increased by feeding some of the energy in the plate circuit back to the grid to cause regeneration, provided the process is not carried so far that the tube breaks into self-oscillation. Gne of the most satisfactory ways of introducing regeneration is through neutralizing the frequency multiplier by one of the methods in which the neutralizing voltage is fed from the plate circuit to the grial. The single-tuhe cirruits of Fig. 822 are examples. When the tube is properly neutralized it cannot oscillate, yet the feedhack at the harmonic frequeney is
sullicient to inmerase the output and effirieners of the doubler to a worth-while extent

The grid leak for a doubler may in general have a resistance from two to five times that revommended for the tuhe as a straight amplifier. The driving power reguired for good doubling eflicioney will be two there times greater thath that weressary for effecemt straight amplification.

Prush-pull amplifiors cannot be used as doublers because the seoond and other even hatmonies are rancelled in the output. They can be used as triplers, howewer, the output dira uit being tuned to the third harmonic. Thes are not very often used in this way berause the frequency relations of the amateur bands are such that eren-hamomic output is meeressary.

Donbler Circuits

The simple triode doubler circuit is shown in Fig. $8: 33-$ A. sireen-grid or pentode doubler rireuits are exartly the same ats the stratht amplifier diagrams given in Fig. 824. The phate tank is simply tumed to the second harmonio instead of the fundamental frequency. Neatralized cireuits surh as those in Fig. 822 also can be used.

Suerial rireuits for fregueney doubling also have been employed; one which is often meed

The regular donhlar circuit (A) im the nimplawt. The
 rexulen: the caparity aetually in use at Cishould not -xeced iol $\mu \mu \mathrm{ff}$. at the lower umatere frequencies and $25 \mu \mu \mathrm{fd}$. at 14 Mc and higher. $\mathrm{C}_{2} \mathrm{im}$ a plate bopane con-

 $\mu_{\mu} \mathrm{fd}$. Any of the recommended krid-compling arrangemente maty be uned inmterd of the nimple vat parity coupling shown.

Balucm in the "punti-pusha" dobibler (B) are in gettcral identical with thome in (1). This circuit refuires pumb-pull inpur.
suitable cail specilidationm for the caparity in ume al C: ran low founal be reforring to the woil charix.

THE RADIO AMATRUR'S HANDB00K

is shown in Fig. 833-B. In this circuit two tubes are used; the excitation is fed to the grids in push-pull while the plates of the tubes are connected in parallel. Thus the tubes work alternately, and the output circuit receives two impulses for each r.f. cycle at the grids, resulting in all second-harmonic output. This circuit gives quite good efficiency, although requiring two tubes. It is often called a "pushpush" doubler. In low-power stages, twin triodes such as the 53 and 6A6 can be used as single-tube push-push doublers. The high amplification factors of these two types make them especially suitable for this purpose.

A circuit of this type is not suitable in cases where a stage is to be used both as a straight amplifier and a doubler, since it will not operate efficiently as a straight amplifier.

Tuning of Frequency Multipliers

Frequency multipliers are tuned in much the same way as straight amplifiers. Once the bias or grid-leak values are chosen, the input or grid circuit should be adjusted for maximum grid current just as with the straight amplifier. Then the plate voltage may be applied and the plate tank circuit tuned to the second harmonic, which will be indicated by the dip in plate current. The dip usually will not be as pronounced as with straight amplifiers, however. Once these adjustments have been made the load may be connected and adjusted for maximum output consistent with the plate current rating of the tube. Since the efficiency is lower, it may be necossary to use lower than rated plate current, especially if the plate of the tube shows color.

After the adjustments have been completed it is a good plan to change the bias voltage or the resistance of the grid leak to find the value which gives greatest output. Highest efficiency will result when the grid bias or grid leak are as high in value as is possible with the grid excitation available. Under optimum operating conditions, the plate efficiency of a doubler runs between 40% and 60%.

DAIBASITIC DSUMIMATMONE

- F the circuit conditions in an oscillator or $^{\text {a }}$ amplifier are such that self-oscillations at some frequency other than that desired exist, the spurious oscillation is termed parasitic. The energy required to maintain a parasitic oscillation is wasted so far as useful output is concerned, hence an oscillator or amplifier having parasitics will operate at reduced efficiency. In addition, the behavior of plate current often will be erratic.

Parasitic oscillations may be higher or lower in frequency than the nominal frequency of the amplifier. Low-frequency parasitics often
occur when r.f. chokes having about the same inductance value are used in both grid and plate circuits, the tube or tubes operating as a tuned-plate tuned-grid oscillator at about the resonant frequency of the chokes and associated capacities. In series-feed circuits, it is best not to use chokes but to depend upon the by-pass condensers to keep the r.f. where it belongs. In push-pull amplifiers having splitstator condensers, where chokes are used to avoid grounding the tanks at two places, it is generally possible to omit the grid choke and use the grid leak for the same purpose instead. In any circuit, a change which permits dropping a choke in either the grid or plate circuit will cure this type of oscillation.

I'arasitic oscillations also occur at ultra-high frequencies because of the wiring associated with the tube and normal tank circuits. With u.h.f. parasitics, the tank condensers simply act as by-passes, and the lead lengths between tank and tube are the important factors. Usually such oscillations can be destroyed by breaking up any symmetry which exists in the leads. A generally effective cure is to insert small coils, consisting of about eight or ten turns about a half-inch in diameter, in each grid lead right at the tube socket.

I'arasitic oscillations in an amplifier can be detected by first neutralizing the amplifier and then applying plate voltage with the gridbiasing voltage adjusted to permit the flow of a low value of plate current without excitation.

If parasites are present, the plate current usually will vary with tuning of the tank condensers, and a neon bulb will glow when touched to grid or plate. A wide-range absorp-tion-type frequency meter will be useful for determining the frequency at which the amplifier is oscillating. A properly-neutralized amplifier free from parasites will show perfectly steady plate current under all tuning conditions when not excited.

Notes on tilansinitter denign

A mateur transmitters are more and more $^{\text {a }}$ being designed and built on the "unit" plan, under which separate transmitter sections are built as complete pieces of apparatus, any one of which may be replaced by more modern equipment as improvements in circuits and components make their appearance. Similarly, additions can be made to unit-style apparatus without seriously disturbing the existing transmitting layout. The installation of new unittype equipment, or re-arrangement of old, is facilitated by the use of the relay rack, which is treated in detail in Chapter Six. Nearly all of the apparatus described in this chapter is built to standard relay-rack dimensions, hence practically any suitable combination of units

TRANSMITTER DESIGN AND ('ONSTRUCTION

can be used for assembling transmitters from a few watts up to a full kilowatt. Because of its flexibility and convenience, relay-rack construction is highly recommended to the amateur constructor.

Essentially, a transmitter is simply an oscillator followed by a series of amplifiers to raise the power of output level to the desired figure. Some of the amplifiers will be frequency multipliers, if output is desired on a frequency higher than that on which the oscillator operates. The problem of designing a transmitter, therefore, is that of deciding upon the number of stages to use, the kind of tubes to use, and upon choosing correct operating conditions.

Transmitting Tubes

A great many types of transmitting tubes are a vailable for amateur work. They are listed in the tube tables in Chapter Five, together with sets of typical operating conditions for the various types. When a tube capable of the desired power output is decided upon, the next step in laying out the transmitter is to select an oscillator circuit and to decide upon the band in which the crystals are to operate. The features of the various oscillator circuits have been treated earlier in the chapter. We then have the beginning and the end of the transmitter, and it becomes necessary to choose intermediate stages which will be sure to deliver anough power to the grid of the final tube to excite it properly. Reference to the tube tables will be of assistance.

In laying out any transmitter it is decidedly good practice to be conservative throughout. Be sure to provide more than just enough excitation for each stage; the driving-power figures given in the tube tables, for instance, do not include an allowance for losses in the grid tank circuit or in coupling between the driver and amplifier. Likewise, the power output figures are total output, and do not include tank losses. In every case the driver should be capable of supplying two to three times the driving power specified in the tube tables.

For straight amplifier exciting stages, it is best not to figure on more than about 60% overall efficiency, to include an allowance for losses in tank circuits and coupling devices. Doublers work at lower efficiency; 40% is a fairly conservative figure. Remember that a doubler requires high bias and hence more excitation than a straight amplifier, probably two or three times as much. With these figures in mind, it is not difficult to select a tube combination which will be sure to work.

EXCDTEIR UNITA

When a transmitter is to work on several bands, it becomes necessary to supply the
same amount of excitation power to the amplifier over a wide range of frequencies. There are several ways of meeting this problem, one of which is to use a series of small tubes as oscillators and doublers, taking output from the tube working on the desired frequency. The power level is then built up, by straight amplifiers. Other methods employ only a few tubes but use special circuits such as the Tri-tet or grid-plate oscillator which can give output on harmonics as well as the fundamental crystal frequency. A unit designed for giving approximately the same output for excitation purposes on several bands is called an "exciter unit."

The output of an exciter unit may vary from a few watts to a hundred or so, depending upon the design. Usually the exciter covers at least three bands, although many can operate in five. It is evident that the exciter also can be used as a multi-band transmitter of low or moderate power output.

Exciter units may utilize plug-in coils for band changing or may achieve the same end by a switching arrangement. Often a combination of both is used. A good exciter is the first requisite of a multi-band transmitter.

Metering

Throughout this chapter frequent reference has been made to the use of meters for measuring plate and grid currents. Methods of inserting a milliammeter in the grid circuit has already been covered (rig. 803). The plate meter usually is simply connected in series with the high-voltage lead to the tube whose plate current is being measured. The "plus" connection on the meter goes to the power-supply side of the circuit in that case.

When plate milliammeters are to be mounted on metal panels, care must be taken to see that the insulation is sufficient to withstand the plate voltage. Metal case instruments should not be mounted on a grounded metal panel if the difference in potential between the meter and panel is more than 300 volts; instruments with bakelite cases can be used under similar circumstances at voltages up to 1000 . At higher voltages an insulating panel should be used, or the meter should be connected in the negative power supply return lead rather than the positive. A disadvantage of connecting the meter in the negative lead is that the meter reads the total current taken by all the tubes operating from the same plate supply, so that if the current in one stage only is to be measured, each stage must have a separate plate supply. Also, if the tube cathode is grounded, the negative power supply terminal cannot be grounded except through the meter.

Some amateurs connect the milliammeter in series with the cathode - particularly in the

TIIIE RADIO AMATLUR'S IIANDB00K

renter-tap return from the filament tramsformer with filament-type tubes - hut the practice is mot particularly recommended because the meter reats the sim of grid and plate currents. Not only does this give a false indiration of plate input, hut it also makes it imposible to determine how the grid emrent hehaves with phate loading, since the two currents fanmot be separated except by using a grid meter and subtracting its reating from that of the center-tip) meter.

It is commmon practice to use one meter for measuring grid and plate currents in several

 MFTER TO VARIOIIS CIRCUI'S
stages. The time-honored method of shifting the meter is by the use of plugs and jacks, which is quite satisfactory in practier if the shifting ned be dune only in the original thaing process and the meter left more or less permanently in one jatck thereafter. If it is necessary to switel the meter frequently from one stage to another, it is more eomvenient to use the witehing system shown in l-ig. xist, using a two-gang switch with as many paints as there are eiruits to meter. The resistors are left promanently in each circuit to emmplete the eomection, and the meter is simply witehed aross each. This system has the advantage of eompletely iswlating the meter from all but the cireuit in which it is heing used. For low-voltage eireuits, an ordinary gamg switch of the type used for bamb-switching in receivers will be adeduate. Sperial switches with loo(0)-volt insulation are avalable for higher power.

If the meter readings are taken directly, the value of eam resistor should be at hast ten times as great as the resistance of the meter itself; when K is ten times the meter resistanee the readings will be about 9% low. The ervor will be less with still largor resistames. Ordimarily the meter resistance is low so that the introduction of the resistors into the circuit will not materially affert the "proation of the
tramsuitter. . Iternatively, a low-range milliammeter may be used and each shunt resistance value selected to give an appropriate fullscale range of current Thus the same meter rould read 0-10 milliamperes for reading grid current in a bow-power stage and 0 -.j00 milliamperes for bite empent of a high-power timal. Methonds of cateulating shant resistances for any predetermined full-scale current value ram be found in Chapter Nisteen.

A filament voltmeter is an important tramsmitter accessory, especially if thoriated-filament tuhes are used. The performance of the tube depends on the filament emission, whieh in turn depends upon the filament voltage, so that hest results cannot be secured from the tube unless its filament voltage is maintained close to the manufacturer's ratings. Also, the tube life is adversely affeeted if the filament woltage is too low or too high. The filament whage should alwass be measured right at the tube socket, an especially important point when tubes taking rather high filament eurrents are used. Do not operate a tube when the filament voltage is more than 5% below rating, or below the minimum value when an "perating range is specified. Heater-type tubes are not quite so critieal as to filament voltage, hut will not give their best performance if the voltage is more than $\delta / 4$ below the rated value.

As a general rule, it is best partice not to build meters into transmitting units unless they can be well spaced from r.f. cireuits, partirularly those earring considerable power. R.f. in the meter not only may destroy its arcuracy, but often burns out the windings. for this reason, few of the units pictured in this rhapter have meters built ats an integral part. In relay rack eonstruction, a separate meter panel, well separated from the r.f. units, is both desirable and convenient.

Grounds:

When different parts of the circuit are shown as being groumded, it is assumed that there will be no r.f. potential difference hetween them. This means that the ground leads must pussess negligible inductance and resistance at the operating frequency.

The best way to reduce inductance and resistance is to make the ground connections to a relatively lange sheet of metal. When metal thasses are used, the grounts should be made dieretly to the chasses, making the leads as whort as posible. In breadboard construction, a metal ground plate such as is used in some of the units described in this chapter, will suffice. As a qeneral rule, when a metal phate is used as a ground, it is best not to make any two grounds to the same connection, but rather to use separate commertions for each.

TRANSMITTER DESIGN ANI) CONSIRUCTION

Componernts

In the descriptions of apparatus in this chapfer not only the electrical specifications but aks the manufacturer's name and type number have been given for all the components. This is for the convenience of the builder who may wish to make an exact copy of some piece of equipment. Howerer, it should be understomed that a component of different manufarture, but of equivalent quality and baving the same electrical specifications, can be substituted wherever dexired.

In most cases such substitutions will make no major modifications necessary, although slight wiring changes may be needed to take rare of different terminal arangements, etc.

MISTHED.ANY
 Cimpling to thr fintern"

Armocern the antemat-oupling armangement usually is an integral part of the transmitter, the choice of method and the adjustment procedure to be followed is so greatly a function of the antemat or feeder sytem employed that antema-coupling methods are more logically treated in connection with the discussion of each particular antemat system. Information on coupling and tuning procedure is therefore given in Chapter Thirteen.

Practically all of the units in this chatpter hase been shown with links for carruing the r.f. output to the antenna. However, any of the antemat-roupling methods described in Chapter Thirteen can be applied to any of the various units shown. The link-ooupled atramgement usually is desirable, esperially in a rack-mounted transmitter, because the link comstruction is mon-eritical and aroids the neeresity for carrying leads at high r.f. putential from one deck to the next. Another reason for using the link is that it fits in well with the use of transmitting coil forms as well as manufactured transmitting coils, none of which are very well adapted, mechanically, to variable inductive compling. Most manufartured coils ean be obtamed with built-in links: some with links whose roupling to the tank coil can be varied.

Helpful suggestions on the eomstructional work involved in building the wits to be deseribed will he found in Chapter 6 , while the arrangement of the equipment in the station and the installation of suitable ceontol soretems are dineussed in Chapter 17.

THEANNMITTHIE

Dive of the simplest pratical transmittors is the two-hand revestal bseillator sheown in the

The ehammin meamaram $\bar{i}^{\prime \prime} \times 7^{\prime \prime} \times 2^{\prime \prime}$ and in clenateal 1
 front and rear. The outpmi torminalm are monnted "OH the right wille of the ehassim and hey and power*Hiply lerminalm along the rear edge. The: $\mathbf{3}$-prong erystal machet, t-prong roil moshet and octal tube wowhet are sub-monanted. 'The tunisg condenser med not the insulated from the chammin.
 of supplying a jower wutput of 10 to 15 watt on either wi two hands with a single ervetal and coil when uprated at a plate voltage of 400 to $42 \overline{5}$. Phe higher watput power is obtanable at the ower frequencios wen the tube is swo called upon to double frequencer. The citrait, shown in loig. 833 , is the grid-plate
 (roig. sls), with parallel plato ford.

Constraction

suggestions for cutting holes for the sockets and terminal strips will be found in Chapter (s. R.f. wiring should be ase short and direct as possible from point to mint. By-pasis rentdensers are eonneded diredtly to the points to be be-pasised and grounded at the nearest convenient mounting serew. Cate should be takell that all sarews so heed make grod contatet with the ehaseis. Coise are wotmed on Hammarlund 1^{1} Ea' $^{\prime \prime}$ diamoter forms. Turns -hould be spaced wat to berupy the required lengeth. A link coil of at tew turns dosely roupled to the grount end ot L should be provided to permit robpling to an antenna 1 umm (Chapter 1:3) or a following amplifior with lisk impat. "Fhe mamber of turns for the luedonats degres of ampling must be detormined by rexperiment.

THE RADIO AMATEUR'S HANDB00K

Power Supply and Tuning

The plate power supply should deliver 400 to 425 volts at not less than 100 to 125 ma . (See power-supply chart, Chapter 14). A filament transformer delivering 6.3 volts at 1 amp. or more will also be required. With the power supply connected to the terminals as marked, a crystal with appropriate coil, tube and meter with a scale of 100 to 150 ma . connected, and key open, the transmitter is ready for tuning. Useful output may be ohtained at the second harmonic as well as the fundamental frequency of the crystal by the selection of an appropriate coil. Thus, a 3.5Mc. crystal will give output at both 3.5 Mc . and 7 Mc . The tank condenser capacity has been chosen so that two bands may be covered by each coil. If, for instance, the 3.5 $7-\mathrm{Mc}$. coil is used with the $3.5-\mathrm{Mc}$. crystal, both 3.5 and 7 Mc. may be covered without changing either crystal or coil. Care should be used when doubling frequency to select a crystal whose second harmonic does not fall outside the bands assigned to amateurs.

Closing the key should cause a rise in plate current to 60 ma . or more. If a coil is selected which covers both the crystal fundamental and its harmonic, tuning the tank condenser near maximum or minimum should cause a pronounced dip in plate current indicating resonance at the fundamental and harmonic respectively. The tuning of the plate circuit should not be allowed to remain off resonance

FIG. 836-CIRCLIT IVAGRAM OF 6L6 OSCILLATOH
R_{1} - 0.1 meg., 1 watt, grid leak.
$R_{2}-400$ ohms, 2 watts, cat hode biasing.
$R_{3}-15,000$ ohms, 10 watts, voltage divider.
$\mathbf{R}_{4}-50,000$ ohms, 2 watts, voltage divider.
$\mathrm{C}_{1}-0.0001-\mu \mathrm{fd}$. mica, cathode-circuit-tuning.
$\mathrm{C}_{2} \rightarrow 0.0002$ - $\boldsymbol{\mu}$ fd. midget variable (Hammarlund MC$\mathbf{2 0 0}-\mathrm{M}$) plate tuning.
$\mathrm{C}_{3}-\mathbf{0 . 0 1} \mu \mathrm{fd} ., 600$-volt paper, by -pass.
$\mathrm{C}_{4}-0.002-\mu \mathrm{fd}$. mica, plate blocking.
RFC - National R100 r.f. choke.
L - 1.7 and 3.5 Mc. - 38 turns No. 22 d.s.c., $11 / 2^{\prime \prime}$ diam., close wound.
3.5 and 7 Mc. - 20 turns No. 22 d.s.c., $11 / 2^{\prime \prime}$ diam., $11 / s^{\prime \prime}$ long.
7 and 14 Mc. - 10 turns No. 18 d.c.c., $11 / 2^{\prime \prime}$ diam., $13 / 16^{\prime \prime}$ long.

11G: 837 - BOTRON VIEW - CIRYSTAL OSCILLATOR TRANSMITTER
The grid choke may be seen ahove the tuning condenser, the plate choke to the extreme right and the cathode circuit choke, with the $100-\mu \mu \mathrm{fd}$. mica condenser underneath it, to the left of the plate choke. The cathorle resiator is at the top and grid leak in the upper left corner. The resiators of the acreen voltage divider are in the lower right corner. Plate hlocking condenser fastened to right rear of tuning condenser.
for any appreciable length of time, otherwise the tube will be damaged. If the coil dimensions given have not been followed carefully, it may be necessary to make slight alterations to bring the tuning range to the desired frequencies.

Coupling and tuning the antenna should cause a rise in plate current and probably some slight effect upon tuning of the oscillator so that readjustment of the tank tuning may be required to maintain resonance. The dip in plate current at resonance will be much less pronounced with the antenna coupled. It should be possible to load the oscillator up to 50 ma . or more plate current. The antenna should not be coupled so closely that all dip in plate current disappears. Slightly greater output may be obtained if a coil is selected which tunes to the desired frequency near minimum capacity.

Tubes

The 6L6 and 6L6G should give equal results. Smaller tubes such as the 6V6G, 6F6, etc., may be used at lower plate voltages without altering values. Correspondingly lower output power will be obtained, of course. If a metal tube is used, the shield (pin No. 1) should be connected to the chassis.

TRANSMITTER DESIGN AND CONSTRUCTION

TWODSTAGE GLE TRANSMITTEER DIE EXCITER

The addition of an amplifier-doubler to the 6 L 6 oscillator will permit greater output and the use of three bands with a single crystal. A transmitter in which the oscillator and amplifier are combined in a standard rack unit is shown in the photographs of Figs. 838 and 840. Since all sockets and the tuning rondensers are sub-mounted (see Chapter 6 for suggestions on cutting holes in chassis), no wiring need appear above the chassis. Parts are so arranged that the r.f.-circuit components may be connected by short, direct, rigid pieces of wire. Push-back wire is used for the low-potential wiring. By-pass condensers are connected directly to the points to be by-passed and grounded at the nearest mounting screw which should make good contact with the chassis.

Referring to the circuit diagram of Fig. 839, it will be noticed that the screen and plate of the amplifier tube are connected together to form a triode, thus avoiding neutralizing diffculties sometimes encountered with the tetrode connection.

With the condensers specified, each tank coil may be tuned to two bands so that coils need not be changed frequently when changing bands of operation. Coils are wound on IIammarlund $11 / 2^{\prime \prime}$ diameter forms and the dimensions given under the circuit diagram should be followed closely.

The plate-voltage supply should deliver 400 to 450 volts, 150 to 200 ma . (see power-supply chart, Chapter 14). A 6.3-volt filament transformer rated at 2 amp . or more and a source of 90 volts for biasing are also required. A pair of 45 -volt batteries is recommended.

Tuning

Procedure to be used in tuning the oscillator is the same as that outlined previously for the oscillator transmitter. A meter with a scale of 150 to 200 ma . should be plugged into the oscillator jack and a dummy plug or $1 / 4^{\prime \prime}$ diameter bakelite rod inserted temporarily in the amplifier jack removing the plate voltage from this stage. Sinee the oscillator is loaded by the grid circuit of the amplifier, the minimum plate-current at resonance, indicated by dip in plate current, will be 30 to 50 ma. When the oscillator has been tuned to resonance, the meter should be connected temporarily in series with the negative lead of the biasing battery with the positive terminal of the meter toward the negative terminal of the battery. When the key is closed, a grid-current reading of 15 to 20 ma . should be obtained. A coil which will tune to the same frequency as that of the oscillator output should be plugged into the amplifier plate circuit. Tuning the amplifier plate circuit should cause a dip in grid current. The neutralizing condenser is now carefully adjusted until all trace of dip in grid current, as the amplifier tank circuit is tuned through resonance, disappears and the stage is neutralized. The meter may now be removed from the grid circuit and plugged into the amplifier jack. When the key is again closed, the off-resonance amplifier plate current should be 150 ma . or more and 10 to 50 ma. tuned to resonance, the value depending upon whether or not the amplifier is doubling frequency.
A link winding of a few turns should be wound on cach amplifier coil form in the space between the halves of the tank coil so that the output may be coupled to an antenna tuner

FIG. 838 - THE TWO-STAGE 6L6 TIANSMITTEIR
The steel cliassis is $4^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime}$ and the masonite panel $83 /^{\prime \prime} \times 19^{\prime \prime}$ to fit standard rack. The five-prong sockets for the cryatal and amplifier coil, the four-prong socket for the oscillator coil and the two octal tube sockets are all sub-mounted. The neutralizing-conderiser shaft protrudes through the chassis behind the amplifier tube so that it may be adjusted with a screwdriver. The white insulators are the button-type insulators on which the tank condensers are mounted. Output terminals are at the right end of the chassis.

THE RADIO AMATLUR'S HANIDROOK

(wer (hapter 1:3) or a following amplifier with link input. Antenna roupling should be adjusted to load the amplitior to draw a plato courent of about 100 mat.

Since each eoil may be tuned to two froquencies, cate should be used in selecting the proper plate-eument dip in each cireuit for the desired frequence. The lower of the two frequencies covered naturally appears near the
maximum capacity of the thming condenser. Power output of $\overline{5}$ to $2 \overline{5}$ watts should be ohtamable on all bands.

findi-8BAJ TRANNMTTEIR ADR EXI'ITEIR IXNT

TIns unit is quite similar to the two-statgo mit just desrribed. The use of the 807 as the amplifier-doubler, however, eliminates the necessity for neutralizing and, when a plate voltage of 600 to 600 is used, appreciably greater power butput may be ohtained. Most of the const muctional details are furnished by the photographs of Figs. $8+1$ and $8 \$ 3$ and their eaptions. sce Chapter biorsuggestions on construction.) The eireuit diagram and values are shown in lig. 842.

The oseillator eoils are wound on $1^{\prime \prime}$ diameter forms mounted inside National PB10 shielded assemblies with $\overline{\text { a }}$-prong hases. One of the spare prongs is used to make romnertion between the shiehl ran amd rhassis when the roil is plugged in. The crestal and 807 tube atach requiro a $\bar{\circ}$ prong sorket. The shied around the lower portion of the sol tube is cut down from a large re-eriving-tube shied. It should come up level

 the frent of the metal ehassim and aldarame heles are atol in the pithel.
with the lower edge ol the plate of the tube.

Cuils wound on standard $11 / 2^{\prime \prime}$ diameter forms for the amplifier may be used at somme sterifier in reflirionery, aperially at the higher frequencies. If the substitution is desired, dimensions: maty be taken from the graphs of Fig. N28, hasing the dimensions upon a capacity of 160 mufds. for the lower of the two frequencies to be reverod.

The pate-voltago power supply should providedioo to (0.50 volts at lote mat or more (ace power-supmly chart, Chapter 14). The filament transformer should have a rating of 6,3 volts at 2 amprores or more. A source of 90 volts surh as a pair of tio-volt batteries will be required for biasing the amplifier.

Tuning procedure will follow closely that recommended for the two-stage (ifos transmitter proviously deseribed except that the amplifier is not neutralized. Each roil will rover fwo bands with the eondensers sperified.

Before applying phate voltage, both sliders on the main voltage-divider rexistance should be set about two-thirds of the distance towards the positive highvoltage end. After the trathsmitter hats been tuned up with a 25 -watt lamp as a load for the amplifier, the sliders may be adjusted to provide 400 volts at the phate of the 61.6 allld 300 volts at the sereon of the so7. At these voltages, the oscillator off-resonamer plate rurrent should run (6) to 70 ma. dipping to 25 to 50 ma. at resonance. The phate rurrent of the 807 should dip to 10 to 25 mat. With me, load from an offerevolatime value of 125 to 150 mis.

 a ferd-throngh insulator. I mhert shiald eoming ug level with lawer edger of the plate is provided for the 80t. Dutpul terminals at right ratar.

Fitch amplifier roil is provided with a link witaling to couple to an antemat tuner (sere

 ariel loash.
 eathonle remimior.
 lormarcen voltage divilar.
\mathbb{K}_{1} - $\mathbf{5 0}$.(MOU ohns. 2 wattw. amplilicrepridllata.
 voltage divider.
 ter mereen voltage divider.
$1 \mathrm{~K}_{\text {- }}-2.5$ ohmm. 2 whtin. parmatio. suppremator. (s.e leat.)
 cuil tuning.
(i2-206) $\mu \mu \mathrm{f}_{\mathrm{l}} \mathrm{m}$, midget (IIammarland Vll:-2(0N)- M), omaillator 1wning.
 rooncienmer.
 plifier tuming.
 puma.
1R1F: - Valiornal IS ION.
J-Inmetatad domed cireuit jach far meler.
1.1 - $1.8-3.5$ B1e. - 4.8 turne V10. 26 d.n.e.. dilome-umind. 1"dian!. $3.5-7$ 11e. - ≥ 1 tirrim Vo. 21 A.m.e.. $1^{\prime \prime}$ sliam.. It/8" lomg. 7-1.1 Ne. - 11 Iurmm No. I8 d.c.c.. $1^{\prime \prime}$ diam.. $1^{\prime \prime}$ lonk.
I. 2 - Valianal tR meries - 3 turnm reinured on minallemt coil.
Vobe: Sulontitute roiles may be matale ly referring low charts of Figm. 828 and 829 brming dimensionm on a rapacity of 1 bil $\mu \mu \mathrm{film}$, for the lowert froellueney rowered by rath eotil.

FIG: 843 - Boliton VIEW - 6L6-807 TRANSM1TTER

Tuning condensers are mounted on button-type insulators with spacers on top to make condenser shafts comeat same height. The grid choke and leak may be seen in the lower left corner and the owcillator screen voltage divider between coil and 6L6 socketa. The cathode cir enit choke and condenser underneath it are belon the 61.6 socket. The 80 grid leak and condenser are to the left of the 807 socket. The main voltage divider is at the extreme right end.

Chapter 13) or to a following amplifier with link input. The coupling to the antenna tuner should be adjusted to bring the amplifier plate current to 100 ma . at resonance. Power output under these conditions should run between 25 and 35 watts.

If the 807 stage has a tendency to selfoscillate when used as a straight amplifier with the load coupled, a 25 -ohm resistor R_{7} connected as shown in the fiagram should eliminate it.

GENELAA. UTHITTY TIRANS-MITTEIR-EXCITEIE CAIPABHE DF 75-WATT DUTIPUT

Tane two-stage $6 \mathrm{I}, 6$ transmitter previously described (Fig. 839) may be used to drive a mediunt-power final amplifier. The two are combined in the transmitter shown in the photographs of Figs. 844 and 846 . Output inay be obtained on three bands with a single $1.7-3.5-$ or $7-\mathrm{Mc}$. crystal. A variety of tubes may be used in the final amplifier. With the 809, RK11, RK12 or HY57, an output power of approximately 50 watts is obtainable as a c.w. transmitter or exciter, of approximately 35 watts as a plate-modulated amplifier. With higher voltages such tubes as the T40, TZ40 or HY40 will deliver 70 to 75 watts for c.w. or driver work and a carrier power of 45 watts for plate-modulated 'phone.

Construction

Most of the constructional details are obtainable from the photographs and captions. The reader is referred to Chapter 6 for suggestions on preparing the chassis for mounting apparatus. In mounting the panel, the lower edge is dropped one-half inch below the lower edge of the chassis to provide additional depth for the two variable condensers. The support-
ing side brackets are also dropped the same distance.

The link control is brought out to the panel by means of a $1 / 4^{\prime \prime}$ shaft coupled to the link shaft with a reducing coupling.

Coils for the oscillator and buffer-doubler are wound on one-inch diameter forms fastened inside National PB10 shielded units with \bar{i}-pin bases. Where the winding length specified permits, the number of turns specified should be spac:ed out to occupy the specified length. The tap on the buffer-doubler coil should be made as accurately as possible at the center so that it will not be necessary to reneutralize the builer-doubler in changing bands. It may be necessary to shift the tap slightly to find the correct point. Dimensions given in the table should be followed as rigidly as possible. This applies particularly to the buffer-doubler coil L_{2} since any appreciable deviation will make it impossible to tune to both of the bands for which the coil is designed. In the final amplifier, Barker and Williamson type BVL coils are used. The 3.5 - and $7-\mathrm{Mc}$. coils must be pruned as indicated in Table 1. The BVL-80 coil, used in conjunction with the padding condenser C_{10}, will do for the $1.75-\mathrm{Mc}$. band without alteration. Therefore, in purchasing the sef, the $1.75-\mathrm{Mc}$. coil should be omitted, substituting a second BVI-80. Proper inductance values as well as optional dimensions are given in the table. The circuit diagram is shown in Fig. 845.

Parts are arranged so that the little r.f. wiring required may be made with short pieces of stifi wire. All power wiring, except that carrying high voltage for the final amplifier, is done with push-back wire. Wire with heavier insulation, such as ignition cable, is preferable for high-voltage wiring. The meter jacks may be wired before the panel is fastened to the chassis, leaving sufficient length to permit mounting

TRANSMITTER DESIGN AND CONSTRUCTION

when the panel and chassisare assembled. Care should be taken to connect the jacks so that the meter will read in the proper direction when plugged into any of the four jacks. If the tip of the plug is connected to the positive side of the meter, the jack spring which makes contact with the plug tip should be connected to the positive high-voltage supply terminal

FIG. 844-75-WAITT OUTIUTT TRANSMITTER-EXCITER
' ${ }^{\prime}$ he unit is designed to fit a standard rack. Chassis dimensions $-7^{\prime \prime} \times 17^{\prime \prime} \times 21 / 2^{\prime \prime}$; panel $-83 / 4^{\prime \prime} \times 19^{\prime \prime} \times 1 / 4^{\prime \prime}$ nataonitc. The tank condenser and final-amplifier neutralizing condenser to the left are nounted on whort stand-off insulators. The micablocking condenser is mounted on the chassis ncar the left front corncr of the tank condenser. Control shaft of the 61.6 neutralizing condenser protrudes above the chassis through $1 / 2^{\prime \prime}$ clearance hole bet ween the two coil shichls. Adjustment of the variable link output eoupling may be nade with control to right of final-amplifier sial.
in the case of the plate-circuit jacks and to the negative biasing terminal in the case of the grid-cireuit jack.

Pouer-Supply Requirements

Power-supply requirements will depend upon the tube to be used in the final amplifier.

A single 6.3 -volt filament transformer will suffice if the Type 809, RK11-12 or HY57 is selected. It should have a current rating of five amperes. If any of the other tubes mentioned above is selected, a separate 7.5 -volt filament transformer will be required.

FI: 845-CIRCUIT DIAGRAM OF 75-WATT TRANSMITTER
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{2}-140-\mu \mu \mathrm{fd}$. midget (Cardwell ZU140AS) with mounting bracket.
$\mathrm{C}_{3}-100-\mu \mu \mathrm{fd}$. mica.
(4) - 12- $\mu \mu \mathrm{fd}$. (National UM-50) alternate plates removed.
C $\mathrm{E}_{5}-140-\mu \mu \mathrm{fd}$. midget (Cardwell ZU140AS) with mounting bracket.
$\mathrm{C}_{6}-100-\mu \mathrm{fd}$. mica.
C7-25- $\mu \mathrm{ff}$. (National ST-25).

Cs - $0.001-\mu \mathrm{fl}$. mica (CornellDubilier 5000-volt d.c. working).
C $9-260$ $\mu \mu \mathrm{fd}$. per section (Cardwell MR260BI), spacing $0.03^{\prime \prime}$.
C:10-150- $\mu \mu$ fd. fixed air padding condenser for $1.75-\mathrm{Mc}$. band (Cardwell EO150FS), $0.05^{\prime \prime}$ spacing.
Cil $-0.01-\mu \mathrm{fd}$., $\mathbf{6 0 0}$-volt paper (non-inductive).
$\mathrm{H}_{1}-100,000$ olims. 1 watt.
$\mathrm{H}_{2}-400$ ohms, 2 watte.
$11_{3}-15,000 \mathrm{ohms}, 10$ watts.
$\mathrm{l}_{4}-50,000$ ohms, 10 watte.
$1 \mathrm{k}_{\mathrm{s}}-50,000$ ohms, 2 watts.
$\mathrm{R}_{0}-1500$ ohms, 2 watts for 809 RK12, TZ40, HY57; 5000 ohms, 10 watts for RKll T40, HY40.
RFC - Radiofrequency choke National R100.
J-Clowed-circult jack.
Sce Table 1 for coil dimensiona.

THE RADIO AMATEURS HANDBOOK

A phate-voltage supply delivering 400 to 4.00 volts with a rating of about $1: 0$ mat will be required for the oscillator and buffer-doubler. "The 809, R K 1 1-12 or 11 Y:57 will require a 7 70) volt supply rated at 1 no ma, for c.w. operation or (300 volts at 12) mat. for 'phone operation. The larger tubes require 1000 volts at 150 mat for e.w. work or 800 volts at 12π mat. for "phome work. Rated pate currents for the smaller tubes are 100 mat. for telography and 83 mat. for plate-modulated 'phome oporation, amd for the larger tubes, 11 n ma, for telegraphy and !o ma. for telephony. Some additional allowance must be made for bleeder curvent. The tank roblenser sperified was selocted with the above ratings in mind. (so power-supply rhart, Chapter It, for deotails of suitable pewors supplies. A solure of 90 volts is required for bisaing purposes. This mar be obtained foom a pair of tro-wolt batteries or from a suitable bise power supply (ser Chapter ith

If al (i, \%-volt tube is used in the final amplifier, the two sets of terminals may be renmerted in parallel as indiated by the dotted lines. The terminals for the alternate key position should be strapped together with a wire and the key romered in the oscillatem rircuit. The biasing voltage should be eonboeted to the terminals indirated: a woltage of 90 is required for the 6 L (i) If a pair of 45 volt batteries is used for this purpose, a tap maty be taken off at 22.5 to the volts for the fimal amplifior. Care should be taken that the grid-leak resistance is proper for the tube used in the final amplifier as indirated moder Vig. 84.

The oseillatom and buffer-dobbler stages are faned up following the instructions for thang
the two-stage diditamsmitter. Proper erystal and roils should be selected which will permit, uperating the didi(i as a straight amplifior. moting that each buffer-doubler eoil rovers two bands, and a milliammeter should be inserted in the grid biasing lead to the 6l.odi until the ti .fici is neutralized as previously deseribed (Fig. 83!). During the provess : dummy plug should be inserted in plate-circout jack to remove plate voltage frem the (ildic.

With the key Hosed, the oseillator off-resanance plate current should be bet ween fol and 70 man, dropping to somewhere botweon 2. and 40 mat. at rexemathere. When the fidedi has beon noutralized, the dummy phag may be removed and the meter transfered to the didef iphate-ejrenit jack. With the key elowed, the off-resonamere plate rument should rise to 100) mat or more. At rewohanere, it should fiall to semmehere between fio and 90 mas.

With the buffer-doubler tuned, the meter plug should be transferred to the third jack in the gride eireuit of the final amplifier. When the key is again closed, the grid eurrent should rise to 35 to 4.5 ma. somewhat higher driving power will be ohtamed if a buffer-doubler eoil which tumes to the desired frequeney with a low value of raparity is chosen.

The next step is that of neutralizing the final amplifier and it is earried out in exactly the same manner as deseribed for the buffordonbles. When neutralized, the grid current should remain constant with tuning of the phate tank eireuit. la preliminary tuning of the final amplifier with voltage applied, voltage should be reduced, if possible. A 200-watt lamp may be inserted in series with the primary of the high-voltage transformer or a 100-watt, 10,000 ohom resistor conneeted in series with the positive high-voltagelead to protect tho tube against possible damage during preliminaly tuning With plate-voltage applied, the tank rondenser should he rotated rapidly until the plate-eurrent dip is found. Care should be taken that the correct dip in plate eurrent is selected beratuse some of

TRANSMITTER DESIGN AND CONSTRUCTION

Coil	Turns	Hirm	Diameter	Lenoth	
No. 1	62	Nis. 26 d.x.4.	$1^{\prime \prime}$	$11 /{ }^{\prime \prime}$	
No.	42	No. 22 \\|.s.c	$1^{\prime \prime}$	11/4"	
No. 3	\because	No. 22 dex.	$1^{\prime \prime}$	$1^{\prime \prime}$	
-0. 4	10	人o. 18 1.c.t.	${ }^{\prime \prime}$	1"	
No. 111	5\%	No. 2818	1"	$1^{\prime \prime}$ 楽	
No. 213	: 1		1"	11.10	
No. 31	14		1"	$1^{\prime \prime}$	
No. 41$)$	$!$	Su. $1+$ halm	$1^{\prime \prime}$	$1^{\prime \prime}$	

pected. Grid rument to the final amplifier will decrease somewhat when plate voltage is applied and again when the load is coupled. It should not fall below 25 ma. for any of the tubes suggested.

The output link is provided for coupling by link line to a suitable antemna tuning unit (see Chapter 13) or to a following amplitier with link input. When the antemat has been tumed to resonance, coupling may be adjusted to load the amplifier to rated plate eurent by adjust ment of the variable link. In a ease where home-made coils are used without variable link, the number of turns to be used in the link winding to provide the correct loading must be determined experimentally.

Information on modulating the final amplifier for jphone work will be found in Chapter 10.

A TWID-MBEAN-THIBE TABANANHTMTEIS

Figs. $8+7,848$ and 850 give various views of a two-t ube exiter or tramsmitter which will cover three band, with one erystal. It is necessary to change only one coil when going from one band to the ot her. A 6 did Tri-tet oweillator drives an IRK47 or 814 beam tetrode as a straight amplifier on the two lower-fequeney bands and as a doubler on the highest frequeney. With rated input to the amplifier, the output is betwern 125 and 150 watts with straight amplification, and about 7.5 watts doubling.

Hig. 849 gives the rirenit diagram. The $6 \mathrm{~L}, \mathrm{G}$ plate eireuit is proportioned so that the crestal fundamental and second harmonie both can be covered with a single coil at L_{2}; ('2 is simply swung to give resomance at either.

Ilelpful suggestions on preparing the rhassis will be found in Chapter 6 .

Resistor R_{5} is a grid leak used only when doubling in the final ; it is shorted be switeh os when the tube is a straight amplifier.

The amplifier tube is sef in a socket suspended below the chassis. A shideld ean with the top eut off surroumds the lower part of the tube to provide additional shielding. The switch whaft of the multiple erestal holder is connerted to a pand control by means of a flexi-ble-rable coupling so that auy of the crystals ran be selected from the front. The holder fits a standard five-prong socket and can be pulled out in an instant should it be necessatry to we an extra crustal provided with the customary mounting. The 6 Lf plate coil is air-wound, cemented on celluloid strips and mounted inside a shiclded plug-in roil box. The shield is grounded through one of the five pins on the eoil base.

Two power-supply units will be required.

FLG. 847 - THE TWO-HEAM-TUBE TRANSMITIER OR EXCITER FOR 61.6-RK47 OR 814 TUBES
Ontput power of 150 wates is obtainable at 3.5 and 7 Mc.. 100 to 125 watteat 14 Mc. and 75 wattsat 28 Mc. The masonite panel is of standiard rack dimensions: $10^{1} \mathbf{2}^{\prime \prime} \times 19^{\prime \prime} \times 1 / 4^{\prime \prime}$ and the chassis $7^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime}$. Crystal switeh in upper right corner, grid-leak switchlolow.
one delivering $400 \mathrm{v} ., 75$ to 150 ma . and the other 1250 volts, 150 ma . Reference should be made to the power-supply chart of Chapter 14 for details. A filament transformer delivering 10 v . at 4.15 amps or more is also required.

Since either type tube has sufficient screening, no neutralizing is necessary. Aside from this, the tuning process is the same as described for previous transmitters.

For minimum crystal current it is essential that the dimensions of L_{1} be duplicated and that C_{1} be set as near minimum capacity as is consistent with the excitation required. Crystals of ordinary activity will work well with ('s set right at minimum, and this control in nearly all cases may be left alone. The setting for erystal-fundamental output will be found near maximum capacity on C_{2}, and for second-harmonic output near minimum capacity. The 6 L 6 plate current at resonance will be about 60 milliamperes in either case, using 400 v . In tuning the final amplifier, it is always advisable to lower plate-voltage until plate-circuit resonance, indicated by plate-current dip, is found. Lacking other means, a $200-$

Watt or larger lamp may be comnected in series with the primary winding of the plate transformer.

In the amplifier stage, with R_{5} shorted out, the unloaded minimum plate current should be between 15 and 25 ma., depending upon the frequency and $L_{\text {- }}(\cdot$ ratio. Doubling to 28 Mc., with R_{5} in the circuit, the minimum plate current should be about 60 ma.; the tank can be loaded until the tube takes 120 ma . without color showing on the plate. At 150 ma. the plate gets pink, but the output is higher. On bands where the final stage is a straight amplifier there is no color on the plate at the rated plate current of 150 ma . Optimum grid current is 10 milliamperes.

The fixed bias, approximately 70 volts, may be secured from batteries or from a power pack (see Chapter 14). This value is for Class-C operation, and is greater than cutoff so that no plate current flows when excitation is absent.

No output-coupling arrangement is indicated in the diagram, this being left to the preferences of the constructor. There is ample room on the forms for a link. (See Chapter 13 for information on a suitable antenna coupler.)

FIG. 848 - REAIR VIEW - TWO-BEAM-TUBETRANSMITTER-EXCITER
The plug-in multiple crystal holder with internal switch seen at the left (Vational)holds four crystals and plugs into a standard 5-prong socket. Oscillator plate coil is in shielded plug-in unit to right of 6L6. Meter jacks for the oscillator plate circuit, final-amplifier grid and plate circuits are mounted on the rear edge of the chassis; the two at low-voltage are of the insulated type and the high-voltage one provides greater insulation by a piece of bakelite mounted so that the jack projects tbrough a hole of ample size in the chassis. Heavily insulated cord should be used to connect the meter to the plug.

FIG. 850 - Botrom VIEW
The cathode-circuit coil may be scen to the left of its tuning condenser. C_{3} is innulated from the chassis by four buttontype insulators and the shaft providod with an insulating flexible slaft coupling. The 5 -prongam-plifier-tube socket is lowered an inch or so below the chassis on brackets. A smallbaffieshield ie placed between the two amall variable condensers.

FIG. 8.49-CIRCUIT DIAGRAM OF TLIE TWO-BEAM-TUBE TLANSMITTEK
C_{1} - 100- $\mu \mathrm{fd}$. variable (Vational ST100).
$\mathrm{C}_{2}-250-\mu \mu \mathrm{fd}$. variable (Na^{2} ional STII250).

C3-50- $\mu \mu$ fd. transmitting type, airy:ap $0.171^{\prime \prime}$ (National TMA 50A).
 (Dubilier).
C_{5} - 500- $\mu \mathrm{fd}$. mica, 1000-volt (Aerosox Type 4).
$\mathrm{C}_{6}, \mathrm{C}_{7}-0.002-\mu \mathrm{fd}$. mica, receiving type (Aerovox).
C8-0.002- $\mathrm{C}_{8} \mathrm{fd}$. mica, 5000 -volt (bangamo).
$\mathrm{Cg}-\mathrm{Ci}_{13}$, inc. - 0.0 I paper, 600-volt (Aerovox and Sprague).
R_{1} - $\mathbf{1 0 0 , 0 0 0}$ ohms, 2-watt (IRC).
H_{2} - 400 ohms, 2-watt (IHC).
H_{3} - 5 -ohm adjustable wire-woural (Electrad).
K_{4} - $\mathbf{2 5 , 0 0 0}$ ohms, 10 -watt (IHC Ispe AB).
Hs - 15,000 ohms, 10 -watt (Ohmite).
$\mathrm{K}_{6} \mathbf{- 4 0 0 0}$ olims, I0-watt (IKC 'Iype AB).
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J} \mathrm{~J}$ - Closed-circuit jucks (Y'avIey).
KYC - Receiving-type chokes (National $\mathrm{K}-100$).
M-0-200 d.c. milliamneter (Weaton 301).
L_{1} - For 7-Mc. crystal, 8 turns No. 92 on l-inch form, spaced to make
Filament supply required: 10 voIts at 4.15 amp . The 400 -volt plate supply should deliver 100 ma , the 1250 -volt supply 150 ma . (See Chapter 14.)

A SMFGLIN-TMIEE 200-W WTT SMEPMWMEIE

The single-tube amplifier shown in the photograph of Fig. 8.51 was designed for the popular mediumpower class tubes sueh as the 808, RK30-37-51-52, T55, 35T and HK54-154 types operating at 1500 volts and up to 150 ma . It is providec with fixedlink input for coupling to a driver and vari-able-link output for coupling to a following amplifier with link input or to an antenia through a suitable antemia coupler (see Chapter 13). The tank condenser specified is sufficient to provide nearly optimum capacity at all frequencies down to 3.5 Me. when the ratio of plate volts to platecurrent milliamperes is not less than 10 to 1. At 1.7 Me. an air padding condenser should be conneeted as shown in the circuit diagram of Fig. 852. The blocking condenser C_{5} is essential to prevent break-down of the tank condenser, otherwise a much larger tank condenser would

herequited. Shent-cireniting tums toreduceroil imeluctance is mugestorl to aroid spoiling the coilforother purposes where the full indurtanere may be required.

The type NOK shown in the photograph as
 the erid terminal at the side of the tube so that the socket may be sub-mounted on the chassis. The other types nemotioned above have the grid temmand at the base so that the sucket should be mounted abose tho base when using these latter types.

The r.f. choters and hy-jatso coblemsers are mounted beneath the ahassis where plenty of room will be foumd. Both tuning eondensers monst be insulated from tine chassis. Whale a shaft coupling with bakelite insulation is satisfactory for the gederombenser control, it is important ta provide one with insulation for high voltages for the phate-condenzer shaft A eontrol for viaving the output-link coupling is brought ont to the front of the pancl. Nince the shat provided with the l3arker and Wile liamson unit has a $3^{3} \mathrm{fa}^{\prime \prime}$ diameter shaft, at redueing coupling will be required to eouple it to a $1 / 4$ " what . The high-voltage line is brought up through the chassis through a button-type insulator. Terminals are provided at the loft for the output, at the right for exciter input and at the rear for power-supply connections. Chapter 6 contains suggextions for cutting and drilling the chassis,

Poncer-Sirgnty Reduirements

The plate-voltare supply should deliver 1.500 volts at 1 五0 ma, or more. (See power-supply chart in Chapter 14.) I'ilament-shpply require-
ments vary with the type of tube selected. The
 must also be made for biasong the grid; this requirement also depends upon the tube chosen. lor c.w. operation with the 808 , it is most simply provided by a 4 b-volt lonttery and - 0 ()O-ohm, 10 -wat grid-leak resistance in series arross the biasing terminals, although a suitable power supply may be used as deseribed in Chapter 14. With other types, sufficient fixed bias should be provided to cut off plate current without exeitation (roughly the plate voltage divided hy the amplification factor of the tube which is given it the tube tables, Chapter ib) and supplying the remainder of the biasing roltage specified in the tube tables by a grid leak whose resistance when multiplied by the grid eurrent in amperes will give the required additional voltage.

Driving power also varies with the type of tube. lt should be easily possible to drive any of the tubes for which the amplifier is designed by the 6I. 6 - 808 exciter of Fig. 842 or the bandswitching exciter of Fig. 866. The exciter should be capable of delivering not less than 20 to 25 watts at all frequencies.

Proper tuning of an amplifier has been aliscussed in detail in the dexign section of this chapter. Briefly, taking the 808 as an example, the first step after connecting the exciter and power supply, is that of neutralizing. With plate voltage off and excitation applied, a milliammeter in series with the grid-bias circuit should read at least 3 man. When the grid circuit of the amplifier and the plate circuit of the exoiter are tuned to resonance and the coupling poperly sdjusted. Referring to the

TRANSMITTER DESIGN AND CONSTRUCTION

diagram of lig. 852, it will be noted that the grid is shown connected at an intermediate point on the grid-tank coil. This connection was found necessary to provide a proper impedance match between the grid and the output circuit of the 6I,6-807 exciter. Connection of the grid at the top of the tank circuit would not permit loading of the 807 driver. The tap was placed at the $15 \mathrm{th}, 9$ th, 6 th and 5 th turn from the ground end in order from the largest to the smallest grid coil.

With the grid circuit adjusted for maximum grid current consistent with rated driver plate current, tuning the plate circuit will cause a dip in grid current at resonance. The neutralizing condenser should then be adjusted until all signs of the grid-current dip have disappeared and the stage is neutralized. Plate voltage, reduced by inserting a 200 -watt or larger bulb in series with the primary winding of the plate transformer, may now be applied and the plate circuit tumed to resonance

 IMIPIFIER

©: - 0.0N1- ffl . mica, اуу-раня.
© © - 0.0I mfll., G00-volt paper. by-pasm.
Neutralizing condenser (National NO:RO).
 22(86).
 MOI80BI).
 JID80-OS) . ${ }^{\prime \prime}$ airgap.
HFW:1 - R.F. Choke (National R1ON).
RFC: - R.F. ('hoske (National RISA1).
1.1-National therriea. (Sae toxt for mplatiation of (ap.)
Vote: Sirlostitute enile mas be made lis refarrins in

 eirctited at eadh end wo ciretail remonatos with C_{7} and C_{6} at maximum daparity. (Aretext regarding padiling condenser.)
3.5 Me. - IS \& W T'VI,80 with 7 turion nlort circuited at each end.
7, 14 and 28 Mc. - B \& W TVI.-40, TVI-20 and TVL-10.
Notr: Sulbstitute coils may be made by raforring to the ehart of Fig. 829 and hasing dimionionm thmon
 lively, for 1.7. 3.5. 14 and 28 M.
indicated by dip in plate current. It is always advisable to reduce amplifier plate voltage in tuning up not only to prevent damage to the tube hut also to prevent tank-condenser break-down if the amplifier does not happen to be loaded.

The antenna may now be coupled through an antenna coupler (See Chapter 13) and the coupling adjusted to bring the plate current up to the rated value (12 n mat for the 808). With the load applied, the grid current should not drop below 25 ma .

Information on grid and plate modulation of this amplifier will be found in Chapter 10.

MMIPLINEEIR

The single-tube high-power amplifier shown in the photographs of ligs. 853 and 85.5 was designed for tubes such as the types RK63-3638,806 , H K354-254, 250 TH-TL, $100{ }^{\circ} \mathrm{TH}-\mathrm{TL}$, T155-200 and HF200-300. A plate tank condenser was chosen with a eapacity sufficient to provide optimum capacity at the lower frequencies when the ratio of plate volts to platecurrent milliamperes is 12 to 1 or higher and with a plate-spacing sufficient for c.w. operation up to 750 watts input at 3000 volts when used in conjunction with the blocking condenser sperified. For $1.7-\mathrm{Me}$, operation, an air capacity of $75 \mu \mu \mathrm{~d} s$. should be added in parallel with the tank condenser as shown in the rircuit diagram of Fig. $8 \overline{5} 4$. This condenser shoulil have a peak-voltage rating of not less than 7000 . $50-\mu \mu$ fd. and $25-$ $\mu \mu \mathrm{fd}$. Eimac vacuum units in parallel should be satisfactory. As mentioned previously, shortrircuiting turns to reduce coil inductance is suggested to avoid spoiling the coils for other purposes where the full inductance may be required. If turns are removed, the number must be determined experimentally. The condenser should be set at approximately the capacities mentioned under the coil table.

The input circuit is arranged for fixed-link roupling to the driver and the output tank coil is fit ted with a varible link winding for coupling to a low-impedance transmission line to antemata or a suitable antemat coupler (wee Chap)tor 13).

A control for the variable link is brought out t.u the pallel be means of a $1 / 4^{\prime \prime}$ extension shat roupled to the 3 an shat provided for the link by moans of a reducing coupling.

Pomer Supply amel Excitation

Power-supply requirements will depend upon the tube solected and the desires of the Pmilder. The tube tables of Chapter is should be comsulted for maximum ratings. In this instance, the R Kitis was seloced and the derisiun

THE RADIO AMATRUR'S HANDB00K

made to operate it at 3000 volts, 250 ma . for c.w. operation. The plate-voltage supply therefore is required to deliver this power. (See power-supply chart, Chapter 14.) The filament transformer is required to deliver 5 volts at 10 amperes. A source of biasing voltage is also required. It is common practice to provide sufficient fixed bias to cut off plate current and to obtain the remaining voltage required for recommended operating bias from a grid

FIG. 853 - THE HIGII-IOWER SINGLE-TUBE AMILIFIEIR
The apparatue is mounted on a $15^{\prime \prime} \times 17^{\prime \prime} \times 1 / 2^{\prime \prime}$ maple board half of which is covered with a sheet of thin metal. The masonite panel dimensions are $153 / 4^{\prime \prime} \times 19^{\prime \prime} \times 1 / 4^{\prime \prime}$. The grid tank condenser is mounted on $11 / 4^{\prime \prime}$ stand-offs, bringing the terminale up near the grid terminal of the tube. The plate tank is mounted upsidedown on metal brackets cut from standard chassis brackets. These brackete must be mounted upon the unshielded portion of the baseboard to provide insulation from ground. The B \& W coil mounting is fastened to the bottom of the tank condenser. operation.
should be entirely adequate for efficient c.w.

Tuning

With power supplies connected and the appropriate coils in the amplifier but with plate voltage off, excitation should be applied and the exciter output circuit and amplifier grid circuit tuned for maximum grid current which should run not less than 70 ma . under the circumstances described. The coupling between exciter and amplifier should be adjusted so that the exciter tube is loaded to normal plate current. It is possible that the grid link may require adjustment to obtain proper loading of the exciter.

The plate tank circuit should next be tuned to resonance as indicated by a dip in grid current. The neutralizing condenser should now be adjusted with an insulated screwdriver, or insulated rod sharpened to an edge, until all indication of dip in grid current disappears. The amplifier is now neutralized and ready for application of plate voltage. Voltage should be reduced for preliminary tuning; as a matter of fact this is always good practice in tuning an amplifier above the very low-power class since it not only prolongs tube life but also prevents possible tank-condenser break-down when the amplifier is unloaded. Resonance in the plate circuit is indicated by a dip in plate current. Coupling and tuning the antenna will cause an increase in plate current. The variable link should be adjusted to load the amplifier to the desired plate cur-
leak of suitable resistance. Following this practice, a fixed bias of 90 volts and a gridleak resistance of $2500 \mathrm{ohms}, 25$ watts will be required. (If other tubes are used or other operating conditions imposed, see comment in regard to biasing in reference to Fig. 852.) Since grid-current flow will be rather heavy, batteries of the heavy-duty type should be selected if this form of fixed bias is to be used. It is preferable to use a biasing power pack such as one of those described in Chapter 14. The resistance introduced in the grid circuit by the voltage-divider or bleeder resistance of an unregulated supply should be 4000 ohms.

Excitation requirements will also vary with the type of tube used and the operating conditions. An exciter delivering 70 watts on all bands should be satisfactory for driving the amplifier with any of the previously mentioned tubes under the maximum operating conditions set forth. The 75 -watt-output exciter of Fig. 845 with the TZ40 operating at 1000 volts
rent with the antenna and tank circuits tuned to resonance. When plate voltage and load are applied, the grid current will fall off to a certain degree. It should not fall below 50 ma . under the conditions described. Plate and grid modulation of this amplifier are discussed in Chapter 10.

IPUSII-PULL AMPLIFIERLS

Wor ease of handling, the push-pull amplifier is to be preferred to a single tube, especially at 7 Mc . and higher frequencies. It may be taken as a general rule that, in transmitters for high frequencies, it is more desirable to use, for example, two tubes of 100 watts output rating rather than one tube rated at 200 watts output. Not only is the circuit more satisfactory to operate, particularly from the neutralizing standpoint, but the fact that even harmonics are practically cancelled in the push-pull amplifier reduces the possibility of harmonic radiation.

Transmitter design and construction

FIG. 855 - SIDE VIEX - SINGIE-TUBE HIGIIPOWER AMPIIFIER
The hlocking condenser in back of the plate tank condenser is essential. The filament transformer is included in the assembly to climinate voltage drop in the leads. It is important that each tank-condenser ahaft be equipped with a suitably insulated coupling. The tulse shown in use is the RK63.

A MEDIUM-PDWEIR PISII-PIIS. AMPIDFIEIS

The push-pull amplifier shown in the photngraph of Fig. 856 is designed primarily for c.w. operation with such tubes as the 35 T , R K35-37-51-52, 808, T40-55 and HK54-154 at 1250 volts. With slight alterations, it may be adapted for plate-modulated 'phone operation (see Chapter 10) or c.w. operation at higher plate voltages.

Most of the details of construction may be ohtained from an inspection of the photograph.

FIG. 854 - CIRCUIT DIAGRAM OF THE HICH1POWER SINGLE-TUBE AMPLIFIER
C C_{1} - $100 \mu \mu \mathrm{fd}$., . $07^{\prime \prime}$ spacing (Cardwell MT100 ; S).
C_{2} - 0.001 - $\mu \mathrm{fd}$. mica, 600 -volt, grid by-pass.
$\mathrm{C}_{3}-0.01 \mu \mathrm{fd} ., 600$-volt paper, filament by-pass.
C_{4} - Neutralizing condenser (Hammarlund \mathbf{N}-20).
Cs - 0.002μ fd., 12,500 -volt (Cornell-Dubilier 22A86).
(.6-150 $\mu \mu \mathrm{fds}$, per section, 0.17' airgap (Cardwell TJ150UD).
C_{7} - $75 \mu \mu \mathrm{fl} \mathrm{I}_{\mathrm{s}}$. Eimac. (See text.)
REC C_{1} - R.F. Choke (National R100).
IRFC2-IR.F. Choke (National R154U).
L_{1} - Barker \& Williamson HXL series with following alterations: 1.7 Mc - - Trim coil to tune to resonance at condenser maximum; 3.5 Mc. -short-circuit 9 tnrns; 14 Mc. - short-circuit 1 turn if circnit will not tune to remonance: 28 Mc . - short-circuit 1 turn.
Note: Snbstitute coils may be made by referring to the graphs of Figs. 828 and 829 basing dimensions upon capacities of $100,75,50,45$ and $35 \mu \mu \mathrm{fds}$., respectively, for $1.7,3.5,7,14$ and 28 Mc .
L_{2} - Barker \& Williamson HDVL series with following alterations: 1.7 Mc . - Trim coil to tune to resonance at maximum of C_{6} with C_{7} in parallel; 3.5 Mc. - short-circuit 2 turns each end; 7 Mc. - short-circuit one turn each end; 14 Mc.-ahort-circuit one turn each end if circuit will not tune to resonance.
Note: Substitute coils may be made by referring to the graphs of Figs. 828 and 829, basing dimensions upon capacities of $170,85,40,25$ and $25 \mu \mu \mathrm{fdn}$., respectively, for $1.7,3.5,7,14$ and 28 Mc .

The plate-eircuit r.f. rhoke, grid leak, hy-pass condensers and power wiring are underneath the chassis. A ceramic feed-through insulator mounted on the rear edge of the chassis is provided for the highvoltage terminal. Reference should be made to Chapter 6 for suggestions on cutting and drilling the chassis.

The circuit diagram is shown in Fig. 857. The plate tank condenser has sufficient capacity to provide nearly optimum $L-C$ ratios at frequencies down to 3.5 Mc . when the ratio of plate volts to plate current milliamperes is not less than 5 to 1 . Plate spacing is sufficient for 300 watts input at a maximum of 12.50 volts. If it is desired to operate at higher plate voltages, the blocking condenser specified for Fig. 852 should be connected as shown in that diagram. It may be mounted beneath the chassis. When such a connection is used, the tank condenser must be insulated from the chassis and it is of extreme importance to provide the shaft of the condenser with a suitably insulated shaft coupling to remove high voltage from the control.

The coils L_{3} and L_{4} are ultra-high-frequency chokes used to prevent parasitic oscillations, which are very apt to occur in push-pull amplifiers, especially those using tubes which drive easily as amplifiers. They do not detract from the efficiency at the normal working frequency.

The coupling link for the grid tank coil consists of three or four turns of cotton-covered wire wound to about one inch diameter. This coil is placed inside the coil form at the center of the grid winding, and the leads come

TIIE RADIO AMATELR'S HANDBOOK

through holes in the form to the plug base. The coupling between link and grid coil can easily be varied by bending the link with respect to the tank coil. The link on the plate tank coil, L_{2} consists of a turn or two of highvoltage wire wound over the center of the plate coil.

Pouer Supply and Excitation

Power supply requirements will depend upon the type of tube used and the voltage at which it is desired to operate the amplifier. As mentioned previously, the plate voltage should be limited to 1250 volts if no blocking condenser is used. At this plate voltage, the plate current should be limited to about 250 ma . for the L-C' ratio to remain near optimum value. With the blocking condenser in use, the input may be increased to 1500 volts at 300 ma., the maximum ratings for most of the tubes for which the amplifier is suitable. Suitable power supplies are described in the power-supply chart in Chapter 14.

Filament requirements may be obtained from the tables of Chapter 5. The 35"T"s shown in the photograph require a transformer delivering 5 volts at 8 amperes.

Fixed bias sufficient for plate-current cut-off with the 35T's at 1500 volts may be obtained from a pair of heavy-duty 45 -volt batteries and a grid leak of 1000 ohms will supply the additional bias required for operation, or bias may be obtained from a bias supply such as described in Chapter 14. The resistance introduced in the grid circuit by the bias-supply voltage-divider or bleeder resistance should
be 2500 ohms. Bias-supply requirements for other tubes may be obtained by following the suggestions given in connection with Fig. 852 and, previously, in the design section of this chapter.

For operation under the conditions described, the exciters of Figs. 842 and 866 or that of Fig. 845 with a type 809 or similar tube in output stage will furnish adequate excitation.

Tuning

Neutralizing and tuning of a push-pull amplifier is essentially the same as that of a single-tube stage. With power supplies connected, plate voltage off and excitation applied, the exciter output and amplifier grid circuits should be tuned and the coupling adjusted for maximum grid current consistent with rated exciter plate current. Grid current under the conditions described should run about 60 ma. Inability to load properly the exciter stage may mean that an adjustment of link windings is necessary.

When proper excitation has been obtained, the neutralizing condensers should be adjusted to eliminate all trace of dip in grid current when the plate tank circuit is tuned through resonance with plate voltage off, always keeping the neutralizing condensers at equal plate spacing.

With the amplifier neutralized, plate voltage, reduced by the method recommended for amplifiers which have already been described, may be applied and the plate circuit tuned to resonance as indicated by the dip in plate cur-

FIG. 856 - TIIF: MEDIUM-POWER PUSH-PULL AMPLIFIER
'I'lis amplitier is designed primarily for e.w. operation with tubes atreh an the 35 T, 'RK35-37-51-52, 808, '1'55-4N) und IIK54-154 at a maximum plate voltage of 1250 . Ry the use of tholocking condenser deacribed in the text it may be made suitable for plate modulation at this voltage or for c.w. operation at 1500 volta. Panel dimemsioms $-83 / 4^{\prime \prime} \times 19^{\prime \prime}$; ehassin $8^{\prime \prime} \times 17^{\prime \prime} \times 21^{\prime \prime}$. One of the two parasitie chohen deseriloed in the text nray be secn bet ween the two tubes.

TRANSMITTER DESIGN AND CONSTRUCTION

rent. With full plate voltage and the load coupled by means of a low-impedance line to an antenna tuner (see Chapter 13), the grid current should not fall below 40 to 50 ma . A suitable plate modulator is described in Chapter 10.

A 750-WATT IPUNH-IPILI. AMIPLIFIER

The push-pull amplifier shown in the photographs of Figs. 858 and 860 is suitable for use with a pair of low-capacity tubes such as the types 100 TH , RK36-38, IIF200 or HK254. The tank condenser has sufficient capacity to provide approximately optimum capacity on all bands up to 3.5 Mc . when the amplifier is

FIG. 857 - CIRCUIT DIAGIRAM OF THE MEIDUM-IDOWER I'USH-IPULL AMIPLIFIEIR

All wound on National XR-13 formis. Links 3 or more turns, bunch-wound, inside coil form. La-1.7 Mc.* - $\overline{0} 0$ turns No. 18 d.c.c., dia. $21 / 2$ int., length $31 / 2$ in.
3.5 Mc. - 35 turna No. It, dia. $21 / 2$ in., length $31 / 2 \mathrm{in}$.
TMc. - 18 turns No. 14, dia. $21 / 2$ in., 7 turns per in.
1: Me. - 10 turns No. 14 , dia. $21 / 2$ in., 7 turns per in.
28 Mc. -6 turns No. 14, dia. $21 / 2$ in., 3.5 turns per in.
All except 1.7 - and $3.5-\mathrm{Mc}$. coils wound on National XR-10A forms. $1.7-$ and $3.5-M c$. coils may be wournd on tubing or on celluloid strips as described in Clapter Six. Links one or two turns as required, wound with high-voltage wire around center of coil.
I.3, L. 4 - Parasitic chokes, 8 turms No. 14, 1/2-in. dia.

[^10]operated with a ratio of plate volts to platerurrent milliamperes of not less than 8 to 1. At 1.7 Mc., a padding condenser of $50 \mu \mu \mathrm{fds}$. rated at not less than $\mathbf{7 5 0 0}$ volts, such as one of the Eimac vacuum units should be connected across the coil specified. The tank-condenser airgap is sufficient to withstand c.w. operation with 750 watts input at 2500 volts. Voltage should be reduced or a blocking condenser (see Fig. $854, C_{5}$) should be used if the stage is to be plate-modulated. If this connection is used, it is of utmost importance that the tank condenser be well insulated from the panel and that a suitably insulated coupling be used thetween the condenser shaft and the control.

Most of the details of construction are evident from the photographs. Reference should be made to Chapter 6 for assistance in construction. The r.f. chokes, by-pass condensers, grid leak and power wiring are beneath the chassis. The tube sockets are sub-mounted making it unnecessary to bring the filament wiring up through the chassis. The supporting strip at the rear of the tank condenser serves as a ground strap of low resistance.

The layout of the amplifier is such as to keep all leads symmetrical. The tubes are arranged so that each plate terminal comes opposite the condenser stator to which it is to be connected. The positions of the neutralizing condensers are also reversed, one being placed behind one tube and the other in front of the second tube.

The grid coils are wound on National XR13 forms with the associated plugs and base. The link coils are wound to fit inside the forms rather than on the outside of the windings, since there is more room inside and the leads can be brought out inconspicuously.

The circuit diagram is shown in Fig. 859. The condenser C_{3} is necessary to prevent lowfrequency parasitic oscillations caused by resonance in grid and plate r.f.-choke circuits. It should be mounted to give a fairly short connection between the center-tap of the grid coil and ground. The high-voltage lead to the center of the plate tank coil is fed through the

THE RADIO AMATEUR'S HANDB00K

chassis by means of a feed-through type insulator.

Pocer Supply aud Excitation

Power-supply requirements will vary somewhat with the type of tube and the input at
described in Chapter 14. The resistance introduced in the grid circuit by the bias-supply voltage-divider or bleeder resistance should be 2500 ohms.

Excitation requirements will also vary somewhat with tubes and operating conditions. Sufficient excitation for any of the
 above mentioned tubes, operating within the conditions outlined, may be obtained from the exciter shown in Fig. 845 with the TZ40 tube in the output stage.

This a mplifier is neutralized and tuned exactly following the process described in connection with the push-pull amplifier of Fig. 856. The driver output and amplifier input links are adjusted to give maximum grid current to the amplifier consistent with maximum rated plate current for the driver with the driver output and amplifier input tank circuits tuned to resonance. In neutralizing, the neutralizing condensers should be kept at the same plate spacing while adjusting them to eliminate all traces of dip in grid current as the plate tank circuit is tuned through resonance with plate voltage off. When plate voltage is first applied in

WI'li lou'li's

which it is desired to operate the amplifier. In this instance, a pair of 100 TH's, was operated at 2500 volts, 360 ma . or a 11 in input of 750 watts. Details of a suitable plate-power supply may be taken from the power-supply table in Chapter 14. These tubes require a filament transformer delivering 5 to 5.1 volts at 13 amperes. Voltage shoulal be checked at the tube sockets.

Appropriate biasing voltage may be obtained from a pair of heavy-duty 45 -volt batteries used in conjunction with a grid leak resistance of $1500 \mathrm{ohms}, 25$ watts, but preferably from one of the bias power-supply units
 PL
Ci - Split-stator transnitting condenser, $100 \mu \mu \mathrm{fd}$ per section, 0.07' airgar (Cardwell MR100BID).
C2-Split-stator transmitting condenser, $75 \mu \mu \mathrm{fals}$. per section, $0.2^{\prime \prime}$ airgap (Cardwell XC- $\mathbf{- 5}-\mathrm{X} 1$).
(.3- $\mathbf{2 5 0} \mu \mu \mathrm{fd}$ s. mica condenser, $\mathbf{5 0 0}$-volt.
$\mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{0 . 0 1 - \mu \mathrm { fd }}$. paper.
$\mathrm{C}_{6}, \mathrm{C}_{7}$ - Neutralizing condensers (National NC-800).
k_{1} - See text.
RFC 1 - Keceiving-type r.f. choske (National R100).
RFC2 - Transmitting-type r.f. choke (National R154U).
1.1-1.7 Mc.-85 turns No. 24 d.c.c., close-wound: link 5 turns.
3.5 Mc. - 52 turns No. 18 enamelled, closewound; link 3 turns.
7 Mc. - 30 turns No. 14 enamelled, closewound: limk 2 turns.

14 Me- 12 turns No. It enamelled, length $13 / 8^{\prime \prime}$; link 2 turns.
28 Mc. - 6 turis No. 14 enamelled, length $13 / /^{\prime \prime}$ link 2 turns.
All grid coils wotnd on National XR-13 $13 / 4^{\prime \prime}$ diam. forme.
I.o- 1.7 Mc.* - 30 tirns, diameter $5^{\prime \prime}$, length $41 / 2^{\prime \prime}$ (No. 12).
3.5 Mc. - 22 thrits, dianmeter $5^{\prime \prime}$, length $3^{\prime \prime}$ (No. 12).
7 Mc.- 22 tirms, diameter $21 / 2^{\prime \prime}$, lengtli $35 / \mathbf{g}^{\prime \prime}$ (No. 12).
14 Mc. - 8 turns, diameter $21 / 2^{\prime \prime}$, length $1 / \mathbf{g}^{\prime \prime}$ (No.12).
28 Mc. - 6 turns $1 / 4^{\prime \prime}$ copper tuhing, diameter $21 / 2^{\prime \prime}$, length $4^{\prime \prime}$.
$1.7-$ and $3.5-M c$. coils wound on National XR-14A forms; 7-and 14-Mc. coils on National XR-10A forms; 28-Mc. coil self-supporting.
V - A.c. voltmeter, $0-10$ volts.

* Used with $50-\mu \mu \mathrm{fd}$. padder. (See text.)

TRANSMITTER DESIGN AND CONSTRUCTION

tuning the amplifier, it should always be reduced as already mentioned frequently in this chapter. The grid current should not fall below 75 ma . with the amplifier fully loaded.

A suitable plate modulator for this amplifier is described in Chapter 10.

A I-Kw. PUSIIT-PULI. AMPLIFIEIE OF CONservative design

The push-pull amplifier shown in the photographs of Figs. 861, 862 and 864 was designed for c.w. or 'phone operation at the full legal limit of 1 kw . with tubes and associated equipment operating well within their maximum ratings. Suitable tubes are types such as the 806, 250TH, RK63, T155, HF300 or the HK354's shown in the photographs.

Most of the constructional details are evident from the photographs and their captions. Every effort should be made to keep the wiring on each side of the circuit

FIG. 860 - REALI VIEW - 750-WATT IUSII-IPULL, AMPLIFIER
The plate tank coil is supported partly by the panel and partly by a heavy aluminum strip fastencd to the chassis at the back. The jack-base for the plate eoils (National XB-15) is mounted eross-wise on the condenser loy means of angle brackets. These brackets also form the connections leetween the condenserstators and the ends of the tank coil. The grid eoil is monnted at right angles to the plate coil. symmetrical. This applies particularly to the length of leads between the condenser stators and the tube terminals and the leads connecting the neutralizing condensers. With the plate tank condenser mounted upside-down, the mounting strip for the coil mounting may be fastened to the condenser mounting feet. A control for varying the link coupling of the output circuit is brought out to the panel. Since the shaft provided with the coil unit is $316^{\prime \prime}$ diameter, a reducing coupling is used to couple it to a $1 / 4^{\prime \prime}$ shaft. The insulated shaft coupling for the plate tank condenser is of utmost importance to remove danger of high-voltage shock. It should have sufficient insulation to withstand voltages of the order of 7500 or 10,000 volts.

Mounting the grid-circuit components underneath the baseboard with its metal covering provides shielding between grid and plate circuits.

The filament transformer is included in the unit to eliminate voltage drop in secondary wiring of appreciable length. This is important where heavy filament currents are involved.

The circuit diagram is shown in Fig. 863. The tank condenser specified in the list of components is the one shown in the photographs. It was chosen with 2000 -volt operation without the blocking condenser in mind. With the blocking condenser in use, an appreciable saving in space can be made by the substitution
of a smaller tank condenser, although the larger condenser gives a greater factor of safety under conditions of light loading. The Johnson type 1001DD90 has sufficient plate spacing ($0.250^{\prime \prime}$) for c.w. or 'phone operation up to 1 $k w$. input at 3000 volts. With this condenser, it is possible that the 14 - and $28-\mathrm{Mc}$. coils will not need the alterations mentioned in the table of components. Short-circuiting turns to reduce coil induetance is suggested to avoid spoiling the coil for other purposes which may require the full inductance of the coil. If turns are removed, the number must be determined experimentally with the tank condenser set at maximum for 3.5 Mc ., approximately halfcapacity for 7 Mc . and near ninimum capacity for 14 and 28 Mc .

The tank condenser specified is sufficient to provide optimum capacity at frequencies down to 3.5 Mc . with tubes operated at either 3000 volts 330 ma . or 2500 volts, 400 ma . At 1.7 Mc. a padding condenser of $50 \mu \mu \mathrm{fds}$. will be required in parallel with the tank coil specified. This condenser should have a voltage rating of not less than 10,000 volts. One of the Eimac vacuum-type units should be satisfactory.
Pouver-Supply and Excitation Requirements
Full 1-kw. input may be obtained at 3000 volts, 330 ma. or 2500 volts. 400 ma. Proper

THE RADIO AMATEUR'S HANDB00K

FIG: 861 - A $1-K W$. PLSH-IPLLL, AM1'IIFIER OF CONSERVATIVE IDESIG; USING TYPE IIK354E'S
Designed for tubes operating at plate voltages of 2500 to 3000 such as typea $806,250 \mathrm{TH}, \mathrm{RK} 63, \mathrm{~T} 155$, HF300, T200 etc. The panel is a sheet of $1 / 4^{\prime \prime}$ masonite measuring $28^{\prime \prime} \times 19^{\prime \prime}$. It is fastened to the baseboard of similar material hy four $9^{\prime \prime}$ triangular chassis brackets, two below and two above the baseboard. The baseboard measurea $17^{\prime \prime} \times 21^{\prime \prime}$ and in covered with a thin sheet of metal.

FIG. 862 - IREAR VIEW
The plate tank condenser is mounted upside-down on heavy $41 / 2^{\prime \prime}$ stand-off insulators. 'The tank-coil mounting is mounted upon a atrip of $1 / 4^{\prime \prime}$ masonite $31 / 2^{\prime \prime} \times 163 / 4^{\prime \prime}$ fastened to the bottom of the tank condenser. The stand-ofl insulators supplied with the unit are replaced with others $1^{\prime \prime}$ high to reduce lead length. The blocking condenser (id is mounted underneath the tank condenser near the rear. When this condenser is used it is of the utmost importance to use a heavily insulated coupling letween tank-condenser shaft and the control.
components for suitable plate supplies may be determinerl from the power-supply table in Chapter 14. The 354 E's shown in the photographs require a filament transformer delivering \bar{a} volts at 20 amperes. Filament requirements for other tubes may be determined from the tuhe tables of Chapter 5.

The 354 E 's require a fixed bias of 90 to 100 volts for plate-current cut-off at 3000 volts Since the grid current runs quite high, it is preferable to ohtain this biasing voltage from a biasing power supply such as one of those clescribed in Chapter 14. The resistance introduced in the grid circuit by the biassupply voltage divider or bleeder should be about 4000 ohins.

For c.w. operation a driver delivering 70 to 75 watts will provide sufficient excitation. The exciter shown in Fig. 845 with the T40 in the output stage should be adequate. Requirements for grid or plate modulation of this amplifier are discussed in Chapter 10.

198

TRANSMI'TIER DESIGN ANI CONSIRUC'TION

Thming

The process of neutralizing and tuning of the push-pull amplifier of Fig. 857 applies equally to this amplifier. With plate voltage off, the coupling between amplifier grid and exciter plate circuits should be adjusted to give maximum amplifier grid current when the two circuits are tuned to resonance. Some alteration in link turns may be necessary if it is found impossible to load the exciter output tube satisfactorily. The coupling should be adjusted to load the driver tube to rated plate current. With this coupling, it should be possible to obtain amplifier grid current of 100 ma . or more.

The plate tank circuit is tuned to resonance as indicated by the dip in grid current and the neutralizing condensers adjusted until this dip disappears as the plate circuit is tuned through resonance. The two neutralizing condensers should be kept at equal capacity settings during the process.

With the amplifier neutralized, plate voltage, reduced by the method described previously, may be applied and the plate circuit tuned to resonance as indicated by the dip in plate eurrent. When the amplifier has been tuned to resonance and partially loaded, full plate voltage may be applied and the loading increased to bring the imput up to the maximum limit. Variable-link coupling is provided for coupling to a low-impedance line feeding the antenna or a suitable antenna coupler (see Chapter 13). With the amplifier loaded, the grid current should not fall below 75 ma .

MANHDNWTATIENG

Thus far, in the equipment described in this chapter, plug-in coils have been employed as a means of transferring operation from one band to another. In the exciter units, where efficiency may often be of less importance than convenience, some of the circuits are designed to cover two bands with a single coil by the use of a large tuning condenser. This method is oot suitable for higher-power amplifiers because of the losses involved in the high- C circuit which results at the lower of the two frequencies rovered by this method.

Several systems have been worked out whereby an inductance change instead of a capacity change is employed in shifting operation from one band to another. In one system, switches are employed to short-circuit turns of a low-frequency coil to render it suitable for higher frequencies. This method is very convenient and involves no appreciable losses in covering three bands. In a second method,
separate appropriate tank coils are provided for each band while a system of switches is used to switch connections between the tank condenser and one or another of the coils. A third method, used in exciters, employs a system of switches to cut frequency-doubling stages in or out of the circuit as desired. Two typical practical examples of band-switching units will be described.

A AO-WATT QUTIPIT EXCITEIE WITII STAGE NWITCIIING

The exciter or low-power transmitter pictured in Figs. 865 and 867 is designed for flexi-

FIG. 863 - CIRCUIT IDAGIBAM OF THE: PUSIJPULL l-KW. AMPLIFIER
© S_{1} - $200 \mu \mu \mathrm{fds}$. per mection, $0.07^{\prime \prime}$ airgap or greator (National TMA-200D).
(S2-100 $\mu \mu \mathrm{fds}$. per section (Jolinson 100 CD)llo, $0.350^{\prime \prime}$ airgap). (See text.)
C_{3} - Neutralizing condenser (Johnmon N375).
(:4-0.002 μ fd., 12,500 -volt mica (Cornell-l)ubilier 22A86), blocking condenser.
(is - $50 \mu_{\mu}$ fls. Eimac vacuum type padder for 1.7 Mc. (See text.)
(if-0.01 $\mu \mathrm{ff}$., 600 -volt paper, filament by-pass.
KFC_{1} - Grid-circuit i.f. choke (National R100).
R FC_{2} - I'late-circuit r.f. choke (National RI54U).
I. 1 - Barker \& Williamson RXI. serien with center links, altered an follow: RXI-160-Cint to tune to remonance at condenser maximum; 13X1-80 - eloort-circuit 3 turns each end; IBXI-40 - mhort-cirmit 1 turn each end; BXL20 - no alteration; 13×1 - 10 - short-circuit 1 turn at one end.
Note: Substitute coils may be mude ley referring to araphs of Figs. 828 and 829, basing dimensions upon chapacities of $100,75,40,30$ and $30 \mu \mu$ fls. respectively for $1.7,3.5,7,14$ and 28 Me.
I. 2 - Barker and Williarman HilWh, series with following alterations: IIDVL-20 - shrort-circuit 1 turn ench end; lllVl.-10 - short-circuit $1 / 2$ turn each end.
Votc: Substitute coils may be made by referring to traphs of Fign. 829, hasing dimensions upon capacitien of $100.50,25.25$ and $2.5 \mu \mu$ fig. respectively for 1.7 , $3.5,7,14$ and 28 Mc .

The rotore of the grial tank comalonmer are kronniled. The grid tank-coil momming miradilas one of the thine worketa which are mab-monnted in the baseloard. The grid elone eoil im paced underneath the coil monnting. I, atale from grid tank circuit to tulse grid terminals are mased through lase via frealthrongh insulators.

Caparity coupling between stages is used throughout. The plates of the first three stages are parallel-fed so that the plate tuning condensers can be mounted directly on the metal chassis. The 6V6G oscillator, 6 N7G doublerdoubler and the 807 screen all operate at the same voltage; with the voltage divider specified the actual voltage at this point is slightly less than 300 volts, with 600 applied. The 6 V 6 G screen runs at a little over 100 volts. A jack is provided for reading plate current to each tube. Series feed is used in the 807 plate circuit, the tank condenser being insulated from the chassis with "button" insulators. Condenser C_{15} provides a lit tle feedback additional to that within the tube itself so that erystals will be certain to oscillate.

The above-chassis layout is shown in top-view photograph. Along the back, from left to right, are the crystal, 6 V 6 G , and $6 \mathrm{~N} 7(\mathrm{G}$. Directly in front of them are the three low-level plate coils, L_{1}, L_{2} and L_{3}. These are wound on ordinary receiving forms, and plug into sockets mounted above the chassis on the metal pillars fur-
bility in being adaptable to all bands from 1.75 to 28 Mc , with erystals cut for different bands, and also for quick band changing over three ur four bands. It consists of a 6 VGG tetrode oscillator followed by two triode doabler stages in one tube, a 6 N 7 g ; by means of a switch, the output of any of the three stages can be connected to the grid of the final tube, an 807 screen-grid beam tetrode. A serond two-gang switch changes tank coils in the sot plate circuit. The circuit diagram is given in Fig. 866 .

The oscillator, first and secont doubler plate coils, L_{1}, L_{2} and L_{3} respertively, need not be changed for crystals ground for a given band. The switching eireuit is so arranged that the grids of umused stages are automatically disconnected from the preceding stage and grounded so that excitation is not applied to the idle tubes.

In the 807 plate circuit, the tank condenser, C_{4}, has sufficient Guacity range to permit covering two bands with a single coil. The lowerfrequency band will be found toward maximum capacity and the higher-frequency toward minimum in each case. The 807 may be used as a doubler, if desired, for four-hand operation from a single crystal; the output and plate efficiency are conly slightly reduced from straight-amplifier operation.
nished with the sockets. Next in line comes the 807, with part of a tube shicld around its lower half for additional shielding, and finally the 807 tank circuit with its pair of coils.

The chassis is of electralloy, measuring 7 by 17 by 3 inches.

Below ehassis, the three tuning condensers, C_{1}, C_{2} and C_{3}, are mounted directly underneath their associated coils, and are fastened directly to the under-side of the chassis. The "hot" leads from the coils come down through grommettel holes in the chassis; grounds to the coils are made direct to the chassis, on top.

In the oscillator section, at the left, the grid choke is just to the right of the crystal socket; the grid leak, R_{1}, connects between the lowpotential end of the choke and ground. The plate choke is mounted horizontally between two insulating lugs, and occupies a position midway between C_{1} and C_{2}. The plate blocking condenser, C_{5}, is mounted on its terminal wires between the hot end of the choke and the stator plates of C_{1}.

In the doubler circuit, each plate choke goes directly to a meter jack. The plate blocking condensers, C_{6} and C_{7}, mount between the plate terminals on the tube socket and a pair of lugs on an isolantite terminal strip which is mounted on a small metal pillar so that it is

TRANSMITTER DESIGN AND CONSTRUCTION

about an inch away from the chassis. From these points, connections go to the tank circuits, and also through the grid coupling condensers, C_{9} and C_{10}, to the switch. The lefthand lug on the strip is a junction point for the first grid coupling condenser, C_{8}, and the lead to the switch.

The grid chokes for the 6N7G are mounted vertically at the right side of the switch, the lower terminals going to an insulated double lug. The grid leaks, R_{2} and R_{3}, go from the strip to ground.

The socket for the 807 is the last on the right. Just below it is the grid choke. The screen bypass and heater by-pass are clearly visible in the photograph. The 807 grid leak, K_{4}, and the oscillator screen voltage divider, R_{6} and R_{7}, are mounted on a lug strip parallel with the rear of the chassis. The large resistor is R_{5}.

The two-gang switch for shifting the output coils may be seen at the right. A baffle shield is placed to the left of the switch to reduce coupling between the switch and grid-circuit eomponents.

The oscillator feedback condenser, R_{15}, is made by cutting two $3 / 8$-inch square plates, with mounting tabs on one side, from thin copper. The tabs are soldered to the grid and plate terminals on the tube socket and the plates arranged to face each other with about a quarter-inch separation. The adjustment is not critical; use the greatest spacing which will permit the oscillator to "start" regularly.

All grounds are made directly to the chassis.
Power leads are brought to a terminal strip on the edge of the chassis - at the left-hand side in the bottom view. The output link is connected to a two-terminal strip on the rear edge.

Reference should be made to Chapter 6 for suggestions on cutting and drilling the chassis.

The doubler switch is a standard item having three gangs, each with six contacts. Since only three contacts per gang are needed for the doubler stages, alternate contacts should be removed to give greater spacing and reduce capacity effects. Only two sets of contacts are required in the amplifier switch. In the doubler switch the gang nearest the panel connects to the first 6N7G grid; that nearest the back on the set comects to the 807 grid. Leads between the amplifier coils and switch contacts are passed through clearance holes in the chassis fitted with rubber grommets.

To operate the exciter, coils for consecutively higher-frequency bands are plugged in at L_{1}, L_{2} and L_{3}; only five are necessary for operation with any crystals from 1.75 to 7 Mc . and for output from 1.75 to 28 Mc . For example, with $3.5-\mathrm{Mc}$. rrystals, the 3.5-, 7 - and 14 -Mc. coils would be plugged in at L_{1}, L_{2} and L_{3} respertively. For $1.75-\mathrm{Me}$. crystals, the $1.75-$, 3.5and $7-\mathrm{Mc}$. coils would be used, and so on.

To tune, first open the plate circuit of the 807 by turning the coil switch to an open position. With the doubler switch in the lower position in Fig. 866 (all tubes in use) and the meter plug in J_{1}, turn ('1 until the oscillation dip occurs. The plate current should drop from about 40 ma . to approximately 20 ma . Move the meter plug to J_{2} and adjust C_{2} to resonance (minimum plate current), then move the plug to J_{3} and repeat. In both cases the off-resonance plate current should be around 50 or 60 ma . and in-resonance about 20 to 25 ma . The last adjustment should be made quickly and the plate power then shut off, to atvoid overheating the 807 soreen. With the appropriate coil switched in at L_{4}, the meter plug may then be inserted in J_{4}, plate voltage applied and r_{4} adjusted to resonance. Un-

FIG. 865-A 40-WATT OUTIPLT EXCITER FOR WORKING FOLR HANISS WITH ONE CIISTAL Five bands may be covered through the use of plug-in coils.

THE RADIO AMATEUR'S IIANDB00K

loaded minimum plate current on the 807 will range between 10 and 15 milliamperes, depending upon the frequency and the coil it use. Each coil covers two bands, so that if the $\$ 07$ is excited on the frequency too which the plate cireuit is resomant with near-maximum rapacity, the condenser can simply be swung to the other end of the sate for doubling. Minimum plate currents when doubling run higher than when amplifying straight through, but should not exceed 25 or 30 ma . even on 28 Mc. The tube can be loaded to about 100 milliamperes on every band.

Fixed bias is used on the 807 to hold the plate current to a safe value in case excitation is lost, and to stabilize the tube. Bias of the order of 50 volts, which brings the plate current without excitation down to about 40 or 50 ma., is sufficient; the 100 volts indicated on the diagram is approximately cut-off. The grid leak R_{4}, improves efficiency when the tube is used as a doubler.

Slight retuning may be necessary when switching from one band to another, since the input capacities of the triodes and 807 differ. Metering is not necessary for this purpose; simply adjust for maximum final output. When changing frequency within a band, re-
tuning will not be necessary unless the two frequencies are fairly widely separated.

With maximmm rated input to the 807 (60 watts) the out put is approximately 10 watts on all bands.

Reference should be made to the powersupply chart in Chapter 14 for details of a suitable power supply. Iink windings are provided on each output coil for coupling to a lowimpedance transmission line feeding a following amplifier or antenna coupler with link input (see Chapter 13).

A MEDICM-IPWWEIE BANIDsWITCIIING PIEII-PULL. AMIPIFIEIE

Lleustrating the short-circuiting method of band-changing is the T55 push-pull amplifier shown in Figs. 868 and 870. The eircuit is shown in Fig. 869. The tank coils are selected to tune to the $3.5-\mathrm{Mc}$. band with the proper amount of capacity and two-gang, three-position switches in grid and plate circuits shortcircuit portions of each coil for the 7- and 14Mr. hands. Both input and output links are variable so that proper adjustment of coupling for each hand may be made.

FIG. 866-CIIK:LIT HIAKHAM OF THE 40-WAIT EXCITER
Io avoid complicating the diagram, the two scetions of the 6N6G; double triode are shown separately.
C_{1}, ($2, \mathrm{C}_{3}-100-\mu \mathrm{fd}$. varialsle, receiving type (National ST100).
C. $-150-\mu \mu$ fl. varialbe, low-power transmitting type (National TMS-150).
$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}-\mathbf{0 . 0 0 1 - \mu \mathrm { fd } .}$ mica, $500-$ volt (A erovox 1467).
$\mathrm{Cs}, \mathrm{C} 9, \mathrm{C}_{10}-100-\mu \mu \mathrm{fd}$. mica, $500-$ volt (Aerovox 1468).
$\mathrm{C}_{11}-\mathbf{0 . 0 0 2 5 - \mu \mathrm { f }}$. oil-filled tubular condenser, 2000-volt (Mallory ('T-458).
$\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}-\mathbf{0 . 0 1 - \mu \mathrm { fd }}$. paper, 600 volt (Aerovox 684).
Cis - Oscillator feedloack condenser (bee text).
$\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}-\mathbf{2 5 , 0 0 0}$ ohms, l-watt (I.K.C.).
$14_{4}-50,000$ ohms, l-watt (I.1K.C.).
$\mathrm{K}_{5}-\mathbf{3 5}(\mathrm{HO}$ ohms, 50 -watt (Ohmite).
$\mathrm{H}_{8}-\mathbf{1 0 , 0 0 0}$ ohms, $\mathbf{1 0}$-watt (I.R.C.). $11_{7}-10,000$ ohms, 2 -watt (I.R.C.). RFC-Sectional-wound chokes (National $1 \mathrm{k}-100$).
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}$ - Closed-circuit jacks (Yaxley).
S-Three-gang switch (Yaxley 1336). See text.
S_{1} - Yaxley-162C.
1.1, 1.2, I.3-1.75 Mc.: 50 turns No. 22 d.a.c., close wound.
3.5 Mc.: 26 turns No. 18 enamelled, length $11 / 2$ inchem.

7 Mc.: 17 turns No. 18 enamelled, length $11 / 2$ inches. 14 Mc.: 8 turns No. 18 enamelled, length $11 / 2$ inches. 28 Mc.: 4 turns No. 18 enamelled, lengt $\mathrm{h} 11 / 2$ inches.
All wound on Ilammarlund SWF-4 coil forms (diameter $11 / 2$ inches). On all except the $1.75-\mathrm{Mc}$. coil the turns are spaced evenly to fill the specified length.
1.4-National AK series with end links. Remove 2 turns from each coil except the one covering 14-28 Mc. Remove 3 thrne from this coil.

TRANSMITTER DESIGN AND CONSTRUCTION

Construction

The chassis is fastened to the panel so that the top surface comes at the center line of the panel. The plate tank condenser is mounted upside-down on supports cut from standard crackle-finish chassis brackets fastened to the end plates of the condenser so that the shaft comes $33 / 8^{\prime \prime}$ above the surface of the chassis. The two Ohmite switches are mounted on metal angle brackets which, in turn, are mounted on $1^{\prime \prime}$ stand-off insulators. The angle brackets are of such height that the switch shaft will come at the same height above the chassis as the variable link shaft. The two switches are coupled together with a length of bakelite rod $3 / 8^{\prime \prime}$ diameter with reducing couplings at each end to fit the $1 / 4^{\prime \prime}$ switch shafts. A control for the link variation is brought out to the front of the panel by means of a $1 / 4^{\prime \prime}$ extension shaft coupled to the link shaft with a reducing coupling. The tubes and neutralizing condensers are placed symmetrically in respect to the stator sections of the tank condenser. The distance between the tubes is determined by the distance between mounting holes in the B11/ jack strip underneath, since this strip must be mounterl using the holes in the centers of the National 4 -prong CIR tube sockets. The distance between the tubes and the plate tank condenser is such that the grid-coil mounting is in a position which will bring the variable link shaft at the same distance from the center of the panel as the plate link shaft so that the controls will be symmetrical. Plate leads from the tank condenser are covered with $1 / 4^{\prime \prime}$ spaghetti and crossed over so that the neutralizing condenser leads need not be crossed.

Inderneath, the grid tank condenser is mounted on stand-off insulators and spacers to bring the distance of its shaft below the chassis the same as that between the top of the chassis and the shaft of the plate tank condenser. Both tank condensers are mounted with the shafts along a line drawn through the center of the chassis. The grid-circuit switch is mounted on a bracket which brings the shaft of the switch level with the shaft of the variable link. A control is brought out for the grid link as well as the plate link.
As mentioned previously, the jack strip for the grid coil is mounted on short stand-off insulators and spacers in the holes which appear in the National CII-type sockets. These holes provide the only available method of mounting the jack strip if the controls on the panel are to make a symmetrical design. The tube sorkets themselves are spaced about $3 / 4$ " below the surface of the chassis and the distance of the jack strip below the chassis to make the link shaft come at the correct level may be adjusted by varying the thickness of these spacers.
The taps on the coils are made before the coil is placed in position. They are made by scraping the enamel from the wire at the appropriate turn near the bottom of the turn and bending the "hole" end of a long soldering lug firmly about the turn and soldering it fast. Care should be taken to prevent short-circuiting of turns by the lug. The turns adjacent to the lug may be pressed slightly to one side if necessary. The coil may then be plugged into the jack strip so that the length of lead between the tap lug and the appropriate switch points may be estimated. The leads are then cut from No. 14 wire and soldered to the lugs.

FIG. 867 - BELOW -CHASSIS VIEW OF THF 40-W ATT EXCITER. ARRANGEMENY OF COMPONENTS is EXPIANED in the TEXT

FIG. 868 - THE BAND-SWITCHING PUSH-IPULIFAMPLIFIER WITH 'T55'S
The unit is constructed in two sections with the plate-cireuit apparatus on top of the chassis and the grid-eircuit components lencath. The chassis measures $11^{\prime \prime} \times 17^{\prime \prime} \times 2^{\prime \prime}$ and the panel $14^{\prime \prime} \times 19^{\prime \prime} \times 1 / 4^{\prime \prime}$. The neutralizing condenser for the tube in the forcground is hidden hy the pancl. It is placed so as to be symmetrical with the other neutralizing condenser.
rather than the neutraliz-ing-condenser leads.

The plate tank-condenser capacity is suitable for the frequencies covered for tubes operating at 1500 volts, 300 ma. for the pair and plate spacing is sufficient for plate modulation at 1250 volts.
Specifications for a suitable plate power supply will be found in the power-supply chart in Chapter 14. The T55's require a filament transformer delivering 7.5 volts at 5.5 amperes. Biasing voltage may be obtained from a pair of 45 -volt batteries in series with a grid leak of 2500 ohms, 25 watts connected across the biasing terminals or from a biasing supply similar to one of those described in Chapter 14. An unregulated supply should have a resistance

The coil is again plugged in and the loose ends of the tap leads cut and fastened to the switch. The $14-\mathrm{Mc}$. switch points should come nearest the coil so that these leads will be shortest. Ample space is left at the left side of the chassis (Fig. 870) for mounting the filament transformer.

A terminal strip is placed at the rear edge of the chassis. A mediumsize feed-through insulator forms the positive high-voltage terminal and another similar insulator is used to bring the positive high voltage lead up through the chassis to the center of the plate tank coil.

If desired, brackets may be fastened to the rear end of the chassis so that the minit may be placed upon a table rather than in a standard rack for which it is designed. Suggestions for cutting and drilling the chassis will be found in Chapter 6.

Any of the tubes such as the types 35T, RK35-37-51-52, 808, HK54-154, etc., operating at 1500 volts will be suitable for use in this amplifier. If a type with the grid terminal at the side instead of the base is used, the leads from the tank circuit to the grids will be passed through the chassis

F1G. 869 - CIRCUIT DIAGRAM OF THE TS5 PUSH-PULL BANDSWITCHING AMPLIFIER
$\mathrm{C}_{1}-100 \mu \mu \mathrm{fds}$. per section, $0.025^{\prime \prime}$ or greater airgap (National TMS100D).
$\mathrm{C}_{2}-0.01 \mu \mathrm{fd}$., 660 -volt paper.
$\mathrm{C}_{3}-100 \mu \mu \mathrm{fds}$. per section, $0.170^{\prime \prime}$ airgap (National TMA100DA).
C_{4} - Neutralizing condensers (Hammarlund $\mathbf{N}-10$).
RFC_{1} - Grid-circuit r.f. choke (National R100).
I FFC_{2} - Plate-circuit r.f. choke (National R154U).
SW ${ }_{1}$ - Two-gang, three-position switch (Mallory 162-C).
SW 2 - Two Ohmite type 1BC3 - threc-position switches ganged together.
L_{1} - Barker and Williamson BVL-160, taps at 7 and 13 turns from each end.
L. 2 - Barker and Williamson TVL_80, taps at 11th and 16th turn from each end.

TransuITTER DESIGN AND CONSTRUCTION

of 4000 ohms between the grid tap and ground. The hand-switching exciter of Fig. 866 should furnish adequate excitation.

This amplifier is neutralized and tuned exactly in the same manner suggested for the push-pull amplifiers previously described. The variable link in the grid circuit provides an adjustment of input coupling. The output link provides adjustment of coupling to a lowimpedance transmission line or to a suitable antenna coupler (see Chapter 13). For c.w. operation, a grid current of 40 to 50 ma . with the amplifier loaded should indicate adequate excitation. Plate and grid modulation of this amplifier are discusssed in Chapter 10 .

GANG TMEMNA:

FIG. 870 - IB6ICIOM VIEW - T'55 IBANID-SWITCIIING EXCITER
Note particularly the method used in mounting the grid-coil jack strip. (See text.) The grid-circuit r.f. choke is underncath the grid tank coil. Leads from neutralising condensers to tube prid trrminals are pasaed through clearance holea in the chasmis.
-T is possible and practicable to gang the tuning controls of a multistage transmitter designed to accomplish this. Thus, the number of tuning adjustments can be reduced to two or three which include one adjustment for setting the frequency and one for tuning the antenna. A practical example of design of this type is shown in the photograph of Fig. 871 and the circuit diagran of Fig. 872.

Complete and continuous frequency coverage requires the use of a self-controlled oscillator such as the electron-coupled oscillator used in this instance. The oscillator is im-pedance-capacity coupled to the grid of a lowpower buffer amplifier for the purpose of isolation against reaction upon the oscillator from the following stages. The buffer has sufficient output to drive an 807 beam-type bufferdoubler which, in turn, drives the RK51 final amplifier.

It will be noticed that the circuit is strictly conventional and that the only additional equipment required is the row of midget condensers ganged together with flexible shaft couplings. These may be seen in the photograph, running through the approximate center of the chassis. The National type PW dial, or something similar, is essential since the load of several condensers is too great for an ordinary friction dial. Only condensers of certain manufacturers are at present equipped with tail shafts so that they may be ganged and these only in the midget types. Condensers
of these types with fairly good plate spacing are obtainable. The spacing does not have to be as great as might first be expected because the tuning condensers are connected across only a portion of the total r.f. voltage developed across the tank coil. The condenser in the final stage, where the voltages are highest, need not have a tail shaft since it is the last unit of the gang.

The transmitter is assembled on a half-inch wood base $12^{\prime \prime}$ x $25^{\prime \prime}$. This base is covered with a thin sheet of metal and is mounted on a pair of $1^{\prime \prime} \times 2^{\prime \prime}$ strips running the length of the base to provide space underneath for low potential equipment.

Starting at the left-hand end of the transmitter, the oscillator coil is contained in the shield can directly in front of the main tuning dial with the oscillator tube, grid condenser and leak, padding and tuning condensers immediately alongside. Both oscillator and buffer coils plug into National CIR type sockets mounted on substantial stand-off insulators.

The metal tube in the rear is the 6 J 7 buffer. A vertical haffle shield separates the buffer plate coil and condensers from those of the 807 stage. Complete shielding of the 807 is of the utmost importance if oscillation is to be avoited. The plate lead must be shielded from the input leads inside the tube. This is accomplished by means of a two-section cylindrical shield made up from parts of two National type T58 receiving tube shields. One section

THE RADIO AMATLUR'S IIANDB00K

extends downward from the surface of the CIR socket to the base, while the other extends upward from the socket surface to a level equal to that of the lower ceramic supporting disk inside the tube. The plate coil for the 807 is wound on a National XR13 form.

All condensers except the split-stator condenser are mounted on small Johnson standooff insulators. The rotors of the split-stator condenser are grounded so it may be mounted directly on the metal base. The neutralizing condenser may be seen directly in front of the RK51. The plate tank coils in the final amplifier are of the Barker and Williamson TVL series. At the time of construction, the TVI-80 coil was not available, so the 'TVI-160 was cut down to the dimensions given in the list of coil specifications. If the TVI,-80 is used, the position of the band-spread taps may be determined experimentally as described later.
Care should be used in ohtaining the best shaft alignment possible in mounting the ganged condensers. Flexible shaft couplings with fiber insulation will be satisfactory for low-power stages, but one with ceramic insu-

FIG. 871- TIIE IINE (DF (;ANGEI) TUNING (IONIDENSFRS RENVING TIIROUGII THE CEVTER OF THE CHASSIS IS CONTROILELD HY THE SINGBE PW IMA.

Band-metting eondenmern are along the front edge.
lation should be used between thaing condensers of the last two stages.

All low-potential wiring is carried heneath the base with wire suitable for the purpose. Mounting screws protruding through the baseboard make handy ground connections. Be sure, however, that any screws so used make good connection to the metal sheet.

Gunging Acljustments

Returning to the oscillator circuit, pluy-in coils are provided for the $3.5-$ and $7-\mathrm{Mc}$. bands. since only one doubler stage is provided in this particular transmitter, the oscillator is operated at 3.5 Mc . for the $3.5-$ and $7-\mathrm{Mc}$. bands and at 7 Mc . for the $14-$ and $28-\mathrm{Mc}$. bands, doubling frequency in the output stage for the latter. The $3.5-\mathrm{Mc}$. oscillator coil is wound to tune to the high-frequency end of the band with the high- C padder C_{1} set near maximum capacity. With the $100-\mu \mu \mathrm{fd}$. tuning condenser C_{5} comnected across the entire coil, the oscillator will just about cover the band. If it does not cover the band, a turn or two should be added to the coil and the capacity of C_{1} reduced to tume to the high-frequency end of the band. This will increase the frequency range of the tuning condenser. With the oscillator running as it should and covering the desired frequency range, we next turn our attention to the buffer plate coil. Here, again, we make the coil of such a size that the padder C_{2} will tune the circuit to the high-frequency end of the band with a reasonable amount of capacity, say 40 to $50 \mu \mu \mathrm{fl}$. for this band. We then place the tuning tap C_{6} at the point specified in the coil table. With the coil in place and the 807 in the socket with heater running, the oscillator is tuned to the high-frequency end of the band. The padder, C_{2}, is then tuned for resonance as indicated by the dip in plate current. The frequency control dial is then rotated to bring the cireuits to the lowfrequency end of the band. Now C_{2} should be adjusted very carefully to determine if the buffer plate circuit is still at resonance. If it is not, it should be carefully noted whether an inerease in capacity or decrease in eapacity is necessary to bring it hack to resonance. If the padder capacity must be increased, it indicates that the tuning or bandspreal condenser is not tuning fast enough and, therefore, it must be connected across a greater portion of the coil. On the other hand, if the padder capacity must be decreased to bring the circuit to resonance, the tuning condenser is tuning too rapidly and, therefore, the tap must be adjusted so that it is connected across a smaller portion of the coil. Wach adjustment of the tap will have some effect upon the minimum capacity of the circuit so that each time an adjustment is made it will be necessary to return
the tuning to the high-frequency end of the band and retune for this end of the band before again checking the low-frequency end.
The same process is repeated in eaeh cireuit, making certain that the tube of the following stage is always in the circuit with filament lighted but with plate voltage off. A stage requiring it should be neutralized before any attempt at tracking is made. Once the circuits have been lined up accurately, it should be possible to twirl the frequency-control dial from one end to the other with no noticeable change in either plate or grid currents, and it should be possible to dispense with all meters except possibly that in the final amplifier. A lamp-bulb dummy load coupled to the final amplifier should show substantially constant output over the entire band.
The same process is followed in adjusting L_{3}
and L_{4} for the $7-\mathrm{Mc}$. band. This band being narrower in frequency, will cover only 100 or so dial divisions. This is entirely sufficient for convenient adjustment. In order to maintain tracking, however, the 807 and final circuits must be adjusted to cover the full range of the oscillator harmonic of $\mathbf{7 0 0 0}$ to 8000 kc . If it is desired to spread this band out over the entire dial, it will be necessary to use a separate $3.5-\mathrm{Mc}$. oscillator coil with C_{5} connected at a tap which will provide tuning over the range of 3500 to 3650 kc .

The 7 -Mc. oscillator coil for 14 - and $28-\mathrm{Mc}$. output is designed to cover the range of 7000 to 7500 kc . so that its fourth harmonic will cover the wider band from 28 to 30 Mc . Therefore, the $14-\mathrm{Mc}$. band will also cover only a portion of the dial scale unless an additional oscillator coil covering 7000 to 7200 kc . is used. The

FIG. 872 - CIRCUIT DIAGKAM OF THE GANG-TUNED 'ITANSMITTEIR
($:_{1}-320-\mu \mu \mathrm{fd}$. max. oscillator padder (Hammarlund MC325M).
C_{2} - $50-\mu \mu \mathrm{fl}$. max. buffer padder (Hammarlund MC50M).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{fd}$. nax. doubler padder (Cardwell MTS0(9S).
($\mathrm{C}_{4}-100-\mu \mu \mathrm{fd}$. per gection final padder (National TMC100I).
$\mathrm{C} s-100-\mu \mu \mathrm{fd}$. max. oscillator tuner (llammarlund MC100M).
$\mathrm{C}_{6}-35-\mu \mu \mathrm{fd}$. max. buffer tumer (Hanimarlund MC35M).
$\mathrm{C}_{7}-35-\mu \mu \mathrm{fd}$. max. doubler tuner (Hammarlund MC35MX).
$\mathrm{C}_{8}-35-\mu \mu \mathrm{fd}$. max. final tuner (Bud No. 566).
C_{θ} - Neutralizing condenser (Na tional NC800).
$\mathrm{C}_{10}-250-\mu \mu \mathrm{fd}$. mica, oscillator grid condenser.
$\mathrm{C}_{11}-\mathbf{2 5 0}-\mu \mathrm{fd}$. mica luffer coupling condenser.
$\mathrm{C}_{12}-250-\mu \mu \mathrm{fd}$. mica, 1000 -volt rating, doubler coupling condenser.
$\mathrm{C}_{13}-100-\mu \mu \mathrm{fd}$. mica, $2500-\mathrm{vol}$ t rating, final coupling condenser.
$C_{14}-0.01-\mu \mathrm{fd}$. . 600 -volt paper r.f. by-pass.
$\mathrm{H}_{1}-0.1$ meg., $1 / 2$-watt, oscillator grid leak.
$L_{1}-3.5$ and 7 -MC. output - 17 t . No. 24 , $1^{\prime \prime}$ dia., $1^{\prime \prime}$ long, tapped at 5 th turn fromground, no bandspread tap. 14 and $28-M C$. output - 9 t. No. $22,1^{\prime \prime}$ dia., $1^{\prime \prime}$ long, tapped at $23 / 4$ turns from ground for cathode and 6 turns from ground for handspread.
$L_{2}-3.5$ and $7-M c$. output - 38 t. No. 24 d.c.c., $1^{\prime \prime}$ diam. $1 / s^{\prime \prime}$ long, tapped at 33rd turn from ground. 14 and $28-\mathrm{Mc}$. output -20 t . No. 24 d.c.c., $1^{\prime \prime}$ diam., $3 / /^{\prime \prime}$ long, tapped at 11 th turn from ground.
$\mathrm{L}_{3}-3.5-\mathrm{Mc}$. output - $28 \mathrm{t} .13 / /^{\prime \prime}$ diameter, $11 / 2^{\prime \prime} \mathrm{long}$, tapped at $24 t h$ turn from ground. 7-Mc. output - $17 \mathrm{t} .13 / 4^{\prime \prime}$ diam., $21 / 4^{\prime \prime}$ long, tapped at 13 th turn from ground end. 14 and $28-M c$. output - $8 \mathrm{t} ., 13 / 4$ diam., $21 / 2^{\prime \prime}$ long, tapped at $31 / 4$ turns from ground end.
I.4 - 3.5 Mc. - $34 \mathrm{t} ., 21 / 2^{\prime \prime}$ diam., $31 / \mathrm{s}^{\prime \prime}$ long, tapped at $103 / 4$ turns each side of center (B \& W TVL- 160 with turns removed. See text).
7 Mc. - 22 t., $21 / 2^{\prime \prime}$ diam., $4^{\prime \prime}$ long, tapped at 6 turns each side of center.
14 Mc. $-12 \mathrm{t}, \mathrm{g}^{\prime 2} / 2^{\prime \prime}$ diam., $4^{\prime \prime}$ long, tapped at 2 turns each side of center.
28 Mc. - 6 turns, $21 / 2^{\prime \prime}$ diam.. $5^{\prime \prime}$ long, tapped at approximately $6 / 10$ turn each side of center.

207

THE RADIO AMATEUR'S HANDB00K

combination of two and three bands with one uscillator and one buffer coil eliminates the necessity for changing these coils so frequently, of course. As progress is made toward the higher-frequency bands, the positions of the tuning taps will become more critical, but it should require only a few trials to determine the proper points for the taps.

Once the proper settings of the padding condensers have been determined for each band, the dial readings should be tabulated so that no time will be lost in changing bands. It is possible, of course, to prune the coils closely so that no adjustment of the padder condensers will be necessary when changing bands. This involves much rutting and trying, however, and besides it is usually considered desirable to use less circuit capacity for the higher frequencies and more for the lower frequencies.

Variable link output is provided for coupling to an antenna tuner. With the coupling properly adjusted, it should be possible to set the frequency with the main control dial and then tune the antenna to resonance indicated by maximum increase in amplifier plate current. The coupling should be adjusted so that the antenna circuit may be tuned through resonance without exceeding the plate-current rating of the final-amplifier tube.

1
N nesss certain precautions are taken a transmitter may feed energy to the antemna system at harmonics of the fundamental frequency as well as at the fundamental frequency. If the antenna system is suitable for these harmonic frequencies, the amount of power radiated at these frequencies may be appreciable. This is a matter to be considered seriously, especially if the harmonic frequency falls outside any of the bands assigned to amateurs.

The harmonies which are most often radiated are the second from transmitters amploying single-tube output stages and the third from those employing push-pull output stages, although the fitt and higher harmonic frequencies have been known to cause trouble. IIarmonic output is apt to be particularly high from output amplifiess using less than optimum
values of tank-condenser capacity, being driven with high excitation and feeding long-wire antennas which readily radiate harmonies.

While forms of coupling which will not permit feeding harmonics of appreciable amplitude to the antenna may be employed, it is generally advisable, as the first step, to increase the tank-circuit capacity to optimum value (see design section, this chapter) not only for the purpose of reducing harinonic output but also to improve output at the desired frequency. The units described in this chapter have been designed around tank-condensers of optimum capacity.

It will also be noticed that the units described are provided with link output coupling since this type of coupling discriminates against frequencies higher than the fundamental frequency to which the tank circuits at each end of the low-impedance transmission line are tuned. When large antenna coupling coils are used, sufficient capacity between tank and coupling coils may exist to transfer readily harmonic out put to the antenna system. In this case, the capacity coupling may be eliminated by the use of an electrostatic shield between the tank coil and the antenna coupling coil. Practical application of electrostatic shielding will be found in Chapter 6.

VATE AN TANK IXNIDENSEIL GMPATITIEL

A.s mentioneis frequently in the descriptions of transmitter units in this chapter, the tank condensers specified have maximum capacities which will give optimum L-C' ratios at 3.5 Mc . It should be pointed out that, in cases where the minimum frequency to be used is higher than this frequency, the size of the tank condenser may be reduced. If the minimum frequency at which operation is desired is 7 Mc . instead of 3.5 Mc., the maximum capacity of the tank condenser may be reduced to hati the value specified under the circuit diagram, or to one-quarter of the value specified if $1 t$ Mc. is the minimum frequency to be used. The plate spacing should remain the same as sperified in each case.

KEYING THE TRANSMITTER

And Elimination of Interference uith Broadcast Reception

Aradio transmitreit is not in itself capable of transmitting intelligence - the output must be varicd or "modulated" in some" way. Radiotelephony employs continuous variation of the amplitude of the carrier in accordance with the voice frequencies, while radiotelegraphy uses complete modulation of the carrier to form dots and dashes, corresponding to the characters of the International Morse code. Both forms of modulation have their problems which must be given due consideration, from the simple business of impressing the modulation to the more serious matter of minimizing the possible interfcrence caused by the variation in the transmitter's output. This ehapter will doal with the problems of radiotelegraphy.

Satisfactory keying, from the standpoint of code-character formation, results if the keying method employed reduces the power output to zero when the key is "open" and permits full power to reach the antenna when the key is "closed." Furthermore, it should do this without causing keying transicnts or "clicks," which cause interference with other amateur stations and with local broadeast reception: and it should not affect the stability of the transmitter.

Back- H are

From various calases some energy may gel through to the antenna during keying spaces. The effect then is as though the dots and dasher were simply louder portions of a continuous carrier; in some cases, in fact, the "backwave," or signal heard during the keying spaces, may seem to be almost as loud as the keyed signal. Under these conditions the keying is hard to read. A pronounced back-wave often results when the amplifier stage feeding the antenna is keyed; it may be present because of incomplete neutralization of the final stage, allowing some energy to get to the antenna through the grid-plate capacity of the tube, or because of magnetic pickup between antenna coupling coils and one of the low-power stages. In such cases it can be remedied by proper neutralization or by rearranging the tank cir-
euits to diminate unwanted coupling. Shielding also will help.

A back-wave also may be radiated if the keying system does not reduce the input to the keyed stage to zero during keying spaces. This troublc will not occur in keying systems which cut off the plate voltage when the key is open, but may be present in grid-blocking systems if the blocking voltage is not great enough and, in power supply primary-keyed systems, if only the final stage power supply primary is keyed. In grid-block systems, if the plate current does not go to zero when the key is open, more blocking voltage is required. In the upper circuit of Fig. 905, the tube will not be blocked completely if there is any leakage between grid and cathode of the tube. This leakage may take place in the tube itself or its base, in the socket, through peor insulating material on which any of the parts may be mounted, in the key, or in the leads ruming to the key. If the leakage resistance is even as high as a few megohms a small phate current may flow, produring an evident back-wawe.

Choosins the Sitase to Key

Radiation of a back-wave often can be prevented by keying a stage preceding the final amplifier. In such a case there will naturally be less likelihood of energy getting through to the antenna, since it would have to go through two or more stages insteal of ene.

If one of the early stages in the transmitter is keyed, the following stages must be provided with fixed bias sufficient to cut off plate current, or at least to limit the current to a safe value. Complete cut-off is preferable, since the powsibility of back-wave radiation is reduced when no plate current at all is drawn by the tubes following the keyed stage. If sufficient bias for cut-off is not available, the plate current should at least be reduced to a value such that the d.e. input does not execed the rated plate dissipation of the tube.

The stability of the transmitter ean be adversely affected by keying if the keyed stage directly follows the oscillator. Praetically all oscillators, including erystal-controlled types,

TIIE RADIO AMATEUR'S IIANDB00K

will exhibit some frequency change with changes in load. In a multi-stage transmitter the load on the oscillator is of course the input. rireuit of the following tube; since the resistance represented by this load changes when the tube is keyed, there will be a corresponding change in oseillator frequency. For this reason it is good practice to have a buffer stage between the oscillator and the keyed stage. Elec-tron-coupled or Tri-tet oscillators are less subject to this difficulty than straight selfcontrolled or crystal oscillators hecause of the buffering action of the separate output circuit used in these oscillators.

If the oscillator itself is keyed for break-in work, chirpy keying will nearly always result, especially on the higher-frequency bands. On 14 Mc . and above, therefore, it is very advisable to forgo oscillator keying (and break-in) for the distinctly better keying that will result from keying a buffer and/or final stage. A back-wave is also more apparent on the 14 - and $28-\mathrm{Mc}$. bands, for even a very weak signal will travel great distances with but little attenuation. It is well always to check any new keying system by listening to your signal on someone else's receiver at least a mile or so away, or on a wellshielded battery-operated monitor (so that power-line fluctuations with keying (lo not affect the monitor).

Plate Keying

A stage keyed in the power supply ahead of the filter is often advantageous, because the filter acts as a lag circuit, giving a desirable form to the keying characteristic. However, if much filter is used it will be found that the lag hecomes too great for high-speed keying. For this reason, keying through the filter of the power supply should always be done only after consideration of the amount of filter.

A simple method of plate keying, adaptable mainly in small portable transmitters where the voltage is not high, is that shown in Fig. 901 . The condenser C_{1} should be varied to give just enough lag to overcome any tendency towards clicks. It is not advisable to use this system with high voltages unless a keying relay is employed.

Keying can also be accomplished in the center-tap of the plate transformer, but it is not advisable because it has no advantages

FIG. 901 - SIMIPE NEKATIVE-LEAI) KEYING: APPLICABLE TO IOW-VOL'TAGE: STAGFS
The condenser C_{i} should tre the ninimim that will prevent any elicks. Betwren 0.25 and $1.0 \mu \mathrm{fd}$, will he mbout right.
over other systems and requires a well-insulated keying relay in all cases.

Primary Keyins

Keying the primary of one or more phate transformers will result in excellent keying with no clicks or thumps on the signal, and only a small local click duc to the spark at the key. This click is casily reduced by means of an r.f. filter (see Fig. 915). However, if adequate filter is used on the power supply the keying will be too "soft" and the lag too great,

FIG. 902- PIRIMARY KEYING METHODS
The upper diagram shows only the driver stage keyed; the lowor diagram shows keying of hoth driver and final stages. C_{1} can usually be on the order of 1 μ fd.; higher values will introduce "tails." C2 should have a voltage rating capahle of withstanding the bias developed across R_{1}, and should have a capacity of 4 $\mu \mathrm{fd}$. or more. R1 is the usual sise of grid leak resistor for the tube or tubes used in the final stage, with a slightly greater-than-normal rating to withatand the extra onrrent introduced by the hias enpply.
and for this reason primary keying should be done in a driver stage, and never in the output stage. A driver stage, if it is fully exciting the driven stage, can have the filter reduced to a point where the keying will not be too soft and yet the excitation will not introduce much ripple on the signal.

Two methods of primary keying are shown in Fig. 902. Each method requires a bias pack capable of delivering cut-off bias for the final stage. The first shows keying of only the driver

KEYING THE TRANSMITTER

stage, the second shows keying of both the driver and output stage. In the second method, since the final stage is biased to cut-off, the filter condensers of the final stage power supply will remain charged between characters, and care should be taken to see that these condensers are discharged when the station is shut down or coils are being changed. A high-resistance bleeder (R_{2}) of $1 / 4$-megohm or so will discharge the condensers to a low point after a period of time without impairing the keying. Keying with the two methods is equally effective.

Controlled Rectifier Keying

The advantages of primary keying, with the additional advantage of not having to break a heavy current with the key or keying relay, can be obtained with the controlled rectifier tubes recently made available to ama-

F19: 903-KEYING WITII GRID-CONTROI, HECTIFIERS
The two upper astems require high-voltage-insulated relaya for keying. These can be made casily from old trickle-charger automatic switches, with the contacts placed on bakelite outriggers. The contacts can be mall because the current is negligible. The lower diagram shows a syatem requiring no relas but necessitating a well-insulated transformer. This voltage from the keying transformer should be $\mathbf{3 0 0}$ or niore volts each side of center tap.
teurs. These tubes can be obtained with either grid-control ${ }^{1}$ or external magnetic control. ${ }^{2}$ They can be used for power-supply keying in the same fashion as primary keying (Fig. 902) with the modification that where a primary was shown keyed, the rectifier tubes are keyed.

Representative grid-control keying circuits

are shown in Fig. 903, and a magnetic-control diagram is shown in Fig. 904.

Controlled-rectifier tubes cannot be used as keyer tubes in d.c. circuits but only in a.c. applications. Unlike the normal triode vacuum tube, the grid loses control of the current once the current has started flowing, and the only way the grid can regain control is to have the plate voltage reduced to zero. This happens cluring the negative half of an a.c. cycle, and makes it possible to use the tubes.

Grid Keying

Grid keying methods operate on the principle of controlling plate current flow through application of proper bias values with the key opened and closed. Two representative arrangements are shown in Fig. 905. The upper drawing shows the key inserted in series with the grid leak or grid return circuit. With the key closed, the amplifier or oscillator operates normally; with the key open, there is no d.c. path between grid and filament, consequently the electrons drawn to the grid by the exciting voltage remain trapped on the grid causing it to assume a highly negative charge. If there is no leakage in the grid-filament circuit the negative charge will be sufficient to cut off completely the flow of plate current and therefore the power output. The system works best with high $-\mu$ tubes: it may be found impossible to completely cut off low $-\mu$ tubes.

THE RADIO AMATEUR’S HANDB00K

Another method of accomplishing the same result, in this case through supplying additional fixed bias of sufficient value to cut off plate current flow despite excitation, is shown in the lower drawing of Fig. 905. Grid-leak hias for normal operation is shown, although a

HIT. 90: - METHODS (1F IRIGO:KEID-GIRII) GEIING:

\qquad Wi-dement tubes (screen-grid, pentode, and beam-power) can all he keyed by the fore-

FIG: 906 - CENTER-TAP KEYING

With heater-type tuhes, the key would be placed in the cathode Irad rather than in the filament centertap lead as shown.
going inethods, since they operate on d.c. circuits common to all types of tubes. However, the multi-element tubes allow further methods.
Keying the suppressor grid of a pentode-type tube usually will be found to be quite satisfactory. The plate current can be completely cut off by placing a small negative voltage on the suppressor grid - $\mathbf{1 0 0}$ to 200 volts is adequate in most cases. Merely inserting the key in the suppressor lead is not sufficient to cut off the power output, so it is necessary to arrange the keying circuit to put negative bias on the suppressor grid when the key is open. Fig. 907 illustrates one method, using a separate power pack which supplies keying bias, that hias been used in a number of stations with excellent results. With the key open, the suppressor receives negative bias through the 50,000 -ohm resistor, the value of bias being adjusted to cut off plate current. When the key is closed, the suppressor bias is brought to zero through return to the cathode. The 50,000 -ohm resistor prevents short-circuiting the bias supply. The combination of R_{1} and C_{1} forms a lag circuit for the elimination of clicks. The resistor and condenser can have practically any value, so long as their product (ohms times microfarads) is around 5000 . It is not wise to have the value

KEYING THE TRANSMITTER

of resistance too high, however. From 5000 to 10,000 ohms is about right. The power pack can also be used to supply bias voltage for the following stages.

Screen-Grid Keving

In screen-grid tubes, whether of the tetrode or pentode type, the screen potential has a very marked effect on the plate current, and therefore the output of the tube. Screen-grid tubes often can be keyed by inserting the key in the positive screen lead, especially when the screen voltage is obtained from a supply separate from that furnishing the plate power. Jf the screen voltage is obtained from the plate supply through a dropping resistor, this method of keying is unsafe with high-voltage tubes unless a keying relay is used, because the potential on one side of the key rises to the full plate potential when the screen current is cut off. Opening the screen circuit does not always reduce the output to zero, however, so sereen keying is seldom used, although it has some application in oscillator keying, as will be described later.

Keyer Tubes

Vacuum-tube lag-circuit keying arrangements are shown in Fig. 908. They may be used in the plate, screen-grid, or center-tap circuits of any amplifier which is to be keyed. When the key is open, high negative bias is placed on the

FIGURE 907 - SIIP-1'IRESSOIR-GRII) KEYING
The condenmer i_{1} ran tre the usual 0.01μ fil. hy-pass shinnted by a larger condenser to give the proper time-constant.
grid of the keyer tube so that the plate current is completely cut off. When the key is closed the grid of the keyer tube is connected to its filament and the tube acts like a resistance of low value, thus permitting plate current to flow in the keyed stage.

The time-constant of the resistance and capacity in the grid circuit of the keyer tube provides the slow build-up of power output which prevents clicks. Since the key is in a low-voltage low-current circuit, the transients set up in the key circuit itself are of small intensity. The keyer tube has some resistance even though the grid is connected to the filament when the key is closed, so the plate voltage on the keyed stage will be lower than with other keying systems. To overcome this,
several tubes may be connected in parallel. Tubes of the 45 type are excellent for low-power transmitters because their plate resistance is low. One 45 should be used for each 50 ma . of plate current required by the tube being keyed. The filament transformer for the keyer tubes

FIG. 908 - VACULM-TUBE KEYING
The series method is simple but does not completely cut off the current flow. It may he used in some applications where the following otage is heavily hiased. C may be between 0.25 and $1.0 \mu \mathrm{fll}$. Resistor R should be adjusted to cause the plate current to drop to m minimum when the key is open. A variable resiator of 50,000 ohms should give enough range.

The system with external bias is very effective. R_{1} and C_{1} give the variable time-constant, and should be proportioned as deseribed under suppressor-grid krying.
need not be center-tapped: in fact, the tubes may be connected in series if desired.

Tube keying is used in a large number of commercial high-speed transmitters and is well worth investigating by the serious amateur interested in good keying.

Sources of Bias

lf a multi-stage transmitter is keyed in one of the low-power stages, it is necessary to bias the following stages so that they will not draw plate current with the key up. A simple a.c. power supply is ordinarily used for this purpose, although batteries can be substituted. The grid leak resistor will be placed across the output of the bias supply and, in cases where large amounts of grid current are drawn at fairly low voltages (low resistance grid leak), the bias supply must run at fairly heavy current. For example, if the final amplifier is to

THE RADIO AMATEUR'S HANDB00K

run with 400 volts bias at 100 ma., a grid leak of about 4000 ohms will be used. But if the cutoff bias is 200 volts, the grid resistor will draw 50 ma . from the bias supply. This relatively heavy drain must always be considered when building a bias supply. Also, the grid leak resistor must be heavy enough to stand the current and the filter condensers must have a highcnough voltage rating to stand the full bias voltage.

If the bias supply is to be used only for keying, as in the case of grid-block or suppressorgrid keying, a very small b.c. transformer may be used, its only requirement being that it furnish sufficient voltage.

It is possible to obtain keying bias without extra cost from the power supply used for low-power stages in multi-stage transmitters, when the keyed stage has its own separate supply. This can be done as illustrated in Fig. 909. The plate power supply for the exciter tubes is utilized as a keying bias supply for the keyed amplifier. Since this entails connecting the positive terminal of the low-voltage supply to the negative terminal of the high-voltage supply, the filament circuits of the tubes working from the two supplies cannot be connccted together. In Fig. 909, the condenser C serves to put all cathodes at the same r.f. potential without direct connection between them. Resistor R limits the current when the key is closed, as already explained. A value of $50,000 \mathrm{ohms}$ will suffice for a low-voltage supply of 400 volts or so. It should have a rating of about 5 watts.

Keying for Break-In Operalion

Break-in operation requires that there be no local signal from the exciter stages when the key is up, and therefore oscillator keying followed by biased stages is dictated, except in the few instances where it is possible to locate the transmitter a mile or more from the recoiving location. Any of the keying systems

FIG; 909 - UTIIITITIN: TIIE LOW-VOLTAGF IDWER SUPPIY FOK BHOCKING BIAS IN BLOCKEID-GIRID KEYING
described can be used to key a crystal or elec-tron-coupled oscillator but care must be taken to see that the: stability of the signal is not affected.

Experience has shown that the usc of a voltage divider instead of a simple series resistor for the screen of the oscillator tube helps materially in eliminating chirps. Cathode keying of the oscillator is simple and usually effective. Two methods of keying in the cathode circuit are shown in Fig. 910, and screen-grid keying is shown in Fig. 911. The suppressor-grid of a Tri-tet oscillator may be keyed, as in Fig. 907,

FlG; 910-CATIIODE KEYING; FOK 'TRI-TEI' OSCILLATOR
Typical values for 6L6: $\mathrm{R}_{1}-50,000$ ohms; $\mathrm{R}_{2}-$ 20.000 ohms. B - Cat hode keying for grid-plate oscillator. Typical values for 6L6: K_{3} - $\mathbf{5 0 , 0 0 0}$ ohms; K_{4} 400 ohms: $\mathbf{R}_{5}-\mathbf{2 0 . 0 0 0}$ ohms.
but the crystal will oscillate weakly all of the time, as in the case of screen-grid keying, resulting in a signal in the receiver on the crystal frequency even with the key in the "open" position. For this reason, screen-grid and suppressor-grid oscillator keying are not recommended for net-frequency operation unless the transmitter is well-removed from the receiving location.

Crystal keying may also be used to advantage, and two typical circuits are shown in Fig. 912. The grid-block system for keying a complete transmitter, shown in Fig. 913, has the merit that all stages are blocked when the key is up and a low-current bias supply can be used.

If it is found difficult to key an oscillator without a chirp, loosening the loading on the oscillator may cure it. If it is a pentode-type oscillator, the capacity of the tuning condenser should be decreased slightly instead of running the tube at its maximum output point. Decreasing the capacity of the cathode condenser will help in the case of a Tri-tet ascillator.

If an electron-coupled oscillator chirps under keying, it may be that the grid-circuit tank utilizes too low-C a circuit, and taking turns

KEYING THE TRANSMITTER

off the coil and increasing the condenser size will help. Detuning the plate circuit will also contribute to the stability, as will careful proportioning of the screen and plate voltages. A major cause of poor e.c.o. stability is incomplete shiplding from the high-powered portion of the transmitter, and it is advisable to re-
under certain conditions the reverse may be true.
because the amount of energy involved is small and is distributed over a wide band of frequencies, the interference-producing effects of keying transients usually are confined to an area quite close to the transmitter except on frequencies within a few kilocycles of the transmitting frequency. In other words, key clicks are likely to be observed on only those broadcast receivers located within a hundred yards or so of the transmitter, but may cause interference to amateur stations hundreds of miles away working in the same portion of the same band.

Obviously it is to the interests of the amateur himself to prevent key clicks, not only because of a possible unfavorable reaction on the part of nearby broadcast listeners but also to prevent unnecessary interference in the amateur bands.

FHG. 911-TWO SYSEEMS ドOR SCREEN KEYING (OF TETRODES OR PENTODES

A - For 89 or 802: H_{1} 7500 ohms; k_{2} - 5000 ohms; $\mathrm{H}_{3}-30,000$ ohms, 20 watts; $\mathrm{H}_{4}-40,000$ ohme, 20 watts. 1s- $\mathrm{K}_{5}-10,000$ ohms; $\mathrm{K}_{6}-$ 75,000 ohma; $R_{7}-10,000$ ohme; Re - 100,000 ohma; K ${ }_{9}$ - Usual plate supply bleeder.
move the e.c.o. from the transmitter proper and place it in a well-shielded box on the operating table if any chirp persists.

B

A
FIG. 912 - CRYSTAL KEYINC CIHCUYTS

Keying Transients or Clichs

When power is applied or removed from a circuit very suddenly, as is the case when a transmitter is keyed, the energy thus instantaneously released surges back and forth in the circuit until equilibrium is reached. This is called "shock excitation." A familiar mechanical analogy is the vibration of a tuning fork or a bell when tapped with a small hammer or mallet. Shock-excited oscillations are highly damped in most circuits and therefore have no sharply-defined natural period. In other words, such an electric oscillation, if radiated, can be detected in receivers tuned to frequencies widely different from that on which the actual transmitting is being done. Since the duration of the oscillation is short, it is heard as a "click" or "thump" in the affected receiver. The click on closing the key usually is much more pronounced than on opening, although

FIG. 913-BLOCKEIN-(;RII) KEYING SYSTEM FOK BREAK-IN
R_{1}, K_{2}, R_{3} - UBual values; $K_{4}-20,000$ ohman, 50 watte; K_{5} - Final stage grid leak.

THE RADIO AMATEUR'S HANDB00K

Prevention of Key Clicks

There are two general methods of attack in preventing keying transients. The first is by feeding the power to the transmitter at a comparatively slow rate on closing the key and shutting it off gradually instead of suddenly on opening the key. The second is by the use of radio-frequency filters which absorb the transient before it can get to a part of the circuit from which radiation is possible. Both methods have been very successful.

In the first method, an inductance of a few henrys is inserted in the circuit, usually in
able value is put in series with condenser and key to absorb most of the energy. The value of the resistor will depend, as is apparent from the foregoing discussion, upon the capacity of the condenser and the voltage appearing across it when the key is open. Because of the variable nature of these factors it is difficult to give definite specifications. However, a resistor of from 50 to a few hundred ohms usually will be found to absorb the spark satisfactorily.

Lag Circuits

Three representative lag circuits are shown in Fig. 914. The one shown at B is a more com-

FIG. 914 - LAG; CIRCUITS FOR ELIMINATING THUMPS ANID CLICKS
'line prinary of a bell-ringing transformer will usually serve at L in low-powered transmitters.

$$
\begin{array}{lll}
C-0.25 \text { to } 1.0 \mu \mathrm{fd} . & \mathrm{C}_{2}-0.006 \mu \mathrm{fd} . & \mathrm{R}_{2}-500-25,000 \text { olims. } \\
\mathrm{C}_{1}-0.5 \mu \mathrm{fd} . & \mathrm{K}_{2}-50-200 \mathrm{olims} . & \mathrm{T}_{1}-\text { Bell-ringing transformer. } \\
& \mathrm{K}_{1}-100 \text { olıms. } &
\end{array}
$$

ladio-frequency chokes may he necessary at "x" in 13 .
series with the key. As explained in Chapter Three, an inductance coil possesses the property of opposing a sudden change of current in a circuit. Regardless of the method of keying used, insertion of inductance in series with the key will have the effect of causing the plate current to build up to its final value at a comparatively slow rate, since some current, no matter how small, always flows in the key circuit.

The energy stored in the electromagnetic field of the inductance when the key is closed is suddenly returned to the circuit when the key is opened. If the current in the circuit is appreciable, the inductive discharge will cause an arc or spark to form at the key contacts at the moment of opening. The spark not only causes undue wear on the contacts but also is a secondary cause of key clicks, since the key circuit acts somewhat like a miniature spark transmitter. An effective remedy for this condition is to shunt a condenser (usually from 0.25 to $1 \mu \mathrm{fd}$.) across the key to absurb the spark. The energy stored in the inductance is released through the condenser instead of at the key contacts and thus tends to prevent the sudden cessation of power on opening the key.

In most keying circuits there is an appreciable voltage across the key contacts when open, hence the condenser in the key-click filter will receive a charge. On closing the key the charge is dissipated in the key contacts, again causing a spark, unless a resistor of suit-
plex version of the one shown at A, and can be tried in hard-to-cure cases. That at C is a novel system that has worked well in several cases.

Lag circuits should be used in keying when it is found that the signal itself has a thump or click on it, as reported by other amateurs. A click in local b.c. receivers may often be caused by only the spark at the key and can be cured by a simple r.f. filter.

R.F. Filters

With an r.f. key filter the transient uscillations set up at the key are prevented from reaching the transmitter and being radiated. To be most effective, this type of filter must be installed right at the key, since connecting leads of even a few feet between key and filter are long enough to permit radiation of clicks and consequent interference to nearby receivers. In fact, the same thing is true of the lag circuits previously described - even though they perform their intended function of preventing the sudden application and cessation of power, transients in the keying circuit itself may be radiated to cause interference. Short leads usually will prevent such a condition, although in some cases it may be necessary to install an r.f. key filter as well.

An r.f. key filter usually consists of a pair of r.f. choke coils having an inductance of ten millihenrys or so, connected in series with each of the key contacts and shunted by a con-

KEYING THE TRANSMITTER

denser as shown in Fig. 915. The condenser ordinarily will have a capacity of 0.1 to $0.5 \mu \mathrm{fd}$. The combination acts like a low-pass filter, preventing transients at broadcast or higher frequencies from getting to the transmitter itself and being radiated. As with the lag circuit, some experimenting with different inductance and capacity values probably will be required for effective elimination of clicks in individual transmitters.

Parasitics and Key Clicks

If it is found that the use of standard key click filters has little or no effect upon clicks, an investigation should be made to determine if parasitic oscillations are taking place in any of the transmitter circuits. In any case, it should be possible to adjust the bias of any amplifier so that some plate current is drawn without the amplifier going into oscillation. If oscillations do take place, steps should be taken to prevent it because the chances are good that self-oscillations may have a tendency to start each time the key is closed resulting in bad key clicks even though the oscillation is immediately killed off by excitation.

Other Considerations in Key Click Precention

It is reasonable to expect that less trouble will be encountered in eliminating key elicks if

FIG. 915 - AN R.F. FILTER FOR THE ABSORPTION OF KEYING TRANSIENTS
It is ordinarily used without a condenser directly across the kry. However, an improvement sometimes results when a condenser of about . $002 \mu \mathrm{fd}$. in connected an mhown ly the dotted lines.

the power supply for the keyed stages has good voltage regulation (see Chapter Fourteen). If the voltage regulation is poor, the plate voltage with the key open may be 50% to 100% higher than with the key closed; hence, at the instant of closing the key there is an impact at much higher than normal voltage. This intensifies the key click. If the power supply regulation is good - that is, if the plate voltage is substantially the same whether zero or full plate current is being drawn - the tendency towards clicks is lessened.

Key clicks are less likely to be radiated if the antenna or feeder system is inductively coupled to the transmitter rather than directly or capacitively coupled. If the feeders are tapped on the final tank eoil or are conduc-
tively or capacitively coupled through a lowpass filter, comparativcly little impedance is offercd to transients covering the broadcast band. A considerable improvement in key click reduction often can be secured simply by changing a non-indurtively coupled system to one in which the transmitted energy must be airtransferred at some point before reaching the antenna. Care should be taken to prevent stray capacitive coupling.

Not all key-click interference with broadcast reception is radiated from the antenna. It may be radiated from the transmitter itself or from connecting wires. Shielding of transmitter and wiring often will result in a considerable improvement in this respect, although it is not always necessary.
lt is always desirable and in some cases may be neressary to run the 110 -volt leads to the transmittor in BX cable, grounding the outer shield. Shielding of the keying leads also may be helpful, especially if a long line is run bet ween the transmitter and the key. Whenever shielded wire is used the shield should be conneeted to a good ground, otherwise the shielding is likely to be ineffective.

To prevent keying transients from being earried over house wiring and power lines from the transmitter to nearby receivers, a filter may be installed in the 110 -volt line which feeds the power transformers. Such a filter is shown in Fig. 916. It consists of a pair of radio-frequency choke coils, one in each leg of the line, and a pair of condensers in series across the line with their mid-connection grounded. These filters are commercially available in most radio stores, but can easily be assembled in the home workshop.

The wire of which the chokes are wound must be heavy enough to carry the current taken by the power-supply system. No. 14 or No. 16 will be sufficient in most cases. Mailing tubes or pieces of broomstick make good winding forms for these chokes. Between 100 and 300 turns will be required. The condensers may be 0.$\}-\mu \mathrm{fl}$. units rated at 200 volts or more.

Power transformers with electrostatic shields between the primary and secondary windings are helpful in preventing interference from being carried by the supply lines, provided the shield is connected to a good ground, and often will make extra chokes and condensers unnecessary.

THE RADIO AMATEUR'S HANDB00K

Keying transients are less likely to get through to the antenna if the keying is done in a stage preceding the final amplifier. The tank circuits following the keyed stage give a band-pass effect which tends to reduce the amplitude of the transient.

Keving Methods from the Standpoint of Click Prevention

(iencrally speaking, it is casier to prevent rlicks if the keying method used is one in which the keyed current is small, although there may he occasional exceptions to this rule. First choice, then, naturally would fall to those methods which key a control or suppressor grid rather than the plate eircuit, since grid current is usually small compared to the plate current for the same tube. This has an economic advantage as well, since the chokes comprising the key-click filter are less expensive the smaller the current they have to carry.

Center-tap keying, Fig. 906, usually is less troublesome in producing clicks than simple plate or negative high-voltage keying. However, the current interrupted by the key is comparatively large. The fact that the grid circuit is keyed along with the plate tends to lessen keying impacts.

There is little to choose between the gridkeying methods shown, although suppressorgrid keying may have some slight advantage over control-grid keying in the case of pentodes. The keyed current is usually very small. The chief objection to grid-keying methods is the necessity for providing additional keying bias.

Blanketing

Keying transients or clicks are not the only source of interference to nearby broadcast reception, although probably the most prevalent and the type requiring the most careful attention. A second type of interference, called "blanketing" because it causes the program to disappear or come in at reduced strength whenever the key is closed, also is common. It is simply a proximity effect, the affected receiver picking up enough of the radiated energy to cause overloading of one or more of the receiver tubes with a consequent reduction in amplification. This type of interference can be minimized by moving the broadeast antenna away from the transmitting antenna or hy changing its direction. The piek-up will be least if the two antennas are at right angles to each other.

In severe cases it may be necessary to install a wave-trap at the reeriver to prevent blanketing. A wave-trap eonsists simply of a coil tand comolenser commected as shown in ligg. 917. The condenser maty be an old one with about
 mot be esperially efficient. Most amateurs have "junk boxes" with several such condensers in
them. 'Ihe size of the coil will depend upon the frequency on which the transmitter is working. Representative values are given in the table.

Frequency of Interfering Signal	Coil ($8^{\prime \prime}$ diu.)
$1,715-2,000 \mathrm{kc}$.	20 turns
$3,500-4,000 \mathrm{kc}$.	$8-10 "$
$7,000-7,300 \mathrm{kc}$.	$4-5 "$
$14,000-14,400 \mathrm{kc}$.	3

Bell wire (No. 18) or a size near to it may be used. When the trap is installed the transmitter should be started up and the condenser in the trap adjusted to the point where the interference is eliminated. This trap will not affect the operation of the broadcast receiver.

Blanketing may be and generally is accompanied by key clicks. The wave trap may help to eliminate the clicks but usually a key click filter will be needed as well. A key click filter alone cannot eliminate or even alleviate the blanketing effect.

Lou-Pass Filters for Blanketing

The chief disadvantage of the wave-trap is that it has to be retuned if the transmitting

frequency is changed from one band to another, and sometimes also if the frequency change is only from one end to the other of the same band. In such cases a better arrangement is the low-pass filter, designed to reject all received frequencies except those below a certain critical frequency. If the critical frequency is chosen just below the lowest amateur frequency used, the transmitter can be shifted from one band to another without the necessity for readjustment of a wave trap. A typical low-pass filter is shown in Fig. 918. The constants given are for a cut-off frequency of 1600 kilocycles. The filter is designed for terminating impedances of 400 ohms .

Another type of filter which has a sharper cut-off than the one just described is shown in Fig. 919. This is of particular advantage for 'phone stations operating in the 1800- and $3900-\mathrm{kc}$. bands, since maximum attenuation is in the middle of those bands, the nominal cut-off being somewhat lower. The type A filter has greatest attenuation at 1930 kc ., with rut-off begiming at 1670 kr . Tlype B has greatest attenuation at 3950 kc ., with cut-off beginning at 2470 kc . The type A is recommended for work in several hands.

KEYING THE TRANSMITTER

Superheterodyne Harmonics

A third type of interference is peculiar to superheterodyne broadcast receivers. A strong signal from the transmitter will be heard at three or four points on the dial, while over the rest of the tuning range there may be no sign of interference. The explanation lies in the fact that the transmitted signal is picked up by

FIG. 918 - A LOW-DASS FILTER FOH REIDUCOIION OF INTERHELRENC: WITH BROAIM:ASI' HECEPTION
It mhould be inmalled at the receiver. Constanta are ans follows: $L_{1}, 54$ tirtim of No. 24 d.s.c. on $15 / 3$-inch dianteter formi; l.2, 33 turns same; $\mathbb{C}, 500 \mu \mu \mathrm{fd}$. fived. Cutoff frequency is approximately 1600 kc .
beating with harmonics of the superheterodyne oscillator and amplified by the i.f. stages in the receiver. If the receiver is properly shiclded and the oscillator is isolated from the antenna circuit, the signal from the transmitter cannot get into the oscillator circuit to be mixed with its harmonics and this type of interference camnot occur. When it does occur the fault does not lie with the transmitter but with the hroadcast receiver, and nothing can be done to the transmitter to prevent such interference. A wave-trap may help if the transmitter signal is brought into the receiver through the antenna, but in some cases the pick-up is direct hecause the receiver is inadequately shielded, and the interference is just as strong whether the antenna is connected to the receiver or not.

Often interference of this type with a nearhy broadcast receiver can be eliminated by changing the operating frequency of the transmitter. ${ }^{4}$

Rectifier Noise

Mercury-vapor rectifiers often are the source of a peculiar and easily identifiable type of interference which takes the form of a raspy buzz with a characteristic 120 -cycle tone (100 cycles on 50 -cycle power lines and 50 cycles on 25-cycle lines) often broadly tunable in spots on the broadcast receiver dial. At the instant the mercury vapor ignites on earh half cycle of the power frequency an oscillation is set up, the frequency depending upon the characteristics of the power supply apparatus. Unless suitable precautions are taken the oscillations will be radiated or will travel back
over the power line and be detected in receivers connected to the line.

The line filter shown in lig. 916 usually will suppress this type of noise. Sometimes the condensers alone will do it, no chokes being necessary. Transformers with electrostatic shields between primary and secondary are not likely to transmit the oscillations to the line. Other ways of curing this type of interference are shown in Fig. 920. They include shielding of the rectifier tubes, connecting a radiofrequency choke between each plate and the transformer winding, and shunting fixed condensers of about . $002 \mu \mathrm{fd}$. capacity between the outside ends of the transformer winding and the center-tap. The condensers should be rated to stand at least 50% more voltage than the r.m.s. voltage delivered by half of the secondary winding.

Sometimes making the plate leads to the rectifiers extremely short will be sufficient to eliminate the interference.

Checking Vour Keying

When a new transmitter is first put on the air, or when changes are made in the power supply or keying system, it is advisable to check the keying and note to make sure that everything is in order. Although it is possible to listen to one's own signal with a modern superheterodyne or a.c.-operated monitor, such methods will often lead to false impressions of the signal because the line voltage is almost certain to fluctuate with keying, resulting in a slight chirp in the monitor's frequency unless a stabilized power supply is used. A well-shielded battery-operated monitor can be used, or you can have the transmitter keyed

HIG: 919-CIRCCIT IDIT;RAM OF SHARP CHTOFF LOW-PASE FILTER

'I'yw	Imduetance in Mierolurnries				
A	:38	28		19	
13	40	6		20	
Cinil Sperificatistas					
Mierohenries	Turns				
6	11		Nor. 2	I.m.،	wirn
19	18		-•	-	*
20	19		-	-	*
28	24		*	-	*
38	24		*	**	*
10	30		*	**	*

THE RADIO AMATRUR'S HANDB00K

by an amateur friend while you listen to your signal at his receiver some distance away. Signals that sound satisfactory right in the station (due to compensating effects of fluctuating line voltage) will of ten be found to have unpleasant characteristics when copied on a stable receiver some distance away. Don't take the other fellow's word for it. Make sure.

Remember that a poorly-keyed signal that chirps and clicks is an indication of your selfishness and carelessness. Don't have one!

FIG. 920 - DEVICES FOK ELIMINATING NOISE, FROM MERCURY-VAPOR RECTIFIER TUBES
The r.f. chokes in series with each plate should be placed inside the shields enclosing the rectifiers. The chokes should have an inductance of about 10 milli henrys each. Small honeycomb-type windings are suitable.

Checking for Interference uith Broadcasting

One's own broadcast receiver, if of modern design, is a good "subject" for experimenting with key click filters and other interferenceprevention methods. If interference can be eliminated in a receiver in the same house, operating from the same power line and with an antenna close to the transmitting antenna, he chances are good that there will be no general interference in the neighborhood. The amateur should ascertain, however, whether or not interference is caused in nearby broadcast receivers. If your neighbors appreciate that you are as much interested in preventing interference to their enjoyment of broadcast programs as they are, much more can be accomplished than by acrimonious disputes. It is better to settle the interference problem right at the beginning than to trust to luck with the possibility of an unfavorable reaction towards amateur radio in general and yourself in particular on the part of nearby broadcast listeners.

In searching for causes of interference, it is a good idea to have someone operate your transmitter while you listen on the affected receiver. Remove the antenna from the receiver, and if the interference disappears it is certain that it is coming into the set through the antenna, which simplifies the problem. The various types of interference prevention already described should work under these conditions. If the interference persists when the antenna is
removed, however, it is probably getting into the receiver through the power lines. This happens occasionally with a.c. operated broadcast receivers.

House wiring may pick up r.f. either directly from the antenna or through the power-supply system of the transmitter. If the 110 -volt line is found to be picking up energy directly from the antenna it is advisable to change the location of the antenna, if possible, or run it in a different direction, not only because of interference to broadcast reception but because energy so picked up is useless for radiation and decreases the effective range of the transmitter. This is particularly important when, as often happens, electric lamps in different parts of the house are found to glow when the key is pressed. The energy used in lighting the lamps is wasted.

If r.f. is found to be getting into the line through the power-supply equipment, a line filter such as is shown in Fig. 911 should be used, together with power leads in grounded BX.

Interference usually decreases as the transmitter frequency is raised. In many cases where bad interference is caused on the $1750-$ and $3500-\mathrm{kc}$. bands, changing to 7000 or $14,000 \mathrm{kc}$. will cure it.

Radiotelephone Interference

Key-click filters are naturally of no value on transmitters used exclusively for 'phone transmission, since clicks do not occur. A phenomenon similar to key clicks can take place if the transmitter suffers from frequency modulation or from over-modulation, because both these defects cause the radiation of side-bands often far removed from the band of frequencies normally required for the transmission of speech. These abnormal side-bands can and frequently do cause interference in the broadcast band, often just as a series of unintelligible noises when the transmitter is modulated. The obvious remedy is to use a radio frequency system in the transmitter whose frequency does not vary when modulation is taking place, and to adjust the transmitter so that overmodulation or "lop-sided" modulation does not occur. Chapter Ten covers this subject.

Blanketing and other forms of interference caused by r.f. pickup can be treated in exactly the same way as described previously. Wavetraps or low-pass filters in the receiving antenna lead-in and r.f. filters in the power lines will prove effective in eliminating this type of interference.

Bibliography

${ }^{1}$ QST, February, 1938, page 34. ${ }^{2}$ QST, September, 1938, page 42. ${ }^{2}$ QST, September, 1938, page 30. ${ }^{4}$ QST, September, 1937, page 12.

RADIOTELEPH0NY

Principles of Modulation - Design and Construction of speech fimplifiers and Modulators

18adtotelerphone transmission is :tocomplished by modulation of a radio-frequency "carrier" output. "Carrier" is a term normally applied to the radio-frequency output of a e.w. telegraph transmitter when the key is kept in a closed position. Hor telegraphy the desirable characteristics of this carrier inelude constancy of frequency and constancy of amplitude. For 'phone operation, on the other hand, the above two desirable characteristies simply form a basis for proper operation. To a carrier normally fulfilling these requirements: is added audio-frequency power which is controlled, both in frequency and amplitude. by the operator's voice.

Chapter Eight covers the subject of obtaining carrier output of the sort necessary for high-quality 'phone transmission. Audio-frequency power may be used to control the output of the r.f. section of the transmitter in any of several successful modulator arrangements, and there are many combinations of microphone and speech amplifier to choose from for controlling the modulator used.

A complete 'phone transmitter is made up of r.f., audio-frequency, and power supply elements as shown in the block diagran of Fig. 1001. Different arrangements for oscillator, doubler, buffer and final r.f. amplifier are given in Chapter Eight; and power supplies which may be used with r.f. and audio stages are given in Chapter Fourteen. In order to construct a transmitter of this type it is first necessary to provide the radiofrequency section and adjust it for dependable operation with stable output. A modulator must then be constructed (if plate modulation as shown in Fig. 1001 is to be used, the modulator should be capable of delivering an audio output equal to half the power input to the final amplifier), a microphone must be obtained, and an amplifier must be added for building up the small output of the microphone to a power sufficient for driving the modulator.

This completes the apparatus for 'phone operation, but the final step - proper adjustment and coördination of the different sections - is a very important one. The output of the trinnsmitter should be that earlier described for a good carrier when no sound actuates the microphone; the output of the modulator should be a magnified but accurate reproduction of the sound waves affecting the microphone; and the modulation of the transmitter output should correspond exactly to this modulator output.

Of the several possible methods of modulating a radio-frequency wave, only one system, that known as amplitude modulation, is of

F1G: H01 - WHAT HAPPEVS IN TIIE SECTIONS OF A MODERN I'LATE-NODULATED 'PIIONE TRANSMITTER
The r.f. stages and power supplics alone form an excellent c.w. telegraph transmitter. The r.f. output wave of the unmodulated final amplifier, shown at (I), is the type of wave produced by a telegraph transnitter with the key closed. All curves labelled (I) apply to conditions with no audio in-put-i.e.. with the test oscillator turged off. The curves labelled (2) apply with 100 -per cent modulation with continuous sine-wave input.

TIIE RADIO AMATEUR'S HANDB00K

practioal importame for amatene phome transmitters. The dismuswion in this chapter is devoted wholly to this type of modulation.

PIRINCIPIES OF MODDUATMON

1MPLITUDE modulation for voice transmission is the process by which the amplitude of the transmilted radio-frequency wave is varied in accordance with the sound waves actuating the microphone. The degree of modulation is described in terms of the amplitude variation of the transmitted wave, and is usually given as a decimal modulation factor or as a percentage. The modulution factor, expressed in percentage, is 100 times the maximum departure (positive or negative) of the envelope of a modulated wave from its unmodulated value, divided by its unmoduleted value. If the modulation is undistorted or lineur, the average amplitude of the modulated wave is the same as its unmodulated value, so long as the modulating signal also is symmetrical, because the increase in amplitude during half the modulation cycle is balanced hy an equal decrease in amplitude during the next half cycle.

A- 100% MODULATED

FIG: 1002-GRAPIIICAI, HEPRESENTATION OF THE AMPLITUDE MODULATED WAVE
(: illustrateb the condition of overmodulation, the negative peak of the envelope being cut off. The outline of the r.f. peaks is the envelope and should correuporid io the wave ahape of the modulating signal.
fig. 1002 gives conventional sketches of amplitude modulation, with the relations for determining percentage modulation indicated. In form of an equation, the expression for percentage modulation is

$$
M=\frac{i_{\bmod }-i_{c a r}}{i_{\text {car }}} \times 100
$$

where $i_{\text {mod }}$ is the maximum amplitude (the positive peak), or the minimum amplitude (the nogative peak), and $i_{\text {car }}$ is the unmodulated carrier implitude. In the case of owermodulation as shown by C, the positive percentage is greater than 100 . However, the negative percentage can never be greater than 100 because the amplitude cannot become les: than zero. Such a condition results, obviously, in distortion of the wave envelope - the envelope being the outline of the radio-frequeney cycle peaks.

The process of modulation produces alditional radio frequencies in pairs either side of the carrier frequency, constituting the side bands. These new frequencies are numerically equal to the carrier frequency plus the audio modulation frequency, and carrier frequency minus the modulation frequency. There will be one such pair for each frequency component in the modulating signal, and the frequency hand occupied by the transmission therefore will be equal to twice the highest modulation frequency. If the wave form is distorted (as it will be with overmodulation) the high-order harmonics created as a result of the distortion will cause further side bands to be generated and these spurious radiations will broaden the wave accordingly. It is for this reason that government regulations prohibit overmodulation.

Amplitude and Poucer Relations

The maximum permissible modulation factor, imposed by the requirements that the modulation envelope shall not be distorted, is 100 per cent. Since at the peak of the modulating signal the amplitude is doubled with 100 per cent modulation, the instantaneous peak power will be four times the unmodulated power, power being proportional to the square of the current. With continuous modulation by a pure tone the average power will be 1.5 times the unmodulated power. The additional power, equal to half the power in the carrier alone, is in the side bands, and is divided equally between the two. The current in the circuit, as indicated by an ammeter, would be 22.6 per cent greater with 100 per cent modulation by a pure tone than with the carrier alone, since the current is proportional to the square root of the power.

RADIOTRLEPHONY

Experience has shown that the average power in typical speech having the same instantaneous peak amplitude as a pure tone is approximately half as great as the average power in the tone. Therefore the average power in a speech-modulated wave is only 1.25 times the unmodulated carrier power, even though the instantaneous peak power is still four times the carrier power just as it is with tone modulation.

With sustained speech, therefore, the current in the circuit would increase only 12 percent over the unmodulated carrier value. Actually the varying nature of speech modulation results in a still smaller percentage indicated increase in practical operation because of the sluggishness of the usual thermal ammeters used for measuring r.f. currents. An increase of about 5 percent is, experience indicates, to be expected under normal conditions with complete modulation. An increase with speech modulation of more than 10 percent in indicated antenna current should be cause for readjustment.

Modulation Capability and Stability.

It is entirely possible for the modulation envelope to be distorted at less than 100 per cent modulation. This would be the case with a transmitter whose output power could not be quadrupled instantaneously on the modulation peaks.

Motulation capability is the maximum percentage modulation that is possible without objectionable distortion. It is apparent that the modulating system, whatever type, must be able to effect an undistorted variation in the amplitude of the modulated wave ranging from zero to twice the carrier amplitude if the set is to have a modulation capability of 100 percent. Since the effectiveness of a modulated wave as measured by receiver response depends on the variation in amplitude, it is desirable that the transmitter's modulation capability be high. As a specific instance, a 10 -watt carrier modulated 100 percent is practically as effective as a 40 -watt carrier modulated 50 percent.

Viewed in another way, this means that if the audio power is held constant, the receiver response, and the understandability of the modulated signal, will remain constant with the radio-frequency power at any setting above that for 100 -percent modulation. Thus, if the output added by the modulator to the modulated amplifier input is 100 watts, the audio out put of the receiver resulting from detection of the modulated signal will not change if the d.c. input to the modulated amplifier is varied between 200 watts (the value for 100percent molulation) and 1000 watts (the maximum legal input).

With transmitters of high-percentage modu-
lation, particular care must be exercised to prevent variation in the carrier frequency as an accompaniment to amplitude modulation. Such variation constitutes frequency modulation. Frequency instability is a serious defect in c.w. telegraph transmission, and it must be realized that frequency modulation is far more

FIG: H003-CIHEUFIS FOR FOUR MEIHOLS OF MODCIATHON
A and 13 are for choke- and trancformer-coupled plate modulation, C is for grid-hian modulation, and I) is for suppressor-grid modulation.

the radio amatelurs handrook

objectionable in 'phone transmission. l'requency modulation is also a cause of distortion in reception. Modulation of the oscillator in amateur tramsmitters is therefore prohibited except on the ultra-high-frequency bands Even when a radio-frequency amplifier following an oscillator is modulated, precautions are neressary to insure against afferting the oscillator's frequency.

IB.INIA METHADIDS ADE MOIDELATIAN

The most widely used type of modulation system is that in which the modulating signal is applied in the plate cireuit of a radio-frequency power amplifier (plate modulution). In a second type the audio signal is applied to the control-grid eircuit (grid-bias modulation). A third system involves variation of the sup-pressor-grid voltage of a pentode-type power tube (suppressor-grid modulation). (ther systems are occasionally used for special purposes but are not generally suitable for amateur work. Among these is screen-grid modulation in an amplifier using that type tube (limited 1.0 approximatcly 60 per cent modulation capability). Prartical arrangements illustrative of plate and grid-bias methods are diagrammed in Fig. 1003. The suppressor-grid modulation system is shown in lig. 1003-1).

In A of Fig. 1003 is shown the circuit of what is known as the Heising or constant-current system of plate modulation. The plate power for the modulator tube and modulated amplifier is furnished from a common source through the modulation choke, L, which has high impedanee for audio frequencies. When the grid circuit of the modulator tube is excited at audio frequency, the modulator operates as a power amplifier with the plate circuit of the r.f. amplifier as its load, the audio output of the modulator being superimposed on the d.e. power supplied to the amplifier. The r.f. output of the amplifier is therefore identically modulated. For 100 per cent modulation the modulator audio voltage applied to the amplifier plate circuit across the choke, L, must have a peak value equal to the d.c. voltage on the modulated amplifier. To ohtain this without distortion, the amplifier must be operated at a d.e. plate voltage less than the modulator plate voltage, the extent of the voltage differrace being determined by the type of modulator tube used. The necessary drop in voltage is provided by the resistor h, which is bypassed for audio frequencies by the condenser $('$.

In lig. 1003-13 is shown another system of plate modulation in which a balanced (pushpull Class-A, Class-AB or Class-13) type modulator is transformer-eoupled to the plate eirenit of the modulated r.f. amplifier. When the grids of the modulator tuhes are excited, the
a udio-frequency power gencrated in the plate rircuit is combined with the d.e. power in the modulated-amplifier plate circuit by transfer through the coupling transformer, T. The power out put of the modulated amplifier varies exactly with the power input to its plate, and the carrier power is therefore varied in aecordance with the signal at the grids of the modulator tubes. For 100 percent modulation the audio-frequency output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varies between zero and twice the d.e. operating plate voltage. The plate efficiency with plate modulation of Class-C amplifiers is practically constant at approximately 70 pereent.

In C' of the same figure is the diagram of a typical arrangement for grid-bias modulation. In this system, the secondary of an audio-frequency output transformer, whose primary is in the plate cireuit of the modulator tube, is connerted in series with the grid-hias supply for the modulated amplifier. When the grid bias, radio-frequeney excitation and load circait of the modulated amplifier are properly adjusted, power output will vary in accordance with the audio-frequency signal applied to the eontrol grid. In this method of modulation the modulator stage furnishes relatively small power to the r.f, amplifier's controlgrid circuit. The earrier plate efficiency of the modulated stage is considerably lower than with plate power modulation, being of the order of 30 percent in usual practice. At 100 percent motulation it rises to approximately (i) percent.

The circuit arrangement for suppressor-grid modulation of a pentode type tube is shown in fig. 100:3-1). In this system the modulating signal is also applied to agrid, in which respect it is akin to control-grid modulation. However, it differs in that the r.f. excitation and modulating signals are applied to separate grid elements. This gives the system a simpler operating teehnique. Best adjustment for proper excitation requirements and, simultaneously, proper modulating circuit requirements, are more or less independent, whereas they are intermingled in the control-grid circuit of the previously outlined system. The carrier plate efliciency figure is approximately the same as for control-grid modulation, approximating 30 percent, rising to approximately 60 percent at full modulation. With tubes having suitable suppressor-grid characteristics, linear modulation up to practically 100 percent can be ohtained with negligible distortion.

Choosing a Morlulation System

The choice of a modulation system necessarily must be influenced by considerations

RADIOTELEPHONY

which will vary with different individuals. All of the systems described will give practically identical results when properly operated. Economic factors usually are of paramount importance. In considering these, it is necessary to distinguish between two classes of 'phone operators: those who want to get the greatest possible modulated r.f. output for a given investment, and those who wish to modulate an existing c.w. transmitter with the smallest possible expenditure.

On a watts-per-dollar basis, the plate-modulation system with a Class-B audio amplifier as a modulator undoubtedly has the advantage over other systems, offering the opportunity of obtaining quite large values of r.f. output economically. This is particularly true for powers of 100 watts or more. At lower power levels, Class-A or AB modulators using beam power tubes are about on a par with Class- B from the expense standpoint, again with plate modulation.

On the other hand, if a telegraph transmitter is already available and it is desired to modulate it most economically, or if as much power as possible is desired for code work with only occasional phone operation, a form of modulation which does not require a large amount of audio power must be used. The grid-bias system is well-suited to this purpose or, in case pentode-type r.f. output tubes are used, suppressor modulation. The carrier power output, however, must be reduced to about a quarter of that available from the same transmitter as a telegraph set.

From the operating standpoint, the platemodulation system is very simple to adjust, providing the design has been worked out properly. The suppressor-modulation system also is easy to handle. Adjustments with gridbias modulation are somewhat more complicated, but with reasonable care good results can be secured.

The linear r.f. amplifier has practically no advantages in amateur work, and hence is but rarely used. It is the most difficult of all systems to adjust for proper operation, and gives no more carrier output than the more easilyapplied grid-bias system.

A complete audio system consists essentially of a device for converting sound waves into electrical currents or voltages - the microphone - plus vacuum-tube amplifiers to raise the power level to the value necessary for full modulation of the transmitter by the method chosen. With grid-bias and suppressor modulation, the power level required is quite small; with plate modulation, the audio power must be equal to half the d.c. input power to the modulated r.f. stage, as we have seen.

In every case, the starting point in design is the microphone. We shall therefore first con-
sider the various types of microphones and their characteristics.

FIC. 1004-CIRCUIT OF A SINGLE-ENDED CLASS-B LINEAR R.F. AMPLIFIER
The grid-regulation resistor, R, should be capable of dissipating a fair proportion of the exciting amplifier's power output. The excitation can be regulated by the coupling condenser, C_{0}, or hy adjustment of the regulating resistor, or a tap on the exciting amplifier tank coil. The circuit values can be as usual for the frequency and power.

SPEECIINPUT CIRCUITS-TYIPES ©F MICRDPIIONES

T.ypical circuit arrangements of five types of microphones used in amateur transmitters are shown in Fig. 1005. The arrangement of A is for a single-button carbon microphone; B is for a double-button carbon microphone; C is that of a condenser microphone; D is for a ribbon (velocity) type; and E is for piezoelectric (crystal) type microphone.

Carbon microphones, single- and doublebutton types, are built of "buttons" filled with carbon grains, so that the button faces may be compressed. One face of each button is fixed to the stationary part of the microphone, while the other face is attached to the center of a diaphragm which vibrates with the sound waves striking it. A fixed voltage source, usually a battery, is provided in series with the button, and the varying resistance caused by compression and loosening of the grains produces varying current in the primary circuit of a transformer. In Fig. 1005-A and -B are shown connections for single- and doublebutton microphones, with a variable potentiometer resistor included with each circuit for adjusting the button current to the correct value, as specified with each microphone.

The condenser microphone of Consists of a two plate capacitance with one plate stationary and the other, separated from the first by about a thousandth of an inch, a thin membrane serving as a diaphragm. This condenser is connected in series with a resistor and voltage source so that it causes a slight variation of the voltage applied to the tube grid across part of the voltage divider.

In a velocity or ribbon microphone, the element acted upon by the sound waves is a thin

THE RADIO AMATEUR'S HANDB00K

corrugated ribbon of electrically conductive material, suspended between the poles of a magnet. When made to vibrate (the corrugations make vibration easier), the ribbon cuts lines of force between the poles in first one direction and then the other, generating an alternating voltage just as does each of the wires on the rotating armature of a generator.
microphone and on proper adjustment of the circuit in which it is used.

Wide frequency response speech input equipment is not required for voice transmission, uniform frequency response from 100 to about 3000 cycles being adequate. It is therefore satisfactory to choose a microphone intended particularly for speech transmission, rather than

The "dynamic" microphone is similar to the ribbon "mike," but in the dynamic type the ribbon is replaced by a coil attached to a diaphragm. The coil provides several turns of wire cutting the magnetic field.
The input circuit for a piezo-electrie or erystal type microphone is shown in Fig. 1005-E. The element in this type consists of a pair of Rochelle salts crystals cemonted together, with plated electrodes. In the form diagrammed, the crystal is mechanically coupled to a diaphragm. Sound waves actuating the diaphragm cause the crystal to vibrate mechanically and, by piezo-electric action, to generate a corresponding altemating voltage between the electrodes, which are connected arross the grid circuit of a varuum tube amplifier as shown. Unlike the other microphones described, the crystal type requires no separate source of current, polarizing voltage or nagnetic field. The diaphragm type illustrated has frequeney characteristics entirely adequate for speech transmission. Another type, which has no diaphragm and in which the crystal is directly actuated by sound waves, has more uniform response over a wider range of audio frequencies (up to 10,000 cycles or more) as is required for program transmission.

Single-button carbon microphones are usually characterized by poor but understandable quality. The other four types shown are usually credited with good to excellent quality for voice work, depending on the grade of the
one designed primarily for broadeast program use. Since the high r.f. selectivity of modern amateur 'phone receivers and the use of "tone controls" in receiver audio systems cut off the higher frequencies anyway, the transmitted morlulation frequencies above 3000 cycles are largely wasted.

Microphone Output Levels

The sensitivity of the microphone - that is, its electrical output for a given speech intensity input - governs the amount of amplification required between the microphone and the modulator. Sensitivity varies greatly with microphones of different basic types, and also varies between different models of the same type. The output is also greatly dependent on the character of the individual voice and the distance of the speaker's lips from the microphone, decreasing approximately as the square of the distance. It also may be affected by reverberation in the room. Hence, it is practically impossible to give rigid speech output values which will be reproducible in every instance. At best, only approximate values based on averages of "normal" speaking voices can be attempted. These have been obtained through the coöperation of several microphone manufacturers and are representative of the types of microphones most popularly used by amateurs. They are based on close talking; that is, with the microphone six inches or less from the speaker's lips.

RADIOTRLEPHONY

Good quality single-button carbon microphones give outputs ranging from 0.1 volt across 50 or 100 ohms to 0.3 volt across 50 to 100 ohms; that is, across the primary winding of the microphone transformer. With the stepup of the transformer, a peak voltage of between 2 and 3 volts across 100,000 ohms or so can be assumed available at the grid of the first tube. These microphones are usually operated with a button current of 50 to 100 ma .
The sensitivity of good-quality doublebutton microphones is considerably less, ranging from 0.02 volt to 0.07 volt across 200 ohms. With this type microphone, and the usual push-pull input transformers, a peak voltage of 0.4 to 0.5 volt across 100,000 ohms or so can be assumed available at the first speech amplifier grid. The button current with this type microphone ranges from 5 to 50 ma . per button. The operating conditions recommended by the manufacturer should be followed
The output of condenser microphones varies widely from one model to another, the high quality type being about one-hundredth to one-fiftieth as sensitive as the standard doublebutton carbon mike. Usually an additional resistance-coupled amplifier having a voltage gain of approximately 100 is satisfactory as a "pre-amplifier" for adapting a double-button set-up to condenser mike input.
The sensitivity of the velocity or ribbon-type microphone is between that of the standard double-button carbon and the condenser type. With a suitable microphone coupling transformer, about one stage of pre-amplification having a tube gain of 10 or so will bring the level up to that obtained at the grid of the first tube with a standard double-button microphone.
Although the sensitivity of piezo-electric crystal microphones varies with different models, output of 0.01 to 0.03 volt is representative for amateur communication types and this figure has been found generally satisfactory for speech amplifier design purposes. The sensitivity of this type microphone is affected by the length of the leads connecting to the grid input of the first amplifier stage, decreasing as the lead length and capacitance are increased. The above sensitivity figure is for connecting cable lengths of 6 or 7 feet. The frequency characteristic is unaffected by capacitance of
the connecting cable, since the crystal element has a relatively large capacitive reactance to start with. The load resistance (amplifier grid resistor) does affect the frequency characteristic, however, the lower frequencies being attenuated as the shunt resistance becomes less. Grid resistor values of 1 megohm and higher should be used, 5 megohms being a customary figure. Increased series resistance attenuates the higher frequencies, tending to raise the low-frequency response.

THE SPEECII AMPIIFIEIE

The speech amplifier of a 'phone transmitter may be said to include all the audio stages between the microphone and the stage whose output actually modulates the r.f. output of the transmitter. Depending upon the modulating system chosen, all the stages in the entire a.f. system may operate Class-A, or if a Class-B modulator is used, all stages preceding the modulator may be Class-A. Alternatively, one or more of the stages preceding the Class-B modulator may be operated Class-AB. In general, Class-B modulators developing 100 or more audio watts usually are excited by Class-AB amplifiers, since the Class-B grids require appreciable power. A stage from which power is taken to excite a following stage is called a driver.

As contrasted to the modulator or driver stage (if the latter is necessary) low-level amplifier stages are always operated purely Class-A, their whole purpose being to get as great a step-up in voltage as possible. Voltage gain with minimum distortion is the important point, since no power is required from a tube working into a Class-A or Class- AB_{1} (a Class-AB amplifier which does not draw grid current under any conditions) amplifier. Knowing the microphone output voltage and the peak grid voltage required by the last Class-A or AB_{1} stage for full output, the number and kind of voltage-amplifier stages can be determined.

The peak grid voltage swing required by a Class-A power stage will be approximately equal to its grid bias in the case of a single tube or tubes in parallel, and approximately twice the bias value for tubes in push-pull. The approximate voltage gain required of the

FIG. 1006 - SKELETON DIAGRAM OF SIEECHAMPLIFIER AND DRIVER STAGES, SHOWING APPROXIMATE VOLTAGE GAIN AND PEAK VOLTAGE PEK STAGE

227

THE RADIO AMATEUR＇S HANDB00K

TABLE I－RESISTANCE－COUPLED AMPLIFIER DATA
Data are given for a plate－supply of $\mathbf{3 0 0}$ volts，departures of as much as 50% from this supply voltage will not materially change operating conditions or the voltage gain，but the output voltage will be in proportion to the new voltage．Voltege gain is measured the 400 cycles condenser values siven are based on 100 －cycle cut－off．For Increased low－frequency response，all condensers may be at 400 cycies／condenser than specified（cut－off frequency in inverse proportion to condenser values provided all are changed in the same pro－ made larger than specified（cut－off frequeney in inverse proportion to condenser values pro
ortion）．A variation of 10% in the yalues given has negligible effect on the performance． 0.1 megohm， 10,000 cycles with 0.25 Hegoh－irequancy and 5000 eyeles with 0.5 megohm．With triode amplifiers，the high－frequeney eut－off is wall above the audio range．

	Plate Resistor Megohms	Next－Slage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen By－pass $\mu \mathrm{ld}$ ．	Cathod By－pass ufd．	Blocking Condenser $\mu \mathrm{id}$ ．	Outpuk Volts （Peak）	Voltage Gain
$\begin{gathered} 6 A 6,6 N 7 \\ 53 \\ \text { (One Triode } \\ \text { Unit) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$=$	$\begin{aligned} & 1150^{1} \\ & 1500^{1} \\ & 1750^{1} \end{aligned}$	Z	\bar{Z}	$\begin{aligned} & 0.03 \\ & 0.015 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 60 \\ & 83 \\ & 86 \end{aligned}$	$\begin{aligned} & 20 \\ & 22 \\ & 23 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	=	$\begin{aligned} & 9650^{1} \\ & 3400^{1} \\ & 4000^{1} \end{aligned}$		-	$\begin{aligned} & 0.015 \\ & 0.005 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 75 \\ 87 \\ 100 \end{array}$	$\begin{aligned} & 23 \\ & 24 \\ & 24 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 4850^{1} \\ & 6100^{1} \\ & 7150^{1} \end{aligned}$	－		$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{array}{r} 76 \\ 94 \\ 104 \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & 84 \\ & 24 \end{aligned}$
$\begin{aligned} & \text { 6C6, 6J7, } \\ & 57 \\ & \text { (Pentode) } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 89 \\ & 94 \\ & \hline \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1800 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.4 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.9 \\ & 2.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0095 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 161 \\ & 250 \\ & 240 \end{aligned}$
$6 F 5$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & 1300 \\ & 1600 \\ & 1700 \end{aligned}$	－	5.0 3.7 3.2	$\begin{aligned} & 0.025 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 33 \\ 43 \\ 48 \end{array}$	$\begin{array}{r} 42 \\ 49 \\ 52 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	二	$\begin{aligned} & 9600 \\ & 3200 \\ & 3500 \end{aligned}$	－	2.5 2.1 2.0	$\begin{aligned} & 0.01 \\ & 0.007 \\ & 0.004 \end{aligned}$	41 54 63	56 63 67
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	－	$\begin{array}{r} 4500 \\ 5400 \\ 6100 \\ \hline \end{array}$	－	1.5 1.2 0.9	$\begin{aligned} & 0.006 \\ & 0.004 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \\ & 70 \\ & \hline \end{aligned}$
56，76	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	－	$\begin{aligned} & 2400 \\ & 3100 \\ & 3800 \end{aligned}$	－	2.8 8.8 1.8	$\begin{aligned} & 0.08 \\ & 0.045 \\ & 0.02 \end{aligned}$	65 80 95	8.3 8.9 9.4
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 4500 \\ & 6400 \\ & 7500 \end{aligned}$	－	1.6 1.8 1.0	$\begin{aligned} & 0.04 \\ & 0.09 \\ & 0.009 \end{aligned}$	$\begin{array}{r} 74 \\ 95 \\ 104 \end{array}$	$\begin{array}{r} 9.5 \\ 10.0 \\ 10.0 \\ \hline \end{array}$
	0.25	$\begin{aligned} & 0.95 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 11,100 \\ & 15,800 \\ & 18,300 \end{aligned}$	二	0.7 0.5 0.4	0.02 0.009 0.005	$\begin{array}{r} 88 \\ 96 \\ 108 \\ \hline \end{array}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & 10.0 \end{aligned}$
$6 C 5$ Also 6J7，6C6， 57 （as triodes）${ }^{2}$	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$		$\begin{aligned} & 2100 \\ & 2600 \\ & 3100 \end{aligned}$		$\begin{aligned} & 3.16 \\ & 2.3 \\ & 2.2 \end{aligned}$	0.075 0.04 0.015	57 70 83	$\begin{aligned} & 11 \\ & 11 \\ & 12 \end{aligned}$
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	\bar{Z}	$\begin{aligned} & 3800 \\ & 5300 \\ & 6000 \end{aligned}$	二	$\begin{aligned} & 1.7 \\ & 1.3 \\ & 1.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.035 \\ & 0.015 \\ & 0.008 \end{aligned}$	$\begin{aligned} & 65 \\ & 84 \\ & 88 \end{aligned}$	12 13 13
	0.25	$\begin{aligned} & 0.85 \\ & 0.5 \\ & 1.0 \end{aligned}$	I	$\begin{array}{r} 9600 \\ 12,300 \\ 14,000 \end{array}$	－	$\begin{aligned} & 0.9 \\ & 0.59 \\ & 0.37 \\ & \hline \end{aligned}$	0.015 0.008 0.003	73 85 97	13 14 14
$\begin{gathered} \text { 6C8G } \\ \text { (One triode } \\ \text { unit) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 2120 \\ & 9840 \\ & 3250 \end{aligned}$	－	3.93 2.01 1.79	$\begin{aligned} & 0.037 \\ & 0.013 \\ & 0.007 \end{aligned}$	55 73 80	29 23 25
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4750 \\ & 6100 \\ & 7100 \\ & \hline \end{aligned}$	－	1.29 0.96 0.77	0.013 0.0065 0.004	64 80 90	25 26 27
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 8.0 \end{aligned}$		$\begin{array}{r} 9000 \\ 11,500 \\ 14,500 \end{array}$	－	$\begin{aligned} & 0.67 \\ & 0.48 \\ & 0.37 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.004 \\ & 0.002 \end{aligned}$	67 83 96	27 27 28
6F8G（one triode unit）， 6J5，6J5G	0.05	$\begin{aligned} & 0.05 \\ & 0.1 \\ & 0.25 \end{aligned}$	\bar{Z}	$\begin{aligned} & 1080 \\ & 1270 \\ & 1500 \end{aligned}$	－	3.56 2.96 2.15	$\begin{aligned} & 0.06 \\ & 0.034 \\ & 0.012 \end{aligned}$	41 51 60	13 14 14
	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	$=$	$\begin{aligned} & 1900 \\ & 2440 \\ & 8700 \end{aligned}$	－	2.31 1.42 1.2	0.035 0.0125 0.0065	43 56 64	14 14 14
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	\bar{Z}	$\begin{aligned} & 4590 \\ & 5770 \\ & 6950 \end{aligned}$	二	$\begin{aligned} & 0.87 \\ & 0.64 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.007 \\ & 0.004 \end{aligned}$	46 57 64	14 14 14

[^11] should not be by－passed．
${ }^{2}$ Screen and suppressot tied to plate．

RADIOTRLEPHONY

speech amplifier therefore will be the ratio of this maximum grid swing to the peak voltage across the microphone. This gain will include amplification of the tubes and step-up in coupling devices such as transformers. The method is illustrated by the skeleton diagram of Fig. 1006. The voltage step-up in a coupling transformer is assumed the same as its turns ratio. The combination chosen should show a calculated maximum gain of 50 to 100 percent greater than will aetually be required, to allow for reserve, the excess being compensated for in operation by adjustment of the volume or gain control.

Sets of operating conditions for various types of tubes are given in Table I. In each case the voltage gain is given. The output voltage is the peak value appearing aeross the grid resistor of the following stage, and is based on the assumption that grid eurrent does not flow. It is the maximum undistorted voltage that can be obtained from the tube for the operating conditions chosen.

In general, resistance coupling is preferable in low-level stages. Resistance coupling must be used with non-power pentodes and high- μ triodes; transformer coupling is unsuitable for these tubes because of the difficulty of securing a sufficiently high load resistance with transformers of ordinary construction. Transformer coupling out of tubes having high plate impedance results in poor gain and greatly reduced low-frequency response. On the other hand, transformer coupling can be used with triodes having an amplification factor of 20 or less, in which case the gain of the stage is approximately equal to 60 to 70 percent of the μ of the tube times the turns ratio, secondary to primary, of the transformer. Transformer coupling must always be used with tubes which are required to deliver power to the next stage, as in the case of a stage working into a Class$\mathrm{Al} 3_{2}$ (a Class-AB amplifier which draws grid current over part of the cycle) or Class-B amplifier. Resistance coupling into such a stage will give bad distortion whenever the gridcurrent point is reached.

Where only voltage a mplification is required, the tube types listed in the table will be sufficient to take care of practically all needs. Tubes built for delivering power need not be used unless actual power output is required of them; in most cases a power tube will give less actual voltage gain than one of the smaller tubes listed in the table.

When high voltage is required, as with low-output microphones such as the crystal type, it is good practice to use a pentode in the first speech-amplifier stage, following it with one or more triode stages. It is best not to attempt to cascade two very high-gain stages because of the danger of instability.

If good high-frequency response is necessary, either a pentode or a triode having a fairly low μ should be used. Under conditions giving high voltage amplification, the input capacity of a high $-\mu$ triode is quite large, and since the input capacity shunts the grid resistor its "tone control" action reduces the amplification at the higher audio frequencies. Consequently, such tubes, if used, should be operated with grid resistors of fairly low value - 100,000 ohms or less - to minimize the shunting effect of tube capacity. Since this usually will reduce the gain of the previous stage, the high $-\mu$ triode does not show up quite as favorably as the table, based on a frequency of 400 cycles, might indicate. Sereened pentodes are quite free from this effect and will give substantially uniform gain over a wide range of frequencies.

Cieneral Consiruction Practice

Audio units for simple transmitters can be built up bread-board style, although a metal chassis foundation is preferable for a permanent job. Present practice tends toward unit construction on metal chasses, with raek mounting. Shielding is important where highgain audio systems are used, it being especially important to keep r.f. from overloading the low-level grid circuits. When two or more stages of speech amplification are used, particular care must be taken to prevent motorboating and distortion resulting from interstage feed-back. Coupling transformers should be isolated from each other or placed for minimum reaction between their magnetic fields. Proper positions can be determined by turning the transformers, one with respect to the others, until minimum hum or instability is obtained with the unit in operation at full gain. It is advisable to keep modulation chokes and transformers well away from other audio equipment because the strong magnetic field about the high-level audio unit is likely to cause trouble. Transformer cases should be grounded to the negative side of the circuit.

Microphone cables should be shielded and the shield should be connected to ground. It is generally good practice to shield the high-gain input circuit separately and keep it away from the high-level audio and r.f. sections of the transmitter. It is advisable to couple a speechinput amplifier by a step-down transformer (tube-to-line) in its output, through a twistedpair to a line-to-tube step-up transformer into the higher-level audio eircuit. Such an impedance matching combination is especially recommended with high-impedance microphones which require short leads to the first audio stage or pre-amplifier. Interconnecting leads and cables should be thoroughly shielded and the shields grounded. Radio-frequency chokes

FIG. 1047-THE 3.5-WATT SIPECLI AMPLIFIER It is shown in this view equipped with high-guin input tube for use wilh low-oulput microphones. For carbon mikes, a microphone transformer replaces the $6 \mathrm{J7}$ (the tube at left). The 6F5 tube ia at the right in front of the 6B46: power output tuls. The output tranaformer is at the rear left corner.
may be necessary between modulator and modulated amplifier in high-voltage supply leads.
A.c. filament and power-pack high-voltage supplies may be used for all stages, although more than ordinary filtering should be used for high-gain amplifiers. Filtering or decoupling in individual plate- and grid-feed circuits is advisable, as illustrated in some of the high-gain circuits which will be described.

Combinations of Speech Amplifier and Audio-Pouer Output Stage

The modulators used in amateur 'phone transmission are really audio power amplifiers, with required power output and type of output transformer or other coupling device determined by the application. Thus, a welldesigned Class-A or Class-AB amplifier stage capable of 15 watts audio power output may be used to plate modulate a r.f. amplifier of 30 watts input, to grid modulate a stage of 300 watts input, or to drive a Class-B modulator sliage of 250 watts audio output. The output transformer of the 15 -watt stage must be suitable for the modulation or driver application, so that the outpit winding matches the load; or the transformer may be one designed for matching a 500 -ohm line, so that the amplifier is readily adapted to any of the above uses by connecting the secondury winding to the 500 ohm primary of a suitable input or modulation transformer.

FIEIT AND R.ED-WATT DUTIPUT STAGE

T「he amplifier of Fig. 1009-A designed for use with crystal and velocity microphones (and the version in Fig. 1009-B designed for carbon single- and double-button microphones) is a simple arrangement for grid modulating r.f. amplifiers of 150 watts input or less. It is also suitable for driving a Class-B modulator of 25 to 50 watts output, as a Class- B input transformer designed for such modulators may readily be substituted for the grid-modulation transformer shown.

The amplifier is built on a steel chassis 7 inches wide, 7 inches deep, and 2 inches high. The 657 (or the microphone transformer in the model of Fig. 1009-B) is located on the left front corner of the unit, with the output transformer directly behind. The 6F5 occupies the other front corner, and the 6B4G output tube takes the remaining space at the rear of the chassis. A paper-carton type $8-\mu \mathrm{fd}$. electrolytic condenser is mounted beneath the left. edge of the chassis in the high-gain version, and is used for a filter and decoupling condenser with resistor R_{5}. With the higher output afforded by the carbon microphones, the large amount of decoupling and filtering effect provided by this condenser is not needed. The amplifier is designed for separate power supply so that an r.f. exciter supply may be used, and because of this fact, special wiring precautions are unnecessary.

FIG. 1008-BOTIOM VIEW OF TIIE 3.5-WATI AMPLIFIER

RADIOTELEPHONY

formers specified (or with those of equivalent construction) is practically flat over the range required for voice communication. The noise level, with the power supply shown, is approximately 46 db below the rated output, while the distortion is negligible at the 10watt level.

The circuit diagram is given in Fig. 1011. The first tube, a 6.J7 pentode-ronnected, is followed by a 6C5 which in turn is coupled througha transformer into push-pull 6C5's. These tubes excite a pair of 2A3's Class-AB. The 2A3's are self-biased, the cathode resistor being built in the power-supply unit shown schematically in Fig. 1014. The power supply is equipped with a voltage-regulator which handles all the tubes in the speech amplifier except the 2A3's. In the power-supply unit, the 6.17 is the control tube for the regulator portion, while the $2 \Lambda 3$ is the regulator tube. R_{3} controls the output voltage; the resistor should be set so that the voltage as measured by a high-resistance voltmeter is 275 volts. A

A UNIVEIRSAI SPEECHI Amplifieit ditiven with ID-NATT OITTPUT

Fias. 1010-1015 inclusive show a $10-$ watt output speech a mplifier and driver, with power supply, suitable for gridmodulating a high-power stage or for working into a Class-B modulator whose input requirements are 10 watts or less. This classification includes Class-B modulators capable of delivering sufficient audio output to plate-modulate 500 watts input to the Class-C r.f. stage. The input circuit is arranged so that either crystal or double-button carbon microphones can be used, and the gain is such that the full output is developed with a peak voltage of less than 0.002 volts applied to the first tube. The frequency response with the audio trans-

FIG. 1010 - TEN-WATT SPEECII-AMPLIFIER OR DRIVER FOH USE WITH EITHER CRYSTAL OR DOUBLE-BUTTON CAHBON MICKOLIIONES

the radio amateur's handbook

FIG. 1011 - CIHCAHT HMARAM OF THE 10-WATT SPEFCI AMPIIFIER
$\mathrm{K}_{1}, \mathrm{R}_{2}-200$ ohms, $1 / 2$-watt.
R_{3} - 1000 ohms, $1 / 2$-watt.
l_{4} - 1 megohm, $1 / 2$-watt.
\mathbf{k}_{5} - 0.25 megohm, $1 / 2$-watt.
R_{6} - $\mathbf{5 0 , 0 0 0}$ ohms, $1 / 2$-watt.
$\mathrm{K}_{7}-0.25-$ megolim volume control.
IRs - 2000 ohms, $1 / 2$-watt.
$\mathrm{IR}_{9}-\mathbf{5 0 , 0 0 0}$ ohms. l-watt.
$\mathrm{H}_{10}-\mathbf{1 0 , 0 0 0}$ ohnms, $1 / 2$-watt.
$\mathrm{H}_{11}-500$ ohnis, I watt.
K_{12} - 5 megolims, $1 / 2$-watt.
$\mathrm{C}_{1}-\mathbf{0 . 1 - \mu \mathrm { fll }}$. paper.
C_{2} - 0.01- ff . paper, 400-volt.

C4, $\mathrm{C}_{5}-\mathbf{5}-\mu \mathrm{fil}$, $\mathbf{2 5}$-volt elertrolyt ir.
$\mathrm{C}_{\varepsilon}-\mathbf{0} .1-\mu \mathrm{fd}$. paper, 400-volt.

C7, $\mathrm{C}_{8}-8-\mu \mathrm{fd}$. electrolytic, 450^{-} volt.
T - Interstage audio, single plate to push pull grids (Kenyon T-52).
I_{2} - Interstage audio, p.p. plates to Class-AB grids (Kenyon (1-256).
I'3-Outpit. Class-AB platen to line (Kenyon T-301).

1-watt neon bulb, with base resistor removed, serves as a constant-drop cathode resistor for the 6.I7.

Both amplifier and power supply are built on standard chasses (with covers) measuring 5 by $13 \frac{1}{2}$ by $2 \frac{1}{2}$ inches. In Fig. 1010, the tube at the left along the front edge of the chassis is the 6.J7, followed by the first 6C5. The single-tube to push-pull transformer, T_{1}, is behind this tube; to its right are the push-pull 6C5's, then T_{2}, the 2 A3's, and the tube-to-line transformer, T_{3}. The gain control, R_{7}, is at the left end of the front edge of the chassis. On the left edge are the jack for a crystal microphone and the switch, s, to change the input from crystal to double-button carbon.

The general layout of parts underneath the specch-amplifier chassis is shown in Fig. 1012. Nothing is particularly critical as to lead lengths, although

FIG. 1013 - IOWFR-SUPILY FOH TIIF 10-WATT AMIIIFIER
A voltage-regulator is incorporated for all speech-annplifier tubes except the 2 A 3 'm.

the input leads should be well shielded. The layout for the power supply, Figs. 1015 and 1013, is likewise not at all critical.

Jt is important that the filament voltage for the Class-AB 2 A 3 's be at the rated value if full performance is to be secured from the tubes. To this end the filament

FRG 1012 - A VHEW UNDERNEATI TIIE CIISSIS OF THE IO-WATI SPEECH UNIT
leads between power supply and speech amplifier should be quite heavy, and the filament voltage under operating conditions should be checked. If the voltage is more than 5 per cent low heavier filament leads should be used.

For carbon-microphone input, resistors are connected across the microphone as a load, rather than the customary transformer. The high gain of the amplifier permits dispensing with the voltage stepup provided by the microphone

F1G. 1014 - CIRCUIT IDAAGRAM OF TIIE POWER SUPPISY
'I- l'ower transformer; hiph-voltage winding, 360 volts cach side center-tap, 150 ma.; 5 volts, 3 amp. (rectificr); 2.5 volts, 3 amp. (2 A 3 regulator filament); 2.5 volts, 5 amp. (2A3 npeechamp. filuments); 6.3 volts, 3 amp. (mpeechamplifier and voltage-control tubes). (Kenyon I-214.)

1. - Filter choke, 15 henrys, 165 man. (Kenyon Tr-154).

Ci - 8-8 μ fd. 450 -volt electrolytic.
$\mathrm{R}_{\mathrm{t}}-10,000$ ohms, 1 -watt. $\mathrm{H}_{5}-0.5 \mathrm{megoh} m, 1$-watt.
$1 \mathrm{R}_{2}-20,000$ ohms, 1 -watt. $\mathrm{K}_{6}-800$ ohms, 10 -watt.
ll_{3} - 10,000 -ohnin volume control.
$\mathrm{R}_{4}-5000$ ohins, $1-w a t t$.
The neon bull, (l-wat size) should have its base resistor removed.

FIG. 1015-BOTTOM VIEW OF TIIE POWER-SUPPLY UNIT
transformer. The microphone battery voltage should be adjusted to give the button current recommended by the manufacturer of the microphone.

Although the disadvantage of filament voltage drop in the connecting cable becomes a problem if amplifier and power supply unit are greatly separated, this disadvantage is somewhat offset by the freedom from tendencies toward electromagnetic or electrostatic coupling between the a.c. power circuits and the speech amplifier circuits. Furthermore, the design of the amplifier is such that a larger regulated supply already serving another purpose may be made to supply the speech amplifier, and thus construction of a separate supply for this a mplifier may be saved.

FlG. 1016 - REVISEI) CIRCUIT DIAGRAM (OF '1HF UNIVEIRSAL SIPEECH AMIPIIFIER, INCLIUIING IXVERSE FEFDHACK
Constants are the same as miven in Fig. 1011 with the following exceptions: $\mathbb{C} \mathrm{A}_{4}, 15-\mu \mathrm{fid}$., 25 -volt electroIytic, 200 -volt ; $\mathbf{1 1}_{13}, \mathbf{2 5 0 , 0 0 0}$ ohms, $1 / 2$-watt.

233

THE RADIO AMATEUR'S HANDB00K

Inverse Feedback Added to the Universal Amplifier

Although the above speech amplifier is adequate for high-quality 'phone transmission, the frequency range may be extended to one meeting requirements for high-quality amplifi-

FIG. 1017 - FREQUENCY RESPONSE CURVES
WITII ANI WITIIOUT INVERSE FEEDBACK
Solid line, with negative feedback applied; dotted line, witbout feedback. Reference frequency, 400 cycles. Output level approvimately 9 watts.
cation of music by incorporation of the circuit shown in Fig. 1016. With this unusually wide response range the amplifier, with the universal output transformer shown, is suitable for public address and theater work as well as for the 'phone transmitter, and thus may be made to serve several purposes.

Details of the principles of operation, results, and adjustment of the amplifier with inverse feed-back are given in an article in QST. ${ }^{1}$

As shown in Fig. 1016, the grid bias provision for the $2 A 3$ output stage has been changed from "self-bias" to "fixed-bias," with an increase from 10 to 15 watts in audio output.

FIG. 1018 - REVISED POWER SUPPI, Y DIAGIRAM, WITH BIAS SUPIPLY INCLUDED
Constants are the same as given in Fig. 1014 with the following exceptions: R_{6}, 12,000 -ohm semivariable resistor (25-watt slider type); L_{2}, midget filter choke; C_{2}, double $8-\mu \mathrm{fd}$. 250 volt electrolytic. L_{1} and C_{1} are the same as L and $C:$ in Fig. 1014, with the twosections of C. in parallel.

FIG. 1019 - CIRCUIT OF THE 15-WATT ALL-PUSII-PULL AUDIO SYSTEM
$\mathrm{C}_{1}, \mathrm{C}_{2}-\mathbf{0 . 0 0 2 - \mu \mathrm { fd } .}$ mica, 600 -volt.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{7}-\mathbf{0 . 0 1 - \mu \mathrm { fd } \text { . paper }}$ tubular, 600 -volt.
$\mathrm{C}_{5}, \mathrm{C}_{8}, \mathrm{C}_{9}-1$ - -fd . paper, 600 -volt.
J - Three-wire jack.
$\mathbf{R}_{1}, \mathbf{R}_{2}$ - 2-megohm, 1/2-watt carbon.
$\mathrm{R}_{3}-600$-ohm, 1-watt carbon.
R_{4} - 0.6-niegohm, 1-watt carbon.
$R_{5}, R_{8}, R_{10}, R_{11}-0.25-$ niegohm, J_{-} watt carbon.
R7, R_{8} - 2-gang 250,000-ohm potentiometer.
$\mathrm{R}_{9}-\mathbf{2 0 0 0 - o h m}$, l-watt carbon.
$\mathrm{R}_{12}, \mathrm{R}_{13}$ - 0.5 -megohm, 1 -watt carbon.

R14 - 700-ohm, l-watt carbon.
$\mathrm{K}_{15}, \mathrm{R}_{16}-5000$-ohm, 5 -watt wirewound with sliders.
' \mathbf{T}_{1} - I'ush-pull input transformer for driving 2 A 3 tubes.
T_{2} - Driver transformer for coupling 2A3 plates to grids of Class-B tubes.

RADIOTELEPHONY

The gain control knob is at the left on the front of the chassis, with microphone jack, pilot light (2.5-volt light in parallel with the 2 A 3 filaments), and power switch in order toward the right. The two 6.57 tubes are at the left front corner of chassis, with the two 6N7 tubes directly behind. The output transformer in Iocated at the front contor of chassis, with power transformor to the right and $250-m a$. choke at the right front corner. The four condenser cans are in a row behind the transformers and large choke, and the two small chokes are directly behind the condensers. The input transformer for the 2A3 tubes is directly behind the 6N7 tubes. In the rear row of tubes, left to right, the first four are 2 A 3 output tubee, the fifth is the 83 and the sixth is
 the 82.

FIG. 1020 - ALL-1PUSII-PULIL 30-WA'II' AMIPLIFIER ANID IMW'HK SUPPLI

AII_IPUNH-IPULL SPEECII AMIPIIFICATION

【N brief, a push-pull Class-A amplifier has a large number of advantages arising from the relative freedom from audio-frequency variations in total cathode current and total plate current of the stage.

Fig. 1019 and Fig. 1023 are circuit diagrams of amplifiers with audio power output of 15 and 30 watts, respectively, based on use of pushpull stages exclusively. These amplifiers are characterized by a frequency response range comparable to that obtained by use of inverse feedback in well-designed amplifiers; and in addition, are relatively free from a.c. hum caused by slight ripple of power supply voltage. With amplifiers of this type, the necessity
for decoupling circuits is largely removed, so that the circuit complications are not increased by use of the push-pull amplifiers.

Two views of the amplifier of Fig. 1023 are given in Fig. 1020 and Fig. 1021. The complete amplifier and power supply is constructed on a

FIG. 1022 - FHEQUENCY IRESPONSE CURVES TAKEN FROM THE 30-WATT AMPLIFIER WITH ANI WITHOUT LIMITING CONDENSER C8 CONNECTED

FIG. 1021- HOTTOM VIEW OF 30-WATT AMPLIFIER
Note that the power supply components and wiring are confined to the Half of the chassis at Ieft in this view. The input condensers and chokes are located at the microphone jack, and from the ends of the chokes. shielded wires go through the chassis to the grids of the 6J7 tubes. Plate and grid ooupling condensers for the voltage amplifier etages are mounted in a compact group behind the 6N7 tubos. The whole Iayout is planned for simplicity, with placement of parts for the output of one stage to feed right into the input of the next.
235

the radio amateur's handiook

steel chassis 17 inches long, 10 inches deep, and 2 inches high. The power transformer and chokes above the chassis and the power supply wiring beneath are well-separated from the audio-frequency circuits. A.c. hum induced in the audio circuits is thus kept to a minimum.

EO-WATT 6LA MOHDLLATQIE OH HIGH-IPOWEIE CLASG-IE DRIVEIE

$\mathrm{T}_{\text {He }} 6 \mathrm{~L} 6$ speech-a mplifier unit shown in Fig. 1024 is also a general purpose arrangement, in that substitution of a suitable output transformer makes it adaptable either as a complete modulator or as a driver for Class-B units employing anything up to a pair of 354's or 204-A's. The voltage gain to the grids of the 6L6's is more than sufficient for crystal microphones of the diaphragm type, a peak input of

FIG. 1024-METAl-TUBE SPEFCII UVIT WITII PUSII-PULL $6 L 6$ OUTPUT
The gain is sufficient for the popular diajliragmtype crystal mierophone.

F1G; 1023 - CIRCUIT OF THE 30-WATI AMPLIFIER AND SUPPIS
$\mathrm{C}_{1}, \mathrm{C}_{2}-\mathbf{0} .006-\mu \mathrm{fl}$. mica, $60 \mathrm{~N}-$ volt.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{7}$ - $0.01-\mu \mathrm{fd}$. naper tuluiar, 600 -volt.

Cs - 0.002 - $\mu \mathrm{fd}$. miea, 600 -volt.
C9, $\mathrm{C}_{10}-8-\mu \mathrm{fd}$. sections of dual electrolytic, $\mathbf{2 . 5 0}$-volt working (Mallory IRM1252), positive leads prounded, negative leade conneeted to ends of 1.1 .
$\mathrm{C}_{11}-16-\mu \mathrm{ffl}$. elertrolytic, son -volt working (t wo Mallory H13683 connected in parallel).
C_{12} - 8- $\mu \mathrm{fd}$. electrolytic, 500 -volt working (Mallory 1110683).

J-3-wire jaek.
$\mathrm{K}_{1}, \mathrm{R}_{2}$-2-megohm, $1 / 2$-watt carbon.
$\mathrm{K}_{3}-600$-ohm, $1 / 2$-watt carlon.
k_{4} - 0.6 -megobm, l -watt carlion.
$\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{~K}_{10}, \mathrm{R}_{11}-\mathbf{0 . 2 5 - m e g o h m , ~} \mathrm{l}$-watt carlion.
IK7, İ8 - 2-gang 500,000-ohni potentiometer (Centralab 4-010804).
\mathbf{K}_{9} - 2000-ohm, 1-watt carbon.
$\mathrm{K}_{12}, \mathrm{~K}_{13}$ - 0.5-niegohm, l-watt carhon.
11_{14} - 7000 -olim, I-watt carhon.
$\mathrm{K}_{15}, \mathrm{~K}_{16}, \mathrm{~K}_{17}, \mathrm{~K}_{18}-100$-ohin, 1 -watt carion.
$1 \mathrm{k}_{19}-\mathbf{2 5 0 0 - o h m}, 25$-watt, semi-varialıle. (See text.)
T_{1} - I'ush-pull driver input transformer ('Thordarson 741032).
\mathbf{T}_{2} - Mnlti-match driver transformer (Thordarson 151280).
T_{3} - Power transformer to deliver a.c. voltages as follows: 435 volts earh side of center-tap at 250 mar. d.c. load, 80 volte (single tap) for bias rectilicr, 2.5 volts, center-tapped, at $10 \mathrm{am}-$ peres, 2.5 volte at 3 amperce, 5 volts at 3 ampercs, 6.3 volts, center-tapped, at 1.5 amperes (Thordarson 751R50).

1. - 7.2-henry, 120-ma. choke (Thordarson 75C49).

1,2-22-henry, 35-ma. cboke (Thordarson 18C92).
L_{3} - 13-henry, 250-ma. choke (Thordarson 75C51).
RFC - 2.5-millihenry, 125-ma. r.f. chokes.
about 0.005 volt being sufficie final tubes to full output. As 1025, the input stage uses a 6 J 7 the 57 or 6 C 6) pentode; this tu coupled to a 6 C 5 triode interme The driver consists of a pair of pull, transformer-coupled to stage. The 6C5's are capabl sufficient power for excitation The input transformer, T_{2}, signed for the purpose. The 6 I former, T_{3}, also is a special $j o h$ a tapped secondary to work 2500,5000 or 7500 ohms for 40
t to drive the shown in Fig. (equivalent to is resistanceliate a mplifier. 6C5's in pushhe preceding of delivering the 6 L 6 grids. specially deoutput transarranged with into loads of odulation purposes; its turns ratio is such that the plate-to-plate load on the 6L6's is 3800 ohms.

The chasses for both amplifier and powersupply measure 17 by 7 by 3 inches, and are therefore of suitable dimensions for relay-rack mounting. The addition of a standard panel with mounting brackets for rigid assembly to the chassis will fit either unit out for this purpose.

The low-level speech-amplifier section occupies the left-hand section of the chassis in Fig. 1024. The mierophone jack is on the back of the chassis near the 6 J 7 tube; the first 6 C 5 is at the front left-hand corner, with the gain control conveniently situated. To its right is the single-tube to push-pull coupling transformer; back of the coupling transformer are two electrolytic by-passes, C_{6} and C_{7}, followed by

RADIOTELEPHONY

the push-pull 6 C 5 's. The input and output transformers, as well as the 6 L 6 's, are readily identified. The jack for measuring 6L6 plate current is mounted on the back of the chassis, along with a two-terminal strip for the output.

Two power supplies are used, one furnishing 400 volts at 100 to 200 ma . for the 6 L 6 plates and the other (rated to deliver 300 volts) furnishing plate power to the low-level stages as well as screen voltage and grid bias for the 6L6's. The eircuit is shown in Fig. 1026. All tubes exeept the $6 \mathrm{~L} 6^{2}$ s get filament power from the first transformer, T_{1}. A separate filament transformer, T_{2}, takes care of the 6L6's and the 83 rectifier of the 400 -volt supply. An ordinary condenser-input filter with one choke (this choke is mounted underneath the powersupply chassis) is used on the 300 -volt supply. The 400 -volt supply has choke input, with the two sections of a double- 8 electrolytic condenser in parallel across the output.

The fixed bias for the 6L6's is obtained from the 300 -volt supply. Reference to Fig. 1026 will show that there is no ground on the negative side of the 300 -volt supply (outlet A). The total current from this supply is made to flow through the right hand section of R_{15} (Fig. 1025) to ground; by means of the adjustable tap on R_{15} the bias voltage is set at 25 volts. R_{14} is a bleeder resistor to load the 300 -volt transformer to full capacity. It is desirable to do this so that the current through R_{15} will be

FIG. 1025-WIRING DIAGRAM GF TIIE G16 SPEECH-AMPLIFIEH-MODUIATOR

Ci - 10- $\mathrm{\mu}$ fil., 25-volt electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-\mathbf{2 - \mu \mathrm { fl }} ., 200$-volt electrolytic.
C $4-0.1-\mu \mathrm{f}$. paper, 400 -volt.
(5 - 0.5- $\mathbf{\mu}$ d. paper (or larger).
C6, C7-4- Cld_{7}, 400-volt electrolytic.
(is - 0.25- $\mu \mathrm{fd}$. paper, 400-volt.
C: $9-25-\mu \mathrm{fd}$. electrolytic, 50 -volt.
$\mathrm{K}_{1}-5$ megohms, $1 / 2$-watt.
$\mathrm{H}_{2}, \mathrm{~K}_{3}-3.500$ ohmm, $1 / 2$-watt.
$\mathbf{K}_{4}, \mathbf{H}_{5}, K_{6}-50,000, s h m s, 1 / 2$-watt. $\mathrm{K}_{7}, \mathrm{H}_{8}-0.25$ megohm, $1 / 2$-watt.
K_{9} - 0.5 -megohm volunie control.
$\mathrm{K}_{10}-100,000$ ohms, $1 / 2$-watt.
K_{11} - 10,000 ohms, $1 / 2$-wat .
K_{12} - 500 ohms, $1 / 2$-watt.
$\mathrm{K}_{13}-2500$ ohms, $\mathbf{1 - w a t t}$.
$\mathrm{K}_{14} \mathbf{- 1 5 , 0 0 0}$ ohms, $\mathbf{1 0}$-wat .
$\mathrm{K}_{15}-\mathbf{1 0 0 0}$ ohms, 10 -watt.
' ${ }^{\prime}$ ' Audio transformer, single plate to puah-pull gride, ratio 3:1 ('Thordarson T 5741).
T_{2} - Input transformer for coupling push-pull 6C5's to 61.6 grids (Thordarson T8459).
'1'3- Output transformer, 3800ohm load plate to plate, see text (Thordarson T-8470).

THE RADIO AMATEUR'S HANDB00K

as heavy as possible, thus maintaining the bias fairly constant even though grid current flows. R_{13} drops the voltage to the proper value for the speech-amplifier plates.

The power terminals on both speech and power-supply units are four-prong tube sock-
power supply are built on the same chassis for 19 -inch rack mounting. All components are as given in Figs. 1025 and 1026 except for the transformers T_{2} and T_{3}. To minimize power-supply hum in the unit assembly a balanced type coupling transformer is used for T_{2} (Thordarson T-9004), and a ClassB input transformer for coupling 61.6's to 354 's (UTC Type 18126) is used for T_{3}.

(Th GRID-MODULATEI TBANSMITTERS

For best results with grid-bias modulation; a few simple requirements must be observed. Grid bias should be obtained only from B batteries, or a bias supply equipped with a low-resistance bleeder and provided with a high-capacity (4to $8-\mu \mathrm{fd}$.) condenser across the portion of the bleeder included in the grid circuit of the amplifier. The bias voltage used should be between three and six times cut-off bias for the modulated stage at the plate supply voltage used (cut-off bias for a triode is the voltage obtained by dividing the plate voltage by the amplification factor). Some means of conveniently varying the bias voltage, continuously or in steps, should preferably be provided. It is desirable that the plate voltage be the maximum rated voltage for the tube. The r.f. driving power which gives best operation with grid-modulation at the maximum rated plate voltage of the tube is one-fourth to one-half that required for normal telegraphy (Class C, unmodulated) operation. The r.f. grid circuit of the modulated a mplifier should be loaded with a dissipative load, for which purpose either a non-inductive resistor may be connected across the grid tank circuit of the modulated amplifier (across the plate tank circuit of the precerling stage if capacity coupling is used), or a lamp bulb may be connected to a one- to three-turn loop and coupled to the grid coil of the amplifier (to driver plate coil with capacity coupling). Some means should be provided for conveniently varying the amount of r.f. excitation given to the grid of the modulated amplifier, for this is the last step, in the process of adjustment of the system for proper modulation.

The first move in the tuning-up process is application of the maximum plate supply voltage available (within the rating of the tube for Class C telegraph operation), and loading and exciting the amplifier to the maximum obtainable r.f. output with the grid-bias voltage set for the cutoff value at the plate voltage used. While making this first adjustment, care should

RADIOTRLEPHONY

be used to operate the key only for short dashes rather than to leave the transmitter running for an appreciable length of time, since this type of operation would greatly overload the tube or tubes of the modulated amplifier. The value of plate voltage available with the supply lightly loaded should then be divided into half the total dissipation rating of the modulated amplifier, and the value obtained should be multiplied by three to obtain the current (in amperes) at which the stage should operate with grid modulation. If the current drawn by the amplifier is greater than double the value obtained by the above process, the excitation to the modulated amplifier should be reduced until the double-normalcurrent value is obtained. The bias on the grid-

25 WATTS OUTMPUT FROM P.E. SOE'S GRID MODULATED

The $^{\text {H.5-watt amplifier of Fig. } 1009 \text { is a very }}$ suitable unit for grid modulation of popular small tubes. It is shown in Fig. 1027 (circuit arrangement in Fig. 1028) as a modulator for a push-pull 809 amplifier. The changes in the r.f. amplifier include removal of a grid leak and provision for battery bias, and loading the grid coil of the modulated amplifier with a lamp and loop. This load, coupled in the manner used normally to test or adjust an amplifier at full input power, retains a relatively heavy fixed load on the driver stage while the lighter load of the modulated amplifier grid circuit varies widely through the modulation cycle. This tends to maintain the r.f. excita-

1•16. 1027 - A COMPI, EUE: (GID-MODULATED PHONE ITRANSMITTER OF 25 WATHIS oITTPU'T (75 WATYFS IVPU'T)

modulated amplifier stage should then be increased until the plate current is reduced to the value obtained above ($3 / 2$ total rated phate dissipation divided by plate supply voltage) and modulation should be applied in series with the bias batteries or supply. It should be remembered that the plate supply voltage changes with the varying load of the gridmodulated amplifier during the adjustment of the latter.
With no audio signal applied, the efficiency of the grid-modulated amplifier, properly adjusted, is approximately 30 per cent. On positive modulation peaks, the efficiency becomes approximately 60 per cent and the instantaneous value of peak plate supply current is approximately double the no-signal value. Hence, with the plate supply voltage remaining constant through an audio cycle, the peak power output of the modulated amplifier is approximately four times the normal carrier, as required for proper modulation. On the opposite (negative) peak of the audio cycle, the instantaneous value of plate current becomes zero (provided proper adjustment with stable excitation is used) and the output falls to zero. The average efficiency of the grid-modulated amplifier is lowest with no modulation, and rises noticeably with 100 -percent modulation. The limit of the power input to $3 / 2$ times the total plate dissipation of the stage is based on the no-modulation efficiency.
tion voltage constant with modulation, and it is usually a convenient means for reducing the excitation available at the grid circuit of the amplifier to a value suitable for modulation an amount much smaller than is usually used for c.w. telegraphy.

Two power supplies and two 45 -volt batteries are sufficient for satisfactory operation of this layout. The 750 -volt supply used for the 809 stage for telegraphy is ideal for use when the amplifier is grid modulated. A small power supply delivering 350 volts at 150 ma . and 6.3 volts filament source is suitable for the requirements of the two 6L6 stages and the speech amplifier-modulator unit.

The total plate dissipation of the 809 tubes is 50 watts (25 watts per tube), and the input should therefore be 75 watts when the adjustment of the stage is completed. At 750 volts, this means a plate current of 100 ma . Cutoff bias for the tubes (obtained by dividing 750 volts by 50 , the amplification factor) is approximately 15 volts; the 22.5 -volt tap of the battery is accordingly used for first setting the stage to adjust loading and excitation. With 22.5 volts negative grid bias and 750 volts plate supply, the stage is then loaded up to obtain the maximum available output. Since this involves large plate dissipation of the tubes, the key must be pressed only long enough at a time to make readings of meters and to make any tuning adjustments necessary. If maxi-

THE RadIo AMATEUR'S handbook

FIG. 1028-CIRCUIT OF (;RII)MODULATED PUSII-PULL Bu9 TRANSMITTER

With the exception of a few minor changes, the r.f. section of this tranamitter is that of Fig. 1, page 13, QST for February, 1938. Although not indicated on the diagram here, a 110-volt, 25-watt lamp bulb is coupled by means of a few turns of wire around the amplifior grid tank coil. This lamp, of course, doos not glow at full brilliance under proper operating conditions. Loading of the buffer stage, and the amount of excitation available at the grids of the final r.f. amplifier, may be varied by change of the degree of coupling of the lamp pickup coil.
mum output is obtained with much more than 200 ma . plate current, the amount of excitation at the grids of the amplifier tubes must be reduced either by an increase of loading of the buffer stage by the lamp, or by a reduction of the plate voltage applied to the preceding stage. When the plate current has been thus reduced to 200 ma ., the bias voltage should be increased (that is, the amount of negative grid voltage should be made greater) in steps of 22.5 volts, until the total plate cur-
rent of the modulated amplifier is reduced to 100 ma ., the proper operating current.

When tone modulation is applied, it should be possible to cause the antenna current to increase and the plate current to rise simultaneously. This is not the operating condition for speech modulation, however. With speech modulation the antenna current should show rise of not more than 5 per cent on peaks, while the plate current of the amplifier should no more than flicker. Inability to obtain antenna current rise with test modulation shows that the positive peaks are being flattened off as shown in 1031-13. This figure shows oscillograph patterns for both audio-frequency a.c. sweep (left) and synchronized linear sweep (right). If the antenna current cannot be made to rise, either there is insufficient audio modulation available, or the modulation characteristic is flattening equally on positive and negative peaks, as shown in Fig. 1031-C. The latter should be corrected by adjustment of coupling to

FIG. 1029 - ARKANGEMENT OF UNITS OF AVOTILER 25-WATE OUTIPU GRII-MOIDULATED 'PIIGNE
The 6L6G r.f. amplifier delivers adequate excitation for Class-C telegraph operation, and thus gives far more than the desired excitation power for grid modulation of the 808 final amplifier; it consequently may be heavily loaded hy a lamp coupled to the grid coil of the final amplifier, so that a very stable r.f. voltuge source is provided at the grid of the 808.
the antenna and variation of the r.f. excitation. The amplifier should not be adjusted for maximum carrier efficiency. In fact, for proper modulation the antenna loading will be somewhat greater than is ordinarily the case, the efficiency being necessarily reduced to obtain linear modulation.

The plate current should be practically
steady at a fixed value either with or without modulation, although a slight upward kick (not more than 5 per cent) is permissible on modulation peaks. If there is a downward kick in plate current or a pronounced upward kick, one or more of the following may be the cause, in addition to improper neutralization and the possibility of parasitic oscillations:

Downward kick: Too much r.f. excitation; insufficient operating bias; distortion in modulator or speech amplifier; too-high resistance in bias supply; insufficient output capacity in plate-supply filter to modulated amplifier; amplifier plate circuit not loaded heavily enough; plate-circuit efficiency too high under carrier conditions; too-low C in tank circuit.

Upward kick: Overmodulation (excessive audio voltage); too-low C in tank circuit; distortion in audio system; regeneration be-

B

C
250-WATT OUTPUT GRID-MODULATED
TRANSMITTER (750 WATTS INPUT)

HIG. 1030 - BLOCK DIAGRAMS OF TIIREE COM-

PLETE: GRID-MODULATED TRANSMITTERS

Each final amplifier grid circuit is link coupled to the plate circuit of the preceding amplifier, and each is loaded with a 110 -volt lamp and loop. The r.f. and audio units are all covered in Chaptera Eight and Ten.

FIG. 1031 - OSCILLOSCOPE PATTERNS REPRESENTING PROPER AND IMPROPER GRID-BIAS OR SUPPRESSOR-GRID MODULATION
The pattern obtained with a correctly adjumted gridbias modulated amplifier is shown at A. The other two drawings indicate non-linear modulation, accompanied by distortion and a broad signal.
cause of incomplete neutralization; operating grid bias too high.

A downward kick in plate current will accompany an oscilloscope pattern like that of Fig. 1031-B; the pattern with an upward kick will look like Fig. 1031-A with the shaded portion extending farther to the right and above the carrier, for the "wedge" pattern.

The source of grid bias should have low internal resistance so that when the grid current varies with modulation there will not be an appreciable shift in the operating grid bias. Since the grid current usually is small compared to the values used for telegraph or plate-modulation service, a grid-bias power pack can be used with satisfactory results, provided it is equipped with a low-resistance bleeder.

ANOTHELR 25-WATT GIRID-MODU. LATEID PPIIGNE

A highly successful layout for grid modulation of a single-tube amplifier is shown in Fig. 1029. This transmitter, incorporating the 6L66L6G exciter of Fig. 839, the 808 amplifier of lig. 852, and the modulator of Fig. 1009, along with two power supplies and a source of fixed bias, requires much the same tuning and adjusting procedure used for the transmitter described above. The plate dissipation of the 808 tube is 50 watts, and at the maximum rated plate voltage for this tube, 1500 volts, the proper operating current is 50 ma .

THE RADIO AMATRUR'S HANDB00K

GEITDMDIUUMATED PPHONE TRANSMITYERE DF 50, IOO, ANI 250 WATTS DUTPPET

The transmitters of the block diagrams in Fig. 1030 are all designed to make use of the r.f. units of Chapter Eight and the audio amplifiers of this chapter. The exciters chosen for these transmitters are all capable of supplying full excitation for Class-C telegraphy, and the power supplies specified for use with the gridmodulated combinations are also adequate for full-power c.w. operation. The modulators used in these arrangements are all capable of supplying much more than the minimum audio power for $100-\mathrm{per}$ cent modulation, since the reserve audio power gives the effect of better output regulation of the modulator with the load of the amplifier grid circuit varying over the audio cycle. Smaller amplifiers may be used for modulating these stages fully, but slightly inferior quality should be expected. Furthermore, the sizes chosen are quite suitable for driving the Class- 13 modulators desirable for plate modulating these transmitters.

ADJUSTMENT OF SUPPIEESSORMODUEATED AMPIIFIERS

The operating principles in suppressor-modulation of a pentode r.f. amplifier are identical with those described for grid-bias modulation. Adjustments are somewhat simpler, however, because the bias on the suppressor grid can be adjusted independently of bias and excitation to the control grid. Except for suppressor bias, the tube should be operated under the same conditions as for c.w. telegraph service, although it is sometimes beneficial to supply somewhat more excitation when suppressor modulation is to be applied.

To set the operating conditions, adjust the amplifier for maximum output at rated maximum input, using the maximum positive recommended suppressor bias. Then apply negative bias to the suppressor, adjusting its value until the antemna current drops to half the figure obtained under maximum conditions. Simultaneously, the plate current also should drop to half its maximum value. The amplifier is then ready for modulation. Should the plate current not follow the antenna current in the same proportion when the suppressor bias is made negative, the loading and excitation should be readjusted to make them coincide.

The oscilloscope patterns of Fig. 1031 are typical of suppressor modulation.

CLASS-L MODULATOE DESIGN

A Class-B modulator is simple both in circuit and construction. The same diagram serves for
all types of tubes, and the three examples to be given later are typical. The important points about a Class-B amplifier are the choice of proper turns ratios for the input and output transformers, proper adjustment of the load (Class-C amplifier plate circuit input) so that the load resistance presented to the Class-B plates is optimum, and provision for adequate excitation power. Typical operating conditions for various types of tubes suitable for Class-B audio service are given in Table II.

The general method for calculating the out-put-transformer turns ratio has already been given. Most manufactured transformers, however, are catalogued according to the purpose for which they are intended, a relatively small number of standard combinations being available. For example, the manufacturer's data seldom give the turns ratio directly, but instead specify that the transformer is intended to couple a pair of tubes of a certain type to a particular load resistance, usually a round figure such as $5000,10,000$ ohms, etc. In such case the Class-C amplifier plate voltage and current must be proportioned to give one of the load resistances specified, and the plate power input must be adjusted to twice the rated output of the Class-B modulator. This sometimes results in odd values of plate current and voltage. A Class-B modulator is fairly tolerant of loading, so that some departure from the optimum figures is possible so long as it is remembered that such departure is accompanied by a reduction in audio output.

A similar situation exists with respect to input transformers. These usually are specified to couple between certain combinations of driver and Class-B tubes. In case a tube combination is chosen for which no specific transformer is available, the manufacturer usually can recommend a suitable unit.

Multi-tapped input and output transformers, suitable for matching a wide range of tube combinations, are available. The use of such units often will simplify the matching and adjustment problem.

FIG. 1032 - TYPICAL RELAY-RACK ARRANGEMENT FOR CLASS-B MODULATOR STAGE
No special constructional features are involved. and the general arrangement is suitable for practically all tubes up to 100 watts plate dimipation, approximately.

TYPICAL CLASS-B MODULATOR

TTHe arrangement and construction of the Class-B modulator shown in Fig. 1032 is representative for all types of tubes whose power ratings and physical dimensions are such that all the equipment for the modulator stage can be contained in one relay-rack chassis. The tubes shown in the illustration are TZ40's, which are capable of developing 175 watts of audio power, with negligible distortion, when properly excited at maximum ratings.

The modulator circuit diagram is given in Fig. 1033. The input transformer works into the Class-B grids from a line, so that the driver and speech amplifier can be isolated from the modulator. The circuit diagram is typical of all Class-B amplifiers, and needs no particular comment. The tubes shown, TZ40's, operate at 1000 volts with zero bias and deliver 175 watts audio output under these conditions. A separate terminal is provided for use with types of the same power classification which require fixed negative grid bias; this terminal is shorted to ground when the zero-bias tubes are used. The grid-input, filament, negative " B " and negative " C " terminals go to a connection strip mounted in the side of the chassis; the high-voltage and output terminals are porcelain feed-through insulators mounted on the rear edge. The chassis measures 7 by 17 by $21 / 2$ inches.

:BDO-WATT CLASS-IB MODULAATOR

The new large zero-bias tubes make possible modulation of transmitters of 500 watts input power without the bother of bias batteries, and are usually suitable for still larger outputs when used with a battery supplying a few volts.

ZB120 tubes are used in the $250-300$ watt modulator of Fig. 1034. At voltages between 750 and 1250 volts from the plate supply, these tubes operate with grids at ground d.c. potential and deliver 150 to 245 watts output per pair. With 1500 -volt plate supply, 9 volts fixed bias (obtainable from two standard 4.5 -volt "C" Batteries) is used to limit the zero-signal plate current and plate dissipation of the tubes.

No input transformer is included in this modulator unit; unless the driver and modulator are to be located in separate buildings some distance apart, it is more economical to use three connecting wires between the two and to include a Class-B input transformer in the driver unit, than to make use of driver-toline and line-to-grids transformers.

500-WATT CLASS-B MODULATDR

Fig. 1036 gives the circuit of the high-power modulator shown on page 246 in Fig. 1035.

FIG. 1033 - CIRCUIT DIAGRAM OF A CLASS-IS MODULATOR
I_{1} - Class- B input tranaformer, line-to-grids (UTC: PA-59-AX).
' ${ }_{2}$-Class-B output transformer, multi-tapped (UTC VM-3).
Resistor \mathbf{R} should be adjusted according to pilot light used. With a 6.3 -volt, 0.3 -amp. bulb, a resistance of 3 ohms will be satisfactory.

This modulator represents the maximum size that can be used with amateur transmitters, since it is capable of modulating the $1-\mathrm{kw}$. maximum input permitted by the regulations. It is adaptable to other types of tubes, such as $204-\mathrm{A}$ and 250 TH , as well as to the 354 's shown. The driver should be capable of supplying 15 to 25 watts to the Class-B modulator grid circuit, depending on the tubes used and the operating conditions. (See Class-B modulator table for data.) The 6L6 unit previously described is recommended for the purpose. The construction of this type of modulator unit is straightforward, as is also its operation. It should be built up separately from the lowlevel audio stages, of course, and should have a plate power supply of good regulation capable of 2000 or 2500 volts at 325 or 350 ma .

FIG. 1034 - CLASS-B MODULATOR OF 300-WATT OUTPUT
Note that the driver transformer is external of this unit; the speech amplifier and driver unit should include a Class-B input transformer as output coupling device. The grid bias battery shown consists of two 4.5 -volt C batteries connected in series; if the modulator supply voltage is lower than 1250 , this fixed-bias source may be omitted and the driver center-tap may be connected directly to ground.
T_{1} is a multi-match 300 -watt Class-B output transformer (UTC VM4), while T_{2} is a 10 -volt c.t. fil. transformer. M is a $0-500 \mathrm{ma}$. milliammeter.

THE RADIO AMATEUR＇S HANDB00K

TABLE II－CLASS－B MODULATOR DATA

$\begin{aligned} & \text { Class-B } \\ & \text { Tubes (2) } \end{aligned}$	Fil． Volts	Plate Volts	Grid Volts App．	Peak A．F． Grid－to－Grid Voltage	Zero－Sig．${ }^{1}$ Plete Current Me．	Max．－Sig．${ }^{1}$ Plate Current Ma．${ }^{\text {？}}$	Lond Res． Plate－to－Plate Ohms	Mex．－Sig． Driving Power Watts ${ }^{\text { }}$	Max．－Sig．${ }^{1}$ Power Output Watts ${ }^{1}$
10	7.5	$\begin{array}{r} 350 \\ 425 \end{array}$	$\begin{aligned} & -40 \\ & -50 \end{aligned}$	$\begin{aligned} & 120 \\ & 130 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 6000 \\ & 8000 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 80 \\ & 25 \end{aligned}$
801	7.5	$\begin{aligned} & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & -50 \\ & -60 \\ & -75 \end{aligned}$	$\begin{aligned} & 270 \\ & 290 \\ & 320 \end{aligned}$	8 8 8	$\begin{aligned} & 130 \\ & 130 \\ & 130 \end{aligned}$	$\begin{array}{r} 6000 \\ 8000 \\ 10,000 \end{array}$	3 3 3	27 36 45
1608	2.5	425	－15	65	36	190	4800	2.2	50
T－20	7.5	800	－40	－	20	136	12，000	－	70
TZ－20	7.5	800	0	－	40	136	12，000	－	70
HY25	7.5	800	－9	－	20	140	9000	2.7	75
HY61	6.3	600	－30	－	60	200	6660	0.4	80
$807{ }^{8}$	6.3	600	－30	－	60	200	6660	0.4	80
825	7.5	850	－67．5	－	50	170	8000	Nole 4	82
RK18	7.5	$\begin{array}{r} 750 \\ 1000 \end{array}$	$\begin{aligned} & -40 \\ & -50 \end{aligned}$	$\begin{aligned} & 180 \\ & 198 \end{aligned}$	－	$\begin{aligned} & 153 \\ & 172 \end{aligned}$	$\begin{aligned} & 10,000 \\ & 12,000 \end{aligned}$	Nole 4	$\begin{array}{r} 65 \\ 100 \end{array}$
756	7.5	850	－30	－	20	225	6750	Note 4	100
809	6.3	750	－5	140	35	200	8400	2.4	100
1623	6.3	750	－25	200	35	200	8400	4	100
HY57	6.3	800	－9	145	40	200	9000	2.7	110
800	7.5	$\begin{array}{r} 750 \\ 1000 \\ 1250 \end{array}$	-40 -55 -70	$\begin{aligned} & 320 \\ & 300 \\ & 300 \end{aligned}$	26 98 30	$\begin{aligned} & 210 \\ & 160 \\ & 130 \end{aligned}$	$\begin{array}{r} 6400 \\ 12,500 \\ 21,000 \end{array}$	6.0 4.4 3.4	$\begin{array}{r} 90 \\ 100 \\ 106 \end{array}$
RK31	7.5	1250	0	－	－	170	13，000	Note 4	125
RK37	7.5	1250	－32	223	32	158	20，000	2.8	125
35 T	5.0	$\begin{array}{r} 750 \\ 1000 \\ 1250 \\ 1500 \end{array}$	-25 -35 -45 -50	二	二	$\begin{aligned} & 200 \\ & 185 \\ & 156 \\ & 140 \end{aligned}$	$\begin{array}{r} 7000 \\ 11,200 \\ 17,200 \\ 23,600 \end{array}$	8 7 5.5 4.5	$\begin{array}{r} 90 \\ 115 \\ 195 \\ 135 \end{array}$
HY40	7.5	1000	－38	190	20	270	7000	6	175
T40	7.5	1000	－38	190	22	280	6900	6	175
TZ40	7.5	1000	0	75	40	280	6900	3	175
830－B	10.0	$\begin{array}{r} 800 \\ 1000 \end{array}$	$\begin{aligned} & -27 \\ & -35 \end{aligned}$	$\begin{aligned} & 250 \\ & 270 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 280 \\ & 280 \end{aligned}$	$\begin{aligned} & 6000 \\ & 7600 \end{aligned}$	5	$\begin{array}{r} 135 \\ 175 \end{array}$
808	7.5	1500	－16	110	30	190	18，300	4.8	185
203－B	10.0	1000	－35	－	40	330	6800	Note 5	200
507	5.0	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \\ & 3000 \end{aligned}$	$\begin{aligned} & -85 \\ & -135 \\ & -180 \\ & -280 \end{aligned}$	二	二	$\begin{aligned} & 200 \\ & 166 \\ & 146 \\ & 115 \end{aligned}$	$\begin{array}{r} 6000 \\ 9600 \\ 12,000 \\ 16,000 \end{array}$	4.5 4.5 4.5 4.5	100 155 195 250
154	5.0	$\begin{array}{r} 750 \\ 1000 \\ 1250 \\ 1500 \end{array}$	$\begin{aligned} & -100 \\ & -155 \\ & -210 \\ & -965 \end{aligned}$	430 510 600 700	40 50 60 80	350 300 256 230	$\begin{array}{r} 4000 \\ 7500 \\ 11,400 \\ 16,000 \end{array}$	10 10 10 10	150 200 293 250
RK59	7.5	1250	0	180	40	300	10，000	7.5	250
RK58	10	1250	0	200	148	320	9000	7.5	260
203－A	10.0	$\begin{aligned} & 1000 \\ & 1250 \end{aligned}$	-35 -45	310 330	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & 320 \\ & 320 \end{aligned}$	$\begin{aligned} & 6900 \\ & 9000 \end{aligned}$	10	$\begin{aligned} & 200 \\ & 260 \end{aligned}$
838	10.0	$\begin{aligned} & 1000 \\ & 1250 \end{aligned}$	0 0	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 106 \\ & 148 \end{aligned}$	$\begin{aligned} & 320 \\ & 320 \end{aligned}$	$\begin{array}{r} 7600 \\ 11,200 \end{array}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 200 \\ & 260 \end{aligned}$
211	10.0	1250	－100	410	20	320	9000	8	260
$203 Z$	10.0	1250	0	－	90	350	7900	7	300

RADIOTELEPHONY

TABLE II－CLASS－B MODULATOR DATA－Continued

$\begin{gathered} \text { Class-B } \\ \text { Tubes (2) } \end{gathered}$	Fil． Volts	Plato Vols	Grid Volts App．	Peak A．F． Grid－to－Grid Voltage	Zero－Sig．${ }^{1}$ Plate Current Ma．	Max．${ }^{\text {Sig．}}{ }^{1}$ Plate Current Me．${ }^{\text {？}}$	Losd Res． Plate－to－Plate Ohms	Max．－Sig． Driving Powet Watts ${ }^{2}$	Max．－Sig．${ }^{1}$ Power Output Watts ${ }^{2}$
Z8180	10.0	$\begin{array}{r} 750 \\ 1000 \\ 1950 \\ 1500 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ -9 \end{array}$	$\begin{aligned} & 190 \\ & 190 \\ & 180 \\ & 196 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \\ & 95 \\ & 60 \end{aligned}$	$\begin{aligned} & 380 \\ & 310 \\ & 300 \\ & 296 \end{aligned}$	$\begin{array}{r} 4800 \\ 6900 \\ 9000 \\ 11,900 \end{array}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 150 \\ & 900 \\ & 945 \\ & 300 \end{aligned}$
RK－38	5.0	2000	－59	357	36	265	16，000	5.8	330
HF100	$\begin{gathered} 10.0 \\ \text { to } 11.0 \end{gathered}$	$\begin{aligned} & 1500 \\ & 1750 \end{aligned}$	$\begin{aligned} & -58 \\ & -69 \end{aligned}$	$\begin{aligned} & 964 \\ & 324 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 270 \\ & 270 \end{aligned}$	$\begin{aligned} & 19,000 \\ & 16,000 \end{aligned}$	$\frac{8}{9}$	$\begin{array}{r} 860 \\ 350 \end{array}$
858	10.0	$\begin{aligned} & 8000 \\ & 3000 \end{aligned}$	$\begin{aligned} & -155 \\ & -250 \end{aligned}$	$\begin{aligned} & 600 \\ & 780 \end{aligned}$	$\begin{aligned} & 82 \\ & 14 \end{aligned}$	$\begin{aligned} & 180 \\ & 160 \end{aligned}$	$\begin{aligned} & 89,000 \\ & 36,000 \end{aligned}$	3.5 3.5	$\begin{aligned} & 280 \\ & 360 \end{aligned}$
$\begin{aligned} & 805 \text { a } \\ & \text { RK57 } \end{aligned}$	10.0	$\begin{aligned} & 1850 \\ & 1500 \end{aligned}$	$\begin{gathered} 0 \\ -16 \end{gathered}$	$\begin{aligned} & 835 \\ & 280 \end{aligned}$	$\begin{array}{r} 148 \\ 84 \end{array}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 6700 \\ & 8200 \end{aligned}$	6	$\begin{aligned} & 300 \\ & 370 \end{aligned}$
100TL	$\begin{aligned} & 5.0 \\ & 50 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	Bias ad	usted for maxi under no－s	um reted plote nal condition	dissipation	$\begin{array}{r} 5800 \\ 7900 \\ 9600 \\ 16,000 \\ 99,000 \\ 30,000 \end{array}$	May be driven by push－pull 6L6＇s	$\begin{aligned} & 170 \\ & 930 \\ & 970 \\ & 350 \\ & 435 \\ & 465 \end{aligned}$
100TH	$\begin{aligned} & 5.0 \\ & \$ 0 \\ & 5.1 \end{aligned}$	1000 1850 1500 2000 2500 3000	Bias ad	usted for maxi under no－s Zero blas up	mum rated plat ignal condition to 1250 v ．p	dissipetion ． abo	$\begin{array}{r} 5900 \\ 7900 \\ 9600 \\ 16,000 \\ 99,000 \\ 30,000 \end{array}$	May be driven by push－pull 6Ló＇s	$\begin{aligned} & 910 \\ & 960 \\ & 300 \\ & 380 \\ & 460 \\ & 500 \end{aligned}$
806	5.0	2000	－150	340	20	390	11，500	14	500
HF200	10.0	2000	－100	480	60	380	11，800	9	500
828	10.0	2000	－90	－	50	450	9000	Note 7	500
HD 203－A	10.0	$\begin{array}{r} 1500 \\ 1750 \end{array}$	$\begin{aligned} & -40 \\ & -67 \end{aligned}$	二	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{array}{r} 485 \\ 485 \end{array}$	$\begin{aligned} & 8000 \\ & 9000 \end{aligned}$	Note 6	$\begin{array}{r} 400 \\ 500 \end{array}$
$\begin{aligned} & 950 \mathrm{TL} \\ & 950 \mathrm{TH} \end{aligned}$	$\begin{array}{r} 5.0 \\ 105.1 \end{array}$	$\begin{aligned} & 1000 \\ & 1250 \end{aligned}$	Bias	justed for maxi under no－s 250TH－rero bl	mum rated plat ignal condition up to 1400	dissipstion ．plate	$\begin{aligned} & 2360 \\ & 3280 \end{aligned}$	May be driven by p．p．6L6＇s	$\begin{array}{r} 350 \\ 540 \end{array}$
204A	11.0	2000	－60	500	80	500	8800	20	600
$\begin{aligned} & 354 \\ & 354 C \end{aligned}$	5.0	$\begin{aligned} & 1000 \\ & 1500 \\ & 8000 \\ & 2500 \end{aligned}$	$\begin{aligned} & -60 \\ & -95 \\ & -125 \\ & -165 \end{aligned}$	$\begin{aligned} & 340 \\ & 440 \\ & 500 \\ & 560 \end{aligned}$	$\begin{array}{r} 40 \\ 60 \\ 100 \\ 80 \end{array}$	$\begin{aligned} & 259 \\ & 967 \\ & 994 \\ & 936 \end{aligned}$	$\begin{aligned} & 10,000 \\ & 10,000 \\ & 10,000 \\ & 15,000 \end{aligned}$	14 80 80 80	168 315 448 577
354D	5.0	$\begin{array}{r} 1500 \\ 8500 \end{array}$	$\begin{aligned} & -60 \\ & -112 \end{aligned}$	$\begin{array}{r} 350 \\ 430 \end{array}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 877 \\ & 890 \end{aligned}$	$\begin{aligned} & 19,000 \\ & 20,000 \end{aligned}$	$\begin{aligned} & 80 \\ & 20 \end{aligned}$	$\begin{array}{r} 302 \\ 519 \end{array}$
354E	5.0	$\begin{array}{r} 1500 \\ 8500 \\ \hline \end{array}$	$\begin{array}{r} -25 \\ -50 \end{array}$	$\begin{aligned} & 334 \\ & 384 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 325 \\ 348 \end{array}$	$\begin{aligned} & 10,000 \\ & 16,000 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 319 \\ & 595 \end{aligned}$
$354 F$	5.0	$\begin{aligned} & 1500 \\ & 2500 \end{aligned}$	$\begin{array}{r} -15 \\ -35 \end{array}$	$\begin{aligned} & 974 \\ & 310 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 280 \\ & 300 \end{aligned}$	$\begin{aligned} & 18,000 \\ & 20,000 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{array}{r} 890 \\ 550 \end{array}$
HF300	11－12	2000	－72	404	60	480	9600	14	650
1507	5.25	$\begin{aligned} & 1000 \\ & 1500 \\ & 9000 \end{aligned}$	$\begin{aligned} & -80 \\ & -130 \\ & -170 \end{aligned}$	二	二	400 400 400	$\begin{array}{r} 4000 \\ 6800 \\ 11,000 \end{array}$	$\begin{aligned} & 11 \\ & 14 \\ & 16 \end{aligned}$	900 350 490

iValues are for both tubes．
${ }^{2}$ SIn usoidal signal values，speech values are approximately one－half for tubes blased to epproximate cul－off and 80% for rero－bias tubes．
－Values do not include transformer losses．Somewhat higher power is required of the driver to supply losses and provide good regulation．
－Can be driven by a pair of 45 ＇s in push－pull at 250 volts．
－Can be driven by poli of 2 A 3 ＇s In push－pull at 250 volts．
－Can be driven by epair of 2A3＇s In push－pull Class－AB af 300 volts with fleed blas．
${ }^{2}$ Can be driven by four 2 A3＇s In push－pull perallel Class－AB or by opeir of 6L6＇s．
－Class－AB3．
Input transformers must be designed to fit particular driver－Class－B Amplifel combinations．Suitable transformers are available rom varlous manufacturars．

the radio amatrurrs handiook

FIG. 103. - SPFECCH-AMPIIFIER AND 50-WATT DRIVER UNIT (LEFT) AND 500-WATT CLASS-R MOIULATOR (RIGITT)
The speech amplifier and its power supply, huilt as one unit, use the circuite of Figs. 1025 and 1026.

Notes on Class-B Audio Operation

Aside from the necessity for adjusting the Class-C amplifier's plate input so that the proper load resistance is presented, through the output transformer, to the Class-B plates, certain other features of Class-B operation require attention. Also mentioned previously was the necessity for supplying sufficient power to the Class-B grids and the selection of the proper input transformer.

Where fixed bias is required, as specified in Table II, the bias source must have very low internal resistance if distortionless operation is

FIG. 1036 - CIRCUIT OF THE 500-WATT CLASS-B MODULATOR
T_{3} - Class-AB $6 L 6$ to Class- $\mathbf{B} \mathbf{3 5 4} 4$ input transformer, mounted in driver unit (UTC Type 18126).
T4-500-watt Clase-B output transformer, 18,000 ohms to 5000 ohms (UTC Type VM-5).
T $_{5}$ - Filament transformer, $5.25-$ volt $20-\mathrm{amp}$. secondary (in power supply unit).
$R_{1}-100$-ohm 10-watt parasitic suppressor resistors (not required unlese modulator oscillates).
to be secured. With tubes particularly suited to Class-B operation, not a great deal of bias is required, and it is preferable to use batteries for the purpose rather than a power pack, unless the latter has an extremely low value of bleeder resistance. High resistance in the grid return circuit shifts the operating point when grid current flows and thereby introduces distortion.

The plate supply for a Class-B modulator should have good regulation, also in the interests of reducing distortion. A choke-input filter should be used, along with mercury-vapor rectifier tubes. Also, the capacity of the last condenser in the filter should be large enough so that its reactance is low (of the order of a few hundred ohms at most) at the lowest audio frequency to be passed by the modulator. A capacity of $4 \mu \mathrm{fd}$. usually will meet this requirement.

When the plate load resistance and other operating conditions are according to the tube manufacturer's specifications, pure-tone input to the grids will develop the rated power output when the plate current rises to the values given in Table II. With voice input, however, the plate current will be considerably less under conditions giving the same peak output, which is the limiting factor. Usually the modulator will develop its rated peak output when its plate current is about half the maximumsignal value given in the table, although the value will vary with the type of voice, kind of tube, etc. If possible, the output of the transmitter should be checked with an oscilloscope to determine the average value of plate current which, with normal talking, keeps the average modulation percentage as high as possible but does not cause it to rise over 100% under any conditions. The gain may then be adjusted so that the average plate-current value so obtained is not exceeded in regular operation.

RADIOTRLEPHONY

THE PILATE-MDDUMATED THANSMITTER

For distortionless or linear plate modulation with 100 per cent modulation capability (sinusoidal signal), the modulated r.f. amplifier should operate with a steady d.c. power input equal to twice the modulator's maximum rated undistorted power output, and should simultaneously operate so that its plate circuit presents a constant resistance of proper value as viewed from the modulator's output. That is, the d.c. plate current must be directly proportional to the applied plate voltage over the whole range of plate-voltage change during modulation. This condition obtains when the modulated stage operates as what is known as a Class-C amplifier; that is, so that its power output is proportional to its plate power input, as described in Chapter Five.

When the amplifier's operation is truly Class-C, its plate-circuit input resistance, as viewed from the modulator output, will be equal to the mean plate voltage divided by the plate current. Also, the product of the plate voltage and current is the unmodulated power input, equal to twice the modulator's maximum audio power output for 100 per cent modulation. Therefore, regardless of the type, size or number of tubes used in the Class-C amplifier, its mean plate voltage and plate current will be the same for a given modulator.

As Class-C amplifiers, triodes in a neutralized circuit are capable of making best use of the modulator audio power output. Screengrid tubes can be used, but require simultaneous modulation of both plate and screen voltages. In modulated service, tubes should not be operated above the manufacturer's ratings. Excessive plate voltage or plate current will not only shorten tube life but also may cause non-linear modulation, distortion and interfering spurious radiation. This applies particularly to receiving-type tubes when operated as modulated Class-C r.f. a mplifiers.
lt must be remembered that the power input to the Class-C modulated stage is not just the steady d.c. power input. The audio-frequency power is superimposed on this average input, and with 100 per cent modulation by a sinusoidal signal will be 50 per cent greater than the average power indicated by d.c. meters and approximately 25 per cent greater with a speech signal as already described. Hence, the maximum plate dissipation may be 50 per cent greater than the d.c. meter readings might lead one to believe, and allowance for this additional dissipation should be made in choosing the plate voltage. Of equal importance is the fact that, with a tube whose normal plate-current rating is considerably exceeded, the filament emission may not be great enough to
meet the peak demands imposed by the requirement that the peak power output must be four times the carrier power with 100 per cent modulation.

Operating Requirements far Linearity

The general method of operating a tube as a Class-C amplifier has been described in Chap-

FIIONT VIEW OF R.F. PORTION OF THE 'PHONF: TRANSMITTER OF FIG. 1037
ter Five. Adjustment of loading, grid bias and excitation voltage are of first importance. In general, the operating conditions for modulated service as given in the tube tables can be followed; the load or antenna coupling is simply adjusted until the tube draws rated plate current at the operating d.c. plate voltage, assuming that the power input under these conditions is twice the available audio power from the modulator. Should the audio power be insufficient to modulate the full rated input of the Class-C amplifies, either plate current or voltage, or both, should be reduced accordingly. As a general rule, it is better to reduce both in the same proportion rather than to lower the power by maintaining the plate voltage at the maximum figure and using law plate current or vice versa, especially when the Class-C tube is operated considerably under its normal ratings.
Grid bias may be obtained from a fixed supply such as a battery or a bias power pack, or

THE RADIO AMATEUR'S HANDB00K

Fig. 1037 - A COMPILETE MODERNRACK-MOUNTEI) 250-WATT INIPUT CLASS-H PLATE-MODULATED PIIIONE
from the flow of grid current through a grid leak. A combination of both usually is preferable to either alone, tending to maintain the operation more closely to ideal Class-C conditions. rixed bias sufficient for protective purposes, as described in Chapter Eight, plus grid-leak bias to bring the total bias under carrier conditions to twice the cut-off figure, results in satisfactory operation. As an alternative to fixed bias, cathode hias also may be used.

It is highly important that the modulated Class-C r.f. amplifier be supplied with sufficient grid excitation. Unless the excitation is ample linear operation is impossible, because as the plate voltage rises during the modulation cycle, the grid will not be driven sufficiently to cause the plate current to rise in the same proportion. Hence the power output will not vary as the square of the plate voltage, which is a fundamental requirement. Remember that the excitation must be sufficient for peak conditions, when the plate voltage and plate current must both be twice the unmodulated values.

Besides the operating conditions just mentioned, linear operation also requires that a plate tank circuit having adequate flywheel effect be used. This means that the $L-C^{*}$ ratio must be adjusted for optimum Q, at least, as described in Chapter Eight. An unduly high $L-C$ ratio will cause non-linearity and distortion.

Matching Modulator to Modulated Amplifier

A modulator is simply an audio power amplifier, and as such requires a definite load impedance or resistance in its plate circuit if maximum power is to be developed with minimum distortion. As we have seen, the plate input circuit of the Class-C amplifier circuit has a definite impedance or resistance value; this value may or may not be the optimum load resistance for the modulator with which

it is to be used. The problem, therefore, is that of transforming the Class-C amplifier plate resistance so that, as viewed from the modulator plates, it appears to be the value required for optimum modulator operation. When this is clone the Class-C amplifier's plate voltage will swing between the limits of zero and twice the steady d.c. plate voltage during modulation, always assuming the power requirements as already set forth are met.
lf the Class-13 output (modulation) transformer is to be made for a specific transmitter, the proper turns ratio may be determined by taking the square root of the ratio of the r.f. amplifier load resistance (obtained by dividing the amplifier d.c. plate voltage by the d.c. plate current in amperes) to the plate-to-plate load impedance recommended for the modulator tubes under the conditions of operation. From this calculation is obtained the correct ratio of secondary turns to total primary turns.

TADEIPLETE PMIMDNE TIRANSNIITTEIR FOIE 2.⿹勹 WATTA INIPIT

A
rrangement of units and circuits of a complete transmitter for 250-watt plate-modulated input are shown in Figs. 1037 and 1038. The individual parts of this transmitter exciter, r.f. amplifier, ant. tuning unit, speech amplifier, and modulator - are described separately in these chapters. Information on power supplies for the various sections is given in Chapter 14.

If control of the transmitter from a separate unit on the operating table is preferred to placement of the rack within the seated operator's reach, the exciter, speech amplifier, and associated power supplies may be removed from the rack arrangement and placed in a small rack or cabinet on the table, with r.f., audio, and power lines connecting. If the distance between the control units and the transmitter is not more than a few feet, the 110-volt a.c. lines from the outlet may be carried directly to the operating talle, connected to switches at the control unit, and thence connected to the transmitter. With higher-power transmitters, use of heavy lines directly from outlet or master switch to transmitter, with relays controlled by small switches, is preferable.

For c.w. telegraph operation of this transmitter (any plate-modulated transmitter using secondary of modulation transformer in series with plate supply) the transformer secondary should be removed from the circuit by a shorting switch or by a separate power supply lead.

It is of particular importance that the modulator be operated only when a load is applied

radiotrlephony

FIf. IO38-CONNECTIONS OF OUTIPUT STAGES AND POWER SUPPIIES (OF FIG. 1037
across the secondary, for the peak output voltage developed with no load is tremendous.

PLATE-MODULATED TIBANGMITTEIS FOR 125, 500, AND 1000 WATTS INPUT

INN Fig. 1039 are shown three excellent combinations of the r.f. and a.f. units earlier described. All of these phone transmitters (as well as the grid-modulated transmitters described) give linear 100-per cent modulation at full input rating. Adequate excitation is easily provided by the buffer stages operating within the normal ratings for continuous duty.

For economy, grid-leak bias alone may be used throughout the r.f. stages including the final amplifiers, but care should be taken in
adjusting the excitation so that there is no danger of failure of the r.f. driving power to the amplifiers. Adjustment of the various stages should be performed with the plate voltage removed from the following stages, and should preferably be done at reduced voltage on the stage being tuned.

Use of combined gridleak and fixed bias on the modulated stage is preferred for easily adjusted Class-C operation, and provides a measure of safety for the amplifier tube of tubes. Since the grid current of the halfkilowatt and kilowatt input modulated amplifiers is relat vely large, B batteries should not be required to handle the full grid current. If batteries are to pe used with amplifiers of this size, a resistor should be connected across the batteries and adjusted by means of a milliammeter in series with the batteries so that the greater part of the current is carried by the resistor. A switch should be provided with this arrangement to remove the load of the resistor from the batteries during idle periods. Information on use of a.c. power supply to provide fixed bias is found in Chapter Fourteen.

Plate Modulation of Screen-Grid Class-C Amplifiers

Screen-grid tubes of the pentode or beam tetrode type can be used as Class-C platemodulated amplifiers provided the modulation is applied to both the plate and screen grid. The method of feeding the screen grid with the necessary d.c. and modulation voltage is shown in Fig. 1040. Audio as well as d.c. power is dissipated in the dropping resistor R. This arrangement is fairly ecpnomical with the smaller tubes but the power loss may reach considerable proportions with the larger types.

The dropping resistor, R, should be of the proper value to apply notmal d.c. voltage to

THE RADIO AMATEUR'S HANDB00K

the screen under steady carrier conditions. Its value can be calculated by taking the difference between plate and screen voltages and dividing it by the rated screen current. In many cases, manufacturers of the tubes specify the optimum value of screen dropping resistor for plate-modulated service.

The load resistance for the modulator is found by dividing the operating d.c. plate voltage on the Class- C stage by the sum of the plate and sercen currents. The plate voltage

FIG. 1039 - BLOCK DIAGRAMS OF THREE PI,ATE, MOIDULATEI TRANSMITTERS

FIG. 1040 - PENTODE PLATE-MODULATION CIRCUIT WITH SCREEN-DROP RESISTOR
Screen and plate by-passes should be about 0.001 $\mu \mathrm{fd}$.
multiplied by the sum of the two currents is the power input figure which is used as the basis for determining the audio power required from the modulator.

With the larger pentodes, such as the RK-20, 804, RIK-28 and 803, the audio power loss in the screen dropping resistor may be a considerable percentage of the total supplied by the modulator. For these tubes a special Class-B output transformer, having an additional secondary winding for coupling to the screen circuit, can be installed to modulate plate and screen simultaneously, the screen being supplied d.c. through the auxiliary winding. The dropping resistor is thereby eliminated. This auxiliary winding should have approximately 20 per cent as many turns as the plate secondary. Transformers of this type are available as standard units. The secondaries should be connected so that the audio voltage on the screen is in phase with that on the plate of the Class-C amplifier. With this type of coupling, the modulator load can be figured neglecting the screen consumption, since it is relatively small compared to the plate load.

Adjustment of Plate-Modulated Amplifiers

After the audio section of the transmitter, including the modulator, has been checked for specified output with good quality (say with a fixed resistance equal to the specified load value across the modulator output transformer secondary), the r.f. stage should be adjusted to present the proper load to the modulator output. All transmitter testing excepting final tuning of the antenna circuit should be carried on with a dummy antenna load. Otherwise, needless and unlawful interference will be caused. Tuning and neutralizing are the same as for c.w. transmitters, described in Chapter Eight. Neutralization should be exact, because even slight regeneration can cause nonlinear modulation.

radiotelephony

Operating checks using either cathode-ray oscilloscope or carrier-shift indications are the most certain. Oscilloscope patterns, obtained with a unit of the type described in Chapter Seventeen, are shown in Fig. 1041. These trapezoidal patterns result with the oscilloscope connected to the transmitter as shown in Fig. 1043. The leads marked "sweep terminals" connect to the horizontal cathode-ray plates, while the r.f. leads marked "signal terminals" connect to the vertical plates. The audio input to the oscilloscope should be taken from the modulator output circuit to avoid phase difference between the modulation applied to the carrier and the audio signal applied to the oscilloscope. Such phase shift gives patterns which are difficult to interpret.

The patterns concerned with Class-C amplifier adjustment are Figs. 1041 I), E, and ${ }^{\prime}$, which show improper adjustment, and Fig. 1042 showing proper 100 c modulation. The overmodulation shown in F is particularly t" be avoided. The harmonic distortion indicated by A, B and C, revealed by streaking and shifting of the pattern, would most likely be traceable to the audio circuits and should be

HIG. 1042 - ACIUAL PIIOTOGRAIH GF TRAPEZOIDAL FIGUIRE FOR PROPER 100% MODULATION

cleaned up by checking Class-A speech amplifier grid bias, audio overloading, etc., in the preliminary audio-unit testing.
A carrier-shift indicator is simply a linear rectifier, such as that diagrammed in Fig. 10.4, showing flattening of the positive peaks like that illustrated in Fig. 1041-1) by a drop in

FIG. 1043 - MEIHODS OF COUPLANG THE OSCILI,OSCOIDE TO 'IHONE TRAYSMITTER CLRCUITS
meter reading, or overmodulation as shown in F by an upward shift in meter reading.

Lacking an oscilloscope for actual viewing of the modulated wave, the plate current to the modulated anplitier may be taken as a criterion of proper operation. With correct operating conditions and undistorted audio modulation, the plate-current neading will remain perfectly steady either without modulation or with any modulation percentage up to 100%

 (d) DHTIONS
'The normal trapezoidal ligure obtained with a medium degree of modulation is shown liy "A". The mosdulation percentage is obtained by meusurement of the dimensions D_{1} und IV, and sulntituting in this wimptr equation

$$
\text { Percent modulation }=\frac{D_{1}-D_{2}}{D_{1}+I_{2}} \times 100
$$

Output contuining even harmonics is represented in B; and C is typical of odd-harmonic content. Fluttopped positive peaks of the modnatation envelope. as would oceur with insufficient Cluds-C amplifier excitation. ure represented in D, while E shows this condition combined with distortion of the negative peaks. Fhown over-modulation, with the negative peaks cut off and with "whiskers" on the positive peuks. Arrows itudicat. earrier position without modulation. Further explanation of thesefigures is given in the text.

THE RADIO AMATEUR'S HANDB00K

This is also the case with the carrier-shift indicator. If the needle "kicks" with modulation, a number of things may be wrong. The more common causes are the following:

Downward kick: Insufficient excitation to

FIG. 1044 - CIRCUIT OF THE SIMPLE DIODETYPE CARHIER-SHIFT INDICATOR
Typical circuit values are an followa:
I. - Coupling coil to suit frequency. It may be tuned by a midget condenser and coupled to the transmitter by a link.
$\mathrm{C}_{1}, \mathrm{C}_{2}-\mathbf{0 . 0 0 1 - \mu \mathrm { fd } \text { . fixed condensers. }}$
K - $\mathbf{1 0 , 0 0 0 - o h m}$ non-inductive resistor, mininum value for 56,59 or 89 tubea. Lower minimum value of 5000 ohms may be used with 53,79 or 2A3 (all diode connected).
$\mathrm{V}-0-1$ d.c. milliammeter.
V - One of above tuben with grid (or grids) and plate tied together.
the Class-C stage; insufficient bias on the Class-C stage (bias should be at least twice cut-off under carrier conditions); insufficient audio power from the modulator; audio load resistance represented by Class-C plate circuit too high or too low; distortion or overloading in audio system; insufficient output capacity in plate-supply filter for Class-C stage (as in the case of a Class-IS amplifier, the reactance of the last filter condenser must be small compared to the audio load resistance represented by the Class-C plate circuit); overloading of Class-C tube or tubes; too-low C in tank circuit.

Upward kick: Overmodulation (excessive audio power; gain control set too high); toolow C^{*} in tank circuit; distortion in audio system; neutralization incomplete; parasitic oscillation in Class-C amplifier. In general, a downward plate-current kick will be accompanied by an oscilloscope pattern like that in

FIG. 1045 - SIMPIN VFGATIVE-PEAK GVEL-MODULATION INIDCATOR (W8AGW)

Fig. 1041-D, while an upward kick will appear on the oscilloscope like Fig. 1041-F.

When a common plate supply is used for both Class-B modulator and Class- C modulated r.f. amplifier, the latter's plate current sometimes will kick downward with modulation even though the operating conditions are correct. This is traceable to poor voltage regulation in the plate supply, the increased load of the Class-B stage with modulation causing the plate voltage, and hence the Class-C plate current, to drop momentarily. Separate supplies are preferable. A similar effect will often be noted with high-power transmitters, even when separate plate supplies are used, because of poor power-line regulation. In such cases, a filament voltmeter across one of the tubes will show a corresponding downward kick with modulation.

ACTOMATIC MIDIDULATION CONTIETL.

The overmodulation-indication systems just deseribed have the disadvantage that while they disclose the existence of overmodulation with its accompanying sideband "splatter" and unnecessary interference, they cannot prevent it. A circuit which automatically limits the modulation percentage to any predetermined value, regardless of the amplitude of the microphone excitation or setting of the speech-a mplifier gain control, is shown in Fig. 1046. It utilizes the principle of the negativepeak indicator of Fig. 1045 to develop a d.c. voltage which is applied as gain-control bias to the No. 3 grid of a 6 L 7 speech amplifier tube.

Operation under the typical conditions illustrated in Fig. 1046 is as follows: the cathode of the 6 L 7 is connected at a point 90 volts from ground on the voltage divider, leaving a net voltage of 250 between cathode and plate. The bias on the control grid is set at -10 volts, that on the No. 3 grid at -3 volts (through resistors R_{3} and R_{2}) with respect to the cathode. The plate of the control rectifier has an "advance" bias of 90 volts positive with respect to ground: this is so that the tube will begin conducting before the instantaneous plate voltage on the Class-C stage reaches zero. The advance bias should be about 7 per cent of the d.c. plate voltage on the modulated amplifier (1250 volts in the example shown); thus the automatic control begins working at about 93% modulation. When current flows through the rectifier a voltage is developed across R_{1} which increases the negative bias on the No. 3 grid of the 61.7 and thus reduces the amplifier gain. $R_{2} C_{2}$ and $R_{3} C_{1}$ are r.f. and audio filters. The time constant in the No. 3 grid circuit should not be too large or the action will not be rapid

RADIOTLLEPHONY

enough to prevent overmodulation before the control voltage builds up.

The 6L,7 stage preferably should be at a point in the speech amplifier where the peak signal to its grid will not exceed one volt. With the gain control, R_{4}, set to give full modulation with low-amplitude speech input, loud talking will not result in an increase in modulator output, but simply in a reduction in gain which maintains the modulation at the same level. Besides avoiding overmodulation, this action has the effect of raising the average modulation percentage and thereby increasing the effectiveness of the transmitter.

The 6 L 7 can in general be substituted for a 6.57 or corresponding pentode in the speech amplifier.
modulated as when it is fully modulated. These deficiencies can be overcome to a considerable extent if the cardier amplitude is automatically varied so that it is just sufficient to accommodate the various modulating signal amplitudes as they occur. A system in which this is accomplished is called a controlledcarrier system.

The essential difference, so far as the modulated wave is concerned, between constantcarrier and controlled-carrier is illustrated in Fig. 1047. The principle is to vary an operating control in the transmitter auto matically by the modulating signal so that the carrier amplitude is approximately proportional to the average of the modulating signal. This control must be fast enough in operation fo follow normal syllabic variations in speech intensity, but not so fast as to follow the individual cyclic variations of audio frequency. The most satisfactory methods of control for volice transmission employ vacuum tubes as speech-operated variable resistances to vary the average plate power input of transmitters using piate modulation, or to vary excitation to a grid-bias modulated stage, or to vary the suppressor-grid bias with that system.

DVARMODULATION INDICATORS

TTHe most generally useful device for measuring modulation and for continuous checking against overmodulation is the cathocke-ray oscilloscope

CONTROLLED-CAIREIRIR TIEANSMISSION

INN THE systems previously described, the carrier amplitude is maintained constant and the percentage modulation varied in accordance with the modulating signal. That is, these systems are constant-carrier types, and the carrier power radiated is always the same regardless of whether the modulation is shallow or deep, or even when there is no modulation at all. Since speech not only is of varying amplitude but also is intermittent, the average efficiency with constant-carrier transmission is quite small. Also, the heterodyne interference created is just as bad when the carrier is un-
described in Chapter Seventeen connected to the transmitter circuit as shown in Fig. 1043. The carrier-shift indicator discussed in connection with Class. C amplifiers, and schematically diagrammed in Fig. 1044, is the simplest device for continuous monitoring against overmodulation, although it will not indicate conditions such as that illustrated by Fig. 1031-C where the average amplitude of the modulated wave may remain constant even though modulation distortion is occurring. This particular type of distortion represents a more or less special case, however, and the carrier-shift indicator would be considered a generally satisfactory means to insure against overmodulation. It indicates positive-peak

THE RADIO AMATEUR'S HANDB00K

overmodulation by an upward shift in current reading, and flattening of positive peaks (accompanying modulation capability less than 100 per cent) by a decrease in current reading. If such carrier shift should be observed at very low modulation levels, with speech input or
able. The indicator, M, may be a low-range milliammeter.

In addition to these checking devices, the meters in the modulator and modulated amplifier circuit of the transmitter itself may be used to advantage, particularly when the set is periodically checked by an oscilloscope.

FIG. 1047 - CONTIRAS'TING MODULATED WAYES OF THE CONSTANT-CARRIER TYPE (A) AND CONTHOLIFD-CARRIER TYPE: (B)
with a test signal from an audio source of known pure tone, it is likely that even-order harmonic distortion is occurring in the speechamplifier or driver stages. This results in a "lop-sided" modulating signal waveform, which will give a correspondingly unsy mmetrical modulation envelope. Such distortion commonly occurs with a short-circuited cathodebias resistor in an early audio stage.

A simple negative-peak indicator is diagrammed in Fig. 1045. This consists essentially of rectifier, VT, connected to the output side of the modulation choke of a Class-A system as shown, or to the corresponding side of the secondary of a modulator output transformer. When negative-peak modulation exceeds 100 per cent, current will flow through the rectifier circuit, although no current will flow so long as the filament of the rectifier tube is positive with respect to ground (minus B). The rectifier tube should have insulation capable of withstanding the maximum peak voltage (d.c. plus audio) applied to the modulated amplifier. The rectifier filament winding must be correspondingly insulated from the primary. Rectifiers of the vacuum type are prefer-

FIG. 1048 - CLASS-B CONTROLLED-CAIRRIER CIRCUIT FOIR 500-VOLT TYIPE: TUBES (W2CTK)
$L_{5}, L_{6}, L_{7}, L_{8}-T o$ suit frequency.
$\mathrm{C}_{7}-0.1 \mu \mathrm{fd}$. paper.
$\mathrm{C}_{8}-1.0 \mu \mathrm{fd}$. paper.
$\mathrm{C}_{9}-2$ - to 3 - $\mu \mathrm{fd}$. 2000-volt. (See text.)
C_{10} - Double $35-\mu \mu \mathrm{Cd}$. midget.
C_{11} - Split-ntator double-spaced, 50 $\mu \mu \mathrm{fd}$. per mection.
C_{12} - Douhie-spaced $20-\mu \mu \mathrm{fd}$. midget . $\mathrm{R}_{4}-1$-meg. vol. control.
$\mathrm{R}_{5}-0.1-$ meg. $1 / 2$-wutt.
$\mathrm{R}_{6}-240,000$-ohm $1 / 2$-watt.
$\mathrm{R}_{7}-10,000$ ohm $1 / 2 / 2$ watt.
$\mathrm{R}_{8}-3000$-ohm $1 / 2$ watt.
$\mathrm{R}_{9}-250,000$-ohm $1 / 2$-watt.
$\mathbf{R}_{10}-50,000-$ ohm $1 / 2$-watt.
$\mathrm{B}_{11}-1 / 2$-meg. $1 / 2$-watt.
H_{12} - 25,000 -ohm 20 -watt, variable.
$\mathrm{R}_{13}-3000-\mathrm{ohm}$ 15-watt.

 (W2HIM)
of the modulator to reduce the audio peak
In the adjustment of such systems, the negative grid bias of the nodulator determines the "idling" carrier output. This bias should be no greater than for modulator platecurrent cut-off at one-half the total pate supply voltage, because the modulator plate voltage falls to this value when the effective series plate resistance of the modulator tube becomes equal to the Class-C amplifier plate circuit resistance, which is the condition at full modulation. If the bias is greater than cut-off, audio cycle bottoms will be clipped with resulting distortion.

In the aircuit of 1048, a power pack utilizing two 700-volt roctifier-filter units in series is used. The plus

Class-C amplifier plate circuit resistance remaining practically constant. Condenser C_{0} filters off the audio-frequency ripple in this circuit, while the normal audiof requency output of the modulator is super-imposed on the d.c. flowing in the series circuit in normal fashion. The circuit of Fig. 1049 is the same in principle, the only difference being that the secondary of the Class- B output transformer is in the positive side of the supply circuit instead of the negative. Resistance R_{12} of Fig. 1048 and R_{2} of Fig. 1049 may be used for the same purpose; that is, to pre-load the output circuit

700 -volt terminal is connected to the midpoint of this supply system. Closing switch $S W_{1}$ places a fixed voltage of this value on the modulator and equal voltage on the Class-C stage for constant-carrier operation. In the system of Fig. 1049, the negative feed lead to the Class-C stage would be opened at X and half-voltage similarly applied to both modulator and r.f. amplifier for continuouscarrier operation and adjustment. Tubes of similar voltage and plate-dissipation ratings should be used in both modulator and Class-C amplifier in controlled-carrier combinations of

TABLE IH -CLASS-A MODULATOR DATA*

THE RADIO AMATEUR'S HANDB00K

this type. The adjustment is not especially critical, once the circuits have been tuned in normal procedure. Condensers C_{9} of Fig. 1048 and C_{1} of Fig. 1049 should have a capacity of approximately 2 or $3 \mu \mathrm{fd}$. No direct ground connnection should be made to the Class-C filament circuit.

CHOKE-TUUPILED CHASSのA MOIDULATERS

Plate modulation with choke coupling between modulator and modulated amplifier, using a Class-A modulator (Heising modulation), has been almost completely superseded by the more efficient transformer-coupled Class-B system, and hence has not been included in the practical treatment of modulation systems. While the operating principles are identical with other methods of plate modulation, the lack of impedance-transformation provided by a coupling transformer makes the method of calculation somewhat different.

As has been stated, for 100 per cent sinusoidal modulation the Class-C amplifier d.c. input power should be twice the modulator's rated maximum undistorted power output. This input will be equal to the product of the Class-C amplifier's mean (d.c.) plate voltage and plate current. At the same time, the mean plate voltage divided by the plate current gives the modulating impedance, which in this case should equal the modulator's rated load impedance. By Ohm's law,

$$
I_{\mathrm{b}}=\sqrt{\frac{P_{\mathrm{o}}}{R_{\mathrm{p}}}} \text { and } E_{\mathrm{b}}=\frac{P_{\mathrm{o}}}{I_{\mathrm{b}}}
$$

where $P_{0}=$ unmodulated d.c. power input to r.f. stage $=$ twice modulator power output, watts.
$R_{\mathrm{p}}=$ optimum load resistance for modulator, ohms.

$$
\begin{aligned}
I_{\mathrm{b}}= & \text { mean current to r.f. amplifier } \\
& \text { plate, amperes d.c. } \\
E_{\mathrm{b}}= & \text { r.f. amplifier mean plate voltage, } \\
& \text { d.c. }
\end{aligned}
$$

For the case of a Type 845 tube operating as a Class-A modulator with plate supply of 1000 volts at 75 ma . (grid bias -147 volts), the rated power output with negligible distortion is 23 watts for a load resistance of 7500 ohms (See Table III). Substituting in the above equations,

$$
I_{\mathrm{b}}=\sqrt{\frac{2 \times 23}{7500}}=0.078 \mathrm{amp} .=78 \mathrm{ma}
$$

the Class-C amplifier d.c. plate current.

$$
E_{\mathrm{b}}=\frac{2 \times 23}{0.078}=590 \mathrm{volts}
$$

the Class-C amplifier d.c. plate voltage.
The plate voltage drop for the Class-C amplifier is, therefore, $1000-590=410$ volts. The proper value for the dropping resistor, R of Fig. 1003-A, is this value divided by the Class-C amplifier plate current,

$$
R=\frac{410}{0.078}=5256 \text { ohms }(5250 \text { ohms }
$$

The dissipation rating of this resistor should equal the voltage drop multiplied by the current, or $410 \times 0.078=32$ watts. A $50-$ watt type resistor therefore would be satisfactory. It should be by-passed for audio frequencies by condenser C ($2-\mu \mathrm{fd}$. or larger). A coupling choke, L, of 30 -henry effective inductance at $150-\mathrm{ma}$. d.c. will be suitable. Any one of several tubes capable of operating with 78 or 80 ma . input at 590 or 600 volts could be used in the Class-C amplifier.

RECEIVERS F0R THE ULTRA-HIGH FREQUENCIES

General Aspects of Ultra-High-Frequency Working Suitable Receiver Types - Superregeneration Adding R.F. Amplifiers - Superheterodyne Converters - Advanced Receivers

IT is important that the amateur about to undertake ultra-high-frequency work should realize that the very high frequency waves behave in a different manner to those of lower frequencies. On frequencies of 56 Mc . and above, bending of the waves in the Ken-nelly-Heaviside layer only infrequently brings the waves to earth at far-distant points. During brief, occasional periods during the summer and fall, $56-\mathrm{Mc}$. signals have covered distances in excess of 500 miles. Such working, though extremely "spotty," is steadily increasing in extent and constitutes an extremely interesting field for the experimenter.

For a time it was considered that only the "ground wave" was of any value for ultra-high-frequency communication and that the range to be obtained from a low-lying station would be restricted substantially to the range of vision from that point. During the latter part of 1934, experimental work at A.R.R.L. Headquarters served to establish that ultra-high-frequency waves are bent very appreciably in the lower atmosphere under certain atmospheric conditions. This work indicated that, on occasions when warm, moist tropical air was over-running relatively cold and dry Polar air, communication could be had, even from low-lying stations, over distances of a hundred and sometimes two hundred miles. It was also shown that considerable bending of the waves in the lower atmosphere occurs at all times when a layer of warm air overruns a layer of colder air. Since this effect is to be found almost every night, one can expect to find that communication with points beyond the visible range is prone to become much more effective at night than during the day.

The many factors concerned make it impossible to forecast the actual range of communication possible on the ultra-high-frequency
bands. It is generally considered, however, that the range to be obtained reliably with a very low-power transmitter and a normal type of antenna is about 10 percent greater than the visual range from the antenna. An increase of power immediately extends this range irrespective of whether the additional effective power is gained by using a bigger transmitter or a directive antenna. The combination of a fairly powerful transmitter (say 100 watts input), and a goorl directive antenna immediately permits a considerable extension of the range. One experimental station, maintained by the League, with such a fransmitter set-up and with the antenna approximately 300 feet above sea level, maintained daily schedules

FIG. 1101 - A Tinee-band PLUG-IN COIL SEPARATELY QUENCIED SUPERREGENERATIVE RECEIVER
The circuit for this receiver is given in Fig. 1110. An excellent general-purpose u.h.f. set.

FIG. 1102 - TIIE SUPERREGENEHATIVE RECEIVEH IN ONE OF ITS SIMPLEST AND MOST EFFECTIVE FOHMS: A 56- and 112-MC. RECNIVER USING METAL TUBES
The detectorin this receiver is of the self-quenched superregenerative type and feeds a conventional pentode audio amplifier. Particular care is necessary in the placement and wiring of the detector coniponenta in this type of ret.
over a distance of about 95 miles for more than a year. A great many amateur stations with plain antennas, lower-powered transmitters and lower elevation have communicated over even greater distances but it is olivious that a reduction of elevation, of transmitted power or a simplification of the antenna makes for a sacrifice of reliability over sueh long ranges.

What Is DX?

From all this it is seen that there are two sorts of DX in u.h.f. work. To the man working over distances beyond the line of sight by means of atmospheric refraction, 10t) miles is DX. To the experimenter interested in waiting for those exceptional periods when the ionosphere enters the picture, 1000 miles is the sort of distance that can be considered DX. There is obviously no way of saying what the range of any particular u.h.f. equipment is to be and it is this particular thing, in the minds of many, which makes the work of special interest. With equipment being improved steadily and with many more stations coming on the air in these bands, the unexpected is happening right along.

Suitable Receiving Equipment

The problems in devising receivers for the ultra-high frequencies differ considerably from those met on the low-frequency bands. In the early days of u.h.f. working the first equipment used was adapted from the straight autodyne receiver and the superheterodyne. These receivers suffered from poor sensitivity, tuning difficulties and severe interference from ignition and other similar noise. A big step forward
was made by utilizing Armstrong's superregeneration principle for u.h.f. reception. Superregeneration immediately provided a receiver of tremendous sensitivity and a receiver in which an inherent operating characteristic resulted in invaluable discrimination against ignition noise. This type of receiver tuned very broadly and therefore removed, for the time being, the tuning difficulties. The superregencrative receiver has played probably the biggest part of all in popularizing ultra-highfrequency working. It was, and remains, one of the most extraordinary pieces of radio equipment ever developed - from the point of view of performance from a given amount of equipment.
The trend today, at least on the $56-\mathrm{Mc}$ band, is toward the use of the superheterodyne principle for the prime purpose of gaining greater selectivity. In such receivers the intermediate frequency is often made relatively high for the purpose of avoiding excessive selectivity and gaining a reasonable freedon from image interference. Such receivers would have been impractical a year or two ago because almost all ultra-high-frequency transmitters were then of the unstable modulatedoscillator type. With the recent extension of transmitter stability requirements already in force on the lower frequencies to the $56-\mathrm{Mc}$. band, it is now possible to put selective superheterodyne receivers to work even in routine communication.

Further developments which have recently morlified the place of the superhet in the u.h.f. picture are the various noise silencers. With such silencers the modern u.h.f. superhet is

receivers for the ultra-high frequrncies

capable of much more effective discrimination against ignition noise than is the superregenerative receiver - a type of receiver which has always been valued for its abilities in this respect. Of course the complete superhet with noise silencer is a complex array of equipment obviously unavailable to many amateurs. Then its use is hardly practical or desirable for portable or mobile work. For these reasons the superregenerative receiver is still deserving of careful consideration.

THE NUPEIRRESENEIBATIVE TECEIVEIE

Thovar Armstrong announced the principleof superregeneration in 1922, it found little application in any actual receiving equipment until serious work began on the ultra-high frequencies. The general outline of superregenerative action is treated briefly in Chapter Five.

From a practical aspect, superregenerative receivers may be divided into two general types. In the first the quenching voltage is developed by the detector tube itself - so-called "self-quenched" detectors. In the second, a separate oscillator tube is used to generate the quench voltage. The self-quenched receivers have found wide favor in amateur work. The simpler types are particularly suited for portable equipment where the apparatus must be kept as simple as possible. However, it is our strong recommendation that the separately quenched type be used in all cases where the ultimate performance is expected. One enormous advantage of the separately quenched type is that it is readily possible to adjust the operating conditions so that the receiver is extremely sensitive even under conditions when relatively little hissing or "mush" noise is had. In the separately quenched superregenerative detector it would appear to be of little consequence just how the quench voltage is introduced into the circuit providing the voltage is of the correct order and that quench frequency is something near the optimum value. Many amateurs have "pet" circuits which are claimed to be superior to all others. The probability is that the arrangement of their particular circuit has led to the use of correct operating conditions. It is certainly a fact that any of the various separately quenched circuits can be made to operate in substantially the same fashion by careful adjustment. Likewise, the self-quenched circuits are all capable of a somewhat similar performance. The latter, however, though very simple in appearance, require particularly careful handling in order to obtain smooth operation and freedom from howling and generally irregular performance.

Building Self-Quenched Receivers

The circuit given in Fig. 1103 is representative of a very successful type. The entire receiver consists merely of a superregenerative detector feeding, through an ordinary audio frequency transformer, a pentode audio output tube. Such a receiver can be built inexpensively and quickly yet it is capable of entirely satisfactory performance. The sensitivity of even this simple type of set is such that the normal background noise is the limiting factor in the reception of weak signals.

In this, and for that matter all other ultra-high-frequency receivers, the mounting of the components and the location of the various leads are prone to play an important part in the behavior of the set. Because n ϕ two layouts are likely to be precisely the same, it is therefore always advisable to experiment with the resistance and connection of the grid leak; taps on coils; the value of any r.f. choke and the size and placement of by-pass condensers. It is

fig. 1103 - CIRCUIT OF THE METAL-TUBE SELfQUENCHED RECEIVER
C L_{1} - $15 \mu \mu \mathrm{fd}$. Cardwell Trim-Air midget condenmer (with mounting bracket).
$\mathrm{C}_{2}-50 \mu \mu \mathrm{fd}$. midget fixed condenter.
$\mathrm{C}_{3}-.003 \mu \mathrm{fd}$, fixed condenser, Ot her values between .002 and $.006 \mu \mathrm{fds}$. are soinctimes found more satisfactory.
$\mathrm{C}_{4}-\mathbf{2 5} \mu \mathrm{fd}$. $\mathbf{5 0}$-volt electrolytic condenser.
C S - . $002 \mu \mathrm{fd}$. fixed condenser (not always essential).
$\mathrm{C}_{6}-.25 \mu \mathrm{fd}$, condenser - anything ahove $\mathbf{2 0 0 - v o l t}$ rating.
$\mathrm{K}_{1}-5$ to 10 megohm gridleak-latter size used in original set.
H_{2} - $\mathbf{5 0 0 , 0 0 0 - \mathrm { ohm }}$ potentiometer.
K_{3} - 500 -ohm 2 -watt fixed resisto .
R_{4} - $\mathbf{5 0 , 0 0 0 - o h m}$ potentiometer.
R_{5} - $50,000-\mathrm{ohm}$ half-watt resisto
1,1-Eight turns of No. 14 wire $1 / 2$-inch diameter spaced to occupy 1 inch for $56-\mathrm{Mc}$. band. Four similar turns spacod to sume length for $112-$ Mc. band. Change of thoso values may be necensary in cason where the layout differs.
1_{2} - Four turns of No. 18 wire $3 / 8$-nch diameter. This will unually sorve for both bands.
R.F.C. - Ohmite u.h.f. choke. Alfout 50 turns of No. 30 wire on a $1 / 4$-inch loakelite rod with turns spaced to occupy 1 inch will werve. Adjustment is sometimes nocessary to give freedom from "dead mpots."
T-UTC Type CSI audio tranformer. "Bargain atore" audio tranuformers are invariably a failure in this type of respiver.

THE RADIO AMATRUR'S HANDB00K

good practice always to run ground leads to a single point on the chassis of the set. Often, attention to this one detail results in the elimination of all instability problems.

The receiver shown in Figs. 1102 and 1103 is in many ways typical of the simpler types of u.h.f. receivers and might well be examined in detail by the amateur unfamiliar with this branch of receiver design. The first and most important feature is that the components of the r.f. circuit are grouped closely around the detector tube socket so that all leads may be very short. Then it will be noted that the detector and its associated components are all mounted on a metal plate serving as a "ground" for the set. This plate, as it happens, is bent across the panel to serve also as a shield to prevent "hand-capacity" effects in tuning the receiver. This feature is made necessary by the use of a non-metallic panel. In many u.h.f. receivers metal construction is used throughout. In these cases, of course, the chassis itself is the "ground."

The chassis for the receiver under discussion is made from Tempered Masonite - a material which is proving popular particularly because of the ease with which it can be worked. The base measures 7 by $41 / 2$ inches, the panel being $71 / 2$ by 5 inches. The aluminum angle piece on which the detector assembly is mounted is the full depth of the base and the full height from the base to the top of the panel. The tuning condenser and detector tube are mounted far enough back on it to accommodate a flexible coupling between the condenser and the dial. This coupling is essential since both sides of the condenser are at high r.f. potential. The detector socket is tilted so that the grid and plate terminals come directly opposite the corresponding terminals on the tuning condenser. The total length of connecting leads is then only a fraction of an inch. The r.f. choke and by-pass condenser (which actually is two condensers in parallel to give the desired capacity) are located on the other side of the metal piece carrying the detector unit. In other respects, the receiver follows normal practice.

The circuit of the receiver, shown in Fig. 1103, appears to be very simple but, in this type of receiver requires quite careful treatment. Very erratic behavior may result from incorrect adjustment of the tap on L_{1}, from the use of an r.f. choke of the wrong size or from the use of long return paths to ground from the detector cathode or from the by-pass condenser C_{3}. The by-pass condenser C_{5} happened to be an essential in this particular receiver though it is not invariably so. On the other hand, a resistor of a quarter or half megohm is often necessary across the secondary of the audio transformer to kill "fringe howl" effects which often occur.

The receiver circuit as shown is designed for the operation of a loud speaker. The heavy plate current of the pentode output tube will quickly ruin a pair of head phones unless a coupling choke and condenser or a coupling transformer is used. For head-phone work it is better to use a 6 C 5 in the output stage - in which case the bias resistor R_{3} should be increased to 5000 ohms. No other change in the wiring is necessary since the lead to the second grid of the 6F6 will be open when the 6C5 is plugged in.

Successful operation of this receiver is dependent to a considerable degree on the type of antenna used and the manner in which it is tuned. The chief requirement is that the detector circuit be heavily loaded by the antenna.

A self-quenched acoirn-tube neceiver

n Fig. 1104 is a somewhat similar type of circuit except in the type of detector tube used. In this case the acorn detector, because of its extremely small elements and short leads, allows operation on frequencies as high as 300 Mc. This receiver is therefore a particularly useful one in cases where experiment is to be conducted on the bands higher in frequency than 112 Mc. The circuit itself is quite similar

FIG. 1104-CIRCUIT OF AN "ACORN" RECEIVER
I. - Five turms of No. 14 wire $1 / 4$-inch inside diameter with turns spaced diameter of wire, for 224 Mc. Five similar turns $1 / 2$-inch diameter for 112 Mc. 14 turns of same diameter for 56 Mc . Cs - Cardwoll Type ZR 15AS condenser - Special split-stator tuning condenser - two rotor and one stator plate - the latter sawed in two.
$\mathrm{C}_{2}-50 \mu \mu \mathrm{fd}$. midget condenser.
$\mathrm{C}_{3}-$ Brass atrip $3 / 16$ inch wide monnted close to the exposed surface of C_{2}.
$\mathrm{C}_{4}-0.002 \mu \mathrm{fd}$. fixed condenser.
$\mathrm{C}_{5}-10 \mu \mathrm{fd}$. electrolytic condenser. $\quad \mathrm{C}_{6}-1 \mu \mathrm{fd}$.
$\mathrm{R}_{1}-5$ to 10 megohms.
$\mathrm{R}_{2}-1200$ ohm, one-watt resistor.
$\mathrm{R}_{3}-100,000$ ohm potentiometer. Note that this resistor is across plate supply and that, if batteries are used, the supply should therefore be disconnected when switching off set.
A 41 tube is uned as the audio amplifier and allows speaker operation. A tranaformer or choke-condenser coupling unit must be used with this tubo. For headphone work, a 37 tube would be more appropriate.

Quieter operation may somotimes be obtained by putting 0.5 megohm acroas the transformersecondary.

receivers for the ulira-high frequencies

to that of lig. 1103 except in minor details. The grid resistor is again connected to the coil carrying high voltage but in some instances it is preferable to run it in the conventional manner between the grid and cathode. The other important difference in this circuit is that the tuning condenser is of the split-stator type. By splitting the stator plates of the small tuning condenser used, the path through the condenser is reduced in length and extremely short connections between the coil and condenser are made possible. The suggested sizes for coils for the three bands are, of course, approximate only. Slight variation of the length of the leads within the tuned circuit will result in modification of the coils. Fortunately, small variations of the inductance can be made readily by spacing the turns until the desired tuning range is obtained.

TWO-BAND IPORTARLE SUPEIRIREGENEIBATIVE IRECEIVER

Tie self-quenched superregenerative receiver no doubt will soon be outmoded on the 56-Mc. band, so far as fixed station operation is concerned. However, for portable use, emergency work and operation on bands above 56 Mc., this type of receiver will long be one of the most satisfactory pieces of receiving equipment.

A simple self-quenched receiver using an acorn detector is illustrated in Figs. 1105 and 1107. The circuit is shown in Fig. 1106. It will be noticed that all parts are grouped closely

> FIG. 1106 - CIRCUIT OF TIIE POIKTABLE SELF-QUENCIIEI RECEIVER

Cil - 30- $\mu \mu \mathrm{fd}$. isolantite-insulated trimmer (National M-30). $\mathrm{Ci}_{2}-15-\mu \mu \mathrm{fd}$. variable (National UM-15).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{Ci}_{6}-\mathbf{0 . 0 0 5 - \mu \mathrm { fd } . \mathrm { mica } .}$
$\mathrm{C}_{7}-0.001-\mu \mathrm{fd}$. mica.
$\mathrm{R}_{1}-5$ megohms, $1 / 2$-watt.
R_{2} - $\mathbf{5 0}$ ohms, $1 / 2$-watt.
T_{1} - Audio tranaformer (Thordaraon T-13A34).
$L_{1}-112$ Mc.: 3 turne No. 14, diameter $1 / 2$ inch, length $1 / 2$ inch. 224 Mc.: 2 turns No. 14, diameter 5/16 inch, length 5/16 inch.
Each tapped at center.
RFC - 25 turns No. 20 d.s.c., diameter $1 / 4$ inch, clome-wound.

FIG. 1105-A PORTABLE SELF-QUEVCHED SUPERREGENERATIVE RECSIVER EMPLOYING AN ACORN DETECTOR ANID TYPE 30 AUDIO AMPLIFIER
The dial on the panel is the anly control. A quarteror half-wave rod plugs into the jack at the top. The switch and headset terminalg are at the loft.
around the acorn tube socket, permitting the shortest possible leads. It might well be said that this is one of the most important considerations in the building of u.h.f. receivers.

The tempered masonite case for the set is 5 inches wide, $6 \frac{1}{2}$ inches high and $61 / 2$ inches deep. The shelf on which the parts are mounted is located 3 inches below the top edge. There is room below the shelf for a small 45-volt " B " battery and eight flashlight cells. A series-parallel arrangement of the cells provides a fairly longlived filament supply.

Although the superregenerative detector may be followed by an acorn audio amplifier, a Type 30 tube, which works equally well for this purpose and is inexpensive, is used in this case. The tube is horizontally mounted behind the detector on a small aluminum bracket. The limited gain of such a receiver does not justify the use of a gain control, therefore the only control, on the entire set is the tuning dial, or C_{2}. The other components mounted on the outside of the case are the headphone binding-posts, a double-pole toggle switch and the jacktop, feed-through antenna insulator. The switch breaks the positive leads of both "A" and "B" voltage supplies.

The antenna circuit consists of a

Note the compactness of the detector atage. The antenna coupling condenser is mounted on the feed-through inaulator in the top of the box. The battery compartment in below the receiver whelf.
quarter-wave brass rod (approximately 26 inches long) capaeity coupled to the coil sideof the grid condenser. C_{1}, the coupling condenser, is mounted on the under side of th. feed-through insulator I banana plug attached to the battom of thi antenna rod permitthe unit to be a plug-ir. affair.

When adjusting the circuit for operation on either 112 or 224 Mc. considerable car" should be given to the placement of the regeneration tap. This is probably the most criti-
 ral adjustment of the receiver.

IBECEIVEIRS WITII SEPARATE QLENDH DNCHILATOIS

WHile the self-quenched receivers just treated are entirely satisfactory for much experimental work and have the merit of extreme simplicity, it must be admitted that a considerable improvement in performance can almost invariably be obtained by using a
sipurate tube to produce the required quenching voltage. Innumerable circuits have been deviscd to provide appropriate coupling between the quench oscillator and the detector itself and it is, of course, obviously impossible to cover them all.

Fig. 1108 illustrates the detector and quench oscillator portion of two typical superregenerative circuits having separate quench oscillator tubes. The arrangement shown at "A" is prohably the most effective one for use with a triode detector. The plate winding of the quench oscillator is so connected that it is able. to serve the same purpose as the modulation choke in a "Heising" plate-modulated transmitter. In this case, though, the modulation is applied to both grid and plate of the detector. The condenser C_{1} effectively by-passes the audio-frequency transformer primary so far as the quench voltage is concerned. Its capacity is usually between 0.002 and $0.004 \mu \mathrm{fd}$. - a value which does not cause serious loss of high audio frequencies yet bypasses the quench voltage. The purpose of R_{1} and C_{2}^{2} is to permit variation of the detector plate voltage without upsetting

 IVI; QUF:VCH VOITAGE TO THE SUPEIRREGENFRATIVE DETECTOR
(iircnit "A" is one of the most successful typen using a triode detector while that at " B " shows what is probably the most satisfactory for use with a screensrid aletector. Typical values for the components marked are:
$i_{1}-.002$ to . 001 $\mu \mathrm{fid}$.
Ci2-. 1 to $.5 \mu \mathrm{fil}$.
Cs-.I $\mu \mathrm{fd}$. (.4 - . $001 \mu \mathrm{fd}$.
$\mathrm{C}=.002 \mu \mathrm{fd}$.
$\mathrm{H}_{1}-100,000$ ohmu.
$\mathbf{R}_{2}-50,000$ ohms.
$\mathrm{R}_{3}-50,000$ ohms.
Circuit "B" can lse interstood more readily if it is unted that the screen by-pass condenser C_{5} is also serving as the tuning condfnser across the plate coil of the quench omeillator.

RECEIVERS FOR THE ULIRA-HIGH FREQURNCIES

the voltage on the quench oscillator plate. In some cases individual adjustment of the quench oscillator and detector voltages results in an improved performance but practice indicates that in many cases the additional components required ($R_{1}, \quad C_{2}$) are hardly justified.

The diagram "B" in F'ig. 1108 illustrates what we believe to be the most successful method of applying the quench voltage to a screen-grid detector. In this instance the screen of the detector is modulated by the quench oscillator in the same manner as were the grid and plate in the triode circuit. Much experimental work has been done in studying the effect of applying the modulation to other grids in receivers of this general type but screen-grid modulation has so far not been excelled. In this circuit again are shown the additional components required for separate control of the detector screen voltage. They are possibly more desirable in arrangement "B" than in "A."

It should be realized that the performance of all the various circuits is very similar providing the optimum operating conditions are obtained. The important factors are the screen and plate voltages on the detector, the order of quench voltage applied to the detector and the frequency of the quench voltage. Of these factors, probably the least critical is the quench frequency, but there exists an optimum frequency for each signal frequency. The normal superregenerative receiver is very tolerant in this respect and it is usually found that a quench frequency of about 100 kc . is suitable.

FIG. 1109 - TOP VIEW OF THE PLUG-IN COIL RECEIVER WITH THE 56-MC. COIL IN PLACE

[^12]

FIG. 1110 - PLUG-IN COIL RECEIVER CIRCUI'
(i) - 30- $\mu \mu \mathrm{fd}$. isolantite-insulatod trimmer.
(:2 - 2-plate midget variable (National UM-15 with all but two plates renioned).
$\mathrm{C}_{3}-100-\mu \mu \mathrm{fd}$ mica. $\quad \mathrm{K}_{1}-5$ megohms, $1 / 2$-watt. $\mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{0 . 0 1 - \mu \mathrm { fd }}$. paper. $\mathrm{K}_{2}-\mathbf{5 0 0 , 0 0 0 - o h m}$ variable. $\mathrm{C}_{6}, \mathrm{C}_{7}-\mathbf{0 . 0 0 2 - \mu \mathrm { fd } .}$ mica. $\mathrm{R}_{3}-2000$ ohms, $1 / 2$-watt. $\mathrm{C}_{8}, \mathrm{C}_{8}-0.001-\mu \mathrm{fd}$. mica. $\mathrm{K}_{4}-\mathbf{5 0 , 0 0 0}$ ohma, $1 / 2$-watt. $\mathrm{C}_{10}-\mathbf{0 . 5 - \mu \mathrm { fd }}$. paper. $\quad \mathrm{R}_{5}-\mathbf{5 0 , 0 0 0 - o h m}$ variable. $\mathrm{C}_{11}-0.1-\mu \mathrm{fd}$. paper. $\quad \mathrm{R}_{6}-10,000$ ohma, l-watt. $\mathrm{L}_{1}-56$ Mc.s 12 turns No. 14, length $11 / 8$ inches. diameter $5 / 8$ inch.
112 Mc.: 4 turns No. 14, length $3 / 8$ inch, diameter $5 / 8$ inch.
224 Mc.: 1 turn No. 14, diameter $1 / 2$ inch.
All diametern are outnide; all coils tapped at center.

A TIIREERBANI SUPRIRTEGENERATIVE IRECEIVEIE WTTM SETPAIEATE QUUENCIE TUTBE

A separately quenched plug-in coil receiver which works well on 56,112 , or 224 Mc . is shown in I'igs. 1101, 1109 and 1111. The circuit is given in Fig. 1110.

As the circuit shows, the receiver employs three tubes. A Type HY-615 high-frequency triode is used as the detector, and 6C5 triodes are found in both the quenoh and audio stages. The set may be considered to be a "general purpose" unit, since it may be operated from battery power, as well as the usual power pack, is compact and portable, and the plug-in coils permit instantaneous operation on any of the three ultra-high frequeney bands.

THE RADIO AMATRUR'S HANDB00K

The top view, Fig. 1109, shows the compactness of the detector circuit layout. This portion of the circuit is arranged as shown on the 6 by $41 / 2$ by 2 -inch aluminum base. The parts line-up across the panel side of the chassis is as follows: At the left, supported by a small standoff insulator, is the antenna coupling condenser, C_{1}. To the right of C_{1} is the detector circuit consisting of the tuning condenser, C_{2}, the plug-in-coil assembly and the detector tube. The audio tube is at the right. Across the back from right to left are the quench-coil unit, the quench tube and the audio transformer.

The coil-socket is mounted on pillars between the condenser and the tube, high enough so that its prongs are in line with the tube caps and the condenser lugs. Of the three prongs forming a small triangle at the center of the socket, the two along the side face the condenser and the single prong faces the tube. The single prong is the terminal to which the quench lead and coil tap are connected. A fourth prong, located at the panel end of the form, is connected to the grid side of C_{2}. The antenna-coupling condenser is connected to this point.

The bottom view, Fig. 1111, shows the placement of the by-pass condensers, resistors, switch and headphone jack, and the potentiometers. By-passing must be as direct as possible and preferably to not more than one or two points. The plate and filament voltage cable enters the chassis through a hole in the rear wall.

In the panel view, Fig. 1101, the tuning dial is at the right with the jack and switch just below. The small dial at the bottom right edge is on the volume control and the adjacent one on the regeneration control. The panel measures $51 / 2$ by 7 inches.

FIG. 1111-BOTTOM VIEW OF THE PLUG-IN COIL RECEIVEH
Parts are arranged for the prime purpose of ohtaining short ground connections.

Construction of the coils is quite simple, as indicated by Fig. 1109. Each is soldered directly to the appropriate lugs on the form. The position of the tap is not particularly critical; tapping at approximately the center of the coil should be sufficient. Each coil covers slightly more than the intended band, with the band itself spread over approximately 75 divisions of the dial.

The total current drain of the receiver is 18 milliamperes, 5 ma . each for the detector and quench tubes and 8 for the audio stage.
The antenna loading is not too critical; almost any length of wire can be coupled to the detector, through C_{1}, without overloading the circuit. Of course the capacity of C_{1} must be varied to suit the particular band.

SETPEIEIREGENERETATE IRECEIVEIES WITMER.E. AMIPHIFIEIES

Dne important disadvantage of the simple superregenerative receivers just described is that they are capable of strong radiation. Also, as we have already stated, they are extremely unselective. Prevention of radiation and some improvement in selectivity is made possible by adding an r.f. amplifier stage ahead of the superregenerative detector. Fig. 1112 illustrates various methods of coupling the r.f. stage to the detector. All of them have been shown to be effective in practice but each has its particular points of merit. The circuit shown at "A" will be recognized as an example of conventional transformer coupling with normal wiring of the r.f. amplifier itself. The best number of turns for L_{3} will usually be just slightly less than that used in L_{4}, but this depends upon the order of coupling between the two coils and the order of freedom with which the detector superregenerates. One of the difficulties in this arrangement is in providing a suitable mechanical arrangement for mounting the coils. L_{6} may be wound on a form of some good insulating material with the turns of L_{3} occupying the spaces between the turns of L_{4} but many workers prefer to a void any dielectric in the field of u.h.f. coils. Then, L_{3} may be wound on a slightly smaller form pushed inside the turns of L_{4}. One effective alternative scheme is to make L_{3} of about 30 gauge d.s.c. wire with the turns cemented to the turns of L_{4} with Duco cement or its equivalent. Yet another method is to make L_{3} a self-supporting coil of No. 18 wire of a diameter just sufficient to slide inside L_{4}. In this case, L_{3} might well be mounted from small stand-off insulators.

The arrangement shown at "B"in Fig. 1112 is particularly suitable in receivers having the high voltage applied to the detector coil as in Figs. 1103 and 1104. The plate lead is merely tapped near the grid end of the detector coil

RECEIVERS FOR THE ULTRA-HIGH FREQUENCIES

will not allow the maximum possible r.f. selectivity. The coupling adjustment should therefore be varied to give the desired optimum performance considering both selectivity and sensitivity.

Suitable Tubes for R.F. Amplifiers

The Type 954 acorn pentode is, without the slightest doubt, the most effective r.f. amplifier for 112 Mc. and above. It is, indeed, so far superior to the conventional glass or metal tubes that the serious u.h.f. worker is rarely inclined even to consider using anything else. Even on 56 Mc. the 954 is incomparably superior to the normal screen-grid pentode, although the special types 1852 and 1853 are quite effective at this frequency.

Suggestions for the mechanical arrangement of the r.f. stage may be gained from the illustrations of the receiver of Fig. 1113 and of superhet converters later in this chapter. In general it will be found that quite simple shielding will serve to prevent oscillation, providing the by-passing has been done carefully. A simple baffle, such as that used in the converter shown in Fig. 1120, is probably the most practical arrangement for the 954 the tube socket being mounted on the baffle or partition and the tube grid protruding through a small hole in the metal. The most satisfactory socket available for this type of amplifier is the National Type XMA metal socket. Excellent by-passing is possible with this particular design.

In the r.f. amplifier using conventional tubes,

FIG. I113 - A SUPERREGENERATIVE RECEIVER WITH R.F. AMPLIFIER, SEPAFATE QUENCH CIRCUIT AND TWO STAGES OF AUDIO
Regeneration and audio controla are on the front panel. An on-off awitch is provided for the "B" voltage. The r.f. stage employe an 1852 tube.

a simple partition is again useful. The tube socket may be mounted on that side of the partition which faces the detector circuit or it may be mounted in the base in the usual manner.

NEPARATEITY QUENCHEID SURPERREGENERATIVE IRECEIVER WITH R.F. AMIPLIFIEIE

The practical t.r.f.-superregenerative receiver illustrated in Figs. 1113, 1115 and 1116 is about as complete and advanced as the pres-ent-day $56-\mathrm{Mc}$. superregenerative set can be made. Besides the r.f. amplifier to prevent radiation and to increase sensitivity and selectivity, there are also included a separate quench oscillator and two stages of audio, one for headphone reception and one for speaker operation. Capacities and inductances are proportioned so as to spread the $56-\mathrm{Mc}$. band over the greater portion of the tuning dial.

As shown by the circuit diagram, Fig. 1114, an 1852 is used as an r.f. amplifier. The 1852, primarily intended for television work, is also well suited to the r.f. stages of ultra-highfrequency receivers. The second tube is a 6C5 triode detector. The quench tube is one section of a 6 F 8 G dual triode; the 6 F 8 G , which is equipped with two separate cathodes, is particularly suitable since the construction permits operating the quench section with grounded cathode. The second section is used as a cathode-biased first audio stage. Resistors
R_{8} and R_{9} drop the plate-supply voltage to approximately 30 volts, the voltage at which best operation is secured. A standard $6 \mathrm{~F} / 6$ audio circuit at the output end of the receiver provides loud-speaker reception.

Fig. 1115 shows the arrangement of the r.f. amplifier and the detector. The amplifier is the unit closest to the panel and the detector is the one to the rear. The tubes for these two stageare mounted on a $23 / 4$-by- 4 -inch aluminum partition to the right of the tuned circuits. It is important that the 1852 tube be mounted with the filament pins in line vertically. Filament pins for both tubes should face toward the rear of the chassis.

Shielding between the r.f. and detector stage: is provided by a second aluminum partition measuring $23 / 4$ by $2 \frac{1}{4}$ inches. The tuning condensers, ganged together through the mediun of an insulated flexible coupling, have their respective coils soldered directly to the condenser lugs. The amplifier plate coil is inside the detector coil. The antenna link is supported on standoff insulators just below the amplifier coil. A second pair of insulators carries the link leads to the left-hand edge of the chassis, where the antenna terminals art located. Leads for the detector-quench voltage and amplifier plate voltage are brought up through holes at the rear of the chassis. Bypassing, always important, is done directly to the grounded aluminum partitions.

Fig. 1115 also shows the quench coil, located at the rear of the chassis, and the 6F8G and

rictelvers for the lltra-high frequencies

6F6 which are toward the front edge. The headphone jack may be seen at the left of the rear wall with the speaker terminals to the right. The power cable enters at the right.

A bottom photograph, Fig. 1116, shows the resistors and condensers, stacked together to obtain the shortest possible leads. The transformer T_{1} is mounted slightly to the rear of the chassis center. Although the r.f. amplifier is a rather broad tuning circuit, peak performance will be secured only when the two circuits are made to tune over the same range simultaneousty. To do this the flexible coupling between
be found that these adjustments have slightly. upset the original frequency range of the circuit. If so, the spacing of coil turns must again be varied until the proper frequency coverage is obtained.

Coupling to the antenna may also require some experimentation, and calls for a coil of the proper number of turns suitably spaced in relation to L_{1}. Although depending somewhat on the antenna used, two or three turns similar to L_{1} probably will be close to the correct value. Alternatively, capacity coupling may be used.

FIG. IIIS-CHASSIS IMYOHT OF TIIE FFOIR-TIBE: RE, CEIVER
Care should the used to follow the arrangenment of the r.f. amplifier and the detector.
the two tuning condensers should be loosened so that the condensers may be tuned separately. Then, with the detector condenser, C_{2}, set near minimum capacity, tune C_{1} for maximum response to a steady signal or to auto ignition noise. If resonance occurs at higher capacity on C_{1} than on C_{2}, the turns of L_{1} should be spread until the two condenser settings are identical; if at minimum on C_{1}, the turns should be squeezed closer together. Then set C_{2} at maximum capacity and again tune C_{1} to resonance. Should there again be a discrepancy, it will be necessary to make similar adjustments to L_{2} until satisfactory tracking is secured.

The next adjustment is that of the coupling between L_{2} and L_{3}. With the set oscillating, L_{3} is placed inside the detector coil and it: position varied until the maximum response is reached. Ignition and background noise again will be useful in determining the gain. It may

THIE SUPPEIEFETEIEDIDYNE: RECEIVEIR

wHHLE the superregenerative receiver has unique and unparalleled advantages in the matter of discrimination against ignition and similar noises, a.v.c. action and extreme sensitivity, it does suffer from severe lack of selectivity. R.: amplifiers ahead of the superregenerative detector provide an improvement in selectivity but the improvement is naturally very slight.

The present necessity, under the F.C.C. regulations, for high stability in anateur u.h.f. transmitters has made it possible to advance the receiving technique by using the superhet type receiver. With the superhet it is immediately possible to provide a high order of selectivity and, in the more advanced superhets, a signalnoise ratio more favorable than that obtained in the superregenerative recciver. The superhet receiver is though, more complex and costly than the superregenerative type.

FIN. H16-HEIOW THE HASE OF THE FOURTUBE RECEIVER
Hy-pase comdensers are placed to give nlort ground conmertisitis.

THE RADIO AMATEUR'S HANDB00K

Since a great many amateurs already own superhet high frequency receivers (or possibly a broadcast receiver of good sensitivity) and since these receivers serve admirably as the i.f. amplifiers for u.h.f. receivers, many workers will prefer to build their u.h.f. superhets in two sections - a converter unit serving to change
conventional superhet is its high response to damped interference such as that caused by the ignition system of automobiles. There are two practical methods of reducing this trouble. One is in the use of a high-frequency i.f. amplifier having a superregenerative final detector (such an amplifier is outlined later in

FIG. 1118 - TIIE 1852-6K8 CONVERTER CIRCUIT
$\mathrm{C}_{1}, \mathrm{C}_{2}-15-\mu \mu \mathrm{fd}$. midget variable (National UM-15).
C_{3} - Same as C_{1} with two rotor and one stator plate removed.
$\mathrm{C}_{4}, \mathrm{C}_{5}-30-\mu \mu \mathrm{fd}$. compression-type paddcrs.
C_{6} to C_{9}, inc. $-0.005-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{10}-0.002-\mu \mathrm{fd}$. mica.
C_{11} - $250-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{12}-100-\mu \mu \mathrm{fd}$. mica.
$\mathrm{R}_{1}-200$ ohms, $1 / 2$-watt.
$\mathbf{R}_{2}-65,000$ ohms $1 / 2$-watt.
$\mathrm{R}_{3}-\mathbf{5 0 , 0 0 0}$ ohms, $1 / 2$-watt.
\mathbf{R}_{4} - $\mathbf{3 0 0}$ ohms, $1 / 2$-watt.
the signal frequency to a much lower one, and their normal receiver serving as the i.f. amplifier. A receiver built in this fashion and using a good high-frequency or broadcast-frequency receiver as the i.f. will, of course, have high selectivity.

Probably the most serious weakness of the

FIG. 1117 - A SUPERHET CONVERTER FOR 56-MC. RECEI'TION
Designed for use with a communications-type receiver, this converter has an 1852 r.f. stage and a 6 K 8 mixer-oscillator. It uses a high-frequency i.f. (10 Mc .) for image reduction, and is suitahle for reception of crystal-controlled 'phone or c.w. signals.
H_{5} - 20,000 ohms, $1 / 2$-watt.
$\mathrm{H}_{6}-\mathbf{2 0 , 0 0 0}$ ohms, 2-watt.
RFC - In 1852 plate circuit, $2.5-\mathrm{mh}$. pie-wound; in oscillator circuit, solenoid type (Ohmite).
$L_{1}-6$ turns No. 14, diameter $1 / 2$ inch, length 1 inch.
$L_{2}-6$ turns No. 14, diameter $1 / 2$ inch, length $5 / 8$ inch.
$L_{3}-10$ turns No. 14, diameter $1 / 2$ inch, length $1 / 4$ inches, tapped 4th turn from grid end.
I.F. Output Transformer - $P, 30$ turns No. 28 d.s.c. close-wound on half-inch form; S, 6 turns wound over P at bottom; $C, 35-\mu \mu \mathrm{fd}$. midget variable.
this chapter). The other alternative is in the use of one of the noise silencer methods described in Chapter Seven. The latter procedure is very much to be preferred in a receiver having a high-gain and high-selectivity i.f. amplifier.

The designs for u.h.f. superhet converters which follow are presented with the intention of giving a general idea of present practice. They may be used in conjunction with some existing receiver as the i.f. or they may be combined on the same chassis with a special i.f. amplifier. The converter units will remain the same in either case.

A METAI.-TUIBE CONVEIETEIE FOES 55 MC.

${ }^{-1 g s .} 1117$ and 1119 show a $56-$ Mc. converter which may be used in conjunction with any high-frequency receiver, preferably of the superheterodyne type, capable of tuning in the vicinity of $10,000 \mathrm{kc}$., the i.f. for which the unit is designed. Construction is simple, and the circuit employs only two tubes, both of which are modern types especially suited for the purpose. The circuit, Fig. 1118, shows that an 1852 is used as an r.f. amplifier or preselector, and that a triode-hexode converter

recelvers for the ultra-high frequrncies

tube, the 6K8, is used in the mixer and oscillator circuits. The $\mathbf{1 0 - M c}$. intermediatefrequency is chosen to give a good image ratio on the $56-\mathrm{Mc}$. band.

The aluminum chassis measures 1 by $31 / 2$ by 7 inches. Shielding between stages is provided by the right-angle partition shown in the photograph. This partition is $23 / 4$ inches high, and the side parallel to the front edge of the chassis is 4 inches long. The portion that supports the 6 K 8 is $21 / 2$ inches long. The 6 K 8 is mounted at the bottom of the shield, with the grid-cap facing the left end of the base.

The 1852 grid tuning condenser, C_{1}, and coil, L_{1}, are mounted to the rear of the 4 -inch section of the shield. The 1852 , condenser C_{2}, and coil L_{2} are mounted in front of the partition, with C_{2} directly in line with C_{1}. A hole through the shield permits the two shafts to be connected by a flexible coupling. Both of the coils, and also coil L_{3}, have their terminals soldered directly to the appropriate condenser lugs.

The oscillator-mixer section of the circuit is to the right of the $21 / 2$-inch partition, with the tube socket mounted on the same side. C_{3}, also mounted on the partition, is located at the rear of the tube socket. The i.f. transformer, T_{1}, is mounted at the right-rear corner of the chassis. The output leads from this transformer are shielded to prevent stray pick-up between the converter and the receiver. Bypass condensers and resistors are closely grouped around the tube socket, assuring short leads. A trimmer condenser, C_{4}, soldered across L_{3}, allows a small variable capacity to be used as the tuning element and at the same time makes the circuit fairly high- C in the interests of good stability.

A small panel is used to mount a vernier dial for the oscillator condenser. Since the r.f. tuning is not critical and, indeed, is broad enough to cover a good portion of the band with one setting, a small knob gives sufficient control.

The output line

FIG. 1119 - BELOW-CIIASSIS WIRING OF THE METAL-TUBE CONYERTER
The 1852 socket may be seen at the right. A shielded output cable is used to prevent signal pick-up at the intermediate frequency used (10 Mc .).
may be connected to the antenna and ground terminals of the standard receiver used as an i.f. amplifier, or to the "doublet" terminals, if provided. The exact i.f. chosen is not particularly important, so long as t is in the vicinity of 10 Mc . Choose a frequency which is free from signals, if possible, so that there will be no unnecessary interference from this source.

Tuning of the converter is as follows: With the r.f. and oscillator condensers at about half

FIG. 1120 - A TYPICAL EXAMPLE OF AN ULTRA-IIIGH-FREQUENCY CONVERTER USING ACORN TUBES
A unit of this type, operated in conjunction with a good atandard high-frequency receiver, allows excellent reception performance on frequencies up to about 200 Mc, providing the transmitted signal is substantially free from frequency intability. Should the recejver be fitted with a modern noisesilencer, the complete outfit is then about the last word in u.h.f. receiving equipment. A special i.f. amplifier with a lower order of selectivity is necessary to allaw reception from transmitters using modulated oscillators.

THE RadIO AMATEUR'S handB00K

capacity, the padder, C_{4}, is adjusted until 56-Mc. stations of known frequency are heard. After this the padder may be set to bring the high-frequency end of the band near minimum capacity on C3. The i.f. transformers should then be tuned for maximum signal strength. The $56-60-\mathrm{Mc}$. band will occupy approximately 60 to 70 divisions on the dial. The r.f. and mixer input circuits, $L_{1} C_{1}$ and $L_{2} C_{2}$, may be made to track by using the system described in connection with the t.r.f.-superregenerative receiver.

Anytype of antenna may be used, so long as
of c.w. signals, since the oseillator stability is quite high. The beat is provided by the standard receiver's beat oscillator, just as in normal reception.

a converitell using acorn TUBES

The converter just described is satisfactory for the $56-\mathrm{Mc}$. band but quite limited in its performance on the higher frequencies. The amateur who plans to build a superhet for 112 Mc. and higher should therefore think only in terms of the acorn ture for the converter unit. The unit shown in Figs. 1120 and 1121 may therefore be considered as thelastwordinsuperhet converter practice for operation on several u.h.f. bands.

The circuit used is quite straightforward, with a 954 r.f. stage, 954 mixer

FIG. 1121 - WIRING OF TIIE ACORN CONVERIER
I,, - Seven turns of No. 16 enamelled wire $1 / 2$-inch inside diametor. Very slight spacing between turns.
L.2, 3, 4-Each eight turne of No. 14 bare or tinned wire $1 / 2$-inch inside diameter with turns apaced to occupy one inch. The best position for the plate tap on La is usually 3 or 4 turns down from the grid end of the coil. Cathode tap on L_{4} at $11 / 2$ or 2 turne from the grounded end of coil. These coils are for $56-\mathrm{Mc}$. operation.
© $1,2,3$ - National Type UMA condensers with four stator and five rotor plates. These are unnecessarily large for the $56-$ to $60-\mathrm{Mc}$. band but give convenient coverage of about 4 Mc . on each side of the amateur band.
C4, 5 - National Type M30 padding condensers (Max. capacity 30μ fds.).
Ct, 7 - $500 \mu \mu \mathrm{fd}$. fixed midget condensers.
$\mathrm{C}_{8}-100 \mu \mu \mathrm{fd}$. fixed midget condenser.
$\mathrm{C}_{8}-500 \mu \mu \mathrm{fd}$. fixed midget condenser.
$\mathrm{C}_{10}, 11,12-0.01 \mu \mathrm{fd}$. 400-volt paper-type condensers. Clo may be low-voltage type.
$\mathrm{C}_{13}-100 \mu \mu \mathrm{fd}$. fixed midget condenser.
$\mathrm{C}_{14}-\mathbf{1 0 0 0} \mu \mu \mathrm{fd}$. fixed midget condenser.
\mathbf{R}_{1} - 1500 -ohm half-watt fixed resiator.
$\mathrm{K}_{2}-100,000$-ohm half-watt fixed resistor.
R_{8} - 2000 -ohm half-watt fixed resistor.
\mathbf{R}_{4} - I-mogohm half-watt fixed resistor
R_{5} - $\mathbf{2 0 0 0}$-ohm half-watt fixed resistor.
$\mathrm{H}_{4}-100,000$-ohm half-watt fixed resistor.
$\mathbf{H}_{7}-\mathbf{5 0 , 0 0 0}$-ohm half-watt fixed resistor.
$\mathrm{R}_{8}-\mathbf{1 0 0 , 0 0 0}$-ohm half-watt fixed resistor.
it loads the r.f. grid circuit quite heavily. Optimum operation will result under these conditions. A single-wire antenna may be capacity-coupled, while a two-wire feeder system preferably should be inductively coupled. The coupling coil should be slightly smaller than the r.f. coil, L_{1}.

The converter is suitable for the reception

To l. ETMansformer
 with suppressor injection, and a 955 oscillator. I'arallel trimmer condensers are used across the r.f. and mixer grid circuits to allow adjustment for good tracking of the condenser gang.

The unit is assembled on a folded aluminum chassis $7 \frac{3}{4}$ by 3 by 1 inch, the partitions on which the tube sockets are mounted being 3 by 3 inches. In the converter illustrated, normal isolantite tube sockets are used. It is suggested, however, that the metal National XMA socket be used for the r.f. and mixer tubes, since by-passing may be made much more effective. In assembling the unit it will be found that there is very little room to spare and that the relative placement of tube sockets, tuning condensers and other components must be given careful consideration. This compact type of assembly, while making construction slightly more difficult, is of great advantage in allowing very short leads throughout the r.f. circuits. All condensers in the circuit except C_{12} are mounted above the base and directly connected to the various: socket terminals concerned.

It will be found that complete freedom from oscillation in the r.f. stage may be had even with no shielding other than the vertical partitions. This only applies, of course, when the antenna is connected. On the other hand, an additional shield cover over the whole unit is desirable if only to protect it from dust.

Adjusting the I.II.F. Converter

Amateurs unfamiliar with normal proeedure in aligning superhet recpivers will doubtless

recelvers for the ulitra-high frequencies

have some difficulty with the u.h.f. converters. The process is greatly simplified if an i.f. amplifier in the form of a broadcast or high frequency superhet is already available. For the moment we will assume this to be the case. The first step is to set the i.f. amplifier at the frequency chosen and connect to it the output transformer from the mixer in the converter. The connecting leads may be of twisted pair but should run in a piece of flexible cable shield grounded to both the chassis of the converter and the ground terminal of the receiver serving as i.f. amplifier. Now the tuning condenser in the output transformer from the mixer should be tuned until the noise output from the receiver rises to a peak. This may be done even though the converter is not yet lined up. At this stage, the oscillator tuning condenser should be freed from the two others, if ganged, and with the latter condensers set at about half scale the oscillator condenser should be rotated until there is a sudden increase in noise output. With fairly wide oscillatorfrequency range and a rather low intermediate frequency (5000 kc . or lower) two settings should be found at which the noise increases cach one differing in frequency from the resonant point of the r.f. amplifier circuits by an amount equal to the i.f. frequency. In the converter just described, the higher of these two oscillator frequencies should be chosen. At this point the trimmers across the first two tuning condensers should be adjusted so that the three tuning condensers come into line. The adjustment may be repeated at both ends of the scale to make certain that the threc circuits stay in line across the full tuning range. The procedure is greatly facilitated if a
modulated u.h.f. test oscillator is available. Even by using background poise alone, however, quite accurate alignment is possible.

A CONVERTERE FOLE C.W. WOHRE

The converters already described may be used for c.w. reception providing the i.f. amplifier with which they are used is fitted with a beat oscillator. The present trend towards the use of c.w. on the $56-\mathrm{Mc}$. band (particularly for attempts at long-distance work but also for short hauls has led to development of more than ordinarily stable receivers. The converter shown in Figs. 1122 to 1124 has the merit of excellent stability and has the further advantage of being virtually free from image or harmonic troubles - a matter of extreme importance when one s trying to establish the identity of weak signals believed to be propagated on 56 Mc .

In this converter, the stability problem and that of image interference are solved by using the very high i.f. frequency of 20.5 Mc . and putting the oscillator on the low-frequency side of the signal. Stability is further aided and the ganging problem solved by using a large parallel padding condenser on the oscillator and a padding condenser across the detector circuit of large capacity with respect to the very small tuning capacity. Other features include the use of regeneration in the detector and cathode coupling between oscillator and detector. It will be noted from Fig. 1123 that the coupling coil in the detector cathode circuit serves also as the impedance in the cathode circuit responsible for regene-ation. Screen voltage variation is used to control regeneration.

FIG. 1122 - TOP VIEW OF THE 56MC. CONVERTER DESIGNED FOR C.W. WORK

The front portion contains the oscillator tuning condenser and padding condenser, oscillator tube, and coil. The middle portion houses the detector tuning condenser and padding condenser, and detector coil. The acorn-tube detector is mounted directly under the detector coil socket, permitting a very short grid lead. Theantennatuning unit at the rear in link-coupled to the detector coil, and the antenma is clipped directly on to the coll. The output tranaformor is adjunted through the emall hole under the link to the antenna coil.

271

THE RADIO AMATEUR'S HANDB00K

The chassis for the converter is made by bending over 2 inches of each side of a 9 by 10 inch piece of aluminum, resulting in a U-shaped channel 5 by 10 inches. The front panel is made of a $51 / 2$ by 7 inch piece, fastened to the base by tapped $1 / 4$-inch square brass rod, and the rear end is made by bending over the ends
socket partially covers the mounting holes for the pillars. Flat-head screws must be used. An acorn-tube socket similar to the one shown must be used, because it is necessary to keep the capacity between cathode and ground low.

The simplest sort of $20.5-\mathrm{Mc}$. i.f. amplifier for this converter is a t.r.f. receiver covering that range. A superhet could be used, but there is a good chance of trouble from oscillator harmonics from the receiver used as the i.f. A National SW-3 served as the i.f. with the converter described, but any stable t.r.f. set will work quite well.

Probably the most difficult task in the construction of the receiver is that of trimming the coils to the proper inductance. The first thing to do is to couple the output transformer to the receiver to be used as the i.f. amplifier. Couple the output of a modulated oscillator set at 20.5 Mc . to the 954 grid and tune in the signal on the receiver. Then tune the trimming condenser on the output transformer for maximum response. The i.f. amplifier is now lined up.

Set the test oscillator at 28 Mc. and set the tuning dial at 90 . Rotating the oscillator padding condenser, the signal (second harmonic of the test oscillator) should be heard with the oscillator padder at almost exactly half scale. Then set the test oscillator at 30 Mc . and see where the signal comes in on the tuning dial. If it's at about 5 on the dial, the tuning range is adequate. If not, a little trimming of the oscillator coil, about a quarter turn at a time, will soon give the proper range.

Loosely couple the test oscillator to the antenna circuit and trim the detector coil. The detector padding condenser should be set at about $1 / 3$ scale to give exact tracking, but the antenna tuning will interlock slightly so it is not necessary to trim down to the last sixteenth of an inch of wire. If car noises peak up with the detector padder set at half scale or sn the coil is adjusted closely enough.

Running the regeneration control up, the detector should oscillate at about $2 / 3$ scale. If it oscillates too soon, space the turns slightly on

recelvers for the ulira-high flequencies

FIG. 1124 - THE BOTPOM VIEW SHOWS THE OUTPUT TRANSFORMER WITH COVER REMOVED
Heavy leads are used in the oscillator circuit to maintain etahility. The output is taken through the twinted pair at the rear of the eet.

L_{3}, the cathode impedance, until the regeneration works the way it should. It will be found that $1 / 3$ of a turn here will make quite a difference in performance, so it is well to spend some time with the cathode coil.

With the set lined up properly, it will be possible to run across the band for c.w. signals with all of the ease customary on other bands. Any crystal-controlled signal will have the same stability that is obtained on 14 and 28 Mc. Using the SW-3 as the i.f. amplifier, the regeneration control of the SW-3 is set in the sensitive position normally used for weaksignal reception, and held there for c.w. reception. It is backed off slightly for 'phone reception, in the usual manner.

When the receiver is in operation, try changing the number of turns that link the output transformer to the receiver being used as the i.f. amplifier. Different receivers have different input impedances, and some adjustment of the
coupling coil may be necessary if maximum sensitivity is to be secured.

This converter was originally described in QST, August, 1937.

THE I.F. AMPLIFIEH PPIOHLEM

As we have already stated, a conventional high frequency superhet or broadcast receiver is eminently satisfactory as the i.f. amplifier if high selectivity can be tolerated. One satisfactory frequency on which to operate is somewhere in the neighborhood of 1500 kc . At this frequency, trouble from image interference will not be very severe on 56 Mc. if the r.f. stage in the converter is adjusted correctly. The ideal set-up is, of course, one in which the receiver used as i.f. amplifier is fitted with an effective noise silencer as well as effective a.v.c. Details of both of these features will be found in Chapter Seven.

FIG. 1125 - A GENERAL-IPURPOSE U.H.F. SUPEIRHET USING A 5000-KC. I.F. AMPLIFIER

The input converter section is similar to that shown in Fig. 1120, a shieldcover onclosing the three acorns and their associated components. This aection may readily be removed and replaced by one designed for otill higher frequency operation.

In instances where the selectivity of the complete superhet must be of a low order to allow reception of frequency modulated or generally unstable transmissions, as on 112 Mc., some other sort of i.f. amplifier is essential. One solution, as already suggested, is to use a good receiver of the r.f.-detectoraudio type. An SW3 or its equivalent, makes a quite satisfactory amplifier. With the detector regeneration control set for highest sensitivity, the overall gain is quite respectable. An alternative is an old-time tuned r.f. broadcast receiver. Such receivers ean be picked up for a few dollars at most radio

THE RADIO AMATLUR'S HANDBOOK

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-$ National UM-15 variable condensers.
C_{4} - National M30 padding condensers.
Cs - Capacity built into National 'l'ype XMI acorn eocket.
C_{6} - Socker to chassis capacity of 'type XMA socket.
$\mathrm{C}_{7}-100 \mu \mu \mathrm{fd}$. midget condensers.
Cs - $500 \mu \mu \mathrm{fd}$. midget conlensers.
$\mathrm{C}_{9}-\mathbf{0 1} \mu \mathrm{fd}$. paper condenser.
$\mathrm{C}_{10}-.1 \mu \mathrm{fl}$. paper condenser.
Cil - 1μ fd. paper condenser.
C_{12} - $\mathbf{1 0} \mu \mathrm{fd}$. 25-volt electrolytic.
C13 - $\mathbf{2 5} \mu \mathrm{fd}$. 25-volt electrolytic.
K_{1} - $\mathbf{1 5 0 0}$-ohm half-watt resistur.
R_{2} - 100,000 -ohm half-watt.
R_{3} - 1-megohm half-watt.
R_{4} - 2000-ohm half-watt.
L_{1}-Seven turns No. 16 wire $1 / 2$-inch diameter.
L_{2}, L_{3}, I_{4} - Each eight turns No. It wire $1 / 2$-ineh insids. dianteter with turns spaced to occupy one inch.
' \mathbf{l}_{1}, $\mathrm{I}_{2}, \mathrm{~T}_{3}$ - Sickles 5000 kc . transformers.

$\mathbf{R}_{15}-\mathbf{2 0 , 0 0 0 - o h m}$ half-watt. K_{16} - $\mathbf{1 0 - m e g o h m .}$
R_{17} - 2-megohm half-watt.
R_{18} - 20,000-ohm one-wat .
K10-2500-ohm one-watt.
\$120 - 1000-ohm potentionuter.
$\mathrm{K}_{21}-450-\mathrm{chm}$ five-watt.
$\mathbf{R}_{22}-1000-o h m$ half-watt.
R_{23} - 2000 -ohm five-wati.
$\mathrm{R}_{24}-500$-chmm one-walt.
storesand work out well. The remaining alternative is to build a special i.f. amplifier with i.f. transformers operating at 5000 kc . or higher. Such transformers are now available. The general design of a receiver fitted with such an i.f. amplifier follows.

GENEIEAL IPLIRPDSE SUMPEIEIET

$F_{\text {IGS. }} 1125$ to 1128 illustrate a superhet of modern design and good performance based on the use of a specially built $5000-\mathrm{kc}$. i.f. amplifier. Its performance is inferior to a receiver us-
fig. 1127 - ANOTHER VIEW OF THE SUPERHEI showing the location of the components above the chassis
ing the same input converter section with a high-selectivity i.f. amplifier but the set serves as a good example of the compromise design

recelvers for the ultra-high frequrncies

that must result when one demands the ability to receive the signals from transmitters suffering from frequency modulation.

Fig. 1126 reveals that the converter section employs acorn tubes arranged in almost exactly similar fashion to those of Fig. 1121. This section is followed by a twostage i.f. amplifier operating on 5000 kc . and feeding the two diodes of a 6 H 6 one supplying the audio signal and the other a.v.c. voltage. A feature of the audio amplifier is the use of an RCA type audio noise suppressor, the design principles of which are treated in Chapter Seven. This type of noise suppressor was chosen in this case in the attempt to avoid the complications which ordinarily result from the use of the usual r.f. type suppressor in an i.f. amplifier of relatively low gain. It will be noted that the use of this system calls for connection of the phone jack in the output tube circuit.

The photographs of the receiver show that the converter unit is located at the right of the National type PWO dial, the rest of the components being arranged in the same sequence as in the circuit, starting from the right rear corner of the chassis, proceeding across the rear and then doubling back toward the dial. In this fashion feedback troubles are minimized and ample space is provided under the tube sockets for the necessary by-pass condensers and resistors. The circuit itself is quite conventional and the only precaution found necessary in practice was the provision of extremely short by-pass leads throughout the i.f. circuit.

Successful alignment of the i.f. amplifier and of the converter section calls for the use of a test oscillator and involves the principles already outlined. No special padding condensers were found essential in the first oscillator circuit to give satisfactory tracking across the $56-60-\mathrm{Mc}$. band providing care was taken to get similar inductance values in L_{2}, L_{3} and L_{4}.

This particular receiver has ample sensitivity for normal weak-signal reception and passes a sufficiently wide band to allow substantially undistorted reception of the usual modulated oscillator transmitter on 112 Mc . However, it is doubtful if sufficient sensitivity could be had with conventional tubes in theconverter section.

AN I.F. AMIMPIETEIE WVTTI SUIPEIEIR DEEENEIRATHON

An unconventional solution of the i.f. am-

 plifier problem is that described in QST for November and December, 1935. The complete receiver incorporating this type of i.f. amplifier, known as the Superinfragenerator, has since shown its merit in practice and is still deserving of consideration.In this receiver the incoming ultra-highfrequency signal frequency is converted in the first detector (or mixer) to an appropriate low first intermediate frequency. This permits the immediate establishment of a desirable order of selectivity. The second detector, instead of giving audio-frequency output converts the i.f. signal to a very much higher frequency suited for thoroughly effective superregenerative action. This second high-intermediate frequency is tremendously ampl fied and its audiofrequency components made audible by the superregenerative 3 rd detector. It is then amplified with the conventional audio-frequency tube. The receiver therefore consists primarily of three detectors operating on three widely separated frequencies and interconnected with nothing more than appropriate tuned circuits.

RUTUIRE IDEVELADPMENTS

- n describing these odd pieces of representative ultra-high-frequency receiving equipment, the idea has been to sketch the requirements for effective working. None of the apparatus can be considered as the ultimate. We would emphasize that the entire field of altra-highfrequency working is in a state of flux. New developments are appearing frequently, and equipment which is now modern is likely to be superseded in the very early future.

ULTRA-HIGH-FREQURNCY TRANSMITTERS

Simple Circuits - Frequency Stability Considerations - Linear Oscillators - Short-Line-Controlled Oscillators - OscillatorAmplifier Transmitters - Crystal Control

TRansmitter practice on the ultrahigh frequencies often differs considerably from that followed on the lower frequencies. Indeed, u.h.f. practice itself can be subdivided. One important reason for this is that most modern amateur transmitting tubes, while quite effective as amplifiers and oscillators in the $56-\mathrm{Mc}$. band, usually are rather poor performers at 112 Mc . and above. Coupled with the fact that in the $56-60-\mathrm{Mc}$. region the amateur regulations impose the same stability requirements as on the lower-frequency bands, this means that a rather sharp change in technique is characteristic on going from 56 Mc . to 112 Me.

On 56 -Mc., transmitter design principles are much the same as on the lower frequencies, with certain modifications made necessary by the very short wavelength. On 112 and 224 Mc., however, simple oscillator transmitters, usually with special u.h.f. tubes, are the order of the day. These "ultra-ultra-high" frequencies will be given first attention in this chapter. It must be realized that there is no settled mode of operation on these bands new circuits and ideas are constantly in development, and the near future may see radical changes. The field is a promising one for the serious experimenter.

On the ultra-high frequencies the amateur has available the territory from 56 to $60 \mathrm{Mc} .$, 112 to 118 Mc., 224 to 230 Mc ., and also all the frequencies higher than 300 Mc .

In mentioning these bands we have so far adhered to the usual practice of stating the frequencies involved. This practice, however, is prone to be very inconvenient when speaking of and working with the ultra-high frequencies. Antennas, linear tuning rods, reflectors and directors are all to be measured in terms of wavelength and it is most inconvenient to be obliged to convert frequency to wavelength before proceeding with such measurements. Then, the most practical means of frequency determination on the ultra-high frequencies is by actually measuring the wavelength directly from a standing wave on wires as explained in Chapter Sixteen. It is obviously a handicap to be obliged to convert direct measurements so obtained back to frequency.

For these reasons we will find it desirable to make use of wavelength very frequently in this chapter and can only hope that the reader will find it reasonably simple to acquire the habit of thinking in terms of frequency and wavelength simultaneously.

The $56-\mathrm{Mc}$. band covers from 5.357 to 5 meters. The semi-harmonically related 112Mc. band will be from 2.678 to 2.541 meters while the next band down - the 224-Mc. band - will be from 1.339 to 1.304 meters.

SIMPLE OSCILIATOR CIIECUITS

Four circuits which have stood the test of time are given in Fig. 1202. They are by no means the only possible u.h.f. oscillator circuits but they may be considered the standard ones. That shown at

ULTRA-HIGH-FREQUENCY TRANSMITTERS

FIG. 1202 - FOUR STANDARD OSCILLATOR CIRCUITS FOR U.H.F. WORK
These arrangomente are all suhjoct to frequency modulation when modulated directly but are still valued for special applications.

Typical values for the various components (subject, of course, to considerable variation) follow:
$\mathrm{C}_{1}-15 \mu \mu \mathrm{fd}$. maximum capacity ($\mathbf{3 0} \mu \mu \mathrm{fd}$. per section of the eplit-stator condensers).
$\mathrm{C}_{2}-100 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{3}-500 \mu \mu \mathrm{fd}$.
$\mathrm{C}_{4}-15 \mu \mu \mathrm{fd}$.
$\mathrm{L}_{1}-2$ or 3 turns of No. 12 wire or emall copper tubing 2 inches in diametor. The aize dopends considerably on the type of tube or tubes used.
L_{2} - 1 or 2 turns of similar diametor to L_{1}.
L_{3} - Same as L_{1} if tuned. Approximately 10 turns of No. 16 wire if untuned. In this case the size is greatly dependent upon the type of tube used and it will be essential to vary the turn spacing and possibly the number of turns until the oscillator plate current (unloaded) is lowest at the deaired frequency.
K_{1} - Between 5000 and 50,000 ohms depending on tbe tube and plate voltage used.
RFC - Approximately 30 turns of No. 30 wire on a $1 / 4$-inch former. Most of the standard r.f. chokos are perfectly satiafactory.
" A " is a Colpitts circuit of extreme simplicity. The tuned circuit is connected between grid and plate of the tube with a fixed condenser serving the double purpose of grid condenser and plate blocking condenser. The circuit at " B " is the popular tuned-grid tuned-plate. The grid tuning condenser is often omitted - the grid coil turns being adjusted in number and spacing until the desired resonant frequency is obtained.

Circuit " C " is a useful push-pull circuit when a considerable frequency range must be covered with a single tuning adjustment. The tuned-grid tuned-plate arrangement at "D"
is a push-pull version of "B." This particular circuit probably enjoys the greatest popularity of all.

These four circuits and all others similar to them are suited only for the pure c.w. work in the 56 - to $60-\mathrm{Mc}$. band, where with careful adjustment and a well-filtered d.c. plate supply they can be made to comply satisfactorily with the F.C.C. regulations. They are not suitable for modulated transmission on this band, however. They could be used on 112 Mc . with special u.h.f. tubes, but at this and still higher frequencies the necessary inductances would be of such small values as to be almost non-existent. For the very high frequencies it is usually far better to use linear tank circults in the manner to be described.

Frequency Modulation

Any simple oscillators of the type described have a very low order of frequency stability. When modulation is applied the output frequency will change in accordance with the modulation voltage and, as a result, the signal will sweep across a wide band of frequencies. Such circuits are therefore not recommended for u.h.f. 'phone communication except in instances where dircumstances demand that the gear should be as compact and light in weight as possible. Used with any appreciable amount of power in populous areas they are the curse of the ultra-high frequencies. On the $56-\mathrm{Mc}$. band their use is effectively prohibited because of their inability to comply with the regulation governing elimination of frequency modulation.

HINEAR DSCILIATAR CIRCUITS

INBTEAD of using lumped inductance and capacity in the tank circuits of u.h.f. oscillators it is possible and often very desirable to use resonant linear circuits consisting of copper pipes or rods adjusted to have an electrical length of some multiple of a quarter wave. Such linear tanks are very simple to build and adjust and usually result in higher operating efficiency. At the outset it should be realized that while a simple resonant line, unconnected to anything else, will have a physical length almost exactly equal to a quarter wave or its multiple, this will no longer hold when the elements of a tube or tubes are connected to it. The same applies to the Q of the circuit. The line itself may have an exceedingly high Q and may appear to be capable of producing a high order of frequency stability. The connection of a tube or tubes across the open end, however immediately results in a serious reduction of

THE RADIO AMATEUR'S HANDB00K

the effective Q. It is with the idea of reducing this effect that the tubes are connected down toward the shorted end of the line in circuits where the line is expected to do an effective jol, of frequency control. Such circuits will be discussed later.

In Fig. 1203 are shown three typical linear oscillators, very simple in construction and eminently suited for experiment on frequencies of 112 Mc . and above. As we have already indicated, these circuits give slightly better frequency stability than the simple eimuits

HIG. I203 - TIHEE LINEAR OSCILLATOK CIRI:UITS SUITARLE FOR EXPERIMENT, PAITTICLLARLY ON THE BANDS ABOVE 60 MC .
The applications of these circuits and their adjustment are matters treated in the text. Suitable conductors for the lines are $1 / 2$-inch diameter copper pipes hut larger and smaller sizes are also sinitable. The spacing between centers should be approximately four times the radius of the pipes. A satisfactory valne for C_{1} is $500 \mu u f d . . C_{2}$ being the usual feeder condenser of 35 or $50 \mu \mu \mathrm{fd}$. R_{1} will be between 5000 and 50,000 ohms depending on the type of tubes used. The filament chokes should be approximately 25 turns of No. 14 wire $5 / 8$-inch diameter with the turns spaced the wire diameter. Tuned lines are desirable in their place when operation on the very high n.h. frequencien is desired.

Almost any of the nanal triodes will gerve itithese dircuits on 112 Mc . The low-capacity tubea are alniont rmential for operation on higher frequencies.
with coils and condensers but are still subjerot to serious frequency modulation.

The circuit at " A " is perhaps the simplest form of linear oscillator. The line in this case is slightly less than a quarter wave long (its actual length depending on the loading effect of the tube) the supply leads being connected at the voltage node point and the tube elements at the "hot" ends. The filament chokes are usually, but not always, necessary. Circuit " B " is made somewhat more effective and convenient by using a half-wave line with the tube connected at one end. It will be noticed that the node does not come in the physical center of the line because of the loading effect of the tube on the quarter-wave portion to which it is connected. In adjusting the circuit the supply leads may be connected near the center and then adjusted until they can be touched with in insulated screw driver without change in the plate current. A neon bulb could also he used to find the node if sufficient power is available to light it at off-center points.

Circuit " C " is a logical development of "B" for push-pull operation. In this case the line itself is symmetrical.
Several methods of coupling the antenna to these transmitters are available. At "A" a single-wire feeder is suggested. An alternative would be to use a "hair-pin" shaped antenna "coil" inductively coupled near the node end of the line. The other two circuits lend themselves to the use of a two-wire transmission line connected across a section of the line near the node. The spacing of the clips on the line is varied to give the desired order of coupling. The simplicity of the resonant-line type transmitters is illustrated by the low-power unit shown in Fig. 1201. The circuit diagram is that of Fig. 1204. It is intended for operation on the 112 - and $224-\mathrm{Mc}$. bands.
The tube used is the HY-615 high-frequency triode, which has extremely short internal leads and is rated at a power input of five watts.

Fig. 1201 shows how the various components are located and mounted on the 3-by-12-by-

FIG. 1204 - CIRCUI' OF THE LOW-POWER OECII, LATOL SHOWN IN FIG. 1201
$\mathrm{C}_{1}-\mathbf{3 0}-\mu \mu \mathrm{fd}$. isolantite-insulated compression-typui rimmer.
$\mathrm{C}_{2}-100-\mu \mu \mathrm{fl}$. midget micu.
$R_{1}-50,000$ to 75,000 ohme, $1 / 2-w$ att .
I, - Linear tank rirmit; nec text.

IUTRA-HIGH-FREQUENCY TRANSMITTERS

1-inch chassis. The only hidden part is the gridleak resistor, R_{1}, mounted beneath the chassis between the common ground point and one of the spare tube-socket prongs. The line is made from $1 / 4$-inch diameter, soft-drawn copper tubing and is 20 inches long. The spacing between tubes is approximately $1 / 4$ inch. A standoff insulator at the left end of the base is the main support for the line. At the opposite end, support is furnished by the heavy wire used to make contact between the open ends of the line and the tube caps.
C_{2}, the mica condenser across the lowpotential line, is held in place by two motaltube grid-clips. This condenser isolates the grid circuit from the plate voltage. The grid clips act not only as the condenser support but also permit sliding the condenser along the line, thus furnishing a means of frequenry variation.

The picture shows one method of antenna coupling, this particular setup being used in connection with a quarter-wave rod antenna (26 inches for the $112-\mathrm{Mc}$. band). The rod plugs into the jack-top insulator and is caparity coupled to the plate rod through ('i. An

FIG. 1205 - TYPICAL RESONANT-LINE OSCILLATORS
Both use 955 acorn tuben for portable work. The oscillator at the left is tuned approximately to 200 Mc.; that at the right to 300 Mc. Power connectionn are plugged into 4 -prong sockets at the loottome of oach unit (W9YNJ. March. 1938, QST.)
antenna of this type readily will load the oscillator to the maximum plate-current value of 20 ma . for the tube. Incidentally, the no-load plate current should be 6 to 8 ma . at 250 volts. This type of antenna should be coupled near

FlG. I206 - CIRCUIT IMACIRAM OF THF IOOHV RESONANT-IINE OSCLLLATOLS
C1 - 100- $\mu \mu \mathrm{fd}$. (Cornell-Dubilier with low-lose rase).
($2-30-\mu \mu \mathrm{fd}$. padder (National M-30).
Ca - Tuning condenser. (See text and photon.)
$\mathrm{C}_{4}-0.01-\mu \mathrm{fd}$. paper.
 5 inches for 224 Me.. spaced $3 / 4$ inch.
$\mathrm{K}_{1}-5000$ ohma. $1 / 2$-watt.
$\mathrm{K}_{2}-4.50$ ohms, 1 -watt.
the shorted end of the line. A grid-clip, as a sliding contact, affords an easy form of collpling adjustment. The approximate position of the tap will be 6 inches in from the shorted end.

If a half-wave rod is used as the radiator, it should be coupled close to the open end of the plate rod. A third type of entenna would be one coupled to the shorted end of the line through a hairpin link of the type shown later in this chapter.

For work on the $224-\mathrm{Mc}$. band the condenser "bridge" is placed approximately at the center" of the line. The frequency may be checked by the Lecher wire method as explained in Chapter Sixteen.

Irig. 1205 shows typical linear oscillator: using acorn tubes, which are excellent for "pack" transmitters, intended to be carried while in operation, since the battery drain is quite small and therefore can be supplied by light-weight "A" and "B" batteries. The circuit is given in Fig. 1206. The frequency can be changed by means of the condenser at the tube end of the line; this is simply two small dises, one soldered to a machine screw so that the spacing can be varied and fitted with a bakelite-rod extension handle. The antennacoupling condenser, an isolan ite-mounted com-pression-type trimmer, is in the upper righthand corner of each unit. The coupling point is correct for a quarter-wave rod antenna.

THE RADIO AMATBUR'S HANDB00K

The Filament Circuit

It will be noticed that in the circuits of Fig. 1203 chokes are included in the filament leads. These are made necessary on very high frequencies, with filament-type tubes, by the

FIG. 1207 - ILlustrating the use of a halfWave line in The filament circuit of the U.H.F. OSCILLATOK

Copper tuhing of $1 / 4$ - or $1 / 2$-inch diameter would serve for the line, the inner conductor being any lieavy insulated wire.
fact that the filament and its leads within the tube are often a considerable portion of a wavelength and so prevent normal circuit operation. Chokes, as suggested, provide one solution. Another scheme - the preferred one - is to use a tuned line in the filament circuit, adjusting its length so that the electrical length of the line plus the filaments is a half wave. Fig. 1207 shows a typical arrangement for a push-pull oscillator. The pipes constitute one side of the filament circuit, the wires threaded through them being the other. The jumper is adjusted, just as soon as the circuit is oscilating, to give minimum plate current.

In the single-ended oscillator it is often convenient to use a separate concentric line in each filament lead.

SHOLET LINE CANTIROL.

- ${ }^{\text {n }}$ the circuits just discussed, somewhat improved stability is made possible by the use of resonant-line or linear circuits. However, since the tube or tubes in the circuit are attached to the free end of the line, the Q of the complete circuit is considerably less than that of the line by itself. A large family of circuits has been devised in which a very high-Q line is used as the frequency-controlling clement, so connected into the tube circuit as to avoid any really serious reduction in effectiveness.

The basis of the scheme can best be explained by comparing it with crystal control. In the normal crystal oscillator, the grid circuit consists of the erystal itself, serving as the frequency controlling element. In the short-line controlled oscillator, the erystal is displaced by a high-Q resonant line along which the grid
or grids of the oscillator tube or tubes are tapped. The grid connection is made as near to the voltage node of the line as possible, in order to reduce the influence of variations in the tube circuit on the characteristics on the line. Circuits of this general type are quite simple in construction and are capable of providing excellent frequency stability when the line itself is correctly designed. Assuming that the optimum spacing is used between the conductors of the line, the Q of the line is proportional to the diameter of the conductor used. In many commercial installations lines of 18 -inch diameter or more are used to the tune of a very high Q and excellent stability. Tubing of such dimensions is, though, quite expensive, and most amateurs are limited to sizes of 3 or 4 inches. Such lines do not provide the highest possible order of stability, but allow quite a tremendous improvement over oscillators not fitted with this type of frequency control.

Constructing Resonant Lines

The lines used for frequency control are of two general types. First there is the open line, consisting of two parallel copper pipes connected together with a heavy jumper at one end and open at the other. The length of the line from jumper to open end is slightly less than a quarter wave - it would be exactly a quarter wave if it were not for the loading offered by the capacity of the vacuum-tube elements.

The second and much more effective type of line is of the concentric type, a small copper pipe or rod being mounted inside a larger pipe and the two connected together at one end. The usual practice is to make the outer conductor slightly longer than a quarter wave and the inner line considerably shorter. A sliding sleeve over the inner conductor is then used to vary its length and so to tune the circuit. In its original form, this line is rather difficult to handle in practice since free access to the inner conductor cannot be had. Further, large diameter copper tubing or pipe is quite expensive. Both of the problems have been solved in a design for the concentric line suggested by Paul Zottu and detailed in QST for September, 1936. In this design the inner conductor is the usual rod or pipe but the outer element is a square-section trough of folded sheet copper. The inner conductor is, of course, readily a vailable for adjustment through the open side of the trough. The use of a square section for the outer conductor and opening one of its sides does not measurably affect the performance.

Line Spacing

In determining the spacing of the conductors in both the open and concentric resonant

ULITRA-HIGH-FREQUENCY TRANSMITTERS

lines, the following ratio should be observed

$$
\frac{b}{a}=3.6
$$

when
$b=$ inner radius of outer conductor in concentric lines, or the spacing between tube centers in open lines. $a=$ outer radius of inner conductor in concentric lines, or the tube radius in an open line.

This figure of 3.6 is, in practice, not extremely critical. Practical considerations will often require using a figure nearer 3 or 4 . In the case of the oper line this is the equivalent of saying that the pipes should be spaced slightly less than their own diameter.

In the trough-type line it is sufficient to consider the side dimension as the diameter in the above relationship.

PRACTICAL DPEN-IINE CIncuITS

Fia. 1208 illustrates three practical arrangements of push-pull oscillators employing short-line frequency control with open-type lines. The controlling element, marked "grid

F1G. I208 - THREE BASIC CIRCUITS FOR TIE SIIORT-LINE-CONTHOLLED OSCILLATOR
The pipes in the grid circuit play the major part in providing frequency stahility and the greater their diameter the better. They should be of hard-drawn copper and particular attention should begiven to the method of making contact betwoen them at the shorted end.
L_{1} - One turn of $1 / 6$-inch coppor tuhing, turns 2 inchen diameter for 112 Mc. Actual coil size will depend greatly on type of tubes used, arrangement of wiring and type of tuning condenser.
L2 - Fach a aingle turn 2 inchee in diameter. They must be wound so that the two turns, though separated, are in the same direction.
C_{1} - at "A" - split-stator condenser of voltage rating to mit supply used. 15 to $35 \mu \mu \mathrm{fd}$. total effective capacity suitahle.
C_{1} - at "B" and "C" - 15 to $75 \mu \mu \mathrm{fd}$. receiving type condensers. The smaller order of capacity suitahle for the higheat frequency hands.
$R_{1}-10,000$ to $50,000 \mathrm{ohms}$ depending on type of tubes used.
RFC - Approximately 15 turne of No. 14 wire $1 / 2$-inch inside diameter for 112 Mc . Soven imilar turns of 224 Mc. Caroful adjustment of these chokes in each individual layout is uaually necessary. Allowance must be made for the filament voltage drop in these chokes, especially when the more powerful tubes are used. It is ae well to start out with the grid line a full quarter-wave long, then moving up the hridge and adjusting grid taps until demired frequency is reached. One quarter-wave is approximately two feet for 112Mc. hand and one foot for $224-M c$. hand. The plate lines will be considerahly shorter because of the loading eflect of the tubes. The same full quarter-wave might well be used at the start. lowever.
line" on the diagram, consists of a pair of copper pipes slightly less than a quarter wavelength long and with the pipes spaged approximately their own diameter. The bridge across the voltage-node end of the line must be given careful consideration. At this point very large r.f. currents are flowing and it is readily possible to destroy the effectivaness of the line if poor electrical contact exists at this point. For experimental work this bridge may consist of copper strips clamped in place with machine screws (to permit adjustment of the effective length of the line) but a much more satisfactory scheme for the permanent transmitter is to solder or braze the pipes at this point into a copper plate, then providing sliding extension pieces in the free ends of the pipes to allow adjustment of the length.

In setting up the type of transmitter shown in "A" of Fig. 1208, it is as well to start out with the resonant line a full quarter-wave long. Then, with the grid connected about one-third the line length from the shorted end, the plate tank is tuned until the plate current takes a sharp drop - indicating oscillation. The bridge on the line and the grid taps are then varied until oscillation is obtained at the desired frequency with the lowest possible value of plate current. The oscillator is then coupled to the antenna circuit in the usual manner. The closer

THE RADIO AMATEUR'S HANDB00K

the grid taps approach the bridge the greater will be the stability and the longer will the line be for a given frequency. High stability can only be obtained by very careful adjustinent of these grid taps.

Considerable improvement in the overall efficiency of this type transmitter can be obtained by replacing the conventional plate tank with a second resonant line. In this case, it is usually convenient to connect the plates directly to the free end of the line, then coupling the antenna to the bridge end of the line. The antenna may be coupled in the manner shown in Fig. 1208 at " B " and " C " or it may be coupled inductively with a "hairpin" antenna coil such as that illustrated in Fig. 1209.

This type of circuit will usually operate satisfactorily on the $56-\mathrm{Mc}$. band without any attention being given to the filament circuit. However, on the higher frequency bands it will usually be found necessary to include chokes in the filament lead in the manner indicated at "C" of Fig. 1208, A still better scheme, to be detailed later, is to use a tuned line in the filament circuit so adjusted that the electrical length of the path from the center of the filament to the grounded end of the line is a half wave.

It will be noted that in all these circuits the grids are tapped on the grid line down toward the closed end of the line. This procedure has a definite influence on the performance of the line as a stabilizing device and care must be taken to make the grid connections as near to the closed end of the line as is consistent with reasonable efficiency in the oscillator.

The chief limitation of these circuits is in the open type of line used. Radiation losses make

FIG. 1209-A ISW-1POWER TUNED-PLATE TUNEID-FII,AMENT OSCII.LATOK
For operation on 112 and 221 Me. The amall line in front in for 224 Me.
it difficult to obtain a very high ($)$ even when pipes two or three inches in diameter are used. Hence when excellent frequency stability is hoped for it is better to use the closed or concentrie type of line. The construction of lines of this type has already been discussed.

FIG. 1210-CIRCUIT DIAGRAM OF TIHE IGWPOWER TUNED-PLATE TUNED-FIIAMENT OSCILLATOK
$\mathrm{C}_{1}-15-\mu \mu \mathrm{fd}$. variable (National IMM-15).
C_{2} - Seetext.
$\mathrm{K}_{1}-\mathbf{2 0 , 0 0 0}$ ohms, 1-watt.
L_{1} - Filament line, $1 / 4$-inch o.d. copper tubing. length 10 inches, spacing $5 / 8$ inch.
I. 2 - Plate line; fnr 112 Mc., $7 / 16$-inch o.d. copper tubing, length 14 inches; apacing diametor of tubing; for 224 Mc., $1 / 4$-inch o.d. copper tubing, length 6 inches, spaciug diameter of tubiug.
I. 3 - Hairpin link for antenna coupling; length approximately $4 \frac{1}{2}$ inches.

©NCILILATOR

A Low-power oscillator using linear tank cireuits is shown in Fig. 1210. This might be called a "tuned-plate tuned-filament" oscillator, since it employs tuned lines in both the plate and filament circuits. It gives good stability and an unusually high order of effiriency for u.h.f. oscillators.

Photographs of the transmitter using this eircuit are shown in Figs. 1209 and 1211. The push-pull HY-615 tubes are capable of about five watts output at $21 / 2$ meters and somewhat less at $11 / 4$ meters.

The aluminum chassis measures $31 / 4$ by 16 by $11 / 2$ inches; at one end are the tube sockets, mounted with the filament prongs facing the front edge. A soldering lug is placed under one of the socket mounting serews so that all grounds at this end of the chassis may be made. to this one point.

The top view, Fig. 1209, shows the tubes mounted closely together at the left with the tuned plate line extending to the right. A home-made condenser across the tube end of the pipes permits adjusting the frequency over a fairly large range. The grids, which should be as nearly as possible at zer, r.f. potential, are tied together alal grounded to the chassis through the

FIG: I2Il-FILANENT-CIBCUIT VIEN OF TIIE LOM POWER PUSII-PUIL OSCII.AATOH
The tumed filament line is grommed at one end und moldered directly to the cathode prongs of the thle anoketm at the other. Filament leads run inside the tubes.
grid leak, R_{1}. The antenna link is mounted on two standoff insulators at the right end of the base.

The plate-pipe assembly is supported by standoff insulators, the center of the pipes resting on one and the shorted end of the line on the other (between the two cones). Plate voltage is fed through a hole in the chassis to this latter point. The stand-offs are of sufficient height to permit the shortest possible conncetions between the line and the tube plates. A strip of the best obtainable r.f. insulating material should be used as the spacer and mounting support across the center of the line.

The plate tuning condenser is made from two $1 \frac{1}{2}-$ inch diameter copper discs, to each of which is soldered a machine screw. The pipes are drilled and tapped so that one plate can be mounted on each pipe.

Construction of the $1 / 4$-meter line may be similar, but the light weight of the line suggests that only one supporting insulator be used. This may be accomplished by soldering a right-angle bracket to the shorted end of the line and attaching the assembly to the insulator used to support the center of the $112-\mathrm{Mc}$. pipes. The condenser plates for this frequency are 1 inch in diameter.

Beneath the chassis is the tuned cathode circuit, connected to the cathode prongs of the tube sockets by short lengths of No. 12 wire. The pipes are shorted and grounded to the chassis at the far end. C_{1}, the tuning condenser, is insulated from the chassis and connected directly across the open end of the line. Each tube has a separate set of twisted pair filament leads running through its cathode pipe; they are connected in parallel for the heater power, of course.

In tuning to the $21 / 2$-meter band, first set the plate condenser C_{2} so that the spacing between plates is approximately $3 / 16$ inch. Then apply power and rotate the filament condenser, C_{1}, until oscillation starts, indicated by a drop in plate current. The oscillating plate current
should be about $20 \mathrm{ma} .$, rising, when the antenna is coupled, to about 40 ma. A reliable frequency checking system should then be used to make sure that the transmitter is tuned to the desired frequency. The frequency is lowered by increasing the plate condenser capacity and retuning the filament circuit. Decreasing the plate capacity inereases the frequency.

For $1 \frac{1}{4}$-meter operation, in addition to replacing the larger plate pipes by smaller ones, a section of the cathode line may be shorted by a metal slider, the position of which should be adjusted so that C_{1} is effective in tuning. It should, however, be possible to find resonance on this band simply by tuning C_{1} carefully in the region near minimum capacity, since the line is rather short for $21 / 2$ meters.

HIMAM-IPO WEIE TUNED-IPI.ATE TUNEID-FILAMEENT TIRANNMITYEIE

Fige, 1212 to 1214 show the construction and circuit of a second tuned-plate tuned-filament $21 / 2$-meter transmitter. This set has much in common with the one just described, but conventional tubes of the medium-power class are employed. Fundamentally the cireuit of Fig. 1213 is the same as that of Fig. 1210, with slight changes made necessary by the directly heated type of tube used. This arrangement, even with conventional tubes, operates with an efficiency of better than 50 per cent.

A glance at Fig. 1212 will show the arrangement of the plate circuit, supported on top of the chassis. The chassis is $4 \frac{1}{2}$ inches wide, 15 inches long and $21 / 2$ inches deep. There is no

FIG. 1212-TIIS TRANSMITTER OIPERATES EFFICIPNTLY WHIH CONVENTIONAL TUHES A'T 224 MC.
To reduce lowses, the plate lines are not condenaer tuned. A slider is used for frequency ullustment. Thr hairpin coupling link in at the left.

THE RADIO AMATEUR'S HANDB00K

tuning condenser for the plate line; a condenser may be used, if desired, but for best efficiency it should be omitted. The line is relatively short for the frequency, the reason being that the internal tube leads make a considerable addition to the actual length of the line, plus the loading effect of the tube plate-grid capacity.

The ligh-voltage connection, brought through an insulator in the chassis, is shown just to the left of the supporting insulator in Fig. 1212. The antenna-coupling link, L_{3}, is made from small-diameter copper tubing; its

Tuning is similar to that already described for the low-power transmitter. The setting of (' 1 which gives minimum plate current is not, however, the adjustment at which the circuit delivers maximum output. A lamp dummy antenna coupled to the pipes will show that as the condenser setting is slightly altered the plate current will rise and the output will increase. The current should not be allowed to exceed 200 ma . at full load.

Other tubes than the T-40's shown have been used successfully in this circuit, including Types 809, T-20, RK-11, RK-12, and TZ-40. Still others of similar construction and ratings undoubtedly also would function satisfactorily.

CONCENTIRIC-LINE-CONTIROIIED THEANGMITTEIES

$F_{\text {IG. } 1215 \text { shows a }}$ simple circuit in which a concentric line is used in the grid circuit. The drawing itself shows the various components well separated, but in the actual transmitter the tube would be located immediately alongside the line to allow short leads from the grid to the inner conductor and from the filament circuit through C_{2} to the outer conductor. It is very important, also, that the plate tank be so mounted that the return path through C_{3} is short. In this particular circuit the plate tank is self-resonant - the turn spacing in the relatively large coil used being varied until minimum plate current is had at the desired frequency (with the oscillator unloaded). While a cylindrical line is indicated on this diagram, it is obviously possible to replace it with the trough type of line.
length should be adjusted to give the desired loading, with the antenna used.

Fig. 1214 is a view of the tuned filament circuit underneath the chassis. Each pipe is soldered to and partly supported by a filament prong on each tube socket. The shorted end of the line is held in place by a metal pillar which also makes the connection to the chassis ground. A wire is fed through each pipe and connected to the other filament prong on the appropriate socket. These wires are connected together at the shorted end and filament voltage applied between this common connection and ground.
C_{1}, the filament-line tuning condenser, rests on the insulated portions of the sockets and is securely mounted by two small aluminum brackets which fit under the socket mounting screws. Care must be taken to prevent grounding of the condenser plates. A short connection is made between the two grid prongs, and the grid resistor, R_{1}, runs from the center of this connection to ground.

FIG. 1214-BELOW-CHASSIS VIEW OF THE MEDIUMPOWER OSCILLATOK
The urrangement is described in the text.

ULIRA-HIGH-FREQUENCY TRANSMITTERS

Fig 1217 shows an alternative circuit of the same general type. In this case, the filament and plate circuits are by-passed directly to the outer conductor, the gridleak being connected between the negative high-voltage lead and

FIG. 1215 - TIIE CIRCUIT OF A CONCHNTIRIC-LINE-CONTROLLED TRANSMITTER
$\mathrm{C}_{1}-100 \mu \mu \mathrm{fd}$. receiving type condenser.
$\mathrm{C}_{2}-500-\mu \mu \mathrm{fd}$. receiving type condensers.
$\mathrm{C}_{8}-500-\mu \mu \mathrm{fd}$. high-voltage condenser.
$\mathrm{K}_{1}-10,000$ to 50,000 ohme depending on tulse used. L_{1} - Size will depend greatily on tube used and careful adjustment of turn spacing will be essential. 1.2 - Two turns of eimilar diameter to L_{1}.

The concentric line may be built either of copper lubing or folded from copper shoet into a troughtype line. The inner conductor will be a few inches less than 2 feet long for 112 Mc .
ground. It is the circuit used in the 224-Mc. transmitter illustrated in Fig. 1216 In this "trough line" oscillator the filament circuit is by-passed to the wall of the line by two 1 -inch by $11 / 2$-inch copper strips which serve also as the supports for the tubes. These strips are insulated from the wall of the line with thin mica. The plate by-pass condenser is treated
in similar fashion and consists of a 1 - by 2 -inch copper strip mounted on the upper surface of the line. The plate circuit consists of a "hairpin" of No. 14 bare wire about 3 inches long and 1 inch wide. It is supported from the plate terminal of the tube by an appropriately drilled and tapped section of $1 / 4$-inch square brass rod.

The line itself is made of fairly heavy copper sheet folded to form a trough $21 / 2$ inches wide and $23 / 4$ inches high. The end plate is soldered into position and the inner conductor, of $3 / 4$ inch outside diameter copper pipe, is soldered to it. The trough, for $11 / 4$-meter operation, should be approximately 10 nches long. The inner conductor is only 8 inches long but is fitted with an extension piece of rolled copper sheet at the free end. This extension piece, about $31 / 2$ inches long, permits adjustment of the resonant frequency of the grid circuit. The grid is tapped about $1 / 4$ the length of the inner conductor from its closed end.

Adjustment of this transmitter is the acme of simplicity. The tube will oscillate with a wide range of plate circuit adjustments and it is merely necessary to vary the length of wire in the plate circuit until the plate current, with the oscillator unloaded, is a minimum at the desired operating frequency. The frequency is adjusted, of course, by variation of the position of the extension piece on the inner conductor of the line.

This type of circuit is equally suitable for use in transmitters using other types of tubes and operating on lower frequencies. The special by-pass condensers used in the $224-\mathrm{Mc}$. transmitter could be replaced with conventional fixed condensers when the circuit is used on the lower frequencies. Also, the "hairpin" tank circuit could be replaced with a conventional coil and condenser for $2 \frac{1}{2}-$ neter operation.

FIC. $1216-A$ CONCENTIIC-LINE-CONTROLLED TRANSMITTER USING TIIE TROUGITYPE LINE AND TIE W.E. 316-A TUBE
The reasonant line serves as the chassis for the transmitter with the tube mounted to it by ineans of the filament by-pass condensers. This same method of assembly might well be used on the lower frequencies in transinitters using other types of tubem.

THE RADIO AMATEUR'S HANDB00K

The plate tank should be mounted close to the resonant line so that by-passing may be accomplished without any long leads.

CIEYNTAL-CONTREDINEID TIBANSMITTEIRS

Mprovements in tube and circuit design and the constant demand for absolute freedom from frequency modulation on the ultra-high frequencies have led to the development of thoroughly practical crystal-controlled transmitters for the $56-60-\mathrm{Mc}$. band. These transmitters are more complex than the types already described but their performance is, of course, incomparably better.

Since the erystal-controlled transmitters

F1\%, 1217 - THE CIKCUIT OF THE TROUGH-1, NE: CONTROLLED THANSMITTER
I. - Hairpin-ahaped loop of No. 14 bare wire $31 / 4$ inchea long and I inch wide.
$\mathrm{C}_{1,2}$ - Filament by-pass condensers made of copper ntrip, see text.
C_{3} - Plate by-pass condenser made in similar fashion. R_{1} - 30,000-ohm 10-watt resistor.
The outer conductor of the grid line is one quarterwave long (about 12 inches at $11 / 4$ meters). The inner conductor is 8 inches long and fitted with a sliding extension piece made of copper sheet rolled into tube form.

The antenna used with this experimental transmitter is a half-wave aflair with a single wire transmisaion line connected to the antenna terminal shown on the diagram. This antenna is set up and adjusted in arcordance with the principlea explained in Chapter Thirteen.
follow so closely the general principles discussed for lower frequency working in Chapter Eight, no attempt will be made to describe them in full detail at this point. Their planning. construction and adjustment comprise an extension of the technique developed for the lower frequencies. Amateurs unfamiliar with that technique would be ill-advised to dive headlong into the complex field of crystal control on the ultra-high frequencies.

In Figs. 1218 and 1219 are shown a typical low-powered crystal-controlled transmitier using receiving-type tubes but capable of th output of 10 to 15 watts. The similarity between this and conventional circuits used on the lower frequencies will be seen at once. In this arrangement, the first section of a GA6 serves as the crystal oscillator on 14 Mc ., while the second section doubles to the $28-\mathrm{Mc}$. band. The following 6 L 6 doubles to the $56-\mathrm{Mc}$.band and drives the final 6L6. The transmitter is normally operated with 300 volts on the 6 A 6 and the 6L6 doubler, these tubes taking 60 and 40 ma . respectively. The final tube is supplied with 400 volts, the plate current under load being 80 ma . These values are all rather high for u.h.f. operation, but in cases where the tubes are relatively inexpensive and where a long tube life is not demanded, it is often convenient to run tubes slightly beyond their normal ratings.

It will be noted that two meters are provided to adjust the transmitter. The $100-\mathrm{ma}$. meter may be plugged in to read the plate current of any one of the three tubes, while the second meter, of $25-\mathrm{ma}$. range, is permanently connected in the grid circuit of the final amplifier. The 6L6, like most pentodes, is rather critical as to its excitation requirements. If it is driven too hard, the output falls off, and too little excitation will cause downward modulation. A happy compromise in this transmitter seems: to come at a d.c. grid current of 4 or 5 ma .

This transmitter was described in detail by: W2IP in QST, March, 1937.

An alternative arrangement of recoiving

FIG. 1218-A SIMPLE: CKYSTAL-CONTKOL.1.ED U.IH.F. THANSMITTEER USING IRECEIVIVG TUBES

286

ULTRA-HIGH-FREQUENCY TRANSMITTERS

tubes in a crystal-controlled u.h.f. transmitter is that shown in Fig. 1220. In this rig the second doubler stage is a 6A6 with the sections arranged as a push-push doubler - the grid circuit being push-pull and the plates heing con-
a combination 14-Mc. crystal oscillator and 28Mc. doubler. It is followed by a 6L6 56-Mc. doubler, which drives push-pull 807 's on the same frequency. The output of this unit is amplified by the push-pull 35T's shown sche-

FIG. 1219 - TME R.F. CIRCUIT OF THE SIMPIE CRYSTALGCONTKOLLED THANSMITTER
l, -5 turng No. 16 d.s.c. wire, spaced diameter of wire, on celluloid coil form 2 inches in diameter
$L_{2}-7$ turns No. 12 bare copper wire, l-inch diameter.
L_{3} - -t turna, sarne as l.1.
L_{4} - 3 turns, name as L_{1}.
$L_{b}-5$ turna, same an L_{1}.
Lf- 4 turnn, mame an L_{1}.
$\mathrm{Ci}_{\mathrm{i}}-100 \mu \mu \mathrm{fd}$. (Hammarlund MC 100S).
$\mathrm{C}_{2}-50 \mu_{\mu} \mathrm{fd}$. (IIammarlund MC:
C_{3} and $\mathrm{C}_{5}-35 \mu \mu \mathrm{fd}$. each section (Hammarlund MCD 35X).
$\mathrm{C}_{4}-20 \mu \mu \mathrm{fd}$. Hammarlund MC 20S).
$\mathrm{C}_{8}-5 \mu \mu \mathrm{fd}$. (Cardwell ZV5'TS).
RFC - 2.5-millihenry r.f. choke (National Type 100).
nected in parallel. The output stage is a 6.06 with the elements in push-pull. Using 220 volts on the first two tubes and 280 to 300 on the final stage an output of 10 watts or so may be expected.

The original transmitter was described by WIEHT in QST. July, 1937.

IIigh Power with Crystal Control

Conventional circuit practice can bc augmented by the usi of linear tank circuits for $50-\mathrm{Mc}$. work, the resulting increase in efficiency being considered well worth while. The transmitter showit in Figs. 1221-1224 is an illustration. It consists of two units, one suitable for low-power work, the other being a high-power neutralized amplifier.

As shown in Fig. 1222 , a 646 is used as
$\mathrm{l}_{1}-4$ turin $3 / \mathrm{g}^{\prime \prime}$ copper tuhing.
$\mathrm{L}_{2}-3$ turns No. 14 wire.
L3 - 3 turns No. 14 wire.
L4 - 6 turna No. 14 wire, tap 3 turns.
Lb - 6 turns No. 14 wire.
$L_{6}-8$ turns No. 14 wire on $11 / 4$ inch Isolantite form, tap 3 turnm from plate end.
C_{1} - Split-stator, 50- $\mathbf{5 u f d}$. per section. C_{2}-Split-stator, 3.t- $\mu \mu \mathrm{ff}$. per section. (: $3-15 \mu \mu \mathrm{fa}$.

matically in Fig 1224. The output delivered by the 35T's is over 100 watts.

The driver section, Fig. 1223, is built on a chassis measuring 5 by 14 by $21 / 2$ inches. The

THE RADIO AMATEUR'S HANDB00K

the 6 L 6 doubler located slightly to the left side of the center. The 807 amplifier, minus its plate circuit, is at the right.

FIG. 1221-IIGII-POWER CRYSTAL-CONTROLLED 56-MC. THANSMITTER
Linear tank circuits are used to give maximum efficiency in the driver and amplifier stages. The exciter, with push-pull 807 output, is constructed on the aluminum chassis.

Wiring, up to the 807 grids, is below the chassis; the circuits are perfectly conventional. Condensers C_{1}, C_{2} and C_{3} are mounted as shown, with the proper coils soldered directly to the condenser lugs. The crystal socket is mounted on the back wall of the chassis to the rear of the 6A6. Four jacks are provided to facilitate reading of plate currents and the 807 grid current. Filament voltages for all four tubes and plate voltage for the 6A6 are brought to a four-screw terminal strip. Plate voltage leads for the 6L6 and 807's, and filament leads for the 35T's, are brought through a hole also located on the back wall.

The rack used to support the two units consists of two $1 / 2$-inch boards; one, measuring $201 / 2$ by $53 / 4$ inches, is utilized as a base. The second, measuring 32 by 5 inches, is fastened vertically to the base, centered 6 inches in from the left end. Both sides of the standing section are covered with thin aluminum sheet, which acts as a shield and ground plate.

The plate lines, constructed in the usual fashion, are mounted on stand-off insulators, that at the left being the 807 plate circuit. C_{4}, mounted across the open end of the line, is used both for tuning and to reduce the pipe length. Plate voltage is brought to the shorted end through a lead which lies in a groove cut in the wooden vertical member. A groove is also cut on the opposite side to contain the 35T filament wires. The wires and grooves are underneath the aluminum sheets.

Coupling between the 807's and the 35T's is through a tuned circuit, $L_{1} C_{1}$, Fig. 1224. The inductance is a hairpin link which runs, from

FIG. 1222-CIRCUII DIAG;RAM (BF THE EXCITER SECTION OF THE CRYSTAL-CONTIROLEID TRANSMITTER

Cl-75- $-\frac{1}{5}$ fl. variable. $\mathrm{C}_{2}-50-\mu \mu \mathrm{fd}$ varialle. $\mathrm{C}_{3}, \mathrm{C}_{4}$ - $15-\mu \mu \mathrm{fd}$. varialle. $\mathrm{C}_{5}, \mathrm{C}_{8}-100-\mu \mu \mathrm{fd}$. mica. C_{7} to C_{14}, inc. $-\mathbf{0 . 0 0 1 - \mu \mathrm { fl } \text { . mica. }}$ H_{1} - 400 ohms , 1 -watt.
H_{2} - 20,000 ohms, I-watt.
$\mathrm{H}_{3}-\mathbf{1 5 0 , 0 0 0}$ ohme, l-watt.
R_{4} - 30,000 ohms, 2 -watt.
Rs - $\mathbf{1 0 , 0 0 0}$ ohms, 2-watt.
$\mathrm{He}_{\mathrm{s}}-15,000$ ohms, 10 -watt.
$\mathbf{H F C}-2.5-\mathrm{mh}$. sectional chokes.
l.1-7 turns No. 20 d.c.c., diameter 1 inch, close-wound.
1.2-7 turns No. 12, diameter 1 inch, length $7 / 8$ inch.
$\mathrm{L}_{3}-4$ turns No. 12 , diameter $3 / 4$ inch, length $3 / 4$ inch.
$L_{4}-3$ turns No. 12 each side La_{3}, diameter 1 inch, doublespaced.
$\mathrm{l}_{\mathrm{s}}-7 / 8$-inch o.d. copper tubing line, 24 inchos long, spaced diameter of tubing.

C_{1}, through holes in the vertical board and down along the 807 plate line for about 9 inches. The grid resistor, R_{L}, is soldered between the center of the link and grid jack. The jack is mounted on a small bracket to the rear of the link. Fig. 1222 shows the link coupled to the 807 tank circuit.

In the amplifier, C_{1}, Fig. 1224, is mounted on an aluminum bracket as close to the top as possible. The tubes, mounted upside down, are supported by an aluminum shelf, which also holds the neutralizing condensers. These condensers are made from aluminum plates mounted on standoff insulators; the plate-spacing is approximately $1 / 8$ inch.
L_{2}, the 35T plate line, is supported with the shorted end at the bottom. The plate voltage is tapped in at this point. The antenna link is 10 or so inches long and is mounted on two standoff insulators. C_{2}, across the open end of the line, resonates the circuit at various frequencies in the band.

The transmitter is tuned the same as any lower-frequency set. Approximate current readings are as follows: 6A6 oscillator section, 30 ma . ; doubler section, 25 ma . 6 L 6 doubler, 75 to 85 ma.; 807 grid current, 7 ma.; screen current, 25 to 35 ma . plate current, 150 ma . Grid current to the 35 T 's is 60 ma . and the plate current 175 ma . at full load.

28-Mc. Crystals

All of the crystal-controlled circuits shown have been based on the use of 14-Mc. crystals. There is no reason, however, why lowerfrequency crystals cannot be used, providing additional doubler stages are incorporated. In fact, if the station is equipped with an "all-band" exciter of one of the types described in Chapter Eight, the addition of one doubler and a final amplifier will be all that is needed to extend the range to the $56-\mathrm{Mc}$. band.

FIG. 1224 - CIRCUIT OF THIE 35T AMPLIFIEK
FIG. 1225 - TRIODE CRYSTAL OSCILLATOR CIRCUIT RECOMMENDED FOR 23-MC. CRYSTALS
$L_{1}-8$ turns No. 12 wire, $3 / 4-$ inch diameter, turns spaced diameter of wire.
$\mathrm{C}_{1}-75-\mu \mu \mathrm{fd}$. variable.
$\mathrm{C}_{2}, \mathrm{C8}-0.005-\mu \mathrm{fd}$. mica.
R_{1} - 200-ohm carbon.
RFC $\mathbf{- 2 . 5 - m h}$. r.f. choke.
Plate voltage should be 180 for the 955,220 fur the 6J5G.
$\mathrm{C}_{1}-30-\mu \mu \mathrm{fd}$. aplit-atator (Cardwoll ET-30-AD).
$\mathrm{C}_{2}-16-\mu \mu \mathrm{fd}$. variable (Cardwell Ya -16-AS).
$\mathrm{C}_{3}, \mathrm{C}_{4}$ - Neutralizing condensers; 1 -inch equare plates mounted on standoff insulators, one plate of each condenser movahle for adjustmont.
Cs $-0.005-\mu \mathrm{fd}$. mica.
12L -5000 ohmm, 25-watt.
I. 1 - Coupling Iink; see text.
L. 2 - $7 / 8$-inch o.d. copper tubing line, length 24 inches, opaced diameter of tubing.
I. 3 - Antenns-annpting Jirih. app. 0 incheo long.

289

THE RADIO AMATEUR'S HANDB00K

the lower frequencies, and the circuits of Figs. 1225 and 1226 are especially recommended. With the 6J5G in Fig. 1225 , sufficient output can be secured at 220 volts on the plate to drive tubes such as the 61.6 and 807 as $56-\mathrm{Mc}$. doublers. With the dual-triode-circuit of Fig. 1226, outputs of the order of 3 watts can be secured on 5 (f Mc. from the Noubler section.

The usual precautions as to short leads and compact construction apply.

HIG: 1226- DUAL-TRIODE OSCILLATIOHMOHLER FOR 56-MC. OUTPUT
$L_{1}-6$ turns. No. 12 , diameter $3 / 4$ incli; spacing equal to wire thickness.
I. -4 turns No. 12 , diameter $3 / 4$ inch; spacing twice wire diameter.
$\mathrm{C}_{1}-\mathbf{7 5 - \mu}$ fd. variable. $\mathrm{Ci4}, \mathrm{C}_{5}-\mathbf{0 . 0 0 5}-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{2}-35-\mu \mu \mathrm{fd}$. variable.
$\mathrm{C}_{3}-100-\mu \mu \mathrm{fl}$. mica.
RFC: - 2.5-mh. r.f. choke.
Inte voltape for $6 \mathrm{E} 6, \mathbf{3 N}$; for $\mathrm{HK} \mathbf{3 4}, \mathbf{3 2 5}$.

THE MODBILATOIR IPRTHELEM

The subject of modulator desigu for the u.h.f. transmitter is, of course, of very wide scope. However, since it differs in no way from the same problem as it applies to lower frequency transmitters, we are not justified in offering any detailed extension of the design principles appearing in Chapter Ten. A study of that

FIG: 122\& - SHIOWIN: TIHE SIMPHE CON:

\longleftarrow
 MoIDIIVTOH
In spite of the compact assembly, this moriulator has sufficient gain to allow operation from a standard crystal microphonc. It wam originally planned as a companion piece for the transimitter illustrated in Fig. 1215.

F16: 122 - 'HIE SIMPIF MUDLLATUIR I NFII WITH THE MOBILE TRANSMITTEK
T_{1} - UTC Type CS103 microphone transformer.
Tz-UTC Type CS34 used back-to-front to give a step-up turn ratlo of 1 to 1.2 .
$\mathrm{K}_{1}-500,000$-ohm potentiometer.
$\mathrm{K}_{2}-350$-ohm 5-watt resistor.
$\mathrm{R}_{8} \mathbf{- 2 5 , 0 0 0 - o h m}$ 1-watt fixed resistor.

is - . 5 ufil. tubular-type conderimer.

[LTRA-HIGH-FREOUENCY TRANSMITTERS

been had from any form of instability. The plate meter in the modulator (shown on the diagram) is convenient as a means of̉ checking operation, but would require a barser container tor lhe set than that ilLustrated.

MODIIAJ'OK
(. 1 - $5 \mu \mathrm{ff}$., 25 -volt electrolytie enndmener.
C. $\mathrm{C}_{3}-8 \mu \mathrm{fil}$. 500 -volt electrolytic.
C. $, \mathrm{C}, ~-.01 \mu \mathrm{fd} ., 600$-volt paper enindenmers.
$\mathrm{C}_{6}-5 \mu \mathrm{fd}$., $\mathbf{2 5}$-volt electrolytic.
R_{1} - 2 negohm half-watt resistor.
$\mathrm{K}_{2}-1750$ ohm one-watt resistor.
$\mathrm{R}_{3}, \mathrm{~K}_{5}-100,000$ ohm onfewatt resintors.
$\mathbf{R}_{4}, \mathbf{1 R}_{6}-\mathbf{2 0 , 0 0 0}$ ohnm one-watt resistors.
$\mathrm{R}_{7}-500,000$ ohm half-watt resistor.
$\mathrm{Rg}-500,000 \mathrm{olim}$ potentiometer.
Rg - 1200 ohm one-watt resistor.
'lí - Class 13 inpui (ITT: Tyuc (S-22).
$\mathbf{1}_{2}$ - Chase 13 ontput (1 TR: Type (Sis3).
chapter will quiekly revel the fumdamental principles involved in choosing modulator tuhes and their eompanion speech amplifiers.

We will, however, present two typical examples of simple low-powered modulators of the type suitable for use with the smaller u.h.f. sets. The modulators for the more powerful transmitters may well be moteled along the lines of those shown in Chapter Ten.

Fig. 1227 is the circuit of a very simple Class A modulator suitable for modulating the output of a transmitter operated with an input of 10 or 12 watts. It will be seen that in the interests of simplicity a single-button mierophone is used to drive the 61.6 directly. 'This means that the modulator call be driven to full output only by using a high voice level. Such "peration is, however, usually the rule with mohile installations, partieularly in airplane work. The output transformer is made neees. sary since the load impedance of the modulator usually is considerably higher than that required for the modulator tube.

1 10 - Hat Modulator

A more advanced type of modulator suitable for use with a crystal microphone and capable of modulating a final amplifier running at 20 watts of input is illustrated in Figs. 1228 to 1230. Three 6 N 7 tubes are used, the first as a two-stage resistance-coupled amplifier, the second as a parallel-connected driver and the third as a conventional Class-B modulator.

The unit is built in a standard $9-b y-\overline{-b} \mathrm{~b}^{-6}$ metal box with the three tubes in a row and the transformers behind them. Notwithstanding the compact assembly, no trouble has

THIE TIRANACEAVEAK

Fou portable work, a reduction in weight and groneral simplification of equipment can be made by using the same tubes for transmission as for reception. In the early days of u.h.f. work this idea was carried out very thoroughly, but with present conditions the simpler types of transecivers camont comply with the regulations respeting stability of transmission, and are undesibable for reeeption because of severe radiation from the superregenerative receiver operated at relatively high plate voltage. At the present time the "transceiver" normally uses only the audio equipment for both transmitting and receiving, the ref. seetions being entirely separate.

A transceiver of the latter type is shown in Figs. 1231 and 1232. 'The transmitter circuit will be recognized as that of lig. 1226. The receiver section consists of a super-regenerative detector preceded by an r.f. stage to prevent radiation. The 6F6 is used as a speaker amplifier with the switeh in the "receive" position,

FIG: 1231 - 5 - MIC. CHYSTAI-CONTROI.LEI 'IRANGCEIVER FOR I'ORTABLE ANID I'ORTABLF. MOBILE WORK
The 6F'6 and its input transformer and outpat choke are in the forcground. The crystal is between the 6F6 and RK-34. (W3VR, April, 1938, Q ST.)

THE RADIO AMATEUR'S HANDB00K

and as a modulator with the switch in the "send" position. The circuit and construction follow the practice already outlined, and need
no special comment. A unit of this type may be used for low-power fixed station work as well as for portable and portable-mobile operation.

FIG. 1232-CHCUIT DIAGRAM OF THE CRYSTAIRCONTROLLED TRANSCEIVEIR

Ci, $\mathrm{C}_{6}, \mathrm{C}_{6}-0.005-\mu \mathrm{fd}$. midget mica.
C. $-0.002-\mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{3}-75$ - $\mu \mathrm{ff}$. midget variable (Cardwell ZR-75-AS).
$\mathrm{C}_{4}-35-\mu \mu \mathrm{fd}$. midget variable
(Cardwell ZR-35-AS).
$\mathrm{C}_{7}-0.001-\mu \mathrm{fd}$. midget mica.
C., $\mathrm{C}_{10}, \mathrm{C}_{18}-3-30-\mu \mu \mathrm{fd}$. trimmers
(National M-30).
$\mathrm{C}_{9}, \mathrm{Cu}_{4}-15-\mu \mu \mathrm{fd}$. midget variable
(Cardwoll ZR-15-AS).
$\mathrm{C}_{11}, \mathrm{C}_{12}-500-\mu \mu \mathrm{fd}$. midget mica.
$\mathrm{C}_{15}-100-\mu \mu \mathrm{fd}$. midgot mica. $\mathrm{C}_{16}-0.001-\mu \mathrm{fd}$. midget mica. $\mathrm{C}_{17}-10-\mu \mathrm{fd} .25$-volt electrolytic. $\mathrm{C}_{18}-\mathbf{0 . 2 5 - \mu \mathrm { fd } . 4 0 0 \text { -volt paper. }}$ $\mathrm{C}_{19}-0.01$ - $\mu \mathrm{fd}$. 400-volt paper. RFC 1_{1} - $2.5-\mathrm{mh}$. r.f. choke. RFC 2 - R100 choke (National). $\mathrm{R}_{1}-400$ ohms, 10 -watt. 1R2-30,000 ohms, 2-watt. $R_{3}-1500$ ohms, $1 / 2$-watt. $\mathbf{R}_{4}, \mathbf{R}_{5}-100,000$ ohms, $1 / 2$-watt. $\mathrm{R}_{6}, \mathrm{R}_{\mathbf{7}} \mathbf{- 5 0 , 0 0 0}$ ohms, l-watt.

Rs - 450 ohms, 10 -watt.
Li - 6 turns No. 12, diameter $3 / 4$ inch, spaced wire diameter.
$\mathrm{L}_{2}-4$ turne same as L_{1}.
$\mathrm{L}_{3}-7$ turns No. 14, diameter $1 / 2$ inch, spaced wire diameter.
$\mathrm{L}_{4}-56-\mathrm{Mc}$. receiver coil (Sickle. No. 1203).
T1 - Transceiverinput tranaformer (Kenyon KA-114-M).
CII-30-henry, 70-ma. choke.
Switch - 4-pole douhle-throw (Yaxley 3242J).

the radio amateur's handbook
 CHAPTER THIRTEEN

ANTENNAS

Propagation of Radio Waves - Types of Antennas - Their Radiation Characteristics - Feeder Systems for Simple Antennas - Methods of Coupling - Directive Arrays

Too often an amateur erects an anterna system without a clear understanding of the characteristics possessed by the particular type chosen and, consequently, with little regard for the all-important question of whether or not those characteristics are suited to the purpose for which the antenna is intended. Before one can select the right tool for a job he must know what that job is. The antenna's job is that of radiating electro-magnetic waves in such a way that they will reach a desired receiving point with maximum intensity. Obviously, then, we must know something about the nature of radio waves and how they travel before we can consider how most effectively to start them on their way.

THE Natche of hadio waves

IIado waves are of the same nature as light waves, traveling with the same velocity of 186,000 miles or 300,000 kilometers per second. They are electro-magnetic waves, having an electric component and an accompanying magnetic component, the two being at right angles to each other in space. The waves are plane waves: the plane of the electric and magnetic components is always at right angles to the line along which the waves are traveling. The waves are said to be vertically polarized when the wave travels with its electric component perpendicular to the earth, and are said to be horizontally polarized when the electric component is parallel to the earth. The polarization at transmission will correspond to the position of the antenna which radiates the waves, vertical or horizontal, although the polarization may shift as the wave travels through space or encounters incidental conductors in its path. The polarization of the waves at the receiving point is of practical importance because the voltage induced in the receiving antenna will be greatest when the antenna is placed to suit the particular polarization of the wave - vertical for vertically-polarized waves and horizontal for horizontally-polarized waves.
Radio waves, like light waves, can be re-
flected and refracted. Reflection occurs when the wave strikes a conductor, such as a wire. A current is set up in the wire, and in turn causes the wire to radiate an electro-magnetic wave of its own. Reflection also can occur in the upper atmosphere, as described in the following paragraphs.

The Ionosphere

Radio waves not only travel along the surface of the earth in the lower atmosphere, for short-distance communication; they also travel through the upper regions far above the earth for long-distance communication.
The general idea of the paths followed by radio waves for both direct-ray and indirectray communication is illustrated in Fig. 1301-A. As would be expected, a direct ray travels out from the transmitter along the surface of the earth and will be received strongly at a relatively near-by point. This part of the radiation is commonly called the ground wave. It is rapidly weakened or attenuated as it progresses, until finally it is no longer of useful strength. Moreover, the rapidity with which the ground wave is attenuated is greater as its frequency is higher (or as its wavelength is shorter).
But not all the energy radiated by the antenna is in waves along the sufface. The greater part is likely to be at angles considerably above the horizontal, in fadt. These higherangle sky waves would travel on outward into space indefinitely, and would be of no practical use for communication, if they were not bent back to earth again. This bending action is explained by the existence of a region of ionized atmosphere, known as the ionosphere, surrounding the earth. The possibility of radio waves being returned from such an ionized region was proposed almost s multaneously by A. E. Kennelly in Americs and by Oliver Heaviside in England in 1902, many years before long-distance short-wave communication demonstrated its proof. fn honor of these two scientists, the ionosphene has been long known also as the Kennelly-Heaviside layer.

the radio amatrur's handrook

The ionosphere is not strictly a single layer, however, Dr. Kennelly suggested this in his original proposal and investigations have shown that there are several distinct layers, as will be explained in the following paragraphs.

How Sky Waves Are Bent by Refraction

The ionization of air inolecules mentioned above is the result of bombardment by cosmic and solar radiation, breaking them into free electrons and positive ions. This ionization is inappreciable in the air near the earth's surface, to which the ionizing radiations penetrate to only a slight extent, and in which the electrons and ions recombine so quickly as to permit the electrons practically no free path. It is considerable in the thin atmosphere at heights extending between approximately 40 and 250 niles (70 to 400 kilometers). It is the presence of the free electrons resulting from ionization in this region, and the relatively long free path there allowed the electron before recombination, which is principally responsible for bending of the sky waves.

For the amateur frequencies between 7000 kc . ($40-$ meter band) and $30,000 \mathrm{kc}$. (10 -meter hand), the bending is practically all refraction. That is, a wave entering the increasingly

FIG. 1301 - HLLUSTKATING GBGLVID-WAVE INII SKY-WAVE TRANSMISSION OF RADIO WAVES
The density of the dots indicates that the electron density in the ionosphere increases and then decreases as the altitude becomes greater. 'This is a simplified representation; actually there are other ionized layers which affect different frequenciem in different way.
ionized region from the lower atmosphere has its velocity increased by the increased conductivity due to the presence of the free electrons, and more or less gradually has its course turned away from the ionized region, back towards the earth. One way of visualizing this is to consider the wave as two adjacent rays, one above the other. The upper ray trivels lister than the lower ray as it progresses into the ionosphere because it is in the denser clectron utmosphere. Hence, it tends to gain on the lower ray, with the consequence that the path of the wave is curved downward to earth - somewhat as the left wheel of a vehicle turning faster than the right will cause a change of direction to the right. A suggestion of this refracting action is given for sky waves in Fig. 1301.

Skip Distance and Layer IIeight

The sharpness with which this bending occurs is the greater as the frequency of the wave is lower. At 3500 kc . and lower frequencies the sky wave usually will return quite close to the transmitting point, within the range covered by the ground wave, as well as at greater distances. At 7000 kc ., however, the sky wave often will not return this close to the transmitter, and there will be a zone of silence from the farther limit of the ground wave to the closest point at which the sky wave returns. This no-signal interval is known as the skip distance, from the fact that the signals seem to skip over. The skip distance increases with frequency, until at frequencies in the $28-\mathrm{Mc}$. band it becomes so great that the returning signal is likely to miss the earth and not to be heard under ionosphere conditions prevailing much of the time.

As shown by Fig. 1301-A, the bending at a given frequency is also determined by the angle at which the wave strikes the ionized region. Waves entering the ionosphere at grazing incidence are much more readily refracted than those which approach it nearly perpendicularly. At the higher frequencies, in fact, waves which strike the ionosphere at relatively high angles with respect to the horizon are not refracted sufficiently to be returned to earth, and hence are not useful for communication. Under all except very abnormal conditions, j6-Mc. waves, for instance, are not refracted by the ionosphere even though the angle is very low.

The degree of bending is a function of the intensity of ionization. This varies with the time of day, as the portion of the earth under consideration receives more or less radiation from the sun, so that transmission conditions go through daily cycles. The ionization also is influenced by cyclic changes in the condition of the sun itself, so that similar variations fol-
low the 27 -day and 11 - or 22 -year sun-spot activity cycles. The effect of the latter variations is more apparent on the higher frequencies - 14 and 28 Mc . - where conditions for refraction are most critical.

Measurements have shown that there are three ionized regions or layers of a major nature, with others occasionally making an appearance. The three are called the E layer, the F_{1} layer and the F_{2} layer. Measurements made at Washington, D. C., by the U. S. Bureau of Standards show that the E layer has a virtual height of approximately 70 miles for the lower frequencies in this range during daytime. At mid-frequencies the waves penetrate this layer and are returned from the F_{1} layer at a height of approximately 125 miles. At the higher frequencies the waves penetrate both the E and F_{1} layers and are returned from the F_{2} layer at a height of approximately 180 miles. Towards evening the F_{1} and F_{2} layers appear to merge, leaving only the one layer in the F region at a virtual height of approximately 150 miles or higher during the night.

The layer principally effective for longdistance communication at might is the F layer, while any one of the three may be effective for sky-wave transmission during the daytime, depending on the frequency and degree of ionization.

Ullra-High Frequency Haces

Although waves of ultra-high frequency (above 30 Mc .) are only rarely bent back to earth by the ionosphere, studies in reception of ©6-Mc. transmissions over distances of 100 miles or so, which are greater than the ground wave or optical range, have shown evidence of bending in the lower atmosphere. Investigations by the A.R.R.L. technical staff during 1934 and 1935 showed that this bending accompanies the presence below 10,000 -foot altitude of warmer air layers over cooler surface air, or that it accompanies the occurrence of temperature inversions in the lower atmosphere. Apparently there is cause for sufficient refraction at 56 Mc ., and at 112 Me ., to give "air-wave" communication at distances" greater than would be possible with only ground wave transmission. Communication on these frequencies is treated more fully in Chapters Eleven and Twelve.

Wave Propagation in Relation to Antrmma Design

An important practical lesson to be learned from these peculiarities of radio wave travel is that transmission will be most effective when the energy radiated from the antenna is concentrated on the ionosphere at an angle which will put the best signal down at the receiving point. For long-distance commmencation this
means that the maximum radiation should be more nearly horizontal than vertical; that is, low-angle radiation is desirbble, especially on the $14-$ and $28-\mathrm{Mc}$. bands.

Available data indicate that under most conditions, $28-\mathrm{Mc}$. waves traveling at an angle of more than 15 degrees or so with the horizon seldom are returned to earth by the ionosphere; on the average, the optimum angle lies between 5 and 10 degrees. on 14 Mc . the normal upper limit is about 30 degrees, with angles up to 15 or 20 degrees being most effective. On 7 and 3.5 Mc . purel vertical radiation often is returned; angles $\mu \mathrm{p}$ to at least 45 degrees are effective under most conditions on the former band, and to a still higher figure on the latter. In the discussion of antenna radiation characteristics in this chapter, angles of 9 degrees for 28 Mc., 15 degres for 14 Mc., and 30 degrees for 7 and 3.5 Mc . have been assumed as representing aveage conditions for comparative purposes. Purely horizontal radiation over any considerable distance is practically unattainable at the higher frequencies hecause of rapid absorption of energy by the ground.

The question of polarization also deserves some consideration. Experimental data show that at 7 Mc . and higher the waves usually are horizontally polarized at the receiving point regardless of the polarization of the transmitting antenna. It is thought that this "ironingout" of the polarization occurs when the wave is refracted in the ionosphere, perhaps also as the result of influence of the ground near the receiving antenna. On 3.5 Mc . the polarization is variable, and on 1.75 Mc is chiefly vertical. The conclusion to be drawn is that on the 3.5Mc. and higher-frequency bands little consideration need be given polarization at the transmitting antenna. For receiving, however, a horizontal antenna is preferable not only because it will give greates output from the horizontally polarized waves, but also because most local electrical interference (from machines, automobile ignition etc.) prevalent on the higher frequencies is vertically polarized, hence the response to such interference will be minimized. On 1.75 Mc vertical polarization is to be preferred from the standpoint of effective transmission, but inay lead to interference with near-by broadcast receivers, the antennas for which also respond well to verticallypolarized waves.

THE HARF-WIVE ANTENNA

THE fundamental form of anterten and the one in widest practical use for short-wave work, is a single wire whose length is approximately equal to half the transmitting wave-length. It is important to understand its properties be-

the radio amateur's ilandbook

cause the half-wave antenna is the unit from which many more complex forms of antennas are constructed. It is sometimes known as a Hertz or doublet antenna.

It was explained in Chapter Four that when power is fed to such an antenna the current and voltage vary along its length. The distribution, which is practically the form of a sine curve, is shown in Fig. 1302. The current is maximum at the center (a point of maximum is known as a loop or antinode) and nearly zero at the ends, while the opposite is true of the r.f. voltage. The current does not actually reach zero at the current nodes, or minimum points, because of the effect of capacitance at the ends of the wire (end effect); similarly, the voltage is not zero at its node because of the resistance of the antenna, which consists of both the r.f. resistance of the wire (ohmic resistance) and the radiation resistance. Usually the ohmic re-

FIG. 1302 - CUIRRENT ANI VOLTAGE DISTIRIBUTION ON A HALF-WAVE ANTENNA
sistance of a half-wave antenna is small enough, in comparison with the radiation resistance, to be neglected for all practical purposes. Radiation resistance has been defined in Chapter Four.

Antenna Impedance

The radiation resistance of a half-wave antenna in free space - that is, sufficiently removed from surrounding objects so that they do not affect the antenna's characteristics is 73 ohms , approximately. The value under practical conditions will vary with the height of the antenna, but is commonly taken to be in the neighborhood of 70 ohms . It is a pure resistance, and is measured at the center of the antenna. The antenna impedance at any point will be equal to the voltage divided by the current at the point. The impedance is minimum at the center, where it is equal to the radiation resistance, and increases toward the ends. The end value will depend on a number of factors such as the height and pliysical construction, but a representative value for a half-wave antenna is about 12,000 ohms.

FIG. 1303-CIIARTS FOR IDETEIRIINING TIIE I,FNGTII OF HALF-WAVE ANTENNAS FOII USE ON VARIOUS AMATEUL IBANISS
Solid Ilnes indicate antenna length (lower ecale); dotted linee point of connection forsingle-wire feeder (upper ecale). (See section on eingle-wire feed.)

ANTENNAS

The impedance is an important quantity which must be taken into account when methods of feeding power to the antenna are under consideration.

Physical Length

The actual length of a half-wave antenna will not be exactly equal to the half wavelength in space but is usually about 5% less, because of end effects. The reduction factor increases slightly as the frequency is increased. Under average conditions, the following formula will give the length of a half-wave antenna to sufficient accuracy:

$$
\begin{equation*}
\underset{\text { Length of half-wave }}{\text { antenna (feet) }}=\frac{468}{\text { Freq. (Mc.) }} \tag{1}
\end{equation*}
$$

This equation is shown in chart form in Fig. 1303. Differences of a few per cent in length will make no appreciable difference in the radiation characteristics of the antenna, but may have an effect on the operation of the feeder system used. This will be considered in a later section.

Radiation Characteristics

The radiation from a half-wave antenna is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions at right-angles to the wire, and zero along the direction of the wire itself, with intermediate values at intermediate angles. This is shown by the sketch of Fig. 1304, which represents the radiation pat-

WIG, 1301-FREESSPACE RADIATION IPATPERX OF HALF-WAVE ANTENNA
Hhe antenna is shown in the vertical position. This is a cross-section of the solid pattern described by the figure when rotated on its axis (the antenna). The "doughnut", form of the solid pattern can easily be visualized by imagining the drawing glued to cardboard, with a short length of wire fastened on to represent the antenna. Then twirling the wire will give a visual representation of the solid pattern.
tern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antenna is vertical, as shown in the figure, then the field strength, the measure of signal intensity, will be uniform in all horizontal directions; if the antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire.

Ground Effects

When the antenna is near the ground, as all amateur antennas are, the free-space pattern of Fig. 1304 is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-space pattern and ground reflections. This resultant is dependent upon the height of the antenna and its position or orientation with respect to the surface of the ground. The reflected waves may be in such phase relationship to the directly-radiated waves that the two com-

FIG: 130: - EFFECT OF GIROUNI) ON RADIATION AI' VER'I'ICAI, ANGLES FOR FOUIR ANTENVA HEIGITS
This chart applies only to horizontal antennam, and is based on perfectly conducting ground.
pletely reinforce each other, or the phase relationship may be such that complete cancellation takes place. All intermediate values also are possible. In other words, the effect of a perfectly-reflecting ground is such that the original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. Since waves are always reflected upward from the ground (assuming that the surface is fairly level) these reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the carth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 1305 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas. The maximum value (2) comes at a vertical angle of 90 degrees (directly upward) for an antenna height of $1 / 4$ wavelength. As the height is increased the angle at which complete reinforcement takes place is lowered until it occurs

THE RADIO AMATEUR'S HANDB00K

at a vertical angle of 15 degrees for a height equal to one wavelength. Note that the factor is zero for an angle of 30 degrees when the antenna is one wavelength high, is zero at slightly over 40 degrees for a height of $3 / 4$ wavelength, and is zero at 90 degrees for a height of 1,2 wavelength. This means that there can be no radiation at these vertical angles for the heights given, from a horizontal antenna ahove perfectly-conducting ground.

We lave already seen that the vertical angle, or "angle of radiation" is of primary importance, esperially at the higher frequencies. it is therefore advantageous to erect the antenna at a height which will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Generally speaking, this simply means that the antenna should be as high as possible: at least $1 / 2$ wavelength at 14 Mc. and preferably $3 / 4$ or 1 wavelength; at least 1 wavelength and preferably higher at 28 Mr. Fortunately the wavelength is shorter as the frequency is increased so that good heights are not impracticable; a half wavelength at 14 Mc . is only 35 feet, approximately, and the same height represents a full wavelength at 28 Mc . At 7 Mc . and lower, the higher radiation angles are effective so that again a reasonable antenna height is not difficult of attainment. Heights between 3 5) and 70 feet are suitable for all bands, the higher figures being preferable if circumstances permit their use.

When the half-wave antenna is vertical the maximum and minimum points in the curves of Fig. 1305 exchange positions, so that the nulls become maxima, and vice versa. In this case, the height is taken as the distance from ground to the center of the antenna.

Fig. 1305 is based on a ground having perfect conductivity, a thing which is not met with in practice. The principal effect of actual ground is to make the eurves inaccurate at the lowest angles; appreciable high-frequency radiation at angles smaller than about 5 degrees is practically impossible to obtain. Above 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the sort of result to be expected at angles between 5 and 15 degrees.

Vertical or Horizontal?

Although polarization is generally unimportant in high-frequency communication, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration on other counts. As Fig. 1304 shows, a vertical half-wave antenna will radiate equally well in all horizontal directions, so that it is substantially non-directional in the usual sense of the word. If installed horizontally, however, the antenna will tend to show
directional effects, and will radiate best in the direction at right-angles, or broadside, to the wire. The radiation in such case will be least in the direction toward which the wire points. This can be seen readily by imagining that Fig. 1304 is lying on the ground and that the pattern is looked at from above.

The vertical angle of radiation also will be affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally. Practically, this theoretical advantage over the horizontal antenna is of little or no consequence; in fact, at certain heights the vertical antenna may actually not be as good a low-angle radiator as the horizontal since, as previously explained, the positions of the maxima and mimima of Fig. 1305 are interchanged when the antenna is vertical.

For the same pole height, a horizontal antenna usually will be more "in the clear" than a vertical, so that energy losses in near-by objects usually will be less. The horizontal position is desirable if the antenna is used for receiving, as previously explained. Also, the horizontally-polarized transmissions are less likely to cause interference with near-by broadcast receivers.

Effective Ruliation Patterns

In determining the effective radiation pattern of an antenna it is necessary to consider radiation in both the horizontal and vertical planes. When the half-wave antenna is vertical, the vertical angle of radiation chosen does not affect the shape of the horizontal pattern, but only its relative amplitude. When the antenna is horizontal, however, both the shape and amplitude are dependent upon the angle of radiation chosen.

Fig. 1306 should make this clear. The "freespace" pattern of the horizontal autenna

F1G. 1306- HALUSTRATING: TIIE IMIPORTANCE OF VEK-
 TICAI, ANGLE OF RADIATION IN IDEIEERMINING ANTEENN IDHECTIGNAL EFFECTS
Ground rellection is neglected in this drawing. As previously explained, reflection from the ground will reinforce or cancel radiation at certain vertical angles. depending upon the lieight.
shown is a section cut vertically through the solid pattern. In the direetion $O A$, horizontally along the wire axis, the radiation is zero. At some vertical angle represented by the line $O B$, however, the radiation is appreciable, despite the fact that this line runs in the same geographical direction as OA. At some higher
angle $O C^{\circ}$ the radiation, still in the same geographical tirection, is still more intense, The offective radiation pattern therefore depends upon the angle of radiation most useful. The factors influencing the selection of these angles were considered earlier in this chapter. It must be remembered, however, that they represent only average or near-average conditions, and that the effective pattern is dependent upon the conditions existing in the ionosphere. These conditions may vary not only from day to day and hour to hour, but even from minute to minute. Obviously, then, the effective directivity of the antenna will change along with transmission conditions.

Theoretical horizontal-directivity patterns for half-wave horizontal antennas at vertical angles of 9, 15 and 30 degrees are given in Fig. 1307. At intermediate angles the values in the

HIG. 130% - HORIZONTAL PATTERN GF A IlORIZOV'IAL IIALF-WAVE ANTENNA AT THREE VERTICAL RADIATION ANGLES
Solid line is relative radiation at 15 degrees. Dotted lines show deviation from the 15 -degree pattern, for angles of 9 and 30 degrees. The patterns are useful for shape only, since the amplitude will depend upon the height of the antenna above ground and the vertical angle considered. The patterns for all three angles have been proportioned to the same scale, but this does not mean that the maximum amplitudes necessarily are the same. These statements also apply to Figs. 1329, 1330, and 1331. The arrow indicates the direction of the antenna wire.
affected regions also will be intermediate. Relative field strengths are plotted on a decibel scale (see Appendix) so that they represent as nearly as possible the actual aural effect at the receiving station. If the signal in the direction of maximum intensity is S 9 , the smallest value on the scale should be about Sl.

The considerations discussed here in romuection with half-wave antennas also apply to the more complicated types described later.

FEEDDNG POWEIT TO THE ANTENNA

ll that has been said in the preceding sections is true of any half-wave antenna, regardless of the method used to feed radio-frequency power to it. The various names applied to halfwave antennas with different types of feed

FIG. 1308 - METHODS OF DIRECT FEED TO THE HALF-WAVE ANTEVNA
A, current feed, series tuning; B, voltage feed, capacity coupling; C, voltage feed with inductively coupled antenna tank. In A, the coupling apparatun is not included in the antenna length.
systems — "Zepp," "current-fed," "end-fed," "Q," "matched-impedance," and so on, often lead to misunderstandings in that they are interpreted to be "different" antenna systems. If the antenna (as distinguished from the feeder) is a half-wave element the performance is identical with that just described, despite any. distinctive name. The only qualification to this statement is the condition that the feeder, if used, should not itself radiate appreciably and thus take an unintentional part in the operation of the radiating system; welldesigned feeder systems easily meet this requirement.

Power may be applied to the antenna directly or through a feed line. Three methods of direct excitation are shown in Fig. 1308. In A the antenna is cut at the center and a small coil inserted. The coil is coupled to the output tank circuit of the transmitter, with adjustable coupling so that the transmitter loading can be controlled. Since the addition of the coil "loads" the antenna, or increases its effective length because of the additional inductance. the series condensers C_{1} and C_{2} are put in the circuit to provide electrical means for reducing the length to its original unloaded value. This method of feeding is known :ts current feed, becaluse power is inserted at a high-current point.

THE RADIO AMATRUR'S HANDBOOK

The methods of B and C are called voltagefeed systems because the power is introduced into the antenna at a point of high voltage. In B the end of the antenna is coupled to the output tank circuit through a small condenser; in C a separate tank, connected directly to the antenna, is used. This tank is tuned to the transmitter frequency and may be ungrounded, grounded at one end as shown, or grounded at the center of the coil. Practical considerations and methods of adjustment of all three systems will be discussed in a later section.

Direct excitation is seldom used except on the lowest amateur frequencies. It involves bringing the antenna proper into the operating room and hence into close relationship with the house and electric wiring, which usually means that some of the power is wasted in heating poor conductors in the field of the antenna. Also, it usually means that the shape of the antenna must be distorted so that the expected directional effects are not realized, and likewise means that the height is limited. For these reasons, in high-frequency work practically all amateurs use feeder systems which permit putting the antenna in a desirable location. The feeders do not radiate or dissipate themselves any substantial proportion of the power supplied by the transmitter, provided good design practice is followed.

Much of the confusion that surrounds antenna systems in the mind of the average amateur is associated with the various types of feeder systems. These will therefore be given attention in detail before the more complicated antenna systems are discussed.

Transmission Lines

The most generally applicable form of feeder or transmission is the resonant line described in Chapter Four. It may be used directly, or as

FIG. 1309 - CURIRENT AND VULTAGE IDISTRIBCIION ON RESONANI' LINES
A, quarter-wave line; B, half-wave line opeu (high voltage) at bothends; C, half-wave line closed (high-current) at both ends. Note that with the quarter-wave line one end is "closed" and the other "open."
a coupling link between the antenna and other types of transmissions lines, finding employment in the latter capacity because of its impedance-transforming properties.

THE RESONANT TWO-WIIRE LINE

Asexplained in Chapter Four, the resonant line is simply an antenna folded back on itself so that the radiation from one half is cancelled by the out-of-phase radiation from the other half. Such a line may be any whole-number multiple of a quarter-wave in length; in other words any total wire length which will accommodate a whole number of standing waves. (The "length", however, of a two-wire line is always taken as the length of one of the wires.)

Quarter- and half-wave resonant lines are shown in Fig. 1309, together with the current and voltage distribution. These two are important practical cases. It will be noted that the quarter-wave line has maximum current at the closed end and minimum current at the open end; the reverse is true of the voltage. The half-wave line, however, has the same current and voltage values at both ends; if the line is closed at one end, the current is maximum at both ends and the voltage minimum, while if both ends are open the current is minimum and the voltage maximum at the ends. The terms "open" and "closed" as used here do not mean necessarily that nothing is connected to the line, or that the line is shortcircuited. Actually, of course, something must be connected to the line for it to function; the "open" end would be connected to a highvoltage low-current circuit and the "closed" end to a low-voltage high-current circuit.

Such lines are ideally suited to connection to a resonant antenna. As shown in Fig. 1302, the end of a half-wave antenna is a point of high-voltage and low current. If directly excited, it would be coupled, preferably, to the transmitter through the separate antenna tank circuit of Fig. 1308-C. However, if instead we connect a quarterwave line to the end of the antenna as shown in Fig. $1310-\mathrm{A}$, then at the transmitter end of the line we shall have high current and low voltage, so that current feed (Fig. 1308-A) with a coil and series condensers (series tuning) can be used. Should the line be a half-wave long, as at $1310-\mathrm{B}$, current will be minimum at the transmitter end of the line, just as it is at the end of the antenna. Voltage

F1G. 1310-IIALF-WAVE ANTENNAS FED FliUn RESONANT LINES
A and B, and feed with quarter- and half-wave lines; C and D, center feed. The current distribution is shown for all four cases.
feed therefore is required and the parallel-resonant tuned circuit (Fig. 1308-C) (paralleltuning) must be used. (Parenthetically, it may be said that the line could be coupled to a balanced final tank through small condensers, as in Fig. 1308-13, but the inductively-coupled circuit is preferable for a number of reasons.) An end-fed antenna with resonant feeders, as in 1310-A and B is known as the "Zeppelin," or "Zepp," antenna.

The line also may be inserted at the center of the antenna at the maximum-current point. Quarter- and half-wave lines used in this way are shown at Fig. $1310-\mathrm{C}$ and D. In C, the antenna end of the line is "closed," hence at the transmitter end the current is low and the voltage high. Parallel tuning therefore is used. The half-wave line at D has high current and low voltage at both ends, so that series tuning is used at the transmitter end.

A significant point to be noted is that the antenna determines the distribution of voltage and current, and that nothing can be done at the transmitter end of the line to affect it. In Fig. 1310-C, for instance, series tuning (current feed to the feeders) cannot be used because there must be high current at the center of the half-wave antenna if it is to operate; consequently the voltage must be high at the transmitter end of the quarter-wave feeder. If we attempt to make this end of the feeder carry high current we should have to have high voltage at the center of the antenna. logically it follows that, since each end of the antenna is one-quarter wave from the center, we should
have to have high current at the antenna ends. This of course is impossible. If series tuning is used in the arrangement of Fig. $1310-\mathrm{C}$ it will be found that the combination "will not tune"; in other words, the antenna will not take power from the transmitter.

Line Length

As in the case of the antenna, the line length is not exactly the same as the length of the wave in space. Provided the wires are not too close and do not have insulating spacers at too-close intervals, the actual length will be only about 2.5 per cent less than the wavelength. A half-wave openwire line therefore will be slightly longer than a half-wave antenna. Its length is given by the formula

$$
\begin{align*}
& \begin{array}{l}
\text { Length of two-wire } \\
\text { half-wave line }(\text { feet })
\end{array}=\frac{480}{\text { Freq. (Mc.) }} \tag{2}\\
& \text { Length of two-wire } \\
& 1 / 4 \text {-wave line (feet) }
\end{align*}=\frac{240}{\text { Freq. (Mc.) }}
$$

Lines of greater length can be calculated by multiplying the value given by the formula by the appropriate factor.

The formula given above applies only to open-wire lines. With other types of construction, to be considered later, the reduction factor is greater.

Line Spacing

For effective cancellation of radiation, the spacing between the two wires must be small in comparison to the wavelength; a separation of 0.01 wavelength or less is desirable. For 14 Mc. and lower, the wires need not be closer than six inches, the length of the popular "feeder spreaders" manufactured for this purpose. Even at 28 Mc . a separation of 6 inches is fairly satisfactory, but for the ultra-high frequencies the wires should be closer together.

From the practical standpoint, too-close spacing is undesirable, especially with long sections of line. The wires inevitably swing with respect to each other when there is wind; if the spacing is close, this means that insulating spreaders must be installed at frequent intervals to prevent the wires from touching, and this in turn increases the weight of the line. Swinging also causes a varying detuning effect, since the change in spacing represents a change in capacity which reacts on the transmitter, and is evidenced by periodic variations in loading.
lior work on communication frequencies, the G-inch spacing represents a compromise which works out well in practice.

THE RADIO AMATEUR'S HANDB00K

Practical Intennas L'sing Resomant-Line Feed

The four arrangements shown in Fig. 1310 are thoroughly useful antenna systems, and are shown in more practical form in Fig. 1311. In each case the antenna is a half-wavelength long, the exact length being calculated from Equation (1) or taken from the charts of Fig.

current which indicates that the antemma sustem is being brought into resonance with the transmitting frequency. Continue until the final amplifier takes rated phate current: if further increase of capacity at C_{1} and C_{2} makes the plate current greater than normal, the roupling between L_{1} and L_{2} should be reduced. At the rated plate current point, readjust the amplifier tank condenser for resonance, as

FIG; 13II - PLICIICAL HALF-WAVE ANIENNA SVSTEMS ISING RESONANT-LINE FEEII
In the center-feed systems, the amtenna length "X" does not inchude the length of the insulator at the center. Line lenglit is measured from the antenna to the tuning apparatus; leadn in the latter should be short enough to be neglected. The two meters shown ure helpful for balancing feeder currents: however. one is sufticient for tuning for maximum out put. and naty lo transferred from one feeder to the other ot her, if desircal. The syatems at (A) and (C) are for feedern an odd nu mber of quarter-wavea in length: (B) and (II) for fecdern a multiple of a half wavelength. The drawings correspond electrically to those of Fig. $\mathbf{1 3 1 0}$.
1303. The line length should be an integral (whole-number) nultiple of a quarter wavelength, and may be calculated from Equation (2) the result being multiplied by any whole number which gives a total length convenient for reaching from the antenna to the transmitter. If there is an odd number of quarter waves on the line in the case of the end-fed antenna, series tuning will be used at the transmitter end; if an ecen number of quarter waves, then parallel tuning is used. With the center-fed antenna the reverse is true.

Tuning

The tuning procedure with series tuning is as follows: With C_{1} and C_{2} at minimum capacity, couple the antenna coil L_{1} loosely to the transmitter output tank coil and ohserve the plate current. Then increase f_{1} and C_{2} simultaneously, wateling for the rise in plate
indicated by minimum plate current (this minimum of course will be near the rated value for the amplifier) since the antenna circuit may

react on the final tank to change its tuming slightly. Always use the degree of coupling between L_{1} and L_{2} which will just bring the amplifier plate current to rated value when C_{1} and C_{2} pass through resonance. The r.f. ammeters should indicate maximum feeder current at this setting; these meters are not strictly necessary, but are useful in indicating maximum output from the transmitter.

With parallel tuning the procedure is quit. similar, except that only one antenna con"lenser is used. Find the value of coupling between L_{1} and L_{2} which will bring the plate current to the desired value as ('1 is tuned through resonance. Again a slight readjustment of the amplifier tank condenser may be necessary ta compensate for the effect of coupling.

Peeder Carrent

The feeder current as read by the r.f. ammeters is useful for tuning purposes only; the absolute value is of little importance. When series tuning is used the current will be high, but very little current will be indicated in a parallel-tuned system. This is because of the current distribution on the feeders as shown by liig. 1310. With a given antenna and tuning system, of course, the greatest power will be lelivered to the antenna when the readings are highest. However, should the feeder length be changed no useful conclusions can be drawn from comparison between the new and old readings. For this reason any indicator which registers the relative intensity of r.f. current can be used for tuning purposes. Many amateurs, in fact, use flashlight or dial lamps for this purpose instead of meters. They are cheap, and when shunted hy short lengths of wire so that considerahle current can be passed without burnout will serve very well even with high-power transmitters.

Circuit Values

The values of inductance and capacity to use in the antenna coupling system will depend upon the transmitting frequeney, but are not particularly critical. With series tuning, the coil may consist of a few turns of the same construction as is used in the final tank; average values will run from two or three turns at 28 Mc. to perhaps 10 or 12 at 3.5 Mc . The number of turns preferably should be acljustable so that the inductance can be changed should it not be possible to reach resonance with the condensers used. The series condensers should have a maximum capacity of 250 or $350 \mu \mu \mathrm{fd}$. at the lower frequencies; the same values will serve even at 28 Mc ., although 100 $\mu \mu \mathrm{f}$. will be ample for this and the $14-\mathrm{Mc}$. band. Since series tuning is used at a lowvoltage point in the feeder system, the plate spacing of the condensers does not have to be
large. Ordinary receiving-type condensers arre large enough for plate voltages up to 1000 , and the smaller transmitting condensers have high-enough voltage ratings for higher-power applications. With high-power 'phone it may

A and h, link-conpled circition formeries and parallel tuning; C, balanced low-mass filter. In A and \boldsymbol{B}, dotited linem show conneviansfor paralleltuning whencalled for; in will canse the meries condenmers. (is and C_{2}, may be set at masimnin capacity or whort-arenited. Conntants for I., Ci, Ciz and Cis are ithe mame as for induetive compling, and are dimensed in the text.

In C, C_{1} and C_{2} may be 10 N to $250 \mu \mu \mathrm{fl}$. each, ifoc higher-rapacity values loeing used for lower-frequency queration (3.5 and 1.75 Mc.). Plate spacing should in meneral be at least half that of the final anmplitior tank condenser. For operation from 1.75 to 1.4 Me.. L_{1} and L_{2} each should be 15 turns $21 / 2$ inches in diameter, spaced to occupy $: 3$ inches length, and tapped every three turns. Approxinate settings are 15 turan for 1.75 Mc., 9 turns for 3.5 Me., 6 turns for 7 Me.. and 3 turns for 14 Nr. The cosils may be wound with Vo. 14 or Vo. 12 wire. See tevt for method of adjumtment.
be necessary to use condensers having a plate spacing of approximately 0.15 to 0.2 inch.

In parallel-tuned circuits the antenna eoil and condenser should be approximately the same as those used in the final tank circuit. A high L / C ratio may be of some benefit. The point to remember is that the antenna tank circuit must be eapable of being tuned independently to the transmitting frequency.

Alternative Coupling Circuits

The coupling arrangements in Fig. 1311 are simple and easy to adjust, but the antenna coil must be arranged so that its position with

the radio amatrurrs handbook

respect to the output tank coil can be changed. In practice, the antemia cril usually is mounted so that it can be moved toward or away from the final tank coil (the two coils being coaxial) on insulating bars or some other device which permits the coil to be slid back and forth. A swinging mount also can be used. The general idea is illustrated in Fig. 1312. These schemes are sometimes inconvenient for mechanical reasons.

Coupling circuits which do not involve moving coils - or at most only a variable link coil of the type now available on manufactured transmitting coils - are shown in Fig. 1313. At A is a link-coupled system with taps on the antenna coil for adjusting the loading. The link at the transmitter tank coil may consist of one or two turns wound around the coil at a lowpotential point. At the antenna circuit, the taps are kept equidistant from the center of the coil, the number of turns between taps being adjusted to give the desired plate current when the antenna-feeder system is tuned to resonance. The tap adjustment will be right when the antenna condenser or condensers bring the plate current to the desired value just as they are passing through resonance. The system may be used with either series or parallel tuning; the circuit values will be the same as with the inductively-coupled arrangements of Fig. 1311. When the coupling and tuning adjustments are correct there will be practically no detuning effect on the transmitter tank; that is, the resonance setting should be the same both with and without the link in place.

In B, link coupling is used at both ends, in which case the coupling between one coil and its link must be variable. Variable coupling at either end will be satisfactory. Swinging links such as those shown in Chapter Eight may be used, or the link coil may be mounted inside the tank or antenna coil and arranged so that it may be rotated with respect to the coil. The adjustment method is the same as with the cir-

FH: 131\& - A I.NK-COMPIEI ANTENNA-TLNING;

The inductance, with variable link, is monnted on the condenser frames. Clips are provided for changing the number of turns, and for whitching the condenamers from narian to parallel.
cuit of A except that the link position at the variable-coupling end is changed instead of the taps. Either stries or parallel tuning again may be used.

Suitable link lines may be made from twisted rubber-covered pair, just as in the case of linkcoupled stages in the transmitter. They may be of any convenient length, so that the antenna tuning unit may be mounted at the point where the feeders enter the building or operat-

F1G. 1315- CIRCUIT DIAGRAM OF THE ANTENNA-TUNLNG: UNIT
$\mathrm{C}_{1}, \mathrm{C}_{2}-100 \mu \mu \mathrm{fd} ., 0.07$-inch apacing (National TMC100).
I. -22 turns No. 14, diameter $23 / 4$ inches, length 4 inchea (Coto with variable link).
L_{2} - 4 turne rotating inside I_{1}.
M - R.f. ammeter, 0-2.5 for mediunt-power transmitters.
For parallel timing, clipg should be attached at points marked "X." Clips loft free for series tuning.
ing room, if desired, regardless of the position of the transmitter. Fig. 1314 is a photograph of a typical antenna-tuning unit of this type, suitable for transmitters of moderate power; its circuit diagram is given in Fig. 1315. The coil is tapped so that it may be used either for series or parallel tuning on different bands, and the unit is provided with clip leads for connecting the condensers either in series or parallel.

A balanced pi-section coupling network is shown in Fig. 1313-C. This is a low-pass filter, and is capable of coupling between a fairly wide range of impedances such as is encountered in going from series to parallel tuning. Suitable constants are given under the diagram. The method of adjustment is as follows: First, with the filter disconnected, tune the transmitter tank circuit to resonance, as evidenced by minimum plate current. Then, with trial settings of the clips on L_{1} and L_{2} (few turns for high frequencies, more for lower) tap the input clips on the final tank coil at points equidistant from the center so that about half the coil is included between them. A balanced tank circuit must be used. Set C_{2} at about half scale, apply power, and rapidly rotate C_{1} until the plate current drops to a minimum. If this minimum is not the desired full-load plate current, try a new setting of C_{2} and repeat. If, for all settings of C_{2}, the plate current is too high or too low, try new settings of the taps on L_{1} and L_{2}, and also on the transmitter tank. Do not touch the tank condenser during these adjust-
nents. When, finally, the desired plate current is obtained, set C_{1} carefully to the exact minimum plate-current puint. This adjustment is important in minimizing hermonic output.

Feeder Lengths

The fact that the feeder-tuning apparatus makes it possible to vary the electrical length of the feeder obviates, to some extent, the necessity for cutting resonant feeders to exact integral multiples of a quarter wavelength. It is, in fact, possible to depart as much as 25% of a quarter wave from the exact length and still tune the system properly. In such case, the type of tuning to use, series or parallel, will depend on whether the length of the feeder is nearer an odd number of quarter waves or nearer tin even number.

Departure from the exact length is of ten convenient on the lower frequencies, where even a quarter-wave feeder may be physically longer than is desired. At 3500 kc ., for example, a quarter-wave line is approximately 67 feet long. Its length could be reduced to 50 feet and still be made to resonate with series tuning by using a sufficiently large coupling coil. In such case the condensers might be shorted out and the tuning done by varying the coil inductance. Alternatively, a 100 -foot line could be used on the same frequency by using a smaller coil and reduced series capacity.

Whenever possible, however, it is advisable to stick to the integral multiples of a quarter wavelength. This is the surest way of avoiding the tuning difficulties which often arise when the line is midway between lengths calling for series and parallel tuning.

Antenna Length in Relation to Feeder Operation

It has been previously pointed out that insofar as the operation of the antenna is concerned, departures of a few per cent from the exact length for resonance are of negligible consequence. Such inaccuracies may influence the behavior of the feeder system, however, and as a result may have an adverse effect on the operation of the system as a whole. This system, as it does with end feed.
is true of the end-fed antennas such as are shown in Fig. 1311-A and -B.

For example, Fig. 1316-A shows the current distribution on the half-wave antenna and quarter-wave fecler when the antenna length is correct. At the junction of the "live" feeder and the antenna the current is minimum so that the currents in the two feeder wires are equal at all corresponding points along their length. When the antenna is too long, as in B, the current minimum occurs at a point on the antenna proper, so that at the top of the live feeder there is already appreciable current flowing, whereas at the top of the "dead" feeder the current must be zero. As a result, the feeder currents are not balanced and some

FIG. 1316-EFFECT ON FEEDEIR BALANCE OF INCORIRECT ANTENXA LENGIII
With center feed, incorrect antenna length does not unbabance the feed
power will be radiated from the line. In C the antenna is too short, bringing the current minimum to a point on the live feeder, so that again the currents are inbalanced. The more serious the unbalance the greater the radiation from the line.

Strictly speaking, a line having an unbalanced connection such as the one-way termination at the end of an antenna cannot be truly balanced even though the antenna length is correct. This is because of the difference in loading on the two sides. The effect is fairly small, however, when the currents are balanced, and the illustration just given serves to emphasize the importance of correct antenna length.

THE RADIO AMATEUR'S HANDB00K

If the antenna is fed at the center the undesirable effects of incorrect antenna length balance out so that the line operates properly under all conditions. This is shown in Fig. 1316 at D, E and F. So long as the two halves of the antenna are of equal length, the distribution of current on the feeders will be symmetrical so that no unbalance exists, even for antenna lengths considerably removed from the correct value.

Adjusting the Antenna Lengeh

Although the formula and charts for antemal length are sufficiently accurate under average conditions, leight, nearness of the wire to houses, trees, etc., may make the required actual length differ somewhat. When the antenna is to be end-fed, then, it is desirable to adjust the length to the right value if feeder radiation is to be avoided.

A fairly simple way to adjust the length is to leave off the connection between the antenna and feeder (but with the feeders in place) and hoist the assembly to its final position. Then carry out the tuning procedure just as described previously, using loose coupling so that the resonance point is quite marked. Low power should be used, especially with series tuning, since without the antenna connected the feeder current will be much greater than normal. Then lower the antenna, connect the feeder, hoist again, and with the coupling just as it was before, again adjust the antema condensers to resonance. If resonance occurs at the same condenser settings the antenna length is correct. If more capacity must be used, the antema is too short; if less, the wire

FIG. 13F- GRAPIICAI, TABLE OF GHARM:ITERJSTIC IMPEDANCES OF'TYPICAI, SPACED-GDDUCTOR TRANSMISSION IINES
is too long. Add or subtract, as the case may be, a few inches to the antenna and try again. The correct length should be found after a few trials. The antenna may be intentionally made a little long in the first place so that no joints in the wire will be needed when the final length is reached.

An alternative method is to use a regenerative detector as a resonance indicator, coupling it loosely to the antenna, from which the feeders are disconnected for the test. Careful tuning with the detector just oscillating will show resonatice as a setting at which the detector is pulled out of oscillation. The frequency at which this occurs may be checked by one of the methods given in Chapter Sixtcen; if it is higher than desired the antenna should be lengthened and vice versa.

NUN-IBESONANT TITANNMINGIGN UINES

As explainel in Chapter Four, standing waves will not exist on a transmission line terminated (at the receiving end, or the other end from that at which power is applied) in its characteristic or surge impedance. Such lines may resemble the resomant lines in physical construction, but their operation and adjustment are different. In contrast to the resonant lines, non-resonant or untuned lines may be any desirable length, since there are no standing waves.

The surge impedance of a line consisting of two parallel conductors depends upon the inductance and capacity of the line per unit of length. In turn, these quantities depend upon the size of the conductors, their spacing, and the dielectric constint of the insulating medium between them. When the dielectric is air, the surge impedance of two parallel conductor: is given by the formula

$$
\begin{equation*}
Z=276 \log _{a}^{b} \tag{3}
\end{equation*}
$$

where Z is the surge impedance, b the sparing, ronter to center, and a the radius of the conductor. The quantities b and a must be measured in the same units (inches, etc.). Surge impedance as a function of spacing for lines using conductors of different size is plotted in chart form in Fig. 1317.

A less common form of transmission line consists of a wire located axially in a metal tube, the two being insulated from each other. This type of line is useful for special applications where the radiation must be reduced to negligible proportions, and where low impedance is required. The surge impedance of such a concentric or coaxial line is given by the formula:

$$
\begin{equation*}
Z=138 \log \frac{b}{a} \tag{1}
\end{equation*}
$$

where Z again is the surge impedance. In this case, however, b is the inside diameter (not radius) of the outer conductor and a is the outside diameter of the inner conductor. The formula is true for air dielectric, and approxiinately so for a line having ceramic insulators so spaced that the major proportion of the insulation is air.

A third type of line is simply a single wire. The surge impedance of such a line made of No. 14 wire will be approximately 500 ohms. This type of line has the disadvantage that no provision is made for cancelling radiation as in the case of two-conductor lines. If the line is not too long, however, the radiation will be relatively small because the current in the line is small compared to the antenna current.

In all non-resonant lines feeding antemnas it is essential that the line be attached to the antenna in such a way that the impedance at the termination, or "looking out of the line" is equal to the surge impedance of the line. This impedance-matching can be done in various ways, depending upon the line impedance. If the impedance match is not exact, there will be standing waves on the line; their amplitude will be greater as the nismatch is more serious. It is customary to speak of the standing-wave ratio, which is the ratio of the current at a current maximum, or loop, to the current at a minimum point, or node. With a properlymatched line this ratio is 1 . It may be as high as 50 on a resonant line; that is, the current at a loop may be 50 times as great as at a node.

In the following sections, several simple types of half-wave antenna systems using nonresonant lines will be considered. Let us repeat that the antenna performance is the same as that described earlier in the chapter; the feed system, if properly adjusted, does not affect the antenna's performance.

Single-Wire-Fed Antenna

In the single-wire-feed system the return circuit is considered to be through the "mirror" effect of the ground. There will be no standing waves on the feeder when its characteristic impedance is matched by the impedance of the antenna at the connection point. The principal dimensions are the length of the antema L, Fig. 1318, and the distance D from the exact center of the antema to the point at which the feeder is attached. Approximate dimensions can be obtained from Fig. 1303 for an antenna system having a fundamental frequency in any of the amateur bands.

In constructing an antenna system of this type the feeder must run straight away from the antenna (at a right angle) for a distance of at least one-third the length of the antenna. ()therwise the fichl of the antemna will affert the ferder and cause fataliy operation. There

FIG. 1318 - SINGLE-WIRF, FEED SYSTEM
The length L (one-half wavelength) and D are determined from the chart, Fig. 1303.
should be no sharp bends in the feeder wire at any point.

Correct antenna length and placing of the feeder should be checked experimentally if best results are to be obtained. If, for instance, impedances are not correctly matched, standing waves will appear upon the line. With simple capacitive coupling to the feeder, high r.f. potentials may, as a result, develop at undesirable points in the transmitter. A goord ground connection should be made to the filament center-tap or center point of the filament by-pass condensers when this system is used. The presence of standing waves may be detected most accurately by placing a lowreading thermo-ammeter at several points approximately $1 / 4$ wave apart along the transmission line. The reading should be substantially constant all along the line with no indication of pronounced increases or decreases.

Several methods of coupling to the output circuit are shown in Fig. 1319. With an unbalanced output rircuit the feeder may be tapped directly on the output tank cireuit coil. Starting at the ground end of the tank coil, the tap is moved towards the plate end until the amplifier draws the rated amount of plate current. The condenser in the feeder is for the purpose of insulating the antenna system from the high-voltage plate supply when series plate feed is used. It should have a voltage rating somewhat above that of the plate supply. Almost any capacity greater than $500 \mu \mu \mathrm{fds}$. will be satisfactory. The condenser is unnecessary, of course, if parallel plate feed is used. In coupling to balanced output circuits, the inductive method shown at the lower right is preferred. The antenna tank circuit should tun" to resonance at the operating frequency and the tap is adjusted as explained previously. Regardless of the type of coupling, a good ground connection is essential with this system. Single-wire-feed systems work best over moist ground, and poorly over rock and sand.

Tuisted-Pair Fipolers:

It is evident from the formala for characteristic impedance previcusly given that the

THE RADIO AMATEUR'S HANDB00K

closer the spacing and the larger the wires, the lower will be the impedance. It happens that the impedance of a two-wire line composed of twisted No. 14 rubber-covered wire of the type used in house wiring will be approximately that of the center of the antenna itself, thus simplifying the method of connecting the line to the
the value of B which gives the largest current is correct. Alternatively, the system may be operated continuously for a time with fairly high r.f. power input, after which the feeder may be inspected (by touch) for hot spots. These indicate the presence of standing waves, and the fanning should be adjusted until they are eliminated or minimized.

FIG. 1319 - METIIODS OF COUPIING TIIF SINGLE-WIRF: FFFDEK TU THE TRANSMTIER
Circuits are shown for both single-ended and lalanced tank circuits. They are discussed in the text.
antenna. Such discrepancy as may exist between line and antenna impedance can be compensated for by a slight fanning of the line where it connects to the two halves of the antenna, as shown in Fig. 1320.

The twisted line is a convenient type to use, since it is easy to install and the r.f. voltage on it is low because of the low impedance. This makes insulation an easy matter. The losses are slightly higher than those in spaced lines with air insulation, however, and will increase with frequency. Special twisted line for transmitting purposes, having lower losses than ordinary rubber-covered wire, is available. It is known as "EO-1" cable.

The antenna should be one-half wavelength long for the frequency of operation, as determined by the formula previously given. For accuracy, its length may be checked as described earlier in this chapter, this checking being done before the antenna is cut at the center to insert the feeder. The amount of "fanning" (dimension B) will depend upon the kind of cable used; the right value usually will be found between 6 and 18 inches. It may be checked by inserting ammeters in each antenna leg at the junction of the feeder and antenna;

Each leg of the feeder forming the triangle at the antenna should be equal in length to dimension B.
Methods of coupling to the transmitter are discussed in a later section (Fig. 1323).

IIalf-Wave Antenna Fed by Concentric Line

A concentric transmission line readily can be constructed to have a surge impedance equal to the 70 -ohm impedance at the center of a halfwave antenna. Such a line, therefore, can be connected directly to the center of the antenna, forming the system shown in Fig. 1321.

Solving Equation (4) for an air-insulated concentric line shows that, for 70 -ohm surge impedance, the inside diameter of the outer conductor should be approximately 3.2 times the outside diameter of the inner conductor. This condition can be fulfilled by using standard $5 / 16$-inch (outsidediameter) copper tubing for the outer conductor and No. 14 wire for the inner. Ceramic insulating spacers are available commercially for this combination.

Also available is a rubber-insulated concen-

FIG. $1320-A$ IIALF-WAVE ANTENNA CENTFRFED BY A TWISTED PAIR LINE
An improved impedance match often will result if the antenna end of the line is fanned out in the shape of a " V " for the last 18 inches or so of its length. Two insulatora also should be used at the conter of the untenna so the open ond of the " V " will be approximutely 18 inches wide. "A" plus " A " should equal one-half wavelength for the operating frequency. See Equation (1).
tric line, with wire inner conductor and metal braid outer conductor, having the requisite impedance for connection to the center of the antenna. This type is more flexible and considerably lighter, but has somewhat higher losses.

The operation of such an antenna system is similar to that of the twisted-pair system just described, and the same transmitter-coupling arrangements may be used. A simple form of coupling is shown in Fig. 1321, consisting of a loop of a few turns of wire placed around or near the transmitter tank coil. No tuning apparatus is required, the loading being adjusted by varying the coupling between the two coils.

The outer conductor of the line may be grounded if desired. The feeder system is slightly unbalanced because the inner and outer conductors do not have the same capac-

FIG. 1321-HALF-WAVE ANTENNA WITH CONCENTRIC TRANSMISSION LINE

[^13]ity to ground. There should be no radiation, however, from a line having the correct surge impedance.

Half-Wave Antenna with ImpedanceMatching " Y "

Because of the extremely close spacing required, it is impracticable to construct an open-wire transmission line which will have a surge impedance low enough to work directly into the center of a half-wave antenna. Such wire lines usually have impedances between 400 and 700 ohms, 600 ohms being a widelyused value. It is therefore necessary to use other means for matching the line to the antenna.

One method of matching is illustrated by the antenna system of Fig. 1322. The section E is

FIG. 1322-TWO-WIRE MATCIIED-IMI'EDANCE ANTENNA SYSTEM
The dimensions C, D, and E are given in the text. It is important that the matching section, E, come traight away from the antenna without any bends.
L is one-half wavelength for the operating frequency. Seo Equation (1).
"fanned" to have a gradually increasing impedance so that its impedance at the antenna end will be equal to the impedance of the antenna section C, while the impedance at the lower end matches that of a practicable transmission line.

The antenna length L, the feeder clearance E, the spacing between centers of the feeder wires D, and the coupling length C are the important dimensions of this system. The system must be designed for exact impedance values as well as frequency values and the dimensions are therefore fairly critical.

The length of the antenna is figured from the formula or charts previously given.

The length of section C is computed by the formula:

$$
C(\text { feet })=\frac{123}{\text { Freq. }(\mathrm{Mc} .)}
$$

The feeder clearance E is worked out from the equation:

$$
E(\text { feet })=\frac{148}{\text { Freq. (Mc.) }}
$$

The above equations are for feeders having a characteristic impedance of 600 ohms and will not apply to feeders of any other impedance. The proper feeder spacing for a $600-\mathrm{hm}$ transmission line is computed to a sufficiently close approximation by the following formula:

$$
D=75 \times d
$$

where D is the distance between the centers of the feeder wires and d is the diameter of the wire. If the wire diameter is in inches the spacing will be in inches and if the wire diameter is in millimeters the spacing will be in millimeters.

Methods of coupling to the transmitter are discussed in the following section.

THE RADIO AMATBUR'S HANDBOOK

Cionpling to Intumed Liness

Similar coupling methods are used with all types of two-wire transmission lines, whether of high or low imperlance. Several systems are shown in Fig. 1323. The inductively coupled methods are preferable to direct coupling when a single-ended or unbalanced tank circuit feeds a balanced transmission line; this avoids line unbalance which might oecur with direct coupling. In the direct-coupled circuits, the fixed condensers are useful only when the output amplifier plate supply is series-fed. These condensers, when used, should have a
justment when used with non-resonant lines also is identical.

LINEAIR MATCDING NECTHEN:

In the antenna-feeder systems just described, impedance matching depends upon connecting the line to an appropriate point on the antenna. This method is not always possible or convenient, and it therefore becomes necessary to connect an impedance-matching transformer between the line and antenna. The "transformer" ordinarily used does not resemble the ordinary coupled r.f. circuit, but is simply a

FIG. 1323 - SUITABLE METIIODS FOR COUPLING, OUTPUT CIRCUITS TO AIL TYIPES OF TWO-WIRE UNTUNED TRANSMISSIOY IINES INCLUDING: TWISTED IPAIK IINES. CONCENTRIC IINES AND OREY WIIE LINES
Arrows indicate directions for change of coupling. I.ink lines always should be conpied to a porint of low r.f. potential on the tranmitter tank, to avoid frammfer of harmonicm to life antenna.
rating somewhat above the maximum plate voltage used and should have a capacity of 500 $\mu \mu \mathrm{fds}$. or more. With the methods B, C, D or E, the taps should be placed symmetrically about the center or r.f. ground point on the coil. The taps should be adjusted to make the final amplifier draw normal plate current; if the line is operating properly the taps will not affert the setting of the plate tank condenser. I_{11} the ease of the methods shown at B and D the coupling tank is first adjusted to resonance with the plate tank cireuit, using loose conpling; the taps are then set at trial positions and the current in the line measured. The tap positions and eoupling between the coils are then adjusted to give maximum line current with normal tube plate current.

The filter network shown at E is the same as that already deseribed in commertion with resonant transmission lines (lig. 1313), its ad-

BALANCED

section of transmission line. A quarter-wave two-wire transmission line is such a "linear transformer." Its operation is described in Chapter Four.

When such a quarter-wave line has a given value of impedance connected to one end, the impedance appearing at the other end depends upon the surge impedance of the line:

$$
Z_{1}=\frac{Z_{8}^{2}}{Z_{2}}
$$

where Z_{1} is the unknown impedance at one end, Z_{2} the known impedance at the other end, and Z_{0} is the line surge impedance. At intermediate points on the line the impedance will be intermediate between the two end values. It is therefore possible to tap along the line to match is wide range of impedances, when the
quarter-wave "matching section" is connected to a high- or low-impedance point on the antenna.

Quarter-wave matching sections are particularly useful when a non-resonant line, having a surge impedance of 600 ohms (a popular value) is to be matched to the antenna.

Half-W'ave Antenna with Quarter-Wave Matching Section

Fig. 1324 shows two methods of coupling a non-resonant line to a half-wave antemna through a quarter-wave matching section. In the case of the center-fed antenna the free end of the matching section, B, is open (high impedance) since the other end is connected to a low-impedance point on the antenna. With the end-fed antenna the free end of the matching section is closed through a shorting bar or link; this end has low impedance since the other end is connected to a high-impedance point on the antenna.

In the center-fed system, the antenna and matching section should be cut to the lengths given by the formulas previously given. Any necessary on-the-ground adjustment can be made by adding to or clipping off the open ends of the matching section. The matching section in the end fed system can be adjusted by making the line a little longer than necessary and adjusting the system to resonance by moving

FIG: 1324- IMIPEIDANCE-MATGIING ANTENNA SISTENS WITH QUAKIIFR-WAVE OIEN WHRE MATCHING THANSFORMERS

[^14]the shorting link up and down. Resonance can be obtained by "shock-exciting" the antenna from a temporary antenna nearby (the transmitter being on the proper frequency, of course) and measuring the current in the short-

FG: 1325- IINE-CUKIRENT MEASURING DEVICE: FOI ADJUSTMEVT OF INTUNED TRANSMISSIGN IINES
ing bar by a low-range r.f. ammeter or galvanometer. The position of the bar should be adjusted for maximum current reading. This should be done before the untuned line is attached to the matching section.

The position of the line taps must be determined experimentally, since it wili depend upon the impedance of the line as well as the antenna impedance at the point of conneetion. The procedure is to take a trial point, apply power to the transmitter, and check the non-resonant line for standing waves. This can be done by measuring the current in the wires, using a device of the type pictured in Fig. 1325. The hooks (which should be sharp enough to cut through insulation, if any, of the wires) are placed on one of the wires, the spacing between them being adjusted to give a suitable reading on the meter. At any one position along the line the currents in the two wires should be identical. Readings taken at intervals of a quarter wavelength will indicate whether or not standing waves are present; if the readings differ by more than a few percent the line is not properly matched to the antemna. In that case the termination should be adjusted to bring the readings at quarter-wave intervals to the same value.

An impedance mismatch of several per cent is of little consequence so far as power transfer to the antenna is concerned. However, the presence of standing waves on the line increases the line losses to sizable amounts on long lines (several wavelengths) and may be responsible for radiation from the line.

When the connection between matching section and antenna is unbalanced, as in the endfed system, it is important that the antenna be the right length for the operating frequency if a good match is to be obtained. The balanced center-fed system is less critical in this respect.

THE RADIO AMATEUR'S HANDB00K

The shorting-bar method of tuning the centerfed system to resonance may be used if the matching section is extended to a half-wavelength, bringing a current loop at the free end.

The " Q " Antenna

The imperlance of a two-wire line of ordinary construction (400 to 600 ohms) can be matched, without tapping, to the imperlance of the center of a half-wave antenna by the use of a quarter-wave line of special characteristics. The matching section must have low surge impedance and therefore is commonly constructed of large-diameter conductors such as aluminum or copper tubing, with fairly close spacing. This type of antenna can be purchased in kit form and is known as the "Q" antenna. It is shown in Fig. 1326. The important dimensions are the length of the two halves of the antenna, A, the length of the matching section, B, the spacing between the two conductors of the matching section, C, and the impedance of the untuned transmission

F16. 1326 - THE "G" AN'IENNA WITH QUARIELRWAVE MATCIIING SECTION USING SPACED TUBING;
Antenna length, A plus A, can be calculated front Equation (1). The matehing section length, 13 , is given by Equation (5). The spacing. C, depends upon the impedance of the untuned line, and can be found from the charts of Figs. 1317 and 1332 .
line connected to the lower end of the matching section.

The required surge impedance for the matching section is

$$
Z_{s}=\sqrt{Z_{1} Z_{2}}
$$

where the quantities are the same as previously given. A quarter-wave section matching a 600 -ohm line to the center of a half-wave antenna (72 ohns), for example, should have a surge impedance of 208 ohms . The spacings between conductors of various sizes of tubing and wire for different surge impedances are given in graphical form in Fig. 1317. With half-inch tubing, for example, the spacing should be 1.5 inches for an impedance of 208 ohms.

The length, B, of the matching section
should be equal to a quarter wavelength, and is given by

$$
\begin{align*}
& \text { Length of } 1 / 4 \tag{5}\\
& \text { wave line }(\text { feet })
\end{align*}=\frac{234}{\text { Freq. (Mc.) }}
$$

the reduction factor being greater than in the case of open-wire lines. The length of the antenna can be calculated from the formula given earlier in this chapter.

This system has the advantage of the simplicity in adjustment of the t wisted pair feeder system and at the same time the superior insulation of an open wire system.

Comparison of Resonant and Non-Resonant Lines

Practically all of the various types of lines just described may be used with more elaborate antenna systems as well as the half-wave antennas used as examples. Each type has its advantages and disadvantages. Resonant lines are, in general, easier to adjust than the untuned lines, and have the advantage that they are adaptable to using the same antenna on more than one band, a question which will be given consideration later. Because of their higher current, however, the losses usually are greater than in a properly-matched nonresonant line of the same length, although this factor need not be given much consideration unless the line is more than one or two wavelengths long, because in short lines the difference in efficiency is negligible.

Most non-resonant line systems are limited to operation on one frequency, although some can be operated at reduced efficiency on more than one band. Open-wire and air-insulated concentric lines are excellent for carrying r.f. power for distances of several wavelengths with minimum loss. With rubber-insulated lines the losses are higher, although these lines are convenient to use. The losses are proportional to frequency, so that it is possible to compare lines by loss in "db per wavelength." With good air-insulated lines the loss is about 0.12 db per wavelength; with rubber-insulated lines the loss is from 1 to 2 db per wavelength, depending upon the grade of rubber employed. These figures assume that the line is properly matched to the antenna. Air-insulated lines are less likely to be affected by dampness.

Where the line is short, or the antenna is to be used on more than one band, open-wire resonant lines are recommended. If only one band is to be used, either type of line may be employed, the non-resonant open-wire type being preferred, but if a short line can be used, the rubber insulated types will be convenient.

LONG-WIRE ANTENNAS

The length of a single-wire antenna may be made any multiple of a half wavelength. As
the wire is made longer the antenna characteristics also change; this is particularly true of the directional effects. Instead of the "doughnut" pattern of the half-wave antenna, the directional characteristic splits up into "lobes" which make various angles with the wire. ln general, as the length of the wire is increased the direction of maximum radiation tends to approach the line of the antenna itself.

The radiation resistance as measured at a current loop beoomes larger as the antenna length is increased. Also, a long-wire antenna radiates more power in its most favorable direction than does a half-wave antenna in its most favorable direction. This power gain is secured at the expense of radiation in other directions. Fig. 1327 shows how the radiation resistance and power in the lohe of maximum radiation vary with the antenna length.

FIC. 1327 - TLIE IMPORTAN'T CURVES FOR IAAR-MONICALLY-OI'ERATED HORIZOXTAL AV'IFNVAS

Curve A shows the variation in radiation resistance. with antenna length. Curve B shows the power in the lolves of maximum radiation for long-wire antennas the a ratio to the maximum of a half-wave donblet antenna.

The long-wire antenna is said to be in harmonic-resonance (see Chapter Four) and may be operated on several bands. lior example, a 3.5 -Mc. half-wave antenna is also a fullwave 7 -Mc. antenna, because its length (approximately 133 feet) is sufficient to accommodate two half waves at 7 Mc . At 14 Mc . the same wire is a two-wave antenna, and so on. When such an antenna is used for work in several bands, it must be realized that the directional characteristic will depend on the
band in use. Antennas of this type are favorite among amateurs who work on several bands. Directional characteristics for antennas one wavelength, three half-wavelengths, and two

FIG. 1328 - IIORIZONTAL IPATTERNS OF RADIATION FROM A FUIIL-WAVE ANTENNA
Solid line, vertical angle 15 degrees; dotted litien, deviation from $\mathbf{1 5}$-ilegree pattern at 9 and $\mathbf{3 0}$ degrees. See Fig. 1307 for further discussion.
wavelengths long are given in liggs. 1328, 1329, and 1330 , for the three vertical angles of radiation previously considered. Note that as the wire length increases the radiation along the

FIG: I:324-IIORIZONTAI PATRERNS OF RAIIA'rlov from an antivna THREN HAL,F-W.AVELIENGTHIS L.0NG
Solid line, vertical angle 15 degrees; doted lines, deviation from 15 -degree pattern at 9 and 30 degrees. The minor lobes coincide for all three angles. See lig. 1307 for further disensaion.

FIG: 1330 - IIORIZONTAI, PATYERNS OF HADIA'IIGN FIROM AN ANTENAA TWO WAVELEVOIIIS LONG:
Solid line. vertical angle 15 degrees; dotted lines. deviation from 1.0 -alegrec pattern at 9 and 30 degroes. The minor loben coinciale for all three anglem. Seefig. 1307 for further dimeussion.
line of the antenna becomes more pronounced. Still longer antennas can be considered to be practically "end-on" radiators, at least at 14 Mc . and lower.

The length of a long-wire antenna is not an exact multiple of a half-wave antenna as calculated hy Equation (1). This is because the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent and the wire length is approximately that of an equivalent portion of the wave in space. The formula for the length of a long-wire antenna therefore is:

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{492(N-0.05)}{\text { Freq. }(\text { Mc. })} \tag{6}
\end{equation*}
$$

where N is the number of half-waves on the antenna. From this it is apparent that an antenna cut as a half-wave for a given frequency will be slightly off resonance at exactly twice that frequency (on the second harmonic) because of the different behavior of end effects when there is more than one standing wave on the antenna. For instance, if the antenna is cut to exact fundamental resonance with a given crystal frequency, on the second harmonic (full-wave) it should be 2.6% longer, and on the fourth harmonic, (two-wave) 4% longer. The effect is not very inportant except for a slight unbalance in the feeder system, which may result in some radiation from the feeder (see Fig. 1316).

Feeding Long Wires

In a long-wire antenna the currents in adjacent half-wave sections must be out of phase, as shown in Fig. 1331. The feeder system must not upset this phase relationship. This requirement is met by feeding the antenna at either end or at any current loop. A two-wire feeder cannot he inserted at a current node, however, because this invariably brings the currents in two adjacent half-wave sections in phase; if the phase in one section could be reversed then the currents in the feeders would be in phase and the feeder radiation would not be cancelled out.

Either resonant or non-resonant feeders may be used. With the latter, the systems employing a matching section are best. The non-resonant line may be tapped on the matching section as in Fig. 1324, or a " Q " type section (Fig. 1326) may be employed. In such case, Fig. 1332 gives the required surge impedance for the matching section. It can also be calculated from Equation (3) and the radiation resistance data in Fig. 1327.
Methods of coupling the line to the transmitter are the same as previously described for the particular type of line used.

Multi-Band Operation

As suggested in the preceding section, the same antenna may be used for several bands by operating it on harmonics (as a long wire) where necessary. When this is done, it is necessary to use resonant feeders, since the impedance matching for non-resonant feeder operation can be accomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attached to it. Obviously a matching section which is : quarter-wavelength long on one frequency will

FIG. 1331 - CURRENT DISTRIBUTION AND FEEI) POINTS FOR LONG-WIRE ANTENNAS
A 3/2-wave antenna is used as an illustration. With two-wire feed, the line may be connected at the end of the antenma or at any current loop (note at a current node). The feeders may be of the resonant type, or a $600-$ ohm line may be used through a quarterwave matching section (see Fig. 1325 and discussion). The "O" type of matching section also may bee unell. the dexign being lamed on' lige. $1: 33$ annd 131%.

ANTENNAS

FIG. 13:32 - REQUIRED SURGE IMIPEIDANCF OF OUAITTER-HAVE MATCIIVG; SEOTIONS FOIR RADIATOLS OF VARIOUS LEVEHHS
Curve A is for a tramsmission lime impedabou
 ohme and (airve I) for hom ohme.
be a half-wavelength long on twice that frequency, and so on, and it is equally obvious that changing the length of the wires, even by switching, is inconvenient.

Also, the current loops shift to a new position on the antema when it is operated on harmonics, further complicating the feed situation. It is for this rason that half-wave antemas center-fed by rubber-insulated lines are practically useless for harmonic operation; on all even harmonics there is a voltage maximum at the feed point and the impedance mismatch is se bad that there is a large standingwave ratio and consequently high losses in the rubber dielectric.

Any of the antema arrangements shown in Fig. 1311 may be used for multiband operation by making the antemna a half wave long at the lowest frequency to be used. The feeders should be a quater wave, or some multiple of a quarter wave, long at the same frequency. Typical examples, with the type of tuning to be used, are given in Table l. The figures given represent a compromise to give satisfactory operation on all the bands considered, taking into aceount the change in required length as the order of the harmonic goes up.

A center-fed half-wave antenna will not operate strictly as a single long wire on harmonics because of the phase reversal at the feeders previously mentioned (Fig. 1331). On the second harmonic, the two antenna sections are each a half-wave long, and since the currents are in phase the directional characteristic is different from that of a full-wave antenna even though the overall length is the same. On the fourth harmonic, each section is a full
wave long :mat :man beeanse of the direction of current How will not operate as a two-wave antenna. It should not be assumed that these systems are not effective radiators it is simply that the directional characteristic will not be that of a long-wire having the same overall length. Rather it will resemble the characteristic of one side of the antema, although this picture is not exact. The center-fed antenna, when operated on harmonics, will radiate equally as well as the end-fed.

Antemas with a few other types of feed systens may be operated on harmonics for the higher-frequency hands, although their performance

rable I Midtr-Band Resonant-line; Feb Antensab			
Antenna Length (ft.)	Fecder Lenoth (ft.)	Band	Type of Tuning
$\begin{aligned} & \text { With end feed: } \\ & 213 \end{aligned}$	120	1.75-Mc. 'phome 1-Me. 'phone 11 Mc . 18 Mc.	serits parallel parallel parallel
136	67	$\begin{aligned} & \text { 3.j-Mc. c.w. } \\ & \text { F Mc. } \\ & 14 \text { Mc. } \\ & 28 \text { Mc. } \end{aligned}$	serjes parallel paralle parallel
131	67	3.j-Mc. c.w. 7 Mc .	serjes parallel
©i	33	$\begin{aligned} & 7 \mathrm{Mc} . \\ & 14 \mathrm{Mc} . \\ & 28 \mathrm{Mc} . \end{aligned}$	series parallel parallel
With center feed: $27:$	135	$\begin{array}{r} 1.75 \mathrm{Mc} \\ 3.5 \mathrm{Mc} \\ 7 \mathrm{Mc} \\ 14 \mathrm{Mc} \\ 28 \mathrm{Mc} \end{array}$	parallel parallel parallel parallel parallel
137	67	$\begin{array}{r} 3.5 \mathrm{Mc}, \\ 7 \mathrm{Mc}, \\ 14 \mathrm{Mc} \\ 98 \mathrm{Mc} . \end{array}$	parallel parallel parallel parallel
67.5	31	$\begin{aligned} & 7 \mathrm{Mc}, \\ & 11 \mathrm{Mc} \\ & 28 \mathrm{Mc} . \end{aligned}$	parallel parallel parallel

The antenna lengths given eepresent compromises for harmonic operation because of different end effects on different bands. The 136 -foot end-fed antenna is slightly long for 3.5 Mc ., but will work well in the region ($3500-3600 \mathrm{kc}$.) which quadruples into the $14-\mathrm{Mc}$. band. Bands not shown are not recommended for the particular antenna. The cen-ter-fed systems are less critical as to length; the 272-foot antenna may, for instance, be used for both $\mathrm{c} . \mathrm{w}$. and 'phone on either $\mathbf{1 . 7 5}$ or 4 Mc . without loss of efficienc:

On harmonics, the end-fed and center-fel antennas will not have the same directional characteristics, as explained in the text.
is somewhat impaired. The singlewire fed antenna of Fig. 1318 may be used in this way; the feeder and antenna will not be matched exactly on harmonics with the result that standing waves will appear on the feeder, but the system as a whole will radiate. The same is true of the "Y" fed antenna of Fig. 1322. The " Q " antenna of Fig. 1326 also can be operated on harmonics, but the line must be tuned. It cannot operate as a non-resonant line except at the fundamental frequency of the antenna. For harmonic operation, therefore, the feeder length is important, and the tuning system will depend upon the number of quarter waves on the line, including the " Q " bars. The concentricline fed antenna of Fig. 1321 may also be used on harmonics if the concentric line is air-insulated. Its operation on harmonics is similar to that of the "Q." This antenna is not recommended for multiband operation with a rubber-insulated line, however. The antenna systems of Fig. 1320 and 1324 also are unsuitable.

A simple antenna system, without feeders, for operation in five bands is shown in Fig. 1333. On all bands from 3.5 Mc. upward it operates as an end-fed antenna - half-wave on 3.5 Mc ., long wire on the other bands. On 1.75 Mc. it is only a quarter-wave in length

F1G. 1333- A SIMPlEE ANTEVNA SYSTEM FOR FIVE AMATEUR BANDS
The antenna is voltage fed on $3.5,7,14$ and 28 me.. working on the fundanental, second, fourth and eighth harmonice, respectively. For 1.75 Mc. the system is a quarter-wave grounded antenna, in which case series tuning must he used. The antenna wire should be kept well in the clear and should be as high as prossible.
If the length of the antenna is approximately 260 feet, voltage feed can be uaed on all five bunde.

FIG. 1334 - CURRENT DISTRIBUTION ON ANTENNAS TOO SHORT FOR THE FUNDAMENTAL FREQUEVCY
Theso systems may be used when space for a full half-wave antonna is not available. The current distribution on the second harmonic also is shown to the right of each figure. In A and C, the total length around the systeni is a half-wavelength at the fundamental frequency.
and must be worked against ground, which in effect replaces the missing half of the antenna. Since on this band it is fed at a high-current point, series tuning must be used.

The disadvantages of bringing the antenna into the operating room already have been pointed out.

Compromise Antennas for Restricted Space

If the space available for the antenna is not large enough to accommodate the length necessary for a half-wave at the lowest frequency to be used, quite satisfactory operation can be secured by using a shorter antenna and making up the missing length in the feeder system. The antenna itself may be as short as a quarter wavelength and still radiate fairly well, although of course it will not be as effective as one a half-wave long. Nevertheless such a system is useful where operation on the desired band otherwise would be impossible.

Resonant feeders are a practical necessity with such an antenna system, and a center-fed antenna will give best all-around performance. With end feed the feeder currents become badly unbalanced and, since lengths midway between those requiring series or parallel tuning ordinarily must be used to bring the entire system to resonance, coupling to the transmitter of ten becomes difficult.

With center feed, practically any convenient length of antenna can be used if the feeder length is adjusted to accommodate at least one half-wave around the whole system. Typical cases are shown in Fig. 1334, one for an antenna having a length of one-quarter wave (A) and the other for an antenna somewhat longer (C) but still not a half-wave long. Current distribution is shown for both fundamen-
tal and second harmonic. From the points marked X resonant feeders any appropriate number of quarter waves in length may be extended to the operating room. The sum of the distances on each wire from X to the antenna end must equal a half-wave. It is sufficiently accurate to use Equation (1) in calculating this length. Note that $X-X$ is a high-current point on these shortened antennas, corresponding to the center of a half-wave antenna. It is also apparent that the antenna at A is a half-wave antenna on the next higher-frequency band (B).

The total length $A+B+B+A$, should be a halfwavelength for the lowest-frequency band, usually 3.5 Mc. See Table II for lengths and tuning data.

TABLE II

Antenna and Feeder Ieengths for Short Dulti-1band Antennas, Center-Fed

Antenna Length (ft.)	Feeder Length (fl.)	Band	Type of Tuning
137	68	$\begin{array}{r} 1.75 \mathrm{Mc} . \\ 3.5 \mathrm{Mc} \\ 7 \mathrm{Mc} \\ 14 \mathrm{Mc} \\ 28 \mathrm{Mc} . \end{array}$	series parallel parallel parallel parallel
100	38	$\begin{array}{r} 3.5 \mathrm{Mc} . \\ 7 \mathrm{Mc} \\ 14 \mathrm{Mc} \\ 28 \mathrm{Mc} . \end{array}$	parallel series series series or parallel
67.5	34	$\begin{array}{r} 3.5 \mathrm{Mc} . \\ 7 \mathrm{Mc} \\ 14 \mathrm{Mc} . \\ 28 \mathrm{Mc} . \end{array}$	series parallel parallel parallel
50	43	$\begin{array}{r} 7 \mathrm{Mc} . \\ 14 \mathrm{Mc} . \\ 28 \mathrm{Mc} . \end{array}$	parallel parallel parallel
33	51	7 Mc. 14 Mc . 28 Mc .	parallel parallel parallel
33	31	7 Mc. 14 Mc . 28 Mc .	parallel series parallel

The practical antenna can be made as in Fig. 1335. The Table gives a few recommended lengths. Remembering the preceding discussion, however, the antenna can be made any convenient length provided the feeder is considered to "begin" at $X-X$, and the line length adjusted accordingly.

Bent Antennas and End Loading

Since the field strength at a distance is proportional to the current in the antenna, the high-current part of a half-wave antenna (the center quarter-wave, approximately) does most of the radiating. Advantage can be taken of this fact when the space available does not permit erecting an antenna a half-wave long. To accomplish it, the ends may be bent, either horizontally or vertically, so that the total length equals a half wave, even though the straightaway horizontal length may be as short as a quarter wave. The operation is illustrated in Fig. 1336. Such an antenna will be a somewhat better radiator than the arrangement of Fig. 1334-A on the lowest frequency, but is not as desirable for multi-band operation because the ends play an increasing part as the frequency is raised. The performance of the system in such a case is difficult to predict, especially if the ends are vertical (the most convenient arrangement) because of the combination of horizontal and vertical polarization as well as dissimilar directional characteristics.

An alternative method of producing much the same effect is shown in Fig. 1336-B. In this case a relatively-large capacity is substituted at each end for the missing wire length. The capacity may be provided by large metal

FIG. 1336 - ALTEIRNATIVE ARIRANGEMEVTS FOHR SHOKTENEI) AVTENNAS
In A the total length is a half-wave, not including the feeders. The horizontal part is made as long as convenient and the ends dropped down to make up the required length. The ends may be bent back on themselves in feeder fashion to cancel radiation partially. The horizontal section should be at least a quarter-wave long. If shows end-loading with large (apacities (large metal plates or opheres). The possible reduction in Iength by this method nust we determined experimentally sin general, it will not be posmible to reduce the length very greatly.

THE RadIO AMATEUR'S handbook

plates or spheres connedted to the antenna ends to emphasize the "end effect." The size of such loading devices must be determined by experiment for each antenna length. This system also is rather undesirable for multihand operation.

GIRAITNIDEID ANTENN.AS

T1IN: gronnded antenna is used almost exclusively for $1.75-\mathrm{Mc}$, work, where the length required for a half-wave antenna would be exressive for most locations. An antenna worked "against ground" need be only a quarter-wave long, approximately, because the earth acts as an electrical "mirror" which supplies the missing quarter wave. The current at the
-gromed connection therefore corresponds to the current at the center of a half-wave antenna.

On 1.75 Me. it is prohable that most of the useful radiation is from the vertieal part of the antenna, since vertically-polarized waves are characteristic of ground-wave transmission. It is therefore desirable to make the down-lead as nearly vertical as possible, and also as high as possible. The horizontal portion contributes to sky-wave transmission, which is useful for covering relatively-long distances on this band at night.

The lower drawing of Fig. 1333 shows the recommended method of tuning a grounded quarter-wave antenna. The ground connection must have low r.f. resistance to avoid loss of power.

For computation purposes, the overall length of a grounded system is given by

$$
L(\text { feet })=\frac{236}{f(\mathrm{Mc})}
$$

This length, it should be noted, is the tolal length from the far end of the antenna to the ground connection.

The ground should preferably be one with conductors buried deep enough to reach natural moisture. In urban locations, good grounds can be made to water mains where they enter the house; the pipe should be scraped clean and a low-resistance connection made with a tightly-fastened ground clamp. If no waterpipes are available several pipes, six to eight feet long, may be driven into the ground at intervals of six or eight feet, all being connected together. The transmitter should be located so as to make the ground lead as short as possible.

In locations where it is impossible to secure a good ground connection because of sandy soil or other considerations, it is preferable to substitute a counterpoise for the ground connection. The counterpoise consists of a system of wires insulated from ground running horizon-
tally above the earth beneath the antenna. Tho counterpoise should have a sufficient number of wires of sufficient length to cover well the area immediately under the antenna. The wires may be formed into any convenient shape, i.e., they may be spread out fan-shape, in a radial pattern, or three or more parallel wires separated a foot or so running beneath the antenna may beused. The connterpoise shomld he elevated six or seven feet above the ground so it, will not interfere with persons walking under it. Commertion is made between the usual ground terminal of the transmitter and each of the wires in the counterpoise.

IDIRECTIVE ANTENNAS

For long distance transmission it is often advantageous to arrange the antenna so that the radiation is concentrated in a desired direetion. With a simple antenna, the sime increase in field strength would require much mure power. so that it is customary to measure the effectiveness of a directive antenna in terms of the power increase that would be needed to give the same field strength, using a half-wave antema as the standard of comparisom. The same polarization is assumed. The power gain so obtained may range from slightly over 1 for simple systems to as much as 30 or 40 for the most claborate ones.

The increased signal strength in the desired direction is obtained at the expense of radiation in other directions. At the higher frequencies. energy may be taken from the higher vertical angles and used to reinforce the existing lowangle radiation without affecting greatly the horizontal directivity. In general, however, an increase in output in one horizontal direction is accompanied by a decrease in some other horizontal direction, so that the user of a directive antenna must be prepared to accept an area of restricted effectiveness. This is particularly true as the antenna gain is made. higher.

Directive antennas may be divided into two types, those using long wires (those already. discussed are simple forms of directive antennas) and those using half-wave elements in combination to produce the desired effect. In both cases the principle of operation is that of reinforcement and cancellation of waves radiated from different portions of the system. The energy from waves which cancel is available for reinforcement in the appropriate direction. The phased types generally are suitable for operation in one band only, while the long wire types may be operated over several bands with little change in characteristies: provided the antenna is fairly large.

A directive antenna is equally as effective for receiving as for transmitting. Such an antenna
always should be used for both purposes if its full benefits are to be realized.

UPMANED INTENNAS

Antennas using combinations of half-wave elements usually are called "phased" systems. Simple forms of such systems, with the current distribution, are shown in Fig. 1337. In 1 is: the popular "two half-waves in phase," which will be recognized as simply a center-fed antenna operated at its second harmonic. The way in which the number of elements may be extended for increased directivity and gain is shown in Fig. 1337-B. Note that quarter-wave transmission lines are used between each element; these give the reversal in phase necessary to make the currents in individual antenna elements all flow in the same direction at the same instant. Another way of looking at it is to consider that the whole system is a long wire with alternate half-wave sections folded so that they do not radiate. Any phase-reversing section may be used as a quarter-wave matching section for attaching a non-resonant feeder. A resomant transmission line may be substituted for any of the quarter-wave sections, of course. Also, the antenna may be endfed by any of the systems previously described, or any element may be center-fed. This is also true of the more complicated systems.

The system shown in lig. 1337 is known as a collinear array. The gain and directivity depend upon the number of clements and their spacing, center-to-center. This is shown by Table III. Although $3 / 4$-wave spacing gives greater gain, it is difficult to construct a suitable phasereversing system when the ends of the antenna elements are widely separated. For this reason the half-wave spacing is generally used.

Collinear arrays may be mounted either horizontally or vertically. Horizontal mounting gives horizontal directivity, with vertical directivity the same as for a single element at the same height. Vertical mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles. It is seldom possible to use more than two ele-

"TABLE: IV Theormtical (iain of Two Half-Wave Antenna. at Different Spacingo			
180° Out of Phaxe (End Fire)		In Pho (Broads	
Separation in Fractions of a IVarelenoth	Gain in $d b$	Spparation in Fractions of a Wavelength	$\begin{aligned} & \text { liai, } \\ & \text { in } d b \end{aligned}$
1/8	4.3	8	4.8
120	4.1	$8 / 4$	4.6
1/2	3.8	1/2	4.0
8	3.0	3	2.4
$1 / 2$	2.2	$1 / 4$	1.0
5\%	1.7	1/8	0.3

ments vertically, however, beranse of the height required.

Broadside Arraw

In-phase antenna elements also may be combined as shown in Fig. 1338. This is known as at broadside array because the direction of maximum radiation is broadside to the plane containing the antennas. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in the right-hand section of Table IV. Half-wave apacing is generally used, since it simplifies the feeding problem when the array has more than two elements.

Broadside arrays may be suspended either horizontally or vertically. In the former case the horizontal pattern is quite sharp while the vertical pattern is that of one element alone. If the array is suspended horizontally the horizontal pattern is that of one element while the vertical pattern is sharp, giving low-angle radiation. The height required limits the number of elements which can be suspended horizontally, so that more than two seldom are used.

Broadside arrays may be fed either by resouant transmission lines or by the use of quar-ter-wave matching sections and non-resonant lines. In Fig. 1338, note the "crossing over" of the feeder, necessary to bring the elements in proper phase relationship.

TABEE III Tumohetical. Gain of Cohlinear Italf-Wave Antennas						TABI.E V Theoretical Gain vb. Number of Bhoadmide Elements Half-Wive Spacing	
Spacing Betucen Centers of Adjacent Half Waves (A)	Number of Half Haves in Array os. Gain in db					No. of Element*	Gain
	2	3	4	5	6	2 3	4 db 5.5 db
1/2 Wave	1.8	3.3	4.5			4	7 db 8 db
$3 /$ Ware	3.3		+.0)			${ }^{\text {i }}$	9 db

FIG. 1337 - COILLINEAR IIALF-WAVE ANTENNAS IN PIIASE
The system at A is generally known as "two half-waves in phase." B is an extension of the rystem; in theory it may he carried on indefinitely, but practical considerations usually limit the number of elemente to fonr. Gain fignrea are tabulated in Table III.
Resonant feedors may be connected to the ends of any of the quarter-wave matching sections indicated (the shorting bar of course must be removed front the one used). Alternatively a two-wire line may be matched to the line as in Fig. 1324. Any antenna element also may be center-fed throngh any of the ordinary methode which permit matching, in the case of non-romonant line, or through a resonant linc. Twisted pair and concontric feeders are not recommended for thin purpose because the antenna impedance is not the sanfe as when a half-wave antenna is ised aingly. Generally speaking, it is preforable to feed a multi-element antenna noar the center of the aystem in order to make the power distribution to the elements as inniforn as possible.

Combined Broadside and Collinear Arrays

Broadside and collinear arrays may be combined to give both horizontal and vertical directivity, as well as additional gain. The general plan of constructing such antennas is shown in Fig. 1339. The lower angle of radiation resulting from "stacking" elements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of elements in an array by stacking will raise the gain 2 to 4 db , depending upon whether vertical or horizontal elements are used.

End-Fire Arrays

Fig. 1340 shows a pair of parallel half-wave elements with currents out of phase. This is known as an end-fire array because it radiates best along the line of the antennas, as shown.

The end-fire array may be used vertically or horizontally, and is well adapted to amateur work because it gives maximum gain with relatively close element spacing. Table IV shows how the gain varies with spacing. It may also be combined with additional collinear and broadside elements further to increase the gain and directivity.

Either resonant or non-resonant lines may be used with this type of array, the latter being preferably matched to the antenna through a quarter-wave resonant line.

Checking Phasing

Figs. 1338 and 1340 illustrate a point in connection with feeding a phased antenna sys-
tem which sometimes is confusing. Taking Fig. 1340 as an example, when the transmission line is connected as at A there is no crossover in the line connecting the two antennas, but when the transmission line is connected to the center of the connecting line the crossover becomes necessary B. This is because in B the two halves of the connecting line are simply branches of the same line. In other words, even though the connecting line in B is a half-wave in length, it is not actually a half-wave line but two quarter-wave lines in parallel.

Practical Phased Systems

Besides the two half-waves in phase already mentioned, several other simple directive antenna systems are in rather wide use among amateurs. They are shown in Fig. 1341. Tuned feeders are assumed in all cases; however, a matching section readily can be substituted if a non-resonant transmission line is preferred. Dimensions given are in terms of wavelength; actual lengths readily can be calculated from Equation (1) for the antenna and Equation (2) for the resonant transmission line or matching section. Remember that, in cases where the transmission line proper connects to the mid-point of a phasing line, only half the length of the latter is added to the line to find the quarter-wave point.

At A and B are two-element end-fire arrangements using close spacing. They are electrically equivalent; the only difference is in the method of connecting the feeders. R may also be used as a four-element array on the second harmonic, although the spacing is not optimum in that case; however, it is a useful two-band directive

FIG: 1338 - THE BHOADSIDE ARRAY CSIN;
HAIF-WAVE ELEMENTS
Arrows indicate direction of current flow. The transposition in ferders is necessary to bring the antenna currents in phase. Any reasonable number of elements may be nsed. The array is bi-directional perpendicular to the plane of the antenna; i.e., perpendicularly throngh this page.
Resonnnt feeders or quarter-wave matching secfions may be bridged across the line at any antenna junction. If the transmission line is connected to the phasing line at a point midway between two antennas, the phasing line in that nection shonld not be tranaposed. Feed near the center of the nystem in preferable in order to diatribute the power as evenly an possible among the antennas.

See Table V for gain data.

FIG: 1339 - COMBINATION BROADSIDE ANI COLIIINEAI ARRAYS
A, with vertical elements; B, with horizontal elements. Both arrays give low-angle radiation. Two or more sections may be used. See Fig. 1338 for remarks on feeding and directivity. The transmission-line connection in B illustrates the use of a non-transposed phasing line when the connection in midway between antenna elements.

The gain in db will he equal, approximately, to the sum of the gain for one set of broadside elements (Table V) plus the gain of one set of collinear elements (Table III). For example, in A each broadside set has four elements (gain $7 \mathbf{d b}$) and each collinear set two elements (gain 1.8 db) giving a total gain of 8.8 db . In B each broadside set ham two elements (gain 4 db) and each collinear set three elements (gain 3.3 db) making the total gain $7.3 \mathbf{d b}$. The result is not strictly accurate liecause of mutual coupling between elements, but is good enough for practical purposes.
antenna, A close-spaced four-element array is shown at C. It will give about 2 db more gain than the two-element array. The antenna at D is designed to take advantage of the greater gain possible with collinear antennas having greater than half-wave center-to-center spacing, but without introducing feed complications. The elements are made longer than a half wave to bring this about. The gain is 3 db over a single half-wave antenna, and the broadside directivity is quite sharp.

The antennas of A and B may be mounted either horizontally or vertically; horizontal suspension (with the two elements in a plane parallel to the ground) is recommended, since this tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for coverage over a wide horizontal angle. The system at C also should be mounted horizontally. It will have a sharper horizontal pattern than the two-element arrays.

Parasitic Antennas

All the preceding systems are bi-directional; that is, they will radiate to the "front" or the "back" of the antenna system. If radiation is wanted in only one direction (for instance, north only, instead of north-south) it is neces-
sary to use different element arrangements. In most of these the additional elements receive power by induction or radiation from the antenna and reradiate it in the proper phase relationship to achieve the desired effect. They are called parasitic elements, as contrasted to driven elements which receive power directly from the transmitter through the transmission line.

The parasitic element is called a director when it reinforces radiation on a line pointing to it from the antenna, and is called a reftector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the parasitic element tuning (which is adjusted by changing its length) and, particularly when the element is self-resonant, upon the spacing between it and the antenna.

The gain of an antenna-reflector or antennadirector combination varies chiefly with the spacing between elements. The way in which gain varies with spacing is shown in Fig. 1341, for the special case of self-resonant parasitic elements. This chart also shows how the attenuation to the "rear" varies with spacing. The same spacing does not necessarily give both maximum forward gain and maximum backward attenuation. Backward attenuation is desirable when the antenna is used for receiving, since it greatly reduces interference coming from the opposite direction to the desired signal.

Simple and practical combinations of antẹnna, reflector and director are shown in Fig. 1343. Spacings for maximum gain or maximum front-to-back ratio (ratio of power radiated in the desired direction to power radiated in the opposite direction) may be taken from Fig. 1342. In the chart, the front-to-back ratio in db will be the sum of gain and attenuation at the same spacing.

The antenna length is given by Equation (1), as usual. The director and reflector lengths must be determined experimentally for maximum performance. The preferable method is to aim the antenna at a receiver a mile or so distant and have an observer check the signal

F1G. 1340 - END-FIRE: ARRAYS
They are shown with half-wave spacing to illustrate feeder connections. In practice, closer ppacings are desirable, as shown by Table IV. Direction of maximum radiation is shown by the large arrows. Findfire arrangements are shownin Fig. 1342 at A, B, andl C^{C}.

THE RADIO AMATEUR'S HANDB00K

FIG. 134] - SIMPLE DIRECTIVE SISIEMS
A, two-element end-fire array; H, same with conter foed, which permita nse of the array on the second harmonic, where it becomes a four-element array with quarter-wave apacing. C, four-element end-fire array with $1 / 2$-wave spacing. D, extended in-phase antennas ("extended double-Zepp"). The gain of A and B ia slightly over $4 \mathbf{d b}$ (Table IV). On the aecond harmonic, B will give about 5 db gain. With C, the gain is approximately $6 \mathbf{d b}$, and with D, approrimately 3 db .

In the first three, the phasing line contributes about 1/16th wavelength to the transmission line; when B is used on the eecond harmonic this contribution is $1 / 3$ wavelength. Alternatively, the antenna ends may be bent to meet the transmisaion line, in which case each feeder is simply connected to one antenna. In \boldsymbol{H} and C the construction is the same as shown, but each antenna element would be 1/16th wavelength shorter. In D, pointa $Y-Y$ indicate a quarter-wave point (high current) and $X-X$ a half-wave point (high voltage). The line may lse extended in multiples of quarter-waves, if remonant feeders are to be used.

Remonant feederm may be used with all typer shown, und are necessary if B is to be need on two bands. Non-resonant feeders may be coupled to the antennas through quarter-wave matching nections for singleband operation.
A, B, and C may be ouspended on wooden opreader. The plane containing the wiren aliould lve parallel to the gronnd.
strength (on the " S " meter) while the reflector or director is adjusted a few inches at a time, until the length which gives maximum signal is found. The attenuation may be similarly checked, the length being adjusted for minimum signal. In general, the length of a director will be 1% to 2% less than that of the antenna. The reflector probably will be somewhat longer than the anteman.

Systems of this type are popular for rotary beam antennas, in which the whole antenna is rotated to permit its gain and directivity to
be utilized for any compass direction. They may be mounted either horizontally (plane containing the elements parrallel to the earth) or vertically.

Broadness of Resonance in Directive Systems

Peak performance of a multi-element directive array depends upon proper phasing, which in all but the simplest systems can be exact for one frequency only. However, there is some latitude, and most arrays will work well over a relatively-narrow band such as 14 Mc. lf frequencies in all parts of the band are to be used, the antenna system should be designed for the mid-frequency; on the other hand, if only one frequency in the band will be used the greater portion of the time the antenna might be designed for that frequency and some degree of misadjustment tolerated on the occasionallyused spare frequencies.

When reflectors or directors are used the tolerance is usually less than in the case of driven elements, partly because the parasitic-element lengths are fixed and the operation may change appreciably as the frequently passes from one side of resonance to the other, and partly because the close spacing ordinarly used results in a sharptuning system. With parasitic elements operation should be confined to a small region about the frequency for which the antenna is adjusted, if peak performance is to be secured.

FIG. 1342 - FORWARI GAIN AND BACKWARD A' 'IENUATION FOR A IIALF-WAVE ANTENNA WITH A SINGILE IPARASITIC ELEMENT, AS A FUNCTION OF SPACING
The parasitic element is self-resonant. Somewhat greater front-to-back ratio can bo secured by lengthing or shortening the parasitic element as deacribed in the text.

ANTENNAN FGIE ULTTRA-HIGH FIEEQULETAEG

The principles already discussed apply equally as well to the ultra-high frequencies as to communication frequencies. In practice, vertical polarization is used almost exclusively on ultra-high frequencies because it has been found more satisfactory for the type of work normally carried on in that region. A favorite antenna for $56-\mathrm{Mc}$. work is a vertical half-

REF
F1G; 1343 - HALF-WAVE ANTENNAS WITHI PARASITHC ELEMENTS
A, with reflector; B, with director; C, with both director and reflector. Gain is approximately as shown by Fig. 1342 in the first two cases. With C, a gain of about $7 \mathbf{d b}$ can be realized in practice. Resonant feeders or u non-resonant line with mutching section are reconmended. Because of the close spacing in B and C the antenna impedance is very low, so that currente are high. Also, rigid conductors should be used since swinging will cause serious detuning. These wystents are often used for rotary-beam worl.
wave, elevated as much as possible above surrounding objects. Collinear half-waves in phase, also suspended vertically, often are used to give the low angle of radiation desirable for line-of-sight work.

Because of the smaller dimensions of u.h.f. antennas, directive systems are in widespread use. Combinations of broadside and collinear arrays, with reflectors or directors, may be used to advantage. Such arrays usually will be of the type shown in Fig. 1339-A, often with a parasitic reflector behind each antenna element. A typical antenna of this type is shown in Fig. 1344, which consists of three inphase collinear elements in broadside array, with a six-element parasitic reflector onequarter wave behind the antenna.

The trend today is toward further investigation into the merits of horizontal antennas for u.h.f. work. The horizontally polarized
waves transmitted from such antennas have been shown, in recent experiment, to provide better signals over long indirect paths than vertically polarized waves. Any of the arrays described may be made to radiate horizontally polarized waves by suspending them with the antenna elements horizontal.

It should be pointed out that the horizontal antenna on the ultra-high frequencies will perform very poorly in transmitting to or receiving from a station using a vertical antenna.

THIE *V" ANTENNA

© ${ }^{T}$ has been emphasized in connection with long-wire antennas that as the antenna length is increased the lobe of maximum radiation makes a more acute angle with the wire. Two such wires may be combined in the form of a horizontal " V " so that the main lobes from each wire will reinforce along a line bisecting the angle between the wires. This increases both gain and directivity, since the lobes in directions other than along the bisector cancel to a greater or lesser extent. The horizontal " V " antenna is therefore practically a bidirectional antenna whose gain depends upon the length of the wires. When each wire is several wavelengths long the gain will be

FIG. 1344 - THE 112 -MC. ARRAY AT W2CUZ; AN EXCELLENT EXAMPLE OF CONSTRUCTION TO ALLOW ROTATION OF THE SYSTEM
Twelve elernents are used; two collinear seth of three broadside driven antennas, backed by parasitic refiectors.

THE RADIO AMATEUR'S HANDB00K

greater than can be obtained with phased antennas of simple construction. Provided the necessary space is available, the " V " is a simple antenna to build and operate, and can be used readily on harmonics so that it is suitable for multi-band work. The " V " antenna is shown in Fig. 1345.

Fig. 1346 shows the dimensions that should be followed for an optimum design to obtain maximum power gain for different-sized "V" antennas. The longer-type systems give good performance on multi-band operation. Angle a is approximately equal to twice the angle of maximum radiation for a single wire equal in length to one side of the "V."

The " V " can be made unidirectional through eliminating the rear pattern by the use of another " V " one-quarter wave to the rear to act as a reflector. This is quite cumbersome for amateur practice and restricts correct operation to a single frequency band. The "V" usually is operated as a bi-directional antenna.

The wave angle referred to in Fig. 1346 is the vertical angle of maximum radiation. Tilting the whole horizontal plane of the " V " will tend to increase the low-angle radiation off the low end and decrease it off the high end.

The gain increases rapidly with the length of the wires, but is not exactly twice the gain for a single long wire as given in Fig. 1327. In the longer lengths, the gain will be somewhat increased because of mutual coupling between the wires. A "V" eight wavelengths on a leg, for instance, will have a gain of about 12 db over a half-wave antenna, whereas twice the gain of a single 8 -wavelength wire would be approximately 9 db .

The two wires of the " V " must be fed out of phase for correct operation. A resonant line may simply be attached to the ends as shown in Fig. 1345. Alternatively, a quarter-wave matching section may be employed and the antenna fed through a non-resonant line. If the antenna wires are made multiples of a halfwave in length (use Equation (6) for computing the length) the matching section will be closed at the free end.

FIG. 1345-TIE "V'• ANTENNA
The "V" is made by combining two long wires in whel a way that each reinforces the other's radiation. The important quantlies are the length of each leg and the angle between legs.

FIG. 1346 - DESIGN CIIART FOIR IIORIZONTAL, "V" ANTENNAS
Finclosed angle between wires versus length of sides.

THE EMEONIBE: ANTENNA

Apopular form of long-wire directive antenna is the rhombic or "diamond" antenna shown in Fig. 1347. Like the "V," it requires a good deal of space for erection, but is capable of giving excellent gain and directivity. It can also be used for multi-band operation. In the terminated form shown in Fig. 1347 it operates, like a non-resonant transmission line, without standing waves and is uni-directional. It may also be used without the terminating resistor, in which case there are standing waves on the wires and the antenna is bi-directional.

The important quantities influencing the design of the rhombic antenna are shown in Fig. 1347. While several design methods may be used, the one most applicable to the conditions existing in amateur work is the so-called "compromise" method. The charts of Figs. 1348 and 1349 give design information when two of the quantities are assumed. The examples given illustrate the practical use of the charts.

For multi-band work, it is satisfactory to design the rhombic antenna on the basis of 14 -Mc. operation, which will permit work on the 7 - and $28-\mathrm{Mc}$. bands as well.

Fig. 1348 is based on an original given premise of length and height from which is determined the proper angle of tilt and corresponding wave angle for maximum output. This chart is based upon an effective height of $1 / 2$ wavelength, which represents a practical value for most amateurs. For any different height other than the one shown the curve may be plotted from the expression:

$$
\begin{gathered}
\frac{H}{\left.\tan \frac{(2 \pi H}{\lambda} \sin \Delta\right)}=\frac{\lambda}{2 \pi \sin \Delta} \\
-\frac{l \sin \Delta}{\tan \frac{\left(\pi l \sin ^{2} \Delta\right)}{\lambda}}
\end{gathered}
$$

The solution of this equation for l in terms of wavelength (λ) may be obtained by the trial and error method.

Fig. 1349 is based upon a premise of a given length and wave angle to determine the remaining optimum dimensions for best operation. Curves for values of length of 2,3 and 4 wavelengths are shown, and additional curves for any length may be similarly plotted from the relationship:

$$
\sin \phi=\frac{l-.371 \lambda}{l \cos \Delta}
$$

With all other dimensions correct, an increase in length causes an increase in power gain and a slight reduction in wave angle. An increase in height also causes a reduction in wave angle and an increase in power gain but not to the same extent as a proportionate increase in length.

A value of 800 ohms is correct for the terminating resistor for any properly constructed rhombic, and the system behaves as a pure re-

$\phi=$ ANGLE OF TILT (OEGREES) $\quad L=$ LENGTH OF ONE SIDE (WAYELENGTNS) $\Delta=$ WAVE ANGLE (OEGREES) $\quad H=H E / G H T$ (WAVELENGTHS)
FIG. 1347 - THE IIORIZONTAL RIIOMBIC OR DIAMOND ANTENNA, TERMINATEI)

Given: IIeight $=1 / 2$ wavelength.
To Find:
Angle of Tilt (Φ).
Wave Angle (Δ).
Method:

Result:
$\left.\begin{array}{l}I I=1 / 2 \text { wavelength } \\ I=3.5 \text { wavelengths }\end{array}\right\}$ given.
Tilt angle
$\Phi=69$ degrees from
Wave angle $\Delta=$ curves. 21 degrees

FIG. 1318 - IDESIGN CIIART FOR RIIOMIBIC. ANTENNAS WITII FIXED IIEIGIIT (ONE-HAIF WAVELENGTII)
The following example illust ratea the inse of the Chart:
Available length of one leg $=3.5$ wavelengths.

Place atraight edge on curve " L " ut 3.5 wavelengths (point y) and drawn line XYZ. Read angle Φ from intersection at point X (right hand ordinate) and angle Δ at point Z (intersection of ubscissa).
sistive load under this condition. This terminating resistor must be capable of safely dissipating one-half the power output (to eliminate the rear pattern) and be absolutely non-inductive. Such a resistor may be made up from a carbon or graphite rod or from a long $800-\mathrm{hm}$ transmission line. If the carbon rod or a similar form of lumped resistance is used the device should be suitably protected from weather effects, i.e., covered with good asphaltic compound and sealed in a small lightweight box or fibre tube. Suitable resistors recently have been made available commercially.

An 800 -ohm line may be constructed from No. 16 A.W.G. wire spaced 20 inches or from No. 18 A.W.G. wire spaced 16 inches. The 800 -ohm line is somewhat ungainly to install, however, and may be replaced by low-impedance lines of the concentric or twisted pair vari-

FIG. 1349 - COMPROMISE METIIOI) IDESIG; chairt for various leg levgTIIS anil wavr. ANGLES

> The following examples illustrate the nase of the Chart:
> (1) Given: Length (L) $=2$ wavelengths. Desired wave angle $(\Delta)=20^{\circ}$.
> Io Find: II, Φ.
> Draw vertical line thru point " a " (I. = 2 wavelengtlis) and point " b " on aloscissa ($\Delta=20^{\circ}$.) Ifead angle of tilt (Φ) for point "a" and height (II) from intersection of line abl at point "c" on curve II.
> Hesult:
> $\Phi=60.5^{\circ}$.
> II $=.73$ wavelengths.
> (2) Given
> Length (L) = 3 wavelengthn.
> Angle of tilt $(\Phi)=78^{\circ}$.
> To Find: II, Δ.
> Method:
> Draw vertical line fron point "dl" on cnerse $\mathrm{I}=3$ wavelengths at $\Phi=78^{\circ}$. Head intersection of this line on curve II (point "e'") and intersection at paint "f" on the ahacissa for Δ.
> Result:
> $11=.56$ wavelengt hs.
> $\Delta=26,6^{\circ}$.
ety by the incorporation of a coupling network between the 800 -ohm and low-impedance line connection. Such a coupling unit might be installed in a box at the base of the first pole or supporting structure. If such an arrangement is used it will be necessary to change the network constants for each different band of operation.

The same design details apply to the unterminated rhombic as for the terminated type. Resonant feeders are preferable to use for the unterminated rhombic. A non-resonant line may be used by incorporating a matching section at the antenna, but is not readily adaptable to multi-band work.

THE IBECEIVING ANTENNA

H$\boldsymbol{B}_{\text {ecause of }}$ the high sensitivity of modern receivers a large antenna is not necessary for picking up signals at good strength. Often it will be found that the receiving antenna in the amateur station is an indoor wire only 15 or 20 feet long.

On the other hand, the use of a tuned antenna unquestionably improves the operation of the receiver because the signal strength is greater in proportion to the stray noises picked up by the antenna than is the case with the antenna of random length. Also, since the transmitting antenna is usually given the more choice location, it can be used to great advantage for receiving, especially on the DX bands, and always when a directive antenna is used. A change-over switch or relay connected in the antenna leads can be used to transfer the connection from the receiver to the transmitter while the transmitter is on the air. For best results, an antenna tuning unit, as shown in Chapter Seven, should be used at the receiver.

If a separate receiving antenna is preferred, a doublet antenna of the type shown in Fig. 1350 will give very good results. The length of the lamp cord transmission line may be anything convenient. The antenna itself should be a half-wave long for the frequency band most used; despite the fact that the antenna is resonant for only one band, it will give good results on others as well. A popular length is 65 feet or so, designed to resonate in the 7000kc. band.

The increasing popularity of short-wave broadcast receiving antennas has led to the development of many excellent commercial types available in kit form at reasonable prices. Designs such as the "Double-Doublet" and the "V Doublet" perform effectively for a mateur work at 14 Mc . and lower frequencies.

CIEDSINU THE ANTENNA

he choice of a suitable antenna or antennas will not present much of a problem to those who have an acre or so of clear space. However, most of us are not so fortunate. Frequently space cannot be found for more than a single antenna for all bands and many do not have space in which to put up, in the clear, a half-wave antenna for the lowest frequency at which operation is desired. In other words, the
space available usually dictates the most suitable type of antenna possible.

A vertical antenna occupies the sinallest terrestrial area, it will radiate equally well in all directions unless shielded by near-by objects. Unfortunately, however, supports for vertical antennas are costly, except for antennas for the higher frequencies. Reliable masts or towers which will not endanger life and property will average about one dollar per foot in cost for heights up to about seventy-five feet. To be most effective, the lower end of the vertical antenna should be well above surrounding objects; in any event the center should be at least one-half wavelength above ground. Lesser heights usually will result in some sacrifice in performance.

If a vertical antenna is to be used on more than one frequency band, it is well to feed it in

FIG: B350- DOUBLET RECEIVING: ANIENNA
the center with tuned feeders, in order to take advantage of the added low-angle radiation obtained on the higher frequency.

In general, where one antenna must serve for all frequencies, it should be at least one-half wavelength long for the lowest frequency at which operation is desired. When this practice is followed with horizontal antennas, certain benefits result in operation at the higher frequencies. The number of lobes in the pattern increases with the antenna length and the angle of chief radiation becomes lower. Providing nearby surrounding objects are cleared, little benefit will usually result in elevating the horizontal antenna to a height greater than onehalf wavelength. It will usually pay to orientate the antenna so that the main lobes of the radiation pattern point in the directions in which communication is especially desired or especially difficult. It is quite frequently possible to run the antenna in such a direction that a main lobe will fall in the approximate direction of each of several continents. Directions should be taken from a globe. Whenever possible the antenna should be located well away from telephone or power wiring or at least run at right angles to their directions.

In selecting the most suitable method of feeding the antenna, it should be remembered that antennas with tuned feeders are the only types (directly-excited antennas excepted) capable of operation at larmonics. The Zepp or end-fed type is probably the most popular type not only because it is usually more convenient to feed the antenna at one end instead of the center, but also because the end-fed antenna is somewhat less directive than the center-fed antenna when operated at harmonics as pointed out previously.

ANTENNA CONATIEUCTION

IF the antenna system is to operate most effectively the conductors must be of low resistance. On the other hand the insulators must be of high mechanical strength and low losses. For short antennas an entirely satisfactory conductor is No. 14 gauge hard-drawn enamelled copper wire. For long antennas and directive arrays No. 14 or No. 12 enamelled copper-clad steel wire should be used to prevent any possible stretch. It is best to make feeders of ordinary No. 14 or No. 12 ena melled copper wire. It will be found difficult to make a neat-looking feeder with hard-drawn or copperclad steel wire unless it is under considerable tension at all times. Every effort should be made to make the wires in one piece so that the only joints are at the output terminals of the transmitter. Where joints cannot be avoided they should be carefully soldered.

If the feeder system is of the tuned type the currents in it will be of the same order as or larger than those in the antenna, and the same care in avoiding joints is necessary. In the open-wire untuned feeder system, however, the currents are relatively low and this consideration is therefore not as important. In these cases small wire can be used if necessary.

In building a resonant two-wire feeder as much care should be taken with the quality of insulation used in the spacers as is taken with the antenna insulators proper. For this reason one of the many good ceramic spacers available should be used. Wooden dowels boiled in paraffin can be used with untuned lines but their use is not recommended for tuned lines. The wooden dowels can be attached to the feeder wires by drilling a small hole in the dowels, then binding them to the feeders with wire.

It should be kept in mind that the ends of tuned feeders or the ends of the antenna are points of maximum voltage. It is at these points that the insulation is most important, and Pyrex glass, isolantite or steatite insulators with long leakage paths are recommended. Glazed porcelain also is good. Insulators should be cleaned once or twice a year, especially

THE RADIO AMATEUR'S HANDB00K

if they are subjected to much smoke and soot.

It is hardly possible to give practical instructions for the suspension of the antenna since the methods used will vary so widely in individual instances. In most cases poles are desirable to lift the antenna clear of surrounding buildings but in some locations the antenna is in the clear when strung from one chimney to another or from a chimney to a tree. Small trees are not usually satisfactory as points of suspension for the antenna on account of their movements in windy weather. If the antenna is strung from a point near the center of the trunk of a large tree this difficulty is not as serious. If the antenna must be strung from one of the smaller branches, it is best to tie a pulley firmly
to the branch and
 the pulley to the antenna, with the other

FIG. 1351-A SIMILE ARIRANGEMENT FOR A ROTATABLE DIRECTIVE ANTENNA
It may be suspended from any suitable support, such as another antenna, having the requisite height. The antenna shown is a 28-Mc. extended double Zepp with reflector. (W6AM, July, 1938, QST.)
end of the rope connected to a counterweight near the ground. The counterweight will keep the tension of the antenna constant, even when the branches sway and when the rope tightens and stretches under varying climatic conditions.

Small 28 - and $56-\mathrm{Mc}$. arrays can be supported entirely by strong fish line that is counterweighted at the ends. However, light cord is not recommended for any really permanent installation except in very mild climates.

Rotary Beam Construction

While the power gain given by a directive antenna unquestionably is desirable, it is only obtained through a decrease in the power radiated in unfavored directions, and therefore limits the "all-around" communication possibilities of the station. To overcome this, many amateurs mount the simpler types of directive antennas in such a way that the antenna can be rotated to shift the direction of the beam at will.

Obviously the use of such rotary antennas is limited to the higher frequencies if a structure of practicable size is to be used. For this reason the majority of rotary beam antennas are constructed for the $28-\mathrm{Mc}$. band, although many are in use at 14 Mc . They are relatively easy to construct for the ultra-high frequencies, since the element lengths are small.

Rotating directive antennas usually consist of a half-wave element with a director or reflector, or both, the electrical construction being as shown in Fig. 1343. More elaborate ones occasionally use a pair of collinear half-wave antennas in phase, with collinear directors or reflectors in "front" or "back." If sufficient height is available, additional clements sometimes are stacked, as in Fig. 1339. It must be realized that the antenna arrangements themselves do not differ from those used when the wires are fixed in position; the problems involved in the construction of a rotary beam antenna are almost purely mechanical.

The antenna elements may be arranged either vertically or horizontally as desired. At the frequencies for which most rotary antennas are built, horizontal polarization is usually more desirable, particularly in reception. This is because of the fact that the arriving waves usually are horizontally polarized and because electrical noises, bothersome at the high frequencies, are vertically polarized, as discussed early in this chapter. With horizontal elements it is therefore possible to get a better signal-to-noise
ratio under average conditions. However, it must not be thought that the verticallypolarized antenna suffers from a lack of effectiveness - it is simply that where circumstances permit a choice, horizontal polarization is to be preferred. It is true, also, that the mechanical construction of a rotating antenna with vertical elements often is simpler than that of a horizontal antenna having the same electrical arrangement.

The problems in rotary beam construction are those of providing a suitable mechanical support for the antenna elements, furnishing a means of rotation, and in attaching the transmission line so that it does not interfere with the rotation of the system. Quite simple and inexpensive arrangements can be used, although they may not be as convenient in operation as the more elaborate structures which some amateurs have built. An extremely simple method is indicated in Fig 1351. The particular antenna shown is the extended double Zepp of Fig. 1341-D, with a parasitic reflector, the elements being assembled on wooden spreaders and suspended vertically from any convenient
point. The system is simply moved by hand to the desired position, the two-pound weights acting as anchors to hold it in place. Of course the ropes between the weights and lower spreader should be long enough to allow the weiglts to lie on the ground. The swivel at the top permits easy rotation without binding or twisting. The height required for this particular antenna, which is designed for the $28-\mathrm{Mc}$. band, is approximately 50 feet. It could be hung from a regular horizontal antenna of appropriate height. A similar suspension could readily be used for a half-wave antenna with director or reflector, in which case the antenna assembly would be only 25 feet or so long.

Fig. 1352 shows anot her mechanical arrangement for vertical elements. The antenna, which is a vertical section of metal tubing, is fixed in position and is provided with a director and reflector which rotate about it. The advantage of this arrangement is that no provision need be made for special contacts between the antenna and the feeder system, since the position of the antenna is fixed. A rope and pulley arrangement provides rotation from the

No special feeder-contact mechanism is needed, since the driven antenna is fixed. The reflector and director, parasitically excited, rotate around it. Close-spaced elements may be used if desired. 'Ihim antenna was described by W2BSF and W'2AJF in March, 1938, QST.

THE RADIO AMATEUR'S HANDB00K

operating room, so that when a signal is picked up the antenna can be rotated rapidly to the position which gives maximum response. It is then also pointing in the proper direction for

horizontal rotary beam is shown in Fig. 1353. It may be made of 1 by 2 lumber, preferably oak for the center sections, with white pine or cypress for the outer arms. The self-supporting tubing antenna elements are intended to be mounted on stand-off insulators on the arms marked E. The square block at the center (A) may be fastened to the pole by any convenient means. The dimensions of such a structure will, of course, depend upon the type of antenna system used. It is particularly well suited to a half-wave antenna with a single director for

Various means of rotation and of making contact to the transmission line have been devised. One method is shown in Fig. 1354. In this case the supporting pole is rotated by the chain and sprocket arrangement shown, with the base of the pole resting on a bearing. Feeders are brought down the pole from the antenna to a pair of wire rings, against which sliding contacts press.

FIC. 1353 - EASILY-BUILT SLIPORTING STILUCTURE

Made chiefly of 1 by 2 s, the structure is strong yet light-weight. Antenna elements are supported on stand-off insulators on the "E"' arma. The length of the " D " sections will depend upon the element spacing. (W'2DKJ, October, 1938, QST.)
transmission to the same station. The antenna system shown can be varied in details, of course; for instance, close spacing might be used between the parasitic elements and the antenna to give somewhat greater gain.

When elements are suspended horizontally it is necessary to make a supporting structure, usually of light but strong wood. In such case, also, it is desirable, both to simplify the structure and to provide rigidity in the elements, to make the elements of light-weight metal tubing. Dural tubes often are used, and thin-walled corrugated steel tubes with copper coating also are available for this purpose. The elements usually are constructed of several sections of telescoping tubing, making length adjustments quite easy

An easily-constructed supporting frame for a

FIG. 1354 - ONE FORM OF ROTATING MECHANISM
A bicyele sprocket and chain turn the pole which supports the beam antenna. Feeder connections from the antenna are brought to the metal rings, which slide against spring contacts mounted on the large stand-offs on the short pole. (W8EEP, QST, October and November, 1938.)

Parts from junked automobiles often provide gear trains and bearings for rotating the antenna. Rear axles, in particular, can readily be adapted to the purpose. Some amateurs use motor-driven rotating mechanisms which, although complicating the construction, simplify the remote-control of the antenna. More or less elaborate indicating devices to show, in the operating room, the direction in which the antenna is pointed, often are used with motordriven beams.

Generally speaking, a rotary beam antenna is useful for only one band, and if multi-band operation is contemplated an additional antenna or antennas of conventional construction must be installed. A few systems, however, are adaptable to operation on two bands. The arrangement of Fig. 1341-B, for instance, can be used for this purpose.

The full benefit of a rotating directive antenna is realized only when the system is unidirectional, since such an antenna offers the maximum possibility of reducing interference and noise in reception. An incidental advantage to other amateurs is the fact that a unidirectional

antennas

antenna also redures interference to other stations not along the line of transmission. Bidirectional systems, while somewhat less advantageous from this standpoint, are, however, somewhat easier to build mechanically, because it is only necessary to rotate the antenna through 180 degrees rather than 360. Feeder contact is not so difficult in such a case. When the antenna is designed for 360-degree rotation, it is preferable to have the feeders arranged so that continuous rotation is possible, rather than to have a stop at some point on the circle. This avoids the necessity for retracing almost the whole circle when it is desired to move the antenna the few degrees from one side of the stop to the other.

Time spent in adjustment of the rotary beam for maximum results, particularly in obtaining the best front-to-back ratio, is well repaid. The fact that the antenna is rotatable facilitates this process, since any convenient receiving location can be used for checking field strength.

The amateur's ingenuity will suggest many mechanical arrangements to suit the conditions which may exist. It is not our purpose here to attempt to give detailed designs, but rather to outline broadly the methods generally adopted. Detailed information may be found in articles in the following issues of QST: November, 1938; October, 1938; September, 1938; May, 1938; July, 1938; March, 1938; December, 1937; June, 1937; June, 1936; April, 1936.

FIG. 1355 - DUMMY ANTENNA CIIRCUITS

INDMMY ANTENNAS

N tuning the antenna system to the transmitter the antenna ammeter's chief function is that of providing a means for comparing the effects of different adjustments. The actual power output must be measured by adopting a different method. The simplest of these is that involving the use of a non-radiating or "dummy" antenna.

Such a dummy antenna should be part of the equipment available in all good stations. By its use, during periods of adjustment and tuning of the transmitter, much unnecessary interference with the communication of other stations may be avoided.

The duminy antenna is a resistance of suitable value capable of dissipating in the form of heat all the output power of the transmitter. One of the most satisfactory types of resistors for amateur work is the ordinary incandescent electric lamp. Other non-inductive resistors of sufficient power-dissipating capacity can be used, however.

Three circuits for use with dummy antennas are given in Fig. 1355. The first of these is for use with a low-resistance dummy - say 25 ohms or less. The resistor is connected in series with a tank circuit which tunes to the same frequency as the transmitter, and which is coupled inductively to it. If the value of the resistance is known accurately - measurement is difficult, however, because of skin effect at high frequencies - the power may be determined by measuring the radio-frequency current in the resistor and applying Ohm's Law ($W=I^{2} R$). The resistor must be noninductive.

Incandescent bulbs, which in the 115 -volt sizes have a resistance of 75 ohms or more at operating temperature for ratings of 150 watts or less, will work more satisfactorily in either of the other two circuits. The lamp should be equipped with a pair of leads, preferably soldered right to the terminals on the lamp base. The number of turns aeross which the lamp is connected should be varied, together with the tuning and the coupling between the dummy circuit and the transmitter, until the greatest output is obtained for"a "given plate input.
In using lamps as dummy antennas, a size corresponding to the expected power output should be selected so that the lamp will operate near its normal brilliancy. Then when the adjustments have been completed an approximation of the power output can be obtained by comparing the brightness of the lamp with the brightness of one of similar power rating in a 115 -volt socket.

DESIGN AND CONSTRUCTION OF POWER SUPPLY EQUIPMENT

Rectifiers - Filters - Practical Plate and Filament Supply for Transmitters and Receivers - Voltage Dividers - Transmitter Biasing Voltage Supplies - Transformer and Filter Choke Construction - Portable and Independent Systems

The a.c.-operated power supply is, because of the extent to which it is used, an important adjunct of nearly every amateur station. If a power supply is carefully designed, it may be useful at different times for different purposes with only a minor change (or none at all) required. A good receiver supply, for instance, may be used as a supply for an oscillator or oscillator-doubler combination, it may readily be applied to a speech amplifier, or it may be put to work as a transmitter bias supply so that all r.f. amplifier stages are biased past the point of cutoff and hence draw no current when excitation is removed. Because of this versatility of a good power supply, it is usually well worth while for an amateur to design a supply for sufficient output current for any purpose for which the supply might later be needed, to incorporate a good filter which will deliver essentially pure direct current, and to design the supply for good voltage regulation (small change of plate voltage with relatively large changes in load).

The multi-use feature of a.c.-operated power supplies is not limited to small units of the type used for receivers. A power pack originally designed for a final r.f. amplifier plate supply may later be used for a Class-13 modulator, or it may be used at another time as plate supply for a buffer stage. Frequently a unit designed to provide plate power for a final r.f. amplifier alone is used to supply two loads - the final amplifier and a buffer, or the final amplifier and a Class-B modulator. Thus,

DANGER-IFIGH VOLTAGE

$I^{7}$$T$ MUS'T be realized that the plate supply equipment of even a low-powered transmitter is a potential lethal machine. It is ever ready to deal out suilden death to the careless operator. A number of amatears, indeed, have been killed liy the output of their power supplies during the last fow years. Many more have suffered severe injury. We cannot urge too strongly the observance of extreme care in the handling of nower supplies and transmitters.
more expensive components used originally in power supplies to increase the range of possible use represent a good investment when it is later found that the smallest components which might have been used would have so limited the supply that a new one would be necessary to supply a somewhat increased load.

The transmitter power supply is very often the last consideration of the constructor. lt is an "after thought" when the gear is completed and ready for a trial run. The power supply should be consideredinitially as an important integral part of the station. Its design will either reward the a mateur with years of useful service or be a constant source of trouble, often at crucial moments when spares are not available. Apparatus described throughout this Handbook is conservatively rated. Even more conservatism will pay dividends in the equipment that delivers plate and filament energy. Often it will be called on to carry overloads. Bear these thoughts in mind when initially designing the power supply.

In this chapter we shall discuss power supplies for transmitters and receivers. These supplies will operate from the regular mains of 110 -volt alternating current. It is the function of both to provide steady power for the tube filaments and direct current for the plates. Filament supply with modern transmitting and receiving tubes is relatively simple; the design of the plate supply, however, depends to a considerable extent upon the type of service to which it is to be put and is therefore

POWER SUPPLY

worthy of careful consideration. Time spent designing a power supply is time well spent.

Although the operating principles of modern power packs for receivers and power supplies for transmitters are essentially the same, the large difference of physical requirements of the two divide them so that they may best be considered separately. Noticeable differences between the supplies for medium- or high-power transmitting units and those for receivers are: use of mercury-vapor rectifiers almost exclusively in the large transmitting power supplies, whereas high-vacuum rectifiers are more commonly used for receiver supplies (mercuryvapor tubes are sometimes used in the latter); provision for preheating the filaments of the mercury-vapor rectifiers in the transmitter supplies, while the rectifier filament and plate voltages are usually applied simultaneously in receiver supplies; use of separate rectifier filament and plate transformers in transmitting supplies, while a common transformer in receiving packs supplies filament and plate voltage to the rectifier tube, and usually filament power to the receiver in addition; use of compact and inexpensive electrolytic highcapacity filter condensers in the receiver packs, whereas the filter condensers for high-voltage transmitter plate supplies usually are expensive, lower-capacity, oil-filled or oilimpregnated paper dielectric condensers; and the design of a receiver power supply on the basis of combined filament (or heater) and plate requirements, as compared to the design of a large transmitter plate supply without regard to the filament consumption of the stage to which the power supply will be attached, since the filament supply is usually separately provided by a step-down transformer obtained specifically for the purpose.

There is very little variation in type and size of receiver power supplies, and for that reason, it is simpler to choose a well-suited circuit design from the small number of different ones in common use, and to duplicate the supply insofar as practicable.

HECDEIVEIR POWUER SUPIPLIES

1ower supplies for receivers differ materially from those for transmitter high-power stages also in that the very smallest trace of "ripple," or a.c. hum, must be completely eliminated to make possible satisfactory reception. Nothing is more annoying than a "hummy" B supply. The ripple can be reduced to satisfactory proportions by the use of three filter condensers (a three-section electrolytic condenser with capacities of 2,4 and $8 \mu \mathrm{fd}$. will be satisfactory) and two receiver-type $30-\mathrm{henry}$ chokes. Fig. 1401-A is the wiring diagram of a typical receiver power supply. It uses a power transformer of
the type used in broadcast receivers, delivering approximately 350 volts each side of the center-tap on the high-voltage winding. This type of power supply will take care of an ordinary amateur receiver and in addition will easily handle an audio power a mplifier stage using a 47 pentode or a pair of 45 's in push-pull.

FIG. 140I - WIRING: DIAGRAMS FOR RECEIVER IOWER SUPPLIES
Condenser C should be a mica condenser of about $0.002 \mu \mathrm{fd}$. capacity. Its size is not critical and it will be required only if tunable hums are present, as explained in the text. Resistor H_{I} is 20 ohms total, tapped at the center. R_{2} in the voltage divider for olstaining different voltages from the power supply. If the receiver itself is equipped with a divider (the preforable method) R_{2} will be a simple bleeder of about 15,000 ohms. Otherwise it may be any of the regular voltage dividers sold commorcially for this use, or may be a 15,000 ohm resiator tapped at every 3000 ohms. The resistance needed between taps will depend upon the currents to bedrawn at each of the tapa. It is not usually necessary to have the voltages nearer rated value than within 20%, with modern receiving tubes.

The output voltage will be rather higher than is required for the receiver itself, however, so the filter may be rearranged somewhat to use choke input, which will reduce the voltage and give better regulation. This is shown in Fig. 1401-B. Alternatively, a transformer giving lower output voltage might be used if the receiver has no power stages and therefore does not take much current.
Special care must be taken with power packs for autodyne receivers to inake certain that the voltage output will be constant and that "tun-

THE RADIO AMATEUR'S HANDB00K

able hums" do not appear. A varying output voltage will make the detector oscillation frequency change and hence make signals sound wavering and unsteady. The choke-input filter of Fig. 1401-13 is recommended on this seore; it will be especially valuable if the receiver volume control operates on the bias on the r.f. amplifiers. Tunable hums are hums which appear only at certain frequencies to which the receiver is set and only with the detector oseillating. It may be that no hum can be heard with the detector out of oscillation but a strong hum is noticed as soon as the detector is mado to oscillate. This is a tunable hum and cannot be eliminated by the addition of more filter condensers or chokes since it is caused by r.f. getting into the power supply and picking up modulation. Small condensers connected across the plates and filament of the rectifier tube as shown in both diagrams usually will eliminate this type of hum. A grounded electrostatic shield between the primary and secondaries of the power transformer also will help. Not all transformers have such a shield, however. Of course the power leads coming from the receiver itself should be well by-passed to prevent r.f. from getting into the power supply.

For some applications where the current to be taken from the power supply is not more than a few milliamperes - a separate power supply for a frequency meter, for example resistors can be substituted for the filter chokes
 1402.
to make a compact powor supply. Resistors of 10,000 to 50,000 ohms should be satisfactory, depending upon the voltage drop that is permissible. With a midget power transformer and a low-voltage high-capacity electrolytic condenser, together with one of the smaller rectifier tubes listed in the table, a physically small but adequate power supply can be built.

Regulated Pouer Supply for Audio Amplifiers or Receivers

For the amateur who needs a power supply with excellent regulation at approximately 250 volts and 70 ma . there is one shown in Fig.

In this system the fundamental principle is that of "lossing"; that is, the power supply without regulation must be eapable of furnishing more voltage than is wanted at the output, under any and all conditions. The regulator cannot add anything to the output; it can only hold down excess input. In this it is similar to all a.v.c. systems. Therefore, the first requisite is a power transformer which will give, under full load conditions, at the lowest line voltage likely to be encountered, the desired output voltage plus the minimum drop through the regulator tube. The most suitable regulator tubes are triodes having low plate resistance, and of those available the 2 A 3 comes nearest to being the ideal. Allowing 60 or 70 milliamperes per 2A3, the lowest possible tube drop is at zero bias. The grid of the tube cannot be swung positive in this application, because the voltage drop across the control tube's plate resistor, R_{5} in lig. 1402, cannot reverse in polarity. The limiting condition is zero bias, attained when the plate current of the control tube, a 6.J7, is completely cut off. At zero bias, the drop between plate and cathode of a 2 A 3 at 70 milliamperes is approximately 70 volts. It is best to figure on a minimum drop of about 100 volts
fig. 1402 - PRACTICAL VOLTAGE-REGULATED SUPPLY FOR RECEIVERS, SPEECH-AMPLIFIERS OR DEVICES HAVING COMPARABLE VOLTAGE AND CURIENT REOUIREMENTS
C - Douhle 8 - μ fd. dry electrolytic, $\mathbf{4 5 0 - v o l t ~ w o r k i n g ~}$ (Aerovox).

1. - 12 henrye, 75 ma . (Thordarson T-47C07).
$\mathrm{R}_{1}-\mathbf{1 0 , 0 0 0}$ ohms, 1 wate.
$R_{2}-25,000$ ohms, 1 watt.
R_{8} - $\mathbf{1 0 , 0 0 0}$-ohm potentiometer (Yaxley Y 10MP).
$\mathrm{R}_{4}-5000$ ohms, 1 watt.
$\mathrm{R}_{5}-0.5$ megohm, 1 watt.
N - 1-watt $G-10$ neon bulb with base resistor removed.
T-Power tranaformer, 350 volts each side c.i., 70 ma.; 6.3 volts at 3 amp.; 2.5 volts at $4 \mathrm{amp} . ; 5$ volts at 2 amp.
(Thordarson T-70R21.)
A 6 C 6 may be suhatituted for the $6 \mathbf{J} 7$ if desired.
through the regulator tube, however, because at very low control-tube plate currents the neon tube is likely to extinguish, thereby destroying the control. While the neon is conducting, the voltage drop across the lamp is approximately constant at 65 volts.

Since a considerable voltage drop has to be tolerated, and since as much output as possible is wanted from a standard b.c. receiver type transformer, a condenser-input filter should be used. Further, to increase the output voltage, an 83-V low-drop rectifier is used in place of the customary 80 . The net result is that at the full-lond rating of the transformer, 70 milliamperes, a regulated output of 250
volts can be secured. 'The output control, R_{3}, gives a range from 160 to 365 volts; the output current is limited at the higher voltages, but at 200 and below considerably more than the rated current can be taken without losing control.

A transformer with two filament windings in addition to the rectifier winding is a requisite unless one wants to install a separate filament transformer for either the regulator tube or the control tube. In this case the transformer used has a 2.5 -volt winding and a 6.3 -volt winding; the former supplies the 2 A 3 , while the latter handles the control tube and the receiver or whatever device is used in conjunction with the supply. Transformers with two 2.5 -volt windings are also generally available, in case the receiver uses 2.5 -volt tubes. In such case a 57 can be substituted for the 6 J 7 .

The neon lamp is the 1-watt G-10 type, the l-watt size being used simply because the common half-watt size is not recommended, according to the manufacturers, for d.c. For good regulation, it is essential that the resistor be taken out of the base, or else that one of the lamps without a base resistor be secured. The cement holding the base to the bulb may be softened with boiling water or a gas flame. If the resistor is left in, the regulation is considerably better than that of the power supply alone, but not nearly as good as when the resistorless lamp is used.

There are no special "tricks" to be observed in getting the thing to work. As already pointed out, the values given in Fig 1402 are the ones found best in practice. R_{5} may be made as low as 0.1 megohm; lowering the resistance will increase the range of control with varying loads, but does not give quite as good

FIG. 1403-LOW-POWER RECEIVER IDOWFR SUIPPLY
regulation as a half megohm. With the latter, the variation in output voltage from zero output current to 70 milliamperes is of the order of a volt or two - scarcely perceptible on a 500 -volt meter, while the lower value of R_{5} shows a change of 7 to 10 volts under the same conditions. Most of the change takes place between 0 and 25 milliamperes, however, so that there is very little practical difference when used with the ordinary receiver which has a fairly high minimum current.

Output Voltage	Max. Output Current
350	35 ma.
300	50 ma.
250	75 ma.
200	95 ma.
160	over 100 ma.

The regulating capabilities of the supply depend to a considerable extent upon the output voltage selected. With constant line voltage (115 volts) the output will stay under control from zero output current up to the maximum limits as shown above.

FI: 1404 - A LOW-CUIRRENT POWER SUPIPI.Y IOR TIIE REGENERATIVE RECEIVERS OR T.IR.F. RECEIVER
il - 300- to 350 -volt, $40-\mathrm{nia}$. plate winding, 6.3 -volt 2-ampere heater winding, 5-volt 3 -ampere rectifier winding.
$I_{1}, L_{2}-30$-heary, 40 -ma. filter chokes.
(i) Dual 8 -mfd. 425-volt filter condenser (electrolytic).
$\mathrm{R}_{1}-\mathbf{5 0 , 0 0 0}$-ohm, $\mathbf{1 0 - w a t t ~ r e s i s t o r . ~}$
2.5 volt heater windinge may be substituted. subject to recciver requirements.

Line voltage variations, as well as output current variations, are compensated for to the extent to which the transformer is capable of supplying the excess voltage required. At 250 volts output, the voltage will stay constant over a range from 108 to 135 volts (the maximum available from the Variac autotransformer used for this test). At 200 volts output, the same thing is true over a range of 100 to 135 volts on the primary, and at 180 volts, over

THE RADIO AMATEUR'S HANDB00K

The circnit is that of lig. 1402, with addition of a second 2 A 3 tube in parallel with that shown and a second transformer added with high-voltage secondary connected in parallel (and in phase) with that shown in Fig. 1402. Thus, the current values applying to the supply of 1402 are doubled. In addition, fil. voltages are available from all of the filament windings of the second trangformer (including those designed for heating rectifier tubes).
necessity for a separate filament transformer. This practice, however, is not always to be recommended. The filament supply must be constant if the transmitter is to operate effectively, and with both filament and high-voltage supplies coming from one transformer this constancy is obtained only with great difficulty, since changes in the load taken from the high-voltage winding cause serious changes in the voltage obtained from the filament winding - unless the transformer is operating well under its rating or unless special compensating apparatus is employed. Where the two windings are combined it necessitates shutting off the filament each time the plate voltage is shut off. This is very hard on filaments and shortens their life considerably. Wherever possible the high-voltage and filament

90 to 135 volts. Momentary variations (such as caused by switching on a motor or similar operation which cause current surges and a resultant dip in the line voltage) can occur over a much wider range without affecting the output voltage because enough energy is stored in the filter condensers to bridge such a short gap.

The neon tube is a visual indication of control, since the voltage is regulated so long as the tube glows. If the supply is used on a receiver and the load current increased or line voltage dropped to the point where the bulb goes out, there will be a click and a perceptible hum, indicating that control has been lost and that the filtering action of the regulator likewise has disappeared. With the regulator working, it is extremely difficult to detect any hum. The additional filtering makes it possible to dispense with the second filter section ordinarily required, so that a voltage-regulated supply actually costs very little more than a non-regulated supply having equivalent filtering.

All in all, a well-regulated power supply should find many uses in the station.

TIRANGMITTER FILANENT sidpidis

The first division of the power supply for the transmitter is the supply to the filaments of the tubes used. Though batteries are sometimes used for this supply, alternating current obtained from the house current through a stepdown transformer usually is more practical and more satisfactory. In some cases the filamentsupply turns are wound over the core of the high-voltage transformer, thus eliminating the
transformers should be separate units operating, if it can be arranged, from different power outlets, particularly with transmitters using tubes larger than the 10 . This also allows a change in transformer high voltage by means of a tapped one-to-one ratio transformer in the primary or by use of an autotransformer without changing filament voltage. (See Fig. 1413.)

Examination of any of the power-supply circuits will make it obvious that the filaments of the rectifier tubes must be well insulated from the filaments of the oscillator tubes. The filaments of the rectifiers provide the positive output lead from the plate-supply system while the filaments of the transmitter tubes are connected to the negative side of the highvoltage supply. The fact that the two filament supplies must be insulated does not, however, mean that two transformers are required. The two windings can be on the same core, the necessary insulation being provided between them. Should the filament transformer be bought and should it have no windings suitable for the filaments of the rectifiers, an extra winding usually can be fitted without difficulty. For 866 rectifiers two No. 12 gauge wires in parallel should be used for the winding, the number of turns being determined by the "cut and try" method. With most transformers only a few turns will be necessary to give the required voltage. The rectifier-filament winding can be center-tapped or a center-tapped resistor can be used across it in the manner described for the transmitter filaments. The center-tap is not an absolute necessity, however: the positive high-voltage lead can be taken from either side of the reetifier filament winding instead.

POWER SUPPLY

For medium- and high-power r.f. stages of transmitters, and for high-power audio stages, it is considered most desirable to use a separate filament transformer for each section of the transmitter, installing the transformer near the tube sockets and feeding the primary lines instead of the secondary lines through the interconnecting cables of the transmitter. In this way, necessity of abnormally large wires carrying filament power is avoided, and two small, well-insulated leads may be used to carry the total filament power for all stages without appreciable filament voltage drop. This is very important in large stages with heavy-current, low-voltage filaments, since a very small resistance in series with the filament of the stage may reduce the voltage applied to a value at which the tube is likely to be damaged. Icoss of emission of power tubes is often caused by under-voltage filament operation, even for short periods of time.

HPRINCDMI,EA TDF THE TIBANAMETTEIE HPI.ATE SUIPIPI,

UUnder the regulations governing amateur stations the plate supply must deliver ade-quately-filtered direct current to the plates of all tubes in transmitters operating on frequencies below 60 Mc . This requirement is designed to insure that the emitted signal will be "pure d.c." on the six most important amateur bands, and to prevent transmitters having poor frequency stability from producing broad signals.

High-voltage direct current for the transmitting tubes can be obtained in a number of ways. These include banks of dry or storage cells connected in series to give the required voltage, dynamotors and motor-generators, and transformer-rectifier-filter systems. The latter are by far the nost generally used.

Other sources of power than a.c. mains are treated in Chapter Fifteen as emergency power supplies. In addition a direct-current motorgenerator set is an excellent source of plate power. It is relatively costly, however, and its output is not as pure as that from batteries because of the ripple caused by commutation. The commutator ripple can be filtered out with little difficulty; a 1 - or $2-\mu \mathrm{fl}$. condenser shunting the output usually will be sufficient.

A dynamotor is a double-armature machine; one winding drives it as a motor while the other delivers a few hundred volts d.c. for the transmitting tubes. The motor winding usually operates from a six- or twelve-volt storage battery. The dynamotor also has commutator ripple, which must be filtered out just as with the motor-generator set.

Rectifier Operation and Rectifier Systems

Assuming that alternating-current power is available at 110 or 220 volts, a very effective high-voltage supply system can be built up from a high-voltage transformer, a rectifier system and a filter. The details of the transformer and the filter are to be given complete treatment later. We will limit these remarks to the rectifier.

An understanding of how a rectifier functions may be obtained by studying Fig 1405. At (1) is a typical a.c. wave, in which the polarity of the current and voltage goes through two complete reversals in each cycle. The object of rectification is to transform this wave into one in which the polarity is always the same, although the amplitude of the current and voltage may vary continuously. At (2) we have the secondary of a power transformer connected to a single rectifier element. The rectifier is assumed to be "perfect," that is, current can only flow through it in one direction, from the plate to the cathode. Its resistance to flow of current in that direction is zero, but for current of opposite polarity its resistance is infinite. Then during the period while the upper end of the transformer winding is positive, corresponding to \mathbf{A} in (1), current can flow to the load unimpeded. When the current reverses, however, as at (1) B, it cannot pass through the rectifier, and consequently nothing flows
(1)

(2)

(3)

(4)

FIG. 1405 - FUNDAMENTAI. RECTIFIEIR CIRCUI'IS

At (I) is the conventional representation of the a.c. wave; (2) shows a half-wave rectifier; (3) is the fullwave center-tap system, and (4) is the "bridge" rectifier. The output waveform of each type of rectifier is shown at the right.

the radio amatrur's handrook

to the load. The drawing shows how the output from the transformer and rectifier looks. Only one half of each cycle is useful in furnishing power to the load, so this arrangement is known as a "half-wave" rectifier system.

In order to utilize the remaining half of the wave, two schemes have been devised. At (3) is shown the "full-wave center-tap" rectifier, so called because the transformer secondary winding must consist of two equal parts with a connection brought out from the center. In (3), when the upper end of the winding is positive, current can flow through rectifier No. 1 to the load; this current cannot pass through rectifier No. 2 because its resistance is infinite to current coming from that direction. The circuit is completed through the transformer center-tap. At the same time the lower end of the winding is negative and no current can flow through rectifier No. 2. When the current reverses, however, the upper end of the winding is negative and no current can flow through rectifier No. 1, while the lower end is positive and therefore rectifier No. 2 passes current to the load, the return connection again being the centertap. The resulting wave shape is again shown at the right. All of the wave has been utilized, and the amount of power which can be realized at the load is doubled. In order to maintain the same output voltage (instantaneous, not average), as at (2), however, each half of the transformer secondary must be wound for the same voltage as that furnished by the whole winding in (2); or, conversely, the total transformer voltage with the connections shown in (3) must be twice the desired output voltage.

If the transformer has no center-tap, or if the total voltage it furnishes is the same as the desired output voltage, scheme (4), known as the "bridge" rectifier, may be used to obtain full-wave rectification. Its operation is as follows: When the upper end of the winding is positive, current can flow through No. 2 to the load, but not through No. 1. On the return circuit, current flows through No. 3 back to the lower end of the transformer winding. When the wave reverses and the lower end of the winding becomes positive, current flows through No. 4 to the load and returns through No. 1 to the upper side of the transformer. The output wave shape is shown at the right. Although this system does not require a centertapped transformer, and the voltage of the winding need only be the same as that desired for the load, four rectifier elements are required, so that the center-tap may actually prove to be more economical, all things considered.

Although the rectifier output is direct current in the sense that the polarity is always the same, the amplitude is not uniform but varies continually as shown in Fig. 1405. Before the
power can be supplied to the transmitting-tube plates the "humps" must be smoothed out by a filter. Filters will be considered in detail in a later section.

Types of Rectifiers

Practically all rectifiers in use to-day by amateurs are of the vacuum-tube type; in former years when suitable tube rectifiers were not available many other types, including chemical, rotating (synchronous), and mer-cury-are, were in general use. These are now of relatively little importance in amateur transmitters, and since they have no particular advantages over the widely-used tube rectifiers will not be treated in this chapter.

There are two types of tube rectifiers: those having a high vacuum, in which the conduction is purely by means of the electronic stream from the cathode to the plate; and those in which a small quantity of mercury has been introduced after the tube has been evacuated. In the latter type, part of the mercury vaporizes when the cathode reaches its operating temperature, and during the part of the cycle in which the rectifier is passing current the mercury vapor is broken down into positive and negative ions; the positive ions decrease the normal resistance of the plate-cathode circuit so that the voltage drop in the tube is less than with high-vacuum types. As a result of the lower voltage drop the power lost in the rectifier is decreased, and the efficiency of the mercury-vapor rectifier is therefore greater than that of the high-vacuum type.

Operating Limits of Rectifiers

Two factors determine the safe operating limits of mercury-vapor tube rectifiers. These are the maximum inverse peak voltage and the maximum peak current.
The inverse peak voltage is the maximum voltage which appears between the plate and cathode of the rectifier tube during the part of the cycle in which the tube is not conducting. Referring again to Fig. 1405, in (2) it is apparent that during the " B " part of the cycle when the half-wave rectifier does not conduct, the inverse potential between the plate and cathode will be equal to the full transformer voltage; the peak value of this voltage is 1.4 times the r.m.s. or effective output voltage. In the full-wave centertap rectifier of (3), during the part of the cycle when rectifier No. 1 is non-conducting the inverse potential across its elements is equal to the sum of the potentials of both halves of the secondary of the transformer; the peak inverse voltage is again 1.4 times the full transformer voltage. Inspection will show that this is similarly the case with the bridge rectifier, circuit (4). It is well to remember that, no matter what the type of rectifier,

POWER SUPPLY

the inverse peak voltage is always 1.4 times the total transformer voltage. Strictly speaking, the-voltage drop in one rectifier tube should be subtracted from the figure so calculated, but since the rectifier drop usually is negligible in comparison with the transformer voltage, no practical error results from neglecting it. Because it is always the total transformer voltage which must be considered, we find that for a given inverse peak voltage rating the permissible output voltage with the bridge rectifier circuit is twice that with the center-tap circuit, because in the latter circuit only half the total transformer voltage is available for the load. However, only half the current may be taken from the windings compared to that taken when a center tap is used. For given power ratings, when doubling the voltage the current must be cut in half. The bridge circuit requires twice as many rectifier elements.

The peak current through the rectifier tube is chiefly a function of the load and the type of filter circuit used. We shall have more to say on this point in the section on filters.

While inverse peak voltage and peak current ratings apply to both high-vacuum and mer-cury-vapor rectifiers, they have more significance with the mercury-vapor types than with the vacuum types. In the vacuum-type rectifiers the inverse voltage which the tube will handle safely is limited chiefly by the spacing between the plate and cathode and the insulation between the leads from these elements in the glass press and in the base. In the mercuryvapor rectifier, however, the inverse peak voltage is a function of the design of the tube and the operating temperature; for a given tube type there is a critical voltage above which an "arc-back" will occur, ruining the tube. The higher the temperature of the mercury vapor the lower the voltage at which arc-back will take place; for this reason mer-cury-vapor rectifier tubes should always be located so that there is free circulation of air around them for cooling. The tubes are usually rated at a peak inverse voltage which will permit safe operation at normal current in a room of average temperature.

The peak current rating is based on an electron flow from the filament which will give a filament life of 1000 hours or more. In the high-vacuum types the tube voltage drop depends upon the current; the higher the current the greater the voltage drop. High-vacuum tubes therefore tend to protect themselves under overload, because excessive current causes a larger voltage drop which in turn reduces the voltage across the load circuit, thus limiting the current flow. In mercury-vapor rectifiers, however, the voltage drop is substantially constant for all values of current, hence the rectifier cannot protect itself from
overloads. A heavy overload on a mercuryvapor rectifier, even though instantaneous, is likely to destroy the filament or cathode of the rectifier tube, because under such conditions the positive ions of the mercury vapor are attracted to the cathode with such force as actually to tear off the emitting material with which the cathode is coated. A less drastic overload applied over a longer period of time will have the same effect. Mercury-vapor rectifiers should always be worked within the peak current ratings if normal tube life is to be expected.

A

B

FIG. 1406- METIIODS OF BALANCING FULI,WAVE RECTIFIER PLATE CURRENTS WHEN Plates are Connected in parallel. Ri may BE AN ORDINARY 30-OHM FILAMENT RHEOSTAT. R2 SHOULD BE 50 TO 100 OHMS

Standard types of rectifier tubes are listed in the table in Chapter 5, together with their ratings and a brief description of each type. In the smaller sizes, the tubes are generally manufactured as full-wave rectifiers; that is, a cathode and two plates are provided in one bulb so that full-wave rectification can be obtained with a center-tapped transformer. Tubes for high voltages are always half-wave rectifiers; two of them are needed for the center-tap system.

The principal advantages of the mercuryvapor rectifiers over the high-vacuum type are the lower voltage drop and the fact that this drop is independent of the load current. In all the mercury-vapor tubes the voltage drop can for practical purposes be considered to be 15 volts regardless of load current. This low, constant drop results in a power supply having better voltage regulation - discussed in a later section - than one using high-vacuum rectifiers, and is responsible for the wide use of mercury-vapor rectifiers in amateur transmitting equipment. The most popular rectifier tubes are the 82,83 , and 866 . Occasionally high-power transmitters employ 872 rectifiers.

Mercury-vapor rectifiers always should be operated with the rated voltage applied to the filament. If the filament voltage is low (filament or cathode temperature too low) the effect is exactly the same as though the tube was heavily overloaded, and the cathode will rapidly lose its emission. For this reason, in operating high-voltage mercury-vapor recti-

339

THE RADIO AMATEUR'S handbook

fiers the filament power always should be applied for at least 15 seconds before the plate voltage is turned on so that the filament will be certain to reach its correct operating temperature. If the rectifiers have been out of service for some time it is also advisable to heat the filaments for 10 or 15 minutes before

FIG. 1407 - FUII,-WAVE REC'IFIER WITH CEN-TER-TAPPEID PLATE: TRANSFORMER
applying plate voltage so that all the mercury that may have condensed on the filament will be vaporized.

Filament voltage should be measured right at the socket terminals, not at the transformer, when tubes such as the 866 and 872 are used because of the heavy filament currents taken by these tubes. It is also advisable to pick out a socket which will make very good contact with the tube pins and also to make sure that the socket is capable of carrying the current.
In attempting to use both plates in parallel in 82 and 83 rectifiers, it is sometimes difficult to get the load to divide evenly between the two halves of the rectifier. Generally one of the plates will take all the load and the other will not "start." This is almost certain to happen if the positive lead is taken off one side of the rectifier filament transformer.

This can be corrected by using a filament center-tap connection or by means of low resistances in series with the plates of the rectifier tubes as shown in Fig. 1406. In A a low resistance filament rheostat is connected between the rectifier plates while a fixed resistance of 50 to 100 ohms is used in series with each rectifier plate in B.

Reference to the table of rectifier tubes in Chapter Five will show that the smaller mer-cury-vapor tubes are rated for a given output current and a maximum r.m.s. applied transformer voltage, while the ratings on the larger tubes are exrlusively in terms of inverse peak voltage and peak current. Because of the low voltage at which the small tubes are operated, the ratings for them will hold regardless of the type of filter into which the rectifier works. The 866 and 872 , on the other hand, are highvoltage tubes and must be handled with more care; the peak current, which must not exceed the rated value, will depend largely on the type of filter used, while the inverse peak voltage is a function of the transformer voltage and the rectificr circuit. With rectifier tubes
having an inverse peak voltage rating of 7500 volts the transformer voltage, in the centertap circuit, should not exceed 2600 volts each side of the center tap. If the bridge circuit is to be used, the total transformer voltage should not exceed 5200 volts. The corresponding voltages with 10,000 -volt tubes are 3500 and 7000 volts. Few amateurs use plate voltages exceeding 3000 volts; the average for high-power amateur transmitters is 2000 to 2500 volts. The high-voltage rectifiers in the table are therefore sufficient for practically all amateur needs.

When heavy currents are being used the positive high voltage connection should always be made at the rectifier tube center tap instead of one side of the filament. This is necessary to evenly divide the load only when max. current ratings of the tubes is being approached.

Rectifier Circuits

The elementary rectifier circuits of Fig. 1405 are shown in practical form in Figs. 1407 and 1408. Fig. 1415-13 is the center-tap circuit for use with a full-wave rectifier tube, and is used only for low-voltage power supplies 500 volts or less. Both center-tap and bridge circuits are given in Figs. 1407 and 1408, halfwave rectifier tubes being used in both cases.

Using the same plate transformer, approximately t wice the voltage output of the centertap circuit may be obtained with the bridge circuit. Four rectifiers and three filamentheating transformers are required for the bridge arrangement, however, and the original maximum current rating of the high voltage transformer must be halved. A transformer delivering 1000 volts with a maximum current rating of 200 ma . with the center-tap circuit will deliver approximately 2000 volts with the bridge circuit but the maximum current which may be drawn without overloading the transformer will be 100 ma .

FIG. 1408 - FULL-WAVE OR BRIIG;E RECTIFIFIR WIFEN PLATE TR ANSFORMER IIAS NO CENTER 'rip'
Using the same plate transformer as in Fig. 1407 the voltage ontput would be double but the current would have to be half as great for the same trangformor kva rating. Note that it is necessary to have thref separate rectifier filament windings or separate transformera, an the case may be. Insulation bet ween windings must be able to withatand full voltage.

POWER SUPPLY

The Filter

The filter is a very important section of the power supply. Primarily its purpose is to take the electrical pulses from the rectifier (see Fig. 1405) and smooth them out so that the power delivered to the plates of the transmitting tubes is perfectly continuous and unvarying in just the same way that the current from a battery is continuous and unvarying. But in addition to this, the design of the filter will greatly affect the voltage regulation of the power supply and the peak current through the rectifier tubes.

In analyzing the output of a rectifier-filter system, it is customary to consider the output voltage to consist of two components, one a steady "pure d.c." voltage and the other a super-imposed a.c. voltage - the ripple voltage - which when combined with the assumed unvarying voltage gives the same effect as the actual rapid variations in the output of an incompletely-filtered power supply. When the r.m.s. or effective value of the ripple voltage is divided by the d.c. voltage the result, expressed as a percentage, gives a "figure of merit" (per cent. ripple) for comparing the performance of various filter circuits; furthermore, the amount of filter needed for various transmitter applications is dependent upon the ripple percentage that can be tolerated. Experience has shown that a ripple of 5% or less will give "pure d.c." for c.w. telegraphy if the transmitter has high frequency stability; for radiotelephony the ripple should be $.25 \%$ or less to reduce hum to a satisfactory level.

Filters are made up of combinations of inductance and capacity - chokes and condensers. Although there are several ways of considering the operation of chokes and condensers in the filter, possibly the simplest is from the standpoint of energy storage as discussed in Chapter Three. Both chokes and condensers possess the property of storing electrical energy, the former in the form of the electromagnetic field, the latter in the dielectric field. While the amplitude of the rectified a.c. wave is increasing, energy is stored in both the inductance and capacity; after the peak has been reached and the amplitude of the rectified wave begins to decrease, the stored-up energy is released and fills in the valleys between the rectified humps. A little consideration of the action will make it evident that the energy storage required will depend upon the rate of occurrence of the rectified waves; the closer they are together the less will be the energy storage required. In other words, the amount of inductance and capacity needed will be inversely proportional to the frequency of the a.c. supply. A supply frequenry of 60 cycles with full-wave rectification gives 120
rectified waves per second, corresponding to a frequency of 120 cycles. Similarly, full-wave rectification with 50 -cycle supply gives a frequency of 100 cycles, and with 25 -cycle supply

At A is the simplest type of filter - a single condenser of high capacity connected across the rectifier output. With the addition of a filter choke and a second condenser this becomes the "brute force" circuit of B. C is a single-section choke-input filter. The two-section filter at 1) is recommended when the ripple voltage in the output must be low.
a frequency of 50 cycles. The discussion to follow is based on full-wave rectification with 60 -cycle supply; to maintain a given ripple percentage at the lower frequencies both inductance and capacity must be increased over the 60 -cycle values. The required increases will be directly proportional to 60 divided by the supply frequency.

Types of Filters

Inductance and capacity can be combined in various ways to act as a filter. Four representative arrangements are given in Fig. 1409. The single condenser at A is not a complete filter, but will give considerable smoothing. This type of filter will not, generally speaking, be sufficient to meet the requirement that the plate supply for an amateur transmitter must be adequately filtered. The arrangement at B used to be a popular one. This is known as a condenser-input filter because a condenser is connected directly across the output of the

THE RADIO AMATEUR'S HANDBOOK

rectifier. The condenser-input filter is characterized by high output voltage, poor voltage regulation and high rectifier peak current. These disadvantages make it unpopular in supplies clelivering over 750 volts.

A third type of filter is shown at C. It consists of a single choke and condenser, and because the rectifier output goes to the choke, is known as a choke-input filter. Chief characteristics of the choke-input filter are good voltage regulation and low rectifier-tube peak current; for a given transformer voltage the output voltage will be lower than from the condenser input filter over most of the load range, however. The choke-input filter is the only type whose performance can be calculated accurately; there is no simple method of predetermining the performance of a con-denser-input filter. The filter at D consists of two filters of the C type connected in series; this more elaborate arrangement is known as a two-section filter and is used to obtain greater smoothing than can be had economically with the single-section filter. Because of the many advantages of choke-input filters, they will be given detailed consideration in this chapter. In most cases the ehoke input filter is ideal for all around use in the amateur station.

Filter Condensers

Two types of filter condensers are commonly available: electrolytic condensers, and condensers using paper as the dielectric. In electrolytic condensers, the dielectric is an extremely thin film of oxide which forms on aluminum foil when the foil is immersed in a suitable electrolyte and is subjected to a d.c. voltage of the proper polarity. Electrolytic condensers are characterized by high capacity for a given size and cost, but cannot be made in single units for very high voltages, 600 volts being about the limit under present conditions. Electrolytic condensers are made in two types, "wet" and "dry." The "wet" condensers are provided with a liquid electrolyte in a sealed container; in the "dry" type the electrolyte is mixed with a filler to form a paste which is then placed between strips of aluminum foil. In neither type is the dielectric a perfect insulator; there is always an appreciable current flow between the electrodes, although it is only of the order of a few milliamperes. This leakage current is greater with the wet than with the dry types; the wet condensers, however, can stand voltage overloads better than the dry types because excessive voltage will simply increase the leakage current. Excessive voltage applied to the dry type will result in a "blown" condenser which must be replaced. Either type of electrolytic condenser will be satisfactory for condenser-input filters used with transformers
delivering 350 volts each side of the center tap. Electrolytic condensers can be obtained in various capacities; $8 \mu \mathrm{fd}$. is a popular size.

If the maximum voltage of the power supply is greater than the rating of a single electrolytic condenser, two or more units may be placed in series to handle the higher voltage. It is not economically practical to use more than 2 electrolytic condensers in series as shown in Fig. 1410.

Electrolytic condensers are suitable for use only in d.c. circuits, and must be connected correctly. In the types having a metal container, the container usually is the negative terminal while the stud terminal is positive. A popular condenser for series connection is the double $8 \mu \mathrm{fd}$. condenser having four leads - the can being insulated from the condenser, in this case, and the negative leads are usually black. In any event the polarities are always plainly marked. Reversing the polarity will ruin the condenser.

If electrolytic condensers are allowed to stand idle for a time, the dielectric film will gradually disappear and the condenser must be "reformed." To prevent damage to the condensers and other power-supply components, the voltage always should be lowered before application to a power supply after it has been out of service for a few weeks. The film will re-form after a few minutes of low-voltage operation.

Paper condensers also are made in two types, with and without oil impregnation of the

FIG. I410-ECONOMICAL CONDENSEIR FOR IOWER SUPPLY WITH VOLTAGES UP TO 750
Two electrolytics may be conneeted in serios, halving the capacity and cloubling the voltage rating.
paper dielectric. The oil-impregnated condensers generally are suitable for higher voltages than the plain types. Condensers having a working-voltage rating equal to the highest output voltage of the power-supply system (see discussion on condenser-input filters) always should be purchased. Paper condensers can be purchased with voltage ratings up to 3000 volts and more. High-voltage condensers of modern design should be purchased from reputable dealers; it does not pay to "economize" by buying a cheap high-voltage condenser. Although the first cost of a good condenser may be higher, it will last indefinitely if not abused. Poor condensers may work for a

POWER SUPPLI

time, but eventually may "blow" and have to be replaced. Failure of a high-voltage condenser may also mean the destruction of the rectifier tubes.

Filter Chokes

The inductance of a choke will vary with the current through it and with the value of the ripple voltage impressed on it in the filter; inductance decreases with increasing direct current and with decreasing ripple voltage. In purchasing a choke information should be obtained as to its actual smoothing inductance at full d.c. load current and at the ripple voltage at which it is to work. The latter requirement can be expressed more simply by determining whether the choke is to be used as an input choke or as a smoothing choke (second choke) in a two-section filter. Input chokes usually are of the swinging variety.

Most of the small chokes obtainable from radio dealers are given a commercial rating of 20 or 30 henrys. This rating is meaningless unless the conditions under which the choke's inductance was measured are stated. Fortunately the smaller chokes are inexpensive and usually have enough inductance to work quite well in condenser-input filters; it is better, however, to buy a choke of good make than to trust to luck with a cheap, but unknown, product.

Filter chokes for high voltages should in every case be purchased from a reputable manufacturer. It must be realized that the design formulas given previously are based on actual inductance under load conditions; an over-rated choke will nullify the calculations and probably lead to an entirely different order of performance.

Specifications for building chokes at home are given in a table at the end of this chapter. The design data apply particularly to smoothing chokes; if a choke having an inductance equal to the critical value is chosen for the input choke the results will be satisfactory, although such a choke will not be as economical of materials as a properly-designed swinging choke. The design of swinging chokes to fulfill predetermined conditions is a difficult problem and is beyond the scope of this Handbook.

Voltage Regulation

The term "voltage regulation" is used to indicate the change in terminal voltage of a plate-supply system with different load currents. The windings of transformers and filter chokes used in plate supplies all have some resistance; as the current drawn from the power supply is increased the voltage drop in the transformer and chokes also increases with the result that the terminal voltage drops. Besides these ohmic effects, there may be other causes
contributing to the decrease in terminal voltage with load, such as the behavior of the filter.

As ordinarily used in electrical engineering, the term "voltage regulation" refers to the increase in voltage resulting when the load current is decreased from the rated value to zero, expressed as a percentage of the terminal voltage at full-load current. It is often more convenient in speaking of plate-supply systems, however, to use the terminal voltage at no load as a base, in which case the percent regulation will be the decrease in terminal voltage from the no-load value to the value of load at which the power supply is to be worked. Amateur plate supplies are seldom used at a definitely-fixed load current, hence the greater convenience of expressing voltage regulation as a percentage of the no-load terminal voltage.

As an illustration, suppose the measured terminal voltage of a power supply is 1200 volts at no load - i.e., no current being drawn by the transmitting tubes. Then with the transmitter in operation the voltage is measured and found to be 900 volts. The voltage regulation will be

$$
\frac{1200-900}{1200}=.25 \text { or } 25 \%
$$

The voltage regulation will be found to vary with the load and with the type of filter used. Good plate supplies will have a regulation of the order of 10% or less; poorly-designed power supplies often have regulation as high as 50% - in other words, the voltage at full load drops to half its no-load value. Good voltage regulation is highly desirable with the self-controlled transmitter because in such a transmitter the frequency depends upon the plate voltage; if the plate voltage dives suddenly every time the key is pressed the note will have a chirpy or "yooping" character and be hard to read. While this consideration is not as important in the amplifier stages of more modern transmitters, good voltage regulation is still desirable because it tends to reduce key thumps.

Voltage regulation is extremely important in a power supply for a Class B modulator.

DESIGNING PLATE SUPPPLY

As sugaested before, the ripple voltage tolerable in the output of the power supply will depend upon the type of service. The percent ripple allowable for c.w. telegraphy will depend upon the design of the transmitter itself. If the dynamic stability of the transmitter is high - that is, if changes in plate voltage cause no noticeable change in the transmitter frequency - a larger ripple voltage can be tolerated without seriously affecting the tone of the transmitter than would be the case with transmitters in which a small change in plate

THE RADIO AMATEUR'S HANDB00K

voltage produces an audible change in frequency. As a working rule, we can say that the plate supplies for all oscillators - and especially self-controlled oscillators - should have not more than 1% ripple in the d.c. output. Since filter apparatus for low-power stages - oscillators and buffers in almost all transmitters are low-power - is inexpensive, plate supplies for all low-power stages should conform to the rule of not more than a 1% ripple. For amplifier stages in which frequency modulation is not a factor, the figure of 5% or less ripple will be satisfactory for c.w telegraphy.

For radiotelephony this figure should be $.25 \%$ or less.
To illustrate the method of designing a plate supply, let us go through a specific problem. Suppose that two 838 tubes are to be supplied 1000 volts at 350 milliamperes; the tubes are to be used in the final amplifier stage of a crystal-controlled transmitter and a ripple of 5% or less will be satisfactory. It can be assumed that for ripple percentages of this order a single section filter such as that in Fig. 1409 -C will represent the most economical design; for 1% or less ripple two sections, Fig. $1409-\mathrm{D}$, should be used. For our particular problem, then, a single-section filter will suffice. The per cent ripple will depend upon the product of the choke inductance and condenser capacity; the following formula gives the ripple percentage directly:

$$
\left.\begin{array}{l}
\text { Single } \\
\text { Section } \\
\text { Filter }
\end{array}\right\} \text { \% ripple }=\frac{100}{L C}
$$

where L is in henrys and C in microfarads. Transposing, we find that the product of $L C$ must be 20 or more to result in 5% or less ripple.

The most economical filter design will be that in which choke cost is balanced against filter-condenser cost to give the required total of inductance and capacity. There are other considerations, however, which must be taken into account before the constants of the filter can be determined upon. These have to do with the functions of the input choke in the filter system.

The Input Choke

Upon the input choke falls the burden of improving voltage regulation and reducing rectifier peak current as well as contributing to the smoothing. The inductance required in the input choke to maintain a constant output voltage and a reasonably low peak current depends upon the load to be placed on the power-supply system; i.e., the amount of current to be drawn. The load on the system can be expressed in ohms, and is equal to the out-
put voltage divided by the total load current in amperes. The optimum value of input-choke inductance is equal to

$$
L_{\text {opt. }}=\frac{\text { Full-load resistance in ohms }}{500}
$$

With an input choke having optimum inductance, the rectifier peak current will not exceed the d.c. output current by more than 10%; in other words, the current from the plate-supply system can approach 90% of the peak-current rating of one tube in the full-wave rectifier without danger to the tubes.

In a condenser input filter the d.c. output current must be kept down to 50% of the peak current rating of a single tube. If there is no load at all on the system, the filter condensers will charge up to the peak value of the rectified a.c. wave; the peak of this wave is approximately 1.4 times the r.m.s. or rated transformer voltage. To keep some load on the system at all times a bleeder resistor, R in Fig. 1409, is used. Since it is desirable to keep down the amount of power dissipated in the bleeder, a fairly ligh resistance is ordinarily used. The bleeder resistance will be much higher than the resistance of the total load, which includes the load represented by the transmitting tubes and that of the bleeder itself. The critical value of input choke inductance which will prevent the d.c. output voltage from rising to the peak of the rectified wave is equal to

$$
I_{\text {crit. }}=\frac{\text { Resistance of bleeder in ohms }}{1000}
$$

With this value of input choke the rectifiertube peak current will be greater than with optimum choke inductance, but with only the bleeder as a load the current will be low and no harm will be done to the tubes.

Since the no-load current (bleeder only) will usually be considerably less than the full-load current, it is evident that these tivo formulas will give widely different values for input choke inductance; in fact, the critical value of inductance will be about five times that of the optimum value. It should be pointed out that both these values represent the minimum input choke inductance that should be used; some improvement will result if the inductance is increased, although the improvement will be slight in comparison to the extra cost. A choke having the critical inductance value can therefore be used with entirely satisfactory results, but it is more economical to use a "swinging" choke which adjusts itself automatically to all loads. The desirable range will be from the "optimum value" at max. current (min. load resistance) to the "critical value" at min. current (max. load resistance). Such chokes are available from several nanufacturers.

POWER SUPPLY

Returning now to the specific problem in hand, it will be found after consultation of manufacturers' catalogs that swinging chokes capable of carrying the desired load current can be obtained with an inductance swing of 5 to 25 henrys. Based on the critical value of 25 henrys, the bleeder resistance should be 25×1000, or 25,000 ohms; the bleeder therefore will take 40 milliamperes. The power dissipated in the bleeder will be $1000 \times .040$, or 40 watts; a resistor having this or larger powerdissipation rating should be used. The fullload inductance value of 5 henrys should be used in the calculation for per cent. ripple. We have previously determined that the product of inductance and capacity must be at least 20 (single section filter) for 5% or less ripple, so that the required condenser capacity will be $20 / 5$, or 4 microfarads. A greater capacity will give a correspondingly smaller ripple voltage.

Bleeder resistances should be mounted so that they receive as much ventilation as possible as they become very hot in operation.

After the size of the filter condenser and choke have been determined, it is necessary to ascertain whether the particular combination chosen will be such as to resonate at or near the ripple frequency. If the combination should through accident be resonant, the operation of the plate supply system is likely to be unstable and the smoothing will be impaired.

Study Fig. 1411 to make certain that the combined L and C in the first section of the filter are not resonant at 120 cycles. For supplies other than 60 cycles, solve the following formula to determine the resonant frequency of any combination of L and C.

$$
f_{\text {ras. }}=\frac{159}{\sqrt{\overline{L C}}}
$$

where L is in henrys and C in microfarads, and f should be well below the supply-line frequency. In our example, the resonance frequency by

FIG. 1411 - Values OF L ANI) C THAT COMBINE TO IRESONATE AT 120 CYCLES AND SHOULD BE avolded
This refers to the first section in the filter. As an example, a 4 -henry choko and $1 / 2-\mu \mathrm{fd}$. condenser combination would resonate around 120 cyclen.
the formula above is approximately 35 cycles, so the filter design is satisfactory from this standpoint.

Calculating the Required Transformer Voltage

After the filter has been decided upon, the next step in the design of the power supply system is to select suitable rectifier tubes and determine the necessary ratings of the power transformer. For a plate supply of the type we have been considering, the logical rectifier tube is the 866 ; a pair of them can be used in the center-tap circuit, or four of them can be connected in bridge. Since the voltage is well below the inverse peak ratings of the tubes, it is probably more economical to use the centertap circuit. The transformer must be capable of handling the same amount of power with either type of rectifier, so that the cost of the power transformer will net be a deciding factor in the choice of the rectifier circuit. Assuming that the center-tap circuit is to be used, we are now ready to determine the secondary voltage required to insure having 1000 volts at the power supply terminals under full-load.

To find the secondary voltage needed, the voltage drops in the system at full-load current must be calculated. To do this it is necessary to know the resistance of the filter choke. The type of choke we have been considering probably will have a resistance of about 50 ohms ; the voltage drop in it at full load will therefore be $50 \times .375$, or approximately 18 volts. There will be an additional drop in the rectifier tubes; we have only to consider one tube, however, since only one works at a time. This drop is approximately 15 volts. The total is therefore 33 volts, which added to 1000 gives 1033 volts as the average value of the a.c. voltage from one side of the transformer secondary. Transformers are rated in effective or r.m.s. voltages, however, so to find the required voltage in r.m.s. values it is necessary to divide the average value by .9. The required secondary voltage therefore will be $1033 / .9$ or 1150 volts. The general formula for determining transformer voltage is

$$
\text { Sec. } E_{r m s}=\frac{E_{o}+I R_{c}+E_{t}}{.9}
$$

where E_{0} is the d.c. output voltage of the power supply, I is the full-load current, including the bleeder current, R_{c} is the resistance of the choke or chokes in the filter, and E_{t} is the voltage drop in one rectifier tube in the centertap circuit, or the sum of the drops of two tubes in the bridge circuit.

If the design principles given in the preceding discussion have been followed through, the required secondary voit-amperes will be

$$
\text { Sec. VA }=\text { Total } E_{r m s} \times I \times .75
$$

THE RADIO AMATEUR'S HANDB00K

where I is the d.c. output current, and E_{rms} is the total secondary voltage (both sides of cen-ter-tap). In our illustration, the secondary VA capacity required therefore will be $2300 \times .375$ $\times .75$, or 650 VA. The actual watts drawn from the transformer will be less than this figure, but a somewhat higher VA capacity is required because the rectifier-filter system distorts the secondary-voltage wave-form, and it is necessary to take this into account in computing the heating effect of the current in the secondary winding. Because the heating effect is greater than in ordinary transformer applications, additional VA capacity must be built into the transformer.

In purchasing a transformer, it should be borne in mind that standard designs do not always fit exactly an individual problem. It therefore becomes necessary to select a transformer with ratings which fit the desired ones as closely as possible.

The d.c. output voltage which may be obtained from a given transformer with given rectifier tubes and filter chokes may be obtained by rearranging the preceding formula as follows:

$$
E(\text { output })=.9 E_{\mathrm{rms}}-I R_{c}-E_{t}
$$

Greater Smoothing

In the specific design problem just used as an illustration, the permissible ripple voltage was assumed to be 5%. As we have pointed out previously, this will be satisfactory when the plate supply is to be used on the amplifier stages of an oscillator-amplifier transmitter used exclusively for c.w., but the ripple voltage must be smaller for self-controlled transmitters and radio telephone sets. The most satisfactory way to get the additional smoothing is to use the two-section filter shown at Fig. 1409-D. The per cent. ripple for a twosection filter is found by the following formula:

$$
\left.\begin{array}{c}
\text { Two } \\
\text { Section } \\
\text { Filter }
\end{array}\right\} \% \text { Ripple }=\frac{650}{L_{1} L_{2}\left(C_{1}+C_{2}\right)^{2}}
$$

For 1% ripple, satisfactory for oscillators, the numerical value of the denominator must therefore be at least 650 ; for $.25 \%$ ripple, satisfactory for radiotelephony, the denominator must be four times as great, or, at least 2600. The ripple in the power supply design previously discussed can be reduced considerably simply by the addition of a smoothing choke (not the swinging type) having an inductance of about 8 henrys, and a second $4-\mu \mathrm{fd}$. condenser at the filter output terminals. Substituting these values in the formula above will give a ripple of approximately $.25 \%$. The twosection filter will have better voltage regulation and will require less inductance and capacity than a single-section filter having equivalent
smoothing. The voltage drop in the second choke should be included in the calculation for determining the required transformer secondary voltage. If the design data given above are followed carefully, the voltage regulation of the power supply will be less than $10 \%-a$ very good figure.

Condenser-Input Filters

The great advantages of the choke-input filter in reducing rectifier-tube peak current and in making possible good voltage regulation have been pointed out in the preceding discussion. These two points are of utmost importance in high-voltage plate-supply systems. The life of the rectifier tube is determined by the peak current it has to pass, while poor voltage regulation makes it necessary to buy filter condensers rated for the maximum voltage that is likely to appear across the condenser terminals. The cost of filter condensers goes up at a rapid rate as the voltage increases.

For low-voltage plate supplies - 500 volts or less - these considerations are of less economic importance. The smaller rectifier tubes, besides being inexpensive, are rated to work into either choke- or condenser-input filters; low-voltage filter condensers also are inexpensive. Plate supplies for low-power transmitters are often built around a power transformer of fixed design (transformers giving 350 and 550 volts each side of the center-tap are legion) and in such cases the requisite smoothing is often obtained most economically by using a condenser-input filter. No simple formulas are available for computing the per cent. ripple with a condenser-input filter, but experience has shown that a filter of the type shown in Fig. 1409-B will have excellent smoothing if each condenser is 2 to $8 \mu \mathrm{fd}$. and if the choke has an inductance (commercial rating) or 20 to 30 henrys. With the condenserinput filter, the d.c. output voltage tends to be greater than the r.m.s. output voltage of the transformer secondary; at very light loads the output voltage will be approximately 1.4 times the secondary voltage (approaching the peak value of the rectified a.c. wave) gradually decreasing with load until at the nominal output rating of the transformer, the d.c. output voltage will be approximately equal to the secondary r.m.s. voltage. This characteristic is of value in low-power sets where the highest output voltage consistent with the power-supply apparatus used is wanted.

The large change in voltage with load represents poor voltage regulation and possibly may result in a chirpy signal from the low-power self-controlled oscillator. It has no such effect with the oscillator-amplifier transmitter, and therefore can be tolerated. The filter condensers, however, must be rated to stand continu-

POWER SUPPLY

ously the peak value of the voltage -1.4 times the rated secondary voltage of the transformer. This means that the filter condensers for a 350 -volt transformer must be rated at at least 500 volts; those for a 550 -volt transformer at at least 800 volts. With condenser-input filters the chief function of the bleeder resistor is to discharge the filter condensers when the power is turned off and thus prevent accidental shocks, because filter condensers will hold a charge for a long while. A resistor of 15,000 to 30,000 ohms is customary for low-voltage plate supplies, the higher resistances being used for the higher voltages.

Voltage Dividers

In addition to the voltages shown in Fig. 1415, lower voltages may be taken from any of the power supplies diagrammed by substituting a voltage divider, or tapped resistor, for the plain bleeder resistor. For example, suppose the power supply of Fig. $1415-\mathrm{D}$ is to be used to furnish power for all three stages of a threetube transmitter ($47,10,203-\mathrm{A}$). A voltage divider can be installed to furnish 350 volts at 30 ma . for the oscillator and 500 volts at 60 ma. for the buffer-doubler, in addition to the 1000 volts for the final amplifier.

To calculate the resistance required between taps, the voltage divider should be laid off in sections, as shown in Fig. 1412. Starting from the negative end, the voltage drop across the first section will be 350 volts, the voltage required by the oscillator. The drop across the second section will be 150 volts, bringing the total voltage between negative and the doubler tap to 500 volts. The last resistor section will have a drop of 500 volts across it. Then, knowing the current to be drawn at each tap and the idle current to be bled off through the lowest resistor section, it is an easy matter to calculate the resistances required at each section by applying Ohm's J,aw. The power supply Fig. $1415-\mathrm{D}$ calls for a bleeder current of 40 ma. (1000 volts divided by 25,000 ohms); the lower section therefore is equal to

$$
\begin{aligned}
& \frac{350}{.04}=8750 \mathrm{ohms} .
\end{aligned}
$$

IIG. $1 \& 12$ - VOLTAGE DIVIDER COMIPUTATIONS CAN BE MADE BY PLOTTING THE VOITAGE IHROPS AND CURIRENT DIVISION IN A IIAGRAM SIMILAR TO THIS ONE.

The second section has the 30 ma . for the oscillator in addition to the 40 ma . idle current flowing through it, therefore the resistance required is

$$
\frac{150}{.07}=2150 \text { ohms (app.). }
$$

In the third (upper) section, the current becomes 60 ma . plus the 70 ma . already flowing through the section below, a total of 130 ma . The resistance value is

$$
\frac{500}{.13}=3850 \mathrm{ohms}
$$

The total resistance of the divider is therefore $14,750 \mathrm{ohms}$, safely below the value necessary to maintain constant output voltage when the tubes are not drawing current from the power supply. This will increase the no-load bleeder current, but will not affect the operation of the power supply under full load. In the above example, the no-ioad resistor current will be

$$
\frac{1000}{14,750}=63.5 \mathrm{ma}
$$

Under no-load conditions the voltage across each resistor will be proportional to its individual resistance compared to the total resistance. The drop across the lower section would be

$$
\frac{8750}{14,750} \times 1000=600 \text { volts }(\text { app. })
$$

The drop across the middle section is

$$
\frac{2150}{14,750} \times 1000=150 \mathrm{volts}(\text { app. }) .
$$

Across the upper section

$$
\frac{3850}{14,750} \times 1000=250 \text { volts }(\mathrm{app} .)
$$

The above calculations make it clear that the voltage regulation of the tap voltages is rather poor, since the voltage rises considerably when the load is removed. This is characteristic of voltage dividers. The output voltages will be correct only when the load currents used in the calculations are drawn.

The power dissipated by each resistor may be calculated by multiplying the voltage drop across it by the current flowing through it. This should be done for both no-load and full-load conditions, and a resistor selected having a rating well above that of the higher of the two values. It may not be possible to get stock resistors of the exact resistance calculated, in which case the nearest available size usually will be satisfactory. Semi-variable resistors, having sliding contacts so that any desired resistance value may be selected, can be used if more exact adjustment of voltage is required.

THE RADIO AMATEUR'S HANDB00K

In case it is desired to have the bleeder resistance total to a predetermined value - for instance, if the bleeder in the illustration above is to total $25,000 \mathrm{ohms}$ instead of the calculated value of $14,750 \mathrm{ohms}$ - the same method of calculation may be followed, but different values of idle current should be tried until the correct result is found. An idle current of 20 instead of 40 ma ., for instance, will work out to a total resistance of approximately 25,000 ohms in the illustration above.

The method may be extended to a greater number of taps, and is equally applicable to the calculation of voltage dividers for receivers.

25- and 50-Cycle Supply

The filter design data just given is, as previously mentioned, applicable only to fullwave rectifiers working from a 60 -cycle supply line. For lower frequencies, both inductance and capacity must be increased in proportion to the decrease in frequency to maintain the same reduction in ripple. After following through the design for 60 cycles, the inductance and capacity values obtained should both be multiplied by 2.4 to obtain the values necessary for 25 cycles; for 50 cycles the multiplying factor is 1.2 . In practice, the 60 -cycle design usually will be found to be usable for 50 cycles also.

Transmitter Operation from 110-volt d.c. Lines

Where only 110 volt d.c. supply is available, it is recommended that tubes designed especially for this service be used. Transmitters delivering up to 25 or 30 watts output may be constructed using the type RK-100. Such a transmitter was described in QST for June, 1935. Otherwise, a high-voltage d.c. generator or 110 -volt rotary converter will be required.

Line Voltage Regulation

In certain communities trouble is sometimes experienced from fluctuations in line voltage. Usually these fluctuations are caused by a variation in the load on the line and may be taken care of by the use of a manually-operated compensating device. A simple arrangement is shown in Fig. 1413. A toy transformer is used to boost or buck the line voltage. The transformer should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrying the full load current of the entire transmitter.
The secondary is connected in series with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought $u p$ to the rated 110 volts by setting the toy transformer tap-switch on the right tap. If the phasing of the two windings of the toy trans-
former happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may be above 110 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not affect the voltage regulation as seriously.

Another scheme by which the primary voltage of each transformer in the transmitter may be adjusted to deliver the desired secondary voltage with a master control for compensating for changes in line voltage is shown in Fig. 1414.

This arrangement has the following features:

1. Adjustment of S_{1} to make the voltmeter

FIG. 1413 - TWO METHODS OF 'TRANSFORMER PRIMARY CONTROL
At the left in a tapped l-to-l transformer with the possibilities of considerable variation in the mecondary output. At the right is indicated a variable transformer or autotransformer in meries with the tranaformer primaries.
read $10 \overline{0}$ volts automatically adjusts all primaries to the predetermined correct voltage.
2. The necessity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can be applied to the primary of one transformer, 115 to another, etc.
3. Independent control of the plate transformer is afforded by the tap switch S_{2}. This permits power input control and does not require an extra auto-transformer.

The system simplifies the adjustment of various filament voltages, since the primary voltage can be selected over a range of 20 volts or so, and that if these voltages are properly set when the rig is constructed then forever afterward a single adjustment of S_{1} takes care of all of them. When filament transformers are home built it is somewhat difficult to get, for example, exactly 10 volts at 6.5 amps without excessive cut-and-try. The expedient of tapping a particular primary along the auto-transformer until the proper voltage is obtained at the filament terminals is most convenient. It is of course presupposed that this adjustment is made after proper regulation of S_{1} and after all filament wiring has been finished. Some fifteen taps at S_{1} are needed for close regula-

FIG. 1414 - WITH TIHS CIKCLIT. A SINGIIE ADJUSTMENT OF SWITCH S I ILACES THE CORRECI PRIMARY VOLTAGE ON ALL TRANSFORMERS IN THE TRANSMITTER
Information on constructing a suitable autotrangformer at negligible cost is contained in the text. The light winding represents the regular primary of a revamped transformer, the heavy winding the voltage-regulating section.
tion, although only a few have been shown for the sake of simplifying the diagram.

The auto-transformer need not be expensive nor even tedious to wind. Ninety per cent of burned-out broadcast-receiver transformers have a good primary left, and can be picked up for little or nothing at a service shop. If the secondaries are removed and the insulation isn't "shot," the transformer may be connected to the line for a few minutes to see if heating occurs. Usually the high-voltage secondary will be badly charred but the primary will be in good shape. Choose a large transformer (the kind used for ten- or twelve-tube sets or for P.A. systems). A 250 -watt unit will handle approximately 1 kw . in the circuit. The voltage per turn can be readily determined, either by counting turns on one of the filament windings of known voltage output, or by winding on a few turns and measuring with a lowrange voltmeter. (Measured voltage divided by number of turns equals volts per turn.) This figure divided into the voltage range desired (20 volts is usually sufficient) gives the number of turns on the new winding, shown in heavy lines in the diagram. The winding is then put on, taps being taken out at suitable intervals approximately 1.5 volts between each tap. The taps preferably should be staggered along the winding to avoid bunching and to make identification easy. Taps can be made quite easily by slipping a piece of cambric under the turn to be tapped, scraping off the insulation at the desired point, and soldering on a length of stranded rubber-covered wire. No. 10 enamelled wire can be used for the winding; with this size wire and a husky b.c. transformer the
regulation from no-load to full-load will be very good.

The plate transformer switch, S_{2}, need not have as many positions the tegulating switch, $S_{1} ; t_{\text {aps }}$ at every ${ }^{3}$ volts will be ample. The same taps can be used for both switches, of course.

CONNTIEUCTIDN

AMTEUR power supplies should be so arranged that the operator will not come in contact with the high voltage while making adjustments. June 1937 QST contained several automatic methods of protection against aceidental contacts with high voltage. Metal chassis covers or doors to cabinets that house any equipment which uses high voltages should have door or cover snap switches. These switches have a lever that springs open; thus opening power supply primaries (connected in series with the switeh). Before high voltage can be applied the switch must be manually elosed or the door or cover placed back in its operating position.

Practical Pouer Supplies

The wide varieties of rectifying and filtering equipment available to amateurs, together with the different classes of service for which power supplies may be used, make it almost impossible for us to show complete constructional details of such equipment for any but the simplest of transmitters. The foregoing information should enable the amateur to choose the type of rectifier and filter best suited to his needs. As a guide in construction, however, Fig. 1415 shows a number of rectifier-filter combinations to give various output voltages and currents. All will give adequately-filtered direct current to the transmitting tube, and in the cases where mercury-vapor rectifier tubes are shown the necessary protection is afforded them by the use of an input choke to the filter. In all circuits except that at C the voltage regulation will be good. The voltage at no load will not be very much higher than at the load currents indicated. In these cases the filter condensers need be rated to stand only the voltage delivered by one-half of the high-voltage secondary; for exampie, a condenser with a working-voltage rating of 1250 volts d.c. will be ample for the 1000 -volt power supply shown at D. This assumes, of course, that the bleeder resistance is used. Without this resistor, the condensers should be rated to stand 50% more voltage than half the secondary voltage of the transformer. In the arrangement at C the condensers should have the higher rating whether the bleeder is used or not.

THE RADIO AMATBUR'S HANDB00K

The input choke may be omitted in diagram A even though the small mercury-vapor rectifiers are used because the tubes are built to stand working into a condenser-input filter. Should this be done, however, the filter condensers must be rated at 600 volts working. The condensers need not have $8 \mu \mathrm{fd}$. capacity each, but this is a standard size with electrolytic condensers and is recommended.

The rectifier-filter system at A will handle a small transmitter using re-ceiving-type tubes. The ripple will be $1 / 4 \%$ or less, depending upon how well the choke inductance holds up under load. Diagram B will take care of a pair of ' 10 tubes with ease; the ripple should be about the same as in A. The rectifier-filter at C does not use mer-cury-vapor rectifiers and hence can dispense with the input choke. Its output voltage will be variable between approximately 750 and 550 volts, however, depending upon the load current. It will be suitable for a pair of 10 tubes if it should be thought desirable to run them at more voltage than can be obtained with Diagram B. At D is shown a power supply for one or two tubes of the $203-\mathrm{A}, 211$ or 845 type. It is practically the same thing as the illustrative problem previously discussed. The arrangement at F is suitable for use with one or two T125 or T200 tubes. With the filter values shown the ripple will be $.20 \%$ or less. The circuit in E is suitable for the 838 and 805 tubes.

The circuit of Fig. 1418 is of the bridge type. By using the additional tap and filter system indicated by the dotted lines, a half voltage tap with good voltage regulation may be obtained. The total load current should be limited to 300 ma . if type 866 's are used or 1600 ma . if type 872 's are used. When the total load current does not exceed the rated values, the combination of low and high voltages makes a convenient arrangement for a high power final amplifier and its driver. This power supply using the values given will be suitable for operating a pair of 806 's, $250-$ T's, one or two 354's or other tubes operating at 3000 volts with a driver tube operating at 1500 volts. This type of circuit provides much better voltage regulation at the half-voltage tap than an arrangement in which the low voltage is obtained from a tap on a voltage divider resistor. This same principle may be applied with benefit to lower voltage supplies. The

C

FIG. 1415-POWER-SUPPLY ARRANGEMENTS for different transmitiing tube needs (SEE TABLE ON PAGE 360)

[^15]
POWER SUPPLY

bridge rectifier using type 83 rectifier tubes described on the following pages is a good example.

In cases where the low voltage required is some value different than one-half of the high voltage value, a scheme such as that shown in Fig. 1421 may be used if a suitable transformer is a vailable.

The cost of the equipment is considerably less since but one transformer and filter is required to produce several different voltages. Compactness is another advantageous feature of the circuit.

The transformer is center-tapped at the various voltages required. These voltages are rectified independently of each other and then filtered through a common filter whose chokes are in series with the center-tap or negative lead from the transformer. Transformers having taps at all the voltages likely to be required may be hard to obtain commercially, especially if more than two voltages are needed. One can be made especially for the job, however, or an old one can be rewound.

The rectifier performance will be improved if the input choke, L_{1}, is of the swinging variety instead of the smoothing type. Filter constants are not given since they will depend upon the voltages and currents to be handled. The chokes must of course be built to handle the total direct current to be taken from all taps on the power supply. Other combinations can be worked out without much difficulty. It is not absolutely necessary to follow exactly the specifications in the filter section of the diagrams; for example $1-\mu \mathrm{fd}$. condensers or smaller chokes can be substituted in the filter of the high-power plate supply if the big tubes are amplifiers used for c.w. work in a crystalcontrolled or oscillator-amplifier transmitter. For 'phone it is better to have as much filter as available to keep the carrier free from hum.

FIG. 1417 - MEDIUM-IPOWER SCIPPLY FOIR RACKMOUNTED TRANSMITTERS
This supply uses the circuit of Fig. 1415-D, with the exception that the power transformer and chokes are rated at 300 ma. rather than 500 as required for the $400-\mathrm{ma}$. output of Fig. $1415-\mathrm{D}$. The rectifiers used in this unit are 866 Jrs .

In all these diagrams it is of course necessary to use power transiormers of adequate capacity and chokes of high enough current rating to carry the load currents indicated. In D and E the plate transformers should be rated at about 650 and 850 VA, respectively, to give the necessary output.

Should more current than that obtainable from 866's be needed, the circuit shown in Fig. 1422 may be used.

Fig. 1423 is a photograph of a power supply suitable for use with a low-power transmitter. Its circuit diagram, Fig. 1424, will be seen to be similar to A in Fig. 1415 with the exception of the fact that the input choke to the filter is omitted. The filter condenser is a double-unit dry electrolytic condenser having a capacity of $8 \mu \mathrm{fd}$. per section. The power transformer

FIG. 1416 - CIIOKES, TRANSFORMERS, CONDENSERS, RECTIFIERS AND RESISTORS - THE ESSENTIALS OF ALL POWER SUPPLY SYSTEMS

THE RADIO AMATEUR'S HANDB00K

The location of parts in a power-supply system is not of great importance. Make cortain that the transformer and rectifier tubes are placed so that the heat generated by them can be radiated into the surrounding air, and have all wires, particularly those carrying high voltage, well insulated. In other respects the layout can be made anything convenient.

1 Duplex Plate Supply for the MediumPocier Transmitier

To illustrate one of the many modifications that can be made

FIG. 1418-IHGIH-POWER BIRHM;E IRECTIFIER CIRCUIT DELIVEIRING TWO VOLTAGES PIROVIDING TIIE IPLATE TRANSFGRMER IS CENTERTAPPEI
When the center tap filter shown in dotted lines is used, a tap at half maximim voltage with good regulation is provided. The current drawn from both taps shonid not exceed 540 ma . if 866's are used or 1600 ma. if 872's are uscd. The plate transformer muat be rated for these respective currents.
should deliver not more than 350 volts on each side to avoid damaging the condenser.
to straight-forward power-supply design, a diagram of a two-voltage power supply suitable for operating a complete transmitter of medium power is given in Fig. 1425. Inexpensive Type 83 tubes are used in the bridge circuit to give a high voltage of 1000 volts; simultaneously one pair of the tubes acts as a center-tap rectifier in conjunction with the center-tap on the power transformers to furnish 500 volts for the low-power stages of the transmitter. A total of 250 milliamperes (or slightly

FIG. 1419 - CIRCUIT DIAGIRAM OF COMILLETE PLATE SUPPLY, GRID BIAS SUPPLY, ANIB MOIDU. IATOIR COMBINED INTO A SINGLE UNIT
Note that no bleeder resistor is shown connected across the bias supply; this function is performed hy the r.f. amplifier grid-leak resistor, which acts as a portion of a voltage divider across the output terminals. Similarly, the bleeder of the high-voltage aupply is made to serve two functions; with a milliammeter connected in series, it serves as a voltmeter serics resistor as well. (Ohm's Law is used to compute the voltage applied to the final amplifier.)

POWER SUPPLY

FIG. 1420 - HHGH-IPOWELR POWER SUPIPLY WITII 866 TUBES
On this chassis is a 2000 -volt 450 ma. aupply with voltage divider and alow-power supply for crystalstage.

FIG. 1421 - A POWER SUIPLY CIRCIITIN WIIICII A SINGLE TRANSFORMFR AND SET OF FHLTER CIIOKES IS MADE TO SERVE FOR IDIFFERENT VOLTAGLS

Each voltage has its own rectifier and filter condensers. Althongh only two volt:ages are indicated, others may be obtained providell the tranaformer has the necessary taps.

more, since both filters have choke input) may be taken from the power supply without exceeding the rectifier-tube ratings; a representative current division would be 100 ma . for the small tubes and 150 ma . for the final amplifier stage.

With the filter values indicated in Fig. 1425 the ripple in the 500 -volt output will be less than $.1 \%$ and in the 1000 -volt output approximately $.25 \%$, so the power-supply will be well suited to use with the r.f. end of a phone transmitter. For c.w., the second filter section may be omitted from the 1000 -volt section, in which case the ripple will be approximately 6%; increasing the remaining condenser capacity from $2 \mu \mathrm{fd}$. to $4 \mu \mathrm{fd}$. will bring the ripple down to 3%. It is best to use the two-section

FIG. 1423 - THIS POWFR SUPPLY WILLDELIVER 350 VOLTS AT 150 MA.
Iow-cost receiving-type componente are used. The rectifier used is an $\mathbf{8 3 V}$. See Fig. 1424.
filter on the low-voltage output; the condensers and chokes are relatively inexpensive and low ripple is desirable on low-power stages.

An input choke having fixed inductance is recommended for the 500 -volt output because the load on this section usually is continuous. If the load is to be variable, a swinging choke should be used, together with a bleeder of suitable value across the output. The bleeder may be used as a voltage divider to obtain still lower voltage - for instance, for a crystal oscillator.

Transformers and Rectifiers in Series

Under certain circumstances, it is sometimes possible to reduce the cost of a high voltage

FIG. 1422 - USING 866'S IN PARALLEL TO DOUBLE TIIE CURRENT RATING
In this arrangement 866's will deliver 1100 ma . providing the transformer and swinging choke nsed will handle the capacity. Note thelow resiatance equalizing remistors in the plate leada.

THE RADIO AMATEUR'S HANDBOOK

supply by comnecting two similar lower voltage supplies or transformer-rectifier units in series. Such a circuit is shown in Fig. 1426. A pair of inexpensive 600 volt, 200 ma . transformers and type 83 rectifiers may be used in this manner to deliver a d.c. output voltage through the filter of about 1000 volts. Since the winding of the transformer on the positive side is at a higher potential than normal, some eare should be taken to select a transformer with good in-

FIG: 1424-1AD-I'UWER SUPPIS FHOM RECFIVING I'ARTS
T - Power Transformer, $375 v$, each side center-tap. with 6.3 -volt and 5 -volt wimdinge ('lhordarmon T-70R62).

1. - Filter choke; 8.75 henrym at 150 ma . (Thordarmon T-17C00).
$\mathrm{C}_{1}, \mathrm{C}_{2}-8$ - ff . high-surge elecirulyic condensers (Mallory UR-187).
sulation. Most transformer: of reliable manufacture will have sufficient insulation, at least those with output voltage ratings of 600 volts or less each side of center-tatp.

This platesupply will deliver 500 and lovo voltenat \boldsymbol{H}
 (40p).
 tap; 350 VA.
l'z - Kectifier filament tranmformer. firce iovolt :samp. windings.
: $i_{1}-2 \mu$ fd., 1250 -volt rating.
($: 2-4 \mu$ fd., 1250 -volt rating.
$\mathrm{C}_{3}, \mathrm{C}_{4}-2 \mu \mathrm{fd}$., 800 -volt rating.
1.1 -Swinging choke, 8-40 herirys. 275 inu.
I.: - Smoothing choke, 12 heurym. 275 ina.
1.3, I.4 - 10 henrya, 200 ㄴ.

K - W, MNO ollma, $25-\mathrm{watt}$ rating.

THRANNMITTRER MRMAN NUPPPIDEA

■ow-volitag power packs make excellent substitutes for batteries as "C" bias supplies for certain types of r.f. power amplifiers. The "C" power pack, in fact, offers the same advantages as the combination battery-and-leak bias discussed in Chapter Eight. Not all power packs are suitable as bias supplies for transmitters, however.

The power pack for " C"' bias use must have a low-resistance bleeder. Since the bleeder, or at least part of it, is connected to the r.f. amplifier grid circuit, it performs in just the same fashion as a grid leak; that is, the flow of amplifier grid current through the bleeder rauses a voltage drop which may add considerably to the actual bias on the grid. For this reason, therefore, the part of the bledder included in the biasing circuit (in case the bleeder provides taps for different voltages) should have a resistance no higher than that ordinarily required as a grid leak for the tube in use. The resistance of the bleeder then can be proportioned so that the voltage aeross the taps in use will be approximately equal to the cutoff bias of the tube when there is no excitation. This will give the protective feature of fixed bias and also provide the automatic biasing characteristic of grid leaks.

The transion mer and rectifier for a bias supmy will be identical with those used in receiver power packs. The filter may be somewhat simpler, however; it may, in fart, be found possible to get sufficient filtering with only a condenser commected across the output of the rectifier, since no current except that taken by the bleeder is drawn from the " C " supply. A choke and second condenser can be added in case actual tests show that a bias supply having only a condenser filter introduces modulation on the signal. The circuit diagram of Fig. $1+27$ is suggested for bias supplies; the method of calculating the bleeder resistance required also is shown.

Since the bias voltage varies with grid current, a "C" supply of this type often will he found to be somewhat mosatisfactory for biasing more than one stage, because the grid current for all stages must flow through the same resistor, thus causing all stages to be over-hiased. This effect can be overeome to a considerable extent by using a low bleeder or voltage divider resistance so that voltage variations from grid-current flow are minimized, or by the use of one or more regulator tubes. If some form of regulation is not provided, the bleeder current in such a " C " supply should be just as great as the transformer and rectifier tube are capable of furnishing. The bleeder current for a 300 -volt supply, for instance, wouk lie approximately 100 mil-

FIG: 1426-TWO TRANSFORMEIRS ANIV RECIIFIERS CON-

thousaml ohms up to several megohms is satisfactory. The voltage divider R_{2} can have practically any value, from a few thousand ohms up, as the current drawn is practically zero.

If additional taps are necessary, a regulator tube with its separate filament transformer will be required for each tap.

Pomer NuInly Kiaks

For protection of expemsive equipment it is well to consider some method of breaking the high voltage should a short eirenit oceut or an aceidental heavy surge take place. The simplest method is to insert high voltage fuses in the

 "C." SIPPl!
A single $8-\mu$ fil. conderiser often will sultice for tite tilirr but if trial shows that nore is needed, a choke and nroomd condenser, shown in dotted lines, may be adiled. The condensers shonld be rated at $5(90$ voltw, enpecially if the "C"" supply is to be used on a highpower stage where the excitation is likely to be large.
'The bian voliage, Fê, should be approximately that value which will cut ofl the plate current of the tube at the plate voltage used (roughly the plate voltage divided by the voltage amplification factor of the tube). Kesistor K_{1} should be equal to the grid leak value ordinarily used with the tube. The required resistaner for R_{2} can be found liy the formula

$$
\mathbf{H}_{2}=\frac{\mathbf{F}_{\mathrm{t}}-\mathbf{F}_{\mathrm{t}}}{\mathbf{H}_{\mathrm{e}}} \times \mathbf{H}_{1}
$$

where Et in catal to the perak value of the transformerromitier ontput voltage (r.min. voltage of once wide of wecondary muitiplied by I.t).
power supply as indicated in Fig. 1429 . A more permanent method and one that can be adjusted from the front of the panel is by the use of an overload relay with an overload breaking the primary of the plate transformer.

Some amateurs still turn off all transmittor filaments between periods of transmission. When there are mercury vapor tubes in use as rectifiers it is necessary to wait 10 or 15 seconds for them to attain proper temperature before applying the high voltuge. When two separate switches are used there is always the possibility of throwing the plate switch too soon, thus possibly damaging the rectifier tabes. Such a possibility can be avoided by the use of a switch as shown in Fig. 1430 . This is a Mark Time switch that is mechanically a single throw unit but electrieally it is a single throw double pole switch with : lis-second lag hefore

One way of insuring that the beginner doesn't burn out receiver filaments when using battery receivers by getting Bbattery voltage across the filaments is by putting a resistor in series with the B battery right at its terminal. A value of 250 ohms per B battery of 45 volts will

FIG. 1428 - CIRCUIT OF THE AUTOMATIC VAC-UUM-TURE REGULATOR AS APPLIED TO A BIASOR PLATE-SUPPLY POWER PACK
R_{1} is the regulator tube's hias resistor and R_{2} is the power-pack output voltage divider. A separate filament winding should be used for the regulator. A type 45 tube will be satisfactory as the regulator tube.
the second pole closes. Any variety of timing may be had up to several hours. Such switches find various uses in the station.

Often the amateur finds it impossible to listen on the frequency of his transmitter without an annoying hum. This hum is only present when the final amplifier filament is on. If one is using a bias supply that only goes on with the plate voltage it can be cured by arranging the bias supply to be on whenever the filaments are on. If resistor bias alone is used it will be necessary to stop the minute flow of current through the grid return circuit when there is no excitation. This may be done by the use of a neon tube with its resistor in the base removed as shown in Fig. 1431. Another way of eliminating the hum would be to put a few volts of fixed bias in series with the resistor.

One way of getting fairly high voltage from the 110 -volt mains is by using a quadrupling circuit as shown in Fig. 1433. The fundamental circuit is shown in the upper diagram and the practical circuit in the lower. Four $8-\mu \mathrm{fd}$. electrolytic filter condensers are used for building up the voltage. Additional filter could, of course, be incorporated in the circuit by adding a choke and putting an additional condenser section across the output. A test of this circuit showed a no-load d.c. voltage of 600 ; at a $40-\mathrm{ma}$. drain the terminal voltage was approximately 500 volts.

FIG. 1429 - HIGH-VOLTAGE FUSES SHOULD BE USED IN MEDIUM- AND HIGH-POWERED TRANSMITTERS

FIG. 1430 - SHOWING A DOUBLE POLE SINGLE THROW SWITCH THAT DELAYS BEFORE THROWING THE SECOND THROW AS DESCRIBED IN THE TEXT

This is the basis of the table of cross-sections given.

An average value for the number of primary turns to be used is 7.5 turns per volt per square inch of cross-sectional area. This relation may be expressed as follows:

$$
\text { No. primary turns }=7.5 \times \frac{E}{A}
$$

where E is the primary voltage and A the number of square inches of cross-sectional area of the core. For 110 -volt primary transformers the equation becomes:

$$
\text { No. primary turns }=\frac{825}{A}
$$

The size of wire to use depends on the current the winding will carry at full load. When a small transformer is built to handle a continuous load, the copper wire in the windings should have an area of 1500 circular mils for each ampere to be carried. (See Wire Table in

POWER SUPPLY

FIG. 1431 - NEON LAMP IN GRID CIRCUIT FOR CURING HUM FROM TRANSMITTER DURING RECEPTION
A three-watt lamp with hase resistor removed is used. Where heavy grid currente are drawn, two or more lamps should be connected in parallel.

Appendix.) For intermittent use, 1000 circular mils per ampere is permissible.

A table is given showing the best size wire and core cross-section to use for particular transformers. The figures in the table refer to 60 -cycle transformers. The design of 25 -cycle transformers is similar but a slightly higher flux density is permissible. Because the frequency is much lower the cross-sectional area of the iron must be greater or the number of turns per volt correspondingly larger, otherwise the inductance will be too low to give the required reactance at the reduced frequency. If one builds the core so that its cross-section is 2.1 to 2.2 times the value of area worked out from the table, the same number turns of wire may be used in a primary coil for 25 -cycle operation. If the same core and more turns of wire are used a larger "window" will be needed for the extra wire and insulation. Increasing both the number of turns per volt and the crosssection of the core gives the best-balanced design.

Most 60-cycle transformers will behave nicely on a 25 -cycle supply if the applied voltage is sufficiently reduced. Up to 52 volts at 25

accommodate the windings. The primary wire size is given in the table; the secondary wire size should be chosen according to the current to be carried, as previously described. The Wire Table in the Appendix shows how many turns of each wire size can be wound into a square inch of window area, assuming that the turns are wound regularly and that no insulation is used between layers. Figures are given for three different types of insulation. The primary winding of the 200 -watt transformer, which has 270 turns of No. 17 wire, would occupy $270 / 329$ or. 82 square inch if wound with double-cotton-covered wire, for example. This makes no allowance for a layer of insulation between the windings (in general, it is good practice to wind a strip of paper between each layer) so that the winding area allowance should be increased if layer insulation is to be

FIG. 1432 - A TRANSFORMERLESS POWER SUPPLY CIRCUIT

[^16]cycles may be applied to a 110 -volt 60 -cycle winding without harm. Knowing the transformer voltage ratio, the output voltage will be known. The current-carrying capacity will be the same as at 60 cycles. The KVA (kilovoltampere) rating will be about half the 60 -cycle value.

Having decided on the core cross-section necessary to handle the power, the next step is to calculate the core window area required to

FUNDAMENTAL CIRCUIT

PRACTICAL CIRCUIT
FIG. 1433 - VOLTAGE QUADIRUPLING CIRCUIT USING 25Z5 RECTIFIERS WORKING FROM THE 110-VOLT LINE
This circuit will deliver about 500 volts under a load of $\mathbf{4 0} \mathrm{ma}$.

THE RADIO AMATLUR'S handbook

used. The figures also are based on accurato winding such as is done by machines: with hand winding it is probable that somewhat more area would be required. An increase of 50% should take care of both hand winding and layer thickness. The area to be taken by the secondary winding should be estimated, as should also the area likely to be occupied by the insulation between the core and winding: and between the primary and secondary winding.s themselves. When the total window area reyured has been figured - allowing a littho extra for eontingencies - laminations having the desired leg width and window area shoulil be purchased. It may not be possible to get laminations having exactly the dimensions: wanted, in which case the nearest size should be chosen. The cross-section of the core need not be square but can be rectangular in shape so long as the core area is great enough It is easier to wind coils for a core of square aross-section, however.

Transformer cores are of two types, "core" and "shell." In the core type, the core is simply a hollow rectangle formed from two " I_{4} "shaped laminations, as shewn in lig. 1434 shell-type laminations are " E " and "I" shaped, the transformer windings being placed on the center leg. Since the magnetic path divides between the outer legs of the " E ," these legs are each half the width of the center leg. The cross-sectional area of a shell-type core is the cross-sectional area of the center leg. The shell-type core makes a better transformer than the core type, because it tends to prevent leakage of the magnetic flux. The windings are ralculated in exactly the same way for both t.ypes.
lig. 1435 shows the method of putting the windings on a shell-type core. The primary is usially wound on the inside - next to the core - on a form made of fibre or several layers of cardboard. This form should be slightly larger than the eore leg on whieh it is to fit so that it

 TYPE GF I.AMINTTIOSS
will be an casy matter to slip in the daminations after the coils are completed and ready for mounting. The terminals are brought out to the side. After the primary is finished, the secondary is wound over it, several layers of insulating material being put between. If the

 BLING 'IIE WINIHNGS GN A SIIEII. TYIPE CORE

Windinga can be mimilarly mounted on core-type cores, in which case the coils are placed on one of the sides. High-voltage core-t ype transforniors sometimen are made with the primary on one core log and the secondary on the opposite.
transformer is for high voltages, the high-voltage winding should be carefully insulated from the primary and core by a few layers of Empire cloth or tape. A protective covering of heavy cardboard or thin fibre should be put over the outside of the secondary to protect it from damage and to prevent the core from rubbing through the insulation. Squareshaped end pieces of fibre or cardboard usually are provided to protect the sides of the winding and to hold the terminal leads in place. High-voltage terminal leads should be enclosed in Empire cloth tubing or spaghetti.

After the windings are finished the core should be inserted, one lamination at a time. Fig. 1434 shows the method of building up the core. In the first layer the " E "shaped laminations are pushed through from one side; the second " E "-shaped lamination is pushed through from the other. The "I"shaped la minations are used to fill

POWER SUPPII

the end spaces. This method of buiding up the core ensures a good magnetic path of low reluctance. All laminations should be insulated from each other to prevent eddy currents from flowing. If there is iron rust or a seale on the core inaterial, that will serve the purpose very well - otherwise one side of each piece can be coated with thin shellac. It is essential that the joints in the core be well made and be square and even. After the transformer is assembled, the joints can be hammered up tight using a block of wood between the hammer and the core to prevent damaging the laminations. If the winding form does not fit tightly on the core, small wooden wedges may be driven between it and the core to prevent vibration. Transformers built hy the amateur can be painted with insulating varnish or waxed to make them rigid and moisture proof. A mixture of melted beeswax and rosin makes a good impregnating mixture. Melted paraffin should not be used because it has too low a melting point. Double-cottoncovered wire can be coated with shellac as each layer is put on. However, enameled wire should never be treated with shellac as it may dissolve the enamel and hurt the insulation, and it will not dry because the moisture in the shellac will not be absorbed by the insulation. Small transformers can be treated with battery-compound after they are wound and assembled. Strips of thin paper between layers of small enameled wire are necessary to keep each layer even and to give added insulation. Thick paper must he avoided as it keeps in the heat generated in the winding so that the temperature may become dangerously high.

Keep watch for shorted turns and layers. If just one turn should become shorted in the entire winding, the voltage set up in it would cause a heavy current to flow which would burn it up, making the whole transformer useless.

Taps can be taken off as the windings are made if it is desired to have a transformer giving several voltages. The more taps there are, the more difficult becomes the problem of avoiding weakened insulation at the points. where they are made. Taps should be arranged whenever possible so that they rome at the conds of the layers. If the wire of whirh the
winding is made is very small, the ends of the winding and any taps that are made should bo of heavier wire to provide stronger leads.

After leaving the primary winding connected to the line for several hours it should be only slightly warm. If it draws much current or gets hot there is something wrong. Some shortcircuited turns are probably responsible and will continue to canse overheating and possibly fireworks later.

Building Filter Choke Coils

Filter choke coils resemble transformers in construction, but only one winding is used. The

HIG. I436-COKE ARRANGEMENT FOR FIITEK (:HOKE COILS
The dincensions b und e refer to the full pinge lable in the Appendix.
corr may be either of the core or shell type, but the corners should not be interleaved, a butt joint being used instead. This is done so that the core can be opened slightly to form an air gap in the magnetic path. An air gap actually increases the effective inductance of the choke when direct current is flowing through the winding by preventing magnetic saturation of the core. Since a low-reluctance magnetic path is not necessary, the shell-type of core has no particular advantages. The full page table of choke coil specifications is based on the coretype construction illustrated in Fig. 1436. The core may be built of straight pieces, as shown, or from L-shaped laminations of the type shown in Fig. 1+34, but stacked tan give ath air gat.

Input (II atte)	F'ull-linal Efficiency	size of Irimary life	No. of Primary Turns	$\begin{gathered} \text { Thum } \operatorname{Pnor} \\ \text { Volt } \end{gathered}$	('russ-S'ection 7'hrough Core
50	75\%	23	528	4.80	$11 / 4{ }^{\prime \prime} \times 1 / 4^{\prime \prime}$
75	85%	21	137	3.95	$13 / 8^{\prime \prime} \times 188^{\prime \prime}$
100	90\%	20	367	3.33	$11 / 2^{\prime \prime} \times 112^{\prime \prime}$
150	90\%	18	313	2.84	$15 / 8^{\prime \prime} \times 15 / 8^{\prime \prime}$
200	90\%	17	270	2.45	$13 / 6^{\prime \prime} \times 13 / 4^{\prime \prime}$
250	90\%	16	248	2.25	17/8' $\times 178^{\prime \prime}$
300	90\%	15	248	2.25	17/8" $\times 17 / 8^{\prime \prime}$
400	40\%	14	206	1.87	$2{ }^{\prime \prime} \times 2$ "
5010	95\%	13	183	1.86	$21 / 8^{\prime \prime} \times 21 / 8^{\prime \prime}$
751	15\%	11	1419	1.38	23/8" $\times 288^{\prime \prime}$
1000	1, \%	111	13:	1.20	$216^{\prime \prime} \times 212^{\prime \prime}$
1.500	95\%	9	10\%	. 99	$23 / 4^{\prime \prime} \times 23 / 4^{\prime \prime}$

THE RADIO AMATEUR'S HANDB00K

The design table in the Appendix gives specifications for chokes that will meet most needs of the amateur in filter systems. Chokes of inductances between the values given in the table can be made by using less turns of wire in the winding. Inductance varies about as the square of the number of turns so that using half the number of turns specified gives one-fourth the inductance. More turns than those specified must not be used as the core
will become saturated. Dimensions b and c given in the table can be understood by reference to Fig. 1436. The arrangement of core and winding should be that of the diagram, also. Chokes of the "swinging" type are considered beyond the scope of amateur construction because of special design features involved and the necessity for elaborate checking equipment. Danger from shorted turns or layers for transformers applies also to chokes.

FULL-WAVE RECTIFIER ANI FILTER CIIART FOR AMATEUR TRANSMITTERS
This chart should be used in conjunction with text and Fig. 1415.

Output Voltage Ed.e.	Output Current (Me.) Id.e.	P. 0 . Watts	$\begin{gathered} E_{\text {a.e. }}{ }_{(\text {Approx. })} \end{gathered}$	$\begin{gathered} L_{1} \\ \text { Opt. Crit. } \\ \text { Swinging } \end{gathered}$	C_{1}	\% Rip.**	$\begin{gathered} L_{2} \\ \text { Smooth } \\ \text { ing } \end{gathered}$	C_{2}	\% Rip.	Bleeder Resistance	Bleeder Current	Diag. \dagger
350	200	70	500	5-25	8	2.5	15	8	0.03	25,000	14	A
500	200	100	660	5-25	2	10.0	15	4	0.24	25,000	20	B
600	200	120	770	5-25	2	10.0	15	4	0.24	25,000	24	C
750	250	187	960	5-25	4	5.0	12	4	0.16	25,000	30	C
1000	200	200	1220	5-25	4	5.0	12	4	0.16	25,000	40	D
1000	400	400	1300	5-25	4	5.0	10	4	0.20	25,000	40	D
1250	200	250	1500	10-30	2	5.0	12	4	0.13	30,000	41	D
1250	400	500	1580	5-20	4	5.0	10	4	0.20	20,000	62	D
1500	200	300	1780	12-40	2	4.1	12	4	0.12	40,000	37	E
1500	400	600	1860	6-30	4	4.1	10	4	0.16	30,000	50	E
2000	250	500	2330	12-40	2	4.1	11	4	0.13	40,000	50	F
2000	500	1000	2410	5-25	4	5.0	10	4	0.20	25,000	80	F
2500	200	500	2880	20-100	2	2.5	12	2	0.16	100,000	25	G
2500	400	1000	2960	12-40	2	4.1	10	4	0.13	40,000	62	G

[^17]
EMERGENCY AND PORTABLL EOUIPUENT

Emergency, Portable and Rural Applications - Power Supply Systems - Transmitting and Receiving Apparatus and Technique

Abstract

Wmergency self-powered equipment is no longer a nice toy to play with when regular a mateur activities pale; it has become the moral obligation of every amateur to be prepared in case of any communications emergency. Large-scale disasters during the past few years have demonstrated the tremendous value of amateur emergency stations in relaying relief messages when all other communication channels are closed. Aside from the all-important emergency phase, the use of portable equipment has lately been extended through organized activity in the annual "Field Day" activity, and the problem of providing equipment suitable for use in rural districts, where commercial power is not available, has always been with us. Recent developments have furnished approaches to the solutions of some of the problems, and it is the purpose of this chap-

 ter to analyze and summarize the general considerations involved in the selfpowered field, and to offer certain suggestions.The most vital need for self-powered equipment occurs in connection with emergency activity, and the basic design of all sudh equipment should be predicated on emergency use. The importance of this has been established by the amateur participation in such recent emergency work as the 1937 Ohio River valley flood, the 1938 southern California flood, and the 1938 eastern states hurricane. In each case

FIG, 1501 - TIIREE-TUIEE SUPEIRHET FOH PORTABLE EMERGENCY USE

Filaments are heated by a 6 -volt storage battery; "B" power is from one or two blocks of "IH" batteries. The set is designed for the 1.75 -, 3.5 - and $7-\mathrm{mc}$. bands.
hundreds of stations in the afflicted areas were forced into action at an instant's notice, many of them with power supply facilities completely disrupted. Without the general existence of adequate self-powered amateur equipment, relief communications in these crises would have been sadly hampered. As it was, public service of incalculable value was performed by amateur stations. And it is upon just such public service that amateur radio is dependent for its continued existence. Not only is this true in the case of flood, but wherever any other emergency - earthquake, sleet storm, hurricane - can occur. In short, every amateur, no matter where he may be located, can reasonably expect that sometime he may be called upon to perform emergency communications duty, and it is his responsibility to the public welfare, to himself, and to amateur radio as a whole to see that he is in some measure prepared.

Choice of Power Supply

There is a wide gap between the present comparatively large variety of self-generating power sources and the situation of ten years ago when the amateur requiring independence from a.c. mains had only three alternatives: batteries, the use of a tricky, inefficient Ford spark coil arrangement, or the expenditure of hundreds of dollars for a gasolinedriven generator. Today it is possible to secure almost any conceivable type of power supply at rea-

THE RADIO AMATEURS HANDBOOK

BATTERY SERVICE HOURS

Estimated to 34 -volt end point per nominal $\mathbf{4 5}$-volt section
Based on intermittent use of 3 to 4 hours daily
(For batteries manufactured in U.S. A. only)

Manufacturer's Type No.		Weight		2	5	10	15	Current Drain in Ma.								150
Burgess	Eveready	Lb.	Oz.					20	25	30	40	50	60	75	100	
	386	14	-	-	2000	1100	690	510	400	320	200	170	130	100	50	30
21338	-	15	12		1680	1220	765	560	433	325	-	154	113	76	47	25
	486	13	5	-	1700	880	550	395	300	240	165	125	100	70	45	80
21308	-	13	-	-	1600	1100	690	490	-	300	200	-	-	-	-	-
-	586	19	2	-	1400	800	530	380	260	185	130	85	60	40	30	14
$10338{ }^{1}$	-	12	14	-	1150	750	550	440	375	300	-	160	125	95	57	29
1038	-	11	8	-	1300	800	520	350	-	185	115	-	-	-	-	-
22308	-	8	4	-	1200	640	400	250	-	130	69	-	-	-	-	-
2308	-	7	8	-	1100	540	330	180	-	83	47	-	-	-	-	-
	485	9	3	-	1000	525	375	250	200	135	100	60	40	20	15	7.5
-	585	8	13	-	900	450	290	210	130	100	60	45	25	80	11	5
$2338{ }^{1}$	-	8	10	-	750	460	330	260	200	180	-	84	64	43	26	10
5308	-	3	4	-	350	170	90	50	-	21	8	-	-	-	-	-
-	762	3	3	-	320	140	81	54	37	27	-	-	-	-	-	-
330BP ${ }^{2}$	-	3	2	700	305	140	75	52	39	30	-	16	11.5	7.3	4.2	1.0
$\mathrm{A3OBP}^{3}$	-	2	-	400	160	69	30	17	10	7	-	2	-	-	-	-
	738	1	2	-	160	70	30	20	10	7	-	-	-	-	-	-
Z3ONX	-	1	4	270	100	48	33	23	17	14	-	7.6	5.2	3.3	2	1
Z3ON ${ }^{\text {2 }}$	-	1	4	240	94	37	17	9.5	6	4	-	1	-	-	-	-
X3OFL ${ }^{-1}$	-	-	13	185	68	31	19	13	10	8	-	4.6	-	-	-	-
	733	-	10		50	20	11	7	5.2	$?$	-	-	-	-	-	-
W3OFL		-	10	112	43	19	12	8.5	6.6	5.4	二	2.2	-	-	-	-

50 volts.
Also applies to 144 -volt portion of 51116 , which combines 3 -volt " A " and $221 / 2$-volt "C." Wh. 16 lbs .4 oz .

Same life figures apply to A3OP, wt. 2 Ibs., and A96P, 144 valt, wt. 8 lbs. 7 oz .
'Some life figures apply to Z30X, wt. 1 lb .7 oz ., and Z60X, 90 -volt, wt. 2 ib. 7 oz .

[^18]sumable cost. The ouly problem is to select the one which most adequately fulfils the need within the available budget.

An analysis of the numerous available types should disclose which are the most suitable for the various applications, based on the criteria ol utility, efficiency, performance and cost.

Dry batteries: Dry-rell batteries are the standard primary electrical energy source. They are ideal for receiver and inw-power transmitter supplies beraluse ther provide
steady, pure direct current with almost zero regulation. Their disadvantages are weight, high cost and limited current capability. In addition, they will lose their power even when not in use if allowed to stand for periods of a year or more. This makes them uneconomiral if not used more or less continuously.

The accompanying table shows the life to be expected from representative types under various current drains, based on intermittent service simulating typical operation. Continu-

bmergency and portable equiphent

ous service life will be somewhat greater at very low current drains and from one-half to two-thirds the intermittent life at the higher current values.

The life figures given in the table are based on an end-point of 34 volts. This is considered to be the normal limit in average equipment. With suitable design of the apparatus to enable it to operate satisfactorily on about half voltage, the end-point can be extended to 24 volts, adding approximately 50% to the life of the battery in average use.

The secret of long battery life at normal current drains lies in intermittent operation. The duration of "on" periods should be reduced to a minimum. The more frequent the rests given a dry-cell battery, the longer it will last. As an example, one standard type will last 50% longer if it is operated for intervals of one minute with five minutes rest in 24 -hour intermittent operation than if it is operated continuously for four hours per day, although the actual wattage eonsumption in the $2 t$-homr period is the same.

Although not a dry battery, the "Air Cell" comes under the same use classification. It is a primary battery which cannot be recharged. It has high current capacity and a flat discharge curve. Three types are now available, one having a capacity of 600 ampere-hours and a maximum current rating of 0.66 amperes, another having the same capacity but a naximum current rating of 0.75 amperes, and the third with a capacity of 300 ampere-hours and a maximum current rating of 0.66 amperes. The Air Cell has a basic potential slightly in excess of 2.4 volts, and the discharge curve is quite flat to about 2 volts.

Storage batteries: The most universally acceptable self-contained power sowres is the

F14: 1502 - VIBRATOR-TRANSFORMEK REGULATION CURVES

These curves are for Mallory Vibrapacks VP-552 abd VP-554, rated at 300 volts, 100 ma. They are typical of most vibrator supplips. The numbers indicate the voltage taps on the tapped tranaformer secondars. rhomen by a selector wwituh.

FIG: 1503-CONVERSIOV EFFICIENCX OF VIBRA-'HOR-'FRANSFORMFH AT VARIOUS LOADS
Theme curves are alen for Mallory 300-volt Vibrapacka.
storage battery. It has high initial capacity and can be recharged, so that its effective life is practically indefinite. It can be used to provide filament or heater power directly, and plate power through associated devices such as vibrator-transformers, dynamotors and genemotors, and a.c. converters. For emergency work a storage battery is a particularly successful power source because no matter what the circumstances such batteries are almost invariably available - even if they have to be commandeered from parked cars!

For maximum efficiency and usefulness the power drain on the storage hattery should be limited to 15 or 20 amperes from the ordinary 100- or 120-ampere-hour battery. This should provide a carrier power when transmitting of 20 to 30 watts, which is usually adequate. In connecting the battery, heavy leads of the automotive cable type should be used, to minimize the voltage drop; ordinary carreceiver leads are definitely not satisfactory. Similarly, heavy-duty low-resistance switches are required.

Vibrator-Transformers: The vibrator-transformer consists of a specially-designed transformer combined with a vibrating interrupter. When the unit is connected to a storage battery the circuit is made and broken rapidly by the vibrator contacts and the pulsating d.c. which flows in the primary of the transformer causes an alternating voltage to be developed in the secondary. This high-voltage a.c. is in turn rectified, either hy a vacuum-tube rectifier 1% by an additional synchronized pair of vibrator contacts, and filtered, providing outputs as high as 300 volts at 100 ma . Tube rectifiers are ordinarily used only when the negative side of the circuit cannot be grounded, a requirement with the self-rectifying type. The high-voltage filter circuit is usually identical with that of an equivalent power sourec

THE RADIO AMATRUR'S HANDBOOK

operating from the a.c. line. Noise suppression equipment, serving to minimize r.f. disturbances, is usually incorporated in the manufactured unit.

Although vibrator-transformers are ordinarily used with 6 -volt tubes, their use with 2 volt tubes is quite possible provided additional filament filtration is incorporated. This filter can consist of a small low-resistance iron-core choke, or the voice-coil winding of a speaker transformer. The field coil of a speaker designed to operate on 4 volts at the total filament current of the receiver may be used. The filaments are then connected in parallel, as usual, and placed in series with this winding across the 6-volt battery. On both 6- and 2 -volt receivers "hash" can be reduced by heavily by-passing the battery at the vibrator supply terminals, using . 25 to $1 \mu \mathrm{fd}$. or more. Noise will be minimized if a single ground, consisting of a short, heavy copper strap, is used.

Figs. 1502-1503 show the load current and regulation curves for representative vibratortransformer units. The rated output voltages allow for filter drop; the filter resistance should, of course, be kept as low as possible. A 100 - to 200 -ohm series resistance is permissible.

Dynamotors and Genemotors: A dynamotor is a double-armature high-voltage generator, the additional winding operating as a driving motor. It is usually operated from a 6-, 12or 32 -volt battery, and may deliver voltages from 300 to 1000 or more. Dynamotors have been widely used in military work and most of those in amateur use derive from such origins. New dynamotors of high power capability are costly and are not generally a vailable.

The genemotor is a refinement of the dynamotor designed especially for automobile receiver, sound truck and similar applications. It has found wide acceptance among amateurs as a source of transmitting power, having good regulation and efficiency combined with economy of operation. It is also used in connection with portable receiver installations, although a rather high inherent noise level limits this application in sensitive amateur highfrequency receivers.

Genemotors are made to fill almost every need, more than two dozen types being available. Their cost, at amateur net prices, runs from about eight to twenty-four dollars. Standard models range from 135 volts at 10 ma. to 300 volts at 200 ma . or 500 volts at 100 ma . Parallel and series operation of identical units to provide higher capacity is entirely practical. The normal efficiency averages around 40%, increasing to better than 50% in the higher-power units. The regulation is comparable to well-designed a.c. supplies; it is largely a result of external IR drops.

Successful operation of dynamotors and
genemotors implies heavy, direct leads, mechanical isolation to reduce vibration, and thorough r.f. and ripple filtration (the purchase of manufactured filter units is recommended). The shafts and bearings should be thoroughly "run in" before regular operation is attempted, and the tension of the bearings should be checked occasionally.
A.c.-d.c. converters: In some cases it may be desirable to utilize existing equipment built for 115 -volt a.c. operation in portable applications. To operate such equipment with any of the power sources outlined in the foregoing would require a considerable amount of rebuilding. This can be obviated by using a rotary converter capable of changing the d.c. from $6-, 12$ - or 32 -volt batteries to 110 -volt 60 -cycle a.c. Such converter units are available from several manufacturers, with output ratings from 40 to 300 watts. Their cost runs from fifteen to fifty dollars at amateur prices.

The conversion efficiency of these units averages about 50%. In appearance and operation they are similar to genemotors of equivalent ratings, while the prices are approximately the same. The overall efficiency of the converter system will be lower because of the losses in the a.c. rectifier-filter circuits and the necessity for converting heater as well as plate power.

Generators: The plate supply systems outlined in the foregoing are, with the exception of the dry-cell batteries, designed to utilize the electrical energy stored in a storage battery. The problem then arises of securing the energy to be stored in the battery. If access to a.c.-operated chargers is not possible at times between actual use, some form of self-powered charging system is essential.

This need is ordinarily best met by a gaso-line- or wind-driven generator. Water-power generators have been used, but their dependence on special circumstances is obvious, and they are not commercially available in small sizes.

The windcharger, although it originated but two or three years ago, has already received quite wide acceptance. ${ }^{1}$ It consists of a small generator driven by a suitable impellor, mounted to take advantage of the free energy offered by the wind. The standard type costing in the neighborhood of twenty dollars will supply up to 16 amperes to a 6 -volt battery. It will ordinarily keep fully charged a battery used to power a typical receiver and small transmitter operated from vibrator or genemotor supply in intermittent operation.

Gasoline-dri ven generators are also available for use in charging 6 -volt or larger batteries. These ordinarily are rated at 150 or 200 watts and cost in the neighborhood of forty dollars. A $1 / 2$ or $3 / 4$-h.p. single-cylinder four-cycle

bMERGENCY AND PORTABLR EQUIPMENT

engine is used, which will operate for twelve or fifteen hours on a gallon of gasoline.

In higher-powered installations the use of intermediate storage batteries may be dispensed with, and a gasoline-driven generator supplying 110 -volt a.c. directly may be enployed. Such generators are ordinarily rated at a minimum of 250 or 300 watts, and cost fifty or sixty dollars. They are available up to two kilowatts, or big enough to handle the highestpower amateur rig, at a cost of between three and four hundred dollars. Most are arranged to charge automatically an auxiliary 6 -volt battery used in starting. Fitted with self-starters and adequate mufflers and filters, they represent a high order of performance and efficiency.

A variant on the generator idea is the use of fan-belt drive. The disadvantage of requiring that the automobile must be running throughout the operating period has not led to general popularity of this idea amongst amateurs, although in San Francisco and Oakland an amateur emergency unit relies on it heavily. Such generators are similar in construction and capacity to the small gas-driven units.

The home construction of generators of all the above types has been successfully attempted by amateurs at times, although the possession of a considerable knowledge of electric motor design is essential. One especially useful possibility is the re-winding of old automobile charging generators, several hundred watts capacity being obtainable from the largest sizes. Those originally used on the old 4-cylinder Dodge cars have been successfully adapted by amateurs. ${ }^{2}$

The Receiver

The weakest link in the portable or emergency communications chain usually is the receiver. An inadequate receiver, with poor selectivity, low sensitivity and insufficient stability can ruin a QSO even under favorable conditions, yet most so-called "portable" receivers can be thus described. When it is remembered that conditions in portable or emergency operation are often more severe than those at home, with poor antenna facilities, high noise levels, severe interference, etc., the fallacy of attempting to use an inferior portable receiver is apparent.

The best procedure of all is to use the home station receiver for portable work. The average communications super-heterodyne can be operated with storage battery " A " and dry cell "B" supply without difficulty, if 6 -volt tubes are utilized. Of course, headphones should be used and the output tube removed, but this is no hardship. Headphones are far more satisfactory in such applications than the speaker in any event. This procedure should be followed not only because it ensures the avail-
ability of the high-performance receiver so vitally necessary, but because the practice that has been obtained by using the receiver at home is invaluable in the specialized operating techniques of portable or emergency work. It takes as much experience to learn to run a receiver properly as it does to drive a car, and the middle of a crisis is no time to gain that experience. Even on lowered plate voltage the home superhet will be better than a makeshift.

If a special portable/emergency receiver is to be built, it should be a superheterodyne. With present-day tubes and components, it is possible to build a simple superheterodyne as cheaply as a t.r.f. receiver, and there is no comparison between the two in performance. A regenerative receiver without an r.f. stage is completely out of the picture, since swinging antennas and blocking signals contribute so to instability that its use is not justified except under the most extreme circumstances. Small b.c. receivers can be converted into satisfactory ham-band receivers with a little ingenuity on the part of the amateur, ${ }^{3}$ or a special receiver can be built with standard parts.

The receiver ${ }^{4}$ in Figs. 1501, 1504-1506 was designed especially for portable and emergency work. ${ }^{4}$ With only three tubes it has no more "A" and "B" battery drain than the usual t.r.f. receiver. Good selectivity is obtained by using a 460 i.f., with iron-core transformer coupling, and permeability-tuned transformers cut the cost of the i.f. transformers considerably. With no preselection, image response is bad on 14 Mc. and higher, but it was felt that the most-used bands would be $1.7,3.5$ and 7 Mc., where the images do not cause much trouble.

Basically, the receiver is conventional, and therefore reliable, in design. It consists of the 6K8 oscillator-mixer, a 6 K 7 i.f. amplifier at 460 kc ., and the 6 C 8 G combined second detector and beat oscillator. The audio output is taken from the plate of the second detector.

The complete circuit diagram of the receiver is given in Fig. 1505. To simplify construction and eliminate separate padders on each coil, the antenna circuit is not ganged with the oscillator. C_{1} must, therefore, be separately tuned to resonance with the incoming signal if maximum signal strength is desired. Having the input tuning control separate permits its use as a volume control, thus eliminating the conventional bias-control resistor.

In the oscillator section, C_{2} is the padding or band-setting condenser and C_{3} the band-spread tuning condenser. On the $1.75-$ and $3.5-\mathrm{Mc}$. bands, C_{3} is connected across the whole of the oscillator grid coil, with a jumper in the coil form to make the necessary connection. On the 7-Mc. coil, C_{3} is tapped down as indicated in the coil table. To facilitate rapid and accurate

the radio amateurs handiouk

setting of C_{2} for each band, a homemade gadget stops the condenser at the proper setting. A thin brass disc about the size of a penny, the rim smoothed down with steel wool, is soldered to the end of the condenser rotor shaft. A piece of half-inch wide thin brass strip is fastened to the mounting angle on the condenser by a machine screw and projects slightly to the rear of the disc. A 1 -shaped spring made of thin phosphor hronze strip about lí6th inch wide is soldered to the brass piece. At the free end of the spring a V-shaped projection rides against the edge of the disc. When the proper setting of the condenser is found for a band, a small notch is filed in the disc so that the "V" fits into it. When the condenser is turned, the dise slides along the spring until the " V " slips into the notch and locates the desired setting.

In the i.f. amplifier both transformers are the interstage type, since the output
transformer works into a plate detector. The plate-type detector was used for several reasons, chief among them being the fact that it does not load its input circuit as does a grid-leak detector, thus making for better selectivity; the plate current is negligible, reducing battery drain; and it can handle fairly large signals so that reason-

F1G: 1504-TOP VEEW OF THE THREE-TLHE SIHPEK 'The perimeability-tined i.f. and b.e. iransformers arv Hong the rear adge of the ehassis. Plog-in escillator and dolector coils, with sepurate tuning controls, are used. 'Thc. mass tube is the 6C:86; the matal tulme nearent the panel in then 6 K 8 niver-ompillator.

emergenct anil portable boulipuent

FIG. 1506 - A ROTTOM VIEW GF TIIF RECEIVER
The detector tuning condenser is ut the left and the oscillator padding condenser, with its band-setting "atops," at the right. Antenna conncctions are the twisted leads going through the rear edge of the chassis at the left.
chassis $8^{\prime \prime}$ wide, $41,2^{\prime \prime}$ deep and $2^{\prime \prime}$ high. The panel is $81 / 2$ by $61 / 2$ inches: both chassis and panel utilize $1 / 16$ thinch thick aluminum.

The i.f. is lined up in the normal fashion with a test oscillator or, lacking an oscillator, it can be lined up on the noise by turning on the b.f.o. and adjusting the i.f. transformers for maximum hiss. In actual operation, the b.f.o. is tuned off the intermediate frequeney by about 1000 cycles or so, to give a slight single-signal effect.

With the i.f. aligned, the detector and oscillator coils for a band are plugged in. C_{3} is set near minimum and C_{2} slowly tuned from minimum until the high-frequency end of the band is reached. This point should be found with C_{2} at about half capacity on 1.75 Mc ., at about $5 / 8$ capacity on 3.5 Mc., and very nearly at full capacity on 7 Mc . The band-spread may then be checked by tuning C_{3} across its scale. The band-spread may be de-
normal 1000-cycle beat-note, however, nor on the intelligibility of speech.

The second 6 C 8 G section is the beat oscillator, using a permeability tuned transformer made for the purpose. The grid condenser and leak are built into the transformer. The plate is fed through the b.o. on-off switch and a $50,000-\mathrm{hm}$ dropping resistor, R_{5}, the latter serving both to reduce the current drain and to cut down the output of the oscillator to a value suitable for good heterodyning. Although not shown on the diagram, small capacitive coupling between the b,o. and the second detector is provided by a short length of wire, soldered at one end to the cathode terminal of the beat-oscillator section and with the other end twisted for a few turns around the lead from the 6 K 7 plate to T_{2}. This additional coupling is not strictly necessary, since there is some stray coupling between the two stages, but proves helpful in practice.

In the " A " battery circuit, one side of each heater is grounded; the others are connected in parallel and to the plus-A wire in the battery cable. Parenthetically, humless reception can be obtained with a 6.3 -volt filament transformer instead of the battery. In the "l3" circuit, screens and plates are operated at the same voltage. This not only gives best tube performance, but saves on resistors and bypass condensers and simplifies the circuit.

There is no on-off switch on the set, either for the "A" or "B" batteries. It was considered that this switching can be grouped more conveniently with the transmitter switching in a coördinated design.

The receiver is built on a folded aluminum
creased loy adding a turn or two to the oscillator grid coil in the case of the $1.75-$ and $3.5-\mathrm{Mc}$. coils, or increased by the reverse procedure. lı either case a new setting must be found for C. On 7 Mc . the band-spread can be increased or decreased by moving the tap toward or away from ground.

Operation of the receiver is simple. With the band-setting condenser at the proper setting (the device previously described simplifies this adjustment), tuning is done with the main dial. For c.w. reception, snap the b.o. switch to the on position, tune in a signal, and adjust C_{1} for maximum strength - or set the condenser at any point on the high-capacity side of resonance which gives the desired signal strength. The condenser gives adequate volume-control range, although it will not cut out a signal completely unless the signal itself is very weak. When using C_{1} as a volume control, always set it on the high-capacity side of resonance so that image response will be reduced.

Resonance on C_{1} is best detected by setting the main dial at a point where no signal is heard and then adjusting C_{1} for maximum background noise. If two such settings can be found, use the one with the highest capacity; the other is in resonance at the image frequency. As C_{1} is varied with a signal tuned in there will be a slight change in the beat-note frequency; this change will be gradual and always in the same direction until C_{1} has passed through resonance and approaches the oscillator frequency. In the latter region the change will be considerably greater, so the detector tuning should be kept near actual

THE RADIO AMATEUR'S HANDB00K

resonance or on the low-frequency side of it. The tuning is not really critical but, because of the relatively large-capacity condenser, shows a quite definite peak.

The T'ransmitter

Owing to the difficulty in securing power for emergency, portable and rural transmitters, their design will depend almost entirely upon the power supply available. Considering possible defects in hastily-improvised radiation systems, etc., it seems unwise to use less than 10 watts input to a power amplifier or 15 watts to an oscillator. However, powers greater than two or three times these values are not usually necessary, so selection of the power supply will depend almost entirely upon the pocketbook and other resources. The 300-volt, $100-\mathrm{ma}$. vibrator-transformers and genemotors represent a nice compromise unless it is possible to step into the 200 - or 300 -watt gasoline-driven generator class. The units to be described are designed for 25 to 30 watts input; larger designs will follow more or less conventional lines.

The best plan in providing for an emergency and portable transmitter is to utilize the basic exciter unit in the regular station. This not only ensures the availability of a reliable, efficient unit at all times but means a saving in parts and equipment. It represents no hardship to the permanent station to construct the exciter so it is compact, readily removable, and, above all, solidly and dependably assembled. If your present exciter is not adaptable to this use, plan the new one so it will be. Of course, provision for 6 -volt tubes throughout is essential, with the heater circuit so arranged

FIG. 1507 - SIMPLE AND PLRACTICAL IPORTABLE OK EMERGENCY TRANSMIT'IER
A receiving-type pentode ($2 A 5,42,6 F 6$, otc.) ar. ranged for crystal control or aself-resonant-grid oscillator circuit can be used with any kind of power supply under most circumstances.
that it can be connected to a storage battery without change. A suitable plate supply using a vibrator or genemotor of similar system should be available separately, arranged for ready connection. The best method is to have a socket and plug connector assembly, with one plug built into the transmitter and another, wired identically, connected permanently to the emergency supply.

The basic design for a miniature emergency or portable transmitter is shown in Figs. $1507-1508$. It is based on the use of a receiving type output pentode, such as the 2A5, 42 or 6F6. Such tubes are almost universally available because of their wide use in broadcast receivers. The normal requirement of crystal control can, if no crystal is available, be averted by the use of the tuned-plate untuned-grid circuit once general in amateur practice (but capable of emitting a now illegal signal and to be used only with suitable precautions).

The virtue of a transmitter of this type is that it can be readily and quickly constructed from junk-box parts. Indeed, in time of emergency it could be assembled in comparatively short time from the parts of a midget broadcast receiver. It is extremely versatile from the power supply standpoint, requiring only a storage battery for the heater and a few dry "I3" batteries or equivalent for plate supply. Transmitters of this type have been successfully operated in actual emergencies for considerable periods using only 135 volts from dry cells for plate voltage. At the same time, 10 watts input can be secured if a 350 - or $400-$ volt supply is available, enough for reasonably consistent work.

A milliamıneter in the positive lead is desirable for tuning purposes, although listening on the receiver with the antennas disconnected should suffice. If it is difficult or impossible to secure oscillation, connect short lengths of insulated wire to the plate and grid contacts on the tube socket, and twist them together, producing a common feedback capacity.

The simple oscillator-transmitter should be used only if nothing else is available. If a permanent portable-emergency transmitter is planned, it is advisable to use some form of oscillator-a mplifier combination, for its greater flexibility and better efficiency. One very logical combination utilizes a Pierce crystal oscillator (because it requires no tuning, regardless of crystal frequency) driving a beampower tube. It makes a versatile combination - only one tuning control is necessary - and it can readily be used as the regular-station exciter. Two examples are given: one, a companion unit for the previously described receiver, utilizing a $6 \mathrm{C} 5-6 \mathrm{~L} 6$ combination, and the other a 6F6-807 lineup.

The 6C5-6L6 transmitter, Figs. 1509-1511,

emergency and portable equipuent

is built on a chassis identical to that used for the receiver. Provision is made for switch selection of any one of four crystals, and 1.7-, $3.5-$, and $7-\mathrm{Mc}$. crystals all oscillate in the circuit with equal ease. Plug-in coils are used in the plate circuit of the 6L6, and no neutralization was found necessary on 1.7, 3.5 or 7 Mc. Fixed coupling coils were provided because the transmitter was built for use with

FIG. I:OR - CIRCUIT OF TIIE SIMPIAE POR'TABLE TRANSMITTEK
L_{1} - 80 turne No. 24 d.s.c. close-wound (this fignre is only approximate; remove turns experimentally until plate current nimimum ocenrs at deaired frequency).
La- 21 turns No. 20 enancel spaced the diameter of the wire, or to about $11 / 2$ inches.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-0.01-\mu \mathrm{fd} .610$-volt paper.
C_{4} - 200- $\mu \mu \mathrm{fd}$. midget variable (National STH-200).
$\mathrm{C}_{5}-500 \mu \mu \mathrm{fl}$. postage stamp mica.
K_{1} - $\mathbf{7 5 0 0}$-ohin l-watt carbon.
$\mathrm{R}_{2}-50,000$-ohm 2 -watt carbon.
RFC - 2.5-millihenry raf. choke (VationaI K-100).
lamp-cord line feed. The transmitter is keyed in the cathode of both tubes to enable break-in work and afford maximum economy of the power supply. The coils may seem small for the bands on which they are used, but they are designed for the proper L / C ratio and are effective.

The transmitter should be tested by removing the 6L6 from the socket and closing the key, with the power on. Crystals from 1.7 to 7 Mc. should oscillate readily. The addition

FIG. 1509 - TOP VIEW OF TILE 6C5-6L6 THANSMITYEH
Provision is made for four crystals which are sefected by the awitch on the panel. Only one plug-in coil is required for this three-band oscillator-amplifier transmitter.
of condenser C_{1} seems to keep the keying from being chirpy, and may need to be adjusted. However, values over $50 \mu \mu \mathrm{fd}$. seem to have no particular advantage. When first testing the transmitter, grid current should be checked by disconnecting R_{2} from ground and inserting a low-range milliammeter. Grid current through the $100,000-\mathrm{hm}$ resistor should range between 1 and 2 ma . on $1.7,3.5$ and 7 Mc.

A somewhat similar unit, ${ }^{3}$ but utilizing a 6F6-807 combination and built-in modulator, is shown in Figs. 1512-1514. The wiring diagram shows the essentials of the electrical design. It will be seen that a pi-section filter is used to couple the 807 to the antenna system used. When the switch arm is on the first tap, the antenna and coupler are completely disconnected from the final. This makes it possible to bring the final tank circuit to resonance, then cut in the network and antenna

FIG. 1510 - WIRING IDAAGRAM OF THE 6C5-6L6 TKANSMITIER
C_{1} - $50-\mu \mu \mathrm{fd}$. postage stamp mica.
$\mathrm{C}_{2}-0.002-\mu \mathrm{fd}$. postage stamp mica.
$\mathrm{C}_{3}-250-\mu \mu \mathrm{fd}$. postage atamp mica.
$\mathrm{C}_{4}, \mathrm{C}_{6}-0.005-\mu \mu \mathrm{fl}$, postage stamp mica.
$\mathrm{C}_{5}-\mathbf{0 . 0 1}-\mu \mathrm{fd}$., 600 -volt paper.
C7-1.4- $\mu \mathrm{fd}$. midget variable (Cardwell ZU-140-AS).
\mathbf{R}_{1} - $\mathbf{2 5 , 0 0 0}$-olim, $1 / 2$-watt.
$\mathrm{H}_{2}-100,000-\mathrm{ohm}, 1$-watt.
H_{3} - 1000 -ohm, $1 / 2$-watt.
[H_{4} - 10,000 -ohm, 2 -watt.
1RFC $-2.5-\mathrm{mh}$. r.f. choke.
$\mathrm{M}-2^{\prime \prime} \mathbf{0}-150$ ma. meter.
Sw. - 4-position crymtal switeh (Yuxley 1316L).

I_{1} - Band	d Turns	Length	Coupling Coil 'lurns
1.7 Mc .	46 No. 24 d.s.c.	Close-wound	11
3.5	25 No. 18 enant.	11/2"	7
7	13 No. 18 enam.	13/4"	4

Coupling coil is close-wound with push-lsack wire over lower end of Li.
with the switch, adjusting for proper load and resonance with the taps and the network condensers as with any other Collins coupler.

The modulation transformer is a standard receiver-type universal output transformer rated at 20 watts audio, and will carry 60 ma . d.c. each side. The plate load impedance of the 6 L 6 modulator tube working Class-A is ap-

 THE IOR'SABAE THANSMITYER
Wiring in straightforward und very simple. 'The antenna iwisted-pair feed line is connected to the t wisted pair coning out tho back of the set. Compling roils are wotmd aver the loware and of pach coil.
proximately the same as the r.f. load impedance at 25° watts imput. 'The primary ol the transiormer, connected as ath atuto-trimsformer, gives a good match and is large enough to handle the power nicely. The vaice roil windings are not used.

Still another arrangement, using a fivici Tritet wsiltator to drive a biff neutralizod

FIG. 1512-A COMPINHE 25- 'M 35-WATI THANSMITYEIR AVD MOHULATOR
The r.f. section is on the upper chassis, audio on the lower. (ircuits and const ruction are simple bit highly practical for the job. A complete case ham bepn removed to nliow the detaile of the rig.
final amplifier, is shown in ligs. $1515-1517$. It 300 volts it is a bit easier to run 100 ma . to the timal amplifier, with good efficiency. than in the other units, but the 6V6G oscillaton will draw slightly more current. Crystal switching facilitates frequency changing within an amateur band. Fixed cathode tuning eliminates one control and, because of the fact that there is more than sufficient excitation, does not hamper pertormance.

Inductive roupling between stages is mot only a convenient and eflicient form, but in this layont improves the nentralization. This is due to the fact that it permits the grid cirmit to be operated "floating" without a gromul return. Even without coil shielding there is mo perceptible feedback.

An antenna tuning unit is provided which is simple and yet sufficiently universal to acocommodate any type of end- or center-fed antennaz or tuned transmission line. A large majority of portable antennas are of these types. The circuit diagram shows how a parallel or series connection is made. An external link male of insulated hookup wire provides : simple athl effective maths of varying the coupling.

The single meter is switched between grial and pate circuits by means of SW2. This is the anly refinement in the way of parts that are mot absolutely essential; in all other elemonts the layout has been pruned to the bare minimum compatible with adequate performance. 'That no unnecessary sacrifiees have been made is evidenced by the overall efficiency and clean signal of the completed unit. Outputs of 20 to 25 watts are readily obtainable. On c.w. the keving is sharp and clean-cut, while on 'phone there is no trace of frequeney modulation.

Keying can be accomplished in a variety of ways. Individual requirements will dictate the final choice. If break-in is essential, the cathode of the 6 V 6 G can be keyed, for the high-mu 6 Ati does not draw excessive date current Center-tap keying of the 6A6 is satisfactory A good method is to open the grid circuit of the 6 A6; this is positive, and almost clickless The system shown in lig. 901 in Chaptor Nine also works very well.

Intenna bystems

It is difficult to specify standard antemna systems for emergency or portable applications, because in all cases the location is the determining factor. As with most things, the simplest antenna is ordinarily the best.

One of the simplest systems is the end-fr:l antenna. A single half-wave on the lowest frequency to be used will radiate plenty of energy, providing a good part of its length is: well above ground. If it is cut reasonably close to resonance efficient coupling is assured by

emergenct and portable rolipuent

 (RIC:HT)
Ihe receiver on the left ham loern ravamomal from a maball

rennecting directly to the plate (through a variable eondenser or to a supplomentary link-coupled tuned circuit.

If a transmission line is essential, it should be as well-constructed as possible. The single-wire-fed type is ideal if tho feed line can be bronght off the antenna at right angles. The feeiler should be tapped on the plate oril (through a 0.002 μ fd. fixed condenser) at the point where the desired loading wermes, making surn that the tank eirenit is tumed to resomance. 'lho tables shown in Chapter' Thirteen for this type of athtenna shoulal he followed closely.

A low-impedane two-wire line is excellent if the antenna is to be an integral

 volt.
$1 \therefore-150-\mu \mu$ fd. mid \cdot, в(к)volt.
 voll.
 1000-volt.
 25 -volt.
(it - 0.1- μ fil. pujer.
© is - $0.02-\mu$ fd. paper.
(:x $-25-\mu$ fd. electrolytic, 25-volt.
($; 4$ - 8- $\mu \mathrm{fd}$. electrolytic, 450-volt.
(:1॥ - 4- f fid. electrolytio. 451 -volt.
(i) $-200-\mu \mu$ fl. variable (Hammarlanai 119:-2(N)- 11).
(IIammarlind (1C-325-M).
(:1: - $\mathbf{2} 6 \mathbf{6})-\mu_{\mu} \mathrm{fd}$. variable (1Iammarlumal \1C-250-M1).
$\mathbf{R}_{1}-$ in, (000 ohmm, $/ 2-$ watt.
H_{2} - - $\mathbf{1 0 0 0}$ ohme, l-wate.
H: - $\mathbf{8 5}, 00$ ohme, l-watt.
H_{4} - $15,00 \mathrm{H}$ ohms, 2 -watt.
H_{s} - 250 ohme, 10 -wuit.
$1 \mathrm{R}_{6}-6000$ ohms, 10 -walt.
K_{7} - 100 ohins, 1 -watt.
$\mathrm{R}_{8}-1$ megolim, $1 / 2$-watt.
$\mathrm{R}_{0}-1000$ ohms, l-watt.
$\mathbf{R}_{11}-\mathbf{2 5 0 , 0 0 0}$ ohmm, $1 / 2-$ walt.
R_{11} - 5-megohm purtentiameler.

$1811-10,000$ gholix. 110-
$\mathrm{H}_{15}-\mathbf{5 0 , 0 0 0}$ whme. Iwatt. ohome. J-
1810-10,000 ohome. 1watt.
Sul - 6-point taps switc:h (Centralat) F -K121).

Sw2, Swa - S.1.M.1. switch.
SwA - D.p.d.t. ewitc:h.
T_{1} - Output tranmermer (see text) (lliordaraon T-13Sil).
1.1 - 1.75 and 3.5 Mr.: 12 lurns No. 18 d.cec.. iapped Tth turn from plate end. close-wound on $13 / 4$-inch diameter pligetin form.
i and 14 Mc.: 9t. No. 16 d.e.c. oceupying $11 / 2^{\prime \prime}$ on $13 /^{\prime \prime}$ form. Ant. tap 4th from plate.
$1.2-16$ turns No. 18 d.c.c. wire, clusewound on $13 / 4$-inch form, tapped every 9 turns for four taps, 10 turna lant tap.

THE RADIO AMATRUR'S HANDB00K

part of the portable station, since if it is too long it can be coiled-up out of the way. Rubber-covered lamp cord will make a fair feed line, the slight mis-match accounting for only a small loss of power. For the meticulous, one of the special 72 -ohm lines can be used.

The familiar tuned transmission line, of either the Zepp or center-fed types, is next in
accommodate any feeder length. The feeders should be kept short and direct.

Emergency antennas may be erected with insulation of dry hard wood, glass towel bars, porcelain ware, etc., with wire salvaged from broken communications (not power!) lines or similar sources. If it is impossible to erect resonant lengths of wire, impedance-matching

FIG. 1515 - LAYOUT VHEW OF TIIE OSCIILA-TOR-AMPIIFIER MORTABLE
Heginning with the crystal socket panel and cathode coil at left, the layont follows the circuit diagram. The Falinestock clips at the riglit rear, insirlated by steatite bushings, are the antenna output terminals.

preference. It is dependable in performance but somewhat more complicated to erect. The antenna coupling system should be extremely flexible with this type, with tapped coils and choice of series and parallel connections to
systems such as that shown in Fig. 1513 can be used. Tuning can be accomplished by plate milliammeter, neon bulb, or a flashlight bulb) in series with the antenna.
l'robably the most straightforward prepara-

FIG. 1516 - CIRCUIT OF TIIE GVGG-6AG TRANSMITTER

$\mathrm{C}_{2}-100-\mu_{\mu} \mathrm{fl}$. (each section) split-stator midget (Cardwell FU-100-A)).

Ci4 - . $00025-\mu \mu \mathrm{fl}$. midget mica.
C. $-.006-\mu \mu \mathrm{fd}$. midget mica.
C_{6} - . $002-\mu \mu \mathrm{fd}$. midget mica.
N - 15- $\mu \mu$ fid. mislget (Cardwell ZR-15-AS).
$\mathrm{K}_{1}-100,000-0 \mathrm{hm} 1 / 2$-watt carbon.
$11_{2}-50,000-$ olim $1-w a t t$ carbon.
$\mathrm{H}_{3}-15,000$-ohm 10 -wate wire-wound.
H_{4} - $1500-\mathrm{olim}$ 2-wate carbon.
$\mathbf{K}_{5}, \mathrm{~K}_{6}-50$-olim $1 / 2$-watt carbon.
SW_{1} - 7-pole single-t lirow rotary awitcli (only three points used).
SW/2 - Double-pole double-tlirow toggle switch.
M - 0-1.50 ma.
L_{1} - For 3.5-Mc. crystals: 14 turns No. 18 enam. on $1^{\prime \prime}$ diam. form to occupy $L^{\prime \prime}$ winding length.
1.2-3.5 Mc.: 33 turns No. 24 d.c.c., close-wound. 7 Mc.: 20 turns No. 24 d.c.e., close-wound.
l. 3 - (wound on sume form as l, z):
3.5 Mc.: 60 turns No. 30 d.z.c., close-wound, $1 / 4^{\prime \prime}$ from 1,2 7 Mc.: 32 turns No. 28 d.c.c., close-wound, $1 / 4^{\prime \prime}$ from L_{2}.
1.4- Wound on $13 / 4^{\prime \prime}$ diam. Inkelite or National XR13 coil form.
3.5 Mc.: 46 turne No. 20 enarn., spaced to occupy $21 / 2^{\prime \prime}$ lengtl.
7 Mc.: 28 turns No. 18 enam., spaced to occupy $2^{\prime \prime}$ length.
L. 5 - Wound on $11 / 2^{\prime \prime}$ diam. coil forms. Links are two turns each, wound loose for adjustment.
$3.5 \mathrm{Mc} . \boldsymbol{3 4}$ turns No. 20 enam., spaced to occupy $13 / 4^{\prime \prime}$ Ieneth.
7 Mr.: 21 turns No. 18 enam., spaced to occupy $11 / 2^{\prime \prime}$ length.

EMERGENCY AND PORTABLE EQUIPMENT

tion for different conditions is to include several lengths of rope with the portable antenna, so that a line may be thrown into a tree or dropped out of a window. Portable masts can be built but involve rather serious constructional difficulties.

Modulators

When power is limited and conditions bad, the proportionately higher communications efficiency and greater operating territory of c.w. often make its use preferable to 'phone. Yet in some instances, notably in emergency work where instructions and general traffic must be handled rapidly and in quantity, the greater speed of voice over code makes modulated transmission desirable.
Audio systems suitable for modulating the 6C5-6L6 and 6V6G-6A6 transmitters are de-
scribed elsewhere in the Handbook, in Chapter Twelve. The 6C5-6L6 unit can be modulated, at 300 volts, by a modulator unit giving 8 to 10 watts of audio, and a 15 -watt modulator will completely modulate the 6V6G-6A6 unit running at full input. Separate power supplies for modulator and transmitter are almost essential in such assemblies when vibrators or genemotors are used.

Regulations

The F.C.C. regulations covering amateur portable and emergency work have been revised, and should be studied thoroughly by every amateur. See Appendix.

Bibliography

${ }^{1}$ QST, March, 1934, p. 28; QST, April, 1935, p. 48. ${ }^{2}$ QST, November, 1937, p. 26. ${ }^{3}$ QST, September, 1938, p. 8 4 QST, August, 1938. p. 8.

FIG. 1517 - BOTTOM VIEW OF THE 6V6G-6A6 PORTABLE
All parts are identifiable by reference to the circuit diagram. Positioning of the neutralizing condensers to allow for adjustment from the top permite permanent installation in a box of suitable size.

 CIIDPTER SIXTEEN
 INSTRUMENTS AND MEASUREMENTS

The Amaters Laboratory- Monitors - Frequence Meters - Iollmeters and Milliammeters - Ohmmeters-Oscillators - V.T.
Iolmeters - Fiell sirength Meters - Oscilloscopess

Abstract

We: propar operation of all hat the very simplest of transmitters and receivers ealls for the use of a cortain number of instruments of various types. While the amateur station call bo operated successfinly with nothing more than a means for checking transmitter plate input and frequency - and for proper modulation, in the case of a 'phone transmitter - the progressive anateur is interested in instruments and measurements as an aid to better performance. The measure of the perfection of an amateur station, once a satisfactory transmitter and receiver have been provided, is the extent and utility of the auxiliary measuring and cherking apparatus provided.

$T_{\text {He following is a list of those instrmmento }}$ which every amatenr might well strive to include in his equipment:

Ahsorption frequency meter.

HIG. 160I - FREQUENCY-CALIBRITEII SIGNAI. GENEHATOR

[^19]Heterodybe frequelmey meter and signal generator.
100-kc. oseillatur.
Modulation meter.
Field-strength metor.
Audio oscillator.
Cathode-ray oscillosenpre.
Multi-range voltmeter.
Ohmmeter.
Vacuum-tube voltmeter.
Condenser checker.
(Of course, the usual assortment of milliammeters is assumed, as are neon bulbs and fashlight bulbs with pick-up coils, for transmitter adjustment. Ordinary light bulbs of various sizes with attached flexible leads should be at hand to make power output comparisons.

Representative instruments from the above list will be described in this chapter. Some of these can profitably be combined into multipurpose instruments; the mammer and extent to which this is done is left to the ingenuity of the individual amateur. It should be realized, however, that multi-purpose equipment is never as useful as its equivalent in separate instruments, and the latter are nearly always to be preferred.

If additional equipment is desired, the following instruments will also be found useful in the fully-equipped ham shack:

Beat-frequency oscillator.
Frequency-sweep rimuit for ascilloscope.
A.f. power output meter.
R.f. power output meter (consisting of light bulbs of graduated sizes whose luminosity per watt input has been calibrated against a light-sensitive eell actuating a milliammeter).

Tube checker.
Test amplifier (for checking mierophones, speakers, etc.).

Calibrated voltage divider (heavy-dut, potentiometer or decade box calibrateril in (l) or units, tens, etc.).

Resistance and capacity bridges.

INSTRUMENTS ANID MEASUREMENTS

Honitors Jor C. H .

Aside from current-indicating instruments. which must be purchased, one of the most useful instruments the station can have is a monitor, used for checking the quality of the emitted signal.

A monitor is a miniature receiver, usually having only a single tube, enclosed with its batteries in some sort of metal box which acts as a shield. It need not be a costly or elaborate affair. The circuit shown in Fig. 1602 illustrates the simplicity of a typical monitor.

FIG: IGO2 - SIMPIE: MONITXH

1.2 - .002- $\mu \mathrm{fd}$. midget mica condenser.

Sw -Single-pole toggle switch.
L_{1}, L_{2} - Wonnd on $1 / 2$-inch 4 -pin formen wilh No. 30 d.s.e. wire. The number of turns is given in thin table:

Hand	1,1	1,2
1750 kc.	70	20
3500 kc.	35	11
7000 kc.	$\mathbf{1 5}$	6
$14,000 \mathrm{kc}$.	5	4

The monitor can be built in any metal container large onough to Joold it, a small-size $2: 21 / 2-v o l t{ }^{2} \boldsymbol{B}^{\prime \prime}$ hattery, and a flamhlight cell.

The requirements for a satisfactory monitor" for checking e.w. signals are not difficult to satisfy. It should oscillate steadily over the batids on which the station is to be active; the tuning should not be excessively critical, although the degree of band-spreading ordinarily considered desirable for receivers is not essential; the shielding should be complete enough to permit the monitor to le set near the transmitter and still give a good beat note when tuned to the fundamental frequency of the transmitter (this is often impossible with the receiver because the pick-up is so great); and it should be constructed solidly enough so that it can be moved around the station without the necessity for retuning when listening to a fixed signal.

A more elaborate instrument offering these qualities to a greater degree is shown in Figs. $1603-04$. The dual triode provides both an oscillating detector and an audio amplifier. Plugging the receiver headphones into the jack
turns the monitor on. Rugged construction affords stability, good-sized batteries give long life, and the audio stage provides a usefully strong headphone signal.

The grid leak, R_{1}, can be increased in value if the monitor shielding is good and the transmitter of low power. Larger values give better sensitivity, hut cause blocking in strong r.f. fields.

Monitors for 'Phone

Any type of simple detector circuit with a means for picking up is small amount of r.f. from the transmitter can be used as a 'phone monitor. The pickup coil need not even be tuned, although the monitor will be considerably more sensitive when tuned.

A satisfactory type of 'phone monitor, using - a Type 55 or equivalent tube as a diode detector and audio amplifier, is shown in Fig. 1605. The circuit $L C$ is tuned to the transmitter frequency; any constants which satisfy this requirement can be used.

Because of the tuned pickup and audio amplification, a monitor of this type will be quite sensitive. Besides its primary use for audio quality checks, it can be used for checking hum and other carrier noises.

The 'phone monitor usually must be used with a headset, since a loud-speaker will cause audio feed-back through the mierophone.

$$
\text { FHC: } 1603 \text {-TWO-NTACE MONITOR }
$$

(:2-25- 2 ffi. padding condenser (Hammarlund APC25).
(:3-100-mpfi. nidget mida coondenarer.
(4 - $100-\mu \mu$ fi. regeneration condenmer (thammarlamd IIF100).
C 5 - $250-\mu \mu$ fd. midget micu condensers.
H_{1} - $100-000$-ohm. $1 / 2$-watt fined resiator (nee text).
T_{1} - Audio tranaformer. 3:1 ratio ('thordarmont T-13A34).
HFC - 2.5-mh. r.f. chokew.
J - Two-circuil 'phone jack.
i. - Coils wound for varions bands on $11 / 2$-inch plug-in forms (Hammarlund SWF-4):

Band	No. Turn	Wire Size	Winding Length	Cathode Tap	BandSpread
3.5	10	No. 24 d.s.e.	11/8"	4	:38
7	27	No. 20 e.	15/8"	3	
1	13	No. 18 e	$11 / 8^{\prime \prime}$	2	$41 / 2$

THE RADIO AMATEUR'S HANDB00K

FIG. 1604 - TWO-STAGE MONITOIR WITII SELFCONTAINED BATTERY SLIPIIY

CIECKING THE THANSMITTEE FIREQUENCY

INN THE absence of more elaborate frequencymeasuring equipment, the receiver may be used to give at least some idea of transmitter frequency. To do this it is necessary to calibrate the receiver dial settings in terms of frequency. A quite accurate idea of band limits can be obtained by listening to other amateur stations, noting whereamateur activity stops at each end of the band.

If operation near the edges of the band is contemplated, however, present amateur regulations require more precise methods. The receiver may be checked against A.R.R.L. Standard Frequency Transmissions, schedules for which appear regularly in QST. If the receiver is well-made and has good inherent stability, this calibration may be relied on to within perhaps 0.1 per cent. Alternatively, the calibration may be transferred to the monitor by tuning the latter to "zero beat" - the silent space between the two beat notes with the standard frequency signal in the receiver. Calibration should not be attempted until either the receiver or monitor has been thoroughly "warmed up," i.e., operating for at least two hours.

The transmitter frequency can be checked by listening to the oscillator alone in the receiver, with the power amplifier off. If even
this signal is too strong and blocks the receiver, listen first on the monitor until the transmitted signal is heard, and then listen for the monitor on the receiver with the transmitter off. The frequency of the transmitter will, of course, be that of the monitor.

Absorption Frequency Meters

The simplest type of frequency meter consists of a coil and condenser, tunable over the frequency range desired. A frequency meter of this type, when tuned to the frequency of the transmitter and loosely coupled to the tank coil, will extract a small amount of energy from the tank. The energy thus extracted can be used to light a small flash-light lamp, connected as shown in Fig. 1606. Maximum current will flow in the lamp when the frequency meter is tuned exactly to the transmitter frequency, hence the brightness of the lamp indicates resonance. A more accurate indication may be obtained by substitution of a thermogalvanometer for the lamp. Better yet, a vacuum-tube voltmeter can be used as the indicator. Although this type of frequency meter is not well adapted to precise measurement of frequency, it is useful in a variety of ways.

Figs. 1607-09 show an absorption-type frequency meter equipped with
a diode-rectifier vacuumtube voltmeter as an indicator. The sensitivity of the indicator depends on the range of the meter. Any instrument from $0-200 \mathrm{mi}-$ croamperes to $0-5$ milliamperes may be used, with $0-1 \mathrm{ma}$. the most successful for average amateur work.

Calibration of the absorption frequency meter calls for a receiver of the regenerative type to which the coil in the meter can be coupled. With the detector oscillating weakly, the frequency meter should be brought near the detector coil and tuned over its range until a setting is found which causes the detector to stop oscillating. The coupling between meter and receiver should then be loosened until the stoppage of oscillations occurs at only one spot on the meter tuning dial. The meter is then tuned to the frequency at which the receiver is
FIG. 1605-SIMPLE PRHONE MONITOH
$C_{1}-250-\mu \mu \mathrm{fd}$. mica. $\mathrm{R}_{1}-.5$ megohm $1 / 2$-watt. C_{2} - 0.0 I - - ff. 200 -volt. R_{2} - 2 -megohm $1 / 2$-watt. $\mathrm{C}_{3}-0.1-\mu \mathrm{fd} .200$-volt. $\mathrm{R}_{3}-3500$-olhm $1 / 2$-watt.
 $\mathrm{C}_{5}-1-\mu \mathrm{fd} .400$-volt.

FIG. 1606-RASIC ABSORPTION FREQUENCY METER CIRCUIT

376

INSTRUMENTS AND MEASUREMENTS

set. If the receiver is set on several stations of known frequency, a number of points for a calibration curve can be obtained for each frequency-meter coil.

The absorption frequency meter is particularly useful for checking the tuning of a transmitter stage (to ensure that the stage is not tuned to a harmonic instead of the desired frequency, for instance), for determining the frequency of parasitic oscillations in the transmitter, for finding the frequency range covered by regenerative receiver coils, etc.

For transmitter work, a flash-light lamp or other indicator is not at all necessary, since resonance will be indicated by a flicker in plate current of the stage being checked as the meter is tuned through resonance.

The absorption frequency meter can also be used for comparative measurements of transmitter harmonic output under various adjustments.

Heterodyne Frequency Meters

The heterodyne frequency meter somewhat resembles the monitor in that it is a small oscillator, completely shielded, but the refinement and care in construction is carried to a high degree so that the frequency meter can be accurately calibrated and will retain its calibration over long periods of time. The oscillator used in the frequency meter must be very stable; that is, the frequency of oscillation at a given dial setting must be practically the same under any conditions. No plug-in coils are usedin the frequencymeter; one solidly built and firmly mounted coil is permanently installed in it, and the oscillator

C_{1} - $500-\mu \mu \mathrm{fd}$. variable (National EMC-500). $\mathrm{C}_{2}, \mathrm{C}_{3}-50-\mu \mu \mathrm{fd}$, midget nica.
H_{1} - 40,000 -ohm, $1 / 2$-watt.
$\mathrm{R}_{2}-100$-ohm potentiometer (Centralab WW).
I. - Ilug-in inductances, wound (except L_{1} and
1.6) on $13 / 4$-inch National $\times 1 \mathbf{R}-13$ forms. I_{1} on 3 -jinch bakelite form. Winding length app. $23 / 4$ inches.

Coils	Approx. lange	No. Turns	Wire Size
1.1	170-500 kc.	180	No. 28 e.
1.2	500-1300 kc.	100	No. 24 d.c.c.
1.3	1.5-4.5 Mc.	33	No. 14 tinned
I/4	3-9 \1c.	15	No. 14 *
I.5	8-2.5 Mc.	6	No. $14{ }^{6}$
I. 6	20-60 Mc.	$1 / 2$	1/4' c.t.
	1.J-volt dry cell (liurgess 4FA).		

FIG. 1609 - JACK-TYPE FEED-THROUGH INSUIATORS PROVIDE COIL MOUNTINGS IN THE ABSORPTION FREQUENCY METER
All parta are mounted on the panel and end wall of the $6 \times 41 / 2 \times 10$-inch aluminum hox. The battery is renewed loy removing the rear plate.
covers one band only. A low-frequency band is used for this purpose, and when the meter is to be used on the higher-frequency bands its harmonics instead of the fundamental oscillation are used.

The frequency meter must possess a dial which can be read precisely to fractions of divisions. To obtain accuracy it is necessary to read the scale to at least one part in 500; ordinary dials such as are used for receivers are not capable of such precision. The National $4^{\prime \prime}$ Type N and $6^{\prime \prime}$ Type N and NW dials are provided with vernier scales for reading to a tenth of a scale division
 (one part in 1000) and are well suited to this work, as is also the type PW. The General Radio 704 and 706 series dials also are excel-

FIG. 1607-ABSORPTION FREOUENCY METER कITHVACUUM TUBE VOLTMETER RESONANCE INDICATOR
Plug-in coils cover the range of approximately 170 kc . to 60 Mc . A dial reading to 1 part in 1000 aflords over-all calibration precision of about 0.25 per cent.

FIG. 1610 - IDOITBLE SIILELDING IREDUCES STRAY RADIATION IN TIIE, FREQUENCY-CALIBRATED SIGNAL GENBRATOR
The aquare whield shown on the end normally eovers the Browning
output tuning ammonthy. Inothom pate und dunt cover romplett: the
whielding.
lent. There are a few other good dials on the market. Care should be used to select one which has fine lines for division marks, and which has an indicator very close to the dial scale so that the readings will not be different when the dial is viewed from different angles.

The heterodyne frequency meter also can be used as a monitor if desired.

One of the most stable oscillator eircuits, and therefore most suitable for the frequency meter, is the electron-coupled circuit. The oscillation frequency is practically independent of moderate variations in supply voltages, provided the plato and soreen voltages applied to the screen-grid tube used are properly proportioned. Furt hermore, becanse of the nature of the circuit it is possible to take output from the plate with but negligible effect on the frequency of the oscillator. A third feature is that strong harmonies are generated in its plate circuit so that the meter is useful over an extremely wide range of frequencies.

Mechanical considerations are most important in the construction of a frequency meter. No matter how good the instrument may be electrically, its accuracy cannot be depended upon if it is flimsily built. Mount everything solidly; make ronmertions with stiff wire and plare all loads so they camoot be moved in the eonses of ordinary hamdling.

Frequency-Calibrated .ignal Generator

An instrument designed to meet several needs around the amateur station including that of accurate frequency measurement is pictured and diagrammed in Figs. 1601 and 1610-12.

The unit comprises an electron-coupled type "f frequency meter, harmonic amplifier and uttenuator, modulating audio oscillator, and prwer supply.

The fill has its grid eirenit tuned over the
range 870 to 1030 kr ., the harmonics covering all existing and prospective amateur bands. Especial care has been taken to build an oscillator of high inherent stability for permanence of calibration and high re-set accuracy.

Since the greatest source of frequency drift in a tuned circuit is the inductance, care should be taken to isolate the coil from thermal variations. Its location is therefore as remote as possible from heat sources. The coil is wound on a 3 -inch length of $7 / 8$-inch hard wood dowel (preferably of mahogany), thoroughly dried and heavily doped. The coil form is mounted in a National PB-10 coil shield with spade lugs. Around the shield a heat-insulating box is constructed from $3 / 8$-inch thick pieces of balsa wood (obtainable from any model-builders' supply house), assembled with cellulose nitrate cement.

The calibration re-set control is of the inductive type, since variations will be largely from this source. It consists of a shorted 3-turn loop of heavy wire about 1 inch in diameter, rotated over a 90° angle at the ground end of the coil. With the loop rlosely coupled to the coil an appreciable change in inductance orcurs, while at right angles the coil maintains approximately its true inductance. The loop is soldered to the end of a $1 / 2$-inch shat in panel bearing mounted on the coil shield. This shaft also goes through another bearing on the panel, giving additional rigidity.

Further stabilization of the oscillator frequency is provided by (1) the Colpitts electroncoupled oscillator circuit, (2) the heavily-built tuning condenser with double-spaced plates. (3) the use of low-drift impregnated silverplated padding condensers, and (4) voltage stabilization of the d.c. plate-and-screen sul)ply by the VR-105 regulator tube.

The output of the nscillator is impedanceresistance compled to a 6 K 7 harmonic amplifier. A inanufactured band-switching assembly in the plate circuit of this amplifier provides tuned output relatively free from harmonics throughout the five low-frequency amateur bands. Since the tuner is supplied equipped for grid-circuit use, it must be revamped by removing the grid condenser and leak, etc. Taps on the output coils provide low-impedance signal output through a shielded coupling lead. Applying negative bias to the 6 K 7 's suppressor grid enables effective attenuation of the output signal. This provides the equivalent of a reliable test oscillator for

INSTRIMENIS ANI MEASLREMENTS

general receiver alignment work. etc. The power supply output of approximately 350 volts d.c. is divided in half to provide this bias, about 175 volts remaining for plate voltage.

Since a modulated signal is usaful for much rearover test work, a sine-wave athdio oscillator which suppressor-grid mondalatere the oserillator to about 30 per reat at roughly 100 revers is imeluded. Fin procise malibration work, the useillatom should be calibrated athd used with the modulater switell off.

Calibrating the Frequeney Meter

When the frequency meter is fin-

 SEFX AT THE IPPEK LEFFT
The wood surrounds an uluminnm coil shield. Juat below is the audio oscillator gronp, with condensers and reaistorg atrung between insulated terminal wtrips for wiring convenience.
ished it must be calibrated before it can be put into service. First its tuning range should be ehecked to he certain that it covers the band with a little overlap at each end. This: ran be done by checking against a recoiver rovering $1750-2050$ or $3.010-1000 \mathrm{ke}$.

Ifter the coverage has heen checked, the rurrent issue of QsiT should be consulted for information as to the next tranmission by A.R.R.I. Standard Frequency stations for ratibration purposen

(:) - $125-\mu \mu \mathrm{faf}$. variable (Vational I'V-1, double-spuced).
(: - 3.50- $\mu \mathrm{ff}$. Iow-drift condeniser (Sickles Silver-Cap).
C - I $100-\mu \mu \mathrm{fd}$. low-drift condenser (Sickles Silver-Cap).
(:1-100- $\mathbf{~} \boldsymbol{f}$ fd. fixed mica (Aerown 1455).
C_{i} - $0.005-\mu \mathrm{fd}$. midget fixed micus.
(: $-0.001-\mu \mathrm{fd}$. midgel fixed micn.
i:- $0.002-\mu \mathrm{fd}$. fixed micas (Cor-nell-Dubilier 4-602).
(is - 0.1- μ fil. 400-voit tubular baper.

$\mathrm{E}_{12}-16-\mu \mathrm{fd}$. 4.50 -volt electrolytic.
H_{1} - $\mathbf{5 0 , 0 0 0 - o h m}$. I-watt (112: metallized).
\mathbf{H}_{2} - 10,000 -ohm. $1 / 2$-watt.
H_{3} - $\mathbf{5 0 0 0} 0 \mathrm{ohm}, 1 / 2$-watt.
K_{4} - 7500-olim, $1 / 2$-watt.
Rts-I-mekohm. $1 / 2$-watt.
K_{6} - 500 -4hm, $1 / 2$-walt.
H_{7} - $50,000-\mathrm{ohm}, 1 / 2$-wintt.
if: $100,000-o h m$. 2-watt. wirewound pot.
K_{s} - 800 -ohm, $1 / 2$-watt.
\mathbf{R}_{10} - 0.5 -megohm, $1 / 2$-watt.
\mathbf{R}_{11} - ED.MOR-ohm. $1 / 2$-wht .

t. 1 - 9.5 Inrms Vo. 28 d.\&.e., elomewound on $7 / 8$-inch hardmond dowel (see texi).
1.2- 10.75-hemry iron-core reatior (Thordurson T-8IC:15).
1.:3-14-henry filter rhoske ('Itwordarson T-13(:27).
KFQ:2.5-mh. r.f. chokem.
IRFG: - It-mh. universal-wound KF' rlahe (Sickles SC-102).
I- $\boldsymbol{j}(\mathrm{N})$-volt $\boldsymbol{r}, \mathrm{t}$, pawer tranaforim--r. with 6.3-volt 1-ampr. til. ('lhordarmon '1'-70K21).

THE RADIO AMATEUR'S HANDB00K

The procedure is to tune in the standard frequency station on the receiver with the detector oscillating, then back off the regeneration control until the detector stops oscillating but is still giving a great deal of regenerative amplification. With a superhet receiver the signal would first be tuned in with the beat oscillator on; after setting the receiver to zero beat with the incoming signal the beat oscillator should be shut off. The dial on the frequency meter should then be turned until the signal from the meter is heard to beat with the standard frequency signal. Adjust the frequency meter to give zero beat and note the dial reading. A number of these points will give a complete calibration and make possible the drawing of a curve on graph paper.

Caution must be employed when using a heterodyne frequency meter in conjunction
with a superheterodyne receiver, since signals may be heard on at least two spots on the receiver dial; one is where the meter-frequency equals the receiver frequency, the other where the meter-frequency equals that of the h.f. oscillator in the receiver. Sometimes an image frequency is also received. To check, detune the receiver slightly from zero beat (with the b.f.o. turned off). If the meter is not on the signal frequency a varying audio note will be heard; if it is correctly located, tuning the receiver slightly will cause no change in the beat note.

100-Kc. Oscillator

Another accurate method of frequency calibration, especially useful when the calibration is applied directly to the receiver and must be checked frequently, is that employing a $100-$

FIG. 1613 - CIRCUIT DIAGRAM OF TLIE 100-KC. OSCILLATOR, HARMONIC AMPLIFIER AND MIIITIVIBIRATOR COMBINATION
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fd}$. variable (National
ST-100).
C_{2} - $140-\mu \mu \mathrm{fd}$. variahle (Hammar-
lund IIF-140).
$\mathrm{C}_{3}-0.0011-\mu \mathrm{fd}$. fixed mica, low-
drift (Sickles Silver-Cap).
$\mathrm{C}_{4}, \mathrm{C}_{5}-250-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-\mathbf{0 . 1 - \mu \mathrm { fd }}$. paper, $400-$
volt.
C_{10} - 0.01- $\mu \mathrm{fd}$. paper, $\mathbf{4 0 0 - v o l t . ~}$
$\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}-\mathbf{0 . 0 0 2 - \mu \mathrm { fd } .}$ mica.
C_{15} - $10-$ to $25-\mu \mu \mathrm{fd}$. mica, if uaed.
C_{16} - Dual 8- $\mu \mathrm{fd}$. electrolytic, 450-
volt.
$\mathrm{H}_{1}-\mathbf{2 5 0 , 0 0 0}$ ohms, 1 -watt.
H_{2} - $\mathbf{5 0 , 0 0 0}$ ohms, 1 -watt.
$1 \mathrm{l}_{3}$ - 25,000 ohms, 1 -watt.
$\mathrm{H}_{4}-100,000$ ohms, 1-watt (I.R.C.
F-1).
$\mathrm{R}_{5}-\mathbf{5 0 0}$ ohms, $1 / 2$-watt.
$\mathrm{R}_{6}-\mathbf{2 5 , 0 0 0 - o h m}$ volume control.
$\mathrm{R}_{7}-15,000$ ohms, $1-$ watt.
$\mathrm{R}_{8}-50,000$ ohms, $1 / 2$-watt.
$\mathrm{R}_{9}-30,000$ ohms, $1 / 2$-watt.
$\mathrm{R}_{10}-20,000$ olıms, $1 / 2$-watt.
R_{11} - 15,000 -ohm volume control.
\mathbf{R}_{12} - 300 olims, $1 / 2$-watt.
$\mathbf{R}_{13}, \mathbf{R}_{14}-2500$ olmms, 1 -watt.
RFC- $2.5-\mathrm{mh}$. r.f. choke (Na tional li-100).
$\mathrm{S}_{\mathrm{w}}, \mathrm{S}_{\mathrm{w}}$-S.p.s.t. toggle switch.
T- Power-transformer, 250 v. d.c. at 40 ma . with $6.3-$ and $5-$ volt windings (Thordarson T131K11).
L $_{3}$ - $\mathbf{7 - h e n r y}, 40$-ma. choke (Thordarson T13C26).
$\mathrm{L}_{1}-100 \quad$ kc. - National H - 100 choke with cathode tap connected between lat and 2nd pies from ground.

100 kc . - 130 turns No. 30 enameled, tapped 30tly turn from ground; on $11 / 2$-inch form.
$1.2-550-1200 \mathrm{kc} .-130$ turns No. 30 enameled.
1200-3300 ke. - 70 turns No. 22 enameled.
7500-3300 ke. - 22 turns No. 22 enameled, length 1 inch.
15-6.8 Mc. - 11 turng No. 22 enameled, length 1 inch.
32-13.5 Mc. - 5 turns No. 22 enameled, length 1 inch.
56 Mc. - 2 or 3 spaced turns on l-inch form, or air wound.
All except $56-\mathrm{Mc}$. coil wound on 11/2-inch forms (Hammarlund).
Output links may be adjusted to give desired signal strength in receiver.

INSTRUMENTS AND MEASUREMENTS

kc. oscillator. Such an oscillator can be made very simply and inexpensively. To check the frequency of an oscillator operating at 100 kc . it is not necessary to set up elaborate calibrating apparatus nor is it necessary to use a crystal, for the frequency of the oscillator may be set by beating one of its harmonics against one of the many broadcast signals of stations operating at exact multiples of 100 kc . These signals, which are accurate to better than 50 cycles (usually within 10), are commonly available at all but a few of the twentyfour hours at most points in this country and Canada. The b.c. signal need be only strong enough to make identification possible. Once set, the oscillator provides accurately calibrated signals every 100 kc . from 100 kc . upwards in frequency.

The most dependable direct frequency check can be obtained from the mid-day standard-frequency transmissions of WWV. Detailed schedules are published in QST. In addition, this station is generally audible on 5000 kc. from 4 P.m. to 2 A.m. E.S.T. Mondays through Fridays, with modulation at 440 cycles interspersed with voice announcements.

Such an oscillator is shown as the upper-left-hand section of Fig. 1613. It can be built separately or in conjunction with the other units shown.

First considering the oscillator alone, initial calibration is quite simple provided only that at least two b.c. stations operating on multiples of 100 kc . may be heard. In most cases it will not be necessary to connect the oscillator to the b.c. receiver. The procedure of setting the oscillator to 100 kc . is as follows: First, tune in a b.c. signal at a multiple of 100 kc. such as $700,800,900$, or 1000 kc., etc. Be sure of the identity of the station, since a difference of one channel (10 kc .) will mean an error of about 250 kc . at 14 Mc . Reduce the beat to zero, being very careful of the adjustment. For greatest accuracy, listen for the slow beats on modulation. Now tune the receiver to a second signal at a multiple of 100 kc . If the oscillator is operating at 100 kc ., it should zero beat with all signals at exact multiples of 100 kc . If the oscillator is not operating at 100 kc . it may be adjusted to zero beat with the first signal but at the same setting will not zerobeat with other signals at $100-\mathrm{kc}$. multiples. In this case, capacity or inductance must be adjusted. As a matter of fact, if any beat note at all is obtained, it will probably be the cor-

HIG. 1614 - 'IIIS LNIT WILL GENEIKAIE SIGNALS FOR FREQUENCY CIIECKING AT INTELVALS OF 10 KC . AT ANY POINT IN THE IIIGIH-FREQUENCY SPECTRUM IN THE IIIGII-FREQUENCY SPECTRUM
With continuous checking againat a standard-frequency signal, the accuracy is limited only by the accuracy of the standard and the accuracy is limited enly by the accuracy of the standard and
the precision with which the oscillator can be adjusted to zero beat with it.
rect one since the nearest other frequencies which would produce a beat with a signal at say 700 kc . would be 116.6 or 87.5 kc . which would require an appreciable departure in capacity or inductance from the correct values.

After the oscillator has become thoroughly warmed up, it should hold its calibration over periods of several hours. Continuous operation is not necessary, however, because it is a simple matter to check against a b.c. signal whenever a high-frequency check is desired. by the fact that it affords calibration points only at $100-\mathrm{kc}$. intervals. By the addition of a locked-in 10-kc. multivibrator type of oscillator, coverage almost to within beat-note range can be achieved.

This multivibrator occupies the lower left corner of Fig. 1613. At the upper right is a 6L7 harmonic a mplifier driven by the $100-\mathrm{kc}$. oscillator. The multivibrator output is fed to the injection grid of the 6L.7 and thereby modulates the $100-\mathrm{kc}$. carrier at $10-\mathrm{kc}$. intervals by its own fundamental and harmonics.

Initial adjustments are made with $S W_{1}$ closed, cutting out the nultivibrator. The $100-\mathrm{kc}$ oscillator is set as described above. The proper coil - L_{2} - for the band in use is plugged in, and C_{2} is adjusted for maximum strength in the receiver. If overloading results, the gain control, R_{6}, is backed off or the link coupling to the receiver input reduced. Pick up several $100-\mathrm{kc}$. points on the receiver dial and note their location.

THE RADIO AMATEUR'S HANDROOK

Then open $\boldsymbol{r l} \mathrm{H}_{1}$. I whole series of signals should appear across the receiver dial, those originally noted at the $100-\mathrm{ke}$. settings being the loudest. Tune from one of these settings to the other, counting the number of beats in between. If the number is other than nine (denoting $10-\mathrm{kc}$. intervals), adjust the frequenc: control, R_{11}, until the right number nccurs.

If sufficient care has been used in calibration, frequencies at $10-\mathrm{ke}$. intervals throughout the radio spectram will be avalable with all aceuratey from day-to-day of perhaps 0.03 per cent (about $\overline{0}$ ke at It Mc.). Fur gomed arcuracy the instrument should be thoroughty warmed up and all rontrols should be set for the desired conditions and left unchanged (ineluding multivibrator and amplifier controls). Immediately after calibrating, an accuracy of perhaps 0.01 per cent or better can be expected if sutficient citre is used.

As an alternative to the $100-\mathrm{kc}$. e.c. oscillator shown, at $100-\mathrm{ke}$ e crystal oseillator could readily be used. With temperature control or a low-drift arystal such th the Bliley NOC-100 unit, a highly satisfactory secombary frequeney stambaral can be constructed.

Beyond their customary uses - calibrating receivers and other instruments, checking trabsmitter frequency, etc. - such instruments ats the $100-\mathrm{ke}$. oseillator-multivibrator atul the frequency-calibrated signal generator can also be used as direct transmitter ferqueney controls. It is usually necessary merely to run a coupling link to the gride circuit of the crystal oscillator stage in the transmitter, replacing the crystal. A stable, dependable e.c.o. results.

l. II. F. Froquency Cherkins- herher "ires

The methods desoribed for checking transmitter frequency on the lower frequeney bands ate often umsuited for wise on the ultra-high frequebries. "The methods that are simplest and most satisfactory in this region are hased on direct measurement of the physical characteristics of resonant linear circuits

The simplest method is to cut the anteman wire to 95 per cent of the actual wavelength desired, then tuning the tramsmitter until the athenma is operating most effertively. This

FIG. 1615- IESIIEIR WIRE: NINHI
is, of eourse, extremely approximate and would serve only as a preliminary measure.

The next simplest scheme is to compare the frequency of one's own transmitter by tuning it on the receiver and comparing the setting with other stations of known wavelength. This is readily possible in districts where plenty of signals are available for the purpose, but at present would be impractiond on the $21 / 2-$ or 1^{1}-meter bands. (On the latter lands, or even on is meters, the problem is readily solved if a lincar type ascillator is used. With this tyme of uscillator (described in Chapter "l'welve) the wavelength can be measured direath from the rods which constitute the tuming circuit.

For the very short waves, probably the most practical method involves the use of two parallel wires - known as Lecher wires - on which standing waves may be measured directly. Such a Lecher system may be set up readily and forms a valuable addition to the ultrahigh frequeney worker's equipment.

A typical Lecher system (lig. 1615) ronsists of two No. 18 bare ropper wires spaced ahout three inches and mounted on stand-off insulators of a length of board. 'The wires should be sereral wavelengthe loug. The wires are left free at one end while at the other they are connected to a one- or two-turn coupling coil of about the diameter of the tank coil of the transmitter. This coupling coil is placed near the transmitter coil. In operation, a sliding bridge - consisting of a piece of stiff bare wire on the end of a two-foot wooden dowel is run slowly down the length of the wires until it point is reached where the oscillator plate. current makes a sudden fluctuation. The point is marked. The bridge is then moved farther down the wires until a second node is located. This also is marked. The same procedure is then followed to locate a third node. At this stage, the distance between each pair of marks: is measured. If tho lecher system is operating correctly and if it is mounted well clear of surrounding objects, the distances will all be the same and will represent quite accurately one half of the wavelength being measured. An alternative sliding bridge - useful when thr oscillator has plenty of output - is a flashlamp bulb with wires soldered to its contacts. These wires are hooked over the wires of the lecher system and the lamp moved along until the various points are located at which the lamp lights brightest. The points will be extremely critical.

The same general prodedure may be used to calibrate a receiver - the indication in this, case being obtained by the receiver going out of oscillation as the bridge pusses over the vilrious nodes.

Once the approximate calibation has been whtained in this was it rath be cherked by

INSTRUMENTS ANI MEASUREMENTS

romparing harmonies profuced by osedlators on harmonically-related lower frequency bands.

The uscillator-multivibrator combination can be used for u.h.f. chereking by using $1000-\mathrm{ke}$ and $10-\mathrm{Mc}$. coils in the oscillator. For accurate work, the receiver should first be set accurately on $10,000 \mathrm{ke}$. with the $100-\mathrm{kc}$. roil in the oscillator. The $10,000-\mathrm{ke}$. coil is then inserted in the oseillator and it is retuned to zero beat. The oseillator frequencies will then be spaced at $10-\mathrm{Mr}$, intervals, making it easy to count from 30 Mc . or any other reference frequency. With 50, 60 and 70 Mc . identified, the $1000-\mathrm{kc}$. coil can be plugged into the oscillator, whereupon 1-Mc. intervals are available. If necessary, ewen the $100-\mathrm{ke}$. and 10-ke. points can be found, with the same percentage of accurary as on the lower frequancies.

D.A. INSTARUMESTA

Throvahour this /Iandbook reference has been made to the use of direct-current instruments for measurement of current and voltage. Voltmeters and milliammeters are basically identical instruments, the difference being in the method of connection. A voltmeter measures the current through a high resistance connected across the source to be measured; its calibration is in terms of voltage drop in the resistance, or multiplier. A milliammeter is connected in series with the circuit and measures the current flow. The ranges of both voltmeters and milliammeters can be extended by the use of external resistors, comnected in series with the instrument in the case of a voltneter, or in shunt in the case of a milliammeter. A low-range milliammeter also can be used as a voltmeter by connecting a resistor of suitable value in series.

The ways in which multipliers and shunts are connected to voltmeters and milliammeters are shown in Fig. 1616. To calculate the value of multiplier or shunt it is necessary to know the resistance of the meter; this information can be obtained from the maker. If it is desired to extend the range of a voltmeter, the value of resistance which must be added in serions is given by the formula:

$$
R=R_{m}(n-1)
$$

where R is the multiplier resistance, R_{m} the resistance of the voltmeter, and n the scale multiplication factor. For example, if the range of a 10 -volt meter is to be extended to 1000 volts, n is equal to $1000 / 10$, or 100 .

If a milliammeter is to be used as a voltmeter, the value of series resistance can be found by Ohm's law, or

$$
R=\frac{I 0 \%}{I}
$$

wher E is the desired full seale voltage and I the full-seale current reading of the instrument in milliamperes.

T'o increase the current range of a milliammeter, the resistance of the shunt, Fig. 16ifi-F, ball be found from the formula:

$$
R=\frac{R_{n}}{\prime \prime-1}
$$

Where the letters have the satur signifieather as beforte.

FIG. 1616-HOH VOLIMEITER MUITHPLIERS (A) ANI MIIIIAMMEIER SHUNI'S (B) ARE CONneatien

Hulti-Range Volimeters and Ohmmeters

A combination voltmeter-milliammeter having various ranges is extremely useful for experimental purposes and for trouble-shooting in receivers and transmitters. As a voltmeter such an instrument should have high resistance so that very little current will be drawn in making voltage measurements. A voltmeter taking ronsiderable current will give inaccurate readings when connected across a high-resistanee source, as is often the case in checking voltages at various parts of a receiver circuit. For such purposes a 1000 -ohms-per-volt instrument is customarily used; a $0-1$ milliammeter or 0-500 microammeter ($0-0.5 \mathrm{ma}$.) is the basis of most multi-range meters of this type. Microammeters having a range of $0-50 \mu \mathrm{a}$., giving a sensitivity of 20,000 olims-per-volt, are also used.

The various current ranges on a multi-range instrument can be obtained by using a number of shunts individually switched in parallel with the meter. Great care should be taken tw minimize contact resistance.

It is often necessary to check the value of a rowistor or to find the value of an unknowa resistance, particularly in receiver servicing. For this purpose an "olimmeter" is used. An ohmmeter is simply a low-current d.c. voltmeter provided with a source of voltage (usually dry (ells), connected in series with the unknown resistance. If a full-scale deflection of the meter is obtained with the connections to the external resistance shorted, insertion of the resistance under measurement will cause the reading to decrease in proportion to the amount of resistance inserted. The scale can therefore be calibrated in ohms. If a voltmeter not calibrated

THE RADIO AMATEUR'S HANDB00K

directly in resistance values is used, the following formula can be applied:

$$
R=\frac{e R_{m}}{E}-R_{m}
$$

where R is the resistance under measurement, E is the voltage read on the meter, e is the series voltage applied, and R_{m} is the internal resistance of the meter (full-scale reading in volts \times ohms-per-volt).
A combination ohmmeter, multi-range d.c. milliammeter, and multi-range a.c. and d.c. voltmeter is shown in Fig. 1617. As an ohmmeter it consists of a $0-1 \mathrm{ma}$. d.c. instrument, a 9 -volt battery, and associated fixed and variable resistors to enable precise zero adjustment There are two measurement ranges, $0-10,000$ and $0-100,000 \mathrm{ohms}$.

As a voltmeter, as many ranges as may be desired can be provided by suitably tapping the series resistors selected by the rotary

FIG. 16I7-COMBINATION MULTI-RANGE OHMMETER, MILLIAMMETER ANID A.C.- H.C. VOI.TMETER
$\mathbf{R}-$ Shunt to compensate for resistance of rectifier (integral with meter when self-contained rectifier is employed).
$\mathrm{R}_{1}-\mathbf{6 5 0 - o h m}$ rheostat.
$\mathbf{R}_{2}-5-\mathrm{ohm}$ precision fixed resistor ($\mathbf{1 0 - m a}$, shunt) if $\mathbf{5 0} \mathbf{~ m v}$. meter, comparable value for other meters.
$\mathrm{R}_{3}-0.5$-ohm precision fixed resistor ($100-\mathrm{ma}$. shunt).
$\mathrm{R}_{4}-0.05-\mathrm{h} m \mathrm{precision}$ fixed resistor ($\mathbf{1 0 0 0 - \mathrm { ma } \text { , shunt). }}$
\mathbf{R}_{3} - $500,000-\frac{\mathrm{hm}}{\mathrm{m}}$ precision fixed resistor.
$\mathbf{R}_{6}-\mathbf{2 5 0 , 0 0 0}$-ohm precision fixed resistor.
$\mathrm{R}_{7}-150,000-\mathrm{ohm}$ precision fixed resistor.
$\mathbf{R}_{8}-50,000-o \mathrm{hm}$ precision fixed resistor.
$\mathrm{R}_{9}-\mathbf{4 0 , 0 0 0 - o h m}$ precision fixed resistor.
$\mathrm{R}_{10}-\mathbf{5 , 0 0 0 - o h m}$ precision fixed resistor.
$\mathrm{R}_{11}-4,000$-ohm precision fixed resistor.
R_{12} - $950-\mathrm{ohm}$ precision fixed resistor.
SW, - Triple-pole double-t hrow jack switch.
$\mathbf{S W}_{2}$ - Double-pole double-throw jack 3 witch.
SW' $\mathbf{8 - p o i n t}$ rotary switch.
$\mathbf{S W} 4, \mathbf{S W}_{5}, \mathbf{S W}_{8}$-Single-pole single-throw toggle switches (aee text).
M - 0-1 milliampere (Weston Model 301 Universal meter).
switch. Seven a.c. and eight d.c. ranges are shown. These ranges are, of course, linear with and exactly proportional to the d.c. and a.c. scales, the latter being secured either on the meter or through a separate calibration chart of the a.c. rectifier.

As a multi-range d.c. milliammeter four ranges are diagrammed, $0-1,0-10,0-100$, and $0-1000 \mathrm{ma}$. Additional ranges could be provided if desired. Heavy a.c. toggle switches are recommended, to reduce inaccuracies due to contact resistance.

The use of a multi-purpose meter of this type necessitates precautionary examination before each measurement to make sure that the respective controls are properly adjusted; otherwise, the instrument will quite likely be seriously damaged. When measuring unknown voltages or currents it is an excellent idea to begin with the highest range, thus identifying the proper range for most accurate measurement. As an ohmmeter, the instrument should never be connected across a circuit in which current is flowing; that is, the receiver power should be turned off when resistance measurements are maed.

Vacuum-tube vol.tMETEIR

In the measurement of audio-frequency and radio-frequency voltages, where the use of a power-consuming measuring device is unsatisfactory because of the small power in the circuit, the vacuum-tube voltmeter finds wide application. Most vacuum-tube voltmeters used by amateurs measure peak voltages. The voltmeter tube, which may be a triode or screen-grid type, is biased nearly to plate-current cut-off, a current of a fraction of a milliampere being taken as a reference, called the "false zero." When a voltage is applied between grid and cathode the plate current will rise; the grid bias voltage is then increased until the plate current returns to the false zero. The additional bias voltage required to bring the plate current back to the reference value will be equal to the peak value of the signal being measured. Because the measurements of the peak voltmeter are substantially independent of wave-form, this type of voltmeter is useful in audio and radio-frequency measurements since the capacities of vacuum tubes are determined by the peak voltages and currents which must be handled. A simple but entirely practical voltmeter
of this type is shown in Fig. 1618. It is known as the "slide-back" type. In operation, R_{1} is turned all the way to the right, with zero reading on the voltmeter $V . R_{2}$ is then adjusted until the desired "false zero" point is read on the milliammeter M. The voltage to be measured is then applied, causing the milliammeter reading to increase. R_{1} is then adjusted until false zero again is read on M, whereupon the voltmeter will read the voltage being measured. If the voltage to be measured is greater than 9 volts, additional bias can be placed at the point marked X, the exact value being read by an auxiliary voltmeter.

Field-Strength Meters

An item in the equipment of the advanced radio amateur that is increasing in importance and general use is the field-strength meter. Its uses are numerous, the more important being the ability it lends to correctly adjust antenna and transmitter characteristics under actual radiating conditions. This facility is of par-

FIG. 1618 - SIMPLE PEAK-TYPE VACDUM-TUBE VOLTMETER
$\mathrm{C}_{1}-500-\mu \mu \mathrm{fd}$. mica fixed condenser.
$\mathrm{C}_{2}-0.01-\mu \mathrm{fd}$. mica fixed condenser.
$\mathrm{R}_{1}-2,000-\mathrm{ohm}$ wire-wound potentiometer.
$\mathrm{K}_{2}-1,000$-ohm wire-wound potentiometer.
$S_{1,2,3}$ - Battery on-of awitches; may be ganged.
M - 0-1 milliammeter (any low-range milliammeter or microammeter may be used).
V - 0 - 10 voltmeter, 1000 ohms per volt.
ticularly great importance on the ultra-high frequencies, where an effective field-strength meter represents about the only reliable method of adjustment, especially on lowpower equipment or with directive antennas.

A simple field strength meter particularly suitable for work in the ultra-high frequency region is shown in Figs. 1619-20. Essentially, the meter consists simply of an acorn triode operated with very low plate voltage and biased to cut-off, constituting a linear detector. When the signal under observation is tuned in, rectification occurs, and the plate current increment is read on the microammeter. Among

FIG. 1619 - SIMIPLE FIELLD-STRENGTII MEITER USING ACORN TUBE
The hoard-type construction facilitates construction and provide a convemient handle, minimizing body-capacity effects when making observations.
the uses to which this meter can be put are: (1) Measuring comparative transmitter outputs under different adjustments. (2) Neutralizing amplifiers (using only a pick-up coil, without the antenna). (3) Measuring comparative antenna radiation under different adjustments. (4) Deriving field-strength patterns of, and adjusting, u.h.f. beam antennas.

A more sensitive field-strength meter of use in examining the field strength patterns of lowerfrequency antenna systems is shown in Figs. 1621-22. It consists of a diode rectifier and d.c. amplifier in the same envelope. The initial plate current reading is in the neighborhood of 1.4 milliamperes; with signal input, the current dips downward. The scale reading is linear with signal voltage, a characteristic that is advantageous in making certain types of comparative measurements. Radiated power variations will, of course, be as the square of the field voltage indication. With a $1.5-$ milliampere meter, field strengths of fractional millivolts register on the meter, if a copper-rod antenna two or three feet long is used.

Modulation Meter

The federal regulations require the use of some form of overmodulation indicator in the amateur 'phone transmitter. This bare legal minimum can be complied with quite easily, as discussed in Chapter Ten. To be assured of correct adjustment without possibility of error, however, some sort of direct-reading percentage-modulation meter and carrier-shift indicator should be employed. A cathode-ray

THE RADIO AMATELR'S HANDBOOK

oscilloscope will serve, but in its absence a variation of the type of modulation monitor used at broadcast stations can be built.

The circuit of such a modulation meter is show'n in Fig. 1623. It consists of a pick-11\}

 STREXGITH WH:TEK

C: $-\mathbf{3 5 - \mu \mu}$ fil midget nir trimmar condenacr.
(is - $\mathbf{2 5 0}-\mu \mu \mathrm{f}$ l. midget mira fixed condenmern.
K_{1} - 1000 -ohmimidget potentiometer.
1, - $\mathbf{5 0}-80$ Me. 7 turns Xo. I4 tinned wire, $1 / 2$-inch dia. l-inch long.
2.j-40 Mr.: 10 tirns No. 14 tinned wire, $3 / 4$-ind dia. l-inchlong.
12-20 Mr.: 20 turns No. 16 enamel wire. elamewound on $3 / 4$-inch diameter bakelite tubing.
6-10 Mc.: 37 turne No. 22 enamel wire, clomewound on $3 / 4$-inch tube.
3-5. Mc.: 75 turns No. 30 d.м.d. wire, clome-wotord on $3 / 4$-inch tuive.
1.5-2.5 Mc.: 75 turns No. 30 d.s.e. wire, closewound on 2 -inch tube. (The above ranges are only approxinate.)
M-0-200 microsmperes (a higher-range meter, although not as matisfactory, can be used if neceamary).

FIG. 1621 - SENSITIVF, FIELD-STRENGTII METER
This moter is particularly useful on the lowerfrequency amateur bands; it can be used for both transmittor and antenna adjustment, and in making field-mitrength patterne.
circuit, a diode rectifier, a "carrier" meter and a "modulation" meter.

The carrier meter has two functions. First, it is used to indicate the reference carrier level at which the monitor is to operate; and second, it shows carrier shift during modulation which is an indication of inequalities in the positive and negative peaks. This meter, as shown in the diagram, is connected in the cathode of the 56 tube. This tube is a linear diode rectifier and gives an instantaneous output voltage proportional to the carrier envelope. This output voltage is fed through a low-pass filter to an audio output transformer. The modulation indicator meter is across the output winding of this transformer. This meter reads the average of both sides of the full-wave peaks. Since the

 MFIFER GIRCLIT IDAGRAM
C_{1} - $\mathbf{5 0}-\mu \mu \mathrm{fal}$. midget variable condenser.
C. $2-250-\mu \mu \mathrm{fd}$. midget mica fixed condenner.
(\mathfrak{l}_{3} - $0.002-\mu \mathrm{f}$, midget mica fixed condenner.
H_{1} - 1 -megohm $1 / 2$-watt fixed resistor.

1. - Wound on $1 / 2$-inch coil forms, winding length $11 / 2$ inches, diode tap in eenter of coil:
l.5-3 Mc.: 58 turns No. 28 d.e.c. wire, close-wound.

3-6 Mc.: 29 tırng No. 20 onamel wire, closewound.
6-12 Mc.: 15 turne No. 20 onamel wire, npaced.
11-22 Mc.: 8 turne No. 20 enamel wire, apaced.
20-40 Mc.: 4 turns No. 20 enamel wire, spaced. (Above rangea are approxinate only.)
M - 0-1.5 milliamperes.
The filament hattery consists of two flashlight cells wired in parallel. The plate battery is a small portable "B"' battery, Hurgess type Z301'.

Care should be taken to connert the diode plate on the negative filament leg, ot herwise an initial bias will he placed on the rectifier and it will not function properly.
modulation meter reads in db instead of percentage of modulation, a conversion table follows:

$d b$	ro. Modulation
* 1.8	. 120
* 0.9	110
0.0	100
- 0.9	90
-1.8	80
- 3.0	70
- 4.0	63
- 5.0	56
- 6.0	50
-7.3	40
- 11.0	30
- '14.0	20
-20.0	10

The peak modulation indicator may be uny fast-acting copper-oxide rectifier-type meter. Triplett, Weston and General Radio make meters suitable for this purpose. They should have very little overswing. There are three types, a slow speed, a medium speed and a fast-acting meter. The latter should be used. The output transformer should be of good quality.

The adjustment and calibration of the monitor is most important. This may be done by taking the monitor to a broadcast or a mateur 'phone station equipped with a modulation monitor or cathode ray oscilloscope. Attach an antenna of sufficient length to cause at least $1 / 2$ scale deflection on the carrier meter with the shunt condenser C_{1} all the way in. Note the amount of swing on the modulation meter. lt will be less than 0 db for 100% modulation as read on the station monitor. Gradually decrease the resistance R_{1} and at the same time turn the shunt condenser C_{1} out, keeping the carrier meter at $1 / 2$ scale. Continue this adjustment until the modulation meter kicks 0 d , when the station monitor shows 100% modulation. Lock K_{1} at that setting, as that value should remain fixed. Now check the monitor against the station monitor on voice modulation so as to simulate as nearly as possible the type of modulation of amateur stations. If it does not show 0 db on 100% modulation on voice, adjust R_{1} and C_{1} until it does. The monitor is now calibrated and can be used on any transmitter regardless of the frequency without loss of accuracy provided the carrier meter reads up to the calibrated value. Tubes may be replaced without upsetting the calibration.

With the monitor in operation there should he no indication of carrier shift on the carrier

FIG. 1623 - MOIDULATION METEER CIRCUIT
$\mathrm{C}_{1}-100-\mu \mu \mathrm{fd}$. midget.
$\mathrm{C}_{2}-0.002-\mu \mathrm{fd}$. mica.
M_{1} - $0-\mathrm{I}$ ma.
M_{2} - Inh meter (See text).
$\mathrm{R}_{1} \mathbf{- 3 0 - o h m}$ rheostat.

J-Closed-circuit jack.
$\mathrm{T}_{1}-21 / 2-\mathrm{v}$. fil. trans.
$\mathrm{T}_{2}-5000-5000$ ohm tranaformer.
sW - S.p.e.t. toggle switch.

FIS. 162t-IWIV-TRIODE AUIDIO GSCIIAATOHR
 AUDIO SYSTEMS
Construction is simplitied ly attaching all comdensers and resintorm to tie atripa and wiring between terminal Iuga.
meter when the modulation meter shows 100 . If there is any, it indicates improper operation of the transmitter. The signal from the transmitter may be heard on 'phones plugged into the listening jack and is an exact picture of what is going on the air. However, the 'phones should be out when calibrating and checking percentage of modulation.

Hudio Test Oscillator

For most adjustments on 'phone transmitters it is desirable to have some form of constant-voltage, adjustable-frequency sinewave source of a.f. voltage.

A simple and inexpensive device fulfilling these requirements is shown in ligs. 1624 and 162\%. A dual triode is used as a simple sinewave audio oscillator of the capacity-feedback type. Six frequencies are provided - roughly $100,400,1000,3000,5000$ and 10,000 cycles - with standard capacities and inductances. An output control varies the level from zero to the maximum (depending on loading and plate voltage) of several volts.

CATHODE-RAY DNCHLDASCORES

- Drhaps the most useful of all measuring and testing devices is the cathode-ray oscilloscope. Although relatively expensive, its applications are so numerous that it can be used to replace a number of other less satisfactory types of measuring equipment. It is particularly suited to r.f. and a.f. voltage measurements because it does not consume power from the source being measured.

The circuit diagram of a simple cathoderay oscilloscope is given in Fig. 1626. In building such a unit one precaution, in particular, must be observed: the tube must not be placed so that the alternating magnetic field from either of the transformers has any

THE RADIO AMATRUR'S HANDB00K

HIG. 1625-AUDIO SIGNAL GENERATOR CIRCUIT DIAGIAM
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathbf{-} 0.1-\mu \mathrm{fd} .400$-volt tubular paper. $\mathrm{C}_{3}-10-\mu \mathrm{fd}$. 25-volt tubular electrolytic.
$\mathrm{C}_{6}-\mathbf{0 . 0 1 - \mu \mathrm { fd } . 4 0 0 - v o l t}$ tubular paper.
$\mathrm{C}_{7}-0.002-\mu \mathrm{fd}$. midget inica.
$\mathrm{C}_{8}-0.0005-\mu \mathrm{fd}$. midget mica.
$\mathrm{H}_{1}, \mathrm{R}_{2}-\mathbf{5 0 , 0 0 0 - o h m}, 1 / 2$-watt.
H_{3} - 0.3 -megohm, $1 / 2$-watt.
$\mathrm{K}_{4}-1000$-ohm, $1 / 2$-watt.
$\mathrm{R}_{5}-50,000-\mathrm{ohm}$ potentiometer.
L_{1} - 7-henry iron-core reactor (Thordarson '1-13C26). $L_{2}-125-m h$. iron-core r.f. choke.
effect upon the electron beam. A second essential, especially important where the oscilloscope is to be used for checking a powerful transmitter, is to prevent stray r.f. voltages from getting into the supply circuits via the a.c. line. Two $0.01-\mu \mathrm{fd}$. or $0.1-\mu \mathrm{fd}$. condensers (C_{1}), connected in series across the line with the midpoint grounded to the cabinet, will usually be effective. The condensers must be mounted inside the cabinet where they will not be in the field from the transmitter.

Supplementing the voltage controls indicated in Fig. 1626, it is desirable to make provision for rotating the cathode-ray tube socket so that the horizontal and vertical sweep lines actually are horizontal and vertical. The whole instrument should be enclosed in a metal box, preferably steel or iron, to shield it from stray fields.

In this oscilloscope the horizontal sweep
voltage can be obtained either from an audiofrequency source (such as the modulator stage of a transmitter) or from the 60 -cycle line. Using an a.f. horizontal sweep, the pattern appearing on the screen will be in the form of a trapezoid or triangle (depending on the percentage of modulation) when checking transmitter performance. Practical application of this method is outlined in Chapter Ten.

Although for many amateur applications the use of a sweep circuit having a linear time base is not essential, for actual studies of wave form the linear time axis is necessary. The sweep circuit proper usually employs a grid-controlled gaseous discharge tube, the 885 (especially designed for this purpose), operating as a relaxation oscillator. In order for the time axis to be linear a condenser in the output circuit is caused to charge at a uniform rate. To accomplish this a pentode-type current-limiting tube is connected in series with the power supply. In operation, the sweep circuit is connected to the vertical plates of the existing oscilloscope. The voltage under observation is connected to the horizontal plates, and the resulting picture is an accurate representation of the wave shape of the voltage being examined.

External amplifiers, usually of the resist-ance-coupled type to provide high gain with wide frequency range and low distortion, are useful in most applications. The 1 -inch cath-ode-ray tube, with a sensitivity of perhaps 100 volts per inch, is not suitable for use with potentials of less than several volts.

An oscilloscope incorporating these features, together with a variable-frequency audio oscillator, is shown in Figs. 1627-28-29. The circuit diagram shows the 913 l-inch cathode-ray tube, its associated 1-V rectifier, the 6K7-885 sweep circuit combination, the 6 N 7 a.f. oscillator, 6 J 7 amplifier, and their $1-\mathrm{V}$ rectifier.

Looking at the front view, the top controls are, from left to right:

INSTRUMENTS AND MEASUREMENTS

1. Sweep amplitude control, R_{24}. This control varies the width of the pattern when, as normally used, the sweep voltage is applied to the horizontal plates.
2. Amplifier gain control, R_{1}. When the amplifier is in use, the height of the pattern is controlled by setting resistor.
3. Intensity control, R_{18}. This control should be adjusted for suitable pattern brilliance and need not be touched thereafter during a given set of measurements.
4. Focusing control, R_{17}. Adjusted to give uniform spot or line thickness, making the line as fine as possible. There is always some interlocking between settings for intensity and focus, so the two controls should be adjusted back and forth to give the most sharply-defined pattern.
5. Audio oscillator feedback control, R_{8}. This control changes the generated frequency to some extent, and also affects the purity of the output wave-shape. Once set to give the nearest possible approach to a sine wave (as judged by comparison to 60 cycles, for example) it may be left alone.
6. Synchronizing control, R_{11}. Used to lock the sweep-circuit frequency to that of the signal under observation, or to a sub-multiple of the signal frequency.

In the bottom row, the controls are as follows:
7. Coarse sweep-frequency adjustment, $S w_{5}$. By selecting condensers of different capacities in the 885 relaxation-oscillator circuit, this switch changes the sweep frequency in roughly harmonic steps. The total frequency range is approximately 4 to 21,000 cycles per second.

FIG. 1627 - LOOKING INTO THE OSCIHLOSCOPE FIROM THE REAR
 Between T_{1} and ' T_{3} is the $5 Z 4$; the $I-V$'s are between T_{3} and \mathbf{T}_{2}. The other tubes are, in the same order, $6 \mathrm{~J} 7,6 \mathrm{~N} 7,913$. 6 K 7 and 885. The signal input circuit should be wired with short leads well spaced fron all other parts if r.f. work is contemplated.

FIG. 1628 - PANEL VIEW OF THE 913 OSCILLOSCOIE
Twelve controls give ample flexibility for all kinds of measurementa about the ham transmitter and receiver or in service work.

Lowest frequency will be found with the largest condenser cut in circuit, and vice versa.
8. Fine sweep-frequency adjustment. R_{13}. For adjustment to desired frequency between the coarse steps provided by $S w_{5}$.

9 and 10. Input switches for deflecting plates, $S w_{6}$ and $S w_{7}$. By means of these switches, either set of plates can be connected to (a) sweep-oscillator output, (b) either of the external binding posts marked "horizontal input" and "vertical input," (c) amplifier output, (d) off. It is therefore possible to reverse the horizontal and vertical deflections, thus shifting the pattern by 90 degrees, at an instant's notice, as well as to use either pair of plates for the sweep voltage or the voltage being scanned.
11. Audio oscillator output control, R_{6}. The oscillator on-off switch, $S w_{2}$, is mounted on this control.
12. Synchronizing transformer switch, $S w_{4}$. This control selects the transformer ratio from the several available with the particular type of transformer used. Normally, the switch is set so that the whole transformer secondary is in use.

To operate, first set the focusing and intensity controls, R_{17} and R_{18}, at maximum and close the line switch. $S w_{6}$ and $S w_{7}$ should be set to the "off" position. After the tubes heat, a luminous dot should appear in the center of the screen. The intensity and focusing controls may then be manipulated to make the dot small and sharp and of suitable brightness.

Next, connect the output of the sweep oscillator to the horizontal plates by setting $S w_{7}$ (or $S w_{6}$, whichever may be connected to the set of plates actually giving horizontal deflection) to the approximate tap. The dot should change into

THE RADIO AMATRUR'S HANDB00K

a line extending across the screen horizontally. To change the length of the line, adjust R_{24}. If the sweep-frequency switch, $S w_{5}$, should happen to be set at the low-frequency end of the scale, there will not be a continuous line but a slowly-moving dot. The remedy is to increase the sweep frequency.

Now apply the signal to be observed to the "vertical input" terminals and connect $S w_{6}$ to the same terminal. If the signal amplitude is of the order of 25 to 50 volts r.m.s., a pattern of usable size should appear on the screen. To get a stationary figure, connect the signal source also to the "synchronizing input" terminals (a direct connection between the two sets of binding posts on the oscilloscope is all that is necessary) and adjust the synchronizing control, R_{11}, to lock the sweep circuit to the external frequency. Adjustment of $S w_{5}$ will determine the number of cycles that appear on
the screen; with the oscillator on the same frequency as that of the signal one cycle will sppear, on harmonics only part of a cycle, and on subharmonics a number of cycles depending upon the ratio of signal frequency to oscillator frequency. For example, with the sweep oscillator on 200 cycles locked by a 1000 -cycle signal under observation, five cycles will appear on the screen.

Do not allow a bright spot to stay at one place on the phosphorescent screen, since the coating material will be burned. Keep the spot moving; in other words, always have a sweep of some sort applied to at least one set of deflecting plates.

The use of oscilloscopes for alignment and testing of receivers involves additional equipment. To show the resonance characteristic of the receiver it is necessary not only to show the response at the carrier frequency but at all ad-

FIG. 1629 - CIICUIT DIAGRAM OF THE OSCILLOSCOPE
L. - 125-mh. iron-core choke.
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}-$ $0.1-\mu \mathrm{fd} .400$-volt.
$\mathrm{C}_{2}, \mathrm{C}_{7}-16-\mu \mathrm{fd} .35 \mathrm{~m}$-volt.
C_{11} - 0.025- ff . 400 -volt.
$\mathrm{C}_{12}-0.005-\mu \mathrm{fd} .400-\mathrm{vol}$.
$\mathrm{C}_{13}-0.001-\mu \mathrm{d}$. 400-volt.
$\mathrm{C}_{14}-40-\mu \mu \mathrm{fd} .400$-volt.
$\mathrm{C}_{15}, \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}$ -$8-\mu \mathrm{fd} .400$-volt electrolytic.
$\mathrm{K}_{1}, \mathrm{R}_{8}-500,000$-ohm pot.
$\mathrm{K}_{2}-\mathbf{3 0 0}$-ohm, 1-watt.
$\mathrm{H}_{3}, \mathrm{H}_{5}-250,000$-ohm, $1 / 2$-watt.
$\mathbf{R}_{4}, \mathrm{R}_{8}, \mathrm{R}_{10}$ - $\mathbf{5 0 , 0 0 0 - o h m , 1 / 2}$-watt.
$R_{6}, R_{13}, R_{17}, R_{24}-\mathbf{5 0 , 0 0 0}$-ohm pot.
$R_{7}, R_{15}-1000$-ohm, 1-watt.
$\mathrm{R}_{11}-10,000$-ohm pot.
$R_{12}-1500-\mathrm{ohm}, 1 / 2$-watt.
$\mathrm{R}_{14}-\mathbf{3 0 0}, 000$-ohm, $1 / 2$-watt.
$R_{16}-125,000$-ohm, $1 / 2$-watt.
$\mathrm{R}_{18}-\mathbf{3 0 , 0 0 0 - o h m}$ pot.
$\mathbf{R}_{19}, \mathbf{R}_{20}, \mathbf{R}_{21}$ - 5-meg., $1 / 2$-watt.
$\mathrm{R}_{22}-15,000$-ohm, 1 -watt.
R23-7500-ohm, $1 / 2$-watt.
R_{25} - 40,000-ohm, $1 / 2$-watt.
\mathbf{R}_{26} - 6000 -ohm, $1 / 2$-watt.
T_{1} - Small power transformer giving 700 volts, c.t., 6.3 volts 1.8 amps., 5 volts 2 amps .
\mathbf{T}_{2} - Kenyon Type 207.
T_{3} - Kenyon Type 1.
Sw1 - S.p.d.t. toggle switch.
Sw2 - S.p.s.t. switch cover for R_{6}.
Sw3 - S.p.s.t. togglo ewitch.
Sw4, Sw5, Sw6, Sw7-6-position switohes.

INSTRUMENTS AND MEASUREMENTS

jacent frequencies through the pass-band. To accomplish this, a motor-driven variable condenser, or "wobbler", is often incorporated in the signal generator, automatically tuning the oscillator frequency over the desired range (usually about 20 kc .) at a fixed rate of speed. An auxiliary set of contacts on the motor shaft serve to provide an external synchronizing voltage for the horizontal plates; an iron bar rotating the field of a horseshoe magnet is often used, pickup coils on the magnet connected to the horizontal plates providing the alternating sweep voltage. The vertical plates of the oscilloscope are connected to the second detector or first audio stage through a suitable amplifier.

The uses of an oscilloscope are not limited to those mentioned above. It is, in fact, so versatile an instrument as to be an adequate substitute for almost every other type of electrical measuring equipment.

As a voltmeter, measurement is accomplished by applying the potential in question to either pair of deflecting plates and measuring the length of the resulting trace. Checking this against the tube sensitivity (Table XI, Chapter Five) will give the approximate voltage. If an amplifier is used, its actual gain must, of course, first be known. This can be learned by applying a stable test signal with the amplifier both off and on and comparing the resulting traces.

As a low-frequency meter, the frequency under observation is applied to one set of plates and compared with a known frequency which is applied to the other pair. This known frequency may be obtained from a beat-frequency oscillator, tuning fork standard, a.c. line (60 cycles), or similar source. The comparison of two widely-separated frequencies (within ratios of 20 to 1 or so) is accomplished by the use of Lissajou's figures. Such figures
show frequency ratios in terms of recurrent patterns. The interpretation of these patterns is explained in any of the standard cathoderay texts (RCA's Cathode-Ray Tubes, Rider's The Cathode-Ray Tube at Work, etc.).

The measurement of phase relationships is also facilitated by the use of an oscilloscope, showing as it can the linear amplitude of an a.c. potential plotted against time. Since the time base can be made relatively short, small phase displacements can be observed even with comparatively high frequencies.

In addition to its use at the transmitter proper for modulation checking, etc., the oscilloscope may be connected to the receiver for visual monitoring of received signals. The connections are simple. One horizontal deflecting plate is connected to the plate of the last i.f. stage through a $0.002-\mu \mathrm{fd}$. fixed condenser (the i.f. transformer must be re-aligned to allow for the added shunt capacity), and a 2 -megohm resistor connected to ground. One vertical plate is connected to a 60 -cycle sweep source. The remaining plates are grounded. If sufficient i.f. voltage is available, a regular trapezoidal pattern will result when a 'phone signal is tuned in.

However, if the receiver does not have sufficient i.f. voltage output to give a useful pattern, an i.f. amplifier stage should be interposed between receiver and oscilloscope. This amplifier can consist of a single tube similar to the other i.f. tubes in the receiver, with its grid circuit coupled to the receiver i.f. output through a midget variable condenser and 2-megohm grid leak to ground. An i.f. transformer in the plate circuit is tuned to the same frequency as the receiver, the secondary being connected to the horizontal deflecting plates.

Such an accessory is not only an asset to one's own station, but may be of assistance to stations being worked, as well.

THE RADIO AMATEUR'S HANDBOOK
 CHAPTER SEVENTEEN

assembling the amateur station

Location and Arrangement of Station - Control Systems Receiver Protection - Lead-in Arrangement -
Break-in and Remote Control

THE element of danger to the operator and others of the household from high voltages, as well as convenience, should be considered seriously in planning the arrangement of station equipment.

I.SNATIDN DF STATMDN

Where space is at a premium, the transmitter may be built into a desk or radio console. If conveniently loeated, a spare closet makes a very good spot for the transmitter and may be arranged as shown in Fig. 1701. If necessary, the transmitter may be located in the basement or attic, in a closet or even in a weatherproof box outside the house and operated hy remote control. Apartment-house dwellers sometimes build up a compact arrangement on wheels which may be stored under the kitehen

FIG. 1701 - TRANSMITTER MOUNTED ON CLOTIIESCLOSET DOOR
Standard rack constrnction may be followed. Weight of heavy units is taken up by rollers at bottom. The door may be replaced at little expense.
range or sink and brought out to the operating position whenever desired.

Arrangement of Equipment

If the transmitter is to be built into a floor rack (construction described in Chapter Six) or a frame, an operating table with a top of $24^{\prime \prime}$ by $36^{\prime \prime}$ has sufficient space for a receiver of good size, key or microphone, control switches and room for writing. A drawer will take care of plug-in coils, small tools and writing materials. An operating table of somewhat greater length will afford space for additional apparatus such as the monitor or small transmitter. The construction of two different types is described in Chapter Six.

The transmitter should be located near a window where the antenna or transmission line may be brought in most conveniently and also near the operating position where frequency changes which may be made by adjustment of tuning controls on the front of the panel may be made without leaving the operating position. One good arrangement is shown in Fig. 1702. The transmitter rack is within easy reach of the operator. Since the lowest controls of the average rack transmitter come above the table level, it might be placed against the end of the operating table with controls facing either the operator or the center of the room. Space between the wall and transmitter should be left to permit passage to the side and rear for coil changing.

If the transmitter is built up in breadboard style, it may be placed upon a second table in the position in which the rack is shown. Sometimes breadboard units are assembled, one above the other, on a series of shelves emulating rack construction. Power-supply equipinent may be assembled upon a heavy board and placed under the transmitter table. A suitable screen should be fastened to the legs of the table to prevent approach to the high-voltage apparatus, and high-voltage wiring should be brought up at the rear of the table to the transmitter. While the receiver power supply may be placed upon a shelf under the operating

FIG. 1702 - A CONVENIENT ARLANGEMENT FOR STATION
The rack transmitter panel is within easy reach of the operator. On the table are the antenna tuner, lamp, receiver and loudspeaker, microphone, key and stationery file. The entrance switch is fastened to the right-hand end of the table. Transmitter controls are mounted on a board fastened to the table at the left of the operator with footoperated control switch underneath the table. Receiver power gupply is on shelf underneath. Service outlets are mounted on board fastened to rear of table. Lightning switches at top of window with ground wire ruming down right aide of window.
should be terminated with an enclosed entrance switch properly fused.

Fig. 1703 shows the wiring diagram of a simple control system. It will be noticed that, because the control switches are connected in series, none of the high-voltage supplies may be turned on until the filament switch has been closed and that the high-power plate supply cannot be turned on until the low-power plate supply switch has been closed, and also, that the modulator power cannot be applied until the final-amplifier plate-voltage has been applied. $S W_{5}$ places a 100 - to 300 -watt lamp (L_{p}) in series with the primary winding of the highvoltage plate transformer for use during the process of preliminary tuning and for local c.w. work. The final amplifier should be tuned to resonance first at low voltage and then $S W_{5}$ is closed short-circuiting the lamp. Experience will determine what the low-voltage plate-current reading should be to have it increase to full-power value when $S W_{5}$ is closed so that the proper antenna coupling and tuning
table, under no circumstances should the transmitter power supply be placed there unless completely enclosed. In cases where the power-supply equipment is too bulky to be placed in the operating room, it is sometimes placed in the basement and wired up to the operating room. If this is done, the wiring should be suitably insulated and the apparatus fenced off to prevent anyone coming in contact with it.

Control Circuits

Proper arrangement of controls is fully as important as convenient arrangement of apparatus. If the transmitter is to be of fairly high power, it is desirable to provide a special service line directly from the meter board to the operating room. This line should be run in conduit or BX cable with conductors of ample size to carry the load without undue voltage drop. The line

FIG. 1703 - STATION CONTLOL SYSTEAI
With all switches except $S W_{3}$ closed, $S W_{3}$ serves as the main control ewitch. SW $_{1}$ - Enclosed entrance switch. SW 2 - Filament switch. SW3 - Low platevoltage and main control switch. (See text.) $S_{4}-W_{i g h}$ plate-voltage switch. SW_{5} - Low-power and tune-up switch. (See text.) $\mathrm{SW}_{B} \rightarrow$ Modulator platevoltage switch. F - Fuse. L - Warning light, L_{p} - Voltage-reducing lantp.
(See text.)

THE RADIO AMATEUR'S HANDB00K

adjustments may be made at low voltage.
Preferably, S_{3} should be of the push-button type which remains closed only so long as pressure is applied. A switch of this type provides one of the simplest and most effective means of protection against accidents from high voltage. In the form which is usually considered most convenient, it consists of a switch which may be operated by pressure of the foot

FIG. 170\&-SIMPLE PROTECTIVE DEVICE FOR RECEIVER
When the voltage induced across $L_{1} C_{1}$ by transmitter becomes too great, the neon tube breaks down, short-circuiting the tuned circuit. L_{1} and C_{1} are any coil and condenser which will tune over the required range. Bare wire is mingested for L_{1} so that adjustment of the taps will be simplified.
and is located underneath the operating table. When used in this manner, it means that the operator must be in the operating position, well removed from danger, before high voltage may be applied. If desired, $S W_{3 a}$ may be placed on the front of the transmitter panel so that it may be used while tuning the transmitter. $S W_{3 a}$ should, of course, be of the push-button type also.

In more elaborate installations, and in remote control systems, similarly arranged switches control relays whose contacts serve to do the actual switching at the transmitter.

Two strings of utility outlets are connected, one on each side of the entrance switch, for operation of the receiver and such accessories as monitor, lights, electric clock, soldering iron etc. Closing the entrance switch should close etc. Closing the entrance switch shou in readiness for operation. $S W_{2}$ and $S W_{4}$ are normally closed and $S W_{3}$ open. When $S W_{1}$ is closed upon entering the operating room, the transmitter filaments are turned on as well as the receiver which should be plugged into line No. 2. With $S W_{4}$ closed (also $S W_{5}$ and $S W_{6}$), $S W_{3}$ performs the job of turning all plate-supplies on and off during periods of transmission and reception. Continuously operating accessories, such as the clock, should be plugged into line No. 1 so that it will not be turned off when $S W_{1}$ is opened. Line No. 1 is also of use for supplying a soldering iron, light, etc. when it is
desired to remove all voltage from the transmitter by opening $S W_{1}$.

Receiver Protection

Unless certain precautions are taken, operation of a transmitter in close proximity may cause damage to the receiver. Low-power transmitters seldom cause trouble unless both transmitter and receiver are unshielded and the output circuit of the transmitter is so close to the input of the receiver as to provide appreciable coupling between the two. Higherpower transmitters may induce voltages so great in the input circuits of the receiver that, even though the receiver plate supply is turned off during periods of transmission, grid current is sufficient to ruin the input tube and sometimes burn out the cathode resistance. Well shiclded receivers are much less susceptible to damage and frequently are used with more or less success without protection of any form, although it may be necessary to replace the input tube at intervals. It is always advisable, however, to make some provision for protecting the receiver against possible damage.

Short-circuiting of receiver input terminals by means of a switch or a relay operated from the transmitter control switch is only partially effective, especially at the higher frequencies. A simple precaution, which is often found adequate, is to provide a switch which opens the cathode circuit of the input tube, preventing the flow of grid current, although a considerable d.c. potential may exist between heater and cathode.

Another simple arrangement, suggested by W3BES, involves the use of a neon tube to short-circuit a high-impedance antenna tuner. It is shown in Fig. 1704. Probably the most effective and logical scheme is one provided by W8JMI, shown in Fig. 1705, in which a separate rectifier with external pick-up is used to bias the first or first and second r.f. tubes of the receiver.

FIG. 1705 - ANOTIIER PROTECTIVE DEVICE FOR RECEIVEIR
L_{1} is a pick-up coil coupled to the transmitier output tank circuit. Size of coil must be determined by experiment. C_{1} $.002 \mu \mathrm{fd}$. $\mathrm{R}_{1}-\mathbf{1 0 0}, \mathbf{0 0 0}$ ohms suggested for first trial. Experiment with particular set-up will be necessary. \mathbf{R}_{2} - Decoupling resistors in receiver AVC system.
' T_{1} - Any tuhe with grid and plate tied together.

ASSEMBLING THE AMATRUR STATION

FIG. 1706-HIRINGING THE FEEIDEISS IN
A - Anchoring feeders to take struin from feed-through insulators or window glass. B - Going through a full-length screen. The cleat is fastened to frame of screen on inside of screen. Clearance holes are cut in the cleat and also in the screen. The rubber washers keep the weather out.
necessary insulation and the transmission line may be fastened to bolts fitting the holes. Rubber gaskets cut from inner tube will render the holes water-proof. The lower sash should be provided with stops at a suitable height to prevent damage when it is raised. If the window is fitted with a full-length screen, the scheme shown in Fig. 1706-B may be used.

In a less permanent method, the window is raised from the bottom or lowered from the top to permit the insertion of a board three or foul inches wide which car-

Bringing the Antenna or Transmission Line into the Station
In bringing the antenna or transmission line into the station, the line should first be anchored to the outside wall of the building, as shown in Fig. 1706, to remove strain from lead-in insulators. When permissible, holes cut directly through the walls of the building and fitted with feed-through insulators of suitable size are undoubtedly the best means of feeding the antenna into the station, for the job can be done with little difficulty and can provide greater mechanical permanence than other schemes. It involves no interference to screening or storm windows. The holes should have plenty of air clearance about the conducting rod, especially when tuned lines, which develop high voltages, are employed. Probably the best place to go through the walls, from the standpoint of appearance is the trimming board at the top or hottom of a window frame which provides flat surfaces for tightening lead-in insulators. Cement or rubber gaskets may be used to water-proof the exposed joints.
Where such a procedure is not permissible, the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass which is to be drilled is replaced by plate glass, a stronger job will result. Plate glass may be obtained reasonably from automobile junk yards and may be drilled before placing in the frame. The glass itself provides the

FIG. 1707 - ANTENNA LEAD-IN PANEL
It may be placed over the top sash or under the lower sasb of window. The overlapping joint makes it weather-proof. The single thick board may be replaced by two thinner booards fustened togetiser.
ries the feed-through insulators. This arrangement may be made weather-proof by making an overlapping joint between the board and window sash, as shown in Fig. 1707, and covering the opening between upper and lower sashes with a sheet of soft rubber cut from an inner tube.

When the transmitter must be located at a considerable distance from the point at which the antenna transmission line enters the building, the most practical way of feeding the antenna is by means of a low-impedance transmission line which may be fastened along the picture moulding near the ceiling. If multiband operation is desired, a separate antenna for each band will be required; otherwise, it will be necessary to place the antenna tuner at the point at which the feeders enter the building and couple the antenna tuner to the transmitter by means of a lowimpedance line. This arrangement is very awkward to tune with the antenna and final-amplifier tank circuits separated so widely.

Antenna Suitching

As pointed out in Chapter Thirteen, it is desirable, particularly in DX work, to use the same antenna for transmitting and receiving. This requires switching of antenna from transmitter to receiver. One of two general systems may be employed. In the first, the transmitter and receiver are each provided with an antenna tuner and the antenna transmission line is switched from one to the other. In the second

the radio amateur's handbook

system, one antenna tuner is provided for each antenna and the switch is in the low-impedance couplingline. Several arrangements are shown in Fig. 1708. The high voltages which develop on tuned lines require switches and wiring with good insulation. Frequently relays with low-capacity contacts are substituted for the hand-operated switches.

Remote Control

When it becomes necessary to locate the transmitter at some point remote from the operating position, it is usually more feasible to control the transmitter by means of relays rather than to attempt to carry power wiring between the transmitter and operating position. Not only must the wiring be more carefully executed, but considerable drop in voltage may develop unless wire of large size is used. Relays require little current and low-voltage types require wiring with a relatively small amount of insulation. Wiring for a large transmitter may be

A

B

1GG. 1708-ANTENNA SWITCHING SISTVMS
A - Fior tuned lines with separate antenna tuncrs or low impedance linea. B - For voltage-fed antenna. C - For tuned line with single tuner. D - For voltage-fed antenna with aingle tuner. E-For two tuned-line antennas with tumer for oach antenna or for low-impedance linen. F-For several two-wire linen.
bonded into a small cable occupying but little space. A typical arrangement for remote control is shown in Fig. 1709. In 'phone installations, it is common practice to place the modulator and driver with the transmitter and speech amplifier at the operating position, coupling the two with a low-impedanceline.

Where distance between control point and the transmitter makes it important, the number of control lines may be reduced by a scheme shown in Fig. 1710. Relays 1, 2 and 3 are adjusted to close at progressively increasing values of current. In operation, $S W_{1}$ is closed and, with R_{1} and R_{2} in series, the line current is sufficient to close only Relay No. 1 which will turn on filaments and bias supply. When $S W_{2}$ is closed, R_{1} is cut out of the circuit and the line current increases to a value sufficient to close relay No. 2 which turns on the high voltage, but not No. 3. The key shortcircuits R_{2} and again the line current increases closing relay No. 3, the keying relay. The sys-
tem requires rather careful adjustment and values will depend upon relay characteristics and line voltage. Those interested in a more extensive circuit for frequency changing, modulation checking as well as power control by means of a single pair of wires are referred to page 37 of QST for July 1938.

Break-in

The advantages of break-in operation are many and are described in Chapter.Eighteen. If the station is provided with a stable, shielded superheterodyne receiver, it may be necessary only to use a separate antenna for the receiver. This should be located as far as possible from the transmitting antenna and at right angles to it. Sometimes a short receiving antenna will reduce interference from the transmitter and yet permit reception from stations at quite some distance. Use of the external rectifier of Fig. 1705, described in connection with

ASSEMBLING THE AMATEUR STATION

FIG. 1709 - REMOTE CONTHOL SYSTEM
This system is essentially the aame as that shown in Fig. 1703 except that the switches control relaysat the remote transmitter which do the switching. The apeech amplifier and modulator driver are coupled with a low-impedance line.
impossible to use breakin operation with a station on the frequency of the transmitter or frequencies immediately adjacent unless the oscillator is keyed. Most break-in systems employ keyed oscillators with the following amplifier stages provided with sufficient fixed bias to prevent plate-current flow with excitation removed.

'Phone Break-in-Push-to-Talk

Break-in operation with' phone becomes more complicated and less practicable because of the increased difficulty in distinguishing the wanted signal from others. A method of electronic control of
receiver protection, is recommended where break-in operation is desired. With unshielded or regenerative receivers, it may be necessary to provide a relay which opens the headphone circuit when the key is closed to prevent racket in the headphones which might paralyze the ear for the weaker break-in signal. In this case, an output transformer between receiver and headphones with the relay breaking the connection between headphones and transformer secondary winding is recommended. In extreme, cases, an additional relay short-circuiting the receiver input may be required. All of these relays should be connected so as to operate with the key.

Lf the same antenna is used for receiving as well as transmitting, a change-over relay oprrating from the keying circuit must be added.

Unless the transmitter oscillator is very well shielded, it will be
the carrier is described in detail in QST for November 1936. The voice signal operates a relay which cuts the carrier off if there is a short pause in speech, the carrier resuming whenever speech is resumed.

A more commonly used system is the "push-to-talk" method. In this system, a convenient "push" switch, such as the foot-operated switch mentioned in connection with Fig. 1702 is used to cut the carrier, and also the oscillator, on and off. With this arrangement and the receiver precautions recommended for break-in operation, phone conversations may be speeded up and made more pleasurable.

UNIDEIE WIRITEERS' IREGULATMANS -LIGITTNING PRETECTION

An ungrounded radio antenna, particularly one large and well-elevated, is a lightning hazard. When well grounded, it provides a measure of protection; therefore grounding switches should be provided not only to comply with insurance underwriters' requirements but also to prevent loss of property. Grounding switches are shown in Fig. 1702. Anyone contemplating the installation of a station should get in touch with his insurance agent and city inspection department to ascertain requirements. He should also send ten cents to the Superintendent of Documents, Government Printing Office, Washington, D. C., for the booklet Safety Rules for Radio Installations, Handbook of the Bureau of Standards No. 9.

OPERATING A STATION

The transmitter should be adjusted for satisfactory, stable, operation. Do not try to work too near the edge of an amateur band. Keep well within the estimated accuracy of your frequency measuring equipment and means of measurement. Check frequency often. Crystal control provides a certain degree of "frequency insurance" but do not omit checks for harmonics and parasitics that may he present with the signal, as well as for frequency changes due to quartz temperature or circuit element capacities if near a band edge. Other control methods require tremendously increased precautions. F.C.C. monitoring stations are on the job of checking notes, frequency and other possible discrepancies, so it pays to be watchful.

Method in operating is important, and in this Chapter we shall discuss the common practices. The good operator does not sit down and send a long call when he wants to work someone. He listens in. He covers the dial thoroughly. The fellow that is admired for his good operating is the one who is always calling some particular station instead of using CQ. Because he listens until he hears someone to work and then goes after him, our good operator gets his man nearly every time. A good operator chooses the proper time to call, he makes plain signals, and he does not call too long. A short call is sufficient because if a station does not get the call it is likely that he is listening to another station. A long call makes the receiving operator lose patience and look for someone else.

Pride in technique is the earmark of the successful amateur among his fellows. Code proficiency sets apart the real seasoned operator from the one who builds equipment only to tear it apart again. Engineering or applied common sense are essential to both the operator and experimenter. Operating ability is just as essential and important in radiotelephone operating as in code work - perhaps it is more essential and more rare, for understanding of phonetics must contribute to conciseness with careful system, as in the airways service, for effective two-way work. The penalty for not having "what it takes" in operating is ineffectiveness in results, as well as to win the name of "lid" by bungling.

Too often the beginner-operator operates lis set like a plaything; the aim should be to
operate with a serious and constructive purpose, not for novelty or mere entertainment. It must be remembered that radio communication is not an individual plaything but the interference one causes may affect many others. It may cause pleasure or expressions of annoyance depending on the care and thoughtfulness with which one operates. All of this merely to introduce the plea that time be given to the brief study of operating technique before going on the air.

Many the amateur who complains about his results or blames his equipment when the real fault was with proper timing of calls and failure to do enough intelligent listening. Patience and judgment, and familiarity with tuning methods and ways, and standard procedures are absolutely essential to full success and enjoyment.

The operator who sends forty or more CQ's and signs two or three times in a slipshod manner gains the respect of no one. His call may be impossible to identify. His lack of operating judgment seriously impairs and handicaps his own success and enjoyment in addition to causing other amateurs to form an unfavorable opinion of his work and the uncalled-for interference he creates. By proper procedure the number of two-way contacts (QSO's) and the enjoyment and profit in each will be a maximum.

The adjustment on the receiver has much to do with successful operation, too. The good receiving operator notes the dial setting and when he has completed calling in proper fashion, he waits a moment and then tunes above or below the logged dial setting just in case something has shifted slightly in the receiver or transmitter. The best operator has patience and waits a few minutes in case of delay at the transmitter or in case fading signals make a second answer necessary. Upon the station and its operation depend the possibility of good communication records.

An operator with a clean-cut, slow, steady method of sending has a big advantage over the poor operator. Good sending is partly a matter of practice but patience and judgment are just as important qualities of an operator as a good "fist."
. Iccuracy is of first importance. Then speed must be considered. Very often, transmission at moderate speeds moves traflie or insures

OPERATING A STATION

understandable conversation better than fast sending. A great deal depends on the proficiency and good judgment of the two operators concerned. Fast sending is helpful only when two fast operators work together.

Communication

Communication has as its object the exchange of thought. Sometimes individuals concerned converse at length and exchange their thoughts freely. At other times the individuals are miles apart and the thoughts must be condensed to just a few words. Then these words must be relayed or passed on from operator to operator. When they reach their ultimate destination someone can interpret them fully only if they have been properly and carefully handled by the intermediate operators.

Time is involved in making any exchange of thought. Because every man's life and experience is measured by time, this factor becomes important in everything we do or say. The number of messages handled, the number of distant stations worked, the number of records made at our station, all depend in some degree on the time available for our hobby. The more time we spend at the set, the more well known our station becomes and the more extensive will be the sum total of our results in amateur radio.

As time is a factor, uniform practices in operating are necessary to insure a ready understanding. So proficiency in the commonlyused abbreviations and in knowledge of uniform operating practices is to be desired. Proficiency comes with practice. In the Appendix are the " Q " signals and some abbreviations used by amateur operators.

Procedure

Official A.R.R.L. Stations observe the rules regarded as "standard practice" carefully. Any actively-operating stations will do well to copy these rules, to post them conspicuously in the station, and to follow them when operating.

Calls shall be made by transmitting not more than three times the call signal of the station called, and DE, followed by one's own call signal sent not more than three times, thus: VE2BE VE2BE VE2BE DE W1AW W1AW W1AW. In amateur practice this form is repeated completely once or twice. The call signal of the calling station must be inserted at frequent intervals for identification purposes. Repeating the call signal of the called station five times and signing not more than twice has proved excellent practice in connection with break-in operation (the receiver being kept tuned to the frequency of the called station). The use of a break-in system is highly recom-
mended to save time and reduce unnecessary interference.

The A.R.R.L. method of using the general inquiry call (CQ) is also that of calling three times, signing three times, and repeating three times. CQ is not to be used when testing or when the sender is not expecting or looking for an answer. After CQ, the dial should be covered thoroughly for two or three minutes looking for replies.

The directional CQ: To reduce the number of useless answers and lessen QRM, every CQ call shall be made informative when possible. Stations desiring communication shall follow each $C Q$ by an indication of direction, district, state, continent, country or the like. International prefixes (Appendix) may be used to identify a particular country. Examples:

A United States station looking for any Canadian a mateur calls: CQ VE CQ VE CQ VE DE W1UE W1UE W1UE K. A western station with traffic for the east coast when looking for an intermediate relay station calls: CQ EAST CQ EAST CQ EAST DE W5CEZ W5CEZ W5CEZ K. A station with messages for points in Massachusetts calls: CQ MASS CQ MASS CQ MASS DE W8KKG W8KKG W8KKG K. In each example indicated it is understood that the combination used is repeated three times.
2. Answering a call: Call three times (or less) ; send DE; sign three times (or less); and after contact is established decrease the use of the call signals of both stations to once or twice. Example:

W1GNF DE W1AW GE OAL GA K (meaning, "Gool evening, old man, go a head")
3. Ending signals and sign off: The proper use of $\overline{\mathrm{AR}}, \mathrm{K}$ and $\overline{\mathrm{VA}}$ ending signals is as follows: $\overline{\mathrm{AR}}$ (end of transmission) shall be used at the end of messages during communication and also at the end of a call, indicating when so used that communication is not yet established. In the case of $C Q$ calls, the international regulations recommend that K shall follow. K (invitation to transmit) shall also be used at the end of each transmission when answering or working another station, carrying the significance of "go ahead." $\overline{\mathrm{VA}}$ (or SK) shall be used by each station only when signing off, this followed by your own call sent once for identification purposes. VA (end of work) sent alone, or for clarification followed by a single (never more) "CQ DE- — — -," indicates to others that you are through with the station which you have been working and will listen for whomever wishes to call. Examples:
$\overline{(A R)}-\mathrm{G} 2 \mathrm{OD}$ DE W1CTI $\overline{\mathrm{AR}}$ (showing that W1CTI has not yet gotten in touch with G2OD but has called and is now listening for his reply). Used after the signature between messages, it indicates the end of one message. There may be a slight pause before starting the second of the series of messages. The courteous and thoughtful operator allows time for the receiving operator to enter the time on the

THE RADIO AMATEUR'S HANDB00K

message and put another blank in readiness for the traffic to come. If K is added it means that the operator wishes his first message ack nowledged before going on with the second message. If no K is heard, preparations should be made to continue copying.
(K) - ZL2AC DE WGAJM R K . (This arrangement is very of ten used for the acknowledgment of a transmission. When anyone overhears this he at once knows that the two stations are in touch, communicating with each other, that \%L2A ("'s transmission was all understood by W6AJM, and that W6AJM is telling \%L2AC to go ahead with more of what he has to say.) WGKJY DE W7NH Nil 23 R K. (Evidently W9KJY is sending messages to W7NII. The contact is cood. The message was all received correctly. W7NII tells WりkJY to "go ahead" with more.)
$\overline{(V A)}-$ IR NM NWCUL VY $73 \overline{A R} \overline{V A} W 7 W Y$. (W7WY says "I understand OK, no more now, see you later, very' best regards. I am through with you for now and will listen for whomever wishes to call W7WY signing off,")
4. If a station sends test signals to adjust the transmitter or at the request of another station to permit the latter to adjust its receiving apparatus, the signals must be composed of a series of V's with the call signal of the transmitting station at frequent intervals.
5. When a station receives a call without being certain that the call is intended for it, it shall not reply until the call has been repeated and is understood. If it receives the call but is uncertain of the call signal of the sending station, it shall answer using the signal - - . (?) instead of the call signal of this latter station. QRZ? (see Appendix) is the appropriate signal to use, followed by your call to ask who is calling and get this station to call again.
6. Several radiograms may be transmitted in series (QSG.) with the consent of the station which is to receive them. As a general rule, long radiograms shall be transmitted in sections of approximately fifty words, each ending with .. - - . (?) meaning, "Have you received the message correctly thus far?"
7. Receipting for conversation or traffic: Never send a single acknowledgment until the transmission has been entirely received. " R " means "All right, OK, 1 understand completely." When a poor operator, commonly called a "lid," has only received part of a message, he answers, " R R R R R R R R R R, sorry, missed address and text, pse repeat" and every good operator who hears, raves inwardly. Use R only when all is received correctly. Example:

When all the message has been received correctly a short call with "NR 155 R K " or simply " 155 K " is sufficient.
8. Repeats: When most of the message was lost the call should be followed by the correct abbreviations (see Appendix) from the international list, asking for a repetition of the address, text, etc. (RPT ADR AND TXT K.) When but a few words were lost the last word received correctly is given after ?AA, meaning that "all after" this should be repeated. ?AB for "all before" a stated word should be used
if most of the first part of the copy is missing. ?BN \qquad AND \qquad (two stated words) asks for a fill "between" certain sections. lf only a word or two is lost this is the quickest method to get it repeated.

Do not send words twice (QSZ) unless it is requested. Send single. Do not fall into the bad habit of sending double without a request from fellows you work.

Do not accept or start incomplete messages.
9. A file of messages handled shall be kept, this file subject to call by the Section Manager at any time at his discretion. Only messages which can be produced shall be counted in the monthly reports, and these under the A.R.R.L. provisions for message-counting.
10. The operator will never make changes or alterations in the texts or other portions of messages passing through his hands. However slight or however desirable such changes may seem, the changing of a message without proper authority or without the knowledge of the originator of the message may be considered the "unpardonable sin." The proper thing to do of course is to notify the party filing the message or the originating station of your observations, secure permission from the proper source for making the change by sending a "service message" or other means. If the case seems urgent, the traffic should not be delayed but should be delivered or forwarded with appropriate notation or service accompanying it.

Activities - Contests

Operating in the amateur bands offers many thrills. Routine communication is possible, but even the most consistent and reliable communication by amateur radio is not at all limited to routine. The "unexpected" is always around the corner. A pleasant experience may arrive in the form of unusual DX, a renewed friendship over the air, a chance to render message service in some special case, or a sudden communication emergency in which one may play a part.

Special activities are sponsored by the American Radio Relay League, adding to ham interest and fraternalism at the same time opportunity is given for testing station performance over definite periods, making new friendships and QSOs, and developing operating technique. A.R.R.L. also coöperates with foreign amateur societies in many jointly publicized programs for the operating man that have similar beneficial aims.

Contest activities are diversified as greatly as possible to appeal to every classification of amateur interest showing a desire to participate. The most well known of all are the annual Sweepstakes, and the DX contests, and the Field Day, appealing to all groups.

Within the A.R.R.L. field organization the

OPERATING A STATION

first Saturday night each month is set aside for all A.R.R.L. officials, officers and Directors to get together over the air from their own stations, wherever located. This work is carried out mainly in the $3.5-\mathrm{Mc}$. band. The night is known to the gang generally as RM NITE because this get-together started as a gathering of Route Managers only. Special activities also are scheduled quarterly for the ORS-OPS appointees, to test stations and develop operating ability and contact organization officials.

It may be interesting to review briefly the general activities of a typical "full" season, to note the program offered to every A.R.R.L. member - this in addition to the first-Satur-day-night officials schedule, and the quarterly ORS/OPS doings, of course.

With the start of the radio season in October, we customarily take part in a VK-ZL (Australia-New Zealand) Contest, operating each week-end of that month to make as many two way contacts with VK's and ZL's as possible. The annual Navy Day Receiving Competition is managed by the A.R.R.L. in late October, an opportunity for any receiving ham to check his copying ability and proficiency by getting the telegraphic dispatches sent from NAA and NPG to amateurs on the occasion of Navy Day, October 27th. An "honor roll" in QST and letters of commendation follow this event.

One of the very biggest events of the year is the annual Sweepstakes Contest which has potentialities of operating fun and new QSOs for everybody, the operation extending to all bands. Each November the rules for this are announced. A large number of contacts, new stations, new Sections and other operating records are always reported in and after the "SS" and the spirit of fraternalism prevails. The magic key to open the door to QSOs, new and old, during the Sweepstakes is a CQ SS, sent in a snappy manner, by any ham, anywhere in the 71 A.R.R.L. Sections.

In December a Copying Bee has been arranged. The League offers a special a ward to the most proficient. Unusual word and figure combinations are transmitted at a fairly rapid speed by tape transmitters from three or four of the more powerful amateur stations throughout the country. Note the schedules in December QST and report your copy from one of these stations to A.R.R.L. Coöperative announcements of operating arrangements with other societies are often made for December and January, also.

An A.R.R.L. Member QSO Party is scheduled for January. Also, a study is being made of the possibilities for a big Red Cross Relay in February.

Every year, in March, comes the annual A.R.R.L. International DX Competition, an
activity in which W/VE amateurs invite all the world to take part with them. Serial numbers are exchanged as proof of QSOs. New countries, new continents, etc., are worked and many new W.A.C. certificates are awarded annually after the 9 -day activity (usually provided with a 90 -hour-total-time limit) is over. The QSL-bureaus of the world are also taxed by the annual flood of DX confirmations exchanged by hams after their operating in this DX free-for-all is over. The interest in the DX QSO's made possible is evidenced every year by stacks of logs several feet deep, and hundreds of course enjoy the DX made possible, even without submitting logs. Every ham looks forward eagerly to the full DX report in QST which shows his report compared with the others submitted.

The VE/W (Canada-United States) Contact Contest is a chance to see which U. S. A. ham can work most of our Canadian brothers, and vice versa. This is sponsored by the C.G.M. and a Canadian Committee and League certificate awards are made to the winners in each A.R.R.L. Section following this April activity.

Of major importance in the League's operating program, is the annual A.R.R.L. Field Day held on a week-end in June, combining the out-of-door opportunities with the Field testing of portables. As in all our operating, the idea of having a good time is combined with the more serious thought of preparing ourselves to shoulder the communication load as emergencies turn up and the occasion requires. A premium is placed on the use of low or medium power, on portability, and on the use of equipment without connection to commercial sources of power supply. Clubs as well as individuals have a major part in this.

Working DX

Hams who do not raise DX stations readily may find that (a) their sending is poor, (b) their calls ill-timed or judgment in error. It is usually wasted effort for W/VE stations to send CQ DX. When conditions are right to bring in the DX, and the receiver sensitive enough to bring in several stations from the desired locality, the way to raise DX is to use the appropriate frequency and to call these stations. Reasonably short calls, with appropriate and brief breaks to listen will raise stations with minimum time and trouble. The reason W/VE CQs do not raise $D X$ is that the number of U. S. A. and Canadian hams is so great that it is always possible for a foreign station to find a large number of W/VE's calling, without wasting time on stations not definitely looking for this station.

A sensitive receiver is often more important than the power input in working foreigners.

THE RADIO AMATEUR'S haNdB00K

There is not much difference in results with the different powers used, though 500 watts will probably give 10% better signal strength at the distant point than 100 watts, other factors being the same. It will not do much better than this because the field strength drops so rapidly as we get away from the antenna. In working foreign countries and DX stations you should be able to hear ten or a dozen stations before expecting that one of them will hear you call.

Conditions in the "transmission medium make all field strengths from a given region more nearly equal at a distance, irrespective of power used. In general, the higher the frequency band, the less important "power" considerations become.

General Practices

The signal " V " is used for testing. When one station has trouble in receiving, the operator asks the transmitting station to "QSV" while he tries to adjust his receiving set for better reception. A decimal point is often sent by the letter "R." Example: 2:30 PM is sent " $2 \mathrm{R} 30 P \mathrm{M}$." A long dash for "zero" and the Morse C (...) for "clear" are in common use. Figures are best spelled out in texts, for highest accuracy. An operator who misses directions for a repeat will send " 4 ," meaning, "Please start me, where?" NFT for "no filing time" is common.

The law concerning superfluous signals should be noted carefully by every amateur. Do not hold the key down for long periods of time when testing or thinking of something to send. If you must test, disconnect the antenna system and use an equivalent "dummy" antenna (made of lumped resistance, capacity and inductance). Send your call frequently when operating with the antenna. Pick a time for adjusting the station apparatus when few stations will be bothered.

Long calls after communication has been established are unnecessary and inexcusable. The up-to-date amateur station uses a "break-in" system of operation and just one switch controlling the power supply to the transmitter. The best sending speed is a medium speed with the letters quickly formed and sent evenly with proper spacing. The standard type telegraph key is best for allround use. Before any freak keys are used a few months should be spent listening-in and practicing with a buzzer. Regular daily practice periods, two or three half hour periods a day, are best to acquire real familiarity and proficiency with code.

No excuse can be made for a "garbled" text. Operators should copy what is sent and refuse to acknowledge messages until every word has been received correctly. Good operators never guess. "Swing" in a fist is not the mark of a
good operator, is undesirable. Unusual words are sent twice, the word repeated following transmission of "?". If not sure, good operators systematically ask for fills or repeats.

Don't say, "QRM" or "QRN" when you mean "QRS."

Don't acknowledge any message until you have received it completely.

Don't CQ unless there is definite reason for so doing. When sending CQ, use judgment. Sign your call frequently, interspersed with calls, and at the end of all transmissions.

Alboreviated standard procedure deserves a word in the interest of brevity on the air. Abbreviated practices help to cut down unnecessary transmission. However, make it a rule not to abbreviate unnecessarily when working an operator of unknown experience.
$N I L$ is shorter than $Q R U \quad C U$ NEXT' $S K E D$. Instead of using the completely spelled out preamble $H R$ MSG NR 287 WIGME CK 18 MIDDLEBURY CONN OCTOBER 28 $T O$, etc., transmission can be saved by using 287 II IGME 18 MIDDLEBURY CT OCT 28 $T O$, etc. One more thing that conserves operating time is the cultivation of the operating practice of writing down " 287 W1UE 615 P $11 / 13 / 37$ " with the free hand during the sending of the next message.
"Handling" a message always includes the transmission and receipt of radio acknowledgment (QSL) of same, and entry of date, time and station call on the traffic, as handled, for purposes of record. Chapter Twenty will amplify in detail on that most important phase of communication work, message handling.

Procedure for Voice W'ork

Most broadcasting work is casual and merely one-way communication while amateur radio and point-to-point services such as the airways require the specific attention of the listener, and receipting for all transmissions. The International Radiotelecommunications Convention and the supplementary regulations thereto prescribe method and system for time saving and maximum understandability. The most effective amateur voice operation conforms closely, where accuracy is the required oljective, and examples of such procedure in accordance with the universal practice will be given. The general practices of radio extend to voice and telegraph alike and may be followed with the special voice procedure mentioned.

At the start of communication the calling formula is spoken twice by both the station called and the calling station. After contact is established it is spoken once only. Examples:

W5QL calls: "Hello W3JZ Philadelphia, hello W3JZ lhiladelphia, W5QL Oklahoma C'ity calling, W5QL Oklahoma (ity, calling. message for you, message for you, come in please.'

OPERATING A STATION

W3JZ replies: "Hello W5Q1, Oklahoma (ity, hello W5QL Oklahoma City, W3JZ Ihiladelphia answering, W3JZ Philadelphia answering, send your message, send your message, come in please."

W5QL replies: "IIello W3JZ Philadelphia. W5QI. Oklahona City answering, the message begins, from Oklahoma City Oklahoma W5QL number [usual preamble, address, text, signature, etc.]. message ends; 1 repeat, the message begins. from Oklahoma City Oklahoma W5QL number rrepetition of preamble, address, text, signature, etc.]. message ends, come in please."

W3JZ replies: "Hello W5QL Oklahoma City, W3JZ Philadelphia answering, your message begins, from Oklahoma City Oklahoma W5 (2L number [repetition of complete message], end of your message, come in please."

W5QL, replies: "Hello W3JZ Philadelphia, W5(21, Oklahoma City answering, you have the message correctly, you have the message correctly, W5QL Oklahoma ("ity signing off."

Note that in handling traffic by voice, messages are repeated twice for accuracy, using the word list to spell names and prevent misunderstandings. The receiving station must repeat the message back in addition. Only when the sender confirms the repetition as correct can the message be regarded as handled.

Word List for Accurate Transmission

When sending messages containing radio calls or initials likely to be confused and where errors must be avoided, the calls or initials should be thrown into short code words:

A-able	J-JIG	S-sale
13-boy	K-KING	T-tare
C-cast	1. - love:	U.-UNIT
[) - dog	M-mike	V-vice
E - easy	N-nan	W-watch
F-FOX	()- оное	X-x-ray
(i - Geolde	P - PCP	l- yoke
H-have	(2-quack	\% - 2ED
I - item	l - rot	

Example: W1BCG is sent as W'ATCI ONE BOY CAST GEORGE.
A somewhat different list can be obtained from the local Western Union telegraph office and posted beside the telephone to use when telephoning messages containing initials and difficult words. Such code words prevent errors due to phonetic similarity. Here is the Western Inion word-list:

A- adams	J -- John	S-sogar
B - boston	K-- king	' - thomas
C- chicago	L - Lincoln	[' - UnIon
I)- denver	M - mary	V - victor
E- EDWARD	N- NES york	W - william
F-prank	O-- ocean	X - X-ray
(; - george	P-peter	Y - young
I - henry	Q- queen	\%-zero
1- IDA	R - robert	

Names of states and countries are often used for identifying letters in amateur radiotelephone work, the possible objection being the confusion of the names of places with the station's location. It is reconmended by 1.R.R.L. that use of special abbreviations such as Q code be minimized insofar as possible in voice work, and that full expression (with conciseness) be substituted. O.P.S. have adopt-
ed the Western Union word list as A.R.R.L. practice for avoiding difficulty with phonetic similarity. All word lists should be used in moderation, as necessary in avoiding misunderstanding, and at the end of calls not more than once.

Using a Break-In System

If you aim to have the best, and every ham does, you will have break-in, whether of the push-to-talk or open the key variety, but if you haven't the ideal installation yet, by all means operate intelligently and take every advantage of the other fellow's facilities when break-in is offered! Break-in avoids unnecessarily long calls, prevents QRM, gives you more communication per hour of operating. Brief calls with frequent short pauses for reply can approach (but not equal) break-in efficiency.

See Chapter XVII of this book for teehnical details of "break-in" arrangement.

A separate receiving antenna makes it possible to listen to most stations while the transmitting tubes are lighted. It is only necessary with break-in to pause just a moment occasionally when the key is up (or to cut the carrier momentarily and pause in a 'phone conversation) to listen for the other station. The click when the carrier is cut off is as effective as the word "break."

For 'phone a push button to put the carrier on the air only while talking is a completely practical device, and anateur 'phone operators would do well to emulate the push-to-talk efficiency of the Airways operators to improve conditions in the 'phone bands.
C.w. telegraph break-in is usually simple to arrange. With break-in, ideas and messages to be transmitted can be pulled right through the holes in the QRM. Snappy, effective, efficient, enjoyable amateur work really requires but a simple switching arrangement in your station to cut off the power and switch 'phones from monitor to receiver. If trouble occurs the sending station can "stand by" (QRX), or it can take traffic until the reception conditions at the distant point are again good.

In calling, the transmitting operator sends the letters "BK," "BK IN," or "BK ME" at frequent intervals during his call so that stations hearing the call may know that a break-in is in use and take advantage of the fact. He pauses at intervals during his call, to listen for a moment for a reply from the station being called. If the station being called does not answer, the call can be continued. If the station called answers someone else, he will be heard and the calling can be broken off. With full break-in, transmitter may be remotely controlled so no receiver switching is necessary. A tap of the key, and the man on the receiving end can interrupt (if a word is missed) since
the receiver is monitoring, awaiting just such directions constantly. But it is not necessary that you have such complete perfect facilities to take advantage of break-in when the stations you work are break-in equipped. It is not intelligent handling of a station or coöperation with an operator advertising that he has "bk in" with his calls, to sit idly by minute after minute of a properly sent call. After the first invitation to break is given and at each subsequent pause turn on your transmitter and tap your key - and you will find that conversation or business can start immediately.

Keeping a Log

The F.C.C. requires every amateur to keep a complete station operating record. It may

KEEI AV ACCURATE AND COMILETE STATION 1AG; AT ALL TIMES! THE F.C.C. REQUIRES IT
The official A.IR.R.L. log is shown above, answering every government requirement in respect to atation records. Bound loge made up in accord with the above form can be obtained from Headquarters for a nominal eum or you can prepare your own, in which case we offer this form as a suggestion, hoping that you find it worthy of adoption. Every station must keep nome sort of a log. The above log has a opecial wire binding and lies perfectly flat on the table.
also contain records of experimental tests and adjustment data. A stenographer's notebook can be ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a log be maintained which shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two way contacts resulted or not), (3) the input power to the last stage of the transmitter, (4) the frequency band used, (5) the time of ending each QSO, and the operator's identifying signature for responsibility for each session of operating. Messages may be written in the log or separate records kept - but record must be made for one year as required by the F.C.C. For the convenience of amateurs A.R.R.L. stocks both log books and message blanks, and if one uses
the official \log he is sure to fully comply with the government requirements if the precautions and suggestions included in the \log are followed.

Amateur Status

An amateur's most precious possession, by virtue of which he holds his license, is his amateur status. A business house, organized for profit cannot qualify to use amateur frequencies. Amateur radio in its very definition and nature is a non-pecuniary pursuit.

No brief can be held for the amateur who accepts direct or indirect compensation for handling specific messages or any other use of his transmitting station on the air. This violates the terms of the station license and the regulations of F.C.C.

There is a fine distinction here - an amateur can handle messages for any concern or individual as long as he himself does not profit in any way therefrom through the use of his station. An amateur station cannot be hired to be operated for an advertising exhibit in a store, or an operator made to agree as a provision of his employment by a business house to handle messages of the concern while he is accepting pay from the company therefor.

It is the purpose of these paragraphs to warn amateurs to avoid being "used" by commercial interests in unethical ways. A hotel on the Pacific Coast offered an amateur radio club a fine meeting place with free light, power and heat - provided the amateurs would establish an amateur station and relay messages for guests of the hotel. A certain newspaper planned to "organize an amateur radio club" and establish a "net" for the collecting of amateur news for the paper. It offered the amateurs a club room and the facilities of a powerful station that it would install as a "net control station" in return for the things it could gain by making amateurs violate their amateur status!

An amateur who owned and ran a radio business could not conceivably send messages relating to that business over the air through his own amateur station - though any other amateur station might with impunity so engage as long as no compensation existed. A "consideration" of any nature establishes the commercial nature of any traffic or use of station. Our right to handle worthwhile communications in the U.S.A. is unquestioned. This is warning about agreements or set ups in which the amateur accepts anything for the use of his station which might jeopardize his ability to hold an amateur station license.

The R-S-T System of Signal Reports

The R-S-T system is an abbreviated method of indicating the main characteristics of a re-

OPRRATING A STATION

ceived signal, the Readability, Signal Strength, and Tone. The letters R-S-T determine the order of sending the report. In asking for this form of report, one transmits RST? or simply QRK?

READABILITY

1 - Unreadable
2 - Barely readable, occasional words distinguishable
3 - Readable with considerable difficulty
4 - Readable with practically no difficulty
5 - Perfectly readable

SIGNAI, STIRENGTII

1 - Faint - signala barely perceptible
2 - Very weak signals
3 - Weak rignals
4 - Fair signala
5 - Fairly good signals
6 - Good signals
7 - Moderately atrong signaln
8 - Strong eignals
9 - Extremely strong nignals
TONE
I - Extremely rough hissing note
2 - Very rough a.c. note, no trace of musicality
3 - Rough, low-pitched a.c. mote, slighty musical
4 - Rather rough a.c. note, moderately musical
5 - Musically modulated note
6 - Modulated note, slight trace of whistle
7 - Near d.c. note, amooth ripple
8 -Good d.c. note, just a trace of ripple
9 - Purest d.c. note
(If the note appears to be crystal controlled simply add an X after the appropriate number.)

Such a signal report as "RST 387X" (abbreviated to 387 X) will be interpreted as, "Your signals are readable with considerable difficulty; good signals (strength); near d.c. note, smooth ripple; crystal characteristic noticed." Unless it is desired to comment in regard to a crystal characteristic of the signal, a single three-numeral group will constitute a complete report on an amateur signal. The R-S-T system is the standard A.R.R.I. method of reporting. Various report combinations are based on the table.

Interference Problems

The subject of public relations is important to us amateurs both individually and as an organization. No amateur can long afford to operate when he knowingly interferes widely with broadcast reception. Even the observance of prescribed quiet hours, while covering the situation legally, does not entirely suffice. Patience in explaining, frankness, tolerance in listening to other viewpoints and other qualities of diplomacy are needed to give the full
technical explanations required. Evidence of fair dealing, and coöperation with listeners is always given weight when F.C.C. representatives find it necessary to investigate facts in an interference case.

It is necessary for both parties to an interference problem to understand that both the transmitter and the receiver are part of the problem - improved adjustment of the former improved design of the latter to increase its selectivity, may be necessary. Each individual must accept responsibility for his equipment. Coöperation is the only policy that will help either party.

See Chapter Nine for details on interference filters, wavetraps for receivers, circuits for key thump suppression, etc. A.R.R.L. will be glad to assist all members who write for special interference helps by study of their eases.

Club Interference Work

We recommend and request that each A.R.R.L. affiliated club organization maintain an interference committee, to keep order, make investigations and recommendations locally, coöperate with the press, the public, and listeners who wish to file complaints of amateur interference. These committees can be composed of representative broadcast listeners, amateurs and with one member from a local newspaper to assist in collecting and referring complaints. A few leading questions will disclose the amatcur cases and other difficulties can be referred to local power and communications companies.

Ernergency Operating Precautions ${ }^{1}$

In emergency operating ${ }^{1}$ a fine scnse of discrimination is necessary. Desire to help through transmitling participation is often a dangerous thing. Careful listening locates stations, places, nets, keeps general calls at minimum and enables handling traffic efficiently responsive to the CQ of an emergency area station. "Talking it over" and general chatter should be reserved until emergency conditions no longer exist.

As soon as the F.C.C. has "declared" a condition of general communications emergency, special amateur regulations (Sec. 152.54) govern absolutely, with the following provisions effective until the Commission declares the emergency ended:

1. Notransmissions in the $\mathbf{8 0}$ - or $\mathbf{1 6 0}$-meter bands may be made except those relating to the relief or emergency service. Casual conversation, incidental calling or testing, rentarks not pertinent to the constructive handling of the emergency communications, shall be prohibited.
2. 25-kc. hand-edge segnients ahall be reserved at all times for (a) emergency calling channele, (b) initial calls from the isolated, (c) first callsinitiating dispatch of important priority relief maters. All

THE RADIO AMATEUR'S HANDB00K

stations shall. for general communication, shift to other within-band frequencies for carrying on communication. The channels for calling ©Ni. Y. in emergencies, are: 1975-2000* 3500-3525 and 3975-4000 kcs.
3. Hourly observance of mandatory quiet or listening periods, the first five minutes of each hour. (No calls may be answered in this period. Oniy "ntmost priority" traffic may continue.)
4. For promulpating the emergency-declaration, for policing-warning-observing work in 1715-2000 and $3500-1000 \mathrm{kc}$. bands, F.C.C. may designate certain amateur stations. Announcements from these stations will he identified lyy their reference to See. 152.54 by nuniber, and their specification of the date of the F.C.C.'s declaration, with statenient of the area and nature of the emergency.

Where a communications emergency is part of a general emergency accompanied by relicf problems and movements of the population it will be found that many refugees are created by the situation and deliveries of ingoing messages to these people are well nigh impossible. There is great good will as a result of handling personal safety messages in each instance where delivery can be effected, but it must be remembered that relief problems of the community at large, official messages from Red Cross, military and civic officials have absolute priority. Radio circuits must carry the important messages first, and when personal safety messages are permissible in the judgment of operators in the affected area it is even then much more profitable to have the burden of traffic outgoing messages of safety rather than requests for investigating safety which cannot be acted upon except at a deferred date. Organization must avoid unnecessary duplication of channels, must load telegraph circuits properly to avoid congesting telephone channels where fewer circuits are available. Messages should be routed for point to point delivery by a single channel, and no irritating duplications or repeating of the same messages (broadcast) be permitted where this can be avoided. The function of broadcasting stations is to reach the public, that of amateur stations to handle point to point information efficiently with as little public excitement as possible and maximum secrecy for texts of official messages and any information that might start rumors.

It is important that originating stations number their messages and put them in standard form. That makes the work systematic and respected and takes it out of the hit or miss classification into which casual exchanges fall in the minds of recipients. Such method in all amateur work instantly nails duplicate messages, makes tracing possible, and makes a mateur performance comparable with that of wther communication services. See the Chapter (in) message handling for full details.

Unauthorized broadcasting and modifying of broadcasts ${ }^{1}$ addressed to the a mateur service has caused difficulty in major emergencies
of recent years. Rumors are started by unintelligent expansion or contraction (and subsequent repetitions) of broadcast dispatches. It is improper and deserving of censure and severe penalties to delete essential limiting words that qualify a message, to expand, exaggerate, or alter meanings. Broadcasts should include their source and authority; they should be repeated exactly if at all, or not repeated; League and F.C.C. transmissions through vigilantes appointees in emergencies of the future will as in the past extend no authority, or specified limited authority, to rebroadcast.

The League's Emergency Corps (also covered in Chapter Twenty) has adopted the principles tabulated for "before - in - after emergencies" and in addition is pledged to a man to observe the following:
. . . . to confirm the authenticity of reports, and as a responsible individual avoid publication or transmission of any rumor, except labelled as such. (Vital information should be released only when verified by proper authority. Make your operation in connection with official agencies such as the Red Cross, civil and military authorities so that messages may be signed by officials in as many cases as possible.)
. . . . to work closely with any A.R.R.I. (city or regional) Emergency Cobrrdinator that may be appointed. Also to coöperate with Section Communications Manager, Route Manager, or Phone Activities Manager in any definite steps for emergency organization.
.... to have proper regard to priority of communications. T'o keep quiet (QRX) as much as possihle to reduce interference. Priority is normally determined within the emergency zone itself.
to become acquainted with the special frequencies and frailities of organized amateur groups, the A.A.R.S. and U.S.N.R.
... to use QRR only if necessary, and then use it correctly, (It ma, ONLY be used by a station in an emergeney zone with an :ctual distress message.)

Emergency Communication

A communications emergency occurs whenever normal facilities are interrupted or overloaded, and may or may not involve general public participation. A communications emergency need not involve a public relief or welfare emergency, but the latter condition usually is accompanied by a communications emergency.

In scores of emergencies radio a mateurs have given a good account of themselves. Radio has proved the only agency to span the gap with power failing and wires down. Since our amateur stations are of the most numerous class licensed, because they are located anywhere and everywhere, many are located strategically to give an account of themselves as need arises. Those amateurs best prepared before trouble comes are credited with having played most important parts. It should be a matter of pride with every amateur to fit himself as a superlative operator, and equip himself with apparatus with an eye t" emergencies when power may evaporate from customary commercial sources with a view to

operating a station

BEFORE EMERGENCIES

Be ready, with emergency power supply. Six-volt tubes in exeiters and receivers make for convertibility and utility in portable work where gas engine generators are not available. Overhanl and test periodically.

Test set/operator ability in A.R.IR.1.. Field Day and Contests. Cive local officials and agencies your address; explain amateur facilities; act via the A.R.R.L. Emergency (ioirdinator wherever one is appointed.

IN EMERGENCY

REPORT at once to the A.R.R.L. Emergency Coorrlinator so he will have full data on availability of stations - operators - eirenits. W ork direet with ageneies we serve where no appointed oflieial is in charge, and when so assigned.

CIECK station operating faeilities; offer services to all who may use them, via Coirdinator or helping official where one is available.

QRR is the offieial A.R.R.L. "land sOS," a distress call for emergency uses only . . . for use only by station asking assistance.

RESTIRICI' all work in aecord with F.C.C. regulations, Sec. 152.54, as soon as F.C.C. has 'declared" a state of communieations emergency.

THE KEY STATION in emergeney zone is the first and the supreme authority for priority and trafic routing in the early stages of emergency relief communications.

PRIORITY must be given messages in the general publie interest (relief plans, re food, medieine, necessities). Press reports and personal assuranee messages can then be handled if practicable.

COÖPERATION is required of all amateurs with those we serve; with ot her commminieation agencies. Don't elutter air with CQ's. The majority of amateurs must listen in; QRX, avoid QRNing. Be ready to help; operate as intelligently as possille; coiperate by staying off the air while vital information and relief measures are handled, if stations able to help as well as yours are on the job. (CO STORN AREA is nothing but 'more QRI.")

AFTER ENIERGENCIES

REPORT to A.R.R.L. as soon as possible and as fully as possible so amateur radio can reecive full credit. Amateur radio conmmunication in 52 major disasters since 1919 has won glowing publie tribute. Naintain this record.
carrying on the vital service of amateur communication if urgent opportunity for a service large or small arrives. An earlier Chapter has covered important equipment provisions relative to making our stations prepared for emergency. It is the purpose of this section to summarize some emergency operating principles that should govern in amateur emergeney operations, if greatest effectiveness within the amateur service is to be attained.

We serve best by manning a few powerful, best situated stations with amateur operators in 8 -hour shifts, rather than inadequately manning too many amateur stations with overworked operators creating band congestion. Coördinators will aim to create an organized operator-reserve in general emergencies. Nee Chapter Twenty-one which outlines the functions of A.R.R.L. Emergency Coördinators.

Those we serve in widespread emergency are the Red Cross, civil and military authorities, transportation agencies, power-gas-light-water utilities, the Coast (iuard, Army engineers and others. In doing this we often work hand in hand with other wire and radio services as well as with each other.
ln the event of new cases of serious and widespread commumications emergency, it is likely that the F.C.C. will follow precedent (and its new regulations, see. 152.54) and again declare a general communications energency. Then, as in the Ohio valley flood (1937) it is likely that F.C.C. will call on your A.R.R.I. to recommend policing-observing stations for F.C.C. to appoint in the different amateur bands to function for the duration of the emergency. A.R.R.I. stands ready with its experience, its program of preparedness, and its member-station organization in which every live amateur who volunteers has a part.

Monitored Frequencies

A few words on the last two points: In dire disaster where life and property are threatened and a region is isolated except for wireless communication, government aid may be secured when all attempts on normal channels have failed, by "breaking" an existing government circuit. A.A.R.S. use $6990-34971 / 2-$, etc., kcs . Naval shore stations guard certain frequencies constantly, also. In the east 4040-, $4075,4235-$ and 8920 - kes. at night, or 7995 kes. in daylight hours, and in the west 4010-, 4235-, 4525- and 7995-kes. are the night, with 8150 kc . a day frequency.

Emergency Calling Frequencies

Regarding $Q R R$, which call is limited to use of isolated stations for first emergeney calls, special provision and methods are necessary to assist the stations under handicap of no commercial power in remote sections in getting

THE RADIO AMATLUR'S HANDB00K

contact and help. Their problem is vital, and different from the problem of casual participation by the amateur community at large.

It is recommended by A.R.R.L. that frequencies at the band edges be utilized for emergency calls, with no general emergency declared or in effect. This lends point and specification to builders of emergency equipment. This spot on all bands is well covered continuously by receivers. It gives hope to the isolated operator that he be heard. At such frequencies all listeners are instructed to hunt for weak signals in any periods in general emergency established for taking account of the isolated, and establishing new important connections.

The F.C.C. regulations now require that in general emergency 2000-1975* kes., 4000-3975 kes. and $3500-3525 \mathrm{kcs}$. shall be reserved as emergency calling channels - prohibited to all stations except for first emergency or QRR calls, and initial or important emergency relief traffic or arrangements, whenever F.C.C. shall have recognized and declared a general communications emergency exists. All stations using such channels shall as rapidly as practicable shift to normal working and calling frequencies, to leave these emergency channels clear for important calls of this type.

0000-0005 Listening Time in Emergency

The Fedcral Communications Commission rules also require that in emergency, all amateur stations in the designated areas observe a silent or listening period for the first five minutes of each hour (0000-0005), on all amaleur channels (3500-4000 kcs., 1715-2000 kcs.), tuning through the emergency calling channels and other channels for any QRR or initial-important calls from weak stations, previously unheard in interference.

The League requests the fullest collaboration and coöperation of all amateurs to add to our public service rccord. Preparedness of station and operator is the first step. Voluntary enlistment of every amateur is requested (1) in abiding by the precepts above outlined (2) in registering in the A.R.R.L. Emergency

Corps (3) in coöperation for local community and regional planning and tests, which will be initiated by appointed coördinators and other League Officials (4) in building self-powered ${ }^{2}$ equipment.

After emergency (large or small) full individual reports to the A.R.R.L. Communications Department are requested for the amateur service record. The part that every amateur played must be recorded not only for the QST account, but to strengthen and sup)port the running record of amateur achievement.

From analysis of all reports A.R.R.L. P'ublic Service Certificates are awarded for notable "public service" work.

Stations outside an "emergency zone" in communication with relief stations in that zone are requested to inform A.R.R.L. Headquarters at once of this situation by telegram to facilitate traffic movement and for the information of the press.

Bibliography

${ }^{1}$ Ilans for Emergency Operating, page 35, April 1938 QST. ${ }^{2}$ Practical Organization and Equipment for Emergency Operation (Tynes), p. 13, Fels. 1937 UST. * With a prospective F.C.C. change in early 1939 from $1715-2000 \mathrm{kcs}$. to $1750-2050 \mathrm{kce}$., it is likely that this "calling" band segment for emergencies will become 2025-2050 kce. QRI 1'reparation (Burchfield), p. 59, Jan. 1937 QST; A Compact Airplane Type Transmiticr with Vibrator lower Supply, p. 46, Sept. 1937 QST; I Unit Style Portahle Station, p. 20, Aug. 1937 QST: IBreak-in Operation with a Dynamotor, p. 50, Aug. 1937 QST; New Vibrator Type Plate Supplies, p. 52, Aug. 1937 QST; Rewinding an Auto Generator for 110 v.a.c. p. 26, Nov. 1937 QST; A Battery Operated Emergency Rig of Iroved Performance, p. 14, June 1937 QST; A 28-Mr. Molile Installation, p. 49, June 1937 QST; A Complete Portable Station with Crystal Control, p. 11, June 1937 QST; A Four-Band Portable or Mobile Transmitter, p. 23, July 1937 QST; A Versatile Emergency Transmitter, p. 36, Oct. 1937 QST; DeLuxe Rat-tery-Operated Portable Stations, p. 20, April, 1938 QST; 56-Mc. Transceiver, p. 28, April, 1938 QST; (June '36 QST, page 43, and Aug. '36 QST, page 39. give numerous "possible" and then popular tube line ups); A Portable-Mohile Cryatal-Controlled U.II.F. Tranamitter, p. 37, May 1938 QST; 75-Meter 'Phone is the Maine Woods (portable), p. 27, June 1938 QST; A Three-'lube Super for Portable or Emergency Work (Grammer), p. 8, Aug. 1938 QST; Norfolk Amatearn I'repare for Emergencie: (W3EMM-W3BEK), b. 8. Sept. 1938 QST.

MESSAGE HANDLING

that, where feasible, words be substituted for figures to reduce the possibility of error in transmission. Detailed examples of word counting are about as difficult in one system of count as another.

Count as words dictionary words taken from English, German, French, Spanish, Latin, Italian, Dutch and Portuguese languages: initial letters, surnames of persons, names of countries, cities and territorial subdivisions. Abbreviations as a rule should be used only in service messages. Complete spelling of words is one way to avoid error. Contractions such as "don't" should be changed to "do not." Examples:

Finergency (English dictionary)	1 word
Nous arriverrons dimanche (Frend	3 words
1)eWitt (surnmme).	1 word
W.I.I.B.D. (initials)	4 words
linited States (country)	1 word
President Hoover (steamship)	1 word
Prince William Sound.	:3 words
M.S. City of Belgrade (motor ship)	- 2 words
EXCEPPION:	
A.M., P.M.	1 word
F.O.B. (or fob)	1 word
O. K.	1 word
Per cent (or percent)	1 word

Figures, punctuation marks, hars of division, decimal points, count each separately as one word. The best practise is to spell out all such when it is desired to send them in messages. In groups consisting of letters and figures each letter and figure will count as one word. In ordinal numbers, affixes d, nd, rd, st, and th count as one word. Abbreviations of weights and measures in common use count as one word each. Examples:

10000000 (figures)	8 words
'Ten millions (dictionary words)	\geq words
5348 (figures)	1 words
67.98 (figures)	5 words
154.42	4 words
\$51/4 (figures and bar of division)	5 words
3rd (ordinal number and aftix)	2 words

Groups of letters which are not dictionary words of one of the languages enumerated, or combinations of such words will count at the rate of five letters or fraction thereof to a word. In the case of combinations each dictionary word so combined will count as a word. In addition USS USCG etc. written and sent as compact letter-groups count as one word. Examples:
Tyffa (artificial 5 letter group) 1 word Adccol (artificial 6 letter group) 2 words allright, alright (improperly conbined). 2 words
Dothe (improperly combined) 2 words ARRL.
$\frac{2}{1}$ words
At the request of sender the words "report back delivery" asking for a service showing success or failure in delivering at the terminal station, may be inserted after the check or "rush" or "get answer" similarly, such words
counting us extras in the group or check designation as just covered by example. "Phone" or "Don't Phone" or other sender's instructions in the address are not counted as extra words. In transmitting street addresses where the words east, west, north or south are part of the address, spell out the words in full. Suffixes "th," "nd," "st," etc., should not be transmitted. Example: Transmit "19 W 9th St" us " 19 West 9 St." "F St NE" should be sent, "F St Northeast." When figures and a decimal point are to be transmitted, add the words CNT DOT in the check.

Isolated characters each count as one word. Words joined by a hyphen or apostrophe count as separate words. Such words are sent as two words, without the hyphen. A hyphen or apostrophe each counts as one word. However, they are seldon transinitted. Two quotation marks or parenthesis signs count as one word. Punctuation is never sent in radio messages except at the express command of the semler. Even then it is spelled out.

Here is an example of a pain language message in correct A.R.R.I. form carrying the land line check:

NR 601 W1AW CK 9 WEST HARTFORD CONN

 1R15P OCT 28ALL RADIO HAMS
9 COMPLETE ADR ST
ANYCITY USA
ALL AMATEURS ARE REQLESTED TO FOLLOW s「AND.AlRD ARRJ, FOIRM

HANDY ARRLCM
Very important messages should be checked carefully to insure accuracy. Request originators to spell out all punctuation marks thet must appear in deliverel copies. Likewise, never abbreviate in texts, or use ham abbreviations except in conversations.

Message handling is one of the major things that lies in our power as amateurs to do to show our amateur radio in a respected light, rather than from a novelty standpoint. Regardless of experimental, QSL-collecting, friendly ragchews, and DX objectives, we doubt if the amateur exists who does not want to know how to phrase a message, how to put the preamble in order, how to communicate wisely and well when called upon to do so. Scarcely a month passes but what some of us in some section of our A.R.R.L. are called upon to add to the communication service record of the amateur.

It is important that deliveries be made in business-like fashion to give the best impression, and so that in each case a new friend and booster for amateur radio may be won. Nessages should be typed or neatly copied, preferably on a standard blank, retaining original for the F.C.C. station file where these

THE RADIO AMATRUR'S HANDB00K

are mailed. The designation and address of the delivering station should be plainly given so a reply can be made by the same route if desired.

For those who would disparage some message texts as unimportant, perhaps a reminder is in order that in the last analysis it is not the importance to the ham that hanclles it that counts, but the importance to the party that sends and the party that receives a message.

The individual landling of traffic in quantities small as well as large is to a very great extent the material that we amateurs use for developing our operating ability, for organizing our relay lines, for making ourselves such a very valuable asset to the public and our country in every communications emergency that comes along, not to mention the individual utility and service performed by each message passed in normal amateur communications.

For those "breaking-in" may we say that any O.R.S., Trunkliner or experienced A.R.R.L. traffic handler will be only too glad to answer your questions and give additional pointers both in procedure and concerning your station set-up to help you make yours a really effective communications set-up. Since experience is the only real teacher we conclude by suggesting to all and sundry that becoming proficient in any branch of the game is partly just a matter of practice. Start a few messages, to get accustomerl to the form. Check some messages to become familiar with the official A.R.R.L. (land line) check. You will find increased enjoy ment in this side of a mateur radio by adding to your ability to perform; by your familiarity with these things the chance of being able to serve your community or country in emergency will be greater. Credit will be reflected on amateur radio as a whole thereby.

Foreign Traffic Restrictions

Any and all kinds of traffic may be handled between amateur stations in different parts of the United States, Hawaii, Alaska, and Porto Rico. There is no qualification or restriction except that amateur status must be observed and no compensation, direct or indirect, be accepted for station operations or services. Radio amateurs in all U. S. possessions except the Philippines (which has its own radio administration) are licensed by the U. S. Federal Communications Commission. The F.C.C. permits U. S. amateurs to handle with P. I. all types of communication permitted internally in the U.S. as with the other possessions. But the Philippine Island administration, since part of the inter-island communications system is government owned, leans toward the incorporation of certain additional restrictions on its amateurs relating to the handling of messages of "business importance."

There is a binding international communica-
tions treaty in full effect between the United States and the following foreign countries: Aden, Australia and territories, Austria, Belgium and Belgian Congo and Ruandi Urundi, Brazil, Bulgaria, Burma, Dominican Republic, China, Colombia, Cuba, Czechoslovakia, Danzig, Denmark, Egypt, Estonia, Ethiopia, Finland, France, Germany, Great Britain, Hungary, Iceland, British India, Italy and its colonies and islands, Japan (and Chosen, Taiwan, Karafuto, Kwantung, and islands under mandate), Luxembourg, Morocco except Spanish zone, the Netherlands plus Netherlands Indies, Norway, Portugal, Rumania, Surinam and Curaçao, New Zealand, Persia, Poland, Spain and its territory of Gulf of Guinea, Southem Rhodesia, Sweden, Switzerland, Syria \& Lebanon, Union of South Africa, Tunesia, Uruguay, Vatican City State, Venezuela, Yugoslavia.

Internationally the general regulations attached to the international communications treaty state the limitations to which work between amateur stations in different foreign countries is subject. In practically every country outside our own country and its possessions, the government owns or controls the public communications systems. Since these systems are maintained as a state monopoly, foreign amateurs have been prohibited by their governments from exchanging traffic which might be regarded as "competition" with state owned telegraphs. The international treaty regulations reflect this condition and the domestic traffic restrictions (internal policy) of the majority of foreign countries. Oct. 1935 QST (p. 57-58), Sept. 1936 QST (p. 41-42) and Sept. 1937 (p. 57) give interesting résumés of the amateur regulations of foreign countries. Any country ratifying the Madrid (1932) or Cairo (1938) Conventions can make its domestic regulations as liberal as it likes; in addition it may conclude special agreements with other governments for amateur communications that are more liberal than the quoted terms of the treaty itself. If no specific formal negotiations have been concluded, however, amateurs must observe the following (treaty) regulations in conducting international amateur work:

The exchange of communications between amateur stations and between private experimental stations of different countries shall be forbidden if the Administration of one of the interested countries has given notice of its opposition to this exchange.

When this exchange is permitted the communications must be conducted in plain language and be limited to remarks of a personal nature, for which, by reason of their lack of importance, recourse to the public telegraph service would not be warranted. It shall be absolutely forbidden to licenses of amateur stations to transmit international communications emanating from third parties. The above provisions may be modified by special arrangements between the interested countries.

MESSAGE HANDLING

Referring to the first paragraph above, in the years since the Washington Convention (1927) no prohibition on amateur communication (international QSOs) has been filed by any country with the Berne Bureau. In some countries, principally European, amateurs are restricted by regulation to privileges much less than made available by international agreement. The use of some amateur bands is withheld, or the width of certain band severely restricted by proclamation of "buffer bands," power is restricted, absurd time regulations restricting operation to two hours per day, fifteen minutes per hour, etc., enacted, and "third party" messages absolutely forbidden domestically as well as internationally. In the U. S. A. it is the policy, and of course necessary to take care of our greater numbers of amateurs, to give amateurs the fullest frequency allocations and rights possible under international treaty provisions, and to permit free exchange of domestic non-commercial traffic in addition. This policy has justified itself, giving the public amateur radio traffic service, and developing highly skilled operators and technicians who have the ability to keep the U. S. A. in the lead in radio matters.

The second paragraph quoted prohibits international handling of third party traffic, except where two governments have a special arrangement for such exchange. In any event, traffic relating to experimental work, and personal remarks which would not be sent by commercial communications channels may be sent, when in communication with foreign amateurs.

A considerable number of Central and South American countries are signatory to an interAmerican agreement, concluded at Habana (Nov. '37), in which they all signify their willingness to allow amateurs to handle traffic between their respective countries in the western hemisphere. This permissive agreement permitting third party traffic handling was effective in mid-1938, but subject to ratification by the ten or twelve contracting governments. Information on ratifications, naming the countries so favoring amateurs, will appear in QST, as rapidly as it becomes available.

Previous special arrangements, extending the basic international telecommunications treaty arrangements have also been effected through A.R.R.L. and U. S. A. representations. The special U. S. A.-Canadian agreement will be explained. Similar arrangements with Chile and Peru permit the handling to those countries of certain types of traffic. With all other countries besides those listed as ratifying the binding international treaty we are free to handle third-party traffic - if we can find a ham on the other end who is not prohibited by his government from handling messages.

The Canadian Agreement

The special reciprocal agreement concluded between our country and the Dominion of Canada at the behest of the A.R.R.L. permits Canadian and U. S. amateurs to exchange messages of importance under certain restrictions. This agreement is an expansion of the international regulations to permit the handling of important traffic.

The authorized traffic is described as follows:
"1. Messages that would not normally be sent by any existing means of electrical communication and on which no tolls must be charged.
"2. Messages from other radio stations in isolated points not connected by any regular means of electrical communications; such messages to be handed to the local office of the telegraph company by the amateur receiving station for transmission to final destination, e.g., messages from expeditions in remote points such as the Arctic, etc.
"3. Messages handled by amateur stations in cases of emergency, e.g., floods, etc., where the regular electrical communication systems become interrupted; such messages to be handed to the nearest point on the established commercial telegraph system remaining in operation."

The arrangement applies to the United States and its territories and possessions including Alaska, the Hawaiian Islands, Porto Rico, the Virgin Islands, the Panama Canal Zone and the Philippine Islands. The agreements with Chile and Peru are similar to the above.

Originating Traffic

Messages to other amateurs are a natural means of exchanging comment and maintaining friendships. The simplest additional way to get messages is to offer to send a few for friends, reminding them that the message service is free and no one can be held responsible for delay or non-delivery. Wide-awake amateurs have distributed message blanks to tourist camps. Lots of good traffic has been collected through a system of message-collection boxes placed in public buildings and hospitals. A neatly typed card should be displayed near-by explaining the workings of our A.R.R.L. traffic organization, and listing the points to which the best possible service can be given.

Messages that are not complete in every respect should not be accepted for relaying. Complete address on every message is important.

To properly represent amateur radio, placards when used should avoid any possible confusion with telegraph and cable services. Any posters should refer to amateur Radio-

THE RADIO AMATEUR'S HANDB00K

GRAMS, and explain that messages are sent through amateur Radio Stations, as a HOBBY, FREE, without cost (since amateurs can't and will not accept compensation). The exact conditions of the service should be stated or explained as completely as possible, including the fact that there is NO GUARAN. tee of delivery. The individual in charge of the station has full powers to refuse any traffic unsuitable for radio transmission, or addressed to points where deliveries cannot be made. Relaying is subject to radio conditions and favorable opportunity for contacting. Better service can be expected on 15 -word texts of apparent importance than on extremely long messages. Traffic should not be accepted for "all over the world."

Careful planning and organized schedules are necessary if a real job of handling traffic is to be done. Advance schedules are essential to assist in the distribution of messages. It may he possible to sehedule stations in cities to which you know quantities of messages will be filed. Distribute messages, in the proper directions, widely enough so that a few outside stations do not become seriously overburdened. Operators must route traffic properly - not merely aim to "clear the hook."

It is better to handle a small or moderate volume of traffic well than to attempt to break records in a manner that results in delayed messages, non-deliveries, and the like which certainly cannot help in creating any publie good-will for anateur radio.

Whatever type of exhibit is planned, write A.R.R.L. in advance, in order to receive sample material to make your amateur booth more complete. A portable station can be installed and operated, by an already licensed amateur subject to F.C.C. notification of location, etc., as provided by regulations. Nolicense coverage is needed if no station is operated, of course.

Amateur Stations at Exhibits and Fairs

If the time is short and there is no opportunity for special organization of schedules to insure reliable routing and delivery, quite likely exhibit work, to be most productive of good-will results, had best not include message handling plans - at least not from the boothstation itself where subject to noise, electrical interference, and other handicaps. To handle such traffic as offered with real efficiency, it should be distributed for origination via existing schedules of the several most reliable local amateur stations. By dividing the traffic filed with other stations it may be sent more speedily on its way. Be sure that the operators undertaking to help are qualified and have good schedules for distributing messages.
"Show stations" must avoid origination of
"poor traftic" by rigid supervision and elimination of meaningless messages with guessed-at inaccurate and incomplete addresses at the source.

General

In successful relaying, all factors including "apparent importance" must be taken into account. Incomplete preambles are a common fault. Every station should demand an "office of origin" from stations who have messages, and traffic may be rightly cancelled (QTA) on failure to include it. Thus messages will never get on the air without a starting place.

Originating stations should refuse to accept messages to transmit when it is apparent that the address is too meagre. A simple log book, a grood filing system, an accurate frequency meter and an equally accurate clock, are sure signs of a well-operated station. The apparatus: on the operating table will tell a story without words.

The well-hulanced amateur will not only know how to handle a message, but will have extended the principles of neatness and efficiency to his other station activities. The complete amateur station includes attention to traffic matters as part of its regular routine; it is one essential in building a reputation for "reliability" in amateur work. Communication (general) involves an exchange of thoughts. "Traffic" is merely the exchange of thoughts for ourselves or others using messages.

Relay Procedure

Messages shall be relayed to the station nearest the location of the addressee and over the greatest distance permitting reliable communication.

No abbreviations shall be substituted for the words in the text of a message with the exception of "service messages," to be explained. Delivering stations must be careful that no confusing abbreviations are written into delivered messages.

Sending "words twice" is a practice to avoid. Use it only when expressly called for by the receiving operator when receiving conditions are poor.

Messages shall be transmitted as many as three times at the request of the receiving operator. Failing to make a complete copy after three attempts, the receiving operator shall cancel the message (QTA).

Agreement to handle (relay or deliver) a message properly and promptly is always tacitly implied in accepting traffic. When temporarily not in a position to so handle, it is a service to amateur radio and your fellow ham to courteously refuse a message.

An operator with California traffic does not hear any western stations so he decides to give
a directional "CQ" as per A.R.R.L. practice. He calls, CQ CALIF CQ CALIF DE W1INF WIINF WIINF, repeating the combination three times.

He listens and hears W9CXX in Cedar Rapids calling him, W $1 I N F W 1 I N F W 1 I N F$ DE W9CXX W9CXX W9CXX AR.

Then he answers W9CXX indicating that he wishes him to take the message. W1INF says W9CXX W9CXX DE WIINF R QSP MILL VALLEY CALIF NEAR SF? K.

After W9CXX has given him the signal to go ahead, the message is transmitted, thus:

HR MSG NR 78 WIINF CK18 WEST HARTFORD CONN NFT (for '" no filing time'") NOV 18
ALAN D WHITTAKER JR W6SG
79 ELINOR AVE
MIIL VALLEY CAIIF
SUGGEST YOU USE ARRL TRUNK LINE K
THROUGH W5NW TO HANDLE PROPOSED VOL UME TRAFFIC IREGARDS

BUBB W1JTD

W9CXX acknowledges the message like this: WIINF DE W9CXX NR 78 R. K. Not a single R should be sent unless the whole message has been correctly received.

Full handling data is placed on the message for permanent record at W1INF. The operator at W9CXX has now taken full responsibility for doing his best in forwarding the message.

Getting Fills

If the first part of a message is received but substantially all of the latter portions lost, the request for the missing parts is simply $R P T$ $T X T A N D S I G$, meaning "Repeat text and signature." $P B L$ and $A D R$ may be used similarly for the preamble and address of a message. RPT AL or RPT MSG should not be sent unless nearly all of the message is lost.

Each abbreviation used after a question mark (. . - - .) asks for a repetition of that particular part of a message.

When a few word-groups in conversation or message handling have been missed, a selection of one or more of the following abbreviations will enable you to ask for a repeat on the parts in doubt. 'Phone stations of course request fills by using the full wording specified, without attempt at abbreviation.

	Abbreviation	Meaning
?AA.		Repeat all after.
7 AB		Repeat all before.
?AL.		Repeat all that has been sent
? BN	AND	Repeat all between. . and....
?WA		Repeat the word after.
?WB		Repeat the word before. .

The good operator will ask for only what fills are needed, separating different requests for repetition by using the break sign or double dash (- . . -) between these parts. There is
seldom any excuse for repeating a whole message just to get a few lost words.

Another interrogation method is sometimes used, the question signal (. . - - . .) being sent between the last word received correctly and the first word (or first few words) received after the interruption. RPT FROM.... TO is a long way of asking for fills which we have heard used by beginners.

The figure four (. . . . -) is a time-saving abbreviation which deserves popularity with traffic men. It is another of those hybrid abbreviations whose original meaning, "Please start me, where?" has come to us from Morse practice. Of course ? $A L$ or $R P T A L$ will serve the same purpose, where a request for a repetition of parts of a message have been missed.

Delivering Messages

Provisions of the Radio Act of 1934 make it a misdemeanor to give out information of any sort to any person except the addressee of a message. It is in no manner unethical to deliver an unofficial copy of a radiogram, if you carefully mark it duplicate or unofficial copy and do it to improve the speed of handling a message or to insure certain and prompt delivery. Do not forget that there are heavy fines prescribed by Federal laws for divulging the contents of messages to anyone except the person addressed in a message.

When it is possible to deliver messages in person, that is usually the most effective way. When the telephone does not prove instrumental in locating the party addressed in the message it is usually quickest to mail the message.
A.R.R.L. delivery rules:

Messages received by stations shall be delivered immediately.

Every domestic message shall be relayed within forty-eight (48) hours after receipt or if it cannot be relayed within this time shall be mailed to the addressee.

Messages for points outside North America must not be held longer than half the length of time required for them to reach their destination by mail.

When a message cannot be delivered, or if it is unduly delayed, a "service" message should be written and started back to the "office of origin."

Each operator who reads these pages is asked to assume personal responsibility for accuracy, speed of each message handled and delivery that we may approach a 100% delivery figure.

The Service Message

A service message is a message sent by one station to another station relating to the service which we are or are not able to give in message handling. The service message may

THE RADIO AMATEUR'S HANDB00K

refer to non-deliveries, to delayed transmission, errors, or to any phase of message handling activity. It is not proper to abbreviate words in the texts of regular messages, but it is quite desirable and correct to use abbreviations in these station-to-station messages relating to traffic-handling work. Example:
IIR SVC NR 291 w3Ca CK XX ROANOKE VA NFT AUG 19
I, C MAYBEE W7GE
110 SOITTII SEVENTH AVE
PASCO WASIIN -... -
I'R NR 87 AUG 17 TO CUSHING SIG BOB HEI, HR UNDID DSE (ibA -

WOHLFORI W3CA

Counting Messages

To compare the number originated and delivered each month to learn some facts about the "efficiency" of our work in handling messages, a method of counting is used. Each time a message is handled by radio it counts one in the total.

A message received in person, by telephone, by telegraph, or by mail, filed at the station and transmitted by radio in proper form, counts as one originated.

A message received by radio and delivered in person, by telephone, telegraph, or mail, counts as one delivered.

A message received by radio and sent forward by radio counts as two messages relayed (one when received and again one when sent forward).

All messages counted under one of the three classes mentioned must be handled within a 48hour (maximum) delay period to count as "messages handled." Messages for continents except North America may be held half the length of time it would take them to reach their destination by mail. A "service" message counts the same as any other type of message.

Extra Delivery Credit

In addition to the basic count of one for cach time a message is handled by radio, an extra credit of one point for each delivery made by mail, telephone, in person, by messenger or other external means other than use of radio (which would count as a "relay" of course) will also be allowed. A message received by an operator for himself or his station or party on the immediate premises counts only "one delivered." A message for a third party delivered by additional means or effort will receive a point under "extra delivery credits."

The message total shall be the sum of the messages originated, delivered and relayed and the "extra" delivery credits. Each station's message file and \log shall be used to determine the report submitted by that particular station. Messages with identical texts (socalled rubber-stamp messages) shall count
once only for each time the complete text, preamble and signature are sent by radio.
A.R.R.L. traffic totals may include all traffic handled on amateur frequencies with full data included by any standard form of message. Most messages you receive will be in standard A.R.R.L. form. But traffic in N.C.R. or A.A.R.S. form (when in drills or nct operation using an amateur frequency) counts too, the principle being that when all cssential data required by those agencies are included a message may be considered complete. In whatever volunteer work it is engaged, a station has an amateur status, and the total is a strictly "amateur" total if handled under ham-band conditions on amateur frequencies.

Classify Your Amateur, A.A.R.S. and N.C.R.

 TrafficTraffic handled under a government (nonamateur) call, on a non-amateur-band frequency, should not be counted in "amateur" totals reported to S.C.M.s, but should be classified separately. Both the amateur total, and the "army" and "navy" totals, as the case may be, may be sent to your A.R.R.L. Section Manager, who invites these reports. Such totals must be clearly and separately classified, since in our B.P.L. it is our desire to avoid placing amateur-band work in direct competition with that accomplished on special frequencies.

Message texts should be transmitted exactly as received. Do not accept messages unless and until words are spelled out completely. No abbreviations in texts is an excellent rule. It is not a violation of good practice to change the order of preamble though, when traffic is transferred between services. Standard amateur procedure uses the land line check. The preamble goes NR-STN CALL-CK-Place OF origin-Time-date. The NCR uses tactical procedure, and cable count check, which is a check including words (or groups) in address, text, and signature, customary in all maritime work.

Examples of Counting

A monthly report should be sent to the local A.R.R.L.S.C.M. The closing date of the "message month" is the 15 th of each month (the last of the month in Hawaii and the Philippines). Reports must go forward the next day. Some examples:

Let us assume that on the 15 th of the month one operator of a large amateur station receives several messages from another station. (a) Some of these messages are for relaying by radio. (b) Some of them are for local delivery. (c) There are still other messages the disposal of which cannot be accurately predicted. They

MESSAGE HANDLING

are for the immediate neighborhood but either can be mailed or forwarded to another amateur by radio. A short-haul toll telephone call will deliver them but the chances of landing them nearer the destination by radio are pretty good. This operator's "trick" ends at midnight on the 15 th and he must make the report with some messages "on the hook" to be carried over for the next month's report.
(a) The messages on the hook that are to be relayed have been received and are to be sent. They count as " 1 relayed" in the report that is made out now, and they will also count as " 1 relayed" in the next month's report (the month during which they were forwarded by radio).
(b) By mailing or 'phoning the messages at once, they count as " 1 deliverell" for the current report. By holding them until next day they will count in the next report as "1 delivered." Also they will each have a count of one extra delivery credit since they had to be telephoned, mailed, etc.
(c) The messages in this class may be carried forward into the next month. If they have to be mailed then they will count in the next report as " 1 delivered." If they are relayed, we count them as " 1 relayed"; " 1 received" in the preceding month (already reported) and " 1 relayed" for the next month, the month in which it was sent forward by radio. If the operator wishes to count this message at once as delivered it must be mailed promptly and counted at once.

Some examples of counting:
The operator of Station A gets a message by radio from Station B addressed to himself. This counts as " 1 delivered" by himself and by Station A. There is no extra delivery credit possible for no additional delivery effort was needed.

The operator of Station A takes a verbal message from a friend for relaying. He gives it to Station B over the telephone. Operator A does not handle the message by radio. Station B and operator B count the message as " 1 originated." A cannot count the message in any manner.

The operator and owner of Station A visits Station B and while operating there takes a message for relaying. The operator and owner of B cannot operate for a day or two so the message is carried back to Station A by operator A who relays it along within a few hours. The traffic report of both Station A and Station I3 shows "1 relayed" for this work.

Please note that "handling" a message alu'ays includes the transmission and receipt of radio acknowledgment ($Q S L$) of same, and the entry of date, time, and station call on the tralfic, as handled, for purposes of record. Only messages promptly handled and with information so recorded shall be counted in A.R.R.L. totals.

"Rubber-Stamp'"Messages

The handling of traffic must be either fun or constructive, interesting work. Because multi-ple-address (rubber stamp) messages mean much drudgery for little accomplished they cannot be handled effectively in a hobby like amateur radio.

Obviously, a station in handling a rubberstamp message has to exert only a small a mount of effort in receiving the text and signature once. Then by handling the address to different points en groupe a large number of messages (?) can be received and transmitted with little time and effort. The League's system for crediting points for messages handled (and except for any extra delivery credit) is based
on giving one credit each time a complete message is handled by amateur radio, i.e., one credit for each originated message, one credit for each delivered message and two credits for each relayed message (one credit for the work in receiving it and one for the work in transmitting it). Only every message handled By RADIO with a complete preamble, address, text, and signature shall be counted, except in the case of deliveries, each mailed, telephoned or otherwise delivered message shall count "one delivered" regardless of handling in "book" form (with text sent once only).

Reporting

Whether the principal accomplishments of the station are in traffic handling or other lines, what you are doing is always of interest. One part of QST is devoted to Station Activities, this written up by your elected Section Communications Manager. His aldress is given on an up-front page of each QST. Reports from all active hams, sent the S.C.M. between the 16 th and 20 th of the month covering the 30 days just previous are used.

Operating on Schedules

Traffic handling work can be most advantageously carried on by arranging and keeping a few schedules. The message "hook" can be cleared in a few minutes of work on schedule and the station will be free for DX or experimental work.

The Route Manager is very frequently able to help in arranging schedules. Write your S.C.M. (see QST) and through him get lined up with your R.M.

The Fite-Point System

To make our relaying more systematic the "five-point system" of arranging schedules was proposed and has worked out very nicely in many cases. After getting the station in good operating condition, each station's operator arranges to work four stations, one north, one east, one south, and one west. These directions are not exact but general. The distances are not too great but they must be distances that can be worked with absolute certainty under any conditions. Listen in. Select and invite stations to schedule you. Keep a list of their scheduled points and see they get some messages for those points. Report results to the S.C.M. It's fun.

Traffic IIandling Develops Skill

The dispatch of messages makes operators keen and alert. 'The hetter the individual operator, the better the whole organization. Proper form in handling traffic, getting fills, and in general operating procedure develops operators who excel in "getting results." Station per-

THE RADIO AMATEUR'S HANDB00K

formance depends 90% on operating ability, and 10% on the equipment involved, granting of course that station and operator are always interdependent. Experience in message handling develops a high degree of operating "intelligence."

Message handling leads to organization naturally, through the need for schedules and coöperation between operators. It offers systematic training in "real" operating. It leads to planned, useful, unselfish, constructive work for others at the same time it represents the highest form of operating "skill" and enjoyment to its devotees. Emphasis should be placed on the importance of traffic handling in training operators in the use of procedure and in general operating reliability. The value of the amateur (as a group), in cases of local or national emergency, depends to a great extent on the operating ability of individual operators. This ability is largely developed by message handling.

Practice in handling traffic familiarizes one with detailed time-saving procedure, and develops general skill and accuracy to a higher extent than obtains in "just rag-chewing" or haphazard work. This work provides a definite aim. Message handling is a vital link in guiding the interest of operators to the point where many accept additional responsibilities in the Signal Corps organization (A.A.R.S.), or the Volunteer Naval Communication Reserve (U.S.N.R.). The interest amateurs show in these services is directly reflected by a full measure of appreciation and important backing by Uncle Sam whenever amateur rights are
threatened with encroachment of any kind. Message handling work represents an advanced form of amateur operating activity in which all amateurs sooner or later become interested.

SAFETY

IN "Message Handling" or any other class of activity in operating a station, safety, as well as convenience, should be a paramount consideration. Some of the following precautions observed at the A.R.R.L. Maxim Memorial station, W1AW, may well be employed at your installation.

Safety Devices

The safety features of W1AW, in brief: (1) Interlock* switches. In series with 110-220volt power, "kill" the transmitters instantly, if a dust cover door is opened in the rear of any unit. (2) A lattice, in front of antenna condensers and feed-line leads, prevents "burning curiosity " from burning fingers. (3) Grounding antennas, accomplished by plug jacks, protects from lightning - fire hazard - and grounding metal frames of the sets - putting meters in B minus (no metal cased meters) completes the job. (4) An illuminated danger sign, within each unit automatically warns the operator to be ever watchful - as well as showing if fuses have been removed on either side of the power circuit. These signs are turned on by an interlock at the same time the power is turned off.

[^20]
CHAPTER TWENTY

league operating organization

vour A.R.R.L. arranges amateur operating activities, promotes preparation and organization for communications emergencies, establishes procedure to aid efficient operation, encourages good operating and maintains a strong field organization. The Communications Department of the League is concerned with the practical operation of stations in all branches of amateur activity. Appointments and awards are available for rag chewer, 'phone operator, traffic enthusiast and DX man. It is the League's policy to benefit each group concerned along lines of natural interest. All activities have specific objectives with widest participation invited. This insures maximum fun and benefit to the whole fraternity.

The organization of the amateur fraternity into a strong unified body, capable of maintaining its rights, and able to render practical assistance to the public and the government in local and national emergencies, in traffic relaying and in training operators in systematic procedure for effective station operation are important objectives. Definite policies tend toward the avoidance of off-frequency operation, and the local solution of interference with other services, especially local listeners. The general attitude, what one says over his station, is important. Operation must have point and constructive purpose to win public respect. Each individual amateur is the ambassador to the entire fraternity in his public relations and attitude toward his hobby! A.R.R.L. field organization adds point and purpose to amateur operating.

Organization of the League is by Divisions and by Sections. Members in the fourteen United States Divisions and five Canadian Divisions elect fifteen Directors. With the President and Vice-President chosen by this group they constitute the governing and pol-icy-making body of the League. Seventy-one A.R.R.L. Sections, the territory of the several Sections within each Division determined jointly by the Director and the Communications Manager, form convenient units for field organization and operating administration. Operating affairs in each Section are supervised by a Section Communications Manager elected by members in that Section for a two year term of office. Organization appointments are made by the Section Managers. The election of officials is covered in detail in the

League's Constitution and By-Laws. Section Communications Managers addresses for all Sections are given in full in each issue of QST. They welcome monthly activity reports from all amateur stations in their jurisdiction each mid-month and write up these reports for QST. Full information on appointments may be obtained from S.C.M.s and is also contained in a League booklet, Operating an Amateur Radio Station, which will be sent from Headquarters on request. (10\& to nonmembers.)

Organization Appointments

Whether your activity is directed toward 'phone or telegraph, there is a place for you in League organization.

We live in an age of specialization, and A.R.R.L. appointees specialize in particular branches of amateur operation for which they have special interest, aptitude or equipment. The voluntary acceptance of organization appointment carries prestige. It is a symbol of the mature, serious, accomplished amateur. Appointment also entitles the individual to certain bulletins that carry the first facts on new items of legislation and regulation as well as reports on activity and operating announcements. Every amateur should aim to become and remain a member of the League, and take an active part in his society and field organization work. There is fun and profit in doing this.

Complete information on appointments is included in the booklet, Operating an Amateur Radio Station. Without detailing all the qualifications of each, the field covered by each will be briefly explained.

Section Communications Manager

The Section Manager is the section executive or administrator in operating matters. He is the only elected official for the Section alone, and the office is open to election each two years, or oftener if a vacancy occurs. Requirements for nominations and the system of mail balloting are covered in the operating booklet. Section Managers report on all forms of amateur activity (for QST") monthly. The "station activities" are summarized including information from each amateur report, whether from League members or others. Reports are mailed to Hq. by S.C.M.s on or before the 20th of each month for the reporting month (16th to 15 th

THE RADIO AMATEUR'S HANDB00K

inclusive) in the mainland U.S.A. and Canada.
The Section Manager makes appointments for specitic work in accordance with the qualifications and rules for such appointments. He makes cancellations, likewise, for inactivity, ineptitude or failure to perform the actions contemplated in appointment adequately. The object is to keep field organization standards high, and insure a live functioning organization in each amateur group at all times. The Section Manager desires representative appointees in each city and town and radio club. He studies geographical clistribution and coverage for official observer, broadcasting station, emergency coördinator, etc., appointments, and gives careful consideration to the initiative, experience, tact, ability and other recognized qualifications in building the best Section organization possible on every front.

Appointees shall have authority within their territory over the activities indicated by their titles. A competent League member may be designated to investigate or act for a Section Manager in a particular capacity or matter in any part of his territory. The Section Manager's appointments will include the following designated assistants to take charge of particular branches of activity in which operating organization is required.

A.R.R.L. Emergency Coirdinator

In every community in our country insofar as possible, Emergency Coürdinators, shall be appointed after consultation and recommendations from prominent amateurs, active clubs and other informed sources. (Coördinators may also be appointed for regions, such as a watershed, or part of any system to be served, when such agency designates a control desired within a particular League Section for a special purpose.)

The Coörlinator will arrange and head a committee of representative men from each amateur frequency-band-mode group to plan

This Certifies that

is A member of the

american radio relay league EMERGENCY CORPS

 FOR PUBLIC MESERVICE

This operotor is presered to furnish communication $t 0 \mathrm{hls}$ communify in the event of follure of regular communication focllities due to storms, floods and similar disasters.

MEMHERSIII' CARI', A.R.K.L. EMERGENCY Coliss
Every firencee is requested to reginter in the F. C.
the most effective disposition of amateur facilities, foster tests, preparedness of all, and full registrations of equipment and ability in each local group. Plans shall be based on assumed local and regional contingencies. Registrations shall include normal operating frequency, power, nature of emergency equipment if any, telegraph operating speeds, normal availability, occupation, address, working hours, adIress and telephone number, membership in AARS, NCR, ORS-OPS, AEC, etc., groups. Liaison with agencies served and other radio services is part of a coördinator's work. Coördinators are to act as advisers, in controlling the activities of volunteers within the structure of the amateur service in accord with prearranged plans.

The idea in emergency is to limit the number of channels set up to the minimum number advisable and necessary, to select the most suitable stations and frequencies for work in view, to create reserves of skilled amateur operators so these will be available to man selected stations fully, for 24 -hour shifts if needed, rather than to have a large number of simultaneously operated stations causing interference in congested bands, with overloaded operators whose efficiency becomes rapidly impaired by lack of proper rest. Planning, preparedness, and coördination, are the essence of the emergency communication problem for amateurs.

The special emergency regulations for the amateur service are explained in Chapter XVIII, the plans including, for the amateur service:
(1) F.C.C. declaration of general eommunications emergencies.
(2) Restriction in $3500-4000 \mathrm{ke}$. and $1715-$ 2000 ke . bands to handling relief or emergeney traffic only. No remarks not relating to sueh situation permitted.
(3) Mandatory silence during a listening period the first five minutes of each hour, for the duration of such emergency.
(1) Mandatory use of $1975-2000$ ke., $3500-$ 3525 ke ., and $3975-1000 \mathrm{ke}$. for emergency calling frequencies. For calling, only.
(5) Designation of stations for polieing, warning, and observing work by the F.C.C., their announcements in accordance with Sce. 152.51 of the Commission's regulations.

Official Broadcasting Stations

O.IB.S. are appointed by Section Managers, and regularly transmit information specifically addressed to A.R.R.L. member-amateurs by code and voice, in all frequency bands. Official and special transmissions, daily except holidays, are made from the Headquarters station, W1AW. O.B.S. appointees receive

LEAGUE OPERATING ORGANIZATION

their information direct from this source and by mail, upwards of 200 stations covering all A.R.R.L. Sections with amateur information of national and local interest with new information at least once a week. Member-stations must agree to render a good service on regular schedule to receive appointment, and power and signal quality are carefully considered. Many of the stations are so well operated that beginners use their transmissions for code practice. Hours between six P.m. and midnight have been chosen for most O.B.S. schedules, for that is the time when most amateurs are listening. Code transmissions are preceded by the call "QST" for four or five minutes to inform amateurs this official addressed information is to be sent.

Official Observers

To help all amateurs keep on assigned frequencies, and assist brother amateurs in keeping clear of F.C.C. discrepancy reports and the penalties for infraction of regulations, A.R.R.L. Observers have been appointed. S.C.M.s require such appointees to have an accurate frequency meter, or oscilloscope, or other equipment for accurate work of the type in which a specific observer engages. Special postal warning forms are provided for different classes of trouble. Reports direct to the amateurs concerned by radio or mail cover improper broadness, a.c. notes, overmodulation, poor speech quality, off-frequency operation, harmonic radiation or other operating and technical violations of good practice. If you need a frequency check (or other test) ask the S.C.M. for the address of the O.O. Observers not only help amateurs individually, they also protect the privileges of all amateurs and avert official government restriction invited by the careless. Valuable occupancy and stationdistribution surveys have been made several times in the history of the observing system.

Ronte Managers

The Route Manager is the authority on schedules and routes and his station must be active in traffic and organization work. Section Managers generally appoint one Route Manager to every twenty or twenty-five Official Relay Stations. 'The Route Manager's duties include coöperation with all radio amateurs in his territory in organizing and maintaining traffic routes, nets, and schedules. His authority extends to station inspection and/or radio operating tests of candidates for O.R.S. appointment as directed by the S.C.M. Special R.M.s are appointed also for liaison and work with A.A.R.S. and N.C.R. groups, and reports are welcome from all members of the services. Advice to amateurs wanting schedules or traffic routings via Trunk Lines, Sec-
tion Nets, etc., will be given by R.M.'s on request.

Phone Acticities Manager

The 'Phone Activities Manager has authority to sponsor 'phone operating activities in his territory, in the name of the League. The P.A.M. appointment, while paralleling that of R.M. in some respects, has to do with the upbuilding of A.R.R.I. Section and National 'phone organization. The 'Phone Activities Manager conducts station inspections and/or radio operating tests of candidates for O.P.S. when referred by the S.C.M. 'Phone nets may develop ability to handle traffic by point-topoint procedure or follow objectives entirely divorced from traffic at the vote of net-members or as directed by the P.A.M.

Emblem Colors

Members of the League only may obtain the official League emblem and member stationery. Members wear the emblem with gold border and lettering and black enamel background. A red background for an emblem will indicate that the wearer is S.C.M. or ex-S.C. A. All Official Relay Station and Official 'Phone Station appointees are entitled to wear emblems with blue background.

The Official Relay Station Appointment

Every radio telegraphing amateur interested in traffic work and worthwhile operating organization activities who can meet the qualifications is eligible for appointment of his station as A.R.R.Is. Official Relay Station. Brasspounders handle traffic because they enjoy such work. There is fun in efficient operation; pride in accomplishing something; opportunity to demonstrate operating proficiency al the same time this is maintained and increased. The potential value of the operator who handles traffic to his community and country is enhanced by his ability, and the readiness of his station and schedules to function in the community interest in case of emergency.

THE RADIO AMATRUR'S HANDB00K

The appointment, like O.P.S. appointment for the 'phone operators, identifies the holder with high standards of amateur operating, and indicates personal keenness, responsibility and qualifications certified by the Section officials. The holder voluntarily agrees to report each month, and with absolute reliability to forward and deliver a number of messages regularly through his station or accept cancellation of appointment as a routine expectation necessary in keeping a live organization that is widely respected and useful in existence. The Official Relay Station appointment is a much sought after appointment. The earnest and qualified ham will find it readily attainable. Secure application forms from your local S.C.M. See full details on requirements in the Operating an Amateur Station booklet.

The Official 'Phone Station Appointment

This appointment is for every qualified ham who normally uses his "mike" more than his key in his amateur station, and who takes a pride in the manner of signal he puts on the air, and aims to have his station really accomplish worthwhile communication work. Official 'Phone Station appointees must endeavor to live up to the Amateur's Code of good fraternalism and operating equality. The appointment gives 'phone operators the advantages of organization for systematic coöperation in emergencies, quarterly bulletin news, and operating tests. O.P.S. appointment aids 'phone operating enjoyment by helping to formulate good voice operating practices, not overlooking the emergency organization aspect.

Message handling as an activity is not the main objective, though cultivation of operating ability that is essential to assure accuracy, conciseness and speed for point to point work, in which the desirable technique is altogether different than in broadcasting, is encouraged. O.P.S. technique and operating is designed to encourage fraternalism, facilitate tests between stations of the group, and cultivate by ex-

ample, a precept for excellence looked up to by others operating voice stations. Official 'Phone Station appointees, like O.R.S., agree voluntarily in accepting appointment that they will keep active stations and report on activities to the S.C.M. monthly. Application forms are available from your S.C.M., detailed requirements which include one year of experience as an amateur, but no code test such as O.R.S. have, are given in full in Operating an Amateur Radio Station.

Benefits Exchanged in Appointment

Because O.R.S. and O.P.S. appointment is founded on the working together of groups of the best stations and keenest operators, these men by exchange of individual ideas and comment in addition to radio contacts can each benefit from all such information. All appointees receive an appointment certificate to be displayed in the station, stickers identifying their status for use on QSLs and letters, reporting card forms to facilitate :monthly reports via the S.C.M., and a quarterly and special field organization bulletins. These bulletins include the latest detailed news on regulation and legislation, operating announcements, reports on special activities within the O.R.S. or O.P.S. groups, a picture supplement sheet of general amateur significance and interest, and personal comments and article contributions.
O.R.S. or O.P.S. certificates must be returned to S.C.M.s annually for endorsement to keep them in effect - no trouble to this if there is continuing activity. Applicants who for any reason do not meet the tests or qualifications may apply again after three months have elapsed. By arrangement with S.C.M.s concerned appointments may be kept in effect when an amateur moves from one Section to another. Cancellations are based on three missing reports, and reinstated following activity reports for three consecutive months, new application being waived or required at the discretion of the S.C.M.

It is the duty of Official Relay Station and Official 'Phone Station appointees (a) to report activities monthly to the S.C.M. whether or not a special reporting form is available; (b) to keep stations always on the air, i.e., in readiness for operation and in actual service; (c) to follow A.R.R.L. operating practices; (d) to take part in the activities of the League whenever possible; (e) to hold message files three months ready for any call by the S.C.M. or licensing authority. Reports are due on the 16th of each month for mainland United States stations.

In many instances experience as O.R.S. or O.P.S. has preceded the appointment of experienced men to carry out the work of Route

LEAGUE OPERATING ORGANILATION

Manager or 'Phone Activities Manager, and similarly those who have been outstanding in organization work in either of those posts, or who have experience in club work, have been chosen by members to administer the affairs of Sections as S.C.M. To get full value from amateur organization you must take part in it. The different appointments have been explained. If your station is active you are invited to qualify and take part fully in A.R.R.L. work. Write your S.C.M.!

Trunk Lines

Official Relay Stations at key points are organized in Trunk Line formation, covering fourteen East-West and North-South routes, connecting with numerous Section and local networks and feeder systems for the purpose of efficient dispatch of traffic. Speedy and reliable work is carried on, the operation entirely on separate spot frequencies in the $3.5-\mathrm{Mc}$. amateur band. A station must hold O.R.S. appointment to be considered for a Trunk Line post.

Radio Clubs and Affiliation

To add to the strength and unity of amateur radio, to improve understanding and coöperation, to promote technical discussions, to solve interference problems locally and quell bootleg or illegal operation in each community, there is nothing like a local radio club which is on the job. The American Radio Relay League believes in radio clubs and offers to any individual organizers of new amateur associations in different localities a wealth of information gleaned from contacts and experience and compiled to assist in club organization work. Papers on club work, suggestions for organizing, for constitutions, for radio courses of study, etc., are available in mimeographed form free on request.

In addition it is the policy of the League to grant affiliation to any amateur society having 51 percent of its licensed amateurs also members of the A.R.R.L. Where a society has common aims, wishes to add its strength to that of other club groups to strengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communications Manager will bring the necessary forms and information to initiate the application for affiliation. Affiliated club news appears in QST and such clubs receive field organization bulletins and special information at intervals for posting on club bulletin boards or relay to their memberships. The clubs also receive special price schedules on A.R.R.L. supplies ordered in quantity. A travel plan providing communications, technical and secretarial contact from the Headquarters is worked out seasonally to give maximum bene-
fits to as many as possible of the more than four hundred affiliated radio clubs. Affiliation besides having the benefits cited gives national identification and recognition for local socleties.

W'IAW-WLMK

Besides the hamming of individual A.R.R.L. staff members from their personal stations, the Maxim Memorial Station, ${ }^{1}$ W1AW, is on the air daily, except for holidays.* The new W1AW operated by the League headquarters is located about four miles south of the Headquarters offices on a seven acre site. The operating room is shown in the frontispiece to this book to give an idea of the facilities available. Telegraph and 'phone transmitters are provided for all principal amateur bands. Operating-visiting hours are 3 p.м. to 3 A.m. daily except week ends. On Saturdays the hours are 8:30 P.m. to 2:30 A.m. E.S.T. and on Sundays, 7:00 p.m. to 1:00 A.m. E.S.T.

W1AW is dedicated to fraternity and service. The available time is divided between different bands and modes of QSO's with Rag Chewer, DXer, Traffic Man, etc. The station takes part in all A.R.R.L. operating activities. With its new facilities ${ }^{1}$ it does not compete with individual members, though results are recounted for the information of Members.

All amateurs, members of the League particularly, are invited to visit W1AW, as well as to work the station from their own shacks. The station was made possible by the Board of Directors, and established to be a living memorial to Hiram Percy Maxim, ${ }^{1}$ and to carry on the work and traditions of the fraternity. W1AW replaces on the air, the presence of W 1 MK , the first station ${ }^{2}$ of your headquarters to be established by order of the Board, which station was flooded out in the 1936 New England flood.

Maps of the U.S. A. and the world are conveniently located in the operating room. O.R.S., O.P.S., and O.B.S. certificates indicate the service, work and high standards of the operating program. The transmitters are all rack-and-panel built. Separate $72^{\prime \prime}$ high racks, from left to right, in the front of the operating room contain: The 28 -Mc. transmitter, the 14-Mc. transmitter, the 7-Mc. transmitter, the 500 -watt modulator (switchable to any set), the $3.5-\mathrm{Mc}$. transmitter, and the $1.8-\mathrm{Mc}$. transmitter. All the transmitters are kilowatt jobs. There is room for a $56-\mathrm{Mc}$. transmitter which will be added. A table near the control

[^21]
THE RADIO AMATEUR'S HANDB00K

position carries a perforator for punching out tapes for the constant-speed transmissions of the "automatic." Tube line-ups are as follows:
1.7 Mc .: 47-RK28-204A's, P.P.
3.5 Mc.: 89/6I.6-RK48-HK 354's P.P. 7 Mc.: 6L6-R K20-HF200's P.P.
14 Mc.: 89-807-35T's P.P.-Eimac 250THs, P.P. 28-30 Mc.: 89-80t-814's P.P.-806 P.P.
Speech Amplifier, Signal-Iimiting Volume-Compressor and Modulator: 6J7, 6C5-6J7 6L.7-6H6 - 6C5's P.P., 6L.6's P.P., Taylor 822's P.P.

Operators

While different members of the A.R.R.I. staff may work you from W1AW on occasion, or by special schedule, the most regular operation is by the men who take care of the building and show us its facilities. Mr. Harold Bubb (Hal) is the first operator, and Mr. George Hart (Geo) his able "relief." Both operators are well known to A.R.R.L. field organization members, having participated in seasonal and official activities for some years.

General Operation

Daily, except Saturday and Sunday, W1AW sets aside the following hours to work on particular bands, independent of other schedules and station programs. This is to enable anyone anxious to (QSO to know the best time to look for us. This general contact schedule is subject to possible modification by later announcement in QST, if conditions make changes necessary: (1808-1800.5 kcs. 'phone/c.w.) 3:00-3:30 P.M. and 11:00-11:30 P.M. E.S.T.; (3800-kc. c.w.) 3:30-4:00 P.M. and 8:00-8:30 P.M. E.S.T.; (3950-kc. 'phone) 4:00-5:00 p.м. E.S.T.; (7150-kc. c.w.) 1:00-2:00 A.m. (except. Sun. \& Mon.) ; (14254-kc. с.w.) 6:00-7:00 р.м. E.S.T.; (14240-kc. 'phone) 10:00-11:00 Р.м. E.S.T.

The O.D.S. Program

The station observes the following regular schedules for sending addressed information to all Member Radio Amateurs:

Frequencies Starting Times(P.M.) Speeds(W.P.M.) of "automatic" C.W.: 1800.5-3800-7150-14254 kcs.

EST CST MST PST M T IV Th Fri Sat Sun $\begin{array}{rrrrrrrrrr}8: 30 & 7: 30 & 6: 30 & 5: 30 & 20 & 15 & 25 & 15 & 20 & \\ \text { night } & 11: 00 & 10: 00 & 9: 00 & 15 & \mathbf{2 5} & 15 & 20 & 15 & 15\end{array}$
Midnight 11:00 $\begin{array}{llllllllll}10: 00 & 9: 00 & 15 & 25 & 15 & 20 & 15 & 15\end{array}$
'Phone: The simultaneous code transmissions, will be followed by voice transmissions, in turn, on 1808. 3950, and then 14240 kcs .

W1AW also carries authorization from the Signal Corps as WLMK, permitting utilization of 3497.5 and 6990 kcs . if required in emergencies. The transmitters are a model of safety engineering - any of the several safety prerautions being worthy of adoption in individual shacks, to improve on some of the situations we have seen.

A.R.R.L.'s Emergency Corps for Etery Licensee

All amateurs, for real preparedness, should be registered as to equipment, telephone number, and availability, in the Emergency Corps. Registrations should be deposited with the Coördinator for the anateur service in each community having such an appointee, but may be made via A.R.R.L. Headquarters or suitable registration forms sent to any licensed amateur in the United States or Canada, on request.

The "emergency" identification cards, provided by Headquarters for all amateurs who register in the A.E.C. classify the Corp into two groups by the wording thereon, in recognizing those having portable equipment and other equipment in the existing station, capable of immediate operation from a selfpowered electrical source - batteries, gas engine generators, etc. The two groups are (1) Emergency Powered Stations, (2) the Supporting Division - those not yet possessing a self-powered source but who pledge theinselves to assist and give fullest coöperation with their regular stations in the event of any emergency due to communication overload or failure of wire lines. Registrations in the A.E.C. are not even limited to League members since the desire is to create a great body of amateurs dedicated to public emergency service without limitation. Members without auxiliary power, but registered in the Supporting Division may turn in their identifying pocket cards for new as they achieve the objective of supplying equipment with emergency power sources such as Vibra packs, genemotors, or batteries.

Chapter Nineteen lists the special operating policies of A.E.C. members, recommending them to all amateurs as vital to success in rendering emergency communication service. To register in the A.E.C. simply send a postal to Communications Department, A.R.R.L., West Hartford, Conn., asking for the application form. Help yourself and amateur radio by getting your enrollment data in the Emergency Corps in at Hq. at once.

Special Awards or Mention

The League sponsors a variety of operating activities, mentioned in Chapter Nineteen. These have useful objectives and add much enjoyment for members of the fraternity. Point is also added to achievement through recognition in the following:
W.A.S. (Worked All States) Club. ${ }^{3}$
W.A.C. (Worked All Continents) Club.

DX Century Club.
Brass Pounders' League.
The A-1 Operator Club.
Rag Chewers' Club. ${ }^{4}$

LEAGUE OPERATING ORGANIZATION

Those amateurs who "work all forty-cight of the United States" from one location, get the cards or written confirmation of this accomplishment, and have the entry certified by sending these to A.R.R.I. for examination will receive a handsome W.A.S, certificate. This "not so easy" attainment of communicating with all parts of the country makes the certificate highly prized. Any amateur in the world is welcome to qualify and need only submit postage for the return of his confirmations. See the detailed rules and announcement for all these awards in Operating an Amateur Radio Station. Endorsement for c.w.t. or teleplony or for a particular band will be given on request, accompanied by proof. It is an honor to have Worked All States.

In collaboration with the I.A.IR.U., the League issues W.A.C certificates to all mem-ber-amateurs who submit proof of communication with at least one station on each continent. Foreign amateurs submit their proof to member societies in the I.A.R.U. A r.w.t. and a telephony certificate are available. Also special 28 Mc. endorsement will be plaeed on certificates by request, accompanied by proof of this way of having Worked All Continents.

Higher honors, for the DX-minded ham include admittance to the DX Century Club which includes all those amateurs having confirmed and certified communication with 100 or more different countries (according to A.R.R.L. list of countrics). While the certificates are given only at the time proof of the " 100 mark" is passed, amateurs are invited to start submitting proof when they have confirmations from 75 countries to he sent A.R.R.I. for examination. A monthly honorroll in $Q S T$ lists the number of countries worked and certified, from the 75 -country mark upwards, revising the figure as new rountries confirm and the proof is used in moving the QST-listing upward. See December 1938 (QS'T for detailed rules. Return postage must be sent with cards expected to be returned. The list will be the only official confirmed list in existence. Start adding your countries (and send that card to helpy your brother amateurs) to make the I)X Century Club.

The value to amateurs in operator training, and the utility of a mateur message landling to the members of the fraternity itself as well as to the general public, make message handling work of prime importance to the fraternity. Fun, enjoyment, and the feeling of having done something really worthwhile for one's fellows (in traffic handling) is accentuated by the pride of actual message files and records, and letters from those served will give
the individual who is making himself a superlative amateur operator through handling traffic. livery individual reporting more than a specified minimum in official monthly traffie totals is given an honor listing in the QST department known as the IBrass Pounders' league. Sew men are invited to aim to make themsolves good operators by trying for it.

The A-1 Operator Club should include in its ranks every good operator. To become a member, one must be nominated by at least two operators who already belong. General keying or voice technique, procedure, copying ability, judgment and courtesy all count in rating candidates under the club rules detailed in the operating booklet at length. Aim to make yourself a fine operator, and one of these days you will be pleasantly surprised by an invitation to belong to the A-1 Operator Club, which carries a worthwhile cortificate in its own right.

A "club" to encourage friendly contarets, discourage hello-goodbye ($\mathrm{Q} \mathrm{SO}_{\mathrm{s}}$, and hond together honest-to-goodness rag chewing operators was organized in 1925 . To get in one chews the rag with a club member for at least a solid half hour, reporting the performance to A.R.R.I. at West Hartford. When this club member sends his nomination in and it is checked with applicant's request, membership certificate is forwarded. Four attributes of R.C.C. members: (1) They are real conversationalists, not mere automatons using " QRIV," "cuagn," nil, ete., in perfunctory talk. (2) Stations are operated in acood with F.C.C. and A.R.R.L. practice. (3) Rules of courtesy are observed. (t) "RCC" is indicated after a call. Aim to qualify for the Rag (Shewers Cilul.

Incilation

Amateur radio is capable of giving enjoymont and training and continued profit in proportion to what the individual amatear puts into his hobby. All amateurs are invited to become A.R.R.I. Members, to work toward awards, and to accept the challenge and invitation offered in field organization appointments. Drop a line for the hooklet, Oproting an Amateur Radio Station, which has detailed information on the field organization appointments and awards covered briefly in this chapter. Accept today the invitation to take full part in all the A.R.R.I. artivities and organization work going forvard.

Bibliography

[^22]
THE RADIO AMATEUR'S HANDBOOK APPENDIX

The "Q" Code

In the regulations accompanying the existing International Radiotelegraph Convention there is a very useful internationally-agreed code designed to meet major needs in international radio communication. This code follows. The abbreviations themselves have the meanings shown in the "answer" column. When an abbreviation is followed by an interrogation mark (?) it assumes the meaning shown in the "question" column.

Abbreviation	Question	Ansuer
QRA	What is the name of your station?	The name of my station is
QRB	How far approximately are you from my station?	The approximate distance between our stations is nautical miles (or kilometers).
QRC	What company (or Government Administration) settles the accounts for your station?	The accounts for my station are settled by the company (or by the Government Administration of).
QRD	Where are you bound and where are you from?	I am bound for from
QRG:	Will you tell me my exact frequency (wave-length) in kc / s (or m)?	Your exact frequency (wave-length) iskc/s (or m).
QRII	Does my frequency (wave-length) vary?	Your frequency (wave-length) varies.
QRI	Is my note good?	Your note varies.
QRJ	Do you receive me badly? Are my signals weak?	I cannot receive you. Your signals are too weak.
QRK	What is the readability of my signals (1 to 5)?	The readability of your signals is (1 to 5).
QRL	Are you busy?	I am busy (or I am busy with). Please do not interfere.
QRM	Are you being interfered with?	I am being interfered with.
QRN	Are you troubled by atmospherics?	I am troubled by atmospherics.
QRO	Shall I increase power?	Increase power.
QRP	Shall I decrease power?	Decrease power.
QRQ	Shall I send faster?	Send faster (. words per minute).
QRS	Shall I send more slowly?	Send more slowly (. words per minute).
QRT	Shall I stop sending?	Stop sending.
QRU	Have you anything for me?	I have nothing for you.
QRV	Are you ready?	I am ready.
QRW	Shall I tell that you are calling him on ke/s (or m)?	Please tell that I am calling him on kc / s (or m).
QRX	Shall I wait? When will you call me again?	Wait (or wait until I have finished communicating with) I will call you at o'clock (or immediately).
QRY	What is my turn?	Your turn is No. (or according to any other method of arranging it).
QRZ	Who is calling me?	You are being called by
QSA	What is the strength of my signals (1 to 5)?	The strength of your signals is (1 to 5).
QSB	Does the strength of my signals vary?	The strength of your signals varies.
QSD	Is my keying correct; are my signals distinct?	Your keying is incorrect; your signals are bad.
QSG	Shall I send telegrams (or one telegram) at a time?	Send telegrams (or one telegram) at a time.
QSJ	What is the charge per word for including your internal telegraph charge?	The charge per word for is francs, including my internal telegraph charge.
QSK	Shall I continue with the transmission of all my traffic, I can hear you through my signals?	Continue with the transmission of all your traffic, I will interrupt you if necessary.
QSL	Can you give me acknowledgment of receipt?	I give you acknowledgment of receipt.
QSM	Shall I repeat the last telegram I sent you?	Repeat the last telegram you have sent me.
QSO	Can you communicate with direct (or through the medium of)?	I can communicate with direct (or through the medium of).
QSP'	Will you retransmit to free of charge?	I will retransmit to free of charge.
QSK	Has the distress call received from been cleared?	The distress call received from has been cleared by
QSU	Shall I send (or reply) on ke/s (or m) and/ or on waves of Type A1, A2, A3, or B?	Send (or reply) on kc/s (orm) and/or on waves of Type A1, A2, A3, or B.
QSV	Shall I send a series of VVV ?	Send a series of VVV

Abbreviation	Question	Answer
QSW	Will you send on kc/s (or m) and/or on waves of Type A1, A2, A3 or B?	I am going to send (or I will send) on kc/s (or $. \ldots . .$. m) and/or on waves of Type A1, A2 A3 or B.
QSX	Will you listen for (call sign) on kc / s (or...... . m)?	I am listening for (call sign) on kc / s (or m).
QSY	Shall I change to transmission on kc/s (or m) without changing the type of wave? or Shall I change to transmission on another wave?	Change to transmission on kc/s (or m) without changing the type of wave Change to transmission on another wave.
QSZ	Shall I send each word or group twice?	Send each word or group twice.
QTA	Shall I cancel telegram No. as if it had not been sent?	Cancel telegram No. as if it had not been sent.
OTB	Do you agree with my number of words?	I do not agree with your number of worde; I will repeat the first letter of each word and the first figure of each number.
QTC	How many telegrams have you to send?	I have telegrams for you (or for) .
QTE	What is my true bearing in relation to you? or	Your true bearing in relation to me is . . . degrees or
	What is my true bearing in relation to (call sign)?	Your true bearing in relation to (call sign) is degrees at (time) or
	What is the true bearing of (call sign) in relation to (call sign)?	The true bearing of (call sign) in relation to (call sign) is \qquad (time).
QTF	Will you give me the position of my station according to the bearings taken by the direction-finding stations which you control?	The position of your station according to the bearings taken by the direction-finding stations which I control is latitude longitude.
QTG	Will you send your call sign for fifty seconds followed by a dash of ten seconds on kc/s (or m) in order that I may take your bearing?	I will send my call sign for fifty seconds followed by a dash of ten seconds on kc/s (or m) in order that you may take my bearing.
QTH	What is your position in latitude and longitude (or by any other way of showing it)?	My position is latitude longitude (or by any other way of showing it).
QTI	What is your true course?	My true course is degrees.
QTJ	What is your speed?	My speed is knots (or kilometers) per hour.
QTM	Send radioelectric signals and submarine sound signals to enable me to fix my bearing and my distance.	I will send radioelectric signals and submarine sound signals to enable you to fix your bearing and your distance.
QTO	Have you left dock (or port)?	I have just left dock (or port).
QTP	Are you going to enter dock (or port)?	I am going to enter dock (or port).
QTQ	Can you communicate with my station by means of the International Code of Signals?	I am going to communicate with your station by means of the International Code of Signals.
QTR	What is the exact time?	The exact time is
QTU	What are the hours during which your station is open?	My station is open from to
QUA	Have you news of (call sign of the mobile station)?	Here is news of (call sign of the mobile station).
QUB	Can you give me in this order, information concerning: visibility, height of clouds, ground wind for (place of observation)?	Here is the information requested
QUC	What is the last measage received by you from (call sign of the mobile station)?	The last message received by me from (call sign of the mobile station) is
QUD	Have you received the urgency signal sent by (call sign of the mobile station)?	I have received the urgency signal sent by (call sign of the mobile station) at (time).
QUF	Have you received the distress signal sent by (call sign of the mobile station)?	I have received the distress signal sent by (call sign of the mobile station) at (time).
QUG	Are you being forced to alight in the sea (or to land)?	I am forced to alight (or land) at (place).
QUH	Will you indicate the present barometric pressure at sea level?	The present barometric pressure at sea level is (units).
QUJ	Will you indicate the true course for me to follow, with no wind, to make for you?	The true course for you to follow, with no wind, to make for me is degress at (time).
QUK	Can you tell me the condition of the sea observed at (place or coördinates)?	The sea at (place or coördinates) is
QUL	Can you tell me the swell observed at (place or coördinates)?	The swell at (place or coorrdinates) is
QUM	Is the distress traffic ended?	The distress traffic is ended.

[^23]
MISCELLANEOUS ABBREVIATIONS

Abbreriation	Meaning	Abbreviation	Meaning
C	Yes	JM	If I may transmit, send a series of dashes. To
V	No.		stop my transmission, send a series of dots
$1>$	Indicator of private telegram in the mobile service (to be used as a prefix).	MN	[not to be used on $500 \mathrm{kc} / \mathrm{s}(600 \mathrm{~m})$]. Minute or minutes (to be used to indicate
W	Word or words.		the duration of a wa
AA	All after (to be used after a note of interrogation to ask for a repetition).	NW	1 resume transmission (to be used more especially in the fixed service).
Als	All before (to be used after a note	OK	Agreed.
	of interrogation to ask for a repeti-	RO	Designation of a request.
AI,	tion). All that has just been sent (to be used after a note of interrogation to ask for a repeti-	SA	Indicator preceding the name of an aircraft station (to be useat in the sending of particulars of flight).
I3N	tion). All between. (to be used after a note	$\mathbf{S r}$	Indicator preceding the name of an aeronautical station.
BQ	of interrogation to ask for a repetition). A reply to an RQ.	SN	Indicator preceding the name of a coast station.
CI,	I am closing my station.	SS	Indicator preceding the name of a ship sta-
CS	('all sign (to be used to ask for a call sign or to have one repeated).		tion (to be used in sending particulars of voyage).
IDI3	I cannot give you a bearing, sou are not in the calibrated sector of this station.	TIS	Indicator used in sending particulars concerning a mobile station.
IP:	The minimum of your signal is suitable for the bearing.	TU	'Thank you for your coöperation. Are we agred?
1)N゙	Your bearing at (time) was degrees, in the doubtful sector of this station, with a possible error of two degrees.	W WH	Wordafter (to be used after a note of interrogation to reguest a repetition). Word before (to be used after a note of interrogation to recuest a repetition).
DG	Please advise me if you note an crror in the bearing given.	$\begin{aligned} & \mathbf{X S} \\ & \mathbf{Y S} \end{aligned}$	Atmospheries. Your service message.
IH	Bearing cloubtful in consequence of the bad quality of your signal.	Al3V	Repeat (or I repeat) the figures in abbreviated form.
$\begin{aligned} & \text { DJJ } \\ & \text { DI. } \end{aligned}$	Bearing doubtful because of interference. Your bearing at (time) was	ADIt	Address (to be used after a note of interrogation to request a repetition).
 degrees, in the doubtful sector of this station.	$\begin{aligned} & \text { Cirm } \\ & \text { Coll } \end{aligned}$	Confirm (or I confirm). Collate (or I collate).
IO	Bearing doubtful. Ask for another bearing later, or at \qquad (time).	$\begin{aligned} & \text { 1IT } \\ & \mathrm{MSG} \end{aligned}$	The punctuation counts. Telegram concerning the service of the ship
1)1	Besond 50 miles, the possible error of bearing may mount to two degrees.	NH.	(to be used as a prefix). I have nothing for you (to be used after an
InS	Aljust your transmitter, the minimum of your signal is too broad.		abbreviation of the Q code to mean that the answer to the question put is negative).
IVI	I cannot furnish you with a bearing; the minitnum of your signal is too broad.	1 PI I.	Preamble (to be usel after a note of interrogation to request a repetition).
IVY	This station is two-way, what is your approximate direction in degrees in relation to this station?	$\begin{aligned} & \text { REF } \\ & \text { REP' } \end{aligned}$	Referring to (or IRefer to). IRepeat (or I repeat) (to be used to ask for or to give repetition of all or part of the traf-
IW.	lour bearing is reciprocal (to be used only by the control station of a group of direc-tion-finding stations when it is addressing other stations of the same group).	SIf:	fic, the relative particulars being sent after the abbreviation). Signature (to be used after a note of interrogation to request a repetition).
Eil	Here (to be used before the name of the mohile station in the sending of route indications).	SVC: Tra	Indicator of service telegram concerning private traffic (to be used as a prefix). Traffic.
CiA	Resume sending (to be used more specially' in the fixed service).	TXI	Text (to be used after a note of interrogation to request a repetition).

Scales Lsed in Expressing Signal Strength and Readability

(See QRK and QSA in the Q Code)

Strength		Readabilit!	
QSA1.	. Barely perceptible	QRK1	Unreadable
QSA2.	Weak	QRK2	Readable now and then
QSA3.	.Fairly good	QRK3	Readable with difficulty
QSA4.	Good	QRK4	Readable
QSA5.	Very good	QRK5	Perfectly readable

INTEIENATIONAL IPREFINES

The nationality of a radio station is shown by the initial letter or letters of its call signal． The International Telecommunications Con－ vention，supplemented by provisional action of the Berne Bureau，allocates the alphabet amongst the nations of the world for that pur－ pose．Every station call of a nation must be taken from the block of letters thus assigned it． The a mateur station call commonly consists of one or two initial letters thus chosen（to indi－ cate nationality），a digit（assigned by the local government to indicate the subdivision of the nation in which the station is located），and two or three additional letters（to identify the individual station）．

In the list which follows the first column shows the international allocation of blocks of call signals．This list is useful in identifying the nationality of any call heard，whether a mateur or not．In the second column appears the area to which the calls are assigned．In the third column the amateur prefixes，the beginning letters of amateur calls，are listed．Where a prefix is shown in brackets，it indicates that that government has more than one assign－ ment of initial letters and that the indicated letter will be found assigned，in another part of the list，to that country．The list：

Algeria	FA
Madagascar	FB8
French Togoland	FD8
French Cancroons．	FE8
French West Africa	FF8
Guadeloupe	FG8
French Irdo－C＇hina	FI8
New Caledonia	FK8
French Somaliland	FL8
Martinique	FM8
French India	FN8
French Oceania	FO8
Miquelon \＆St．P＇ierre Islands	FP8
French Equatorial Africa	FQ8
Reunion．	FR8
Tunisia	FT4
New İebrides（F＇rench）	FU8
	FY8

	England．	G
	Northern Irminm．	GI
	Scotland	G．M
	Wales	GW
HAA－IIAZ	Hungary	HA
IIBA－IIBZ．	Swiss Confederation	IIB
HCA－HDZ	Pecuador	HC
HEA－IIEZ	Switzerland	［ 1 BB ］
IFFA－HFZ．	Poland．	［SP］
IICA－IIGZ	Japan	［J］
HHA－HHZ	．Republic of Haiti．	HH
H14－HIZ	Dominican Republic．	HI
以J．S－IL゙Z．	Republic of（ ${ }^{\text {colombia }}$	IJ－HK
HLA－HM\％	．Japan．	［J］
HNA－HベZ	Iraq．	［YI］
HOA－IIP＇．	Republic of P＇anama	HP
HIQA－IIRZ	Republic of IIonduras．	HR
HSA－HSZ	Siam	HS
H＇TA－HTY．	Nicaragua	Y 1
IIUA－HUZ	Salvador	［YS］
11 VA －1IVZ．	Vatican City	
IIWA－IIY\％	France and Colonics	［F］

IIWA－IIY\％．．．．France and Colonics ．．．．．．．．．．．．．．．．［F］
IIZA－IIZZ．．．．．Medjaz．．．．．．．．．．．．．．．．．．．．．．．．．IIZ
I
I．
Italy and Colonies ．．I
Japanese Linpire：
Jupan．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 －J7

C＇hosen（IVorea）．．．．．．．．．．．．．．．．．．．．J8
Taiwan（Formosa）．．．．．．．．．．．．．J9
K．．．．．．．．．．．．．．United States of America：
Continental United States．．［W］（N）²
Puerto Rico，Virgin Islands K4，KB4
Canal Zone．
． 55
Territory of Hawai，Guam，
U．S．Sarnoa，Midway \＆Wake
Islands（See Country List pp．430）
Alaska．．．．．．．．．．．．．．．．．．．．．K7
Philippine Islands ．．．．．．．．．．．．．．KA
LAA－LNZ Norway．．
LOA－I，WZ ．．．．．Argentine Republic．．．．．．．．．．．．．．．．．．．．LU
I．XA－LXZ ．．．．．．Luxemburg ．．．．．．．．．．．．．．．．．．．．．LX
LYA－LYZ．．．．．．．．lithuania．．．．．．．．．．．．．．．．．．．．．．LY
LKA－LZZ ．．．．．．Bulgaria ．．．．．．．．．．．．．．．．．．．．．．．．LZ
M．．．．．．．．．．．．Great Britain ．．．．．．．．．．．．．．．．．．．．［G］
N ．．．．．．．．．．United States of Anerica ．$\left[\right.$ K－W］（N）${ }^{2}$
OAA－OCZ．．．．．．Peru．．．．．．．．．．．．．．．．．．．．．．．．．
ODA－ODZ ．．．．．Syria and I．ehthon ．．．．．．．．．．．．．．．．．
OEA－OEZ ．．．．．Austria．．．．．．．．．．．．．．．．．．．．．．OE

ONA－OT\％．．．．．．13clgium and（＇olonies．．．．．．．．．．．．ON
Belgian Congo ．．．．．．．．．．．．．．OQ
OUA－OZZ ．．．．．．．Denmark：
Denmark．．．．．．．．．．．．．．．．．．．．．．OZ
The Faeroes ．．．．．．．．．．．．．．．．．．．OY

PAA－PIZ ．．．．．．Netherlands ．．．．．．．．．．．．．．．．．．．．PA
PJA－PJZ．．．．．．．Curacao．．．．．．．．．．．．．．．．．．．．．．．．PJ

THE RADIO AMATEUR'S HANDBOOK

	Dutch Borneo PK5 Celebes, Moluccas and New Guinea \qquad PK6
PPA-PYZ	Brazil. PY
PZA-PZZ	Netherlands Guiana (Surinam) PZ
R.....	Union of Socialist Soviet Republics.. [U]
SAA-SMZ	Sweden. SM
SNA-SRZ.	Poland . SP
SSA-SUZ.	Egypt:
	Sudan .ST
	Egypt . SU
SVA-SZZ.	Greece .SV-SX
TAA-TCZ.	Turkey .TA
TDA-TDZ.	Guatemala[TG]
TEA-TEZ.	Costa Rica [TI]
TFA-TFZ	Iceland. TF
TGA-TCiZ	Guatemala . TG
THA-TIZ.	France and Colonies[F]
TIA-TIZ..	Costa Rica . TI
TJA-TZZ	France and Colonies and Protectorates [F]
U.	Union of Socialist Soviet Republics:
	European Russian S.F.S.R... U1-3-4-7
	White Russian S.S.R. U2
	Ukrainian S.S.R. U5
	Transcaucasian S.F.S.R. U6
	Uzbek S.S.R. and Turkoman
	S.S.R. U8
	Asiatic Russian S.F.S.R. U9-0
VAA-VGZ	Canada. VE
VHA-VNZ.	Commonwealth of Australia:
	Australia VK2-3-4-5-6-8
	Papua Territory VK4
	Tasmania VK7
	New Guinea Territory VK9
VOA-VOZ.	Newfoundland. VO
VPA-VSZ.	British Colonies and Protectorates:
	British Honduras and Zanzibar... VP1
	Leeward and Windward Ids.. VP2
	British Guiana VP3
	Trinidad and Tobago. VP4
	Jamaica and Cayman Islands . . . VP5
	Barbados . VP6
	Bahamas. VP7
	Falkland Ids VP8
	Bermuda . VP9
	Fanning Island VQ1
	Northern Rhodesia VQ2
	Tanganyika. VQ3
	Kenya. .VQ4
	Uganda VQ5
	British Somaliland VQ6
	Mauritius and St. Helena. VQ8
	Seychelles. VQ9
	Gilbert \& Ellice Islands and Ocean Id. VR1
	Fiji Islands VR2
	Fanning Island. VR3
	Solomon Islands VR4
	Tonga (Friendly) Islands. VR5
	Pitcairn Island VR6
	Straits Settlements VS1
	Malaya VS2-VS3
	North Borneo VS4
	Sarawak . VS5
	Hongkong VS6
	Ceylon. VS7
	Bahrein Id. VS8
	Maldive Ids. VS9
VTA-VWZ.	British IndiaVU
VXA-VYZ.	Canada .[VE]
VZA-VZZ.	Australia [VK]
W.......	United States of America . . . $[\mathrm{K}](\mathrm{N})^{2} \mathrm{~W}$
XAA-XFZ.	Mexico . XE
XGA-XUZ.	China. XU
XVA-XWZ.	France and Colonies [F]
XXA-XXZ.	Portuguese Colonies [CT]
XYA-XZZ.	British India [VU]
	Burma. $\mathbf{X Z}$
YAA-YAZ.	Afghanistan Y A

${ }^{1} \mathrm{CM}$ is used by c.w. atations; CO by 'phones.
There are, in addition, certain prefixes not officially assigned which are at present used by amateurs of several countries. Some of these are:

AC4	Tibet
AR	Syria
NY	Canal Zone
PX	Andorra

${ }^{2}$ Certain amateur stations licensed to members of the U. S. Naval Communications Reserve are authorized to use the prefix N.

COUNTRIES

Almovar not to be regarded as an "official" list of countries, the following tabulation is now regarded as a reasonable standard and has been prepared after extensive collaboration with various groups including several geographical authorities and representative DX men. It is the list used in connection with the awarding of the DX Century Club certificate, issued to all members of the A.R.R.L. submitting proof of two-way contact by amateur radio with 100 countries.

Country	Prefix
Aden.	
Aegean Islands	
Afghanistan	YA
Alaska (including Pribilof Islands)	K7
Albania	ZA
Aldabra Islands	
Algeria.	FA
Andaman Islands.	
Andorra. .	
Anglo-Egyptian Sudan	8T
Angola.	CR6
Argentina	LU
Ascension Island	7.D8
Australia	VK

TIIE DECIBEL.

The decibel (abbreviated $d b$) is a convenient unit for the measurement of electrical or acoustic power ratios on a logarithmic scale. The number of decibels equivalent to the ratio between two amounts of power is

$$
d b=10 \log _{10} \frac{P_{1}}{P_{2}}
$$

Since the clecibel is a logarithmic unit, successive gains and losses expressed in can be added algebraically. If the ratio of the two power values is greater than 1 there is a power gain; if the ratio is less than 1 there is a loss of power. A gain is expressed in "plus db "; a loss in "minus db."

The decibel also can be used to express ratios between voltages and currents provided the circuit conditions are the same for the two quantities whose magnitudes are being compared; i.e., if the impedances and power factors of the circuits are the same.

DHCIBEL CHAIRT FOR POWER, VOLIAGE OR

 CURRENT CALCULATIONSSolid lines, voltage or current ratios; dotted lines, power ratios. To find db gain, divide out put power by corresponding input power and read db value for this ratio, using the appropriate curve (i.e., "Xl" for ratios from 1 to 10 , "XI0" for ratios from 10 to 100 , "X100" for ratios from I to 1000 , and so on). To find dit loss, as where output is less than input, divide input value by output value. Current and voltage ratios in db can lee found similarly, provided the input and outputimpedances are the same. Power, voltage and current values must be in the same units (watts, millivolts, microampercs, etc.). The chart also can be uned for voltage and current ratios greater than 1000; for ratios between 1000 and 10,000 , divide given ratio lyy 10 and add 20 db to value read from the chart. For example, to find d b gain for a voltage ratio of 8000 , read $\mathbf{d b}$ value for voltage ratio of $800(58 \mathrm{db})$ and add 20 dh., the answer being 78 dib. Power ratios greater than $1,000,000$ may be handled similarly, but adding only 10 dl , each time the actual ratio is divided by 10 .

The decibel is primarily a unit which specifies gains or losses with reference to the power value at some point in a system regardless of the actual value of the reference power. In telephone and radio work, however, it is convenient to assume a reference power level and express the power at a point in a circuit in terms of "plus db " or "minus db" above or below this reference level. A standard reference level in radio work is 0.006 watts, or 6 milliwatts.

SYMIBALA FOIE ELECTIRICAL. RUANTITIEN

Admittance	1, y
Angular velocity (πf)	ω
Capacitance	\%
Conductance	(i, ${ }^{\text {l }}$
Current	1,i
Difference of potential	E, e
Dielectric constant	Kor
Energy	W
lirequency	f
Impedance	Z, z
Inductance	L
Magnetic intensity	II
Magnetic flux	\$
Magnetic flux density	B
Mutual inductance	M
Number of conductors or turns	N
Permeability	μ

APPENDIX

Phase displacement	θ or Φ
Power	P, p
Quantity of electricity	Q, q
Reactance	X, x
Resistance	R, r
Susceptance	b
Speed of rotation	n
Voltage	E, e
Work	W

LETTEEIR SYMHBOLS FOIE VACUTM TUIBE NODTATIADN

Grid potential	E_{v}, e_{e}
Grid current	I_{g}, i_{g}
Grid conductance	g_{g}
Grid resistance	r_{g}
Grid bias voltage	E_{e}
Plate potential	E_{p}, e_{p}
Plate current	$I_{b,} I_{p}, i_{p}$
Plate conductance	g_{p}
Plate resistance	r_{p}
Plate supply voltage	E_{b}
Emission current	I_{s}
Mutual conductance	g_{m}
Amplification factor	μ
Filament terminal voltage	E_{f}
Filament current	I_{f}
Grid-plate capacity	$C_{g p}$
Grid-cathode capacity	$C_{o k}$
Plate-cathode capacity	$C_{p k}$
Grid capacity (input)	C_{g}
Plate capacity (output)	C_{p}

Note. - Small letters refer to instantaneous values.

METIREC EPIREFIXES

μ	$\frac{1}{1,000,000}$	One-millionth	micro-
m	1	One-thousandth	milli-
	1,000		
c	1	One-hundredth	centi-
	100		
d	1	Onc-tentl	deci-
	10		
	1	One	uni-
(lk	10	Ten	deka-
${ }_{1}$	100	One hundred	hekto-
k	1,000	One thousand	kilo-
	10,000	Ten thousand	myria-
	1,000,000	One million	mega-

A.IR.E.L. TRSL EBUIREAU

For the convenience of its members, the League maintains a QSL-card forwarding system which operates through volunteer "District QSL Managers" in each of the nine United States and five Canadian districts, the principal U. S. territories and possessions, and the Philippine Islands. In order to secure such foreign cards as may be received for you, send
your district manager a standard No. 10 stamped envelope. If you have reason to expect a considerable number of cards, put on extra postage. Your own name and address go in the customary place on the face, and your station call should be printed prominently in the upper left-hand corner.
W1-J. T. Steiger, W1BGY, 35 Call Street, Willimansett, Mass.
W2 - H. W. Yahnel, W2SN, Lake Ave., Helmetta, N. J.
W3 - Barron P. Freeburger, W3DK, 435 5th St., N. E., Washington, D. C.
W4-G. W. Hoke, W4DYB, 328 Mell Ave., N. E., Atlanta, Ga.

W5 - E. H. Treadaway, W5DKR, 2749 Myrtle St., New Orleans, La.
W6 - Horace Greer, W6TI, 414 Fairmount Ave., Oakland, Calif.
W7-Frank E. Pratt, W7DXZ, 5023 So. Ferry St., Tacoma, Wash.
W8 - F. W. Allen, W8GER, 324 Richmond Ave., Dayton, Ohio.
W9 - Roy W. McCarty, W9KA, 11 South Michigan Ave., Villa Park, Ill.
VE1 - J. E. Roue, VE1FB, 84 Spring Garden Rd., Halifax, N. S.
VE2 - C. W. Skarstedt, VE2DR, 236 Elm Ave., Westmount, P. Q.
VE3 - Bert Knowles, VE3QB, Lanark, Ont.
VE4 - George Behrends, VE4RO, 186 Oakdean Blvd., St. James, Winnipeg, Manitoba.
VE5 - H. R. Hough, VE5HR, 1785 First St., Victoria, B. C.
K4-F. McCown, K4RJ, Family Court 7, Santurce, Puerto Rico.
K5 - Norman F. Miller, K5AF, 15th Air Base Squadron, Albrook Field, Canal Zone.
K6-James F. Pa, K6I.BII, 1416D Lunalilo St., Honolulu, T. H.
K7- Dean Williams, K7ELM, Box 2373, Juneau, Alaska.
KA - (ieorge L. Rickard, KA1GR, P. O. Box 849, Manila, P. I.

COLADR CODDE FOLE IRESISTADIR AND CONIDENSEIRS

standard color code is used for identification of resistance and capacitance values of small carbon-type resistors and midget mica condensers. In this code, numbers are represented by the following colors:

0 - Black	5 - Green
1 - Brown	6 - Blue
2 - Red	7 - Violet
3 - Orange	8 - Gray
4 - Yellow	$9-$ White

Three colors are used on each resistor to identify its value. The body color represents

THE RADIO AMATEUR'S HANDB00K

	$\begin{aligned} & \text { CORE } \\ & \text { SIZE } \end{aligned}$	M	$\begin{aligned} & \text { EQUVV } \\ & \text { GAP } \end{aligned}$	* Actual	GAP	MO TURNS		WINDIN	RORA	$\begin{aligned} & \text { Mean } \\ & \text { nuan } \end{aligned}$	FEET	costanc	WEIGH	CORE	N	POURDS
	Cross section	HENRYS	(G)	Dexima/s	Nearest fraction	(N)	(B) Amestonch	b	C	inches	WIRE	($\mathrm{C}_{\text {C) }}$	COPPER	piece	Short Piece	STEEL
		0.5	040"	.017"	1/64"	1600	6500	$0.42^{\prime \prime}$	$0.28^{\text {a }}$	3.0	400	82.5	1.00 z	$\frac{1}{2} \times 1.6$	1/2x ${ }^{1 / 50}$	0.30
		1.0	. 041	. 019		2300	9000	0.50	0.33	3.2	615	127.0	1511	1/2×1.7	$1 / 2 \times 55$	0.31
		5.0	. 043	. 023		5200	20000	0.75	0.50	38	1670	345.0	4.0 "	$1 / 2 \times 1.92$	1/2×.75	0.37
		15.0	. 048	${ }_{0} 35$		760	27000	0.90	0.60	4.2	2640	5450	6.5 "	1/2x 2	1/2x.85	0.41
						9500		1.00	0.68	45	3510	725.0	8.51	1/2 $\times 2.2$	$1 / 2 \times 85$	0.43
		5.0	.043"	023		3500	13000	$0.62^{\prime \prime}$	$042^{\prime \prime}$	4.5	1310	271				
		10.0	. 046	030		5000	18000	0.73	0.49	475	2000	411	5.0	3/4×2.5	㙑 75	0
	$\times 3 / 4$	15.0	048	035		6300	21000	0.82	0.55	5.0	2630	544	6.5 "	$3 / 4 \times 2.6$	1/4x.75	1.05
		20.0	. 052	. 044	3/6	7600	24000	091	0.60	5.2	3280	678	8.0 "	$3 / 4 \times 2$	$31 / 4 \times 85$	1.1
		50.0	070	100	7/64"	14000	33000	1.25	0.83	60	7000	445	1181	$31 / 4 \times 30$	$3 / 4 \times 1.0$	1.25
		10.0	046"	030	1/32*	3800	14000	$0.64^{\prime \prime}$	$0.43{ }^{4}$	5.6	1760	364	4.2502	1×3.0	$1 \times .75$	2
		15.0	. 048	035		4800	16000	069	0.49	5.8	2310	478	5.5 m	1×30	$1 \times .75$	2.
		20.0	. 052	044	3/64"	5700	18000	0.78	0.52	5.9	2800	580	6.75.	1×3.1	$1 \times .75$	2.2
		50.0	. 070	100	7/64"	11000	25000	1.10	0.75	6.7	6130	1270	15.0"	1×3.5	1×1.0	
		100.0	100	250	1/4"	18000	29000	1.40	0.93	7.4	11000	2280	IL8IO	1×3.8	1×1.1	$\frac{2.5}{2.75}$
	2×2	100.0	100*	250	1/4"	8900	14000	0.97	0.65	10.4	7700	1590	1183	2×5.5	2×1.0	
		0.5	040"	017	1/64"	1600	13000	$0.55{ }^{\prime \prime}$	$0.38{ }^{*}$	3.4	450	46	2.	2×1	$\times 0$	
	1/2	1.0	. 041	019		2300	8000	0.66	0.45	3.6	700	72	3.5	12×1.75	2×0.70	0.35
		50	. 043	023		5200	39000	100	0.68	4.5	1950	200	9.5.	$1 / 2 \times 2.10$	$1{ }_{2} \times 0.95$	0.43
		1.0	. $041^{\prime \prime}$	019		1500	12000	$0.53{ }^{\prime \prime}$	$0.37{ }^{\circ}$	4.3	540	56	2.7			. 87
	$3 / 4$	5.0	. 043	023		3500	26000	0.83	0.56	5.0	1470	151	7.2.	$3 / 4 \times 2.5$	4*0.80	1.05
		10.0	. 046	030	1/32"	5000	35000	100	0.67	5.4	2250	230	11.0 \%	$3 / 4 \times 2.6$	$\times 0.95$	1.12
		5.0	043 "	023		2600	20000	$0.71{ }^{\prime \prime}$	$0.49{ }^{\circ}$	5.8	250	30	6.102	1×2.8	1×0.75	
		10.0	046	030	1/32"	3800	27000	086	0.58	6.1	1940	200	9.5.	1×3.0	1×0.85	2.2
		15.0	048	035		4800	32000	096	0.65	6.4	2550	260	12.5.	1×3	$\times 0.90$	2.25
		10.0	046	030	1/32	190	13000	0.60	0.42	9.5	1500	160	7.502	2×4.66	$\times 0.60$	
		150	. 048	. 033		2400	16000	0.68	0.46	9.7	1900	200	9.5.	2×4.75	2×0.66	
		20.0	. 052	. 044	3/64"	2900	18000	0.75	0.51	9.8	2400	250	11.5.	2×4.755	2×0.75	12
		50.0	070	100	$7 / 64^{\prime \prime}$	5300	24000	1.00	0.70	10.5	4600	480	1286.5 \%	2×5.50	2×0.95	14.0
		100.0	100	250	$1 / 4{ }^{\circ}$	8900	28000	1.33	0.90	11.2	8300	860	2L88.	2×5.90	2×1.15	16.0
	/2	0.5	. 040	017		1600	32000			2						
		1.0	. 082	120	1/8"	3200	32000				550	22.5	702	12×2	$2 \times .85$	0.40
										5.1	1350	55	B1 ${ }^{\text {a }}$	$1 / 2 \times 2.5$	$1 / 2 \times 1.10$	0.50
	$3 / 4 \times 3 / 4$	0.5	040	017	1/64*	1000	21000	0.72	0.46 d	4.7	390	16	502	4×2.3	0.71	0.96
		1.0	041	019		1500	30000	0.90	0.58	5.1	640	26	8 "	$3 / 4 \times 2.5$	$3 / 4 \times 0.83$	1.05
		10	041	019		100	22000	0.75	$0.50^{\prime \prime}$	5.8	530	22	6.502	1×2	1×0.75	
		5.0	086	. 170	9^{*}	3700	350	1.40	0.92	7.3	2260	92	14812	$\times 3$.	1×1.20	
		5.0	.043"	023	1/4"	300	23000	$0.82^{\prime \prime}$	$0.53{ }^{\circ}$	9.7	050	43	1302	$2 \times$	$\times 0.80$	
	$\times 2$	10.0	050	040	1/64"	2000	32000	1.05	0.68	10.5	1750	71	186	2×5.2	2×1.0	13.8
		15.0	. 096	200	13/64*	3300	28000	1.35	0.86	11.1	3060	125	2"6"	2×5.5	2×1.1	14.7
		20.0	104	280	9/32"	4000	32000	143	0.95	11.5	3820	156	2"15.	2×5.6	2×1.2	15.2
		10.0	046 "	030		1300	22000	0.81 '	0.53	14.0	510	62	2	3×6.9	3×0.8	
		15.0	. 048	. 035		1600	26000	0.90	0.60	14.2	1900	77	$1+71$	3×7.0	3×0.85	40
	3x 3	20.0	052	. 044	3/64"	1900	30000	1.00	0.65	14.4	2300	93	1"12"	3×7.1	3×0.9	41
		50.0	140	330	19" ${ }^{\prime \prime}$	5000	28000	1.60	1.10	15.9	6600	270	5"2"	3×7.8	3×1.35	46
		10	20	600	19/32"	8400	34000	2.10	1.40	17.0	12000	485	9"3"	3×8.3	3×1.65	50
		0				3200	32000		2	6.4	00	35	3100	$1 / 2 \times 3$	$\times 1.4$	62
	$\times 3 / 4$	0.5	$0.08{ }^{\text {n }}$	170	11/64"	1480	30000	1.25"	83%	6.0	35	15	168202	4. 2.9	4×1.	. 26
		10	0.16	35	$11 / 32^{\prime \prime}$	3000	30000	1.75	1,20	7.2	1800	37	2013"	4×3.5	$3 / 4 \times 1.5$. 6
		0.5	0.04 ${ }^{1}$	02	$1 / 64^{4}$	800	32000	$0.90^{\prime \prime}$	0.60	6.2	410	85	0181002	1×3.0	1×0.85	2.2
	$\|x\|$	1.0	0.082	17	$1 / 64^{*}$	1600	31000	1.30	0.85	7.1	945	19	118 8 "	1×3.5	1×1.0	2.5
		5.0	0.387	75	$3 / 4$.	7800	32000	2.90	1.90	11.0	7000	143	10*14n	1×5.2	1 $\times 2.2$	4.2
		1.0	0.0417	019		560	22000	$0.75^{\prime \prime}$	0.50	9.8	460	9.4	0L81202	2×4.9	2×0.7	12.7
	2×2	5.0	0.086	. 17	11/64*	1800	32000	1.35	0.90	11.3	1700	35	2*10"	2×5.5	2×1.15	150
		10.0	0.184	40	13/32"	3800	33000	2.00	1.30	12.8	4100	83	646.	2×6.2	2×1.5	17.3
		5.0	0.043	023		860	30000	$1.00^{\prime \prime}$	0.60	14.2	1000	21	181002	3*7.1	3×0.85	40.0
		10.0	0.092	20	13/64"	1840	31500	1.40	0.92	15.3	2350	48	3"10"	3×7.5	3×1.15	43.5
	3×3	15.0	0.130	. 30	19/64"	2620	32000	1.65	1.10	16.0	3500	71	5:7 7	3×7.8	3×1.4	46.0
		20.0	0.175	38	$3 / 8{ }^{1 / 1}$	3500	32000	1.90	1.25	16.6	4850	99	708:	3×8.1	3×1.5	48.0
		50.0	0.432	80	$13 / 16^{\prime \prime}$	8700	32000	3.00	2.00	19.2	14000	282	2118 8	3×9.3	3×2.3	58.0
		100.0	0.900	1.50	$11 / 2^{\prime \prime}$	16700	31500	4.10	2.80	22.0	31000	620	47-5n	3×10.5	3×3.1	68.0
	*The Ac R must + 7 me rolve smoors	tual Gap seadjust chiver of in the loc sing the	can and led by $2 r$ (8) thr max	ve ono ral unti Hlux de e will 0 um B		nation ou per volue e thare * B as . 157	wing to the e of ind abtained given In annes	many clance ed with ire ca ne nalue	tartors whi abtoine If D.C se of res spres.		effect ler yed, C, or the AC. 4	ringing effec pled	flux, P ed upop re B if col	measin I/ A.C 10 p		

Copper wire table

$\begin{gathered} \text { Gauge } \\ \text { No. } \end{gathered}$$B . \& S$	Diam． in Mits ${ }^{1}$	Circular Mil Area	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb．		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{ft} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current Carryino Capacity at 1600 C．M． per Amp．${ }^{3}$	Diam． in $m m$ ．	Neareat Britioh S．W．G． Ne．
			Enamel	S．C．C．	$\begin{gathered} \text { D.S.C. } \\ \text { or } \\ \text { S.C.C. } \end{gathered}$	D．C．C．	S．C．C．	Enamel S．C．C．	D．C．C．	Bare	D．C．C．				
		82690	－	－	－	－	－	－	－	3.947	－	． 1264	55.7	7.348	1
1	289.3	66370	二	－	－	－	－	－	－	4.977	－	． 1593	44.1	6.544	3
3	229.4	52640	－	－	－	－	－	－	－	6.276	－	． 2009	35.0 27.7	5.827 5.189	4
4	204.3	41740	－	－	－	－	－	－		7.914	－	． 3195	22.0	4.621	7
5	181.9	33100	－	－	－	－			－	12.58	二	． 4028	17.5	4.115	8
6	162.0	26250	－	－	－	－			－	15.87	－	． 5080	13.8	3.665	9
7	144.3	20820	－${ }^{6}$	－	7.4	7.1	－		二	20.01	19.6	． 6405	11.0	3.264	10
8	128.5	16510	7.6 8.6	－	7.4 8.2	7.1	－	－	－	25.23	24.6	． 8077	8.7	2.906	11
9	114.4	13090	8.6 9.6	－	8.2 9.3	7.8 8.9	87.5	84.8	80.0	31.82	30.9	1.018	6.9	2.588	12
10	101.9 90.74	10380 8234	9.6 10.7	－	9.3 10.3	8.9 9.8	110	105.8	97.5	40.12	38.8	1.284	5.5	2.305	13
11	90.74	8234	10.7 12.0	－	10.3 11.5	9.8 10.9	136	131	121	50.59	48.9	1.619	4.4	2.053	14
12	80.81	6530 5178	12.0 13.5	－	11.5 12.8	10.9 12.0	170	162	150	63.80	61.5	2.042	3.5	1.828	15
13	71.96 64.08	5178 4107	13.5 15.0	－	14.2	13.8	211	198	183	80.44	77.3	2.575	2.7	1.628	16
14 15	64.08 57.07	3257	16.8	－	15.8	14.7	262	250	223	101.4	97.3	3.247	2.2	1.450	17
16	50.82	2583	18.9	18.9	17.9	16.4	321	306	271	127.9	150	4.094 5.163	1.3	1.150	18
17	45.26	2048	21.2	21.2	19.9	18.1	497	454	399	203.4	188	6.510	1.1	1.024	19
18	40.30	1624	23.6	23.6	22.0 24.4	19.8 21.8	493 592	454	479	256.5	237	8.210	． 86	． 9116	20
19	35.89	1288	26.4 29.4	26.4 29.4	24.4 27.0	21.8	592 775	553 725	625	323.4	298	10.35	． 68	． 8118	21
20	31.96	${ }^{1022} 81$	29.4 33.1	29.4 32.7	27.0 29.8	23.8 26.0	940	895	754	407.8	370	13.05	． 54	． 7230	22
21	28.46	810.1	33.1 37.0	32.7 36.5	39.8 34.1	30.0	1150	1070	910	514.2	461	16.46	． 43	． 6438	23
23	22.57	509.5	41.3	40.6	37.6	31.6	1400	1300	1080	648.4	584 745	20.76	． 27	． 5106	24 25
24	20.10	404.0	46.3	35.3	41.5	35.6	1700	1570	1260	${ }_{1031} 817$	745 903	33.00	． 21	． 4547	26
25	17.90	320.4	51.7	50.4	45.6	38.6 41.8	2060 2500	1910	1750	1300	1118	41.62	． 17	． 4049	27
26	15.94	254.1	58.0	55.6 61.5	50.2 55.0	41.8 45.0	3500	2300	2020	1639	1422	52.48	． 13	． 3606	29
27	14.20	201.5	64.9	61.5	55.0 60.2	45.0	3670	3350	2310	2067	1759	66.17	． 11	． 3211	30
28	12.64	159.8	72.7 81.6	68.6 74.8	60.2 65.4	48.5 51.8	4300	3900	2700	2607	2207	83.44	． 084	． 2859	31
29	11.26	126.7	81.6 90.5	74.8 83.3	65.4 71.5	51.8	5040	4660	3020	3287	2534	105.2	． 067	． 2546	33
30	10.03 8.928	100.5 79.70	90.5 101.	83.3 92.0	77.5	59.2	5920	5280	－	4145	2768	132.7	． 053	． 2268	34
31	8.928 7.950	63.21	113.	101.	83.6	62.6	7060	6250		5227	3137	167.3	． 042	． 2019	36
33	7.080	50.13	127.	110.	90.3	66.3	8120	7360	－	8591	4697 6168	211.0	． 033	． 1601	38
34	6.305	39.75	143.	120.	97.0	70.0	9600 10900	8310 8700		10480	6737	335.0	． 021	． 1426	38－39
35	5.615	31.52	158.	132.	104.	73.5	10900 12200	8700 10700	－	13210	7877	423.0	． 017	． 1270	39－40
36	5.000	25.00	175.	143.	111.	77.0 80.3	12200	10700	－	16860	9309	533.4	． 013	． 1131	41
37	4.453	19.83	198.	154.	118. 126.	80.3 83.6	－	三	－	21010	10666	672.6	． 010	． 1007	42
38	3.965	15.72	224.	166. 181.	126. 133.	83.6 86.6	－	－	－	26500	11907	848.1	． 008	． 0897	43
39 40	3.531 3.145	12.47 9.88	248.	181.	133.	86.6 89.7	－	二	－	33410	14222	1069	． 006	． 0799	44

${ }^{1}$ A mil is $1 / 1000$（one thousandth）of an inch．
${ }^{2}$ The figures given are appruximate only，since the thickness of the insulation varies with different manufacturers．
The current－carrying capacity at 1000 C．M．per a mpere is equal to the circular－mil area（Column 3）divided by 1000.

THE RADIO AMATEUR'S HANDB00K

the first figure of the resistance value; one end or tip is colored to represent the second figure; a colored band or dot near the center of the resistor gives the number of zeros following the first two figures. $\Lambda \mathbf{2 5}, 000$-ohm resistor, for example, would be marked as follows: body, red (2); tip, green (5); dot, orange (3 zeros).

Small mica condensers usually are marked with three colored dots, with an arrow or other symbol indicating the sequence of colors. Readings are in micromicrofarads ($\mu \mu \mathrm{fd}$.), with the color code same as above. For example, a $0.00025-\mu \mathrm{fd}$. ($250-\mu \mu \mathrm{fd}$.) condenser would be marked as follows: red (2), green (5), brown (1 zero).

GIREEK ALPIIMBET

$\mathbf{D i n c e}_{\text {ince }}$ Greek letters are used to stand for many electrical and radio quantities, the names and symbols of the Gircek alphabet with the equivalent English characters are given.

Greek Letter	Greek Name	English Equivalent
A a	Alpha	a
B β	Beta	b
$\Gamma \gamma$	Ciamma	g
$\Delta \delta$	Delta	d
E ϵ	Epsilon	e
Z 5	Zcta	z
H η	Fta	è
$\theta \theta$	Theta	th
I 6	Iota	i
K к	Kappa	k
$\wedge \lambda$	Lambda	1
M μ	Mu	m
N ν	Nu	11
糹 ξ	Xi	x
0 o	Omicron	δ
II π	I'i	1)
P ρ	Rho	,
こ σ	Nigma	s
T τ	'rau	t
Υ	[psilon	0
¢ ϕ	1'hi	pl_{1}
X x	Chi	ch
$\Psi \psi$	Psi	ps
$\Omega \omega$	Oniega	ò

MAM AIBIBIEDELTTIONS

IN amateur work many of the most commonly used radio and ordinary English words are frequently abbreviated, either by certain generally recognized methods or, as often occurs, on the spur of the moment according to the ideas of the individual operator. Beginning amateurs are likely to be confused by these
"ham abbreviations" at first, but will probably pick them up quickly enough in the case of the more or less standard ones, and get the general idea governing the construction of the umusual ones occasionally encountered.
A method much used in short words is to give the first and last letters only, eliminating all internediate letters. Examples: Now, nw; check, ck; would, wd.

Another method often used in short words employs phonetic spelling. Examples: Some, sum; good, gud; says, sez; night, nite.

A third method uses consonants only, eliminating all vowels. Examples: Letter, ltr; received, red; message, msg.
Replacing parts of a word with the letter " x " is a system occasionally used in abbreviating certain words. Examples: Transmitter, xmtr ; weather, wx; distance, dx; press, px.

In listing below a short list of some of the more frequently encountered a mateur abbreviations, we want to caution the beginner against making too great an effort to abbreviate or to scatter abbreviations wholesale throughout his radio conversation. A judicious use of certain of the short-cut words is permissible and saves time - the only legitimate object of abbreviations, of course. To abbreviate everything one sends, and to do so in many cases to extremes, is merely ridiculous.

Als'	About
ACC'	Account
AGN	Again
AIID	Ahead
AMP	Ampere
AMT	Amount
ANI	Any
AUSSIE	Australian amateur
BCL	Broadeast listener
BD	Bad
BI	By
BKG	Breaking
BLV	Believe
BN	ISeen, all between
BPI.	I3rass Pounders' Licague
BUC;	Vibroplex key
CANS	Phones
CK	Check
CK'T	Circuit
CI,CLD	Closing station; call; called
CM	Communications Manager
C'ONGIRA'S	Congratulations
(IRI)	Card
CUI)	Could
(UI)	Sec you later
CW	Continuous wave
DH	Dead head
DI.D-DIVI)	Delivered
DI.Y	Delivery
DX	Distance
PS	And
F3	Fine business, excellent
FIL,	Filament
F.M	From
FONES	Telephones
FR	For
FREEQ	Frequency
(iA	Go ahead (resume sending)
GiB	Good-bye
¢iBA	Give better address

APPENDIX

GE	Good evening
G(Going
GM	Good morning
GN	Gone, good night
GND	Ground
GSA	Give some address
HAM	Amateur, brass-pounder
HI	I, aughter, high
HR	IIere, hear
HRD	Heard
IIV	Have
ICW	Interrupted contimmous wave
L.I ${ }^{\text {I }}$	"Lid," a poor operator
I.TR	I, ater, letter
MA	Milliampere
MG	Motor-generator
MIIS	Milliamperes
MO	Master oscillator
ND	Nothing doing
NIL,	Nothing
NM	No more
NR	Number, near
NSA	No such address
NW	Now
OH	Old Boy, Official Kroadcast
OM	Old man
00	Official Olsserver
OP'N	Operation
OP-OI'IR	Operator
ORS	Official Relay Station
OT	Old timer, old top
OW	Old woman
PSE	Please
PUNK	Poor operator
R	Are, all right, O.K.
RAC;	Rectified alternating current
IRCD	Received
RCVI	Receiver
RI	Radio Inspector
RM	Route Manager
SA	Say
SC'M	Section Communications Manager
SED	Said
SE\%	Says
SIG-SC;	Signature
SIGS	Signals
SINE	Sign, personal initials, signature
SKED	Schedule
TC	Thermocouple
TKS-TNX	Thanks
TNG	Thing
TMW	Tomorrow
TT	That
U	You
Ul2	Your, you're
URS	Yours
VT	Vacuum tulie
VY	Very
WD)	Would, word
W('S	Words
WKI)	Worked
WKG	Working
WI,	Will
W'r	What, wait, watt
WUD	Would
WV-WL	Wave, wavelength
WX	Weather
XMTIR	Transmitter
YI.	Young lady
YR	Your
ZEDDELR	New Zealander
73	Best regards
88	L.ove and kisses
	11 LEMMKS

Eveny amateur should maintain a carefully sclected bookshelf; a few good books, consistently read and consulted, will add immeasur-
ably to the interest and knowledge of the owner. We suggest a selection from the Amateur's luookshelf at the rear of the IIandbook. All of these have been gone over carefully and are recommended in their various fields.

ENTHATTE FIROM TMEE COMMICNI(.ATMAN: I.AW

The complete text of the Communications Act of 1934, would occupy many pages. Only those parts most applicable to amateur radio station licensing and regulation in this country (with which every amateur should be familiar) are given. Note particularly Secs. 324, 325, 326, 605 and 606 and the penalties provided in Sees. 501 and 502.

Be it enacted by the Senate and House of Representatives of the United States of America in Conoress assembled,

Section 1. For the purpose o. regulating interstate and foreign commerce in communication by wire and radio so as to make available, so far as possible, to all the people of the United States a rapid, efficient, nation-wide, and world-wide wire and radio communication service with adequate facilities at reasonable charges, for the purpose of the national defense, for the purpose of promoting safety of life and property through the use of wire and radio communication, and for the purpose of securing a more effective execution of this policy by centralizing authority heretofore granted by law policy by centralizing authority heretofore granted by and with respect to interstate and foreign commerce in wire and radio communication, there is hereby created a commission to be known as the "Federal Communications Commission," which shall be constituted as hereinafter provided, and which shall execute and enforce the provisions of this Act.

Sec. 2. (a) The provisions of this Act shall apply to all interstate and foreign communication by wire or radio and all interstate and foreign transmission of energy by radio, which originates and/or is received within the United States, and to all persons engaged within the United States in such communication or such transmission of energy by radio, and to the licensing and regulating of all radio stations as hereinafter provided; but it shall not apply to persons engaged in after proded, bommurication or transmission in the Philipwire or radio commuration or to to wire or radio communipine Islands or the Canal zone, or to wire or radio commundor the C'anal Zone.

Sec. 4. (a) The Federal Communications Commission (in this Act referred to as the "Commission") shall be composed of seven commissioners appointed by the President, by and with the advice and consent of the Senate, one of whom the President shall designate as chairman. .
Section 301 . It is the purpose of this Act, among other things, to maintain the control of the United States over all the channels of interstate and foreign radio transmission; and to provide for the use of such channels, but not the ownership thereof, by persons for limited periods of time, under licenses granted by Federal authority, and no such license shall be construed to create any right, beyond the terms, conditions, and periods of the license. No person thall use or operate any apparatus for the transmission of shall use or operate any ap signals by radio (a) from one energy or communications or signals by radio (a) from one place in any Territory or possession of the United States or in the District of Columbia to another place in the same Territory, possession, or District; or (b) from any State, Territory, or possession of the United States, or from the District of Columbia to any other State, Territory, or possession of the United States; or (c) from any place in poss State Territory or possession of the United States, or any State, Tret (olumbia, to any place in any foreign in the District of (olumbia, to any place in any foreign country or to any vessel; or (d) within any State when the effects of such use extend beyond the borders of said State, or when interference is caused by such use or operation with the transmission of sueh energy, communications, or signals from within said state to any place beyond its borders, of from any place bevond its borders to any place within said State or with the transmission or reception of such energy. State, ornition or signals from and/or to places beyond communications, or signals from and or to places beyond the borders of said state; or (e) upon any vessel or aircraft of the United States; or (f) upon any other mobile stations within the jurisdiction of the United States, except under and in accordance with this Act and with a license in that behalf granted under the provisions of this Act.

THE RADIO AMATEUR'S HANDB00K

Sec. 303. Except as otherwise provided in this Act, the Commission from time to time, as public convenience, interest, or necessity requires, shall -
(a) Classify radio stations:
(b) Prescribe the nature of the service to be rendered by each class of licensed stations and each station within any ass
(c) Assign bands of frequencies to the various classes of stations, and assign frequencies for each individual station and determine the power which each station shall use and the time during which it may operate;
(d) Determine the location of classes of stations or indi(ual stations:
(e) Regulate the kind of apparatus to be used with respect to its external effects and the purity and sharpness of the emissions from each station and from the apparatus therein;
(f) Make such regulations not inconsistent with law as it may deem necessary to prevent interference between stations and to carry out the provisions of this Act: Provided, however, That changes in the frequencies, authorized power or in the times of operation of any station, shall not be made without the consent of the station licensee unless, after a public hearing, the Commission shall determine that such changes will promote public convenience or interest or will serve public necessity, or the provisions of this Act will be more fully complied with;
(g) Study new uses for radio, provide for experimental uses of frequencies, and generally encourage the larger and more effective use of radio in the public interest;
(j) Have authority to make general rules and regulations requiring stations to keep such records of programs, transmissions of energy, communications, or signals as it may deem desirable;
(1) Have authority to prescribe the qualifications of station operators, to classify them according to the duties to be performed, to fix the forms of such licenses, and to issue them to such citizens of the United States as the Commission finds qualified;
(m) (1) Have authority to suspend the license of any operator upon proof sufficient to satisfy the Commission that the licensee - (A) has violated any provision of any Act treaty, or convention binding on the United States, which the Commission is authorized to administer, or any regulation made by the Commission under any such Act, treaty, or convention; or (B) has failed to carry out a lawful order of the master or person lawfully in charge of the ship or aircraft on which he is employed; or (C) has willfully damaged or permitted radio apparatus or installations to be damaged; or (D) has transmitted superfluous radio communications or signals or communications containing profane or obscene words, language, or meaning, or has knowingly transmitted -
(1) false or deceptive signals or communications; or
(2) a call signal or letter which has not been assigned by proper authority to the station he is operating; or (E) has wilfully or maliciously interfered with any other radio communications or signals; or (F) has obtained or attempted to obtain, or has assisted another to obtain or attempt to ob(2) an operator's license by fraudulent means.
(2) No order of suspension of any operator's license shall take effect until fifteen days' notice in writing thereof, stating the cause for the proposed suspension, has been given to the operator licensee who may make written application to the Commission at any time within said fifteen days for a hearing upon such order. The notice to the operator licensee shall not be effective until actually received by him, and from that time he shall have fifteen days in which to mail the said application. In the event that physical conditions prevent mailing of the application at the expiration of the fifteen-day period, the application shall then be mailed as soon as possible thereafter, accompanied by a satisfactory explanation of the delay. Upon receipt by the Commission of such application for hearing, said order of suspension shall be held in abeyance until the conclusion of the hearing which shall be conducted under such rules as the Commission may prescribe. Upon the conclusion of said hearing the Commis-
(n) Have aurm, modify, or revoke said order of suspension.
(n) Have authority to inspect all radio installations associated with stations required to be licensed by any Act or which are subject to the provisions of any Act, treaty, or convention binding on the United States, to ascertain whether in construction, installation, and operation they conform to the requirements of the rules and regulations of the Commission, the provisions of any Act, the terms of any treaty or convention binding on the United States, and the conditions of the license or other instrument of authorization under which they are constructed, installed, or operated.
(o) Have authority to designate call letters of all stations. letters have authority to cause to be published such call judgment of the Commission may be required for the effi-
cient operation of radio stations subject to the jurisdiction of the United States and for the proper enforcement of this Act;
(q) Have authority to require the painting and/or illumination of radio towers if and when in its judgment such towers constitute, or there is a reasonable possibility that they may constitute, a menace to air navigation.
(r) Make such rules and regulations and prescribe such restrictions and conditions, not inconsistent with law, as may be necessary to carry out the provisions of this Act, or any international radio or wire communications treaty or convention, or regulations annexed thereto, including any treaty or convention insofar as it relates to the use of radio, to which the United States is or may hereafter become a party.

Sec. 309. (a) If upon examination of any application for a station license or for the renewal or modification of a station license the Commission shall determine that public interest, convenience, or necessity would be served by the granting thereof, it shall authorize the issuance, renewal, or modification thereof in accordance with said finding. In the event the Commission upon examination of any such application does not reach such decision with respect thereto, it shall notify the applicant thereof, shall fix and give notice of a time and place for hearing thereon, and shall afford such applicant an opportunity to be heard under such rules and regulations as it may prescribe.
SEc. 318. The actual operation of all transmitting apparatus in any radio station for which a station license is required by this Act shall be carried on only by a person holding an operator's license issued hereunder. No person shall operate any such apparatus in such station except under and in accordance with an operator's license issued to him by the Commission.
Sec. 321, . . (b) All radio stations, including Government stations and stations on board foreign vessels when within the territorial waters of the United States, shall give absolute priority to radio communications or signals relating to ships in distress; shall cease all sending on frequencies which will interfere with hearing a radio communication or signal of distress, and, except when engaged in answering or aiding the ship in distress, shall refrain from sending any radio communications or signals until there is assurance that no interference will be caused with the radio communications or signals relating thereto, and shall assist the vessel in distress, so far as possible, by complying with its intructions.
Sec. 324. In all circumstances, except in case of radio communications or signals relating to vessels in distress, all radio stations, including those owned and operated by the United States, shall use the minimum amount of power necessary to carry out the communication desired.
SEC. 325. (a) No person within the jurisdiction of the United States shall knowingly utter or transmit, or cause to be uttered or transmitted, any false or fraudulent signal of distress, or communication relating thereto, nor shall any broadcasting station rebroadcast the program or any part thereof of another broadcasting station without the express authority of the originating station
Sec. 326. Nothing in this Act shall be understood or construed to give the Commission the power of censorship over the radio communications or signals transmitted by any radio station, and no regulation or condition shall be promulgated or fixed by the Commission which shall interfere with the right of free speech by means of radio communication. No person within the jurisdiction of the United States shall utter any obscene, indecent, or profane language by means of radio communication.

Sec. 501. Any person who willfully and knowingly does or causes or suffers to be done any act, matter, or thing. in this Act prohibited or declared to be unlawful, or who willfully and knowingly omits or fails to do any act, matter. or thing in this Act required to be done, or willf mally and knowingly causes or suffers such omission or failure, shall, upon conviction thereof, be punished for such offense, for which no penalty (other than a forfeiture) is provided herein, by a fine of not more than $\$ 10,000$ or by imprisonment for a term of not more than two years, or both.

Sec. 502. Any person who willfully and knowingly violates any rule, regulation, restriction, or condition made or imposed by the Commission under authority of this Act, or any rule, regulation, restriction, or condition made or imposed by any international radio or wire communications treaty or convention, or regulations annexed thereto, to which the United States is or may hereafter become a party, shall, in addition to any other penalties provided by law, be punished, upon conviction thereof, by a fine of not more than $\$ 500$ for each and every day during which such offense occurs.

SEc. 605. No person receiving or assisting in receiving, or transmitting, or assisting in transmitting, any interstate or foreign communication by wire or radio shall divulge or
publish the existence, contents, substance, purport, effect, or meaning thereof, except through authorized channels of transmission or reception, to any person other than the addressee, his agent, or attorney, or to a person employed or suthorized to forward such communication to its destinaion, or to proper accounting or distributing officers of the , or to propercing centers over which the communicsaver or tion may be passed, or to the master of a ship under whom he is serving, or in response to a subpoena issued by a court of competent jurisdiction, or on demand of other la wiul authority; and no person not being authorized by the sender shall aistence, contents substance, purport, effect, or meaning of such intercepted communication to any person; and no person not being entitled thereto shall receive or assist in receiving any interstate or foreign communication by wire or radio and use the same or any information therein contained for his own benefit or for the benefit of another not entitled thereto; and no person having received such intercepted communication or having become acquainted with the contents, substance, purport, effect, or meaning of the same or any part thereof, knowing that such information was so obtained, shall divulge or publish the existence, contents, substance, purport, effect, or meaning of the same or any part thance, purport, the same or any information therein contained for his own benefit or for the benefit of another not entitled thereto: Provided, That this section shall not apply to the receiving, divulging, publishing, or utilizing the contents of any radio communicaton broadcast, or transmitted by amateurs or others for the use of the general public, or relating to ships in distress.
Sec. 606. . . . (c) Upon proclamation by the President hat there exists war or a threat of war or a state of public peril or disaster or other national emergency, or in order to preserve the neutrality of the United States, the President may suspend or amend, for such time as he may see fit, the rules and regulations applicable to any or all stations within the juriadiction of the United States as prescribed by the Commission, and may cause the closing of any station for radio communication and the removal therefrom of its apparatus and equipment, or he may authorize the use or control of any such station and/or its apparatus and equipment by any department of the Government under such regulations as he may prescribe, upon just compensation to the ownern.

UNITEI STATES AMATEUE REGULATIONS

1ursuant to the basic communications law, general regulations for amateurs have been drafted by the Federal Communications Commission. The number before each regulation is its official number in the complete book of regulations for all classes of radio stations as issued by the Commission; the number of each regulation is of no consequence to the a mateur, except as a means of reference.

These regulations are correct as of December 1,1938 . As the regulations are subject to change from time to time, it is recommended that The Radio Amateur's License Manual (25ϕ postpaid, from the A.R.R.L.) be consulted for latest official regulations, since it is always kept up-to-date either by frequent revisions or by the inclusion of a "change-sheet" giving necessary corrections. It is not expected that any changes of importance will be made during 1939 but if studying for a license it is best to take no chances, and the License Manual should always be consulted for the text of regulations in such cases.

RULES AND REGULATIONS GOVERNING AMATEUR RADIO STATIONS

SEc. 150.01. Amoteur service. The term "amateur service" means a radio service carried on by amateur stations.
SEC. 150.02. Amateur station. The term "amateur station"
means a station used by an "amateur", that is, a duls authorized person interested in radio technique solely with a personal sim and without pecuniary interest. It embraces all radio transmitting apparatus at a particular location used for amateur service and operated under a single instrument of authorization.

Sec. 150.03. Amateur portable station. The term "amateur portable station' means an amateur station that is portable in fact, that is so constructed that it may conveniently be moved about from place to place for communication, and that is in fact so moved from time to time, but which is not operated while in motion.

Sec. 150.04. A mateur portable-mobile station. The term 'amateur portable-mobile station'' means an amateur station that is portable in fact, that is so constructed that it may conveniently be transferred to or from a mobile unit or from one such unit to another, and that is in fact so transferred from time to time and is ordinarily used while such mobile unit is in motion.

Sec. 150.05. Amateur radio communication. The term "amateur radio communication" means radio communication between amateur stations solely with a personal aim and without pecuniary interest.
Sec. 150.06. A mateur operator. The term 'amateur operator" means a person holding a valid license issued by the Federal Communications Commission authorizing him to operate licensed amateur stations.
operator licenses; privilegrs
Sec. 151.01 Eligibility for license. The following are eligible to apply for amateur operator license and privileges:

Class A-A United States citizen who has within five years of receipt of application held license as an amateur operator for a year or who in lieu thereof qualifed under Section 151.20.

Class B-Any United States citizen.
Class C-A United States citizen whose actual residence, address, and station, are more than 125 miles airline from the nearest point where examination is given at least quarterly for Class B; or is shown by physician's certificate to be unable to appear for examination due to protracted disability; or is shown by certificate of the commanding officer to be in a camp of the Civilian Conservation Corps or in the regular military or naval service of the United States at a military post or naval station and unable to appear for Class B examination.
SEc. 151.02. Classification of operating privileges. Amateur operating privileges are as follows:

Class A-All amateur privileges.
Class B-Same as Class A except specially limited as in Section 152.28.

Class C-Same as Class B.
SEC. 151.03. Scope of operator authority. Amateur operators' licenses are valid only for the operation of licensed amateur stations; provided, however, any person holding a valid radio operator's license of any class may operate stations in the experimental service licensed for, and operating on, frequencies above 300,000 kilocycles.

Sec. 151.04. Posting of license. The original operator's license shall be posted in a conspicuous place in the room occupied by such operator while on duty or kept in his personal possession and available for inspection at all times while the operator is on duty, except when such license has been filed with application for modification or renewal, or has been mutilated, lost, or destroyed, and application has been made for a duplicate.
Sec. 151.05. Duplicate license. Any licensee applying for a duplicate license to replace an original which has been lost, mutilated, or destroyed, shall submit to the Commission such mutilated license or affidavit attesting to the facts regarding the manner in which the original was lost or destroyed. If the original is later found, it or the duplicate shall be returned to the Commission.
Sec. 151.08. Renewal of amateur operator license. An amateur operator license may be renewed upon proper application and a showing that within three months of receipt of the application by the Commission the licensee has lawfully operated an amateur station licensed by the Commission and that he has communicated by radio with at least three other such amateur stations. Failure to meet the requir ments of this section will make it necessary for the applicant to again qualify by examination.

SEc. 151.07. Who may operate an amateur station. An amateur station may be operated only by a person holding a valid amateur operator's license, and then only to the extent provided for by the class of privileges for which the operator's license is endorsed. When an amateur station uses radiotelephony (type A-3 emission) the licensee may permit any person to transmit by voice, provided a duly licensed amateur operator maintains control over the emissions by turning the carrier on and off when required and signs the station off after the transmission has been completed.

the radio amatelrs handbook

EXAMINATIONS

Sec. 151.15. When required. Examination is required for new license as an amateur operator or for change of class of privileges.
SEc. 151.16. Elements of examination. The examination for amateur operator privileges will comprise the following

1. Code test-ability to send and receive, in plain language, messages in the International Morse Code at is speerl of not less than thirteen words per minute, counting five characters to the word, each numeral or punctuation marl counting as two characters.
2. Amateur radio operation and apparatus, both telephone and telegraph
3. Provisions of treaty, statute and regulations affecting amateurs.
4. Advanced amateur radiotelephony.

Sec. 151.17. Elements required for various priaileges. Examinations for Class A privileges will include all four examination elements as specified in Section 151.16 .

Examinations for Classes B and C privileges will include elements 1, 2, and 3 as set forth in Section 151.16.

SEc. 151.18. Manner of conducting examinalion. Examinations for Class A and Class 13 privileges will be conducted by an authorized Commission employee or representative at points specified by the Commission.

Examinations for Class C privileges will be given by voluntecr examiner(s), whom the Commission may designate or permit the applicant to select; in the latter event the examiner giving the code test shall be a holder of an amateur license with Class A or B privileges, or have held within five years a license as a professional radiotelegraph operator or have within that time been employed as a radiotelegraph operator in the service of the United States; and the examiner for the written test, if not the same inilividual, shall be a person of legal age.

Sec. 151.19. Additional eximination for holders of Class C privileges. The Commission may require a licensee holding Class C privileges to appear at an examining point for a Class B examination. If such licensce fails to appear for examination when directed to do so, or fails to pass the examination when directed to do so, or fails to pass the and the holder thereof will not be issued another license for the Class C privileges.

Whenever the holder of Class C amateur operator privileges changes his actual residence or station location to a point where he would not be eligible to apply for Class C privileges in the first instance, or whenever a new examining point is established in a region from which applicants were previously eligible for Class C privileges, such holders of Class C privileges shall within four months thereafter appear at an examining point and be examined for Class B privileges. The license will be canceled if such licensee fails to appear, or fails to pass the examination.
Sec. 151,20. Examination abridgment. An applicant for Class A privileges, who holds a license with Class B privileges, will be required to pass only the added examination element No. 4. (See Section 151.16.)
A holder of Class C privileges will not be aecorded an abridged examination for either Class \mathbf{B} or Class A privileges.
An applicant who has held a license for the class of privileges specified below, within five years prior to receipt of application, will be credited with examination elements as follows:

Class of license or privileges

Comnuercial extra first
Radiotelegraph 1st, 2nd, or 3rid
Radiotelephone 1st or 2nd.
Class A

Credits

Elements 1, $2 \mathbb{\&} 4$
Elements $18: 2$
Elements 2 \& 4
Elements $2 \mathbb{\&} 4$

No examination credit is given on account of license of Radiotelephone 3rd Class, nor for other class of license or privileges not above listed.
SEc. 151.21. Examination procedure. Applicants shall write examinations in longhand,-code tests and diagranss in ink or pencil, written tests in ink-except that applicants unable to do so because of physical disability may typewrite or dictate their examinations and, if unable to draw required diagrams, may make instead a detailed description essentially equivalent. The examiner shall certify the nature of the applicant's disability and, if the examination is dictated. the name and address of the person(s) taking and transcribing the applicant's dictation

Sec. 151.22. Grading. Code tests are graded as passed or
failerl, separately for sending and receiving tests. A code test is failed unless free of omission or other error for a continuous period of at least one minute at required speed. Failure to pass the required code test will terminate the examination (See Sec. 151.23.)

A passing grade of 75 per cent is re;puirel separately for Class B and Class A written examinations.
Sec. 151.23. Eligibility for reexamination. An applitant who fails examination for amateur privileges may not take another examination for such privileges within two months except that this rule shall not apply to an examination tor Class IS following one for Class C.

Licenses

Sec. 152.01. Eligiblity for amateur station license. License for an amateur station will be issued only to a licensed ama teur operator who has made a satisfactory showing of control of proper transmitting apparatus and control of the premises upon which such apparatus is to be located; provided, however, that in the case of an amateur station of the military or Naval Reserve of the United States located in approved public quarters and established for training pur poses, but not operated by the United States Governme pur station license may be issued to a person in charge of such a station although not a licensed amateur operator.
SEC. 152.02. Eligiblity of corporations or organizations to hold license. An amateurstation license will not be issued to : school, company, corporation, association, or other organization; nor for their use; provided, however, that in the case of a bona firle amateur rarlio soviety' a station license may be issued in accordance with Section 152.01 to a licensed amuteur operator as trustee for such society.
SEC. 152.03. Location of station. An amateur radio station, and the control point thereof when remote control is authorizel, shall not be located on premises controlled by an alien.

SEC. 152.04, License period. License for an amateur station will normally be for a period of three years from the date of issuance of a new, renewed, or modified license.
Sec. 152.05. Authorized operation. An amateur station license authorizes the operation of all transmitting apparatus used by the licensee at the location specified in the station license and in addition the operation of portable and port-able-mobile stations at other locations under the same instrument of authorization.
SEC. 152.06. Renewal of anateur station license. An amateur station license may be renewed upon proper application and a showing that, within three months of receipt of the application by the Commission, the licensee thereof has lawfully operated such station in communication by radio with at least three other amateur stations licensed by the Commission, except that in the case of an application for renewal of station license issued for an amateur society or reserve group, the required operation may be by any licensed amateur operator. Upon failure to comply with the above requirements, a successor license will not be granted until two months after expiration of the old license.
SEc. 152.07. Posting of station license. The original of cach station license or a facsimile thereof shall be posted by the licensee in a conspicuous place in the room in which the transmitter is located or kept in the personal possession of the operator on duty, except when such license has beeu filed with application for modification or renewal, or has been mutilated, lost, or destroyed, and application has been made for a duplicate

CALL SIGNALS

Sec. 152.08. Assignment of call letters. Amateur station calls will be assigned in regular order and special requests will not be considered except that a call may be reassigned to the latest holder, or if not under license during the past five sears to any previous holder, or to an amateur organization in memorian to a deceased member and former holder. and particular culls may be temporarily assigned to stations comnected with events of general public interest.
Ske. 1.52 .09 . Call signals for member of U.S.N.R. In the case of an amateur licensee whose station is licensed to : regularly conmissioned or enlisted member of the United States Naval Reserve, the Commandant of the naval district in which such station is located nave anthorize in his diseretion the use of the call-letter prefix N in lieu of the prefix W or k, assigned in the license issued by the Commission, provided that such N prefix shall be used only whell operating in the frequency bands $1710-20001 \mathrm{kilo-}$ cyeles, $3000-4000$ kilocycles. $56.000-60.000$ kiloescles, and $400,000-401,000$ kilocycles in accordance with instructions to be issued by the Navy Department.
SEC. 150.10 . Transmission of call signals. An operator of an antiteur station shall transmit its assigned call at the end

1 Subject to change to "1,750 to 2,050 " killocycles in accordance with the "Inter-American Arrangement (overing Railiocommundcation," Havana, 19:37.

APPENDIX

of each transmission and at least once every ten minutes during transmission of more than ten minutes duration: provided, however, that transmission of less than one minute duration from stations employing break-in operation need be dentified only once every ten minutes of operation and at the termination of the correspondence. In addition, an operator of an amateur portable or portable-mobile radiotelegraph station shall transmit immediately after the call of the station the fraction-har character (DN) followed bs the number of the amateur call area in which the portable or portable-mobile amateur station is then operating, as for example:

Example 1. Portable or portable-mobile amateur station operating in the third amateur call area calls a fixcd arnateur station: W1ABC W1ABC W1ABC DE W2DEF INS W2DEF DN3 W2DEF DN3 AK.

Example 2. Fixed anateur station answers the portable or portable-mobile amateur station: W2DEF W2DEF W2DEF DE W1ABC W1ABC W $A B C K$.

Example 3. Portable or portable-mobile amateur station calls a portable or portable-mobile amateur station: W3GHI W3GIII W3GHI DE W4JKL DNч W'4JKL DN゙ 4 WHKL, DN4 AR.

If telephony is used, the call sign of the station shall be followed by an announcement of the amateur call area in which the portable or portable-mobile station is operating.

Sec. 152.11. Requirements for porinble and portable-mobile operation. A licensee of an amateur station may operate portable amateur stations (Section 150.03) in accordance with the provisions of Sections $152.09,152.10,152.12$ and 152.45. Such licensee may operate portable and portablemobile amateur stations without regard to Section 152.12 , but in compliance with Sections $152.09,152.10$, and 152.45 , when such operation takes place on authorized amateur frequencies above 28,000 kilocycles.

Sec. 152.12. Special provisions for portable stations. Advance notice in writing shall be given by the licensee to the inspector in charge of the district in which such portable station is to be operated. Such notices shall be given prior to any operation contemplated, and shall state the station call name of licensee, the date of proposed operation, and the locations as specifically as possible. An amateur station oper ating under this Section shall not be operated during any period exceeding one month without giving further notice to the inspector in charge of the radio-inspection district in which the station will be operated, nor more than four consecutive periods of one month at the same location. This Section does not apply to the operation of portable or portable-mobile amateur stations on frequencies above 28,000 kilocycles. (See Section 152.11.)

SEC. 152.13. Special provisions for non-portable stations. The provisions for portable stations shall not be applied to any non-portable station except that:
a. An amateur station that has been moved from one permanent location to another permanent location may be operated at the latter location in accordance with the provisions governing portablestations for a period not exceeding sixty das.s, but in no event besond the expiration date of the license, provided an application for modification of license to change the permanent location has been marle to the Commission.
b. The licensee of an amateur station who is temporarily residing at a location other than the licensed location for a period not exceeding four months may for such period operate his amateur station at his temporary address in accordance with the provisions governing portable stations.

CSE Of AMatectr Statioss

Sec. 152.14. Points of communication. An amateur station shall communicate only with other amateur stations, except that in emergencies or for testing purposes it may be used also for communication with commercial or Government radio stations. In addition, amateur stations may communicate with any mobile radio station which is licensed by the Commission to communicate with amateur stations, and with stations of expeditions which may also be authorized to communicate with amateur stations. They may also make transmissions to points equipped only with receiving apparatus for the measurement of emissions, observation of transmission phenomena, radio control of remote objects, and similar purely experimental purposes.
Sec. 152.15. No remuneration for use of station. An amateur station shall not be used to transmit or receive messuges for hire, nor for communication for material compensttion, direct or indirect, paid or promised.

Sec. 152.16. Broadcasting prohibited. An amateur station shall not be userl for broadcasting any form of entertainment, nor for the simultaneous retransmission by automatic means of programs or signals emanating from any class of station other than amateur.
Sec. 152.17. Radiotelephone tests. The transmission of music by an amateur station is forbidden. However, single audio-frequency tones may be transmitted by radiotelephons: for test purposes of short duration in connection with the development of experimental radiotelephone equipment.

allocation of frequencies

Sec. 152.25. Frequencies for exclusive use of amateur stotions. The following bands of frequencies are allocated exclusively for use by amateur stations:

$$
\begin{array}{rr}
1,715 \text { to } 2,000 \mathrm{kc.} & 28,000 \text { to } 30,000 \mathrm{kc} . \\
3,500 \text { to } 4,000 \mathrm{kc} . & 56,000 \text { to } 60.000 \mathrm{kc} . \\
7,000 \text { to } 7,300 \mathrm{kc} . & 112,000 \text { to } 118,000 \mathrm{kc.}{ }^{2} \\
14,000 \text { to } 14,400 \mathrm{kc} . & 224,000 \text { to } 230,000 \mathrm{kc.}^{2} \\
& 400,000 \text { to } 401,000 \mathrm{kc.} .
\end{array}
$$

SEC. 152.26. lise of frequencies above $\mathbf{5 0 0 , 0 0 0}$ kilocycles. The licensee of an amateur station may, subject to change upon further oriler, operate amateur stations, with any type of emission authorized for amateur stations, on any frequency above 300,000 kilocycles without separate licenses therefor.
SEC. 159.27. Frequency bands for telephony. The following bands of frequencies are allocated for use by amateur stations using radiotelephony, type A-3 emission:

1,800 to $2,000 \mathrm{kc}$.	112,000 to $118,000 \mathrm{kc}{ }^{2}{ }^{2}$
28,500 to $30,000 \mathrm{kc}$.	224,000 to $230,000 \mathrm{kc}{ }^{2}{ }^{2}$
56,000 to $60,000 \mathrm{kc}$.	400,000 to $401,000 \mathrm{kc}$.

56,000 to $60,000 \mathrm{kc} . \quad 400,000$ to $401,000 \mathrm{kc}$.
Sec. 152.28. Additional bands for telephony. An amateur station may use radiotelephony, type A-3 emission, in the following additional bands of frequencies; provided the station is licensed to a person who holds an amateur operator's license endorsed for Class A privileges, and actually is operated by an amateur operator holding Class A privileges:
3,900 to 4,000 kilocycles
14,150 to 14,250 kilocycles
Sec. 152.29. Television and frequency-modulation transmission. The following bands of frequencies are allocated for use by amateur stations for television and radiotelephone frequency-modulation transmission:

112,000 to 118,000 kilocycles 2
 224,000 to 230,000 kilocycles ${ }^{2}$
 400,000 to 401,000 kilocycles

Sec. 152.30. Facsimile transmission. The following bands of frequencies are allocated for use by amateur stations for facsimile transmission:

$$
\begin{array}{ll}
1,715 \text { to } 2,000 \mathrm{kc.} . & 112,000 \text { to } 118,000 \mathrm{kc.}^{2} \\
56,000 \text { to } 60,000 \mathrm{kc.} & 224,000 \text { to } 230,000 \mathrm{kc.}^{2} \\
& 400,000 \text { to } 401,000 \mathrm{kc.}
\end{array}
$$

Sec. 152.31. Indiridual frequency not specified. Transmissions by an amateur station may be on any frequency within the bands above assigned. Sideband frequencies resulting from keying or modulating a transmitter shall be confined within the frequency band used.

Sec. 152.32. Types of emission. All bands of frequencies allocated to the amateur service may be used for radiotelegraphy, type A-1 emission. Type A-2 emission may be used in the following bands of frequencies only:

$$
\begin{array}{ll}
56,000 \text { to } 60,000 \mathrm{kc} . & 224,000 \text { to } 230,000 \mathrm{kc} .^{2} \\
112,000 \text { to } 118,000 \mathrm{kc} .^{2} & 400,000 \text { to } 401,000 \mathrm{kc} .
\end{array}
$$

EqUIPMENT aND operation

Sec. 152.40. Maximum power input. The licensee of an amateur station is authorized to use a maximum power input of 1 kilowatt to the plate circuit of the final amplifier stage of an oscillator-amplifier transmitter or to the plate circuit of an oscillator transmitter. An amateur transmitter operating with a power input exceeding nine-hundred watts to the plate circuit shall provide means for accurately measuring the plate power input to the vacuum tube, or tubes, supplying power to the antenna.

SEC. 152.41. Power supply to transmitter. The licensee of an amateur station using frequencies below 60,000 kilocycles shall use adequately filtered direct-current plate power

[^24]
THE RADIO AMATEUR'S HANDBOOK

supply for the transmitting equipment to minimize frequency modulation and to prevent the emission of broad signals.

Sec. 152.42. Requirements for prevention of interference. Spurious radiations from an amateur transmitter operating on a frequency below 60,000 kilocycles shall be reduced or eliminated in accordance with good engineering practice and shall not be of sufficient intensity to cause interference on receiving sets of modern design which are tuned outside the frequency band of emission normally required for the type of emission employed. In the case of A-3 emission, the transmitter shall not be modulated in excess of its modulation capability to the extent that interfering spurious radiations occur, and in no case shall the emitted carrier be amplitude-modulated in excess of 100 per cent. Means shall be employed to insure that the transmitter is not modulated in excess of its modulation capability. A spurious radiation is any radiation from a transmitter which is outside the frequency band of emission normal for the type of transmission employed, including any component whose frequency is an integral multiple or submultiple of the carrier frequency (harmonics and subharmonics), spurious modulation products, key clicks, and other transient effects, and parasitic oscillations. The frequency of emission shall be as constant as the state of the art permits.

Sec. 152.43. Modulation of carrier wave. Except for brief tests or adjustments, an amateur radiotelephone station shall not emit a carrier wave unless modulated for the purpose of communication.
SEC. 152.44. Frequency measurement and regular check. The licensee of an amateur station shall provide for measurement of the transmitter frequency and establish procedure for checking it regularly. The measurement of the transmitter frequency shall be made by means independent of the frequency control of the transmitter and shall be of sufficient accuracy to assure operation within the frequency band used.
SEC. 152.45. Logs. Each licensee of an amateur station shall keep an accurate log of station operation, including the following data:
(a) The date and time of each transmission. (The date need only be entered once for each day's operation. The cxpression "time of each transmission" means the time of making a call and need not be repeated during the sequence of communication which immediately follows; however, an entry shall be made in the log when "signing off" so as to show the perjod during which communication was carried on.)
(b) The signature of the person manipulating the transmitting key of a radiotelegraph transmitter or the signature of the person operating a transmitter of any other type (type A-3 or A-4 emission) with statement as to type of emission, and the signa ture of any other person who transmits by voice over a radiotelephone transmitter (type A-3 emission). (The signature need only be entered once in the log provided the log contains a statement to the effect that all transmissions were made by the person named except where otherwise stated. The signature of any other person who operates the station shall be entered in the proper space for his transmissions.)
(c) Call letters of the station called. (This entry need not be repeated for calls made to the same station during any sequence of communication, provided the time of "signing off ${ }^{\prime \prime}$ is given.)
(d) The input power to the oscillator, or to the final amplifier stage where an oscillator-amplifier transmitter is employed. (This need be entered only once, provided the input power is not changed.)
(e) The frequency band used. (This information need be entered only once in the log for all transmissions until there is a change in frequency to another amateur band.)
(f) The location of a portable or portable-mobile station at the time of each transmission. (This need be entered only once provided the location of the station is not changed. However, suitable entry shall be made in the log upon changing location, showing the type of vehicle or mobile unit in whioh the station is operated and the approximate geographical location of the station at the time of operation.)
(g) The message traffic handled. (If record communications are handled in regular message form, a copy of each message sent and received shall be entered in the \log or retained on file for at least one year.)
The log shall be preserved for a period of at least one year following the last date of entry. The copies of record communications and station \log, as required under this section, shall be svailable for inspection upon request by an authorized Government representative.

special Conditions

SEC. 152.50. Additional condutions to be observed by licensee. An amateur station license is granted subject to the conditions imposed in Sections 152.51 to 152.54 inclusive, in addition to any others that may be imposed during the term of
the license. Any licensee receiving due notice requiring the station licensee to observe such conditions shall immediately act in conformity therewith.

SEC. 152.51. Quiet hours. In the event that the operation of an amateur station causes general interference to the reception of broadcast programs with receivers of modern design, such amateur station shall not operate during the hours from 8 o'clock P.M. to $10: 30$ P.M., local time, and on Sunday for the additional period from 10:30 A.M. until 1 P.M., local time, upon such frequency or frequencies as cause such interference.

Sec. 152.52. Second notice of same violation. In every case where an amateur station licensee is cited a second time within a year for the same violation under Section 152.25 $152.27,152.28,152.30,152.31,152.41$, or 152.42, the Com mission will direct that the station remain silent from 6 P.M. to $10: 30$ P.M., local time, until written notice has been received authorizing full-time operation. The licensee shall arrange for tests at other hours with at least two amateur stations within fifteen days of the date of notice, such tests to be made for the specific purpose of aiding the licensee in determining whether the emissions of his station are in accordance with the Commission's Regulations. The licensee shall report under oath to the Commission at the conclusion of the tests as to the observations reported by amateur licensees in relation to the reported violation. Such reports shall include a statement as to the corrective measures taken to insure compliance with the Regulations.

Sec. 152.53. Third notice of same violation. In every case where an amateur station licensee is cited the third time within a year for the same violation as indicated in Section 152.52, the Commission will direct that the station remain silent from $8 \mathrm{~A} . \mathrm{m}$, to 12 midnight, local time, except for the purpose of transmitting a prearranged test to be observed by a monitoring station of the Commission to be designated in each particular case. Upon completion of the test the station shall again remain silent during these hours until authorized by the Commission to resume full-time operation The Commission will consider the results of the tests and the licensee's past record in determining the advisability of suspending the operator license and/or revoking the station license.
Smc. 152.54. Operation in omergencies. In the event of widespread emergency conditions affecting domestic communication facilities, the Commission may confer with representatives of the amateur service and others and, if deemed advisable, will declare that a state of general communications emergency exists, designating the licensing area or areas concerned (in general not exceeding 1,000 miles from center of the affected area), whereupon it shall be incumbent upon each amateur station in such area or areas to observe the following restrictions for the duration of such emergency.
(a) No tranamisaions exoept those relating to relief work or other emergency service such as amateur nets can afford, shall be made within the 1715-2000 ${ }^{1}$ kilocycle or 3500-4000 kilocycle amateur bands. Incidental calling, testing, or working, including casual conversation or remarks not pertinent or necessary to constructive handling of the general situation shall be prohibited.
(b) The frequencies $1975-2000,3500-3525$, and $3975-$ 4000 kilocycles shall be reserved for emergency calling channels, for initial calls from isolated stations or first calls concerning very important emergency relief matters or arrangements. All stations having occasion to use such channels shall, as quickly as possible, shift to other frequencies for carrying on their communications.
(c) A five-minute listening period for the first five minutes of each hour shall be observed for initial calls of major importance, both in the designated emergency oalling channels and throughout the 1715-2000 ${ }^{1}$ and 3500-4000 kilocycle bands. Only stations isolated or engaged in handling official traffic of the highest priority may continue with transmissions in these listening periods, which must be accurately observed. No replies to calls or resumption of routine traffic shall be made in the five-minute listening period.
(d) The Commission may designate certain amateur stations to assist in promulgation of its emergency announcement, and for policing the 1715-2000 ${ }^{1}$ and 3500-4000 kilocycle bands and warning non-complying stations noted operating therein. The operators of these observing stations shall report fully the identity of any stations failing, after due notice, to comply with any section of this regulation. Such designated stations will act in an advisory capacity when able to provide information on emergency circuits. Their policing authority is limited to the transmission of information from responsible official sources, and full reports of

1 Subject to change to " 1750 to 2050 ". kllocyoles in accordance with the "Inter-American
non-compliance which may serve as a basis for investigation and action under Section 502 of the Communications Act. Policing authority extends only to $1715-2000^{1}$ and $3500-$ 4000 kilocycle bands. Individual policing transmissions shall refer to this Section by number, shall specify the date of the Commission's declaration, the area and nature of the emergency, all briefy and concisely. Policing-observer stations shall not enter into discussions beyond essentials with the stations notified, or other stations.
(e) These special conditions imposed under this Section will cease to apply only after the Commission shall have declared such emergency to be terminated.
103.6. Each application for an instrument of authorization shall be made in writing, under oath of the applicant. on a form prescribed and furnished by the Commission. Separate application shall be filed for each instrument of authorization requested. \qquad The required forms may obtained from the Commission or from any of its field offces. (For a list of such offices and related geographical districts, see rule 30.)
103.7. Each application for .. station license, with respect to the number of copies and place of filing, shall be submitted as follows: . . .g. Amateur ... 1 copy to be sent as follows: (a) To proper district office if it requires personal appearance for operator examination under direct supervition from that office; (b) Direct to Washington, D. C., in all other cases, including examinations for class C privin all
103.14. An application for modification of license may be filed for ... change in location. . . Except when filed to cover construction permit, each application for modification of licenise shall be filed at least 60 days prior to the contemplated modification of license; Provided, however, That in emergencies and for good cause shown, the Commission may waive the requirements hereof insofar as time for filing is concerned.
103.15. Unless otherwise directed by the Commission, each application for renewa! of license shall be filed at least 60 days prior to the expiration date of the license sought to be renewed.
105.23. Any licensee receiving official notice of a violation of the terms of the Communications Act of 1934, any legislative act, Executive order, treaty to which the United States is a party or the rules and regulations of the Federal Communications Commission, which are binding upon licensee or the terms and conditions of a license, shall within 3 days from such receipt, send a written reply direct to the Federal Communications Commission at Washington, D. C., and a copy thereof to the office of the Commission originating the official notice, when the originating office is other than the office of the Commission in Washington, D. C. The answer to each notice shall be complete in itself and shall not be abbreviated by reference to other communications or answer to other notices. If the notice relatea to some violation that may be due to the physical or electrical characteristics of the transmitting apparatus, the answer shall state fully what steps, if any, are taken to prevent future violations, and if any new type apparatus is to be installed, the date such apparatus was ordered, the name of the manufacturer, and promised date of delivery.

If the notice of violation relates to some lack of attention or improper operation of the transmitter, the name and license number of the operator in charge shall be given.
105.29. Whenever the Commission shall institute a revocation proceeding against the holder of any radio station construction permit or license under section 312 (a), it shall initiate said proceeding by serving upon said licensee an order of revocation effective not less than 15 days after written notice thereof is given the licensee. The order of revocation shall contain a statement of the grounds and reaocation shall contain a statement of the grounds and reacensee's right to be heard by filing with the Commission a written request for hearing within 15 days after receipt of said order. Upon the filing of such written request for hearing by said licensee the order of revocation shall stand suspended and the Commission will set a time and place for hearing and shall give the licensee and other interested parties notice thereof. If no request for hearing on any order parties notice thereof. If no request for hearing on any order
of revocation is made by the licensee against whom such an of revocation is made by the licensee against whom such an
order is directed within the time hereinabove set forth the order of revocation shall become final and effective, without further action of the Commission.
105.31. Proceedings for the suspension of an operator license shall in all cases be initiated by the entry of an order of suspension, a copy of which shall be served upon or mailed to the holder of the license involved, to become effective on a day certain, in no event less than 40 days after date of serving or mailing such order. The order shall set forth the name of the operator, class and grade of license, the effective date of the order, the period of suspension, and a statement of the resson for suspension, and shall contain a notice to the holder of such license of his right to be heard and contest the
order, by filing with the Commission within 35 days from the receipt of said order, a written request for hearing with a statement executed by him under oath, denying or explaining specifically and in detail the charges set forth in the order of suspension. Upon receipt of such request and state ment, the effective date of the suspension of such license will be extended; and the Commission, upon consideration of the licensee's statement, as herein provided, will either revoke its order of suspension, or fix a time and place for hearing and notify the licensee thereof.

If no request for hearing on any order of suspension is made by the licensee against whom such order is directed within 35 days of receipt of such order of suspension, the same shall become final and effective.

Where any order of suspension has become final, the person whose license has been suspended shall forthwith send the operator's license in question to the office of the Commission in Washington, D. C.
27. All station licenses will be issued so as to expire at the hour of 3 a.m., eastern standard time. The normal license periods and expiration dates are as follows:
(e) The licenses for amateur stations will be issued for a normal license period of three years from the date of expiration of old license or the date of granting a new license or modification of a license.
30. The following list of the radio diatricts gives the address of each field office of the Federal Communications Connmission and the territory embraced in each district [This list is reproduced on the last page of this booklet. Ed.]
(a) Examining cities - Examinations for all classes of radio operator licenses will be given frequently at Wash ington, D. C., and the District offices of the Commission in accordance with announced schedules.
(1) Such examinations will be held quarterly at:
$\begin{array}{ll}\text { Cincinnati, } 0 . & \text { Pittaburgh, Pa. } \\ \text { Cleveland, } \mathrm{O} & \text { St. Louis. Mo. }\end{array}$
Cleveland, 0 .
Columbus, \mathbf{O}.
Des Moines, Ia.
Nashville, Tenn.
Oklahoma City, Okla.
San Antonio. Tex
Schenectady, N. Y.
Winston-Salem, N. C
(2) Examinations will be held not more than twice annually at:
Albuquerque, N. Mex.
Jacksonville, Fla.
Billings, Mont.
Bismarck, N. Dak.
Boise, Idaho.
Butte, Mont.
Little Rock, Ark.
Salt Lake City, Utah
Spokane, Wash.
210. Radio communcations or signals relating to ships or aircraft in distress shall be given absolute priority. Upon notice from any station, Government or commercial, all other transmission shall cease on such frequencies and for such time as may, in any way, interfere with the reception of distress signals or related traffic

212a. The licensee of any radiotelegraph or radiotelephone station, other than broadcast, may, if proper notice from authorized government representatives is filed with and approved by the Commission, utilize such stations for military or naval test communications (messages not necessary for the conduct of ordinary governmental business) in preparation for national defense during the period or periods stated in said notice subject to the sole condition that no interference to any service of another country will result therefrom. Nothing herein or in any other regulation of the Commission shall be construed to require any such station to participate in any such test.
213. One or more licensed operators, of grade specified by these regulations, shall be on duty at the place where the transmitting apparatus of each station is located and whenever it is being operated; provided, however, that for a station licensed for service other than broadcast, and restation licensed for service other than broadcast, and regoing requirement upon proper application and showing being made, so that such operator or operators may be on duty at the control station in lieu of the place where the transmitting apparatus is located. Such modification shal be subject to the following conditions:
(a) The transmitter shall be capable of operation and shall be operated in accordance with the terms of the station license.
(b) The transmitter shall be monitored from the control station with apparatus that will permit placing the trans mitter in an inoperative condition in the event there is a deviation from the terms of the license, in which case the radiation of the transmitter shall be suspended immediately until corrective measures are effectively applied to place the transmitter in proper condition for operation in accordance with the terms of the station license.
(c) The transmitter shall be so located or housed that it is not accessible to other than duly authorized persons.

No. 1 The States of ('onnecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont.
No. 2 The counties of Albany, Bronx, Columbia, Delaware, Putchess, Greene, Kings, Nassau, New York, Orangc, Putnain, Queens, Renssclaer, Richof the State of New York. and the cound Sullivan, Ulster and Westchester IIthe State of New York; and the counties of Bergen, Essex, Iudson, Munterdon, Mercer, Middlesex, Monmouth, Morris, Passaic, Somerset, Sussex, Union and Warren of the State of New Jersey.
No. 3 The counties of Idams, Berks, Bucks, Carbon, Chester, Cumberland, Dauphin, Delaware, Iancaster, Lehanon, Lehigh, Monroe, Montgomery, Porthampton, Perry, Philadelphia, Scluylkill and York of the State of Pennsylvania; and the counties of Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Ocean and Salem of the Samden, Cape
No. 4 The State of Mariland
Clark, Fairfax, Fauquier, Frederick, I,oudoun, Page, Prince William, Rappahannock, Shenandoah and Warren of the State of Virginia; and the counties of hent and Sussex of the State of Delaware.
No. 5 The State of Virginia except that part lying in District 4, and the State of North Carolina except that part lying in District 6.
No. 6 The States of Alabama, Georgia, South Carolina, and Tennessee; and the counties of Ashe, Avery, Buncombe, Burke, Caldwell, Cherokee, Clay, Cleveland, Graham, Haywood, Menderson, Jackson, Mc Dowell, Macon, Yancer: of then, Polk, Rutherford, Swain, Transylvania, Watauga and No. 7 The State of Florida.
No. 8 The States of Arkansas. Louisiana and Mississippi; and the city of Texarkana in the State of Texas.
No. 9 The counties of Arkansas, Brazoria, Brooks, Calhoun, Cameron, ('hambers, Fort Bend, Galveston, Goliad, Harris, Hidalgo, Jackson, Jefferson, Jim Wells, Kenedy, Kleberg, Matagorda, Nueces, Refugio, San Patricio, Victoria, Wharton and Willacy of the State of Texas.
No. 10 The State of Texas except that part lying in District 9 and in the city of Texarkana; and the States of Oklahoma and New Mexico.
No. 11 The State of Arizona; the county of Clarke in the State of Nevada; and the counties of Imperial, Inyo, Kern, los Angeles, Orange, Riverside, San Bernardino. San Diego, San Luis Obispo, Santa Barbara and Ventura of the State of California.
No. 12 The State of California except that part lying in District 11; the State of Nevada except the county of Clarke.
No. 13 The State of Oregon; and the State of Idaho except that part lying in District 14.
No. 14 The Territory of Alaska; the State of Washington; the counties of Benewah, Bonner, Boundary, Clearwater, Idaho, Kootenai, Latah, Lewis, Nez Perce and Shoshone of the State of Idaho; the counties of Beaverhead, Broadwater, Cascade, Deerlodge. Flathead, Gallatin, Glacier, Granite, Jefferson, Lake, Lewis \& Clark, Lincoln, Madison, Meagher, Mranite, Missoula, Pondera, Powell, Ravalli, Sanders, Silver Bow, Teton and Toole of the State of Montana.
No. 15 The States of Colorado, Utah and Wyoming; and the State of Montana except that part lying in District 14 .
No. 16 The States of North Dakota, South IJakota and Minnesota; the counties of Alger, Baraga, Chippewa, Delta, Dickinson, Gogebic, Houghton, Iron, Keweenaw, Luce, Mackinac, Marquette, Menominee, Ontonagon and Schoolcraft of the State of Michigan; and the State of Wisconsin except that part lying in District 18.
No. 17 The States of Ncbraska, Kansas and Missouri; and the State of Iowa except that part lying in District 18.
No. 18 The States of Indiana and Illinois; the counties of Allamakee, Buchanan, Cedar, Clayton, Clinton, Delaware, Des Moines, Dubuque, Fayette, Henry, Jackson, Johnson, Jones, Lee, Linn, Lovisa, Muscatine, Scott, Washington and Winneshiek of the State of Iowa; the counties of Columbia, Crawford, Dane, Dodge, Grant. Green, Iowa, Jefferson, Kenosha. Lafarette, Milwaukee, Ozaukee, Racine, Richland, Rock, Sauk, Walworth, Washington and Waukesha of the State of Wisconsin.
No. 19 The State of Michigan except that part lying in District 16; the States of Ohio, Kentucky and West Virginia.
No. 20 The State of New York except that part lying in District 2, and the State of Pennsylvania except that part lying in District 3.
No. 21 The Territory of Hawaii, Guan and Imerican Samoa.
No. 22 Puerto Rico and Virgin Islands

Customhouse, Boston, Mass.

Federal Building, 641 Washington St., New York, N. Y.

Room 1200, U. S. Customhouse, Second and Chestnut Sts., Philadelphia. Pa.

Fort McMenry, Baltimore, Md.

402 New Post Office Bldg., Norfolk, Va.
411 Federal Annex, Atlanta, Cia.

312 Federal Bldg., Miami, Fla.
326 Customhouse, New Orleans, La.
404-406 Federal 13ldg., Gialveston. Tex.

302 U. S. Terminal Annex lildg., Dallas, Tex.
1105 Rives-Strong Building, I.os Angeles, Calif.

328 Customhouse, San Francisco, Calif.
207 New U. S. Courthouse Bldg.. Portland, Ore.
808 Federal Office Building, Seattle. Wash.

504 Customhouse, Denver, Colo.
927 New P. O. 13hg., St. Paul, Minn.

609 Pickwick Bldg., 903 Mchee Street, liansus (ity, Mo.
246 U. S. Courthouse Bldg., Chicago, 111.

1025 New Federal Bldg., Detroit. Mich.
514 Fedcral Building, Buffalo, N. Y.
Aloha Tower, Honolula, T. H.
303 Ochoa ISldg., San Juan. P. R.

With this chart and a straight-edge any of the above quantities can le determined if the other two are known. For example. if a condenser has a minimum capacity of $15 \mu \mu \mathrm{fl}$. and an maximum capacity of $50 \mu \mu \mathrm{fd}$., and it is to be used with a coil of $10 \mu \mathrm{~h}$. inductance, what frequency range will be covered? The straight-edge is connected between 10 on the left-hand scale and 15 on the right. giving 13 Mc as the high-frequency limit. Keeping the straight-edpe at 10 on the left-hand seale. the other end is swing to 50 on the right-hand seale, giving a low-frequency fimit of 7.1 Mc. The tuning range would. therefore, be from $\mathbf{6 . 1}$ Mc. to 13 Mc.. or 7100 ke. to $\mathbf{1 3 , 0 0 0} \mathrm{ke}$. The center scale also serves to convert frequency to wavelength.

THE AMATEUR'S BOOKSHELF

A balanced selection of good technical books, additional to the A.R.R.L. publications, should be on every amateur's bookshelf. We have arranged, for the convenience of our readers, to handle through the A.R.R.L. Book Department those works which we believe to be most useful. Make your selection from the following, add to it from time to time and acquire the habit of study for improvement. Prices quoted include postage. Please remit with order.

RADIO THEORY AND ENGINEERING

FUNDAMENTALS OF RADIO, Second Lililion, by R, R. Kamsey with amateurs and experimenters since 1929.426 has been a favorite

 tions. 2nd Edition, 1935. Price . 439 illustra-RADIO ENGINEERING, by F. E. Terman. A comprehensive treatment covering all phases of radio communication. An all around book $1937 .$.

ELEMENTS OFIRADIO COMMUNICATION, by Prof, J. H. Morecroft. This is the 2nd edition of this book by the author of the well-known "Principles." It is about half the size of the larger work and the subject is treated in more elementary fashion. Simple algebra is sufficient. An excellent book for the "first-year" 170 illugtrations. 1934.

PRINC:IPISES OF RADI(), by Keith Henney, This book is chock find of meat for the "xperimenter. "lloe subjests treated range from

COMMINICAIIONENGINEERING; by W', L, Hirerill. i general text for looth first year and arlvancerl comrsest, (cimmbete tratment of network therory, inchudiag thathematioal analysim of radio circuits and tube operation. 727 pr., 411 illustrations. 2 nd lidition, 10,37

RADIO EXPERIMENTS

MEASUREMENTS IN RAI)IGEN(;INEERING, byff.f. 7"prman A comprehensibe engineering diseussinn of the measuremorat prob, ems eneonntered in engineering praction with emphasis on basic princighers rather than whethons in detail. 400 pates, inchading ant index. 210 jllustrations, 10.35 . I'rice. 84.00 THE CATIODE-RAY TUBE AI WORK, by John $\stackrel{H}{ }$. Rider. Devoted to cathude-zaly tube theory, wwerp cirenfitw, a ef, wat we pat-
 actual photograyns of sereerl gat terns reprosenting abont evers coninlifiers, power smpplies, complete receivers aml transmitters. 322 pages, 444 illustrations. írice.. 2.50 HIGH-FREOUENC: MEASUREMENIS, by August Kunt. A thorough, morlern book, especially useful in ady anced labroratory work. Inclides a chapter on piezo-electrie determinations. H91 pry.

PRINCIPLES OF RSIDIG ENGINEERING. by R. S. Clasgoze tion and their amplication. A large portion of the radio commminicathe theors
 FLVIDAMENTALS OF VACUUM TIBES, bs Austin V . idatman. Ireats the laws underlying operation of the principal types of tubes enginerinactum, mercury-rapor. photo and spectal tubes - with
 FUNIDAMENTALS OF RADIO, byF. E. Terman. An elementary version of the author's "Radio Engineering." with simplified treatment and intended for readers of limited mathematical ability problems for clast for an introductory conrse in radio, and features problems for class-room work. 458 yages, 278 illustrations, 1938.
ELEUTKON OPTICS IN TELEVISION, by 1.G. Maloff and I). W ipstein. Covers the theory of electron optics and wractical design froblems in constructing cathode-ray tulses for television work. An
 ELECTRICAL ENGINEERS HANIDBOK, VOL, V, EI,ECTRIC COMMUNICATION ANB ELECTRONICAS, edibed by II. Jender and K. Ifelhwain. A comprehensive handbook covering
 AND MEASUREMENTS

EXPERIMEN'AL, RADIG ENGINEERING. by Prof. J. H. Morecroft. An excellent laboratory toxt directed specifically to emphasizing the principles involved in the operation of radio apparatus and intended as a companion to the sume anthor's "Irinciples." 51 choice an introfuctory chapter on instruments and accessories. Eloice experiments are outlined. 345 F 1 m .250 illustrations, 19.31.

EXIPERIMENTAL, RADIO, by Prof. R. R. Kumsey. Fourth Falidon. A sulendid book for the experimenter. This is a laboratory manual, describur 132 excelfent exjeriments designed to bring out

RADIO FREOUENCY ELECTRICAL MEASUREMENTS, by Hugh A. Sromen. A laboratory course in rif. measurements for communications students. Contains much practical information on meth-
ods of measurement. 384 pages, 177 ilfustrations, $1938 . . .2 . . \$ 4.00$
$\$ 4.00$
COMMERCIAL EQUIPMENT AND OPERATING

PRACIICAI. RADIO COMMUNICNTION. by A. K. Nilsom and . A. Kornang. A new mondern treatment mereting tle exparded scone of today s technical reduremment in the varions commeraial tields. The first six chajters are devoted to princibles, the remaining nine to latest practice in broadeasting, prolice system, aviation radio and marme enmern
 IHE RADIO MANUAI. by fieorge F. Niterling. Inother excellent oractioal handbook, esjecially valuable to the cummerajal and broad -
 RAIIG TKAFFIG MANUSI ANB GIERITING REC; LA-
 operators who contemplate entering the commereial tield; it will enable you to earn rilickly and easily all the government and commercial traftic rules and operating regulations. 181 pp................. $\$ 2.00$

RSIDIGOPERATING OUESTIGNS AND ANSWERS, by Nilson by the same. Aumpanion volumte to Practical Radio "telegraphy" covering Commercial and Broadcasting Elition is very complete. Police Radio, Heacons, Dirways Aeteorology and Aeronautical and

HOW TO PASS R.AIIOLICENSE EXAMINATIONS, by Charles - Question and answer material on various tyises of com A.K.K.I. License $\$$ anual. 201 nages, 73 illustrations, 1938 $\$ 2.00$ RADIO OPERATOR'S MANUAL, by the Radio Dept. G. Ei. Co. classes of lieence to qualify an applicant for the radiotetephone eneral interest to users of commercial ata

MISCELLANEOUS

AMERICAN RADIO RELAY LEAGUE, INC., WEST HARTFORD, CONNECTICUT

THE RADIO AMATEUR CALL BOOK, Lists all U. S. and for $\$ 1.25$ (Foreign \$1.35)
MAKING A LIVINGINRADIO, by Zeh Bouck. 222 pages, 25 illustrations. A worth-while book for the radio amateur who is considering entering the Commercial Radio helif in its many branches; explonde the bunk, pointsout the pitfalls. $\$ 2.00$
RADIO DATA CHARTS, by R. T, Beally. A series of graphic charts for solving, without the use of mathematics, most of the problem

SERVICING RECEIVERS BY MEANS OF RESISTANCE MEAS bRE. SERVICING SUPERHETERODYNES, by John F. Rider. Theory and practice of superheterodynes, with adjustment and troulbleshooting data. 278 pages, 94 illustrations
The following books published by the American R The Radio Amaleur's Hondbook, The Hicense Monualio Relay l eague, How to Become a Radio Amateur. ZOO Meters and Dow, Iins Gr Kinks, Amateur Kadiotelephone Transmitter, and of course OST, comprise the foundation of every Amateur library.

To Handbook Readers Who cAre Not A.R.R.L. Members

 AMATEUR RADIO OF TO-DAY IS THERESULT OF THE EFFORTS OF A.R.R.L. For More Than Twenty Years
the A.R.R.L. has been the organized body of amateur radio, its representative in this country and abroad, its champion against attack by foreign government and American commercial, its leader in technical progress.

To:

Save yourself 50 c a year (newsstand copies of QST cost \$3).
Be sure of getting your copy of QST first.
Be sure of getting your copy of QST (newsstands are often sold out).

Be eligible for appointment or election to A.R.R.L. offices.

Be eligible to sign petitions for your Director, your representative on the A.R.R.L. Board.

Be eligible to vote for Director and Section Comm. Manager (only A.R.R.L. members receive ballots).

Lend the strength of your support to the organization which represents YOU at Cairo, at Washington -at all important radio conferences.

Have YOUR part in the A.R.R.L., which has at heart the welfare of all amateurs.

JOIN THE LEAGUE!

AMERICAN RADIO RELAY LEAGUE
West Hartford, Conn., U. S. A.
I hereby apply for membership in the American Radio Relay League, and enclose $\$ 2.50$ ($\$ 3.00$ outside of the United States and its Possessions, and Canada) in payment of one year's dues, $\$ 1.25$ of which is for a subscription to QST for the same period. Please begin my subscription with the issue. Mail my Certificate of Membership and send QST to the following:

Name.
\qquad
City and State

To Handbook Readers Who Are Already A.R.R.L. Members:

F
OR members who hold amateur licenses, who are interested in radio activities and Communications Department operating work (explained fully, Chap. 18, 19, 20), here is an application blank which may be filled out for appointment as either Official Relay Station (for telegraphing members) or Official Phone Station (for voice operated member-stations). Copy this, or cut and fill it out, and send it direct to your Section Communications Manager (address in QST) or to A.R.R.L. Headquarters, 38 LaSalle Road, West Hartford, Conn. for routing to the proper S.C.M. for attention if you are interested.

The Communications Department field organization includes only the United States and its territories, and Canada. Newfoundland, Labrador, Cuba, the Isle of Pines, and the Philippine Islands. Foreign applications, that is, those from outside these areas, cannot be handled.

APPLICATION FOR APPOINTMENT AS OFFICIAL STATION (Relay or Phone?)

To: Section Communications Manager
Name Call

Street and Number. Date
City
State Counly

Transmitting frequencies: kilocycles

My membership in the A.R.R.L. expires

In making application for appointment as Official Relay Station, I agree:

- to obey the radio communication laws and regulations of the country, under which this station is licensed, particularly with respect to quiet hours and observance of our frequency allocations.
- to send monthly reports of station activities to the Section Communications Manager under whose juris. diction this station comes.
- to handle messages in accordance with good operating procedure, delivering messages withio forty-eight (48) hours when possible, mailing to destination whenever impossible to relay to the next station in line within a 48 -hour period.
- to participate in every A.R.R.L. communication activity to the best of my ability, always trying to live up to those ideals set forth in "The Amateur's Code.'

In making application for appointment as Official Phone Station, I agree:

- to obey the radio communication laws of the country under which my station is licensed, particularly with respect to the regulations goveraing quiet hours and frequencies.
Secto send monthly reports of station activities to the Section Communications Manager under whose juris. diction this station comes; to use such operating procedure as may be adopted by the O.P.S. group; to test outside busy operating hours or using dummy antennas.
- to handle such messages as may come to me, as accurately, promptly and reliably as possible.
- to participate in all amateur communication activities to the best of my ability, always trying to live up to those ideals set forth in "The Amateur's Code" and to carry on amateur operation in a constructive and unselfish spirit.
- to use circuits and adjustments that avoid frequency modulation and over modulation by proper transmitter adjustment (accomplished by use of proper indicating devices) to avoid causing interference unoecessarily.

I understand that this appointment requires annual endorsement, and also may be suspended or cancelled at the discretion of the Section Communications Manager for violation of the agreement set forth above

Please send detailed forms to submit in connection with this application.

Signed.

INDEX

451

453

Jhe
 Catalog Section

认 $\hat{3}$
In the following pages is a catalog-
file of products of the principal manu-
facturers who serve the short-wave
field. Appearance in these pages is
by invitation-space has been sold
only to those dependable firms whose
established integrity and whose prod-
ucts have met with the approval of
the American Radio Relay League.

INDEX OF MANUFACTURERS
 * CATALOG SECTION

Jhe Radio Amateur's Handbook

Page
546
Aerovox Corporation
543
Aladdin Radio Industries, Inc.
529
American Microphone Company, Inc. 529
American Phenolic Corporation 544
Amperex Electronic Products, Inc. 550
Astatic Microphone Laboratory 480
Barker \& Williamson 500, 501
Birnbach Radio Company, Inc. 523
Bliley Electric Company 530,531
Browning Laboratories, Inc 519
Burton-Rogers Company 522
Candler System Company 514
Cardwell Mig. Corp., Allen D., The 536,537
Cornell-Dubilier Electric Corp. 532,533
Corning Glass Works 516
Eitel-McCullough, Inc. 486
Electric Soldering Iron Co., Inc. 512
General Electric 504
Gross Radio, Inc 525
Hallicrafters, Inc., The 491-498
Hammarlund Mig. Co., Inc 481-485
Harvey Radio Laboratories, Inc. 487-490
Heintz \& Kaufman, Ltd 513
Hytronic Laboratories 473
Instructograph 518
International Resistance Company. 476, 477
Johnson Company, E. F 542
Jones, Howard B. 520
Page
Kenyon Transformer Co., Inc 527
Mallory \& Co., Inc., P. R 538,539
Manhattan Electrical Bargain House, Inc. 526
McElroy, T. R.... 521
McGraw-Hill Book Co., Inc 506
Meissner Mig. Co 517
National Company, Inc 457-472
National Carbon Co., Inc 502,503
Ohmite Mfg. Co 540,541
Par-Metal Products Corporation 515
RCA Mig. Co., Inc 478,479
Radio Mfg. Engineers, Inc 510, 511
Radio Transceiver Laboratories 534
Raytheon Production Corporation 505
Shure Brothers 547
Solar Manufacturing Corp 549
Sprague Products Co 545
Standard Transformer Corp 509
Struthers Dunn, Inc. 499
Teleplex Company 524
Triplett Electrical Instrument Co., The 535
United Transformer Corp 474,475
Vibroplex Company, The 548
Ward-Leonard Electric Co. 507
Western Electric 508
Wiley \& Sons, Inc., John 528

NATIONAL

RAPIO PBODUCTS

NATIONAL CONDENSERS

RECEIVING TYPES				
Capacity	Air Gap	Plates	Cat. Symbol	List Price
15 Mmf .	.018"	3	STHS-15	\$1.40
25	.018"	4	STHS. 25	1.50
50	.018"	7	STHS. 50	1.60
35	.026"	8	ST- 35	1.50
50	.086"	11	ST- 50	1.80
75	.026"	15	ST. 75	2.00
100	.026"	20	ST-100	2.25
140	. $086^{\prime \prime}$	28	ST-140	2.50
150	.086"	29	ST-150	2.50
200	. $018^{\prime \prime}$	27	STH-200	2.75
250	.018"	32	STH. 250	3.00
300	.018"	39	STH-300	3.25
335	.018"	43	STH-335	3.50
50-50	.026"	11-11	SID- 50	3.50
100-100	. $018^{\prime \prime}$	14-14	STHD-100	4.50
15 MmF .	.055"	6	SEU- 15	52.50
20	.055"	7	SEU. 20	2.75
25	.055"	9	SEU. 25	2.75
50	. $026^{\prime \prime}$	11	SE- 50)	3.00
75	. $026^{\prime \prime}$	15	SE- 75	3.95
100	.026"	20	SE-100	3.50
150	. $026^{\prime \prime}$	29	SE-150	3.75
200	. $018^{\prime \prime}$	27	SEH-200	3.75
250	. $018^{\prime \prime}$	32	SEH-250	4.00
300	.018"	39	SEH-300	4.00
335	. $018^{\prime \prime}$	43	SEH-335	4.95
15 Mmf .	.017"	6	UM-15	\$1.25
35	.017"	12	UM- 35	1.50
50	.017"	16	UM- 50	1.60
75	.017"	22	UM- 75	1.70
100	.017"	28	UM-100	1.90
25	.050"	14	UMA - 25	1.85
25	.017"	4-4-4	UMB- 25	1.85
15 MmF .	.045"	5	EX- 15	\$ 8.85
25	. $045^{\prime \prime}$	7	EX- 25	. 85
35	. $045^{\prime \prime}$	10	EX- 35	1.00
50	.017"	6	EX- 50	. 90
100	. $017{ }^{\prime \prime}$	12	EX-100)	1.00
140	.017"	15	EX-140	1.85

TRANSMITTING TYPES				
Capacity	Peak V.	Plates	Cat. Symbol	List Price
100 Mmf .	1,000	10	TMS-100	\$2.50
150	1,000	14	TMS-150	2.75
250	1,000	23	TMS-250	3.00
300	1,000	27	TMS-300	3.60
50-50	1,000	5-5	TMS-50D	3.75
100-100	1,000	9-9	TMS.100D	4.50
35	2,000	8	TMSA-35	3.00
50	2,000	11	TMSA-50	3.95
50-50	2,000	11-11	TMSA.50D	4.00
50 Mmf .	3,000	7	TMC. 50	\$4.00
100	3,000	13	TMC-100	4.50
150	3,000	21	TMC. 150	5.95
300	3,000	39	TMC-300	6.50
100-100	3,000	13-13	TMC-100D	7.50
$300 \mathrm{Mmí}$.	3,000	23	TMA 300	\$19.00
200-200	3,000	16-16	TMA -200D	15.00 6.50
50	6,000	8	TMA 50 A	6.50 10.00
100	6,000	17	TMA -100 A	10.00
150	6,000	23	TMA-150A	12.00
230	6,000	35	TMA.230A	16.00
50-50	6,000	99	TMA.50DA	11.00
100-100	6,000	15-15	T/.1A-100DA	17.50
100	9,000	23	TMA-100B	13.50
150	9,000	35	TMA 150 B	17.00
60-60	9,000	15-15	TMA -60DB	18.50
50	12,000	13	TMA.50C	8.00
100	12,000	27	TMA. 100 C	14.50
40-40	12,000	11-11	TMA -400C	13.50
75 Mmf .	20,000	17	TML-75E	\$26.00
150	15,000	27	TML-150D	26.50
100	15,000	19	TML-100D	23.50
50	15,000	9	TML-50D	16.50
245	10,000	35	TML-245B+	28.50
150	10,000	21	TML-150B +	26.00
100	10,000	15	TML-100B+	25.00
75	10,000	11	TML-75B +	18.00
500	7,500	49	TML.500A +	35.00
350	7,500	33	TML-350A +	28.00
250	7,500	25	TML-250A +	26.00
30.30	20,000	7-7	TML-30DE	26.50
60.60	15,000	11-11	TML-60DD	28.50
100-100	10,000	15-15	TML-100DB +	31.50
60-60	10,000	99	TML-60DB +	27.50
200-200	7.500	21-21	TML-200DA +	35.00
100-100	7,500	11-11	TML-100DA+	28.50

NATIONAL CONDENSERS

All National Condensers are cheracterized by low losses and rigid construction. Insulation is Isolantite, carefully placed when the field intensity is low. Their sturdy frames, accurately fitted bearings and careful assembly insure permanent calibration and lons life.
Particular care has been taken to make them easy to use. All models listed on these pages can be mounted directly on the panel, and most can be also mounted on standoff insulators or directly on the chassis.

RECEIVING TYPES

National Receiving Condensers are particularly suited to use at the higher frequencies. All double bearing models have one bearing insulated from the rotor to prevent noise from circulatory currents. The SE, ST and SS models feature a "constant impedance pigtail" that provides a low and constant impedance connection to the rotor. The SEU models in addition, have thick plates with rounded and polished edges.

The Type UM condensers are designed for use at ultra high frequencies, and are very compact. They will mount reading inside one of our small square shield cans. A shaft extension at each end permits easy ganging.

The "Experimenter" models are primarily low priced models for experimental use.

Unlike other National Condensers they use brass plates and Bakelite insulation.

NATIONAL TRANSMITTING CONDENSERS

The Type TMS Conaenser, smallest of the Transmitting Types is designed for use in low power stages. It is compact, rigid and dependable. Provision has been made for mounting either on the panel, on the chassis or on two standoff insulators. Voltage ratings are conservative. Insulation is Isolantite.

The larger transmitting condensers, Types TMC, TMA, and TML are of heavy duty construction. Plates are of heavy gauge aluminum with rounded and polished edges. In split stator models, each rotor is supported at both ends. Insulation is Isolantite, located outside the end plates where the electrostatic field is weak.

The Type TML condenser is designed to be used with the PWL Worm Drive Unit listed on Page 4, if desired.

PLATE SPACINGS			
Peak Volts	Spocins	Peak Volts	Spacing
1,000	.026"	9,000	.265"
2,000	.065"	10,000	. $3444^{\prime \prime}$
3,000	.077"	12,000	. $359^{\prime \prime}$
6,000	.171"	15,000	. $469^{\prime \prime}$
7,500	.219"	20,000	.719"

NATIONAL NEUTRALIZING CONDENSERS

In the group above, the Type NC-600 is shown at the lower right. It is suitable for 6L6's and similar beam tubes and has a range of adjustment from $1 / 2 \mathrm{mmf}$ to 5 mmF . Type STN, lower left, has a capacity of 18 mmF (3000 V) making it suitable for tubes such

Type NC-600 Type STN Type NC-800 Type NC-150 Type NC-500 Type TCN

List Price, \$. 45 List Price, $\quad 2.00$ List Price, $\quad 3.00$ List Price, $\quad 6.50$ List Price, 12.50 List Price, 4.00

as the 10, 45 and 47 . Of the disk type condensers, the smallest is the NC-800 with micrometer type thimble and clamp, suitable for the RCA-800. The medium sized model, Type NC-150, is for the HK-345, RK-36, 300 T and 852. Type NC-500 is the largest, and is for the WE-251A and similar tubes. The capacity of these disk type condensers is given in the chart at left. In addition, the Type TCN, similar to TMC on the preceding page, is available for the 203A, 852, 204A, etc. (Max. Cap. $25 \mathrm{mmF}, 6000 \mathrm{~V}$). All National Neutralizing Condensers have Isolantite insulation.

NATIONAL PRECISION CONDENSERS

The Micrometer dial reads direct to one part in 500 . Division lines are approximately $1 / 4^{\prime \prime}$ apart. The dial revolves ten times in covering the tuning range, and the numbers visible through the small windows change every revolution to give consecutive numbering by tens from 0 to 500 . The condenser is of extremely rigid construction, with four bearings on the rotor shaft. The drive, at the mid-point of the rotor, is through an enclosed preloaded worm gear with 20 to 1 ratio. Each rotor is individually insulated from the frame, and each has its own individual rotor contact, of the multifingered brush type. Stator insulation is Steatite.

PW Ganged Condensers are availabie in 2, 3 or 4 sections, in either 160 or 225 mmF per section. Larger capacities cannot be supplied. The single-section PW condenser is supplied in capacities of $150,200,350$ and 500 mmF , single spaced. Capacities up to 125 mmf can be supplied double spaced. The rotor is not insulated on the single section model. Plate shape is straight-line-frequency when the frequency range is $2: 1$. PW condensers and drives are all with rotor shaft parallel to the panel, as in the HRO receiver. N-PW units are also available, as used in original type NC-100 and NC-101X receivers, with rotor shaft perpendicular to panel, as listed at right:

PW-1, Single Section.
List Price, $\$ 15.00$
PW-2, Two Section.
List Price, $\$ 20.00$
PW-3, Three Section.
List Price, $\$ 24.00$ PW-4, Four Section.

List Price, $\$ 27.50$
PW-O, Dial and Worm Drive, only, with TX-9 Coupling.

List Price, $\$ 13.50$
N-PW3 (Fig. 7), capacity per section 225 mmf .

List Price, $\$ 24.00$
N-PWX, capacity per section 25 mmf. List Price, $\$ 20.50$
Other sizes of N-PW condenser, or drive alone, not available.
PWL, Worm Drive Unit in special housing for TML Condensers.

List Price، $\$ 9.50$

NATIONAL "HRO" \& "O" DIALS FIGS. 1a \& 1b

The $15 / 8^{\prime \prime}$ dia. HRO dial (Fig. 1o) is etched nickel silver and fits $1 / 4^{\prime \prime}$ shafts. Reads from 0 to 10 over 180°.

List Price, each \$.75. Knob alone, List Price, $\$.25$
The insulated $31 / 2^{\prime \prime}$ dia. O dial (Fig. 1b) is circular-grained German Silver and fits $1 / 4^{\prime \prime}$ shafts. Available with No. 2 scale.

List Price, each $\mathbf{\$ 1 . 5 0}$
The type HRK Knob used on the O dial is also available alone. Fits $1 / 4^{\prime \prime}$ shafts.

List Price, $\mathbf{S . 8 5}$
The type ODL locking device with thumbscrew control is available for use with the type "O" dial. Ideal for transmitter applications.

List Price, each $\mathbf{\$. 5 0}$

NATIONAL "N" \& "NW" DIALS

FIGS. 2 \& 3
Precision Dials, Type N, have engine divided scales and verniers of solid German Silver. The Verniers are flush, eliminating errors from parallax.
The four-inch Type N dial (Fig. 3) employs a smooth and powerful planetary mechanism with a 5 to 1 ratio. No. 2, 3, 4 or 5 scale.

List Price, each $\mathbf{\$ 6 . 7 5}$
The six-inch Type NW dial (Fig. 2) has a variable ratio drive that is unusually powerful at all settings. It is recommended for use on large transmitters and precision instruments. No. 2, 3, 4 or 5 scale.

List Price, each $\mathbf{\$ 1 5 . 0 0}$

NATIONAL "A" DIAL

FIG. 4
The original "Velvet Vernier" Dial, Type A, is still an unchallenged favorite for general purpose use. It is exceptionally smooth and entirely free from backlash. The mechanism is contained within the bakelite knob and shell. Ratio 5 to 1. No. 2, 4 or 5 scole in $4^{\prime \prime}$ diameter. No. 2 scale in $33 / 8^{\prime \prime}$ diameter.

List Price, each $\mathbf{\$ 3 . 0 0}$

NATIONAL "B" \& "BM" DIALS

FIGS. 5, 6
"Velvet Vernier" Dial, Type B (Fig. 6) provides a compact variableratio drive that is smooth and trouble free. The mechanism is inclosed in a black bakelit case, the dial being read through a window. No. 1 or 5 scales.

List Price, each $\mathbf{\$ 9 . 7 5}$. Illuminator $\mathbf{\$. 5 0}$ extra

The Type BM Dial (Fig. 5) is a smaller version of the Type B Dial for use where space is limited. It is similar to the Type B Dial in appearance and mechanism, but does not have the variable-ratio device. No. 1 or 5 scoles.

List Price, each $\mathbf{\$ 8 . 5 0}$

PADDING CONDENSERS

National Air-Dielectric Padding Condensers are extremely compact and have a very low temperature coefficient. The aluminum shield is $11 / 4^{\prime \prime}$ diameter by $11 / 4^{\prime \prime}-11 / 2^{\prime \prime}$ high. A very small mica Padding Condenser is also available, mounted on an Isolantite base and designed to be supported by the circuit wiring. The maximum capacity is 30 mmf , and the overall dimensions are $13 / 16^{\prime \prime}$ long $\times 9 / 16^{\prime \prime}$ wide $\times 1 / 2^{\prime \prime}$ high.
W 75 (75 Mmf. Air) W 100 (100 Mmf. Air) M 30 (30 Mmf . Mics)

List Price, \$2.25 List Price, 2.50 List Price, $\quad .30$

DIAL SCALES

Scale	Divisions	Rotation	Direction of Condenser Rota- tion for increase of dial reading
1	$0-100-0$	180°	Either
$\mathbf{2}$	$0-100$	180°	Counter Clockwise
3	$100-0$	180°	Clockwise
4	$150-0$	270°	Clockwise
$\mathbf{5}$	$200-0$	360°	Clockwise
6	$0-150$	270°	Counter Clockwise

ROTOR SHAFT LOCK

This small cast aluminum clamp is designed to provide a means for locking the rotors of TMA or TMC condensers. It will fit any $1 / 4^{\prime \prime}$ shaft, and may be fitted to some other condensers. Holes are 1" apart.
Type RSL
List Price $\$.85$

NATIONAL FOUNDATION UNITS

National Foundation Units consist of panels and chassis completely finished and ready for assembly, togetiner with the necessary special parts and hardware. They form the basis of the 600 watt tramsmitter shown above. This is so thoroughly engineered that even the newcomer can proceed with confidence, yet the units are so flexible that they allow the constructor almost complete freedom in building to suit his own particular requirements.
Standard Thordarson CHT units are used in the modulator and power supplies, and the chassis are punched with the necessary mounting holes. If it desired to use other makes of transformers and chokes, the chassis are also supplied with the mounting surface blank but with other details finished.
The various units in the 600 watt transmitter can be supplied completely wired and tested.
THE HIGH VOLTAGE POWER SUPPLY is the unit at the bottom of the rack illustrated above. It delivers 300 MA at 2000 volts for the final.
High Voltage Power Supply Foundation Unit for use with Thordarson CHT Components, Type NTR000PC

List Price $\$ 12.00$
Same, but for various makes of transformers and chokzs Ty=e NT2000PU.

List Price, $\$ 12.00$
High Voltage Power Supply, completely wired and tes:ed, Type NTPOOOPCW.

List Price, \$210.00
THE MEDIUM VOLTAGE POWER SUPPLY URJT is next to the bottom in the rack. It provides 1850 volts for the buffer and modulator.
Medium Voltage Power Supoly Foundation Unit, for Thordarson CH^{-}Components, Type $\mathrm{N}^{1} 1200 \mathrm{P}$ C. List Price, $\$ 18.00$
Same, but for various makes of transformers and chokes, Type NT1200PU.

List Price, \$12.00

Medium Valtage Power Supply, completely wired and tested, Type NT²00PCW. List Price, $\$ 135.00$
THE CLASS B MODULATOR UNIT is ot the center of the rack. It employs a pair of zero bias tubes in Class B, which are driven from the output of the NTE Exciter-Speech Amplifier just above it. (The NTE is described on Page 7, opposite.)
Class B Medulator Foundation Unit, for use with Thordarson CHT Components, Type NT300PC. List Price, $\$ 12.00$
Same, but far various makes of transformers, Type NT300PU.
List Price, $\$ 12.00$
Class B Modilator, completely wired and tested Type NT30CPCW.
List Price, $\$ 110.00$
THE FINAL AMPLIFIER FOUNDATION UNIT is at the top of the rack, and features a compact, open construction that results in short leads, symmetry of the push.pull circuit, easy wiring and complete accessibility. It employs a pair of 100 TH 'S driven by a single 35 T .
Final Ame' if er and Buffer Foundstion Unit, Type NT100PC.
List Price, \$16.00
Final Amplifier and Buffer, completely wired and tested, Type NT100PCW. List Price, $\$ 235.00$
A PI NETWORK ANTENNA COUPLER may be mounted at the top of the rack. It is not illustrated.
Antenna coupling panal, drilled for mounting eoils and condensers, Ype NT-AP.

List Pries, $\$ 2.00$
Antenna cowoling network, wired and tested Type NT.APW.
List Price, $\$ 58.00$
NOTE: The prices given above do not include tubes. Mounting screws, grommets, spacers, brackets, lockwashers and similar hardware are furnished with each foundation unir. For con. venience in shipping foundation units are packed disassembled. Panels äe of $1 / 8{ }^{\text {a }}$ steel finished in black moire. Aluminum panels 3, $1 \alpha^{\prime \prime}$ thiak, finished in either black leatherette or gray enamel, are dvalable at an additional list price of $\$ 8.00$ for the NT100FC, and $\$ 7.50$ for the NT300PC, NT1200PC and NTROOOPC.

NATIONAL NTE EXCITER—SPEECH AMPLIFIER

The National NTE Exciter and Speech Amplifier is the ideal answer to transmitter control at the operating position. It includes a versatile multi-band exciter unit with a choice of frequencies in each band, and a high-gain speech amplifier. The exciter can be used with either a conventional single crystal, a variable frequency holder, or a four-crystal multiple holder. The crystal oscillator is followed by
 three frequency-multiplier stages using 6L6's, with an RF output of at least 5 actual watts on each band. The crystals can be controlled from the front panel, and the same is true of the frequency multiplier stages which are selected by a convenient interlocking push switch of special low-loss design. The four stage speech amplifier delivers 10 watts output from PP 2A3's with an input of .005 Volts. Although the power supply is entirely self-contained, the hum level is exceedingly low. A meter is provided for circuit adjustments.

The front panel of the NTE is shown in the illustration at the lower left corner of this pase
Table models are furnished in black wrinkle-finish steel cabinets to match the NC-101X Receiver, at prices listed. Relay rack models can be supplied at an increased price of $\$ 6.00$ net for black wrinkle-finish steel panels $1 / 8$ inch thick, or at an increase of $\$ 9.00$ net for black leatherette or gray enamel panels of aluminum $3 / 16$ inch thick.
Type NTE Exciters are available in three models as follows:
Exciter-Speech Amplifier, for 5, 10, 20 and 75 meters, table model, Type NTE-A.
List Price, $\$ 215.00$
Same as NTE-A, but for 10, 20, 40 and 75 meters, Type NTE-B.
List Price, $\$ 215.00$
Same as NTE-B, but without speech amplifier, Type NTE-C. List Price, $\$ 155.00$
Shipping Weight Approx. 70 Lbs.

NATIONAL NTX-30 TRANSMITTER

The NTX-30 is an exceedingly compact and convenient transmitter for CW or Phone, having an output of 30 watts on 10, 20, 40 and 80 meters. It employs the same exciter system used so successfully in the NTE, and like the NTE features a special interlocking push switch in the exciter circuits. In the output stage, a plug-in coil is used, similar to the Type AR coils described on the following page. Four 6LG's are used as crystal oscillator and doublers, and two 6L6G's are used in the final.
The unit is a self-contained transmitter for CW operation. For phone an external speech amplifier must be used. The NSA described below is ideal for this purpose. Terminals are provided at the rear of the NTX-30 for connecting the amplifier.

Structurally, the NTX-30 consists of an NTE Exciter with a final stage substituted for the speech amplifier, and it is very similar in appearance to the NTE illustrated at the left. All of the features of the NTE are retained, including panel control of crystal frequency, interlocking push switch, meter for circuit adjustments, etc. The NTX-30 thus has the advantages of a proven design in its most important circuits, and is ideally suited for use as an exciter-buffer combination whenever higher power is desired.

Table models are furnished in black wrinkle-finish steel cabinets to match the NC-101X Receiver, at the price listed. Relay rack models can be supplied at an increased price of $\$ 6.00$ net for black wrinkle-finish steel panels $1 / 8$ inch thick, or at an increase of $\$ 9.00$ net for black leatherette or gray enamel panels of aluminum 3 :16 inch thick.
NTX-30 transmitter, complete with all coils, tubes, and crystal holder, but less crystal, for operation on 10, 20, 40, and 80 meter bands.

List Price, $\$ 195.00$

[^25]

NATIONAL NSA SPEECH AMPLIFIER

The new National Speech Amplifier has two input channels with an electronic mixer. One input circuit provides an over all gain of 125 db , and is suitable for crystal microphones, etc. The other input circuit has one less amplifier stage and is intended for high level sources such as phonograph pickups, etc. The frequency characteristic is flat within less than 1 db from 25 to 10,000 cycles. A separate rectifier supplies bias voltage for the PP 2 A3's, which deliver 15 watts output. A tone control is provided.
Speech Amplifier, table model, in wrinkle-finish steel cabinet, including tubes, Type NSA.
List Price, \$115.00
Extra for relay rack mounting, with black wrinkle-finish steel panel $1 / 8$ inch thick.
List Price, $\quad \$ 10.00$
Extra for relay rack mounting, with black leatherette or gray enamel aluminum panel $3 / 16$ inch thick.
List Price, $\$ 15.00$
Approx. Shipping Weight 50 Lbs.

NATIONAL OSCILLOSCOPES

Cathode Ray Oscilloscopes are available in two models. The Type CRR, is mounted on a standard $31 / 2^{\prime \prime}$ relay rack panel and employs a two-inch screen RCA-902 and 6×5 rectifier. Type CRM is mounted in a small steel cabinet ($41 / 8^{\prime \prime} \times 61 / 8^{\prime \prime} \times 8^{\prime \prime}$) and uses a one-inch screen RCA-913 with 6×5 rectifier. Both models are self contained and power supply and input controls are built in. A panel switch permits use of built-in 60 cycle sweep or external audio sweep for securing the familiar trapezoid pattern, which is more convenient for modulation measurements.
Type CRR Oscilloscope, $2^{\prime \prime \prime}$ screen, less tubes. List Price, $\$ 32.50$ Type CRM Oscilloscope, $1^{\prime \prime}$ screen, less tubes. List Price, $\$ 18.50$

NATIONAL CRYSTAL HOLDERS

National Crystal Holders are available in three types. All use R-39 insulation for low losses and all are carefully designed for maximum crystal activity. The newest holder (Figure 1) is the Type 4 -in- 1 and is very convenient where a choice of frequencies is desired. It is designed to hold four separate crystals up to $1^{\prime \prime}$ square which may be selected by a built-in low capacity switch. The CHV Crystal Holder (Figure 3) is of the variable gap type and, when used with a suitable crystal, permits tuning the crystal over a range of 1 part in 600. The small holder shown in Figure 2 is available in three forms. Type CHR for receivers, resonator type. Type CHS for transmitters, constant air-gap type. Type CHT for transmitters, pressure type.

Type 4-in-1 List Price, $\mathbf{5 7 . 5 0}$ Type CHR List Price, $\mathbf{\$ 2 . 5 0}$ Type CHS List Price, $\mathbf{\$ 2 . 5 0}$ Type CHT List Price, $\mathbf{\$ 2 . 5 0}$ Type CHV, less crystal

List Price, $\$ 9.50$
Type CHV, with 80-meter crystal that will double into the 20 -meter phone band

List Price, $\mathbf{\$ 3 2 . 5 0}$

NATIONAL TRANSMITTER COIL FORMS

The two transmitter coil forms illustrated above both fit the PB-15 plus and the XB-15 socket and mount readily on the tie bars of a TMA condenser. The larger form, Type XR-14A, is for the 80 meter band
 Its winding diameter is $5^{\prime \prime}$ and its length $5^{\prime \prime}$. The smaller, Type XR-10A, is intended for the 20 and 40 meter bands and is $5^{\prime \prime}$ long with a $21 / 2^{\prime \prime}$ winding diameter.

The two buffer coil forms at the right fit the PB- 5 plus and the XB-5 socket and mount on the tie bars of a TMC condenser. The larger form, XR-13, is $13 / 4^{\prime \prime}$ diameter and $31 / 2^{\prime \prime}$ long. The smaller, Type XR-13A, is $1^{\prime \prime}$ diameter and $31 / 2^{\prime \prime}$ long.
In addition to mounting on condensers, the sockets are designed for convenient use in breadboard layouts, etc.

Type XR-10A Coil Form only	List Price, $\mathbf{\$ 1 . 5 0}$			
Type XR-14A Coil Form only	List Price,	$\mathbf{3 . 5 0}$		
Type PB-15 Plug only	List Price,	$\mathbf{1} 35$		
Type XB-15 Socket only	List Price,	$\mathbf{1 . 7 5}$		
Type UR 10A Coil Form Assembly				
List Price,	$\mathbf{4 . 6 0}$			
Type UR-14A Coil Form Assembly				
List Price,				$\mathbf{6 . 2 5}$

Type XR-10A Coil Form only List Price, $\mathbf{\$ 1 . 5 0}$ Type XR-14A Coil Form only Type PB-15 Plug only Type XB-15 Socket only Type UJR 10A Coil Form Assembl 6.85
Type XR-13 Coil Form only List Price, $\$ 1.10$ Type XR 13A Coil Form only List Price, 60 Type PB-5 Plug only List Price, 75 Type XB. 5 Socket only List Price, 75 Type UR-13 Buffer Coil Assembly
List Price, 2.50 Type LIR-13A Buffer Coil Assembly
List Price, 2.00

NATIONAL EXCITER COILS AND FORMS

These coils are suitable for use in exciters, buffers, and low power finals. The series of Victron insulated, air spaced coils all fit the same plug-in mount. In addition an unglazed Isolantite form, drilled for leads, also fits the same base. All of the listed sizes will tune over their respective bands with 30 mmf and all have separate windings for link coupling. Add the letter E to symbol for end link, and C to symbol for center link.

Type PB-16 P.us
List Price, $\$.40$
Tyo X XB-16 Socket
List Price, \$.50
Type XR-16 Coil Form
List Price, $\$.60$
Type UR-16 Assembly
List Pr ce, $\$ 1.50$

Alf SPACED COILS
Type AR16-80
(80 meters)
List Price, $\$ 1.50$
Typg AR16-40
(40 meters)
List Prce, $\$ 1.50$
Type AR16-g0
(80 meters)
List Price, $\$ 1.50$
Type AR16-10
(10 meters)
List Price, \$1.50

NATIONAL R. F. CHOKES

R-100. Isolantite mounting, continuous universal winding in four sections. For pigtail connections or standard resistor mountings. Inductance $21 / 2$ m.h.; distributed capacity, 1 mmF ; D.C. resistance 50 ohms; Current rating, 125 M. A. For low powered transmitters and high frequency receivers.

List Price, $\$.60$

R-152, R-154, R-154U. These transmitter chokes have honeycomb coils (0.6 amps. rating) wound on Isolantite cores. The R-152 is designed for the 80 and 160 meter bands; inductance 4 m.h., D.C. resistance 10 ohms. The R-154 and R-154U give maximum impedance on the 20,40 and 80 meter bands; inductance $1 \mathrm{~m} . h .$, D.C. resistance 6 ohms. The R-152 and R-154 are as illustrated. The R-154U does not have the small insulating pillar and the third mounting foot.
R-152 or R-154.
List Price, \$2.25. R-154U
List Price, \$1.75

R-201. A two-section honeycomb-wound choke in R-39 case, suitable for output circuit of second detector in H.F. receivers (475 KC Intermediate Frequency). Inductance, approximately $12 \mathrm{~m} . \mathrm{h}$., D.C. resistance approximately 120 ohms.

List Price, \$1.25

NATIONAL I. F. TRANSFORMERS

This new I.F. Transformer has air dielectric condensers (isolated from each other by an aluminum shield) and Litz would coils mounted on an Isolantite base which is treated against moisture absorption. The aluminum shield ca?, housing the assembly, measures $41 / 8^{\prime \prime} \times 23 / 8^{\prime \prime} \times 2^{\prime \prime}$. These transformers are available with or without Iron Cores in the $450-550 \mathrm{KC}$ model; the 175 KC model is air core only. For iron core add $\$.30$ to price.

An additional model, Type IFD, having a tuned primary and a closely-coupled, untuned, push-pull secondary is intended for operation with diode rectifiers. It is particularly suitable for use in noise silencing circuits. It is available only with an air core, and for 450-550 KC use.
Type IFC Transformer (air core).
List Price, $\$ 5.00$
Type IFCO Oscillator (air core only).
List Price, $\$ 5.00$
Type IFD Diode Transformer (air core only).
List Price, $\$ 3.50$

NATIONAL FIXED TUNED EXCITER TANK

Similar in general construction to the I.F. transformer described above, this unit has two $25 \mathrm{~mm} ., 2000$ volt air condensers and an unwound XR-2 coil form.
Type FXT, without plug-in base.
List Price, $\$ 4.50$
Type FXTB, with base (either 5- or 6-prong).
List Price, $\$ 4.90$

NATIONAL PLUG-IN BASE AND SHIELD

The low-loss R-39 base is ideal for mounting condensers and coils when it is desirable to have them shielded and easily removable. Shield can is $2^{\prime \prime} \times 23 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$. Two models are available; 5 - or 6 -prong.
Type PB-10, (Base and Shield).
List Price, $\$.75$
Type PB-10A, (Base only).
List Price, $\$.40$

NATIONAL HIGH FIDELITY TRF UNITS

For broadcast reception of the highest possible tone quality, the simplest circuit gives the best results. The new National Tuners are based on a high performance TRF circuit reduced to its simplest terms. Similar in construction to an IF Amplifier, each chassis provides a three-stage RF Amplifier tuned to one station only. A group of four or more separate chassis are usually used in each installation to receive a like number of stations. A push switch, relay system, etc., is used to select the desired station.

Each RF Transformer has an individual coupling adjustment and is tuned both primary and secondary (8 tuned circuits). The coupling is adjustable to include 10 KC with less than 1 db variation in the audio range. Sensitivity is adjustable from 5 microvolts to one volt. For best efficiency, three models have been made available covering ranges of 540-875, 740-1230, and 1100-1700 KC. Complete filtering eliminates regeneration which causes lop-sided resonance curves. The triode power detector is linear and capable of handling large percentages of modulation. For circuit simplicity, there is no AVC. The chassis fits a standard $31 / 2^{\prime \prime}$ relay rack panel.
Drilled and formed chassis, Type DLC.
List Price, $\$ 2.50$
As above, but with sockets and terminals riveted in place, Type DLCA.
List Price, $\$ 4.60$
List Price, $\$ 1.50$
Steel $1 / 8^{\prime \prime}$ panel. Type DLPS.
List Price, $\$ 5.00$
Aluminum 3 16" panel. Type DLPA.
RF Transformer, set of four required. Type DLT.
List Price, each, $\$ 6.50$
(Specify approximate operating frequency)

NATIONAL COIL FORMS

RECEIVER COIL FORMS. The two coil forms at the right are of low-loss R-39 and have excellent form factor. They can be drilled and grooved easily. The larger is $21 / 4^{\prime \prime}$ long and $111^{\prime \prime}$ diameter. It is available with 4,5 , or 6 prongs and is known as Type XR-4, XR-5 or XR-6 respectively.

List Price, $\mathbf{\$. 7 5}$
The smaller form is $1 \frac{1}{2 \prime \prime}$ long and $1^{\prime \prime}$ diameter and has four prongs, Type XR-1. List Price \$.50. Type XR-2, same but plain (no pronss). List Price, S.35. Type XR-3 (not illustrated) is similar but is $916^{\prime \prime}$ diameter and $3 / 4^{\prime \prime}$ long. It has no prongs. List
 Price, $\$.30$.

PLUG-IN COIL FORMS. These R-39 coil forms, plug-in through the front panel of a receiver, monitor, etc. The coil shield listed is bolted to the back of the panel, and supports the Isolantite socket.
XR-39A Coil Form, Air Tuned.
List Price, $\$ 4.75$
XR-39M Coil Form, Mica Tuned.
List Price, $\$ 3.65$
XCS Coil Shield and Socket.
List Price, $\$ 1.75$

NATIONAL L. F. OSCILLATOR COIL

LOW FREQUENCY OSCILLATOR COIL. Two separate inductances, closely coupled, in an aluminum shield. It is used in the SRR and other super-regenerative receivers for the inter-ruption-frequency oscillator. Sec. Inductance 6.25 m .h. Tunes to 100 KC with .00041 mfd .
Type OSR.
List Price, $\$ 1.50$

NATIONAL SCREEN GRID DETECTOR COUPLER

SCREEN GRID DETECTOR COUPLING UNIT. This impedance coupling unit, when employed to couple the output of a screen grid detector to an audio amplifier tube, will give from two to three times as much amplification as resistance coupling. Plate choke, 700 henries. Coupling condenser, .01 mfd . Grid leak, 250,000 ohms.
Type S-101.
List Price, $\$ 6.00$

NATIONAL GENERAL PURPOSE CONDENSERS

National EMC Condensers have high electrical efficiency, and calibrations may be relied on. Insulation is of Isolantite, and Peak Voltage Rating is 1000 volts. Plate Shape is SLW.

Capacity	No. of Platos	Cat. Symbol	List Price
150	9	EMC 150	\$3.25
250	14	EMC 250	3.75
350	18	EMC 350	4.95
500	26	EMC 500	4.75
1000	56	EMC 1000	7.25
Split-Stat $350-350$	18-18	EMCD-350	7.50

NATIONAL JACK SHIELD

The new National Jack Shield accommodates small standard jacks. It is primarily designed for mounting behind the panel, where it is held in place by the bushing of the jack, but may also be used on the ends of extension cords, etc.

List Price, \$. 35

NATIONAL TUBE AND COIL SHIELDS

These aluminum shields are listed in order from left to right

Type
List Price
HRO coil shield, $2^{\prime \prime} \times 23 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$ high $\$.35$ $J 30$ coil shield, $2^{1 / 2^{\prime \prime}}$ did. $\times 33 / 4^{\prime \prime}$ high .35 B30 coil shield, $3^{\prime \prime}$ dia. $\times 33 / 4^{\prime \prime}$ high .35 B30 coil shield, with mounting base . 50 TS Tube Shield, with cap and mounting base . 40 T58 Tube Shield, with cap and mounting base . 40 T78 Tube Shield, with cap and mounting base . 40
The T58 and T78 fit such tubes as the $57,58,77$, 78, etc.

NATIONAL CABINETS

The National Receiver Cabinets illustrated above, are for use in constructing special equipment. List Prices include sub-bases and bottom covers. Reading left to right:

NATIONAL RELAY RACK PANELS AND CHASSIS

THE RECESSED SHELF will fit any standard relay rack, and is particularly useful for supporting portables, instruments, test equipment, etc. Type RRS.

List Price, \$4.00
UNDRILLED STANDARD RELAY RACK PANELS are available in both $1 / 8^{\prime \prime}$ steel and $3 / 16^{\prime \prime}$ aluminum. The steel panels are finished in black wrinkle, and the aluminum panels in either black leatherette or gray enamel.

Width		$\begin{aligned} & \text { Weight } \\ & \text { Aluminum } \end{aligned}$	List Price	List Price Aluminum
13/4"		5/albs.		\$3.25
31/2"	5 lbs.	11/4 lbs.	\$1.00	4.50
$51 / 4^{\prime \prime}$	7 lbs .	13.4 lbs .	1.15	5.75
$7^{\prime \prime}$	8 lbs.	$21 / 2 \mathrm{lbs}$.	1.20	7.00
83/4"	9 lbs.	3 lbs.	1.60	8.25
101/2"	10 lbs.	$33 / 4 \mathrm{lbs}$.	1.95	9.50

GRAY ENAMEL BLANK CHASSIS of $1 / 16^{\prime \prime}$ stee! are available in the following sizes:

Size	List Price	Size	List Price
$4 \times 17 \times 3^{\prime \prime}$	$\$ 2.50$	$10 \times 17 \times 3^{\prime \prime}$	$\$ 3.50$
$6 \times 17 \times 3^{\prime \prime}$	2.75	$12 \times 17 \times 3^{\prime \prime}$	4.50
$8 \times 17 \times 3^{\prime \prime}$	3.15		

NATIONAL RELAY RACKS

These steel relay racks are drilled and tapped to accommodate, up to their capacities, standard relay rack panels of all sizes. At the right is a Type MRR table model rack, at the left a Type RR rack.
Type RR Relay Rack built to government specifications, panel capacity 63", black Finish

List Price, $\$ 65.00$
Type MRR Relay Rack, panel capacity $241 / 2^{\prime \prime}$, gray or black finish.
List Price, $\$ 22.50$
NOTICE: All National Relay Rack equipment conforms to standard dimensions known commercially as "Government" or "Western Electric" standard. The unit panel is $13 / 4^{\prime \prime}$ in height, and the holes in the rack are on alternate $11 / 4^{\prime \prime}$ and $1 / 2^{\prime \prime}$ spacings. Many manufacturers of rack equipment use their own private spacings which are not interchangeable with other makes, but will supply standard spacing when ordered. We cannot guarantee that our panels, receivers, etc., will fit properly unless standard equipment is used throughout.

12

NATIONAL MOUNTED "S" METER

For use with the NC 80X or 81X Receivers which do not have built-in " S " meters, a meter of the same type as that used in the HRO is now available in a desk mounting. The necessary resistor network is built into all receivers of the NC-80 series, and it is only necessary to connect two wires to install the meter. Complete directions are given in the receiver instruction book. Specify whether gray or black wrinkle finish.

Mounted "S" Meter, Type SM-80

CODE PRACTICE OSCILLATOR

This small audio oscillator is suitable for either code practice, or as an audio signal source for KCW on the Ultro High Frequency Bands.
A type 30 tube is used, and four llashlight cells in the case provide filament and plate current.
Type CPO, without batteries or tube
List Price, $\$ 6.00$

NATIONAL SHAFT BUSHING

A bushing that gives a professional touch to equipment where $1 / 4^{\prime \prime}$ shafts have to be brought through panels. Type SB

List Price, $\$.25$

NATIONAL SHAFT EXTENSION

This shaft extension fits over $1 / 4^{\prime \prime}$ shafts and is of nickel-plated brass. List Price, $\mathbf{5 . 2 5}$

NATIONAL GRID GRIPS

This Grip provides the best means for attaching a wire to the top-cap of tubes. Made in three sizes.
Type 24 - for standard glass tubes List Price, $\$.05$ Type 19 - for transmitting tubes List Price, $\mathbf{\$. 1 0}$ Type 8 - for metal tubes

List Price, S. 05

List Price, $\$ 10.00$

NATIONAL TERMINAL

This heavy duty screw termind is convenient in making up special terminal panels for power supplies, etc.

List Price, 5.15

NATIONAL CHART FRAMES

Nickel Silver Chart Frames are dvailabie in the sizes shown. The lariest frame is the same as that used on the AGS, the medium frame is the same size as that or the FB-7, and the smallest is the same as the HRO frame. Prices include celluloid sheet to protect the chart.
Size A. List Price, $\$.50$ Size B. List Price, .60 Size B. List Price, . 70

NATIONAL LOW-LOSS INSULATORS

A number of our standard condenser insulators are shown above. In addition to their obvious use as repair parts they may be used for a variety of other purposes such as supports for coils, spreaders, etc. The insulator shown in Fig. 1 is the same as Fig. 3, but has a metal solder lug riveted to each end. It is useful as a 5-meter lead-in spreader, or as a mounting for 5 -meter inductances.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

List Price, $\$.30$
List Price, . 15
List Price, . 15
List Price, . 30
List Price, . 30
List Price, . 40
List Price, . 40

INTERLOCKING PUSH SWITCH

The new National Interlocking Push Switch was first designed for the NTE Exciter where the requirements of low losses, complete reliability and positive contacts required a special design. This switch fills these specifications so completely that it is now listed separately. Insulation is R-39. The silver-plated contacts are double pole, double throw.
Type ACS-4, Four gang, with trigger bar.

List Price, $\$ 5.00$
Type ACS-1, Single section, less trisger bar.

List Price, $\$ 1.25$

NATIONAL SHAFT COUPLINGS

1 is a small coupling of Steatite, providing high electrical efficiency when used to isolate circuits. Type TX-9.

List Price, $\$ 1.10$
2 is a popular small coupling, free from backlash. Insulation is canvas bakelite.
Type TX-10.
List Price, $\$.55$
3 is a coupling providing high insulation with compact size. Insulation is glazed Isolantite.
Type TX-1 (leakage path $1^{\prime \prime}$). List Price, $\$ 1.00$
Type TX- $21 / 2$ (leakage path $21 / 2^{\prime \prime}$).
List Price, $\$ 1.10$
4 is a flexible shaft which provides a driving means between offset shafts, or shafts at angles up to 90 degrees, and virtually eliminates mis-alignment problems. Isolantite insulators are provided at each end.
Type TX-12, overall length $45 / 8^{\prime \prime}$. List Price, $\$ 1.25$ Type TX-13, overall length $71 / 8^{\prime \prime}$.

List Price, $\$ 1.50$
5 is a flexible shaft without the insulation of the TX-12, but otherwise the same.
Type TX-11.
List Price, $\$.60$
14

NATIONAL LOW-LOSS SOCKETS

1 is a wafer type Isolantite socket for power Pentodes such as the RK-28 and the RCA-803. Type JX-100S, as illustrated. List Price, $\$ 3.60$ Type JX-100, as above but without stand-off insulators.

List Price, $\$ 3.00$
2 is a fifty watt socket having sturdy side wipe contacts and conventional bayonet-lock metal shell. Type XM-50.

List Price, $\$ 1.75$
3 is an Isolantite socket for the Triode Acorn tube. The socket contacts are of a new design providing very short leads and have a current path nearly independent of tube position.
Type XCA.
List Price, $\$ 1.50$
4 is for the Pentode Acorn tube and is assembled, with the same type of contacts as the XCA, on a square copper base with built-in by-pass condensers for stable high frequency operation. Type XMA.

List Price, $\$ 2.00$ 5 is another 50 watt socket made entirely of low-loss Steatite for higher frequencies than the XM-50. Type XC-50. List Price, $\$ 3.50$ 6 is a socket, similar in construction to the $X M-50$, designed for those tubes using the type UX base. Type XM-10.

List Price, $\$ 1.25$ 7 is one of the complete line of National Isolantite Receiving Sockets that fit all standard receiving tubes. Types 4 prong, 5 prong, 6 prong, 7 prong - small, 7 prons - large.

List Price, $\$.60$ each

8 is an Isolantite wafer socket for the Octal (metal) tubes.
Type 8 prong. List Price, $\mathbf{\$. 6 0}$ 9 is a new socket of Isolantite, modern in every detail; from the contact that grips the tube prong for its full length to the metal ring for six-position mounting. The sockets for glass type tubes have a stand-off insulator forcenter mounting on bread board layouts. Thi; line also includes an 8 prong socket (for metal tubes) with two metal stand-offs.
Type 4 prons, 5 prons, 6 prong, 7 prong-small, 7 prong-large, 8 prong (octal), CIR Series.

List Price, $\$.40$
10 is a square Isolantite coil socket designed to fit National 6 pin coils. A wafer type socket, similar to figure 6 , is also available.
Type 6 prongSquare Coil Socket. ListPrice, $\mathbf{S . 7 5}$ Type 6 prong Wafer Coil Socket. ListPrice, $\$.60$

NATIONAL BOWLS

Larger in size than the bushings listed above, these Steatite bowls are suitable for lead-in purposes and high voltages. Type XS-3 (Fits 23/4" Hole) List Price, per pair, $\$ 5.00$. Type XS-4 (Fits $33 / 4^{\prime \prime}$ Hole) List Price, per pair, $\$ 6.50$. Type XS-5 (with flange for bolting down, $51 / 4^{\prime \prime}$ Did.) List Price, each, $\$ 7.50$, per pair with metal fittings, $\$ 15.50$

NATIONAL LEAD-THROUGHS

The combination lead-through bushing and stand-off insulator pictured at the right is available either plain (Type GS-8, List Price, $\mathbf{\$. 3 5)}$) or with a jack (Type GS-9, List Price, $\mathbf{5 . 5 0}$). The bushings shown at the left are made in two sizes and are sold in pairs with the necessary metal fittings. Type XS-1 (Fits $1^{\prime \prime}$, Hole) List Price, per pair, \$.75. Type XS-2 (Fits $1 \frac{1}{2 \prime \prime}$ Hole) List Price, per pair, $\$.90$

NATIONAL STRAIN INSULATORS

The antenna insulator illustrated at the left is particularly suited to general use. It has a long leakage path, ample strength for all but the heaviest loads, and high efficiency. Made of Steatite. Type AA-6, List Price, \$.35. The small aircraft-type insulator at the right is ideal where compactness is desirable. Type AA-5, List Price, $\$.30$

NATIONAL SPREADERS

The Steatite spreaders at the right provide a six-inch line spacing, and when used with No. 12 wire will give feeders having a surge impedance of 600 ohms. Type AA-3, List Price, \$.30. The Isolantite insulators at the left when used to space $3 / 4^{\prime \prime}$ tubes $2^{\prime \prime}$ apart will give a " O " transformer matching a 72 ohm center-fed hallwave antenna to a 600 ohm line. Type OB, List Price, \$. 35

NATIONAL STAND-OFFS

With metal base and cap

Type GS. $1\left(1 / 2^{\prime \prime} \times 13 / 8^{\prime \prime}\right)$
Type GS-2 ($\left.1 / 2^{\prime \prime} \times 27 / 8^{\prime \prime}\right)$
Type GS-3 ($\left.3 / 4^{\prime \prime} \times 27 / 8^{\prime \prime}\right)$
Type GS-4 ($3 / 4^{\prime \prime} \times 47 / 8^{\prime \prime}$)
Type GS-4A ($3 / 4^{\prime \prime} \times 6^{\prime \prime}$)
Cone type, with internal thread at each end
Type GS-5 ($11 / 4^{\prime \prime}$) List Price, $\$.25$
Type GS-6 (2")
Type GS-7 ($3^{\prime \prime}$)
Type GS-10 ($3 / 4^{\prime \prime}$)
Per box of 10
List Price, $\$.45$
List Price, $\$.75$
List Price, 5.75

NATIONAL H.F. BUSHING

This small Steatite bushing has many uses in Amateur equipment. Type \times S-6

List Price, \$. 15

VICTRON SHEET AND COIL DOPE

The Loss Factor (0.2) of this non-hydroscopic material is $1 / 8$ of "Low-Loss" rubber and $1 / 90$ of the usual R.F. insulators. Its Power Factor is $.06 \%-.08 \%$. Ideal for mourting high frequency gear ard it is readily drilled or sawed. In color it is a transparent amber National Coil Dope, a special R.F. lacquer using this same Victron as a base, is icieal as a cement for holding windings in place as it will not spoil the properties of the best coil form.
$12^{\prime \prime} \times 6^{\prime \prime} \times 3 / 16^{\prime \prime}$ thick sheet. $12^{\prime \prime} \times 6^{\prime \prime} \times 1 / 8^{\prime \prime}$ trick sheet. $6^{\prime \prime} \times 3^{\prime \prime} \times 3^{\prime \prime} 16^{\prime \prime}$ thick sheet.
$6^{\prime \prime} \times 3^{\prime \prime} \times 1 / 8^{\prime \prime}$ thick sheet
Coil Dope, per can.
List Price, $\$ 6.00$
List Price, 5.00
List Price, 1.50
List Price, 1.25
List Price, 1.50

HRO A professional receiver, designed for maximum performance. Features include two higngain preselector stages giving exceptional signal to noise ratio, crystal filter, micrometer dial, S meter, AVC, Beat Oscillator. Approximate List Pricé \$350*. (Top row, left.)
NC-100A \& NC-101X Fine Communication Receivers with solendid tone. These 11 tube superheterodynes are self-contained except for the speaker. The NC-100A series (Top row, center) is ideal for broadcast reception as well as communication work. The NC-101X (Top row, right) covers only the amateur bands. Features include one stage of preselection, as well as complete communication equipment. Approximate List Price $\$ 200^{*}$

NC-80 \& NC-81 Excellent Communication Receivers at a moderate price. This inexpensive 10 tube receiver uses a 1560 KC IF amplifier, giving excellent imase suppression. Features include crystal filter and communication equipment. The NC-80 is for general coverage. The NC-81 covers only the amateur bands. (Middle row, left.) Approximate L'st Price \$165*.

NC-44 For capable performance at a very low crice. A seven tube superheterodyne with continucus coverage from 550 KC to 30 MC . A CW Oscillator is provided. (Middle row, right.) Approximate List Price $\$ 83^{*}$.

NC-510 A specialized suberheterodyne covering 28 to 64 MC . The NC- 510 (Middle row, center) is strictly a communication receiver, embodying all the features cormonly needed in such work, but is specialized to give maximum performance in the range from 28 to 64 MC . Acorn tubes are used. Approximate List Price $\$ 250.00$.

ONE-TEN A specialized receiver for the range from 1 to 10 meters. (Bottom row, left.) The ONE-TEN Receiver is ir.tended primarily for the Experimenter. It is a thorcughly satisfactory receiver for the ultra-high frequencies. Four tubes are used; RF, Superregenerative Detector, 1st Audio, and Output Audio.

SW-3 A dependable regenerative receiver. (Bottom row, second from lef:.) The SW. 3's seven year reputation for performance and dependability give it preference for mary classes of work. It uses three tubes in a highly developed circuit that provides maximum sensitivity and fiexibility.

POWER SUPPLIES National Power Supplies are specially designed for powering high frequency recervers, and include efficient filters for RF disturbances as well as hum frequencies. They are made in a variety of types.

LINEAR STANDARD transformers have guaranteed linear response from 30 to 20,000 cycles, ideal shielding and dependability. TYPICAL ITEMS:
LS-10X, tri-alloy shielded, multiple line to grid Net. LS-50, low level plate to multiple line. Net ... $\$ 12.00$ LS-55, 2A3's to multiple line and voice coil. Net 12.00

HIPERM ALLOY units are similar to LINEAR STANDARD components but employ a light-weight case, making them ideal for highest fidelity compact equipment.

TVPICAL ITEMS:
HA-100X, tri-alloy shielded, multiple line to grid. Net.... $\$ 10.50$
HA-111, crystal mike or pickup to line. Net.
HA-105, single plate to single grid. Net

FOR PORTABLE SERVICE

ULTRA-COMPACT units weigh
only $51 / 2$ ounces but have broadcast fidel. ity, within 2 DB from 30 to 20,000 cycles . ideal for remote pickup equipment. TYPICAL ITEMS:
A-10, universal line to grid. Net. . \$6.00
A-24, low level plate to universal line. Net
6.00

A-16, single plate to single grid. Net
4.80

UTC OUNCER UNITS weigh but 1 ource yet have high fidelity characteristics. Ideal for hearing aid, concealed service and dircraft.
TYPICAL ITEMS:

O-1, line to grid. Net
O-6, plate to two grids. Net
O-15, 10 to 1 interstage (voice). Net.
6.00

Camplete
rancspormer Line

FOR COMMERCIAL AND AMATEUR EGUIPMENT

VARIMATCH components include universal driver and output units for every transmitting and PA application.

TYPICAL ITEMS:
VM-4, 300 watts audio to any RF load. Net. .. \$19.50 PVM-2, 30 watts audio to line and voice coil impedances. Net
PA-53AX, P.P. driver tubes to $100 / 300$ watt grids. Net

PA POWER COMPONENTS
are designed to commercial standards, incorporating low temperature rise, and ample insulation safety factors.

TYPICAL ITEMS:
PA-108, Choke, 10 Hy .500 MA . Net.. 512.00
PA-303, Plate transformer. $1500-1235 \mathrm{~V}$. at 300 MA .400 V . ot 175 MA . for 2A3203A modulator. Net..... 15.00
PA-311, High power plate iransformer. 1500-1235 V. at 500 MA. Net. 21.00

FOR THE AMATEUR

SPECIAL SERIES components are shielded units designed specifically for amateur service and represent unprecedented value.

TYPICAL ITEMS:
S.5, line or mike to grid. Net. \$1.80

S-15, 12 watt universal output to line and voice coil. Net.
S-28, 100 MA filter choke. Net
2.10 S-48, plate transformer, 1500 E . S. - 500 MA . Net 11.70

UTC KITS are available for PA and transmitting applications up to 300 watts. PA units include VARITONE control, volume limiting and many other unique features. The SPECIAL SERIES units represent extreme value, specifically designed to the requirements of the amateur.

UNITEED TTMANSEORABEB GOBP.
72 SPRING STREET
NEW YORK, N. Y.
EXPORT DIVISION
100 VARICK STRELHR R NE WSHORM.
CABLES: "ARLAB"

RESISTORS

MOLDED WIRE WOUNDS

For filament center tap and low power bleeder and bias resistors. See page 89, October 1938, QST.

Molded in special heat resisting bakelite, insulated for 1000 volts to ground, and supplied with convenient clamp for mounting flat against the chassis; they are handy where space is important. The soldering lugs are convenient for mounting bypass condensers and wiring.

$\begin{gathered} \text { Rating } \\ \text { on Chasuls } \end{gathered}$	$\underset{\substack{\text { Reting } \\ \text { fiee }}}{ }$	$\begin{aligned} & \text { IRC } \\ & \text { TrDe } \end{aligned}$	Brachet Mounting Centers	Widih	Overall Revirience	$\begin{gathered} \text { Tapoad } \\ \text { al } \end{gathered}$	$\begin{aligned} & \text { Lisi } \\ & \text { Puca } \end{aligned}$
	$\left(\begin{array}{cc}9 & W 0 m \\ 18\end{array}\right)$	M-1034	$51 / 4$	118:*	95,000	$\left\{\begin{array}{l} 7500 \\ 10000 \\ 18500 \\ 15000 \end{array}\right.$	51.9:
5 Watus	21/4 Watts	MW-2	21/0	"180*	$\begin{aligned} & 10.90,50,75 \\ & 100 \text {, or } 900 \end{aligned}$	Centor	. 35

Power Type High frequency Resistors

For dummy and Rhombic Antennas, or wherever a resistor is needed with constant impedance up to a frequency of 100 megacycles; a new develop. ment consisting of a high grade ceramic tube with an extremely thin film of "Metallized" resistance material bonded to the outer surface - Discussed on Page 83, QST, May 1938. Ratings shown represent dissipation in free air - a maximum temperature of $140^{\circ} \mathrm{C}$.
Type MPO - 800 ohms, 50 watts, $11 / 8^{\prime \prime}$ diam. $\times 101 / 8^{\prime \prime}$ long.
NetPrice
NetPrice. .

Type MPR - 400 ohms, 150 watts, $q^{\prime \prime}$ diam. $\times 181 / 2^{\prime \prime}$ long.

TYPE PR-95 WATTS

For filament, or any voltage control. The all-metal construction of these units makes it possible to use them safely at full rated load. The 25 watt rating is based on e hottest spot temperature rise of only $140^{\circ} \mathrm{C}$. Units are 1^{21} ga" $^{\prime \prime}$ diam., ${ }^{31} x^{\prime \prime}$ " deep. Insulated shaft, positive pigtail connection to rotor arm, alloy contact shoe. smooth rotation, supplied complete with knob.

POWER WIRE WOUNDS

Power type resistors for high voltage bleeders, bias supply, grid, and flement dropping resistors, etc., Peaturing:

1. Tough, non-hygroseopic tubes.

2. High grade alloy wire, largest practical diameter, uniformly wound.
3. Rugged terminals, firmiy attached.
4. Special cement coating, protecting resistor in humid climates and severe overloads.
The use of fixed and adjustable resistors is noted in many of the preceding pases of this handbook and in January 1938, QST, Page 59, and February QST, Page 127.
The non-inductive resisters listed below employ the Ayrton-Perry method of winding, consisting of two interleaved windings in opposite directions. The small NAB is useful as a parasitic suppressor when power tubes are paralleled. It should be mounted as close as possible to the socket terminal.

$$
\text { Mounting brackets on all resistors } 25 \text { watts and up. }
$$

*Note: Wattage rating noted is for whole resistor. Rating for any section in proportion. Prices include one adjustable band. Extra bands: 10 ceach for $10,25,50$, and 80 watt sizes. $15 c$ each for 100 and 200 watt sizes.

INSULATED METALLIZED

TYPE BT. Ari IRC development. For all general requirenents. We have manufactured approximately one hundred million of these resistors. Stabie under varying conditions of voltage, temperature, and humidity. Extremely low noise level. Molded in bakelite. Available individually or in handy kit form in asteel Resist-O.Cabinet.

INSULATED WIREWOUND

TYPE BW. For low range applications. Molded in bakelite. Stable, stand severe overloads.

HIGH FREQUENCY METALLIZED

TYPE F. For U.H.F. receivers, low power transmitters and television sets. Approximately flat frequency characteristic. See QST, March 1938, Page 77.

$\begin{aligned} & \text { 景 } \\ & \text { 空 } \end{aligned}$	$\begin{aligned} & \text { IRC } \\ & \text { Iroe } \end{aligned}$	\mathbf{C} $\mathbf{\delta}$ \mathbf{E} \mathbf{E}						\#
1/2	BT-1/2	3/6x $5 / 1$	50	80,000,000	Below 7 megecreles	350	Melallized insulated	\$.17
1	BT-1	$1 / 4=11 / 4$	150	20,000,000	.	500	-	. 90
2	BT-2	$5 \times 11 / 4$	200	20,000,000	-	500	.	30
1/2	BW-1/2	3 5 5 $/ 1$. 05	750	*		Wite wound insulated	. 17
1	BW. 1	$1 / 4=11 / 4$	1.0	5,000	.		*	. 20
\pm	BW-8	${ }^{3} \times 13$	1.0	1,000	"		*	30
1/2.	F.1/2	*ข 1^{13}	50	10,000,000	Above 7	350	High	. 17
					megecycles,		frequency	
					television		metaflized	
1	F-1	${ }^{11} 5014$	100	10,000,000	*	500	-	. 90

2	$F-2$	$"=14$	50	$10,000,000$..	500	..

Note: Stenderd Tolerancer $\pm 10 \%$, Special $\pm 5 \%$ Tolerances Availeble.

PRECISION WIRE WOUNDS

TYPE WW. For meter multipliers and shunts and precision test equipment. Standard throughout the industry. Non-inductive "pie" wind ings on grooved ceramic orms, constant impedance up to 50,000 eycles, lowest possible temperature coefficient, thorough impregnaticn.
die cast terminal connecticns. Standard tolerance $\pm \mathbf{1 \%}$, closer tolerances available to \pm tio of 1%. Twelve types and sizes. See them at your jobbers - of write for catalog. Discussed in QST, A pril 1938, Page 65.

VARIABLE POTENTIOMETERS

For Volume, Tone, Sensitiv ity and Variable Bias Controls in Receivers, Amplifiers, and Oscilloscopes. The Type "CS"' Control comprises a hard, smooth, "Metallized" film bonded to bakelite, a 5 finger contactarm (each finger independent), and a positive pigtail connection to the rotor arm. Special attention is given to the assembly of these parts in a molded base these parts in a molded based dissipation $1 / 2$ watt over whole element. This control represents, in our opinion, the very latest advances in the art

STOCK RANGES

Renitance	Type No. Without Swith	Taper	Usual Application
500 Ohm:	$11-103$ 11.108	A	Potentiomoter Voltage Divider Potentiometer Voluge Divider
1.000	11.108	A	Potentiometur Voluse Divider
3,000	11.112	A	Potentiomeler Voltage Divider
4,000	11-113	A	Potentiometor Voluge Divider
5,000	11-114	A	Potontiomater Voluege Divider
5,000	13.114	C	Antonne Control
7,500	11-115	A	Potentiomater Vollage Divider
10,000	11-116	${ }^{\text {A }}$	*Antonna Grid Bias Control
10,000 -	13-116	c	Antonna Control
10,000 ...	14.116	D	- Antonne Grid Bias of $\frac{1}{}$ Tuber
15,000	14.118	D	- Antonna Grid gias Control
15,000	16-118	F	-Antenne Grid Bias Control
20,000	16-119	A	- Antenna Grid Blas Control
25,000	11.120	A	Potentiometer Voltage Divider
25,000	14.180	D	- Grid Biar Control
25,000	10.180	A	Antenna Control
50,000	11-123	A	Potentiomelor Vollage Divider
50,000	13-1193	C	Tone Control
75,000	13-125	C	Tone Control
75,000	14-195	D	-Grid Bias Control
100,000	11.128	${ }_{\text {A }}$	Potentiomalet Voltage Divider
100,000 \quad..	13-128		Tone or Audio Circuit Contiol
900,000 200000	11.199 14.189	A	- Cirid Bias Control
250,000	13.130	C	Tone of Audio Circuit Control
250,000 -.	+13-130X	${ }^{H}$	- Tapped Tone Compensation
250,000 \#̈.	14.130	D	- Grid Bler Control
500,000 ...	11-133	A	Potentiometer Volloge Divider
500,000 \quad.	13-933	C	Tone or Audio Cirsuit Control
500,000 ..	†13-133X	${ }^{\mathbf{H}}$	
1.0 Mgs	13-137	${ }_{\mathrm{C}}^{\mathrm{H}}$	Pone or Audio Clisuit Control
1.0	$\begin{aligned} & 13-137 x \\ & +V C-539 x \end{aligned}$	H	Tapped Tone Compensation Feder Control for fading out of
9.0	13-139	C	Tone or Audio Cirsuit Control
2.0	+13.139x	H	Tapped Tone Compensation
3.0	13.140	C	Tone or Audio Circuit Control
5.0	11.141	A	Potentiomater Voltage Divider
7.0	11.148	A	Potentiometer Vollage Dividet
10.0	11.143	A	Potentiometer or Rheostat

- A 300 ohm BT. $1 / 2$ (1/9-Wart) Insulated Metollized Resistor is included without additional charge with every Control indicated by an asterisk (') for use at external grid bias ${ }^{\text {ceintor }} \boldsymbol{\dagger}$ All Controls marked with an ${ }^{*} X$ " following the pert number are lepped.

Standard Control

 List PricesStandard Single Controls, without swiech (plain cover). \$1.00 Standard Tapped Controls, withou switch (plain cover) $\$ 1.50$

L-PADS and T-PADS
_-PADS (dual). Type J-976. 500 ohma. List. $\$ 2.50$ T-PADS (triple). Type J-977. 500
ohma. List

SWITCHES

No. 21 -Single Pole-Single Throw. List Prize 5.50
No. 22 -Double Pole - Single Throw. List Price 60
No. 23 -Single Pole -Double Throw. List Price 60
No. 24 - Three Point. List Price . 60
No. 25 - Four Point. List Price .

INTERNATIONAL RESISTANCE CO., 401 N. Broad St., Phila., Pa. IN CANADA: 187 DUCHESS SI., TORONTO, ONTARIO

Every amateur requirement is capably filled by these outstanding RCA tubes. Not only do they give you the advantages of advanced engineering design - they provide the finestinquality at prices you can afford to pay!

RCA PENTODES

The RCA lentodes are extremely popular for power amplifers wher suppressor-grid modulation is employed. They also make execellent erystal ossillators. In many 'irentits, Pentodes reduco number of tubes.

The R(A-802 is a power amplifier pentede that is popularly used as a erystal oscillator. In r-f amplifiers the low grid-plate ratgacitane of the R $\mathrm{RCA}-802$ eliminates the need for neutralization in adequately shiekded cireuits. Price 53.50 .

The RC'A-s(0) is a heave duty pentode, In ('lass " C " servier, it has a power output of 210 watts with 4.4 watte driving power. Price 834.50 .

The R(C.S-sot (illustrated) may' be used ats an r-f amplifur, fremurney maltiplier, oscillator, and sup-bressor-gyidor blatio-manlalatedamplifier. In shieleted rirenits, moutralization is generally unnecessary. price sis.(IV).

Amateurs have foumd that the RCA Triode (iroup of Power Tubes is exeellent for seneral purpose use. Ther are suitable for use as ospllators, amplifiers, frequener multipliers, and at-f modulators.

The RCA-sos is a mediun-power triode of the high-mu, thoriated-tumgsten filament trope. The phate emmertion is brought out through a separate seal at the top of the bulb, while the grid connection is brought out by a separate seal in the lower part of the bulb near the base. This insures good insulation and low interelectrode ataritances. In Class C toldegraphy service, the IRC'A-sos has a power sutput of 140 watts and requires only 9.5 watts driving power. Priee 87.75.
The RC.A-809 (illust rated) is an unusually populatr tube with the Transmiting Amateur. It may be operated at maximum ratings at frequencies as high as (6) megacycles. Two RC.A-sol)'s in a mash-pult eireuit deliver over 100 watts of r -f power to the antemnt. An outstanding value for $\$ 2.50$.

The RCA-833 is a high-mu friade of the thoriaterltungsten filament type. Because of its high proveance, it may be operated at high phate efficiones with low driving power. Its new design with past terminals provides a rugged structure and makes hases unneressary. It contains a minimum amount of insulation within the tube. Price $\$ 85.00$.

Stars of the TUBE LEAGUE!

RC (Inertifiors furnish the "power hehtind the signat" wherever amateur racho is fonnd. 'Thery are outstanding in perfommaner low in erst.
 Wave, mercurs-vapor rectifier tabere that are polnular for many amberot uses. The wifi has at maximum peak inverse rating of $\mathbf{- 5 0 0}$. whtm. while the sis6-. 1

 ier tube of the coaterl-filament trete. It is a husky, high-powered rectitier. ideal tor supplsing that onekilowat rig. It has a maximn m meth inverse ratimg of $10,0 \mathrm{~A} 10$ woles. Priew $\$ 11.100$.

RCA presents the Mayir ドey everg Sunday, 2 to ; P.M., E.S. T', on the NBC' Blue Network.

FIRST IN METAL• FOREMOST IN GLASS • FINEST IN PERFORMANCE

 RCI MANUFA CTURING ZON PANY, INC., CAMDEN, NEW JERSEY A SERVICE OF THE RADIO CORPGRATION OF AMERICA

New MULTI-UNIT Microphones

Cannot be Acoustically Overloaded

It is with pride that Astatic presents the new "MU' Series . . . miercphones comparable with the finest, regardless of type. Most appropriate frequency response for every broadcast requirement and public address installation. Veteran amateurs, along with professional and commercial users are praising the performance of this microphone which meets most exacting and critical demands.

Famous Crystal Pickups

B-10Aslatic Tru-Tan Model, B-10 Crystal Pickup for records to $19^{\prime \prime}$. True tone reproduction. List Price \$17.59.
216 Astatic professional Model B-16 Crystal Pickup for records to $16^{\prime \prime}$. List Price $\$ 27.50$.
0.7 Astatic's new Streamlined Model O.7 stallations. List Price \$6.50.

Directional or Non-Directional Model T-3 Microphone
In beauty, fexibility and performance, Model T-3 Crystal Mierophone is a proven leader in its price field, Its directional and non-directional characteristics add great practicability to remarkable performence.

Unique Tilting

Mount

Suspended crystal assembly prevents vibration or shock and offers improved lrequeney response. By rotating or tilting the head attached to unique titting mount, acoustic feedback may easily be controlled and the pickup made directional or non-directional, as desired. Complete with interchangeable plug and socket connector, 25 - ft . shielded rubber covered cable and spring protector. Polished ehromium finish.

List Price, $\$ 25.00$

> ASTATIC MICROPHONE LABORATORY,Inc. YOUNGSTOWN,O. Dremeer Manufacturers of 2ceality Crystal Products

H A M M A R LU П D

"MC" MIDGET CONDENSERS

Ideal variable for ultra-short wave and short wave tuning, laboratories, ete. Isolantide insulation. All contacts riveted or soldered. Vibration proos. New improved Hammarlund split type rear bearing, and noiseless wiping contact. Cadmium , plated soldered brass plates.

CODE	CAPACITY	LIST
MC-20-S	20 mml .	\$1.40
MC-35-S	35 mmf .	1.50
MC-50-S	50 mmf .	1.60
MC.50-M	50 mmf .	1.60
MC-75-S	80 mmf .	2.00
MC.75-M	80 mmf .	2.00
MC.100.S	100 mmF .	2.25
MC. $100-\mathrm{M}$	100 mmf .	2.25
MC.140-S	140 mmf .	2.50
MC.140-M	140 mmf .	2.50
MC-200-M	200 mmf .	2.75
MC-250-M	260 mmf .	3.00
MC-325-M	320 mmf	3.50
'M'—M	Pates	Pates

"M"—Midline Plates
"S"-Straight Line Cap. Plates

"MCD" SPLIT-STATOR CONDENSERS

Like single midgets, these incorporate every requirement imperative to highest qualitr. Specifications identical to single types except that shield plate is located between stator sections. Also equipped with new Hammarlund noiseless wiping contact and split type rear bearing. Overall length behind panel- $33 / 8^{\prime \prime}$. Strong Isolantite base. Single hole panel mount.

CODE

MCD-50-M CAPACITY

MCD-50-S
50 mmf . MCD-100-S MCD-100-M MCD-140-M 50 mmf . per sect . $\$ 3.00$ 100 mmf . per sect 3.50 MCD-140-S 140 mmf per sect. $4.00 .{ }^{4.00}$ " M^{\prime} "Midline Plates

"MCB' BAND SPREAD

CONDENSERS

For perfect band spreading or for amafeur band frequency meters. Tank section may be set and locked to any desired capacity. Tuning sections spread narrow capacity. Tuning sections spread narrow
frequeney range over entire dial regardless of range of bands or coils used. Tank capacity- 100 mmf ., Tuning cap. type " $120-\mathrm{B}^{\prime}$ " 20 mmf ., type " $150 \cdot \mathrm{~B}^{\prime \prime}$ - 50 mmf . Isolantite insulation at front and rear. Plates rigidly held in place.
CODE
MC-120-B
LIST
MC-150-B

"SWM" SHORT WAVE MANUAL

ENTIRELY NEW!

Contains up-to-the-minute constructional data on short and ultra-short wave receiv-ers-power supplies-transmitters-pre-selectors-converters-tuning hints and SW station lisk. All sets were built in the Hammarlund laboratories and thoroughly tested. Illustrated with photographs and wiring diagrams. Ideal for the beginner and old-timer alike.
CODE
LIST
SWM. 39.
.8 .10

"SM" STAR MIDGET CONDENSERS

For receiving and transmitting, for short wave tuning, regeneration, antenna coupling, vernier, etc. Low loss, natural bakelite insulation. Non-corrosive aluminum plates. Phosphor bronze spring plate affords proper tension and smooth control and also provides perfect contact. Single hole mounting. $1 / 4^{\prime \prime}$ shaft. $516^{\prime \prime}$ mounting bushing. $19 / 16^{\prime \prime}$ wide $\times 13 / 4^{\prime \prime}$ high. Depth behind panel from 11/16" to $17 / 9^{\prime \prime}$ depending on capacity. Exceptionallv light in weight and strong and compact in construction. Tinned soldered lugs on the front end are supplied to simplify wiring. Plates of straight line capacity types.

CODE	CAPACITY	LIST
SM-15	15 mmf .	\$.85
SM-25	25 mml .	85
SM-50	50 mml .	90
SM-100	100 mml .	1.00
SM-140	140 mmf .	1.25
${ }^{\text {S }}$ SM-35-X	35 mml .	1.00
*SM-50-X	50 mml .	1.25

* Double Spaced Transmitting Types

"MCDX" DOUBLE SPACEDCONDENSERS

Identical to split stator condensers except that plates are widely spaced-actual air gap between rotor and stator plates.0715". No shield between stators. Equipped with new Hammarlund noiseless wiping contact, and split type rear bearing. Condenser ideal for ultra-high Frequency transmitters using up to 245 's or 910 's in push-pull.

CODE
CAPACITY
LIST
MCD-35-MX 31 mmf , per sect.
$\$ 3.50$
MCD-35-SX 31 mmf. per sect. 3.50
"MX"—Midline Plates
"SX"-Straight Line Cap. Plates
"MCX" DOUBLE SPACED CONDENSERS

Exceptional unit for ultra-s.w. receivers and transmitters particularly compaet transmitters. Plate spacing-.0715". Great for tuning erystal controlled trans. mitter amplifier stages or for neutralizers up to 210's and 50 watters. In midline (MX) and straight line cap. types (SX).

CODE	CAPACITY	LIST
MC-20.SX	20 mml	\$2.00
MC-20-MX	20 mml .	2.00
MC-35-MX	32 mmf .	2.95
MC-35.SX	32 mml .	2.25
MC-50.MX	50 mml .	2.75
MC-50-SX	50 mml .	2.75
MC-100-SX	100 mmF .	3.5

HAmmARLUMD

"CF" ISOLANTITE COIL FORMS

Popular coil forms so many fans are using today. Black enameled wooden knob. Removable paper indicating dise protected by celluloid. Surface "non-skid." Plenty of holes-eliminates drilling. Slotted bottom for primary or tickler. Four, five, and six prong types. $11 / 2^{\prime \prime}$ diameter. $21 / 2^{\prime \prime}$ long exclusive of knobs and prongs.
CODE
 CF-5 (five prongs) $\$ 1.25$ CF-6 (six prongs).
1.25

"XP-53" COIL FORMS AND KITS

Outstanding forms using new low loss insulation material-XP-53. Natural coloring eliminating losses. Groove-ribbed for air spaced windings. Flange grips meter, indexes. Moulded threaded shelf in form $11 / 2^{\prime \prime}$ diameter and $27 / 8^{\prime \prime}$ long exelusive of prongs. Kits with wound coils for MC-140-M condenser also available.

CODE

LIST
SWF-4 (four prongs, coil form only) SWF-5 (five prongs, coil form only). SWF-6 (six prongs, coil form only)
No. 40 coil (wound coil, 4 prongs, $10-20$ meters) No. 41 coil (wound coil, 4 prongs, 17-41 meters) No. 42 coil (wound coil', 4 prongs, $33-75$ meters) No. 43 coil (wound coil, 4 prongs, $66-150$ meters). No. 44 coil (wound coil, 4 prongs, $135-270$ meters) BCC-4 (wound coil, 4 prongs, $\mathbf{2 5 0 - 5 6 0}$ meters). No. 60 coil (wound coil, 6 prongs, $10-20$ meters) No. 61 coil (wound coil, 6 prongs, 17-41 meters) No. 62 coil (wound coil, 6 prongs, $33-75$ meters) No. 63 coil (wound coil, 6 prongs, $66-150$ meter) No. 63 coil (wound coil, 6 prongs, $66-150$ meter). NCC. 6 (wound coil, 6 prongs, $950-560$ meters). SWK-4 (kit-4, four-prong coils, $17-270$ meters). SWK-6 (kit-4, six-prong coils, 17-270 meters).
.. $\left.\$ \begin{array}{l}.35 \\ \ldots \\ .35 \\ .40\end{array}\right)$

"TCF" COIL FORM

A transmitting coil form of XP-53 dielectric is also available. This may be permanently mounted on special brackets supplied, or in plug-in coil fashion. 21/4 diameter. $37 / 8^{\prime \prime}$ long exclusive of prongs. CODE
TCF-4 (4 prongs).
LIST
TCF-5 (5 prongs).
$\$.70$

"CF-M" ULTRA S. W. FORMS

Unusual coil form for maximum efficiency at ultra-high \{requencies or within the $98-56$ megacycle band. Isolantite with correct form factor and resultant minimum high frequency resistance guaranteeing absolute stability. Plenty of holes to facilitate any inductance desired and any type of wiring. Form is $11 / g^{\prime \prime}$ in diameter and $\mathbf{2}^{\prime \prime}$ long exclusive of prongs.

CODE

LIST
CF-5-M.
$\$ 1.00$

" ${ }^{\text {" }}$ ISOLANTITE SOCKETS

Standard socket at left. Lowest losses. Constant resistivity. Gripped prongscannot shift. Guide groove. Rust-prool side gripping contacts. Glazed top and sides. Sub-panel or base mounting. $21 / 4^{\prime \prime}$
$\times 15 / 8^{\prime \prime}$.

CODE

S-4 (4 prongs).
S. 5 (5 prongs)

S-6 (6 prongs)
S-7 (large base, 7 prongs). S-7-B (small base, 7 prongs) S-8 (8 prongs)
Acorn socket at right. Isolantite. For new high frequency acorn tubes-954 or 955. $17 / \mathrm{g}^{\prime \prime}$ diameter. Five double grip silver plated phesphor bronze prongs. Top, CODE sides, and plug glazed.

"ATT" AIR TUNED I. F. T.

Air tuned primary and secondary units with plate and grid coils of Litz wire. Exceptional " Q " of 115. Coupling co-efficient 0.77%. Gain in excess of 200 per stage together with unequalled selectivity. For 57 's, 58 's, 24 's, 35 's, etc. Center tapped units also for split input tubes. Shield $23 / 32^{\prime \prime} \times 5^{\prime \prime}$ high.
CODE FREQUENCY LIST
ATT-175 175 kc.................... . $\$ 4.50$
ATI-465 $465 \mathrm{kc}$.
ATI-175-CT 175 kc . (center tapped), 4.50 ATT-465-CT 465 kc . (center tapped)..... 4.50 ATO 465 kc . (beal oscillator).
4.50
4.50

"VT"' VARIABLE COUPLING I. F. T.

Outstanding transformers with new variable coupling feature. Approximate range of variation from $1 / 3$ critical coupling to over 3 times critical coupling with circuit constants unaffected. Continuous variation between these limits controllable from panel. Thumb screw lock for any desired setting. Impregnated 3 -pie Litz windings on Isolantite core. Exceptionally high " Q " of 130 . $9^{\prime \prime} \times 9^{\prime \prime} \times 5$ ". Transformet without variable coupling feature (minimum coupling) also available. Same size as model just described known as VIF. A beat oscillator type to match this fixed type also available, known as VTO. CT typestype also arail
center tapped.

CODE	FREQUENCY	LIST
VT-465	465 kc.	\$5.50
VT-175	17	5.50
VTC (variable	pling mechanism for panel	
transformers).		2.50
VTF-465	. 465 kc.	4.50
VTF-175	.175 ke.	4.50
VTO-465	465 kc.	4.50
VTF-465-CT	465 kc	4.50
VTF-175-CT	. 175 kc	4.50

"T" AND "ST" I. F. T.

For experimental and replacement in superheterodyne midgets, automobile sets, etc. "T" and "ST" type with tuned grid, tuned plate, lattice wound impregnated coils. "ST" type- $23 / 4$ " high $\times 17 / 16$ " square. Type "T" model- $21 / 8$ " diam. x $31 / 8$ " high. Type "ST" illustrated at left. Litz wire in 465 kc , type. CODE FREQUENCY LIST ST or T-465 465 kc. $\$ 1.65$ ST or T-175 175 kc......................... 1.65 SI or T-465-CT 465 kc . (center tapped)... 1.65 $\begin{array}{lll}\text { ST or T-175-CT } & 175 \mathrm{kc} . \text { (center tapped).... } & 1.65 \\ \text { ST-862 } & 262 \mathrm{kc} . ~ & 1.65\end{array}$

ALUMINUM TUBE AND COIL SHIELDS

Complete isolation afforded by this tube shield shown at left, for full use of enormous amplification available from new high gain 2.5 and 6.3 volt R.F. pentodes. Special drawn-in neck completes shielding between control grid and plate. Removable top entirely shields control grid cap. Body, cap, and base all of heavy aluminum and designed for maximum cooling. Measures $45 / 8^{\prime \prime}$ high $\times 15 / 8^{\prime \prime}$ diameter. Mounting center $127 / 32^{\prime \prime}$
CODE
TS-50.
LIST

The Hammarlund coil shield shown at right is a very effective housing for coils. It is constructed of heavy aluminum and is a 2-piece affair. It is $3^{\prime \prime}$ in diameter. Base has mounting holes.

CODE

CS. 3

＂EC＂AND＂MEX＂EQUALIZERS

Standard type illustrated at left，popular model for neutralizing，balaneing and trimming．Mica dielectric－phosphor bronze flexible plates，bakelite base $11 / 4^{\prime \prime} \times 11 / 16$ ．

EC－80 $\quad \mathbf{2 5 - 8 0} \mathbf{m m f}$ ．
.40
The midget equalizer shown at right is an extremely small condenser designed expressly for trimming R．F．coils，but useful，of course，for many other pur－ poses．Self－supporting in wiring．Iso－ lantite base－ $5 / 8^{\prime \prime} \times 3 / 4^{\prime \prime}$ ．Mica dielectric， phosphor bronze spring plates CODE CAPACITY

MEX
3－30．．
LIST
＂MICS＂PADDING CONDENSERS
New improved type－with Isolantite base．Most expensive imported mica

 used．Tested for capacity，power factor and breakdown at 500 V．D．C． $1^{\prime \prime} x$ $15 / 8^{\prime \prime}$ ．Base mounting centers $11 / 4^{\prime \prime}$ CODE CAPACITY LIST MICS－70 $\quad 10-70 \mathrm{mmf} . . . \$.50$ | MICS－7 | 10－ | 70 mmf．．．． |
| :--- | ---: | ---: |
| MICS－140 | $70-50$ | | MICS－220 140－220 mmf．．．． 70 MICS－1000 $\quad 600-1000 \mathrm{mmF} . . . \mathrm{I} \quad 1.00$

＂CTS＂PADDING CONDENSERS

Compact Isolantite base padder or trimmer for use in all R．F．and oscillator circuits． Metal parts plated to eliminate corrosion． Base is treated against moisture absorption． Heavy India ruby mica insulation for 500 volts．Dimensions $13 / 16^{\prime \prime} \times 11 / 16^{\prime \prime}$ ． Mounting centers 15／16．

CODE	CAPACITY	LIST
CTS－85	25.135 mmf ．	\＄．50
CTS－160	$45-260 \mathrm{mmf}$ ．	． 60
CTS－230	65.350 mmf ．	． 60
CTS－380	175.550 mmF ．	． 75
CTS－5 25	$230-800 \mathrm{mml}$ ．	． 80

＂QTD＂DUAL R．F．TRIMMERS

Same precision construction as CTS．De－ signed especially for tuning I．F．transform－ ers but sections can be connected in series or parallel for a wide range of capacities and voltages．Mounted on moisture－proof Isolantite．Size is $111 / 32^{\prime \prime} \times 111 / 32^{\prime \prime}$ ； mounting centers $7 / 8^{\prime \prime}$ ．Atso single hole mounting．

CODE	CAPACITY	LIST
QTD－100	$20-100 \mathrm{mmF}$	\＄ 70
OTD－250	$55-250 \mathrm{mmf}$	． 80
QTD－450	$100-450 \mathrm{mmf}$	． 90
QTD－600	$170-600 \mathrm{mmF}$	1.00

＂FC＂FLEXIBLE COUPLINGS

This coupling permits tandem operation of any number of independent units without requiring exact shaft alignment．A great convenience and time saver．The sides of the coupling are in－ sulated from each other，allowing instruments in gang to be operated as independent electri－ cal units．Bakelized canvas with brass bushings for $1 / 4^{\prime \prime}$ shaft．Four rust proofed and hardened steel set screws provide against shaft slipping． Overall diameter $11 / 2^{\prime \prime}$ ．
CODE
FC．
 ＂CH－500＂TRANS－
MITTING CHOKES equivalent impedance more than 500 them and 6,400 and between 8,000 and 9,000 ．Six thin universal pies． Isolantite core．Insulated mounting brackets secured to Isolantite core with short machine screws．Brackets removable and choke mounted with a single machine screw．Ind．－ 2.5 mh ．Dist，cap．less than 1.5 mmf．D．C．res．－ 8 ohms．Max．recommended D．C．（continuous） 500 ma．Overall size，less brackets－1 $3 / 16^{\prime \prime} \times 21 / 2^{\prime \prime}$
CODE
LIST
CH－500．
$\$ 1.75$

＂CH－8＂ISOLANTITE R．F．CHOKES

For S．W．and ultra－S．W．receivers and transmitters．Efective ove broadeast band too．Recommended as grid choke for multistage trans－ mitters．Isolantite spool．Four sectionalized windings，moisture proofed，protected by radio fre－ quency lacauer and cellophane covering．Choke $13 / 8^{\prime \prime} \times 7 / 8^{\prime \prime}$ ． Flexible leads．Removable brackets．Ind．－8 mh．D．C．res．－ 70 ohms．Dist．cad． 3 mmf ．Curfent cartying cap． $\mathbf{1 2 5} \mathrm{ma}$ ．

CODE
LIST
CH． 8
$\$ 1.10$

＂CH－10－S＂R．F．SHIELDED CHOKES

For use in high gain circuits．Universal impregnated wound pies enclosed in an aluminum shield $11 / 2^{\prime \prime}$ high $\times 13 / 8^{\prime \prime}$ in diameter．Mounting legs on $111 / 16^{\prime \prime}$ center．Connections to terminal are on one side of the can properly indicated Inductance－ 10 mh ．D．C．resistance－ 65 ohms．Current carrying cap． 100 ma ． CODE

LISI
CH－10－S
$\$ 1.00$

＂RFC＂HIGH IMPEDANCE CHOKES

CODE
RFC－85 ．．
RFC． 250.
Popular R．F．choke with special impregnated helical winding enclosed in bakelite case $113 / 16^{\prime \prime}$ high and $15 / 16^{\prime \prime}$ in diameter． Ideal for detector plate circuit and R．F．filter－ ing systems in general．Two types－ 85 mh ． with dist．cap．of 3 mms ．and D．C．res．of 215 ohms，and 250 mh ．with dist．cap．of 2 mmf ． and D．C．res．of 420 ohms．Cuprent carrying cap．of both types 60 ma ．
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2.25

＂CH－X＂R．F．MIDGET CHOKES

Invaluable item where space is at a premium．It is so small in size and light in weight that it can be supported by own leads．Five impregnated universal wound pies $1 / 4{ }^{\prime \prime}$ ．Impreg－ nated Isolantite core insuring ruggedness and stability Ind．－2．1 mh．D．C．res． $\mathbf{3 5}$ ohms．Dist．cap．－1 mmf Current carrying cap． 125 ma ．Length across caps $11 / \mathbf{g}^{\prime \prime}$ Dia． $1 / 2^{\prime \prime}$ ．
CODE
LIST
$\overline{\mathrm{CH}}-\mathrm{X}$ ．
.5 .60

HAMMARLUND MANUFACTURING CO．，INC．，424－438 West 33rd Street，New York Cify

"TC" TRANSMITTING CONDENSER

An entirely new moderately priced, heavy duty transmitting condenser, featuring heavy aluminum end plates, Isolantite insulation, non-inductive, self-cleaning silver plated beryllium contacts, full floating rotor bearing, non-masnetic rotor assembly, polished heavy aluminum plates accurately, spaced. All, except type " L," have round edge plates of 040 " thickness. Type "L"' has .025 " plates with plain edges. Type " F " has 230 " 7500 V . air gap. Type "G,". 200 ", 6750 V . Type "H," 171", 6000 V . Type "J," $100^{\prime \prime} 4250 \mathrm{~V}$. Type "K," .084", 3750 \mathcal{V}. Type "L," $070^{\prime \prime}$ ", 2000 V . air gap.
Available in a wide variety of capacities and peak voltages, these condensers are ideal for modern up-to-date transmitters with power outputs ranging from 200 watts to 1 kw .

OVERALL			
TYPE	CAPACITY	LENGTH	LIST
TC-220-L	220 mmf .	$41 / 16$	\$ 4.50
TC-440-L	465 mmf .	57/8	7.70
IC-90-K	95 mmf .	$2^{15 / 16}$	4.50
IC.165-K	170 mmf .	$41 / 16$.	6.50
TC-220-K	225 mmf .	45/8	8.00
TC-290-K	300 mmf .	$57 / 8$	9.50
TC-330-K	340 mmf .	$61 / 2$	10.00
TC.240.J	250 mmf .	$61 / 2$	10.20
TC.25-H	25 mmf .	$2^{15 / 16}$	3.50
IC.50.H	53 mmf .	$41 / 16$	6.00
IC.110-H	115 mmf .	61/2	9.00
IC-18-G	80 mmf .	$2^{15 / 16}$	5.20
TC-40-G	45 mmf .	41/16.	7.00
TC.65.G	72 mmf .	57/8	8.80
TC.100-G	110 mmf .	$71 / 2$	11.20
TC.150-G	165 mmf .	105/8	14.80
TC-55-F	60 mmf .	57/8	8.00

"TCD" SPLIT-STATOR TYPES

These split-stator transmitting condensers are identical to the singles shown above, except that the stator sec: tions are individual. Ideal for push-pull power amplifiers ransing in power up to 1 kw . They are of conven. ient size and lend themselves so construction of compact apparatus. Overall dimensions in back of panel are given in the accompanying table. The capacity values listed are for each section. The last letter in the code represents plate spacing and peak voltage. These are identical to those given above. Type " M " - plain plates, $030^{\prime \prime}$ " air gap.

OVERALL			
TYPE	CAPACITY	LENGTH	LIST
TCD-500-M	505 mmf .	$41 / 16$	\$ 6.50
TCD-80-L	88 mmf .	$41 / 16$	5.50
TCD.910-L	215 mmf .	57/8	8.25
TCD-90-K	95 mmf .	45/8	7.50
TCD-165-K	170 mmf .	61/2	11.00
TCD-325-K	335 mmf .	$11^{1 / 16}$	20.50
TCD-240-J	250 mmf .	$111 / 16$	19.00
TCD-50.H	53 mmf .	$61 / 2$	9.80
TCD-110-H	115 mmf .	$11^{1 / 16}$	16.00
TCD-40-G	48 mml .	$71 / 2$.	10.50
TCD.75.G	82 mmf .	111/16	14.50
TCD.55-F	60 mmf .	111/16	13.50

"HF" MICRO CONDENSERS

For tuning or trimming on high frequencies. Cadmium plated soldered brass plates. Isolantite. Base mounting, single hole panel mount, or panel mounting with bushings: 140 mmf size $19 / 32^{\prime \prime}$ high $\times 17 / 32^{\prime \prime}$ behind panel.

CODE	CAPACITY	LIST
HF-15	17.5 mmf .	\$1.25
HF-35	35 mmf .	1.50
HF. 50	50 mmf .	1.60
HF-100	100 mml ,	1.90
HF-140	140 mml .	2.25
*HF-15.X	15 mmf .	1.60
*HF-30.X	30 mmf .	1.85

"MTC" TRANSMITTING CONDENSERS

Compact trpes, Isolantite insulation. Base or panel mounting. Polished aluminum plates. Stainless steel shafts. Size of 150 mm ? with $070^{\prime \prime}$ plate spacing only $45 / 8$ " behind panel. " A " model has .040" plate model has .040' plate thickness, all others .025".
"A" and "B" modelsrounded plates. "C" types -plain plate edges. Self. cleaning wiping contact.

CODE MTC.35-A MTC.20-B MTC-35-B MTC-50-B MTC-100-B MTC-150-B
MTC-50-C
MTC-100-C
MTC-1 50.C MTC-250-C
MTC.350.C

CAPACITY
35 mmf .
20 mmf .
35 mmf .
50 mmf .
100 mms .
150 mmf .
50 mmf .
100 mmf .
150 mmf . 260 mmf .
365 mmf .

LIST $\$ 6.00$
3.25 3.50 3.90 5.00 6.10 2.80
3.05
3.20
3.60
4.00

"MTCD" SPLITSTATOR TYPES

Same outstanding features as MTC singles except that stator sections are separate. Model 110-B with 070° plate spacing, only $53 / 4$ " behind panel. " B " models —rounded plates "C" mod. els-plain plate edges.

CODE MICD-20-B MTCD.35-B MTCD.50-B MTCD.100-B MTCD.50-C MTCD.100.C MTCD-150.C MTCD.250-C

CAPACITY
20 mmf . per sect.
LIST
.......... $\$ 5.25$
35 mmf . per sect.
5.75

50 mmf . per sect. 6.50

100 mmf . per sect. 8.75
50 mmf . per sect. 4.50
100 mmf . per sect.
5.00

150 mmf . per sect.
265 mmf . per sect.
6.00

"HFD" MICRO DUAL CONDENSERS

A compact dual-ideal as a high frequency tuning condenser, for tuning and neutralizing low-pow. ered short wave and ultra-short wave transmitters, efc. Heavy Isolantite base. Equipped with new oulstanding Hammarlund split rear beating and individual noiseless wiping contact for each secseveral positions for shortest tion. Rotor contacts variable to grounding. The 140 mmf . size is only $11 / 2^{\prime \prime}$ high $\times 33 / 4^{\prime \prime}$ long behind panel. $1 / 4$ " shaft. Cadmium plated soldered brass plates.

CODE	CAPACITY	LIST
HFD. 50	50 mml . per sect.	\$2.75
HFD-100	100 mmf . per sect.	3.95
HFD. 140	140 mmf . per sect.	3.75
*HFD-15-X	15 mmf . per sect.	3.00
*HFD-30-X	28.5 mmf . per sect.	3.25
	*Double-Spaced	

PA-300 FOUNDATION UNIT

This foundation kit is designed to make it easier for the amateur to build his own transmitter. The entire unit is self-supporting and can be bolted to the front panel of the transmitter. No chassis is required; thus the difficult task of drilling and machining is eliminated. The only tools necessary to put the PA- 300 together are a screw-driver and soldering iron. The parts are placed so that connecting leads are short and direct, making the amplifier extremely efficient. It can be used with any of the popular triodes, such as 808's, RK-37's, 35-T's, T-55's, HK-54's, and many others. The output varies between 100 and 300 watts depending upon the type of tubes employed. The PA- 300 consists of all brackets, screws nuts, lockwashers, etc., and is packed complete with instructions and drilling template. Other Hammarlund parts needed: 1-MTCD-100-B; 1-MTCD-100-C; 2-N-10; 1-CH-500; 2-S-4; 1—S-5; 4-SWF-5. Overall dimensions $13^{\prime \prime} \times 81 / 2^{\prime \prime} \times 8^{\prime \prime}$.
CODE
LIST
PA-300-Foundation Unit.

BD-40
 BUFFER-DRIVER

The BD-40 is a driver unit intended for use with the PA- 300 but can also be used as a low power output stage in a beginner's transmitter. Employs either an 807 or RK- 39 beam tube. The output in either case is approximately 40 watts. A multistage transmitter can be constructed around these units providing an economical compact all-band transmitter. All brackets are drilled for standard Hammarlund parts. Holes for mounting the by-pass condensers and other parts such as R.F. choke and plate blocking condenser are provided. The BD-40 includes all hardware such as brackets, shield plate and tube shield, screws, nuts, lockwashers, instructions and drilling template. Other Hammarlund parts needed: 2-MTC-$100-\mathrm{C}_{i} 2-S .4,1-\mathrm{S}-5,1-\mathrm{CH}-\mathrm{X} ; 8-\mathrm{SWF}$-4. Overall dimensions $81 / 4^{\prime \prime} \times 71 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$. CODE

PTS POWER TUBE SHIELD

This tube shield is used in the BD-40. It is designed for transmitting pentodes and tetrodes such as the 807, RK-39, 804, RK-20, and many other similar tubes which require an external shield for best results. Constructed of heavy aluminum, this shield is drilled for standard Hammarlund sockets ond has silver-like satin finish. Size $21 / \mathbf{4}^{\prime \prime}$ diameter $\times 3^{\prime \prime}$ high.
$\$ 0.40$

XS-2 CRYSTAL SOCKET

A very compact ciystal socket designed to mount inside SWF coil form for changing coil and crystal in one operation. This is suitable lor all tri-tet eireuits and is used in our "OD-10" oscillator doubler unit. Two special re-inforced socket clips insure perfect electrical connection. Isolantite base. Can be used with SWF coil forms or separately in apparatus where space is at a premium. Ideal for portable equipment. Measures only $13 / \mathbf{g}^{\prime \prime}$ in diameter. Two hole mounting centers 15 16".
CODE
LIST
XS-2.
.$\$ 0.50$

"N" NEUTRALIZING CONDENSERS

Improved neutralixing condensers with heavy polished aluminum plates. Rounded edges. Isolantite. Fine adiusting screw. Positive lock. Horizontal adjustment. Type "N-10", $25 / \mathrm{g}^{\prime \prime}$ high $\times 13 / 16$ " deep. "N-15"' $415 / 16$ " high $\times 31 / 2$ ", deep. "N-20", $511 / 16$ " high $x 4$ " deep.
CODE LIST
N-10-(2.1-10 mmf.) $\$ 3.00$
N-15-(3.2-14 mmf.)......... 6.00
N-20-(3.8-14 mmf.). 6.50

ETU EXCITER

 TUNING UNITThese handy exciter tuning units are ideal for constructing nigh frequency I.F. transformers for U.H.F. superhets and for use in transmitter exciter units. Has two 25 mmf . HF type condensers mounted on an Isolantite block. These are double spaced and have a heavy shield plate between them. The blank coil form is of low loss material $7 / 8^{\prime \prime}$ in diameter and $2^{\prime \prime}$ long. Supplied complete with heavy shield' can. Measures $2^{\prime \prime} \times 17 / 16^{\prime \prime} \times 4^{\prime \prime}$. CODE LIST
ETU. .
$\$ 4.00$

OD-10 OSCILLATORDOUBLER

This unit is essentially the same as the BD-40 except that it uses a 6L6-G tube, has no tube shield, and no vertical coil shield. Has the same overall dimensions and the same panel mounting specifications. This is a "tri-tet" crystal oscillator and doubler. This unit also employs a special crystal holder socket which fits into the top of the cathode coil form. Both coil and erystal are changed in one operation. OD-10 consists of all brackets, serews, nuts, lockwashers, instructions and drilling template. Other Hammarlund parts needed: 2-MTC-100-C; 2-S-4; 1—S-8; 1-CH-X; 2—SWF-4; 1—XS-2. Size $81 / 4 \times 11 / 2^{\prime \prime} \times 31 / 4^{\prime \prime}$
CODE
LIST
OD-10-Foundation Unit . $\$ 2.80$

5

ESTABLISHED FACTS . . . (1) Most tube failures are caused by gas released internally. (2) Excessive heat releases gas from certain types of tube elements . . . especially internal insulators. (3) High anode temperatures alone do not destroy emission. (4) The use of a chemical agent or "getter" is not necessary to obtain good vacuum. (5) "Getter" may release gas that will destroy emission.
EIMAC DEVELOPMENTS . . (1) Plates and grids made of tantalum because it has the smallest original gas content of any known metal. (2) Eimac developed a new process which removes this small gas content from tantalum . . . renders it completely degassed. (3) Eimac tubes undergo a long, severe exhaust . . NO "GETTER" is employed. (4) New, radical design greatly reduces inter-electrode capacities and entirely eliminates the use of internal insulators. (5) A new type thoriated tunysten filament possessing the highest possible thermionic efticiencies, longer life and uniformity. (6) Eimac tubes are conservatively rated as to plate dissipation and are miconditionally guaranteed against tube failure caused by gas released internally. Momentary overloads of from 400% to 600%, which are sufficient to cause the anode to become incandescent, will positively not release gas.

KY21GRIDCONTROL RECTIFIER
 Net Price $\$ 10$

Ky'2l is a mercury vapor rectifier to which has been added a control electrode, or grid. Used as a rectifier and as a pouer control tube. Very small control power is needed and when properly handled KY21 tubes will eliminate "key clicks," permitting high power operation in congested areas. D.C. output 3500 volts at 1.5 amperes.

RX21 RECTIFIER

Net Price $\$ \mathbf{7 . 5 0}$
A mercury vapor rectifier possessing unusually high inverse voltage capabilities. D.C. output 3500 volts at 1.5 amperes.

2507

harvey radio

HIGH FREQUENCY

TRANSMITTERS

FOR AMATEUR AND COMMERCIAL SERVICES

The latest and finest in high frequency radio transmitters - the new Harvey 1939 models are presented in this catalogue. The cabinets are re-designed for greater beauty, compactness and convenience. Our research laboratories have again led the field in introducing technical improvements and refinements. The most exacting operator, we believe, can find no better equipment for his needs.

HIGH FREQUENCY TRANSMITTERS

UHX-10 TRANSMITTER

Amateurs, expeditions and airlines in many countries, have all found the UHX-10 to be an ideal unit where a low power, multi-band transmitter is required.

The compact cabinet contains a versatile 6L6 oscillator connected for either pentode, tri-tet or electron coupled control. This tube directly drives a second 6 L 6 as power amplifier operating at 20 watts input. Two 6N7 tubes as class B modulator and driver respectively complete the tube line-up. Coils for the various bands ($5-160$ meters) can be quickly and easily changed by lifting the hinged cover of the cabinet which is finished in slate gray with chrome trim. The transmitter can be operated from either an AC pack or 6 volt dynamotor.

Investigate the UHX-10!

700-R TRANSMITTER

Discriminating operators who are satisfied only with the finest in radio equipment will find the $700-\mathrm{R}$ the last word in beauty and performance. Many prominent Amateurs accord this transmitter highest honors when it comes to clear, powerful signals received in all corners of the globe.

All control circuits are so simplified that operation of the 700-R is as easy and straightforward as in any of the lower powered models. Interlock switches protect the op-
erator from injury when making adjustments at the rear of the transmitter and all circuits are under perfect control when the high-low voltage switch is used for tuning up purposes. You will like the appearance of the attractive meters and the convenience of the built-in modulation monitor mounted on the top panel.

Those desiring the peak power possible under present regulations will be pleased to learn that the $700-\mathrm{R}$ can also be furnished for plate modulation permitting a full CW and Phone input of one kilowatt on all bands. For the ultimate in equipment choose the 700-R.

harvey radio laboratories, inc.

25 Thorndike St., Cambridge, Mass.

HIGH FREQUENCY TRANSMITTERS

75-T TRANSMITTER

The 75-T combines dependability, power and low cost in a table model which meets every requirement for an efficient, attractive installation. This is the transmitter which is so enthusiastically received by amateurs and other services everywhere because it gives you a powerful CW signal on five bands yet has sufficient Phone output to work great distances.

All circuits have been simplified so that there are but three circuits to tune exclusive of the antenna matching network. Changing coils is easily accomplished through the hinged cabinet cover, and, as you might expect, there are no neutralizing adjustments. A 6 V 6 comprises the crystal oscillator section followed by a 6 L6 frequency multiplier driving an RCA 804 tube to 125 watts input. An economical suppressor grid modulator provides an 18 watt phone carrier which will surprise the most skeptical operator as to its power and punch on all bands.

The main power supply is external to the transmitter itself and may be installed in any convenient position where space is available. The power chassis is housed under a grille cover for safety as well as ventilation.

Customers interested in a self-contained transmitter of this type should specify our 80-T model which is identical to the 75-T in every respect except cabinet size.

100-T TRANSMITTER

An aristocrat in every sense of the word, the 100 - T will open your eyes to a new high in transmitter performance. Imagine an 85 watt Phone and 125 watt CW transmitter completely self-contained in a cabinet measuring only 19 inches high and 14 inches deep - compact enough to rest on your table, yet capable of the best there is in the way of DX.

The transmitter is comprised of two panel decks, the top portion housing the RF section and its power supply and the lower section containing the complete modulation and audio equipment. The modern cabinet has a hinged cover for easy coil changing. A 6 V 6 crystal oscillator is followed by a 6L6 frequency multiplier driving asingle RCA 814 beam power tube as modulated amplifier on 5 bands. Two 807 tubes are used as class B modulators preceded by a speech amplifier consisting of a $6 F 6,6 \mathrm{C} 5$ and 6 J 7 .

The excellent design of the $100-\mathrm{T}$ has reduced the number of controls to a minimum yet when you see and operate it you will agree that nothing has been omitted which makes for easier and better performance.

harvey radio laboratories, inc. 25 Thorndike St., Cambridse, Mass.

490
$\left[\begin{array}{c}\text { catalog } \\ \text { section }\end{array}\right]$

HARVE HIGH FREQUENCY TRANSMITTERS

UHX-25 TRANSMITTER

The new UHX-25 has everything you could ask for in performance, price and appearance. Nothing has been omitted to detract from your operating enjoyment. From the chrome trimmed cabinet to the rugged chassis, it looks and is an outstanding value in the transmitting field.

For efficiency and high output, the popular 6 L6 is used as crystal oscillator followed by a second 6 L6 as frequency multiplier which in turn drives an 807 final amplifier to 50 watts input on all bands ($5-160$ meters). The final amplifier is plate modulated by a pair of 6 L 6 G tubes preceded by a 6 C 8 G and 6 J 7 as speech amplifiers. This modern combination of tubes permits the use of a high gain crystal microphone which is so important for clear, crisp speech.

You will be pleasantly surprised at the convenient location of all panel controls. Meters, excitation control, Phone-CW positions, and all switches are right before you at your fingertips. Key and microphone jacks as well as antenna posts are at the rear out of sight as they should be. Band changing is but a matter of seconds. No cabinet to pull out from the wall - no rear adjustments to make. Just lift the cabinet cover and choose your band.

Because both RF and audio sections are on one chassis, the UHX-25 has unlimited possibilities as an exciter for higher power whenever desired. You will find the UHX-25 in many prominent stations this year, some as transmitters, some as exciters, but in both cases delivering dependable operation day in and day out.

POLICE EQUIPMENT

We specialize in Two-way Police Radio Equipment properly designed and resonably priced for both large and small Departments. The number of Harvey installations now in operation is positive proof of the satisfactory results obtained under the exacting requirements of Police Service. Quotations gladly furnished upon request.

MARINE RADIO-TELEPHONE

The convenience and safety afforded boat owners using Harvey marine telephone equipment can only be equalled by the utility of the land telephone itself. Call your friends, office and home ashore, or other boats similarly equipped direct from your own cabin - indispensable in times of emergency. Several models are available for boats of all sizes.

NOTE - All Harvey Police and Marine equipment is properly licensed!

Export: 25 Warren Street New York City Cable: "Simontrice'

HARVEY RADIO LABORATORIES, INC.
 25 Thorndike St., Cambridge, Mass.

the hallicrafters inc.

The SKYRIDER DIVERSITY model Dd-I

A Dual Diversity Receiving Systeme

Diversity reception is not entirely new to radio engineers. Commercial radio stations have built Diversity Receiving Systems at great expense, with striking improvements in the quality of short wave reception.
Briefly, the advantages of diversity recention are in the practical elimination of fading effects, and a considerably higher average signal-to-noise ratio than can be obtained from any single receiver.
Diversity systems consist usually of individually tuned receivers, each connected to a separate antenna, the second detector outputs of which are tied together across a common load, and the signals combined after rectification with the resulting audio output equalling the average of all receivers. This type of Diversity receiving system is satisfactory for commercial use where reception is mostly on a single frequency for hours at a time - but highly unsatisfactory for amateur communications work, when the individual tuning is entirely too complicated and time consuming to be practical.

In an efiort to provide the amateurs with the demonstrated advantages of Diversity reception in practical and easily operable form, Mr. James J. Lamb (Technical Editor QST), Mr. J. L. A. McLaughlin and Mr. Karl W. Miles (Hallicrafters) have spent several years in intensive work on this subject.
The SKYRIDER DIVERSITY is the culmination of their efforts, and offers Diversity reception in practical form for amateur operation for the first time. It is a single control Dual Diversity Receiving System consisting of two complete r. f., i. f. and second detector circuits with a common r. f. heterodyne oscillator, common A. V. C. and one audio amplifier. A block diagram showing the tube functions is shown.
The principal advantages of Diversity Reception as demonstrated by the SKYRIDER DIVERSITY can be summed up as follows:

1. The reduction of fading to negligible proportions.
2. An increase of average signal strength over any single receiver.
3. Improvement of Signal to Noise ratio over any single receiver.
4. Reduction of Heterodyne Beat Note Interference.

Needless to say, with these advantages, the SKYRIDER DIVERSITY provides a quality of reception that is unequalled in any receiver heretofore available.

Infinite Adjacent Channel Rejection

Another advantage of the SKYRIDER DIVERSITY aside from its Diversity Action, is in the Infinite Rejection Circuit embodied in this system.
It is rather generally understond that selectivity can only be increased to a certain practical degree heyond which phone reception becomes unintelligible. This practical limit of selectivity is not great enough to prevent adjacent channel interference.
However with the Infinite Rejection Circuit, an interfering signal may be completely eliminated. It is so resigned that. with a single control, the "rejection slots" may be moved in unison from 20 KC off resonance to within 3 KC of the signal being received, and simply by tuning the rejector to the offending signal, it can be entirely eliminated.

Tule Layout of Skyrider Diversity

In building the SKYRIDER DIVERSITY, the principles of iunctional design were faithfully adhered to. Every single component received especial attention from the designing engineers, and no expense or effort was spared to bring the SKYRIDER DIVERSITY to a high standard of electrical and mechanical perfection worthy of so advanced a receiving system.

the hallicrafters inc.

"'Diversity Actlon" Meters
Two Carrier Jevel Meters monnted in harmonixing black crystal case, imdicates strength of signal on the individual receiver circuits.

Audio Amplifier and Power Supply
Mounted in indivifhtal, ventilated, chrome trimmed cabinets for greater convenicnce and versatility in operation.

Dynamic Speaker cabinet. Built to Hallicrafters' specifications by Jensen.

To provide the maximum flexibility and versatility in operation, the Power Supply and Audio Amplifier are supplied as separate units.

The component parts of the system are constructed of heavy gauge, flame-welded metal, sturly chamel construction, finished in black crystal. The channels themselves are finished in chromium, contrasting with the black crystal. The instrument panels are "alumilited," a satin aluminum finish. The entire unit presents a handsome, thoroughly efficient appearance.

FEATURES

- Diversity Reception throughout its tuning range.
- 6 l3ands covering from 545 KC to 44 MC and there are 26 tubes in the complete system.
- Separate "Diversity Action" meters.
- Average sensitivity of better than 1 microvolt.
- 2 stages of RF amplification in each receiving section.
- 500 and/or 1,000 cycle Hetrotone oscillator for CW' reception.
- Audio amplifier output of 10 watts. (Tuner only 50 milliwatts.)
- Carrier average output meter.
- Current equalizing meter.
- infinite adjacent channel rejector.
- Separate electro-mechanical band spread control.

DESCRIPTION

Unit	Bintension Width Height		Depth	Shipping	Amateurs
Model DD1 Tuner	293/4 ${ }^{\prime \prime}$	113/4/ ${ }^{\prime \prime}$	191/4"	125 lbs .	\$300.00
Audio Amplifier	$71 / 2^{\prime \prime}$	103/4"	161/2"	40 lbs	50.00
Power Supply.	$71 / 2^{\prime \prime}$	103/4"	161/2"	35 lbs .	40.00
"Diversity Action'					
Meters with Cable	71/4"	$4310^{\prime \prime}$	$6^{\prime \prime}$	8 lbs .	20.00
12" Dynamic Speaker					
in Matching Cabin	5t/2"	$13^{\prime \prime}$	91/4"	17 lbs.	12.00

Units Above Priced Complete with Raytheon Tubes

the hallicrafters inc.

The 1938 SUPER SKYRIDER

America's Leading Communications Receiver

The Super Skyrider has everything any operator could ask for in a single receiver. It tunes from 5 meters to the top of the broadcast band, with an average overall sensitivity of better than 1 microvolt for all bands. It has Wide Range, Variable Selectivity with Single Signal razor sharpness to broad high fidelity, a 1000° Band Spread that substantially betters the A.R.R.L. Handbook standards, improved image and signal-to-noise ratio and an " S " meter that works on weak as well as strong signals.

COVERAGE

The Super Skyrider covers a frequency range of 62,000 to 545 KC on 6 bands fall directly calibrated and tuned without charts and tables) as follows: Band $1-545 \mathrm{KC}$ to 1550 KC , Band $2-1550 \mathrm{KC}$ to 4300 KC, Band $3-4.2 \mathrm{MC}$ to 10.2 MC , Band $4-9.8 \mathrm{MC}$. to 20.5 MC , Band $5-19 \mathrm{MC}$ to 36 MC , Band $6-35 \mathrm{MC}$ to 62 MC . All bands are indicated by Band Pointer directly connected to the Band Switch.

SELECTIVITY

New and improved Iron Core 1. F. transformer circuits provide Wide Range Variable Selectivity (7.5 KC to 25.5 KC band width at 100 times resonant input). With crystal in the circuits, selectivity is better than 1 KC , offering a total ratio of variable selectivity of 30 to 1 .

BANDSPREAD

The Super Skyrider Band Spread is unique in design, highly efficient electrically, smooth in mechanical operation. The Band Spread is an integral part of the specially built High Frequency Variable Condenser, thus eliminating extra wiring and parallel insulation losses in the tuned circuits, and providing a more stable and smoother operating unit both electrically and mechanically. Over 1000° of band spread calibration on a unique: spiral dial provides better than 2 KC per division on the 20 meter band and 25 KC for a complete turn of the band spread knob. Large controls and inertia tuning mechanisms make the Super Skyrider one of the smoothest, easiest tuning receivers available.
For 110-120 volts, 50-60 cycle current. Can be operated from 12 volt Battery Current with the addition of Model 501 Electronic Converter. Ask your dealer

TUBE COMPLEMENT

RF-6K7, 1st Detector - 6L7, 1st IF - 6K7, 2nd IF-6K7, 2nd Detector, AVC, 1st Audio - 6R7, Power Output - PP 6V6G, H. F. O. - 6J5, Meter Amplifier - 6J7 B. F. O. - 6J7, Rectifier - 5Z3.

Model S-16 SUPER SKYRIDER, including tubes but less crystal.
Dimensions - $211 / 8^{\prime \prime}$ wide, $91 / 4^{\prime \prime}$ high, $11^{\prime \prime}$ deep. Shipping weight 60 lbs. Model SX-16 SUPER SKYRIDER, including tubes and crystal $\$ 99.00$
$12^{\prime \prime}$ PM DYNAMIC SPEAKER in matching cabinet

The Super Skyrider 6 Band Directly Calibrated Dial, characteristic of all Hallicrafters receivers.

12-Inch PM Dynamic Speaker in matching cabinet, built by Jensen to Hallicrafters specifications.

MODEL SX17 A SPECIAL MODEL Super Skyrider

This model was built by special request of many amateurs who wanted two stages of Pre-Selection irstead of the single stage in the standard model Super Skyrider. It also incorporates the Dickert Automatic Noise Limiter, for better reception of Ultra High Frequency signals. Built originally upon special order, this model proved so popular that it was incorporated in the Hallicrafters line. For $110-120$ Volt, $50-60 \mathrm{cycle}$ current. Can be operated on 12 -Volt Battery Current with addition of Model 501 Electronic Converter. The SX1 7 Special Model Super Skyrider including crystal and $12^{\prime \prime}$ Dynamic Sreaker in matching cabiaet

the hallicrafters inc.

The SKY CHALLENGER II

This receiver offers the amateur and short wave listener a quality of reception that is far beyond its modest price, incorporating as it does many of the exclusive features found on the higher priced Hallicrafters receivers.
The Infinite Image Rejector is an exclusive Hallicrafters development that contributes largely to its superior performance. Annoying image interference is encountered most frequently on the 10 and 20 meter bands. Until the introduction of the Hallicrafters Infinite Image Rejector, several expensive pre-selectors were required to remove this type of interference. An illuminated rejector dial is calibrated for image interference rejection. Months of intensive research by Hallicrafters' engineers showed the way to this revolutionary development, an outstanding and exclusive feature of the SIYY CHALLENGER II.
The famous 1000° Spiral Band Spread used on this receiver offers the amateur a Band Spread that equals or exceeds the requirements of the A. R. R. L. Handbook on all bands, mechanically smooth and electrically efficient. An integral part of the main variable condenser, it climinates extra wiring and parallel insulator losses in the tuned circuits, and provides a more rigid, smoother mechanical construction and more stable electrical operation.
In addition to the new recessed directly calibrated main tuning dial (no charts or tables required) the SKY CHALLENGER II has the following controls:
Tone Control, Send-Receive Switch, A. F. Gain Control, Phone Jack, AVC Switch, Beat Frequency Oscillator, Crystal Filter Circuit, Phasing Control, Pitch Control, R. F. Gain Control.
Facilities are provided for use of either Doublet or Marconi Antenna, and an auxiliary " S " meter.
The SKY CHALLENGER II tunes from 38 MC to 540 KC (7.9 to 557 meters) on five bands, offering complete coverage from the top of the broadcast band through the 10 meter band, with sensitivity and selectivity of a high order.

Tubes used include 6 K 7 R . F.; 6 L 7 first detector mixer; 6J 5Goscillator; 6 K 7 first I.F.; 6 K 7 second I. F.; 6Q $\overline{\mathrm{G}}$ second detector; 6 J 7 beat frequency oscillator; 6 F 6 G output tube; 80 rectifier.
Speaker output arranged for both 500 or 5000 ohms. No DC in output terminals.
For operation on 110-120 Volts, 50-60 cycle current. Can be operated with 6 Volt Battery by addition of Model 301 Elec. tronic Convertor.
Cabinet size: $95 / 8^{\prime \prime}$ high; $21^{\prime \prime}$ wide by 11^{\prime} deep. Shipping weight 40 pounds.

FEATURES

- 9 Tubes.
- Infinite Image Rejector.
- Recessed Main Tuning Dial.
- 1000° Spiral Band Spread.
- 38 MC to 540 KC (7.9 to 557 Meters).
- Iron Core I.F.'s.
- "S" Meter Terminals.
- Doublet or Marconi Antenna.
- Crystal Filter Circuit.

SKY CHALILENGER II - Model S-18 (with tubes but less crystal) Model SX-18 (with tubes and crystal)

the hallicrafters inc.

The SKY CHAMPION

FEATURES

- 8 Tubes.
- Complete Coverage (44 MC to 545 KC).
4 Bands.
- Separate Band Suread Dial.
- Individual Coils for Each Band.
- Inertia Tuning Mechanism.
- Beat Frequency Oscillator.
- AVC Switch.
- Excellent Sensitivity and Selectivity.
- A. Fr. Gain Control.
- 13and Switch.
- Sensitivity Control. - "S" Meter Terminals.

Tube Complement

6K7-r. f. stage. 6LT first detector 055 high frequency oscillator. $6 k 7$ detector. amplifer and lirst detector ${ }^{1}{ }^{\prime} \mathrm{C}$ and lirst audio. 6iF6- nower output tube. 80 - rectifier. 6 J 5 B. F, O.

THE SKY CHAMPION is an 8-Tube. A.C. Communications Receiver with Pre.Selection and Built-in Speaker, complete in every respect, offering the amateur a culality of nerformance never before available at this low price. Its sensinivity and sisectic are only do comparer with communications receivers selmg at double its price. Provides full coverage from
 CHAMPIO B offers all the essemtial controls for go di amateur recention as follows: R. F, Gain Control Tone Control Champlo. otfers all the essemtial controls for gos amateur reception as follows: R.F. Gain Comtrol. Tone Control, phone Jack control. Sensitivity on all bands is extremely good; which is of especial importance on the popular 10 meter and Pitch Control. Sensitivity on all bands is extremply good; which is of especial importance on the popular 10 meter spread against calibration. Speaker is an integral mart of the receiver - nothing else to buy. For operation on $110-120$ Yolts, $50-60$ cycle, AC current only. Easily adapted for battery operation with the addition of Model 301 Electronic Corverter.
Dinensions of Cabinct - $1832^{\prime \prime}$ wide, $9 \frac{3}{} /^{\prime \prime}$ deep, $83^{\prime \prime}{ }^{\prime \prime}$ high. Shipping Weight - 34 nounds.
THE SKY CHAMIION (Model S-20) -
Including Speaker and Tubes.
$\$ 49.50$
MODEL. SM20-" S " Meter in matching separate meter housing

The SKY BUDDY

FEATURES

- 5 Tubes
- 3 Bands
- Complete Coverthe 818.4 MC 10 $545 \mathrm{KC})$.
- Built-in Speaker.
- Phone Jack
- Send-Receive Switch.
- AVC Switch.
- Separate Band Spread Dial.
- Beat Iirequency Oscillater.
- Pitch Control.

Tube Complement

 6k8-first detector and oscillator.6 P 7 - I . F. Ampli-
$6 \mathrm{Q7}$ - second detec. 6 tor - second detec. audio.
6 K 6 - power output tube.
80 - rectifier.

The Sky Buddy is an amateurs' receiver in every respect, covering evervthing on the air from 18.4 MC to $\mathbf{5}+5 \mathrm{KC}$ incluting the $20,40,80$ and 160 meter amateur bands. Band No. 1 (545 KC to 1800 KC). Band No. 2 (1.7 MC to 5.8 MC). Band . .o. 3 (5.8 MC to 18.40 MC).
The Sky Buddy is an AC set, with conventional Power Transformer Construction. All its components are of the finest quality, and it bas sensitivity and selectivity usually found only on communications receivers selling at many times its modest price.
The following controls are incorporated in the SKY BUDDY: AF Gain Control, Band Switch, Combined AVC and 13eat Oscillator Switch with AVC on AVC off, and Beat Oscillatos on with AVC of positions; Phone Jack, Send-Receive Switch; Pitch recommendations for band spread against scale calibration. Equipped for either Doublet or Marconi Antenna. For $110-120$ Volt, $50-60$ cycle, AC current only. Can be adapted for 6 -volt Battery operation with the addition of Model 301 Electronic $C \rightarrow n v e r t e r$. Dimensions of Cabinet: $176^{\prime \prime}$ long, $8 \mathrm{~s} / \mathrm{s}^{\prime \prime}$ deep and $81 \mathrm{~h}^{\prime \prime}$ high.

THE SKY BUDDY (Model S-19) -
Including Speaker and Tubes.

The SKYRIDER 5-10

This receiver is designed for the amateur who needs and wants the exacting performance required for superior ultra high frequency reception. The Skyrider $5-10$ covers the radio spectrum from 68 MC to $27 \mathrm{MC}(4.4$ to 11.1) in two bands with a degree of sensitivity and selectivity that offers unparalleled reception of the. ultra high frequencies.
The recently developed RK 1852 tube, with a gain increase of 6 to 1 , is used as an R.F. amplifier through which an ultra high frequency sensitivity of belter than 1 microvolt is obtained for this receiver.
The coverage by bands is as follows: Band $1-27$ MC to 42 MC , Band $2-40 \mathrm{MC}$ to 68 MC . The separate Band Spread Dial provides easier and more accurate logging, and equipped as it is with an inertia tuning control, makes tuning practically effortless.
1 stage of 1600 KC I. F. amplification is used, providing a band width of 30 KC , at 10 times down. With this selectivity, even frequency modulated 5 meter signals are clearly understandable with the Skyrider 5-10. Mounted in sturdy steel cabinet finished in gray. For the specialist in ultra high frequency reception there is no finer receiver than the Skyrider 5-10.
For operation on $110-120$ Volts, $50-60$ cycle current. Can be operated on 6 -voli Battery current with the addition of Model 301 Electronic Converter. Ask your dealer.

Tube Complement

1852 - r. f. amplifier.
6L7 - first detector.
6 J 5 - high frequency oscillator.
6 P 7 - I. F. amplifier B. F. O
$6 Q^{7}$ - second detector, AVC. first audio.
6H6-noise limiter.
6F6-power output tube. 80 - rectifier.

FEATURES

- Noise Limiter.
- Send-Receive Switch.
- Improved Band Spread.
- 8 Tubes.
- Built-in Speaker.
- Socket for SM21 Carrier Level Meter.
- RK 1852 stage of pre-selection.
- Continuous coverage 27 MC to 68 MC on 2 bands.
- 1600 KC I. F. amplification.

SKYRIDER 5-10 (Model S-21), complete with tubes and
speaker $\$ \mathbf{8 9} 50$ SM21 Carrier Level Meter $\$ 10.00$

Overall Dimensions, $181 / 2^{\prime \prime}$ wide, $93 / 8^{\prime \prime}$ deep, $81 / 2^{\prime \prime}$ high. Shpg. Wt. 34 lbs .

An 8-Tube receiver designed especially for the commercial frequencies that can be readily adapted for marine work. In its design, especial emphasis has been placed on 600 meter and 700 meter operation. Tunes from 16.2 to 2150 meters (18.5 MC to 140 KC) on 4 Bands as follows: Band No. $1-2150$ to 645 meters (140 KC to 465 KC), Band No. $2-645$ to 199 meters (465 KC to 1510 KC), Band No. 3 to 177 to 5.3 meters (1.7 MC to 5.8 MC), Band No. $4-54.5$ to 16.2 . meters (5.8 MC to 18.5 MC). Sensitivity and selectivity are excellent. Improved image rejection at the higher frequencies is achicved through the use of 1600 KC - I. F. transformers. The directly calibrated 338° Main Tuning Dial eliminates the use of complicated charts and tables. and an efficient mechanical band spread with separate dial provides easy and simplified tuning. Mounted in sturdy metal cabinet finished in smooth black. For operation on 110 Volt A.C. or D.C. only.

Tube Complement

6 K 7 -r. f. amplifier.
6 L 7 - first detector.
6 J 5 - high frequency oscillator.
6 K 7 -i. f. amplifier.

6Q7 - second detector, AVC and first audio.
25L6 - power output tube.
$25 \mathrm{Z5}$ - rectifier.
6 J 5 - B. F. O.

The SKYRIDER MARINE

- Coverage - 16.2 to 2150 meters (140 KC to 18.5 MC).
- 4 Bands.
- 8 Tubes.
- Automatic Volume Control.
- Tone Control.
- Head Phone Jack.
- Beat Frequency Oscillator.
- Built-In Speaker.
- Individual Coils for each Band.
- AF Gain Control.
- Band Switch.
- Sensitivity Control.

THE SKYRIDER MARINE

(Model S-22), for operation on 110 v . A.C. or D.C. including tubes \& speaker
$\$ 64.50$

the hallicrafters inc.

MODEL HT HALLICRAFTERS TRANSMITTER

- Amateur transmitters, heretofore, have mostly been built by their owners from their own or suggested designs, or purchased in kit form and assembled. While many of these rigs are models of workmanlike efficiency, the homebuilt transmitter design must suffer from lack of facilities. In building the first and subsequent transmitters of the Hallicrafters' line, our engineers approached their problem from a fresh viewpoint. They visualized an ideal amateur transmitter, so simple that a novice could operate it - with adequate power at extremely conservative ratings - ruggedly built in the "commercial" style.
- With this goal constantly in mind
 they attacked their problem, ignoring conventional transmitter construction and adhering strictly to the principles of functional design. The result of their efforts marks a new departure in transmitter design that no more resembles the conventional "kit" transmitter than the modern streamlined plane can be compared to the wartime "crate," in dependability, in performance, or in appearance. However, at no time have the designing engineers, themselves amateurs, lost sight of the amateur's requirements - on the contrary, they have closely approached the ideal amateur transmitter they set out to build.

- The Model HT Transmitter is conservatively rated at 50 Hatts Phone Carrier output and 100 Watts CW , but, in operation is equivalent to the performance of the 75 or 100 Watts "input" kit constructed Phone Transmitter. Its operation has been simplified to a degree that makes it understandable even to a beginner. No detail has been neglected to add to its dependability - generously oversized transformers and other components are used - the design was built around the latest, most advanced type Raytheon Tubes; its designers leaned backward in conservatism to give the amateur the very utmost in dependability.

SPECIFICATIONS

- MODEL RT-1 Phone CW

50 Watts Phone Carrier (slightly reduced at 30 MC , 100 Watts CW output.
Frequency Range 10-20-40 meters crystal controlled on one frequency per hatd.
Frequency (Band) Suritching by single control in front panel, switching all circuits. Individual Tanks are knob controlled inside the cabinet and adjusted for the particular frequency for that band.

- TUBES

6A6 - Crystal Oscillator, 1 st Doubler. 6A6 Second Doubler, RK47 - Final Stage Power Amplifier.

- MODULATOR

6J7 - 1st Audio. 6J5 - 2nd Audio. 4-6L6-(Push-Pull Parallel) running Class AB giving 50 Waits of Audio. Modnlation capability 100 per cent. Fidelity - plus or minus 2DB 80 to 8000 cycles.

- RECTIFIERS
$2-523 \quad 1-80 \quad 2-866$
- METERS
(1) Cathode Current Exciters (Switched to Modulator Current on Phone). (2) Grid Current, final. (3) Plate Current, final.
- CONTROLS

Filament Switch. Plate Switch. Phone - CW Switch. Band Switch (Interstage Tuning Controls Inside Cabinet). Gain Control.

- CABINET

Flame-Welded, Painted Steel with provision for ample ventilation.

- OUTPUT TERMINALS

From adjustable pick-up ccills on separate final plate tank coils. Proper pick-up coil and plate tank automatically selected by Band Switch.

- EQUIPMENT NEEDED FOR OPERATION
Microphone (diaphragm type, down not more than 40 DB, Astatie: Model D-104 recommended) Key, Bias Battery, and Antenna. (We will gladly furnish suggestions for antenna design and construction.)
Dimensions - $293 / 4^{\prime \prime}$ wide, $113 / 4^{\prime \prime}$ high, $191 / 4^{\prime \prime}$ deep.

the hallicrafters inc.

Close-up illustration of R. R. unit of the Model HT transmitter-the "heart" of this efficiently designed transnitter.

A new and efficient method of IBand changing was introduced, offering new simplicity and speed in changing from one band to another with a simple switch.
The Model HT Transmitter is available for CW operation only 1100 Watts Output) and for both Phone and CW operation (S0 Watts Fhone
MODEL HT-1 - Complete with tubes, coils for 3 Bands and one 40 meter crystal Shipping Weight, 145 pounds.
MODEL HT-2 - For CW only, same as above except less Modulator and 1 - 57.3 rectifier Tube fact, operation for any three bands can be supplied between F 0 and 160 meters in any arrangement required; as $80-40-20$ meters, or $40-20-10$ meters, or $160-80-40$ meters with single crystal. Where two cry 3 tal onferabe slighty higher.) $0-20-10$, or $160-46-10$, or $160-0-10$, the price will

Shipping Weight, 120 pounds.

MODEL HT3 MARINE TRANSMITTER-RECEIVER

The type HT3 consists of a complete 50 watt radiotelephone transmitter, a sensitive receiver, and necessary power units built into a single cabinet and necessitating only a 12 volt storage battery and an antenna for operation.

General Specifications
 TRANSMITTER

Carrier out put - 50 watts
Frequency cowerage - Any three frequencies in the Marine band 100-2960 KC.
irequency control - L.ow drift crystal controlled oscillator
Tuning - Tuning adjustments set. and locked upon installation, Subsecuent choice of frecuency by switch on front pancl.
Moakhition - Substantially complete modulation obtained by high evel modulator driven directly from carbon microphone 4 - 6 L 6 G Modulatorstal oscillator. 2 - RK39 Class \because amplifiers. Anifnna- Irovision is made for matching an antenna of reasonable length as encountered in Marine service.
A relay inside the cabinet switches the antenna from receiver to trans mitter when operating.

RECEIVER

Tubes used-1-6K7 r. f. stage. I-6L. 7 Ist detector. $1-6 J 5 \mathrm{H}$. F. oscillator. $1-6 K 7$. I. F , stage. $1-6 Q 7$ Second Detector, $A V C$, and Frequency coverage - Band 1 - Standard Broadcast. Band $2-21 \mathrm{co}-$ Frequency
2900 KC.

OUTPUT

3 watts - normally fed to loud speaker on front panel. but switched to telephone receiver during operation

POWER SUPPLY

Receiver and transmitter flaments supplied directly from 12 volt battery.
Receiver plate supply furnished by vibrapack operating from 12 volt battery.
Transmitter plate posver furnished by 450 volt dynamotor of rugged aircraft construction. Provision made for operation from other d.c, voltages to order.

CONTROLS AND OPERATION

On the front panel are mounted a loud speaker. as well as a telephone handset, so arranged that the output of the receiver is normat!y connected to the speaker. When the handset is lifted from its hook, thr receiver output is transferred to the earpiece of the handset. Transmiting is accomplished by A single switch on the front panel places the receiver in pueration and turns on the transmitter filaments. Subsequent control is as described above. One meter is provided for checking the transmitter operation and for tuning purposes. The meter is arranged to be switched inco the various circuits. Other panel controls are the receiver volume control and the frequency switch. Power drain from 12 vold supply- 9.5 amps for receiver and transmitter filaments during standby. 35 amps while transmitting.
Current drain from other voltage roughly in inverye proportion. Dimensions - $293 /^{\prime \prime}$ wide, $111 / /^{\prime \prime}$ high, $193 / /^{\prime \prime}$ deep.
Weight - 155 pounds complete.
PRICE - HT3, Complete
$\$ 390.00$
(3 crystals for marine channel not included in above price. Freruencies to be determined by service and location of purchaser.)

The Hallicrafters, Inc., are holders of the only license jssued by RCA and its associated companies for the construction and sale of amateur radio transmitters, and are independently licensed by A. T. \& T. to build transmitters for marine, police, fire department and other municipal and government services. In addition. Hallicrafters, Inc., are holders of RCA and Hazeltine licenses for the manufacture of radio receivers under their patents.

$\xrightarrow[\text { DUNCO RADIO }]{\text { UNOO }}$ RELAY

These relays have two isolated contacts for operation in low or high voltage circuits ot ony frequency. For the lirst time in on inexpensive relay, the two poles are sufficiently spaced and shielded from each: other so that the amplifier input may be handleo by one pole and the output from the same amplifier may be handled by the other pole without feed back. Similarly 60 -eycle power currents may be handled by one pole and voico Prequencie: by the other without the introduction of hum. Outstanding features include: low contact resistance, single break contacts instead of double break to further reduce resistance; extremely fest operation suitable for bus keying, high voltage and current carrying and breaking capacity, resistance to vibration, making the relay suitable for use on autaz, trains, planes, elevators. boots, etc.

Type	Volts	Coil	
Cycles	Your Cost		
RA-1	2.5	60	$\mathbf{\$ 2 . 0 0}$
RA-2	2.5	25	$\mathbf{2 . 0 0}$
RA-3	6.3		60
RA-15	110	60	$\mathbf{2 . 0 0}$
RD-1	5 to 6.3	DC	$\mathbf{2 . 0 0}$
RD-15	10 to 12	DC	$\mathbf{3 . 0 0}$

DUNCO VACUUM TUBE RELAY

Selay type $\mathrm{C} \times 851$ is on ultra sensitive unit de. igned for direct current in the coil circuit ond Hither direct or alternating current in the contact ircuit. It hes single pole, double throw conacts, moking one circuit when the coil is enerized and another circuit when the coil is θ-energized. The coil has a resistance of 10,000 hims and it will safely carry currents up to 18 illiamperes. Adjustments are provided that will ause the reay to operate on any desired current due down to one milliampere. This unit is parcularly adapted to operation in the plate circuit F smoll vacuum tubes. Contacts are rated 2 nperes at 110 volts, a.c.

Size: $27 / 8^{\prime \prime}$ high $\times 21 / 4^{\prime \prime}$ wide $\times 9^{\prime \prime}$ deep
Dunco Relay, Type CXB51
Your Cost, $\$ 5.50$
equence, ratchet or step by step relays are
available for many applications

DUNCO TIME DELAY RELAY

This time delay relay is provided with a snap-on housing and with panel mounting studs for back of panel connections. The input terminals should be connected across the primary of the filament transformer, and the output ierminals to the primary of the plate transformer. Power will then be delivered to the plate transformer 30 seconds after the fildments are turned or, greatly increasing the life of tubes, particularly of the hot cathode mercury vapor type. The contacts of this unit are rated 6 amperes at 115 volts A.C.
Size: $3^{\prime \prime}$ high $\times 21 / 8^{\prime \prime}$ wide $\times 25 / 16^{\prime \prime}$ deep including cover
Other types of Time Delays and Time Controls available. Tell us your requirements Dunco Relay, Type TD-327

Your Cost, $\$ 8.80$

DUNCO MIDGET KEYING RELAY

This midget keying relay is suitoble for speeds up to 40 words per minute Contacts are large fine silver buttons assuring long life and may be easily replaced. Col consumes only 50 milliamperes at 110 volts 60 cycles, while contacts will interrupt currents of σ amperes at 110 volts, o.c. The unit is designed for mounting on vertical panel and is recommended for loads up to 660 watts. The contacts are single pole, and close when the coil is energized.
Size: $£ 3 / 4^{\prime \prime}$ high $\times 17 / 8^{\prime \prime}$ wide $\times 13 / 4^{\prime \prime}$ deep
Dunco Relay, Type ASBXI
Your Cost, $\$ 3.85$
Other Dunco Midset Relays (See Note) Type Contoct Arrangement Your ABTX1 S.P.D.B. Front Contact . $\$ 3.85$ ABTXIP S P.D.B. Fr. Cont. with Pigtail 4.40
Dunco relay type ABTX10 is for two wire thermostatic control with snap action thermostats. For operation on 110 volts, 60 cycles, it will properly control heater units up to 660 watts. Relay is designed for vertical mounting. Many other types of thermostatic control relays are ayailables, write for information. Size: $23 / 4^{\prime \prime}$ high $\times 17 / 8^{\prime \prime}$ wide $\times 15 / 8^{\prime \prime}$ deep

Dunco Relay, Type ABTX10
Your Cost, \$4.95
ADBX1 D.P.S.B. Front Contact. 4.95 BSBXI S.P.S.B. Bock Contact... $\mathbf{3 . 8 5}$ CSBXI S.P.S.B. Double Throw. 4.68 CDBX1 D.P.S.B. Double Throw. 6.60
Note: These relays do not operate as rapidly as Type ASBX1.

DUNCO MECHANICAL

LATCH RELAY

This relay is furnished with two coils. Energiz ing one coil picks up the armature which latches closed. Energizing the other coil picks up the latch and allows the armature to drop out. This relay may be used with normally open push buttons, thermostat:, etc. for the renote control of transmitters, receivers, motors or other loads within its rating of 30 amperes ot 110 volts, A.C. Standard coils are for operation on 110 volts, 60 cycles but other coils are available. Designed for vertical panel mounting.

Size: $41 / 2^{\prime \prime}$ high $\times 3^{1 / 4^{\prime \prime}}$ wide $\times 23 / 4^{\prime \prime}$ deep
Dunco Relay, Type ABUY5N
Your Cost, $\$ 8.80$

B \& W AIR INDUCTORS

NEW!... The B \& W "BABY" AIR INIDUCTOIRS

25 wattr nativg

Hene's more proof of B \& W leadership! . . . the new high-efficiency "BABY" AIR INDUCTORS! 'They're smaller, more compact than any other coil $11 / 4$ " diameter x $11 / 2^{\prime \prime}$ long! B \& W "BABIES" are designed and built by coil specialists to replace tube base forms having high losses and unsymmetrical leads. Turns are uniformly air-spaced and securely imbedded in tough cellulose acetate strips by a newly developed B\&W process. This exclusive $\mathrm{B} \& \mathbb{W}$ winding methon provides exceptional mechanical strength, yet requires the use of less insulating material than ever before.
B \& W "BABY" Coils are unescelled for use in all oscillator and buffer stages employing either link or capacity coupling, single-ended or push-puil, pentode or neutralizail trionde. Available in five types - straight coil (M); centertapped (MC); end-linked (MEL); center-linked (MCL) and Tri-Tet cathode (M'T). Universal 5 -prong plug-in bases permit guick, easy band changing.

Compare "BABY" AIR INDCCFORS with ordinary coils - note thair smaller size . . . their sturdier construction . . . their neat, business-like appearance. For crowded layouts, portahles - any application where space is at a premium - any jol, that calls for fine appearance without sacrificing high efficiency - use B \& W "BABIES":
Amateur Net Price of Any B \& W "BABY" Coil.....\$1.00

PRECISION-BUILT Like a Fine Watch!

- 5-IPRONG MOUNTING
- ALSIMIG: 196 BASE
- I.EVCIII . . . $11 / 2$ INCIIES
- DIAMENER

$$
\ldots \text { I } 1 / 4 \text { INCIILS }
$$

$\left\|\begin{array}{c} \text { Straighto } \\ \text { Coil } \end{array}\right\|$	Center End Tapped Linked	Center ${ }^{\prime}$ Tri-Tet Linked Cathode	Induc. tance	* Capac-
160M-MC-MEL-MCL-MT			90	00
80M-MC-MEI,-MCL-MT			40	50
40M-MC-MEL-MCL-MT			14	35
20M-MC-MEL-MCL-MT			3.5	35
10M-MC-MEL-MCL-M T			1.1	30

* Total effectiye capacity required to effect resonance on low frequency end of specified band,

B \& W ACCESSORIES

All Ceramic materials shown are ALSIMAG 196

B \& W UNMOUNTED COILS

No. $1-2 \frac{1}{3} 2^{\prime \prime}$ Dia., $10^{\prime \prime}$ Length, 6 turns per inch. No. 12. Not Price. $\$ 1.50$ No. $2-21 / /^{\prime \prime}$ Dia., $10^{\prime \prime}$ Length, 8 turns per inch. No. I4. Net Price
.$\$ 1.50$
No. $3-2^{\prime \prime}$ Dia., $10^{\prime \prime}$ Length, 10 turns per inch. No. 16. Net Price.
.$\$ 1.50$

SPECIAL COILS and ASSEMBLIES

Let B \& W solve your special inductance problems! lears of experience in the design and manufacture of iniluctors of every conceivable type for amateur and commercial applications throughout the world - is your guarantee of complete satisfaction.
Call upon B \& W engineers . . . they will be glad to study your problem and design the proper inductance unit for your jarticular need.

CUSTOM BUILT TRANSMITTERS

B \& W will build a complete transmitter to your specifications - or work with you in designing a unit to fill your individual requirements. No job is too small - nor too large - to receive full benefit of the comprehensive technical experience of B \& W engincers.

Ask your jobber about this type of service
A50-Cone Insulator $2^{\prime \prime}$ IIigh, Tapled $10-32$ Both Ends.
A51 - Cone Insulator $132^{\prime \prime}$ High, iapped 8-32 Both Ends
A52 - Inductance Clip for "Air Inductor" - T"inned Phosphor Bronze
A53 - HD Jack Bar - For All 1ype HD-HDL-H1)VL, Coils. . .
A54 - T Less Jacks.
A55 - Less Jacks -
A56 - B Jack Bar - For All Trse BL-BYL Coils. $\$ 15$ I.ess Jacks
A57-Steatite Bushing $y_{3}^{\prime \prime}$ Dia. - 3/"Long - Irrilled 6-32 Clearance.
A58 - Steatite Bushing "/ " Lia. - \%/" Long - Drilled 6-32 Clearance
A5' - Steatite 1"ost Insulator $1 / \mathbf{y}^{\prime \prime}$ Lia. - $1^{\prime \prime}$ Long - Tapped 8-32 Both

A62 - T Plug Bar, for All TypeT-TL-TLV Coils, Less Plugs.
A63 - BX Plug Bar. for All Tyne BX: BXL Coils, Less Pluga
A64 - B Plug Bar for All Type B-BL-BVLCoils, Less Plugs.
A65 - Hexagon Nickeled Brass I'ost 5/16" x \%" Long - Drilled 6-32 Clearance.
A66 - Hexagon Nickeled Brass ${ }^{\prime}$ ost $7 / 16^{\prime \prime} \times 1 /^{\prime \prime}$ Long - Tapped $10-32$.06
A67 - Special Transmitting Band Change Switch - 5 Section - 3 Position - 100 Watt Rating

1 Price

SWINGING LINK ASSEMBLIES

For accurate, positive control of loading and excitation in the final stages of transmitters. Available in three sizes - for high, medium and low power. Supplied with four plugs. Split to provide twin metering in the plate circuits of push-pull stages. All Base Assemblies allow front-of-panel coupling control.

TEPEE MIDVA. - I K.W. Rating. A heavy duty unit for high power transmitters. Undeniably superior, electrically and mechanically, to any other type of coil on the market.

TVIP TVE, - 250 Watts Rating. Highly efficient and exceptionally dependable for medium power applications - under all operating conditions.

TVTPE IBVI. -100 Watts Rating. New! ... a smaller, more compact assembly designed for direct mounting on condenser. Ideal for low powered Xmitters and exciter stages or in conjunction with TYPE BL Coils in interstage coupling.

MODEL B BAND SWITCHING TURRET

For rapid selection of any one of three bands - from front of panel! Any three-band coil combination (160 to 10 meters) may be "plugged-in" the Turret. Designed for use with center-tapped, "end-" linked or center-linked Type " B " Coils. Ideal for use in crystal-controlled or electron-coupled oscillators as well as buffer, doubler or final amplifier stages with power inputs not exceeding 100 Watts and 1,000 Volts.

STANDARD and FIXED LINK COILS

TVPE IF amal EIE. - 100 Watts Rating. For use in oseillator and buffer-doubler stages developing up to 100 watts of power.
TMIP IBX anal IBNE, - 250 Watts Rating. Suitable for neutralized buffer and final tank stages with inputs up to 250 Watts .
TVPE Tand TL.-500 Watts Rating. For high powered neutralized buffer and final tank stages where powers of 500 Watts are developed. TYIPE MID and MIDI. - 1 K.W. Rating. Heavy duty coils, capable of handling a kilowatt with ease. Equipped with oversized plugs of

TYPE HDL ample current carrying capacity.
For minimum dielectric in the field of the coil, extremely low losses, rugged construction. excellent appearance, highest efficiency at low cost . . insist upon B \& W AIR INDUCTORS!

$\begin{gathered} \text { Standard } \\ \text { Type } \end{gathered}$	Net Price	Itinked Type	Net Price	Inductance Microhenrys	* Capacity MMfd.	Wire Siz	Diameter	Outside Plug Centers
160 B	\$1.75	100 BL	\$2.50	78.0	110	18	$21 / 2^{\prime \prime}$	34"'
80 B	1.55	80BL,	2.30	39.0	52	16	$212^{\prime \prime}$	3\%"
40 B	1.30	40 BI ,	2.05	12.0	43	14	$2^{\prime \prime}$	$3 y^{\prime \prime}$
208	1.05	20 BL	1.80	3.0	40	14	2',	$31{ }^{\prime \prime}$
10B	1.00	10 Bl	1.75	1.1	28	12	$2^{\prime \prime}$	$34{ }^{\prime \prime}$
160BX	\$1.80	160Bぐ1.	\$2.80	84.0	100	14	$4^{\prime \prime}$	$4{ }^{\prime \prime}$
80 BX	1.60	$80 B X L$	2.60	37.0	54	14	$3^{\prime \prime}$	$4{ }^{\prime \prime}$
40 BX	1.35	408×1	2.35	10.0	51	14	$21 /{ }^{\prime \prime}$	$4 "$
20B	1.10	20 BXL	2.10	2.8	45	14	$2^{\prime \prime}$	$4^{\prime \prime}$
10BX	1.05	10BXL	2.05	1.0	35	12	$2^{\prime \prime}$	$4 \prime \prime$
160T	\$1.85	160'L	\$2.85	74.0	115	12	$5^{\prime \prime}$	5"'
80 T	1.65	80 TL	2.65	35.0	60	12	$31 /{ }^{\prime \prime}$	5"
40 T	1.40	40 TL	2.40	13.5	38	12	$21 /{ }^{\prime \prime}$	5'
20 T	1.15	20 TL	2.15	4.3	30	12	$21 /{ }^{\prime \prime}$	5'
10T	1.10	10 TL	2.10	1.3	25	12	$2^{\prime \prime}$	5*
160 HD	\$4.25	160HDL	\$6.25	94.0	90	10	$5^{\prime \prime}$	$712^{\prime \prime}$
80HD	3.50	80HDL	5.50	40.0	50	10	314.	$7{ }^{1 / \prime \prime}$
40 HD	3.00	40 HDL	5.00	15.0	35	8	$313^{\prime \prime}$	$71{ }^{\prime \prime}$
20 HD	2.75	20HDL	4.75	4.2	29	8	$3^{\prime \prime}$	7%
10HD	2.25	10 HDL	4.25	1.3	25	4	$2^{\prime \prime}$	$7{ }^{1 / 2}$
band. *Total effective capacity required to effect resonance on low frequeacy end of specified A68-P1 - Network Coil - Complete with clip. . $\$ 1.85$								

No. 486

No 386

The makers of "Evercady" batteries now present at now low' prices. a complete line of exclusive, patented "Layer-Bilt" "B" batteries. Now all of these batteries are of the famous flat cell construction that insures longer service life than round cell batteries of the same size and more service hours per dollar. Note these new low prices:

No. 585 Medium Size. "I.AyER-bilt" "B"
Battery List \$1.25
No. 586 Heavy Duty, Iarge Size "LAyErHILT" "B" Battery List 1.75
No. 486 Heavy Duty, Large Size "Liver. BILT" "B" Battery. List 2.00 No. 386 Heavy Duty Large Size "super LAYER-BILT" "B"Battery List 2.29

No. 762
Large Size Portable. 45 volts, tap at $221 / 2$ volts. Plug-in connection. $41 / 4 \times 29 / 16 \times 57 / 8 \mathrm{in} .3 \mathrm{lbs}$.

No. 738
Medium Size Portable. 45 volts, tap at $221 / 2$ volts. Screw Terminals. 31 s $\times 23 / 8 \times 41 / 2 \mathrm{in} .1 \mathrm{lb} .4 \mathrm{oz}$.

No. 733

Small Size Portable. 45 volts, tap at $221 / 2$ volts. Screw Terminals. $31 / 8 \times 13 / 8 \times 41 / 2 \mathrm{in} .12 \mathrm{oz}$.

No. X-180

Midget "Layerbilt" Battery. Smallest 45-volt "B" Battery made. Flexible Wire Terminals. $11 / 4 \times 11 / 4 \times 2 \mathrm{in} .2 \mathrm{oz}$.

No. 744

Small Size 71/2-volt "C" Battery. Tap at $-41 / 2$ volts. Screw Terminals. $215 / 16 \times 11 / 16 \times 13 / 4 \mathrm{in} .2 \mathrm{oz}$.

RADIOBATTRRIRS

Here's the last word in "A" power for those amazing new 1.4 volt, receivers. This new "Eveready Cell" "A" battery, built to order for these new sets ghatantees 1500 hours at 0.2 ampere drain, and wo rechargitg. List $\$ 2.45$.

Another new "Eveready" "Air Cell" "A" battery, Guarantees 500 hours of trouble-free 2 -vole reception for only S3.95 List.

And here's the big, poweriful, dependable economical' ? vole "Air Cell" "A" battery that guarantees 1000 hours trouble-free service for only S6. 0 List.

No. 7111
"A" Dry Cell $11 / 2$ volts. Screw Terminals. $25 / 8$ dia. x $65 / 8$ in. 2 lbs. 2 oz.

No. 722
Small Size Portable "A" Battery, 3 volts Screw Terminals. $211 / 16 \times 11 / 2 \times 41 / 2 \mathrm{in} .11 \mathrm{oz}$.

No. 723
Medium Size Portable "A" Battery, 3 volts. Screw Terminals. $23 / 4 \times 23 / 4 \times 43 / 8 \mathrm{in} .1 \mathrm{lb} .5 \mathrm{oz}$.

No. 724
Large Size Portable "A" Battery, 3 volts. Screw Terminals. $4 \times 23 / 4 \times 6 \mathrm{in} .2 \mathrm{lhs} .4 \mathrm{oz}$.

No. 761
General Purpose Battery, $41 / 2$ volts. Fahnestock Terminals. $41 / 32 \times 113 / 32 \times 35 / 8 \mathrm{in} .14 \mathrm{oz}$.

These are the types of balteries most useful to amateurs and experimenters. For a complete catalog of all types of Eveready Radio Batteries write to

BATTERY HEADOUARTERS

NATIONAL CARBON COMPANY, INC.
30 East 42 nd St., New York, N. Y. • Unit of Union Carbide 运 and Carbon Corporation

DYRANOL is used in these G－E transmitter capaci－ tors．This noninflammable nonexplosive dielectric． which has extraordinary in－ sulating and dieiectric quall－ ties，is one of the important reasons for the long life and great dependablity of $\mathrm{G}-\mathrm{E}$ capacitors．

Cylindrical capacitors Compact for easy installation For upright or inverted mounting

Eectangular capacitors
New clamp－type mountings

Pyranol Transmitter Capacitors

 Sower Price．dichest 2uclityPrice reductions averaging 25 per cent were made during the last year on our standard rectangular capacitors．The new cylindrical capacitors have the same fundamental de－ sign as the rectangular units，and are lower in cost．
The design of both is the result of long ex－ perience－we have built more than $1,000,000$ capacitors for the U．S．Navy，the Depart－ ment of Commerce，the U．S．Signal Corps，
and thousands of operators all over the world．Materials of the highest quality， careful supervision of manufacturing，and thoroughly tested performance－these give you a capacitor you can depend on．
Ask your dealer for Bulletins GEA－2021A， on rectangular capacitors，and GEA－3018， on cylindrical capacitors，or write Radio Dept．，General Electric，Schenectady，New York．

SPECIAL NET CASH PRICES TO AMATEURS

microfaradRating	VOLtage rating												
	RECTANGULAR TYPE									CYLINDRICAL TYPE			
	500	600	1000	1500	2000	2500	3000	4000	5000	600	1000	1500	2000
0.01	－	－	\＄1．06	－	－	－	－	－	－	－	－	－	－
0.05	－	－	1.09	－	－	－	二	－	－	－	－	－	－
0.1	－	－	1.15	－	－	－	－	－	－	－	－	－	－
0.25	－	－	1.18	－	－	－	－	－	－	－	二	－	－
0.5	－	－	1.26	－	－	－	－	\＄13．52	\＄14．70	－	二	\＄1．62	－
1	\＄1．32	\＄1．62	1.76	\＄2．21	\＄3．09	\＄8．23	\＄10．58	15.29	17.64	－	\＄1．32	1.76	\＄2．21
2	－	2.06	2.65	3.68	4.70	10.00	13.52	17.64	19.92	\＄1．32	1.62	2.21	2.50
3	－	－	－	－	－	－	－	－	－	1.62	2.06	－	－
4	－	2.65	4.12	5.29	6.47	14.70	17.64	－	－	1.76	2.21	－	－
5	－	3.18	4.70	6.47	7.64	－	－	－	－	－	－	－	－
10	－	－	6.47	10.00	11.17	－	－	－	－	－	－	－	－
12	－	－	－	－	11.76	－	－	－	－	－	－	－	－
15	－	－	7.06	10.58	－	－	－	－	－	－	－	－	－

TELEVISION CAPACITORS： 4000 volts， 0.05 microfarads，$\$ 3.82$ 7000 volis， 0.03 microfarads，$\$ 4.70$

ONE OF THE FINEST ENGINEERING TREATISES ON TUBES EVER WRITTEN!

 CHOCK F ESSIY DESIGN
YOU IO E

Incorporated in this book is the famous RAYTHEON TEMPERATURE COLOR CIIART, which enables you to tell when a tube is properly operated, merely by comparing the color of the plates of the tubes with the chart-and reading the temperature. Complete tube theory and application with the latest circuits-full data on modulation systems, classification of tubes for different uses, tube characteristics are all treated in detail together with pages of the newest circuit developments on Ultra High Frequency operation. This is the first time the amateur has been able to get all this data together, so that his choice of tubes can be intelligently made.

The Raytheon "IIandbook of Amateur Tube Uses" is now available at all Raytheon jobbers at a price of 50 c each. If your jobber cannot supply you, write direct to Raytheon Production Corporation, New York City, enclosing 50c for your IIandbook. You'll say it's the best 50 c investmicnt you've ever made!

CHICAGO - ATLANTA - NEW YORK • NEWTON, MASS. - SAN FRANCISCO

EVERY "HAM" SHOULD HAVE ONE!

MeGRAW-HILL Radio Books

PRACTICAL RADIO COMMUNICATION

Principles - Systems - Equipment - Operation;
Including Short-Wave and Ultra-short-wave Radio
754 pages, $6 \times 9,435$ illustrations, flexible, $\$ 5.00$

By Nilson and Hornung, well-known radio experts, instructors, writers. This book covers the requirements for all classes of radio operator's license examinations, treats long, medinm, short, and ultra-short-wave radio, includes all classes of radio stations is in general a complete text on practical radio communication based on a theoretical introduction.

> Examine these books for IO days on approtal

Use this book to get ahead in practical radio operating

- radio-telegraphic and radio-telephonic ireatment aviation radio; aircraft transmitters, receivers, testing and maintriance.
- marine medium-frequency equipment, high-frequency tranamitters and receivers; direction-finders, etc.
-rectifierg; generators; batteries, etc.

Nilson and Hornung - RADIO OPERATING, QUESTIONS AND ANSWERS

Gives over six hundred typical radio operator lirense examination questions, with full, illustrated answers, rovering broadeasting, marine, aeronautical, police and aniateur radio. 389 pages, $\$ 2.50$.

Terman - RADIO ENGINEERING New Second Edition

Analyzes electrical circuits and vacuum tubes and redures then to qualitative relations that predict with accuracy the performanee of radio circuits and radio apparatus. Up-to-date second edition just published, with new chapter on television and extensive other rewritten and new material. 813 pages, $\$ 5.50$.

Henney - RADIO ENGINEERING IIANDBOOK

Twenty-four big, authoritative reference sections under one convenient cover. Covers technical data and applications in all fields and aspects of radio engineering. Second edition. 583 pages, $\$ 5.00$.

Fink-ENGINEERING ELECTRONICS

Covers the fundamentals of electron physics and electron tube structures, and shows the application of tubes and circuits in problems of power transformation, rommunication, control and neasurenent. 358 pages, $\$ 3.50$.

Maloff and Epstein - ELECTRON OPTICS IN TELEVISION

Develops the theory of electron optics and the 1 roblems encountered in designing tubes, economical to construct and capable of producing satisfactory television pictures when used with practical associated apparatus. 299 pages, $\$ 3.50$.

Broun - RADIO FREQUENCY ELECTIRICAL MEASUREMENTS

New Second Edition

A combined laboratory textbook and manual for practicing electrical and radio engineers. Discusses the precision attainable, precautions, and general merits of the method. 384 pages, $\$ 4.00$.

SEND TIIIS MCGRAW-IIILL ON-APPROVAL COUPON

Mci;RAW IHL.L HOOK CO., INC., 330 W. 42nd St., New York, N. Y.
Send me the looks checked below, for 10 days' examination on approval. In 10 days I will pay for the hooks, plus few cents for postage, or return them postpaid. (We pay postage on orders accompanied by remittance.)
\square Vilsoriand Hornung - Practical Radio Comniuni-
cation, $\$ 5.00$
\square Vilsonand Hornung - Radio Operating Questions
and Ansuers, $\$ 2.50$
\square Terman - Radio Engineering, $\$ 5.50$
\square Fink - Engineering Electronics, \$3.50
\square Maloffard Epstein - Electron Optics in Televibion, \$3.50
\square Brown - Radio Frequency Electrical Measurements, ${ }^{\text {\& }} 4.00$
\square Hertrey - Kadio Engineering Handhook, \$5.00
Name.

Cityand State.
Company
0S11-39
(Books sent on approval in U. S. and Canada only)

RESISTORS - RHEOSTATS - RELAYS

SPECIFICATIONS and PRICES of RELAYS

REMOTE CONTROL

ANTENNA

overload

KEYING

BREAK-IN

Description	Ca1. No.	CONTACTS					List Price
		Poles	Throw	Break	Normal Position	Amps	
Thermal Time Delay	507-501	Single	Double	Single		4.	\$15.00
Remote Control....	$507-503$	Double	Single	Single	Open	4.	8.00
Remote Control	507-50.4	Double	Single	Single	Open	4	8.00 9.00
Remote Control	507-505	Double	Double	Single		4.	9.00
Hemote Control	507-506	Double	Double	Single		4	9.00
Low Voltage Keying	507-507	Single	Single	Double	Open	6.	7.00
Low Voltage Keying	$507-508$	Single	Single	Double	Open	6.	7.00
Crystal Oven........	507-509	Single	Single	Double	Open	6.	7.00
Hemote Control	507-510	Single	Single	Double	Open	6.	7.00
Remote Control	507-511	Double	Double	Single		4.	9.00
Overload.	$507-512$	Single	Single	Double	Closed	6	8.50
Overload	507-513	Single	Single	Double	Closed	6.	8.50
Underload.	507-514	Single	Single	Double	Open	4	10.00
Underload	507-515	Single	Single	Double	Open	4.	10.00
High Voltage Keyi	507-516	Single	Single	Double	Open	10.	7.50
Midget Latch-In...	507-517	Single	Double	Double		6.	14.50
ILeavy Duty Remote Control	507-518	Single	Single	Douhle	Open	10.	8.80
Steel Kinork-out Box	507-519			3.00
Hakelite Cover..	507-520				\ldots	\ldots	70
Heavy Duty - R. F. Antenna Change Over.	507-521	Double	Double	Single		15	25.00
Heavy Duty - IR: F. Antenua Change ()ver.	507-522	Double	Double	Single		15	25.00
Heavy Duty - 1R. F. Antenna Chance Over	507-523	Double	Double	Single		15.	25.00
Heavy Duty-IR. F , Mreak-In...	507-526	Four*	Dounle	Single		15.	27.50
Heavy Duty-13. F. Mreak-In...	507-527	Four ${ }^{\text {c }}$		Single		15.	27.50
Heavy Duty - R. F. Break-In..	507-528	Four ${ }^{\circ}$		Single		15.	27.50
Midget-R. F. Antenna Change Over.	507-531	Double ${ }^{\text {T}}$	Double	Single		4.	10.00
Midget-IR. F. Antenna Change							
	507-532	Double Single	Single	Single Double	Open	10.	10.00 8.50
Midget-R. F. Break-In.	507-534	Four ${ }^{1}$		Single		4.	12.50
Midget-lk, F. 1reak-In.	507-535	Four		Single		4	12.50
D. C. Sensitive.	507-536	Single	Double	Single		2	12.00
D. C. Sensitive	507-537	Single	Double	Single		2.	12.00
D. C. Sensitive	507-538	Single	Double	Single		2.	12.00
D. C. Sensitive	507-539	Single	Double	Single		2	12.50
D. C. Sensitive	507-540	Single	Double	Single		2	12.50
D. C. Sensitive.	507-541	Single	Double	Single		2	13.00

FIXED Wire Wound RESISTORS
These resistors are made with the highest grade resistance wire, wound on a special refractory tube, conservatively rated. 10 and 20 watts size up to 100,000 ohms. Circular 507.

Ward Leanard wire wound resistors are known throughout the radio industry for their accuracy, dependability and lons life. 25 to 200 watts in various resistance values up to 150,000 ohms. Circular 507.

RING TYPE

RHEOSTATS

This compact, power ring type rheostat offers a continuous control that is practically stepless. $11 / 2^{\prime \prime}, 21 / 4^{\prime \prime}, 3^{\prime \prime}$ and $4^{\prime \prime}$ diameters, giving $30,50,100$ and 150 watts capacity. Wide range of resistance values up to 10,000 ohms. See 1937 circular 507.

PLAQUE RESISTORS

Non-inductive, non-capocitive. $2^{\prime \prime}, 4^{\prime \prime}$ and $53 / 4^{\prime \prime}$ giving
 20,40 and 100 watts capacity
with resistance values up to 10,000 ohms. Ideal for finely bal. anced circuits. Circular 507.

GOOD Buys FOR AMATEURS

304B TRIODE

Upper frequeney limit-300 megacyeles. Maximum voltage - 1250 volts. Nominal power output, Class C - ummodu-lated-85 watts.

307A PENTODE

Full ratings up to 40 megacy-eles-reducrd ratings up to 70 megueyeles. Maximum voltage - 500 volts. (arrier power output-20 watts.

305A SCREEN GRID

Full ratings up to 50 megacyeles. Maximum voltage1000 volts. Nominal power output, (:lass C -ummodulated -85 watts.

316A TRIODE

Upper frefuency limit - 750 megarycles. Maximum volt-age- 4.50 volts. Nominal power output at 500 megacy-cles- 7.5 watts.

306A PENTODE

Full ratings up to 50 mega-eycles-reduced ratings upto 70 megacycles. Maximum voltage-300 volts. Maximmm power output 8.8 watts.

300A TRIODE

High quality audio. Maxinum voltage-4.50 volts. Maximum output-17.8 watts.

For full information, consult your dealer, or write to

Graybar Electric Company
Graybar Building, New York
In Canada and Newfoundland:
Northern Electric Co., Ltd.
1261 Shearer St., Montreal, P. Q.
In other countries:
International Standard Electric Corp., 67 Broad Street, New York

Western Electric Divis RADIO TRANSMITTING EQUIPMENT

Send for Your Free Copy of STANCOR HAMANUAL
(Supplementury Form)
1939 EDITION

In these two words RADIO MFG. ENGINEERS, INC. have given to the radio communication field the best possible receivers and accessory units which are now being used very universally. In our business of satisfying communication needs there are no yearly models. The basic design of a good receiver - the coils - the frame - the valuable features - are standard.

This does not mean that our laboratory lags behind. The research and development program goes on. Fine suggestions come to us periodically from radio men in the field.

Descriptive literature sent on request

The RME-69

The RME-69, with its great fexibility in adaptations to special needs, is being built as before. With or without manual noise suppressor - in standard or battery model - for special frequency coverage in the low or ultro-high ranges - for relay rack mounting or any special requirements in your station - look to the RME-69 for complete satislaction. When searching for a receiver which will perform under all conditions - one which will give you full vision tuning, band spread, variable phasing erystal filter circuit, and most everything you would want and need for satisfactory DX results - The RME-69 is the answer!

The DB-20 Preselector and R. F. Amplifier

A two-stage - three-circuit, self-powered, R.F. Amplifier unit which may be used ahead of any good superheterodyne receiver and outperform your present performance. With antenna changeover switch incorporated as standard, supplied with three tubes, frequency range 550 to $32,000 \mathrm{KC}$ in six bands, A.C. or battery or combination supply optional, this unit has found acceptance in thousands of radio stations.

The 510X Frequency Expander

The latest unit to be introduced is this Expander which, when used with good stable superheterodyne receivers, will permil exceptional results in the range 98 to 70 mega cycles. A good image rejector, since the R.F. stage of the receiver is definitely set at 10 MC, o three-band scale (approximately twenty-one inches of scale travel) equipped with ontenna changeover switch, self contained power supply, built on cest aluminum frame. This unit will open up five meter operation and give the radio amateurs something new to shoot at. Already users are reporting - "Worked all districts on five meters."

RADIO MFG. ENGINEERS, Inc. PEORIA, ILLINOIS, U. S. A.

The Combination

Fine appearance and fine performance is contained in the combination RME-69 receiver and DB-90 preselector. With ontenne changeover switch incorporated and obtainable in either conventional black crinkle or gray crinkle cabinet this combination instrument, housed in one cabinet, features everything that will put any amateur radio station out in front.
This combination is also available in relay rack mount. See literature for details.

THE RME-70 A NEW MODEL WITH NEW FEATURES AT A LOW PRICE

THIS IS WHAT YOU WILL FIND IN THE RME-70

1. New illuminated DB-R meter
2. Three new iron core IF transformers
3. Improved automatic Noise Suppressor
4. Variable phasing crystal control circuit
5. Break-in relay control
6. Frequency range from 550 to $32,000 \mathrm{Kc}$
7. Extreme selectivity
8. Streamlined cabinet design
9. Controls designated with lettering
10. Total complement ten tubes
11. One stage of amplification
12. Sturdy construction, detailed engineering and exceptional quality throughout
The same sturdy construction, the same fidelity to detail in engineering, the same high quality workmanship that has always been characteristic of RME products will be found in this new receiver.
The speaker housing also has been redesigned to match the receiver cabinet design.
Ask us for a comprehensive folder on all of the units.
The RME-70 is a ONE TYPE, ONE MODEL receiver. NO variations are obtainable other than the combination and the gray or black crinkle finish. In order to offer to the radio field an instrument of this type and quality at a lower price it was necessary to
standardize on the one unit and eliminate variable adaptations. If any alterations to the RME-receiver are desired you will find your requirements met in the RME-69 series of instruments.

THE DB-20-70

The two stage R.F. amplifier and preselector may be ordered to match the outward appearance of the RME-70. Frequency Range from 550 to $32,000 \mathrm{Kc}$. Net price, with tubes and change over switch, black or gray finish, $\$ 42.60$.

THE 510X-70

This frequency expander is available in the front trim to match the RME-70 receiver at no additional cost. Frequency coverage 28 to 70 megacycles. Very effective in image suppression. Net price, with tubes and changeover switch, black or gray finish $\$ 45.10$.

THE COMBINATION

The RME-70 and DB-20-70 are also built into one cabinet, either black or gray finish. This combination makes one of the finest and most up-to-date units for any amateur radio station. Ask for complete details.

RADIO MANUFACTURING ENGINEERS, Inc.
PEORIA, ILLINOIS, U. S. A.

512
CATABOG

Esico Midget 65 Watts Tip $7 / 16^{\prime \prime}$ in Dia.
Weight 7 oz.
Length $111 / 4^{\prime \prime}$
List Price $\$ 1.75$

ESICO STAYS HOT

ESICO DOESNOT FRAY

The average iron loses a considerable portion of its heat only a short period after it is put into operation. The element and oxidizing causes this difficulty. ESICO has gone a step forward by using NICIROME Vin the construction of the electric soldering iron element and reducing this factor to a negligible level. "Good" Esico soldering irons give the full wattage rating during their long life.

Electric cords fraying and shorting cause much inconvenience to many amateurs and in some cases result in physical injury. A special patented method of firmly anchoring a heavily asbestos lined, number 14 electric cord, to the iron proper, entirely eliminates this difficulty.

Esico Nick Nack 55 Wotts
Tip 7/16" in Dia.
Weight 6 oz.
Length $113 / 4^{\prime \prime}$
List Price $\$ 1.10$

Esico Junior 85 Watts

Tid 7/16" in Dia.
Weight 9 oz.
Lensth 121/4"
List Price \$2.75

Many' thousands of hams the country over admit the superiority of ESICO. Why not join this increasing army of loyal and well satisfied Esico users?

Electric Soldering Iron Co., Inc.
Deep River, Connecticut
All Esico electric soldering irons are unconditionally guaranteed. A "good" quality iron plus absolute protection assures you of complete satisfaction.

now

Sowing
 with GMMMITIOIS

TYPE 24

Gammatron's newest low priced triode built to meet the requirements of the low power ham. Yet the high standards of Gammatron quality are retained. Improved design provides exceptional ultra high ferequincy performance.

Power output, watts . . . 87.5
Plate dissipation, watts . . 25
Max. plate volts 1500
Max. plate M. A. 75
Amp. factor 25
Excitation, watts 3.8
Filament volts 6.3
Filament amps. 3.0

The long life 150 watt tantalum plate tube. Made in five amplifiesion factors. Maximum power output 700 watts. Price. $\mathbf{\$ 2 4 . 5 0}$

The easy to neutralize 100 wat tantalum plate tube. Maximum power output 450 watts. $\$ 12.50$

The easy to drive 50 watt tantalum plate tube. Maximum power output 210 watts.

Price. \$6.75

WALTER H. CANDLER Maker of Champions Will Train You Personally to Uualify for that Bigger, Hetter Job.

Obtain Your Amateur or Commer-

 cial License in $1 / 2$ Usual Time With The New Candler System TrainingYou Cin Learn Conle RICHTY, from the beginning as you will be using it on the uir, or obtain your commercial license and qualify for a gool job hy tak-
 ing CANIILER TRAINING in your own home, as McEIroy, Jean Ilulson and many others have done and are doing. It is surprisingly easy and inexpensive.
It takes more than merely the sending and receiving of coole to become a skilled radiotelegraph operator. The New CANDLER SYSTEM teaches you quickly the technique of Fast, Accurate telegraphing.

LEARN AT HOME

To Read Code at High Speeds Like You Read Print
If you've practiced and practiced with any hinl of practice set, hut can't get over the "hump" that seems to be your limit - don't he discouraged. Thousands of skilled operators have had the same experience. Some thought they were dumb; others thought they weren't "gifted." But you should see those fellows toxlay! They can send beautiful code and copy fast press 4 to 8 words behind without conscious effort or strain. Those fellows have Automatic Sound Consciousness - and they got it through CANDIER Training!

No Expensive Practice Sets Needed for Candler Training

Learning to Seml and Receive Code Rapidly and skilfully is a 1 ental Irocess that requires Wind Training such as only CANDLER can give you. I'ractice of any kind without this Specialized Training is like trying to learn electricity without a knowledge of Ohm's Lau. CANIDER shows you the easy, interesting way to Speed, Skill, and that Amateur or Commercial License in half the usual time.

CANIDEIR SYSTEM
 Hox 331, Dept. HR-39 SNHEVMLIE, N. C., I.N.A.

1.. R. McDONAL.I), W8CW Wininer A.R.R.i. Code Contest Detrolt Convention Sept. 6, 1\% 37 by copying 60 wpm without error.
"'rractice alone of any kind will not develop a fast on. Candler makes available to all ops the Mental
Training formerly acfuired by only Training formerly acturired by only a few, and then by accident."
L. R. MctDonald. W8Cw

FIREE

The New BOOK of FACTS for Code Students. Amateurs and Kadio Operators IV'ill Be Sent to You IV'ithoul Cost or Obligation.

Contains inside advice and tips from the champions and world's fastest Amateur and Commercial ops. They tell you how to quickly develop Skill and Speed. Contains information on License Requirements and a list of QUESTIONS. many of which will be asked you by the R. I.. when you take your exam.

In presenting our new line of Rack and Panel Equipment cur desire has been not only to make it complete but also to follow the current trend toward streamlining in design.

We now have ready several new types of racks, cabinets and amplifier chassis to meet the demand for new equipment with modern, distinctive lines. To effect a more harmonious color combination than is possible with the conventional black finish, many units are offered, without any additional cost, in slate gray enamel which blends perfectly with red, black, or chrome trim dials, instruments, etc.

NEW DE LUXE STREAMLINED UNITS

De Luxe Type "C" Single Unit

De Luxe Type " C " Double Unit

De Luxe Speaker Unit

De Luxe Amplifier Foundation Chassis

De Luxe Type "C" Enclosed Relay Rack

REGULAR STANDARD RACKS \& ACCESSORIES

Type "A" Channel Relay Rack

Combination Bracket and Panel

Standard Amplifier Foundation Chassis

Our new units are completely described in our catalog No. 39 which will be mailed upon request. Write for your copy today.

PAR-METAL PRODUCTS CORPORATION

P Y R E X Ratio ohunatasos

For Amateur Use

PERFORMANCE, which alone has won for PYREX Radio Insulators their present day supremacy, is the direct result of the inherent properties of the glass composition from which they are made.

The high volume and surface resistance and low power loss of PYREX brand glass result in clearer signals and better distance, particularly under adverse conditions.
The perfection of surface of PYREX Radio Insulators is an important factor in preserving their continuous efficiency. Except in heavy storms, rain does not form a continuous film on the surface, and as atmospheric dust particles find no pores or cracks for permanent lodgment, a mild rainfall washes away anything which may have settled on the insulator surface.
A folder describing PYREX Brand Radio Insulators will be sent to you on request.

PYREX Nos. $67106-67108$ Stend-off Insulators for High Power Transmilters

PYREX Nos. 67007-67017-67021 Antenne Insulators lor Improved Trensmission

Detailed wiring instructions! Diagrams! Schematics! Pictorial Diagrams! Alignment Data! And operating instructions for all Meissner units!

A NEW book - Page after page of invaluable information, both theory and technical data. With graphs and charts; contains pictorial diagrams, schematic diagrams, alignment data, constructional data and operating instructions for 15 of the new Meissner receiver kits; also adapters and converters.

HOW TO BUILD RADIO RECEIVERS

COMPLETE INSTRUCTIONS ON HOW TO BUILD 15 $Z_{\text {KITS }}$ 120 PAGES

EASY WAY TO LEARN RADIO CODE

To speed up the learning of the code use a Machine we send to you. Always ready - no delay trying to tune in on Short Wave - no schedules to watch for - no weather interference. Beats having another send to you, as you concentrate fully on the study.

THE "STANDARD" INSTRUCTOGRAPH

The Instructograph is a scientifically constructed machine that sends telegraphic characters perfectly at any desired speed.

By so doing it literally takes the place of an operator-instructor, and enables anyone to learn either the Morse or Continental codes without any further assistance.

The "Standard," as illustrated, includes the full set of ten tapes and book of instructions. Priced $\$ 20.25$, delivered to any point in the United States or possessions. $\$ 1.00$ additional to points in Foreign Countries.

THE "JUNIOR"

The "Junior" Model of the Instructograph, similar in appearance to the "Standard" Machine, only a little smaller, with five tapes and the book of instructions IS NOT RENTED, but may be purchased for $\$ 12.00$, delivered to any point in the United States or possessions, and $\$ 13.00$ to points in Foreign Countries.

The "Junior", operates just as efficiently as the larger machine, and the difference being mainly in the size, weight and number of tapes supplied. However, additional tapes may be purchased at a reduced rate. Oscillator equipment may be installed in the "Junior" also.

BOTH MACHINES ARE SOLD ON EASY
 MONTHLY PAYMENTS IF DESIRED

Full Oscillator equipment - Audio transformer, and tube socket wired and installed in the machine, " 99 " type of radio tube, key and connecting cord and Trimm head phones. Priced $\$ 6.50$.

RENTALS (In United States only)

No. 1. Instructograph, 10 tapes and book of instructions: First month $\$ 3.00$, each additional month, $\$ 2.25$.

No. 2. Instructograph, 10 tapes and book of instructions, with transformer and tube socket wired and installed in machine: First month, $\$ 3.25$, and each additional month, $\$ 2.50$.

No. 3. Instructograph, 10 tapes, book of instructions, transformer and tube socket installed in the machine, key and connecting cord, and head phones: First month $\$ 3.50$, and each additional month, $\$ 2.75$.

MACHINES FOR SALE OR RENT

THE INSTRUCTOGRAPH

accomplishes these purposes:
FIRST - It teaches you to :eceive telegraph symbols, words and messages.
SECOND - It teaches you to send smoothly and accurately.
THIRD - It increases your speed of sending and receiving after you have learned the code.
We pay return transportation charges on all rentals, and pay it both ways if rented for three months or more, and full three months' rental accompanies the order. A deposit of $\$ 10.00$, in addition to the rental, is required or satisfactory references asked.

Postal card will bring full particulars immediately

THE INSTRUCTOGRAPH CO.

FOUNDATION TUNERS DESIGNED EXCLUSIVELY FOR THE AMATEUR

Abstract

Here are the band-switehing Tumors you have beron waiting for: are so versatile that pach Tumer fills many moeds in any whack.

- WMIT TMEY ARE

The BL-5C - Five high-(2 cathode-tapped coils with band switching arrangement, designed for the grid circuit of a stable electron coupled oscillator. Fach coil shunted by a large, stable Silver (ap fixed condenser whose eapacity is constant over a wide range of temperature and humidity. High ratio of capacitance to inductance permits remarkable frequency stability. Coil frequencies allow second harmonic operation of the plate circuit on the 10-20-40-80-and 160 -meter bands. Tuning accomplished by means of a 100 mmf . variable condenser common to all
 bands. Lnit completely wired and assembled at the laboratory.

The BL-5P - Five high-Q coils together with band-switching arrangement and tuning condenser, designed for plate circuit operation in a crystal or electron coupled oscillator. Covers the 10-20-40-80- and 160 -meter bands. Iigh I./C ratio for maximum output. Init completely wired and assembled at the laboratory.

The BL-5H - This Tuner consists of 5 high- $(2$ coils, 5 trimmer band-setting condensers, series antenna condenser, main tuning condenser, and grid resistorcondenser combination. The coils are rigidly mounted on a band-switching arrangement. Trimmer condensers especially designed for stability. Coils cover the 10-20-40-80- and 160 -meter bands. Each band spread over a large portion of the tuning scale.

WILAT TIIEY IM

The IBL,-5G; and BI,-5P - I'se these two high quality units to build the all-band lixeiter you have always dreanmed about, The high © grid colls and high t. plate coils orovile ath deal combthation. Bed rock stabilty makes passible accurate and permanent calibrations. fiving 35 witts output, the Exeter is it tranimiter in Itself-a driver for a $2(0)$-wat ilnal.

The BI, $5 \mathbf{5 I I}$ - Thislit the Tuner is the most versat lle unt ever offered to the amateur fraternity. Inesigned primarily as the basis of a simple regonerative receiver. It has found even greater pogularity as the basis of un effeient and simple reqenerative preselector. Matny ot her use's will suggest thenselves to the amateur. Use it as a froquency monitor, a wave trap, a Ham band signal generator.

WHAT THEY CONT

	Amateur Irice	$\begin{gathered} \text { Amateur } \\ \text { l'rice } \end{gathered}$
. s -H Tuner.	... $\$ 7.85$	Etched and Engraved $\left.7^{\prime \prime} \times 10\right)^{\prime \prime}$ panel. $\$ 1.40$
--P 'Tumer.	. 6.65	
i-c; Truner	8.80	Por all 3) . 60

FOIR TME IDINCIRMMNATING ENIPEIRIMENTEIR

Foik the set buildor. the experimenter, the man who wants the thrill of building a Thetter radlo than he cant buy, wo present the lsrowning 83 . This new development of the browning Laboratories is not just another kit receiver. It presents features not elsewhere obtainable. Esing a basie superheteroly ne circuit. It concentrates not on iritis but on provilng noise-iree recepton and biph athio idenity continnous irequency coverage from iof to 2, inc. Its signatoo-nohse ratiois especially high, its sersiend in vlew, the chatsit has been laid out to allow Individual experimentation. Finlend in vew, the chassis has been laid out to allow individual experimentation. Full-
 signal generator.
Complete BIROWNING 83 KIT (Ineludes everything necessary to build the Browning
si except tubes, speaker, and cabinet). in ? 1 . 7 .

HEIEWNING LAROIRATOIEIES, Inco, Winchester, Mansachusetts Export Department: 461 Fourth Avenue, New Iork

JONES

 PLUGS, SOCKETS and TERMINAL PANELS

 PLUGS, SOCKETS and TERMINAL PANELS}

HEAVY DUTY SERIES

Five numbers of over 200 in the Heavy Duty Series fulfilling practically all plug and socket requirements in Public Address, Radio and kindred fields.
Rugged construction that will withstand hard usage.
Socket Contacts - Knife switch type. Phosphor bronze. Tin plated.
Plug Contacts - Hard brass. Tin plated. $1 / 44^{\prime} \times 1 / 16^{\prime \prime}$ cross section. Insulation - Moulded bakelite.
Caps - Steel. Black crackle enamel ,baked.
Made in 2, 4, 6, 8, 10 and 12 contacts
The best all around plug and socket at popular prices

" 300 " SERIES

Six numbers of over 100 in the 300 Series. A new line of HIGH GRADE small plugs and sockets, adaptable to thousands of uses. This series has already been purchased in large quantities by nationally known manufacturers of Radio and P.A. equipment.

Priced low, but should not be confused with plugs and sockets manufactured with the express purpose of selling below competition.

All plugs and sockets polarized. Made in 2 contacts to 33 contacts. Phosphor bronze "knife switch" type female contacts. Brass, tin plated male contacts, bar type $5 / 32^{\prime \prime} \times 3 / 64^{\prime \prime}$ cross section. Moulded bakelite insulation. Drawn metal caps. Formed fibre linings. Simple assembly. Inexpensive.

TERMINAL PANELS
 MANUFACTURERS! NOTICE!

For years we have been serving manufacturers on requirements for special terminal panels to blue print. Our line of terminals has been developed by customer needs and range from small sizes ($2-56$ screws), to large sizes (10-32 screws). Prompt quotation will be supplied upon receipt of blue print or sketch.

REQUEST YOUR CATALOG
Jobbers, No. J-38
Manufacturers, No. M-38
-
Radio Amateurs, A-38

HOWARD B. JONES

Radio Telegraph Apparatus by World's Champion

T. R. McELROY, 175 Congress St., Boston, Mass.
Exclusive European representative: C. Webb Ltd., 14 Soho St., London

"I've designed and buill my semi-automatic and hand radio-telegraph keys in accordance with principles of balance and ease of operation that l'ae learned in 25 years as an actiou radio, cable and telegraph

DeLuxe
 MAC KEY

$\$ 9.50$
("arcfully: stlented amb tested springs partialiy take the place of wrist and fingors. Fast, rhythmical Morse with little efom. Hears one piece castmg with beantiful and mermanent marble finish. $1 / 4$ " adjustment screws, $16^{\prime \prime}$ contacts; bakelite insulation throughout. l'jetails. dot stahilizer, circnit closer, rase hardened bearimgs.

STANDARD MODEJ. . $\mathbf{\$ 7 . 5 0}$. Same kes' but some fesign and tinish conomies to lower cost.
JUNIOR MODEL, $\$ 4.95$. Same main lever. Stammed steel bast

AC/DC AUDIO OSCILLATOR $\$ 5.95$

Molded bakelite case. Separate onthats for phones atol modulation. Knol, confrol tones sidection, 600, s(x), 1016 cy-
 ballast tuloc. Ideal for operators and engineers.
operator. Nearly anywhere in the world wherever dots and dashes are usel, operators mowe more traffic with less effort with . M.AC brand kevs."

DeLuxe

STREAM KEY

\$2.25

The prettiest telegrarlh ke3 ITr ever seen! Heavy clrome phate, $3 / 16^{\prime \prime}$ contacts, superibly balanerd man lever. My twenty-five years experience as an operator has gom into the design of the fimest hand key himath skill can buid. It ine tion will positively delight any operator!

PROFESSIONAL, \$1,80. All Brass
(:OMMER(:IAL, \$1.50. Chrome \& Black
AMATEUR, \$1.20, Cadmium \& Black These three keys on contentimal typer stroight key buse.

OPERATOR'S PRACTICE SET
 \$2.95

same uretaly designellamoltal anced lower as all my kers Monnted on heavy case base. MAC HUMMER, methanical oscilla ar 1000) cyeles. Uses 6, volts or more, Apharatus that will remain urizal long after the beginner's stage has been left behimil
"I've employed recent dectopments in the fich of electronics to produce simply designed, ruggedly built, and love cost, completcly automatic transmitting and receiving equipment. Trouble-free photo-electric cell circuit supplants intricate and costly mechanical

Itses regulation inkerl slips. Light from exciter lamp onto photoreell interropted by inkerl dots and dashes. Amplified to give positive relay action. Key transiniter or local oscillator. Unceualled for training operators. Limitless subply tane avalable thra Recorder. Transmits perfectly up to 100) whm.

PRACTICE REELS

25 different reels of practuce slip ayailable, 2000 words per rect
principles. High speed ink recording direct frome receiver output by application of newly discowered, conomical means of signal rectification and positite pen action resultant from use of cast NIPER.M.1G magnets and special bobhins."

MAC RECORDER

$\$ 29.75$
©onnects to output of communication receiter and records up to 100 wpm merfectly. Built-in transformer and rectifier. Complete in one unit. Merely throw switeh to DC infult and record your own sombling. Ansthing recorded mask be run through Mac Auto at any wesired suced.

TAPE PULLER

\$12.00

Thousands of amateurs look daily to the Hoyt meters on their instrument panels for accurate, reliable information. They know that these meters are the result of thirty-four years of electrical manufacturing experience, and that Hoyt instruments are widely and favorably known throughout the radio and automotive fields.
Properly designed and soundly engineered these meters are built by the skilled fingers of New England Craftsmen. You can buy with assurance, and place full contidence in these rugged, time-tested dependable Hoyt meters.
Type 597 shown at the top, is the New Square Meter which measures $3^{\prime \prime}$ across the face. It is a rugged D.C. instrument with a long scale. Accuracy is 2%; sensitivity 50 MV in the $0 / 1 \mathrm{MA}$ range. A matching companion A.C. meter, Type 598, with pneumatically damped movement, is available in the same size.
At the right is the R.F. Antenna Meter (hot-wire type) No. 586 . Used for measuring transmitter output, this instrument is unaffected by frequency changes. It is supplied in three ranges and three case styles.
Next down, is Type 582, a D.C. jewel-bearing, moving-coil instrument, measuring $31 / 2^{\prime \prime}$ across the bakelite case. The accuracy is 2%. At the bottom of the page is shown Type 584, an A.C. repulsion movement meter with jewelled bearings. The case is the same size as the 582 and both instruments have insulated zero adjusters.
All these attractive meters are priced to suit the amateurs pocket book. Ask your jobber for these instruments or send for our handy reference catalog on the complete Hoyt line.

BURTON-ROGERSCO. SALES DIVISION OF THE HOYT ELECTRICAL INSTRUMENT WORKS 857 BOYLSTON ST.
 BOSTON
 MASS.

MASTER THE CODE WITH MASTER TELEPLEX

ALL ELECTRICALLY OPERATED Just plug it in

THIS TAPE
was made on MASTER

TELEPLEX
by "Bug" sending
YOU CAN'T
GO WRONG WHEN YOU
CAN SEE
WHAT YOU
ARE DOING!

THERE IS ONLY ONE WAY TO LEARN TO RECEIVE THE CODE SIGNALS AND THAT IS BY LISTENING TO THE SIGNALS. THERE IS ONLY ONE WAY TO LEARN TO SEND THE SIGNALS PROPERLY AND THAT IS BY BEING AbLE TO SEE AND HEAR YOUR OWN SIGNALS.

WITH MASTER TELEPLEX YOU LEARN THE CODE IN THE NATURAL, EASY, FASCINATING WAY. THERE IS NO GUESSWORK BECAUSE YOU ACTUALLY SEE AND HEAR WHAT YOU ARE DOING!

Learning to send PROPERLY is more difficult than learning to receive. Most people think sending is easy. Well, just ask the fellow who tries to receive it! How do you make the letter " C "? Of course not like the third one shown below. But you might be surprised! Actually; most professional operators are astounded to see their sending recorded on MASTER TELEPLEX.

MASTER TELEPLEX will show you exactly how you make the letter " C " and all the rest of the characters. And it will show you how to make them correctly!

CATALogUE QB EXPLAINS fUlly the many interesting and fascinating features of master teleplex. It also lists three other types of Code Teachers. Just send a post card asking for catalogue QB. No obligation.

TELEPLEX CO.
67-69 Park Place
New York City
In Canada Write CANADIAN ELECTRONIC INST., TORONTO, ONT.

GROSS TRANSMITTERS!

The Rigs You Can Depend On!

More and more operators are realizing that only in a Gross transmitter can they obtain appearance, quality, performance and value. Really high power phones at amazingly low prices. Truly the "more watts per dollar" slogan takes on a new significance.

NEW!! GROSS CB-250 RADIOPHONE TRANSMITTER

R.F. Line Up - 42 oscillator, 6L6G buffer, two Taylor TZ-40's amplifier. Speech Amplifier - 6C5, 6N7, 6N7, two 42's. Modulator - Two TZ-40's, separate power supply using one 80 and one $5 Z 3$. Power Supply - Two 866 Jrs, one 83. Antenna Unit - Self contained antenna tuning unit. Frequency Coverage - 1.7, 3.5, 7, 14, 30 mc . Power - Radiophone and CW 250 watts input. Cabinet Floor model, extremely compact size, finished in rich gray wrinkle lacquer.
Write for descriptive literature giving full details.
Profit by getting our prices before buying your Transmitter

NEW!! GROSS CB-150 RADIOPHONE TRANSMITTER

Gross presents another fine transmitter having real power at an amazingly low price.

CB-55 MODERATELY PRICED
Radiophone Transmitter FB. FOR 30. MC.
Input-95 watts. Uses 2-T20 tubes in R.F. and 6L6's in modulator. Coils available for 30,14 , $7,3.5$, and 1.7 mc . Descriptive Bulletin on Request

DYNAMOTORS

Navy Aircraft Dynamotor. G.E. 24/1000 volts, 1 ampere, extended shaft giving 24 volts for flament and 1000 volts for plate Value \$250.00. Special price.

Army AC generator, self excited 900 cycle, 200 watt 110 volt. 15 lb . "Westinghouse." Portable. Every lab. can use one. New $\$ 25.00$.
Used.
$\$ 15.00$
U.S. N. double current generator, 450 voll at 250 mills and 12 volls at 3.75 amp . Complete with filter. Maybe used as dynamotor, $\$ 25.00$

GENERATORS

MOTOR GENERATORS

120 volt d.c., $1 / 11$ or 220 volt a.c., 500 cycle, 250 watt. . $\$ 40.00$ up 120 voll d.c., $I / 10$ or 220 voll a.c., 500 cycle, 500 walt.'
$\because \quad . \quad 40.00$ to $\$ 100.00$
75.00 to 125.00 120 voll d.c. 1 ióor 220 voli a.c.. 500 cyclé, i kw... 75.00 to 125.00 120 voll d.c., 110 or 220 voll a.c. 500 cycle, 2 kw. 50.00 to 200.00 120 voll d.c., $/ 10$ or 220 voll a.c., $500 \mathrm{cycle}, 5 \mathrm{kw}$. 95.00 to 350.00 120 voll d.c. $/ 20$ voll d.c. 2 kw. 60.00 120 voll 1400 volt d 2 k 45.00

120 voll d.c. $/ 400$ voll d.c. 2 kw..
120 voll d.c. $/ 600$ voll d.c. $2 \mathrm{kw} .$. 65.00

CONVERTERS

120 volt d.c., 120 volt a.c., 60 cycle, 2 kw $\$ 85.00$
32 voll d.c., 110 volt a.c., 400 mills.
85.00

32 volt d.c., 110 volt a.c., 800 mills.
Dayton" Input 110 a.c., 60 cycle. Outpui 450 d.c. al $8 \dot{O}$ mills and 7 d.c. at 1.75 amps. 1750 r.p.m. has extended shaft. 15.00

Bausch \& Lomb

U. S. NAVY TELESCOPES

Said to have cost in excess of \$130.00. Now.
$\$ 12.50$

Formerly used on large calibre guns. Makes an excellent finder. Has many other uses. Consists of an optical system of 7 lenses, main telescope lube, erector draw tube and eyepiece draw tube. Also excellent scope for spolting game or targets. Object Lens 2"; Variable, magnifies from 3 to 10 power; Exit pupil $0.2^{\prime \prime}$ to $0.0 y^{\prime \prime}$; Eye Lens 15/16 ${ }^{\prime \prime}$. All bronze and brass. Cross Hairs, Angular field $3^{\circ} 30^{\prime}$ to 12°; Erect image. Weight 6 lbs. Limited amount. Each.
. $\$ 12.50$

RHEOSTATS

Ward Leonard Vitrohm Rheostats. Variable $500 \mathrm{ohm}, 2$ to 1.5 amp., 35 taps.
$\$ 5.00$
Ward Leonard Vitrohm Kheostats. Variable 6 ohm, 15 to 5 amp . battery charging type. .

United States Government NEW FIRE
 EXTINGUISHER

Carbon telrachloride (pyrene liquid); pressure type; ideal for laboratories, eic., Irucks, etc., boals, gas stations.
(IO times more pressure than hand extin. guishers.) Just turn handle. No pumping necessary.
(Original cost \$40.00)
lat. (100 lbs . pressure).
$\$ 9.85$
2 gts. (200 lbs. pressure).
$\$ 14.95$

Dynamotor, 32/350 volt, ball bearing, 80 mills.
Special price
$\$ 9.00$
Per pair

CONDENSERS

Mica Condensers, . $00 \cdot 7 \mathrm{mfd}$., 12,500 V. operuling:
Dubilier, new. $\$ 6.00$ Dubilier, used. 4.00 Wireless Spec., new. 5.00 Wireless Spec., used 2.50 $85(t)$ Voll, .0004 mfd... . . 4.00 8500 Voli, $.00+\mathrm{mfd} . . .$.
Murdock Condensers:
$.003 \mathrm{mfd}, 5000$ Voll. . . . $\$ 1.00$.002 mfd., 12,000 Voli... 2.50 Wireless Spec. copper glass leyden jar, 10,000 working voltage, . 002 mfd. 2.00 Dubilier Conderser. CD-1494 mica . 0006 mfds., 25,000 volts. Price. $\$ 10.00$
Western Electric lype 21AA Cordensers. IOOOV. a.c. lest. I mfd. Use in series parallel for high capacily and vollage.
Each. $\$.75$
Western Electric type $2 / A B$ Condensers. looo V. a.c. lest. Three capacilies, $125, .25$ and . 5 mfd. Each. $\$.75$

Anti-Capacity Switckes, Western Electric 14 terminals, platinum contacts, bath sides locking, value $\$ 3.50$ each. Special 12 terminal, one side momentary, other side locking. . . $\$.95$

Lightning switch, navy, ceiling lype, heavy brass. Mandle 5 kw. Beauliful piece of equipmevl. Special

KEYS
Army Transmilling key. 1/4" Silver contacts. With blinker Silver contacts. With blinker
light. Special. $\$ 1.50$ Aircrafl key. Silver contacts. Beautiful instrument. .. .\$1.50 U. S. Army Telegraph Practice sets. Key and 4 ohm sounder mounted on baseboard.
\$2.50

WE Microphone with breast plate, light weight type, carbon bulton-a rery excellent and sensilive microphone....\$1.95

RELAYS

West. Elect. low voltage relay. 2 upper and 3 lower plat. point screws; 3 contact arms.
Price..
. $\$ 2.50$
Relays. 5 kw .110 or 220 V . d.c. $5 / 8^{\prime \prime}$ silver contacts. Price. .
. $\$ 7.50$
AC Relay, single pole, double throw, silver conlacils, will handle 30 amps. 110 or 220 voli.

$\$ 3.00$
WE Army Field Telephone Sel, Magnelo ringing, Ballery talking. Also buzzer phone. Complete, sending key, microphone, plete, sending key, microphone,
headphones............. $\$ 7.50$

Drop and Jack combination. (Plug resels drop) 350 ohms 6 to 24 volts. Good switchboard ilem. Price, each.

MANHATTAN ELECTRICAL BARGAIN HOUSE, Inc.

105-107 Fulton Street, New York, N. Y.

Such is exactly what it amounts to when old fashioned open core, shell-type transformers and chokes are installed in the modern radio chassis.

KENYON T-LINE TRANSFORMERS

represent the last word in modern transformer design . . . thoroughly dehydrated and impregnated under special 36-hour vacuum-varnish treatment . . . hermetically sealed against atmospheric changes with non-hygroscopic humidity-proof compound in one attractive style steel casing for that uniform, commercial-looking loyout, and also provide facilities for universal mounting in either upright or inverted positions ... and last, but not least, the highest grade materials, workmanship and advanced transformer engineering skill incorporated throughout... all of which means better all-around performance in any radio assembly.
That's why leading manufacturers of better class amateur transmitters and sound equipment use KENYON T-line components exclusively. That's why most all outstanding expeditions to all corners of the globe choose KENYONS for dependability. And that's why broadcast stations, scientific, sound and research laboratories, governmental services, etc., use KENYONS in equipment where performance must be at its best.

DON'T BE MISLED!

to accept substitutes for genuine KENYON T-line transformers. Look for the KENYON Diamond-K trade mark and " T "' line type number. A complete line for every amateur transmitterapplication, including television equipment. Ask for the Kenyon T-line catalog.
If your local jobber-dealer cannot supply you with Kenyon T-line components send us his name together with your order enclosing your remittance at reg̣ular amateur discounts (40% off list prices) and we will ship your order direct, prepaid anywhere in the U.S. A.

Published March 1938 201 pages; $61 / 2$ by $95 / 8$ 73 illustrations $\$ 2.00$

Now Available!

Questions and answers for the amateur who is preparing for commercial exams, for the radiotelegraph operator, the radiotelephone operator, and all prospective commercial radio licensees.

DREW'S
HOW TO PASS RADIO LICENSE EXAMINATIONS

By Charles E. Drew, I.R.E., A.I.E.E.

This book is more than just a new edition of a famous work. It has been completely rewritten. It will serve as an excellent guide to all radiomen, whether interested in broadcasting, marine, aeronautical, or any other field of radio transmission and reception. The concise presentation of the essential questions and answers which the operator must know makes it easy to follow. Important phases of the subject are given thorough treatment, so that the man who understands the content of this book will be well qualified to pass the examination for his commercial license.

Contains new material on-

Rectifier tubes for supplying high-voltage for tube operation
Methods :or eliminating or reducing the power in unwanted frequencies
Adjustments of the various classes of amplifiers used in transmitting circuits
The use of equalizers in lines over which speech and music frequencies are carried to the audio input of the transmitter
The srocedare for changing operating power and operating on a new transmitting frequency
Circuit conditions and adjustments which affect resonance

JOHN WILEY \& SONS, INC. 440 Fourth Avenue New York

General principles of electricity
The location of principal seaports along the coast line of the United States and important ports of call in foreign countries Radio laws and regulations

ON APPROVAL COUPON

JOHN WILEY \& SONS, INC.
440 Fourth Avenue, New York, N. Y.
Kindly send me a copy of Drew's "How to Pass," on ten days" approval. ! I decide to keep it I will remit \$8.00; otherwise, I will return the book postpsid.

Name.
\qquad
\qquad

Employed by

AMERICAN CRYSTAL MICROPHONES

B9. List. . $\$ 22.50$
$w / 8^{\prime}$ Cable

NEW CRYSTAL MICROPHONE . NEW ACCESSORIES A GOOD MICROPHONE, SMALL and EFFICIENT

Light Weight, with plug at microphone, (an "American" feature) Permitting Quick Cable Adjustment

A complete line of crystal microphones shown in our illustrated catalogue No. 27, available upon request

All "American" Crystal Microphones are licensed under patents of The Brush Development Company

AMERICAN DYNAMIC MICROPHONES

Increasing INTEREST in DYNAMICS

A Most POPULAR Pickup

 EXCEPTIONALLY RUGGED HIGH OUTPUT IMMUNE TO TEMPERATURE CHANGESEXCELLENT FREQUENCY RESPONSE

UNIDIRECTIONAL DYNAMIC

Pickup from FRONT only
High Output

> Good Response

D9T. 10,000 ohms, 25^{\prime} cable. List .
$\$ 37.50$
D7. 50 ohms, 25^{\prime} cable. List $\$ 35.00$
Available on order in 200 or $\mathbf{5 0 0}$ ohms. List. ... $\$ 37.50$
Bulletin No. 29 conta ins complete technical information

D5T. 10,C00 ohms, 200 ohrs or 5CO ohms w/ 25^{\prime} cable. List $\$ 32.50$ D5. 50 ohms $\mathrm{w} /$ 25' cable. List $\$ 27.50$

Request your catalogue

AMERICAN CARBON MICROPHONES

MODEL EL4 DOUBLEBUTTON MICROPHONE

EL4
LIST
$\$ 7.50$
Cast Grille. Chrome finish. Dependable pertormance. Excellent value. Complete with $5 / 8 \times 27$ mounting yoke and screw eyes for suspension.

FH3 AND FL3 FLOOR STANDS

The FH. 3 and FL. 3 Floor Stands have do positive action, friction lock which assures reliable. noiseless odiustments, insulated, heavy steel tubing, and three-contact rubber cushioned, "Floor Grip" Base K_{in}. ish baked Satin Elock with chrome trim. Adiustable to full six leet $5 / 8 \times 27$ thread FH .3 Net $\mathrm{N}_{1}^{\text {trim }} 15$ ibs.,
FL. 3 . Net Studio Model, Code: FUHET
List........ \$15.50
FL-3, Lighter Model, Code: FLEXR.
List Price $\$ 10.50$

MODEL DB2

This double button mike is built to withstand rough usage. No rubbing noises are transmitted from the case to the microphone. Switch in hondle.

Output constant between upper and lower limits of speaking voice. Chrome finish. 12^{\prime} cord. 200 ohms resistance per button.

DB2 LIST
$\$ 15.00$

crystals

A superior crystal unit for the 20 and 40 －meter bands．The correctly proportioned crystal，mounted in its individually design－
 ed holder，is distinctive in performance．Frequency drift is less than 4 cycles／mc．$/{ }^{\circ} \mathrm{C}$ ．

> Price—7.0 to $7.3 \mathrm{mc} ., \pm \mathbf{5 k c}$ of specified frequency* $\$ 4.80$
> -at exact integral specified frequency . $\$ 5.90$
> Price- 14.0 to $14.4 \mathrm{mc} ., \pm 15 \mathrm{kc}$.
> of specified frequency $\$ 7.50$
> — $\pm \mathbf{5 k}$. of specified frequency . . $\$ 12.00$
> Price- 14.4 to $15.0 \mathrm{me} ., \pm 30 \mathrm{ke}$. of specified frequency \$7.50
> 一 $\pm 5 \mathrm{kc}$. of specified frequency . . $\$ 17.50$

Bliley pioneered high frequency crystals with the HF2 20－meter unit．Now，with the addition of the HF2 IO－meter unit，the many advantages of simplified crystal control are extended to the 5 －meter band．Frequency drift is 20 cycles $/ \mathrm{mc} . /{ }^{\circ} \mathrm{C}$ ．for the 20 －meter unit and 43 cycles $/ \mathrm{mc} . /{ }^{\circ} \mathrm{C}$ ．For the $10-m e t e r$ unit．

Price－ 14.0 to 14.4 mc ．，$\pm 15 \mathrm{kc}$ ． of specified frequency＊．．．．$\$ 5.75$
一 $\pm \mathbf{5 k c}$ ．of specified frequency ．．$\$ 10.00$
Price— 14.4 to $15.0 \mathrm{mc} ., \pm 30$ ke． of specified frequency＊．．．．\＄5．75
－$\pm 5 \mathrm{kc}$ ．of specified frequency ．．$\$ 15.00$
Price－28．0 to $30 . O m \mathrm{c}, \mathrm{I} \pm 50 \mathrm{kc}$ ． of specified frequency ．．．．\＄5．75

The Type SMCIOO，dual－frequency crystal unit，offers a means for constructing a simple，flexible，inexpensive frequency standard． It is ideal for checking receivers and signal generators．Calibration is $\pm .01 \%$ at looke．and $\pm .05 \%$ at 1,000 ke．

Price
$\$ 7.75$
A precision mounted lOOke．bar for accurate calibration of fre－ quency meters，test oscillators，radio receivers or for performing general frequency measurements．Temperature coefficient is less than 3 cycles／me．$/{ }^{\circ} \mathrm{C}$ ．The oscillator tank coil is included in the mounting．

Price－Type SOCIOO
．$\$ 15.50$
Price－Type SOCIOOX mounted looks． X－cut bar（no tank coil included）
$\$ 9.50$

All Bliley Crystal Units described on these pages，with the exception of the Type SMCIOO，fit standard 5 －prong tube sockets．

MECA RECEIVING-TRANSMITTING CAPACTIORS - TYPE 4

be evolution of the original small "micadon"* capacitor has resnlted The gerfection of Types 4 and 9 mica units. Efectively used for r.f. rpass, high voltage D.C. hlocking, low power tank capacitors, miders, coupling functiong, audio and vidoo parposes.
Fpe 4 uaen whort molder-lag terminals and bas inoulated mounting ples for punel mounting.

Copacity Test List
 Mfd. Voltage, d.c. Price 605 .000051000 v $\$.35$ 615 615 601 602
$6 D 6$ 6D6 6S1 652 1205 12D1

Cat. No. 4.12 Dq 412 D 5 4 -12S1 4.2505 4.25125 4.2575 4.25D1 4.25 D 2 4.25 D 5

Capacity Test List Mrd. Voltage, d.e. Price .002 2500 y $\$.95$ \begin{tabular}{lll}
.005 \& "1 \& 1.50

\hline 101 \& 0.35

.01 \& "1

.00005 \& 2000

\hline
\end{tabular} $\begin{array}{lll}.00005 & 5000 \mathrm{~V} & .70 \\ .00095 & 11 & 90\end{array}$ $\begin{array}{llr}.00095 & \text { " } & .90 \\ .0005 & 8.25\end{array}$ $\begin{array}{lll}.0005 & " & 1.25 \\ .001 & " & 1.50\end{array}$ 008 " 2.25 .005 " 3.50

MICA RECEIVING-TRANSMITTING CAPACITORS - TYPE 9

he terminal atuds on Type 9 are moulded into case.
t. No Capacity Test List 605 Mid. Voltage, d.c. Price .00025 1000 r \$ 40 60 6D2 . 001 " $\begin{array}{llll}602 & .002 & " & .70 \\ 605 & .005 & " & .80 \\ 606 & .006 & & .85\end{array}$ $\begin{array}{l:llr}606 & .006 & " & .85 \\ 6 \$ 1 & .01 & \because & 1.15 \\ 6 S 5 & .05 & . " & 3.85\end{array}$ $\begin{array}{llcl}6 S 5 & .05 & \text { "̈ } & 3.85 \\ \text { 12O5 } & .00005 & 9500 & .70\end{array}$ $12 T 1$.0001 12TE5 . 00025
.70

Cot. No.
Capacity Test List Mid. Voltase, d.c. Price .0005 2500 v $\$.70$ 9.1202 9.1251 9. 2505 9-25125 9-25D1 $9-25 \mathrm{D} 2$ 9.25 D 5 $9.25 S 1$
001 2500 r $\$.70$
$002 \quad$ " $\quad .90$
.. $\quad 1.35$
$\begin{array}{lll}.00005 & 5000 \\ & 2.80 \\ & .90\end{array}$
$\begin{array}{lll}.00025 & \text { "1 } & 1.05 \\ .001 & \text { ". } & 1.50\end{array}$

.002	$"$	2.25

$005 \quad " \quad 3.40$

MICA TRANSMITTING CAPACITORS - TYPE 86

y selectimg the very best grado of India ruby mica, the Type 86 upaeitors have a very low r.f. renistance and power-factor, hut exemelw high D.C. reaistance and neglizible power towses. The patented esign has eliminated corona and reduces internal heating, so that ne Q quality characteristic is exceptionally ligigh.

$15 A-86$

11 HAMILTON BLVD., SO. PLAINFIELD, N. J.

\star TYPE HFM TRASMitTER: The Transmiter

 Mot to manticurs.

WRITE FOR BULLETINS

$\star{ }^{2}$ conpact tube ingut thats.

- FIELD STRENGTU METER: Tuning an intenna
 ntegral batery
$60,000 \mathrm{Fe}$. Net to Amateurs.

Today's Most Modern Instruments . . . 18 styles . . . round, square and fan cases . . . $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}, 7^{\prime \prime}$ and twin models . . . Front and rear illumination . . . Triplett's complete line includes voltmeters, ammeters, milliammeters, millivoltmeters, microammeters, thermo ammeters, decibel meters and instrument relays.

New methods and extremely accurate processes representing years of instrument building experience are embadied in Triplett decigns. First considerations are for dependable accuracy, simplicity, and the best application of the fewest number of parts. Long research has resulted in the development of a super magnet (the heart of the instrument) by means of which it has been porsible to eliminate extra pole pieces. This achievement has brought from prominent laboratories graphs that prove Triplett magnets give more uniform scale characteristics. Magnet air gaps are absolutely uniform because they are made without tolerance after hardening has been completed.

Similar painstaking methods apply to aging of all materials after processing; to relieve strains and assure proper adjuztments. All instruments are double checked in separate departments. Extreme care also is taken in selecting pivots and jewels and applying them in exact alignment. Infinite care is observed thruout the entire process of manufacture to assure the ultimate in instrument value.

MODEL 1295 MODULATION MONITOR

Actual modulation percentage of radio transmitters is shown on the direct reading dial of Model 1295. Ranges 40 to 120 per cent. This unit eliminates the uncertainty of depending on the ear, variation of antenna ammeter or the loop and light in determining carrier shift and percentage of modulation.
Het Price in U. S. A..
. $\$ 24.83$
Vacuum Tube Voltmeters and a complete line of radio test equipment also are available. Write for free instrument and tester catalogs.

Handy . . . For 1000 Uses

Model 666 A. C.-D. C. Pocket Volt-Ohm-Milliammeter is of convenient pocket size . . . A. C.-D. C.
 Volts 0-10-50-250-500-1000 at 1000 ohms per volt; 0-1-10-50-250 D. C. Milliamperes; Low Ohms, $1 / 2$ to 300; High Ohms to 250,000 with provisions for higher resistance measurements by using external batteries. Net Price in U. S. A. . $\$ 15.00$

CARIDWELILS prevery puperse

 "TRIM-AIR" MIDGET CONDENSERS

Complete line of single units with New Dual Trim-Air series to match. Universally used for high frequency portable equipment, exciter units and low power transmitters. Detachable shafts on singles leaves screw driver slot and lock provides permanent adjustment for fixed tune. Singles require $15,16^{\prime \prime} \times 113 / 32^{\prime \prime}$ panel mount space and duals $145,64^{\prime \prime} \times 113 / 32^{\prime \prime}$ condenser open. All Duals double bearing, shaft extended at rear for coupling and have removable intersection shield except "ganged neutralizer" types. All Trim-Airs have Isolantite insulation, $1 / 4$ " nickel plated brass shaft; aluminum plates. All Trim.Air Accessories fit both single and dual units.

ET-30-AD

\star SINGLE "TRIM-AIRS"

Type	$\begin{gathered} \text { Max. } \\ \text { Cap. } \end{gathered}$	Min.	Nr. Plates	$\underset{\text { Gap }}{\text { Air }}$	Depth Back Panel	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	$\begin{aligned} & \text { Deal- } \\ & \text { Pris } \\ & \text { Price } \end{aligned}$
2U-75-AS	75	2.7	15	.020"	$15 / 16^{\prime \prime}$	51.70	51.02
ZU-100-AS	100	3	19	.020"	$17 / 16^{\prime \prime}$	1.75	1.05
2U-1.10-AS ${ }^{\text {a }}$	140		27	. $0200^{\prime \prime}$	$17 / 8^{\prime \prime \prime}$	3.15	1.89
ZR-10-AS	10	1.2	3	. 030 "	$15 / 16^{\prime \prime}$	1.25	. 75
2R-15-AS	15	1.5	5	. $030^{\prime \prime}$	$15 / 16^{\prime \prime}$	1.25	. 75
ZR-25-AS	25	2	7	. $030^{\prime \prime}$		1.10	. 8.1
2R-35-AS	35	2.5	11	. $030^{\prime \prime}$ "	15/16"	1.50	. 90
ZR-50-AS	50	2.8	13	. $030^{\prime \prime}$	$15 / 16^{\prime \prime}$	1.60	. 96
2V-5-TS	5	1.8	3	. $0661^{\prime \prime}$	$13 / 10^{\prime \prime}$	1.25	. 75
ZT-15-AS	15	,	17	. $070^{\prime \prime \prime}$	$17 / 16^{\prime \prime}$	1.55	. 93
2T-30-AS	30	4	17	.070"	${ }^{2} 1 / 8^{\prime \prime \prime}$	1.85	1.11
2S-1-SS		1.5	5	. $140^{\prime \prime}$	1 5/16"	1.85	1.11

* Double hearing; two end plates.
\dagger Supplied with 2 segment stator for 5 meter circuits. Extra plate also supplied; easily installed; makes it 3 plates as listed.
\star DUAL "TRIM-AIRS"

Type	Man. Cap.	Min. Cap.	Nr . Plates	$\begin{aligned} & \text { Air } \\ & \text { Gap } \end{aligned}$	Depth Back Panel	$\begin{aligned} & \text { 1.ist } \\ & \text { Price } \end{aligned}$	$\begin{aligned} & \text { Deal- } \\ & \text { ers } \\ & \text { Price } \end{aligned}$
EU-75-AD	75	2.7	15	.020'	$35 / 8^{\prime \prime}$	\$3.30	\$1.98
EU-100-AD	100	.	19	.020"	$35 / 8^{\prime \prime}$	3.40	2.04
EU-140-AD	110		27	. $020^{\prime \prime}$	$49 / 32^{\prime \prime}$	6.00	3.60
ER-10-AD	10	1.2	3	. $030{ }^{\prime \prime}$	$225 / 32^{\prime \prime}$	2.60	1.56
ER-IS-AD	15	1.5	5	. $030^{\prime \prime}$	$225 / 32^{\prime \prime}$	2.60	1.56
ER-2S-AD	25	2	7	. $030^{\prime \prime}$	$225 / 32^{\prime \prime}$	2.70	1.62
ER-35-AD	35	2.5	11	. 030 "	$35 / 8^{\prime \prime}$	2.90	1.74
ER-50-AD	50	2.8	13	. $030^{\prime \prime}$	$35 / 8^{\prime \prime}$	3.10	1.86
ET-15-AD	15	3	9	.070'	$35 / 8^{\prime \prime}$	3.00	1.80
ET-30-AD	30	4	17	.070'	$53 / 32^{\prime \prime}$	3.60	2.16
ET-30-ADI*	With insulated coupling				$521 / 32^{\prime \prime}$	1.10	2.16
ES-1-SDI*	4	1.5	5	. $140^{\prime \prime}$	$35 / 8^{\prime \prime}$	4.10	2.46
ES-7-SDI*	7	4.0	7	. $110^{\prime \prime}$	$13 / 8^{\prime \prime}$	1.50	2.70

* Ganged neutralizers with insulated coupling.

Cardwell Trim-Air Condenser Accessories may be purchased separately as follows: Mounting Bracket, with two serews and nuts, 10 e list. Dealers' Price 6c. Mounting Posts, (one pair required per condenser) with screws and locking washers - per pair, 13 c list. Dealers' Price 8c. Extra Extension Shafts with setting nut, $7 c$ list. Dealers' Price $4 c$.

MIDWAY FEATHERWEIGHT CONDENSERS

For low and medium power transmitters and receivers, where light weight and small space are factors. Ideal for portable and aircraft equipment. Panel mounting space only $21 / 8^{\prime \prime} \times 3^{\prime \prime}$ condenser open. $1 / 4^{\prime \prime}$ steel shaft; aluminum frame; brass bearings; plates buffed, rounded on all airgaps $.070^{\prime \prime}$ or over. Supplied with aluminum mounting leet. G. E. Mycalex insulation.
\star SINGLE MIDWAYS ALSO FOR LOW POWER TRANSMITTERS

Tyie	$\underset{\text { Cap. }}{\text { Max. }^{2} .}$	$\begin{gathered} \text { Min. } \\ \text { Cap. } \end{gathered}$	$\underset{\text { Plates }}{\mathrm{N} \text {. }}$	$\begin{aligned} & \text { Air } \\ & \text { Gap } \end{aligned}$	$\begin{aligned} & \text { Depih } \\ & \text { Back } \\ & \text { Panel } \end{aligned}$	List Price	$\begin{aligned} & \text { Deal } \\ & \text { ers } \\ & \text { Price } \end{aligned}$
MR-25-BS	25	5	3	. 03010	217/32"	\$2.70	51.62
MR-50-BS	50	6	7	. 030 "	217,32"	2.80	1.68
MR-70-BS	70	7	7	. 030 "	$217 / 32^{\prime \prime}$	2.95	1.77
MK-105-BS	105	8	11	. 030 "	$217 / 32^{\prime \prime}$	3.05	1.83
MR-150-BS	150	10	15	. 030 "	217/32"	3.15	1.89
MR-260-BS	260	11	25	. 030 "	$317 / 32^{\prime \prime}$	3.30	1.98
MR-365-BS	365	14	35	. $030^{\prime \prime}$	$317 / 32^{\prime \prime}$	3.80	2.28
MO-165-BS	165	15	25		317/32'	3.30	1.98
MT-20-6S	20	5	5	. 070 "	217/32"1	3.25	1.95
MT-35-GS	35	6	7	. 070 "	$217 / 32^{\prime \prime}$	3.50	2.10
MT-50-GS	50	8	11	. 070 "	$217 / 32^{\prime \prime}$	3.90	2.31
MT-70-GS	70	10	15	. 070×1	$317 / 32^{\prime \prime}$	1.45	2.67
MT-100-GS	100	12	21	. $070^{\prime \prime}$	$317 / 32^{\prime \prime}$	4.90	2.94
MT-150-GS	150	16	31	. $070^{\prime \prime}$	$415 / 32^{\prime \prime}$	6.00	3.60
MG-35-NS	35	12	15	.171"	$415 / 32^{\prime \prime}$	6.00	3.60

MT-70.GD

\star DUAL MIDWAY CONDENSERS

Type	$\underset{\substack{\text { Max. } \\ \text { Cap. }}}{ }$	$\underset{C_{a p}}{M n} .$	$\xrightarrow{\text { Nir. }}$	$\mathrm{Air}_{\mathrm{Gap}}$	$\begin{aligned} & \text { Dept b } \\ & \text { Back } \\ & \text { lan } \end{aligned}$	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	$\begin{aligned} & \text { Deal } \\ & \text { Pris } \\ & \text { Price } \end{aligned}$
MR-25-BD	25	5	3	.0:0" ${ }^{\prime \prime}$	$217 / 32^{\prime \prime \prime}$	51.35	\$2.61
MR-50-BD	50	6	5	.030 ${ }^{\prime \prime}$	$317 / 32^{\prime \prime}$	4.70	2.82
MR-70-BD	70	7	7	.030"	$317 / 32^{\prime \prime}$	1.90	2.94
MR-100-3D	100	8	11	.030"	$317 / 32^{\prime \prime}$	5.10	3.06
MR-150-BD	150	9	15	.030'1	317/32"1	5.30	3.18
MR-260-BD	260	11	25	030"	$415 / 32^{\prime \prime}$	5.30	3.30
MO-190-3D	180	15	29	.050"'	${ }^{6} 5 / 32^{\prime \prime}$	8.00	4.80
M ${ }^{\text {P-20-CD }}$	20	6	5	. $0700^{\prime \prime}$	$317 / 32^{\prime \prime}$	5.55	3.33
MT-35-6D		7	7	. $070^{\prime \prime \prime}$	317/32"	6.00	3.60
MT-50-GD	54	-	11	. $07070^{\prime \prime}$	$317 / 32^{\prime \prime}$	6.35	3.81
MT-70-GD	70	10	15	.070 ${ }^{\prime \prime}$	$41 \mathrm{~F} / 32^{\prime \prime \prime}$	7.00	4.20
MT-100-GD	100	13	21	.070"	5/32'	8.00	4.80

NOTE:-Capacities and number plates are per section.

MULTI-BAND CONDENSERS

Notice how popular air wound coils such as Coto and B \& W readily adapt themselves to these effective capacity ranges for push-pu!l balanced circuits, and flexibility of ranges for you fellows who "roll your own" tank coils in an effort to get the optimum LC combination.

EFFECTIVE BALANCED CAPACITY RANGES AVAILABLE BY PROPER CONNECTIONS TO COIL

Type	Cap. Ranges	List Price	Dealers Price
	$9-34 \mathrm{mmfd}$ $13.5-83$ $19-114$	$\$ 1$	

' X '" TYPE TRANSMITTING

Standard of Comparison for Years. Heavy aluminum rounded plates; frames and tie rods nickled brass; ball thrust type rotor bearing; phosphor bronze rotor contact; nickled brass bushings; steal shaft supports rotor plates and spacers. "G.E." Mycalex insulation. Frame measures $33 / \mathrm{g}^{\prime \prime} \times 4$ ". Supplied with mounting feet. Shafts $1 / 4$ ".

XD-160-XD

* "X" TYPE STANDARD SINGLES

Typr	$\begin{gathered} \text { Max. }_{C_{a p}} . \end{gathered}$	$\begin{aligned} & \text { Min. } \\ & \text { Cap. }^{2} \end{aligned}$	$\begin{gathered} \mathrm{N}_{\mathrm{Nr}} \mathrm{l} \text {, } \mathrm{s} \end{gathered}$	$\begin{gathered} \text { Air } \\ \text { Gap }_{2} \end{gathered}$	Depth Back Panel	$\begin{gathered} \text { Liz1 } \\ \text { Price } \end{gathered}$	$\begin{aligned} & \text { Deal- } \\ & \text { Prise } \\ & \text { Price } \end{aligned}$
XT-22u-PS	2211	20	21	. $0700^{\prime \prime}$	$4^{\prime \prime}$	51.50	\$2.70
XT-410-Ps	110	40	43	.070"	$513 / 16^{\prime \prime}$	7.70	4.62
XP-910-kS	90	16	11	.1881"	$2{ }^{7 / 8^{\prime \prime}}$	4.50	2.70
XP-165-k S	165	22	19	.08.1"		6. 0	+.90
XPr-294-K	2911	35	33	.034"	$513 / 16^{\prime \prime}$	9.50	5.70
$\mathrm{XP}+330-\mathrm{k}$ S	330	37	37	.034"'	$63 / 8^{\prime \prime}$	10.80	6.18
X C -240-K S	211	30	33	.100"	$63 / 8^{\prime \prime}$	10.80	6.18
XGi-25-ks	25	${ }^{8}$	5	.171"'	$21316^{\prime \prime}$	3.50	2.10
$\times \mathrm{Ci}-50-\mathrm{kS}$	50	15	11	. 171 1"	$315 / 16^{\prime \prime}$	6.50	3.90
xc-110-ks	110	26	23	.171"	$67 / 16^{\prime \prime}$	9.70	5.82
XC-18-XS	19	8	5	200"	$2{ }^{2}{ }^{7 / 8^{\prime \prime}}$	5.50	3.30
$x C-110 \times 5$	40	15	11	.200"		7.50	1.50
XC-65-xS	65	20	17	.200'	$513 / 16^{\prime \prime \prime}$	9.50	5.70
xC-tuli-x ${ }^{\text {S }}$	190	28	25	.200"	7 7/16"	11.50	6.90

H.F. NEUTRALIZNG CONDENS侯S

High frequency neutralizers for low capacity tubes. Mycalex insulation, heary buffed plates with rounded edges. 180 degree rotation permit calibration and reset.

NA.16.NS

$7{ }^{1}$	$\begin{aligned} & \text { Max. } \\ & \text { Cap. } \end{aligned}$	Min. Cap.	$\underset{\text { plates }}{\mathrm{Nr}}$	$\begin{aligned} & A_{\text {Gap }} \end{aligned}$	Depth Back Panel	$\begin{aligned} & \text { Liss } \\ & \text { Price } \end{aligned}$	$\begin{aligned} & \text { Dral- } \\ & \text { Prise } \end{aligned}$
NA-1-NS	4	2.5	2	adj.	$13^{\prime \prime} 8^{\prime \prime}$	53.60	\$2.16
NA-6-NS	6	4	3	. $218^{\prime \prime}$	$1316{ }^{\prime \prime}$	3.60	2.16
NA-10-NS	11	6	6	.218"	$218{ }^{\prime \prime}$	4.50	2.70
NA-16-Ns	16	7	8	-218"		5.00	3.00
NA-12-N1)*	12	6	7	.218"	$52532^{\prime \prime}$	15.00	9.00

PLUGनN FIXED CONDENSERS

Type "J" Plug-in Fixed Alr Condensers for boosting a tenk circuil designed for 20 and 40 meters to 80 and 160. Just plug-in proper " J " unit into Jack Base and load tank to proper " C ", for the lower frequencies.

Type

JCO-50-0S | JCO |
| :--- |
| $\mathrm{JD}-80-\mathrm{OS}$ | jo-50-0S

$\left|\begin{array}{c}\begin{array}{c}C_{\text {apac }} \\ \text { it } \\ \text { mmids. }\end{array} \\ \hline 250 \\ 25 \\ 80 \\ 80 \\ 25 \\ 750\end{array}\right|$

Air
$\mathbf{G a p}$
$\left.\begin{array}{l}.250 \\ .250 \\ .125 \\ .125 \\ .125 \\ .030 \\ \hline\end{array}\right]$

All "J" types are $21 / 4$ inches square.
Type JB - Jack Base for "J" fixed units. Alsimag 196-23/9" x $23 / 8^{\circ \prime} \times 1 / 4^{\prime \prime}$. Complete with mitg. posts, serews and nuts, list $\$ 1.00$. Dealer's Price $\$ \mathbf{6 0}$.

* "X" TYPE STANDARD DUALS

Type	Per Section			${ }_{\text {Air }}^{\text {Gap }}$	$\begin{aligned} & \text { Depth } \\ & \text { Back } \\ & \text { Panel } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	$\begin{aligned} & \text { Dea!- } \\ & \text { ers } \\ & \text { Price } \end{aligned}$
	Max. Cap.	$\underset{\text { Cap. }}{\text { Min. }}$	$\begin{gathered} \mathrm{N}_{\mathrm{t}} \text { Pites } \end{gathered}$				
XK-500-PD	500	18	21	.030"	4"	\$6.50	\$3.90
${ }^{\mathrm{XT}} \mathrm{T}$-80-PD	80	11	9	.070"'		5.50	3.30
XT-210-PD	210	22	21	. 070810	$513 / 16^{\prime \prime}$	8.70	5.22
XP-90-KD	95	15	11	.084"	$41 / 2^{\prime \prime}$	7.50	4.50
XP-165-KD	165	23	19	.084"	$61 / 2^{\prime \prime}$	11.00	6.60
$\mathrm{XP}^{\text {P3 }}$-325-KD	325	38	37	.034"\%	11 1/16"	22.00	13.20
XEF-240-KD	210	32	33	. $100^{\prime \prime}$	$111 / 16^{\prime \prime}$	21.00	12.60
XG-50-KD	50	14	11	. $171^{\prime \prime}$	${ }^{6} 7 / 16^{\prime \prime}$	10.70	6.42
XG-110-KD	110	27	23	. $1711^{\prime \prime}$	11 1/16"'	18.00	10.80
$\mathrm{xC}^{\mathrm{x}} \mathbf{4 0 - \mathrm { xD }}$	40	14	11	. $200^{\prime \prime}$	$7^{7} 716^{\prime \prime \prime}$	13.00	7.80
xC-75-xD	75	21	19	. 3.300	11 1/16"\%	17.00	10.20
X1)-160-x1)	160	28	27	.125"	11 1/16"	19.00	11.40

DISC TYPE NIEUTRALIZERS

Type ADN, capacityrange .5-4 mmF. List.: ${ }^{\text {P................................. } \$ 3.00}$ Type BDN, for high power.
Capacity 2-12 mmF, List. .
apaciry ${ }^{2} 12$ mm. List $\$ 5.00$
Dealers' Price 3.00
Alsimag No. 196 insulation throughout. Satin finish aluminum - fine serew adjustment, no wabble. Knurled thumb nut for easy locking nickle silver bearing.

ULTRA HIGH FREQUENCY DUALS

FOR 5 AND 10 METER TRANSMITTERS AND DIATHERMY MACHINES

Widely used for ultra H.F. power oscillators and amplifiers; 5 and $21 / 2$ meter radio transmitters, and 6 meter diathermy sets. No closed metallic loops - lowest losses, Isolantite Insulation.
NP-35-ND

Type	Per Section			$\begin{aligned} & \text { Air } \\ & \mathrm{G}_{2 \mathrm{p}} \end{aligned}$	$\begin{gathered} \text { Insula- } \\ \text { tion } \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { Back } \\ & \text { Panlil } \end{aligned}$	List Price	$\begin{aligned} & \text { Deal- } \\ & \text { ers } \\ & \text { Price } \end{aligned}$
	$\begin{gathered} \mathrm{Mr}_{\mathrm{ap}} . \end{gathered}$	$\begin{aligned} & \text { Win. } \\ & \text { Cap. } \end{aligned}$	Nir .					
NP-35-ND	35	5	9	. $084^{\prime \prime}$	1 solantite	$11 / 8^{\prime \prime}$	\$6.011	\$3.60
NP-35-00\|	Same as above except unbufied						\$5.35	\$3.21

CARDWELL FLEXIBLE COUPLINGS

TYPE "A"

Type A - Fits all $1 / 4^{\prime \prime}$ shafts. Has isolantite insulation with new type nickel plated phosphor bronze springs and reversed brass hubs. Minimum space required. Maximum flexibility with no back lash. A real improvement over existing types. Overall diameter $11 / 2^{\prime \prime}$. Overali width outside hub-to-hub $5 / 8^{\prime \prime}$. Packed in standard cartons of one dozen. List pric $\$.60$ each Dealers' Price 36 each

Type B is the same as type A except that the hubs are reversed to give maximum flashover. Price same as " A."

TYPE "E"

A heavy duty unit for high power variable dir condensers or other rotary R.F. units.
Insulation - No. 196 Alsimag disc $11 / 2^{\prime \prime}$ diameter, $1 / 4^{\prime \prime}$ thick. Special steel cup set screws, heavy N.P. brass hubs, permanently staked into thick nickle plated phosphor bronre springs. Removable bushings to fit springs. Removable bushings to fit
$1 / 4^{\prime \prime}$ shafts. Hubs fit $5 / \mathrm{B}^{\prime \prime}$ shafts with bushings removed.
List Price $\$ 1.50$
Dealers' Price............... . . 90

The technical data sheet "Perfect Portable lower", gives complete operating and instal. lation instruetions. Get your copy-your Mallory-Yaxley Distributor has it.

New Low prices

(1) Trestsmituting Comucmseres

Now Mallory Transmitting Condensers are within the reach of every amateur. Made with a new type impregnating material, unlike wax or the customary oil impregnating compounds, it operates satisfactorily at temperatures that would be destructive to other types. Its high dielectric constant and insulation resistance make possible the relatively small size of these transmitting units. Available in rectangular types as shown, or round can types.
List

MALLDIE Meavy Duty and High Surge Condensers

Mallory Ileavy Duty and Iligh Surge Dry Electrolytic Condensers are ideal for use in power supply aystems for the low powered oscillator and buffer-doubler stages of an amateur transmitter. They are more compact and less expensive than equivalent paper-dielectric units.
Mallory Heavy Duty Condensers are rated at 500 working volts DC, and are for use only where the momentary surge does not exceed 585 volts. Conservatively rated at 600 working volts, Mallory High Surge Condensers have been satisfactorily used in power supplies having momentary surges as high as 800 volte.

Amateur Radio Products

for Transmitter Band Switching

 New HamBand Switches with Ceramic InsulationConvenient terminal arrangements, wide spacing of current carrying parts, heavy silver-plating on contacts, and lowloss magnesium silicate ceramic insulation especially designed for high frequency applications . . . make band switching a reality for every amateur . . . changes from one band to another can be made with practically the same facility as with a modern communications receiver. Mallory-Yaxley 160 C Hamband Switches are rated for use in transmitter plate circuits using up to 1000 Volts DC with power up to 100 watts inclusive. Your Mallory-Yaxley distributor can give you complete information.

GI'IEER AIPLICATTIONS-Ilundreds of other applecations are practical with the Mallory-Yaxley DIamBand Switches, including transmitter meter switching, inductance tapping for loading coils, antenna matching networks, etc- 'The Switch Engineers of I'. R. Mallory \& Company welcome the opportunity of helping you with your switch problems. Address your inquiries to the Application Research Department, Wholesale Division.

MAXINE "MAMSWITCHIMNO. ITI-I.

Provides simple method of using mingle meter to measure current a or voltages up to and including five circuits of an Amateur 'Iranmmiter. Leas expensive, more compact and convenient than the conventional cord, plug and jack system.
Five complete circuits may be used in many combinations such as oscillator plate current, buffer plate current, final grid current. final plate current and plate voltage.
bligh insulting qualities and low loss construction permit a conservefive rating of to00 volts RMS AC or 1500 volts DC. Employs efficient silver to silver wiping contacts and has adjustable stop which permits use of fewer positions, if desired. Has 2 -inch notched shaft and bar knob.
Yaxley"Hamswitch"complete with Yaxley Bar Type K nob -No. 151.I. List Price

MALLORY Grid IB AS Cells

l'hone amateurs will appreciate the many advantages to lie obtained by using Mallory 1 sian (elm for the high gain stages of microphone pre-amplifiers. The advamagen are:

1. Simplified construction-fewer parts required.
2. Better frequency response at lower cost.

3. Inter hum level.
4. Greater stability.

An interesting technical data sheet on Mallory Bias Cells will be forwarded on request.

Other MALLDIEY-YAXLEY Products for AMITEUIBS

Dry Electrolytic Condensers Wet Electrolytic Condensers Tip Jacks and Plugs Phone I lugs Jacks and Jack Switches Dial and Panel Lights Radio Convenience Outlets Knols-Nuts-W washers Dry Disc Rectifiers Auto Radio Vibrators

Vitreous Resistors 'lruvoli Resistors Precision Resistors Rheostats Potentiometers Volume Controls 'I \& LI' Pads Rotary Switches Push Button Switches Cable Connectors

The items listed are only a few of the hundreds of the Mallory-Yaxley Precision Radio Products used by radio amateurs. Get your copy of the new Mallory-Yaxley general parts catalog from your distributor, or send your request on your $Q S$ L. card to the address below.

You'll join the thou-
 sands of other service men throughout the country in acclaiming the Second Edition "MYE" as the greatest help, a service man or radio enthusiast ever had. Covers every phase of automatic tuning . . curry system. Nearly twice the information given in the lIst Edition. Be sure to have your distributor reserve a copy for you.

R. F. PLATE CHOKES

High frequency solenoid chokes designed to avoid either fundamental or harmonic resonance
in the amateur bands. Single-layer wound on low power factor steatite cores with nonmagnetic mounting brackets. Moistureproof. Built to carry A THOUSAND MA. 4 stock sizes for 5 to 160 meter bands. Details in Bulletin 106.

GTET the extra-dependability of these sturdy time-proved Ohmite Resistance Units in Your rig. Their long record of faithful, trouble-free service in countless installations - their ability to stand up under shock and vibration, heat and humidity-their world-wide adoption as standard equipment by discriminating designers and manufacturers of amateur and commercial transmitters and receivers - have proved their com plete reliability and economy.

* Ohmite Vitreous Enamel is unexcelled as a protective and bonding cotering for power rheostats and resistors.

POPULAR BROWN DEVILS

There's good reason for the world-wide popularity of Ohmite"Brown Devil" Resistors. They're tough, extra-sturdy units - built right, sealed tight and permanently protected by Ohmite Vitreous Enamel. 10 and 20 watt sizes. in resistances from 1 to 100.000 ohms.

R. F. POWER LINE CHOKES

Just the thing to keep R. F. currents from going out over the power line, lessen interference with BCL receivers. Also to prevent high frequency and R. F. interference from coming in to the receiver. 3 stock sizes. rated at 5, 10. and 20 amperes. Consists of two chokes wound on a single core. Details in Bulletin 105.

RHEOSTATS * RESISTORS * SWITCHES * CHOKES

Vitreous-Enameled RHEOSTATS

These are the rheostats used by amateursand broadcast stations alike to keep power tube filaments at rated value all the timeincrease tube life -get peak efficiency. Time-proved Ohmite all-porce-lainvitreous-enameled construction and metal-graphite contact assure fermanently smooth, safe, exact control. Available in $25,50.75,100,150,225,300.500$, and 1,000 watt sizes, for all tubes and transmitters. (Under writers' Laboratories Listed).

OHMITE BAND-SWITCH

A flick-of-the-wrist on the knob of this popular Ohmite Band-ChangeSwitch gives you instant, casy change from one frequency to another, with really low-loss efficiency. Band changing may be provided in all stages of the transmitter, and "ganked" for complete front-of-panel control. Can be used in rigs up to 1 K .W. rating.

FIXED RESISTORS

These are the same dependable Ohmite vitreousenameled resistors that are almost universally used by eminent designers and manufacturers of amateur and commercial transmitters and receivers. Available in 25,50,100,160, and 200 watt stock sizes, in resistances from 5 to 250.000 ohms.

ADJUSTABLE DIVIDOHMS

Mighty handy resistors to have around when you need a change of resistor value or a replacement in a hurry. You can quickly adiust the Dividohms to the exact resistance you want and put on one or more taps wherever needed. Patented percentage of resistance scale. 7 ratings from 10 to 200 watts. Resistances up to 100,000 ohms.

Ask Your Jobber for the Obmite parts
you need, or Write tod, wh for Catalog 17.

NEW - Mromenetradly Scaled PRBCISION RPSTSTORS

Now-Perfect protection against humidity, salt air and other severe almospheric conditions. These new precision units are pie-wound and enclosed in strong evacuated glass fubes with the terminals emerging through vacuum-type glass seals. Ideal for laboratory and test equipment as well as all other applications, particularly in industrial, coastal, marine and tropical locations. Non-inductive winding. Resistance 0.1 ohrn to 2.5 megohms. 1 watt rating -1% accurate (or closer tolerances when required.) Provided with soldering lugs and wire terminals or with tube base. Write for further information.

THE NAME

"JOHNSON"

ON A PIECE OF TRANSMITTING EQUIPMENT IS

 Yow Guarantee OF A DEPENDABLE RIG!Never in the history of the company has the name "JOHNSON" been associated with an inferior piece of transmitting equipment.

For years Communications and Broadcast engineers have come to Johnson with tough transmitting problems. You are cordially invited to take advantage of the same FREE service.

JOHNSON ENGINEERS

Are experienced in the design of all types of transmitters for operation on low, broadcast, high and ultra-high frequencies, and will be glad to make recommendations concerning the application of transmitter components. Write the laboratory - attention Chief Engineer.

Your Parts Jobber sells Johnson Antennas, Insulators, Variable Condensers, Inductors, Sockets, Coupling Units, etc. The latest Johnson literature may be obtained from your jobber or by writing to Johnson direct for Catalog 965 M.

EXPORT: 25 WARREN ST., NEW YORK, N. Y.

Front view shows dial scale and drive assembly. Note trimmer has only two adjustments.

543
$\left[\begin{array}{c}\text { CATALOG } \\ \text { SECTION }\end{array}\right]$

ElIMINATES GANG TUNING CONDENSERS!

PERFECT TRACKING WITH SINGLE POINT ALIGNMENT

Again, Aladdin Engineers contribute another important development to radio the NEW ALADDIN POLYIRON PER. MEABILITY TUNER. This remarkable assembly ELIMINATES gang tuning condensers! It takes the place of a 2 -gang condenser, an antenna coil, and an oscillator coil, and combines the function of all three into one compact, simple movement. It assures perfect tracking with single point adjustment. Uniform antenna gain. Excellent image rejection. More freedom from microphonics. Simplifies assembly and wiring. Covers Broadcast band 1720 to 540 kc . Tuning ratio 6 to 1 . We invite you to investigate all the startling details of this amaxing engineering achievement. Write to ALADDIN RADIO INDUSTRIES, INC.

466 h W. Suparior Streat, Chicago, III.
Licensee of Johnson Lahoratories, Inc.
These detrices manufactured umder one or more of the
 1.,978.668, 1.9788 .659.

 2.104.792. 2.094,189, 2.095.420, 2,106,226, 2,106.299. $2,181,976,2,111,375$, 2,111,490. Other patents pending.

The Radio Sensation of 1939

 AMPHENOL "912"

 AMPHENOL "912"

 Ultra-Low-Loss

 Ultra-Low-Loss INSULATING MATERIAL

 INSULATING MATERIAL}

Comparison between Amphenol "912" and other

AMPHENOL CO-AXIAL CABLE (Shielded Concentric Transmission Line)

For carrying high frequencies inches or miles without radiation or pick-up, with a minimum amount of loss. Construction of No. 14 solid copper wire, strung with Amphenoi Insulating Beads, shielded with a woven tinned copper shell, finally covered with two moisture proof cotton braids. Ideal for microphone, ploto cell and other high frequency leads and transmission lines. Unequalled as an antenna lead-in.
If copper tubing lead-in is already installed, replace ceramic spacers with Amphenol Insulating Beads. Use two beads for each spacer, cementing them directly on the wire with Liquid Amphenol "912."
Cat. No. 72—Co-Axial Cable—List 60c per foot.

A transparent polystyrene-base material, devel. oped because the amateur and radio manufacturer needed an ultra-low-loss insulator. Loss factor at one megacycle is only .00053 (zero for all practical purposes.)

SHEET - ROD - TUBING

A tensile strength of 5000 pounds per square inch, yet Amphenol " 912 " machines easily. Actually possible to whittle into shape with a knife. No danger of splitting when drilling or turning on a lathe.
Complete variety of various size tubes, rods and sheet stock so that you can quickly build your own insulators, terminal strips, trimming condensers, special coils, etc. Cement parts together with Liquid Amphenol "912" Jisted below.

LIQUID AMPHENOL "912" (Coil Dope - Insulating Cement)

Liquid Amphenol "912" is simply the solid of Am. phenol " 912 " reduced to liquid form. Used as a coil dope, it protects windings from humidity without effecting the electrical characteristics of the coil. Applied to windings on Amphenol "912" coil forms and tubing, actually imbeds windings into the solid.
Unequalled for sealing the pores of fibre, paper and other moisture absorptive materials. When used as a cement for Amphenol "912" shet stock, rod or tubing, it fuses parts together, instead of merely gluing them. Exceptionally rapid drying; permits handling in three minutes.

PLUG.IN COIL FORMS Standard Tube Base Prongs

No holes for windings because it is so simple to drill holes exactly where you want them. No ribs to hold windings away from coil form, because the insulating quality of Amphenol " 912 " is practically the same as air.

INSULATING BEADS

New "spaghetti type" insulators for all high frequency leads. Strings on any size wire up to No. 12 to form a non-lygroscopic fish spine. Ball and socket design permits bending and flexing on a one inch radius. Diameter of bead $5 / 16^{\prime \prime}$, overall length $7 / 16^{\prime \prime}$.
Cat. No. 73-Insulating Beads-List $\$ 2.50$ for 250 Also available-Other size beads up to $1^{\prime \prime}$ in dia.

FMEDE: $\underset{\text { CAMPLE }}{\text { SANd }}$

Send your QSL card or name and address on a penny post card and we will forward immediately our latest bulletins and a sample of the Insulating Beads.
Please mention name of your usual jobber.
AMERICAN PHENOLIC CORPORATION1252 Van Buren Street - Chicago, U. S. A.

SPRAGUE

SILVERED MICA CONDENSERS

An Inexpensive Air Condenser Substitute
These tiny condensers (approximate average

FIXED MICA UNITS intermediate capacities

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { Mid. } \end{aligned}$	Work. Volt.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
1FM-45	. 00005	600	\$.15
1 FM -31	. 0001	600	. 15
1FM-32	. 0002	600	. 20
1FM-325	. 00025	600	. 20
1FM-35	. 0005	600	. 20
1FM-21	. 001	600	. 25
IFM-215	. 0015	600	. 30
1 FM -22	. 002	600	. 35
1FM-23	. 003	600	. 40
$1 \mathrm{FM}-24$. 004	600	. 45
1 FM -25	. 005	6.00	. 55
1FM-26	. 006	600	. 60
2FM-44	. 00004	300	. 15
2FM-45	. 00005	300	. 15
2FM-475	. 000075	300	. 15
2FM-31	. 0001	300	. 15
2 FM -315	. 00015	300	. 20
2FM-32	. 0002	300	. 20
2FM-325	. 00025	300	20
2FM-35	. 0005	300	. 20

size $1-1 / 16^{\prime \prime} \times 9 / 16^{\prime \prime}$) have a minimum Q of 1500 , temperature coefficient too small to measure and a high stability on humidity better than that of most air condensers. Inductance is unusually low due to their small size. Use them wherever the call is for an air condenser of equivalent voltage rating.

FIXED MICA CONDENSERS
 Voltage Ratings Guaranteed

 The superior performance of Sprague Micas islargely due to their remarkably high resistance
to moisture. Power Factor is extremely low and
stable. Voltage ratings fully guaranteed.
Equipped with heavy, flexible wire leads. The superior performance of Sprague Micas is
largely due to their remarkably high resistance
to moisture. Power Factor is extremely low and
stable. Voltage ratings fully guaranteed.
Equipped with heavy, flexible wire leads. The superior performance of Sprague Micas is
largely due to their remarkably high resistance
to moisture. Power Factor is extremely low and
stable. Voltage ratings fully guaranteed.
Equipped with heavy, flexible wire leads. The superior performance of Sprague Micas is
largely due to their remarkably high resistance
to moisture. Power Factor is extremely low and
stable. Voltage ratings fully guaranteed.
Equipped with heavy, flexible wire leads. The superior performance of Sprague Micas is
largely due to their remarkably high resistance
to moisture. Power Factor is extremely low and
stable. Voltage ratings fully guaranteed.
Equipped with heavy, flexible wire leads.

SILVEREDMICA UNITS
Tess Voltage 1000 volts D.C.-

ance $21 \frac{1}{2} \%$. D.C. Working Voliage 710 | Tolerance $2 / 2 \%$. D.C. Working Voliage 710 | | |
| :---: | :---: | :---: |
| Cap. | Cap 2 | List |

THE NEW SPRAGUE TYPE CR TRANSMITTING CONDENSERS with the Universal

mounting feature

You've been asking Ior Xmitting Condensers with flanges for mounting in any position. Here they are . . . backed with all the features that have made Sprague Condensers the standard of quality wherever Radio is used plus SPRACOL — the famous Sprague filler oil of the same type used to impregnate the giant transatiantic cables. All units rated to conform to tube and circuit design. They'll stand the gaff!

Oil condensersspell highest quality - and SPRACOL leads the way!

ROUND TYPE OT XMITTERS
New Low Prices
All Sprague Transmitting Condensers are oil impregnated and oil-filled with SPRACOL the finest, most durable oil ever developed for the purpose. Spracol is identical to the oil used to impregnate the giant transoceanic cables. Nuf said! See below for Type OT Price List.
\longleftarrow TYPE OT
TYPE PC \rightarrow
You'll find this newly developed Sprague Type PC Inverted Serew Can Round Condenser unexcelled for P. A. and TRANS. denser unexcelled for P. A. and TRANS. and HIGH GAIN AMPLIFIERS.

SPRAGUE TYPE CR
OII. IMPREGNatED-OIL FILLED Fully Sealed - Compact

Cat. No.	Cap. Mfid.	Volt- age	List Price
CR-16	1	600	52.75
CR-26	2	600	3.50
CR-46	4	600	4.50
CR-11	1	1000	3.00
CR-21	2	1000	4.01
CR-41	4	1000	5.00
CR-115	1	1500	3.50
CR-215	2	1500	5.00
CR-415	4	1500	7.00
CR-12	1	2000	4.50
CR-22	2	2000	5.50
CR-42	4	2000	9.00
CR-125	1	2500	8.00
CR-225	2	2500	13.00
CR-13	1	3000	12.06
CR-23	2	3000	15.00

TYPE PC
Mid. Voltage List Price

	Mid.	Voltage	List Price
PC-26	2	600	\$2.25
PC-46	4	600	3.00
PC-11	1	1,000	2.95
PC-21	2	1,000	2.75

Low Cost Xmitting Condensers Just the Thing for Beginners
For those who want fully reliable and de. cidedly economical high voltage conde rated up to 1,000 volts, we suggest the amous Sprague Type UC Cased Paper Condensels. Type UC-11, 1 mid. 1,000 d.c. volts lists at only $\$ 1.50-$ others propor ionately low. Write for satalog or see your Sprague jobber.

Heard 'Round the World

 FIRST with the special "high efficiency" FIRST with charactistic for voice-communica" speech chara FIRST again with super cranced tions - and and other important an for the performance and there's good reason orones developments - tulatity of Shure Micraphons in outstandink popularitercial installations comernd in amateut and contries in all climates round the world

NEW UNIPLEX UNI-DIRECTIONAL

There's nothing like this new "Uniplex" Uni-Directional Crystal Microphone! Sensitive at the front, dead at the rear - it stops unwanted sounds, really solves feedback, background noise, reverberation problems. Speed-line design, in rich Satin Chrome finish. Equipped with new built-in Cable Con. nector and 25 ft . of special noise-free Super-Shielded cable.
Model 730A "UNIPLEX". List Price $\$ 29.50^{\circ}$

"ULTRA" Wide-Range Crystal Mierophones

These world-famous microphones give you life-like "Ultra" Wide-Range response from 30 to 10,000 cycles. Complete with builtin Cable Connector and 25 ft. cable with microphone plug attached. Model 700D "Swivel," 701 D "'Sky. scraper" (illustrated), 702D "Spherical."
List Price.............. $\$ 25$

MILITARY-TYPE HAND MICROPHONE

Fits naturally, firmily in the palm of the hand. Takes minimum space in portable equipment. Sturdy cast. aluminum case, with Satiofinished grille. Optional locking press-to-talk switch. Removable suspension hook and 7 ft . shielded cable. Crystal and Carbon rypes in general-purpose and "antinoise" close-talking models. List Prices.. \$15 to \$31.50
 \section*{Givis}
 \section*{Givis}

Shure Patents Pending. Licensed under patents of the Brush Development Company.

NEW SHURE ROCKET COMMUNICATIONS -TYPE

You'll enjoy the performance and beauty of this new ROCKET Deluxe communications-type crystal microphone. It gives you ultra-modern streamlined design - plus the famous Shure "high efficiency" speech characteristic that doubles power on important intelligibility speech frequencies - gives clear, crisp speech that cuts through noise and static. Tiling head, finished in rich Satin Chrome head, finished in rich Satin Chrome.
New built-in Cable Connector. 7 ft . shielded cable. Desk Stand in Iridescent Gray.
Model 706S. List Price $\$ 27.50$
Model 706SH. Same without Desk Stand. List Price $\$ \mathbf{2 5}$

70SW SUPER-LEVEL COMMUNICATIONS -TYPE

First to give you the "high-efficiency" speech characteristic that cuts through noise and static with double power on important intelligibility speech frequencies - the world-favorite $70 S$ l now gives you the highest output level ever available in a crystal microphone! Used in countless amateur and commercial stations everywhere. Output mercial stations everywhere. Oupput Satin Chrome head, with built-in Ca ble Connector. 7 ft . shielded cable. Desk Stand in Iridescent Gray.
Model 70SW. List Price. $\$ 25$ Model 70SWH. Same without Desk Stand. List Price. $\$ 22.50$

SHURE MODEL 3B TWO-BUTTON CARBON

Full-size, two-button microphone with Shure quality performance at low cost, for amateut transmitters, inter-communication systems and Public Address installations. Rigid cast frames and built-in protective grille. Rich new Satin Chrome finish. Diameter 3". Has four Shure "Quickway" Hooks for spring suspension.
Model 3B. List Price $\mathbf{\$ 5 . 5 0}$

Ask Your Jobber for Shure Microphones, Pickups, Siands, or send today for Cafa$\log 150 \mathrm{H}$.

A Superior Key STANDARD OF THE WORLD FOR

For Superior Work

Only the Genuine Vibroplex

has "THE BUG" Trade Mark

Demand
the Genuine

V IBROPLEX
 SEMI-AUTOMATIC KEY

A smooth, easy-working semi-automatic key that has won fame on land, sea and air for clarity, speed and sending ease.

> Black Base....... $\$ 17 \quad \begin{aligned} & \text { Nickel- } \\ & \text { Plated... } \$ 19\end{aligned}$
 compact, but in all other details the same as the large model illustrated. All standard features and improvements. A low priced features and improvements. A world famous Vibroplex quality. COM WPLETE WITH CORD AND WEDGE

Carrying Case

$\$ 3.00$

Handsome black mo. rocco. Reinformed corners. Flexible esther h and $1 e$. Keeps bug free from dust, dirt and moisture. With
patent lock and key, $\$ 3.00$

Approved by Over 100,000 Operators

 Experienced operators - over 100,000 of them, have put their stamp of approval on the Vibroplex Semi-Automatic Key for clarity, speed and sending ease. They have learned from actual experience that the Vibroplex really does make sending a lot easier and better for every one, and that it develops a higher degree of sending ability than the average operator attains in a life time.
Press Lever - Vibroplex Does the Rest

If you can send on the regulation key - you can send better, faster and with half the effort with a Vibroplex. Its simplicity, mechanical perfection, machine speed and sending ease enables any operator with a little practice, to send with the skill of an expert. You will have no difficulty in learning to use the Vibroplex. Many have mastered it in a day or sa. You simply press lever - the Vibroplex does the rest. Take the advice of experienced operators and get a Vibroplex. Demand the Genuine. Only the Genuine has "THE BUG" trade mark. Accept no substitute. Look for this trade mark on the bug you buy. You will always be glad you did. Money order or registered mail. Write for FREE illustrated catalog.

THE VIBROPLEX CO., Inc.
832 Broadway New York, N. Y. J. E. Albright, President

Liberal Allowance on Old Vibroplex

TYPE XL

TRANSOIL TRANSMITTING CAPACITORS OIL IMPREGNATED--OIL FILLED

SOLAREX TRANSMITTING CAPACITORS OIL IMPREGNATED
 TYPE X-RECTANGULAR CANS
 WAX FILLED

Size 11/x $x_{4} \times 3$ in inches except those marked are $2 \times 1 \times 1$, Inches.

D.C. Oper. Volts	D.C. Volte Flish Test	$\begin{aligned} & \text { Size } \\ & \text { Inches } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
1000	2000	$3 \times 27 \times 13 / 4$	\$1.85
1000	2000	$48 / 8 \times 2 \times 18$	2.50
1000	2000	$48 \times 3 \times 2$	3.35
1500	3000	$4 \% \times 2 \mathrm{c} \times 1 \frac{1}{2}$	2.40
1500	3000	$48 \times 3 \times 2$ ts	3.35
1500	3000	$45 \times 3 \times 2{ }^{5} 5$	6.40
2000	4000	$48 \% 318 \times 2{ }^{2}$	2.80
2000	4000	$45 \times 3 \times 8 \times 8$	4.10
2000	4000	6×3 1082 6	7.75
3000	6000	6×3152	4.15
3000	6000	$6 \times 41 / 42 \%$	8.25

TYPE XB MICA TRANSMITTING CAPACITORS MOLDED IN LOW-LOSS BAKELITE-WITH WIRE LEADS

Cat. No.	Cap. MId.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Cat. No.	Cap. Mrd.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
XB-2-31	.0001	- .70	8t XB-3-31	. 0001	81.00
XB-2-325	. 00025	.75	-9 X 3-3-325	00026	1.05
KB-2-35	.0005	. 80	PE X B-3-35	. 0006	1.25
TB-2-21	.001	.85	O X X B-3-21	.001	1.50
X $3-2-22$.002	1.25	-6 XB-3-215	.0015	1.80
XB-2-24	. 004 *	1.60		. 002%	2.00
XB-2-25	. 005°	1.75	Q X X $-3-24$. 004 *	2.40
XB-2-11	$.01 \%$	250	S 8 XB-3-25	.005*	2.75
XB-2-115	.016*	8.00	-6 XB-3-28	.008*	3.00

Write for Catalog 2-X listina complete lines

GRAPHITE ANODE TRANSMITTING TUBES

Even cursory inspection will show how AMPEREX tubes differ from the mere adaptations of conventional tube types. . . . Exclusive engineering developments and radical design refinements are incorporated in the structure of these tubes and reflected in their superior performance.
So universal has been the recognition of the merits and efficiency of these tubes that a large percentage of all diathermy ultra short wave generators are equipped with AMPEREX tubes and thousands more are in operation in almost every country in the world . . . in broadcast, communication, amateur and industrial apparatus where they have replaced more costly or less efficient tubes.

Low Distortion zero-bias class B amplifier and modulator, high efficieney R.F. frequency multiplying power amplifier, conventional R.F. power amplifier.
The ZB- 120 is on exclusive AMPEREX development. In common with other tubes of original AMPEREX design it is a low voltage high current type and possesses a high ratio of transconductance to interelectrode capacitance. Although it approaches nearer the ideal in a zero-bias class B tube it is also a highly efficient performer in many other classes of service.

GENERAL CHARACTERISTICS
Filament: Voltage

Current
Amplification Factor
Grid to Plate Transconductance (a) 120 ma .

500
Direct Interelectrode Capacitances:
Grid to Plate
Grid to Filament
Plate to Filament
5000

10-10.5 volts A.C. or D.C. 2 amperes 90
5.2 uul
5.3 uuf
3.2 uul

Net Price $\$ 10.00$

Z8-120

 HF- 100

An ultra-high, normal R.F. power amplifier and oscillator and class B audio amplifier or modulator.
The HF-100 is one of a distinctive group of low voltage high current tubes, an original development of the AMPEREX ENGINEERING LABORATORIES. It is in addition characterized by an extraordinary high ratio of transconductance to interelectrode capacilance, o characteristic which is responsible for its outstonding efficiency in ultro-high frequency circuits.

GENERAL CHARACTERISTICS

Filament: Voltage	$10-10.5$
Current	2 amperes
Amplification Factor	23

Amplification Factor 23
Grid to Plate Transconductance
(a) 100 ma . 4200

Direct Interelectrode Capacitances: Grid to Plate
Plate to Filament $\quad 1.4$ uul
$\$ 12.50$ Net Price

HF. 300

RF. power amplifier, oscillator, class B hodulator.
The HF-300 has found favor with many broadcasters and transmitter designers as a substitute for the 204 A . A study of the operational data will disclose its superiority, in many classes of service, to the latter tube. It also, like the HF100 and HF -200, is an efficient ultro-high frequency generotor and possesses the characteristic common to AMPEREX designed tubes, of a high ratio of transconductance to interelectrode capacitance.

GENERAL CHARACTERISTICS

Filament Voltage	$11-12$ volts
Current	4 amperes
Amplification Factor	93

Grid to Plate Transconduetance (a) 150 ma . 5600 micromhos

Direct Interelectrode Capacitances (App.):
Grid to Plate 6.5 uuf
Grid to Filament
6.0 uuf

Plate to Filament $\quad 1.4$ uuf
$\$ 35.00$ Net Price

1N Kefing with its policy of providing all services within its power, The American Radio Relay League makes available to amateurs and wouldbe amateurs literature properly prepared to present in the best form all available information pertaining to amateur radio. The fact that its offices are the national and international headquarters of radio amateurs, makes League publications authoritative, complete, up-to-the-minute; written from a thoroughly practical amateur's point-ofview. These publications are frequently revised to keep abreast of the fast-changing field. All are printed in the familiar QST format which permits thorough but economical presentation of the information. Various invaluable printed forms, designed to facilitate compliance with the rules of good amateur practice, are available at moderate cost. We maintain to the best of our ability a stock of back copies of QST which are available at the original single-copy price. Many of the publications and supplies described in the following pages are handled by your dealer for your convenience.

The American Radio Relay League, Inc.

West Hartford, Connecticut

ANDBOOK

The
 OFFICIAL MAGAZINE of The

 AMERICAN

 AMERICAN RADIO RELAY

 LEAGUE

 LEAGUE}

For twenty-two years (and thereby the oldest American radio magazine) QST has been the "bible" of Amateur Radio. It faithfully and adequately reports each month the rapid development which makes Amateur Radio so intriguing. Edited in the sole interests of the members of The American Radio Relay League, who are its owners, QST treats of equipment and practices and construction and design, and the romance which is part of Amateur Radio, in a direct and analytical style which has made QST famous all over the world. It is essential to the well-being of any radio amateur. QST goes to every member of The American Radio Relay League and membership costs $\$ 2.50$ per year in the United States and Possessions, and Canada. All other countries $\$ 3.00$ per year. Elsewhere in this book will be found an application blank for A.R.R.L. membership.

BACK

COPIES

The back copies of QST contain the record of development of modern amateur technique. They are invaluable as technical references. Our supply of most issues is already exhausted, but many since 1925 are still available.

Please consult this list before ordering specific issues referred to in QST and Handbook texts.

```
1925 copies - (except Jan., Mar., May and Jwy) $2.00
1926 copies - complete 2.50
1927 copies - (except January, July and October) 2.25
1928 copies - (except Jan., Feb., Mar., Aug., Sept.) 1.50
1929 copies - complete 2.50
1930 copies - (except Jan., Feb., Apr. and July) 2.00
1931 copies - (except November) 2.50
1932 copies - (except Feb., Aug., Sept., Oct.; 1.75
1933 copies - (except January and Febxuary) 2.50
1934 copies - complete 2.50
1935 copies - complete 2.50
1936 copies - complete 2.50
1937 copies -complete 2.50
1938 copies - complete 2.50
1939 copies - as issued, each 25c - complete year 2.50
Single Copies, 25c Each, and Yearly Sets at Price Indicated,
    Postpaid
Foreign add 50 c for Yearly Sets
```


151

 YEARLY BINDERSThose who take pride in the appearance of their lay-out and wish to keep their reference file of QST's in a presentable manner, appreciate the QST binder. It is stiff-covered, finished in beautiful and practical maroon fabrikoid. Cleverly designed to take each issue as received and hold it firmly without mutilation, it permits removal of any desired issue without disturbing the rest of the file. It accommodates 12 copies of QST and the yearly index. Opens flat at any page of any issue.
With each Binder is furnished a sheet of gold and black gummed labels for years 1919 through 1938. The proper one can be cut from the sheet and pasted in the space provided for it on the back of the binder.
A file of several years of QST, kept in order in binders, is a most valaable reference library for any Radio Amateur.

Price $\$ 1.50$ postpaid

Available only in United States and possessions, and Canada

Before you can operate an amateur transmitter, you must have a government license and an officially assigned call. These cost nothing - but you must be able to pass the examination. The License Manual tells how to do that tells what you must do and how to do it. It makes a simple and comparatively easy task of what otherwise might seem difficult. In addition to a large amount of general information, it contains 198 typical questions and answers such as are asked in the government examinations. If you know the answers to the questions in this book, you can pass the examination without trouble.

Price $25 \not{ }^{\text {p }}$ postpaid

The Handbook tells the things which are needed for a comprehensive understanding of Amateur Radio. From the story of how Amateur Radio started through an outline of its wide scope of the present - from suggestions on how to learn the code through explanations of traffic-handling procedure and good operating practices - from electrical and radio fundamentals through the design, construction, and operation of amateur equipment - this book covers the subject thoroughly. It includes the latest and the best information on everything in Amateur Radio.

Buckram bound - $\$ 2.50$ postpaid

An introduction into Amateur Radio-telephony. Written for the man who has a class C or class B license. A companion book to "How to Become a Radio Amateur." Contains simple description of the process of modulation and principles of good design for 'phone. Description of inexpensive low power transmitter and modulator, with complete operating instructions plus some antenna dope of particular interest in 160-and 10-meter operation. It tells what a new or inexperienced ham should know before attempting to use 'phone.

$$
\text { Price } 25 \phi
$$

Amateurs are noted for their ingenuity in overcoming by clever means the minor and major obstacles they meet in their pursuit of their chosen hobby. An amateur must be resourceful and a good tinkerer. He must be able to make a small amount of money do a great deal for him. He must frequently be able to utilize the contents of the junk box rather than buy new equipment. Hints and Kinks is a compilation of hundreds of good ideas which amateurs have found helpful. It will return its cost many times in money savings - and it will save hours of time.

Price 50申

LIGHTNINC

Aware of the practical bent of the average amateur and knowing of his limited time, th League, under license of the designer, W. P. Koechel, has made available several calci lators to obviate the tedious and sometimes difficult mathematical work involved in th design and construction of radio equipment. The various lightning calculators are ingenion devices for rapid, certain and simple solution of the various mathematical problems whic arise in all kinds of radio and allied work. They make it possible to read direct answe without struggling with formulas and computations. They are tremendous time-savers fc

RADIO CALCULATOR
 Type A

This calculator is useful for the problems that confront the amateur every time he builds a new rig or rebuilds an old one or winds a coil or designs a circuit. It has two scales for physical dimensions of coils from one-half inch to five and one-half inches in diameter and from one-quarter to ten inches in length; a frequency scale from 400 kilocycles through 150 megacycles; a wavelength scale from two to 600 meters; a capacity scale from 3 to 1,000 micro-microfarads; two inductance scales with a range of from one microhenry through 1,500 ; a turns-per-inch scale to cover enameled or single silk covered wire from 12 to 35 gauge, double silk or cotton covered from 0 to 36 and double cotton covered from 2 to 36 . Using these scales in the simple manner outlined in the instructions on the back of the calculator, it is possible to solve problems involving frequency in kilocycles, wavelength in meters, inductance in microhenrys and capacity in microfarads, for practically all problems that the amateur will have in designing - from high-powered transmitters down to simple receivers. Gives the direct reading answers for these problems with accuracy well within the tolerances of practical construction.

OHM'S LAW CALCULATOR
 Type B

This calculator has six scales:
A power scale from microwatts through 10 kilowatts.
A resistance scale from 0.1 ohms through 10 megohms.
A current scale from microamperes through 100 amperes.
A voltage scale from microvolts through 100 kilovolts.
A supplementary wire scale from 0 to 40 B. \& S.

A decibel scale, plus and minus 40 db .
With this concentrated collection of tables, calculations may be made involving voltage, current, and resistance, and can be made with a single setting of a dial. The power or voltage or current or resistance in any circuit can be found easily if any two are known. The resistance in ohms per thousand feet of copper wire is shown to the limit of the B. \& S. wire gauge scale. The power ratio of any two power values expressed in decibels can readily be obtained from the calculator, and instructions are also given for finding the answers when the value is greater than 40 db , the limit of the scale. All answers will be accurate within the tolerances of commercial equipment.

$\$ 1.00$
POSTPAID

CALCULATORS

A.R.R.L.

mateurs, engineers, servicemen and experimenters. Their accuracy is more than adequate or the solution of practical problems, and is well within the limits of measurement by ordinary means. Each calculator has on its reverse side detailed instructions for its use; the greatest mathematical ability required is that of dividing or multiplying simple numbers. All calculators are printed in several colors and are wrapped in cellophane. You will find lightning calculators the most useful gadgets you ever owned.

Wire Data Calculator

Type C

Makes instantly available information on electrical conductors which would require hours of work and access to many textbooks. It has scales for dia. in mills, Stubbs and B\&S wire gauges, current carrying capacity in milliamps, turns-perinch and turns-per-centimeter for all kinds of insulated and bare wire, and a current-carryingcapacity scale for weather-proof and rubberinsulated wire. It gives turns per sq. in., ft. per lb . ohms per mi., ohms per km ., ohms per 1000^{\prime}, volts lost per 1000^{\prime} per amp., current carrying capacity at 1500 cm . per amp., lbs. per 1000^{\prime}, lbs. per mi., approximate tensile strength, ft. and meters per ohm, circular mills, equivalent in sq. wire. Nichrome, manganin, nickel, brass, aluminum, copper and silver wires are covered by these scales.

$50 \not \subset$ POSTPAID

Decibel Calculator

Type D

With a scale each for input and output level in current or voltage or power, and a transmission loss or gain scale for either voltage or power ratio plus and minus 120 or 60 db ., this calculator may be used in determining decibel gain or loss in four types of problems. When input and output voltages are known, when input and output currents are known, when input and output power are known, or when input voltage to receiver and output level are known. The decibel calculator gives an instant and clear picture of what a decibel is-its relation to power and voltage. Anyone having to do with amplifiers, transmission lines, directional antennas, etc., will appreciate this calculator.

$$
50 \not \& \text { POSTPAID }
$$

Parallel Resistance Series Capacity Calculator

Type E

Solves easily an always confusing problem the total effective resistance of two or more resistors in parallel, or the total effective capacity of two or more condensers in series. Direct reading answers for condensers or resistors of any size. A simple calculator but very useful.

Resistance Calculator

Type F

This calculator makes an ohm-meter of your voltmeter. With it, it is possible to measure the resistance of a resistor or circuit by using any voltmeter with a known voltage source of from 1 to 300 volts, such as a " B " battery. Has a range from 1 ohm to 1 megohm.

50\& POSTPAID

STATION OPERATING SUPPLIES

Designed by A.R.R.L. Communications Department

As can be seen in the illustration, the log page provides space for all facts pertaining to transmission and reception, and is equally as useful for portable or mobile operation as it is for fixed. The 38 log pages with an equal number of blank pages for notes, six pages of general log information (prefixes, etc.) and a sheet of graph paper are spiral bound, permitting the book to be folded back flat at any page, requiring only the page size of $81 / 2 \times 11$ on the operating table. In addition, a number sheet for traffic handlers is included with each book. The LOG BOOK sells for $35 c$ per book or 3 books for $\$ 1$.

OFFICIAL RADIOGRAM PADS

The radiogram blank is now an entirely new form, designed by the Communications Department to comply with the new order of transmission. All blocks for fill-in are properly spaced for use in typewriter. It has a strikingly-new heading that you will like. Radiogram blanks, $81 / 2 \times 71 / 4$, lithographed in green ink, and padded 100 blanks to the pad, are now priced at $25 c$ per pad, postpaid.

and MESSAGE DELIVERY CARDS

Radiogram delivery cards embody the same design as the radiogram blank and are available in two

forms - on stamped goverament postcard, 2c each; unstamped, 1c each.

MEMBERSHIP SUPPLIES Available only to A.R.R.L. members

Insignia of the Radio Amateur

In the January, 1920 issue of QST there appeared an editorial requesting suggestions for the design of an A.R.R.L. emblem - a device whereby every amateur could know his brother amateur when they met, an insignia he could wear proudly wherever he went. There was need for such a device. The post-war boom of amateur radio brought thousands of new amateurs on the air, many of whom were neighbors but did not know each other. In the July, 1920 issue the design was announced - the familiar diamond that greets you everywhere in Ham Radio - adopted by the Board of Directors at its annual meeting. It met with universal acceptance and use. For years it has been the unchallenged emblem of amateur radio, found wherever amateurs gathered, a symbol of the traditional greatness of that which we call Amateur Spirit - treasured, revered, idealized.

Do You Wear the A.R.R.L. Pin?

THE LEAGUE EMBLEM, with both gold border and lettering, and with black enamel background, is available in either pin (with safety clasp) or screw-back button type.

In addition, there are special colors for Communications Department appointees.

- Red enameled background for the SCM.
- Blue enameled background for the ORS or OPS.
(Red available in pin type only. Blue may be had in either pin or button style.)

THE EMBLEM CUT: A mounted printing electrotype, $5 / 8^{\prime \prime}$ high, for use by members on amateur printed matter, letterheads, cards, etc.

ALL EMBLEMS PRICED THE SAME
50c
POSTPAID

STATIONERY

Members' stationery is standard $81 / 2 \times 11$ bond paper which every member should be proud to use for his radio correspondence. Lithographed on $81 / 2 \times 11$ heavy bond paper.

TWO HUNDRED METERS AND DOWN

The Story of Amateur Radio by CLINTON B. DeSOTO

A detailed, concise presentation in full book length of all the elements that have served to develop the most unique institution of its kind in the history of the world. A book of history but not a history-book, TWO HUNDRED METERS AND DOWN: The Story of Amateur Radio tells in spirited, dramatic fashion the entire chain of significant events in the development of the art.

Part I - From the dawn of the art to the time of the World War. P. - Spark to C.W.; the progress and recognition accord ${ }^{5}$ is amateur radio. Part III - From the first transoceanic communication through development of the short waves. Readjustment and regulation of amateur radio. Its part in expeditions and emergencies. Concluding with an evaluation of the arguments for the future of amateur radio.

Most of today's amateurs have no more than fragmentary knowledge of the beginnings of their art. This book is an invaluable record that every amateur ought to own, to learn thereby the fascinating tale of our earlier days.

Approximately 200 pages, 90,000 words, with durable imitation leather red paper cover

$\$ 1.00$ postpaid

Deluxe edition bound in blue cloth
$\$ 2.00$

A.R.R.L.

Amateur Radio MAP

of the World

A map entirely new in conception and design, contains every bit of information useful to the radio amateur. A special type of projection made by Rand, McNally to A.R.R.L. specifications. It gives great circle distance measurements in miles or kilometers within an accuracy of 2%. Shows all principal cities of the world; local time zones and Greenwich; WAC divisions; 230 countries, indexed; 180 prefixes, districts and subdivisions, where used; and L.S. examining points. Large enough to be usable, printed in six colors on heavy map paper, 30×40 inches.

Price $\$ 1.25$ postpaid

[^0]: * Likely to be changed in 1939 to read $1750-2050 \mathrm{kc}$.,

[^1]: The phones are connected across the coils of the buzzer with a condenser in series. The size of this condenser determines the strength of the signal in the phones. Should the value given on the diagram provide an excossively loud signal it may be reduced t.o. perheps. . $00025 \mu \mathrm{ff}$.

[^2]: velope, remmection in motal tulnes; it is "N(:" or" no connmection" in G-typetubes.

[^3]: ${ }^{1}$ Refer to Fig. 514 except as noted otherwise.
 ${ }^{2}$ M.-medium; S.-smali; O.-small octal; J.--iumbo.
 ${ }^{3}$ Metal tube series.
 Metal tube series.
 ${ }^{-}$Refer to Fig. 518.

[^4]: ${ }_{8}^{5}$ Refer to Fig. 514.
 esistor direct to plate modulated Class-C amplifiers, camact screen droppins resistor direct to plate and by-pass for r.f. only.

[^5]: 1 pr. Longnose Pliers ($6^{\prime \prime}$)
 1 pr. Diagonal Cutting Pliers ($6^{\prime \prime}$)
 1 Screwdriver ($6^{\prime \prime}$ to $7^{\prime \prime}$, $1 / 4^{\prime \prime}$ blade)
 1 Screwdriver ($4^{\prime \prime}$ to $5^{\prime \prime}, 1 / 8^{\prime \prime}$ blade)
 1 pr . Tin Shears ($10^{\prime \prime}$)
 1 Scratch Awl or Ice Pick
 1 Combination Square ($12^{\prime \prime}$)
 1 Yardntick or other straightedge
 1 Hand Drill (2 speed)
 1 Heavy Knife
 1 Electric Soldering Iron (100 watts, small pointed tip)
 1 Center Punch
 1 Flat File (12" medium coarse cut)
 Drills; particularly $1 / 8^{\prime \prime}, 1 / /^{\prime \prime}$ and $3 / 16^{\prime \prime}$ and No. 42
 Solder (Rosin Core)
 Soldering Paste (Non-corroding)

[^6]: 1 Bench Vise (4" jaws)
 1 Ball Peen Hammer ($1-\mathrm{lb}$. head)
 1 Hacksap (12" blades)
 1 pr. Slip-joint Pliers (6')

[^7]: The only r.f. conncetion disturbed in the receiver is the grid-cap connection to the i.f. tube.
 \mathbf{C}_{1}-Split-utator condenser (selectivity control), 50 $\mu \mu \mathrm{fd}$. per section (National STD-50).
 $\mathrm{C}_{2}-15-\mu \mu \mathrm{fd}$. variahle (phasing condenser) (National UM-15).
 $\mathrm{C}_{3}-100-\mu \mu \mathrm{fd}$. mica.
 $\mathrm{C}_{4}, \mathrm{C}_{5}-50-\mu \mu \mathrm{fd}$. mica.
 C8 to C_{10}, inc. - 0.1 paper.
 $\mathrm{C}_{11}-0.01$ paper.
 $\mathrm{H}_{1}-2000$ ohms, $1 / 2$-watt.
 $\mathrm{h}_{2}-50,000$ ohms, l-watt.
 $\mathrm{H}_{8}, \mathrm{H}_{4}-100,000$ ohms, 1 -watt.
 $\mathrm{H}_{5}-300$ ohms, $1 / 2$-watt.
 R_{8} - 100,000 ohms, $1 / 2$-watt.
 $\mathrm{K}_{7}-30,060$ ohms, 2 -watt.
 $\mathrm{K}_{8}-3000-\mathrm{ohm}$ wire-wound volume control (noisesilencer threshold control) (Yaxley).
 RFC - 20 millihenry r.f. choke (Sickles).
 T_{1} - Crystal filter input transformer, $\mathbf{4 6 5} \mathrm{kc}$. (Sickles).
 T_{2} - Cryatal filter output autotransformer, 465 kc . (Sickles).
 T_{3} - biode transforner for noise circuit, 465 kc. (Aladdin).
 SWi-S.p.s.t. switch; see text for description. SW_{2} - S.p.s.t. toggle switcli mounted on R8. XTAL - Bliley BC-3, 465 kc .

[^8]: T-I.F. transformer with balanced secondary for working into diode rectifier.
 $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}-1$ megohm, $1 / 2$-wat .
 R_{4} - l-megohm volume control.
 $\mathbf{R}_{5}-2.50,000$ ohms, $1 / 2$-watt.
 $\mathrm{R}_{6}, \mathrm{R}_{8}-100,000$ ohms, $1 / 2$-watt.
 $\mathrm{R}_{7}-25,000$ ohms, $1 / 2$-wht .
 $\mathrm{C}_{1}-\mathbf{0} . \mathrm{I}-\mu \mathrm{fd}$. paper.
 $\mathrm{C}_{2}, \mathrm{C}_{3}-\mathbf{0 . 0 5 - \mu \text { fd. paper. }}$
 $\mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{5 0}-\mu \mu \mathrm{fd}$. mica.
 $\mathrm{C}_{6}-0.001-\mu \mathrm{fd}$. mica (for r.f. filtering, if needed).
 $S_{w}-$ S.p.s.t. toggle (on-off switeh).
 The switch shouid be monnted close to the circuit elements and controlled by an extension shaft if neresarary.

[^9]: Curve A-winding length, one inch; Curve IS - winding length, $11 / 2$ inches; Curve C - winding length, 2 inches. After deternining the number of turns for the capacity and frequency band to be used, consult the wire table in the Appendix to find the wire size which will fit in the apace available. No. 18 wire is about the largest size that need be uscd; larger sizes are dificult to handle on this type of form. Curve \mathbf{C} is also suitable for coils wound on $13 / 4$-inch diameter ceramic forms with 3 inches of winding length.

[^10]: * An air padding condenser of $50 \mu \mu \mathrm{fd}$. with airgap not less than .I7'f mist be ased in parallel with the coil at thim frequency (Card-
 variable).

[^11]: ${ }^{1}$ Value for both triode sections，assuming both are working under same conditions．In phase inverter service，the cathode resistor

[^12]: Notice the closely grouped components of the detector circait. The quench coil is at the loft rear rorner with the quench tube juat to the right.

[^13]: A plus A should be one-half wavelength as determined by Equation (1).

[^14]: Antenna dimensions, A plus A in upper figure, N^{\prime} in lower, can be found from Equation (1). The dimension B, one-quarter wavelength, can be found from Hquation (2). The alimension C must be found by exferiment, an demaribeal in the tevt.

[^15]: All of these diagrams will give adequately-filtered d.c. output for different classes of servicen. (Soo Power Supply Tahle.) They are explained fully in the text. Many other arrangements are possihle. Control switchea should be insertod in the transformer primaries at the pointe marked " X " to permit the filament supplies to be turned on before the plate supply and to make it impossible to put on the plate power bofore the filament.

[^16]: A total resistance of approximately 450 ohms was found correct for L_{1} and R_{1} in series, but it may be preferable to use a variable resistor for R_{1} and adjust bias to make the d.c. voltage drops between plate and cathode of each 43 about equal when the final amplifier is excited and tuned but not modulated. The filaments in the transmitter as indicated are all in series.

[^17]: * Some manufacturers rate transformers as filter output when swinging choke is used. Others rate r.m.s. values. The figures here are r.m.s. values across one half the total secondary.
 * Should a single section filter be used the figures in this column indicate the filter output ripple.
 \dagger Refers to Fig. 1415.

[^18]: Same life figures apply to Z308P, wt. 1 lb .7 oz., Z60BP 90 -volt, wt. 2 ib .7 oz ., and Z96P 144 -volt, wt. 4 lbs .
 ${ }^{\circ}$ Same life figures apply to $\times 308 \mathrm{BP}$, wt. 15 oz., $\times 60 \times, 90$-volt $w t, 1 \mathrm{lb} .14 \mathrm{oz}$, and X608P, 90 -volt, wt. 2 lbs 1 ioz .
 ${ }^{2}$ Same life figures apply to $W 308 P$, wt. 11 oz., and W608P 90 -volt, wt. 1 lb .5 oz .

[^19]: Combining a whble frequency meter, moduluting oscillutor, output amplifier and attenuator, this unit fills the need for accurate frequency measurement amd a variablelevel test signal source.

 The controls urr: Lower left, inductive calibration re-set irimmer; natin dial. frequency; next, modulation and power on-ofl switches; lower right, attenuator: top left, oilfirt tuning, and top right, output band-switching.

[^20]: * Arrow-Hart \& Hegeman Electric Co.'s No. 80630 switch

[^21]: * The atation will not be operated Jan. 1st. Feb. 22nd, May 30th, July 4th, Labor Day (1st Mon, in Sept.), Thankegiving (last Thurs. in Nov.) and Christmas Eve and Day.

[^22]:

 15. $\mathbf{T 2}$. IBee. $19: 36$ U.ST:

[^23]: Special abbreviatione adopted by the A.R.R.L.
 QRS General call preceding a message addressed to all amateurs and A.R.R.L. Members. This is in effect "CQ ARRL."
 QRR Official A.R.R.L. "land SOS." A distress call for use by stations in emergency zones only.

[^24]: 1Sublect to change to "l. 750 to 2,030 " kilocycles in accord-
 ance with the "Inter-American Arrangement Covering Radiocommunlcation." Havana, 1937.
 ${ }^{2}$ The Commission reserves the right to change or cancel these frequencles without ad vance nutice or hearing.

[^25]: Shipping Weight Approx. 70 Lbs.

