$32_{\text {ND EDITION }} 1955$

THE STANDARE A!NUA: OF AMATEUR RADIO CCA:IUNICATION

PUBLISHED BY THE AMERICAN RADIO RELAY LEAGUE

SCHEMATIC SYMBOLS USED IN CIRCUIT DIAGRAMS

[^0]
THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF of the
AMERICAN RADIO RELAY LEAGUE
WEST HARTFORD, CONN., U.S.A.

Thirty-second Edition

THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All righta reterved.
No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservados todos los derechos

Library of Congress Catalog Card Number: 41.3345

Thirty-second Edition
\$3in U. S. A proper
$\$ 3.50$ in U. S. Possessions and Canada $\$ 4$ elsewhere

Foreword

In twenty-nine years of continuous publication The Radio Amateur's Handbook has become as much of an institution as amateur radio itself. Produced by the amateur's own organization, the American Radio Relay League, and written with the needs of the practical amateur constantly in mind, it has earned universal acceptance not only by amateurs but by all segments of the technical radio world, from students to engineers, servicemen to operators. This wide dependence on the Handbook is founded on its practical utility, its treatment of radio communication problems in terms of how-to-do-it rather than by abstract discussion and abstruse formulas.

But there is another factor as well: Dealing with a fast-moving and progressive science, sweeping and virtually continuous modification has been a feature of the Handbook - always with the objective of presenting the soundest and best aspects of current practice rather than the merely new and novel. Its annual rewriting is a major task of the headquarters group of the League, participated in by skilled and experienced amateurs well acquainted with the practical problems in the art.

In contrast to most publications of a comparable nature, the Handbook is printed in the format of the League's monthly magazine, QST. This, together with extensive and usefully-appropriate catalog advertising by manufacturers producing equipment for the radio amateur and industry, makes it possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

This thirty-second edition takes note of the changes in technical practice that have occurred in recent years. A considerable amount of new equipment in all categories appears throughout the book. The chapter on highfrequency transmitters includes new units for the Novice as well as more elaborate units for the accomplished amateur. Continuing the trend of recent years, all transmitting equipment has been designed with the reduction of harmonies in the telecasting bands as a primary feature. And the always informative data chapter on vacuum tubes and semiconductors has been expanded to include scores of new tube types plus transistors.

The IIandbook has long been considered an indispensable part of the amateur's equipment. We earnestly hope that the present edition will succeed in bringing as much assistance and inspiration to amateurs and would-be amateurs as have its predecessors.

A. L. Budlong
General Manager, A.R.R.L.

West Hartford, Conn.

CONTRNTSS

Frontispiece 2
The Amateur's Code 8
Chapter 1 -Amateur Radio 9
2 - Electrical Laws and Circuits 15
3-Vacuum-Tube Principles 52
4-High-Frequency Communication 69
5-High-Frequency Receivers 74
6-High-Frequency Transmitters 126
7 - Power Supplies 196
8-Keying and Break-In 220
9 -Speech Amplifiers and Modulators 229
10-Amplitude Modulation 257
11 - Frequency and Phase Modulation 276
12 -Single-Sideband 282
13-Transmission Lines 298
14 - Antennas 321
15-About V.H.F 352
16-V.H.F. Receivers 355
17-V.H.F. Transmitters 375
18-V.H.F. Antennas 403
19-U.H.F. and Microwave Communication 412
20-Mobile Equipment 424
21 - Measurements 453
22-Assembling a Station 481
$23-\mathrm{BCI}$ and TVI 487
24 - Construction Practices 508
25 - Operating a Station 516
26-Miscellaneous Data 531
27-Vacuum Tubes and Semiconductors V1
Catalog SectionIndex

THE
 AMATEUR'S CODE

- ONE •

The Amateur is Gentlemanly... He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

- TWO •

The Amateur is Loyal . . . He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

- THREE.

The Amateur is Progressive... He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

- FOUR •

The Amateur is Friendly... Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and coöperation for the broadcast listener; these are marks of the amateur spirit.

- FIVE -

The Amateur is Balanced . . . Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

- SIX •

The Amateur is Patriotic . . . His knowledge and his station are always ready for the service of his country and his community.

- Paul M. Segal

CHAPTER 1

Amateur Radio

A mateur radio is a scientific hobby, a means of gaining personal skill in the fascinating art of electronics and an opportunity to communicate with fellow citizens by private shortwave radio. Scattered over the globe are nearly 200,000 amateur radio operators who perform a service defined in international law as one of "self-training, intercommunication and technical investigations carried on by . . . duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest."

From a humble beginning at the turn of the century, amateur radio has grown to berome an established institution. Today the American followers of anateur radio number over 125,000 , trained communicators from whose ranks will come the professional communications specialists and executives of tomorow just as many of today's radio leaders were first attracted to radio by their early interest in amatenr radio communication. A powerfal and prosperous organization now provides a bond between amateurs and protects their interests; an internationally-respected magazine is published solely for their benefit. The Army and Navy seek the cooperation of the amateur in devoloping communications reserves. Amateur radio supports a manufacturing industry which, by the very demands of amateurs for the latest and best equipment, is always up-to-date in its designs and production terhniques - in itself a national asset. Amateurs have won the gratitude of the nation for their heroic performances in times of natural disaster. Through their organization, amateurs have couperative working agreements with such agencies as the Inited Nations and the Red Cross. Amateur radio is, indeed, a magnifieently useful instilution.

Although as old as the art of radio itself, amotour radio did not always onjoy such prestige. Its first mothasiasts were private citizens of an experimental turn of mind whose imaginations went wild when Mareoni first proved that messages acmatly could be sont by wireloss. They set about loarning enough about the new seientifie marvel to buid homemate stations. By 1 ? 132 there were numbrots Govermment and commercial stations, and homdreds of amateurs; regulation was needed, se laws, licenses and wavelengt ha specifications for the various services appeared. There was then no amateur organization nor spokesman.

The oflicial viewpoint toward amateurs was something like this:
"Amateurs? . . . Oh, yes. . . . Weh, stick 'em on 200 meters and below; they'll never get out of their backyards with that."

But as the years rolled on, amateurs found out how, and D) (distance) jumped from local to 500 -mile and even oceasional $1,000-$ mile twowiy contacts. Because all long-distance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Government suddenly called hundreds of skilled amatours into war service in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in other countries areross the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period witnessed the birth of the American Radio Relay League, the amateur radio organization whose name Was to be virtually synonymous with subsequent amateur progress and short-wave development. Conceived and formed by the famous inventor, the late Hiram Percy Maxim, ARIRI, was formaliy launched in early 1914. It had just begun to exert its full force in amateur activities when the United States declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half years. There were then over 6000 amateurs. Over 4000 of them served in the armed forces during that war.

Todaty, few amateurs realize that World

IIIRAM PFBRCY MIVIM
Iresinhout ARSII. 1911-IV:36

War I not only marked the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The (Government, having had a taste of supreme authority over communications in wartime, was more than half inclined to keep it. The war had not heen ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old evor to be resumed. ARRRL's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio: the war ban continued. Reprated representations to Washington met only with silence. The league's oftices had been closed for a year and a half, its records stored away. Most of the former amateurs had gone into service; many of them would never come back. Would those returning be interested in such things as amateur radio. Mr. Maxim, determined to find out, called a merting of the old Board of Directors. The situation was discouraging: amateur radio still banned by law, former members sattered. no organization, no membership, no funds. But those fow determined men financed the publication of a notice to all the former amaters that could be located, hired Kemmeth 13. Warner as the Leagne's first paid secretary, floated a bond issue among ohd leagne mombers to obtain money for immediate rumning expenses, bonght the magazine QNTV to be the League's official organ, started activities, and dunned oflicialdom until the wartime ban was lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush by amateurs to get back on the air. (iangway for King Spark! Manufacturers were hard put to supply radio apparatus fast enough. Fach night saw additional dozens of stations crashing out over the air. Interference? It was bedlam!

But it was an era of progress. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Amateurs immediately adapted the new gear to 200 -meter work. langes promptly increased and it became possible to bridge the continent with but one intermediate relay.

- TR:ANS-ATLANTICS

As DX became 1000, then 1500 and then 2000 miles, amateurs began to dream of transAtlantic work. Could they get across? In December, 1921, ARRL sent abroad an expert amateur, Paul F. Godley, 2ZE, with the best receiving equipment available. Tests were run, and thirty American stations were heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 Ameriban calls were logged by European amateurs and one French and two British stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across the Atlantic! It must be possible - but somehow it couldn't quite be done. More power. Many already were using the legal maximum. Better receivers? They had superheterodynes. Another wavelength? What about those undisturhed wavelengths below 200 meters? The engineering world thought they were worthless - but they had said that about 200 meters. So, in 1922, tests betweon Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, AlR lR L-sponsored tests on wavelengths down to 90 meters were successful. Reports indicated that as the warelength dropped the results were better. A growing excitement began to spread through amateur ranks.

Finally, in November, 1923, after some months of careful preparation, two-way amateur trans-Atantic communication was accomplished, when Schnell, 1MO, and Reinartz, 1NAM (now W9CZ and li6bs.5, respectively) worked for several hours with Deloy, 8Al3, in lirance, with all three stations on 110 meters! Additional stations dropped down to 100 moters and found that they, too, could easily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The" short-wave" era had begun!
l3y 1924 dozens of commercial companies had rushed stations inte the 100 -meter region. Chaos threatened, until the first of a series of national and international ratio conferences partitioned off various bands of frequencies for the different services. Althongh thought still centered around 100 meters, League officials at the first of these frequence y-determining conferences, in 1921, wisely obtained amateur bands not only at 80 meters but at 40,20 , and even 5 moters.

Eighty meters proved so successful that "forty" was given a try, and (2SOs with Australia, New Zealand and South Africa soon became commonplace. Then how about 20 meters: This new band revealed entirely unexperted possibilities when 1NAM worked GTS on the West Coast, direct, at high noon. The dream of amateur radio - daylight DX! was finally true.

PUBLIC SERVICE

Amatcur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as is given it by our Government at international conferences. There are other reasons. One of these is a thorough appreciation by the Army and Navy of the value of the amateur as a source of skilled radio personnel in time of war. Another asset is best described as "publie serviere"

About 4000 amateurs had contributed their skill and ability in ${ }^{-17-*} 18$. After the war it was only matural that cordial relations should prevail between the Army and Navy and the amateur. These relations strengthened in the next
few years and, in gradual steps, grew into cooperative activities which resulted, in 1925, in the establishment of the Naval Communications Reserve and the Army-Amateur Radio System (now the Military Affiliate Radio System), In World War Il thousands of amateurs in the Naval Reserve were called to active duty, where they served with distinction, while many other thousands served in the Army, Air Forces, Coast Guard and Marine Corps. Altogether, more than $2 \overline{5}, 000$ radio amateurs served in the armed forces of the United States. Other thousands were engaged in vital civilian electronic researeh, development and manufacturing. They also organized and manned the War Emergency Radio Service, the communications section of OCD).

The "public-service" record of the amateur is a brilliant tribute to his work. These activities can be roughly divided into two classes, expeditions and emergencies. Amateur cooperation with expeditions began in 1923 when a League member, Don Mix, ITS, of liristol, Conn. (now assistant technical editor of QST), accompanied MacMillan to the Arctic on the schooner Bowdoin with an amateur station. Amateurs in Canada and the U.S. provided the home contacts. The success of this venture was such that other explorers followed suit. During subsequent years a total of perhaps two hundred voyages and expeditions were assisted by amateur radio, and for many years no expedition has taken the field without such plans.

Since 1913 amateur radio has been the principal, and in many cases the only, means of outside communication in several hundred storm, flood and earthquake emergencies in this country. The 1936 castern states flood, the 1937 Ohio River Valley flood, the Southern California flood and Jong Island-New England hurricane disaster in 1938, and the FloridaGulf Coast hurricanes of 1947 called for the amateur's greatest emergency effort. In these disasters and many others - tornadoes, sleet storms, forest fires, blizzards - amateurs played a major role in the relief work and earned wide commendation for their resourcefulness in effecting communication where all other means had failed. During 1938 AIRIRI. inaugurated a new emergency-preparedness program, registering personnel and equipment in its Emergency Corps and putting into effeet a comprehensive program of coöperation with the IRed Cross, and in 1947 a National Emergency Coördinator was appointed to full-time duty at League headquarters.
The amateur's outstanding record of organized preparation for emergency eommunications and performance under fire has been largely responsible for the decision of the Federal Government to set up siocial regulations and set aside special frefuencies for use by amateurs in providing auxiliary communications for civil defense purposes in the event of war. Under the banner, "Radio Amateur Civil Emergency Service," amateura are setting up and manning community and
area networks integrated with civil defense funetions of the municipal governments. Should a war eause the shut-down of routine amateur activities, the RACLS will be immediately avalable in the national defense.

- TECHNICAL DEVELOPMENTS

Throughout these many years the amateur was careful not to slight experimental development in the enthusiasm incident to international IDX. The experimenter was constantly at work on ever-higher frequencies, devising improved apparatus, and learning how to cram several stations where previousiy there was room for only one! In particular, the amateur pressed on to the devclopment of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ahility to make the most of what is at hand. In 1924, first amateur experiments in the vicinity of 56 Mc . indicated that band to be practically worthless for 1DN. Nonetheless, great "short-haul" activity eventually came about in the band and new gear was developed to meet its special problems. Beginning in 1934 a series of investigations by the brilliant experimenter, Ross Hull (later Qs'T's editor), developed the theory of v.h.f. wave-bending in the lower a.tmosphere and led amateurs to the attainment of better distances; while occasional manifestations of ionospheric propagation, with still greater distances, gave the band uniquely erratic performance. By Pearl Harbor thousands of amateurs were spending much of their time on this and the next higher band, many having worked hundreds of stations at distances up to several thousand miles. Transcontinental 6meter DN is now a commonplace occurrence; even the oceans have been bridged! It is a tribute to these indefatigable amateurs that today's concept of v.h.f. propagation was developed largely through amateur research.

The amateur is constantly in the forefront of technical progress. His incessant curiosity, his eagerness to try anything new, are two reasons. Another is that ever-growing amateur radio continually overcrowds its frequeney assignments, spurring amateurs to the development and adoption of new techniques to permit the

A. corner of the ARRL laboratory.
accommodation of more stations. For examples, amateurs turned from spark to c.w., designed more selective receivers, adopted revstal control and pure d.c. power supplies. From the ARIRL's own laboratory in 1932 came James Lamb's "single-signal" superhetorodyne - the world's most advanced high-frequeney radiotelegraph receiver and, in 1936, the "noise-silencer" eireuit. Amateurs are now turning to speech "elippers' to reduce bandwidths of 'phone transmissions and "singlo-sidehand suppressedecarrier" systems as wedl ase even more selectivity in reaciving equipment for greater efficiency in speetrum use.

During World War II, thousands of skilled amateurs contributed their knowledge to the development of secret radio devices, both in (iovernment and private laboratories. Equally as important, the prewar technieal progress by amateurs provided the keystone for the development of modern military eommunications equipment. Derhaps more important today than individual contributions to the art is the nass eonperation of the amateur body in Government projects such as propagation studies; cach participating station is in reality a separate fich laboratory from which reports are made for correbation and analysis.

Emergeney relief. expedition contact, experimental work and countless instances of other forms of pubtie service - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importanee of amateur participation in the armed forees and in other aspects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

- THE AMERICAN RADIO RELAY LEAGUE

The ARIRL is today not only the spokesman for amatcur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amateurs, is noncommereial and has no stockholders. The members of the Lague are the owners of the ARIRL, and QST.

The lorague is pledged to promote interest in two-way amateur commonication and experimentation. It is interested in the relaying of messuges by amateur radio. It is concerned with the advancement of the radio art. It stands for the maintenance of fraternalism and a high standard of eonduct. It represents the amateur in legislative matters.

One of the League's principal purposes is to keep amateur activities so well conducted that the amateur will continue to justify his existence. Anateur radio offers its followers count less pleasures and unending satisfaction. It also calls for the shouldering of responsibilities - the maintenance of high standards,

The operating room al WIAll.
a coöperative loyalty to the traditions of amateur radio, a dedication to its ideals and prineiples, so that the institution of a mateur radio may continue to operate "in the public interest, convenience and necessity."

The operating territory of ARRLI is divided into one Canadian and fiftern U. S. divisions. The affairs of the I.eague are managed by a Board of Directors. One director is cleeted every two yoars by the membership of each L'. S. division, and one by the Canadian membership. These directors then choose the president and viee-president, who are also members of the Boamed. The secretary and preasurer are also appointed by the Board. The lirectors, as representatives of the amateurs in their divisions, meet anmually to examine current amateur problems and formulate ARRL policies therem. The directors appoint a general manager to supervise the operations of the League and its healquarters, and to carry out the policies and instructions of the Board.

ARIRI. owns and publishes the monthly magazine, QSTT. Acting as a bullerin of the League's organized activities, QST alsu serves as a medium for the exchange of ideas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amateur's bible," as well as one of the foremost radio magazines in the world. Membership, dues include a subscription to QST'.

ARRL maintains a model headquarters amateur station, known as the lifram Percy Maxim Memorial Station, in Vewington, Conn. Its eall is W1AW, the call held by Mr. Maxim until his death and later transferred to the League station by a speciat FCO action. separate transmitters of maximun legal power on eath amateur band have permitted the station to be heard regularly all over the world. More important, W1AW transmits on regular schedules bulletins of general interest to amateurs, conduels code practice as a training feature, and engages in wo-way work on all popular bands with as many amateurs as time permits.

It the headquarters of the Leqgue in West llartford, Conn., is a well-ecpupped laboratory to assist staff members in preparation of technical material for Q.ST and the Radio Amateur's IIandlook. Among its other ac-
tivities, the League maintains a Communications Department concerned with the operating activities of League members. A large field organization is headed by a Section Communications Manager in each of the Laague's seventy-three sections. There are appoint ments for qualified members as Official Relay Station or Official 'Phone Station for traffic handling; as Official Observer for monitoring frequencies and the quality of signals; as Route Manager and 'l'hone Activities Manager for the establishment of trunk lines and networks; as Emergency Coördinator for the promotion of amateur preparedness to cope with natural disasters; and as Official Experimental Station for those pioneering the frequencies above 50 Me. Mimeographed bulletins keep appointees informed of the latest developments. special activities and contests promote operating skill. A special section is reserved each month in QST for amateur news from every section of the country.

AMATEUR LICENSING IN THE UNITED STATES

Pursuant to the law, FCC has issued detailed regulations for the amateur service.

A radio amateur is a duly authorized person interested in radio technique solely with a personal aim and without pecuniary interest. Amateur operator licenses are given to U. S. citizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and receive code. There are four available elasses of amateur license - Novice, Technician, General (called "Conditional" if exam taken by mail), and Amateur Extral Class. Fach has different requirements, the first two being the simplest and consequently conveying limited privileges as to frequencies available. Examinations for all elasses but the Amateur Extra may be taken by mail where the applicant lives further than a sperified distance from the examining centers. Station licenses are granted only to licensed operators and permit communic:tion between such stations for amateur purposes, i.e., for personal noncommercial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of any sort nor for broadeasting. Narrow bands of frequencies are allocated exclusively for use by amatteur stations. Transmissions may be on any frequency within the assigned bands. All the frequencies may be used for c.w. telegraphy and some are available for radiotelephony by any amateur, while others are reserved for radiotelephone use by persons holding higher grades of license. The input to the final stage of amateur stations is limited to 1000 watts and on frequencies below 144 Mc . must be adequatelyfiltered direct current. Emissions must be free from spurious radiations. The licensee must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station oper-
ation must be maintained, with specifed data. The station license also authorizes the holder to operate portable and mobile stations subject to further regulations. An amateur station may be operated only by an amateur operator lieensee, but any lieensed amateur operator may operate any amateur station within the scope of privileges conveyed by the licenses. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who successfully completes the examination. When you are able to copy code at the required speed, have studied basic trausmitter theory and are familiar with the law and amatour regulations, you are ready to give serious thought to securing the Government amateur licenses which are issued you, after examination at a local district office or examining points in most of our larger cities, through FCC at Washington. A complete up-to-theminute discussion of license requirements, and study guides for those preparing for the examinations, are to be found in an ARRLL publication, The Radio Amateur's License Manual, available from the American Radio Relay League, West Hartford 7, Conn., for $50 ¢$, postpaid.

LEARNING THE CODE

In starting to learn the code, you should consider it simply another means of conveying

A didah	N dahdit
B dahdididit	O dahdahdah
C dahdidahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	S dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	V didididah
J didahdahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	2 dahdahdidit
1 didahdahdahdah	6 dahdidididit
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdah didit
4 dididididah	9 dahdahdahdahdit
5 dididididit	0 dahdahdahdahtah

Period: didahdidahdidah. Comma: dahdahdididahdah. Question mark: dididahdahditlit. Error:didididididididit. Double dash:dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: dahdidah. Fnd of work: didididahdidah. Fraction bar: dahdididahdit.
Fig. I.1 - The Continental (International Morse) code.
information. The spoken word is one method, the printed page another, and typewriting and shorthand are additional examples. Iearning the code is as easy - or as difficult - as learning to type.

The important thing in beginning to study code is to think of it as a language of sound, never as combinations of dots and dashes. It is easy to "speak" code equivalents by using "dit" and "dah," so that A would be "didah" (the "t" is dropped in such combinations). The sound "di" should be staceato; a code charaeter such as " 5 " should sound tike a machinegun burst: dididididit! Stress each "dah" equally; they are underlined or italicized in this text beeause they should be slightly accented and drawn out.

Take a few characters at a time. Learn them thoroughly in didah language before going on to new ones. If someone who is familiar with code can be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, enlist his coöperation. Learn the code by listening to it. Don't think about speed to start; the first requirement is to learn the characters to the point where you can recognize each of them without hesitation. Concentrate on any difficult letters. Learning the code is not at all hard; a simple booklet treating the subject in detail is another of the beginner publications available from the League, and is entitled, Learning the Radiotelegraph Code, 25 ć postpaid.

THE AMATEUR BANDS

Amateurs are assigned bands of frequencies at approximate ortave intervals throughout the spectrum. Iike assignments to all services, they are subject to modification to fit the changing picture of world communications needs. Modifications of rules to provide for domestic needs are also orcasionally issued by FCC, and in that respect each amateur should keep himself informed by WIAW bulletins, QST reports, or by communication with ARRL IIq. concerning a specifie point.

In the adjoining tathle is a summary of the U. S. amateur bands on which operation is permitted as of our press date. Figures are megacyoles. A 0 means an unmodulated carrier, AI means $\mathrm{c} \cdot \mathrm{w}$. telegraphy, A2 is tone-modulated r.w. telegraphy, A3 is amplitude-modulated 'phone, A4 is facsimile, A5 is television, n.f.m. designates narrow-band frequency- or phase-modulated radiotelephony, and f.m. means frequency modulation, 'phone (including n.f.m.) or telegraphy, F 1 is frequency-shift keying.

${ }^{1}$ Peak antenna power must not exceed 50 watts.
In addition, A1 and A3 on portions of $1.800-2.000$, as follows:

Area	Power (watts)		
Minn., Iowa, Mo., Ark., La. and	$1800-1825$	500	200
Day Night			

* Except in State of Washington where daytime power limited to 200 watts and nighttime power to 50 watts.

Novice licensees may use the following frequencies, transmitters to be crystal-controlled and have a maximum power input of 75 watts.

$3.700-3.750$	A1	$21.100-21.250$	A1
$7.175-7.200$	A1	$145-147$	A1, A2,
			A3, f.n.

Technician licensees are permitted all amateur privileges in the bands 220 Mc . and above.

Electrical Laws and Circuits

- ELECTRIC AND MAGNETIC FIELDS

When something occurs at one point in spare because something else happened at another point, with no visible means by which the "cause" "an be related to the "effect," we say the two events are comnected by a field. The fiells with which we are concerned are the electric and magnetic, and the combination of the two called the electromagnetic field.

I field has two important properties, intensity (magnitude) and direction. The fiold exorts a force un an object immersed in it; this force represents potential (ready-to-be-used) energy, so the potential of the fiold is a measure of the field intensity. The direction of the field is the direction in which the object on which the force is exerted will tend to move.

In electrically-charged object in an electric field will be acted on by a force that will tend to nove it in a direction detormined by the direction of the field. Similarly, a magnet in a magnet ic field will be subjert to a force. Fveryone has seen demonstrations of magnetic fields with porket magnets, so intensity and direction are not hard to grasp.

I "static" field is one that neither moves nor changes in intensity. Such a field can be set up by a stationary electric charge (electrostatic field) or by a stationary magnet (magnetostatic field). But if either an electric or magnetic field is moving in space or changing in intensity, the notion or change sets up the other kind of field. That is, a changing electric field sets up a magnetic field, and a changing magnetic field generates an electric field. This interrelationship, between magnetic and electric fields makes possible such things as the electromagnet and the electric motor. It also makes possible the electromagnetic waves by which radio communication is carried on, for surh waves are simply traveling fields in which the energy is alternately handed back and forth between the electric and magnetic fields.

Lines of Force

Although no one knows what it is that composes the field itself, it is usoful to invent a picture of it that will help in visualizing the forees and the way in which they aet.

A fold can be piotured as being made up of lines of force, or flux lines. These are purely imarinary threals that show, by the direction in which they lie, the direction the object on
which the force is exerted will move. The number of lines in a chosen cross section of the field is a measure of the inlensity of the force. The number of lines per square inch, or per square centimeter, is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

Fierything physical is built up of atoms, particless so small that they camnot be seen even through the most powerful microscope. But the atom in turn consists of several different kinds of still smaller particles. One is the electron, essentially a small particle of electricity. The quantity or charge of electric ity represented by the electron is, in faet, the smallest quantity of elertricity that can exist. The kind of electricity associated with the electron is called negative.

In ordinary atom consists of a central core called the nucleus, around which one or more electrons circulate somewhat as the earth and other planets circulate around the sun. The nucleus has an electric charge of the kind of electricity called positive, the amount of its charge being just exactly equal to the sum of the negative charges on all the electrons associated with that nucleus.

The important fact about these two "opposite" kinds of electricity is that they are strongly attruted to earh other. Also, there is a strong force of repulsion between two charges of the same kind. The positive nucleus and the negative electrons are attracted to each other, but two electrons will be repelled from each other and so will two nuclei.

While in a normal atom the positive charge on the nucleus is exactly balanced by the negative charges on the electrons, it is possible for an atom to lose one of its electrons. When that happens the atom has a little less negative charge than it should - that is, it has a net pesitive charge. Such an atom is satid to be ionized, and in this case the atom is a positive ion. If an atom jicks up an extra electron, as it sometimes does, it has a net negative charge and is calied a negative ion. I positive ion will attract any stray electron in the vicinity, including the extra one that may be attached to a nearby negative ion. In this way it is possible for electrons to travel from atom to atom. The movement of ions or electrons constitutes the electric current.

The amplitude of the eurrent (that is, its intensity or magnitude is determined bye the rate at which electrice charge - an accumulation of elec-
trons or ions of the same kind - moves past a point in a circuit. Since the charge on a single dectron or ion is extremely small, the number that must move as a group to form even a tany current is amost inconceivably large.

Conductors and Insulators

Atoms of some materials, notably metals and acids, will give up an electron readily, but atoms of other materials will not part with any of their electrons even when the electric force is extremely strong. Materials in which electrons or ions can be moved with relative case are called conductors, while those that refuse to permit such movement are called nonconductors or insulators. The following list shows how some common materials divide between the conductor and insulator classifications:

Conductors	Insulutors
Metals	Iry Air
Carbon	Wood
Arids	Porcelain
	Trextiles
	(ilass
	Rubber
	Resins

Electromotive Force

The electric force or potential (called electromotive force, and abbreviated e.m.f.) that causes current flow may be developed in several ways. The action of certain chemical solutions on dissimilar metals sets up an e.m.f.; such a combination is called a cell, and a group of cells forms an electric battery. The amount of current that such cells can carry is limited, and in the course of current flow one of the metals is caten away. The amount of electrical energy that can be taken from a battery consequently is rather small. Where a large amount of energy is noeded it is usually furnished by an electric generator, which develops its e.m.f. by a combination of magnetic and mechanical means.

In picturing eurrent flow it is matural to think of a sirgle, constant force cansing the electrons to move. When this is so, the electrons always move in the same direction throngh a path or circuit made up of conductors comeneded together in a continuous rhain. Such a current is called a direct current, abbreviated d.c. It is the type of current furnished loy batteries and by certain types of generators. llowever, it is alse possible to have an e.m.f. that periodically revarsers. With this kind of e.m.f. the current flows first in one direction through the cireuit and then in the other. such an e.m.f. is called an alternating c.m.f., and the rumrent is called tin alternating current (abbreviated a.c.). The revetsals (alternations) may oceur at any rate from a few per serond up to several billion per second. Two roversals make a cycle; in ome eycle the force ates: first in one direction, then in the other, and then returns to the first direction. The number of erales in one second is called the frequency of the alternating current.

Direct and Alternating Currents

The difference between direct current and alternating current is shown in Fig. 2-1. In these graphs the horizontal axis measures time, increasing toward the right away from the vertical axis. The vertiral axis represents the amplitude or strength of the current, increasing in either the up or down direction away from the horizontal axis. If the graph is above the horizontal axis the current is flowing in one direction through the circuit (indicated by the + sign) and if it is below the horizontal axis the current is flowing in the reverse direction through the cireuit (indirated by the - sign). Fig. 2-1 λ shows that, if we close the circuit - that is, make the path for the current complete - at the time indicated by X, the current instantly takes the amplitude indicated by the height A. Liter that, the current continues at the same amplitude as time goes on. This is an ordinary direct current.

In Fig. 2-1IS, the current starts flowing with the amplitude 1 at tine X, continues at that amplitude until time V^{\prime} and then instantly ceases. After an interval $Y Z / 2$ the curre:t again begins to flow and the same sont of stat-and-stop performance is repeated. This is an intermittent direct current. We could get it by alternately closing and opening a switch in the circuit. It is a direct current because the dirction of current flow does not change; the graph is always on the + side of the horizontal axis.
In Fig. 2-1(the current starts at zero, inrreases in amplitude as time gees on until it reaches the amplitude A_{1} white flowing in the + direction, then decreases until it drops to zero amplitude once more. At that time (X) the
(A)

(B)

(C)

Pïg. 2-1 - Three type of current flow. A - direct current: B - intermittent direet current; C - alternating current.
direction of the current flow reverses; this is indicated by the fart that the next part of the graph is below the axis. As time goes on the amplitude increases, with the current now flowing in the direction, until it reaches amplitude A_{2}. Then the amplitude decreases until finally it drops to zero (Y) and the direction reverses once more. This is an alternating current.

Waveforms

The type of alternating current shown in Fig. $2-1$ is known as a sine wave. The variations in many a.c. waves are not so smooth, nor is one half-cycle necessarily just like the preceding one in shape. However, these complex waves can be shown to be the sum of two or more sine waves of frequencies that are exact integral (whole-number) multiples of some lower frequency. The lowest frequency is called the fundamental frequency, and the higher frequencies (2 times, 3 times the fundamental frequency, and so on) are called harmonics.

Fig. 2-2 shows how a fundomental and a second harmonic (twice the fundamental) might add to form a complex wave. Simply by changing the relative amplitudes of the two waves, as well as the times at which they pass through zero amplitude, an infinite number of waveshapes can be constructed from just a fundamental and serond harmonic. Waves that are still more complex can be constructed if more harmonics are used.

Electrical Units

The unit of electromotive force is called the volt. An ordinary flashlight cell generates an e.m.f. of about 1.5 volts. The e.m.f. commonly supplied for domestic lighting and power is 11% volts, usually a.c. having a frequency of 60 cycles per second. The voltages used in radio receiving and transmitting circuits range from a few volts (usually a.c.) for filament heating to as high as a few thousand d.c. volts for the operation of power tubes.
The flow of electric current is measured in amperes. One ampere is equivalent to the movement of many billions of electrons past a joint in the circuit in one second. Currents in the neighborhood of an ampere are required for heating the filaments of small power tubes. The direct currents used in amateur radio equipment usually are not so large, and it is customary to measure such currents in milliamperes. One milliampere is equal to one ome-thousandth of an ampere, or 1000 millianiperes equals one ampere.

A "dhe. impere" is a measure of a stend!y current, but the "acc. ampere" must measure a current that is continually varying in amplitude and periodically reversing direction. To put the two on the same basis, an are ampere is defined as the amount of current that will canse the same heating offect (see later section) as one ampere of steady direct current. For sine-wave a.c., this effective (or r.m.s.) value is equal to the mari-
 by 0.707 . The instantaneous value is the value

Fig. 2.2 - A complex waveform. A fundamental (top) and sevond harmonic (eenter) added together, point by print at each instant, result in the waveform shown at the botton. When the two components have the same polarity at a selected instant, the resultant is the simple sum of the two. When they have opposite polarities, the resultant is the difference: if the negative-polarity com. ponent is larger, the resultant is negative at that instant.
that the current (or voltage) has at any selected instant in the cycle.

If all the instantaneous values in a sinc wave are averaged over a half-cycle, the resulting figure is the average value. It is equal to 0.636 times the maximum amplitude. The average value is useful in connection with rectifier systems, as described in a later chapter.

FREQUENCY AND WAVELENGTH

Frequency Spectrum

Frequencies ranging from about 15 to 15,000 cycles per second are called audio frequencies, because the vibrations of air particles that our ears recognize as sounds orour at a similar rate. Sudio frequencies (abbreviated a.f.) are used to actuate loudspeakers and thus create sound waves.

Frequencies above about 15,000 cycles are called radio frequencies (r.f.) because they are useful in radio transmission. Frequencies all the way up to and beyond $10,000,000,000$ cycles have been used for radio purposes. At radio frequencies the numbers lecome solarge that it becomes convenient to use a larger unit than the (evele. Two such units are the kilocycle, whirh is equal to 1000 cepeles and is abbreviated kc., and the megacycle, which is equal to $1,000,000$ cydes or $\mathbf{1 0 0 0}$ kikecyeles and is abbreciated Mc.

The various radio frequencies are divided off into classifications for ready identification. These classifications, listed below, constitute the frequency spectrum so far as it extends for radio purpuses at the present time.

Frequency	Classification	Abbreviation
10 to 30 kc .	Very-low frequencies	v.1.f.
30 to 300 kc .	Low frequencies	1.f.
300 to 3000 kc .	Medium frequencies	m.f.
3 to 30 Mc .	High freguencies	h.f.
30 to 300 Mc .	Very-high frequencies	v.h.f.
300 to 3000 Mc .	U'Itrahigh frequencies	u.h.f.
3000 to $30,000 \mathrm{Mc}$.	Superhigh frequencies	s.h.f.

Wavelength

Radio waves travel at the same speed as light - $300,000,000$ meters or about 186,000 miles a second in space. They can be set up by a radiofrequency current flowing in a circuit, becouse the rapidly-changing eurrent sets up a magnetic field that changes in the same way, and the varying magnetic field in turn sets up a varying clectrice field. And whenever this happens, the two fields move outward at the speed of light.
suppose an r.f. current has a frequency of $3,000,000$ cycles per second. The fields will go through complete reversals (one cycle) in $1 / 3,000,000$ second. In that same period of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ meters, or 100 meters. By the time the wave has moved that distance
the next eycle has begun and a new wave has started out. The first wave, in other words, covers a distance of 100 meters before the beginning of the next, and so on. This distance is the wavelength.

The longer the time of one eycle - that is, the lower the frequency - the greater the distance occupied by each wave and hence the longer the wavelength. The relationship between wavelength and frequency is shown by the formala

$$
\lambda=\frac{300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in kilocycles
or $\quad \lambda=\frac{300}{f}$
where $\lambda=$ Wavelength in meters
$f=$ Frequeney in megacycles
Example: The wavelength eorresponding to a frequency of 3650 kilorycles is

$$
\lambda=\frac{300,000}{3650}=82.2 \text { meters }
$$

Resistance

Given two conductors of the same size and shape, but of different materiak, the amount of current that will flow when a given e.m.f. is applied will be found to vary with what is ealled the resistance of the material. The lower the resistance, the greater the current for a given value of e.m.f.

Resistance is measured in ohms. A circuit has a resistance of one ohn when an applied e.m.f. of one volt causes a current of one ampere to flow. The resistivity of a material is the resistance, in ohms, of a cube of the material measuring one centimeter on arch edge. One of the best comductors is copper, and it is frequently convenient, in making resistance calculations, to compare the resistance of the material under consideration with that of a copper conductor of the same size and shape. Table $2-1$ gives the ratio of the resistivity of various conductors to that of copper.

The longer the path through which the current flows the higher the resistance of that conductor. For direct current and low-frequency alternating

TABLE 2-I Relative Resistivity of Metals	
Material	Resistitity Compared to Copper
Aluminum (pure)	1.70
Brass....	3.5%
Cadmium.	5.26
Chronium	1.82
Copper (hard-drawn)	1.12
Copper (annealed).	1.00
Iron (pure).	5. 0.5
lead.	11.3
Niekel.	6.2.5 to 8.38
Phosphor Mronze.	2.78
Silver.	0.91
'Tin.	7.70
Zinc.	3.51

currents (up to a few thousand cycles per seeond) the resistance is inversely proportional to the cross-seetional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but dilfering in cross-sertional area, the one with the langer area will have the lower resistance.

Resistance of Wires

The problem of determining the resistance of a round wire of given diameter and length - or its opposite, finding a suitable size and length of wire to supply a desired amount of resistance can be easily solved with the help of the eopperwire table in the Miscellaneous Data chapter. This table gives the resistance, in ohms per thousand feet, of each standard wire size.

Example: Suppose a resistance of 3.5 ohms is needed and some No. 28 wire is on hand. The wire table in the Miscellaneous Data ehapter shows that No. 28 has a resistance of 66.17 ohms per thousand feet. Since the desired resistance is 3.5 ohms, the length of wire required will be

$$
\frac{3.5}{66.17} \times 10 c 0=52.89 \text { feet. }
$$

Or, suppose that the resistanee of the wire in the circuit must not exceed 0.05 ohm and that the length of wire reguired for making the connections totals 14 feet. Then

$$
\frac{14}{1000} \times R=0.05 \mathrm{ohm}
$$

Where R is the maximum allowable resistance in ohnis per thonsand feet. learranging the formulab gives

$$
R=\frac{0.0 .5 \times 1000}{14}=3.57 \mathrm{ohms} / 1000 \mathrm{ft}
$$

Reference to the wire table shows that No. 15 is the smallest size having a resistance less than this vialue.
When the wire is not copper, the resistance values given in the wire table should be multi-

Types of resistors used in radio eduipment. 'Thuse in the foreground with wire leats are carlon types, ranging in size from ${ }^{1}$ 名 watt at the left to 2 watts at the right. The larger resistors use resistance wire wound on remamic tulues: sizes shown range from 5 watta to 100 watts. 'Thres are the adjustahle type, using a sliding contart on an evposed section of the resi-tance witrding.

plied by the ratios given in Table 2-I to ohtain the resistance.

Example: If the wire in the first example were iron instiad of copper the length required for 3.5 ohus would be

$$
\begin{gathered}
\frac{3.5}{06.17 \times 5.05} \times 1000=9.35 \text { feet. } \\
\text { Temperature Effects }
\end{gathered}
$$

The resistance of a conductor changes with its temperature. Although it is scldom necessary to consider temperature in making resistance calculations for amateur work, it is well to know that the resistance of practically all metallic conductors increases with increasing temperature. Carlon, however, acts in the opposite way; its resistance decreases when its temperature rises. The temperature effert is important when it is necessary to maintain a constant resistance under all conditions. Special materials that have little or no change in resistance over a wide temperature range are used in that case.

Resistors

A "package" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may be considerably different in size and construction. The flow of current through resistance causes the conductor to become heated; the higher the resistance and the larger the current, the greater the amount of heat developed. Resistors intended for carrying large currents must be physically large so the heat can be radiated quickly to the surrounding air. If the resistor does not get rid of the heat quickly it may reach a temperature that will cause it to melt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current as it is for diect current. When the current is alternating there are internal effects that tend to force the current to flow mostly in the outer parts of the conductor. This decreases the effective cross-sectional area of the conductor, with the result that the resistanco increases.

For low audio frequencies the increase in resistance is unimportant, but at radio frequencies this skin effect is so great that practically all the current flow is confined within a few thousandths of an inch of the conductor surface. The r.f. resistance is consequently many times the d.c. resistance, and increases with increasing frequency. In the r.f. range a conductor of thin tubing will have just as low resistance as a solid conductor of the same diameter, because material not close to the surface carries practically no current.

Conductance

The reciprocal of resistance (that is, $1 / R$) is malled conductance. It is usually represented by the symbol (f. A circuit having large condurtance has low resistance, and vice versa. In radio work the term is used chiefly in connection with varuum-tube characteristics. The unit of conductance is the mho. A resistance of one ohm has a conductance of one mho, a resistance of 1000 ohms has a conductance of 0.001 mho , and so on. A unit frequently used in connection with vacuum tubes is the micromho, or one-millionth of a mho. It is the conductance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance comected to its terminals, as shown by the symbols in Fig. 2-3. A complete circuit must have an unbroken path so current

Fig. 2-3- A simple cirenit consisting of a battery and resistor.

can flow out of the battery, through the apparatus connerted to it, and back into the battery. The circuit is broken, or open, if a connection is removed at any point. A switch is a device for making and breaking connections and thereby closing or opening the circuit, either allowing current to flow or preventing it from flowing.

TABLE 2-II Conversion Factors for Fractional and			
To change from	To	Diride hy	Muhiplaby
Lnits	Micro-units Dilli-units Kilo-units Mega-units	$\begin{gathered} 1000 \\ 1,000,000 \end{gathered}$	$\begin{gathered} 1,(900,(100) \\ 10060 \end{gathered}$
Miero-units	Milli-unis I nit:	$\begin{gathered} 1000 \\ 1.000,4000 \end{gathered}$	
Milli-units	$\begin{aligned} & \text { Miero-units } \\ & \text { I nits } \end{aligned}$	1000	1000
Kilo-units	l'nits Mexa-mits	1000	10%
Mrga-units	lnits Kilorunit.		$\begin{gathered} 1,(000,000 \\ 10000 \end{gathered}$

The values of current, voltage and resistance in a circuit are by no means independent of each other. The relationship between them is known as Ohm's Law. It can be stated as follows: The current flowing in a circuit is directly proportional to the applied e.m.f. and inversely proportional to the resistance. Expressed as an equatim, it is

$$
I(\text { amperes })=\frac{E(\text { volts })}{R(\text { ohms })}
$$

The equation above gives the value of current when the voltage and resistance are known. It may be transposed so that earh of the three quantities may be found when the other two are known:

$$
E=I R
$$

(that is, the voltage acting is equal to the current in amperes multiplied by the resistance in ohms) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the circuit is equal to the applied voltage divided by the current).

All three forms of the equation are used almost constantly in radio work. It must be remembered that the quantities are in volls, ohms and amperes; other units camot be used in the equations without first being converted. For example, if the current is in millianperes it must be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.

Table 2-II shows how to convert between the various units in common use. The prefixes attarhed to the basic-unit name indicate the nature of the unit. These prefixes are:

$$
\begin{aligned}
& \text { mirro - one-millionth (abbreviated } \mu \text {) } \\
& \text { milli - one-thousandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } k \text {) } \\
& \text { mega - one million (abbreviated } M \text {) }
\end{aligned}
$$

For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ microvolts in one volt, and 0.000001 megohm in one ohm.

The following examples illustrate the use of Ohm's Law:

The current flowing in a resistance of 20,000 ohns is 150 millimmeres. What is the voltare? Since the voltage is to be found, the equation to use is $E=I R$. The current must first be converted from milliamperes to amperes, and reference to the table shows that to do so it is neressary to divide by 1000. Therefore,

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When a voltage of 150 is applied to a circuit the current is measured at 2.5 amperes. What is the resistance of the rircuit? In this case K is the unk nown, so

$$
R=\frac{E}{I}=\frac{1.50}{2.5}=00 \mathrm{ohms}
$$

No conversion was necessary because the voltage and current were given in volts and amperes.

How much current will flow if 250 volts is arplied to a 5000 -ohm resistor? Since I is unk nown

$$
I=\frac{E}{R}=\frac{250}{3000}=0.0: \text { :mpere }
$$

Milliampere units would be more convenient for the current, and $0.0 ; \mathrm{mmp} . \times 1000=50 \mathrm{mil}-$ liamperes.

SERIES AND PARALLEL RESISTANCES

Very few actual electric circuits are as simple as the illustration in the preceding section. Commonly, resistances are found connected in a

Fig. 2-4-Resis. tors commerted in series and in pare allel.

variety of ways. The two fundamental methods of connecting resistances are shown in Fig. 2-4. In the upper drawing, the current fows from the source of e.m.f. (in the direction shown by the arrow, let us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then back to the source. These resistors are connected in series. The current everywhere in the eireuit has the same value.

In the lower drawing the current fows to the conmon comection proint at the top of the two resistors and then divides, one part of it flowing through R_{1} and the other through R_{2}. At the lower connection point these two currents again combine; the total is the same as the current that flowed into the upper common connection. In this case the two resistors are comnected in parallel.

Resistors in Series

When a circuit has a number of resistances comected in series, the total resistance of the rircuit is the sum of the individual resistances. If these are mmbered R_{1}, R_{2}, R_{3}, etc., then $R \quad($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+$ where the dots indicate that as many resistors as necessary may be added.

$$
\begin{aligned}
& \text { Example: suppose that three resistors are } \\
& \text { conncetcel to a source of em,f. as shown in lig. } \\
& 2-5 \text {. The e.m.f. is } 250 \text { volts, } R_{1} \text { is } \overline{0000} \text { ohms, } \\
& R_{2} \text { is } 20,000 \text { ohms, and } R_{3} \text { is } 8000 \text { ohms. The } \\
& \text { total resistance is then } \\
& R=R_{1}+R_{2}+R_{3}=5000+20,000+8000 \\
& =33,090 \text { ohms }
\end{aligned}
$$

The eurrent flowing in the circuit is then

$$
I=\frac{E}{R}=\frac{0.50}{33,000}=0.007 .57 \mathrm{amp},=7.57 \mathrm{ma}
$$

(We need not carry caleulations beyond three signifieant fignres, and often two will suffice becanse the aceuracy of measurements is seldom better than a few per cent.)

Voltage Drop

Ohm's Law applies to amy part of a circuit as well as to the whole circuit. Although the current is the same in all three of the resistances in the example, the total voltage divides among them. The voltage appearing across each resistor (the voltage drop) can be found from Ohm's Law.

$$
\begin{aligned}
& \text { Example; If the voltage across } \left.R_{1} \text { (Fig, } 2-5\right) \\
& \text { is called } E_{1} \text {, that arross } R_{2} \text { is called } E_{2} \text {, and that } \\
& \text { across } R_{3} \text { is called } E_{3} \text {, then } \\
& E_{1}=I R_{1}=0.00757 \times 5000=37.9 \text { volts } \\
& E_{2}=I R_{2}=0,00757 \times 20,000=151,4 \text { volts } \\
& E_{3}=I R_{3}=0.00757 \times 8000=60,6 \text { volts }
\end{aligned}
$$

The applied voltage must efual the sum of the individual voltage drops:

$$
\begin{aligned}
E=E_{1}+E_{2} & +E_{3}=37.9+151.4+60.6 \\
& =249.9 \text { volts }
\end{aligned}
$$

The answer would thave been more nearly exact if the current had heen calculated to more decimal ulaces, but as explained above a very high order of accuracy is not necessary.

In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the

Fig. 2.5-An example of resistors in series. The solution of the cirenit is worked out in the text.
resistance is expressed in kilohms rather than ohms. When resistance in kilohms is substituted directly in Ohm's Law the current will be in milliamperes if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lowerst value of resistance present. This is because the
total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{3}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}+\cdots \cdot}
$$

where the dots again indicate that any number of resistors can be combined by the same method. For only two resistances in parallel (a very common case) the formula is

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Fxample: If a 500 -ohm resistor is paralleled with one of 1200 ohms, the total resistance is

$$
\begin{aligned}
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}} & =\frac{500 \times 1200}{500+1200}=\frac{600,600}{1700} \\
& =353 \text { ohms }
\end{aligned}
$$

It is probably easier to solve praetical problems by a different method than the "reciprocal of reciprocals" formula. Suppose the three re-

Fig. 2-6 - An example of resistors in parallel. The solution is worked out in the text.
sistors of the previous example are connected in parallel as shown in Fig. 2-6. The same e.m.f., 250 volts, is applied to all three of the resistors. The current in cach can be found from Ohm's Iaw as shown below, I_{1} being the current through R_{1}, I_{2} the current through R_{2} and I_{3} the current through R_{3}.

For convenience, the resistanee will be expressed in kilohms so the current will be in milliamperes.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{2.50}{5}=50 \mathrm{ma} \\
& I_{2}=\frac{E}{R_{2}}=\frac{2.50}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{250}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total current is

$$
\begin{gathered}
I=I_{1}+I_{2}+I_{3}=50+12.5+31.25 \\
=93.75 \mathrm{ma}
\end{gathered}
$$

The total resistance of the circuit is therefore

$$
\mathrm{R}=\frac{E}{I}=\frac{2.00}{93.75}=2.66 \text { kilohms }(=2660 \mathrm{ohms})
$$

Resistors in Series-Parallel

An actual circuit may have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now connected as in Fig. 2-7. The method of solving such a circuit such as Fig. 2-7 is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple series circuit, as shown at the right in Fig. 2-7.

Equivalent Circuit
Fig. 2-7 - An example of resintors in series-parallel. The solution is worked out in the text.

Example: The first step is to find the equivalent resistance of R_{2} and R_{3}, from the formula for two resistances in parallel,

$$
\begin{aligned}
R_{\text {eq. }}= & \frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =5.71 \text { kilohus }
\end{aligned}
$$

The total resistance in the circuit is then

$$
\begin{aligned}
\mathrm{R}=R_{1} & +R_{\text {pq, }}=5+5.71 \text { kilohms } \\
& =10.71 \text { kilohms }
\end{aligned}
$$

The current is

$$
I=\frac{E}{R}=\frac{2.50}{10.71}=23.4 \mathrm{ma}
$$

The voltage drops across R_{1} and $R_{\text {eq }}$ are
$E_{1}=I R_{1}=23.4 \times 5=117$ volts
$E_{2}=I R_{\text {eq. }}=23.4 \times 5.71=133$ volts
with sufficient aceurary. These total 250 volts, thus checking the cableulations so far, becanse the sum of the voltage drops must equal the applied voltage. Nince E_{2} appears across both R_{2} and Ra,

$$
\begin{aligned}
I_{2} & =\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.75 \mathrm{ma} \\
I_{3} & =\frac{E_{2}}{R_{3}}=\frac{133}{8}=16.6 \mathrm{ma} \\
\text { where } I_{2} & =\text { Current through } R_{2}
\end{aligned}
$$

$I_{3}=$ Current through R_{3}
The total is 23.3.3 ma., which checks closely enough with 23.4 ma., the eurrent through the whole circuit.

POWER AND ENERGY

lower - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical power, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
P=E I
$$

where $I^{\nu}=$ Power in watts
$E=$ E.m.f. in volts
$I=$ Current in amperes
Common fractional and multiple units for power are the milliwatt, one one-thousandth of a watt, and the kilowatt, or one thousand watts.

$$
\begin{aligned}
& \text { Example: The plate voltage on a transmitting } \\
& \text { varum tube is } 2000 \text { volts and the plate current } \\
& \text { is } 330 \text { millimperes, (The eurent must be } \\
& \text { changed to amperes before substitution in the } \\
& \text { formula, and so is } 0.35 \text { amp.) Then } \\
& \qquad P=E I=2000 \times 0.35=700 \text { watts }
\end{aligned}
$$

By substituting the Ohm's law equivalents for E and I, the following formulas are obtained for power:

$$
\begin{aligned}
& P=\frac{E^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

These formulas are useful in power calculations
when the resistance and either the current or voltage (but not both) are known.

Example: How much power will be used up in a 4000 (-ohm resistor if the voltage applied to it is 200 volts." From the equation

$$
P=\frac{E^{2}}{R}=\frac{(200)^{2}}{4000}=\frac{40,000}{10000}=10 \mathrm{watts}
$$

Or, sumpose a corrent of 20 milliamberes flows through a 300 -ohm resistor. Then

$$
\begin{gathered}
P=I^{2} R=(0.02)^{2} \times 300=0.0004 \times 300 \\
=0.12 \text { watt }
\end{gathered}
$$

Note that the current was changed from milliamperes to amberes before substitution in the formula.
Electrical power in a resistance is turned into heat. The greater the power the more rapidly the heat is generated. Resistors for radio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about $1 / 4$ watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

lelertrical power is not always turned into heat. The power used in running a motor, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. Power applied to a loudspeaker is changed into sound waves. But in every case of this kind the power is completely "used up" - it camot be recovered. Also, for proper operation of the device the power must be supplied at a definite ratio of voltage to current. Both these features are characteristics of resistance, so it can be said that any device that dissipates power hat a definite value of "resistance." This concept of resistance as something that alsorbs power at a definite voltage/current ratio is very useful, since it permits substituting a simple resistance for the load or power-consuming part of the device receiving power, often with considerable simplification of calculations. (If course, every elect rical device has some resistance of its own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power maty be converted to another form.

Efficiency

In devices such as motors and vacuum tubes, the object is to obtain power in some other form than heat. Therefore power used in heating is considered to he a loss, because it is not the usefill power. The efficiency of a device is the uscful power output (in its converted form) divided by the power input to the device. In a vacuum-tube transmitter, for example, the object is to convert power from a d.e. source into a.c. power at some radio frequency. The ratio of the r.f. power output to the d.c. input is the efficiency of the tube. That is,

$$
E f f .=\frac{P_{0}}{P_{i}}
$$

where Eff. = Lifficiency (as a decimal)
$I_{0}=$ I'ower output (watts)
$I_{i}=$ Power input (watts)
Example: If the d.e. input to the tube is 100 watts and the r.f. power sutput is 60 watts, the efficiency is

$$
E f .=\frac{P_{0}}{P_{i}}=\frac{60}{100}=0.6
$$

Dficiency is usually expressed as a percentage; that is, it tells what por cent of the input power will be available as useful output. The efficiency in the above example is 60 per cent.

Energy

In residences, the power company's bill is for electric energy, not for power. What you pay for is the work that electricity does for you, not the rate at which that work is done.

Electrical work is equal to power multiplied hy time; the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
U^{\prime}=I^{\prime} T
$$

where $\mathbb{I V}^{r}=$ linergy in watt-hours
$I^{\prime}=$ Power in watts
' ' = 'Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplanatory.

Fhergy units are seldom used in smateur pratioce, but it is obvious that a small amount of power used for a long time con eventually result in a "power" bill that is just as large as though a large amount of power had been used for a very short time.

Capacitance and Condensers

Suppose two flat metal plates are placed close to each other (but not touching) as shown in Fig. 2-8. Normally, the plates will be electrically "neutral"; that is, no electrical charge will be evident on either plate.

Now suppose that the plates are connerted to a battery through a switch, as shown. At the

Fig. 2-8-A simple condenser,
instant the switch is closed, electrons will be attracted from the upper plate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative battery terminal. This electron novement will continue until enough electrons move into one plate and out of the other to make the e.m.f. between them the same as the e.m.f. of the battery.

If the switeh is opened after the plates have been charged, the top plate is left with a deficiency of electrons and the hottom plate with an excess. In other words, the plates remain charged despite the fact that the battery no longer is comected. However, if a wire is touched between the two plates (short-circuiting them) the excess electrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical neutrality to both plates. The plates have then been discharged.

The two phates constitute an elertrical capacitor or condenser, and from the discussion above it should be clear that a comblenser possesses the property of storing clectricity. It should also he clear that during the time the electrons are moving - that is, while the condenser is being charged or dischanged - a current is flowing in the circout even thongh the circuit is "broken" by the gap between the condenser plates. However, the current flows only during the time of
charge and discharge, and this time is usually very short. There can be no continuous flow of direct current "through" a condenser.

The charge or quantity of electricity that can be placed on a comlenser is proportional to the applied voltage and to the capacitance or capacity of the condenser. The larger the plate aroa and the smaller the spacing between the plates the greater the capacitance. The caparitance also depends upon the kind of insulating material between the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the capacitance of a condenser many times. The ratio of the capacitance of a condenser with some material other than air between the plates, to the rapacitance of the same condenser with air insulation, is called the specific inductive capacity or dielectric constant of that purticular insulating material. The material itself is called a dielectric. The dielectric constants of a number of materials

TABLE 2-III		
Dielectric Constants and	Breakdow	Voltages
Material	Dielectric Constant	Puncture Joltage*
Air	1.0	19.8-22.8
Alsimag Al96	5.7	240
ISakelite (paper-hase)	3.8-5.5	6.50- -50
Bakelite (mica-filled)	5-6	475-600
Celluloid	4-16	
Cellulose acetate	6-8	300-1900
fiber	5-7.5	150-180
Formica	4.6-4.9	450
Glass (window)	7.6-8	200-250
(ilass (photographic)	7.5	
Class (I'yrex)	4.2-4.9	335
lamite	$2.5-3$	480-500
Nica	2.5-8	
Mica (clear India)	6. 4-7.5	600-1500
My yalex	7.4	250
Paper	2.0-2.6	1251
Holyethylene	2.3-2.4	1009
Polyatyrone	2.4-29	500-2500
Porcelain	$6.2-7.5$	40-100
Rinbler (hard)	$2-3.5$	450
Stratite (low-loss)	4.4	150-315
Wood (dry oah) * In vilus per mil (0.00	$\begin{aligned} & 2.5-6.8 \\ & \text { inch). } \end{aligned}$	

commonly used as diclectrics in condensers are given in Table 2-III. If a sheet of photographic glass is substituted for air between the plates of a condenser, for example, the capacitance of the condenser will be increased 7.5 times.

Units

The fundamental unit of capacitance is the farad, but this unit is much too large for practical work. Capacitance is usually measured in microfarads (abbreviated $\mu \mathrm{fd}$.) or micromicrofarads ($\mu \mu \mathrm{ff}$.). The microfaral is onc-millionth

Fig. 2-9 - A multiple-plate condenser. Alternate plates are conneeted together.
of a farad, and the micromicrofarad is one-millionth of a microfarad. Condensers nearly always have more than two plates, the altemate plates heing eomnected together to form two sets as shown in Fig. ©-9. This makes it possible to attain a fairly large capacitance in a small space as compared with a two-plate condenser, since several plates of smaller individual area can be stacked to form the equivalent of a single large plate of the same total area. Nso, all plates, except the two on the ends, are exposed to plates of the other group on both sides, and so are twice as effective in increasing the caparitance.

The formula for calculating the capacitance of a condenser is.

$$
C^{\prime}=0.2 \cdot 4 \frac{K . A}{d}(n-1)
$$

where (${ }^{\prime}=$ ('apateitance in $\mu \mu \mathrm{ffl}$.
$K=$ Diclectric constant of material between plates
$A=$ Mea of one side of one plate in square inches
$d=$ heparation of plate surfaces in inches
$n=$ Number of plates

If the phates in onc group do not have the same area as the plates in the other, use the area of the smaller plates.

Example: A "variable" condenser has 7 semicircular plates on its rotor, the diameter of the semicirele being 2 inches. The stator has firetangular phates, with a semicircular cut-ont to clear the rotor shaft. but otherwise large enough to face the entire area of a rotor mate. The diameter of the cut-out is $1 / 2$ inch. The distance between the adjacent surfaces of rotor and stator plates is $1 / 8 \mathrm{inch}$. The dielectric is air. What is the capacitance of the condenser with the plates fully meshed?

In this case, the "effertive" areal is the area of the rotor wate minus the area of the cut-out in the stator blate. The areat of either semicjerele is $\pi r^{2} / 2$, where r is the radius. The area of the rotor plate is $\pi / 2$. or 1.57 stuare inehes (the radins is 1 ineh). 'The area of the cut-ont is
 mately. The "effective " area is therefore $1 . .57$ $0.10=1.47$ sfuare inches. The eapacitance is therefore

$$
\begin{gathered}
C=0.224 \frac{K .1}{d}(n-1)=0.224 \frac{1 \times 1.47}{0.1 .2 \pi}(13-1) \\
=0.224 \times 11.76 \times 12=31.6 \mu \mu \mathrm{fd} .
\end{gathered}
$$

(l'he answer is only approximate, becanse of the dilficulty of accurate measurement, plus a "fringing" effert at the edges of the biates that makes the aetual capacitance a little higher.)

The usefulness of a eondenser in clectrical circuits lies in the fact that it can be charged with electricity at one time and then discharged at a later time. In other words, it is apable of storing electrical energy that can be released later when it is needed; it is an "electrical reservoir."

Condensers in Radio

The types of condensers used in radio work differ considerably in physical size, construction, and capacitance. Some representative types are shown in the photograph. In variable rondensers (almost always constructed with air for the dielectric) one set of phates is made movable with respert to the other set so that the caparitance ran be varied. Fixed condensers - that is, having fived capacitane - also can be made with metal phates and with air as the dielectric, but usually

liseri and variable ronelensers. The butbom row ineludes, left to right, a highevaltare mica fixed eominnerer, a tuhatar edectrolytice. Dumblar paper, tho sizas of "pmitage-xtanhy" mirats,
 (ompronating), an anduatable monelforer with eramic insulation (for neutralizing in transmitter-). a" "huttom" revamid conderamer, athl all adjustabla" "padiling" eomelenacr. fioner sizas of variable condenasers are shown in the seromil row. The twoMatte somenenser with the misronteter adjustment is used in trammither The comenser endored in the metal rate is a high-voltage papmer tyon usal in power-supply filters.

ELECTRICAL LAWS AND CIRCUITS

are constructed from plates of metal foil with a thin solid or liquid dielectric sandwiched in between, so that a relatively large caparitance can be secured in a small unit. The solid dielectries commonly used are mia, paper and special ceramics. An example of a liquid dielectrie is mineral oil. The electrolytic condenser uses alumi-num-foil plates with a semiliguid conducting chemical compound between them; the actual dielectric is a very thin film of insulating material that forms on one set of plates through electrochemical action when a d.c. voltage is applied to the condenser. The capacitance obtained with a given phate area in an electrolytic condenser is very large, compared with condensers having other dielectrics, beeause the film is so extremely thin - much less than any thickness that is practicable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a condenser, a considerable force is exerted on the electrons and nuclei of the dielectric. Because the dielectric is an insulator the electrons do not become detached from atoms the way they do in conductors. However, if the force is great enough the dielectric will "break down"; usually it will puncture and may char (if it is solid) and permit current to flow. The breakdown voltage depends upon the kind and thickness of the dielectric, as shown in Table 2-1II. It is not directly proportional to the thickness; that is, doubling the thickness does not quite double the breakdown voltage. If the dielectric is air or any other gas, breakdown is evidenced by a spark or arc between the plates, but if the voltage is removed the arc ceases and the condenser is ready for use again. Breakdown will occur at a lower voltage between pointed or sharp-edged surfaces than between rounded and polished surfaces; consequently, the breakdown voltage between metal plates of given sparing in air can be increased by buffing the edges of the plates.

Since the dielectric must be thick to withstand high voltages, and since the thicker the dielectric the smaller the capacitance for a given plate area, a high-voltage condenser must have more plate area than a low-voltage condenser of the same capacitance. High-voltage high-capacitance condensers are physically large.

CONDENSERS IN SERIES AND PARALLEL

The terms "paralle!" and "series" when used with reference to condensers have the same circuit meaning as with resistances. When a number of condensers are comected in parallel, as in Fig. 2-10, the total capacitance of the group is equal to the sum of the individual caparitances, so
$C($ total $)=C_{1}+C_{2}+C_{3}+C_{4}+\ldots \ldots \ldots$.
However, if two or more condensers are connected in series, as in the second drawing,

the total capacitance is less than that of the smatlest condenser in the group. The rule for finding the capacitance of a number of seriesconnected condensers is the same as that for firding the resistance of a number of parallelconnected resistors. That is,

$$
C(\text { totial })=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\frac{1}{C_{4}}}+\ldots . \ldots \ldots .
$$

and, for only two condensers in series,

$$
C(\text { total })=\frac{C_{1} C_{2}^{\prime}}{C_{1}+C_{2}^{\prime}}
$$

The same units must be used throughout; that is, all capacitances must be expressed in either $\mu \mathrm{fd}$. or $\mu \mu \mathrm{fd}$.; you cannot use both units in the same equation.

Condensers are connected in parallel to obtain a larger total capacitance than is available in one unit. The largest voltage that can be applied safely to a group of condensers in parallel is the voltage that can be applied safely to the condenser having the lowest voltage rating.

When condensers are connected in series, the applied voltage is divided up among the various condensers; the situation is much the same as when resistors are in series and there is a voltage drop across each. However, the voltage that appears across each condenser of a group connected in series is in inverse proportion to its capacitance, as compared with the capacitance of the whole group.

> Example: Three condensers having capacitances of 1,2 and 4 ufd., respectively, are con-

Fig. 2.11 - An example of condensers connected in series. The solution to this arrangement is worked out in the text.
neeted in series as shown in Fig. 2-11. The total caparitance is

$$
\begin{gathered}
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{\mathbf{7}} \\
=0,571 \mu \mathrm{fd} .
\end{gathered}
$$

The voltage across eath condensor is promortional to the fotal catparitanere divided by the ertpartance of the rondenser in question. so the woltage across C_{3} is

$$
E_{1}=\frac{0.571}{1} \times 2000=1142 \text { volts }
$$

Similarly, the voltages beross C_{2} and C_{3} are

$$
E_{2}=\frac{0.571}{2} \times 2000=571 \text { volts }
$$

$$
E_{3}=\frac{0.571}{4} \times 2000=286 \text { volts }
$$

totaling approximately 2000 volts, the applied voltage.
Condensors aro frequently eonnected in sories to enable the group to withstand a larger voltage (at the expense of decreasod total caphaitanco) than any individual condenser is rated to stand. However, as shown by the previous example, the applied voltage does not divide equally among the condensers (except when all the caparitances are the sane) so care must be taken to see that the voltage rating of no condenser in the group is exreeded.

Inductance

It is possible to show that the flow of current through a conductor is aceompanied by magnetic effects; a compass needle brought near the conductor, for extmple, will he deflected from its normal north-south position. The current, in other words, sets up a magnetic field.

If a wire conductor is formed into a coil, the same current will set up a stronger magnetic field than it will if the wire is straight. Aso, if the wire is wound around an iron or steel core the field will be still stronger. The relationship between the strength of the field and the intensity of the current causing it is expressed by the inductance of the conductor or coil. If the same eurrent flows through two coils, for example, and it is found that the magnetic field set up by one coil is twice as strong as that set up by the other, the first coil has twice as much inductance as the second. Inductance is a property of the conductor or coil and is determined by its shape and dimensions. The unit of inductance (corresponding to the ohm for resistance and the farad for capacitance) is the henry.

If the current through a conductor or coil is made to vary in intensity, it is found that an e.m.f. will appear across the terminals of the
conductor or coil. This e.m.f. is entirely separate from the e.m.f. that is causing the current to flow. The strength of this induced e.m.f. becomes graater, the greater the intensity of the magnetic field and the more mpidly the current (and hence the field) is made to vary. Nince the intensity of the magnetio field depends upon the inductance, the induced voltage (for a given current intensity and rate of variation) is proportional to the inductance of the conductor Or coil.

The induced e.m.f. (sometimes called back e.m.f.) tends to send a current through the circuit in the opposite direction to the curment that flows because of the external e.m.f. so long as the latter current is increasing. llowever, if the current caused by the applied e.m.f. decrenses, the induced e.m.f. tends to send current through the circuit in the same direction as the current from the applied e.m.f. The effect of inductance, therefore, is to oppose any change in the current flowing in the circuit, regardless of the mature of the change. It accomplishes this by storing energy in its magnetic field when the current in the circuit is being increased, and by releasing the stored energy when the current is being decreased.

Inductance coils for power and radio frequencies. The two iron-core coils at the upper left are "chokes" for power-supply filters. The three "pie". wound coils at the lower right are used as chohes in radio-frequency circuits. The other coils are for r.f. tuned circuits ranging in power from 25 watts to a kilowatt.

The values of inductance used in radio equipment vary over a wide range. Indurtance of several henrys is required in power-supply circuits (see chapter on Power Supplies) and to oltain such values of inductance it is necessary to use coils of many turns wound on iron cores. In radio-frequency circuits, the indurtance values used will le measured in millihenrys (a millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one one-millionth of a henry) at medium frequencies and higher. Although coils for radio frequencies may be wound on special iron cores (orlinary iron is not suitable) most r.f. coils made and used ly amateurs are the "air-core" type; that is, wound on an insulating form consisting of nonmagnetic material.

Inductance Formula

The inductance of air-core coils may be calculated from the formula

$$
L(\mu \mathrm{~h} .)=\frac{0.2 a^{2} n^{2}}{3 a+9 b+10 c}
$$

where $L=$ Inductance in microhenrys
$t=$ Average diameter of coil in inches
$b=$ Length of winding in inches
$c=$ Radial depth of winding in inches
$n=$ Number of turns
The notation is explained in Fig. 2-12. The quantity $10 c$ may be neglected if the coil only has one layer of wire.

Example: Assume a coil having 35 turns of No. 30 d.s.c. wire on a form 1.5 inches in diamcter. Consulting the wire table (Niscellaneous Buta chapter), 35 turns of No. 30 d.s.c. will orclupy 0.5 inch. Therefore, $a=1.5, b=0.5$, $n=35$, and

$$
L=\frac{0.2 \times(1 . \overline{5})^{2} \times(35)^{2}}{(3 \times 1.5)+(9 \times 0.5)}=61.25 \mu \mathrm{~h} .
$$

To calculate the number of turns of a singlelayer coil for a required value of indurtance:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 a^{2}} \times L}
$$

Lxauple: Suppose an inductance of 10 microhurnrys is required. The form on which the coil is to be wound has a diameter of one inch and is long enough to accommodate a coil length of $11 / 4$ inches. Then $a=1, b=1.25$, and $L=10$. Substituting,

$$
\begin{aligned}
N & =\sqrt{\frac{(3 \times 1)+(9 \times 1.25)}{0.2 \times 12} \times 10} \\
& =\sqrt{\frac{14.25}{0.2} \times 10}=\sqrt{712.5}
\end{aligned}
$$

$$
=20.6 \text { turns. }
$$

A 27 -turn coil would be close enongh to the required value of inductance, in practical work.

Fig. 2-12-Coil dimensions used in the inductance formula.

Since the coil will be 1.25 inches long, the number of turns per inch will be $27 / 1.25=21.6$. Consulting the wire table, we find that No. 18 enameled wirc (or any smaller size) can be used. We obtain the proper inductance by winding the required number of turns on the form and then adjusting the spacing between the turns to make a uniformly-spaced coil 1.25 inches long.

Every conductor has inductance, even though the conductor is not formed into a coil. The inductance of a short length of straight wire is small - but it may not be negligible, because if the current through it changes its intensity rapidly enough the induced voltage may be appreciable. This will be the case in even a few inches of wire when an alternating current having a frequency of the order of 100 Mc . is flowing. However, at much lower frequencies the inductance of the same wire could le left out of any calculations because the induced voltage would be negligibly small.

IRON-CORE COILS

Permeability

Suppose that the coil in Fig. 2-13 is wound on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the coil it is found that there are 80,000 lines of force in the core. Since the area is 2

Fig. 2-13 - Typical construction of an iron-core coil. The small air gap prevents magnetic saturation of the iron and increases the inductance at high currents.
square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron core is removed and the same current is maintained in the coil, and that the flux density without the iron core is found to be 50 lines per square inch. The ratio of the flux density with the given core material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times by inserting the iron core, therefore.

The permeability of a magnetic material varies with the flux density. At low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux, but at very high flux densities, increasing the current may cause no appreciable change in the flux. When this is so, the iron is said to be saturated. "Saturation" causes a rapid decrease in promeability, because it decreases the ratio of flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-core coil is highly dependent upon the current flowing in the coil. In an air-core
coil, the inductance is independent of current because air does not "saturate."
In amateur work, iron-core coils such as the one sketched in Fig. 2-13 are used chiefly in power-supply equipment. They usually have direct current flowing through the winding, and the variation in inductance with current is usually undesirable. It may be overcome by keeping the flux density below the saturation point of the iron. This is done by eutting the core so that there is a small "air gap," as indicated hy the dashed lines. The magnetic "resistance" introduced by such a gap is so large - even though the gap is only a small fraction of an inch-compared with that of the iron that the gap, rather than the iron, controls the flux density. This naturally reduces the inductance compared to what it would be without the air gap - but the inductance is pratically constant regardless of the value of the current.

Eddy Currents and Hysteresis

When alternatng current flows through a coil wound on an iron core an e.m.f. will be induced, as previousliy explatined, and since iron is a condurtor a current will flow in the core. such currents (ealled eddy currents) represent a waste of power because they flow through the resistance of the iron and thus cause heating, Edelycurrent losses can be reduced by laminating the core; that is, by cutting it into thin strips. These strips or laminations must be insulated from each other by painting them with some insulating material such as varnish or shellac.

There is also mother type of energy loss in an iron core: the iron tends to resist any change in its magnetic state, so a rapidly-changing current such as a.c. is torced eontinually to supply energy to the iron to overcome this "inertia." Losses of this sort are called hysteresis losses.

Fiddy-current and hysteresis losses in iron increase rapidly as the frequency of the alternating current is increased. For this reason, we can use ordinary iron eores only at power and audio frequencios - up to, say, 15,000 cyedes. Liven so, a very good grade or iron or steel is necessary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequencies.

For radio-frequency work, the losses in iron cores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "hinder" of insulating material in such a way that the individual iron particles are insulated from each other. By this means eores can be made that will function satisfactorily even through the wh.f. range - that is, at frequencies up to perhaps 100 Mr. Because a large part of the magnetie path is through a nomatgnetie material, the permeability of the iron is low compared with the values obtained at power-supply frequencies. The core is usually in the form of a "slug" or cylinder which fits inside the insulating form on which the coil is wound. Despite the fact that, with this construc-
tion, the major portion of the magnetic path for the flux is in the air surrounding the coil, the slug is quite effertive in increasing the coil inductance. l3y pushing the slug in and out of the coil the inductance can be varied over a considerable range.

inductances in series and PARALLEL

When two or more inductance coils (or inductors, as they are frequently called) are (ontnerted in series (Fig. 2-14, left) the total induc-

Fig. 2-1.1-lnduetances in series and parallel.

tance is equal to the sum of the individual inductances, prowided the coils are sufficiontly separated so that mo coil is in the magnetic field of another. That is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+L_{4}+\ldots \ldots .
$$

If indurtances are comected in parallel (Fig. $2-14$, right), the total inductance is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\frac{1}{L_{4}}}+\ldots \ldots \ldots
$$

and for two inductances in parallel,

$$
L_{1}=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

Thus the rules for combining inductances in series and parallel are the same as for resistances, if the coils are far enough apart so that each is unaffected by another's magnotic fiold. When this is not so the formulas given above camnot be used.

MUTUAL INDUCTANCE

If two coils are arranged with their axes on the same line, as shown in Fig. 2-15, a current sent through Coil 1 will cause a magnetic field which "ruts" Coil 2. Consequently, an e.m.f. will be induced in Coil 2 whenever the field strength is changing. This induced e.m.f. is similar to the e.m.f. of self-induction, but since it appears in the secomd roil berause of current flowing in the first, it is a "mutual" effect and results from the mutual inductance between the two coils.

If all the flux set up by one coil cuts all the turns of the other coil the mutual inductance has its maximum possible value. If only a small part

Fig. 2-15 - Mutual inductance. When the switel, S, is closed current dows through coil No. 1, setting up a magnetic field that induces an e.m.f. in the turns of coil No. 2.
of the flux set up by one coil cuts the turns of the other the mutual inductance is relatively small. Two coils having mutual inductance are satid to be coupled.

The ratio of actual mutual inductance to the maximum possible value that could theoretically be obtained with two given coils is called the coefficient of coupling between the coils. Coils that have nearly the maximum possible mutual inductance are said to be closely, or tightly, coupled, but if the mutual inductance is relatively small the coils are said to be loosely coupled. The degree of coupling depends upon the physical spacing between the coils and how they are placed with respect to each other. Maximum coupling exists when they have a common axis and are as close together as possible (one wound over the other). The coupling is least when the coils are far apart or are placed so their axes are at right angles.
The maximum possible coefficient of coupling is closely approached only when the two coils are wound on a closed iron core. The coefficient with airocore coils may run as high as 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two coils are separated.

Time Constant

Capacitance and Resistance

In Fig. 2-16.A a battery having an e.m.f., E, a switch, S, a resistor, R, and condenser, (", are connected in series. Suppose for the moment that R is short-circuited and that there is no other resistance in the circuit. If S is now closed, condenser C will charge instantly to the battery voltage; that is, the electrons that constitute the charge redistribute themselves in a time interval so small that it can be considered to be zero. For just this instant, therefore, a very large current flows in the circuit, berause all the electricity needed to charge the condenser has moved from the battery to the condenser at an extremely high rate.

When the resistance R is put into the circuit the condenser no longer can be charged instantaneously. If the battery e.m.f. is 100 volts, for example, and R is 10 ohms, the maximum current that can flow is 10 amperes, and even this much can flow only at the instant the switch is closed. But as soon as amy current flows, condenser C legins to acquire a charge, which means that the voltage between the condenser phates rises. Since the upper plate (in lig. $2-16.1$) will be positive and the lower negative, the voltage on the condenser tries to send a current through the circuit in the opposite direction to the current from the battery. Immediately after the switch is closed, therefore, the current drops below its

Fig. 2-16 - Schematics illustrating the time constant of an RC circuit.
initial Ohm's Law value, and as the condenser continues to acquire charge and its potential or e.m.f. rises, the current becomes smaller and smaller.

The leugth of time required to connplete the charging process depends upon the capacitance of the condenser and the resistance in the circuit. Theoretically, the charging process is never really finished, but eventually the current droms to a value that is smaller than anything that can be measured. The time constant of such a cireuit is the length of time, in seconds, required for the voltage across the condenser to reach $6: 3$ per cent of the applied e.m.f. (this figure is chosen for mathematical reasons). The voltage arross the condenser rises logarithmically, as shown by lig. 2-17.

The formula for time constant is

$$
T=C R
$$

where $T=$ Time constant in seconds $C=$ Capacitance in farads $R=$ Resistance in ohms

If C is in microfarads and R in megohms. the time constant also is in seconds. These mits usually are more convenient.

Example: The time constant of a $2-\mu \mathrm{fd}$. condenser and a 250,000 -ohon) resistor is

$$
T=C R=2 \times 0.25=0.5 \text { second }
$$

If the applied e,m.f. is 1000 volts, the voltage across the condenser plates will be 630 volts at the end of $1 / 2$ second.

If a charged condenser is discharged through a resistor, as indicated in Fig. 2-1613, the same time constant applies. If there were no resistance, the condenser would discharge instantly when S was closed. However, since R limits the current flow the condenser voltage cannot instantly go to zero, but it will decrease just as rapidly as

Fig. 2-17 - How the voltage across a condenser rises, with time, when a condenser is charked through a resistor. 'The lower eurve shows the way in which the voltage decreases across the condenser terminals on discharging through the same resistor.
the condenser can rid itself of its charge through R. When the condenser is discharging through a resistance, the time constant (calculated in the same way as above) is the time, in seconds, that it takes for the condenser to lose $6: 3$ per cent of its voltage; that is, for the voltage to drop to 37 per cent of its initial value.

Example: If the condenser of the example above is charged to 1000 volts, it will disicharge to 370 volts in $1 / 2$ second through the $250,000-$ ohm resistor.

Inductance and Resistance

A comparable situation exists when resistance and inductance are in series. In lig. 2-18, first consider L to have no resistance and also assume that R is zero. Then closing S would tend to send a current through the circuit. However, the instantaneous transition from no current to a finite value, however small, represents a very rapid change in current, and a back e.m.f. is developed by the self-inductance of L that is practically equal and opposite to the applied e.m.f. The result is that the initial eurrent is very small.

The back e.m.f. depends upon the change in current and would rease to offer opposition if the current did not continue to increase. With no resistance in the circuit (which would lead to an infinitely-large current, by Ohm's Law) the current would increase forever, always growing just fast enough to keep the c.m.f. of self-induction equal to the applied e.m.f.

When resistance is in series, Ohm's Law sets a limit to the value that the current can reach. In such a circuit the current is small at first, just as in the case without resistance. But as
the current increases the voltage drop across R becomes larger. The back e.m.f. generated in L has only to equal the difference between E and the drop across R, because that difference is the voltage actually applied to L. This difference becomes smaller as the current approaches the final Ohm's Law value. Theoretically, the back e.m.f. never quite disappears (that is, the current never quite reaches the Ohm's Law value) but practically it becomes unmeasurable after a time. The difference between the artual current and the Ohm's Law value also beromes undetertable. The time constant of an inductive circuit is the time in seconds required for the current to reach $6: 3$ per cent of its final value. The formula is

$$
T=\frac{L}{R}
$$

where $T=$ Time constant in seconds
$L_{=}=$Inductance in henrys
$R=$ Resistance in ohms
The resistance of the wire in a coil acts as though it were in series with the inductance.

Example: A coil having an inductance of 20 henrys and a resistance of 100 ohms has a time constant of

$$
T=\frac{L_{2}}{R}=\frac{20}{100}=0.2 \text { second }
$$

if there is no other resistance in the eircuit. If a d.c. e.m.f. of 10 volts is applied to such a coil, the final current, by Ohm's Law, is

$$
I=\frac{E}{h}=\frac{10}{100}=0.1 \mathrm{mmp} . \text { or } 100 \mathrm{ma}
$$

The current would rise from zaro to 63 milliamperes in 0.2 second after closing the switeh.
In inductor rannot be discharged in the same way as a condenser, berause the magnetic field disappears as soon as current flow ceases. Opening is does not leave the inductor

Fig. 2.18 - l'ime constant of an $L R$ circuit.
"charged." The energy stored in the magnetic field instantly returns to the circuit when S is opencd. The rapid disappearance of the field causes a very large voltage to be induced in the coil - ondinarily many times larger than the voltage applied, berause the indured voltage is proportional to the speed with which the field changes. The common result of opening the switch in a circuit such as the one shown is that a spark or are forms at the switeh contacts at the instant of opening. If the indurtance is large and the current in the circuit is high, a great deal of energy is released in a very short period of time.

It is not at all unusual for the switch eontacts to burn or melt under such circumstances.

Time constants play an important part in numerous devices, such as electronic keys, timing
and control cireuits, and shaping of keying characteristics by vacuum tubes. The time constants of circuits are also important in such applications as automatic gain control and noise limiters.

Alternating Currents

PHASE

The term phase essentially means "time," or the time interval between the instant when one thing occurs and the instant when a second related thing takes place. When a baseball pitcher throws the ball to the catcher there is a definite interval, represented by the time of flight of the ball, between the act of throwing and the act of catching. The throwing and catching are "out of phase" because they do not orcur at exactly the same time.

Fig. 2.19 - An a.c. cycle is divided off into 360 degrees that are used as a measure of time or phase.

Simply saying that two events are ont of phase does not tell us which one occurred first. To give this information, the later event is said to lag the carlicr, while the one that occurs first is said to lead. Thus, throwing the hall "leads" the catch, or the catch "lags" the throw.

In a.c. circuits the current amplitude changes continuously, so the concept of phase or time becomes important. Phase can be measured in the ordinary time units, such as the second, but there is a more convenient method: Since each a.c. cycle occupies exactly the same amount of time as every other cycle of the same frequency, we can use the cycle itself as the time unit. C'sing the rycle as the time unit makes the specifiration or measurement of phase indepondent of the frequency of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement of phase has to be modified just as the measurements of two lengths must be reconciled if one is given in feet and the other in meters.

The time interval or "phase difference" under consideration usually will be less than one cycle. Phase difference could be measured in decimal parts of a cycle, but it is more convenient to divide the cycle into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cycle. The reason for this choice is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees - that is, length
of time - from the instant the cycle began. There is no actual "angle" assocriated with an alternating current. Fig. : $2-19$ should help make this method of measurement clear.

Measuring Phase

To compare the phase of two currents of the same frequency, we measure between corresponding parts of cyeles of the two currents. This is shown in Fig. 2-20. The current labeled 1 leads the one marked B by 45 degrees, sinee A 's cycles begin 4.5 degress sooner in time. It is equally correct to say that B lags A by 45 degrees.

Two important special cases are shown in Fig. $2-21$. In the upper drawing B lags 90 degrees behind A; that is, its cycle begins just onequarter cycle later than that of A. When one wave is passing through zero, the other is just at its maximum point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one is to lead or lag. B is always positive while A is negative, and vice versa. The two waves are thus completely out of phase.

The waves shown in Figs. 2-20 and 2-21 could represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage while B represented current in the same circuit. If A and B represent two currents in the same circuit (or two voltages in the same circuit) the total or resultant current (or voltage) also is a sine wave, because adding any number of sine waves of the same frequency always gives a sine wave also of the same frequency.

Phose in Resistive Circuits

When an alternating voltage is applied to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any frequency if the resistance is "pure" - that is, is free from the reactive effects discussed in the next section. Practically, it is often difficult to obtain a purely

Fig. 2-20 - When two waves of the same frequency start their cycles at slightly different times, the time difference or phase difference is measured in degrees. In this drawing wave B starts 45 degrees (one-eighth cycle) later than wave A, and so lags 45 degrees behind A.

Fig. 2-21 - Two important special cases of phase difference. In the upper drawing, the phase difference between A and B is 90 degrees; in the lower drawing the phase difference is 180 degrees.
resistive circuit at radio frequencies, because the reactive effects become more pronounced as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of circuits, Ohm's Law is just as valid for a.c. of any frequency as it is for d.c.

- reactance

Alternating Current in Condensers

Suppose a sine-wave a.c. voltage is applied to a condenser in a circuit containing no resistance, as indicated in Fig. 2-22. In the period ()A, the applied voltage increases from zero to 38 volts; at the end of this period the condenser is charged to that voltage. In interval $A B$ the voltage increases to 71 volts; that is, 33 volts additional. In this interval a smaller quantity of charge has been added than in $O A$, because the voltuge rise during interval $A B$ is smaller. Consequently the average current during $A B$ is smaller than during OA. In the third interval, $B C$, the voltage rises from 71 to 92 volts, an increase of 21 volts. This is less than the voltage increase during $A B$, so the quantity of electricity added is less; in other words, the average current during interval $B C$ is still smaller. In the fourth interval, $C D$, the voltage increases only 8 volts; the charge added is smaller than in any preceding interval and therefore the current also is smaller.

Thus as the instantaneous value of the applied voltage increases the current decreases.

I3y dividing the furst quarter cycle into a very large number of intervals it could be shown that the current charging the condenser has the shape of a sine wave, just as the applied voltage does. The current is largest at the beginning of the cycle and becomes zero at the maximum value of the voltage (the condenser cannot be charged to a higher voltage than the maximum applied, so no further current can flow) so there is a phase difference of 90 degrees between the voltage and current. During the first quarter cycle of the applied voltage the current is flowing in the nor-
mal way through the circuit, since the condenser is being charged. Hence the current is positive during this first quarter cycle, as indicated by the dashed line in Fig. 2-22.

In the second quarter cycle - that is, in the time from D to H, the voltage applied to the condenser decreases. During this time the condenser loses the charge it acquired during the first quarter cycle. Applying the same reasoning, it is plain that the current is small in interval $D E$ and continues to increase during each succeeding interval. However, the current is flowing against the applied voltage because the condenser is discharging into the circuit. Hence the current is negative during this quarter cycle.

The third and fourth quarter cycles repeat the events of the first and serond, respectively, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an alternating current flows "through" a condenser when an a.c. voltage is applied to it. (Actually, current never flows "through" a condenser. It flows in the associated circuit because of the alternate charging and discharging of the capacitance.) As shown by Fig. 2-22, the current starts its cycle 90 degrees before the voltage, so the current in a condenser leads the applied voltage by 90 degrees.

Capacitive Reactance

The amount of charge that is alternately stored in and released from the condenser is proportional to the applied voltage and the capacitance. Consequently, the current in the circuit will be proportional to both these quantities, since current is simply the rate at which charge is moved. The current also will be proportional to the frequency

Fig. 2-22 - Voltage and current phase relationships when an alternating voltage is applied to a condenser.
of the a.c. voltage, because the same charge is being moved back and forth at a rate that is proportional to the number of cycles per second.

The fact that the current is proportional to the applied voltage is important, because it is the same thing that Ohm's Law says about current flow in a resistive circuit. That being the case, there must be something in the condenser that corresponds in a general way to resistance something that tends to limit the current that can flow when a given voltage is applied. The "something" clearly must include the effect of capaci-
tance and frequency, since these also affect the amount of current that flows. It is called reactance, and its relationship to capacitance and frequency is given by the formula

$$
X_{C}=\frac{1}{2 \pi f C}
$$

where $X_{C}=$ Condenser reactance in ohms
$f=$ Frequency in cycles per second
$C=$ Capacitance in farads
$\pi=3.14$
Reactance and resistance are not the same thing, but hecause they have a similar currentlimiting effect the same unit, the ohm, is used for both. Unlike resistance, reactance does not consume or dissipate power. The energy stored in the condenser in one quarter of the cycle is simply returned to the circuit in the next.

The fundamental units (eycles per second, farads) are too large for practical use in radio circuits. llowever, if the capacitance is in mierofarads and the frequency is in megacycles, the reactance will come out in ohms in the formula.

Example: The reactance of a condenser of 470 $\mu \mu \mathrm{fd}$. ($0.00047 \mu \mathrm{fd}$.) at a frequency of 7150 kc . (7.15 Mc.) is

$$
X=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.15 \times 0.00047}=47.4 \mathrm{ohms}
$$

Inductive Reactance

When an alternating voltage is applied to a circuit containing only inductance, with no resistance, the eurent always changes just rapidly enough to induce a back e.m.f. that equals and opposes the applied voltage. In Fig. $2-23$, the cycle is again divided off into equal intervals. Assuming that the current has a maximum value of 1 ampere, the instantaneous current at the end of each interval will be as shown. The value of the induced voltage is proportional to the rate at which the current changes. It is therefore greatest in the intervals 0.1 and $(x H$ and least in the intervals (V) and $I D E$. The induced voltage actually is a sine wave (if the current is a sime wave) as shown by the dashed curve. The applied voltage, because it is always equal to and opposed by the induced voltage, is equal to and 180 degrees out of phase with the induced voltage, as shown by the second dashed curve. The result, therefore, is that the current flowing in an inductance is 90 degrees out of phase with the applied voltage, and lags behind the applied voltage. This is just the opposite of the condenser case.

Nince the value of the induced e.m.f. is proportional to the rate at which the current changes, a small current changirg rapidly (that is, at a high frequency) can generate a large back e.m.f. in a given inductance just as well as a large current changing slowly (low frequency). Consequently, the current that flows through a given inductance will decrease as the frequency is raised, if the applied e.m.f. is held constant. Also.
when the applied voltage and frequency are fixed, the value of current required becomes less as the inductance is made larger, because the induced e.m.f. also is proportional to inductance.

When the frequency and inductance are constant but the applied e.m.f. is varied, the necessary rate of current change (to induce the moper back e.m.f.) can be obtained only if the amplitude of the current is directly proportional to the voltage. This is Ohm's I.aw again, and again the current-limiting effect is similar to, but not identical with, the effect of resistance. It is called inductive reactance and, like capacitive reactance, is measured in ohms. There is no energy loss in inductive reactance; the energy is stored in the magnetic field in one quarter cycle and then returned to the circuit in the next.
The formula for inductive reactance is

$$
X_{\mathrm{L}}=2 \pi f L
$$

where $X_{\mathrm{L}}=$ Inductive reactance in ohms
$f=$ Frequency in cycles per second
$L=$ Inductance in henrys
$\pi=3.14$
Example: The reactance of a coil having an inductance of 8 henrys, at a frequency of $1 \geqslant 0$ eycles, is
$X_{\mathrm{L}}=2 \pi f L=6.28 \times 120 \times 8=6029$ ohms
In radio-frequency circuits the inductance values usually are small and the frequencies are large. If the inductance is expressed in millihenrys and the frequency in kilocycles, the conversion factors for the two units cancel, and the formula for reactance may be used without first

Fig. 2-23 - Phase relationships between voltage and eurrent when an alternating voltage is applied to an inductance.
converting to fundamental units. Similarly, no conversion is neressary if the inductance is in mierohenrys and the frequency is in megacyeles.

$$
\begin{aligned}
& \text { Example: The reactanee of a } 15 \text {-microhenry } \\
& \text { coil at a frepuency of } 14 \mathrm{Mc} \text {. is } \\
& \mathrm{X}_{\mathrm{L}}=2 \pi f L=6.28 \times 14 \times 15=1319 \mathrm{ohms}
\end{aligned}
$$

The resistance of the wire of which the coil is wound has no effect on the reactance, but simply acts as though it were a separate resistor connected in series with the coil.

Ohm's Law for Reactance

Ohm's Law for an a.c. circuit containing only reactance is

$$
\begin{aligned}
I & =\frac{E}{X} \\
E & =l X \\
X & =\frac{E}{l}
\end{aligned}
$$

where $E=$ E.m.f. in volts
$I=$ Current in amperes
$X=$ Reartance in ohms
The reactance may be either inductive or caparitive.

$$
\begin{aligned}
& \text { Lxample: If a current of } 2 \text { amperes is flowing } \\
& \text { through the condensro of the previous example } \\
& \text { (remetane }=47.4 \text { ohms) at } 7150 \mathrm{ke} \text {., the volt- } \\
& \text { age drop across the condenser is } \\
& \qquad E=I \mathrm{X}=2 \times 47.4=94.8 \text { volts } \\
& \text { If } 400 \text { volts at } 120 \text { cycles is applied to the } 8 \text { - } \\
& \text { henry inductance of the previous example, the } \\
& \text { current through the coil will be } \\
& I=\frac{E}{X}=\frac{400}{6029}=0.0663 \text { amp. (} 66.3 \text { ma.) }
\end{aligned}
$$

When the cireuit consists of an inductance in series with a capacitane, the same current flows through hoth reactances. However, the voltage across the coil leads the current by 90 degrees, and the voltage aeross the condenser lags behind the current by 90 degrees. The coil and condenser voltages therefore are 180 degrees out of phase.

A simple circuit of this type is shown in Fig. 2-24. The same figure also shows the current (heavy line) and the voltage drops across the inductance ($E_{1_{1}}$) and capacitance ($E_{(}$). It is assumed that X_{L} is larger than X_{C} and so has a larger voltage drop, Since the two voltages are completely out of phase the total voltage (that is, the applied voltage E_{Ac}) is equal to the differenc between them. This is shown in the drawing as $E_{\mathrm{L}}-E_{\mathrm{C}}$. Notice that, beause E_{L} ib larger than E_{C}, the resultant voltage is exactly in phase with E_{L}. In other words, the circuit as a whole simply acts as though it were an inductance - an inductance of smaller value than the artual inductance present, since the offect of the actual inductive reactance is reduced by the capacitive reactance in series with it. If X_{C} is larger than X_{L}, the arrangement will behave like a capacitance - again of smaller reactance than the actual capacitive reactance present in the circuit.

The "equivalent" or total reactance of any circuit containing inductive and capacitive reactances in series is equal to $X_{1}-X_{C}$. If there are several coils and condensers in series, simply add up all the inductive reactances, then add up all the capacitive reactances, and then subtract the latter from the former. It is customary to call inductive reactance "positive" and capacitive reactance "negative." If the equivalent or net roactance is positive, the voltage leads the current by 90 degrees; if the net reactance is negative, the voltage lags the current by 90 degrees.

Fig. 2.24-Current and voltages in a circuit having inductive and capacitive reactances in series.

Reactive Power

In Fig. 2-24 the voltage drop across the coil is larger than the voltage applied to the circuit. This might seem to be an impossible condition, but it is not; the explanation is that while energy is being stored in the coil's magnetic field, energy is being returned to the circuit from the condenser's electric field, and vice versa. This stored energy is responsible for the fact that the voltages across reactances in series can be larger than the voltage applied to them.

In a resistance the flow of current causes heating and a power lose equal to $I^{2} R$. The power in a reactance is equal to $I^{2} X$, but is not a "Ioss"; it is simply power that is transferred back and forth between the field and the circuit but not used up in heating anything. To distinguish this "nondissipated" power from the power which is actually consumed, the unit of reactive power is called the volt-ampere instead of the watt. Reactive power is sometimes called "wattless" power.

IMPEDANCE

The fact that resistance, inductive reactance and capacitive reactance all are measured in ohms does not indicate that they can be combined indiscriminately. Voltage and current are in phase in resistance, but differ in phase by a quarter cyele in reactance. In the simple circuit shown

H ig, 2.25 - Resistance and inductive reactance conneeted in series.
in Fig. 2-25, for example, it is not possible simply to add the resistance and reactance together to obtain a quantity that will indicate the opposition offered by the combination to the flow of current. Inasmuch as both resistance and reactance are present, the total effect can obviously be neither wholly one nor the other. In circuits containing both reactance and resistance the opposition effect is called impedance (Z). The unit of impedance is also the ohm.
The term "impedance" also is generalized to include any quantity that can be expressed as a ratio of voltage to current. Pure resistance and pure reactance are both included in "impedance" in this sense. A circuit with resistive impedance is either one with resistance alone or one in which the effects of any reactance present have been eliminated. Similarly, a reactive impedance is one having reactance only. A complex impedance is one in which both resistance and reactance effects are observable.
It can be shown that resistance and reactance can be combined in the same way that a rightangled triangle is constructed, if the resistance is laid off to proper scale as the base of the triangle and the reactance is laid off as the altitude to the same scale. This is also indicated in Fig. $2-25$. When this is done the hypotenuse of the triangle represents the impedance of the circuit,

Fig. 2.26 - liesistance and capacitive reactance in scries.
to the same scale, and the angle between Z and R (usually called θ and so indicated in the drawing) is equal to the phase angle between the applied e.m.f. and the current. By geometry,

$$
Z=\sqrt{R^{2}+X^{2}}
$$

In the case shown in the drawing,

$$
Z=\sqrt{(75)^{2}+(100)^{2}}=\sqrt{15,625}=125 \text { ohms. }
$$

The phase angle can be found from simple trigonometry. Its tangent is equal to X / R; in this case $X / R=100 / 75=1.33$. From trigonometric tables it can be determined that the angle having a tangent equal to 1.33 is approximately 53 degrees. In ordinary amateur work it is seldom necessary to give much consideration to the phase angle.
A circuit containing resistance and capacitance in series (Fig. 2-26) can be treated in the same way. The difference is that in this case the current leads the applied e.m.f., while in the resistanceinductance case it lags behind the voltage.
If either X or R is small compared with the other (say $1 / 10$ or less) the impedance is very nearly equal to the larger of the two quantities. For example, if $R=1 \mathrm{ohm}$ and $X=10 \mathrm{ohms}$,

$$
\begin{aligned}
Z=\sqrt{R^{2}+X^{2}} & =\sqrt{(1)^{2}+(10)^{2}} \\
& =\sqrt{101}=10.05 \mathrm{ohms} .
\end{aligned}
$$

Hence if either X or R is at least 10 times as large as the other, the error in assuming that the impedance is equal to the larger of the two will not exceed $1 / 2$ of 1 per cent, which is usually negligible.
Since one of the components of impedance is reactance, and since the reactance of a given coil or condenser changes with the applied frequency, impedance also changes with frequency. The change in impedance as the frequency is changed may be very slow if the resistance is considerably larger than the reactance. However, if the impedance is mostly reactance a change in frequency will cause the impedance to change practically as rapidly as the reactance itself changes.

Ohm's Law for Impedance

Ohm's Law can be applied to circuits containing impedance just as readily as to circuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ E.m.f. in volts

$$
\begin{aligned}
& I=\text { Current in amperes } \\
& Z=\text { Impedance in ohms }
\end{aligned}
$$

Example: Assume that the em.f. applied to the circuit of Fig. $2-2 \overline{5}$ is $2 \overline{5} 0$ volts. Then

$$
I=\frac{E}{Z}=\frac{2 \overline{5} 0}{125}=2 \text { amperes. }
$$

The same current is flowing in both R and X_{L}, and Ohm's Law as applied to either of these quantities says that the voltace drop across R should equal $I R$ and the voltage drop across X_{L} should equal $I X_{\mathrm{L}}$. Substituting.

$$
\begin{aligned}
E_{\mathrm{R}}= & I R=2 \times 75=150 \text { volts } \\
& E_{\mathrm{X}_{\mathrm{L}}}=I X_{\mathrm{L}}=2 \times 100=200 \text { volts }
\end{aligned}
$$

The arithmetical sum of these voltages is greater than the applied voltage. However, the actual sum of the two when the phase relationship is taken into account is egual to 250 volts r.m.s., as shown by lig. 2-27, where the instantaneous values are added throughout the cycle. Whenever resistance and reactance are in series, the

Fif. 2-27 - Voltage drops around the circuit of Fig. 2-25. Because of the phase relationships, the applied voltage is less than the arithmetieal sum of the drops aeross the resistor and inductor.
individual voltage drops always add up, arithmetically, to more than the applied voltage. There is nothing fictitious about these voltage drops; they can be measured readily by suitathe instruments. It is simply an illustration of the importance of phase in a.c. circuits.
A more complex series circuit, containing resistance, inductive reactance and capacitive reactance, is shown in Fig. 2-28. In this case it is necessary to take into account the fart that the phase angles between current and voltage differ

Fig. 2-28 - Resistance, inductive reactance, and capaeitive reactanee in series.
in all three elements. Since it is a series circuit, the current is the same throughout. Considering first just the inductance and capacitance and neglecting the resistance, the net reactance is

$$
X_{L}-X_{C}=150-50=100 \text { ohms (inductive) }
$$

Thus the impedance of a circuit containing resistance, inductance and capacitance in series is

$$
Z=\sqrt{R^{2}+\left(X_{\mathrm{L}}-X_{\mathrm{c}}\right)^{2}}
$$

Example: In the circuit of Fig. 2-28, the impedance is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}-X_{\mathrm{C}}\right)^{2}} \\
= & \sqrt{(20)^{2}+(150-50)^{2}}=\sqrt{(20)^{2}+(100)^{2}} \\
& =\sqrt{10,400}=102 \mathrm{ohms}
\end{aligned}
$$

The phase ancle can be found from X / R, where $X=\boldsymbol{X}_{\mathrm{L}}-\hat{X}_{\mathrm{C}}$.

Parallel Circuits

Suppose that a resistor, condenser and coil are connected in parallel as shown in Fig. 2-29 and an a.c. voltage is applied to the combination. In any one branch; the current will be unchanged if one or both of the other two branches is disconnected, so long as the applied voltage remains unchanged. Hence the current in each branch can be calculated quite simply by the Ohm's Law formulas given in the preceding sections. The total current, I, is the sum of the currents through all three branches - not the arithmetical sum, but the sum when phase is taken into account.

Fig. 2-29-1 Resistanee, induetanee and capaeitanee in parallel. Instruments connected as shown will read the total current, I, and the individual currents in the three branches of the circuit.

The currents through the various branches will be as shown in Fig. 2-30, assuming for purposes of illustration that X_{L} is smaller than X_{C} and that X_{C} is smaller than R, thus making I_{L} larger than I_{C}, and I_{C} larger than I_{R}. The current through ' $'$ leads the voltage by 90 degrees and the current through L lags the voltage by 90 degrecs, so these two currents are 180 degrees out of phase. As shown at E, the total reartive current is the difference between I_{C} and I_{L}. This resultant current lags the voltage by 90 degrees, because I_{L} is larger than I_{C}. When the reactive current is added to I_{R}, the total current, I, is as shown at F. It can be seen that I lags the applied voltage by an angle smaller than 90 degrees and that the total current, while less than the simple sum (neglecting phase) of the three branch currents, is larger than the current through R alone.
The impedance looking into the parallel circuit from the source of voltage is equal to the applied

Fig. 2-30 - Phase relationships between branch currents and applied voltage for the cirenit of Fig. 2.29. The total current through L and C in parallel ($I_{L}+I_{\mathrm{C}}$) and the total eurrent in the entire circuit (I) also are shown.
voltage divided by the total or line current, I. In the case illustrated, I is greater than I_{n}, so the impedance of the circuit is less than the resistance of R. How much less depends upon the net reactive current flowing through L and C in parallel. If X_{L} and X_{C} are very nearly equal the net reactive curred will be quite small because it is equal to the difference between two nearly equal currents. In such a case the impedance of the circuit will be almost the same as the resistance of R alone. On the other hand, if X_{L} and
X_{C} are quite different the net reactive current can be relatively large and the total current also will be appreciably larger than I_{R}. In such a case the circuit impedance will be lower than the resistance of R alone.

Power Factor

In the circuit of Fig. 2-25 an applied e.m.f. of 250 volts results in a current of 2 amperes. If the circuit were purely resistive (containing no reactance) this would mean a power dissipation of $250 \times 2=500$ watts. However, the circuit actually consists of resistance and reactance, and only the resistance consumes power. The power in the resistance is

$$
l^{\prime}=I^{2} R=(2)^{2} \times 75=300 \mathrm{watts}
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in the case used as an example would be $300 / 500=0.6$. Power factor is frequently expressed as a percentage; in this case, the power factor would be 60 per cent.
"Real" or dissipated power is measured in watts; apparent power, to distirguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reactance). It is simply the product of volts and amperes and has no direct relationship to the power actually used up or dissipated unless the power factor of the circuit is known. The power factor of a purely resistive circuit is 100 per cent or 1 , while the power factor of a pure reactance is zero. In this illustration, the reactive power is

$$
\begin{aligned}
V A(\text { volt-amperes })=I^{2} X & =(2)^{2} \times 100 \\
& =400 \text { volt-amperes. }
\end{aligned}
$$

Complex Waves

It was pointed out early in this chapter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonic frequencies. When such a complex voltage wave is applied to a circuit containing reactance, the current through the circuit will not have the same waveshape as the applied voltage. This is because the reactance of a coil and condenser depend upon the applied frequency. For the second-harmonic component of a complex wave, the reactance of the coil is twice and the reactance of the condenser one-half their values at the fundamental frequency; for the third harmonic the coil reactance is three times and the condenser reactance one-third, and so on.
Just what happens to the current waveshape depends upon the values of resistance and reactance involved and how the circuit is arranged. In a simple circuit with resistance and inductive reactance in series, the amplitudes of the harmonics will be reduced because the inductive reactance increases in proportion to frepuency. When a condenser and resistance are in series, the harmonic current is likely to be accentuated because the condenser reatance becomes lower as the frequency is raised. When both inductive and capacitive reactance are present the shape of the current wave can be altered in a variety of ways, depending uron the circuit and the "constants," or values of L, C and R, selected.
This property of nonuniform behavior with respect to fundamental and harmonies is an extremely useful one. It is the basis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or group of such frequencies.

Transformers

Two coils having mutual inductance constitute a transformer. The coil connected to the source of energy is called the primary coil, and the other is called the secondary coil.
The usefulness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example, 115 volts and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. A transformer can be used only with a.c., since no voltage will be induced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is changing.

The Iron-Core Transformer

As shown in Fig. 2-31, the primary and secondary coils of a transformer may be wound on a core of magnetic material. This increases the inductance of the coils so that a relatively small number
of turns may be used to induce a given value of voltage with a small current. A closed core (one having a continuous magnetic path) such as that shown in Fig. 2-31 also tends to insure that practically all of the field set up by the current in the primary coil will cut the turns of the secondary coil. However, the core introduces a power loss because of hysteresis and eddy currents so this type of construction is practicable only at power and audio frequencies. The discussion in this section is confined to transformers operating at such frequencies.

SYMBOLS
Fig. 2-31 - The transformer. Power is transferred from the primary coil to the secondary hy means of the magnetic field. "Ihe upper synntol at right indicates an ironcore transformer, the lower one an air-core transformer.

Voltage and Turns Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns on the coil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of turns on each coil. In the primary the induced voltage is practically equal to, and opposes, the applied voltage. Ilence,

$$
E_{\mathrm{s}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{p}}} E_{\mathrm{b}}
$$

where $E_{\mathrm{a}}=$ Secondary voltage
$E_{\mathrm{r}}=$ Irimary applied voltage
$n_{\mathrm{s}}=$ Number of turns on secondary
$n_{p}=$ Number of turns on primary
The ratio n_{ε} / n_{p} is called the turns ratio of the transformer.

Example: I transformer has a primary of 400 turns and a secondary of 2800 turns, and 115 volts is applied to the urimary. The secondary voltage will he

$$
\begin{aligned}
L_{s}=\frac{n_{*}}{n_{b}} E_{0} & =\frac{2800}{400} \times 115=7 \times 115 \\
& =805 \text { volts }
\end{aligned}
$$

Also, if 805 volts is apmied to the 2800 -turn winding (which then becomes the primary) the output voltage from the 400 -turn winding will be 115 volts.

Either winding of a transformar can be used as the primary, promiding the winding has enough turns (enough inductanee) to induce a voltage equal to the appled voltage without requiring an exerssive purrent flow.

Effect of Secondary Current

The current that flows in the primary when no current is taken from the secondary is called the magnetizing current of the transformer. In any properly-designed transiomer the primary inductance will be so large that the magnetizing current will be quite small. The power consumed by the transformer when the secondary is "open" - that is, not delivering power - is only the amount neressary to supply the losses in the iron core and in the resistance of the wire of which the primary is wound.

When power is taken from the secondary winding, the secondary current sets up a magnetic field that opposes the fied set up by the primary current. But if the induced voltage in the primary is to equal the applied voltage, the origimal fied must be maintained. Consequently, the primary must draw enough additional current to set up a field exactly equal and opposite to the field set up by the secondary current.

In practical calculations on transformers it may be assumed that the entire primary current is caused by the secondary "load." This is justifiable because the magnetizing current should be very small in comparison.

If the magnetic fields set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary turns
must equal the secondary current multiplied by the secondary turns. Fron this it follows that

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} I_{\mathrm{s}}
$$

where $I_{\mathrm{p}}=$ Primary current
$I_{8}=$ Secondary current
$n_{p}=$ Number of turns on primary
$n_{\mathrm{s}}=$ Number of turns on secondary
Example: Suppose that the secondary of the transformer in the previous example is delivering a current of 0.2 ampere to a load. Then the primary eurrent will be

$$
I_{4}=\frac{n_{8}}{n_{\mathrm{B}}} I_{n}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \text { amp. }
$$

Although the secondary voltage is higher than the primary voltage, the secondary current is lourer than the primary current, and by the same ratio.

Power Relationships; Efficiency

I transformer camot create power; it can only transfer and transform it. Hence, the power taken from the secondary camnot exceed that taken by the primary from the source of applied e.m.f. There is always some power loss in the resistance of the coils and in the irom core, so in all practical cases the power taken from the source will exceed that taken from the secondary. Thus,

$$
P_{0}=n l_{i}
$$

where $P_{0}=$ lower output from secondary
$P_{i}=$ l'ower input to primary
$n=$ lifliciency factor
The efficience, ", always is less than 1. It is usually expessed as a percentage; if n is 0.65 , for instance, the efficiency is 65 per cent.

Example: A transformer has an efficiunc of $85^{\circ}{ }^{\circ}$ at ite full-load output of 150 watts. The power input to the primary at full secondary load will be

$$
r_{\mathrm{i}}=\frac{P_{0}}{n}=\frac{1.00}{0.85}=176.5 \text { watts }
$$

A transformer is usually designed to have its highest efficiency at the power output for which it is rated. The efficiency decreases with either lower or higher outputs. On the other hand, the losses in the transformer are relatively small at low output but increase as more power is taken. The amount of power that the transfomer ean handle is determined by its own losses, because these heat the wire and core and raise the operating temperature. There is a linit to the temperatture rise that can be tolerated, because too-high

Fig. 2-32 - 'The equivalent circuit of a transformer lncludes the effects of leakage inductance and resistance of both primary and secondary windings. The resistance Rcis an equivalent resistance representing the constant Rore losses. Since these are comparatively small, their effect may be neglected in many approximate calculations.
temperature either will melt the wire or cause the insulation to break down. I transformer always can be operated at reduced output, even though the efficiency is low, because the actual loss also will be low under such conditions.

The full-load efficiency of small power transformers such as are used in radio receivers and trinsmitters usually lies between about 60 per cent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the marnetic flux is common to both windings, although in well-designed transformers the amount of flus that "euts" one coil and not the other is only a small percentage of the total flux. This leakage flux causes an c.m.f. of self-induction; consequently, there are small amounts of leakage inductance associated with both windings of the transformer. Leakage inductance acts in exactly the same way as an equivalent amount of ordimary inductance inserted in series with the cereuit. It has, therefore, a certain reactance, depending upon the amount of leakage inductance and the frequency. This reactance is called leakage reactance,

Current flowing through the leakage reactance causes a voltage drop. This voltage drop, increases with increasing current, hence it increases as more power is taken from the secondary. Thus, the greater the secondary current, the smaller the serondary terminal voltage becomes. The resistances of the transformer windings also cause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reactance, together they result in a lower secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 cyeles) the voltage at the secondary, with a reasonably well-designed transformer, should not drop more than about 10 per cent from open-circuit conditions to full load. The drop in voltage may le considerably more than this in a transformer operating at audio frequencies because the leakage reactance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationship, is true:

$$
Z_{\mathrm{D}}=Z_{\mathrm{B}} N^{2}
$$

where $Z_{\mathrm{p}}=$ Impedance looking into primary terminals from source of power
$Z_{B}=$ Inupedance of load connected to secondary
$N=$ Turns ratio, primary to secondary
That is, a load of any given impedance connected to the secondary of the transformer will be transformed to a different value "looking into" the primary from the source of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

Example: A transformer has a primary-tosecondary turns ratio of 0.6 (primary has $6 / 10$ as many turns as the secondary) and a loud of 3000 ohms is connected to the secondary. The impedance looking into the primary then will be

$$
\begin{aligned}
Z_{11}=Z_{3} N^{2}= & 3000 \times(0.6)^{2}=3000 \times 0.34 \\
& =1080 \mathrm{ol} 4 \mathrm{~ms}
\end{aligned}
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; thus if the load is a pure resistance the load presented by the primary to the soure of power also will be a pure resistance.

The above relationship may be used in pravtical work even though it is based on an "ideal" transformer. . Lside from the normal design requirements of reasonably low internal losses and bow leakage reactance, the only requirement is that the primary have enough inductance to operate with low magnetizing current at the voltage applied to the primary.

The primary impedance of a transformer as it lowk to the source of pumer - is determined wholly by the load connected to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable effect on the impedance presented to the power source, the transformer is either poorly designed or is not suited to the voltage at which it is being used. Most transformers will operate quite well at voltages from slightly above to well belonv the design figure.

Impedance Matching

Many devices require a specific value of load resistance (or impedance) for optimum operation. The impedance of the actual load that is to dissipate the power may differ widely from this value, so a transformer is used to transform the actual load into an impedance of the desired value. This is called impedance matching. From the preceding,

$$
N=\sqrt{\frac{Z_{\mathrm{s}}}{Z_{\mathrm{p}}}}
$$

where $N=$ Required turns ratio, secondary to prinary
$Z_{\mathrm{s}}=$ Impedance of load connected to seeondary
$\boldsymbol{Z}_{0}=$ Impedance required
Example: A varumm-tube a.f. anmplifier requires a load of 5000 ohins for optimum per.formance, and is to be conmected to a loudspeaker having an impedante of 10 ohms. The turns ratio, secondary to primary, required in the coupling transformer is

$$
N=\sqrt{\frac{Z_{0}}{Z_{0}}}=\sqrt{\frac{10}{5000}}=\sqrt{\frac{1}{500}}=\frac{1}{22.4}
$$

The primary therefore must have 22.4 times as many turns as the secondary.
Impedance matching means, in general, adjusting the load impedance - by means of a transformer or otherwise - to a desired value. Ilowever, there is also another meaning. It is
possible to show that any source of power will have its maximum posisible output when the impedance of the load is equal to the intemal imperdance of the source. The impedance of the source is said to the "matehed" under this condition. The efficiener is only 80 per cent in such a case; just as much power is used up in the source as is detivered to the load. I Because of the poor efficiency, this type of impedance matching is limited to cases where only a small amount of power is available.

Transformer Construction

Transformers usually are designed so that the magnetie path around the core is as short as possible. I sho t magnetic path means that the transformer will operate with fewer turns, for a given applied voltage, than if the path were long. It also helps to reduce flux leakage and therefore minimizes leakage reactance. The number of turns required also is inversely proportional to the cross-sectional area of the core.

Fig. 2-3.3 - Two eommon types of tran-former construetion. Core pieces are interleated to provide a continuous maknetic path with as low reluctance as possible.

Two core shapes are in common use, as shown in Fig. 2-33. In the shell type both windings are placed on the inner leg, while in the core type the primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize caparity effects between the primary and secondary, or when one of the windings must operate at very high voltage.

Core material for small transformers is usually
silicon steel, called "transformer iron." The core is built up of laminations, insulated from each other (by a thin coating of shellac, for example) to prevent the flow of eddy currents. The laminations overlap at the ends to make the magnetic path as continuous as possible and thus reduce flux leakage.

Fig, 2.34 - ' The autotransformer is based on the transformer principle, tut uses only one winding. The line and load currents in the common winding (A) flow in opmosite directions, so that the resultant current is the difference between them. The voltage across A is proportional to the turns ratio.

The number of turns required on the primary for a given applied e.m.f. is determined by the size, shape and type of core material used, and the frequency. As a rough indication, windings of small power transformers frequently have about six to eight turns per volt on a core of 1 -square-inch cross section and have a magnetic path 10 or 12 inches in length. A longer path or smaller cross section requires more turns per volt, and vice versa.

In most transformers the coils are wound in layers, with a thin shect of paper insulation between each layer. Thicker insulation is used between coils and between coils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 2-34; the principles just discussed apply equally well. A one-winding transformer is called an autotransformer. The current in the common section (A) of the winding is the difference between the linc (primary) and the load (secondary) currents, since these currents are out of phase. llence if the line and load currents are nearly equal the common section of the winding may be wound with comparatively small wire. This will be the case only when the primary (line) and secondary (load) voltages are not very different. The autotransformer is used chiefly for boosting or reducing the power-line voltage by relatively small amounts.

Radio-Frequency Circuits

RESONANCE

Fig. 2-35 shows a resistor, condenser and coil connected in spries with a source of alternating current, the frequency of which can be varied over a wide range. It some loir frequency the condenser reactance will be much larger than the resistance of R, and the inductive reactance will be small compared with either the reactanee of C or the resistance of $R .(R$ is assumed to be the same at all frequencies.) On the other hand, at some very high frequency the reactance of C will be very small and the reactance of L will be very
large. In either case the current will be small, because the reactance is large at either low or high frequencies.

It some intermediate frequency, the reactances of C and L will be equal and the voltage drops across the coil and condenser will be equal and 180 degrees out of phase. Therefore they cancel each other completely and the current flow is determined wholly by the resistance, R. At that frequency the current has its largest possible value, assuming the source voltage to be constant regardless of frequency. A series circuit in which
the inductive and capacitive reactances are equal is said to be resonant.

Although resonance can occur at any frequency, it finds its most extensive application in radio-frequency circuits. The reactive effects associated with even small inductances and capacitances would place drastic limitations on r.f. circuit operation if it were not possible to "cancel them out" by supplying the right amount of reactance of the opposite kind - in other words, "tuning the circuit to resonance."

Resonant Frequency

The frequency at which a series errouit is resonant is that for which $X_{\mathrm{L}}=X_{\text {r }}$. Substituting the formulas for inductive and capacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in cycles per second
$L=$ Inductance in henrys
$C^{\prime}=$ Capacitance in farads $\pi=3.14$
These units are inconveniently large for radiofrequency circuits. A formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilocycles (ke.) $L=$ Inductance in microhenrys ($\mu \mathrm{h}$,)
${ }^{\prime}$ ' = Capacitance in micromicrofarads ($\mu \mu \mathrm{fd}$.)
$\pi=3.14$
Example: The resonant frequency of a serico circuit containing a $5-\mu h$. coil and a $35-\mu \mu \mathrm{fd}$. condenser is

$$
\begin{aligned}
& =\frac{10^{6}}{2 \pi \sqrt{I C}}=\frac{10^{6}}{6.28 \times 1 \overline{5 \times 3 i}} \\
& \quad=\frac{10^{6}}{6.28 \times 13.2}=\frac{10^{6}}{83}=12,030 \mathrm{kc}
\end{aligned}
$$

The formula for resonant frequency is not affected by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the circuit of Fig. $2-35$ as the frequency is varied (the applied voltage being constant) it would look like one of the curves in Fig. 2-36. The shape of the resonance curve at frequencies near resonance is determined by the ratio of reactance to resistance at the particular frequency considered.

Fig. $2.35-1$ series cirenit montaining $h .8$ and K is "resonami" at the applied fredurenes when the reattane of C in minal to the reactance of I..

PER CENT CHANGE FROM RESONANT FREQUENCY
Fig. 2-36 - Current in a series-resonant circuit with varions values of series resistance. The values afe arhitrary and would not apply to all circuits, hut reprevent a typral casc. It is assmed that the reactances at the resonant frequency) are l006) olms (minimum ($=10$). Note that at frequencies at least plus or minus ton per cent away from the resonant frepueney the current is substantially unafferted loy the resistance in the eiremit.

If the reactance of either the coil or condenser is of the same order of magnitude as the resistance, the current decreases rather slowly as the frequency is moved in either direction away from resonance. Such a curve is said to be broad. (On the other hand, if the reactance is considerably larger than the resistance the current derreases rapidly as the frequency moves away from resonance and the circuit is satid to be sharp. I sharp circuit will respond a great deal more readily to the resonant frequency than to frequencies quite close to resonance; a broad circuit will respond almost equally well to a group or band of frequencies centering around the resonant frequency.

Both types of resonance curves are useful. A sharp cireuit gives good selectivity - the ability to respond strongly (in terms of current amplitude) at one desired frequency and diseriminate angainst others. A broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.

Q

Most diagrams of resonant cireuits show only inductance and caparitance; no resistance is indicated. Nevertheless, resistance is always present. At frequencies up to perhaps 30 Mc . this resistance is mostly in the wire of the coil. Above this frequency energy loss in the condenser (principally in the solid dielectric which must be used to form an insulating support for the condenser plates) becomes appreciable. This energy lass is equivalent to resistance. When maximum sharpness or selectivity is needed the object of design
is to reduce the inherent resistance to the lowest possible value.

The value of the reartance of either the roil or rondenser at the resonant frequency, divided by the resistance in the circuit, is called the Q (quality factor) of the circuit, or

$$
Q=\frac{X}{R}
$$

where $Q=$ Quality factor
$X=$ Reactance of either coil or condenser in ohms
$R=$ Resistance in ohms
Example: The coil and eondenser in a serims circuit each have a reactance of 350 ohms at the resonant frequency. The resistance is is ohms. Then the Q is

$$
Q=\frac{N}{R}=\frac{3.50}{5}=70
$$

The efferet of Q on the sharpmenss of resonance of a circuit is shown by the curves of Fig. 2-37. In these curves the frequency change is shown in perentage above and below the resonant frequency. ()s of $10,20,50$ and 100 are shown; these values rover much of the range rommonly used in radio work.

Voltage Rise

When a voltage of the resonant frequency is inserted in series in a resonant circuit, the voltage that appears across either the eoil or condenser is considerably higher than the applied voltage. The current in the cirenit is limited only by the actual resistance of the coil-condenser combination in the circuit and may have a relatively high value; however, the same current

Fig, 2-37-Current in series-resonant circuits having different $Q_{\text {s. }}$ In this graph the eurrent at resonance is assumed to be the sance in all cases. The lower the Q, the more slowly the current decreases as the apilied frequeney is moved away from resonafice.
flows through the high reactances of the coil and condenser and causes large voltage drops. The ratio of the reactive voltage to the applied voltage is efual to the ratio of reactance to resistance. This ratio is the Q of the circuit. Therefore, the voltage across either the coil or condenser is equal to Q times the voltage inserted in series with the circuit.

Example: The inductive reartance of a circuit is 200 ohms, the capacitive reactance is 200 ohms, the resistance is whos, and the abplied voltage is so. The two reactances cancel and there will be but 5 ohms of pure resistance to limit the current flow. Thus the eurrent will be $50 / 5$, or 10 amperes. The voltase developed arross either the coil or the rondenser will be equal to its reactance times the current, or $200 \times 10=2000$ volts. An alternate method: The Q of the circuit is $X / R=200 / 5=40$. The reactive voltage is equal to Q times the applied voltage, or $40 \times 50=2000$ volts.

Parallel Resonance

When a variable-frequency source of constant voltage is applied to a parallel circuit of the t.ype shown in Fig. 2-38 there is a resonance effect

similar to that in a series circuit. However, in this case the current (mosured at the point indicated) is smallest at the frequeney for which the coil and condenser reactances are equal. At that frequency the current through L is exactly canceled by the out-of-phase current through (${ }^{i}$, so that only the current taken by R flows in the line. At frequencies below resonance the current through L is larger than that through ${ }^{*}$, because the reactance of L is smaller and that of C higher at low frequencies: there is only partial cancellation of the two reactive currents and the line current therofore is larger than the current taken by R alone. At frequencies above resonance the sitnation is reversed and more current flows through C than through L, so the line current again increases. The current at resonance, being determined wholly by R, will be small if R is large and large if R is small.
The resistance R shown in lig. 2-38 seldom is an actual resistor. In most cases it will be an "equivalent" resistance that represents the artual energy lose in the circuit. This loss can be inherent in the coil or condenser, or may represent energy transferred to a load by means of the resonant circuit. (For example, the resonant circuit may be used for transferring power from a vacuum-tube amplifier to an antenna system.)
Parallel and series resonant circuits are quite alike in some respects, For instance, the eireuits given at A and B in Fig. 2-39 will hehave identically, when an external voltage is applied, if (1) L and C ate the same in both cases; and (2) R_{p}
multiplied by R_{s} equals the square of the reactance (at resonance) of either L or ($'$. When these conditions are met the two circuits will have the same Qs. (These statements are approximate, but are quite aceurate if the Q is 10 or more.) The eircuit at A is a series circuit if it is viewed from the "inside" - that is, going around the loop formed by L, C and R - so its () can be found from the ratio of X to R_{s}.

Thus a circuit like that of l'ig. 2-39A has an equivalent parallel impedance (at resonamece) equal to R_{R}, the relationship betwern R_{s} and R_{p}, being as explained above. Although R_{1}, is not an actual resistor, to the souree of voltage the parallel-resonant circuit "looks like" a pure resistance of that value. It is "pure" resistance Tecause the coil and condenser currents are 180 degrees out of phase and are equal: thus there is no reactive current in the line. At the resomant frequenes the parallel impedanere of a resonant cireuit is

$$
Z_{\mathrm{r}}=Q X
$$

where $Z_{\mathrm{r}}=$ Resistive impedance at resonanee
Q $=$ (Quality factor
$x=$ Reactance (in ohms) of either the coil or condenser

Example: The parallel impedance of a circuit having a Q of 30 and having inductive and cat paritive reactances of 300 ohms will be

$$
Z_{\mathrm{r}}=Q . X=50 \times 300=1.0,000 \text { ohms. }
$$

At frequencies off resonance the impedanee is no longer purely resistive berause the coil and condenser currents are not equal. The offresonant impedane therefore is complex, and

is lower than the resonant impedance for the reasons previously outlined.

The higher the Q of the circuit, the higher the parallel impedance. Curves showing the variation of impedance (with frequency) of a parallel (ircuit have just the same shape as the curves showing the variation of current with frequency in a series circuit. Fig. 2-40 is a set of such curves.

Parallel Resonance in Low-Q Circuits

The preceding discussion is accurate only for Qs of 10 or more. When the Q is below 10, resonance in a parallel circuit having resistance in series with the coil, as in Fig. 2-39.1, is not so easily defined. There is a set of values for L and C that will make the parallel impedance a pure resistance, but with these values the impedance does not have its maximum possible value. Another set of values for L and C will make the parallel impedance a maximum, but this maxi-

PER CENT CHANGE FROM RESONANT FREQUENCY
Fig. 2-A - Relative impedance of parallel-resonant circuits with different Q s. 'These curves are similar to those in Fig. 2.37 for current in a series-resonant circuit. The effect of Q on impedance is most marked near the resonant frequency.
mum value is not a pure resistance. Either condition could be called "resonance," so with low- Q circuits it is necessary to distinguish between maximum impedance and resistive impedance parallel resonance. The difference in tuning is appreciable when the () is in the vicinity of 5 , and becomes more marked with still lower Q values.

Q of Loaded Circuits

In many applieations of resonant circuits the only power lost is that dissipated in the resistance of the eircuit itself. At frequencies below 30 Mc . most of this resistance is in the coil. Within limits, increasing the number of turns on the coil increases the reactance faster than it anises the resistance, so coils for circuits in which the Q must be high may have reactances of 1000 ohms or more at the frequency under consideration.

However, when the circuit delivers energy to a load (as in the case of the resonant circuits used in transmitters) the energy consumed in the circuit itself is usually negligible compared with that consumed by the load. The equivalent of such a circuit is shown in Fig. 2-41A, where the parallel resistor represents the load to which powet is delivered. If the power dissipated in the

Fig. 2-41 - The equivalent circuit of a resonant circuit delivering power to a load. The resistor R represents the load resistance. At \mathbb{B} the load is tapped arross part of L, which by transformer action is equivalent to using a higher load resistance across the whole circuit.
load is at least ten times as great as the power lost in the coil and condenser, the parallel impedance of the resomant circuit itself will be so high compared with the resistance of the load that for all practical purposes the impedance of the combined circuit is equal to the load resistance. [uder these conditions the Q of a paralle]resonant cireuit loaded by a resistive impedaner is

$$
Q=\frac{Z}{X}
$$

where $Q=$ (Quality factor
$Z=$ Parallel load resistance (ohns)
$\boldsymbol{X}=$ Reartance (ohms) of either the coil or condenser

Example: A resistive load of 3000 ohms is connected across a resonant direuit in which the inductive and canacitive reartances are each 2.50 ohms. The circuit Q is then

$$
Q=\frac{Z}{X}=\frac{3000}{2.00}=12
$$

The "effective" Q of a circuit loaded by a parallel resistance becomes higher when the reartances of the roil and condenser are deereased. A circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactare elements (large (apacitance and small inductance) to have reasonably high ().

Impedance Transformation

An important application of the parallelresonant circuit is an impedance-matching device in the output circuit of a vacuum-tube r.f. power amplifier. As described in the chapter on vacuum tubes, there is an optimum value of load resistance for each type of tube and set of operating conditions. However, the resistance of the load to which the tube is to deliver power usually is emsiderably lower than the value required for proper tube operation. To transform the actual load resistance to the desired value the load may be tapped across part of the coil, as shown in Fig. $2-413$. This is equivalent to eonnecting a higher value of load resistance across the whole circuit, and is similar in principal to impedance transformation with an iron-core transformer. In high-frequency resonant circuits the impedance ratio does not vary exactly as the square of the turns ratio, because all the magnetic flux lines do not cut every turn of the coil. A desired reffected impedance usually must be obtained by experimental adjustment.

When the load resistance has a very low value (say below 100 ohms) it may be connected in series in the resomant circuit (as in Fig. 2-39.L, for example), in which ase it is transformed to an equivalent parallel impedance as previously described. If the $(Q$ is at least 10 , the equivalent parallel impedance is

$$
Z_{\mathrm{r}}=\frac{x^{2}}{R}
$$

where $\boldsymbol{Z}_{r}=$ Resistive impedance at resonance
$X=$ Reartance (in ohms) of either the coil or eondenser
$R=$ Load resistance inserted in series

If the Q is lower than 10 the reactance will have to be adjusted somewhat, as desoribed previously, to obtain a resistive impedance of the desired value.

L/C Ratio

The formula for resonant frequenty of a cireuit shows that the same frequency always will be obtained so long as the product of L and C is constant. Within this limitation, it is evident that L ran be large and ('small, L small and ('large, etc. The relation between the two for a fixed irequency is called the L / C ratio. A high- C circuit is one which has more capacity than "normal" for the frequel ey: a low-C circuit one which has less than no mal capacity. These terms depend to a considerable extent upon the particular application considered, and have no exaet numerical meaning.

LC Constants

It is frequentiy convenient to use the numerical value of the LC constant when a number of calculations have to be made involving different L / C ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C=\frac{2 \tilde{5}, 3 ; 30}{f^{2}}
$$

where $L=$ Inductance in microhenrys ($\mu \mathrm{h}$.)
$C^{*}=$ Capacitance in micromicrofarads ($\mu \mu \mathrm{fd}$.)
$f=$ Frequency in megarycles
Example: Find the inductance required to resonate at $36 \mathrm{~h}^{2} \mathrm{ke}$ (3.65 Me .) with capacitances of $25, \bar{r} 0,100$, and $\overline{j 00} \mu \mu \mathrm{fd}$. The L, C constant is

$$
\begin{aligned}
& L C=\frac{25,330}{(3.65)^{2}}=\frac{25,330}{13.35}=1900 \\
& \text { With } \quad 25 \mu_{\mu} \mathrm{fd} . L_{L}=1900 / C=1000 / 25 \\
& =76 \mu \mathrm{~h} \text {. } \\
& 50 \mu \mu \mathrm{fd} . L=1900 / C=1900 / 50 \\
& =38 \mu \mathrm{~h} . \\
& 100 \mu \mu \mathrm{id} . L=1900 / C=1900 / 1100 \\
& =19 \mu \mathrm{~h} \text {. } \\
& 500 \mu \mu \mathrm{fd} . L=1900 / C=1900 / 500 \\
& =3.8 u \mathrm{~h} \text {. }
\end{aligned}
$$

COUPLED CIRCuITS

Energy Transfer and Loading

Two circuits are coupled when energy can be transferred from one to the other. The circuit delivering power is called the primary circuit; the one receiving power is called the secondary circuit. The power may be practically all dissipated in the secondary circuit itself (this is usually the case in receiver circuits) or the secondary may simply act as a medium through which the power is transferred to a load. In the latter case, the coupled cireuits may art as a radio-frequency impedance-matching device. The matching ran be accomplished by adjusting the loading on the secondary and by varying the amount of coupling between the primary and secondary.

Coupling by a Common Circuit Element

One method of coupling between two resonant circuits is through a circuit element common to both. The thee variations of this type of coupling shown at A, B and C of Fig. 2-42, utilize a common inductance, capacitance and resistance, respectively. Current circulating in one $L C$ branch flows through the common element ($L_{\mathrm{c}}, C_{\mathrm{c}}$ or R_{c}) and the voltage developed across this element causes current to flow in the other $L C$ branch.

(A)

Fig. 2-42 - Four methods of circnit coupling.
If both circuits are resonant to the same frequency, as is usually the case, the value of coupling reactance or resistance requived for maximum energy transfer is generally quite small compared with the other reactances in the circuits. The common-circuit-element method of coupling is used only occasionally in amateur apparatus.

Capacitive Coupling

In the circuit at D the coupling increases as the capacitance of C_{c}, the "coupling condenser," is made greater (reactance of C_{c} is decreased). When two resonant circuits are coupled by this means, the capacitance required for maximum energy transfer is quite small if the Q of the secondary circuit is at all high. For example, if the parallel impedance of the secondary circuit is 100,000 ohms, a reactance of 10,000 ohms or so in the condenser will give ample coupling. The corresponding capacitance required is only a few micromicrofarads at high frequencies.

Inductive Coupling

Figs. 2-43 and 2-44 show inductive coupling, or coupling by means of the mutual inductance between two coils. Circuits of this type resemble the
iron-core transformer, but because only a part of the magnetic flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold.

Two types of inductively-coupled circuits are shown in Fig. 2-43. Only one circuit is resonant. The circuit at A is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. Circuit IS is used principally in transmitters, for coupling a radiofrequency amplifier to a resistive load.

In these circuits the coupling between the primary and secondary coils usually is "tight" that is, the coefficient of coupling between the coils is large. With very tight coupling either circuit operates nearly as though the device to which the untuned coil is connected were simply tapped across a corresponding number of turns on the tuned-circuit ceil, thus either circuit is approximately equivalent to Fig. 2-41B.

I3y proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuned circuit may be adjusted to the value required for the proper operation of the device to which it is connected. In any case, the maximum energy transfer possible for a given coefficient of coupling is obtained when the reactance of the untuned coil is equal to the resistance of its load.

The Q and parallel impedance of the tuned circuit are reduced by coupling through an untuned coil in much the same way as by the tapping arrangement shown in Fig. 2-41B.

Coupled Resonant Circuits

When the primary and secondary circnits are both tuned, as in Fig. 2-44, the resonance effects in both circuits make the operation somewhat more complicated than in the simpler circuits just considered. Imagine first that the two circuits are not coupled and that each is independently tuned to the resonant frequency. The impedance of each will be purely resistive. If the primary circuit is connected to a source of r.f. energy of the resonant frequency and the secondary is then loosely coupled to the primary, a currrent will flow in the secondary circuit. In flowing through the resistance of the secondary circuit and any load

Fig. 2-43 - Single-tuned inductively-coupled circuits.
that may be commected to it, the current causes a power loss. This power must come from the energy source through the primary circuit, and manifests itself in the primary as an increase in the equivalent resistance in scries with the primary coil. Hence the Q and parallel impedance of the primary cireuit are decreased by the coupled secondary. As the coupling is made greater (without changing the tuning of either circuit) the coupled resistance beromes larger and the parallel impedance of the primary continues to decrease. Also, as the coupling is made tighter the amount of power transferved from the primary to the secondary will increase to a maximum at critical coupling, but then decreases if the coupling is tightened still more (still without changing the tuning).

Fig. 2.44 - Indurtively ecoupled resonant circuits. Circuit A is used for hightresistanue loads (at lpast several times the reactanee of either J_{2} or C_{2} at the resonamt frequentey). (ireait IS is suitathe for low resistance leads where the reactance of either L_{2} or C_{2} is at least meveral times the load resistance.

Critical coupling is a function of the (2s of the two circuits. A higher coefficient of coupling is required to reach critical coupling when the (s) arc low; if the (os are high, as in receiving applications, a coupling coefficient of a few per cent may give eritical roupling.

With loaded eireuits such as are used in transmitters the Q may be too low to give the desired power transfer even when the coils are coupled as tightly as the physiral constrution permits. In such case, inereasing the Q of either cireuit will be helpful, although it is generally better to increase the Q of the lower-(Q circuit rather than the reverse. The Q of the parallel-tuned primatry (input) circuit can be increased by decrasing the L / C ratio because, as shown in connection with Fig. 2-39, this circuit is in effect loaded by a parallel resistance (effect of coupled-in resist ance). In the parallet-tuned secondary circuit, Fig. 2-44A, the Q can be incrensed, for a fixed value of load resistance, either by decreasing the L / C ratio or by tapping the load down (see Fig. $2-41$). In the series-tuned secondary rircuit, Fig. $2-4413$, the ($)$ may be increased by increasing the L / C ratio.

There will generally be no difficulty in securing sufficient coupling, with practicable eoils, if the Q of each circuit is at least 10 . Smaller values will

Fig. 2.45 - Showing the effect on the output voltage from the serondary cirenit of changing the eqeflicient of coupling between two resonant circuits independently tuned to the same frequency. The voltage applied to the primary is held constant in amplitude while the fre. quency is varied, and the ontput voltage is measured across the secondary.
suffice if the coil construction permits tight coupling.

Selectivity

In Fig. 2-4:3 only one circuit is tuncd and the selectivity curve will be that of a single resomant circuit. As stated, the cffective Q depends upon the resistance connected to the untuned coil.

In Fig. 2-44, the selectivity is the same as that of a single tumed eireuit having a Q equal to the prowluct of the (Qs of the individual circuits - if the coupling is well below eritical and both circuits are tuned to resonance. The (2s of the individual circuits are afferted by the degree of coupling, because each couples resistane into the other: the tighter the coupling, the lower the individual (os and therefore the lower the over-all selectivity.

If both circuits are independently tuned to resonance, the over-all selectivity will vary about as shown in Fig. $2-45$ as the coupling is varied. With loose coupling, A, the output voltage (awross the secondary cireuit) is small and the selectivity is high. As the coupling is increased the secondary voltage also increases until critical coupling, B, is reached. At this point the output voltage at the resonant frequency is maximum but the selectivity is lower than with looser coupling. At still tighter coupling, C', the output voltage at the resonant frequency decreases, but as the frequency is varied either side of resonance it is found that there are two "humps", to the curve, one on either side of resonance. With very tight coupling, l, there is a further decrease in the output voltage at resonance and the "humps" are farther away from the resonant frequency. Curves such as those at (C and 1) are called flattopped because the output voltage dow not change much over an appreciable band of frequencies.

Note that the off-resonance humps have the same maximum value as the resonant output voltage at critical coupling. These humps are caused by the fact that at frequencies off resonance the secondary circuit is reactive and couples reactance as well as resistance into the primary. The coupled resistance decreases off resonance and the humps represent a new condition of eritical coupling, at a frequency to which the primary is detuned by the coupled-in reactance from the secondary.

Band-Pass Coupling

Over-coupled resonant circuits are useful where substantially uniform output is desired over a continuous band of frequencies, without readjustment of tuning. The width of the flat top of the resonance curve depends on the Qs of the two circuits as well as the tightness of coupling; the frequency separation between the humps will increase, and the curve become more flat-topped as the $Q s$ are lowered.

Band-pass operation also is secured by tuning the two rircuits to slightly different frequencies, which gives a double-humped resonance curve even with loose coupling. This is ealled stagger tuning. However, to secure adequate power transfer over the frequency band it is usually necessary to use tight coupling and adjust the two cireuits, by experiment, to give the desired performance.

Link Coupling

A modification of inductive coupling, called link coupling, is shown in Fig. 2-46. This gives the effect of inductive coupling between two coils that have no mutual inductance; the link is simply a means for providing the mutual inductance. The total mutual inductance between two coils coupled by a link canot be made as great as if the coils themselves were coupled. This is because the coefficient of coupling between aircore coils is considerably less than 1 , and since there are two coupling points the over-all coupling coefficient is less than for any pair of coils. In practice this need not be disadvantageous because the power transfer can be made great enough by making the tuned circuits sufficiently high-(e. Link coupling is convenient when ordinary inductive coupling would he impracticable for eonstructional reasons.

The link coils usually have a small number of turns compared with the resonant-circuit coils. The number of turns is not greatly important, because the corfficient of coupling is relatively independent of the number of turns on either coil; it is more important that both link coils should have about the same inductance. The length of the link between the coils is not critical if it is very small compared with the wavelength, but if the length is more than about one-twenticth of a wavclength the link operates more as a transmission line than as a means for providing mutual inductance. In such ease it should be treated by the methods deseribed in the chapter on Transmission I.ines.

Fig, 2-46 - Link coupling. The mutual inductances at both ends of the liak are equivalent to mutual induetance between the tuned circuits, and serve the same purpose.

Piezoelectric Crystals

A number of crystalline substances found in nature have the ability to transform mechanical strain into an clectrical charge, and vice versa. This property is known as piezoelectricity. A small plate or bar cut in the proper way from a quartz crystal, for example, and placed between two conducting electrodes, will be mechanically strained when the electrodes are connected to a source of voltage. Conversely, if the crystal is squeezed between two electrodes a voltage will develop between the electrodes.
liezoelectrie crystals can be used to transform mechanical energy into electrical energy, and vice versa. They are used, for example, in micruphones and phonograph pick-ups, where mechanical vibrations are transformed into alternating voltages of corresponding frequency. They are also used in headsets and loudspeakers, transforming electrical energy into mechanical vibration. Crystal plates for these purposes are cut from large erystals of Rochelle salts.

Fig. 2-47-Equivalent cireuit of a crystal resonator. I, C and K are the elertrical equivalents of medhanical properties of the erystal; Co is the capacitance of the electrodes nith the crystal plate tretween them.

Crystalline plates also are merhanical vibrators that have natural frequencies of vibration ranging from a few thousand cyeles to several megacyeles per second. The vibration frequency depends on the kind of crystal, the way the plate is cut from the natural crystal, and on the dimensions of the plate. Iecause of the piezoelectric effect, the crystal plate can be coupled to an electrical circuit and made to substitute for a coil-and-condenser resonant circuit. The thing that makes the crystal resonator valuable is that it has extrenely high Q, ranging from is to 10 times the Q s obtainable with good $L C$ resonant circuits.

Analogies can be drawn between various mechanical properties of the crystal and the eleetrical characteristics of a tuned eircuit. This leads to an "equivalent circuit" for the crystal. The electrical coupling to the crystal is through the electrodes between which it is sandwiched; these clectrodes form, with the crystal as the dielectric, a small condenser like any other condenser constructed of two plates with a dielectric between. The crystal itself is equivatent to a series-resonant circuit, and together with the capacitance of the electrodes forms the equivalent circuit shown in Fig. 2-47. The equivalent inductance of the crystal is extremely large and the series capacitance, C, is correspondingly low; this is the reason for the high Q of a crystal. The electrode capacitance, C_{h}, is so very large compared with the series capacitance of the crystal that it has only a very small effect on the resonant frequency.

Crystal plates for use as resonators in radiofrequency eircuits are almost always cut from quartz crystals, because for mechanical reasons quartz is by far the most suitable material for
this purpose. Quirtz crystals are used as resonators in receivers, to give highly-selective reception, and as frequency-controlling elements in transmitters to give a high order of frequency stability.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most radio circuits are built around vacuum tuhes, and it is the nature of these tubes to require direct current (usually at a fairly high voltage) for their operation. They convert the direct current into an alternating current (and sometimes the reverse) at frequencies varying from well down in the audio range to well up in the superhigh range. The conversion process almost invariably requires that the direct and alternating currents meet somewhere in the circuit.

In this meeting, the a.c. and d.c. are actually combined into a single current that "pulsates" (at the a.c. frequency) about an average value equal to the direct current. This is shown in Fig. 2-48. It is convenient to consider that the alternating current is superimposed on the direct current, so we may look upon the actual current as having two components, one d.c. and the other a.c.

Fig. 2-48- Pulsat ing, composed of an alternating current or soltage superimposed on a steady direct current or voltage.

In an alternating current the positive and negative alternations have the same average amplitude, so when the wave is superimposed on a direet current the latter is alternately increased and decreased by the same amount. There is thus no average change in the direct current. If a d.e. instrument is being used to read the eurrent, the reading will he exactly the same whether or not the a.c. is superimposed.

However, there is actually more power in such a combination current than there is in the direct current alone. This is because power varies as the square of the instantancous value of the current, and when all the instantancous squared values are averaged over a cycle the total power is greater than the d.c. power alone. If the a.e is a sine wave having a peak value just equal to the d.c., the power in the circuit is 1.5 times the d.e. power. An instrument whose readings are proportional to power will show such an increase.

In many circuits, also, we may have two alternating currents of different frequencies; for example, an audio frequency and a radio frequency may be combined in the same circuit. The two in turn may be combined with a direct current. In some cases, too, two r.f. currents of widelydifferent frequencies may be combined in the same cirruit.

Series and Parallel Feed

Fig. 2-49 shows in simplified form how d.c. and a.c. may be combined in a vacuum-tube circuit. (The tube is shown only in bare outline; so far as the d.c. is concerned, it can be looked upon as a resistance of rather high value. On the other hand, the tube may be looked upon as the generator of the a.c. The mechanism of tube operation is described in the next chapter.) In this case, it is assumed that the a.c. is at radio frequency, as suggested by the coil-and-condenser tuned circuit. It is also assumed that r.f. current can easily flow through the d.c. supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.

In the circuit at the left, the tube, tuned circuit, and d.c. supply all are connected in series. The direct current flows through the r.f. coil to get to the tube; the r.f. current generated by the tube flows through the d.c. supply to get to the tuned circuit. This is series feed. It works hecause the impedance of the d.c. supply at radio frequencies is so low that it does not affect the flow of $r . f$. current, and because the d.c. resistance of the coil is so low that it does not affect the flow of direct current.

In the circuit at the right the direct current does not flow through the r.f. tuned circuit, but instead goes to the tube through a sccond coil, RFC (radio-frequency choke). Direet current cannot flow through L because a blocking condenser, C, is placed in the circuit to prevent it. (Without C, the d.c. supply would be shostcircuited by the low resistance of L.) (on the other hand, the r.f. current generated by the tube can easily flow through C to the tuned circuit because the caparitance of C is intentionally chosen to have low reactance (compared with the impedance of the tuned circuit) at the radio frequency. The r.f. current cannot flow through the d.c. supply because the inductance of $R F^{\prime} C^{\prime}$ is intentionally made so large that it has a very high reactance at the radio frequency. The resistance of $R F C$, however, is too low to have an appre-

Fig. 2-49 - Illustrating series and parallel feed.

ELECTRICAL LAWS AND CIRCUITS

ciable effect on the flow of direct current. The two currents are thus in parailel, hence the name parallel feed.

Either type of feed may be used for both a.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit, a desirable feature from the viewpoint of safety to the operator, because the voltages applied to tubes - particularly transmitting tubes -- are dangerous. On the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is usually preferred, therefore, because it is relatively easy to keep the impedance between the a.c. circuit and the tube low.

By-Passing

In the series-feed circuit just discussed, it was assumed that the d.c. supply had very low impedance at radio frequencies. This is not likely to be true in a practical power supply, partly

\approx
Fig. 2-50-'Typical use of a by-pass condenser in a series-feed circuit.

\approx

because the normal physical separation between the supply and the r.f. circuit would make it necessary to use rather long connecting wires or leads. It radio frequencies, even a few feet of wire can have fairly large reactance - too large to be considered a really "low-impedance" connertion.

An actual circuit would be provided with a by-pass condenser, as shown in Fig. 2-i0. Condenser C is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short connecting wires. Hence the r.f. current will tend to flow through it rather than through the d.c. supply.

To be effective, the reactance of the by-pass condenser should not be more than one-tenth of the impedance of the by-passed part of the circuit. Very often the latter impedance is not known, in which case it is desirable to use the largest capacitance in the by-pass that circumstances permit. To make doubly sure that r.f. current will not flow through a non-r.f. circuit such as a power supply, an r.f. choke may be connected in the lead to the latter, as shown in Fig. 2-50.

The same type of by-passing is used when audio frequencies are present in addition to r.f. Because the reactance of a condenser changes with frequency, it is readily possible to choose a capaci-
tance that will represent a very low reactance at radio frequencies but that will have such high reactance at audio frequencies that it is practically an open circuit. A capacitance of $0.001 \mu \mathrm{fd}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies. (The actual value of capacitance that is usable will be morlified by the impedances concerned.) By-pass condensers also are used in audio circuits to carry the audio frequencies around a d.c. supply.

Distributed Capacitance and Inductance

In the discussions earlier in this ehapter it was assumed that a condenser has only capacitance and that a coil has only inductance. Unfortunately, this is not strictly true. There is always a certain amount of inductance in a conductor of any length, and a condenser is bound to have a little inductence in addition to its intended mpacitance. Also, there is always caparitance between two conductors or between parts of the same conductor, and thus there is appreciable capacitance between the turns of an inductance eoil.

This distributed inductance in a condenser and the distributed capacitance in a coil have important practical effects. Actually, every condenser is a tuned circuit, resonant at the frequency where its capacitance and distributed inductance have the same reactance. The same thing is true of a coil and its distributed capacitance. At frequencies well below these natural resonances, the condenser will act like a normal capacitance and the coil will act like a normal inductance. Near the natural resonant points, the coil and condenser act like self-tuned circuits. Above resonance, the condenser acts like an inductance and the coil acts like a condenser. Thus there is a limit to the amount of capacitance that can be used at a given frequency. There is a similar limit to the inductance that can be used. At audio frequencies, capacitances measured in microfarads and inductances measured in hemys are practicable. At low and medium radio frequencies, inductances of a few millihenrys and capacitances of a few thousand micromierofarads are the largest practicable. It high radio frequencies, usable inductance values drop to a few microhenrys and capacitances to a few hundred micromicrofarads.

Distributed capacitance and inductance are important not only in r.f. tuned circuits, but in by-passing and choking as well. It will be appreciated that a by-pass condenser that actually acts like an inductance, or an r.f. choke that arts like a condenser, cannot work as it is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a connection is said to be "grounded" it does not mean that it actually goes to earth (although in many cases such earth connections are used). What it means is that an actual earth comection
could be made to that point in the cireuit without disturbing the operation of the circuit in any way. The term also is used to indicate a "common" point in the eircuit where power supplies and metallic supports (such as a metal chassis) are electrically tied together. It is customary, for example, to "ground" the negative terminal of a d.e. power supply, and to "ground" the filament or heater power supplies for varuum tuhes. Since the cathode of a vacuum tube is a junction point for grid and plate voltage supplies, it is a natural point to "ground." Ako, since the various circuits connected to the tube elements have at least one print comerted to eathode, these points also are "returned to ground." "(iround" is therefore a conmon reference point in the radio circuit. "(iround potential" means that there is no "difference of potential" - that is, mo voltage - between the circuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a circuit may be either single-ended (umbalanced) or balanced. In a single-ended circuit, one side of the circuit is comected to ground. In a balanced circuit, the electrical midpoint is connected to

Fig. 2-inl - Single-ended and balanced circuits.
ground, so that the circuit has two ends each at the same voltage "above" ground.

Typical single-ended and balanced circuits are shown in Fig. 2-51. R.f. cireuits are shown in the upper row, while iron-core transformers (such as are used in power-supply and audio circuits) are shown in the lower row. The r.f. circuits may he balanced either by comnecting the center of the coil to ground or by using a "balanced" or "split-stator" condenser and connecting the condenser rotor to ground. In the iron-core transformer, one or both windings may be troped at the center of the winding to provide the ground connection.

In the single-ended cireuit, only one side of
the circuit is "hot" - that is, has a voltage that differs from ground potential. In the balanced circuit, both ends are "hot" and the grounded center point is at ground potential.

Shielding

Two circuits that are physically near each other usually will be roupled to each other in some degree even though no coupling is intended. The metallic parts of the two circuits form a small capacitance through which energy can be transferred by means of the electric field. Also, the magnetic field about the eoil or wiring of one circuit can couple that cireuit to a seeond through the latter's coil and wiring. In many cases these unwanted couplings must be prevented if the cireuits are to work properly.

Capacitive coupling may readily be prevented by enclosing one or both of the circuits in grounded low-resistance metallic containers, called shields. The clectric field from the circuit eomponents does not penctrate the shield. A metallic plate, called a baffle shield, inserted between two eomponents also may suffice to prevent electrostatie coupling between them. It should be large enough to make the components invisible to each other.

Similar metallic shielding is used at radio frequencies to prevent magnetic coupling. The shielding offect increases with frequency and with the conductivity and thickness of the shielding material.

A closed shied is required for good magnetic shielding; in some cases separate shields, one about each coil, may be required. The haffle shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, and between, the coils to be shielded from each other.

Shielding a coil reduces its inductance, because part of its field is canceled by the shield. Also, there is always a small amount of resistance in the shicld, and there is therefore an energy loss. This loss raises the offertive resistance of the eoil. The decrease in inductance and increase in resistance lower the (Q) of the coil. The reduction in inductance and ($)$ will be small if the shield is sufficiently far away from the eoil; the spacing between the sides of the coil and the shield should be at least half the coil diameter, and the spacing at the ends of the coil should at least equal the eoil diameter. The higher the conductivity of the shield material, the less the effeet on the inductanee and (). (opper is the best material, but aluminum is quite satisfactory.

For good magnetic shielding at audio frequencios it is necessary to enelose the coil in a container of high-permeability iron or steel. In this ease the shield can be quite close to the coil without harming its performance.

Modulation, Heterodyning and Beats

Since one of the most widespread uses of radio frequencies is the transmission of speech and music, it would be very convenient if the audio
spectrum to be transmitted could simply be shifted up to some radio frequency, transmitted as radio, waves, and shifted back down to the audio sper-
trum at the receiving point. Suppose the audio signal to be transmitted by radio is a pure $1000-$ cycle tone, and we wish to transmit it at some frequency around 1 Mc . ($1,000,000$ cycles). ()ne possible way might be to add $1,000,000$ cycles and 1,000 cycles together, thereby obtaining a radio frequency of $1,001,000$ cycles. Unfortunately, no simple method for doing such a thing directly has ever been devised, although the effect is obtained and used in some advanced conmunications terhniques.

Actually, when two different frequencies are present simultancously in an ordinary circuit (sperifically, one in which Ohm's Iaw holds) each behaves as though the other were not there. It is true that the total or resultant voltage (or current) in the circuit will he the sum of the instantaneous values of the two at every instant. This is because there can be only one value of current or voltage at any single point in a circuit at any instant. Fig. $2-52$ it and I3 show two such frequencies, and C shows the resultant. The amplitude of the $1,000,000-$ revele current is not afferted by the presence of the 1000 -cyole current, but merely has its axis shifted bark and forth at the 1000-cycle rate. An attempt to transmit such a

combination as a radio wave would result aimply in the transmission of the $1,000,000$-cycte frequency, since the 1000 -rycle frequency retains its identity as an audio frequency and hence will not be radiated.
There are devices, however, which make it possible for one frequency to control the amplitude of the other. If, for example, a 1000 -cycle tone is used to control a l-Mc, signal, the maximum r.f. output will be obtained when the 1004 -cycle signal is at one peak and the minimum will oceur at its other peak. The process is called amplitude modulation, and the effect is shown in Fig. 2-5'2I). The resultant signal is now entirely at radio frequency, but with its amplitude varying at the modulation rate (1000 cycles). Receiving equipment adjusted to receive the $1,000,000$-cycle r.f. signal can reproduce these changes in amplitude, and thus tell what the audio signal is, through a process called detection or demodulation.

It might be ässumed that the only radio frequency present in such a signal is the original l,000,000 cyrles, but surh is not the case. It will be found that two new frequencies have appeared. These are the sum $(1,000,000+1000)$ and difference ($1,000,000-1000$) frequencies, and hence the radio frequencies appearing in the circuit after modulation are $999,000,1,000,000$ and 1,001,000 cycles.

Many circuits have been devised for obtaining amplitude modulation, and they will be treated in detail in later chapters. When an audio frequency is used to control the amplitude of a radio frequency, the process is generally called "amplitude modulation," as mentioned previously, but when a radio frequency modulates another radio frequency it is called heterodyning. However, the processes are identical. 1 general term for the sum and difference frequencies generated during heterodyning or amplitude modulation is "beat frequencies," and a more specific one is upper side frequency, for the sum frequency, and lower side frequency for the difference frequency.

In the simple example, the modulating signal was assumed to be a pure tone, but the modulating signal can just as well be a band of frequencies making up speech or music. In this case, the side frequencies are grouped into what are called the upper sideband and the lower sideband. In any case, the frequency that is modulated is called the carrier frequency.

In A, B, C and D of Fig. 2-52, the sketches are obtained by plotting amplitude against time. However, it is equally helpful to be able to visualize the spectrum, or what a plot of amplitude vs. frequency looks like, at any given instant of time. $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and II of Fig. 2-52 show the signals of Fig. 2-52A, B, C and D on an amplitude-vs.frequency basis. Any one frequency is, of course, represented by a vertical line. Fig. 2-52H shows the side frequencies appearing as a result, of the modulation process.
Amplitude modulation (AM) is not the only possible type nor is it the only one in use. This and other types of modulation are treated in detail in later chapters.

Fig. 2-52-Amplitude-rs.-time and amplitude-rs.frequency plots of various signals. (A) $11 / 2$ eycles of a 1000 -cycle signal. (13) A $1,000,000$-cyele signal plotted to the same seale as A. Because there are 1500 cyeles during this time, they cannot be ghown accurately. (C) The signals of A and B flowing in the same circuit. (D) The signals of A and 13 conbined in a eircuit where A can control the amplitude of B . The $1,000,000$-cycle signal is modulated by the 1000 ocycle signal. (E), (F), (G). (H) Amplitude-vs.-frequency plots of the signals in A, B, C and D.

CHAPTER 3

Vacuum-Tube Principles

- CURRENT IN A VACUUM

The outstanding difference between the varuum tube and most other electrical devices is that the electric current does not flow through a conductor but through empty space - a vacuum. This is only possible when "free" electrons - that is, electrons that are not attached to atoms - are somehow introduced into the vacuum. Free electrons in an evacuated spare will be attracted to a positivelycharged object within the same space, or will be repelled by a negatively-charged object. The movement of the electrons under the attraction or repulsion of such charged objects constitutes the current in the vacuum.

The most practical way to introduce a suffi-ciently-large number of electrons into the evacuated spare is by thermionic emission.

Thermionic Emission

If a thin wire or flament is heated to incandescence in a vacuum, electrons near the surfare are given enough energy of motion to fly off into the surrounding space. The higher the temperature, the greater the number of electrons emitted. A more general name for the filament is cathode.

If the cathode is the only thing in the vacuum, most of the emitted electrons stay in its inmediate vicinity, forming a "cloud" about the cathode. The reason for this is that the electrons in the space, being negative electricity, form a negative charge (space charge) in the region of the cathode. The space charge repels

lepresentative tube types. The miniature, metalenvelope and small glass tuhes in the foreground are receiving types. The two tubes with connections at the top of the bulb, lying down, are transmitting triodes of moderate power ratinge. Whose in the rear are trams-mitting-type beam tetrodes.
those electrons nearest the cathode, tending to make them fall back on it.

Now suppose a second conductor is introduced into the vacuum, but not comnected to anything else inside the tube. If this second conductor is given a positive charge by connecting a source of e.m.f. between it and the

Fig. 3-1 - Conduction by thermionic emission in a vacuum tube. One hattery is used to heat the filament to a temperature that will canse it to emit elcetrons. The other battery makes the plate positive with respect to the filament, therchy causing the emitted elcetrons to be attracted to the plate. Flectrons captured by the plate flow back through the battery to the filament.
cathode, as indicated in Fig. 3-1, electrons emitted by the cathode are attracted to the positivelycharged conductor. An electric current then flows through the circuit formed by the cathode, the charged conductor, and the source of e.m.f. In Fig. ?-1 this e.m.f. is supplied by a battery ("B" battery); a second battery ("A" battery) is also indicated for heating the cathode or filament to the proper operating temperature.

The positively-charged conductor is usually a metal plate or cylinder (surrounding the cathode) and is called an anode or plate. Iike the other working parts of a tube, it is a tube element or electrode. The tube shown in Fig. $3-1$ is a two-element or two-electrode tube, one element being the cathode or filament and the other the anode or plate.

Since electrons are negative electricity, they will be attracted to the plate only when the plate is positive with respect to the cathode. If the plate is given a negative charge, the electrons will be repelled back to the cathode and no current will flow. The vacuum tube therefore can conduct only in one direction.

Cathodes

Before electron emission can occur, the cathode must be heated to a high temperature. However, it is not essential that the heating cur-

Fig. 3.2-1'ypes of cathode constmetion. Dirertly-heated rathodes or filaments are shown at A, B, and C. The inverted V filament is used in small receiving tules, the M in both receiving and transinitting tules. The spiral filament is a transmittingtube type. The indirectly heated cathodes at 1) and F, show two types of heater construction, one a twisted loop and the other hunched heater wires. Both types tend to caneel the magnetic ficleds set un by the current throngh the heater.
rent flow through the actual material that does the enitting; the filament or heater can be electrically separate from the emitting cathode. such a cathode is called indirectly heated, while an emitting filament is called directly heated. Fig. 3-2 shows both types in the forms in which they are commonly used.

Much greater electron emission can be obtained, at relatively low temperatures, by using special cathode materials rather than pure metals. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. Still greater efficiency is achieved in the oxide-coated cathode, a cathode in which rare-earth oxides form a roating over a metal hase.

Although the oxide-roated cathode has much the highest efficiency, it can be used successfully only in tubes that operate at rather low plate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tubes.

Plate Current

If there is only a small positive voltage on the plate, the number of electrons reaching it will he small because the space charge (which is negative) prevents those electrons nearest the rathode from being attracted to the plate. As the plate voltage is increased, the effect of the space charge is increasingly overcome and the number of electrons attracted to the plate becomes larger. That is, the plate current increases with increasing plate voltage.

Fig. :3-3 shows a typical plot of plate current vs. plate voltage for a two-element tube or diode. A curve of this type ran be obtained with the circuit shown, if the plate voltage is increased in small steps and a current reading taken (by means of the current-indicating instrument - a "milliammeter") at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has substantially overcome the space charge and
almost all the electrons are going to the plate. At higher voltages the plate current stays at practically the same value.

The plate voltage multiplied by the plate current is the power input to the tube. In a circuit like that of Fig. $3-3$ this power is all used in heating the plate. If the power input is large, the plate temperature may rise to a very high value (the plate may become red or even white hot). The heat developed in the plate is radiated to the bulb of the tube, and in turn radiated by the bulb to the surrounding air.

- rectification

Since eurrent can flow through a tute in only one direction, a diode can be used to change alternating eurrent into direct current. It does this by permitting current to flow when the phate is positive with respect to the cathode, but by shutting off current flow when the plate is negative.

Fig. :3-4 shows a representative circuit. Alternating voltage from the secondary of the transformer, ' $?$ ', is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with a.c., but current flows through the tube and R only when the plate is positive with respect to the cathode - that is, during the half-cycle when the upper ead of the transformer winding is positive. During the negative half-cycle there is simply a gap in the current flow. This rectified alternating current therefore is an intermittent direct current.

The load resistor, R, represents the actual circuit in which the rectified alternating current does work. All tubes work into a load of one type or another; in this respect a tube is much like a generator or transformer. A circuit that did not provide a load for the tube would be like a short-circuit across a transformer: no useful purpose would he accomplished and the only result would be the generation of heat in the transformer. So it is with vacuum tubes; they must deliver power to a load in order to serve a useful purpose. Also, to be efficient most of the power must do useful work in the load and not he used in heating the plate of the tube. This means that most of the voltage should appear as a drop across the load rather than as a drop between the plate and cathode.

Fig. 3-3 - The diode, or two-element tube, and a typical enrve showing how the plate current depends upon the voltage applisd to the plate.

With the diode comnerted as shown in Fig. 3-4, the polarity of the voltage drop arcoss the load is such that the end of the load nearest the athode is positive. If the comnections to the diode elements atre reversed, the dirortion of rectified current flow also will be reversed through the load.

Fig. 3-4 - Rectification in a diode. Cinrent flowe only when the plate is positive with respect to the cathode, so that only half-cyeles of current flow through the load reristor, R.

Vacuum-Tube Amplifiers

- TRIODES

Grid Control

If a third element - called the control grid, or simply grid - is inserted between the rathode and plate an in Fig. 3-5, it ean be used to control the effect of the space charge. If the grid is given a positive voltage with resperet to the eathode, the powitive charge will tend to neutralize the mogative space eharge. The

Fis. $3.5-\mathrm{Construction}$ of an elementary triode sammen tube, showing the filament, grid (with an end view of the grid wires) and plate. 'Ihe relative density of the space charge is indicated roughly by the dot density.
result is that, at any selected plate voltage, more electrons will flow to the plate than if the grid were not present. On the other hand, if the grid is made negative with respect to the cathode the negative charge on the grid will add to the space charge. This will reduce the number of electrons that can reach the plate at any selerted plate voltage.

The grid is inserted in the tube to control the space charge and not to attract electrons to itself, so it is made in the form of a wire mesh or spiral. bleetrons then call go through the open spaees in the grid to reath the plate.

Characteristic Curves

For any particular tule, the effect of the grid voltage on the plate current ean be shown by a set of characteristic curves. A typical set of eurves is shown in Fig. :3-6, together with the circuit that is used for getting them. For each value of plate voltage, there is a value of negative grid voltage that will reduce the plate eurrent to zero; that is, there is
a value of negative grid voltage that will cut off the plate current.

The rurver rould be extended by making the grid voltage positive as well as megative. When the grid is negative, it repels electrons and therefore none of them reaches it ; in other words, no current flows in the grid circuit. However, when the grid is positive, it attracts electrons and a current (grid current) flows, just as current flows to the prsitive plate. Whenever there is grid current there is an acompanying power luss in the grid circuit, but solong as the grid is negative no power is used.

It is ohvious that the grid can ant as a valve to control the flow of phate current. Actually, the grid has a much greater effect on phate current flow than does the phate voltage. I small change in grid voltage is just as effective in bringing about a given change in plate current as is a large chatnge in plate voltage.

The fact that a small voltage aeting on the grid is equivalent to a large voltage arting on the plate indieates the possibility of amplification with the triode tube. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplified output is not obtaned from the tule itself, but from the source of e.m.f. connected between its pate and cathode. The tule simply comtrols the power from this source, changing it to the desired form.

To utilize the controlled power, a load must be comnerted in the plate or "output" eircuit, just as in the diode anse. The load may be

Fig 3-6 - Grid-vohage-ts, -plate-current rurves at various fixed values of plate voltage (E_{1}) for a typiral small triode. Characteristic curves of this type can le taken by varying the hattery voltages in the circuit at the right.
either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the griel voltage has just as much effect on the plate current as a very large change in plate voltage, the tube is said to have a high amplification factor. . Implifiecttion factor is commonly designated by the (ireek letter μ. In amplification fartor of 20 , for example, means that if the grid voltage is changed by 1 volt, the effect on the plate current will be the same as when the plate voltage is changed by 20 volts. The amplification factors of triode tubes range from 3 to 100 or so. 1 high- μ tube is one with an amplification factor of perhaps :30 or more; medium- μ tubes have amplification factors in the approximate range 8 to 30 , and low- μ tubes in the range below 7 or 8 .

It would be natural to think that a tube that has a large μ would be the best amplifior, but to obtain a high μ it is nevessary to construct the grid with many turns of wire per inch, or in the form of a fine mesh. This leaves a relatively small open area for electrons to go through to roach the plate, so it is diflicult for the plate to attract large numbers of electrons. Quite a large change in the plate voltage must be made to effert a given change in plate current. This mouns that the resistance of the plate-cathode path - that is, the plate resistance - of the tube is high. Since this resistance acts in series with the load, the amount of current that can be made to flow through the load is relatively small. On the other hand, the plate resistance of a low- μ tube is relatively low.

The best all-around indication of the effectiveness of the tube as an amplifier is its transconductance - also called mutual conductance. This characteristic takes account of both amplification factor and plate resistance, and therefore is a figure of merit for the tube. Transcondurtance is the change in plate current divided by the change in grid voltage that causes the platecurrent change (the plate voltage being fixed at a desired value). Since current divided by voltage is conductance, transconductance is measured in the unit of conductance, the mho. Irantical values of transconductance are very small, so the micromho (one-millionth of a mho) is the commonly-used unit. Different types of tubes have transconductances ranging from a few hundred to several thousand. The higher the transconductance the greater the possible amplification.

AMPLIFICATION

The way in which a tube amplifies is best shown by a type of graph called the dynamic characteristic. Such a graph, together with the
circuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this circuit and the one shown in Fig. 3-6 is that in Fig. 3-7 a load resistance is connected in series with the plate of the tube. Fig. 3-7 thus shows how the plate current will vary, with different grid voltages, when the plate current is made to flow through a load and thus do useful uerk.

Fig. 3-7- Dynamic characteristics of a small triode with various load resistances from 5000 to 100,000 ohms.

The several curves in Fig. 3-7 are for various values of load resistance. When the resistance is small (as in the rase of the $5000-\mathrm{ohm}$ load) the plate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the same grid-voltage change is relatively small, so the curve tends to be straighter.
lig. :3-8 is the same type of curve, but with the circuit arranged so that a source of alternating voltage (signal) is inserted between the grid and the grid battery ("C" battery). The voltage of the grid battery is fixed at -5 volts, and from the curve it is seen that the plate current at this grid voltage is 2 milliamperes. This current flows when the load resistance is 50,000 ohms, as indicated in the circuit diagram. If there is no a.e. signal in the grid circuit, the voltage drop in the load resistor is $30,000 \times 0.002=100$ volts, leaving 200 volts between the plate and cathode.

When a sime-wave signal having a peak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantaneous voltage at the grid will swing to -3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negative peak. The maximum plate current will occur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2.65 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of 1.35 ma . At intermediate values of grid voltage, intermediate plate-current valurs will occur.

The instantaneous voltage between the plate

Fig. 3-8 - Amplifier operation. When the plate eurrent varies in response to the signal applied to the grid, a varying voltage drop appears across the load, K_{p}, as shown liy the dashed curve, E_{p}. I_{p} is the plate eurrent.
and cathode of the tube also is shown on the graph. When the plate current is maxinum, the instantaneous voltage drop in R_{p} is 50,000 $\times 0.00265^{5}=132.5$ volts; when the plate rurrent is minimum the instantaneous voltage drop in R_{p} is $50,000 \times 0.001: 35=67.5$ volts. The actual voltage between plate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load resistance. The plate-to-cathode voltage is therefore 167.5 volts at maximum plate current and 232.5 volts at minimum plate current.
This varying plate voltage is an a.c. voltage superimposed on the steady plate-cathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this a.c. output voltage is the difference between either the maximum or minimum plate-cathode voltage and the no-simal value of 200 volts. In the illustration this difference is $232.5-200$ or $200-$ 167.5; that is, 32.5 volts in either case. Since the grid signal voltage has a peak value of 2 volts, the voltage-amplification ratio of the amplifier is $32.5 / 2$ or 16.25 . That is, approximately 16 times as much voltage is obtained from the plate cireuit as is applied to the grid circuit.

As shown by the drawings in Fig. 3-8, the alternating component of the plate voltage swings in the negutive direction (with reference to the no-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (called grid bias) in Fig. 3-8 serves a very useful purpose. One object of the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveshape as the signal voltage applied to the grid. To do so, an operating point on the straight part of the curve must be selected. The curve nust be straight in both directions from the operating point at least far enough to accommodate the maximum value of the signal applied to the grid. If the grid signal swings the plate current back and forth over a part of the curve that is not straight, as in Fig. 3-9, the shape of the a.e. wave in the plate circuit will not be the same as the shape of the grid-signal wave. In such a case the output waveshape will be distorted.

I second reason for using negative grid bias is that any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid cannot cause grid current to flow. With no current flow there is no power consumption, so the tube will amplify without taking any pouer from the signal source. (However, if the positive peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive.)

Distortion of the output waveshape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effect of transforming a sine-wave grid signal into a more complex waveform. As explained in an earlier chapter, a complex wave can be resolved into a fundamental and a series of harmonics. In other words, distortion from nonlinearity causes the generation of harmonic frequencies - frequencies that are not present in the signal applied to the grid. Harmonic distortion is undesirable in most amplifiers, although

Fig. 3-9-1larnonic di-tortion resulting from choier of an operating point on the curved part of the tuber characteristic. The lower falf-cyele of phate current dores not have the same shape as the upper half-ryele.
there are occasions when harmonics are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating component of plate current or plate voltage. The d.c. voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would cause difficulties if it were applied, along with the a.c. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.c. is transferred to the load but the d.c. is not.

Three types of eoupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. 3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.

In the resistance-coupled circuit, the a.c. voltage developed across the plate resistor R_{p} (that is, between the plate and cathode of the tube) is applied to a second resistor, R_{g}, through a coupling condenser, C_{c}. The condenser "blocks off" the d.c. voltage on the plate of the first tube and prevents it from being applied to the grid of tube B. The latter tube has negative grid bias supplied by the battery shown. No current flows in the grid circuit of tube B and there is therefore no d.c. voltage drop in R_{g}; in other words, the full voltage of the bias battery is applied to the grid of tube B.

The grid resistor, R_{g}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling condenser, ('s, must be low enough compared with the resistance of R_{g} so that the a.c. voltage drop in C_{c} is negligible at the lowest frequency to be amplified. If R_{g} is at least 0.5 megohm, a $0.1-\mu \mathrm{fd}$. condenser will be amply large for the usual range of audio frequencies.

So far as the alternating component of plate voltage is concerned, it will he realized that if the voltage drop in C_{c} is negligible then R_{p} and R_{g} are effectively in parallel (although they are quite separate so far as d.c. is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why R_{g} is made as high in resistance as possible; then it will have the least effect on the load represented by R_{p}.
The impedance-coupled circuit differs from that using resistance coupling only in the substitution of a high-inductance coil (usually several hundred henrys for audio frequencies) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.c. It thus permits obtaining a high value of load impedance for a.c. without an excessive d.c. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary connected in the plate

Fig. 3-10-Three hasic forms of coupling between vacuum-tube amplifiers.
circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direct connection between the two windings, so the plate voltage on tube A is isolated from the grid of tube 13. The trans-former-coupled amplifier has the same advantage as the impedance-compled circuit with respect to loss of voltage from the plate supply. Also, if the secondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example. Impedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range; it tends to "peak," or give maximum gain, over a comparatively narrow band of frequencies. With a good transformer the gain of a trans-former-coupled amplifier can be kept fairly constant over the audio-frequency range. On the
other hand, transformer coupling in voltage amplifiers (see below) is best suited to triones having amplification factors of about 10 or less, for the reason that the primary inductance of a practicable transformer cannot be made large enough to work well with a tuhe having high plate resistance.

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Maximum voltage gain is secured when the load resistance or impedance is made as high ats possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage generated will appear across the load and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group called Class A amplifiers. I Class A amplifier is one operated so that the waveshape of the output voltage is the same as that of the signal voltage applied to the grid. If a Classo 1 amplifier is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is called a Class A_{1} amplifier. Voltage amplifiers are always Class Λ_{1} amplifiers, and their primary use is in driving a following Class L_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some work. For example, an audio-frequency amplifier usually drives a loudspeaker that in turn produces sound waves. The greater the amount of a.f. pouer supplied to the 'speaker, the louder the sound it will produce.

Fig. 3.11-An elementary power-amplifier circuit in which the power-consimming load is coupled to the plate circuit through an impedanee-matehing transforner.

Fig. 3-11 shows an elementary power-amplifier eircuit. It is simply a transformer-coupled amplifier with the load connected to the secondary. Although the load is shown as a resistor, it artually would the some device, such as a loudspeaker, that employs the power usefully. livery power tube requires a specific value of load resistance from plate to cathode, usually some thousands of ohms, for optimum operation. The resistance of the actual load is rarely the right value for "matching" this optimum load resistance, so the transformer turns ratio is chosen to reflect the proper value of resistance into the prinary. The turns ratio may be either step-up, or step-down, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power required from the a.ce. signal in the grid circuit. There is no power lost in the grid circuit of a Class λ_{1} amplifier, so such an amplifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a Class A amplifier in such a way that current flows in its grid rircuit during at least part of the eycle. In such a case power is used up in the grid circuit and the power amplification ratio is mot infinite. I tube operated in this fashion is known as a Class A_{2} amplifier. It is necessary to use a power amplifier to drive a (class A_{2} amplifier, berause a voltage amplifier cannot deliver power without serious distortion of the wave-shape.

Another term used in connection with power amplifiers is power sensitivity. In the case of a Chass λ_{1} amplifier, it means the ration of powe output to the grid signal voltage that causes it. If grid current flows, the term usually means the ratio of plate power output to grid power input.

The a.c. power that is delivered to a load by an amplificr tube hats to be paid for in power taken from the source of phate voltage and current. In fact, there is always more power going into the plate circuit of the tube than is coming out as useful output. The difference between the input and output power is used up, in heating the plate of the tube, as explained previously. The ratio of useful power output to d.e. plate input is called the plate efficiency. The higher the plate efficiency, the greater the amount of power that can be taken from a tube having a fixed plate-dissipation rating.

Parallel and Push-Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tules may be connected in parallel. In this case the similar elements in all tubes are connected together. This method is shown in lig. 3-12 for a transformer-coupled amplifier. The power output is in proportion to the number of tubes used; the grid signal or exciting voltage recpuired, however, is the same as for one tube.

If the amplifier operates in such a way ans to consume power in the grid circuit, the grid power required is in proportion to the number of tubes used.

In incerase in power output also can be secured by commerting two tubes in push-pull. In this case the grids and plates of the two tubes are commected to opposite ends of a balanced eircuit as shown in Fig. 3-12. At any instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite polarity with respect to the cathode connection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Hence, in any push-pull-connected amplifier the voltages and currents of one tube are out of phase with those of the other tube.

Push-Pull
Fig. 3-12 - Parallel and phth-pull a.f. amplifier circuits.
In push-pull operation the even-harmonic (second, fourth, etc.) distortion is balanced out in the plate dircuit. 'l'his means that for the same power ontput the distortion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twice that required for one tube. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a signal on the grid of a second amplifier, then take the second amplifier's output and apply it to a third, and so on. biach amplifier is called a stage, and a number of stages used successively are said to be in cascade.

Class B Amplifiers

Fig. :3-13 shows two tubes connected in a push-pull circuit. If the grid bias is set at the point where (when no signal is applied) the phate current is just cut off, then a signal cim cause plate current to flow in either tube aml! when the signal voltage applied to that particular tube is positive. Nince in the balanced grid circuit the signal voltages on the grids of the two tubes always have opposite polarities, phate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite direction, through the primary of the output transformer, to the plate current of tube A. Thus each half of the output-transformer primary works alternately to induce a half-eycle of voltage in the secondary. In the secondary of T_{2}, the original waveform is restored. This type of operation is called Class B amplification.

The Class I3 amplifier is considerably more efficient than the Class I amplifier. Further-
more, the d.e. plate current of a Class B amplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.c. plate power input to a Class A amplifier is the same whether the signal is large, small, or absent altogether; therefore the maximum input that can be applied to a Class A amplifier is equal to the rated plate dissipation of the tube or tubes. Two tubes in a Class I3 amplifier can deliver approximately twelve times as much audio power as the same two tubes in a Class I amplifier.

I Class Is amplifier usually is operated in such a way as to secure the maximum possible power output. This requires rather large values of plate current and to obtain them the grids must be driven positive with respect to the cathode during at least part of the cycle, so grid current flows and the grid circuit consumes power. While the power requirements are fairly low (as compared with the power output), the fact that the grids are positive during only part of the cycle means that the load on the preceding amplifier or driver stage varies in magnitude during the cycle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when designing the driver.

Certain types of tubes have been designed specifically for Class B service and can be operated without fixed or other form of grid bias ("zero-bias" tubes). The amplification factor is so high that the plate current is small without signal. Because there is no fixed bias, the grids start drawing current immediately whenever a sigual is applied, so the grid-current flow is rontinuous throughout the cycle. This makes the load on the driver much more constant than is the case with tubes of lower μ biased to platecurrent cut-off.

Class I3 amplifiers used at radio frequencies are known as linear amplifiers because they are

Fig. 3-13-Class B amplifier operation.
adjusted to operate in such a way that the power output is proportional to the square of the rif. exciting voltage. This permits amplification of a modulated r.f. signal without distortion. Pushpull is not required in this type of operation; a single tube can be used equally well.

Class AB Amplifiers

A Class AB amplifier is a push-pull amplifier with higher bias than would be normal for pure Class I operation, but less than the cut-off bias required for Class 13. At low signal levels the tubes operate practically as Class A amplifiers, and the plate current is the same with or without sigmal. It higher signal levels, the plate current of one tube is cut off during part of the negotive cycle of the signal applied to its grid, and the plate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly-designed class AB amplifier the distortion is as low as with a Class A stage, but the efficiency and power output are considerably higher than with pure Class i operation. A (llass AI amplifier ran be operated either with or without driving the grids into the positive region. A Class AB_{1} amplifier is one in which the grids are never positive with respect to the cathode; therefore, no driving power is required - only voltage. A Class $A B_{2}$ amplifier is one that has grid-current flow during part of the eycle if the applied signal is large; it takes a small amount of driving power. The Class AB_{2} amplifier will deliver somewhat more power (using the same tubes) but the Class AB_{1} amplifier avoids the problem of designing a driver that will deliver power, without distortion, into a load of highly-variable resistance.

Operating Angle

Inspection of Fig. 3-13 shows that either of the two tubes actually is working for only half the a.c. cycle and idling during the other half. It is convenient to describe the amount of time during which plate current flows in terms of electrical degrees. In Fig. 3-13 each tube has "180-degree" excitation, a half-cyde being equal to 180 degrees. The number of degrees during which plate current flows is called the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360-degree excitation, herause plate current flows during the whole cycle. In a Class Als amplifier the operating angle is between 180 and 360 degrees (in each tube) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becomes.

An operating angle of less than 180 degrees leads to a considerable amount of distortion, because there is no way for the tube to reproduce even a half-cycle of the signal on its grid. ['sims two tubes in push-pull, as in Fig. 3-13, would merely put together two distorted half-cycles. An operating angle of less than 180 degrees
therefore camot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the r.f. waveform is relatively unimportant. For reasons described later in this chapter, an r.f. amplifier must be operated with tuned circuits, and the selectivity of such circuits "filters out" the r.f. harmonies resulting from distortion.

A radio-frequency power implifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the phate efficiency is increased, because the loss in the plate is proportional, among other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class (; amplifier ranges from about 1500 to 5000 ohms. It is usually secured by using tuned-circuit arrangements, of the type described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the pesitive region, so that grid current flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The best compromise between driving power, plate elficiency, and power output usually results when the minimum plate voltage (at the peak of the driving cycle, when the plate current reaches its highest value) is just equal to the peak positive grid voltage. Cnder these conditions the operating angle is usually from 150 to 180 degrees and the plate efficiency lies in the range of 70 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate. voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Class C, amplifier can be made to operate in such a way that the power input and output are proportional to the square of the applied plate voltage. This is an important consideration when the amplifier is to be plate-modulated for radiotelephony, as described in the chapter on amplitude modulation.

FEED-BACK

It is possible to take a part of the amplified energy in the plate cireuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is said to have feed-back.

If the voltage that is inserted in the grid circuit is 180 degrees out of phase with the signal voltage acting on the grid, the feed-back is called negative, or degenerative. On the other hand, if the voltage is fed back in phase with the grid signal, the feed-back is called positive, or regenerative.

Negative Feed-Back

With negative feed-back the voltage that is fed back opposes the signal voltage. This decreases the amplitude of the voltage acting between the grid and cathode and thus has the effect of reducing the voltage amplification. That is, a larger exciting voltage is required for obtaining the same output voltage from the plate circuit.

The greater the amount of negative feed-back (when properly applied) the more independent the amplification becomes of tube characteristics and circuit conditions. This tends to make the frequency-response characteristic of the amplifier flat - that is, the amplification tends to be the same at all frequencies within the range for which the amplifier is designed. Also, any distortion generated in the plate circuit of the tube tends to "buck itself out." Implifiers with negative feed-back are therefore comparatively free from harmonic distortion. These advantages are worth while if the amplifier otherwise has enough voltage gain for its intended use.

Fig. 3-14 - Simple circuits for producing feed-back.
In the circuit shown at A in Fig. $3-14$ resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across R_{o}. Ilowever, R_{c} also is connected in series with the grid circuit, and so the output voltage that appears across R_{c} is in series with the signal voltage. The output voltage across R_{c} opposes the signal voltage, so the actual a.c. voltage between the grid and cathode is equal to the difference between the two voltages.

The circuit shown at B in Fig. 3-14 can be used to give either negative or positive feed-back. The secondary of a transformer is connected back into the grid circuit to insert a desired amount of feed-back voltage. Reversing the terminals of either transformer winding (but not both simultaneously) will reverse the phase.

Positive Feed-Back

Positive feed-back increases the amplification because the feed-back voltage adds to the original signal voltage and the resulting larger voltage on
the grid causes a larger output voltage. The amplification tends to be greatest at one frequency (depending upon the particular circuit arrangement) and harmonic distortion is increased. If enough energy is fed back, a selfsustaining oscillation - in which energy at essentially one frequency is generated by the tube itself - will be set up. In such case all the signal voltage on the grid can be supplied from the plate circuit; no external signal is needed because any small irregularity in the plate current - and there are always some such irregularities - will be amplified and thus give the oscillation an opportunity to build up. Oscillations obviously would be undesirable in an ordinary andiofrequency amplifier, and for that reason (as well as the others mentioned above) the use of pusitive feed-back is confined principally to "oscillators."

INTERELECTRODE CAPACITANCES

Each pair of clements in a tube forms a small condenser, with cach element acting as a condenser "plate." There are three sucl capacitances in a triode - that between the grid and cathode, that between the grid and plate, and that between the plate and cathode. The capacitances are very small - only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.c. grid voltage and a.c. plate voltage of an amplifier having a resistive load are 180 degrees out of phase, using the cathode of the tube as a relerence point. However, these two voltages are in phase going aronnd the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is acting between the grid and plate; that is, across the grid-plate capacitance of the tube.

As a result, a capacitive current flows around the circuit, its amplitude being directly proportional to the sum of the a.c. grid and plate voltages and to the grid-plate capacitance. The source of grid signal must furnish this amount of current, in addition to the capacitive current that flows in the grid-athode capacitance. Hence the signal source "sees" an effective capacitance that is larger them the grid-cathode capacitance. The greater the voltage amplification the greater this effective input capacitance. The input capaci-

Fip. 3-15 - The a.c. voltage appearing between the grid and plate of the amplifier is the sum of the signal voltage and the output voltage, as shown by this sim. plified circuit. Instantaneous polarities are indicated.
tance of a resistance-coupled amplifier is given by the formula
$C_{\text {input }}=C_{\text {xk }}+C_{\mathrm{gp}}(A+1)$
where $C_{k k}$ is the grid-to-cathode capacitance, C_{gp} is the grid-to-plate capacitance, and A is the voltage amplification. The capacitance may be as much as several hundred micromicrofarads when the voltage amplification is large, even though the interelectrode capacitances are quite small.

Output Capacitance

The principal component of the output capacitance of an amplifier is the actual plate-tocathode capacitance of the tube. The output capacitance usually need not be considered in audio amplifiers, but hecomes of importance at radio frequencies.

Tube Capacitance at R.F.

At radio frequencies the reactances of even very snall interelectrode capacitances drop to very low values. A resistance-coupled amplifier camot be used at r.f., for example, because the reactances of the interelectrode "condensers" are so low that they practically short-circuit the input and output circuits and thus the tube is unable to amplify. This is overcome at radio frequencies by using tuned circuits for the grid and plate, making the tube capacitances part of the tuning capacitances. In this way the circuits can have the high resistive impedances necessary for satisfactory amplification.

The grid-plate capacitance is important at radio frequencies because it is, in effect, a coupling condenser between the grid and plate circuits. Since its reactance is relatively low at r.f., it offers a path over which energy can be fed back from the plate to the grid. In practically every case the feed-back is in the right phase and of suflicient amplitude to cause oscillation, so the circuit becomes useless as an amplifier.

Special "neutralizing" circuits can be used to prevent feed-back but they are, in general, not too satisfactory when used in radio receivers. They are, however, widely used in transmitters.

SCREEN-GRID TUBES

The grid-plate capacitance can be reduced to a negligible value by inserting a second grid bertween the control grid and the plate, as indicated in Fig. 3-16. The second grid, called the screen grid, acts as an electrostatic shield to prevent capacitive coupling between the control grid and plate. It is made in the form of a grid or coarse screen so that electrons can pass through it.

Because of the shielding action of the screen grid, the positively-charged plate cannot attract electrons from the cathode as it does in a triode. In order to get electrons to the plate, it is also necessary to apply a positive voltage (with respect to the cathode) to the screen. The screen then attracts electrons much as does the plate in a triode tube. In traveling toward the screen the electrons acquire such velocity that most of them
shoot between the screen wires and then are attracted to the plate. A certain proportion do strike the screen, however, with the result that some current also flows in the screen-grid circuit.

To be a good shield, the screen grid must be connected to the cathode through a circuit that has low impedance at the frequency being amplified. A by-pass condenser from screen grid to cathode, having a reactance of not more than a few hundred ohms, is generally used.

A tube having a cathode, control grid, screen grid and plate (four elements) is called a tetrode.

Fig. 3-16- Representative arrangetnent of elements in a screengrid tnbe, with front part of plate and screen grid cut away. In this drawing the control-grid connection is nade through a cap on the top of the tube, thus aliminating the capacitance that would exist between the plate-and grid-lead wires if both passed through the base. "Single-ended" tubes that have both lcads going through the base use spectial shield. ing and construction to eliminate interlead capacitance.

Pentodes

When an electron traveling at appreciable velocity through a tube strikes the plate it dislodges other electrons which "sphash" from the plate into the interelement space. 'This is called secondary emission. In a triode the negative grid repels the secondary electrons back into the plate and they cause no disturbance. In the screen-grid tube, however, the positively-charged screen attracts the secondary electrons, causing a reverse current to flow between screen and plate.

To overcome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the sereen and plate. This grid, which usually is connected directly to the cathode, repels the relatively low-velocity secondary electrons. They are driven back to the plate without appreciably obstructing the regular plate-current flow. A five-element tube of this type is called a pentode.

Although the screen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-current flow, the control grid still can control the plate current in essentially the same way that it does in a triode. Consequently, the grid-plate transconductance (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of cor-
responding structure. On the other hand, since a change in plate voltage has very little effect on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small receiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Because of the high plate resistance, the actual voltage amplification possible with a pentode is very much less than the large amplification factor might indicate. A voltage gain in the vicinity of 50 to 200 is typical of a pentode stage.

In practical screen-grid tubes the grid-plate capacitance is only a small fraction of a micromicrofarad. This capacitance is too small to cause an appreciable increase in input capacitance as described in the preceding section, so the input capacitance of a screen-grid tube is simply the sum of its grid-cathode capacitance and control-grid-to-screen capacitance. The output capacitance of a screen-grid tube is equal to the capacitance between the plate and screen.

In addition to their applications as radiofrequency amplifiers, pentodes or tetrodes also are used for audio-frequency power amplification. In tubes designed for this purpose the chief function of the screen is to serve as an accelerator of the electrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity compared with triodes of the same power output, although harmonic distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element screen-grid tube constructed in such a way that the electrons are formed into concentrated beams on their way to the plate. Additional design features overcome the effects of secondary emission so that a suppressor grid is not needed. The "beam" construction makes it possible to draw large plate currents at relatively low plate voltages, and increases the power sensitivity.

For power amplification at both audio and radio frequencies beam tetrodes have largely supplanted the pentode type because large power outputs can be secured with very small amounts of grid driving power.

Variable- μ Tubes

The mutual conductance of a vacuum tube decreases with increasing negative grid bias, assuming that the other electrode voltages are held constant. Since the mutual conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers.

The ordinary type of tube has what is known as a sharp cut-off characteristic. The mutual conductance decreases at a uniform rate as the negative bias is increased. The amount of signal voltage that such a tube can handle without causing distortion is not sufficient to take care of
very strong signals. To overcome this, some tubes are made with a variable- μ characteristic - that is, the amplification factor decreases with increasing grid bias. The variable- μ tube can handle a much larger signal than the sharp cut-aff type before the signal swings either beyond the zero grid-bias point or the plate-current cut-off point.

OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far discussed, the signal has been applied between the grid and cathode and the amplified output has been taken from the plate-to-cathode circuit. That is, the cathode has been the meeting point for the input and output circuits. However, it is possible to use any one of the three principal elements as the common point. This leads to two different kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

These two circuits are shown in simplified form in Fig. 3-17. In both circuits the resistor R repre-

Fig. 3-17 - In the upper circuit, the grid is the junction point between the input and output circuits. In the lower drawing, the plate is the junction. In either case the output is developed in the load resistor, R, and may be coupled to a following amplifier by the usual methods.

sents the load into which the amplifier works; the actual load may be resistance-capacitancecoupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Also, in both circuits the batteries that supply grid bias and plate power are assumed to have such negligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The grid is thus the common element. The plate current (including the a.c. component) has to flow through the signal source to reach the cathode. The source of signal is in series with the load through the plate-to-cathode resistance of the tube, so some of the power in the load is supplied by the signal source. In transmitting applications
this fed-through power is of the order of 10 per cent of the total power output, using tubes suitable for grounded-grid serviee.

The input impedance of the grounded-grid amplifier consists of a capacitance in parallel with an equivalent resistance representing the power furnished by the driving source to the load. The output impedance, neglecting the interelectrode capacitances, is equal to the plate resistance of the tube. This is the same as in the case of the ground-ed-cathode amplifier.

The grounded-grid amplifier is widely used at v.h.f. and u.h.f., where the more conventional amplifier circuit fails to work properly. With a triode tube designed for this type of operation, an r.f. amplifier can be built that is free from the type of feed-back that causes oscillation. 'This reguires that the grid act as a shield between the cathode and plate, reducing the plate-cathode capacitance to a very low value.

Cathode Follower

The cathode follower uses the plate of the tube as the common element. The input signal is applied between the grid and plate (assuming negligible impedance in the batteries) and the output is taken from between cathode and plate. This circuit is degenerative; in fact, all of the output voltage is fed back into the input circuit out of phase with the grid signal. The input signal therefore has to be larger than the output voltage; that is, the cathode follower gives a loss in voltage, although it gives the same power gain as other circuits.

An important feature of the cathode follower is its low output impedance, which is given by the formula (neglecting the grid-to-cathode capacitance)

$$
Z_{\text {output }}=\frac{r_{\mathrm{p}}}{1+\mu}
$$

where r_{p} is the tube plate resistance and μ is the amplification factor. This is a valuable characteristic in an amplifier designed to cover a wide band of frequencies. In addition, the input capacitance is only a fraction of the grid-to-cathode capacitance of the tube, a feature of further benefit in a wide-band amplifier. The cathode follower is useful as a step-down impedance transformer, since the input impedance is high and the output impedance is low.

CATHODE CIRCUITS AND GRID BIAS

Most of the equipment used by amateurs is powered by the a.c. line. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid) are usually rectified and filtered to give pure d.c. - that is, direct current that is constant and
without a superimposed a.c. component - the relatively large currents required by filaments and heaters usually make a rectifier-type d.c. supply inpracticable.

Filament Hum

. Iternating current is just as good as direct current from the heating standpoint, but some of the a.c. voltage is likely to get on the grid and cause a low-pitched "a.c. hum" to be superimposed on the output.

Hum troubles are worst with directly-heated cathodes or filaments, because with such cathodes there has to be a direct comnection between the source of heating power and the rest of the circuit. The hum can be minimized by either of the connections shown in Fig. 3-18. In both cases the grid- and plate-return circuits are connected to the electrical midpoint (center-tap) of the filament supply. Thus, so far as the grid and plate are concerned, the voltage and current on one side of the filament are balanced by an equal and opposite voltage and current on the other side. The balance is never quite perfect, however, so filament-type tubes are never completely humfree. For this reason directly-heated filaments are employed for the most part in power tubes, where the amount of hum introduced is extremely small in comparison to the power-output level.

With indirectly-heated cathodes the chief problem is the magnetic field set up by the heater. Occasionally, also, there is leakage between the heater and cathode, allowing a small a.c. voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to reduce it, although sometimes better results are obtained if the heater supply is center-tapped and the center-tap grounded, as in Fig. 3-18.

Cathode Bias

In the simplified amplifier circuits discussed in this chapter, grid bias has been supplied by a battery. However, in equipment that operates from the power line cathode bias is the type commonly used.

The cathode-bias method uses a resistor (cathode resistor) connected in series with the cathode, as shown at R in Fig. 3-19. The direction of platecurrent flow is such that the end of the resistor nearest the cathode is positive. The voltage drop
across R therefore places a negative voltage on the grid. This negative bias is ohtained from the steudy d.c. plate current.

If the alternating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the a.c. will he degenerative (note the similarity between this circuit and that of Fig, 3-14.). To prevent this the resistor is by-passed by a condenser, C, that has very low reatance compared with the resistance of K. Depending on the type of tube and the particular kind of operation, R may be between about 100 and 3000 ohms. For good by-passing at the low audio frequencies, C should be 10 to 50 microfarads (elertrolytic condensers are used for this purpose). It radio frequencies, capacitances of about $100 \mu \mu \mathrm{fl}$. to $0.1 \mu \mathrm{fd}$. are used; the small values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megarycles a capacitance of $0.01 \mu \mathrm{fl}$. is satisfactory.

The value of cathode resistor for amplifier having negligible d.c. resistance in its plate cirruit (transformer or impedance coupled) can easily be calculated from the known operating conditions of the tube. The proper grid hias and plate reurrent always are sperified by the :nanufoturer. Knowing these, the required resistance can be found by applying (ohm's Law.

Example: 1 t is found from tule tables that the tube to the used should have at negative grid hias of 8 volts and that at this bias the plate current will be 12 milliamperes (0.012 amp.). The required eathode resistance is then

$$
h=\frac{E}{I}=\frac{8}{0.012}=667 \mathrm{ohms}
$$

The nearest standard valuc, 680 ohms, would be close enough. The gower used in the resistor is

$$
P=E 1=8 \times 0.012=0.006 \mathrm{watt} .
$$

A $1 / 4$-watt or $3 / 2$-watt resistor would have ample rating.

The current that flows through R is the total athode current. In an ordinary triode amplifier this is the same as the plate current, but in a screen-grid tube the cathode current is the sum of the plate and screen currents. Hence these two burreats must be added when calculating the value of cathode resistor required for a screengrid tuhe.

$$
\begin{aligned}
& \text { Example: A receiving pentode requires } 3 \text { volts } \\
& \text { negative bias. At this lias and the recommended } \\
& \text { plate and screen voltages, its plate current is } 9 \\
& \text { ma. and its sereen eurrent is } 2 \text { ma. The cathode } \\
& \text { eurrent is therefore } 11 \mathrm{ma} \text {. (} 0.011 \mathrm{amp} \text {.). The } \\
& \text { reduired resistance is } \\
& R=\frac{E}{I}=\frac{3}{0.011}=272 \text { ohms } . \\
& \text { A } 270 \text {-ohm resistor would be satisfactory. The } \\
& \text { power in the resistor is } \\
& P=E I=3 \times 0.011=0.033 \text { watt. }
\end{aligned}
$$

The cathode-resistor method of biasing is selfregulating, because if the tube characteristics vary slightly from the published values (as they do in practice) the bias will increase if the plate
current is slightly high, or decrease if it is slightly low. This tends to hold the plate current at the proper value.

Calculation of the cathode resistor for a re-sistance-coupled amplifier is ordinarily not practicable by the method described above, because

Fig. 3-19 - Cathode biasing. R is the cathode resis* tor and C is the cathode by-pass condenser.
the plate current in such an amplifier is usually much smaller than the rated value given in the tube tables. However, representative data for the tubes commonly used as resistance-coupled amplifiers are given in the chapter on audio amplifiers, including cathode-resistor values.

Screen Supply

In practical circuits using tetrodes and pentodes the voltage for the sereen frequently is taken from the plate supply through a resistor. A typical circuit for an r.f. amplifier is shown in Fig. :3-20. Resistor R is the screen dropping resistor, and C is the screen by-pass condenser. In flowing through R, the sereen current causes a voltage drop in R that reduces the plate-supply

Fig. 3-20 - Screen-voltage supply for a pentode tube through a dropping resistor, R. The sereen hy-pass condenser, C, must have low enough reactance to bring the sereen to ground potential for the frequency or frequencies being amplified.
voltage to the proper value for the screen. When the plate-supply voltage and the screen current are known, the value of R can be calculated from Ohm's Law.

Fxample: An r.f. receiving pentode has a rated sereen current of 2 milliamperes (0,002 amp) at normal operating conditions. The rated sereen voltage is 100 volts, and the plate supply pives $2: 0$ volts. To put 100 volts on the screen, the drop across K must be efual to the difference letween the plate-supply voltage and the screen voltage; that is, $250-100=150$ volts. Then

$$
R=\frac{E}{I}=\frac{150}{0.002}=75,000 \mathrm{ohms}
$$

The power to be dissipated in the resistor is

$$
P=E I=150 \times 0.002=0.3 \text { watt, }
$$

A $1 / 2$ - or 1 -watt resistor would be satisfactory.

The reactance of the sereen by-pass condenser, C, should be low rompared with the sereen-torathode impedance. For radio-frequeney appliciltions at capacitane in the vieinity of $0.01 \mu \mathrm{fd}$. is amply large.

In some vacuum-tube circuits the screen voltage is ohtained from th voltage divider connected across the plate supply. The design of voltage dividers is discussed at length in the chipter on l'ower supplies.

Oscillators

It was mentioned earlier in this chapper that if there is enough positive feed-hatek in an amplifier rircuit, self-sustaining oscillations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.

Oscillations nomally take place at only one frequencer, and a desired frequence of oscillation can be obtained by using at resomant circuit tumed to that frequence. For example, in Fig. $3-21.1$ the circuit $L_{0}($ is tumed to the desired fremency of oscillation. The cathode of the tube is connerted to a tap on coil L and the grid and plate are connerted to opposite cuds of the tuned eircuit. When an r.f. current flows in the tuncel cireuit there is a voltage drop arross I that increases progressively along the turus. Thus if the top end of L is positive at some instent the bottom end will be negative, and the point at which the tap is commered will be at an intemediate potential. The amplified aurrent in the plate circuit, which flows through the bottom seet ion of L, is in phase with the current alroady flowing in the circuit and thus in the proper melationship for pesitive fead-back.

Fig. 3-21-13asic oseillator circuitw. Feed-back voltage is obtained by tapping the grial and cathode arrose a portion of the tumed circuit. In the Ilartley circuit the tap is on the coil, but in the Coppitts cirruit the voltage is ohtained from the drof across a condernser.

The amount of feed-back depends on the position of the tap. If the tat is tom near the grid end the voltage drop between grid and cathode is tom small to give enough fered-back to sustatin osaillation, and if it is too near the phate end the impedance between the cathode and plate is tew small to permit good amplification. Maximum
feed-back usually is obtained when the tap is somewhere near the ecnter of the coil.

The circuit of Fig. $3-21 \mathrm{~A}$ is parallel-fed, C, boing the blocking condenser. The value of C b is not eritical so long as its reactanec is low (a few hundred ohms) at the operating frequency.

Condenser C_{k} is the grid condenser. It and R_{k} (the grid leak) are used for the purpose of obtaining grid bias for the tube. In practically all oscillator circuits the tube generates its own bias. During the part of the evele when the grid is positive with respest to the cathode, it attracts dertrons. These clectrons cumot flow through L back to the cathode berause ("s "blocks" direet current. They therefore have to flow or "leak" through R_{k} to rathode, and in doing so cause a voltage drop in R_{k} that places a negative bias on the grid. The amount of bias so developed is equal to the grid current multiplied by the resistance of h_{k} (Ohm's law). The value of gridlack resistance required depends upon the kind of tulne used and the purpose for which the oseillator is intended. Values range all the way from a few thousand to several hundred thousand ohms. The caparitance of (${ }^{2}$ should be large enough to have low reactanee (a few hundred ohms) at the operating frequency.

The circuit shown at 13 in Fig. 3-21 uses the voltage drops aeross two condensers in series in the tuned circuit to supply the feed-hack. Other than this, the operation is the same as just described. The feed-back ran be varied by varying the ratio of the reactances of C_{1} and C_{2} (that is, by varying the ratio of their caparitances).

Another tyje of oscillator, called the tunedplate tuned-grid cireuit, is shown in Fig. 3-22. Resomant circuits tuncd approximately to the stme frequency are connected between grid and cathode and between plate and cathode. The two coils, L_{3} and L_{2} are not magnetically roupled. The feed-back is through the grid-plate capacitance of the tube, and will be in the right phase to be positive when the plate circuit, $\left(_{2} L_{2}\right.$, is tuned to a slightly higher frequency than the grid circuit, $L_{1}{ }^{\prime}{ }^{\prime}$. The amount of feed-back can be adjusted by varying the tuning of either cireuit. The frequeney of oscillation is determined by the tuned circuit that has the higher (Q. The grid leak and grid condenser have the same functions as in the other cireuits. In this case it is convenient to use series feed for the phate cireuit, so (b b is a hy-pass eondenser to guide the r.f. current around the plate supply.

There are many oseillator circuits, some using two or more tubs, but the basic feature of all of them is that there is positive feed-back in the proper amplitude to sustain oscillation.

Oscillator Operating Characteristics

When an oseillator is delivering power to a load, the adjustment for proper feed-back will depend on how heavily the oseillator is loaded - that is, how much power is being taken from the circuit. If the feed-back is not large enough grid excitation too small - a small increase in load may tend to throw the circuit out of oncillation. On the other hand, t ore much feed-back will make the grid current excessively high, with the result that the power loss in the grid circuit is larger than necessary. Since the owcillator itself supplies this grid power, excessive feed-back lowers the over-all efficiency because whatever power is used in the grid circuit is mot available as useful output.
One of the most important considerations in oscillator design is frequeney stability. The principal factors that cause a change in frequency are
(1) temperature, (2) pate voltage, (3) loading, (1) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube elements to expand or contract slighty, thus causing variations in the interelectrode (alpacitances. Since these are unavoidably part of the tuned circuit, the frequency will change correspondingly. Temperature changes in the coil or condenser will alter their inductance or capacitance slightly, again causing a shift in the resonant frequeney. These effects are relatively slow in operation, and the frequency change caused by them is called drift.
A change in plate voltage usually will cause the frequency to change a small amount, an effect called dynamic instability. Dynamic instability can be reduced by using a tuned circuit of high effective (Q. Since the tule and load

Fig, 3-22 - The tuned-plate tuned-grid oweillator.
represent a relatively low resistance in paralled with the circuit, this means that a low L ' ratio (high-C) must be used and that the cireuit should be lightly loaded. I high value of grid leak resistance also is helpful because, by increasing the grid bias without increasing grid current, it ratises the effective tube grid and plate resistances as seen by the tank cirenit. C'sing relatively high
plate voltage and low plate current also is desirable.

Load variations act in much the same way as plate-voltage variations. I temperature change in the load may also result in drift.

Mechanical variations, usually caused by vibration, cause changes in inductance and/ or caparitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of minimizing frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oscillator circuits shown in Figs. 3-21 and $3-22$ the cathode is connected to ground. It is not actually essential that the radiofrequency circuit should be grounded at the rathode; in fact, there are many times when an r.f. ground on some other point in the circuit

Fig. 3-23 - Showing how the plate may be grounded for r.f. in a typical oscillator cireait (IJartley).
is desirable. The r.f. ground can be phaced at any point so long as proper provisions are made for feeding the supply voltages to the tule elements.
lig. :3-23 shows the Hartley circuit with the phate end of the circuit grounded. Nor.f. choke is needed in the pate circuit berause the plate already is at ground potential and there is no r.f. to choke off. All that is necessary is a by-pass condenser, C_{b}, across the plate supply. Direct current flows to the cathode through the lower part of the tuned-circuit coil, L. An advantage of such a circuit is that the frame of the tuning condenser can be grounded.

Tubes having indirectly-heated cathodes are more easily adaptable to circuits grounded at other points than the cathode than are tubes having directly-heated filaments. With the latter tubes sperial precautions have to be taken to prevent the filament from being bypassed to ground by the capacitance of the filament-heating transformer.

Semiconductor Devices

Although not vacuum tubes, there is another group of rect ifying devices that can perform similar functions. These include the erystal diode and the transistor. They make use of the peculiar properties of certain erystals, particularly germanium, ealled semiconductors.

CRYSTAL DIODES

As the name implies, the crystal diode is a twoclement rectifying device comparable with a tule diode. In its common form it consists of a small piece of an apprepriate crystalline substance with one contact made through a fine pointed wire or
catwhisker. The other contant is through the metal mounting, as shown in Fig. 3-2.4. Such a device will conduct current much more readily in one direction than the other.

Fig, 3-2.4-'The pormanium crystal and circuit symbol. The arrow pointain the direction of minimmeresistance.

As compared with a tube diode, the erystal diode has the advantages of very small size, very low interedecode raparitance (less than one micromicroband, and requiring no heater or filament power. Its forward resistance - in the favored direction of current flow - is a few hundred ohms, comparable with that of a tube diode. Its disadvantage is a relatively low inverse peak voltage rating (see l'ower Supply chapter for discussion of inverse pak voltage) and a back resistance (in the direction of least current flow) that may be as low as 20,000 ohms, although in some types the back resistance may be as high as a megohm. The tube diode, in contrast, simply does not eonduct in the roverse direetion, and so has infinite hatek resistane for all practieal purposes.

The erystal diode is widely used in measuring equipment andasa detectorand mixer in receivers.

- TRANSISTORS

If two eatwhiskers are placed very close together on a germanium erystal and a positive voltage applied to one while a negative voltage is applied to the other, both with respect to a comnon comection called the base, it is found that a change in current through the first (the emitter) will cause a change in the current through the second (the col.ector), and vice versa. Such a device, shown in Fig. 3-25, is called a point-contact transistor.

Amplification

A current of several milliamperes will flow in the emitter eireuit when the positive bias is only a fration of a volt, so the impedtance of the emitter rircuit is quite low of the order of a few hundred ohms. On the other hand, the output resistimee of the collector circuit is of the order of tens of thousands of ohms. The current gain the ratio of change in colleetor current to the change in emitter current - varies with the type of transistor and mat. range from somowhat less
than I to a value as high as 3 or 1 . However, the emitter current is flowing in a low impedance while the collector current is flowing in a high impedance, so there is a power gain in proportion to the impedanees. This gain may he 20 d , or more.

The base circuit of a transistor also has considerable internal resistance, eommon to the emitter and collector circuits. Inherent feedback occurs because the colledor current flows through the base resistane and is thus int roduced into the emitter circuit. If the current gain is greater than 1 this feod-hack may cause selfoseillation.

Junction Transistors

Another form of transistor, called the jumetion type, is also shown in lig. :3-25. This consists of a sandwidh of germanium wafers having opposite conduction eharacteristios - 1 hat is, one type eonducts becanse of a defieioney of electrons (p type) and the other because of an exeess of electrons (n type). Junction transistom may be made cither of an n-p-n or p-n-p sandwich. Biases of opposite polarity are usod on the emitter and collector, just as in the case of pointcontact transistors, but these biases are reversed when a p-n-p is substituted for an n-p-n.

Transistor Applications

Since transistors will both amplify andoscillate, they can perform many of the same functions as vacuum tubes. Their advantages ate very small size and weight, no cathode power required, and operation at very low voltages and currents of the order of 3 to 6 volts for the emither and 10 to 25 volts for the collector. At present, their power-handling capacity is quite limited, confining their use to low power applications. In many respects the characterist ies of transistors are the opposite of those of vacuum tubes, so that the cireuit terhniques are quite different. Since transistors have only recently been made available eommercially, their application in amateur radio is largely a field for future exploration.

Fi\&, 3-25-The pointerontant transistor (left) and junction-type transistor (right). Phes and mims signs indicate polarities of bias voltages applited to the edements, wiala respect to the base,

High-Frequency Communication

Abstract

Much of the appeal of amateur communication on the high frequencies lies in the fact that the results are not always predictable. Tramsmission conditions on the same frequeney vary with the year and even with the time of day. Although these variations usually follow certain established cyeles, many peculiar effects can be observed from time to time. Wery radio amateur should have some understanding of the known facts: about radio wave propagation so that he will stand some chance of interpreting the unusual

conditions when they oreur. The observant amateur is in an excellent position to make worthwhile contribations to the soicnee, provided he has sufficiont background to understand his results. He may disoover now farts about propagation at the vory-high frequencies or in the mierowave region, as amateurs have in the past. In fact, it is through amateur efforts that most of the extended-range possibilities of various radio frequencies have been diseovered, either through accident or long and careful investigation.

What To Expect on the Various Amateur Bands

The $1.8-\mathrm{Mc}$., or "! 10 -meter," band offers reliable working over ranges up to 25 niles or so during daylight. On winter nights, ranges up to several thousand miles are not impossible. Only small sections of the band are currently a vailable to amateurs, because of the prescone of the loran service in that part of the spectrum. The pulsetype interference somotimes caused by loran can be readily eliminated by using an audio limiter in the receiver.
The $3.5-\mathrm{Me}$., or " 80 -meter," band is a more useful band during the night than during the daylight hours. In the daytime, one can selelom hear signals from a distance of greater than 200 miles or so, but during the darkness hours distances up to several thousand miles are not unusual, and transoceanic contacts are regularly made during the winter months. During the summer, the static level is high in some parts of the world.
The $7-\mathrm{Me}$, or " 40 -meter," band has many of the same characteristics as 3.5 , except that the distanees that ean be covered during the day and night hours are increased. During daylight, distances up to a thousand miles can be covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stations as far as the other side of the world, the signals following the darkness path. The winter months are somewhat better than the summer ones. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropical zones.

The 14-Mr., or "20-moter," band is probably the best one for long-distance work. Juring portions of the sunspot eycle (diseussed later in this chapter) it is open to some part of the world during practically all of the 24 hours, while at other times it is generally useful only during daylight hours and the dawn and dusk periods.

The 21-Mc. or "15-meter," band shows highly variable characteristics depending on the sunspot eycle. During sumpot maxima it is useful for long-diatance work during a large part of the 2.4 hours, but in vears of low sumspot activity it is almost wholly a daytime band, and sometimes unusable even in daytime. However, it is often possible to maintain communiation over distances up to 1500 miles or more by sporadic- E ionization (described later), which may oceur either day or night at any time in the sunspot eycle.
The 27-Me. ("11-meter") and 28-. Te. ("10meter") bands are generally considered to be DN bands during the daylight hours and good for loeat work during the hours of darkness, although at the peak of the sumspot eyele, they are "open" into the late evening hours for loX communication. At the sunspot minimum these bands are usually "dead" for long-distance communication in the northern latitudes. Nevertheless, sporadic- E propagation is likely to ocror at any time, just as in the case of the $21-\mathrm{Mc}$. band. The v.h.f, and u.h.f. bands (50 Me. and higher) are considered in detail in the ehapter on v.h.f. propagation.

Characteristics of Radio Waves

Radio waves, like other forms of electromagnetie radiation such as light, travel at at speed of $300,0(0), 000$ meters per seeond in free spasee. and can be reftected, refracted, and diffracted.

As described in the chapter on fundamentals, an electromagnetie wave is composed of moving fields of eloetric and matgotie forere. The lines of force in the two fiedds are at right angles, and are
mutually propendicular to the direction of travel. A simple representation of a wave is shown in pig. 1-1. In this drawing the dectric lines are perpendicular to the carth and the magnetic lines are horizontal. They could, howewer, have any position with respect to earth so long as they remain perpendicular to each other.

Fig. 4-1 - Representation of electrostatic and electro. masnetie limes of force in a radion wave. Arrows indicate instantanmons directions of the fields for a wave travel. ing toward the reader. Raversing the direction of one set of lines wombld reverse the direction of travel.

The plane containing the continuons lines of elecetrie and magnetic force shown by the gride or mesh-like drawing in Fig, $4-1$ is called the wave front.

The medium in which electromagnotic waves travel has a marked influence on the speed with which they move. When the medimm is empty space the speod, as stated above, is $300,000,000$ meters per socond. It is almost, but mot guite, that great in air, and is much less in some other substances. In dielectrics, for example, the speed is inversels proportional to the dielectric constant of the material.

When at way meote a good conductor it cannot penetrate it to any extent (although it will travel through a dielectric with case) becanse the edeatrio lines of force are practioally shortcircuited.

Polarization

The polarization of a radio wave is taken as the direction of the lines of foree in the electric: field. If the cleretric lines are perpendicular to the earth, the wave is salid to be vertically polarized; if parallel with the earth, the wave is horizontally polarized. The longer waves, when traveling along the ground, usually maintain their polari-
zation in the same plane as was generated at the antenna. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Spreading

The fied intonsity of a wave is inversely proportional to the distance from the source. Thus if one recerving point is twioe as far from the transmitter as another, the feld strength at the more distant point will be just half the field strength at the nearer point. This results from the fart that the energy in the wave front must be distributed over a greater area as the wave moves away from the souree. 'This inverse-distance law is based on the assumption that there is nothing in the medium to absort energy from the wave as it trawels, which is true in free space but not in practical communication along the ground and through the atmosphere.

Types of Propagation

Aecording to the altitude of the paths atong which they are propagated, radio waves may be classified as ionospheric waves, tropospheric waves or ground waves.

The ionospheric wave or sky wave is that part of the total radiation that is directed toward the ionosphere. Depronting upon variable combitions in that region, as well as upon tramsmitting wavelength, the ionospheric wave mate or may not he returned to earth by the offects of refraction :and reflection.

The tropospheric wave is that part of the total radiation that undergeses refraction and reflection in regions of abrupt chatnge of dielectrice constant in the troposphere, such as the boundaries between air masses of differing temperature and moisture content.

The ground wave is that part of the total radiation that is directly affeeted by the presence of the carth and its surface features. The ground

Fig. 4.2 - Showing low hoth direet ansl reflected waves may be received simultanemosty.
wave has two eomponents. One is the surface wave, which is an "arth-guided wave, and the wher is the space wave (not to be confused with the ionospherit or sky wave). The epace wave is itself the resultant of two components - the direct wave and the ground-reflected wave, as shown in Fig. I-2.

Ionospheric Propagation

PROPERTIES OF THE IONOSPHERE

Lxeept for distances of a fow miles, nearly all amateur commumiation on frequencies below 30 Me. is by means of the sky wave. Cpon leav-
ing the tramsmitting antemna, this wave travels upward from the carth's surface at such an angle that it would continue out into space were its path not bent sulliciently to bring it back to earth. The medium that canses such bending is
the ionosphere, a region in the upper atmosphere, above a height of about tol miles, where free ions and clectrons exist in suffirient quantity to have an appreciable effect on the speed at which the waves travel.

The ionization in the upper atmosphere is lelieved to be caused by ultraviolet radiation from the sun. The ionosphere is not a single region bat is composed of a serios of layers of varying donsities of ionization oecurring at different hoights. Wach layer consists of a central region of relatively dense ionization that tapers off in intensity both above and below.

Refraction

The greater the intensity of ionization in a layer, the more the path of the wave is bent. The bending, or refraction (often also cabled reflection), atso depends on the wavelength; the longer the wave, the more the path is Tent for a given degree of ionization. Thus low-frequeney waves are more readily bent thatn those of high frequency. For this reason the lower frequencies - 3.5 and 7 Mc. - are more "reliable" than the higher frequencies - 14 to 28 . Ic.: there are times when the ionization is of such low value that waves of the latter frequencer range are not bent enough tos return to earth.

Absorption

In traveling through the ionosphere the wave gives ups some of its energy by setting the ionized particles into motion. The energy absorption from this gase increases with the wavelongth; that is, alosorption is greater at lower frequencies, It also increases with the intensity of ionization, and with the density of the atmosphere in the ionized region.

Virtual Height

Although an ionospheric layer is a region of considerable depth it is convenient to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effert as the gradual bonding that artually takes phate, as illustrated in Fig. 4-3. The wave traveling upward is bent back over a path having an apprectable radius of turning, and a measurable interval of time is consumed in the turning process. The virtual height is the height of a triangle having equal sides of a total length proportional to the time taken for the wave to travel from T to R.

Fig. 4-3 - Bending in the ionowhere, and the ectho or reflection metholl of determining virtual height.

Normal Structure of the Ionosphere

The lowest usoful ionizand layer is collod the E layer. The avorage height of the region of maximum ionization is about 70 miles. The air at this hoight is sufficiontly dense so that the ions and clectrons sed free by the sun's radiation do not travel far before they meet and recombine to form neutral partides, so the layer can maintain its normal intensity of ionization only in the presence of continuing radiation from the sum. Hener the ionization is graitest around lowal noon and pratctically disappears after sumdown.

In the daytime there is a still lower ionized area, the D region. I)-region ionization is proportional to the height of the sun and is greatest at noon. Low-frequenty waves (80 moters) are almost eompletely ahsorbed by this laver, and ouly the high-angle radiation is reflected hy the \dot{E} layer. (Jower-angle radiation travels farther through the 1$)$ region and is absorbed.)

The second principat laver is the F layer which has a hoight of aloout 185 miles at night. At this alfitude the air is so thin that remombination of jons and electrons takes place very slowly, inasmuch as particles cath travel relatively great distances before meeting. The ionization derreases after sumdown, reaching a minimum just. before sunrise. In the datime the F laver splits into t wo parts, the F_{1} and F_{2} layers, with aterage virtuat heights of, respertively, 140 miles and 200 miles. These lavers are most highly ionized at atout lowal noon, and merge again at sunset into the fitwer.

SKY-WAVE PROPAGATION

Wave Angle

The smaller the angle at which a wove leaves the earth, the kess will be the bembing required in the iomosphere to bring it back and, in general, the greater the distance between the point where it leaves the earth and that at which it returns. 'This is shown in Fig. 4-4. The verticat] angle (such as the angle .1 in the figure) that the wave makes with a langent to the earth is called the wave angle or angle of radiation.

Skip Distance

More bending is required to, return the wave to earth when the wave angle is high, atnd at times the bending will not be suflicient unless the wave angle is smatler than some eritical value. This is illustrated in Fig. + -t, where A and smather angles give useful signals while waves sont at higher angles penotrate the layer and are not returned. The distance between T 'and R_{1} is, therefore, the shortest possible distance, at that partieular frequency, over which communication by ionospherie refraction can be aremplished.

The area between the end of the useful ground wave and the begiming of ionospheric-wave reeception is called the skip zone, and the distance from the transmitter to the nearest point where the sky wave roturns to marth is called the skip distance. The extent of skip zone depends upon the frequeney and the state of the ionosphere,
and also upon the height of the layer in which the refraction takes place. The higher lavers give bonger skip distances for the same wave angle. Wave angles at the transmitting and recoiving points are usually, although not always, approximately the same for any given wave path.

Critical and Maximum Usable Frequencies

If the frequency is low enough, a wave sent vertically to the ionosphere will be reflected back down to the transmitting point. If the frequenco is then gradually increased, eventuatly a frequency will be reached where this vertical reflection just fails to ocear. This is the critical frequency for the laver under ronsideration. When the oprating fremuence is below the aritical value there is no skip zone.

The eritical frequency is a useful index to the highest frequence that can be used to transmit over a sperified distance - the maximum usable frequency (m.u.f.). If the wave leaving the transmitting point at angle A in Fig. $4-4$ is, for example, at a frequeney of $1 \pm \mathrm{Me}$., and if a higher

Fig. 1-4- Refraction of sky waves, showing the critical wave angle and the ikip zone. Waves leaving the transmitter at angles ahove the critical (greater than 1) are not bent enough to be returned to carith. If the angle is decreased, the waves return to earth at inereasingly greater distances.
frequency would skip over the receiving point h_{1}, then 14 Me. is the m.u.f. for the distance from T to R_{1}.

The greatest possible distance is covered when the wave leaves along the tangent to the earth: that is, at zero wave angle. Cuder average conditions this distance is about 4000 kilometers or 2500 miles for the F_{2} layer, and 2000 km . or 12.50 miles for the E laver. The distanees vary with the laver height. Frequencies above these limiting m.u.f.s will not be returned to earth at any distance. The $\mathbf{t} 000-\mathrm{km}$. m.u.f. for the F_{2} layer is approximately 3 times the critical frequeney for that layer, and for the E layer the $2000-\mathrm{km}$. m.u.f. is about 5 times the critical frequency.

Absorption in the ionosphere is least at the maximum usable freduener for the distanee, and inderases very rapplly as the frequene is lowered below the m.u.f. Consequentle. hest results with low power alwats are secured when the frequency is as close to the m.u.f. ats possitle.

It is readily posible for the iomospherie wave to pass through the E laver and be refrated back
to earth from the F, F_{1} or F_{2} layers. This is because the eritical frequencios are higher in the latter layers, so that a signal too high in frequency to be returned by the E laver ean still come back from one of the othors, depending upon the time of day and the existing eonditions.

Multihop Transmission

On returning to the earth the wave can be reflected upward and travel again to the ionosphere. There it may once more be refracted, and again bent back to earth. This process may be repeated several times. Multihop propagation of this nature is mecessary for transmission over great distances because of the limited heights of the havers and the curvature of the earth, which restrict the maximum one-hop, distance to the values mentioned in the preceding seetion. However, ground losses absorl) some of the energy from the wave on each reflection (the amount of the loss varying with the type of ground and being least for reflection from sea water), and there is also absorption in the ionosphere at eash reflection. Hence the smaller the number of hops the greater the signal strength at the receiver, other things being equal.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the receiving point, in which case the difference in path lengt hs will cause a phase difference to exist between the wave components at the receiving antemna. The total field strength will be the sum of the components and may be larger or smather than one component alone, sinee the phases may be such as either to aid or oppose. Since the paths change from time to time, this causes a variation in signal strength called fading. Fading can also result from the eombination of single-hop and multihop waves, or the eombination of a ground wave with an ionospherie or tropospherie wave. The latter condition produces an area of severe fading in the region where the two waves have about the same intensity; better reception is obtained at either shorter or longer distancos where one component of the wave is considerably stronger that the other.

Fading may be either rapid or slow, the former type usually resulting from rapidly-changing conditions in the ionosphere, the latter occurring when transmission conditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequencies, so that in the case of voier-modulated transmission, involving sidebands differing slightly from the carrier in frequener, the carrier and various sideband components may not be propagated in the same relative amplitudes and phases they had at the transmitter. This effeet, known as selective fading, causes severe distortion of the signal.

Scatter

Even though the operating frequency is above the m.u.f. for a given distance, it is usually possible to hear signals from within the skip zone. This phenomenon, called scatter, is caused by random reffections from distances beyond the skip zone. Such reflections can occur when the transmitted energy strikes the earth at a distance and some of it is reflected back into the skip zone to the receiver. Other possible scatter sources are "patehes" of ionization of different density than the average, or sporadic- E clouds (see later section). Scatter signals are waker than those normally propagated, and also have a rapid fade or "flutter" that makes them easily recognizable.

- OTHER FEATURES OF IONOSPHERIC PROPAGATION

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet ratdiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasonal changes result in higher eritical frequencies in the E layer in summer, averaging about 4 Mc. as against a winter averange of 3 Mc. The f haver shows little variation, the critieal frequency being of the order of 4 to 5 Me. in the evening. The F_{1} layer, which has a aritical frequence noaro Mc. in summer, usually disappears entirely in winter. The daytime maximum critieal frequencies for the F_{2} are highest in winter (10 to 12 Ne.) and lowest in summer (around 7 Me.). The virtual height of the F_{2} layer, which is about 18 miles in winter, averages 250 miles in summer. These values are representative of latitude 40 deg. North in the Western hemisphere, and are subject to eonsiderable variation in other parts of the world.
Very marked changes in ionization also oerur in step with the 11-year sunspot cycle. Although there is no apparent direct correlation between sunspot ativity and critical frequencios on a given day, there is a definite correlation between aberage sumsot antivity and critioal frequencies. The critical frequencies are highest during sunspot maxima and lowest during sunspot minima. l)uring the period of minimum sumspot activity the lower fresuencies - 7 and 3.5 Mc . - frequently are the only usable bands al night. At such times the 28 -Ne. band is seldom useful for long-distane work, while the 14 -Me, band performs well in the daytime but is not ordinarily useful at night.

Ionosphere Storms

Certain tupes of sunspot artivity rause considerable disturbances in the ionosphere (iono-
sphere storms) and are acompatied by disturbances in the carth's memertic field (magnetic storms). Jonosphare storms are characterized by at marked increase in absorption, so that radio conditions become poor. The eritical frequencies also drop to relatively low values during a storm, so that only the lower frequencios are useful for communication. Ionosphere storms may last from a few hours to several dins. Since the sum rotates on its ands once every $2 x$ days, disturbanees tend to recur at such intorvals, if the sunspots responsible do not berome inactive in the meantime. Absorption is usually low, and radio conditions therefore good, just preceding a storm.

Sporadic-E Ionization

Scattered pattohes or clouds of relatively dense ionization oceasionally appear at heights appoximately the same ats that of the E laber, for reatsons not vet known. This sporadic- E ionization is most prevalent in the equatorial regions, where it is substantially continuous. In northern latitudes it is most frequent in the spring and early summer, but is present in some degree it fatir percentage of the time the year 'round. It arcounts for a good deal of the night-time short distance work on the lower frequencies (3.5 and 7 Me.) and, when more intunse, for similar work on It and 28 Mc. Wexeptionably intense sporadic- E ionization is responsible for work ovor distances excerding 100 or 500 miles on the $50-\mathrm{Me}$. band.

There are indications of a relationship between sporadie- E ionization and average sumspot acetivity, but it does not appear to be directly related to daylight and darknoss singe it may occur at any time of the day. However, there is an apparent tendency for the ionization to paak at mid-morning and in the carly evening.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosplere often permit work over greater that normal ground-wave distanees on 28 Ne. and higher frequencies. The effect ean be observed on 28 Me., but it is generally more marked on io and 144 Ms. The subject is treated in detail in a later chropter.

PREDICTION CHARTS

The Central Radio Propatgation Lathoratory of National Bure:at of Standards offars prediction charts threre months in advature, by meaths of which it is pessible to predied with considerable arouracy the maximum usable fregueney that will hold over any path on the carth during a monthly period. The charts can be obtaned from the Superintendent of Documents, U. S. Government Printing Offire, Wishington 2n, D. C. for 10 cents a ropy or $\$ 1.00$ per year. They are called "(CRI'L-I) l3asic Radio l'ropagation I'redietions."

High-Frequency Receivers

A good receiver in the amateur station makes the difference betworm mediorere rontants and solid (eso $)$, and its importance camot be overemphasized. In the uncrowded wh.f. hands, sensitivity (the ability to bring in weak signals) is the most important factor in a reereiver. In the more crowded amatear bands, good sensitivity must be combined with selectivity (the ability to distinguish betweon signals separated by only a small frerumery differenco. To recoive Woak signals, the receiver must furnish emough amplification to amplify the minute signal power delivered by the antemna up to: a usefulamount of power that will operate a loudspeaker or set of headphones. Refore the amplified signal cem operate the "speater or 'phones, it mast be converted to atudio-frequency power by the prowess of detection. The sequence of amplification is mot too important - some of the amplification ean take place (and usually does) before doteretion, and some can be used after detertion.

There are two major differences betworn receivers for 'phone reception and for rew. reception. A 'phome signal has sidehands that make the signal take up about of or 8 ke. in the band, and the audio quality of the recoived signal is impaired if the bandwidth of the recoiver is less than half of this. On the other hand, a cew. signal orenpies only a few humdred eveles at the most, and consequently the bandwidth of a c.w.
recoiver can be small. In cither case, if the bandwidth of the rereiver is more than neerssiary, signals adjacent to the desired one can be heard, and the selentivity of the receriver is said to be poor. The detertion prowess delivers directly the audio frequencies present as modulation on a phone signal. There is mo modulation on acew. signal, and it is necessary to introduce a seomed radio frequensy, differing from the signal frequency by a suitable audio froquency, into the detector cincuit to produce an andible beat. The frequency difference, and hence the beat-note, is qenerally made on the order of 500 to 1000 cyeles, sime these tones are within the range of optimum response of both the ear and the headset. If the source of the second radio frequeney is a separate oseilator, the system is known as heterodyne recoption: if the detereme is made to oseillate and probluce the serond fremueney, it is known as an autodyne detector. Modern superheterodyme receivers (desribed later) generally use a separate osidiator to generate the beat-mote. summing up the two differences, phone rereivers ran't use as much solectivity as rew. recoivers, and cow, receivers require some kind of beating oscillator to give an audible signal. Broadeast receivers can receive only 'phone signals beratise no beat oscillator is included. Communications receivers include beat oscillators and often some means for varying the selertivity.

Receiver Characteristics

Sensitivity

In commereial circles "semsitivity" is defined as the strength of the signal (in microvolts) at the input of the reerover that is reguired to produce a specified audio power output at the 'speaker or headphones. This is a satisfactory definition for broaleast and communications recoivers operating below about 20 Me., where at mospherie and man-made flecerical noises nommally mask any noise generated by the receiver itself.

Another eommercial measure of semsitivity defines it ats the signal at the ingut of the roeeiver reguired to give an audio output some stated amount (generally 10 dh.) abouve the nowe output of the receiver. This is at more useful sensitivity measure for the anateur, since it indicates how well a wak signal will be heard and is not merely a mosasure of the over-all amplifietation of the reonever. Howeror, it is mot ath absolute mothod for complaring two reweivers, hecallse the handwidth of the receriver plays a large part is the result.

The random motion of the molecules in the antenma and recoiver circuits generates small voltages called thermal-agitation noise voltagres. The froguency of this noise is random and the moise exists arooss the entire radio spertrum. Its amplitude increases with the temperature of the circuits. (Only the moise in the antenna and first stage of a recoiver is normally significant, sine the moise developed in later stages is masked by the amplified noise from the first stage. The omly noise that is amplified is that which is acerpied bey the receriver, so the noise appearing in the reediver output is less when the bandwidth is redued. Nosise is also generated by the current flow within the first tule itself; this affere can be combined with the thermat noise and callod receiver noise.

The limit of a recoiver's ability to detert watk signals is the thermal moise generated in the input cirenit. Fwen if a perfeet noise-free tube were developed and used throughout the recoiver, the limit to reception would be the
thermal noise. (Atmospheric- and man-made noise is a practical limit below 20 Mc.) The degree to which a receiver approaches this ideal is called the noise figure of the receiver, and it is expressed as the ratio of noise power at the input of the receiver required to increase the noise output of the receiver 3 db . Since the noise power passed by the receiver is dependent on the bandwidth, the figure shows how far the receiver departs from the ideal. The ratio is generally expressed in dh., and runs around 6 to 12 dh. for a good receiver, although figures of 2 to $t \mathrm{~d}$), have been obtained. Comparisons of noise figures cem be made by the amateur with simple equipment. (Sce QsT', August, 194!, page 20.)

Selectivity

Selectivity is the ability of a receiver to diseriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned circuits and the number of such circuits.

The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various frequenries off resonance to the signal strength at resonance, to give constant output. I resonance curve of this type is shown in Fig. 5-1. The bandwidth is the width of the resonance curve (in cyeles or kilocyeles) of a receiver at a specified ratio; in Fig. 5-1, the bandwidths are indicated for ratios of response of 2 and 10 (" 6 dh. down" and " 20 db . down").

The bandwidthat 6 db . down must be suffieicnt to pass the signal and its sidebands if faithful reproduction of the signal is desired. However, in the erowded amateur bands, it is generally advisable to sarrifice fidelity for intelligibility. The ability to reject adjacent-channel signals depends upon the skirt selectivity of the recriver, which is dotermined by the bandwidth at high attenuation. In a receiver with gook skirt seloctivity, the ratio of the (i -d l . bandwidth to the $60-\mathrm{dl}$. Bandwidth will be about 0.25 for c.w. and 0.5 for 'phone. The minimum usable bandwidth at $6-\mathrm{db}$. down is about 150 cycles for $\mathrm{c} . \mathrm{w}$. reeeption and about 2000 cycles for 'phone.

Fig. 5-1 - Typical selectivity curve of a modern superheterodyne receiver. Relative response is pholted against deviations above and below the resonance freduency. The scale at the left is in terms of volage ratios, the eorresponding decibel steps are shown at the right.

Stability

The stability of a receiver is its ability to "stay put" on a signal under varying conditions of gain-control setting, temperature, supplyvoltage changes and mechanical shock and distortion. The term "unstable" is also applied to a rereiver that breaks into oscillation or a regenerative condition with some settings of its controls that are not specifically intended to control such a condition.

Fidelity

Fidelity is the relative ability of the receiver to reproduce in its output the modulation carried by the incoming signal. For perfect fidelity, the relative amplitudes of the various components must not be changed by passing through the receiver. However, in amateur communication the important requirement is to transmit intelligence and not "high-fidelity" siguals.

Detection and Detectors

Detection is the process of recovering the modulation from a signal (see "Modulation, Heterodyning and Beats'). Iny device that is "nonlinear" (i.e., whose output is not eractly proportional to its input) will act as a detector. It can be used as a detector if an impedance for the desired modulation frequency is connected in the output circuit.

Detector sensitivity is the ratio of desired detector output to the input. Detector linearity is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming signal. The resistance or impedance of the detector is the resistance or impedance it presents to the circuits it is con-
nected to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consume power, and this power must be furnished by the preceding stage. The signal-handling capability means the ability to accept signals of a specified amplitude without overloading or distortion.

Diode Detectors

The simplest detector for a.m. is the diode. A galena, silicon or germanium crystal is an imperfect form of diode (a small current can pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Fig. 5-2 - Simplified and practical diode detector circuits. A, the elementary half-wave diode detector; B, a praclical circuit, with r.f. filtering and andio output coupling; C, full-wave diode detector, with output coupling indicated. 'I'he circuit, $L_{2}(.1$, is tumed to the signal frequeney; typical values for C_{2} and R_{1} in A and C are $250 \mu \mu \mathrm{fl}$. and 250,000 ohms, respectively; in B , (.2 and C.3 are $100 \mu \mu$ fi. cach; $R_{1}, 50,000$ ohms; and $R_{2}, 250,000$ ohms. C_{4} is $0.1 \mu \mathrm{fd}$. and R_{3} may be 0.5 to 1 megohm.

Circuits for both half-wave and full-wave diodes are given in Fig. 5-2. The simplified half-wave circuit at 5 -2A includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling coil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, I, with its load resistance, R_{1}, and bypass condenser, C_{2}. The flow of rectified r.f. eurrent causes a d.c. voltage to develop across the terminals of R_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation causes corresponding variations in the value of the de. voltage across R_{1}. In audio work the load resistor, R_{l}, is usually 0.1 megohm or higher, so that a fairly large voltage will develop from a small rectified-current flow.

The progress of the signal through the detector or rectifier is shown in Fig. 5-3. A typical modulated signal as it exists in the tuned circuit is shown at A. When this signal is applied to the rectifier tube, current will flow only during the part of the r.f. cycle when the plate is positive with respect to the cath-
ode, so that the output of the rectifier consists of half-cycles of r.f. These current pulses flow in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the capacity of C_{2} being so proportioned that C_{2} charges to the peak value of the rectified voltage on each pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. C_{2} thus aets as a filter for the radio-frequency component of the output of the rectifier, leaving a d.c. component that varies in the same way as the modulation on the original signal. When this varying d.c. voltage is applied to a following amplifier through a coupling condenser (C_{4} in Fig. 5-2B), only the variations in voltage are transferred, so that the final output signal is a.c., as shown in D.

In the circuit at $5-2 B, R_{1}$ and C_{2} have been divided for the purpose of providing a more effective filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, hecause it may cause overloading of a sueceeding amplifier tube. The audiofrequency variations can be transferred to another circuit through a coupling condenser, C_{4}, to a load resistor, R_{3}, which usually is a "potentiometer" so that the audio volume can be adjusted to a desired level.

Coupling to the potentiometer (volume control) through a condenser also avoids any flow of d.e. through the control. The flow of d.e. through a high-resistance volume control often tends to make the control noisy (scratchy) after a short while.

The full-wave diode circuit at $5-2 \mathrm{C}$ differs in operation from the half-wave circuit only in that both halves of the r.f, cycle are utilized. The full-wave circuit has the advantage that r.f. filtering is easier than in the half-wave circuit. As a result, less attenuation of the higher audio frequencies can be obtained for any given degree of r.f. filtering.

The reactance of C_{2} nust be small compared

Fig. 5-3- Diagrams showing the detection process,

(A)

(B)
/Fig. 5-4 - Circuits for plate detection. A, triode; B, purntoke, "lhe input vircinit, $L_{1} C_{1}$, is tunfal to the sipnal frequency. ITypical values for the other components are:

Componnt Circuit A	Circuit ${ }^{\text {S }}$
($2_{2} 0.3$ \% frl. or larker.	0.3 afd. or larger.
	2.50 10, $000 \mu_{\mu}$ fil.
C.4 $0.1 \mu \mathrm{fd}$.	0.1 Mfi.
Cis	$0.5 \mu \mathrm{fd}$. or laruer.
R1 2.5,000 to $1.50,000$ ohms.	10,000 to 20,000 ohims.
$\mathrm{R}_{2} \mathbf{5 0 , 0 0 0)}$ to (00, 000 ohmes.	110,000 to 250,000 ohms.
H 3	B0,000 ohms.
H_{4}	20,000 ohms.
1 FCC 2.5 ml.	2.5 mh ,

Plate voltages from 100 to 250 volts may be used, Effective screen voltage in B should be about 30 volts,
to the resistance of R_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large eompared to R_{1}. If the capacity of C_{2} is too large, response at the higher audio frequencies will be lowered.

Compared with other detectors, the sensitivity of the diode is low, normally rumning around 0.8 in audio work. Since the diode consumes power, the Q of the tuned circuit is reduced, bringing about a reduction in selectivity. The loading effert of the diode is close to one-half the lowd resistance. The detertor linearity is good, and the sigmal-handling capalibity is high.

Plate Detectors

The plate detector is arranged so that rectification of the r.f. signal takes place in the plate circuit of the tube. Sufficient negative bias is applied to the grid to bring the plate current nearly to the cut-off point, so that application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in signal amplitude in a fashion similar to the rectified current in a diode detector.

Circuits for triodes and pentodes are given in Fig. 5-4. C_{3} is the plate by-pass condenser, and, with RFC, prevents r.f. from appear-
ing in the output. The cathode resistor, R_{1}, provides the operating grid bias, and C_{2} is a by-pass for both radio and audio frequencies. h_{2} is the plate load resistance and C_{4} is the output coupling condenser. In the pentode circuit at B, R_{3} and R_{4} form a voltage divider to supply the proper screen potential (about 30 volts), and C_{5} is a by-pass condenser. C_{2} and C_{5} must have low reactance for both radio and audio frequencies.

In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, because the plate impedance of any tube is very high when the bias is near the platecurrent cut-off point. Impedance coupling may be used in place of the resistance coupling shown in Fig. 5-4. Usually 100 henrys or more inductance is required.

The plate detector is more sensitive than the diode because there is some amplifying action in the tube. It will handle large signals, but is not so tolerant in this respert as the diode. I inearity, with the self-hiased circuits shown, is good. Up to the overload point the detector takes no power from the tuned circuit, and so does not affect its Q and selertivity.

Infinite-Impedance Detector

The circuit of Fig. 5-5 combines the high signal-handling capabilities of the diode detector with low distortion and, like the plate detertor, does not load the tuned eircuit it commects to. The circuit resembles that of the plate detertor, except that the load resistance, R_{1}, is connerted between cathode and ground and thus is common to both grid and plate circuits, giving negative feed-hack for the audio frequencies. The eathode resistor is by-passed for r.f. but not for audio, while the plate circuit is by-passed to ground for both audio and radio frequencies. R_{2} forms, with C_{3}, an $R C$ filter to isolate the plate from the "IS" supply. An r.f. filter, consisting of a series r.f. choke and a shunt condenser, can be connected between the cathode and C_{4} to eliminate any r.f. that might otherwise appear in the output.

The plate current is very low at no signal, increasing with signal as in the case of the plate detector. The voltage drop across R_{1} consequently

Fig. 5.5 - The infinite-impedance detector. The input circuit, $L_{2} C_{1}$, is tuned to the signal frequency. Typical values for the other components are:
(22-2.50 $\mu \mathrm{ff}$. $\quad R_{1}-0.15$ megohm.

C4 - $0.1 \mu \mathrm{fl}$. $\quad \mathrm{R}_{3}-0.25$-mekohm volume control.
A tube having a medium amplification factor (about 20) should be used, Plate voltage should be 250 volts.
increases with signal. Because of this and the large initial drop across K_{1}, the grid usually cannot be driven positive by the signal, and no grid current can be drawn.

- REGENERATIVE DETECTORS

By providing controliable r.f. feed-back (regeneration) in a triode or pentode detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detector. Regencration also increases the effective () of the circuit and thus the selectivity. The grid-leak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectifier and audio-frequency amplifier. In the circuits of Fig. 5-6, the grid eorresponds to the diode plate and the rectifying action is cxactly the same as in a diode. The d.c. voltage from rectified-current flow through the grid leak, R_{1}, biases the grid negatively, and the audiofrequency variations in voltage across R_{1} are amplified through the tube as in a normal a.f. amplifier. In the plate circuit, T_{1}, L_{4} and L_{3} atre the plate load resistances, C_{3} is a by-pass comdenser and RFC an r.f. choke to eliminate r.f. in the output circuit.

A grid-leak detector has considerably greater sensitivity than a diode. The sensitivity is further increased by using a sereen-grid tube instead of a triode, as at 5-6 13 and C. The operation is equivalent to that of the triode circuit. The sereen bypass condenser, C_{5}, should have low roatance for both radio and audio frequencies. R_{2} and R_{3} constitute a voltage divider on the plate supply to furnish the proper sereen voltage. In both circuits, C_{2} must have low r.f. reactance and hish a.f. reactance compared to the resistance of R_{1}. Although the regenerative grid-leak detector is more sensitive than any other type, its many disadvantages commend it for use only in the simplest receivers. The linearity is rather poor, and the signal-handing capability is limited. The signal-handling capability can be improved by reducing R_{1} to 0.1 megohm, but the sensitivity will be decreased. The degree of antenna coupling is often critical.
The circuits in Fig. 5-6 are regenerative, the feed-back being obtained by feeding some signal to the grid back from the plate circuit. The amount of regeneration must be coutrollable, because maximum regenerative amplification is secured at the critical point where the circuit is just about to oscillate. The critical point in turn depends upon circuit conditions, which may vary with the frequency to which the detector is tuned. In the oscillating condition, a regenerative detector can be detuned slightly from an incoming c.w. signal to give autodyne reception.

The circuit of Fig. 5-6A uses a variable by-pass condenser, C_{3}, in the plate circuit to control regeneration. When the capacity is small the tube does not regenerate, but as it increases toward maximum its reactance becomes smaller until there is sufficient feed-back to cause
oseillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate connection is to the outside of the plate or "tickler" coil, l_{3}, when the grid eomection is to the outside of L_{2}.

The circuit of $\overline{3}-6 \mathrm{~B}$ is for a pentode tube, regeneration being controlled by adjustment of the sereen-grid voltage. The tiekler, L_{3}, is in the plate circuit. The portion of the control resistor between the rotating contart and ground is by-passed by a large condenser (0.5

Fig. 5-6-"Iriode and pentode regenerative detector circuits. The input circuit, $l_{2} \mathrm{C}_{1}$, is tuned to the signal frequency. The grid condenser, \dot{C}_{2}, should have a value of about $100 \mu \mu \mathrm{fd}$. in all circuits; the grid leak, K_{1}, may range in value from 1 to 5 megohms. The tichler coil, I.3, ordinarily will have from 10 to 2.5 per cent of the number of turns on I_{2}; in ($($, the cathode tap is alout 10 per cent of the number of turns on l_{2} above ground. Regenerationeontrol contenser C_{3} in A should have a maximum capacity of $100 \mu \mu \mathrm{fd}$. or more; by-pass condensers C_{3} in IS and C are likewise $100{ }_{\mu \mu \mathrm{fd}} \mathrm{C}_{5}$ is ordinarily $1{ }_{\mu} \mathrm{fd}$. or nore; R_{2}, a $50,0,00$-ohm potentioneter; $\mu_{3}, 50,000$ to 100,000 ohms. I_{4} in B (L_{3} in C.) is a 5000° henry inductance, C_{4} is $0.1 \mu \mathrm{fd}$, in both circuits. T_{1} in A is a comventional andio transformer for coupling from the plate of a tube to a following grid. $R F C$ is 2.5 mh . In A, the plate voltage should be about 50 volts for best sensitivity. Pentode circuits require about 30 volts on the screen; plate potential may be 100 to 250 volts.
$\mu \mathrm{fd}$. or more) to filter out scratching noise when the arm is rotated. The feed-bark is adjusted by varying the number of turns on L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a screen potential of approximately 30 volts.

Circuit C is identical with 13 in principle of operation. Since the screen and plate are in parallel for r.f. in this circuit, only a small amount of "tickler" - that is, relatively few turns between the cathode tap and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no effect on the frequency of oscillation, and would give the same value of regeneration regardless of frequency and the loading on the circuit. In practice, the effects of loading, particularly the loading that occurs when the detector circuit is coupled to an antenna, are difficult to overcome. Likewise, the regeneration is usually afferted by the frequency to which the grid circuit is tuned.

In all circuits it is best to wind the tickler at the ground or cathode end of the grid coil, and to use as few turns on the tickler as will allow the detector to oscillate easily over the whole tuning range at the plate (and screen, if a pentode) voltage that gives maximum sensitivity. Should the tube break into oscillation suddenly as the regeneration control is advanced, making a click, it usually indicates that the coupling to the antenna (or r.f. amplifier) is too tight. The wrong value of grid leak plus too-high plate and screen voltage are also frequent causes of lack of smoothness in going into oscillation.

Antenna Coupling

If the detector is coupled to an antenna, slight changes in the antenna (as when the wire swings in a breeze) affert the frequency of the oscillations generated, and thereby the beat frequency when c.w. signals are being received. The tighter the antenna coupling is made, the greater will be the feedback required or the higher will be the voltage necessary to make the detector oscillate. The antenna coupling should be the maximum that will allow the detector to go into oscillation smoothly with the correct voltages on the tube. If capacity coupling to the grid end of the coil is used, generally only a very small amount of caparity will bo needed to couple to the antemia. Incroasing the capacity increases the coupling.
At frequencies where the antenna system is resonant the absorption of energy from the oscillating detector circuit will be greater, with the consequence that more regeneration is needed. In extreme cases it may not be possible to make the detector oscillate with normal voltages. The remedy for these "dead spots" is to loosen the antema coupling to a point that pernits nomal oscillation and smooth regremertation control.

Body Capacity

A regencrative detector occasionally shows a tendency to change frequency slightly as the hand is moved near the dial. This condition (body capacity) can be corrected by hetter shielding, and sometimes by r.f. filtering of the 'phone leads. A good, short ground connection and loosening the coupling to the antenna will help.

Hum

IIum at the power-supply frequency, even when using battery plate supply, may result from the use of a.c. on the tube heater. Effects of this type normally are troublesome only when the circuit of Fig. 5 -6C is used, and then only at 1+ Mc. and higher. Connecting one side of the heater supply to ground, or grounding the centertap of the heater-transformer winding, will reduce the hum. The heater wiring should be kept as far as possible from the r.f. circuits.

Ilouse wiring, if of the "open" type, may cause hum if the dotector tube, grid lead, and grid condenser and leak are not shielded. This type of hum is easily recognizable because of its rather high pitch.

Tuning

For c.w. reception, the regeneration control is advanced until the detector breaks into a "hiss," which indicates that the detector is oscillating. Further advancing the regeneration control after the detector starts oxcillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing,

The proper adjustment of the regeneration control for best reception of c.w. signals is where the detector just starts to oscillate. Then c.w. signals can be tuned in and will give a tone with each signal depending on the setting of the tuning control. As the receiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" and rise again on the other side, finally

Fig. 5-7 - As the tuning dial of a receiver is turned past a c.w. signal, the beat-note varies from a high tone town thronph "zero beat" (no audible frequency differ-(-nce) and baek up to a high tone, as shown as A, B and C. 'The curse is a graphical representation of the action. 'The theat exints past 8000 or 10,000 cyeles but usually is not hearal because of the limitations of the auficisystem.
disappearing at a very high pitch. This hehavior is shown in Fig. 5-7. A low-pitched beat-note cannot be ohtained from at strong signal because the detector "pulls in" or "blocks": that is, the signal forces the detertor to oscillate at the signal frequency, even though the circuit may not be tunced exactly to the signal. This phenomenon, is atso called "locking-in": the more stable of the two frequencirs assumes control over the other. It usually an be corrected by advancing the regeneration control until the beat-note is heard again. or ber reduring the input signal.

The point just after the detecetor starts oscil-
lating is the most sensitive condition for c.w. reception. Further advancing the regeneration control makes the receiver less susceptibla. to blocking by strong signals, but also less sensitive to weak signals.

If the detector is in the ascillating condition and a phone signal is tuned in, a steady andible beat-note will result. While it is possible to listen to 'phone if the receiver can be tuned to exact zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver goes into ossillation. This is also the most sensitive operating point.

Tuning and Band-Changing Methods

Band-Changing

The resonant circuits that are tuned to the frequency of the incoming signal constitute a sperial problem in the design of amateur receivers, since the amateur frequency assignments consist of groups or bands of frequencies at widely-spared intervals. The same roil and tuning rondenser cannot be used for, say, 14 Mr . to 3.5 Mre., because of the impracticable maxi-mum-to-minimum capacity ratio required, and also berause the tuning would be excessively eritical with such a large frequency range. It is necessary, therefore, to provide a means for changing the circuit constants for various frequency bands. As a matter of eonvenience the same tuning condenser usually is retained, but new eoils are inserted in the circuit for earh hand.
One method of changing inductances is to use a switch having an appopriate number of eontacts, which comnerts the desired eoil and disionnects the others. The unused coils are sometimes short-circuited by the switch, to avoid the possibility of undesirable self resonances in the mused eoils. This is mot necessary if the coils are somrated from each other loy several coil diameters. or are mounted at right angles to eath other.

Another method is to use coils wound on forms with contacts (usually pins) that (an be plugged in and removed from a socket. These coils are advantageous when spare in a multiband receiver is at a premium. They are also very useful when ronsiderable experimental work is involved, because they are easier to work on than coils clustered armond a swituh.

Bandspreading

The tuning range of a given coil and variable condenser will depend upon the inductance of the coil and the change in tuning caparity. Fon ease of tuning, it is desirable to adjust the tuning range so that pratically the whole dial scale is ocrupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, special tuning methods must be devised to give the correct maximumminimum capacity ratio on each band. several of these methods are shown in Fig. is-8.

In A, a small bandspread condenser, C_{1} (15to $2 \overline{2}-\mu \mu \mathrm{fd}$. naximum capacity), is used in para!lel with a condenser, C_{2}, which is usually large
enough (100 to $140 \mu \mu \mathrm{fd}$.) to cover a 2 -to-1 frequency range. The setting of C_{2} will determine the minimum capacity of the circuit, and the maximum caparity for handspread tuning will be the maximum capacity of ('। plus the setting of ('2. The inductance of the coil can be adjusted so that the maximumminimum ratio will give adequate bandspread. It is almost impossible, because of the nonharmonic relation of the various band limits, to get full bandspread on all bands with the same pair of condensers. ('2 is variously called the band-setting or main-tuning condenser. It must be reset each time the band is changed.
The method shown at 13 makes use of condensers in sorics. The tuning condenser, C_{1}, may have a maximum capacity of 100 $\mu \mu \mathrm{fi}$. or more. The minimum capacity is determined principally by the sotting of C_{3}, which usually has low capacity, and the maximum capacity by the setting of C_{2}, which is of the order of 25 to 50 $\mu \mu \mathrm{d}$. This method is capable of close arljustment to practically any desired degree of bandspread. Fither C_{2} and C_{3} must be adjusted for each band or separate preadjusted condenisers must be switched in.

Fig. 5.8- Visisentials of the three hasichamil. spread thaingessiams.

The circuit at C also gives complete spread on each band. C_{1}, the bandspread condenser, may have any convenient value of rapacity; $50 \mu \mu \mathrm{fd}$. is satisfactory. ('2 may be used for continuous frequency coverage ("general coverage") and as a band-setting eondenser. The effective maximum-minimum capacity ratio depends upon the capacity of C_{2} and the point at which C_{1} is tapped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the bandspread will be greater if C_{2} is set at higher capacity. ('2 may be mounted in the plug-in coil form and preset, if desired.

This requires a separate condenser for each band, but eliminates the necessity for resetting C_{2} each time the band is changed.

Ganged Tuning

The tuning condensers of the several r.f. circuits may be coupled together mechanically and operated by a single control. However, this operating convenience involves more complicated construction, both electrically and mechanically. It becomes necessary to make the various circuits track - that is, tune to the same frequency at each setting of the tuning control.

Fig. $5.9-$ Showing the use of a trimnter mondenser to set the minimum circuit capacity in order to ohtain true tracking for gang-tuning.

True tracking can be obtained only when the inductance, tuning condensers, and circuit inductances and minimum and maximum capacities are identical in all "ganged" stages. A small trimmer or padding condenser may be connected across the coil, so that variations in minimum capacity can be compensated. The fundamental circuit is shown in lig. $\overline{\mathrm{j}}$-9, where C_{1} is the trimmer and C_{2} the tuning condenser. The use of the trimmer necessarily increases the minimum circuit capacity, but it is a necessity for satisfactory tracking. Midget condonsers having maximum capacities of 15 to $: 30 \mu \mu \mathrm{fl}$. are commonly used.
The same methods are applied to bandspread circuits that must be tracked. The circuits are identical with those of Fig. ir-8. If both general-coverage and bandspread tuning are to be available, an additional trimmer condenser must be connerted across the coil in each circuit shown. If only amateur-hand tuning is desired, however, then (3 in Fig. 5-8B, and C_{2} in Fig. i-8C, serve as trimmers.
The coil inductance can be adjusted by stirting with a larger number of turns than
necessary and removing a turn or fraction of a turn at a time until the circuits track satisfactorily. An alternative method, provided the inductance is reasonably close to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole coil, or to use a single short-cireuited turn the position of which can he varied with respert to the coil. The application of these methods is shown in Fig. is-10.

Still another method for trimming the inductance is to use an adjustable brass (or copper) or powdered-iron core. The brass core acts like a single shorted turn, and the inductance of the coil is decreased as the brass core, or "slug," is moved into the coil. The powdered-iron core has the opposite effect, and increases the inductance as it is moved into the eril. The Q of the coil is not alfected materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powlerediron core will raise the Q of a coil, provided the iron is suitable for the frequency in use. (bood pow-dered-iron cores can be obtained for use up to about io Mc.

Fig. 5.10-Methods of adjusting the inductance for ganging. The halfturn in A ran he nonved so that its magne lie fielle cither aids or opposes the field of the coil. The shorted loop in $B \mathrm{i}$: not connmeted to the coil, hat operates hy induetion. It will have no effere on the eoil induetance when the axis of the toop is perpendicular to the axis of the coil, and will give maximum reduction of the eoil inductanee when rotated 90°. 'the lowp can be a solid disk of metal and give exactly the same effect.

The Superheterodyne

For many years (up to about 1932) practically the only type of receiver to be found in amateur stations consisted of a regenerative detertor and one or more stages of audio amplification. Receivers of this type can be made quite sensitive but strong signals block them easily and, in our present crowded bands, they are seldom used except in emergencies. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (abbreviated "i.f."), then amplified, and finally detected. The frequency is changed by modulating the output of a tunable oscillator (the high-fre-
quency, or local, oscillator) by the incoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermediate frequency. The other side frequency is rejected by selective circuits. The audiofrequeney signal is obtained at the second detector. C.w. signals are made audible by autodyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frequency of 455 kc . is chosen and that the incoming signal is at 7000 ke . Then the high-frequency oscillator frequency may be set to $74 \overline{5}) \mathrm{kc}$., in order that one side frequency ($74 \mathrm{~m}_{\mathrm{j}}$ minus 7000) will be 45 j ke . The high-frequency oscillator could also be set to $6.54{ }^{5} \mathrm{kc}$. and give the same difference frequency. To produce an audible c.w. signal at

CHAPTER 5

the second detector of, s:yy, 1000 deycles, the autodyning or heterodyning oscillator would be set to either 454 or 456 kc .

The frequency-conversion process permits r.f. amplification at a relatively low frequency, the i.f. High selertivity and gain can be obtained at this frequency, and this selectivity and gain are constant. The separate oscillators ean be designed for good stability and, since they are working at frequencies considerably removed from the signal frequencies (jercentage-wise), they are not normally: "pulled" by the incoming signal.

Images

Each h.f. oscillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 7.45 ja k. to tune to a $7000-\mathrm{kr}$. sigmal, for example, the receiver can respond also to a signal on 7910 kc ., which likewise gives a 450-kc. heat. The undesired signal is called the image. It can canse unneressary interference if it isn't eliminated.

The radio-frequency circuits of the receiver (those used before the signal is heterodyned to the i.f.) normally are tuned to the desired signal, so that the selectivity of the circuits reduess or eliminates the response to the image signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selertivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate froquency, the higher the image ratio, since raising the i,f. increases the frequency separation between the signal and the image and places the latter further away from the resomance peak of the signal-frequeney input circuits. Most receiver designs represent a compromise between economy (few r.f. stiges) and image rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to which the receiver is not ostensibly tuned may be heard. Harmonies of the high-frequency oscillator may beat with signals far removed from the desired frequency to produce output at the intermediate frequency; such spurious responses can be redured by adequate selectivity before the mixer staure, and by using sufficient shielding to prevent signal pick-up by any means other than the antemna. When a strong signal is reeeived, the harmonics generated by rectification in the second detector may, be stray coupling, be introduced into the r.f. or mixer circuit and converted to the intermediate frequency, to $\mathrm{g}^{\prime \prime}$ through the receiver in the simme way as an ordinary signal. These "birdies" appear as a heterndyne beat on the desired signal, and are principally bothersome when the frequency of the incoming signal is not greatly different from the
intermediate frequency. The cure is proper cireuit isolation and shielding.

Ifarmonies of the beat oscillator also may be converted in similar fashion and amplified through the receiver; these responses ean be reduced by shielding the beat oscillator and operating it at low power level.

The Double Superheterodyne

At high and very-high frequencies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of 4\%) ke. To reduce image response the signal frequently is converted first to a rather high (1500,5000 , or even $10,000 \mathrm{kc}$.) intermediate frequency, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-channel selectivity can be obtained. such a receiver is called a double superheterodyne.

- FREQUENCY CONVERTERS

A circuit tuned to the intermediate frequency is placed in the plate circuit of the miser, to offer a high impedaner load for the i.f. voltage that is developed. The signal- and oseillator-frequency voltages appearing in the plate circuit are rejected by the selectivity of this circuit. The i.f. tumed aricuit should have low impedance for these fregumenes, a condition easily not if they do not approath the intermediate frequence.

The conversion efficiency of the mixer is the ratio of i.f. output voltage from the plate circuit to r.f. signal voltage applied to the grid. High conversion efficiency is desirable. The mixer tube noise also should be low if a good signal-tomoise ratio is wanted, particularly: if the mixer is the first tube in the receiver.

The mixer should not require too much r.f. power from the h.f. oseillator, since it may be difficult to supply the power and yet maintain good oscillator stability. Aso, the conversion efficiency should not depend too critically on the oscillator voltage (that is, a small change in oscillator output should not ehange the gain), since it is difficult to maintain constant output over a wide frequency range.

A change in oscillator frequency caused by tuning of the mixer grid circuit is called pulling. Pulling should be minimized, because the stability of the whole receiver depends critically upon the stability of the h.f. oscillator. Pulling decreases with separation of the signal and h.f.oscillator frequencies, being less with high intermediate frequencies. Lnother type of pulling is caused by regulation in the power supply. strong signals canse the supply voltage to change, and this in turn shifts the oseillator frequency.

Circuits

If the first detector and high-frequency oscillator are separate tubes, the first detertor is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or
efficiency), the first detector" is called a "converter." In either ease the function is the same.

Typical mixer circuits are shown in Fig. 5-11. The variations are chiefly in the way in which the oscillator voltage is introduced. In $5-11 \mathrm{~A}$, a pentode functions as a plate detertor; the oscillator voltage is raparity-rouplod to the grid of the tube through ('2. Inductive coupling may be used instead. The conversion gain and input selectivity generally are good, so long as the sum of the two voltages (signal and oscillator) impressed on the mixer grid does not exceed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The osrillator power required is negligible. If the signal frequency is only in or 10 times the i.f., it may be difficult to develop enough oscillator voltage at the grid (berause of the selectivity of the tuned input circuit). However, the circuit is a sensitive one and makes a good mixer, particularly with high-transconductance tubes like the 6.1C7 and (iAL5. A good triode also works woll in the circuit, and tubes like the 7 fr8 (one section), the dide (one section), the 12. DT 2 (one section), and the (iJ. 4 work well. When a triode is used, the sigmal frequency must be shortcircuited in the plate circuit, and this is done by connecting the tuning capacitor of the i.f. transformer direetly from plate to cathode.

It is difficult to avoid "pulling" in a triode or pentode miver, and a pentagrid mixer tube provides much better isolation. A typical circuit is shown in Fig. 5-1113, and tubes like the $6 s, 17$, $7(07$ or 6BLE 6 are commonly used. The oscillator voltage is introduced through ann "injertion" grid. Measurement of the rectified current flowing in R_{2} is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid circuit can have little effect on the oscillator frequency because the injertion grid is isolated from the signal grid by a sereen grid that is at r.f. ground potential. The pentagrid mixer is much noisier than a triode or pentode mixer, but its isolating characteristies make it a very useful device.

Many receivers use pentagrid converters, and two typical circuits are shown in Fig. i"-12. The circuit shown in Fig. 5-12A, which is suitable for the 6 K 8 , is for a "triode-hexode" converter. A triode oseillator tube is mounted in the same envelope with a hexode, and the control grid of the oscillator portion is connected internally to an injection grid in the hexode. The isolation

Fig. 5-1/-Typical circuits for separately-excited mixers. Grid injection of a pentode mixer is shown at A, and separate excitation of a pentagrid converter is given in 13. T'ypical vatues for B will the fomed in Thable 5.1 the values leelow are for the pentomle mixer of A.
($\mathrm{C}_{1}-10$ to $50 \mu \mu \mathrm{f} \mathrm{f}$. $\quad \mathrm{H}_{2}-1.0$ megohm.

$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001{ }_{\mu} \mathrm{fd} . \quad \mathrm{R}_{4}-\mathrm{lin} 00$ ohms.
$R_{1}-6800$ ohms.
Ionitive supply voltage can le 2.50 volts with a $6 \mathrm{AC7}, 150$ with a 6.1 K 5.
between oseillator and converter tube is reasonably good, and very little pulling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrid-converter circuit showา in Fig. 5-1213 can be used with a tube like the 6s.17, $6 \mathrm{SI} 37 \mathrm{Y}, 6 \mathrm{BI} 17$ or 6BE6. Generally the only care neressary is to adjust the feed-back of the osciliator circuit to give the proper oscillator r.f. voltage. This condition is checked by measuring the d.c. current flowing in grid resistor R_{2}.

A more stable receiver generally results, particularly at the higher frequencies, when sepatrate tubes are used for the miser and oscillator. Practically the same number of circuit com-

Fig. 5.12-T'ypical circuits for trionle-hexome (A) and pentagrid (13) converters. Values for K_{1}, R_{2} and R_{3} can be found in 'I'able 5.I; others are given below.
$\mathrm{C}_{1}-4{ }^{2}{ }_{\mu} \mathrm{fid}$.
$\mathrm{C}_{3}-0.01 \mu \mathrm{fu}$).
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001 \mu \mathrm{ff} . \quad \mathrm{H} \mathrm{B}_{4}-\mathrm{J}(000)$ olims.
ponents is required whether or not a rombination tube is used, so that there is very little difference to be realized from the cost stampoint.
Typical circuit constants for converter tubes are given in Table 5 -1. The grid leak referred to is the oscillator grid leak or injection-grid return, R_{2} of liges. $\overline{5}-11$ and $\bar{i}-12$.

The effectiveness of converter tubes of the type just described becomes less as the sigmal frequency is increased. some oscillator voltage will be coupled to the signal grid through "spacecharge" coupling, an effect that increases with frequency. If there is relatively little frequency difference between oscillator and signal, as for example a 14 - or 28-Me, signal and an i.f. of 45% $\mathrm{k} \cdot$, this voltage can berome considerable because the selectivity of the signal circuit will be unable to reject it. If the signal grid is not returned directly to ground, but instead is returned through a resistor or part of an a.v.e. system, considerable bias ean be developed which will cut down the gain. For this reason, and to reduce image response, the i.f. following the first converter of a receiver should be not less than 5 or 10 percent of the signal frequency, for best results.

Audio Converters

Converter circuits of the type shown in Fig. 5-12 can be used to advantage in the reception of c.w. and single-sidehand suppressed-career signals, by introducing the local oscillator on the No. I grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation can
be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for audio conversion has been limited to selective i.f. amplifiers operating below 500 ke . and usually below 100 kc . An ordinary a.m. signal cannot be received on such a detector unless the tuning is adjusted to make the local oseillator zero-beat with the incoming carrier.

Since the beat oscillator modulates the electron stream completely, a large beat-oscillator component exists in the plate circuit. To prevent overload of the following andio amplifier stages, an adequate i.f. filter must to used in the output of the converter.

THE HIGH-FREQUENCY OSCILLATOR

Stability of the recciver is dependent chiefly upon the stability of the h.f. oscillater, and particular care should be given this part of the receiver. The frequener of ascillation should be insensitive to mechanioal shock and changes

Fig. 5-13 - Iligh-frequency ostillator circuits. A, pentode grounded-plate oscillator; 13 , trionle groundedplate oseillator; (a, triode oscillator with tiokler circenit. Compling to the mixermay he takenfrompoints Iand Y. In A and B, compliny from Y will reduce pulling effecto, but gives leses voltane than from X; this type is hest adapted to mixer circuits with small oseillator-voltape requirements. Typical values for components are as follows:

	Circrit 4	Ciircrit 13	Circuit C
$\mathrm{C}_{1}-$	$100 \mu \mu \mathrm{fl}$.	$100 \mu_{\mu} \mathrm{fil}$.	$100{ }_{\mu \mu \mathrm{fl}} \mathrm{f}$.
C_{2}	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.
Ci_{3} -	$0.1 \mu \mathrm{fd}$.		
l_{1} -	47,000 ohms.	47,000 ohms.	47,000 ohms.
\mathbf{R}_{2} -	47,000 ohms.	10,0\%0 to	10,000 to
		25,000 ohms.	25,000 ohms.

The plate-supply voltage should be $\mathbf{2 5 0}$ volts. In circuits B and C, K_{2} is used to drop the supply voltage to $100-150$ volts; it mas be omitted if voltage is obtained from a voltage divider in the power supply.
in voltage and loading. Thermal effects (slow change in frequency because of tube or circuit heating) should be minimized. They can be reduced by using ceramic instead of bakelite insulation in the r.f. circuits, a large cabinet relative to the chassis (to provide for good radiation of developed heat), minimizing the number of high-wattage resistors in the receiver and putting them in the separate power supply, and not mounting the oscillator coils and tuning condenser too close to a tube. Propping up the lid of a receiver will often reduce drift by lowering the terminal temperature of the unit.
sensitivity to vibration and shock can be minimized by using good merhanical support for eoils and tuning eondensers, a heavy chassis, and by not hanging any of the oscillator-circuit eomponents on long leads. Tie-points should be used to avoid long leads. Sitiff short leads are excellent because they can't be made to vibrate.
smooth tuning is a great convenience to the operator, and can be obtained by taking pains with the mounting of the dial and taming condensers. They should have good alignment and no back-lash. If the eondensers are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-hash muless the posts have extra-wide bases. The condensers shonld be selected with good wiping contarts to the rotor, since with age the rotor contacts ean be a soure of erratic tuning. AI joints in the oscillator tuning circuit should be carefully soldered, berause a loose comeretion or "rosin joint" can develop trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not canse torsion and a shift in the frequency.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the receiver,
and its harmonic output should be as low as possible to reduce the possibility of spurious responses.

The oscillator plate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should be well isolated, preferably by shielding, since coupling other than by the intended means may result in pulling.

If the h.f.-oscillator frequency is afferted by changes in plate voltage, a voltage-regulated plate supply (VR tube) ean be used.

Circuits

Several oscillator circuits are shown in Fig. 5-13. The point at which output voltage is taken for the mixer is indicated in each case by X or Y. Circuits I and 13 will give about the same results, and require only one eoil. Inowever, in these two circuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the oscillator output af It Mc . and highor frequencies when a.e--heated-wathode tubes are used. The circuit of Fig. $\bar{\delta}-13 \mathrm{C}$ reduces hum because the cathode is grounded. It is simple to adjust, and it is also the best eireuit to use with filament-type tubes. With filament-type tubes, the other two eirenits would reduire r.f. chokes to keep the filament above r.f. ground.

Besides the use of a fairly high $(\% / L$ ratio in the tumed circuit, it is necessary to adjust the feed-back to obtain optimum results. Too much feed-hark may cuse the oscillator to "squeg" and generate several frequencioss simultaneously; too little feed-back will cause the output to be low. In the tapped-roil cirruits (1,13), the feedback is increased by moving the tap toward the grid end of the coil. laing the ascillator shown at C, feed-back is obtained by increasing the number of turns on L_{2} or by moving L_{2} eloser to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity can be obtained by using a good i.f. amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more elaborate sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between conflieting factors, The bwer the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired sigmal and hence decreases the image ratio. A low i.f. also increases pulling of the oweillator frequency. (n the other hand, a high i.f. is beneticial to both image ratio and pulling, but the selectivity and gain are lowered. The difference in gain is least important.
. In i.f. of the order of 45.5 kr , gives good selertivity and is satisfactory from the standpoint of image ratio and oscillator pulling at frequencies
up to 7 Me. The imatge ratio is poor at 14 Mc. when the mixer is connected to the antenna, but adequate when there is a tuned r.f. amplifier botween antemna and mixer. It 28 Mc. and on the very-high frequencios, the inage ratio is very poor unless several r.f. stages are used. Above 14 Me., palling is likely to be bad unless very loose coupling ean be used between mixer and oscillator.

With an i.f. of about 1600 ke ., satisfactory image ratios can be secured on 14, 21 and 28 Me. but the i.f. selectivity is considerably lower. For frequencios of $2 s$ Mc. and highor, the best solution is to use a double superheterolyne, chonsing one high i.f. for image reduction (5) and 10 M . are frequently used) and a lower one for gan and selectivity.
lat chonsing an i.f. it is wise to avord frequencies $0 n$ which there is considerable activity by the various radio services, since such signals
may be picked up directly on the i.f. wiring. Shifting the i.f. or better shielding are the solutions to this interference problem.

Fidelity; Sideband Cutting

Modulation of a carrier causes the generation of sideband frequencies numerically equal to the carrier frequency plus and minus the highest modulation frequency present. If the receiver is to give a faithful reproduction of modulation that contains, for instance, atudio frequencies up to 5000 cycles, it must at least be capable of amplifying equally all frequencies contained in a band extending from 5000 acyes above or below the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequency, this means that the i.f. amplifier should amplify equally well all frequencies within that band. In other words, the amplification must be uniform over a band 5 kc . wide, when the carrier is set at one edge. If the currier is set in the center, a l0-ke. band is required. The signal-frequency circuits usually do not have enough over-all selectivity to affect materially the "adjacentchannel" selectivity; so that only the i.f.-amplifier selectivity need be considered.

If the selectivity is too great to permit uniform amplification over the band of frequencies occupied by the modulated signal, some of the sidebands are "cut." While sideband cutting reduces fidelity, it is frequently preferable to sacrifice naturalness of reproduction in favor of communications effectiveness.

The selectivity of an i.f. amplifier, and hence the tendency to cut sidebands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of communication, sideband cutting is never serious with two-stage amplifiers at frequencies as low as 45 j kc. A two-stage i.f. amplifier at 85) or 100 kc . will be sharp enough to cut some of the higher-frequency sidebonds, if good transformers are used. However, the cutting is not at all serious, and the gain in selectivity is worthwhile if the receiver is used in the lowerfrequency bands.

Circuits

I.f. amplifiers usually consist of one or two stages. At 455 kc . two stages generally give all the gain usable, and also give suitable selectivity for 'phone reception.

A typical circuit arrangement is shown in Fig. 5-14. A second stage would simply duplicate the circuit of the first. The i.f. amplifier practically always uses a remote cut-off pen-tode-type tube operated as a Class A amplifier. For maximum selectivity, double-tuned transformers are used for interstage coupling, although single-tuned circuits or transformers with untuned primaries can be used for coupling, with a consequent loss in selectivity, All other things being equal, the selectivity of an i.f. amplifier is proportional to the number of tuned circuits in it.

In Fig. $5-14$, the gain of the stage is reduced by introducing a negative voltage to the lead marked "to a.v.e." or a positive voltage to R_{1} at the point marked "to manual gain control." In cither ease, the voltage increases the bias on the tube and redures the mutual conductance and hence the gain. When two or more stages are used, these voltages are generally obtained fiom common sources. The decoupling resistor, R_{3}, helps to prevent unvanted interstage coupling. C_{2} and R_{4} are part of the automatic volumecontrol circuit (described later); if no a.v.c. is used, the lower end of the i.f.-transformer secondary is comnected to ground.

In a two-stage amplifier the screen grids of both stages may be fed from a common supply, either through a resistor $\left(R_{2}\right)$ as shown, the screens being connected in parallel, or from a voltage divider across the plate supply. Soparate screen voltage-dropping resistors are proferable for preventing undesired coupling between stages.
Typical values of cathorle and screen resistors for common tubes are given in Table 5-11. The 6K7, 6Sk7, 613.J6 and 7117 are recommended for i.f. work. The indicated screen resistors drop the plate voltage to the correct sereen voltage, as K_{2} in Fig. is-14.

When two stages are used the high gain will tend to cause instability and oscillation, so that good shielding, by-passing, and careful circuit arrangement to provent stray coupling, with exposed r.f. leads well separated. are beoessary.

1.F. Transformers

The tuned circuits of i.f. amplifiers are built up as transformer units consisting of a metal shied container in which the coils and tuning condensers are mounted. Both air-rore and powdered iron-core universal-wound coils are used, the latter having somewhat higher (os and hence greater selectivity and gain. In universal windings the coil is wound in layers with each turn traversing the length of the coil, hark and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straight multilayer winding, a fairly large

Fig. 5-14 - Typical intermediate-freduency amplifier circuit for a superheterodyne receiver. Representative values for components are as follows:
$\mathrm{C}_{1}-0.1 \mu \mathrm{fl}$ at $45.5 \mathrm{ke}, ; 0.01 \mu \mathrm{fd}$, at 1600 kc , and bigher. $\mathrm{C} 2-0.01 \mu \mathrm{fl}$.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.1 \mu \mathrm{fd}$. at $4.5 \mathrm{ke} ; 0.01 \mu \mathrm{fll}$, ahove 1600 kr .
h_{1}, l_{2} - see ${ }^{\top}$ ahle 5-il. R_{3} - 1800 ohnis.
Ih ${ }_{4} \mathbf{0 . 2 2}$ megohm.

AIR TUNED
PERMEABILITV TUNED
Fig．5－15－Representatue i．f．－transformer constrac． tion．Coils are supported on insulating tobing or（in the air－tuned type）on watimpergated wemben dowers． The shictd in the air－tumed tran－former prevents ra－ pacity coupling helwern the thing comdenars．In tha permeability－tuned transformer har mores eonsist of finely－divided irom partietes supported in ab insmat－ ing hindor，formed into colindrical＂phige．＂The tuning capacty is fixed，and the indoctanes of the enils are variod by moving the iron phage in and out．
mapaty can exist between layers．Thiversal winding，with its＂eriss－russed＂turns，tends to reduce distributed－aparity efferts．

For tuning，air－dielectric tuning condensers are preferable to miea compression types because their capacity is practieally unafferted by changes in temperature and humidity．Iromocore trans－ formers may be tuned by varying the inductance （permeability tuning），in whith rase stability comparable to that of variable air－eondenser tuning can be obtained by use of high－stability fixed mica condensers．Such stability is of great importance，since a cireuit whose frequency ＂drifts＂with time eventually will be tuned to a different frequeury tham the other areuits， therely reducing the gain and selertivity of the amplifier．Typical i．f．－transformer construction is shown in Fig，i－15．

Besides the type of i．f．transformer shown in Fig．$\overline{-}-15$ ，secerial units to give desired selectiv－ ity characteristios are available．For higher－ than－ordinary adjacent－chamel seloctivity triple－ tuned transfomers，with a third tumed rirenit inserted betwern the input and output windings， are sometimes used．The energy is transferred from the input to the output windings via this， tertiary winding，thus adding its selertivity to the over－all selectivity of the transformer．Varia－ ble－selectivity transfomers also ran be whamed． These usually are provided with a third（un－ tuned）winding which cou be comnerted to a resistor，thereby loading the tumed aireuits and derreasing the（ 8 to broaden the selectivity curve． The resistor is switehed in and out of the circuit to vary the selectivity．Another method is to vary the coupling between primary and sec－ ondary，overcoupling being used to broaden the solectivity rurve．Suecial rimuits using single funed circuits，roupled in athe of several differont ways，are used in some appliontions．

Selectivity

The over－all selectivity of the r．f．amplifier will depend on the frequeney and the number of stages．The following figures are indicative of the bandwidths to be experted with good－ quality＇transformers in ：mplifiers so eonstructed as to keep regeneration at a ninimum：

Intermediate F＇requency	Banduridh in Kilocycles		
	6 db ．	20 db ．	40 db ．
	doun	doun	dorn
One stake，\％ol ke，（iron core）	0.8	1.4	2.8
One stage，155ke．（aircorre）	8.7	17.8	32.3
Onmestage ，405 ke．（ironcore）	4.3	10.3	20.4
Twostages， 4.55 kr ，（iron core）	2.9	6.4	10.8
Twostages，Ifotke．	11.0	16.6	27.4
＇fwostages， 5000 kc ．	25.8	46.0	100.0

Tubes for I．F．Amplifiers

Viriable－μ（remote cut－off）pentodes are al－ most invariably used in i．f．amplifier stages， since grid－bias gain control is practically always applied to the i．f．amplifier．Tubes with high phate resistance will have least effect on the selectivity of the amplifier，and those with high mutual conductance will give greatest gatin．The ehoie of i．f．tules has practically no effert on the signal－to－noise ratio，since this is determined by the proceding mixer and r．f．amplifier．

When single－ended tulnes are used，the plate and grid leads should be well separated．With these tubes it is advisable to mount the sereen by－pass condenser directly on the bottom of the socket，erosswise between the plate and grid pins，to provide additional shielding．The outside foil of the condenser should be groundet．

－THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The second detcrtor of a superheterodyne receiver performs the same function as the de－ tertor in the simple reeciver，but usually operates at a higher imput leval because of the relatively

TABLE 5－II Cathode and Screen－Dropping Resistors for R．F．or I．F．Amplifiers				
Tule	Plute Volds	$\underset{\substack{\text { Scrern } \\ \text { Volts }}}{ }$	Cathode Resistor	Screen Rexistor
6．A13\％${ }^{\text {\％}}$	300		200 ohas	33,000 ohms
$6.10{ }^{17}$	300		160	62.900
6A1192	300	150	160	62,000
6AK5 ${ }^{2}$	180	120	200	27，000
fill＇${ }^{2}$	2.50	150	68	33.000
613． $11 i^{2}$	250	100	68	33，000
$61311 i^{2}$	250	1.50	100	33，000
$614.166^{2 *}$	250	100	82	47，000
6571	250	100	1200	270．000
6K「＂＊	250	125	240	47.000
68197＊	250	125	68	27.000
6＊N7\％	250	150	200	47.000
6＊117	250	150	68	34，000
6 N 71	250	100	820	180，000
6SK゙フ＊＊＊	250	100	270	56，000
7（ii）／12323	250	100	270	68：000
7113＊	250	150	180	27.000
1 （1）ctal hkis ＊Remotre c	metal －1ff t	2 Mi	ture tube	${ }^{3}$ Lark－in base．

Fig. 5.16-Automatic volume-control circuit using a dual-diode-triode as a combined a.v.c. rectilier, second detector and first a.f. amplifier.
$11_{1}-0.27$ megohm.
$\mathrm{R}_{2}-47,000$ to 220,000 ohms.
$R_{3}-1800$ ohms.
$R_{4}-2$ to $\overline{5}$ megolmes.
K_{5} - 0.47 to 1 megohm.
$\mathrm{R}_{8}, \mathrm{R}_{7}, \mathrm{R}_{8}, \mathrm{R}_{9}-\mathbf{0} .22$ megohm.
$\mathrm{R}_{10}-0.5$-megohm variable.
C_{1}, (2. $\mathrm{C}_{3}-100 \mu \mu \mathrm{fd}$ 。
$\mathrm{C}_{4}-0.1 \mu \mathrm{fd}$.

$\mathrm{C}_{4}, \mathrm{C}_{9}-0.01$ to $0.1 \mu \mathrm{fd}$.
$\mathrm{C}_{10}-5$ - to $10-\mu \mathrm{fl}$. clectrolytic.
$\mathrm{C}_{11}-270 \mu \mu \mathrm{fl}$.

great amplification ahead of it. Therefore, the ability to handle harge signals without distortion is preferable to high semsitivity. Flate detection is used to some extent, but the diode detertor is most popular. It is esperially adipted to furnishing automatic gain or volume control. The basic circuits have been described, although in many cases the diode elements are incorporated in a multipurpose tube that contains an amplifier seetion in addition to the diode.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Special beat-oscillator transformers are available, usuatly ronsisting of a tapped eoil with adjustable tuning; these are most conveniently used with the circuits shown in Fig. $5-13 \mathrm{~A}$ and B , with the output taken from Y. it variable condenser of about $25-\mu \mu \mathrm{fd}$. capacity may be connected betweon cathode and ground to provide fine adjustment of the frequency. The beat oseillator usually is coupled to the seemeddetertor tuned cirruit through a fixed aondenser of a few $\mu \mu \mathrm{fd}$. caparity.
The beat oscillator should be well shielded, to prevent coupling to any part of the receiver excopt the second detector and to prevent its harmonics from getting into the front end and being amplified along with desired signals. The b.f.o. power should be as low as is consistent with sufficient audio-frequency output on the strongest signals. However, if the beat-oscillator output is too low, strong signals will not give a proportionately strong audio signal. Contrary to some opinion, a weak b.f.o. is never an advantage.

automatic volume control

Sutomatic regulation of the gain of the receiver in inverse proportion to the signal strength is an operating eonvenience in 'phone reception, since it tends to keep the output level of the receiver constant regardless of input-signal strength. The average rectified d.c. voltage, developed by the received signal across a resistance in a detector circout, is used to vary the bias on the r.f. and i.f. amplifier tubes. sinee this
voltage is proportional to the average amplitude of the signal, the gain is reduced as the signal strength becomes greater. The control will be more complete as the number of stages to which the a.v.c. bias is applied is increased. Control of at least two stages is advisable.

Circuits

A typical circuit using a diode-triode type tube as a combined a.v.c. rectifier, detector and first audio amplifier is shown in Fig. $5-16$. One plate of the diode section of the tube is used for signal detection and the other for a.v.c. rectification. The a.v.c. diode plate is fed from the detector diode through the small coupling condenser, (${ }_{3}$. A negative bias voltage resulting from the flow of rectified carrier current is developed aeross R_{4}, the diode load resistor. This negative voltage is applied to the grids of the controlled stages through the filtering resistors, R_{5}, R_{6}, R_{7} and R_{8}. When S_{1} is closed the a.v.e. line is grounded, removing the a.v.c. bias from the amplifiers.

It does not matter which of the two diode plates is selected for audio and which for a.v.c. Frequently the two plates are comected together and used as a combined detector and a.v.e. rectifier. This conld be done in Fig. \%-16. The a.v.c. filter and line would eonnect to the junction of R_{2} and (${ }_{2}$, while (' 3 and R_{4} would be omitted from the circuit.

Delayed A.V.C.

In Fig. -16 the audio-diode return is made dirertly to the cathode and the a.v.e. diode is returned to ground. This places bias on the a.v.e. diode equal to the d.e. drop through the cathode resistor (at volt or two) and thus delays the application of a.v.c. voltage to the amplifier grids, since no rectification takes phace in the a.v.c. diode circuit until the carrier amplitude is large enough to overcome the hias. Without this delay the a.v.c. would start working even with a very small signal. This is undesirable, because the full amplification of the receiver then could not be realized on weak signals. In the audio-diode circuit fixed bias would cause distortion, so the return there is directly to the cathode.

Time Constant

The time constant of the resistor-eondenser combinations in the a.v.c. circuit is an important part of the system. It must be high enough so that the modulation on the signal is completely filtered from the d.c. output, leaving only an average d.e. component which follows the relatively slow carrier variations with fading. Audiofrequency variations in the a.v.r. voltage applied to the amplifier grids would reduce the perventage of modulation on the incoming signal. But the time constant must not be too great or the a.v.e. will be unable to follow rapid fading. The capacitance and resistance values indicated in Fig. $5-16$ will give a time constant that is satisfartory for average reception.

C. W.

A.v.c. can be used for e.w. reception but the cireuit is more compliated. The a.v.c. voltage must be derived from a rectifier that is isolated from the beat-frequency oscillator (otherwise the rectified b.f.o. voltage will reduce the recoiver gain even with no signal eoming through). This is generally done by using a separate a.v.e. channel connerted to an i.f. amplifier stage ahead of the second detector (and b.f.o.). If the seloctivity ahead of the a.v.e. rectifier isn't good, strong adjacent signals will develop a.v.e. voltages that will reduce the receiver gain while listening to weak signals. When clear channels are available,
however, c.w. a.v.c. will hold the receiver output constant over a wide range of signal input. A.v.e. systems designed to work on e.w. signals must have fairly long time constants to work with slow-speed sending, and often a selection of time constants is made available.

Amplified A.V.C.

The a.v.e. system shown in Fig. 5-16 will not hold the audio output of the receiver exactly constant, although the variation becomes less as more stages are controlled by the a.v.e. voltage. The variation also beromes less as the delay voltage is increased, although there will, of course, be variation in output if the signal intensity is below the delay-voltage level at the a.v.c. rectifier. In the rireuit of Fig. $5-16$, the delay voltage is set by the proper operating bias for the triode portion of the tube. However, a separate diode may be used, as shown in Fig. 5-17.1. Since such a system requires a large voltage at the diode, a separate i.f. stage is sometimes used to foed the delayed a.v.e. diode, as in Fig. 5 -17l3. A system like this, often called an "amplified a.v.e." system, gives superlative control action, since it maintains full receiver sensitivity for wook signals and substantially uniform audio output over a very wide range of signal strengths. To avoid a slight docrease in signal volume "on tune," the transformer coupling V_{2} to V_{3} should not be seleetive.

Noise Reduction

T'ypes of Noise

In addition to tube and cirenit moise, much of the noise interference experienced in reception of high-frequency signals is caused by domestie or industrial electrical equipment and by atomobile ignition systems. The interfernere is of two types in its efferts. The first is the "hiss" trpe, consisting of overlapping pulses similar in nature to the receiver noise. It is largely reduced by high selectivity in the receiver, aspecially for code reception. The serond is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is ratused by eommutator sparking in d.e. and serios-wound a.c. motors, while the "shot" trpe results from separated spark discharges (ate, power leaks, switeh and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and cireuit noise is through better "front-end" design and through more over-all selectivity.

Impulse Noise

Impulse noise, because of the short duration of the pulses compared with the time between them, must have high amplitude to contain much average anergs. Dence, noise of this type strong enough to catuse much interforence generally has an instantamoous amplitude much higher than that of the signal being rereived. The general prinaples of devires intended to reduce such noise is to allow the desired signald

Fig. 5-18-Serios-valve noise-limitor cirmits. A, as used with an infinte-impedane detertor: 13 , with a diode detector. 'lypical values for eomponents are as follows: $R_{1}-0.27$ megolim. $\quad R_{4}-20,000$ to 17,000 ohtins. $\mathrm{R}_{2}-4 \overrightarrow{4}, 000$ ohme. $\quad\left(i_{1}-2 \mathbf{2}^{-0}\right) \mu \mu \mathrm{fil}$.

All other diode-cirenit eonstants in lf are conventional.
to pass through the rereiver unafferted, but to make the receiver inoperative for amplitudes greater thath that of the signal. The greater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listener will not hear the "hole" berause of its short durat tion, and very effective noise reduction is obtained. Surh devices are called "silencers" rather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increased, because of the Q of the circuits. Thus the more selectivity ahoad of the moise-reducing device, the more difficult it beromes to secure good pulso-type noise suppression.

Audio Limiting

A considerable degree of noise reduction in code reception rat be accomplished by am-plitude-limiting arrangements applied to the audio-output circuit of a receiver. Such limiters also maintain the signal output mearly constant during fiading. These output-limiter systems are simple, and adaptable to most receivers. Ilowever, they commot prevent nowe peaks from overlouding previous stages.

SECOND-DETECTOR NOISE LIMITER CIRCUITS

The rircuit of Fig. $\overline{3}-18$ "chops" noise peaks at the second detector of a superhet recoiver by means of a biased diode, which becomes nonconducting above a predetermined signal level. The audio output of the detertor must pass through the diode to the grid of the amplifier tube. The diode nomally would be nonconducting with the commections shown were it not for the fact that it is given positive bias from a 30 -volt souree through the adjustahle potentiometer, R_{3}. Lesesistors R_{1} and R_{2} must bre farly large in value to prevent loss of audio signal.

The andio signal from the detertor rath be eonsidered to modulate the steady diode current, and conduction will take place so long as the diode plate is positive with resperet to the cathode. When the signal is sufliciently large to swing the cathode positive with respert to the phate, however, conduction ceases, and that portion of the signal is cut off from the audio amplifier. The point at which eut-olf occurs can be solected by adjustment of R_{3}. By sotting R_{3} so that the sigmal just passes through the "valve," noise pulses higher in amplitude than the signal will be cut off. The circuit of Fig. \bar{z}-18.1, using an infinite-impedance detertor, gives a positive voltage on rectifi-

Fig. 5-19 - Self-adjusting series (A) and shunt (B) noisc limiters. The functions of I_{1} and $\boldsymbol{1}_{2}$ can be combined in one tube like the 6116 or 611.5 .
$\mathrm{C}_{1}-100{ }_{\mu \mu \mathrm{fd}}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.05 \mu \mathrm{fd}$.
$\mathrm{li}_{1}-0.2 \overline{\mathrm{t}}$ meg. in $\mathrm{A} ; 47,000 \mathrm{ohms}$ in 1 .
$\mathrm{H}_{2}-0.27 \mathrm{meg}$. in $\mathrm{A} ; 0.15 \mathrm{meg}$. in 13.
$R_{3}-1.0$ megohm.
$\mathrm{R}_{4}-0.82$ megohm.
1_{5} - 6800 ohms.
cation. When the rectified voltage is negative, as it is from the usual diode detector, the circuit arrangement shown in Fig. i-1813 must be used.

An audio signal of about ten volts is required for good limiting action. The limiter will work on either c.w. or 'phone signals, but in either case the potentiometer must be set at a point determined by the strength of the incoming signal.

Second-detector noise-limiting circuits that automatically adjust themselves to the receiver carrier level are shown in Fig. \%-19. In either circuit, V_{1} is the usual diode second detector, $R_{1} R_{2}$ is the diode load resistor, and C_{1} is an r.f. by-pass. A negative voltage proportional to the carrier level is developed across (${ }_{2}^{\prime}$, and this voltage cannot change rapidly because R_{3} and C_{2} are both large. In the cireuit at Λ, diode l_{2} arts as a conductor for the audio signal up to the point where its anode is negative with respect to the cathode. Noise peaks that exceed the maximum carrier-modulation level will drive the anode negative instantaneously, and during this time the diode does not conduct. The large time constant of $C_{2} R_{3}$ prevents any rapid change of the reference voltage. In the circuit at B, the diode I_{2} is inactive until its cathode voltage exceeds its anode voltage. This condition will obtain under noise peaks and, when it does, the diode V_{2} short-circuits the signal and no vortage is passed on to the audio amplifier. Diode rectifiers such as the 6 H 6 and 6.1 L 5 can be used for these types of noise limiters. Neither circuit is useful for c.w. reception, but they are both quite effective for 'phone work. The series circuit (A) is slightly better than the shunt cireuit.

I.F. Noise Silencer

In the circuit shown in Fig. $\overline{5}-20$, noise pulses are made to decrease the gain of an i.f. stage momentarily and thus silence the receiver for the duration of the pulse. Any noise voltage in excess of the desired signal's maximum i.f. voltage is taken off at the grid of the i.f. amplifier, amplified by the noise-amplifier stage, and rectified by the full-wave diode noise rectifier. The noise circuits are tuned to the i.f. The rectified noise voltage is applied as a pulse of negative bias to the No. 3 grid of the 6L7 i.f. amplifier, wholly or partially disabling this stage for the duration of the individual noise pulse, depending on the amplitude of the noise voltage. The noise-amplifier/rectifier circuit is biased by means of the
"threshold control," R_{2}, so that rectification will not start until the noise voltage exceeds the desired signal amplitude. With automatic volume control the a.v.c. voltage can be applied to the grid of the noise amplifier, to augment this threshold bias. In a typical instance, this system improved the signal-to-noise ratio some 30 db . (power ratio of 1000) with heavy ignition interference, raising the signal-to-noise ratio from -10 db . without the silencer to +20 db . with the silencer.

SIGNAL-STRENGTH AND TUNING INDICATORS

An indicator that will show relative signal strength is a useful receiver accessory. It is an aid in giving reports to transmitting stations, and it is helpful in aligning the receiver circuits, in conjunction with a test oscillator or other steady signal.

Two types of indicators are shown in Fig. 5-21. That at A uses an electron-ray tube, several types of which are available. The grid of the triode section usually is connected to the a.v.c. line. The particular type of tube used depends upon the voltage available for its grid; where the

Fig. 5.20 - I.f. noise-silencing circuit. The plate supply should be $\mathbf{2 5 0}$ volts. Typical values for components are: $\mathrm{C}_{1}-50-250{ }_{\mu \mu} \mathrm{fd}$. (use smallest value posible without r.f. feed-back).
$\mathrm{C}_{2}-47{ }_{\mu \mu \mathrm{fd}}$.
$\quad \mathrm{R}_{2}-5000$-ohm variable.
$\quad \mathrm{R}_{3}-22,000$ ohms.
$\mathrm{R}_{1}, \mathrm{~K}_{4}, \mathrm{R}_{5}-0.1 \mathrm{meg}$. RFC - 20 mb .
' I_{1} - F゙ull-wave diode Iransformer.
a.v.c. voltage is large, a remote cut-off type ($6 \mathrm{C} 5 \mathrm{~F}, 6 \mathrm{~N} \mathrm{~F}$ or 6.11) $6(\mathrm{i}$) should be used in preference to the sharp cut-off type ($61: 5)$.

The system at 13 uses a milliammeter in a bridge circuit, arranged so that the meter readings increase with the signal strength. The voltage developed by the a.v.e. circuit is approximately a logarithmic function of the signal, so if the plate current of the tube is proportional to the grid voltage, the meter will read according to a linear decibel scate and will not be "erowded" at some point.

To adjust the system in Fig. 5 -21 13, pull the tube out of its socket or otherwise break the cathode circuit so that no plate current flows, and adjust the value of resistor R_{1} across the meter until the seake reading is maximum. The value of resistance reguired will depend on the internal resistance of the meter, and must be determined by trial and error (the current is approximately 2.5 ma.). Then replace the tulse, allow it to warm up. turn the a.v.c. switch to "off" so the grid is shorted to ground, and adjust the 3000 -ohm variable resistor for zero meter current. When the a.v.e. is "on." the meter will follow the signal variations up to the point where the voltage is high enough to cut off the meter tube's plate current. This will occur in the neighborhood of 15 volts with
 high-amplitude signal.

The bridge circuit, while not exactly linear, is quite satisfactory from a pratical standpoint. It will handle a signal range of well over 80 db . The meter cannot be "pinned" hecause

Fig. 5-21-'Vuning-indicator or Smetar circuits for superheterorlyne receivers. A, eldotron-ray indieator: B, bridge cireait for a, .c. -emitrolled tube.
AI 1 - 0 -I or (-2 milliammeter.
R_{1}-Sectext.
the maximum reading ocours when the tube plate current is driven to zero, at which point further increases in a.v.e. bias cause no change.

Improving Receiver Selectivity

- INTERMEDIATE-FREQUENCY AMPLIFIERS

As mentioned earlier in this chapter, one of the big advantages of the superheterodyne receiver is the improved selectivity that is possible. This selectivity is obtained in the i.f. amplifier, where the lower frequency allows more selectivity per stage than at the higher signal frequency. For 'phone reception, the limit to useful selectivity in the i.f. amplifier is the point where so many of the sidebands are cut that intelligibility is lost, although it is possible to remove completely one full set of side-bands without impairing the quality at all. Maximum receiver selectivity in 'phone reception requires good stability in both transmitter and receiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 100 or 200 cycles for hand-key speeds, but this much selectivity requires good stalility in both transmitter and reseiver, and a slow receiver tuning rate for ease of operation.

Single-Signal Effect

In heterodyne c.w. reception with a superheterodyne receiver, the beat oscillator is set to give a suitable audio-frequency beat note when the incoming signal is converted to the intermediate frequency. For example, the beat oscillator may be set to 456 ke . (the i.f. being $4 \operatorname{ain}^{3} \mathrm{ke}$.) to give a 1000 -rycle beat note. Now, if an interfering signal appears at $4 \overline{5} \mathbf{~ k c}$., or if the receiver is tuned to heterodyne the incoming signal to 457 ke , it will also be heterodyned by the beat oscillator to produce a 1000cycle beat. Hence every signal can be tumed in at two places that will give a 1000 -cycle beat (or any other low audio frequency). This audiofrequency image effect can be reduced if the i.f. selectivity is such that the incoming signal, when heterodyned to 457 kc ., is attenuated to a very low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of zero beat only, instead of the two beat notes on either side of zero beat characteristic of less-selective reception, hence the name: single-signal reception.

The necessary solectivity is not obtained with nonregenerative amplifiers using ordinary tuned circuits unless a low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a singlesignal effect, particularly when the i.f. is $45 \pi \mathrm{kc}$. or lower. The resonance curve of an i.f. stage at critical regeneration (just below the oscilating point) is extremely sharp, a bandwidth of 1 ke . at 10 times down and 5 ke . at 100 times down being obtainable in one stage. The audio-frequency image of a given signal thus can be reduced by a factor of nearly 100 for a 1000 -rycle beat note (image 2000 (ycles from resonance).

Regeneration is easily introduced into an i.f. amplifier by providing a small amount of capacity conpling betweon grid and plate. Bringing a short length of wire, comected to the grid, into the vicinity of the phate lead usually will suffice. The feed-bark may be controlled by the regular athede-resistor gain control. When the i.f. is regenerative, it is proferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This prevents overloading and increases selectivity.

The higher selectivity with regeneration reduces the over-all response to noise generated in the earlier stages of the receiver, just as does high selectivity produced by other means, and therefore improves the signal-to-noise ratio. However, the regenerative gain varies with signal strength, being less on strong signals, and the selectivity varies.

Crystal Filters

Probably the simplest means for obtaining high selectivity is by the use of a piezoelectric quartz crystal as a selective filter in the i.f. amplifier. Compared to a good tuned circuit, the $(Q$ of such a erystal is extremely high. The crystal is ground to be resonant at the desired intermediate frequency. It is then used as a selective coupler between i.f. stages.

Fig. io-22 gives a typical (rystal-filter resonance curve. For single-signal reception, the audio-frequency image can be reduced by a factor of 1000 or more. Besides practically eliminating the a.f. image, the high selectivity of the ervastal filter provides good discrimination against signals very close to the desired signal and, by reducing the band-width, reduces the response of the receiver to noise.

Crystal-Filter Circuits; Phasing

Several crystal-filter circuits are shown in Fig. 5-23. Those at λ and $I 3$ are practically identical in performance, although differing in details. The crystal is comected in a bridge circuit, with the secondary side of T_{1}, the input transformer, balanced to ground either through a pair of condensers, ("-C (A), or by a centertap on the secondary, L_{2} (B). The bridge is completed by the erystal and the phosing comdenser, ('2, which has a maximum canacity some-
what higher than the capacity of the crystal in its holder. When ('2 is set to balance the crystal-holder caparity, the resonance eurve of the crystal circuit is practically symmetrical; the erystal acts as a series-resonant circuit of very high ($)$ and thus allows signals of the desired frequency to be fed through C_{3} to $L_{3} L_{4}$, the output transformer. Without (2 , the holder capacity (with the erystal acting as a dielectric) would pass undesired signals.

In the circuit at $(\mathbb{C}$, the ($)$ of the load circuit for the filter is adjusted by the setting of R, which in turn varies the bandwidth of the filter from "sharp" to a handwidth suitable for 'phone rereption. This circuit or a modification of it is found in practically all of the better communidations rereivers these days.

The "hanalpass" (rystal filter at 1) uses two erystals separated slighty in frequency to give a bundpass characteristic to the filter. If the froguencies aro removed only a few hundred eveles from cath, the chatacteristic is an excellent one for \mathfrak{c}, w. reception. With arystals about 2 ke apart, a good 'phone characteristic is obtatined.

Additional I.F. Selectivity

Many commercial commmiations receivers do not have sulficient selectivity for amateur use, and their perfomance can be improved by adding additional selertivity. One popular mothod is to couple a B6-45:3 aireraft receiver (war surplus, tuning range 190 to añ ke .) to the tail end of the $46 \mathrm{i}-\mathrm{ke}$. i.f amplifier in the commumications receiver and use the resultant output of the 13C-453. The aircraft receiver uses an Sis-ke. i.f. amplifier that is quite sharp - 6.5 kc . wide at - $(00 \mathrm{~d}$). - and it helps tremendously in separating "phone signals and in backing up crystal filters for improved e.w. reception. (See QST, January, 1948, page 40.)

Fig. 5-22-Graphical representation of single-signal selectivity. The shaded area indicates the over-all banduidit, or region in which response is obtainable.

If a I3C-453 is not available, it is still a simple matter to enjoy the benefits of improved selectivity. It is only necessary to heterodyne to a lower frequency the $465-\mathrm{ke}$. signal existing in the receiver i.f. amplifier and then rectify it after passing it through the sharp low-frequency amplifier. The Hammarlund Company and the J. W. Niller Company both offer of-ke. transformers for this application.

QST references on high i.f. selectivity include: McLaughlin, "selectable single sideband," April, 1948; (iithens, "Super-selective C.W. IReceiver," Aug., 1948.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to reduce audio-frequency images ran be built into the i.f. amplifier, discrimination against radio-frequency images can only be obtained in circuits ahead of the first detector. These tuned circuits and their associated vacuum tubes are called radio-frequency amplifiers. For top performance of a communica-

Fig. 5-23- Cirystal-filter circuits of four types. 'The first thre give variable bandwidth, with (: having the greatest range of sederdivity.
tions receiver on frequencies above 7 Me ., it is mandatory that it have one or two stages of r.f. amplification, for image rejection and improved sensitivity.

Reccivers with an i.f. of 455 kc . can be expected to have some r.f. image response at a signal frecuency of 14 Me . and higher if only one stage of r.f. amplifieation is used. (Regeneration in the r.f. amplifier will reduce image response, but regeneration usually requires frequent readjustment when tuning across a band.) With two stages of r.f. amplification and an i.f. of $45 \% \mathrm{kc}$., no images should be apparent at 14 Me., but they will show up on 28 Me. and higher. Three stages or more of r.f. amplification, with an i.f. of $455^{5} \mathrm{kc}$., will reduce the images at 28 Mc ., but it really takes four or more stages to do a good job. The better solution at 28 Me. is to use a "triple-detection" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 ke. or higher. I normal receiver with an i.f. of $45 \% \mathrm{kc}$. can be converted to a triple superhet by conmeeting a "converter" (to be deseribed later) ahead of the receiver.

For best selectivity, r.f. amplifiers should use high- Q circuits and tubes with high input and output resistance. Variable- μ pentodes are practiadly always used, although triodes (neutralized or otherwise comerted so that they won't oscillate) arr often used on the higher frequenries because they introduce less noise. Pentodes are better where maximum image rejection is desired, because they have less loading effeet on the eireuits.

- FEED-BACK

Feed-back giving rise to regeneration and oscillation can ocrur in a single stage or it may appear as an over-ill feed-back through several stages that are on the same frequency. To avoid feed-bark in a single stage, the output must be isolated from the input in every way possible, with the vacuum tube furnishing the only coupling between the two circuits. An oseillation can be obtatined in an r.f. or i.f. stage if there is any undue capacitive or inductive coupling between output and input circuits, if there is too high an impedance between eathode and ground or screen and ground, or if there is any appreciable impedance through which the grid and plate eurrents can flow in common. This me:ns good shielding of coils and condensers in r.f. and i.f. circuits, the use of good by-pass condensers (nica or ceramic at r.f., paper or ceramic at i.f.), and returning all by-pass condensers (grid, cathode, plate and screen) with short leads to one spot on the chassis. If single-ended tubes are used, the sureen or cathode by-pass rondenser should be mounted across the socket, to serve as a shield between grid and plate pins. Less care is required as the frequency is lowered, but in high-impedance eircuits, it is sometimes neressary to shiold grid and plate leads and to be careful not to run them close together.

To avoid over-all fred-back in a multistage
amplifier, attention must be paid to avoid rumning any part of the output circuit back near the input cireuit without first filtering it carefully. Since the signal-carrying parts of the eircuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is a straight lime, to keep the output as far away from the input as possible. Nor example, an r.f. amplifier might run along a chassis in at straight line, run into a mixer where the frequency is changed, and then the i.f. amplifier could be rum back parallel to the r.f. amplifier, provided there was a very large frequency difference between the r.f. and the i.f. amplifiers. However, to avoid any possible coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.amplifier line, just to be on the safe side. (iood shiolding is important in preventing over-all oscillation in high-gain-per-stage amplifiers, but it becomes less important when the stage gain drops to a low value. In a high-gain amplifier, the power leads (including the heater circuit) are common to all stages, and they can provide the over-all coupling if they aren't properly filtered. (Good by-passing and the use of series isolating resistors will generally eliminate any possibility of coupling through the power leads. R.f. chokes, instead of resistors, are used in the hoater leads where necossary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a bandwidth measured in hundreds of ke. at 14 Mc. or higher, strong signals will be amplified through the r.f. amplifier even though it is not tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after passing through neveral r.f. stages. If an undesired signal is strong enough after amplification in the r.f. stages to shift the operating point of a tube (by driving the grid into the positive regiom), the undesired signal will modulate the desired signal. This effect is called cross-modulation, and is often eneom-

Fig. 5-24-Typical radio-frequency amplificr circuit for a superhecerodyne recoiver. Representative valucs for components are as follows:
$\mathrm{C}_{1} \mathrm{C}_{20} \mathrm{C}_{3}, \mathrm{C}_{4}-0.01 \mu \mathrm{fl}$. below $15 \mathrm{Mc}, 0.001 \mu \mathrm{fil}$, at 30 Mic .
$\mathbf{H}_{1}, \mathbf{H}_{2}$ - Sec 'fable 5-II.
1 is - 1800 ohms.
1_{4} - 0.22 megotim.

Fis. 5-25-Converter-rirenit tracking methods. Following are approximate circuit values for 450 - to $465-\mathrm{kc}$. i.f.s. with tumber ranges of approximately $2.15-10-1$ and (i) havin! I II-pufl. maximum, and the total minimum capacitance, inchacing (iz or C.4, being 30 to 36 unfo.

Tuning Range	L_{1}	L_{2}	C_{5}
1.7-4 11 c	$50 \mu \mathrm{~h}$.	$40 \mu \mathrm{~h}$.	$0.0013 \mu \mathrm{fl}$.
3.- -8.3 Mc .	$11 . \mu \mathrm{h}$.	$12.2 \mu \mathrm{~h}$,	$0.0)$
$7-15 \mathrm{Mc}$	$3.5 \mu \mathrm{l}$.		$0.00 \cdot 45 \mu \mathrm{fil}$.
14-30 Mc.	$0.8 \mu \mathrm{~h}$.	$0.88 \mu \mathrm{~h}$.	None used

Dpproximate values for $450-10$ 465-ke. i.f.s with a
 mum, mininume including C_{3} and C_{4} being 40 to $50 \mu \mu \mathrm{fd}$.

Tuning Range	L. 1	1.2	C5
0.2-1.5 Mc.	$240 \mu \mathrm{~h}$.	$130{ }_{\mu} \mathrm{H}_{\text {, }}$	$125 \mu \mu \mathrm{fl}$.
1.5-4 \1c.	$32 \mu \mathrm{~h}$.	$\because 5 \mu \mathrm{~h} .$	$0.00115 \mu \mathrm{fol} .$
1-10 Ne.	$1.5 \mu \mathrm{l} .$	$4 \text { h. }$	0.0028μ fli.
10-2. Mc.	$0.8 \mu \mathrm{~h}$.	$0.85 \mu \mathrm{~h}$.	None usid

tered in receivers with several r.f. stages working at high gain. It shows up ats a superimposed modulation on the signal being listened to, and often the effect is that a signal cam be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antenna and r.f. stages (difficult to obtain), the use of variable- μ tubes in the r.f. amplifier, reduced gain in the r.f. anplifier, or reduced antenna input to the reveiver.

A receiver designed for minimum cross-moduLation will use as little gain as possible ahead of the high-sedertivity stages, to hold strong unwanted signals below the overload poiut.

Gain Contral

To avoid cross-modulation and other overload effects in the first detector and r.f. stages, the gain of the r.f. stages is usually made adjustable. This is aceomplished by using vari-able- μ tubes and varying the d.c. grid bias, either in the grid or eathode cireuit. If the gain control is automatic, as in the case of a.v.e., the bias is controlled in the grid circuit Manual control of r.f. gain is generally donc in the eathode circuit. A typical r.f. anplifier stage with the two types of gain control is shown in schematic form in Fig. 5-24.

Tracking

In a receiver with no r.f. stage, it is no inconvenience to adjust the high-frequency oscillator and the mixer circuit independently, beause the mixer tuning is broal and requires little attention over an amateur band. However, when r.f. stages are added ahead of the mixer. the r.f. stages and mixer will require retuning over an entire amateur band. Hence most receivers with one or more r.f. stages ging all of the tuning controls to give a single-tuning-eontrol receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the oscillator and the mixer/r.f. circuits, and when this condition is achieved the circuits are satid to track.
Tracking methods for eovering a wide frequency range, suitable for general-eoverage receivers, are shown in Fig. 5 -2\%. The tracking capacity, ('s, commonly consists of two con-
densers in parallel, a fixed one of somewhat less capacity than the value needed and a smaller variable in parallel to allow for adjustment to the exaet proper value. The trimmer, ('4, is first set for the high-freguency end of the tuning range, and then the tracking condenser is set for the low-frequency end. The trarking caparity becomes larger as the pereentage difference between the oscillator and signal frequencies becomes smatler (that is, as the signal freduency beromes higher). Typical drenit values are given in the tables under Fig. $5,-2 ;$. The coils can be conveniently calculated with the ARRL Lightning Calculator and then trimmed in the eireuit for best tracking.

In amateur-band receivers, tracking is simplified by choosing a bandspread circuit that gives practically straight-line-freduency tuning (equal frequency change for each dial division), and then adjusting the oscillator and mixer tumed circuits so that both cover the same total number of kilocycles. For example, if the i.f. is 4.5 F ke, and the miver cirenit tumes from $\mathbf{7 0 0 0}$ to 7300 kc , between two given points on the dial, then the oscillater must tune from 745 to 7750 ke. between the same two dial readings. With the bandspread arrangement of Fig. $\mathrm{j}-8 \mathrm{~A}$, the tuning will be patatially straight-line-fre(quency if ('2 (batodset) is 4 times or more the maximum (apacity of ('1 (bandspread), as is usually the case for strictly amateur-hand coverage. ('s should be of the straight-line-caparity type (semicircular plates).

Improving Receiver Sensitivity

The sensitivity (signal-to-moise ratio) of a receiver on the higher frequencies above 20 Me. is dependent upon the bandwidth of the reeeiver and the noise eontributed by the "front end" of the receiver. Neglecting the fact that image rejection maty be poor, a receiver with no r.f. stage is generally satisfactory, from a sensitivity point, in the 3.j- and 7 -Mr. bands. However, as the freduency is increased and the atmospherie noise beromes less, the advantage of a good "front end" becomes apparent. Hence at It Me and higher it is worth whi'e to use at least one stage of r.f. amplification ahoad of the first detector for best sensitivity as well as image rejection. The multigrid converter tubes have very poor noise figures, and even the hest pentodes and triodes are three or four times noisier when used as mixers than they are when used as amplifiers.

If the purpose of an r.f. amplifier is to improve the receiver noise figure at it Me, and higher, a high- g_{m} pentode or triode should be used. Among the pentodes, the best tubes are the $6 . A(7,6 . A 55)$ and the $6 S(37$, in the order named. The 6.1Nis takes the lead around 30 Me. The 6.54, 6.J6, 7 F 8 and triode-connected 6.15 Kis are the best of the triodes. For best moise ligure, the antenna cireuit should be coupled a little heavier than optimum. This cannot give best selectivity in the antenna circuit, so it is futile to try to
maximize sensitivity and selectivity in this circuit.
When a receiver is satisfactory in every respect (stability and selectivity) except sensitivity on $1+$ through 30 Me., the best solution for the amateur is to add a preamplifier, a stage of r.f. amplification designed expressly to improve the sensitivity. If image rejection is lacking in the receiver, some selectivity should be built into the preamplifier (it is then called a presolector). If, however, the receiver operation is por on the higher frequencies but is satisfactory on the lower ones, a "converter"' is the best solution.

Some commercial recoivers that appear to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antema. Since the receiver manufacturer has no way to predict the type of antema that will be used, he generally designs the input for some compromise value, usually around 300 or 400 ohms in the high-frequency ranges. If your antemna looks like something far different then this, the receiver effectiveness can be improved by proper matching. This can be aceomplished by changing the antemna to the right value (as determined from the recoiver instruction book) or hy using a simple matching deviee as described later in this chapter. Overcoupling the input eircuit will often improve sensitivity but it will, of course, always reduce the image-rejection contribution of the antenna circuit.

Commercial receivers can also be "hopped up" by substituting a high $-g_{\mathrm{m}}$ tube in the first r.f. stage if one isn't already there. The amateur must be prepared to take the consequences, however, since the stage may oscillate, or not track without some modification. A simpler solution is to add the "hot" r.f. stage ahead of the receiver.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often improve the sensitivity because the greater gain it provides serves to mask more completely the firstdetector noise, and it also provides a measure of automatic matching to the antenna through tighter coupling. However, accurate ganging becomes a prohlem, because of the increased selectivity of the regenerative r.f. stage, and the receiver almost invariably becomes a two-handedtuning device. Regeneration should not be overlooked as an expedient, however, and amateurs have used it with considerable success. High- g_{m}
tubes are the hest as regenerative amplifiers, and the feed-back should not be controlled by changing the operating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feed-hack coupling. This is at tricky process and another reason why regeneration is not too widely used.

Gain Control

In a receiver front end designed for best signal-to-noise ratio, it is advantageous in the reception of weak signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (and other r.f. stages, if any), the signal-to-noise ratio of the receiver will suffer. As the gain is reduced, the g_{m} of the first tube is reduced, and its noise figure becomes higher. A good receiver might well have two gain controls, one for the first radio-frequency stage and another for the i.f. and ather r.f. stages.

Extending the Tuning Range

As mentioned earlier, when a receiver doesn't cover a particular frequency range, either in fact or in satisfactory performance, a simple solution is to use a converter. A converter is another "front end" for the receiver, and it is made to tune the proper range or to give the necessary performance. It works into the receiver at some frequency between 1.6 and 10 Mc . and thus forms with the receiver a "triple-detection" superhet.

There are several different types of converters in vogue at the present time. The commonest type, since it is the oldest, uses a regular tumable oscillator, mixer, and r.f. stages as desired, and works into the receiver at a fixed frequency. A second type uses broad-banded r.f. stages in the r.f. and mixer stages of the converter, and only the oscillator is tuned. Since the frequency the converter works into is high (7 Mc. or more), little or no trouble with images is experienced, despite the broad-band r.f. stages. A third type of converter uses broad-handed r.f. and output stages and a fixed-frequency oscillator (self- or crystal-controlled). The tuning is done with the receiver the converter is connected to. This is an excellent system if the receiver itself is well shielded and has no external pick-up of its own. Many war-surplus receivers fall in this category. A fourth type of converter uses a fixed oscillator with ganged mixer and r.f. stages, and requires two-handed tuning, for the r.f. stages and for the receiver. The r.f. tuning is not criti-
cal, however, unless there are many stages.
The broad-banded r.f. stages have the advantage that they can be built with short leads, since no tuning capacitors are required and the unit can be tuned initially by trimming the inductances. They are more prone to cross-modulation than the gang-tuned r.f. stages, however, because of the lack of selectivity. The fourth type of converter is probably the most satisfactory, particularly if a crystal-controlled highfrequency oscillator is used. It not only has the advantage of the best selectivity and protection against images and cross-modulation, but the crystal gives it a stability unobtainable with selfcontrolled oscillators. Amateurs who specialize in operation on 28 and 50 Mc . generally use good converters ahead of conventional communications receivers, and it pays off in better performance for the station.

While converters can extend the operating range of an existing receiver, their greatest advantage probably lies in the opportunity they give for getting the best performance on any one band. By selecting the best tubes and techniques for any particular band, the amateur is assured of top receiver performance. With separate converters for each of several bands, changes can be made in any one without disabling or impairing the receiver performance on another band. The use of converters ahead of the low-frequency receiver is rapidly becoming standard practice on the bands above 14 Mc.

Tuning a Receiver

C. W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate frequency. To
adjust the beat-oscillator frequency, first tune in a moderately-weak but steady carrier with the beat oscillator turned off. Adjust the receiver tuning for maximum signal strength, as indicated
by maximum hiss. Then turn on the beat oscillator and adjust its frequency (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently be touched, except for occasional checking to make certain the frequency has not drifted from the initial setting. The b.f.o. may be set on either the high- or low-frequency side of zero beat.

The best receiver condition for the reception of e.w. signals will have the first r.f. stage running at maximum gain, the following r.f., mixer and i.f. stages operating with just enough gain to maintain the signal-to-noise ratio, and the audio gain set to give comfortable headphone or speaker volume. The audio volume should be controlled by the audio gain control, not the i.f. gain control. Under the above conditions, the selectivity of the receiver is being used to best advantage, and cross-modulation is minimized. It precludes the use of a receiver in which the gain of the first r.f. stage and the i.f. stages are controlled simultaneously.

Tuning with the Crystal Filter

If the receiver is equipped with a crystal filter the tuning instructions in the preceding paragraph still apply, but more care must be used both in the initial adjustment of the beat oscillator and in tuning. The beat oscillator is set as described above, but with the erystal filter set at its sharpest position, if variable selectivity is available. The initial adjustment should be made with the phasing control in an intermediate position. Once adjusted, the beat oscillator should be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same signal to give a beat note of the same tone. This beat will be considerably weaker than the first, and may be "phased out" almost completely by careful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero beat has practically disappeared, leaving maximum response on the other.

An interfering signal having a beat note differing from that of the a.f. imare can be similarly phased out, provided its frequency is not too near the desired signal.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to lengthen out so that they seem to "run together." It must be emphasized that, to realize the benefits of the crystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its high selectivity often makes it difficult to find the desired station quickly, if the filter is switched in only at times when interference is present.

'Phone Reception

In reception of 'phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switeh on the a.v.e., and use the audio gain control for setting the volume. This insures maximum effectiveness of the a.v.c. system in com-
pensating for fading and maintaining constant audio output on either strong or weak signals. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.v.c., in which case the weaker station may disappear because of the reduced gain. In this case better reception may result if the a.v.c. is switched off, using the manual r.f. gain control to set the gain at a point that prevents "blocking" by the stronger signal.

When receiving an A.M signal on a frequency within 5 to 20 ke , from a single-sideband signal it may also be necessary to switch off the a.v.c. and resort to the use of manual gain control, unless the receiver has excellent skirt selectivity. No ordinary a.v.e. cireuit can handle the syllabic bursts of energy from the SSB station.

A erystal filter will help reduce interference in 'phone reception. Although the high selectivity cuts sidebands and reduces the audio output at the higher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility. is in c.w. reception, it is advisable to do all tuning with the filter in the circuit. Variableselectivity filters permit a choice of selectivity to suit interference conditions.

An undesired carrier close in frequency to a desired carrier will heterodyne with it to produce a beat note equal to the frequency difference. such a heterodyne can be reduced by adjustment of the phasing control in the crystal filter.

I tone control of ten will be of help in reducing the effects of high-pitehed heterodynes, sideband splatter and noise, by cutting off the higher audio frequencies. This, like sideband cutting with high selectivity circuits, causes some reduction in naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to identify an image by the nature of the transmitting station, if the frequency assignments applying to the frequency to which the receiver is tuned are known. However, an image also can be recognized by its behavior with tuning. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequency, the beat note will not change as the receiver is tuned through the signal; but if the interfering signal is an image, the beat will vary in pitch as the receiver is tuned. The heat oscillator in the receiver must be turned off for this test. lising a erystal filter with the beat oscillator on, an image will peak on the side of zero beat opposite that on which desired signals peak.

Harmonic response can be recognized by the "tuning rate," or movement of the tuning dial required to give a specified change in beat note. Signals getting into the i.f. via high-frequency oscillator harmonics tune more rapidly (less dial movement) through a given change in beat note than do signals received by normal means.

Ilarmonics of the beat oscillator can be recognized by the tuning rate of the beat-oscillator
pitch control. A smaller movement of the control will suffice for a given change in beat note than that necessary with legitimate signals. In poorly-
shielded receivers it is often possible to find b.f.o. harmonics below 2 Me., but they should be very weak at higher frequencies.

Narrow-Band Frequency- and Phase-Modulation Reception

FM Reception

In the reception of NFM (narrow-hand FM) by a normal AM receiver, the a.v.e. is switched off and the incoming signal is not tuned "on the nose," as indicated by maximum reading of the S-meter, but slightly off to one side or the other. This puts the carrier of the ineoming signal on one side or the other of the i.f. selectivity characteristic (see Fig. $\overline{\text { jo }}$-1). As the frequency of the signal changes back and forth over a small range with modulation, these variations in frequency are translated to variations in amplitude, and the consequent AM is deterted in the nomal manner. The signal is tuned in (on one side or the other of maximum carrier strength) until the audio quality appears to be best. If the audio is too weak, the transmitting operator should be advised to inerease his swing slightly, and if the audio quality is bad ("splashy" and with serious distortion on volume peaks) he should be advised to reduce his swing. Cooperation between transmitting and receiving operators is a neecssity for best audio quality. The transmitting station should always be advised immediately if at any time his bandwidth exceeds that of an AM signal, since this is a violation of NCC regulations, except in those portions of the bands where widehand FM is permitted.

If the receiver has a discriminator or other detertor designed expressly for FM reception, the signal is peaked on the receiver (as indicated by maximum s-meter reading or minimum back-
ground noise). There is also a spot on either side of this tuning condition where audio is recovered through slope detection, but the signal will not be as loud and the background noise will be higher.

PM Reception

lhase-modulated signals can be received in the same way that NFM siguals are, except that in this caso the audio output will appear to be lateking in "lows," berature of the differences in the deviation-vs-atudio characteristios of the two sustems. This can be remedied to a considerable dogree by advancing the tone control of the recoiver to the point where more nearly normal spereh output is obtatined.

NPM signals (an also be received on communications receivers by making use of the erystal filter, in which case there is no need for audio compensation. The ervstal filter shoukl be set to the sharpest position and the carrier should be tuned in on the ervistal prak, not set off to one side. The phasing condenser should be set not for exact neutralization but to give a rejection noteh at some convenient side frequeney such as 1000 cyeles off resonance. There is considerable attenuation of the side bands with such tuning, but it can readily be overcome by using additional audio gain. N1PM signals received through the crystal filter in this fashion will have a "boomy" charactoristic because the lower frequencies are acemthated.

Reception of Single-Sideband Signals

Singlowideband signals are generally tramsmitted with little or no carrier, and it is neressary to furnish the carrier at the receiver bofore proper reception can be obtained. Because little or no earrier is transmitted, the a.v.e. in the receiver has nothing that indicates the average signal level, and manual variation of the r.f. gain control is required.

A single-sideband signal can be identified by the absence of a strong carrier and by the severe variation of the S-meter at a syllabie rate. When such a signal is encountered, it should first be peaked with the main tuning dial. (This centers the signal in the i.f. passband.) After this operation, do not touch the main tuning dial. Then set the r.f. gain control at a very low level and switch off the a.v.e. Increase the audio volume control to maximum, and bring up the r.f. gain control until the signal ean be heard weakly. Switch on the heat oscillator, and carefully adjust the frequency of the beat oscillator until proper speech
is heard. If there is a slight amount of carrier present, it is only necossary to zero-beat the beat oscillator with this weak carrier. It will he noticed that with incorreet tuning of an SSB signal, the speech will sound high- or low-pitehed or even inverted (very garbled), but no trouble will be had in getting the correct setting once a little experience has been obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) oceurs in the receiver. It may require a readjust ment of your tuning habits to tune the receiver slowly enough during the first few trials.

Once the proper setting of the b.f.o. has been established by the procedure above, all further tuning should be done with the main tuning control. However, it is not unlikely that SSB stations will be encountered that are transmitting the other sideband, and to receive them will require shifting the b.f.o. setting to the other side of the receiver i.f. passband. The initial tuning pro-
cedure is exactly the same as outlined ahove, except that you will end up with a considerably different b.f.o. setting. The two b.f.o. settings should be noted for future reference, and all tuning of SSIS signals can then be done with the main tun-
ing dial. After a little experience, it becomes a simple matter to determine which way to tune the rereiver if the receiver (or transmitter) drifts off to make the received signal sound low- or high-pitched.

Alignment and Servicing of Superheterodyne Receivers

Abstract

I.F. Alignment

A calibrated signal generator or test oscillator is a useful device for alignment of an i.f. amplifier. Some means for measuring the output of the reeeiver is required. If the receiver has a tuning meter, its indications will serve. Lacking an S-meter, a high-resistance voltmeter or a vacuumtube voltmeter can be connected across the sec-ond-detector load resistor, if the second detector is a diode. Alternatively, if the signal generator is a modulated type, an a.c. voltmeter can be comnected across the primary of the transformer feeding the 'speaker, or from the plate of the last audio amplifier through a $0.1-\mu \mathrm{fd}$. blocking condenser to the receiver chassis. Lacking an a.c. voltmeter, the audio output can be judged by ear, although this method is not as accurate as

 the others. If the tuning meter is used as an indication, the a.v.c. of the receiver should be turned on, but any other indication requires that it be turned off. Lacking a test oscillator, a steady signal tuned through the input of the receiver (if the job is one of just touching up the i.f. amplifier) will be suitable. However, with no oscillator and tuning an amplifier for the first time, one's only recourse is to try to peak the i.f. transformers on "noise," a difficult task if the transformers are badly off resonance, as they are apt to be. It would be much better to spend a little time and haywire together a simple oscillator for test purposes.Initial alignment of a new i.f. amplifier is as follows: The test oscillator is set to the correct frequency, and its output is coupled through a condenser to the grid of the last i.f. amplifier tube. The trimmer condensers of the transformer feeding the second detector are then adjusted for maximum output, as shown by the indicating device being used. The oseillator output lead is then elipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformer trimmer adjustments are peaked for maximum output. This process is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be necessary to reduce the output of the test oscillator as more of the i.f. amplifier is brought into use. It is desirable in all cases to use the minimum signal that will give useful output readings. The i.f. transformer in the plate circuit of the mixer is aligned with the signal introduced to the grid of the mixer. Since the tuned circuit feeding the mixer grid may have a very low impedance at the i.f., it may be necessary to boost the test generator output or to disconnect the
tuned circuit temporarily from the mixer-stage grid.

If the i.f. amplifier has a crystal filter, the filter should first be switched out and the alignment carried out as above, setting the test oscillator as closely as possible to the crystal frequency. When this is completed, the crystal should be switched in and the oscillator frequency varied back and forth over a small range either side of the crystal frequency to find the exact frequency, as indicated by a sharp rise in output. Leaving the test oscillator set on the crystal peak, the i.f. trimmers should be realigned for maximum output. The necessary readjustment should be small. The oseillator frequency should he checked frequently to make sure it has not drifted from the crystal peak.

A modulated signal is not of much value for aligning a crystal-filter i.f. amplifier, since the high selectivity cuts sidebands and the results may be inaccurate if the audio output is used as the tuning indication. Lacking the a.v.c. tuning meter, the transformers may he conveniently aligned by ear, using a weak unmodulated signal adjusted to the crystal peak. Switch on the beat oscillator, adjust to a suitable tone, and align the i.f. transformers for maximum audio output.

An amplifier that is only slightly out of alignment, as a result of normal drift or aging, can be realigned by using any steady signal, such as a local broadeast station, instead of the test oscillator. Onc's 100-kc. standard makes an excellent signal source for "touching up" an i.f. amplifier. Allow the receiver to warm up thoroughly, tune in the signal, and trim the i.f. for maximum output.

If you bought your receiver instead of making it, be sure to read the instruction book carefully before attempting to realign the receiver. Most instruction books include alignment details, and any little special tricks that are peculiar to the receiver will also be described in detail.

R.F. Alignment

The objective in aligning the r.f. circuits of a gang-tuned receiver is to secure adequate tracking over each tuning range. The adjustment may be carried out with a test oscillator of suitable frequency range, with harmonics from your 100-kc. standard or other known oscillator, or even on noise or such signals as may be heard. First set the tuning dial at the high-frequency end of the range in use. Then set the test oscil-
lator to the frequency indirated by the receiver dial. The test-oscillator output may be connected to the antenna terminals of the receiver for this test. Adjust the oscillator trimmer condenser in the receiver to give maximum response on the test-oscillator sigmal, then reset the receiver dial to the low-frequency end of the range. Set the test-oscillator frecuency near the frequency indicated by the receiver dial and tune the test oscillator until its signal is heard in the receiver. If the frequency of the signal as indicated by the test-oscillator calibration is higher that that indicated by the receiver dial, nore inductance (or more capacity in the tracking condenser) is needed in the receiver oscillator circuit; if the frequency is lower, less inductance (less tracking capacity) is required in the receiver oscillator. Most commercial receivers provide some means for varying the inductance of the coils or the rapacity of the tracking condenser, to permit aligning the receiver tuning with the dial calibration. Sot the test oscillator to the frequeney indicated by the receiver dial, and then adjust the tracking capacity or inductance of the receiver oscillator coil to obtain maximum response. After making this adjustment, recheek the high-frequency end of the scale as previously described. It may be necessary to go back and forth between the ends of the range several times before the proper combination of indurtance and caparity is secured. In many cases, better over-all tracking will result if frequencies near but not actually at the ends of the tuning range are selected, instead of taking the extreme dial settings.

After the oscillator range is properly adjusted, sot the receiver and test oscillator to the highfrequency end of the range. Adjust the mixer trimmer condenser for maximum hiss or signal, then the r.f. trimmers. Reset the tuning dial and test oscillator to the low-frequency end of the range, and ropeat; if the circuits are properly designed, no change in trimmer settings should be neressary. If it is necessary to increase the trimmer capacity in any circuit, it indicates that more inductance is needed; conversely, if less capacity resonates the circuit, less inductance is required.
Tracking seldom is perfect throughout a tuning range, so that a cheek of alignment at intermediate points in the range may show it to be slightly off. Normally the gain variation from this cause will be small, however, and it will suffice to bring the circuits into line at both ends of the range. If most reception is in a particular part of the range, such as an amateur band, the circuits may be aligned for maximum performance in that region, even though the ends of the frequency range as a whole may be slightly out of alignment.

Oscillation in R.F. or I.F. Amplifiers

Oscillation in high-frequency amplifier and mixer circuits shows up as squeals or "hirdies" as the tuning is varied, or by complete lack of audible output if the oscillation is strong enough to cause the a.v.c. system to reduce the receiver
gain drastically. Oscillation can be caused by poor conneretions in the common ground circuits. Inadequate or defective hy-pass condensers in cathode, plate and screen-grid circuits also can cause such oscillation, A motal tube with an ungrounded shell may cause trouble. Improper screen-grid voltage, resulting from a shorted or too-low screen-grid series resistor, also may be responsible for such instability

Oscillation in the i.f. circuits is independent of high-frequency tuning, and is indicated by a continuous squeal that appears when the gat is advanced with the e.w. beat oscillator on. It can result from defects in i.f.-amplifier circuits similar to those above. Inadequate sareen or plate by-pass capacitance is a common cause of such oscillation. An additional by-pass condenser of $0.1-$ to $0.25-\mu \mathrm{f}$. capacitance often will remedy the trouble.

Instability

"Birdies" or a mushy hiss occurring with tuning of the high-frequency oscillator may indicate that the oscillator is "squegging" or oscillating simultaneously at high and low frequencies. This may be caused by a defective tube, too-high oscillator plate or screen-grid voltage, excessive feed-back, or too-high grid-leak resistance.

A varying beat note in c.w. reception indicates instability in either the h.f. oscillator or beat oscillator, usually the former. The stability of the beat oscillator can be checked by introducing a signal of intermediate frequency (from a test oscillator) into the i.f. amplifier; if the heat note is unstable, the trouble is in the beat ascillator. Poor connections or defective parts are the likely cause. Instability in the high-frequency escillator may he the result of poor circuit design, loose connections, defective tubes or circuit components, or poor voltage regulation in the ascillator plate- and/or sereen-supply circuits. Mixer pulling of the oscillator sircuit also will cause the beat note to "chirp" on strong c.w. signals because the oscillator load changes slightly.

In 'phone reecption with a.v.e., a peculiar type of instability ("motorboating") may appear if the h.f.oscillator frequency is sensitive to changes in plate voltage. As the a.v.e. voltage rises the currents of the controlled tubes alecrease, decreasing the load on the power supply and causing its output voltage to rise. Since this increases the voltage applied to the oscillator, its frequency changes correspondingly, throwing the signal off the peak of the i.f. resonance curve and reducing the a.v.c. voltage, thus tending to restore the original conditions. The process then repeats itself, at a rate determined by the signal strength and the time eonstant of the powersupply circuits. This effect is most pronounced with high i.f. selectivity, as when a crystal filter is used, and can be cured by making the oscillator insensitive to voltage changes or by regulating the plate-voltage supply. The better receivers use VR-type tubes to stabilize the oscillator voltage - a defective VIR tube will cause trouble with oscillator instability.

A One-Tube Regenerative Receiver

The receiver shown in ligs. 5-26, 5-27, 5-28 and 5 -29 represents close to the minimum requirements of a useful short-wave receiver. ["uder suitable conditions, it is capable of receriving signals from many foreign countries. It is an exeollent reeciver for the beginner, berause it is easy to build and the components are not expensive.

Pig. 5-26 - The simple one-tube regenerative receiver is built on a wood-and-l'resdwood chassis, with an aluminum panel. The large left-hand knob drives the calitrated scale on the bandspread eondenser. 'The larger right hand hnob is for the band-set eondenser.
section serving as an audio amplificr to the headphones. A variable antemateoupling condenser, C 1 , minimizes "dead spots" in the tuning range that might be caused by antennaresonanere effects. Two tuning condensers are used. The band-set condenser, r_{4}, tumes to the desired frequency hand, and the bandspread condenser, C_{2}, C_{3}, allows the operator to tune slowly through the band. The bandspread condenser is a dual condenser made from a single midget variable, and on all of the amateur hands cxerpt $3 . \overline{5}$ Me. only the C3 portion is conmered in the eireuit. The 3.5 - Me eoil includes a jumper that connedts (${ }_{2}$ on that hand. Regemeration is controlled be varving the plate voltage on the detector with R_{1}.

The mechanical design is made as simple as pasible. Work on the chassis and the front pancl can be done with only a Co. 18 drill, a $1 / 2$-inch drill, and a round file. There is no complieated metal work or berding. To meduce the panel size, the knob on the band-sat condenser overlaps the frietion-driven tuning dial.

The front pand is a 7×7-inch sheet of $1 / 16$-inch aluminum. It carries the tuning eontrols, the regeneration adjustment and the antenna-coupling condenser shaft. The sides of the chassis are soft wood strips, $7 \times 2 \times \overline{5}$ inches. The deek of the chassis is a 7×7-inch sheet of $1 / 4$-inch Presdwood

From the circuit in l"ig. 5-28, it can be seen that the onty tube in the receiver is a 6 SN 7 twin triode. One seetion is used asa mgenerative detertor, the other triwte

Fig. 5-27- Another view of the one-tube regenerit. tive receiver shows thow the tube and enil sochets aro mounted. The headphone tips olug into the twosmall tip jacks of the roar panel - the set of four machim serews and muts is for rom. neeting to the power sulpily.
(or Masonite). The (6SN7 socket is supported on "x-inch-long mounting pillats, and the \bar{j} -

rig. 5-28 - Wiring diagram of the one-tuhe regenerative reeeiver.
C_{1} - IIomemade adjustable eondenser. See text.
C.2. C_{3} - Reworhed midget variable (Millen 21935). See text.
C4-100-mpfd. midget variable (Millen 20100).
C \quad - 100 - $-\mu \mathrm{fd}$. mica.
$\mathrm{C}_{6}, \mathrm{C}_{7}-470$ - $\mu \mathrm{ffl}$. mira.
$\mathrm{C}_{\mathrm{s}}-12-\mu \mathrm{ff}$. 150 -wolt electrolytic. C.9-10- $\mu \mathrm{fd}$. $2 \boldsymbol{i}$-volt eleetrolytie.
$1 h_{1}-1.3$ megohms, $1 / 2$ watt.
$\mathrm{l}_{2}-0.15$ megohm, $1 / 2$ watt.
$\mathrm{R}_{3}^{2}-1.500$ ohms, $1 / 2$ watt.
$1 \mathrm{R}_{4}-50,000$-ohm wire-wound potentiometer.
$13_{3}-33.040$ ohms, 1 watt.
RFG, 2.5 -mh. r,f. rhoke (Va. tional 1000).
T_{1} - Interstage audio transformer (Stancor 1.4i2:3).
prong coil socket is on $7 / 8$-inch pillars. The grid leak, R_{1}, and grid condenser, C_{5}, are located above the deck. The back panel is made of $1 / 4$-inch Presdwood and carries the binding posts. The binding posts are $3 / 4$-inch $6-32$ machine screws with suitable nuts and washers. The chassis is assembled with $3 / 4$-inch No. if round-head wood screws. Upon completion, the assembly is given a coat of flat black paint. The front panel is secured to the chassis side* members with No. 6 round-head wood screws,

The bandspread condenser, C_{2} / C_{3}, is made by modifying a Millen 21935 variable condenser. Using a hack-saw blade, the stator bars are carefully cut between the eighth and ninth
secured to the underside copper. One plate is point. The other plate is carried by a $1 / 4$-inch diameter polystyrene rod. Rotating the shaft swings the moving plate away from the fixed plate and provides a capacity of from 5 to less than 1 $\mu \mu \mathrm{fl}$. The polystyrene rod passes through the front panel and out the hack panel. It is secured at the back by a $1 / 4$-inch shaft collar. The panel end carries a tuning knob, and a rubber grommet under slight compression, placed between the knob and the panel, acts as a friction lock. The moving plate is socured to the polyst yrene rod by a copperwire hairpin soldered to the plate and fixed into a pair of holes drilted in the rod. A flexible

Fig. $5-29$ - This siew underneath the one-tube re. generative receiver slows the arrangement of parts and the construction of the variable antenna-coupling condenser.

COIL TABLE FOR THE ONE-TUBE REGENERATIVE RECEIVER

All coils wound on Millen 4500.5 l-inch diameter coil forms. Both L_{1} and L_{2} should be wound in the same direction, with $L / 2$ eloser to the pins of the form, The krid end of L_{1} and the phate end of L_{2} should be on the outside ends of the corils

Range	\boldsymbol{L}_{1}	L_{2}	$\begin{aligned} & \text { Sep. } \\ & L_{1}-L_{1} \end{aligned}$
$\begin{aligned} & 2.8-6 \mathrm{Mc} . \\ & (80 \text { meters) } \end{aligned}$? t. . No. 26 emam., clusiowounul	4 t. No. 26 enam, close-wantui	3/8 inch
$\begin{gathered} 5.9-13.5 \mathrm{Mc} . \\ (10 \text { meters }) \end{gathered}$	1:31́2 t. No. 2? cnam., sparerd to occupy $5 / 8$ inch	$11 / 4$ t. No. 26 enam., close-wound	1/4inch
$\begin{aligned} & 13.6-30 \mathrm{Mc} \\ & \text { (20 and } 15 \\ & \text { meters) } \end{aligned}$	5^{1} 亿́t. No. 2! enam., spaced to occupy $5 / 8$ inch	18/4 t. No. 26 enam., close-wound	3/8inch
$\begin{aligned} & 24.5-40 \mathrm{Mc} . \\ & (10 \text { and } 11 \\ & \text { meti rs) } \end{aligned}$	$1 \frac{1}{2}$ t. No. 2? enam., close-wound	13/4t. No. 26 enam.. close-wound	918 inch

separation between strips is just enough (11/4 inches) to clear the tube socket and electrolytic condensers, and the leads from the transformer and choke also pass through this opening. Bimding posts are made in the same manner as on the receiver, with No. 6 machine screws and suitable nuts and washers.

Although it is satisfactory to mount the power supply on the same table with the receiver, it should be at least one or two feet away, to avoid the possibility of a.c. hum pick-up. For the same reason, the antenna lead should not pass too close to any a.c. wiring from or to the power supply.

Itsing the parts listed in Fig. 5-31 should result in a power supply that gives about 180 volts when connected to the receiver. However, if the $6 S N 7$ in the receiver appears to run too hot (as tested by touching the tube after the receiver has been running for 5 or 10 minutes), the output voltage can be reduced by increasing the resistance at R_{1} (Fig. 5-31). Adding
lead is soldered to the protruding wire, and the lead passes out through a hole in the side of the chassis to make connection to the antema, Knots in this wire, on either side of the chassis wall, secure the wire firmly in phace. The fixed plate is covered with a single layer of ecllophane seoteh 'lape, to prevent a short-cireuit when the condenser is positioned at maximum capacity.

All wiring is No. 14 tinned copper. Direet leads from the condensers to the eoil sorket add to the st rength and rigidity of the recoiver. The r.f. choke $R F C_{1}$, by-pass condensers, and the audio transformer all are fastened to the underside of the deck.

The power supply for the receiver, shown in ligs. 5-30 and 5-31, is simple 10 assemble because it is built on a wooden chassis. Two strips of $11 / 2 \times$ $3 / 4$-inch wood, 12 inches long, are nailed to two short end pieres. The

Fig. 5.30 - The power supply for the regenerative receiver is built on a simple wooden chassis.

Fig. 5.31 - Circuit diagram of the power supply for the regenerative receiver.
C1, $\mathrm{C}_{2}-16 \cdot \mu \mathrm{fl}$. 450-volt electrolytic (Mallory RS -217)
$1 h_{1}-20.000-0 h m 10$-watt wire-wound.
L_{1} - 7 henry 50ma, filter choke (Stancor C.1707),
$p_{1}-115$-volt line plug.
$\Gamma_{1}-27.50 .275$ volts at 50 ma., 6.3 v. at $2.5 \mathrm{amp} ., 5 \mathrm{v}$, at 2 amp. (Thordarson 1'22R30).

5000 or 10,000 ohms in series with R_{1} should do the trick. Or it may be possible to borrow a voltmeter for measuring the output voltage.

The tuning procedure for a regenerative receiver is given cartier in this chapter. Even a short piece of wire hung inside the operating room will serve as an antenna, but for best results an antenna from 30 to 75 feet long, strung as high as possible, should be used.

In buying headphones for use with this receiver, one should avoid the "low-impedance" headphones offered in many of the surplus outlets. While these headsets are excellent when used in the proper circuits, this simple receiver requires the use of "high-impedance" headphones for maximum signal output. Good, inexpensive headphones of this type can be found in any radio store.

A Two-Band Five-Tube Superheterodyne

The five-tube superheterodyne shown in Figs. $5-32,5-34$ and $5-36$ is a double-conversion receiver tuning the 3.5 - and 7 -Mc. amateur bands. It is not difficult to build, and it has stability and selectivity not surpassed by factory-built receivers costing much more.

Is can be seen in Fig. 5-33, the circuit diagram, the receiver uses intermediate frequencies of 1700 and 100 ke . The $1700-\mathrm{ke}$. first i.f. permits using an oscillator that tunes only one range for the two bands. Tuning the osciliator from 5.2 to 5.7 Me. gives an i.f. of 1700 ke . for the $3.5-$ to $4.0-\mathrm{Mc}$. range and the same i.f. for the 6.9- to 7.4 -Me. range. The oscillator components are soldered in place (no switching or plug-in coils) and the dial calibration is made once and can then be relied upon. To rhange bands, it is only necessary to swing the input condenser, C_{1}, to the 80 - or 40 meter hand. The $1700-\mathrm{ke}$. i.f. eliminates any pulling on the oscillator, in either range.

With no r.f. stage, the receiver's signal-tonoise ratio is determined by the mixer. The diac 7 is the lest tube available for the purpose. To minimize spurious responses, two tuned circuits are used in the input between antenna and converter grid. The stator plates of the dual condenser, C_{1}, are shielded from each other, as are the two coils L_{2} and L_{3}, and the coupling between circuits is obtained by the $0.001-\mu \mathrm{ffl}$. condenser.

The $1700-\mathrm{ke}$. signal from the first converter is converted in the 61 k 8 second converter to 100 ke . The use of a $1600-\mathrm{ke}$. erystal for the oscillator at this point permits using an r.f. gain control that has no effect on the freguenery. No frequency change with gain-control setting is a desirable characteristic of any good recoiver, so the 1600 ke . crystal at $\$ 2.7 \dot{5}$ is not a luxury. While the l600-ke oscillator rould be made self-eontrolled, it would be almost certain to "pull" with gaincontrol changes.

The specified $1700-\mathrm{ke}$, transformer, T_{1}, is a relatively expensive item, but there can be no compromise at this point, berause a poor transformer will not have enough rejertion to avoid the serondary images (200 kc , away) that might otherwise ride through.
The $100-\mathrm{ke}$, output from the 6 K 8 is filtered through three tumed circuits and feeds

Fig. 5 -32 - The five-tube double-conversion superheteronlyne tunen the 3,5 and - . Mc. bands without handswitching. The controls on the left are audio volunce (upper) and b, for, switch, and those on the right are antema tuming (upper) and i.f. gain.
a triode plate detector ($1 / 268 \mathrm{~N} 7$). This detector is regenerative, but the regeneration is fixed and doesn't have to be bothered with by the operator unkess he changes tubes and the new tube has considerably different characteristics. The regeneration in the 100 -ke. detector gives the reveiver its single-signal c.w. rereption characteristic, since there aren't enough tuned cireuits to give it otherwise. The b.f.o. uses the other triode in the 6siv 7 envelope, and stray roupling is used for the b.f.o. injection. No pancl control of h.f.o. pitch is available, because the selectivity is not adjustable and the variable-piteh feature is not essential.
Up_{p} to this point the gain of the receiver is not too high, and two stages of audio amplifieation are used. Omitting the cathote by-pass condensers still leaves more than enough audio for any pair of high-impedance headphones.

By keeping the signal level low up to and through the selertive stages, there is a minimum opportunity for overloading and cross-modulation, and the gain need be kept only high enough to prevent degrading the signal-to-noise ratio. Further, a regenerative stage has a tendency to "flatten out" with strong signals, so the regenorative detector is somewhat protected by holding the gain down. However, the receiver has quite adequate sensitivity - in any normal location and with a fair to good antenna, any signal that ran be heard by a large receiver can be heard by this one, except in rare cases where the large receiver's superior selectivity makes the difference.

Construction

The construction of the reeciver is unconventional in that two chassis are used, as shown in Figs. 5-32 and 5-3., and the panel is mounted away from the chassis. All of the electrical components are mounted on the aluminum $7 \times 11 \times$ 2 -inch chassis, and this sits on an inverted 7×11 $\times 2$-inch steel chassis that serves as a hase and bottom cover. The hottom chassis has rubber feet (grommets) at its corners that prevent its slipping

Fig. 5-3.3 - Wiring diagran of the five-tube recciver.
$\mathrm{C}_{1}-140 \cdot \mu \mu \mathrm{fd}$. -per-section doal variable (11 ammarlund

$\mathrm{C}_{2}-35 \cdot \mu \mu \mathrm{fl}$. midget variahle (13ud I.C.-1643 or llammarlund l|F-35).
$\mathrm{C}_{3}-100 \cdot \mu \mu \mathrm{fd}$. midget variahle (National ISill-100). R_{5} - 1000 oohm wirewound portentiometer (Nallory A1A1P).
All resistore $1 / 2$.watt unlesis specified otherwise.
$L_{1}-8$ turns No. 30 d.c.e. close -wound over ground end of L 2 .
L2, L3- 35 turns No. 30 d.c.e. close-wound on National Xll-50 slag-tuned form.
$L_{4}-23$ turns No. 24 bare spare-wound 32 turns per inch, $5 / 8$-inch dian. T'ickler is $13 / 4$ turns spaced 1 turn fros Serext. Dade from $18 \&$ 3008 Miniductor.)
L_{5} - 20-mh. (approx.) slug-tuned roil (RCA 205R1)
T_{1} - 1700 -hc. i, f. transformer, modilied (Millen 62161). $l_{2}, l_{3}-100 \cdot k c$. transformers made from ' $I^{\prime} V$ components (RCA 205R1), See text
T_{4} - Small 3:1 audio transformer (Stancor A-63-C).
RFCH - $550 \mu \mathrm{~h}$. (National R-33).
The 1600 -kc. crystal is a Peterson Radio type Z-2.

Fig, 5-35 - The $1700-\mathrm{ke}$. i.f. can is modified by drilling two holes in the side of the can.

On the transformer assembly proper, the old grid (green) and ground (black) wires are removed. On the tming condenser connerted to the coil nearest the tun. ing condensers, a new plate lead is comected to the stator and a new $13+$ lead to the rotor. The old plate lead (blue) becomes the new grid lead, and the old $13+$ lead (red) becomes the new kround lead ly transferring it from the terminal to the rotor wire near the coil.

During reassembly, the new plate and $13+$ leads slould te soldered to a length of wire that is passed through the shield-can hole hefore the entire assembly is completed. Otherwise it is difficult to snake out the new plate and 13+ leads unless small flexible wire is uscd.

6-32 at cach end. These rods pass through holes in the top and lip of each chassis. The only holes that are required in the sted chassis are those for the two tie rods, the four holes for the rubber fert, and a $1 \frac{1}{4}$-inch diameter hole to clear the headphone jack.

In the oseillator circuit, the $35-\mu \mu \mathrm{fl}$. tuning condenser, C_{2}, is supported by a small atuminum bracket. The correct location of the condenser on the bracket can be found after the dial-andchassis assembly has been completed. It is imperative to the smooth operation of the tuning condenser that the shaft of the condenser be correctly aligned with the coupling of the dial. The $10(0)-\mu \mu \mathrm{fl}$. trimmer, C_{3}, is mounted under the chassis with its shaft extending through to the top, so that the caparitor is adjustable from above the chassis. Neither (C_{2} nor (${ }_{3}$ is grounded to the chassis through its mounting - leads from the rotors are grounded to the chassis at one point near the GAC7 tube socket. The oscillator coil, L_{4}, is mounted by its leads on a small multiple tie point.

The shield between the input coils, L_{2} and L_{3}, is made of thin aluminum. It has a noteh in the edge that goos against the chassis side, to clear the antemna-coil leads, and it has a hole through it for the lead between the bottoms of $L_{2} \mathrm{a}_{11} \mathrm{~d}_{\mathrm{d}} L_{3}$. The dual condenser, C_{1}, is fastened to the chassis by a single $6-32$ screw, and the head of this screw has a copper shield soldered to it for minimizing coupling between $C_{1 A}$ and $C_{\text {IB }}$. The shield is easily cut out from copper flashing and soldered to the serew head. The rotor assembly of C_{1} must be

Fig. 5-34-A top view of the five-tube superheterodine shows how an aluminum and a sterl chassis are combined for greater weight and strength. The 6C4 oscillator and 6:1C7 mixer are at the left, and the two GSNTs are at the extreme right. Note the shield het ween the stator sections of the condenser on the left.

removed to put the shield in place, but this is just a matter of loosening four screws. Don't touch the stator plates. The sorew with the shied on it, whieh holds C_{1} to the chassis, also holds the coil shiedd in place underncath the chassis.

The 1700 -ke. i.f, transformer is mounted on its side hecause the chassis and panel sizes are such that the receiver ean le mounted in a small cabinet, and mounting the transformer upright would prevent any such installation. To lay the transformer on its side, two ${ }^{3}$ - -inch diameter holes are drilled in the side of the i.f. can, opposite the coils. The leads from the i.f. transformer are brought out these holes and through corresponding holes in the chassis. An end plate on the transformer has a clearance hole for the grid lead. Fig. 5-35 shows these modifications and how the leads are ronnected. The $1700-\mathrm{kc}$. transformer is fastened to the chassis with two clamps using spade bolts. In alternative method would he to make a bracket of the end phate and another bracket at the adjusting-serew end of the transformer.

The 100-kc. circuits use a TV component, the RCA 205RI Horizontal (oseillator coil. As purchased, they have the soldering lugs and tuning screw out of the top of the can, but they are casily reversed by unerimping the can and reversing the assembly. Before reassembly, however, there are

a few things to be donc. The large coil is used for the 100 -ke. tuned rircuit ber ronnecting a $1(0)$ $\mu \mu \mathrm{fd}$. micat condenser betwern l'ins A and F and lifting the eenter-tap from l'in C: Don't break the center-tiap) - the casiest way is to scrape the two wires first to remove the insulation, flow a drop of solder on the seraped portion, and then eut the two wires away at the pin. The other winding is used as the primary in T_{2} and the tickler in T_{3}. The primary in T_{2} an be tuned from the top, beeate there is also an irom slug in this smaller coil.

In wiring the set, use tie points liberally so that no components will be flopps. The only shielded wires are the one rumning from the volume control to Pin 1 of the audio amplifier and the leads from T_{3} to l'ins 4 and ${ }^{5}$ of the detector. The shiclds are grounded to the chassis at the conds and any other convenient points.

The oscillator eoil, L_{4}, is made from 13 is 11 Miniduetor. To separate the two coils of L_{44}, push the 3rd or th turn from one end of the piece of Miniductor through toward the eenter of the eovil. Snip this wire with a pair of eutters and push the two ends back out. Fich end is then pereded around for $1 / 2$ turn. The two coils are adjusted to the right number of turns loy working in from the outside ends.

The rotor of C_{1} is eonnected underneath the ehassis to the $0.001-\mu \mathrm{fl}$. coupling condenser by running a wire from the front support of the
rotor through a $1 / 4$-inch clearamer hole in the chassis. The $0.001-\mu$ fd. coupling condenser and L_{2} and L_{3} are grounded to the lug under L_{2}.

Adjustment

There are two types of aljustment that must be made to get the receiver working: adjusting the circuits to the proper frequencios and adjusting the oscillators and the regenerative detertor to the proper amplitudes. To this latter end, leave the eathode end of R_{1} diseonnereded in the originat wiring, and lightly solder (so that it can be changed later) the lead from Pin 5 of the detertor to Terminal C of T_{3}. Resistors that may require changing are R_{2} and R_{3}, so don't solder them too well at first.

Connect a power supply to the receiver and see that the tuhes light and that the power-supply voltures are approximately correet. The 250 volts: cin be anything 25 volts cither side of 250 , and the 105 volts, coming from a VR tube, will be nothing to worr: about if the VIR tube lights. A suggested power supply is shown in Fig. 5-37.

Next connert a low-range milliammeter between R_{1} and cathode (+ lead to cathode) and apply power again. The grid current should read about 0.05 mab ($50 \mu \mathrm{ab}$.). If it reads much more than this, try a slightly larger resistor at R_{2}, or a smatler one if the grid current is too low. Make these adjustments with the rotor arm of the r.f.

Fig. 5-36 - A bottom view of the five-tube superheterodyne. The audio ehoke, $L \in$, is in the upper ripht-hand corner, near where the power leads leave the chassis. The $6 S N$ is soeket nearer the panel is the detector-b.f.o. section.

gain control at the grounded end.
Next check the oscillation of the 6 Ct high-frequency oseillator. To do this, connert a $0-10$ voltmeter across the 4700 -ohm rewistor in the plate circuit of the 6 C 4 (+ terminal to +105 side, - terminal to the $0,001-\mu \mathrm{fl}$. condenser). Observe the voltage reating and then touch your finger to the stator of C_{2} or C_{3}. If the oscillator is working, the voltmeter reading will increase. If you get no change, it means the oscillator isn't working. With both eoils of L_{4} wound in the same direction (as they will be if Minidurtor is used), the stator of the tuning condenser should be connected to the outer end of the larger coil, and Pin 5 of the 6Ct should be connected to the outside turn of the smaller coil.

If you can borrow a serviceman's test oseillator that will give a modulated signal at 1700 ke., this signal can be introduced at the grid of the 6K8 and the $100-\mathrm{kc}$. i.f. cireuits can lo peaked (b.f.o. turned off), listening in the headphones for maximum response. The $1700-\mathrm{ke}$. signal can then be transferred to the grid of the 6 AC 7 and the trimmers peaked on T_{1}. Lacking the signal generator, the alternative is to provide a modulated signal in the 80 - or 40 -meter band and couple it to the stator of $C_{1 B}$. If the signal is from a crystal oseillator or VFO at 3750 kc . (for example), running from an unfiltered power supply to furnish the modulation, set the tuning dial vertical. If the signal is at 3500 kc ., set the tuning condenser C_{2} at almost full capacity. IRock C_{3} slowly until the signal is heard. Then prak the $100-\mathrm{ke}$. transformers T_{2} and T_{3}, reducing the signal input as necessary to avoid overloading. Next turn on the b,f.o. and adjust the slug in L_{5} until a beat note is heard. Then poak the trimmers in T_{1}.

With the initial tuning of the $100-\mathrm{ke}$. channel done, the slugs of L_{2} and L_{3} can be adjusted for maximum signal, with no antenna connected. Set C_{1} at almost full eapacity, the signal near 3.5 Mc ., and adjust the iron slugs for maximum in the headphones. If a VFO or crystal oscillator is furnishing the signal, there will probably be enough pick-up without any apparent coupling, but a short 6 -inch wire connerted to the antenna terminal may be required to piek up the output from a low-powered signal source.

It is not likely that the $100-\mathrm{kc}$. circuits will be tuned to the exact frequency that makes the calibrations coincide on 80 and 40 meters. While this isn't necessary, of course, it does make the dial look cleaner. To bring the calibrations into line, beg or borrow a frequency standard that will give signals at $100-\mathrm{ke}$. intervals. First locate the 4.0- and $7.0-$ Me points on the receiver dial, by referring the harmonies from the $100-\mathrm{ke}$. standard to the original signal you used for alignment. If, for example, the 80 -meter signal you used was at 3650 kc ., you know that the first $100-\mathrm{ke}$. harmonic you hear on the high-frequeney side will le 3700 ke ., and the first one on the low side will be 3600

Fig. 5-37 - Suggested circuit diagram for the receiver power supply.
T_{1} - Stancor PM-8.107 or equivalent. S_{1} - S.p.s.t. toggle switeh.
kc. The second harmonic of the $3650-\mathrm{kc}$. signal will furnish a check point at 7300 kc . (2×3650), so swinging C_{1} to about $1 / 3$ meshed (where it will peak the $7-\mathrm{Mc}$. signals) will allow you to locate the 7 -Mc. points. Thus you will have $100-\mathrm{ke}$. intervals on the dial from 3.5 to 4.0 Mc . and from 6.9 to 7.4 Mc., but not necessarily coinciding. To make them coincide, some slight retuning of the 100-ke. transformers is required. If, for example, the $7.0-\mathrm{Mc}$. point occurs to the right of the $3.6-$ Mc. point, the $100-\mathrm{ke}$. amplifier is tuned low, and the slugs should be turned out slightly. A few trials will bring the circuits into place.
Now check the regeneration of the detector by connerting the lead from l'in 5 of the detector to D on T_{3}. If a steady beat is heard, indicating that the detector is oscillating, tune both circuits of T_{2} and see if they will kill the oscillation. Their action is to load the regenerative detector to where it won't oscillate - if the action persists, try a 4700 -ohm resistor at R_{3} as a last resort. These circuits should be peaked on a modulated signal, with the b.f.o. turned off.

Aftur the detector has been made regenerative, the calibration can again be checked as in a preceding paragraph, and any minor changes in tuning made as are found necessary. Once the $100-\mathrm{ke}$. circuits have been aligned they can be loft alone, and if the 3.5 - and 4.0 -Mc. points don't come where you want them on the tuning dial, a slight adjust ment of C_{3} will correect it.

Connert a $140-\mu \mu \mathrm{fd}$. variable in series between antenna and the antenna post. On 80 meters, peak C_{1} on a signal and rock the adjustment slug of L_{2}. If it tunes fairly sharp, the antenna coupling is not too tight on that band. Swing C_{1} out until you are listening on 40 (to a signal) and again rock the slug on L_{2}. If it tunes broad, redure the caparity of the $140-\mu \mu \mathrm{fd}$. antenna condenser until L_{2} shows a definite prak. Note the settings of the condenser for the two bands.
The input condenser, C_{1}, will tune sharply on either band, and it should always be peaked when listening to a weak signal. Detuning it slightly will attenuate abnormally loud signals.
The power-supply requirements for the receiver are slight: about 15 ma , at 250 volts and 25 ma at 105 . A $6(0$-ma power supply will take care of this and the extra 10-12 ma. for a VlR-105. A circuit diagram with suggested values is slown in Fig. 5-37.

A Clipper/Filter for C.W. or 'Phone

The elipper/filter shown in l"ig. ")-39 is plugged into the recoiver headphone jack and the headphones are plugged into the limiter, with no work required on the recoiver. The limiter will cut down serious noise on 'phone or e.w. signals, it

The erireuit is shown in lig. 5-38. The constants are not too critical, and have been adjusted for operation at the signal levels ordinarily available from the headphone jack on a receiver. The elipper output circuit is heavily by-passed by (6

Fig, 5-38 - Circuit diagram of the audio clipper unit. Power
requirements are 16 ma. at 250 v. d.c., 1.2 amp, at 6.3 v. a.e.

$$
\begin{aligned}
& \mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{7}-470-\mu \mu \mathrm{f} \text {, mica. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (is-0.1- }-\mathrm{ff} \text {, paprer. } \\
& \text { (} \mathrm{S} \text { - } 8-\mu \mathrm{ft} \text {, 450-voli elvetrolytic. } \\
& \text { C.f - 0,00)3- } \boldsymbol{\mu} \text { fil. paper. } \\
& \text { (is - 10- } \mu \mathrm{fl}, 25 \text {-volt electrolytic. } \\
& \text { (:4)-0.2.5- } \mu \mathrm{fd} \text {, paper. } \\
& R_{1}, l_{3}-I m e g o h m, 1 / 2 \text { watt } \text {. } \\
& R_{2}, \|_{0}-1.500 \text { ohms, } 1 / 2 \text { watt. }
\end{aligned}
$$

will keep the strength of c.w. sigmals at a constant level, and it will add solectivity to your receiver for e.w. reception. It will do much to relieve the operating fatigue caused by long hours of listening to static crashes, key elicks eneountered on the air and with break-in operation. and the like.

Fig. 5-34 - 'The andio clipper unit inchudes input and output amplifiers of the cathedefollower lyper, a dual-triode dipper cironio, and a selective audion system. lt is huilt in a small utility hos, with a cable for power-supply connections and a eord anid ploge to pick up audio from the receiser's headphone jack.
to reduce the amplitude of the harmonies generated in the elipping process, and additional bypassing by C_{9}, across the headset, is used for the same purpose. Cathode-follower input and output circuits allow the unit to be used with any recoiver output and any headphones, and they also

HIGH-FREQUENCY RECEIVERS

Fig. 5-40 - Inside view of the clipper unit. The gain control, switch, headphone jack, and the larger fixed condensers are mounted on the walls of the lox. 'The two tubes and the selective audio circuit are mounted on the removalle panel. The selec. tive eircuit, ennsisting of the choke coil and two tubular condensers, orcupies the up. per half of the panel in this jow. The sochet at the left is for the input and output amplifiers; the right-hand socket is for the double-triode clip. per.
contribute to the effectiveness of the audio filter, $L_{1} C_{2} C_{3}$. A three-position switch, S_{1}, is provided so that the unit can be cut out entirely, used with straight limiting and no selectivity, or with both selectivity and limiting. The "off" position is useful principally to convince the skeptical, and the limiting without selectivity is useful for impulse noise, when encountered. High selectivity and grod noise suppression do not go hand in hand.

The unit, shown in Figs. 5-39 and 5-40, is built on one pancl and the sides of a 3 by 4 by 5 utility box. The parts on the panel and the box proper are connected through cabled leads made long enough so the panel can be swung out as shown. Any type of construction can be used, since there is nothing eritical in the layout. One precaution to obsirve is to use a shielded lead between the "hot" input terminal and the switeh, to prevent possible stray coupling between the input and later high-impedance circuits because of the cabled leards.
The selective audio circuit chosen gives a type of frequency-response curve that is quite useful. The prak at 800 cyckes is broad enough to avoid tuning difficulties, even when used in conjunction with the erystal filter in the receiver. Nevertheless, the response drops off rapidly enough, particularly on the high-frequency side, to make a marked difference in respect to the "capturing" of the limiter by strong off-resonance signals. There is a "notch" at 1700 cycles.

There is a wide latitude in choice of inductances for L_{1}. The Millen coil listed under Fig. 5-38 was

the best of available low-priced units tried, in terms of sharpness of the response curve and the depth of the rejection noteh. Some of the small filter chokes such as the Stancor C-1515 and Thordarson T20C53 also work reasonably well. The former will resonate at approximately the same frequencies as giveln atrove with $330 \mu \mu \mathrm{fl}$. at ('2 and $470 \mu \mu \mathrm{fd}$. at C_{4}; the latter choke requires $0.041 \mu \mathrm{fl}$. at C_{2} and $0.002 \mu \mathrm{fd}$. at C_{3}. With any coil the values of capacitance required to place the prak and noteh at irequencies that best fit one's taste in beat notes can easily and quickly be determined by simple cut-and-try. Other types of selective audio cireuits can, of course, also be substituted.

In use, the receiver's gain controls should be set so that only the stronger signals are clipped; too-deep clipping will make the receiver sound as though practically every signal overloads it. Once the proper seitings for clipping level are determined, the actual audio volume is adjusted by the gain control on the unit. A little juggling back and forth between the receiver controls and the output contrel in the clipper unit will eventually result in the receiver's sounding very much like it does without the clipper present. The difference is that the signals and noise, including one's own transmitter signal, don'f rise above the level set as a ceiling.

The "Selectoject"

The Seleetoject is a receiver adjunct that can be used as a sharp amplifier or as a single-frequency rejection filter. The frequency of operation may be set to any point in the audio range by turning a single knob. The degree of selectivity (or depth of the null) is continuously adjustable and is independent of tuning. In 'phone work, the rejection notch can be used to reduce or eliminate a heterodyne. In c.w. recoption, interfering signals may be rejected or, atternatively, the desired signal may be picked out and amplified. The Sclectoject may also be operated as a low-distortion variable-frequency audio oscillator suitable for amplifier frequency-response measurements, modulation tests, and the like, by advancing the "selectivity" control far enough in the selectiveamplifier condition. The Selectoject is conneeted in a receiver between the detector and the first audio stage. lts power requirements are 4 ma. at 150 volts and 6.3 volts at 0.6 ampere. For proper operation, the 150 volts should be obtained from across a V 1 - 150 or from a supply with an output capacity of at least $20 \mu \mathrm{fd}$.

The wiring diagram of the Selectoject is shown in Fig. 5-41. Resistors R_{2} and R_{3}, and R_{4} and R_{5}, can be within 10 per cent of the nominal value but

Fig. 5-41-Complete selhematic of Selectojert using $12 A X 7$ tubes.
$\mathrm{C}_{1}-0.01 \cdot \mu \mathrm{fl}$. mica, 400 volts.
C:2, C, 0.1 - $\mu \mathrm{fd}$, paper, 200 volts.
$C_{4},(:-0.002 * \mu \mathrm{fd}$, paper, 100 volts.
$\mathrm{C}_{5}-0,03-\mu \mathrm{fil}$ paper, 400 volts.
$\mathrm{C}_{6}-16 \cdot \mu \mathrm{fd}$. $1 \mathbf{5 0} 0$ volt electrolytic.
$\mathrm{C}_{7}-0.0012-\mu \mathrm{ffl}$ mica.
R_{1} - 1 megohni, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{R}_{3}$ - 1000 ohms, 1 watt, matched as closely as possible (see text).
$R_{4}, R_{5}-2000$ ohms, 1 watt, matched as closely as possible (see text).
they should be as close to each other as possible. An ohmmeter is quite satisfactory for doing the matching. One-watt resistors are used because the larger ratings are usually more stable over a long priod of time.

If the station receiver has an "accessory socket" on it, the cable of the Selectoject can be nade up to mat ch the eonnections to the socket, and the numbers will not neressarily mateh those shown in lig. $\dot{j}-41$. The lead between the seeond detector and the receiver gain control should be broken and run in shielded leads to the two pins of the socket corresponding to those on the plugg marked "A.F. Input" and "A.F. Output." If the receiver has a ${ }^{-1 R}-150$ included in it for voltage stabilization there will be no problem in getting the plate voltage - othorwise a suitable voltage divider should be incorporated in the receiver, with a $20-$ to $40-\mu \mathrm{fd}$. electrolytic condenser connected from the +150 -volt tap to ground.

In operation, overload of the receiver or the Selertoject should be avoided, or all of the possible selectivity may not be realized.

The soloctoject is usoful as a means for obtaining much of the performance of a crystal filter from a receiver lacking a filter.

A Bandswitching Preselector for 14 to $\mathbf{3 0} \mathbf{~ M c}$.

The performance of many receivers begins to drop off at 14 and 30 Me. The signal-tonoise ratio is reduced, and trouble with r.f.image signals becomes apparent. The preselector shown in Figs. 5-42 and 5-44 can be added ahead of any receiver without making any changes within the receiver, and a self-contained power supply eliminates the problem of furnishing heater and plate power.

As can be seen from the wiring diagram, Fig. $5-43$, a 6 AK 5 r.f. pentode is used in the preselector. Both the grid and plate circuits are tuned, but the tuning condensers are ganged and only one control is required. The gain through the amplifier is controlled by changing the cathode voltage, through R_{3}. A selenium rectifier is used to supply plate power, and the heater power comes from a step-down transformer. The chassis is at r.f. ground but the d.c. circuit is isolated, to prevent shortcircuiting the a.c. line through external connections to the preselector.

A two-section ceramic switch selects either the 14 - to $21-$ Mc. or the $28-$ Mc. coil, or the antenna can be fed through directly to the receiver input. When operating in an amateur band between 14 and 30 Mc., switching to the band not in use will attenuate one's own signal sufficiently to permit direct monitoring, in most cases.

As shown in Fig. 5-42, the ganged condensers are controlled from the front panel by a National MCN dial, and a small knob to the right of this dial is connected to the antenna trimmer, C_{4}, for peaking the tuning with various antennas. The a.c. line is controlled by S_{2}, a toggle switch mounted on the panel.

The preselector is built on a $3 \times 5 \times 10$ inch chassis, and a 6×6-inch plate of thin metal is used for a panel. A $13 / 4 \times 3$-inch aluminum bracket mounted about $31 / 2$ inches behind the front panel supports the tuning
condenser, C_{5}, and the antenna trimmer, C_{4}. Millen 39005 flexible couplings are required to handle the offset shaft of C_{4}. Both C_{5} and C_{8} are mounted on the chassis with 6-32 screws, but the chassis should be scraped free of paint before installation, to insure good contact.

The shield partition between the two switch sections (Fig. 5-44) straddles the tube socket and shields the grid from the plate cireuit. The switched ends of all coils are supported by their respective switch points, and the other ends are soldered to tie points mounted on the

> COIL TABLE FOR THE PRESELECTOR
> $L_{1} 5$ t. No. 24, 3/4-inch diameter (B\&W3012)
> $L_{2} 5$ t. No. 24, 1-inch diameter (B\&W3016)
> $L_{3} 6$ t. No. 24, 3/4-inch diameter (B\& W 3012)
> $L_{4} 7$ t. No. 20, 1-inch diameter (B\&W 3014)
> $L_{5} 71 / 2 \mathrm{t}$. No. 20, 3/4-inch diameter (B \& W 3010)
> $L_{6} \quad 3$ t. No. 24, 1-inch diameter (B\&W3015)
> $L_{7} 11$ t. No. 24 d.c.c., close-wound, $1 / 2$-inch diameter
> $L_{8} 4$ t. No. 28 d.c.c., close-wound, $1 / 2$-inch diameter
> L_{i} and L_{8} are wound adjacent on a $1 / 2$-inch diameter polystyrene form (National PRD-2)

chassis. The mica trimmers, C_{9} and C_{10}, are supported on short lengths of stiff wire, and a hole in the side of the chassis is required to reach C_{10} with an aligning tool.

The power-supply components are mounted as near the rear of the chassis as possible. The selenium rectifier must be insulated from the chassis.

Fig. 5-42-A landswitching preselector for 14 and 28 Mc . A single 6155 ampli fier is used, and the power supply is included in the unit. The antenna-trimming condenser is mounted on the small aluminum partition.

Fig. 5-43 - Wiring diagram of the handswitching preselector.
$\mathrm{C}_{\mathrm{I}}, \mathrm{C}_{2}-10-\mu \mu \mathrm{fd}$, mica.

($4-15 \cdot \mu \mu \mathrm{ff}$. midget variatle (M illen 20015).

$\mathrm{C}_{13}, \mathrm{C}_{15}-\mathbf{1}, 01-\mu \mathrm{fe}$, paper, 100 volls.
$\left(C_{1}-1\right)_{1 a} 110-\mu \mathrm{fi}$. $\overline{5} 0$-volt electrolytic.
$\mathbf{R}_{1}-2 \boldsymbol{2}, 000$ olims.
$\mathrm{H}_{2}-330$ ohms.
$R_{3}-5000$-ohm wire-wound potentioneter.
$\mathrm{R}_{4}-4700$ ohms.
$\mathrm{R}_{5}-18,000$ ohms, 2 watts.
$\mathrm{R}_{6}, \mathrm{R}_{7}-170$ ohms.
1.1-1.s-Sec eoil table.
$1.3-20$ henry 30 -ma. filter choke.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coavial-cable jach (Jones S-101).
$\bigotimes_{1}-2$-gang 2 -circuit 5 -position ceramic (Mallory 177C). S_{2} - S.p.s.t. togyle.
sil - 50 ma. selenium reetifier.
T_{1} - 6.3 -volt transfornier.

The coils are made from B\&W "Miniductors," as shown in the coil table, with the exception of one plate and coupling eoil which are wound on a polystyrene form. The ground returns for the cathode and plate by-pass condensers are made to a common terminal, a soldering lug under one of the mounting serews for C_{8}.

When the wiring has been completed and checked, the antenna is connected to J_{1} and a cable from J_{2} is run to the receiver input. Tune the receiver to the 14-Mc. band and sot S_{1} to the proper point. Then turn the main tuning dial until the noise or signal increases to a maximum. This should oceur with (F_{5} and ("s set at $^{\prime}$ close to maximum capacity. Then peak the noise by adjusting C_{10} and (${ }_{4}$.

The 28 -Mc. range is adjusted in the same
way, with the exeeption that C_{9} is touched up. It may be found neeessary to touch up C_{4} when different antennas are used. The preselector may oscillate with no antema connceted, but with any type of wire or feed line the operation of the amplifier should ordinarily be perfeetly stable.

As shown, the preselector is intended for use with coaxial-line feed to the antenna and to the receiver. If a balanced two-wire line is used from the antenna, it is recommended that a suitable two-wire connector be substituted for J_{1}. The grounded sides of L_{1} and L_{2} should be disconneeted from ground and returned to one side of the connect or. The out put comnector can be left as shown, since at the lower frequencies the proper antenna comection isn't so important.

Fig. 5-4- I view moderneath the chassis of the band. switching preselector, showing the shicld partition between switch sections and the selenium rectilier and assoeiated filter.

An Antenna-Coupling Unit for Receiving

It will often be found advantageous on the 14- and 28 -Nc. bands to tune (or match) the receiving-antenna feed line to the receiver, in order to get the most out of the anterma. One way to do this is to use, in reverse, any of the line-coupling devices advocated for use with a transmiter. Naturally the components can be small, because the power involved is negligi-

Fig. 5-45 - Girouit diagram of the compling unit.
 (C_{2} - $100-\mu \mu \mathrm{fl}$. mideret variable (Willen $22 l(6)$).
$\mathrm{I}_{\mathrm{a}}, \mathrm{I}, 2-2.5$ turns Xo, 26 d.c.e. space-wound to erempy 1 inch on l-imeh diameter form (Nillen 450100), tapped at 2, 5, 8, 12 and 18 turns.
S_{1} - 2-rircuit a-position single-section ceramic wafer swith (Mallory li3C).
be, and small reoeiving condensers and coils are quite satisfactory. Some provision for adjustable coupling is recommended, ats in the transmitting case, beratuse the signal-to-mosise ratio at 14 and 28 Mre is depondent, to a large extent, on the degree of eoupling to the antemat system. The tuning unit can be built on a x mall chassis located near the receiver, or it can be mounted on the wall and a piece of $12(3-59 / \mathrm{C}$ run from the unit to the recoiver input, in the manner of a link line in transmitting practice. For case in changing bands, the coils can be switehed or plugged into a suitable socket. Adjustable coupling not only offors :lll opportunity to adjust for best signal-to-noise ratio, but the coupling can be derreased when a strong local signal is on the air, to rliminate "blorking" and rrossmodulation efferts in the receiver.

Fig. $5.46-\mathrm{A}$ (ompate confoling network for matohing at balanerel line to the recciver on 14 and 28 Nr.

One convenient type of antenna-coupling unit for receivers uses the familiar pi-section filter circuit, and can be used to match a wide range of antenna impordances. The diagram of a compact unit of this toype is shown in Fig, $\bar{j}-4 \overline{5}$. Through proper selection of condensers and inductanees, a mateh can be obtained over a wide range of values. The device can be placed close to the receiver and left eonneted all of the time, since it will have little or no effeet on the lower frequeneies. A short length of $300-$ ohm Twin-lead is convernient for connecting the antenna coupler to the receriver.
The antenna coupler is built in a $5 \times 7 \times 2$ inch motal chassis. All of the components exrept the two coils are mounted on the front and rar facos. The condensors are mounted off the panel by the spacers furnished with the condensers, and a clearance hole for the shatt prevents any short-circuit to the panel. The coils, wound on Millen tionoo phenolic forms, are fastened to the chassis with brase sorews, and the roils shonld be wound on the forms as far away as possible from the mounting end. The switch should be wired so that the switching sequence puts in, in each coil, 2 tums, 5 turns, 8 turns, 12 turns, 18 and 25 turns.

The unit is adjusted for maximum signal by switching to different eoil positions and adjusting ('1 and ('2. It will not be necessary to retrim the condensers except when going from one end of a band to the other, and when the unit is not in use, as on 7 and 3.5 Me., the coils should be sol at the minimum mamber of turns and the condensers sot at mininum. The smatl reatances remating hate a meghigible effert. The eosil in the grounded side should be shortad if cosaxial-line feed is used.

A One-Tube Converter for 10 and 11 Meters

The 10- and 11-meter converter shown in Figs. $5-47$ and $5-49$ is a simple unit that can be built in a few hours, for a cost of less than fourteen dollars. The converter uses a fixed-tone i.f. and tunable input and oseillator circuits, in preferenee to a fixed-frequency oscillator and a tunable output circuit. With a onc-tube converter of the latter type, it is almost impossible to avoid pieking up at least a fow signals in the tuning range of the receiver. L'sing a tunable oscillator and at fixed-frequency output circuit permits one to select an i.f. free from interforence. The platecurrent demand is only 5 ma., and it is usually possible to operate the converter from the receiver power supply.
As can be seen in Fig. 5-48, the Hartley circuit is used in the oscillator portion of the 613A7 pentagrid converter. A padding condenser, C_{2}, is switched in through S_{1} to change the range for 11-meter operation. Condenser C_{4} is used for tuning, and the input circuit is tuned to either range with C_{1}. The screen grid of the 6I3A7 is operated at about 65 volts, sinee higher voltages will increase the total tube current without any marked improvement in performance. llowever, since the available supply voltage will vary with different receivers, the value of the screen dropping resistor, R_{2}, cannot be specified, and it must be calculated, as described later.

There is a good reason for not using an antenna switeh for straight-through operation of the eonverter. With practically any available switeh it is very difficult to prevent capacity coupling between the input and output circuits of the converter. Any such capacity coupling increases the problem of eliminating interference at the i.f. By equipping the converter and the receiver with identical input terminals and using simikar plugs on both the antema feod line and the converter output cable, antenna changeover is no problem. The netal partition separating L_{2} and L_{3}, shown in Fig. 5-49, reduces the effect of oscillator har-

monies heating with high-frequeney (FM) broadcast stations.

Construction

The converter is built on a 5 by 7 by 2 -inch aluminum chassis, and a 6 by 7 -ineh panel is held in place by the components mounted on the front wall of the chassis, The main tuning dial is a National type MCN.

It can be seen in Pig. 5-47 that the oscillator tuning condenser, C_{4}, is mounted on $1 / 4$-inch metal pillars. A National type GS-10 stand-off insulator is located at the front-right-hand side of C_{4}, and a soldering lug at the top end of this insulator is soldered to the stator terminal lug of the condenser. This added support for the tuning condenser improves oseillator stability, by preventing rocking of C_{4} as the control shaft is turned. A feed-through bushing at the other front terminal of the condenser is used to support and insulate the lead passing through the chassis to the coil below. The padder condensers for the oscillator circuit, C_{3} and C_{5}, are mounted on the rear terminal lugs of the tuning condenser.

The grid coil, L_{2}, is mounted on the terminal lugs of the input tuning eondenser, C_{1}. The antenna eoil, L_{1}, should be wound around L_{2} before the larger coil is soldered in place. The tube socket, to the rear of $C_{1} L_{2}$, is mounted with pins No. 1 and 7 facing toward the rear of the chassis. The aluminum shield between the input and the oscillator coils has a $3 / 8$-inch lip bent over along one edge, for fastening to the chassis. The shield is slotted to clear the cathode-tap lead.

The screen and decoupling resistors, R_{2} and R_{3}, respectively, are supported at the powersupply ends by a tie-point strip which is held in place by the same serew that anchors the soldering lug for L_{3}. If the recciver supply voltage is known at this time, it is possible to calculate the correct value for the screen-dropping resistor, and the resistor can be mounted on the tiepoint strip. The resistor value is obtaned from the equation
R (ohums) $=\frac{\text { supply voltage }-65}{0.0046}$
Example: Supply voltage 260 ; the resistor value is

$$
\frac{260-65}{0.0046}=\frac{42,391}{\text { of ohms, Anything within } 20 \%}
$$

The coaxial output cable is terminated at the chassis end at a tie-point strip located at the left end of the chassis.

Fig. 5-47 - A one-tube converter for extending the tuning range of a receiver to 10 and 11 meters. The crystal soeket on the hark of the chassis rectives the antenna plug (Millen 3.412).

Fig. 5-18 - Circuit diagram of the low-cost 10. and 11-meter converter.
$C_{1}-15-\mu \mu \mathrm{fd}$. variable (Millen 20015).
$\mathrm{C}_{2}, \mathrm{C}_{3}-3-30-\mu \mathrm{fl}$. mica trimmer.
(i4 - $25-\mu \mu \mathrm{fd}$. variable (Nillen 19050 with 2 stator and 2 rotor plates removed).
$\mathrm{C}_{5}-68-\mu \mathrm{ffl}$. silver mica.
$\mathrm{C}_{6}-47-\mu \mu \mathrm{fd}$. ceramic.
($\%, \mathrm{C}_{9}-0.01$ - $\mu \mathrm{fl}$. disc eeramic.
(:8-82- $\mu \mu \mathrm{fd}$. mica.
$11_{1}-22,000$ ohms, $1 / 2$ watt.
R_{2} - Screen resistor: see text.
H_{3} - 1000 ohms, $1 / 2$ watt.
$1_{1}-3$ turns No. 24 d.s.e., space wound around L_{2}.
It is important that the link from the converter to the receiver be well shielded, to avoid picking up any signals directly in the receiver. A length of RGG-58/U or RG-59/U can be used and, if necessary, a small shicld should be mounted over the antenna binding post of the receiver. However, it is usually possible to set the receiver somewhere ncar 3 Mc . that will be free from even the weakest straight-through interference.

If no communications receiver is available, a war-surplus $\mathrm{BC}-454$ arcraft receiver (tuning range of 3 to 6 Mc .) makes an inexpensive receiver for use with this converter.

Testing

Power for the eonverter can be obtained from a separate supply, but it is usually more convenient to "steal" the power from the receiver. The converter requires 0.3 volts at 0.3 ampere for the heater and 200 to 250 volts d.c. at 5 to 6 ma . for the plate and soreen.

After the power supply has been connected, it is advisable to check the screen and plate voltares with a voltmeter. It may be meressary to change the value of R_{2} if the screen voltage isn't in the recommended range of 60 to 70 .

Fig. 5-49 - A bottom view of the one-tuhe converter. the toggle switches are for hand-ehanging and opening the heater cireuit.
L. 2 - 13 turns No. 20 tinned, $5 / 8$-inch diam., 13 íg-inch $\operatorname{long}\left(13 \& W 300^{\circ}\right)$.
L.3 - 6 turns No. 18 tinned, $1 / 2$-ineh diam., $3 / 4$-ineh long, eathode tap $13 / 4$ turns from ground end (13 \& W 3002).
L_{4} - Slug-tuned plate coil (CIC I.S3-5 MC.).
$L_{5}-10$ turns No. 24 d.s.e. seramble wound at cold end of L_{4}.
J_{1} - Panel-mounting male socket (Amphenol 86-CP4)
$P_{1}-300$-ohm Twin-Lead plug (Millen 37412),
$S_{1}, S_{2}-S . p . s . t$. toggle switch.
If your transmitter uses VFO, set the VFO to have a harmonic fall at 28 Mc., and tune the receiver to 3 Mc . If you have crystal control, turn on the oscillator and set the receiver to the crystal's $28-\mathrm{Mc}$. harmonic minus 25 Mc. If, for example, your crystal has a harmonic at 28,650 kc ., set the receiver to 3650 kc . Set the tuning condenser, C_{4}, to where you want the test frequency (transmitter-oseillator harmonic) to appear on the dial, and tune it in by adjusting C_{3}. If the signal is too loud, remove any test antenna from the converter. With a reasonable signal, check the tuning of the input circuit, $C_{1} L_{2}$, and adjust L_{4} for maximum signal in the receiver.
Once the converter has been set up on known frequencies within the 10 - and 11 -meter bands, C_{2} and C_{3} are left fixed and the tuning is done with C_{4}. The bandspread will be approximately 80 dial divisions on 10 and 20 or so on 11 meters. C_{1} need not be touched over a tuning range of about 200 ke ., and so should be used at intervals if the entire band is being combed.

Crystal-Controlled Converters for 14, 21 and 28 Mc.

The principle of using a fixed high-frequency oscillator in a converter and tuning the receiver the converter works iuto can be elaborated upon by using a stage of r.f. amplification ahead of the mixer and by using a crystalcontrolled oscillator for maximum stability. Since such a converter is generally used on a high frequency where fundamental crystals are not available, it is necessary to use a harmonic of a lower-frequency erystal. A crystalcontrolled converter of this type is shown in ligs. ${ }^{\text {o }}$ - and 5-52. A separate converter is required for the 14-, 21- and 27-/28-Mc. hands, since hy using separate converters it is possible to simplify their construction and to maximize their performance.
The converter uses the harmonic of a crystal oscillator to provide an exceedingly stable highfrequency oscillator signal. For example, in the 10 -meter converter a $12.25-$ Mo. crystal doubles to 24.5 Mc., and this signal is fed to the mixer. 13y tuning the amplifier (your present receiver) following the mixer over the range 3.5 to 5.2 Mc., you are, in effect, tuning across the 28 -Mc. hand. The r.f. circuits in the converter are tuned to 28 Mc., and only have to be touched up when going from one end of the band to the other.

The wiring diagram is shown in Fig. 5-51. A neutralized triode-connected 6.1 K 5 is used for the r.f. amplifier. There is some question as to its necessity on 14 and 21 Mc., where the atmospheric noise is generally high enough to limit the maximum usable sensitivity. A pentode-connected 6AK5 could probably be used with no detectable difference in performance on 14 and 21, but the triode is easy to handle and you don't lose anything by using it. Using high-impedance circuits with the pentode might give trouble from regeneration, unless the stage were neutralized. Adjustable antenna coupling and a Faraday screen are in-
cluded to accommodate various antema systems and to eliminate capacity coupling to the antenna line. The r.f. stage runs at 105 volts on the plate, since this gives the best noise figure. The separate plate lead also offers an opportunity to kill the converter by opening this circuit. The 6AK5 pentode mixer is easy to handle and quiet enough so that its noise doesn't impair the over-all performance. A triode mixer might be used, but the pentode runs with low current and is quiet.

The plate circuit of the mixer is tuned to the center of the receiver tuning range by setting L_{4} to resonate with the various shunt circuit capacities. The circuit has a low Q and there is little variation in gain over the range. A 6C4 cathode follower is used as a low-impedance coupling to the receiver input.

One section of a 6.16 twin triode is used for the crystal oscillator, and the other half serves as a frequency multiplicr. To minimize the other harmonics existing in the plate cireuit of the multiplier, the plate is tapped down on L_{6}.

To get the best possible r.f. cireuits, within the space limitations, $3 \&$ IV "Miniductors" are used for L_{1}, L_{2} and L_{3}. Their ($)$ is well above that obtainable with smaller-diameter coils, and they are easy to handle. To insure good shielding and low-resistance ground paths, an aluminum chassis is used in preference to the more common steel units.

The converter is built on a $5 \times 91 / 2 \times 3$-inch aluminum chassis, with several shield partitions to roduce unwanted interstage coupling. The most important shield is the one that straddles the r.f. amplifier socket and separates the grid and plate circuits of this stage. The grid tuning condenser, C_{2}, is mounted on bakelite insulating washers, and its ground lead returns to the common ground at the tube socket, to eliminate stray coupling through chassis cur-

Fig. $5-50-$ A 28 -Mc. crystal-controlled converter. The aljustable antema coupling can lee seen at the left front. 'The tube shields. from left to right, cover the triode-conneelod $61 K 5$ r.f. amplifier, the $6 A K 5$ mixer and the 60:4 cathode follower. The unshielded tube is the 6 J 6 oscillator-multiplier.

rents. If this isn't done, you may have trouble neutralizing the amplifier.

A $2 \frac{1}{4}$-inch diameter hole is punched in the chassis, so that the externally-mounted antenna coil, L_{1}, can be coupled to the grid coil, I_{2}. The Faraday screen is then mounted across this hole on the underside of the chassis. To construct the l'araday shield, first cut a piece of $1 / 8$-inch-thick polstyrene (Millen Quartz-Q) to measure $21 / 2$ by $31 / 4$ inches, and drill a pair of holes at one end to clear No. 6 screws, for mounting the finished shield. (These are the same screws that hold the mounting strip for the antenna condenser, C_{1}, visible in Fig. 5-50.) At the opposite end of the poly sheet, drill a small hole in each corner, for securing the wire used in making the shield. Then wind No, 20 tinned wire tightly around the poly sheet in the long direction, spacing it with string or more No. 20 wire. When the winding is finished and secured at both ends, unwind the spacing string (or wire) and remove it. If you have done the job carefully, you will have neat parallel lines of wire across the polystyrene, all equally spaced and all lying fairly flat. Then apply two or three heavy coats of Duco cement to one side only, allowing sufficient time between coats for the cement to harden thoroughly. When this has been done, it will be found an easy job to cut each wire on the uncemented side. Straight-
en out the wires so that you now have a flat sheet of parallel wires, and trim off the wires at the mounting holes end of the sheet along a line inside the mounting holes. Figs. 5-52 and $5-53$ show what this looks like. When trimming these wires, be careful to see that no wire is left touching an adjacent one. Trim the wire ends at the other end to about $1 / 2$ inch from the polystyrene. Clamp the shicld in a vise, between two pieces of wood, and wrap each wire end around a piece of No. 12 tinned copper, as shown in l'ig. 5-53. With a good hot iron, run a bead of solder along the bus, and your shield is finished. Work fast, and no heat will reach the poly. The shicld is mounted with the smooth side exposed through the hole, and one end of the No. 12 bus is grounded at the r.f. tube socket.

The grid coil, L_{2}, is supported by its leads and a couple of drops of Duco cement that hold its grounded end to the Faraday shield. The antenna coil, L_{1}, is mounted by its leads on a piece of $1 / 4$-inch diameter polystyrene rod. The rod is supported by a shaft bushing. A small wire pin through the rod at the bark of the bushing and a rubber grommet between the bushing and the control knob give a soft friction lock that holds the coupling in any position. Flexible leads run from the coil to C_{1} and the shicld of the RG-59/U coaxial line.

The r.f. plate coil, L_{3}, is cemented to a small piece of polystyrene sheet that is supported by two small brackets. The neutralizing condenser, C_{6}, is supported by one terminal of C_{7} and a stiff wire lead back to the grid pin on the tube socket. The coupling condenser, C_{9}, is simply an insulated wire wrapped once around the lead from C_{8} to the grid of the mixer. It is brought out of the oscillator compartment through a polystyrene or rubber grommet.

After the usual last check of the wiring, connect a power supply and remove the 6AK5 r.f. amplifier from its socket. Listen in on your receiver at the crystal frequency, and if you don't find the crystal signal, adjust L_{5} until you do. Then set your receiver on the proper harmonic frequency and peak L_{6} for maximum signal, as indicated by yours-meter. Then back off on L_{5} a little, because there is no need to run the crystal at maximum.

Then tune your receiver - its antenna circuit must complete the cathode circuit of the 6 C 4 follower - to about 3.8 Mc . and peak L_{4} for maximum noise. The adjustment is not sharp. If your receiver has an antenna trimmer, peak it too. Then plug in the 6AK5 r.f. amplifier and, after the tube has warmed up, rock C_{2} and C_{7}. Through the hole in the bottom plate, use an alignment tool to adjust C_{6} a little at a time, until

COIL TABLE FOR THE CRYSTAL-CONTROLLED CONVERTER
 14 Mc .
 21 Mc .
 28 Mc :

$L_{1} \quad 23$ t. No, 24
3/4-inch diam.
(13 \& W 3012)
L_{2}
21 1. No. 24
$3 / 4$-ineh diam. ($\mathrm{B} \& \mathbb{W} 3012$)
$L_{3} \quad 38 \mathrm{t}$. No. 24 $3 / 4$-inch diam., center-tapped (13 \& W 3012)

9 t. No. 24 1-ineh diam. (B \& W 3016)
10 t. No. 20
1-inch diam.
(B \& 11 3015)
22 t. No. 24 $3 / 4$-inch diam. center-tapped (1) \& W 3012)

10 t. No. 20 1-inch diam. ($\mathrm{B} \& \mathrm{~W} 3015$)
9 t. No. 20 1 -inch diam. (18 \& 4 3015)
16 t. No. 24 $3 / 4$-ineh diam., center-tapped (1s \& W 3012)
L_{4} Slug.tuned coil (Cambridge Thermionic Corp. I.Ne. ISM with $2(x)$ turns removed) (Coils for $L .5$ and L_{6} are wound on $1 / 4$-inch diameter Cambridge Thernionic Corp. 1.SM forms)

Ls	No. 32 enam., close-wound, $1 / 2$ inch long	No. 32 cnam., close-wound, $1 / 2$ inch long	30 t. No. 28 enam., close-wound
L_{6}	22 turns No. 28 cnam., close-wound, center-tapped	20 t. No. 24 cnam., close-wound, center-tapped	20 1. No. 24 enam., rlose-wound, center-tapperd
C_{18} C_{19}	${ }_{0} 75 \mu \mathrm{fd}$.	$75 \mu \mu \mathrm{fl}$. $22 \mu \mu \mathrm{fd}$.	$33 \mu \mu \mathrm{fil}$. $22 \mu \mu \mathrm{fd}$. 12) 250 he (doubles)
Xial	6000 kc . (triples)		12,250 he. (doublcs)

Fig. 5-52 - This view of the inderside of the ennverter with the bot tom cover removed shows the Faraday shicld at the lower risht, the shield straddling the r.f. amplifier sucket (lower renter) and the shielded useillatur section (top center). The neuralizing condenser for the r.f. stage is adjusted through a hole in the bottoun cover.

Fig. 5.53 - Constructional details of the Faraday shield, before soldering the ends of the No. 20 wires to the No. 12 wire bus.

$50-$ or $75-\mathrm{ohm}$ line. If you use 300 -ohm TwinLead, it is better to leave the short length of coaxial line ungrounded and to use something other than a coaxial fitting for connecting the antenna. If your antenna uses 600 -ohm line or tuned feeders, it is best to use a small antenna tuning unit link-coupled through a length of $\mathrm{RG}-59 / \mathrm{U}$ to the converter input.

There is nothing sacred about the crystal frequencies used, other than to be sure that they have no harmonics falling within the sig-nal-frequency range. For the crystals suggested in the coil table, the receiver tunes from 4 to 3.6 to cover 14 to 14.4 Mc . (yes, it tunes backwards!), 3.375 to 3.825 for 21 to 21.45 Mc ., and 3.5 to 5.2 for 28 to 29.7 Mc . The $27-\mathrm{Mc}$. a mateur band is also covered by the 10 -meter converter, simply by tuning your receiver below 3.5 Mc .

What first i.f. (tuning range of your receiver) you will use depends on the available crystals and the range your present receiver tunes. Using the second or third harmonic of the crystal should be satisfactory in practically every case. By careful selection of crystal frequencies, you can arrange things so that the
band edges start at some even $100-\mathrm{kc}$. mark on your receiver, thus giving you frequencycalibrated reception (with the necessary mental correction factor). The accuracy of calibration of your receiver on the one tuning range, together with the accuracy of the crystal used in the oscillator portion of the converter, will determine the accuracy of calibration of the receiving system.

Power Supply

The circuit diagram of a suitable power supply for use with the converters is shown in Fig. 5-5t, although any source of 6.3 volts a.c. and 105 and 180 volts d.c. will do. One set of connections runs to the converter in use, and the other goes to a small control box located on the operating table. If desired, the a.c. switch can be incorporated in the power supply, but the plate switch, in the 105 -volt lead to the r.f. stage, should be handy to the operator. A switch can be provided for shifting the power from one converter to another. Sinceseparate receiving antennas are generally used at these frequencies, the antennas do not require switching.

Fig. 5-54 - A power supply for the crystal-controlled converter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-8-\mu \mathrm{d}$. 450-volt electrolytic.
$\mathrm{h}_{1}-1500$ ohms, 10 watts.
$\mathrm{H}_{2}-10,000$ ohms, 10 watts.
L_{1} - $16 \cdot \mathrm{hy} .50$-ma. choke (Stancor C-1003).
$\mathrm{T}_{1}-240-0-240$ at $40 \mathrm{ma}, 5$ and 6.3 v . (Stancor P-6297).

An All-Purpose Super-Selective I.F. Amplifier

The amplifier shown in Figs. 5-56 and 5-57 is designed to connert to any reeciver at the grid of the first i.f. tube, to give superior selectivity for either 'phone or c.w. reception. The signals at 455 ke . are heterodyned to 50 ke . and filtered through either or both of two seleetive amplifiers. One of the amplifiers uses 11 high- Q tuned circuits to give a selectivity characteristic that is about 350 cycles wide at 6 db . down and 1300 eycles wide at 60 db . down. The other amplifier uses 9 "stagger-tuned" circuits that give a $2: 300$-rerch handwidth at 6 db . down and 5 kc . at 60 dth . down. The broader amplifier has its tuning adjusted so that it is eentered about 1700 cerdes higher in frequency than the sharp one. Thus, when a 'phone earrier is tuned to fall in the center of the sharp amplifier, one sidehand falls in the broader amplifier. The outputs of the amplifiers
are fed to a common detector, and the relative amplitude of carrier and sideband at the detector can be changed by controlling the gains through the two amplifiers. By emphasizing the carrier at the detector, "exalted-carrier" reception is ohtained, which has the advantage that fewer distortion products are generated on a signal in the presence of QRM. For e.w. reception, only the sharp amplifier is used, while the reception of SSB signals requires only the broad amplifier.

The complete circuit of the amplifier is shown in Fig. 5-55. Receiver output at 455 ke., at as low a level as possible (to avoid overloading), is fed into the 613 E6 converter stage, where a rrystal-controlled oscillator is selected either 50 ke. higher or lower, to use the selectable-sideband principle. ${ }^{1}$ A third position of the switeh, S_{1},
${ }^{1 \text { McLaughlin, "Exit Hetcrodyne QRM," QST, Oct., } 1947 .}$

Fig. 5.55 - Wiring diagram of the $50-\mathrm{kc}$. selective amplifier.
$\mathrm{C}_{1}-0.005-\mu \mathrm{fd}$ ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{6}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{26}, \mathrm{C}_{30}, \mathrm{C}_{31}$, $\mathrm{C}_{32}, \mathrm{C}_{36}, \mathrm{C}_{37}, \mathrm{C}_{38}, \mathrm{C}_{39}, \mathrm{C}_{42}, \mathrm{C}_{44}, \mathrm{C}_{45}, \mathrm{C}_{59}-0.1-$ $\mu \mathrm{fd}$. 400 -volt.
$\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{10}, \mathrm{C}_{18}, \mathrm{C}_{29}, \mathrm{C}_{35}, \mathrm{C}_{43}, \mathrm{C}_{52}-\mathbf{0 . 0 1}-\mu \mathrm{fd}$, ceramic.
$\mathrm{C}_{4}-\mathrm{C}_{-} \boldsymbol{- \mu} \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{14}, \mathrm{C}_{55}, \mathrm{C}_{18}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}-2.4-\mu \mathrm{ff}$. mica (two $4.7-\mu \mu \mathrm{fd}$ in series if lower valuc not available).
$\mathrm{C}_{25}-100-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{27}, \mathrm{C}_{28}, \mathrm{C}_{33}, \mathrm{C}_{34}, \mathrm{C}_{40}, \mathrm{C}_{41}-4.7-\mu \mu \mathrm{fl}$, mica.
$\mathrm{C}_{46}, \mathrm{C}_{51}-16-\mu \mathrm{fd} .450$-volt electrolytic.
$\mathrm{C}_{47}-0.002-\mu \mathrm{fd}$. ceramic.
C_{48} - 250-970- $\mu \mu \mathrm{fd}$. adjustable mica (El Menco 306).
$\mathrm{C}_{49}-0.001-\mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{50}, \mathrm{C}_{53}-10-\mu \mathrm{fd} .50$-volt electrolytic.
C.54-470- $\mu \mathrm{ff}$. ceramic.
(:55-35- $\mu \mathrm{f}$ fd. midyet variable.
C:56-220- $\mu \mu \mathrm{fd}$. silver mica.
(C_{5}, (S_{58} - 33010 - $\mu \mathrm{ff} \mathrm{f}$. siver mica.

CS22-10- $\mu \mathrm{ffl}$. ceramic.
$\mathrm{R}_{1}-0.15$ merohm.
$R_{2}, R_{1,}, R_{13}, R_{19}, R_{23}, R_{32}, R_{40},-0.1$ megohm.
$\mathrm{R}_{3}, \mathrm{R}_{5}-0.12$ megohm.
$R_{4}, \mathrm{R}_{6}-330$ ohms.
$\mathrm{R}_{7}, \mathrm{R}_{8}-2 \mathbf{2 0 0}$ ohms.
$\mathrm{K}_{10}, \mathrm{~K}_{14}, \mathrm{~K}_{20}, \mathrm{~K}_{24}, \mathrm{~K}_{48}-100$ ohms.
$\mathrm{R}_{11}, \mathrm{R}_{12}, \mathrm{R}_{15}, \mathrm{R}_{16}, \mathrm{~K}_{21}, \mathrm{R}_{22}, \mathrm{R}_{27}, \mathrm{R}_{28}-10,000$ ohms.
$11_{17}, 1_{20}$ - 2000 -ohm wire-wonnd potentioneter.
$1_{18}, 1_{25}-27,000$ ohms, 1 watt.
$\mathrm{H}_{2 \theta}-1500$ ohms.
permits running both crystals at once, for alignment purposes, as described later.

The two i.f. amplifiers follow the convertor, and two 613J6 variable- μ pentodes are used in each channel. There are isolation resistors and condensers in cach power lead to prevent any over-all feed-back.
The resistor, R_{50}, between gain control, R_{17}, and ground, is used to bring the relative maximum gains of the two channels to approximate equality. The gain of the broad channel will vary with the degree of stagger-tuning, so R_{50} should be inserted only atter the alignment procodure has been completed. Its value, of course, maty work out differently than that shown.
The detector uses two 12AU7 dual triodes in in the "product detector" circuit. The advantage of the cireuit is that it minimizes intermolulation at the detector and doesn't reguire a big b.f.o. signal for exalted-carrior recoption. A signal-level indicator eireuit connered to the sharp amplifier
doesn't indicate b.f.o. voltage, so the signallevel meter reads the sume with the b.f.o. either on or off.

The signal-level circuit, labeled "A.V.C.Rect." in lig. 5-55, consists of a "athode follower driving a diode. In three positions of S_{2}, the rectified current simply works the meter, but an a.v.e. voltage is applied throughout the amplifier in the fourth position.

The tuning meter is important. It permits the operator to center the carrier in the sharp amplifier, and also warns him when the amplifier is in danger of overloading. Overloading will tend to nullify the advantages of high selectivity, so it is important that the unit always be operated below this point. The manual gain controls will take care of about $60-\mathrm{dl}$, range.
The series trap, $R P^{\prime}{ }^{\prime}{ }_{5} C_{4 x}$, is tuned to 50 ke . to by-pass the r.f. and prevent its getting on the atadio grids. A choier of two low-impedance outputs is provided, for 'phones and loudspeaker.

Fig. 5-56 - The super-selective i.f. amplitier uses two channels in parallela sharp one for c.w. or for 'phone carrier, and a broad one for a phone sidehand.

The sharp i.f. is the strip at the rear of the chassis, and the broad one is just in front of it. The two tuhes at the righthand end of the hroad amplifier are the "product detector." The b.f.o. can is at the front right, next to the tuhe, and the near-lyy tulne and can are in the signal-metering circuit.

The controls, from left to right, are sideland selector switch, audio volume, broad i.f. gain, sharp i.f. gain, function switch, and b.f.o. pitch control.

Construction

There are only a few departures from conventional eonstruction ferhnique in this amplifier. Miniature tubes were used only to provide room for the tured circuits - on a larger chassis or with a different kyout, metal tubes should be perfectly satisfactory. llowever, no attempt should be made to save spare by mointing the tuned eircuits in anything but a straight line. The shield cans do not provide complete magnetic shielding at 50 ke., and it is possible to eouple right through the thin aluminum.
The i.f. strips proper are built on aluminum channeis. All power kads are brought out through shielded wires, to minimize coupling via the common power circuits. Using the shielded wire is also an aid to construction, lecause the shiclds are soldered to lugs at points near the tube sockets, and the isolating resistors are then mounted between tube socket (or coil terminal; and the exposed cunds of the shielded wires. The Hallicrafters eails keave no room for the associated shunt condensers, so they are connected directly motoss the torminals.

The RCA coils, used in the broad amplifier, must the reworked slightly before using. As supplied, the terminals come out the top of the can, so the coil must be removed ly untwisting four small tals. The roil to be used is connerted to Terminals A and F, and another coil eonnerted to Terminals C and I) should have its leads snipped. The $390-\mu \mu \mathrm{fd}$. silver-miea condenser can then be soldared to Terminals A and F before the assembly is replaced in the shield can.

The b.f.o. coil, L_{1}, uses both coils of the RCA 205121 connected in serics. This is done by lifting the single wire from Terminal C and connecting it to Terminal F. Externally, Terminals A and D are used.

The main elassis is aluminum, 12 by 17 by 2 inches, and the front panel is a standard relayrack affair 7 inehes high. The shiched leads from the i.f. strips proper are brought out through holes to tie points conveniently located away from signal circuits. Two short pieces of RG-59/L'
coasial cable are used - one from the input jack at the rear of the chassis up to the GIBEX grids, and the other from the output of the sharp i.f. amplifier to the grid of the 12AU7 a.v.r.rectifier. The input and output signal leads from the i.f. amplifiers are fed through Millen 321,50 coramie bushings, where the projecting wire serves as a tie point. The detector bias control, R_{38}, is mounted at the rear of the ehassis, since it need not be touched after the original adjustment for mintimum dotection in a single channel, except when one of the 12AU7 detector tubes is replaced.

Alignment

The best point in a receiver to take off the signal for this i.f. amplifier is at the grid of the first i.f. stage in the receiver. If the receiver has a cristal filter between mixer and i.f. stage, it won't be used normally. The erystal filter can be userd, but it requires getting two oscillator crustals for the sharp i.f. amplifier of just the right frequency.

The frequency to which the selertive amplifior is aligned is determined by the frequencios of the troo crystals in the 6BLG converters. Assume that the nominal i.f. frequeney of the communications receiver is 455 ke., and that the available reystal are 408 and 505 ke. The sharp i.f. will then be aligned to half the difference, or 48.5 kc . $(408+48.5)$, but the fart that this is 1.5 kc . higher than the nominal 455 is nothing to worry about.

Set a signal generator or test oscillator to half the erystal-oseillator difference (e.g., 48.5 ke .) and align the sharp ehannel by working back from the detector, introduring the signal first at the grid of the second 6BJG, and aligning the following circuits, and then introducing the signal at the first 6BJJ 6 and then the GBLE6 mixer. The final touching up of the sharp amplifier is done by switching S_{1} to the point where both 6BE6s are operative and tuning a signal at 455 kv. until it "zero beats" with itself, as heard in the output. The sharp eircuits are then given a fi-
nal peaking, as indicated by the tuning meter. During alignment procedures, always work with a minimum signal and with the gain control, R_{17}, advanced to maximum gain.

The b.f.o. is aligned by switching it on, setting C_{55} to the center of its range, and adjusting the slug in L_{1} to zero beat on a signal peaked through the sharp amplifier.
The broad i.f. amplifier is "stagger-tuned," which means that alternate circuits are tuned to the same frequency. First, prak circuits $L\left({ }^{\prime} 12\right.$ through $L C_{20}$ to a slightly higher (1.5 ke .) frequency than the sharp chamel. Whike doing this, the lead from the meter circuit can be transferred from $L C_{11}$ to $L C_{20}$, and the signal introduced to the grid of a 6BE6. Then set the signal source to a frequency 750 cyeles higher than the frequency at which the sharp chammel was peaked, and peak circuits $L C_{12}, L C_{14}, L C_{16}$, $L C_{18}$ and $L C_{20}$, as indicated by the meter. Then set the signal source to a frequency 2750 cyeles higher than the sharp-ehannel frequency, and peak circuits $L C_{13}, L C_{15}, L C_{17}$ and $L C_{19}$. Now, varying the frequency of the signal source, the response indicated by the meter will show a response that has two unequal peaks. The praks can be equalized, or nearly so, by readjustment of $L C_{12}$. The lead from the meter circuit can now be returncel to $L C_{11}$.

If an audio output meter is available, get a final check on the response of the broad amplifier by setting the b.f.o, to the midfrequency of the sharp amplifier and, with the sharp amplifier turned down, swing the input signal across the range and watch the audio response. It should te fairly flat from about 500 to 2700 eycles or so, dropping off rapidly beyond that.

Without access to a signal generator, it may be necessary to rig up a 50 (- or a $450-\mathrm{kc}$. oscillator with good stability and as slow tuning rate.

Operation

The operator has his choice of several tepes of operation with this amplifier. For highly-selective c.w. reception, use switch S_{2} in the "C.W." position, with the b.f.o. offset to give the favorite beat-note froquencr. Signals will drop in and out rapidly as one tunes across a band, and a slow tuning rate is highly desirable. For less eritical reereption of c.w., or for net operation, switch to "Sisis" and use the broad i.f. charatteristic, reducing the gain in the sharp channel to a minimum. The same settings maintain for the reception of SSIS 'phone signals - the b.f.o. is set to the midfrequeney of the sharp channel and all tuning is clone with the main tuning dial of the recciver.

Regular AMI 'phone signals are received with S_{2} set either to "MAN." or "A.V.C.," depending upon the QLRM conditions. In either case, the carrier is peaked on the meter for accurate tuning, and the two gain controls are set for best listening. In "MIN." operation this will usually mean riding gain on the sharp channel so that the meter never goes beyond half-scale, and with the hroad-amplifier gain control backed off proportionately. In "A.V.C.," both controls can be run wide open, but as one tunes across some signals the set may overload until the tuning is centered on the desired carrier. A heterodyne on one sideband will be eliminated by switching S_{1}. "l'ractice" is the only advice one can give on handling the i.f. amplifier to its greatest capabilities, always remembering that you have the choice of two sidebands to listen to plus the ability to vary the relative amplitudes of carrier and sidebands.

As in all selective amplifiers, overload is the big enemy, and it is generally best to run the audio volume at or near maximum and the i.f. gain at the lowest usable value.

Fig. $\quad 5-57$ - This view underneath the chassis shows the two oseillator crystals at the lower right. Most of the shielded leads are power leads to the i.f. strips, although some of the lowlevel audio leads are also run in shielded wire. 'The cight holes across the center are for access to the tuning slugs of the broad i. f. strip.

High-Frequency Transmitters

The prineiple requirements to be met in c.w. transmitters for the amateur bands between 1.8 and :30 Mc. are that the frequency must be as stable as good practice permits, the output signal must be free from modulation and that harmonies and other spurious emissions must be eliminated or redured to the point where they do not cause interference to other stations.

The over-all design depends primarily upon the bands in which operation is desired, and the power output. A simple oscillator with satisfartory frequency stability may be used as a transmitter at the lower frequencies, as indicated in Fig. 6-1A, but the power output obtainable is small. As a general rule, the output of the oseillator is fed into one or nore amplifiers to bring the power fed to the antenna up to the desired level, as shown in B .

An amplifier whose output frequency is the same as the input frequency is called a straight amplifier, A buffer amplifier is the term sometimes applied to an amplifier stage to indicate that its primary purpose is one of isolation, rather than power gain.

Because it becomes increasingly difficult to maintain oscillator frequency stability as the frequency is increased, it is most usual practice in working at the higher frequencies to operate the oscillator at a Jow frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an amplifier that delivers output at a multiple of the exciting frequency. A doubler is a multiplier that gives output at twice the exciting frequency; a tripler multiplies the exciting frequency by three, ete. From the viewpoint of any particular stage in a transmitter, the preceding stage is its driver,

As a general rule, frequency multiptiers should not be used to feed the antenna system directly, but should feed a straight amplifier which, in turn, freds the antenna system, as shown in Fig. 1-($\%$ D and E. As the diagrams indicate, it is often possible to operate more than one stage from a single power supply.

Good frequency stability is most easily obtained through the use of a crystal-controlled oscillator, although a different crystal is needed for each frequency desired (or multiples of that frequency). A self-controlled oscillator or VFO (variable-frequency oscillator) may be tuned to any frequency with a dial in the manner of a
receiver, but requires great care in design and construction if its stability is to compare with that of a crystal oscillator.

In all types of transmitter stages, screen-grid tubes have the advantage over triodes that they require less driving power. With a lower-power exciter, the problem of hamonic reduction is made easier. The most satisfactory oscillator circuits require the use of a screen-grid tube.

Fig. 6-1 - Block diagrams showing typieal combinations of oscillator and amplifiers and power-supply arrangements for transmitters. A wide sclection is possible, depending upon the number of bands in which operation is desired and the power output,

Oscillators

Crystal Oscillators

The frequency of a crystal-controlled oscillator is held constant to a high degree of accuracy by the use of a quartz crystal. The frequency depends almost entirely on the dimensions of the crystal (essentially its thickness); other circuit values have comparatively negligible effect. Ilowever, the power obtainable is limited by the heat the crystal will stand without fracturing. The amount of heating is dependent upon the r.f. crystal current which, in turn, is a function of the amount of feed-back required to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the crystal is cut. Excitation should always be adjusted to the minimum necessary for proper operation.

Crystal-Oscillator Circuits

Fig. 6-2 shows three commonly-used crystaloscillator circuits. All are of the electron-coupled type in which the screen of the tube serves as the plate of a triode oscillator. A separate output tank circuit is used in the actual plate circuit. Because of the shielding effect of the screen and suppressor grids, the coupling between the two circuits is comparatively small and exists principally through the common electron stream within the tube. Thus when the load is coupled to the output circuit, its effect will be much less than if it were coupled directly to the frequencygenerating circuit.
In the Tri-tet circuit of A , the screen is the grounded "plate" of a t.g.t.p. triode oscillator, the crystal taking the place of the coil-andcondenser grid tank. Excitation is controlled by adjustment of the tank $L_{1} C_{1}$ which should have a low L / C ratio and be tuned considerably to the high-frequency side of the crystal frcquency (approximately 5 Mc . for a $3.5-\mathrm{Mc}$. erystal) to prevent over-excitation and high crystal current. Once the proper adjustment for average crystals has been found, C_{1} may be replaced with a fixed condenser of equal value.

In the grid-plate circuit of Fig. 6-213, the oscillating circuit is the equivalent of a groundedplate Colpitts. Fxcitation is adjusted by changing the ratio of the two capacitances, C_{6} and C_{7}. The oscillating circuit of the modified Pierce oscillator in C is also basically a Colpitts, this time with a grounded cathode. The grid-cathode and screen-cathode capacitances serve the same purpose as the two condensers connected across the circuit in B. To obtain proper adjustment of excitation, the screen-cathode caparitance is augmented by C_{9} which may be adjusted for optimum excitation.
In these circuits, output at multiples of the crystal frequency may be obtained by tuning the plate tank circuit to the desired harmonic, the output obtainable dropping off, of course, at the higher harmonics.
If the behavior of these circuits is to be pre-
dicted with any degree of accuracy, the tube used must be one having good screening. From all considerations, the 6AG7 is recommended, although the 5763 is a satisfactory substiture. With a well-screencd tube and proper excitation ad-

Fig. 6-2 - Commonly-used erystal-controlled oscillator circuits. Values are those recommended for a 6 AG 7 or 5763 tube. (See reference in text for ot her tubes.)
C_{1} - Feed-back-control condenser - 3.5-11c. crystals - approx. $220-\mu \mu \mathrm{f}$, mica - 7.Mc. erystals approx. 150 - $\mu \mathrm{f}$. mica.
C_{2} - Output tank condenser - $100-\mu \mu \mathrm{f}$. variable for single-band tank; $250-\mu \mu f$. variable for twoband tank (see text).
C_{3} - Screen by-pass - 0.001 - μ f. disk ceramic.
C_{4} - Plate by-pass - $0.001-\mu$ f. disk ceramic.
C_{5} - Output coupling condenser - 50 to $100{ }_{\mu \mu} \mathrm{f}$.
Ci $_{6}$ - Excitation-control condenser - $30-\mu \mu \mathrm{f}$. Irimmer.
C_{7} - Excitation condenser - $220-\mu \mu$ f. nica for 6 AG 7 ; $100-\mu \mu$ f. for 5263.
$\mathrm{C}_{8}-1$.e. blocking condenser - $0.001-\mu \mathrm{f}$. miea.
C_{9} - Excitation-control condenser - $220-\mu \mu \mathrm{f}$. mica.
C_{10} - Heater by-pass - $0.001-\mu \mathrm{f}$. disk ceramic. R_{1} - Grid Ieak - 0.1 megohm, $1 / 2$ watt.
h_{2} - Screen resistor - 47,000 ohms, 1 watt (see text if oscillator is to be keyed).
L_{1} - Excitation-control inductance - $3.5-\mathrm{Me}$. crystals - approx. $4 \mu \mathrm{~h} . ; 7 \mathrm{Hc}$. crystals - approx $2 \mu \mathrm{~h}$. L_{2} - Output-circuit coil - single-band: - $\mathbf{3 . 5} \mathrm{Mc}$. $17 \mu \mathrm{~h} . ; 7 \mathrm{Mc},-8 \mu \mathrm{~h} . ; 14 \mathrm{Mc},-2.5 \mu \mathrm{~h} ; 28 \mathrm{Mc}$. $-1 \mu \mathrm{~h}$. Two-band operation: $3.5 \& 7 \mathrm{Mc}$ $7.5 \mu \mathrm{~h} . ; 7 \& 14 \mathrm{Me}-2.5 \mu \mathrm{~h}$. (See text.)
$\mathrm{RFC}_{1}-2.5-\mathrm{mh}$. $50-\mathrm{ma}$. r.f. choke.
justment, the output plate tuning characteristic at the crystal fundamental, as well as at harmonics, will be similar to that shown in Fig. 6-3 and tuning will cause less than 25 cycles change in frequency. Crystal current, under these conditions, should not be excessive. If the oscillator

Fig. 6-3-Plate tuning characteristic of efectroncoupled circuits with a well-sereencd tube. The plate-current dip at res. onance broadens and is less pronounced when the circuit is loaded.
is to be keyed, best characteristics will be obtained by omitting the screen resistor, R_{2}, and connecting the screen lead to a regulated source of 75 to 150 volts.

If a tube with poorer screening is used, the effect of tuning the output circuit will not be greatly different at harmonics of the crystal frequency, but the operation at the crystal fundamental may be altered drastically. When the output circuit is tuned near resonance, oscillation may stop entirely, necessitating a critical adjustment to one side of resonance for good keying characteristics and to prevent a marked rise in crystal current, Under these conditions, the frequency may vary as much as 200 cycles.

Crystal current may be estimated by observing the relative brilliance of a $60-\mathrm{ma}$. dial lamp comnected in series with the crystal. For stable operation, crystal current should be limited as much as possible and satisfactory output should oe obtained with a current of 40 ma . or less. If the oscillator is to be keyed, the lamp should be removed to prevent chirps.

For best harmonic output a tube with high mutual conductance should be used. This is especially important in the circuit of Fig, 6-2C. The 6 AC 77 (or 5763) also meets this requirement. A low-C output tank circuit is desirable, especially for harmonic output. However, if a tank condenser large enough to cover two adjacent bands with the same coil is used, the output at the crystal fundamental and at the harmonic will he approximately the same, since the L / C ratio will be high when the circuit is tuned to the harmonic, where low C is of the greater importance.

For best performance with a 6 AC 7 or 5763 tube, the values given under lig. 6-2 should be followed closely. (For a discussion of values for other tubes, see QST for March, 1950, page 28.)

Regrinding Crystals

The relationship between the thickness of a crystal and its frequency is given by:

$$
f \mathrm{Mc}_{\mathrm{c}}=\frac{k}{t_{\mathrm{mil}}}
$$

where f_{Mo}. is the frequency in megacycles, t the thickness in thousandths of an inch and k
is a constant of the crystal cut approximately as follows:

$$
\begin{aligned}
& \text { AT-cut - } 66.2 \\
& \text { 13'l-cut - } 100.78
\end{aligned}
$$

Because crystals near any desired frequency can be purchased reasonably these days, it is not profitable for the amateur to cut and grind his own blanks. However, frequently it may be desirable to make a limited increase in the frequency of a crystal at hand. Indispensable requirements are a piece of plate glass, a good micrometer, supplies of Size 800 aluminum oxide for light grinding, and Size 400 silicon carbide for coarse grinding, and a test oscillator, A test oscillator of the regenerative type, such as the one shown in Fig. $6-2 B$, is preferred. The oscillator should be equipped with a grid-current milliammeter, preferably one with a $0.5-\mathrm{ma}$. scale. The grid current should be checked first with the crystal to be reground, and preferably with several others known to have satisfactory activity, to obtain an average of the grid current to be expected for normal crystal activity.

The most important factor in respect to activity is that of maintaining the proper surface contour. When properly ground, the crystal is thicker in the center than at the edges. The difference in thickness, between the center and the edges, should vary from about 0.001 inch for a 3.5 -\Ic. crystal $1 / 2$ inch square to about 0.00015 inch for a 7 -Mc. crystal.

The grinding compound should be sprinkled on the glass plate and moistened with water to make a very thin paste. One side of the crystal should be marked at a corner with a pencil and all of the grinding should be done on the opposite side. The crystal should be swirled around in figure-eight paths. The path should be changed frequently to another part of the glass plate so that the plate will be worn evenly. Light pressure with the finger on a corner of the crystal should be used. Make three or four " 8 's" to each of the corners in succession and then repeat. Use lighter pressure and make fewer " 8 's" as the desired frequency is approached.

If a calibrated receiver is available, it can be used to keep a continuous check on the frequency as the crystal is being ground. Place a sheet of tinfoil or metal under the plate glass and connect it to the antenna terminal of the receiver. Then as the crystal is being ground, it will produce a hiss in the receiver that peaks close to the crystal frequency. To be safe, however, it is advisable to limit the use of this method of checking to within 20 kc . of the desired frequency at 7 Mc . Then if it is found that the activity is not up to normal, the contour can be corrected without overshooting the desired frequency.
The crystal should be thoroughly cleaned of grinding compound and other matter before using the micrometer or checking in the test oscillator, of course. Use soap, warm water and a tooth brush, and dry with a lintless cloth or tissue. Handle the crystal only by the edges after cleaning.

Lowering Frequency

If a crystal has accidentally been ground down too far, or if it is desired to lower slightly the frequency of any other crystal, this can often be done by loading the crystal. Loading, however, may reduce the crystal activity if it is carried too far. With a good active crystal, it should be possible to decrease the frequency as much as one per cent - 35 kc . for a $3500-\mathrm{kc}$. crystal or 70 kc . for a $7-\mathrm{Mc}$. crystal. Cold soft solder rubbed into the erystal surface is suitable. The solder should In applicd gradually while the frequency and activity are checked periodically. Start off by marking a circle about $1 / 4$ inch in diameter at the center of the crystal and use this as a boundary line for additional applications of the solder. The loading should be applied to both surfaces of the crystal as equally as possible.

(A) Hartley

(C) Colpitts

VARIABLE-FREQUENCY OSCILLATORS

The frequency of a VFO depends entirely on the values of inductance and capacitance in the circuit. Therefore, it is necessary to take careful steps to minimize changes in these values not under the control of the operator. As examples, even the minute changes of dimensions with temperature, particularly those of the coil, may result in a slow but noticealle change in frequency called drift. The effective input capacitance of the oscillator tube, which must be connected across the circuit, changes with variations in electrode voltages. This, in turn, causes a change in the frequency of the oscillator. To make use of the power from the oscillator, a load, usually in the form of an amplifier, must be coupled to the oscillator, and variations in the load may re-

(B) Hartley-Non-resonant Output

(D) Series-Tuned Colpitts

Fig. 6-4-VFO eircuits. Approximatc values for 3.5 Mc. are given below. For 1.75 Mc ., all tank -circuit values of capacitance and inductance, all tuning capacitances and C_{13} and C_{14} should be doubled; for 7 Mc., they should be cut in half.
C_{1} - Oscillator bandspread tuning condenser - 150 . $\mu \mu \mathrm{ff}$. variable.
C_{2} - Output-circuit tank condenser - $100 . \mu \mu \mathrm{fd}$. variable.
C3 - Oscillator tank condenser - $\mathbf{5 0 0}-\mu \mu \mathrm{fl}$. zerotem-erature-mefficient mica.
C_{4} - Grid coupling condenaer - 100 - $\mu \mu \mathrm{f}$ d. zero-tem-peraturc-coeflicient mica.
C_{5} - IIcater by-pass - 0.001 - ffd . disk ceramic.
$\mathrm{C}_{6}-$ Screen by-pass $-0.001-\mu \mathrm{fd}$. disk ceramic.
C 7 - Plate by-piss - $0.001-\mu \mathrm{fl}$. disk ceramic.
C_{8} - Output coupling condenser - 50 to $100-\mu \mu \mathrm{fd}$. mica.
C_{9} - Oseillator tank eondenser - $680-\mu \mu \mathrm{fd}$. zero-tem-perature-coefficient mica.
Clo_{10} - Oscillator tank condenser - $0.0022-\mu \mathrm{fd}$. zero.
C_{11} - Oscillator $\begin{gathered}\text { temerecoefficient mica. } \\ \text { able air. }\end{gathered}$
C_{12} - Oscillator bandspread tuning condenser - 25 $\mu \mu \mathrm{fd}$. variable.
$\mathrm{C}_{13}, \mathrm{C}_{14}$ - Tubc-coupling condenser $-\mathbf{0 . 0 0 1}-\mu \mathrm{fd}$. zero. temperature-coefficient mica.
$\mathrm{R}_{1}-47,000$ ohms, $1 / 2$ watt.
L_{1} - Oscillator tank coil - $4.3 \mu \mathrm{~h}$., tapped about one-third-way from grounded end.
I_{2} - Output-circuit tank coil-22 $\mu \mathrm{h}$.
L 3 - Oscillator tank coil - $4.3 \mu \mathrm{~h}$.
L_{4} - Oseillator tank coil - $33 \mu \mathrm{~h}$. (B \& W JEL-80).
$\mathrm{RFC}_{1}-2.5-\mathrm{mh}$. 50 ma . r.f. choke.
V_{1}-6AG7 preferred; ot her well-screened types usable.
$V_{2}-6 A G 7$ or 5763 required.
flect on the frequency. Very slight mechanical movement of components may result in a shift in frequency, and vibration can cause undesirable modulation.

VFO Circuits

Fig. 6-4 shows the most commonly used circuits. They are designed to minimize the effects mentioned above. All are of the electron-coupled type discussed in connection with crystal oscillators.

The oscillating circuits in Figs. 6-4.1 and B are the Hartley type; those in C and D are Colpitts circuits. There is little choice between the circuits of A and C. In both, all of the effects mentioned, except changes in inductance, are minimized by the use of a high- Q tank circuit obtained through the use of large tank capacitances. Any uncontrolled changes in capacitance thus become a very small percentage of the total circuit capacitance.

In the series-tuned Colpitts circuit of Fig. $6-4 \mathrm{D}$ (sometimes called the Clapp circuit), a high- Q circuit is obtained in a different manner. The tube is tapped across only a small portion of the oscillating tank circuit, resulting in very loose coupling between tube and circuit. The taps are provided by a series of three condensers arross the coil. In addition, the tube capacitances are shunted by large condensers, so the effects of the tubechanges in electrode voltages and loading - are still further reduced. In contrast to the preceding circuits, the resulting tank circuit has a high L / C ratio and therefore the tank current is much lower than in the circuits using high-C tanks. As a result, it will usually be found that, other things being equal, drift will be less with the low-C circuit.

For best stability, the ratio of $C_{11}+C_{12}$ to C_{13} or C_{14} (which are usually equal) should be as high as possible without stopping oscillation. The permissible ratio will be higher the higher the Q of the coil and the mutual conductance of the tube. If the circuit does not oscillate over the desired range, a coil of higher (Q must be used or the capacitance of ('13 and ('14 reduced.

Load Isolation

In spite of the prectutions already discussed, the tuning of the output plate circuit will cause a noticeable change in frequency, particularly in the region around resonance. This effect can be redured considerably by designing the oscillator for half the desired frequency and doubling frequency in the output circuit, although there will be some sacrifice in output.

It is desirable, although not a strict necessity if detuning is recognized and taken into aceount, to approach as closely as possible the condition where the adjustment of tuning controls in the
transmitter, beyond the VFO frequency control, will have negligible effect on the frequency. This can be done by substituting a fixed-tuned circuit in the output of the oscillator, and adding isolating stages whose tuning is fixed between the oscillator and the first tunable amplifier stage in the transmitter. Fig. 6-5 shows such an arrangement that gives good isolation. In the first stage, a 6 C 4 is connected as a cathode follower. This Irives a $57(0 ; 3$ buffer amplifier whose input circuit is fixed-tuned to the approximate band of the VFO output. For best isolation, it is important that the 6 C 4 does not draw grid current. The output of the VFO, or the cathode resistor of the (C 4 should be adjusted until the grid voltage of the 6 C 4 (as measured with a highresistance voltmeter with an r.f. choke in the negative lead) is the same with or without excitation from the VFO. L_{1} should be adjusted for most constant output from the 5763 over the band.

Chirp

In all of the circuits shown there will be some change of frequency with changes in screen and plate voltages, and the use of regulated voltages for both usually is necessary. One of the most serious results of voltage instability occurs if the oscillator is keyed, as it often is for break-in

Fig. 6.5 - Cirenit of an isolating amplifier for use between V1FO and first
tunable stage. All capacitances lelow 0.001 ff. are in $\mu \mu$. All resistors are tunable stage. All capacitances below $0.001 \mu \mathrm{f}$, are in $\mu \mu \mathrm{f}$. All resistors are $1 / 2$ watt. A_{1}, for the $3.5-\mathrm{Mr}$. band, consists of 93 turns No. 36 enam., 17/32 inch long, $1 / 2$ inch diameter, close-wound on \atimal X $18-50$ irom-shing form. Inductance 09 to $134 \mu \mathrm{~h}$. All capacitors are dish ceramic.
\qquad

\qquad
\qquad
peration. Although voltare regulation will supply a stealy voltage from the power supply and therefore is still desirable, it camoot alter the fact that the voltage on the tube must rise from zero when the key is open, to full voltage when the key is closed, and must fall bark again to zero when the key is opened. The result is a chirp each time the key is opened or closed, unless the time constant in the keying circuit is reduced to the point where the chirp takes place so rapially that the recoiving operator's ear camot detect it. Infortunately, as explained in the chapter on keying, a certain minimum time constant is necessary if key clicks are to be minimized. Therefore it is evident that the mesusures neressary for the redurtion of chirp and clicks are in opposition, and a compromise is necessary.

For best keying characteristics, the oscillator should be allowed to run continuously while a subsequent amplifier is keyed. However, a keyed amplifier represents a widely variable load and unless sufficient isolation is provided hetween the oscillator and the keyed amplifier, the keying characteristics may be little better than when the oscillator itself is keyed.

Frequency Drift

Frequency drift is further reduced most easily by limiting the power input as much as possible and by mounting the components of the tumed circuit in a separate shielded compartment, so that they will be isolated from the direet heat from tubes and resistors, The shielding also will eliminate changes in frequency catused by movement of marby objects, surh as the operator's hand when tuning the VFO. The circuit of Fig, 6-4D lends itself well to this arrangement, since relatively long leads between the tube and the tank circuit have nargigible offert on frequency berause of the large shunting caparitances. The grid, cathode and ground leads to the tube ran be bunched in a cable up to several feet long.

Variable condensers should have ceramic insulation, good bearing contacts and should preferably be of the double-bearing type, and fixed condensers should have zero tomperature coefficiont. The tube socket also should have ceramic insulation and special attention should be paid to the selection of a tank coil in the oscillating section.

Oscillator Coils

The Q of the tank coil used in the oscillating portion of any of the circuits under discussion should be as high as circumstances (usually space) permit, since the losses, and therefore the heating, will be less. With recommended care in regard to other factors mentioned previously, most of the drift will originate in the coil. The coil should be well spaced from shielding and other large motal surfaces, and be of a type that radiates heat well, such as a commereial airwound type, or should be wound tightly on a threaded coramic form so that the dimensions will not change readily with temperature. The wire with which the coil is wound should be as large as practicable, especially in the high-C circuits.

Mechanical Vibration

To eliminate mochanical vibration, components should be mounted securely. P'articularly in the sircuit of Fig. $6-4 \mathrm{D}$, the condenser should prefsrably have small, thick plates and the coil oraced, if neressary, to prevent the slightest mehanical movement. Wire connections between ank-circuit components should be as short as possible and flexible wire will have less tendency to vibrate than solid wire. It is advisable to cushion se entire oscillator unit be mounting on sponge ubber or other shock mounting.

Tuning Characteristic

If the circuit is oscillating, touching the grid of
the tube or any part of the circuit connected to it will show a change in plate current. In turing the plate output circuit without load, the plate current will be relatively high until it is tuned near resonance where the plate current will dip to a low value, as illustrated in Fig. 6-3. When the output eircuit is loaded, the dip should still be found, but broader and much less pronounced as indicated by the dashed line. The circuit should not be loaded beyond the point where the dip is still recognizable.

Checking VFO Stability

A VFO should be chaeked thoroughly before it is placed in regular operation on the air, Since succeeding amplifior stages may affeet the signal characteristies, final tests should be made with the complete transmitur in operation. Nimost any IFO will show signals of good quallity and stability when it is ruming free and not connected to a load. A well-isulated monitor is a neressity. Perhaps the most convenient, as well as one of the most satisfactory, well-shiolded monitoring arrangements is a receiver combined with a crystal oscillator, as shown in Fig. 6-6.

Fig. 6-6-Set-up for checking VIO stability The receiver should be tuned preferably to a harmonic of the VFO frequency. The erystal oseillator may operate somewhere in the band in which the VFO is operating. The receiver b.f.o. should be turned off.
(See "Crystal Oscillators," this chapter.) The rerstal frequency should lie in the band of the lowest frequency to be cherkel and in the frequency range where its harmonies will fall in the higher-frequency bands. The receiver b.foo. is turned off and the VFO signal is tuned to beat with the signal from the erystal oscillator instead. In this way any receiver instability caused by overloading of the imput circuits, which may result in "pulling" of the h.f. oscillator in the receiver, or by a change in line voltage to the recemer when the transmitter is keyed, will not affect the reliability of the check. Most presentday cruatals have a sufliciontly-low temperature coeflicient to give a satisfactory wheck on drift as well as on chirp and signal quality if they are not overlosided.

Ilarmonirs of the crystal may be used to beat with the transmitter sigmal when monitoring at the higher frequencies. Since any chirp at the lower frequencies will be magnified at the higher frequencies, accurate chocking can best be done by monitoring at the latter.

The distance between the crystal oseillator and receiver should be adjusted to give a good beat between the crystal oscillator and the transmitter signal. When using harmonics of the crystal oscillator, it may be necessary to attach a piece
greater value, but that chirp becomes objectionsufficient signal in the recoiver. Cherks may show that the stability is sufficiently good to permit oscillator keying at the lower frequencies, where break-in operation is of greater value,
but that chirp becomes objectionable at the higher frequencies. If further improvement does not seem possible, it would be logical in this case to use oscillator keying at the lower frequencies and amplifier keying at the higher frequencies.

R. F. Power Amplifiers

R.f. power amplifiers used in amateur transmitters usually are operated under Class \mathbf{C} conditions (see chapter on vacuum-tube fundamentals). Fig. 6-7 shows a screen-grid tule with

A further objective is to minimize the harmonic energy (always generated by a Class C amplifier) fed into the load circuit. In attaining these objectives, the Q of the tank circuit is of importance.

(A)

(B)

Fig. 6.7 - Output coupling circnits. A - Inductive link coupling. \mathbf{B} - Capacitive coupling.
C_{1} - Plate tank condenser - see text and Fig. 6-9 for capacitance, Fig. 6-30 for voltage rating.
C_{2} - Ileater by-pass - 0.001 - $\mu \mathrm{fd}$. disk ceramic.
C_{3} - Screen ly-pass - voltage rating depends on method of screen supply. See section on sereen considerations. Voltage rating same as plate voltage will be safe under any condition.
C_{4} - Illate hy-pass - 0.001 - $\mu \mathrm{fd}$. disk ceramic or mica. Voltage rating same as Gi, plus safety factor.
C_{5} - Coupling condenser - see Fig. 6-19.
la - To resenate at operating frequency with C_{1}. See $L C$ chart in miscel-lancous-data ehapter and inductance formula in electrical-laws chapter, or use ARIRI. Lightning Calculator.
L_{2} - Reactance equal to line inpedance. See reactance chart in misecllane-ous-lata chapter and inductance formula in electrical-laws chapter, or use ARRI. Lightning Calculator.
R - Representing load.
the required tuned tank in its plate circuit. Equivalent cathode connections for a filamenttype tulse are shown in Fig. 6-8. It is assumed that the tube is being properly driven and that the various electrode voltages are appropriate

Fig. 688 - Filament center-tap connections to be substituted in place of cathode connections shown in diagrams when filament-type tubes are sulstituted. T_{1} is the filament transformer. Filament by-passes C., should be $0.001-\mu \mathrm{fd}$. disk ceramic condensers.
for Class C operation. The main objective, of course, is to deliver as much fundamental power as possible (or as desired) into a load, R, without exceeding the tube ratings. The load resistance R may be in the form of a transmission line to an antenna, or the grid circuit of another amplifier.
of each section of a split-stator condenser in a balanced circuit should be half the value shown.

Effect of Q on Tube Plate Efficiency

For good tube plate efficiency, the voltage drop across the tank (which determines the instantaneous plate voltage) should approach a sine wave characteristic. Although the plate current flowing through the tank is in the highly-distorted form of short pulses containing considerable harmonic energy, a resonant circuit discriminates against harmonic voltages across the circuit according to the Q of the circuit. If the Q is sufficiently high, the wave shape of the voltage drop across the tank circuit will be essentially sinusoidal. So far as tube plate efficiency is concerned, requirements will be met satisfactorily if the $\operatorname{tank} Q$ is 5 or greater. However, as the Q is increased, the current circulating in the tank circuit becomes greater, increasing the tankcircuit loss. If the Q is greater than about 20 , the losses in the tank circuit caused by the increasingly greater tank current will offset any further improvement in plate efficiency.

Fig. 6-9 - Chart showing plate tank capacitance required for a Q of 12 . To use the chart, divide the tube plate voltage by the plate current in milliamperes. Select the vertical line corresponding to the answer obtained. Follow this vertical line to the diagonal line for the band in question, and thence horizontally to the left to read the capacitance. For a given ratio of platevoltage/plate current, doubling the capacitance shown doubles the Q etc. When a split-stator condenser is used in a balanced circuit, the capacitance of each section may be one half of the value given by the chart.

Harmonic Output Reduction

Strictly speaking, a high- Q tank circuit does not "attenuate" harmonics. The plate current pulses remain unchanged with Q. However, it has been explained above that the harmonic voltage drop) across the tank circuit (a pure sine wave has no harmonic content) decreases with an increase in Q and therefore when the load circuit is coupled across the tank circuit capacitively, as shown in Fig. 6-713, the harmonic voltage across the load will be reduced as the Q of the tank circuit is increased.

When inductive coupling is used, as in Fig. $6-7 \mathrm{~A}$, harmonic reduction in the load comes about for a different reason. At resonance, as explained in the chapter on electrical laws and circuits, there is a build-up of fundamental current in the tank circuit, and this current becomes greater as the Q is increased. As the current through the tank coil increases, the same power in the load will be obtained with looser inductive
coupling (a smaller coupling coefficient). Since the harmonic current through the coil remains fixed irrespective of Q, the amount of harmonic energy coupled out becomes less as the coupling is deereased.

As stated above, tank-eircuit loss increases with Q, so that the choice of Q must be a compromise depending upon whether efficiency or harmonic reduction is considered the more important.

Q vs. Coupling

Also, as explained above, it is seen that the Q has an influence on coupling to a load when the coupling is inductive. The higher the Q, the larger the tank current and the smaller the coefficient of coupling to the load need be for a given value of current in the load. Conversely, the lower the Q, the greater the coefficient of coupling must be.

Q and Broadbanding

Amateur frequencies are in bands - not spot frequencies - and it becomes desirable to design the circuits of the transmitter so that it may be operated within a band with a minimum of retuning. It is therefore desirable to use the minimum Q that will satisfy the previously discussed requirements.

OUTPUT COUPLING SYSTEMS

Coupling to Flat Coaxial Lines

When the load R in Fig. 6-7A is located for convenience at some distance from the amplifier, or when maximum harmonic reduction is desired, it is advisable to feed the power to the load through a low-impedance coaxial cable. The shielded construction of the cable prevents radiation and makes it possible to install the line in any convenient manner without danger of unwanted coupling to other circuits.

If the line is more than a small fraction of a wavelength long, the load resistance at its output end should be adjusted, by a matching circuit if necessary, to match the characteristic impedance of the cable. This reduces losses in the cable to a minimum and makes the coupling adjustments at the transmitter independent of the cable length. Matching circuits for use between the cable and another transmission line are discussed in the chapter on transmission lines, while the matching adjustments when the load is the grid circuit of a following amplifier are described elsewhere in this chapter.

Assuming that the cable is properly terminated, proper loading of the amplifier will be assured, using the circuit of Fig. 6-10C, if

1) The plate tank circuit has reasonably high value of (Q. A value of 10 or more is usually sufficient.
2) The inductance of the pick-up or link coil is close to the optimum value for the frequency and type of line used. The optimum coil is one whose self-inductance is such that its reactance
at the operating frequency is equal to the characteristic impedance, \boldsymbol{Z}_{0}, of the line.
3) It is possible to make the coupling between the tank and pick-up coils very tight.

The second in this list is often hard to meet. Few manufactured link coils have adequate inductance even for coupling to a 50 -ohm line at low frequencies.

If the line is operating with a low s.w.r., the system shown in lig. $6-10 \mathrm{C}$ will require tight coupling between the two coils. Since the second-
coupling to a tank circuit of proper design. Larger values of Q can be used and will result in increased ease of coupling, but as the Q is increased the frequency range over which the circuit will operate without readjustment becomes smaller. It is usually good practice, therefore, to use a couplingcircuit Q just low enough to permit operation, over as much of a band as is normally used for a particular type of communication, without requiring retuning.

Capacitance values for a Q of 2 and line
 to resonance. C_{1} and L_{1} should resonate at the operating frequeney. See table for maximum usable value of C_{1}. If circuit does not resonate with maximum C_{1} or less, iuduetance of L_{1} must be inereased, or added in series at L_{2}.
ary (pick-up coil) circuit is not resonant, the leakage reactance of the pick-up coil will cause some detuning of the amplifier tank circuit. This detuning effect increases with increasing coupling, but is usually not serious. However, the amplifier tuning must be adjusted to resonance, as indicated by the plate-current dip, each time the coupling is changed.

Tuned Coupling

The design difficulties of using "untuned" pick-up coils, mentioned above, can be avoided by using a coupling circuit tuned to the operating frequency. This contributes additional selectivity as well, and hence aids in the suppression of spurious radiations.
If the line is flat the input impedance will he essentially resistive and equal to the Z_{0} of the line. With coaxial cable, which has a Z_{0} of 75 ohms or less, a circuit of reasonable Q can be obtained with practicable values of inductance and capacitance connected in series with the line's input terminals.
Suitable circuits are given in Fig. 6-10 at A and 13 . The values of inductance and capacitance in the coupling circuits are not highly critical, but the L / C ratio must not be too small. The Q of the coupling circuit often may be as low as 2 , without running into difficulty in getting adequate

[^1]impedances of 52 and 75 ohms are given in the accompanying table. These are the maximum values that should be used. The indurtance in the circuit should be adjusted to give resonance at the operating frequency, If the link coil used for a particular band does not have enough inductance to resonate, the additional inductance may be connected in series as shown in Fig. 6-10B.
In practice, the amount of inductance in the circuit should be chosen so that, with somewhat loose coupling between L_{1} and the amplifier tank coil, the amplifier plate current will increase when the variable condenser, C_{1}, is tuned through the value of capacitance given by the table. The coupling between the two coils should then be increased until the amplifier loads normally, without changing the setting of C_{1}. If the transmission line is flat over the entire frequency band under consideration, it should not be necessary to readjust ('1 when changing frequency, if the values given in the table are used. However, it is unlikely that the line actually will be flat over such a range, so some readjustment of C_{1} may be needed to eompensate for changes in the input impedance of the line as the frequency is changed. If the input impedance variations are not large, C, may be used as a loading control, no changes in the roupling between L_{1} and the tank coil being neressary.
The degree of coupling between L_{1} and the amplifier tank coil will depend on the couplingcircuit (? With a (of 2 , the coupling should be tight - comparable with the coupling that is typical of "fixed-link" manufactured coils. With a swinging link it may he necessary to increase the Q of the coupling circuit in order to get sufficient power transfer. This can be done by increasing the L / C ratio.

Pi-Section Output Tank

A pi-section tank circuit may also be used in coupling to a low-impedance transmission line,

Fig. 6-11 - Pi-section output tank circuit.
C_{1} - Input condenser - see text and Fig. 6.9 for capacitance, For voltage rating see Fig. 6-30A.
C_{2} - Output condenser - adjustable to half reactance of line impedance - see text and reactance chart in chapter of misecllaneous data, Voltage rating - receiving spacing good for 1 kw , at 50 or 75 ohms if line is terminated in link, otherwise plate voltage plus 25%.
C_{3} - Heater by-pass - $0.001-\mu \mathrm{fd}$. disk ceramic.
C_{4} - Screen by-pass - see Fig. 6.7.
C_{5} - Plate by-pass - see Fig. 6.7,
C_{6} - Plate blocking condenser- $0.001-\mu \mathrm{fd}$. disk ceramic or mica. Voltage rating same as C_{1}.
$\mathrm{L}_{1}-$ Inductance approx. same as L_{1}. Fig. 6-7.
RFC_{2} - Receiver type.
as shown in Fig. 6-11. The output condenser, C_{2}, should be adjustable to a reactance of about half of the characteristic impedance of the line. C_{1}, the input condenser, and L_{1} should have values approximately the same as used in a conventional tank circuit for a Q of 12 (see Fig. 6-9).

A decrease in the capacitance of C_{2}, or the inductance of L_{1}, will increase the coupling and vice versa. Each time L_{1} or C_{2} is changed, C_{1} must be readjusted for resonance.

The r.f. choke, $R F C_{2}$, across the output condenser, has the effect of removing the d.c. plate voltage from across the input and output tuning condensers. Otherwise a condenser with twice the break-down voltage rating indicated under Fig. 6-11 must be used for C_{1}, and with about 50 per cent greater than the tube plate voltage for C_{2}. The r.f. choke also serves somewhat as a protection against plate voltage appearing on the transmission line should the plate blocking condenser, C_{6} break down, since the choke will usually burn up giving a warning that something is wrong. Since the choke short-circuits the power supply if the blocking condenser breaks down, the use of a fuse of proper rating in the plate-transformer primary is advisable.

Multiband Tank Circuits

Multiband tank circuits provide a convenient means of covering several bands without the need for changing coils. Tuners of this type consist essentially of two tank circuits, tuned simultaneously with a single control. In a tuner designed to cover 80 through 10 meters, each circuit has a sufficiently large capacitance variation to assure an approximately 2 -to- 1 frequeney range. Thus, one circuit is designed so that it covers 3.5 through 7.3 Mc , while the other covers 14 through 29.7 Mc .

A single-ended, or unbalanced, circuit of this type is shown in Fig. 6-12A. In principle, the reactance of the high-frequency coil, L_{2},
is small enough at the lower frequencies so that it can be largely neglected, and C_{1} and C_{2} are in parallel across L_{1}. Then the circuit for low frequencies becomes that shown in Fig. 6-1213. At the high frequencies, the reactance of L_{1} is high, so that it may be considered simply as a choke shunting C_{1}. The high-frequencr circuit is essentially that of Fig. 6-12C, L_{2} being tuned by C_{1} and C_{2} in series.

In practice, the effect of one circuit on the other cannot be neglected entirely. L_{2} tends to increase the effective capacitance of C_{2}, while L_{1} tends to decrease the effective capacitance of C_{1}. This effect, however, is relatively small. Each circuit must cover somewhat more than a 2 -to-1 frequency range to permit staggering the two ranges sufficiently to avoid simultaneous responses to a frequency in the low-frequency range, and one of its harmonics lying in the range of the high-frequency circuit.

In any circuit covering a frequency range as great as 2 to 1 by capacitance alone, the circuit Q must vary rather widely. If the circuit is designed for a Q of 12 at 80 , the Q will be 6 at 40 , 24 at 20,18 at 15 , and 12 at 10 meters. The increase in tank current as a result of the increase in Q toward the low-frequency end of the highfrequency range may make it necessary to design the high-frequency coil with care to minimize loss in this portion of the tuning range. It is generally found desirable to provide separate output coupling coils for each circuit.

Fig. 6-12 - Multiband tuner eircuits. In the unbalanced circuit of A, C_{1} and C_{2} are sections of a single split-stator condenser. In the balanced eircuit of 1 , the two split-stator condensers are ganged to a single control with an insulated shaft coupling between the two. In D, the two sections of L_{2} are wound on the same form, with the inner ends connected to C_{2}. In A, each section of the condenser should have a voltage rating the same as Fig. 6-30A. In 14, C_{1} should have a rating the same as Fig. 6-3011 (or Fig. 6-30F if the feed system corresponds). C C_{2} may have the rating of Fig. 6.30E so long as the rotor is not grounded or by-passed to ground.

Fig. 6-12D shows a similar tank for balanced circuits. The same principles apply.

Series or parallel feed may be used with either balanced or unbalanced circuits. In the balanced circuit of Fig. 6-12D, the series feed point would be at the center of L_{1}, with an r.f. choke in series.
(For further discussion of multiband tuners, see QST, July, 1954.)
R.F. AMPLIFIER-TUBE OPERATION

Driving Power, Efficiency, Dissipation and Power Input

One of the most significant tube ratings is the maximum plate-dissipation rating. This is the power that can be safely dissipated in the tube

Fig. 6-13 - Curves showing the relationship of power output (P_{o}), power input $\left(P_{\mathrm{i}}\right)$, plate dissipation (P_{d}) and efficiency according to class of amplifier tube operation.
as heat. It is the difference between r.f. power output and the d.c. power input to the plate. For a given dissipation rating, the theoretical power output from a tube depends on the efficiency with which it can be made to operate. The P_{o} / P_{d} curve of Fig. 6-13 shows the theoretical power output obtainable at various efficiencies in terms of the plate-dissipation rating. For instance, at an efficiency of 60 per cent, the curve shows that the output will be 1.5 times the dissipation rating, while at an efficiency of 90 per cent a power of 9 times the dissipation rating might be obtained. However, the P_{i} / P_{d} curve shows that the power input at 90 per cent would have to be 10 times the dissipation rating. An input of this magnitude would exceed the power-input rating (plate voltage \times plate current) of the tube, which is based on cathode emission and electrode insulation. Also, referring to Fig. 6-14, it is seen that the higher efficiencies are obtainable only by the use of an inordinate amount of driving power. In other words, the power amplification decreases rapidly. The typical operating conditions given in the tube tables represent a compromise of these factors. Fig. 6-13 shows the usual practi-
cal efficiencies attainable for various classes of tube operation. For instance, at an efficiency of 75 per cent, a Class C amplifier could normally be operated at a power input of 4 times its plate dissipation. A doubler, however, normally operating at about 35 per cent efficiency, could handle an input of only about 1.5 times its dissipation rating. The efficiencies shown for Class B amplifiers are for full excitation and full input.

The figures for driving power listed in the tube tables do not include coupling-circuit losses and to assure adequate excitation, the driver tube should be capable of an output power three or four times the rated driving power of the amplifier. For normal operation, proper excitation is indicated when rated d.c. grid current is obtained at rated bias (see tube tables).

Depending on the material from which the plate is made, the plate will show no color, or varying degrees of redness, when operating at rated dissipation. This can be checked by operating the tube without excitation, but with plate and screen voltages applied, for a period approximating normal operation. Fixed bias should be applied to bring the plate current to some low value at the start. The bias should be gradually reduced until the input to the tube (plate voltage \times plate current in decimal parts of an ampere) equals the rated dissipation. The color of the plate at this input should be noted so that it can be compared with the color showing in normal operation. A brighter color in operation would indicate that the dissipation rating is being exceeded. However, most tubes of recent design do not show color at rated dissipation.

Maximum Grid Current

Maximum grid dissipation usually is expressed in terms of the maximum grid current at which the tube should be operated to prevent damage to the tube. A common result of excessive grid heating is a condition where the grid current gradually falls off. If the bias is supplied

Fig. 6-14 - Curves showing relationship of driving power power amplification and plate-circuit efficiency of an r.f. power-amplifier stage.
largely by grid-leak action, the bias drops and the tube draws excessive plate current. The total effect is one in which the temperature of the tube rapidly rises to the danger point. Sometimes, but not always, the tube will restore itself to normal if all power, exeept filament, is turned off for several minutes. If the overload has been serious or prolonged, with a thoriated-

Bias and Tube Protection

The portion of the excitation cycle over which the amplifier draws plate grid current (operating angle) is governed by applying a negative biasing voltage between grid and cathode. Recommended values will be found in the tube tables. Several methods of obtaining bias are shown in Fig. 6-15. In A, bias is obtained by the voltage drep across

Fig. 6.15-Various systems for ohtaining protective and operating hias for r.f. amplificrs. A - Grid-leak. B - Batgrid leak and voltage-regulated paek. F - Cathode bias.
filament tube, it may be possible to reactivate the filament, as described below, but sometimes the tube will be permanently damaged.

Filament Voltage

The filament voltage for the indirectly-heated cathode-type tubes found in low-power classifications may vary 10 per eent above or below rating without seriously reducing the life of the tube. But the voltage of the higher-power fila-ment-type tubes should be held closely between the rated voltage as a minimum and 5 per cent above rating as a maximum. Make sure that the plate power drawn from the power line does not cause a drop in filament voltage below the proper value when plate power is applied.

Thoriated-type filaments lose emission when the tube is overloaded appreciably. If the overload has not been too prolonged, emission sometimes may be restored by operating the filament at rated voltage with all other voltages removed for a period of 10 minutes, or at 20 per cent above rated voltage for a few minutes.
a resistor in the grid d.c. return circuit when rectified grid current flows. The proper value of resistance may be determined by dividing the required biasing voltage by the d.c. grid current at which the tube will be operated. The tube is biased only when excitation is applied, since the voltage drop across the resistor depends upon grid-current flow. When excitation is removed, the bias falls to zero. At zero bias most tubes draw power far in excess of the plate-dissipation rating. So it is advisable to make provision for protecting the tube when excitation fails by accident, or by intent as it does when a preceding stage in a c.w. transmitter is keved.

If the maximum c.w. ratings shown in the tube tables are to be used, the input should be cut to zero when the key is open. Aside from this, it is not necessary that plate current be cut off completely but only to the point where the rated dissipation is not exceeded. In this case platemodulated 'phone ratings should be used for c.w. operation, however.

This protection can be supplied by obtaining
all bias from a source of fixed voltage, as shown in Fig. 6-15B. It is preferable, however, to use only sufficient fixed bias to protect the tube and obtain the balance needed for operating bias from a grid leak, as indicated in C. The grid-leak resistance in this case is calculated as above, except that the fixed voltage used is subtracted first.

Fixed bias may be obtained from dry batteries or from a power pack (see power-supply chapter). If dry batteries are used, they should be checked periodically, since even though they may show normal or above-normal voltage, they eventually develop a high internal resistance. Grid-current flow through this battery resistance may increase the bias considerably above that anticipated. The life of batteries in bias service will be approximately the same as though they were subject to a drain equal to the grid current, despite the fact that the grid-current flow is in such a direction as to charge the battery, rather than to discharge it.

In Fig. 6-15F, bias is obtained from the voltage drop across a resistor in the cathode (or filament center-tap) lead. Protective bias is obtained by the voltage drop across R_{5} as a result of plate (and screen) current flow. Since plate current must flow to obtain a voltage drop across the resistor, it is obvious that cut-off protective bias cannot be obtained by this system. When excitation is applied, plate (and sereen) corrent increases and the grid current also contributes to the drop across R_{5}, thereby increasing the bias to the operating value. Since the voltage botween plate and: cathode is reduced by the amount of the voltage drop across R_{5}, the over-all supply voltage must be the sum of the plate and operat-ing-bias voltages. For this reason, the use of cathode bias usually is limited to low-voltage tubes when the extra voltage is not difficult to obtain.

The resistance of the cathode biasing resistor R_{5} should be adjusted to the value which will give the correct operating bias voltage with rated grid, plate and screen currents flowing with the amplifier loaded to rated input. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tube, at least for the period of time reguired to remove plate voltage.

A disadvantage of this biasing system is that the cathode r.f. connection to ground depends upon a by-pass condenser. From the consideration of v.h.f. harmonies and stability with highperveance tubes, it is preferable to make the cathorle-to-ground impedance as close to zero as possible.

Protecting Screen-Grid Tubes

Screen-grid tubes eannot be cut off with bias unless the screen is operated from a fixed-voltage supply. In this case the cut-off bias is approximately the screen voltage divided by the amplification factor of the screen. This figure is not always shown in tube-data sheets, but cut-off voltage may be determined from an inspection of tube curves, or by experiment.

When the screen is supplied from a series dropping resistor, the tube can be protected by the use of a screen-clamper tube, as shown in Fig. 6-16. The grid-leak bias of the amplifier tube with excitation is applied also to the grid of the clamper tube. This is usually sufficient to cut off the clamper tube. However, when excitation is

Fig. 6-16 - Screen clamper circuit for protecting screen. grid power tubes. The VR tube is needed only for complete cut -off.
$\mathrm{C}_{1}-0.001-\mu \mathrm{fd}$. disk ceramic. $R_{1}-100$ ohms.
removed, the clamper-tube bias falls to zero and it draws enough current through the screen dropping resistor usually to limit the input to the amplifier to a safe value. If complete screenvoltage cut-off is desired, a VR tube may be inserted in the sereen lead as shown. The VRtube voltage rating should be high enough so that it will extinguish when excitation to the amplifier is removed. One VIR tube should be used for each 40 ma . of screen current, other tubes being added in parallel if needed.

Screen Considerations

Since the power taken by the screen does not contribute to the r.f. output, it is dissipated entirely in heating the screen, so the dissipation can be calculated simply by multiplying the screen voltage by the screen current.

It should be kept in mind that screen current varies widely with both excitation and loading. If the screen is operated from a fixed-voltage source, the tube should never be operated without plate voltage and load, otherwise the screen may be damaged within a short time. Supplying the screen through a series dropping resistor from a higher-voltage source, such as the plate supply. affords a measure of protection, since the resistor causes the screen voltage to drop as the current increases, thereby limiting the power drawn by the screen. However, with a resistor, the screen voltage may vary considerably with excitation, making it necessary to check the voltage at the screen terminal under actual operating conditions to make sure that the screen voltage is normal. Reducing excitation will cause the screen current to drop, increasing the voltage; increasing excitation will have the opposite effect. These changes are in addition to those
caused by changes in bias and plate loading, so if a screen-grid tube is operated from a series resistor or a voltage divider, its voltage should be checked as one of the final adjustments after excitation and loading have been set.

An approximate value of resistance for the screen-voltage dropping resistor may be obtained by dividing the voltage drop required from the supply voltage (difference between the supply voltage and rated screen voltage) by the rated screen current in decimal parts of an ampere. Some further adjustment may be necessary, as mentioned above, so an adjustable resistor with a total resistance above that calculated should be provided.

- FEEDING EXCITATION TO THE GRID

In coupling the grid input circuit of an amplifier to the output circuit of a driving stage the objective is to load the driver plate circuit so that the desired amplifier grid excitation is obtained without exceeding the plate-input ratings of the driver tube.

As explained earlier, the grid of a Class C amplifier must be driven positive in respect to cathode over a portion of the excitation cycle, and rectified grid current flows in the grid-cathode circuit. This represents an average resistance across which the exciting voltage must be developed by the driver stage. In other words, this is the load resistance into which the driver plate circuit must be coupled. The approximate grid input resistance is given by:

$$
\begin{aligned}
& \text { Input impedance }(\mathrm{ohms}) \\
& =\frac{\text { driving power }(\mathrm{watts})}{\text { d.c. grid current }(\mathrm{ma})^{2}} \times 622 \times 10^{3} .
\end{aligned}
$$

For normal operation, the values of driving power and grid current may be taken from the tube tables.

Fig. 6-17 - Coupling excitation to the grid of an r.f. power amplifier by means of a low-impedance coaxial line
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{~L}_{1}, \mathrm{~L}_{3}$ - See corresponding components in Fig. 6-7.
C_{2}-Amplifier grid tank condenser - see text and Fig. 6-18 for capacitance, Fig. 6.31 for voltage rating.
$\mathrm{C}_{4}-0,001-\mu \mathrm{fd}$. disk ceranic.
I. 2 - To resonate at operating frequency with C_{2}. See $L C$ chart in miscellane-ous-data chapter and inductance formula in electrical-laws chapter, or use Alkil. Lightning Calculator.
L_{4} - Reactance equal to line impedance - sce reactance chart in miscel-lancous-data chapter and inductance formula in electrical-laws chapter, or use ARRL Lightning Calculator.
\boldsymbol{R} is used to simulate grid impedance of the amplifier when a low-power s.w.r. indicator, such as a resistance bridge, is used. See formula in text for calculating value. Standing-wave indicator $S \mathscr{} \boldsymbol{R}$ is inserted in line only while
line is made flat.

Since the grid input resistance is a matter of a few thousand ohms, an impedance step-down is necessary if the grid is to be fed from a lowimpedance transmission line. This can be done by the use of a tank as an impedance-transforming device in the grid circuit of the amplifier as shown in Fig. 6-17. This coupling system may be considered either as simply a means of obtaining mutual inductance between the two tank coils, or as a low-impedance transmission line. If the line is longer than a small fraction of a wavelength, and if a s.w.r. bridge is available, the line is more easily handled by adjusting it as a matched transmission line.

Inductive Link Coupling with Flat Line

In adjusting this type of line, the ohject is to make the s.w.r. on the line as low as possible over as wide a band of frequencies as possible so that power can be transferred over this range without retuning. It is assumed that the output coupling considerations discussed earlier have been observed in connection with the driver plate circuit. So far as the amplifier grid circuit is concerned, the controlling factors are the Q of the tuned grid circuit, $L_{2} C_{2}$, (see Fig. 6-18) the inductance of the coupling coil, L_{4}, and the degree of coupling between L_{2} and L_{4}, Variable coupling between the coils is convenient, but not strictly necessary if one or both of the other factors can be varied. An s.w.r. indicator (shown as "SWR" in the drawing) is essential. An indicator such as the "Micromateh" (a commercially a vailable instrument) may be connected as shown and the adjustments made under actual operating conditions; that is, with full power applied to the amplifier grid.

Assuming that the coupling is adjustable, start with a trial position of L_{4} with respect to L_{2}, and adjust C_{2} for the lowest s.w.r. Then change the coupling slightly and repeat. Continue until the s.w.r. is as low as possible; if the circuit constants are in the right region it should not be difficult to get the s.w.r. down to 1 to 1 . The Q of the tuned grid cireuit should be designed to be at least 10, and if it is not possible to get a very low s.w.r. with such a grid circuit the probable reason is that L_{4} is too small. Maximum coupling, for a given degree of physical coupling between the two coils, will oceur when the indurtance of L_{4} is such that its reartance at the operating frequency is equal to the characteristic impedance of the link line. The reactance cun be calculated as described in the chapter on electrical fundamentals if the inductance is known; the inductance can either be calculated from the formula in the same chapter or
measured as described in the chapter on measurements.

Once the s.w.r. has been brought down to 1 to 1, the frequency should be shifted over the band so that the variation in s.w.r. can be observed, without changing C_{1} or the coupling between L_{2} and L_{4}. If the s.w.r. rises rapidly on either side of the original frequency the circuit can be made "flatter" by reducing the Q of the tuned grid circuit. This may be done by decreasing C_{2} and correspondingly increasing L_{2} to maintain resonance, and by tightening the coupling between L_{2} and L_{4}, going through the same adjustment process again. It is possible to set up the system so that the s.w.r. will not exceed 1.5 to 1 over, for example, the entire 7-Mc. band and proportionately on other bands. Under these circumstances a single setting will serve for work anywhere in the band, with essentially constant power transfer from the line to the power-amplifier grids.

If the coupling between L_{2} and L_{4} is not adjustable the same result may be secured by varying the L / C ratio of the tuned grid circuit - that is, by varying its Q. If any difficulty is encountered it can be overcome by changing the number of turns in L_{4} until a match is secured. The two coils should be tightly coupled.

When a resistance-bridge type s.w.r. indicator (see measuring-equipment chapter) is used it is not possible to put the full power through the line when making adjustments. In such case the operating conditions in the amplifier grid circuit

Fig. 6-18 - Chart showing required grid tank capacitance for a Q of 12 . To use, divide the driving power in watts by the square of the d.c. grid current in milliamperes and proceed as described under Fig. 6-9. Driving power and grid current may be taken from the tube tables. When a split-stator condenser is used in a balanced grid circuit, the capacitance of each section may be half that shown by the chart.
can be simulated by using a carbon resistor (1/2 or 1 watt size) of the same value as the calculated amplifier grid impedance, connected as indicated by the arrows in Fig. 6-17. In this case the amplifier tube must be operated "cold" - without filament or heater power. The adjustment process is the same as described above, but with the driver power reduced to a value suitable for operating the s.w.r. bridge.

When the grid coupling system has been adjusted so that the s.w.r. is close to 1 to 1 over the desired frequency range, it is certain that the power put into the link line will be delivered to the grid circuit. Coupling will be facilitated if the line is tuned as described under the earlier section on output coupling systems.

Link Feed with Unmatched Line

When the system is to be treated without regard to transmission-line effects, the link line must not offer appreciable reactance at the operating frequency. Unless the constants happen to tune the link near resonance, any appreciable reactance, inductive or capacitive, will in effect reduce the coupling, making it impossible to transfer sufficient power from the driver to the amplifier grid circuit. Coaxial cables especially have considerable capacitance for even short lengths and for this reason it may be more desirable to use a spaced line, such as Twin-Lead, if the radiation can be tolerated.

The reactance of the line can be nullified only by making the link resonant. This may require changing the number of turns in the link coils, the length of the line, or the insertion of a tuning capacitance. The disadvantages of such a resonant link are obvious. Since the s.w.r. on the link line may be quite high, the line losses increase because of the greater current, the voltage increase may be sufficient to cause a break-down in the insulation of the cable and the added tuned circuit makes adjustment more critical with relatively small changes in frequency.

These troubles may not be encountered if the link line is kept very short for the highest frequency. A length of 5 feet or more may be tolerable at 3.5 Mc ., but a length of a foot at 28 Mc. may be enough to cause serious effects on the functioning of the system.

Adjusting the coupling in such a system depends so much on the dimensions of the link line used that it must necessarily be largely a matter of cut and try. If the line is short enough so as to have negligible reactance, the coupling between the two tank circuits will increase within limits by adding turns to the link coils, maintaining as close as possible equal inductances in each coil, or by coupling the link coils more tightly, if possible, to the tank coils. If it is impossible to change either of these, a variable condenser of $300 \mu \mu \mathrm{fd}$. may be connected in series with or in parallel with the link coil at the driver end of the line, depending upon which connection is the most effective. If coaxial line is used, the condenser should be connected in series with the inner conductor, If the line is long enough to

Fig. 6.19 - Capacitive-coupled amplifiers. A - Simple capacitive coupling. B-1'i-section coupling.
C_{1} - Driver plate tank condenser - see text and Fig. 6.7 for eapacitance, Fig. 6-30 for voltage rating.
C_{2} - Coupling condenser - 50 to $150 \mu \mu \mathrm{fd}$. mica, as necessary for desired coupling. Voltage rating sum of driver plate and amplifier biasing voltages, plus safety fartor.
C_{3} - Driver plate hy-pass condenser - $0.001-\mu \mathrm{fd}$. disk ceramic or mica. Voltage rating same as plate voltage, plus safety factor.
C_{4} - Grid by-pass - 0.001 - $\mu \mathrm{fd}$. disk ceramic.
C_{5} - Heater by-pass - 0.001 - ff . disk ceramic.
Co - Driver plate blocking condenser $-\mathbf{0 . 0 0 1}-\mu \mathrm{fd}$. disk ceramic or mica. Voltage rating same as C_{2}.
C_{7} - Pi -section input condenser - see text and Fig. 6.9 for capacitance. Voltage rating - see Fig. 6.30A.
$\mathrm{C}_{8}-\mathrm{l}^{\prime} \mathrm{i}$-section output condenser - $\mathbf{1 0 0} . \mu \mu \mathrm{fl}$. mica. Voltage rating same as driver plate voltage plus safety factor.
L_{1} - 'To resonate at operating frequency with Ci_{1}. See L. C chart in miscellaneous-data chapter and inductance formula in electrical-laws chapter, or use ARRL. Lightning Calculator.

RFC_{1} - Grid r.f. choke $-2.5-\mathrm{mh}$. Current rating minimum of arid-current to be expreted.
RFC_{2} - Driver plate r.f. choke -2.5 mh . Current rating minimum of plate eurrent expected.
have appreciable reactance, the variable condenser is used to resonate the entire link circuit. As mentioned previously, the size of the link coils and the length of the line, as well as the size of the condenser, will affect the resonant frequency and it may take an adjustment of all three before the condenser will show a pronounced effect on the coupling. When the system has been made resonant, coupling may be adjusted by varying the link condenser.

Simple Capacitive Interstage Coupling

The capacitive system of Fig. 6-19A is the simplest of all coupling systems. (Soe Fig. 6-8 for filament-type tubes.) In this circuit, the plate tank circuit of the driver, $C_{1} L_{1}$, serves also as the grid tank of the amplifier, Although it is used
more frequently than any other system, it is less flexible and has certain limitations that must be taken into consideration.

The two stages cannot be separated physically any appreciable distance without involving loss in transferred power, radiation from the coupling lead and the danger of feed-back from this lead. Since both the output capacitance of the driver tube and the input capacitance of the amplifier are across the single circuit, it is sometimes difficult to obtain a tank circuit with a sufficiently low Q to provide an efficient circuit at the higher frequencies. The coupling can be varied by altering the capacitance of the coupling condenser, C_{2}, but no impedance transforming is possible. The driver load impedance is the sum of the amplifier grid resistance and the reactance of the coupling condenser in series, the coupling condenser serving simply as a series reactor. Driver load resistance increases with a decrease in the capacitance of the coupling condenser.

When the amplifier grid impedance is lower than the optimum load resistance for the driver, a transforming action is possible by tapping the grid down on the tank coil, but this is not recommended because it invariably causes an increase in v.h.f. harmonies and sometimes sets up a parasitic circuit.
So far as coupling is concerned, the Q of the circuit is of little significance. llowever, the other considerations discussed earlier in connection with tankcircuit (Q should be observed.

Pi-Section Tank as Interstage Coupler

A pi-section tank circuit, as shown in Fig. 6-1913, may be used as a coupling deviere between screen-grid amplifier stages. The circuit is actually a capacitive coupling arrangement with the grid of the amplifier tapped down on the circuit by means of a capacitive divider. In contrast to the tapped-coil method mentioned previously, this system will be very effective in reducing v.h.f. harmonics, because the output condenser, C_{8}, provides a direct capacitive shunt for harmonics across the amplifier grid circuit.
To be most effective in reducing v.h.f. harmonies, C_{8} should be a mica condenser connected directly across the tube-socket terminals. Tapping down on the circuit in this manner also helps to stabilize the amplifier at the operating frequency because of the grid-circuit loading provided by C_{8}. For the purposes both of stability and harmonic reduction, experience has shown that a value of $100 \mu \mu \mathrm{fd}$. for C_{8} usually is sufficient. In general, C_{7} and L_{2} should have values approximating the capacitance and in-
ductance used in a conventional tank circuit. A reduction in the inductance of L_{2} results in an increase in coupling because C_{7} must be increased to retune the circuit to resonance. This changes the ratio of C_{7} to C_{8} and has the effect of moving the grid tap up on the circuit. Since the coupling to the grid is comparatively loose under any condition, it may be found that it is impossible to utilize the full power capability of the driver stage. If sufficient excitation cannot be ob)tained, it may be necessary to raise the plate voltage of the driver, if this is permissible. Otherwise a larger driver tube may be required. As shown in lig. 6-1913, parallel driver plate feed and amplifier grid feed are necessary.

- STABILIZING AMPLIFIERS

External Coupling

A straight amplifier operates with its input and output circuits tuned to the same frequency. Therefore, unless the coupling between these two circuits is brought to the necessary minimum. the amplifier will oscillate as a tuned-plate tuned-grid circuit. Care should the used in arranging components and wiring of the two circuits so that there will he negligible opportunity for coupling external to the tube itself. Complete shielding between input and output circuits usually is required. All r.f. leads should the kept as short as possible and particular attention should be paid to the r.f. return paths from plate and grid tank circuits to cathode. In general, the best arrangement is one in which the cathode (or filament center tap) connection to ground, and the plate tank circuit are on the same side of the chassis or other shiclding. Then the "hot" lead from the grid tank (or driver plate tank) should be brought to the socket through a hole in the shielding. Then when the grid tank condenser, or by-pass is grounded, a return path through the hole to cathode will be encouraged, since transmissionline characteristics are simulated.

A check on external coupling between input and output circuits can be made with a sensitive indicating deviec, such as the one diagrammed in Fig. 6-20. The amplifier tube is removed from its socket and if the plate terminal is

Fig. 6-20-Circuit of sensitive neutralizing indicator. Xtal is a 1 N 34 crystal detector, M. 4 a $0-1$ direct-current milliammeter and $\mathrm{Ca} 0.001-\mu \mathrm{fl}$, mica by-pass condenser.
at the socket, it should be disconnected. With the driver stage running and tuned to resonance, the indicator should be coupled to the output tank coil and the output tank condenser tuned for any indication of r.f. feed-through. Experiment with shielding and rearrangement of parts will show whether the isolation can be improved.

Neutralizing Circuits

The plate-grid capacitance of screen-grid tubes is refluced to a fraction of a micro-microfarad by the interposed grounded screen. Nevertheless, the power sensitivity of these tubes is so great that only a very small amount of feed-back is

Fig. 6 -21 - Sereen-grid nentralizing circuits. A - In. ductive neutralizing. $13-\mathrm{C} \rightarrow$ Caparitive neutralizing.
C_{1} - Grid by-plass condenser - approx. 0.001- $\mu \mathrm{fd}$. mira. Voltage rating same as biasing voltage in B, same as driver plate voltage in C.
C_{2} - Veutratizing condenser-approx. 2 to $10 \mu \mu \mathrm{dd}$. - see text. Voitage rating same as amplifier plate voltage for c.w., twice this value for plate modulation.
$\mathrm{I}_{1}, \mathrm{I}_{2}$ - Veutralizing link - usually a turn or two will he sufficient.
necessary to start oscillation. To assure a stable amplifier, it is usually necessary to load the grid circuit, or to use a neutralizing circuit. A neutralizing circuit is one external to the tube that balances the voltage fed back through the grid-plate capacitance, by another voltage of opposite phase.

Fig. 6-21A shows how a screen-grid am-
plifier may be neutralized by the use of an inductive link line coupling the input and output tank circuits in proper phase. The two coils must be properly polarized. If the initial connection proves to be incorrect, connections to one of the link coils should be reversed. Neutralizing is adjusted by changing the distance between the link coils and the tank coils. In the case of capacitive coupling, one of the link coils will be coupled to the plate tank coil of the driver stage.

A capacitive neutralizing system for screengrid tubes is shown in Fig. 6-2113. (' 2 is the neutralizing condenser. The capacitance should be chosen so that at some adjustment of C_{2}, the ratio of C_{2} to C_{1} equals the ratio of the tube grid-plate capacitance to the grid-cathode capacitance. If C_{1} is $0.001 \mu \mathrm{fd}$., then

$$
C_{2}=\frac{1000 C_{\mathrm{gp}}}{C_{\mathrm{gk}}}
$$

The grid-cathode caparitance must include all strays directly across the tube caparitance, including the capacitance of the tuning-condenser stator to ground. This may amount to 5 to 20 $\mu \mu \mathrm{fd}$. In the case of capacitance coupling, as shown in Fig. 6-21C, the output caparitance of the driver tube must be added to the gridcathode capacitance of the amplifier in arriving at the value of C_{2}. If C_{2} works out to an impractically large or small value, (Cican be changed to compensate by using combinations of fixed mica condensers in parallel.

Neutralizing Adjustment

The procedure in neutralizing is essentially the same for all types of tuber and circuits. The filament of the amplifier tube should be lighted and excitation from the preceding stage fed to the grid circuit. There should be no plate voltage applied to the amplifier.

The immediate objective of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output circuit through the grid-plate capacitance of the tube. This is done by adjusting carefully, bit by bit, the neutralizing condenser or link coils until an r.f. indicator in the output circuit reads minimum.

The device shown in Fig. 6-20 makes a sensitive neutralizing indicator. The link should be coupled to the output tank coil at the low-potential or "ground" point. Care should be taken to make sure that the coupling is loose enough at all times to prevent burning out the meter or the rectifier. The plate tank condenser should be readjusted for maximum reading after each change in neutralizing.

A simple indicator is a flashlight bulb (the lower the power the more sensitive) connected at the center of a turn or two of wire coupled to the tank coil at the low-potential point. llowever, its sensitivity is poor compared with the milliam-meter-rectifier.

The grid-current meter may also be used as a neutralizing indicator. If the amplifier is not neutralized, there will be a large dip in grid
current as the plate-tank tuning passes through resonance. This dip reduces as neutralization is approached until at exact neutralization all change in grid current should disappear.

When neutralizing an amplifier of medium or high power, it may not be possible to bring the reading of the rectifier indicator down to zero, but a minimum point in the adjustment of the neutralizing control should be found where higher readings are obtained on either side.

Grid Loading

The use of a neutralizing circuit may often be avoided by loading the grid circuit if the driving stage has some power capability to spare. Loading by tapping the grid down on the grid tank coil (or the plate tank coil of the driver in the case of capacitive coupling), or by a resistor from grid to cathode is effective in stabilizing an amplifier, but either device may increase v.h.f. harmonies. The best loading system is the use of a pi-section filter, as shown in Fig. 6-19B. This circuit plares a capacitance directly between grid and cathode. This not only provides the desirable loading, tut also a very effective capacitive short for v.h.f. harmonics. A $100-\mu \mu \mathrm{fd}$. mica condenser for C_{8}, wired dirertly between tube terminals will usually provide sufficient loading.

V.H.F. Parasitic Oscillation

Unless steps are taken to prevent it, parasitic oscillation in the v.h.f, range will take place in almost every r.f. power amplifier. To test for v.h.f. parasitic oscillation, the 28 -Mc. tank coil shonld lo plugged into the grid tank circuit (or the plate tank circuit of the driver stage if capacitive roupling is used) and the $3.5-$ Me. coil in the plate tank circuit. This is to prevent any possible t.g.t.p. oscillation at the operating frequency which might lead to confusion in identifying the parasitic. Any fixed bias should be replaced with a grid leak of 10,000 to 20,000 ohms. In a capaci-tive-roupled stage, the driver should be coupled in the normal way, but all load on the output of the amplifior should be disconnected. If the stage is an intermediate amplifier, the tube in the following stage should remain in place, but with its filament turned off. Plate and screen voltage should be reduced to the point where the rated dissipation is not exceeded. If a Variac is not available, voltage may be reduced by a 115 -volt electric lamp in series with the primary of the phate transformer, A 150 -watt size is about right for a medium-power transmitter.

With power applied only to the amplifier under test (not the driver), a careful search should be made by adjusting the input tank condenser to several settings, especially including minimum and maximum, and turning the plate tank condenser through its range for each of the grid-condenser settings. Any grid-current, or any dip or slight flicker in plate current at any point, indicates oscillation. This can be confirmed by an indieating absorption wavemeter (see measurements chapter) tuned to the frequency of the para-
sitie and held close to the plate lead of the tube.
The heavy lines of Fig. 6 -22A show the usual parasitic tank circuit, which resonates, in most cases, between 150 and 200 Mc . For each type of tetrode, there is a region, usually above the parasitic frequency, in which the tube will be selfneutralized. Therefore, a v.h.f. parasitic oscillation may be suppressed by adding sufficient inductance, L_{p}, to tune the circuit into this region. However, to avoid TVI, the self-neutralizing fre-

Fip. 6-22 - A - Usual parasitic circuit. B - Resistive loading of parasitic circuit. C-Inductive coupling of loading resistance into parasitic circuit.
quency must not be above 100 Mc ., preferably 120 Mc . When it is lower, the circuit must be limited to 100 or 120 Mc . and the parasitic suppressed by loading the circuit with resistance, R_{p}. A coil of 4 or 5 turns, $1 / 4$ inch in diameter, is a good starting size. With the tank condenser turned to maximum capacitance, the circuit should be checked with a g.d.o. to make sure the resonance is above 100 Mc . Then, with the shortest possible leads, a noninductive 100 -ohm 1 -watt resistor should be connected across the entire coil. The amplifier should be tuned up to its highest-frequency band and operated at low voltage. The tap should be moved a little at a time to find the minimum number of turns required to suppress the parasitic. Then voltage should be increased until the resistor begins to feel warm after several minutes of operation, and the power input noted. This input should be compared with the normal input and the power rating of the resistor increased by this proportion: i.e., if the power is half normal, the wattage rating should be doubled. This increase is best made by connereting 1 -watt carbon resistors in parallel to give a resultant of about 100 ohms. As power input is increased, the parasitic may start up again, so power should be applied only momentarily until it is made certain that the parasitic is still suppressed. If the parasitic starts up again when voltage is raised, the tap must be moved to include more turns. So long as the parasitic is suppressed, the resistors will heat up only from the operatingfrequency current.

Since the resistor can be placed across only that portion of the parasitic cireuit represented by L_{p},
the latter should form as large a portion of the circuit as possible. Therefore, the tank and bypass condensers should have the lowest possible inductance and the leads shown in heavy lines should be as short as possible and of the heaviest practical conductor. This will permit L_{p} to be of maximum size without tuning the circuit below the $100-\mathrm{Mc}$. limit.

Another arrangement that has been used successfully is shown in Fig. 6-22C. A small turn or two is inserted in place of L_{p} and this is coupled to a circuit tuned to the parasitic frequency and loaded with resistance. The heavy-line circuit should first be checked with a g.d.o. Then the louded circuit should be tuned to the same frequency and coupled in to the point where the parasitic ceases. The two coils can be wound on the same form and the coupling varied by sliding one of them. Slight retuning of the loaded circuit may be required after coupling. Start out with low power as before, until the parasitic is suppressed. Sinee the loaded circuit in this case carries much less operating-frequency current, a single 100 -ohm 1 -watt resistor will often be sufficient and a $30-\mu \mu \mathrm{fd}$. mica trimmer should serve as the tuning condenser, C_{p}.

Low-Frequency Parasitic Oscillation

The screening of most transmitting screen-grid tubes is sufficient to prevent low-frequency parasitic oscillation caused by resonant circuits set up by r.f. chokes in grid and plate circuits. Should this type of oscillation (usually between 1200 and 200 kc .) occur, see section under triode amplifiers.

PARALLEL-TUBE AMPLIFIERS

The circuits for parallel-tube amplifiers are the same as for a single tube, similar terminals of the tubes being connected together. The grid impedance of two tubes in parallel is half that of a single tube. This means that twice the grid tank caparitance shown in Fig. 6-18 should be used for the same (2 . The plate load resistance is halved so that the plate tank condenser capacitance for a single tube (Fig. 6-9) also should be doubled. The total grid current will be doubled, so to maintain the same grid bias, the grid-leak resistance should be half that used for a single tube. The required driving power is doubled. The cat pacitance of a neutralizing condenser, if used, should be doubled and the value of the sereen dropping resistor should be eut in half. In treating parasitic oseillation, it may be necessary to use chokes in each plate and grid lead, rather than one in the common leads. Input and output capacitances are doubled, which may be a factor in efficient operation at higher frequencies.

PUSH-PULL AMPLIFIERS

Circuits for push-pull amplifiers are shown in Fig. 6-2:3. With this arrangement both gridinput impedance and optimum plate load resistance are doubled. For the same Q, each section of the split-stator tank condensers should

(B)

Fig, 6-23 - Push-pull screen-grid amplifier circuits.
A - Inductive-link coupling. B - Capacitive coupling.
C_{1} - Split-stator grid tank condenser - sec text and Fig. 6-18 for capacitanec, Fig. 6-31 for voltage rating.
C_{2} - Split-stator plate tank condenser - see text and Fig. 6.9 for capacitance Fig. 6.30 for voltage rating.
C_{3} - Grid by-pass condenser - $0.001-\mu \mathrm{fl}$. disk ceramic.
$\mathrm{C}_{4}, \mathrm{C}_{5}$-Filament by-pass - $0.001-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{C}_{6}, \mathrm{C}_{7}$ - Screen by-pass - $0.001-\mu \mathrm{fl}$. disk ceramic or mica. Voltage rating depends on maximum voltage to which screen may soar, depending on how
C_{8} - Plate hy-pass - $0.001-\mu \mathrm{fl}$. disk ceramic or mira. Yoltage rating same as late by-pass - $0.001-\mu \mathrm{fd}$. disk ceramic or mira. Voltage rating same as
plate voltage for c .w.; twice this value for plate modulation, plas safety
factor.
$\mathrm{C}_{9}-1$ Driver plate tank condenser - see section on simple capacitive coupling with single tube. Fior same o, each section should have half the capang tance shown in Fig. 6.9. Voltage rating of each section should be twice
d.c. plate voltage of driver. d.c. plate voltage of driver.
$\mathrm{C}_{10}, \mathrm{C}_{11}$ - Coupling condenser - $\mathbf{5 0}$. to $150-\mu \mu \mathrm{fd}$. mica. Voltage rating twice driver plate voltage.

C_{13} - See text.
$\mathrm{L}_{1}, \mathrm{~L}_{2}$ - To resonate at opcrating frequency. See $L C$ chart in miscellaneous-data chapter and inductance formula in electrical-laws chapter, or use ARRL
Lightning Calculator.
$\mathrm{L}_{3} \mathrm{I}_{4}$ - Coupling links - reartance cqual to ferd-line impedance. See reactance chart in miscellaneous-data chapter and inductance formula in electrical.
laws chapter.
IA, I. 5 - Neutralizing links - usually a turn or two will be sufficient.
$\mathrm{RFC}_{1}-2.5$-mh. r.f. choke, to carry grid current.
$\mathrm{RFC} 2-2.5-\mathrm{mh}$. r.f. chohe to carry plate current.
have half the capacitance for a single tube drawing the same total plate current and having the same grid impedance shown by Figs. 6-9 and 6-18. This means that the total tankcircuit caparitance is onequarter that for a single tube and that the inductances of the tank coils must he quadrupled to resonate at the same frequency. Other values remain the same, except that the total grid, screen and plate currents will be twice the values for a single tube and the stage will require twice the driving power.

In Fig. 6-23A, inductive link coupling is shown. The neutralizing circuit is shown in heavy lines and may not be necessary. Fig. 6-23B shows capacitive coupling to the grids. The driver in this case must be provided with a balanced output circuit. To maintain balanced excitation, it may be necessare to place C_{13}, shown in dashed lines, across the lower portion of the circuit to balance the driver-tube output capacitance across the upper half. The remainder of circuit B is the sanme as A. If a neutratizing link is nerded, it should be coupled at the renter of the driver plate tank coil.

It is advisable to use separate sereen and heater by-pass condensers, especially when TVI is a factor. Fig. (6-24 shows equivalent "cathode" connections to be substituted When filament-type tubes are used. Also, İndividual v.h.f. parasitic chokes will be necessary.

Balance in Push-Pull Amplifiers

Proper push-pull operation requires an accurate balance between the two sides of the circuit. Otherwise the dissipation will not be distributed evenly between the two tubes, one being overloaded if an attempt is made to oper-
ate the amplifier at full rating. Unbalance is indicated when the grid and/or plate currents are not equal and, if serious, is accompanied by a visible difference in the color of the tube plates. If interchanging the tubes does not change the unbalance, the circuit is not symmetrical electrically.

If the eoil center-tap in split-stator tank cir-

Fig. 6-24 - Connections for tuhes in push-pull when fila-ment-types are used. The by-pasis condensers, Ci, slould be $0.001-\mu \mathrm{fd}$. disk ceramic, one placed close to each tilament terminal. T_{1} is the filament transformer.
cuis is sufficiently woll-isolated from ground, the balance will depend upon the accuracy of capacitance balance in the tank condensers, the length of leads connecting the tubes to the condenser (including the return lead from rotor to filament) and the settings of the nentralizing condensers. Unbalance in the plate circuit will seldom influener the halanee in the grid circuit, hut the opposite may not be true. Lengthening one or the other of the leads between the tubes and the tank condenser will alter the balance, particularly in the plate circuit. In extremes it may lie neressary to place a trimmer across one section of the split-stator condenser. Small differences often may be taken care of by a readjustment of the neutralizing condensers, possibly to slightly unequal settings. Otherwise, the neutralizing condensers are adjusted together, keeping the capacitances as equal as possible at each step.

FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stage if the output circuit is tuned to a harmonic of the exciting frequency instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Mc ., output at 7 Mc ., 10.5 Mc., 14 Mc., etc., may be obtained by tuning the plate tank circuit to one of these frequencies. The circuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions
may require change for maximum multiplier efficiency.

Efficiency in a single- or parallel-tube multiplier comparable with the efficiency obtainable when operating the same tube as a straight amplifier involves decreasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifier involves greatly increasing the plate voltage. A practical limit as to efficiency and output within normal tube ratings is reached when the multiplier is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be reduced as necessary to limit the dissipation to the rated value by increasing the bias. High efficiency in multipliers is not often required in practice, since the purpose is usually served if the frequency multiplication is obtained without an appreciable gain in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Mc . from a lower-frequency crystal, but in the majority of lower-frequency transmitters, multiplication in a single stage is limited to a factor of two or three, because of the rapid decline in practicably obtainable efficiency as the multiplication factor is increased. Screen-grid tubes make the best frequency multipliers because their high power-sensitivity makes them easior to drive properly than triodes.

Since the input and output circuits are not tuned close to the same frequency, neutralization usually will not he required. Instances may be encountered with tubes of high transconductance, however, when a doubler will oscillate in t.g.t.p. fashion, requiring the introduction of neutralization. The link neutralizing system of Fig. 6-21 A is convenient in such a contingency.

Push-Pull Multiplier

A single- or parallel-tube multiplier will deliver output at either even or odd multiples of the exciting frequency. A push-pull multiplier

Fig. 6.25 - Circuit of a push-push frequency multiplier for even harmonics.
$\mathrm{C}_{1} \mathrm{I}_{1}$ and $\mathrm{C}_{2} \mathrm{I} .2$ - See text.
(${ }_{3}$ - Plate by-pass - $\mathbf{0 . 0 0 1 - \mu \mathrm { fl } \text { . disk ceramic or mica. }}$ Voltage rating equal to plate voltage phas safety factor.
R FC - 2.5-mh. r.f. ehoke.

Fig. 6-26 - Triode amplifier circuits. A - Link coupling, single tube, B - Capacitive coupling, singe tube. C - link coupling, push-pull. I) - Capacitive coupling, push-pull. Aside from the neutralizing circuits, which are mandatory with triodes, the circuits are the same as for screen-grid tubes, and should have the same values ahrough out. The neutralizing condenser, C_{i}, should have a capacitance somewhat greater than the grid-plate capacitance of the tube. Voltage rating should be twise the d.s. plate voltage for c.w., or four times for plate modulation, plus safety factor. The resistance R_{1} should he at least 100 olums and it may consist of part or preferably all of the grid leak. For other component values, see similar screen-grid diagrams.
does not work satisfactorily at even multiples because even harmonics are largely canceled in the output. On the other hand, amplifiers of this type work well as triplers or at other odd harmonics. The operating requirements are similar to those for single-tube multipliers.

Push-Push Multipliers

A two-tube circuit which works well at even harmonics, but not at the fundamental or odd harmonics, is shown in Fig. 6-25. It is known as the push-push circuit. The grids are connected in push-pull while the plates are connected in parallel. The efficiency of a doubler using this circuit may approach that of a straight amplifier under similar operating conditions, hecause there is a plate-current pulse for each cycle of the output frequency.

This arrangement has an advantage in some applications. If the heater of one of the tubes is turned off, making the tube inoperative, its grid-plate capacitance, being the same as that of the remaining tube, serves to neutralize the circuit. Thus provision is made for either straight amplification at the fundamental with a single tube, or doubling frequency with two tubes as desired.
The grid tank circuit is tuned to the frequency of the driving stage and should have the same
constants as the grid tank circuit of a push-pull amplifier (see Fig. 6-23). The plate tank circuit is tuned to an even multiple of the exciting frequency, usually the second harmonic, and should have the same values as a straight amplifier for the harmonic frequency (see Fig. 6-9), bearing in mind that the total plate current of both tubes determines the C to be used.

- TRIODE AMPLIFIERS

Circuits for triode amplifiers are shown in Fig. 6-26. Neglecting references to the screen, all of the foregoing information applies equally well to triodes. All triode st raight amplifiers must be neutralized, as Fig 6-26 indicates. From the tuthe tahles, it will be seen that triodes require considerably more driving power than screengrid tubes. However, they also have less power sensitivity, so that greater feed-back can be tolerated without the danger of instability.

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and plate circuits of a triode amplifier, the splitstator tank condensers combine with the r.f. chokes to form a low-frequency parasitic circuit, unless the amplifier circuit is arranged to prevent it. In the circuit of Fig. 6-26B, the amplifier grid is series fed and the driver plate is parallel-fed.

For low frequencies, the r.f. choke in the driver plate circuit is shorted to ground through the tank coil. In Figs. 6-26C and D, a resistor is substituted for the grid r.f. choke. This resistance should be at least 100 ohms. If any grid-leak resistance is used for biasing, it should be substituted for the 100 -ohm resistor.

TUNING A TRANSMITTER

Fig. 6-27 shows where milliammeters and voltmeters may be connected to obtain desired readings. Metering of all stages is usually not necessary except for initial adjustments. After preceding stages have been adjusted for proper operating conditions, a transmitter can often be tuned up using only grid- and plate-current milliammeters in the final-amplifier circuit.

While cathode metering often is used for reasons of safety to the operator and meter insulation, it is frequently difficult to interpret readings that are the resultant of three currents, one of which may be falling while the other two are increasing. Fig. 6-28 shows a commonly-used system for switching a single meter to read current in any of several different circuits. The resistors, R, are connected in the various circuits in place of the milliammeters shown in Fig. 6-27. Since the resistance of R is several times the internal resistance of the milliammeter, it will have no practical effect upon the reading of the meter.

When the meter must read currents of widely differing values, a meter with a range sufficiently low to accommodate the lowest values of current to be measured may be selected. In the circuits in which the current will be aloove the scale of the meter, the resistance of R can be adjusted to a lower value which will give the meter reading a multiplying factor. (See chapter on measurements.) Care should be taken to observe proper polarity in making the connertions between the resistors and the switch.

The first step in adjusting each stage is to wheck for parasitic oscillation as discussed earlier. The second step is to adjust neutralizing, if required.

While it is usually possible to make all initial tuning adjustments of lowpower stages with plate voltage applied, it is preferable to disconnect the plate voltage until adjustments of excitation have been made. Starting with the oscillator, its output tank circuit should be resonated as indicated by a dip in the plate-current reading (see Fig. 6-3), or by a maximum reading of grid current to the following stage if it is coupled capacitively. Both readings should occur simultaneously. The frequency of the oscillator output should be checked with an absorption wave-
meter to make sure that it is tuned to the desired hand. If transmission-line coupling is used, the coupling to the grid of the amplifier should first be adjusted for minimum standing-wave ratio as described earlier. After this adjustment, the coupling at the oscillator end of the line only should be altered. If the amplifier grid current is much above rated value, the coupling to the oscillator should be reduced. Conversely, if the amplifier grid current is low, coupling should be increased. As the coupling is increased, the oscillator should draw more plate current and the dip at resonance should become less pronounced, as indicated in lig. 6-3. If it is possible to increase the coupling to the point where the oscillator plate current is up to the rated value and yet the required grid current is not up to rated value, the biasing voltage should be measured with a high-resistance $(20,000$ ohms per volt) voltmeter. If the stage has a simple biasing resistor from grid to ground, connect a $2.5-\mathrm{mh}$. r. f. choke in series with the voltmeter prod going to the grid. The bias should be measured with the stage operating under excitation. If the biasing voltage measures too high, any fixed bias should be reduced and then, if necessary, the grid-leak resistance. If the driver is operating up to rated plate current and rated

Fig. 6-27 - Diagrams showing placement of voltmeter and milliammeter to obtain desired measurements. A - Series grid feed. parallel plate feed and series screen voltage-dropping resistor. B - Parallel grid feed, series plate feed aod screen voltage divider.
grid current cannot be obtained with the required bias, the indication is that the screen and/or plate voltage of the oscillator must be raised if this can be done with safety to the oscillator tube. llowever, it should be borne in mind

Fig. 6-28 - Method of switching a single milliammeter. lhe resistors, R, should be 10 to 20 times the internal resistance of the meter; 47 ohms will usually be satisfactory. S_{1} is a 2 -section rotary switeh. Its insulation should be ceramic for high voltages, and an insulating coupling should always be used between shaft and control knob.
that even if an intermediate stage is underdriven, it still may furnish the required driving power for the following stage. Therefore, it is, of course, advisable to check this before making any drastic changes in the oscillator.

The same process is followed in tuning up following amplifier stages, step by step. If there is any difficulty in obtaining the desired excitation to any particular stage, be sure that the screen voltage of the driver stage is up to normal as discussed earlier in the section on screen-grid considerations. If the excitation is adjusted first without plate and screen voltages it may be found that the grid current will change when these voltages are applied and the stage is loaded. It is normal for grid current to drop somewhat when these voltages are applied and still further when the load is coupled, especially with triodes. When this occurs, excitation should be increased, to bring the grid current back to rated value.

If grid eurrent inereases when the plate tank circuit is tuned slightly to the high-frequency side of resonance, this indicates regeneration. In the final amplifier, especially if it is to be modulated, this is a condition to be avoided by better shielding or more accurate neutralization.

The main objective in the end, of course, is to obtain adequate excitation to the final amplifier and, in general, any adjustment of earlier stages that will produce this result without overloading anywhere along the line will be satisfactory. In conservative design, the full power capability
of the exciter stages may not be needed. In the interests of v.h.f. harmonic reduction, it is desirable to provide an excitation control so that the excitation to the final amplifier can be limited to that necessary for satisfactory operation. This can be in the form of a potentiometer control of the screen voltage of the first stage after the oscillator. Then reduction in screen voltage of this stage will reduce excitation all along the line, which is desirable.

MEASURING POWER OUTPUT

The power output of any transmitter stage can be checked with reasonable accuracy by simply coupling an ordinary lamp to the output tank circuit and comparing its brilliance with that of another lamp of the same size operating from a.c. Since it is difficult to judge power accurately when the lamp is over or under normal brilliance, the lamp selected should have a wattage rating as close as possible to that expected from the amplifier. Flashlight bulbs can be used for low power. At frequencies above 7 Mc . sufficient coupling usually is obtained by connecting the lamp in series with a few turns of wire that can be slipped over or inside the tank coil, as shown in

Fig. 6.29 - Using a lamp bulb for an approximate check on the output of an oscillator or amplifier. The compling should be adjusted to make the stage draw rated plate current when tuned to resonance. Special caution should be used in tapping the lamp directly on the coil when series plate feed is used. Aluays turn off the power before making a change in the tap.
Fig. 6-29A. But at 3.5 and 7 Me., it is usually necessary to tap the bulb directly across a portion of the tank coil, as shown at 13. WARNING! Turn off the high roltage when tapping a series-fed tank circuit. The coupling should be adjusted until the plate current at resonance is the rated loaded value for the tube. A more accurate dummy load is described in QST T for March, 1951.

COMPONENT RATINGS AND INSTALLATION

Plate Tank-Condenser Voltage

In selecting a tank condenser with a spacing between plates sufficient to prevent voltage breakdown, the peak r.f. voltage across a tank circuit under load, but without modulation, may be taken conservatively as equal to the d.c. plate voltage. If the d.c. plate voltage also appears across the tank condenser, this must be added to the peak r.f. voltage, making the
total peak voltage twice the d.c. plate voltage. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.c. plate voltage, because both d.c. and r.f. voltages double with 100 -per-cent plate modulation. At the higher plate voltages, it is desirable to choose a tank circuit in which the d.c. and modulation voltages do not appear across the tank condenser, to permit the use of a smaller condenser with less plate spacing. Fig. 6-30 shows the peak voltage, in terms of d.c. plate voltage, to be experted across the tank condenser in various circuit arrangements. These peak-voltage values are given assuming that the amplifier is loaded to rated plate current. Without load, the peak r.f. voltage will run much higher. Since a c.w. transmitter may be operated without load while adjustments are being made, although a modulated a mplifier never should be operated without load, it is sometimes considered logical to select a condenser for a c.w. transmitter with a peak-voltage rating equal to that required for a 'phone transmitter of the same power. However, if minimum cost and space are considerations, a condenser with half the spacing required for 'phone operation can be used in a c.w. transmitter for the same carrier output, as indicated under Fig. 6-30, if power is reduced temporarily while tuning up without load.

In the circuits of Fig. 6-30C, I) and E the rotors are deliberately connected to the positive side of the high-voltage supply, eliminating any difference in d.c. potential between the rotors and stators.

The plate spacing to be used for a given peak voltage will depend upon the design of the variable condenser, influencing factors being the mechanical construction of the unit, the dielectric used and its placement in respect to intense fields, and the condenserplate shape and degree of polish. Condenser manufacturers usually rate their products in terms of the peak voltage between plates.
llate tank condensers should be mounted as close to the tube as temperature considerations will permit to make possible the shortest capacitive path from plate to rathode. Especially at the higher freguencies where minimum circuit capacitance becomes important, the condenser should be mounted with its stator

(A)

(D)

(G)
plates well spaced from the chassis or other shielding. In circuits where the rotor must be insulated from ground, the condenser should be mounted on ceramic insulators of size commensurate with the plate voltage involved and most important of all, from the viewpoint of safety to the operator - a well-insulated coupling should be used between the condenser shaft and the dial. The section of the shaft attached to the dial should be well grounded. This can be done conveniently through the use of panel shaftbearing units.

Grid Tank Condensers

In the circuit of Fig. 6-31, the grid tank condenser should have a voltage rating approximately equal to the biasing voltage plus 20 per cent of the plate voltage. In the balanced circuit of 13 , the voltage rating of each section of the condenser should be this same value.

The grid tank condenser is preferably mounted with shielding between it and the tube socket for isolation purposes. It should, however, be mounted close to the socket so that a short lead can be passed through a hole to the socket. The rotor ground lead or by-pass lead should be rum directly to the nearest point on the chassis or other shielding. In the circuit of Fig. 6-31A, the same insulating precautions mentioned in connertion with the plate tank condenser should be used.

Plate Tank Coils

The inductance of a manufactured coil usually is based upon the highest plate-voltage/ plate-current ratio likely to be used at the

(B)

(F)

Fig. 6-30-1 Diagrams showing the peak voltage for which the plate tank condenser should the rated for c.w. operation with various circuit arrangements. E is efual to the d.c. plate voltage. The values should be doubled for plate modulation. The circuit is assumed to be fully loaded. Circuits A, C and E require that the tank condenser be insulated from chassis or ground, and from the control.
maximum power level for which the coil is designed. Therefore in the majority of cases, the capacitance shown by Figs. 6-9 and 6-18 will be greater than that for which the coil is designed and turns must be removed if a Q of 12 or more is needed. At 28 Mc., and sometimes 14 Mc., the value of capacitance shown by the chart for a

(A)

Fig. 6.31 - The voltage rating of the grid tank condenser in A should be equal to the biasing voltage plas about 20 per cent of the plate voltage. I'his same rating should be applied to each section of the split-stator condenser in 13.
high plate-voltage/plate-current ratio may be lower than that attainable in practice with the components available. The design of manufactured coils usually takes this into consideration also and it may be found that values of caparitance greater than those shown (if stray capacitance is ineluded) are required to tune these coils to the band.

Manufactured coils are rated according to the plate-power input to the tube or tubes when the stage is loaded. Since the cireulating tank curront is much greater when the amplifier is unloaded, care should be taken to operate the amplifier conservatively when unloaded to prevent damage to the coil as a result of excessive heating.

Tank coils should be mounted at least their diameter away from shielding to prevent a marked loss in Q. Except perhaps at 28 Mc., it is not important that the coil be mounted quite close to the tank condenser. Leads up to 6 or 8 inches are permissible. It is more important to keep the tank condenser as well as other components out of the immediate field of the eoil. For this reason, it is preferable to mount the coil so that its axis is parallel to the condenser shaft, either alongside the condenser or above it.

Plate-Blocking and By-Pass Condensers

Plate-blocking condensers should have low inductance; therefore condensers of the mica type are preferred. For frequencies hetween 3.5 and 30 Mc ., a capacitance of $0.001 \mu \mathrm{fd}$. is commonly used. The voltage rating should be 25 to 50 per cent above the plate-supply voltage.

Wherever their voltage rating will permit (500 volts), $0.001-\mu \mathrm{fd}$. disk ceramic condensers should be used as by-passes, since, when applied correctly (see TVI chapter), they are series resonant in the TV range and therefore are an important measure in filtering power-supply leads. For higher voltages, use $0.001-\mu \mathrm{fd}$. mica by-passes.

R. F. Chokes

The characteristics of any r.f. choke will vary with frequency, from characteristics resembling those of a parallel-resonant circuit, of high impedance, to those of a series-resonant circuit, where the impedance is lowest. In hetween these extremes, the choke will show varying amounts of inductive or capacitive reactance.

In series-feed circuits, these characteristies are of relatively small importance because, in a correctly-operating circuit, the r.f. voltage across the choke is negligible. In a parallelfeed circuit, however, the choke is shunted across the tank circuit, and is subject to the full tank r.f. voltage. If the choke does not present a sufficiently high impedance, enough power will be absorbed by the choke to cause it to burn out. With chokes of the usual type, wound with small wire for compactness, a relatively small amount of power loss in the choke will cause excessive heating.

To avoid this, the choke must have a sufficiently high reactance to be effective at the lowest frequency, and yet have no series resonances near the higher-frequency bands. This is not difficult to accomplish for a frequency range of 2 to 1 or less. But the design of a choke that meets requirements over a range as wide as 3.5 to 30 Mc. at the higher voltages is quite critical.

Universal pie-wound chokes of the "receiver" type (2.5 mh ., 125 ma .) are usually satisfactory if the plate voltage does not exceed 500 . The same is true of most of the commereial "transmitting" type chokes of similar design. provided that the plate voltage does not exeed 1000 to 1500 volts. For higher voltages, a single-layer solenoid-type choke of correct design has been found satisfactory. The National type 1R-175.1 is a representative manufactured type. An example of a satisfactory homemale choke for voltages up to at least 3000 consists of 112 turns of No. 26 wire, spaced to a length of $37 / 8$ inches on a 1 -inch ceramic form (Centralah stand-off insulator, type N:3022II). A ceramic form is advisable from the consideration of temperature. This choke has only one series resonance (near 24 Mc.), and exhibits an equivalent parallel resistance of 0.25 megohm or more in all of the amateur bands from 80 through 10 meters.

Since the characteristics of a choke will be affected by any motal in its field, resonances should be checked with the choke mounted in the position in which it is to be used, or in a temporary set-up simulating the same conditions. The plate end of the choke should not be connected, but the power-supply end should be connected directly, or by-passed, to the chassis. The g.d.o. should be coupled to the ground end of the choke as possible. Series resonances, indicating the frequencies of greatest loss, should be checked with the choke short-circuited with a short piece of wire. Parallel resonances, indicating frequencies of least loss are checked with the short removed.
(For further discussion of r.f. chokes, see $Q S T$, May, 1954.)

A One-Tube Two-Band Transmitter for the Novice

Figs. 6-32, 6-33, and 6-34 show the details of a low-power crystal-oseillator transmitter covering the 3.5 - and 7 -Me. bands. It is complete with power supply, and an output circuit that will feed directly into a simple antenna without the need for an antenna tuner. The circuit diagram appears in Fig. 6-33. A 6.AC7 pentode is used in an owillator of the grid-plate type. The output circuit, consisting of C_{10}, C_{11} and L_{1}, is in the form of a pi-section network that will couple into a wire of random length. The eircuit is keyed in the cathode circuit.
J_{1} is an octal tube socket that is used as a combination crystal socket and key jack. R_{1} is the grid leak. C_{1} and C_{2} are excitation-control condensers. $R F C_{1}$ is necessary to prevent shortcircuiting C_{2} for r.f. when the key is closed. R_{2} is the screen voltage-dropping resistor that reduces the voltage to the screen. $R F C_{2}$ is the plate feed choke. Plate current is measured by the milliammeter, $M A_{1} . C_{7}$ is the plate blocking condenser, and C_{3}, C_{5} and (C6 are by-pass condensers.
The power supply is a simple one delivering about 350 volts. The smonthing filter, consisting of C_{8}^{\prime}, C_{9} and L_{2}, is of the condenser-input trpe. R_{3} is the bleeder resistor. S_{1} turns the power supply on and off.

Construction

The parts are assembled on a $7 \times 12 \times 3$-inch aluminum chassis. In the placement of parts in the transmitter, the power-supply section is kept in a line at the back of the chassis. The r.f. components are mounted toward the front of the chassis. As can be seen in the photographs, there are three octal sockets - one for the 5y:3 rectifier, one for the 6. Ci^{-}oseillator, and the third which is used as a crystal sorket and key jack.

With the exception of the three sockets and
the meter, all the mounting holes can be made with an ordinary hand drill. For the socket holes, one can purchase, or borrow, a socket punch. The meter hole can be started with the socket punch and then enlarged with a half-round or rattail file. The variahle condensers are mounted directly against the under side of the chassis. In placing them, be sure that their shafts extend far enough out from the front of the chassis to accommodate the tuning knohs. These condensers are of the broadeast-receiver replacement type, and can be purchased locally, or from one of the large mailorder houses. They are usually listed as singlegang midget t.r.f. condensers and have a maximum caparitance of more than $300 \mu \mu \mathrm{f}$.

The power transformer is mounted in such a manner that the high-voltage leads and the 5 -volt rectifier leads are brought out at a point closest to the 5 Y 3 rectifier socket. A three-terminal tie point is mounted close to the transformer 115volt leads to furnish terminals for the power switch and transformer leads. After the sockets, a.c. switch, meter, and feed-through bushings for holding L_{1} are all mounted in place, the wiring can be started.

Wiring

Connect the two 115 -volt transformer primary leads (hlack), each to one of the tie points. Then also comnect one of the power-cord wires to one of these tie points, and one terminal of the power switch, S_{1}, to the other. Connect the remaining side of S_{1}, and the remaining power-cord wire to the third tie point. Fasten one of the 6.3 -volt transformer leads (green) to a soldering lug under the tie-point mounting serew. The remaining $6.3-$ volt transformer wire (green) is connected to t'in 7 on the 6.1 (i7 socket.

For the high-voltage wiring, the center-tap

Fig. 6-32- liop view of the Novice 2-hand transmitter. If at the top right-hand side is shown in the 80 -meter position. "The shorting dip, is clipped to the feed-through bushing. The lead to the key is a short picce of 300 oohn 'Twindead which is termi. nated in a lillen 300 orhm plug. This type of pluy is the correct size for octal socket Pins 2 and 4.

Fig. 6.33-Circnit diagram of the heginner's transmilter.

wire of the high-voltage secondary (red and yellow) is connected to ground, one of the highvoltage leads (red) is connerted to Pin 4 of the 5 Y:3 socket, while the other red lead goos to Pin 6. ()ne of the 5 -volt rectifier-filament leads (yellow) is connereded to Pin 8 of the 5 Y 3 socket, and the other yellow lead is run to Pin 2. Also connected to Pin 2 of the 5 Y 3 sooket is a lead from the rhoke, L_{2}, and the lead marked + from C8. The other side of (C , or the negative side, is grounderd. The remaining lead of L_{2}, the plus side of C_{9}, and a lead from R_{3}, are all run to a terminal on a tir point. The negative side of C_{9} and the other lead from R_{3} are grounded. This eompletes the power-supply wiring.

Pins 1, 2, and 3 of the $6 \mathrm{AC}^{7}$ socket are connected togother with a bare wire and the wire run to ground. Also, one side of C_{2} must be grounded, so it can be connerted to one of these pins. The other side of ('2 is run to l'in 5. A lead to $R P C_{1}$ is also connerted to Pin 5. One side of C_{1}, one side of R_{1}, and a lead to l'in 8 of J_{1} are all soldered to l'in 4 of the 6AG7 socket. The other side of R_{1} is grounded, while the remaining side of (1 goes to Pin 5 . Pins 4 and 6 of the crystal socket are also grounded. The remaining side of $R F C_{1}$ is connected to Pin 2 of J_{1}. Also connerted to I'in 2 is one side of C_{3}. The other side of C_{3} is grounded.

The screen resistor, R_{2}, is connected between the $\mathrm{B}+\left(+\right.$ terminal of $\left.\mathrm{C}_{9}\right)$ terminal and l'in 6 of the 6A(i7 socket. Also conneeted to Pin 6 is one side of C_{5}. The other side of C_{5} is grounded. A lead is connected between the $B+$ terminal and the + side of the meter. The other terminal of the meter is connected to one side of $R F P(2$. Also connerted to this point on $R F C_{2}$ is one side? of ('6, the other side of C_{6} being grounded. The remaining side of $R F C_{2}$ is connected to Pin 8 of the 6A(i7 socket and (' 7 is conneeted between this side of $R F C_{2}$ and the stator section of C_{10} is also connected to the nearest of the two feedthrough bushings holding L_{1}. The stator of C_{11} is connected to the other feed-through bushing, and a lead is run from this bushing to the trans-
mitter output terminal mounted on the back side of the chassis. This should complete all wiring below the chassis.

Coil

As shown in the parts list, L_{1} is a Barker \& Williamson stock No. 3016 eoil with 13 turns removed from each end. For 40-meter operation, it is necessary to short out a large part of the coil. This is accomplished by use of a short clip lead. One end of the lead is connected along with one end of L_{1} to the output bushing (the one connected to C_{11}). The other end of L_{1} is soldered to the input bushing. To operate on 40 moters, it is necossary to attach the clip to the 30th turn of L_{1}, from the input side. In order not to short out the 29th and 31st turns, they can be bent in toward the axis of the coil.

Testing

An 80-meter crystal between 3700 and 3750 ke. will be needed for 80 -meter operation. For 40meter work, one between 3588 and 3508 ke . will be required. (The erystal frequeney is doubled for 7-Mc. operation.)

In tuning up on 80 meters, insert the crystal in Pins 6 and 8 of the octal socket. The key leads are inserted in Pins 2 and 4. A 115 -volt 10- or 15watt light bulb will serve as an artificial load for testing purposes. Connect the bulb to tha output of the rig by soldering a piece of wire to the eenter terminal in the base of the bull, and one to the serew shell portion. One of the wires is then connected to the output terminal of the transmitter and the other to the chassis. The 115 -volt a.e. switch is turned on and the tubes allowed a minute or so to warm up. After the rig has been on for a minute, close the key. Tune the station receiver to the crystal frequency and the fransmitter's signal shoukd be heard. The input condenser, (${ }^{10}$, is slowly tuned through its range. Two things should happen - the dummy load lamp should light and the meter should show a dip, or lower reading, at the point where the bulb lights. Also, the signal should be louder at this point. Now
tune the output condenser, C_{11}, across its range and the bulb, should brighten at one point, and the signal get louder in the receiver. Also, the meter should show a greater reading than before. switching bark and forth between the two condensers, always tune for maximum brilliance in the bulb.

Antenna

An antemna may now be substituted for the lamp. The type of output vireuit used in the rig will load with almost any length of wire. However, it will load with a 3 bo-foot length of wire on both 80 and 40 meters a great deal casier than with some lengths. One end of the wire should be comerted to the output terminal and the other end suspended on an insulator attached to a cord or rope stung from the highest available support. (See the antemat chapter for methods of bringing the wire in to the transmitter.)

Output Indicator

The transmitter can be tuned up by the meter, but sometimes a beginner may become confused trying to interpret the readings he gets. I simple device to show that the antemat is taking power consists of two pieces of wire, about two feet long, and a 2 -volt 0.(H)-ampere flashlight bult), either No. 48 or 49. The bulb is connected between the two pieces of wire, one lead to the tip of the bull, base and the other lead to the shell of the base, making at four-foot length of wire with the bull, in the center. One end of this wire is connected to the output terminal, while the other end is clipped on the antemma, three or four feret up. Scrape the wire at this point if it is insulated. When the transmitter is turned on and the condensers are tuned, a point will le reached in the tuning where the bull, will glow, or light up. Tune the condensers for maximum brilliance in the bulb; this is an indication that maximum power is going into the antemat.

Forty-moter tune-up procedure is the same as

Shopping List for Novice Transmitter
$22-\mu \mu \mathrm{f}$. mica condenser.
$220-\mu \mu$. mica condenser.
$40.001-\mu \mathrm{f}$. disk ceramic condensers.
28- 4 . 500 -volt midget electrolytic condensers.
67,000-ohm resistor, $1 / 2$ watt.
$22,000-\mathrm{ohm}$ resist or, 1 watt.
0.1 -megohm resistor, 2 watts
$221 / 2-m h$. r.f. chokes (National R100S or Millen 31102).

2 variable condensers (midget type t.r.f. one-gang broadcast receiver replacement).
70 turns of No. 24 wire, 1 -ineh diam., $21 / 4$ inches long (B \& W 3016 with 13 turns removed from each end).
8-hy. 40-ma, filter choke (Thordarson T20C52).
Power transformer: $350-0-350$ volts r.m.s., 70 ma.; 5v., 2 amp.; 6.3 v., $21 / 2$ amp. (Thordarson T'S-2 1R02).
3 octal sockets.
Single-pole single-throw togele switch.
2 feed-through insulators (National 'I'l'B).
Tijp jack (Amphenol type 7818).
2 three-point terminal strips.
0-50 or 0-100 d.c. milliammeter (Shurite).
Aluminum chassis 3 by 7 by 12 inches.
6 feet of hook-up wire.
G.A(i7 tube.

5:3 tulue.
6 solder luas.
$186-32 \times 1 / 2$-inch nuts, holts, and washers.
Two thning knobs to fit $1 / 4$-ineh shaft.
('rystal.
for 80 with the exception of using the correct crystal, and shorting out the section of L_{1}. IRemember to listen on the rereiver when tuning up) the transmitter on 40 or 80 . When tuning up on 40, the signal should be definitely louder on 40 than on 80 meters, and viee versa for 80 -meter tunc-up.

When the oscillator is fully loaded and tuned to rewonanee, the plate current should run lectween 20 and 30 ma., representing a power input of 7 to 10 watts.
(This unit originally described in the November, 195:3, issue of QSTY.)

Fig. 6-34-13ottom view of the Novice one-tube transmitter showing the wiring of parts. 'Ihe power supply romponents are mounted along the back side while the r.f. sicetion runs along the front. I'he ousput lead from the feedthrough hushing is elearly visible on the right-hand side. The only openings at the bach are the output terminal and the 115-volt a.c. leads.

A Sweep-Tube Transmitter for 3.5 and 7 Mc .

Figs. 6-35 through 6-38 show a low-power transmitter using a single TV-receiver sweep-tuhe triode. It will deliver an output of about 10 watts on 80 or 40 meters. Power supply and antenna tuner are included.

As shown by Fig. 6-37, the oscillator utilizes one section of a $6 \mathrm{BL} 7 . J_{1}$ is the keying jack, and

also serves as the oscillator metering jack. The plate tank, $C_{2} L_{1}$, covers the frequeney range of 3.75 to 9.2 Mc .

Plate voltage for the oscillator is held to approximately 200 volts by a series-dropping resistor, R_{2}, and output from the stage is capacitycoupled to the final through C_{6}.

The amplifier employs grid-leak bias, has a split-stator plate circuit, and is neutralized by
means of capacitor $C_{7} . J_{2}$ is the metering jack and S_{1} is the plate-voltage on-off switch. With excitation available and with S_{1} open, a meter plugged into J_{2} will register amplifier grid current. When the switeh is closed, the meter will indicate the combined plate and grid currents. Output from the amplifier is link-coupled to

> Fig. $6-35-$ The sweep-tube trans. mitter is loused in a hinged cover metal ealinet. 'lhe knols across the bottom of the 7×10-inel panel, from left to right, control the oscillator, amplifier and the antenna coupler. S is located directly above J_{1} and to the left of the panel indicator, S_{2} is mounted above the amplifier metering jack, J_{2}.
the antenna tuner, $C_{13} L_{4}$. The tuner components have been wired to feed-through bushings and the antenna feeder terminals in a mamer which permits adjustment of the $L C$ ratio for either series or parallel tuning. An accompanying chart lists the jumper connections which should be used for setting up the tuner circuit.

The power supply employs a condenser-input filter and delivers approximately 330 volts when

Fig. 6.36 - This interior view hhows the antenna coil centered at the left edge of the $2 \times 7 \times$ 9 -inch aluminum chassis. Five feed-through bushings for the antenna circuit are located to the right of the coil and the feeder terminals are at the rear of the base. l-2, the oscillator tube, and the erystal are at the front right-land section of the ehassis and the 51 30'T is on the center line just to the left of the power transformer. A thoinch hole, equipped with a rubber grommet, to the front of T_{1}, provides through-chassis elcarance for a neutralizing tool. The a.c. input conncetor is located on the rear wall of the chassis.

loaded by the transmitter. S_{2} is the on-off switch for the supply.

Construction

Three photographs of the transmitter show how the components are laid out on the chassis and the panel. The jacks, switches, and the panel indicator are the only parts actually mounted on the panel of the Bud type C-993 cabinet. Tuning capacitors for the oscillator and the amplifier are mounted on the front wall of the chassis and C_{13} of the coupler is mounted on small pillars at the right side (rear view) of the base. ('13 must be insulated from ground. An insulated shaft coupling between the capacitor and a panel bearing assembly are provided. Quarter-inch metal pillars space the panel and base at either end of the unit. Three-cighths-inch holes are drilled in the panel for the tuning shafts of the three caparitors, and $11 / 8$-inch openings are punched in the front wall of the chassis to provide elearance for the panel-mounted jacks.

No. 16 tinned is used for the r.f. wiring, and Belden shielded wire No. 8885 is used for the leads running to the switches and the pilot lamp. The strip of flashing copper that supports the neutralizing condenser, C_{7}, is $1 / 2$-ineh wide at one end and tapers down to $1 / 8$ inch at the tube socket end. C_{7} is mounted in a $1 / 4$-inch hole, drilled at the wide end of the strip.

The three jumpers for the antenna circuit are made with ordinary hook-up wire and Millen type 36021 grid connectors. The holes in the connectors must be enlarged by reaming so that they will fit over the small National type TI'IB polystyrene bushings that serve as Terminals 1 through 5 of Fig. 6-37.

Testing

A 15 -watt lamp bulb equipped with short wire leads, a (0-100-ma. meter, a key and a voltmeter should be available for testing the transmitter. The first test is made with the key plugged into J_{1}, with S_{1} set at the open position and with the

Fig. 6.37-Circuit of the sweep-tube transmitter. 'l'he oscillator and amplifier sec. tions of the circuit are oper. ated at the crystal frequency.
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{Cs}_{8} \mathrm{C}_{2}-\mathbf{0 . 0 0 5}-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{C}_{2}-140 \cdot \mu \mu \mathrm{fd}$. varialle (1lammarlumd 1IF-140).

$\mathrm{C}_{6}-15-\mu \mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{7}-1-8-\mu \mu \mathrm{fd}$. tubular trimmer (Erie 532-10).
$\mathrm{C}_{9}, \mathrm{C}_{13}-100$ - μ ufd. -per-section variable (Bud I.C.1663)
$\mathrm{C}_{14}, \mathrm{C}_{15}-8$ - $\mu \mathrm{fd}$. 450 -volt electrolytic (Sprague TVA1704).
$\mathrm{R}_{1}-68,(000$ ohms, $1 / 2$ watt.
$1 \mathrm{R}_{2}-10,000$ ohms, 5 watts.
R_{3} - $10,0 \mathrm{OH}$ ohms, $1 / 2$ watt.
R_{4} - 50,000 ohms, 10 watts.
L_{1} - 33 turns No. $24,3 / 4$-inch dianı, $1^{1} \mathfrak{z}_{2}$ inehes long
(B \& Q Miniductor No. 3012).
$\mathrm{L}_{2}-3.5$ Mc. $-40 \mu \mathrm{~h} .-46$ turns No. $24,11 / 4$-inch diam., $11 / 2$ inches long, center-tapped (B \& W $80.1(\mathrm{CL})$.
7 Mc. -14μ h. -26 turns No. 22, $11 / 4$-inch diam., $11 / 2$ inches long, center-tapped (B \& 40NICL).

L3 - 3.5 and 7 Mc. - Each 3 turns No. 18, wound with turns spaced wire diam., over center of I.2.
$L_{4}-3.5 \mathrm{Mc} .-37 \mu \mathrm{~h} .-38$ turns No . $16,13 / 4$-inch diam., $27 / 10$ inches long. Wound in 2 scctions with 316 -inch space at center for $L_{5}(13 \& W 80 J V L)$. 7 Mc. - $12.8 \mu \mathrm{~h}$. -22 turns No. $16,13 / 4$-inch diam., 25 伯 inches long. 2 sections with 3 隹- oinch space at center for L_{5} ($\mathrm{B} \& \mathbb{4} \mathbf{4 0 J Y L}$).
L5 - 3.5 and 7 Me. - Each 3 turns No. 16, $13 / 4$-inch diam., turns spaced wire diam.
$\mathrm{L}_{6}-8$. henry $\mathbf{i 5}$-ma. filter choke (Stancor C 1355).
$I_{1}-6.3$.volt pancl-indicator assembly.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Closed-circuit jacks.
R $\mathrm{FC}_{1}, \mathrm{RFC}_{2}-1$-mh. r.f. choke (National R-50).
$\mathrm{HFC}_{3}-2.5$-mh. r.f. choke (National R-100S).
$\mathrm{S}_{1}, \mathrm{~S}_{2}-\mathrm{S} . \mathrm{p} .8 . \mathrm{t}$. toggle switch.
T_{1} - Power transformer: 310 volts r.m.s. cach side of center tap, 70 ma.; 5 volts, 2 amp.; 6.3 volts, 2.5 amp . (Stancor PC8408).

Antenna-Coupler Connection Chart			
	Jumper Conneclions		
Tuning	Low-C	Med.-C	/Iigh-C
I'arallel	$\begin{aligned} & 1-5 \\ & 2-3 \end{aligned}$	$\begin{aligned} & 1-5 \\ & 3-4 \end{aligned}$	$\begin{aligned} & 1-5 \\ & 2-5 \\ & 3-4 \end{aligned}$
Series	1-2	1-4	$\begin{aligned} & 1-4 \\ & 2-5 \end{aligned}$

voltmeter connected across R_{4}. The supply output should exceed $4(0)$ volts when S_{2} is closed.

Next, turn off the supply and insert a 3.5 -. We. crystal in the holder and a $3.5-\mathrm{Mc}$, coil in the amplifier. The meter should be plugged into J_{2} and S_{1} must be open for the time being. Now, turn on the power, close the key and tune the oscillator plate capacitor, C_{2}, for an amplifier grid current of approximately 10 ma. If the crystal kicks out as the maximum capacitance of C_{2} is reached, the plate tank is tuned too close to the crystal frequency and it is necessary to retune to the high frequency side of resonance. Make certain that the oscillator is not tuned for maximum output inasmuch as this results in excessive crystal current. If the meter is transferred to J_{1}, it should show a cathode current of 30 ma .

The next step is that of neutralizing the amplifier. Start with C_{6} set for minimum capacitance (slug all the way out) and then increase the eapacitance until the amplifier plate condenser, ('g, can be swung through resonance without afferting the amplifier grid current. S_{1} must be open during this adjustment.

If the lamp is to be used as the test load, conneet it to the antema terminals and basert the 7-Me, coil in the coupler. Start the loading adjustments with very loose coupling between L_{4} and L_{5} and with the oscillator adjusted for an amplifier grid current of 5 or 6 ma. Now, close S_{1} and tune C_{9} for resonance. The amplifier cathode current should be approximately 25 ma . with the stage lightly loaded and may be increased to 55 or 60 ma. by inereasing the coupling between L_{4} and L_{5} and by adjustment of C_{13}. As the loading is increased, make certain that the amplifier and the tuner are kept at resonance by retuning both (' 9 and ('13.

With the amplifier fully loaded, the power supply output voltage will drop to approximately 325 volts and, as a result, the cathode current for the oscillator section of the 6B1, 7 will be lower than that recorded earlier. About 15 ma . is correet for the oseillator and this current may he cheeked by inserting the meter plug into J. Of course, with the amplifier in operation, it is necessary to subtract the amplifier cathode current from the reading registered at J_{1} in order to determine the true oscilator drain.

The set-up for testing the transmitter at 7 Me . is identical to that used at the lower frequency except for the antenna coupler connertions. At 7 Me., the bulb loads best with the coupler circuit adjusted for low-C operation. One precaution must be observed with the 7 -Mc. erystal in use. Always start the oscillator adjustment with the tank capacitor, (${ }_{2}$, set for minimum capacitance and then tune for an amplifier grid current of not more than 5 or 6 ma .

For adjustment of the coupler for a particular antenna, see the transmission-line chapter.
(Original description, (QST, April, 1953.)

Fig. 6.38-Bottom view showing L_{1} and $R E C_{2}$ mounted on tie-point strips to the left and the rear of the GlBL. 7 tule socket, respertively. $R P^{\prime} l_{1}$ is parallel with the left wall of the chassis and $R F\left({ }^{3}\right.$ stands up to the left of $C_{9} . R_{2}$ and R_{4} are in front of L_{6} and the filter capacitors at the rear of the chassis. The neutralizing capacitor, (i, is supported liy the rear stator terminal of C_{9} and by a strip of flashing copper which also serves as the ca-pacitor-to-grid lead. Holes, $11 / 8$ inches in diameter, punched in the chassis just helow the conters of C and C_{13}, provide clearance for the coil-socket wiring.

A Beginner's 35-Watt Transmitter

Figs. 6-39 through 6-41 illustrate a 35 -watt two-stage transmitter for the 40 - and 80 -meter bands. The neressary power supply is included. The circuit is shown in Fig. 6-39, , λ (6 A (is Pierce crystal oscillator operating at 3.5 Me. drives a $61^{\circ} 6$, either as a straight amplifier on 80, or as a doubler to 40 meters. $R F C_{1}$ is resonant at about 5 Mr . - sufficiently close to either band to provide the required drive to the amplifier, yet far enough removed to prevent oscillation in the GLA stage. The output tank circuit, $\mathrm{C}_{9} L_{1}$, hats sufficient tuning range to indude both bands without changing roils: the socket and plug-in form are merely a convenient means of mounting the coil. The output link is designed to feed an antenna tuncr through a coax line. Both stages have parallel plate feed, and are keved simultaneously in the cathode cireuit. I_{1} is a dial lamp, used here as a tuning indicator. If desired, it mase be replaced with a $150-\mathrm{ma}$. d.e. milliammeter, either mounted on a bracket on top of the ehassis, or set in the front edge.

With the components sperifiod, the power supply should deliver a voltage of $3 \overline{5} 0$ or more under load. A condenser-input filter is usod. (Although a metal-can dual filter condenser, mounted on top of the chassis, is shown, card-
board tubular condensers, mounted under the chassis may be substituted if desired.)

Wiring

Details of construction are covered in the photographs and their eaptions.

The power supply is wired first, using insulated tie points as junctions wherever a transformer of filter-condenser will not conveniently reach a desired terminal. (All power wiring should be kept close against the chassis, while r.f. wiring should be spaced well away from the chassis.)

lin 8 of the filti and lin 5 of the 6A(i5 are wired together and C_{2} and C_{6} are installed. A lead is then run from lin 5 of the $6.1\left(i \sigma^{-}\right.$to the koy jack and C_{14} is installed across the key jack, keeping the leads of (14 ans shot as possible. This completes the eathode keying circuit.

The square condenser appearing over the 6A(ia socket is ('3 and is connerted between Pin 6 and ground. R_{2}, the sereen dropping resistor, is conneded from Pin 6 to the tie point between the tubes. The $13+$ lead is run to this tie point, and both R_{2} and R_{4} are tied to it. $R F C_{1}$ goes from l'in 8 of the 6.10 is to the tie proint of the $13+$ lead. The condenser below $R F C_{2}$ is C_{8} - it is con-

Fig. 6-39-Cirenit diagram of the Novice 35-watt transmitter
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}-0,015-\mu \mathrm{fd}$. 500-volt disk-type ceramic (Sprague).
$\mathrm{C}_{3}, \mathrm{C}_{4}-100 \mathrm{H}_{-\mu \mu \mathrm{fd} \text {. nica. }}$
$\mathrm{C}_{9}-2.35-\mu \mu \mathrm{fd}$. variahle (Bud $\left.\mathrm{MC}-18.5 \%\right)$.
C_{10} C:11-10- Cf . 450-wolt ehectrolytic (see text).
$\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}-0.001-\mu \mathrm{fd}$. 500 -volt disk-type ceramic (Sprague) (sere text).
R_{1} - $5(3,0100$ ohms, $1 / 2$ watt.
$\mathrm{I}_{2}-22,000$ ohms, 1 watt.
$\mathrm{R}_{3}-18,000$ ohms, I watt.
$\mathrm{R}_{4}-18,000$ ohms, 1 watt.
$R_{5}-50,000$ olims, 10 watts.
$\mathrm{L}_{1}-3 . \overline{5}-7.0 \mathrm{M}$. - 15 turns No. 18 enamel, $11 / 2$-ineh diam. close-wound (National XR-4 coil form).
I. 2 - 5 -turn link No. 18 enambl, rlose-woumd helow tank coil L_{1}.
I_{3} - Wilter choke, 10.5 henrys, 110 mas, 220 ohms

I_{1} - No. ti pilot-famp bull, 6-8 volts, 250 ma., Hue brad.
J_{1} - (:losed-circuit jack.
J_{2} - (Gar connector, chassis-monnting type.
1RFC: 100- μ h, r.f. choke (1 illon 34300).

S_{1}-Sp.s.t. toggele switch.
I_{1} - Jower transformer, $3 \overline{3} 0$ wolts r.m.s. earh side of center, 120 ma.; 6.3 volts, 4.7 amp.; 5 volts, 3 amp. (Merit P-2953).

Fig, 6-f0-The aluminum classis is $7 \times 12 \times 3$ inches. l'ower-supply components are atong the rear edye, while the reystal sochet, GAB; , 61.0. I_{1} and the shieded woil are in line at the front, Centered along the frome edge are the key jatk, power switch and the ningle tuning control. All suchets are submumted. 'lise rortifier and the roil take 1 -prong wowhets: the two tubes takn ontal sook. cts. Tha cail shield is IC I type 15:9. The sulvitution of an upright transfurmer will avoid ciltting a large hale in the chasais.
nectod from lin 3 of the blif to a tie point and then to the stator of 'rg. The link output terminats on the coil sorket are conmered to the coax connecter with a short length of coax cable. The v.h.f. filter condensers, C_{12} and ' '13, are at the power conmector with leads as short as possilhe.

Testing

The transmitter may be tested by commeting a 25 -watt clectric bulf between the conter contact of the coax connector and chassis. When the power is turned on, and the key closed, the indicator lamp, I_{1}, shouhl light up brightly. Then,

\qquad
starting at maximum capacitance, slowly adjust the tuning condenser, toward minimum capacibance until the indicator lamp dims. This is resonanow at 80 meters, and the 25 -watt lamp should light up as the indicator lamp dins. Further rearljust ment of the tuning condenser toward minimum capacitance should show a serond resonance point, this time at 40 moters, and the $2 \overline{5}-$ wat lamp should light again.

Information on the construction and adjustment of antenna couphers will be found in the chapter on tramsmission lines. The til. j maty be loaded up to a maximum of 100 mat. plate current.

Fip, o-f - The a.e. power connector and eoux routput connertor are at the rear. 'The filter choke, Lis, is fastened against the rear of the ehassis. I'he ehohe to the rear of the power swith is $R F^{\prime} \mathrm{C}_{2}$. 'The taning condenser is in the upper right.

A Novice Transmitter for 7 and 21 Mc.

The transmitter shown in Figs. 6-42 through (6-46, designed primarily for the Novice, oprates on the 40 - and 15 -meter bands. The transmitter will work into a half-wave $\overline{7}-\mathrm{Mc}$ antenna fed with coaxial line on either 7 or 21 Mc. Normal power input is about 40 watts.

The Circuit

The circuit diagram of the transmitter is shown in Fig. 6-42. A 6CL6 grid-plate type oscillator drives a 6BQ6-GA amplifier. Fither 80 - or $40-$ meter crystals can be used in the oscillator. If $3.5-\mathrm{Mc}$. crystals are used for $21-\mathrm{Mc}$. operation, the oscillator output will be on 7 Mc . and the amplifier must triple in frequency to give output in the 21-Mc. band.

To change bands from 7 to 21 Me., turns on the oscillator plate coil and the amplifier plate coil are shorted out by small jumper plugs.

The double-pole double-throw toggle switch, S_{1}, is used to switch the meter to read either grid current or plate current of the final. When R_{4} is

Construction

The various components are laid out on the chassis bottom plate as shown in the photograph of Fig. 6-45. There is nothing critical about the layout, but a half inch of clearance around the edge of the plate should be provided so that the completed unit will fit into the chassis. Mounting holes for the tube-sorket brackets should be measured with the tubes in the sockets to take care of the clearance.

The $3 / 4$-inch stand-offs that support the coils are mounted exactly two inches apart. The crystal sockets, J_{3} and J_{4}, which acrommolate the 300 -ohm-line shorting plugs, are mounted between the coil stand-offs.

Four holes, to take No. 6 sheet metal serews. are drilled at the four corners of the plate and in the chassis. In areas where one is likely to encounter TVI, the plate should be fastened to the box with serews set not more than three inches apart, to insure tight shielding.

Fig. 6-42 - Circuit diagram of the two-hand rig. For additional information about components see list given on a following page.
in the meter circuit, the full scale reading is approximately 10 ma ; when R_{6} is switrhed in, full scale reading is about 200 ma.

In addition to the shielding, extra TVI precautions have been taken by installing (C_{20} and C_{21} to by-pass the power supply leads and C_{4} at the key jack to by-pass the key leads. Tests have shown that these precautions are sufficient for even weak-signal areas.

A double-pole single-throw switch, S_{2}, is used to ground the sereen of the amplifier tube during adjustment, protecting the tube against damage from overload.

The power supply is mounted on a $3 \times 5 \times$ 7 -inch chassis which can be bolted to the back of the transmitter chassis. Leads from the power supply are brought through the rear of the transmitter chassis to a two-terminal tie point inside.

Wiring

In the supply shown in the photographs, the transformer power leads come off the bottom of the transformer (Fig. 6-44). A $1 / 2$-inch hole will be large enough to pass all the leads. The two by-pass condensers, C_{22} and C_{23}, should be mounted at the point where the 115 -volt a.c. line

Fig. 6-4.3-Front view of the complete unit. The blach squares thetween the two hnolis on the left and belon the knot, in the centor are the shorting plugs used in the 21-Mr. mosition. Vote the holes in the top and side of the chasuis box that furnish the necessary ventilation for the rig.

enters the supply. Two leads are brought through holes in the side of the power supply chassis that fastems against the transmitter chassis. to a twoterminal tie point mounted inside the latter. One lead is the 13 -plus and the other the "hot" side of the 6.3 -volt heater line. Both of these lewds are by-pased to the chassis at the two-termialal tie point by ('20 and C C_{21}. B-minus and the other side of the 6.3 -volt line is the common ground connection obtained by bolting the two chatasis together. However, three leads are brought from the two-terminal tie point to the transmitter bottom plate, the 13 -plus leads the 6.3 -volt lead. and a ground lead which comerets the chassis to the bottom plate.

The oscillator and amplifier phate coils, L_{1} and L_{2}, consist of 22 turns of Barker \& Williamson No. 3015 Miniductor stock. These eoils are available in three-ineh lengths and one length will be sufficient for both I_{1} and L_{2}. For $L_{3}, 24$ turns of

No. 3011 Niniductor coil stock is required. The eoils L_{1} and L_{2} are mounted in the following manner: 1 roating of Duro cemerat is applied to the conds of one of the coils' insulating strips. A soldering lug is then latid in the cement, with the large hole of the lug bevond the end of the insulating strip. The cement is allowed to dry and then another "oat is applied.

The eroils can then he mounted with $1 / 4$-inch 6-32 serews on the $3 / 4$-inch stand-offs. The oscillator plate coil is tapred down 4 turns from one rend. The 3 rid and 5 th turns are bent in to allow areess to the th turn. The tep is connered to ome side of the two-prong sorket and the other side of the sorket is grounded. The same procedure is followed with L_{2} exerept that the tap is on the Gith turn. The 30 o-ohm-line phags are used for shorting the untased seretions of the coils when operating on 21 Mc. The plugs are made up by simply inserting a piece of bare wire through one pin of the phig

Fig. o-11 - Bettom view of the power supply. The 11.7volt ance input plug is risible on the left-hand side. The hu-pase condensers, C_{22} and G23, appear on eithar sitle of the plug, inside the chassis.

Pig. 6-45-This view shows the completed transmitter. The wo-terminal tie point for the leads from the power suphly is seen on the left side, inside the ehassis tha. The metal shield for the oscillator tube is not shown hut should be put over the tube for actual operation.
 from a pirce of tin or aluminum. The piece of metal is formed as shown in the photograplat and held in place ly one of the tube -soeket serewe.
and out the other and then soldering the ends.
The link L_{3} is slid inside L_{2} and hedrd in place by a smatl piece of catrdbord or paper. Be sure that the link is positioned so that it doos not short out to $/ 2$.

Operation

Plug a key into the key jack. Turn the amplifier screen grounding switeh, s_{2}, to the position

RG59/U (75-ohm) COAX Any Length

RCA Type
Phono Plug
Phono Plug
Fig. 6-46- Drawing of a coax-fed 7-Mc. dipole antenna. 'lhe 67-foot length is figured from end to end. The two or three inches of wire neded to secure the antenna to the insulators is negligible in the performance of the antomna. The end of the coax that attades (o) the center of the antenna is made up by separating the onter hraid from the inner conductor, far enough hack to allow connections to the center insulator. 'The poind where the braid enters the coax covering shoold the watherprotied hy using vinyl electrician"s tape. Ordinary friction tape can be used hut the joint should he coated with Clyptol or fingernail polish. An RCI phono plug is used at the transmitter end of the coax.
that grounds the sereen. A 25-watt lamp bull can be used as a dummy antenna. It should be connereded between the output jack, J_{5}, and ground.

With a drestal in J_{1} and the key open, the 115 volt switch is turneed on. Allow a few minutes for the tubes to warm up. The meter is switehed to read the grid current in the $6 B(2)-\left(\mathrm{CA}\right.$, and S_{2} is sot to ground the sereen grid. On 40 meters, using (ither a 3.5 - or 7 - Me, erystah, the meter should read 6 or 7 ma . When the key is closed and C^{\prime} is tuned to resonance. Tunce for maximum reading, open the kex, and then switeh the metor to rad the phate current of the final amplifier. switeh se to its operate position, close the key and tune C_{12} for minimum current reading. This point wili indicate resonance in the final amplifer tank circuit. The dummy antenna should show some light. If it does not, tume C_{15} until the lamp lights up. The plate current can be brought up to rad 100 ma, or approximately half scale. Be sure to have C_{12} tuned to show minimum current.

The same procedure can be followed for 15 meters. It may be necessary to adjust C_{2} to obtain the maximum amount of grid current for a particular erystal. Some crystals oseillate leyter than others, and by adjusting C_{2} it may be possible to get more output, When using at 7 -Mc. erystal and tripling in the oscillator, one can expeet to get a 2 - to 3 -mat reading in the grid position.

The same funing adjustments may not hold when the antennais comected, but the tuning procolure will be the same. Plate current should be limited to 100 ma .

Shopping List for Novice Transmitter

$100.001-\mu \mathrm{f}$. disk ceramic condensers ($C_{4}, C_{5}, C_{6}, C_{13}$, $\left.C_{16}, C_{19}, C_{20}, C_{21}, C_{22}, C_{23}\right)$
3 0.01- $\mu \mathrm{f}$. disk ceramir condensers (C_{7}, C_{11}, C_{14})
$10.002-\mu$ f. mica condenser (C s)
$3220-\mu \mu$. mica condensers (C_{1}, C_{3}, C_{10})
$13-30-\mu \mu \mathrm{f}$. trimmer condenser, compression type (C2)
$1 \quad 100-\mu \mu \mathrm{f}$. variable condenser (C_{3}) (Hammarlund HF100)
2 140- $\mu \mu$ f. variable condensers (C_{12}, C_{15}) (Hammarlund M('140S)
$28-\mu \mathrm{f}$. 450 -volt paper electrolytic condensers (C_{17}, Cis)
1 0-1-megohm resistor, $1 / 2$ watt (R_{1})
1 15,000-ohm resistor, 1 watt ($/ L_{2}$)
15000)-ohm resistor, 10 watts $\left(R_{3}\right)$
$1 \quad 500$-ohm resistor, $1 / 2$ watt $\left(R_{4}\right)$
1 27,000-ohm resistor, $1 / 2$ watt (R_{5})
1 27-ohm resistor, $1 / 2$ watt (R_{8})
1 4700-ohm resistor, 1 watt (R_{7})
150,000 -ohm resistor, 10 watts ($R 8$)
1 4700-ohm resistor, $1 / 2$ watt (R_{0})
1 3-inels length of B \& W Miniductor stock No. 3015 (L_{1}, L_{2}; see text)
1 3-inch length of B \& W Miniductor stock No. 3011 (L_{3}; see text)
1 10.5-hy. 110-ma. filter choke (Stancor C 1001)
1 6.3-volt panel indicator assembly (I_{1})
6.3-volt bulb) No. 47 or entuivalent

Crystal sockets (J_{1}, J_{3}, J_{4}) (Millen 33102)
1 Open-circuit jack (J_{2})
3 2.5-mh. r.f. chokes ($R F C_{1}, R F C_{3}, R F C_{4}$) (Millen 34102, National R100s)

1 2.5-mh. r.f. choke ($\mathrm{RF}^{\prime} \mathrm{C}_{2}$) (Millen 34300)
1 D.p.d.t. toggle switch (S_{1})
1 D.p.s.t. toggle switeh (\aleph_{2})
1 S.p.s.t. toggle switch (S_{3})
1 0-1-milliammeter (. M_{1})
1 Power transformer, 360 v. each side c.t., 110 ma.; 6.3 v., 3.6 amp . ; 5 v., 3 amp). (Staneor J'('8410)

Nine-pin miniature sceket with shield
Eight-pin oetal sockets, one isolantite, one hakelite 6CL6 tube
GBQQ6GA tube
5Y3 tube
One-inch right-angle shelf brackets (for mounting tuhe sockets)
Ilate cap, $1 / 4$ inch (Mitten 36004)
Transmission-line plugs (Millen 37412)
I'hono jack (R('A type)
Isolantite stand-offs, $8 / 4$ inch
One-terminal tie points
Two-terminal tie points
No. 6, 1/2-inel serews
No. 6 nuts and lock washers
No. $4 / 40,8 / 4$-inch screws
No. 4/40 nuts and lockwashers
Soldering lugs
$3 \times 7 \times 12$-inch aluminum chassis
7×12-inch alumimutu bottom plate
$3 \times 5 \times 7$-inch chassis
10 feet of hook-11, wire
3 Knohs for C_{9}, C_{12} and C_{15}
No. 6 metal tapping serews

A Compact Six-Band Transmitter

The transmitter shown in the photograph below was designed primarity for mobile use. However, it is equally useful as a home-station unit. Depending on the power supply used, the 6146
in the output amplifier may be operated at inputs up to 90 watts. All band changing is done with the panel controls. See the mobile chapter of this Handbook for full details.

This six-hand transmitter may be operated at power inpuls up to 90 watts. It is deseribed in detail in the mobile ehapter of this Handbook.

A Compact 75-Watt 6-Band Transmitter

> Fis. 0-47 - The complete Tis-wall (b-bamd transmilter lits into all $8 \times 11 \times 8$-inch cabinet. Nong the bettome from teft to right, are the two power switches (S_{5} and S_{B}), the hey jark ($/ 7$), the "oper-ate-test ${ }^{*}$ switeh (S_{4}) and the erystal sochet. Across the cernter are the meter switch (S_{3}), the amplifier tank comerol (C.9) and the ose illator tuming consdenser (Cf). To the ripht of the meter at the top are the loading eondenser (Cin) and the ose illator hamdswitch (S_{2}).

Figs, 6-47 through 6-53 show the cireuit and photographs of at lwo-stage transmitter delivering an r.f. ourput of 50 watts on all bathds from 3.5 to 28 Me, inclusive It is complete with power supply and at versatile metering syotem on a $11 \times 7 \times 2$-inch chassis. Provision is mate for connertion of a VFO, a plate-and-screen modulator and also an externat emergeney power supply.

As the circuit diugram of Fig. (0-0) shows, it $5 \overline{6} 3$ is used in a gried-plate oscildator cirruit r is a miea trimmer that permits :uldustment of oscillator excitation for proper keying and drive to the amplifier. sis grounds the cathode thenugh ('3 so that the 5 atio3 can be driven from : VFio) $^{\prime}$ through the erystal socket. L_{1} is tapped to cover
3.5 through 28 Ne. with at switch, S2. The osrillator output with either :3.5- or $\overline{\mathbf{T}}$-Me. erystals, at either fundamental or serond hamonic, is more than adeguate for proper drive to the 6145 amplifior. sufficient drive is also ohtamed quisdrupling from :3.5-Mc. revestals to 11 Mc., or triphing to 21 Me. from $\overline{\mathrm{F}}$-ile. crestals. Quibdrupling from $\overline{\mathrm{F}}$-Mc. crystals, however, does not supply adequate expitation, so fregueney is doubled in the output stage for 27 or 28 - Me operation, unless !-M((rystals for triphing, or 2s-XIC mestals, are available.
Plur-in eoils are used in the output tank eircuit Sinere both stages are pathellelforl in the plate cireuit, the power supply need not be tumed off whike changing coils. 'The amplifier is

Fig. 6-18 - The osetilator is in the $2 \times+x$ 4 -inch bov to the left, with the crestat-1) 0 switeh and 5ydy immediately bethim. The amplifier is in the $4<$ 5×6-inell thex. Cos (bollomi) and Cid (top) are monted against the right-hand side of the bos. "Flae eoril sochet is to the rear surrounded ty the 1 . turn nematrazing link. C $\mathrm{C}, \mathrm{RFO}_{4}$ and 1.2 are immediately in fromt of the ceil socket. To the right are the two 6×501 's, the power iransformer and L_{-8}. The pin jachs toward the fromt are metering jacks. The hoves at the rear are for sentilation.

figs o-f9 - Inside of the maillator leox from the amplifier wide. RFil and li: are in the foregromend in this view. Lerads from Ci: and 1,5 are brewit to pase through to the amplifiar eompartment.
neutratized by means of at simple induetive link system (I_{5} : thd L_{6}). L_{2} is a v.h.f. parasitic suppressor.
both stages are keyed simultaneously in the cathorle circuit for lorak-in operation, the key being plugerd in at J_{7}.

Power Supply

In eronomical power supply delivering voltages for both stages is included on the chassis. I voltage of 600 (under load) for the final ampli-
fier is ohtained from an inexpersive broadrast
replacement transformer through the use of a

COIL DATA

Oxeillntor Coil, L_{1} : Wound with No. 26 promeled wire on 1-inch diameter form (Millen 45000) in four seretors. lst section: 20 turns close-wound 2nd section; 10 turns close-wound
3rd seetion: 5 turns close-wound
4th section: 4 turns spare I wire dianneter
Taps taken of thetween sections. Sparing het ween seations approximately $1 / 8$ inch. Fourth section $121-2 y . M c .1$ turn spacing should tre adjusted to cover 30 Me, with nseillator condenser, (6 , near minimum crpacitance.

Amplifier coils, $L_{3} L_{4}$.

Oneiltrtor Coil, $L_{1}:$ Wound with No. 26 enameled wire on 1-inch diameter form (Millen 45000) in four seretions. lst sertion: 20 turns close-wound 2nd section; 10 turns close-wound 3rd seetion: 3 turns close-wound th section: 4 turns spare 1 wire dianterer Tams taken of between sections. Sparing betwemsentions approximately $1 / 8$ inch. Fourth section $121-2$ V Mr. 1 turn spacing should be adjusted wo cover 30 Me , with nseillation condenser, ('s, near minimum crpacitance.				
Band	Wire Size	Turns	Turns inch	Space Beticera coils
$\begin{array}{r} .5 \mathrm{Mc} ._{3}^{L_{3}} \\ L_{4} \end{array}$	22 enam. 22 enam.	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	20 close-wnund	1/8 in.
${ }^{7 \mathrm{Mc} ._{L_{4}}^{L_{3}}}$	18 enam. 18 enam.	10 8	close-wount	3/16 in.
$\mathrm{LAMc.}^{\mathrm{La}}{ }_{4}$	18 cram. 18 enam.	5 5	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	0.2 in ,
$\begin{array}{cc} & L_{3} \\ \text { 21-28 } & \\ & L_{4} \end{array}$	18 enam. 18 enam.	3 3	10 10	0.2 in.
Coils wound on $11 / 2$-inch diameter forus (National XR-4) with L_{3} at bottom and plate termiral dowion See Fig. 6-50 for commections in roil form and sorkpt.				

Coils wound on $11 / 2$-inch diameter forms (National XR-4) with L_{3} at bottom and plate termiral down, See Fig. 6-50 for connections in coil form and sorket.

bridge rectifier circuit. The renter tap of this system provides a voltage of $2: 30$ for operating the ascillator and the screen of the amplifier, the latter through the dropping resistor, h_{9}, The choke, L_{x}, in the high-voltage silter, it should be noted, is commerted in the megative side of the supply. When using the built in supply, a plug with the pins shorted, as indieated by the dotted lines, should bre insorted in J_{s}. When using an emergency supply, appropriate voltages can be introduced through J after the shorting plug has beren removed.

Metering Circuits

A 1 -mat. milliammeter, I_{1}, is used for measuring the essential rurrents and voltages. It is connerted as a voltmeter having a full-scale range of 5 volts by adding R_{4} in sories. Current is determined by moasuring the voltage drop across resistors of proper value inserted in series with the circuits in which current is to be measured. This permits the use of standard resistors as rurrent shunts. The ranges selected here are as follows: oscillator cathode current. 50 ma.; amplifier grid current, 10 ma.; amplifier screen eurrent, 20 mas.; amplifier cathode current, 200 ma . In addition, three tip jacks mounted on the chassis can the selected by a test prod connceted to one position on the meter switch. Ont $J_{2} J_{5}$, is conneeted to the power-supply low-voltage terminal through R_{13} which is a multiplier giving a full-scale meter reading of 300 volts, A second tip jack, J_{6}, is sinilarly connected to the high-voltage terminal through a 1000 -volt multiplier, R_{14}. The third tip jatek, J_{4}, connects to another similar jack, J_{3}, at the rear of the chassis so that the meter can he used for external measurements, such as an
indicator for an s.w.r. bridge or in an r.f. voltmeter for checking power output.

Test-Operate Switch

A uscful adjunct is the "test-operate" switeh, S_{4}. In the "operate" position, the amplitier sereen is connected to its normal supply. In the "test" position, the screen is grounded. This limits the plate current to about 15 or 20 ma. which results in just about the right amount of power to operate an s.w.r. bridge. If the 6146 is to be plate-sereen modulated, the sereen voltage must be obtained from the high-voltage tap through a dropping resistor, rather than from the
low-voltage tap. In this case, the cathode should never be opened while the power supply is on, hecause the voltage ratings of both the tule sereen and the ceramic by-pass condensers will be greatly exceded. S4a guards against this by grounding the cathode through an auxiliary eontact of J_{7} when the kev is removed. Then S_{4} beromes the on-off switeh, opening both cathode circuits (through $S_{4 A}$) and grounding the amplifier sereen (through S_{41}) when the switeh is in the "test" position. To turn the oscillator on and close the amplifier cathode cireuit for "test" use, a closed key, or shorted plug, must be inserted in the elosed-rircuit jaek, J_{7}.

Fig. 6-51 - The bottom plate of the amplifice box is fastened permanently to the chassis and the amplifier partially assembled hefore fastening the box in place. KFC_{3} is in the foregroumd, RFC_{4} standing at the rear. The coil socket at the right is spaced up $13 / 8$ inches, the tuhe socket $3 / 4$ inch. Notice the "zero-length" leads to the disk ceramic condensers.

Neutralizing Coils

The neutralizing coil, L_{55}, is made simply by drilling two small holes diametrically opposite close to the outer (15 -meter) end of the form. A piece of rather stiff wire is threaded through the holes and then the wire inside the form is pressed into a half-turn shape with the finger. Comections are made to maeh end outside the form and the half-turn may be rotated in the holes to adjust neutralization. L_{6} is a single turn of No. 12 wire, approximately $17 / 8$ inches in diameter, supported at one cond under the screw holding the socket. and at the other end by a tie-point mounted on the same screw.

Adjustment

With the key open, the supply voltage at the high tap should measure about 800 volts and 300 at the low tap. If the 5 V 4 C is removed from its socket, the voltage at the low tap will be ahout 400.

With the switch set in the "test" position, whe oscillator tuning should be adjusted for maximum amplifier grid current. A reading of 4 ma. indicates adequate drive, although on some bands it may run as high as 10 ma . If the minimum read-

[^2]
ing of 4 ma. is not obtained, adjust $C_{2} . \mathrm{Up}$ to a cortain point, increasing this capacitance will increase the oscillator output, but too much feedback may result, in chirpy keving. C_{z} should be adjusted for the best compromise between adequase drive and good keving charact.risties. The oseillator cathode eurrent should run 25 to 30 ma . on all bands.

Neutralization is adjusted hy moving the half turn L_{5} closer to or farther away from the oscillator tank woil. With S_{4} in the "test" position, the oscillator should be adjusted for maximum amplifier grid current on 21 Me., and the amplifier plato tank eirenit tuncd to resonanee If the amplifier is not nout ralized, there will be a notiere able kiek in grid aurent as the plate tank condenser is swung through resomance. The neutralizing half turn should he adjusted carefully for minimum ehange in grid current. The same procedure should be followed for 14 Me. If the noutralizing must be radjusted, the half turn should be sot for the hest average result for the two bands. The amplifier should then be cheeked for oscillation with S_{4} in the "operate" position. The amplifier plate current at resonance should swing the meter off scale when the key is closed.
$\mathrm{K}_{14}-1$ megolim, 1 watt.
I. - See coil data.
$\mathrm{l}_{2}-1$ turns No. 16 , 3́n-inch diam., $3 / 8$ ineh long.
I. $3, \mathrm{I}_{4}$ - See coil data.

I,7 - Filter choke, 40 ma.. 300 ohms, approximately.
I.s - 10.5 henrys, 110 ma., 250 whms.
F_{1} - Finse, 2 ainp.
I_{1} - Crystal socket.
I_{2} - Criax connector. Chassis-mounting type.
$\mathrm{I}_{3}, \mathrm{~J}_{4}, \mathrm{~J}_{5}, \mathrm{~J}_{6}-\mathrm{T}, \mathrm{j}$) jachs, insulated type (Ampheno 78-1 1).
I7 - Chosed-cireuit phone jack.
Is - Oetal socket.
$I_{1}-0-1$ d.c. milliammeter.
P_{1} - Phone tip test plug.
$\mathrm{S}_{1}, \mathrm{~S}_{5}, S_{8}$-S.p.s.t. 1oggle.
S_{2} - Sirqle-pole 5 -position ceramic wafer (Centralab 2500 or 2501).
S_{3} - 2 -pole 5 -position bakelite wafer, non-shorting type "Centralah type 1405).
$\mathrm{S}_{4}-$ D.p.d.t. oggle.
 2500).

R1'C4-2.5 mh., 250 ma. (Millon 3102).
T_{1} - Filament f^{2} ansformer, 6.3 v.. 1.2 amp.
$\mathrm{T}_{2}-1$ 'onver transformer, 360 v . cach side c.t., 120 ma.; $5 \mathrm{v} ., 3$ amp.; 6.3 v., 3 amp. or more.
Note: Manufacturer's part numbers given above are to indieate size and style. Similar components aze gener. ally available from a number of different suppliers.

Fig. 6-52 - Lamhing into the oseillator compartment, L_{1} and sare at the top with Co bolow, RFC: and (it are supprorted on a lie puint in the formaronmel, R_{1}, C_{2} and C_{4} are to the rear of the laber. (is is sublered between fic amol the tube serket. RFid and (\% are hidden by the tolie athe turs. ing rombenser. 'Ithe rover of the amplifier is limgerl at the conter for changing coils. 'The lateh at the reatrengages the rear lif of the leos so that the lisl is drawn down tight. \otice the unmerous ventilating |unles.

Do not close the key more than momentarily for this chorek.

The output coupling system is designed to work into a flat $\overline{5} 0$ - or $\overline{\text { F }}$-ohm line, rither to an antemat or to ath anternaz tuner, The amplifier may be loaded to a cathode current of 1 ± 0 Mat. on all hands cxeren 28 Me. ["nder load, the amplifier gride current should be adjusted to 2 to 2.5 mat. tre detuning the oscillator tank cireuit. The sereen chrrent under these eombitions should run letwern 10 and 12 ma. At 28 Me., with the final
amplifier doubling, the grid eurent should be adijusted to the maximum possible ($\overline{3}$ to 6 i mat. mader load) and the cathode current limitad to about 120 mat. Loading ain 1 x adjusted by C_{10} which tunes the link rirenit.

In fringo areas, a low-pass filtor may be pefuired for 21- and 28-M6. opuration. On lower frepuencies, or in the presence of good TV signals, the use of a conventional antemat tunce will usually tre adecuate to suppress TVI.
(Originally deseribed in QS'T', December 1952.)

Fig. 6.53 - Bu11am view of the 6 -hand transmitter. 'Ilse highvoltage filter contensers, (a0 and (:31. and their equalizing resis. tors, K_{11} and K_{12}, are at the rear of the chassis. H_{1} and L_{7} are to the left, with !es and Rio almene. J_{8} is in the ex. treme rrar left-hand eorner. It top contar, shpported on insulated tie points. l. tor.. are ho, R_{2} and R_{3}. Jn the upper left-hamb carner are $\boldsymbol{R}_{4}, R_{13}$ and \boldsymbol{R}_{14} and \boldsymbol{H}. $R I^{\prime} \mathrm{Ci}_{1}, \mathrm{C}_{1}$ and Core to the right. Shiclded wiring and diskeceramio eomdensers are applied aecording to meiliod described in the chap. ter on TVI.

An 813 Transmitter for 10 to 160 Meters

Figs. 6-5t through 6 - 60 show the circuit and constructional details of a bandswitching 300watt transmitter covering all hands from 10 to 160 moters. The cireuit line-up, shown in Fig.
 plier, an intermediate multiplier-driver using a 21226 , and an $81: 3$ final amplifier. The low-power stages are individually switched and tuned, to permit greater flexibility. Capacity coupling and parallel plate feed are used throughout. The amplifier output is provided with a matehing network that makes use of the variable inductor $L_{4} 7$ and variable condenser C_{21} found below it in the antemna-tuning section of the BC-375. A separate inductor, L_{6}, was found preferable for 10 -meter operation and, for 160, additional inductance, L_{8}, can be rut into the circuit bes ${ }_{6}$. The variable output condenser, (${ }_{25}$, is a small $300-\mu, \mu$ f. unit with receiving spacing. This condenser c:an be padded by the additional fixed capacitances of C_{22}, C_{23} and C_{24}, using S_{5}.

Cathode bias is applied to the driver stane, and the 8133 is protected ly a 6) 6 (i clamp-tube circuit while the oseillator is keyed. A small fixed link, $L_{2}-L_{5}$, is used to neutralize the 21526 . In this layout, the 813 did not require neutralizattion. It should be borne in mind, however, that in a different physical design, means may have to be provided to insert meutralization.
s_{1} is the erystal solector, and s_{2} is used to short the cathode of the oseillator to ground when a VFO is feel to the 6.A(is. (The VFO should not be keved.) ('8 and Cis, are cut in by the owillator and driver bandswitches in the 1tio-meter position, adding enough capacitance to get the rircuits on this band. The 30 -meter tap on L_{1} permits getting drive for the 813 on 15 bev tripling from a 3.5 -Me. arystal in the oscillator output, and doubling in the 21:20.

The potentiometer in the sereen of the 2E26 is used to control the grid drive to the $813 . S_{8}$ switahes the 25 -ma. meter between the exciter + h.v. lead and the grid cirouit of the $81: 3$. V.h.f. filtering is installed in all power-input leads, and all power wiring is done with shielded wire to minimize harmonic radiation. Both (6.3- and 10 -volt transformers are ineluded on the chassis.

Construction

The transmitter is laid out on a $10 \times 17 \times 3-$ inch aluminum chassis, using the enelosure from a BC-3Tis tuning unit as the housing for the r.f. seretion. The standard rack pancl is 10 inches high. The original partition shied is mataned to separate the driver and final stages. The rotary coil, L_{7}, and the pi-section input condenser, (2_{1}, are mounted at the right-hand end of the chassis. The coil is placed with its frame resting on the chassis. It is neressary to drill four $1 / 2$-inch holes in the rear of the enclosure to clear the rear assemhy nuts on the coil frame. (It should be possible to substitute the $1 \mathrm{~B} \& \mathrm{~W}: 3852$ rotary indurtor, which has an indurtance of $15 \mu \mathrm{~h}$., although it will probably be mecessary to lay it on its side to fit into the available spate.) The condenser is suspended above the coil on L -shaped ahminum brackets from the end wall of the enctosure.

The 10 -meter coil, $L 6$, is mounted between the rear terminal of L_{7} and the rear stator terminal of (22. The National JR-175A phate choke RPY' is plateed to the right and forward of the 813. C ${ }_{18}$ is suspended letween the choke and the front stator terminal of C_{21}, while ('20 is mounted on the chassis, near the bottom of the rhoke.

The oseillator and multiplier tuning eondensers, (6 and C_{14}, and the pi-section output condenser, C25 are mounted directly on the chassis. C C 25 is placed immediately in front of the 813. The

Fig. 6-54WITRF' 8 813 transmitter, showing the arrange. ment of controls on the panal. The separate 10 -neter roil for the pisection output eircait is partially hidden liy the 81:3

Fig. 6.5.5 - Circuit of a 2(M)-watt transmitter using att 813 with a pi-section network.
L_{4} - Same as I_{1}, tapmed at $1,6,10,20$, and 31 turns from ungrounded end.
$\mathrm{C}_{1}, \mathrm{C}_{2}$-Silver mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{17}, \mathrm{C}_{10}, \mathrm{C}_{26}, \mathrm{C}_{27}, \mathrm{C}_{28}$
 Disk ceramic.

$\mathrm{C}_{4}, \mathrm{C}_{9}, \mathrm{C}_{15}, \mathrm{Cilf,}_{16} \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}, \mathrm{C}_{32}, \mathrm{C}_{38}-\mathrm{Mica}$.
Cik, (:20 - TV dowrhnol, ceramic.
(i21-3000-volt variahle - see text (Carduell I'l'-150-CS).
C_{25} - Midget variahle (Bud M(.-1860).
Cas- l'aper.
$\mathrm{C}_{41}-$ Coaxial (Sırague 47116).
All resistors $1 / 2$ watt unless specified otherwise.
$L_{1}-20$ - μ h. total - 48 turns No. 20, 1 -inch diam., 3 inches lonk (13 \& 4 30|5 Miniductor) tapped at 8, 11, 17, and 31 turns from ungrounded end.
$\mathrm{L}_{2}, \mathrm{~L}_{5}-3$ turns No. 18 insulated.
$\mathrm{L}_{3}-10$ turns No. I8 air-bound. Length should be adjusted as necessary to suppress v.h.f. parasitie oscillation.
width of the oscillator compartment at the right end of the enclosure (Fig. 6-57) is determined by the width of the Johnson $126-120-1$ multiplecrystal holder. The selector-switch shaft, and the shaft of the oscillator tuning condenser, C_{6}, are centered on this compartment. Then, the multiplier tuning condenser, C_{14}, is placed so that its shaft comes midway between those of C_{6} and C_{25}. From left to right on the panel (Fig. 6-54), S_{3}, S_{4}, the excitation control, and S_{6} are spaced symmetrically along the lower edge, with S_{8}, the key jack, and S_{7} grouped at the center. S_{3} and S_{4} are lined up with their respective tuningcondenser controls. The meters may require shielding in TV fringe areas.

La - 5 turns Do. 10 , $11 / 2$-inch diam., 3 inches long.
 matuning section (sere Footnote 1).
$L_{8}-56, \mu h .-60$ turns $\mathcal{V} 1$. It, close-wound on 13/4inch form. (This form was takern from one of the 13(:-37.5 tuning units.)
L 9 - Neter shimt - 44 turns No. $2!$ enam., elosewothd on 1-vatt 1 -megohm resistor.
RFC: - vational R-1-5A.
 (Ohmite Z-50).
$S_{1}-10$-position single-pole rotary switch. $\mathrm{S}_{2}, \mathrm{~S}_{7}, \mathrm{~S}_{8}$ - ' Toggle.
S_{3}, S_{4}, S_{6} - Ceranic rotary.
S_{s} - (ieramie rotary, progressively shorting (Centralab Pls wafer).
$\mathrm{I}_{1}-0.3$ volts, 3 amp . (Stancor P- 1089 or similar).
${ }^{\prime} \mathrm{I}_{2}-10$ volts, 5 amp. (Startor 1 '-4096 or similar).
The two filament transformers and the 6 Y 6 G clamp tube are lined up along the rear of the chassis. Along the baek drop are the control for S_{5}, power terminals, and coax connectors for r.f. output and VFO input.

Cnderneath, the two tapped exciter coils, L_{1} and L_{4}, are to the rear of their respertive switches, each held in place by cementing it to a l-inch cone insulator fastened to a wall of the shiclding which surrounds and separates them. The two expiter-tube sockets, with their associated components, and the parts that make up the v.h.f. filtering, are also sat off from one another by walls of aluminum sheet. There is still another L-shaped shield between the 160 -

Fig. 6-56-Bottom view of the 813 tramsmit ter showing the internal shielding. The two exciter coils and their switches are at the upper left. Below are the 6.1 (7: and 2 E 26 sockets and assinciated components, 'Ihe 813 sereen voltage-dropping resistor and power-lead v.h.f. filter components are partitioned off at the bot tom. 'lo the right are the l(of)-meter output loading coil, and fixed padding condensers, C_{22}, C_{23} and C_{24}. "'he 813 socket is near the center.

meter loading coil, L_{8}, to the right in the bottom view (Fig. (6-5i), and the $81: 3$ socket. The miea output padding condonsers, C_{22}, C_{23}, and C_{24}, are grouped close to switch S_{5}, near the output connector. Coil dimensions are given under F'ig. 6-5̄5.

Operation

Components in the final stage are suitable for operation at a maximam of 1500 volts with 100 per cent plate-serven modulation, or 2250 volts e.w. While there are other combinations that might be used, the tuning table shows topical line-ups in arriving at the desired output frequencer. With the 25 -nai. meter switehed to read exeiter eurrent, the current will peak to a maximum when the oscillator ontput circuit is tuned to resonance, and dip when the $21: 26$ is resomated. The multiplier stage can also be tuned by switching the meter to the 813 grid circuit, adjusting for maximum grid current. A grid current of $1 \overline{5}$ ma. should indicate adequate drive to the final. Until one has become familiar with the dial settings, he should check the frequency of the

2F26 output circuit with an absorption wavemeter to maker sure that it is tuned correctly.

The slider on the 50,000 -ohm 50 -watt resistor should be adjusted to give a screen voltage of 300 when the $81: 3$ is fully loaded and receiving normal exiftation. This adjustment should be made, of course, with extreme catution, turning off the highvoltage supply each time befors the position of the slider is changed.

The final stage should alwavs be adjusted initially at roduced plate and sereen voltage. This (an be done by switching a resistance (see powersupply section following) in sories with the primary of the high-voltage transformer. IReduction of power daring preliminary tuning is advisable not only to make it wasier on the 813, but also to save wear on the rolling contact of the output roil.

Fispecially from the consideration that the use of a low-pass filter may be a requirement, it is advisable to design the network primarily to fied a flat coax line roupled to an antenna tuner. The values given will permit a mateh to a 50 - or

Fig. 6.57 - liop view of the 813 transmit ter. I'he shielding enclosure (iu this instance tahen from a surplus $\mathrm{BC},-3 \pi$ is approximately $71 / 2$ inches deep, 6 inchus high, and I. inches long. The two doorknob condensers at the top and hottom of the 813 wate chohe in the compartment to the left are $C_{1 s}$ and C_{20}. Con $_{25}$ is partially hidden hy the compartment shield. In the section to the risht, Ci4, and the topa of the $21: 26$ and the 6.10: are visible. C_{6} is hidden by the ersstal holder and selector switeh, The 6) 6 (; and the two filanment transformers are along the rear. ('lose aluminum fox to the right contains the tube umit of the remotelytuned VFO described in this thapter. The socket to the left is not in use.)

Stage Tuning for Output on Various Bands						
				$\operatorname{In} p u \\|^{1}$	Outputl	
Wfal.	Osic.	Mult.	limal	$\mu \mu f$.	$\mu \mu f$.	
160	160	160	160	120	320	
80	80	80	80	120	700	
80	40	40	40	6.5	350	
80	40	20	20	33	17.	
80	30	15	1.5	33^{2}	$260{ }^{2}$	
80	20	10	10	$3: 32$	$280{ }^{2}$	
40	40	40	40			
40	20	20	20			
46	40	1.5	1.5			
40)	20	10)	10			
	aximat mith xt.	vorlues	- 50-01	Outur	cxalot	

75-ohm flat line on all bands except 160. Here the maximum rebabitane of $\left(\begin{array}{c}21 \\ \text { limits the mateh to }\end{array}\right.$ a minimum flat-line resistance of about 200 ohms. However, on 160, amy link line likely to be used betweren the tramsmitter output and the :antenna tuner will be but a small fration of a wavelongth long, so that at this fregurney at mismatern of this order (atm be tolerated without incurring axessive voltages for the low-patss filter romponents.

The tahle shows approximate values of caparitance and induretane suitable for working inte: a 50-ohm line. These values are sedered to provide : ! ! of 10 to 12 on 80 , 10 , and 20 . 0 n 160 , (! is limited by the maximum catpatance of ('21 to 5 or 6 . On 15 and 10 , the minimum circuit catparitance makes it impossible to attain a (l lower than 15 or 20 .
In aljusting the output circuit when an antennat tuner is used, the input and output condensers should be set to the approximate values shown in the tible. Then the roller roil should be set to tune the circuit to resonance, as indirated by the dip in 813 plate current. The antemna tank circuit whould be resomated by watching for a patk in plate current. Then the roupling link at the antemar tumer should be adjusted until the loading is correet. The output circuit should be kept at resonance by slight readjustment of the input
condenser, C_{21}, as required. If assurance of a flat coas line is desired, it should be chocked and adjustod with an s.w.r. bridge, as described in the matanurements chapter.

With the exciter stages operating at 400 volts, and aljusterl to give :un 81:3 gride current of 15 mat., the milliammeter should read a total of about 80 mit. with the key closed, and 60 mas. with the key opron. With the final operating at 1500 volts, and loaded to 200 mal., the sareen current should be ahout 35 mat. With the key opern, the plate current should drop to about 40 mit.

A Power-Supply and Modulator Unit

Fig. (i-fio shows the diagram of a final power supply and modulator. The unit is shown in Fig. (i-is. sepurate supplies are used for the 813 and the 811 Class 13 modulator. Fiach uses sta recetifiers, and is provided with a doublesoction choke-input filter. ()poning s_{5} inserts R_{1} (as $\delta(\mathrm{K})$-watt clectric-heater alfoment) in sorices with the primary of the $81: 3$ plate transformer for tuning up at reduced power. Si shorts the modulation tramsformer for (e.l. operation. ss turns on all filaments in the unit. The d.p.s.t. relisu, K_{1}, is used to control the primaries of both high-voltage transformors. This relay maty he operated aither bess on the paturl of the unit, or by an extermal switch at the operating position. k_{1} also onncrates the antemat relaty. The $250-\mathrm{ma}$. moter in the center tap of the filament transformar, T_{7}, supplying the 811 As , reads modulator cathode current.

The chassis is 17 by $1: 3$ low 3 inchers, and the pand is $83 / 4$ inches high. In the topview photograph of lig. 6-is, a plate tritnsformer is plated in cuch of the reat corners of the chassis, with the modulation transformer in between. The reatifier tulnes and the modulator tubes are paired immediately in front of their respective transformers. The filter chokes are also paired, clow to the panel. The audio input transformer, T_{1}, is placed behind the milliammeter. Two of the filter condenser's are mounted on top, at the rear of the

Fig, wois\% - The modulator and dual hiph-voltage sup. bles for the 813 transmitter are combined in a single anit.

Fig, 6.59 - Bottom view of the modulator and power-supply unit.
chassis; the other two are underneath.
To the left on the pancl are toggle switehes S_{4} and $\delta_{2} . S_{5}$ and S_{3} are to the right. s_{1}, at the erenter, isaceramie rotaryswitch.

The bottom view of Fig. 6-59 shows the placement of components underneath the rehassis, Actually, they are mounted wherever a clear space is available after the parts on top have been mounted. The two rectifier-filament transformers are toward the front, while the modulator filat
ment transformer is located to the rear. The rele ment transformer is located to the rear. The relay

$R_{1}-500$-watt electric-heater clement.
$\mathrm{L}_{1}, \mathrm{~L}_{3}-2001$-ma. $2-12-\mathrm{hy}$. swinging filter choke ($\mathrm{s}_{\mathrm{tan}}$. cor C.1401).
$\mathrm{I}_{2}, \mathrm{~L}_{4}-200$-ma. 4.5-hy. smonthing ehoke.
\mathbf{h}_{1} - D.p.o.t. 115 -volt ace, relay.
s_{1} - Ceramic rotary.
$S_{2}, S_{3}, S_{4}, S_{5}-$ Toggle.
is alongside the rectifier-filament transformer. The caption under Fig. (6-6if) indic:ates modula-tor-transformer ratios suitable when the $81: 3$ is oprating from the power supply described; i.e., 1000 volts, 200 ma.
The 400 -volt-supply eireuit of Fig. 6-6(0) should be suitable for this unit also.
(Originally lescribed in (QST', June, 19ãt.)

[^3]
A 500-Watt Multiband VFO Transmitter

Figs. 6-61 through 6-67 show the circuit and other details of a 500-watt transmitter with VFO frequency control, capable of operation in any band from 3.5 to 28 Mc. It is completely shielded and all tuning adjustments, including hand changing, may he done with the panel controls.

As the rireuit of Fig. 6-6) shows, the VFO uses a 5763 in a Clap eireuit operating over a range of 3370 to 4000 ke , split into three bandspread ranges, tuned l_{y} (${ }_{1}$, which is fitted with a calihrated dial. These ranges. selected by proper setting of C_{2} are 3500 to $3550 \mathrm{kc} ., 3330$ to 3105 ke. (for 11 -moter operation) and 3750 to 4000 ke . for 75-meter 'phone work.

The oscillator circuit is followed by two isolating stages. The first is a 6 C 4 connected as a cathode follower, which is very effective in reducing reaction on the oscillator by subsergent stages. The result is a keyed VFO with good characteristios, even on 10 meters. Since the output of the eathode follower is quite small, it is followed by a 5763 in an amplifior fixed tuned in the $3.5-$ Me. region.

Frequency multiplying to reach the higherfrequency hands is done in the next two stages, the first using a 576 63, while the second emplors the larger 61 tif to drive the final amplifier. These two stages are tumed with multiband tumers circuits which have a tuning range that includes all neressary hands. Thus no switehing or pluy-in eoils are nerded. Neither of these two stithes is operated as a straght amplifier, exerept on 80 meters. Freguency is doubled in the til thi stage for output on 10,20 and 10 meters, and tripled for output on 15 meters The 5763 stage is operated at 3.5 Me. for 80- and 40-meter output, doubles to 7 Me. for 20 and 15 -meter output, and quadruples to It Mc. for 10-meter output. Bxeitation to the final is adjusted by the potentiometer in the sereen eireuit of this stage.

The 813 on the final amplifier also uses a multiband tuner to cover all bands. This stage is always operated as a straight amplifier, and should be entirely stable without neutralization. The only switching neeessary is in the output

link circuit in changing between high- and lowfrequency bands. Loading is adjusted by C_{10}.

A 50 -mat meter may be swit ched to read plate eurrent in the exriter stages, grid current in the driver and final-amplifier stages, or soreen current to the 813 . The $1 / 2$-ohm resistor in the 6146 highvoltage lead multiples the meter-seale reading hy three. A separate 500 -mat meter is used to check plate current to the 813.

The two-circuit rotary switch, S_{1}, is used to bias the sererns of the 6146 and 813 negative while tuning up the preceding stages and setting the VF() to frequency. In the first position, both screens are hiased; in the serond position, only the 813 soreen is biased, while positive voltage from a voltage divider is applied to the screen of the 61.46 so that this stage may be tuned up. In the third and fourth positions, positive voltage is applied to both screens, but in the last position, it is applied to the 813 screen through an audio choke so that the stage may he screen-plate modulated.

Two hiss rectifiers are included in the unit, to supply fixed hias to the 614 (i) and 813 , so that the plate currents will be cut off during keying intervals. Both rectifier systems operate from a single 6.3-volt filament transformer sonnected in reverse. The bias transformer, T_{2}, is operated from the 6.3-volt winding of the filament transformer, $T 1$.

Two a.c. outlets are provided for eonnecting the primaries of external high- and low-voltage supplies into the control circuit eonsisting of three toggle switehes. B_{1} is the ventilating blower that starts operating as soom as the filament switch is closed. The blower is essential where so much power is confined in a small space. The jack, J_{3}, provides a means of keving the final amplifier, rather than the oscillator, if desired. It also permits phugring in a simple cathole modulator of the type described in the ehapter on speech amplifiers and modulators.

It is highly important that the VFO box make good contact with the chassis; otherwise the VIO may be adversely affected by feed-back from the

Fig. 6-6I - The standard-rack panel is $121 / 4$ inches high. Comtrols (National Mlis) along the bottom, penters spaced at inter vals of $21 / 8$ inches either side of center, are, left to right, for $\mathrm{C}_{4}, \mathrm{~S}_{3}, C_{5}^{2}, C_{2}, S_{3}$ (Centralal, 1405), S_{2} and C_{10}. Power togyles are below at the center. spaced 1 inch apart. The calibrated VMO dial (National $\mathrm{SCN})$ for (i) is at the center, with the evcitation emontrel (Vational Pdial) to the left, and the dial (\ational I IV) for Co to the right. National CFI chart frames outline the rectangular openings for the repesed meters, 50 -ma to the left, 500 -ma, to the rifit. The sthelding enelosure is built up using aluminum anfle, perforated shect (also used for the bottom plate), and self-tapping screws.

Fig. 6.62 - The eomponents are assembled on a $17 \times 12 \times 3$-inch alumimum chassis. The meters are housed in $4 \times 4 \times 2$-ineh boxes, the VI'O enelomure is $6 \times 6 \times 6$, while the box enelosing L_{3} and L_{4}, to the ight, measures $3 \times 1 \times 5$ inehes. The pecial plate chohe, RFG, to the left of the $: 13$, is close-wound with 129 turns No. 26 d.c.e. wire, on a Millen $3100413 \mathrm{~B}-\mathrm{inch}$ ceramic pillar. C is is fastened to the top of the chohe, while C_{7} is monnted below near the h.v. feed-throngh. (Both C_{7} and C_{8} are Sprague 2010k.TS.) The small cones, fastened to the condenser frame by drilling holes in the assembly rods, support L_{9}. A serew, tapped into the same rod, anchors the grounded end of L_{7}, whose outer end conneets to the rear stator terminal helow: The 81.3 sochet is mounted on $1 / 2$-inch pillars, over a $21 / 4$-inch hole in the chassis. Along the rear apron are J_{3}, J_{2}, + h.v. (Wilten 3700t) and kround terminals, a.c. power-input conncetor, two a.e. ontets, low-voltage input terminals, and hey eonnector.

adjacent final tank when working on 80 meters. Mounting serews spaced an inch around the bottom lip of the hox, and correspondingly in the top cover, should eliminate this completely.

Coils

$L_{1}(35 \mu \mathrm{~h}$.$) is a B \& \mathrm{W} 80-13 \mathrm{CL}$ coil with the link and base removed. L_{2} is given under Fig. G-6i6. $L_{3}(2.6 \mu \mathrm{~h}$.) is 31 turns of $\mathrm{B} \& \mathbb{W}: 3003$ miniductor, while $L_{4}(5.3 \mu \mathrm{~h}$.) is 30 turns of Type 3011. $L_{5}(1.5 \mu \mathrm{~h}$.$) consists of 11$ turns of No. 16, 3/4ineh diameter, ${ }^{13} 16$ inch long. $L_{6}(8.9 \mu \mathrm{~h}$.) has
 has 6 turns of $1 / 4$-inch copper tubing, $21 / 4$ inehes inside diameter, $23 / 4$ inches long.
$L_{7}(5.1 \mu \mathrm{~h}$.$) and L_{8}(\mathbf{~} .2 \mu \mathrm{~h}$.$) are made as follows$ from $1381 / 3905-1$ strip coil: Count off $101 / 4$ turns, clip the wire without breaking the support hars. Bend the last quarter turn out. This portion is $L_{\bar{i}}$. Remove the next $3 / 4$ turn to make a $1 / 4$-inch space between L_{7} and L_{8}. Count off 10 turns more, rut the remainder of the coil stock off. Unwind the last turn on L_{8} to make the necessary lead to the stator of C_{9}. Tap L_{3} at the 8th turn from L_{7}.

Adjustment

A 400 -volt 250 -ma. supply is required for the exciter and the screen of the final amplifier. For full rated output from the 813 . a supply delivering 2000 to 2200 volts at 300 ma . (imeluding bleeder current) is needed. The amplifier maty, ol course, be operated at lower phate voltage with less power input. The diagram of a suitable power mit is shown in Fig. (0-67.

The VFO tuning ranges should first be adjusted. Set S_{1} to the first position, biasing the sereen of the 6146. Adjust the serecri potentiometer in the 5763 multiplier stage to zero, and turn on the filaments and the low-voltage supply. Set C_{1} at 05 degrees on the dial (near minimum caparitance). Set C_{2} arcurately at midscale. Then, listening on a calibrated receiver, adjust C_{3} until the VF() signal is heard at 3750 kc .

Now. tune the receiver to 3500 kc ., and turn C_{1} toward maximum capacitance until the VF() signal is heard. This should be close to the lower end of the dial. By earefully bending the rearmost stator plate of C_{1} toward the rear, it should be

Fig. 6-63 - The VFO box is placed with its front wall 1316 inches hack of the panel, central on the chassis. L_{1} is momented on 2 -inch cones to center it in the box. 'lhe shaft of Ci (Cardwell lPh, (000) minus last rotor plate) is central on the lox front, at a height to mateh that of Ca. Ci2 (Cardwell Pl-6002) is momonted, between (C_{1} and the eoil, shaft downward, to engage the rixht-angle drive below. Cis (Cardwell Pl.6009) is similarly momented, to the left of ($\dot{2}$. Gromped to the left are $1_{4}^{\prime}, L_{2}$, and V_{3} in front, with J_{5} and J_{1} to the rear, and J_{2} in the center. Feed-throughs in the bottom of the coil hox to the rear conneet l.a and Lat to Ca below. The ventilating holes are over the 6146. C9 (Johnson 2001)1035) is placed with its shaft $21 / 4$ inches from the end of the chassis, and its rear end plate $15 / 8$ inches in from the back edge. The three feed-throughs to the left connect L_{8} to S_{2}.

The next step can be done most easily with a high-resistance voltmeter connereded ateross the grid leak of the $5 \overline{6}$ ti:3 buffer amplifier. Set (1 and ('2 at minimum capacitance, and adjust the slug in L_{2} for maximum grid voltage. Then wateh the grid voltage as (ce is swung through its range. If there is apprectiabe increase in grid voltage as (? is turned toward maximum caparitance, tune L_{2} to a higher frequency by moving the slug out more. By correct adjustment of the slug, the grid voltage should remain essontially constant over the entire usable frequency range.

Now readjust ('2 to midseale and turn the meter swith to read $61+6$ grid current, and turn the excitation control to give a reading of 2 or 3 ma. Resonate the output tank rircuit of the 57 (i3) frequency multiplier at 80 meters (near maximum (apacitance) as indicated by maximum 6146 grid current.

Next, turn S_{1} to the second position, so that sereen voltage is applied to the 6146 , hut not to the 81:3. Turn the meter switeh to read 6146 plate current, and resonate the 6146 output tank circuit as indicated be the plate-current dip (near maximum eapacitanee). Turning the meter

switch to read 813 grid current adjust the exeitation control to give a final-amplifier grid-curront reading of about 25 mat.

The 813 should be tested initially at redued plate voltage. Plate voltage ran be redured bs inserting a 150 -watt lamp in sories with the highvoltage transformer primary. A 300 -watt lamp bulb conneded across the output connector can be used as a dumme load for testing. Makr sum that S_{2} is turned to the low-frecueney position. This position is used for 3.5-and 7 -. Me operation. The other position is used for $1+21$ and 28 . Mre. Turn s_{1} to the third position to apply seroen voltage to the 813, apply plate voltagre and resonate the output tank circuit (near maximum (rapacitance) as indicated by a dip in plate reurrent. Full plate voltage may now be applied and ('10 adjusted to give proper loading (220 ma . maximum). Adjust the excitation control to give a final-amplifier grid current of 15 to 20 ma .
Tuning up on the other bands is done in a similar manner, bey adjusting the tuners in each circuit to the correct band to obtain the desired multiplication. The table shows the approximate dial setting for each band, but each should be checked with an absorption wavemeter and the setting logged for future roference.

A suitable antema tuner should be usid be-
tween the transmitter output and the antenna. Antenna tuners are doweribed in the chapter on transmission lines.
(Deseribed in (Qst' for January and June, 1951.)

Fig.6-65 - Sheteh showing method of mobunting melers in shiclding tanes. 'Tles metors ares suspented from the riar eovers.

Fig. 6-66 - The panel dropsisin inch below the botom edge of the chassis. The National ACD-1 right-angle drive for C_{2} is at the center. 'The other comtrols along the botom are placed $11 / 2$ inches up from the bottom edge of the chassis, and tire corresponding componente mounted so that their shafts lime up with the eomerols. Panel bushungs should be provided for the shafts of (in (Gardwell PL- $\mathbf{(1 0 6)}$), and the right-angle drive: panel-hearing shaft units

 bracket at the center. I. ind I.f, at risht ankes, are soldered bet ween the terminals of Cos and Pin 1 of the 813 sochert,
 blower (available from Allied Radio, Chicavo, No. -2.202 motor and $: 2-63$ fan) are to the left. The serewdriverslotted shaft of C_{3} may he seen between the shaft of C_{5} and the shielded power wires to the left. It power wiring is done with shielded wire (Belden 8656, Birnharh 1820, or shied ded ignition wire for the Zono-volt line; Belden 8885 for the rest). 1.2 , Iehind si_{3} (Centralah 1411), is a National XR-50 slug-tuncd form elose-wound with 93 turne No. 36 enameled wire.

Fig. fiob7-Circuit of a suitalle power supply for the 813 transmitters.

A Remotely-Tuned VFO

The VFO shown in Figs. 6-68 through 6-72 is a series-tuned Colpitts (Clipp) cireuit built in two sections. The large compartment contains only the tuned circuit (Fig. (6-69A), while the other contains the 5763 tube and a pair of OB2 voltage regulators (Fig. 6-69B). The two are cont neeted with a piece of double-conductor coaxial cable that may be of any length up to 10 feet or so. The advantages of such a system are, first, that the tuned circuit is well removed from heatgenerating equipment, including the oscillator tube itself, and second, that it forms a convenient means of remote frequency control. While this arrangement was designed primarily as a driver for the frequency-multiplier unit described later in this chapter, in many cases the existing erystal-oscillator tule of a transmitter can be substituted for the second unit mentioned, if the tube is a 6 AG 7 or 5763 . If the grid-plate crustal-oscillator circuit is in use in the transmitter, it should be possible to feed the tuned circuit directly through the 2 -conductor cable to grid, cathode and ground without modifying the crystal circuit in any way. R(i-22/U is recommended for the connerting cable.

The osellator operates in the $3.5-$ Me, region and the bandspread tuning system, consisting of C_{1}, C_{2} and C_{3}, is designed to cover the desired frequeney ranges in three steps, when C_{1} and C_{2} are altered as described under Fig. 6-69. With one setting of C_{2}, the tuning condenser C_{1} spreads the range of 3500 to 3750 ke , out over 95 per cent of the National ACN dial. Since this fundamental range rovers the most-used 80 -meter c.w. frequencies, and harmonies of this range cover all of the higher-frequency bands, exeepting only
the 11 -meter band, this range will usually suffice for 90 per cent of all operating. 13y shifting the setting of C_{2}, the range of 3750 to +100 kc . is spread out over about 75 per cent of the dial. The 11-meter band is provided for by a third setting of C_{2}.

Tuned-Circuit Unit

The tuned circuit is housed in at $5 \times 6 \times 9$-inch aluminum box. An enclosure of this size is needed not only to provide mounting for an adequate dial, but also to permit spacing the coil well away from the sides of the box so that its (2 will not be drastically reduced by the shichling in its fidd.

The dial is first mounted centrally on one of the 5×9-inch sides of the box. The tuning condenser, C_{1}, is then coupled to the dial and the mounting step at the rear of the condenser is supported against the bottom of the box with a heavy metal spacer cut to fit. The band-set condenser, C_{2}, is shaft-hole mounted 1 inch in from the left side and bottom of the box. This necessitates drilling the shaft hole through the edge of the dial frame. C_{3} is soldered directly across the terminals of C_{2}. The knob is a National HIRS-5.

The 13 \& W coil is removed from its mounting by first drilling out the rivets in the plug-in base, leaving the metal angle pieces at each end attached to the eoil, and unsoldering the leads from the pins. The link winding is carefully removed by snipping the turns and prying the spacing blocks loose with a knife. (One turn is removed from the coil itself. The coil is then monnted on National GS-1 pillar insulators so that it will be centrally located in the box in both directions.

The three-contact jack for the remote-tuning

Fig, 6-68-The remotely-tuned VFO. The large box contains the tuned circuit, the smaller one the oscillator and voltage-regulator tubes. The two terminals on the smaller box are for output and hey connections. The power connector is at the end opposite the cable connection.

in one of the covers, below the shelf level, and the power connertor is mounted at one end and the jack for the coan cable at the other. The resistor, $R 2$, is mounted on top of the shelf, alongside the tubes, on the same side of the box as the keving and out put jitcks. This makes it possilnte to remove the tubes and adjust the slider by removing the blank enver of the box. The resistor is supported betworn two small angle pieces

Fig. 6-69 - (:irmit of the remotely-tumed vfo.
 rear stator plater remened, rear restor wate bent; sire (ext).
 last stator and latat (wo roter platom remoned). C. 3 - 39- μ_{μ} fll. silvered mica.
(4, C: $0.0101-\mu$ fol silsered mina.

\mathbf{R}_{3} - $4 ., 0000$ ohms, ${ }^{1}$, 2 walt.
$R_{2}-10.010$ ohms. 10 wallo, with sider.
 incher diam. (IS \& W JFila-80, I turn and linh remonid).

J_{3} - Key jack - phono imput jack.
J_{4} - Insiblated "phome-tip jach.

 with Imphenol 91-MI'M 36 male comnector los fit J_{1} and J_{2}.
cable is set in the batek of the box, and C_{4} and C_{5} are soldered to its terminals.

Tube Unit

The photographes show the essential details of the assembly of the tube unit. The enclosure is a staudard $2 \times 2 \times$-inch aluminum box. The three tubes are mounted on a shelf spaced $1!2$ inches from the top of the box. This dimension is eritical if the tubes are to be removed without difficulty. The keying and output jacks are mounted
joined with a piere of threaded rod (or a long 6-32 screw) through the resistor form.

All wiring, with the exception of the connections to the keving and output jarks and the cable connertor, ath be done before the shelf is plated in the box. This includes commedions to the power connector which mounts from the inside. In the bottom view of Fig. ($6-72$, the plate choke, RFP'2 is to the lower left, soldered bet weren Pin 6 of the 576.3 sockert and l'in 5 of the socket of the first 0132 regulator. The cathode ehoke, $R F^{\prime}\left({ }_{1}\right.$, is atowe, with one cond fastemed to lin 7 of the 5 ati, soeket, while the other end is left free until the cover plate earrsing the key jack is ready to be put in platere. Ch is soldered directly aross I_{3}. Leads of proper length are made for the jatcks and cable connertor, and these conmeretions can be made after the shoff has been put in place, and just before the cover is put on. Care should be used in plabing the tubes in their sorkets, sine there is little height to spare. If necessary, the tips of the tubes cen be run up through the vontilating holes in the top of the box to abllow the pins to elear the sockets.

Power Supply

Any power supply delivering between $3(0)$ and 400 volts at 50 mith. or more maty be used to operate this VFO.

Fig. 6-70 - Interior of the tuned-circuit hon. (ta and Cis are 10 the rear. (is is soldered across it 2 to the left in front.

Fig. 6-71 - The completed tulie seetion with the tubes in place. Ventilation holes are drilled in the top of the box and in the olate covering the free side.

Adjustment

Adjustment of the frequency range for maximum bandspread is quite simple. Sot C_{1} to a dial reading of 5 . Then adjust ('2 until the oscillator signal is heard on the receiver at 33 jom$) \mathrm{ke}$. Wet the receiver to 3750 ke . and adjust C_{1} until the signal is heard. If this occurs with the dial set at less than 10 (, carefully bend the rearmost rotor plate of C_{2} away from the adjarent stator plate, making sure that the plates do not touch and whort the condenser in any position of the rotor. Tum (${ }^{\prime}$ again to a dial reading of $\overline{5}$, reset C_{2} for 3500 ke , and cherk again for the point where C_{1} tunes to 3750 ke . By proper adjustment of the rotor plate on C_{1}, the $3500-\mathrm{to}-375(0-k e$. range can ire made to eover the entire dial, or as much of it as desired.

'Phone Band

After this initial range has been set, tune the receiver to 3875 ke , Wet C_{1} to midseale and adjust (2 until the VFO) signal is heard. Then the range of 3750 to $4(H O) \mathrm{ke}$. should be approximately certtered on the dial with a coverage of about io divisions. The range can be shifted one way or the other by simply shifting C_{2} slightly.

11. Meter Band

If it is do-ired to center the 11 -meter band on the dial, set (it to midscale, set the rereiver to 3387 ke. and andust ('ountil the VFO) is heard. All three sedtings of C should be plainly marked so that they can be returned to when desired.

The cathode current maty viry from about 28 mat. with both C_{1} and ('o set at maximum capacitance to :37 mat with both at minimum.

In using the VPO, the tube unit should he plated close to the stage to be driven and fastened securely to the chassis. A short lead should loe used to connect the output ferminal to the grid of the stage to be driven. If the Iriven stage has no grid eondenser, at $100-\mu \mu \mathrm{fl}$, mieab condenser should lo connected hetwern the output terminal and the grid of the driven stage. If more than adequate drive is obtained, the grreen of the oscillator tube eam the commerted to the junction betwern the two V'R tubes, rather than to the ond of R_{2} as shown in Fig. (i-69. This unit is not a power deviec, and adecquate gain in the way of a crustal-owillator tube or other buffer amplifier should le provided.
(Originally deseribed in QST', Jan. 1953.)

Fig. 6-72-Bottom view of the tube-unit shelf.
 low. (if is soldered to J_{3} on the cover plate. The two leads going to the left solder to the cable. connedor. 'l'he one to the left above moes to J_{4}, the lead to the right to J_{3}.

A Beat-Frequency Exciter

Fig. 6-75 shows the eircuit diagram of a transmitter frequeney-generating unit employing the heterodyne principle. The output of the 6.156 crystal oscillator at 6500 ke . and the output of the 6.1 V 6 VFO , covering the range of 2650 to 3000 ke, are combined in a mixer of the balancedmodulator trpe. The output of the mixer, which makes use of a pair of $6131 \% \mathrm{is}$, is tuned to the difference between these two frequencies to give the range of 3500 to 3850 ke . This range includes the cow. portion of the 80 -meter lend and, by adding suitable frequency multipliers, all other bands up to and including the 28 -Mc. band can be covered. With a change of erystal frefuency, the unit will also cover the 80 -moter 'phone band.

The advantage of such a system is that neither oscillator need he keved for break-in operation, since the fundamental and harmonies of both oseillators fall outside amateur bands and therefore do not cause interference in the receiver. Both oscillators run continuously, while the mixer is keved. Thus the keving charateristic can he shaped as desired to climinate key clicks without the dinger of introducing chirp.

The 61320: in the balaned-modulator cireuit are connerted with their plates in push-pull. The VFO drive is fed to the two No. 1 grids in parallel, while the ervstal-oseillator signal is fed in pushpull to the No. 2 grids. The VIP() fundamental and harmonics are out of phase in the push-pull output circuit and are cancelled to negligible amplitude, so that the only signal present is the desired difference beat to which the output eireuit is tuned.

Amplifier Section

The output of the circuit shown in Fig. 6-75 will be quite low, and unless an adequate bufferdoubler section is already available, the addition of an amplifier will be necessary. Fig. 6-it shows the circuit of atable output sertion sufficient to drive a beam-tetrode final to rated input on the

Fig. 6-7.3 - A beat-frequeney exciter built by W6k\%I. The dial at the left eontrols the frumeney of the Vfo and thereby the frequeney of the exciter output. 'The other ino dials are for the erystal-oscillator and amplifier-output tanhs.
fundamental frequeney. As a feature of convenience in tuning, a bandpass coupler is incorporated in the output of the miser, thus making readjustment of this stage unnecessary over the rauge of operating frequencies. Thas coupler, consisting of (${ }_{1} L_{4}$ and $C_{2} L_{2}$, Fig. 6-7t; is merely substituted for the output cireuit (${ }_{6} L_{2}$ in Fig. (0.75 when the amplifier sertion is added. The 6.105 untuned buffer stage, although not strictly essential, provides a smatl amount of gain and, more important, diminates the need for neutralizing the output stage, even when a poorly-screened tube, such as the 61.6, is used.

Construction

Figs. 6-73 and 6-7t show an example of the construction of a unit of this type. The expiter shown in the photographs is not the one whose circuit diagram appears here, although the cireuit is essentially the same aside from the use of regular-size tubes. Mochanical stability of the variable oscillator, its drift characteristios and freedom from a.e. ripple are just as important in the beat-frequency unit as they are in a conventional VFO. Although a high-(Dartley VFO is shown in the diagram, a Clapp-type circuit can be used just as well, with a probable improvement in drift characteristics. It is suggested that the first step in eonstruction be the building of the variable oscillator, followed by the erystal cirenit and then the mixer and amplifier sections in that order. The proper fumetioning of eath stage can be checked as construction progresses. Individual shielding of the variable-ascillator and mixer eoils is recommended. The output tank of the amplifier seertion should be shiolded from the precoding stages by a partition. In the rear-view photograph of Fig. $6-\overline{6}$, the VFO is in a separate shoek-momed box to the right. The tube is mounted externally in a horizontal position. The power-supply to the loft is likewise a separate unit and is cushioned to prevent transmitting

Fig. 6.74 - Rnar virw of WoRZL"s exeiter. 'He shielded compartmont encloses the variable oscillator. The power supply is a dotachathe shock -mounted ansembly. Octal, instead of miniature tubes, were used in this partionlar unit.

150 volts above ground, a keving relay is recommended as a safety measure, The electricai circuit can be traced buck from the key in Fig. 6-75. Shaphing on both "make" and "break" is provided, with greater emphasis on the "break" characteristie. This gives the trpe of keying gonerally aceapted as most desirable. The larger-than-asual (0.1 pfol.) plate and screen bypass condensers, as well as the plate decoupling and screen-dropping resistors, are all part of the shaping network. The "make" lag is introduced in the screen lead through L_{6}, which is the primary of a replacement-type 5016 output transformer. Where the 6A(Q5-6L. 6 output section of Fig. 6-76

Fig. 6.75 - Circuit diagram of W6OWPs basic leatfrequeney souree. Output from this unit will be low and an amplifier is recommended unless ade puate bufferdoubler stages are already as ailathe. (See Fig. 6-66.)
$\mathrm{C}_{1}, \mathrm{C}_{2}-57-\mu \mu \mathrm{fd}$. mica.
$C_{3,} C_{4}, C_{12}, C_{13}-0.01-\mu \mathrm{fd}$. disk eeramie.
$\mathrm{C}_{5}, \mathrm{C}_{15}-30-\mu \mu \mathrm{fd}$, trimmer.
$\mathrm{C}_{8}, \mathrm{C}, \mathrm{C}_{9}-0.1-\mu \mathrm{fd}$. 600 -volt paper.
$\mathrm{C}_{7}-100-\mu \mu \mathrm{fd}$. variable.
$\mathrm{C}_{10}-140-\mu \mu \mathrm{fd}$, ariable.
$\mathrm{C}_{11}-2.10-\mu \mu \mathrm{fil}$ silvered mica.
C_{84} - 100 - $\mu \mathrm{\mu} \mathrm{fl}$. mica.
R_{1} - 17,000 ohms, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{6}-10,000$ ohnas, 1 watt.
R_{4} - $\mathrm{t} 5,000$ ohmes, 1 watt.
$\mathrm{H}_{5}, \mathrm{R}_{3}-470$ ohms, $1 / 2$ watt.
Ri: - 10,000 ohms, 10 watts.
$\mathrm{H}_{s}-3.9$ megohms, 1 watt.
L_{1} - 26 turns No. 21 d.c.e., $7 / 8$-ineh diam., elose wound.
L_{2} - 15 turns No. 2.4 d.c.e., center-tapped, wound over L_{1}.
La - 32 turns No. 24 d.c.e., $11 / 2$-inch diam., elose wound, center-tapped.
$L_{4}-3$ turns 才o. 18 hooh-up wire wound over eenter of L_{3}.
$L_{5}-19$ turns No. 20 enam., $11 / 4$-inch diam., 1 ineh long, tapped 5 turns from lottom.
Lf: I'rimary of 50 L .6 output transformer.
RFC. -2.5 -mh. r.f. choke.
vibration to the VFO. The tuned eireuits of the miser and amplifier are mounted underneath the chassis, although the tubes of these stages are above.

Keying

The GBFO eonverter tubes present substantially constant loading to the variable oscillator. To preserve this eondition, eathode keving camot be employed. However, the tube design is such that Miller effect with changes in space current is negligible. Thus, interruption of the plate and screen supply offers an excellent method of keving. Since this places the "hot" side of the key at
is used, the screen of the 6.105 is connected to the key circuit as indicated. This is a further safeguard against the presence of residual key-up signat.

Adjustment

The cireuit of a suitable power supply is shown in Fig. 6-67. With both oscillators on, and plate and screen voltage applied to the mixer, set the variable ostillator on 3000 ke . with the aid of a receiver. Now tune the receiver to 3500 ke. The desired beat should be clearly audible. Next adjust the mixer tuning condenser to give maximum signal strength. Repeat this procedure, setting the variable oscillator at 2650 ke, and tuning in the beat at 3850 kc . This establishes basie tuning ranges on the oscillator and mixer dials.

Now, eonneet the mixer output to the stage to be driven and make the neeessary adjustments in the mixer tuning to show maximum drive, as indicated by the plate milliammeter of the driven stage.

The next step is to adjust the variable-oseillator coupling condenser, C_{15}, to the minimum value necessary to maintain full drive from the miser. The plate tank cireuit of the erystal oseillator should be detuned in like manner. Sinee the 6BF6s drive very casily, there is no object in overdriving; in fart, undesirable interaetion could result if the drive were excessive.
The unit is now ready for final calibration and installation. In operation, the procedure is to set the oscillator tuning dial first and then trim up the mixer tuning as required to give necessary output. If the output section of Fig. 6-76 is used, the landpass coupler is adjusted by varying the settings of C_{1} and C_{2} until fairly uniform drive over the $3500-3850$ ke. band is seeured. Oseillator tuning and output controls in this ease are the

Fig. 6.76 - A stahle ontput section giving sufficient loow in drive to handle a high-power heam final on the fundamental frequency. Note the bandpas coupler subtituted for the mixer output circuit in Fig. 6-5.5. L se of the 6A0: untuned buffer is diserussed in the text.
(i, $\left(i_{2}-10\right)-\mu \mu \mathrm{ff}$. 1 rimmer.
$\mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}-0.01-\mu \mathrm{fd}$, dish ceramic.
(44-0).1- μ fil. (0)O-volt paper.
(. 5 - $100-\mu \mu \mathrm{ffl}$ mica.

C9 - $100-\mu \mu \mathrm{fd}$, variable.
$1 h_{1}-470$ ohtms, $1 / 2$ watt.
$\mathrm{H}_{2}-470$ ohms, 1 watt.
$13_{3}-29,000$ ohms, 1 watt.
$1 \mathrm{R}_{4}$ - $\mathbf{0} 0(0)$ ohms, 2 watts.
$\mathrm{K}_{5}-2 \boldsymbol{2}, 000$ ohms, 2 watts.
only ones requiring adjustment for QSY. To "zero in" on a station to be ealled, switch S_{1} applies just enough voltage to the keyed circuit to provide a usable signal in the home-station receiver.

To maintain the keying characteristic through following transmitter stages, it will be necessary to olserve two prectutions. (1) In stages where fixed bias is used, the amount of this bias should be just sufficient to cut off plate current. Additional operating bias should he secured through grid resistance. (2) Adequate drive must be provided for each stage.

While the special problems of c.w. operation make the heterodyne exciter reperially attractive in this fiold, it is equally adaptable to 'phone work. To cover the $\overline{\mathrm{j}}$-meter 'phone band, a 6850-ke. crystal must be substituted for the 6500 -ke. one used for c.w. The 'phone hand will

Fig. 6-77 - Cirenit diagram of a power supply for the beat-frequency exciter.
$\mathrm{C}_{1}-8-\mu \mathrm{fd} .600$-volt electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-8-\mu \mathrm{fd} .450$-volt electrolytic. $R_{1}-10,000$ ohms, 10 watts, adjustable. I_{1} - 2.3-hy. $150-\mathrm{ma}$. 60-ohtn filter choke (Stancor 2304).
1.1-32 turns No. 30 enam., in two cqual sections $11 / 2$ inches apart on $11 / 2$-inch-diam. form.
$1.2-26$ turns Vo. 30 enam, wound in area between sections of I_{1}.
1.3-28 turn* No. $1+$ enam., on $13 / 4$-ineh-diam. ceramic form.
1.4-3 turns No. 18 hook-np wire, womed at cold end of 1.3 .
II A_{1} - 100.ma. milliammeter.
 R $\mathrm{F}^{\circ} \mathrm{C}_{2}-1.5$ mh. r.f. chohe.
be covered in the 2850 to 3000 -ke. range of the variable oscillator.

Narrow-band f.m. is readily obtained by connecting any of the standard readance-tule circuits to the variable-oscillator circuit. An important advantage of the heterodyne unit is thast deviation is unaffected by exciter loading. This factor also makes the unit ideally suited for fre-quency-shift transmission on bands where such opreration is authorized.
$1.2-16$ hy, 50 -ma. 580 -ohm filter choke (Stancor C-1003).
S_{1}-S.p.s.t. toggle.
T_{1} - Power transformer: $350-0-350$ volts r.m.s., 110 ma.: 5 volts, 2 amp .; 6.3 volts, 3 amp . (Thordarson $9-221332$).

A Single 813 Amplifier

Fige. 6-78 through 6-82 illustrate a multiband single-iube r.f. amplifier using an 813. The eireuit diagram is shown in Fig. (i-80. The binds, $3 . \overline{5}$ through 28 Mre, are changed in the grid circuit loy switching coils. A $100-\mu \mu$ f. condenerr, C_{1}. is added to the capacitance of the grid tuning con-
vaide when exeitation is removed, or if stages ahowe of the 813 are keved.

Separate meters are provided for reading grid and phate current. A voltmeter is included to permit a contimuous cherk on filament voltage. Filament transformers are mounted in the unit,

Fig. 6-78- A multiband bandswitching 813 amplifier wilh a shielding enclesure made up of standard chassis and bottom plates. 'loo the right of the meters are the controls for si (atove) and Co, At the conter are the contrule for ti3 and Lis. To the right are controls for i_{2} (above) and (id. (I)signed by W6KEV.)
denser, C_{2}, when the bandswiteh, S_{1}, is in the so-nurter position.

A pi-surtion tank is used in the plate circuit. r_{13} is the input condenser. The output capabitathere is insede up of a grotip of foar $375-\mu \mu \mathrm{f}$. variable condensers, (14 , ganged to a single control shaft, plus a $0.001-\mu$ f. fixed comdenser. © ${ }_{15}$. The thres positions of soprovide at mestas of elangitg the maximum capacitane in the cireuit over at wide range, for matching various low masistanes. The variable inductor, L_{13}, is a rotary moil taken
 3859 rotary coil has sufficient inductanee (15 mh, to he used as as substitute, although the coil requires somewhat greater spuce. L_{12} is at separate coil for 10 moters, L_{13} being turned so that it is shorted out on this band.
h_{2} and K_{2} (constitute a v.h.f. parasitic sup) pressor. The amplifer is neutralized low the rapacitive-bridge method, C_{6} being the meutralizing condenser. A 6 libe $^{\circ}$; clamper tulx is used in the sorren cirenit to reduce the input to the $81: 3$ to a safe

fig. o-z4-1:nd viaw al the 813 amplitier. showing the prideeireuit assembly and filanent transformers.
and all power leads are by-passed for v.h.f. as they enter the shielding enclosure. Meters are also similarly by-passed.

Construction

Thue comstruction of a shielding enclosure for the :mplifier is simplified by the use of standard aluminum chassis and chassis bottom plates. Two $8 \times 12 \times 3$-inch chassis, with their tops toward the inside, are used as the sides. They are fastemed to the $83 / 4$-inch relay-rack panel with the 8 -inch sides against the panel. The one at the left is phered with its outer edge $33 / 4$ inches from the end of the pand, while the one at the right is positioned with its outer edge $11 / 8$ inches from the right-hand end of the panel. This leaves an open space of $81 / 8$ inches between the two chassis.

Fig. 6.80 - Circuit of the 813 amplifier. Alt eapaeitanees below $0.001 \mu \mathrm{f}$, are in $\mu \mu \mathrm{f}$.
C_{1} - Air trimmer
(i2-0.025-inch plate spacing.
$\mathrm{C}_{3}, \mathrm{C}_{12}, \mathrm{C}_{15}-$ Mira.
$\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{2}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}$,

C_{6} - Veutralizing condenser (Iohnson V.250, 0.25. inch spacing).
(:13-0,070-inch plate spacing.
Cis - Four-sicrion variable kang, $37.4 \mu \mu$ f, per seretion, 0.025 -inch plate spacing.
H_{2} - live 680 -ohm I-watt carbon resistors in parallel, tapped across 3 turns of I_{11}.
$L_{1}-32$ lurns No. 24 enam., elose-wound, $3 / 4$-inch diam.
$1.2-3$ turns No. 2.2 hook-up wire over cold end of L_{1}, 1.3 - 20 (urns Vo, 20 enam., elese-wound, $8 / 4$-inch diam, L. 4 - 3 turns Vo. 22 hook-up wire over cold eml of L_{3}. If - 14 turns Vo. 20 enam, elose- wound, $5 / 8$-inch diam. 1.6-2 turns No. 29 hook-up wire over cold end of L_{55} $L_{-i}-10$ turns Vi. I 8 enam, $5 / 8$-inch long, $5 / 8$-inch diam. I.s - 2 turns No. 22 hooh-1p wire over cold end of l .

The loottom, top and rear are closed with aluminum plates that may be cut from chassis bottom plates if no other material is available. However, from the consideration of ventilation, perforated aluminum shect is preferable. If solid sheet is used, top, bottom and back should be drilled with several holes not larger than $1 / 4$ inch in diameter, particularly in the areas in the vicinity of the $81: 3$ tube. Cracks in the sholding, where the top and bottom covers meet the rear cover and panel, are avoided by the use of strips of aluminum angle attached to the panel and rear cover. The shiclding is completed by bottom covers to fit the two chassis.

The output condensers and the switch, N_{2}, are enclosed in the chassis to the right. The chassis at the left contains the grid coils, the bandswitch, S_{1}, and the two filament transformers, T_{1} and T_{2}.
$1,9-8$ turns No. 18 enam., $5 / 8$ ineh long, $5 / 8$-inch diam.
110-2 turns No. 22 homb-up wire over cold end of L_{9}.
1_{11} - I'arasitic suppressor- $51 / 2$ turns No. 11 , $1 / 4$-inch diam.
1,12-3 turns No. 10, $3 / 4$ inch long, $8 / 4$-inch diam.
1,13 - Variable inductor from $186-3.5$ ($25 \mu \mathrm{~h}$. max.) ${ }^{4}$ $\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coax connector.
$\mathrm{H}_{1}, \mathrm{H}_{3}$ - D, e, milliammeter, 2 -ineh.
H_{2} - A.c. voltmeter, 2 -inch.
$R F G_{1}-125$ ma.
R FC_{2} - National R-1:5A.
S_{1}-2-circuit 5 -position ceramic rotary switch (Centralat, lll wafer).
$\mathrm{S}_{2}-3$-position progressively-shorting ceramic rotary switch (Cientralab I'is wafer).
T_{1} - Filament transformer: 6.3 volts, 1.2 amp .
T_{2}-Filament transformer: 10 volts, 5 amp.
4 The I3 \& W type 3852 rotary coil ($1: 5 \mu \mathrm{~h}$.) has sufficient inductance to be used as a substitute, although it requires somewhat more space.

Nost of the remaining components are mounted in the main empartment at the center. The rotary inductor, L_{13}, and the pi-network input condenser, C 13 , are fastened to the panel. The latter is mounted on ceramie pillars. The only ground conmection is at the rear of the condenser, where the metal end plate is connected to the adjacent chassis with the shortest possible lead. This eliminates multiple paths to ground. Insulated flexible couplings are used between the shafts of the condenser and coil and their panel controls.

As shown in the bottom view of Fig. 6-81, the 813 is mounted toward the rear, and near the bottom of the right-hand chassis. The socket is supported on metal pillars to space it $1 / 2$ ineh from the chassis, and is so oriented that the filament will hie in a vertical plane. Grid, screen and filament wires are run through holes to the grid-

Fig. 6-81-In this view, the 813 amplifier has been turned upside down to show the horizontallymounted 813, and ©.13. The rotary inductor, L_{13}, is partially hidden. Also shown in the shielding compart. ment at the left is the ganged variable, Cis.

circuit compartment. Filament and sereen bypass condensers are grounded immediataly on the socket side of the enclosure.

The plate r.f. choke, $R F^{\prime} C_{2}$, and the noutralizing condenser, C_{6}, are mounted above the 813. as shown in the top view of Fig. 6-82. The plate by-pass, C_{11}, is mounted close to the base of the choke. The placement of the 6ybi elamper is also shown. The sorket is submounted with its terminals inside the grid-circuit compartment.

The three moters are mounted on the panch, one above the other, in the space to the left. All power wiring is done with shicded wire, and input and output connections are brought to coasial fittings at the rear of the two chassis.

The plate sparing of the pi-section input condenser, (${ }_{13}$, swould be adequate for a plate voltage of about 2000 for (\cdot, w. operation, or about 1000 volts with plate modulation, provided that the amplifier is fully loaded. Provision should be made for reducing voltage during pediminary tune-up, A $2.5-\mathrm{mh}$. r.f. choke (not shown in the (rirenit diagram) connereded aross (${ }_{14 \mathrm{~A}}$ is at procabution worth idding, since this, in eifect, removes the d.e plate voltage from aceross looth input and output condensers, thereloy decroasing

Fig. 6-82 - Looking down into the main compartment of the 813 amplifier, showing the placement of the pi-section components, neutralizing condenser, plate r f. choke, and the $61^{6} 6$ clamper tube.
any tendency for the condensers to are over.
The cireuit of the high-voltage supply shown in Pig. (i-88 should be suitaible for this amplifier, althongh a lower-voltage transformer may be used if desired. The sereen should be supplied through an extermal sorices resistor. The resistor should have a total resistance of 50,000 ohms (1.50 watts) and be equipqed with an adiustable slider so that it can be sot to give a sereen voltage of 350 or 400 under actuald operating conditions.

Adjustment

The amplifier is neatralized by applying exeitation, but no sereen or plate voltage, and then adjusting the meutralizing condenser, r_{6}, until the kiek in grid current ${ }_{2}$ as the plate remenit is thaned through resonancer, is brought te a minimum. Iater, when plate voltage and load are applied, the adjustment should be touched up so that the grid-eurront pook and the plate-current dip ocrur at the same sotting of C_{13}

Asmang that the amplifier will be loaded to the maximum rated plate current (200 ma a), the approximate eabaritane for the pi-section input condenser, ('13, for a () of 12 will deprend on the plate voltage. When the $81: 3$ is operated at 1000 volts, this capacitance slould be approximately $200 \mu \mu \mathrm{f}$. for $80,100 \mu \mu \mathrm{f}$. for 10, $50 \mu \mu \mathrm{f}$, ior 20,37 $\mu \mu$ f. for 15 , and $25 \mu \mu$. for 10 . For 1500 volts, the abproximate rapheritances should bo $140 \quad \mu \mu \mathrm{f}$. for $80,70 \mu \mu$ f. for $40,35 \mu \mu \mathrm{f}$. for $20,25 \mu \mu$ f. for 15 , and $18 \mu \mu \mathrm{f}$. for 10 . For 2000 volts, the input calpacitance should be $100 \mu \mu$ f. for $80,50 \mu \mu$ f. tor $40,25 \mu \mu$ f. for $20,19 \mu \mu$ f. for 15 , and $1: 3 \mu \mu$ i. for 10 . In case the $13 \&{ }^{W}$ coil is used, the maximum inductance should be used on 80 meters for plate voltages in exeres of 1000. and the circuit should be resonated with the condenser, C_{13}, alone. Since the caparitances listed above indude tube and other stray capacitinces, amounting to at least $25 \mu \mu \mathrm{f}$., C_{13} should be set at or near minimum for the higher frequencies, and the coil adjusted for resoniance.

The output caparitance should be adjusted for proper loading. Variation of the output capacitance will require readjustment of C_{13}, or L_{13}. (Originally described in QST, Nov., 1934.)

A High-Power Tetrode Amplifier

Figs. 6-83 through 6-88 show the construetion of a high-power tetrode amplifier covering all bands from 3.5 to 29 Ma. It is eapmble of being operated at an imput of 1 kw ., although it will oprate efliciently at less input.
The cireut is shown in Fige (i-81. The tube is the trpe $4-250 \mathrm{~A}$. I National tome MB-40L "all-hand" tank is used in the grid circuit. This direuit is a combination of inductance amd variable rondensers that may be tund to any of the above hands without switrhing or changing coils. A pi-sertion tank arreuit is used in the output. It is designed to feed into a flat an or ore-ohm line, either feeding an antema divertly or through a conventional antemat coupler. A 13 か W rollingtype variable inductance makes roil swith hing unnerosary in this cireuit also. L an a separate
 notwork output capacitance.
The amplifier is mentralized low the eapatitivebridge method. ("2 is the nent ralizing condenser. L_{1} and R_{1} form a w.h.f. parasitio-suppressor coircolit. The plate of the amplifier is parallel-fed through the sperial eif. rhoke, RFY"s. All power leads are filtered for v.h.f. hamoniss. B_{1} is a smabl eleetric blower reguired as an abl in dissipating the heat developed inside the shielding enelosure. KPG's is at safety choke to provide a d.er. path to gromad in case (2 - brake down. ()therwise, high voltage will appeatr on the output rable if the condenser fails.

Construction

The amplifier is assomblad on a standatal chassis, $17 \times 10 \times 3$ inches, with a $101 / 2$-inch patnel. The grid fumer is mounted in a sparate shielding enclosure at the right-hand end of the chassis in Fig. ($6-85$. This box is $3!$! inehes wide, 5 inches high and 7 inches deep), made of $\frac{1}{16}$-inch aluminum sheet. This same material is used throughout the construction. A coas litting at the rear of the grid-tuner box is the input eon-
nerotor. The grid and neutralizing leats pass through the side of the box into the large compartment. The construetional details of the latter may be seren in frig. 6-85. Theover-all dimensions of this section are $13^{3} \times 10 \times 51 / 8$ inches high. There-quartor-inch fanges are bent akong all four edges of the side pieces. The from and hack pieres have these lips only along the top edges, sinee they are made high enough to allow an overlap over the edge of the chatsis at the bot tom. All sides, exerpt the top, are fistoned together with 6 -32 sarews and muts. The top lid is fastened down bey tapping sarew holes along the lips aromed the top edges, and is porforated with 1/4-inch holes above the area of the tube.

It is important that the pieres for this enchosure fre mado ancurately so as to leave no gap at ang point. If neressary, the pioces can be made by a lowal sheret-metal worker.

The plate tank condenser is mounted centratly in the box, using sheet-aluminum brakets io spare it from the bottom. The eondenser is plated with its end phates running vertically, i.e., on its side. The variable inductance, L L3, is plated alongside the condenser with the small fixed coil, Las, mounted by fastening one cond to the forward right-hand terminal of the variable inductance and the other and to a lug under one of the re ur condenser-stator muts. A floxible strip of (opper comenets the reme coutput fitting to the rear cerminal of the variable eobl.
The output rontensors, exerpting ('s, are stacked up behind the variable eoil and the selector switch. S_{2}, is monuted on a small backet to the reat, so that a control shaft maty be run to the pand in betwern the tank roil and condenser. (r) is soldered directly arross the output eonmoctor. It maty be helpful to sories-resonate this eondenser at the frecpueney of a local TV station to minimize TVI. This can be done by adjusting the length of the condenser leads and cherking with a griededip oscillator, as deseribed in the

Fig. 6-8.3-1 hixh-puwer shindicel tetrode amplifier. The smatl enchesure at the left contains all all-tand tuner for the gride cirenit. The dial sear the ementer controls the inptit condenser of a pisection output tank, while the knob at the rixht is the control for al roller-type variable inductance. The swith below selects the proper output capacitance.

Fig. 6.84 - Cirenit diagram of the amplifier. The hroken line separates the above- and below-chassis wiring.
C_{1} - $220-\mu \mu \mathrm{f}$ d. mipa.
C_{2} - Dise-1ype neutralizing condenser, approx. $2 \mu \mu \mathrm{fd}$. with at least $1 / 4$-inch spacing (Vational NC: 800A).
$\mathrm{C}_{3}-150-\mu \mu \mathrm{fd}$. variable, 6000 volts, $0.1: 1$ ind - baring (Nalional TMA:150A).
$\mathrm{Ci}_{4}, \mathrm{C}_{5},\left(\mathrm{C}_{6}-100\right)-\mu \mu \mathrm{fd}$, mica, 2500 vols.
C:7, C.8 - 220 - μ ffd. mica, 2500 wols.
C.9, $\mathrm{C}_{10}-4=40-\mu \mu \mathrm{fd}$. miea, 25010 volis.
(S11 to C_{22}, inc. - $0.001-\mu \mathrm{fl}$. dise ceramie, foll whts.
C.23, (.24, C_{25}, $\mathrm{C}_{26}-0.005-\mu \mathrm{fl}$. dise ceramic, $6(1)$ volts. (:27, C.28, ($\mathrm{C}_{29}-500-\mu \mu \mathrm{fd}$. cerantie, 10,100) volts (Cientralab'T\ 3-501).
H_{1} - line $\mathbf{6 8 0}$-ohm I-watt parhon resistors in parallal.
\mathbf{l}_{1} - Parasitic poil, $51 / 2$ turns Xo. 14, $1 / 4$-inch diam. R_{1} tapped across 3 turns.
$1.2-5$ urrss Ko. 10, $21 / 2$ inches fomk, $11 / 2$-inch diam. L_{3} - Variable inductor, 15 нh. man. (13 \& 16 3852).
ehapter on TVI. At the lower TV frequencies, the condenser lead can be formed into a small coil of a turn or so.
$\mathrm{RF}^{\prime} \mathrm{C}_{4}$, is plated to the rear of the tank condonser. To be effective on all bands, including the 21-Mc. band, it is neressary to alter the windings slightly, as shown in Fig. 6-86. (Type 175 A , without alteration, may be substituted.) It is in good idea to cherk the choke for resonanees with a grid-dip oscillator after it has been placed in the prosition it is to occupy, but bofore it his been wired in, because proximity to surrounding components and shiclding may affect the resonances. Performance of the choke will he poor at any frequency where the g.d.o. shows a resonance with the terminals of the choke short-circuiterd.

The tube socket is mounted above the chassis on spacers that are just long enough so that the shielded wires going to the screen and filament terminals, with their by-pass condensers, just span the distance between the socket terminals and lugs fastened to the chassis below earh terminal. The lead then immediately passes through the chassis. Strips of copper sheet connect the plate terminal of the tube to the top terminal of the plate choke and the rotor terminal of the neutralizing condenser mounted on the righthand wall of the enclosure, as shown in Fig.
$1_{4}-$ IO series-resonate with Cis at desired TV freguency.
B_{1} - Blower and motor, 11.5 v . ace (availatle from Dlied Radio, (hicako, catalog No, i2-i02 motor and i2-:03 fan).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coasial eomectors, chassis-mounting type. M. I_{1} - 0.50 ma. d.e. milliammeter.
 RFO is not supplied with the National WB-10I. multiband anit).
RHC_{4} - National type R-15. choke modified as shown in rig. (6.111.
RHCs, RFGif - $2-\mu$ h. r.f. cloke, 500 ma. (National 11-60).
S_{1} - Single-circuit 7 -1osition ceramic switch, progressive shorting (Centralab, type l'ats wafer).

(6-102. The strips should be fitted carefully so as to avoid placing any strain on the eap terminal of the tube. The filament transformer is fastened down in the forward right-hand eorner. Power terminals are lined up along the rear edge of the chatsis. All ref. grounds should be made directly to the chassis with the shortest possible lead length - even a half inch is worth saving.

Underneath, the d.c. and a.ce, leads come out in shichled wire. A $0.001-\mu \mathrm{fl}$. dise ceramic by-pass is used across looth ends of each lead exeepting the high-voltage lead (see TVI chapter for method of comection). The high-voltage lead is by-passed with TV filter eapacitors. $R F C_{6}$ is installed close to the high-voltage terminal. C_{20}, C_{25}, C_{26} and C_{29} likewise are fastened direetly to the power terminals where the leads leave the chassis. The shielding of the power leads is grounded to the chassis by soldering to lugs wherever they pass through the chassis. The power wires are intentionally made to follow long paths around the edge of the chassis to provide additionat harmonic attenuation. The braid is grounded at frequent intervals by soldering to lugs that also serve as hold-downs.

The blower is mounted on a bracket formed from a strip of aluminum. Air is foreed through a set of holes in the chassis that duplicate in
size and arrangement the holes in the $4-250 \mathrm{~A}$ socket. The filament-transformer terminals projeet through clearance holes drilled in the chassis, and the four v.h.f. by-pass condensers, C_{21}, C_{22}, C_{23} and C_{24}, are connerted directly from the terminals to grounding lugs.

Adjustment

The diagram of a suitable power supply for this amplifier is shown in lig. 6-88. With 150 volts bias, a grid current of about 25 ma . is optimum, although the plate efficiency will change but little with any gride eurrent between 15 and 30 ma. The single fixed link provided with the grid tuner will not provide uniform loading of the driver stage with coax input, so means should be provided in the output cirruit of the driver for varying the coupling.

Optimum sereen voltage is about 400 and the screen current should run between 50 and 75 ma., depending on the plate voltage used. At 2750 volts, a full kilowatt ean be rum to the amplifier, but it will work well at plate voltages as low as 1500, with a plate current of 350 ma .

It is important that the coaxial line into which the amplifier works be closely matched (see trans-mission-line (hapter) at its terminating end, otherwise there is danger of damage to the mira output condensers. To protect the contarts on the variable inductance, adjustments should be made with lith or no power input to the amplifier. Experienee will show where the tap should be

Fig. 6-86 - The R-175 choke as modified to work on all amateur bands in the $3.5-$ to $30-\mathrm{Me}$. range, inchading 21 Mc .
placed for each hand and thereafter it can be preset before applying full power. When reducing plate voltage, provision should also be made for reducing screen voltage, since otherwise the screen eurrent may run to dangerous proportions.

It is advisable to set the tank condenser so as to operate the output circuit at a Q in the neighborhood of 12, as shown in the graph of Fig. 6-9, although it may not be possible to attain this figure at the extremes of the tuning range.

Fig. 6-85-Interior of the shielding compartment housing the $4-2.50 \mathrm{~A}$ and its output circuit. The nentralizing condenser and filament transformer may be seen in the forward right-hand corner.

Fig. 6-87- Buttom view of the high-power tetrode atlphifier, showing the small ventilating fan and the shicleded power niring, No botomm mate on the chassis is neressary.

The ncutralizing condenser should be adjusted for minimum reaction on the grid current under artual operating conditions. The approximate setting can be determined by the use of a grid-dip, oscillator tuned to the operating frequency. All voltages should be removed and the g.d.o. coupled to the plate tank circuit. The neutralizing condenser should be adjusted for minimum r.f. in the grid tank circuit when both tanks are tuned to resonance. R.f. in the grid circuit c:m the cheoked with the aid of an indicating wavemeter of the type described in the measurements
chapter. Final touching up can be done after cherking the operation with voltages applied to the tube. In connertion with the neutralizing circuit, the value of ${ }^{(}{ }_{1}$ is fairly critional, but a caparitance within usual tolerance of the marked value should be satisfartory:

In: adjusting the loading on the amplifier, increasing the output capacitance, or inereasing the inductance, or both, while maintaining resonance with the tank eondenser, will reduce the loading and vice versa.
(Originally described in (SST, Oet. 19.52.)

Fig. 6-88-Cireuit diagram of a power-supply system for the highpower trirnde amplifier.
$\mathrm{C}_{1}-8$ - ff . 450-solt cleetrolytie. $\mathrm{C}_{2}, \mathrm{Ci}_{3}-4-\mu \mathrm{fd}$. (0)()-volt clectrolytic. $\mathrm{C}_{4}-2-\mu \mathrm{ff}$. wil-filled, voltage rating same as transformer r.mis. $\mathrm{C}_{5}-4-\mu \mathrm{fd}$. oil-filled, voltage rating same as transformer r.m.s. $R_{1}-25,(000$ ohms, 25 watts. $\mathrm{R}_{2}-25,0000$ ohme, 50 watts. $\mathrm{R}_{3}-\mathbf{5 0 , 0 0 0}$ ohms, 50 watts. $R_{4}, R_{5}-25,000$ ohms, 100 watts. I. - 30-ly. 50 -ma. filter chohe. 1.2-5/25-hy. 150 -ma. swinging. 1.3-20-hy. 150-ma. smoothing. 14-5/25-hy. 500 -ma. swinging. 1.5-20.hy. 500 -11a, smoothing. It - 115-volt lamp of suitable size to reduce voltage for thme-up. $S_{1}-20$-atmp. s.p.s.1. switeh.
$\mathrm{S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}-15$-amp, s.p.s.t. switch.
S_{5} - Ceramic s.p.s.t. rotary switch.
$\mathrm{T}_{1}, \mathrm{~T}_{3}$ - f"ilament transformer: 5 volts, 3 amp.
T_{2} - Plate transformer: 400 volts d.c., 150 ma.
T_{4} - Filament transformer: 2.5 volts, 10 amp., 10,000 -volt insulation.
$\mathrm{T}_{5}-$ Plate transformer: up to 2750 volts d.r-, 350 ma.
VR - VR-150.30.

S_{1} turns on all filaments and the bias supply. S_{2} turns on the screen supply and S_{3} the high-voltage supply. With S_{4} open, a 115 volt lamp is inserted in series with the high-voltage-transformer primary to lower plate voltage for adjustment. Opening S_{s} likewise reduces screen voltage. With all switches except S_{2} closed, S_{2}
becomes the main eontrol switch. The tap on R_{3} should lee adjusted to give the desired screen voltage under operating conditions with S_{5} closed. Bias is obtained from the parallel-connected $5 \mathrm{Z3}$ half-wave rectifier. The tap on R_{1} should be adjusted until the VR tube just ignites without excitation to the amplifier.

Parallel Tetrodes in a High-Power Amplifier

Figs. 6-89 through 6-93 show constructional details and wiring diagrams of a high-power amplifier for a pair of $4-125$ is in parallel. It covers all bands from 80 through 10 meters, and plug-in coils are not used.

The circuit of the amplifier is shown in Fig. (6 - 90 . A National M1B-40-I multiband tuner is used in the grid circuit. This tuner covers all bands without coil ehanging. It may be replaced by the later-model MB-40-SL with little, if any, rearrangement of components. L_{1}, L_{2} and L_{3}, with their shunting resistors, are v.h.f. parasitic suppressors. L_{3} consists of $41 / 2$ turns of No. 14 wire wound around a Globar resistor. These units have a resistance of between 20 and 50 ohms, and are obtainable from any General Electric television-parts supplier.
larallel plate feed and a pi-sertion tank are used in the output circuit. ('12 is the input condenser. The variable inductor, L_{4}, is a Johnson type $226-3$ rotary coil having a maximum inductance of $13.5 \mu \mathrm{~h}$. A combination of a $500-\mu \mu \mathrm{f}$. variable condenser, ('13, and condensers (${ }_{14}, C^{\prime}{ }^{15}$ and C_{16}, comected in paralled by \aleph_{2}, gives a range of output capacitance up to $2000 \mu \mu$ f.

The amplifier is neutralized by the capacitivebridge method. The value of C_{1} is fairly critieal, since it dietates the capacitance range over which C_{10}, the adjustable neutralizing condenser, must work. RPC ${ }_{3}$, in effeet, removes the d.e. voltage from the input and output condensers.
L_{5} and C_{27} will not always be neeessary, but. when advisable, they ean be series-resonated to a local TV ehamel to further the reduction of harmonics on that channel.

All bias, filament, and plate-supply leads are
v.h.f.-filtered, and all power wiring is done with shielded wire to reduce harmonic radiation.

A blower is included to provide ventilation. Meters are included for reading grid current and plate current.
The input and output circuits are well shielded from each other to keep coupling to a mininum, and all power leads are shielded and terminate in a shiehled compartment housing the v.h.f. filter components for the bias, screen-voltage and highvoltage leads. The meters are mounted on panels that insulate them, and are shielded with 4×4 $\times 2$-inch aluminum boxes, and the openings in the panel are rimmed with National chart frames.

The screen lead is brought out to a separate terminal so that the builder can use the system he chooses for applying voltage to it. If the amplifier is going to be used primarily for c.w. operation, a separate low-voltage screen supply seems logiesal, since the tubes can then be protereted simply by the use of sufficient fixed bias to limit the input. With this sort of supply, however, it is important not to apply sereen voltage and excitation in the absence of plate voltage, becatase the sereen current will run to excessive proportions, with danger of ruining the tube. For this reason, it is a good idea to have a sereen supply delivering a voltage somewhat higher than the screen operating voltage, and use a dropping resistor in series with the sercen. This will tend to limit the sereen current in case of failure of the plate supply.

Construction

The construction illustrated in the photographs permits short connecting leads, yet there is no

Fig. 6-89 - Front view showing the panel layout. Controls along the bottom are S_{2} (coarse conpling), filament switch and grid-tuning. Shove the window are the controls for Ciz (fine couplings) and plate tuning. lketween the meters is the counter dial on lif. The input and output connectors are atong the lef 1 drop of the ehassis. The bole in the center of the perforated top cover is for ancess to Cobo. "The ehrome strips eover the 6-32 machine sorews that fasten the angle to the panel. Jational (:F chart frames are used to cover the neter openings, and one is plared between the plate and output controls to use as a tuning ehart. The lotton of $R P C ; 2$ shows thetween the tule bases, through the sereened opening.

Fig. 6-90 - Circuit of the parallel-tetrode amplifier.

> II capacitances less than 0.001 are in $\mu \mu$ f. C_{1} - Mica.
> $\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{55}, \mathrm{C}_{6}, \mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}, \mathrm{C}_{25}, \mathrm{C}_{26}$ - JOO_{0}-volt dish ceramie.

> ceramies in parallel if serten voltage from platedropping resistor; 500 -volt dish ceramic for 350 100-voli sereen supply.
> (.10-1.4-10.6 $\mu \mu \mathrm{f} ., 11 \mathrm{ks}$. (Johnson V-250).
> ($11, C_{14}, C_{25}, C_{10},\left(17, C_{18,}\right.$ (.28-I'V doorknol, ceramic.
> (is2 - Johnson 1501) (90, 2000-volt rating.
> Cis - Johnson $500 \mathrm{~F}, 20,9(\mathrm{O})($-volt rating.
> C.27-Sectext.
> l.f, $\mathrm{L}_{2}-4$ turns No. 14 on l-watt 100 -ohm resistor.
need for erowding components. Although solid aluminum sheet was used for the enclosure, perforated sheet is preferred if it is available, since it will afford better ventilation.

The amplifier is laid out on a $13 \times 17 \times 4$-inch chassis, using a standard 19×19-inch panel. The chassis is placed with the 13 -inch edge against the panel. All the paint is removed from the back of the panel to afford a good bond to the chassis and enclosure. Framework for the enclosure is made from $3 / 4 \times 3 / 4 \times 1 / 8-\mathrm{inch}$ aluminum angle. A 16 -foot length of angle will be just enough for the job. Two pieces of $3 / 4 \times 1 / 4 \times$ $1 / 8$-inch channel will also be needed to support the variable inductor. These can be seen in the top-view photograph.

The panel is laid out with the outer edges of the two meter openings spaced 3 inches from the top and $4 \frac{1}{4}$ inches in from the edges. The counterdial assembly for the rotary inductor is mounted in the center of the panel, with the hole for the shaft $6 \frac{1}{4}$ inches from the top. Two $3 / 8$-inch holes are drilled for the plate-tuning and fine-coupling
l. 3 - See text.
1.4-13.5-4h. rotary inductor (Johnson 226-3).

1s - See text.
Blower - Newark Filectric 28F996 motor, 28F997 fan; or Allied Radio 72 P 702 motor, 72 Pro3 fan.
M1s-40-I. - National multiband tuner (see text).
$\mathrm{RFC}_{1}, \mathrm{RFC}-$ - National $\mathrm{R}-100 \mathrm{~S}$.
RFC C_{2} - National R-175A.
V.h.f. filter rhohes - \quad iرh. (0 hmite $\mathrm{Z}-50$).
s_{1} - Toggle:
S_{2} - Ceramie rotary.
T_{1} - Filament transformer: 5 volts, 12 amp. (Merit P2912).
condensers, $51 / 4$ inches in from the edges and 9 inches from the top. An 8×3-inch opening is cut, with the bottom edge $43 / 4$ inches from the bottom of the panel. Three $3 / 4$-inch holes are spaced $21 / 2$ inches from the bottom of the chassis, for the coarse-coupling, grid-tuning and the filamentswiteh controls. The tube sookets are mounted 2 inches behind the opening with the grid torminals to the rear. The $\mathbf{M 1 3}-40-\mathrm{L}$ is mounted on $3 / 4$-inch cone stand-offs directly behind the tube sockets. The shaft is connected through a Johnson insulated coupling and National right-angle drive to the front control knol. A $3 / 4$-inch cone stand-off is placed between the grid terminals as a tie point for the parasitic chokes and grid-tuner lead. The filament transformer and a cooling fan are placed in a line behind the grid tank, and a 3 -inch hole is cut in the rear drop of the chassis behind the fan and covered with copper screen. S_{2} and C_{14}, C_{15} and C_{16} are mounted on a $4 \times 4 \times 4$-inch Irshaped shield placed in the rear left-hand corner in the bottom view. The switch shaft is connected to the front control knob with a length of $1 / 4$-inch

Fig. 6.91-Top view showing the chassis laymut. The two meter-shichd lowes are seen at the bottom of the photograph with the counter-dial mechanism letween them. C_{12} is to the right, the rotary inturtor in the center, and Cis in upper left. C_{10} is in fromt of C_{13} and just to the left of the rotary inductor The tops of the two tubes ean just be seen on the bottom ecnter of the chassis. The flater r.f. chohe, RFli, is between the tubes and slighty to the rear, hidden by the front end plate of the rotary ecoil frame.
\bullet

rod. A $6 \times 2 \times 4$ inch shield is placed in the opposite corner surrounding the line-filter componcnts, Two four-terminal Millen curamie strips are mounted buck to buck to supply tie points for the Z-50 chokes and filter by-pass condensers in the power leads.

The tube sorkets should be wired carefully, using ats short leads as possible. The filament terminals :ury bonnected together with strips of flashing copper, one strip laid flat, and the other plawed in a vertiest presition. The filtment by-pase condenates fom he comberted with prati-

Fig. 6-92-13ottom view show. ink under-chassis layout. The tulbe sorhets are top center shawing the mathod of connection and by-passing, The prid tanh is in the eenter of the chassis with ite drive shaft going to the rikh. The filament transformer is loottom center, and the cooling fan just below it. It the lower left is s_{2} and its atserciated condensers and shield !omsing. At the lower rikht is the shied containing all incom-nu-lead filters.
cally no lead length. The four sereen terminals will be in a line and can be vory conveniently connected together with a strip of copper. Four by-pass condensers are used on the serean strip, one at cach terminab, and the sereen-voltage lead is soldered to the exaed ementer of the strip.

All of the shichded leads are run in the fold of the rhassis, and are held down with solder lugs. A $3 / 4$-inch ceramic feed-through is plated in the lower left-hand corner of the chatsis (bottom view) to bring the output lead through the rhassis to S_{2} and the output ronnector. A short piece of coas is run from the input connector to the link on the MI3-40-I, A $3 / 8$-ineh coramic feed-through is placed near the neutralizing eondenser to bring a lead through to C_{1} and the eenter tap on the MB-40-I.

Adjustment

Fig. 6-93 is the cirruit of asuitable power supply:
Before any high voltages are applied, the amplifier should be neutralized. This can be done by using a fixed resistor of approximately 7000 ohms for grid bias, and r.f. applied to the grids with the grid tank tuned to resonance. The input should be adjusted to give 20 ma . of grid current. A gridedip meter or indicating wavemeter is coupled to the rotary coil, and the circuit tuned to resonance. This should not be hard to find berause there will be r.f. in the output eireuit at resonance. C_{10} should now be adjusted to bring this r.f. to a minimum. If a minimum cannot be
reached in the normal range of C_{10}, the value of C_{1} should be changed to bring neutralization midway in the range of C_{10}. At this point, a dummy load can be connected to the output, and reduced plates and screen voltages applied. A check should be made now for parasitie oscillations. If any are found, they will probably be in the v.h.f. range, and adjustment of L_{3} should get rid of them.

When it is reasomably sure that the rig is stabilized, full voltage can be applied and the final tests carried out.

The $4-125.1 s$ should be run at about 2500 volts for the best average tank Q for l-kw. input. The imput rondenser and coil will have to be set very close to maximum for 80 . The condenser should be set close to minimum for 14 Me. and higher. For 7 Me. it should be set at approximately half eapacitance. In each of theso cases, the coil should be adjusted to resonate after the condenser has been set. The output catparitance then should be adjusted to give proper loading, maintaining resonance with the coil. The input condenser may also be used to reëstablish resonance as the output capacitanee is changed, provided its setting does not depart appreciably from the one suggested above. A wavermeter should be used to make sure that the circuit is tuned up on the desired band. An antenna tuning unit of some sort is strongly recommended with this amplifier unless the line impedance is very low.
(Originally deseribed in QST for August, 1954.)

Fig. 6.93- Cirruit diagram of a poner-supuly system for the high. power tetrode amplifier.
(1 - $8-\mu \mathrm{fd}$. 450)-volt elertrolytic. (:2, C3-4- 4 fl. 600 -volt elertrolyic. (i4-2-pfid, oil-filled, voltage rating mame as transformer r.m.s.
(is-i- ffl, wil-filled, wiltage rating same as transformer r.m.s.
$\mathrm{R}_{1}-25,000$ ohms, 25 walts.
$\mathrm{R}_{2}-25,000$ ohms, 50 watts.
$\mathrm{H}_{3}-\mathbf{5 0 , 0 0 0}$ ohms, 50 watts.
$R_{4}, R_{5}-25,000$ ohms, 100 watts.
I.1 - 30-hy. 50-ma. filter choke.
$1.2-5 / 25-h y .150$ ma. swinging.
I. 3 - 20-hy. 150 -ma. smoothing.
$I_{4}-5 / 25-h y .500-\mathrm{ma}$. swinging.
I/5 - 20-hy. 500 -ma. smonthing.
$1_{1}-115$-volit lamp of suitable size to reduce voltage for tune-up.
s_{1} - 20-amp. s.p.s.t. snitch.
$\mathrm{s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}-15$-amp. s.p.s.t. switch. s_{5} - Ceramic s.p.s.t. rotary switeh. $\mathrm{I}_{1}, \mathrm{~T}_{3}$ - F volts, 3 amp.
${ }^{\prime}{ }^{\prime}$ '2-1'late Iransformer: 40) volts d.c., 100 ma.

I'4 - Filament transformer: 2.5 wolts, 10 amp., I 0,000 -volt insulation.
'T's - I'late transformer: 2500 volts d.c., 500 ma .

VR-VR-150-30.

S_{1} turns on all filaments and the bias supply. S_{2} turns on the screen supply and S_{3} the high-voltage supply. With S_{4} open, a ll5-volt lamp is inserted in series with the highovoltage-transformer primary to lower plate voltage for adjustment. Opening sis lihewise reduces screen voltage. With all switches except S_{2} closed, S_{2}
becomes the main control switch. The tap on R_{3} should be adjusted to give the desired sereen voltage under operating conditions with S_{5} elosed. Bias is obtained from the paralleloronnected $5 /: 3$ half-wave rectifier. The tap on R_{1} should be adjusted until the VR tube just ignites without excitation to the amplifier.

Power Supplies

Fssentially pure direct-current plate supply is required to prevent serious hum in the output of receivers, speech amplifiers, modulators and transmitters. In the case of transmitters, d.e. plate supply is also dictated by government regulation.

The filaments of tubes in a transmitter or modulator usually may be operated from a.c. However, the filament power for tubes in a receiver (excopting power audio tubes), or those in a speech amplifier may be a.ce. only if the tubes are of the indi-rectly-heated-cathode type, if hum is to lee avoided.

Wherever commercial a.c. lines are availahle, high-voltage d.c. plato supply is most cheaply and conveniontly obtained by the use of a transformer-rectifier-filter system. An example of such a system is shown in Fig. 7-1.

In this circuit, the plate transformor, T_{1}, steps up the a.c. line voltage to the required high voltage. The a.e. is changed to pulsating d.c. by the rectificrs. V_{1} and V_{2}. I'ulsations in the d.e appearing at the output of the rectifier (points A and B) are smoothed out by the filter composed of L_{1} and C_{1}, R_{1} is a bleeder resistor. Its chiof function is to discharge C_{1}, as a safety measure, after the supply is turned off. By proper selection of value, \boldsymbol{R}_{1}
also helps to minimize changes in output voltage with changes in the amount of current drawn from the supply. T2 is a step-down transformer to provide filament voltage for the rectifier tubes. It must have sufficient insulation between the

Fig. 7.1-A typical transformer-rectifierfilter system. In this instance the circuit is that of a full-wave rectifier with a chokeinput filter.

Rectifier Circuits

Half-Wave Rectifier

lig. 7-2 shows three rectifier circuits covering most of the common applications in amateur equipment. Fig. $7-2.1$ is the circuit of a half-wave rectifier. During that half of the a.c. cyrle when the rectifier plate is positive with respect to the cathode (or filament), current will flow through the rectifier and load. But during the other half of the cycle, when the plate is negative with respect to the cathode, no current can flow. The shape of the output wave is shown in (A) at the right. It shows that the current always flows in the same direction but that the flow of current is not continuous and is pulsating in amplitude.
The average output voltage - the voltage read by the usual d.e. voltmoter - with this circuit is $0 .+5$ times the r.m.s. value of the a.e. voltage delivered by the transformer seeondary. Beause the frequency of the pulses in the output wave is relatively low (one pulsation per cycle), considerable filtering is required to
provide adequately smooth d.c. output, and for this reason this circuit is usually limited to applications where the current involved is small, such as in supplies for cathode-ray tubes and for protertive bias in a transmitter.

Another disadvantage of the half-wave rectifier cirruit is that the transformer must have a considerably higher primary volt-ampere rating (approximately to per cent greater), for the same d.c. power output, than in other rectifier circuits.

Full-Wave Center-Tap Rectifier

The most universally-used rectifier circuit is shown in lig. 7-2B. Being essentially an arrangement in which the outputs of two halfwave rectifiers are combined, it makes use of both halves of the a.c. cycle. A transformer with a conter-tapped secondary is required with the circuit. When the plate of V_{1} is positive, current flows through the load to the center-tap. Current cannot flow through V_{2} because at this
instant its cathode (or filament) is positive in respect to its plate. When the polarity reverses, V_{2} conducts and current again flows through the load to the center-tap, this time through V_{2}.

The average output voltage is 0.45 times the r.m.s. voltage of the entire trans-former-secondary, or 0.9 times the voltage aeross half of the transformer secondary. For the same total secondary voltage, the average output voltage is the same as that delivered with a half-wave rectifier. However, as ean be seen from the sketehes of the output waveform in (B) to the right, the frequency of the output pulses is twice that of the half-wave rectifier. Therefore much less filtering is required. Since the rectifiers work alternately, each handles half of the average load current. Therefore the load-current rating of each rectifier need be only half the total load current drawn from the supply.

Two separate transformers, with their primaries connected in parallel and secondaries connected in series (with the proper polarity) may be used in this circuit. However, if this substitution is made, the primary volt-ampere rating must be reduced to about 40 per cent less than twice the rating of one transformer.

Full-Wave Bridge Rectifier

Another full-wave rectifier circuit is shown in Fig. 7-2C. In this arrangement, two rectifiers operate in series on each half of the cycle, one rectifier being in the lead to the load, the other being in the return lead. Over that portion of the cycle when the upper end of the transformer secondary is positive with respect to the other end, current flows through V_{1}, through the load and thence through V_{2}. Iuring this period current cannot flow through rectifier V_{4} because its plate is negative with respect to its cathode (or filament). ()ver the other half of the cycle, current flows through V_{3}, through the load and thence through V_{4}. Three filament transformers
are needed - one for V_{1} and V_{3} and one each for V_{2} and V_{4}. The output waveshape (C), to the right, is the same as that from the simple center-tap rectifier circuit. The ouptut voltage obtainable with this circuit is 0.9 times the r.m.s. voltage delivered by the transformer secondary. For the same total transformersecondary voltage, the average output voltage when using the bridge rectifier will be twice that obtainable with the center-tap rectifice rircuit. However, when comparing rectifier circuits for use with the same transformer, it should be remembered that the power which a given transformer will handle remains the same regardless of the rectifier circuit used. If the output voltage is doubled by substituting the bridge circuit for the center-tap rectifier cireuit, only half the rated load current can be taken from the transformer without exceeding its normal rating. Wach rectifier in a bridge eireuit should have a minimum load-current rating of one half the total load current to be drawn from the supply.

Rectifiers

Cold-Cathode Rectifiers

Tube rectifiers fall into three general classifieations as to type. The cold-cathode type is a diode which requires no cathode heating. Certain types will handle up to 350 ma. at 200 volts d.e. output. The internal drop in most types lies between 60 and 90 volts. Rectifiers of this kind are
produced in both half-wave (single-diode) and full-wave (double-diode) types.

High.Vacuum Rectifiers

High-vacuum rectifiers depend entirely upon the thermionic emission from a heated filament and are characterized by a relatively high
internal resistance. For this reason, their application usually is limited to low power, although there are a fow types designed for medium and high power in cases where the relatively high internal voltage drop may be tolerated. This high internal resistance makes them less susceptible to damage from temporary overload and they are free from the bothersome electrical noise sometimes associated with other types of rectifiers.
some rectifiers of the high-vacuum full-wave type in the so-called receiver-tube class will handle up to $2 \overline{50} 0$ ma. at $f(0)$ to $5(0)$ volts d.e. output. Those in the higher-power elass can be used to handle up to 500 ma . at 2000 volts d.c. in fullwave circuits. Most low-power high-varuum rectifiers are produced in the full-wave type, while those for greater power are invariably of the halfwave type, two tubes being required for a fullwave reetifier circuit. A few of the lower-voltage topes have indireetly heated cathodes, but are limited in heater-to-rathode voltage rating.

Mercury-Vapor Rectifiers

In mercury-vapor rectifiers the internal resistance is reduced by the introduction of a small amount of mereury which vaporizes under the heat of the filament, the vapor ionizing upon the application of voltage. The voltage drop through a rectifier of this type is practically constant at approximately 15 volts regardless of the load current. For high power they have the advantage of cheapness. Rectifiers of this type, however, have a tendency toward a type of oscillation which produces noise in near-hy receivers, sometimes diflicult to eliminate. R.f. filtering in the primary circuit and at the rectifier plates as well as shielding maty be required.

As with high-vacuum rectifiers, full-wave types are available in the lower-power ratings only. For higher power, two tubes are required in a fullwave circuit.

Selenium Rectifiers

Sclenium rectifiers are available which make it possible to design a power supply capable of delivering up to 400 or 450 volts, 200 ma. These units have the advantages of compactness, low internal voltage drop (about 5 volts), and the fact that no filament transformer is needed. However, to limit the charging current with condenser input, a resistance of 25 to 100 ohms should be used in series with the rectifier. They may be substituted in any of the basic circuits shown in Fig. 7-2, the terminal marked "+" or "cathode" corresponding to the filament in these circuits. ('ircuits in which the selenium rectifier is particularly adaptable are shown later in lrigs. 7-20 through $7-22$. Since they develop little heat if operated within their ratings, they are esperially suitable for use in equipment requiring minimum temperature variation.

Typical ratings are listed in the tube tables.

Rectifier Ratings

Vacuum-tube rectifiers are subject to limitations as to breakdown voltage and current-han-
dling capability. Some types are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier plate. This is sometimes dependent on whether a choke- or condenserinput filter is used. Others, particularly mercuryvapor types, are rated according to maximum inverse peak voltage - the prak voltage between plate and cathode while the tube is not conducting. In the circuits of Fig. $7-2$, the inverse peak voltage auross each rectifier is 1.4 times the r.m.s. value of the voltage delivered by the entire transformer secondary.

All reetifier tubes are rated also as to maximum d.e. load current and many, in addition, carry peak-eurrent ratings, all of which should be carefully observed to assure normal tube life. With a condenser-input filter, the prak current may run several times the d.e. curront, while with a chokeinput filter the peak value may not run more than a few per cent above the d.c. load current.

Operation of Rectifiers

In operating rectifiers requiring filament or eathode heating, care should be taken to provide the correet filament voltage at the tube terminals. Low filament voltage can cause excessive voltage drop in high-vacuum rectifiers and a considerable roduction in the inverse peak-voltage rating of a mercury-vapor tube. Filament connections to the rectifier socket should be firmly soldered, partieularly in the case of the larger mercury-vapor tubes whose filaments operate at low voltage and high current. The socket should be selected with care, not only as to contart surface but also as to insulation, since the filament usually is at full output voltage to ground. Bakelite sockets will serve at voltages up to $\overline{5}(0)$ or so, but ceramic sockets, well spaced from the chassis, always should be used at the highor voltanges. Special filament transformers with high-voltage insulation between primary and secondary are required for rectifiers operating at potentials in excess of 10 ()O volts inverse peak.

The rectifier tubes should be placed in the equipment with adequate space surrounding them

Fig. 7-3-Connecting mercury-vapor rectifiers in parallel for heavier currents. K_{1} and K_{2} should have the same value, between 50 and 100 ohms , and corresponding filament terminals should be connected together.
to provide for ventilation. When mercury-vapor tubes are first placed in service, and each time after the mercury has been disturbed, as by removal from the socket to a horizontal position, they should be run with filament voltage only for 30 minutes before applying high voltage. After
that, a delay of 30 seconds is recommended each time the filgment is turned on.

Rectifiers.may he connected in parallel for current higher than the rated current of a single unit. This includes the use of the sections of a
double diode for this purpose. Equalizing resistors of 50 to 100 ohms should be connected in series with each plate, as shown in Fig. $7-3$, to help maintain an equal division of current hetween the two rectifiers, with mercury-vapor types.

Filters

The pulsating d.c. waves from the rectifiers shown in Fig. 7-2 are not sufficiently constant in amplitude to prevent hum corresponding to the pulsations. Filters consisting of capacitances and inductances are required between the reetifier and the load to smooth out the pulsations to an essentially eonstant d.c. voltage. Also, upon the design of the filter depends to a large extent the vollaye regulation of the power supply and the maximum load current that can be drawn from the supply without exceeding the peak-voltage rating of the rectifier.

Power-supply filters fall into two classifications, depending upon whether the first filter element following the rectifier is a condenser or a choke. Condenser-imput filters are ehatacterized by relatively high output voltage in respeet to the transformer voltage, but poor voltage regulation. Choke-input filters result in much better regulattion, when properly desigmed, hut the output voltage is less than would be obtained with a condenser-input filter from the same transformer.

Voltage Regulation

The output voltage of a power supply always decreases as more current is drawn, not only because of increased voltage drops in the transformer, filter chokes and the rectifier (if highvacuum rectifiers are used) but also because the output voltage at light loads tends to soar to the peak value of the transformor voltage as a result of charging the first condenser. By proper filter design the latter effect can be eliminated. The change in output voltage with load is called voltage regulation and is expressed as a percentage.

$$
\text { Per cent regulation }=\frac{100\left(E_{1}-E_{2}\right)}{E_{2}}
$$

Example: No-load voltage $=E_{1}=1550$ volts.
Full-load voltage $=E_{2}=1230$ volts.
Percentage regulation $=\frac{100(1550-1230)}{1230}$

$$
=\frac{32,000}{1230}=26 \text { per cent. }
$$

Regulation may be as great ats 100% or more with a condenser-input filter, but by proper design cain be held to 20% or less with a choke-input filter.

Good regulation is desirable if the load current varies during operation, as in a keved stage or a Class 13 modulator, because a large change in voltage may increase the tendency toward key clicks in the former case or distortion in the latter. On the other hand, a steady load, such as is represented by a receiver, speech amplifier or unkeyed stages in a transmitter, does not require good regulation so long as the proper voltage is obtained under load conditions. Another con-
sideration that makes good voltage regulation desirable is that the filter condensers must have a voltage rating safe for the highest value to which the voltage will soar when the external load is removed.

When essentially constant voltage, regardless of eurrent variation is required (for stabilizing an oscillator, for example), special voltage-regulating circuits described elsewhere in this chapter are used.

Load Resistance

In discussing the performance of power-supply filters, it is convenient to express the load connected to the output terminals of the supply in terms of resistance. The load resistance is equal to the output voltage divided hy the total current drawn, including the current drawn by the bleeder resistor.

Input Resistance

The sum of the transformer-winding resistance and the rectifier resistance is called the input resistance.

Bleeder

A bleder resistor is a resistance conneeted across the output terminals of the power supply (see Fig. 7-1). Its functions are to diseharge the filter condensers as a safety measure when the power is turned off and to improve voltage regulation by providing a minimum load resistance. When voltage regulation is not of importance, the resistance may be as high as low ohms per volt. The resistance value to be used for voltageregulating purposes is diseussed in later sections. From the consideration of safety, the power rating of the resistor should be as conservative as possible, since a burned-out bleeder resistor is more dangerous than none at all!

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can be considered to be the resultant of an alternating current superimposed upon a steady direct current. From this viewpoint, the filter may be considered to consist of shunting condensers which short-cireuit the a.c. component while not interfering with the flow of the d.c. component, and series chokes which pass d.c. readily but which impede the flow of the a.c. component.

The alternating component is called the ripple. The effectiveness of the filter can be expressed in terms of per cent ripple, which is the ratio of the r.m.s. vaiue of the ripple to the d.c. value in terms of percentage. For c.w. transmitters, a reduction of the ripple to 5 per cent is considered adequate.

The ripple in the output of power supplies for voice transmitters and VFOs should he reduced to 0.25 per cent or less. High-gain speech amplifiers and receivers may require a reduction to as low as 0.1 per cent.

Ripple frequency is the frequency of the pulsations in the rectifier output wave - the number of pulsations per second. The frequency of the ripple with half-wave rectifiers is the same as the frequency of the line supply - 60 cycles with $60-$ cycle supply. Since the output pulses are doubled with a full-wave rectifier, the ripple frequency is doubled - to 120 cycles with (i0-cycle supply.

The amount of filtering (values of inductance and capacitance) required to give adequate smoothing depends upon the ripple frequency, more filtering being required as the ripple freguency is lower.

CONDENSER-INPUT FILTERS

Condenser-input filter systems are shown in Fig. 7-4. Disregarding voltage drops in the chokes, all have the same characteristics except

Fig. 7-4-Condenser-input filter circuits. A - Simple eondenser. B - Single-section. C - Double-section.
in respect to ripple. Better ripple reduction will be obtained when $L C$ sections are added, as shown in Figs. 7-413 and C.

Output Voltage

To determine the approximate d.c. voltage output when a condenser-input filter is used, reference should be made to the graph of Fig. 7-5.

[^4]

Fig. 7-5 - Chart showing approximate ratio of d.c. output voltage across filter input condenser to transformer r.m.s, secondary voltage for different losad and input resistances.

From Fig. 7-5, for a load resistance of 2000 ohms and an input resistance of 200 ohms, the d.c. output voltage is given as slightly over 1 times the transformer r.m.s. voltage, or aloout 350 volts.

Regulation

If a bleeder resistance of $50,000 \mathrm{ohms}$ is used, the d.c. output voltage, as shown in Fig. 7-5, will rise to about 1.35 times the transformer r.m.s. value, or about 470 volts, when the external load is removed. For greater accuracy, the voltage drops through the input resistance and the resistance of the chokes should be subtracted from the values determined ahove. For hest regulation with a condenser-input filter, the bleder resistance should be as low as possible without exceeding the transformer, rectifier or choke ratings when the external load is romerted.

Maximum Rectifier Current

The maximum load current that can be drawn from a supply with a condenser-input without exceeding the peak-current rating of the rectifier may be estimated from the graph of Fig. 7-6. I'sing values from the preceding example, the ratio of peak rectifier current to d.c. load current for 2000 ohms, as shown in Fig. 7 - (; is 3. Therefore, the maximum load current that can be drawn without exceeding the rectifier rating is $1 / 3$ the peak rating of the rectifier. For a load current of 175 ma ., as above, the rectifier peak current rating should be at least $3 \times 175=525 \mathrm{ma}$.

With bleeder current only, Fig. 7-6 shows that

Fig. 7-6-Craph showing the relationship between the d.e. load current and the rectifier peah plate current with condenser input for various values of load and input resistance.
the ratio will increase to over 8 . Jut since the bleeder draws less than 10 ma. d.c., the rectifier peak current will be only 90 ma. or less.

Ripple Filtering

The approximate ripple percentage after the simple condenser filter of Fig. 7-4A may be determined from Fig. 7-7. With a load resistance of 2000 ohms, for instance, the ripple will be approximately 10% with an $8-\mu \mathrm{fd}$. condenser or 20% with a $4-\mu$ fd. condenser. For other capari-

Fip. 7-7 - Showing approximate 120-cycle percentage ripple across filter input condenser for various loads.
tances, the ripple will be in inverse preportion to the capacitance, e.g., 5% with $16 \mu \mathrm{fd} ., 40 \%$ with $2 \mu \mathrm{fd}$., etc.

The ripple can be reduced further by the addition of $L C$ sections as shown in Figs. $7-4 \mathrm{~B}$ and C. Fig. 7-8 shows the factor ly which the ripple from any preceding section is reduced depenting on the product of the capacitance and inductance added. For instance, if a section composed of a choke of 5 hy. and a condenser of $4 \mu \mathrm{fd}$. were to be added to the simple condenser of Fig. $7-4 \mathrm{~A}$, the product is $4 \times 5=20$. Fig. $7-8$ shows that the original ripple (10% as above with $8 \mu \mathrm{fd}$. for example) will be reduced by a factor of ahout 0.08 . Therefore the ripple percentage after the new section will be

Fig. 7-8 - Ripple-reduction factor for various values of I and Cin filter section. Output ripple $=$ input ripple \times ripple fuctor.
approximately $0.08 \times 10=0.8 \%$. If another section is added to the filter, its reduction factor from Fig. 7-8 will be applied to the 0.8% from the preceding section, ete.

- CHOKE-INPUT FILTERS

Much better voltage regulation results when a choke-input filter, as shown in Fig. 7-9, is used. Choke input also permits better utilization of the rectifier, since a higher load current usually can be drawn without exceeding the peak current rating of the rectifier.

If the first choke has a value equal to or greater than

$$
L_{(\mathrm{hy} .)}=\frac{\text { Load resistance }(\text { ohms })}{1000}
$$

the output voltage will not soar above the average value of the rectified wave at the input of the choke when the load current is small. This is in contrast to the performance of the condenserinput filter where the output voltage tends to soar toward the peak value at light current loads. This value of inductance is known as the critical value.

If the first choke has a value equal to or greater than

$$
L_{(\mathrm{hy} .)}=\frac{\text { Loall resistance (ohms) }}{500}
$$

the peak rectifier current will not exceed the d.e. load current by more than 10 per cent when the

Fig. 7.9 - Choke-input filter circuits. A - Single-section. B-1 boutbir-section.
load eurrent is large. This is in eontrast to the condenser-input filter where the peak reetifier current maty run 2 to 5 times the d.e. load current. This value of imluctance is known as the optimum value.

Both of the above conditions will usually be satisfied for all values of load current drawn from the supply if the choke has at least the eritical value of inductance for the minimum current load (usually the bleder resistance only) and does not fall below the optimum value for the greatest current load to be drawn.
Specially-designed input ehokes, called swinging chokes, are available. These chokes are usually rated in terms of maximum d.e. current and the range of inductance over which they are designed to "swing" with different load eurrents. For instance, a choke may have a rating of 5 to $25 \mathrm{~h} \cdot ., 250 \mathrm{ma}$. This means that the inductance is $\overline{5}$ hy. with 250 ma. d.e. flowing through it.

From the formula for optimum inductance, 5 hy. is optimum for a minimum load resistance of $5 \times 5(0)=25(0)$ ohms. (At 250 mat, this resistance means a minimum voltage of $2500 \times(0.250$ $=\mathbf{6} 25$ volts - at higher voltages than (i25, at the same current, the resulting load resistance will be higher. Therefore, the choke will have at least optimum inductaner for all higher voltages.)

Bleeder Resistance

Also, 25 hy . is the critical inductance for $25 \times 1000=25,000$ ohms. Therefore the bleeder resistance should be not greater than 25,000 ohms.

In the ease of supplies for higher voltages in particular, the limitation on maximum load resistance tnay result in the wasting of an appreciable portion of the transformer power capacity in the bleeder resistance. Two input chokes in series will permit the use of a bleeder of twice the resistance, cutting the wasted eurrent in half, Another alternative that can be used in a e.w.
transmitter is to use a very high-resistance blecder for protective purposes and only sufficient fixed bias on the tubes operating from the supply to bring the total current drawn from the supply, when the key is open, to the value of eurrent that the required bleeder resistance should draw from the supply. Operating bias is brought back up to normal by increasing the grid-leak resistance. Thus the entire eurrent eaparity of the supply (with the exeeption of the small drain of the protective bleeder) can be used in operating the transmitter stages. With this system, it is advisable to operate the tubes at 'phone, rather than c.w., rating, sinee the average dissipation is increased.

Output Voltage

Provided the input-choke inductance is at least the critical value, the output voltage may be calculated quite closely by the following equation:

$$
L_{\mathrm{o}}=0.9 L_{\mathrm{t}}-\frac{\left(I_{\mathrm{B}}+I_{\mathrm{t}}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{\mathrm{r}}
$$

where E_{0} is the output voltage; l_{i}^{\prime} is the r.m.s. voltage applied to the rectifier (r.m.s. voltage betwern center-tap and one end of the secondary in the case of the eenter-tip rectifier); I_{B} and I_{1}, are the bleeder and load eurrents, respectively, in milliamperes; R_{1} and R_{2} are the resistances of the first and serond filter ehokes; and E_{r} is the drop between rectifier plate and rathode. The various voltage drops are shown in Fig. 7-11. At noload I_{1}, is zero, hence the no-load voltage may he caleulated on the basis of bleeder eurrent only. The voltage regulation may be determined from the no-load and full-load voltages using the formula previously given.

Ripple with Choke Input

The pereentage ripple output from a singleseetion filter (Fig. 7-9A) may be determined to

Fig. 7-10 - Graph showing combinations of inductance and capacitance that may be used to reduce ripple with a single-section choke-input filter.
a close approximation, for a ripple frequency of 120 cycles, from Fig. 7-10.

Example: $L=5 \mathrm{~h} ., C=4 \mu \mathrm{fd} ., L C=20$.
From Fig. 7-10, pereentage ripple $=5$ per cent.
Example: $L=5$ hy. What eapacitance is needed to reduce the ripple to 1 per cent? Following the 1 -per-cent line to the right to its intersection with the diagonal, thence downward to the $L C$ seale, read $L C=100.100 / 5=$ $20 \mu \mathrm{fd}$.

In selecting values for the first filter section, the inductance of the choke should be determined by the considerations discussed previously. Then the condenser should be selerted that when combined with the choke indurtance (minimum inductance in the case of a swinging choke) will bring the ripple down to the desired value. If it is found impossible to bring the ripple down to the desired figure with practical values in a single section, a second section can be added, as shown in Fig. 7-913 and the reduction factor from Fig. 7-8 applied as discussed undor condenser-input filters. The second choke should not be of the swinging type, but one having a more or less constant inductance with changes in current.

OUTPUT CONDENSER

If the supply is intended for use with an audio-frequency amplificr, the reactance of the last filter condenser should be small (20 per eent or less) compared with the other audiofrequency resistance or impedance in the circuit, usually the tube plate resistance and load resistance. On the basis of a lower a.f. limit of 100 cycles for speech amplification, this condition usually is satisfied when the output capacitance (last filter capacitor) of the filter has a capacitance of 4 to $8 \mu \mathrm{fd}$., the higher value of eaparitance leing used in the case of lower tube and load resistances.

RESONANCE

Resonance effects in the series circuit across the output of the rectifier which is formed by the first choke (L_{1}) and first filter condenser $\left(C_{1}\right)$ must be avoided, since the ripple voltage would build up to large values. This not only is the opposite action to that for which the filter is intended, but also may cause excewive rectifier peak currents and abnormally-high inverse peak voltages. For full-wave rectification the ripple frequency will be 120 cycles for a 60 -cyele supply, and resonance will occur when the product of choke inductance in henrys times condenser capacitance in microfarads is equal to 1.77. The corresponding figure for $50-c y c l e$ supply (100-cycle ripple frequency) is 2.53 , and for 25 -cycle supply (50-cyele ripple frequency) 13. s . At least twice these products of inductance and capacitance should be used to ensure against resonance effects. With a swinging choke, the minimum rated inductance of the choke should be used.

RATINGS OF FILTER COMPONENTS

Although filter condensers in a choke-input filter are subjected to smaller variations in d.c. voltage than in the condenser-input filter, it is advisable to use condensers rated for the pak transformer voltage in case the bleeder resistor should burn out when there is no load on the power supply, since the voltage then will rise to the same maximum value as it would with a filter of the condenser-input type.

In a condenser-input filter, the condensers should have a working-voltage rating at least as high, and preferably somewhat higher, than the peak-voltage rating of the transformer. Thus, in the case of a centor-tap rectifier having a transformer delivering 550 volts each side of the center-tap, the minimum safe condenser voltage rating will be 550×1.41 or 775 volts. An 800 -volt condenser should be used, or preferably a 1000 -volt unit.

Filter condensers are made in several different types. Whectrolytic condensers, which are available for peak voltages up to about 800 , combine high capacitance with small size, since the diclectric is an extremely-thin film of oxide on aluminum foil. Condensers of this type maty be connected in series for higher voltages, although the filtering capacitance will be reduced to the resultant of the two capacitances in series. If this arrangement is used, it is important that each of the condensers be shunted with a resistor of about 100 ohms per volt of supply voltage, with a power rating adequate for the total resistor current at that voltage. These resistors may serve as all or part of the bleder resistance (see choke-input filters). Condensers with highervoltage ratings usually are made with a dielectric; of thin paper impregnanted with oil. The working voltage of a condenser is the voltage that it will withstand continuously.

The input choke may be of the swinging type, the required minimum no-load and full-load inductance values being calculated as deseribed above. For the second choke (smoothing choke) values of 10 to 20 henrys ordinarily are used. Since chokes usually are placed in the poritive leads, the negative being grounded, the windings should be insulated from the core to withstand the full d.c. output voltage of the supply and be capable of handling the required load current.

Filter chokes or inductances are wound on iron cores, with a small gap in the core to prevent magnetic saturation of the iron at high currents. When the iron becomes saturated its permeability deareases, consequently the inductance also decreases. Despite the air gap, the inductance of a choke usually varios to some extent with the direct current flowing in the winding; hence it is necessary to specify the inductance at the current which the choke is intended to carry. Its inductance with little or no direct current flowing in the winding may be considerably higher than the value when full load current is flowing.

Plate and Filament Transformers

Output Voltage

The output voltage which the plate transformer must deliver depends upon the required d.e. load voltage and the type of filter circuit.

With a choke-input filter, the reguired r.m.s. secondary voltage (ach side of center-tap) for a center-tap rectifier) can be calculated by the equation:

$$
E_{\mathrm{t}}=1.1\left[E_{\mathrm{o}}+\frac{l\left(R_{1}+R_{2}\right)}{1000}+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.c. output voltage, I is the load current (including bleoder current) in milliamperes, R_{1} and R_{2} are the d.e. resistances of the chokes, and E_{r}^{2} is the voltage drop in the rectifier. E_{t} is the full-load r.m.s. secondary voltage; the open-circuit voltage usually will be 5 to 10 per cent higher than the fult-load value.

The approximate transformer output voltage required to give a desired d.c. output voltage

Fig. 7-11-Diagram showing various voltage drops that must he taken into consideration in determining the required Iransformer voltage to deliver the desired output voltage.
with a given load with a condenser-input filter system can be calculated with the holp of Fig. 7-11.

Example:
Required d.c. output volts - 500
Load current to be drawn - 100 ma.

$$
\text { Load resistance }=\frac{500}{0.1}=5000 \text { ohms. }
$$

If the rectifer resistance is 200 ohms, Fig. $7: 5$ shows that the ratio of d.c. volts to the required transformer r.m.s. voltage is approximately 1.1%.

The reouired transformer terminal voltage

$$
\text { mender loud with chokes of } 200 \text { and } 300 \text { ohms is }
$$

$$
\begin{aligned}
E_{\mathbf{t}} & =\frac{E_{\mathbf{0}}+I\left(\frac{R_{1}+R_{2}+R_{r}}{1000}\right)}{1.15} \\
& =\frac{500+100\left(\frac{200+300+200}{1000}\right)}{1.15} \\
& =\frac{570}{1.15}=495 \text { volts. }
\end{aligned}
$$

Volt-Ampere Rating

The volt-ampere rating of the transformer depends upon the type of filter (condenser or choke input). With a condenser-input filter the heating effect in the secondary is higher because
of the high ratio of peak to average current, consequently the volt-imperes consumed by the transformer may be several times the watts delivered to the load. With a choke-input filter, provided the input choke has at least the critical inductance, the secondary volt-amperes can be calculated quite closely by the equation:

$$
\text { Sec. } V^{\prime} . A=0.00075 E I
$$

where E is the total r.m.s. voltage of the secondary (between the outside ends in the case of a center-tapped winding) and I is the d.e. output current in milliamperes (load current phas bleeder current). The primary volt-amperes will be 10 to 20 per cent higher because of transformer losses.

Filament Supply

Except for tubes designed for battery operation, the filaments or heaters of vacuum tubes used in both transmitters and recoivers are universally operated on alternating current obtained from the power line through a stepdown transformer delivering a secondary voltage equal to the rated voltage of the tubes used. The transformer should be designed to carry the current taken by the number of tubes which may be connected in parallel across it. The filament or heater transformer generally is center-tapped, to provide a balanced circuit for eliminating hum.

For medium- and high-power r.f. stages of transmitters, and for high-power audio stages, it is desirable to use a separate filament transformer for each section of the transmitter, installed near the tube sockets. This avoids the necessity for abnormally large wires to carry the total filament current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, especially with thoriated-filament tubes, since under- or over-voltage may reduce filament life.

Rewinding Filament Transformers

Although the home winding of high-voltage transformers is a task that few amateurs undertake these days, the rewinding of a smalltransformer secondary to give some desired filament voltage is not difficult. It involves a matter of only a small number of turns and the wire is large enough to be handled easily. Often a broadeast-receiver power transformer with a burned-out high-voltage winding, but with the primary winding intact, can be converted into an entirely satisfactory filament transformer without great effort.

The primary volt-ampere rating of a transformer to be rewound may be taken from the label on the transformer or from the manufacturer's catalogue. This will indicate whether or not the transformer will be capable of handling the necessary power. The secondary volt-ampere
rating will be ten to twenty pre cent less than the primary rating. The product of the voltage and the number of amperes required from the new filament winding, plus that for any other secondaries that may be kept in use, should not exced the secondary volt-ampere rating, unless the buider is willing to accept a lower safety factor.

Before disconnecting the winding leads from their terminals, each should be marked for identification. In removing the core laminations, care should be taken to note the manner in which the core is assembled, so that the roassembling will be done in the same manner. Some transformers have secondaries wound over the primary, while in others the order is reversed. In case the serondaries are on the inside, the turns can be pulled out from the center after slitting and removing the fiber core.
The turns removed from one of the original filament windings of known voltage should be carefully counted as the winding is removed. This will give the number of turns per volt and the same figure should be used in determining the number of turns for the new secondary. For instance, if the old filament winding was rated at 5 volts and has 20 turns, this is $20 / 5=$ 4 turns per volt. If the new secondary is to deliver 7.5 volts, the required number of turns on the new winding will be $7.5 \times 4=30$ turns.

In winding a transformer, the size of wire is an important factor in the heat developed in operation. A cross-sectional area of 1000 eircular
mils per ampere is conservative. A value commonly used in amateur-service transformers is $7(0)$ e.m.p.a. The windings of some of the lessexpensive broadeast-receiver transformers may run as low as 500 e.m.p.a. The larger the e.m.p.a. figure, the cooler the transformer will run. The current rating in amperes of each wire size shown in the miscrellaneous data chapter at 1000 (c.m.p.a. may be obtained by pointing off three derimal plares from the right in the figures in the third column. Similar ratings at 700 c.m.pat are given in a separate column. Ratings at $500 \mathrm{c} . \mathrm{m} . \mathrm{p} \cdot \mathrm{a}$. will be twice the current rating at 1000 e.m.p.a. As an example, No. 18 has a current rating of 1.62 amperes at 1000 c.m.pa., 2.32 amperes at 700 (.m.p.a., or 3.25 amperes at 500 c.m.p.a. If the transformer being rewound is a filament transformer, it may be necessary to choose the wire size carefully to fit the small available space. On the other hand, if the transformer is a power unit, with the high-voltage winding removed, there should be plenty of room for a size of wire that will conservatively handle the required current.

The insulation to be used between the primary and secondary windings (and also between the secondary winding and the core if the secondary is on the inside) will depend on whether the transformer is to be used to supply r.f. tubes or rectifier tubes in a high-voltage supply. A fow layers of linen paper should be sufficient for the former service, but insulating cambric sheet should be used if the voltage between primary and secondary runs over 1000 volts

Voltage Dropping

Series Voltage-Dropping Resistor

Certain plates and sereens of the various tubes in a transmitter or recciver often require a variety of operating voltages differing from the out put voltage of a vailable power supplies. In most cases, it is not economically feasible to provide a separate power supply for each of the required voltages. If the current drawn by an electrode, or combination of clectrodes operating at the same voltage, is reasonably constant under normal operating conditions, the required voltage may be obtained from a supply of higher voltage by means of a voltagedropping resistor in series, as shown in Fig. 7-12A. The value of the series resistor, h_{1}, may be obtained from Ohm's Law, $R=\frac{E_{\mathrm{d}}}{I}$, where E_{8} is the voltage drop required from the supply voltage to the desired voltage and I is the total rated current of the load.

Example: The plate of the tube in one stage and the screens of the tubes in two other stages
repuire an operating voltage of 250 . The nearest require an operating voltage of 250 . The nearest available supply voltage is 400 and the total of the rated plate and screen currents is $\overline{5} \mathrm{ma}$. The
required resistance is required resistance is

$$
R=\frac{400-250}{0.075}=\frac{1.50}{0.075}=2000 \mathrm{ohms}
$$

The power rating of the resistor is obtained from P (watts) $=I^{2} R=(0.075)^{2}(2000)=11.2$ watts. A 25 -watt resistor is the nearest safe rating to be used,

Voltage Dividers

The regulation of the voltage obtained in this manner obviously is poor, since any change in current through the resistor will cause a di-rectly-proportional change in the voltage drop arross the resistor. The regulation can be improved somewhat by connecting a second resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. 7-12B. Such an arrangement constitutes a voltage divider. The second resistor, R_{2}, acts as a constant load for the first, R_{1}, so that any variation in current from the tap becomes a smaller percentage of the total current through R_{1}. The heavier the current drawn by the resistors when they alone are connected across the supply, the better will be the voltage regulation at the tap.
such a voltage divider may have more than a single tap for the purpose of obtaining more than one value of voltage. A typical arrangement is shown in Fig. 7-12(\% The terminal voltage is E, and two taps are provided to give

Fig. 7-12 - A - Series voltage-dropping resintor. BSimple voltage divider. C. - Multiple divider circonit.

$$
R_{3}=\frac{E_{1}}{I_{\mathrm{b}}} ; R_{4}=\frac{I_{2}-I_{1}}{I_{\mathrm{b}}+I_{1}} ; R_{5}=\frac{V_{1}-I_{2}}{I_{\mathrm{b}}+I_{1}+I_{2}}
$$

lower voltages, E_{1} and E_{2}, at currents I_{1} and I_{2} respectively. The smaller the resistance between taps in proportion to the total resistance, the smaller the voltage between the taps. For convenience, the voltage divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carries only the blecder current, $I_{\mathrm{b}} ; R_{4}$ carries I_{1} in addition to $I_{6} ; R_{5}$ carries I_{2}, I_{1} and I_{6}. To calculate the resistances required, a bleder current, I_{b}, must be assumed; generally it is low

compared with the total load current (10 per cent or so). Then the required values can be calculated as shown in lig. 7-12C, I being in decimal parts of an amperes.

The method may be extended to any desired number of taps, each resistance section being calculated by Ohm's law using the needed voltage drop across it and the total current through it. The power dissipated by each section may be calculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequent need for maintaining the voltage applied to a low-voltage low-current circuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gaseous regulator tubes (V1R10530, V12150-30, etc.) can be used to good advantage. The voltage drop across such tubes is constant over a moderately wide current range. Tubes are available for regulated voltages near $150,105,90$ and 75 volts.

The fundamental circuit for a gaseous regulator is shown in Fig. $7-13 \mathrm{~A}$. The tube is con-

Fig. 7.13 - Voltage-stabilizing circuits using VII tubes.
nected in series with a limiting resistor, K_{1}, across a source of voltage that must be ligher than the starting voltage. The starting voltage is about 30 per cent higher than the operating voltage. The load is connected in parallel with the tube. For stable operation, a minimum tube current of 5 to 10 ma , is re-
quired. The maximum permissible current with most types is 40 ma.; consequently, the load current camot exceed 30 to 35 ma . if the voltage is to be stabilized over a range from zero to maximum load current.

The value of the limiting resistor must he between that which just permits minimum tube current to flow and that which just passes the maximum permissible tube current when there is no load current. 'The latter value is gencrally used. It is given by the equation:

$$
R=\frac{1000\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

Where R is the limiting resistance in ohms, E_{s} is the voltage of the source across which the tule and resistor are connected, E_{r} is the rated voltage drop across the regulator tube, and I is the maximum tube current in milliamperes (usually 10 ma .).

Fig. 7-1313 shows how two tubes may be used in series to give a higher regulated voltage than is obtainable with one, and also to give two values of regulated voltage. The limiting resistor may be calculated as above, using the sum of the voltage drops across the two tubes for E_{r}. Since the upper tube must carry inore current than the lower, the load connerted to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not exceed 30 to 35 milliamperes.

Fig. 7-14 - Electronic voltage-regulator circuit.
$\mathrm{C}_{1}-0.1-\mu$ fil. 400 -volt paper.
$R_{1}-160$-ohm 10 -watt potentiometer (halance).
$\mathrm{R}_{2}, \mathrm{H}_{5}-12,000$ ohms, 2 watts.
$\mathrm{R}_{3}, \mathrm{R}_{4}-0.47$ megohm, $1 / 2$ watt.
$R_{6}-68,000$ ohms, 1 watt.
$\mathrm{R}_{7}-\mathrm{L}, 000$ ohme, 2 watts.
$\mathrm{R}_{8}-10,000-o h m$ potentiometer (output control).
$R_{9}-1$ megohm, $1 / 2$ watt.

Voltage regulation of the order of 1 per cent can be obtained with these regulator circuits.

A single V'R tube may also be used to regulate the voltage to a load current of almost any value so long as the variation in the current does not exceed 30 to 35 ma . If, for example, the atverage load current is 100 ma., a VlR tube may the used to hold the voltage constant provided the current does not fall below 85 ma . or rise above 115 ma. In this case, the resistance should be calculated to drop the voltage to the VR-tube rating at the maximum load current to be expected plus about 5 ma . If the load resistance is constant, the effects of variations in line voltage may be eliminated by basing the resistance on the load current plus 15 ma . Voltage-regulator tubes may also be comected in parallel as deseribed later in this chapter.

Electronic Voltage Regulation

Several circuits have been developed for regulating the voltage output of a power supply electronically. While more complicated than the VRtube circuits, they will handle higher voltages and currents and the output voltage may be varied continuously over a wide range. In the circuit of Fig. $7-11$, the 5651 regulator tube supplies the grid (4) of the $6 \mathrm{SL}, 7$ with a constant reference voltage. When the load connected across the output terminals increases, the output voltage tends to decrease. This derreases the plate (o) voltage. Since grid (1) is connected directly to plate (i), grid (1) becomos less positive and that triode draws loss plate current. The voltage drop across R_{3} being less, the bias on the grids of the 6.AS7 G is reduced, decreasing the voltage drop across the

Fir. 7-15 - Cirenit diagram of an electronically-regulated power supply rated at 300 volts max.. 150 ma. max.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{5}-16-\mu \mathrm{fd}$, 6(0)-volt electrolytic.
C: $\mathrm{C}_{3}-0.015-\mu \mathrm{fl}$. paper.
$\mathrm{C}_{4}-\mathrm{O} . \mathrm{I}-\mu \mathrm{fid}$, paper.
$\mathbb{K}_{1}-0.3$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{3}-100$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-510$ ohm=, $1 / 2$ watt.
$R_{5}, R_{8}-30,(10)$ ohmon, 2 wats.
$\mathrm{N}_{6}-0.24$ mesolim, $1 / 2$ watt.
$\mathbf{R}_{7}-0.15$ megolim, $1 / 2$ watt.
$1 \mathrm{R}, 9100$ ohms, 1 watt.
Ilso - 0.1 -megolim potentionncter.
I B_{11} - 43 , (000 olims, $1 / 2$ watt.
$I_{1}-8-h y ., 40$-ina, filter choke.
S_{1} - S.b.s.t. toggle.
T_{1} - Hower transformer: 375-375 volts r.m.s., 160 ma.: 6.3 volts, 3 ampes. 5 volts. 3 amps.
(Thor. $2: 1133$).

Table of Performance for Circuit of Fig. 7-15			
I	II	[II	Output voltage - 300
450 v .	22 ma.	3 mv .	$150 \mathrm{ma}, \quad 2,3 \mathrm{mv}$.
425 v .	45 ma .	4 mv.	125 ma. 2.8 nuv.
$400 \times$.	72 ma.	6 mv .	100 ma .2 .6 mv .
3.5	9^{7} ma.	${ }_{8}^{8} \mathrm{mv}$.	75 ma. $\quad \frac{5}{5} \mathrm{~s}$ mv.
350 v .	12: ma.	9.5 mv.	50 ma. 3.0 nıv.
$325 \sim$ 。	150) ma.	3 mv	$25 \mathrm{ma}$.3.0 mv .
300 v.	150 ma.	2.3 mv .	10 ma .2 .5 mv .

6AS7G and thereby maintaining the original output voltage.
For a maximum regulated voltage output of 250 , the filtered d.c. input voltage should the 325 volts at 225 mat. lior a constant line voltare the output voltage will remain constant within 0.2 volt over a load-eurrent range of 0 to 225 ma . With a line-voltage variation of plus or minus 10
per cent, the output voltage will vary less than 0.1 volt.

Another similar regulator circuit is shown in Fig. $\overline{-15}$. The principal difference is that sereengrid regulator tubes are used. The fact that a screen-grid tuhe is relatively insensitive to changes in plate voltage makes it possible to ontain a roduction in ripple voltage adequate for many purposes simply by supplying filtered d.c. to the screens with a consequent saving in weight and cost. The accompanying table shows the performance of the circuit of Fig, 7-15. Column I shows various output voltages, while Column 11 shows the maximum current that can be drawn at that voltage with negligible variation in output voltage. Column III shows the measured ripple at the maximum current. The second part of the table shows the variation in ripple with load current at 300 volts output.

Bias Supplies

As discussed in the chapter on high-frequency transmitters, the chief function of a bias supply for the r.f. stages of a transmitter is that of providing protective bias, although under certain

Fig. 7.16 - Simple hias-supply circuits. In A, the peak transformer voltage must not exceed the operating value of bias. 'The circuits of B (half-wave) and C (full-wave) may be used to reduce transformer voltage to the rectifier. R_{1} is the recommended grid-leak reaistance.
circumstances, a bias supply, or pack, as it is sometimes called, can provide the operating bias if desired.

Simple Bias Packs

Fig. 7-16A shows the diagram of a simple bias supply. R_{1} should be the recommended grid leak for the amplifier tube. No grid leak should be used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid current is not flowing, should be some value between the bias required for plate-current cut-off and the recommended operating bias for the amplifier tube. The transformer peak voltage (1.4 times the r.m.s. value) should not exceed the recommended operating-bias value, otherwise the output voltage of the pack will soar above the oprating-bias value with rated grid current.

This soaring can be reduced to a considerable extent by the use of a voltage divider across the transformer secondary, as shown at 13. Such a system can he used whon the transformer voltage is higher than the operating-hias value. The tap on R_{2} should be adjusted to give amplifier cut-off bits at the output terminals. The lower the total value of R_{2}, the loss the soaring will be when grid current flows.

A full-wave cirenit is shown in Fig. $7-16 \mathrm{C} . R_{3}$ and R_{4} should have the same total resistance and the taps should be adjusted symmetrically. In all cases, the transtormer must be designed to furnish the current drawn by these resistors plus the current drawn by R_{1}.

Regulated Bias Supplies

The inconvenience of the circuits shown in Fig. $7-16$ and the difficulty of predicting valucs in practical application can be avoided in most cases by the use of gaseous voltageregulator tubes across the output of the bias supply, as shown in Fig. 7-17A. A VR tube with a voltage rating anywhere between the

Fig. 7.17 - Illustrating the use of VR tubes in stabiliz. ing protective-fias supplies. R_{1} is a resistor whose value is adjusted to limit the current through each Vif tube to 5 ma. before amplifier exeitation is applied. K and h_{2} are current-equalizing resistors of 50 to 1000 ohms.
biasing-voltage value which will reduce the input to the amplifier to a safe level when excitation is removed, and the operating value of bias, should be chosen. R_{1} is adjusted, without amplifior excitation, until the Vl? tube ignites and draws about 5 ma. Additional voltage to bring the bias up to the operating value when excitation is applied can be obtained from a grid leak resistor, as discussed in the transmitter chapter.

Wach VIR tube will handle 40 ma. of grid current. If the gried current exceeds this value under any condition, similar VR tubes should be added in parablel, as shown in lig. 7-17B, for each 40 ma., or less, of additional grid current. The resistors R_{2} are for the purpose of helping to maintain equal currents through each V'R tube, and should have a value of 50 to 1000 ohms or more as required.

If the voltage rating of a single VlR tube is not sufficiently high for the purpose, other ViR tubes may be used in series (or series-parallel if required to satisfy grid-current requirements) as shown in the diagrams of Fig, 7-17C and D.

Fig. 7.18- Circuit diagram of an electronically-regulated bias supply. $\mathrm{C}_{1}-20-\mu \mathrm{f}_{1} \mathrm{I}$. 4.20-valt electrolytic. $\quad \mathrm{R}_{7}-0.1$-megohan potentioneter. $\mathrm{C}_{2}-20-\mu \mathrm{fd}$. 150 -volt electrolytic. $\mathrm{R}_{1}-5000$ ohms, 25 watts. $\mathrm{R}_{2}-22,000$ ohmes, $1 / 2$ watt. $11_{3}-68,000$ olims, $1 / 2$ watt. $\mathrm{R}_{4}-0.27$ megohm, $1 / 2$ watt. $\mathrm{R}_{5}-30100$ ohme, 5 watts. \mathbf{R}_{C} - 0.12 megohm, $1 / 2$ watt.
$\mathrm{R}_{8}-27,000$ ohms, $1 / 2$ watt.
L_{1} - 20-hy. 50-ma, filter clioke.
T_{1} - Power transformer: 350 volts r.m.s. each side of center, 50 ma.; 5 volts, 2 amp.; 6.3 volts, 3 amp .
in Fig. 7-17E, to adapt them to the needs of each stage.

Providing the Vil-tube current rating is not exceeded, a series arrangement may be tapped for lower voltage, as shown at F.

The circuit diagram of an electronicallyregulated bias-supply is shown in Fig. 7-18. The output voltage may be adjusted to any value between 20 volts and 80 volts and the unit will handle grid currents up to 200 ma. over the range of 30 to 80 volts, and 100 ma . over the remainder of the range. This will take care of the bias requirements of most tubes used in Class IS amplifier service. The regulation will hold to about 0.001 volt per milliampere of grid current.

Other Sources of Biasing Voltage

In some cases, it may be convenient to obtain the biasing voltage from a soure other than a separate supply. A half-wave rectifier may be connected with reversed polarization to obtain biasing voltage from a low-voltage plate supply, as shown in Fig. 7-19A. In another arrangement, shown at 13, a spare filament winding can be used to operate a filament transformer of similar voltage rating in reverse to obtain a voltage of about 130 from the winding that is customarily the primary. This will be sufficient to operate a VRäj or VR90 regulator tule.

Fig. 7.19 - Convenient means of ohtaining hiasing voltage. A - From a low-voltage plate supply. 13 From spare filament winding. T_{1} is a filament transformer, of a voltage output similar to that of the spare filament winding, connected in reverse to give 115 volts r.m.s. output. If cold-cathode or selenium rectifiers are used, no additional filament supply is required.

A bias supply of any of the types discussed requires relatively little filtering, if the outputterminal peak voltage does not approach the operating-bias value, because the effect of the supply is entirely or largely "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the circuits shown in ligs. 7-20, 7-21 and 7-22 may be used with any type of rectifier, they find their greatest advantage when used with selenium rectifiers which reguire no filament transformer. These eircuits must be used with eatation, observing line polarity in the circuits so marked, to avoid shorting the line, since the negative output terminal should always be grounded. In circuits showing isolating transformers, the transormer is a reguirement.

F'ig. 7.20 - Simple half-wave circuit for selenium rectifier.
$\mathrm{C}_{1}-0.05 \mu \mathrm{fd}$. 600 . volt paper.
C. $2-40-\mu \mathrm{fd}$. 200 -volt electrolytic.
$\mathrm{R}_{1}-25$ to 100 ohms.
Fig. $7-20$ is a straightforwarl half-wave rectifier circuit which may be used in applications where 115 to 130 volts d.c. is desired. It can be used for bias supply, for instance.

Fig. 7-21 shows several voltage-doubler circuits. Of the three, the one shown at A is the most desirable since there is no series condenser. It is a full-wave circuit and there will be very little ripple voltage apparing at the output. The arrangement of circuit B is such
that one side of the output may be grounded. In (ircuit C , the point X is common to both condensers in the rectifier and filter, and as single-unit

Fig. 7.21 - Voltage-foubling circuits for use with selenium rectifiers.
$\mathrm{C}_{1}-0.05 \cdot \mu \mathrm{fl}$. $\mathbf{6 0 0}$ volt paper.
C_{2} - $40 \cdot \mu \mathrm{fil}$. 200 -volt electrolytic.
C_{3} - Filter condenser.
$1 k_{1}-25$ to 100 ohms.
L_{1} - Filter choke. $\quad \mathrm{T}_{1}$ - Isolation transformer.

Hig. 7-22 - A - Tripler circuit. H - Ilalf-wave quadrupler. (: - Full-wave quadrupler.
Ci - 0.05- $\mu \mathrm{fd}$. 600-volt paprer.
(2 - 40- fil, 450-volt electrolytic.
Ca - 100- μ fid. 150-volt electrolytic.
$\mathrm{K}_{1}-25$ to 100 ohms. I_{1} - Isolating transformer.

3-section condenser can be used to save space. If the load current is less than 100 ma., this is the best circuit.

Fig. 7 -22A shows a voltage tripler, and 13 and C quadruplers.

All components are standard. C_{1} in all circuits is for "hash" filtering and its value is not critical. A $0.05-\mu \mathrm{fd}$. 600 -volt-working condenser should serve. All other condensers should be 40 - $\mu \mathrm{fd}$. 200 -volt units, exeept those in the tripler and quadrupler circuits. Those in the cireuit of Fig. 7-22 should have a rating of 450 volts working. In the voltage multipliers and in other eireuits where a condenser is passing the full current, good condensers should be used because the a.e. ripple mentioned above appears across the condenser and increases as the load inereases. If the current is allowed to become too high, it will cause heating and deterioration of the condenser. This can be kept to a minimum by using a capacitor of high value and making sure it is of good make. R_{1} should be 25 ohms, but if it is found that the rectifier units are rumning a little too warm, this value may be inereased to as high as 100

ohms, with a corresponding drop in output voltage, of course. A single-section filter, as shown in Fig. 7-21C, will provide sufficient smoothing for most applications.

Power-Line Considerations

POWER-LINE CONNECTIONS

If the transmitter is rated at much more than 100 watts, special consideration should be given to the a.c. line ruming into the station. In some residential systems, three wires are brought in from the outside to the distribution board, while in other systems there are ouly two wires. In the threc-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally is 230 , while half of this voltage (115) appears between each of these wires and neutral, as indicated in Fig. 7-23A. In systems of this type, usually it will be found that the llio-
volt household load is divided as evenly as possible between the two sides of the eireuit, half of the load being connected behween one wire and the neutral, while the ot her half of the load is counected between the other wire and neutral. Heave appliances, such as electrie stoves and heaters, normally are designed for 230-volt operation and therefore are comented atross the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switch be used in this side of the line. The reason for this is that opening the neutral wire does not disconnert the equip-

(A)

(B)

Fig. $7-23$ - 'lhree-nire power-line circuits. A Vormal 3-wire-line termination. No fuse should be used in the grounded (neutral) linc. 13 -Showing that a switch in the neutral does not remove voltage from either side of the line. C - Connertions for loth 115 - and 230 -vol transformers. I) - Operating a 115 -volt plate transformer from the $\mathbf{2 3 0}$-volt line to avoid light blinking. T_{1} is a 2 -to-1 step-down transformer.
ment. It simply leaves the equipment on one side of the 230 -volt circuit in series with whatever load may he arross the other side of the rireuit, as shown in Fig. 7-2313. Furthermore, with the neutral open, the voltage will then be divided between the two sides in proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the ot her side, unless the loads happen to be equal.

The usual line running to baseboard outlets is rated at 15 amperes. Considering the power consumed by filaments, lamps, modulator, rereiver and other auxiliary equipment, it is not unusual to find this 15 -ampere rating exceeded by the requirements of a station of only mod-

Fig. 7-24 - Two methods of transformer primary control. At A is a tapped toy transformer which may be connected so as to boost or huck the line voltage as required. At B is indicated a variable transformer or antotransformer (Variac) which feeds the transformer primaries.
erate power. It must also be kept in mind that the same branch may be in use for other household purposes through another outlet. For this reason, and to minimize light blinking when keying or modulating the transmitter, a separate heavier line should be run from the distribution board to the station whenever possible. (A three-volt drop in line voltage will cause noticeable light blinking.)

If the system is of the three-wire type, the three wires should be brought into the station so that the load can be distributed to keep the line batanced. The voltage across a fixed load on one side of the circuit will increase as the load current on the other side is increased. The rate of increase will depend upon the resistance introduced by the neutral wire. If the resistance of the neutral is low, the increase will be correspondingly small. When the currents in the two circuits are batanced, no current flows in the neutral wire and the system is operating at maximum efficiener.

Light blinking can be minimized by using transformers with 230 -volt primaries in the power supplies for the keyod or intermittent part of the load, ronnecting them across the two ungrounded wires with no connection to the ncutral, as shown in Fig. 7-23C. The same can be accomplished by the insertion of a step-
down transformer whose primary operates at 230 volts and whose secondary delivers 115 volts. Conventional 115-volt transformers may be operated from the scrondary of the step-down transformer (see Fig. 7-23I)).

When a special heavy-duty line is to be installed, the local power company should be consulted as to local requirements. In some localities it is necessary to have such a job) done by a licensed elcetrician, and there may be special requirements to be met in regard to fittings and the manner of installation. Some amateurs terminate the special line to the station at a switch box, while others may use electric-stove receptarles as the termination. The power is then distributed around the station by means of conventional outlets at convenient points. All cireuits should be properly fused.

LINE-VOLTAGE ADJUSTMENT

In certain communities trouble is sometimes experienced from fluctuations in line voltage. U'sually these fluetuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on at evening, they may be taken care of by the use of a manuallyoperated compensating device. A simple arrangement is shown in Fig. 7-24A. A toy transformer is used to boost or buck the line voltage as reduired. The transformer should have a tapped secondary varying between 6 and 20 volts in steps of 2 or 3 volts and its secondary should be capable of carrying the full load current of the entire transmitter, or that portion of it fed by the toy transformer.

The secondary is connected in series with the line voltage and, if the phasing of the windings is correct, the voltage applied to the primaries of the transmitter transformers can be brought

Fig, 7-2.5- With this circuit, a single adjustment of the tap switeh Siplaces the correct primary voltage on all transformers in the transmitter. Information on constructing a suitable autotransformer at negligible cost is contained in the text. The light winding represents the regnar primary winding of a revamped transformer, the heavy winding the voltage-adjusting section.
up to the rated 115 volts by setting the toytransformer tap switeh on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may he above 115 volts. This method is preferable to using a resistor in the primary of a power transformer since it does not affect the voltage regulation as seriously. The circuit of $7-2413$ illustrates the use of a variable transformer (Variac) for adjusting line voltage to the desired value.

Another scheme by which the primary voltage of each transformer in the transmitter may be adjusted to give a desired secondary voltage, with a master control for compensating for changes in line voltage, is shown in Fig. 7-25.

This arrangement has the following feat ures:

1) Adjustment of the switch S_{1} to make the volt meter read 105 volts automatically adjusts all transformer primaries to the predetermined correct voltage.
2) The necessity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can be applied to the primary of one transformer, 115 to another, cte., as required to obtain the desired output voltage.
3) Independent control of the plate transformer is afforded by the tap switch \mathcal{S}_{2}. This permits power-input control and does not require an extra autotransformer.

Constant-Voltage Transformers

Although comparatively expensive, special transformers called constant-voltage transformers are available for use in cases where it is necessary to hold line voltage and/or filament voltage constant with fluctuating supply-line voltage. They are rated over a range of 17 va . at 6.3 volts output, for small tube-heater demands, up to several thousand volt-amperes at 115 or 230 volts. In average figures, such transformers will hold their output voltages within one per cent under an input-voltage variation of 30 per cent.

Construction of Power Supplies

The length of most leads in a power supply is unimportant, so that the arrangement of components from this consideration is not a factor in construction. More important are the points of good high-voltage insulation, adequate conductor size for filament wiring, proper ventilation for rectifier tubes and most important of all - safety to the operator. Exposed high-voltage terminals or wiring which might be bumped into accidentally should not be permitted to exist. They should be covered with adequate insulation or placed inaceessible to contact during normal operation and adjustment of the transmitter. l'owersupply units should be fused individually. All negative terminals of plate supplies and positive

Fig. 7-26-A typical ample receiver power supply. Filanment and plate voltages are taken from the multicontact tube socket which serves as an outlet.
terminals of bias supplies should be socurely grounded to the chassis, and the chassis conneeted to a waterpipe or radiator ground. All transformer, choke, and condenser cases should also be grounded to the chassis.

Rectifier filament leads should be kept short to assure proper voltage at the rectifier socket, and the sockets should have good insulation and adequate contact surface. Plate leads to mereury-vapor tubes should be kept short to minimize the radiation of noise.

Where high-voltage wiring must pass through a metal chassis, grommet-lined chearance holes will serve for voltages up to 500 or 750, but ceramic feed-througb insulators should be used for higher voltages. Bleeder and

Fig. 7-27-Bottom view of the simple receiver power supply showing the cut-out for the flush-mounting trans. former.

Fig. 7.28 - A typical high. voltage transmitter power supply, "The transformers, chokes and condensers are inverted so that no terminals are exposed to acecielental contact. The raps of the 866 rectifiers are the insulated type.
voltage-dropping resistors should be placed where they are open to air circulation. blacing them in confined spare redues the rating

It is highly preferable from the standpoint of operating convenienee to have separate filament transformers for the rectifier tubes, rather than to use combination filament and plate transformers, such as those used in receivers. This permits the transmitter plate voltage to be switched on without the necessity

Fig. 7.29 - Boltom view of the transmitter power supply showing the cut-outs for the terminals. Separate power phoge are used for the rectifier-filament and plate transformers so that they may he switehed independently from the control position.
for waiting for rectifier filaments to come up to temperature after each time the high voltage has been turned off. When using a combination power transformer, high voltage may be turned off without turning the filaments off by using a switch between the transformer center tap and chassis. This switch should be of the rotary type with good insulation between contarts. The shaft of the switeh must be grounded.

SAFETY PRECAUTIONS

All power supplies in an installation should be fed through a single main power-line switch
so that all power may he cut off quickly, either bofore working on the equipment, or in case of an accident. Spring-operated switches or relays are not sufficiently reliable for this important service. Foolproof devices for cutting off all power to the transmitter and other equipment are shown in Fig. 7-30. The arrangements shown in Fig. 7-30A and 13 are similar circuits for two-wire (115-volt) and three-wire (230-volt) systems. S is an enclosed double-throw knife switeh of the sort

Fig. 7.30 - Reliable arrangements for cutting off all power to the transmitter. S is an enclosed double-pole knife-type switch, J a standard a.c. outlet, P a shorted phing to fit the outlet and I a red lamp.

A is for a two-wire 115 -volt line, B for a three-wire 230.volt system, and \mathbb{C} a simplificd arrangement for low-power stations.
usually used as the entrance switch in house installations. J is a standard a.c. outlet and P a shorted plug to fit the outlet. The switch should be located prominently in plain sight and members of the household should be instructed in its loration and use. I is a red lamp located alongside the switeh. Its purpose is not so much to serve as a warning that the power is on as it is to help in identifying and quickly locating the switeh should it berome neerssary for someone else to cut the power off in an emergeney.

The outlet J should he plared in some corner out of sight where it will not be a temptation for chideren or others to play with. The shorting plug can be removed to open the power circuit if there are others around who might inadvertently throw the switch while the oprerator is working on the rig. If the operator takes the plug with him, it will prevent someone from turning on the power in his absence and either injuring themselves or the equipment or perhaps starting a fire. (of utmost importance is the fact that the outlet J must be plared in the ungrounded side of the line.

Those who are operating low power and feel that the expense or complication of the switch isn't warranted can use the shorted-plug idea as the main power switeh. In this case, the outlet should be located prominently and identified by a signal light, as shown in Fig. 7 -30C.

The test bench ought to be fed through the main power switeh, or a similar arrangement at the bench, if the bench is located remote from the transmitter.

A bleeder resistor with a power rating giving a considerable margin of safety should be used across the output of all transmitter power supplies so that the filter condensers will be discharged when the high-voltage transformer is turned off. To guard against the possibility of

Fig. 7-31 - 'Two schemes for shorting the high-voltage supply auto. matically for safity purposes when the transmitter door is opened.
danger to the operator should the bleeder resistor burn out withont his knowledge, and also to protect him in case he neglects to turn off the power supply before opening a cabinet transmitter enclosure, one of the devices shown in Fig. 7 -3! is recommended. In A, a grounded pivoted metal lever arops by gravity against a contart commerted to the positive high-voltage terminal when the eabinet door is opened, shorting the power supply. When the door is closed, it pushes against the end of the lever protruding through the door opening and the short is removed automatically. In another scheme, shown at 13 , a metal ball, suspended on a cord, drops into a triangle of contacts, one of which is grounded, while the other two go to positive terminals of power supplies. The wedge mounted on the door pushes against the suspending cord, lifting the ball when the door is elosed. The power supplies should be equipped with suitable fuses to save the equipment in case the device is ever ralled upon to perform its duty.

Emergency and Independent Power Sources

Emergency power supply which operates independently of a.c. lines is available, or can be built in a number of different forms, depending upon the requirements of the service for which it is intended.

The most practical supply for the average individual amateur is one that operates from a 6-volt car storage battery. Such a supply may take the form of a small motor generator (often called a genemotor), a rotary converter, or a vibrator-transformer-rectifier combination.

Dynamotors

A dynamotor differs from a motor generator in that it is a single unit having a double armature winding. One winding serves for the
driving motor, while the output voltage is taken from the other. Dynamotors usually are operated from 6-, 12-, 28 - or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.

Genemotor is a term popularly used when making reference to a dynamotor designed especially for automobile-receiver, soundtruck and similar applications. It has good regulation and efficiency, combined with economy of operation. Standard models of genemotors have ratings ranging from 250 volts at 50 ma . to 400 volts at 375 ma . or 600 volts at 2.50 ma . The normal efficiency averages around 50 per cent, increasing to better than 60 per cent in the higher-power units.

Successful operation of dynamotors and genemotors requires heavy direct leads, mechanical isolation to reduce vibration, and thorough r.f. and ripple filtration. The shafts and bearings should be thoroughly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be checked occasionally to make certain that no looseness has developed.

In mounting the genemotor, the support should be in the form of rubber mounting blocks, or equivalent, to prevent the transmission of vibration mechanically. The frame of the genemotor should be grounded through a heavy flexible conncetor. The brushes on the high-voltage end of the shaft should be bypassed with $0.002-\mu \mathrm{fd}$. mica condensers to a common point on the genemotor frame, preferably to a point inside the end cover close to the brush holders. Short leads are essential. It may prove desirable to shied the entire unit, or even to remove the unit to a distance of three or four feet from the receiver and antenna lead.

When the genemotor is used for receiving, a filter should be used similar to that described for vibrator supplies. A $0.01-\mu \mathrm{fd}$. 600-volt (d.c.) paper condenser should be connected in shunt across the output of the genemotor, followed by a $2.5-\mathrm{mh}$. r.f. choke in the positive high-voltage lead. From this point the output should be run to the receiver power terminals through a smoothing filter using 4- to $8-\mu \mathrm{fd}$. condensers and a 15 - or 30 -henry choke having low d.c. resistance.

D.C.-A.C. Converters

In some instances it is desirable to utilize existing equipment built for 115 -volt a.c. operation. To operate such equipment with any of the power sources outlined above would require a considerable amount of rebuilding. This can be obviated by using a rotary converter capable of changing the d.c. from 6-, 12- or 32 -volt batteries to 115 -volt 60 -cycle a.c. Such converter units are built to deliver out puts ranging from 40 to 250 watts, depending upon the battery power available.

The conversion efficiency of these units averages about 50 per cent. In appearance and operation they are similar to genemotors of equivalent rating. The over-all efficiency of the converter will be lower, however, because of losses in the a.c. rectifier-filter circuits and the necessity for converting heater (which is supplied directly from the battery in the case of the genemotor) as well as plate power.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up transformer combined with a vibrating interrupter (vibrator). When the unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The circuit is made and reversed
rapidly by the vibrator contacts, interrupting the current at regular intervals to give a rhanging magnetic field which induces a voltage in the secondary. The resulting squarewave d.e. pulses in the primary of the transformor cause an alternating voltage to be developed in the secondary. This high-voltage a.c. in turn is rectified, either by a vacuum-tube rectifier or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating d.e., which may be filtered by ordinary means. The smoothing filter can be a single-scetion affair, but the output capacitance should be fairly large - 16 to $32 \mu \mathrm{fd}$.

Fig. 7-32 shows the two types of circuits. At A is shown the nonsynchronous type of vibrator. When the battery is discomected the reed is midway between the two contacts, touching neither. On closing the battery circuit the magnet coil pulls the reed into contact with one contact point, causing current to fow through the lower half of the transformer primary winding. Simultancously, the magnet

Fig. 7.32 - Basie types of vibrator power-supply circuits. A-Nonsynchronous, B-Synchronous.
coil is short-circuited, deenergizing it, and the reed swings back. Inertia carries the reed into contact with the upper point, causing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the cycle repeats itself.

The synchronous circuit of Fig. 7-32l3 is provided with an extra pair of contacts which rectify the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The secondary center-tap furnishes the positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connections may be determined by experiment.

The buffor condenser, C_{2}, across the transformer secondary, absorbs the surges that occur on breaking the current, when the magnetic field collapses practically instantaneously and hence causes very high voltages to be induced in the secondary. Without this condenser excessive sparking occurs at the vibrator contacts, shortening the vibrator life. Correct values usually lie between 0.005 and $0.03 \mu \mathrm{fd}$.,
and for $250-300$-volt supplies the condenser should be rated at 1500 to 2000 volts d.c. The exact capacitance is critical, and should be determined experimentally. The optimum value is that which results in least battery current for a given rectified d.c. output from the supply. In practice the value can be determined by observing the degree of vibrator sparking as the capacitance is changed. When the system is operating properly there should be practically no sparking at the vibrator contacts. A 5000 -ohm resistor in series with C_{2} will limit the secondary current to a safe value should the condenser fail.

Vibrator-transformer units are available in a variety of power and voltage ratings. Reprosentative units vary from one delivering 125) to 200 volts at 100 ma . to others that have a 400 -volt output rating at 150 ma. Most units come supplied with "hash" filters, but not all of them have built-in ripple filters. The roquirements for ripple filters are similar to those for a.c. supplies. The usual efficiency of vibrator packs is in the vicinity of 70 per cent, so a 300 -volt $200-\mathrm{ma}$. unit will draw approximately 15 amperes from a 6 -volt storage battery. Special vilbrator transformers are also available from transformer manufacturers so that the amateur may build his own supply if he so desires. These have d.c. output ratings varying from 150 volts at 40 ma . to 330 volts at 135 ma .
Vibrator-type supplies are also available for operating standard a.c. equipment from a 6 -volt storage battery in power ratings up to 100 watts continuous or 125 watts intermittent.

"Hash" Elimination

Sparking at the vibrator contarts causes r.f. interference ("hash," which can be distinguished from hum by its harsh, sharper pitch) when used with a receiver. To minimize this, r.f. filters are incorporated, consisting of $R F C_{1}$ and C_{1} in the battery circuit, and $R F C_{2}$ with C_{3} in the d.c. output circuit.

Equally as important as the hash filter is thorough shielding of the power supply and
its connecting leads, since even a small piece of wire or metal will radiate enough r.f. to cause interference in a sensitive receiver.

Testing in connection with hash elimination should be carried out with the supply operating a receiver. Since the interference usually is picked up on the receiving-antenna leads by radiation from the supply itself and from the battery leads, it is advisable to keep the supply and battery as far from the receiver as the connecting cables will permit. Three or four feet should be ample. The microphone cord likewise should be kept away from the power supply and its leads.

The power supply should be built on a metal chassis, with all unshielded parts underneath. A bottom plate to complete the shielding is advisable. The transformer case, vibrator cover and the metal shell of the tule all should be grounded to the chassis. If a glass tube is used it should be enclosed in a tube shield. The battery leads should be evenly twisted, since these leads are more likely to radiate hash than any other part of a well-shielded supply. Experimenting with different values in the hash filters should come after radiation from the battery leads has been reduced to a minimum. Shielding the leads is not often found to be particularly helpful.

- PRACTICAL VIBRATOR-SUPPLY CIRCUITS

A vibrator-type power supply may be designed to operate from a six-volt storage battery only, or in a combination unit which may be operated interchangeably from either battery or 115 volts a.c.

An example of the latter-type circuit is shown in Fig. 7-33. It consists essentially of two transformer-rectifier systems - one for 115 volts a.c. and the other a vibrator system to operate from a 6 -volt storage battery. A common filter is used for the two systems. In interchanging between a.c. and d.c. operation, the rectifier tube (at 6×5 or 6 W 5 G) is shifted to the appropriate socket, while the filament connections are made to the proper output termi-

Fig. 7-3.3 - Circuit of a comhination a.c.d.c. power supply for cmergeney work.
(. 1 - 0.01- $\mu \mathrm{fd}$. 600 -volt paper.
(:2-8- fd , 45 f)-volt electrolytic.
C3 $-32-\mu \mathrm{fd} .450$-volt electrolytic.
(4 - 0.005- to 0.01- $\mu \mathrm{fd}$. 1600-volt paper.
(: $-500-\mu \mathrm{fld}$. electrolytic, 25 volts or higher.
(.6 - $100-\mu \mu \mathrm{fd} .600-\mathrm{volt}$ mica.
$11_{1}-4700$ ohms, 1 watt.
$\mathrm{I}_{1}-10$ - to 12 -hy. filter chohe, 100 ma . (not over (00) ohms) (Stancor C.2303 or equivalent).
$1\left\{\mathrm{FC}_{1}-2.5-\mathrm{mh}\right.$. r.f. choke.
R $\mathrm{FC}_{2}-5.5$ turns No. 12 on 1 -inch form, close-wound.
S_{1}, S_{2} - Toggle switch.
'li - Power transformer: 275 to 300 volts r.m.s. each side of center tap, 100 to $150 \mathrm{ma}, \mathrm{C} .3$-volt filament winding.
T_{2} - Vibrator transformer (Stancor P-6131 or similar).
VIB - Vibrator unit (Mallory 500P. 294, etc.).

Fig. 7-34 - A typical combination a.c.-d.c. power pack for low-power energency work. The two tranaformers are mounted at either end of the chassis. The filter condenser is at the left, the two rectifier sockets at the center and the vibrator to the rear.
nals. If desired, two rectifier tubes may be used and the changeover made through suitahle switehes.
R.f. filters for reducing hash are incorporated in both primary and secondary circuits. The secondary filter consists of a $0.01-\mu \mathrm{fd}$. paper condenser directly across the rectifier output, with a $2.5-m h$. r.f. choke in series ahead of the smoothing filter. In the primary circuit a low-inductance choke and high-capacitance condenser are needed because of the low impedance of the circuit. A choke of the specifications giver should be adequate, but if there is trouble with hash it may be beneficial to experiment with other sizes. The wire should be large - No. 12, preferably, or No. 14 as a minimum. Manufactured chokes such as the Mallory lerises are more compart and give higher inductance for a given resistance because they are bank-wound, and may be sulistituted if ohtainable. C_{5} should be at least $500 \mu \mathrm{fd}$.: evern more capacitance may help in bad cases of hash. The components are assembled on a $5 \times 10 \times 3-$ inch steel chassis. Three socket hokes are required - one for the t-prong socket for the vibrator and two ortal sockets for the rectifier.

The compactness of selenium reatifiers and the fart that they do wot require filament voltage make them particularly suited to compart lightweight power supplies for portable emergency work.

Fig. 7-35 shows the rircuit of a vibrator pack that will deliver an output voltage of 400 at 200 ma . It will work with either 11 j -volt ac. or 6-volt battery input. The circuit is that of the familiar voltage tripler whose d.c. output voltage is, as a rough approximation, three times the peak voltage delivered by the transformer or line. An interesting feature of the circuit is the fact that the single transformer serves as the vibrator transformer when op-
erating from 6 -volt d.c. supply and as the filament transformer when operating from an a.c. line.

The vibrator transformer, T_{1}, is a dualsecondary 6.3 -volt filament transformer connected in reverse. In either event, the filament windings must have a rating of 10 amperes if the full load current of 200 ma . is to be used. The vibrator also must be capable of handling the current. The hash-filter choke, L_{1}, must carry a current of 20 amperes.

The following table shows the output voltage to be expected at various load currents, depending upon the size of condensers used at C_{1}, C_{2} and C_{3}.

C_{1}, C_{2}, C_{3}	Output Voltage at			
$\left(\mu \rho d_{0}\right)$	50 ma	100 ma.	150 ma.	200 ma.
60	455	430	415	395
40	425	390	360	330
20	400	340	285	225

In operating the supply from an a.c. line, it is always wise to determine the plug polarity with respect to ground. Otherwise the rectifier part of the circuit and the transformer circuit can-

Fig. 7-35 - Circuit diagran of a compact vibrator-a.c. portable power supply using selenium rectifiers.
(\therefore - $60-\mu \mathrm{fd}$. 200 -volt clectrolytic.
(:2-60- $\mathbf{f i}$. 400 -volt electrolytic.
$\mathrm{C}-60-\mu \mathrm{fl}, 6(0)-$ volt electrolytic.
(.4-25- $\mathbf{2}$ fil. 25-volt electrolytic.

$\mathrm{C} 8-0.0 \mathrm{H}) \% \mathrm{afd}$. 1500 volt paper.
$\mathrm{R}_{1}-25,000$ ohms, 10 watts.
L_{1} - 25- $\boldsymbol{\mu}$ hy. 20 -amp. choke.
$\mathrm{S}_{1}-115$-volt toggle switch.
S_{2} - I).pal.t. heavy-duty knife switch.
$\mathrm{S}_{3}-25$-amp. s.p.s.t. switeh.
T1 - See text.
V - Heavy-duty vibrator (Cornell.Dub. 4123).
(Originally described in QST by W9CO.)
not be connected to actual ground except through hy-pass condensers. Rectangular cutouts are also needed for the two flush-mounting transformers. The filter choke, L_{1}, and other small components can be fitted under the chassis. The clip leads to the battery should be no longer than necessary.

GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power installations, such as for communications control centers during emergencies, the most practical form of independent
power supply is the gasoline-engine driven generator which provides standard 115 -volt 60 -cycle supply.

Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to two kilowatts. or big enough to handle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary 6 - or 12 -volt battery used in starting. Fitted with self-starters and adequate muffers and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled, and they will operate continuously at full load.

A variant on the generator idea is the use of fan-belt drive. The disadvantage of requiring that the automobile must be running throughout the operating period has not led to general popularity of this idea among amateurs. Such generators are similar in construction and capacity to the small gas-driven units.

The output frequency of an engine-driven generator must fall between the relatively narrow limits of 50 to 60 cycles if standard 60-cycle transformers are to operate efficiently from this source. A $60-\mathrm{cyc}$ cle electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator and the second hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronism. If a 50 -cycle clock is used to check a 60 -cycle generator, it should be remembered that one revolution of the second hand will be made in 50 seconds and the clock will gain 4.8 hours in each 24 hours.

Output voltage should be checked with a voltmeter since a standard 115 -volt lamp bulb, which is sometimes used for this purpose, is very inaccurate. Tests have shown that what appears to be normal brilliance in the lamp may occur at voltages as high as 150 if the check is made in bright sunlight.

Noise Elimination

Electrical noise which may interfere with receivers operating from engine-driven a.c. generators may be reduced or eliminated by taking proper precautions. The most important point is that of grounding the frame of the generator and one side of the output. The ground lead should be short to be effective, otherwise grounding may actually increase the noise. A water pipe may be used if a short connection can be made near the point where the pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosen the brush-holder
locks and slowly shift the position of the brushes while checking for noise with the receiver. lisually a point will be found (almost always different from the factory setting) where there is a marked decrease in noise.

Fig. 7.36 - Connections used for eliminatimg interference from gas-lriven generator plants. Ghmald be I $\mu \mathrm{fl}, 300$ volte, paper, while Ciz may le 1 pfil with a voltage rating of twice the d.c. output voltage delivered by the gencrator, I indicates an added connection between the slip ring on the grounded side of the line and the germerator frame.

From this point on, if necessary, by-pass condensers from various brush holders to the frame, as shown in Fig. 7 -36, will bring the hash down to within 10 to 15 per cent of its original intensity, if not entirely climinating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of headphones is connected into the second detector.

POWER FOR PORTABLES

Dry-cell batteries are the only practical source of supply for equipment which must be transported on foot., From certain considerations they may also be the best source of voltage for a receiver whose filaments may be operated from a storage hattery, since no problem of noise filtering is involved.

Their disadvantages are weight, high cost, and limited current capability. In addition, they will lose their power even when not in use, if allowed to stand idle for periods of a year or more. This makes them uneconomical if not used more or less continuously.

Dry " 1 " batteries are made in a variety of sizes and shapes, from a 45 -volt unit weighing about 1 ll . that has an intermittent service rating of 20 hours at a drain of 20 ma., to a $12-\mathrm{lb}$. unit rated at 130 hours at 40 ma . "A" batteries for filament service range from a 6 -volt unit weighing $11 / 2$ lbs. delivering in intermittent service an average of 60 ma. for 150 hours, to a $61 / 4-1 \mathrm{~h}, 1.5$-volt unit having a service life of 870 hours at 200 ma . Miniature batteries, suitable for hand-portable use, are also available.

Keying and Break-In

Offhand it would appear that keying a transmitter is a simple matter, since on the face of it nothing more is involved than turning the transmitter output on and off to correspond to the rode characters being sent. Confortumately, it is not this simple, and perfect keying of a cow, rig is ats difficult to come by as perfect voice quality is with a phone transmitter. The problem cannot be dismissed lightly.

Although the operation is basically that of turning the transmitter output power on and off, it is complicated by the fact that it must not be turned on and off instantaneonsly. Instead, the output must be made to rise to (and fall from) maximum in some finite period of time, if key clicks are to be avoided. These clicks are the inescapable result of changing the power level rapidly, and they appear in the radio spectrum adjacent to the signal proper. The more rapidly the output is varied, the farther the clicks will extend in frequency and the greater will be their amplitude. They interfere unnecessarily with other signals and, if severe enough, can be cause for a discrepancy report by the FCC.
. Inother effect of improper keying of a transmitter is the introduction of chirp, a change in frequency at the instant of making or breaking the signal. A chirp of 50 cycles is enough to make a signal unpleasant to copy, and a chirp of several hundred cycles may render the signal difficult to copy or a target for an lPCC discrepancy report. Much depends, of course, upon the selectivity and beat note being used at the receiver, but the safest procedure is to aim for no detectable chirp.

A third keying fault is backwave, which consists of power leaking through and radiating when the key is "up." A strong backwave makes the signal unpleasant or difficult to copy.

In code transmission, there are intervals between dots and dashes, and slightly longer intervals between letters and words, when no power is being radiated by the transmitter. If the receiver can be made to operate at normal sensitivity during these intervals, it is possible for the receiving operator to signal the transmitting operator, by holding his key down. This is useful during the handling of messages, since the receiving operator can immediately signal the transmitting operator if he misses part of the message. It also reduces the time necessary for calling in answer to a "(C)." The ability to hear signals during the short "key-up" intervals is called break-in operation.

SELECTING THE STAGE TO KEY

It is often desirable from an operating standpoint to design the c.w. transmitter for breakin operation. This requires that the oscillator be keyed, or turned off between characters, since a continuously-running oscillator will create interference in the receiver and prevent break-in near one's own frequency, unless the oscillator is well shielded. ${ }^{\prime}$ Chirpless and clickless keving of an oscillator is difficult to obtain, since the necessary slow turning on and off of the oscillator (for click elimination) shows up any oscillator frequency-us.-voltage changes. It is casy to key an oscillator without chirps or without clicks but not without both. The effect of a chirp is multiplied with frequency, and it is difficult to obtain chirpless oscillator keying at an output frequency of 14,21 or 28 Mc .

The best-sounding keying (and the simplest to adjust) is usually obtained by keying the output or driver stage, or both. With the oscillator running continuously and "buffered" by several intermediate stages, its frequeney remains constant throughout all parts of the keying eycle. The only problem in keving then becomes that of properly "shaping" the keying to reduce or eliminate clicks. When keving several stages away from the output amplitier, it is necessary to bias the stages following the kevol stage so that they draw little or no plate current when the key is up, to avoid exeessive phate dissipation. If the stages are biased too heavily, however, these subsequent amplifiers tend to shorten the rise and fall times and thus reintroduce elicks. This should always be borne in mind when a multistage transmitter is used with low-level keying.

The power broken by the key is an important consideration, both from the standpoint of safety to the operator and that of sparking and sticking at the key contacts. Keying of the oscillator or a low-power stage is favorable on both counts. The use of a keying relay or keyer tube is recommended when a high-power circuit is keyed.

Because transmitters vary widely in design, there is no specific recommendation that can be made about choosing the stage to key. If the oscillator alone keys satisfactorily (no chirps or clicks), even when listening to its

[^5]harmonics on 21 or 28 Mc., the transmitter should be keyed there, but the effect of adding the additional multipliers and amplifiers should be carefully checked, to see that clicks are not reintroduced. Methods for checking will be given later. If the oscillator cannot be keyed satisfactorily by itself or with the following stage added, a stage near the output should be
keyed, using the VR tube break-in keying system (described later in this chapter) to turn the oscillator on and off. A close approach to breakin operation can be obtained by using a convenient and fast "on-off" switch for the oscillator. This can be a toggle switch, or perhaps a footactuated switch. Use of the latter leaves both hands free.

Keying Circuits

The plate circuit is a good one to key in an oscillator or low-voltage amplifier, because it is easy to shape the keying properly in this circuit. When plate-circuit keying is used, it is usually done in the negative lead, since this permits one side of the key to be grounded. The stage can be keyed in the positive lad, but both sides of the keyed circuit will be "hot," and a keying relay is advisable. lig. 8-1 shows the general circuit for negativelead keying in either an oscillator or an amplifier. Two examples are shown using triodes, but screen-grid tubes can be used just as readily. I'late-circuit keying is recommended only for low-voltage circuits if no keying relay is used, since a large portion of the supply voltage can appear across the open key.

Shaping circuits applicable to this and later circuits will be discussed in this chapter under "Testing Your Keying."

Somewhat closely related to plate-circuit keying is screen-grid keying, shown in ligg. 8-2. The only hasic difference is that the sereen grid is pulled down to a negative voltage when the key is up, to avoid the backwave that may

Fig. 8-1 - Negative plate-lead keying for cathode- or filament-type tubes. These circuits are useful for oxcillator or low-power stages, where the voltage across the open hey is not very dangerous. Tetrode or pentode stages can be keyed in this manner, but the screen circuit should be stabilized with VR tules or a heavy volt${ }^{2}$ age divider. R_{1} is the normal grid leak, C_{1}, C_{2}, C_{3} and C_{4} are r.f. by-pass condensers.
be present when the screen goes only to zero volts. The negative supply can be small, since its current demand is only a few milliamperes. If the screen voltage is taken from the plate supply, it should come from a voltage divider rather than a simple dropping resistor.

Fig. 8-2 - Sereen-grid keying, suitable for oseillator or amplifier keying. R_{1} is the normal grid leak, R_{2} should be alout 200 to 500 ohms per sereen volt, and C_{1}, C_{2} and C_{3} are normal ly yass condensers.

Grid-circuit, or blocked-grid, keying is shown in Fig. 8-3. With the key up, a negative voltage is applied to the grid sufficient to cut off the tube and prevent current flow. With the key closed, the grid circuit develops normal grid bias through R_{2}. The drain on the negative-voltage supply is small, since it is limited by the size of R_{1}. Grid-circuit keying is generally used with low-power stages or where the voltage necessary to cut off the amplifier is only a few hundred volts. The value of C_{1} determines the keying characteristic, together with the ratio of R_{2} and R_{1}, and will be discussed later.

By placing the key in the cathode (or center tap) circuit of an oscillator or amplifier, both the grid and plate (and screen, if any) circuits are opened hy the key. Cathode keying is good for use with amplifiers, because the proper

Fig. 8-3-Blocked-grid keying. R_{1}, the current-limiting resistor, should have a value of alout 50,000 ohms. C. may have a capacity of 0.1 to $1 \mu \mathrm{fd}$., depending upon the keying characteristic desired. R_{2} is the normal value of grid leat for the tule.

Fig. B- - Cathomband emter-tapkeying. The cominnsers C^{C} are r.f, by pass condenser. Their caparity is mot eritical, values of 0.001 to $0.01 \mu \mathrm{fd}$. ordinarily being used.
shaping can be accomplished readily. It is also widely used with oscillators, but here the shaping is often complicated by the gridcircuit time constant. ('athode keying is shown

To cathode of
keyed stage in lig. 8-4. It is popular for use in low- and mo-dium-jower stages, although a keving rolay or keyor tube should be used where the plate voltage is more that 300.

A popular method of keying involves using one or more tubes as keyer tubes, in plare of a relay. A keyer tube (or tubes) can be used in the negative-lead or cathorlekeying circuits of ligs. 8-1 and 8-4. One advantage of tube keving is that the voltage across
the key is limited by large resistors, and so the operator has no chance for anything but the slightest electrical shock. A further advantage is that the shaping is done in the grid circuit of the keyer tube with inexpensive parts. The basic kever tube circuit is shown in Jig. 8-5 - it is similar to the grid-eireuit keying of Fig. 8-3.

A keying relay can be substituted for a key in any of the keying circuits shown in this chapter. Most keying relays operate from 6.3 volts a.ce, and they should he selected for their speed of operation and adequate insulation for the job to be done. Adequate current-handling

Fik. 8-6-A keying relay ean always be sulstituted for the key, to provide better isolation from the keyed circait. An r.f. filter is generally required at the key, and the heying filter is conneeted in the keyed eirenit at the relay contacts.
capability of the contacts is also a factor. A typical circuit is shown in Fig. 8-6.

The relay-coil current that is broken by the key will cause clicks in the receiver, and an r.f. filter (see later in this chapter) is often necessary across the key. The normal keying filter connects at the relay armature contacts in the usual manner. Vibration effects of the keying relay upon the oscillator circuit should be avoided.

Testing Your Keying

The choier of a keying circuit is not as important as its eomplete testing. Any of the circuits shown in this section can be made to give satisfactory keying, hut they must be adjusted properly.

The easiest way to find out what your keyed signal sounds like on the air is to trade stations with a near-by ham friend some evening for a short (QSO. If he is a half mile or so away, that's fine, but any distance where the signals are still $\mathbf{S} 9$ will be satisfactory.

Ifter you have found out how to work his rig, make contact and then have him send slow dashes, with dash sparing. (The letter "T" at about $\overline{5}$ w.p.m.) With the erystal filter out, cut the r.f. gain back just enough to avoid receiver overloading (the condition where you get erisp) signals instead of mushy ones) and tune slowly from out of beat-note range on one side of the signal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any clicks in the vicinity as yours or someone else's. A good signal will have a thump on "make" that is perceptible only where you can also hear the beat note, and the
rlick on "break" should be practically negligible at any point. Fig. 8-7.1 shows how it should sound. If your signal is like that, it will sound good, provided there are no chirps. Then have him run off a string of $3 \overline{5}-$ or $40-\mathrm{w} . \mathrm{p} . \mathrm{m}$. dots with the bug - if they are easy to cops, your signal has no "tails" worth worrying about and is a good one for any speod up to the limit of manual keying. If the receiver has poor selectivity with the crystal filter out, make one last check with the filter in (Fig. $8-\overline{7} 13$), to see that the clicks off the signal are negligible even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still cherk your keying, although you have to be a little more careful The first step is to get rid of the r.f. click at the key, because if you don't you cannot make further observations. Locally (meaning in your own receiver) this click will coincide in time with clicks that may or may not be on your signal, so there is just no way to observe your signal without first eliminating the r.f. click. And unless you have a keying system that breaks no current, you have a

Fig. 8.7-Representations of a clean c.w. signal as a receiver is tuned through it. (A) shows a receiver with no crystal filter and the b.f.o. set in the center of the pasaband, and (B) shows the crystal filter in and the receiver adjusted for singlesignal reception. The variation in thirkness of the lines represents the relative signal intensity. The andio frequency where the signal disappears will depend upon the receiver sefectivity characteristic and the strength
of the signal.
dick at the key. Even the current broken by the key in a vacuum-tube keyer circuit (which is sometimes only 0.1 ma. or so) will cause r.f. clicks that can be heard in your receiver and often in the b.c. set. If you key with a relay, the key opens the relay-coil circuit and clicks are generated at the key as well as at the relay contacts. Don't make the very common mistake of thinking these clicks are the same as the on-the-air clicks discussed carlier - they are not! They are simply local clicks that you must eliminate before you can observe your signal in your receiver. These rlicks are the same as the ones you get when you turn an electric light on or off - when you suddenly start or stop current flow, no matter how little, you generate r.f. and that's the click.

Getting rid of this little click is generally no trick at all, unless you're breaking a lot of current. All it requires is a small r.f. filter, as shown in Fig. 8-8. Sometimes just a small ($0.001-\mu \mathrm{fd}$.) condenser mounted right at the key terminals will do it, and sometimes it will require the full treatment complete with r.f. chokes and second condenser. Measure the normal current through the key leads, remove the transmitter leads, and then connect a d.c. power supply and resistor to give the same current through the key. When your key will break this current with no click, as observed in your receiver and the b.c. set (tuned off any station), you have a suitable r.f. filter at the

Fig. 8-8-A filter for eliminating the r.f. click at the key. First try C_{1}, then add the two r.f. chokers, and then C. This filter does not eliminate on-the-air clicks, but it is necessary if you are trying to check keving in your own receiver. It should be mounted right at the key.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.01$ to $0.001 \mu \mathrm{fd}$, not critical.
RFC., RFC_{2} - I- to $2.5-\mathrm{mh}$. r.f. cloke.
key and you can reconnect the transmitter. If you use a vacuum-tube keyer, just don't turn on the transmitter but key the normal keyor grid current. If you use a keying relay, first eliminate the click at the key by just keying the relay and adding filter across the key, and then eliminate the click at the relay contarts with another r.f. filter in the relay-keyed circuit. The filter should be mounted right at the key or relay contacts. The objective is to be able to make or break normal key current without generating a local click, and the filtering is usually so simple that the junk box will yield the parts and the process takes longer to describe than to apply.
so far you haven't done a thing for your signal on the air and you still don't know what it sounds like, but you may have cleaned up some clicks in the b.e, set. Now discommert the antenna from your receiver and short the antema terminals with a short piece of wire. Tune in your own signal and reduce the r.f. gain to the point where your recciver doesn't overload. Detune any antenna trimmer the receiver may have. If you can't avoid overload within the r.f. gain-control range, pull out the r.f. amplifier tube and try again. If you still ean't avoid overload, listen to the second harmonic as a last resort. Since an overloaded receiver can generate clicks, it is easy to realize the importance of eliminating overload during any tests or observations.

Describing the volume level at which you should set your receiver for these "shack" tests is a little difficult. The r.f. filter should be effective with the receiver running wide open and with an antenna connected. When you turn on the transmitter and take the other steps mentioned to reduce the signal in the receiver, run the audio up and the r.f. down to the point where you can just hear a little "rushing" sound with the b.f.o. off and the receiver tuned to the signal. This is with the crystal filter in. At this level, a properly-adjusted keying circuit will show no clicks off the rushing-sound range. With the b.f.o. on and
the same gain setting, there should be no clicks outside the beat-note range. When observing clicks, make the slow-dash and fast-dot tests outlined previously.

Now you know how your signal sounds on the air, with one exception. If keying your transmitter makes the house lights blink or the dial light in your receiver flicker, you may not be able to tell too accurately about any chirp on your signal. However, if you are satisfied with the absence of chirp when tuning either side of zero beat, it is safe to assume that your receiver isn't chirping with the light flicker and the observed signal is a true representation. No chirp either side of zero beat is fine - some chirp can be either in your transmitter or your receiver, when the lights flicker. But don't try to make these tests without first getting rid of the r.f. click at the key, because clicks can mask a chirp.

In some instances, particularly if the transmitter power is several hundred watts or more, you may find that a small click still persists on all frequencies. If such a click is observed, pull out the last i.f. amplifier tube in your receiver and listen again. If the click is still there, it indicates rectification in the audio system of your receiver, the same type of BCI we condemn cheap midget receivers for. You can cure it with the usual resistor-condenser filter used for curing such BCI cases, or you can leave it in and make mental compensation for it. Any click you hear on your signal should reduce to this minimum click immediately off the signal.

Another unavoidable click can be encountered by r.f. piek-up on the lead from a receiver i.f. amplifier to an "outrigger" sclective i.f. amplifier (" $25-$ er"). Here again the click will be present at any setting of the receiver tuning control. The solution here is to make your checks with the (5 -er disconnected and the lead removed from the receiver.

Key clicks are caused by the key turning your transmitter on and off too fast - and sometimes by parasitic oscillations in an amplifier - and all a key-click filter does is to slow down the turning-on and turning-off processes. Parasitic clicks occur at points 25 to 100 ke . either side of the signal, and are caused by low-frequency parasitic oscillations triggered by the keying. The cure consists of eliminating the oseillation, not adding key-click filters.

Plate, screen or cathode keying requires a key-click filter of the type shown in Fig. 8-9. Adjustment of such a filter is a simple matter. If the signal has too heavy a click or thump on "make," L should have more inductance. If the click is too heavy on "break," C should have more capacity. The "break" characteristic is also influenced by the value of L, so start with a value of C that reduces the clicks noticcably on "break," adjust the value of L for best "make" characteristie, and then clean up the "break" by further modification of C. Since you may have only a few stray inductances around the shack, you may not find just
the value you want for L. In this case, use a value that gives too soft a "make" and then shunt the inductance with resistance to reduce its effect. Transformer windings will often serve as well as standard chokes in this application, so try everything around the shack until you find what you need. For a given voltage, high-current circuits will require more (${ }^{*}$ and less L than will low-current ones.

In the sereen-grid keying cireuit (fig. 8-2), the value of R_{2} will also affect the "break" eharacteristic. If R_{2} is too large the "break" will tail off too gradually, if it is too small it may introduce a click on "break." In gencral it is best to start with a value as suggested in Fig. 8-2 and adjust C (l'ig. 8-9) for the proper "break" characteristic.

Fig. 8.9-A hey-elick filter for cathode, negativelead or sereen keying. It can le located anywhere in the keying line. The values of I, and C: will vary widely with different currents and voltages, and must be found by cut-and-try. For sareen keying, the resistor R_{2} (Fig. 8-2) should connert to the junction of L and C.
$\mathrm{C}-0.05$ to $2.0 \mu \mathrm{fd}$.
$\mathrm{L}-0.5$ to 30 henrys.
Adjustment of control-grid or keyer-tube keying charateristics is simple, since the important components are (${ }_{1}, R_{1}$ and R_{2} (Figs. $8-3$ and $8-5$). For a given value of (' 1 , increasing the value of R_{2} will soften the "make" characteristic, and increasing the value of R_{1} will soften the "break." The value of R_{1} will be many times the value of R_{2}. With grid-block keying, the value of R_{2} is determined already if the tube runs grid current, because this will be the normal grid leak, and so the value of ('1 must be adjusted for proper "make" characteristic and then the "break" made satisfactory by adjustment of R_{1}. Tubes running heavy grid current are not too suitable for grid-block keying because the value of R_{1} generally ends up comparatively low and the negative supply must furnish too much current when the key is down.

If you are keying in a low-level stage, don't overtook the clipping action of subsequent stages that are fixed-biased beyond cut-off. It can reintroduce clicks. ${ }^{2}$ And if you key your oscillator, don't be too disappointed in the chirp that shows up when you have clickless keying, particularly on the higher-frequency bands. For oseillator keying to be clickless and chirp-free requires an oscillator in which the frequeney is completely independent of everything except the sotting of the tuning dial. No such oscillator has as yet been devised - they all show some frequency change with voltage, current or load changes. Amplifier keying is the answer.

[^6]
Vacuum-Tube Keyers

The practical tube-keyer circuit of Fig. 8-10 can be used for keying any stage of any transmitter. Depending upon the power level of the keyed stage, more or fewer Type 45 tubes can be connected in parallel to handle the necessary current. The voltage drop through a single 45 varies from about 90 volts at 50 ma . to 50 volts at 20 ma . Tubes added in parallel will reduce the drop in proportion to the number of tubes used.

When connecting the output terminals of the keyer to the circuit to be keyed, the grounded output terminal of the keyer must be connected to the transmitter ground. Thus the keyer can be used only in negative-lead or cathode keying. When used in cathode keying, it will introduce
voltage is available from some other source, such as a bias supply. A simplified version of this circuit could eliminate S_{1} and S_{2} and their associated resistors and condensers, since they are incorporated only to allow the operator to select the combination he prefers. But once the values have been selected, they can be soldered permanently in place. The rule for adjusting the keying characteristic is the same as for blocked-grid keying.

A Low-Power Keyer

If a low-level stage running only a few watts is to be keyed, the tube-keyer circuit of Fig. 8-II offers a simple solution. By using a 117 Lz type

Fig. 8-10 - Wiring diagram of a practical vacuum tube keyer.
$\mathrm{C}_{1}-2-\mu \mathrm{fd} .600$-volt paper.
$\mathrm{R}_{5}, \mathrm{R}_{4}-4.7$ megohms, 1 watt.
$1 \mathrm{l}_{5}-0.47$ megohm, 1 watt.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-1$-circuit rotary switch.
$\mathrm{T}_{1}-350-0-350$ volte, 5 volts and 2.5 volts (Stancor P6003).
cathode bias to the stage and reduce the output. This can be compensated for by a reduction in the grid-leak bias of the stage.

The negative-voltage supply (T_{1}, C_{1}, R_{1} and the 80 rectifier) can be eliminated if a negative
tube, which incorporates its own rectifier, it is only necessary to connect to some existing power supply at the point marked " X ". The keying characteristic will vary with many factors, so the values of R_{1} and \dot{R}_{2} only represent starting points for experimentation.

When the key or keying lead has poor insulation, the resistance may become low enough (particularly in humid weather) to reduce the blocking voltage and allow the keyer tube to pass some current. This may cause a slight backwave, but it can be cured by better insulation, or by reduced values of R_{3} and \dot{R}_{4} in Fig. 8-10 or R_{1} in Fig. 8-11.

Monitoring of Keying

In general, there are two common methods for monitoring one's "fist" and signal. The first, and perhaps more common type, involves the use of an audio oscillator that is keyed simultaneously with the transmitter.

The second method is one that permits receiving the signal through one's receiver, and this generally requires that the receiver be tuned to
the transmitter (not always convenient unless working on the same frequency) and that some method be provided for preventing overloading of the receiver, so that a good replica of the transmitted signal will be received. Fxcept where quite low power is used, this usually involves a relay for simultaneously shorting the receiver input terminals and reducing the receiver gain.

The Paratone - An R.F.-Powered Monitor

Thbe "Patratone" shown in Figs. 8-12 and 8-13 is a useful device for monitoring a.w. frammissions, and it is a germanimm-dioders-and-transistor version of ath carlior debelopment ratled the "Monitone," (Ser Chambers, "The Monitone," (2 ST, Maty, 1!5!.) It furnishes an atudio tone every time the transmitter key is closed, and it

Fig. 8-12 - The Paratone - an r.f.-powered automatic c.w. monitor. Jiph-impedance headphones are required.
$\mathrm{I}_{1}-3: 1$ andio transformer. Sie text.
also blanks the reaiver output at the same time. The l'aratone requires no direct connection to the transmitter or key, no power supply, and no changes in the receiver. The sidetone and blanking are keyed by the r.f. output of the transmitter, regardidess of frequences.

Reforing to Fig. 8-12, the headphones are coupled to the rereiver through $C_{1} k_{1} K_{2} \mathrm{C}_{2}$. Condenser C_{1} is charged rapidly he the diode ρ_{1} to the peak of the andio signal from the reeniver. The resistors l_{1} and h_{2} introlue some audio attenuation, but this is small and not troublesome, since most receivers have ample gain. The diode L_{1} is made ronductive by a forward current through resistor R_{3} from the r.f. power supply ($1 \times 34 \mathrm{~A}, 1$-mh. choke and $510-\mu \mu \mathrm{l}$. condenser). When conductive, the resistance of the diode becomes very small and this resistance, together with R_{1}, forme a voltage divider arross the input that greatly attenuates the audio signal coming from the receiver. The resistor h_{2} prevents shortcircuiting the headphones for andio frequencies through ('2. Without this resistor, the signal from the audio oscillator would be drastically reduced.

The audio oscillator section uses a 2×34 transistor and a small audio transformer, $\%_{1}$. Power for the oscillator is taken from the r.f. power supply.

Construction

The I'aratone is built into a $4 \times 21 / 2 \times 15 / 8^{-}$ inch aluminum utility box (Bud ($\mathrm{CW}-3002$). The transformer used is a $3: 1$ audio interstage type with a 10,000 -ohm primary (Merit A-2910). Although those values of transformer impedance are very different from the impedances of the junction transistor, no difficulty was ohserved in the operation of the oseillator. With different transformers it may be necessary to vary the values of the $0.01-\mu$ f. emitter blocking condenser, to arrive at a suitable audio output frequency.

The plarement of parts is not aribical. Leads in the r.f. power supply should be made short. When soldering a transistor or germanium diode into phace, the lead of the semieronduetor devier should be grasped with pliers to help conduct anaty the heat.

Some who operate their transmitters from a remote location mas find it inconvenient to run a long ref. line to the monitor at the operating position. In this case it is ontirely fersible to hate just the ref. power supply located at the transmitter. Much less r.f. power should be required that would be neressary if a twonty- to thirtyfoot r.f. link were used. This also woild be a good means of roupling for those possimists who are more conerned with r.f. in the antema than that which appears in the shark. Because of its small dimensions, the r.f. power supply could be placed in at waterproof packater coupled direetly to the antema. The de. line from the supply need only have a modest diamotor sime the total current is only a few milliamperes.

Fig. 8-13 - The transistor can he seen at the upper left, just to the left of the upper end of the r.f. choke. One germanium diode is partly hidden by the r .f. choke and the other germanium diode is at the lower left. 'The shielded lead rumning out through the grommet is terminated in a 'phone plog. 'The fitting to the left of the grommet is a "phono" jack used for the r.f. input terminal.

After the monitor has been completed, it is best to cheek its operation with a battery conneeted to the r.f. terminals. Be sure to observe the proper polarities: positive (+) to the ground and negative (-) to the r.f. terminal, when using a $p-n-p$ transistor. Ahout 6 volts will m_{x} sufficiont, except in the case of the point-contact relaxation oscillator where about $22 \frac{1}{2}$ volts will be needed.

Once satisfactory operation of the menitor has been obtained using a battery, the monitor can be coupled to the transmitter. Start with loose coupling, for if it is too tight, excessive currents may eause damage to some of the components of the monitor. It should be possible to find a coupling that will not require attention even when switehing from band to band.

Break-In Operation

l 3reak-in operation requires a separate reeciving antenna, since mone of the available antenna change-over relays is fast enough to follow keying. The recoiving antenna should be instatled as far as possible from the transmitting antenna. It should be mounted at right

The ground lead is lifted on this eontrol and run to a rheostat, R_{2}, that goes to ground. A wire from the junction runs outside the receiver to the keving relay, Ry. When the key is up, the ground side of R_{1} is conncerted to ground through the rolay arm, and the receiver is in its normsl oper-

Fig. 8-14 - Wiring diagram for smosoth breah-in operation. The leads shown as heavy lines should he hept as short as possible for minimum piek-up of the transmitter sigmal.
$\mathrm{C}_{1}, \mathrm{C}_{2},\left(\mathrm{C}_{3}-\mathbf{0} .001 \mu \mathrm{fd}\right.$.
K_{1} - Receiver manual gain control.
 potentiometer.
 Ry - S.p.d.t, heyink relay.

angles to the transmitting antenna and fed with low pick-up lead-in material such as coasial cable or 300 -ohm Twin-Load, to minimize pick-up.

If a low-powered transmitter is used, it is often quite satisfactory to use no special equipment for break-in operation other than the separate receiving antenna, since the transmitter will not block the receiver too seriomsly. Even if the transmitter keys without clicks, some clicks will be heard when the recoiver is tumed to the transmitter frequency borause of overload in the receiver. An output limiter, as described in Chapter live, will wash out these rlicks and permit good break-in operation even on your transmitter frequency.

When powers above 25 or 50 watts are used, sperial treatment is required for quiet break-in on the transmitter frequency. A means should be provided for shorting the input of the receiver when the eode characters are sent, and a means for reducing the gain of the receiver at the same time is often necessary. The system shown in Fig. 8-14 permits quiet break-in operation for higher-powered stations. It requires a simple operation on the receiver but otherwise is perfectly straightforward. R_{1} is the regular receiver r.f. and i.f. gain control.
ating condition. When the key is closed, the relay closes, which breaks the ground comnection from R_{1} and applies additional bias to the tubes in the receiver. This bias is controlled by R_{2}. When the relay closes, it also closes the circuit to the transmitter oseillator, $C_{2}, C_{3}, R F C_{2}$ and $R F C_{3}$ compose a filter to suppress the clicks caused by the relay current.
"The keying relay should be mounted on the receiver as close to the antenna terminals as possible, and the leads shown heavy in the diagram should be kept short, since long leads

Fig. 8-15 - Necessary eircuit revision of Fig. 8-14 if a two-wire lead from the receiving antenna is used. RFO_{4} is a $2.5-\mathrm{ml}$. r.f. choke - other values are the same as in Fig. 8.14.
will allow too much signal to get through into the receiver. A good high-speed keying relay should be used. If a two-wire line is used from the receiving antenna, another r.f. choke, $R F C_{4}$, will be required. The revised portion of the schematic is shown in Fig. 8-15.

- VR TUBE BREAK-IN

In many instances it is quite difficult to key an oscillator without clicks and chirps. Most oscillators will key without apparent chirp if the rise and decay times are made very short, but this introduces key clicks that cannot be avoided. The system shown in Fig. 8-16 avoids this trouble by turning on the oscillator quickly,

Fig. 8-16-The VR tube break-in keying circuit uses grid-block keying of an amplifier stage combined with VII tube switching of the oscillator. The oscillator turns on before and off after the amplifier. The 6J5 heater should be connected to its own transformer and not to the heater circuit of the transmitter. The 47 K resistor in the 655 cathode circuit should carry a 4 -watt rating.
keying an amplifier in the grid circuit or with a vacuum-tube keyer, and turning off the oscillator after the amplifier keying is finished. The oscillator is turned on and off without lag, but the resultant clicks are not passed through the transmitter.

The values shown in Fig. 8-16 are for use with a 6 AC 7 oscillator and a 6146 amplifier, but with modifications the circuit can be applied to a wide variety of combinations. The 0.1 -megohm grid leak for the oscillator could be smaller if that were necessary - the important value is R_{3}, which must show sufficient voltage drop when the key is up to cut off the oscillator tube. Resistor R_{1} is the normal grid leak for the keyed amplifier stage - the value of C_{1} is dependent upon R_{1} as described earlier under the adjustment of a keyed amplifier stage - the values of C_{1} and R_{2} are dependent upon C_{1}, as described carlier under the adjustment of control-grid keying. If a keyer tube is used - its grid circuit is the same as in the amplifier tube in Fig, 8-16, except that the choke and coupling condenser are not necessary - the values are adjusted as described earlier under the adjustment of tube keying.

The first requisite for the break-in circuit is a transmitter that can be keyed satisfactorily by control-grid or keyer-tube keying in the output or driver stage. Then all that is required is the addition of the 6 J 5 and VR-150 as shown. The +100 volts can be "stolen" from the transmitter, since only a few milliamperes of current is required, and the negative supply is required by the control-grid or keyer-tube keying in any event.

In cases where the operating bias and necessary cut-off voltage of the keyed stage are higher than shown in Fig. 8-16, it will be necessary to use two or more VR tubes in series and, in some cases, raise the negative source voltage. For any given set of conditions and transmitter, increasing the number of VR tubes will increase the "hold-in" time of the oscillator. This is pointed out in case you run into conditions where the oscillator doesn't hold in long enough and even the largest values of R_{2} still give a click on "break."

By using a relay in place of the key, the circuit can be combined with that of Fig. 8-14 or 8-15 to combine receiver protection and gain reduction with the excellent keying of the VR tube break-in system. (For further details, see Goodman, "VIR Break-In Keying," QST, February, 1954.)

Full descriptions of allied systems for break-in operation can be found in the following QST articles:
Miller and Meichner, "TVG - An Aid to BreakIn," March, 1953.
Puckett, "'De Luxe' Keying Without Relays," September, 1953; Part II, Dec., 1953.

ELECTRONIC KEYS

Flectronic keys, as contrasted with mechanical automatic keys, use vacuum tubes or relays (or both) to form automatic dashes as well as automatic dots. Full descriptions of electronic keys can be found in the following QST' articles:
Brann, "In Search of the Ideal Electronic Key," Feb., 1951.
Turrin, "Debugging the Electronic Bug," Jan., 1950.

Montgomery, "'Corkey" - A Tubeless Automatic Key," November, 1950.
Bartlett, "Compact Automatic Key Design," Dec., 1951.
Turrin, "The 'Tur-Key'", December, 1952. Correction, February, 1953.
Kaye, "The 'Ultimatic' - The Key with a Memory," February, 1953. Note on suitable relays, April, 1953.
Brann, "A Dot Anticipator for the Electronic Key," July, 1953.
Turrin, "The 'Tur-Key' in Miniature," September, 1954.

Speech Amplifiers and Modulators

The audio amplifiers used in radiotelephone transmitters operate on the principles outlined earlier in this book in the chapter on vacuum tubes. The design requirements are determined principally by the type of modulation system to be used and by the type of microphone to be employed. It is necessary to have a clear understanding of modulation principles before the problem of laying out a speech system can be approached successfully. Those principles are discussed under appropriate chapter headings.
The present chapter deals with the design of audio amplifier systems for communication purposes. In voice communication the primary objective is to obtain the most effective transmission; i.e., to make the message be understood at the receiving point in spite of adverse conditions created by noise and interference. The methods used to accomplish this do not necessarily coincide with the methods used for
other purposes, such as the reproduction of music or other program material. In other words, "naturalness" in reproduction is distinctly secondary to intelligibility.

The fact that satisfactory intelligibility can be maintained in a relatively narrow band of frequencies is particularly fortunate, because the width of the channel occupied by a 'phone transmitter is directly proportional to the width of the audio-frequency band. If the channel width is reduced, more stations can occupy a given band of frequencies without mutual interference.

In speech transmission, amplitude distortion of the voice wave has very little effect on intelligibility. Its importance in communication lies almost wholly in the fact that many of the audiofrequency harmonics caused by such distortion lie outside the channel needed for intolligible speech, and thus will create unnecessary interference to other stations.

Speech Equipment

In designing speech equipment it is necessary to know (1) the amount of audio power the modulation system must furnish and (2) the output voltage developed by the microphone when it is spoken into from normal distance (a few inches) with ordinary loudness. It then becomes possible to choose the number and type of amplifier stages needed to generate the required audio power without overloading or distortion anywhere in the system.

- MICROPHONES

The level of a microphone is its electrical output for a given sound intensity. Level varies greatly with microphones of different types, and depends on the distance of the speaker's lips from the microphone. Only approximate values hased on averages of "normal" speaking voices can be given. The values given later are based on close talking; that is, with the microphone about an inch from the speaker's lips.

The frequency response or fidelity of a microphone is its relative ability to convert sounds of different frequencies into alternating current. For understandable speech transmission only a limited frequency range is necessary, and intelligible speech can be obtained if the output of the microphone does not vary more than a few decibels at any frequency within a range of about 200 to 2500 cycles. When the variation expressed in terms of decibels is small between two fre-
quency limits, the microphone is said to be flat between those himits.

Carbon Microphones

The carbon microphone consists of a metal diaphragm placed against an insulating cup containing loosely-packed carbon granules (microphone button). Current from a battery flows through the granules, the diaphragm being one connection and the metal backplate the other. Fig. 9-1A shows connections for carbon microphones. A variable resistor is included for adjusting the button current to the value as specified with the microphone. The primary of a transformer is connected in series with the battery and microphone.

As the diaphragm vibrates, its pressure on the granules alternately increases and decreases, causing a corresponding increase and tlecrease of current flow through the circuit, since the pressure changes the resistance of the mass of granules. The resulting change in the current flowing through the transformer primary causes an altermating voltage, of corresponding frequency and intensity, to be set up in the transformer secondary.

Good-quality carbon microphones give outputs ranging from 0.1 to 0.3 volt across 50 to 100 ohms; that is, across the primary winding of the microphone transformer. With the step-up of the transformer, a peak voltage of between 3 and 10 volts can be assumed to be available at the grid of the
amplifier tube. The usual button eurrent is 50 to 100 ma .

Crystal Microphones

The crystal microphone makes use of the piezoclectric properties of Rochelle salts reystals. This type of microphone requires no battery or transformer and can be connected direetly to the grid of an amplifier tube. It is the most popular type of microphone among amateurs, for these reasons as well as the fact that it has good frequency response and is available in inexpensive models. The input cireuit for the erystal mierophone is shown in lig. 9-113.

Although the level of erystal microphones varios with different models, an output of 0.03 volt or so is representative for communication types. The level is afferted by the length of the cable connerting the microphone to the first amplifier stage; the above figure is for lengthe of (6 or 7 feet. The frequency characteristic is unaffected by the cable, but the load resistance (amplifier grid resistor) does affert it; the lower frequencies are attenuated as the value of load resistance is lowered. A grid-resistor value of at least 1 megohm should be used for reasonably flat response, 5 megohms being a customary figure.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element acted upon by the sound waves is a thin corrugated metallic ribbon suspended between the poles of a magnet. When vilbating, the ribbon cuts the lines of force between the poles, first in one direction and then the other, thus generating an alternating voltage.

Velocity mierophones are built in two types, high impedance and low impedance, the former being used in most applications. A high-imperdance microphone can be directly connected to the grid of an amplifier tube, shunted by a resistance of 0.5 to $\overline{5}$ megohms (Fig. 9-1C). Lowimpedance microphones are used when a long connecting cable (75 fert or more) must be cmployed. In such a ease the output of the mierophone is coupled to the first amplifier stage through a suitable step-up transformer, as shown in Fig. 9-11).

The level of the velocity microphone is about 0.03 to 0.05 volt. This figure applies directly to the high-impedance type, and to the low-impedance type when the voltage is measured arross the secondary of the coupling transformer.

The dynamic microphone somewhat resembles a dynanie loudspeaker. A light-weight voice eoil is rigidly attached to a diaphragm, the eoil being suspended between the poles of a permanent magnet. sound causes the diaphragm to vibrate, thus moving the roil back and forth between the magnet poles and generating an alternating voltage.

The dynamic microphone usually is built with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the connecting eable mast be unusually long, a low-
impedance type should be used, with a step-up transformer at the end of the cable.

A small permanent-magnet 'speaker ean be used as a dynamie microphone, although the fidelity is not as good as is obtainable with a properly-designed microphone.

THE SPEECH AMPLIFIER

The audio-frequency amplifier stage that causes the r.f. carrier output to be variod is called the modulator, and all the amplifier stages preceding it comprise the speech amplifier. Depending on the morlulator used, the speech amplifier may be called upon to deliver a power output ranging from practically zero fonly voltage required) to 20 or 30 watts.

(A) SB CARBON

Before starting the design of a speech amplifier, therefore, it is neressary to have selected a suitaWe modulator for the transmitter. This selection must be based on the power required to modulate the transmitter, and this power in turn depends on the type of modulation system selected, as deseribed in other chapters. With the modulator picked out, its driving-power requirements (audio power reguired to excite the modulator to full output) (an be determined from the tube tables in the last chapter. (benerally speaking, it is advisable to choose a tube or tubes for the last stage of the speech amplifier that will be capable of

Fig. 9.2 - Resintancceoupled voltage-amplifier cirruits. A, pentode: 13, triode, 1)erignations are as follows:
C C_{1} - Cathonle liy-pass condenser.
C_{2} - Plate by-pass condenser.
(:3- ()utput coupling condenser (blocking condenser).
C.4-Screen by-pass condenser.
k_{1} - Cathode resistor.
K_{2} - Crid resistor.
H_{3} - Ilate resistor.
H_{4} - Next-atage grid resistor.
K_{5} - Ilate decoupling resistor.
H_{6} - Sicreen resistor.
I alues for suitable tubes are kiven in Table 0.1. Values in the deconoling circout, (i2 $R_{\text {fo }}$ are not eritical. K_{5} may Ine about 10% of K_{3}; an 8. or 10 - μ fil, clectrolytie condenser is usually large enough at Co.
developing at least 50 per rent more power than the rated driving power of the modulator. This will provide a factor of safeiy so that losese in coupling transformors, etce, will not upset the calculations.

Voltage Amplifiers

If the last stage in the speceh amplifior is a Class AB_{2} or Class 13 amplifier, the stage ahead of it must be capable of sufficient power output to drive it. IIowever, if the last stage is a Class $\mathrm{A} B_{1}$ or Class A amplifier the preceding stage can be simply a voltage amplifier. From there on back to the microphone, all stages are voltage amplifiers.
The important characteristics of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum a.f. voltage that can be secured from the stage without distortion. The amplifier frequency response should be adequate for voice reproduction; this requirement is easily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in speech amplifiers are given in Table 9-I, for resistanee-coupled amplification.

The output voltage is in terms of peak voltage rather than r.m.s.; this makes the rating independent of the waveform. Exceeding the peak value causes the amplifier to distort, so it is more usefful to consider only peak values in working with amplifiers.

Resistance Coupling

Resistance coupling generally is used in volt-age-amplifier stages. It is relatively inexpensive, good frequency response can be secured, and there is little danger of hum piok-up from stray magnetic fields associated with heater wiring. It is the only type of coupling suitable for the output circuits of pentodes and high- μ triodes, because with transformers a sufficiently high load impedance cannot be obtained without considerable frequency distortion. Typical eireuits are given in Fig. !-2 and design data in Table 9-I.

Transformer Coupling

Transformer coupling between stages ordinarily is used only when power is to be transferred (in such a case resistance coupling is very inefficient), or when it is necessary to couple between a single-ended and a push-pull stage. Triodes having an amplification factor of 20 or less are used in transformer-coupled voltage amplifiers. With transformer coupling, tubes should be operated under the Class A conditions given in the tube tables at the end of this book.

Representative circuits for coupling singloended to push-pull stages are shown in Fig. 9-3. The circuit at A combines resistance and transformor coupling, and may be used for exoiting the

Fip. 9-3 - Transformer-coupled amplifier circuits for driving a push-pull amplifier. A is for resistance-trans. former coupling; B for transformer coupling. Designations correspond to those in Fig. 9.2. In A, valucs can be taken from Table 9.I. In \mathbf{B}, the cathode resistor is calculated from the rated plate current and grid bias as given in the tube tables for the particular type of tube used.

TABLE 9－I—RESISTANCE－COUPLED VOLTAGE－AMPLIFIER DATA
Data are given for a plate supply of 300 volts．Departures of as much as 50 per cent from this supply voltage will not materially change the operating conditions or the vollage goin，but the output voltage will be in proportion to the new vollage．Voltage gain is measured at 400 eycles，condenser values given are based on 100 －cycle cut－off．For increased low－frequency response，all condensers may be made larger than specified（cut－off frequency in inverse proportion to condenser values provided

	Plate Resistor Megohms	Next－Stage Grid Resistor Megohms	Screen Resistor Megohms	Cathoda Resistor Ohms	$\begin{aligned} & \text { Screen } \\ & \text { By-pass } \\ & \mu \mathrm{fd} . \end{aligned}$	$\begin{gathered} \text { Cathode } \\ \text { By-pass } \\ \mu \mathrm{fd} . \end{gathered}$	Blocking Condenser $\mu \mathrm{id}$ ．	Output Volts （Peak）	Voltage Gain ${ }^{2}$
6517．19SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 500 \\ & 530 \\ & 590 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \\ \hline \end{array}$	0.019 0.016 0.007	$\begin{array}{r} 72 \\ 96 \\ 101 \\ \hline \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	8.5 7.4 6.9	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \\ & \hline \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \\ & 185 \\ & \hline \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 9.9 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.009 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 800 \\ & 938 \\ & 963 \end{aligned}$
$\begin{aligned} & \text { 617,7C7, } \\ & \text { 12.j7-GT } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \end{aligned}$
	0.95	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	1.18 1.18 1.45	1100 1800 1300	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	5.5 5.4 5.8	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	$\begin{aligned} & 104 \\ & 140 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 0.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 9.45 \\ & 8.9 \\ & 8.95 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2900 \\ & 8300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 161 \\ 200 \\ 230 \\ \hline \end{array}$
$\begin{aligned} & \text { 6AU6, 6SH7 } \\ & 12 A U 6,12 S H 7 \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.89 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \end{aligned}$	0.13 0.11 0.11	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 129 \\ \hline \end{array}$	$\begin{aligned} & 109 \\ & 145 \\ & 168 \end{aligned}$
	0.29	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$	0.42 0.5 0.55	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 129 \end{array}$	$\begin{aligned} & 164 \\ & 230 \\ & 262 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	8.0 7.6 7.3	$\begin{aligned} & 0.0045 \\ & 0.0088 \\ & 0.0018 \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 192 \\ \hline \end{array}$	$\begin{array}{r} 248 \\ 318 \\ 371 \end{array}$
$\begin{gathered} \text { 6AO6, 6AO7, } \\ \text { 6AT6, 6Q7, } \\ \text { 6SL7Gt, 6SZ } 7, \\ \text { 6T8,18AT6, } \\ 12077-G T \\ 19 S L 7-G 1 \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \end{aligned}$	二	4.4 3.6 3.0	$\begin{aligned} & 0.027 \\ & 0.014 \\ & 0.0065 \end{aligned}$	40 54 63	$\begin{aligned} & 34 \\ & 38 \\ & 41 \end{aligned}$
	0.22	$\begin{aligned} & 0.28 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 2600 \\ & 3800 \\ & 3700 \end{aligned}$	－	2.5 1.9 1.6	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	51 65 77	48 48 48
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$	－	$\begin{aligned} & 5200 \\ & 6300 \\ & 7900 \end{aligned}$	－	1.8 1.0 0.9	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.008 \end{aligned}$	61 74 85	48 50 51
$\begin{gathered} \text { 6AVG, } 12 A V 6, \\ 12 A \times 7 \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.28 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \end{aligned}$	二	4.6 4.0 3.6	0.027 0.013 0.006	43 57 66	45 58 57
	0.29	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 9200 \\ & 9800 \\ & 3100 \end{aligned}$	－	3.0 8.3 8.1	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	54 69 79	59 65 68
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 9.9 \end{aligned}$	二	$\begin{aligned} & 4300 \\ & 5900 \\ & 5900 \end{aligned}$	－	1.6 1.3 1.1	0.006 0.003 0.002	69 77 92	69 73 75
$\begin{gathered} \text { 6SC7, } 125 C 7{ }^{3} \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	－	$\begin{array}{r} 750 \\ 930 \\ 1040 \\ \hline \end{array}$	－	－	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	35 50 54	29 34 36
	0.25	$\begin{aligned} & 0.95 \\ & 0.5 \\ & 1.0 \end{aligned}$	－	$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \end{aligned}$	二	－	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	45 55 64	39 49 45
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 9.0 \end{aligned}$	－	$\begin{aligned} & \$ 330 \\ & 9980 \\ & 3280 \end{aligned}$	二	－	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.009 \end{aligned}$	50 68 72	45 48 49
$\begin{gathered} \text { 6J5, 7A4 } \\ \text { 7N7, } 6 \text { SN7GT, } \\ 1255 . G T \\ 185 N 7 . G T \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.29 \end{aligned}$	－	1300 1580 18800 18500	－	3.6 3.0 2.5	$\begin{aligned} & 0.061 \\ & 0.039 \\ & 0.015 \end{aligned}$	59 73 83 88	14 15 16 16
	0.1	$\begin{aligned} & 0.1 \\ & 0.28 \\ & 0.47 \end{aligned}$	－	$\begin{aligned} & 2500 \\ & 3130 \\ & 3900 \end{aligned}$	－	1.9 1.4 1.9	$\begin{aligned} & 0.031 \\ & 0.014 \\ & 0.0065 \end{aligned}$	68 89 96	16 16 16
	0.92	$\begin{aligned} & 0.28 \\ & 0.47 \\ & 1.0 \end{aligned}$	二	$\begin{aligned} & 4800 \\ & 6500 \\ & 7800 \end{aligned}$	－	$\begin{aligned} & 0.95 \\ & 0.69 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	68 85 96	16 16 16
$\begin{gathered} 6 C 4 \\ 12 A U 7 \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.29 \end{aligned}$	－	$\begin{array}{r} 870 \\ 1200 \\ 1500 \end{array}$	二	4.1 3.0 2.4	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	38 59 68	12 12 12
	0.1	$\begin{aligned} & 0.1 \\ & 0.29 \\ & 0.47 \\ & \hline \end{aligned}$	二	$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	二二	1.9 1.3 1.1	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \end{aligned}$	44 68 80 57	12 12 12 12
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$	二－	$\begin{array}{r} 5300 \\ 800 \\ 11000 \end{array}$	二	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	57 89 98	12 12 18

1 Voltage across next－stage grid resist or at grid－curfent point．
＊At 5 volts r．m．s．oulput．
－Cathode－resistor values are for phase－inverter service．
grids of a Class A or AB_{1} following stage. The resistance coupling is used to keep the d.c. plate current from flowing through the transformer primary, thereby preventing a reduction in primary inductance below its no-current value; this improves the low-frequency response. With low- μ triodes ($6 \mathrm{C} 5,6 \mathrm{~J} 5$, etc.), the gain is equal to that with resistance coupling multiplied by the ser-ondary-to-primary turns ratio of the transformer.
In 13 the transformer primary is in series with the plate of the tube, and thus must carry the tube plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically equal to the μ of the tube multiplied by the transformer ratio. This circuit also is suitable for transferring power (within the capabilitios of the tube) to a following Class AB_{2} or Class B stage.

Phase Inversion

Push-pull output may lo secured with resistance coupling by using "phase-inverter" or "phase-splitter" circuits as shown in Fig. 9-4.
The cireuits shown in Fig. 9-4 are of the "selfbalancing' type. In A, the amplified voltage
(A)

(B)

Fig. 9-4 - Self-lalaneing phase-inverter eircuits. Vis and $/ 2$ may be a double triode sueh as the 6 S - (FT or 68177 CT . I's may be any of the triodes listed in Table 9-I, or one seetion of a double triode.
I_{1} - Grid resistor (1 megohm or less).
\mathbf{R}_{2} - Cathode resistor; use one-half value given in Table 9-I for tule and operating conditions chosen.
$\mathbf{R}_{3}, \mathrm{R}_{4}$ - Plate resistor; select from Table 9-I.
$\mathrm{R}_{5}, \mathrm{R}_{6}$ - Following-stage grid resistor (0.22 to 0.47 megohm).
R_{7} - 0.22 megohm.
H_{8} - Cathode resistor; select from Table 9.I.
$\mathrm{K}_{9}, \mathrm{H}_{10}$ - Fach one-half of plate load resistor given in Table 9.I.
$\mathrm{C}_{1}-10-\mu \mathrm{fd}$. electrolytie.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.01$ - to 0.1- $\mu \mathrm{fd}$. paper.
from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from V_{2} appears across R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1}, thus giving push-pull output. The part that appears across R_{7} from V_{2} opposes the voltage from V_{1} across R_{7}, thus reducing the signal applied to the grid of V_{2}. The negative feed-back so obtrined tends to regulate the voltage applied to the phaseinverter tube so that the output voltages from both tubes are substantially equal. The gain is slightly less than twice the gain of a single-tube amplifier using the same operating conditions.

In the single-tube circuit shown in Fig. 9-413 the plate load resistor is divided into two equal parts, R_{9} and R_{10}, one being connected to the plate in the normal way and the other between cathode and ground. Since the voltages at the plate and cathode are 180 degrees out of phase, the grids of the following tubes are fed equal a.f. voltages in push-pull. The grid return of V_{3} is made to the junction of R_{8} and R_{10} so normal bias will be applied to the grid. This circuit is highly degenerative because of the way R_{10} is connected. The voltage gain is less than 2 even when a high- μ triode is used at V_{3}.

Gain Control

A means for varying the over-all gain of the amplifier is necessary for keeping the final output at the proper level for modulating the transmitter. The common method of gain control is to adjust the value of a.e. voltage applied to the grid of one of the amplifiers by means of a voltage divider or potentiometer.

The gain-control potentiometer should be near the input end of the amplifier, at a point where the signal voltage level is so low there is no danger that the stages ahead of the gain control will be overloaded by the full mirrophone output. With carbon microphones the gain control may be placed directly across the mierophone-transformer secondary. With other types of microphones, however, the gain control usually will affect the frequency response of the microphone when connected directly across it. Also, in a high-gain amplifier it is better to operate the first tube at maximum gain, since this gives the best signal-to-hum ratio. The control therefore is usually placed in the grid circuit of the second stage.

Designing the speech AMPLIFIER

The steps in designing a speech amplifier are as follows:

1) Determine the power needed to modulate the transmitter and select the modulator. In the case of plate modulation, a Class B amplifier may he required. Select a suitable tube type and determine from the tube tables at the end of this book the grid driving power required, if any.
2) As a safety factor, multiply the required driver power by at least 1.5 .
3) Select a tube, or pair of tubes, that will deliver the power determined in the second step. This is the last or output stage of the speechamplifier. Receiver-type power tubes can be used (beam tubes such as the $6 L 6$ may be needed in some cases) as determined from the receiving-tube tables. If the speech amplifier is to drive a Class I3 modulator, use a Class A or AB_{1} amplifier, in preference to Class AB_{2}, if it will give enough power output.
4) If the speech-amplifier output stage must operate Class AI_{2}, use a medium- μ triode (such as the 6.55 or corresponding types) to drive it. In the extreme case of driving 6 L 6 s to maximum output, two triodes should be used in push-pull in the driver. In either case transformer coupling will have to be used, and transformer manufarturers' catalogs should be consulted for a suitable type.
5) If the speech-amplifier output stage operates (Class A or AB_{1}, it may be driven by a voltage amplifier. If the output stage is push-pull, the driver may be a single tube coupled through a transformer with a bahanced secondary, or may be a dual-triode phase inverter. Determine the signal voltage required for full output from the last stage. If the last stage is a singlo-tube Class A amplifier, the peak signal is equal to the grid-bias voltage; if push-pull Class A, the peak signal voltage is equal to twice the grid bias; if Class $A B_{1}$, twice the bias voltage when fixed bias is used; if cathode bias is used, twice the bias figured from the cathode resistance and the maxi-mum-signal cathode current.
(6) From Table 9-I, select a tube capable of giving the required output voltage and note its rated voltage gain. A double-triode phase inverter (Fig. 9-4A) will have approximately twice the output voltage and twice the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-coupled to the last stage, select a medium- μ triode and calculate the gain and output voltage as described carlier in this chapter.
6) Divide the voltage required to drive the output stage by the gain of the preceding stage. This gives the peak voltage required at the grid of the next-to-the-last stage.
7) Find the output voltage, under ordinary conditions, of the microphone to be used. This information should be obtained from the manufacturer's catalog. If not available, the figures given in the section on microphones in this chapter will serve.
8) Divide the voltage found in (7) by the output voltage of the microphone. The result is the over-all gain required from the microphone to the grid of the next-to-the-last stage. To be on the safe side, double or triple this figure.
9) From Table 9-I, select a combination of tubes whose gains, when multiplied together, give approximately the figure arrived at in (9). These amplifiers will he used in cascate. If high gain is required, a pentode may be used for the first speech-amplifier stage, but it is not advisable to use a second pentode because of the possibility
of feed-back and self-oscillation. In most cases a triode will give enough gain, as a second stage, to make up the total gain recquired. If not, a medium- μ triode, may be used as a third stage.

A high- μ double triode with the sections in cascade makes a good low-level amplifier, and will give somewhat greater gain than a pentode - medium- μ triode combination. With resist-ance-coupled input to the first section the cathode of that section may be grounded, which is helpful in reducing hum.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable circuit has been selected for a spereh amplifier, the eonstruction problem resolves itself into avoiding two difficulties excessive hum, and unwanted fret-iark. For reasonably humbess operation, the hum voltage should not execed about l per cent of the maximum audio output voltage - that is, the ham should be at least 40 db . below the output level.

Unwanted feed-back, if negative, will reduce the gain below the calculated value; if positive is likely to cause self-oscillation or "howls." Feedback can be minimized by isolating each stage with "decoupling" resistors and condensers, by avoiding layouts that bring the first and last stages near each other, and by shielding of "hot" points in the circuit, such as grid leads in lowlevel stages.

Sprech-amplifier equipment, especially voltage amplifiers, should be constructed on steel chassis, with all wiring kept below the chassis to take advantage of the shielding afforded. Exposed leads, particularly to the grids of low-level high-gain tubes, are likely to pick up hum from the electric field that usually exists in the vieinity of house wiring. liven with the chassis, additional shielding of the input eircuit of the first tube in a highgain amplifier usually is necessary. In addition, such circuits should be separated as much as possible from power-supply transformers and chokes and atwo from any audio transformers that operate at fairly-high power levels; this will minimize magnetic coupling to the grid circuit and thus reduce hum or audio-frequency feed-back. It is always safe, although not absolutely necessary, to separate the speech amplifier and its power supply, building them on separate chassis.

If a low-level microphone such as the crystal type is used, the microphone, its connecting cable, and the plug or connector by which it is attached to the speech amplifier, all should be shielded. The microphone and cable usually are constructed with suitable shiclding: this should be connected to the speech-amplifier chassis, and it is advisable - as well as usually necessary - to connect the chassis to a ground such as is water pipe. With the top-cap tubes, complete shielding of the grid lead and grid cap is a necossity.

Heater wiring should be kept as far as possible from grid leads, and cither the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the center-
tap is grounded, the hater leads to each tube should be twisted together to reduce the magnetie fied from the heater current. With either type of connection, it is advisable to lay heater leads in the corner formed by a fold in the chassis, bringing them out from the comer to the tube socket by the shortest possible path.

When metal tubes are used, always ground the shell eonnection to the chassis. Glass tubes used in the low-level stages of high-gain amplifiors must be shielded; tube shields are ohtainable for that purpose. It is a good plan to enclose the entire amplifier in a motal box, or at least provide it with a cane-metal cover, to avoid feed-back difficultics caused by the r.f. field of the transmitter. R.f. picked up on exposed wiring, leads or tube clements causes overloading, distortion, and self-oscillation of the amplifier.

When using paper condensers as by-passes, be sure that the terminal marked "outside foil" is connected to ground. This utilizes the outside foil of the condenser as a shidd around the "hot" foil. When paper condensers are used for coupling between stages, always eonnect the outside-foil terminal to the side of the circuit having the lowest impedance to ground. Usually, this will be the plate side rather than the following-grid side.

- INCREASING THE EFFECTIVENESS OF THE 'PHONE TRANSMITTER

The effectiveness of an amateur 'phone transmitter can be increased to a remarkable extent by taking advantage of speoch characteristics. Measures that may be taken to make the modulation more effective include band compression (filtering), volume compression, and speech clipping.

Compressing the Frequency Band

Most of the intelligibility in speech is contained in the medium band of frequencies; that is, between about 500 and 2500 cycles. (On the other hand, the major portion of speech power is normally concentrated below 500 eveles. It is these low frequencies that modulate the transmitter most heavily. If they are attenuated, the frequencies that carry most of the artual communication can be increased in amplitude without exceeding 100 -per-cent modulation, and the effectiveness of the transmitter is correspondingly increased.
One simple way to reduce low-frequency response is to use small values of coupling capacitanee between resistance-coupled stages, as shown in Fig. 9-5A. A time constant of 0.0005 second for the coupling condenser and following-stage grid resistor will have little effect on the amplification at 500 cyeles, but will practically halve it at 100 cycles. In two cascaded stages the gain will be down about 5 db . at 200 cycles and 10 db . at 100 cycles. When the grid resistor is $1 / 2$ megohm a coupling condenser of $0.001 \mu \mathrm{fd}$. will give the required time constant.
The high-frequency response can be reduced by using "tone control" methods, utilizing a con-

Fig. 9-5 - A, use of a small coupling condenser to reduce low-freguency response; 13 , tune-control circuits for redneing high. frequency response. Vabues for C and R are discussed in the text; $0.01 \mu \mathrm{fd}$, and $\mathbf{2 5},(0)(0)$ ohms are typical.
denser in series with a variable resistor connected across an audio impedanee at some point in the speech amplifier. The best spot for the tone control is across the primary of the output transformer of the speech amplifier, as in Fig. !-5B. The condenser should have a reactance at 1000 cycles about equal to the load resistance required by the amplifier tube or tubes, while the variable resistor in series may have a value equal to four or five times the load resistance. The control can be adjusted while listening to the amplifier, the object being to cut the high-frequency response as much as possible without unduly sacrificing intelligibility.

Restricting the frequency response not only puts more modulation power in the optimum frequency band but also reduces hum, because the low-frequency response is reduced, and helps reduce the width of the channel occupied by the transmission, because of the reduction in the amplitude of the high audio frequencies.

Volume Compression

Although it is olsviously desirable to modulate the transmitter as completely as possible, it is difficult to maintain constant voice intensity when speaking into the mierophone. To overcome this variable output level, it is possible to use automatic gain control that follows the average (not instantancous) variations in speech amplitude. This can be done by rectifying and filtering some of the audio output and applying the rectified and filtered d.c. to a control electrode in an early stage in the amplifier

A practical circuit for this purpose is shown in Fig. 9-6. The rectifier must be connected, through the transformer, to a tube capable of delivering some power output (a small part of the output of the power stage may be used) or
else a separate power amplifier for the rectifier circuit alone may have its grid connected in parallel with that of the last voltage amplifier.

IResistor R_{4}, in series with R_{5} across the plate supply, provides an adjustable positive bias on the rectifier cathodes. This prevents the limiting action from beginning until a desired microphone input level is reached. $R_{2}, R_{3}, C_{2}, C_{3}$ and C_{4} filter the audio frequencies from the rectified output. The output of the rectifier may be connected to the suppressor grid of a pentode first stage of the speech amplifier.

A transformer with a turns ratio such as to give about 50 volts when its primary is connected to the output circuit of the power stage should be used. If a transformer having a center-tapped secondary is not available, a half-wave rectifier may be used instead of the full-wave circuit shown, but it will be harder to get satisfactory filtering.

The over-all gain of the system must be high enough so that full output can be sccured at a moderately low voice level.

Speech Clipping and Filtering

In speech waveforms the average power content is considerably less than in a sine wave of the same peak amplitude. Since modulation percentage is based on peak values, the modulation or sideband power in a transmitter modulated 100 per cent by an ordinary voice waveform will be considerably less than the sideband power in the same transmitter modulated 100 per cent by a sine wave. In Fig. 9-7 the upper drawing, A, represents a sine wave having a maximum amplitude that just modulates a given transmitter 100 per cent. The speech wave at 13 also represents 100 -per-cent modulation.

If the amplitude of the wave shown at B is increased so that its power is comparable with or higher than the power in a sine wave, but with everything above 100 -per-cent modulation cut off, it will appear as shown at C. This signal will not modulate the transmitter more than 100 per cent, but the voice power is several times greater than B. The wave is not exactly like the onc at B, so the result will not sound exactly like the original. However, "clipping" of this type can be used to secure a worth-while increase in modulation pover without sacrificing intelligibility. Once the system is properly adjusted it will be impos-

Fig. 9.6-Speech-amplifier ontput-liniting circuit. $C_{1}, C_{2}, C_{3}, C_{4}-0.1-\mu \mathrm{fd} .: R_{1}, R_{2}, R_{3}-0.22$ megohm; $R_{4}-25,000$ ohm mot.; $R_{5}-0.1$ megohm; T-see text.

Fig. 9.7-The normal speech wave (B) has high peaks hit low average energy content. When the peaks are clipped the signal may be increased to a considerablyhigher power level without causing overmodulation (C).
sible to overmodulate the transmitter because the maximum output amplitude is held to the same value no matter what the amplitude of the signal applied.
By itself, clipping generates the same highorder harmonics that overmodulation does, and a signal modulated by the clipped waveform shown in Fig. 9-7 would "splatter". To prevent this, the audio frequencies above those needed for intelligible speech must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation at frequencies below about 2500 cycles, but high attenuation for all frequencies above 3000 cycles.
It is possible to use as much as 25 db . of clipping before intelligibility suffers; that is, if the original peak amplitude is 10 volts, the signal can be clipped to such an extent that the resulting maxinum amplitude is less than one volt. If the original 10 -volt signal represented the amplitude that caused 100 -per-cent modulation on peaks, the clipped and filtered signal can then be amplified up to the same 10 -volt peak level for modulating the transmitter, with a very considerable increase in modulation power.
There is a loss in naturalness with "deep" clipping, even though the voice is highly intelligible. With moderate clipping levels (6 to 12 db .) there is almost no perceptible change in "quality" but the voice power is four to sixteen times as great as in ordinary modulation.

Before drastic clipping can be used, the speech signal must be amplified several times more than is necessary for normal modulation. Also, the hum and noise must be much lower than the tolerable level in ordinary amplification, because the noise in the output of the amplifier increases in proportion to the gain.

One type of clipper-filter system is shown in block form in Fig. 9-8. The clipper is a peaklimiting rectifier of the same general type that is used in receiver noise limiters. It must clip both positive and negative peaks. The gain or clipping

Fig. 9-8 - Block diagram of speech-clipping and filtering amplifier.
control sets the amplitude at which clipping starts. Following the low-pass filter for eliminating the harmonic distortion frequencies is a sccond gain control, the "level" or modulation control. This control is set initially so that the amplitude-limited output of the elipper-filter cannot modulate the transmitter more than 100 pror cent.

It should be noted that the peak amplitude of the audio waveform actually applied to the modulated stage in the transmitter is not necessarily held at the same relative level as the peak amplitude of the signal coming out of the clipper stage. When the clipped signal goes through the filter, the relative phases of the various frequency components that pass through the filter are shifted, particularly those components near the cut-off frequency. This may cause the peak amplitude out of the filter to exceed the peak amplitude of the clipped signal applied to the filter input terminals. Similar phase shifts can occur in amplifiers following the filter, especially if these amplifiers, including the modulator, do not have good low-frequeney response. With poor low-frequency response the more-or-less "square" waves resulting from clipping tend to be changed into triangular waves having higher peak amplitude. Best practice is to cut the lowfrequency response before clipping and to make all amplifiers following the clipper-filter as flat and distortion-free as possible.

The best way to set the modulation control in such a system is to check the actual modulation percentage with an oscilloscope connected as described in the chapter on modulation. With the gain eontrol set to give a desired clipping level with normal voice intensity at the microphone, the level control should be adjusted so that the maximum modulation does not exceed 100 per cent no matter how much sound is applied to the microphone.

Practical circuits for clipping and filtering are illustrated in a speech amplifier described in this chapter.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high level - that is, at the point where the modulation is applied to the r.f. amplifier - instead of in the low-level stages of the speech amplifier. In one rather simple but effective arrangement of this type the clipping takes place in the Class-13 modulator itself. This is accomplished by carefully adjusting the plate-to-plate load resistance for the modulator tubes so that they saturate or clip peaks at the amplitude level that represents

100 per cent modulation. The load adjustment can be made by choice of output transformer ratio or by adjusting the plate-voltage/platecurrent ratio of the modulated r.f. amplifier. It is best done by examining the output waveform with an oscilloscope.

The filter for such a system consists of a choke and condensers as shown in Fig. 9-9. The values of L and C should be chosen to form a low-pass filter section having a cut-off frequencr of about 2500 cycles, using the modulating impedance of the r.f. amplifier as the load resistance. For this cut-off frequency the formulas are

$$
\begin{aligned}
L_{1} & =\frac{R}{7850} \\
C_{1}=C_{2} & =\frac{63.6}{R}
\end{aligned}
$$

Where R is in ohms, L_{1} in henrys, and C_{1} and C_{2} in microfarads. For example, with a plate modulated amplifier operating at 1500 volts and 200 ma . (modulating impedance 7500 ohms) L would be $7500 / 7850=0.96$ henry and C_{1} or C_{2}

Fig. 9-9 - Splatter-suppression filter for use at high level, shown here connceted between a Clam 13 modulator and plate-modulated r.f. amplifier. Values for L_{1}, C_{1} and C_{2} are determined as described in the text.
would be $63.6 / 7500=0.0085 \mu \mathrm{fd}$. By-pass condensers in the plate circuit of the r.f. amplifier should be included in C_{2}. Voltage ratings for C_{1} and C_{2} when connerted as shown must be the same as for the plate blocking condenser - i.e., at least twice the d.c. voltage applied to the plate of the modulated amplifier. L and C values can vary 10 per cent or so without seriously affecting the operation of the filter.

Besides simplicity, the high-level system has the advantage that high-frequency components of the audio signal fed to the modulator grids, whether present legitimately or as a result of amplitude distortion in lower-level stages, are suppressed along with the distortion components that arise in elipping. Also, the undesirable effects of poor low-frequency response following clipping and filtering, mentioned in the preceding section, are avoided. Phase shifts can still occur in the high-level filter, however, so adjustments preferably should be made by using an oscilloscope to cherek the artual modulation percentage under all conditions of speech intensity. (For further discussion ser Bruene, "I Iigh-Level Clipping and Filtering", QST, November, 1951.)

A Clipper-Filter Speech Amplifier-Driver

The specech amplifier shown in Figs. (9-10 to 9-11, inclusive, uses push-pull triodes to ohtain a power output of 13 watts with negligible distortion - sufficient to drive most of the com-monly-used Clase-13 modulator tubes. It ineludes

Bufore the signal reaches the grid of the secomel 6('4. The frequency response of the amplifier with the filter in circuit, but with the signal below the alipping level, drops at the rate of roughly 6 d (b). per octave below 500 aycles: above 1000 ryeles

Fin. 9-10 - 'This zperh-amplifier and driver has ample gain for a erystal mirrophone and is complete with power supply. 'The measured undistored omput is 13 watts. It ineorporates a clipper-filer system for increasing modulation effertivenoss and dereroasing rhanmel widh.
a elipper-filter for increasing the effeetiveness of modulation and for eonfining the channel width to frequencies needed for intelligible sperch. The over-all gain is ample for use with communica-tions-type crystal microphones when using clipping of the order of $12-15 \mathrm{db}$. Miniature tubes are used in the voluage-amplifier stages. The output tubes are 6134 Gs, operated Class $A B_{1}$ with fixed hias. Two power supplies are included, one for the voltage amplifier stages and the other for the output tube plates.

As shown in Fig. 9-11, the first two stages are voltage amplifiers of ordinary design, using a GAUf pentode in the first stage and a 6 (94 triode in the seeond. The output of the seeond stage can be switehed either to the 12AL7 doubletriode clipper or to the 6 CC 4 voltage amplifier that drives the 6 BHG grids. In the latter case the amplifier operation is conventional. The elipper, when operative, provides additional voltage gain as well as clipping. Its output goes through a simple low-pass filter ($L_{2} C_{14} C_{12}$) so that harmonics generated by clipping will be attenuated
$\mathrm{C}_{1}-\mathrm{I}(\mathrm{N})-\mu_{\mu \mathrm{ft}}$. mica.
C_{2}, C_{e}, (13-20-mfl. 25-valt electrolytic.
(3 - D.I-nfd. Holl volt paper.
($4, \mathrm{C}, \mathrm{C}_{15}, \mathrm{C} .16$ - $0.111-\mu \mathrm{fd}$ 100-solı paper
(S, C $-8-\mu$ fd. 450)-volt electrolytic.
($\mathrm{C}_{\mathrm{g}}, \mathrm{C}, 11-470-\mu \mu \mathrm{fl}$. mira.
(in - $0 .(0) 2-\mu \mathrm{fd}$. mica or paper.
(i2-330- $\mu \mu \mathrm{fd}$. mica.

$R_{1}-2.2$ megohms, 1 watt.
$\mathrm{K}_{2}, \mathrm{~K}_{14}-2200$ ohms, $1 / 2$ watt.
$1_{3}-1$ megohm, $1 / 2$ watt.
$\mathrm{K}_{4}, \mathrm{~K}_{9}-0.47 \mathrm{megohm}, 1 / 2$ watt.
$\pi_{s}-47,1100$ ohms, $1 / 2$ walt.
$R_{6}-2$-megohm volume control.
k_{7} - $39(1)$ ohms, $1 / 2$ watt.
$R_{8}-0.1$ megohm, $1 / 2$ watt.
$R_{10}-1.500$ ohms, I watt.
$\mathrm{R}_{11}-17,000$ ohms, 1 watt.
the response is down $2 \overline{5} \mathrm{db}$. compared with the medium audio range.

A two-sertion filter is used in the plate supply for the voltage-amplifier stages. The hum level must be kept low because of the high gain required when using clipping. A single-section filter is sufficient for the output stage. Bias for the GB4C: grits is obtainal from the low-voltage supply by means of R_{1}, by-passed by ('14.

Two gain controls are included, one (R_{6}) for setting the level into the elipper cireuit and thus determining the amount of clipping, and the seeond (l_{13}) for setting the output level after elipping. With the clipper in use, proper setting of R_{13} will keep the modulation lewel high but will prevent overmodulation.

Construction

As shown in lig. 9-10, the voltage amplifiers occupy the left front sertion of the chassis. The $6 A^{\circ} 6$ first amplifier is at the left, followed in order to the right by the first $6 C^{\prime} 4$, the 12 Al 7 , and the second 6('t. "Ihe fil3tGs and their output

[^7]

Fig. 9-11 - Circuit diagram of the eljpper-filter speech amplifier.

Fig. 9.12 - Kelow chassis view of the clip-per-filter speech amplifier. The relatively small number of components below the chassis makes wiring simple.
S_{1} to the "normal" or "out" position; the waveshaje should return to normal. If it does not, return S_{1} to the "in" position and redure the setting of K_{13} until it does. Then reduce the amplifier g:in by means of R_{6} until the signal is just below the rlipping level. At this point the signal should be a sine wave. In-
transformer are at the right front. The cylindrical unit just behind the second 6 C 4 is the interstage audio transformer, T_{1}.

Power supply components are grouped along the rear edge of the chassis, with the low-voltage supply at the left. The power transformers should be kept well separated from the voltage amplifiers, particularly the first two stages, in order to mininize hum difficulties.

On the front panel, the nicrophone input connector is at the lower left. Next to it is the clipping control, then the clipper in-out switch, and ther the modulation control. The two toggle switches at the right are S_{2} and S_{3}. The a.c. input socket is by-passed by C_{15} and C_{16}, to reduce the possibility that r.f. picked up on the line cord will get into the low-level speech stages.

The wiring underneath the chassis is relatively simple, as shown by Fig. \$-12. The microphone input circuit, including $R C^{\prime} C_{1}$ and C_{1}, is enclosed in a shiold, and the lead from $R F C_{1}$ to the $6 \mathrm{AL} L^{6}$ grid also is shielded.

Adjusting the Clipper-Filter Amplifier

The good effect of the low-pass filter in eliminating splatter can be entirely nullified if the amplifier stages following the filter can introduce appreciable distortion. Amplifier stages following the unit must be operated well within their capabilities; in particular, the Class I3 output transformer (if a Class B modulator is to be driven) should be shunted by condensers to redure the high-frequency response as described in the sestion on Class B modulators.

The setting of R_{13} is most important. It is most easily done with the aid of an oscillostope (one having a linear sweep) and an audio oscillator, using the test set-up shown in the section on testing of speech equipment. Use a resistance load on the output transformer to reflect the proper load resistance (3000 ohms) at the plates of the 6 B 4 Gs . First set R_{13} at ahout $1 / 4$ the resistante from the ground end, switch in the clipper-filter, and apply a 500 -cycle sine-wave signal to the microphone input. Increase the signal amplitude until clipping starts, as shown by flattening of both the negative and positive peaks of the wave. To check whether the clipping is taking place in the clipper or in the following amplifiers. throw
crease R_{13}. without touching R_{6}, until the wave starts to become distorted, and then back off R_{13} until distortion disapperars.

Next, change the input-signal frequency to 2500 cyeles, without changing the signal level. Slowly increase R_{6} while ohserving the pattern. At this frequency it should be almost impossible to get anything except a sine wave through the filter, so if distortion appears it is the result of overloading in the amplifiers following the filter. Reduce the setting of R_{13} until the distortion disappears, even when R_{6} is set at maximum and the maximum available signal from the audio oscillator is applied to the amplifier. The position of R_{13} should be noted at this point and the observed setting should never be exceeded.

To find the operating setting of R_{13}, leave the audio-oscillator signal amplitude at the value just under the clipping level and set up the complete transmittrer for a modulation check, using the oscilloscope to give the trapezoidal pattern. With the Class C amplifier and modulator running, find the setting of R_{13} (keeping the audio signal just under the clipping level) that just gives 100 -per-cent modulation. This setting should be below the maximum setting of R_{13} as previously determined; if it is not, the driver and modulator are not capable of modulating the transmitter 100 per cent and must be redesigned - or the Class C amplifier input must be lowered. Assuming a satisfactory setting is found, connect a microphone to the amplifier and set the amplifier gain control, R_{6}, so that the transmitter is modulated 100 per cent. Observe the pattern closely at different settings of R_{6} to see if it is possible to overmodulate. If overmodulation does not occur at any setting of R_{6}, the transmitter is ready for operation and R_{13} may be locked in position; it need never be touched subsequently. If some overmodulation does occur, R_{13} should be backed off until it disappears and then locked.

In the absence of an oscilloscope the other methods of checking distortion described in the section on speech-amplifier testing may be used. The object is to prevent distortion in stages following the filter, so that when the clipping level is exceeded the following stages will be working within their capabilities.

A Simple Grid Modulator

The modulator circuit shown in Fig. 9-14 is capable of modulating any transmitter, up to the maximum power limit, to about 80 per cent with low distortion. It requires no power supply other than heater power for the tubes, since it gets plate power from the cathode circuit of the r.f. amplifier with which it is used. Although the modulator output is connected in series with the r.f. amplifier eathode, the modulation is essentially of the grid-hias type (see chapter on ampli-

Fig. 9.13-A simple modulator of the grid-bias type, usable with transmitters having c.w. plate inputs up to a kilowatt. Plate power for the unit is obtaned antomatically from the r.f. amplifier supply.
tude modulation). A useful characteristic of the system is that it does not require a fixed source of grid bias for the amplifier.

The speech amplifier uses a high- μ double triode to give two stages of resistance-coupled amplification. This gives sufficient gain for a crystal microphone. Resistors R_{3}, R_{7} and R_{10},
together with C_{1} and C_{3}, provide decoupling and additional fitering of the d.c. obtained from the r.f. amplifier cathode circuit.

The output stage uses one or more 6Y6Gs in parallel; in determining the number of tubes required to modulate a particular amplifier, use one 6Y6G for each 200 ma . of amplifier plate current based on the operating conditions for c.w. work. The audio output voltage is developed across L_{1} and R_{11} in series; R_{11} may be omitted if the d.c. voltage between the screen and cathode of the 6 Y 6 G does not exceed the rated value of 135 volts.

No special constructional precautions need be observed in laying out the amplifier. The unit shown in Fig. 9-133 is built on a homemade chassis folded from a sheet of aluminum, but a small standard chassis may be used instead. A filament transformer may be included in the unit in case the heater power cannot conveniently be obtained from the transmitter itself.

To use the modulator, first tune up the transmitter for ordinary c.w. operation with the modulator disconnected. Then connect the modulator output terminals in series with the amplifier cathode as indicated in Fig. 9-14. (Make certain that the modulator cathodes are up to operating temperature before applying plate voltage to the r.f. amplifier.) The amplifier plate current should drop to approximately one-half the c.w. value. If the plate current is too high, increase the value of R_{9} until it is in the proper region; if too low, decrease the resistance at R_{9}. Once this adjustment is made the system is ready for 'phone operation. The r.f. amplifier plate current should show no change with speech input, except for a slight upward kick on voice peaks.
The carrier power output with this system is somewhat less than would be obtained with conventional grid modulation because the d.e. voltage drop in the 6Y6G modulators subtracts from the amplifier plate voltage. The difference is small with r.f. tubes operating at 1000 volts or more.

Fig. 9-14-Circuit diagrant of the speech amplifier and modulator.
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{8}-8 . \mu \mathrm{fd}$. electrolytic, 450 volts.
$\mathrm{C}_{2}-0.005 \mu \mathrm{fd}$. 400 volts.
$\mathrm{C}_{4}-0.01 \mu \mathrm{fd} .400$ volts.
$\mathrm{C}_{5}-50-\mu \mathrm{fd}$. electrolytic, 50 volts.
$\mathrm{R}_{1}-2.2$ megohnis, $1 / 2$ watt.
$\mathrm{R}_{2}-0.22$ megohm, $3 / 2$ watt.
$R_{3}, R_{7}, R_{10}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{4}-0.5$-megohm volume control.
$\mathrm{H}_{5}-2200$ ohms, $3 / 2$ watt.
$\mathrm{i}_{6}, \mathrm{R}_{8}-0.1$ megohm, $3 / 2$ watt .
$\mathrm{R}_{9}-50$ ohms, 2 watts (see text).
$R_{11}-2000$ ohms, 2 watts (see text).
L_{1} - Small filter choke, "a.c. d.c.") type satisfactory.

Screen Modulator Circuit

Fig. 9-15 is a representative cireuit for a modulator for the sereen grid of a beam tetrode. Most r.f. tubes of this type require very lit tle modulating power in the sereen circuit, so at reedivingtrpe autio power amplifier usually is sulficiont. The circuit shown has ample gain for a crystal microphone and will fully modulate a sereen grid that does not require an average audio power of more tham three or four watts. It can also be used for molulating a pair of r.f. tubes where these requirements are not exceeded. The chapter on amplitude modulation should be ronsulted for information on determining the voltage swing amb modulating power for a particular tube typa. The turns rationerguired in T_{1}, primary to secondary, will range from 1 to 1 to 0.8 to i for various r.f. tubes, since the patak output voltage of the tube across the primary of the transformer is about 200 volts. In inexpensive driver transformer, of the type used for coupling a triode or pentode to Class AB_{2} tetrodes of the $6 L 6$ class, will be satisfactory. It should preferably have two or three primary taps so the turns ratio can be adjusted. Transformer coupling is used in preference to direct coupling (i.e., "(clamp-tube" modulation of the screen) because of simpler adjustment, ease of modulating 100 par cent, and bercause it permits using a low-voltage supply for the sereen grid of the modulated r.f. amplifier.

The speereh input stage uses a 6 s.j7 pentode and is followed by a 6.5 voltage amplifior. The ove 6 output stage uses negative feed-hawk, the feredhack voltage being taken from the plate cireuit hy means of the voltage divider $R_{10} R_{11}$ and ap-
plied in serios with the plate resistor, R_{7}, of the preceding stage. Negative ferel-hack in the modulator is very desirable when asereen or control grid is to be modulated beratuse the kad on the modulator varies over the andiofregueney eyele, and feed-back reduces the distortion that arises from this cause. In this eireuit the prerent feedback is chosen to be as large as possible while still rotaining enough voltage gain for normal voice intensity into a crystal microphome.

The lad between the microphone comector and the 6sJ7 grid should be shiedded, as should also the first-stage grid-resistor, R_{1}. Such shiclding prevents hum pick-up on the grid lead. Aside from this, no suecial precautions need be observed in construeting the amplifier, le yond keeping the heater leads well away from the plate and grid leads of the tubes.

The heater requirement for the unit is 1 ampere at 6.3 volts. Plate-supply requirements vary from about 70 to 85 ma at 250 to 300 volts , depernding on the sereen current taken by the tube being modulated. R_{13} should be adjusted, by means of the slider, to give the proper dae. voltage at the sereen of the modulated stage. This voltage will, in general, be approximately half the d.c. sereen voltage recommended for $c \cdot w$. operation, as described in the chapter on amplitude modulation. The method of adjustment for linear modulation is also covered in that chapter.

The same circuit may be used for control-grid modulation of either triode or tetrode r.f. amplifiers. The method of adjustment is described in the chapter on amplitude modulation.

Fig. 9-15 - Modalator circuit for sereen or control grid modulation.
$\mathrm{C}_{1}, \mathrm{C}_{4}-10-\mu \mathrm{fil}$. 2 F -voll electrolytic.
(C2-0.1- H fid. 406-volt paper.

Co- $50-\mu \mathrm{md}$. 50) o old electrolytic.

$H_{1}-2.2$ megoluns, $1 / 2$ natt.
$\mathrm{H}_{2}, \mathrm{R}_{6}-1.500$ ohms, $1 / 2$ watt.
R_{3} - I megohth, $1 / 2$ walt.
$\mathrm{R}_{4}-0.22$ megoh $1 / 2$ watt.
K_{5} - 1 -megolim potentiometer, audio taper.
$R_{7}, R_{8}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{K}_{9}-235$ ohms, 2 wath. (Two 170 -dhm 1 -watt units in paralle..)
$R_{10}, R_{12}-15,000$ ohms, 1 watt.
$1211-2 \% .1000$ ohms, I watt.
R_{13} - $\mathbf{2 5 , 0 0 0}$ oohm adjustable, 25 wats.
J_{1} - Nicrophone jach.
S_{1} - 4-pole ${ }^{2}$-position rotary switch (see text).
T_{1} - Audio driver transformer (see text).

40-Watt Class AB1 Modulator

The modulator unit shown in Figs, 9-16 to !)-18, inclusive, has an undistorted power output of somewhat better than 10 watts. Although designed as a companion unit for the Tin-watt tramsmitter deseribed in the whapter on transmitters, it may be used with any transmitter onerating at a d.e. plate power input of 80 watts or less.

Speech Circuit

The speech amplifier uses a high- μ dual triode as a two-stage rewistanceroupled amplifier, followed by a medium- μ triode. The latter is transtormer-coupled to the modulator grids. The gain from the microphone input to the 806 grids is more than ample for crystal and other mierophones of similar output level. Battery hias is used for the modulator grids since it is the simplest mothod and a small battery such as those made for hearing-aids can be used. since no current is taken from the battery, its life is the same as the normal shelf life.

The frequeney response of the amplifier is adjusted to put maximum energy in the range where it contributes most to speech intelligibility: that is, the output is highest between $5(0)$ and 1200 (eves and drops off gradually on either side. The lower frequencies are reduced by low values of caparitance at (${ }_{3}$ and ('4, and the high-frequency end is attenuated by C_{6} and C_{7}.

Power Supply

The power rupply uses a replarement-type transformer with a bridge rectifier to obtain dual output voltages, I singlemertion filter is used on the high-voltage output and a doublrosection filter on the low voltage. With the values shown in Fig. 9-17 the hum level is 40 dh. below full output of the modulator.

Control Circuits

The switching arraugemont in the control section provides an on-off control for 'phone operation, disables the modulator when c.w. is to be used, and includes a "Test" position similar to that in the 75 -watt transmitter. In the
"Phone" position the control switch diseonneets the 6116 r.f. amplifier sareen from the supply in the transmitter unit and connects it to the screen-dropping resistor, R_{18}. Simultancously, the secondary of the modulation transformer is connerted in serios with the 6146 d.c. plate lead, and the cathodes of the 807 modulators are connerted to ground through R_{16}. The drop in voltage across R_{16} is used for measuring the modulator plate current. In the "C.W." position the modulator athode circuit is opened, the secondary of the modulation transformer is short-circuited, and the $61+6$ sereen is connested to the sareen supply in the transmitter unit. In both the "Test" and "Off" powitions the $61+4$ s screen is disconnected from its supply and grounded, and the modulation transformer secondary is shorted. If a key is plugged into the jack on the transmitter, either position can be used for testing: hut the key must be left open when using the "off" position for on-off 'phone switching.

A few changes in the original transmitter circuit are required. Referring to the circuit diagram in the transmitter chapter, these are:

1) Disconneet the lead between the arm of S_{4} a and J_{7}. This sect ion of S_{4} is no longer needed.
2) Remove R_{9} from the circuit. (This resistor is replaced by R_{17} in Fig. 9-17.)
3) Connect P'in 2 on the auxilary socket, J_{8}, to the top contact of J_{7}. This connects the 5763 and 6146 rathodes to the auxiliary sorket and thence through the connerting cable to the modulator.

A six-wire cable is used for making comertions between the two units. The same pin numbers are used for corresponding circuits at each end, so it is merely necessary to coment Pin 1 in one plug to l'in 1 in the other, and so on. Pins 5 and 6 must be connected by a jumper in order to complete the heater cireuit in the transmitter.

The meter in the transmitter is used for making measurements on the modulator by means of a cord with pin jacks ruming between the "External Voltmeter" jack on the transmitter and the jacks (J_{2} to J_{5}, inclusive) shown in Fig. 9-17.

Fig. 9-16-The 40 watt modulator along. side the is-watt transmitter described in the transmitting chapter. It is completely self-emtained, with power supply and rontrol rircuits, on a $5 \times 10 \times 3$-inch chassis.

The control switch, center, has four positions - off, test, phone, and e, n. Mierophone connector and gain control are at the left; a.c. switches at the lower right. The two speech amplifier tuthes are at the left front, followed by the 80-s and the SV4G to the rear. The modulation transformer is at the rixht front and the power transformer is at the rikht rear
The modulator was originally described in OST for May, 1953.

Fig. 9.17 - Circuit diagram of the Class Alit modulator nsing 807s.
$C_{1}-100-\mu \mu \mathrm{fd}$. ceramic.
(i2 - I) ual $8-\mu \mathrm{fd}$. clectrolytic, 450 volts.
(:3. ($4-0.0015-\mu \mathrm{fd}$. cramic.
($5-10-\mu \mathrm{fd}$. electrolytic, 25 volts.
Cis $-4 \%-\mu \mu$ fll ceramic.
($\mathrm{C}-0.002=100.004-\mu \mathrm{fd}$. paper, 600 volta.
(is - Dual cleetrolytic, 8 (A) and 16 (13) $\mu \mathrm{ff} ., 450$ volts.
(${ }^{\circ}$, Cio - $30-\mu \mathrm{fd}$. clectrolytic, 450) voles.
Cil - $0.004-\mu \mathrm{fd}$. paper, 1600 volts.
(12 - $0.1-\mu \mathrm{fd}$. paper, 600 volts.
$\mathrm{R}_{1}-2.2$ megohms, $1 / 2$ watt.
$R_{2}, R_{6}-0.1$ megohm, $1 / 2$ watt.
$R_{3}-47,000$ ohns, $1 / 2$ watt.
R_{4} - 1 -megolinn volume control, preferalily log taper.
$R_{5}-1500$ ohms, $1 / 2$ watt.
$\mathrm{H}_{7}-10,000$ ohms, $1 / 2$ watt.
$R_{8}-1$ megohm, $1 / 2$ watt.
$R_{2}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{10}-0.1$ megohm, 1 watt.
$R_{11}, R_{12}-20,000$ ohme, 10 watts.
$\mathbf{R}_{13}, \mathbf{R}_{19}-1$ negohm, i watt.
$R_{14}-0.47$ megolisn, $1 / 2$ watt.
$\mathrm{R}_{15}-15,000$ ohmer, $1 / 2$ watt.
$\mathrm{R}_{16}-50 \mathrm{ohms}, 1 / 2$ watt.
$\mathrm{R}_{17}-4700$ ohms, 1 watt.
$\mathbf{R}_{18}-35,0$ MO olms, 10 watts.
$12_{20}-1000$, 1 ms, $1 / 2$ watt (value not eritical).
\mathbf{F}_{1} - 2-amp, fuse.
I_{1} - Pilat light, 0.3 v., 150 ma .
J_{1} - Danel-tyine microphone connertor (Amphenol P(Clill).
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}, \mathrm{~J}_{5}$ - Insulated tip jach.
J_{6} - 1)ctal sochet
L. - 1.5 henrys, 50 ma., 300 ohms
$1.2-8$ henrys, 100 ma., 355 ohms.
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - $\mathrm{S}_{\mathrm{p}} \mathrm{p}$.s.t. togyle.
$\mathrm{S}_{3}-4$-section, 5 -position ceramie wafer switch (2 wafers), 4 positions used.
T_{1} - Interstage audio transformer, center-tapped secondary, 10 -ma. primary, total secondary-toprimary turns ratio 3 to 1.
$T_{2}-$ Adjustalile-ratio modulation transformer, app. 30 watts (C'ICCOM1-1)
'T'3-Filament transformer, 6.3 v . at 1.2 amp .
T'4 - Power transformer, 350 v. cach side e.t., 90 ma.; 5 v . at $2 \mathrm{amp} . ; 6.3 \mathrm{v}$. at 3 amp .
$1 \mathbf{B}^{\prime} \mathrm{J}_{1}-22.5$-volt hattery (hearing-aid type nsed in modulator shown in photographs).

Modulator plate current is read through J_{4}; the full scale range is 100 ma . with a 50 -ohm resistor at R_{16}. A.f. voltage for an oscilloscope can be taken from J_{5}, through the voltage divider formed by R_{15} and R_{19}. C_{11} is a blocking condenser for the voltage divider. R_{15} and the total resistance are such as to give about 10 volts peak.
C_{12} and R_{20} are used to suppress sparking at the control switeh.

When the transmitter and modulator are connected by the cable all the control functions, except keying, are performed by the switch on the modulator unit. The "Test-Operate" switch on the transmitter should be left permanently in the "Operate" position. The key may be left permanently in the jack on the transmitter. Both power supplies run continuously. The 6X5GT heater transformer in earh unit should be turned on sufficiently ahead of the power transformer to allow the 6X5GT heaters to attain temperature before the 5V4GT.

Construction

Although the unit shown is complete on a $5 \times 10 \times 3$-inch chassis, such compact construction is not ordinarily necessary. A larger chassis will provide more freedom for placement of components and will make wiring casier.

In choosing a layout, it is advisalble to keep the output transformer, T_{2}, well separated from the low-level speech amplifier circuits. This will tend to reduce stray coupling and feed-back and thus prevent any tendency toward self-oscillation. To prevent such oseillation in the layout shown, it was necessary to install a small aluminum
shield between the speech amplifier circuits and the output transformer terminals (Fig. 9-18), and to use a shielded lead from the "hot" terminal (C) of the transformer to the terminal socket at the rear of the chassis.

Operating Values

The optimum plate-to-plate load resistance for $807 s$ operating Class $A B_{1}$ with the voltages indicated is approximately 13,000 ohms. For modulating the 75 -watt transmitter at full rated 'phone input of 67.5 watts for the 6146 the proper transformer taps are indicated in Fig. 9-17. The antenna loading should be adjusted to make the 6146 plate current 106 mal , at which load the sereen current should be 12 ma . and the plate voltage 640 . The 6146 grid current should be adjusted to be 3 to 4 ma.

For other r.f. tubes or different voltatges and currents, or for a different type of modulation transformer, the load resistance should be calculated as described in the chapter on amplitude modulation and the transformer taps chosen accordingly.

The d.c. power supply voltages in the modulator unit (line voltage 120) should measure 690 and 260 for the high and low supplies with no audio input. The modulator idling current is alout 50 mat. under these conditions with a new 22.5 -volt (actual voltage 24.5 volts) battery for bias. With tone input and the gain adjusted for maximum undistorted output, the modulator cathode current is about 100 ma. However, with speech the modulator plate current should not kick beyond 60 to 65 ma . on voice peaks; this represents 100 per cent modulation.

Fig. 9.18 - The prineipal components along the lower wall of ithe ehassis, from left to risht, are the filament trans-

 are mounted on a tie-point strip on the front wall (at the right in this view) near the control switch, 5 . The screenIropping resistor, R_{18}, for the r.f. amplifier is mounted betwern the S_{3} and a tie point on the ehaswis.

The components visible along the upper wall are the low-voltage filter choke, I_{1}, at the left, transforiner T_{1} at the center, and C_{R} at the right. The bias battery is monnted by a bracket on the chassis wall in the space between T_{1}
and the chassis deck.
-

6146 Modulator and Speech Amplifier

The modulator shown in the accompanying photographs uses a pair of $61+46$ in $A B_{1}$ and, with the exeption of the preamplifier unit is complete with power and hias supplies on a $7 \times 17 \times$ 3 -inch chassis. The preamplifier is a separate unit so that the microphone input and gain control can be within casy reach at the operating position.
the plate to get at the wiring. Rubber feet are mounted on the other removable side of the box, which beromes the bottom when the unit is in use.

The preamplifier is comene ted to the modulator through a 10 -foot length of cable (. Wphat Wire Co. No. 1242 having one shielded and two unshielded conduetors. The shielded wire, conmerted

Fig. 9.19- This Clase $\ 1 B_{1}$ modulator is emmplete with all supplies. lsing two $61 \mathrm{16s}$, it is capable of andio outputs up to 120 watts, depending on the phate voltage selected. 'The first two stakes of speerh amplification are hoilt into a small box that may he used at the oprorating position while the main chassis is installed in any conveniont location.

Components on the chassis are, left to right, bower transformer and 816 rectifiers, filament iransformer and plate tiltar choke, ol tow and Vl? tulse". modnlation eransformer abd. in the right foregromat. the 60:1 timal morech amplifier stage.

The modulator and power supply have no controls that need be manipulated, so can bre instathed in any convenient spot. The modulator-power supply unit includes one stage of sperech amplification, and also is cquipped with a splatter filter and an audio take-off for 'sope monitoring.

The audio) power that can be obtained (based on measurements is as follows:

Vominal		Plate-to-I late
Plate Voltage	Porrer Output	Lond hevistance
500 volts	75 watts	4200 whas
600 volts	9.i watts	-200 whans
750 volts	120 watts	6700 ohmis

Suitable sets of components for all threre of the voltages listed above are readily avaibable, so the power level can be selereded to suit the Class C amplifier to be modulated. The modulator shown in the photographs is set up for 600 -volt operation, hut sufficient chassis area has been assigned to the power and modulation transformers to accommodate the next larger size of the same style. Other than these two transformers, all other components are the same regardless of the voltage level.

Preamplifier

The preamplifier circuit, shown in Fig. ! 122 , is built in a 2 by 4 by 4 aluminum hox. It uses a $12 \mathrm{AX7}$ in two resistanee-roupled triode stages. The $12 A N 7$ is mounted on a small bracket fastened to one removable side of the box. With the exception of the mierophone connector and gain control, which are on one edge of the hox, and the connertor, J_{2}, on the opposite edge, all components are on this same plate, mounted between appropriate tube-socket pins and tie-point strips. Enough lead length is allowed from the eomponents on the box itself to permit taking off
to l'in 3 of J_{2} in Fig. ! $1-22$, is used for the audio output. The shield is the common ground connection through the cable. One of the other two wires is used for plate current and the last for filament current. The capacitance of the shieded

Fig. 9.20 - The preamplifier removed from its 2 by 4 by 4 box.
wire shunts the output circuit and thus redures the high-frequency response. This is compensated for in the modulator unit.

Modulator and Power Supply

The circuit diagram of the modulator and power supply section is given in Fig. 9-2:3. The "high-boost" eircuit, consisting of the two resistors and $2 \overline{3} 0-\mu \mu$ f. condenser aswociated with the grid of the diCt speerh amplitier, compensates for the drop in highs in the cable coming from the preamplifier. The modulation transformer is a multimateh type delivering output to the load through a splatter filter. The three 1 -megohm resistors form a voltage divider for delivering about $1 / 3$ of the total a adio output voltage direct to the horizontal plates of a monitoring 'seope for

Fig. 9-2I - Botton view of the modulator and power supply. The sockets at the upper left are for the 816s. The qplatter filter chohe is mounted on the left hamd chassis wall. using small come standoffs as tie peints for the highwolage connertions. I'be larse resistor to the left of the filter condenser is the dropping resistor for the low voltage
 circoit is at the upper right, with a shichled lead carsing the ablio ingut to it from the four-prong sereket, J_{3}, mount of on the rear wall of the chassis. T_{1}, the interstage andio transformer, is to the left of the g(:i moeket,

Bias-supply components, with the eweption of the output potentioneter, K_{1}, are monmted on the right-hand ©lassis wall. R_{1} is on the rear wall, near the lowest of the four sochets in a vertical line. The seope tahe-off cirenit is at the lower right.
forming a trapezoidal pattarn without amplifiers in the 'seope. The resistor values cath be varied, if nerossibry, to seroure the proper pittern width, although the total resistanee should be mantained it the neighlorhood of $: 3$ megohms for at $0.00 ;-\mu$. rouphing condenser. This rondenser should have a voltage rating equal to at least twise the dece. plate voltage on the modulated amplifier; (ino0volt patper rondensers 10 this caparitane are readily avaibathe and imexpensive.

Plate pewer for all tubes is supplied from one transfornur. A single-sention chokn-input filter is used for the high voltage applined to the plates of the 61 lis. This is dropped through at resistor and a pair of VR-105s (0("3) in sorios to provide a regulated voltage of 210 for the dithe servens. This voltugre also is applied to the plate of the

F-ïg. 9-22 - Preamplifier cirmit. Fixed resistors are $1 / 2$ watt. Condenser caparitantes in μ f.
J_{1} - Mierophone eonnectar.
J_{2} - Four-prome connertor, rhassis mumting, male.
© C : 4 speech amplifier and, with further filtering ly the 4700 -ohm resistor ind $8-\mu$ f. condenser, to the preamplifier tube plates through Pin 2 of J_{3}. The dropping resistor, R_{2}, should be adjusted to approximataly 5000 ohms with a 500 -volt supply, 7000 ohms for 600 volts, and 10,000 ohms for 750 volts. This adjustment "an be checked when the morlulator is in opration bebserving whether the VR tuber go out on voice peaks. lanough current should be bled through the regulators so that they stay ignited at all voice levels.

A pair of terminals is provided for cornecting a millizmmeter in surios with the phate lead to the 01-4is. The moter itself cotn be placed in any convenient spot. If it is not used, a jumper must be connerted aross the terminals. This circuit is fused to proteret the meter.

The biats supply uses a smabll filament transformer, T_{4}, operating from the regular filament transformer $r_{3} T_{3}$, to provide 115 volts for the bias reectifier and filter. Bias is adjusted to the proper value by meatns of R_{1}.

Separate at, imput connectors are used for the filament and plate sumplies; When s_{1} and x_{2} are closed these lan br. controlled by remote switehers. The bias supply gors on with the filaments, and since there is no time lig in the selenium rectifier the of the are always prokected.

Splatter Filter

The splatter filter constints should
be based on the modulating impedance of the Class C amplifier as described earlier in this chapter.

The choke is a "television" power supply filter choke modified to obtain the desired inductance by widening the air gap, using paper and cardboard spacers. Measured values of inductance with various air gaps are shown in Table 9-II. In reassembling the choke do not use the "finishing" laminations that overlap the I sections on each side of the core. The choke in the photograph is held together by clamps made from tempered Presdwood. The Presdwood mounting also serves to insulate the core from the chassis.

Operating Data

With sine-wave input, the plate current at full output is 240 ma . when the load is adjusted to the appropriate value for the plate voltage in use, as listed earlier. This maximum current is practically the same at all plate voltages listed, since the plate dissipation rating of the 6146 does not permit using a bias value that gives a very large value of no-signal plate current. The grid bias

TABLE 9-II

Measured inductance values for various air-gap spacings, " 1-henry 300 -ma." filter choke (Stancor C-2326) with 7 layers (approximately 30 per cent of turns) removed.

Air gap, inches	Inductance, henrys
0.003	0.71
0.010	0.62
0.020	0.48
0.025	0.46
0.050	0.36
0.075	0.31
0.100	0.28
0.125	0.26
0.15	0.24

should be adjusted for a total plate current that represents a no-signal input of slightly under 50 watts at the particular plate voltage used.

The voltage gain from the microphone input to the modulator grids is such that full output can be secured with an input voltage of about 3 millivolts, r.m.s. This is of the order of one-tenth the voltage available from a crystal microphone with close talking.

Fig. 9-23- Modulator and power supply. Capacitances in $\mu \mathrm{f}$. unless other wise specified. Fixed resistors are $1 / 2$ watt except as noted.
$\mathrm{C}_{1}, \mathrm{C}_{2}-1600$-volt paper. See text.
\mathbf{R}_{1} - (Bias control) 50,000 ohm potentiometer, preferably wire-wound.
$\mathrm{R}_{2}-10,000$ ohms, 50 watts, ad justable.
L_{1} - See text.
CR - Selenium rectifier, 20 ma. or larger, for 115 -volt operation.
J_{3} - Four-prong connector, chassis mounting, female. J_{4} - Phono connector.
$\mathrm{J}_{5}, \mathrm{~J}_{6}-115 \cdot \mathrm{volt}$ connector, chassis mounting, male. $\mathbf{S}_{1}, \mathbf{S}_{2}-$ S.p.s.t. toggle switch.
\mathbf{T}_{1} - Interstage audio, ratio 3:1, push-pull secondary (Thordarson T20A19).
$\mathbf{T}_{\mathbf{2}}$ - Multimatch modulation transformer (UTC CVM-2 or CVM-3, depending on audio output power level).
T3 - Filament transformer, 6.3 volts at 8 amp.; 5 volts at 3 amp . (Triad F-30A).
T_{4} - Filament transformer, 6.3 volts at $1 / 2 \mathrm{amp}$. (Triad F-14X).
T_{5} - Plate transformer. For 500 volts d.c.: 1235 v . c.t., 310 ma. (Triad P-7A); for 600 volts d.c.: 1455 v c.t., 310 ma . (Triad P-11A); for 750 volts d.c.: 1780 c.t., 310 ma. (Triad type P-13A).

SPEECH AMPLIFIERS AND MODULATORS

Modulators and Drivers

CLASS-AB AND -B MODULATORS

Class AB or B modulator circuits are basically identical no matter what the power output of the modulator. The diagrams of Fig. 9-24 therefore will serve for any modulator of this type that the amateur may elect to build. The triode circuit is given at A and the circuit for tetrodes at B. When small tubes with indirectly-heated cathodes are used, the cathodes should be connected to ground.

Modulator Tubes

The audio ratings of various types of transmitting tubes are given in the chapter containing the tube tables. Choose a pair of tubes that is capable of delivering sine-wave audio power equal to somewhat more than half the d.c. input to the modulated Class C amplifier. It is sometimes convenient to use tubes that will operate at the same plate voltage as that applied to the Class C stage, because one power supply of adequate current capacity may then suffice for both stages.

In estimating the output of the modulator, remember that the figures given in the tables are for the tube output only, and do not include out-put-transformer losses. To be adequate for modulating the transmitter, the modulator should have

Fig. 9.24 - Modulator circuit diagrams. Tubes and circuit considerations are discussed in the text.
a theoretical power capability about 25 per cent greater than the actual power needed for morlulation.

Matching to Load

In giving audio ratings on power tubes, manufacturers specify the plate-to-plate load impedance into which the tubes must operate to deliver the rated audio power output. This load impedance seldom is the same as the modulating impedance of the Class C r.f. stage, so a match must be brought about by adjusting the turns ratio of the coupling transformer. The required turns ratio, primary to secondary, is

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}
$$

where $N=$ Turns ratio, primary to secondary
$\boldsymbol{Z}_{\mathrm{m}}=$ Modulating impedance of Class C r.f. amplifier
$Z_{\mathrm{p}}=$ Plate-to-plate load impedance for Class B tubes
Example: The modulated r.f. amplifier is to operate at 1250 volts and 250 ma . The power input is

$$
P=E I=1250 \times 0.25=312 \text { watts }
$$

so the modulating power required is 312/2 $=$ 156 watts. Increasing this by 25% to allow for losses and a reasonable operating margin gives $156 \times 1.25=195$ watts. The modulating impedance of the Class C stage is

$$
Z_{\mathrm{m}}=\frac{E}{I}=\frac{1250}{0.25}=5000 \text { ohms. }
$$

From the tube tables a pair of Class B tubes is selected that will give 200 watts output when working into a $6900-\mathrm{ohm}$ load, plate-to-plate. The primary-to-secondary turns ratio of the modulation transformer therefore should be

$$
N=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}=\sqrt{\frac{6900}{5000}}=\sqrt{1.38}=1.175: 1
$$

The required transformer ratios for the ordinary range of impedances are shown graphically in Fig. 9-25.

Many modulation transformers are provided with primary and secondary taps, so that various turns ratios can be obtained to meet the requirements of partivular tube combinations.

It may be that the exact turns ratio required cannot be secured, even with a tapped modulation transformer. Small departures from the proper turns ratio will liave no serious effect if the modulator is operating well within its capabilinies; if the actual turns ratio is within 10 per cent of the ideal value the system will operate satisfactorily. Where the discrepancy is larger, it is usually possible to choose a new set of operating conditions for the Class C stage to give a modulating impedance that

Fig. 9.25 - 'Iransformer ratios for matehing a Class C modulating impedance to the required plate-to-plate load for the (lass 13 modulator. 'I'he ratios given on the curves are from total primary to secondary. Resistance values are in kilohms.
can be matched by the turns ratio of the available transformer. This may require operating the (lass C amplifier at higher voltage and less plate current, if the modulating impedance must be increased, or at bower voltage and higher current if the modulating impedance must be decreased. However, this process eannot be earried very far without exceding the ratings of the Class (: tubes for either plate voltage or plate current, even though the power input is kept at the same figure.

Suppressing Audio Harmonics

Distortion in eithor the driver or Class 13 modulator will cause a.f. harmonics that may lic outside the frequeney band needed for intelligible speech tramsmission. While it is ahmost impossible to avoid some distortion, it is possible to cut down the amplitude of the higher-frequeney harmonics.

The purpose of condensers C_{1} and C_{2} across the primary and secondary, resperetively, of the Chas 13 output transformer in Fig. 9-24 is to reduce the strength of harmonics and unneressary highfrequeney emponents existing in the modulation. The condensers ant with the leakage inductance of the transformer winding to form a rudimentary low-pass filter. The values of caparitamee required will depend on the load resistance (modulating impedance of the Class (; amplifier) and the leakage inductance of the particular transformer used. In geheral, capacitances between about 0.001 and 0.01μ. will be required; the larger values are necessary with the lower values of load resistance. The voltage rating of each condenser should at hast be equal to the d.c. voltage at the transformer winding with which it is associated. In the case of C_{2}, part of the total caparitance required will be supplied by the plate by-pass or
blocking rapacitor in the motulated amplifier.
A still better arrangement is to use a low-pass filter as shown in Fig. 6-9, even though rlipping is not doliborately employed.

Grid Bias

Certain triodes designed for Class 13 audio work ean be operated without grid bias. Besides eliminating the grid-hias supply, the fact that grid current flows over the whole audio cycle represents a more constant load resistance for the driver. With these tubes the grid-return lead from the "enter-tap of the input transformer secondary is simply connected to the filament center-tap or wathode.

When the motulator tubes require bias, it should alwaty be supplied from a fixed voltage source. ('athode biats or grid-leak bias cannot be used with a (lass 13 amplifier: with hoth types the bias changes with the amplitude of the signal voltage, whereas proper operation demands that the hias voltage be unvarying no matter what the strength of the signal. When only a small amount of biats is required it can be ohtained conveniently. from a few dry cells. When greater values of bias are required, a heav-duty " 13 " battery may be used if the grid current dows not exceed 40 or $\overline{50}$ millamperes on voire peaks. liven though the batteries are charged by the grid current rather than discharged, a battery will deteriorate with time and its internal resistance will increase. When the increase in internal resistance becomes appreciable, the battery tends to act like a gridleak resistor and the hian varies with the applied signal. Batteries should be checked with a voltmeter occasionally while the amplifier is operating. If the bias varies more than 10 per cent or: with voice excitation the battery should be replaced.

As an alternative to batteries, a regulated hias supply may be used. This type of supply is described in the power supply chapter.

Plate Supply

In addition to aderpate filtering, the voltage regulation of the plate supply should be as good as it can be made. If the d.ce output voltage of the supply varies with the load current, the voltage at maximum current determined the amount of power that can be taken from the modulator without distortion. A supply whose voltage drops from $15(0)$ at no load to 1250 at the full modulator phate current is a 1250 -volt supply, so far as the modulator is concerned, and any estimate of the power output available should be based on the lower figure.

Crood dymanic regulation-i.e., with sud-denly-applied loads - is equally as important as good regulation under steady loads, since an instantaneous drop in voltage on voice peaks also will limit the output and cause distortion. The output rondenser of the supply should have as mueh capacitance as conditions permit. A value of at loast 10μ. should be used, and still larger values are desirable. It is better to use all the avalahle capacitance in a single-section filter
rather than to distribute it between two sections.
It is partieularly important, in the case of a tetrode Class B stuge, that the sereen-voltage power-supply source have excellent regulation, to prevent distortion. The screen voltage should he set as exactly as possible to the recommended value for the tube. The audio impedanee between sereen and cathode also must be low.

Overexcitation

When a Class 13 amplifier is overdriven in an attempt to secure more than the rated power, distortion increases rapidly. The high-frequency harmonics which result from the distortion modulate the transmitter, producing spurious sidebands which can cause serious interference over a band of frequencies several times the channel width required for speech. (This can happen even though the modulation percentage, as defined in the chapter on amplitude modulation, is less than 100 per cent, if the modulator is incapable of delivering the audio power required to modulate the transmitter.)

As stated carlier, such a condition may be reached by deliberate design, in ease the modulator is to be adjusted for peak elipping. But whether it happens by accident or intention, the splatter and spurious sidebands can be eliminated by inserting a low-pass filter (Fig. (9-9) between the modulator and the modulated amplifier, and then taking eare to see that the actual modulation of the r.f. amplifier does not exceed 100 per cent.

Operation Without Load

Fxcitation should never be applied to a Class 13 modulator until after the Class C amplifier is turned on and is drawing the value of plate current required to present the rated load to the inodulator. With no load to alssorb the power, the primary impedance of the transformer rises to a high value and excessive audio voltages are developed aross it - frequently high enough to break down the transformer insulation. If the modulator is to be tested separatcly from the transmitter, a resistance of the same value as the modulating impedance, and capable of dissipating the full power output of the modulator, should be connected across the secondary.

D DRIVERS FOR CLASS-B MODULATORS

Class AB_{2} and Class 13 amplifiers are driven into the gridcurrent region, so power is con-
sumed in the grid circuit. The preceding stage or driver must le capable of supplying this power at the required peak audio-frequeney grid-to-grid voltage. Both of these quantities are given in the manufacturer's tube ratings. The grids of the Class 13 tubes represent a variable load resistance over the audio-frequency cycle, because the grid current does not increase direetly with the grid voltage. To prevent distortion, therefore, it is neressary to have a driving souree that will maintain the waveform of the signal without distortion. even though the load varies. That is, the driver stage must have good regulation. To this end, it should be capable of delivering somewhat more power than is consumed by the Class B grids, as previously deseribed in the discussion on speech amplifiers.

The driver transformer, T or T_{2} in Fig. 9-26, may couple directly between the driver tube and the modulator grids or may be designed to work into a low-impedance (200 - or 500 -ohm) line. In the latter case, a tube-to-line output transiormer must be used at the output of the driver stage. This type of coupling is recommended only when the driver must be at a considerable distance from the modulator; the second transformer not only introduces additional losses but also impairs the voltage regulation of the driver stage.

Fig. 9.26 - Triode driver circuits for Class B modulators. A. resistance coupling to grids; B, transformer coupling. R_{1} in A is the plate resistor for the preceding stage, value determined by the type of tube and operating conditions as given in T'able 9-I. C_{1} and R_{2} are the coupling condenser and grid resistor, respectively; values also may be taken from Table 9-I.
In both eircuits the output transformer, T, T_{2}, should have the proper turns ratio to couple between the driver tubes and the Class \mathbf{B} grids. T_{1} in 1 is usually a 2 : I transformer, secondary to primary. R, the eathode resistor, should be calculated for the particular tuhes used. The value of C, the cathode by-pass, is determined as described in the text.

Driver Tubes

To secure good voltage regulation the internal impedance of the driver, as seen by the modulator grids, must be low. The principal component of this impedance is the plate resistance of the driver tube or tubes as reflected through the driver transformer. Hence for low driving-source impedance the effective plate resistance of the driver tubes should be low and the turns ratio of the driver transformer, primary to secondary, should be as large as possible. The maximum turns ratio that can be used is that value which just permits developing the modulator grid-to-grid a.f. voltage required for the desired power output.

Low- μ triodes such as the 6B4C have low plate resistance and are therefore good tubes to use as drivers for Class AB_{2} or Class B modulators. Tetrodes such as the 6L6 make very poor drivers in this respect when used without negative feed-back, but with such feed-back the effective plate resistance can be reduced to a value comparable with low- μ triodes.

In selecting a driver stage always choose Class A or $A B_{1}$ operation in preference to Class $A B_{2}$. This not only simplifies the speech-amplifier design but also makes it easier to apply negative feed-back to tetrodes for reduction of plate resistance. It is possible to obtain a tube power output of approximately 25 watts from 6L6s without going beyond Class AB_{1} operation; this is ample driving power for the popular Class B modulator tubes, even when a kilowatt transmitter is to be modulated.
The rated tube output as shown by the tube tables should be reduced by about 20 per cent to allow for losses in the Class B input transformer. If two transformers are used, tube-to-line and line-to-grids, allow about 35 per cent for transformer losses. Another 25 per cent should be allowed, if possible, as a safety factor and to improve the voltage regulation.

Fig. 9-26 shows representative circuits for a push-pull triode driver using cathode bias. If the amplifier operates Class A the cathode resistor need not be by-passed, because the a.f. currents from each tube flowing in the cathode resistor are out of phase and cancel each other. However, in Class AB operation this is not true; considerable distortion will be generated at high signal levels if the cathode resistor is not by-passed. The by-pass capacitance required can be calculated by a simple rule: the cathode resistance in ohms multiplied by the by-pass capacitance in microfarads should equal at least 25,000 . The voltage rating of the condenser should be equal to the maximum bias voltage. This can be found from the maximum-signal plate current and the cathode resistance.

Fig. 9-27 - Negative feed-back circuits for drivers for Class B modulators. A - Single-ended beam-tetrode driver. If V_{1} and $V_{\mathbf{2}}$ are a 655 and 6 V 6 , respectively, the following values are suggested: $R_{1}, 47,000$ ohms; $R_{2}, 0.47$ megohm; $R_{3}, 250$ ohms; $R_{4}, R_{5}, 22,000$ ohms; $C_{1}, 0.01 \mu \mathrm{fd} . ; C_{2}, 50 \mu \mathrm{dd}$.

B - Push-pull beam-tetrode driver. If V_{1} is a 6 J 5 and V_{2} and V_{3} 6L6s, the following values are suggested: $R_{1}, 0.1$ megohm; R_{2},

Example: A pair of 6B4Gs is to be used in Class $A B_{1}$ self-biased. From the tube tables, the cathode resistanoe should be 780 ohms and the maximum-signal plate current 120 ma . From Ohm's Law,

$$
E=R I=780 \times 0.12=93.6 \text { volts }
$$

From the rule mentioned previously, the bypass capacitance required is

$$
C=25,000 / R=25,000 / 780=32 \mu \mathrm{fd}
$$

A 40 - or $50-\mu \mathrm{fd}$. 100 -volt electrolytic condenser would be satisfactory.

Negative Feed-Back

Whenever tetrodes or pentodes are used as drivers for Class B modulators, negative feedback should be used in the driver stage, for the reason discussed above.

Suitable circuits for single-ended and push-pull tetrodes are shown in Fig. 9-27. Fig. 9-27A shows resistance coupling between the preceding stage and a single tetrode, such as the 6 V 6 , that operates at the same plate voltage as the preceding stage. Part of the a.f. voltage across the primary of the output transformer is fed back to the grid of the tetrode, V_{2}, through the phate resistor of the preceding tube, V_{1}. The total resistance of R_{4} and R_{5} in series should be ten or more times the rated load resistance of V_{2}. Instead of the voltage divider, a tap on the transformer primary can be used to supply the feed-back voltage, if such a tap is available.

The amount of feed-back voltage that appears at the grid of tube V_{2} is determined by R_{1}, R_{2} and the plate resistance of V_{1}, as well as by the rela-
tionship between R_{4} and R_{5}. Circuit values for a typical tube combination are given in detail in Fig. 9-27.

The push-pull circuit in Fig. 9-27B requires an audio transformer with a split secondary. The feed-back voltage is obtained from the plate of each output tube by means of the voltage divider, R_{1}, R_{2}. The blocking condenser, C_{1}, prevents the d.c. plate voltage from being applied to $R_{1} R_{2}$; the reactance of this condenser should be low, compared with the sum of R_{1} and R_{2}, at the lowest audio frequency to be amplified. Also, the sum of R_{1} and R_{2} should be high (ten times or more) compared with the rated load resistance for V_{2} and V_{3}.

In this circuit the feed-back voltage that is developed across R_{2} appears at the grid of V_{2} (or V_{3}) through the transformer secondary and grid-cathode circuit of the tube, provided the tubes are not driven to grid current. The per cent feed-back is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the feed-back percentage, and R_{1} and R_{2} are connected as shown in the diagram. The higher the feed-back percentage, the lower the effective plate resistance. However, if the percentage is made too high the preceding tube, V_{1}, may not be able to develop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonic distortion. Distortion in V_{1} is not compensated for by the feed-back circuit.

If V_{2} and V_{3} are 6L6s operated self-biased in Class AB_{1} with a load resistance of 9000 ohms, V_{1} is a $6 J 5$, and T_{1} has a turns ratio of 2 -to-1,
total secondary to primary, it is possible to use over 30 per cent feed-back without going beyond the output-voltage capabilities of the 6J5. Twenty per cent fced-back will reduce the effective plate resistance to the point where the output voltage regulation is better than that of 6 B 4 Gs or 2 A 3 s without feed-back.
If the grid-cathode impedance of the tubes is relatively low, as it is when grid current flows, the feed-back voltage decreases because of the voltage drop through the transformer secondary. The circuit should not be used with tubes that are operated Class AB_{2}.

SPEECH-AMPLIFIER CIRCUIT WITH NEGATIVE FEED-BACK

A circuit for a speech amplifier suitable for driving a Class B modulator is given in Fig. 9-28. In this amplifier the 6L6s are operated Class AB_{1} and will deliver up to 20 watts to the grids of the Class B amplifier. The feed-back circuit requires no adjustment, but does require an interstage transformer with two separate secondary windings (split secondary).

Any convenient chassis layout may be used for the amplifier provided the principles outlined in the section on speech-amplifier construction are observed. The over-all gain is ample for a com-munications-type crystal microphone.
The output transformer, T_{2}, should be selected to work between a 9000 -ohm plate-to-plate load and the grids of whatever Class B tubes will be used. The power-supply requirements for this amplifier are 145 ma . at 360 volts and 2.7 amp . at 6.3 volts.

Fig. 9-28 - Circuit diagram of speech amplifier using 6L6s with negative feed-back, suitable for driving Class 13 modulators up to 500 watts output.
$\mathrm{C}_{1}, \mathrm{Cb}_{5} \mathrm{C}_{8}-20-\mu \mathrm{fd}$. 25 -volt electrolytic.
$\mathrm{C}_{2}, \mathrm{C}_{9}, \mathrm{C}_{10}-0.1-\mu \mathrm{fd}$. 400 -volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{8}-0.01-\mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{4}, \mathrm{C}_{7}, \mathrm{C}_{12}-10-\mu \mathrm{fd}$. 450 -volt electrolytic.
$\mathrm{C}_{11}-100-\mu \mathrm{fd}$. 50 -volt electrolytic.
$\mathrm{R}_{1}-2.2$ megohms, $1 / 2$ watt.
$\mathrm{K}_{2}, \mathrm{~K}_{7}-1500$ ohms, $1 / 2$ watt.
$\mathrm{Ra}_{3}-1.5$ megohms, $1 / 2$ watt.
$\mathrm{R}_{4}-0.22$ megohm, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{s}}, \mathrm{Rs}_{8}-47,000$ ohms, $1 / 2$ watt.
$R_{6}-1$-megohm volume control.
$\mathrm{R}_{9}-0.47$ megohm, $1 / 2$ watt.
$R_{10}-1500$ ohms, 1 watt.
$\mathbf{R}_{11}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{12}, \mathrm{R}_{13}-0.1$ megohm, 1 watt.
$\mathrm{K}_{14}, \mathrm{R}_{18}-22,000$ ohms, $1 / 2$ watt.
R_{16} - 250 ohms, 10 watts.
$\mathrm{K}_{17}-2000$ ohms, 10 watts.
T_{1} - Interstage audio, $2: 1$ secondary (total) to primary, with split secondary winding.
$\mathbf{T}_{\mathbf{2}}$ - Class \mathbf{B} input transformer to suit modulator tubes.

Class B Modulator with Filter

Representative Chass B modulator ronstruction is illustrated bey the unit shown in Figs (9-2?) and $9-31$. This mondulator includes a spatiter

Fig. 9.29- A typical Class 13 modulator arrangement. 'This unit uses a pair of 811 St, c'apable of an audin power output of 340 watts, and inchudes a splatter filter. "'he modulation transformer is at the left and the spatater chohe at the righe. All high-voltage terminals are eovered so they cannot be toudted accidentally.
filter, (${ }_{1} \mathrm{C}_{2} L_{1}$ in the arenit diagram, Fig. ()-30, and also has provision for short-circuiting the modulation transformer secondary when c.w. is to be used.

The audio input transormer is not built into this unit, it leing assumed that this transformer will be included in the driver assembly as is customary. If the modulator and speech amplifier-

Fig, 9.30-Circuit diagram of the Class 13 modntator.
 Sl?.300.)
K_{1}-I.p.d.t. relay, hight-volage insulation (Advance typ 400).

'I' - Iariabla-ration modulation transformer (Chioago Transformer type CMs.l).
T_{2} - Filament 1 ransformer, 6.3 v.. 8 amp. $1_{1}-6.3$-volt pilet light.
$\mathbf{X}_{1}, \mathbf{X}_{2}$ - Chassis-type 115-volt phage, male.
X_{3} - (hassin-tyom ll5-volt reerptache, female.
S_{1}-S.p.s.t. tongle.
driver are mounted in the same rack or cabinet, the length of heads from the driver to the moduhator grids presents no problem. The bias required bey the modulator tubes at their higher platevoltage ratings should be fed through the centertap on the secondary of the driver transformer. At a plate voltage of 1000 or lews no bias is needed and the center-tap connertion on the transformer can be grounded.

The values of C_{1}, C_{2} and L_{1} depend on the modulating imperdane of the ('lass ('r.f. amplifier. They can be determined from the formulas given in this chapter in the section on high-level elipping and filtering. The splatter filter will be effertive regardlews of whether the modulator operating conditions are chosen to give high-level rlipping. but it is worth-while to design the system for clipping at 100 per cent modulation if the tube curves are available for that purpese. The voltage ratings for ("1 and ("2 should at least equal the d.e. voltage applied to the modulated r.f. amplifier.

A relay with high-voltage insulation (actually an antenna relay) is used to short-cirruit the

Fig. 9-3I - The filament transformer is monntorl below the ehassis. The relay is used as deseribed in the text. C_{1} and C.2 are momented on small stand-off insulators on the chassis wall.
serondary of T_{1} when the relay coil is not energized. A normally-rlosed contant is used for this purpose. The other arm is used to rlose the primaty circuit of the modulator plate supply when the relay is corgized. Shorting the transformer serondary is nevessary when the r.f. amplifier is keved, to prevent an indurtive discharge from the transformer winding that would put "tails" on the keved chatacters aud, with cathode keving of the amplifier, would cause excessive sparking at the key contarts. The control circuit should be arranged in such a way that K_{1} is not energized during $x \cdot w$. operation but is energized by the send-remive switch during 'phone operation.
('areful attention should be paid to insulation since the instantaneous voltages in the secondary circuit of the transformer will be at least twice the d.e. voltage on the r.f. amplifier. Stand-off insulators are used in this unit wherever neressary, including lac mounting for the relay.

Checking Amplifier Operation

An adequate joh of chocking sperech amplifiers can be done with equipment that is neither elaborate nor expensive, A simple set-up is shown in Fig. 9-32, The construction of a simple audio oscillator is deseribed in the chapter on measurements. The audio-frequency voltmeter can be either a varuum-tube voltmeter or a multirange volt-ohm-milliammeter that has a rectifier-type a.r. range. The headset is included for aural chocking of the amplifier performance.

An audio oscillator usually will have an output control, but if the maximum output voltage is in excess of a volt or so the output setting may be rather eritical when a high-gain speerh amplifier is being tested. In such cases an attenuator such as is shown in Fig. ! 0 -32 is a convenience. bach of the two voltage dividers reduces the voltage by a factor of roughly 10 to 1 , so that the over-all attenuation is about 100 to 1 . The relaltively low value of resistance, R_{4}, arross the input terminals of the amplifier also will minimize stray hum piek-up on the connecting leads.

As a preliminary cheok, cover the microphone input terminals with a metal shicld (with the audio oscilator and attenuator disconnected) and, while listening in the headset, note the hum level with the amplifier gain control in the off position. The hum should be very low under these conditions. Then increase the gain-control setting to maximum and observe the hum; it will no doubt increase. Next connect the audio oseillator and attenuator and, starting from minimum signal, increase the audio input voltage until the voltmeter indicates full power output. (The voltage should equal $\sqrt{P R}$, where P ' is the expected power output in watts and R is the load resistance - R_{6} in the diagram.) While increasing the input, listen carefully to the tone to see if there is any change in its character. When it begins to sound like a musical octave instead of a single tone, distortion is beginning. Assuming that the output is substantially without audible distortion at full output, substitute the microphone for the audio oscillator and speak into it in a normal tone while Watching the voltmeter. Reduce the gain-control setting until the moter "kicks" nearly up to the

Fig. 9-32-Simple test set-up for checking a specech amplifier. It is not necessary that the frequency range of the audio oseillator be continuously variable; a number of "spot frequencies, or even one such frequency, will he satisfactory. Suitable resistor values are: R_{1} and $R_{2}, 10,000$ ohms; R_{2} and R_{4}, 1000 ohms; Re, rated load resistance for amplifier output stape; 2 R_{s} determine hy trial for comfortable headphone level (25 to 100 ohms, ordinarily). V is a high-resistance a.c, voltmeter, multirange rectificr type.
full-power reading on woice peaks. Note the hum level, as read on the voltmeter, at this point; the hum level should not exceed one or two per cent of the voltage at full output.

If the hum level is too high, the amplifier stage that is causing the trouble ean be located by temporarily short-rireuiting the grid of each tube to ground, starting with the output amplifier. When shorting a particular grid makes a marked decrease in hum, the hum presumably is coming from a preceding stage, although it is possible that it is getting its start in that particular grid eircuit. If shorting a grid does not decrease the hum, the hum is originating rither in the plate rireuit of that tube or the grid circuit of the next. Aside from wiring errors, a defective tube, or

Fig. 9-3.3 - Test set-up using the oscilloseope to check for distortion. These conncrtions will result in the type of pattern shown in Fig. 9-3. the horizontal sweep being provided ly the audio input signal. For waveform patterns, omit the comncetion between the audio oscillator and the horizontal amplifier in the scope, and use the horizontal lincar swecp.
inadequate plate-supply filtering, objectionable hum usually originates in the first stage of the amplifier.

If distortion occurs below the point at which the expected power output is secured, the stage in which it is occurring can be located by working from the last stage toward the front end of the amplifier, applying a signal to each grid in turn from the audio oscillator and adjusting the signal voltage for maximum output. In the case of push-pull stages, the signal may be applied to the primary of the interstage transformer - after disconnerting it from the plate-voltage source. Assuming that normal design principles have been followed and that all stages are theoretically working within their capabilities, the probable causes of distortion are wiring errors (such as acridental shortacircuit of a cathode resistor), defective components, or use of wrong values of resistance in cathode and plate eircuits.

Using the Oscilloscope

Speech-amplifier cherking is facilitated considerably if an osilloscope of the type having amplifiers and a linear sweep circuit is available. A typical set-up for using the oscilloscope is shown in Fig. !-33. With the eonnections shown, the sweep eirenit is not required but horizontal and vertical amplifiers are necessary. Audio voltage from the oseillator is
fed directly to one oscilloscope amplifier (horizontal in this case) and the output of the speech amplifier is connected to the other. The 'scope amplifier gains should be adjusted so that each signal gives the same line length with the other signal shut off.

Under these conditions, when the input and output signals are applied simultaneously they are compared directly. If the speech amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in Fig. 9-34, making an angle of about 45 degrees with the horizontal and vertical axes. If there is no distortion but there is phase shift, the pattern will be a smooth ellipse, as shown at the upper right. The greater the phase shift the greater the tendency of the ellipse to grow into a circle. When there is evenharmonic distortion in the amplifier one end of the line or ellipse becomes curved, as shown in the second row in Fig. 9-34. With odd-harmonic distortion such as is characteristic of overdriven push-pull stages, the line or ellipse is curved at both ends.

Patterns such as these will be obtained when the input signal is a fairly good sine wave. They will tend to become complicated if the input waveform is complex and the speech amplifier introduces appreciable phase shifts. It is therefore advisable to test for distortion with an input signal that is as nearly as possible a sine wave. Also, it is best to use a frequency in the 500-1000 cycle range, since improper phase shift in the amplifier is usually least in this region. Phase shift in itself is not of great importance in an audio amplifier of ordinary design because it does not change the character of speech so far as the ear is concerned. However, if a complex signal is used for testing, phase shift may make it difficult to detect distortion in the oscilloscope pattern.

In amplifiers having negative feed-back, excessive phase shift within the feed-back loop may cause self-oscillation, since the signal fed back may arrive at the grid in phase with the applied signal voltage instead of out of phase with it. Such a phase shift is most likely to be associated with the output transformer. Oscillation usually occurs at some frequency above 10,000 cycles, although occasionally it will occur at a very low frequency. If the pass-band in the stage in which the phase shift occurs is deliberately restricted to the optimum voice range, as described earlier, the gain at both very high and very low frequencies will be so low that self-oscillation is unlikely, even with large amounts of feed-back.
Generally speaking, it is easier to detect small amounts of distortion with the type of pattern shown in Fig. 9-34 than it is with the waveform pattern obtained by feeding the output signal to the vertical plates and making use of the linear sweep in the 'scope. However, the waveform pattern can be used satisfactorily if the signal from the audio oscillator is a reasonably good sine wave. One simple method is to examine the output of the oscillator alone and trace the pattern on a sheet of transparent paper. The pattern

Fig. 9-34-Typical patterns obtained with the connections shown in Fig. 9-33. Depending on the number of stages in the amplifier, the pattern may slope upward to the right, as shown, or upward to the left. Also, depending on where the distortion originates, the curvature in the second row may appear either at the top or bottom of the line or ellipse.
given by the output of the amplifier can then be compared with the "standard" pattern by adjusting the oscilloscope gain to make the two patterns coincide as closely as possible. The pattern discrepancies are a measure of the distortion.
In using the oscilloscope care must be taken to avoid introducing hum voltages that will upset the measurements. Hum pick-up on the 'scope leads or other exposed parts such as the amplifier load resistor or the voltmeter can be detected by shutting off the audio oscillator and speech amplifier and connecting first one and then the other to the vertical plates of the 'scope, setting the internal horizontal sweep to an appropriate width. The trace should be a straight horizontal line when the vertical gain control is set at the position used in the actual measurements. Waviness in the line indicates hum. If the hum is not in the 'scope itself (check by disconnecting the leads at the instrument) make sure that there is a good ground connection on all the equipment and, if necessary, shield the hot leads.

The oscilloscope can be used to good advantage in stage-by-stage testing to check waveforms at the grid and plate of each stage and thus to determine rapidly where a source of trouble may be located. When the 'scope is connected to circuits that are not at ground potential for d.c., a condenser of about $0.1 \mu \mathrm{fd}$. should be connected in series with the hot oscilloscope lead. The probe lead should be shielded so that it will not pick up hum.

Amplitude Modulation

The type of modulation most commonly employed in amateur radiotelephony is called amplitude modulation (AM). The name arises from the fact that the methods of generating a modulated wave of a particular type all accomplish the desired result by varying the instantancous amplitude of the r.f. output of the transmitter, As described in the chapter on circuit fundamentals, the process of modulating a signal sets up groups of frequencies called sidebands, which appear symmetrically above and below the frequency of the unmodulated signal or carrier. An amplitude-modulated signal actually consists of a carrier which does not vary in amplitude plus sets of side frequencies or sidebands which in turn may or may not vary in amplitude. Modulation by a single-frequency, constantamplitude tone, for example, sets up side frequencies that do not vary in amplitude. Modulation by voice sets up bands of side frequencies that vary with the average speech amplitude.

Amplitude modulation is frequently described as a process of "varying the amplitude of the carrier." A variation in amplitude does take place, when the composite signal as a whole is viewed in a circuit that aceepts equally well all freguencies, carrier and sidebands, contained in the signal. The total r.f. output amplitude varies at the modubation-frequency rate because it is the resultant of the instantancous amplitudes of the carrier and all side frequencies, which continually vary (at radio frequency) in both amplitude and phase relationships. Misunderstanding often occurs because commonly no distinction is made between the carrier, which does not vary in amplitude at modulation frequency, and the signal as a whole, which does vary in amplitude with modulation. In this chapter the term "signal" is used for the composite effect of carrier plus sidebands.

It is illuminating to consider amplitude modulation as a process of frequency conversion or mixing, in which case the relationship between the carrier, modulating frequencies, and sidebands is straightforward (see chapter on fundamentals). The amplitude variations in the signal arise as a result of the mixing process. These amplitude variations are highly important from a design standpoint, since they set up certain power requirements that must be met, so they are considered in detail in this chapter.

AM Sidebands and Channel Width

As described in the chapter on fundamentals, combining or mixing two frequencies in an appropriate circuit gives rise to sum and difference frequencies. Speech can be electrically reproduced, with high intelligibility, in a band of fre-
quencies lying between approximately 100 and 3000 cycles. When these frequencies are combined with a radio-frequency carrier, the sidebands occupy the frequency spectrum from about 3000 cycles below the carrier frequency to 3000 cycles above - a total band or "channel" of about 6 kilocycles. Actual speech frequencies extend up to 10,000 eyeles or so, so it is possible to occupy a 20 -kc. channel if no provision is made for reducing its width. For communication purposes such a channel width represents a waste of valuable spectrum space, since a 6 -kc. channel is fully adequate for intelligibility. Occupying more than the minimum channel creates unnecessary interference, so speech equipment and transmitter adjustment and operation should be pointed toward maintaining the channel width at the minimum.

THE MODULATED SIGNAL

In Fig. 10-1, the drawing at A shows the unmodulated r.f. signal, assumed to be a sine wave of the desired radio frequency. The graph can be taken to represent either voltage or current.

In B, the signal is assumed to be modulated by the audio-frequency shown in the small drawing above. This frequency is much lower than the carrier frequency, a necessary condition for good modulation, and always the case in radiotelephony because the audio frequencies used are very low compared with the radio frequency of the carrier. When the modulating voltage is "positive" (above its axis) the signal amplitude is increased above its unmodulated amplitude; when the modulating voltage is "negative" the signal amplitude is decreased. Thus the signal grows larger and smaller with the polarity and amplitude of the modulating voltage.
'The drawings at C shows what happens with stronger modulation. The amplitude is doubled at the instant the modulating voltage reaches its positive peak. On the negative peak of the modulating voltage the amplitude just reaches zero; in other words, the signal is completely modulated.

Percentage of Modulation

When a modulated signal is detected in a receiver, the detector eliminates the carrier and takes from it the modulation. The stronger the modulation, therefore, the greater is the useful receiver output. Obviously, it is desirable to make the modulation as strong or "heavy" as possible. A wave modulated as in Fig. 10-1C would produce considerably more useful audio output than the one shown at B .
The "depth" of the modulation is expressed
as a percentage of the ummodulated carrier amplitude. In either IS or C, Fig. 10-1, X represents the unmodulated carrier amplitude, Y is the maximum amplitude on the modulation up-peak, and Z is the minimum amplitude on the modulation downpeak.

The outline of the modulated wave is called the modulation envelope. It is shown by the thin line outlining the patterns in Fig. 10-1. In a properly-operating modulation system either side of this outline is an aceurate reproduction

Fig. 10.1 - Graphical representation of (A) r.f. output unmodulated, (B) modulated 50%, (C) modulated 100%.
of the modulating wave, as can be seen in Fig. 10-1 at B and C by comparing the upper outline of the modulation envelope with the waveshape of the modulating wave. The lower outline duplicates the upper, but simply appears upside down in the drawing.

The percentage of modulation is
$\%$ Mod. $=\frac{Y-X}{X} \times 100$ (upward modulation), or
$\%$ Mod. $=\frac{\mathrm{X}-Z}{X} \times 100$ (downward modulation)
If the waveshape of the modulation is such that its peak positive and negative amplitudes are equal, then the modulation percentage will be the same both up and down. If the two percentages differ, the larger of the two is customarily specified.

Power in Modulated Wave

The amplitude values shown in Fig. 10-1 correspond to current or voltage, so the drawings may be taken to represent instantaneous values of either. Now power varies as the square of either the current or voltage, so at the peak of the modulation up-swing the instantaneous power in the signal of Fig. $10-1 \mathrm{C}$ is four times the unmodulated carrier power (because the current and voltage both are doubled). At the peak of
the down-swing the power is zero, sinee the amplitude is zero. These statements are true of 100 per cent modulation no matter what the waveform of the modulation. The instantaneous power in the modulated signal is proportional to the square of its amplitude at every instant. This fact is highly important in the operation of every mothod of amplitude modulation.

It is convenient, and castomary, to describe the operation of modulation systems in terms of sine-wave modulation. Although this waveshape is seldom actually used in practice (voice waveshapes depart very considerably from the sine form) it lends itself to simple calculations and its use as a standard permits comparison between systems on a common hasis. With sine-wave modulation the averaye power in the modulated signal over any number of full eycles of the modulation frecuency is found to be $11 / 2$ times the power in the unmodulated carrier. In other words, the power output increases 50 per cent with 100 per cent modulation by a sine wave. This relationship is very useful in the design of modulation systems and modulators, because any such system that is capable of increasing the average power output by 50 per cent with sinewave modulation automatically fulfills the requirement that the instantancous power at the modulation up-poak be four times the carrier power. Consequently, systems in which the additional power is supplied from outside the modulated r.f. stage (e.g., plate modulation) usually are designed on a sinc-wave basis as a matter of convenience. Modulation systems in which the additional power is secured from the modulated r.f. amplifier (e.g., grid modulation) usually are more conveniently designed on the basis of peak power rather than average power.
The extra power that is contained in a modulated signal goes entirely into the sidebands, half in the upper sideband and half in the lower. As a numerical example, full modulation of a $100-$ watt carrier by a sine wave will add 50 watts of sideband power, 25 in the lower and 25 in the upper sideband. Supplying this additional power for the sidebands is the object of all of the various systems devised for amplitude modulation.

No such simple relationship exists with complex waveforms. Complex waveforms such as speech do not, as a rule, contain as much average power as a sine wave. Ordinary speech waveforms have about half as mueh average power as a sine wave, for the same peak amplitude in both waveforms. For the same modulation percentage in both cases, the sideband power with ordinary speech will average only about half the power with sine-wave modulation, since it is the peak amplitude, not the average power, that determines the percentage of modulation.

Unsymmetrical Modulation

In an ordinary eleetric circuit it is possible to increase the amplitude of current flow indefinitely, up to the limit of the power-handling capability of the components, but it cannot very well be decreased to less than zero. The same

Fig. 10.2 - Modulation hy an unsymmetrical waveform. This drawing shows $10 \% \%$ downward modulation ahong with 300% upward modulation. There is no distortion, since the modulation envelope is an accurate reprobuction of the waveform of the modulating whage.
thing is true of the amplitude of an r.f. signal: it can be modulated upuard to any desired extent, but it camot be modulated downuard more than 100 per cent.
When the modulating waveform is unsvmmetrical it is possible for the upward and downward modulation percentages to be different. A simple case is shown in Fig. 10-2. The positive peak of the modulating signal is about 3 times the amplitude of the negative peak. If, as shown in the drawing, the modulating amplitude is adjusted so that the peak downward modulation is just 100 per cent $(Z=0)$ the peak upward modulation is 300 per cent ($Y=4 X$). The carrier amplitude is represented by X, as in Fig. 10-1. The modulation envelope reproduces the waveform of the modulating signal accurately, henee there is no distortion. In such a modulated signal the inerease in power output with modulation is considerably greater than when the modulation is symmetrical and has to be limited to 100 per cent both up and down. However, the peak amplitude, Y, is four times the carrier amplitude, X, so the peak power is 16 times the carrier power. When the upward modulation is more than 100 per cent the peak power capacity of the modulating system obviously must be increased sufficiently to take care of the much larger peak amplitudes.

Overmodulation

If the amplitude of the modulation on the downward swing becomes too great, there will be a period of time during which the output is entirely cut off. This is shown in Fig. 10-3. The shape of the downward half of the modulating wave is no longer accurately reproduced by the modulation envelope, consequently the modulation is distorted. Operation of this type is called overmodulation. The distortion of the modulation envelope causes new frequencies to be generated (harmonics of the modulating frequency, which combine with the carrier to form new
sidebands correspondingly spaced from the carrier frequency) that widen the chamel occupied by the modulated signal. These spurious frequencies are commonly called "splatter."

It is important to realize that the channel occupied bey amplitude-modulated signal is dependent on the waveshape of the modulation envelope. If this wayeshape is complex and can be resolved into a wide band of audio frequencies, then the channel oceupied will be correspondingly large. The modulation-envelope waveshape shown in Fig. 10-3 will contain a large number of harmonics of the original sine-wave frequeney of the modulating wave because of the sharp corners in the waveshape when it is "elipped" at the zero axis. However, if the original modulating wave had had exactly this same shape the chamed occupied ber the modulated signal would be exactly the same. Basically, it is not the fact that the signal camot be modulated more than 100 per cent downward that causes splatter, but the fact that any distorted waveshape contains higher frequencies than were present in the original undistorted wave. A wave that is efficiently clipped, as is the case with the waveshape shown in Fig. 10-3, will contain a wider range of spurious frequencies than one in which there aro no highly abrupt changes in amplitude.

Fig. 10.3-An overmodnlated signal. The modulation envelope is not an acourate reproduction of the waveform of the modulating vollage. This or any type of distortion oceurring during the modulation process generates spurious sidehands or "splatter."

Because of this clipping action at zero amplitude, it is important that care be taken to prevent applying too large a modulating signal in the downward direction. Overmodulation results in more splatter than is caused by most other types of distortion in a phone transmitter.

GENERAL REQUIREMENTS

For proper operation of an amplitude-modulated transmitter there are a few general requirements that must be met no matter what particular method of modulation may. be used. Failure to meet these requirements is accompanied by distortion of the modulation envelope. This in turn increases the channel width as compared with that required by the legitimate frequencies contained in the origimal modulating wave.

Frequency Stability

For satisfactory amplitude modulation, the carrier frequency must be entirely unaffected by modulation. If the application of modulation causes a change in the carrier frequency, the frequency will wobble back and forth with the modulation. This causes distortion and widens the chamnel taken by the signal. Thus unnecessary interference is caused to other transmissions.

In practice, this undesirable frequency modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequency-controlling oscillator by a buffer amplifier. Amplitude modulation applied directly to an oscillator always is accompanied by frequency modulation. Under existing FCC regulations amplitude modulation of an oscillator is permitted only on frequencies above 144 Mc . Below that frequency the regulations require that an amplitude-modulated transmitter be completely free from frequency modulation.

Linearity

At least up to the limit of 100 per cent upward modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modulating wave. Fig. $10-4$ is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and instantancous modulation amplitude. The modulation swings the r.f. amplitude back and forth along the curve A, as the modulating voltage alternately swings positive and negative. Assuming that the negative peak of the modulating wave is just sufficient to reduce the r.f. output to zero (modulating voltage equal to -1 in the drawing), the same modulating voltage peak in the prositive direation (+1) should cause the r.f. amplitude to reach twice

Fig. 10-4 - The modulation characteristic shows the relationship between the instantaneous amplitude of the r.f. output current (or voltage) and the instantaneous amplitude of the modulating voltage. "The ideal characteristic is a straight line, as shown by curve A.
its unmodulated value. The ideal is a straight line, as shown by curve A. such a modulation characteristic is perfectly linear.

A nonlinear characteristic is shown by curve B. The r.f. amplitude does not reach twice the unmodulated carrier amplitude when the modulating voltage rearhes its positive peak. A modulation characteristic of this type gives a modulation envelope that is "flattened" on the uppeak; in other words, the modulation envelope is not an exact reproduction of the modulating wave. It is therefore distorted and harmonics are generated, causing the transmitted signal to occupy a wider chamel than is necessary. I nonlinear modulation characteristic can easily result when a transmitter is not properly designed or is misadjusted.
The modulation capability of the transmitter is the maximum percentage of modulation that is possible without objectionable distortion from nonlinearity. The maximum capability can never exceed 100 per cent on the down-peak, but it is possible for it to be higher on the up-peak. The modulation capability should be as close to 100 per cent as possible, so that the most effective signal can be transmitted.

Plate Power Supply

The d.c. power supply for the plate or plates of the modulated amplifier should be well fittered; if it is not, plate-supply ripple will modulate the carrier and cause annoying hum. The ripple voltage should not be more than about 1 per cent of the d.c. output voltage.

In amplitude modulation the plate current varies at an audio-frequency rate; in other words, an alternating current is superimposed on the d.c. plate current. The output filter condenser in the plate supply must have low reactance, at the lowest audio frequency in the modulation, if the transmitter is to modulate equally well at all audio frequencies. The condenser capacitance required depends on the ratio of d.c. plate current to plate voltage in the modulated amplifier. The requirements will be met satisfactorily if the capacitance of the output condenser is at least equal to

$$
C=25 \frac{l}{E}
$$

where $C=$ (apacitance of output condenser in μ f.
$I=$ D.c. plate current of modulated amplifier in milliamperes
$E=$ Plate voltage of modulated amplifier

Example: A modulated amplifier operates at 1250 volts and 275 ma . The capacitance of the outpit condenser in the plate-supply filter should be at least

$$
C=25 \frac{I}{E}=2.5 \times \frac{275}{1250}=25 \times 0.22=5.5 \mu \mathrm{f}
$$

Modulation Systems

An amplitude-modulated signal can be generated by a variety of methods, the only pres-ently-used ones being those in which a modulat-
ing voltage is applied to one or more tube elements in an r.f. amplifier. The proper object of all methods is to generate an r.f. signal having a modulation envelope which reproduces the waveform of the modulating voltage with as little distortion as possible.
The methods described in this chapter are the basic ones. There are many specialized variations, usually involving some form of grid modulation
with the object of increasing the rather low plate efficiency that is an inherent characteristic of grid modulation. Such svstems, when they actually achieve substantially distortionless modulation, are rather complicated circuitwise, are difficult to adjust and are not well adapted to rapid frequency change. They have so far had little or no lasting application in amateur communication.

Amplitude Modulation Methods

PLATE MODULATION

The most popular system of amplitude modulation is plate modulation. It is the simplest to apply, gives the highest efficiency in the modulated amplifier, and is the easiest to adjust for proper operation.

Fig. 10-5 shows the most widely-used system of plate modulation, in this case with triode r.f. tubes. A balanced (push-pull Class A, Class AB or Class B) modulator is transformer-coupled to the plate circuit of the modulated r.f. amplifier. The audio-frequency power generated by the modulator is combined with the d.c. power in the modulated-amplifier plate circuit by transfer through the coupling transformer, $\underset{T}{ }$. For 100 per cent modulation the audio-frequency output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varies between zero and twice the d.e. operating plate voltage, thus causing corresponding variations in the amplitude of the r.f. output.

Fig. 10-5 - Plate modulation of a Class C r.f. amplifier. The r.f. plate by-pass condenser, C, in the amplifier stage should have reasonably high reactance at audio frepuencics. A value of the order of $0.001{ }^{\prime} \mu$. to $0.005 \mu \mathrm{f}$. is satisfactory in practically all cases. (Sice chapter on modulators.)

Audio Power

As stated earlier, the average power output of the modulated stage must increase during modulation. The modulator must be capable of supplying to the modulated r.f. stage sine-wave audio power equal to 50 per cent of the d.c. plate input. For example, if the d.c. plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must be 50 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
Z_{\mathrm{m}}=\frac{E_{\mathrm{b}}}{I_{\mathrm{p}}} \times 1000 \mathrm{ohms}
$$

where $E_{\mathrm{b}}=$ D.c. plate voltage
$I_{\mathrm{p}}=$ D.c. plate current (ma.)
E_{b} and I_{p} are measured without modulation.
The power output of the r.f. amplifier must vary as the square of the instantancous plate voltage (the r.f. voltage must be proportional to the plate voltage) in order for the modulation to be linear. This will be the case when the amplifier operates under Class C conditions. The linearity depends upon having sufficient grid excitation and proper bias, and upon the adjustment of circuit constants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for Class C operation are described in the chapter on transmitters. The grid bias and grid current required for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle of about 120 degrees at the d.c. plate voltage used, and the grid excitation should be great enough so that the amplifier's plate efficiency will stay constant when the plate voltage is varied over the range from zero to twice the unmodulated value. For best linearity, the grid bias should be obtained partly from a fixed source of about the cut-off value, and then supplemented by grid-leak bias to supply the remainder of the required operating bias.
The maximum permissible d.c. plate power input for 100 per cent modulation is twice the sine-wave audio-frequency power output available from the modulator. This input is obtained by varying the loading on the amplifier (keeping its tank circuit tuned to resonance) until the
product of d.e. plate voltage and plate eurrent is the desired power. The modulating impedance under these conditions must be transformed to the proper value for the modulator by using the correet output-transformor turns ratio. This point is eonsidered in detail in the chapter on modulator design.

Neutralization, when triodes are used, should be as noarly perfect as possible, since regeneration may cause nonlinarity. The amplifer also must be completely free from parasitic oscillations.

Although the total power input (d.c. plus audio-frequeney a.c.) increases with motulation, the d.c. plate current of a plate-modulated amplifier should not change when the stage is motulated. This is because carh increase in plate voltage and plate current is halanced by an equivalent decrease in voltage and current on the next half-evele of the modulating wave. D.e. instruments cannot follow the a.f. variations, and since the average d.c. plate current and plate voltage of a properly-operated amplifier do not change, neither do the meter readings. A change in plate current with modulation indicates nomlinearity. On the other hand, a thermocouple r.f. ammeter connected in the antenna or transmission line will show an incre:se in r.f. current with modulation, because instruments of this type respond to power rather than to current or voltage.

Screen-Grid Amplifiers

Sereen-grid tubes of the pentode or beamtetrode type can be used as Class (' plate-modulated amplifiers beplying the modulation to both the plate and screen grid. The usual me thod of feeding the screen grid with the neressary d.e. and modulation voltage is shown in Fig. 10-6. The dropping resistor, R, should be of the proper value to apply normal d.e. voltage to the sereen under steady carrier eonditions. Its value can be calculated by taking the difference between plate and sereen voltages and dividing it by the rated sereen current.

Fig. 10-6- Plate and screen modulation of a Class C r.f. amplifier using a screen-grid tube. The plate r.f. by-pass condenser, C, should have rcasonably high reactance at all audio frequencies; a value of 0.001 to $0.005 \mu \mathrm{f}$. is generally satisfactory. The sereen by-pass, C_{2}, should be $0.002 \mu \mathrm{f}$. or less in the usnal case.

When the modulated amplifier is a beam tetrode the suppressor connection shown in this diagram may be iknored. If a base terminal is provided on the tube for the beam-forming plates, it should be connected as recommended by the manufacturer.

The modulating impedance is found by dividing the d.e. plate voltage by the sum of the plate and soreen currents. The plate voltage multiplied by the sum of the two currents gives the power input to be used as the basis for determining the audio power reguired from the modulator.

Fig. 10.7 - Ilate modulation of a beam tetrode, using an audio impedance in the screen circuit. IThe value of 1,1 is discusted in the tevt. See Fig. 10-6 for data on bypass capacitors C_{1} and C_{2}.

Modulation of the screen along with the plate is neressary because the screen voltage has a much greater effect on the plate corrent than the plate voltage does. The modulation characteristic is nonlinear if the plate alone is modulated. However, beam tetrodes can be modulated satisfactorily by applying the modulating power to the plate circuit alone, provided the screen is "floating" at andio frequencies - that is, is not grounded for a.f. but is connected to its d.e supply through an audio impedance. The eireuit is shown in Fig. 10-7. The choke coil L_{1} is the audio impertance in the sereen cireuit; its inductance should be large enough to have a reactanee (at the lowest desired audio frequency) that is not less than the impedance of the screen. The lattor can be taken to be approximately equal to the d.c. sereen voltage divided by the d.c. serem current.

Choke-Coupled Modulator

One of the oldest types of modulation system is the choke-eoupled ('lass A modulator shown in Fig. 10-8. Because of the relatively low power output and phate efficiency of at Class A amplifier, the method is seddom used now except for a few special applications. The andio power ontput of the modulator is eombined with the d.e. power in the plate circuit, just as in the case of the transformer-coupled modulator. Ilowever, there is considerably less freedom in adjustment, since no transformer is available for matching impeatinces.

The modulating impedance of the r.f. amplifier must be adjusted to the value of lowd imperdance required by the particular modulator tube used, and the power input to the r.f. stage must not exeed twice the rated a.f. power output of the modulator. A complication is the fact that the plate voltage on the modulator must be higher: than the plate voltage on the r.f. amplifier, for 100 per cent modulation. This is because the a.f.

Fig. 10-8 - Choke-coupled Class A modulator. The cathode resistor, R_{2}, should have the normal value for operation of the modulator tube as a llass a power amplifier. The modulations choke, li, shonild be $\bar{\sigma}$ herorys or more, A value of 0,001 to $0,005, \mu f$, is satisfactory at C.2, the r.f. amplifier plate liy-pass condenser. See text for discussion of C_{1} and R_{1}.
voltage developed by the modulator cannot swing to zero without a great deal of distortion. h_{1} provides the necessary d.c. voltage drop between the modulator and r.f. amplifier, but its value camot be calculated without using the published plate family of curves for the modulator tube used. The voltage drop through R_{1} must equal the minimum instantaneous plate voltage on the modulator tube under normal operating conditions. ('1, an audio-frequency by-pass across R_{1}, should have a capacitance such that its reactance at 100 eveles is not more than about one-tenth the resistance of R_{1}. Without $R_{1} C_{1}$ the percentage of modulation is limited to 70 to 80 per cent in the average case.

GRID MODULATION

The principal disadvantage of plate modulattion is that a considerable amount of audio power is required. This requirement can be avoided by applying the modulation to a grid element in the modulated amplifier. However, the convenience and economy of the low-power modulator must be praid for, since no molulation system gives something for nothing. The increased power output that accompanies modulation is paid for, in the case of grid modulation, by a reduction in the carrier power output obtainable from a given r.f. amplifier tube, and by more rigorous operating requirements and more complicated adjustment.

The term "grid modulation" as used here applies to all trpes - control grid, screen, or suppressor - since the operating principles are exactly the same no matter which grid is actually
modulated. With grid modulation the plate voltage is constant, and the increase in power output with modulation is obtained by making both the plate current and plate efficiency vary with the modulating signal as shown in Fig. 10-9. For 100 per cent modulation, both plate current and efliciency must, at the peak of the modulation up-swing, be twice their carrier values. Thus at the modulation peak the power input is doubled, and sinee the plate efficiency also is doubled at the same instant the peak output power will be four times the carrier power. The efficiency obtainable at the peak depends on how carefully the modulated amplifier is adjusted, and sometimes can be as high as 80 per cent. It is generally less when the amplifier is adjusted for good linearity, and under average conditions a round figure of $2 / 3$, or 66 per cent, is representative. Since the carrier efficiency is only half the peak efficiency, the efficiency for carrier conditions, without modulation, is only ahout 33 por cent. Thus the carrier output is about one-fourth the power obtainable from the same tube in c.w. operation, and about one-third the carrier output obtainable from the tube with plate modulation.

The modulator is required to furnish only the aurlio power dissipated in the modulated grid under the operating conditions chosen. A specech amplifier capable of delivering 3 to 10 watts is usually sufficient.
(ienerally speaking, grid modulation does not give as limear a modulation characteristice as plate modulation, even under optimum operating conditions. When misaljusted the nonlinearity may be severe, resulting in bad distortion and splatter. However, with careful adjustment it is capable of quite satisfactory results.

Fig. 10.9-In a perfect krid-modulated amplifier both plate current and plate efficiency would vary with the instantaneous modulating voltage as shown. When this is so the modulation characteristic is as given by curve A in Fig. 10-4, and the peak output power is four times the unmodulated carrier power. The variations in plate current with modulation, indicated above, do not register on a d.c. meter, so the plate meter shows no change when the signal is modulated.

Plate.Circuit Operating Conditions

The d.c. plate power input to the modulated amplifier, assuming a round figure of $1 / 3$ (33 per cent) for the plate efficiency, should not exceed $11 / 2$ times the plate dissipation rating of the tube or tubes used in the modulated stage. It is generally best to use the maximum plate voltage permitted by the manufacturer's ratings, because the optimum operating conditions are more casily achieved with high plate voltage and the linearity also is improved.

Example: Two tubes having plate dissipation ratings of 55 watts each are to be used with grid modulation.
The maximum permissible power input, at 33% efficiency, is
$P=1.5 \times(2 \times 55)=1.5 \times 110=165$ watts The maximum recommended plate voltage for these tubes is 1500 volts. C'sing this figure, the average plate current for the two tubes will be

$$
I=\frac{P}{E}=\frac{165}{1500}=0.11 \mathrm{amp}=110 \mathrm{ma}
$$

At 33% efficiency, the earrier output to be expeeted is 55 watts.

The plate-voltage/plate-current ratio at twice carrier phate current is

$$
\frac{1.500}{220}=6.8
$$

The tank-circuit L / C ratio should be chosen on the basis of twice the average or carrier plate current. If the L / C ratio is based on the plate voltage/plate current ratio under carrier conditions the () may be too low for good coupling to the output circuit.

Control-Grid Modulation

Control-grid modulation may be used with any type of r.f. amplifier tube, A typical triode eircuit is given in lig. 10-10. The same circuit can be used with sereen-grid tubes merely by supplying the normal value of screen voltage by any convenient mans; however, the screen should be by-passed for audio ($1 \mu \mathrm{f}$. or more) as well as

Fig. 10-10-Control-grid modulation of a Class C amplitier. The r.f. grid by-pass condenser, C, should have high reactance at audio frequencies ($0.005 \mu \mathrm{f}$, or less).
radio frequencies. The audio signal is inserted, by means of transformer T, in series with the grid-bias lead. In a push-pull amplifier the transformer is connected in the common hias lead.

In control-grid modulation the d.e. grid hias is the same as in normal Class C amplifier service, but the r.f. grid excitation is somewhat smaller. The audio voltage superimposed on the d.c. bias changes the instantaneous grid bias at an audio rate, thus varying the operating conditions in the grid circuit and controlling the output and efficiency of the amplifier.

The change in instantaneous bias voltage with modulation causes the rectified grid current of the amplifier to vary, which places a variable load on the modulator. To reduce distortion, resistor R in Fig. 10-10 is connected in the output circuit of the modulator as a constant load, so that the over-all load variations will be minimized. This resistor should be equal to or somewhat higher than the load into which the modulator tube is rated to work at normal audio output. It is also recommended that the modulator circuit incorporate as much nogative feed-back as possible, as a further aid in reducing the internal resistance of the modulator and thus improving the "regulation" - that is, reducing the effect of load variations on the audio output voltage. The turns ratio of transformer T should be about 1 to 1 in most cases.

The load on the r.f. driving stage also varies with modulation. This in turn will cause the excitation voltage to vary which may cause the modulation characteristic to be monlinear. To overcome it, the driver should be capable of two or three times the r.f. power output actually required to drive the amplifier. The excess power may be dissipated in a dummy load (such as an incandescent lamp of appropriate power rating) that then performs the same function in the r.f. circuit that resistor R does in the audio circuit.
The d.c. bias source in this system should have low internal resistance. Batteries or a voltageregulated supply are suitable. Grid-leak bias should not be used.

Adjustment

A control-grid modulated amplifier should be adjusted with the aid of an oscilloscope conneeted as shown in lig. 10-11. A tone source for modulating the transmitter is a convenience, since a steady tone will give a steady pattern on the oseilloseope. A steady pattern is easier to study than one that flickers with voice modulation.
llaving determined the permissible carrier plate current as previously described, apply r.f. excitation and plate voltage and, without modulation, adjust the plate loading to give the required plate current (keeping the plate tank circuit tuned to resonance). Next, apply morlufation and increase the modulating voltage until the molulation characteristic shows curvature (see later section in this chapter for use of the oscilloscope). If curvature occurs well below 100 per cent modulation, the plate efficiency is too

Fig. 10.11-I sing the oscilloscone for adjustment of a grid-modulated amplifier. The ronnections shown are for grid-hias modulation. With sereen or suppressor modulation the connection to the borizontal plates of the 'soope should be taken from the grid tuing modulated; the r.f. pick-up arrangement remains unchanged.
L and C should tune to the operating frepuency, and may be coupled to the transmitter tank circuit through a twisted pair or coax, using single-turn links at each end. 'The 0.01-mf. bloching comdenser that couples the audio voltage to the horizontal plates of the owillosoope should have a voltage rating equal to at least twice the d.e. voltage on the grid that is being modulated.
high. Increase the plate loading slightly and reduce the excitation to maintain the sime plate current; then apply modulation and check the characteristic again. Continue this process until the characteristic is as linear as possible from the horizontal axis to twiee the carrier amplitude.

Screen Modulotion

Power tubes of the beam tetrode trpe have very good modulation characteristies when the modulating voltage is superimposed on the d.e. screen-grid voltage. The efficiency and plate eurrent should vary with the modulating voltage as shown in Fig. 10-9.

In many ways screen modulation is more satisfactory than eontrol-grid modulation, since the system docs not require a fixed-bias supply for the control griel, and is not highly eritical as to excitation voltage. ILowever, the operating principles are identical, and the earrier output is linited to about onc-half the plate dissipation rating of the tube or tubes used in the modulated amplifier.

The most satisfactory way to apply the modulating voltage to the sereen is through a trans-

Fig. 10-12 - Screen-grid modulation of bean tetrode. Condenser C: is an r.f. by-pass condenser and should have high reactance at audio fropuencies. A value of 0.0 O2 μ. is satisfactory. 'The prid leak can have the same value that is used for c.w. opreration of the tube.
input to the ser aput to the screen under c.w. operation, but varies somewhat with the operating conditions. A receiving-type audio power amplifier will suffice as the modulator for most transmitting

Fig. 10.13 - A typical screen voltage-current eurve of a beam tetrode adjusted for optimum conditinns for screen modulation.
tubes. Because the relationship between sereen voltage and screen current is not linear (a typical curve giving this relationship is shown in Fig. 10-13) the load on the modulator varies over the audio-frequeney cycle, and it is therefore highly advisable to use negative feed-back in the morlulator circuit. If exeess audio power is available, it is also advisable to load the modulator with a resistance corresponding to R in Fig. 10-10, the value of R being adjusted to dissipate the excess power. Unfortunately, there is no simple way to determine the proper resistance except experimentally, by observing the effect of different values on the waveshape with the aid of an oscilloscope.
On the assumption that the modulator will be fully loaded by the screen plus the additional load resistor R, the turns ratio required in the
coupling transformer may be calculated as follows:

$$
N=\frac{E_{\mathrm{d}}}{2.5 \sqrt{P R_{\mathrm{L}}}}
$$

where N is the turns ratio, secondary to primary; E_{d} is the rated screen voltage for cew. operation; I is the rated audio power output of the modulator; and R_{L} is the rated load rosistance for the modulator.

The best mothod of adjustment is to use an oseifloseope (the commections of Fig. 10-II may be useal, except that the audio swrep voltage is taken from the serem instead of the control grid) and adjust plate loading, grid exeitation, and modulating voltage for the greatest output eompatible with good linearity at 100 per eent modulation. The amplifier should be loaded heavily and the grid current should he kept at the point where a further reduction decreases the r, f. output. Under proper operating conditions the platecurrent dip as the amplifier plate cirouit is tuned through resonance will be little more than just discernible

In an alternative adjustment mothod not requiring ath oscilloseope the r,f. amplifier is first tuned up for maximum output without modulation and the rated d.c. serecn voltage (from a fixed-voltage supply) for ew. operation applied. I*se heavy loading and reduce the grid excitation until the output just starts to fall off, at which point the resonance dip in plate current should be small. Note the plate current and, if possible, the r.f. antemat or feeder current, and then reduce the d.e. sereen voltage until the plate current is one-half its previous value. The r.f. output current should also be one-half its previous value at this sereen voltage. The amplifier is then ready for modulation, and the modulating voltage may be increased until the plate current just starts to shift upward, which imdicates that the amplifier is modulated 100 per cent. With voice modulation the plate current should remain steady, or show just an oecasiona! small upuard kiek on intermittent paks.

It is desimable to operate with the grid current as low as possible, sinee this reduees the sereen current and thus reduces the amount of power required from the modulator. With proper adjustment the linearite is good up to about 90 per cent modulation. When the sereen is driven negative for 100 per cent modulation there is a kink in the modulation characteristic at the zerovoltage point that introduecs a small amount of distortion. The kink can be removed and the over-all linearity improved by applying a small amount of modulating voltage to the control grid simultameously with sereen modulation, but this requires adjustment with the oseilloscope.

"Clamp-Tube" Modulation

A method of screen-grid modulation that is convenient in transmitters provided with a sereen proteetive tube ("elamp" tube) is shown in Fig. 10-14. Basieally, the idea is that an audio-frequency signal is applied to the grid of the elamp tube, which then becomes a modulator. The
simplicity of the circuit is somewhat deceptive, sinee it is considerably more difficult from a design standpoint than the transformer-coupled arrangement of Fig. 10-12.

For proper modulation the clamp tube must be operated as a triode Class A amplifier, and it will be reeognized that the method is essentially identieal with the ehoke-coupled (lass A plate monlulator of Fig. 10-8 with a resistance, R_{2}, substituted for the choke. R_{2} in the usual ease is the sereen dropping resistor normally used for e.w. opera-

Fis. 10-14-Screen modulation by a "clamp" tube. The grid leah is the normal value for rew. opreration and Ca should be 0.0WE μ f. or ters. Side text for discussion of Ci, R_{1}, R_{2} and R_{3}. R_{3} should $h_{\text {ave }}$ the proper value for Clams 1 opreration of the modulator tube, but cammot be calculated unless triode curves for the tube are available.
tion. Its value should be at least two or three times the load resistance required by the Class A modulator tube for optimum audio-frequency output. Linfortunately, rolatively little information is available on the triode operation of the tubes most freguently used for sereen-protective purposes.

Like the choke-coupled modulator, the elamptube modulator is incapable of modulating the r.f. stage 100 per cent unless the dropping resistor, R_{1}, and audio by-pass, ('1, are incorporated in the eirenit. The same design considerations hold, with the addition of the fact that the screen must be driven negative, not just to zero voltage, for 100 per cent modulation. The modulator tube must thus be operated at a voltage ranging from 20 to 40 per cent higher than the sereen that it modulates. Propor design requires knowledge of the sereen characteristies of the r.f. amplifier and a sot of plate-voltage plate-eurrent curves on the modulator tube as a triode.

Adjustment with this system, once the design voltages have been determined, is earried ont in the same way as with transformer-coupled sereen modulation, preferably with the oscilloscope. Without the oscilloseope, the amplifier may first be adjusted for c.w. operation as deseribed earlier, but with the modulator tube removed from its
socket. The modulator is then replaced, and the eathode resistance, R_{3}, adjusted to reduce the amplifier plate current to one-half its e.w. value. The amplifier plate current should remain constant with modulation, or show just a small upward flieker on oceasional voice peaks.

Controlled Carrier

As explaned earlier, a limit is placed on the output ohtainable from a grid-modulation s.estem by the low r.f. amplifior plate efficiency (approximately 33 per cent) under unmodulated carriex

Fig. 10.15- Cirrouit for carrier control with sereen monhation. A small triode meh as the 6.5 can be used ass the control amplifier and a 6 YG6; is suitalile as a earrieremontrol tube. T_{1} is an interstage audio trans. former having a l-to-1 or larger turns ratio, R_{4} is a O. \boldsymbol{n}-megohm whime control and also serves as the qrid resistor for the modnlator. A germanimmerystal may be used ats the rectifier. Other values are disensed in the text.
conditions. The plate efficiency increases with modulation, since the output increases while the d.e. input remains eonstant, and reaches a maximum in the neighborhood of 50 per sent with 100 per cent sine-wave modulation. If the power imput to the amplifier can be reduced during periods when there is little or no modulation, thus redueing the plate loss, advantage can be taken of the higher efficiency at full modulation to obtain higher effective output. This can be done by varying the power input to the modulated stage, in areordance with average variations in voice intensity, in such a way as to maintain just suffi(ient currier power to kerp) the modulation high, hut not exeeceling 100 per cent, under all conditions. Thus the carrier amplitude is controlled by the voier intensity. Properly utilized, eontrolled carrier permits increasing the efferetive earrier output at maximum level to a value equal to the rated plate dissipation of the tube, or twice the motput obtainable with constant earricr.

It is desirable to control the power input just enough so that the phate loss, without modulation, is safely below the tube rating. Fxcessive eontrol is disadvantageous because the receiver's a.v.c. system must continually follow the varia-
tions in average signal level. The circuit of Fig. 10-15 permits adjustment of both the maximum and minimum power input, and although somewhat more complicated than some cireuits that have been used is actually simpler to operate because it separates the functions of modulation and carrier control. A portion of the audio voltage at the modulator grid is applied to a Class A "control amplifior" which drives a reetifer cireuit to produce a d.e. voltage negative with respect to ground. ('1 filters out the audio variations, leaving a d.e. voltage proportional to the average voice level. This voltage is applied to the grid of a "clamp" tube to control the d.c. screen voltage and thus the r.f. carrier level, Maximum output is obtained when the carrier-control tube grid is driven to cut-off, the voice level at which this oecurs being determined by the setting of R_{4}. Minimum input is set to the desired level (usually about equal to the pate dissipation rating of the modulated stage) by adjusting R_{2}. R_{3} may be the normal screen-dropping resistor for the modulated beam totrode, but in case a separato sereen supply is used it need be just large enough to give suffieient voltage drop to reduce the no-modulation power input to the desired value.
(${ }_{1} R_{1}$ should have a time eonstant of about 0.1 second. The time constant of $C_{2} R_{3}$ should be no larger, Further details may be found in QS'J' for April, 1951, page 64. An oscilloseope is required for proper adjustment.

Suppressor Modulation

Pentode-type tubes do not, in general, modulate well when the modulating voltage is applied to the sereen grid. However, a satisfactory modulation characteristic can be obtained be applying the modulation to the suppressor grid. 'The eircuit arrangement for suppressor-grid modulation of a pentode tube is shown in Fig. 1()-16,

The method of adjustment elosely resembles that used with sereen-grid modulation. If an oscilloseope is not available, the amplifier is first adjusted for optimum c.w. output with zero hias on the suppressor grid. Negative bias is then applied to the suppressor and increased in value until the phate current and r.f. output earrent drop to half their original values. When this eondition has been obtaned the amplifier is ready for morlulation.

Fig. 10.16-Suppressor-grid modulation of an r.f. amplifier using a pentode-type tube. The suppressorgrid r.f. by-pass condenser, fi, should be the same as the grid by-pass condenser in emontrol-grid modulation.

Since the suppressor is always negatively biased, the modulator is not required to furnish any power, so a voltage amplifier can be used. The suppressor bias will vary with the type of pentode and the operating conditions, but usually will be of the order of -100 volts. The peak a.f. voltage required from the modulator is equal to the suppressor hias.

CATHODE MODULATION

Circuit

The fundamental circuit for cathode modulation is shown in Fig. 10-17. It is a combination of the plate and grid methods, and permits a carrier efficiency midway between the two. The audio power is introduced in the cathole circuit, and both grid bias and plate voltage are modulated.

Fï. 10-17-Circuit arrangement for cathode modulation of a Class C.r.f. amplifier. Values of by-pass condensers in the r.f. circuits should be the same as for other modulation methods.

Because part of the modulation is by the control-grid methox, the plate efficiency of the modulated amplifier must vary during modulation. The carrier efficiency therefore must he lower that the efficience at the modulation peak. The required reduction in efficiency depends upon the proportion of grid modulation to plate modulation; the higher the percentage of plate modulation, the higher the permissible carrier efficiency, and vice versa. The audio power required from the modulator also varies with the percentage of plate modulation, being greater as this percentage is increased.

The way in which the various quantities vary is illustrated by the curves of lig. 10-18. In these curves the performance of the cath-ode-modulated r.f. amplifier is plotted in terms of the tube ratings for plate-modulated telephony, with the percentage of plate modulation as a base.

Fig. 10.18-Cathode-modulation performance curves. in terms of percentage of plate modulation plotted against pereentage of Class (: telephony tube ratings. $\left.W_{\text {in }}-1\right) . c$ plate inpnt watts in terms of percentage of plate-modulation rating.
Wo- Carrier output watts in per cent of plate-modulation rating (based on plate efficiency of 77.5%). Wa - Audio power in per cent of d.c. watts input. \mathbf{N}_{p} - Ilate efficiency of the amplifier in percentage.
As the percentage of plate modulation is decreased, it is assumed that the grid modulation is increased to make the over-all modulation reach 100 per cent. The limiting condition, 100 per cent plate modulation and no grid modulation, is at the right (A); pure grid modulation is represented by the left-hand ordinate (B and C).

Example: Assume that the r.f. tube to be used has a 100% plate-modulation rating of 250 watts input and will give a carrier power output of 190 watts at that input, Cathode modulation with 40% plate modulation is to be used. From Fis, 10-18. the carrier efficieney will be 56% with 40% plate modulation, the permissible d.e. input will be 65% of the plate-modulation rating, and the r.f. output will be 48% of the plate-modulation rating. That is,

Power input $=250 \times 0.65=162.5$ watts
Power output $=190 \times 0.48=91.2$ watts
The refuired audio power, from the chart, is equal to 20% of the d.c. input to the modulated amplifier. Therefore

Audio power $=162.5 \times 0.2=32.5$ watts The modulator should supply a small amount of extra power to take care of losses in the grid circuit. These should not exceed four or five witts.

Modulating Impedance

The modulating impedance of a cathodemodulated amplifier is approximately equal to

$$
m \frac{E_{\mathrm{b}}^{\prime}}{I_{\mathrm{b}}}
$$

where $m=$ Percentage of plate modulation (expressed as a decimal)

$$
\begin{aligned}
& E_{\mathrm{b}}=\text { I.c. plate voltage on modulated } \\
& \text { amplifier } \\
& I_{\mathrm{b}}=\text { I.c. plate current of modulated } \\
& \text { amplifier }
\end{aligned}
$$

Example: Assume that the modulated amplifier in the example above is to operate at a plate potential of 1250 volts. Then the d.c. plate current is

$$
I=\frac{P}{E}=\frac{162.5}{1250}=0.13 \mathrm{amp} .(130 \mathrm{ma} .)
$$

The modulating impedanee is

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}=0.4 \frac{1250}{0.13}=3846 \mathrm{ohms}
$$

The modulating impedance is the load into which the modulator must work, just as in the case of pure plate modulation. This load must be matched to the load required by the modulator tubes by proper choice of the turns ratio of the modulation transformer, as described in the chapter on speech equipment.

Conditions for Linearity

R.f. excitation requirements for the cathodemodulated amplifier are midway between those for plate modulation and control-grid modulation. More excitation is required as the percentage of plate modulation is increased. Grid bias should be considerably beyond cut-off; fixed bias from a supply having good voltage regulation is preferred, especially when the percentage of plate modulation is small and the amplifier is operating more nearly like a grid-bias modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-leak bias can be used, since the variation in rectified grid current is smaller. The grid leak should be by-passed for audio frequencies. The percentage of grid modulation may be regulated by choice of a suitable tap on the modulation-transformer secondary.

The cathode circuit of the modulated stage
must be independent of other stages in the transmitter. When directly-heated tubes are modulated their filaments must be supplied from a separate transformer. The filament by-pass condensers should not be larger than about 0.002 $\mu \mathrm{f}$. , to avoid by-passing the audio-frequency modulation.

Adjustment of Cathode-Modulated Amplifiers

In most respects, the adjustment procedure is similar to that for grid-bias modulation. The critical adjustments are antenna loading, grid bias, and excitation. The proportion of grid-bias to plate modulation will determine the operating conditions.

Adjustments should be made with the aid of an oscilloscope connected in the same way as for grid-bias modulation. With proper antenna loading and excitation, the normal wedge-shaped pattern will be obtained at 100 per cent modulation. As in the case of grid-bias modulation, too-light antenna loading will cause flattening of the upward peaks of modulation as also will too-high excitation. The cathode current will be practically constant with or without modulation when the proper operating conditions have been established.

Checking AM 'Phone Operation

- USING THE oscillosCope

l'roper adjustment of a phone transmitter is aided immeasurably by the oscilloscope. The 'seope will give more information, more accurately, than almost any collection of other instruments that might be named. Furthermore, an oscilloscope that is entirely satisfactory for the purpose is not necessarily an expensive instrument; the cathode-ray tube and its power supply are about all that are needed. Amplifiers and lincar sweep circuits are by no means necessary.

In the simplest 'scope circuit, radio-frequency voltage from the modulated amplifier is applied directly to the vertical deflection plates of the tube, and audio-frequency voltage from the modulator is applied to the horizontal deflection plates. As the instantaneous amplitude of the audio signal varies, the r.f. output of the transmitter likewise varies, and this produces a wedgeshaped pattern or trapezoid on the screen. If the oscilloscope has a built-in horizontal sweep, the r.f. voltage is applied to the vertical plates as before (never through an amplifier) and the sweep will produce a pattern that follows the modulation envelope of the transmitter output, provided the sweep frequency is lower than the modulation frequency. This produces a waveenvelope modulation pattern.

The Wave-Envelope Pattern

The connections for the wave-envelope pattern are shown in Fig. 10-19A. The vertical deflection plates are coupled to the amplifier tank coil (or an antenna coil) through a twisted-pair line and pick-up coil. As shown in the alternative drawing,
a resonant circuit tumed to the operating frequency may be connected to the vertical plates, using link coupling between it and the transmitter. This will eliminate r.f. harmonics, and the tuning control provides a convenient means for adjustment of the pattern height.

The position of the pick-up, coil shoudd be varied until an unmodulated carrier pattern, Fig. 10-2013, of suitable height is obtained. The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more than half the diameter of the screen. When voice modulation is applied, a rapidly-changing pattern of varying height will be obtained. When the maximum height of this pattern is just twice that of the carrier alone, the wave is being modulated 100 per cent. This is illustrated by Fig. 10-201), where the point X represents the horizontal sweep line (reference line) alone, $Y Z$ is the carrier height, and $P Q$ is the maximum height of the modulated wave.

If the height is greater than the distance $I^{\prime} Q$, as illustrated in E, the wave is overmodulated in the upward direction. Overmodulation in the downward direction is indicated by a gap in the pattern at the reference axis, where a single bright line appears on the screen. Overmodulation in either direction may take place even when the modulation in the other direction is less than 100 per cent.

The Trapezoidal Pattern

Connections for the trapezoid or wedge pattern as used for checking plate modulation are shown in Fig. 10-19B. The vertical plates of the c.r. tube are coupled to the transmitter tank through

(B)

Fig. 10-19 - Methorls of connecting the oscillosmpe for modulation cheching. 1 - connections for wave-envelope pattern with any modulation method: is - conneetions for traperoidal pattern with phate modulation. See Fig. 10-1] for seope comertions for trapeanilal pattern with grid modulation.
a pick-up loop, preferably using a tuned circuit, as shown in the upper drawing, adjustable to the operating frequence: Audio voltage from the modulator is applied to the horizontal plates through a voltage divider, $R_{1} R_{2}$. This voltage should be adjustable so a suitable pattern width can be obtained; a 0.25-megohm volume control can be used at R_{2} for this purpose, with e.r. tubes up to the 3 -inch size.

The resistance required at l_{1} will depend on the d.ce plate voltage on the modulated amplifier. The total resistance of R_{1} and R_{2} in series should be about 0.25 megohm for each 100 volts of d.c. plate voltage. For example, if the modulated amplifier operates at 1500 volts, the total resistance should be 3.75 megohms, 0.25 megohm at R_{2} and the remainder, 3.5 megohms, in $R_{1} . R_{1}$ should he composed of individual resistors not larger than 0.0 megohm each, in which case 1-watt resistors will be satisfactory.

For good low-frequency eoupling the eapacitaner, in miorofarads, of the blocking eondenser, (', should at least equal $0.004 / R$, where R is the total resistance $\left(R_{1}+R_{2}\right)$ in megohms. In the example above, where R is 3.75 megohms, the capacitance should be at least $0.004 / 3.75=0.001$
$\mu \mathrm{f}$., approximately. The voltage rating of the eondenser should be at least wice the d.c. voltage applied to the modulated amplifier. The eapacitance can be made up of two or more similar units in sories, so long as the total capacitance is equal to that required, in case a single unit of sufferent voltage rating is not avalable. Two or more units may be used in parallel if condensers having adequate voltage rating hut insufficiont capacitance are available.

The rorresponding 'scope comnections for grid modulation were given in Fig. 10-11. This eireuit will be sat isfactory for cherking sereen-grid modulation (the adudio conneretion of enurse being made to the sereen grid rather than to the eontrol grid) for d.e. sereen woltages up to 200 volts or so, which will inelude most beam tetrodes. If the dee. serem voltage, adjusted for proper modulation, exeeds 200 volts a voltage divider similar to that shown in Fig. 10-19 should be used, the values being calculated as dowribed above using the sereen voltage instead of the plate voltage.

Trapezoidal patterns for various ronditions of modulation are shown in Fig. 10-20 at F to J , each alongside the corresponding wave-envelope pattern. With no signal, only the cathode-
(A)

(F)
NO CARRIER
(B)

(G)
(C)

100% MODULATION
(H)

(E)

Fig. 10-20 - Wave-envelope and traprzodal patterns representing different combitions of modulation.
ray spot appars on the screen. When the unmodulated carrier is applied, a vertical line appears; the length of the line should be adjusted, by means of the pick-up coil coupling, to a convenient value. When the carrier is modulated, the wedge-shaped pattern appears; the higher the modulation percentage, the wider and more pointed the wedge becomes. At 100 pre cent modulation it just makes a point on the axis, N, at one end, and the height, $I^{\prime}()$, at the other end is equal to twice the earrier height, Y\%. Overmodulation in the upward direction is indieated by increased height over $P(Q$, and in the downward direction \quad by an extension along the axis X at the pointed end.

Checking Transmitter Performance

The trapezoidal pattern is far more useful than the wave-envelope pattern for checking the operation of a 'phone transmitter. The latter type of pattern is of use principally for checking modulation percentage, and even when the sperech system is fed with a sine-wave tome for close examination of the pattern it is difficult to tell with sufficient accuraey whether the transmitter is operating linearly. Also, even when distortion is evident in the wave-envelope pattern there is no clue as to whether it is orcurring in the motulated amplifier or is catused by a defeet in the speech equipment.

On the other hand, the trapezoidal pattern is actually a graph of the modulation characteristic of the modulated amplifier. The sloping sides of the wedge show the r.f. amplitude for every value of instantaneous modulating voltage, exactly the type of curve plotted in Fig. 10-4. If those sides are perfectly straight lines, as drawn in Fig. $10-20$ at II and I, the modulation characteristic is linear. If the sides show curvature, the characteristic is nonlinear to an extent that is shown by the degree to which the sides depart from perfect straightness. This is true regardless of the waveform of the modulating voltage.

If the speech system can be driven by a good audio sine-wave signal instead of a microphone, the traprooidal pattern also will show the presence of even-harmonic distortion (the most common type, especially when the modulator is overloaded) in the speceh amplifier or modulator. If there is no distortion in the audio system, the trapezoid will extend horizontally equal distances on cach side of the vertical line representing the unmodulated carrier. If there is even-hamonic distortion the trapezoid will extend farther to one side of the unmodulated-carrier position than to the other. This is shown in Fig. 10-21. The probable cause is inadequate power ontput from the modulator, or incorrect load on the morlulator.

An audio oscillator having reasonably good sine-wave output is highly desirable for tosting both sperch equipment and the 'phone transmitter as a whole. A very simple single-tone oscillator such as is shown in the chapter on measurements is quite adequate. With such an oseillator and the 'scope, the pattern is steady and can bo studied closely to determine the effects of various operating adjustments.

The patterns shown in Figs. 10-21 and the top four groups of Fig. 10-22 show both correct and incorrect transmitter adjustments. The object of modulated-amplifier adjustment is to obtain a pattern closely resembling that in Fig. 10-22A, which shows excellent linearity (sides of wedge pattern quite straight) over the whole characteristic at 100 per cent modulation. Since no modulated amplifier is perfect, the sides will never be perfectly straight, but a close approach is possible. lifferent methods of modulation give different characteristic results. Fig. $10-22 \mathrm{~A}$ is typical of correctly-operated phate modulation. With control-grid modalation the sides usually are somewhat concave, particularly near the point of the trapezoid, while screen modulation gives the characteristic pattern shown in Fig. 10-21. As mentioned earlier, it is mecessary to drive the sereen somewhat megative in order to rach complete plate-current cut-off and thus modulate 100 per cent downward.

Aside from overmodulation downward, Fig.

Fip. $111.2 I$ - Top - a typical trapesoidal pattern ohtained with sereern modulation adjusted for cutimum conditions. 'the sudden change in slope near the point of the wedge acours when the sereen voltage passes through zoro. Center - If there is no audio distortion, the unmodnlated carrirr will have the height and position slown by the white line superimposed on the sine. wave modulation pattern. Botom - Even-harmonic distortion in the audio system, when the audio signal applied to the speceh amplifier is a sine wave. is indicated by the fact that the modulation pattern does not extend equal distances either side of the unmodulated carrier.

Fiq. 10.22- PHOTOGRAPIIS OF TYPICAL OSCIIIIOSCOIE PAIIERNS
These photographs show various conditions of modulation as displayed by the wedge or trapezoidal patterns in the left-hand column and the wave-envelope patterns in the right-hand column.
(Photographs reproduced through courtesy of the Allen B. DuMont Lahoratories, Inc., Passaic, N. J.)

10-22I3, which is easily cured by keeping the speech amplifier gain or speech intensity below the point that causes it, the most common type of improper operation is shown by the pattern of Fig. $10-22 \mathrm{C}$. The flattening at the large end of the trapezoid results from the inalility of the modulated amplifier to deliver sufficient power output on the modulation up-peak. With plate modulation the most likely cause is insufficient grid excitation or incorrect grid bias or both. With grid modulation this flattening is the result of attempting to operate the amplifier at too-high carrier efficieney. In this case the remedy is to increase the loading on the output circuit and reduce the grid excitation, or both in combinattion, until the pattern sides are straight.

In this connection, it should be noted that while the trapezoidal pattern of Fig. 10-22C shows nonlinearity in the modulated amplifier, the corresponding wave-envelope pattern of the same figure could result either from this cause or from modulator overloading. With the trapezoidal pattern, modulator overloading will be evident by the fact that the position of the vertical line representing the unmodulated earrier will not be at the center of the pattern (when the modulating voltage is cut off); however, modulator overloading will not affect the shape of the trapezoid. This assumes that the audio signal is a sine wave.

Outward curvature near the point of the trapezoid, causing it to approash the horizontal axis more slowly than would occur with straight sides, indicates that the output power does not decrease rapidly enough in this region. It may be caused by r.f. leakage from the exciter through the final stage. This can be cherked by removing the voltage from the modulated stage, when the carrier should disappear, leaving only the beam spot remaining on the screen (Fig. 10-20F). If a small vertical line remains, the amplifier should be carefully neutralized; if this does not eliminate the line, it is an indication that the 'scope is getting r.f. from lower-power stages, either by coupling through the final tank or via the pick-up loop.

Faulty Patterns

Figs. 10-20, 10-21, and 10-22A through D show what is normally to be expected in the way of pattern shapes when the oscilloscope is used to check modulation. If the actual patterns differ considerably from those shown, it may be that the pattern is faulty rather than the transmitter.

It is important that r.f. from the molulated stage only be coupled to the oscilloscope, and then only to the vertical plates. The effert of stray r.f. from other stages in the transmitter has been mentioned in the preceding section. If r.f. is present also on the horizontal plates, the pattern will lean to one side instead of being upright. If the oscilloscope cannot be moved to a position where the unwanted pick-up disappears, a small by-pass condenser ($10 \mu \mu \mathrm{f}$.) should be connected across the horizontal plates as close to the cathode-ray tube as possible. An r.f.
choke (2.5 mh . or smaller) may also be connected in series with the ungrounded horizontal plate.
"Folded" trapezoidal patterns, and patterns in which the sides of the trapezoid are elliptical instead of straight, Fig. 10-22F (left), oceur when the audio sweep voltage is taken from some point in the audio system other than that where the a.f. power is applied to the modulated stane. Such patterns are eansed by a phase difference between the sweep voltage and the modulating voltage. The connections should always be as shown in Fig. 10-11 and 10-19B.

MODULATION CHECKING WITH THE PLATE METER

The plate milliammeter of the modulated amplifier provides a simple and fairly reliable means for checking the performance of a phone transmitter, although it does not give nearly as definite information as the oscilloscope does. If the modulated amplifior is perfectly linear, its plate current will not change when modulation is applied if

1) the upward modulation percentage does not exceed the modulation capability of the amplifier,
2) the downward modulation does not exceed 100 per cent, and
3) there is no change in the d.c. operating voltages on the transmitter when modulation is applied.

This is true of any of the methods of modulation discussed in this chapter, with the single exception of the controlled-carrier system. The plate meter cannot give a reliable check on the performance of the latter system because the plate current increases with the intensity of modulation. With this system the plate-current variations should be corrolated with the transmitter performaner as observed on an oscilloscope hefore the plate moter is used for checking modulation.

Plate Modulation

With plate molulation, a downward shift in plate current may indicate one or more of the following:

1) Insufficient excitation to the modulated r.f. amplifier.
2) Insufficient grid biss on the mordulated stage.
3) The r.f. amplifior is not louded properly to present the required value of morlulating impedance to the modulator.
4) Insufficient output capacitance in the filter of the modulated-amplifier plate supply.
5) D.e. input to the r.f. amplifier, under carrier conditions, is in excess of the manufacturer's ratings for plate modulation. Alternatively, the filament emission of the amplifier tubes may be low.
(j) In plate-and-screen modulation of tetrodes or pentodes, the sereen is not being sufficiently modulated along with the plate. In systems in which the d.c. screen voltage is
obtained through a dropping resistor, a downward dip in plate current may occur if the sereen by-pass condenser capacitance is large enough to be-pass audio frequencies.
6) Poor voltage regulation of the modulatedamplifier plate supply. This may be caused by voltage drop in the supply itself, when the modulated amplifier and a Class B amplifier are operated from the same supply, or may be caused by voltage drop in the primary supply from the power line when the modulator load is thrown on. It is readily ehecked be measuring the voltage with and without modulation. Poor line regulation will be shown by a drop in filament voltage with modulation.
Any of the following may cause an upward shift in plate current:
7) Overmodulation (excessive audio power, audio gain too great).
8) Incomplete neutralization of the modulated amplifior.
9) Parasitic oscillation in the modulated amplifier.

Grid Modulation

With any type of grid nodulation, any of the following naty cause a downward shift in modu-lated-amplifier plate current:

1) Too much r.f. excitation.
2) Insufficient grid hias, partieularly with control-grid modulation. Grid his is usually. not eritical with screen and suppressor modulation, the value of grid leak recommended for c.w. operation being satisfactory:
3) With eontrol-grid modulation, excessive resistance in the bias supply.
4) Insufficient output capacitance in platesupply filter.
5) Plate efficiency too high under carrier conditions; amplifier is not loaded heavily enough.
Because grid modulation is not perfectly linear (always less so than plate modulation) a properlyoperating amplifier will show a small upward plat(--current shift with modulation, 10 per cent or less with sine-wave modulation and amounting to an oceasional upward flicker with voice. An upward plate current shift in excess of this may be caused by
6) Overmodulation (exeessive modulating voltage).
7) Regenemation (incomplete neutralization).
8) With control-grid or suppressor modulation, bias too great.
9) With sereen modulation, d.c. screen voltage too low.
In grid-modulation systems the modulator is not necessarily operating linearly if the plate current stays constant with or without modulation. It is readily possible to arrive at a set of operating conditions in which flattening of the up-peaks is just balaneed by overmodulation downward, resulting in practically the same plate current as when the transmitter is unmodulated.

The oseilloscope provides the only certain check on grid modulation. While the same trepe of improper operation is possible with plate modulation, it occurs only rarely.

- COMMON TROUBLES IN THE 'PHONE TRANSMITTER

Noise and Hum on Carrier

Noise and hum may be detected hy listening to the signal on a receiver, provided the receiver is far enough away from the transmitter to avoid overloading. The hum level should be low eompared with the voiee at 100 per cent modulation. Hum may come either from the speech amplifier and modulator or from the r.f. section of the transmitter. Ilum from the r.f. section can be detected by completely shutting off the modulator; if hum remains when this is done, the power-supply filters for one or more of the r.f. stages have insuffieient smoothing. With a humfree carrier, hum introduced by the modulator can be checked by turning on the modulator but leaving the speech amplifier off; power-supply filtering is the likely source of such hum. If carrier and modulator are both clean, connect the speech amplifier and observe the increase in hum level. If the hum disappears with the gain eontrol at minimum, the hum is being introduced in the stage or stages preeding the gain control. The mierophone also may piek up hum, a condition that can be cheeked by removing the microphone from the circuit but leaving the first speech-amplifier grid circuit otherwise unchanged. A good ground (to a cold water pipe, for example) on the microphone and speech system usually is essential to hum-free operation.

Spurious Sidebands

A superheterolyne receiver having a erystal filter is needed for checking spurious sidebands outside the normal communication channel, The r.f. input to the receiver must be kept low enough, by removing the antenna or by adequate separation from the transmitter, to avoid overloading and consequent spurious receiver responses. An " S "-meter reading of about half scale is satisfactory. With the crystal filter in its sharpest position tune through the region outside the normal channel limits (3 to 4 kilocyoles each side of the carrier) while another person talks into the microphone. Spurious sidebands will be observed as intermittent "clicks" or crackles well away from the carrier frequency. Sidebands more than 3 to 4 kilocveles from the earrier should the of negligible strength, compared with the carrier, in a properly-modulated 'phone transmitter. The causes are overmodulation or nonlinear operation.

With sine-wave modulation the relative intensity of sidebands can be observed if a tone of 1000 cyeles or so is used, sinee the crystal filter readily: can separate frequencies of this order. The " S "-meter will show how the spurious side frequencies (those spaced more than the modulating frequency from the carrier) compare with the carrier itself. Without an "s"-meter, the a.v.c.
should be turned off and the b.f.o. turned on; then the r.f. gain should be set to give a moderately strong beat mote with the carrice. The intensity of side frepuencies can be estimated from the relative strength of the beats as the receiver is tuned through the spectrum adjacent to the carrier.

R.F. in Speech Amplifier

A small amount of r.f. current in the speech amplifier - particularly in the first stage, which is most susecptible to such r.f. pick-up - will calus overloading and distortion in the low-level stages. Frequently also there is a regenerative effect which causes an audio-frequencer oscillation or "howl" to be set up in the audio sustem. In such cases the gain control cannot be advanced very far before the bowl buidds up, even though the amplifier maty be perfectly stable when the r.f. section of the tramsmitter is not turned on.

Complete shielding of the microphone, mierophone cord, and speech amplifier is necessary to prevent r.f. pick-up, and a ground connection separate from that to which the transmitter is connected is advisable.

- MODULATION MONITORING

It is always desirable to modulate as fully as possible, hut 100 per cent modulation should not be exceeded - particularly in the downward direction - because harmonic distortion will be introduced and the channel width increased. This causes unnecessary interference to other stations. The oseilloseope is the best instrument for continuously checking the modulation. However, simpler indicators maty be used for the purpose, once calibrated.

A convenient indicator, when a (lass I3 modulator is used, is the plate milliammeter in the C'lass B stage, since plate current of the modulator fluctuates with the voice intensity. Using the oscilloscope, determine the gain-control setting and voice intensity that give 100 per cent modulation on voice peaks, and simultaneously observe the maximum C'lass I3 plate-milliammeter reading on the peaks. When this maximum reading is obtained, it will suffice to adjust the gain so that it is not exceeded.

A high resistance (1000 -ohms-per-volt or more) rectifier-type voltmeter (copper-oxide or germanium trpe) also can be used for modulation monitoring. It should be connected across the output circuit of an audio driver stage where the power level is a few watts, and similarly calibrated against the oscilloseope to determine the reading that represents 100 per cent modulation.

The plate milliammeter of the modulated r.f. stage also is of value as an indicator of overmodulation. As explained earlier, the d.c. plate current stays constant if the amplifier is linear. When the amplifier is overmodulated, especially in the downward direction, the operation is no longer linear and the average plate current will
change. A flicker of the pointer may therefore be taken as an indication of overmodulation or nonlinearity. However, since it is possible that under some operating conditions the plate current will remain constant even though the amplifier is considerably overmodulated, an indicator of this type is not wholly reliable unless it has been checked against an oscilloscope.

Overmodulation Indicators

Overmodulation on negative peaks is usually: the worst type, as explained earlier in this chapter. The milliammeter in the negative-peak indicator of Fig. 10-23 will show a reading on cach pak that carries the instantancous voleage on a plate-modulated amplifier "below zero" - that is, negative. The rectifier, V^{\prime}, cannot conduct so long as the negative half-ercle of audio output voltage is less than the d.c. voltage applied to the r.f. tube.

The inverse-peak-voltage rating of the rectifier tube must be at least twice the d.c. plate voltage of the modulated amplifier. The filament transformer likewise must have insulation rated to withstand twice the d.c. plate voltage. Either mercury-vapor or high-vacuum rectifiers can be used. The 15 -volt breakdown voltage of the former will introduce a slight error, since the plate voltage must go at least 15 volts negative before the rectifier will ionize, but the error is inconsequential at plate voltages above a few hundred volts.

The effectiveness of the monitor is improved if it indicates at somewhat less than 100 per cent modulation, as it will then warn of the danger of overmodulation before it actually occurs. It can be adjusted to indicate at any desired modulation percentage by making the meter return to a point on the power-supply bleeder as shown in the alternative diagram. The bepass condenser, C, insures that the full audio voltage appears across the indicator circuit.

Fig. IO-2.3 - Negative-peah overmodulation indicator. The milliammeter MA may be any low-range instru. ment (up to $0-50$ ma, or so). 'The inverse-peak-voltage rating of the rectifier, 1 , must be at least twite the d.c. voltage applied to the plate of the r.f. amplifier. The alternative meter-return circuit ean be used to indicate modulation in excess of any desired value below 100 per cent. The reactance of the by-pass condenser, C. at 100 cycles should be small compared with the reistance across which it is connected. An $8-\mu \mathrm{f}$. electrotytic condenser will be satisfactory if the resistance it shunts is 1000 ohms or more.

Frequency and Phase Modulation

It is possible to convey intelligence by modulating any property of a carrier. These properties are amplitude, frequencey and phase. Amplitude modulation (AM) is described in another chapter. When the frequene? of the carrier is varied in areordane with the variations in a modulating signal, the result is frequency modulation (FM). Similarls, varying the phase of the carrier current is called phase modulation (PM).

Frequencer and phase modulation are not independent, sinere the frequeney cannot be varied without also varying the phase, and vice versal. The difference is largely a matter of definition.

The efferetiveness of FMI and PM for communication purposes depends almost entirely on the reediving methods. If the reereiver will respond to frequency and phase changes but is insensitive to amplitude changes, it will diseriminate against most forms of noise, particularly impulse noise such as is set up be ignition systems and other sparking devieres. Sperial mothods of deteetion are required to aecomplish this result. Since most amateur receivers do not incorporate the proper circuits, the noise-reducing properties of FM or PNI reception are seldom realized in amateur work.

Modulation methods for FM and PMI are simple and require practioally no audio power. There is also the advantage that, since there is no amplitude variation in the signal, interference to broadeast peception of the type resulting from rectifieation in the audio cercuits of the b.e. receiver is substantiatly eliminated. These two points represent the principal reasons for the use of FM and PM in amateur work. I'nfortunately, the user of $F M$ or $P^{\prime} M$ is unable to get the benefit of the inherent noise-reducing advantages of the system, and is furthermore at a considerable disadvantage with respect to AMI of the same power, because most of his communication will be with amatrurs using receivers designed specifically for A.M.

Frequency Modulation

Fig. 11-1 is a representation of frequency morlulation. When a modulating signal is applied, the carrier frequency is increased during onc half-cyele of the modulating signal and deereased during the half-e yele of opposite polarity. This is indicated in the drawing by the fact that the r.f. cyeles occupe less time (higher frequency) when the modulating signal is positive, and more time (lower frequency) when the modulating signal is negative. The change in the carrier frequeney (frequency deviation) is proportional to the in-
stanteneous amplitude of the modulating signal, so the deviation is small when the instantaneous amplitude of the modulating signal is small, and is greatest when the modulating signal reaches its peak, either positive or negative. That is, the frequeney deviation follows the instantaneous changes in the amplitude of the modulating signal.

As shown by the drawing, the amplitude of the signal doos not change during modulation.

Phase Modulation

To understand the difference between F.M and PM it is necessary to appreciate that the frequener of an alternating current is determined by the rate at which its phase changes.

If the phase of the current in a circuit is changed there is an instantancous frequeney change during the time that the phase is being shifted. The amount of frequeney change, or deviation, depends on how rapidly the phase shift is accomplished. It is also dependent upon the total amount of the phase shift. In a properlyoperating P'M system the amount of phase shift is proportional to the instantaneous amplitude: of the modulating signal. The rapidity of the phase shift is directly proportional to the frequency of the modulating signal. Consequently, the frequence deviation in I'M is proportional to both the amplitude and frequency of the modulating sigmal. The latter represents the outstanding difference between PM and PM, since in FiM
(A)

(C)

Fip. 11-1-Graphical representation of frequency modulation. In the unmodulated carrier at A. each r.f. cycle occupies the same amount of time. When the modulating signal, B, is applied, the radio frequency is increased and lecreased according to the amplitude and polarity of the modulating signal.
the frequency deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

l'ercentage of modulation in PM and PM has to be defined differently than for AM. Practically, " 100 per cent modulation" is reached when the transmitted signal occupies a channel just equal to the bandwidth for which the receiver is designed. If the frequency deviation is greater than the receiver can aceept, the receiver distorts the signal. However, on another receiver designed for a different bandwidth the same signal might he equivalent to only 25 per cent modulation.

In amateur work "narrow-band" FM or PM (frequently abbreviated NFM) is defined as having the same channel width as a properlymodulated AM signal. That is, the chamel width does not exceed twice the highest audio frequeney in the modulating signal. NFM transmissions based on an upper audio limit of 3000 cycles therefore should oceupy a chamel no wider that 6 kc .

$F M$ and PM Sidebands

The sidebands set up by FM and PM differ from those resulting from .1 .1 in that they occur at integral multiples of the modulating frequeney on either side of the carrier rathor than, as in AM, consisting of a single set of side frefuemies for each modulating freguency. In F.M or P'M signal therefore inherently oorupies a wider channel than A.M.

The number of "extra" sidebands that occur in FM and PM depends on the relationship between the modulating frequency and the frequener deviation. The ratio betwern the frequency deviation, in eveles per second, and the modulating frequency, also in cyeles per second, is called the modulation index. That is,
Mobulution index $=\frac{\text { Corrier frequency deviation }}{\text { Molulating frequency }}$
Example; The maximum frequency deviation in an Fral transmitter is 3000 eycless either side of the carrier frequencs. The modulation index when the modulating frequency is 1000 cyeless is

$$
\text { Modulation index }=\frac{3000}{1000}=3
$$

At the same deviation with 3000 -cycle modulation the index would be 1 ; at 100 cyeles it would be 30 , and so on.
In PM the modulation index is constant regardless of the modulating freguency: in FMI it varies with the modulating frequener, as shown in the previous example. In an lill system the ratio of the maximum carrier-frequency deviation to the highest modulating frequency used is ealled the deviation ratio.
lig. 11-2 shows how the amplitudes of the carrier and the various sidebands vary with the modulation index. This is for single-tone modulation; the first sideband cactually a pair, one above and one below the carrier) is displaced from the

Fig. 11-2 - How the amplitude of the pairs of sidehands varies with the modulation index in an Fll or P'M signal. If the curves were extembed for greater valan of mothation index it wonld he seen that the carrier amplitule goes through zero at several prints. The same statement also applies to the sidebands.
carrier by an amount equal to the modulating frequeney, the scoond is twice the modulating frequency away from the carrier, and so on. For example, if the molulating frequeney is 2000 reveles and the carrier frequency is 29,500 ke, the first sidehand pair is at $29,498 \mathrm{ke}$, and $29,502 \mathrm{kc}$, the second pair is at $29,496 \mathrm{kc}$. and $29,50+\mathrm{kc}$., the third at $29,494 \mathrm{kc}$, and $29,506 \mathrm{ke} .$, rete. The amplitudes of these sidebands depend on the modulation index, not on the frequeney deviation. In AM, regardless of the percentage of modulat tion (so long as it does not exceed 100 per cent) the sidebands would appear ouly at 29,498 and $29,50: \mathrm{ke}$. under the same conditions.

Note that, as shown by Fig. 11-2, the carrier strength varies with the modulation index. (In amplitude modulation the carrier strength is constant; only the sidehand amplitude varies.) It a modulation index of approximately 2.4 the carrier disappoars entircly. It then beoomes "negative" at a higher index, meaning that its phase is reversed as compared to the phase without moduation. In FM and IPM the energy that goes into the sidebands is taken from the carrier the total power remaining the same regardless of the modulation index.

Frequency Multiplication

since there is no change in amplitude with modulation, an F.M or P'M signal can be amplified by an ordinary Class (amplifier without distortion. The modulation (an take place in a very low-level stage and the signal can then be amplified by either frequency multipliers or straight amplifiers.

If the modulated signal is passed through one or more frequency multipliers, the modulation index is multiplied by the same factor that the carrier frequency is multiplied. For example, if modulation is applied on 3.5 Me. and the final output is on 28 . Ie, the total frequency multiplication is 8 times, so if the frecueney deviation is 500 eveles at 3.5 Me, it will be 1000 cycles at 28 Mo. I'requenery multiplication offers a means for obtaining practically any desired amount of frequeney deviation, whether or not the modulator itself is capable of giving that much deviation without distortion.

Narrow-Band FM and PM

"Narrow-hand" FM or PM, the only type that is authorized for use on the lower frequencies where the 'phone hands are crowded, is defined ats FM or PM that does not occups a wider chamnel than an AN1 signal having the same adudio modulating frequencies. Narrow-hand operation requires using a relatively small modulation index.

If the modulation index (with single-tone modulation) does not exceed about 0.6 the most important extra sideband, the serond, will be at least 20 d , below the ummodulated carrior level, and this should represent an rfferetive channel width about equivalent to that of an AM signal. In the case of speech, a somewhat higher modulation index can be used. This is because the energy distribution in a complex wave is such that the modulation index for any one frequency romponent is reduced, as compared to the index with a sine wave having the same peak amplitude as the voire wave.

The ehicf advantage of narrow-band FM or PM for frequencies below 30 . Me. is that it climinates or reduces certain types of interferencer to broadeast reception. Also, the modulating equipment is rolatively simple and inexpensive. However, assuming the same unmodulated carrier power in all cases, narrow-hand FM or PM is not as efferetive as $I M$ with the methods of reception used by most amateurs. As shown by Fig. 11-2, at an index of 0.6 the amplitude of the first sideband is about 25 per cent of the un-modulated-carrier amplitude: this compares with a sidehand amplitude of 50 per enent in the rase of a 100 per cent modulated 1.1 I transmitter. That is, so far as effectiveness is concerned, a nar-row-hand F.M or PM transmitter is about equivalent to a 100 per cent modulated A.M transmitter operating at one-fourth the carrier power.

Comparison of FM and PM

Frequency modulation camot be applied to an amplifier stage, but phase modulation can. PM is therefore readily adaptable to transmitters
emploving oscillators of high stability such as the crystal-controlled type. "The amount of phase shift that can be ohtained with good lincarity is such that the maximum practicable modulation index is about 0.5. Berause the phatse shift is proportional to the modulating frequener: this index can be used only at the highest frequency present in the modulating signal, assuming that all frecuencios will at one time or another have equal amplitudes. Taking 3000 ereles as a suitable upper limit for voicr work, and setting the modulation imbex at 0.5 for 3000 ceveles, the fregueney response of the speesth-amplifier system above 3000 (eyples must be sharply attenuated, to prevent sidehand splatter. Also, if the "timn.". quality of PM as rereived on an FM receriver is to be avoided, the Ple must be changed to $\mathrm{F} M$, in which the modulation index derreases in inverse proportion to the modulating froqueners. This requires shaping the speeethamplifier frequener-response rurve in such a way that the output voltage is inversely proportional to frequenery over most of the voier range. When this is done the maximum modulation index can only be used at some relatively low atadio frequeney, perhaps 300 to 400 cyelos in voice transmission, and must deerease in proportion to the increase in frequenc. The result is that the maximum linear frequency deviation is only one or two hundred cerles, when PM is changed to FM. To increase the deviation for NFM requires a frequener multiplisation of 8 times or more.

It is relatively masy to secure a fairly large frequency deviation when a self-controlled osrillator is frequencemodulated dirertly. ('True frequencer morlulation of a crystal-controlled oscillator results in only very small deviations and so requires a great deab of frequenes multiplication.) The chief problem is to maintain a satisfactors degree of carrier stability, since the greater the inherent stability of the oscillator the more difficult it is to soccure a wide frequency swing with lincarity.

Methods of Frequency and Phase Modulation

FREQUENCY MODULATION

The simplest and most satisfactory device for amateur FM is the reactance modulator. This is a varcuum tube conmerted to the r.f. tank cirruit of an oscillator in such a way as to act as a variable inductance or eapacitance.

Fig. 11-3 is a representative cirruit. The control grid of the modulator tube, $1 /$, is connected aross the oseillator tank circuit, ('1 L_{4}, through resistor R_{1} and blocking condenser (${ }_{2}$. C_{8} represents the input caparitance of the modulator tube. The resistance of R_{1} is made large compared to the reactance of C_{8}, so the r.f. current through $R_{1} c_{8}$ will be practically in phase with the r.f. voltage appearing at the terminals of the tank circuit. However, the voltage across C_{8}
will lag the current by 90 degrees. The r.f. current in the plate circuit of the molulator will be in phase with the grid voltage, and consequently is 90 degrese behind the current through (x, or 90 degrees behind the r.f. tank voltage. This lagging current is drawn through the oscillator tank, giving the same effect as though an inductance were connected across the tank. The frequeney increases in proportion to the amplitude of the lagging plate current of the modulator. The audio voltage, introduced through a radio-frequency choke, RFC, varies the transcondurtance of the tube and thereby varies the r.f. plate current.

The modulated osillator usually is operated on a relatively low frequeney, so that a high order of earrier stability can be secured. Frequency

Fig. 11.3 - Heactance modulator using a high-trans. condintance pentode (6isi:- 6.A(37, etr.).
$\mathrm{C}_{1}-$ R.f. tank rapacitance (-ee text).
C $2, \mathrm{C}_{3}-0.001-\mu \mathrm{f}$. mica.

C7-10 $-\frac{1}{}$ f. electrolytie.
(is - lube input capacitance (see text).
$\mathrm{R}_{1}-47,000$ ohms.
$1 \mathrm{I}_{2}-0.17$ megohm.
R_{3} - Screen dropping resistor; aclert to give proper acreen voltage on type of modulator tube used. R_{4} - Cathode bias resistor: select as in case of R_{3}. L_{1} - R.f. tanh inductance.
$1 \mathrm{RFC}-2.5-\mathrm{mh}$. r.f. choke.
multipliers are used to raise the frequency to the final frequency desired. The frequency deviation increases with the number of times the initial frequeney is multiplied: for instance, if the oscillator is operated on 6.5 Me. and the output frequency is to be 52 Mc ., an owillator frequency deviation of 1000 e ercles will be raised to 8000 cycles at the output frequency.

A reastance modulator can be connected to a erystal oseillator as well as to the selfecontrolled type. However, the resulting signal is more phasemorlulated than it is frequency-morlulated, for the reason that the frequency deviation that can be secured by varying the tuning of a crystal oscillator is quite small.

Design Considerations

The sensitivity of the modulator (frequency change per unit change ingrid voltage) depends on the transoonductance of the modulator tube. It increases when R_{1} is made smaller in comparison with ("8. It also increases with an increase in $L /$ (" ratio in the oscillator tank circuit. Since the carrier stability of the oscillator depends on the $L /($ ' ratio, it is desiratble to use the highest tank eapacitance that will permit the desired deviation to be secured while keeping within the limits of linear operation.

A change in any of the voltages on the modulator tube will cause a change in r.f. plate current, and consequently a frequency change. Therefore it is advisable to use a regulated plate power supply for both modulator and oscillator. At the low voltages used (250 volts) the required stabilization cam be secured by means of gaseous regulator tubes.

Speech Amplification

The speeeh amplifier preeeding the modulator follows ordinary design, except that no power is required from it and the a.f. voltage taken by the
modulator grid usually is small - not more than 10 or 15 volts, even with large morlulator tubes. Because of these modest requirements, only a few speeeh stages are needed; a two-stage amplifier consisting of a pentode followed by a triode, both resistance-coupled, will more than suffice for erystal microphones.

- PHASE MODULATION

The same type of reactance-tube cireuit that is used to vary the tuning of the oscillator tank in FM can be used to vary the tuning of an amplifier tank and thus vary the phase of the tank current for PM. Hence the modulator cireuit of Fig. 11-3 can be used for l'MI if the reactance tube works on an amplifier tank instead of directly on a self-controlled oscillator.

The phase shift that occurs when a circuit is detuned from resonance depends on the amount of detuning and the Q of the circuit. The higher the (Q, the smaller the amount of dotuning needed to secure a given number of degrees of phase shift If the Q is at least 10 , the relationship letween phase shift and detuning (in kilocyoles cither side of the resonant frequency) will ine substantially linear over a phase-shift range of about 2.5 degrees. From the stampoint of modulator sensitivity, the Q of the tuned circuit on which the modulator operates should be as high as possible. (On the other hand, the effeetive () of the circuit will not be very high if the amplifier is delivering power to a load since the load resistance reduces the (Q. There must therefore be a compromise between modulator sensstivity and r.f. power output from the modulated amplifier. An optimum figure for Q appears to be about 20; this allows reasonable loading of the modulated amplifier and the necessary funing variation can be secured from a reactance modulator without difficulty. It is advisable to modulate at a very low power level - preferably in a stage where readiving-type tubes are used.

Reartance modulation of an amplifier stage usually also results in simultaneous amplitude modulation because the modulated stage is detuned from resonauce as the phase is shifted. This must be eliminated by feeding the modulated signal through an amplitude limiter or one or more "saturating" stages - that is, amplifiers that are operated Class C and driven hard enough so that variations in the amplitude of the grid excitation produce no appreciable variations in the final output amplitude.

For the same type of reactance modulator, the speech-amplifier gain required is the same for PMI as for F.M. However, as pointed out earlier, the fact that the actual frequeney deviation inereases with the modulating audio frequency in PM makes it necessary to cut off the frequencies above ahout 3000 cyeles before modulation takes place. If this is not done, unnecessary sidebands will be generated at frequencies considerably away from the earrier.

Checking FM and PM Transmitters

Accurate checking of the operation of an FMI or PM transmitter requires different methods than the corresponding checks on an A 11 set. This is because the common forms of measuring devices either indicate amplitude variations only (a d.c. milliammeter, for example), or because their indications are most easily interpreted in terms of amplitudc. There is no simple measuring instrument that indicates frequency deviation in a modulated signal dircetly.

However, there is one favorable feature in FM or I'M checking. The modulation takes place at a very low level and the stages following the one that is modulated do not affect the linearity of modulation so long as they are properly tuned. Therefore the modulation may be checked without putting the transmitter on the air, or even on a dummy antenna. The power is simply eut off the amplifiers following the modulated stage. This not only avoids unnecessary interference to other stations during testing periods, but also kecps the sigual at such a

Fig. H-f-1).c. method of checking freduency deviation of a reactance-tule-modulated oseillator. a 500 or 1000 -ohm potentiometer may the med at R.
low level that it may he ohserved quite easily on the station receiver. A good receiver with a crystal filter is an essential part of the ehecking equipment of an FM or PM transmitter, particularly for narrow-hand FM or PM.

The quantitics to be checked in an FM or I'M transmitter are the linearity and frequeney deviation. Because of the essential difference between FM and PM the methods of checking differ in detail.

Reactance-Tube FM

It was explained earlier that in F I the frequeney deviation is the same at any audio modulation frequeney if the andio signal amplitude does not vary. Since this is true at any audio frequency it is true at zero frequency. Consequently it is possible to calibrate a reactance modulator by applying an adjustable d.c. voltage to the modulator grid and noting the change in oscillator frequency as the voltage is varied. A suitable circuit for applying the adjustable voltage is shown in I"ig. 11-4. The battery, B, should have a voltage of 3 to (volts (two or more dry cells in series). The arrows indicate elip conncetions so that the battery polarity a a be reversed.

The oscillator frequency deviation should be measured by using a receiver in conjunction with an accurately-calibrated frequency meter,
or by any means that will permit accurate measurement of frequeney differences of a few hundred cycles. One simple method is to tune in the oscillator on the receiver (disconnecting the receiving antcma, if necessary, to kcep the signal strength well below the overload point) and then set the receiver b.f.o. to zero beat. Then increasc the d.c. voltage applied to the modulator grid from zero in steps of about $1 / 2$ volt and note the beat frequency at each change. Then reverse the battery terminals and repeat. The frequency of the beat note may be measured by comparison with a calibrated audio-frequency oscillator. Note that with the battery polarity positive with respect to ground the radio frequency will move in one direction when the voltage is increased, and in the other direction when the battery terminals are reversed. When several readings have been taken a curve may be plotted to demonstrate the relationship between grid voltage and frequency deviation.

A sample curve is shown in Fig. 11-5. The usable portion of the curve is the center part which is essentially a straight line. The bending at the ends indicates that the modulator is no longer lincar; this departure from linearity will cause harmonic distortion and will broaden the chamel occupied by the signal. In the example, the characteristic is lincar 1.5 kc . on either side of the center or carrier frequency. This is the maximum deviation permissible at the frequency at which the measurement is made. At the final output frequency the deviation will be multiplied by the same number of times that the measurement frequency is multiplied. This must be kept in mind when the cheok is made at a frequency that differs from the output frequency.

A good modulation indicator is a "magiceye" tube such as the GEE. This should be conneeted across the grid resistor of the reactance modulator as shown in Fig. 11-f Note its deflection (using the d.c. voltage method as in Fig. 11-4) at the maximum deviation to be used. This deflection rejpesents " 100 per cent

Fig. 1/-5- A typical curve of frequeney deviation us. modulator grid voltage.
modulation" and with speech input the gain should be kept at the point where it is just reached on voice peaks. If the thansmitter is used on more than one band, the gain control should be marked at the proper setting for each band, because the signal amplitude that gives the correct deviation on one hand will be either too great or too smatl on another. For narrow-band FM the proper deviation is approximately 2000 cycles (based on an upper a.f. limit of 3000 cycles and a deviation ratio of 0.7) at the final output frequency. If the output frequency is in the $29-\mathrm{Mc}$. band and the uscillator is on 7 Mc ., the deviation at the oscillator frequency should not exceed 2000/4, or 500 cycles.

Checking with a Crystal-Filter Receiver

With l'M the d.c. method of checking just deseribed cannot be used, because the frequency deviation at zerofrequency also is zero. For narrow-band $\mathbf{1}^{2} \mathrm{M}$ it is necessary to check the actual width of the chanmel occupied by the transmission. (The same method also can be used to check FM.) For this purpose it is necessary to have a crystal-filter receiver and an a.f. oscillator that generates a 3000 -cycle sine wave.

Fif. 1/-6-6F.5 momlalation indicator for $\mathfrak{F} M$ or PM modulators. 'T'o insure sufficient grid voltage for a good defleretion, it may he meeessary to eonnect the pain comed in the molalator grid circuit rather than in an earlier specth-amplifier stage.

Keeping the signal intensity in the receiver at a medium level, tune in the carrier at the output frequency. Do not use the a.v.c. switch on the beat oscillator, and set the crystal filter at its sharpest position. l'eak the signal on the crystal and adjust the b.f.o. for any convenient beat note. Then apply the 3000 -cycle tone to the speech amplifier (through an attenuator, if necessary, to avoid overtoading; see chapter on audio amplifiers) and increase the audio gain until there is a small amount of modulation. Tuning the receiver near the carrier frequency will show the presence of sidebands 3 kc . from the carrier on both sides. With low audio input, these two should be the only sidebands detectable.

Now increase the audio gain and tune the receiver over a range of about 10 kc . on both sides of the carrier. When the gain becomes high enough, a second set of sidebands spaced 6 ke . on either side of the carrier will be detected. The signal amplitude at which these sidehands become detectable is the maximum speech am-
plitude that should be used. If the 6E5 modulation indicator is incorporated in the modulator, its deflection with the 3000 -cycle tone will be the " 100 per cent modulation" deflection for speech.

When this method of checking is used with a reactance-tube-modulated FM (not PM) transmitter, the linearity of the system can be checked by observing the carrier as the a.f. gain is slowly increased. The beat-note frequency will stay constant so long as the modulator is linear, but nonlinearity will be accompanied by a shift in the average carrier frequency that will eause the beat note to change in frequency. If such a shift occurs at the same time that the 6 -ke. sidebands appear, the extra sidebands may be caused by modulator distortion rather than by an excessive modulation index. This means that the modulator is not capable of shifting the frequency over a wideenough range. The 6-kc. sidebands should appear before there is any shift in the carrier frequeney.

R.F. Amplifiers

The r.f. stages in the transmitter that follow the modulated stage may be designed and adjusted as in ordinary operation. In fact, there are no special requirements to be met except that all tank circuits should be carefuly tuned to resonance (to prevent unwanted r.f. phase shifts that might interact with the modulation and thereby introduce hum, noise and distortion). In neatralized stages, the neutralization should be as exact as possible, also to minimize unwanted phase shifts. With FM and P'M, all r.f. stages in the transmitter can be operated at the manufacturers maximum c.w.-telegraphy ratings, since the average power input does not vary with modulation as it does in AM 'phone operation.

The output of the transmitter should be checked for amplitude modulation by observing the antemna current. It should not change from the unmodulated-carrier value when the transmitter is modulated. If there is no antemna ammeter in the transmitter, a flashlight lamp and loop can be coupled to the final tank coil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

Amplitude modulation accompanying FM or $l^{\prime} M$ is just as much to be avoided as frequency or phase modulation that accumpanies AM. A mixture of A.I with either of the other two systems results in the generation of spurious sidebands and consequent widening of the channel. If the presence of AM is indicated by variation of antenna current with modulation, the cause is almost certain to be nonlinearity in the modulat or. In very wide-band F.II the selectivity of the transmitter tank circuits may cause the amplitude to decrease at high deviations, but this condition is not likely to occur on amateur frequencies at which wide-band $\mathbf{F M}$ would be used.

Single Sideband

The most significant development in amateur radiotelephony in the past soveral pars has been the increased use of single-sideband suppressedcarrier transmissions. This system has tremendous potentialities for increasing the effertiveness of 'phone transmission and for reducing interference. Because oniy one of the two sidebands normally produced in modulation is transmitted, the channel width is immediately eut in half. However. when only one sideband is transmitted, the carrier - which is essential in double-sideband transmission - no longer is necessary; it can be supplied without too much diffieulty at the receiver. With the carrier eliminated there is a great saving in power at the transmiter - or, from another viewpoint, a great increase in effective power output. Assuming that the same finalamplifior tube or tubes are used cither for normal AMI or for single-sideband, carrier suppressed, it can be shown that the use of SSill can give an effective gain of up to 9 db , over AN - equivalent to increasing the transmitter power 8 times. Eliminating the carrior also eliminates the heterodye interferener that wrecks so much communication in congested phone bands.

- SUPPRESSING THE CARRIER

The carrier can be suppressed or neatly diminated by an extremely sharp filtor or by using a balanced modulator. The basic principle in any balaneed modulator is to introduce the carrier in such a way that it does not appear in the output but so that the sidebands will. This requirement is satisfied by introducing the audio in push-pull and the r.f. drive in parallel, and eonmerting the output (plater circuit) of the tuber in push-pull, as shown in Fig. 12-1A. Balanced modnators can also be conneeted with the r.f. drive and audio inputs in push-pull and the ontput in parallel (Fig. 12-113) with equal efferetivemess. The choiee of a balaneed modulator circuit is generally determined by constructional consiterations and the method of modulation proferred by the buider. Screen-grid modulation is shown in the examples in Fig. 12-1, but control-grid or plate modulation can be used equally as well. Batancodmodulator circuits using four rectifiers (germanium, copper oxide, or thermionic) in "hridge" or "ring" circuits are often used, particularly in commercial applications. Two-rectifier circuits are also available, and they are widely used in amateur sish equipment. Fxamples of rectifiertype balanced modulators are shown in lig. 12-2.

In any of the vacuum-tube cireuits, there will be no output with no audio signal berause the coircuits are balanced. The signal from one tube is
balanced or cancelled in the output cireuit by the signal from the other tube. The cireuits are thus balaned for any value of parallel audio signal. When push-pull audio is applied, the modulating voltages are of opposite polarity, and one tube

Fig. 12.1 - Two examples of balanced-modulator cir. cuits using sereen-grid modulation. In A the r.f. excitation is in parallel in both tulnes, and the andio and ont. put are in push-pull. In B the evcitation and andio are itn push-pull, the ontput is in parallel. In either case, the carrier frequency, f, does not appear in the output eircuit - only the two sideband frequencies, $f+F$ and $f-f$, will appear. The hias fed to the screens is a practical requirement with all sereen-grid tubes for proper linear operation, and is not a special requirement of balaneed modulators.
will condure more than the other. Since any modulation process is the same as "mixing" in receivers, sum and difference frequencies (sidebands) will be genorated. The modulator is not balaneed for the sidebands, and they will appear in the output.

The amount of carrier suppression is dependent upon the matching of the two tubes and their associated circuits. Normally two tubes of the same type will balance closely enough to give at

Fik. 12-2- I'ypical rectifier-type halanced modulators.

The circuit at i is called a "bridge" halaneod modulator and has been widely used in commereial work.

The halanced modulator at 13 is shown with eomstants suitable for operation at 5.50 ke . It is useful for working into a crystal bandpass filter. T_{1} is a transformer designed to work from the audio source intor a 600 -ohan load, antl T_{2} is an ordinary i.f. transfurmer with the trimmer reconneeted in series with a $0.001-\mu \mathrm{fl}$. comenser, for impedancrematching purposes from the moflulator. The rondenser C is for carrier halance and may be found unneeessary insome instanees - it should be tried eomnected on either side of the sarrier input cirenit and used where it is more effectiva. The $2 \overline{5} 0$-ohm polentiometer is normally all that is refuired for carrier balance. "The carrier input should be sufficient to develop acveral volts across the resistor string.

The balaneed modulator cireuit at C is shown with eonstants suitable for operation at 3.9 Ne. T_{3} is a small step-down output Iransformer (1 " $]^{\prime} \mathrm{C}$ R-38A), shunt-fed to eliminate d.c. from the windings. $I .1$ can lee a small coupling call wound on the "edd" end of the earrier-oscillator tank coil, with suflicient coupling to give two or three volts of r.f. across its output. $/ 2$ is a slug-tuned coil that resonates to the carrier frequeney with the effective $0.001 \mu \mathrm{fd}$. across it. The lootoohm potentiometer is for rarrier babance.

least 150 or 20 db . carrier suppression without any adjusturent. If further suppression is required, trimmer condensers to balance the grid-plate eapacities and separate bias adjustments for setting the operating points ean be used.

In the rectifier-type balaned modulators shown in Fig. 12-2, the diode rectifiars are connected in such a manner that, if they have equal forward resistances, no r.f. can pass from the carrier source to the output circuit via cither of the two possible paths. The net effect is that no r.f. energy appears in the output. When audio is applied, it unbalances the rireuit by biasing the diode (or diodes) in one path, depending upon the instantaneous polarity of the audio, and hence some r.f. will appear in the output. The r.f. in the output will appear as a double-sideband suppressedcarrier sigual. (For a more eomplete description of diode-modulator operation, see "Diode Modulators," ($2 S^{\prime} T$, April, 1953, page 39.)

In any diode modulator, the r.f. voltage should be at least 6 or 8 times the peak audio voltage for minimum distortion. The usuad operation involves a fraction of a volt of audio and several volts of r.f. The diodes shoukd be matched as closely as possible - ohmmeter measurements of their forward resistances is the usual test.
(The circuit of Fig. 12-213 is deseribed more fully in Weaver and Brown, "Crystal Lattice Filters for Trunsmitting and Receiving," QST, August, 1951. The circuit of Fig. 12-2C is suitable for use in a double-balanced-modulator cireuit and is so described in "SSBZ, Jr.," General E'lectric Ham News, Neptember, 1950.)

SINGLE-SIDEBAND GENERATORS

Two basie systems for generating SSi3 signals are shown in Fig. 12-3. One involves the use of a bandpass filter having suffieient selectivity to pass one sidebatid and rejoet the other. Filters having such eharacteristies can only be constructed for relatively low freguencies, and most filters used by amateurs are designed to work somewhere between 10 and 20 kc . (Good sideband fittering can be done at frequencies as high as 500 ke. by using multiple-crystal or electromerhanical filters. The low-frequency oscillator output is combined with the audio output of a speech amplifier in a balanced modulator, and only the upper and lower sidebands appear in the output. One of the sidebands is passed by the filter and the other rejected, so that an Sisis signal is fel to the mixer. The signal is there mixed with the output of a high-frequency r.f. ostillator to produee the desired output frequency. For additional amplification a linear r.f. amplifier (Class A or Class 13) must he used. When the SSB signal is generated at 10 or 20 ke., it is generally first heterodyned to somewhere around 500 ke . and then to the operating frequency. This simplifies the problem of rejecting the "image" frequencies resulting from the heterodyne process. The prohlem of image frequencies in the frequeney conversions of SSB signals differs from the problem in receivers because the beating-oscillator frequeney becomes important. Fither halaneed modulators or sufficient solectivity must be used to attenuate these frequencies in the output and henee mini-
mize the possibility of unwanted radiations.
The second system is based on the phase relationships between the carrier and sidebands in a modulated signal. As shown in the diagram, the audio signal is split into two components that are identical except for a phase difference of 90 degrees. The output of the r.f. oscillator (which may be at the operating frequency, if desired) is likewise split into two separate components having a 90 -degree phase difference. One r.f. and one audio component are combined in each of two soparate balanced modulators. The carrier is suppressed in

Fig, 12-3-Two basic systems for generating singlesidehand suppressed-tarrier signals.
the modulators, and the relative phases of the sidebands are such that one sideband is balanced out and the other is accentuated in the combined output. If the output from the balaneed modulators is high enough, such an SSB exciter can work directly into the antenna, or the power level can be increased in a following amplifier.
l'roperly adjusted, cither system is capable of good results. Arguments in favor of the filter system are that it is somewhat easier to adjust without an oscilloscope, since it reguires only a receiver and a v.t.v.m. for alignment, and it is more likely to remain in adjust ment over a long period of time. The chiof argument against it, from the amateur viewpoint, is that it requires quite a few stages and at least one frequency conversion after modulation. The phasing system requires fewer stages and can be designed to require no frequency conversion, but its alignment and adjustment are often considered to be a little "trickier" than that of the filter system. This probably stems from lack of fumiliarity with the system rather than any actual difficulty, and now that commercially-available preadjusted audio-phatsing networks are availahle, most of the alignment difficulty has been eliminated. In most cases the phasing system will cost less to apply to an existing transmitter.

Regardless of the method used to generate a SSB signal of 5 or 10 watts, the minimum cost
will be found to be higher than for an AM transmitter of the same low power. However, as the power level is increased, the SSl3 transmittor becomes more economical than the AM rig, both initially and from an operating standpoint.

AMPLIFICATION OF SSB SIGNALS

When an SSils signal is generated at some frequency other than the operating frequency, it is necessary to change frequency by heterodyne methods. These are exactly the same as those used in receivers, and any of the normal mixer or converter circuits can be used. One exception to this is the case where the original signal and the heterodyring oscillator are not too different in frequency (as when heterodyning a $20-\mathrm{kc}$. signal to 500 ke .) and, in this case, a balanced mixer should be used, to eliminate the heterodyning oscillator frequency in the output.

To increase the power level of an SSB signal, a linear amplifier must be used. The simplest form of linear amplifier (r.f. or audio) is the Class A amplifier, which is used almost without exception throughout receivers and low-level speech equipment. While its lincarity can be made relatively good, it is inefficient. The theoretical limit of efficiency is 50 per cent, and most practical amplifiers run $25-3 \overline{5}$ per cent efficient at full output. At low levels this is not worth worrying about, but when the 2 - to 10 -watt level is exreded something else must be done to improve this efficiency and reduce tube, powersupply and operating costs.
(lass AB3 amplifiers make excellent lincar amplifiers if suitable tubes are selected. Primary advantages of Class $A B_{1}$ amplifiers are that they give much greater output than straight Class a amplifiers using the same tubes, and ther do not require any grid driving power (no grid current drawn at any time). Although triodes can be used for Class $A B_{1}$ operation, tetrodes or pentodes are usually to be preferred, since Class $A B_{1}$ operation requires high peak plate current without grid current, and this is easier to obtain in tetrodes and pentodes than in most triodes.

To oltain maximum output from tetrodes, pentodes and most triodes, it is neeessary to operate them in Class Al_{2}. Although this produces maximum peak output, it increases the drivingpower requirements and, what is more important, requires that the driver regulation (ability to maintain waveform under varying load) be good or excellent. The usual method to improve the driver regulation is to add fixed resistors across the grid circuit of the driven stage, to offer a load to the driver that is modified only slightly by the additional load of the tube when it is driven into the grid-current region. This increases the driver's output-power requirements. Further, it is desirable to make the grid circuit of the Class AB_{2} stage a high- C circuit, to improve regulation and simplify coupling to the driver. A "stiff" hias source is also required, since it is important that the bias remain constant, whether or not grid current is drawn.

Class B amplifiers are theoretically capabte of 78.5 per cent efficiency at full output, and practical amplifiers run at $60-70$ per cent efficiency at full output. Tubes normally designed for Class B audio work can be used in r.f. linear amplifiers and will operate at the same power rating and efficiency provided, of course, that the tube is capable of operation at the radio frequency. The operating conditions for r.f. are substantially the stime as for audio work - the only difference is that the input and output transformers are replaced by suitable r.f. tank circuits. Further, in r.f. circuits it is readily possible to operate only one tube if only half the power is wanted - pushpull is not a necessity in Chass I r.f. work. llowever, the r.f. harmonies may be higher in the case of the single-ended amplifier, and this should be taken into consideration if TVI is a problem.
For proper operation of Class 13 amplifiers, and to reduce harmonics and facilitate coupling, the input and output circuits should not have a low C-to- L ratio. A good guide to the proper size of tuning condenser will be found in Chapter Six; in case of any doubt, it is well to be on the highcapacity side. If zero-bias tubes are used in the Class B stage, it may not be necessary to add much "swamping" resistance across the grid cireuit, because the grids of the tubes load the circuit at all times. However, with other tubes that require bias, the swamping resistor should be such that it dissipates from five to ten times the power required by the grids of the tules. This will insure an almost constant load on the driver stage and good regulation of the grid voltage of the Class B stage.

Before going into detail on the adjustment and loading of the linear amplifier, a few general considerations should be kept in mind. If proper operation is expected, it is essential that the amplifier be so constructed, wired and neutralized that no trace of regeneration or parasitic instability remains. Needless to say, this also applies to the stages driving it.

The bias supply to the Class IB linear amplifier should be quite stiff, such as batteries or some form of voltage regulator. If nonlinearity is noticed when testing the unit, the bias supply may be checked by means of a large electrolytic capacitor. Simply shunt the supply with $100 \mu \mathrm{fd}$. or so of capacity and see if the linearity improves. If so, robuild the bias supply for better regulation. Do not rely on a large contenser alone.
Where tetrodes or pentodes are used, the screen supply should have good regulation and its voltage should remain constant under the varying current demands. If the maximum sereen current does not exceed 30 or 35 ma., a string of V'R tubes in series can be used to regulate the screen voltage. If the current demand is higher, it may be neecssary to use an electronically-regulated power supply or a heavily-bled power supply with a eurrent capacity of several times the current demand of the screen circuit.
Where VR tubes are used to regulate the screen supply, they should be selected to give a
regulated voltage as close as possible to the tube's rated voltage, but it does not have to be exact. Minor differences in idling plate current can be made up by readjusting the grid bias.

From the standpoint of ease of adjustment and availability of proper operating voltages, a linear amplifier with Class $A 3_{1}$ tetrodes or pentodes or one with zero-bias Class 13 triodes would be first choice. The Class B amplifier would require more driving power. (For examples of Class AB_{1} tetrode amplificrs, sec Russ, "The 'Little Firecracker' Linear Amplifier," QS'T, september, 19533, and Ferkhardt, "The single Side-Saddle Linear," QST, November, 1953.)
Table 12-1 lists a few of the more popular tubes commonly used for SSIS linear-amplifier operation. Fxcept where otherwise noted, these ratings are those given by the manufacturer for audio work and and as such are based on a sine-wave signal. These ratings are adequate ones for use in SS13 amplifier design, but they are conservative for such work and hence do not necessarily represent the maximum powers that can be obtained from the tubes in voice-signal SSB service. In no case should the average plate dissipation be exceeded for any consilerable length of time, but the nature of a SS13 signal is such that the average plate dissipation of the tube will run well below the peak phate dissipation. Hence in SSB operation the peak plate dissipation may exceed the average by several times.
Getting the most out of a linear amplifier is done by increasing the peak power without exceeding the average plate dissipation over any appreciable length of time. This can be done by raising the plate voltage or the peak current (or both), provided the tule can withstand the increase. For example, the 6146 is shown with 750 volts maximum on the plate, and it is quite likely that this can be increased to 900 or 1000 volts without any appreciable shortening of the life of the tube. Ilowever, the manufacturers have not released any data on such operation, and any extrapolation of the audio ratings is at the risk of the amateur. A $35-$ to 50 -per cent increase above plate-voltage ratings should be perfectly safe in most cases. In a tetrode or pentode, the peak plate current can be boosted some by raising the screen voltage.
When running a linear amplifier at considerably higher than the audio ratings, the "two-tone test signal" (described below) should never be applied at full amplitude for more than a few seconds at any one time. The above statements about working tubes above ratings apply only when a voice signal is used - a prolonged whistle or two-tone test signal may damage the tube.

Adjustment of Amplifiers

The two critical adjustments for obtaining proper operation from the linear amplifier are the plate loading and the grid drive. Since these adjustments are preferably made with power on, it is a matter of convenienee to have both controls readily available during initial tane-up.

The 'seope ean show misadjustment at a glanee and will greatly facilitate all adjustments. In addition, it is the most reliable instrument for observing modulation amplitude and, onee used, is likely to become the most nearly essential instrument in the shack.

With single sideband, 100 per cent modulation with a single tone is a pure r.f. output with no
amplifier to the antenna, the single-sideband operator will do well to cheek the linearity of the system, since distortion in the linear amplifier probably will result in the generation of sidebands on the side that was suppressed in the exeiter. Here again the two-tone test signal will be of great help, since distortion of the signal will be readily recognized. A eheck of the bias supply

Fip. 12-1- Oseillogram of a two-tone test signal through a linear amplifier.

Fig. 12-5-Flattening caused by overdrive or in. sufficient pate loading.

Fig. 12-6-The distorted pattern obtained when the bias voltage is incorrect.
modulation envelope, and the point of amplifier overload is difficult to observe. However, if the input signal consists of two sine waves of different frequencies (for example, 1000 e.p.s. differenee) but equal amplitudes, the output of the singlesideland transmitter should have the envelope shown in Fig. 12-4. This is called a "two-tone" test signal to distinguish it from other test signals. Its first advantage lies in the fact that any flattening of the positive peaks is readily diseernible, which makes the adjustment of the linear-amplifier drive and output eoupling as simple a procedure as that for AM systems. Flattening of the peaks (to be avoided) is illustrated in Fig. 12-5.

Those who use the filter method for obtaining single sideband can obtain such a test signal by feeding a single audio tone to the balanced modulator and jumping the filter. Those using the phasing method of single-sideband signal generation will recognize the pattern as that obtained when a single test tone is applied to one of the balanced modulators. For this latter group a two-tone test signal may be readily obtained by disabling one of the balanced modulators in the exciter and applying a single input tone.

Suppose that the linear amplifier has been eoupled to a dummy load and the single-sideband exeiter has been conneeted to its input. By observing the oscilloscope coupled to the amplifier output, it will be possible to adjust the drive and output coupling so that the peaks of the two-tone test signal waveform are on the verge of flattening. The peak input power may now be checked. This is readily possible, for with the two-tone test signal applied, the peak input power will be 1.57 times the d.e. power input to the linear amplifier. Should this be different from the design value for the partieular linear amplifier, the drive and loading adjustments ean be quiekly changed in the proper direction (always adjusting the loading so that the peaks of the envelope are on the verge of flattening) and the proper value reached.

As a final cheek, before coupling the linear
has already been recommended. The next most likely form of distortion will be caused by curvature of the tube characteristie near cut-off, and will be recognizable from a two-tone test pattern that looks like Fig. 12-6. A slight readjustment of bias (or applying a few volts of positive or negative bias, in the ease of zero-hias tubes) will usually straighten out the kink that exists where the pattern crosses the zero axis. Make this adjustment with special care, however, because the dissipation of the tubes with no input signal will be very sensitive to this adjustment. There are a few tubes that will not permit this adjustment to be carried to the point where the kink is entirely eliminated without exeeeding the rated plate dissipation.

The antenna may now be coupled to the linear amplifier until the plate input with the exeitation as determined above is the same as that ohtained with the dummy load. The system has now been adjusted for optimum performanee, although it is well to monitor it with a 'scope.
(For further reading on linear amplifiers, see Long, "Sugar-Coated Linear-Amplifier Theory," QST, Oetober, 1951, and Ehrlieh, "How To Test and Align a Linear Amplifier," (SST, May, 1952.)

VOICE-CONTROLLED BREAK-IN

Although it is possible for two SSB stations operating on widely different frequeneies to work "duplex" if the earrier suppression is great enough (inadequate carrier suppression would be a violation of the FOC rules), most SSB operators prefer to use voice-controlled break-in and operate on the same frequency. This overcomes any possibility of violating the FCC rules and permits three or more stations to engage in a "round table."

Many various systems of voiee-eontrolled break-in are in use, but they are all basically the same. Some of the audio from the speech amplifier is amplified and rectified, and the resultant d.c.

TABLE 12－1－LINEAR－AMPLIFIER TUBE－OPERATION DATA
Excepl where otherwise noted，ratings are manufaclurers＇for audio operation．Values given are for one lube．Driving powers rapresent lube losses only－circuit losses will increase the figures．

Tube	Class	Plote Voltage	Screen Volitage	D．C．Grid Voltage	Zero－Sig． D．C．Plate Current	Max．．Sig． O．C．Plate Current	Zero－Sig． D．C．Screen Current	Max．Sig． D．C．Screen Current	Peak R．F． Grid Voltoge	Mex． 5 Sig． Avg．Grid Current	Max． Sig．$^{\text {．}}$ Avg．Driving Power	Max．－Rated Screen Dissipation	Max．－Rated Grid Dissipation	Avg．Plote Dissipation	Max．－Sig． Useful Power Outpul
2E26	A_{1}	250	200	－ 14	35	42	7	10	14	－	0	2.5		10	5
	$A B_{2}$	$\begin{array}{r} 400 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 125 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & -\quad 15 \\ & -\quad 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & .2 \\ & .2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \hline 10 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & 27 \\ & \hline \end{aligned}$
6146	$A_{1}{ }_{1}$	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} -50 \\ -50 \\ \hline \end{array}$	$\begin{aligned} & 26 \\ & 29 \end{aligned}$	$\begin{aligned} & 120 \\ & 114 \end{aligned}$	$\begin{aligned} & .6 \\ & .5 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	－	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 47 \\ & 60 \end{aligned}$
	AB_{2}	$\begin{array}{r} 600 \\ 750 \\ \hline \end{array}$	$\begin{array}{r} 185 \\ 165 \\ \hline \end{array}$	-50 -45	$\begin{aligned} & 21 \\ & 18 \end{aligned}$	$\begin{array}{r} 135 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & .5 \\ & .3 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 11 \end{aligned}$	$\begin{array}{r} 57 \\ 51 \\ \hline \end{array}$	$\begin{array}{r} .4 \\ .4 \\ \hline \end{array}$	$\begin{aligned} & .02 \\ & .02 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathbf{3} \\ \mathbf{3} \\ \hline \end{array}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$
$\begin{aligned} & 807 \\ & 1625 \end{aligned}$	$A B_{2}$	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & -\quad 30 \\ & -\quad 32 \end{aligned}$	$\begin{aligned} & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$.4$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 39 \\ & 46 \end{aligned}$		$.1$	$\begin{aligned} & 3.5 \\ & \mathbf{3 . 5} \end{aligned}$		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$
811．A	8	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \end{aligned}$	二	$\begin{aligned} & 0 \\ & 0 \\ & -\quad 4.5 \end{aligned}$	$\begin{aligned} & 22 \\ & 27 \\ & 16 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 157 \end{aligned}$	二	－	$\begin{aligned} & 93 \\ & 88 \\ & 85 \end{aligned}$	13	$\begin{aligned} & 3.8 \\ & 3.0 \\ & 2.2 \end{aligned}$	\bar{Z}		$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 124 \\ & 155 \\ & 170 \end{aligned}$
4－65A	$A B_{1}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{array}{r} 480 \\ 450 \\ 405 \end{array}$	$\begin{array}{r} -1051 \\ =1001 \\ -\quad 908 \end{array}$	$\begin{aligned} & 30 \\ & 22 \\ & 17 \end{aligned}$	90 $(70)^{4}$ 80 $(60)^{4}$ 70 $(50)^{4}$	二	13 $11(4.2)^{4}$ $11 .(3.0)^{4}$ $8.5(2.5)^{4}$	$\begin{array}{r} 105 \\ 100 \\ 90 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$			$\begin{array}{r} 75 \\ 100 \\ 115 \end{array}$
	AB_{2}	$\begin{aligned} & 1000 \\ & 1500 \\ & 1800 \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & =301 \\ & =\quad 351 \\ & =\quad 351 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 150 \\ & 125 \\ & 110 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 23 \\ & 15 \\ & 13 \end{aligned}$	$\begin{array}{r} 105 \\ 100 \\ 90 \end{array}$		$\begin{aligned} & 2.5 \\ & 1.6 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 65 \\ & 63 \\ & 63 \end{aligned}$	$\begin{array}{r} 85 \\ 125 \\ 135 \end{array}$
	B^{2}	$\begin{array}{r} 1500 \\ 2000 \\ 2500 \\ \hline \end{array}$	$\begin{array}{r} 300 \\ 400 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & -501 \\ & =751 \\ & -1001 \\ & \hline \end{aligned}$	$\begin{aligned} & 33 \\ & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 270 \\ 230 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 35^{3} \\ & 503 \\ & 35^{3} \end{aligned}$	$\begin{aligned} & 190 \\ & 270 \\ & 300 \end{aligned}$	$\begin{aligned} & 13 \\ & 17 \\ & 6 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 150 \\ & 300 \\ & 325 \end{aligned}$
813	$A^{\text {B }}$	$\begin{aligned} & 2000 \\ & 2250 \\ & 2500 \\ & \hline \end{aligned}$	$\begin{array}{r} 750 \\ 750 \\ 750 \\ \hline \end{array}$	-90 -90 -95	$\begin{aligned} & 20 \\ & 23 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 158 \\ & 158 \\ & 180 \\ & \hline \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \\ & .6 \\ & \hline \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 118 \end{aligned}$		$\begin{aligned} & 1 \\ & .1 \\ & .1 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 228 \\ & 258 \\ & 325 \end{aligned}$
4．125A	$A^{\text {B }}$	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \end{aligned}$	$\begin{aligned} & 615 \\ & 555 \\ & 510 \end{aligned}$	$\begin{array}{r} -1051 \\ -1001 \\ -951 \end{array}$	$\begin{aligned} & 40 \\ & 35 \\ & 30 \end{aligned}$	135 $(100)^{4}$ 120 $(85)^{4}$ 105 $(75)^{4}$	二	$\begin{array}{cc} 14 & (4.0)^{4} \\ 10 & (3.0) \\ 6.0 & (1.5) \end{array}$	$\begin{array}{r} 105 \\ 100 \\ 95 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 150 \\ & 180 \\ & 200 \end{aligned}$
	AB_{2}	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{array}{r} 350 \\ 350 \\ 350 \end{array}$	-411 $=451$ -431	$\begin{aligned} & 44 \\ & 36 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 130 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 17 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 141 \\ 105 \\ 89 \end{array}$	$\begin{aligned} & 9 \\ & 7 \\ & 6 \end{aligned}$	$\begin{gathered} 1.25 \\ .7 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 122 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 200 \end{aligned}$
4．250A	$A B_{1}$	$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{aligned} & 660 \\ & 600 \\ & 555 \\ & 510 \\ & \hline \end{aligned}$	$\begin{aligned} & -115 \\ & -110 \\ & -105 \\ & -100 \end{aligned}$	65 55 45 40	$\begin{aligned} & 230(170)^{\prime} \\ & 210(150) \\ & 185(130) \\ & 165(115)^{4} \end{aligned}$	$=$	$\begin{aligned} & 15(3.5)^{4} \\ & 12(2.5)^{4} \\ & 9.5(2.0)^{4} \\ & 7.5(1.5)^{4} \end{aligned}$	$\begin{aligned} & 115 \\ & 110 \\ & 105 \\ & 100 \\ & \hline \end{aligned}$	0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$			$\begin{array}{r} 335 \\ 400 \\ 425 \\ 450 \\ \hline \end{array}$
	AB_{2}	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \\ & 3000 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & -481 \\ & =481 \\ & =511 \\ & -531 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 60 \\ & 63 \end{aligned}$	$\begin{aligned} & 243 \\ & 255 \\ & 250 \\ & 237 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 13 \\ & 12 \\ & 17 \\ & \hline \end{aligned}$	$\begin{array}{r} 96 \\ 99 \\ 100 \\ 99 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 12 \\ & 11 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 185 \\ & 205 \\ & 190 \\ & \hline \end{aligned}$	$\begin{aligned} & 214 \\ & 325 \\ & 420 \\ & 520 \\ & \hline \end{aligned}$
304TL	$A^{\prime} B_{1}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 3000 \\ & \hline \end{aligned}$	\bar{Z}	$\begin{array}{r} -105 \\ -160 \\ -260 \\ \hline \end{array}$	$\begin{array}{r} 135 \\ 100 \\ 65 \\ \hline \end{array}$	$\begin{aligned} & 286 \\ & 273 \\ & 222 \end{aligned}$	$=$	\bar{Z}	$\begin{array}{r} 105 \\ 160 \\ 260 \\ \hline \end{array}$	$=$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 128 \\ & 245 \\ & 365 \end{aligned}$
1 Adjust to give stated zaro－signal plate currant． ${ }^{2}$ Single－sideband suppressed－carrier linear amplifier ratings，voice signal． ：Due to intermittent nature of voice，average dissipation is considerably less than max．－signal dissipation．															

signal is used to key an oscillator and one or more stages in the Ssil transmitter and "hlank" the receiver at the time that the transmitter is on. Thus the transmitter is on at any and all times that the operator is spraking but is off during the intervals between sentences. The voice-eontrol circuit most have a small amount of "hold" built into it, so that it will hold in hetween words, but it should be made to turn on rapidly at the
slightest voice signal coming through the speech amplifier. Both tube and relay keyers have been used with good sucerss. Most voiee-control systems recpuire the use of headphones by the operator, but a loudspeaker can be used with the proper circuit. (Sere Nowak, "Voice-Controlled Mreak-In . . . and a Loudspeaker," QST', May, 1951 , and IIunter, "Simplified Voice Control with a Loudspeaker," QST, October, 1953.)

A Phasing-Type SSB Exciter

The exciter shown in Figs. 12-7, 12-9 and 12-12 is an excellent unit for the amateur who might like to try single sideband with a minimum of cost and effort. It requires r.f. driving power from one's present exciter and a power supply. It will deliver SSB output in the $3.9-\mathrm{Mc}$. 'phone band, either to an antenna for local work or to an r.f. amplifier adjusted for linear operation. The operating freduency can be varied over a wide range without seriously impairing the adjustment. Provision is made for transmitting either the upper or the lower sideband.

The schematic of the exciter is shown in Fig. 12-8. Four 6V6 tubes are used as balanced modulators. The plate circuit of the balaned modulators uses a push-pull-paratlel arrangement. The grids of one pair of balanced modulators are fed through a phase-shift network consisting of a 300 -ohm resistor and an inductance that is adjustable to 300 ohms reactance at the operating frequency. The grids of the second pair of balanced modulators are fed through a phase-shift network consisting of a 300 -ohm resistor and a condenser which is adjustable to 300 ohms reaetance at the operating frequency. The input impedance of the two phase-shift networks in parallel is 300 ohms.

Each balanced-modulator tube grid is fed through a blocking condenser and provided with

Fig. 12-7-A small single sidehand exciter that in. cludes voice.controlled break-in. Receiving-type tubes are used throughout.

Microphone input and andiogain control are at the left -hand side of the front - the switelis silerets the upper
 1949, QST.)
grid-leak bias. The bias eircuit of each balaneed modulator is made adjustable for control of the carrier suppression. Provision is also made for the addition of fixed bias, in case the exeiter is used in a voice-controllod eircuit where the r.f. excitation is removed during listening periods.

Screen modulation is used, and the screen of each modulator tube is by-passed to ground for r.f. A transformer with a center-tapped secondary is used in the output of each audio amplifier to provide push-pull modulating voltages.

A reversing switch, S_{1}, allows switching to either the upper or lower sidehand. If this switeh has a center " off" position, it will facilitate using the "two-tone test" procedure mentioned earlier. A voltage divider is inserted between each output of the andio phase-shift network and the corresponding amplifier grid. One of these voltage dividers is made variable to provide for balancing of the two audio channels. The net work constants are compensated for the load of these dividers.

Speech Amplifier and Voice Control

The speech amplifier is designed to attenuate both low and high frequencies, amplifying only the audio range required for good intelligibility. The wiring diagram is shown in Fig. 12-11. The output of the speceh amplifier is coupled to the input of the audio phase-shift network through a transformer with a center-tapped secondary, to provide push-pull audio for the phase-shift network.

Part of the output of the speech amplifier is taken off through an adjustable voltage-divider cirenit and blocking condenser to the voicecontrol circuit. There it is rectified by the diodes of the $6 \mathrm{~S}^{2} \mathrm{D}^{7}$, and the resulting d.c. voltage is used to charge C_{14} negative. An audio choke prevents audio eomponents from appearing across C_{14}. The triode section of the (ised is normally conducting and holding the relay elosed, but when the negative voltage appears across C_{14} the (isc) 7 plate current is cut off and the relay opens. When the audio signal is removed, C_{14} discharges through R_{55} and the triode again conducts, closing the relay.

The Audio Phase-Shift Network

The audio phase-shift network requires close matehing of resistance and capacity values and, to do this eoonomically, advantage is taken of the fact that resistors and condensers in junk
boxes and in stock at local dealers vary considerably from their nominal values.

Table 12-II is used in selecting the network components. The procedure is to collect as many resistors and condensers as possible with nominal values as indicated in the second column of the chart. Measure all of the condensers first, and select the six condensers whose measured values are closest to the "target values" in the third column. Enter the measured values of these condensers in the fourth column of the chart. Then calculate the "target values" for the resistors and select the six resistors whose measured values are closest to these target values.

A capacity bridge, of the type used by servicemen, and a good ohmmeter should give sufficient accuracy in selecting the network components. Absolute accuracy is not important, if the components are all in correct proportion to each other. A difference in percentage error between the resistance measurements and the capacitance measurements will merely shift the operating range of the network. The network components are mounted on a small sheet of insulating material to facilitate wiring.

Networks already adjusted are available through radio dealers - they can be used in this exciter to simplify the construction. The nec-

Fig. 12-8 - Circuit diagram of the single-sideband exciter.
$\mathrm{C}_{1}-\mathrm{C}_{6}$ - See Table 12-II.
C_{7} - Air padder condenser. $3.9 \mathrm{Mc}$. : $150 \mu \mu \mathrm{fd} . ; 7 \mathrm{Mc}$.: $100 \mu \mu \mathrm{fd}$.; 14 Mc.: $35 \mu \mu \mathrm{fd}$.
C_{8} - Approx. $400-\mu \mu \mathrm{fd}$. per section, b.c. receiver tuning condenser.
$\mathrm{C}_{9}-\mathbf{0 . 0 0 1}$ - ffd . $\mathbf{1 0 0 0 - v o l t}$ mica.
$\mathrm{C}_{10}-\mathrm{C}_{18}-0.001-\mu \mathrm{fd}$. 500 -volt mica.
$\mathrm{C}_{19}, \mathrm{C}_{20}-4-\mu \mathrm{fd}$. 150 -volt electrolytic.
$\mathrm{R}_{1}-\mathrm{R}_{6}$ - See Table 12-II.
$\mathrm{R}_{7}, \mathrm{R}_{8}-300$ ohms, 5 watts (51500 -ohm 1-watt in parallel).
$\mathbf{R g}_{9}$ - 0.5 -megohm linear volume control.
$\mathrm{R}_{10}-0.47$ megohm.
R_{11} - 0.75 megohm.
$\mathrm{R}_{12}-0.24$ megohm.
$\mathrm{R}_{13}-\mathrm{H}_{16}$ - 10,000 ohms.
$\mathrm{R}_{17}, \mathrm{~K}_{18}-15,000$ - hm potentiometer, wirewound.
$\mathrm{R}_{19}-7500$ ohms, 10 watts.
$R_{20}, R_{21}-680$ ohms, 2 watts.
All resistors 1-watt unless specified otherwise.
$\mathrm{L}_{\mathrm{t}}-3.9$ Mc.: 25 turns No. 28 enam.
7 Mc.: 18 turns No. 22 enam.
14 Mc.: 12 turns No. 20 enam.
All coils close-wound at mounting end of slot of National XR-50 slug-tuned form.
$\mathrm{I}_{2}-3.9 \mathrm{Mc}$.: 40 -meter 75 -watt tank coil with swinging link (Bud OLS-40).
7 Mc.: 20 -meter 75 -watt tank coil with swinging link (Bud OLS-20).
14 Mc.: 15 -meter 75 -watt tank coil with swinging link (Bud OIS-15).
$\mathrm{RFC}_{1}-2.5-\mathrm{mh}$. r.f. choke.
$\mathrm{S}_{1}-$ D.p.d.t. toggle, preferably with center off. See text.
$\mathrm{T}_{1}, \mathrm{~T}_{2}-5$-watt modulation transformer, $\mathbf{1 0 , 0 0 0}$ ohms c.t. to 4000 ohms (Stancor A-3812).
essary circuit modifications for using a commercial network are shown in Fig. 12-10.

Construction

The exciter and its associated audio equipment are assembled on a 13 by 7 by 2 -inch aluminum chassis. The four 6V6 balanced-modulator tubes are arranged in a square pattern toward the front center of the chassis, with the plate tuning condenser and coil off to one side and the 6 Kid audio amplifier tubes on the other. The two modulation transformers are under the chassis directly below the plate tuning condenser. The speech amplifier is arranged along the left-hand side of the chassis, with the GS.57 at the rear and the output transformer on the top of the chassis at the front. The audio phase-shift network is below the output transformer.

The reactive components of the r.f. phasing network, L_{1} and C_{7}, are mounted in a plug-in shied can that mounts directly behind the balanced-modulator tubes. The shiek can is grounded to the chassis through the spare pins of its plug. The voltage regulator tube is mounted to the left of the shield can, and the 6sor voicecontrol tuhe is to the right. The components in the voiee-control circuit are mounted under the chassis at the rear.

Associated Equipment

The r.f. input impedance of the exciter is 300 ohms, but a link line of lower characteristic impedance will operate satisfactorily for the short distance usually reguired. A means for

Fig. 12.9- A rear view of the plasingtype exciter. The two r.f. phasing adjustments project from the shield ean. 'The potentiometer shaft at the left sets the voice-control threshold level. The jack is for the keyed eireuit, the r.f. connector takes the extitation cable, and the octal socket is for the power cable.
adjusting the r.f. driving power is desirable. A surplus Command set transmitter (BC-696 or T-19/AIRC-5), operating at low plate voltages, makes an ideal r.f. source, but any VPO or crystal oscillator with a few watts output will do.

The plate voltage for the speech amplifier must not be taken from the same point in the power supply that furnishes voltage for the 6 K 6 amplifiers, since interaction may occur that will upset the phase relationship at the output of the two 6K6s. If separate plate voltage sources are not

TABLE 12-II Phase-Shift Network Design Data			
Part	Nominal Value	Target lalue	Measured Value
C_{1}	0.001	0.00105	(Cmi)
Ci_{2}	0.002	0.00210	$(\mathrm{CrH2})$
C3	0.006	0.00630	$(\mathrm{Cm3})$
C_{4}	0.005	0.00475	$\left(\mathrm{Cm}_{4}\right)$
Cs	0.01	0.00950	(Cms)
C_{6}	0.03	0.0285	(Cmb)
R_{1}	100,000	100	
		C.mı	
R_{2}	50,000	105	
		Cin2	
\boldsymbol{R}_{3}	15,000	100	
		Cim3	
R_{4}	100,000	453	
		Cim_{4}	
R_{5}	50,000	176	
		C.ms	
\boldsymbol{R}_{6}	15,000	453	
		$\overline{\mathrm{Cm}}$	
All condensers mida, all resistors I watt.			

available, an added filter section may be used to isolate the voltage to the speech amplifier.

The built-in voice-controlled relay can be used in a number of ways to provide the rapid voice hreak-in commonly used on 3.9 -Mc, ssils phone. If a good e.w. break-in system is already in use at the station, the voice-eontrol relay contacts may be substituted for the key, and no other changes are nocessary.

If the local oscillator in the recoiver will key in the plate voltage lead satisfactorily, then a simple voice break-in system may be ohtaned by using the relay contacts to shift the plate voltage from the receiver loeal oscillagor to the VFO. A drifting receiver oscillator must be avoided in this system, however.

Operating Conditions

If voice control is not used, and d.c. operating voltages are removed when excitation is removerd for stand-by, then no fixed bias is required on the batanced modulators and a jumper can be placed across the bias terminals. When exeitation is removed with d.c. voltages applied, as in voicecontrolled operation, then $41 / 2$ volts of fixed bias should be used to limit the plate and screen currents on the halanced modulators.

With 400 volts applied to the balanced-modufator plates and 250 volts to all other plate supply inputs, the operating currents will be approximately as follows:

> Total balanced-modulator plate current 85 ma .
> VR tube supply eurrent
> 20 ma .
> Total 6 K 6 amplifier current
> 62 ma .
> Total sperch-amplifier current 12 ma.

The total balanced-modulator grid current, measured at the bias terminals, will vary with cxcitation, but it should be in the range 3 to 5 ma .

These currents will not change appreciably with varying audio input and, with the exception of the grid current, will not change appreciably when the excitation is removed, provided that
$41 / 2$ volts of fixed bias is used on the balancedmodulator grids.

The exciter may be coupled directly to an antenna for use as a low-power transmitter, but most amateurs will wish to use it to drive a buffer or final amplifier. All stages following the exciter must be operated under Class A, AB, or B condi-

Fig. 12-10 - Circuit revisions for including a commercial phasc-shift network in the SSB exciter of Fig. $12-8$. The 2.50 -volt supply for the $12 \mathrm{~A}^{\prime} \mathrm{I}^{\prime} 7$ section should have a large output-capacity filter of at least $80 \mu \mathrm{f}$. PSX - Phase-shift network (Millen 75012 Phasing Unit).
tions. In general, the correct operating conditions for stages following the exciter may be found by referring to the audio operating conditions for the
tube under consideration. Grid-bias and screen voltages should have very good regulation. For amateur voice operation, tubes may be operated considerably beyond the ratings given in the tube manuals, as discussed earlier. When the r.f. amplifier is operated Class AB_{2}, the grid tank circuit will require shunting by a resistor in order to provide better regulation of the exciting voltage. The value of this resistor is usually determined by experiment. It should be as small as possible consistent with good output and linear operation.

Adjustment

Adjustment of the exciter is best made under actual operating conditions. Connect the exciter to the transmitter, load the exciter with a dummy load, apply r.f. excitation, feed sine-wave audio into the speech amplifier, and tune the output tuaing condenser in the conventional way for maximum output.

Reduce the audio input to zero, and adjust potentiometers R_{17} and R_{18} for minimum carrier output. Minimum carrier output may be determined by any sensitive r.f. indicator coupled to the final-amplifier plate circuit. A $0-1$ milliammeter, in series with a crystal detector and a two-turn coupling loop, will make a satisfactory indicator. The meter should be by-passet with a $0.005-\mu \mathrm{fd}$. condenser. If a null cannot be obtained within the range of the potentiometers, the 6 V 6 tubes are not matched. Fxchanging the positions of the 6V6s may aid in oltaining the balance, or other tubes may have to be used.

$\mathrm{C}_{1}-100-\mu \mu \mathrm{fd}$, mica or ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{7}, \mathrm{C}_{11}-4 \cdot \mu \mathrm{fI}$, 150 -volt electrolytic.
$\mathrm{C}_{3}-\mathbf{0 . 0 2}-\mu \mathrm{fd}$. 400 -volt paper.
$\mathrm{C}_{4}, \mathrm{C}_{8}-8-\mu \mathrm{fd}$. 450 -volt electrolytic.
$\mathrm{C} 3-270-\mu \mu \mathrm{fl}$. mica or ceramic.
C. $-0.001-\mu \mathrm{fd}$. mica or ceramic.
$C_{9}-0.0033 \cdot \mu \mathrm{fd}$, mica or ceramic.
$\mathrm{C}_{10}-0.002-\mu \mathrm{fd}$, mica or ceramic.
(.12-0.005- μ fd. ceramic or mica.
C. 13 - 0.01- $\mu \mathrm{ff}$. 400-volt paper or ceramic.
$\mathrm{C}_{14}-0.5-\mu \mathrm{fl} .200$-volt paper.
$\mathrm{H}_{1}, \mathrm{R}_{9}-0.1$ megolim.
$\mathrm{H}_{2}-2.2$ megohm.

[^8]

Fig. 12-12- Underneath the chassis of the exciter. The two potentioncters are the hias balancing controls, R_{17} and R_{18}.
more reliable adjustment procelure may be used. Either linear or sine-wave horizontal sweep may be used on the oscilloscope. The vertical input should be coupled to the output of the transmitter in the same manner as is used for observing amplitude modulation. The sine-wave audio-frequency input to the speech amplifier should be any convenient multiple of the oscilloscope sweep frequency. A 60-cycle sweep frequency and a 600 -cycle audio frequency are commonly used.

When the exciter is modulated with a single sine-wave audio frequency, the output should be a single radio frequency. Therefore, the oscilloscope should show a straight-edged band across the sereen, the same indication

After the carrier balance is obtained, tune in the r.f. source on the station receiver, and with the antenna terminals shorted, and the crystal selectivity in sharp position, adjust the crystal phasing to the point where only one sharplypaaked response is obtained as the receiver is tuned through the signal. Now apply sine-wave audio of about 1500 -cycle frequency to the speech amplifier, and find the two sidebands on the receiver. Three distinct peak indications will be observed on the S-meter as the receiver is tuned. Set the receiver on the weaker of the two sidebands and adjust L_{1}, C_{7} and R_{9} for minimum sideband strength. If suppression of the other sideband is desired, throw S_{1} to its other position. A dip obtained with one set of adjustments is not necessarily the minimum. Other combinations should be tried. The final adjustment should give S-meter readings for the two sidebands which differ by at least 30 db . The hias voltage on all four balanced modulator tubes will be approximately equal.

After the adjustments have been completed, the r.f. drive to the exciter should be adjusted to the point where a decrease in drive will cause a decrease in output, but an increase in drive will not cause an increase in output. The complete adjustment procedure should then be rechecked. The rig is then ready for a microphone, an antenna, and an on-the-air test.

If an oscilloscope is available, a simpler and
as is given by an unmodulated carrier. This is illustrated in Fig. 12-13. If carrier output, or unwanted sideband output, is present, it will be indicated by "ripple" on the top and bottom edges of the oscilloscope picture. A small amount of ripple can be tolerated, but if the exciter is badly out of adjustment, the output will appear to be heavily modulated. Adjustment with the 'scope is accomplished by adjusting all controls to obtain the smallest possible amount of ripple. The oscilloscope may also be used for continuous monitoring during transmissions to avoid overloading of any stage of the transmitter. Overloading is indicated by a flattening of the modulation-peak patterns at the top and bottom. In observing these patterns, it is difficult to separate the effects of sideband and earrier suppression. However, considered separately, sideband or carrier suppression of 30 db . would give a 3 per cent ripple, 25 db . a ripple of 6 per cent, and 20 db . a 10 per cent ripple.

Harmonics present in the audio modulating signal will modify the results and invalidate the above-described test if they run more than 1 per cent; hence it is essential that the audio signal be as pure as possible.

The exciter is capable of driving any pair of beam tubes commonly used in amateur transmitters, or any pair of triodes in Class AB_{1}. A buffer stage will ordinarily be required to drive Class B triodes.

Fig. 12-13-Sketches of the oscilloscope face showing different conditions of adjustment of the exciter unit. (A) shows the substantially clean carrier obtained when all adjustments are at optimum and a sine-wave signal is fed to the audio input. (13) shows improper r.f. phase and unbalance between the outputs of the two balanced modulators. (C) shows improper r.f. phasing but outputs of the two balanced modulators equal. (D) shows proper r.f. phasing but unbalance between outputs of two balanced modulators.

A Crystal-Filter SSB Exciter

The exciter uses a quartz crystal filter operating at 450 kc . (or vicinity). The filter allows a passband of 300 to 3000 cycles; the sideband rejection should run $35-40 \mathrm{db}$. over 300 to 3000 cycles. At no time within the reject range is the rejection less than 30 dh .; at some places it approaches 60 db . Crystals suitable for use in the filter are available on the war surplus market for less than one dollar each. The most useful of these crystals are

Fig. 12-14 - The 450 kc . crystal filter used for sideband and carrier rejection.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-100-\mu \mu \mathrm{fd}$, mica or ceramic.
$\mathrm{C}_{3}-3$ - to $30-\mu \mu \mathrm{fd}$. ceramic trimmer.
' T_{1} - 455-kc. interstage i.f. transformer (Meissner 16-6659 or Miller 312-C2).
T_{2} - 455-kc. diode i.f. transformer (Meissner 16-6660 or Miller 312-C4). For a carrier frequency of 450 kc ., the crystals are:
 452.8 kc . $\quad 448.6 \mathrm{kc} . \quad 450.0 \mathrm{kc}$. Low-freq. reject $\quad 447.2 \mathrm{kc} . \quad 451.4 \mathrm{kc} . \quad 450.0 \mathrm{kc}$
response characteristics of the bridge. Fig. 12-14 shows the filter proper, set for rejection of the upper sideband. The transformers T_{2} and T_{2} are replacement-type $455-\mathrm{kc}$. i.f. transformers.

The original filter was designed to operate at a carrier frequency of 450 kc ., although the filter will work at frequencies between 425 and 490 kc . without alteration of the eircuit or transformers. Under the condition of design for $450-\mathrm{kc}$. carrier, crystal " B " is 2.78 kc . higher than 450 kc ., or 2 channels higher in the crystal series. Crystal "C" is 1.39 kc . bower than 450 kc ., or 1 channel lower. Crystal "D" is 450 ke. Crystal "A," also at 450 kc ., is used in a crystal oscillator to generate the initial carrier. Channel markings on these crystals are as follows:
"A"--32.4 Mc., Channel 324
"B" - 32.6 Mc., Channel 326
"C" - 32.3 Mc., Channel 323
"D" - 32.4 Mc., Channel 324
Any other group with a similar channel relationship may be utilized.
A diagram of the exciter proper is shown in Fig. 12-15. The 6K8 hexode-triode serves as $450-\mathrm{kc}$. oscillator and audio mixer. Approximately 3 volts of audio is required at the signal grid of the 6 K 8 for optimum results. The 6 K 8 delivers a carrier (450 kc .) and sidebands to the input of the filter. The filter rejects one sideband and
in the series that runs from 375 to 525 kc . in 1.388 -kc. stcps; this series is marked at 72 times the crystal frequency in a series of channels from 28.0 to 38.0 Mc .

The filter is of bridge design with complex entry and terminating sections. The complex sections are used to suppress the carrier and modify the

Fig. 12-15 - Complete diagram of the crystal-filter SSB exciter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{6}, \mathrm{C}_{7}-0.1$ - $\mu \mathrm{fd} .400$-volt paper.
$\mathrm{C}_{4}, \mathrm{C}_{5}-39-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{Cs}-100-\mu \mu \mathrm{fd}$. variable air condenser, mounted in shield can with T_{4}.
$\mathrm{C}_{9}-0.02-\mu \mathrm{fd}$. 600 -volt mica.
$\mathrm{C}_{10}-0.01-\mu \mathrm{fd} .400$-volt paper.
C_{x}-Trimmers in T_{3}.
$\mathrm{R}_{1}-0.47$ megohm.
$\mathrm{R}_{2}-220$ ohms.
$R_{3}, R_{11}-20,000$ ohms, 1 watt.
$\mathrm{K}_{4}, \mathrm{R}_{5}-0.1$ megohm.
$\mathbf{R}_{\mathbf{6},} \mathrm{R}_{7}, \mathrm{R}_{\mathbf{8}}-10,000$ ohms.
R_{g} - 150 ohms, 1 watt.
$R_{10}-1000$ ohms.
$\mathrm{R}_{12}-47,000$ ohms.
All resistors $1 / 2$ watt unless specified otherwise.
$\mathrm{I}_{1}-2.5 \mathrm{mh}$. r.f. choke.
$\mathrm{I}_{2}-0.5-\mathrm{mh}$. r.f. choke.
' 1 '3-4.5-Mc. slug-tuned i.f. transformer (Miller No. 1466).

T' - 4.5-Mc. slug-tined i.f. transformer. Secondary removed and 8-turn link wound over cold end of primary. All fixed capacitors removed.

Fig. 12.16 - 'The erystal-filter SSB exciter, as designed for mobile work, complete with receiver converter and VFO. The top dish is the exater (with eover removed) The meter reads cathode current to a pair of 8) is driven by the unit, and the two hnols trandle carrier reingertion and 6AC:7 plate tuning. ($\mathrm{F}^{\prime} 1 \mathrm{JEO} / 9$, Now, 1950, (OST.)
delivers single-sideband energy to the 65:57 mixer. The filter also suppresses the carrier. The 6.SN7 mixer combines the single-sideband emergy (in the vicinity of 450 ke .) with the output of the $V \mathrm{~F}(3)(3100$ to 3550 ke .) and the sum prohlucts are recovered in the output (3850 to 4000 ke). A VF() signal of about 6 to 8 volts is required. The output of the mixer is fed to the grid of a Class A GAG7 tuned r.f. amplifier. The output is sufficient to drive a pair of 807 s Class $.13_{2}$. Operation on 10 and 20 meters can be accomplished by heterodyning again to the desired band.

Construction

The original transmitter was built for mobile operation. Mounting the arystals on opposite sides of the transformers wil keep stray eapacity coupling at a minimum. No shielding other than that provided by the i.f. cans and the outpot tank can is required. It is important that rapacity coupling around the erystal filter the minimized - no modulated signal must reach the (is.5 mixer be any route exerpt through the filter. If ehoice of sidebands is desired, a dual filter using 5 erystats will be required.
It is recommended that the erystals be wrapped with several layers of adhesive tape and then strapped to the chassis with metal brackets; connertions may then the made by soldering to the holder pins.

[^9]
-

3) A vacuum tube voltmeter is connected from grid to ground of one of the $6 S \times 7$ grids.
4) Swing the signal generator through the crystal range until a maximum response is noted at the voltmeter. This will indicate the series-resomant frequency of ervstal " C " and with the erystals described, based on a $450-k e$. carrier, will be approximately 488.6 ke.
5) Align all transformer trimmers for maximum response on this frequenes.
6) Next, adjust the signal generator slowly in the higher-frequency direction until a null is obtained. This will be the series-resonant frequency of erystal " D)," 450 ke . with the crystals indicated.
7) Move the signal generator $1 / 2 \mathrm{ke}$. lower than this null and adjust the trimmer on the input side of T_{2} for maximum response.
8) lacturn signal generator to null.
9) Move the signal generator approximately 1 to 1.2 ke . higher than the null and adjust C_{3} for minimum response.
10) Move the signal generator higher until another null is found: this will be the series-resonant frequency of crestal " 13 ," approximately 452.8 ke. with the erystals shown.
11) Continue approximately $1 / 2 \mathrm{kc}$. higher than this null and adjust the output trimmer on T_{1} slightly for moderate null.
12) Repeat Steps 7 through 11 to compensate for interaction, and alignment is complete.

For alignment of a low-frequency-rejeet filter the procedure is similar, except that where Steps 1-12 mention "higher" insert "lower" and viee versa. The alignment chart, Fig. 12-17, will simplify the alignment procedure.
T_{s} is paraked at 3930 ke . and then staggertumed slighty to provide roverage of the entire band. C's is adjustable from the front panel and is touched up when shifting freguency. It is important that the fiACid amplifier stage be stable and show no tendency to oscillate. Good shielding of its grid and plate circuits is usually required, and occasionally a 47 -ohm composition resistor from T_{3} to l'in 4 of the 6 AG 7 may be necessary.

Fig. 12-17 - An alignment chart of the crystal filter. The numbers in the circles correspond in the stejm outlined in the text.

A Class AB ${ }_{1}$ Linear Amplifier

The amplifier shown in lrigs. 12-18, 12-19 and 12-21 is designed to utilize the advantages of Class AB_{1} operation. It requires very little driving power, the hias supply is simple, and the grid-current meter is a positive "overmodulation" indicator. A low-cost power supply permits a peak power input of 280 watts to the amplifier in SSi3 service. Vnder these conditions the indicated d.e. input is about 150 watts.

As can be seen from lig. 12-20, the :amplifier uses four tetrodes in push-pull parallel, with shunt feed to remove the d.c. from the plug-in plate coils. A fixed-tune grid circuit is used and gives substantially uniform response over a 200 -ke. band centered at 3900 kr . h_{1} and R_{2} are not "swamping" resistors - while they load the driver to about 1 watt, they are for the purpose of "broad-banding" the grid direuit. Since the load is constant, it is possible to adjust L_{2}, the coupling coil, to offer a definite input impedance to the connecting line from the exciter. This can be done quite easily with a s.w.r. bridge (the amplifier tubes do not have to be lit). The inductances of the coils were aljusted to give close to a $1-t 0-1$ s.w.r. in 7 - 0 -ohm line at the band center. This method of roupling is a great conveniener, since the exeiter and amplifier can be connected be any length of 7 -5-ohm line with no change in the coupling conditions.

Parasitic oseillations were eliminated by L_{3}, L_{4}, L_{5} and L_{6}. The eireuit is eross-ncutralized by means of C_{3} and C_{4}, although the amplifier is stable under most conditions without the neutralization.

One disadvantage of operating tubes in pushpull in a linear amplifier is the neressity for very good balance in the driving voltages applied to each side of the circuit. If the driving voltage is higher on one side than the other, the tube or tubes on that side will be driven to peak output before those on the other side, and will start saturating or "flattening" before the full output of the amplifier is realized. The condensers in the grid tank circuit, C_{1} and C_{2}, should be matehed in capacitance within a percent or two, and the usual precautions as to maintaining cireuit bal-
ance sbould be observed. The r.f. voltage balance ean be checked with an r.f. probe and v.t. valtmeter.

An "economy-type" power supply is used with the amplifier, as shown in lig. 12-22. (See "More Effective Ufilization of the Small Power Transformer," (ぶT, November, 1952.) The r.f. tubes should not be biased beyond cut-off during receiving periods but should continue to run at

Fig. 12.19 - Close-up view of the plate circuit with the tank cril removed to show the blocking condensers, parallel-feed plate chokes and parasitic-:uppressor coils. The double lead through the grommets runs from the output-eirenit coil to the coupling condenser and coax connector underneath the chassis.
normal operating hias, because their idling current of 110 mat., plus the $40-\mathrm{ma}$. drain through the V'ik tubes, serves as the only "bleed" on the power supply, and the voltage would rise too high if this drain were removed.

The plate efligeney obtaimable with Class AB_{1} operation under the described conditions is such that the total phate loss at peak output is well under the maxinum plate dissipation rating of

Fig. $12-18$ - The power supply occupies the righthand half of the $12 \times 10 \times 3$-ineh chassis and the r.f. seetion the left-hand half in this view. The power transformer and filter condenser are near the panel and the filter chohe is at the edge of the chassis next to the volt-age-regulator tubes. The panel is $101 / 2 \mathrm{l}, \mathrm{y}$ I 9 inches.

The four r.f. tubes are mounted on an elevated sub)chassis so that the cathodes can be directly grounded to the top of the main chassis. The plug-in grid circuit is in the can to the right of the tubes. The small ceramic stand-offs visible beneath the subchassis support the metal tabs which form one of the neutralizing condensers. A similar pair, hidden hy the shielded grid circuit, supports the other neatralizing condenser.

Fig. 12-20-Circuit of the r.f. portion of the linear amplifier unit. Unless otherwise specified, capacitances are in μ f. $\mathrm{C}_{3}, \mathrm{C}_{4}$ - Copper tabs $88^{\prime \prime}$ wide, app. $1^{1 / 4}$ scparation, $1 / 2^{\prime \prime}$ overlap.
$\mathrm{C}_{5}-180-\mu \mu \mathrm{f}$.-per-section, 0.07 -inch spacing.
$\mathrm{C}_{6}-300 \mu \mu \mathrm{f}$., receiving spacing.
$\mathrm{L}_{3}, \mathrm{~L}_{4}-18$ turns No. 22 enam. on 1 -watt resistor (any high value) as form, tapped at center.
$L_{s}, L_{0}-12$ turns No. 22 enam. on same type forin. RFC1, RFC 2 - Millen $34107,1 \mathrm{mh}$.
L_{2} wound over L_{1} at center on 3.5 and 7 Mc .; interwound with L_{1} on 14-Mc. coil. Coil forms 1-inch diam.
L_{7} and L_{8} made from $13 \& W$ coil stock, $L_{7} 2$-inch diam. (3907 and 3900), $L_{8} 21 / 2$-inch diam. (3906), assembly mounted on Miilen 40305 plug base.

The grid tuned eircuit, enclosed by dashed line, is mounted in Millen 74400 plug-in base and shield.
120 watts for the four tubes. With the bias set for near-maximum dissipation with no signal, the tubes run cooler when driven. However, in selecting the resting plate current by adjustment of the bias voltage it is advisable to make sure that no one tube is overloaded. This can occur even though the total input is less than 120 watts, since there is some variation in the plate currents taken by various tuhes at the same bias voltage. Test the tubes individually and, if a selection is

L_{1}	3.8-4.0 Mc.	7.2-7.3 Mc.	14 Mc. 12 turns
	31 turns	17 turns	
	No. 22 enam.	No. 22 enam.	No. 22 enam.
	close-wound	close-wound	length $5 / 8-\mathrm{in}$.
L_{2}	41/2 turns	22/3 turns	23/4 turns
	No. 22	No. 22	No. 22
$\mathrm{C}_{1}, \mathrm{C}_{2}$	$200 \mu \mu \mathrm{f}$.	$100 \mu \mu \mathrm{f}$.	$50 \mu \mu \mathrm{f}$.
	silver mica	silver mica	silver mica
L_{7}	26 turns	18 turns	8 thrns
	No. 16	No. 14	No. 14
L8	10 turns/in.	8 turns/in.	8 turns/in.
	10 turns	6 turns	2 turns
	No. 14	No. 14	No. 14
	8 turns/in.	8 turns/in.	8 turns/in.

possible, choose four that take substantially the same plate current.

The preferable method of adjusting the amplifier tuning for optimum output and linearity is of course to use an oscilloscope with the two-tone test. If the audio oscillator generates a good sine wave and the distortion in the exciter itself is low, the optimum conditions should be secured with a plate current of 180 to 190 ma . when the driving voltage is just at the point where a trace (a few microamperes) of grid current shows. A fairly good job of adjustment can be done without

Fig. 12-21 - The only r.f. components underneath the chassis are the socket for the grid tank, grid loading resistors, and the variable condenser for output coupling adjustment. The bias supply is the group of components in the lower center in this view. The 12.6 -volt filament transformer is mounted on the left chassis wall and the filament transformer for the 83 rectifiers projects through the chassis near the center. The latter transformer is a homewound job, but transformers of similar ratings are available ready-made.

Fig. 12-22-Power and bias supplies. Capacitance values are in $\mu \mathrm{f}$. unless otherwise specified.
T_{1} - Filament transformer, 12.6 volts, 2 amp.
T_{2} - Rectifier filament transformer, three 5 -volt 3 -amp. secondaries.
T3-600.volt 200 -ma. re-placement-type transformer. Filament windings not used except for pilot light.
T_{4} - Filament transform er, 6.3 volts, 1 amp.
the 'scope, provided the two-tone test can be used and there is independent assurance that the distortion in the exciter is low. Simply maintain the driving voltage just at the grid-current point and adjust the antenna coupling, keeping the plate circuit at resonance, for about 180 ma . plate current. The offresonance plate current should be only 10 ma . or so larger than the "intune" current. Some sort of r.f. output indicator, such as an antenna ammeter, is helpful; theoutput should start to drop immediately on even a slight reduction in driving voltage. If the output tends to stay up when the driving voltage is cut slightly, the amplifier is saturating on the peaks and is not loaded heavily enough. The trick is to get the loading just right so that the maximum output is obtained (too-heavy loading will reduce both the output and plate efficiency) at exactly the point where a bit more drive will cause flattening.

Although the usual constructional practice of shielded wiring with disk by-passes was followed as a matter of course, the amplifier was not shielded for TVI. Shielding is not necessary for 75 meters, but is likely to be required for 14-Nc. - and perhaps 7-Mc. - operation in localities where a harmonic falls directly in a channel having a weak TV signal. Class $A 3_{1}$ operation does help - it is only necessary to look at the TV screen while the driving voltage is nudged into the grid-current region to see that - but it is not a complete panacea for the tough cases. Should shielding be needed, it should not be much of a constructional problem to add it around the r.f. section, both top and bottom.

The amplifier should be neutralized by the usual method of adjusting for minimum r.f. in the plate circuit with r.f. voltage on the grids but with plate and screen voltages off. A sensitive indicator such as a crystal detector and lowrange milliammeter should be used; they may be

connected to the r.f. output terminals for convenience. C_{3} and C_{4} are adjusted by bending the metal tabs from which they are constructed, to vary the spacing. This should be done with an insulating tool; one can easily be devised in such a way as to permit getting at the plates in the particular layout used.

Fig. 12.23-Construction of the plug-in grid tanks. The inductances of the two coils are adjusted for an input impedance of 75 ohms at the center of the band. Final pruning of the grid coil can be by adjusting the spacing of an end turn as in this 7-Mc. assembly. The coil form is mounted on a thin insulating strip which is mounted on the studs at the sides of the plug-in base.

Transmission Lines

The place where r.f. power is generated is very frequently not the place where it is to be utilized. A transmitter and its antemat are a good example: The antenna, to radiate well, should be high above the ground and should be kept clear of trees, buildings and other objects that might ahsorb energy, but the transmitter itself is most conveniently installed indoors where it is readily acessible. There are many other instances where power must be delivered from one point to another.

The means by which power is transported
from point to point is the r.f. transmission line. At radio frequencies a line exhibits entirely different characteristies than it does at commercial power frequencies. This is bectuse the speed at which electrical energy travels, while tremendously high as compared with mechanical motion, is not infinite. The peculiarities of r.f. transmission lines result from the fare that a time interval comparable with an r.f. evele must elapse before energy leaving one point in the circuit can reach another just a short distance away.

Operating Principles

Suppose we have a hattery and a pair of parallel wires extending to a very great distance. At the moment the battery is comeded to the wires, electrons in the wire near the positive terminal will be attracted to the battery, and the same number of electrons in the wire near the negative battery terminal will be repelled outward along the wire.

Thus a current flows in each wive noar the battery at the instant the batery is connected. However, a definite time interval will elapse before these currents are evident at a distane from the batery. The time interval may be very smatl. For example, one-millionth of a second (one microsecond) alter the connection is made the currents in the wires will have traveled 300 meters, or nearly 1000 feet, from the hattery terminals.

The current is in the nature of a charging current, flowing to charge the eapacitance between the two wires. But unlike an ordinary condenser, the conductors of this "line:ur" condenser have appreciable inductance. In fart,

Fiq. $13-1$ - Fquivalent of a transmission line in lumped circuit constants.
we may think of the line as being composed of a whole series of small inductances and capacitances connected as shown in Fig. 13-1, where each coil is the inductance of a very short section of one wire and each condenser is the capacitance between two such short sections.

Characteristic Impedance

An infinitely-long chain of coils and condensers connected as in lig. 13-1, where ewh L is the same as all others and all the Cs have the
same value, has an important property. To an plectrical impulse applied at one end, the combination appears to have an impedance - called the characteristic impedance or surge impedance - that is approximately equal to $\sqrt{L / \mathrm{c}}$, where L and C are the inductance and capacitance per unit length. This impedance is purely resistive.

In defining the characteristic impedance as $\sqrt{ } / /^{\prime}$, it is assumed that the conductors have no inherent resistance - that is, there is no $I^{2} R$ liss in them - and that there is no power lowe in the dielectric surrounding the conductors. In other words, it is assumed there is no power loss in or from the line no matter how great its length. This does not seem consistent with calling the characteristic impedance a pure resistance, which implies that the power supplied is all dissipated in the line. But in an in-finitely-long line the ffect, so far as the soure of power is concerned, is exactly the same as though the power were dissipated in a resistance, beanse the power leaves the source and travels out ward forever along the line.

The charatereristic impedance determines the amount of current that can fow when a given voltage is applied to an infinitely-long line, in exartly the same way that a definite value of actual resistance limits current flow when a given voltage is applied.
The inductance and capacitance per unit length of line depend upon the size of the conductors and the sparing between them. The closer the 1 wo conductors and the greater their diameter, the higher the capacitance and the lower the indurlance. A line with large conductors closely spaced will have low impedance, while one with small conductors widely spaced will have relatively high impedance.

"Matched" Lines

Actual transmission lines do not extend to infinity but have a definite length and are connected to, or terminate in, a load at the "output"
end, or end to which the power is delivered. If the load is a pure resistance of a value equal to the characteristic impedance of the line, the current trave!ing along the line to the load does not find conditions changed in the least when it meets the load; in fact, the load just looks like still more transmission line of the same characteristic impedance. Consequently, connecting such a load to a short transmission line allows the current to travel in exactly the same fashion as it would on an infinitely-long line.

In other words, a short line terminated in a purely-resistive load equal to the characteristic impedance of the line acts just as though it were infinitely long. Such a line is said to be matched. In a matched transmission line, power travels outward along the line from the source until it reaches the load, where it is completely absorbed.

R.F. on Lines

The discussion above, although based on directcurrent flow from a battery, also holds when an r r.f. voltage is applied to the line. The difference is that the alternating voltage causes the amplitude of the current at the input terminals of the line to vary with the voltage, and the direction of current flow also periodically reverses when the polarity of the applied voltage reverses. In the time of one cycle the energy will travel a distance of one wavelength along the line wires. The current at a given instant at any point along the line is the result of a voltage that was applied at some earlier instant at the input terminals. Hence the instantaneous amplitude of the current is different at all points in a one-wavelength section of line; in fact, the current flows in opposite directions in the same wire in adjacent half-wavelength sections. However, at any given point along the line the current goes through similar variations with time that the current at the input terminals did.

The result of all this is that the current (and voltage) travels along the wire as a series of waves having a length equal to the velocity of travel divided by the frequency of the a.c. voltage. On an infinitely-long line, or one properly matched at the load, an ammeter inserted anywhere in the line will show the same current, since the ammeter averages out the variations in current during a cycle. It is only when the !ine is not properly matched that the wave motion becomes apparent. This is discussed in the next section.

STANDING WAVES

In the infinitely-long line (or its matched counterpart) the impedance is the same at any point on the line because the ratio of voltage to current is always the same. However, the impedance at the end of the line in Fig. 13-2 is zero - or at least ext remely small - because the line is short-circuited at the end. The outgoing power, on meet ing the short-circuit, reverses its direction of flow and goes back along the transmission line toward the input end. There is a large current in the short-circuit, but substantially no voltage
across the line at this point. We now have a voltage and current represent ing the power going outward toward the short-circuit, and a second voltage and current representing the reflected power traveling back toward the source.

The reflected current travels at the same speed as the outgoing current, so its instantaneous value will te different at every point along the line, in the distance represented by the time of one cyele. At some prints along the line the phase of the outgoing and reflected currents will be such that the currents cancel each other while at others the amplitude will be doubled. At inbetween points the amplitude is between these two extremes. The points at which the currents are is and out of phase depend only on the time required for them to travel and so depend only on the distance along the line from the point of reflection.

In the short-circuit at the end of the line the two current components are in phase and the total current is large. At a distance of one-half wavelength back along the line from the shortcircuit the outgoing and reflected components will again be in phase and the resultant current will again have its maximum value. This is also

Fig. 13-2 - Standing waves of voltage and current along short-circuited transmission line.
true at any point that is a multiple of a halfwavelength from the short-circuited end of the line.

The outgoing and reflected currents will cancel at a point one-quarter wavelength, along the line, from the short-circuit. At this point, then, the current will be zero. It will also be zero at all points that are an odd multiple of one-quarter wavelength from the short-circuit.

If the current along the line is measured at successive points with an anmeter, it will he found to vary about as shown in Fig. 13-2I3. The same result would be oltatined by measuring the current in either wire, since the ammeter camnot measure phase. However, if the phase could be checked, it would be found that in each successive half-wavelength section of the line the currents at any given instant are flowing in opposite directions, as indicated by the solid line in F'ig. 13-2C. Furthermore, the current in the second wire is flowing in the opposite direction to the current
in the adjacent section of the first wire. This is indicated by the broken curve in Fig. 13-2C. The variations in current intensity along the transmission line are referred to as standing waves. The point of maximum line current is called a current loop or current antinode and the point of minimum line current a current node.

Voltage Relationships

Since the end of the line is short-circuited, the voltage at that point has to be zero. This can only be so if the voltage in the outgoing wave is met, at the end of the line, by a reflccted voltage of equal amplitude and opposite polarity. In other words, the phase of the voltage wave is reversed when reflection takes place from the short-circuit. This reversal is equivalent to an extra half-cycle or half-wavelength of travel. As a result, the outgoing and returning voltages are in phase a quarter wavelength from the end of the line, and again out of phase a half-wavelength from the end. The standing waves of voltage, shown at D in Fig. 13-2, are therefore displaced by one-quarter wavelength from the standing waves of current. The drawing at Fi shows the voltages on both wires when phase is taken into account. The polarity of the voltage on each wire reverses in each half-wavelength section of transmission line. A voltage maximum is called a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-circuited instead of short-circuited, there can be no current at the end of the line but a large voltage can exist. Again the outgoing power is reflected back toward the source. In this case, the outgoing and reflected components of current must be equal and opposite in phase in order for the total current at the end of the line to be zero. The outgoing and reflected components of voltage are in phase and add together. The result is that we again have standing waves, but the conditions are reversed as compared with a short-circuited line. Fig. 13-3 shows the open-circuited line case.

Fig. 13-3 - Standing waves of current and voltage along an open-circuited transmission line.

Fig. 1.3 -4 - Standing waves on a transmission line terminated in a resistive load.

Lines Terminated in Resistive Load

Fig. 13-4 shows a line terminated in a resistive load. In this case at least part of the outgoing power is absorbed in the load, and so is not available to be reflected back toward the source. Because only part of the power is reflected, the reflected components of voltage and current do not have the same magnitude as the outgoing components. Therefore neither voltage nor current cancel completely at any point along the line. However, the speed at which the outgoing and reflected components travel is not affected by their amplitude, so the phase relationships are similar to those in open- or short-circuited lines.

It was pointed out earlier that if the load resistance, Z_{r}, is equal to the characteristic impedance, Z_{0}, of the line all the power is absorbed! in the load. In such a case there is no reflected power and therefore no standing waves of current and voltage. This is a special case that represents the change-over point between "short-circuited" and "open-circuited" lines. If Z_{r} is less than Z_{0}, the current is largest at the load, while if Z_{r} is greater than Z_{0} the voltage is largest at the load. The two conditions are shown at B and C, respectively, in Fig. 13-4,
The resistive termination is an important practical case. The termination is seldom an actual resistor, the most common terminations being resonant circuits or resonant antenna systems, both of which have essentially resistive impedances. If the load is reactive as well as resistive, the operation of the line resembles that shown in Fig. 13-4, but the presence of reactance in the load causes two modifications: The loops and nulls are shifted toward or away from the load; and the amount of power reflected back toward the source is increased, as compared with the amount reflected by a purely resistive load of the same total impedance. Both effects become more pronounced as the ratio of reactance to resistance in the load is made larger.

Standing-Wave Ratio

The ratio of maximum current to minimum current along a line, Fig, 13-5, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum voltage. It is a measure of the mismatch between the load and the line, and is equal to 1 when the line is per-
fectly matched. (In that case the "maximum" and "minimum" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely-resistive load, the standing-wave ratio is

$$
\begin{equation*}
\text { S.W.R. }=\frac{Z_{\mathrm{r}}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{r}}} \tag{13-A}
\end{equation*}
$$

Where S.W.R. = Standing-wave ratio
$Z_{\mathrm{r}}=$ Impedance of load (must be pure resistance)
$Z_{0}=$ Characteristic impedance of line

Example: A line having a characteristic impedance of 300 ohms is terminated in a resistive load of 25 ohms. The s.w.r. is

$$
\text { S.W.R. }=\frac{Z_{0}}{Z_{t}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{r} or Z_{0}, in the numerator of the fraction so that the s.w.r. will be expressed by a number larger than 1.

It is easier to measure the standing-wave ratio than some of the other quantities (such as the

Fig. 13.5- Measurement of standing-wave ratio. In this drawing, $I_{\text {max }}$ is 1.5 and I_{min} is 0.5 , so the s.w.r. $=I_{\text {max }} / I_{\text {min }}=1.5 / 0.5=3$ to 1 .
impedance of an antenna) that enter into trans-mission-line computations. Consequently, the s.w.r. is a convenient basis for work with lines. The higher the s.w.r., the greater the mismatch between line and load. In practical lines, the power loss in the line itself increases with the s.w.r.

INPUT IMPEDANCE

The input impedance of a transmission line is the impedance seen looking into the sending-end or input terminals; it is the impedance into which the source of power must work when the line is connected. If the load is perfectly matched to the line the line appears to be infinitely long, as stated earlier, and the input impedance is simply the characteristic impedance of the line itself. However, if there are standing waves this is no longer true; the input impedance may have a wide range of values.

This can be understood by referring to Figs. 13-2, 13-3, or 13-4. If the line length is such that standing waves cause the voltage at the input
terminals to be high and the current low, then the input impedance is higher than the Z_{0} of the line, since impedance is simply the ratio of voltage to current. Conversely, low voltage and high current at the input terminals mean that the input impedance is lower than the line \boldsymbol{Z}_{0}. Comparison of the three drawings also shows that the range of input impedance values that may be encountered is greater when the far end of the line is open- or short-circuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input impedance values when the line length is varied.

In addition to the variation in the absolute value of the input impedance with line length, the presence of standing waves also causes the input impedance to contain both reactance and resistance, even though the load itself may be a pure resistance. The only exceptions to this occur at the exact current loops or nodes, at which points the input impedance is a pure resistance. These are the only points at which the outgoing and reflected voltages and currents are exactly in phase: At all other distances along the line the current either leads or lags behind the voltage and the effect is exactly the same as though a capacitance or inductance were part of the input impedance of the line.

The input impedance can be represented by either a resistance and a capacitance, or by a resistance and an inductance, as shown in Fig. 136. Whether the impedance is inductive or capacitive depends on the characteristics of the load and the length of the line. It is possible to represent the equivalent circuit by resistance and reactance either in series or parallel, so long as the total impedance and phase angle are the same in either case. Meeting this last condition requires different values of resistance and reactance in the series case than in the parallel case.

The magnitude and character of the input impedance is quite important, since it determines the method by which the power source must be coupled to the line. The calculation of input impedance is rather complicated and its measurement is not feasible with ordinary equipment. Fortunately, in amateur work, it is unnecessary either to calculate or measure it. The proper coupling can be achieved by relatively simple methods described later in this chapter.

Unterminated Lines

The input impedance of a short-sircuited or open-circuited line not an exact multiple of onequarter wavelength long is practically a pure reactance. This is because there is very little power lost in the line. Such lines are frequently used as "linear" inductances and capacitances.

If a shorted line is less than a quarter wave long, as at X in Fig. 13-2, it will have inductive reactance. The reactance increases with the line length up to the quarter-wave point. Beyond that, as at Y, the reactance is capacitive, high near the quarter-wave point and becoming lower as the half-wave point is approached. It then alternates between inductive and capacitive in successive
quarter-wave sections. Just the reverse is true of the open-circuited line.

At exact multiples of a quarter wavelength the impedance is purely resistive. It is apparent, from examination of 13 and 1) in Fig. 1:3-2, that at points that are multiple of a half-wavelength i. e., $1 / 2,1,11 / 2$ wa velengths, ete. -from the shortcircuited end of the line the current and voltage
(A)

(B)

Fig. 13-6-Scries and parallel equivalents of a line whose input impedance has both reactive and resistive components. 'Iher stries and parallel equivalents do not have the same values; e.g., in 1.1 . deres not equal L^{\prime} and R does not equal R^{\prime}.
have the same values that they do at the shortcirruit. In other words, if the line were an exart multiple of a half-wavelength long the generator or source of power would "look into" a shortcircuit. On the other hand, at points that are an odd multiple of a quarter wavelength - i.e., $1 / 4$, $3 / 4,11 / 4$, etc. - from the short-circuit the voltage is maximum and the current is zero. Since $Z=$ F^{\prime} / I, the impedaner at these points is theoretically infinite. (Actually it is very high, but not infinite. This is because the current does not actually go to zero when there are losses in the line. Losses are always present, but usually are small.)

Impedance Transformation

The fact that the input impedince of a line depends on the s.w.r. and line length can be used to advantage when it is necessary to transform a given impedance into another value.
Study of ligg, 13-4 will show that, just as in the open- and short-circuited cases, if the line is onehalf wavelength long the voltage and current are exactly the same at the input terminats as they are at the load. This is also true of lengths that are integral multiples of a half wavelength. It is also true for all values of s.w.r. Hence the input impedance of any line, no mater what its Z_{0}, that is a multiple of a half-wavelength long is exactly the same as the load impedance. Such a line can be used to transfer the impodance to a new location without changing its value.

When the line is a quarter wavelength long, or an odd multiple of a quarter wavelength, the load impedance is "inverted." That is, if the current is low and the voltage is high at the load, the input impedance will be such as to require high
current and low voltage. The relationship between the load impedance and input impedance is given by:

$$
\begin{equation*}
Z_{\mathrm{s}}=\frac{Z_{0}{ }^{2}}{Z_{\mathrm{r}}} \tag{13-B}
\end{equation*}
$$

where $\boldsymbol{Z}_{s}=$ Impedance looking into line (line length an odd multiple of onequarter wavelength)
$Z_{\mathrm{r}}=$ Impedance of load (must be pure resistance)
$\boldsymbol{Z}_{0}=$ ('haracteristic impedance of line
Example: A quarter-wavelength line having a characteristic impertance of 500 ohms is terminated in a resistive load of 75 ohms. The impedance looking into the input or sending end of the line is

$$
Z=\frac{Z 0^{2}}{Z_{\mathrm{r}}}=\frac{(500)^{2}}{75}=\frac{250,000}{75}=3333 \mathrm{ohms}
$$

If the formula above is rearranged, we have

$$
\begin{equation*}
Z_{0}=\sqrt{Z_{\mathrm{s}} Z_{\mathrm{r}}} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of impedance that we wish to "match," we ean do so if we connect them together by a quarter-wave transmission line having a characteristic impedance equal to the square root of their product. A quarter-wave line, in other words, has the characteristics of a transformer.

Resonant and Nonresonant Lines

Because the input impedance of a line operating with a high s.w.r. is critically dependent on the line length, and furthermore is usually reactive as well as resistive, special tuning mains are required for effective power transfer from the source to the line. Lines operated in this way are commonly called "tuned" or "resonant" lines. On the other hand, if the s.w.r. is low the input impedance is close to the Z_{0} of the line and does not vary a great deal with the line length. Such lines are called "ffat," or "untuned," or "nonresonant."

There is no sharp line of demarcation between tuned and unt uned lines. If the s.w.r. is below 1.5 to 1 the line is essentially flat, since the same coupling method will work with all line lengths. If the s.w.r. is above 3 or 4 to 1 the type of coupling system, and its adjustment, will depend on the line length and such lines fall into the "tuned" category.

It is always advantageous to make the s.w.r. as low as possible. "Tuning the line" hecomes necessary only when a considerable mismatch between the load and the line has to be tolerated. The most important practical example of this is when a single antenna is operated on several harmonically-related frequencies, in which case the antemat impedance will have widely-different values on different harmonics.

RADIATION

Whenevor a wire carrios altornating current the electromagnetic fields travel away into space with the velocity of light. At power-line frequencies the fich that "grows" when the current is
increasing has plenty of time to return or "collapse" about the conductor when the current is decreasing, because the alternations are so slow. liut at radio frequencies fields that travel only a relatively short distance do not have time to get back to the conductor before the next cycle commences. The consequence is that some of the electromagnetic energy is prevented from being restored to the conductor; in other words, energy is radiated into space in the form of electromagnetic waves.

The amount of energy radiated dejends, among other things, on the length of the conductor in relation to the frequency or wavelength of the r.f. current. If the conductor is very short compared to the wavelength the energy radiated (for a given current) will be small. llowever, a transmission line used to feed power to an antenna is not short; in fact, it is almost always an appreciable fraction of a wavelength long and may have a length of several wavelengths.

The lines previously considered have consisted of two parallel conductors of the same diameter. Provided there is nothing in the system to destroy symmetry, at every point along the line the current in one conductor has the same intensity as the current in the other conductor at that point, but the currents flow in opposite directions. This

Was shown in Figs. 13-2C and 13-3C. It means that the fields set up about the two wires have the same intensity, but opposite directions. The consequence is that the total field set up about such a transmission line is zero; the two fields "caneel out." Hence no energy is radiated.

Actually, the fields do not completely cancel out because for them to do so the two conductors would have to occupy the same space, whereas they are slightly separated. However, the cancellation is substantially complete if the distance between the conductors is very small compared to the wavelength. Transmission line radiation will be negligible if the distance between the conductors is 0.01 wavelength or less, provided the currents in the two wires actually are balanced as described.

The amount of radiation also is proportional to the current flowing in the line. Because of the way in which the current varies along the line when there are standing waves, the effective current, for purposes of radiation, becomes greater as the s.w.r. is increased. For this reason the radiation is least when the line is flat. However, if the conductor spacing is small and the currents are balanced, the radiation from a line with even a high s.w.r. is ineonsequential. A small unbalance in the line currents is far more serious.

Practical Line Characteristics

The foregoing discussion of transmission lines has been based on a line consisting of two parallel conductors. Actually, the parallel-conductor line is but one of two general types. The other is the coaxial or concentric linc. The coaxial line consists of a conductor placed in the center of a tube. The inside surfare of the tube and the outside surface of the smaller inner conductor form the two condurting surfaces of the line.

In the coaxial line the fields are entirely inside the tube, because the tube acts as a shield to prevent them from appearing outside. This reduces radiation to the vanishing point. so far as the clectrical behavior of coasial lines is concerned, all that has previously Ireen said about the operation of parallel-conductor lines applies. There are, however, practical differences in the construction and use of parallel and coaxial lincs.

PARALLEL-CONDUCTOR LINES

A common type of parallel-conductor line used in amateur installations is one in which two wires (ordinarily No. 12 or No. 14) are supported a fixed distance apart by means of insulating rods called "spacers." The spacings used vary from two to six inches, the smaller spacings being necessary at frequencies of the order of 28 Nc. and higher so that radiation will be minimized. The construction is shown in l'ig. 13-7. Such a line is said to be air-insulated. Typical spacers are shown in Fig. 13-8. The charateristic impedance of such "open-wire" lines is between 400 and 600 ohms, depending on the wire size and spacing.

Parallel-eonductor lines also are sometimes constructed of metal tubing of a diameter of $1 / 4$ to $1 / 2$ inch. This reduces the characteristic impedance

Fig. 13.7- Typical construction of open-wire line. "lhe line conductor fits in a groove in the end of the spacer, and is held in place by a tie-wire anchored in a hole near the groove.
of the line. Such lines are mostly used as quarterwave transformers, when different values of impedance are to be matched.

Prefabricated parallel-conductor line with air insulation developed for television reception can be used in transmitting applications. This line consists of two conductors separated one-half to one inch by molded-on spacers. The characteristic impedance is 300 to 450 ohms, depending on the wire size and spacing.

A convenient type of manufactured line is one in which the parallel conductors are imbedded in low-loss insulating material (polyethylene). It is commonly used as a TV lead-in and has a charae-

Fig. 13.8-Typical manufartured transmission lines and spacers.
teristic impedance of 300 ohms. It is sold under various names, the most common of which is "Twin-Lead." This type of line has the advantages of light weight, close and uniform conduct or spacing, flexibility and neat appearance. However, the losses in the solid dielectric are higher than in air, and dirt or moisture on the line tends to change the characteristic impedance. Moisture effects can be reduced by coating the line with silicone grease. A special form of 300 -ohm TwinLead for transmitting uses a polyethylene tube with the conductors molded diametrically opposite; the longer dielectric path in such line reduces moisture troubles.

In addition to 300 -ohm line, Twin-Lead is obtainable with a characteristic impedance of 75 ohms for transmitting purposes. Light-weight 75and 150 -ohm Twin-Lead also is available.

Characteristic Impedance

The characteristic impedance of an air-insulated parallel-conductor line is given by:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Center-to-center distance between conductors
$a=$ Radius of conductor (in same units as b)
It does not matter what units are used for a and b solong as they are the same units. Both quantities may be measured in centimeters, inches, etc. Since it is necessary to have a table of common logarithms to solve practical problems, the solution is given in graphical form in lig. 13-9 for a number of common conductor sizes.

In solid-dielectric parallel-conductor lines such as Twin-Iead the characteristic impedance cannot be calculated readily, because part of the electric field is in air as well as in the dielectric.

Unbalance in Parallel-Conductor Lines

When installing parallel-conductor lines care should be taken to avoid introducing electrical unbalance into the system. If for some reason the current in one conductor is higher than in the
other, or if the currents in the two wires are not exactly out of phase with each other, the electromagnetic fields will not cancel eompletely and a considerable amount of power may be radiated by the line.

Maintaining good line balance requires, first of all, a balanced load at its end. For this reason the antenna should be fed, whenever possible, at a point where each conductor "sees" exactly the same thing. Vsually this means that the antenna system should be fed at its electrical center. EVen though the antenna appears to be symmetrical, physically, it can be unbalanced electrically if the part connected to one of the line conductors is inadvertently coupled to something (such as house wiring or a metal pole or roof) that is not duplicated on the other part of the antenna. Every effort should be made to keep the antenna as far as possible from other wiring or sizable

Fig. 13-9 - Chart showing the characteristic impedance of spaced-conductor parallel transmission lines with air dielectric. Tubing sizes given are for outside diameters.
metallic objects. The transmission line itself will cause some unbalance if it is not brought away from the antenna at right angles to it for a distance of at least a quarter wavelength.

In installing the line conductors take care to see that they are kept away from metal. The minimum separation between either conductor and all other wiring should be at least four or five times the conductor spacing. The shunt capacitance introduced by close proximity to metallic objects can drain off enough current (to ground) to unbalance the line currents, resulting in increased radiation. A shunt capacitance of this sort also constitutes a reactive load on the line, causing an impedance "bump" that will prevent making the line actually flat.

COAXIAL LINES

The most common form of coaxial line consists of either a solid or stranded-wire inner conductor surrounded by polyethylene dielectric. Copper braid is woven over the dielectric to form the
outer conductor, and a waterproof vinyl covering is placed on top of the braid. This cable is made in a number of different diameters. It is moderately flexible, and so is convenient to install. Some different types are shown in Fig. 13-8. This solid coaxial cable is commonly available in impedances approximating 50 and 70 ohms.

Air-insulated coaxial lines have lower losses than the solid-dielectric type, but are less used in amateur work because they are expensive and difficult to install as compared with the flexible cable. The common type of air-insulated coaxial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube by means of insulating "beads" placed at regular intervals.

Characteristic Impedance

The characteristic impedance of an air-insulated coaxial line is given by the formula

$$
\begin{equation*}
Z_{0}=138 \log \frac{b}{a} \tag{13-E}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Inside diameter of outer conductor
$a=$ Outside diameter of inner conductor (in same units as b)
Curves for typical conductor sizes are given in Fig. 13-10.

The formula for coaxial lines is approximately correct for lines in which bead spacers are used, provided the beads are not too closely spaced. When the line is filled with a solid dielectric, the characteristic impedance as given by the chart should be multiplied by $1 / \sqrt{K}$, where K is the dielectric constant of the material.

ELECTRICAL LENGTH

In the discussion of line operation earlier in this chapter it was assumed that currents traveled along the conductors at the speed of light. Actually, the velocity is somewhat less, the reason being that electromagnetic fields travel more

Fig. 13.10-Chart showing characteristic impedance of various air-insulated concentric lines.

TABLE 13-I Transmission-Line Data				
Type	Description or 'lype Number	Charac. teristic Imped. ance	Velocity Factor	Capacitance per foot; $\mu \mu \mathrm{f}$.
Coaxial	Air-insulated 1KG.8/U RG-58/U 1RG-11/U RG-59/U	$50-100$ 53 53 75 73	$\begin{aligned} & 0.851 \\ & 0.66 \\ & 0.66 \\ & 0.66 \\ & 0.66 \end{aligned}$	$\begin{aligned} & 29.5 \\ & 28.5 \\ & 20.5 \\ & 21.0 \end{aligned}$
Parallel. Conduc. tor	Air-insulated $14-080^{3}$ $14-023^{3}$ 14-0793 $14-056^{3}$ $14-076^{3}$ 14-0223	$\begin{gathered} 200-600 \\ 75 \\ 75 \\ 150 \\ 300 \\ 300 \\ 300 \end{gathered}$	0.975^{2} 0.68 0.71 0.77 0.82 0.84 0.85	$\begin{array}{r} 19.0 \\ 20.0 \\ 10.0 \\ 5.8 \\ 3.9 \\ 3.0 \end{array}$

${ }^{1}$ Average figure for small-diameter lines with ceramic beads.
${ }^{2}$ Average figure for lines insulated with ceramic spacers at intervals of a few feet.
${ }^{3}$ Amphenol type numbers and data. Line similar to 14-056 is made by several manufacturers, but rated loss may differ from that given in Fig. 13-11. Types 14-023, 14-076, and 14-022 are made for transmitting applications.
slowly in material dielectrics than they do in free space. In air the velocity is practically the same as in empty space, but a practical line always has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down; the currents travel a shorter distance in the time of one cycle than they do in space, and so the wavelength along the line is less than the wavelength would be in free space at the same frequency.

Whenever reference is made to a line as being so many wavelengths (such as a "half-wavelength" or "quarter wavelength") long, it is to be understood that the electrical length of the line is meant. Its actual physical length as measured by a tape always will be somewhat less. The physical length corresponding to an electrical wavelength is given by

$$
\begin{equation*}
\text { Length in } f e e t=\frac{984}{f} \cdot V \tag{13-F}
\end{equation*}
$$

where $f=$ Frequency in megacycles
$V=$ Velocity factor
The velocity factor is the ratio of the actual velocity along the line to the velocity in free space. Values of V for several common types of lines are given in Table 13-I.

> Example: A 75-foot length of 300 -ohm TwinLead is used to carry power to an antenna at a frequency of 7150 kc . From Table 13-I, V is 0.82 . At this frequency (7.15 Mc .) a wavelength is

$$
\begin{gathered}
\text { Length }(\mathrm{feet})=\frac{984}{f} . V=\frac{984}{7.15} \times 0.82 \\
=137.6 \times 0.82=112.8 \mathrm{ft}
\end{gathered}
$$

The line length is therefore $75 / 112.8=0.665$ wavelength.

Because a quarter-wavelength line is frequently used as a linear transformer, it is con-

Fig. 13.11 - Attenuation data for common types of transmission lines. Curve A is the mominal attenuation of 600 -nhm open-wire linewith No.l2conductors, not inchuding dielectric loss in spacers nor possible radiation losses. Alditional line data are given in T'able I:3-1.
venient to ealeulate the length of a quarter-wave line directly. The formula is

$$
\begin{equation*}
\text { Lerugth }(\text { feet })=\frac{246}{f} \cdot V \tag{13-G}
\end{equation*}
$$

where the symbols have the same meaning as above.

LOSSES IN TRANSMISSION LINES

There are three ways by which power may be lost in a transmission line: ber radiation, be heating of the conductors (I " R loss), and by heating of the dielectrie, if any: There is no apprediable radiation loss from a coaxial line, but radiation from a parallel-conductor line may exered the heat losses if the line is unbatanced. Since ratiation losses cannot readily be estimated or measured, the following discussion is based only on eonductor and dielectric losees.

Heat losses in both the ronductor and the dielectric increase with frequeney. ('onductor losses also are greater the lower the characteristic imperance of the line, beecause a higher current flows in a low-impedance line for a given power input. The converse is true of dielectrie lossess beatuse these increase with the voltage, which is greater on high-impedance lines. The dielectric loss in arr-insulated lines is negligible (the only loss is in the insulating spacers) and such lines oproate at high efficiency when radiation losses are low.

It is convenient to express the loss in a transmission line in decibeds per unit length, sinee the loss in (db. is directly proportional to the line length. Losses in various types of lines operated without standing waves (that is, terminated in a resistive load equal to the characteristic imped-
ance of the line) are given in graphical form in IFig. 13-11. In these curves the radiation loss is assumed to be negligible.

When there are standing waves on the line the power loss increases as shown in lig. 1:3-12. Whether or not the inerease in loss is serious depends on what the original loss would have been if the line were perfeetly matched. If the loss with perfert matehing is very low, a large s.w.t. will not greatly affect the efficiency of the line - i.c.,

Fig. I3.12 - Effect of standing-wave ratio on line loss. The ordinates give the additional loss in decibels for the loss, under perfectly-matehed conditions, shown on the horizontal scale.
the ratio of the power delivered to the load to the power put into the line.

Example: A 150 -foot length of RG-11/U cable is operating at 7 Mc . with a 5 -to-1 s.w.r. If perfectly matched, the loss from Fig. 13-11 would be $1.5 \times 0.4=0.6 \mathrm{db}$. From Fig. 13-12 the additional loss because of the s.w.r. is 0.73 db . The total loss is therefore $0.6+0.73=1.33 \mathrm{db}$.
An appreciable s.w.r. on a solid-diclectric line may result in excessive loss of power at the higher frequencies. Such lines, whether of the
parallel-conductor or coaxial type, should be operated as nearly flat as possible, particularly when the line length is more than 50 feet or so. As shown by Fig. 13-12, the increase in line loss is not too scrious so long as the s.w.r. is below 2 to 1 , but inereases rapidly when the s.w.r. rises above 3 to 1 . Tuned transmission lines such as are used with multiband antennas always should be air-insulated, in the interests of highest effieieney.

Matching the Load to the Line

The load for a transmission line may be any device capable of dissipating r.f. power. When lines are used for transmitting applications the most common type of load is an anterna, but there are also practical cases where the grid circuit of a power amplifier may represent the load. When a transmission line is conneeted between an antenna and a receiver, the reeciver input eireuit (not the antenna) is the load, because the power taken from a passing wave is delivered to the receiver.

Whatever the application, the conditions existing at the load, and only the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the characteristie impedane of the line, there will the no standing waves. If the load is not purely resistive, and/or is not equal to the line Z_{0}, there will be standing waves. No adjustments that can be made at the input end of the line can change the s.w.r., nor is it affeeted by changing the line length.

Only in a few special cases is the load inherently of the proper value to mateh a practicable transmission line. In all other cases it is necessary either to operate with a misnateh and accept the s.w.r. that results, or else to take steps to bring about a proper mateh between the line and load by means of transformers or similar devices. Impedance-matehing transformers may take a variety of physical forms, depending on the circumstances.

Note that it is essential, if the s.w.r. is to be made as low as possible, that the load at the point of connection to the transmission line be purely resistive. In general, this requires that the load be tuned to resonance. If the load itself is not resonant at the operating frequency the tuning sometimes can be aceomplished in the matching system.

the antenna as a load

Livery antenna system, no matter what its physical form, will have a definite value of impedance at the point where the line is to be connected. The problem is to transform this antenna input impedance to the proper value to match the line. In this respeet there is no one "best" type of line for a particular antema system, hecause it is possible to transform impedances in
any desired ratio. Consequently, any type of line may be used with any type of antenna. There are frequently reasons other than impedance matehing that dietate the use of one type of line in preference to another, such as case of installation, inherent loss in the line, and so on, but these are not considered in this section.

Although the input impedance of an antenna system is seldom known very aceurately, it is often possible to make a reasonably close estimate of its value. The information in the chapter on antennas can be used as a guide.

Matching circuits may be constructed using ordinary coils and condensers, but are not used very extensively because they must be supported at the antenna and must be weatherprofed. The sustems to be deseribed use linear transformers.

The Quarter-Wave Transformer or "Q' Section

As described earlier in this chapter, a quarterwave transmission lime may be used as an impedance transformer. Knowing the antenna impedance and the characteristic impedance of the

Fig. 1.3-1.3- " $\mathbf{Q}^{\mathbf{"}}$ matching section, a quarter-wave impedance transformer.
transmission line to be matehed, the required characteristic impedance of a matching section such as is shown in fig. 13-1:3 is

$$
Z=\sqrt{Z_{1} Z_{0}}
$$

where Z_{1} is the antenna impedance and Z_{0} is the eharacteristic impedance of the line to which it is to be matched.

> Example: To match a 600 -ohm line to an antenna presenting a $\overline{2}$-ohm load, the quarterwave matching section would require a characteristic imperlance of $\sqrt{32 \times 600}=\sqrt{43,200}$ $=208$ ohms.

The spacings between conductors of various sizes of tubing and wire for different surge impedances are given in graphical form in lig. 1:3-9. (With
$1 / 2$-inch tubing, the spacing in the example above should be 1.5 inches for an impedance of 208 ohms.)

The length of the quarter-wave matching section is given by Equation 13-G.

The antenna must be resonant at the operating frequency. Setting the intenna length by formula is amply accurate with single-wire antennas, but in other systems, particularly close-spaced arrays, the antenna should he adjusted to resonance before the matching section is connected.

When the antenna input impedance is not known accurately, it is advisable to construct the matching section so that the spacing between conductors can be changed. The spacing them may be adjusted to give the lowest possible s.w.r. on the transmission line.

Stub Matching

When a transmission line is not matehed by the load, the impedance looking into the line toward the load varies with the distance from the load, as discussed earlier in this chapter. (onsidering the

Fig. 13-14- Matching the antenna to the line by means of a stut, Y. Curves for determining the lengths X and y are given in figs. 13-1.5 and 13-16, for the case where the line, section X and section Y all have the same characteristie impedance.
input impedance to be equivalent to a resistance in paralled with a reactance, at some distance along the line such as X in lig. 1:3-14 the resistive part of the input impedance will be equal to the Z_{0} of the line. If at this point a reactance equal to the reactive part of the input impedance, but of the opposite type, is connected across the lins, the reactances will cancel and leave only the resistive component. From this point back to the transmitter or other source of energy the line will be matehed.

The reactances used for matching in this way are usually linear reactances - sections of transmission line - called stubs. Stubs maly be open or closed, depending on whether the free end is left open or is short-circuited, according to the type of reartance required in a particular case. The type and length of stub, as well as the point at which it should be attached to the line, can be found without any knowledge of the antenna input impedance, providing that the s.w.r. on the line can be measured hefore the stub is attached, and providing that the position of a current node (voltage loop) can be determined under the same conditions.

When the s.w.r. and the position of a current node are known Figs. 13-15 and 13-16 give the

Fig. 13.15 - Craph for determining position and length of a shorted stub. Dimensions may be converted to linear units after values have been taken from the graph.
stub information necessary for impedance matching. Stub lengths are given in wavelengths, which may be converted to feet with the help of Liquation 13-F. The data in Figs. 13-15 and 1:3-16 are based on the assumption that the line and stub both have the same Z_{0}.

With this system of matching it is not necessary that the antenna system be exactly resonant, since the match is based on the position of a current node along the line. The node nearest the antenna shoukd be used for determining the position of the stub so that as much as possible of the transmission line will be operating with a low s.w.r.

Folded Dipoles

A half-wave antenna element can be made to match various line impedances if it is split into two or more parallel conductors with the transmission line attached at the center of only one of them. Various forms of such "folded dipoles" are shown in Fig. 1:3-17. Currents in all conductors are in phase in a folded dipole, and since the conductor spacing is small the folded dipole is equivalent in radiating properties to an ordinary single-ronductor dipole. However, the current flowing into the input terminals of the antenna from the line is the current in one conductor only, and the entire power from the line is delivered at this value of current. This is equivalent to saying that the input impedance of the

Fig. 13-16 - Craph for determining position and length of an open stub. Dimensions may be converted to linear units after values have been taken from the graph.

Fig. 13.17 - The folded dipole, a method for using the antenna element itself to provide an impedance trans. formation.
antenna has been raised by splitting it up into two or more conductors.

If the conductors of a folded dipole are all the same diameter and the spacing between them is small, the impedance at the input terminals is appreximately equal to the input impedance of an ordinary dipole multiplied by the square of the

Fig. 13.18-Impedance transformation ratio, two. eonductor folded dipole. 'The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Curves show the ratio of the impedance (resistive) seen by the transmission line to the radiation resistance of the resonant antenna system.
number of conductors. A simple half-wave antenna has an impedance of about 70 ohms , so a two-conductor folded dipole will have an input impedance of 280 ohms, and a three-conductor dipole an impedance of 630 ohms. These values are sufficiently close for good matching to $300-$ ohm or 600 -ohm line, respectively.

Other values of impedance ratio may be obtained by making one conductor larger in diameter than the other, as shown at C in Fig. 13-17. The required ratio of conductor radii (or diameters) for a desired impedance ratio using two conductors may be obtained from Fig. 13-18. Similar information for a 3 -conductor dipole is given in lig. 1:3-19. This graph applies where all three conductors are in the same plane and the two conductors not connected to the transmission line are equally spaced from the fed conductor, and have equal diameters (this diameter need not equal the diameter of the fed conductor). The unequal-conductor method has been found particularly useful in matching to low-impedance

Fif. 13.19-Impedance transformation ratio, threeconductor folded dipole. 'The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Curves show the ratio of the impedance (resistive) seen by the transmisaion line to the radiation resistance of the resonant antenna system.
antennas such as directive arrays using closespaced parasitic elements.

The length of the antenna element should be such as to be approximately self-resonant at the median operating frequency. The length is usually not highly critical, because a folded dipole tends to have the characteristics of a "thick" antenna and thus has a relatively broad frequency-response curve.

" T "' and "Gamma" Matching Sections

The method of matching shown in Fig. $13-20 \mathrm{~A}$ is based on the fact that the impedance
wave, and may be physically shorter if the insulation between the sleeve and the line is other than air. The bazooka has no effect on the impedance relationships between the antenna and the coaxial line.

Another method that gives an equivalent effect is shown at C . Since the voltages at the antenna terminals are equal and opposite (with reference to ground), equal and opposite currents flow on the surfaces of the line and second conductor. Beyond the shorting point, in the direction of the transmitter, these currents combine to cancel out. The balancing section "looks like" an open circuit to the antenna, since it is a quarterwave parallel-conductor line shorted at the far end, and thus has no effect on the normal antenna operation. However, this is not essential to the line-balancing function of the device, and baluns of this type are sometimes made shorter than a quarter wavelength in order to provide the shunt inductive reactance required in certain types of matching systems.

Fig. 13-23D shows a third balun, in which equal and opposite voltages, balanced to ground, are taken from the inner conductors of the main transmission line and half-wave phasing section. Since the voltages at the balanced end are in series while the voltages at the unbalanced end are in parallel, there is a 4 -to- 1 step-down in impedance from the balanced to the unbalanced side. This arrangement is useful for coupling between a balanced 300 -ohm line and a 75 -ohm coaxial line, for example.

Coil Baluns

Another form of linear balun is shown in the upper drawing of Fig. 13-24. Two transmission lines of equal length having a characteristic impedance Z_{0} are connected in series at one end and in parallel at the other. At the series-connected end the lines are balanced to ground and will match an impedance equal to $2 Z_{0}$. At the parallelconnected end the lines will be matched by an impedance equal to $Z_{0} / 2$. One side may be connected to ground at the parallel-connected end, provided the two lines have a length such that, considering each line as a single wire, the balanced end is effectively decoupled from the paral-lel-connected end. This requires a length that is an odd multiple of $1 / 4$ wavelength. The impedance transformation from the series-connected end to the parallel-connected end is 4 to 1 .

A definite line length is required only for decoupling purposes, and so long as there is adequate decoupling the system will act as a 4-to-1 impedance transformer regardless of line length. If each line is wound into a coil, as in the lower drawing, the inductances so formed will act as choke coils and will tend to isolate the seriesconnected end from any ground connection that may be placed on the parallel-connected end. Balun coils made in this way will operate over a wide frequency range, since the choke inductance is not critical. The lower frequency limit is where the coils are no longer effective in isolating one line from the other; the length of line in each coil
should be about equal to a quarter wavelength at the lowest frequency to be used.

The principal application of such coils is in going from a 300 -ohm balanced line to a 75 -ohm coaxial line. This requires that the Z_{0} of the lines forming the coils be 150 ohms. Design data for winding the coils are not available; however, Equation 13-D can be used for determining the approximate wire spacing. Allowance should be made for the fact that the effective dielectric constant will be somewhat greater than 1 if the coil is wound on a form. The proximity effect between turns can be reduced by making the turn spacing somewhat larger than the conductor spacing. For operation at 3.5 Mc . and higher frequencies the length of each conductor should be about 60 feet. The conductor spacing can be adjusted to the proper value by terminating each line in a resistor equal to its characteristic impedance and adjusting the spacing until an s.w.r. bridge at the input end shows the line to be matched.

A balun of this type is simply a fixed-ratio transformer and does not make up for inaccurate

Fig. 13-24 - Baluns for matching between push-pull and single-ended circuits. The impedance ratio is 4 to 1 from the push-pull side to the unbalanced side. Coiling the lines as shown in the lower drawing increases the frequency range over which satisfactory operation is obtained.
matching elsewhere in the system. With a " $300-$ ohm" line on the balanced end, for example, a 75 -ohm coax cable will not be matched unless the 300 -ohm line actually is terminated in a 300 -ohm load.

nonradiating loads

Important practical cases of nonradiating loads for a transmission line are the grid circuit of a power amplifier (considered in the chapter on transmitters), the input circuit of a receiver, and another transmission line. This last case includes the "antenna tuner" - a misnomer because it is actually a device for coupling a transmission line to the transmitter. Because of its importance in amateur installations, the antenna coupler is considered separately in a later section of this chapter.

Coupling to a Receiver

A good match between an antenna and its transmission line does not guarantee a low stand-ing-wave ratio on the line when the antenna system is used for receiving. The s.w.r. is determined wholly by what the line "sees" at the receiver's antenna-input terminals. For minimum s.w.r. the receiver input circuit must be matched to the
line. The rated input impcdance of a recciver is a nominal value that varies over a considerable range with frequency. Methods for bringing about a proper match are discussed in the chapter on receivers.

It should be noted that if the receiver is matched to the line, then it is desirable that the antenna and line also be matched, since this results in maximum signal transfer from the antenna to the line. If the receiver is not matched to the line, the input impedance of the line (at the terminals of the antenna itself) in turn cannot match the antenna impedance. In such a case the signal input to the receiver depends on the coupling system used between the line and the receiver. For greatest signal strength the coupling system has
to be adjusted to the best compromise between receiver input impedance and load appearing at the input (antenna) end of the line. The proper adjustments must be determined by experiment.

A similar situation exists when the receiver input impedance inherently matches the linc Z_{0}, but the line and antenna are mismatched. Under these conditions perfect matching at the receiver does not result in greatest signal strength; a deliberate mismatch has to be introduced so that the maximum power will be taken from the antenna.

The most desirable condition is that in which the receiver is matched to the line Z_{0} and the line in turn is matched to the antenna. This transfers maximum power from the antenna to the receiver with the least loss in the transmission line.

Coupling the Transmitter to the Line

The type of coupling system that will be needed to transfer power adequately from the final r.f. amplifier to the transmission line depends almost entirely on the input impedance of the line. As shown earlier in this chapter, the input impedance is determined by the standing-wave ratio and the line length. The simplest case is that where the line is terminated in its characteristic impedance so that the s.w.r. is 1 to 1 and the input impedance is merely the Z_{0} of the line, regardless of line length.

Coupling systems that will deliver power into a flat line are readily designed. For all practical purposes the line can be considered to be flat if the s.w.r. is no greater than about 1.5 to 1 . That is, a coupling system designed to work into a pure resistance equal to the line Z_{0} will have enough leeway to take care of the small variations in input impedance that will occur when the line length is changed, if the s.w.r. is higher than 1 to 1 but no greater than 1.5 to 1 .

Coupling circuits suitable for coaxial lines are discussed in the chapter on transmitters. As stated in that chapter, an untuned "pick-up" or "link" coil connected directly to the transmission line should have an inductance such that the reactance at the operating frequency is approximately equal to the Z_{0} of the line, to assure adequate coupling to a line that is actually flat. While this condition is sometimes met well enough at the higher frequencies, at least for coaxial lines, by manufactured link coils, it is definitely not met when a parallel-conductor line having a Z_{0} of 300 ohms or more is used. The optimum pick-up coil for coupling to such lines will have about the same inductance as the plate tank coil itself.

Amateurs are frequently successful in coupling power into a line even though the pick-up coil is quite small and is loosely coupled to the amplifier tank coil. When such coupling is possible it is an indication that the line is operating at a fairly high s.w.r. and that the line circuit at the left.
length is such as to bring a current loop near the input end. It is customary to "prune" the line length in such cases until adequate coupling is secured - a practice that has given rise to the wholly fallacious belief, on the part of many, that pruning the line reduces the standing-wave ratio and that a flat line will load an amplifier with a small link and very loose coupling. Pruning the line accomplishes nothing if the line is actually flat because, as explained earlier in this chapter, the input impedance of a matched line is equal to its Z_{0} regardless of the line length. If the line is not flat, pruning changes the input impedance and eventually results in a value such that the link or pick-up coil is actually tuned to the operating frequency by the line, a condition that will give maximum power transfer with minimum coupling. The higher the s.w.r. the more loose the coupling can be. Although there is nothing inherently wrong with this method of adjustment, it works only when the s.w.r. is fairly high and will not work with a line that actually is flat.

Tuned Coupling

A tuned coupling circuit has the same advantages, when used with properly-terminated paral-lel-conductor lines, that were outlined in the transmitting chapter in connection with coaxial lines. The principles are the same as well, but a resistance of 300 to 600 ohms is too high to be connected in series with a tuned circuit. Consequently, parallel-tuned circuits must be used with

Fig. 13.25 - Tuned circuits for coupling to a flat parallel-conductor line. Values for C_{1} are given in Table 13-II; L_{1} is chosen to resonate with the value given at the operating frequency. In the alternative circuit the total inductance of L_{1}, L_{2} and L_{3} should equal L_{1} in the

CHAPTER 13

Set-up for Initial Adjustment

Fig. 13-26 - Watching circuits using a coaxial link, for use with parallelconduetor transmission lines. Adjustment set-up using ans w.w.r. bridge is shown in the lower drawing. Design considerations and method of adjustment are discussed in the text.
these lines. Typical arrangements are shown in Fig. 13-25. The capacitance values given in Table 13-II are for a Q of 2 and are the minimum values that should be used. The Q mar be increased, permitting full power transfer with looser coupling between the coils, by increasing the capacitance and decreasing the inductance correspondingly to maintain resonance.
The capacitance values given are the total capacitance required, so if a balanced condenser is used as indicated at C_{1} in Fig. 13-25 each section of the condenser should have twice the capacitance given. A single-ended condenser may be used if care is taken to mount it far enough away from the chassis or any other grounded conductor so that the capacitance from stator and frame to ground is small. In such case the condenser should be tuned by an insulated extension shaft.
The serics-tumed circuit shown in the transmitter chapter for coas line can be adapted to use with 75 -ohm parallel-conductor line by using two variable condensers, one in each line conductor and each having twice the capacitance specified, and removing the ground connection. This is the best arrangement for maintaining balance to ground, but if reasonable care is taken to mount the condenser as described in the preceding paragraph, a single condenser may be used. In that case the only circuit difference is that neither side of the line should be grounded.

Link Coupling

The coupling arrangements for parallel-conductor line shown in Fig. 13-25 are not entirely satisfactory from a constructional standpoint. It is usually more convenient to build the coupling apparatus separate from the final amplifier, and this leads to greater operating flexibility as well. lor lines operating at a low standing-wave ratio this is casily accomplished by connecting the amplifier and coupling circuits through a short length of transmission line or "link." When properly designed and adjusted, the tuning of both circuits will be completely independent of the length of the line connecting them. This method has the further advantage that, if the connecting line is coaxial cable, it offers an ideal spot for the inser-
value that gives a reactance equal to the Z_{0} of the connecting line at the frequency in use. An average reactance of about 60 ohms will suffice for either 52 - or 75 -ohm coaxial line.

The coupling circuit at the amplifier end is merely designed and adjusted for working into a flat coaxial line, as described in the transmitter chapter. Hence the adjustment of coupling at the output end ($L_{2} L_{3} C_{1}$) is entirely independent of the adjustment at the input end (tank circuit and L_{1}).

When the system is properly designed and operated, the circuit formed by $L_{2} L_{3} C_{1}$ acts purely as a matching device to transform the input impedance of the main transmission line to a value equal to the Z_{0} of the coaxial link.

The most satisfactory way to set up the system initially is to connect a coaxial s.w.r. bridge in the link as shown in liig. 13-26. A simple resistance bridge such as is described in the chapter on measurements is perfectly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overloaded. Take a trial position of the line taps on L_{3}, kreping them equidistant from the center of the coil, and adjust C_{1} for minimum s.w.r. as indicated by the bridge. If the s.w.r. is not close to 1 to 1, try new tap positions and adjust C_{1} again, continuing this procedure until the s.w.r. is practically 1 to 1 . The setting of C_{1} and the tap positions may then be logged for future reference, since they will not change so long as the antenna system and frequency are not changed. At this point, check the link s.w.r. over the frequency

TABLE 13-II
Capacitance in $\mu \mu$. Required for Coupling to 300. and 600-Ohm Flat Lines with Tuned Coupling Frentency

Frequency	Characteristi, Impedance of Line	
Band	300	600
Mc.	0 ohms	ohms
1.8	600	300
3.5	300	150
7	150	75
14	75	40
28	40	20

Note: Inductance in circuit must be adjnsted to resonate at operating frequency.
range normally used in that band, without changing the setting of C_{1}. No readjustment will be required if the s.w.r. does not exceed 1.5 to 1 over the range, but if it goes higher it is advisable to note as many settings of C_{1} as may be necessary to keep the s.w.r. below 1.5 to 1 at any part of the band. Changes in the link s.w.r. are caused chiefly by changes in the s.w.r. on the main transmission line with frequency, and relatively little by the coupling circuit itself. A single setting of C_{1} at midfrequency will suffice if the antematself is broad-tuning.

If it is impossible to get a 1 -to- 1 s.w.r. at any settings of the taps or C_{1}, the s.w.r. on the main transmission line is high and the line length is probably unfavorable. Ordinarily there should be no difficulty if the transmission-line s.w.r. is not more than about 3 to 1 , but if the line sus.r. is higher it may not be possible to bring the link s.w.r. down except by using the methods for reactance compensation described in a subsequent section.

The matrhing adjustment can be considerably facilitated by using a variable condenser in series with the matehing-circuit roupling coil as shown in kig. 13-27. The additional adjustment thus provided makes the tap settings on L_{3} much less critical since varying C_{2} has the effect of varying the coupling between the two circuits. I or optimum control of coupling, L_{2} should be somewhat larger than when C_{2} is not used - perhaps twice the reactance recommended above - and the reactance of C_{2} at maximum capacitance should be the same as that of L_{2} at the operating frequency. L_{3} and C_{1} are the same as before. The method of adjustment is the same, except that for each trial tap position C_{1} and C_{2} are alternately adjusted, a little at a time, until the s.w.r. is brought to its lowest possible value. In general, the adjustment sought should be the one that keeps C_{2} at the largest possible capacitance, since this broadens the frequency response. Also, the taps on L_{3} should be kept as far apart as possible, while still permitting a match, since this also broadens the frequency response of the circuit.

Fig. 13-27-Using a series condenser for control of eonpling between the link and line circuits with the coax-coupled matehing circuit.

Once the matching circuit is properly adjusted, the s.w.r. bridge may be removed and full power applied to the transmitter. The input should be controlled by the coupling between L_{3} and the amplifier tank coil, never by making any changes in the settings of the matching circuit. If the amplifier will not load properly, tuned coupling should be used into the coax link.

It is possible to use a circuit of this type without initially setting it up with the s.w.r. bridge. In such a case it is a matter of cut-and-try until
adequate power transfer between the amplifier and main transmission line is secured. However, this method frequently results in a high s.w.r. in the link, with consequent power loss, "hot spots" in the coaxial cable, and tuning that is critical with frequency. The bridge method is simple and gives the optimum operating conditions quickly and with certainty.

- "TUNED" lines

If the s.w.r. on a transmission line is high enough to cause the input impedance to change appreciably as the applied frequency is varied, the coupling between the transmitter and the line must be changed arcordingly to keep the amplifier loading constant. So far as the coupling apparatus is concerned, the principal difference between flat and tuned lines is that the system can be designed for relatively constant impedance for flat lines, but nust be capable of coupling into a wide range of impedances if the line is "tuned."

As mentioned earlier, a simple coil can be used for coupling to a line having a high standing-wave ratio providing the line length is adjusted so there is a current loop near the point where it eonnects to the pick-up coil. The coupling will be maximum, for a given degree of separation between the pick-up coil and the amplifier tank coil, if the line is pruned to a length such that the input impedance is just sufficiently capacitive to cancel the indurtive reactance of the piek-up coil. This can be done by cut-and-try. The higher the s.w.r. on the line the easior it beromes to load the amplifier with loose roupling between the two coils. Whether or not goot loading can be obtained over a band of frequencies depends on the characteristies of the antenna system. The sharper the antenna and the higher the line s.w.r. the more difficult it beromes to operate over a band without progressively changing the line length.

Series and Parallel Tuning

Rather than adjusting the line length to fit a given coupling coil, it is more practieal to adjust the coupling circuit to fit the conditions existing at the input end of the transmission line.

A high standing-wave ratio oceurs principally on parallel-conductor lines, either because no attempt has been made at matehing the antenna and the line or berause the system is used for multiband operation, which precludes such matching. In the latter case, cutting the line length to a multiple of a quarter wavelength will bring either a current or voltage loop near the input terminals of the transmission line (assuming that the antenna itself is resonant) depending on the termination and the line length. If there is a current loop near the input end the impedance will be lower than the line Z_{0}; if a voltage loop, the input impedance will be higher than the line Z_{0}. In both cases the input impedances will be essentially resistive.

Under these conditions the circuit arrangements shown in lig. 1:3-28 will work satisfactorily. Series tuning is used when a current loop occurs

Fig. 13-28 - Series and parallel tuning. This method is useful with resonant lines when the length is such as to bring cither a current or voltage loop near the input end. Design data and methods of adjustment are given in the text.
at the input end of the line; parallel tuning when there is a voltage loop, at the input end. In the series case, the circuit formed by L_{4}, C_{1} and C_{2} with the line terminals short-circuited should tune to the operating frequency. C_{1} and C_{2} should be maintained at equal capacitance. In the parallel case, the circuit formed by L_{1} and C_{1} should tune to resonance with the line disconnected.

The L / C ratio in either circuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high L / C ratio must be used if the s.w.r. is relatively low and the line Z_{0} is high. With parallel tuning, a low L / C ratio must be used if the s.w.r. is relatively low and the transmission-line Z_{0} also is low. With either series or parallel tuning the L / C ratio becomes less critical when the s.w.r. is high. As a first approximation, coil and condenser values of the same order as those used in the plate tank circuit may be tried.

To adjust the series-tuned circuit, first couple L_{1} loosely to the amplifier tank coil and then vary C_{1} and C_{2}, keeping their capacitances equal, until the setting is found that makes the amplifier plate current kick upward. Feep adjusting the amplifier tank condenser, C, for minimum plate current while this is being done. When the proper settings are found, increase the coupling between the two coils until the amplifier draws normal plate current with C adjusted for minimum. It is unnecessary to readjust C_{1} and C_{2} when the coupling is increased. Keep the coupling between the coils at the smallest value that will load the amplifier properly. If full loading cannot be obtained with the tightest possible coupling, use a coil of more inductance at L_{1}.

The same adjustment procedure is used with parallel tuning, except that there is only one condenser, C_{1}. If full loading cannot be secured, reduce the inductance of L_{1} and increase C_{1} correspondingly to maintain the same frequency, until the amplifier loads properly.

The r.f. ammeters shown in Fig. 13-28 are not strictly necessary, but are useful for indicating
maximum output. They may be omitted if desired; in most cases the amplifier plate current is a good enough indication of output, providing the amplifier is operating at normal ratings and efficiency.

In case full loading cannot be obtained even when the L / C ratio is varied, the type of tuning in use probably is not suitable and should be changed; e.g., from series to parallel. If satisfactory loading still cannot be secured, the probability is that the s.w.r. is quite low and the coupling methods designed for flat lines, described earlier, should be used.

Two condensers are used in the series-tuned circuit in order to keep the line balanced to ground. This is because two identical condensers, both connected with either their stators or rotors to the line, will have the same capacitance to ground. A single condenser would be perfectly usable so far as the operation of the coupling circuit is concerned, but will slightly unbalance the circuit because the frame has more capacitance to ground than the stator. The unbalance is not especially serious unless the condenser is mounted near a large mass of metal, such as a chassis or shield assembly.

A balanced condenser is used in the parallel circuit, in preference to a single unit, for the same reason. An alternative scheme to maintain balance is to use two single-ended condensers in parallel, but with the frame of one connected to one side of the line and the frame of the other connected to the other side of the line. The same two condensers may be switched in series when series tuning is to be used.

Link Coupling

The circuits shown in Fig. 13-28 require a means for varying the coupling between two sizable coils, a thing that is somewhat inconvenient constructionally. It is easier to use separate fixed mountings for the final tank and antenna coils and couple them by means of a link. As explained in the chapter on circuit fundamentals, a short link is equivalent to providing mutual inductance between two tuned circuits. Typical arrangements for series and parallel tuning are shown in lig. 13-29. Although these drawings show variable coupling at both ends of the link, a fixed link coil can be used at either end so long as variable coupling is available at the other.

There is no essential difference between the tuning procedures with these circuits and those of Fig. 13-28. The only change is that the coupling is adjusted by means of a link instead of by varying the spacing between L and L_{1}.
In cases where the link will be more than a few inches long, or when coaxial cable is to be used for the link, it is much better to consider the link as a transmission line that should be properly matched. The circuit of Fig. 13-26 is
recommended in that case, except that either a series- or parallel-tuned circuit is substituted for $C_{1}^{\prime} L_{3}$ in that figure. The same considerations apply with respect to the sizes of the link coils, and the best adjustment procedure is that using an s.w.r. bridge.

Lines of Random Length

Series or parallel tuning will always work satisfactorily with lines having a high stand-ing-wave ratio so long as the electrical length of the line is approximately a multiple of a quarter wavelength. However, it is not always possible to couple satisfactorily when intermediate line lengths are used. This is because at some lengths the input impedance of the line has a considerable reactive component, and because the resistive component is too large to be connected in series with a tuned circuit and too low to be connected in parallel.

The coupling system shown in lig. 1:3-26 is capable of handling the resistive component of the input impedance of the transmission lines used in most amateur installations, regardless of the standing-wave ratio on the line. Consequently, it can generally be used wherever either series or parallel tuning would normally be called for, simply by setting the taps properly on the coil. (A possible exception is where the s.w.r. is considerably higher than 10 to 1 and the line length is such as to bring a current loop at the input end. In such a case the resistance may be only a few ohms, which is difficult to mateh by means of taps on a coil.)

Within limits, the same circuit is capable of being adjusted to compensate for the reactive component of the input impedance; this merely means that a 1 -to-1 s.w.r. in the link will be obtained at a different setting of C_{1} (lig. 133-26) than would be the case if the line "looked like" a pure resistance. Sometimes, however, C_{1} does not have enough range available to give complete compensation, particularly when (as is the case with some line lengths when the s.w.r. is high) the input impedance is principally reactive.

Under such conditions it is necessary, if the line length cannot be changed to a more satisfactory value, to provide additional means for compensating for or "canceling out" the reactive component of the input impedance. As described

Fig. 13-30 - Reactance cancellation on random-length lines having a high standing-wave ratio.

Fig. 13-29 - link-coupled series and parallel tuning.
earlier in this chapter (Fig. 13-6) the input impedance can be considered to be equivalent to a circuit consisting either of resistance and inductance or resistance and capacitance. It is generally more convenient to consider these elements as a parallel combination, so if the line "looks like" $L^{\prime} R^{\prime}$ at A in Fig. 1:3-6, it is apparent that if we conncet a capacitance of the right value across L^{\prime} the cireuit will become resonant and will appear to the a pure resistance of the value R^{\prime}. Similarly, connecting an inductance of the right value across C^{\prime} in lig. 13-613 will resonate the circuit and the impedance will be equal to R^{\prime}. The resistive impedance that remains can easily be matched to the coax link by means of the circuit of Fig. 13-20.

The practical application of this principle is shown in Fig. 13-30, where L and C are the reactances required to cancel out the line reartance, L for cases where the line is capacitive, C for lines having inductive reactance. The amount of either inductance or capacitance required is easily determined by trial. Using the s.w.r. bridge in the coas link, first disconnect the main transmission line and connect a noninductive resistor to the line terminals. A $1 / 2-$ or 1 -watt carbon resistor of about the same resistance as the line Z_{0} will do. Adjust the coil taps and C_{1} for a 1-to-1 standingwave ratio in the link, as described earlier. This determines the proper setting of C_{1} for a purely resistive load. Then take off the resistor and connect the line, again adjusting the taps and C_{1} for minimum s.w.r. If a 1 -to- 1 ratio can be obtained further compensation is not needed, but if not, make the s.w.r. as low as possible and compare the new setting of C_{1} with the original setting. If the capacitance has increased, the line reactance is inductive and a condenser must be connected at C in lig. 13-30. The amount of capacitance needed to bring the proper setting of C_{1} near the original setting can be determined by trial. On the other hand, if the capacitance of C_{1} is less than the original, an inductance must be connected at L. Trial values will show when the proper tuning conditions have been reached. It is not necessary
that C_{1} be at exactly the original setting after the compensating reactance has been adjusted; it is sufficient that it be somewhere in the same virinity.

Using this procedure practically any length of line can be coupled properly to the transmitter,
even when the line s.w.r. is quite high. Unfortunately, no specific values can be suggested for L and C, since they vary widely with line length and s.w.r. Their values usually are comparable with the values used in the regular coupling eircuits at the same frequency.

Coupler or Matching-Circuit Construction

The design of matehing or "antenna coupler" eireuits has beren covered in the preeeding section, and the adjustment procedure also has been outlined. Since circuits of this type are most frequently used for transferring power from the transmitter to a paralleleonductor transmission line, a principal point requiring attention is that of maintaining good talance to ground. If the coupler cirevit is appreciably unbalaneed the currents in the two wires of the transmission line will also be unbalanced, resulting in radiation from the line.

In most cases the matching circuit will be built on a metal chassis, following common practice in the construction of tramsmitting units. The chassis, because of its relatively large area, will tend to establish a "ground" - even though not actually grounded - particularly if it is assambled with other units of the transmitter in a rack or cabinet. The components used in the coupher, therefore, should be placed so that they are electrically symmetrical with respect to the chassis and to eadla other.

In general, the construction of a coupler circuit should physically resemble the tank layouts used with push-pull amplifiers. In parallel-tuned rircuits a split-stator condenser should be used. The condenser frame should be insulated from the chassis because, depending on line length and other factors, harmonic reduction and line badance anay he improved in some cases by grounding and in others by not grounding. It is therefore advisable to adopt construction that permits either. Provision also should be made for grounding the econter of the coil, for the same reason. The coil in a parallel-tuned cireuit should be mounted so that its hot ends are symmetrically phaced with respect to the chassis and other romponents. This equalizes stray caparitanees and helps maintain good balance.

When the coupler is of the type that can be shifted to sories or parallel tuning as recuired, two separate single-ended condensers will be satisfactory. As deseribed earlier, they should be connected so that both frames go to the same side of the circuit - i.e., cither to the coil or to the line - for serics tuning, and when used in parallel for parallel tuning should be connected frame-to-stator.

A coupler designed and adjusted so that the connecting link acts as a matched transmission line may be placed in any convenient location. Some amateurs prefer to install the coupler at the point where the main transmission line enters the station. This helps maintain a neat station lay-
out when an air-insulated parallel-conductor transmission line is used. With solid-diclectric lines, which lend themselves well to neat installation indoors, it is probably more desirable to install the coupher where it can be reached easily for adjustment and band-changing. The use of coanial line botween the transmitter and coupler is strongly recommended if the link line is more than a few inches long, for the reasons outlined in the preceding section.

COAX-COUPLED MATCHING CIRCUIT

The matching unit shown in lig. 13-31 is constructed according to the design prineiples outlined earlier in this chapter. It uses a paralleltuned cirenit with taps for matehing a parallelconductor line through a link coil to a coaxial line to the transmitter. It will handle about 500

Fig. 1.3-31 - A coax ecoupled matching eircuit of simple construction. 'Tlue entire circuit is monnted on a 3 by 4 by 5 box. (i is inside; (C_{2} and the plug-in coil assembly are mounted on top.
watts of r.f. power and will work, without modification, into lines having an s.w.r. below 3 or 4 to 1. If the s.w.r. is high, it may be necessary to compensate for the reactive part of the input impedance of the line, at certain line lengths, by using an additional coil or condenser as discussed earlier. The necessity for such compensation can be avoided, on lines having a high s.w.r., by making the clectrical length of the line a multiple of a quartor wavelength.

As shown ly the circuit diagram, Fig. 13-32, the link eireuit is adjusted by means of a variable condenser, $(, 1$, to facilitate matching the main transmission line to the coax link. The coils are constructed from commereially-available coil material, and the link inductances are chosen to provide adequate coupling for flat lines. The link coil, of smaller diameter than the tank coil, is mounted inside the latter at the center. Duro cement is used to hold the coils together at their bottom tie strips. The coils are mounted on Millen type $40: 305$ plugs and require no other support than the stiffness of the short lengths of wire going into the end prongs of the plug from the tank coil. Short lengths of spaghetti tubing are slipped over the leads to the link eoil where they go between the tank coil turns to reach the plag.

Taps on the tank coil for connection to a paral-Iel-conductor transmission line are made by bending ordinary soldering lugs around the wire and soldering them in place. The clips are Johnson type 235-860, adjusted so that they fit snugly over the taps when pushed on sidewise. Used this way, the clips provide an easy and rapid method of connecting and discomecting the line. The proper positions for the taps may be determined by first using the elips in the normal fashion.

The maximum length of coil that can be mounted satisfactorily on the plugs is about 4 inches, and a coil of this size camot be tuned to the $3,5-M e$. band with the $100-\mu \mu \mathrm{f}$.-per-section split-stator condenser used in this unit. To cover the $3.5-\mathrm{M}$ e. hand it is necessary to shunt the coil with an additional capacitance of about $75 \mu \mu \mathrm{f}$.

The matching circuit, should be adjusted with the aid of an s.w.r. bridge, as described earlier in this chapter. In general, the tuning will be less

Fig. 13-32- (:irmait diagram of the coax-coupled natehing circuit.
C. -300 - $\mu \mu$ f. variahlif, approximately $0.024^{\prime \prime}$ spacing.
$\mathrm{C}_{2}-100{ }_{\mu} \mathrm{f}$. per section, 1.000 volts.
J_{1}-Chassis-type coas comnector.

Coil Inata

Band	Li.turns	I.2. turns
3.5 Mc .*	2.1 (1- $\mu \mathrm{h}$.	10 (5 5 l.$)$
- Mc.	18 (12 $\mu \mathrm{h}$.	6 (2.5 $\mu \mathrm{h}$.)
14 Mc	10 (5 5 mi.)	3 (1 $\mu \mathrm{h}$.
28 Mc .	6 (2.5 $\mathbf{\mu}$ /. $)$	

21-28 Mc. $\quad 6\left(2.5 \mu l_{1}\right)$
2

* Add is $\mu \mu \mathrm{f}$. in parallel with C.
1_{1} - No. 12 tinned nire, $21 \frac{1}{2}$ inclies dia., 6 turns per imh (B\& W 3905-1).
1.2 - No. 16 wire, 2 inclses dia., 10 turns per inch (13 \& 11 :3907 or 3907-1).
critical, and the circuit will work over a wider frequeney range without readjustment, if the taps are kept as far toward the ends of the coil as possibe and C_{1} is set at the largest eapacitance that will permit bringing the s.w.r. in the coas link down to 1 to 1 .

a "universal" matching circuit

The matching cireuit shown in Fig. 13-3:3 offers considerable flexibility in that it can be used as a tapped-coil matching network of the same type as that just deseribed, and ako ran be used as either a serics- or parallel-tuned "antronat coupler." It can also be adapted to other types of coupling by simple changes in the plug-connection arrangement of the coils.

Two condensers are used in the tank circuit. Their rotors are insulated from each other but are turned simultaneonsly by a right-angle drive unit. When used either for parallel tuning or the tappead-roil method of matching, the rotors are connected together to form a split-stator condenser having a maximum capacitance of 150

Fig. 13-3.3- A coupler or matching networh that can also be used for serjes or parallel tuning of tuned lines.

Fig. 13-34 - Circuit diagram of the "universal" coaxcoupled matching network. For use as a tapped matching circuit, connect the line to taps on L_{1}, as at $A-B$, and conncet the jumper, X, to $C . D$; the jumper is also used for parallel tuning but with the line connected to $E \cdot F$. For scries tuning, remove the jumper and connect the line to $C-I$. The ground connection to the middle prong of the coil socket is provided for cascs where it is desirable to ground the center of I_{1}.
$\mathrm{C}_{1}-300-\mu \mu \mathrm{f}$. variable, approximately $0.024^{\prime \prime}$ spacing. $\mathrm{C}_{2}, \mathrm{C}_{3}-300-\mu \mu \mathrm{f}$. variable, 1000 volts (National TMS. 300).
J_{1} - Chassis-type coax conncctor.

Coil Data			
Band	$L_{1, t u r n s}$	L2, turns	
$3.5-7 ~ M c . ~$	$20(14 \mu \mathrm{~h})$.	$10(5 \mu \mathrm{~h})$.	
$7-14 \mathrm{Mc}$.	$10(5 \mu \mathrm{~h})$.	$6(2.5 \mu \mathrm{~h})$.	
$14-28 \mathrm{Mc}$.	$4(1.5 \mu \mathrm{~h})$.	2	

L_{1} - No. 12 tinned wirc, $21 / 2$ inches dia., 6 turns per inch (IS \& W 3905-1).
$L_{2}-N o .16$ wire, 2 inches dia., 10 turns per inch ($\mathrm{B} \& \mathrm{~W} 3907$ or $3907-1$).
$\mu \mu$. When used for series tuning the condenser frames connest to the parallel-conductor transmission line, the jumper that connects the rotors together being removed.

The unit is built on a 7 by 9 by 2 aluminum chassis and has a 7 by 10 panel. The tank condensers are mounted on small aluminum plates
supported on $3 / 4$-inch stand-off insulators, to insulate the frames from the chassis; this method is preferable to mounting the condensers directly on the insulators as it lessens the mechanical strain on the latter. The soldering lugs projecting from the condensers provide means for connecting the line clips for series and parallel tuning. The jumper for connecting the rotors together is in the foreground; it uses banana plugs that fit into jacks mounted on the condenser mounting plates. The link condenser is located underneath the chassis.
The coils shown are designed primarily for use in the tapped matching circuit or for parallel tuning, but will also be satisfactory for series tuning if the transmission line length is such as to bring a current loop near the input end. Coil taps are made in the same way as in the coupler previously described. Soldering lugs are also used as taps on C_{2} and C_{3} to make the necessary connections for series or parallel tuning. Because of the fairly large value of maximum capacitance available when the tank condensers, C_{2} and C_{3}, are used together as a split-stator condenser, it is possible to cover a 2 -to- 1 frequency range. Consequently, only three coil assemblies are needed to cover the 3.5- to $30-\mathrm{Mc}$. range, and each one can be used for two (in the case of the smallest coil, three) adjacent amateur bands.

As a tapped matching circuit, adjustment is the same as for the unit just described. When using either series or parallel tuning, the s.w.r. bridge should be used as before, adjusting C_{1} and $C_{2}-C_{3}$ for minimum s.w.r. in the coax link.

CHAPTER 14

Antennas

An anterna system can be considered to include the antenna proper (the portion that radiates the r.f. energy), the feed line, and any coupling deviees used for transferring power from the transmitter to the line and from the tine to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will deseribe the antenna proper, and in many cases will show popular types of lines, as well as line-toantenna couplings where they are required. However, it should he kept in mind that any antenna proper can be used with any type of feedline if a suitable coupling is used between the antenna and the line. Changing the line does not change the type of antenna.

Selecting an Antenna

In selecting the type of antenna to use, the majority of amateurs are somewhat limited through space and structural limitations to simple antenna systems, except for v.h.f. opcration where the small space requirements make the use of multielement beams readily possible. This chapter will consider antennas for frequencies as high as 30 Mc. - a later chapter will deseribe the popular types of v.h.f. antennas. However, even though the available space may be limited, it is well to consider the propagation characteristios of the frequency band or bands to be used, to insure that hest possible use is made of the available facilities. The propagation characteristies of the various bands, up to 30 Me., are deseribed in Chapter Four. In gemeral, antenna construction and location beeome more critical and important on the higher frequencies. On the lower frequencies (3.5 and 7 Mc.) the vertical angle of radiation and the plane of polarization may be of relatively little importance; at 28 Mr . they may he all-important. On a given frequency, the type of antenna best suited for long-distance communication may not be as good for shorter-range work as a different type.

Definitions

The polarization of a straight-wire antenna is determined by its position with respect to the earth. Thus a vertical antenna radiates vertically-polarized waves, while a horizontal antenna radiates horizontally-polarized waves in a direction broadside to the wire and vertically-polarized waves at high vertical angles off the ends of the wire. The wave from
an antenna in a slanting position, or from the horizontal antenna in directions other than mentioned above, contains both horizontal and vertical components.

The vertical angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna, its height above ground, and the nature of the ground. The angle is measured in a vertical plane with respert to a tangent to the earth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertical antenna. The horizontal angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna.

The impedance of the antenna at any point is the ratio of the voltage to the current at that point. It is important in connection with feeding power to the antenna, since it constitutes the load to the line offered by the antenna. It can be either resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by an antenna is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated types, like the terminated rhombic and terminated "V," have substantially uniform current along their lengths.

The ratio of power required to produce a given field strength with a "comparison" antenna to the power required to produce the same field strength with a specified type of antenna is called the power gain of the latter antenna. The field is measured in the optimum direction of the antenna under test. The comparison antenna is generally a half-wave antenna at the same height and having the same polarization as the antenna under consideration. Gain usually is expressed in decibels.

In unidirectional beams (antennas with most of the radiation in only one direction: the front-to-back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite direction. Front-to-back ratio is usually expressed in decibels.

The bandwidth of an antenna refers to the frequency range over which the gain and impedance are substantially constant.

Ground Effects

The radiation pattern of any antenna that is many wavelengths distant from the ground and all other objects is called the free-space pattern of that antenna. The free-space pattern of an antenna is almost impossible to obtain in practice, except in the v.h.f. and u.h.f. ranges. Below 30 Mc., the height of the antenna above ground is a major factor in determining the radiation pattern of the antenna.

When any antenna is near the ground the free-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-space pattern and ground reflections. This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the ground. The effect of a perfectly-reflecting ground is such that the

Fig. 14.1 - Effect of ground on radiation of horizontal antennas at vertical angles for four antenna heights. This chart is based on perfectly-conducting ground.
original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 14-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas, As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. At still greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation is of primary importance, especially at the higher
frequencies. It is advantageous, therefore, to erect the antenna at a height that will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Since low angles usually are most effective, this generally means that the antenna should be high - at least one-half wavelength at 14 Mc ., and preferably three-quarters or one wavelength, and at least one wavelength, and preferably higher, at 28 Mc. The physical height required for a given height in wavelengths decreases as the frequency is increased, so that good heights are not impracticable; a half-wavelength at 14 Mc . is only 35 feet, approximately, while the same height represents a full wavelength at 28 Mc . At 7 Mc . and lower frequencies the higher radiation angles are effective, so that again a useful antenna height is not difficult of attainment. Heights between 35 and 70 feet are suitable for all bands, the higher figures being preferable.

Imperfect Ground

Fig. 14-1 is based on ground having perfect conductivity, whereas the actual earth is not a perfect conductor. The principal effect of actual ground is to make the curves inaccurate at the lowest angles; appreciable high-frequency radiation at angles smaller than a few degrees is practically impossible to obtain over horizontal ground. Above 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the result to be expected at angles between 5 and 15 degrces.

The effective ground plane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the an-

Fig. 14.2 - Theoretical curve of variation of radiation resistance for a half-wave horizontal antenna, as a function of height in wavelength above perfectly-reflecting ground.
tenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antenna, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the antenna varies with height. The theoretical curve of variation of radiation resistance for a half-wave antenna above perfectly-reflecting ground is shown in Fig. 14-2. The impedance approaches the free-space value as the height becomes large, but at low heights may differ considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between
3.5 and 30 Mc. However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical halfwave or quarter-wave antenna will radiate equally well in all horizontul directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points.

The vertical angle of radiation also will be affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

The fundamental form of antenna is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many more-complex forms of antennas are constructed. It is known as a dipole or Hertz antenna.

The length of a half-wavelength in space is:

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{492}{F_{\text {req. }}(\mathrm{Mc} .)} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antenna will not be exactly equal to the half-wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in Fig. 14-3, where K is a factor that must be multiplied by the half-wavelength in free space to obtain the resonant antenna length. An additional shortening effect occurs with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antennas at frequencies up to 30 Mc .

$$
\begin{align*}
& \text { Length of half-wave antenna (feet) }= \\
& \frac{492 \times 0.95}{\text { Freq. (Mc.) }}=\frac{468}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-B}
\end{align*}
$$

Example: A half-wave antenna for 7150 kc . (7.25 Mc) is $\frac{468}{7.15}=65.45$ feet, or 65 feet 5 inches.

Above 30 Mc . the following formulas should be used, particularly for antennas constructed from rod or tubing. K is taken from Fig. 14-3.

$$
\begin{gather*}
\text { Length of half-wave antenna (feet) }= \\
\frac{492 \times K}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-C}\\
\text { or length (inches) }=\frac{5905 \times K}{\text { Freq. (Mc.) }}
\end{gather*}
$$

(14-D)

Example: Find the length of a half-wavelength antenna at 29 Mc ., if the antenna is made of 2 inch diameter tubing. At 29 Mc ., a half-wavelength in space is $\frac{492}{29}=16.97$ feet, from Eq. 14-A. Ratio of half-wavelength to conductor diameter (changing wavelength to inches) is $\frac{16.97 \times 12}{2}=101.8$. From Fig. $14-3, K=0.963$ for this ratio. The length of the antenna, from Eq. $14-\mathrm{C}$, is $\frac{492 \times 0.963}{29}=16.34$ feet, or 16 fest 4 inches. The answer is obtained directly in inches by substitution in Eq. 14-D: $\frac{5905 \times 0.963}{29}$ $=196$ inches.

Fig. 14-3 - Fffect of antenna diameter on length for half-wave resonance, shown as a multiplying factor, K, to be applied to the free-space half-wavelength (Equation 14-A). The effect of eonductor diameter on the im. pedance measured at the center also is shown.

Current and Voltage Distribution

When power is fed to a half-wave antenna, the current and voltage vary along its length. The current is maximum at the center and nearly zero at the ends, while the opposite is true of the r.f. voltage. 'The current does not actually reach zero at the current nodes, because of the end effect; similarly, the voltage is not zero at

Fig. 14-4 - The above scales, based on Eq. 14-B, can be used to determine the lengh of a half-wave antenna of wire.

Radiation Characteristics

The radiation from a dipole is not uniform in all directions but varies with the angle with respere to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the wire, with intermedi-

Fig. $14-5$ - The frecespare radiation pattern of a half-wave antemati The antenna is shewn in the vertieal position. This is a cross-section of the solid pattern deseribed by the fipure when rotated on its vertical axis. The "dounhmet" form of the solid pattern can be more easily visualized by imagining the drawing glued to a picce of cardloard, with a short length of wire fastenced on it to reprosent the an tonna. Twirling the wire will give a visual representation of the solid radiation mattern
its node because of the resistance of the antenna, which consists of both the r.f. resistance of the wire (ohmic resistance) and the radiation resistance. The radiation resistance is an equivalent resistance, a convenient conception to indicate the radiation properties of an antemma. The radiation resistance is the equivalent resistance that would dissipate the power the antenna radiates, with a current flowing in it equal to the antenna current at a current toop (maximum). The ohmic resistance of a half-wavelength antenna is ordinarily small enough, in comparison with the radiation resistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antenna in free spare is 73 ohms, approximately. The value under practical conditions is commonly taken to he in the neighborhood of 70 ohms, although it varies with height as shown in Fig. 14-2. It increases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, the insulators at the ends, and the position with respert to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as shown in Fig. 14-3. If the diameter of the conductor is made large, the capacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased L / C ratio causes the l of the antenna to decrease, so that the resonance curve becomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.
ate values at intermediate angles. This is shown hy the sketch of Fig. 14-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antenna is vertical, as shown in the figure, then the field strength will be uniform in all horizontal directions; if the

Fig. 14-6- Illustrating the importance of vertical angle of radiation in determining antenna directional effects. Off the end, the radiation is greater at higher angles. Ground reflection is neglected in this drawing of the free-space pattern of a horizontal antenna.
antenna is horizontal, the relative field strength will depend upon the direction of the receiving point with respect to the direction of the antenna wire. The variation in radiation at various vertical angles from a half-wavelength horizontal antenna is indicated in ligs. 1+6 and 14-7.

FEEDING THE DIPOLE

Direct Feed

If possible, it is advisable to locate the antenna at least a half-wavelength from the transmitter and use a transmission line to carry the power from the transmitter to the antenna. However, in many cases this is impossible, particularly on the lower frequencies, and direct feed must be used. Three examples of direct feed are shown in Fig. 14-8. In the method shown at A, C_{1} and C_{2} should be about $150 \mu \mu \mathrm{fd}$. each for the $3.5-\mathrm{Mc}$. band, $75 \mu \mu \mathrm{fd}$. each at $7 \mathrm{Mc} .$, and proportionately smaller at the higher frequencies. The antenna coil connected between them should resonate to 3.5 Mc . with about 60 or $70 \mu \mu \mathrm{fd}$., for the $80-$ meter band, for 40 meters it should resonate with 30 or $35 \mu \mu \mathrm{fd}$., and so on. The circuit is

Fig. 14-7- Iorizontal pattern of a horizontal halfwave anterna at there vertical radiation angles, The solid line is relative radiation at B degrers. Dotted lines show deviation from the $1 . \operatorname{sed}$ egref pattern for angles of 9 and 30 degrees. The patterns are useful for shapeonly, sined the amplitude will drepend upon the height of the antema above ground and the vertical angle comsidered. The patterns for all three angles have been proportioned to the same salale, but this does mot mean that the maximum amplitudes necessarily will the the same. 'Ithe arrow indicates the direction of the horizontal antenna wire.
adjusted by using loose coupling botween the antenna coil and the transmitter tank coil and adjusting C_{1} and ("2 until resonance is indicated by an increase in plate current. The coupling hetween the coils should then be increased until proper plate current is drawn. It may be necosary to reresonate the tamsmitter tank circuit as the coupling is incerased, but the change should be sniall.

The circuits in Fig. 14-8B and (are used when only one end of the antema is acersible. In Ib, the coupling is adjusted by moving the

Fip. \quad 14-8 - Mcthods of direvtly exciting the half-wave antorna. 1. current ferolaseriostuning: ll. voltage fored, caparitive conplinge: 6 , whage ferd. with induatisaly -coupled antemna tank. In A, the compling cirenit is not ineloderl in the effertive - lecetrical Iength of the antennazy:1m jeroper. link coupling can be used in A and $($.
tap toward the "hot" or plate end of the tank aroil - the condenser θ may be of any convenient value that will stand the voltage, and it doosn't have to be variable. In the circuit at C', the antematumed rireuit (${ }^{\prime}$ ' and the antenna coil) should be similar to the transmitter tank rircuit. The antenna tuned eircuit is adjusted to resonance with the antenna connected but with loose coupling to the transmitter. Heavier loading of the tube is
then ohtained by tightening the coupling between the antenna coil and the transmitter tank coil.

Of the three sustems, that at A is preferable hecause it is a symmetrical sustem and generally results in less r.f. power "floating" around the shack. The system of I3 is undesirable becaluse it provides practically no protection against the radiation of harmonics, and it should only be used in emergencies.

Transmission-Line Feed for Dipoles

Since the impedance at the center of a dipole is in the vicinity of \mathbf{T} ohms, it offers a good match for $\overline{3}$-ohm two-wire transmission lines. Several types are available on the market, with different power-handling capabilities. They can be connected in the center of the antenna, across a small strain insulator to provide a convenient comection point. (oaxial line of 75 chms impedance can also be used, but it is heavier and thus not as

Fig. 14-9-Comstruction of a dipole fed with 75-ohm line. 'line leogth of the antenna is calculated from Equation 14-13 or Fig. 14-4.
convenient. In either case, the transmission line should be run away at right angles to the antenna for at least onc-quarter wavelength, if posible, to avoid current unbalance in the line caused by pick-up from the anterna. The antenna length is calculated from Equation 14-B, for a half-wavelength antenna. When No. 12 or No. 14 enameled wire is used for the antenma, as is generally the case, the bength of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 1t-9.

The use of 7 -ohm line results in a "flat" line orer most of amy amateur hand. However, by making the half-wave antenna in a special manner, called the two-wire or folded dipole, a good match is offered for a 300 -ohm line. such an antenna is shown in Fig. 14-10. The open-wire line shown in Fig. 14-10 is made of No. 12 or No. 14 enameled wire, separated by

Fif. 14-10 - The construction of an open-wire folded dipule fed with 300 -ohm line. The length of the antenna is calloulated from Fiquation It-13 or Fig. 14-4.
lightweight spacers of Lucite or other material (it doesn't have to be a low-loss insulating material), and the spacing ean be on the order of from 4 to 8 inches, depending upon what is convenient and what the operating froquency is. At $1+$ Mc., 4 -inch separation is satisfactory, and 8 -inch spacing can be used at 3.5 Mc .

The half-wavelength antenna an also be made from the proper length of 300 -ohm line, opened on one side in the center and connected to the feedline. After the wires have been soldered together, the joint can be strengthened by molding some of the excess insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight clamp of two pieces of Lucite can be devised.

Fig. 14-11 - The construction of a 3-wire folded dipole is similar to that of the 2 -wire folded dipole. The end spacers may have to be slightly stronger than the others becanse of the greater compression force on them. Whe length of the antenna is ohtained from Equation 14 -13 or lig. 14-4, A suitable line can be made from Vo. 14 wirespaced 5 inches, or from No. 12 wire spared 6 inches.

Similar in some respects to the two-wire folded dipole, the three-wire folded dipole of Fig. 14-11 offers a good mateh for a 600 -ohm line. It is favored by amateurs who prefer to use an open-wire line instead of the 300 -ohm insulated line. The three wires of the antenna proper should all be of the same diameter.

Another method for offering a mateh to a 600 -ohm open-wire line with a half-wavelength antenna is shown in Fig. 14-12. The system is called a delta match. The line is "fanned" as it approaches the antenna, to have a gradu-ally-increasing impedance that equals the antenna impedance at the point of comertion. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is neressary. The length of the antenna, L, is calcu-

Fig. 14-12 - Detta-matched antenna system. The dirigensions C, D, and E are found b_{y} formulas given in the text. It is important that the matching section, E, comestraight away from the antenna without any bends.
lated from liquation 14-B or Fig. 14-4. The length of section C is computed from:

$$
\begin{equation*}
\left(\prime(\text { feet })=\frac{118}{\text { Frey. (Mr.) }}\right. \tag{14-E}
\end{equation*}
$$

The feeder clearance, E, is found from

$$
\begin{equation*}
E(\text { feet })=\frac{148}{\text { Freq. }(\text { Mc. })} \tag{14-F}
\end{equation*}
$$

Example: For a frequency of 7.1 Mc., the length

$$
\begin{aligned}
& L=\frac{408}{7.1}=65.91 \text { feet, or } 65 \text { feet } 11 \text { inches. } \\
& C=\frac{118}{7.1}=16.152 \text { feet, or } 16 \text { feet } 7 \text { inches. } \\
& E=\frac{148}{7.1}=20.44 \text { feet, or } 20 \text { feet } 10 \text { inches. }
\end{aligned}
$$

Since the equations hold only for 600 -ohm line, it is important that the line be close to this value. This requires $43 / 4$-inch spaced No. 14 wire, 6 -inch spaced No. 12 wire, or $33 / 4$-inch spared No. 16 wire.

If a half-wavelength antenna is fed at the center with other than 75 -ohm line, or if a two-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the transmitter may become awkward for some line lengths, as described in the preceding chapter. However, in many cases it is not convenient to feed the half-wave antenna with the correct line (as is the case where multiband operation of the same antenna is desired), and sometimes it is not convenient to feed the antenna at the center. Where multiband operation is desired (to be discussed later) or when the antemma must be

Fig. 14-13 - The half-wave antenna can be fed at the enter or at the end with an open-wire line. The anterna length is obtained from Eypation l-13 or Fig. 14-4.
fed at one end by a transmission line, an openwire line of from 450 to 600 ohms impedance is generally used. The impedance at the end of a half-wavelength antenna is in the vicinity of several thousand ohms, and hence a standingwave ratio of 4 or 5 is not unusual when the line is connected to the end of the antemma. It is advisable, therefore, to keep the losses in the line as low as posisible. This requires the use of ceramic or Micalex feeder spacers, if any appreciatle power is used. For low-power installations in dry climates, dry wood spacers hoiled in paraffin are satisfactory. Merhanimal details of half-wavelength antenmas fed with open-wire lines are given in lig. 14-13. If the power is helow 100 watts or so, 300 -ohm 'Twinlead can be used in plare of the open line.

Long-Wire Antennas

An antenna will be resonant so long as an integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half-wavelength. When the antenna is more than a half-wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and Voltage Distribution

Fig. 14-14 shows the current and voltage distribution along a wire operating at its fundamental frequency (where its length is

2ND HARMONIC (FULL-WAVE)

D

Fig. 14-14 - Standing-wave current and voltage distribution along an antenna when it is operated at various harmonies of its fundamental resonant frequency,
equal to a half-wavelength) and at its second, third and fourth harmonics. For example, if the fundamental frequency of the antenna is 7 Mc., the current and voltage distribution will be as shown at A. The same antenna excited at 14 Mc. would have current and voltage distribution as shown at B. At 21 Mc., the third harmonic of 7 Mc ., the current and voltage distribution would be as in C ; and at 28 Mc ., the fourth harmonic, as in D. The number of the harmonic is the number of half-waves contained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antenna (taken as a zero reference line), to indicate that the polarity reverses when the current or voltage goes through zero. Currents
flowing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antenna may be used for harmonically-related frequencies, such as the various amateur hands. The long-wire or harmonic antema is the basis of multiband operation with one antenna.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-wave antenna because the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent portion oi the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(N-0.05)}{\text { Freq. }(\mathrm{Mc.})} \quad 14-\mathrm{G}
$$

where N is the number of half-waves on the antenna.

$$
\text { Example: An antenna } 4 \text { half-waves long at } 14.2
$$

Mc. would be $\frac{492(4-0.05)}{14.2}=\frac{492 \times 3.95}{14.2}$
$=136.7$ feet, or 136 feet 8 inches.
It is apparent that an antenna cut as a halfwave for a given frequency will be slightly off resonance at exactly twice that frequency (the second harmonic), because of the decreased influence of the end effects when the antenna is more than one-half wavelength long. The effect is not very important, except for a possible unbalance in the feeder system and consequent

Fif. $14-15$ - Curve A shows variation in radiation resistance with antenna longth. Curve B shows power in lohes of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antenna.

Fig, 14-16 - IIorizontal patterns of radiation from a full-uave antenna. The solid line shows the pattern for a vertieal angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degres's. All three patterns are drann to the same relative scale: actual amplitudes will depend upon the height of the antenna.
radiation from the feedline. If the antenna is fed in the exact center, no unbalance will occur at any frequency, but end-fed systems will show an unbalance in all but one frequency, the frequency for which the antema is cut.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes larger as the antenna length is increased. . Iso, a long-wire antemat radiates more power in its most favorable direction than does a half-wave antenna in its nost favorable direction. This power gain is secured at the expense of radiation in other

Fig. 14-17 - IIorizontal patterns of radiation from an antenna three half-wates long. The solid line shows the pattern for a vertical angle of 1.5 degrees: dotted lines shon deviation from the $\mathbf{5}$-degrec patternat 9 and 30 degrees. Minor lobes coincide for all three angles.
directions, Fig. 14-15 show: how the radiation resistance and the power in the lobe of maximun radiation vary with the antenna length.

Directional Characteristics

Is the wire is made longer in terms of the number of half-wavelengths, the directional effects change. Instead of the "doughnut" pattern of the half-wave antema, the directional characteristic splits up into "lobes" which make various angles with the wire. In general, as the length of the wire is increased the direction in which maximum radiation occurs tends to approach the line of the antenna itself.

Directional characteristies for antemas one wavelongth, three half-wavelengths, and two wavelongths long are given in Figs. 14-16, 14-17 and 14-18, for three vertical angles of radiation. Note that, as the wire length in-

Fïц, 14-18- Morizontal patterns of radiation from an antenna tho wavelenghs long. The solid line shows the pattern for a vertieal angle of 15 degrees; dotted liness show deviation from the IS-degree pattern at 9 and 30 degrees. The minor lohes coincide for all three angles.
creases, the radiation along the line of the antenna becomes more pronounced. Still longer antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antenna, the currents in adjacent half-wave sections must be out of phase, as shown in Fig. 14-14. The feeder system must not unset this phase relationship. This requirement is met by feeding the antennat at either end or at any current loop. A two-wire foeder cannot be inserted at a current nofle, however, because this invariably brings the currents in two adjurent half-wave sections in phase; if the phase in one section could be reversed, then the currents in the feeders neces-
sarily would have to be in phase and the feeder radiation would not be canceled out.

Nopoint on a long-wire antema offers a reasonable impedance for a direct match to any of the common typer of trammission lines. 'The most common practice is to feed the an-
tenna at one end or at a current loop with a low-loss open-wire line and accept the resulting standing-wave ratio of 4 or 5 . When a better mateh is desired, "matching stubs" can be used, as described in the preceding chapter under the heading, "Stub Matching."

Multiband Antennas

As suggested in the preceding soction, the same antenna may be used for several bands by operating it on harmonics. When this is done it is necessary to use tuned feeders, since the imperlance matching for nomesomant foeder (opration ran be aromplished only at one frequeney undess means are prowided for ehamging the length of a matching sertion and shifting the point at which the feeder is attached to it.

A half-wave antemat that is renter-fed by a solid-diclectric line is useless for even hamonic operation; on all even hamonirs there is a voltage maximum orcurring right at the feed point, and the resultant impedame mismateh couser a large standing-wa we ration and conseduently high losses arise in the solid dielectric. It is wise not to attempt to use on its even harmonies a half-wave antenna renter-forl with coaxial calble. Wighimpedance solid-diflectif lines such as 300 -ohm Twin-lead may be used, however, provided the power does not exced a fow humdred watts. On odd harmonics, as betwern 7 and 21 Me., a current loop will appear in the erenter of the antema and a fair match can be obtained.

When the same antonna is used for work in several bands, it must be roalizod that the directional characteristic will vary with the band in use.

Simple Systems

The most practical simple multiband antema is one that is a half-wavelength long at the lowest frequency and is fed oithor at the center or one end with an open-wire line. Athough the stanling-wave ratio on the feedline will not approach 1.0 on any band, if the losies in the line are low the system will be efficient. From the standpent of rodured ferdline radiation, a center-fed system is superior to one that is end-fed, but the end-fed armangement is often more convenient and should not be ignored as a posisibility. The center-fed nutenna will not have the sane radiation pattern as an end-fed one of the same length, except on frequencies where the lengh of the anternat is a half-wavelength. The end-fed athtematacts like a long-wire antenna on all bands (for which it is longer thath a half-wavelength), but the renter-fed one ands like two antemas of half that length fed in phase. For example, if a full-wavelength antemat is fed at one end, it will have a radiation pattern as shown in lïg. 14-16, but if it is fed in the center the pattern
will he somewhat similar to Fig. 14-7, with the maximum radiation broadside to the wire. Vither antemat is a good radiator, but if the radiation pattern is a factor, the point of feed must be ronsidered.

Since multiband operation of an antenna does not permit matching of the feedline, some attention must be paid to the length of the feedline if convenient transmitter-coupling arrangements are to be obtained. Table It-I gives some suggested tatenna and feeder lengths for multiband operation. In general, the length of the feedline should the some integral multiple of a quarter wavelength at the lowest frequency.

Antennas for Restricted Space

If the space available for the antema is not large enough to accommodate the length necessary for a half-wave at the lowent frequency to be used, quite satisfactory operation can be

| Multiband Resonant-Line Fed Anternas |
| :---: | :---: | :---: | :---: |

'The antenna lengths kiven represent compromises for harmonic operation becanse of different end effucte on different bands, The I3tr-fome endfed antemna is slighaly long for 3.5 Mc but will work well in the rexion (3300 -3600 he.) that quatruples into the 1t-IV. Hand. Bands not listed are wot recommended for the partieular antenna. The center-fed systimis are less critical as to length. l'uning combectons are for open-wire line and may differ for 300 -olam Twin-latal.

The end-fed and center-fed antennas will have the same directional chararteristies only on the lowest frequeney, as explained in the text.
secured by using a shorter antenna and making up the missing length in the feeder system. The antenna itself may be as short as a quarter wavelength and still radiate fairly well, although of course it will not be as effective as one a half-wave long. Nevertheless, such a system is useful where operation on the desired band otherwise would be impossible.

Tuned feeders are a practical necessity with such an antenna system, and a center-fed antenna will give best all-around performance. With end feed the feeder currents become badly unbalanced.

With center feed practically any convenient length of antenna can be used, if the feeder length is adjusted to accommodate at least one half-wave around the whole system.

A practical antenna of this type can be made as shown in lig. 14-19. 'liable 14-II gives a few recommended lengths. However, the antenna can be made any convenient length, provided the total length of wire is a half-wavelength at the lowest frequency, or an integral multiple of a half-wavelength.

In using the tables, it should be held in mind

Fig. 14-19 - Practical arrangement of a shortened antenna. The total length, $A+B+B+A$, shonld be a half-wavelength for the lowest frequency band, usually 3.5 Mc . See Table 14-I for lengths and tuning data.
that the "type of tuning" will vary from that listed if the feed-line lengths are not as shown or if solid-dielectric line (Twin-Lead) is used. This should not be interpreted as a fault in the antenna, and any tuning system (series or parallel) that works well without any trace of heating is quite satisfactory.

Bent Antennas

Since the field strength at a distance is proportional to the current in the antenna, the high-current part of a half-wave antenna (the center quarter wave, approximately) does most of the radiating. Advantage can be taken of this fact when the space available does not permit building an antenna a half-

TABLE 14-II Antennas and Feeder Lengths for Short Multiband Antennas, Center-Fed			
Anternis Lenglh (ft.)	fierder lengeh (fi.)	Batad	Type of Tuning
100	83	$\begin{aligned} & 3.5 \text { Mr. } \\ & 7,11,21 \mathrm{Me} . \\ & 28 \text { Me. } \end{aligned}$	parallel stries series or parallel
68	34	$\begin{gathered} 3.3,116 \\ 7.11,21 \\ \text { and } 28 \text { Mr. } \end{gathered}$	series parallel
50	43	$\begin{gathered} 7,14,21 \\ \text { and } 28 \text { Ic. } \end{gathered}$	parallel
33	51	$\begin{gathered} \overline{7} 14,21 \\ \text { an! } 28 \text { Mr. } \end{gathered}$	parallel
33	31	Fand 21 N1c. 14 and 28 Mc.	suricos paralle-]

wave long. In this case the cnds may be bent, either horizontally or vertically, so that the total length equals a half-wave, even though the straightaway horizontal lengt may be as short as a quarter wave. The operation is illustrated in Fig. 14-20, Such an antenna will be a somewhat better radiator than a quarter-wavelength antenna on the lowest frequency, but is not so desirable for multiband operation because the ends play an inereasingly important part as the frequency is raised. The performance of the system in such a case is difficult to predict, especially if the ends are vertical (the most convenient arrangement) because

Fig. 14-20 - Folded arrangement for shortened antennas. The total length is a half-wave, not including the feeders. The horizontal part is made as long as convenient and the ends dropped down to make up the required length. 'l"le ends may be hent hack on themselves like feeders to cancel radiation partially. 'The horizontal eection should be at least a quarter wave long.
of the complex combination of horizontal and vertical polarization which results as well as the dissimilar directional characteristics. However, the fact that the radiation pattern is incapable of prediction does not detract from the general usefulness of the antenna. For one-band operation, end-loading with coils (5 feet or so in from each end) is practical and efficient.

Vertical Antennas

A vertical quarter-wavelength antenna is often used in the low-frequency amateur bands to obtain low-angle radiation. Four typical examples and suggested methods for feeding are shown in

Fig. 14-21. The antenma may be wire or tubing supported by wood or insulated guy wires. When tubing is used for the antenna, or when guy wires (broken up by insulators) are used to reinforce
the structure, the length given by the formula is likely to be long by a few per cent. A check of the standing-wave ratio on the line will indicate the frequency at which the s.w.r. is mininum, and the antemna length can be adjusted accordingly.
The examples shown in Fig. $1+21$ all require an antenna insulated from the ground, to provide for the feed point. A grounded tower or pipe can be used as a radiator by employing "shunt feed," which consists of tapping the inner conductor of the comxial-line feed up on the tower until the best match is obtained, in much the same manner as the "gamma match" (described later) is used on a horizontal element. If the antenna is not an electrical quarter-wavelength long, it is neressary to tune out the reactance by adding capmeits or inductance between the coaxial line and the shunting conductor. A metal tower supporting a TV antenna or rotary heam can be shunt-fed only if all of the wires and leads from the supported antenna run down the center of the tower and underground away from the tower.

THE GROUND-PLANE ANTENNA

A ground-plane antenna is a vertical quarterwavelength antenna using an artificial metallic ground, usually consisting of four rods or wires perpendicular to the antenna and extending radially from its hase. Unlike the quarter-wavelength vertical antennas without an artificial ground, the ground-plane antenna will give low-angle radiation regardless of the height above actual

Fig. 14.21 - A quarter-wavelength antenna can be fed directly with 50 -ohm coaxial line (A) with a low stand-ing-wave ratio, or a coupling network can be used (B) that will permit a line of any impedance to be used. In (I). L_{1} and C_{1} should resonate to the operating frequency, and L_{1} should be larger than is normally used in a plate tank circuit at the same frequency.

By using multiwire antennas, the quarter-wave vertical can be fed with (C) 150 - or (D) 300 -ohm line.
ground. It is a useful antenna for DX work in any of the anateur bands below 30 Mc .

The vertical portion of the ground-plane antenna can be made of self-supported aluminum tubing, or a top-supported wire, depending upon

Fig. 14-22 - Radiation resistance of a quarter-wave antenna (with mround plane or grounded) as a function of M. The values apply only when the antenna is of the resonami length.
the necessary length and the available supports. The radials are also made of tubing or heave wire, depending upon the available supports and necessary lengths. They need not be exactly symmetrical about the hase of the vertical portion.

The radiation resistance of a ground-plane antenna varies with the diameter of the vertical element, as shown in Fig. 14-22. Since the radiation resistance is usually in the vicinity of 30 to 32 ohms, the antena can be fed with 75 -ohm coaxial line if a quarter-wavelength matching section of 50 -ohm coaxial line is used thetween the line and the antrina. (Sce Chapter Thirteen, "(Quarter-Wave Transformers.")

For multiband operation, a ground-plane antenma can be fed with tuned open-wire line of any length.

It is also possible to feed the ground-plane antenna with coaxial line and a "shunt" matehing sertion, as shown in Fig. 14-23. The various values required for proper matching will depend on the particular type of line used, as well as on the radiation resistance, resonant length, and reactance per unit longth of the antenna. These antenna characteristics are dependent on the length/diameter ratio - that is, the ratio of a half wavelength in free space to the diameter of the antenna element - and allowance must be
made for this factor. The necessary information for design purposes is given in Figs. 14-22, 14-24 and 14-25.

Determining the antenna dimensions can be reduced to a series of steps, as follows:
per 1 per cent change in length (K_{x}) from Fig. $1+25$, and the radiation resistance $\left(R_{r}\right)$ from Fig. 1.4-22.

Since the antemnt is to be shortened, these values must he modified appropriately. The

Fig, $14-23$ - Jhe sroundplane anterna with shmit matching. The antenna length, Ja, matching stob length, $L_{\text {a }}$, and radial length, Ire, are determined as deserihed in the tevt, for matchins a transmission line of given chararteristic impedance. As shown in the insert, the radials and the outside conducturs of the stub and line are all conneeted together.

First determine M, the ratio of a frer-spatce half wavelength to the conductor diamoter. The following formula may be used:

$$
M=\frac{5906}{F D}
$$

where $F=$ frequeney in megacycles,
$D=$ condurtor diameter in inches.
Using this value of M, read the length fantor (K_{a}) from Fig. 14-24, the reactance change

Fig. 14-24 - The antenna-length factor as a function of the ratio of a free-spare half wavelength to the conductor diameter. The lengith factor multiplied by a free-space quarter wavelength is the lenpth of a quarterwave radiator resonant at the selected freguency.
actual radiation resistame, after the antenna is proporly shortened, will be

$$
R_{\mathrm{o}}=R_{\mathrm{r}}-\frac{Z_{1}}{4 R_{\mathrm{r}}} \text { ohms }
$$

where $R_{0}=$ radiation resistance after shortening,

$$
Z_{1}=\text { characteristic impedane of trans- }
$$

mission line to be mat ched.

The proper valtu of eatheitive reactance in the shortemed antenna is given by

$$
X_{\mathrm{a}}=\text { Nh, ohms. }
$$

where $X_{n}=$ capmotive reactance of antemna, and

$$
s=\sqrt{\frac{Z_{1}}{R_{0}}-1}
$$

The antenna length that gives the proper capacitive reactance is

$$
L_{a}=\frac{2953 K_{a} K_{1}}{F} \text { inches, }
$$

where $L_{: ~}=$ required antenna length, and

$$
K_{\mathrm{b}}=1-\frac{X_{\mathrm{a}}}{100 K_{\mathrm{x}}}
$$

The only remaining steps are to find the dimensions of the indurtive stub and the length of the radial groumblatine rods.

The required stub reactance is given by

$$
X_{\mathrm{s}}=\frac{Z_{1}}{\mathrm{~S}} \text { ohms, }
$$

where $X_{n}=$ inductive reatetance of stub.
The length of the shorted stuh is

$$
I_{\mathrm{s}}=\frac{32.81^{\circ} L}{F} \text { inches, }
$$

where $L_{\mathrm{s}}=$ stub) length,
$V^{\prime}=$ velocity fintor of line usied in stub,
$L=$ length of stub in electrieal degrees having required X_{*}.

OHMS REACTANCE CHANGE PER 1% CHANGE IN LENGTH
Fig. 14-25 - Reactance change with antenna length as a function of I, for quarter-wave grommd-plane (or grounded) antennas. If the antenna is longer than the resonant length the reactance is inductive; if shorter, the reartance is capacitive. 'I'he curve is accurate for lengths within 10 per cont of the resonant length. Multiply reactance values by 2 for half-wave antennas.
L is equal to the angle whose tangent is X_{n} / Z_{s}, where Z_{B} is the characteristic impedance of the stub.

The length of each radial is given by

$$
L_{\mathrm{r}}=\frac{2953 K_{\mathrm{n}}}{F} \text { inches, }
$$

the length being measured from the center line of the radiator to the tip of the radial.

If the radials have a different diameter than the radiator (a common practice) the M and K_{a} for radials and antenna must be considered separately. The preceding formulas apply when the radials are horizontal, although the antenua can be built with "drooping" radials.

Example: Assume a ground-plane antenna to be constructed with a vertical radiator of 2 -inch diameter tubing and radials of No. 10 (0.10-inch diam,) wire, for a frequency of 7.1 Me, and to be matched to 72 -ohm RG-8/U coaxial line by using a stub of the same material.

$$
F=7.1 \text { Me., } D=2 \text { inches, } Z_{1}=Z_{s}=72 \text { ohms, }
$$

$$
V=0.66, M=3906 \div(7.1 \times 2)=416
$$

From Figs. 14-24, 14-25 and $14-22$, it is found that

$$
K_{\mathrm{a}}=0.971, K_{\mathrm{x}}=5.5, R_{\mathrm{r}}=30.9
$$

From the formula,

$$
R_{\mathrm{o}}=30.9-\frac{72}{4 \times 30.9}=30.3 \mathrm{ohms}
$$

and the factor

$$
S=\sqrt{\frac{72}{30.3}-1}=1.09
$$

Hen'e $X_{\mathrm{n}}=1.09 \times 30.3=33$ ohns.
Also, $\hbar_{\mathrm{b}}=1-\frac{33}{100 \times 5.5}=0.94$.
Thus the antenma length.
$I_{\mathrm{n}}=\frac{2953 \times 0.971 \times .948 \text { inches. }}{71}=380$ inches $=31$ feet.
To find the stub dimensions,

$$
X_{\mathrm{s}}=\frac{72}{1.09}=66
$$

L is the angle whose tangent is $66 \div 72=0.918$, and from a table of tangents is found to be 42.6 degrees.

Then $L_{8}=\frac{32.8 \times 0.66 \times 42.6}{7.1}=\underset{\text { nches. }}{130 \text { inches }=10 \text { feet } 10}$
For the radials,

$$
\begin{aligned}
M & =5904 \div(7.1 \times 0.1)=8340, K_{\mathrm{A}}=0.978 \\
\text { Hence } L_{r} & =\frac{29.3 \times 0.478}{7.1}=407 \text { inches }=33 \text { feet } 11 \text { inches. }
\end{aligned}
$$

Antennas for 160 Meters

Resuits on 1.8 Mc. will depend to a large extent on the antenna system and the time of day or night. Almost any random long wire that can be tuned to resonance will work during the night but it will generally be found very ineffertive during the day. i vertical antenna - or rather an antenna from which the radiation is predominantly vertically polarized - is probably the best for 1.8-Mc. operation. A horizontal antenna (horizontallspolarized radiation) will give better results during the night than the day berause daytime absorption in the ionosphere is so high at this frequency that the reflected wave is too weak to be useful. At night the performance improves berause nighttime ionosphere conditions generally permit the reflected wave to return to earth without too much attenuation. The vertically-polarized radiator gives a strong ground wave that is effective day or night, and it is to be preferred on 1.8 Mc .

There is another reason why a vertical antenna is better than a horizontal for 160meter operation. The low-angle radiation from a horizontal antenna $1 / 8$ or $1 / 4$ wavelength above ground is almost insignificant. Any reasonable height is small in terms of wavelength, so that a horizontal antenna on 160 meters is a poor radiator at angles useful for long distances ("long," that is, for this band). Its chief usefulness is over relatively short distances at night.

Bent Antennas

Since ideal vertical antennas are generally out of the question for practical amateur work, the best compromise is to bend the antenna in such a way that the high-current portions of the antenna run vertically. It is, of course, advisable to place the antenna so that the highest currents in the antenna occur at the highest points above actual ground.

Two antenna systems designed along these lines are shown in Fig. 14-26. The antenna at A uses a loading coil, L_{2}, to increase the electrical length of the antenna to a half wavelength, so that the antenna can be fed at its

Fig. 14-26-Bent antenna for the 160-meter band. In the system at A, the vertical portion (length X) should be made as long as possible. In cither antenna system, $l_{1} \mathrm{Ci}$ should resonate at $1900 \mathrm{kc} \cdot$, roughly. To arljnst L_{2} in antenna A, resonate $L_{1} C_{1}$ alone to the operating frequency, then onnect it to the antenna system and adjust L_{2} for maximum loading. Further loading can be obtained by increasing the coupling be. tween L_{11} and the link.
high-voltage point through the coupling circuit $L_{1} C_{1}$. The antenna of Fig. $14-2613$ uses a full half-wavelength of wire but is bent so that the high-current portion runs vertically. The horizontal portion running to $L_{1} C_{1}$ should run 8 or 10 feet above ground.

Grounds

A good ground connection is generally important on 160 meters. The ideal system is a number of wire radials buried a foot or two underground and extending 50 to 100 feet from the central connection point. As many radials as possible should be used.

If the soil is good (not rocky or sandy) and generally moist, a low-resistance connection to the cold-water pipe system in the house will of ten serve as an adequate ground system. The connection should be made close to where the pipe enters the ground, and the surface of the pipe should be scraped clean before tightening the ground elamp around the pipe.

A 6- or 8-foot length of 1 -inch water pipe, driven into the soil at a point where there is considerable natural moisture, can be used for the ground connection. Three or four pipes driven into the ground 8 or 10 feet apart and all joined together at the top with heavy wire are more effective than the single pipe.

The use of a counterpoise is recommended where a buried system is not practicable or where a pipe ground cannot be made to have low resistance be-

Fig. 14-27-An arrangement for keeping the main radiating portion of the antenna vertical. cause of poor soil conditions. A rounterpoise consists of a number of wires supported from 6 to 10 feet above the surface of the ground. Generally the wires are spaced 10 to 15 feet apart and located to form a square or polygonal configuration under the vertical portion of the antenna.

Long-Wire Directive Arrays

the "V" ANTENNA

It has been emphasized that, as the antenna length is increased, the lobe of maximum radiation makes a more acute angle with the

Fig. 14-28 - The basic "V " antenna, made by combin. ing two long wires.
wire. Two such wires may be combined in the form of a horizontal " l " so that the main lohes from each wire will reinforce along a line bisecting the angle between the wires. This increases
both gain and directivity, since the lobes in directions other than along the hisector cancel to a greater or lesser extent. The horizontal "r"" antenna therefore transmits best in either direction (is bidirectional) along a line biserting the "V" made by the two wires. The power gain depends upon the length of the wires. Provided the necessary space is available, the " V " is a simple antenna to build and operate. It can also be used on harmonies, so that it is suitable for multiband work, A top view of the " r " antenna is shown in Fig. 14-28.

Fig. 1才-29 shows the dimensions that should be followed for an optimum design to obtain maximum power gain for differentsized " V " antennas. The longer systems give good performance in multiband operation. Angle \propto is approximately equal to twice the

Fig. $14-29$ - Design ehart for horizontal "V" antennas, giving the enelosed angle between sides vs. the length of the wires. Values in parentheses represent approximate wave angle for height of one-half wavelength.
angle of maximum radiation for a single wire equal in length to one side of the "V."

The wave angle referred to in Fig. 14-29 is the vertical angle of maximum radiation. Tilting the whole horizontal plane of the " V " will tend to increase the low-angle radiation off the low end and decrease it off the ligh end.

The gain increases with the length of the wires, but is not exactly twice the gain for a single long wire as given in Fig. 14-15. In the longer lengths the gain will be somewhat increased, because of mutual coupling between the wires. A " V " eight wavelengths on a leg, for instance, will have a gain of about 12 db . over a half-wave antenna, whereas twice the gain of a single eight-wavelength wire would be only approximately 9 db .

The two wires of the " V " must be fed out of phase, for correct operation. A resonant line may simply be attached to the ends, as shown in Fig. 14-28. Alternatively, a quarter-wave matching section may be employed and the antenna fed through a nonresonant line. If the antenna wires are made multiples of a half-wave in length (use Equation $14-\mathrm{G}$ for computing the length), the matehing section will be closed at the free end. A stub can be connected across the resonant line to provide a match, as described in the preceding chapter.

THE RHOMBIC ANTENNA

The horizontal rhombic or "diamond" antenna is shown in Fig. 14-30. Like the "V," it requires a great deal of space for erection, but it is capable of giving excellent gain and directivity.

It also can be used for multiband operation. In the terminated form shown in Fig. 14-30, it operates like a nonresonant transmission line, without standing waves, and is unidirectional. It may also be used without the terminating resistor, in which case there are standing waves on the wires and the antenna is bidirectional.

The important quantities influencing the design of the rhombic antenna are shown in luig. 1+30. While several design methods may be used, the one most applicable to the conditions existing in amateur work is the so-called "compromise" method. The chart of Fig. 14-31 gives design information based on a given length and wave angle to determine the remaining optimum dimensions for best operation. Curves for value of length of two, three and four wavelengths are shown, and any intermediate values may be interpolated.

With all other dimensions correct, an increase in length causes an increase in power gain and a slight reduction in wave angle. An increase in height also causes a reduction in wave angle and an increase in power gain, but not to the same extent as a proportionate increase in length. For multiband work, it is satisfuctory to design the rhombic antenna on the basis of 14-Mc operation, which will permit work from the $7-$ to $28-\mathrm{Mc}$. bands as well.

A value of 800 ohms is correct for the terminating resistor for any properly-constructed rhombic, and the system behaves as a pure resistive load under this condition. The terminating resistor must be capable of safely dissipating one-half the power output (to eliminate the rear pattern), and should be noninductive. Such a resistor may be made up from a carbon or graphite rod or from a long 800 -ohm transmission line using resistance wire. If the carbon rod or a similar form of lumped resistance is used, the device should be suitably protected from weather effects; i.e., it should be covered with a good asphaltic compound and sealed in a small lightweight box or fiber tube. Suitable nonreactive terminating resistors are also available commercially.

Fig. 14-30-The horizontal rhombie or diamond antenna, terminated. Important design dimensions are indicated; details in text.

Fig. I4-3I - Compromise-method design chart for rhombie antennas of various leg lengths and wave angles. The examples at the right illistrate the use of the chart:

"

For feeding the antenna, the antenna impedance will be matched by an 800 -ohm line, which may be constructed from No. 16 wire spaced 20 inches or from No. 18 wire spaced 16 inches. The $800-\mathrm{ohm}$ line is somewhat ungainly to install, however, and may be replaced by an ordinary $600-\mathrm{ohm}$ line with only a negligible mismatch. Alternatively, a matching section may be installed between the antenna terminals and a low-impedance line. However, when such an arrangement is used, it will be necessary to change the match-ing-section constants for each different band on which operation is contemplated.
(1) Given:

Length (L) $=2$ wavclengths

1) esired wave angle (\lrcorner) $=20^{\circ}$.

To Find: II, Φ.
Method:
1)raw vertical line through point a $\quad(\quad=2$ wavelengths) and point b on abscissa ($1=20^{\circ}$). Read angle of tilt (Φ) for point a and heipht (II) from intersection of line ab at mint c on curve H.
Result:
$\phi=60.5^{\circ}$.
$H=0.73$ wavelength.
(2) Given:
length $(L)=3$ wavelengths.
Angle of tith $(\Phi)=78^{\circ}$.
To lind: II. د.
Methorl:
Dran a vertical line from point d on curve $L=3$ wavelengths at $\Phi=78^{\circ}$. Real interseretion of this line on curve H (point e) for heright, and intersection at point f on the aliseissa for $د$.
Result:
$H=0.56$ wavelength.
$\Delta=20.6^{\circ}$.
The same design details apply to the unterminated rhombic as to the terminated type. When used without a terminating resistor, the system is bidirectional. Tuned feeders are generally used with the unterminated rhombic. \boldsymbol{A} nonresonant line may be used by incorporating a matching section at the antenna, but is not readily adaptable to satisfactory multiband work or over an appreciable band of frequeneies.
lhombic antennas will give a power gain of 8 to 12 db . or more for leg lengths of two to four wavelengths, when constructed according to the charts given. In general, the larger the antenna, the greater the power gain.

Beams with Driven Elements

By combining individual half-wave antennas into an array with suitable spacing between the antennas (called elements) and feeding power to them simultaneously, it is possible to make the radiation from the elements add up along a single direction and form a beam. In other direetions the radiation tends to cancel, so a power gain is ohtained in one direction at the expense of radiation in other directions. There are several methods of arranging the elements. If they are strung end to end, so that all lie on the same straight line, the elements are said to be collinear. If they are parallel and all lying in the same plane, the elements are said to be broadside when the phase of the current is the same in all, and end-fire when the currents are not in phase.

Collinear Arrays

Simple forms of collinear arrays, with the current distribution, are shown in Fig. 14-32, The two-element array at A is popularly known as "two half-waves in phase." It will be recognized as simply a center-fed dipole operated at its second
harmonic. The way in which the number of elements may be extended for increased directivity and gain is shown in Fig. 1+-2813. Quarter-wave phasing sections are used between elements to give the necessary reversal in phase. It is best to feed at the center of the array, so that the energy will be distributed uniformly among the elements.

The gain and directivity depend upon the number of elements and their spacing, center-to-center, as shown in Table $1+-\mathrm{III}$. Although three-guarter wave spacing gives greater gain,

Fig. 14.32 - Collinear half-wave antennas in phase, The systent at A is generally known as "t wo half. waves in phase," 13 is an extension of the syatem; in theory the mumber of elements may the carried on indefinitely, but practical considerations usually limit the elenents to four.

TABLE 14-III Theoretical Gain of Collinear Hall-Wave Antennas					
Spacing betureen cemers of adjacent half-uares	Number of half-riaves in array vs. gain in db.				
	2	3	4	5	6
$1 / 2$ wave	1.8	3.3	4.5	5.3	6.2
$3 / 4$ wave	3.2	4.8	6.0	-. 0	. 8

it is difficult to construct a suitable phatie-reversing system when the ends of the antenna elements are widely separated. The half-wave sparing is most generally used in actual practice.
collinear arrays may be mounted cither horizontally or vertically. Horizontal mounting gives increased horizontal directivity, while the vertical directivity remains the same as for a single element at the same height. Vertical mounting gives the same horizontal pattorn as a single element, hut concentrates the radiation at low angles.

Broadside Arrays

l'arallel antenna elements with currents in phase may be combined as shown in Fig. 14-33 to form a broadside array, so named because

Fig. 14-33 - Broadside array using parallel half-wave elerments. Arrows indicate the direetion of current llow. T'ransposition of the ferders is neressary to hring the antema currents in phase: Ans reasomable mumber of elements may be nesel. The arras is hidirectional, with maximum radiation "broadside" or perpendienar to the anterna plane (perpemicularly through this page).
the direction of maximum radiation is broadside to the plane containing the antennas. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in Fig. 14-34. Half-wave sparing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table $14-I V$ gives theoretical gain as a function of the number of elements with half-wave spacing.
l3roadside arrays may be suspended either with the elements all vertical or with them horizontal and one above the other (stacked). In the former case the horizontal pattern becomes quite sharp, while the vertical pattern is the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one element while the vertical pattern is sharpened, giving low-angle radiation.

Broadside arrays may be fed either ly resonant transmission lines or through quarter-wave match-
ing sections and nonresonant lines. In Fig. 14-33, mote the "rrossing over" of the foeders, which is neressary to bring the elements into proper phaser relationship.

Combined Broadside and Collinear Arrays

Broadside and collinear arrays may be combined to give both horizontal and vertical directivity, as well as additional gam. The

Fig. 14-34-Gain rs. spacing for two parallel half-wave elements combined as either liondside or end-firearrays.
general plan of constructing such antemas is shown in Fig. 14-35. The lower angle of radiation resulting from starking elements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of elements in an array by stacking will raise the gain from 2 to 4 db ., depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the broadside or collinear type.

The arrays in Fig. 14-35 are shown fed from one end, but this is not especially desirable in the case of large arrays. Better distribution of energy between elements, and hence better over-all performance, will result when the feeders are attached as nearly as possible to the center of the array. Thus, in the eight-element array at A, the feeders could be introduced at the middle of the transmission line between the second and third set of elements, in which case the connecting line would not be transposed between the second and third set of elements.
Δ four-element array, known as the "lazy-II" antenna, has been quite frequently used. This

TABLE 14-IV Theoretical Gain us. Number of Broadside Elements (Half-Wave Spacing)	
No. of elements	Gain
2	4 db.
3	5.5
4	7
5	8
6	9

Fig. 14-35 - Combination broadside and collinear arrays. A, with vertical elements; B, with horizontal ele. ments. Both arrays give low-angle radiation. Two or more sections may he used. The gain in dh. will be equal, approximately, to the sum of the gain for one set of broadside elements (Table 14-IV) plus the gain of one set of collinear elements ('lable 14-III). For example, in A each broudside set has four elements (gain 7 dlb.) and each collinear set two elements (gain 1.8 db .), giving a total gain of 8.8 db . In $\mathrm{B}_{\text {, each broadside set has two ele- }}$ ments (gain 4 db .) and each collinear set three elements (gain 3.3 db .), making the total gain 7.3 db . The result is not strictly accurate, because of mutual conpling be. tween the elements, but is good enough for practical purposes.
arrangement is shown, with the feed point indicated, in Fig. 14-36. For best results, the bottom section should be at least a half wavelength above ground.

End-Fire Arrays

Fig. 14-37 shows a pair of parallel half-wave elements with currents out of phase. This is known as an end-fire array because it radiates best along the plane of the antennas, as shown.

The end-fire array may be used either vertically or horizontally (elements at the same height), and is well adapted to amateur work because it gives maximum gain with relatively close element spacing. Fig. 14-3\& shows how the gain varies with spacing. lind-fire elements may be combined with additional collinear and broadside elements to give a further increase in gain and directivity.
Either tuned or untuned lines may be used with this type of array. Intuned lines preferably are matched to the antenna through a quarterwave matching section or phasing stul).

Phasing

Figs. $14-35$ and $14-37$ illustrate a point in connection with feeding a phased antenna system which sometimes is confusing. In Fig. 14-37, when the transmission line is connected as at A there is no crossover in the line connecting the two antennas, but when the transmission line is connected to the center of the connecting line the erossover becomes necessary (B). The same thing is true of the untransposed line of Fig. 14-3513. Note that, under these conditions, the antenna elements are in phase when the line is not transposed, and out of phase when the transposition is made.

Adjustment of Arrays

With arrays of the types just described, using half-wave spacing between elements, it will usually suffice to make the length of each element that given by Equations 14-13 or 14-C.

Fig. 14.36-A foureclement combination broadsidecollinear array, popularly known as the "lazy-H" antenna. A closed quarter-wave stub may lo used at the feed point to matchinto an untuned transmission line, or thmed feeders may be attached at the point indicated. The gain over a half-wave antenna is 5 to 6 db .

The phasing lines between the parallel elements should be of open-wire construction, and their length can be calculated from:

Length of half-wave line (feet) $=$
(14-H)

$$
480
$$

Freq. (Mc.)
Example: A half-wavelength phasing line for
28.8 Mc. would be $\frac{4 \times 0}{28.8}=16.66$ feet $=16$ feet

8 inches.
The spacing between elements can be made equal to the length of the phasing line. No special adjustments of line or element length

Fig. 14-37-End-fire arrays using parallet half-wave elements. The elenents are shown with half-wave spacing to illustrate feeder connections. In practiee, closer spacings are desirable, as shown by Fig. 14-34. Direction of maximum radiation is shown by the large arrows.
or spacing are needed, provided the formulas are followed closely.

With collinear arrays of the type shown in Fig. 14-32 B, the same formula may be used for the element length, while the length of the quarter-wave phasing section can be found from the following formula:

Length of quarter-wave line (feet) =
(14-I)

$$
\frac{240}{\text { Freq. (Mc.) }}
$$

Example: A quarter-wavelength phasing line for 14.25 Mc , would be $\frac{240}{14.25}=16.84$ feet $=16$ feet 10 inches.

(D)

Fig. 14-38 - Simple directive-antenna systems, \mathbf{A} is a two-element end-fire array; 13 is the same array with center feed, which permits use of the array on the second harmonic, where it becomes a fomr-element array with quarter-was e spacing. Cis a four-element end-fire array whin $1 / 8$-wave spaeing. I) is a simple two-element broadside array using extended in-phase antennas ("extended double-Zep,"). 'The gain of A and 13 is slightly over 4 db, On the second harmonie, 13 will give about 5 db , gain. With C, the gain is approximately 6 dh., and with I), approximately 3 dh. In A, 13 and C., the phasing line contributes about hos wavelength to the transmission line; when 13 is used on the second harmonic, this contribution is $1 / 8$ wavelength. Alternatively, the antenna ends may be bent to meet the transmission line, in which ease each feeder is simply connected to one antenna. In 1), points I-Y indicate a quarter-wave point (high current) and X-X a half-wave point (high voltage). The line may be extended in multiples of puarter waves if resonant feeders are to tre used. A. 13 and C may be sutspended on wooden spreaders. The flane containing the wires shoutd be parallel to the gromol.

If the array is fed in the center it should not be necessary to make any adjustments, although, if desired, the whole system can be resonated hy connecting an r.f. ammeter in the shorting link of each phasing section and moving the link baek and forth to find the maximum-current position. This refinement is hardly necessary, however, so long as all elements are the same length and the system is symmetrical.

The phasing sections can be made of 300 ohm 'Twin-Lead, if low power is used. However, the lengths of the phasing sections must then be only 84 per cent of the length obtained in the two formulas above.

Example: The half-wavelength line for 28.8 Mc. would become $0.84 \times 16.66=13.99$ feet $=$ 14 feet 0 inches.

Using Twin-Lead for the phasing sections is most useful in arrays such as that of Fig. 14-3213, or any other system in which the element spacing is not controlled by the length of the phasing section.

Simple Arrays

Several simple directive-antenna systems using driven elements have achieved rather wide use among amateurs. lour of these systems are shown in Fig. 14-38. Tuned feeders are assumed in all cases; however, a matching sertion readily can be substituted if a nonresonant transmission line is preferred. Dimensions givenare in terms of wavelength; actual lengths can be calculated from the equations for the antenna and from the equation above for the resonant transmission line or matching section. In cases where the transmission line proper connects to the midpoint of a phasing line, only half the length of the latter should be added to the line to find the quarter-wave point.

At A and 13 are two-element end-fire arrangements using close spheing. They are electrically equivalent; the only difference is in the method of connerting the feeders. 13 may also bo used on the second harmonic, although the sparing is not optimuin (Fig. 14-34) for such operation.

A close-spaced four-element array is shown at C. It will give about 2 dl . more gain than the two-element array.

The antenna at D, commonly known as the "extended double-Zepp," is designed to take advantage of the greater gain possible with collinear antennas having greater than halfwave center-to-center spacing, but without introducing feed complications. The elements are made longer than a half-wave. The gain is 3 db . over a single half-wave antenna, and the broadside directivity is fairly sharp.

The antemas of A and B may be mounted rither horizontally or vertically; horizontal susprnsion (with the elements in a plane parallel to the ground) is recommended, since this tunds to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for coverage over a wide horizontal angle. The system at C, when mounted horizontally, will have a sharper horizontal pattern than the two-element arrays Wecause of the effect of the collinear arrangement. The vertical pattern will be the same as that of the antennas in A and B.

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antenna arrays previously described are bidirectional; that is, they will radiate in directions both to the "front" and to the "back"
of the antenna system. If radiation is wanted in only one direction, it is necessary to use different element arrangements. In most of these arrangements the additional elements receive
power by induction or radiation from the driven element, generally' called the "antenua," and reradiate it in the proper phase relationship to achieve the desired effect. These elements are called parusitic elements, as contrasted to the driven elements which receive power directly from the transmitter through the transmission line.

The partsitic element is called a director when it reinfores radiation on a line pointing to it from the antenna, and a reflector when the reverse is the case. Whether the parasitic clement is a director or reflector depends upon the

Fip. 11-39-Gain rs. element spacing for an antenna and one parasitic element. The reference point, $0 \mathrm{db}_{\text {. }}$, is the fielul strength from a halfowave anterna alone. The greatest gain is in lirietinn A at spacings of lese than O.I 1 wavelength. and in direetion B at greater spacings. The front-to-bach ratio is the difference in dh. between rurves A and B. Variation in radiation resistance of the drivern elpment ateo io shown. "I'hese curves are for a self. resonant parasitie eloment. At most spacings the gain as a reflector can be increased by slight lengthening of the parasitic element: the gain as a director can be increased hyshortening. Tlisalso improves the front-to-hach ratio.
parasitie-element tuning, which usually is adjusted loy ehanging its longth.

Gain vs. Spacing

The gain of an antenn:a with parasitio elements varies with the spacing and tuning of the elemons, and thus for any given spacing there is a tuming eondition that will give maximum gain at this spacing. The maximmm front-to-batek ratio soldom, if ever, oreurs at the same condition that gives maximum forward gatin. The impedance of the driven element also varies with the tuning and spacting, and thus the anteman system must he tuned to its final condition before the match between the line and the antemat can be completed. However, the tuning and matrhing mate interlock to some extent, and it is usatly meressury to rum through the adjustments soveral times to insure that the best possible tuning has bere obtained.

Two-Element Beams

A 2-element beam is useful where space or other considerations prevent the use of the
larger structure repuired for a 3 -clement beam. The general practice is to tane the parasitie element as a reflector and space it about 0.15 wavelength from the driven element, although some successful antemas have been built with 0.1wavelength spacing and director tuning. Gain vs. eloment spacing for a 2 -element antemat is given in lig. $1+3$-3, for the special case where the parasitic element is resomant. It is indicative of the performance to he expected under maximumgain tuning conditions.

Three-Element Beams

Where room is available for an over-ill length greater than 0.2 wavelength, a 3 -element beam is preferable to one with only 2 elements. Once the over-all length has been decided upon, the curves of Fig. 11-40 can be used to determine the proper spateing of director and reflector. If, for example, the distance between director and reflector can be made $0 .+$ wavelength, Fig, $1+40$ shows that a spacing of $0.2 \mathrm{D}-(0.2 \mathrm{R}$ gives a gain of 7.9 db ., ind at spacing of $0.25 \mathrm{D}-0.15 \mathrm{R}$ gives a gatin of 8.2 db . Obviously the latter is the better choice, although the practical difference might be difficult to measure, and praetical (meehanical) considerations might call for using the more balanced $0.2 \mathrm{D}-0.21 \mathrm{construction}$.

When the over-all length has been decided upon, and the element spasing has beon determined, the element lengths can be found by referring to Fig. 14-1. It must be remembered that the lengths determined by these charts will vary slightly in actual practice with the element diamoter and the method of supporting the elements, and the tuning of a beam should always be checked after installation. However, the lengths obtained by the use of the charts will be

Fig, 14-4 - Gain es. element sparing for 3 -element beams using a driven $\cdot l e m e n t$ and a director and a reflector. The O-dh. reference level is the field strength from a ha!f-wavelength antenna alone. 'These curves are for the system tubed for maximum forward wain.

The clement spacing shown is the fraction of a wavelength determined by $\frac{98.1}{f\left(M_{r} \cdot\right)}$. Thus a wavelength at $14.2 \mathrm{M} \cdot .=981 / 14.2=69.3$ feet. A sparing of 0.1.3 wavelength at 14.2 Mc. would be $0.15 \times 69.3=$ 10.4 feet $=10$ feet 5 inches.
close to correct in practically all cases, and they can be usod without checking if the beam is difficult of arecess.
The preferable mothod for checking the beam is be mans of a field-strength meter or the S -meter of a rommunications reroiver, used in conjunction with a dipole antenna located at

Fig. 14-4 - Fifment lenkths for a 3 -element beam. These lengthe will bodd elonely for tahing elements sup. ported at or near the renter. The ratiation resiatance (b) is useful information in plaming for a matching systam, but it is subjest to variation with hopht above pround and must be considered an approsimation.

The driven-eloment lempth (C) may require monlification for tuming out reactance if a ' 1 ". or kamma-mateh feed system is used, as mentioned in the tent.

A (0.21). 0.2 It beam rut for 28.6 Me would have a director lengeh of $1.52 / 28.6=15.8=1.5$ feet 10 inches, a reflector Ifongth of $190 / 28.6=17.1=18 \mathrm{fewt} \mid \mathrm{inch}$, and a driven-element length of $470.5 / 28.6=16.45=16$ feet 5 inches.
least 10 wavelengths away and as high as or higher than the beam that is being checked. A few watts of power fed into the antenna will give a useful signal at the ohservation point, and the power input to the transmitter (and hence the antemaia) should be held constant for all of the readings. Beams tumed on the ground and then lifted into place are subjeot to tuning arrors and cannot be depended upon. The impedance of the driven elemont will vary with the height above ground, and good practice dictates that all final matching between antenna and line be done with the antomat in place at its normal height above ground.

Simple Systems: the Rotary Beam

Two- and 3 -eloment systems are popular for rotary-beam antembas, where the entire antenna system is rotated, to permit its gain and directivity to be utilized for any compass direetion. They may he mounted either horizontally (with the plane eontainimg the elements parallel to the carth) or vertirally.

A ferlement beam will give still more gain than a 3 -element one, provided the support is sufficient for at least 0,2 -wavelength spateing betwoen dements. The tuning for maximum gain involves mance variables, and complete gain and tuning data are not available.
"here elements in close-spaced (less than onequarter wavelength (lomont sparing) arrays preferably should be made of tubing of onehalf to one-inch diameter. A ronductor of large diamotor not only has less ohmic resistance but also has lower Q; both these factors are important in close-spaced arrays because the imperdance of the driven element usually is quite low compared to that of a single half-wave dipole. With 3 - and 4 -element arrays the radiation resistance of the driven element maty be so low that ohmic losses in the conductor can consume an appreciable fraction of the power.

Feeding Close-Spaced Arrays

Any of the usual mothols of feed may be applied to the driven clement of a parasitio array. The preferred mothous are shown in Fig. 1.4-42. Tuned feeders are not recommended for lengeths greater than a half-wavelength unless open lines of copper-tubing conductors ate used.

Three versions of the popular "T"-mateh are shown, for two-wire lines of Twin-Lead at A, for single coaxial line at 13 , and for double coaxial line at O, The match is adjusted by moving the shorting bars, kecping them equidistant from the renter, until the minimum s.w.r. is obtained on the line. If the s.w.r. minimum is not 1.5 or less, the transmitter frequency should be shifted to find the frequener where the minimum sw.r. oceurs. If it is higher than the original test frequency, inerease the antemat element bength slightly. The parasitic aloment lengethe taken from Fig. 14-41 should not require much adjust ment unless considerably differont spacing is used, but it may

Fig, 14-42- Recommended methods of feeding the driven antenna element in chose-spared parasitic arrays.
 match; 1). "gamma" mateli; \mathbf{E}, delta matching transformer; F, coaxial-line quarter-wave matehing section; (G. folded dipole. Adjustment is discussed in the text.
be necessary to change the position of the shorting bars and the length of the antemat element once or twice before the s.w.r. at the test frequency is aeeeptable. The matching section may be made of the same type of conductor as the element and spaeed a few inehes from it. The length of the matching section will be greater with higher-impedance lines and with wider element sparing. A good starting point for a $28-\mathrm{Me}$. wide-spaced ($0.2 \mathrm{D}-0.15 \mathrm{R}$) beam fed with 300 -ohm Twin-Lead is 28 inches each side
of center. A similar antenna and line on 14 Mc . might require about 56 inches each side.

The gamma match, shown in Fig. 14-42D, can be considered as one-half a " T "-mateh, and the same principles hold. However, when the length of the element is changed, in an effort to minimize the s.w.r., only the side to which the movable bar is connected should be changed - the other side should rematin at one-half the length obtained from Fig, 14-41. With 52 -ohm coaxial line feed, the length of the matehing element may run around 15 to 20 inches in a 28 -Mc. beam, and twice this value in a 14-Mc. array.

An altornative to adjusting the element length for tuning out the residual reactance is to use a small variable condenser in series at the junction of the coaxial-cable inner conductor and the matching section of the gamma mateh. A small $1+10-\mu \mu \mathrm{fd}$. receiving-type variable is adequate at powers of a few hundred watts, and it can be weatherproofed by mounting it in a small plastic cup. The T-mateh of Figs. 14-42 $\mathrm{A}, 1 \mathrm{~B}$ or C would require two condensers, one in each side.

The delta matching transformer shown at \mathbf{E} is probably easier to install, meehanically, than any of the others. The positions of the taps (dimension a) must be determined experimentally, along with the length, b, by cherking the standing-wave ratio on the line as adjustments are made. Dimension b should be about 15 per cent longer than a.

The coaxial-line matching section at F will work with fair accuracy into a close-spaced parasitic array of 2,3 or 4 elements without necessity for adjustment. The line is used as a quarter-wavelength transformer, and, if its characteristic impedance is 70 ohms (RG$11 / \mathrm{C})$, it will give a good match to a 600 -ohm line when the resistance at the termination is about 8.5 ohms. Over a range of 5 to 15 ohms the mismatch, and therefore the standingwave ratio, will be less than 2-to-1. The length of the quarter-wave section may be calculated from

$$
\text { Length }(\text { feet })=\frac{246 \mathrm{~V}}{f}
$$

(14-J)
where $V=$ Velocity factor $f=$ Frequency in Mc.
Example: A quarter-wave transformer of RG-11/U is to be used at 28.7 Mc . From the table in Chapter Thirteen, $V=0,66$.

$$
\begin{aligned}
\text { Length }=\frac{246 \times 0.66}{28.7} & =5.67 \text { feet } \\
& =5 \text { feet } 8 \text { inches }
\end{aligned}
$$

The folded-dipole antenna, Fig, 14-42G, presents a good match for the line when properly designed. Details are given in Chapter Thirteen. Different impedance step-up ratios can be obtained by varying the number of conductors or their diameter ratio.

Sharpness of Resonance

Peak performance of a multielement parasitie array depends upon proper phasing or
tuning of the elements, which can be exact for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequency range over which optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 kc . at 28 Mc . However, the antenna can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequency to be covered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintains more uniform gain over a wider frequency range.

As mentioned in the preceding paragraphs, the use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the case with wire conductors.

Combination Arrays

It is possible to combine parasitic elements with driven elements to form arrays composed of collinear driven and parasitic elements and combination broadside-collinear-parasitic elements. Thus two or more collinear elements might be provided with a collinear reflector or director set, one parasitic element to each driven element. Or both directors and reflectors might be used. A broadside-collinear array could be treated in the same fashion.

- receiving antennas

Nearly all of the properties possessed by an antenna as a radiator also apply when it is
used for reception. Current and voltage distribution, impedance, resistance and directional characteristics are the same in a receiving antenna as if it were used as a transmitting antenna. This reciprocal behavior makes possible the design of a receiving antenna of optimum performance based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of randon length. The longer and higher the wire, the more energy it abstracts from the wave. l3ecause of the high sensitivity of modern receivers, sometimes only a short length of wire strung arouud the room is used for a receiving antenna, but such an antenna cannot be expected to give good performance, although it is adequate for loud signals on the $3 . \overline{\text { on}}$ - and $7-\mathrm{Mc}$, bands. It will serve in emergencies, but a longer wire ontdoors is always better.

The use of a tuned antenna improves the operation of the receiver, because the signal strength is greater than with a wire of random length.

Antenna Switching

Switching of the antenna from receiver to transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tuner. If the relay is one with a 115 -volt a.c. eoil, the switch or relay that controls the transmitter plate power will also control the antenna relay. If the convenience of a relay is not desired, porcelain knife switches can be used and thrown by hand.

Typical arrangements are shown in Fig. $14-43$. If coaxial line is used, the use of a coaxial relay is recommended, although on the lower-frequency bands a regular switch or change-over relay will work almost as well.

Fig. 14-4.3-Antenna-switching arrangements for various types of antennas and coupling systems. A - For tuned lines with separate antenna tuners or low-impedance lines. B - For a voltage-fed antenna. C - For a tuned line with a single antentia tuner. D - For a voltage-fed antenna with a single tuner. b - For wo tuned-line antennas with a tuner for each antenna or for two low-impedance lines. F-For conbinations of several two-wire lines.

Antenna Construction

The use of good materials in the antenna system is important, since the antenna is exposed to wind and weather. To keep dectrical losses low, the wires in the antemmand feeder system must have good conductivity and the insulators must have low dielectric loss and surface leakage, particularly when wet.

For short antennas, No. 14 gauge harl-drawn enameled copper wire is a satisfactory conduetor. For long antennas and directive arrays, No. 14 or No. 12 enameled copper-clad sterel wire should be used. It is best to make feeders and matching st ubs of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, since harddrawn or copper-elad steel wire is difficult to handle unless it is under considerable tension at all times. The wires should be all in one piece; where a joint cannot be avoided, it should be carefully soldered.

In building a two-wire open line, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good ceramie spacers are advisable. Wooden dowels boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The wooden dowels

Fig. 14-47- Details of a simple 40 -foot " A "-frame mast suitable for erectien in lowations where spare is limitred.
can be attached to the feeder wires by drilling smatl holes and binding them to the feeders.

At points of maximum voltage, insulation is most important, and l'yrex glass, Isolantite or Steatite insulators with long leakage paths are recommended for the antenna. Glazed porcelain also is satisfactory. Insulators should be cleaned once or twice a year, especially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antenna clear of surrounding buildings, although in some locations the antenna will be sufliciently in the clear when strung from one chimney to another or from a housetop to a tree. Small trees usually are not satisfactory as points of suspension for the antenna because of their movement in windy weather. If the antenma is strung from a point near the center of the trunk of a large tree, this difficulty is not so serious. Where the antemna wire must be strung from one of the smaller branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight near the ground. 'The counterweight will keep the tension on the antenna wire reasomably constant even when the branches sway or the rope tightens and stretehes with varying climatic conditions.

Telephone poles, if they can be purchased and installed economically, make exeellent supports because they do not ordinarily require guying in heights up to 40 feet or so. Many low-rost television-antenna supports are now available, and they should not be overlooked as possible antenna aids.

- "A"-FRAME MAST

The simple and inexpensive mast shown in Fig. 14-44 is satisfactory for heights up to 35 or 40 feet. Clear, sound lumber should be seleated. The rompleted mast may be proterted by two or three coats of house paint.

If the mast is to be erected on the ground, a couple of stakes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys with the mast vertical all the while. It is entirely practicable, therefore, to ereet this type of mast on any small, flat area of roof.

By using 2×3 s or $2 \times 4 s$, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast shown in Fig. 14-45 is relatively strong, easy to construct, readily dismantled, and costs very little. like the " A "-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3, bolted at the bottom between a pair of 2×3 s with an overlap of about two fect. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two

Fig. 14-45- A simple and sturdy mast for heights in the vicinity of 40 feet, pivoted at the base for easvereclion. The height ean be extented to 50 freet or more by using $2 x$ 4 instead of $2 \times 3 \mathrm{~m}$.
legs are loolted to a length of 2×4 which is set in the ground. A short length of 2×3 is placed betwern the two legs about halfway up the bottom section, to maintain the spacing.

The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 section should be set in the ground so that it faces the proper direction, and then made vertical by lining it up with a plumb bob. The holes for the bolts should be drilled beforehand. With the lower section latid on the ground, bolt A should be slipped in place through the three pieces of wood and tightened just enough so that the sertion can turn freely on the bolt. Then the top seetion may be bolted in plate and the mast pushed up, using a badder or another 20 -foot 2×3 for the job. As the mast goes up, the slack in the guys can be taken up so that the whole strueture is in some measure continually supported. When the mast is vertical, bolt B should be slipped in place and both A and B tightemed. The lower guys ean then be given a final tightening, leaving those art the top a little sack until the antema is pulled up, when they should be adjusted to pull the top section into line.

GUYS AND GUY ANCHORS

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material. Heavier wire or stranded cable may he used for tather poles or poles installed in locations where the wind velocity is likely to be high.

More than three guy wires in any one set usually are unneressary. If a horizontal antenna is to be supported, two guy wires in the top set will be sufficient in most cases. These should run to the rear of the mast about 100 degrees apart to offset the pull of the antenna. Intermediate guys should be used in sets of three, one rumning in a direction opposite to that of the antenna, while the other two are spaced 120 degrees either side. This leaves a clear space under the antenna. The guy wires should be adjusted to pull the pole slightly back from vertieal before the antenna is hoisted so that when the antenna is pulled up tight the mast will be straight.

When raising a mast that is big enough to tax the avalable facilities, it is some advantage to know nearly exactly the length of the guys. Those on the side on which the pole is lying can then be fastened tempararily to the abehors beforehambl, which assures that when the pole is raised, those holding opposite guys will be able to pu'l it into nearly-vertiond position with no danger of its getting out of control. The guy lengths ean be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotenuse." In other words, the distame from the base of the pole to the anmhor should be measured and stoared. To this should be added the square of the pole length to the point where the guy is fastened. The square root of this sum will be the longth of the guy. - Guy wires should be broken up hy strain insulators. to atwoid the possibility of resonanee at the transmitting frequence. Common practice is to insert an insulator near the top of each guy, within a few fort of the poie, and then cut each seretion of wire between the insulators to a length whieh will not be resonant either on the fundamental or harmonies. An insutator every 25 feet will be satisfactory for frecurnemes up to 30 Mc . The insulators should be of the "rgg" type with the insulating material under compression, so that the guy will mot part if the insulator breaks.

Twisting guy wires outo "egg" insulators may be a tedions job if the guy wires are long and of large gauge. The simple time- and finger-saving

Fig. 14-46 - Using a lever for twisting heavy gay wires.
device (piece of heavy iron or stecl) can be made by drilling a hole about twice the diameter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator, given a single turn by hand, and then held with a pair of pliers at the point shown in the sketeh. 13y passing the wire through the hole in the iron and rotating the iron as shown, the wire may he quickly and neatly twisted.

Guy wircs may be anchored to a tree or building when they happen to be in convenient spots. For small poles, a 6 -foot length of 1 -inch pipe driven into the ground at an angle will suffice. Tdditional bracing will be provided by using two pipes, as shown in Fig. 1+-47.

- HALYARDS AND PULLEYS

Halyards or ropes and pulleys are important items in the antenna-supporting system. Particular attention should be directed toward the

Fig. 14.47 - Pipg guy anchors: One pipe is sufficient for small masts, but two installed as shown will provide the additional strength required for the larger poles.
choice of a pulley and halyards for a high mast since replacement, once the mast is in position, may he a major undertaking if not entirely impossible.

Galvanized-iron pulleys will have a life of only

Fig. 14-48-An antenna lead-in panel may be placed over the top sash or under the lower sash of a window. Sulostituting a smaller height sash in half the window will simplify the weatherproofing prolilem where the sash overlap.
a year or so. Especially for coastal-area installations, marine-type pulleys with hardwood blocks and bronze wheels and bearings should he used.

For short antennas and temporary installations, heavy clothesline or window-sash cord may be used. However, for more permanent johs, $3 / 8$-ineh or $1 / 2$-inch waterprof hemp rope should be used. Even this should be rephaced ahout once a year to insure against breakige.

It is advisable to carry the pulley rope baek up to the topin "endless" fashion in the manner of a flag hoist so that if the antenna breaks close

Fig. 14-49 - A - Anchoring feeders takes the strain from feedthrongh insulators or window glass. 13 - Going through a full-lengit screen, a cleat is fastened to the frame of the sereen on the inside. Clearance hotes are cut in the cleat and also in the screen.
to the pole, there will be a means for pulling the hoisting rope back down.

- BRINGING THE ANTENNA OR FEED LINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the building, as shown in Fig. 14-4!, to remove strain from the lead-in insulators. Holes eut through the walls of the buiding and fitted with feed-through insulators are undoubtedly the best means of bringing the line into the station. The holes should have plenty of air clearanee about the conducting rod, especially when using tuned lines that develop high voltages. Probably the best place to go through the walls is the trimming board at the top or bottom of a window frame which provides flat surfaces for lead-in insulators. Cement or rubber gaskets may he used to waterproof the exposed joints.

Where such a proeedure is not permissible,

Fí. 14.50-1.ow-loss lightning arresters for transmit-ting-antenna installations.
the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger job will result. Ilate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itself provides insulation and the transmission line may be fastened to bolts fitting the holes. Rubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-length screen. the scheme shown in l"ig. 14-4913 may be used.

As a less pormanent method, the window may be raised from the bottom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in lig. 14-48, or by using weatherstrip material where necessary.

Coaxial line can be brought through clearance holes without additional insulation.

LIGHTNING PROTECTION

An ungrounded radio antenna, particularly if large and well elevated, is a lightning hazard. When grounded, it provides a measure of protection. Therefore, grounding switches or lightning arresters should be provided. Examples of construction of low-loss arresters are shown in Fig. It-50. At A, the arrester electrodes are mounted by means of stand-off insulators on a fireproof asbestos board. It I3, the chectrodes are enclosed in a standard steel outlet box. The gaps should be made as small as possible without danger of breakdown during operation. lightning-arrester systems require the best ground connection obtainable.

The most positive protection is to ground the antenna system when it is not in use; grounded flexible wires provided with clips for connection to the feeder wires may be used. The ground lead should be of short length and run, if possible, directly to a driven pipe or water pipe where it enters the gronnd outside the building.

Rotary-Beam Construction

It is a distinet advantage to be able to shift the direction of a beam antenna at will, thus securing the benefits of power gain and directivity in any desired compass direction, A favorite method of doing this is to construct the antenna so that it can be rotated in the horizontal plane. The use of such rotatable antennas is usually limited to the highar frequencies - 14 Mc. and above - and to the simpler antenna-element combinations if the structure size is to be kept within prarticable bounds. For the 14-, 21- and 28-Mc. bands such antennas usually consist of two to four elements and are of the parasitic-array type deseribed earlier in this chapter. At 50 Mc . and higher it becomes possible to use more claborate arrays because of the shorter wavelength and thus obtain still higher gain. Antennas for these bands are described in another chapter.

The problems in rotary-beam construction are those of providing a suitable mochanical support for the antenna elements, furnishing a means of rotation, and attaching the transmission line so that it does not interfere with the rotation of the system.

Elements

The antenna elements usually are made of motal tubing so that they will be at least partially self-supporting, thus simplifying the supporting structure. The large diameter of the conductor is beneficial also in reducing resistance, which becomes an important consideration when close-spaced elements are used.

Aluminum alloy tubes are generally used for the elements. The elements frequently are constructed of sections of telescoping tubing making length adjustments for tuning quite easy. Electri-
cian's thin-walled conduit also is suitable for rotary-beam elements.

Fig. 14-51 - A wooden boom for a 4 -element 14-Mc. hoom can le made tuite strong by judicious use of guy wires. This installation is male on a windmill tower, and the drive motor is monnted halfway down on the tower. (H6MJB, Nov., 1947, QST.)

If sted elements are used, speetal preatutions should he taken to prevent rusting. The elements should tre eosted both inside and out with slow-drying alaminumpaint. For comang the inside, the paint may be poured in one end while rotating the tubing, The exress mant may be ranght as it comes ont the bottom end and poured through again motil it is certain that the entire inside wall has been eovered. The cuds should then be plugged up with corks sealed with glyptal varnish.

Supports

The supporting framework for a rotary beam usually is made of wood or metab, using as lightweight constrution as is consistent with the required strength. Giencrally, the frame is not required to hold much weight, hat it must le extensive enough so that the antema clements ran be supported withont exorsive sag, and it must have sufficient strength to stand up under the maximum wind in the locality. The dowign of the frame will depend on the size and strength of the clements and the method used to rotate the antenna.

The general preference is for horizontal remonts, pimarily because less height is required to clear surfomding ohstructions when all the antenna clements are in the horizontal plane. This is important at 14 and 21 Mc. where the elements are fairly long.

The support may he coupled to the mast hy any convenient means which permits rotation or, alternatively, it masy le firmly fastenod to the mast and the hater rotated in bearings aflixed to the side of the house.

Metal is commonly used to support the elements of the rotury beam, For 28 Mc., a piece of 2 -inch diameter duraluminum tubing makes a good "boom" for supporting the elements.

Fig. 14-9.3 - The bem is made of two lo-foot lengthe of dural tubing slipped over a 3 -fuet wak bloch and heht in plate with 2-imels wood serews. Guv wire from the center add strength to the lwom strusture.

The elements can be made to slide through suitable holes in the boom, or sperial ramps and brackets can be fashioned to support the elements. Fittings for ' T ' antmmas can ofton be used on 21-and 28 -Me, beams.

Most of the TV antemna rotators are satisfactory for turning the smallor beams.

With all-metal construction, delta. "gamma" or "r"-mateh are the only pratatical matching methods to use to the line, since anthing else requires opening the driven element at the conter, and this complicates the support problem for that element.

A Wooden Boom for 14 Mc.

Many amateurs prefer to huild their beam booms from standard
pieces of lumber, and the beam shown in Figs. $14-51$ and $14-52$ is an example of excellent design in wooden-boom eonstruction. The boom memhers are two 20 -foot $2 \times$ ts fastened to the $4 \times 12 \times 24$-inch center borek with six lag screws. The two center screws serve as the axis for tilting - the other four lock the boom in position after finad assembly and adjustment have been completed. The blocks midway from each end are 2×4 s spaned about six inches apart, with a long bolt between them. When this bolt is drawn tight, a very sturdy box brace is formed. The crossarms are 3×3 s twelve feet long, bolted to the boom with earriage bolts.

The umbrella guys should have turnbuckles in them, and the guys are fastened to the center support after the beam has been permanently loeked in its horizontal position. With the turnbuckles properly adjusted, there will be mosag in the boom and the elements will be neat.

The elements are $13 / 8$ - and $11 / 2$-inch diameter duratuminum tubing, supported by $11 / 2$-inch stand-off insulators. Hose elamps are used to hold the elements on the insulators. Final adjustment of element lengths is possible through "hairpin" loops. The tower for the beam shown in Fig. 1:-51 was a mail-order windmill tower. The driving motor for the beam was located halfway down the tower, the torque boing transmitted through a length of $11 / 2$-inch drive shaft. A pipe flange is wedded to the drive shaft and bulted to the center bleck. A cone bearing is obtained by turning both the flange and a sleceve of 2 -ineh pipe to mateh, as shown in Fig. 14-52.

One nethod of matching the line to the antennat is to use a guarter wavelength of $\overline{\text { on }}$-ohm Twin-Lead between the radiator amd the slipring contacts, to mateh a 600 -ohm line from the slip rings to the transmitter.

A 600 -ohm open-wire line is run to a point about halfway up on the tower, then up the side of the tower to the slip rings. The slip rings are mounted on the top of the tower, directly under the center book. A quarter-wavelength matching section of transmitting-type 75 -ohm Amphenol Twin-Lead hangs in a loop leetween the driven element and the slip-ring contacts.

"Plumber's-Delight'" Construction

The lightest beam to build is the so-called "plumber's delight" - an array constructed entirely of metal, with no insulating members between the clements and the supporting structure. Suggested eonstructional details are shown in l-igs. $14-53,14-54,1+55,1+56$ and $1+-5 \overline{7}$.

Fip. 14-54-The center element section is held in the foom with a $1 / 4-28$ machine screw, nut and lock washer. The guy wire attaches to the head of the bolt.

The boom ean be built of two lengths of :3-inch diamoter 61s-Tt dural tubing of 0.072 -inch wall thickness, as shown in ligg. 1.t-5;3. The two wortions are spliced together with a three-foot length of 6×6 oak, turned down at each end to fit inside the tulbing. The centar of the block is loft square to provide in liat surface to attach to the vertical rotating pipe. It cach extremity of this hoom is cut a hole the exact diameter of the parasitie elements. A two-foot length of $3 / 4$-ineh

Fig. 14.55- "Obe clamp for the driven element is mate Iy splitting l-foot lengths of irnn pibe and wolding them as shawn.
pipe, complete with flange mounting plate, is bolted to the top surfare of the oak block, and a single guy wire is run to cach end of the boom. An eng insulator and a turnbuckle are pared in each guy. The turnbuckles should be tightened until there is no sug in the boom when it is supported at the eenter, and then safety-wired. Finally the renter blowk should be given a good coat of paint or varnish.

The clements ram be made of three 12 -foot lengt he of dural tubing, the two outside lengths telescoping inside the center section. The ends of the center section should he sloted for a distance of about + inches with a hack saw, but it is advisable to do the slotting after the center sections have been assembled on the boom. The

Fig. 14.56 - The mounting plate is made from a lengh of "U"-channel iron cut and drilled a* shown. The boom is raised vertically motil one set of luelt holes is in line and a bolt is slipped through. The boom is then swnog into it: hori\%ontal pesition ant the othor bolt is put in place.
parasitic-element center sertions are fastened to the boom with $1 / 4$-inch bolts, as shown in lig. 14-5t, while the driven element is serured in at cradle made of half sections of iron pipe welded together, as shown in Fig. 14-5.5. The cradle is bolted to the boom with three $\frac{1}{4}$-inch bolts, ant the driven element is held fast with two bolts or with adjustable air-reaft-tubing elamps.

The feed line for the antemna can be any balanced line, of from 200 to 600 ohms impedance, and it is most conveniently roupled through a "T"-match. This "T"'-match assembly can be made from two 4 -foot lengths of dural tubing
joined together by a piece of broomstick, as shown in Fig. 14-57. The " T " is connected to the antenna by two clamps fashioned of 1 -inch-wide brass strip.

A convenient method for supporting the boom atop the pipe used to rotate the beam is shown in Fig. $14-56$. A " U "-channel into which the boom will fit is welded to the end of the pipe. Holes are drilled in the side of the channel corresponding to holes in the boom. The boom is hoisted up and positioned between the two flanges and a bolt run through the flanges and the hoom. The boom can then be swung into a horizontal position and the second bolt put in place.

Feeder Connections

For heams that rotate only 360 degrees, it is common to bring off feeders by making a short section of the feeder, just where it leaves the rotating member, of thexible wire. Enough slack should be left so that there is no danger of breaking or twisting. Stops should be placed on the rotating shaft of the antenna so that it will be impossible for the feeders to "wind up."

For continuous rotation, the sliding contact is simple and, when properly built, quite practicable. The chiof points to keep in mind are that the contact surfaces should be wide enough to take care of wobble in the rotating shaft, and that the contact surfares should be kept clean. Spring contacts are essential, and an "umbrella" or other scheme for keeping rain off the contacts is a desirable addition. Sliding contarts preferably should he used with nonresonant open-wire lines, so that the line current is low.

The possibility of poor connections in sliding contacts can be avoided by using inductive coupling at the antenna, with one coil rotating on the antenna and the other fixed in position, the two coils being arranged so that the coupling does not change when the antenna is rotated. A quarter-wave feeder system is connected to a tuned pick-up circuit whose inductance is coupled to a link. The link coil connects to a twisted-pair transmission line, but any type of line such as flexible coaxial cable can be used. The circuit would be adjusted in the same way as any link-coupled cirruit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling circuit tunes to the transmitting frequency. The system is equivalent to a link-coupled antenna tuner mounted on the pole, using a parallel-tuned tank at the end of a quarter-wave line to centerfeed the antenna. For constant coupling, the two coils should be rigid and the pole should rotate without wobble. The two coils might he made a part of the upper bearing assembly holding the rotating pole in position.

There are other variations of the inductivecoupled system. The tuned circuit might, for instance, be placed at the end of a 600 -ohm line, and a one-turn link used to couple directly to the center of the antenna, if the construction of the rotary member permits. In this case the coupling

Fig. 14.57 - Details of the " 1 "'-nateh assembly.
can be varied by changing the L / C ratio in the tuned circuit. For merhanical strength the coupling coils preferably should be made of $1 / 4$-inch copper tubing, well braced with insulating strips to keep them rigid.

Rotation

It is convenient but not essential to use a motor to rotate the beam. If a rope-and-pulley arrangement can be brought into the operating room or if the pole can be mounted near a window in the operating room, hand rotation of the licam will work.

If the use of a rope and pulleys is impracticable, motor drive is about the only alternative. There are several complete motor driven rotators on the market, and they are easy to mount, convenient to use, and require little or no maintenance. (ienerally speaking, light-weight units are better hecause they reduce the load on the mast or tower.

The speed of rotation should not be too great - one or two r.p.m. is about right. This requires a considerable gear reduction from the usual $17.50-\mathrm{r} . \mathrm{p} . \mathrm{m}$. speed of small induction motors; a large reduction is advantageous berause the gear train will prevent the beam from turning in weather-vane fashion in a wind. The usual beam does not require a great deal of power for rotation at slow sperd, and a 1/8-hp. notor will be ample. A reversible motor should he used so that it will not be necessary to go through nearly 360 degrees to bring the beam back to a direction only slightly different, but in the opposite direction of rotation, to the direction to which it may be pointed at the moment. ln cases where the pole is stationary and only the supporting framework rotates, it will be necessary to mount the motor and gear train in a housing on or near the top of the pole. If the pole rotates, the motor can be installed in a more accessible location.
Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by two coats of enamel and a coat of glyptal varnish. Even commercial units will last longer if treated with glyptal varnish. I3e sure that the surfaces are clean and free from grease before painting. Grease can be removed by brushing with kerosene and then squirting the surface with a solid stream of water. The work can then be wiped dry with a rag.

The power and control leads to the rotator should be run in electrical conduit or in lead covering, and the metal should be grounded.

A Compact 14-Mc. 3-Element Beam

A 20 -meter beam no larger than the usual 10-meter beam can be made by using renterloaded elements and close spacing. Such an antema will show good directivity and can be rotated with a TV-antemna rotator.

Constructional details of the elements are

(A)

Fig. 14-58-Dimensions of a compact 14-Mc. leam. A - Side view of a typical element. ']V-antenna " l " clamps hold the support arms to the brom. Birnbaeh 4176 insulators support the elements. B- I'opplan of the beam showing element spacing and loading-coil dinensions. Elements are made of aluminum tubing. Construction of the loading coils and adjustment of the elements are discussed in the text. Findsection lengths of 41 inches for the refleetor, 40 inches for the driven element, and 10 inehes for the direetor will lee chose to optimum.
clamps ean be used for this purpose. The boom is a 12 -foot length of $11 / 2$-inch o.d. 61ST aluminum tubing, with 0.125 -inch wall.

The line is coupled and matched at the center of the driven element through adjustment of the link wound on the outside of the Lucite tuling. To check the adjustment of the elements, first resonate the driven element to the desired frequency in the $1+$ Mc. band with a griddip oscillator. Then resonate the director to approximately $1+.8$ Mc., and the reflector to approximately 13.6 Mc . This is not critical and only serves as a rough point for the final tuning, which is done by use of a conventional fieldstrength indieator. Check the transmitter loading and readjust if necessary. Adjust the director for maximum forward gain, and then adjust the reflector for maximum forward gain. At this point, check the driven element for resonance and readjust if necessary. Turn the reflector toward the field-strength indicator and adjust for back cut-off. This must be done in small steps. Do not expect the attenuation off the sides of a short beam to be as high as that obtained with full-lengt helements. The s.w.r. of the line feeding the antenna can be checkod with a bridge, and after the elements have been tuned, a final adjustment of the s.w.r. cion be made by adjusting the coupling at the antenna loading coil turns and spacing. As shown in Figs. 14-58 and 14-59. The loading coils are space-wound by interwinding plumb line (sometimes known as chalk line) with the No. 12 wire coils. The coil ends are secured by Urilling small holes through the polystyrene bar, as shown in Fig. 14-59. The coils should be sprayed or painted with Kirylon before installing the protective Lucite tubes.
The beam will require 4 foot lengthe of the tubings indicated in Fig. 14-58A. For good telescoping, element wall thickness of 0.058 inch is recommended. The ends of the tubing sections should be slotted to permit adjustment, and secured with clamps, so that the joints will not work loose in the wind. Perforated ground

Fip. 14.59- Detailed sketch of the loading and coupling coils at the center of the driven element, and its mounting. Similar loading coils (see text) are used at the centers of the director and reflector.

About V.H.F.

While it is possible to use the frequencies above 30 Me. without kowing anything about wave propagation, the amateur who understands something of the means by which his signals reach distant points will be able to do a beter job of it. Berause much of the pleasure and satisfaction to be derived from s. h.f. work lie in making the best possible use of propagation vagaries associated with matural phenomena, a working knowledge of the basic principles of wave propagation is a most useful tool for the v.h.f. operator.

CHARACTERISTICS OF THE BANDS ABOVE 50 MC .

The assignments from 50 Mc. up are superior tolower bands in one outstanding respect: they provide interference-free communication consistently within a limited service area. Lowner frequencies are more subjeet to varying conditions that impair their effectiveness for work over a radius of 100 miles or less at least part of the time, and the heavy oserupancy they support creates a continuing interferenco problem. Our v.h.f. bands are seldom crowded, and their characteristies for local work are more stable. B3catuse of this $\overline{0} 0$ and 14 M (., particularly, enjoy considerable popularity in areats where there is dense population.

In addition, there are several media by which v.h.f. signals are propagated beyond the local range, and operation on the v.h.f. bands has been taken up by many who must depend almost entirely on "DN" for their contarts. The latter group, particularly, will benefit from knowledge if common propagation phenomena. The material to follow supplements information in Chapter Four, dealing with wave propagration as it affects the world above 50 Me .

50 to $\overline{5}$, $/ 16$: $:$ "This band is borderline turritory betwen the IDX frequencios and those normatly employed for tocal work. Thus just about every form of wave propagition found throughout the radio speetrum appears, on occasion, in the $50-$ Me, ragion. This hats contributed greatly to the popularity of the $\overline{0} 0-$-Mc. band.

During the peak years of the sunspot cyele it is oreasionally possible to work $50-\mathrm{Mc}$. DX of world-wide proportions, by reflection of signals from the F_{2} layer. Sporadio- E 'skip provides contacts over distances from 400 to 2500 miles or so during the early summer months, regardless of the solar evcle. Reflection from the aurora regions allows 100- to 600 -mile work during pronounced ionospheric disturbances. The ever-changing
weather pattern offers extension of the normal coverage to ats much as 300 miles. This develops most often during the warmer months, but may oreur at any season. In the absence of any favorable propagation, the average well-equipped $50-$ Me. station should be able to work regularly over a radius of 75 to 100 miles or more, depending on local terrain.
1.44 to $1148 . \mathrm{Mc}$.: I Ionospheric efferts are greatly reduced at $1+4 \mathrm{Me}, F_{2}$-layer reflection is unlikely, and sporadic- E : kip is rare. Aurora DN is fairly common, but signals are generally weaker than on 50 Me. Tropospheric effects are more pronounced than on 50 Me., and distances covered during favorable wather conditions are greater than on lower bands. Air-mass boundary bending has been responsible for communication on 144 Me, over distances in excess of 1100 miles, and 50)-mile work is fairly common in the warner months. The reliable range under normal conditions is slightly less than on 50 Me, with comparable crquipment.
$\underset{\sim}{200}$, Vr, and Higher: Ionospharic propagation is unlikely at 220 Me. and up, but tropospherie bending is more prevalent than on lower hands. Amateur experience on 220 and 420 Me . is showing that they can be as useful as $1+4$ Me., when (omparable equipment is used. Coder minimum conditions the range may be slightly shorter, but when signals are good on 144 Ace, they may be better on 220 or 420 . Liven ahove 1000 Me , there is evidenee of tropospheric DN.

- PROPAGATION PHENOMENA

The various known means by which v.h.f. signals may be propagated over unusual distances are dise ussed below.
F_{2}-Layer Reflection: Most contacts made on 28 Me, and lower frequencies are the result of reflection of the wave by the F_{2} layer, the ionization density of which varies with solar activity, the highest frequencies being reffected at the peak of the 11-year solar cycle. The maximum usable frequency (m,u.f.) for F_{2} reflection also follows other well-defined eycles, daily, monthly, and seasomal, all related to conditions on the sun and its position with respect to the earth.

At the low point of the 11-year cycle, such as in the early ' 50 s, the m.u.f. may reach 28 Mc. only during a short period each spring and fall, whereas it may go to 60 Me , or higher at the peak of the cycle. The fall of 1946 saw the first authentic instanes of long-distance work on 50 Mc. by F_{2}-layer reffection, and as late as 1950 contacts were made in the more favorable areas
of the world by this medium. In the northern latitudes there are peaks of m.u.f. each spring and fall, with a low period during the summer and a slight dropping-off during the midwinter months. At or near the Lquator conditions are more or less constant at all seasons.

The F_{2} m.u.f. is quite readily determined by observation, and it may be estimated quite accurately for any path at any time. It is predictathe for months in advatuce, enabling the v.h.f. worker to arrange test sehedules with distant stations at propitious times. As there are numerous signals, both harmonics and fundamental transmissions, on the air in the range between 28 and 50 Me ., it is possible for an observer to determine the approximate m.u.f. by careful listening in this range. Daily observations will show if the m.u.f. is rising or falling from day to day, and once the peak for a given month is determined it can be assumed that another will oceur about 27 days later, this eyele coineiding with the turning of the sun on its axis. The working range, via F_{2} skip, is roughly comparable to that on 28 Me., though the minimum distance is somewhat longer. 'Two-way work on 50 Me, by reflection from the F_{2} layer has been accomplished ovar distanees from 2200 to 10,500 miles. The maximum frequency for F_{2} reflection is believed to be about $70 \mathrm{Mc} \cdot \mathrm{F}_{2} \mathrm{DN}$ on 50 Mc , is unlikely again before 1956 or 1957.

Nporudic- E^{\prime} NKip: D'atchy concentrations of ionization in the E-layer region are often responsibie for reflection of signals on 28 and 50 Mc . This is the popular "short skip" that provides fine contacts on both bands in the range between 400 and 1300 miles. It is most common in May, June and July, during morning and early evening
hours, but it may occur at any time or season. Multiple-hop effects may appear, when ionization develops simultaneously over large areas, making possible work over distances of more than 2500 miles.
The upper limit of frequency for sporadic- E skip is not positively known, but scattered instances of $144-\mathrm{Mc}$. propagation over distances in excess of 1000 miles indicate that E-laver reflection, possibly aided by tropospheric effects, may be responsible.

Aurora Effert: Low-frequency communication is occasionally wiped out by absorption in the ionosphere, when ionospheric storms, associated with variations in the carth's magnetic field, occur. During such disturbances, however, v.h.f. signals may be reflected back to earth, making communication possible over distances not normally workable in the v.h.f. range. Magnetic storms may be accompanied by an aurora-borealis display, if the disturbance oecurs at night and visibility is good. Aiming a directional array at the auroral curtain will bring in signals strongest, regardless of the true direction to the transmitting station. When the display is widespread there may be only a slight improvement noted when the array is aimed north.

Aurora-reflected signals are characterized by a rapid flutter, which lends a "dribbling" sound to $28-\mathrm{Me}$. curriers and may render modulation on $50-$ and $144-\mathrm{Mc}$. signals completely unreadable. The only satisfactory means of communication then becomes straight c.w. The effect may be noticeable on signals from any distance other than purely local, and stations up to about 800 miles in any direction may be worked at the peak of the

fig. 15-1 - The principal means by which v.h.f. signals may be returned to earth. The F_{2} laver, highest of the known reflecting regions of the ionosphere, is capable of reflecting $50-\mathrm{Mc}$. signals during the peak period of the 11 year solar cycle. Such communication may be world-wide in scope. Sporadic ionization of the E laver produces the familiar "short skip" contacta over medium distances at 28 and 50 Mc . On these bands it is a fairly frequent occurrence regardless of the solar cycle. It is most common in May through Auguct. Refraction of v.h.f. waves also takes place at air-mass boundaries in the lower atmospherc, making possible communication over distances of several hundred miles, usually without a skip zone, on all v.h.f. bands.
disturbance. Unlike the two methods of propagation previously described, aurora effect exhibits no skip zone. It is observed frequently on 50 Mc ., and pronounced disturbances affect the 144 -Mc. band similarly. The highest frequency for aurora reflection is not yet known.

Scatter: When long-distance communication is possible on 50 Mc ., stations within the skip zone may be heard with a wavery quality indicative of multipath reception. Such signals have traversed a normal ionospheric path, via either the F_{2} or E layer, and a small amount of energy has returned to the receiver by reflection from a distant point on the earth's surface. The process is similar to that of a radar echo, except that an ionospheric route is followed.

The effect is most marked with high-gain directional arrays and high transmitter power. The direction from which scatter signals are observed
which may have come from northern Canada. Each tends to retain its original characteristics for considerable periods of time, and there may be a well-defined boundary between the two for several days. When such boundaries exist along the path between two v.h.f. stations separated by 50 to 300 miles or more, a considerable degree of refraction takes place, and signals run high above the average value.

Many factors other than air-mass movement of a continental character provide increased v.h.f. operating range. The convection along our coastal areas in warm weather is a good example. The rapid cooling of the earth after a hot day in summer, with the air aloft cooling more slowly, is another, producing a rise in signal strength in the period around sundown. The early-morning hours, when the sun heats the air aloft, before the temperature of the earth's surface begins to rise, may be the best of the day for extended

Fig. 15-2 - Illustrating a typical weather sequence, with associated variations in v.h.f. propagation. At the right is a cold air mass (fair weather, high or rising barometer, moderate summer temperatures). Approaching this from the left is a warm moist air mass, which overruns the cold air at the point of contact, creating a temperature inversion and considerable bending of w.h.f. waves. At the left, in the storm area, the inversion is dissipated and signals are weak and subject to fading. Barometer is low or falling at this point.
indicates the region of most intense ionization, and adaptations of radar methods make it possible to "sound" the ionosphere to determine what distances and directions may be covered on a given frequency.

Reflections from Meteor Trails: Probably the least-known means of v.h.f. wave propagation is that resulting from the passage of meteors across the signal path. Ireflections from the ionized meteor trails may be noted as a Doppler-effect whistle on the earrier of a signal already being received, or they may cause bursts of reception from stations not normally receivable. Ordinarily such reflections are of little value in communication, since the increases in signal strength are of short duration, but meteor showers of considerable magnitude and duration may provide fluttery signals from distances up to 1000 miles or more on both the 50 and 144 Mc.

I'ropospheric Bending: Refraction of radio waves takes place whenever a change in refractive index is encountered. This may occur at one of the ionized layers of the ionosphere, or at the boundary area between two different types of air masses, close to the earth's surface. A warm, moist air mass from over the Gulf of Mexico, for instance, may overrun a cold, dry air mass
v.h.f. range, particularly in clear, calm weather, when the barometer is high and the humidity low.

Any weather condition that produces a pronounced boundary between air masses of different temperature and humidity characteristics provides the medium by which v.h.f. signals cover abnormal distances. The v.h.f. enthusiast soon learns to correlate various weather manifestations with radio-propagation phenomena. By watching temperature, barometric pressure, changing cloud formations, wind direction, visibility, and other easily-observed weather signs, he can tell with a reasonable degree of accuracy what is in prospeet on the v.h.f. bands.

The responsiveness of radio waves to varying weather conditions increases with frequency. Our 50-Me. band is more sensitive to weather variations than is the $28-\mathrm{Mc}$. band, and the $144-\mathrm{Mc}$. band may show strong signals from far beyond visual distances when lower frequencies are relatively inactive. It is probable that this tendency continues on up through the microwave range, and there is good evidence to indicate that our assignments in the u.h.f. and s.h.f. portions of the frequency spectrum may someday support communication over distances far in excess of the optical range.

CHAPTER 16

V.H.F. Receivers

Even more than in work on lower frequencies, receiver performance is all-important in the v.h.f. station. lligh sousitivity and good signal-to-noise ratio, necessary attributes in a receiving system for 50 Mc . and higher hands, are best attained through the use of a converter, working in conjunction with a communications receiver designed for lower frequencies. Though receivers and converters for 50,144 , and even 220 and 420 Mc . are available on the amateur market, the v.h.f. worker can build his own with fully as good results, and at a considerable saving in cost.

In its basic principles, modern receiving equipment for these bands differs little from that emploved on lower frequencies, and the same order of selectivity maty be used in amateur work up to at least 450 Mc . The greatest practical selectivity should be used in v.h.f. work, as well as on the frequencies below 30 Mc., as it not only permits more stations to operate in a given band, but is an important fartor in improving the signal-to-noise ratio. The effective sensitivity of a receiver having "communication" selectivity can be made considerably better than is possible with broadband systems. First on bf Mc., more than a decade ago, then more reconfly on 144 Me., and currently on 220 and 420 Mc , the change to selective superheterodyne receivers marked the beginning of real extensions of the operating range.

The superregenerative receiver, once very popular for v.h.f. work, is now used principally for portable operation, or for other applications where maximum sonsitivity and selectivity are not of prime importance. It is still capable of surprising performanere, for a given number of tubes and eomponents, but its lack of selectivity, its poor signal-to-noise ratio, and its tendency to radiate a strong interfering signal rule out the superregencrator as a fixed-station recoiver in areas where there is appreciable v.h.f. activity.

R.F. AMPLIFIER DESIGN

The amount of moise generated within the receiver itself is an important factor in the effectiveness of v.h.f. reeriving gear. At lower frequencies the external noise is a limiting factor, but at 50 Mc . and higher the receiver noise figure, gain and selectivity determine the
ability of the system to respond to weak signals. Proper selection of r.f. amplifier tubes and appropriate circuit design aimed at low noise figure are of more importance in the v.l.f. receiver "front end" than more gain.

Certain triode or triode-connected pentode tubes have been found superior in this respect, their superiority becoming more pronounced as we go higher in frequency. At 144 Me., for instance, a triode r.f. stage may give sub)stantially the same gain as a pentode, but with a much lower noise figure. With the excoption of the simplest unit, the equipment described in the following pages incorporates low-noise r.f. amplifier technífue.

When triodes are used as r.f. amplifiers some form of meutralization of the grid-plate capacitaner is required. This can be capacitive, as is commonly used in transmitting applications,

Fig. 16-1 - Schenatic diagram of a push-pull r.f. amplifier for v.h.f, receiver use. 'lhis circuit is well suited to use with antenna systems fed by halanced lines, Coil and condenser sizes will be governed ly the band for which the amplifier is to be used.
$C_{1}-0.005-\mu \mathrm{fd}$. dise ceramic.
Cs - Veutralizing capacitance, about $2 \mu \mu \mathrm{fl}$. May be made from lengths of 75 -ohm Twin-Lead about $11 / 2$ inclies long. Plastic-sleeve I'V trimmers are also available.
$1 k_{1}-150$ olims, $1 / 2$-watt carbon.
$11_{2}-1000$ ohms, $1 / 2$-watt carbon.
or inductive. The alternative to neutralization is the use of grounded-grid technique. Circuits for v.h.f. triode r.f. amplifier stages are given in Figs, 16-1 through 16-4.

A dual triode operated as a neutralized push-pull amplifier is shown at $16-1$. This arrangement is well adapted to v.h.f. preamplifier applications, or as the first stage in a converter, particularly when a balanced transmission line such as the popular 300 -ohm Twin-Lead is used. It is relatively selective

Fig. 16-2 - Circmit of the cascode r.f. amplifier. Preferred antenna coupling methows for eosaial or balanced lines are shown. The first r.f. qrid coil, and the nentralizing coil, $L x$, should be a high- (design. Other eobils are not eritical as to Q.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathrm{O} .0 \mathrm{O} / \mathrm{F}-\mathrm{fd}$. dise ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{6}-50-4 \mu \mathrm{fd}$, ceramir.
$\mathbf{R}_{1}, \mathbf{R}_{2}-100$ ohnens, $1 / 2 \cdot w$ atl carbon.
$\mathbf{R}_{3}, \mathbf{R}_{4}-1000$ ohmes, $1 / 2$ watt carlon.
L_{N} - Should resonate at sixnal frequency with 6 AK 5 grid plate capacitanere.
and may reguire resistive loading of the plate circuit, when used as a preamplifier. The loading effect of the following circuit may be suffieient to give the reguired bandwidth, when the push-pull stage is inductively coupled to the mixer.
A two-stage triode amplifier having excellent noise figure and broadband characteristies is shown in Fig. 16-2. Commonly called the cascode, it uses a triode or triode-connected pentode followed by a triole grounded-grid stage. This circuit is extremely stable and uncritieal in adjustment. At 50 Me. and higher it: over-all gain is at least equal to the best single-stage pentode amplifier and its noise figure is far lower.

Neutralization is aceomplished by the eoil L_{N}, whose value is such that it resonates at the sigual frequency with the grid-plate capacitance of the tube. Its inductance is not critical; it may be omitted from the circuit without the stage going into oscillation, but neutralization results in a lower noise figure than is possible without it. Any of several v.h.f. tubes may be used in the cascode circuit, the most popular arrungement being the 6AK5-6J6 combination, Fig. 16-2.
A simplified version of the cascode, using a dual triode tube designed especially for this application, is shown in Fig. 16-3. By reducing stray capacitance. through direct coupling between the two triode sections, this circuit

Fig. 16-3 - Simplified version of the cascode circuit for 6BQ7, 613 K 7 or $613 \mathrm{Z7}$ dual trionles. This eircuit is partieularly effective at 144 Mc, and higher. Coil and condenser values not given depend on freguency. The neutralizing coil, L_{x}, should resonate at the signal frequency. R.f. chohes in the heater eircuit should be resonant with the plate-to-ground capacitance of the first triode section, at the highest frequency to be covered. They are bifilar wound.

Fig. 16.4-Crounded-grid r.f. amplifier. Position of cathode taps on eoils should be adjusted for lowist noise figure.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{5}$, (in- $0.005-\mu \mathrm{fl}$, dise ceramic. (4-5)- $-\mu \mu \mathrm{fl}$. ceramic. $R_{1}, R_{3}-220$ shms, $1 / 2$ watl carbon. $\mathrm{K}_{2}, \mathrm{~K}_{4}-4.0$ ohms, $1 / 2$ wat carbon.

MIXER CIRCUITS

Triode tubes are favored for v.h.f. applications, as they are less critical as to operating conditions and the highest frequency at which they will operate satisfactorily is well above that of most pentodes. When used in eonverters having no r.f. amplifier stage triodes are usually quieter in operation as well.

A simple triode miser circuit is shown in Fig. $16-5 \mathrm{~A}$. The grid circuit is tuned to the signal froguency, the plate circuit to the intermodiate frequeney. A dual-triode version is given at 13 . The latter is particularly suitable for use at the higher frequencies. Frequently a

Fig. 16-5 - Two types of trioule mixers suitable for v.h.f. receivers. A single.ended triode eircuit is shown at A. The tube may be half of a dual triode, with the other portion used as the oscillator, or separate tubes may he used. "The dual-triode version, B, is partieularly useful for 14.4 Mc . and higher bands.
$\mathrm{C}_{1}-\mathbf{5 0} \mu \mu \mathrm{fd}$. ceramic or mica.
C.2. C $6-30$ - to $50-\mu \mu \mathrm{fl}$. ecramic or mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.005-\mathrm{\mu fd}$. dise ceramic.
$1 h_{1}-1$ megohm, $1 / 2$ watt.
$11_{2 n} \mathrm{~K}_{4}-1000 \mathrm{ohms}, 1 / 2$ watt.
$13_{3}-150$ ohms, $1 / 2$ watt.
dual triode is used as a combination mixer-oscillator, using the circuits of Figs. 16-5A and 16 6 A . The amount of oscillator injection is usually not critical, but in the interest of stability it should be kept as low as practical. In dual triodes having separate cathodes (758, 12AT'7, 2('51, ete.) some external coupling may be required, but the common cathode of the 6 J 6 will provide sufficient injection in most cases. If the injoction is more than necessary it can be reduced by dropping the oscillator plate voltage, either directly or by increasing the value of the dropping resistor, R_{1}.
A pentode mixer may be less subject to oscillator pulling than a triode, and it will probahly require less injection voltage. If a pentode mixer is used, its plate current should be held to the lowest usable value, to reduce tube noise. This may be controlled by varying the mixer sereen voltage. A common use of pentode mixers in v.h.f. work is in the interest of simplicity of circuit layout, as in multiband converters employing handswitching.
Occusionally oscillation near the signal frequency may be eneountered in v.h.f. mivers. This usually results from stray lead inductance in the mixir plate cireuit, and is most common with triode mixers. It may be corrected by connecting a small capacitance from plate to cathode, directly at the tube socket. Ten to $25 \mu \mu \mathrm{fd}$. will be sufficient, depending on the signal frequency.

OSCILLATOR STABILITY

When a high-selectivity i.f. system is employed in v.h.f. reception, the stability of the oscillator is extremely important. Slight variations in oseillator frequency that would not be noticed when a broadband i.f. amplifier is used become intolorable when the passhand is reduced to erystal-filter proportions.

One satisfactory solution to this problem is the use of a crystal-controlled oscillator, with frequency multipliers if needed, to supply the injection voltage. Such a converter usually employs one or more broadband r.f. amplifier stages, and tuning is done by varying the intermediate frequency to cover the desired frequency range.

When a tunable oscillator and a fixed intermediate frequency are used, special attention must he paid to the oscillator design, to be sure that it is mechanically and electrically stable. The tuning condenser should be solidly built, preferably of the double-bearing type. Splitstator condensers specifically designed for v.h.f. service, usually having ball-bearing end plates and special construction to insure short leads, are well worth their extra cost. Leads should be made with stiff wire, to reduce vibra-
tion effects. Mechanical stability of air-wound coils can be improved by tying the turns together with narrow strips of household cement at several points.

Recommended oseillator circuits for v.h.f. work are shown in Fig. 16-6. The single-ended oseillator may be used for 50 or 144 Mc. with good results. The push-pull version is recommended for higher frequencies and may also be used on the two lower bands, as well. Circuit A works well with almost any small triode, the ($\mathrm{ABB} 4,6 \mathrm{AF} 4$ or one half of a $6 \mathrm{~J} / \mathrm{f}$ or 12 AT being most commonly used. The 6.06 is well suited to push-pull applications, as shown in circuit 16-613.

Fig. 16-6- Recommended circuits for v.h.f. oscillators. The push-pult arrangement at 13 is recommended for 220 and $1 \because 0$ Mre, jrarticularly.
$\mathrm{C}_{1}-50 \mu \mu \mathrm{fd}$.
R_{1} - Any suiall carlonn resistor, 1000 ohns or less.
$11_{2}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{3}-3000$ to 5000 ohms, $1 / 2$ watt.

- THE I.F. AMPLIFIER

Superheterodyne reccivers for 50 Mc. and up should have fairly high intermediate frequencies, to reduce both oscillator pulling and image response. Approximately 10 per cent of the signal frequency is commonly used, with 10.7 Mc. being set up as the standard i.f. for commercially-built $F \mathbf{M}$ receivers. This particular frequency has a disadvantage for $50-\mathrm{Mc}$. work, in that it makes the reeeiver subject to image response from $28-\mathrm{Mc}$. signats, if the oscillator is on the low side of the signal frequency. A spot around 7 Mc . is favored for amateur converter service, as practically all communications receivers are capable of tuning this range.

For selectivity with a reasonable number of i.f. stages, double conversion is usually employed in complete reccivers for the v.h.f. range. A 7 -Mc. intermediate frequency, for instance, is changed to 455 ke. , by the addition of a second mixer-oscillator. This procedure is, of course, inherent in the use of a v.h.f. converter thead of a communications recoiver.

If the receiver so used is lacking in sensitivity, the over-all gain of the converter-receiver combination may be inadequate. This can be corrected by building an i.f. amplifier stage into the converter itself. Such a stage is useful even when the gain of the system is adequate without it, as the gain control can be used to
permit operation of the converter with receivers of widely-different performance. If the receiver has an S-meter, its adjustment may be left in the position used for lower frequencies, and the converter gain set so as to make the meter read normally on v.h.f. signals.

Where reception of wide-band FM or unstable signals of modulated oscillators is desired, a converter may be used ahead of an F'M broadcast receiver. A superregenerative detector operating at the intermediate frequency, with or without additional i.f. amplifior stages, also may serve as an i.f. and detector system for reception of widehand signals. $13 y$ using a high i.f. (10 to 30 Mc . or so) and by resistive loading of the i.f. transformers, almost any desired degree of bandwidth ean be secured, providing good voice quality on all but the most unstable signals. Any of these methods may be used for reception in the microwave region, where stabilized transmission is extremely difficult at the current state of the art.

- THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f. receiver is the superregencrator. It affords fair sensitivity with few tubes and elementary circuits, but its weaknesses, listed carlier, have relegated it to applieattions where small size and low power consumption are important considerations.

Fig. 16-7 - Super. regenerative detcetor circuit using a self-quenched detector. $L_{2} \mathrm{C}_{1}$ tunes to the signal frequeney. Typical values for other components are given below.
$\mathrm{C}_{2}-47 \mu \mathrm{fld}$.
$\mathrm{C}_{3}-0.001$ to $0.005 \mu \mathrm{fd}$.
$1 \mathrm{R}_{1}-2$ to 10 nucgolmas.
$\mathrm{R}_{2}-50,1000$-ohne motentiometer.
$1_{3}-4 \overline{4},(0) 0$ ohmes, 1 watt.
I 1 FC - Single-layer r.f. ehoke, for frequency involved. T_{1} - Interstage andio transformer.

Its sensitivity results from the use of an alternating quenching voltage, usually in the range between 20 and 200 kc ., to interrupt the normal oscillation of a regenerative detector. The regeneration can thus be increased far beyond the amount usable in a straight regenerative circuit. The detector itself can be made to furnish the quenching voltage, or a separate oscillator tube can be used. Regeneration is usually controlled by varying the plate voltage in triode detectors, or the screen voltage in the case of pentodes. A typical circuit is shown in Fig. 16-7.

Crystal-Controlled Converters for 50, 144 and 220 Mc.

The family of converters shown in Figs. 16-8 through 16-16 was designed to provide optimum reception on all v.h.f. bands. (rystal-controlled injection is used to insure stahility, and the r.f. circuit design provides the lowest practical noise figure for each frequency. Sperial attention has been paid to the reduction of spurious responses, often a troublesome point in broadband converter design. A separate converter section for each band connects to a common i.f. amplifier and power supply by mains of a single plug and cable. This carries the mixer output, and plate and filament voltages.

The R.F. Circuits

A pentode r.f. amplifier ($6 \mathrm{ClB}(\mathrm{G}$) is used in the $50-$ Mc. converter in the interest of simplicity. With proper design, such a stage can be made to deliver a satisfactory noise figure at 50 Mc . Its performance is quite adequate; it will be found that outside noise picked up by the antenna will be the limiting factor in weak-signal reception, even in a quiet receiving location.

The $144-$ and $220-\mathrm{Mc}$. converters have modified cascode circuits with dual triodes ($6 \mathrm{BQ} \mathrm{QA}^{-1}, 613 \mathrm{~K} 7$ or $6[3 / 7$) in the first stages. The $220-\mathrm{Mc}$. converter has an additional pentode stage, to build up the gain and improve the ability of the converter to reject unwanted frequencies. It will be noted that the converters differ somewhat as to circuitry in other resperts, but this was done primarily to show examples of various circuit teehniques, rather than because of any superiority of one approach over another. This applies particularly to the methods of coupling hetween stages.

When a fixed injection frequener is used with a variable intermediate frequeney, the r.f. and i.f.
circuits of the converter must be made broadband, to avoid the need for readjusting them as the receiver with which the converter is used is tuned across the i.f. rimge. Spurious responses, both at the i.f. range and at frequencies andarent to the desired signal frequencies, pose a special problem. Bandpass characteristics are attaned through the use of overcoupled double-tuned cireuits in the converter r.f. circuits. These circuits present a high impedance at the signal frequency, but they look like a short circuit to signals in the i.f, range that are picked up by the antemna.

Spurious responses that might develop as the result of the injection of umwanted frequencies at the mixer grid are reduced by the use of a separate tube for the mixer, and coupling the injection voltage from the multipher stage through a link. Isolation of the mixer and multiplier stages is further increased in the 14.4 and $220-\mathrm{Me}$. converters by the installation of a shield partition along the middle of the base plate.

Crystal Oscillator Details

Crystal frequencies were selected so that all bands would start at the same spot on the communications receiver dial; in this case 7000 ke . Crystal frequencios, multiplior details and i.f. tuning ranges are shown in Table 16-I. Other i.f. tuning ranges that may be botter suited to some communications receivers may be employed by suitable alteration of the crystal and multiplier frequencies.

A fairly high oscillator frequency is desirable, to reduce the possibility of owillator harmonies appearing in the tuning range, as well as to keep down the number of multiplier stages. Waeh con-

Fig. 16-8 - Crystalcontrolled converters for 220,144 and 50 Mc. (l, to r.) with their common i.f. amplifier and power supply. All ehassis are standard sizes, requiring a minimum of metal work.

verter in this series uses a readily-obtainable crystal operating on its third overtone. This may result in a frepuency of oscillation that is not exactly three times that marked on the ervstal, but it is close enough for ordinary calibration purposes. Overtone crystals of the desired frequency may be obtained on order, at somewhat higher prices than for fundamental-type crestals. Conventional operation of crystals in the $\overline{7}$-Mre. range, making up the multiplication with additional stages, is not recommended because of the difficulty in avoiding birdics from crystal harmonirs. In the overtone circuit, no frequency lower than the overtone at which the crystal oscillates is heard.

Layout

Each converter is built on a single $5 \times \overline{6}$-inch aluminum plate, and mounted on a standard chassis that serves as shielding and case. The three $5 \times 7 \times 3$-inch chassis are bolted to the back of the i.f. unit, to be described later. In this way each converter is a separate entity, permitting the constructor to build any one of them. omitting those bands in which he may not be interested. The shape of the i.f. unit is not important, and it could very readily be built in more compact fashion if less than the three converters are planned. The method of construction shown requires a minimum of metal work, and a converter can be rebuilt or replaced without affecting the operation of the others.

As only three tubes are used in the 50 Me. converter they are arranged in a single line down the middle of the base plate. The other models have the oscillator-multiplier and amplifier-miser sections separated by a vertical shield partition.

THE 50-MC. CONVERTER

The simplest of the three converters is the 50 Me. unit, shown in Figs. 16-9 and 16-10. The r.f. and mixer stages use 6 CB 6 pentodes and a 6.56 serves as erystal oseillator and multiplier. A
 rest of the band additoonal erystal frequencies or a wider i.f. tuning range uust be used.
somewhat lower noise figure could have been obtained with a triode r.f. amplifier, but the design shown has a noise figure under 5 dh. With the considerable external noise picked up by the antemna at 50 Mc., even in a quict location, there is little to be gained in weak-signal reception by going lower than this figure.

The bottom view of the converter, Fig. 16-9, shows the r.f. amplifier socket and components at the left side. A small shield across the socket isolates the grid and plate circuits. The r.f. plate tuning condenser, C_{2}, is near the center. The plate coil, L_{3}, is the lower of the two coils in the middle of the photograph, with the mixer grid coil, L_{4}, just above it. An enameled-wire link may be seen rumning from this coil to the doubler plate coil, L_{10}, at the lower right. The oscillator inductance, L_{9}, is at the upper right corner.

Two methods of antenna coupling are shown in the sehematic, Pig. $16-10$, but the constructor need install only the one that is suited to the type of transmission line he intends to use to feed his antenna system. If coas is used, connection is made directly to the r.f. amplifier grid coil, Lo. This same type of conneetion may be used with a bahn for balanced lines, or the coupling winding, L_{1}, may be added. In some instances it muy be desirable to connect a trimmer between J_{1} and L_{2}, as shown in the 220-Mc. converter, if spurious signals are a problem.

Fig. $16.9-13 \mathrm{or}-$ tom vies of the 50-Mc. eomserter. The r.f. amplifier socket, divided by a shicld partition, is at the left. Crystal oscillator and multiplier components are at the right, with the mixer in the middle.

Fig. 16-10 - Sehematie diagram of the 50-Mc. erystal-controlled convertur.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-20-\mu \mu \mathrm{f}$. min. variahle (Johnson 20M111). (4) - $50-\mu \mu \mathrm{f}$. min. padder (11ammarlund MA'P: 50).
 L. - 3 turns fine ins. wire wound over cold end of L_{2}. L.2, $\mathrm{L}_{4}-9$ turns No. 20 tinned, $1 / 2$-inch diam., $11 / 16$ inch long (13 \& 1 Miniductor No. 3003).
$\mathrm{I}_{3}-10 \frac{1}{2}$ turns similar to L_{3}. These coils are mounted in line with thrir eold ends $1 / 8$ inch apart.
I. 5 - No. 28 enameled wire elose-wound one inch on $3 / 8$-inch slux-tuned form (Xational XR-91). 1 acquer and dry lefore winding L_{6}. Wind on upper portion of form.
Adjustment of the converter is very simple. First the oscillator and multiplier are tuned up, with the r.f. and mixer tubes out of their sockets, or with their plate voltage removed. Proper adjustment of the overtone oscillator follows practice outlined in the introductory portion of Chapter Seventeen, and the doubler portion need only be resonated for maximum output initially. This (an loe checked with a 60 mat pilot lamp connected arross a one-turn loop coupled to the cold end of L_{10}. The frequency of the output should be checked to be sure that the right overtone and harmonic are being used, and the oscillator tested to sce that it is controlled by the crystal.

Now a signal source will be helpful. This can be a signal generator, an amateur signal, or the harmonic of a receiver or transmitter oscillator of known frequency. If the signal is derived locally it should be possible to hear it with only the mixer and oscillator-multiplier stages running, and with no pick-up antenna. If a weak signal is used it may be necessary to put a temporary coupling winding (similar to L_{1}) on the mixer grid coil, L_{4}. P'eak this circuit and the slug in the mixer plate circuit for maximum response. The plate voltage should be removed from the r.f. stage during this period, but the tube should be left in the sorket with the heater voltage on.

Next feed the signal into the r.f. stage, by either of the coupling methods shown, and peak L_{2} and L_{3} for maximum response. There should be a considerable rise in noise as the adjust ments
L_{6} - 10 turns same wound over cold end of L_{5}.
L-7, L8 - Loop of No. 22 enameled nire inserted in cold ends of L_{4} and L_{10}, connected thy linh of same material. Fasten in place with ement.
$\mathrm{L}_{9}-13$ turtis No. 20 timned, $5 / 8$-ineh diam., $3 / 4$ inch long, tapped at $31 / 2$ turns from crystal end ($13 \&$ U No. 300:).
$I_{10}-8$ turns similar to L_{2}.
J_{1} - Coaxial fitting.
J_{2} - Crystal socket for antenna terminal.
$\mathrm{J}_{3}-4$-pin male chassis fitting (Jones P-304-AB).
are made, so the noise level can be used as an indication of resonance in the absence of a test signal.

The converter is now ready for final adjustment, for best signal-to-noise ratio and uniform response across the band. The first ean best be done with a noise generator, though a test signal can be used. Noise figure will be affected prinaipally by the tuning of the first stage, and by the adjustment of the antenna coupling. Watch for improvements in the margin of signal over noise, rather than maximum gain, as these two characteristics may not oecur coincidentally. The coupling between L_{3} and L_{4} affects the passband of the system and the tuning of these circuits and the slug in the mixer plate winding can be staggered to provide uniform response across the band. I'eaking of the input circuit may be necessary as the receiver is tuned across the entire band, though a setting can be made for the middle of the range most used and this will hold for at least a megacyele either way. Receiver noise can be used as a check on the uniformity of response, in the absence of signals.

The amount of injection from the multiplier should be set at the least that will provide satisfactory performance. This will not be at all critical, but more injection than needed will increase the tendency to spurious response. It is controlled by the size and position of the coupling loops, L_{7} and L_{8}. In the original model they are about twothirds the diameter of the windings in which they

are inserted. The loop can be made small enough to slip through between the strips of polystyrene on the Miniductor, and then spread to give the desired coupling. Cement the loops in patere when this is achieved.

THE 144-MC. CONVERTER

The 2-meter converter is shown in Figs. 1(i-11 and $16-12$. From the photograph it may be sem

Fig. 16.11 - The 144-.11c. eonverter is separated into two parts by a shiold partition. It the top are the r.f. and mixer stayes, with the oseillator and multiplier portion helow the shield.

that the r.f. and mixer components are separated from the oseillator-multiplier chain by a shiedd partition. The r.f. portion is in the upper half of the pieture. Ise of small plastice trimmers for the tuned ribeuits sitvos enough space so that the auditional tube is handled without crowding.
'The ref. cireuit is the simplified cascode, using any of the several dual triodes designed for this applation. bouble-tuned cireuits in the r.f. plate and mixer grid provide bandpass response

Fig. 16-12 - Schematic diagram and parts information for the 114. Mc. converter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{50}, \mathrm{C}_{2}-1.11,8-\mu \mu \mathrm{f}$. plastic Irimmer (Firic 83:-10\%

$\mathrm{L}_{\mathrm{N}}-5$ turna Xo. 20 tinned, $1 / 4$-inth diam. Ailjust spateing for newtralizing: ser. Hext.
$\mathrm{L}_{1}-6$ turne No. 20 tinned, $1 / 4$-inch diam., turns spared diam. of wire. 'Tap at $21 / 2$ turns.
I. 2 - 4 turns No. 20 enam. $3 / 8-$ ituh diam. $3 / 8$ inch long.
$\mathrm{L}_{3}-3$ turns, No. 20 emam., $3 / 8-\mathrm{inch}$ diam. ${ }^{5} \mathrm{z} 5$ inch long. L_{2} and I_{3} are in line, with their cold ends $1 / 8 \mathrm{inch}$ apart.
$\mathrm{L}_{4}-$ Vo. 28 enam. elnse wound 1 ineh on $3 / 8$-inch slog. tumed form (National Yik-91). Iacquer and dry hefore winding L_{5}. Wind on upper portion of form.
$L_{5}-10$ turns, same, wound over eold end of L_{4},

1. -12 turns No. 20 tinned, spaced diam. of wire, 5/8-inch diam, 'lap at $31 / 2$ turns.
1.7 - II turns Vo. 20 enam., $3 / 8$-inch diam., $\frac{3}{4}$ inch long.
Is - 8 turns like $L_{7 .} 5 / 8$ ineh long. L_{7} and L_{8} are in line with their cold ends $3 / 16$ inch apart.
$\mathrm{I}_{3}-1$ turns like Le7. $^{2} / 8$ inch long.
L,to, lall - I turn insulated wire at cach end, linking L3 with I_{t}.
J_{1} - Comaial fitting.
J_{2} - f-pin male chatsis fitting (Jones P-30)-AI3).
R $\mathrm{FC}_{1}, \mathrm{RF} \mathrm{C}_{2}$ - Bifilar-wound r.f. chokes. 'I'wist two pieces of No. 26 enameled wire together and wind 15 turns on $1 / 4$-ineh diameter.
and help to attenuate unwanted signals on other frequencies. The oseillator-multiplier circuit is similar to the $50-$ - Ic. converter, except that the second half of the $6 . J 6$ is a tripler. This is coupled through another pair of double-tuned circuits to an additional doubler stage.

The order of frequency multiplication can be altered to take care of local interference conditions. Should it turn out that unwanted signals are brought in as a result of frequencies appearing in the multiplier chain, the second stage can be made a doubler and the pentode a tripler. The use of link coupling, and the isolation afforded by the shield, should reduce spurious responses to negligible proportions in most locations, however.

The first steps in adjustment of the $1+4-M c$. converter are similar to those outlined for the $50-\mathrm{Mc}$. model. The only additional work required is the neutralization of the $6 B Q 7$ stage. This is done by adjusting the spacing of the turns in L_{N} for lowest noise figure, as indicated with a noise generator, or by best signal-to-noise ratio on a test signal. The inductance is not extremely critical, and it may be set somewhat on the lowinductance side of the largest value that can be used without oscillation developing in the r.f. stage.

Other than the neutralization, only the tuning of the input circuit will affect the noise figure materially. This is also best done with a noise generator. It will be found that best results will be obtained with $L_{1} C_{1}$ resonated somewhat on the low-frequency side of the point that produces maximum gain. The tap on L_{1} should be set higher on the coil than the point that gives maximum signal response. The objective, as in the other adjustments outlined above, is best signal-to-noise ratio, rather than maximum gain.

Uniform response across the band can be attained by stagger-tuning the r.f. plate, mixer grid and mixer plate circuits. Injection coupling should be set as low as will deliver optimum performance. This can be controlled by the position
of the coupling loops, L_{10} and L_{11}, or by varying the output of the pentode stage by raising or lowering the value of the screen dropping resistor.

THE 220-MC. CONVERTER

Circuitry and layout for the 220-Mc. converter, Figs. 16-13 and 16-14, are very similar to the 144-Me. model, except that an meditional stage is used following the cascode, and an additional shield divides the socket of this stage. This helps to make up for the somewhat lower gain of the cascode at the higher frequency, and it improves the rejection of unwanted signals considerably. The latter condition has been found to be troublesome in 220-Mc. work, particularly in areas where TV and FMI broaleasting stations are in operation.

No tuning condensers are used in the r.f. circuits, the coils being tuned to the desired frequency by adjusting the turn sparing until they resonate properly with the tube capacitances that appear across them. A variation on the doubletuned circuit is used in which a center-tapped coil serves as both grid and plate inductance. This type of circuit is well adapted to use at frequencios where tube caparitance bocomes a limiting factor in the performance of r.f. amplifiers

A different form of i.f. output coupling is shown in this converter, though it works identirally to the method used in the other models. Note that the miser plate coil is loaded by a 4700 -ohm resistance in this case. The i.f. must cover from 7 to 12 Mc . for the $220-\mathrm{Mc}$. band, so a broader response is required. The value of this resistance cin be altered to attain the desired degree of uniformity, though lower values than the one shown will result in lower over-all gain.

The tuning condenser in the input circuit tuncs out the reactance of the line to the antenna. It may not be necessary in some installations, but it is likely to be helpful in reducing spurious responses. The same technique may also be applied

Fig. 16.13 - The 220-Mc. crystal-controlled converter. Note that twoshields are used; one separating the injection and r.f. chains, the other dividing the socket for the 6Ak5 r.f. stage. R.f. components oecupy the lower half of the assembly.

Fig. 16-14 - Schematic diagram and parts information for the 220. Mc. converter.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. miniature variable (11 ammarlund MAPC . 50).
C_{2} - 8- $\mu \mu$ f. plastic trimıner (Erie 532-10).
C_{3} - $5-\mu \mu \mathrm{f}$. plastic tritnmer (lirie 532-08-()185).
$\mathrm{C}_{4}-3-30-\mu \mu \mathrm{f}$. mica trimmer.
$L_{1}-3$ turns No. 20 tinned, $1 / 4-$ inch diam., $1 / 4$ inch long, center tapped.
$\mathbf{L}_{\mathrm{N}}-5$ turns No. 20 tinned, $1 / 4$-inch diam. Adjust spacing for nentralization; see text.
$L_{2}, L_{3}-7$ turns No. 20 tinned, spaced I diam., 1/4-inch diam., center-tapped.
L_{4} - No. 28 enam, wound one inch on $3 / 8$-inch slugtuned form (National XR-91).
to advantage in the other converters, when spurious signals are hothersome.

Adjustment procedure is similar to that outlined for the $14-\mathrm{Mc}$. model, except that the spacing of the turns in the r.f. coils must be adjusted, rather than tuning them by capacitors. As in the 14+-Mc. converter, the order of frequency multiplication can be altered to take care of any extreme local interference problems resulting from near-by TV, FM or other high-powered stations that may ride through as spurious responses. The oscillator can be operated on its fifth overtone instead of the third, making the second and third stages operate as doubler and tripler, or vice versa. Fifth-overtone operation of the oscillator will require more care in adjustment of feedback than is the case with the third.

The coupling between L_{8} and L_{3} will be a factor in holding down spurious responses. It should be set at the lowest value that will allow satisfactory performance, by altering the position of the coupling loops, L_{9} and L_{10}, or by varying the value of the screen-dropping resistor in the last fre-quency-multiplier stage.

If a noise generator is available, and care is used in making the adjustments, it should be possible to achieve noise figures under 6 db . for the 220 -Mc. converter and 5 db . for the 144 - and 50-Mc. models.
$L_{3}-12$ turns Vo. 20 timed, spaced one diam., $5 / 8$-inch diann., tapped at $31 / 2$ turns (13 \& W No. 3007).
Le - 4 turns No. 20 timned, $1 / 2$-inch diam., $1 / 4$ inch long (B \& W Miniductor No. 3003).
$L_{7}-5$ turns like $I_{\text {, }}$. Lef and $I_{\text {. }}$ are in line with their cold ends spaced $1 / 8$ inch.
$L_{8}-21 / 2$ turns No. 20 enam., $1 / 4$ inch lons.
$L_{9}, L_{10}-2$ turns insulated wire between turns of I.s and L_{3}, connected by link of sance material.
J_{1} - Coaxial fitting.
$\mathrm{J}_{2}-$ Male 4-prong chassis fitting (Jones P-304-AB).

V.H.F. RECEIVING BALUNS

As pointed out in the preceling converter descriptions, coavial antenna input circuits are preferable in v.h.f. receivers where single-ended circuitry is employed. Where long transmission lines must be used, however, the losses in coaxial line discourage its use in feeding the antenna system. Particularly on 144 Mc. and higher, many amateurs prefer close-spaced open-wire lines for runs of 50 feet or more between the operating position and the antenna.

The advantages of coasial input coupling and the low losses of open-wire halanced lines can both be retained if some moans of coupling between the balanced line and the unbalanced receiver input circuit is provided. Such a device, usually called a "balun," is shown in Fig. 1:3-2:31). V.h.f. receiver baluns are usually made of small coaxial line such as $[2 \mathrm{G}-59 / \mathrm{U}$, and installed at the converter input terminal. The propagation factor of the line should be taken into account, making the actual length of the folded portion 65 per cent of a half-wave. The straight portion may be any convenient length, though it is usually a wavelength or less.

A 3-band balun for v.h.f. recciving use may also be made by using the coils from a so-called "elevator transformer" for this purpose that can

Fig. 16-15 - Bottom view of the i.f. and power supply unit with bottom oover removed. Power componenta are at the left. A smaller chassis may the used if dess than the three converters are to be huilt.
be obtained from some 'TV receiver parts distributors, Such a balun would cousist of two pairs of coils, connected in parallel at one end and in series at the other. The paratlel end is wired to a coaxial eonnertor and the sories end to a crystal socket or a pair of binding poste. The assembly. stould be housed in :t copper or aluminum hox that may be as small as $1 \times 11 / 2 \times 21 / 2$ inchers.

Like the coaxial-line balun, this ronverts from batanced to unbalaned tormination, and provides at 4 -to- 1 impedance transtometion in the proress. The roils are designed for use arross the s.h.f. TV range, 5 to to 216 Mc ., so they will serve well for atl three amateur v.h.f. hands, 50,144 and 220 Me, see Fig. 1:3-2 for connertions.

THE I.F. AMPLIFIER AND POWER SUPPLY

Ther i.f. amplifier (Figs, 16-15 and 16-16) serves wo useful purposes. It builds up the gain, for receivers that may be poor performers at 7 . Ite.. an lit provides a means of ecentrelling the over-all gain of the system whthout disturbing the gatn or s-metar controls on the reecesvar itself. The reeriver may thus be operated exately as it would be on 7 Me., and the gain of the eonverter adjusted so that v.h.f. signals will be reereived
similarly to those on lower frequency bands.
It is obvious from the photographe that the i,f, and power supply unit roukd have lexen built in a smadler space. If the buider is considering only one or two of the converters be may wish to do this, but where all there are used the arrangmont shown is a convernient one. The i.f. chassis is a standard size, $3 \times+\times 17$-inch alunimum, to which a bottom phate is adted for shishling. Rubber fret ean be attarherl to the two ends of the base, and one on each of the converters at the rear. to prevent the combination from marnng a receiver top.

The heater voltage, the plate voltage and the i.f. input lead are all euried on shioded wire to a t-pin plug. This is connected to whichever convertor is to be used at the moment, amd ano other (hatuges other thatn phging the antemmato the proper jath are required in chamgne from one v.h.f. band to another. The shidded wires in the cable are bonded toge there several times and then wrapped with plastic lape. The coaxial fitfing for the eonmertion to the rereiver is at the extreme right on the rear wall of the i . f chassis.

The only arljustment recquired in the i.f. unit is to set the coil shugs (on noise or sigmal) so that the response will be as nearly flat as possible arross 7 to 11 Me.

Fig. 16-16 - Schematie diagram and parts information for the i.f. and power supply unit used with the crystalcontrilled converters.
1.1, 1.2-No. 28 enamelod wire chase noumd 1 inch on $3 /$ oinch slug-tund form ((ational $\backslash R-9$) . Lacquer and dry before adding coupling wind. ing. W'ind on upper mition of form.
L.3. I.4 - 10 turns same wound ober cohl ends of $I .1$ and l. 2.
J_{1} - Coaxial titing.
D_{1}^{\prime} - Female 4 -pin on ent of calale (Jones S-3nt-CC.'I)

A Simple Converter for 50 and 144 Mc.

Though the more complex equipment already described is typical of the gear that must be used in order to attain top performaner on the v.h.f. bands, it is possible to start with simpler devices and still do a good joh. The eonverter shown in Figs. 16-17 through 16-20 provides the best performance that can be expeeted from simple equipment. It was not huilt to be the simplest possible receiving device; rather, it was designed to provide good results with a minimum of complication and cost.

It uses a dual triode, (i,Jo, as a combined mixer-oseillator, followed by a 6.1 K 5 i.f. amplifier. The latter is necessary; do not try to do without it. The output of a triode mixer is too low to give adequate gain for most reecivers. The i.f amplifier stage makes the converter usable with even the simplest receivers, and provides a convenient means of controlling the over all gain of the system. Plug-in coils mounted inside tube-base type forms provide the means of changing bands.

Mechanical Details

Though it could be buit in a much smaller space, the converter uses a 3 by 5 by 10 -inch chassis, allowing plentr of room for the work that must he done underside. The main tuning condenser is a split-stator variable made from a double-bearing double-spaced $15-\mu \mu \mathrm{fd}$. type. Diach section is reduced to three stator and two rotor phates. This mit is mounted under the chassis, as close to the top plate as possible, to make room for the vernier dial on the front panel. The mixer and i.f. plate coils, L_{4} and L_{5}, are mounted under the chassis. Normally this will provide all the shiclding nocessary for the i.f. circuits. If trouble is experienced with signals on the intermediate frequencs a bottom plate may be added to the chassis. The panel is set out from the chassis, front with half-inch pillars.

A smooth-running dial on the oseillator tuning is a neressity in a v.h.f. converter when com-munirations-receiver selertivity is used. The Nat-
tional type SCN has a good tuning rate, plus ample space for calibration seales for both bands.

The circuit is so simple that no trouble should be experiened if the general parts arrangement is followed. Look over the photographes closely before starting to lay out the chassis for drilling. In the rear view, Fig. 16-18, the oscillator coil, the (iJd tube, and the mixer grid coil, $L_{1}-L_{2}$, appear in that order, from left to right, close to the pancl. The 6AK5 tube is nearer the back, with the slug adjustment serews of the mixer plate coil, L_{4}, and the i.f. plate coils, $L_{5}-L_{6}$, at the right and left, respectively. Holes are drilled in spare spare at the bark of the chassis to provide for storage of the set of eoils not in use.

Looking in the hottom view, Fig. 16-20, we see the oscillator tuning condenser, C_{5}, at the center, the 6J6 socket at the left and the coil sorket at the right. Note that the latter is as elose to C_{5} as possible.

The only critical job in the adjust ment procedure is involved in getting the inductance of the oscillator plug-in coils, L_{3}, to the correct value. There being only one parallel trimmer for the oscillator ($\left({ }_{4}\right)$ the coils must be made and adjusted carefully in order to have the desired bandepread on both ranges.

Considerable care must be used in the placement of the oscillator and mixer components, so that all leads will be very short; otherwise it will not be possible to resonate these circuits at 148 Mc. The 6 . Jo sorket is at the left of C_{5} in the bottom view, and the mixer grid circuit components appear just to the left of the middle. The i.f. amplifior gain control, R_{7}, is at the right. The 300 -ohm line from the crystalsocket antenna terminal, J_{1}, may be seen at the far left.

The mixer plate coil, the i.f. amplifier sorket, and the output coil assembly are across the bottom of this view, from left to right. The antema terminal, power plug and i.f. output connector are on the rear wall in the same order.

Fig. 16.17 - A 2 -tube converter for 50 and 111 Ne. The vernier dial is for oscillator tuning. The two knolss are the i.f. gain control, right, and the mixer tuning condenser. In front are the 2 -meter mixer and oscillator plag-in coils.

Fig. 16.18- Rear view of the simple converter. Near the panel, Iteft to right, the oscillator roils are shown in place. 'lhe i.f. ann plifier tube is nearer the back of the chassis, with the slug-tuned mixer and i.f. plate coils at either side. Coils not in use are stored at the bach of the chassis.

Test Procedure

When the assembly and wiring are completed, the oscillator operation should be cheeked. The power supply should deliver 6.3 volts a.c., at 1 ampere, and 150 volts d.c. at 30 ma, preferably regulated. Insert a milliammeter in series with R_{3} and check for oscilla-
tion by touching any bares spot in the oseillator plate or grid circuit with a pencil. A change in current indieates oscillation.
Two trpes of bundspread are possible. With the eoil values given in the parts list, the 50-Me. band covers about 90 divisions of the dial. The 144 -Me. hand covers about 50 divisions. The capacitance needed at C_{4} is about $12.5 \mu \mu \mathrm{fd}$. in

Fig. 16-19 - Schematic diagram of the twotule eonverter for 50 and I44 Me.

$\mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{8}-47$ - $\mu \mathrm{\mu}$ fd. mica or ceramic.
$\mathrm{C}_{4}-35-\mu \mu \mathrm{fl}$. ceramie trimmer (Centralab 820-C).
C_{5} - Double-spaced split-stator variable, about $8 \mu \mu \mathrm{fl}$. per scetion (Hammarlund HFI-15-X, reduced to 3 stator and 2 rotor plates in cach scestion).
$\mathrm{C}_{6 .} \mathrm{C}_{11}-68-\mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{7} \mathrm{C}_{3}, \mathrm{C}_{10}, \mathrm{C}_{12}-\mathbf{0} .01-\mu \mathrm{fl}$. disk ceramic.
C_{13} - $15-\mu \mu \mathrm{fd}$. ceramic. Conuect directly from Pin 5 to Jin 7 on 6:1K5 socket.
$R_{1}, R_{5}-1$ megolm, $1 / 2$ watt.
$\mathrm{R}_{2}-10,(0) 0$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{9}, \mathrm{R}_{10}-1000$ ohms, $1 / 2$ watt
$R_{a}-220$ ohms, $1 / 2$ watt.
11_{7} - 2000 -ohm 4 -watt potentiometer
1 is - 22,0000 ohms, 1 watt.
$\mathrm{L}_{1}-50 \mathrm{Mc}$.: 2 turns No. 22 cnam. interwound in cold end of L_{2}.
144 Mr.: 3 turns No. 22 enam. $1 / 4$-inch diam., closc-wound at cold end of L_{2}.
inch long (BS_{2} N No. 3003).
14 Mc:- 2 turns No. 16 timed, $1 / 4$-inch diam., $1 / 4$-ineh long.
$\mathrm{L}_{3}-50$ Me.: 6 turns No. 22 tinned, $1 / 2$-inch diam., 3 Ko inch long center-tapped (B) \& W No. 3003, with end turns spread slighty). Alternate design for more bandspreal, see text.
1.11 Mc.: U -shaped loop Vo. 12 wire, $3 / \frac{1}{4}$ inch wide, 1 inch long, ecnter-tapped.
Coils L_{1} and I_{2} are supported inside Millen 1-ineh diameter 4 -prong forms. L. 3 in Millen 45005, 5 .prong. Saw off to $3 / 4$-inch length.
$\mathrm{L}_{4}, \mathrm{~L}_{5}-23$ turns No. 22 cnam. close-wound on National XR-50 slug-tuned form.
$L_{6}-3$ turns No. 22 enam. closc-wound at cold end of Ls.
J_{1} - Crystal socket for antenna terminal.
J_{2} - Coaxial fitting, fernale.
$\mathbf{P}_{1}^{\prime}-4$-prong power fitting, male.
this case. If more bandsprond is wanted on 144 Mc., the setting of C_{4} can be increased to around $23 \mu \mu \mathrm{fl}$., and L_{3} reduced to + turns. The 2 -meter band will then cover around 72 divisions. It will not be possible to cover the whole of the 50-Nc. band with this arrangement, without resetting C_{4}, but this is no great hindieap so long as artivity is concentrated in the lower portion of the band, as at present.

The frequency of the oscillator may be cherked with an absorption-type wavemeter or Lecher wires. For the 50-Mc. range, the oscillator should tune from 57.4 to 61.4 Me . in order to beat with an incoming signal to produce a $7.4-M c$ i.f. (The oscillator is on the high side of the signal.) A kiek in the oscillator plate current, or a tlicker in the voltage-regulat tor tube in the power supply, can be used to show when the frequency is found with the moasuring device.
set the padder, C_{4}, so that 57.4 Mc . comes at about 5 divisions in from the maximumcapacity end of the tuning range, and eheok to see where 61.4 Mc. is found. It should come justi inside the minimum-capacity and of the range. If the circuit will not tune to 61.4 Mc . the inductance of L_{3} is too low. Move the turns eloser together, and reset C_{4} as before for 57.4 Mc . If the bandspread is too small, spread the turns and incrase the eapacitance of C_{4} to compensate, for the desired amount of spread, about 90 divisions on the dial.

Next check the 2 -meter range. Here the coil must be adjusted in inductance until the osillator will hit 136.6 Mc. somewhere between the middle and the maximum-a aparity end of the tuning range of C_{5}. The high end, 140.6 Me., will then appear ahout 50 divisions higher on the dial. The oscillator is on the low side of the signal on this range. Do not change the setting of C_{4} in this process, or it will be necessary to alter the $50-$ Me. coil again.

Once the oscillator covers the proper frequency ranges the converter may be tested in artual re-
ception. Connect the output through it coaxial cable to a receiver tuned to approximately 7.4 Mc. There should be an increase in noise as the gain control is turned up. The mixer and i.f. amplifier plate windings ran be tunced to the proper frequency merely by adjusting the core screws for maximum noise.

The mixer grid circuit may also be peaked on noise, though care should be taken to see that it is not peaked on the image, 14.8 Mc . away from the signal frequenes. If the grid arevit is tumed to the desired frequeney there will be a considerable increase in the stre-ngth of a signal as the grid condenser, (${ }_{1}$, is tumed through resonance. If the circuit is funed to the image frequency the noise will prak up, but an amateur-land signal will drop in strength as the noise parak oceurs. Tuning the mixer grid circuit shifts the oscillator frequency slightly, so it may be peaked more accurately on noise than when listening to a signal.

A final check of the dial calibration may be made by tuming in signals of known frequener, or by means of an accurate signal generator. Fow wavemoters are sufficiently aceurate for final calibration by the method outlined earlior.

If trouble is encountered with signals in the T-Mc. region leaking through, the i.f. can be shifted slightly to tume out the interference. In some instances it may be necessary to put a bottom plate on the chassis. Small changes in intermediate frequency can be made without resetting either the oscillator padder or the i.f. coils. With the i.f. amplifier built into the converter, the setup will have adequate gain for use with abmost any receiver. Reception will be nearly as good as with more complex designs, the principal difference being a somewhat higher noise figure (slightly degraded signal-to-noise ratio) in the simpler job. The use of a low-noise r.f. amplifier ahead of the converter (an example is the preamplifior of Fig. (6-22) will make possible reception equal to the best obtainable in a converter having a tunable oscillator.

Fig. 16.20-Bottom view of the two-hand converter. The aplitstator condenser at the eenter is for oncillator tuning. The oncillator coil socket is at the right and the 6,I6 socket at the left. The mixer tuning comdenser and krid coil socket are in the upper left corner, with the i.f. coils and tube sochet at the rear.

Low-Noise Preamplifier for 144 Mc.

The triode preamplitier shown in Figs, 16i-21 to 16-23 will improve the sensitivity and signal-tonoise ratio of receivers or converters for $1+4 \mathrm{Mc}$.

Fig. 16-21 - I'wo-meter preamplifier using two 6.\J. tubes. Adjustments are (left to right) innut tuning capacitor, slug of nentralizing winding, and the phate thming capacitor of the seeond stage.
that are deficient in these respects. Two separate triode tubes are shown, but any of the dual triodes designed for v.h.f. amplifier service may be used similarly. The cirruit may be adapted to use on

Fig. 16.22 - S.hematic diagram and parts list for the low-boise preamplifirer.
Ci, (C_{2} - Plastic trimmer, 1 to $8 \mu \mu \mathrm{fl}$. (Virie style 53:-10)
$\mathrm{C}_{3,}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-\mathbf{0 . 0 0 1}-\mu \mathrm{fl}$. dish coramic.
$1 \mathrm{k}_{1}$ - 68 ohms, $1 / 2$ wat1, carbon.
$\mathrm{R}_{2}-0.17$ mekohm, $1 / 2$ watt.
$1 k_{3}-470$ ohms, $1 / 2$ watt, cartons.
Lı-Iturns Ko. 16 tinned, $1 / 4$-inch diam., spaced 1 diameter, tapped at $13 / 4$ turns from ground end.
$\mathrm{L}_{2}-1$ turns $\mathrm{No}, \underline{2} \mathrm{t}$ on $1 / 4-\mathrm{inch}$ slug-tuned form.
Lis- $\overline{3}$ turns No. 18 enam., $1 / 4$-inch diam., spaced half diameter.
$I_{4}-2$ turns insulated wire wound over cold end of I_{3}. J_{1} - Coaxial antenna fitting.
P_{1} - Coaxial plug on cable of suitable length to reach converter input.
$13 \mathrm{~F}^{\circ} \mathrm{C}_{1}-22$ turns No. 22 enam, stornch diam., closewound.
RF'C2, RFC: 18 turns each, Vo. 21 enam., $1 / 4$-inch diam. I'wist wires toge ther hefore winding. Coat turns with household cement.

50 or 220 Mc ., by suitable alteration of coil and condenser values.

Pin connections given on the schematic diat gram, Fig. 16-22, are for the 6.AJ4 or (iAMt. Other tubes such as the fi.N. t and $417 . A$ will work equally well, if pin connections shown in the tube data section of this Handhook are followed. Slightly different values of cathode bias resistor may be needed if tubes other than the 6.L.J.t are used.

The preamplifier is housed in astandard $3 \times+$ X is-inch aluminum utility box. The components were mounted on a sheot of flashing copper and the preliminary work of wiring was done with this plate as a chassis. The plate was later fastened to the inside of the top of the box. The parts could the mounted on the box direetly, but they are more accessible if the work is done as desmibed above.

Looking at the interior view, Fig. 16-2:3, we see the coax fitting, the first tube socket and the input circuit at the lelt. Between the tube sorkets, at the center of the copper base plate, is the slugtuncd neutralizing winding, L_{2}. I smatl copper shield divides the second sorket, isolating the input and output circuits. This shied is not always needed, but it may be an aid to neutralization. At the far right are the output circuit and the bifilar-wound r.f. chokes for the heater circuit of the second stage. The tuning condensers, C_{1} and (2, are plastic trimmers of a design that allows a saving in space and offers lower minimum caparitance and lead inductance than eonventional flatplate trimmers.

The five grid pins of the 6.A.J 4 may be strapped together or used individually, as layout requirements dictate. In this instance, Pin t is used for

Fig. 16-23- Interior vien of the 144-Me. r.f. amplifier. A snall shield across the second tube sochet isolates the input and output circuits. The amplifier is built on a copper plate, which is then fitted to the top of a standard aluminum utility box.
the hot end of L_{1}, with the trimmer, C_{1}, connected to Pin 3. In the second stage, Pins 3 and 4 are tied to the grid side of R_{2}, and l'in 1 is by-passed by C4. See Aug., 195is, QSTT for details.

Adjustment

A noise generator will make the adjustment of the amplifier easy, as it is then only neressary to peak the plate circuit ($\mathrm{ly}^{(} \mathrm{C}_{2}$) for maximum gain, and then adjust the indurtance of L_{3} and the setting of C_{1} for lowest noise figure. It is possible to follow this routine using signals or a signal generator, but it is a more difficult process.

If a signal is to be used, peak the second plate cireuit for maximum response first. Then tune the input eircuit for maximum also, if the amplifier does not oseillate. If it should oscillate, vary the set ting of the slug in L_{2} to stop it, before attempting to peak any other adjustments. In adjusting
the input eircuit, wateh for best signal-to-noise ratio, now, rather than for maximum gain. This will show up, somewhat on the high-eapacity side of the maximum-gain point, as the rotor of C_{1} is turned into the stator.

The position of the tap on L_{1} can be adjusted in the same way. The optimum point will be higher on the coil than the point at which maximum gain is observed. If the amplifier is adjusted at 146 Mc . it should not be necessary to repeak it across the entire band.

An amplifier of this sort should not be expected to produce a large improvement in reception when it is used ahead of a converter that already has a good triode front end, but installed ahead of a pentode amplifier, and particularly a converter having a bandswitching r.f. circuit, it will help considerably in the reception of weak signals, by increasing the margin of the signal over noise.

Receivers for 420 Mc .

For best signat-to-noise ratio, receivers for any frequency should have the highest degree of seleetivity that can be used sucerssfully at the frequency in question. With erystal control or its equivalent in stability accepted as standard practice on all bands up through 148 Mc ., there is little point in using more handwidth in receivers for these frequencies than is necessary for satisfictory voice reception, a maximum of about 10 ke . Such communication selectivity is now being used successfully by most workers on 220 and 420 Me., too, but it imposes several problems not encountered on lower bands.

First is the matter of oseiltator instability in the converter. liven the best tunable oscillator at 420 Me . suffers from vibration and hand-capacity effects sufficiently to make it difficult to hold the signal in a $10-\mathrm{kr}$. i.f. bandwidth.

Then, there are still some unstable transmitters being used in work on 220 and 420 Me . It is out of the question to copy these on a selective receiver.

Last, searching a band 30 megarveles wide is excessively time-consuming when communica-tions-receiver selectivity is used in the i.f. system.
There is no single solution to these problems, but the best approach appars to be that of breaking up of the band into segments for different types of operation. This is being done by mutual agreement among $420-\mathrm{Mc}$. operators at present, as follows: 420 to $4: 32 \mathrm{Mc}$. - modulated oscillators and wideband F.M; 4;32 to 436 Me. -crustal-controlled e.w., AM and narrow-band FM; 436 to 450 - television.

The first segment can be covered with a superregenerative receiver, a superheterodyne having a wideland i.f. system, or it converter used ahead of an FM broadeast receiver. The high selectivity required for hest use of the middle portion makes a crystal-controlled or otherwise highly stable converter and communications reeeiver combination almost mandatory. Amateur TV is usually received with a converter ahead of a standurd TV
recoiver, tuned to some channel that is not in use locally.

Many of the tubes used on the v.h.f. bands are useless at $420 M c$., and the performance of even the best u.h.f. tubes is down compared to lower bands. Only the lighthouse or pencil-triode tubes and a few of the miniatures are usable, and these require modifications of conventional cireuit teennique to produce satisfaetory results.
Crystal diodes are often used as mixers in 420Mc. recoivers, as in this frequency range they work nearly as well as vacuum tubes. The over-all gain of a converter having a crystal mixer is about 10 db . lower than one using a tube, so this difference must be made up in the i.f. amplifier. The noise figure of a receiver having a crystal mixer and no r.f. stage includes the noise figure of the i.f. amplifier following the mixer, so best results require that the i.f. amplifier employ low-noise techniques diseussed earlier in this chapter. If the i.f. is 50 Me . or higher it is particularly important that a low-noise triode be used for the first i.f. stage.

Crystal diodes of the type used in radar mixers, such as the 1 N 21 series, are well suited to $420-\mathrm{Mc}$. mixer service, though eare must be taken to avoid damage from transmitter r.f. energ.g. ()ther types of erystal diodes such as the $1 \sqrt{7} 2$ and CK7 10 will stand higher values of erystal current, and their use is recommended.
lew conventional vacuum tubes work well as mixers at 420 Mc . and higher. The 6 J 6 is useful where a balanced input circuit is desired, as in Fig. 16-513. For single-ended eireuitry the 6AM4 and $6 . D N+$ are recommended. They may be used in grounded-grid or grounded-eathode circuits.

For high-selectivity coverage of the $4: 32$ - to $436-\mathrm{Me}$. segment of the band, a common practice is to use a erystal-controlled converter working into another converter for cither the 50- or $144-$ Me. hand, tuning the latter for the four-megacycle tuning range.

A 420-MC. R.F. AMPLIFIER

The r.f. amplifier shown in Figs, 16-24 through 16 -26 is capable of a gain or more than 15 dh. and its noise figure can be as low as 6 db . with careful adjustment. It will make a large improvement in the sensitivity of any converter or receiver that has no r.f. stage, or one that is working poorly.

The design shown is for either the 6AJ. 4 or GAM4, but with suitable socket and pin-connection changes the 417.4 and $6 A N 4$ will work equally well. It is a grounded-grid amplifier with a half-wave line in the plate rireuit. The antema is connected to the cathode of the tube through a coupling condenser. As the input imperdance of the grounded-grid stage is low, nothing is gained by the use of a tuned circuit in the eathode lead. Output is taken off through a coupling loop at the point of lowest r.f. voltage along the line.

The amplifier is built in a frame of flashing copper that serves as the outer conductor of the tank circuit. The whole assembly is 10 inches long and $11 / 4$ inches square, except for the bottom, which is about $13 / 4$ inches wide. Edges are folded over with lips $1 / 4$ inch wide which slide into a bottom cover made from copper sheet $21 / 4$ by 10 inches in size, with its edges bent up $1 / 4$ inch wide on earh side.

The plate circuit is made of $1 / 4$-inch copper tubing tuned by a copper-tab capacitor at the far end from the tube. plate voltage is fed in at the point of minimum r.f. voltage, which in this

Fig. 16.25-Schematic diagram of the 420-Mr. r.f. amplifier.
$C_{1}-500-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-1000-\mu \mu \mathrm{fd}$. ceramic feed-through (Firic style 2404).
C_{4} - Copper tabs, $7 / 8$-inch diam.; sce text and photo. graphs.
$R_{1}-150$ ohms, $1 / 2$ watt.
$R_{2}-470 \mathrm{ohms}, 1 / 2$ watt.
$L_{1}-1 / 4$-inch copper tubing, $73 / 8$ inches long, tapped $23 / 8$ inches from plate end.
I. 2 - Loop of insulated wire adjacent to L_{1} for $3 / 4$ inch. $\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting.
$\mathrm{KFC}_{1}, \mathrm{RFC} \mathrm{C}_{2}, 1\left\{\mathrm{FC}_{3}-9\right.$ turns No. 22, 3/8-inch diann., spaced one diam.
instance is about 5 inches from the open end. The antenna is connected to the cathode through a coupling condenser. The input impedance of the grounded-grid amplifier is so low that nothing is gained by using a tuned eircuit at this point. The eathode and heater are maintained above ground potential be small air-wound r.f. chokes.

The tube socket is two inches in from the end of the trough, and is so oriented that its plate connection, l^{\prime} in 5 , is in the proper position to connert to the line with the shortest possible lead. A copper shielding fin is mounted across

Fig. 16.24 - A highly effective r.f. amplifier for 120 Mc. The tank circuit is a half-wave line made of flashing copper. Cobavial fittings are for input and output eonnections. Heater and plate voltages are brought in on feedthrough by-pass capacitors just visible on either side of the $\mathbf{6 : J J} 4$ tube.
the interior of the trough $21 / 8$ inches from the end, dividing the socket so that lins 3, 4, 5 and 6 are on the plate side of the partition.

Minimum grid-lead inductance is important. This was insured by bending all the grid prongs down against the ceramic body of the soeket, and then making the mounting hole just big enough to pass this part of the socket and the prongs. They were soldered to the wall of the trough.
liput and output connections are coaxial fittings mounted on the side wall of the trough. 13 -plus and heater voltage are brought into the assembly on feed-through capacitors mounted on the same side of the trough as the tube. Connection to the inner conductor of the line is made with a grid clip, so that the point of connection can be adjusted for optimum results.

The copper tubing is slotted at the plate end with a hack saw to a depth of about $1 / 4$ inch, and a strip of flashing copper soldered into this slot to make the plate connection. A copper tab about the size of a one-cent piece is soldered to the other end of the tubing to provide the stationary plate of (4 . The line is supported near the low-voltage point by a $1 / 4$-inch-thick block of polystyrene. This is centered at a point $5 \frac{1}{4}$ inches in from the tube end of the trough assembly. The hole for the B-plus feed-through is $41 / 4$ inches from the same end.

The movable plate of C_{4} is soldered to a serew running through a nut soldered to the upper

Fig. 16-26-130thom view of the 4? ()-. Ic. r.f. amplifise, with the slip-on coser remosed. 'lhe inner condmetor of the tank eircmit is held in place hy a hlark of polystyrmer monnted near the lowvoltape point on the line. 'The plate-voltage feed-ilirough and ontput eomplime loop may be seen at the left of this support. Ilealer, cathode and antenna-circuit como. ponents arr in a separate emonpartment at the tuhe end of the assemblys. The line is tuned at the opposite end hy a handmade copper-tah capacitor.
surface of the trough at a point $3 / 8$ inch in from the operen end. If a fine-thread serew is available for this purpose it will make for easier tuning, though at $6 / 32$ thread was used in this model. This made a wohbly contart, so a coil spring wats installed between the top of the trough and the knob to keep some tension on the adjusting serew.

Adjustment of the $420-\mathrm{Mc}$. amplifier is made casior if a noise generator is used, though it is not as important as in the case amplifiers with tuned input circuits. If the amplifier is working properly there will be an appertable rise in moise as the plate cirenit is tuned through resonance, and it may break into oscillation if operated without load. When connected to a following stage, with a reasonably-matchod antenna plugged into J_{1}, the amplifier should not oscillate unless the coupling loop, L_{2}, is much too far from the imer conductor.

When the amplifier is operating stably and tuned to a test signal (or to a peak of response to a noise generator), the next step is to locate the optimum position for feeding the plate voltage into the line. This may lo done be ruming a pencil lead slowly up and down the inner conductor, until a spot is found where touching the lead to the line has little or no effect on the operation of the amplifier. The plate voltage clip should he placed at this point and the process repeated, moving the clip slightly until it is at the minimumvoltage point precisely. This adjustment should be made at the midpoint of the tuning range over which the amplifier is to be used.

The position of the coupling loop should then be adjusted for hest signal-to-noise ratio. This will probably turn out to be with the insulated wire lying against the inner conductor for a distance of about $3 / 4$ to 1 inch, starting at the minimum-voltage point just located.

A CRYSTAL-CONTROLLED CONVERTER FOR 432 MC.

The converter shown in Figs. 16-27 through 16-30 is designed to provide high sensitivity and signal-to-noise ratio in reception of signals in the $432-$ to 436 -Mc. range. It uses a grounded-grid r.f. amplifior stage similar to the one shown in Fig. 16-2t, working into a crystal-diode mixer.

The intermediate frequenes, with the design emstants given, is so to st Me., though lower frequencies could the used by suitable modification of the injection chain.
(rystal-cont rolled injection on 382 Mr . is provided by two 6.Jis operating as overtone oseilla-tor-tripler and tripler-doubler, resperetively, As only a small amount of r.f. is required at 382 Mc .,

Fig. 16.27-A crystal-controlled converter for 432 to 136 Me . R.f. and mixer stages are in copper suh. assemblies at ther right. Oseillator, multiplier and i.f. amplifier are on ther left side.
this line-up is not diffieult to build or adjust. An inexpensive $\overline{\mathbf{T}}$-Mc. crystal is used. An i.f. preamplifier stage follows the erystal mixer. This may or may not be needed, depending on the performance of the receiver or converter that will serve as the tunable i.f. Low-noise amplification in the i.f. stage is a factor in the over-all performance of the system, so use of the built-in i.f. stage is recommended.

Construction

The converter is built on a $7 \times 11 \times 2$-inch aluminum chassis, with the r.f. and mixer portions in a copper subassembly that mounts on the top of the chassis, at the right side as seen in

Fig. 16-28 - Interior view of the r.f. amplifier and mixer assemblies. 'l'her r.f, cirruit is at halfowave line, 'lloe shortur assembly is the quarter-waye line using a erystal diosle. mixer.

Fig. 16-27. The ascillator-tripler and triplerdoubler 6i, Sos are at the left front, with the 6BC)7:A i.f. amplifier at the rear. The mixer line is the short portion of the eopper assembly, with the r.f. amplifier line at the right. In the bottom view, fig. 16-28, the injection-chatin and i.f. amplifier components are visible.
lig. $16-28$ is an interior view of the r.f. and mixer lines. These are made as two separate assemblies, joined by short length of copper tubing that is visible in the top view. Both tank eireuits are $11 / 4$ inches square, with $1 / 4$-ineh copper tuling inner conductors. They are made from sheets of flashing copper $41 / 4$ incher wide. The mixer compartment is $51 / 2$ inches long and the r.f. portion is 10 inches long.

The r.f. amplifier is similar structurally to the one deseribed previously, except for the mothod of coupling between it and the erystal mixer. This is done with a grid elip on cach line and a ceramic coupling condenser. The lead from the eapacitor, inside the amplifier line, is brought through a half-inch length of eopper tubing that is soldered into the walls of both lines. The lead is insulated with spaghetti sleeving.

The 13 -plus fored to the r.f. stage should be at the point of minimum r.f. voltage, $17 / 8$ inches from the plate end of the eopper tubing. The eoupling tap is one inch out from the 13 -plus feedpeint. The eoupling point on the mixer line is 1 inch from the ground end. The erystal diode is inserted in a small hole in the mixer inner sonductor, $13 / 4$ inches from the ground end. The inner conductors of the r.f. and mixer lines are

7 3/16 and 5 inches long, respectively. Mixer tuning is done with a small plastic trimmer, C_{10}, while the r.f. plate circuit is tuned with a handmade tab capacitor, C_{9}, similar to C_{4} in Fig. 16-25.

Note the r.f. by-pass, C_{8}, on the outside of the mixer line. This is made from a piece of copper $7 / 8$ inch in dianeter, insulated from the line honsing by a piece of vinyl plastic. Two thicknesses of the material commonly used for small parts envelopes are satisfactory. The crystal, which may be any of the u.h.f. diodes, is slipered through a close-fit hole and is held in place by the wire soldered to its outside terminal.

Plate and filament voltages are fed into the assembly on feed-through by-pass capacitars, visible in the top-view photograph. Antenna connection is made through a coaxial fitting on the end of the r.f. assembly. A ervstal-current jack, a 4 -pin power fitting and two i.f. eonnectors are on the end wall of the chassis. The second coaxial connector was installed so that tests could be made with and without the i.f. amplifier stage.

Wiring in the power circuits is done with shielded wire, in case that TVI might result from the oscillator or multiplier stages. The addition of a bottom plate and power-lead filtering would then be effective. Injection and i.f. eoupling leads are also made of shieded wire, this serving in place of coax line that is harder to handle.

The output of the injection chain is coupled into the mixer line by means of a loop, L_{8}, that is not visible in the photographs. This loop is mounted on the copper base plate that is under

Fiк. 16-ジ - Bottom vien af the 432-Mir, wonserter, showing the osrillater, moltiplier and i,f, amplitier rirenits.

Fig. 16.30-Wiring diagram and parts list for the 432-Me. erystalcontrollod converter, Values given are for an i.f. of 50 to 54 Mc .
$\mathrm{C}_{1}-75-\mu \mu \mathrm{f}$. miniature trimmer (Iammarlund MAPC. 75).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathbf{2 0}^{20} \mu \mu \mathrm{f}$, miniature trimmer (Johnson 203111).
$\mathrm{C}_{5}-25-\mu \mu \mathrm{f}$. miniature trimmer (Hammarlund MAPC. 25)
$\mathrm{C}_{6}, \mathrm{C}_{7}-500-\mu \mu \mathrm{f}$. feed-through ceramie (Centralab) M1"T-50(0).
C_{8} - Itandmade copper-tab by-pass; sce text.
C_{9} - Handmade copper-tab variable: see text.
$\mathrm{C}_{10}-0.5-$ to $5-\mu \mu \mathrm{f}$. plastic trimmer (Firie style $532-08-$ ()R5).
$\mathrm{L}_{1}-131 / 2$ turns No. 20 tinned, $5 / 8$-inch diam., $7 / 8$ ineh long, tapped at $4 \frac{1}{2}$ turns (B \& W Miniductor No, 300^{-}).
$\mathrm{L}_{2}-5$ turns No. 20 timned, $1 / 2$-ineh diam., $3 / 8$ inch long (B \& W Miniductor No. 3003).
$\mathrm{L}_{3}-2 \frac{9}{4}$ turns similar to L_{2}.
L_{4} - 2 turns ${ }^{-1 / 2} 12$ tinned, $1 / 4$-inch diam., $1 / 4$ inch long.
$L_{5}-1$ turn ins, wire between turns of L_{4}. May be inner conductor of shielded wire, with braid removed.
the mixer and r.f. assembly. Its size and proximity to the mixer inner conductor are not particularly critical, as there is a surplus of injection under ordinary conditions of operation.

Adjustment

The first step in putting the converter into operation is to tune up the oscillator and multiplier stages. This process is similar to the adjustment of a transmitter and will not be detailed here. Check to see that the proper frequencies appear as indicated on the schematic diagram. Only enough power at 382 Me . is needed to develop about 0.5 ma. of erystal current. Anything from 0.2 to 1.0 ma , is satisfactory. Adjustments should be made with no plate voltage on the r.f. stage.

Now connect the converter to a $50-\mathrm{Mc}$. receiver or converter and peak the i.f. amplifier
L_{6} - IIalf-wave line, $1 / 4$-ineh copper tubing, $73 / 16$ inches long.
$1_{7}-$ Qiarter-wave line, $1 / 4$-inch eopper tubing, 5 inches long.
Is - Lowp of insulated wire 1 inch long and $1 / 2$ ineh high projecting throngh base plate on whieh line assemblies are mounted. May be made from inner conductor of shiclded wire, with braid removed from last two inches.
$L_{9}-2$ turns No. 22 enam. around cold end of L_{10}.
$\mathrm{L}_{10}-6$ turns similar to I_{2}.
$\mathrm{L}_{11}-11$ turns No. 22 enam. close-wound on $3 / 8$-inch slug-tuncd form (National XR-91).
L_{12} - turns No. 28 silk or enamel wound over cold end of L_{11}.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coavial fitting.
J_{3} - Closed-circuit jack,
$\mathrm{J}_{4}-4$-pin male chassis fitting.
RFC - 10 turns Vo. 22 tinned, $1 / 8$-inch diam. Space turns diant. of wire.
circuits at about 52 Mc . on noise. Next apply plate voltage and feed a signal into the r.f. stage. Peak the r.f. and mixer caparitors for maximum response at about 43% Mc. These adjustments can be made on noise also, if the circuits were close to resonance originally. If a noise generator is not available, the margin of signal over roceiver noise that is obtained on a recerived signal is also usable, if adjustments are made with care.

The points of connection for the B-plus and the coupling taps on the r.f. and mixer lines are critical adjustments, but if the dimensions given above are followed carefully the points should be close to optimum. Adjustments can be made and checked readily if the r.f.-mixer assembly is mounted in place temporarily with a few selftapping screws. More on this converter in January, 1954, QST, p. 24.

V.H.F. Transmitters

Transmitter stability regulations for the 50 Mc. band are the same as for lower hands, and proper design may make it possible to use the same rig for $50,28,21$, and even 14 Mc., but incorporation of $1+4 \mathrm{Mc}$. and higher in the usual multiband transmitter is generally not feasible. Rather, it is usually more satisfactory to combine 50 and 144 Mc., since the two bands are close to a third-harmonic relationship. At least the exciter portion of the transmitter may be made to cover the requirements for both these bands very readily.

Though no stability restrictions are imposed by law on operation at 144 Mc. and higher amateur bands (other than that the entire emission must be kept within the limits of the band in question), experience has demonstrated the value of using crystal control or its equivalent in v.h.f. work. Crystal-controlled transmitters and receivers having the minimum bandwidth necessary for voice communication make it possible for hundreds of stations to operate without undue interference in a band that would appear crowded if occupied by a dozen or less stations using broadband receivers and unstable transmitters.

The use of narrow-band communications sustems also pays off in improved efficiency in both transmitter and receiver. It is this factor, perhaps more than the interferenee potentialities of the wide-band systems, which makes it desirable to employ advanced techniques at 220 and even 420 Mc. Stabilized transmitters for these bands are not too difficult to build, and their use is highly recommended.

Choice of tubes suitable for this type of work is quite limited, but the advanced amateur who is
interested in making the most of the interesting possibilities afforded by this developing field will be satisfied with nothing less. The $420-\mathrm{Mc}$. hand is much wider than our lower v.h.f. assignments, however, and interference is not likely to berome a limiting factor in this band for a long time to come, Thus it may be more important, in many localities, to get activity rolling with any sort of gear, leaving perfection in design to come along as the need develops.

At 420 Mc . and in the higher amateur assignments most standard tubes cannot be used with any degree of success, and special tubes designed for these frequencies must be emploved. These types have extremely close electrode spacing, to reduce transit-time effects, and are constructed with leads having virtually no inductance. Several more-or-less conventional tubes are now available which will operate with fair efficiency up to about 500 Mc., but best performance is obtained with the "lighthouse," "pencil tube," or coaxial-clectrode types built especially for u.h.f. applications, and requiring specially-designed tank circuits.

Frequency modulation may be used throughout the v.h.f. and higher bands, wide-band emission being permitted above 52.5 Me, and narrow-band FM anywhere. Where suitable receivers are available to make best use of such emissions, either wide-band or narrew-band FM ean provide effective v.h.f. communication. Their use is particularly advantageous in congested areas where the freedom from interference to broadeast and television reception they enjoy may permit operation when an amplitude-modulated transmitter of any power would be a constant source of trouble.

Transmitter Technique

The low-power stages of a transmitter for the v.h.f. bands need not be greatly different in design from those used for lower bands, and many of the ideas in Chapter Six may be used to good advantage in the initial stages of the v.h.f. rig. The constructor has the choice of starting at some lower frequency, usually around 6,8 or 12 Mc ., multiplying to the operating frequency in one or more additional stages, or he can use a high initial frequency and thus reduce the number of multiplier stages required or eliminate them entirely. The first approach has the virtue of employing low-cost crystals, and it usually results in better stability, but high-frequency crystals may effect a considerable economy in power consumption, an important factor in portable or emer-gency-powered gear.

OVERTONE OSCILLATORS

Crystal oscillator stages for v.h.f. transmitters may make use of any of the circuits shown in Chapter (i) when crystals up to 12 Mc . are employed, but cortain variations are helpful for higher frequencies. Crystals for 12 Mc . or higher are usually of the overtone variety. Their frequency of oscillation is an approximate multiple of some lower frequency, for which the erystal is actually ground. Thus 24-Mc. crystals commonly used in $144-\mathrm{Mc}$. work are $8-\mathrm{Mc}$. cuts, specially treated for overtone characteristies. Until recent years such crystals were tricky in operation and subject to excessive drift if operated at high crystal current. The overtone crystals now being supplied are approximately as stable as those
designed for fundamental operation, and they are easy to handle in properly designed circuits.
l3est results are usually obtained with overtone crystals if some regeneration is added. This makes for easy starting under load and greater output than would be obtainable in a simple triode or tetrode circuit. Two regenerative circuits, with constants for 8 - or 24-Mc. crystals, are shown in Figs. 17-17 and 17-29. Triodes are shown, but the same arrangement may be used with tetrode or pentode tubes. The important point in either case is the amount of regeneration, controlled by the position and number of turns in the feed-back winding, L_{2}, in Fig. 17-29 or the capacitance of the smatler of the two by-passes in the $B+l$ aral to the oscillator in Figs. 17-17 and 17-20. There should be only enough feed-back to assure easy crystal starting and satisfactory operation under loasd; too much will result in random oscillation not under the eontrol of the crystal.

Overtone operation is possible with standard fundamental-type erystals, using these circuits. Practically all will oseillate on their third overtones, and fifth and higher odd overtones may be possible. Adjustment of regeneration is more critical, however, if the erystals are not ground for overtone characteristics. It should also be noted that the frequency may not be an exact multiple of that marked on the erystal holder, so care should be used in working with crystals that are near a band edge.

Crystals ground for overtone service can be made to oscillate on other overtones than the one marked on the holder. A 24-Me. crystal, actually an 8 -Me, cut, may be made to oscillate on 40, 56 , 72 Me, or even higher odd multiples of its 8 - Me. fundamental frequency. The circuits shown in the constructional material later in this chapter may be used in this way, but there are several circuits that have been developed especially for use with high-order overtones that may serve the purpose better. For a more complete diseussion of overtone oscillator techniques, see QST for April, 1951 , page 56.

C'rystals are now available for frequencies up to around 100 Mc. They are somewhat more expensive and more critical in operation than those for 30 Me. and lower, however, so they have not been used widely in amateur work, except whore a saving in power is important. Use of 50-Mc. erystals is made occasionally as a means of preventing radiation of the harmonies of lower frequency erystals that might cause interference to television reception.

FREQUENCY MULTIPLIERS

Frequency multiplying stages in a v.h.f. transmitter fotlow standard practice, the principal precaution being arrangement of components for short lead length and minimum stray capacitance. This is particularly important at 144 Mc , and higher. 'To reduce the possibility of radiation of oscillator harmonies on frequencies that might interfere with television or other services, the lowest satisfactory power level should be used.

Low powered stages are easier to shield or filter, in case such steps become necessary.

Common practice in v.h.f. exciter design is to make the tuned circuits capable of operation over the whole range from 48 to 54 Mc., so that the output stage can drive either an amplifier at 50 to 54 Mc. or a tripler from 48 to 144 Mc. Tripling is often done with push-pull stages, particularly when the output frequency is to ise 144 Mc, or higher. The output capaeitances of the tubes in such push-pull circuits are in series, promitting a better L / C° ratio than is possible with single-ended cireuits.

- AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Mc ., but for 144 Mc . and higher the tube types are limited to those having low input and output capacitances and compact physical structure. Leads must be as short as possible, and soldered connections should be avoided in high-powered circuits, where heating may be great enough to reach the melting point of the solder used.

Plug-in eoils and their associated sockets or jack hars are gencrally unsatisfactory for use at 144 Me. and higher because of the stray inductance and eapacitance they introduce. One way around this trouble is the dual tank circuit shown in Figs: 17-21 and 17-22. Here the tank circuit for 144 Mc. is a conventional tuned line, with its shorting har made as a removable plug. When the stage is to be used on another hand the short is removed and a coil is plugged into the jack, the line then serving as a pair of plate leads. Such an arrangement will operate as eflieiently on 144 Me. as if it were designed for that hand alone, yet it can be made to work properly on any lower bend.

At 220 Mc . and higher it may be necessary to employ half-wave lines as tuned circuits, as shown in Fig. 17-26 (P_{1} in place). Here the tuning caparitance, instead of being connected directly in parallel with the output capacitance of the tule, is at the far end of a half-wave line. Plate voltage is fed into the line near the middle, at the point where the r.f. voltage is lowest. The proper point can be located by first operating the stage with the voltage fed in near the middle of the line, and then touching a pencil point along the line to locate the spot where the least effect on the grid or plate current is noted. This check should be made with the pencil in an insulating mount, if dangerous values of plate voltage are used.

Seutralization of triode amplifiers for 50 and 144 Mc. can follow standard practice, but the stray inductance and capacitance introduced by the neutralizing circuits may be excessive for 220 Mc . and higher. In such instances groundedgrid amplifiers may be used as shown in Fig. 16-25, modified for transmitting use. Driving power is applied to the cathode circuit, with the grid acting as a shield. Grounded-grid amplifiers are stable, but they require high driving power. Some of the drive appears in the output, so both
the driver and amplifier must be modulated when amplitude modulation is used. For this reason the grounded-grid amplifier is used mainly for FMI applications.

Tetrode and pentode amplifiers may operate without neutralization, but it is advisable to phan for it in the original layout. With such tubes as the 829 or 832 enough neutralizing capacitance can be obtained by running short lengths of stiff wire up through the ehassis alongside the tube plates, crossing them over to the opposite grid terminals below the ehassis. Neutralization is adjusted by trimming or bending the wires.

Instability shows up frequently in tetrode amplifiers as the result of ineffective sereen bypassing, in which ease eonventional eross-over neutralization will aceomplish little or nothing. The solution lies in series-resonating the sereen circuits to ground, as shown in Fig. 17-22. The r.f. choke and condenser values vary with frequency, so screen neutralization is essentially a one-band deviee.

FREQUENCY MODULATION

'Though FXI has not enjoyed great popularity in v.h.f. operation, probably beeause of lack of suitable receivers in most v.h.f. stations, its possibilities should not be overlooked, particularly for the higher bands. At 420 Me., for instance, the eflicieney of most amplifiers is so low that it is often diffieult to develop sufficient grid drive for proper AM service. With FM any amount of grid drive may be used without affeeting the audio quality of the signal, and the modulation prosess adds nothing to the plate dissipation. Thus eonsiderably higher power can be run with FM than with AM before damage to the tubes develops or the signal is of poor quality.

Frequeney modulation also simplifies transmitter design. The principal obstacle to greater use of F.M in v.h.f. work is the wide variation in selectivity of v.h.f. reeeivers, making it difficult for the operator to set up his deviation so that it will be satisfactory for all listeners.

TVI PREVENTION AND CURE

Interference to television reception is not ordinarily so serious a problem with v.h.f. gear as with equipment for lower amateur hands, where more harmonics of the operating frequency fall within the television channels. The principal causes of TVI from v.h.f. transmitters are as follows:

1) Adjacent-channel interference in Channel 2 from 50 Me .
2) Fourth harmonic of 50 Me. in Channels 11, 12 or 13 , depending on the operating frequeney.
3) Radiation of unused harmonies of the oscillator or multiplier stages. Examples are 9 th harmonic of 6 Mr ., and 7 th harmonic of 8 Me . in Channel 2; 10th harmonic of 8 Mc . in Channel 6 ; 7 th harmonie of $25-\mathrm{Mc}$. stages in Channel 7: 4th harmonie of $48-\mathrm{Me}$. stages in

Channel 9 or 10; and many other combinations. This may include i.f. piek-up, as in the cases of 21-Mc. interference in recivers having 21-Mc. i.f. systems, and 48-Mc. trouble in $45-\mathrm{Me}$. i.f.'s.
4) Fundamental blocking effects, including modulation bars, usually found only in the lower channels, from 50-Me equipment.
5) Image interference in Channel 2 from 144 Mr., in receivers having a 45 -Mc. i.f.
6) Sound interference (picture elear in some (ases) resulting from r.f. piek-up by the audio, circuits of the TV receiver.

There are many other possibilities, and u.h.f. TV in general use will add to the list, hut nearly all can be eorrected completely, and the rest can be substantially redured.

Items 1, 4 and 5 are receiver faults, and nothing can be done at the transmitter to reduce i,hem. except to lower the power or increase separation between the transmitting and TV antemat sustems. Item 6 is also a receiver fabult, but it can be alleviated at the transmitter by using FM or e.w. instead of AM phone.

Treatment of the various hammonic trouldes. Items 2 and 3, follows the standard methods detailed elsewhere in this Mambook. It is suggested that the prospertive builder of new v.h.f. equipment familiarize himself with TVI prevention techniques, and incorporate them in new eonstruetion projects.

Use as high a starting frequency as possible. to reduce the number of harmonics that might cause trouble. Select crystal frequencies thas do not have harmonirs in 'T' chamels in use lexally. Bxample: The 10th harmonic of 8-Mc. erystals used for operation in the low part of the 50)-Mr. hand falls in Channel 6, but 6-Me. erystals for the same frequenoy range have no harmonic in that chamnel.

If TVI is a serious problem, use the bowest transmitter power that will do the job at hand. Much interesting work can be done on the v.h.f. hands with but a few watts output, particalarly. if a good ant cmata systom is used.

Keep the power in the multiplier and driver stages at the lowrost practical level, and use link coupling in preference to capacitive rompling, partioularly in the tater stares.

Plan for complete shiclding and filtering of the r.f. seretions of the transmitter, should these steps become neecessary:

Lise consial line to foed the antenna system, and locate the radiating portion as far as possible from 'l'V reveivers and antenna sostems.

Some v.h.f. TV' tuners have removable strips that ran be replaced with double-eonversion inserts for u.h.f. reception. For a number of channels the first conversion frequency mas then fall in or near the $144-\mathrm{Mc}$, band. Where this method is employed for u.h.f. reception the receiver is very sonsitive to 14-Me. interference. The cure for this receiver fault is to replace the strips with others having a difierent eonversion frequency, or use a conventional u.h.f. converter for reception of the channels from 14 up.

A Complete Transmitter for 144 Through 21 Mc.

The rack-mounted equipment shown in Fig. $17-1$ is an example of the way in which the lowpower stages of a rig can be designed to provide for soveral bands. Wach piece of equipment can be used alone, or they combine readily to cover $21,28,50$ and 144 . Mc., at a power level approaching the legal maximum.

At the bottom is a VFO unit tailored to the needs of the v.h.f. man, but useful on lower frepuencies as well. Next is an exciter capable of up to 40 watts output on 21,28 or 48 to 54 Mc. It is a fine low-powered rig for use on 15,10 or 6 meters as well. Above the exciter are two units clesigned for high-power operation on 144 and 50 Mc.

THE EXCITER

The transmitter-exciter shown in Figs. 17-2 through 17-4 was designed for the v.h.f. man who likes to work some of the lower bands as well. It delivers up to 40 watts output on 21, 28 or 50 Mc ., and covers the range down to 48 Mc . so that it may be used as a source of exritation for additional stages that multiply to $1+4$. Mc. Though it was intended for use with the highpowered amplifiers described later, it may be used effectively as a complete transmitter in itself.

Shielding for TVI reduction was achieved by building the unit inside a standard aluminum chassis. Dach power lead is by-passed at the power plug, and all wiring was done with shielded wire. Output is taken off through a coaxial fitting, so that a low-pass filter can be inserted in the line for harmonic attenuation if needed.

Circuit Details

The exciter circuit follows standard practice. The oscillator is a 5763 grid-plate type with provision for 10 crystals and VFO input. Crys-

Fig. 1 -1 - A complete trans. mitter for 144 throush 21 Mc . The four units are, from the bottom up, a VFO witl reactance modulator; an excitertransmitter with up to 40 watts output: a tripler-driveramplifier for 144 llc.: and a shichled amplifier for 50,28 and 21 Mc .
tals may be in the $3.5-, 6-, 7-8$-, 14 - or $24-\mathrm{Mc}$. ranges. On 21 Mc. the oscillator output is on the signal frequency, and best results are obtained with 7 -IIc. crystals, tripling in the plate circuit. For 28 Mc . the oscillator doubles to 14 Mc. with 7 -Mc. crystals, quadruples from 3.5 Me., or works straight through with 14-Mc. overtone crystals. For operation on 50 or 144 Mc ., the oscillator output is on $2+$ to 27 Mc., quadrupling, tripling or working straight through, for 6-, 8or $24-$ Mc. crystals, respertively. The $1(0)-\mu \mu \mathrm{fd}$. tuning caparitor at C_{6} tunes the oscillator plate circuit from 14 to 27 Mc ., so no bandswitching is needed in this stage.

Another 5763 follows the oscillator, working straight through on 21 Mc ., or doubling to 28 or 48 to 54 Mc. Two coils, L_{2} and L_{3}, and a $50-\mu \mu \mathrm{fd}$. condenser, C_{10}, cover 21 to 30 Mc ., and 48 to 54 Mc ., respertively. In case trouble is encountered in making the 5763 run stably as a 21-Mc. amplifier, a third switch position is available for connecting a damping resistor, R_{8}, in series with L_{2}.

The output stage uses a 6146 , with a tapped coil for 21 and 28 Mc., and a second coil for 48 to 51 Mc. Output coupling links in these two

Fig. 1 : -2 - Looking into the bandswitching exciter-transmitter from the ton front. Oscillator components are in the left compartment, the doubler and powser connector in the eenter, ard the output stage at the right. Note that the 61 fo socket is mounted inside the output stage compartment.
coils are also switched. The 61.16 works nicely over a wide range of plate voltages, so this rig maty be used in exciter servier with as litte as 300 volts on the final, or it maty be used as a comphete trunsmitter at up to 500 volts. A $21: 26$ may the used in the final stage where its power output is adequate for the joh at hand.

The exciter is built largely inside a $3 \times 5 \times 17-$ inch aluminum chassis and is fitted with a standard $31 / 2$-inch rack pancl. Only the crystals, the first two tubes and the filament transformer are outside, and these are mounted on the rear wall of the chassis to keep down the vertical dimension.

Arrangement of parts is not particularly critical, the principal consideration in the first two stages being to mount the tubes in such position that the coupling lead (C_{25} to the grid of the second 5763) is short. The grid cireuit of the seeond stage should be isolated from the rest of the eomponents to reduce the tendency toward self-oscillation when the stage is operated st raight
through on 21 Mc. The lead to the grid is made with a short piece of RG-59/U coax, run through a slot in the top of the partition, and a small picere of fltshing copper is soldered arross the 5atios sorke between l'ins 1 and to isolate the input and out circuits further. Leads from the tube plate to the bandswitch, s_{2}, and thence to the tuning sondenser, (10 , are mado with $1 / 4$-inchwide copper strap, to hold down lead inductance.

Note the method of mounting the sorket for the 6146. Contrary to common practice, this socket is mounted on the tube side of the partition. Cathode, heater and sereen pins (Nos. 1, 3, 4, 6 and 5) are hy-passed individually to separate prints on the partition with the shortest possible leads. Heater and cathode leads are brought through the partition with shielded wire, and the control grial and sereen leads are run through on short lengths of stiff wire insulated with spaghetti sleaving. Sounting the $614(\mathrm{i}$ soeke mside the final stage compartment provides a short plate-

Fig. $17-3$ - Rear view of the exciter, O_{n} the rear wall at the right are. 10 cry stal suck cto of various types. Then come the two 5.6 .3 s , the power plas, the filament tranflormer, and the output coaxial fitting. On the inside front wall are, in the same order, the erystal switch, oscillator tuning, doubler bandswitch, doubler tuning, and final bandswiteh.

$\mathrm{C}_{6}-100-\mu \mu \mathrm{fd}$. midget variable, shaft-mounting type.
Cin - $50-\mu \mu \mathrm{fd}$. midget variable, shaft-mounting type.
(12 - $\mathbf{1 5} \cdot \mu \mu \mathrm{fd}$. mica or ceramic.
Cis - $20-\mu \mu \mathrm{fd}$. double-spaced midget variable, shaftmounting type.
$\mathrm{C}_{25}-50-\mu \mu \mathrm{fl}$. ceramie or mica.
$\mathrm{R}_{1}, \mathrm{R}_{4}-0.1$ megohm, $1 / 2$ watt.
$R_{2}-220$ ohms. $1 / 2$ watt.
$\mathrm{R}_{3}, \mathrm{R}_{6}-22,000$ ohms, 1 watt.
$\mathrm{K}_{5}, \mathrm{~K}_{10}-1000$ olms, $1 / 2$ watt.
R_{7} - 100 ohms, $1 / 2$ watt.
$\mathrm{R}_{8}-7.5$ whms 1 watt (\mathbf{t} wo 15 -ohm $1 / 2$-watt resistors in parallel).
Jig - 33,000 ohms. 1 watt.
J $\mathrm{K}_{11}-20,000$ ohms, 10 watts.
$\mathrm{J}_{12}-68$ ohms, $1 / 2$ watt.
1.1 - $81 / 2$ turns No. 20 tinned, $3 / 4$-inch diam., $1 / 2$ inch long (B\& W Miniductor No. 3011).
I. $2-7$ turns like I.1, 7 /6 inch long.
$\mathrm{L}_{3}-4$ turns X O. 20 tinned, $5 / 8$-ineh diam., $1 / 2$ inch long ($\mathrm{B} \& \mathrm{~W}$ No. 3006).
$\mathrm{L}_{4}-2$ turns No. 18 push-bach, $5 / 8$-inch diam., compled to cold cond of $I \cdot 3$.
$\mathrm{L}_{5}-4$ tirns No. 20 tinned, $3 / 4$-ineh diam., $1 / 2$ inch long
to-rathode return. The stage may possibly be unstable if the socket is mounted on the opposite side of the partition from the tube, as is usually done.

The three tuning condensers should be the shaft-mounting type, not the sort that mount on small pillars. Unless the rotor shaft is grounded solidly to the panel it will aret as an "antenna" to radiate harmonic energy that is almost certain to cause TVI. The meter tip jacks, J_{5} and J_{6}, may also turn out to he harmonic radiators, unless by-passed right at the point where they come through the rear wall.

The output coupling links, L_{6} and L_{8}, are the smallest diameter 13 \& W Miniductor, which makes a close fit inside the larger size used for L_{5} and L_{-}. They are held in plate with household cement. A coupling link is also provided for L_{3}, so that a small amount of power can be taken off at 48 Mc , if desired. This is made of selfsupporting stiff insulated wire, coupled elosely to the cold end of L_{3}.

Note that the front-panel appearance is completely symmetrical, the controls being spaced at regular intervals horizontally, and in the center of the panel vertically. The chassis is
(13\&W No. 3010).
$\mathrm{L}_{6}-41 / 2$ turns No. 20 tinned, $1 / 2$-inch diam., $1 / 2$ inch long, monted inside cold end of 1.5 . (B \& W Miniductor Xo. $3(013$.
L; - 11 turns like $j_{i n}$, tapped at 7 turns, $3 / 4$ inch long.
I. 8 - 9 turns $18 \mathbb{S} W$ No. $3004,1 / 2$-inch diam., 3 is inch long, mounted inside cold end of 1.7 .
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}-$ © ©oaxial fitting. J_{1} is for VFO input.
J_{4} - Closed-cirenit jack.
$\mathrm{J}_{5}, \mathrm{~J}_{6}-\mathrm{Tip}$ jack.
$\mathrm{J}=-8$.pin male chassis fitting.
1RFC, - 2.5 -mh. r.f. choke (National R-100-S).
$1 \& \mathrm{FC}_{2}$ - Parasitic choke, 6 turns No. 20 enamel, $1 / 4$-inch diam., $3 / 8$ inch long.
$s_{1 A}, s_{1 B}-11$-position 2 -section ceramic wafer switch.
(Made fron centralab P'122 index assembly and 2 eentralab type Y switch sections. Complete assembly CRI. 2513.)
S_{2} - Similar to above, lut single section (CRL 2501 on 2503, wafer type X or Y).
$\mathrm{S}_{3 \mathrm{~A}}, \mathrm{~S}_{31}$ - Same but 2 -pole 3 -position single section (CRI, 250.5, wafer type RIR).
T_{1}-6.3-v. 3-amp. filament transformer.
botton up, with the cover at the top. This allows ready access to the inside when the unit is in its normal operating position, but it may be used the other side up, if the buider so desires. Ventilation of the 6146 is afforded by twenty $1 / 4$-inch holes drilled in the top and bottom surfaces over and under the tube.

Testing and Use

For initial tests a power supply delivering 200 to 250 volts is adequate. Each stage has its platescreen power lead brought out to the plug separately, so that individual metering is possible. Applying voltage through I'in 3, we note that the stage draws low current until oscillation is obtained, heause of the cathode bias. Plug a lowrange meter into J_{5} to read the grid current of the following stage, and tune C_{6} for maximum indication, which will be about 0.5 to 1 ma. at normal operating voltage. The oscillator platescreen current will be around 20 ma .

Should the oscillator refuse to start, try other crystals, and then experiment with the values of C_{1} and C_{3}. The grid-to-cathode capacitor, C_{1}, may not he necessary, particularly if crystals no lower than 6 Mc. are used. Use the lowest value
that will permit oscillation with all crystals. The value of ('3 may be aritical when overtone-type (rystals are used. Improper values at either of there prestions maty result in intermittent oscillation, or none at abli.

Cherk the output frequency with a calibrated wavemeter, of by listening with a recoiver whose calibation can be relied upon, and proceed to the following stage. Plug the grid meter into J_{6} apply power through Pin t, and check the output frequency when (' ${ }_{10}$ is tuned for maximum gride current. At least 2 mat. should be available. Chesk for self-oscillation by removing exatation. Shoud sell-oscillation oreur on the $21-\mathrm{Al}$ c. range, switch in the damping resistor, R_{8}. This should be the lowest value permissible, as the output from the stage drops ribuidly as the serius resistance is increased abowe a few ohms.

When around 2 mat. of grid courent is ohtatined the output stage may be checked. This maty be done initially with 250 to 306 volts applied
 into J_{3} for a dummy lowd. Cutting the excitation (do it only briefly-61 lis dratw a tremendous amount of plate current!) should result in zero grid current. If the stage is operating corvectly the output should he around is watts with 3of volts on the plate.
Inereasing to 400 to 150 volts it should be possible to get at least 3 bo watts output on all frequencias. In an enclosed lityout of sum sinatl dimensions it is not advisathle to go much beyond this ievel, as the heat dissipation maty be high enough to damage the small coils used. Where the exciter is used to drive a high-powered tetrode final stage, 300 volte on the 6146 and 200 to $2 \mathrm{~F}^{2}()$ volts on the 5 atio3s is plentes. The rig may he used as a complete transmitter, modulating the output stage on 28 or $50 \mathrm{Mr} \cdot$, at 30 to 30 watts input. The operating conditions in all stages ean be adjusted to suit the huilder's own requirements by varying the sereen resistor values. The exeitere is keyed in the 6146 rathode lead for c.w. operation.

A 144-MC. DRIVER-AMPLIFIER

Shown just above the exciter in the compresite photograph, Fig. 17-1, and sparately in Figs. $1 \overline{-5}$ through $1 \overline{7}-\overline{6}$ is a three-stage tripler-driveramplifier for high-power operation on $1+1 \mathrm{Me}$. It may be used with any exciter that is capable of delivering $\overline{0}$ watts or more on 48 Mc . If a 2 -meter exciter is available the tripler may be omitted. The driving power required in that case would be about 10 watts on 14. Me.

As may be seren from the schematie diagram, Fig. 17-6. a push-pull tripler stage with a pair of arbiss drives a tetrode amplifior using an $A X^{-}$ onot:3/58:9.A, which, in turn, drives a pair of $+-12 \overline{5}$ Ss in the final stige. Input to the final can be up to slightly over bot watts on AM 'phone, or $\overline{\sin }$) watts on ($\because \cdots$. By suitable adjustment of the grid drive and the final-amplifier screen and pate voltates, the input ean be run as low as 150 Watts with grood efficience. Some method of varying the imput is recommended, as much of the opreration on 114 Mc. can be carried on satisfactorily with moderate power.

Electrical and Mechanical Details

The tripler uses two tubes in push-putl in preference to a single tube, as this allows the tubes to be operated at low input and still deliver adequate drive to the succeeding stage without rritical adjustments. The tripler grid cireuit is self-resonant. The tripler and driver plate tuming adjustments are ganged. Straps of flashing copper ${ }^{5}$ 后 inch wide are used for the louds from the $\overline{5}$ fibi plates to the tuning condenser, C_{1}, to hold down lead indurtance.

From the hotton view, Fig. $17-\overline{7}$, it will be seen that sheets of flashing copper are fastened to the bottom of the chassis, covering the area of the driver ind final stages, to improve grounding circuit conductivity. Note that the roter of the driver tuning condenser, C_{2}, is groubded through a lothohm resistor, h_{5}. This was done to cure a 250 - Me, parasitio oscillation. Ventila-

Fig. 17.5- Hear view of the 4.125 A amplifier for 141 Vco, showing details of the parallel-line plate circait. 'I'le $5.6,3$ tripler lubes are at the left. Vote ventilation holes, below which is mounted the driver tube, out of sight under the chassis.

Fig. 17-6 - Wiring diagram and parts list for the high-powered 144-Mc. transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-10-\mu \mu \mathrm{fd}$-者er-section butterily varial) (Cardwell ER-6-131/S. Johnson 101,1315 ahernate; see text).
$\mathrm{C}_{3} \mathrm{C}_{4}-10-\mu \mu \mathrm{fd}$. mica.
$\mathrm{C}_{5}, \mathrm{C}_{6}-0.001-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{C}_{7}-0.005-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{C}_{8}-50$ - $\mu \mu \mathrm{fd}$--per-section split-stator variable (made from Millen 19140; see text).
C_{9} - Ilate-line tuning adjustment (made from neutralizing condenser; see text).
$\mathrm{C}_{10}-0.001-\mu \mathrm{fd}$. 5000 - olt mica.
$\mathrm{C}_{11}-0.25-\mu \mathrm{fd}$. tulular.
$\mathrm{R}_{1}-150,000$ ohms, I watt.
$\mathrm{R}_{2}-18,000$ ohms, 1 watt.
R_{3} - 100 ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-10,000$ ohms, 1 watt.
R_{5} - 100 ohms, 1 watt.
$\mathrm{R}_{6}-10,000$ ohms, 10 watts.
$\mathrm{R}_{7}-5000$ ohms, 10 watts.
R_{8} - 27,000 ohms. Lise only if needed; see text.
I_{1} - 1 turn No. 14 enam., $3 / 4$-imeh diann.
l_{2} - 6 turns each side of eenter, No. $20,8 / 8$-inch diam., spaced wire diam., $1 / 4$-inch space at center for L_{1} ($B \& W$ Niniductor No. 300°).
1,3-2 turns No. 14 enam., spaced $1 / 8$ inch, $1 / 2$-inch diam.
$L_{4}-2$ turns No. 14 enam., spacell $3 / 8$ inch, $13 / 8$-inch diam.
tion for the driver tube is provided by drilling holes through the copper plate and chassis over the tube. An 82913 may be used in place of the $9903 / 5894 \mathrm{~A}$, with some sacrifice in driver stage efficiency.

If the 9903 is used, the tube plate leads should be very pliable material, as the tube structure is fragile. The 5894 A , an improved version of the 9903 , is considerably more rugged mechanically. If standard heat-dissipating connectors are used they should be filed down by about one-third of their diameter because of the close pin spacing. Cardwell butterfly capacitors were used for C_{1} and C_{2} because of their inherent provision for ganging. Other types such as the Johnson 10LB15 can be substituted by soldering a ganging extension to the rear end of the rotor shaft of C_{2}.

The driver plate and final grid circuits are widely separated so that coupling between them will be confined to the link circuit. This helps to keep unwanted harmonics from being transferred to the final grids. This potential source of TV'I can be further reduced by installing link-coupled tuned circuits in the tripler plate and driver grid positions, if the station location is one where

Ls - 2 turns No. 18 push-back, close-spaced, insertel between turns of D.1.
If - Loop of No. 14 enam., 4 incher long, inside L_{7}.
L_{7} - Copper strap 8 inch wide and 8 inches overall from grid to grid; see text and bottom-view photograph.
$L_{s}-1$ late line, $3 / 8$-inch o.d. copper tubing 12 inches long, spaced $13 / 8$ inches center-to-center. Bend on 1 -inch radius to make inverted "I," $41 / 2$ inches high.
L_{10} - Output coupling loop, made from $131 / 2$-inch piece of No. 14 enam. Sides $7 / 8$ inch spaced. Vertical portion $21 / 2$ inches high.
I_{10} - 5 -hy. (min.) choke, 100 ma. or more rating.
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ - Closed-circuit jack.
$\mathrm{J}_{4}-$ Coaxial fitting.
Js - Crystal socket for output terminal.
$\mathrm{MA}_{1}, \mathrm{MA}_{2}, \mathrm{MA}_{3}, \mathrm{MA}_{4}$ - External meters, not shown in photographs, 200, 50, 100 and 500 ma., respectively.
$\mathrm{RFC}_{1}, \mathrm{RFC}_{2}, \mathrm{RFC}_{3}, \mathrm{RFC}_{4}, \mathrm{MFC}_{7}-1.8$ - $\mu \mathrm{hy}$. solenoid v.h.f. choke (Ohmite 7.144).

RFC C_{5}, RFC C_{6} - $\mathbf{7}-\mu \mathrm{hy}$. solenoid v.h.f. choke (Olynite 7-50).
S_{1}, S_{2} - S.p.s.t. toggle switch.
$\mathrm{T}_{1}-6.3$-voit 4 -amp. filament transformer.
$\mathrm{T}_{2}-5$-wolt 13 -amp. filament transformer (Chicago F().513).
192-Mc. energy might cause TVI in Channels 9 or 10 .

The relatively high input and output capacit:unces of the $4-125 \mathrm{As}$ rule out conventional coil-and-condenser circuits at 144 Mc., so no grid tuning capacitor is used in the final stage, and only a very small variable capacitance is used in the plate circuit. The entire grid circuit is made of $5 / 6$-inch-wide copper strap). Two pieces each $11 / 2$ inches long connect the grid terminals to feed-through bushings that are provided for mounting neutralizing tahs, if needed. The center portion of the grid circuit is an egg-shited loop mounted on the feed-throughs, as seen in the bottom view. The bushings are mounted near the immer corners of the $4-125 \mathrm{~A}$ sockets. The holes for them are drilled larger than neded to pass the ceramic portions, to keep the grid-to-ground capacitance at a minimum.

The principal neutralizing adjustment is the split-stator variable condenser, C_{8}, connected from the screens to ground. A single-seretion variable (Millen 19140 or Hammarlund MC-140) having supports at each end of the rotor shaft. was modified for this purpose as these types provide a symmetrical path from rotor to ground

Fig. 17-7 - Looking under the chassis of the ligh-power 2-meter rig. At the lower right are the eomponents of the tripler stage, with the AX. 9903 driver tube just above the aluninum partition. The 4-125A sockets, grid circuit, and ecreen-neutralization capacitor are at the left. The VIItube bias system is mounted on the rear chassis wall.

for each side of the circuit. A strip of brass or aluminum is first screwed to the metal mounting brackets at each end, tying them together electrically and mechanically. Then the stator bars are sawed in half, leaving an equal number of plates on each side. These conlensers have 9 plates each on stator and rotor originally. The middle stator plate is cut out and the front rotor plate removed, leaving a split-stator condenser with 4 plates on each stator and 8 on the rotor. The two screen terminals on each socket are strapped together, and the connection to the stators of C_{8} is made with copper strap. Symmetry and low inductance are extremely important in this circuit.

The sereen cireuit also includes two solenoidtype r.f. chokes connected directly to the screen terminals. These are under C_{8} and do not show in the bottom view. Their common connection is by-passed, and a small filter choke is connected in the srreen voltage lead for modulation purposes. The screen variable capacitor is driven through two universal joint couplings to bring the drive shaft out to a point that provides a pleasing front panel appearance.
lixed bias for the final stage is provided without use of batteries or an external supply by inserting a voltage regulator tube in series with the grid leak and by-passing the tube with a low-leakage capacitor. When the gas tube fires with application of excitation, C_{11} charges. Removing excitation stops the current flow through the VlR tube and leaves the charge in C_{11} applied to the $4-125 \mathrm{~A}$ grids. This cuts of the plate and screen current until the charge in C_{11} leaks off. The cut-off time varies with the leakage (haracteristics of C_{11} and assoriated components, and some experimentation may be necessary. An external bias source of 90 volts or more may, of course, be substituted.

The construction of the final plate circuit is obvious from the top-view photograph. The tuning device, C_{9}, is made from parts of a standard
neutralizing capacitor (Millen 15011) mounted on t-inch ceramic stand-offs (National GS-4) in the center of the chassis. The lead screw on the adjustable plate is extended by meane of a short length of $1 / 4$-inch diameter brass rod soldered to its end, and this is connected through an insulating coupling and a polystyrene rod to a knob on the front panel. This tuning arrangement provides no logging scale or reset indicator of any sort, but it results in a very worth-while improvement in tank-circuit efficiency over conventional tuning methods.

The copper tubing tank circuit is mounted in place hy means of straps of aluminum wrapped around the lines and fastened to the top of the stand-offs. Connection to the tube plates is made with $3 / 4$-inch-wide copper straps that are bolted to the plate lines. No solder is used anywhere in this plate line assembly; the heat dissipated at the tube end of the line would be sufficient to melt soldered connections. The heat-dissipating connertors for the $4-125$ d plates were cut down to four fins high to reduce plate lead length. Just beyond the stand-off insulators and C_{9} the plate lines are bent to a vertical position around a radius of about one inch, the bottom of the line ending about a half inch above the chassis. Here an adjustable strap of flashing copper is wrapped around the lines, and an r.f. choke is connected through a lug to a feed-through bushing carrying the high-voltage d.e. The by-pass, C_{10}, is under the chassis.

Details of the antenna coupling loop are visible in the top view. The pick-up loop is made adjustable by mounting it through a polystyrene rod that can be rotated from the front panel. This rod passes through a shaft bearing and a tension adjusting device (National SB and Millen 10061) mounted on a small aluminum bracket. Note that a short length of rod is fastened at the top of the loop, so that no adjustment of the coupling will allow it to come in contact with the line electrically.

Adjustment and Operation

This rig contains its own filament transformer so only plate and screen supplies are external. These should be capable of furnishing 250 volts at 75 ma. for the tripler, 400 volts at 200 ma . for the driver, 300 to 400 volts at 75 ma. for the final greens, and 1000 to 2000 volts at 400 ma. for the amplifier plates. The sereens of the final and the driver plates may he run from the samesupply, though a more flexible set-up is possible if the voltage applied to the final screens is adjustable separately.

The tripler should be tuned up first. Plug a lowrange milliammeter in the tripler grid current jack, J_{1}, and apply grid drive through a coaxial cable and J_{4}. Adjust the spacing hetween the t wo halves of the grid coil, L_{2}, and the position of L_{1}, for maximum grid current. This should be 1 to 2 ma. Transfer the meter to the driver grid jack, J_{2}, and apply plate voltage through R_{3}, tuning C_{1} for maximum grid current, which should be betwen 3 and 5 mat. The inductance of L_{3} should be adjusted so that the low end of the band is reached with (' 1 set somewhere bet ween the mid-point and the maximum end of its range. Total plate-soreen current to the 57603 s need not be more than about 50 ma .

Next, tune (${ }_{2}$ through resonance and note whether the grid current (hanges. Should it dip down at resonance the stage will reguire neutralization. This is unlikely with the 0903 or $589+4$, however, as these tubes are designed to be inherently neutralized at frequencies around 150 Me. Next, plug a 200 -ma, meter into J_{3}, or conneet one externally in series with the plate-sereen supply, as shown in Fig. 17-fi, and apply plate voltage, preferably with a lamp load coupled to L_{4}. If the stage is working eorrectly, it should be possible to light a $1(0$-watt lamp to full brilliance. Check for self-oscillation by removing excitation briefly. To protect the driver tube, it might be well to make these initial tests at 250 volts or so, increasing to 400 to 500 volts only when the stage is found to be working correctly,

Next, couple the output from the driver stage to the grid circuit of the final, by means of a coaxial eable and L_{5} and L_{6}. The batter should be the same general shape as L_{i}, and mounted inside or just above it, with about $1 / 8$-inch separation. The resonant frequency of the grid circuit can be changed slightly by altering the shape of the grid inductance. Squeezing the sides together raises the frequency; making the tank more nearly round lowers it. When the circuit is properly resonated, it should be possible to develop 25 to 30 ma. grid current, measured in series with the V'R tube and ground ($M A_{2}$ in Fig. 1). The setting of the sereen-to-ground caparitor, ('x, will affert the grid current, but it may he set approximately to the proper point hy adjusting it for maximum grid current with the plate voltage off. The total plate and sereen current should he 175 to $2(x)$ ma. When the coupling loops at both ends of the coax have been adjusted so as to give maximum grid current,
adjust the turn spacing of L_{4} so that its tuning capacitance will be the same as that of C_{1}. The two condensers may then be ganged by means of thexible couplings and an insulating shaft.

Now connect a $10(0)$ watt lamp at the output terminals and apply about 500 volts to the final plates and 200 or less to the sereens, metering both cireuits as shown in the schematie diagram. Adjust Co for maximum output, watching the grid and plate meters. Move the setting of the screen adjustment in small steps until maximum output, minimum plate current, and maximum grid current all occur at the same setting of the plate tuning. This is the screen adjustment at which the amplifier will operate most stably. Neutralization can also be done by running the amplifier without exritation, adjusting C_{8} until there is no evidence of oscillation, but this gives a broader indication than the first method.

Should it be impossible to arhieve complete stability by the screen adjustment alone, it may be neressary to add grid-plate capacitance by mounting stiff wires or tabs on the feed-through bushings. In this amplifier, the eapacitance added by the feed-through rods alone was just about the right amount, however. This is not the conventional cross-over neutralization, but rather additional grid-plate caparitance. The amount of capacitance added is adjusted in the same way as for triode neutralizing circuits of the crossover type.

Once the amplifier is stabilized at low voltages, proceed to final checks at normal plate and screen operating conditions. A suitable load for high-power tests is something of a problem, as no lamp combination represents a load that simulates an antenna system at this frequency. A fair load can be made, however, by connecting three or four 100-watt lamps in parallel. Lamps larger than the 100 -watt variety are useless for load purposes, as they tend to develop, filament hot spots and burn out before reaching anything like normal brilliance.

A method of varying the sereen voltage continuously is extremely useful at this juncture, as the final tubes can be made to draw any desired plate current by suitable variation of the sereen voltage. Screen dissipation should be watched closely to see that it does not run much over 2,0 watts in plate-modulated service or 30 watts on c.w., and it is strongly recommended that a screen-current meter be made a permanent part of the metering system. Fifficient operation is possible over a range of 800 to 2500 volts on the plates.

The tetrode amplifier with separate sereen voltage supply should never be operated without load, or with no plate voltage applied. screen dissipation is certain to be excessive in either case and tube damage or failure is invited.

Tests with the lamp load should be monitored for frecdom from modulation. With some types of chokes for L_{10}, there may be a tendency to oscillation at some audible frequence. Should this develop, it can be damped by loading the choke slightly with a resistor, as shown by R_{8} in Fig.

17-6, The highest value of resistance that will stop the oseillation should be used, if any is necessary. Substituting another choke is a better mothod, It should have a minimum of 5 henrys inductance, but a wide variety of small filter chokes may be satisfactory.
In general the manufacturer's typical operating conditions for the $4-125 \mathrm{As}$ cin be followed with good results, hat many variations are possible. In v.h.f. work there is no need to run high power at all times, so provision should be mate to drop the plate and sareen voltages. Wifficient operation at plate voltages as low as 800 is possible, if the sereen voltage is altered in proportion. Considerable latitude in grid drive is also possible. The principal preatution is to see that none of the tube dements is operated above the maximum safe dissipation given in the manufacturer's literature.

- A FINAL AMPLIfier for 50, 28 AND 21 MC .

The top unit in the rack of v.h.f. equipment, Fig. 17-1, shown in detail in Figs. 17-8 through $17-10$, is a high-powered companion to the exciter described earlier. It covers the same three hands, with at maximum power rating of 60 watts input on A.ll 'phone, or 800 on c.w., and maty he used with any exciter capable of delivering 15 to 25 watts output in the proper frequency range. It is completely shieded, for TVI reduction, and may be changed from band to band without opening the enclosure.
The plate circuit is a pi network, with a va-
riable inductor as the main element. Conventional handswitching is employed in the grid circuit. l'arasitic suppression and neutralizing methods are the principal departures from familiar practice The aluminum enclosure ealls for forced-air cooling.

Electrical and Mechanical Features

Looking into the top of the amplifier, as in Fig. 17-8, we see the $4-250$ i tetrode tuhe at the left. Just below it is the neutralizing capacitor. At the center of the chassis is the input tuning condenser, C_{9}, of the pi-network tank cireuit, with the variable inductor at its right. The variable condenser at the far right is the output condenser, C 10 . The small components to the right of the tulse eomprise the parasitie suppression circuit. The coupling capacitor, C_{8}, and the $50-$ Me, auxiliary eoil, L_{8}, are near the center of the photograph. Grid-circuit eomponents are visible in the bottom view, along with the filament transformer, cooling fan, and modulation choke.

In order to obtain a satisfactory tuning range and minimum stray inductance, a large neutral-izing-type condenser is used for tuning the input to the pi-network plate circuit. The eapacity range is about 5 to $20 \mu \mu \mathrm{fd}$. The output tuning range needed for (' 10 is roughly 50) to $150 \mu \mu \mathrm{fd}$., so a conventional transmitting variable may be used. With a properly matched load the r.f. voltage across J_{2} is low, and a plate spacing of 0.047 ineh is adequate, even with high power.

The variable inductor assembly has considerable stray eapacitance, which would make it

Fig. $1^{76}-8$ - Jooking inside the $3-h a n d$ amplifier. Note the neutralizing condenser used for tuning the input to the pi-network tank circuit. 'lhe small air-wound coil, center, is the $50-\mathrm{Mc}$. portion of the tank, L_{8}.

Fig. 17.9 - Schematic diagram and parts list for the $1-250.1$ amplifier.
C_{1} - $220-\mu \mu \mathrm{f}$. silver mica.
$\mathrm{C}_{2}-30-\mu \mu \mathrm{fl}$. miniature variable, double-spaced (Hammarlund $111: 30-\lambda$, shafi-mounted).
$\mathrm{C}_{3}, \mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}-0.001-\mu \mathrm{fd}$, disk reramic.
$\mathrm{C}_{7}, \mathrm{Cs}, \mathrm{Cin}-500-\mu \mu \mathrm{fl} .10,000-\mathrm{volt}$ ceramic (Centralah '1 (3-501).
C $9-5-20-\mu \mu \mathrm{ff}$. dish-type variable (National NC. 500 neutralizing condenser, with mounting tracket reversed).
Co - $200-\mu \mu \mathrm{fd}$. variahle, 0.047^{7}-inch spacing (National TMK-200).
C.11 - 3-30- $\mu \mu \mathrm{fi}$, mica trimmer.
(.17-2-8- $-\mu$ fil, neutralizing condenser (National N(. $800 \mathrm{~N})$.
$\mathrm{R}_{1}-10,000$ ohms, 5 watts.
R_{2} - See text - use only if needed.
R_{3} - Approximately 100 ohms, 6 watts (three $330-\mathrm{ohm}$ -watt resistors in parallel).
$L_{1}-21 / 2$ turns No. 20 tinned, $3 / 4$-inch diam.: turns spaced $1 / 8$ inch (B \& W Miniductor No. 3010).
I. $2-4$ turns 13 \& \mathbf{V} No. 3001 cemented inside rodd end of 1.1 .
L. 3 - 8 turns No. 20 tinned, 3 -inch diam., 量 inch long, tapped at 0 turns (No. 3011).
I.4-Tturns 13 \& W No. 3001 cementel inside cold end of 1.3 .
I. 5 - 3 turns No. 16 timned, spared $1 / 6$ incli, on $\frac{1}{2}$-ineh diam, ceramic standeotr, 1 inch long.
I. -2 thrns similar to $I_{5,}$ and about $1 / 4$ inch away from it on same form.
I. \bar{z} - 10 -hy. $1(0)$-mat, filter choke.
l.s - 1 turns No. 14 tinnerl, 5/8-inch diam., spaced $1 / 8$ inch.
L. $-0.2 \cdot \mu \mathrm{~h}$. variable inductor (13 \& W V $\operatorname{Vo} .3851$).
13_{1} - Blowermotor and fan (Hied Catalog Nos. -2-702 and $12-703$).
$\mathrm{J}_{1} . \mathrm{J}_{2}$ - (inaxial fitting, female.

$S_{1 A}, S_{1 B}-2$-pole 3 -position ceramic wafer $s w l e l$ (icntralab 250. wafer type (R R).
S_{2} - Single-pole single-throw toggle switeh.
should be made for it when the amplifier is built.
Note that the $1-250$ a socket is mounted above the chassis, with the control grid toward the front. It is raised so that the prongs just clear the chatsis, lach contant, with the exception of the control grid, is then by-passed individually to the chassis with the shortest possible leads.

The screen voltage is oltaned from a separate source, in preference to the use of a dropping resistor connected to the plate supply. The modulation choke, L_{i}, should have a minimum of 10 henrys inductance, and a current-carrying capacity of about twice the expected screen current. The resistor connected across the choke should be added only if needed to suppress "singing" resulting from choke resonance in the audio range. It should be the highest value that will stop such tone modulation of the transmitted signal.

Arrangement of parts should te such that r.f. leads are short, and copper or silver strap should be used in preference to wire in r.f. circuits wherever it is mechanically feasible. The by-pass, C_{7},
and the booking capacitor, C_{8}, are high-voltage ceramic units of the type used in TV receiver power supplies. The parasitic-suppression circuit and the parallel-feed r.f. choke are mounted on a ceramic pillar made from two 3 -inch stand-off insulators. The r.f. choke should be as far from the tube envelope as possible, to prevent blistering of the paint by heat radiated from the tube.

The filament transformer, modulation choke, grid-circuit components and rooling fan are mounted below the chassis, which is a standard $3 \times 10 \times 17$-inch joh. The fan may be placed at any point where the bades can rotate close to an intake hole. If this is not possible, a duct just larger than the area of the fan blates can be used to chammel the air to the fan. The blades must be bent so that air will be drawn inward. Holes in the chassis just below the tube soreket and in the top rover over the tube provide the only air path out of the enclosure. Any other holes should be plugged, and the shiedding of the upper portion of the amplifier should make a good fit to the chassis. (irculation may he chereded hy phang a smoke soure near the intake hole. The smoke should loe drawn in rapidly, flowing out through the top holes only. A light pieere of paper placed over the holes in the top cover should rise perceptilole when the fan is stanted.

The shielding of the main assembly is made in four pieres, fitted to the front, bark and siders of the chassis. The edges are folded over three quarters of an inch and drilled and tapped, or the assembly may be made with self-tapping sorews. The entire job should make good contact clecetrically and mechanically, if cooling and TVI prevention meatures are to the effective.

Adjustment and Operation

Initial tests may be made on the amplifier with the parasitic suppression and neutralizing cireuits omitted, though both will probably be needed. Start with resistor bias only, as instability will be more evident if the plate eurrent is not eut off in the absence of excitation. The plate and screen voltages should be such that the dissipation by these elements is below the permissible maximum for the tube. A suitable load for the first tests can bo made by eonnerting three $10(0)$-watt lamps in parallel at J_{2}.

With at 25 - or 5() -ma, meter connected between h_{1} and ground, apply plate and screen voltages (hut not grid drive) and wateh for signs of grid current. If any appears it will indicate oscillation, either a v.h.f. parasitie, or tuned-plate tuned-grid feed-hack near the operating frequeney, If a v.h.f. parasitic is encountered, it can be suppressed with the $L C / R$ combination shown in the schematic diagram. L_{6} and C_{11} tune ta the parasitic frequener. L_{5} should be as low inductance as possible, in order to keep the frequency of the parasitic high. The lower the parasitie frequeney the greater will be the 50 -Mc. energy dissipated in the suppression eircuit. With the values given in the parts list there is no overheating of the resistors by dissipation of 50 -Mc. energy, yet the louding at the parasitic frequency is sufficient to prevent oseillations from starting up, if the tuning of C_{11} and the coupling betwreen L_{5} and I_{6} are adjusted earefully.

A check on the need for neutralization may be made by operating the amplifier normally and observing the grid and plate currents simul-

Fig. 17-10-1Boltom view of the amplifier for 50,28 and 21 Me, with hottom rover remosed. Note methond of mounting the ventilating lan. The chasesis slomuld be madeas nearls airtight as posisilde, ex. eept for the fan hosle and holes drilled under the tute surket. Air is thas drawn in thremph the hase and foreed up around the buse neal of the thle, leaving tirmagh holes in the top cosver. Screening of the fan loble may be reguired for TVI prevention.

taneously. Maximum grid eurrent and minimum plate current should occur at the same setting of C_{9}. If the grid current rises as the plate circuit is tuned to the high-frequency side of resonance, more neutralizing capacitance is needed. If neutralization carnot be achieved at any setting of C_{17} it may be necessary to use a different value of capacitance at C_{1}. Perfect neutralization may not be possible on all three bands with one setting of C_{17}, but it should be possible to find a satisfactory compromise.

With the amplifier operating stably, actual on-the-air conditions can be set up. The typical operating conditions given by the tube manufacturer can be used as a guide, but any of the values can be varied considerably, provided the maximum safe figure for each of the tube elements is not exceeded. Thus it may be desirable to lower the grid bias when operating at low plate voltage, in order to get the amplifier to draw more plate current. As little as 1000 volts on the plate works well, provided that the grid drive and screen voltage are properly altered.

If the antenna system has an open-wire or other balanced line, the output of the amplifier should be fed through an antenna coupler that provides for conxial input and balaneed output. A low-pass filter can then be used, if needed, between the amplifier and the antenna coupler, to reduce harmonic radiation that might cause TVI.

Though the adjustments are not critical, there are certain optimum values of C_{9} and L_{9}. Their selection is explained in the diseussion of tank circuit Q elsewhere in this IIandbook. Capacitance required at C_{9} will be of the order of 7 to $12 \mu \mu \mathrm{fd}$. for 50 Me ., 10 to 15 for 28 Mc ., and around 20 $\mu \mu \mathrm{fd}$. for 21 Mc . This will be nearly "all out" for 50 Mc., near the midpoint for 28 , and down to about $1 / 4$ inch for 21 . The variable coil can be adjusted for resonance for each band, and the approximate number of turns required can be logged for future reference. Logging of settings
for C_{9} can be done similarly. Adjustment of the variable coil should he made at low power level, to avoid arcing at the contart surface and possible damage to the roller and coil.

The capacitance needed at C_{10} will be about 50 $\mu \mu \mathrm{fd}$ for 50 Me ., 100 for 28 and 150 for 21 Mc . Adjustment of this control is similar to the use of the familiar swinging link. It is an output coupling adjustment only, and either L_{9} or C_{9} should be reset for resonance whenever C_{10} is varied. Adjustment should be made with a standingwave bridge connected in the coaxial line between J_{2} and the antenna coupler, taking care to see that the load is properly matched.

A V.H.F. MAN'S VFO

The frequency-control unit shown in Figs. 17-1 and $17-11-17-13$ is designed for the v.h.f. operator, though it may be used on all bands from 3.5 Mc. up as well. When used with the other equipment described in these pages it converts the crystal oscillator stage of the exciter to a frequency multiplicr. The VFO unit has a speech amplifier and a reactance modulator for narrowband FM built in.

The oscillator is a 5763 , with a series-tuned Colpitts circuit having a tuning range of 3000 to $f(O) \mathrm{kc}$. Its plate circuit is untuned, and the output is fed to another $57(63$ that serves as either amplifier or doubler. The plate circuit of the second stage may be tuned to the oscillator frequency or to its second harmonic.

With the values given in the parts list, one sweep of the vernier dial tunes the oscillator from 3000 to 3713 ke ., with a little leway at each end. The second stage is normally tuned from 6000 to 7425 kc ., taking care of the $21-, 27-, 28-, 50-$ and 144 -Mc. requirements of the complete station as desired. By resetting the band-set condenser, C_{2}, slightly the oscillator range ean be extended to 4000 ke., permitting use of the VFO over the entire 3.5-Mc. band, as well as the 7 - and 1+Mc. bands if the user so desires.

Fig. 17.11-'lop view of the VFO unit, with cover removed. Speech-amplifier and reactance-modulator eomponents are at the right, with the oseillator tuming eondenser and eoil near the center. An aluminum partition divides the oseillator soeket. The amplifier stage is at the left end.

Fig. 17-12 - Schematic diagram and parts list for the VFO and reactance modulator.
$\mathrm{C}_{1}, \mathrm{C}_{2}-50-\mu \mu \mathrm{fd}$. variable with rotor bearing at each end of shaft (Hammarhund NC-50). Remove plates in Ci for desired bandspread - see text.
$\mathrm{C}_{3} 3, \mathrm{C}_{4}-680-\mu \mu \mathrm{fl}$. silver mica.
(S_{5} (C_{15}, (i16-47- $\mu \mu \mathrm{fd}$. silver mica.
$\mathrm{C}_{6}, \mathrm{C}_{8,}\left(\mathrm{C}_{8}, \mathrm{C}_{11}, \mathrm{C}_{13}, \mathrm{C}_{17}-0.01-\mu \mathrm{fd}\right.$. disk eeramic.
C. $-25-\mu \mu \mathrm{fd}$. ceramic or mica.

Cio - $140-\mu \mu \mathrm{fd}$. variable (IIammarlund NC-140).
Ci2, C_{14}, Cis-0.I- ff . tubular.
$R_{1}-68,000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{2}-1000$ ohms, $1 / 2$ watt.
$R_{3}-33,000$ ohms, $1 / 2$ watt.
$1 \mathrm{R}_{4}-22,000$ ohms, 1 watt.
$\mathrm{R}_{5}-1$ megohm, $1 / 2$ watt.
$k_{6}, k_{10}, k_{11}-0.4 \frac{2}{4}$ megohm, $1 / 2$ watt.
$\mathrm{R}_{7}-0.22$ megohm.
$\mathrm{R}_{8}-0.5$-megohm potentiometer, with switch.

Construction

Mechanically, the $\mathrm{VFO}^{(0)}$ is similar to the exeiter, in that it is built inside astandard : $3 \times+\times 17=$ inch aluminum chassis, with the tuhes and filament transformer projecting from the rear wall. This makes a compact shielded unit that mounts on a $31 / 2$-inch rack panel. Looking into the top, front view, Fig. 17-11, we see the oscillator tuming condenser, C_{1}, at the center, driven by the vernier dial. The oscillator inductance is to the left. An aluminum partition splits the oscillator tube sockert, with pins 4 to 7 on the right side of the partition. Components of the output stage are at the far left. On the right side are the reartance modulator and speech-amplifier sockets, the deviation control, the band-set condenser, C_{2}, and the microphone jack.
$1 \mathrm{~h}-0.1$ megohm, $1 / 2$ watt.
$\mathrm{l}_{12}-820$ ohms, $1 / 2$ watt.
$\mathrm{R}_{13}-10,000$ olmss, $1 / 2$ watt.
$\mathrm{L}_{1}-40-\mu \mathrm{h}$. 25 -watt transmitting roil (B \& W Baby Inductor, type 8011, with plug-in base remmed)
I_{2} - 14 - $\mu \mathrm{h}$. 25.watt transmitting coil, end-linked (B \& II type $40-\mathrm{Nl} \mathrm{FL}$, with plug-in base removed).
I. 3 - 4-turn link, part of l_{2} assembly.
J_{1} - Closed-circuit jack.
$\mathrm{J}_{2}, \mathrm{~J}_{3}$ - Coaxial fitting, female.
$\mathrm{RFC}_{3}, \mathrm{RFC}_{2}, \mathrm{RFC}_{4}-2.5-\mathrm{mh}$. r.f. choke, stand-off type (National R-100S or R-100L).
$\mathrm{RFC}_{3}-2.5$-mh. r.f. choke (National R-100).
S_{1} - S.p.s.t. switch, shaft type.
So - Swish or gain control, R_{9}.
' T_{1} - 6.3-wolt 3 -amp. filament transformer (Chicago F(0.63).

The inductances in both stages are made from commercial plug-in coil assemblies. The phug-in bases are removed, and the coils mounted on pillars. The oscillator coil should have at least one half its diameter in all directions clear of metal objecets of appreciable size. Wiring should be done with stiff wire, and all components conneeted with the oscillator rircuit should be mounted rigidly.

Where the cable between the VHO and the following equipment is very short, the output from J_{2} may be fed directly into the erystal socket. For more remote operation it may be necessary to install a tuned circuit and link coupling at the exriter cud in order to insure efficient transfer of energy between the two units.

The reactance modulator follows standard practice. The gain of the first 6BA6 stage is suff-

Fig. 17-1.3 - Looking into the VFO from the rear. The variable condenser at the left is C_{2}, for setting the band on the vernier dial. The large variable at the right allows the output circuit to be tuned to the wseillator frequency or its second harmonic.
cient to permit NFM operation on 10, 6 or 2 meters, with a erystal miarophone. With the method of comertion betwern the modulator and the oscillator shown in the sehematic, the deviation is too low for use on frequencies lower than the 27-Mc. band. More deviation can be obtained by connecting the lead from the coupling capacitors, C_{15} and (C_{16}, to the stators of ('1 and ('2, instead of across the tumed cirenit. If the $1 \times M$ is to be used only above 2^{-}Me, however, the method shown is recommended.

Provision is made for turning off the heaters of the (iBAl is not in use. There is some frequency shift when the heaters are turned on and off in this way, however, and if the user experts to change frequently from FM to other modes it would be well to have so break the 13 -plus lead, rather than the heaters. Where the deviation control is connected in the reactance-modalator grid cirenit, as is done here, a blocking caparoitor, Ci4, must be added in sorics with the arm of the potentiometer. Otherwise, variation of the control will affert the frequeney of the oscillator

Operation

Deviation should be adjusted by listening to the signal on the band where the transmitter is to bo used, as it increases with each frequency multipliration. Monitoring the signal is easy, as the proper harmonic of the VFO) can be used, and all the rest of the rig left inoperative, thus preventing blocking of the receiver. Deviation requirements of various receivers will vary widely, but a safe starting joint is to set the control so that spereh sounds cloan in a eommunications receiver with its erystal filter in the broadest "on" position.

The VFO dial (National MCN) ean be ealibrated with the aid of a receiver capable of tuning the oscillator or doubler range. Set the vernier dial so that the variable condenser is at maximum. Then adjust the bandset condenser until the oseillator frequeney is 3000 ke. Check the tuning range before removing plates from C_{1}.

The tuning range ean be mate to eover 3000 to $H(H)$ ke. without resetting the bandset condenser, or if the user is interested in the v.h.f. bands only, it cith be reduced to 3000 to $3: 375 \mathrm{ke}$., multiples of which eover the 50 and $14 t-\mathrm{Mc}$. bands. I'lates ean be removed from C_{1}, one at a time, resetting C_{2} earh time so that the frequency of the ospillator is 3000 ke , with C_{1} at maximum, and checking the tuning range on the calibated receiver. To rover 3000) to 3713 kc ., (n_{1} wis reduced to 3 stator and 2 rotor plates.

To use the VFO with the exciter described earlier, no more than 150 to 200 volts is needed on the second stage. Cathode current, motered at J_{2}, will be around 10 ma . when the doubler plate circuit is tuned to resonance. At this low imput the tuning is unimportant, so long as the stages following reecive suflicient exritation. It is not necessary to retune the doubler plate circuit for frequency shifts nomally made within any one band.

The construction of the VFO is such that there should be little frequency drift due to heating as the tubes are operated far below ratings, and being monnted outside the main assembly they eause little temperature change in the frequenc y eontrolling elements of the oscillator circuit. No special TVI preautions were taken, other tham the shieding inherent in the design, and the use of shielded wire for all power wiring.

It is important that the power supply used on the VFO and modulator be well filtered and free from hum. l'articularly where FM is used, the slightest a.e. ripple will show up in objectionable proportions. With sufficient filtering in the power supply, the note should be nearly comparable to crustal control, even on the v.h.f. range.

Note that no mention is made of keying the VFO unit. Experience has shown that oscillator keving results in too much frequeney shift to be usable in v.h.f. work without precautions that are out of line for a simple unit such as this. In v.h.f. work, at least, keving should be done two stages or more away from the oscillator unless extensive stability measures are taken.

Progressive Station for 50 and 144 Mc.

The three units shown in Fig. 17-14 are designed to serve several purposes. The two smaller ones are complete r.f. sections for use on 50 and 144 Mc. at the 15 - to 25 -watt level. The other is an amplifier capable of running up to 125 watts, 'phone or c.w., on both hands. The exciters may be keyed or modulated also, and their low power consumption makes them ideal for mobile service or home-station operation at moderate power.

The separate 25 -watt rigs are as similar as possible, mechanically and electrically, the tubes and many of the parts being interchangeable. Circuitry is similar, and their design is aimed at moderate duplication cost and ease of construction. Both are assembled on 5×10-inch aluminum plates that fasten to standard 3 -inch chassis of the same size. Covers of perforated aluminum $31 / 2$ inches high provide shiedding and prevent damage to components when the rigs are used for motile service.

Circuitry

The oscillators use a third-overtone circuit, with 8- of $24-\mathrm{Mc}$. crystals for 144 Mc , and 8.4 or 25-Mc. crystals for 50 Me . in one half of a 12.1T' dual triode. The other triode doubles to 50 Mc . or triples to 72 Mc . The $50-\mathrm{Mc}$. doubler drives a 2 E 26 amplifier. An extra stage is needed in the $144-\mathrm{Me}$. rig. This is another 12. $\mathrm{IT}^{7} 7$, with its triodes comnerted in paralled, doubling to 144 Me. The amplifier is a 2126 . Neutralization and interstage coupling mothods differ in the two amplifier stages, but operating conditions are generally similar.

The amplifier for higher power has a pair of 6146 tetrodes, with changeable tank circuits for operation on both bands. Input and output caparitances of such tubes are too high to permit use of ordinary plug-in coil arrangements on 144 Me ., so a quartir-wave line for 144 Mc , and a plug-in coil for 50 Mc . are used in the plate circuit. No tuning capacitance is used in the
grid circuit, the plug-in inductances being resonated by the input capacitance of the tubes alone.
ligs. 17-21 and 17-22 show how the plate circuit works. A 144-Ace. line of strips of fiashing copper is completed at the far end from the tubes by means of a combined plug-in short and B-plus connection, $P_{2}-L_{4}$. The tuning caparitor, C_{2}, is tapped down the line 2 inches to minimize its loading effect on the line at $1+4$ Mc. At 5t) Me. the line is merely the pair of connecting leads to the plug-in eoil assembly, $L_{4}-L_{5}$. Separate output coupling arrangements are provided for the two bands, but these are tuned by a common series capacitor, C_{3}. The $14+$ - Mc coupling loop is fitted with a 300 -ohm-line plug, fitting into the crustal socket, J_{4}, visible in Fig. 17-21. It is removed when the $50-$ Mc. coil is plugged into the roil sorket, J_{3}.
Of sperial interest is the protective circuit used to kecp) the (il46 plate current within bounds when drive is removed. A $12 . \mathrm{AU}^{7}$ serves as a combined cathorle follower (right in Fig. 17-22) and d.e. amplifier (left). Normally the d.e. amplifier is cut off by the bias developed arross the amplifior grid leak. Voltage applied to the eathode follower is determined by the voltage divider. Its cathode follows the voltage on its grid, so adjustment of the potentiometer allows the desired voltage to be applied to the (614 i screens. Loss of drive removes bias, bausing the d.ce amplifier to conduct heavily. Voltage drops across the 1 -megohm resistor in its plate circuit, and this low voltage is applied to the 6146 sereens through the cathode follower.

This simple device not only protects the amplifier tubes in ease of drive failure, but it serves as a convenient means of controlling input, for tuning up or for local work where less than full power may be desirable. With a 400 -volt supply, input to the 614tis can be varied from 20 to more than 125 watts without changing loading adjustments.

Fig. 17-14- A 120-watt trans. mitter for 50 and 144 Mc . The top unit is the anoplifier, the two lower units are r.f. sections for driving the amplifier on either band.

BUILDING THE EXCITERS

larts layout for the low-power rigs is not particularly critical, except that $144-$ Me. r.f. leads must he knpt extremely short. All parts except the output and power connectors are mounted on the aluminum plates. Leads to the connectors

Fig. 17.15 - Top view of the 50.Mc. rig, with cover renoved.
are made long enough so that they can be fastened in place on the hack wall of the chassis and still permit the phate to be lifted for adjustment or servicing. Wiring of all power leads is done with shielded wire as an aid to 'TV'l prevention.

Oscillator components are arranged identically in the two units. Looking at the top view of the $50-$ Me. rig, lig. 17-15, we see, left to right, the erystal, oscillator-doubler tube, doubler plate tuning, 2 L 26 , final plate tuning (front) and antenna series trimmer (rear). The screw adjustment in the lower left corner is the oscillator plate-woil slug.

The 2-meter rig is photographed the other way around, to show the power conneetor and coaxial fitting. The $12 \mathrm{AT}^{-7}$ parallel doubler is in the middle, Just in back of it is the adjustment for C_{2}. The $21: 20$ grid trimmer, C_{3}, is to the right and in back of the amplifier tube. The plate roil, upper left, partially hides its trimmer. In the forground is the antenna series trimmer, C_{5}.

The 50-Mc. bottom view, Fig. 17-16, shows the oscillator-doubler parts at the right. Doubler plate and amplifier grid coils are near the middle. The 2E26 plate coil is to the left of the tube's socket; the tuning capacitor below. The smaller coil is L_{5}, with C_{3} ahove. The 144 -Mc. bottom view is more open, and requires little explanation. Note the difference in the mounting of the interstage coupling coils in the two units.

Testing the 50-Mc. Rig

Checking the operation of the transmitters is made easy by the power connection method shown in Fig. 17-17, Each power lead is brought out to a separate terminal on the power fitting, J_{2}, so that meters can be connected temporarily in each circuit. A power supply delivering 6.3 volts a.c. or d.c, at 1.5 amp . and 200 to 300 volts at 100 ma . is suitable for test work.

Apply plate voltage through a 50- or 100-ma. meter and Pin 3, and check for oscillation, tuning the slug in L_{1} for a kiek in plate current. Current will be 10 to 15 ma . listen to the note in a receiver tuned to the frequency of oscillation (25 to 27 Mc .) or a hamonic thereof. If the oscillator is erystal controlled, there should be no more than a slight shift in froquency as the hand or a metal object is moved near the plate coil, L_{1}.

Noxt connert the supply directly to lin 3 and feed Jin 4 through the test meter. If a lowrange meter, $0-10 \mathrm{ma}$. or so, is available, connect it between Pin 5 and ground to measure the $21: 26$ grid current at the same time. Tune the doubler plate circuit, C_{t}, and the oscillator plate coil slug for maximum grid eurrent. It should be possible to develop 2 ma. or more with these circuit peaked. llate current in the doubler will be 15 mad. or loss.

The position of the doubler plate and amplifier grid coils (see lig. 17-16) is not critical, but they should not be end to end as in the $144-\mathrm{Mc}$, unit. Resonance in the $2 \mathrm{~F}: 26$ grid circuit can be checked with brass and powdered-iron slugs. lnserting either should cause the grid current to drop. A rise with a brass slug indicates that L_{2} is too large. A rise with the iron slug shows that it is too small.

Neutralization is the next step. The mounting clip of the plastic-sleeve trimmer, C_{4}, is soldered to the stator post of C2. It should be adjusted to the point where tuning the plate circuit

Fig. 17-16 - Bottom of the 50-Me. r.f. section. Note that power and ontput eonnectors are wired to their respective cables, for monnting in the chassis.
through resonance with drive (but no plate voltage) applied caluses no kick in grid current. A change in the value of the grid by-pass is required if neutralization is not complete within the range of adjustment on C_{4}. If C_{4} is set at minimum when neutralization is approaching, increase the value of the grid by-pass to about $500 \mu \mu$ f, and try again.

Now comnect the plate supply to Pins 3, 4 and 7 , and run the metered lead to l'in 8 , to measure final plate current. L'se a 15 - or 25 -watt lamp for a load, tuning C_{2} for minimum plate current. Tune C_{3} for greatest lamp brilliance, checking C_{2} again for minimum plate current. If neutralization is exactly right, minimum

Fig. 17-17 - Schematic diagram and parts information for the 50- Me. transmitter.
$\mathrm{C}_{1}-15-\mu \mu \mathrm{f}$. midget variable (Iammarlund $\mathrm{HF}-15$).
C_{2} - ID- $-\mu \mathrm{f}$. midget variable, double spaced (llammarlund \|F゙-15X).
(3_{3} - $50-\mu \mu$ f. midget variable (Itammarhme IIF-50).

$1 R_{1}-33,(100)$ ohms, 3 watts ($3100,0(0)$-olimi 1 -watt resintors in parallel).
$\mathrm{I}_{1}-24$ turns Xo. 30 enam. closewound on $3 / 8$-inch slug-tuned form (National XR-9I).
I. $-53 / 4$ turns No. $20,5 / 8$-inch diam., $3 / 8$ inch long
plate current and maximum grid current will show at the same setting of C_{2}. Failing to arheve thin exactly, set C_{4} so that no grid current appears when drive is removed and plate and sereen voltages are left on. Check this only briefly, as the plate current will he exeessive under this condition if the tube is not oscillating.
'The rig is now ready for operation. For voice work, apply modulated voltang to the plate and scren through lins 7 and 8. For cow., the transmitter may be keyed in the cathode lead, I'in 6 to ground, directly, or in the sereen lead, l'in 7 to l3-plus, with a relay or shock-proof key, Should sereen keving not cut the 2 li26 off rompletely, the doubler plate leard can be keyed at the same time, provided both are fed from the same supply. The oscillator and doubler, or the doubler alone, can be keyed if fixed hias is conneeted between I'in 5 and ground.

Approximate operating conditions follow. With 300 -volt plate supply, input will be about 15 watts at best loading. (off-resonance phate current -70 mas. (irid current -2 mas. sideen current-\& to 5 ma. Plate current, $12 .$| TV |
| :--- | stages - 15 ma. each or less, Plate and sereon may be fed from separate source of 400 to 500 volts. Maximum input should then not exceed about 35 watts.

The 144-Mc. Transmitter

Except for the extra doubler stage and the differences made necessary by the higher frequency, the 2 20 26 rigs are built, tested and operated quite similarly. Straight inductive coupling is used between the doubler plate and 2E26 grid circuits in the 2 -meter transmitter, and the spacing of the two coils must be adjusted
(13 \& W Miniductor Vo. 3007).
I_{23} - Same as I_{2}, hut $61 / 4$ turns.
$\mathrm{I}_{4}-5$ turns Vo, 20, $3 / 4$-inch diam., $1 / 2$ inch long ($\mathrm{B} \&$ W Xio. 3010 .
1.5-6 turns No, 20, $1 / 2$ diam., $3 / 8$ inch long (B \& W No. 3003).
J_{1} - Coavial ontput fitting (imphenol 83-11R).
$\mathrm{J}_{2}-8$-pin male powor fitting (Amphenol 86-RCJP).
$\mathrm{P}_{1}-8$-pin female cable connector (Amphenol $\mathbf{7 8} \mathrm{P}$ - $\mathrm{P}^{2} 8$).
RFC1 - Solenoid 50-Mc. r.f. choke (Ohmite Z-50).
for maximum energy transfer. The amplifier plate circuit is mounted ahove the deck, for short plate leads. The $21: 26$ is neutralized by inserting a small inductance in series with the sereen lead (L_{5} in lig. 17-20).

The amplifier tank circuits are series tuncd. Output coupling is done with a single-turn loop, L_{7}, made of the inner conductor of the roas used to complete the circuit to the output connector, J_{1}.

The oscillator circuit is identical to the 50-Mr. rig, except that both oscillator and tripier plate rircuits are fed from a single pin on J_{2}. The cable comnections for the $50-\mathrm{Mc}$. rig still apply, except that the 7700 -ohm resistor in the tripler plate lead must be disconnected temporarily to measure the oseillator plate current alone.
'Testing the oscillator, tripler and doubler stages is routine otherwise. Adjust the spacing heotwern L_{3} and L_{4}, and check neutralization before applying plate voltage to the 2 P 26 . Check

[^10]for neutralization as in the $50-\mathrm{Me}$. rig, altering the number of turns or turn spacing in L_{5}, if necessary.

The amplifier may be keyed in the sereen lead, but no provision is made for opening the

Fig. 17-19 - The 2-meter rig is laid out in similar fashion, except that the linal plate circuit is above the chassis.
cathode lead as this often leads to instability at $1+4$ Me. Note here a stability precaution that may be needed is the addition of external grounding clips on the $21: 26$ shield ring. These are visible in the photograph, Fig. 17-18. If soreen keying does not completely cut off the $21: 26$ plate current, additional stages may be keyed simultaneously. Fixed bias connected between Pin 5 and ground may also be used if earlier stages than the screen are keyed.

Best-sounding c.w. will be had if the 12AT7 doubler plate and amplifier sereen are keyed and the osecilator is run from a separate source, preferably regulated. The power cable set-up shown allows the power supply problem to be
solved in any of several ways, to suit one's own requirements. A convenient operating set-up for two bands is to leave both rigs connected to a common power source, energizing the heater circuits of the one to be used at the moment.

All $1 / 4$-inch shafts are fitted with knols for adjustment when the covers are removed. The top surface of each knoh is slotted with a hack satw, to a depth of about $1 / 16$ inch, to allow for serewdriver adjustment with the covers in place. Holes fitted with rubber grommets are plated over each adjustment.
(This equipment originally deseribed in Oetober, 1954, (SST, page 16.)

THE 2-BAND 125-WATT AMPLIFIER

The exeiters just deseribed were designed as separate rigs so that anyone interested in just one of the bands catn make his low-powered rig for that band only. The convenience and performanee obtainatbe with the two rigs more than offsets the small extra cost.

In going to a higher power level, however, the investment in tubes and parts needed is great enough so that building for both bands in a single unit becomes attractive econcmically. The amplifier shown in Fig. 17-21 sacrifiees little in performance to achieve its two-band operattion, and the cost is only slightly more than for a similar set-up for either band alone.

Construction

The amplifier is built on a $6 \times 17 \times 3$-inch aluminum chassis, with sides of perforated aluminum fatened in place by aluminum angle stock brackets in a manner similar to the exciters, except that controls are brought out through the

$\mathrm{C}_{2}, \mathrm{C}_{3}-1-8-\mu \mu \mathrm{f}$. plastic trimmer (Erie 532-10).
$\mathrm{C}_{4}-15-\mu \mu \mathrm{f}$. douthe-spaced variable (IIammarlond IIF-15N).
$\mathrm{C}_{5}-50 . \mu \mu \mathrm{f}$. varialle (H ammarhand IIF-50).
$R_{1}-33,000$ ohms, 3 watte (3100 K], watt in parallel).
1.1 - 20 turns No. 28 enam. on $3 / 8$-inch slug-tuned form (\ational XR-91).
$\mathrm{L}_{2}-4$ (urns N (1. 20 tinned, $1 / 2$-inch diam., spaced twice wire diam. (3 \& 11 No. 3002).
$\mathrm{L}_{3}-2$ turns Nor 300 .
L_{4} - 1 turns No. 3 (\%), center-tapped.
Ls - 27 turns No. 30 enam, on 1-watt resistor (Ohmite K.235).
$\mathrm{I}_{6}-1$ turns Vo. 12 tinned, spaced $1 / 4$ inch, $3 / 4$-inch diam., center-tapped.
$\mathrm{L}_{7}-1$ turn $3 / 4$-inel diam., made from inner conductor of R(GO)L coas commecting to J_{1}
RFC: Ohmite Z-1 11 .
J_{1} - Coaxial outpul fitting, female (Tmphenol 8.3.11 $)$. J_{2} - 8-pin power fitting, nale (Amphenol $78-\mathrm{Pr} 8$).

Fig. 17-2 - The pusili-pull GIt 16 amplifier for 30 and 144 Mc. The 50-Mc, evils are in nlace. On the cover in the foreground are the grid coil. the antenna coupling boop and the plate-line shorting phan, all for $1+4$-Mc. operation.

front on insulated flexible couplings. A gridcomrent jack, a filament switeh and the sereenvoltage control are on the front wall of the chassis. ()n the back are coaxial fittings, power connector and the $12 . \mathrm{LC}^{7}$ socket. U'nderside are the filament transformer, sereen audio choke, a few resistors and the power wiring.

Two aluminum mounting brackets are required. These are $41 / 2$ inches wide and $23 / 4$ inches high when folded as shown in Fig. 17-21. Dimensions otherwise are not important. The 6146 sockets are $21 / 2$ inches apart, centered $11 / 2$ inches ahove the chassis. Note that the are on the tube side of the bracket. Three $\frac{3}{8} 8$-inch holes under each socket pass the screen, control grid and heater connections. The cathode and the cold side of the heater circuit are grounded directly to the bracket on the tube side.

The screen neutralizing eaparitor, C_{1}, is held in place by the same screws that hold the sockets. The grid coil socket, J_{2}, the two sercen r.f. chokes and their $0.001-\mu \mathrm{f}$. by-pass are hidden from view by C_{1}. This whole assembly should be made and wired before mounting it in place. It is 5 inches from the end of the chassis, and the other bracket, with J_{3}, J_{4} and C_{3}, is $71 / 2$ inches to the right of the first one. Note that the plate tuning capacitor, C_{2}, is mounted on a polystyrene plate with its rotor above ground. A srounded rotor at this point may introduce stray resonances and cause parasitic oscillations higher than the operating frequency.

Though shielding may not be too important in the operation of the exeiters, other than for mechanical protection and for TVI prevention, use of a cover is definitely recommended for the amplifier. Tests with and without the shielding have shown that stable operation is attained much more readily with the shielding in place.

Testing and Use

A single supply of 400 volts or less may be used on both plates and screens of the 6146 for
testing. Iligher than 400 volts may be applied to the plates alone, if a separate supqly of 300 volts is available for the screens. Higher than $4(0)$ volts should not be applied to both elements as the clamp tube will not hold the plate current within safe limits if drive is removed.

Without plate or screen voltage on the amplifier, check the grid circuit to see that drive can he olstained on either 50 or 144 Mc. There should be at least 5 to 6 mai. grid current with either 2 F 26 driver rumming at 300 volts on the plate. There will be a surplus of drive on 50 Mc ., ordinarily, so if the grid circuit is not exactly resonated it may not be too important. The 144-Mc. grid cireuit can be resonated for maximum grid current by changing the shape of the loop, L_{2}. Spmeading its sides farther aptort lowers the resonant frequency; bringing them closer together raises it. The position of the coupling loop, L_{1}, should be arljusted for masimum grid eurrent as this is done.

With grid drive applied, tune the phate circuit through resonance and watch for variation in grid current. Adjust the sereen neutralization trimmer, C_{1}, until there is no kick in grid current at plate resonance. The required setting may be different for the two bands.

Next test the clamp circuit operation. Apply plate and screen voltage as shown in Fig. 17-22 and measure 6146 plate current with no drive applied. With the potentiometer arma set at the ground end, the plate current should be 125 ma. or less with no excitation. At 4 CO volts this is 50 watts input, the maximum safe plate dissipation for a pair of 6146 s . The tubes should not be operated in this way for long periods, but it is safe for c.w. keying or normal short tests.

Now connect a 100 -watt lamp across the output coaxial fitting. Apply drive and plate and screen voltage. Tune C_{2} for minimum plate current or maximum lamp brilliance. Adjust C_{3} for greatest output, retuning C_{2} for minimum plate current meanwhile. Set the coupling so

Fig. 17-22-Schematic diagram and parts list for the two-hand v.h.f. amplifier.
$\mathrm{C}_{1}-100$ - $\mu \mathrm{\mu} \mathrm{f}$ - -per-section split-stator variable (Ilammarlund (IFI)-100).
$\mathrm{C}_{2}-30$ - $\mu \mathrm{f}$.-per-section, double spaced (Itammarlond (1F1)-30X).
$\mathrm{C}_{3}-501$ - $\mu \mathrm{f}$ f, variable (${ }^{2} \mathrm{ammarlund}$ HF-50).
$\mathrm{L}_{1}-50$ M/e:: 2-turn linh around I_{2}. M44 Mc.: Mairpin leopp $11 / 2$ inehers lomg, $1 / 2$ inch wide. Made from $51 / 2$ inches Wo. 16 tillned. Cover with insulating sleeving. Solder into ${ }^{\prime}$ '/.
$L_{2}-50$ Mr.: 8 turns No. 14 tinined, $11 / 2$-inch diam. 2 inches long, center-tapped; 5-pin base (18 \& ${ }^{\text {U }}$ 10J(:i). 144 Mc.: stane as $l .1$, but centertapped and nor insulation.
L_{3} - Shown as heavy lines. Flashing copper strips $1 / 4$ inch wide, 3 inches long. Inmer edges are ${ }^{13 / 6}$ inch apart. Bend over $1 / 6$ inch for soldering to plate caps. (ionneet ($i_{2} 22$ inches from tube end.
that the phate current is no more than 300 ma. with a 400 -volt plate supply when the antemma series caparitor is tuned for maximum output. This is the maximum rating for \mathfrak{e}, w. operation. For plate-modulated 'phone 250 ma . would be advisable, particularly at 144 Me. Recherk neutralization by removing drive. (irid current should drop to zero. If it does not, reset ('i carefully until there is no sign of grid current.

Once the amplifier is working correctly it may be operated in several ways. At 50 Mc. inputs
$\mathrm{L}_{4}-50$.hc:: 2 turns No. 14 each side, $13 / 4$-inch diam., spaced $1 / 4$ inch. Leave $3 / 4$-inch space at center. (B \& W 10JVi, with one torn remoned from each end.) I4 Mc.: Short Pins 2, 3 and 1 of P_{3}.
$\mathrm{L}_{5}-50 \mathrm{Mc}$.: 3 -turn swinging linh: part of $L_{4 .}$ I/4 Mc: Itarpin loop made from $.1 / 2$ inches No. I6 tinned. Coner $31 / 2$ inches with insulating sleer ing. Laxp is $3 / 4$ ineh wide; portion parallell to plate line is $3 / 4$ line long.
$\mathrm{J}_{1}, \mathrm{~J}_{5}$ - Coaxial fitting (Tmphemel 83-1 K).
$J_{2}, J_{3}-5$-pin ceramic socket (Amphenol 49-RSS5).
J_{4}-Crystal socket (Millen 33102)
$\mathrm{J}_{8}-5$ - p in male chassis connector (A mphenol 86-14(P).
J_{7} - Closed circuit jack.
$\mathrm{P}_{1}-5$-pin plug (tmphenol 86-CP5).
P_{2} - 5 -pin plug with cap (Amphenol 86-PM5).
$P_{3}-300$-ohm line plag (Villen 37.112).
$\mathrm{P}_{4}-5$-pin cable connector (Amphenol $\mathbf{6 8}-\mathrm{PF} \mathrm{P}^{2}$).
RFC. ${ }^{\text {, }}$ RFC. 2 - Ohmite Z-50.
RFC. ${ }_{3}$ - Ohmite $\%-144$.
as high as 180 watts can be run on c.w. if the sereen voltage is held low enough so that the plate input will be no more than 50 watts with the drive removed. A 400 -volt supply will be most convenient for two-band operation. Plate current will be 300 mat., maximum; scren current about 15 ma .; grid current 3 to 6 ma . If sereen voltage is held constant there will be little variation in plate current with increased plate voltage. Output is about 60 to 70 watts maxinum with 120 watts input. Lower power can be run, as desired, by adjustment of the clampcircuit potentiometer, the amplifier operating efficiently at inputs as low as 25 watts when controlled in this way.

Fig. 17-23-Botiom view of the v.h.f. amplifier. Pouer connector, coax fittings and clamp tube are mounted on the rear wall. Filament transformer is at the right and the sereen-lead choke near the middle.

Simple Transmitter for 220 and 420 Mc.

The transmitter in Figs. 17-2t-17-27 is for the newcomer who wants to start with simple gear, going on to something better when he has gained construction and operating experience. It is built in two units, with the idea that the modulator ean be retained when the r.f. portion is discarded.

The r.f. section is a simple oseillator with
input that may be constructed at a iater date.

Construction

The two units are built on identical 5 by 7 by 2 -inch aluminum chassis, comnetting by means of a plug on the oscillator and a socket on the molulator. I'ower is fed through a similar plug on the back of the modulator. Arrange-

Fig. 17-24- The simple transmitter for 220 and 420 Mc. is made in two parts. The moduIator, left, may be retained for use with more advanced r.f. sections than the simple oscillator shown at the right. The two units may be plugged together or connected by a cable.

two 6AF4 or 6AT4 tubes in push-pull. Its plate circuit is changed from a quarter-wave line at 220 Mc . to a half-wave line at 420 Mc . by plugging in suitable terminations at the end of the tuned circuit.
lsecause the oseillator is modulated directly it will have considerable frequency modulation, and the signal will not be readable on selective receivers unless the modulation is kept at a very low level. Where a broader receiver is in use at the other end of the path a higher modulation level can be employed.

The modulator is designed for a erystal microphone. It delivers 3 to 10 watts output, depending on the plate voltage and whether a $6 \mathrm{~V}^{\prime} 6$ or 6 L .6 tulbe is used. It may be considered as a long-term investment that will be suitable for use with any r.f. section of up to 20 watts

Fig. 17-25-Bottom view of the oscillator unit, showing the two-band tank circuit. The line terminations, with their protecting caps removed, are in the foreground. At the left is the $220-\mathrm{Mc}$. plug, with the $420-\mathrm{Mc}$. one at the right.

C_{1} - $10.5-\mu \mu \mathrm{f}$.-per-seetion butterfly variable (Johnson 101.815).
$L_{1}-231 / 2$ ineh pieces $V o .12$ tinned, spaced $1 / 2$ inch. Bend down $3 / 4$ inch at tuhe end and $1 / 2$ inch at socket end. R.f. chokes connect $5 / 8$ ineh from bend at tube end. Connect C_{1} at 1 inch from bend at sochet end.
L_{2} - Hairpin loop $21 / 4$ inches long and $1 / 2$ inch wide, No. 16, wovered with insulating sleersing. J_{1} - Crystal socket used for antema terminal.
d.e. at 50 ma. or more and 6.3 volts at 1 amp. or more is needed. Plug the units together or comect them by a cable. With a cable, a milliammeter may be connected between the No. 4 pins to measure the oscillator plate current. Otherwise the meter should be eonnerted temporarily between I'in t of J_{3} and I'in 3 of I_{2}, in plate of the wire shown in Fig. 17-26.

I'late current should be about 25 to 30 ma . If the stage is oscillating there will be a fluctuat tion in current as the plate line is touehed with

$\mathrm{K}_{2}-5$-contact ceramic socket (Amphenol 49-RSs.5). J_{3}, J_{5} - A-contact mate chasis fitting (Ampherol $80-$ R(P1).
J_{4} - 4-contact female chaswis filting (1 mphenol $\mathbf{i 8}-\mathrm{s} 4$ or RS4).

P 1 - 5 econtact male cable comector (1 mphenol 86 (115) with Pins 2,3 and 4 joined topether.
P_{2} - Same as P_{1}, but with Pins I and $\overline{5}$ joined. Connec 100-ohm resistor between these and lin 3. RFC (6 reguired) - 12 turns No. 28 enamel closewound on high-value 1-watt resistor.
an insulated metal object. Do not hold the metal in the hands for this test! The frequency is best checked by means of Lecher wires, a technique that is covered in the chapter on measurements.

With the dimensions given the range with I_{1} pluged in should be about 405 to 450 Me. With $I^{\prime 2}$ plugged in the frequeney should fall within the 220)-Me. band with (is set in the same position as it was for the middle of the +20-Mc. Band. Some alteration of the connection point for C_{1} on L_{1} may be necessary to achieve this.

In using the transmitter it is well to stay between 221 and $22+$ Mc. to avoid out-of-hand operation. On +20 , keep the transmitter below tis2 Mc. to avoid interference with the high-selectivity work that is done between $4 ; 32$ and 436 Me. Further details on this transmitter in QS'T for December, 1954.

Fig. 17.27-Laoching at the underside of the modulator.

Transmitter-Exciter for 220 Mc.

Construction of a stable transmitter for 220 Me. is not difficult, and though simple oscillatortype rigs may suffice for short-range work, crystal rentrol or its equivalent is highly worth-while. A low-powered tramsmitter need not be costly, as rewiving tubes can be used throughout, and by selection of a frequency near the low edge of the band, a erystal ram be obtained that will serve for the upper portion of the $14+-\mathrm{Me}$. hand as well.

The transmitter shown in lïgs. 17-28, 17-29, and 17-30 delivers about two watts. The final stage may be molulated for voice work, or the unit mav be used as an exciter to drive higherpowered stages, Three 12AT7 dual triodes are used. The first sorves as a thimedevertone oweillator and frequency tripler. This drives a pushpull tripler to the operating frequence. The output stage is a neutralized push-pull amplifier.

Probably any of the several dual triondes having the same base comnections as the 12.1^{17} could be used. and with minor modifigations 6idis will work well. The safe input for (idis is slightly lower, however, as their maximum plate voltage should not be higher than 250 volts. The $12 . \mathrm{IT}^{7} \mathrm{~s}$ will stand 300 volts, if the rig is adjusted properly.

Crustal frequencies should lie het ween 8 . I5 and 8.33 Me., or 24.15 and 25 Mc. If the same crostal is to bo used in 14-Me. work, it should he between 8.15 and 8.222 or 24.45 and 24.66 Me. Where crystals in the 8 -Ile. range are used, it is sugrested that values multiplying out to frequendies well inside the band edges be chosen, as the overtone fregueney may not be exatoly three times the frequency marked on the holder.

Construction and Adjustment

The transmitter is built on a shent of aluminum 5 by $91 / 2$ inches in size, so that it may be mounted on a standard aluminum chassis of the same dimomsions, 2 inches high. This makes for a minimun of mechanical work, and provides exerellent shielding, Power leads are made with shielded cable, and each plate and grid lead is decoupled, to prevent radiation of harmonies through the power cabling. The shied ded wire maty not be necossary iss a TVI-prevention measure, but it makes a neat assembly, and it is cosy to install. Should TVI beeome is problem, nost of the preventative measures will atready have been taken,

In both top and bottom views the prineipal components may be identified readily. From left to right, we see the crystal and its associated circuit, the oscillator-tripler tube, the tripler plate circuit, the push-pull tripler tube, tripler plate and amplifier grid cireuts, and final amplifier stage. Power is brought to the various cireuits through an 8 -pin power fitting, provision being made for metering all important eircuits. The tube sockets, erystal socket, tuning condensers and output socket are centered on a line drawn dorn the middle of the base plate.

Initial adjustment of the transmitter can be done with any power supply that will deliver 150 to 250 volts. The rig can be operated at higher voltages than this, but for the first work it is well to stay below 250 volts. If a 300 -volt supply is usel, a 10 -watt resistor of about 5000 ohms should he connected in series with the supply voltage temporarily. If the power fittings are wired as shown in Fig. 17-29, the various circuits can be metered during the testing operation.

Fig. 17-28 - Top view of the 220-Mc. transmitter.
Start with the oseilator, hy connecting a 50- or 100)-ma. meter between Pins 3 and 4 . Leave I'in 2 open for the present. Apply plate voltage and note the current as C_{1} is rotated. There will be a sharp dip as the tube goes into oscillation. Check to see if this oscillation is controlled by the cryslal. If there is self-oscillation, reduce the size of the feed-back winding, L_{2}, a half turn at a time. If there is no oscillation, more inductance may be needed in L_{2}. Feed-hack may also be controlled by cutting the small winding loose from the larger one, and adjusting the spacing between them. They are made from one piece of B \& W Miniductor, by cutting the wire at the fourth turn.

Once the oseilator is working correctly, solder a jumper wire letween l'ins 3 and 4 , and conneet the meter between I'ins 3 and 5 . Tune C_{2} for a shght dip in plate current, and check the fre'puency to be sure that the stage is tripling. There should le enough output to light a 2 -volt 60-ma. pilot lamp with a single-turn loop coupled at the conter of L_{3}. The capacity of C_{3} should be set at the point that gives the greatest output, readjusting ('2 each time C_{3} is changed. The purpose of this capacitor is to balance the tank circuit. It will pak at a point that simulates the output capacitance of the tube appearing across the opposite end of L_{3}.

Now connect a jumper from lin 3 to l'in 5 , and connert the meter between Pins 3 and 6 . A low-range meter ($0-10$ or 0-25 ma.) may be conneeted between Pins 8 and 7 also, to measure the final grid current. Adjust C_{4} for maximum grid current, or for plate current dip, and move L_{5} with respect to L_{4}, retuning C_{4} as this is done, until the position that gives the highest grid cur-

Fig. 17.29 - Wiring diagram of the low-pewered 220. Nc. transmitter.
$\mathrm{C}_{1}-\mathbf{5 0 - \mu \mu f}$. miniature trimmer (llammarlund $\mathrm{M} \|^{\prime \prime} \mathrm{C}$: $50)$.
$\mathrm{C}_{2}-11-\mu \mu \mathrm{f}$. miniature butterfly variable (Johnson 1111311).
$\mathrm{C}_{3}, \mathrm{C}_{8}$, C6-3-30 $\mu \mu \mathrm{f}$. mica trimmer.
$\mathrm{C}_{4}, \mathrm{C}_{8}-8-\mu \mu \mathrm{f}$. miniature butterfly variable (Johmson 91⑾.
$\mathrm{L}_{1}-10$ turns No. 20 tinned, $1 / 2$-inch diatn., spaced diam, of wire.
$\mathrm{L}_{2}-4$ turns No. 20 tinned similar to I_{1}. I.1 and $/ L_{2}$ made from single pieve of $B \& W$ Vinidnetor No. 3003: see text.
$\mathrm{L}_{3}-12$ turns No. 18 tinned, $3 / 8$-ind diam., spaced diam. of wire, center-tapped.
rent is found. There will be little ehamge in phate current, so the final grid meter is the better indicator.

Add a jumper from l'in 3 to I'in 6 and procered with neutralization of the final stage. This may be done in any of the conventional ways. Setting the neutralizing capacitors at the point where there is no change in grid current as the final plate tank is tuned through resonance is a satisfactory procedure. The two trimmers should be about the same setting, near minimum capacitance. Now apply plate voltage to the final stage, connecting the meter in series with l'in 2, and tune the final plate circuit for maximum output as indicated in a pilot lamp plugged into J_{1}. This may be a bluebead 6.3 -volt 250 -ma. bulb, which will give a bright indication with about 2 watts output.
lod - 2 turns No. 18 enam., $1 / 2$-ineh diam., spaced $1 / 8$ inch, center-tapped.
1.5-2 turn- No. 18 enam., $3 / 8$ inch diam., spaced 3/6 inch, center-tapped.
L.e - I shaped hoop No. If timed, made from 5 inches of wire. Siden of 1 are 1 inch apart, bent at right angle's I infl from nown end, center-ta;ped.
L. 7 - Similar to 1.6 , but no center tap. Cover both loops with insulating spaghetti.
J_{1} - Output terminal (erystal soeket).
J_{2} - Male power fitting, 8 -pin (Amphenel 86-(:P8).
 $\mathrm{RHC}_{1}, \mathrm{RFC}_{2}-18$ turns No. 2 ? enam., elose-wound on 1-watt resistor of high value.

If $/ /_{6}$ will not resonate the desired frequency, its inductance may be variod somewhat by sproading or compressing the sides of the Ushaped tank. Making the U narrower lowers the inductance, broadening it lowers its resonant frequency. The position of L_{7} with respert to L_{6} should be adjusted for maximum antenna power. The degree of coupling will probably be somewhat different than that at which maximum lamp brilliance is found, as the lamp does not simulate the antenna load. Power input to the final stage should not exceed 10 watts.

Average operating currents, with 300 -volt plate supply, will be about as follows: oscillator - 10 ma., tripler - 10 ma., push-pull tripler - 20 ma., final grid curront, stage operating - 6-8 ma., final plate current, under load - 20-30 ma.

Fig. 17-30 - Interior view of the 220 - Me. transmitter. Components aprear in the same order, left to right, as in external view.

A Tripler-Amplifier for $\mathbf{4 3 2} \mathbf{~ M c}$.

Only tubes designed especially for u.h.f. service will work satisfactorily at 420 Me , and higher. The various small receiving triodes made for u.h.f. TV use will work well in low-powered frequency multipliers and r.f. amplifiers for transmitting, but the trend is to tetrodes. Several of the latter are now available.

The tripler-amplifier shown in Figs. 17-31 to $17-3: 3$ delivers up to 20 watts output on 432 Mc .

Fig. 17.31-A tripler-amplifier for 432 Dlc. using dual tetrodes. Shiclded construction and forecdair cooling are employed.
when driven on 144 Mc, by any 2-meter unit delivering 10 watts output or more. In phatemodulated sorvier the output is 12 watts. Pubes are RCA 6i52t dual tetrodes, but with slight modification Amperex 6252s or 5804 mat be used. With 6252s the output will be almout the same as with the (5224 . The $589 \cdot+$ will deliver up to 40 watts with higher plate voltages. The 8.32A may also be used, but the output will be no more than 4 or 5 watts. borced-air cooling and shielding are recommended.

The tripler tube is mounted vertically, at the . left, with its socket $1 \frac{1}{2}$ inches below the chassis, "There is just room under the socket for the selfresonant input reireuit, L_{2}. The amplifier is horizontal, with its sorket mounted in back of a plate that is 8 inches from the left edge of the $3 x+\times 17$-inch aluminum chassis. The shiolding enclosure is $31 / 4$ inches wide bev $31 / 2$ inches high. A cooling fan is mounted on the rear wall of the chassis. Air circulates around the tripler tube through its 2 -inch hole, flowing out through
holes in the top cover. Holes are drilled in the chassis under the amplifier tube, and in the cover over it. With a bottom plate fitted to the chassis there should be enough air flowing through both top vents to lift a paper briskly when the fan is started.

Half-wave lines are used in all $4: 32-$ Me. cireuits. The grid circuit of the amplifier is eapacitively eoupled to the tripler plate line, the two over-

lapping about $11 / 4$ inches. The spacing leetween them must be adjusted earefully for maximam grid drive. Mate voltage is fed to the lines through smatl resistors. These should be connected at the point of lowest r.f. voltage on the lines. The amplifier grid r.f. chokes are connected at the tube soeket.

Note that the plate line capacitors, C_{1} and C_{2}, have their rotors floating. This is important. Grounding the rotors, or use of eapacitors having metal end plates, may introduce multiple r.f. paths and cireuit unbalance. The eapacitors have small metal mounting braekets that are not connected directly to the rotors, but even so it was necessary to resort to polystyrene mounting plates for best circuit balance and efficjency. lloles $3 / 4$ inch in diameter are punched in the front wall to pass the rotor shafts.

Testing

The tripler-amplifier is designed to operste in conjunction with a $14 \cdot 4$-Me. trinsmitter sheh as

Fig. 17.32 - Iooking into the tripler-amplifier with the top cover and front plate renoved.

Fig. 17-33-- Schematic diagram for the 132-Mc. tripler-amplifier.
$\mathrm{C}_{1}, \mathrm{C}_{2}-10-\mu \mu \mathrm{f}$-per-section split stator, double spaced (Bull LC:- $/$ of1). Do mot use metal end-plate or gromended-rotor types.
 resistors in parallel).
$I_{1}-2$ turns No. 20 enam, $1 / 2$-inch diam. Insert be1 ween turns of $1 / 2$.
$\mathrm{L}_{2}-4$ turns No. 16 enam., $1 / 2$-ineh diam., $1 / 2$ inch long, center-tappod.
I_{3} - Copper strap on heat-diswipating emnertors, $31 / 2$ inelas long. Twis 1 de degrees $1 / 2$ inch from plate end. spare $3 / 4$ inch.
L_{4} - Copprer stralp $27 / 8$ inches long, soldered to grill terminals. Space abenat $\frac{1}{2}$ inch.
the 21026 rig shown in Fig. 17-15. A plate supply of 300 volts at 200 ma . is reeded (100 volts may be used with 58.4 s$)$. Apply power to the $11 /$-Mc. driver stabe and adjust the spaceing of the turns in L_{2} and the degree of ponpling between L_{1} and L_{2} for maximum tripler grid current. 'This should be alrout 3 mat.

Next apply plate and sereen voltage to the tripler athd tune (${ }^{\prime}$ for maximum grid current in the amplifier, with no plate or sereen voltage to the latter. Adjust the position of the grid lines with respert to the plate cirruit, radjusting C_{1} whenever a change is made, until at least 4 mat. grid current is obtained.

Now connect a lamp load arross the output torminal, J_{2}. Ordinary honse lamps are not suitable. A farir load can be made by connerting ti or more blue-bend pilot lamps in parallel. This can be done by wrapping a $1 / 4$-inch copper strap
1.5 - Coppre strap $37 / 8$ inches long, fastened to heatdissipating connectors. Spate $3 / 4$ ineh. All tank cirenits of llashing eopper $1 / 2$ inch wide.
10f-Coupling lexp, No, 20 enam. I -shaped portion is I inchlong and $\frac{3}{8}$ inch wide. Jount on 3 -inch ceramie stand-offs.
J_{1} - Caarial input fitting (Amphenol 83-I I) .
J_{2} - (irystal sooket used for antema terminal.
$\mathrm{J}_{3}, \mathrm{~J}_{4}$ - Closed-tirenit jack.
J_{5} - 5 -pin male chassis connector (Amphenol 86R(P5).
M - Motor-blower assembly, 17 c.f.m. (Kipley Ine., Middletown, Comn., Type 8133.)
around the brass bases and soldering them all together. Then another strat) should be soldered to the lead terminals. Apply plate and sereen voltage and tune (${ }_{2}$ for matximum lamp brillituce. It should be possible to develop, a very bright glow in the (i-lamp load with a plate current of about 100 ma. at 300 volts.

Cut drive very briefly to check for oscillation in the final stage. (irid current should drop to zero. The sereen and grid resistors shown are for operation with plate modulation. More input ran lo run if the screen or grid resistance is decreased. but this should be done only when the rig is to be used for f.m. or cew. service.

Operating conditions are about an follows: tripler gride current - 2 to 3 ma.; amplifier grid current - 3 to 4 man; tripler plate and sereen current - 90 mat. ; amplifier plate and serven eurrent - 110 ma ; output - 12 watts.

Fig. 17-34- Bottom view of the 432-M1e. transmitter.

CHAPTER 18

V.H.F. Antennas

While the basic primeiples of antenna design are essentially the same for all frequencies where conventional elements are used, certain fatures of v.h.f. work call for changes in antemnat techniques above 50 Me. Here the physical size of arrays is reduced to the puint where an anternat syatem having some gain over a simple dipole can be used in almost any lowation, and experimentation with various types of arrays is an important part of the program of progressive v.h.f. amat teurs. The importance of high-gain antemnas in v.h.f. work cannot be overemphasized. By no other means can so large a return be obtained from a small investment as results from the rrootion of a good directional array.

DESIGN CONSIDERATIONS

At 50 Me and higher the frectuency range over which antenna systems should operate effertively is usually wider than that encountered on lower hands; thus more attention must be forussed on broad frequeney response, possibly to the extent of sarrificing other cualitios such as high front-to-bark ratio.

As we go higher in frequence transmission-line losses rise sharply, and it beeomes more important to mateh the antenna sustem to the line properly. Most v.h.f. transmission lines are long in terms of wavelength, so it may be more effective to use at high-gain array at relatively low height, rather than a low-gain system at great height, particularly if the anterna location is not eompletely. shielded by heavy foliage, buildings or othor olstructions.

The effectiveness of a $v . h . f$, array is almost directly proportional to size, rather than number of elements. A t-element array for 432 Mc. mas have as much gain over a dipole as a similarlydesigned array for $14+$ Me., but it will intereept only one-third as much energe in receiving. To be equal in communication, the array for $4: 32 \mathrm{Me}$. must equal the $1+4-$.Me. system in area, requiring three times the number of elements, if similar element configurations are used.

Polarization

Early v.h.f. work was done with simple antennas, and since the vertical dipole gave as grod results in all directions as its horizontal counterpart offered in only two directions, vertical polarization became the arrepted standard. Later when high-gain antennas rame into use it was only natural that these, too, were put up vertical in areas where v.h.f. activity was alrealy well established.

When the discovery of various forms of longdistance propagation stirred interest in v.h.f. operation in areas where there was no previous experience, many newromers started in with horizontal arrase, these having beren more or less standard practice on frequencies with which these operators were familiar. As use of the same polarization at both ends of the path is noesessary. for best results, this lack of standardization resulted in a conflict that, even now, has not yet beron completely resolved.

Tests have shown no large difference in results over long paths though evidence points to a slight superiority for horizontal in certatin kinds of terrain, but vertical has other factors in its favor. Horizontal arrats are generally easior to build and rotate. Where ignition noise and other forms of man-made interference are present, horizontal sostems usually provide better signal-to-moise ratio. Simple 3 - or 4 -olement arrays are more effective horizontal than vertieal, ats their radiation patterns are broad in the plane of the elements and sharp in a plane perpendicular to them.

Vertical sustems can provide uniform eoverage in all directions, a feature that is possible only with fairly complex horizontal arravs. (ian can be built up without introducing directivity, an important feature in net operation, or in locations where the installation of rotatable systems is not possible. Mohile operation is simpler with vertical antennass. Fear of increased TVI has kept v.h.f. men in densely-populated areas from adopting horizontal as a standard.
The factors favoring horizontal have been predominant on 50 . Mes, and today wo find it the standard for that band, except for emergeney net operation involving mobile units. The slight advantage it offers in I)X work has accelerated the trend to horizontal on 144 Me, and higher hands,

though vertical polarization is still widely used.
The picture on 220 Mc . is still confused, the tendency being to follow the local $144-\mathrm{Mc}$. trend. Most $420-\mathrm{Mc}$. work is being done with horizontal. The newcomer to the v.h.f. bands should ascertain which is in general use in the areas he expects to work, and go along with the others in those areas. In setting up activity where there is no operation presently, it is recommended that horizontal polarization be used, principally as a step toward much-needed standardization.

IMPEDANCE MATCHING

Because line losses increase with frequency it is important that v.h.f. antenna systems be matehed to their transmission lines carefully. Lines commonly used in v.h.f. work include open-wire, usually 300 to 500 ohms impedance, spaced $1 / 2$ to two inches; polyethylene-insulated flexible lines, available in 300,150 and 72 ohms impedance; and coaxial lines of 50 to 90 ohms impedance. Some of the methods by which these may be used to feed antemnas of differing impedance are given below.

The 'J'

Used mainly for feeding a vertical radiator around which parasitic ele-

Fig.18-2-IDetails of the folded dipole. ments are rotated, the " J " is a half-wave vertical radiator fed with a quarter-wave matching section, as shown in Fig. 18-1. For 50 or 144 Mc . the spacing of the matching section should be 2 inches or less. The point of attachment of the line will depend on its impedance. It should be slid along the matching section until the point is found that results in the lowest standingwave ratio. The bottom of the matching section can be grounded, and it can be fed with balanced or coaxial line. The " J " is useful in $14+$-Mc. mobile applications, usually in the form shown in Fig. 18-1B.

The Delta or "Y" Match

A simple arrangement for feeding a dipole, either alone or as part of a parasitic array, is the delta or " Y " match, in which the line is famned out and attached to the radiator at the points where the impedance along the element equals the line impedance. Dimensions for v.h.f. applications can be figured from data in the transmis-sion-line chapter. Its chief weakness is the likelihood of radiation from the matching section, which may impair the effectiveness of a multielement array.

The 'TT' Match

The principal disadvantages of the deltasystem can be overcome through the use of the " T " match, also detailed in the transmission lines
chapter. It provides a means of adjustment, by sliding clips along the parallel conductors, yet the radiation from the matching section is negligible because of its close proximity to the main element. Its rigid construction is well suited to rotatable arrays. Because the matching is adjustable, the dimensions of the " T " section are not particularly critical. The system may be used with any balanced line, including a pair of coaxial lines, the outer conductors of which may be bonded together and grounded.

The Folded Dipole

A flexible means of matching a wide range of antenna impedances is the folded dipole, shown in its simplest form in Fig. 18-2. When made of uniform conductor size the impedance at the feed point is equal to the square of the number of elements in the folded dipole. Thus, the example of Fig. 18-2 has a feed-point impedance of 4×72, or approximately 288 ohms, making it a good match to 300 -ohm line. A 3 -wire dipole steps the impedance up 9 times.

Greater step-up can be obtained by making the fed portion of the dipole smaller in diameter than the solid portion. The spacing of the conductors affects the step-up in this case. Conductor ratios and spacings can be derived from the foldeddipole monogram in the transmission lines chapter. This principle is applied in the 4 -element array of Fig. 18-6.

The Gamma Match

A simple device for feeding parasitic arrays with a single coaxial line is shown in Fig. 18-3. Known as the gamma match, it is a modification of the " T " system for unbalanced lines, well adapted to feeding arrays of all-metal construction. With the latter, the outer conductor of the coaxial line may be grounded to the metal boom, or to the center of the driven element. The inner conductor is then connected to a matching section, usually provided with a sliding clip for varying the point of connection to the driven element. The effectiveness of the system is improved if a condenser is connected in series with the gamma section, to tune out its reactance, as shown in Fig. 18-3. This should be mounted in a weatherproof box, which may be of metal and attached to the boom, or to the center of the driven element. A standing-wave bridge should be connected in the coaxial line, and the point of connection between the driven element and the matching section varied, readjusting the series condenser each time until minimum s.w.r. is ob-

Fig. 18-3-Schematic version of the gamma match. Values for C and D are given in the text.

V.H.F. ANTENNAS

tained. The distance out from the center of the driven element will be about 10 inches for 50 Mc . and 4 inches for 144 . The maximum capacitance

Fig. 18-4 - Antenna coupler for feeding a balanced load with coaxial line. The eircuit $L_{2}-C_{1}$ must resonate at the operating frequency.
required at C will be about 75 and $25 \mu \mu$ f. respectively. The r.f. voltage is low at this point so a receiving-type variable condenser may be used.

The Balun

Balanced loads such as are presented by a split dipole or folded dipole can be fed properly with coaxial line only if some form of balanced-tounbalanced coupler (often called balun) is used at the feed point. Details of the various types of baluns may be found in the transmission lines chapter. One of these provides a 4 -to- 1 impedance step-up in addition to conversion from unbalanced line to balanced load.

The conversion may also be accomplished with a balanced circuit, link coupled to the coavial line, as in Fig. 18-4. The balaneed load is tapped onto the tuned circuit at the proper impedance points, in this case. Such a cireuit can be in the array itself, or at any point between the transmitter and the antemna where such a conversion is convenient.

Fig. Ir. 5 - Collinear array for 144 Mc. matle of 'l'V ground wire mounted on a $11 / 2$-inch rug pole.

The "Q" Section

A quarter-wavelength of line known as a " Q " section may be used to mateh a low center impedance to a higher value of line imperdane, as described in the transmission lines chapter. This may take the form of two pieces of tubing, $1 / 2$ to $1 / 4$ inch in diameter, mounted so that their center-to-center spacing can be varied to achieve an imperdance match between the antenna and the line, where the antenna impedance is not preciscly known in advance. Lower values of "Q" section impedance than are available with tubing sizes can be made from lengths of insulated wire, or cven coaxial line. The length of the " Q " section will take into account the propagation factor

Fig. 18-6- Dimensional drawing of a 4 element $50-\mathrm{Mc}$.
array, Element array. Element length and spracing were derived experimentally for maximum forward gain at 50.5 Mc .
of the line, where such insulating materials are used.

In some installations it may be convenient to use " Q " sections longer than a single quarter wavelength, in which case any odd multiple of a quarter wavelength may be employed. The exact length for any such section may be determined by coupling the line to a souree of r.f. energy of the proper frequency and trimming the line for masi-

TABLE 18-I
Dimensions for V.H.F. Arrays, in Inches

Preq. (Me.)	50	144	220	420
Driven Whement	110	38	2.478	128/4
Refleectur	110	40	$261 / 8$	1.33/8
Ist Director	105	36	235/8	121/8
2nl I irector	103	3.38	233/8	12
Phasing Section*	114	391/2	2.7/8	131/4
$\begin{aligned} & 0.25 \\ & \mathrm{~W} \text { avelength } \end{aligned}$	57	198/4	13	65/8
$0.2 \text { Wavelength }$	16	1.58/4	103/8	53/8
$\stackrel{1}{15}_{0.15}^{\text {avelength }}$	34	118/4	73/4	4

[^11]mum loading. Such a "($)$ " serction is often used as the flexible portion of a line fereding a rotatable array, to make connection from the array to a fixed transmission lime anchor point at the top of the supporting tower.

Where it is desirable to repeat the antenna impedanee at the anchor point, a section of flexible line any multiple of a half wavelength may be used.

- ANTENNA SYSTEMS FOR 50 AND 144 MC.

The designing of $v . h$, array is both a merhanical and electrical problem. The clectrical prineiples are hasic, but a very wide range of merhanical ideas may be used, and the form that an array will take is usually die tated be the materials that are available. Most v.h.f. arrays can be built to formula dimensions given in Table 18-1. The driven element is usually cut from the formula:

$$
\text { Length (in inches) } \quad \frac{5540}{\text { Freq. (Mc.) }}
$$

Reflector elements are usually 5 per erent longer than the driven element. Directors are 5 per cent shorter, for the one nearest the driven element, athd 6 per cent shortar for the next.

Fig. 18-7- Delail drawing of inserts which may be used in the ends of the elements of a parasitic array to premit accurate adjustment of element length.

Parasitic element sparing from the driven element is usually 0.15 to 0.25 wavelength for a reflector, and 0.2 or more for directors. The closer the elements are spaced, the lower will be the feed impedance of the driven clement. Close-spaced arrass are generally more difficult to tune up properly, and the frequency range over which they work is sharper, so they are seldom used in v.h.f. work.

Flemonts for 50 Mr . are usuall. $1 / 2$ to 1 inch in diameter: 14t-Mt clements $1 / 4$ to $1 / 2$ inch; $220-$ and 420 - Me. clements $1 / 8$ to $3 / 8$ inch.

A Collinear Array for 144 Mc.

Where some gain over a dipole is needed, yet directivity is undesirable, several half-wave elements may be mounted vertically and fed in phase, as shown in Fig. 18-5. The photograph shows three half-wave clements, but live may be used in a similar way. The center element is fed at its midpoint, either direetly with 300 -ohm Twin-Lead, or through a "($)$ " section. The two end elements are kept in phase with the enenter one by folded half-wave sections.

The array of Fig. 18-5 is built on a $11 / 2$-inch

Fig. 18-8 - A 1 G-element array for 114 Me. using the all-metal consiruction methods outhined in Figs. I8-l1 to 18-13. The 1 -element array for 50 Mc . below is also all-metal design.
wooden rug pole, using aluminum TV ground wire for the elements and phasing sections. Inexpensive TV serew-eye insulators are used to support the elements, with the exreption of the supports at the element ends. At these points better insulation is desirable, so eeramie pillars are used.
Two 117 -inch pieces of wire or tubing are needed. The end elements are 38 inches long, the folded sections 40 inches over all, and the quarterwave portions of the middle dipole are 19 inches. The "(Q" seetion, if used, is 20 inches long. The phasing and "Q" sections are bent around into loops, as shown in the photograph. If the array is fed with 300 -ohm line the " Q " section may be omitted without serious mismateh. With opernwire line, a " Q " section made of the element material, spaced about one inch, gives a goorl match. The spacing may be adjusted for minimum s.w.r.

A 4-Element Array for 50 Mc .

The array of Fig. 18-6 uses dimensions derived for maximum gain at 50.5 Me, It will work well over the range from the low end of the band to nearly 52 Me. If wider frequeney response is desired, the driven element should be cut to the formula given above for the desired center frequence, and the reflector made slightly longer and the directors somewhat shorter than the dimensions given. The driven element is a folded dipole of nonuniform eonductor size, stepping up the impedance so that the array ean be fed with 300 -ohm line. A 3 -element array of similar dimensions could be matched with a 3 -to- 1 conductor ratio, instead of 4 -to-1. The boom may be of metal or wood. The 50-Mc. array shown in

Fia. 18.9-Schematic drawing of a 10 -cement array. A variable " $Q^{\text {" }}$ section may be inserted at the feed point if accurate matching is desired. Rellector spacing is 0.2 wavelength.

Fig. 18-8 uses 0.15 -wavelength spacing for the reflector and 0.2 for the directors, resulting in slighty less gain than the wider sparing, but allowing considerally more compact construction.

Most v.h.f. arrays are erected to formula dimensions, but if the builder wishes to do so he may tune the array for optimum front-to-back ratio or forward gain. Adjustable inserts for tub)ing elements may be made by cutting short sections of the element stock lengthwise and ins:rting these extensions in the ends of the eloments as shown in lig. 18-7.

Stacking Parasitic Arrays

The radiation angle of a v.h.f. antenna system can be lowered and worthwhile gain obtained by stacking two parasitic arrays one above the other and feeding them in phase. The horizontal pattern of a vertically polarized array may be sharpened and gain added by mounting two arrays side by side and phasing them in the same way. The physiral sparing between the two arrays is usually $1 / 2,5 / 8$ or 1 wavelength, depending on the phasing method used. Stacked arrays are usually fed at the eenter of the system to insure uniform current distribution between the driven clements.

In starking 50-Me. arrays the phasing line is usually 0.5 wavelength long. If the two arrays were set up originally for 300 -ohn feed when used separately, the phasing line, which serves as a double " Q " section, should have an impedanee of ahout 380 ohms, if the main transmission line is to be 300 olims. No. 12 wires spaced one inch apart make a convenient phasing line. The gain of
two arrays stacked 0.5 wavelength apart is approximately 4 db , over that of a single array.
slightly more gain can be obtained by increasing the sparing to ${ }^{5}$ of wavelength. A phasing line for this sparing may be made of two pieces of coaxial line, with the outer conductors connected together and grounded, if desired. Because of the propagation factor of the coaxial line, such a phasing section is electrically a full wavelength long. The imperdaner at the midpoint between the two arrays is approximately half that of one array alone.
For $144 . \mathrm{Me}$. and higher, where the dimensions are within practical limits, the spacing between two stacked arrays may be increased to a full wavelongth. This wide spacing is recommended only for arrays having three or more elements, and is most commonly used with 5-dement arrays. The phasing line may be open wire, of any convenient wire size and spacing, and the impedance at the midpoint between the two arrays will be half that of one array atone. A "Q" sertion at the feed point is a convenient method of matching such a "5-over-5" array. Its dimensions will depend on the trpe of dipoles used in the individual arrays.

Phased Arrays

Superior performaner is ohtainable on 144 Me. and higher by using curtains of $4,6,8$ or more driven half-wave elements, arranged in pairs fed in phase, and backed up by reflectors. Figs. 18-8 and $18-9$ show a 16 -dement array, while $18-10$ is a 12 -element array of similar design. The gains are ahout 14 db . for the 16 eelement and 12 db . for the 12 -element. They may be used for either horizontal or vertical polarization. The pattern of the 12 -element is similar in both planes.

The elements used in the 10 edement array shown in the photograph are $1 / 4$-inch diameter dural, mounted in the mamer shown in Figs. 18-11 and 18-12. The entire structure is of metal; the supports being at the low-voltage point of the elements, no insulation is required. The supporting strueture for a 12 -element array of similar

Fig. 18-10-Flement arrangement and feed system of the 12 edement array. Reflector- are spaced 0.15 wavelength behind the driven elements.
design is shown in detail in Fig. 18-12, with the clamps for holding the array together made as shown in Fig. 18-13.

Element lengths and spacings are not particularly critieal in arrays having many driven elements, and careful adjustment is not required for good results. The frequency response of these systems is broader than is the case in arrays where the gain is built up by the use of directors as well as reffectors. Wither the 12 - or 16 -element array

Fig. 18-11 - Model showing the method of assembling for all-metal construction of phased arrays. Dimensions of clamps are given in Fig. 18-13.
may be fed with 300 -ohm line connected at the center of the system, as shown in the sketches. The reflectors in the 12 -element array are spared only 0.15 wavelength in back of the driven elements, in order to bring the ferd impedanee down to roughly 300 ohms. In the 10 dement array 0.2 -wavelength spacing is used for the reflectors, and even so, the feed impedance may be somewhat lower than 300 ohms. If a long feedline is necessary it may be desirable to insert a variable "Q" section at the feed point, in order to insure accurate matching for minimum s.w.r. In the 10 (element array shown in the photograph, a "($)$ " section having an odd number of quarterwavelengths of $300-\mathrm{ohm}$ Twin-latad is used to mateh the center impedanee of around 200 ohms to the 450 -ohm open wire line used for a 100 -foot run to the operating position.

In all-metal construction it is important that the supporting st rueture be entively in back of the reflector plane. This can be done readile he using the clamp method of assembly detailed in Figs. 18-11, 18-12 and 18-13. Dimensions given in Fig. 18-13 are for use with the tubing sizes given in Fig. 18-12. Suitable dimensions for other combinations can be worked out radily by making experimental clips from soft shoet copper, and using these for templates in making the elips to ber used in the final assembly. When the array is completely assembled the screws holding it together should be drawn up as tightly as possible and then coated with durable laequer or paint to prevent corrosion.

Long-Wire Antennas

Where long-wire systems designed for use on lower frequencies are available they may often be used on the v.h.f. bands with good results, particularly if the feed lines are not too long. "V" and rhombic antenna systems designed expressly for the v.h.f. bands are small enough in size to be used in many locations where similar arrays for lower frequencies would be out of the question. The polarization of longwire systems is normally horizontal, but in locations where they have a downward slope they may also have a considerable vertical component. Their polarization discrimination is seldom as sharp as that of systems using half-wave elements.

Information on the various types of longwire arrays will be found in an carlier chapter. At 144 Me, and higher it is relatively casy to stack two or more "V" or rhombic arrays a half wave or more apart. This improves their performance considerably, but makes them essentially oneband devices.

Matehing devices that permit fereling longwire antema sustems with flat iines also introduce one-band limitation, so their use is not advisable except in the case of 50 and 144 Me., two bands that are close to third-harmonic relationship. A " Q " seetion that is approximately three quarter-wavelengths long at 144 Mc , is one quarter-wavelength long at $\mathbf{5 0} \mathbf{M c}$., so if the feed impedance of the antenma system is the same for both frequencies a " Q " section about

Fig. 18.12 - Supporting framework for a 12 -element 1.4. Mc. array of all-metal design. Dimensions are as follows: dement supports (1) $3 / 4$ hy 16 inches: horizontal members (2) $3 / 4$ by to inches: vertical members (3) $8 / 4$ by 86 inches: vertical support (4) $11 / 2$-inch diameter, length as reruired; reflector-to-driven-element sparing 12 inches. l'arts not shown in shetch: driven elements $1 / 4$ by 38 inches; reflectors $1 / 4$ by 40 inches; phasing lines No. 18 spaced 1 inch, 80 inches long, fanned ont to $31 / 2$ inches at driven elements (transpose each halfwave section).

Fig. I8-I.3- Detail drawings of the elamps used to assemble the all-metal 2 -meter array. $A, 13$ and C are before bending into " ("shape. The right-angle bends should be inade first, along the dotied lines as shown, then the plates may be bent around a piece of pipe of the proper diameter. Sheet stock should be $1 / 16$-inch or heavier aluminum.

58 inehes long may be used for both bands. In the ease of a rhombie terminated in 800 ohms and fed with 300 -ohm line, the matehing section should have an impedance of about 500 ohms.

ARRAYS FOR 220 AND 420 MC.

The use of high-gain antenna systems is almost a necessity if work is to be done over any great distance on 220 and 420 Me . Experimentation with antenna arrays for these frequencies is fascinating indeed, as their size is so small as to permit trying various element arrangements and fred systems with ease. Arrays for 420 Me., particularly, are convenient for investigation and demonstration of antenna principles, as even high-gain systems may be of table-top proportions.

Any of the arrays described previously may be used on these bands, but those having large numbers of driven elements in phase are more readily adjusted for maximum effertiveness. The 12 and 16-element arrays of Figs. 18-9 and 18-10 are well adapted to use on 220 or 420 . Suitable dimensions may be found in Table 18-I.

A 16 erlement array for 220 Me. and a 24 element array for 420 Mr. are shown mounted hack-to-hack in Fig. 18-14. The 220-Me. portion follows the 16 -element design already described. It is fed at the center of the system with 300 -ohm tubular Twin-I ead, matehed to the center impedance of the array through a "Q" section of 7/i6-inch tubing, spaced about $11 / 2$ inches center to eenter. This sparing was adjusted for minimum standing-wave ratio on the line.

Elements in the array shown are of 7/16-inch aluminum fucl-line tubing, which is very light in weight and easily worked. The supporting strue-
ture is dural tubing, using the clamp assembly methorls of Fig. 18-12.

The $420-\mathrm{Me}$, array uses two 12 -element assemblies similar to Fig. 18-10, mounted one above the other, about one half wavelength separating the bottom of one from the top of the other. The two sets of phasing lines are joined hy means of one-wavelength sections of Twin-I at at the middle of the array. This junction, which has an impedance of around 150 ohms, is fed with 300ohm tubular Twin-Lerad through an adjustable "Q" section.

Elements in the $420-$ Mc. array are cut from thin-walled $1 / 4$-inch tubing. Their supports are the $7 / 16$-ineh stock used for the $220-\mathrm{Mr}$ c, elements. Slots were cut in the ends of these supports to take the elements, and a $4 / 40$ serew was run through both pieces and drawn up tightly with a nut. The horizontal supports were fastened in holes drilled in the vertical members, and were also held in place with a $6 / 32$ screw and nut. The small size and light weight of the 420-Mc. array did not require the use of clamps to make a strong assembly.

The two one-wavelength sections of 300 -ohm line are $213 / 4$ inches long, taking the propagation factor into arcount. The " Q " section may be of any convenient size of tubing, $1 / 4$ to $1 / 2$ inch diameter. It should be made adjustable, as matching is important at this frequeney. Dimensions for both arrays ean be taken from Table $18-\mathrm{I}$.

Plane-Reflector Arrays

At 220 Mr. and higher, where their dimensions become practicable, plane-reflector arravs are widely used. Except as it affects the impodance of the system, as shown in Fig. 18-15, the spacing between the driven elements and the reflecting plane is not particularly eritical. Maximum gain oeceurs around 0.1 to 0.15 wavelength, which is also the region of lowest impedance. Ilighest impedance appears at alout 0.3 wavelength. A plane reflector spared 0.22 wavelength in back of the driven elements has no effect on their feed impedance. As the gain of a plane-reflector array is nearly constant at spacings from 0.1 to 0.25 wavelength, it may be seen that the sparing may be varied to achieve an impedance mateh.

An arlvantage of the plane reflector is that it may be used with two driven element systems, one on each side of the plane, providing for twoband operation, or the ineorporation of horizontal and vertiral polarization in a single structure. The gain of a plane-reflector array is slightly higher than that of a similar number of driven elements backed up bev parasitic reflectors. It also has a broader frequeney response and higher front-to-back ratio. To achieve these ends, the reflecting plane must be larger than the area of the driven elements, extending at least a quarter wavelength on all sides. Chicken wire on a wood or metal frame makes a good plane reflector, Closely-spaced wires or rods may be substituted, with the spaeing between them running up to 0.1

Fig, 18-14- A 2t-element array for 420 W1c. and a 16 . element for 220 monnted bach-1o-hack on a single support.
wavelength without appreciable roduction in effertiven'ss.

Corner Reflectors

In the corner reflector two plane surfaces are set at an angle, usually between to and 30 degrees, with the antrmat on a line bisecting this angle. Maximum gain is obtained with the antemat 0.5 wavelength from the vertex, but compromise designs can be built with eloser sparings. There is no foral point, as would be the ease for a
parabolic reflector. Corner angles greater than 90 degress can be used at sone sarrifice in gain. At lese than 10 degrees the gain increases, but the size of the reflecting sheots must be increased to realize this gain.

At a spacing of 0.5 wavelength from the vertex, the impedance of the driven element is approximately twice that of the same dipole in free space. The impedance decreases with smaller sparings and corner angles, as shown in Fig, 18-15. The gain of a corner-reflector array with a 00 -degree angle, 0.5 wavelength spacing and sides 1 wavelength long is approximately 10 db . Principal advantages of the corner reffector are broad frequence response and high front-to-hack ratio.

MISCELLANEOUS ANTENNA SYSTEMS

Coaxial Antennas

With the " J " antema, radiation from the matching section and the transmission line tends to combine with the ratiation from the antenna in such a way as to raise the angle of radiation. At v.h.f. the lowest possible radiation angle is essential, and the coaxial antemat shown in Fig. 18-16 was developed to celiminate feeder radiation. The center conductor of a 70-ohm concentric transmission line is extended one-quarter wave beyond the ernd of the lime, to act as the upper half of a half-wave antema. The lower half is provided by the quarter-wave sle the uppere end of which is conmected to the outer conduetor of the coneentrie line. The sleeve acts as a shield about the transmission line and very little current is indured on the outside of the line by the antema fiedd. The line is non-resonant, since its characteristic imperdance is the same as the center impedance of the half-wave antemna. The sleeve may be made of copper or brass tubing of suitable diameter to clear the transmission line. The eoaxial antemat is somewhat diffieult to construct, but is superion to simpler systems in its prformature at low radiation angles.

Fig. 18-15-Fied impedance of the drivan elemont in a cormer-reflector array for corner angles of 180 (flat sheet), $9\left(1,60 \text { and } 45 \text { degrees. }{ }^{\circ} 1\right)^{\prime \prime}$ is the dipole-to-vertex spacing.

Fig, 18-16- Coaxial antemna. 'The insulated inner eondurtor of the 70 -rohme ennextrie line is connicted to the quarter-wavemetal rod which forms the upper haif of the antenna.

Broadband Antennas

Certain types of antennas used in television are of interest because they work across a wide band of frequencios with rolatively uniform response. At very-high frequencies an antenna nade of small wire is purely resistive only over a very small frequency range. Its Q, and therefore its selectivity, is sufficiont to limit is optimum porformaner to a narrow frequency range, and readjustment of the length or tuning is required for each narrow slice of the spectrum. With tuned transmission limes, the effective length of the antemna can be shifted by retuning the whole system. However, in the case of antennas fed by matchod-impedance lines, any apprectable freguency changereguires an wetual merhanical adjustment of the system. Otherwise, the resulting mismateh with the line will be sufficient to cause significant reduction in power input to the anterna.

A properly designed and constructed wideband antema, on the other hand, will exhibit very narly constant input impelanee over sceveral megacyeles.

The simplest method of obtaining a broadbatul characteristio is the use of what is tormed a "cylindrical" antenna. This is no more than
a conventional doublet in which large-diameter tubing is used for the elements. The use of a relatively large diameter-to-longth ratio lowers the Q of the antema, thus broadening the resonance characteristic.

As the diameter-to-length ratio is increased, end effects also increase, with the result that the antema must be made shorter than a thinwire antema resonating at the same frequency, The reduction factor may be as much as 20 per cent with the tubing sizes commonly used for amateur antemias at v.li.f.

Cone Antennas

From the evlindrical antenna various specialized forms of broadly-resonant radiators have been evolved, including the ellipsoid, spheroid, cone, diamond and double diamond. Of the se, the conical antema is perhaps the most interesting. With large angles of revolution, the variation in the chararteristic impetance with changes in frequency can be reduced to a vory low value, making such an antenna suitable for extremely wide-hand operation. The cone may be made up either of sheet metal or of multiple wire spines. A variation of this form of conical antenna is widely used in TV reception.

Parabolic Reflectors

A plane sheret may be formed into the shape of a parabolic curve and used with a driven radiator situated at its focus, to provide a highlydirective antema system. If the parabolic: reflector is sufficiontly large so that the distance to the focal point is a number of wavelengths, optical eonditions are approarhed and the wave arross the mouth of the reflector is a plane wave. However, if the reflector is of the same order of dimensions as the operating wavelength, or less, the driven radiator is appreciably coupled to the reflereting sheet and minor lobes oceur in the pattern. With an aferture of the order of 10 or 20 wavelengths, sizes that may be practical for microwave work, a beam-width of approximately 5 degrees may be achieved.

A reflecting paraboloid must be carefully designed and constructed to ohtain ideal performance. The antenna must be located at the focal point. The most desirable focal length of the parabola is that which places the radiator along the plane of the mouth; this length is ergual to one-half the mouth radius. At other focal distances interforence ficlds may deform the pattern or cancel a sizable portion of the radiation.

U.H.F. and Microwave Communication

In moving into the microwave region the amateur encounters marked differences in both the technical approach and the uses to which his frequency assignments may be put. Above 1000 Mc. we must discard most of our conventional circuitry and antenma ideas. Coils and condensers are replaced by coaxial tank circuits and resonant cavities. Parallel-wire transmission lines give way to coaxial lines or waveguide. Parasitic arrays are abandoned in favor of parabolic reflectors or horns. And in contrast to the random operating that has been so large a part of the amateur picture on our communication frequencios, microwave work is principally a matter of point-to-point communication between two cooperating stations.

These basie differenees have tended to raise a natural boundary in the region around 500 Mc ., beyond which relatively few communicating amateurs have ventured. The frequencies at the high end of the spectrum have a strong appeal to the
experimenter, however, and the Technician Class license was developed to provide the means wherehy this type of worker may legally engage in two-way communication on frequencies above 220 Mc .

At least some amateur work has been done in all the assignments now open to our use. The work of these pioneers in adapting the frequencies above 1000 Mc . to communication purposes has been in line with the best amateur tradition, and it is hoped that the bands begiming at 1215 Mc. will see much amateur exploration in the near future. The frequencies assigned to amateurs in the microwave region are as follows: 1215 to 1300 Mc., 2300 to 2450 Mc ., 3300 to 3500 Mc ., 5650 to 5925 Mc., 10,000 to 10,500 Me., and 21,000 to 22,000 Mc. Any frequency above 30,000 Me. may be used. Any type of emission may be used in any of these hamds, except in the case of the lowest, where pulse transmission is prohibited.

U.H.F. Tank Circuits

In resonant circuits as employed at the lower frequencies it is possible to consider each of the reactance components as a separate entity. A coil is used to provide the required inductance and a condenser is comnerted across it to provide the needed caparitance. The fact that the coil itself has a certain amount of self-capacitance, as well as some resistance, while the condenser also possesses a small self-inductance, can usually be disregarded.

At the very-high and ultrahigh frequencies, however, it is no longer possible to separate these components. The comnerting leads which, at lower frequencies, would serve merely to join the condenser to the coil now may have more inductance than the coil itself. The required inductance coil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wavelength at the operating frequency. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit. Since energy which cannot be utilized as intended is wasted, regardless of whether it is consumed as heat by the resistance of the wire or simply radiated into space, the effect is as though the resistance of the tuned circuit were greatly increased and its Q greatly reduced.

For this reason, it is common practice to utilize resonant sections of transmission line as tuned circuits at frequencies above 300 Mc . A quarter-wavelength line, or any odd multiple thereof, shorted at one end and open at the other, exhibits large standing waves. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit; it will have very high input impedance at resonance and a large current flowing at the short-cireuited end. The input imperlance may be as high as 0.4 megohm for a well-constructed line.

The action of a resonant quarter-wavelength line can be compared with that of a coil-andcondenser combination whose constants have been adjusted to resonance at a corresponding frequency. Around the point of resonance, in fact, the line will display very nearly the same characteristics as those of the tuned circuit. The equivalent relationships are shown in Fig. 19-1. At frequencies off resonance the line displays qualities comparable to the inductive and eapacitive reactances of the coil-andcondenser circuit, although the exact relationships involved are somewhat different. For all practical purposes, however, sections of resonant wire or transmission line can be used in much the same manner as coils or condensers.

U.H.F. AND MICROWAVE COMMUNICATION 413

In circuits operating above 300 Mc ., the spacing between conductors becomes an appreciable fraction of a wavelength. To keep the radiation loss as small as possible the parallel conductors should not be spaced farther apart than 10 per cent of the wavelength, center to center. On the other hand, the spacing of large-diameter conductors should not be reduced to much less twice the diameter because of what is known as the proximity effect, whereby another form of loss is introduced through eddy currents set up by the adjacent fields. Because the cancellation is no longer complete, radiation from an open line becomes so great that the Q is greatly reduced. Consequently, at these frequencies coaxial lines must be used.

Construction

Practical information concerning the construction of transmission lines for such specifie uses as feeding antemnas and as resonant circuits in radio transmitters will be found in this

Fig. 19-1 - Equivalent coupling circuits for parallel. line, coaxial-line and conventional resonant circuits.
and other chapters of this Handbook. Certain basic considerations applicable in general to resonant lines used as circuit elements may be considered here, however.

While either parallel-line or coaxial sections may be used, the latter are preferred for higherfrequency operation. Representative methods for adjusting the length of such lines to resonance are shown in Fig. 19-2. At the left. a sliding shorting disk is used to reduce the effective length of the line by altering the position of the short-circuit. In the center, the same effect is arcomplished by using a telescoping tube in the end of the imner conductor to vary its length and thereby the effertive length of the line. At the right, two possible methods of mounting parallel-plate condensers, used to tune a "foreshortened" line to resonance, are illustrated. The arrangement with the loading capacitor at the open end of the line has the greatest tuming effect per unit of capacitance; the alternative method, which is equivalent to "tapping" the condenser down on the line, has less effect on the Q of the circuit. Lines with capacitive "loading" of the sort illustrated will
be shorter, physically, than an unloaded line resonant at the same frequency.
The short-circuiting disk at the end of the line must be designed to make perfect electrical contact. The voltage is a minimum at this end of the line; therefore, it will not break down some of the thimest insulating films. Гisually a

Fig. 19-2 - Methods of toning ewavial resonant lines.
soldered connection or a tight clamp is used to secure good contact. When the length of line must be readily adjustable, the shorting plug is provided with spring collars which make contart on the inner and outer conductors at some distance away from the shorting plug at a point where the voltage is sufficient to break down the film between the collar and conductor.

Two methods of tuning parallel-conductor lines are shown in fig. 19-3. The sliding short(ircuiting strap can be tightened by means of serews and muts to make good electrical contart. The parallel-plate condenser in the second drawing may be phaced anywhere along the line, the tuning effert beroming less ats the condenser is located nearer the shorted end of the line. Although a low-rapacitance variable condenser of ordinary construetion can be used, the circular-plate type shown is symmetrical and thus does not umbalance the line. It also has the further advantage that no insulating material is required.

Fig. 19-3- Methods of tuning paralleltype resonant lines.

Fiquivalent impedance points, for coupling or impredance-tramsformation purposes, are shown in lig. 19-1 for parallel-line, coaxial-line, and conventional coil-and-condenser circuits.

Lumped-Constant Circuits

At the very-high frequencies the low values of L and C required make ordinary coils and condensers impracticable, while linear circuits offer mechanical difficulties in making tuning adjustments over a wide frequency range, and radiation from unshielded lines may reduce their effectiveness materially.

To overcome these difficulties, special high- Q

Fig. 19-4 - "13utterfly" tank circuits for v.h.f., showing front and cross-section views and the equivalent circuit.
lumped-constant circuits have been developed in which comnections from the "condenser" to the "coil" are an inherent part of the structure. Integral design minimizes both resistance and inductance and increases the C / L ratio.

The simplest of these circuits is based on the use of disks combining half-turn inductance loops with semicircular condenser plates. By connecting several of these half-turn coils in parallel, the effective inductance is reduced to a value appreciably below that for a single turn. Tuning is accomplished by interleaving grounded rotor plates between the turns. Both by shielding action and short-circuited-turn effect, these further reduce the inductance.

Another type of high-C circuit is a singleturn toroid, commonly termed the "hat" resonator. Two copper shells with wide, flat "brims" are mounted facing each other on an axially-aligned copper rod. The capacitance in the cireuit is that between the wide shells, while the central rod comprises the inductance.

"Butterfly" Circuits

The tank circuits described in the preceding section are primarily fixed-frequency devices. The "butterfly" circuits shown in Fig. 19-4 are capable of being tuned over an exceptionally wide range, while still having high Q and reasonable physical dimensions. The circuit at A is derived from a conventional balanced-type variable condenser. The inductance is in the wide circular band connecting the stator plates. At its minimum setting the rotor plate fills the opening of the loop, reducing the inductance to a minimum. Connections are made to points 1 and 2. This basic structure climinates all connecting leads and avoids all sliding or wiping electrical contacts to a rotating member. A disadvantage is that the clectrical midpoint shifts from point S to point S^{\prime} as the rotor is turned. Constant magnetic coupling may be obtained by a coupling loop located at point 4 , however.

In the modification shown at D, two sectoral stators are spaced 180 degrees, thereby achieving the electrical symmetry required to permit tapping for balanced operation. Connections to the circuit should be made at points 1 and 2 and it may be tapped at points 3 and 3^{\prime}, which are the electrical midpoints. Where magnetic coupling is employed, points 4 and 4^{\prime} are suitable locations for coupling links.

The capacitance of any butterfly circuit may be computed by the standard formula for parallel-plate eondensers given in the data chapter. The maximum inductance can be obtained approximately by finding the inductance of a full ring of the same diameter and multiplying the result by a factor of 0.17 . The ratio of minimum to maximum inductance varies between 1.5 and 4 with conventional construction.

Any number of butterfly sections may be connected in parallel; units off our to cight plates prove most satisfactory. The ring and stator sections may either be made in a single piece or with separate sectoral stator plates and spacing rings assembled with machine screws.

Wave Guides and Cavity Resonators

A wave guide is a conducting tube through which energy is transmitted in the form of electromagnetic waves. The tube is not considered as carrying a current in the same sense that the wires of a two-conductor tine do, but rather as a boundary which confines the waves to the enclosed spare. Skin effect prevents any electromagnetic effects from being evident outside the guide. The energy is injected at one end, either through capacitive or inductive coupling or by radiation, and is received at the other end. The wave guide then merely confines the energy of the fields, which are propagated through it to the receiving end by means of reflections against its inner walls.

The difficulty of visualizing energy transfer without the usual closed circuit can be relieved somewhat by considering the guide as being evolved from an ordinary two-conductor line.

In Fig. 19-5A, several closed quarter-wave stubs are shown connected in parallel across a two-wire transmission line. Since the open end of each stub is erquivalent to an open cireuit, the line impedanee is not affected by their presence. Enough stubs may be added to form a "U"shaped rectangular tube with solid walls, as at B, and another identical " C "-shaped tube may be added edge-to-edge to form the rectangular pipe shown in $\mathrm{Hig} .19-5 \mathrm{C}$. As before, the line impedance still will not be afferted. But now, instead of a two-wire transmission line, the energy is being conducted within a hollow rectangular tube.

This analogy to wave-guide operation is not exact. and therefore should not be taken too literally. In the evolution from the two-wire line to the closed tube the electric- and mag-netic-field configurations undergo ronsiderable

U.H.F. AND MICROWAVE COMMUNICATION
 415

Fig. 19.5 - Evolution of a wave guide from a two-wire transmission line.
tributions of electrie and magnetie fields in a rectangular guide are shown in Fig. 19-6. It will be observed that the intensity of the electric field is greatest at the center along the x dimension, diminishing to zero at the end walls. The latter is a necessary eondition, since the existence of any electric field paratlel to the walls at the surface would cause an infinite current to flow in a perfect eonductor. This represents an impossible situation.

Zero electric field at the end walls will result if the wave is considered to consist of two separate waves moving in zigzag fashion down the guide, reflected bark and forth from the end walls as shown in ligg. 19-7. Just at the walls. the positive crest of one wave meets the negative erest of the other, giving eomplete eancollation of the electrie fields. The angle of

Fis. 19.7 - Reflection of t wo component waves in a rectangular guide, $\lambda=$ wavelength in space, $\lambda g=$ wavelength in puide. Direstion of wave motion is perpendionfar to the wave front (crests) as shown lyy the arrows.
reflection at which this cancellation oecurs depends upon the width x of the guide and the length of the waves: Fig. 19-7A illustrates the case of a wave considerably shorter than the rut-off wavelengeth, white is shows a longer wave. When the wavelength equals the cut-off value. the two waves simply bounce back and forth between the walts and no energy is transmitted through the guide.

The two waves travel with the speed of light, but since they do not travel in a straight line the energy does not travel through the guide as rapidly as it does in space. A further consequence of the repeated refleations is that the prints of maximum intensity or wave mests are separated more along the line of propagation in the guide than they are in the two separate waves. In other words. the wavelength in the guide is greater than the free-space wavelength. This is also shown in Fig. 19-7.

Modes of Propagation

Fig. 19-6 represents a relatively simple distribution of the electric and magnetie fields. There is in general an infinite number of ways in which the fields can arrange themselves in a guide so long as there is no upper limit to the

Fig. 19.6 - Field distribution in a rectangular wave guide. The TEEL,0 mode of propagation is depieted.

frequency to be transmitted. Each field configuration is called a mode. All modes may be separated into two general groups. One group, designated $T M$ (transverse magnetic), has the magnetic fiold entirely transverse to the direction of propagation, but has a component of electric field in that direction. The other type, designated $T E$ (transverse electric) has the edectric field entirely transverse, but has a component of magnetic field in the direction of propagation. TM waves are sometimes called E waves, and $T E$ waves are sometimes called $I /$ waves, but the $T M$ and $T E$ designations are preferred.

The particular mode of transmission is identified by the group letters followed by two subseript numerals; for example, $\quad T E_{1,0}$, $T M_{1,1}$ etc. The number of possible modes increases with frequency for a given size of guide. There is only one possible mode (called the dominant mode) for the lowest frequency that can be transmitted. The dominant mode is the one generally used in practical work.

Wave-Guide Dimensions

In the rectangular guide the critical dimension is x in Fig. 19-5; this dimension must be more than one-half wavelength at the lowest frequency to be transmitted. In practice, the y dimension usually is made about equal to $1 / 2 . x$ to avoid the possibility of operation at ot her than the dominant mode.

Other cross-sectional shapes than the rectangle can be used, the most important being the circular pipe. Much the same considerations apply as in the rectangular case.

Wavelength formulas for rectangular and circular guides are given in the following table, where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

Cavity Resonators

At low and medium radio frequencies resonant circuits usually are composed of "lumperl" constants of L and C; that is, the induetance is concentrated in a coil and the capacitance conrentrated in a condenser. However, as the frequency is increased, coils and condensers must be reduced to impracticably small physical dimensions. Up to a certain point this diffieulty may be overcome by using linear circuits but even these fail at extremoly high frequencies. Another kind of circuit particularly applicable at wavelengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given length can be maintained inside.

The derivation of one type of cavity resonator from an ordinary $L C$ circuit is shown in Fig. 19-8. As in the case of the wave-guide derivation, this picture must be accepted with some reservations, and for the same reasons.

Considering that even a straight piece of wire has appreciable inductance at very-high frequencies, it may be seen in Fig. 19-8. A and 13 that a direct short across a two-plate condenser with air dielectric is the equivalent of a tuned circuit with a typical coiled inductance. With two wires between the plates, as shown in Fig. 1!-8C, the circuit may be thought of

Fig. $19-8$ - Steps in the derivation of a cavity resonator from a conventional coil-and-condenser tuned circuit.
as a resonant-line section. For d.c. or even low frequency r.f., this line would appear as a short across the two condenser phates. At the ultrahigh frequencies, however, surh a section of line a quarter wavelength long would appear as an open circuit when viewed from one of the plates with respect to the other end of the section.
lncreasing the number of parallel wires hetween the plates of the condenser would have no effect on the equivalent cireuit, as shown at D. Eventually, the closed figure at E will be developed. Nince each wire which is added in D is like comecting inductances in parallel, the total inductance arross the condenser becomes increasingly smatler as the solid form is approachod. and the resonant frequency of the figure therefore becomes higher.

If concrgy now is introduced into the cavity in a manner such as that shown at F, the circuit will respond like any equivalent coil-condenser tank circuit at its resonant frequency. A cavity resonator may therefore be used as a u.h.f. tuning element, along with a vacuum tube of suitable design, to form the main components of an oscillator circuit which will be capable of functioning at frequencies considerably beyond the maximum limits possible when conventional tubes, coils and condensers are employed.

Other shapes than the cylinder may be used as resonators, among them the rectangular box, the sphere, and the sphere with re-entrant cones, as shown in Fig. 19-9. The resonant fre-
quency depends upon the dimensions of the eavity and the mode of oscillation of the waves (comparable to the transinission modes in a wave guide). For the lowest modes the resonant wavelengths are as follows:

Cylinder	$2.61 r$
Square box.	1.411
Sphere.	$2.28 r$
Sphere with re-entrant cones	$4 r$

The resonant wavelengths of the cylinder and square box are independent of the height when the height is less than a half-wavelength. In other modes of oscillation the height must be a multiple of a half-wavelength as measured inside the cavity. Fتig. 19-8F shows how a cylindrical cavity can be tuned when operating in such a mode. Other tuning methods include placing adjustable tuning paddles or "slugs" inside the cavity so that the standing-wave pattern of the electric and magnetic fields can be varied.

Fig. 19-9 - Forms of cavity resonators.
A form of cavity resonator in wide practical use is the re-entrant cylindrical type shown in Fig. 19-10. It is useful in connection with vac-unm-tube oscillators of the types described for u.h.f. use elsewhere in this chapter. In construction it resembles a concentric line closed at both ends with capacitance loading at the top, but the actual mode of oscillation may differ considerably from that occurring in coaxial lines. The resonant frequency of such a cavity depends upon the diameters of the two cylinders and the distance d between the ends of the inner and outer cylinders.

CROSS-SECTIONAL VIEW
Fig. 19-10 - Re-entrant cylindrical cavity resonator.

Compared to ordinary resonant circuits, cavity resonators have extremely-high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can readily be secured with good design and construction.

Coupling to Wave Guides and Cavity Resonators

Energy may be introduced into or abstracted from a wave guide or resonator by means of either the electric or magnetic field. The energy transfer frequently is through a coaxial line, two methods for coupling to which are shown in Fig. 19-11. The probe shown at A is simply a short extension of the inner conductor of the coaxial line, so oriented that it is parallel to the electric lines of force. The loop shown at B is arranged so that it encloses some of the magnetic lines of force. The point at which maximum coupling will be secured depends upon the particular mode of propagation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

Coupling can be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the electric lines the coupling will be minimum; similarly, when the plane of the loop is parallel to the magnetic lines the coupling will have its least possible value.

Fig. 19-11 - Coupling to wave guides and resonators.

U.H.F. and Microwave Tubes

At ultra-high frequencies, interelectrode capacitance and the inductance of internal leads determine the highest possible frequency to which a vacuum tube can be tuned. The tube usually will not oseillate up to this limit, however, because of dielectric losses, grid emission, and "transit-time" effects. In low-frequency operation, the actual time of flight of electrons between the cathode and the anode is negligible in relation to the duration of the cycle. At 1000 ke., for example, transit time of 0.001 microsecond, which is typical of conventional tubes, is only $1 / 1000$ cycle. But at 100 Mc ., this same
transit time represents $1 / 10$ of a cycle, and a full cycle at 1000 Mc . These limiting factors establish about 3000 Mc . as the upper frequency limit for negative-grid tubes.

With most tubes of conventional design, the upper limit of useful operation is around 150 Mc . For higher frequencies tulses of special construction are required. The "acorn" and "doorknob" types have been available for many years, these being useful up to 500 Mc . or more in special circuits. Newer miniature types, developed for use in u.h.f. television receivers, now provide good performance up to nearly 1000 Mc .

Very low interelectrode capacitance and lead inductance have been achieved in the newer tubes of modified construction. In some types the chectrodes are provided with up to five separate leads which, when ronnected in parallel, have considerably-reduced effective inductance. In double-lead types the plate and grid elements are supported be houve single wires which run entircly through the envelope, providing terminals at cither end of the bulb. When a resonant circuit is conmereted to each pair of leads, the shunting raparitance divides between the two cireuits. With linear circuits the leads berome a part of the line and have distributed rather than lumped constants. Radiation loss is minimized and the effect of the transit time is reduced. In "lighthouse" tubes or megatrons the plate, grid and eathode are assembled in parallel phanes, as shown in Fig. 19-12, instead of coaxially. The uniform coplanar electrode design and diskseal terminals permit low interelectrode capacitance.

Velocity Modulation

In negative-grid operation the potential on the grid tends to reduce the electron velocity during the more negative half of the oscillation eycle, while on the other half-cycle the positive potential on the grid serves to accelerate them. Thus the electrons tend to separate intogroups, those loaving the cathode during the negative half-cycle being collectively slowed down, while those leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the electron stream follows the original form of the oscilation cycle, the remainder traveling to the plate at differing velocitiess. since these contribute nothing to the power output at the operating frequeney, the efticience is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-e yole.

This effect, such a disadvantage in conventional tubes, is an advantage in veloeity-modulated tubes in that the input signal voltage on the grid is used to change the velocity of the electrons in a constant-current electron beam. rather than to vary the intensity of a con-stant-velority current flow as is the method in ordinary tubes.

A simple form of velocit \mathbf{y}-modulation oseillator tube is shown in Fig. 19-13. Electrons emitted from the cathode are

Fig. 19-13 - Simple form of alindrical-krid velocitymodulated tube with retarding-field collector and roaxial-line output circuit, used as a superheterodyne high-frequenry oscillator or as a superregenerative detector. Similar tubes can also be used as r.f. amplifiers and frequency conserters in the $\mathrm{i}-50 \mathrm{em}$. region.
accelerated through a negatively-biased cylindrical grid by a constant positive voltage applied to a sleeve electrode, shown in heavy lines. This electrode, which is the velocity-modulation control grid, consists of two hollow tubes, with a small space at each end between the inner tube, through which the electron beam passes, and the disks at the ends of the larger tube portion. With r.f. voltage applied arross these gaps, which are small compared to the distance traveled by the electrons in one half-cycle, electrons entering the tube will be accelerated on positive half-cycles and decelerated on the negative half-cycles. The length of the tube is made equal to the distance covered by the electrons in one-half cycle, so that the electrons will be further accelerated or decelerated as they leave the tube.
is the beam approaches the collector electrode. which is at nearly zero potential, the electrons are retarded. brought to rest, and ultimately turned back by the attraction of the positive sleeve electrode. The collector rlectrode is, therefore, also termed a reflector. The point at which electrons are returned depends on their velocity. Thus the velocity modulation is again translated into eurrent modulation.

Velocity-modulated tubes operate satisfactorily up to 6000 Mc . (5 cm .) and higher, with outputs of 100 watts or more.

The Klystron

In the klystron velocity-modulated tube, the electrons emitted by the cathote are accelerated or retarded during their passage through an electric field established by two grids in a cavity resonator, or rhumbatron, called the "buncher." The high-frequency electric field between the grids is parallel to the electron stream. This field accelerates the clectrons at one moment and retards them at another, in accordance with the variations of the r.f. voltage applied. The resulting velocity-modulated beani travels through a field-free "drift space," where the slowly-moving clectrons are gradu-

U.H.F. AND MICROWAVE

ally overtaken by the faster ones. The electrons emerging from the pair of grids therefore are separated into groups or bunched along the direction of motion. The velocity-modulated electron stream is passed to a "catcher" rhumbatron. Again the beam passes through two parallel grids; the r.f. current created by the bunching of the electron beam induces an r.f. voltage between the grids. The catcher cavity is made resonant at the frequeney of the velorit y-modulated electron beam, so that an oscillating field is set up within it by the passage of the electron bunches through the grid aperture.

If a feed-back loop is provided between the two rhumbatrons, as shown in Fig. 19-14, oscillations will oceur. The resonant frequency depends on the electrode voltages and on the shape of the cavities, and may be adjusted by varying the supply voltage and altering the dimensions of the rhumbatrons. The bunched beam current is rich in harmonies, but the output waveform is remarkably pure because the high Q of the catcher rhumbatron suppresses the unwanted harmonics.

Magnetrons

A magnetron is fundamentally a diode with cylindrical clectrodes placed in a uniform magnetic field with the lines of electromagnetic force parallel to the clements. The simple eylindrieal magnetron consists of a filamentary rat hode surrounded by a coneentric cylindrical anode. In the more efficient split-anode magnetron the cylinder is divided longitudinally.

Magnetron oscillators are operated in two different ways. Electrically the circuits are similar, the difference being in the relation between electron transit time and the frequency of oseillation.

In the negative-resistance or dynatron type

Fig. 14-11-Cirenit diagram of the hlystron oscillator, showing the feed-hack loop coupling the frequency-controlling rhumbatrons and the output loop in the catcher.
of magnetron oscillator, the element dimensions and anode voltage are such that the transit time is short compared with the period of the oscillation frequency. Flectrons cmitted from the cathode are driven toward both halves of the anode. If the potentials of the two halves are unequal, the effert of the magnetie field is such that the majority of the electrons

Fig. 19.15- Conventional magnetronz, with equivalent schematie symbols at the right. I, simple eslindrical magnetron. B, iplit-anode negative-resistancemagnetron.
travel to that half of the anode that is at the lower potential. In other words, a decrease in the potential of either half of the anode results in an increasc in the electron current flowing to that half. The magnetron consequently exhibits negativeresistance characteristics, Nega-tive-rexistance magnetron oscillators are useful betwern 100 and 1000 Me. Inder the best oprating conditions effiriencies of 20 to 25 por cent may be obtained. Since the power loss in the tube appears as heat in the anode, where it is readily dissipated, relatively large power-handling raparity ean be obtained.

In the transit-time magnetron the frequency is determined primarily by its dimensions and by the electric and magnetic field intensities rather than by the tming of the tank circuits. The efficiency is much better than that of a positive-grid oscillator and good power output can be obtained even on the superhighs.

In a nonoseillating magetron with a weak magnetic field. electrons traveling from the cathode to the anode move almost radially, their trajectories being bent only slightiy by the magnetic field. With increased magnetic field the electrons tend to spiral around the filament, their radial component of velocity being much smaller than the angular romponent. Inder critical conditions of magnetic field strength, a doud of electrons rotates about the filament. It extends up to the anode but does not aretually reach it.

The nature of these cleetron trajectories is shown in Fig. 19-16. Cases $A, 13$ and C correspond to the nonoscillating condition. For a small magnetic field (S) the trajectory is bent slightly near the anote. This bending increases for a higher magnetic field (B) and the eleetron moves through quite a large angle near the anode before reaching it, signifying a large increase of space charge near the anode. For a
strong magnetic field (C) elcetrons start radially from the cathode but are soon bent and curl about the filament in the form of a long spiral before reaching the anode. This means a very long transit time and a very large space charge in the whole region where the spiraling takes place. Under critical conditions (D), no current flows to the anode and no electron is able to move from cathode to anode, but a large space charge still exists between the cathode and anode. The spiraling becomes a set of concontric circles, and the entire space-charge distribution rotates about the filament.

Fig. 19-16 - Flectron trajertories for increasing values of magnetic field strength, H. Below is shown the corresponding curse of plate eurrent, $I_{\text {a }}$. ()scillations rommence when H reaches a critical value, H_{c}; progressively higher-order modes of oscillation occur beyond this point.

Fig. 19-16E, F and G depicts higher-order (harmonic-type) modes of operation in which the space charge oscillates not only symmetrically but in transverse directions contrasting to the vibrations of the fundamental.

In a transit-time magnetron oscillator the intensity of the magnetic field is adjusted so that, under static conditions, elcetrons leaving the cathode move in curved paths which just fail to reach the anode. All electrons are therefore deflected back to the eathode, and the anode current is zero. When an alternating voltage is applied between the two halves of the anode, causing the potentials of these halves to vary about their average positive values, the conditions in the tube become analogous to those in a positive-grid oscillator. If the period of the alternating voltage is made equal to the time required for an electron to make one complete rotation in the magnetic field, the a.c. component of the anode voltage reverses direction twice with each election rotation. Some electrons will lose cnergy to the electric field, with the result that they are unable to reach the cathode and continue to rotate about it. Meanwhile other electrons gain energy from the field and are returned to the cathode.

Fik. 19-17 -Split-anode magnetron with integral resonant anode cavity for use atu. h.f.

Since those electrons that lose energy remain in the interelectrode space longer than those that gain energy, the net effect is a transfer of energy from the clectrons to the electric field. This energy can be applied to sustain oscillations in a resonant transmission line connected between the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a cavity resonator built into the tube st ructure, as illustrated in Fig. 19-17. The assembly is a solid block of copper which assists in heat dissipation. At extremely high frequencies operation is improved by subdividing the arode structure into from 4 to 16 or more segments, the resonant cavities for each anode coupled by siots of critical dimensions to the common cathote region, as in Fig. 19-18.

The efficiency of multisegment magnetrons reaches 65 or 70 per cent. Nlotted-anode magnetrons with four segments function up to $30,000 \mathrm{Mc}$. (1 cm.), delivering up to 100 watts at cofficiencies greater than 50 por cent. Using larger multiples of anodes and higher-order modes, performance can be attained at 0.2 cm .

Traveling-Wave Tubes

Gain as high as $2: 3 \mathrm{db}$. over a bandwidth of 800 Me. at a center frequence of 3600 Mc. has becu obtained through the use of a farly-simple traveling-wave amplifier tube. Shown schematically in Fig. 19-19, the circuit consists of at helix, down which an electromagnetic wave travels. An clectron beam is shot through the helis parallel to its axis, and in the direction of propagation of the wave. When the clectron velocity is about the sane as the wave velocity in the absence of the electrons, turning on the electron beam causes a power gain for wave proparation in the direction of the electron motion.

Fig. 19-19 - Schematic drawing of a travelingwave amplifier tube.

U.H.F. AND MICROWAVE COMMUNICATION

The portions of Fig. 19-19 marked "input" and "output" are wave-guide sections to which the ends of the helix are coupled. In practice two electromagnetic forusing coils are used, one forming a lens at the electron gun end, and the other
a solenoid running the length of the helix. The most valuable feature of the travelingwave tube is its great bandwidth. The gain is high, though the efficiency is rather low. Typical power output is of the order of 200 milliwatts.

Amateur Microwave Technique

All the bands that have been assigned to amateurs in the microwave region have been used for experimental two-way communication. Complete descriptions of suitable equipment for all these bands is beyond the scope of this text, but examples of the techniques employed are shown helow. Reference is made to various articles that have appeared in QST, describing microwave gear used by amateurs, for those who wish more details.

1215 Mc .

In this band it is possible to use a few more-or-less conventional triodes with linear circuits, though great care must be used in designing such layouts, and the efficiency will be very low. A transmitter for 1215 Mc ., designed and built by W3MLN and W3IIFW, is shown in Figs. 19-20 - 19-22. It uses a 703 A doorknob triode, completely shiclded, with the antenna as an integral part of the assembly. The tube is mounted at the end of a halfwave line. Output is capacitively coupled to the folded quarter-wave antenna by means of a probe mounted alongside the plate line.

It should be emphasized that complete shielding of the oscillating circuit (including the tube elements) is absolutely necessary. The circuit will not oscillate at all if the shield is removed from the grid and plate rods, and only very weakly if the tube shield is not in place. Output is only about one watt, with an input of 80 ma at 350

Fig. 19.20-An oscillator and antenna system for 1215 Mc., built as one unit. ($W^{\prime} 3 H F H^{\prime}-H^{\prime} 3 M L N$)
volts, but two of these units have been used to communicate over distances up to 12 miles or so with S 9 signals. The equipment is described in detail by the designers in QST for April, 1948, page 16.

Fig. 19-21 - Schematic diagram of the 1215-Mc. oscillator.

Lighthouse tubes in suitably designed circuits are more efficient at this frequency. For best results cavities should be used, though trough-line and flat-plate circuits have been used.
Parabolic reflectors are usually employed for this and higher frequencies. It is desirable to make the transmitter or reeciver an integral part of the antenna sustem if possible. If this cannot be done, coaxial line of the shortest usable length may be used. Air-insulated line is preferred to the flexible polyethylene-insulated varicty, because of the higher losses in the latter.

2300 Mc .

Most of the work on 2300 Mc . has been done with lighthouse tubes in cavity oseillators, though some of the klustron types such as the 707 B have been used. Cavities for this frequency may be a quarter wavelength, half wavelength or three-puarter wavelength long.
Details of a half-wave cavity oscillator using a 2 C 40 lighthouse tube are shown in Figs. 19-22 and 19-23. This oscillator was designed and built by W2IRMA. It may be duplicated by any worker who has access to a few metal-working tools.

The main body of the cavity is 1 -inch brass pipe, silver plated. The end that fits over the tube is cut out to an inside diameter of $11 / 32$ inch, the

fig. 19-22- Detail arawing of the 703A omoiltator for 1015 Mc .
only lathe work required. 'This end is alsu sawed crosswise at several points so that it may be elamped tightly to the tube with a brass strap, as seen in the photograph. Plate voltage is fed into the cavity through a feed-through capacitor mounted on the side of the tubing, and power is couplod out by means of a capacity probe and coavial fitting at the hot end. The cavity is tuned with a serew mounted in the end, providing a variable capacitance to the anode pest.

Output, with a 250 -volt supply, will be 50 to $2 \overline{50}$ milliwatts. This seremingly small amount of power may be made to do very well with the antenna gain that is possible at this frepuency with a paralolic reflecetor of reasonable dimensions. Grar for 2300 Mc . is described in Qst for July, 1946. page 32, August, 1947, page 128, and lobbruary, 1948, page 11.

3300 Mc .

Lighthouse oscillators may be used on this frequency, but it is close to the top limit of their eapabilities, so better results are obtainable with the klystron types. An advantage of the latter is that the frequeney of oseillation may le variod over an appreceiable range by changing the reflector voltage. 'This characteristic is also usefol in providing a convemient moans of obtaining frequeney modulation. This sensitivity to voltage changes makes it desirable to use a regulated hum-free supply.
On this and higher frequencies a convenient system for two-way work is the use of a klystron as both transmitting oscillator and as a local oseillator for receiving. A erystal mixer is used in this case, its output being fed into a reeriver sorving as the i.f. system. If the reeoiver so used is capable of f.m. deteetion it is only necessary to modulate the klystron reflector voltage to provide f.m. communication of good quality. The oscillators of the two stations in communication are then operated on frequencies differing by the
value of the intermediate frequency selected. A single antemna system is used for both transmitting and receiving, and no change-over arrangement is needed.

5650 Mc .

Amateur work in this range has been done largely with reflex klystrons, two types of which ($2 \mathrm{~K}+3$ and 2 K 44) are capable of operation within our hand. The one-tube system described above may be used for each station, or of course separate tubes may be used for tramsmitter and local osedlator. In the latter case two antenna systems are required, but the transmitter efficiency is somewhat higher as some power is dissipated arrose the crystal in the one-tube arrangement.

Frequency modulation of klystrons is more prawtical that amplitude modulation, Modulation of the repellor voltage reguires no audio power, as there is mo current drawn be this tube element. A carbon midrophone and a microphone transformer, with the repellor voltage fed through the secondary, will handle the audio requirements niecly.
The first twoway microwave communication in amateur history was cariod out in this way by A. E. Itarrison, W'GBMS/2, and R. E. Merehant, W2LGF, who operated in the temporary 5300) Me. band. Their equipment, deseribed in QST for January, 1946, page 19, will also work in the prosent band.

$10,000 \mathrm{Mc}$.

The 723:/13 reflex klystron, available at low cost for some time on the surplus market, provided amateurs with a convenient and inexpensive means of opreration on $10,000 \mathrm{Me}$. As manufartured, the thbe will not ordinarily operate in the amateur band without modification.

Like other tubes of the reflex klystron variety, the frequency of oscillation is varied by warping the built-in cavity. It is used with a modifieal octal socket, with pin So. 4 removed and the

Fig. 19.23 - A half-wave cavity oscillator for 2300 Mc . (II'2RMA)

Fig. 19.2. - Merhanioal details of the 2300. We. lighthouse omeillator.
hole embarged to pass the eoaxial line that is part of the tube. This line is terminated in an "antema" which is ordinarily used to transfer power to at waveguide.

Two vertical struts are provided for tuning, one of which is already variable by means of a stud, which spreads or contracts the flexible strut on the right side, eompressing or stretching
the bedlows, lowering or raising the frequeney resuctively.

The upper limit of frequency range, reached ber rotating the tuning stud, will seldom le within the amateur band, hence it is necessary to perform the following operation. It may be seen that the top of the cavity is held in a fixed position on the strut on the side of the tube by two small nuts which, after having been tightened, have been spot-welded to each other. The spot weld should be filed away until each nut ean be meved freely on the threaded stud. Next, the position of these nuts should be adjusted cery carefully, to raise the top of the cavity as was done on the other side. Extreme care should he used in this operation, as excessive stretching of the bellows may break some of the sals and render the tube inoperative. It is advisable to move the hower nut only until a firm resistanee is felt. The operating frequency should then be checked, and if it is still below the limit of the hand another tube should be tried, as any further attempt to raise the frequeney will almost eertainly ruin the tulne.

Equipment for use on 10,000 Me. is deseribed in detail in (SST for Pebruary, 1947, page $\overline{6} 8$.

21,000 Mc.

Opration in this frefuenev, and in the unassigned region above 30,000 dife is still highly experimental in nature. Only oner has the $21,0000-$ Mr, hand been used for amateur two-way communication. This was arromplished under lathoratory conditions by two engincers whose sperially is development work in this field. Their work is detailed in OST' for August, 1946, page 19. 'Tyer Z-668 roffex klystrons were used, with horn and parabolie antenna systems, to work two-way ovor a distance of 800 feet.

Mobile Equipment

The amateur who goes in for mohile operation will find plenty of room for exereising his individuality and developing original ideas in equipment. Each installation has its special problems to be solved.

Most mobile receiving systems are designed around the use of a h.f. converter working into a standard car broadeast receiver tuned to 1500 kc . Which serves as the i.f. and audio amplifiers. The car receiver is modified to take a noise limiter and provide power for the converter.

While a few mohile transmitters may run an input to the final amplifier as high as 100 watts or more, an input of about 30 watts normally is considered the practical limit unless the car is equipped with a special battery-charging system. The majority of mobile operators use 'phone.

In contemplating a mobile installation, the car should be studied carefully to determine the most suitable spots for mounting the equipment. Then the various units should be built in a form that will make best use of that space. The location of the converter should have first consideration. It should be placed where the controls can be operated conveniently without distracting attention from the wheel. The following list suggests spots that may be found suitable, depending upon the individual car.

On top of the instrument panel
Attached to the steering post
Under the instrument panel
In a unit made to fit between the lower lip of the instrument panel and the floor at the center of the car
On the left-hand door panel (detachable when not in use)
Under the left-hand front seat
In the motor compartment (rontrols extended through the instrument panel)

The transmitter power control can be placed close to the recciver position, or included in the converter unit. This control normally operates relays, rather than to switch
the power circuit directly. This permits a minimum length of heavy-current battery circuit. lirequency within any of the 'phone bands sometimes is changed remotely by means of a stepping-switch system that switches crystals. In most cases, however, it is necessary to stop the car to make the several changes required in changing bands.

Depending upon the size of the transmitter unit, one of the following places may be found convenient for mounting the transmitter:

In the glove compartment
Under the instrument panel
In a unit in combination with or without the converter, built to fit between the lower edge of the instrument panel and the floor at the center
Under the right-hand or left-hand front seat
On the ledge above the rear seat
Fastened to the back of the front seat
In the trunk
In the motor compartment
Most mobile antennas consist of a vertical whip with some system of adjustable loading for the lower frequencies. Power supplies are of the vibrator-transformer-rectifier or motor-generator type operating from the car storage battery.

Units intended for use in mobile installations should be assembled with greater than ordinary rare, since they will be subject to considerable vibration. Soldered joints should be wedl made and wire wrap-arounds should be used to avoid dependence upon the solder for mechanieal strength. Self-tapping screws should be used wherever feasible, otherwise lork-washers should be provided. Any shafts that are normally operated at a permanent or scmi-permanent setting should be provided with shaft locks so they rannot jar out of adjustment. Where wires pass through metal, the holes should be fitted with rubber grommets to prevent chafing. Any cabling or wiring between units should be securely clamped in place where it cannot work loose to interfere with the operation of the car.

Noise Elimination

Electrical-noise interference to reception in a car may arise from several different sources. As examples, trouble may be experienced with ignition noise, generator and voltage-regulator hash, or wheel and tire static.

A noise limiter added to the car b.c. receiver will go far in reducing some types, especially ignition noise from passing cars as well as your own. But for the satisfactory reception of weaker signals, some investigation and treat-
ment of the ear's electrical system will be necessary.

Ignition Interference

Fig. 20-1 indicates the measures that may be taken to suppress ignition interference. The condenser at the primary of the ignition coil should be of the coaxial type; ordinary types are not effective. It should be placed as close to the coil terminal as possible. In stubborn cases, two

of these condensers with an r.f. choke between them may provide additional suppression. The size of the choke must be determined experimentally. The winding should be made with wire heavy enough to carry the coil primary current. A 10,000 -ohm suppressor resistor should be inserted at the center tower of the distributor, a 5000 -ohm suppressor at earch spark-plug tower on the distributor, and a $10,000 \mathrm{ohm}$ suppressor at each spark plug. The latter may be built-in or external. A good suppressor element should be molded of material having low capacitance. Erie type L.7VR-10ME and L7VR-5ME are satisfactory. In extreme cases, it may be necessary to use shielded ignition wire. The 1951 Pontiac car was equipped with suppressor ignition wires, the resistance being distributed throughout the length of the wire. This is somewhat superior to lumped resistance and may be used if the lead lengths are right to fit your car. They should not be cut, but used as they are sold.

Generator Noise

Generator hash is caused by sparking at the commutator. The pitch of the noise varies with the speed of the motor. This type of noise may be eliminated by using a 0.1 - to $0.25-\mu \mathrm{fd}$. coaxial condenser in the generator armature circuit. This condenser should be mounted as near the armature terminal as possible and directly

Fig. 20.2 - The right way to install by-passes to re duce interference from the regulator. A condenser should never be connected across the generator field lead without the small series resistor indicated.
on the frame of the generator.
To reduce the noise at 28 Mc., it may be necessary to insert a parallel trap, tuned to the middle of the band, in series with the generator output lead. The coil should have about 8 turns of No. 10 wire, space-wound on a 1 -inch diameter and should be shunted with a $30-\mu \mu \mathrm{fd}$. mica trimmer. It can be pretuned by putting it in the antenna lead to the home-station receiver tuned to the middle of the band, and adjusting the trap to the point of minimum noise. The tuning may need to be peaked up after installing in the car, since it is fairly critical.

Voltage-Regulator Interference

In eliminating voltage-regulator noise, the use of two coaxial condensers, and a resistor-mica-condenser combination, as shown in Fig. 20-2, are effective. A 0.1 - to $0.25-\mu \mathrm{fd}$. coaxial condenser should be placed between the battery terminal of the regulator and the battery, with its case well grounded. Another condenser of the same size and type should be placed between the generator terminal of the regulator and the generator. A $0.002-\mu \mathrm{fd}$. mica condenser with a 4 -ohm carbon resistor in series should be connected between the field terminal of the regulator and ground. Never use a condenser across the field contacts or between field and ground without the resistor in series, since this greatly reduces the life of the regulator. In some cases, it may be necessary to pull double-braid shielding over the leads between the generator and regulator. It will be advisable to run new wires, grounding the shielding well at both ends. If regulator noise persists, it may be necessary to insulate the regulator from the car body. The wire shielding is then connected to the regulator case at one end and the generator frame at the other.

Wheel Static

Wheel static shows up as a steady popping in the receiver at speeds over about $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on smooth dry streets. Front-wheel static collectors are available on the market to eliminate this variety of interference. They fit inside the dust cap and bear on the end of the axle, effectively grounding the wheel at all times. Those designated particularly for your car are preferable, since the universal type does not always fit well. They are designed to operate without lubrication and the end of the axle and dust cap should be cleaned of grease before the installation is made. These collectors require replacement about every 10,000 miles.

Rear-wheel collectors have a brush that bears against the inside of the brake drum. It
may be necessary to order these from the factory through your deater.

Tire Static

This sometimes sounds like : leaky power line and ean be very troublesome even on the broadeast band. It can be remedied be injecting an antistatic powder into the inner tubes through the valve stem. The powder is marketed hy Chevrolet and possibly others. Chevrolet dealers can also supply a convenient injector for inserting the powder.

Tracing Noise

To determine if the recriving antenna is pieking up all of the noise, the shielded lead-in should be diseonnected at the point where it connects to the antenna. The motor should be started with the receiver gain control wide open. If no noise is heard, all noise is being pieked up via the antemna. If the noise is still heard with the antemna discomected, even though it may be redured in strength, it indirates that some signal from the ignition system is being pieked up by the antena transmission line. The lead-in may not be sufficiently-well shideded, or the shield not properly grounded. Noise may also be pieked up through the 6-volt circuit, although this does not normally happen if the receiver is provided with the usual r.f.-choke-and-by-pass-condenser filter.

In case of noise from this souree, a direre wire from the "hot" battery terminal to the receiver is recommended.

Ignition noise varies in repetition rate with engine speed and usually can be recognized by that eharacteristic in the early stages. Later, however, it may resolve itsolf into a popping noise that does not always correspond with engine speed. In such a case, it is a good idea to remove all leads from the generator so that the only soure left is the ignition system.

Regulator and generator noise may le dotered by racing the engine and cutting the ignition switch. This eliminates the ignition noise. Generator noise is characterized by its musical whime contrasted with the ragged raspy irregular noise from the regulator.

With the motor ruming at idling speed, or slightly faster, cherks should be made to try to determine what is bringing the noise into the fiold of the antenna. It should be assumed that any rontrol rod, metal tube, steering post, ete., passing from the motor compartment through an insulated hushing in the firewall will carry noise to a point where it can be radiated to the antema. All of these should be bonded to the firewall with heavy wire or braid. Ineulated wires ean be stripped of r.f. hy by-passing them to ground with $0.5-\mu \mathrm{fd}$. metal-a ase condensers. The following should not be overlooked: hattery lead at the ammeter, gasoline gauge, ignition switch, headlight and taillight leads and the wiring of any aecessorics running from the motor rompartment to the instrument panel or outside the car

Fig. 20-3 - I Dagrans show ing addition of notse limiter to car recoiver. A - Isual circuit. 1 - Modification, $\mathrm{C}_{1}, \mathrm{C}_{3}-\mathrm{l}(0)-\mu \mu \mathrm{fd}$, miea.

(: $: \mathbf{5}$ - 0.I- -fd . paper.
$R_{1}-4,0(0)$ ohms.
$\mathrm{R}_{2}, \mathrm{R}_{10}-1$ megolim.
R_{3} - $1 / 2$ megohm
$\mathbb{R}_{7}, \mathrm{R}_{8}, \mathrm{R}_{9}$ - $\mathrm{I}, \mathrm{I}^{-}$megohm.
R_{4} - 10 megohnis.
$\mathrm{K}_{5}-1 / 4 \mathrm{megohm}$.
$\mathrm{R}_{\mathrm{g}}-0.1$ megolim.
T_{1} - 1.f. transformer.
V_{1} - Second iletertor.

The firewall should be bonded to the frame of the car and also to the motor hlock with heavy braid. If the exhatust pipe and muffler are insulated from the frame by rubber mountings, they should likewise be grounded to the frame with flexible eopper braid.

Noise Limiter

lig. 20-3 shows the alterations that may be made in the existing arr-receiver eireuit to provide for a moise limiter. The usual diodetriode second detertor is replaced with a type having an extra indepentent diode. If the car receiver uses octal-base tubes, a 6s8cit may be substituted. The 7×7 is a suitable replacement in receivers using loktal-type tubes, while the 6T8 maty be used with miniatures.

The switeh that ruts the limiter in and out of the circuit may be located for convenience on or near the converter panel. Regardless of its pharement, however, the leads to the switeh should be shielded to prevent hum piek-up.

A Bandswitching Crystal-Controlled Converter

Figures 20-4 through 20-8 show a handswitehing erystal-controlled mobile converter eovering bands from 80 to 10 meters. The tuning of the oseillator is fixed, and the ref. amplifier is broadbanded. Signals arross the band are tuned in by adjusting the ber. rereiver whifh is used as a tumable i.f. amplifier. Frequency stability is much superior to that of the usual tumable converter. Coils and crystals for unnecded bands may be omitted.

While the converter draws 20 mad. at 150 volts, tests have shown that the performance is essentially unehanged with the plate input redued to 5 mar. at 45 volts. If you are reluetant to dig into the recejver to bring out a $B+$ lead, you can operate the converter from a small B battery.

The Circuit

The circuit diagram is shown in Pig. 20-5. A 6AK5 is used as an r.f. amplifier, and a tiJt dual triode as the frequeney converter. The r.f. circuits consist of sluy-eored eoils tuned by the tube caparitances. However, a trinmer, \vec{C}_{3}, is included so that the amplifier grid circuit can be peaked up for the partirular antenna in use, or in going from one end of the band to the other.

A pair of wavetraps, $C_{1} L_{1}$ and $\left({ }_{2}^{2} L_{2}\right.$, at the input are provided to minimize interference from local b.e. stations.

For frequencies above 7 Me ., the oscillator seetion of the converter works at harmonies of the erystal frequency. At these frequeneies an oseillator circuit is used which limits the oscillator output essentially to the desired harmonic frequency. On 3.5 and 7 Me., the crystals work at the fundamental, and the cireuit is a simple Pirree, L_{6} being eliminated on these bands.

For the sake of simplicity in the diagram, only a single set of coils (the 1+-Mc. set) is shown. Other coils and crystals are wired similarly to their respective switch points. Switch section $S_{2 E}$ is not used as an artive switch, its point terminals merely serving as a most convenient tic-point strip for supporting the junction of the

Fig, 20-4 - Front view of the bandswitching erystal-rontrolled mobile eonverter. The unit is luilt into a $7 \times 7 \times 2$-inch aluminum chassis. 'The subassemhly, shown in Figs. 20-7 and 20-8, is to the left of the handswiteh. It inchades the 28 - Nc. coils, the tuhes, and most of the small components. 'The second subassembly to the right contains all remaining coils. The controls for C_{3} to the left, and S_{1} to the rinht, are spaced 2 inches from the bandswith shaft. IIoles along the right side are for adjusting the coil slugs. Handswiteh wafers are in alphabetical order, $S_{2 A}$ to $S_{2 F}$, front to rear.
crystals and L_{6} coils. In the case of the 7- and 3.5 -Me, positions, where no L_{6} coil is used, the eorresponding switch points are simply wired together, as indicated.
$S_{1 A}$ and $S_{1 B}$ shift the antenna from the converter to the b.e. receiver, while S_{10} turns off the converter filaments.

An aecompanying table shows the crystal frequency, the h.f. oscillator frequency, and the range over which the b.e. receiver must be tuned to cover each of the ham bands.

Since the range of the boe receiver is approximately 1000 kc . ($1500-550 \mathrm{ke}$.), the tuning range with any single crystal is limited to 1 Mc. Ifowever, this is more than adequate for all except the 10 -meter band. For full coverage of this band, two erystals are used, as indieated in the table. The 11 -meter band is not normally included, but values are given so that this band may be substituted for one of the 10 -meter ranges if desired.

Construction

The converter is built into a $2 \times 7 \times 7$-inch aluminum chassis. The top cover (actually a hottom plate for the chassis and not shown in the photographs) is a flat piece of aluminum measuring 7 by 9 inches. The extra inch of overlap on cach side provides lips for fastening the converter to the bottom rover of the b.c. receiver by means of mathine serews and metal spacers.

The aluminum bracket for the large subassembly should bo made first. This subassembly is shown to the left of the bundswiteh in Fig. 20-4, and in Figs. 20-7 and 20-8. The latter identify the components, indieating the holes that must be drilled for the tubes, coils and r.f. chokes.

Fig. 20.5 - Circuit diagram of the crystal-controlled mobile converter. All resistors $1 / 2$ watt. *Indicates a tubular ceramic capacitor, all other fixed capacitors disk ceramir, except C_{3}.
$\mathrm{C}_{3}-35-\mu \mu \mathrm{f}$. variable (Hammarlund IIF-35).
L_{1} through L_{θ} - See coil chart.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$-RCA-type phono jack.
J_{3} - 4 -prong male chassis connector (Cinch-Jones $\mathrm{P}^{\mathrm{P}}-304 \mathrm{AB}$).
$\mathrm{I} \mathrm{FPC}-2.5-\mathrm{mh}$. r.f. chohe (National R-100S).
$\mathrm{RFC}_{2}-10-\mathrm{mh}$. r.f. chohe (National R-100S).
When the bracket has been drilled, place it against the rear wall of the chassis, $3 / 4$ inch in from the left side, and mark the mounting holes in the chassis. Then slide the bracket against the left-hand side of the chassis and spot the slugadjusting holes and the 1 -inch holes that permit removal of the tubes.

Before assembling the unit, the antenna coils (L_{3}) should be wound on cach of the two L_{4} forms. Each of the North Hills coil forms has an extra set of terminals that maty le used as tie points for the switch ends of the L_{3} windings. (By judicious use of these extra terminals, it is possible to complete the wiring of the converter without employing any additional tie points.)

At the conclusion of the wiring of the subassembly, connect power leads that will run to $S_{1 c}$

Coil Chart for the Mobile Converter					
Band	Turns, L_{3}	Ind. Range. μ h.		Type No.	
		L_{44} - $L_{\text {c }}^{5}$	L_{6}	$L_{4}-L_{6}$	L_{6}
3.5-4	30	64-105	-	120-G	-
7-7.3	8	18-36	-	120-E	-
14-14.55	4	5-9	18-36	$120-\mathrm{C}$	120-E
21-21.45	3	3-5	5-9	120-B	120-C
26.93-27.23	3	2-3	3-5	120-A	120-13
28-28.9	3	2-3	3-5	120-A	120-B
28.75-29.7	3	2-3	3-5	120-A	120-13
Note: L_{1} and L_{2}, Fig. 20-5, are Types 120-F (36-64 μ h.) and $120-E$, respectively. Series 120 coils are obtainable from North Hills Electric Co.. Inc., 203-18 35th Ave., Bayside 61, New York. L_{3} is wound with fine magnet wire at grounded end of L_{4}.					

$S_{1}-3$-pole 5 -position (used as 3-p.d.t.) selector switch (Centralab PA-2007 or PA-5 wafir mounted on PA-300 index).
$S_{2}-6$-pole 6-position selector switch (6 Centralab PA-18 wafers monnted on P'A-302 index; see text).
Xtal-See chart (Janies Kinights type H.17).
and J_{3}, and attach a 2 -inch length of wire to Pin 5 of the 6J6. The free end of the latter will be connected to $S_{2 D}$ later.

The remaining slug-tuned coils are mounted as a second subassembly on a bracket the same in size as the first, although the mounting lips must be bent in the opposite directions. The coils are arranged in three groups of four coils. The coils are centered at the corners of a $3 / 4$-inch square. The first square is centered on the strip and at $5 / 8$ inch from the front edge of the strip. The second square is centered $21 / 2$ inches from the front edge, and the last square is centered $35 / 8$ inches hack. At the center of each of the two squares toward the front, a hole is drilled for a 1 -inch ($6-32$ screw. A soldering lug and a $3 / 4$-inch metal spacer are slid over the screw before it is fastened to the bracket. The lugs provide convenient grounding terminals.

Before the coils are mounted, this bracket should be placed against the rear wall of the chassis, and $8 / 4$ inch from the right-hand side and its mounting holes marked in the chassis. Then, as before, it should be slid against the right-hand side of the chassis while the slug-aljusting holes are spotted in the wall of the chassis.

The first group of coils toward the front are the r.f. grid coils, $L_{3}-L_{4}$, and the plate coils, L_{5}, are in the second group. With the slug screws facing you, the 80 -meter coils are at the upper left, the 40 -meter coils are at the upper right, the 20 -meter coils at the lower left, and the 15 -meter coils at the lower right. The third group of coils at the rear include the trap coils, L_{2}, at the upper left, and L_{1} at the upper right. Below are the 20 -meter oscillator coil (L_{6}) to the left, and the 15 -meter oscillator coil to the right. The antenna coils, L_{3}, should be wound on their corresponding grid-coil forms (L_{4}) before assembling.

Frequency Chart for the Mobile		Converter	
Band, Mc.	Crystal Freq., Kc.	Oscillator Freq., Mc.	I.F. Range, Kc.
$3.5-4$	2900	2.9	$600-1100$
$7-7.3$	6400	6.4	$600-900$
$14-14.35$	6700	13.4	$600-950$
$21-21.45$	6800	20.4	$600-1050$
$26.96-27.23$	6575	26.3	$660-930$
$28-29.9$	6850	27.4	$600-1500$
$28.75-29.7$	7050	28.2	$550-1500$

Note: I.f. range indicates broadeast receiver tuning range necessary for covering the associated amateur frequencies.

Only a single by-pass condenser is shown in the diagram as Co. Actually, there are three of them. One is at the junction of the cold ends of the two 10 -meter coils, one for the 3.5- and 7-Mc. coils, and one for the 14 - and 21-Mc. coils.

The Bandswitch

The bandswitch is made up from Centralab) Switehkit parts as indicated under lig. 20-5. In assembling the switeh, all wafers should be placed on the assembly rods so that the rotor or "arm" terminal is the second terminal to the left of the upper assembly rod, as viewed from the front.

The crystals can be soldered to the switeh contacts before the switeh is mounted in the chassis.
Prongs taken from an octal socket and slid over the erystal-holder pins are a good means of connecting the erystals to the switeh wafers.
The fiber nountings of the input and output phono connectors will need to be clipped off so that they will fit betwern the chassis and the subassembly brackets. These jacks should be mounted next, and the coax leads run

Fig. 20-6-Space between the bandswitch index head and the front wafer is $5 / 16$ inch. succeeding spacings letween wafers, front to rear, are $11 / 6,17 / 16$, 11/16, 1 and $13 / 16$ inches. The tail of the shaft is cut off close to the last wafer to provide space for $/ 3$ at the rear, but the assembly rods extend through the rear of the chassis, Shiclded phomo jacks at the rear are for antenna to the right, and b, re reoiver to the left. Capped holes along the right-hand side are for tube removal. The smaller ones are for 10 meter slug adjustment, (irystals, lietween S_{2} d and $\dot{S}_{2} \mathrm{E}$, left to right, are for $3,5,7,21$, and the high end of 28 Me. Those for 14 Me. and the low end of 28 Mc., mounted horizontally, are bidden by the three crystals to the left.
to $S_{1 A}$ and $S_{1 B}$, keeping the leads along the bottom corners of the ehassis.

Then the two subassemblies can be mounted and connections made to the bandswitch. In addition to the connections shown in the diagram, the bandswitch terminals immediately to the keft of the upper tie rod (as viewed from the front) on $S_{2 A}$ and $S_{2 \mathrm{~B}}$ should be connected together, and then to the ground terminal at the socket of the GAK5. This grounds the inaetive L_{3} and L_{4} coils.

As a last operation, the power leads are fished out through the mounting hole for J_{3}, and connections to J_{3} are made before it is mounted.

Power Supply

The converter requires 0.625 ampere at 6 volts for the heaters, and anything between 5 ma. at 45 volts to 20 ma . at 150 volts for the plate supply. This can be taken most conveniently from the ear b.c. receiver by connecting two leads to an audio-output-stage sorket. Plate voltage should be taken from the sereen terminal. This voltage will usually be about 200 , and can be dropped down to the desired value with a series resistor. A $10,000-\mathrm{ohm} 2$-watt resistor will usually be about right - at least, it will serve as a starting point for adjustment to the desired value. The hot filament and plate-supply leads, plus a ground lead, can be brought to a connector mounted on the b.e. receiver, or run in the form of a cable. Shielded wire should be used for the eable.

Adjustment

With a small antenna, sueh as a mobile whip, tight roupling to the antenna is essential for best signal response. It is also important in avoiding regeneration in the r.f.-amplifier stage. Therefore,

Fig. 20.7 - The liracket for this sub. assembly is $53 / 2$ by $17 / 8$ inches, with $3 / 8$-inelh lips, "lube-removal holes are 1 ind in diamcter spacing betwern hracket and rear plate is $18 / 8$ inches.
especially when the antemat is a small one, it should be resonant. This is usually the ease in a mobile installation whore the antemma must be made resonant for transmitting.

The high-frequency oscillator should be checked first, listening on a communications receiver at the oscillator freguenemes listed in the table, No abdjustment of the oseillator is necessary at 3.5 and 7 Me., but at the higher frequencies the slugs of the L_{6} rooils must be adjusted for most stable output at the proper frequeneiges. sot the recoiver to the desired frequancy and adjust the slug until the oseillator signal is heard. To make sure that the oseilator is erystal-rontrolled, jar the converter. If the signal is erystal-rontrolled, no amount of jarring should change the frequenery. If it is not erystal-controlled, the slug should be adjusted carrfully until the oscillator locks in with the erystal.

The r.f. amplifier may now be lined up, band
by band, by tuning in a signal from a generator or the anternat, and then adjusting the amplifier grid and plate eoils for maximum response. The grid-coil slug should bo adjusted whth signals near the high-frequeney and of the band, and with C_{3} sot near minimum capacitance. The antenna coupling should then be adjusted to the point where a slight peak in a signal or background noise is heard within the range of C_{3}.

When interference from local broadeasting stations is experienced, the slug of L_{1} should be adjusted to minimize the strongest b.c. signal toward the low-frequence end of the b,e band, while the slug of L_{2} should be likewise adjusted for the strongest signal toward the high-frequeney end of the band. These two adjustments will usually serve to attenuate most other b.e. sigmals in betwen the two extremes of frequency. However, other combinations may be advisable, depending on the frequencies of the local stations.

Fia. 20.8 - The tulesochet momoting plate is $33 / 4$ by $13 / 4$ inches overall. The ends are rounded to dear the outer coil forms. Holes opposite the inner coil forms are $8 / 4$ inch; those elearing the r.f. clokes are $5 / 8$ inch. Small components should be kept elose to the plate, so as to clear the hands witeh.

A Mobile Converter for $\mathbf{2 8}$ and $\mathbf{5 0}$ Mc.

The converter shown in Figs. 20-9 to 20-12 was designed for mobile reception on 6,10 , and 11 meters, but it may also be used in fixedstation work with grod results. The intermediate froquency is 1500 ke ., to permit its use with mobile broadeast receivers.

Circuit Details

The converter circuit diagram is shown in Fig. 20-10. A 6Ak5 broadhand r.f. amplificr is followed by a 6.56 mixer-oscillator. The oscillator circuit is the ultradion type, operating 1500 ke . below the signal frequency. The need for gang-tuned circuits is climinated by the broadhand r.f. amplifier: thus only the oscillator tuning condenser, (") reduires adjustment during normal funing operation. Band

Fig. 20.9 - A bandswitching converter for 6, 10 and 11 meters. The pilot light at the lower right has an adjustable bean, for convenience in mobile work.
changing is accomplished with a 5 -section sclector switch, shown on the diagram as $S_{\text {la }}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$.

Seven conmercially-a vailable coils are used, six of them being identical except for the setting of the slugs. The wide inductance range of the slug-tuned units makes it possible to use similar coils for the r.f., mixer and oscillator coils for both ranges. Padder capacitance is added across the $10-\mathrm{meter}$ r.f. and mixer coils, L_{4} and L_{6}, and across both oseillator coils, L_{7} and L. . Varying the slug position takes care of the necessary differences in coil inductance for all these positions.

A single whip antenna may be used for both broadcast and amateur reception. A jumper connection betwern sections A and E of S_{1} completes the circuit betwern the antenna and the broadcast receiver, with the switeh in the position marked B.C, in Fig. 20-10. A filament
switch, S_{2}, is provided to remove the load of the converter tubes from the car battery when the receiver is being used for broadeast reception.

Broadbanding of the r.f. and mixer circuits is aceomplished through the use of low-Q coils and tight compling in the antenna circuit. The phate coil of the mixer is self-resonant at the intermediate frequencer giving a degree of browdess sufficiont to permit tuning the rereiver over a limited range noar the high end of the broadeast band, providing a vernier effert.

Construction

All of the metal components are formed from $\frac{1}{16}$-inch aluminum stock. The interior view, lig. 20-11, shows the "l."-shaped section which serves as the front panel and the bot tom plate of the unit. The panel and the bottom areas are each 5 inches square. lips, 12 inch wide, arr folded ower along the top and side edges of the pancl and also along the sides of the bottom section. The rolled-over edges are drilled and tapped to acoommorate $6-32$ machine serews.

A three-sided portion and a square top plate complete the converter cabinet. The sides are 5 inches squate and the rear wall is $\overline{5} / 8$ inches wide. All three sides are 5 inches high with ? inch flanges fulded over on the top edges and drilled and tapped for 6-32 serews. The sides and bottom edges of the ease are drilled to clear machine serews; the holes should line up with the tapped holes of the panel-bottom assembly. A rectangular hole, $17 / 8$ inches high and 2 inches wide, is cut at the bottom lefthand corner (as seren from the rear of the converter) of the rear wall, to provide elearance for the cable connectors. The top plate for the converter measures 5 by 5 inches. Holes, drilled atong the edges, allow the cover to be fastened to the flanges at the top of the cabinet.

The physical shape of the converter chassis can best be visualized by study of the interior views. The chassis is 5 by $47 / 8$ hy $13 / 4$ inches in size, with Hanges 1,2 inch wide folded over along the front and the bottom edges to provide a means of mounting. A $21 / 4 \times 33 / 4$-inch cut-out at the center of the chassis allows clearance for the bandswitch. A large round hole located in the rear wall of the chassis simplifies the job of finding the ascillator padder condenser when this control requires adjustment.

I vertical partition used as the mounting surface for the oscillator tuning condenser, C_{1}, also serves as the shicld bet ween the plate and the grid cireuits of the r.f. amplifier. It is $31 / 2$ inches wideand $43 / 4$ inches high, and is not ched to clear the main chassis and the spacer bars and rotor arm of the bandswitch. The partition is hold in place by a spade lug which passes through the chassis and by a mounting

Fig. 20.10 - Circuit diagram of the bandswitching v.h.f. converter.
$\mathrm{C}_{1}-15-\mu \mathrm{fd}$. variable reduced to one stator and 2 rotor plates (Nillen 2001.).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-3-30-\mu \mathrm{ffl}$, miea triminer (Millen 27030).
$\mathrm{C}_{8}, \mathrm{C}_{7}$ - $0.0015-\mu \mathrm{fd}$ ceramic (Centralab 1)A0180021).
$\left.\mathrm{C}_{8}, \mathrm{C}_{9}-100\right)-\mu \mathrm{fd}$, ceramic (Centralab $\mathrm{CC} 32 \%$).
$\mathrm{C}_{5}, \mathrm{C}_{10}-10-\mu \mu \mathrm{fl}$. ceramic (Centralab CC:20\%).
$\mathrm{C}_{11}-500-\mu \mathrm{ffl}$, eeramic (Centralab $)(6001)$.
C.12-0.01- $\mathrm{\mu fd}$. ceramic (Centralab) 101800.3 .1).
$11_{1}-2200$ ohms, $1 / 2$ watt.
$\mathrm{h}_{2}, \mathrm{l}_{6}-680$ ohms, $1 / 2$ watt.
$1 R_{3}$ - 1.5 megohms, $1 / 2$ watt.
R_{4} - 12,000 ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{K}_{7}-50(0)$ ohms, 10 watts.
Li, 1,2-4 turns No. 28 d.s.c. elose-wound over ground ends of $I .3$ and $/ .4$.
lip which is screwed to the bottom side of the cabinet. It is located 3 inches in from the front edge of the chassis.

The heater switch and the pilot-light assembly are mounted at the lower left- and

 elose-wound on $3 / 8-i n c h$ diameter form: slug. tuned: inductance range 0.35 to 1.0 hh . (Cambridge Thermionie Corp. I. $\$ 3-30$ V(c.)
L. 9 - Scrambletype winding on $3 / 8$-inch slug-tuned form; indictance range 32, in $7.50 \mu \mathrm{~h}$. (Cambridge Thermionic Corp. Is 3.1 Ve.).
I. 10 - 20 turns No. 28 d.s.e. seramble-wound next to La. I_{1} - Idjustable-beam dial-light assembly.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial-eable jacks (Amphenol 7.5-['CI M). $\mathrm{J}_{3}-3$-prong cable connector (Jones P-303.113). $\mathrm{RFC} C_{1}-300-\mu \mathrm{h}$, r.f. choke (Millen 31300).
St A, B, C, D, E - - -gang 6-circuit bandswitch (Iwo Centralab SS sections).
$S_{2}-$ S.p.s.t. toggle switch.
right-hand corners of the front panel with the bandswitch at the center, $11 / 8$ inches up from the bottom edge. The selector-switeh index plate should have a rotor-shaft length of at least : 3 inches, and the switch wafers should be mounted on the shaft with the first separated from the index plate by 1 -inch spacers and with the second wafer separated from the first by $15 / 8$ inches.

The National MCN dial is eentered above the bandswitch with the control shaft 3 inches above the bottom edge of the panel. It is wise to cut the large mounting hole suggested in the diti-mounting instruction sheet and then do the final fastening down of the dial after the tuning condenser and its mounting plate have been permanently secured in place.

The interior view of the completed converter shows the (i:NJ amplifier tube in front of the shicld partition, with the grid inductances to the right of the tube. The padder condensers

Fig. 20.11 - Interior view of the converter. Only the oscillator is tuned by the front-panel control, climinating tracking problems.
for 27 and 28 Mc. are mounted on the forward coil. From left to right across the rear of the chassis are the mixer-oscillator tube, five of the slug-tuned induetances, and the regulator tule. The i.f. output coil and the two oscillator coils are mounted below the chassis, as seen in the bottom view of the chassis subassembly. The r.f. plate coils are above the chassis to the left of the $0 B 2$ regulator, the $28-M c$. coil being the one with the trimmer condenser mounted across the terminals.

Construction will be simpler if the builder uses coils as shown. The Type LS3 30-Mc. inductors will resonate at 50 Mc . with the tube and circuit capacitances, and only a small padder capacitance is required to tune them to 27 and 28 Mc .

Coaxial jacks for the antenna and i.f. output cables are at the rear of the chassis to the left of the power-cable jack. They are closely grouped so that the input and output cables may be taped together to form a common cable.

Wiring can be done readily if the subasscmily method is employed. The bottom-view photograph of the chassis, Fig. 20-12, shows how the circuit components are closely grouped around the tube sockets, with wiring completed to the point of making connertions to the band-switch. Twit-Lead of the 75 -ohm type is used to make the connection between the antenna input jack and the bandswitch. The two wires enclosed in spaghetti at the right of the chassis in the bottom view are the 6.3 -volt leads which go to the heater switch.

Testing

The heater requirements of the converter are $(6.3$ volts at 0.625 amp ., and the plate supply should deliver 200 to 250 volts at 25 to 30 ma. These may be drawn from the receiver with which the converter is to be used, or a separate supply may be employed. With power turned on, the plate voltage of the mixer and r.f. amplifier should measure 105 volts and the 6 Ali5 cathode resistor should provide a drop of approximately 2 volts. The 6.165 cathode current should be

Fig. 20.12 - Construction of the converter is made easier if as nuch wiring as possible is done before the assembling is completed. This bottom view of the chassis subassembly shows the wiring completed to the point of connection to the bandswitch.
about 8.5 ma . The regulator-tube drain will be about 8 ma .

Alignment of the converter is made most simple if a calibrated signal generator is available, otherwise amateur transmitter signals of known frequency may be used. The r.f. and i.f. eircuits ean be peaked on background noise. The oseillator stage should be on the low side of the signal frequency. It is possible to vary the bandspread of the converter over a wide range. With a fairly low order of padder capacitanee, and with the inductance increased by the tuning slug, the 10 - and 11meter bands ean be covered with one swing of the tuning dial. Anyone not interested in 11 meters can increase the bandspread on the 10 -meter range by adding more padder capacitance and by decreasing the inductance of L_{8}. The converter as shown has 13 divisions of bandspread at 11 meters and 52 divisions at 10 meters, with the logging of frequencies made on the B scale of the dial. Bandspread for the $50-\mathrm{Mc}$. band is 48 divisions on the A scale. This spread may be increased by the same method.

Some operators favor a selected group of frequencies within a band. A slight improvement in the performance of the converter can be made in this ease by peaking the r.f. amplifier circuits at a favorite spot rather than at the center of a band. There may be a tendency toward regeneration in the $50-$ Mc. r.f. amplifier, however, if the input and plate circuits are peaked at precisely the same frequency making stagger tuning desirable.

Reducing Spurious Responses

In localities where there are stations operating in the high F.M band a converter or receiver having broadband r.f. stages will experience considerable interference on the $50-\mathrm{Mc}$. range. This can be eorrected in several ways, the simplest being the insertion of a 100-Mc. trap in the antenna lead.

A Crystal-Controlled Converter for Two-Meter Mobile Reception

Abstract

Fig. 20.13-1'op view of W2t I'H"s arystal-controlled comurter for 2 meter mohile reepotion. The merillator-multiplier tube and erystal are at the left. At the right are the r.f. amplifitr, miver ant i.f. amplifier. looking up from the bettom. Because ini extranal adjustmentare meded. the comertor may Ir Inilt in almost ans shafer that will lit avail .har frace in the ear.

The 14-Me. mobile converter shown in Figs. 20-13 through 20-15 is dexigned primarily tor mobile operation. Therefore to serve the aims of simplicity, compactness and low hattery drain, some of the fratures that might lee considered desirable in a home-station unit have been omitted. Howerer, the cost is low and the performance of the systom is entirely satisfartory, both as to stability and sensitivity.

Circuit

Since the tuning lange of the asual car browtcast receriver is insufficient to permit cover:uge of the entire 2 -meter hand without changing arstabs, this converter is designed to work into another converter which, in tarn, works into the regular (ab recoiver. This serend eonverter is used as at tunable j.f. and should (enver the sange of 26 to 30 Ne to provide the necteswary f-Me. range to take care of the whole of the 2 -meter band.

The r.f. stage uses a bi. L k 5 , pentode connected. This results in a slight sacrifiere in noise figure, compared to that obtainable with a trioder lut with the other noises usually prevalent in mobile work, the ultimate in first-tube is not so important in practice. The mixer is at 6.2131 triode

The oscillator is the simplest form of triode circuit, using at erystal at 39.33 Me. in the first half of the eiJti, the second portion tripling to 118 Mc. Crustits such as the James Knights JK-1H7 or H-17:3, the Bliley 13H-6, or (iE (itilb, can be readily obtaned tor this frequener.

Where the mixer is asparate tube from the oscillator-multiplier, some injertion coupling may be neeressary, although the minimum required value should be usend. The $1 . \overline{5} \mu \mu \mathrm{fd}$. neederi was obtained by eonnecting two $3-\mu \mu \mathrm{fd}$. units in series.

The i.f. stage, using a $6.1 \mathrm{~K}^{\circ} \mathrm{E}$, employs an output circuit that provides low-impedince coupling to the following converter

fig. 201.14- Bnttom view of the 2 -meter converter. "The eoril form at the upper left is the mixer plate circoit. (Brillator-multiplier compoments are at the upper right.

The converter is built on a 5×5-inch chassis that fits inside a standard utility box. Since there is no adjustment required during operation, the unit can be built in almost any shape that can be fitted into available spare in the car. The coils and condensers are mounted under the chassis, and once the intitial adjustment is made, they are left alone.

In order to isolate the input and output eircuits, of the r.f. amplifier, a small right-angle shield is placed across the 6Ali5 socket in surh a way as to enelose the antenna coil. The shied may be seen in the lower left side in the bottom view of lig. 20-14. The antenna is connected direetly to the grid coil through coaxial cable.

The mixer output coil, L_{4}, is mounted between
the 6AB4 and the i.f. amplifier tube, in the upper right-hand corner in the top view of Fig. 20)-13.

It a supply voltage of 150 , the converter drain will be about 1.5 ma . If a higher supply voltage is used. R_{15} should be increased acoordingly. Adjustment is straightforward. The slug in L_{5} is first adjusted for maximum background noise in the output of the system. Then L_{4} is adjusted for maximum response on 2 -meter sionals in the most-used part of the band. L_{1} can be peaked up by sifucezing the turns together or spreading them apart slighty as needed.

With a l!-inch whip good signals have been ohtainod with this converter at distances up to 3() miles or more.

Fig. 20.15 - Schomatic diagram and parts list for the erystal-eontrolled 2 -meter converter. If erystals lower in frequency than 30 Wc . are to be used an overtone oseillator circuit can be substituted for the crystail circuit shown.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{18}, \mathrm{C}_{19}-0.001 \mu \mathrm{ff}$.
$\mathrm{C}_{4}, \mathrm{C}_{11}-5 \mu \mu \mathrm{fd}$.

$\mathrm{C}_{6}-1.5 \mu \mu \mathrm{fd}$. (two $3-\mu \mu \mathrm{fd}$. in series).
$\mathrm{C}_{7}-10 \mu_{\mu} \mathrm{fd}$.
$\mathrm{Ci} 2-30 \mu \mu \mathrm{fl}$.
$\mathrm{C}_{15}, \mathrm{C}_{13}-1-30-\mu \mu \mathrm{fd}$. eeramie trimmer.
$\mathrm{C}_{18}-25 \mu \mu \mathrm{fll}$.
(All fixed capacitors eeramie.)
R_{1} - 150 ohms.
$\mathrm{H}_{2}-10,000$ ohms.
H_{3} - 0.68 megolm.
H_{4} - 1000 ohms.
R_{5} - 3300 ohms.
$\mathrm{H}_{\mathrm{B}}-\mathbf{0 . 1}$ megohm.
R_{7} - 680 ohms.
$\mathrm{R}_{8}-39,000$ oh ons.
$\mathrm{R}_{9}-7000$ ohme.
$\mathrm{R}_{10}-1500$ ohms.
$\mathrm{R}_{11}-\mathbf{4 7 , 0 0 0}$ ohms.
$\mathrm{K}_{12}, \mathrm{H}_{14}-1 \mathbf{1 0 0}$ ohms.
$\mathrm{R}_{13}-1.22 \mathrm{megoh}$ m.
$R_{15}-56(1)$ ohms. I watt. (Ill other resistors $1 / 2$ watt.)
1.1-is turns. No. $16,2 / 8$-inch diam., $1 / 2$ inch lonk, tapped at $11 / 2$ turns.
$\mathrm{L}_{2}-1 / 2$-watt rexistor wound full of No. 30 enameled wire.
1,3 - 3 turns No. $16,3 / 8$-inch diam., $1 / 4$ inch long.
$\mathrm{L}_{4}-10$ turns Vo .24 enam. on ${ }^{1}{ }^{3} \xi_{2}$-inch diam. form (Villen 69041), brass slug.
$\mathrm{L}_{5}-10$ turns No. 20 enant, on $1 / 2$-inch slug-tuned form from 13(-624 receiver. National $\mathrm{X17}-50$ also usalle.
$L_{6}-11$ turns No. 18, $1 / 2$-inel diam. (B \& W No. 3003 Miniductor).
$1,7-3$ turns No. 18, $1 / 2$-inch diam.
$1 \times, \mathrm{La}-1 / 2-$ watt resistor wound full of No. 18 enam.
J_{1} - Corial fitting, female.
J_{2} - Coaxial fitting, male.
S_{1} - Double-pole single-throw toggle switeh.

A 6-Band Mobile R.F. Assembly

The circuit and construetional details of a 6 -band transmitter for mobile work are shown in Figs. 20-16 through 20-20. Maximum power input will vary from about 30 watts with a 300 volt supply to approximately 65 watts at 600 volts.

Multiband tuners in the output eircuits of the last two stages cover all 6 bands. The two tuners are ganged to a single control. The output eireuit of the oscillator covers the 3.5- and 7-Me.

Fig. 20-16 - Front view of the 6-1and mobile transmitter. The control hnoh, for sin_{2} is located in between the meter and the dial for C_{3} and C_{4}, N_{1} is directly below the erystal socket, with the knols for C_{2} and C_{6} to the lef t and right, respectively. J_{1} and J_{5} are at the lonttom of the $4 \frac{7}{8} \times 61 / 4$-inch panel. The perforated aluminum cover is 9 你 inehes deep and has a hole punched in the left side to permit adjustment of C_{1}.
bands with a single eoil. C_{1} adjusts feed-batek for best crystal performance. (2 may be used as an excitation eontrol. L_{2} and L_{5} are v.h.f. parasitie suppressors. R_{3} is important in leveling off and broadening the response of the driver output cireuit. It is also an important aid in stabilizing
the last two stages. C_{5} provides a tracking adjustment. $S_{1 A}$, in the central position, grounds the sereen of the 6146 while adjusting the two preceding stages, and S_{13} selects either of two output links, L_{7} for 80 - and 40 -moter output, and L_{9} for the other bands. Loading can be adjusted ber C_{6}.
S_{2} switehes the 10-ma. meter to rad plate current of each stage, grid current of either of the last two stages, or modulator plate current. R_{1} and R_{2} inerease the meter reading to a maximum of 50 ma . Similarly, R_{5} and R_{6} inerease the fullscale meter reading to 250 ma. J_{4} is the connector for the power-supply cable, while J_{3} takes a cable from the modulater unit (see Fig. 20-22). J_{5} is a mierophone jack with a contact for a push-to-talk eireuit.

Construction

The panel, chassis plate, partition and con-neetor-mounting bracket are made from . Alooa 2SII-14 alominum sheot o.okit inch thick. The eover that houses the unit is cut from perforated aluminum sheet 0.051 inch thick. Lengths of $1 / 2 \times 1 / 2 \times 1 / 6$-inch aluminum angle stoek are used in the assembly.

The panel is $47 / 8$ by $6 \frac{1}{4}$ inches, and a rearview sketch is shown in Fig, 20-19. Lengths of angle stock, drilled and tapped to accommodate machine screws, are fastened atong the four edges of the pancl, on the inside. The strips of angle must be set in from the edges of the pamel by the thickness of the eover material. The angles are fastened to the back of the panel by (i-32 serews in the No. 28 holes skirting the adges of the panel. The two pieces that meot at the upper right-hand corner (rear view) must be filed out to clear the round case of the meter. Ther must also be drilled to clear the No. 4 screws used to mount the instrument.

Holes marked A and B are used for fastening a $51 / 8$-inch length of angle across the back of the panel to serve as a support for the front edge

Fig. 20-18 - Wiring diagratn of the six-band mobile transmitter.
$\mathrm{C}_{1}-3.30-\mu \mu \mathrm{f}$, trimmer.
$\mathrm{C}_{2}-110-\mu \mu \mathrm{f}$. variable (Hammarlund MC.110-S).
C_{3}, (C4 - $110-\mu \mu \mathrm{f}$.-per-section variable (Hammarlınd M(I)-140. I). (Ganged to single control.)
$C_{s}-14-\mu \mu \mathrm{f}$, midget variatile (Johnson 15M11).
$\mathrm{C}_{6}-325-\mu \mu \mathrm{f}$. variable (Hammarlund MC-325-M1).
$k_{1}, l_{2}-5$-limes meter shumt: 60 inches No. 34 enam., seramble-wound on 1 -negohm, $1 / 2$-watt resistor.
$\mathrm{K}_{5}, \mathrm{~K}_{\theta}-25$-times meter shmm: three $321 / 2$-inch lengths No. 34 enam., connected in parallel and seram-ble-wound on 1 -megohm, $1 / 2$-watt resistor.
$L_{1}-11 \mu h: 43$ turns No. 24 , 1 is inches long, $5 / 8$-inch diam. (13 \& 112008).
1/2- Parasitic choke: 1 turns No. 16, 1/4-inch diam., turns spaced wire diam.
Is - $6 \mu \mathrm{~h} .: 20$ turns No. $24,5 / 8$ inch long, $8 / 4$-inch diam. (3 \& $\mid 13012$).
 diam. (B \& W $\mathbf{W 0 0}{ }^{\circ}$).
Ls - Parasitic choke: 6 turns No. $16,1 / 4$-inch diam., turns spaced wire diam.
$L_{6}-6 \mu h_{\text {. }}: 20$ turns No. $20,11 / 4$ inches long, 1 -inch diam. (13 \& W 3015).
$L_{7}-5.2 \mu h_{\text {: }}: 181 / 2$ turns No. 24, 2 倍 inch long, $3 / 4$-inch diam. (13 \& W 3012).
of the chassis plate. The holes in the angle should be located so that the top surface of the chassis plate will he $25 / 32$ inches up from the bottom edge of the panel. The chassis plate must be notched so that its front edge will fit flush against the back of the panel.

The partition on which the (6146 is mounted is made from : $55^{3} \frac{1}{32} \times 3$-inch piece of aluminum. lend a $3 / 8$-inch mounting lip along the bottom edge, and then clip or round off the two top corners to clear the cover when it is slipped on.

Now fasten the chassis-supporting angle to the panel. Slip the front edge of the chassis plate over the angle, and hold it there while you slide the partition up against the back of the panel, keeping the bottom lip of the partition tight against the chassis. Then, using the panel as a template, scribe a hole in the partition that matches hole C (Fig. 20-19) in the panel. Notch out the mounting lip of the partition to clear the ceramic base of the rear tuning condenser when the latter is mounted.

The 6146 socket is centered on the partition with its mounting holes in a vertical line, and the

Ls - 2.85 , $h \mathrm{~h}: 161 / 2$ turns No. 20,1 inch long, $3 / 4$-ineh diam. (B\& W 3011).
 diam. (B \& W I 301 I).
Nope: See text for additional data on L_{s} and L_{θ}. J_{1} - Midget elosed-cireuit jack.
J_{2} - Coaxial-cable cernmertor (imphemol 83-111).
J_{3} - 8 -prong female chassis connector (Amphenol 78-58).
$\mathrm{J}_{4}-8$-prong $\underset{86 . \mathrm{Cl}}{\mathrm{C}}$) malc chassis connector (Amphenol $86-\mathrm{Cl}^{\prime} 8$).
J_{5} - Midget 2-circuit microphone jack.
MA - 0-10-ma. d.e. meter (Simpson Model 12\%).
$\mathrm{S}_{1 \mathrm{~A}}$ - 1-pole 6-position (3 used) selcetor switeh (Centralab 1'A-1).
$S_{18}-1$-pole 11-position (3 used) selcetor switch (Centralab) 1PA-11).
Note: SiA and SIB mounted on Centralab P'-300 index asscmbly.
$\mathrm{S}_{2}-2$-pole 6 -position selector switeh (Centralab P' 1 -2003 or 1' $\mathbf{1 - 3}$ sertion on 1' $\mathbf{A}-300$ index).
Linless otherwise specified, all resistors are $1 / 2$ watt, and all fixed capaciturs are dish ceramic.
*indicates a mica capacitor.
grid terminal to the left as viewed from the rear of the pratition. The socket is mounted on $3 / 4$-inch tubular spacers. A $1 / 2$-inch clearance hole should be drilled in the partition opposite the grid terminal. Considerable time will be saved if the disk ceramics and leads connerting to the socket are attached and soldered bofore the socket is munted permanently.

The partition is placed $43 / 6$ inches from the panel, and another $1 / 2$-ineh hole, lined with a rubber grommet, is drilled in the chatssis, directly below the socket, to pass filament, cathode, and sereen leads.

The bracket that supports J_{2}, J_{3} and J_{4} (see bottom view) should now he fabricated. Use the $2 \times(33 / 4$-inch piece of aluminum. The bracket has a $3 / 8$-ineh mounting lip bent up along one side, and $3 / 4$-inch braces bent up at the ends. The finished height of the bracket should be $13 / 5$ inches, and the length $51 / 4$ inches. When the bracket is finally mountel, it is held in place by machine screws that pass through the chassis and then thread into a 5 -inch length of angle centered along
the edge, on the opposite face of the chassis plate.
Temporarily mount the panel components, and the partition, with the 6146 inserted in its socket, and the amplifier tank capacitor, C_{4}, in place. Seribe lines on the chassis, along the inner edges of the ceramie bases of C_{3} and C_{4}, aross the rear of C4, and mark hole centers directly under the inside stator terminals of the condenser C_{4}. The latter will indicate the positions of the feadthrough insulators that support L_{8} and L_{9} (see bottom view). Now make marks on the chassis indicating the rearmost edges of all panelmounted parts, and ano draw a line adeross the chassis, holding the seriber against the front of the partition.

All components maty now be removed from the chassis so that the positions of the tube sockets, r.f. chokes and other small components may be marked. The soeket for V_{1} is centered 37_{16} inches back from the panel and $3 / 4$ inch from the side of the chassis. I_{2} is centered $13 / 4$ inches below V_{1} (top view). Dins 4 and 5 of each socket shouhd face toward the rear of the chassis.

In addition to the feed-through insulators for $L_{8}-L_{9}$, and the phate lead of V_{2}, another must be provided for the lead hetween the erystal socket and V_{1}. Also, holes lined with rubber grommets should be provided in the chassis for the leads that connect to $S_{2}, R F^{\circ} C_{4}$, and $R F^{2} C_{5}$.
L_{1} and L_{3} are fastened to their respective eoneinsulator supports with Duro cement. Allow the cement to dry overnight before mounting these units.

A lug soldered to the last turn (plate end) of L_{6}, and then mounted on a $1 / 2$-inch cone insulator, provides support for this coil. The cold end of $I, 7$ is supported in a similar manner.

No. 12 tinned wire is used to support the plate end of L_{88}, and the C_{6} conds of both L_{7} and L_{99}.

The $L_{8}-L_{9}$ assembly is made from a single length of $\mathbf{B} \& W$ Miniductor. Use a $201 / 2$-turn
length of TYpe 3011 , and brak the winding at 4 turns from one end, leaving the support bars intaet. After heavy leads have been soldered to the four free ends of the assembly, monnt and then wire as shown in Fig. 20-18.

The shafts of \prime_{3} and C_{4} are ganged with a metad coupler (Millen Type 3!00:3).
(${ }_{5}$ is mounted on a bracket, 1 inch high, with a $1 / 2$-inch lip, made from a ${ }^{5}$-inch strip of aluminum.

For operation with a plate supply delivering between 300 and to 0 volts, a 20,000 -ohm 2 -watt screen-dropping resistor (R_{4}) works well. This valuc of resistane ean be most conveniently provided by mounting a pair of 10,000 -ohm 1-watt resistors in sories on the terminals of $S_{1 \mathrm{~A}}$.
R_{6} is a pair of 12,000 -ohm 1 -watt resistors connected in parallel and soldered between rotor and stator terminals of the seretion of C_{3} that connects to ('s.

A four-terminal tie-point strip to the rear of V_{1} and V_{2} connects to the $13+$ ends of R_{8}, R_{10} and $R P C_{2}$, and to the meter side of R_{9}. A singleterminal strip provides a junction point for ${ }^{(}{ }_{7}$, R_{7} and $R F_{1}{ }_{1}$.

The five seetions of the cover are held together by machine serews. These serews pass through the perforated aluminum and then thread into the lengths of angle that run along all closed edges of the cover. A cutont measuring 19,$1 ; b y \frac{1 / 8}{8}$ inches is made in the rear wall to provide clearanee for the power and anteman connectors and their eables.

Adjustment

If it is not convenient to use the mobile supply for initial testing of the transmitter, any aceoperated supply delivering between 300 and tono volte at about 150 mat may be used. If the voltage is higher than 300, it should be fed into Terminal

Fig. 20-19-1.ayont Irawing of the panel (rear view) for the sixband molile transmitter.

3 of J_{4}, and a dropping resistor connected between Terminals 3 and 4 . This resistor should have a value of 50 ohms for each volt that the power supply elelivers above 300 volts. Thus, a power supply delivering 350 volts should have a dropping resistince of $50 \times 50=2500$ ohms. The negative terminal of the supply should be connected to Terminal 7 of J_{4}. Heater comeretions are made at Torminals 1 and 7 of J_{4}.

For 3.5- and $7-\mathrm{Mc}$, output, 3.5-Me. crystals may be used, (6-Mce. arystals are used for $2 \overline{6}-\mathrm{Me}$. output, and 7 -Mc. crestals may be used for 14 -, 21 -, and 28 -Mc. operation. The oseillator output circuit may be resonated at any of these erystal frequencies by adjustment of C_{2}. If erystal operattion appears to be sluggish, ('a should be adjusted for maxinum adivity. At 300 volts, the oscillattor off-resonanere plate current should be about 30 ma. At resonamer, the plate current should drop to about 6 mat, and the grid current to I_{2} should simultancously peak at 1.5 to 2 ma .

With excitation at the grid of l^{2}, the output circuit of l_{2} can be resonated bex adjustment of the gang-tuning control. Resonance at 3.5 Mc . should be found with the ganged tuning condensers set well toward maximum capacitance. Resomanee at 14 Me, should oceur at about 75 per cent of maximum capacitance. Resonane at 21,7 , and 28 Me., in that order, should eome at approximately 35,20 , and 10 per cont of maximum. This stage is operated straight through on 3.5 Me., and as a doubler to 7 Mo., using a 3.jMe. erystal. With a $\bar{\sigma}$-Me. errstal, it is used ats a doubler to 14 Mc ., a tripler to 21 Me ., and as a quadrupler to 28 Mr . It is also used as a quadrupler in obtaining output at 27 Me , using (i-Me. reystals in the oscillator.

At resonance, the plate current to V_{2} should be approximately 10 ma., and grid current to the 6146 should run 4 ma. or more on 3.5 and 7 Mc ., and at least 3 ma. on the remaining bands.
llate voltage can be applied to the amplifier hy placing a jumper between Terminals 3 and 6 of J_{3}. Whenever it is desired to cut off the amplifier while adjusting the preceding stages, this can be done by turning S_{1} to the central position in which $S_{1 A}$ grounds the sereen of the 6146 .

For preliminary tracking adjustments, C_{5} should first be set at minimum capacitance. Nor-mal-grid current for the 6146 is approximately 3 ma. If it exceeds this value appreciably, exeitation may be reduced by detuning \dot{C}_{2} in the oscillator circuit slightly to the high-frequency side of resonance.

With proper excitation applied, the moter switch should now be turned to read amplifier plate current, and the gang control adjusted to resonanee as indicated be the dip in plate eurrent. The loading should then be adjusted, by means of C_{6}, so that the plate current at resonance is as close to 100 ma, as possible,

With the gang control adjusted aceurately to amplifier plate-current dip, the meter should be switched to read the grid current of V_{3}. If a readjustment of the gang control is neeessary to obtain maximum grid current to $I^{*}{ }_{3}, C_{5}$ should be readjusted slightly, and the process repeated. If the load is not too seriously reactive, an adjustment of C_{5} should be found where maximum grid current and minimum plate current in l^{\prime}, occur at the same setting of the gang control. So long as the load is very close to resistive, this same adjustment should hold for all binds. (Originally described in (QSTV, Oct., 1954.)

Fig. 20.20-In this lottom view of the mothile transmitter, C_{2} and $C_{i s}$ are to the left and the right, respertively, of $S_{1} . S_{1 A}$ is the section closest to the panel. I_{1} (mounted on a $1 / 2$-incl cone insulator), C_{1}^{2} and RFC_{2} form a triangle to the rear of $C .2$. The plate-cireuit feed-throngh, $R F^{\prime} C_{3}$, and the tube socket - all for 12 are to the rear of Sib. I. and L_{7} are mounted parallel with the rear of the chassis and the $L_{8}-L_{8}$ assembly is supported by feed-thromgh insulator above and to the left of $L_{6} . J_{2}, J_{3}$ and J_{4} are mounted on an alunimum bracket shown at the but. tom of the photograph.

A 25-Watt Mobile Modulator

Figs. 20-21 through $20-2 \cdot 4$ show a 25 -watt mobile modulator. While it is designed primarily for use with the preceding r.f. assembly, it is obvious that it can be used with any mobile or fixedstation transmitter whose input does not exceed 50 watts.

Fig. 20-22 shows the schematic of the modulator with an input circuit suitable for at crystal micro-

The $0.01-\mu$. condenser, C_{6}, is essential in improving the frequency response for voice communication. R_{5} is the gain control. R_{2} biases the first section of the 12 AX 7 , while R_{6} provides bias for the second section. R_{4} is a decoupling resistor. Bias for the 6 L 6 s is developed across R_{7}. It was not found necessary to by-pass the 6 L 6 screen resistor, R_{8}.

Fig. 20.21 - The modulator in the foreground is laid out on a homemate chassis measuring $11 / 2$ by $41 / 4$ by 65 inches, with $1 / 2$-inch lips along the sides. The interstage transformer, T_{1}, is centered between the shielded 12AN7 and the 6l.6s. The modulation transformer is at the rear of the chassis. J_{1} and the gain control are mounted on the front wall of the unit. 'The sides of the chassis are enclosed by the perforated cover when the latter is slipped in place.

Fig. 20-23 shows the changes in the speechanylifier eircuit necessary to adapt it for use with a carbon microphone. The first stage is converted to a grounded-grid amplifier with lowimpedance input, eliminating the need for a microphone matehing transformer. D.c. voltage for operating the carbon microphone is ohtained by connecting the microphone in sories with the two speceh-amplifier cathodes.

At maximum power output, the total drain is about 100 ma .

Fig. 20-22 - Circuit diagram of the 25 -watt modulator wired for crystal-microphone input. Unless otherwise sperified, all resistors $1 / 2$ watt.
R_{g} - See text.
J_{1}-8-prong male connector (Amphenol 86-CP8).
T_{1} - Interstage audio transformer, single plate to pushpull grids, secondary-to-primary turns ratio 3 to 1 ('Triad A.31N).
\mathbf{T}_{2} - Universal modulation transformer, 30 watts (L'TC S-19).

A single cable connector, J_{1}, is used for all of the voltage leads entering and leaving the audio ehassis. The pin numbering and the wiring of J_{1} are arranged to correspond with those of J_{3} of the r.f. unit. If the wiring of J_{1} of the audio chassis and that of J_{3} of the r.f. unit are made to correspond, it will not only assure that the proper
the front edge of the chassis and, as seen in Fig. $20-24$, is mounted with Pins 4 and 5 facing toward the left. T_{2} is centered over the cut-out to the rear of the 6L6s. Terminal connections for the transformer are discussed later.

Nearly all of the components mounted on the under side of the chassis are identified in the cut

Fig. 20-23 - Circuit diagram of the carbon-microphone input circuit for the 25 -watt modulator. All resistors, $1 / 2$ watt.
T_{1} - See Fig. 20-22.

voltages are fed to and from the audio circuits, but it will permit monitoring of the modulator plate current by means of the transmitter metering circuit.

Construction

As is the case with the transmitter, three types of aluminum - plain sheet, perforated sheet, and angle stock - are used in the fabrication of the audio unit. The specifications for the material used are as follows:

Aleoa 2SH-14 aluminum sheet, 0.064 inch thick:

Chassis - $51 / 4$ by $91 / 4$ inehes
Bottom plate - $43 / 8$ by $61 / 4$ inches
Perforated aluminum sheet for cover, 0.051 inch thiek:

2 pes. (sides) - $51 / 4$ by $61 / 4$ inches
2 pes. (front and rear) - $311 / 16$ by $45 / 16$ inches
1 pe. (top) - $43 / 8$ by $6 \frac{1}{4}$ inches
Angle stock: Approximately 45 inehes, $1 / 2$ by 1/2 by $1 / 16$ inch

In addition to the above, 5 dozen No. 6 selftapping screws are used in the assembly.

The two photographs that illustrate the modulator show how the largest sheet of plain aluminum is bent to form a chassis measuring $11 / 2$ by $41 / 4$ by $61 / 4$ inches. Lengths of $1 / 2$-inch angle, fastened flush with the bottom edges of the end walls, provide surfaces to whieh the bottom cover may be fastened.

The top view of the unit shows the locations of the tubes and the transformers.

The two 6 L 6 soekets are mounted in line, with $21 / 4$ inches between centers, and are centered back from the front of the chassis by a distance of $27 / 8$ inches. As seen in the bottom view, the sockets are mounted with the keys pointing toward the right.

The interstage transformer, T_{1}, is centered $13 / 4$ inches back from the front of the chassis. A pair of holes, equipped with rubber grommets, provide through-chassis clearance for the primary and secondary leads of the transformer. The socket for the 12AX7 occupies the space between T_{1} and
label of Fig. 20-24. The arrangement of parts shown in this view is the one used when the speech amplifier is wired for crystal-microphone input. Resistors R_{1}, R_{2}, R_{3} and R_{6} (Fig. 20-22) are grouped around the 12 AX 7 tube socket, and C_{1} is conneeted between Pin 7 of the soeket and ground, with the shortest leads possible. The interstage coupling eapacitor, C_{3}, mounted parallel with the front wall of the chassis, is supported by pin 6 of the socket at one end and by the input terminal of the gain control, R_{5}, at the ethor end. A one-terminal tie-point strip, located direetly above the right-hand 61.6 socket (Fig. 20-24) serves as the common connection point for R_{3}, R_{4} and C_{4}. Belden type 8885 wire is used wherever shielded leads are shown in the cireuit diagram.

The top view of the modulator shows the perforated cover in the background. Lengths of $1 / 2^{-}$ inch angle, held in place by moans of self-tapping serews, are run along the closd edges (inside) to hold the box together. The sides of the cover extend down below the front and the rear sections by a distance of $19 / 16$ inches and thereby enclose the open sides of the ehassis when the cover is placed over the modulator unit. The cover and the chassis are ordinarily held together by means of self-tapping serews which pass through the perforated aluminum and then tap into the flanges of the chassis.

Testing

If the modulator is to be bench tested before it is installed in a vehicle, it is convenient to use a.c. for the heaters. In this ease, the 6.3 -volt transformer should be rated at not less than 2 amp. and must be connected to Terminals 1 and 7 of J_{1}. Plate voltage for the 12AX7 may be obtained directly from a 300 -volt supply connected to Terminal 2 of J_{1}, or it misy be taken from the 6L6 plate supply via a dropping resistor connected between Terminals 2 and 4 of J_{1}. If the plate supply for the (iL6s delivers 360 volts - the most desirable voltage for the tubes - the 1-watt dropping resistor should have a value of 22,000 ohms, provided the speeeh amplifier has been
wired for crystal-microphone input. If the grounded-grid input circuit has been used, a $15,000-\mathrm{ohm}$ resistor will be satisfactory. If the voltige applied to Terminal 4 of J_{1} is other tham 360 volts, the correct value of dropping resistance may be based on a combined plate-current flow for the $12 A N 7$ of either 4.5 mat (erystal-miserophone input) or 6.6. ma. (carbon-mierophone input).

If a 360 -volt supply is connored to Terminal 4 of J_{1}, it is not necossary to rmploy l_{9} of Fig. 20-22. On the other hand, if the plate supply output is in excess of 360 volts by any substantial imount, it is advisable to redue the plate voltage for the filfos be means of a resistor (R_{9}). This resistor should have a value of 10 ohms for carch volt that the power supply delivers above 360 volts.

During the bernch testing of the adodio circuits, it is convenient to load the serondary of T_{2} with a slider-type 25-watt resistor having at value equal to the r.f. lowd impodance ($/ Z_{\text {on }}$) with which the modulator will eventually work. The Z_{m}, or lowd resistane prosented by the modulated r.f. amplifier, is equal to

$$
Z_{\mathrm{m}}=\frac{E_{1}}{I_{\mathrm{1}}} \times 1000 \text { ohm: }
$$

where $E_{5}=1$.e. plate voltage

$$
I_{\mathrm{p}}=\text { D.c. plate current (mat.) }
$$

For example: The 6146 r.f. amplifer is to be operated at 450 volts with a plate current of 100 mat.

$$
Z_{\mathrm{m}}=\frac{450}{100} \times 1000=4500 \mathrm{ohms} .
$$

The chart furnished with the universal modulation transformer should be consulted for the connections that will permit a match between the

9000-ohm plate-to-plate load of the bldis and the anticipated r.f. load resistance.

Methods of testing audio circuits are treated in detail in the modulator equipment chapter. However, a quick-anel-rasy test of this unit can be made by tapping wither a spataker or a pair of headphones areoss a portion of a 2 -whatt load resistor. The resistor should be conneded awoss Torminals 3 and of of J_{1} :and the slider should te adjusted to give reasomable output leverg. (of course, it is both damefromes and wheressarn! to apply der voltage to the secondary of T_{2} during this charek.

The mierophone should be comereted betweren Torminale $\bar{\sigma}$ and 8 of J_{1} and power applied. Figs. 20-22 and 20-23 show the approximate potentials that may be experted throughout the arenit provided that all 3 tubes are behaving property. Plate cument for the bldis should idle at athproximately 88 mat, and should rise to 100 mat or so with the applieation of voiere modulation. If a millammeter bas beron inserted in the platevoltige load external to Termental 4 of J_{1}, it will register the didi sereen-current swing of 5 to 17 mat. as well ats the phate drain.

Foull output from the efots should be obtained when the erystal-microphone input eireuit is adjusted, be morans of R_{5}. for somewhat lese than half gain. With the earbon-midrophone input circuit amployed, full power from the modulator should be obtained with gain control at the approximate midsate.

In an aretual moloile installation, the modulator unit may be separated from the ref. assombly bey any eonveniont distamer. The cobble used to conneret J_{1} of the modulator with J_{3} of the r.f. seretion should to mate with individually-shiolded leats (Belen No. 8885 is quite suitable). It is also advisable to atd a $100-\mu \mu$ f. eapacitor betwern Terminals 7 and 8 of J_{3} of the transmitter. This ber-phes cathatitor for the mis rophone output line will reduce the possibility of fered-burk when both the audio and the r.f. rircuits are atetivated. (0) riginally described in QS'T, Nov. 1954.)

Fig, 20.24 - Boltom view of the 2.-watl modulator. A eut-tind meamaring $13 / 4$ ly $21 / 4$ inches. lonated at the end of the chassis, provides acrerses to the modulation transformer terminals. C_{5} and R_{7} are mounted on a tie. point strip at the lower lefthand corner and C C_{6} and R_{s} are centered lintween the cutont and the 61.6 tube sockete. C_{4} is loeated at the umper right-hand cormer, just to the right of C.2. Component sym. buls refer to lig. 20-202.

A Band-Changing Mobile Transmitter for 50 and 144 Mc.

Figs 20-25 through 20-30 show circuits and constructional details of a compact transmitter rovering the 6 - and 2 -meter bands. Band-changing is done entirely by the panel controls. The
circuit resonant at approximately $15 \mathrm{Mc} . C_{5}$ has sufficient range to tune the oscillator output circuit from 24 through 36 Mc . This circuit is tuned to 25 Mc . for $50-\mathrm{Mc}$. output from the transmitter,
tig. 20-25-The erystal is mounted above the meter switeh, to the left of the amplifier gridtuning rontrol. The tuning knob for the oseillator is at the lower left-hand side of the output switch, Sl. Controls for the output and amplifier plate circuits are at the right. The unit may be used vertically by orientating the meter. Ventilating holes should the drilled in the emd used as the top.

unit is only 3 inches deep, and therafore is suitable for instrument-panel monting.

Output on cither band maw be ohtained using crystals in the 8-, 12-, or 25-Mc. ranges. Although it is possible to operate the 2126 cutput stage at higher voltage, the unit is designed primarily to work from a 300 -volt 100 -ma. supply. A single 200 -ma, supply should take care of both this unit and a modulator in the latter case. Changing from one band to the other is accomplished through the use of wide-range tanks in the exriter, and a multicircuit tuner in the output. Metering aircuits are included.

Circuit

The circuit of the unit is shown in Fig. 20-27. Type 57603 are used in the Tri-tet oscillator and the driver stage. The oscillator has a fixed cathode
and may be tuned to either 24 or 36 Mc . for final output at 144 Me .

The multiplier output circuit, $C_{12} L_{23}$, covers the range of 48 to 72 Mc ., and operates as a doubler to 50 Mc., or as either a doubler or tripler (depending on the oscillator output frequency) to 72 Mc . for final output at $1+4 \mathrm{Mc}$. The multiplier is calpacity-coupled to the $21: 26$ amplifier grid. This stage operates straight through at 50 Mc., and as a doubler to $1+4$ Mc. A combination of fixed bias and grid leak is used. The value of fixed bias is not critical - 22 to 45 volts. The 22 K sereen resistor gives proper sereen voltage over a supply-voltage range of 300 to 400 volts.

Fig. $20-26$ - In this wiew the perforated top eover has been removed to show the eompleted transmitter. The input and output emmertors are on the rear chassis wall and the arabi subassembly is in the foregroumd, to the left of the metor witch. "llae \%shaped partition supports $C_{12} R F^{\prime} C_{4}$ and the 2F2(6. Ci2 is mounted on a feed-through hushing. T'he nscillator tuminge eapracitor, Co, is panch-manmed direetly helow Ci2. The butpuI switch, so is partially hidenen by the Zoshaped plate. The multicircuit tumer is at the upher end of the chassis, just helow the linh tuming condenser, Cis.

The plate tuner for the amplifier consists of a capacitor, C_{17}, and inductors L_{4} and L_{5}. Output from the amplifier is transferred to J_{1} by a seriestuned circuit consisting of C_{18}, L_{6} and $S_{1} . L_{6}$ is electrically subdivided by a tap which connects to C_{18}. That portion of L_{6} above the tap provides output coupling at 50 Mc ., and the lower section of the coil couples to L_{5} when S_{1} is set for $144-$ Mc. operation.

The metering circuit uses S_{2}, a 200-ma. d.c. milliammeter, and resistors $R_{4}, R_{8}, R_{10}, R_{12}$ and $R_{13} . R_{13}$ is connected to Terminals E and E_{1} of the switch and, in turn, to Pins 7 and 8 of the power-input connector, J_{2}. The latter set of connections allows the plate current of an external modulator to be checked by the meter.

Provision for connecting either a single or a pair of supplies to the transmitter is made at J_{2}. If a single 300 -volt pack is used for the entire unit, it is necessary to connect a jumper between Pins 3 and 5 of J_{2}. With separate supplies for exciter and final, connect the 300 -volt supply to Pin 3 and the amplifier supply to Pin 5. When a modulator is connected to the transmitter, connect the secondary of the modulation transformer between l'ins 5 and 8 of J_{2}, connect + h.v. to the 2 E 26 to lin 8, and then return the +h.v. lead of the modulation-transformer primary to Pin 7.

Construction

A $3 \times 5 \times 10$-inch aluminum chassis is used as the housing for the transmitter. The construction is made easier through the use of subassem-
blies. Fig. 20-29, along with the sketch of Fig. 20-28, identifies the components for the oscillatormultiplier section. The bracket supporting the components has $3 / 8$-inch lips along the right and bottom edges for fastening to the chassis. The wire leader that later connects to C_{5} should be about 3 inches long, while the five leads that will be joined to J_{2} and S_{2} can be about 5 inches long.

Fig. 20-26 shows a Z-shaped partition spanning the chassis. This can be made and installed most easily in two pieces overlapping and fastened together at the center. The height is made to fit the chassis depth. In Fig. 20-26, the segment lengths, from left to right, are $21 / 2,11 / 8$, and $21 / 2$ inches. Lips are bent at the ends and along the bottom for fastening to the chassis. A $11 / 4$-inch hole is punched in the center of the segment on which the 2E26 is mounted, while a small feedthrough bushing (Millen 32100) is set in the other segment. Position this bushing so that C_{12}, which is mounted on it, will be at the right level, and clear of the partition segment to the rear. The 2E26 socket is mounted on $5 / 8$-inch spacers. Prongs 1, 2, 4, 6 and 8, and the screen by-pass, C_{9}, should be returned directly to ground on the socket side of the partition. A 2-terminal tie point to the rear of the socket supports the heater lead and the h.v. end of the screen resistor, R_{11}.

Mount the meter-shunt resistors across the terminals of S_{2}. Join Contacts A_{1} and B_{1}, and connect 8 -inch leads to the rotor-arm contacts and to Stationary Contacts C_{1}, D_{4}, E and E_{1}. A

Fig. 20.28 - Drawing of the parts layout for the exciter subassemhly. A and B are 2 - and 5-terminal tie-point strips.

lead about 1 foot long should be soldered to Contart 1).

In constructing the multicircuit tuner, first reduce the $3006 \mathrm{~B} \& \mathrm{~W}$ Miniductor to a total of 141/4 turns. Without breaking the supporting bars, clip the winding at points that will leave 5 full turns at one end and $31 / 4$ turns at the opposite end. The 6 turns left intact between end windings are used as the output coupling inductance, L_{6}. Short leads of No. 16 wire should now be soldered to the free ends of the three windings. Also, solder a short lead $11 / 4$ turns in from the $14-$ Mc. end of the coupling coil. This should place the tap at the top of the coil when it is mounted.

To assemble the tuner, turn $C_{1 ;}$ with the insulated support har facing toward the partition. Place the coil about $3 / 8$ inch above the condenser, and bend the four leads from L_{4} and L_{5} into place. The outside ends of these sections go directly to the rear stator terminal of the condenser, while the inside lead of L_{5} goes to the front stator terminal. The inside end of L_{4} is grounded to the frame at the rear.

In mounting parts on the chassis, center J_{2} on the rear wall $41 / 4$ inches from the exciter end
of the chassis, and J_{1} in the lower corner of the amplifier end. On the panel side, the shafts for C_{17} and C_{18} are 1 ineh from the right end. S_{1} is centered $27 / 8$ inches from the right end, while the controls for C_{5} and C_{12} are $43 / 4$ inches in. A panel bearing is needed for C_{12}, which is fitted with an insulating shaft coupling. The remaining two controls are $65 / 8$ inches from the right-hand end. The meter is at the left-hand end.

The subassemblies may now be positioned while the mounting holes are marked. The bracket for the 5763 s is placed $31 / 4$ inches from the left-hand end of the chassis, while the rear end of the Z-shaped partition comes at $51 / 8$ inches from the same end.

Before fastening the subassemblies in place, proceed with the wiring. Connect S_{1} to L_{1} and J_{1}; solder the tilp on L_{6} to $C_{18} ;$ mount L_{2} on the terminals of C_{5}; connect the rotor arms of S_{3} to the meter.

Mount the exciter assembly and attach the proper loose leads to C_{5}, J_{2} and S_{2}. Mount a tie point at the right-hand mounting screw of the crystal socket, and fasten R_{9} between the tie point and Contact C of S_{2}. IRun leads to the crystal

Fig. 20-29-This subassern. My measures $215 / 10$ by $31 / 2$ inches and supports most of the eomponents for the exciter stages. Ci3, with one end floating free, is at the upper right-hand corner. 'The wire leaders at the bottom of the plate connect to the oscillator tank, meter switch and power connector, as shown by Fig. 20-27.

Voltage and Current Chart for the V.H.F. Mobile Transmitter												
Oscillator				Multiplier				Implifier				
Crystal Freq.. Mc.	$I_{\text {is }}$	J_{p}, Na.	Hate Frra., Wc.	E_{g}	E *	$I p$, Ma.	Plate Freq.. Ife.	$F_{\text {r }}$	$\begin{gathered} I_{\mathrm{a}} \\ \mathrm{If} a . \end{gathered}$	F_{*}	$\begin{gathered} J_{p_{n}} \\ \mathrm{I}_{\mathrm{a}} . \end{gathered}$	$\begin{gathered} \text { Jlate } \\ \text { Freq., Mr. } \end{gathered}$
8.3	210	20	25	-80	210	25	50	-190	4	135	45	50
12.5	235	15	*	-120	245	27	*	-210	4.5	120	${ }^{\prime}$	4
250	210	20	*	-60	210	25	*	-185	4	115	*	\cdots
8.0	210	20	24	-85	250	25	72	-155	3.2	170	50	114
120	240	16	24	-110	255	27	${ }^{6}$	-190	4	155	47	*
*	22.5	18	36	-115	245	**	*	-215	15	150	${ }^{*}$	*
210	210	$2!$	21	-65	250	*	*	-1.10	3	180	50	${ }^{*}$

socket and then mount the \%-shaped partition in place.

Testing

For 50-Mr. opration, the arystal frequency must lie within one of the following ranges: 8.3:3:3 to $9.0 \mathrm{Mr} \cdot: 12.5$ to $13.5 \mathrm{Me} \mathrm{M}: 25.0$ to 27.0 Mc . With a small is battery for fixed bias and a $300-$ volt supply conmeeted to the exater, but not the amplifier, tuning of the exciter at 50 Me. requires only that ('s and ('12 be resonated at 25 and 50 Mr. respectively. The chart shows the approximate operating conditions for the 5763 s .

Before testing the amplifier, turn the supply off and connere a jumper between lins 3 and 5 of J_{2}, and conned a 115 -wolt 10 -watt lamp to the output comedtor. S_{1} should be set at the $50-\mathrm{Mc}$. position. Apply power and resonate Caz, indicated by a dip in plate current. This should come well toward minimum caparitance. Sot Cis near full (ap)aditance and retune ("s for resonance. (The amplifier data in the chart were taken with the dummy load. In operation, the currents will depend upon loading.) If biasing voltages are cheeked, use a v.t.v.m., or a gemeral-purpose test instrument with a radio-frequency choke in-
ductance of at least 1 mh . comnered in series.
In tuning up for 14-Mr. output, work with the exciter stages only at lirst, using a erystal in any one of the following frequence ranges: 8.0 to 8.222 Mc.; 12.0 to 12.3333 Mr.: 24 to 24.666 Mr. If a 12-Me. crystal is selected, the oscilator maty be tuned to either 24 or 36 Mc. In either case, the multiplier must be tuned to 72 Mre. by C_{12}. The oseiltator is always tuned to 24 Me , with crystals in the 8 - and $2 \mathrm{t}-\mathrm{Mc}$. ranges.

In cherking amplifier oprration at 144. Mr., S_{1} must be in the $144-M \mathrm{C}$, position. The plate current will show a relatively small dip at resonance on this band. For resonance, condensers (${ }_{17}$ and C_{18} will be set well toward minimum capacitance.

Antenna

The tuned-link output circuit is designed for use with low-impedance antema systems, so quarter-wave whips arr rerommended. A logical system for mobite work would make use of a twosection 50-Me. whip that can be reduced to $14+$ Me. dimensions by removing a top section.

Fig. 20-30 shows the circuit of an appropriate modulator.

Fig. 20-30- (irronit of a modulator for the 50- and 1 H. Mc. mobile transmitter. lin numbers on modulation transformer leads refer to J_{2} in Fig, $20-2 \overline{2}$.
T_{1} - Driver Iratisformer; parallel 6N7 to (hass Is 6N7 grids (Atancor A-4702). \mathbf{T}_{2} - (Class I3 modalation transformer (Stancor A-3845; 5000-ohm tap).

Mobile Power Supply

By far the majority of amateur mobile installations depend upon the car storage battery as the source of power. The tube types used in equipment are chosen so that the filaments or heaters may be operated directly from the hattery. High voltage may be obtained from a supply of the vibrator-transformer-rectifier type or from a small motor-generator operating from the battery.

Filaments

Because tubes with directly-heated cathodes (filament-type tubes) have the advantage that they can be turned off during receiving periods and thereby reduce the average load on the battery, they are preferred by some for transmitter applications. However, the choice of types with direct heating is limited, especially among those for 6 -volt operation, and the saving may not always be as great as anticipated, because directly-heated tubes may require greater filament power than those of equivalent rating with indirectly-heated cathodes. In most cases, the power required for transmitter filaments will be quite small compared to the total power consumed.

Plate Power

Under steady running conditions, the vi-brator-transformer-rectifier system and the motor-generator-type plate supply operate with approximately the same efficiency. However, for the same power, the motor-generator's over-all efficiency may be somewhat lower because it draws a heavier starting current. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in eliminating interference from the vibrator.

Converter units, both in the vibrator and rotating types, are also availahle. These operate at 6 or 12 volts d.c. and deliver 115 volts a.c. This permits operating standard a, a-powered equipment in the car. Although these systems have the advantage of flexibility, they are less efficient than the previously-mentioned systems because of the additional losses introduced by the transformers used in the equipment.

Mobile Power Considerations

Since the car storage battery is a low-voltage source, this means that the current drawn from the battery for even a moderate amount of power will be large. Therefore, it is important that the resistance of the 6 -volt circuit be held to a minimum by the use of heavy conductors, no longer than necessary, and good solid connections. A heavy-duty relay should be used in the line between the battery and the plate-power unit. An ordinary toggle switch, located in any convenient position,
may then be used for the power control. A second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery (in the trunk, for instance) the (j-volt cable should be of the heavy military type.

A complete mobile installation may draw 30 to 40 amperes or more from the 6 -volt battery. This requires a considerably inereased demand from the car's battery-eharging generator. The voltage-regulator systems on cars of recent vears will take rare of a moderate increase in demand if the car is driven fair distances regularly at a speed great enough to insure maximum charging rate. However, if much of the driving is in urban areas at slow speed, or at night, it may be necessary to modify the charging sustem. Serecial commu-nications-type generators, such as those used in polierear installations, are designed to charge at a high rate at slow engine speeds. The charging rate of the standard system can be increased within limits by tightening up slightly on the voltage-regulator and eurrentregulator springs. This should be done with caution, however, cheeking for excessive generator temperature or abnormal sparking at the commutator. The average car generator has a rating of 35 amperes, but it may 1 e possible to adjust the regulator so that the generator will at least hold even with the transmitter, rereiver, lights, heater, ete., all operating at the same time.

Another scheme that has been used to increase generator output at slow driving speeds is to decrease slightly the diameter of the generator pulley. This means, of course, that the generator will be running above normal at high driving speeds. Some generators will not stand the higher speed without damage.

If higher transmitter power is used, it may be necessary to install an a.c. charging system. In this system, the generator delivers a.c. and works into a rectifier. A charging rate of 75 amperes is easily obtained. Commutator trouble often experienced with d.e. generators at high current is avoided, but the cost of such a system is rather high.

Some mobile operators prefer to use a separate battery for the radio equipment. Such a system can be arranged with a switch that cuts the auxiliary battery in parallel with the car battery for charging at times when the car battery is lightly loaded. The auxiliary battery can also be charged at home when not in use.

A tip: many mobile operators make a habit of carrying a pair of heavy cables five or six feet long, fitted with clips to make a connertion to the battery of another car in case the operator's battery has been allowed to run too far down for starting.
(See power-supply chapter, vibrator supplies.)

The Mobile Antenna

For mobile operation in the range between 1.8 and 30 Mc., the vertical whip antenna is almost universally used. Since longer whips present mechanical difficulties, the length is usually limited to a dimension that will resonate as a quarterwave antenna in the 10 -meter band. The car body serves as the ground connection. This antenna length is approximately 8 feet.

Fig. 20-3I - 'The quarterwave whip at resonance will show a pure resistance at the fecd point X .

With the whip length adjusted to resonance in the 10 -meter band, the impedance at the feed point, X, Fig. 20-31, will appear as a pure resistance at the resonant frequency. This resistance will be composed almost entirely of radiation resistance (see index), and the efficiency will be high. However, at frequencies lower than the resonant frequency, the antemat will show an increasingly large capacitive reactance and a decreasingly small radiation resistance.

Fig. 20.32-At frequencies below the resonant frequency, the whip antenna will show rapacitive reactance as well as resistance. R_{18} is the radiation resistance, and C_{A} represents the capacitive reactance.

The equivalent circuit is shown in Fig. 20-32. For the average $8-\mathrm{ft}$. whip, the reactance of the capacitance, (A, may range from alout 150 ohms at 21 Mc . to as high as $80(0)$ ohms at 1.8 Mc ., while the radiation resistance, R_{12}, varies from about 15 ohms at 21 Mc . to as low as 0.1 ohm at 1.8 Mc . Since the resistance is low, considerable current must flow in the circuit if any appreciable power is to be dissipated as radiation in the resistance. Yet it is apparent that little current can be made to flow in the circuit so long as the comparatively high series reactance remains.

Fig. 20-3.3 - The capacitive reactance at frequencies lower than the resonant frequency of the whip can be canceled out by adding an cquivalent inductive reactance in the form of a loading coil in series with the antenna.

Eliminating Reactance

The capacitive reactance can be canceled out by connecting an equivalent inductive reactance, L_{L}, in series, as shown in Fig. 20-33, thus tuning the system to resonance.

Unfortunately, all coils have resistance, and this resistance will be added in series, as indicated at Rc in lig. 20-34. While a large coil may radiate some energy, thus adding to the radiation resistance, the latter will usually be negligible compared to the loss resistance introduced. However, adding the coil makes it possible to feed power to the circuit.

Ground Loss

Another element in the circuit dissipating power is the ground-loss resistance. Fundamentally, this is related to the nature of the soil in the area under the antemna. Little information

Fig. 20. 34 - Hiquivalent circuit of a loaded whiy antenna. CA represents the capacitive reactance of the antenna, $/$ L an equivalent induetive reactance. R_{0} (is the loading-coil resistance, R_{G} the ground-loss resistance, and R_{R} the radiation resistance.
is available on the values of resistance to be expected in practice, but some measurements have shown that it may amount to as much as 10 or 12 ohms at + Me. At the lower frequencies, it may constitute the major resistance in the circuit.

Fig. 20-34 shows the circuit including all of the elements mentioned above. Assuming C Cossless and the loss resistance of the coil to be represented by R_{c}, it is seen that the power output of the transmitter is divided among three resistances R_{C}, the coil resistance: R_{i}, the ground-loss resistance; and R_{R}, the radiation resistance. Only the power dissipated in R_{R} is radiated. The power

Fig. 20.35-Graph showing the approximate capacitance of short vertical antennas for varions diameters and fengths. These values shoulil be approximately halved for a center-loaded antcnna.

Approximate Values for 8-ft. Mobile Whip						
Base Loading						
fhe.	Loading Ioul.	$\begin{gathered} R_{\mathrm{c}}(0.50) \\ \text { Ohms } \end{gathered}$	Rce (13300) () 11 ms	$\underset{O h m s}{R_{u}}$	Feed $1 i^{*}$ Ohms	$\begin{gathered} \text { Matching } \\ L_{\text {ulb }, *} \end{gathered}$
1800	345	77	13	0.1	23	3
3800	77	37	6.1	0.35	16	1.2
7200	20	18	3	1.35	1.5	0.6
14.200	4.5	7.7	1.3	5.7	12	0.28
21,250	1.25	3.4	0.5	14.8	16	0.28
29,000	. . .			\cdots	36	0.23
Center Loading						
1800	700	158	23	0.2	31	3.7
3800	1.50	72	12	0.8	22	1.4
7200	40	36	f	3	19	0.7
14.200	8.6	1.;	2.3	11	19	0.35
21.2.30	25	6.6	1.1	27	29	0.29
$R_{C}=$ Lomding-e oil resistanere: $R_{R}=$ Radiation resistanere * Assuming loading eoil $Q=300$, and including extimated pround-loss resistance. sugested coil dimensions for the refuired loading inductances are shown in a following table.						

developed in R_{c} and R_{c} is dissipated in hoat. Thercfore, it is important that the latter two resistances be minimized.

MINIMIZING LOSSES

There is little that can be done about the nature of the soil. However, poor electrical contact between large surfaces of the car body, and esperially between the point where the fered line is grounded and the rest of the body, can add materially to the ground-loss resistance. For example, the feed line, which should be grounded as close to the base of the antema as possible, may be connerted to the bumper, whike the bumper may have poor contact with the rest of the body because of rust or paint.

Loading Coils

The accompanying table shows the approximate loading-coil inductance required for the various bands. The graph of Fig. 20-35 shows the approximate caparitance of whip antennas of various average diameters and lengths. For 1.8 , fand 7 Mre, the loading-roil inductance required (when the loading coil is at the base) will be approximately the inductance reguired to resonate in the desired band with the whip caparitance taken from the graph. For 14 and 21 Mc., this rough calculation will give more than the required inductance, but it will serve as a starting point for final experimental adjustment that must always be made.
. Hso shown in the table are approximate values of radiation resistance to be expected with an
ically. fowible) coil (not always mechanfield Surber and a minimum of motal in the field. Such a coil for 4 Ne may show a Q of 300 or more, with a resistance of 12 ohms or less. This reduction in loading-coil resistance may be equivalent to increasing the transmitter power by 3 times or more. Most low-loss transmitter plug-in coils of the 100 -watt size or larger, commercially produced, show a Q of this order. Where larger inductance values are required, lengths of lowloss space-wound coils are available ($13 \& W$).

Suggested Loading-Coil Dimensions					
Req'd Isuh.	Turns	$\begin{aligned} & \text { Hire } \\ & \text { Size } \end{aligned}$	Diam. In.	Length In,	Form or B \& W Type
700	190	22	3	10	Polystyrene
345	135	18	3	10	P'ulvst yrene
100	100	16	21/2	10	Polystyrene
$\begin{aligned} & 77 \\ & 77 \end{aligned}$	$\begin{aligned} & 75 \\ & 29 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$21 / 2$	$\begin{aligned} & 10 \\ & 41 / 4 \end{aligned}$	Polystyrene 160\%
$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 28 \\ & 34 \end{aligned}$	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 41 / 4 \end{aligned}$	$\begin{aligned} & 80 \mathrm{~B} \text { less } 7 \mathrm{t} \text {. } \\ & 80^{\prime} \mathrm{I}^{-} \end{aligned}$
$\begin{aligned} & z O \\ & 20 \end{aligned}$	17 28	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 23 / 4 \end{aligned}$	8013 less 18 t .
$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 16 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	40B less 4 t . $40^{1} 1$ less 5 t.
$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$11 / 4$	$\begin{aligned} & 40 \mathrm{~B} \text { less } 10 \mathrm{t} . \\ & 40 \mathrm{~T} \end{aligned}$
$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	8	$\begin{array}{r} 12 \\ 6 \end{array}$	$\begin{aligned} & 2 \\ & 28 / 8 \end{aligned}$	$41 / 2$	$\begin{aligned} & 1513 \\ & 1.91 \end{aligned}$
$\begin{aligned} & 1.20 \\ & 1.25 \end{aligned}$	6	12 6	$\begin{aligned} & 13 / 4 \\ & 23 / 8 \end{aligned}$	2 $41 / 2$	$\begin{aligned} & 1013 \\ & 101^{\prime \prime} \end{aligned}$

Center Loading

The radiation resistance of the whip can be approximately doubled by placing the loading coil at the center of the whip, rather than at the base, as shown in lig. 20-36. (The optimum position varies with ground resistance. The renter is optimum for average ground resistance.) However, the inductance of the loading coil must be

Fig. 20.36 - Placing the loading coil at the center of the whip antenna, instead of at the base, increases the radiation resistance, although a larger eoil must be used.
approximately doubled over the value required at the base to tune the system to resonance. For a coil of the same Q, the coil resistance will also be doubled. But, even if this is the case, centor loading represents a gain in antenna efficiency, especially at the lower frequencies. This is because the ground-loss resistance remains the same, and the increased radiation resistance becomes a larger portion of the total circuit resistance, even

Fig. 20-37-The top-loaded t.Mc. antenna used ly W GSCX. The loarling coil is a $13 \mathbb{K}$ transmitting coil. The coil can be tuned by the variable link which is connected in series with the two halves of the coil.
though the coil resistance also increases. However, as turns are added to a loading coil (other fators being equal) the inductance (and therefore the reatemes) ineremes at a greater rate than the resistance, and the larger coil will usually have a higher Q.

Top Loading Capacitance

Since the coil resistance varies with the inductance of the loading coil, the coil resistance can be reduced by reducing the number of turns. This can be done, while still mantaining resonance, by adding capacitance to the portion of the antenna above the coil. This caparitance can be provided by attaching a capacitive surface

Fig. 20-38-Capacitances of spheres, dishs and cylinders in free space. These values are approximately those to be expected when used with top-loaded whip antennas. The cylinder length is assumed to be equal to its diameter.
as high up on the antenna as is mechanically feasible. Capacitive "hats," as they are usually called, may consist of a light-weight metal ball, cylinder, disk, or wheel structure as shown in Fig. 20-37. Fig. 20-38 shows the approximate added capacitance to be expected from toploading devices of various forms and dimensions. This should be added to the capacitance of the whip above the loading coil (from Fig. 20-35) in determining the approximate inductance of the loading coil.

When center loading is used, the amount of caparitance to be added to permit the use of the same loading inductance required for base loading is not great, and should be seriously considered, since the total gain made by moving the coil to the center of the antenna may be quite marked.

Tuning the Band

Especially at the lower frequencies, where the resistance in the cireuit is low compared to the coil reactance, the antenna will represent a very high- Q circuit, making it necessary to retune for relatively small changes in frequency. White many methods have been devised for tuning the whip over a band, one of the simplest and most efficient is shown in the sketches of Figs. 20-39 and 20-40, and the photograph of Fig. 20-42. In this case, a standard B \& W plug-in coil is used as the loading coil. A length of large-diameter

Fig, 20-39 - Details of rod construction, Dimensions can be varied to suit the whip diameter and the builder's convenience. Adjustment of rod lengths is described in the text.
polystyrene rod is drilled and tapped to fit betwen the upper and lower sections of the antenna. The assembly also serves to clamp a pair of metal brackets on each side of the polystyrene block that serve both as support and connections to the loading-coil jack bar.

A $1 / 8$-inch steel rod, about 15 inches long, is brazed to each of two large-diameter washers with holes to pass the threaded end of the upper section. The rods form a loading capacitance that varies as the upper rod is swung away from the lower one, the latter being stationary. Enough variation in tuning can be obtained to cover the 80-meter band. Fig. 20-39 shows the top washer slightly smaller to facilitate marking a frequency sale on the stationary washer, after the upper

Fig. 20-40 - Construction details of the mounting for the rods and plug-in coil.
washer has been marked with an index. After the movable rod has been set, it is clamped in position by tightening up the uppor antenna section. The plug-in mounting provides a convenient means of changing loading eoils to go to another band.

FEEDING THE ANTENNA

It is usually found most convenient to feed the whip antenna with coax line. Unless very low-Q loading coils are used, the feed-point impedance will always be appreciably lower than 52 ohms - the charaeteristic impedance of the eommonly-used coax line, RG-8/U or RG-58/U. Since the length of the transmission line will seldom exceed 10 ft ., the losses involved will be negligible, even at 29 Me , with a fairly-high s.w.r. However, unless a line of this length is made reasonably flat, difficulty may be encountered in obtaining sufficient coupling with a link to load the transmitter output stage.

One method of obtaining a match is shown in Fig. 20-41. A small inductance, L_{M}, is inserted at

Fig. 20-41-A method of matching the loaded whip to 52 -ohm coax cable. I.L is the loading coil and L_{m} the matching coil.

the base of the antenma, the loading-coil inductance being reduced correspondingly to maintain resonance. The line is then tapped on the coil at a point where the desired loading is obtained. The table shows the approximate inductance to be used between the line tap and ground. It is advisable to make the experimental matching coil larger than the value shown, so that there will be provision for varying either side of the proper position. The matching coil can also be of the plug-in type for changing bands.

Adjustment

For operation in the bands from 29 to 1.8 Me ., the whip should first be resonated at 29 Mc , with the matching coil inserted, but the line disconnerted, using a grid-dip oscillator coupled to the matching coil. Then the line should be attached, and the tap varied to give proper loading, using a link at the transmitter end of the line whose reactance is approximately 52 ohms at the operating frequency, tightly coupled to the output tank circuit. After the proper position for the tap has been found, it may be necessary to realjust the antenna length slightly for resonance. This can be checked on a field-strength meter several feet away from the car.

The same procedure should be followed for each of the other bands, first resonating, with the g.d.o. coupled to the matching coil, by adjusting the loading coil.

Fig. 20-42-W8.1UN's ad. justable caparity hat for tuning the whip antenna over a hand. The eoil is a B N W type 13 loometer coil, with a turn or twormoved. Spreating the rods apart inereases the eaparitance. This simple top loader has sufficiant eapaeitance to permit the use of appoximately the satme load-ing-coil induetance at the center of the antemna as would normally be required for hase loading.

After the position of the matehing tap has been found, the size of the matehing coil can be reduced ta only that oortion betwern the tap and ground, if desired. If turns are removed here, it will be necessary to reresonates with the loading coil.

If an entirely flat line is desired, a s.w.r. indi(ator should be used while adjusting the line tap). With a good match, it should not be necessary to readjust for resonance after the line tap has been set.

It should be emphasized that the figures shown in the table are only appoximate and may be sitered considerably depruding on the type of car on which the antenna is mounted and the spot at which the antenna is placed.

ANTENNAS FOR 50 AND 144 MC.

A common type of antenna employed for mobile operation on 50 and 144 Mre is the quarter-wave radiator whioh is fed with a coaxial line. The antenna, which may be a flexible telescoping " fish pole," is mounted in any of several places on the car. Quite a good match may be obtained by this method with the 50-ohan coxial line now available; however, it is well to provide same means of tuming the system, so that all variables can be faken care of. The simplest tuning arrangement consists of a variable condenser connected between the low side of the transmit-
ter coupling coil and ground, as shown in Fig. 20-43. This condenser should have a maximum capacitance of 75 to $100 \mu \mu \mathrm{fl}$. for 50 Mc ., and should be adjusted for maximum loading with the least coupling to the transmitter. Some

nethod of varying the coupling to the transmitter should be provided.

Bibliography

Belrose, "Short Antemnas for Mobile Operation," Ost', sept., 1953.
Izoherge d Mecomnelk, "Let's Go IIigh IIat!," Qs7', Jan., 1!52.
Dinsmore, "The 'Hot-Rod' Mobile Antenna," QSY', sept., is\%3.
Swalford, "Improved Coax Fead for Low-lirequency Mobile Antomuas," QST, Dee., 10351.
Tilton, "Have You Tried V.II.F. Mobile?" Qs7', Sept., 1954.
Welster, "Mobile Loop Antennas," QST', June, 1051.

Measurements

It is practically impossible to operate an amateur station without making measurements at one time or another, even though the methods used may be quite crude. An example of a simple measurement is one that determines whether an amplifier stage in a transmit ter is properly tuned; it can be done with no more elaborate equipment than a flashlight lamp and a piece of wire, hut whatever the method used, a measurement is essontial berause the circuit itself gives no visible indication of the state of its tuning. The more refined the measuring equipment and methods, the more information can be obtained, and with more information at hand it beromes possible to adjust a piece of equipment for optimum performance more quickly and surely. Measuring and test equipment is especially valuable in buikding and in the initial adjustment of radio gear, and in locating and correcting breakdowns and faults.

The basie measurements are those of current, voltage, and frequency. Determination of the values of circuit clements - resistance, inductance and capacitance - are almost equally important. The inspertion of waveform in audiofrequency circuits is highly useful. For these pur-
poses there is available a wide assortment of instruments, both complete and in kit form; the latter, partieularly, compare very favorably in cost with strictly home-built instruments and are frequently more satisfactory both in appearance and calibration. The instruments deseribed in this chapter are ones having features of particular usefulness in amateur applications.

In using any instrument it should always be kopt in mind that there is no such thing as an "absolute" measurement, and that measurements depend not only on the inherent arcuracy of the instrument itself (which, in the case of commercially built units is usually within a few per cont, and in any event should be sperified by the manufacturer) luat also the conditions under which the measurement is made. Iarge errors can he introduced by failing to recognize the existence of conditions that affert the instrument readings. The instrument ran only record what it sees and what it sers may be something quite different from what the operator thinks it sces. This is particularly true in certain types of r.f. measurements, where there are many stray effects that are hard to eliminate.

D.C. Measurements

A direct-current instrument - voltmeter, ammeter, milliammeter or microammeter - is a device in which magnetic force is used to deflect a pointer over a calibrated scale in proportion to the current flowing. In the D'Arsonval type a coil of wire, to which the pointer is attached, is pivoted between the poles of a permanent magnet, and when current flows through the coil it causes a magnetic field that interacts with that of the magnet to cause the coil to turn. The turning forer is exerted against a spiral spring attached to the coil and the pointer deflection is directly proportional to the current.

A less expensive type of instrument is the moving-vane type, in which a pivoted iron vane is pulled into a coil of wire by the magnetic field set up when eurrent flows through the coil. The farther the vane extends into the coil the greater the magnetic force on it, for a given change in current, so this type of instrument does not have "linear" deflection - that is, the scale is cramped at the low-current end and spread out at the higheurrent end.
The same basic instrument is used for measuring either current or voltage. Good-quality instruments are made with fairly high sensitivity that is, they give full-scale pointer deffection with very small currents - when intended to he used as voltmeters. The sensitivity of instru-
ments intended for measuring large currents can be lower, but a highly sensitive instrument can be, and frequently is, used for measurement of currents much greater than needed for full-scale deflection.

VOLTMETERS

Only a fraction of a volt is required for fullsrale deflection of a sensitive instrument (1 mil liampere or less full scale) so a high resistance is connected in series with it, Fig. 21-1, for measur-

Fig. 2I-I- Ilow voltnoter multipliers and milliammeter shunts arc connected to extend the range of a d.c.meter.
ing voltage. Knowing the current and the resistance, the voltage can easily be calculated from Ohm's Law. The meter is calibrated in terms of the voltage drop across the series resistor or multiplier. Practically any desired full-scale
voltage range can be selected by proper choice of multiplier resistance, and voltmeters frequently have several ringes seleeted by a switeh.

The sensitivity of the voltmeter is usually expressed in "ohms per volt." A sensitivity of 1000 ohms per volt means that the resistance of the voltmeter is 1000 times the full-scale voltage, and hy (Ohm's Law the eurrent required for fullscale deflection is 1 milliampere. A sensitivity of 20,000 ohms per volt, another commonly used value, means that the instrument is a 50 -microampere meter. The higher the resistance of the voltmetor the more accurate the measurements

Fig. 21-2- Wiffet of voltmeter resistance on accuracy of readings. It is assumed that the d.e. resistance of the screen circuit is constant at 100 kilohns. The actual current and voltage without the voltnicter connected are 1 ma . and 100 volts. The voltneter readings will differ because the different types of meters draw different amounts of eurrent through the 150 -kilohm resistor.
in high-resistance circuits. This is because the current flowing through the voltmeter will cause a change in the voltage between the points across which the meter is comected, eompared with the voltage with the meter absent, as shown in Fig. 21-2.

The required multiplier resistance is found by dividing the desired full-seale voltage by the current, in amperes, required for full-scale deflection of the meter alone. Strictly, the internal resistance of the meter should be subtracted from the value so found, but this is seldom necessary (except perhaps for very low ranges) because the meter resistance will he negligibly small compared with the multiplier resistance. An exception is when the instrument is already provided with an internal multiplier, in which case the multiplier resistance required to extend the range is

$$
R=R_{\mathrm{m}}(n-1)
$$

where R is the multiplier resistance, R_{m} is the total resistance of the instrument itself, and n is the factor by which the scale is to be multiplied. For example, if a 1000 -ohms-per-volt voltmeter having a calibrated range of $0-10$ volts is to be extended to 1000 volts, R_{m} is $1000 \times 10=$ 10,000 ohms, n is $1000 / 10=100$, and $R=$ $10,000(100-1)=990,000$ ohms.

If a milliammeter is to be used as a voltmeter, the value of series resistance can be found by Ohm's Law:

$$
R=\frac{1000 E}{I}
$$

where E is the desired full-scale voltage and I
the full-scale reading of the instrument in milliamperes.
The aecuracy of a voltmeter depends on the ealibration accuracy of the instrument itself and the accuracy of the multiplier resistors. Precision wire-wound resistors are used in high-quality instruments, but for most purposes standard $1 / 2-$ or l-watt composition resistors will make an arceptable and economical substitute. Such resistors are supplied in tolerances of $\pm 5,10 \mathrm{or} 20$ per cent. By obtaining matched pairs from the dealer's stock, one of which is, for example, 4 per cent low while the other is 4 per cent high, and using the pairs in parallel or series to obtain the required value of resistance, good areuracy can be obtained at small eost. High-voltage multipliers are preferably made up of several resistors in series: this not only raises the breakdown voltage but tends to average out errors in the individual resistors.

MILLIAMMETERS AND AMMETERS

A mieroammeter or milliammeter can be used to measure eurrents larger than its full-seale reading by conneeting a resistance shunt aeross its terminals as shown in Fig. 21-1. This diverts part of the current through the shunt, and the total current is the sum of that through the shunt and that through the meter. Knowing the meter resistance and the shunt resistance, the relative eurrents can easily be calculated.

The value of shunt resistance required for a given full-seale current range is given by

$$
R=\frac{R_{\mathrm{m}}}{n-1}
$$

where R is the shunt, R_{m} is the internal resistance of the meter, and n is the fartor by which the original meter seale is to be multiplied. The internal resistance of a milliammeter is preferably. determined from the manufacturer's catalog, but if this information is not available it can be determined by the method shown in Fig. 21-3. Do not use an ohmmetor to measure the internal resistanee of a millitmmoter; it may ruin the instrument.

Fig. 2I-3- Determining the internal resistance of a milliamneter or microammeter. R_{1} is an adjustable resistor having a maxinum value about twice that necessary for limiting the current to full scale with \boldsymbol{R}_{2} disconnected; adjust it for exactly full-seale reading. 'Then connect R_{2} and adjust it for exactly half-seale reading. The resistance of R_{2} is then equal to the internal resistance of the meter, and the resistor may be removed from the eirenit and measured separately. Internal resistances vary from a few ohins to several hundred ohms, depending on the sensitivity of the instrument.

Homemade milliammeter shunts can be constructed from any of the various special kinds of resistance wire, or from ordinary copper wire if no resistance wire is available. The (opper Wire lable in the data chapter gives the resistance per 1000 feet for various sizes of ropper wire. After computing the resistance required, determine the smallest wire size that will carry the full-scale current (at 250 circular mils per ampere). Measure off enough wire (pulled tight but not stretched) to provide the required resistance. Accuracy can be checked bey causing enough current to flow through the meter to make it read full scale without the shunt; connerting the shunt should then give the correct reading on the new full-scale range.

Any current-measuring instrument should have very low resistance compared with the resistance of the circuit being measured; otherwise, inserting the instrument will cause the current to differ from its value with the instrument out of the circuit. (This does not matter if the instrument is left permanently in the cireuit.)

Fig. 2l-4-Voltmeter method of measuring current. 'This method permits using relatively large values of resistance in the shant, standard values of fixed resistors frequently being usable. If the multiplier resistance is 20 times the shamt resistance (or more) the error in assuming that all the current flows through the shmet will not be of consequence in most pratical applications.

However, the resistance of many circuits in radio equipment is quite high and the eircuit operation is affected little, if at all, by adding as much as a few hundred ohms in series. In such cases the voltmeter method of measuring current, shown in Fig. 21-4, is frequently convenient. A voltmeter - or low-range milliammeter provided with a multiplier and operating as a voltmeter - having a full-scale voltage range of a few volts, is used to measure the voltage drop across a comparatively high resistance acting as a shunt. The formula above is used for finding the proper value of shunt resistance for a given scale-multiplying factor, R_{m} in this case being the multiplier resistance.

D.C. Power

Power in direct-current circuits is determined by measuring the current and voltage. When these are known, the power is equal to the voltage in volts multiplied by the current in amperes. If the current is measured with a milliammeter, the reading must be divided by 1000 to convert it to amperes.

RESISTANCE MEASUREMENTS

Measurement of d.c. resistance is based on measuring the current through the resistance when a known voltage is applied, then using Ohm's Law. A simple circuit is shown in Fig. 21-5.

Fig. 21.5- Mcasuring resistance with a voltmeter and milliammeter. If the approximate resistance is hnown the voltage ean be selected to cause the milliammeter, MA, to read ahont half seale. If not, additional resistanee should be first connected in series with R tolinit the current to a safe value for the miliammeter. 'I'he set-up then measures the total resistance, and the value of R can be found by subtracting the known additional resistance from the iotal.

The internal resistance of the ammeter or milliammeter, $M A$, should be low compared with the resistance, R, being measured, since the voltage read by the voltmeter, V^{r}, is the voltage across d / A and R in series. The instruments and the d.c. voltage should be chosen so that the readings are in the upper half of the scale, if possible, since the percentage error is less in this region.

An ohmmeter is an instrument consisting fundamentally of a voltmeter (or milliammeter, depending on the circuit used) and a small dry battery as a source of d.e. voltage, calibrated so the value of an unknown resistance can be read directly from the scale. Typical ohmmeter circuits are shown in Fig. 21-6. In the simplest type, shown in Fig. 21-6A, the meter and battery are connected in series with the unknown resistance. If a given deflection is obtained with terminals A-B shorted, inserting the resistance to be measured will cause the meter reading to decrease. When the resistance of the voltmeter is known, the following formula can be applied:

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where R is the resistance under measurement, e is the voltage applied ($A-B$ shorted),
E is the voltmeter reading with R connected, and
R_{m} is the resistance of the voltmeter.
The circuit of Fig. 21-6A is not suited to measuring low values of resistance (below a hundred ohms or so) with a high-resistance voltmeter. For such measurements the cireuit of Fig. 21-613 can be used. The milliammeter should be a $0-1 \mathrm{ma}$. instrument, and R_{1} should be equal to the battery voltage, e, multiplied by 1000 . The unknown resistance is

$$
R=\frac{I_{2} R_{\mathrm{m}}}{I_{1}-I_{2}}
$$

(A)

(B)

(C)

Fig. 21-6-Ohmmeter circuits. Values are discussed in the text.
where R is the unknown,
R_{m} is the internal resistance of the milliammeter,
I_{1} is the current in ma. with R disconnected from terminals $A-B$, and
I_{2} is the current in ma. with R connected.
The formula is approximate, but the error will be negligible if e is at least 3 volts so that R_{1} is at least 3000 ohms.

A third circuit for measuring resistance is shown in Fig. 21-6C. In this case a high-resistance voltmeter is used to measure the voltage drop, across a reference resistor, R_{2}, when the unknown resistor is connected so that current flows through it, R_{2} and the battery in series. By suitable choice of R_{2} (low values for low resistance, high values for high-resistance unknowns) this circuit will give equally good results on all resistance values in the range from one ohm to several megohms, provided that the voltmeter resistance, R_{m}, is always very high (50 times or more) compared with the resistance of R_{2}. A 20,000 -ohms-per-volt instrument ($50-\mu \mathrm{amp}$. movement) is generally used. Assuming that the current through the voltmeter is negligible compared with the eurrent through R_{2}, the formula for the unknown is

$$
R=\frac{e R_{2}}{E}-R_{2}
$$

where R and R_{2} are as shown in Fig. 21-6C,
e is the voltmeter reisding with $A-B$ shorted, and
E is the voltmeter reading with R conneeted.
The "zero adjuster," R_{1}, is used to set the
voltmeter reading exactly to full scale when the meter is calibrated in ohms. A 10,000 -ohm variable resistor is suitable with a 20,000 -ohms-per-volt meter. The battery voltage is usually 3 volts for ranges up to 100,000 ohms or so and 6 volts for higher ranges.

Combination Instruments

Since the same basic instrument is used for measuring current, voltage and resistance, the three functions can readily be combined in one unit using a single meter. Viarious models of the "VOM" (volt-ohm-milliammeter) are available commercially, the less expensive ones using a 0-1 milliammeter. A simple circuit based on such a meter is shown in Fig. 21-7. It has five current

Fig. 21-7- Diagram of the volt-ohm-milliammeter.
$R_{1}-2(N)$-ohm wire-wound variable.
$R_{2}-3000$ olims, $1 / 2$ watt.
$1 \mathrm{R}_{3}$ - 10 -ma. shunt, 6.11 ohms (see text).
I_{4} - 100 -ma. shunt, $0.5 \overline{5}$ ohm (see text).
$1 z_{5}$ - $1000-m a$ shunt, 0.055 ohm (see text).
K_{8} - 1000 -volt multiplier, 0.9 megotmen, $1 / 2$ watt.
K_{r} - $\mathbf{1 0 0}$-volt multiplier, 90,000 ohnss, $1 / 2$ watt.
$\mathrm{K}_{8}-10$-volt multiplier, 10,000 ohnss, $1 / 2$ watt.
13-4.5-volt dry battery.
$\mathrm{S}_{1 \mathrm{~A}}$-B -9-point 2 -pole selector switch.
II - 0.1 millianmeter.
ranges, from 1 ma. to 1 ampere, three voltage ranges, 10 volts to 1000 volts, and two resistance ranges. Fig. 21-8 shows the ohmmeter calibration; the low-ohms curve is for a meter having an internal resistance of 55 ohms and should be calculated from the formula above (Fig. 21-6i3) for instruments of different resistance.

Ordinary carlon resistors can be used as voltmeter multipliers, connecting them in series or parallel to obtain a given value. The $10-100$ and $1(x) 0-m a$. shunts can be made of eopper wive wound on small forms. The approximate lengths and sizes of the wire for the shunts are as follows: $R_{3}, 9$ feet No. 38 enameled; $R_{4}, 5$ feet No. 30 enameled; $R_{5}, 81 / 2$ feet No. 18 .

It is possible to buy special V(OM seales to replace the $0-1$ seale for certain types of milliammeters. In such case the eircuit recommended for that seale should be used.

More expensive instruments use a $5(1-\mu \mathrm{mmp}$. meter in the VOM, with large scales for easy reading. Such instruments frequently include a.c. scales as well, and in general are better purehased complete than made at home.

The IoM, even a very simple one, is among the most useful instruments for the amateur. Besides current and voltage measurements, it

Fig. 21-8-Calibration rurve for the high- and lowresistance ranges of the volt-ohm-milliammeter.
can be used for cherking continuity in circuits, for finding defective components before installa-tion-shorted condensers, open or otherwise defeetive resistors, ete. - shorts or opens in wiring, and many other cheres that, if applied during the construction of a piece of equipment, save much time and trouble. It is equally useful for servicing, when a component fails during regular operation.

THE VACUUM-TUBE VOLTMETER

The uscfulness of the vacuum-tube voltmeter (VTVM) is based on the fact that a vacuum tube can amplify without taking power from the souree of voltage applied to its grid. It is therefore possible to have a voltmeter of extremely high resist-
anee and thus take negligible current from the rircuit under measurement, without using a d.c. instrument of exceptional sensitivity.
While there are several possible eircuits, the one commonly used is shown in Fig. 21-9. A dual triode, l_{1}, is arranged so that, with no voltage applied to the left-hand grid, equal currents flow through both sertions. Cinder this condition the two rathodes are at the same potential and no current flows through.V. The currents can be adjusted to balance by potentiometor R_{11}, which takes care of variations in the tube sections and in the values of cathode resistors R_{9} and R_{10}. When a voltage is applied to the left-hand grid the current through that tube scetion changes but the current through the other section remains unchanged, so the balance is upset and the meter indicates. The sensitivity of the meter is regulated by R_{8}, which sorves to adjust the calibration. R_{12}, common to the cathodes of both tube sections, is a feed-back resistor that stabilizes the system and makes the readings linear. R_{6} and C_{1} form a filter for any a.c. component that may be present, and R_{6} is balanced by R_{7} connected to the grid of the second tube section.

To stay well within the lincar range of operation the scale is limited to 3 volts or less in the average commereial inst rument. Higher ranges are oftained by means of the voltage divider formed by R_{1} to R_{5}, inclusive. As many ranges as desired can be used. Common practice is to use 1 megohm at R_{1}, and to make the sum of R_{2} to R_{5}, inclusive. 10 megohms, thus giving a total resistance of 11 megohms, constant for all voltage ranges.

For measuring a.e. voltages the reetifier circuit shown at the lower left of Fig. 21-9 is used. One section of the double diode, F_{2}, is a half-wave rectifier and the second half acts as a balancing deviere, adjustable by R_{17}, to eliminate contact potential effeets that would cause a constant d.c. voltage to apprar at the VTVM grid. When measuring a.c., R_{8} is usually set so that the r.m.s. a.c. calibration coincides with the d.e. calibration. A separate resistor is frequently switched in for the purpose.

Values to be used in the circuit depend considerably on the supply voltage and the sensitivity
$\mathrm{C}_{1}-0.002-$ to $0.005-\mu \mathrm{fl}$. mica.
Ci2-0.01 $\mu \mathrm{fl}$., IOOO to 2000 volts, paper or mica.
h_{1} - 1 megohm, $1 / 2$ watt.
K_{1} to K_{5}, inclusive - 'loo sive de. sired voltage ranges, total. ing 10 inegohms.
$\mathrm{K}_{\mathrm{f}}, \mathrm{K}_{7}-2$ to 3 megohms.
$\mathrm{K}_{3}-10,000$-ohen variable.
$\mathrm{R}_{9}, \mathrm{R}_{10}-2000$ to 3000 ohins.
$R_{11}-5000$ - to 10,000 -ohm potentiometer.
$\mathrm{h}_{12}-10,000$ to 50,000 ohmes.
$\mathrm{K}_{13}, \mathrm{~K}_{14}-\mathbf{A p p}^{2}$ 25,000 ohms. A 50,000-ohm slider-type wire-wound can the used.
R I_{15} - 10 megohms
$\mathrm{K}_{10}-3$ megohms.
$1 \beta_{17}-10$-megohm variable.
M - Nieroammeter, range from $0-200 \mu \mathrm{amp}$. to $0-1$ ma. V_{1} - Dual triode, 6 SN 7 or 12AU7 V_{2} - Dual diode, 6H6 or 6AL5.

Fig. 21.9 - Vacuum-tube volimeter circuit.
of the meter, $M . R_{12}$, and $R_{13}-R_{14}$, should be adjusted so that the voltmeter circuit can be brought to balance, and to give full-scale deflec:tion on $A I$ with about 3 volts applied to the grid. The meter connertions can be reversed to read voltages that are negative with respect to ground.

The ITVM has the disadvantage that it requires a source of power for its operation, as compared with a regular d.c. instrument. Also, it is susceptible to r.f. pick-up when working around an operating transmitter, unless well shielded and filtered. The fact that one of its terminals is grounded is also disadvantageous in some cases, since acc. readings in particular may be inaceurate if ath attempt is made to measure a circuit having both sides "hot" with respect to ground. Nevertheless, the high resistance of the VTVM more than compensates for these disadvantages, especially since in the majority of measurements they do not apply.

CALIBRATION

When extending the range of a d.e. instrument calibration usually is necessary, although resistors for voltmeter multipliers often can be purchased to close-enough tolerances so that the new range will be accurately known. However, in calibrating an instrument such as a V'TVM a known voltage must be available to provide a starting
point. Fresh dry cells have an open-circuit terminal voltage of approximately 1.6 volts, and one or more of them may be connected in series to provide several calibration points on the low range. (ias regulator tubes in a power supply, surh as the $0 \mathrm{C} 3,0133$, etc., also provide a stable source of voltage whose value is known within a few per cent. Once a few such points are determined the voltmeter ranges may be extended readily by adding multipliers or a voltage divider as appropriate.

Shunts for a milliammeter may he adjusted by first using the meter alone in series with a souree of voltage and a resistor selected to limit the current to full scale. Por example, a 0 - 1 milliammeter may be connerted in series with a dry cell and a 2000 -ohm variable resistor, the latter being adjusted to allow exaetly 1 milliampere to flow. Then the shunt is added across the meter and its resistance adjusted to reduce the meter reading by exatetly the scale factor, n. If n is 5 , the shunt would be adjusted to make the meter read 0.2 milliampere, so the full-scale current will be 5 ma. Lsing the now sarale, the second shunt is added to give the next range, the same procedure being followed. This can be carriod on for several ranges, but it is advisable to check the meter on the highest range against a separate meter used as a standard, since the errors in this process tend to be cumulative.

Measurement of Frequency and Wavelength

ABSORPTION FREQUENCY METERS

The simplest possible frequenc Y -measuring device is a resonant rircuit, tunable over the desired frequency range and laving its tuning dial calibrated in terms of frequency. It operates by extracting a small amount of energy from the oscillating cire being determined by the tuning setting at which the energy absorption is maximum (Fig. 21-10).

Although such an instrument is not capable of

Fig. 21-10- Absorption frequcucy meter and a typical application. 'The meter consists simply of a calibrated resonant circuit $I . C$. When coupled to an amplifier or oscillator the tube bate current will rise when the frequency meter is tumed to resonance. A flashlight lamp may lie connected in sories at λ to give a visnal indication, lut it deereases the selectivity of the instrument and makes it necessary to use rather close coupling to the circuit being measured.
very high aceuracy, because the Q of the tuned cireuit cannot be high enough to avoid uncertainty in the exart setting and because any two coupled circuits interact to some extent and change each others' tuning, the absorption wavemeter or frequency meter is nevertheless a highly useful instrument. It is compact, inexpensive, and requires no power supply. There is no ambiguity in its indications, as is frequently the case with the heterodyne-type instruments deseribed later.

When an absorption meter is used for cherking a transmitter, the plate eurrent of the tube comeroded to the rireuit being cheeked an provide the neressary resonance indication. When the frequence meter is loosely coupled to the tank circuit the plate current will give a slight upward flicker as the moter is tuned through resonance. The arcuracy is greatest when the loosest possible coupling is used.

A receiver oscillator may be checked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary caw. reception. When the frequency meter is coupled to the oscillator coil and tuned through resonance the beat note will change. Again, the coupling should be made loose enough so that a justperceptible change in beat note is observed.

An approximate calibration for the wavemeter, adequate for most purposes, may be obtained by comparison with a calibrated re-
ceiver. The usual receiver dial calibration is sufficiently accurate. A simple oscillator circuit covering the same range as the frequency meter will be useful in calibration. Set the receiver to a given frequency, tune the oscillator to zero beat at the same frequency, and adjust the frequency meter to resonance with the oscillator as described above. This gives one calibration point. When a sufficient number of surh points has been oltained a graph may be drawn to show frequency v s. dial settings on the frequency meter.

INDICATING WAVEMETERS

The plain absorption meter requires fairly close coupling to the oseillating circuit to affect the plate current of a tube sufficiently to give visual indication. The sensitivity of the instru-

Fig. 21-11-Circuit diagram of indicating wavemeter. With the meter plug removed, it can be used as a compact absorption meter of the ordinary type.
$\mathrm{C}_{1}-\mathbf{5 0}-\mu \mu \mathrm{fd}$. variathe (II ammarlund IIF-50).
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.001-\mu \mathrm{fl}$. disc ceramic.
J_{1} - ${ }^{(1)}$ цen-circuit jack.
MA-1).c. nilliammeter, $0-1$ or lcss. P_{1} - 'Phone plug.

Coil Data, L_{1}					
Freq. Range	Turns	Wire	Diameter	Turns/inch	Tap*
$1.6-4.2 \mathrm{Mc}$.	139	32 enam.	$3 / 4 \mathrm{in}$.	Close-wound	32
$3.6-10.5 \mathrm{Mc}$.	40	32 enam.	$3 / 4 \mathrm{in}$.	Close-wound	12
$7.8-24.0 \mathrm{Mc}$.	40	24 tinned	$3 / 2 \mathrm{in}$.	32	14
$17.8-52.0 \mathrm{Mc}$.	15	20 tinned	$3 / 2 \mathrm{in}$.	16	5
$3.8-117 \mathrm{Mc}$.	4	20 tinned	$3 / 2 \mathrm{in}$.	16	$11 / 3$

*Turns from ground end.
Coil forms are Amphenol 24.511, $3 / 4-\mathrm{in}$. diameter.
ment can be increased, by adding a rectifier and d.e. microammeter or milliammeter, to the point where very loose coupling will suffice for a good reading. A typical circuit for this purpose is given in Fig. 21-11, and Figs. 21-12 and 21-133 show how such an instrument can be constructed. For convenience in use, the tuned circuit is mounted in a small metal box that can be held in one hand for close coupling to a circuit. The d.e. meter can be conneted or not as desired, sime it is separate (it can also be noounted in a small bos) so the instrument can be used either as a plain absorption meter or as an indicating-type meter.

The rectifier is a erystal dioke, tapped down on the tuned-circuit coil to avoid excessive loading

Fig. 21-12-A compact absorption wavemcter provided with a erystal rectifier and jack for an indicating meter. The meter can be mounted in a separate trox, if desired. The dial is similar to that used on the grid-dip meter described later in this chapter.
of the circuit which would broaden the tuning. Tapping down also improves the sensitivity, by providing an approximate impedance match between the tuned cireuit and the crystal-circuit load. By plugging a hoadset into the outpat jack ('phones having 2000 ohms or greater resistance should le used for graatest sensitivity) the wavemeter can be used as a monitor for modulated transmissions.

It is of course possible to mount the d.c. meter in the same unit with the wavemeter proper, but this increases the bulk and weight. The separate units have the advantage, also, that a long line can be used to connect the two, since such a line earries only d.c., so the meter can be placed at a remote point to pick up r.f. while the indicator is placed at the spot where adjustments are being made. This is frequently useful in antenna work, for example.

Where connection to an a.c. line is convenient, a V"TVM can be used instead of the milliammeter or microammeter, and because of its high resistance will considerably increase the sensitivity and selectivity of the wavemeter.

In addition to the uses mentioned above, a meter of this type may be used for final adjust-

Fig. 21-13-Inside the indicating-type wavemeter. The tuning condenser should the mounted as close as possilhe to the coil sorket so the leads will be of negligible length. The box is $15 / 8 \times 21 / 8 \times 4$ inches.

Fig. 21.14-- One end of a typical lureher wire system. 'The wire is No. I6 haresolid-ropper antenna wire (hard-drawn). The thrnbuchles are held in place by a 3 借 \times-imeh bolt through the anchor block. 'I'he other end of the line, which is connected to the piek-11p loop, should be insulated.
ment of neutralization in r.f. amplifiers. For this purpose it may be loosely coupled to the plate tank eoil. Alternatively, L_{1} may be removed and the final-amplifier link output terminals eonnerted to the eoil socket. The latter method tends to ensure that the pick-up is from the final tank coil only.

LECHER WIRES

At very-high and ultrahigh frequencies it is possible to determine frequency by aetually measuring the length of the waves generated. The moasurement is made by observing standing waves on a two-wire parallel transmission tine or Lecher wires. Such a line shows pronounced resonance effects, and it is possible to determine quite acourately the current loops (points of maximum current). The physical distance between two consecutive current loops is equal to one-half wavelength. Thus the wavelength ran be read directly in meters (39.37 inches $=1$ meter; 0.3937 inch $=1 \mathrm{~cm}$.), or in centimeters for the very-short wavelengths.
The Lecher-wire line should be at least a wavelength long - that is, 7 feet or more on 14t Me. - and should be entirely air-insulated except where it is supported at the ends. It may be made of copper tubing or of wires stretched tightly. The spacing between wires should not exceed about 2 per cent of the shortest wavelength to be measured. The positions of the current loops are found by means of a "shorting bar," which is simply a metal strip or knife edge which can be slid along the line to vary its effective length.

Making Measurements

For measuring the frequency of a transmitter, a convenient and fairly sensitive indicator can be made by soldering the ends of a one-turn loop of wire, of about the same diameter as the transmitter tank coil, to a low-current flashlight bulb. The loop should be eoupled to the tank eoil to give a moderately bright glow. A coupling loop should be connected to the ends of the l.echer wires and brought near the tank coil, as shown in Fig. 21-15. Then the shorting bar should be slid along the wires outward from the transmitter until the lamp gives a sharp dip in brightness. This point should be marked and the short-
ing bar moved out until a second dip is obtained. The distanee leetween the two points will be equal to half the wavelength. If the measurement is made in inches, the frequency will be

$$
F_{\mathrm{Mr}_{\mathrm{c} .}}=\frac{5905}{\text { lergth (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc}}=\frac{150}{\text { length (meters) }}
$$

In checking a superregenerative receiver, the Lecher wires may be similarly coupled to the regeiver coil. In this case the resonance indication may be obtained by setting the receiver just to the point where the hiss is obtained, then as the har is slid along the wires a spot will be found where the receiver goes out of oscillation. The distance between two such spots is equal to a half-wavelength.

Fig. 21-1.5-Coupling a lecher wire systen to a transmitter tank coil. Tvpical standing-wave distribution is shown by the dashed line. The distance X between the positions of the shorting har at the current loops equals one-half wavelength.

The shorting bar must be kept at right angles to the two wires. A sharp edge on the bar is desirable, since it not only helps make good contact but also definitely locates the point of contact.

Accurate readings result when the loosest possible coupling is used between the line and the tank coil. Careful measurement of the exact distance between two current loops also is essential.

HETERODYNE METHODS

IIeterodyne methods of frequency measurement make use of a stable oscillator generating either a known frequency or one that is variable over a known range. Mensurement consists in comparing the unknown frequency with the known frequency of the oscillator, using an ordinary recoiver for detecting looth. This method is more accurate than others, because frequency differences of less than a cycle can be observed
by aural (beat-note) methods, and the oscillator can be calibrated to practically any degree of precision by comparison with standard frequencies transmitted from WWV and WWVII.

Care must be used in heterodyne frequency moasurement because in most cases harmonics are used and the measured frequencr can be in error by a targe factor if the wrong harmonic is picked. Also, a superheterodyne receiver will give many spurious responses in the presence of a strong signal and harmonics, so these must be recognized and ignored in making measurements. In general, heterodyne methods are most useful in measuring frequency to a high degree of aceurary after the frequency is known approximately from other methods. The absorption wavemeter is useful for making the first approximation and thus eliminating the possible gross errors.

Frequency Measurement with the Receiver

An ordinary receiver has the essential elemonts needed for frequency measurement. Its dial readings must be calibrated in terms of frequency, of course, before measurements can be made. Manufactured receivers are generally so calibrated; the aceuracy of the calibration will vary with the receiver model, but if the receiver is well made and has good inherent stability, a bandspread dial calibration can be relied upon to within perhaps 0.2 per cent. For most accurate measurement, maximum response in the receiver should be determined by means of a carrier-operated tuning indicator (such as an s-moter), the receiver boat oscillator being turned off. If the receiver has a crystal filter, it should be set in a fairly "sharp" position to increase the aceuracy.

When ehecking the frequency of your own transmitter, the recciving antenma should be disconnerted so the signal will not overload or "block" the receiver. Also, the r.f. gain should be reduced as a further precaution against overloading. If the receiver still blocks without an antemna the frequency may be ehecked by turning off the power amplifier and tuning in the oscillator alone. It is difficult to avoid blocking under almost any conditions with a regenerative receiver, and so this type is not very suitable for checking the frequency of one's own transmitter.

- THE HETERODYNE FREQUENCY METER

The heterodyne frequency meter is an oscillator with a precise frequency ralibration. The oseillator must be so designed and construeted that it can be accurately calibrated and will retain its catibration over long periods of time.

The oscillator used in the frequency meter must be very stable. Merhanieal eonsiderations are most important in its construction. No matter how good the instrument may be electrically, its arcuracy cannot be depeoderd upon if the mechanical construction is flimsy.

Frequency stability can be improved by avoiding the use of phenolic compounds and thermoplastics (bakelite, polystyrene, ctc.) in the oscillator circuit, employing only high-grade ceramics instead. Plug-in coils ordinarily are not acceptable; instead, a solidly-built and firmly-mounted tuned circuit should be permanently installed. The oseillator panel and chassis should be as rigid as possible.

For anateur purposes the most useful type of moter is one covering the amateur bands only, The VFOs described in the chapter on transmitters are typical of the circuits and construction since they are designed with the same considerations in mind - i.e., to be highly stable both clertrically and merhanically. Hence a good VFO, if acecurately calibrated in frequency, is also a good heterodyne frequency meter.

Calibration must be done by comparing the oscillator frequency at various points in its range with signals of known frequency. The best method is to calibrate from a secondary frequeney standarl, described in the next section, at intervals of, say, 100 ke . and fill in the calibration curve by interpolation. The oscillator usually works over the approximate range $1750-2000$ ke., harmonies locing used for the higher amateur bands. If the calibration is done on the highest band - 28-32 Me. - at intervals of 100 ke , it is equivalent to having calibration points at intervals of $100 / 16$ $=6.25 \mathrm{kc}$. on the fundamental-frequency range.

THE SECONDARY FREQUENCY STANDARD

The secondary frequency standard is a highlystahle oscillator generating a single frequency, usually 100 kc . It is nearly always erystal-controlled, and inexpensive 100 -kc. crystals are available for the purpose. Since the harmonics are multiples of 100 kc . throughout the spectrum, some of them can be compared directly with the standard frequencies transmitted by WWV. The edges of most amateur bands also are exact multiples of 100 ke ., so it becomes possible to determine the band edges very accurately. This is an important consideration in amateur frequency measurement, since the only regulatory requirement is that an amateur transmission be inside the assigned band and not on a specific frequency.

Intervals of 100 ke . are sometimes too close for aceurate identification of a given harmonic, so sperial crystals that operate at both 1000 and 100 kc . are available. Intervals of 1000 kc . are sufficiently far apart to avoid confusion, since the average receiver calibration is good enough to provide positive identification. Once the loon-ke. harmonies are spotted, it is easy to count off the loo-ke. intervals from the known 100)-ke. points.

Manufaturers of 100-ke. ervestals usually supply circuit information for their particular erystals. The circuit given in Fig. 21-16 is representative, and will generate usable harmonics up to 30 Mc . or so. The variable con-
denser, C_{1}, provides a means for adjusting the frequency to exactly 100 kc . Llarmonic output is taken from the circuit through a small rondenser, C_{5}. There are no particular constructional points to be observed in building such a unit. Power for the tube heater and plate may be taken from the supply in the receiver with whieh the unit is to be used. The plate voltage is not eritical, but it is recommended that it be taken from a VIR-150 regulatod if the receiver is equipped with one.
Sufficient signal strength usually will be secured if a wire is run between the output terminal connceted to C_{5} and the antemna post on the receiver. At the lower freguencics a metallic connection may not be necessary.

Figs. 21-17 through $21-19$ show a compact standard, complete with power supply, that will give usable harmonies from both 100 and 1000 ke. up through the $1+4-$ Me. band. It uses a dual erystal, either fundamental frequency being selected by a switch, and the output of the oscillator is fed to a crystal-diode rectifier to increase the amplitude of the high-order harmonies. These harmonies are then amplified in the second tube, a stage having broady-tuned plate eirenits centering in the higher-frequency amateur bands, switched in or out as required. A cathode gain control is provided in the amplifier circuit for regulating the output amplitude. The whole unit is constructed in a $5 \times 3 \times 4$ box of the type having its own chassis, the small size being used so the unit can be squeezed into limited space on the operating table. It can be put on a larger

Fig. 21-16 - Circuit for crystal-controlled frequency standard. Tubes such as the $65 \mathrm{~K} 7,65117,6 \mathrm{AL} 6$, etc., are suitable.
C_{1} - 50 - $\mu \mu \mathrm{fd}$. variable.
$\mathrm{C}, 150-\mu \mu \mathrm{fd}$, mica.
© 3 - $0.0022 \cdot \mu \mathrm{fd}$. mica.
(4. - 0.01 - $\mu \mathrm{ff}$, paper.
(:5-22- $\mu \mathrm{ff}$ d, mica.
$11_{1}-0.47$ megohm, $1 / 2$ watt.
11_{2} - 1000 ohms, $1 / 2$ watt.
$11_{3}-0.1$ megohm, $1 / 2$ watt.
$11_{4}-0.15$ megohm, $1 / 2$ watt.
chassis and box if desired, since the construction is not critical. Sufficient signal strength in the reeeiver should be sorured by connecting a short piece of wire to the output terminal, but on very high frequencios it may be nerossary to comeect the wire to one antema post on the receiver.

Adjusting to Frequency

In either Fig. 21-16 or 21-18 the frequency can be adjusted exactly to 100 ke . by making use of

Fig. 21.17-A compact freduency standard and harmonic amplifier for generating either 100. or 1000 -he. intervals thrmobout the spectrum to 150 Nc. It has a self-contained power supply using the transformer shown in the upper part of the photo. The output eontrol is at the upuer left, and the switeh in the foreground is the harmenic-amplifier bandswitch. The dual crystal is between the handswitch and omput control. The toggle switeh at the lower left corner of the panel selects either 1000 - or $100-k e$, intervals.
the WWV transmissions tabulated in this chapter. Sedect the WWI frequency that gives a good signal at your location at the time of day most convenient. Tune it in with the receiver b.f.o. off and wait for the period during which the modulation is alrsent. Then switeh on the $100-\mathrm{ke}$, oseillator and adjust its frequency, by means of C_{1}, until its harmonie is in zero beat with WWV. The exact setting is easily found by observing the slow pulsation in background noise as the harmonic comes close to zero beat, and adjusting to where the pulsation disappears or occurs at a very slow rate. The pulsations can be observed even more readily by switching on the receiver's b.f.o., after approximate zero beat has been secured, and observing the rise and fall in intensity (not frequency) of the beat tome. For hest results the WWV signal and the signal from the 100 d k . oscillator should be about the same strength. It is alvisable not to try to set the 100 -ke. oseillator when the WWV signal is modulatiod, since it is difficult t_{t} tell whether the harmonir: is being adjusted to zero beat with the carrier or with one of the sidebands.

Frequency Checking

The secondary standard provides signals of known frequency that can be tuned in on the station receiver. Determination of the frequency of at transmitter is then carried ont by the met hod desaribed eariier under "Frequeney Measurement with the Reariver," using these foints as positive identification of band edges. By using the known 100 -ke. points the receiver calibration can be

Fig. 21-18 - Cirmit diagram of the frepuency standard and harmonir amplificr.
$\mathrm{C}_{1}-25-\mu \mu \mathrm{fd}$. nidget variable (IIammarlind MAl'C:25).
$\mathrm{C}_{2}-3 \mu \mu \mathrm{fd} . \quad(21 / 2$ inchcs of 7.5-ohm 'Twin-Lead).
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.1-\mu \mathrm{fd}$. paper, 100 volts.
$\mathrm{C}_{5}-250-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{9}-\mathbf{0 . 0 0 1 - \mu \mathrm { fd } . ~ d i s e}$ ceramic.
$\mathrm{Cs}-100-\mu \mu \mathrm{fl}$. ceramic.
$\mathrm{C}_{10}, \mathrm{C}_{11}-20-\mu \mathrm{fl}$. electrolytic, 250 volts.
$R_{1}-4.7$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-2 \mathbf{2},(000$ ohms, $1 / 2$ watt.
$R_{3}, R_{4}, R_{5}-0.47$ incgohm, $1 / 2$ watt.
$R_{B}-470$ ohms, $1 / 2$ watt.
$\mathrm{R}_{7}-5000$-obm potentioneter.
Rs $-47,000$ ohms, 1 watt.
$R_{9}-1000$ ohms, 1 watt.
It - l-mh. r.f. choke (National R-50).
$\mathrm{I}_{\mathbf{2}}-4-\mu \mathrm{h}$ r.f. choke (National R-60).
$\mathrm{L}_{3}-2-\mu \mathrm{h}$ r.f. choke (National R-60).
$L_{4}-0.5 \mu h$. (1- μ h. r.f. choke, National R-33, with 10 turns removed).
$\mathrm{L}_{5}-3$ turns No. $16,1 / 4$-inch diam., $3 / 8$ inch long.
Cl - 65-ma. selenium rectifier.
J_{1} - 'liq jack.
RFC $\mathrm{I}_{1}-0.5-\mathrm{mh}$. r.f. choke (National R-50).
correeted so that, by interpolation, the frequeney of a signal lying between the calibration points can be determined with good aecuracy.

More Precise Methods

The methods described in this section are quite adequate for the primary purpose of amateur frequency measurements - that is, determining whether or not a transmitter is operating inside the limits of an amateur band, and the approximate frequeney inside the band. For measurement of an unknown frequency to a high degree of aecuracy more advanced methods can be used. Accurate signals at closer intervals can be obtained by using a multivibrator in conjunction

$\mathrm{RFC}_{2}-5 \cdot \mathrm{mh}$. r.f. choke (National R-100S).
S_{1} - S.p.s.t. toggle switch.
$\mathrm{S}_{2}-$ S.p.s.t. toggle switch monnted on R_{7}.
$S_{3}-1$-pole 6-position selector switch; shorting type (Centralab 2500).
T_{1} - I'ower transformer, 150 volts, 25 ma ; 6.3 volts, 0.5 amp . (Merit P'3046).

X'TAL - $100-1000$-ke. dual frequency crystal (Valpey DトS).
with the $100-\mathrm{ke}$. standard, and thus obtaining signals at intervals of, say, 10 ke . or some other integral divisor of 100 . Temperature control is frequently used on the 100 -ke. oseillator to give a high order of stability (Collier, "What l'rice Precision?", QS'T', September and Oetober, 1952). Also, the secondary standard ean be used in conjunction with a variable-frequeney interpolation oscillator to fill in the standard intervals (Woodward," A Linear Beat-Frequency Oscillator for Frequency Measurement," QST', May, 1951). An interpolation oscillator and standard can be combined in one instrument, one application of this type having been described in QST for May, 1049 (Grammer, "The Additive Frequeney Meter").

Fig. 21-19-Below chassis vicw of the frequency standard. The 1N34A harmonic gencrator is at the upper left. The variable condenser at the bottom is for adjust ment of the oscillator frequency to exactly 100 kc . At the upper right, mounted on the rear lip of the chassis, is the sclenium rectifice for the power supply. The filter condenser is just below it. Snall resistors and condensers are grouped around the tube sockets.

Standard radio and audio frequencios are broadrast continuously from WIWT, operated by the Contral Radio lropagation Laboratory, National Bureatu of standards, Washington, 1). C. on the following frequencies:

Freq., Wc.	Modulations (c, p, s).
2.5	1,440 or 600
\vdots	1.440 or 600
10	1,440 or 600
15	1,410 or 600
20	1.440 or 600
25	1,440 or 600

Similar broadeasts are given from WWVII, Puunene, T.II, on the following frequencies:

Fireq., Mc.	.Modulations (c.p.s.)
5	1,440 or 600
10	1,440 or 600
15	1,440 or 600

Transmissions are as given in the charts above, exerept that the WWVH broadeast is interrupted for 4 minutes following each hour and half hour and for periods of 40 minutes begiming at 0700 and 1900 universal time.

Time Signals

The $1-\mathrm{e} \cdot \mathrm{p}$.s. modulation is a 5 -milliserond pulse at intervals of precisely one serond, and is heard as a tick. Time intervals as transmitted are arcurate to within 2 parts in 100 million +1 microsecond. The tick on the 59 th second is omitted.

Transmitted frequences are arcurate within 2 parts in 100 million.

Propagation Notices

During the announement intervals at 20 minutes after and 10 minutes before the hour, propagation notices applying to transmission paths over the north ithantic are transmitted from WWV on 2.5, $5,10,15,20$, and 2.5 Me . These notices, in telegraphic code, consist of the letter N, W, or C' followed by a number. The letter designations apply to propagation conditions as of the time of the broadeast, and have the following signifieance:

> W - Ionospheric disturbance in progress or ex(pected. U - netable conditions, but communication possible with high power.

The number designations apply to experted propagation ronditions during the subsequent 12 hours and have the following signifieance:

Divit	Forecast
1	Inpossible
2	Very I'oor
3	Poor
4	Fair to Poor
5	Fair
6	Fair to Giood
7	Good
8	Very Good
9	Excellent

Test Oscillators

THE GRID-DIP METER

The grid-dip meter is a simple vacuum-tube oscillator to which a low-range milliammeter or microammeter has been added to read the oscillator grid current. A 0-1 milliammeter is sensitive
enough in most cases. Thr grid-dip meter is so called because when the oscillator is coupled to a tuned cireuit, the grid current will show a decrease or "dip" when the oscillator is tuned through resonanere with the unknown circuit. The reason for this is that the external circuit will

Fig. 21-20-A compact and light-weight krid-dip meter for one-hand operation. It is huilt in a $15 / 8 \times$ $2{ }^{2} \times$ t-inela "(hammel-lock" hox and uses six phag-in crils to cover the ranee 1600 ke , to $1(0)$ Me. The power supply and milliammeter for reading grid current are in aseparate unit.
absorb energy from the oseillator when both tre tuned to the same frequency; the loss of energy from the oscilator circuit cases the feedback to decrease and this in turn is accompanied by a decrease in grid current. The dip in grid current is quite sharp when the circuit to which the oscillator is coupled has reasonably high (Q.

The grid-tip moter is most useful when it covers a wide frequency range and is compactly constructed so that it can be coupled to circuits in hard-to-reach places such as in a transmitter or reeriver chassis. It ran thus be used to wherk tuning ranges and to find unwanted resonances of the type described in the chapter on TVI. Since it. is its own source of r.f. energy it does not, like the absorption wavemeter, reguire the ceireuit being wheded to be energized. In addition to resonane cherks, the gridedip meter also can be used as a signal somree for rereriver alignment and, as described later in this chapter, is useful in mowsurement of inductance and capacitance in the range of valuts used in r.f. circuits.

Figs. 21-20 to 21-22, inclusive, show a grid-dip meter of quiterompact construction using plug-in eoils to cover a contimuous fregueney range of 1500 ke , to 160 Me , and thus useful in all amat teur bands up through $1+4$ Mc. as well as for

Chereking for resonances in the low group of v.h.f. 'TV ehannels, the most important from the standpoint of hamonie 'TVI. It is smatl and light, and (ean be held and tuned with one hand sinee the dial extends slightly over the edges of the box so it can be operated with the thumb. The milliammeter is not contained in the oscillator itself but

Fig. 21-21 - Cirruit diagram of the grid-dip meter.
C. $-50-\mu \mu \mathrm{fd}$. midget variable (llamenarland $1 \mathrm{fl}-50$). (. 2_{2} - $\mathbf{I O N}-\mu \mu \mathrm{ft}$. ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{13}-\mathbf{0 . 0 0 1}-\mu \mathrm{fl}$. dise ceramic.
Cis - 0,01- μ fd, disc ceramic.
$1 R_{1}-22,000$ ohms, $1 / 2$ watt.
Coil Data, L_{1}

Freq. Range	Turns	H'ire	Diameter	Turns/inch	Tap*
$1.59-3.5 \mathrm{Mc}$.	139	32 enam.	$8 / 8 \mathrm{in}$.	Close-wound	32
3.45-7.8 Mc,	40	32 enam.	$8 / 8 \mathrm{in}$.	Close-wound	12
7.55-17.5 Mc.	40	24 tiuned	1/2 in.	32	14
17.2-40 Mc.	15	20 tinned	1/2 in.	16	5
$37-85 \mathrm{Mc}$.	4	20 tinned	1/2 in.	16	11/3

$78-160 \mathrm{Mc}$. Hairpin of No. 14 wire, $3 / 8 \mathrm{in}$. spacink. 2 inches long including coil form pins. Tapped $11 / 2 \mathrm{in}$. fron ground end.

- Turns from ground end.

Coil forms are Amphenol 24-5H, 8/4-in. diameter.
can be mounted separately in any convenient spot for viewing. lig. 21-23 shows the milliammeter mounted in a standard meter case which also contains the power supply for the oscillator. The cable connerting the two units can be any desired length.

The oscillator circuit, shown in Fig. 21-21, is a grounded-plate Hartley, with the cathode tap adjusted for maximum sensitivity - that is, for greatest change in grid current when tuning through resonance with a coupled rircuitrather than for maximum grid current. For satis-

Fig. 21-22-The griddip oscillator is built on the I-shaped portion of the box. Cis, Ci and Co are groumded to a soldaring lug at the left of the sorket. Wires in the [mower amd meter cable terminate at a 4 -point terminal strip at the loft.

factory operation at the highest frequency, the leads in the tuned circuit should be kept as short as possible, and the tuning condenser, C_{1}, is mounted so that its rotor and stator terminals are practically touching the corresponding pins on the coil socket. The tube socket is mounted on a bracket made from aluminum and placed at an angle so that the tube can be removed. The cathode connertion between the tube sorket and the coil socket is made of flat copper strip to redure its indurtance as much as possible.

Coils for the two low-frequency ranges are wound on the outsides of the forms in normal fashion, but with the exception of the highest range the remaining coils are lengths of $B \& W$ Minidurtor mounted inside the forms. A hairpinshaped coil is used for the highest range. As the coil forms are polystyrene, which softens at relatively low temperatures, care must be used in soldering to the pins. It is helpful to drill a metal plate, a few inches square and 1 í6 inch or so thick,

Fig. 21-23- Power supply and milliammeter for the grid-dip meter are contained in a meter case. The rontrol on top is for varying the plate voltage to maintain the grid current in the proper region.
so the coil pins will fit snugly; then if the plate is pressed firmly against the bottom of the form during soldering it will conduct the heat away from the polystyrene rapidly enough to prevent softening, if the soldering operation is not prolonged.

A transparent dial cut from a piece of $1 / 8$-inch Plexiglas (obtainable at hobby stores) is used in preferenee to a solid dial so the calibration can be plared on top, of the box, where there is more room for hettering. A hairline indieator is serate hed on the dial, which is also provided with a standard small knob, fastened to it by small machine serews threaded in from the bottom.

The power supply shown in Fig. 21-23 uses a miniature power transformer with a selenium rectifier and a simple filter to give approximately 120 volts for the oscillator plate. The potentiometer shown in lig. 21-24 is for adjustment of

Fig. 21-24-Cirenit diagram of the power supply for the grid-dip neter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16-\mu \mathrm{fd}$. elcetrolytic, 150 volts.
$R_{1}-1000$ ohnis, $1 / 2$ watt.
\mathbf{R}_{2} - 0.1 -megohm potentiometer.
' 1 ' 1 - Power transformer, 6.3 volts and 125 to 150 volts. (Merit l-3046 or equivalent.)
CR - 20 -ma. selenium rectifier.
MA-0-1 d.c. milliammeter.
plate voltage. In any grid-dip meter the grid current will be different in different parts of the frequeney range, with fixed plate voltage, so it is ordinarily necessary to choose a plate voltage that will keep the reading on scale in the part of the range where the grid current is highest. This usually results in rather low grid current at some other part of the range. With variable plate voltage this compromise is unnecessary.

The instrument may be calibrated by listening to its output with a calibrated receiver. The ealibration should be as accurate as possible, although "frequency-meter accuracy" is not required in the applications for which a grid-dip meter is useful.

The grid-dip meter may be used as an indicat-ing-type absorption wavemeter by shutting off the plate voltage and using the grid and cathode of the tule as a diode. However, this type of circuit is not as sensitive as the crystal-detector type shown earlier in this chapter, lecause of the highresistaner grid leak in series with the meter.

In using the grid-dip meter for chocking the resonant frequency of a circuit the coupling

OSCILLATOR

Fig. 21-25 - Circuit diagram of the simple audio oscillator.
($\mathrm{C}, \mathrm{C}_{4}-0.1 \mu \mathrm{fd}$., 600 -volt paper. $\mathrm{C}_{2}-0.04 \mu \mathrm{fd}$., 600 -volt paper (Sprague 6'TM-S4).
$\mathrm{C}_{3}-0.03{ }_{\mu \mathrm{fd}}$, 600 -volt paper (Sprague 6'TM-S3).
R_{1} - 1 megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-10,000$ olinis, $1 / 2$ watt.
K_{3} - $\mathbf{5 0 0 0}$-ohm potentiometer
$\mathrm{R}_{4}, \mathrm{H}_{5}-4700$ ohnis, $1 / 2$ watt.
$\mathrm{lis}_{6} \mathrm{R}_{7}-47,000$ ohms, $1 / 2$ watt.
$\mathrm{J}_{\mathbf{t}}$ - 4 -prong chassis connector, male.
\mathbf{T}_{1} - Interstage audio transformer (Stancor A-4711).

Fig. 21-26 - A simple and inexpensive audio oscillator for use in cheching 'phone trarrmitter opration. It generates a good sine wave of lixed frequency and is !rovided with an attenuator so that the output level can be set at the proper value for sulstituting for any type of microphone.
should be kept to the point where the dip in grid current is just perceptible. This reduces interaction between the two circuits to a minimum and gives the highest accuracy. With too-close coupling the oscillator frepuency may be "pulled" by the cireuit being checked, in which case different readings will be obtained when resenance is approached from the high side as compared with approaching from the low side.

- AUDIO-FREQUENCY OSCILLATORS

A useful arecssory for testing audio-frequency amplifiers and modulators is an audio-frequency
signal generator or oscillator. Checks for distortion, gain, and the ordinary troubles that occur in such amplifiers do not require elaborate equipment; in most cases, a single audio frequency will suffice. The chief requirement is that the audio oscillator be able to generate a reasonably good sine wave.

Figs. 21-25 and 21-26 show a simple oscillator of a type entirely adequate for 'phone transmitter testing using the mothods described in the chapter on amplitude modulation. It generates a fixed frequency of approximately 400 cycles, and since it is provided with a step attenuator giving maximum outputs of approximately 1, 0.1, and 0.01 volts r.m.s., as well as continuously-variable output control, it can be used as a sulbstitute for any type of microphone by proper choice of the high, medium, or low output.

The circuit diagram is given in Fig. 21-25. One section of a double triode is used as a Colpitts oscillator, with C_{2}, C_{3} and the secondary winding of T_{1} forming the tuncd circuit. (With the transformer sperified, the entire secondary winding is used.) The primary winding of T_{1} is connected to the grid of the second triode section, which is used as a cathode follower. Variable output from the unit is taken from the arm of a potentiometer, R_{3}, comnected as the cathode-follower load. The high output is taken directly from R_{3}, while the two lower outputs are taken from a ladder-type divider, $R_{4} R_{6}$ and $R_{5} R_{7}$. These points are brought out to tip jacks.

Molded paper condensers should be used at C_{2} and C_{3}; cardboard-cased tubulars have been found to be unreliable in this circuit

The power requirements are quite low - the total cathode current of the 6SN7GT is only 7.5 ma. and can be taken from any convenient source of about 150 volts. The 6 SN7GT heater requires 0.6 amp . at 6.3 volts.

R.F. Measurements

R.F. CURRENT

R.f. current-measuring devices use a thermocouple in conjunction with an ordinary d.c. instrument. The thermocouple is made of two dissimilar metals which, when heated, generate a small d.c. voltage. The thermorouple is heated by a resistance wire through which the r.f. current flows, and since the d.c woltage developed is proportional to the heating, which in turn is proportional to the power msed by the heating element, the delfections of the d.c. instrument are proportional to power rather than to current. This causes the calibrated seale to be compresed at the low-current end and spread out at the highcurrent end. The useful ravige of such an instrument is about 3 or 4 to 1 ; that is, an r.f. ammeter having a full-scale reading of 1 ampere can be read with satisfactory accuracy down to about
0.3 ampere, one having a full seate of 5 amperes can be read down to about 1.5 amperes, and so on. No single instrument can be made to handle a wide range of currents. Neither can the r.f. ammeter be shunted satisfactorily, as can be done with d.e. instruments. because even a very small amount of readance in the shunt will cause the readings to be highly depondent on frequency.

R.F. VOLTAGE

An r.f. voltmeter is a rectificr-type instrument, in which the r.f. is converted to d.c., which is then measured with a d.e. instrument. The best type of rectifier for most applications is a crystal diode, such as the 1×34 and similar trpes, because its capacitance is so low as to have little effeet on the behavior of the r.f. cireuit to which it is connected. The principal limitation of
these rectifiers is their rather low vatue of safe inverse peak voltage. Vacuum-tube diodes are considerably better in this respect, but their size, shunt capacitance, and the fact that power is required for heating the cathode constitute serious disadvantages in many applieations. Typical rircuits for ersstal-diode r.f. voltmeters are given in Fig. 21-27.

One of the principal uses for such voltmeters is as null indiators in r.f. bridges. as deseribed

Fig. 2/-27- R.f. voltmeter cireuits using a erystal rectifier and d.e. microammeter or $0-1$ millianmeter. 'The circuit at A is suitalle for measuring low voltages up to about 20 , whis maximum. 13 is for measuring the voltage between the eonductors of a coaxial line. The total resistance of R_{2} and R_{3} should be of the order of Z.500 ohms, with the ratio of K_{2} to K_{3} chosen to apply not more that 10 volt- to the erystal cireuit, based on the unmodulated carrier power in the line. In both circuits, R_{1} should be not less than 10,000 ohms for a $0-1$ milliammeter, and should be inereased in proportion to the sensitivity of the meter (e.g., 20,000 ohms for a $0-500$ mieroammeter, 100,000 ohms for a $0-100$ microammeter). (i and (. 2 shomld be 0.001μ dd. or more. In ${ }^{(1)}$, J_{1} and J_{2} represent coaxial eonnectors. The voltmeter is preferathly built in a shielded box, the $2 \times 4 \times 4$ size being large enough to eontain the whole instrument.
later in this chapter. Another useful application is in measurement of the voltage betwern the conductors of a comxial line, to show when a transmitter is adjusted for optimum output. In either case the voltmeter impedance should be high compared with that of the circuit under measurement, to avoid taking appreciable power. and the relationship, between r.f. voltage and the reading of the d.c. instrument should be as linear as possible - that is, the d.e. indication shoutd loe directly proportional to the r.f. voltage at all points of the scale.

All rectifiers show a variation in resistance with applied voltage, the resistance being highest when the applied voltage is small. These variations can bo fairly well "swamped out" by using a high value of resistance in the d.e. cireuit of the reetifier. A resistance of at least 10,000 ohmes is neressary for reasonably good lincarity, and higher values are beneficial. For this reason a fairly sensitive d.e. instrument should be used if possible, a $0-100$ microammeter, although a

0-1 milliammeter will serve quite woll in many cases. A V'TV'A is ideal for the purpose sinere its extremely high input resistance excereds anything that is practiad with an ordinary microammeter. Iligh resistance in the d.e. cirruit also raises the imperdance of the r.f. voltmeter and reduces its power consumption.

The bisic voltmeter rireuit is shown in Fig. 21-27. , and is simply a half-wave rectifier with a moter and a resistor, R_{1}, for improving the linearit y. The time constant of (${ }_{1} R_{1}$ should be large compared with the period of the lowest radio frequency to be measured - a condition that can easily be met if R_{1} is 10,000 ohms and C_{1} is 0.001 $\mu \mathrm{fd}$. or more - so C_{1} will stay charged near the prak value of the ref. voltage. The radio-frequeney choke may he omitted if there is a low-resistance d.e. path through the eireuit being measured. (2_{2} provides additional r.f. filtering for the d.e. circuit.

A practical arrangement for measuring the r.f. voltage in a coaxial line from a transmitter is shown at 13. A voltage divider, $R_{2} R_{3}$, is conneeted across the line, the resistanee values being chosen so the inverse peak voltage rating of the rectifier is not exceeded. This rating is 60 volts for the 1N:3t, which limits the r.m.s. voltage that maty lo applied to the crystal to a maximum of 21 volts. If the approximate power carried hy the line is known, the voltage ean easily be caleulated if the line is flat. A standing-wave ratio of 4 to 1 will cause the voltage to be twiere the calculated value at a voltage loop, and 100 per cent modulation also doubles the voltage. Since it is unlikely that the s.w.r. will exceed 4 to 1 in a properly operated coax line, the safety fartor will be adeguate if the voltage divider is designed on the basis of applying one-fourth the rated value of voltage, or about 5 volts, to the erystal. The total resistance in the divider should be about 100 times the line impedance so the power consumed by the voltmeter will not exered 1 per cent of the power in the line. Composition resistors should be used, allowing 1 watt dissipation in R_{2} (which usually dissipates prartically all the voltmeter power) for cach 100 watts in the line. The neeressary dissipation can be built up by using resistors in serics.

In constructing such a voltmeter care must be used to prevent stray coupling between the line and any part of the voltmeter, and also between the voltage diviter and the crestal rectifier cin(ruit. Also, the resistor or resistors comprising R : should be kept away from grounded metal in order to reduee stray capacitance.

Calibration

Calibration is not necessary for purely romparative measurements. A calibration in actual voltage requires a known resistive load and an r.f. ammeter. The set-up is the same as for r.f. power measurement as described later, and the voltage calibration is obtained by calculation from the known power and known load resistance, using (Hm's Law $-L^{\prime}=\sqrt{\prime} I^{\prime} R$. As many points as possible should the obtained, by varying
the power output of the transmitter, so that the linearity of the voltancter ean be cheeked.

Different voltage ranges may be secured, with a fixed voltage dividur, by changing the value of R_{1}. It is advisable to calibrate on the lowest range and then, with a fixed value of power in the line, increase R_{1} until the desired scale factor is obtained.

R.F. POWER

Measurement of r.f. power requires a resistive load of known value and either an r.f. ammeter or a calibrated r.f. voltmeter. The power is then either $I^{2} R$ or E^{2} / R, where R is the load resistance in ohms.

The simplest method of obtaining a load of known resistance is to use an antenna system with coas-coupled matching eircuit of the type described in the chapter on transmission lines. When the circuit is adjusted, by means of an s.w.r. bridge, to bring the s.w.r. down to 1 to 1 the load is resistive and of the value for which the bridge was designed (52 or 75 ohms). Fig. 21-28 shows a convenient way of mounting an r.f. ammeter for measuring current in a coaxial line.

Fig. 21 -28-1R.f. ammeter mounted for connecting into a coaxial line for measuring power. A "E-inch" instrument will fit into a $2 \times 4 \times 4$ metal box. The shunt capacitance of an ammeter momented in this way has a negligible effect on the accuracy at frequencies as high as 30 Mc. if the instrument has a bakelite case. Detal. cased meters should the mounted on a bahelite panel whish can in turn be mounted in a cut-out which elears the meter case by alout $1 / 4$ inch.
The instrument can be inserted in the line in place of the s.w.r. bridge after the matching has been completed, and the transmitter is then adjusterd - without touching the matching circuit - for maximum current. The ammeter may be left in the line during regular operation if desired, but it should he kept in mind that a mismateh such as might be caused hy an accident to the antenna system may result in damage to the instrument since under such conditions it is possible for the current to reach several times its normal value.

An r.f. voltmeter of the type described in the preceding section also can be used for power measurement in a similar sot-up. It has the advantage that, berause its scate is sulistantially linear, a much wider range of powers can be measured with a single instrument.

- inductance and capacitance

The ability to measure the inductance of coils and the eapacitance of condensers frequently saves time that might otherwise be spent in cut-
and-try. A convenient instrument for this purpose is the grid-dip oscillator, deseribed earlier in this chapter.

For measuring inductance, the coil is conneeted to a condenser of known capacitance as shown at A in Fig. 21-29. With the unknown eoil
(A)

(B)

Fig. 21.29 - Set-ups for measuring inductance and capacitance with the grid dip meter.
connereted to the standard condenser, the pick-up loop is coupled to the eoil and the oscillator frequency adjusted for the grid-current dip, using the loosest coupling that gives a deteretable indication. The inductance is then given by the formula

$$
L_{\mu \mathrm{b} \cdot}=\frac{25,330}{C_{\mu \mu / \mathrm{d} \cdot} f_{\mathrm{Mc}}^{2}}
$$

The reverse procedure is used for measuring caparitaner - that is a coil of known inductance is used as a standard as shown at B. The unknown capacitance is

$$
C_{\mu \mu \mathrm{fd} \cdot}=\frac{25,330}{L_{\mu \mathrm{h} \cdot} f_{\mathrm{Mc} \cdot}^{2}}
$$

The accuracy of this method depends on the accuracy of the grid-dip meter calibration and the accuracy with which the standard values of L and C are known. Postage-stamp silver-mica condensers make satisfactory caparitance standards, since their rated tolerance is +5 per cent. Equally good inductance standards ean be made from machine-wound coil material such as the

Fig. 2I-30-A convenient nounting, using bindingpost plates, for L and Cistandards made from eommer-cially-available parts. The condenser is a $100 \cdot \mu \mu \mathrm{fd}$. silver mica unit, monted so the lead length is as nearly zero as possible. The inductance standard, $5 \mu \mathrm{~h}$., is 17 turns of No. $301513 \& W$ Miniductor, 1 -inch diameter, 16 turns per inch.

I3 \& W Minductors, using the chart in the data chapter to determine the inductance.

A single pair of standards will serve for measuring the L and C valucs commonly used in amateur equipment. A good choice is $100 \mu \mu \mathrm{fd}$. for the condenser and $5 \mu \mathrm{~h}$. For the coil. Based on these values the chart of Fig. 21-31 will give the unknown directly in terms of the resonant frequency registered by the grid-dip metor. In measuring the frequency the coupling between the grid-dip meter and resonant circuit should be kept at the smallest value that will give a definite indication.

A correction should be applied to measurements of very small values of L and C to include the effects of the shunt ciapacitance of the mounting for the coil and for the inductance of the leads to the condenser. These amount to approximately $1 \mu \mu \mathrm{fd}$. and $0.03 \mu \mathrm{~h}$., respertively, with the method of mounting shown in Fig. 21-30.

Coefficient of Coupling

The same equipment can be used for measurement of the coefficient of coupling between two coils. This simply requires two measurements of inductance (of one of the coils) with the coupled coil first open-circuited and then short-cireuited. Connect the $100-\mu \mathrm{f}$. standard condenser to one coil and masase the inductance with the terminals of the second coil open. Then short the terminals of the second coil and again measure the indurtance of the first. The coefficient of coupling is given by

$$
k=\sqrt{1-\frac{L_{2}}{L_{1}}}
$$

where $k=$ coefficient of coupling

$$
\begin{aligned}
& L_{1}=\begin{array}{l}
\text { inductance of first eoil with terminals } \\
\text { of second coil open }
\end{array} \\
& L_{2}=\begin{array}{l}
\text { inductance of first eoil with terminals } \\
\text { of second coil shorted. }
\end{array} \\
& \text { R.F. RESISTANCE }
\end{aligned}
$$

Aside from the bridge methods used in trans-mission-line work, described later, there is relatively little need for measurement of r.f. resistance in amateur practiec. Also, measurement of resistance by fundamental methods is not practieable with simple equipment. Where such measurements are made, they are usually based on known characteristics of a vailable resistors used as standards.

Most types of resistors have so much inherent reactance and skin effert that they do not act like "pure" resistance at radio frequencies, but instead their effective resistance and impedance vary with frequency. This is especially true of wire-wound resistors. Composition (carhon) resistors as a rule have negligible inductance for frequencies up to 100 Mc . or so and the skin effert also is small, but the shunt capacitance cannot be neglected in the higher values of these resistors, since it reduces their impedanee and makes it reactive. However, for most purposes the rapacitive effects can be considered to be negligible in eomposition resistors of values up to 1000 ohms, for frequencies up to 50 to 100 Me., and the r.f. resistance of such units is practically the same as their d.e. resistance. Hence they can be considered to be practically pure resistance in such applications as r.f. bridges, etc., provided they are mounted in such a way as to avoid magnetic roupling to other circuit components, and are not so close to grounded metal parts as to give an appreciable increase in shunt capacitance.

Fig. 21-3I - Chart for determining unknown values of L and C in the range 0.1 to $100 \mu h$ and 2 to $1000 \mu \mu f l$., using standards of $100 \mu \mu \mathrm{fi}$. and $5 \mu \mathrm{~h}$.

Antenna and Transmission-Line Measurements

Two principal types of measurements are made on antenna systems: (1) the standing-wave ratio on the transmission line, as a means for determining whether or not the antenna is properly matched to the line; (2) the comparative radiation field strength in the vicinity of the antenna, as a means for checking the directivity of a beam antenna and as an aid in adjustment of clement tuning and phasing. Both types of measurements can be made with rather simple equipmont.

FIELD-STRENGTH MEASUREMENTS

The radiation intensity from an antoma is mosared with a device that is essentially a very simple receiver equipped with an indicator to give a visual representation of the comparative signal strength. Such a field-strength meter is

A desirable form of pick-up antenna is a dipole installed at the same height as the antenna being tested, with low-impedance line such as $75-0 h m$ Twin-Lead connected at the center to transfer the r.f. signal to the field-strength meter. The length of the dipole need only be great enough to give adequate meter readings. A half-wave dipole will give maximum sensitivity, but such length will not be needed unless the distance is several wavelengths and a relatively insensitive meter is used.

Field-Strength Meters

The crystal-detector wavemeter described carlier in this chapter may be used as a fieldstrength meter. It may be coupled to the transmission line to the pick-up antenna by means of

Fig. 21-32 - A logarithmis: field-strength meter of high sensitivity. It uses two miniature battery-operated tubes and a 0.500 nicroam. meter, and gives readings that are approximately proportional to the change in field strengih in decibels.

used with a "pick-up antenna," which should always have the same polarization as the antemna being cheeked - e.g., the piek-up antenna should be horizontal if the transmitting antenna is horizontal. Care should be taken to prevent striy pick-up by the field-strength meter itself or by any transmission line that may connect it to the pick-up antenna.

Field-strongth moasurements preferably should be made at a distance of several wavelengths from the transmitting antenna boing tested. Measuremonts made within a wavelength of the antemat may be misleading, because of the possibility that the measuring equipmont may be responding to the combined induction and radiation fields of the antenna, rather than to the radiation fied alone. Also, if the piek-up antemat has dimensions comparable with those of the antenna under test it is likely that the coupling between the two antennas will be great enough to cause the piek-up antema to tend to become part of the radiating system and thus result in misleading field-strength readings.
a link of a few turns wound around the wavemeter coil. Also, the wavemetor proper may be connected to the milliammeter through a section of lampeord or similar two-conductor cable of any convenient longth. This promits the milliammoter unit to be near the point where adjustmonts are being made, even though the pick-up antena and wavemoter may be several wavelongthe away.

The indications with a erystal wavemeter connerted as shown in Fig. 21-11 will tend to be "square law" - that is, the meter reating will be proportional to the square of the r.f. voltage. This axaggorates the effect of relatively small adjustments to the antonna system and gives a false impression of the improvement secured. The meter reading can be made more linear by connecting a fairly large resistance in series with the milliammeter (or microammeter). Alwout 10,000 ohms is required for good linearity. This considerably reduces the sensitivity of the moter, but the lower sensitivity can be compensated for by making the pick-up antenna sufficiently large.

Fig. 21-33- l'he logarithmic f.s. meter is construeted on a small aluminumi channel. A small copper plate between the two coils is used for reducing the interstage coupling to the point where the r.f. amplifier is nonregenerative.

A Sensitive Logarithmic F.S. Meter

For indieating the effeet of antemat adjustments at a distant station, a logarithmie tyere of indieator is desirabla in the tiedd-strength meter since the meter radings with such an instrument are directly proportional to deribels, ligs, 21-32 to 21-3.4, inclusive, show a meter of this type. It makes use of the fact that the rectified die. output of a detector following a.v.e.-rontrolled r.f. stages tends to be logarithmie with resperet to the r.f. voltage applied to the reediver.

As shown in lig. 21-3.t, the dircuit inclades an r.f. amplifier, a detector, and a d.e. amplifier, using miniature battery tubes. The rectified r.f. voltage developed arross R_{1} in the diode cireuit of the 1 '5 is applied through the ground connection to the gride of the 1T4 r.f. amplifier and thus controls its gain. The $11 / 2$-volt "A" battery is not connerted to ground hut is allowed to "float," permitting the a.v.c. voltage to be effective on the grids.

In the unit shown in the photographs, slugtuned coils are used because of their small size and because they eliminate the need for variable tuning condensers. However, ordinary condensertuned circuits can be substituted; the only requirement is that the eireuits must be tunable to the frequency at which the antema is being adjusted. The only critical point about the construction of such a meter is to lay out the tuned circuits so that the r.f. amplifier is stable; otherwise, any convenient layout may be used.

Fig. 2I-3. - Wiring diagram of the sensitive fieldstrength micter.
$\mathrm{C}_{1},\left(\mathrm{~S}_{2}, \mathrm{C}_{6}-0.101-\mu \mathrm{fd}\right.$. ceramic.
($\left.: 3,(5-4)^{-}\right)-\mu \mu \mathrm{ft}$. ceramic.
(:4-0,00.5-mfd. ceramic.
$\mathrm{R}_{1}-1.5$ megohms.
$1.1-14$ Ve: 8 turns No. 30 d.c.c.
28 Ve.: 6 turns No. 22 d.c.c.
$1.2-14$ V1e.: 34 turns No. 30 d.c.c.
28 Mc.: 24 turns No. 22 d.c.e.
$1.3-14$ Nc: 27 turns \o. 28 d.c.e.
28 Me: 16 turns Vo. 20 d.c.c.
L_{1} wound over ground end of L_{2}. L_{2} and L_{3} cloaewound on National $\backslash!\}-\overline{5} 0$ sluk-tuned coil forms.
R $\mathrm{FC}_{2}-7.31 \mu \mathrm{~h}$. (National R33).
s_{1}-S.p.s.t. logmle.
MA-0.5 milliammeter.
With the values shown in Fig. 21-34 the nosignal plate current should be very close to 0.5 milliampere. A less-sensitive d.e. instrument will require more " B " voltage. Whatever the type of meter, the current may be brought to exactly full scale, with no signal input, by shunting it
with a variable rosistor of suitable range, depronding on the internal resistance.

Fig, 21-35 is a typical catibation curve. The roalings ate approximately logarithmie over

Fig. 21.35-7 prical ealitration curve of the lomarithmic field-strength meter, 'The curve is sufficiently logarithmie, for practial purposes, leetwern about $0,0.5$ and 0.15 ma. The way in which the readings vary with applied signal, and not the absolute value of the signal, is the important point, and sime this will not change significantly so long as the same circuit is used, the curve above may be used with any similar instrument.
about $\mathbf{7 0}$ per cent of the scale, with a range of about 20 db. L"sed with a folded-dipole pick-up antenna, the instrument is sensitive enough for use a few thousand feet away from a beam antenna fed with a fow hundred watts.

CHECKING STANDING WAVES

Standing waves on a transmission line can be measured if it is possible to measure the current at every point along the line, or the voltage betwern the two conductors at avery point along the line. Rough rhecks on paralledeonductor lines can be made by going along the line with an absorption wavemeter having a erystal reatifier, taking care to keep the piek-up coil (or pick-up antennal) at the same distance from the line at every moasurement. With such a device the maximum milliammeter reading usually will indicate current loops if a small pick-up coil is used, and voltage loops if a short piek-up antemna is used.

An alternative indicator, also useful with parallel-eonductor lines, is a neon lamp. With moderate amounts of transmitter power, a lowwattage lamp will glow when the glass bull is brought into contact with one line wire. As the lamp is moved along the line, a change in brightness indirates standing waves. If the glow is sulstantially the same all along the line the s.w.r. can be considered to be low enough for practical purposes.

Standing-Wave Ratio Indicators

Simple indicators such as those just mentioned are useful for checking the presence of

Fig. 21-36-This fundamental hridge eirenit is the basis for one type of device for measuring standing-wave ratio.
standing waves along a transmission line but are not adequate for actual measurement of the standing-wave ratio. Also. it is frequently inconvenient, and sometimes impossible, to move a current or voltage indicator along a transmission line for the distance required in checking standing waves.

An alternative method uses a bridge circuit to measure the standing-wave ratio. Fig. 21-36 will serve to illustrate the basic principles. R_{1} and R_{2} are fixed resistors having known values, and R_{s} is a calibrated variable resistor. The unknown resistance to be measured, R_{t}, is con-

Fig. 21-37-Standing-wave ratio in terms of meter reading (relative to full seale) after setting outgoing voltage to full seale. This graph is a plot of the formula

$$
S . F_{.} R .=\frac{V_{o}+V_{\mathrm{r}}}{V_{\mathrm{o}}-V_{\mathrm{r}}}
$$

where I'o and I'r are the outgoing and reflected components, respectively, of the voltage on the transmission linc.
nereted in series with R_{s} to form a voltage divider across the souree of voltage, E. The resistance of the voltmetor, V, should be very much larger thatn any of the four rosistance "arms" of the bridge for maximum aceuracy. From (hm's Law it is apparent that when R_{1} / R_{2} equals R_{s} / R_{2} the voltage drops across R_{1} and R_{s} are equal (this is
also true of the voltage drops arross R_{2} and R_{L}) and there is no difference of potential between points C and I. Hence the voltmeter reading is zero ("null") and the bridge is said to be "balanced." ['nder any other conditions the potentials at C and D) are not the same and the voltmeter reads the difference of potential.
The hasis for s.w.r. measurements with a bridge is the fact that the input impedance of a properlyterminated transmission line is a pure resistance equal to the line's characteristic impedance. If a matched line is connected as the unknown arm of an appropriate bridge circuit the bridge can be balanced in the usual way and the indicating instrument will show a null. However, if the line is not properly terminated the voltage reflected back from the far end of the line will appear at the terminals of the bridge and will register on the voltmeter. The relationship between voltmeter reading (in percentage of full scale) and standing-wave ratio is shown in Fig. 21-37. This curve applies only when the voltmeter impedance is extremely high - 20 times or more - compared with the impedance for which the bridge is designed.

While other bridge cireuits can be used for s.w.r. measurement, the resistance bridge is about the simplest and casiest to build. It lends itself well to construction for coaxial lines and when so designed can le used for measurement of open-wire lines as shown later in this ehapter.

Bridge Construction

The voltmeter used in s.w.r. bridge cireuits employs a erustal diode and is subject to the considerations described carlier in this chapter. In most cases, the bridge is used chiefly in the adjustment of an antenna matching system or in the adjustment of a coax-coupled matching network of the type deseribed in the ehapter on

Fig. 21.38-A simple lridge circuit uscful for imped. ance-matching in coaxial lines.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.000 \mathrm{~T}-\mu \mathrm{fl}$. disk ceramic.
$\mathbf{h}_{1}, \mathrm{l}_{2}-1 \overline{1}$-ohm composition, $1 / 2$ watt.
$\mathbf{H}_{3}-50$. or 75 -ohm (depending on line impedance) composition, $1 / 2$ watt.
H_{4} - 1000 -ohm composition, $1 / 2$ watt
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial conne:tor.
The meter may be a $0-1$ milliammeter or d.e. voltmeter of any type having a sensitivity of 1000 olmens per volt or greater, and a full-scale range of 5 to 10 volts. Negative side of meter connects to ground.
transmission lines. The object in such cases is to got the lrest possible mateh, as indicated by a null reading on the vodtaeter, and not partioubarly to make areurate s.w.r. measurnments. For this purpose the voltmeter requirements are not

Fig. 21-39 - An inexpensive hridge for matching adjustments using the circuit of Fig. $21-38$. It is built in a $15 / 8 \times 21 / 8 \times 4$-inch "(Channel-iock" box. The standard resistor, R_{3}, bridges the two coax connectors. A pin jack is provided for connection to the d.e. meter; the meter negative can be connected to the case or a coax fitting.
rigorous because it takes no current when the bridge is balanced, and a $0-1$ milliammeter with a few thousand ohms resistance in series will surve very well. The circuit of Fig. 21-38 and the sonstruction of Fig. 21-39 are quite satisfactory for a bridge intended primarily for impedance matching.

A principal point in the construction of an s.w.r. bridge is to avoid matual coupling between the resistors forming the bridge arms, and between the arms and the voltmeter circuit. This ean be done by kepping the resistance arms separated and at right angles to each other, and by placing the erystal and its romesting loads so that the loop so formed is not in induetive relationship with any loops formed by the bridge arms. Shielding between the bridge arms and the crystal circuit is helpful in reducing such couplings, although it is not always necessary. The two resistors forming the "ratio arms," R_{1} and R_{2}, shoüld have identical relationships with metal parts, to keep the shunt capacitanes equal, and also should have the same lead lengths so the inductances will balance. Leads should be kept as short as possible.

S.W.R. Measurement with a Bridge

For reasonally aceurate megsurement of sw.r. he bridge must not only be well constructed,
along the limes described above, but must have a voltmeter of very high imperance compared with the line impedanee and must have provision for measuring the voltage applied to the bridge as well as the voltage developed between the arms. This is so the applied voltage can bo kept constant (by regulating the transmitter output) both with and without the transmission line connee ted to the load terminals. If the input voltage is not maintained at at constant value the readings are unreliable. The same d.e instrument can be used for both voltage measurements, but separate crystal rectifiers must be provided. Fig. 21-40 is the circuit of a bridge so equipped. Since the "input" voltmeter is simply used as a reforence, its linearity is not important, nor does its reading have to bear any definite relationship to that of the "bridge" voltmeter, except that its range has to be at least twice that of the lattor.

The resistance in the bridge voltmoter circuit should be of the order of 100 times the line im-

Fig. 21.40- Bridge circuit for s.w.r. measurements. This circuit is intended for use with a d.c. voltmeter, range 5 to 10 volts, having a resistance of 10,000 ohms per volt or greater.
$\mathrm{C}_{1},\left(: 2, \mathrm{C}_{3}, \mathrm{C}_{4}-0.005 \cdot \mu \mathrm{fd}\right.$. disk ceramic.
$\mathbb{R}_{1}, \mathbb{R}_{2}-47$-nhm composition, $1 / 2$ or 1 watt.
$1\}_{3}-50$. or $7.5-6 h m$ (depending on line impelance) composition, $1 / 2$ or 1 watt.
$\mathrm{R}_{4}, \mathrm{~K}_{5}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coavial monnectors.
Meter connects to either "input" or "bridge" position as reguired.
pedance to avoid voltmeter errors; that is, R_{4} plus the voltmeter resistance should be at least 50,000 ohms. This generally requires a sensitive d.e. instrument such as a 0-100 microammeter, a 20,000 -ohms-per volt voltmeter, or, better, a VTVM.

Testing and Calibration

In a bridge intended for s.w.r. measurement rather than simple matching, the first chork is to apply just enough r.f. voltage so that the bridge voltmeter reads full scale with the load terminals open. Measure the input voltage, then shortcireuit the load terminats and readjust the input to the same voltage. The bridge voltmeter should again register full scale. If it does not, the ratio arms, R_{1} and R_{2}, probably are not exactly equal.

These two resistors should be carefully matehed, although their actual value is not reitical. This test should the made at the highest frequency to be used. If a similar test at a low frequency shows hetter halance, the probable cause is stray inductance or caparitance in one arm not balaned by equal stravs in the other.

After the "short" and "open" readings have been equalized, the bridge should be checked for null halance with a "dummy" resistor equal to the line impedance comerted to the load terminals. It is convenient to mount a half- or 1 -watt resistor of the proper value in a coax connector, kerping it centered in the connector and using the minimum lead length. The bridge voltmeter should read zero at all frequencies. A reading above zero that remains constant at all froquencies indicates that the "dummy" resistor is not matehed to R_{3}, while readings that vary with frequency indicate stray reactive effects or stray coupling betwoen parts of the bridge.

When the operation is satisfactory on the two points just described, the null should the checked with the dummy resistor comerted to the bridge through several different lengths of transmission line, to ensure that R_{3} actually matehes the line imperance. If the null is not complete in this test both the dummy resistor and R_{3} will have to be adjusted until a good mateh is ohtained. With care, composition resistors can be filed down to raise the resistance, so it is best to start with resistors somewhat low in value. With each change in R_{3}, adjust the dummy resistor to give a good null when eonnected directly to the bridge, then try it at the end of several different lengths of live, eontinuing until the null is satisfactory under all eonditions of line length and frequeney. A disarepancy of a few per econt of the full-seale reading is tolerable.

With a high-impedanee voltmeter, the s.w.r. readings will elosely approximate the theoretical

Fig. 21-41 - Top and hottom views of s.w.r. bridge using the circuit of Fig. 21-40. The thox is ronstructed from flashing copper and measures 3 inches long, $13 / 4$ deep and $15 / 8$ wide, the width being selected to be just great enough to permit connecting a l-watt standard resistor, K_{3}, to the coax fittings with substantially no
curve of Fig. 21-37. The calibration can be cherked by using composition resistors as loads. Adjust the transmit ter compling so that the bridge volt meter reads full scale with the output terminals open, and then check the input voltage. Connect various values of resistance across the output terminals, making sure that the input voltage is readjusted to be the same in cach case, and note the reading with the meter in the bridge position. The s.w.r. is given by

$$
S . W, R .=\frac{R_{\mathrm{L}}}{R_{0}} \text { or } \frac{R_{0}}{R_{\mathrm{L}}}
$$

where R_{0} is the line impedance for which the bridge has been adjusted to null, and R_{L} is the resistance used as a load. Use the formula that places the larger of the two resistanees in the numerator. If the readings do not eorrespond exactly for the same s.w.r. when appropriate resistors above and below the line impedance for Whieh the bridge is designed are used, the current taken by the voltmeter is alferting the measurements.
['sing a $0-100$ microammotor, a $20,000-0$ hms-per-volt voltmeter on a 5 -volt or higher range, or a VT' voltmeter, the difference between "up" and "down" s.w.r. measurements should be negligible, provided the load resistors used for this test (ean be measured (at d.e.) with sufficient areuracy. Vialues over 1000 ohms or so should not be used at the higher frequencies.

Using the Bridge

The proeedure is the same whether the bridge is used for matching or for s.w.r. measurement. Apply power with the load terminals cither open or shorted, and adjust the input until the bridge voltmeter reads full scale. Because the bridge oprates a very low power level it may be neressary to couple it to a low-power driver stage rather than to the final amplifier. Alternatively,

lead length. A small piece of copper shields the bridge arms from the erystal rectifiers. R_{1} and R_{2} are symmetrically placed with respeet to R_{3} and are at right angles to it to reduce stray conpling. The prositive side of the d.c, meter connects to the feed-through bushings and the negative to the serew below them.
the plate voltage and excitation for the final amplifior may be reduced to the point where the power output is of the order of a few watts. Then conneet the load and observe the voltmeter reating. For matching, adjust the matching network until the best possible null is ohtained. For s.w.r. measurement, note the r.f. input voltage to the bridge after adjusting for full-seale with the load termmals open or shorted, then conneret the load and readjust the transmitter for the same input voltage. The bridge voltmeter then indicates the standing-wave ratio.

Parallel-Conducfor Lines

I3ridge measurements made directly on paral-led-eonductor lines are frequently subject to considerable error berause of "antema" currents flowing on such lines. These currents, which are either induced on the line hy the fied around the anterna or coupled into the line from the transmitter by stray capaciance, are in the same phase in both line wires and hence do mot balane out like the true transmission-line currents. They will mevertheless actuate the bridge voltmeter, causing an indication that has no relationship to the standing-wave ratio.

The effect of "antenna" currents on s.w.r measurements can be largely overome by using a coaxial bridge and coupling it to the parallelconductor line through a properly-designed impedance-matching circuit. A suitable circuit is given in lig. 21-42. It closely resembles the

Fig. 21-42- Cirenit for using coaxial s.w.r. bridge for measurements on parallel-conductor lines. Values of circuit emmonents are identical with those used for the simitar "antenna-coupler" eirenit discussed in the chapter on transmission lines.
common type of "antenna coupler," and in fact such a coupler can be used for the purpose. In the balanced tank circuit the "anterna" or parallel components on the line tend to halance out and so are not passed on to the s.w.r. bridge. It is essential that L_{1} be coupled to a "cold" point on L_{2} to minimize capacitive coupling, and also desirable that the center of L_{2} be grounded to the chassis on which the circuit is mounted.

Values should be such that $L_{2} \mathrm{C}_{2}$ can be tuned to the operating frequency and that L_{1} provides sufficient coupling, as described in the trans-mission-line chapter. The measurement procedure is as follows:

Connect a noninductive ($1 / 2$ - or 1 -watt carbon) resistor, having the same value as the characteristic impedance of the parallel-conductor line, to the "line" terminals. Apply r.f. to the bridge, adjust the taps on L_{2} (keeping them equidistant from the centor), while varying the capacitance of C_{1} and C_{2}, until the bridge shows a null. After the null is obtained, do not touch any of the circuit
adjustments. Next, short-cireuit the "line" terminats and adjust the r.f. input until the bridge voltmeter reads full sale. Remove the shorteireuit and test resistor, and conneet the regular transmission line. The bridge will then indieate the standing-wave ratio on the line.

The circuit recuires rematehing, with the test resistor, whenever the frequency is changed appreciably. It can, however, be used over a portion of an amateur band without readjustment, with negligible error.

The "Twin-Lamp"

A simple and inexpensive standing-wave indicator for $30(0)-0$ hm line is shown in Fig. 21-43. It consists only of two flashlight lamps and a short piece of 300 -olom line. When laid flat against the line to be checked, the combination of inductive and capacitive coupling is such that outgoing power on the line causes the lamp nearest to the transmitter to light, while reflected power lights the lamp nearest the load. The power input to the line should be adjusted to make the lamp nearest the transmitter light to full brilliance. If the line is properly matched and the reflected power is very low, the lamp toward the antema will be dark. If the sw.r. is high, the two lamps will glow with practically equal brilliance.
The length of the piere of 300 -ohm line needed in the twin-lamp will depend on the transmitter power and the operating frequency. A few inches will suffice with high power at high frequencies. while a foot or two may be needed with low power and at low trepuencies.
In constructing the twin-limp, cut one wire in the exact center of the piece and peel the ends back on either side jusi far enough to provide leads to the flashlight lamps. Remove about $1 / 4$ inch of insulation from one wire of the main transmission line at some convenient point. ['se the lowest-current flashlight bulls or dial lamps available. Solder the tips of the bulbs together and connect them to the hare point in the transnission line, then solder the ends of the cut por-

Fig. 21-43 - The "twin-lamp" standing-wave indicator mounted on 300 orhm I'win-Iead. Scotch tape is used for fastening.
tion of the short pieee to the shells of the bulbs. ligs. 21-13 and 21-14 should make the construction clear.

Fig. 21.11-Wiring diagram of the "twin-lamp" stamling-wave indicator.

Installing the twin-lamp on a line introduces a discontinuity in the line impedance which causes the s.w.r. from the t win-lamp back to the transmitter to differ from the s.w.r. existing between the antenna and twin-lamp. For this
reamon it is desirable to remove it after s.w.r. cherks have been made. It is convenient to mount the twin-lamp on a short length of line fitted to a $300-\mathrm{ohm}$ phay at ore end and a mating socket at the other. If similar plugs and sockets are used on the transmitter and regular transmission line, the whole test unit can be inserted and laken out at will.

The twin-lamp will respond to "antenm" currents on the transmission line in much the same way as the bridge circuits diseussed earlier. There is therefore always a possibility of error in its indications, unless it has been determined by other means that "antenna" currents are inconsequential compared with the true transmission-line current.

The Oscilloscope

The cathode-ray oscilloscope gives a visual representation of signals at looth audio and radio frequencies and can therefore be used for many types of measurements that are not possible with instruments of the trpes discussed carlier in this chapter. In amateur work, one of the principal uses of the 'scope is for displaying an amplitudemodulated signal so a 'phone transmitter can be adjusted for proper modulation and continuously monitored to keep the modulation percent-

CATHODE-RAY TUBES

The heart of the oscilloscope is the cathoderay tube, a vacuum tube in which the electrons emitted from a hot cathode are first accelerated to give them considerable velocit y, then formed into a beam, and finally allowed to strike a special translucent screen which fluoresces, or gives off light at the point where the beam strikes. A beam of moving electrons can be moved

Fig. 21-45 - Typical construction for a cathode-ray tube of the electrostatic-deflection type.
age within proper limits. For this purpose a very simple circuit will suffice, and an oscilloseope designed expressly for this purpose is described in this section.

The versatility of the 'scope ean be greatly increased by adding amplifiers and linear deflection circuits, but the design and adjustment of such eireuits tends to be complianted if optimum performance is to be secured, and is somewhat outside the field of this chapter. Special eomponents are generally required. (Sedilloseope kits for home assembly are available from a number of suppliers, and since their cost compares very favorably with that of a home-built instrument of comparable design, they are recommended for serious consideration by those who have need for or are interested in the wide range of mesurements that is possible with a fully-equipped 'scope.
laterally, or deflected, by electric or magnetic ficlds, and since its weight and inertia are negligibly small, it can be made to follow instantly the variations in periodically-changing fields at both audio and radio frequencies.

The electrode arrangement that forms the electrons into a beam is called the electron gun. In the simple tube structure shown in lig. 21-45, the gun consists of the cathode, grid, and anodes Nos. 1 and 2, The intensity of the electron beam is regulated by the grid in the same waty as in an ordinary tube. Anode No. 1 is operated at a positive potential with respect to the cathole, thas accelerating the elcetrons that pass through the grid, and is provided with small apertures through which the electron stream passes. On emerging from the apertures the electrons are traveling in practi-
cally parallel straight-line paths. The electrostatic fields set up, by the potentials on anode No. 1 and anode No. 2 form an electron lens system which makes the clectron paths converge or forus to a point at the fluoresent sereen. The potential on amote No. 2 is usually fixed, while that on anode No. 1 is varied to bring the beam into focus. Anode No. 1 is, therefore, called the focusing electrode.

Flectrostatic deflection, the type generally used in the smatler tubes, is produced by deflecting plates. Two sets of plates are phaced at right angles to earh other, as indicated in lig. 21-45. The fields are created by applying suitable voltages between the two plates of each pair. Isually one plate of each pair is commected to anode No. 2, to establish the polarities of the vertical and horizontal fields with respert to the beam and to each other.

Formation of Patterns

When periodically-varying voltages are applied to the two sets of deflecting plates, the path traced by the fluorescent spot forms ab pattern that is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. Fig. 21-46 shows how such patterns are formed. The horizontal sweep

Pig. 21-46- A.c.voltage waveshape as viewed on an ascilloscope screen, showing the formation of the pattern from the horizontal (sawtooth) and vertical sweep voltages.
voltage is assumed to have the "sawtooth" waverhape indicated. With no voltage applied to the vertical plates the trace simply sweeps from left to right across the sereen along the horizontal axis $X-X^{\prime \prime}$ until the instant I is reached, when it reverses direction and returns to the starting point. The sine-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y-Y^{\prime}$ in the absence of any deflecting voltage on the horizontal plates. However, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage
has similarly moved it upward, so that it reaches the actual position B^{\prime} on the sereen. The resulting trace is easily followed from the other indicated positions, which are taken at equal time intervals.

Types of Sweeps

A sawtooth sweep-voltage waveshape, such as is shown in lig. 21-46, is called a linear sweep, because the deflection in the horizontal direction is directly proportional to time. If the sweep were perfect the fly-back time, or time taken for the spot to return from the end (I) to the beginning (I or A) of the horizontat trace, would be zero, so that the line $H I$ would be perpendicular to the axis $Y-Y^{\prime}$. Although the fly-back time cannot be made zero in practimble sweep-voltage generators it can be made quite small in comparison to the time of the desired trace $A I I$, at least at most frequeneics within the audio range. The line $J^{\prime} J^{\prime}$ is called the return trace; with a linear sweep it is less billiant than the pattern, because the spot is moving much more rapidly during the fly-back time than during the time of the main trace.

The linear sweep, shows the shape of the wave in the same way that it is usually represented graphically. If the period of the a.ce voltage applied to the vertical phates is considerably less than the time taken to sweep horizontally across the screen, several cycles of the vertical or "signal" voltage will appear in the pattern.

The shape of the pattern obtained, with a given signal waveshape on the vertical plates, obviously will depend upon the shape of the horizontal sweep voltage. If the horizontal sweep is sinusoidal, the main and return sweeps each occupy the same time and the spot moves faster horizontally in the center of the pattern than it does at the ends. When two sinusoidal voltages of the same frequency are applied to both sets of plates, the pattern may be a straight line, an ellipse, or a circle, depending upon the amplitudes and phase relationships of the two voltages.

For many amateur purposes a satisfactory horizontal sweep is simply a 60 -cycle voltage of adjustable amplitude. In modulation monitoring (described in the chapter on amplitude modulation) audio-frequency voltage can be taken from the modulator to supply the horizontal sweep. For examination of audio-frequency waveforms, the linear sweep is essential. Its frequency should be adjustable over the entire range of audio frequencies to be inspected on the oscilloscope.

Lissajous Figures

When sinusoidal a.c. voltages are apphed to the two sets of deflecting plates in the oscilloscope the resultant pattern depends on the relative amplitudes, frequencies and phase of the two voltages. If the ratio between the two frequencies is constant and ean he expressed in integers a stationary pattern will be produced. This makes it possible to use the oscilloscope for
determining an unknown frequency, provided a variable frequency standard is available, or for determining calibration points for a variablefrequency oscillator if a few known frequencies are available for comparison.

The stationary patterns obtained in this way are called Lissajous figures. Examples of some of the simpler Lissajous figures are given in Fig. 21-47. The frequency ratio is found hy counting the number of loops along two adjacent edges. Thus in the third figure from the top there are three loops along a horizontal

Fig. 21-47-1 Lissajous figures and corresponding frefuency ratios for a 90 -degree phase relationship between the voltages applied to the two sets of deflecting plates.
edge and only one along the vertical, so the ratio of the vertical frequency to the horizontal frequency is 3 to 1. Similarly, in the fifth figure from the top there are four loops along the horizontal edge and three along the vertical edge, giving a ratio of 4 to 3 . Assuming that the known frequency is applied to the horizontal plates, the unknown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{1}=$ known frequency applied to horizontal plates,
$f_{2}=$ unknown frequency applied to vertical plates,
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ number of loops along a horizontal edge.

An important application of Lissajous figures is in the calibration of audio-frequency signal generators. For very low frequencies the (i0-cycle power-line frequency is held accurately enough to be used as a standard in most localities. The medium audio-frequency range can be covered by comparison with the 440- and 600 -cycle modulation on the WWV transmissions. An oscilloscope having both horizontal and vertical amplifiers is desirable, since it is convenient to have a means for adjusting the voltages applied to the deflection plates to secure a suitable pattern size. It is possible to calibrate over a 10 -to-1 range, both upwards and downwards, from each of the latter frequencies and thus cover the audio range useful for voice communication.

Simple Oscilloscope for Modulation Checking

The 2-inch oscilloscope shown in Fig. 21-48 includes all the features necessary for modulation rhecking and monitoring, including tuned-circuit r.f. input to the vertical plates. A filament supply and source of a.c. sweep voltage are incorporated, so the only external requirement is the d.c. supply for the c.r. tube anodes. This may be taken from the transmitter power supply, since the current drain is negligible. Although the tube will operate with as little as 500 volts, at least 750 volts is recommended for sufficient pattern brightness, and voltages up to 2500 are permissible.
For constructional convenience, compactness, and inexpensive magnetic shielding of the tube, the unit is constructed in a $3 \times 4 \times 17$-inch steel chassis, which is mounted on a $31 / 2 \times 19$ inch relay-rack panel. The tube face is viewed through a 2 -inch hole in the panel and chassis, using a small mirror to reflect the image. A chart frame with a clear window is used to cover the panel hole.

The right-hand section of Fig. 21-49 shows the tube connections. Controls are provided for spot intensity, focusing, and horizontal and vertical centering of the pattern. The values specified for the voltage-divider string are satisfactory for voltages up to about 1500 d.e., lut for voltages between 1500 and 3000 an additional 1 -megohm 1 -watt resistor should be comected in series with the one shown. This may require inserting additional resistance (0.1 to 0.25 megohm) in series at " X " to make the focus control eover the proper range. The fixed capacitors should have a voltage rating appropriate to the voltage actually used. Caparitance values are not critical; up to $0.01 \mu \mathrm{f}$. may be used if available in the proper voltage rating.

Fig. 21-48-Two-inch oscilloscope for rack mounting. Everything needed for modulation monitoring is included except the high-voltage d.c. supply, which can be obtained from the transmitter.

Fiq. 21-49 - Circuit of the 2 -inch nseiloscope. Fixed resistors $1 / 2$ watt except the 1 -megohm unit, which is 1 watt. Caparitances are in μ f. unless indicated otherwise. Pixed capacitors are ceramie, 1000 wolts working or higher, aceording to dide voltake used. see text for coplanation of "X?"
' T_{1} - Small audio Iransformer, 1-10-! turns ratio. $\mathrm{L}_{1}-1 . \overline{5} \mathrm{Me}: \frac{3}{4}$ inch winding of $\mathbf{5}$. 30 enam. 3.5 to $-.9 \mathrm{Mc},: 30$ turns Xo . 22 enam., elose-wound.

13 to 30 Mc.: : Turns Vo. 2 P. length $3 / 4 \mathrm{in}$.
1.2 - 2 or more turas as ne evesary for sufficient coupling. All coils wound on I-ineh diameter forms (Millen $5 \overline{5001)}$.

A tuned input circuit is provided, using plug-in eoils to cover the various bands. The $100-\mu \mu \mathrm{f}$. condenser makes a convenient "IIcight" control for the pattern, and the tuned eireuit insures adequate pattern height even from a low-powered tramsmitter. The r.f. may be pieked up with a 1- or 2-turn link at the transmitter tank or antemat tank circuit, if the latter is used. and connected to the 'scope through a length of small coax cable.
line-frequeney a.c. is used for the horizontal sweep for obtaining a waverenvelope pattern. An input is also provided for audio from the modulator, for the trapezoidal pattern. Full deflection requires about 75 volts (peak) for each 1000 volts used on the c.r. tube, using the deflection plate connections shown in Fig. 21-4!.

The parts layout is such as to give short connections between the r.f. cireuit and the vertical deflection plate terminals on the tube socket, and to place the two transformers as far as possible from the tube and thus reduce the possibility of trouble from stray fields. The tube soeket is
held by two semicircular brackets made from aluminum strips $1 / 2$ inch wide and mounted on t-inch stand-off insulators. The mirror, which is held to a wood strip by Duco cement, the strip being bolted to the chassis, should be cut to block off the left-hand (in the internal view) section of the chassis, which contains the pilot light.

The contering potentiometers do not require frequent handling and are controlled from the rear. Because the are at high voltage they are insulated from the chassis bounting them on a bakelite plate fastened to the rear wall by halfinch pillars. The shafts are cut short and slotted for screwdriver adjustment. An insulated serewdriver should be used. The intensity and focusing controls are mounted on the panel either side of the window. The a.e. switeh is on the intensity control.
The d.e supply used preferably should be one that does not vary in output voltage during modulation: e.g., the Class C amplifier supply is preferable to the Class 13 modulator supply.

Fig. 2/-50-The macilloserope is ronstructed in a 3 liy 1 by 17. chaswis mounted on a $31 / 2$. inch relay rack lianel. 'The stecl chasis with bottom plate (not shown) shiclds the tithe from stray magnetie fielles.

Assembling a

Station

An amateur station is generally far better known by its signal and good operation than by its physical appearance. Good operating and at clean signal will build a reputation faster than thousands of dollars invested in special equipment and an elaborate "shack," and it is this very fact that makes amateur radio the democratic hobby that it is. However, most amateurs take pride in the arrangement of their stations, in the same way that they are careful of the appearance and arrangement of anything else that is part of the household. An antema installation is the only external indication of the amateur station, and the degree of neatness required is generally determined by the district where the amateur lives and the attitude of the neighbors. However, with the advent of a! different kinds of television receiving antennas, neighbors are in a much less favorable position to complain about the appearance of an amateur antema system in the vicinity. TVI is something else, however!

The actual location inside the house of the "shack" - the room where the transmitter and receiver are located - depends, of course, on the free space available for amateur activities. Fortunate indeed is the amateur with a separate room that he can devote to his amateur station, or the few who can have a special small building separate from the main house. However, most amateurs must share a room with other domestic activities, and amateur stations will be found tucked away in a corner of the living room, a bedroom, a large closet, or even under the kitchen stove! A spot in the cellar or the attic can almost be classed as a separate room, although it may lack the "finish" of a normal room.

Regardless of the location of the station, however, it should be designed for maximum operating convenience and safety. It is foolish to have the station arranged so that the throwing of several switches is required to go from "receive" to "transmit," just as it is silly to have the equipment arranged so that the operator is in an uncomfortable and cramped position during his operating hours. The reasons for building the station as safe as possible are obvious, if you are interested in spending a number of years with your hobby!

CONVENIENCE

The first consideration in any amateur station is the operating position, which includes the operator's table and chair and the pieces of equipment that are in constant use (the receiver, send-receive switch, and key or microphone). The table should be as large as possible, to allow sufficient room for the receiver or receivers, frequency-measuring equipment, monitoring equipment, control switches, and keys and microphones, with enough space left over for the logbook, a pad and pencil, and perhaps a large ash tray. Suitable space should be included for radiogram blanks and a call book, if these accessories are in frequent use. If the table is small, or the number of pieces of equipment is large, it is often necessary to build a shelf or rack for the auxiliary equipment, or to mount it in some less convenient location in or under the table. If one has the facilities, a semicircular "console" can be built of wood, or a simpler solution is to use two small wooden cabinets to support a table top of wood or Masonite. Home-built tables or consoles can be finished in any of the available oil stains, varnishes, paints or lacquers. Many operators use a large piece of plate glass over part of their table, since it furnishes a good writing surface and can cover miscellaneous charts and tables,

This compact station is arranged for clean cut c.w. operation, with no frills or extras. The homemade modern-style table provides adequate operating space, a cubbyhole for \log and Call Book, and drawers for QSL cards and spare parts. (W9NN, Des Plaines, Ill.)
prefix lists, operating aids, calendar, and similar atcessories.

If the major interasts never require frequent band changing, or frequency changing within a band, the transmitter can be located some distance from the operator, in a location where the meters can be observed from time to time (and the color of the tulee plates noted!). If frequent band or frequency changes are a part of the usual operating procedure, the transmitter should be mounted close to the operator, either atong one side or above the receiver. so that the controls are easily accessible without the need for leaving the operating position.

Fig. 22-I - In a station atsembled for maximum case in frequeney or hand changing, the transmitter shoold be lowated next to the operating position, as shown above. (\%n the oprerating table, the recciver is in front of the oprerater and VIO or erystal-switehing nseitlator on the left. ("I'te IJ'O or erystal oseillator could he part of the transmitter proper, bot most operators seem to prefer a separate IF'O.)

The frequency tandard and other anxiliary equipment can be mounted on a shelf above the receiver. 'The operating table ean the an old desk, or a top supported by two small worden calinets. The "send-receive" switch is to the right of the telegraph keys - other swithers are on the transmitter or the indivithal mits.
'The above arrangement can be made to looh cleaner by arranging all of the equipment on the table behind a single panel or a set of pancls. In this case, provision must be made for getting thehind the pand for servicing the units.

A compromise arrangement would plate the VFO or crystal-switched oscillator at the eperating position and the transmitter in some convenient location not adjacent to the operator. Since it is usually possible to operate over a portion of a band without retuning the transmitter stages, an operating position of this type is an advantage over one in which the operator must leave his position to make a change in frequency.

Controls

The operator has an excellent chance to exercise his ingenuity in the location of the operating controls. The most important controls in the station are the receiver tuming dial and the send-receive switch. The receiver tuning dial should be located four to eight inches above the operating table, and if this requires mounting the receiver off the table, a small shelf or bracket will do the trick. With the

One of the most convenient station arrangements is to build a semicircular operating table as shown here, All operating controls are readily available, and consideralty more equipment can be grouped around the opcrator than when an orflinary desk is used. (W2. $\mathrm{S} A \mathrm{H}$, Riverton, V. J.)
single evception of the amateur whose work is ahmost entirely in traffic or rag-chew nots, Which require little or no aftention to the rereiver, it. will be found that the operator's hand is on the receiver tuning dial most of the time. If the tuning knob is too high or too low. the hand gets eramped after an extended perion of operating, hence the importance of a properly-located receiver. The majority of c.w. operators tume with the left hand, preferring to leave the right hand free for copying messuges and handling the key, and so the receiver should be mounted where the knob can be reached by the left hand. 'Phone operatars aren't tied down this way, and tune the commanications receiver with the hand that is more convenient.

The ham key should be fastened securely to the tabie, in a line just outside the right shoulder and far enough back from the front edge of the table so that the elbow can rest on the table. A good location for the semiauto-

In this arrangement, the two receivers (with sparate loudspeahers) and the transmitter Vr' ${ }^{\text {are all warlhin }}$ easy reach of the operator, while the monitoring oscilloscope on the left-hand transmitter rack can he easily seen from the operatink position. ($\quad 7 / J L$, Bouldes City, Nev.)
matic or "bug" key is right next to the handkey, although some operators prefer to mount the automatic key in front of them on the left, so that the right forearm rests on the table parallel to the front edge.

The best location for the microphone is directly in front of the operator, so that he doesn't have to shont across the table into it, or run up the speech-amplifier gain so high that all manner of external sounds are picked up. If the microphone is supported by a boom or by a flexible "goose neck," it can be placed in front of the operator without its base taking up valuable table space.

In any amateur station worthy of the name, it should be necessary to throw no more than one switch to go from the "receive" to the "tramsmit" condition. In 'phone stations, this switch should be located where it can be easily reached by the hand that isn't on the receiver. In the rase of e.w. operation, this switeh is most conveniently located to the right or left of the key, although some operators prefer to have it mounted on the left-hand side of the operating position and work it with the left hand while the right hand is on the key. tither location is satisfactory, of course, and the choice depends upon personal preference. some operators use a foot-controlled switeh, which is a convenience but doesn't allow too much frcedom of position during long operating periods.

If the microphone is hand-held during 'phone operation, a "push-to-talk" switch on the microphone is convenient, but hand-held microphones tie up the use of one hand and

Fís. 22-2 - When litte space is available for the anmtenir station, the equipment has to be spotted where it will fit. In the above arrangement, the transmitter, modulatur and power supplies (separate units) are sandwiched in alongside the operating table and on a shelf alowe the table. The antenna tuning unit is mounted over the feed-through insulatore that hring the antenna line into the "shach," and loudspeaker and small power supplies are nounted under the table. The operating position is clean, however, with the VFO, receiver and keys at table level. "the tuning hnol) of this receiver would he uncomfortably low if the receiver weren't raised by the worsten ardh, and the "sendreceive" swith is monnted on the right-hand side of this areh, next to the hand key. Interconnccting leads should be cahled along the hack of the table and table legs, to heep them inconspicuous.

This illustrates how coneealing all interconnecting wires and eliminating gear not necessary to communication
 stock, (Int.)
are not too desirable, although they are widely used in mobile and portable work.

The tocation of other switches. such as those used to control pewer supplies, filaments, 'phome/c.w. change-over and the likr, is of no particular importance, and they can ie lorated on the unit with which they are assomated. This is not strictly true in the case of the 'phone'c.w. D. man, who sometimes has need to change in a hurry from c.w. to 'phone. In this case, the change-over switch should he at the operating table, although the actual change-over should be done by a relay controthed by the switch.

If a rotary beam is used the control of the beam should be convenient to the operator. The direction indicator, however, can be located anywhere within sight of the operator, and does not have to be located on the operating table unless it is included with the control.

When several fixd beams are used, the selection of any one should be possible from the operating position. to minimize the time reguired to select the proper che. This generally means using a series of antenna relays or a stepping switen.

Frequency Spotting

In a station where a VFO is used, or where a number of erystals is available, the operator should be able to turn on only the oscillator of his transmitter, so that he can spot accurately his location in the band with respect to other stations. This allows him to see if he has anything like a clear channel (if such a thing exists in the amateur bands!), or to see what his frequency is with respect to another station. Such a provision can be part of the "send-receive" switch. Switches are available with a center "off" position, : "hold" position on one side, for turning on the cwillator only, and a "lock" position on the other side for turning on the transmitter ind antenna relays. If oscillator keying is usel. the key serves the same pur-

Fig. 22.3 - Power circuits for a high-power atation. A shows the outlets for the receiver, monitoring eguipment, speech amplifier and the like. The outlets should be mounted inconspicuously on the operating table. B shows the transmitter filament circuits and control-relay circnits, if the latter are usci. C shows the plate-transformer primary circuits, controlled ly the power relay. A heavy-iluty switch can be used instead of the relay, in which case the antenna relay would be connected in circuit C.

If 115 -volt pilot lamps are used, they can be connected as shown. Iower-voltage lamps must be connected across suitable windings on transformers.

With "push-totalk" operation, the "send-receive" switch can be a d.p.d.t. affair, with the second pole controlling the "on-off" circnit of the receiver.
pose, provided a "send-receive" switch is available to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillator frequency.

For 'phone operation, the telegraph key or an auxiliary switch can control the transmitter oscillator, and the "send-receive" switch can then be wired into the control system so as to control the oscillator as well as the other circuits.

Comfort

Of prime importance is the comfort of the operator. If you find yourself getting tired after a short period of operating, examine your station to find what causes the fatigue. It may be that the chair is too soft or hasn't a straight back or is the wrong height for you. The key or receiver may be located so that you assume an uncomfortable position while using them. If you get sleepy fast, the ventilation may be at fault. (Or you may need sleep!)

POWER CONNECTIONS AND CONTROL

Following a few simple rules in wiring your power supplies and control circuits will make it an easy job to change units in the station. If the station is planned in this way from the start, or if the rules are recalled when you are rebuilding, you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is neater and safer to run a single pair of wires from the outlet over to the operating table
or some central point, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three common circuits, as shown in Fig. 22-3. The circuit for the receiver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an inconspicuous point on the operating table, where it terminates in a multiple outlet large enough to handle the required number of plugs. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time.

The second common circuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filaments, bias supplies, and anything else that is not switched on and off during transmit and receive periods. The coil power for control relays should also be obtained from this circuit. The power for this circuit can come from a wall outlet or from the transmitter line, if a special one is used.

The third circuit is the one that furnishes power to the plate-supply transformers for the r.f. stages and for the modulator. (See chapter on Power Supplies for high-power considerations. When it is opened, the transmitter is disabled except for the filaments, and the transmitter should be safe to work on. However, one always feels safer when working on the transmitter if he has turned off every power supply pertaining to the transmitter.

With these three circuits established, it becomes a simple matter to arrange the station for different conditions and with new units. Anything on the operating table that runs all the time ties into the first circuit. Any new power supply or r.f. unit gets its filament power from the second circuit. Since the third rircuit is controlled by the send-receive switch (or relay), any power-supply primary that is to be switched on and off for send and receive connerts to circuit No. 3.

Break-In and Push-To-Talk

In c.w. operation, "break-in" is any system that allows the transmitting operator to hear the other station's signal during the "key-up" periods between characters and letters. This allows the sending station to be "broken" by the receiving station at any time, to shorten calls, ask for "fills" in messages, and speed up operation in general. With present techniques, it requires the use of a separate receiving antenna and, with high power, some means for protecting the receiver from the transmitter when the key is "down." Several methods, applicable to high-power stations, are described in Chapter Eight. If the transmitter is low-powered (50 watts or so), no special equipment is required except the separate receiving antenna and a receiver that "recovers" fast. Where break-in operation is used, there should be a switch on the operating table to turn off the plate supplies when adjusting the oscillator to a new frequency, although during all break-in work this switch will be closed.
"Push-to-talk" is an expression derived from the "push" switch on some microphones, and it means a 'phone station with a single control for all change-over functions. Strictly speaking, it shoudd apply only to a station where this single send-receive switch must be held in place during transmission periods, but any fast-acting switch will give practically the same effect. A control switch with a center "off" position, and one "hold" and one "lock" position, will give more flexibility than a straight "push" switch. The one switch must control the antenna change-over relay, the transmitter power supplies, and the receiver "on-off" circuit. This latter is necessary to disable the receiver during transmit periods, to avoid acoustic feed-back.

Switches and Relays

It is dangerous to use an overloaded switch in the power circuits. After it has been used for some time, it may fail, leaving the power on the circuit even after the swith is thrown to the "off" position For this reason, large switches. or relays with adequate ratings, should be used to control the plate power. Relays are rated by coil voltages (for their control circuits) and by their contact current ratings.

When relays are used. the send-receive switch choses the circuit to their coils, thus closing the relay contacts. The relay contacts
are in the power eircuit being controlled, and thus the switch handles only the relay-coil current.

SAFETY

Of prime importance in the dayout of the station is the personal safety of the operator and of visitors, invited or otherwise, during normal operating practice. If there are small children in the house, every step must be taken to prevent their acridental contact with power leads of any voltage. A locked room is a fine idea, if it is possible, otherwise housing the transmitter and power supplies in metal cabinets is all excellent, although expensive, solntion. Lacking a metal cabinet, a wooden cabinet or a wooden framework covered with wire screen is the next-best solution. Many stations have the power supplies housed in metal cabinets in the operating room or in a closet or basement, and this cabinet or entry is kept locked - with the key out of reach of everyone but the operator. The power leads are rum through conduit to the transmitter, using ignition cable for the high-voltage leals. If the power supplies and transmitter are in the same cabinet, a lock-type main switeh for the incoming line power is a good precaution.

A simple substitute for a lock-type main switeh is an ordinary line plug with a short comnecting wire between the two pins. By wiring a female receptacle in series with the main power line in the transmitter, the shorting plug will act as the main safety lock. When the plug is removed and hidden, it will be impossible to energize the transmitter, and a stranger or child isn't likely to spot or suspect the open receptacle.

An essential adjunct to any station is a shorting stick for discharging any high voltage to ground before any work or coil changing is done in the transmitter. Even if interlocks and power-supply bleeders are used, the failure of

[^12]one or more of these components may leave the transmitter in a dangerous condition. The shorting stick is made by mounting a small metal hook, of wire or rod, on one end of a dry stick or bakelite rod. A piece of ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or common ground of the transmitter, and the stick is hung alongside the transmitter. Whenever the power is turned off in the transmitter to work on the rig, or to change coils, the shorting stick is first used to touch the several high-voltage leads (tank condenser, filter condenser, tube plate connection, etc.) to insure that there is no high voltage at any of these points. This simple device has saved many a life. Use it!

Fusing

A minor hazard in the amateur station is the possibility of fire through the failure of a component. If the failure is complete and the component is large, the house fuses will generally blow. However, it is unwise and inconvenient to depend upon the house fuses to protect the lines running to the radio equipmont, and every power supply should have its primary circuit individually fused, at about 150 to 200 per cent of the maximum rating of the supply. Circuit breakers can be used instead of fuses if desired.

Wiring

Control-circuit wires running between the operating position and a transmitter in another part of the room should be hidden, if possible. This can be done by running the wires under the floor or behind the base molding, bringing the wires out to terminal boxes or regular wall fixtures. Such construction, however, is genratly only possible in elaborate installations,
and the average amateur must content himself with trying to make the wires as inconspicuous as possible. If several pairs of leads must be run from the operating table to the transmitter, as is generally the case, a single piece of rubber- or vinyl-covered multiconductor cable will always look neater than several pieces of rubber-covered lamp cord.

The antenna wires always present a problem, unless coaxial-line feed is used. Open-wire line from the point of entry of the antenna line should always be arranged neatly, and it is generally best to support it at several points. Many operators prefer to mount their antennatuning assemblies right at the point of entry of the feedline, together with an antenna changeover relay (if one is used), and then the link from the tuning assembly to the transmitter can be made of inconspicuous coaxial line or Twin-l.ead. If the transmitter is mounted near the point of entry of the line, it simplifies the problem of "What to do with the feeders?"

General

You can check your station arrangement by asking yourself the following questions. If all of your answers are an honest "les," your station will be one of which you can be proud.

1) Is your station safe, under normal operating conditions, both for the operator and the visitor?
2) Is the operating position comfortable, even after several hours of operating?
3) Do you throw not more than one switch to go from "receive" to "transmit"?
4) Does it take only a short time to explain to another amateur how to work your station?
j) Do you show your station to visiting amateurs or laymen without apologizing for its appearance?
'I'his complete half-hilowatt station is an excellent example of how all of the equipment ean be concealed ineonspicuously in the living room. The cabinet is huilt of $3 / 4$-inch plywood finished in blonde mahogany and, with the doors closed, looks lihe a custom-built radio-phonograph combination. (IVMQK, Madison, Wisc.)

BCI and TVI

livery amateur has the obligation to make sure that the opreration of his station does not, because of any shorteomings in equipment, cause interference with other radio services. It is unfortunately true that much interference is direetly the fault of broadcast and TV receiver construction. Nevertheless, the amateur can and should help to alleviate interference even though the responsibility for it does not lie with him.

Succossful handling of interference cases requires winning the listener's coöperation. Ilere are a few pointers on how to go ahout it.

Clean House First

The first step obviously is to make sure that the transmitter has no radiations outside the bands assigned for amateur use. The best check on this is your own AM or TV receiver. It is always convincing if you can say - and demonstrate that you do not interfere with reception in your own home.

Don't Hide Your Identity

Whenever you make equipment changes - or shift to a hitherto unused band or type of emission - that might be expected to change the interference situation, check with vour neighbors. If no one is experiencing interference, so much the better: it does no harm to keep the neighborhood aware of the fact that you are operating without bothering anyone.
Should you change location, announce your presence and conduct occasional tests on the air, requesting anyone whose reception is being spoiled to let you know about it so steps may be taken to eliminate the trouble.

Act Promptly

The average porson will tolerate a limited amount of interference, but no one can be expected to put up with frequent and extended interruptions to programs. The sooner you take steps to eliminate the interference, the more agreeable the listener will be; the longer he has to wait for you, the less willing he will be to cooperate.

Present Your Story Tactfully

When you interfere, it is natural for the complainant to assume that your transmitter is at fault. If you are certain that the trouble is not caused by harmonics or other spurious emissions from your transmitter, explain to the listener that if it is simply the presence of your strong signal on his receiving antenna that causes the difficulty, and that some modifications will have to be made in the receiver if he is to expeet inter-ference-free reception.

Arrange for Tests

Most listeners are not very competent ob)servers of the various aspects of interference. If at all possible, enlist the help of another amateur and have him operate your transmitter while you see what happens at the affected receiver. You can then determine for yourself where the trouble is most likely to be.

Avoid Working on the Receiver

If your tests show that the fault has to be remedied in the receiver itself, do not offer to work on the receiver. It is not your fault that the receiver design is defective. Recommend that the work be done by a reliable serviceman, and offer to advise the latter as to the cause and cure if necessary.

In General

In this "public relations" phase of the problem a great deal depends on your own attitude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if you as a person make a good impression. Your personal appearance is important. So is what you say about the rereiver - no one takes kindly to hearing his possessions derided. If you discuss your interference problems on the air, do it in a constructive way one calculated to increase listener coöperation, not destroy it.

Causes and Cure of BCI

Interference with AMI broadcasting usually falls into one or more rather well-defined categories. A knowledge of the general types of interference and the methods required to eliminate it will lead to a rapid appraisal of the situation and will avoid much cut-and-try in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmitter. P'arasitic oseillations are a frequently unsuspected
source of such radiations, and no transmitter can be considered satisfactory until it has been thoroughly checked for both low- and highfrequency parasitics. Very often parasities show up only as transients, causing key clicks inc.w. transmitters and "splashes"or "burps" on modulation peaks in AM transmitters. Methods for detecting and eliminating parasitics are discussed in the transmitter chapter.

In c.w. transmitters the sharp make and break that occurs with unfilt ered keying causes
transients that, in theory, contain frequency components through the entire radio spect rum. Practically, they are often strong enough in the immediate vicinity of the transmitter to cause serious interference to broadeast reception. Key rlicks can be eliminated by the methods detailed in the chapter on keying.

A distinction must be made between clicks generated in the transmitter itself and those set up by the mere opening and closing of the key contacts when current is flowing. The latter are of the same nature as the clicks heard in a receiver when a wall switch is thrown to turn a light on or off, and may be more troublesome nearby than the clicks that actually go out on the signal. A filter for eliminating them usually has to be installed as close as possible to the key contacts.

Overmodulation in AM 'phone transmitters generates transients similar to kev elieks. It can be prevented either by using automatic systems for limiting the modulation to 100 per cent, or by continuously monitoring the modulation. Methods for both are deseribed in the chaptor on amplitude modulation, In this connection, the term "overmodutation" means any type of nonlinear modulation that results from overloading or inadequate design. This can orcur even though the actual modulation percentage is less than 100.

BCI is frequently made worse by radiation from the transmitter, power wiring, or the r.f. transmission line. This is because the signal causing the interference, in such cases, is radiated from wiring that is nearer the broalcast receiver than the antenna itself. In such cases much depends on the method used to couple the transmitter to the antenna, a subject that is discussed in the chapters on transmission linee and antemnas. If it is at all possible the antenna itself should be placed so that it is not in close proximity to house wiring, telephone and power lines, and similar conductors.

Image and Oscillator-Harmonic Responses

Relatively few superhet broadrast receivers have any r.f. amplification preceding the mixer, so that the selectivity at the signal frequency is not esperially high. The result is that strong signals from near-by transmitters, even though the transmitting frequency is far removed from the broadrast band, ran force themselves to the mixer grid. They will normally be eliminated by the i.f. selectivity, except in cases where the transmitter frequency is the image of the broadeast signal to which the receiver is tuned, or when the transmitter frequency is so related to a harmonic of the broadeast receiver's local oscillator as to produce a beat at the intermediate frequency.

These image and oscillator-harmonic responses tune in and out on the broadeast receiver dial just like a broadeast signal, except that in the case of harmonic response the tuning rate is more rapid. Since most receivers use an intermediate frequency in the neighbor-
hood of tooke, the interference is a true image only when the amateur transmitting frequency is in the 1750-ke. band. Oscillator-harmonic responses occur from 3.5- and 7-Mc. transmissions, and sometimes even from higher frequencies.

The problem is to reduce the amplitude of the amateur signal in the front end of the b.e. receiver. If the receiver uses an external antenna a wavetrap at the receiver antemna terminals may help. It may also be helpful to reduce the length of the receiving antenna - and particularly to avoid a length that might be near resonance at the transmitter frequency - or to change its direction with respert to the transmitting antenna. If the signal is being picked up by the antenna it will disappear when the antenna is disconnected. If it is still present under these circumstances the pick-up is in the set wiring or the power circuits. A line filter may be tried for the latter. Piek-up on the set wiring can only be cured by installing some shiedding around the r.f. circuits. Copper window soreening cut and fitted to si\%e will usually do the trick.
since images and harmonic responses oceur at definite frequencies on the receiver dial, it is always possible to choose an operating frequency that will not give such a response on top) of the broadeast stations that are favored in the vicinity. While your signal may still he heard when the receiver is tuned off the local stations, it will at least not interfere with program reception.

Cross.Modulation

With 'phone transmitters, there are occasionally cases where the voice is heard whenever the broadeast receiver is tuned to a b.c. station, but there is no interference when tuning between stations. This is cross-modulation, a result of rectification in one of the early stages of the receiver. Receivers that are susceptible to this trouble usually also get a similar type of interference from regular broadeasting if there is a strong local b.e. station and the receiver is tuned to some other station.

The remedy for cross-modulation in the receiver is the same as for images and oscillatorharmonic responses - reduce the strength of the amateur signal at the receiver by means of a wave-trap, line filter, or shieding, as required. The trouble is not always in the receiver, however, since cross modulation can occur in any reatifying circuit-such as a poor contact in water or steam piping, gutter pipes, and other conductors in the strong field of the transmitting antenna.

Audio-Circuit Rectification

The most frequent cause of interference from operation at the higher frequencies is from rectification of a signal that by one means or another gets into the audio system of the receiver. In the milder cases an amplitudemodulated signal will be heard with reasonably good qualit y, but is not tunable - that is, it is present no matter what the frequency to
which the receiver dial is set. An unmodulated carrier may have no observable effect in such cases beyond causing a little hum. However, if the signal is very strong there will be a reduction of the audio out put level of the receiver whenever the carrier is thrown on. This causes an annoying "jumping" of the program when the interfering signal is keyed. With 'phone transmission the change in audio level is not so objectionable because it occurs at less frequent intervals. Also, ordinary rectification gives no audio out put from a frequency-modulated signal, so the interference can be made almost completely unnoticeable if FM or I'M is used instead of AM.

Interference of this type is most prevalent in a.c.-d.c. receivers. The pick-up may occur in the audio-circuit wiring or the interfering signal may get into the audio circuits by way of the line cord. Power-line pick-up can be treated by means of line filters, but pick-up in the receiver wiring requires individual attention. Remedies that have been found successful are described in the sections following.

CHECKING AND CURING BCI

When a case of broadcast interference comes to your attention, set a definite time to conduct tests and then prepare to do the job as expeditiously as possible. As suggested before get another amateur to operate your transmitter while you do the actual observing and testing at the listener's receiver. If you have a small broadcast receiver of your own that does not show interference, lake it with you to demonstrate to the listener that the trouble is not in your transmitter but in his receiver. The procedure outlined below will save time in gelting at the source of the trouble and eliminating it.

1) Determine whether the interference is tunable or not. This will usually indicate the methods required for elimination of the trouble, as it will show which of the general types of interference discussed above is present.
2) If the set has an external antenna, disconnect it and turn the volume control up full. If the interference is no longer present, it is merely necessary to prevent the r.f. appearing on the antenna from entering the set. If wavetraps reduce the amplitude of the interfering signal but do not eliminate it entirely, try a short piece of wire as a receiving antenna. Alternatively, the antenna may be relocated. It should be placed as far as possible from the transmitting antenna, and should run at right angles to it to minimize coupling.
3) If the interference persists after the antenna is disconnected, check for r.f. on the power line by using a sensitive wavemeter such as that described in the chapter on measurements to probe along the a.c. cord that connects the set to the power source. (This test also should be made with receivers using built-in loops.) Checks should be made at the transmitter frequency, and also at harmonic frequencies. If r.f. is detected in
the line, by-pass both sides of the a.c. line to ground with $0.005-\mu \mathrm{fd}$, ceramic condensers at the point where the line cord enters the set. (A simple plug-and-socket adapter can be made up for this purpose.) If this does not completely climinate the interference, try a line filter designed for the operating frequency.
4) If it is evident that the interference is being picked up on the receiver wiring, explain the situation to the owner and tell him that the exact cause cannot be determined without removing the chassis from the cabinet, and that, in any event, the receiver will have to be modified if the interference is to be eliminated. Irecommend that the artual work be done by a radio serviceman. Offer to check into the cause yourself, if he will allow you to take the set to your shop (with the understanding that you will not make any changes in the recciver without his express permission) so the serviceman can be told what needs to be done.

Fig. 23-1 - Two methods of eliminating r.f. from the grid of a combined detector/first-audio stage. At A, the value of the grid leak is reduced to 2 or 3 megohms, and a mica by-pass condenser is added. At B, both grid and cathode are by-passed.
5) In the event that the owner allows you to take the receiver, set it up near your transmitter and check to see if the amplitude of the interfering signal is changed by various settings of the receiver volume control. If it is, the r.f. is entering the set ahead of the volume control. If it is unaffected by the volume control, it is getting into the audio stages at a point following the volume control.
6) Pin the source down, if it is ahead of the volume control, by removing one tube at a time until one is found that kills the interference when it is removed. In sets using seriesconnected filaments, this will be possible only if a tube of equal heater rating, and with all but the heater pins clipped off, is substituted for the tube.
7) Determine which element (or elements) of the tube is picking up the interference by touching each tube pin with a test lead about three feet long. The lead, acting as an antenna, will cause the interference to increase when it is placed on a tube pin that is contributing to the interference. Once the sensitive points have been determined, the trouble can be eliminated by shielding the leads connected to the tube clement that is affected, and by shielding the tube itself. Grid leads are the prineipal offenders, especially the long leads that run
from a tube cap to a tuning condenser terminal.
8) If the pick-up is found to be in the audio system - as is the case in many sets, especially when the transmitter is operating at 28 Mc . or higher - it can be eliminated by one or another of the methods shown in Figs. 23-1 and

Fig. 23.2-I'sing a 75,. 000-ohm resistor to form a low-pass filter with the tube capacitance. The resistor must be mounted at the tube pin, between the grid and all other grid connections.

23-2. Fig. 23-1A is a method that has proved successful with many a.c.-d.c. receivers. The value of the grid leak in the combined detector/first-audio tube (usually a $12 \mathrm{~S}(27$ or its equivalent) is reduced to 2 or 3 megohms. The grid is then by-passed for r.f. With a $250-$ $\mu \mu \mathrm{fd}$. mica condenser. Fig. 23-1 B is a similar method. A third mothod that has worked in a.c.-d.c. receivers requires only that the heater of the detector/first-audio stage be by-passed to ground with a $0.001-\mu \mathrm{fd}$. condenser. The method shown in Fig. 23-2 uses a 75,000-ohm $1 / 2$-wat resistor to form, with the tube caparitance, a low-pass filter. The resistor is connected between the grid pin of the tube and all other wires connected to the grid. In all cases, both sides of the a.e. line should be by-passed to chassis with 0.001- to 0.01- $\mu \mathrm{fd}$. condensers.

Wavetraps and A.C. Line Filters

A wavetrap consists of a parallel-tuned circuit that is connected in series with the broad-

Fïg. 23-3 - A simple wavetrap circuit. I, and C must resonate at the fregueney of the interfering signal. Suitable constants are tabilated below.

Hand	C	L		
3.5	$1410 \mu \mathrm{fd}$.	$16 \mu \mathrm{hi}$.32 lurns	(22.1" diam.,	$1^{\prime \prime}$ lonig
7	$100 \mu \mu \mathrm{ft}$.	6 14	\$22. $1^{\prime \prime}$	$\mathbf{1}^{\prime \prime}$
11	$50 \mu \mu \mathrm{fi}$).	3.511 .1	"18, 1"	$1^{\prime \prime}$
21	$3.5 \mu \mu \mathrm{fl}$.	2.212	其18.1',	$1^{\prime \prime}$
28	$25 \mu \mu \mathrm{fd}$.	1.59	H18.1"	$1^{\prime \prime}$

cast antenna and the antenna post of the receiver. It should be designed to resonate at the frequency of the interfering signal. The cireuit of a simple trap is shown in Fig. 23-3. If interference results from operation in more than one amateur band several traps may be connected in series, each tuned to the center of one of the
bands in which operation is contemplated. To adjust the wavetrap, have another licensed amateur operate the transmitter while you tune the trap for maximum attenuation of the interference.

A common form of a.c. line filter is shown in Fig. 23-4. This type of filter will usually do some good if the signal is being picked up on the house wiring and transferred to the set by way of the line cord. The values used for the coils and condensers are in general not critical. The effectiveness of the filter will depend considerably on the ground connection used, and it may be necessary to try grounding to several different possible ground connections to secure

Fig. 23.4- A.c. line filter for receivers. The values of C_{1}, C_{2} and C_{3} are not generally critical; capacitaners from 0,001 to $0.01 \mu \mathrm{fd}$. can be used. L_{1} and L_{2} can be a - -inch winding of to. 18 enameled wire on a half-jnch diameter form.
the best results. A filter of this type will usually not be very helpful if the signal is being picked up on the line cord itself, which may be the case when the transmitter is on v.h.f. In such a case it should be installed inside the receiver chassis and grounded to the chassis at the point where the line cord enters.

The tuned filter shown in Fig. 23-ī is often more effective than the untuned type when only one frequency needs to be eliminated. After installation, the condenser is simply adjusted to reduce the interference to the greatest possible extent. It is advisable to mount either type of filter in a small shield box, to prevent pick-up in the filter and to make it less conspicuous.

Fig. $23+\frac{5}{-1}$ - Resonant filter for the a.c. line. A single condenser tunec both L_{1} and L_{2}, which are unity coupled, one wound on top of the other. Constants for amateur bands are tabulated lelow.

Pand	C	$L_{1}-L_{2}$
3.5	$110+1.50$	
7	$110{ }_{\mu \mu} \mathrm{fat}$.	
11	$100 \mu \mu \mathrm{fd}$.	12 t. No. 18. $11 / 4^{\prime \prime \prime}$ dia. $\times 28 /{ }^{\prime \prime}$ " long
21	$50 \mu \mu \mathrm{fll}$.	
28	$25 \mu \mu \mathrm{fi}$ \%.	92. No. 18, $1^{1} 2^{\prime \prime \prime}$ dia, $\times 23 / 3^{\prime \prime}$ lonk

D.c.e. wire is recommended for all coils.

Interference with Television

Interference with the reception of television signals usually presents a more difficult problem than interference with AM broadcasting. In BCl cases the interference almost always can be attributed to deficient selectivity or spurious responses in the BC receiver. While similar deficiencies exist in many television receivers, it is also true that amatrur transmitters generate harmonics that fall inside many or all television
channels. These spurious radiations cause interference that ordinarily cannot be eliminated by anything that may be done at the receiver, so must be prevented at the transmitter itself.
The over-all situation is further complicated by the fact that television broadcasting is in three distinet bands, two in the v.h.f. region and one in the u.h.f.

V.H.F. Television

For the amateur who does most of his transmitting on frequencies below 30 Mre the TV band of principal interest is the low v.h.f. band bet ween 54 and 88 Mc. If harmonie radiation can be reduced to the point where no interference is caused to Channels 2 to 6 , inclusive, it is almost certain that any harmonic troubles with channels above 174 Mc. will disappear also.

The relationship between the v.h.f. television channels and harmonies of amateur bands from 14 through 28 .Mc. is shown in Fig. 2:3-6. Harmonics of the $7-$ and $3.5-$ Mc. bands are not shown because they fall in every television channel. However, the harmonirs above 54 Mc . from these bands are of such high order that they are usually rather low in amplitude, although they may he strong enough to interfere if the television receiver is quite close to the amateur transmitter. Low-order harmonies - up to about the sixth are usually the most difficult to eliminate.

Of the amateur v.h.f. bands, only 50 Mc . will have harmonies falling in a v.h.f. television channel (Channels 11, 12 and 13). However, a transmitter for any amateur v.h.f. band may cause interference if it hats multiplier stages ejther tuned to or having harmonies in one or more of the v.h.f. TV channels. The r.f. cnergy on such frequen(ies can be radiated directly from the transmitting circuits or coupled by stray means to the transmitting antenna.

Frequency Effects

The degree to which transmitter harmonics or other undesired radiation artually in the TV channel must be suppressed depends principally on two factors, the strength of the TV signal on the channel or channols affected, and the relationship between the frequency of the spurious radiation and the frequencies of the TV picture and sound carriers within the channel. If the TV signal is very strong, interference can be eliminated by
comparatively simple methods. However, if the TV signal is very weak, as in "fringe" areas where the received picture is visibly degraded by the apparance of set noise or "snow" on the screen, it may be necessary to go to extreme measures.

In either case the intensity of the interference depends very greatly on the exact frequency of the interfering signal. Fig. 2:3-7 shows the placement of the picture and sound carriers in the standard TV channel. In Channel 2, for example, the picture carrier frequency is $54+1.25=$ 55.25 Mc . and the sound carrier frequency is $(0)-0.25=50.75 \mathrm{Mc}$. The second harmonic of $28,010 \mathrm{kc}$. $56,020 \mathrm{kc}$. or 56.02 Mc .) falls 56.02 $54=2.02$ Mc. above the low edge of the channel and is in the region marked "Severe" in Fig. $23-7$. On the other hand, the second harmonic of $29,500 \mathrm{ke} .(59,(000 \mathrm{kc}$. or 59 Mc .) is $59-54=5$ Me. from the low edge of the channel and falls in the region marked "Mild." Interference at this frequency has to be about 100 times as strong as at 56.020 ke . to cause effects of equal intensity.

Fig. 23-6 - Relationship of amateurband harmonics to v.h.f. 'T'V chamels. Ilarmonic interference from transmitters operating below 30 Mc . is most likely to he serious in the low-channel group (5 ! (1) 88 Mc.).

Fig. 23-7 - Location of picture and sound carriers in a monochrome television channel, and relative intensity of interference as the location of the interfering signal within the channel is varied withont changing its strength. The three regions are not actually sharply defined as shown in this drawing, fut merge into one another gradually.

Thus an operating frequency that puts a harmonic near the picture carrier requires about 40 db . more harmonic suppression in order to avoid interference, as compared with an operating frequency that puts the harmonic near the upper edge of the channel.

For a region of 100 kc . or so either side of the sound carrier there is another "Severe" region where a spurious radiation will interfere with reception of the sound program, and this region also should be avoided. In general, a signal of intensity equal to that of the pirture carrier will not cause noticeable interference if its frequency is in the "Mild" region shown in Fig. 2:3-7, but the same intensity in the "Severe" region will utterly destroy the picture.

Interference Patterns

The visible effects of interference vary with the twpe and intensity of interferenec. Complete "blackout," where the picture and sound disappear completely, laving the sereen dark, occurs only when the transmitter and receiver are quite close together. Strong interference ordinarily causes the picture to be broken up, leaving a jumble of light and dark lines, or turns the picture "negative" - the normally white parts of the picture turn back and the normally black parts turn white. "(ross-hatching" - diagonal bars or lines in the picture - accompanies the

His. 23-8- "(ross-hatching," caused by the beat between the picture carricr and an interfering signal inside the 'I'V channel.
latter, usually, and also represents the most common type of less-severe interference. The hars are the result of the beat between the harmonic frequency and the picture carrier freguency: They are broad and relatively few in number if the beat frequency is comparatively low - near the picture carrier - and are numerous and very
fine if the beat frequency is very high - toward the upper end of the chamel. Typical crosshatching is shown in Fig. 23-8. If the frequency falls in the "Mild" region in Fig. 2:3-7 the crosshatching may be so fine as to be visible only on close inspeetion of the pieture, in which case it may simply cause the apparent brightness of the sereen to change when the transmitter carrier is thrown on and off.

Whether or not cross-hatching is visible, an amplitude-modulated transmitter may cause

Fig. 23.9 - "Sound bars" or "modulation hars" accompanying amplitude modulation of an interfering signal. In this ease the interfering carrier is strong enongh to destroy the picture, but in mild cascs the pieture is visible through the horizontal hars. Sound hars may accompany modulation even thongh the mmodulated carrier gives no visible erns-lat ohing.
"sound bars" in the pieture. These look about as shown in lig. 23-9. They result from the variations in the intensity of the interfering signal when modulated. Under most cireunstances modulation hars will not orcur if the amateur transmitter is frequency- or phase-modulated. With these types of modulation the cross-hatehing will "wiggle" from side to side with the modulation.

Fixeept in the more severe cases, there is soldom any elfect on the sound reception when interforence shows in the picture, unless the frequency is quite close to the sound carrier. In the latter event the sound may be interfered with even though the picture is clean.

Reference to Fig. 2:3-6 will show whether or not harmonics of the frequency in use will fall in any television channels that can be reeeived in the locality. It should be kept in mind that not only harmonies of the final frequeney may interfere, but also harmonics of any frequencies that may be present in buffer or frequency-multiplier
stages. In the case of 144-Mc. transmitters, fre-quency-multiplying combinations that require a doubler or tripler stage to operate on a frequency actually in a low-band v.h.f. channel in use in the locality should be avoided.

Harmonic Suppression

Effective harmonic suppression has three separate phases:

1) Reducing the amplitude of harmonics generated in the transmitter. This is a matter of circuit design and operating conditions.
2) Preventing stray radiation from the transmitter and from associated wiring. This requires adequate shielding and filtering of all circuits and leads from which radiation can take place.
3) Preventing harmonics from being fed into the antenna.

It is impossible to build a transmitter that will not generate some harmonics, but it is obviously advantageous to reduce their strength, by circuit design and choice of operating conditions, by as large a factor as possible before attempting to prevent them from being radiated. Harmonic radiation from the transmitter itself or from its associated wiring obviously will cause interference just as readily as radiation from the antenna, so measures taken to prevent harmonics from reaching the antenna will not reduce TVI if the transmitter itself is radiating harmonirs. But once it has been found that the transmitter itsolf is free from harmonic radiation, devices for preventing harmonics from reaching the antenna can be expected to produce results.

REDUCING HARMONIC GENERATION

Since reasonably-efficient operation of r.f. power amplifiers always is accompanied by harmonic generation, good judgment calls for operating all frequency-multiplier stages at a very low power level - plate voltages not exceeding 250 or 300 . When the final output frequency is reached, it is desirable to use as few stages as possible in reaching the output power level, and to use tubes that require a minimum of driving power.

Circuit Design and Layout

Harmonic eurrents of considerable amplitude flow in both the grid and plate circuits of r.f. power amplifiers, but they will do relatively little harm if they can be effectively by-passed to the cathode of the tube. Fig. 2:3-10A shows the paths followed by harmonic currents in an amplifier circuit; because of the high reactance of the tank coil there is little harmonic current in it, so the harmonic currents simply flow through the tank condenser, the plate (or grid) blocking condenser, and the tube caparitances. The lengths of the leads forming these paths is of great importance, since the inductance in this circuit will resonate with the tube capacitance at some frequency in the v.h.f. range (the tank and blocking capaci-
tances usually are so large compared with the tube capacitance that they have little effect on the resonant frequency). If such a resonance happens to occur at or near the same frequeney as one of the transmitter harmonies, the effect is just the same as though a harmonic tank circuit

Fig. 23-10- (A) A v.h.f. resonant circuit is formed by the tube capacitance and the leads through the tank and blocking condensers. Regular tank coils are not shown, since they have little effect on such resonances. (13) Lising low-inductance condensers shunting the tube elements to lower the resonance point below the TV channels. C_{5} and C_{6} usually are 15 to $50 \mu \mu \mathrm{fd}$. and either of vacuum or tubular construction.
had been deliberately introduced; the harmonic at that frequency will be tremendously increased in amplitude.
Such resonances are unavoidable, but by kecping the path from plate to cathode and from grid to cathode as short as is physically possible, the resonant frequency usually can be raised above 100 Mc . in a mplifiers of medium power. This puts it between the two groups of television channels.

In low-frequency transmitters where physi-cally-short return paths from plate or grid to cathode are difficult because of the shape and size of tubes and tank condensers, the arrangement shown in Fig. 23-1013 is frequently helpful. Condensers C_{5} and C_{6} should be of the vacuum or tubular type and should be mounted as close as possible to the tube connections. They form resonant circuits in themselves with the tube capacitance, but generally at a sufficiently high frequency so that no harm is done. At lower frequencies than this self-resonance, they effectively add to the tube capacitance and thus tune the inductance of the leads through the regular tank and blocking condensers to a considerably lower frequency than the tube alone. The resonance therefore can be shifted to a frequency below $5+$ Mc. and again is outside the TV range. This method is most useful at 3.5 and 7 Mc . because it increases the tank capacitance to the point where there may be very little tank coil left, at the higher frequencies.

It is easier to place grid-circuit v.h.f. resonances where they will do no harm when the amplifier is link-coupled to the driver stage, since this generally permits shorter leads and more favorable conditions for by-passing the harmonics than is
the case with capacitive coupling. Link coupling also reduces the coupling between the driver and amplifier at harmonic frequencies, thus preventing driver harmonics from being amplified.

The inductance of leads from the tube to the tank condenser can be reduced not only by shortening but by using fat strip instead of wire conductors. It is also better to use the chassis as the return from the blocking condenser to cathode, since a chassis path will have less inductance than almost any other form of connection.

The v.h.f. resonance points in amplifier tank circuits can be found by coupling a grid-dip meter covering the $50-250 \mathrm{Mc}$. range to the grid and plate leads. If a resonance is found in or near a TV chamnel, methods such as those described above should be used to move it well out of the TV range. The grid-dip meter also shouk be used to cheek for v.h.f. resonances in the tank coils, because coils made for $1+$ Mc. and below usually will show such resonames. In making the eheck, disconnert the coil entirely from the transmitter and move the gridedip meter coil along it while exploring for at dip in the $51-88$ Me. band. If a resonance falls in a TV chamel that is in use in the locality, changing the number of turns will move it to a freguency where it will not be troublesome.

In many r.f. amplifiers the cathode connection of the tube is below chassis while the plate (and sometimes the grid) connection frequently is above. In such a case the bloching condenser should be mounted below chassis. If the gromed return is male to the top, the r.f. current has to flow over the top and either through the hole for the tube socket or else entirely over the chassis surface before it reaches the cathode. This condition is highly undesirable not only because of v.h.f. resonances but becouse such chassis currents frequently cause instability in the amplifier.

Operating Conditions

Grid bias and grid current have an important effect on the harmonic content of the r.f. currents in both the grid and plate circuits. In general, harmonic output increases as the grid bias and grid eurrent are increased, but this is not nevessarily true of a particular harmonic. The third and higher harmonies, esperially, will go through fluctuations in amplitude as the grid current is increased, and sometimes a rather high value of grid current will minimize one harmonic as compared with a low value of grid current. This characteristic can be used to advantage where a particular harmonic is causing interference, keeping in mind that the operating conditions that minimize one harmonic may greatly increase another.

For equal operating conditions, there is little or no difference betwern single-ended and pushpull amplifiers in respect to harmonic generation. I'ush-pull amplifiers are frequently trouble-makers on even harmonics because with such amplifiers the even-harmonic voltages are in phase at the ends of the tank circuit and hence appear with equal amplitude across the whole tank coil,
if the center of the coil is not grounded. Under such circumstances the even harmonics can be coupled to the output circuit through stray cetpateitance between the tank and coupling coils. This does not occur in a single-ended amplifier if the coupling coil is placed at the cold end of the tank.

Harmonic Traps

If a harmonic in only one TV channel is particularly bothersome - frequently the case when the transmitter operates on 28 Mc . - a trap tuned to the harmonic frequency may be installed in the plate lead as shown in Fig. 23-11. At the harmonic frequency the trap represents a very high impedance and hence reduces the amplitude of the harmonic current flowing through the tank circuit. In the push-pull circuit both traps have the same constants. The L / C ratio is not critical but a high- C circuit usually. will have least effect on the performance of the plate circuit at the normal operating frequency.

Since there is a considerable harmonic voltage across the trap, it may radiate unless the transmitter is well shiolded. Traps should be placed so that there is no coupling betwcen them and the amplifier tank circuit

A trap is a highly-selective device and so is useful only over a small range of frequencies. A

Fig. 23- $1 /$ - Harmonic traps in an amplifier plate cirenit. L and C should resonate at the frequency of the harmonic to be suppressed. C may be a 25°. to $50-\mu \mu \mathrm{fd}$. midget, and L usnally consists of 3 to 6 turns about $1 / 2$ inch in diameter for Channels 2 through 6 . The inductance should be adjusted so that the trap resonates at about half capacity of C before being installed in the transmitter. It may be checked with a grid-dip meter. W hen in place, it is adjusted for minimum interference to the IV picture.
second- or third-harmonic trap on a 28-Mc. tank circuit usually will not be effective over more than 50 kc . or so at the fundamental frequener, depending on how serious the interference is without the trap. Because they are critical of adjust-
ment, it is better to prevent TVI by other means, if possible, and use traps only as a last resort.

PREVENTING RADIATION FROM THE TRANSMITTER

The extent to whieh interference will be caused by direct radiation of spurious signals depends on the operating frequener, the transmitter power level, the strength of the television signal, and the distanee between the transmitter and TV receiver. Transmitter radiation can he a very serious problem if the TV signal is weak, if the TV receiver and amateur transmitter are close together, and if the transmitter is operated with high power.

Shielding

Direct radiation from the transmitter circuits and components can he prevented by proper shieding. To be effective, a shield must eompletely enclose the circuits and parts and must have no openings that will permit r.f. energy to escape. Unfortunately, ordinary metal boxes and cablinets do not provide good shielding, since such openings as louvers, lids, holes for ruming in connertions, and so on, allow far too much leakage.

A primary requisite for good shichling is that all joints must make a good electrical connection along their entire length. A small slit or arack will let out a surprising amount of r.f. energy: so will ventilating louvers and large holes such as those used for mounting meters. ()n the other hand, small holes do not impair the shiedding very greatly, and a limited number of ventilating holes may be used if they are small - not over $1 / 4$ inch in diameter. Dko. wire sereen makes quite offective shielding if the wires make good electrical ronnection where they cross over, so the leakage through large openings can be very mach recluced by covering such openings with sereening, well bonded to all edges of the opening.

F'ig. 2.3-12 - Proper mothod of by-parsing the end of at shimeded leat using disk ceramie andenser, "The 0.001 ufd. size should be used for 1600 voltsor less: 500$)_{\mu \mu} \mathrm{fil}$, at higher voltages, The leads are wrapped around the inner and onter conductors and soldered, so that the lead langth is negligible. This photograph is about four times actual size.

The intensity of r.f. fields about eoils, eondensers, tubes and wiring decreases very rapidly with distance, so shielding is more effertive, from a practical standpoint, if the components and wiring are not too close to it. It is advisable to have a separation of several inches, if possible, between "hot" points in the circuit and the nearest shielding.

For a given thickness of metal, the greater the condurtivity the better the shielding. Copper is best, with aluminum, brass and steel following in that orter. However, if the thickness is atequate for structural purposes (over 0.02 inch) and the shield and a "hot" point in the circuit are not in close proximity, any of these metals will be satisfactory. (ireater separation should be used with steel shiedding than with the other materials not only because it is considerably poorer as a shield but also because it will cause greater losses in near-hy circuits than would copper or aluminum at the same distance. Wire sereen used as a shield should also be kept at some distance from highvoltage or high-current r.f. points, since there is considerably more leakige through the mesh than through solid metal.
Where two pieces of metal join, as in forming a corner, they should overlap at least a half inch and be fastened together firmly with serews or bolts spabed at close-enough intervals to maintain firm contart all along the joint. The contact surfaces should be clean before joining, and should te cherked ocensionally - especially steel, which is almost eertain to rist after a period of time.
The leakage through a given size of aperture in shied ling increases with frequencer, so such points as good contimuous contan', sereening of holes, and so on, herome even more important when the radiation to be suppressed is in the high band $17+216 \mathrm{Me}$. - than in the low TV band. Hence 50- and $1+4-M$. . Transmitters, which in general will have frequenc y-multiplier harmonies of relatively high intensity in this region, require special

Fig. 2.3-13 - 13y-passing the end of a high-voltage lead "lore end of the shield braid is soldered to a lug fastened to the chassis direetly underneath. The other terminal of the condenser is similarly boited directly to the chassis. When the by-pazs is used at a terminal eonnee tion block the "hot" lead shonld be soldered directly to the terminal, if possihle, but in any event connected to it by a very short lead.

Fig. 23-J.4-Additional r.f. filtering of sup. ply leads may he required in regions where the IT signal is very weak. The r.f, choke should be physically small, and may consist of a 1 -inch winding of No. 26 enameled wire on a $1 / 4$-inch form, close-wound. Manufac. tured single-layer chokes having an induct ance of a few microhenrys also may be used.
attention in this respert if the possibility of interfering with a channel received locally exists.

Lead Treatment

Even very good shielding can be made completely useless when connections are run from external power supplies and other equipment to the circuits inside the shield. Every conductor so introduced into the shielding forms a path for the escape of r.f., which is then radiated by the connecting wires. Hence a step that is essential in every case is to prevent harmonic currents from flowing on the leads leaving the shielded enclosure.

Harmonic currents always flow on the d.c. or a.c. leads connecting to the tube circuits. A very effective means of preventing such currents from being coupled into other wiring, and one that provides desirable by-passing as well, is to use shielded wire for all such leads, maintaining the shielding from the point where the lead connects to the tube or r.f. circuit right through to the point where it is about to leave the chassis. The shield braid should be grounded to the chassis at both ends and at frequent intervals along the path.
Good by-passing of shielded leads also is essential. Bearing in mind that the shield braid about the conductor confines the harmonic currents to the inside of the shielded wire, the object of bypassing is to prevent their escape. Figs. 23-12 and 2:3-1:3 show the proper way to by-pass. The smalltype $0.001-\mu \mathrm{fd}$. ceramic disk condenser, when mounted on the end of the shielded wire as shown in Fig. 23-12, artually forms a series-resonant circuit in the 54-88-Mc. range and thus represents practically a short-circuit for low-band TV harmonics. The exposed wire to the connection terminal should be kept as short as is physically possible, to prevent any possible harmonic pickup exterior to the shielded wiring. Disk condensers of this capacitance are available in several voltage ratings up to 1600 volts. For higher voltages, the maximum capacitance available is approximately $500 \mu \mu \mathrm{fd}$., which is large enough for good by-passing of harmonics. Alternatively, mica condensers may be used as shown in Fig. 23-13, mounting the condenser flat against the chassis and grounding the end of the shield braid directly to chassis, keeping the exposed part as short as possible. Either $0.001-\mu \mathrm{fd}$. or $470-\mu \mu \mathrm{fd}$. ($500 \mu \mu \mathrm{fd}$.) condensers should be used. The larger capacitance is series-resonant in Channel 2 and the smaller in Channel 6.
These by-passes are essential at the connectionblock terminals, and desirable at the tube ends of the leads also. Installed as shown with shielded
wiring, they have been found to be so effective that there is usually no nced for further harmonic filtering. However, if a test shows that additional filtering is required, the arrangement shown in Fig. 23-14 may be used. Such an r.f. filter should be installed at the tube end of the shielded lead, and if more than one circuit is filtered care should be taken to keep the r.f. chokes separated from each other and so oriented as to minimize coupling between them. This is necessary for preventing harmonies present in one circuit from leing coupled into another.

In difficult cases involving Channels 7 to 13 i.e., close proximity betwern the transmitter and receiver, and a weak TV signal - additional leadfiltering measures may be needed to prevent radiation of interfering signals by $50-$ and $14+-\mathrm{Mc}$. transmitters. A recommended method is shown in Fig. 2:3-15. It uses a shielded lead by-passed

Fig. 23-15 - Additional lead filtering for harmonics or other spurious frequencies in the high v.h.f. TV band ($174-216 \mathrm{Mc}$).
$\mathrm{Cl}_{1}-0.001-\mu \mathrm{fd}$. disk ceramic.
$\mathrm{C}_{2}-0.001-\mu \mathrm{fd}$. feed-throunh by-pass (Erie Style 326). (For 500-2000.volt lead, substitute Plasticon Glass mike, 1.SG-251, for C:2.)
RFC - 14 inches No. 26 enamel close-wound on 3\{6 inch diam. form or resistor.
with a ceramic disk as described above, with the addition of a low-inductance feed-through type condenser and a small r.f. choke, the condenser being used as a terminal for the external connection. For voltages above 400, a condenser of compact construction (as indicated in the caption) should be used, mounted so that there is a very mininum of exposed lead, inside the chassis, from the condenser to the connection terminal.

As an altermative to the series-resonant bypassing described above, feed-through type condensers such as the Sprague "IIypass" type may
be used as terminals for external connections. The ideal method of installation is to mount them so they protrude through the chassis, with thorough bonding to the chassis all around the hole in which the condenser is mounted. The principle is illustrated in Fig. 2:3-16.

Fig. 23-16 - The best method of using the "Hypass" type feed-throngh condenser. Capacitances of 0.01 to $0.1 \mu \mathrm{fal}$. are satisfactory. Condensers of this type are useful for high+current circuits, sueh as filament and $115-\mathrm{volt}$ leads, as a substitute for the r.f. choke shown in liig. 23-1t, in cases where alditional lead filtering is needed.

Metars that are mounted in an r.f. unit should be enclosed in shielding covers, the connections being made with shielded wire with each lead by-passed as described above. The shield braid should be grounded to the panel or chassis immediately outside the meter shicld, as indieated in Fig. 23-17. A by-pass may also be connected arross the meter terminals, primeipally to prevent any fundamental current that may be present from flowing through the meter itself. As an alternative to individual meter shielding the meters may be mounted entirely behind the panel, and the panel holes needed for observation may be covered with wire sercen that is carefully bonded to the panel all around the hole.

Care should be used in the selection of shiolded wire for transmitter use. Not only should the insulation be conservatively rated for the d.c. volt-

Fig. 2.3-17 - Meter shielding and by-passing. It is essential to shicld the meter monnting hole since the meter will carry r.f. through it to be radiated. Suitable shields can he made from $21 / 2$ - or 3 -ineh diameter shield cans of the type made for enclosing coils.
age in use, but the insulation should be of material that will not easily deteriorate in soldering. The r.f. characteristics of the wire are not esperially important, except that the attenuation of harmonics in the wire itself will be greater if the insulating material has high losses at radio frequencies: in other words, wire intended for use at d.e. and low frequencies is preferable to cilbles designed expressly for carrying r.f. The attenuattion also will increase with the length of the wire; ingeneral, it is better to make the leads as long as cireumstances permit rather than to follow the more usual prartice of using no more lead than is actually necessary. Where the wiring crosses or runs parallel, the shields should be spot-soldered together and connerted to the chassis. For high voltages, automobile ignition cable covered with shielding braid is recommended.

Proper shielding of the transmitter requires that the r.f. circuits be shielded entirely from the external connecting leads. A situation such as is shown in Fig. 23-18, where the leads in the r.f. chassis have been shielded and properly filtered

Fig. 23-18-A metal cabinet can be an adequate shield, but there will still be radiation if the leads inside can pich up r.f. from the transmitting circnits.
but the chassis is mounted in a large shield, simply invites the harmonic currents to travel over the chassis and on out over the leads outside the chassis. The shiclding about the r.f. circuits should make complete contact with the chassis on which the parts are mounted.

Checking Transmitter Radiation

A check for transmitter radiation always should be made before attempting to use low-pass filters or other devices for preventing harmonics from reaching the antenna system. The only really satisfactory indicating instrument is a television receiver. In regions where the TV signal is strong an indicating wavemeter such as one having a crystal or tube detector may be useful; if it is possible to get any indication at all on harmonics either on supply leads or around the transmitter itself, the harmonics are probably strong enough to cause interference. However, the absence of
any such indication does not mean that harmonic interference will not be caused. If the terhniques of shielding and lead filtering described in the

Fig. 23-19 - I hmmy-antenna cirenit for cheching harmonic radiation from the transmitter and teads. The matehing circuit helps prevent harmonies in the output of the transmitter from fowing lack over the transmit ter itself, which may oecur if the lamp load is simply connerted to the ontput coil of the final anplifier. See transmission-line chapter for details of the matching circuit. 'Juning must be adjusted by cut-andetry, as the bridge method described in the transmission-line chapter will not work with lamp loads becanse of the change in resistance when the lamps are hot.
preceding section are followed, the harmonic intensity on any external leads should be far bolow what any such instruments can detect.
ladiation checks should be made with the transmitter delivering full power into a dummy antemat, such as an incandescent lamp of suitable power rating, preferably installed inside the shiclded enclosure. If the dummy must be external, it is desirable to connect it through a coasmatching circuit such as is shown in Fig. 23-19. Shielding the dummy antenna circuit is also desirable, although it is not always necessary.
lake the radiation test on all frequencies that are to be used in transmitting, and note whether or not interference patterns show in the received picture. (These tests must be made while a TV signal is being received, since the beat patterns will not be formed if the TV picture carrier is not present.) If interference exists, its source can be detected by grasping the various external laads (by the insulation, not the live wire!) or bringing the hand near meter faces, louvers, and other possible points where harmonic energy might escape from the transmitter. If any of these tests cause a change - not necessarily an increase - in the intensity of the interference, the presence of harmonics at that point is indicated. The location of such "hot" spots usually will point the way to the remedy. If the TV receiver and the transmitter can be operated side-by-side, a kength of wire conneced to one antema terminal on the receiver can be used as a probe to go over the transmitter enclosure and external leads. This device will very quickly expose the spots from which serious leakage is taking phace.

Ls a final test, connect the transmitting antemna or its transmission line terminals to the outside of the transmitter shielding. Interference created when this test is applied indirates that weak currents are on the outside of the shield and can be conducted to the antenat when the normal antenna connections are used. Currents of this nature represent interference that can be conducted over low-pass filters, ete., and which therefore cannot be eliminated by such filters.

PREVENTING HARMONICS FROM REACHING THE ANTENNA

The third and last step in reducing harmonic TVI is to keep the spurious energy generated in or passed through the final stage from traveling over the transmission line to the antenna. It is seldom worthwhile even to attempt this until the radiation from the transmitter and its connecting leads has been reduced to the point where, with the transmitter delivering full power into a dummy antenna, it has been determined by actual testing with a television receiver that the radiation is below the level that can cause interference. If the dummy antenna test shows enough radiation to be seen in a TV picture, it is a practical certainty that harmonics will be coupled to the antenna system no matter what preventive measures are taken.

In inductively-coupled output systems, some harmonic energy will be transferred from the final amplifier through the mutual inductance between the tank coil and the output coupling coil. Marmonies of the output frequency transferred in this way can be greatly reduced by providing suflicient selectivity between the final tank and the transmission line. A good deal of selectivity, amounting to 20 to 30 d). reduction of the second harmonic and much higher reduction of higher-order harmonies, is furnished by a matehing circuit of the type shown in Fig. 23-19 and described in the chapter on transmission lines. An "antenna coupler" is therefore a worthwhile addition to the transmitter.

In 50 - and $144-$ IIc. transmitters, particularly, harmonies not directly assoriated with the output frequency - such as those generated in low-frequency early stages of the transmitter - may get coupled to the antenna by stray means. For example, a $1+4-\mathrm{Mc}$. transmitter might have an oscillator or frequency multiplier at 48 Mr ., followed by a tripler to $1+4$ Nc. Some of the 48-Mc. energy will appear in the plate circuit of the tripler, and if passed on to the grid of the final amplifier will appear as a 48-Mc. modulation on the $1+t-$-nc. signal. This will cause a spurions signal at 192 Mc, , which is in the high TV band, and the selectivity of the tank circuits may not be sufficient to prevent its being coupled to the antenna. Spurious signals of this type can be reduced by using link coupling between the driver stage and final amplifier (and between earlior stages as well) in addition to the suppression afforded by using an antenna coupler.

Capacitive Coupling

Harmonies and other spurious signals transferred from the tank by stray capacitance are not suppressed be an antenna coupler to the same extent as those transferred bey pure inductive coupling. The upper drawing in Fig. 2:3-20 shows the link-roupled system as it might be used to couple into a paraliel-conductor line. Inasmuch as a coil is a sizable metallic object, there is capatitance between the final tank coil and its associated link coil, and between the antenna tank

Fig. 23.20-The stray capacitive coupling between coils in the upper circuit leads to the equivalent circuit shown helow, for v.h.f. harmonics.
coil and its link. Energy coupled through these capacitances travels over the link cireuit and the transmission line as though these were merely single conductors. The tuned circuits simply act as masses of metal and offer no selectivity at all for capacity-coupled energy. Although the actual capacitances are small, they offer a very good coupling medium for frequencies in the v.h.f. range.

Capacitive coupling can be reduced by coupling to a "cold" point on the tank eoil - the end connected to ground or cathode in a single-ended stage. In push-pull circuits having a split-stator condenser with the rotor grounded for r.f., , all parts of the tank coil are "hot" at even harmonics, but the center of the coil is "eold" at the fundamental and odd harmonies. If the eenter of the tank roil, rather than the rotor of the tank condenser, is grounded through a by-pass condenser the center of the coil is "cold" at all frequencies, but this arrangement is not very desirable because it causes the harmonic currents to flow through the coil rather than the tank condenser and this increases the harmonic transfer by pure inductive coupling.
With either single-ended or balanced tank circuits the coupling coil should be grounded to the chassis by a short, direct connection as shown in Fig. 23-21. If the coil feeds a balaneed line or link,
it is preferable to ground its center, but if it feeds a coas line or link one side may be grounded. Coaxial output is much preferable to balanced output, because the harmonics have to stay inside a properly installed coax system and tend to be attenuated by the cable before reaching the antenna coupler.

At high frequencies - and possibly as low as 14 Me. - caparitive coupling can be greatly reduced by using a shielded roupling coil as shown in Fig. 23-22. The inner conductor of a length of coaxial cable is used to form a one-turn coupling coil. The outer conductor serves as an open-circuited shield around the turn, the shied being grounded to the chassis. The shielding has no effect on the inductive coupling. Because this construction is suitable only for one turn, the coil is not well adapted for use on the lower frequencies where many turns are required for good coupling. Shielded coupling coils having a larger number of turns are available commercially. A shielded coil is particularly useful with push-pull amplifiers when the suppression of even harmonics is important.

A shielded coupling coil or coaxial output will not prevent stray capacitive coupling to the antemna if harmonic currents can flow over the outside of the coas line. In Fig. 23-23, the arrangement at either A or C will allow r.f. to flow over the outside of the cable to the antenna system. The proper way to use coaxial cable is to shield the transmitter completely, as shown at 13 , and make sure that the outer conductor of the cable is a continuation of the transmitter shielding. This

Fig. 23.22 - Shielded coupling coil constructed from coaxial cable. The smaller sizes of cable such as RG $.59 / \mathrm{U}$ are most convenicnt when the coil diameter is 3 inches or less, because of greater flexibility. For larger coils KG-8/LT or KG-11/U can be uaed.

Fig. 23-21 - Methods of coupling and grounding linh circuits to rednce capacitive coupling between the tank and link coils. Where the link is wound over one end of the tanh coil the side toward the hot end of the tank should be grounded, as shown at B.

prevents r.f. inside the transmitter from getting out by any path execpt the inside of the cable. llarmonics fowing through a coax line can be stopped from reaching the antenna system by an antenna coupler or by a low-pass filter installed in the line.

$$
(
$$

(A)

(B)

(C)

Fig. 2.3-2.3 - liight (B) and wrong (1 and C) ways to conneet a coaxial line to the transmitter. In either 1 or C, harmonie eneryy coupled by stray eapacitamer to the outside of the eable will flow without hindrance to the antenna system. In is the energy cannot leave the shitd and hence can flow out only throngh, not over, the cable.

Low-Pass Filters

A low-pass filter properly installed in a coaxial line, feeding either a matehing circuit (antenna coupler) or feeding the antemat directly, will provide very great attemuation of harmonies. When the main transmission line is of the parallel-conductor type, the coax-coupled matehing-circuit arrangenent is highly recommended as a means for using a coax low-pass filter.

Fig. 23-24 - An inexpensive low-pass filter using silvermica postage-stamp condensers. The box is a 2 hy 1 by 6 aluminum chassis, Aluminum shields, bent and folded at the sides and bottom for fastening to the chassis, form shields between the filter sections. 'The diagonal arrangement of the shiclds provides extra room for the coils and makes it easier to fit the shields in the lwox, since bending to exact dinuensions is not essential. The botom plate, made from sheet aluminum, extends a half inch beyond the ends of the ehassis and is provided with mounting holes in the extensions. It is hedd on the chassis with sheet-metal serews.

A properly-designed low-pass filter will not introduce appreciable power loss at the fundamental frequeney if the coaxial line in whieh it is inserted is terminated so that the s.w.r. is low. (The s.w.r. can easily be measured by means of a simple bridge as deseribed in the chapters on measurements and transmission lines.) Such a filter has the property of passing without loss all frequencies below its "cut-off" frequencr, but simultancously has large attemuation for all frequencios above the rut-off frequenes.

Low-pass filter's of simple and incepensive construction for use with transmitters operating below 30 Mc. are shown in Figs. 2:3-2t and 2:3-26. These are designed to use mica condensers of readily-avaibable capacitance values, for eompactness and low cost. Both use the same circuit, Fig. 23-25, the only difference being in the L and ('values. Terhnieally, they are three-secetion filters having two full constant-k sections and two m-derived terminating half-sections, and their attenuation in the $5 t-88$ - Mc. range varies from over 50 to nearly 70 db ., dejending

Fig. 23-25-1.ow-pass filter eirenit for attenuating hatmonies in the T hatids. f_{1} and f_{2} are chassis-type coaxial connectors. In the talle below the letters refer to the following:
A - Constructed as in Pig. 23-2.4, using 100) and Fo. $\mu \mu \mathrm{fd}$. $\overline{\mathrm{S}}(0)$-volt silver mica condensers in parallel for $C .2$ and C.3.
13 - Same as A but with 70. and 50 - μ fall silver miea condensers in parallel for C2 and C3.
C - Constructed as in F'ig. 23-26, using 100- and $\mathbf{3 0}$ $\mu \mu \mathrm{fl}$. mica condensers, 1200 -volt (case-style (M 45) in parallel for C_{2} and C_{3}.

1) and E - Constructed with variable condenserm, $\overline{300}$ - to 1000 -volt rating, adjuated to values given.

	A	B	C.	I)	\mathbf{L}	
Z	52	75	52	52	. 5	ohtns:
f c	36	3.5.5	41	40	10	Me.
f_{∞}	41.1	4%	5.4	50	50	Mc.
f	25.5	25.2	29	28.3	28.3	Me.
f_{2}	32.5	31.8	37.5	36.1	36.1	Mr.
$\mathrm{Cl}_{1}, \mathrm{Cl}_{4}$	50	10	50	16	32	$\mu \mu \mathrm{fll}$.
$\mathrm{C}_{2}, \mathrm{C}_{3}$	170	120	150	151	106	$\mu \mu \mathrm{fl} .$
$L_{1,}, L_{5}$	51/2	6	4	5	61/2	turns*
L_{2}, L_{4}	8	11^{1}	7	7	91/2	turns*
L_{3}	9	13	8	$81 / 2$	$111 / 2$	turns*

*No. 12 or No. 11 wire, $1 / 2$ inch inside diameter, 8 turns per inch.
1 A -turn coil with eloser turn spacing to give the same inductance is shown in Fig. $23-24$.
on the freguency and the particular set of values used. Ahove 17. Mc. the theoretical attenuation is better than 85 dh., but will depend someWhat on internal resonant conditions associated primeipally with the lead lengths to the rondensers. These leads should be kopt as short as is physically possible.
The power that these filtors can handle safely is determinod by the voltage and current limitations of the mica condensers. These limitations are such that the power capacity is least at the highest frequency. The unit using postage-stamp silver mica condensers is capable of handling appoximately 50 walls in the 28-Me. band, when working into a properlymatched line, but is good for about 150 watts at 21 Me. and 300 watts at 14 Mr . and lower frequencies. The unit with the larger mica condensers (case-type (.M-t5) will carry about 250 watts safely at 28 Mc., this rating increasing to 500 watts at 21 Mc and a kilowatt at 14 Me. and lower. If there is and appreciable mismatch between either filter and the line into which it works, these ratings will be considerably decreased, so in order to avoid condenser failure it is highly essential that the line on the output side of the filter he carefully matrhed by its load. This can be done with an s.w.r. bridge, and the matching is easy to control if the line from the filter terminates in a matehing circuit of the type described in the chapter on transmission lines.
The power eapacity of these filters can be increased considerably by substituting r.f. type

Fig. 23-26 - Low-pass filter using case-type CM-45 condensers. The box is a 2 by 5 by 7 aluminum chassis, fitted with a bottom plate of similar construction to the one used in Fig. 23-24.

Figs. 23.27 - Iow-pass filter for use with 50. Mc. transmitters and 52 .ohm line. It uses variahle air condensers adjusted to the proper capacitance valucs and is suited to powers up to a kilowatt.
fixed condensers (such as the Centralah) 850 series) or variable air condensers, in which event the power capability will be such as to hantle the maximum amateur power on any band. The construction can be modified to accommodate either of the latter types of condenser, using a similar layout in a larger box.

Using condensers of standard tolerances, there should be little difficulty in getting proper filter operation. A grid-dip meter with an accurate calibration shoukd be used for adjustment of the coils. First, wire up the filter without L_{2} and L_{4}. Short-circuit J_{1} at its inside end with a screwdriver or similar conductor, couple the grid-dip meter to L_{1} and adjust the inductance of L_{1}, by varying the turn sparing, until the circuit resonates at f_{∞} as given in the tahle. Do the same thing at the other end of the filter with L_{5}. Then couple the meter to the circuit formed by L_{3}, C_{2} and C_{3}, and adjust L_{3} to resonate at the frequency f_{1} as given by the table. Then remove L_{3}, install L_{2} and L_{1} and adjust L_{2} to make the circuit formed by L_{1}, L_{2}, C_{1} and C_{2} (without the short aross J_{1}) resonate at f_{2} as given in the table. Do the same with L_{4} for the circuit formed by L_{4}, L_{5}, C_{3} and C_{4}. Then replace L_{3} and check with the grid-dip meter at any coil in the filter; a distinct resonance should be found at or very close to the cut-off frequeney, f_{c}. The filter is then ready for use

The filter constants suggested at D and E in Fig. 2:3-25 are based on the optimum design for good impedance characteristics - that is, with $m=0.6$ in the end sections - and a cut-off fre-
quency below the RLTMMA standard i.f. for television receivers (sound carrier at 41.25 Me.; picture carrier at 45.75 Mr.). This is to avoid possible harmonic interference from 21 Me. and below to the receiver's intermediate amplifier. The other designs similarly cut off at 41 Mc. or below, but m in these cases is necessarily based on the capacitances available in standard fixed condensers.

Fig. 23.29 - A 52 ohn low-pass filter for 144 -Mc. transmitters.

Filters for 50. and 144-Mc. Transmitters

Since a low-pass filter must have a cut-off frequency above the frequency on which the transmitter operates, a filter for a v.h.f. transmitter cannot be designed for attenuation in all television channels. This is no handicap for v.h.f. work but means that the filter will not be effective when used with lower-frequency transmitters, unless it happens that no TV channels in use in the locality fall inside the pass-band of the filter.

Fig. 2:3-2 shows a filter for 52 -ohm coax suitable for a 50 -Mc. transmitter of any power up to the authorized limit. The eircuit diagram is given in Fig. $2: 3-28$. If the values of inductance

Figs. 23-28- Cirenit diagram of the low-pass filters for 50- and $14 .-\mathrm{Mc}$. transmitters. Values on the drawing are for the $50-\mathrm{Vl}$. filter. P'artitions are not used in the Itt.Me. unit.
 to middle of tuning range (lohnson 50l.15).
14. Me.: $11-\mu \mu \mathrm{fl}$. ceranice ($10-\mu \mu \mathrm{fl}$. useable).
© $: 2$, $: 3-50$ Me.: lo(0)- $\mu \mathrm{fd}$. variable, shaft-mounted, set with rotor $1 / 4$ inch out of stator (Bud MC: 905).
lit Mc.: $38-\mu \mu \mathrm{fl}$, stand-off by-pass (Eric Style 2ili.).
50) Mc. coil data:
$\mathrm{l}_{1}, \mathrm{I}_{5}-31 / 2$ turns $5 / 8$ inch long. Top leads $3 / 4$ inch, botton leade $1 / 4$ inch long.
$1.2,1.4-41 / 2$ turns $5 / 8$ ineh long. I, eads $1 / 2$ inch long each end.
1,3 - $31 / 2$ turns $7 / 8$ inch long. Jeads 1 inch long carh.
All 50 . Me. coils No. 12 tinned, $1 / 2$-inch diann., eoil length measured between rightangle bends where leads begin.
144-Mc. coil data:
$\mathrm{L}_{1}, \mathrm{l}_{5}-3$ turns $1 / 4$ inch long. Leads $1 / 4$ inch long each end.
$1_{2}, \mathrm{l}_{4}-2$ turns $1 / 8$ inch long. Leads 1 inch long each end.
$\mathrm{L}_{3}-5$ turns $3 / 4$ inch Iong. Ieads $5 / 8$ inch long each end. All 1.4-Mc. coils No. 18 tinned, $1 / 4$-indh diam., lengths measured as for 50-Mc. coils.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting.
and capacitance can be measured (see chapter on measurements) the components can be preset and assembled without further adjustment. Alternatively, the grid-dip meter method described earlier may be used. The resonant frequencies are:

$$
\left.L_{2} C_{1}\left(J_{1} \text { shorted }\right)\right\}
$$

$L_{5}\left(C_{4}\left(J_{2}\right.\right.$ shorted $\left.)\right\}$
$L_{3} \mathrm{C}_{2} \mathrm{C}_{3}$ (L_{2} and L_{4} disconnected)
81.5 Mc.
$L_{1} L_{2} \mathrm{C}_{1} \mathrm{C}_{2}$ (L_{3} disconnected) $\}$
$L_{4} L_{5} \mathrm{C}_{3} \mathrm{C}_{4}$ (L_{3} disconnected) $\}$
46 Mc.
58.5 Mc.

The cut-off frequency is approximately 65 Mc .
The ease for the 50-Ne. filter is a standard box (ICA slip-rover, No. 29100) measuring $31 / 8$ by $1: 3$ by $2 \frac{5}{8}$ inches. The two end condensers, C_{1} and (4 , are mounted with their two stator posts toward the ends of the filter. The two larger units are mounted in the center compartment with their rotor shafts toward the middle. The top leads from coils L_{1} and L_{5} are wrapped around the stator terminals of C_{1} and C_{4}, and the bottom leads fit directly into the coaxial input and output fittings. The outer ends of coils L_{2} and L_{4} are soldered to the coaxial fitting terminals, and their inner ends are soldered to lugs supported on oneinch ceramic stand-off insulators. Leads from the stand-offs go through holes in the partitions to the bottom stator lugs on ('2 and ('3. L_{3} is soldered to the two upper lugs on these two caparitors, thus rompleting the filter eireuit. Lead lengths for the coils given in the parts list are the total lengths to be left when the winding is completed, including the portions that will be used in soldering operations.

This filter will give high attenuation in Channels 4-6 and all the high-band channels, and thus will take care of most of the spurious signals gencrated in a $50-\mathrm{Me}$ transmitter.

A filter for low-power 14-Me. transmitters is shown in Fig. 2:3-2!. It is designed for maximum attenuation in the 190-215 Ma. region to suppress the spurious radiations in that range that froquently orcur with 14.-Me transmitters, but also has good at tenuation for all frequencies above 170 Mc . Optimum capacitance values are given in Fig. 2:3-28. If possible, several units of the noarest standard values available should be measured and those having values closest to the optimum used. The inductance values are too small to be measured with sufficient aceuracy, so the filter should be adjusted by the following method:

First, mount L_{1} and C_{1}, short J_{1} temporarily at its inner terminals, and adjust L_{1} until the combination resonates at 200 Mc . as shown by griddip meter. Next, remove the short from J_{1} and connect L_{2} and C_{2}, adjusting L_{2} until the circuit formed hy $L_{1} L_{2} C_{1} C_{2}$ resonates at $1+4$ Mc. Then disconnect L_{2} and mount L_{3} between C_{2} and C_{3}. Adjust L_{3} until the circuit $L_{3} \mathrm{C}_{2} \mathrm{C}^{\prime}{ }_{3}$ resonates at 112 Me. Next, disconnect L_{3} and follow a similar procedure starting from the other end with L_{5} and C_{4}. Finally, reconnect all coils and a cheek at any point in the filter should show resonance at 160 Mc., the approximate cut-off frequency.

The case for the $14+M \mathrm{Mc}$. filter is made from flashing copper and is $11 / 4$ inches square by $71 / 8$ inches long. The main portion of the case is cut from a single piece with the end tabs folded down and soldered to the sides. Flanges are folded over at the bottom, and a cover is made to slip over these.

Filter Installation

In order to give the harmonic attenuation of which it is capable, a low-pass filter must be installed in such a way that all the output of the transmit ter flows through it. If harmonic currents are permitted to flow on the outside of the connecting coasial cables, they will simply flow over the filter and on up to the antenna, and the filter does not have an opportunity to stop them. That is why it is so important to reduce the radiation from the transmitter and its leads to negligible proportions.

Fig. 23-30 shows the proper way to install a filter between a shielded transmitter and a matching circuit. Note that the coas, together with the shields about the transmitter and filter, forms a continuous shield to keep all the r.f. inside. It is thus forced to flow through the filter and the harmonics are attenuated. If there is no harmonic energy left after passing through the filter, shielding from that point on is not necessary; consequently, the matching circuit or antema coupler does not need to be shielded. IIowever, the antenna-coupler chassis arrangement shown in Fig. 23-30 is desirable because it will tend to prevent fundamental-frequency energy from flowing from the matching eireuit, back over the transmitter; this helps eliminate feed-back troubles in audio systems.

If the antenna is driven through coaxial line the matching circuit shown in Fig. 23-30 may be omitted. In that case the line goes directly from the filtor to the antema.

When a filter does not seem to give the harmonic attenuation of which it should be capable, the probable reason is that harmonies are be-passing it hecause of improper installation and inadequate transmitter shiedding. including lead filtering. However, occasionally there are cases where the circuits formed by the cables and the apparatus to which they conneet become resonant at a harmonic frequency. This greatly increases
the harmonic output at that frequency. Such troubles can be completely overcome by substituting a slightly different cable length. The most critical length is that connecting the transmitter to the filter. Checking with a grid-dip meter at the final amplifier output coil usually will show whether an unfavorable resonance of this type exists.

SUMMARY

The methods of harmonic elimination outlined in this chapter have been proved beyond doubt to be effective even under highly unfavorable conditions. It must be emphasized once more, however, that the problem must be solved one step at a time, and the procedure must be in logical order. It cannot be done properly without two items of simple equipment: a grid-dip meter and wavemeter covering the TV bands, and a dummy antenna.
The proper procedure may be summarized as follows:

1) Take a critical look at the transmitter on the hasis of the design considerations outlined under "Reducing IIarmonic Generation".
2) Check all circuits, particularly those connected with the final amplifier, with the grid-dip meter to determine whether there are any resonances in the TV bands. If so, rearrange the circuits so the resonances are moved out of the critical frequency region.
3) Connect the transmitter to the dummy antomna and check with the wavemeter for the presence of harmonics on leads and around the transmitter enclosure. Seal off the weak spots in the shielding and filter the leads until the wavemeter shows no indication at any harmonic frequency.
4) At this stage, check for interference with a 'IV receiver. If there is interference, determine the cause by the methods described previously and apply the recommended remedies until the interference disappears.
5) When the transmitter is completely clean on the dummy antenna, connect it to the regular antenna and check for interference on the TV receiver. If the interference is not bad, an antenat coupler or matching circuit installed as previously described should clear it up. Alternatively, a lowpass filter may be used. If neither the antenna coupler nor filter makes any difference in the interference, the evidence is strong that the interference, at least in part, is being caused by receiver overloading because of the strong funda-

Fig. 23.30 - The proper method of installing a low-pass filter between the transmitter and antenna coupler or matching circuit. If the antenna is fed through coax the matching circuit may he omitted but the same construction should be used between the transmitter and filter. The fitter should be thoroughly shielded.
mental-frequency field about the 'TV antenna and receiver. (See later scetion for identification of fundamental-frequency interference.) A coupler and/or filter, installed as described above, will invariably make a difference in the intensity of the interference if the interference is caused by transmitter harmonies alone.
6) If there is still interference after installing the coupler and/or filter, and the evidence shows that it is probably caused by a harmonic, more attenuation is meeded. A more elaborate filter may be neeessary. However, it in woll at this stage to assume that part of the interference may be caused be receiver oworloading, and take steps to alleviate such a condition before trying highlyelaborate filters, traps, etc., on the transmitter.

HARMONICS BY RECTIFICATION

Even though the transmitter is completely free from harmonic output it is still possible for interference to occur because of harmonies generated outside the transmitter. These result from rectification of fundamental-frequeney currents induced in conductors in the vicinity of the transmitting antemar. Rectification can take place at any point where two conductors are in poor electrical contact, a condition that frequently exists in plumbing, downspouting, BX cables crossing each other, and numerous other plares in the ordinary residence. It also can occur in any exposed vacuum tubes in the station, in power supplies, speech equipment, etc., that may not be enclosed in the shielding about the r.f. (ircuits. Poor joints anywhere in the antenna system are expecially bad, and rectification also may take place in the contacts of antenna changeover relays. Another common cause is overloading the front end of the communications receiver when it is used with a separate antenna (which will radiate the harmonics generated in the first tube) for break-in.

Rectification of this sort will not only cause harmonic interference but also is frequently responsible for cross-modulation effects. It can be detected in greater or less degree in most lociations, but fortunately the harmonies thus generated are not usually of high amplitude. However, they can cause considerable interference in the immediate vicinity in fringe areas, especially: when operation is in the 28-Mc. band. The amplitude decreases rapidly with the order of the harmonie, the second and third being the worst. It is ordinarily found that even in cases where destructive interference results from 28-Mc. operation the interference is comparatively mild from 14 Me., and is negligible at still lower frequencies.

There is nothing that can be done at either the transmitter or receiver when rectification occurs. The remedy is to find the source and eliminate the poor contact either by separating the conductors or bonding them together. A crystal wavemeter (tuned to the fundamental frequency) is useful for hunting the source, by showing which conductors are carrying r.f. and, comparatively, how much.

Interference of this kind is frequently intermittent, since the rectification efficiency will vary with vibration, the weather, and so on. The possibility of corroded contacts in the TV receiving antenna should not be overlooked, esperially if it has heen up a year or more.

TV RECEIVER DEFICIENCIES

Front-End Overloading

When at television receiver is quite close to the transmitter, the intense r.f. signal from the transmitter's fundamental may overload one or more of the receiver circuits to produce spurious responses that cause interference.

If the overload is moderate, the interference is of the same nature as harmonic interference; it is caused by harmonies generated in the early stages of the receiver and, since it occurs only on channels harmonically related to the transmitting frequeney, is difficult to distinguish from harmonies actually radiated by the transmitter. In such cases additional harmonic suppression at the transmitter will do no good, but any means taken at the receiver to reduce the amateur fundamental strength fed to the first tube will effect an improvement. With more severe overloading interference also will occur on channels not harmonicilly related to the transmitting frequency, so such cases are easily identified.

Cross-Modulation

Under some circumstances overloading will result in cross-modulation or mixing of the amat teur signal and that from a local F.M or TV stittion. For example, a $1+-$ Mc. signal can mix with a 92-Me. FM station to produce abeat at 78 Me. and canse interference in Channel 5 , or with a TV station on Channel 5 to eause interference in Channel 3 . Neither of the chamels interfered with is in harmonic relationship to 14 Me. Both signals have to be on the air for the interference to occur, and eliminating either at the TV receiver will eliminate the interference.

There are many combinations of this type, depending on the band in use and the local frequency assignments to FM and TV stations. The interforing frequency is equal to the amateur fundamental frequency either added to or sub)tracted from the frequener of some local station, and when interference occurs in a TV ehannel that is not harmonically related to the amateur transmitting frequency the possibilities in such frequency combinations should be investigated.

I. F. Interference

Some TV receivers do not have sufficient selectivity to prevent strong signals in the intermedi-ate-frequency range from foreing their way through the front end and getting into the i.f. amplifier. The once-standard intermediate frequency of, roughly, 21 to 27 Mc ., is subject to interference from the fundamental-frequency output of transmitters operating in either the 21-
and $27-\mathrm{Mc}$. bands. Transmitters on 28 Mc sometimes will cause this type of interference as well.
A form of i.f. interference peculiar to 50-Mc. operation near the low edge of the band occurs with some receivers having the standard "41-Mc." i.f., which has the sound carrier at 41.25 Mc . and the picture carrier at 45.75 Mc . A $50-\mathrm{Mc}$. signal that forces its way into the i.f. system of the receiver will cause a beat with the i.f. picture carrier that falls on or near the i.f. sound carrier, even though the interfering signal is not actually in the nominal pass-band of the i.f. amplifier.

There is a type of i.f. interference unique to the $14+\mathrm{Mc}$. band in localities where certain u.h.f. TV channels are in operation, affecting only those TV receivers in which double-conversion type plug-in u.h.f. tuning strips are used. The design of these strips involves a first intermediate frequency that varies with the TV channel to be received and, depending on the particular strip design, this first i.f. may be in or close to the 144-Mc. amateur band. Since there is comparatively little selectivity in the TV signalfrequency circuits ahead of the first i.f., a signal from a $144-M c$, transmitter will "ride into" the i.f., even when the receiver is at a considerable distance from the transmitter. The channels that can be affected by this type of i.f. interference are as follows:

> Receivers with
> $21-\mathrm{M} / \mathrm{c}$.
> second i.f.

Channels 14-18, inc.
Channels $41-48$, inc.
Channels 69-77, inc.

Receivers with 41-Mc. second i.f.

Channels 20-25, inc. Channels 51-58, inc. Channels 82 and 83 .

If the receiver is not close to the transmitter, a trap of the type shown in Fig. 23-33 will be effective. However, if the separation is small the 14 -Mc. signal will be picked up directly on the receiver circuits and the best solution is to readjust the strip oscillator so that the first i.f. is moved to a frequency not in the vicinity of the 14-Mc. band. This has to be done by a competent technician.
I.f. interference is easily identified since it occurs on all channels - although sometimes the intensity varies from channel to channel - and the cross-hatch pattern it causes will rotate when the receiver's fine-tuning control is varied. When the interference is caused by a harmonic, overloading, or cross modulation, the structure of the interference pattern does not change as the finetuning control is varied, although its intensity may change.

High-Pass Filters

In all the above cases the interference can be eliminated if the fundamental signal strength can be reduced to a level that the receiver can handle. To accomplish this with signals on bands below 30 Mc., the most satisfactory device is a highpass filter having a cut-off frequency between 30

Fig. 23-31 - IIigh-pass filters for installation at the TV receiver antenna terminals. A - balanced filter for 300. ohm line, 13 - for 75 ohm coaxial line. Imbortant: Do not use a direct ground on the chassis of a transformerless receiver. Ground through a $0.001-\mu \mathrm{fd}$, mica condenser.
and 50 Mc ., installed at the tuner input terminals of the receiver. Circuits that have proved effective are shown in Figs. 23-31 and 23-32. Fig. 23-32 has one more section than the filters of Fig. 23-31 and as a consequence has somewhat better cut-off characteristics. All the circuits given are designed to have little or no effect on the TV signals but will attenuate all signals lower in frequency than about 40 Mc . These filters preferably should be constructed in some sort of shielding container, although shielding is not always necessary. The dashed lines in Fig. 23-32 show how individual filter coils can be shielded from each other. The condensers can be

Fig. 23-32 - Another type of high-pass filter for 300 ohm line. The coils may be wound on $1 / 8$-inch diameter plastic knitting needles. Important: Do not use a direct ground on the chaseis of a transformerless receiver. Ground through a $0.001-\mu \mathrm{fd}$. mica condenser.
tubular ceramic units centered in holes in the partitions that separate the coils.
Simple high-pass filters cannot be applied successfully in the case of $50-\mathrm{Mc}$. transmissions, because they do not have sufficiently-sharp cutoff characteristics to give both good attenuation at $50-54 \mathrm{Mc}$. and no attenuation above 54 Mc . A more elaborate design capable of giving the required sharp cut-off has been described (Ladd, " $50-\mathrm{Mc}$. TVI - Its Causes and Cures," QST, June and July, 1954). This article also contains other information useful in coping with the TVI problems peculiar to 50 -Mc. operation. As an alternative to such a filter, a high- Q wave-
trap tuned to the transmitting frequency may be used, suffering only the disadvantage that it is quite selective and therefore will protect a receiver from overloading over only a small range of transmitting frequencies in the $50-\mathrm{Mc}$. band. A trap of this type using quarter-wave sections of Twin-Lead is shown in Fig. 2:3-33. These "suck-out" traps, while absorbing energy at the frequency to which they are tuned, do not affect the receiver operation otherwise. The assembly should be slid along the TV antenna lead-in until the most effective position is found, and then fastened securely in place with Scotch Tape. An

Antenna Installation

Many television receivers will respond strongly to parallel currents on the receiving transmission line. Usually, the transmission line picks up a great deal more energy from a near-by transmitter than the television receiving antenna itsolf, causing parallel currents that should be, but are not, rejected by the receiver's input rircuit. This situation can be improved by using shielded transmission line - coas or, in the balanced form, "twinax" - on the receiving installation. For best results the line should terminate in a

Fig. 23-33-Alisorption-type wavetrap using sections of 300 ohm line tuncd to have an electrical length of $1 / 4$ wavelength at the transmitter frequency. Approximate physical lengths (dimension A) are toinches for 50 Nt . and II inches for 1tt Me, allowing for the loading effert of the capacitance at the open end. I'wo traps are used in parallel, one on cach side of the line to the receiver.
insulated tuning tool should be used for adjustment of the trimmer condenser, since it is at a "hot" point and will show considerable body-caparity effect.
lligh-pass filters are avaitable commercially at moderate prices. In this connection, it should be understood by all parties concerned that while an amateur is responsible for harmonic radiation from his transmitter, it is no part of his responsibility to pay for or install filters, wavetraps, ete., that may be required at the receiver to prevent interference caused by his fundamental frequency. The set owner should be advised to get in touch with the organization from which he purchased the reeeiver or which serviess it, to make arrangements for proper installation. I'roper installation usually requires that the filter be installed right at the input terminals of the r.f. tuner of the TV set and not merely at the antema terminals, which may be at a considerable distance from the tuner. The question of cost is one to be settled between the set owner and the organization with which he deals. Some of the larger manufacturers of TV receivers have instituted arrangements for coöperating with the set dealer in installing high-pass filters at no cost to the receiver owner. FCC-sponsored TVI Committees, now operating in many cities, have all the information necessary for effectuating such arrangements.

If the fundamental signal is getting into the receiver by way of the line cord a line filter such as that shown in Fig. 2:3-4 may help. To be most effective it should be installed inside the receiver chassis at the point where the erordenters, making the ground connections directly to chassis at this point. It may not be so helpful if placed between the line plug and the wall socket unless the r.f. is actually picked up on the house wiring rather than on the line cord itself.
coax fitting on the receiver chassis, but if this is not possible the shield should be grounded to the chassis right at the antenna terminals.
The use of shielded transmission line for the receiver also will be helpful in reducing response to harmonies actually being radiated from the transmitter or transmitting antenna. In most recoiving installations the transmission line is very much longer than the antemna itself, and is consequently far more exposed to the harmonie field from the transmitter. Mueh of the harmonic pick-up, therefore, is on the receiving transmission line when the transmitter and recoiver are quite close together. Shielded line, plus relocation of either the transmitting or receiving antenna to take advantage of directive effects, often will result in reducing overloading, as well as harmonic pick-up, to a level that does not interfere with reception.

U.H.F. TELEVISION

Harmonic TVI in the u.h.f. TV band is far less troublesome than in the v.h.f. band. llarmonics from transmitters operating below 30 Mc. are of such high onder that they would normally be experted to be quite weak; in addition, the eomponents, circuit conditions and construction of low-frequener transmitters are such as to tend to prevent very strong harmonics from being generated in this region. However, this is not true of amateur v.h.f. transmitters, particularly those working in the $144-M c$ and higher bands. Here the problem is quite s'milar to that of the low v.h.f. TV band with respeet to transmitters operating below 30 Mc .

There is one highly favorable factor in u.h.f. TV that does not exist in the most of the v.h.f. TV band: If harmonics are radiated, it is possible to move the transmitter frequency sufficiently

Amateur Band 144 Mc .	Harmo	ic Relationship	$\begin{array}{r} \text { TAE } \\ \text { p-Amateur } \end{array}$	33-I F. Bands	d U.H.F. T	Channels	
	Harmonic 4th	Fundamental Freq. Range	U. $H, F, T V$ Channel Affected	Amateur Band	Harmonic	Fundamental Freq, Range	U.H.F.TV Channel Affected
		144.0-144.5	31	220 Mc.	3rd	220-220.67	45
		144.5-146.0	32			220.67-222.67	46
		146.0-147.5	33			222.67-224.67	47
		147.5-148.0	34			224.67-225	48
	5th				4th	220-221	82
		$\begin{aligned} & 144.0-144.4 \\ & 144.4-145.6 \end{aligned}$	55 56			221-222.5	83
		145.6-146.8	57	420 Mc	2nd	420-421	75
		146.8-148	58			421-424	76
						424-427	77
	6th					427-430	78
			80			430-433	79
		$14.33-145.33$ 145 1	80			433-436	80
		147.33-148	82			436-439	81
		147.33-148	82			439-442	82
						442-448	83

(within the amateur band being used) to avoid interfering with a chamel that may be in use in the locality. By restricting operation to a portion of the amateur band that will not result in harmonic interference, it is possible to avoid the necessity for taking extraordinary precautions to prevent harmonic radiation.

The frequency assignment for u.h.f. television consists of seventy 6 -megacycle channels (Nos. 14 to 83 , inclusive) beginning at 470 Mc . and ending at 890 Mc . The harmonics from amateur bands above 50 Mc. span the u.h.f. channels as shown in Table 23-I. Since the assignment plan calls for a minimum separation of six channels between any two stations in one locality, there is ample opportunity to choose a fundamental frequency that will move a harmonic out of range of a local TV frequency.

COLOR TELEVISION

The color TV signal includes a subcarrier spaced 3.58 megacycles from the regular picture carrier (or 4.83 Mc. from the low edge of the channel) for transmitting the color information. Harmonics which fall in the color subcarrier region can be expected to cause break-up of color in the received picture. This morlifies the chart of Fig. 23-7 to introduce another "severe" region centering around 4.8 Mc. measured from the low-frequency edge of the channel. Hence with color television reception there is less opportunity to avoid harmonic interference by choice of operating frequency. In other respects the problem of eliminating interference is the same as with black-ind-white television.

INTERFERENCE FROM TV RECEIVERS

The TV picture tube is swept horizontally by the electron beam 15, 750 times per second, using a waveshape that has very high harmonic content. The harmonics are of appreciable amplitude even at frequencies as high as 30 Mc ., and when radiated from the receiver can cause considerable
interference to reception in the amateur bands. While in some receivers measures have been taken to suppress radiation of this nature, many sets have had no such treatment. The interference takes the form of rather unstable, a.c.-modulated signals spaced at intervals of 15.75 kc .
Studies have shown that the radiation takes place principally in three ways, in order of their importance: (1) from the a.c. line, through stray coupling to the sweep circuits; (2) from the antenna system, through similar coupling; (3) dircetly from the picture tube and sweep-circuit wiring. Line radiation often can be reduced by by-passing the a.c. line cord to the chassis at the point of entry, although this is not completely effective in all cases since the coupling may take place outside the chassis beyond the point where the by-passing is done. Radiation from the antenna is usually suppressed by installing a high-pass filter on the receiver. The direct radiation requires shielding of high-potential leads and, in some receivers, additional bypassing in the sweep circuit; in severe cases, it may be necessary to line the cabinet with screening or similar shielding material.
It is usually possible to reduce interference very considerahly, without modifying the TV receiver, simply by having a good amateur-band receiving installation. The principles are the same as those used in reducing "hash" and other noise - use a good antenna, such as the transmitting antenna, for reception; install it as far as possible from a.e. circuits; use a good feeder system such as a properly balanced two-wire line or coax with the outer conductor grounded; use coax input to the receiver, with a matching circuit if necessary; and check the receiver to make sure that it does not pick up signals or noise with the antenna disconnected. These measures not only reduce interference from sweep radiation and a.c. line noise, but also build up the strength of the desired signal, so that the overall improvement in signal-to-interference ratio is very much worth-while.

Construction Practices

TOOLS AND MATERIALS

While an easier, and perhaps a better, job can be done with a greater varicty of tools available, by taking a little thought and care it is possible to turn out a fine piece of equipment with only a few of the common hand tools. A list of tools which will be indispensable in the construction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

Long-nose pliers, 6-inch.
Diagonal cutting pliers, 6 -inch.
Wire st ripper.
Screwdriver, 6- to 7 -inch, $1 / 4$-inch blade.
Screwdriver, 4 - to 5 -inch, $1 / 8$-inch blade.
scratch awl or scriber for marking lines.
Combination square, 12 -inch. for laying out work,
Hand drill, $1 / 4$-inch chuck or larger, 2 -speed type preferable.
Electric soldering iron, 100 watts, $1 / 4-\mathrm{in}$. tip.
Hack saw, 12 -inch blades.
Center punch for marking hole centers.
Hammer, ball-peen, 1-1b. head.
Heavy knife.
Yardstick or other straightedge.
Carpenter's brace with adjustable hole cutter or socket-hole punches (see text).
Large, coarse, flat file.
Large round or rat-tail file, $1 / 2$-inch diameter.
Three or four small and medium fies-flat, round, half-round, triangular.
Drills, particularly $1 / 4$-inch and Nos. $18,28,33,42$ and 50.
Combination oil stone for sharpening tools.
Solder and soldering paste (noncorroding).
Medium-weight machine oil.

ADDITIONAL TOOLS

Bench vise, 4-inch jaws.
Tin shears, 10 -inch, for cutting thin sheet metal.
Taper reamer, $1 / 2$-inch, for enlarging small holes.
Taper reamer, 1 -inch, for enlarging holes.
Countersink for brace.
Carpenter's plane, 8 - to 12 -inch, for woodworking.
Carpenter's saw, crosscut.
Motor-driven emery wheel for grinding
Long-shank screwdriver with screw-holding clip for tight places.
Set of "Spintite" socket wrenches for hex nuts.
Set of small. flat, open-end wrenches for hex nuts,
Wood chisel, $1 / 2$-inch.
Cold chisel, $1 / 2$-inch.
Wing dividers, 8 -inch, for acribing circles.
Set of machine-screw taps and dies.
Dusting brush.
Socket punches, esp, $3 / 8^{\prime \prime}, 8 / /^{\prime \prime}, 11 / 8^{\prime \prime}$ and $116^{\prime \prime}$.
panels and metal chassis for assembly and wiring. It is an excellent idea for the amateur who does constructional work to add to his supply of tools from time to time as finances permit.

Several of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head, band and circular saws, and joiner. Although not essential, they are desirable should you be in a position to arquire them.

Twist Drills

Twist drills are made of either high-speed steel or carbon steel. The latter type is more common and will usually be supplied unless specific request is made for high-speed drills. The carbon drill will suffice for most ordinary equipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in bold-faced type in Table $24-I$ will be most commonly used in construction of amateur equipment. It is usually desirable to purchase several of each of the commonly-used sizes rather than a standard set, most of which will be used infrequently, if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the annoyance which may be avoided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to maintain the rather critical surface angles required for best cutting with least wear. Occasional oilstoning of the cutting edges of a drill or reamer will cxtend the time between grindings.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any scale which may have accumulated. An oxidized tip may be cleaned by dipping it in sal ammoniac while
hot and then wiping it clean with a rag. If the tip becomes pitted it should be filed until smooth and bright, and then tinned immediately by dipping it in solder.

Useful Materials

Small stocks of various miscellaneous materials will be required in constructing radio apparatus, most of which are available from hardware or radio-supply stores. A representative list follows:

Sheet aluminum, solid and perforated, 16 or 18 gauge, for brackets and shielding.
$1 / 2 \times 1 / 2$-inch aluminum angle stock.
$1 / 4$-inch diameter round brass or aluminum rod for shaft extensions.
Machine screws: Round-head and flat-head, with nuts to fit. Most useful sizes: 4-36, $6-32$ and $8-32$, in lengths from $1 / 4$ inch to $11 / 2$ inches. (Nickel-plated iron will be found satisfactory except in strong r.f. fields, where brass should be used.)
Bakelite, lucite and polystyrene scraps.
Soldering lugs, panel bearings, rubber grommets, terminal-lug wiring strips, var-nished-cambric insulating tubing.
Shielded and unshielded wire.
Tinned hare wire, Nos. 22, 14 and 12.
Machine screws, nuts, washers, soldering lugs, etc., are most reasonably purchased in quantities of a gross.

CHASSIS WORKING

With a few essential tools and proper procedure, it will be found that building radio gear on a metal chassis is no more of a chore than building with wood, and a more satisfactory job results. Aluminum is to be preferred to steel, not only because it is a superior shielding material, but because it is much easier to work and to provide good chassis contacts.
The placing of components on the chassis is shown quite dearly in the photographs in this Handbook. Aside from certain essential dimensions, which usually are given in the text, exact duplication is not necessary.

Much trouble and energy can be saved by spending sufficient time in planning the jub. When all details are worked out beforehand

Fig. 24-1 - Method of measuring the heights of condenser shafts, etc. If the square is adjustable, the end of the scale should be set flush with the face of the head.

TABLE 24-I			
Number	$\begin{gathered} \text { Diameter } \\ \text { (mils) } \end{gathered}$	Will Clear Screw	Drilled for Tapping Iron, Steel or Brass*
1	228.0	-	-
2	221.0	12-24	-
3	213.0	-	14-24
4	209.0	12-20	-
5	205.0		-
6	204.0	-	-
7	201.0	-	-
8	199.0	-	-
9	196.0	-	-
10	193.5	10-32	-
11	191.0	10-24	-
12	189.0	-	-
13	185.0	-	-
14	182.0	-	-
15	180.0	-	-
16	177.0	-	12-24
17	173.0	-	-
18	169.5	8-32	-
19	166.0	-	12-20
20	161.0	-	-
21	159.0	-	10-32
22	157.0	-	-
23	154.0	-	-
24	152.0	-	-
25	149.5	-	10-24
26	147.0	-	-
27	14.0	-	-
28	140.0	6-32	-
29	136.0		8-32
30	128.5	-	-
31	120.0	-	-
32	116.0	-	-
33	113.0	4-36, 4-40	-
34	111.0	-	-
35	110.0	-	6-32
36	106.5	-	-
37	104.0	-	-
38	101.5	-	-
39	093.8	3-48	-
40	098.0	-	-
41	096.0	-	-
42	093.5	-	4-36, 4-40
43	089.0	2-56	-
44	086.0	-	-
45	082.0	-	3-48
46	081.0	-	-
47	078.5	-	-
48	1776.0	-	-
49	173.0	-	2-56
50	070.0	-	
51	067.0	-	-
52	063.5	-	-
53	059.5	-	-
54	055.0	-	-
*Use on rubber.	size larger	r tapping ba	elite and hard

the actual construction is greatly simplified.
Cover the top of the chassis with a piece of wrapping paper or, preferably, cross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then assemble the parts to be mounted on top of the chassis and move them about until a satisfactory arrangement has been found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be avoided. Place condensers and other parts with shafts extending through the panel first, and arrange them so that the controls will
form the desired pattern on the panel. Be sure to line up the shafts squarely with the chassis front. Locate any partition shields and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accuratcly on the paper. Watch out for condensers whose shafts are off center and do not line up with the mounting holes. Do not forget to mark the centers of socket holes and holes for leads under i.f. transformers. etc., as well as holes for wiring leads. The small holes for socket-mounting screws are best located and center-punched, using the socket itself as a template, after the main center hole has been cut.

By means of the square, lines indicating accurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line, the panel being fastened on temporarily. The hole centers may then be punched in the chassis with the center punch. After drilling, the parts which require mounting underneath may be located and the mounting holes drilled, makingsure by trial that no interferences exist with parts mounted on top. Nounting holes along the front edge

Fig. 24.2-To cut rectangular holes in a chassis corner, holes may be filed out as shown in the shaded portion of 13 , mahing it possihle to start the hack-saw blade afong the cutting line. A shows how a singleended handle nay be constructed for a hack-saw blade.
of the chassis should be transferred to the panel, by once again fastening the panel to the chassis and marking it from the rear.

Next, mount on the chassis the condensers and any other marts with shafts extending to the panel, and measure accurately the height of the center of each shaft above the chassis, as illustrated in Fig. 24-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming ahove the chassis line may then be marked and drilled, and the remainder of the apparatus mounted. Holes for terminals ete., in the rear edge of the chassis should be marked and drilled at the same time that they are done for the top.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a center punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to break through, special care must be used. Often it is an advantage to shift a two-speed drill to low gear at this point. Holes more than $1 / 4$ inch in diameter may be started with a smaller drill and reamed out with the larger drih.

The chuck on the usual type of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center may then be knocked out with a cold chisel and the edges smoothed up with at file. Taper reamers which fit into the carpenter's brace will make the job easier. A large rattail file clamped in the brace makes a very good reamer for holes up to the diameter of the file. if the file is revolved counterclockwise.

For socket holes and other large round holes, an adjustable cutter designed for the purpose may be used in the brace. Occasional application of machine oil in the cutting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the correct diameter. The most convenient device for cutting socket holes is the soeket-hole punch. The best type is that which works by turning a take-up screw with a wrench.

Rectangular Holes

Square or rectangular holes may be cut out by making a row of small holes as previously described, but is more easily done by drilling a $1 / 2$-inch hole inside each corner, as illustrated in Fig. 24-2, and using these holes for starting and turning the hack saw. The sockethole punch and the square punches which are now a vailable also may be of considerable assistance in cutting out large rectangular openings. The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file, or sometimes more conveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reamer will also be useful.

CONSTRUCTION NOTES

If a control shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be provided by means of a metal pancl bearing made for the purpose. Never use panel bearings of the nonmetal type unless the condenser shaft is grounded. The metal bearing should be connected to the chassis with a wire or grounding strip.

This prevents any possible danger of shock.
The use of fiber washers between ceramic insulation and metal brackets, screws or nuts will prevent the ceramic parts from breaking.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut conveniently with a hack saw, it may be marked with scratches as deep as possible along the line of the cut on both sides of the sheet and then clamped in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break hegins to weaken; otherwise the edge of the sheet may become bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the shect, to hold it in the vise will make the job easier. "C"-clamps may be used to keep the bars from spreading at the ends. The rough edges may be smoothed up with a file or by placing a large piece of emery cloth or sandpaper on a flat surface and running the edge of the metal back and forth over the sheet.

Bends may be made similarly. The sheet should be scratched on both sides, but not so depply as to cause it to break.

Finishing Aluminum

Aluminum chassis, panels and parts may be given a sheen finish by treating them in a caustic bath. An enamielled container, such as a dishpan or infant's bathtub, should be used for the solution. Dissolve ordinary household lye in cold water in a propertion of $1 / 4$ to $1 / 2$ can of lye pur gallon of water. The stronger solution will do the job more rapidly. Stir the solution with a stick of wood until the lye crystals are complete dissolved. Be very careful to avoid any skin contact with the solution. It is also harmful to clothing. Sufticient solution should be prepared to cover the piece comptetely. When the aluminum is inmersed, a very pronounced bubbling takes place and ventilation should be provided to disperse the escaping gas. A half hour to two hours in the solution should be sufficient, depending upon the strength of the solution and the desired surface.
Remove the aluminum from the solution with sticks and rinse thoroughly in cold water while swabling with a rag to remove the blark deposit.

DECIMAL EQUIVALENTS OF FRACTIONS			
1/32..	. 03125	17/32.	. 5312.5
1/16.	.0625	9/16.	. 5625
3,32.	. 09375	19/32.	. 59375
1/8	. 125	5,8.	.625
532.	. 13625	21/32..	. 65625
316	. 1875	11/16	.6875
7,32..	. 21875	23/32...	.71875
1/4.....		3/4.	. 75
9/32.......	. 28125	25/32.	. 78125
5/16	. 3125	13/16	. 8125
11/32	. 34375	27/32...	. 84375
3/8.	. 375	7/8..	
13.32......	. 40625	29/32.	. 90625
7/16.	. 4375	15/16	
15/32...	. 46875	31/32...	. 96875
1/2.....		1..	1.0

Then wipe off with a rag soaked in vinegar to remove any stubhorn stains or fingerprints. (See May, 1950, QST' for a method of coloring and anorlizing aluminum.)

Soldering

The serret of good soldering is in allowing time for the joint, as well as the solder, to attain sufficient temperature. Enough heat shoukd be applied so that the solder will melt when it eomes in contact with the wires being joined, without touching the solder to the iron. Always use rosin-core solder, never acid-core. Except where alisolutely neerssary, solder should never le depended upon for the meerhanical strength of the joint; the wire should be wrapped around the terminals or clamped with soldering terminals.
When soldering erystal diodes or carbon resistors in plate, especially if the leads have been cut short and the resistor is of the small $1 / 2$-watt size, the resistor lead should be gripped with a pair of pliers up close to the resistor so that the heat will be conducted away from the resistor. Overheating of the resistor while soldering can cause a permanent resistance change of as much as 20 per cent. Also, mechanical stress will have a similar effect, so that a small resistor should be mounted so that there is no appreciable mechanical strain on the leads.
Trouble is sometimes experienced in soldering to the pins of ceil-forms or male cable plugs. It helps first to tin the inside of the pins by applying soldering paste to the hole, and then flowing solder into the pin. Then immediately clear the solder from the hot pin by a whiping motion or by blowing through the pin from the inside of the form or plug. Before inserting the wire in the pin, file the niekel plate from the tip. After soldering, round the solder tip off with a file.
When soldering to sorkets, it is a good idea to have the tube or coil form inserted to prevent solder running down into the socket prongs. It also helps to conduct the heat away when soldering to polystyrene sockets, which often soften under the heat of the iron.

Wiring

The wire used in connecting up amateur equipment should be selected considering both the maximum current it will be called upon to handle and the voltage its insulation must stand without breakdown. Also, from the consileration of TVI, the power wiring of all transmitters should be done with wire that has a braided shielding cover. Receiver and audio cireuits may also require the use of shielded wire at some points for stability, or the elimination of hum.
No. 20 stranded wire is commonly used for most receiver wiring (except for the highfrequency circuits) where the current does not exceed 2 or 3 amperes. For higher-current heater cireuits, No. 18 is available. Wire with cellulose acetate insulation is good for voltages up to about 500 . For higher voltages, thermoplastic-insulated wire should be used. Inexpensive wire strippers that make the removal of insulation from hook-up

Fig. 24-3-Cable-stripping dimensions for Jones Type P. 101 phags. Smaller dimensions are for $1 / 4$-ineh plugs, the larger dimensions for $1 / 2$-ineh plugs. As indicated in C, the remaining copper braid is wound with bare or tinned wire to make a snug fit in the sleeve of the plug.
wire an easy job are available on the market.
In cases where power leads have several branches in the chassis, it is convenient to use fiber-insulated tie points or "lug strips" as anchorages or junction points. Strips of this type are also useful as insulated supports for resistors, r.f. chokes and condensers. High-voltuge wiring should have exposed points held to a minimum, and those which cannot be avoided should be rendered as inacressible as possible to accidental contact or short-circuit.

Where shielded wire is called for and caparitance to ground is not a factor, Belden type 8885 shiched grid wire may be used. If capacitance must be minimized, it may be necessary to use a piece of car-radio low-capacitance lead-in wire, or coaxial cable.

For wiring high-frequeney eircuits, rigid wire is often used. latre soft-drawn timed wire, sizes 22 to 12 (depending on mechanieal requirements), is suitable. Kinks can be removed by stretching a piece 10 or 15 feet long and then cutting into short lengths that can be handed conveniently. R.f. wiring should be run directly from point to point with a minimum of sharp bends and the

Fig. $24-4$ - Dimensions for stripping $1 / 2$-inch cable to fit Amphenol Type 83-1SP (PL.259) plug.

Fig. 24.5 - Method of assembling $1 / 4$-ineh calle, Amphenol 'Type 83-15P (${ }^{\prime} 1.259$) plug and adapter.
wire kept well spaced from the chassis or other grounded metal surfaces. Where the wiring must pass through the chassis or a partition, a elearance hole should be eut and lined with a rubber grommet. In case insulation becomes necessary, varnished cambric tubing (sparghetti) can be slipped over the wire.

In transmitters where the peak voltage does not exreed 250 (0) volts, the shielded grid wire mentioned above should be satisfactory for power circuits. For higher voltages, l3elden type 8 (isti, Birnbach type 1820, or shielded ignition catble can be used. In the case of filament circuits carrying heavy current, it may be necessary to use No. 10 or 12 bare or enameled wire, slipped through spaghetti, and then covered with copper bratd pulled tightly over the spaghetti. The chapter

Fig. 24.6 - Stripping dimensions for Amphenol 82-830 and $82-832$ plug-in connectors. The longer exposed braid is for the first type.

(C)

Fig. 29.7- Mrethods of lacing rables, 'the method shown at 6 is mure seromere. lint takes more time than the methorl of B . The latter is usually ade equate for most amateur requirements.
on TVI shows the manner in which shielded wire should be applied. If the shelding is simply slid batek over the insulation and solder flowed into the end of the brad, the braid usually will stay in place without the neressity for cutting it back or binding it in place. The braid should be burnished with sandpaper or a knife so that solder will take with at minimum of heat to protect the insulation underneath.

IR.f. wiring in transmitters usuatly follows the mothod described above for receivers with due resport to the voltages involved.
Power and control wiring external to the transmitter chassis preferably should be of shielded wire bound into at cable. Fig. 21-7 shows the correct methods of lacing cables.

Coaxial Plug Connections

Considerable time and trouble cam be saved in making cable comections to coaxial plugs by starting out with the correct stripping dimensions. Fig. 24-3 shows how the end of the cable should be prepared for connecting to Jones Type P-101 plugs. After the exposed braid has been wound, it should be cabefully timed, applying no more heat than is necessary, to a void melting the inner insulation. A small amount of solder also should be flowed into the slerve of the plug. Then, when the cable is inserted in the sleeve, the connection can be made secure by holding the iron against the sleeve until the solder inside melts. While joining the two, the plug may be
held by inserting it in a hole drilled in a board. Figs. 24-4, 24-5 and 24-6 show details of connections to different types of Amphenol plugs and adipters. In Fig. 2 b-4, it is casiest to cut through to the wire with a sharp knife at a distance of 13/6 inch from the end of the wire and remove the insulation and shielding in one piece. Then slice off a $1 / 16$-inch piece of polyethylene which may be slid back onto the wire.

After the braid in Fig. 24-5 has been frayed bark, it will be necessary to file the braid down as much as possible to make it fit the plug.

COMPONENT VALUES

Values of composition resistors and smahl condensers (micat and ceramie) are specified throughout this IIandbook in terms of "preferred values." In the preferred-number system, all values represent (approximately) a constant-percontage increase over the next lower value. The base of the system is the number 10. Only two significant figures are used. Table 24 -II shows the preferred values based on tolerance steps of 20,10 and 5 per cent. All other values are expressed by multiplying or dividing the thase figures given in the tathle by the appropriate power of 10 . (For example, resistor values of 33,000 ohms, 6800 ohms, and 150 ohms are ohtaned by multiplying the base figures by 1000,100 , and 10 , respectively.)
"Tolerance" means that a variation of plus or minus the percentage given is considered satisfactory. For example, the act ual resistance of a " 4700 -ohm" 20 -per-eent resistor can lie anywhere between 3700 and 5600 ohms, approximately. The permissible variation in the same resistance value with 5 -per-cent tolerance

TABLE 24-II Standard Component Values		
$\begin{gathered} 20 \% \\ \text { Tolerance } \\ \hline \end{gathered}$	$\begin{gathered} 10 \% \\ \text { Tolerance } \\ \hline \end{gathered}$	$\begin{gathered} 6 \% \\ \text { Tolerance } \end{gathered}$
10	10	10 11
	12	12 13
15	15	15 16
	18	18 20
22	22	22
	27	27
	33	30 30 3
33		36
	39	39
		43
47	47	47 51
	56	56
		62
68	68	68 75
	82	82
		91
100	100	100

would be in the range from 4500 to 4900 ohms , approximately.

Only those values shown in the first column of Table $24-11$ are available in 20 -pererent tolerance. Additional values, as shown in the second column, are available in 10 -per-cent tolerance; still more values can be obtained in 5-prereent tolerance.

In the component sperefications in this IIandbork, it is to be understood that when no tolerance is specified the largest tolerance available in that value will be satisfaetory.

Values that do not fit into the preferrednumber system (such as $500,25,000$, ete.) easily can be substituted. It in obvious, for cxample, that a 5000 -ohm resistor falls, well within the folerance range of the 7700 -ohm 20 -par-cent resistor used in the example above. It would not, however, be usable if the tolerance were spocified as 5 per cent.

COLOR CODES

Standardized color codes are used to mark values on small eomponents such as composition resistors and mica condensers, and to identify leads from transformers, ete. The resistor-condenser number color code is given in Table 2t-III.

Fixed Condensers

The methods of marking "postage-stamp" mica condensers, molded paper condensers, and tubular ceramie condensers are shown in Fig. 21-8. Condensers mado to American War Standards or Joint Army-Navy specefieations are marked with the $(\mathbf{i}$-dot code shown at the top. Practically all surplus combensers are in this caterory. The 3 -dot RETMA cote is used for condensers having a rating of 500 volts and $\pm 20 \%$ tolerance only: other ratings and tolerances are covered hy the fidot RIVITMA code.

Examples: A condenser with a 6-dot code has

 the following markings: Top row, left to right, black, yellow, violet; bottom row, rizht to left. brown, sitver, red. Nineer the first color in the top row is black (simnificant figure zero) this is the AWS comband the condenser has miea dielectric. The signifiont figures are 4 and 7 , the derimal multiplier 10 (hrown, at right of seeend row). so the eapacitance is $470 \mu \mu$. The tolerance is $\pm 10 \%$. The final color, the characteristic, deals with temperature coefficients and methods of testing, and may be ignored.A condenser with a 3 -dot cude has the following colors, left to right: brown, black, red. The significant fizures are 1,0 (10) and the multiplier is 100 . The cajabitance is therefore $1000 \mu \mu \mathrm{f}$.

A condenser with a 6 -dot eode has the following markings: Top row, left to right, brown, black, black; bottom row, right to left, black, gold, blue. since the first color in the top row is neither black nor silver, this is the RFTTMA code. The signifieant figures are $1.0 .0(100)$ and the decimal multipler is 1 (black). The capacitance is therefore $100 \mu \mu$. The gold dot shows that the tolerance is $\pm 5 \%$ and the blue dot indicates 600 -volt rating.

Ceramic Condensers

Conventional markings for ceramic con-
densers are shown in the lower drawing of Fig. 24-8. The colors have the meanings indicated in Table 24-1V. In practice, dots may be used instead of the narrow hands indicated in Jig. 24-8.

Nixample: A ceramic condenser has the following markings: Broad band, violet: narrow bands or dots. green, brown, black. green. The signifiegnt figures are 5,1 (5) and the decimal multiplier is 1 , so the cupacitance is $51 \mu \mu \mathrm{f}$. The temperature cocficient is -7.50 parts per million per degree (C, as given by the broad band, and the capaeitance tolerance is $\pm .5$.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in cases identical with the composition type) are color-coded as shown in

RETMA 3-dot 500 -volt, $\pm 20^{\prime} ;$ tolerance onlv

Fig. 24-8 - Color coding of fixed mica, molded paper, and tubular ceramic condensers. The color code for mica and molded paper condensers is given in Table 24-1II. Table 2.4.IV gives the color code for tubular ceramic condensers.

Fïg. 24.9 - Color coding of fixed composition resistors. The color code is given in T'able 24-III. The colored areas have the following significance:
A - First significant figure of resistance in ohms.
13 - Second significant figure.
C- Decimal multiplier.

1) - Resistance tolerance in per cent. If no color is shown, the tolerance is $\neq 20 \%$.

Fig. 24-9. Colored bands are used on resistors having axial leads; on radial-lead resistors the colors are placed as shown in the drawing. When bands are used for color coding the body color has no significance.

> Examples: A resistor of the type shown in the lower drawing of Fig. $24-9$ has the following color bands: A, red; 13 , red; C , orange; I, no color. The significant figures are 2,2 (22) and the decimal multiplier is 1000 . The value of resistance is therefore 22.000 ohms and the tolerance is $\pm 20 \%$.
> A resistor of the type shown in the upper drawing has the following colors: body (A), blue; end (I), gray; dot, red; end (D), gold. The sisuificant figures are 6,8 (68) and the derimal multiplier is 100, so the resistance is 6800 ohms. The tolerance is $\pm 5 \%$

I.F. Transformers

Blue - plate lead.
Renl-"13" + lead.
Green - grid (or diode) lead.
Black - grid (or diode) return.
Note: If the secondary of the i.f.t. is centertapped, the second diode plate lead is green-

Color	TABLE 24-III Resistor-Condenser Color Code			
	Sionificani Figure	hi Decimal Multiplier	Tolerance (\%)	Voltage Rating*
13ack	0	1	-	-
Brown	1	10	1*	100
Red	2	100	2*	200
Orange	3	1000	3*	310
Yellow	4	10,010	4*	400
Green	5	100,600	5*	310
Blue	6	1,000,(\%00	6*	600
Violet	7	10,000,000	7*	700
Gray	8	100,000,000	8*	800
White	91	1,000,000.000	9*	900
Gold	-	0.1	5	1000
Silver	-	0.01	10	2000
No color	-	-	20	500
* Amplies to condensers only.				

TABLE 24.IV Color Code for Ceramic Condensers					
Color	Siunificant Pioure	Decimal Multiplier	Capacitance Tolerance		Temp. Coeff. p.p.m./deg. C.
			More than $10 \mu \mu f$. (in \%)		
Blark	0	1	± 20	2.0	0
Brown	,	10	± 1		-30
Red	2	100	± 2		-80
Orange	3	1000			- 150
Yellow	4				-220
Gruen	5		± 5	0.5	-330
Blue	6				-470
Violet	7				-750
Gray	8	0.01		0.25	30
White	9	0.1	± 10	1.0	500

and-back striped, and black is used for the center-tap lead.

A.F. Transformers

Blue - plate (finish) lead of primary.
Red - "B" + lead (this applies whether the primary is plain or center-tapped).
Broun - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
Green - grid (finish) lead to secondary.
Black-grid return (this applies whether the secondary is plain or eenter-tapped).
Vellow - grid (start) lead on eenter-tapped secondaries. (Green may be used for this lead if polarity is not important.)
Nute: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker Voice Coils

Green - finish
Black -- start.

Loudspeaker Field Coils

Black and Red - start.
Yellow and Red - finish.
Slate and Red - tap (if any).

Power Transformers

1) Primary Leads, Black If tapped:

Common. Black Tap. Black and Yellow Striped Finish. Black and Red Striped
2) High-Voltage Phate Winding. Red Center-Tap. . Red and Yellow Striped
3) Rectifier Filament Winding. Yellow Center-Tap. . Yellow and Blue Striped
4) Filament Winding No. 1......Green Center-Tap. Green and Yellow Striped
5) Filament Winding No. 2. Brown Center-Tap. Brown and Yellow Striped
6) Filament Winding No. 3.Slate Center-Tap. . .slate and Yellow Striped

Operating a Station

The enjoyment of our hehby usually comes from the operation of our station once we have finished its construction. Upon the statoon and its operation depend the communication records that are made.

An operator with a slow, steady, clean-cut method of sending has a big advantage over the poor operator. Good sending is partly a matter of practice but patience and judgmont are just as important qualities of an operator as a good "list." The technique of speaking in connected thoughts and phrases is equally important for the voice operator.

OPERATING COURTESY AND TOLERANCE

Normal operating interests in amateur radio vary considerably. Some prefer to ray-chew, others handle traflic, others work DN, others concentrate on working ecrtain areas, countries or states and still others get on for an oreasional contat only to check a new transmitioe or antennat.
Interference is one of the things we amateurs have to live with. However, we fan ronduct our oprating in a way designod to alleviate it as much as possible, Before putting the tronsmitter on the air, listen on your own frequency. If you hear stations engaged in communication on that frequency, stand by until pou are sure no interforence will be catused hy your operations, or shift to another frequemry. No amateur or any group of amaturs has any exclusive claim to any frequeney in any band. We must work together, each respecting the rights of others. Remomber, those other chaps can cause you as much interference as you cause them, sometimes more!

C.W. PROCEDURE

The hest operators, both those using voice and c.w., observe certain operating procedures developed from experience and regarded as "standard practice."

1) Calls. Calling stations may call effeiently by transmitting the call signal of the station called three times, the letters DE, followed by one's own station call sent three times. (Short calls with froguent "breaks" to listen have proved to be the best mothod.) Repeating the call of the station called four or five times and signing not more than two or three times has proved excellant practier, thus: Wø日Y WøBY

C(). The gencral-inquiry call ((O) should be sent not more than five times without interspersing onc's station identifieation. The length of repeated calls is carefully limited in intelligent amateur oprating. (C) $(\mathbb{})$ not to be used when tusting or when the sender is not expecting or looking for an answer. Never send a CQ "blind." Alway be sure to listen on the transmitting frequency first.)

The directional CQ: To reduce the number of useless answers and lessen QRM, every (O) call should be made informative when possible.
Examples: A United States station looking for
any Hawaiun amateur calls: (Q KH6 CQ
KH6 CQ KHG DE W4IA WHA WHIA K. A
Westurn station with traffic for the Bast Conast
when leoking for an mermediate relay station
ealls: CO EAST CQ RAST CQ RAST DE
WEICW W5IGW W5IGW K. A station with
messages for points in Mussachusetts calls: ('Q
mass CQ mass CQ Mass de whCzy
W7C\%y W7C\%y k.

Hams who do not raise stations readily may find that their seuding is poor, their calls ill-timed or judgment in crror. When conditions are right to bring in signals from the desired locality, you can call them. Reasomably short calls, with appropriate and brief breaks to listen, will raise stations with minimum time and trouble.
2) Answering a Call: Call three times (or less); send DE; sign three times (or less); after contact is astablished derease the use of the call signals of both stations to once or twice. When a station reeeives a call but does not receive the call letters of the station calling, QRZZ.? may be used. It me:ns "By whom am I being called"" QRZ should not be used in place of CQ.
3) Ending Signals and Sign-Off: The proper use of $\overline{\mathrm{NR}}, \mathrm{K}, \overline{\mathrm{KN}}, \overline{\mathrm{SK}}$ and CL , ending signals is as follows:
$\overline{\mathrm{AR}}$ - End of transmission. Recommended after call to a specific station before contact has been estahlished.

Example: W6ABC W6ABC WGABC W6ABC

WGABC DE W9LMN W9LMN AR. Also at the end of transmission of a radiogram, immediately following the signature, preeeding identification.
K - Go ahead (any station). Irecommended after $C Q$ and at the end of each transmission
during QSO when there is no objection to others breaking in.

Erample: CQ CQ CQ DE WIABC WIABC K or W9XYZ DE WIABCK.
$\overline{K N}$ - Go ahead (suecific station), all others keep out. Recommended at the end of each transmission during a (2SO), or after a call, when calls from other stations are not desired and will not be answered.

Example: WhliGit IIE XUGGRL K.N.

SK - lind of QSO, Recommended before signing last transmission at end of a QSO.

Example: $\overline{\mathrm{SK}}$ W8LMN DE W5IBCD.

CL_-I am elosing station. Recommended when a station is going off the air, to indicate that it will not listen for any further calls.

Example: ... SK WTHIJ DE Wa, SLL CL.

-4) Tesst signals to permit another station to adjust receiving equipment may consist of a series of V s with the call signal of the transmitting station at frequent intervals. Remember that a test signal can be a totally unwaranted cause of QRM, and always listen first to find a clear spot if possible.
5) Receipting for conversation or traffic: Never send acknowledgment until the transmission has been entirely received. "IR" means "All right, OR, I understand completely." Use R only when all is received correctly.
(b) Repeats. When nost of a tramsmission is lost, a call should be followed by correct abbreviations to ask for repeats. When a fow words on the end of a transmission are lost, the last word received correctly is given after ?A. A , moming "all after." When a few words at the beginning of a transmission are lost, "AB for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a transmission is to send the hast word received correctly, a guestion mark, then the next word received correctly. Another way is to send "?BN [word] and [word]."

Do not send words twice (QSZ) unloss it is reguested. Send single. Do not fall into the bad hathit of sending double without a request from fellows you work. I On't say "(QRM" or "QIRN" when you mean "Qlis." Don't CQ unless there is definite reason for so doing. When sending CQ, use judgment.

General Practices

When a station has reeeiving trouble, the operator asks the transmitting station to "QsiV." The letter "IR" is of ten used in place of a decimal point (e.g., " 3125 Mc .") or the colon in time designation (e.g., "21230 PM"). A long dash is sometimes sent for " \nsim ero."

The law concerning superfluous signals should be noted. If you must test, disconnect the antemna system and use an equivalent "dummy" antenna. Send your call frequently when operating. lick a time for adjusting the station apparatus when few stations will be bothered.

The up-to-date amateur station uses "break-
in." For best results send at a mediunt speed. Send evenly with proper spacing. The standardtype telegraph key is best for all-round use. Regular daily practice periods, two or three periods a day, are best to acoguire real familiarity and profieiency with code.

No excuse can be made for "garthled" copy. Operiators should copy what is sent and refuse to acknowlodge a whole tranmission until every word has been received correctly. Good operators do not guess, "Swing" in a fist is not the mark of a good operator. ['nusual words are sent twice, the word repeated following the transmission of """. If not sure, a good operator systematically asks for a fill or repeat, Sign your call frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned sendints properly, and comes up with a precision "fist." - not fast, but clean, steady, making wellformed rhythmical characters and spacing heantiful to listen to - he then becomes subject to outside pressures to his own possible detriment in everyday operating. He will want to "speed it up" Because the operator at the other end is going faster, and so he begins, unconsciousty, to run his words together or develops a "swing."

Perhaps one of the easiest ways to gret into bad habits is to do too much phaying around with special keys. Too many operators spend only enough time with a straight key to acquire "passable" sending, then subject their newlydeveloped "fists" to the entirely different movements of burs, side-swipers, electronic kevs, or what-have-yon. All too of ten, this results in the ruination of what maty have become a very good "fist."

Think about your sending a little. Are you satisfied with it? Lou should not be - ever. Nobody's sending is perfect, and therefore every operator should continually strive for improvement. Do you ever run letters together - like Q for MA, or P for AN - especially when you are in a hurry: Practically everybody does at one time or another. Do you have a "swing"? Any recognizable "swing" is a deviation from perfection. Strive to send like tape sending; copy a WIAW Bulletin and try to send it with the same spacing using a local oscillator on a subsecquent transmission.

Check your spacing in characters, between characters and between words occasionally by making a recording of your fist on an inked tape recorder. This will show up your faults as nothing else will. Practice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long calls, prevents QRIM, gives more communication per hour of operating. Brief calls with frequent short. pauses for reply can approach (but not equal) break-in efficiency.

A separate receiving antenna facilitates break-
in operation. It is only necessary with break-in to pause just a moment with the key up (or to cut the carrier momentarily and pause in a 'phone conversation) to listen for the other station. The elick when the carrier is cut off is as effective as the word "break."
C.w. Releyraph brak-in is usually simple to arrange. With break-in, ideas and messages to be transmitted can be pulled right through the holes in the (QRM. Shappy, efficient amateur work with break-in usually requires a soparate recoiving antenna and arrangement of the transmitter and reereiver to eliminate the neeressity for throwing swit hes betwern transmissions.
In calling, the transmitting operator sends the letters "BK" at frequent intervals during his eall so that stations hearing the call may know that break-in is in use and take advantage of the fact. He pauses at intervals during his call, to listen for a moment for a reply. If the station being called does not answer, the call cam be contimued.

With a tap of the key, the man on the reereiving end can interrupt (if a word is missend). The other operator is constantly monitoring, awaiting just such directions. It is not neeressary that you have perfect farilities to take advantage of break-in when the stations you work are break-inequipped. After any invitation to break is given (and at each patuse) press your key - and eontaet can start immediately.

VOICE OPERATING

The use of proper procedure to get best results is just as important ats in using code. In telegraphey words must be spelled out letter by letter. It is therefore but natural that abberevations and shortents should have come into widespread use. In voice work, however, ahbreviations are not neeressary, and should have less importance in our operating procedure.

The letter "R゙" has been agreed to in telegraphic practice so that the operator will not have to pound out the separate letters that spedl the words "go ahead." The voier operator cam say the words "go ahead" or "over," or "come in please."

One latughs on c.w. by spelling out III. On 'phone ase a laugh when one is called for. Be matural as you would with your family and friends.

The matter of reporting readability and strength is as important to phone operators as to those using code. With telograph nomenclature, it is necessary to spedl out words to deseribe signals or use the abbreviated signal reporting systom (RST . . . see Chaptor Twenty-Nix). ITsing voice, we have the athility to "say it with words." "Readability four, strength right" is the bost way to give a quantitative report. Reporting can be done so much more meaningfully with ordinary words: "You are weak but you are in the clear and I can understand you, so go ahead," or "Your signal is strong but you are buried under local interference." Why not say it with words?

Voice-Operating Hints

1) Listen before calling.
2) Make short calls with breaks to listen. Avoid long CQs; do not answer any.
3) Use push-to-talk. Give essential data concisely in first transmission.
4) Make reports homest. Lse definitions of strength and readability for reference. Make your reports informative and useful. Ifonest reports and full word deseription of signals save amateur operators from FCC'trouble.
5) Limit transmission length. Two minutes or less will convey much information. When three or more stations converse in round tables, brevity is essential.
6) Display sportsmanship and courtesy. bands are congested . . . make transmissions moaningfal . . . give others a broak.
7) ('herek transmitter adjustment ... avoid AMI overmodulation and splatter. Do not radiate when moving VFO freguoney or cherking NFM swing. U'se recoiver b.f.o. to cherek stability of signal. Complete testing before busy hours!

Voice Equivalents to Code Procedure

'Phone-Operating Practice

Efficiont voice communication, like good c.w. communication, demands good operating. Adherence to erertain points "on getting results" will go a long way toward improving our 'phoneband operating conditions.

Cise push-to-talk technique. Where possible arrange on-olf switches or controls for fast back-and-forth exchanges that cmulate the practicality of the wire telephone. This will help reduce the length of transmissions and keep brother amateurs from calling you a "monologuist" - a guy who likes to hear himself talk!

Liston with care. Neep moise and "backgromms" out of your operating room to facilitate good listoning. It is natural to answer the strongest signad, but take time to listen and give some consideration to the best signals, regardless of strength. Fivery amatour camot pun a kilowatt, but there is no reason whe cery amateur cannot have a signal of good quality, and utilize uniform operating practices to aid in the understandability and ease of his own commmencations.

Interpose your call regularly and at frequent intervals. Three short calls are better than one
long one. In calling CQ, one's call should certainly appear at least once for every five or six CQs. Calls with frequent breaks to listen will save time and be most productive of results. In identifying, always transmit your oun call last. Don't say "This is W1AISC'standing by for W21)LF"; say "W2DIDF, this is W1ABC', over." FCC regulations show the call of the transmitting station sent last.

Inclucle country prefix before call. It is not correct to say "gRliN, this is MBIII." Correct and legal use is "WoRIRX, this is WIJ3DI." FCC regulations require proper use of calls; stations have been rited for failure to comply with this requirement.

Monitor your own frequency. This helps in timing calls and transmissions. Send when there is a chance of being copied successfully - not when you are merely "more QIRM." Timing transmissions is an art to cultivate.

Keep modulation constant. By turning the gain "wide open" you are subjecting anyone listening to the diversion of whatever noises are present in or near your operating room, to say nothing of the possibility of feed-hack, echo due to poor acoustics, and modulation exresses due to sudden loud noises. Speak near the microphone, and don't let your gaze wander all over the station causing sharply-varying input to your speech amplifier; at the same time, keep far enough from the microphone so your signal is not modulated by your breathing. ('hange distance or gain only as necessary to insure uniform transmitter performance without overmodulation, splatter or distortion.

Make connected thoughts and phrases. Don't mix diseonnected subjeects. Ask questions connsistently. Pause and got answers.

Have a pad of paper handy. It is convenient and desirable to jot down questions as they come in the course of discussion in order not to miss any. It will help you to make intelligent to-thepoint replics.
Steer clear of inanities and soap-opera stuff. Our amateur radio and also our personal reputation as a serious communieations worker depend on us.

Avcid repetition. Don't repeat back what the other fellow has just said. Too often we hear a conversation like this: "Okay on your new antenna there, okay on the trouble you're having with your reeciver, okay on the company who just came in with some ice ream, okay . . . [otc.]." Just say you received everything OK. Don't try to prove it.

Use phonetics only as required. When clarifying genuinely doubtful expressions and in getting your call identified positively we suggest use of the AIRIRL Phonetic List. Limit such use to really-necessary clarification.
The speed of radiotelephone transmission (with perfect accuracy) depends almost entirely upon the skill of the two operators involved. One must learn to speak at a rate allowing perfect understanding as well as permitting the receiving operator to copy down the message text, if that is necessary. Iecause of the similarity of many

English speech sounds, the use of alphabetical word lists has been found necessary. All voiceoperated stations should use a standard list as needed to identify call signals or unfamiliar expressions.

ARRL Word List for Radiotelephony		
AIMM	Jolln	SUSAN
B.AKPR	KING	TlIOMAS
CliAlRLIE	LEWIS	UNION
DAVII)	MARY	VICTOR
EDWARD	NANCY	WILLIAM
FIRAN゙	OTTO	X-IRAY
GEORCGE	IPTTER	YOUNG
HENRY	QUELEN	ZEBIRA
IDA	IROISERT	
Example: WIAW ... W 1 ADAM WILLIAM... Wiaw		

Round Tables. The round table has many advantages if run properly. It clears frequencies of interferenere, esperially if all stations involved are on the sime frequeney, while the enjoyment value remains the same, if not greater. By use of push-to-talk, the conversation can be kept lively and intoresting, giving each station operator ample opportunity to participate without waiting overlong for his turn.

Round tables can become very unpopular if they are not conducted properly. The monologuist, off on a long spiel about nothing in particular, cannot be interrupted; make your transmissions short and to the point. "I3utting in" is discourteous and unsportsmanlike; don't enter a round table, or any contact betreen two other amateurs, unless you are invited. It is bad enough trying to understand voice through prevailing interference without the added difficulty of poor quality; check your transmitter adjustments frequently. In general, follow the precepts as hereinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone communication.

- WORKING DX

Most amateurs at one time or another make "working IDX" a major aim. As in every other phase of amateur work, there are right and wrong ways to go about getting best results in working foreign stations, and it is the intention of this section to outline a few of them.

The ham who has trouble raising I)X stations readily may find that poor transmitter efficiency is not the reason. He may find that his sending is poor, or his calls ill-timed, or his judgment in eror. When conditions are right to bring in the I)N, and the receiver sensitive enough to bring in several stations from the desired loeality, the way to work IDX is to use the appropriate frequency and timing and coll these stations, as against the common practice of calling " CQ 1)."."

The call CQ I)X means slightly different thing: to amateurs in different bands:
a) On v.h.f., CQ DX is a general call ordinarily used only when the band is open, under
favoralle "skip" conditions. For v.h.f. work such a call is used for looking for new states and countries, also for distances beyond the customary "line-of-sight" range on most v.h.f. hands.
b) (Q1)X on our $7-, 11-21$ - and 28-Mc. hands may be taken to mean "General call to any foreignstation." The term "foreign station" usually refers to any station in a foreign continent. (Experienced amateurs in the U. S. A. and Canada do not use this call, but answer such calls made by foreign stations.)

DX OPERATING CODE (For W/VE Amateurs)

Some amateurs interested in IDN work have caused considerable confusion and QRAI in their efforts to work DN stations. The points below, if obsorved by all W/NE amateurs, will go a long way toward making DX more enjoyable for everybody.

1. (all DX only after he calls CQ, QRZ?, signs $\overline{S K}$, or 'phone equivalents thereof.
2. Do not call a D.X station:
a. On the frequency of the station he is working until you are sure the (2NO is over. This is indicated by the ending signal जNE on c.w. and any indication that the operator is listening, on 'phone.
b. Because you hear someone else calling him.
c. When he signs $\overline{\mathrm{KN}}, \overline{\mathrm{AR}}, \mathrm{CL}$, or 'phone equivalents.
d. Exactly on his frequency.
e, After he calls a directional CQ, unless of course you are in the right direction or area.
3. Keep within frequency-band limits. Some 1)X stations operate outside. Perhaps they can get away with it, but you cannot.
4. Observe calling instruetions of DN stations. " 10 C " means eall ten ke. up from his frequency, " 151)" means 15 kc. down, ete.
$\mathbf{5}$. Give honest reports. Many foreign stations depend on W and VE reports for adjustment of station and equipment.
5. Kieep your signal cloan. Key clicks, chirps, hum or splatter give you a bad reputation and may get you a citation from FCC .
6. Listen for and call the station you want. Calling (Q DX is not the best assurance that the rare 1 N will reply.
7. When there are several W or VE stations watiting to work a 1 X station, avoid asking him to "listen for a friemd." Let your friend take his chances with the rest. Also avoid engaging DN stations in rag-chews against their wishes.
c) CQ DX used on 3.5 Mc . under winter-night conditions may be used in this same manner. At other times, under average $3.5-$ Mc. propagation conditions, the call may be used in domestic work when looking for new states or countries in one's own continent, usually applying to stations located over 1000 miles distant from you.

The way to work DX is not to use a CQ call at all in our continent). Instead, use vour best tuning skill-and listen - and listen-and listen. You have to hear them before you can work them. Hear the desired stations first; time your calls well. L'se your utmost skill. A sensitive reeriver is often more important than the power input in working foreign stations. If you can hear stations in a particular country or area, chances are that you will be able to work someone there.

One of the most effective ways to work DX is to know the operating hathits of the DS stations sought. Doing too much transmitting on the W. hands is not the way to do this. Again. listeming is affertive. Once you know the operating habits of the 1)X station you are after you will know when and where to call, and when to remain silent waiting your chance.

Some 1 NK stations indicate where they will tune for replies by use of "10(") or "151)." (See point 4 of the D. (Operating Code.) In voice work the overseats oprerator may say "listening on $14,225 \mathrm{kc}$." or "tuning upwatrd from 28,500 ke." Many a D. X station will not reply to a call on his exact frequency.

AlRIR1, has recommended some operating procedures to DX stations aimed at rontrolling some of the thoughless operating prartices sometimes used by W/VF amateurs. A eopy of these recommendations (Operating Aid No, 5) can be obtained free of charge from ARRRL. Il eadquarters.

In any band, particularly at line-of-sight frequencios, when directional antennas are used, the directional CQ such as (C) W5, CQ north. ete., is the proferable type of call, Mature amateurs agree that ('Q 1)N is a wishful rather than a practical type of call for monst stations in the North Americas looking for foreign contarts. Ordinarily, it is a eause of unmeresatry QlRM.

Conditions in the transmission medium make all field strengths from a given region more nearly erpaal at a distance, irrespective of power used. In general, the higher the frequency band, the loss important power considerations beeome. This aceounts in part for the relative popularity of the 1t-, 21-and 28-Mc. bands among amateurs who like to work IDX.

\%	-24ation	Cayuo	$\xrightarrow{\text { Natio }}$	astincos	10\%	${ }^{\text {maco }}$		\%ows	\%oma	othen data
$11-16-53$										
6:15pm	$W ¢ T Q D$	x	3.65	589	$569 x$	3.5	A1	250	6:43	Ifc-recd 6 sent 10
7:20	CQ	\times				7				
7:21	x	N4TWI	7.16	369	579				7:32	Vu heary QRM on me
$41-18-53$										
7:05am	VK4EL	x	14.03			14	AI	250		Answored a W6
7:09	ZL2ACV	\times	14.07	339	$559 x$				7:20	
7:21	\times	KA2KW	14.07	$469 \times$	349				7:33	Firet KA
$7: 36$ $7: 37$	$C Q$	x								arat Ka
7:37	\times	W6T1	14.01	589	5896				$8: 12$	

KEEP A $\$ ACCERADE AN1) COMPIETE STATION LOG AT ALL TIMES! F.C.C. REQUIRES IT.

Abstract

A page from the official Alaill log is shown above, answering every Government requirement in respect to station records. Bound logs made up in accord with the above form can be obtained from Ileadgnarters for a nominal sum or you can preparc your own, in which case we offer this form as a suggestion. The AlRhL log has a special wire binding and lics perfectly flat on the table.

KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to keep a complete station operating record. It may also contain records of experimental tests and arljustment data. A stenographer's notobook can bre ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a \log be mantained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input
power to the last stage of the transmitter, (4) the frequency band used, (5) the time of ending each QSO and the oprators identifying signature for responsibility for each session of operating. Messages may be written in the log or separate reeords kept - but record must be made for one year as required hy the FCC. For the convenience of amateur station operators ARRI. stocks both loghooks and message blanks, and if one uses the official log he is sure to emmply fully with the (iovernment requirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the United States and a few other countries moy a privilege not available to amateurs in most countrios - that of handling third-party message tratfic. In the carly history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formod an extonsive rolay organization which became known as the American Radio Irelay League.

Thus, amateur messare-handling has had a long and honorable history and, like most serviece, has gone through many periods of development and change. Those amateurs who handled traffic in 1914 would hardly recognize it the way some of us do it today, just as equipment in those days was far different from that in use now. Progress has been made and now methods have been developed in step with advancement in communication techniques of all kinds. Amateurs who handled a lot of traffic found that organized operating scheduless were more effective than random relays, and as technigues advanced and messages increased in mumber, trunk lines were organized, spot frequencies began to be used, and there sprang into existenee a number of traffic nots in which many stations operated on the same frequency to effect wider cov-
erage in less time with fewer relays; but the old mothols are still available to the amateur who hathdes only an oceasional message.

Although message handing is as old an art as is amateur radio itself, there are many amatours who do not know how to handle a mossage and have never done so. As each amateur grows older and gains experience in the amateur service, there is bound to come a time when he will be called upon to hande a written message, during a communications emergency, in casual contact with one of his many acquaintances on the air, or as a result of a request from a nonamateur friond. Regardless of the occasion, if it comes to you, you will want to rise to it! Considerable embarrassment is likely to be exporienced by the amateur who finds he not only does not know the form in which the message should be prepared, but does not know what to do with the message once it has been filed or reeeived in hisstation.

Traffic work need not be a complicated or time-eonsuming activity for the casual or oceasional message-handler. Amateurs may participate in traffic work to whatever extent they wish, from an occasional message now and then to beeoming a part of organized traffic systems.

This chapter explains some principles so the reader may know where to find out more about the subject and may exercise the message-handling privilage to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who receive mossages for relay or delivery should first eonsider that in doing so they are acerpting the responsibility of olatang the message from their station on its way to its: destination in the shortest possible time. liorty. right hours after filing or reeceipt is the gemeratlyaccepted rule among traffic-handling amatedrs, but it is olovious that if every amateur who rolayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traflie should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and atcepted, handling the message beromes a matter of following generally-acerpted standards of form and transmission. For this purpose, ach message is divided into four parts: the preanhle, the address, the text and the signature. some of these parts themselves are subdivided. It is nocessary in preparing the message for transmission and in actually transmitting it to know not only what each part is and what it is for, but to know in what order it should be transmitted, and to know the various procedure signals used with it when sent by e.w. If you are groing to send a message, you may as wedl send it right.

Standardization is important! There is a great deal of room for expressing originality and individuality in amateur radio, but there are also times and places where such expression can only cause confusion and indficiency. Recognizing the need for standardization in message form and message transmitting procedures, ARRL, has long since recommended sueh standards, and most traffic-interested amateurs have followed them. In general, these recommendations, and the various changes they have undergone from year to vear, have been at the reguest of ama-

Here is an exanple of a plain-language message in correct ARRL form. 'The preamble is always sent as shown: number, station of origin, check, blace of origin, lime filed, date.
teurs participating in this activity, and they are completely outlined and explained in Operating an Amateur Radio Station, :1 copy of which is available upon request or by use of the coupon at the end of this chapter.

Clearing a Message

Amateurs not experieneed in message handling should depend on the experieneed messagehandler to get a message through, if it is important; but the average amateur can enjoy operating with a message to be handled either through a local traffic net or hy free-lancing. The latter may be arcomplishod by careful listening for an amatear station at desired points, directional C(os, use of the General Calling frequencies, or by making and kerping a sehedule with another amateur for rogular work between specified points. Ho may well am at loarning and enjoying through doing. The joy and acomplishment in thus developing one's operating skill to top porfoction has a reward all its own.

The hest way to elear a message is to put it into one of the many organized traffie net works, or to give it to a station who can do so. There are many amateurs who make the handling of traffic their primejpal operating activity, and many more still who participate in this artivity to a greater or lesser cextent. The result is a system of traffie nots which spreads to all cormers of the I'nited States and covers most [. S. possessions and Canada. Onee a messuge gets into one of these nets, regardless of the net's size or convcrage, it is systematically routed toward its destination in the shortest pessible time.

If you decide to "take the bull be the homs" and put the message into a traffic net yourself (and more power to you if you do!), you will need to know something about how traffie nets operate, and the sperial (signals and proedure ther use to dispateh all traffie with a maximum of efficioncy. Reformer to net lists in OぶT (usually in the November and January issues) will give you the frequency and operating time of the net in your section, or other net into which your message can go. listening for a fow minutes at the time and froquener indicated should acquant you with cough fundamentals to enable you to report into the not and indicate your traffic. From that time on you follow the instructions of the net control station, who will tell you when and to whom (and on what frequency, if diffarent from the net frequeney) to sind your mossuge. Since most nets use the spectial "(Q)" signals, it is usually very helpful to have a list of these before you (list available from AIRIRL IIq.).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it, and to increase your proficioney, Many amateurs are happily "addicted" to traffic handling after only one or two hriof expesures to it. Most traffic nets are at present being conducted by cow., since this mode of

OPERATING A STATION

communication seems to be more popular for record purposes - but this does not mean that high code speed is a necessary prerequisite to working in traffic networks. There are many nets organized specifically for the slow-speed amateur, and most of the so-called "fast" nets are usually glad to slow down to accommodate slower operators, especially those nets at state or section level.
The significant facet of net operation, however, is that code speed alone does not make for efficiency - sometimes quite the contrary! A high-speed operator who does not know net procedure can "foul up" a net much more completely and more quickly than can a slow operator. It is a proven fact that a bunch of high-speed operators who are not "savvy" in net operation cannot accomplish as much during a specified period as an equal number of slow operators who know net procedure. Don't ket your code speed deter you from getting into traffic work. Given a little time, your speed will reach the point where you can compete with the hest of them. Concentrate first on learning net procelure, for most traffic nowadays is handled on nots.

Much traffic is also being handled on 'phone nowadays. This mode is exceptionally well suited to short-range traffic work and requires knowledge of phonetics and procedure peculiar to voice operation. Procedure is of paramount importance on 'phone, since the public may be listening. The major problem, of course, is QR.M.

Teamwork is the theme of net operation. The net which functions most efficiently is the net in which all participants are thoroughly familiar with the procedure used, and in which operators refrain from transmitting except at the direction of the net control station, and do not occupy time with extrancous comments, even exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handling traflic until all traffie is cleared. Before or after the net is the time for rag-chewing and discussion. Some details of net operation are included in Operating an Amatear Radio Station, mentioned carlier, but the whole story cannot be told. There is no substitute for actual participation.

The National Traffic System

To facilitate and speed the movement of message traffic, there is in existence an integrated national system by means of which originated traffic will normally reach its destination area the same day the mossage is originated. This system uses the local section net as a basis. lach section net sends a representative to a "regional" net (normally covering a call area) and each "regional" net sends a representative to an "area" net (normally covering a time zone). After the area net has cleared all its traflic, its members then go back to their respective regional nets, where they clear traffic to the various section net representatives. By means of connerting schedules between the area nets, traffic can flow both ways so that traffic originated on the West Coast reaches the East Coast with a maximum of dispateh, and vice versa. In general local section nets function at 1900 , regional nets at 19.45 , area nets at $20: 30$ and the same or different regional personnel again at 2130. Some section nets conduct a late session at 2200 to effect traffic delivery the same night. Local time is referred to in each case.

The NTS plan somewhat spreads traffic opportunity so that casual traffic may be reported into nets for efficient handling one or two nights per week, early or late; or the ardent traffic man can operate in both early and late groups and in bebetween to roll up impressive totals and speed traffic reliably to its destination. Old-time traffic men who prefer a high degree of organization and teamwork have returned to the traffic game as a result of the new system. leginners have shown more interest in becoming part of a system nationwide in seope, in which anyone can partieipate. The National Traffic System has vast and intriguing possihilities as an amateur service. It is open to any amateur who wishes to participate.

The ahove is but the briefest résumé of what is of neeessity a rather complicated arrangement of nets and schedules. Complete details of the System and its operation are available to anyone interested. Just drop a line to ARRL Headquarters.

Emergency Communication

One of the most important ways in which the amateur serves the public, thus making his existence a national asset, is by his preparation for and his participation in communications emergencies. Every amateur, regardless of the extent of his normal operating activities, should give some thought to the possibility of his being the only means of communication should his community be cut off from the outside world. It has happened many times, often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you ready?
There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equip-
ment capable of operating on any type of emergency power (i.e., either a.c. or d.c.), and equip-

ment which can readily be transported to the seene of disaster. Mobile equipment is especially desirable in most emergeney situations.

Such equipment, regardhess of its elaborateness or modermess, is of little use, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for emergencies, by no means less important than the first, is to learn to operate efficiently. There are many amateurs who feel that they know how to operate efficiently who find themselves eonsiderably handieaped at the crucial time by not knowing proper procedure, by being unable due to years of easual amateur operation to adapt themselves to suappy, abbreviated transmissions, and by being unfamiliar with message form and routing procedures. It is dangerous tooverrate yourability in this respect; it is farbetter to assume that you have much to learn.

In general it can be said that there is more emergency equipnont available than there are operators who know properly how to oprate during emorgency conditions, for such conditions require clipped, terse procedure with completo break-in on c.w. and fast push-to-talk on 'phone. The casual rag-chewing aspert of amateur radio, however enjoyable and worth-while in its plaee, must be forgoten at such times in favor of the business at hand. There is only one way to gain experionce in this type of operation, and that is by practieing it, During an emergency is no time for practiee; it should be done beforehand, as often as possible, on a regular basis.

This leads up to the necessity for emergency organization and preparedness. AlRIRL. has long recognized this neressity and has provided for it. The Section Communications Manager (whose
address apprars on page 6 of any recent issue of QST) is empowered to appoint certain qualified amateurs in his section for the purpose of eorordinating emergency communication organization and preparedness in specified areas or communities. This appointee is known as an Fmergency Coördinator for the city or town. One is speceified for each community. For coordination and promotion at section level a Seetion Emergency Coordinator arranges for and recommends the appointments of various Emergency Coordinators at artivity points throughout the sertion. Vimorgency Coordinators organize amateurs in thoir communities aceording to local needs for emorgency communication facilities.

The eommunity amateurs taking part in the local organization are members of the Amateur Radio Emergency Corps (ARLC). All amateurs are invited to register in the ARLEC, whether they are able to play an active part in their local organization or only a supporting rôle. Application blanks are available from your EC, SBC, SCM or direct from ARRL, Headquarters. In the event that inguiry reveals no Emergency Coordinator appointed for your community, your SCM would weleome a recommendation either from yourself or from a radio club of which you are a member. By holding an amateur operator license, you have the responsibility both to your community and to amateur radio to uphold the traditions of the service.

Among the lague's publications is a booklet entitled Emergency Communications. This booklet, while small in size, contains a wealth of information on AREC organization and functions and is invaluable to any amateur participating in emergency or civil defense work. It is free to

Before Emergency

PREPARE yourself by providiag a transmitter-receiver set-up together with an emergency power source upon Which you can depend.
TENT both the dejendability of your emergency equipment and your own oferating ability in the annual ARRL Simulated Embremey Test und the several anmal on-the-air contexts, esperially Field I ay.
REGISTLER your facilities and your availability with your local ARRI. Emergency Coirdinator. If your commanity has no EC, contart your local civic and relief amencies and explain to them what the Amateur Service offers the community in time of disaster.

In Emergency

LISTLEN before you transmit. Never violate this principle,
REPORT at once to your limergency ('oürdinator so that he will have up-to-the-mimute data on the facilities avail thle to him. Work with local civic and relief agencies as the EC suggests, offer these agencies your sorvices directly in the absence of an EC .

RESTRICT all on-the-air work in accordanee with FCC regulations, Sec. 12.156, whenever FCC "declares" a state of communications emergeney.

QRRR is the official ARRL "land SOS," a distress call for emergency only. It is for use only by a station seeking assistance.

KLESPE ('I' the fact that the suecess of the amateur effort in emergeney depends largely on circuit diseipline. The established Net Control Station should be the supreme authority for priority and traflie routing,

CO-OIPERATE with those we serve. Be ready to help, but stay off the air unless there is a specific job to be done that you can handle more effieiently than any other station.
('OP' all hulletins from W'AW. During time of emergency special bulletins will keep you posted on the latest developments.

After Emergency

REPORT to AIRIKL Headquarters as soon as possible and as fully as possible so that the Amateur Scrvice can receive full credit. Amateur Radio has won glowing public tribute in many major disasters since 1919. Maintain this record.

ARICC members and should be in every amateur's shack. Drop) a line to the . Wlelel, Communications Department if you want a copy, or use the coupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

In order to be prepared for any eventuality, FC(and the Federal (Civil Defense Administration (FCD)S), in collaboration with ARRL, have promulgated the Radio Amateur (ivil Emergeney serviec. RACD's is a tomporary peacetime serviee, intended primarily to serve civil defense and to continue operation during any extreme national emergeney, such as war. It shares certain segments of frequencies with the regular Amateur Service on a nothexelusive hasis. Its regulations have been made a sub-part of the familiar amatrue regulations; that is, the present regulations have berome subspart 1 , the new IRAClis regulations being added as sub-part 13. Copies of both parts are included in the latest edition of the AIRIRL License . I/anual.

If every amateur participated, we would still be far short of the total operating personnel required properly to implement RACHS. Is the service which bears the responsibility for the successful implementation of this important new function, we face not only the task of installing (and in some cases building) the neressary equipment, but also of the training of thousands
of additional people. This can and should be a function of the local unit of the Amateur Radio Bmergency Corps under its LC and his assistants, working in clowe collaboration with the local civil defense organization.

The first step in organizing RACl's locally is the appointment of a landio Offier by the local civil defense director, possibly on the recommendation of his commmications offierer. A complete and detailed communications phan must be approved suce ssively loy local, state and le(b)d regional directors, by the FeDA Washington offier, and by $\mathrm{FC}(\mathrm{C}$. Onee this has been accomplished, applications for station authorizations under this plan can be submitted direet to $\mathrm{F}(\mathrm{C}$. QS'T will carry further information from time to time, and ARRL, will keep its field officials fully informed by bulletins as the situation requires. A series of three articles in QST' for March, April and May, 1953, makes a useful reference and sets the stage for RACLS.
In the event of war, civil defense will place great reliance on RACES for radio communications. IRACES is an Amateur Servire. Its implementation is logically a function of the Amateur Radio Emergeney Corps - an additional function in peacetime, hut probably an exclusive function in wartime. Therefore, your best opportunity to be of service will be to register with your local EC , and to participate actively in the local ARLC/RACDis program.

ARRL Operating Organization

Amateur operation must have point and constructive purpose to win puthlie respect. Vach individual amateur is the ambassador of the entire fraternity in his puldie relations and attitude toward his hobby. AlRRL, field organization adds point and purpose to amateur operating.
The Communications Department of the Lague is concerned with the practical operation of stations in all branches of amateur atetivity. Appointments or awards are available for rag-chewer, traffic enthasiast, 'phone op(rator, I)X man and experimenter.

There are seventy-three ARIRL Sections in the League's field organization, which embraces the Gnited States, Canada and certain other territory. Operating affairs in each Section are supervised by a Section Communications Nanager elected by members in that section for a twoyear term of office. Organization appointments are made by the section managers, elected as provided in the Rules and Regulations of the Communications Department, which accompany the League's By-Laws and Articles of Assoriation. seetion communications managers' addresses for all sections are given in full in each issue of QST'. SCMs welcome monthly activity reports from all amateur stations in their jurisdiction.
Whether your activity embraces 'phone or telegraphy, or both, there is a place for you in League organization.

- LEADERSHIP POSTS

To advance each type of station work and group interest in amateur radio, and to develop practical communieations plans with the greatest suceess, appointments of leaders and organizers in particular single-interest fields are made by SC'Ms. Bach leadership post is important. Each provides activitios and assistance for appointe groups and individual members along the lines of natural inters st. Some posts further the general ahility of amat urs to communicate efficiently at all times, by pointing activity toward networks and round tables, othors are aimed specifically at establishment of provisions for organizing the amateur service as a stand-by communications group to serve the publie in disaster, civil defense need or emergeney of any sort. The SCMI appoints the following in atcordance with section needs and individual qualifications:

PAM 'Phone Activities Manager. Organizes activities for OP'Ss and voice operators in his section. Promotes 'phone nets and recruits OI's.
RMI Routc Manager. Organizes and coördinates c.w traffic activities. Supervises and promotes nets and reertits ORSs.
SEC Section Emerzency Coördinator. Promotes and EC administers section emergency radio organization Emergency Co.jrdinator. Organizes amateurs of a community or other area for emergency radio service; maintains liaison with officials and agencies served; also with other local communication facilities.

STATION APPOINTMENTS

ARRL's field organization has a place for every active amaterar who has a station. The Communications Department organization exists to incrase individual enjoyment ame station offertiveness in amateur ralio work, and wo extend a cordial invitation to every amatour to participate fully in the activities and to apply to the SCXI for one of the following station appointments. ARRLL Membership and the General Class lieense or VE equivalent is prerequisite to appointments, exeept Ols is available to Novice/ Terhnician grades.

OPS Official Phone Station. Sets high voice operating standards and proeedures, furthers 'phone nets und traffic.
ORS Official Relay Station. Trafferervice, operates c.w. nets; noted for $15 \mathrm{w} . \mathrm{p} . \mathrm{m}$. and procedure ability.
OBS Official Bulletin Station. Transmits ARRL, and FCC: bulletin information to amateurs.
OES Offieial Experimental Station. Experimental ofo erating. collects and reports v.h.f.-n.h.f.-s.h.f. propagation data, may engage in facsimile, ' ${ }^{\prime} \mathrm{r}, \mathrm{TV}$, ete., experiments working on 50 M an and/or athove Official Ohservar. Sends exäperative notiefes to atnateurs to assist in frecurney observaner, insures high-quality signals, and prevents FCC trouble.

Emblem Colors

Members wear the emblem with black-enamel background. A red background for an emblem will indicate that the wearer is SCD. SDC's, ECs, IRMs, PAMs may wear the emblem with green background. Ohservers and all station appointees are entitled to wear blue emblems.

SECTION NETS

Amateurs can add much experience and pleasure to their own amateur lives, and substance and aceomplishment to the credit of all of amateur radio, when organized into effective interconnection of eities and towns.

The successful operation of a net depends a lot on the Net Control Station. This station should be chosen carefully and be one that will not hesitate to enforee each and every net rule and set the example in his own operation.

A progressive net grows, obtaining new members both direetly and through other net members. Bulletins may be issued at intervals to keep in direct contact with the members regarding
general net artivity, to keep tab on net procedure, make suggestions for improvement, keep track of active members and weed out inartive ones.

A National Traffic system is sponsored by ARIRL, to facilitate the over-all expeditious relay and delivery of messatge traffir. The system recognizes the need for handling traffic beyond the section-level networks that have the popular support of both 'phone and c.w. groups (OP'S and ORS) throughout the Ie eague's ficld organization. Area and regional provisions for NTS are furthered by Headquartors correspondence. The ARRL Net Directory, revised in December each year, includes the frequencies and times of operation of the hundreds of different nets operating on amateur band frecuuencies.

Radio Club Affiliation

ARRI is pleased to grant affiliation to any amateur society having (1) at least 51% of the voting club mombership as full members of the Learue, and (2) at least 51% of society govern-ment-licensed radio amateurs. In high school radio clubs bearing the school name, the first above requirement is modified to require one full member, ARRL, in the club. Where a soriet y has common aims and wishes to add strength to that of other club) groups and strengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communications Manager will bring the necessary forms and information to initiate the application for affiliation. Such cluhs receive field-organization bulletins and special information at intervals for posting on club bulletin boards or for relay to their memberships. A travel plan providing eommunications, technical and secretarial contact from the Headquarters is worked out seasonally to give maximum benefits to as many as possible of the sevoral hundred active affiliated radio clubs. Papers on club work, suggestions for organizing, for constitutions, for radio courses of study, etc., are available on request.

Club Training Aids

One section of the ARRL Communications Department handes the Training Aids Program. This program is a service to ARRL affiliated clubs. Material is aimed at education, training andentertainment of club members. Interesting quiz material is available.

Training Aids include such items as motionpieture films, film strips, slides, and lecture outlines. Also, code-proficiency training equipment such as recorders, tape transmitters and tapes will be loaned when such items are available.

All Training Aids materials are loaned free (except for shipping charges) to ARIRL affiliated cluls. Numerous groups use this ARRL service to good advantage. If your club is affiliated but has not yot taken advantage of this service, you are missing a good chance to add the available features to your meeting programs and general club activities. Watch club bulletins and QST or write the ARRL Communications Department for full details.

- W1AW

The Maxim Memorial Station, W1AW, is dedicated to fraternity and service. Operated by the League headquarters, W1AW is located about four miles south of the Headquarters offires on a seven-are site. The station is on the air daty, except holidays, and available time is divided between different bands and modes.
 Tolegraph and 'phone tratusmitters are provided for all bands from 1.8 to 144 Me. The normal frequencios in each band for c.w. and voice transmissions are as follows: $1885,3 \overline{5} \bar{n}$, $3050,7125,7255,14,100,14,280,21,020,21,350$, $28,060,28,768,52,000$ and $1+5,600) \mathrm{kc}$. Operatingvisiting hours and the station schedule are listed every other month in QS'T

Operation is roughly proportional to amateur interest in different bands and modes, with one kw . except on 160 and v.h.f. bands. WIAW's daily bulletins and code practier aim to give operational help to the largest number.

All amateurs are invited to visit W'AW, as well as to work the station from thoir own shacks. The station was established to be a living memorial to Iliram Perey Maxim and to earry on the work and traditions of amateur radio.

OPERATING ACTIVITIES

Within the ARRL field organization there are several special activities. The first Saturday and Sunday of each month is set aside for all ARRL officials, officers and diredtors to get together over the air from their own stations. This activity is known to the gang as the LO party. For all appointees, other quarterly tests are scheduled to develop operating ability and a spirit of fraterualism.

In addition to these special activities for appointees and members, ARIRI. sponsors various other activities open to all amateurs. The INXminded amateur may participate in the Annual AIRIRL International DX Competition during February and March. This popular contest may bring you the thrill of working new countries. Then there is the ever-popular Sweepstakes in November. Of domestio scoper, the St affords the opportunity to work new states for that WAS awarl. A Novice activity is phanned annually. The interests of $v . h . f$. enthusiasts are also provided for in sperial adtivities planned by ARIRL.

As in all our operating, the idea of having a good time is combined in the Ammal Field Day with the more serious thought of preparing ourselves to render public servide in times of emergeney. A premium is plared on the use of equip-
ment without eonnection to conmercial power sources. Clubs and individual groups always have a good time in the "FD," learn much about the refuirements for operating under knockabout conditions afield.

ARRIR contest activities are diversified to appeal to all oprerating interests, and will be found announced in detail in issues of QST proroding the different events.

AWARDS

The Leaguc-sponsored operating activitios heretofore mentioned have useful objertives and provide much enjoyment for members of the fraternity. Achievement in amateur radio is recognized by various certificates offered through the league and detailed below.

WAS Award

WAs means "Worked All states." This award is available regardless of affiliation or nonaffiliation with any organization. Here are the rules to follow in applying for W:As:

1) Two-way communication must be established on the anateur bands with each of the states; any and all anateur

bands may be used. A card from the District of Columbia may be submitted in lieu of one from Maryland.
2) Contacts with all states must be made from the same location. Within a given community one location may be defined as from places no two of which are more than 25 miles apart.
3) Contacts may be made over any period of years, and may have been made any number of years ago, provided only that all contacts are from the same location.
4) (QsL cards, or other written commmications from stations worked confirming the necessary two-way contacts, must be submitted by the applicant to ARIRL, headquarters.
5) Suffieient postage must be sent with the confirmations to finame their return. No eorrespondence will be returned unless sufficient postage is furnished.
6) The WAS award is available to all amateurs.
7) Address all applications and confirmations to the Commmieations Department, ARRL, 38 La salle Road, West llartford, Conn.

DX Century Club Award

IHere are the rules under which the 1). (N^{2} (enfury ('lab Award will be iswed to amateurs who have worked and confirmed eombat with 100 countries in the pestwar period. If you worked fower than 100 countries before the wate and have sinere worked and confirmed a sufficient number to make the 100 mark, the J) $\mathrm{S}^{\prime}(\mathrm{C}$ is still available to you under the rules detailed on page 74 of June, 1946, QST.

1) The Century Club Award Certificate for confirmed contacts with 100 or more countries is available to all amateurs everywhere in the world.
2) Confirmations must be submitted direct to ARRL headquarters for all countries claimed. Claims for a total of 100 countries must be included with first application. Confirmation from foreign contest logs may be requested in the case of the ARRL International DX Competition only, subject to the following conditions:
a) Sufficient confirmations of other types must be submitted so that these, plus the DX Contest confirmations, will total 100. In every case, Contest confirmations must not be recuested for any countries from which the applicant has regular confirmations. That is, contest confirmations will be granted only in the case of countries from which applicants have no regular confirmations.
b) Look up the contest results as published in QST to see if your man is listed in the foreign scores. If he isn't, he did not send in a log and no confirmation is possible.
c) Give year of contest, date and time of QSO.
d) In future DX Contests do not repuest confirmations until after the final results have been published, usually in one of the early fall issues. Requests before this time must be ignored.
3) The ARRL Countries List, printed periodically in QST, will be used in determining what constitutes a "country." The Miseellaneous Data chapter of this Handbook contains the Postwar Countries List.
4) Confirmations must be accompanied by a list of claimed countries and stations to aid in checking and for future reference.
n) Confirmations from additional countries may be sub)mitted for credit each time ten additional confirmations are available. Endorsements for affixing to certificates and showing the new confirmed total ($110,120,130$, etc.) will he awarded as additional credits are granted. ARRL DX Competition logs from foreign stations may be utilized for these endorsements, subject to conditions stated under (2).
5) All contacts must be made with amateur stations working in the anthorized amateur bands or with other stations licensed to work amateurs.
6) In cases of countries where amateurs are licensed in the normal manner, credit may be claimed only for stations using regular government-assigned call letters. No credit may be claimed for contacts with stations in any conntries in which amateurs have been temporarily closed down by special government ediet where amateur licenses were formerly issued in the normal manner.
7) All stations contaeted must be "Iand stations" contacts with ships, anchored or otherwise, and aircraft, cannot be counted.
8) All stations must be contacted from the same call area, where such areas exist, or from the sanc country in cases where there are no call areas. One cxception is allowed to this rule: where a station is moved from one call area to another, or from one country to another, all contacts must be made from within a radius of 150 miles of the initial location.
9) Contacts may be made over any period of years from November 15. 1945, provided only that all contacts be made under the provisions of Rule 9 , and by the same station licensee; contacts may have been made under different call letters in the same area (or country), if the licensee for all was the same.
II) All confirmations must be submitted exactly as received from the stations worked. Any altered or forged confirmations sabmitted for C'C credit will result in disqualification of the applicant. The eligibility of any DNCC applieant who was ever barred from D.XCC to reapply, and the conditions for such application, shall be determined by the A wards Committee. Any holder of the Century Club Award submitting forged or altered confirmations must forfeic his right to be considered for further endorsements.
10) OPWRATING ETHIC'S: Fair phay and good smortsmanship in operating are refuired of all amateurs working toward the DX Century Club) A ward. In the event of specific objections relative to continued poor operatime ethics an individual may be disifulified from the D.SCC by action of the ARRL A wards Committee.
11) Suffieient postage for the return of confirmations must be forwarded with the application. In order to insure the safe return of large batches of confirmations, it is suggested that enough postage be sent to make possible their return by first-class mail, registered.
12) Decisions of the ARRL Awards Committee regard-
ing interpretation of the rules as here printed of later amended shall be final.
13) Address all applications and confirmations to the Communications Department, ARlRL, 38 La Salle Road. West Martford 7, Conn.

WAC Award

The International Amateur Radio Union issucs WAC (Worked All Continents) certificates to all members of nember-societies who submit proof of two-way communication with at least one station on each continent. Foreign amateurs submit their proof direct to member-societies of the IARU. Others may make application to ARRL, headquarters society of the Union. A c.w. and a telephony certificate are available. Also, special endorsements will be placed on certificates upon receipt of request accompanied by proof of having worked all continents on the $3.5-$ or $50-\mathrm{Mc}$. bands.

Code Proficiency Award

Many hams can follow the general idea of a contact "by car" but when pressed to "write it down" they "muff" the copy. The Code Proficiency Award invites every amateur to prove himself as a proficient operator, and sots up a system of awards for step-by-step gains in copying proficiency. It enables every amateur to check his code proficiency, to better that profiriency, and to receive a certification of his receiving speed.

This program is a whate of a lot of fun. The Ladgue will give a certificate to any licensed radio amateur who demonstrates that he can copy perfectly, for at least one minute, plainlanguage Continental code at $10,15,20,25,30$ or

35 words per mimute, as transmitted during suecial monthly transmissions from WIAW and W6OW1.

As part of the ARIRL, Cole Proficiency program WhAW transmits plain-language practice material each evening at speeds from 5 to 35 W.p.m. All amateurs are invited to use those transmissions to increase their code-ropying ability. Non-amateurs are invited to utilize the lower speeds, $5,71 / 2$ and $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$., which are transmitted for the benefit of persons studying the code in preparation for the amateur license
examination. Refer to any issue of QST' for details of the practice schedule.

Rag Chewers Club

The Ray Chewers C'lub is designed to encourage friondly contarts and diseourage the "hello-good-by" type of QSO. Its purpose is to bond together operators interested in honest-togoodness rag-chewing over the air. Membership certificates are available.

How To (iet in: (1) Chew the rag with a member of the club for at least a solid half hour. This does not mean a half hour spent in trying to get a message over through bad QRM or QRN, hut'a solid half hour of conversation or message handling, (2) Report the conversation by card to The Ras Chewers Club, ARIRL, Communications Department, West Hartford, Conn., and ask the member station yon talk with to do the same. When both reports are received you will be sent a membership certificate entitling you to all the privileges of a Rag Chewer.
How To Stay in: (1) Be a conversationalist on the uir instead of one of those tonguc-tied infants who don't know any words exept "cuagn" or "cul," or "QRL" " or "nil." Talk to the fellows yon work with and get to know them. (2) Operate your station in accordance with the radio laws and AKRL practice. (3) Observe rules of courtesy on the air (4) Sign "RCC" after each call so that others may know yon can talk as well as call.

A-1 Operator Club

The A-1 (operator Club should include in its ranks every good operator. To berome a member, one must be nominated by at last two operators who ahready bedong. General keving or voice technique, procedure, copping ability, judgment and courtesy all count in rating candidates under the clube rules dedaled at length in Operating an Amatear Ralio Station. Aim to make voursolf a fine operator, and one of these days you may be ploasantly surprised by an invitation to belong to the A-1 Operator Club, which carries a worth-while certificate in its own right.

Brass Pounders League

Every individual reporting more than a sperified minimum in official monthly tratfie totals is
given an honor place in the QST listing known as the Brass Pounders League and a certificate to recognize his performance is furnished by the SCM.

The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general public, make message-handling work of prime importance to the fraternity: Fun, enjoyment, and the fecling of having done something really worth while for ones fellows is accentuated by pride in message files, records, and letters from those served.

Old Timers Club

The Old Timers Club) is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or station) 20 -or-more years ago. Lapses in artivity during the intervening years are permitted.

If you can qualify as an "Old Timer," send us a brief chronology of your ham career, being sure to indicate the date of your first amateur lieense, and vour present call. If the evidence submitted proves you eligible for the (OTC, you will be added to the roster and will receive a membership certificate.

INVITATION

Amateur radio is eapable of giving enjoyment, self-training, social and organization bencfits: in proportion to what the individual amateur puts into his hobbe. All amatelars are invited to beoome ARRI, members, to work toward awards, and to accept the challenge and invitation offered in fiedd-organization appointments. Drop a line to ARRIRL. Headquarters for the booklet Operating an Amatcur Radio Station, which has detailed information on the field-organization appointments and awards. Aceept today the invitation to take full part in all League activities and organizat ion work.

530

- Operating an Amateur Radio Station covers the details of practical amateuroperating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, "Q" Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.
- Emergency Communications is the "bible" of the Amateur Radio Emergency Corps. Within its eight pages are contained the fundamentals of emergency communication which every amateur interested in public service work should know, including a complete diagrammatical plan adaptable for use in any community, explanation of the role of the American Red Cross and FCC's regulations concerning amateur operation in emergencies. The Radio Amateur Civil Emergency Service (RACES) comes in for special consideration, including a complete table of RACES frequencies on the front cover. If you don't already have an up-to-date copy of this manual, we suggest you take steps to obtain one immediately.

> The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

AMERICAN RADIO RELAY LEAGUE 38 La Salle Road West Hartford 7, Connecticut, U. S. A. Please send me, without charge, the following: OPERATING RN AMATEUR RADIO STATION EMERGENCY COMMUNICATIONS

Name
(Please Print)
Address

Miscellaneous Data

Q SIGNALS

Given below are a number of () signals whose manings most often need to be expressed with brevity and clearness in amateur work. (Q) abbreviations take the form of questions only when each is sent followed by a question mark.)

QRG Will you tell me my exact frequency (or that of........)? Your exact frequency (or that of.) is.ke.
QRII Does my frequency vary? Your frequency varies.
QRI Ilow is the tone of my transmission? The tone of your transmission is (1. Good; 2. Variable; 3. Bad).

QRK What is the readability of my signals (or those of)? The readability of your simnals (or those of.....) is. (1. Inreadable; 2. Readable now and then; 3. Readable but with difficulty: 4. Keadable; 5. Perfectly readable).
QRL Are you busy? I am busy (or I am busy with). Please do not interfere.
QRM Areyou being interfered with? I am interfered with.
QRN Arc you troubled by static? I am being troubled by static.
QRQ Shall I send faster? Send faster (. words per min.).
QRS Shal! I send more slowly? Send more slowly (. . . w.p.in.).

QRT Shall I stop sending? Stop sending.
QRU Ifave you any thing for me? I have nothing for you, QRV Are you ready? I am ready.
QRW Shall I tell.....that you are calling him on kc.? Please inform. . . . that 1 am calling him on.....kc.
QRX When will you call the again? I will call you again at. hours (on.ke.).
QRZ Who is calling me? You are being called by..... (on.ke.).
QSA What is the strength of my simnals (or those of)? 'lhe strength of your signals (or those of.....) is....... (1. searemy perceptible; 2 Weak; 3. F'airly good; 4, (iood; $\overline{5}$, Very good).
QSB Are my sipnals fading? Your wignals are fading.
QSD Is ny keying defective? Your keying is defective.
QSG Shall I send......messares at a tine? Send..... messages at a time.
QSL Can you acknowledge receipt? I an acknowledging reccipt.
QSM Shall I repeat the last messare which I sent you, or some previous message? Repeat the last message which you sent me [or message(s) number(s).].
QSO Can you communicate with. . . . direct or by relay? I can communicate with..... . direct (or by relay through.....).
QSP Will you relay to.....? I will relay to.....
QSV Shall I send a scries of V's on this frequency (or (o...ke.)? send a series of Vs on this frequency (or.ke.).
QSW Will you send on this frequency (or on....ke.)? I atm going to send on this freguency (or on ke.).
QSX

QSY Shall I change to transmission on another frequency? Change to transmission on another frequency (or on. . . . ke.).
QSZ Shall I send each word or group more than once? Send each word or group twice (or. . . .times).
QTA Shall I cancel message number.... as if it had not been sent? Cancei message number.....as if it had not been sent.
QTB Do you agree with my counting of words? I do not agree with your counting of words; I will repeat the first letter or digit of each word or group.
QTC Ilow many messages have you to send? I have. . . . messages for you (or for.).
QTII What is your location? My location is,....
QTR What is the exact time? The time is......
Special abbreviations adopted by ARIRI:
QST Gicneral call preceding a message addressed to all amatcurs and ARRI, members. This is in effeet "CQ ARRL."
QRRR Official ARRL "land SOS," A distress call for emerpency use only by a station in an emergency situation.

THE R-S-T SYSTEM READABILITY

1 - Linreadable.
2 - Barely readable, occasional words distinguishable.
3 - Readable with considerable difficulty.
4 - Readable with practically no difficulty.
5 - Perfectly readable.

SIGNAL STRENGTH

1 - Faint signals, barcly perceptible.
2 -Very weak signals.
$3-$ Weak signals.
4-Fair signals.
5 - Fairly good signals,
6-Ciool signals.
7 - Moderately strong signals.
8 - Strong signals.
9 - Extremely strong signals.

TONE

1 - Extremely rough hissing note.
2 - Very rough a.c. note, no trace of musicality.
3 - Rouch low-pitched a.c, note, slightly musical.
4 - Rather rough a.c, note, moderately musical.
5 - Musically-modulated note.
6 - Modulated note, slight trace of whistle,
7 - Near d,c. note, smooth ripple.
8 - Good d.c, note, just a trace of ripple.
9 - Purest d.c. note.
If the signal has the characteristic steadiness of erystal control, add the letter X to the RST report. If there is a chirn, the letter C may be added to so indicate. Similarly for a click, add K. The above reporting system is used on both c.w. and voice, leaving out the "tone" report on voice.

A．R．R．L．COUNTRIES LIST－Official List for ARRL DX Contest and the Postwar DXCC

AC3．．．．．．．．．．．．．．．．．．Sikkim	KC6 ．．．．Western Caroline Islands	VP5．．．．．．．Turks \＆Caicos Islands
AC4．．．．．．．．．．．．．．．．．．．Tibet	KG4 ．．．．．．．．．Guantanamo May	VP6．．．．．．．．．．．．．．．Barbados
AP＇．．．．．．．．．．．．．．．．．${ }^{\text {Pakistan }}$	KG6．．．．．．．．．．．Mariana Islands	VP7．．．．．．．．－Bahana Islands
BV，（C3）．．．．．．．．．．．．．．Formosa	l116．．．．．．．．．．．Hawailan Islands	V1P8 ．．．．．（See CLi7\％，WK1，LU－Z）
C（unofficial）．．．．．．．．．．．．China	K．J6．．．．．．．．．．．．．Johniston Island	V1P8．．．．．．．．．．．Fulkland Islands
C3．．．．．．．．．．．．．．．．（see BV）	KL7．．．．．．．．．．．．．．．．．Alaska	V1＇8．．．．．．．．．South（ieorgia
C9．．．．．．．．．．．．．．Manchuria	KM6．．．．．．．．．．．Midway lshands	VP8，LU－Z ．．．South Orkney Islands
CE．．．	KP4．．．．．．．．．．Puerto liveo	V18．．．．South sandwieh Islands
CLTK－，LU，VK1，V1＇8 ．．．Antaretica	liph．P＇almyra Giroup，Jarvis Island	V1P8，LU－\％．．．．Wouth Shetland Islands
CLy ．．．．．．．．．．．Laster lsland	KiR6．Ryukyu islands（ 6. g．，Okinawa）	V1P3．．．．．．．．．．Bermuda Islands
CM，CO．．．．．．．．．．．．．．．．．．Cuba	KS4．．．．．．．．．．．．．．．wan Island	VQ1．．．．．．．．．．．．．Zanzibar
CN2，KT1 ．．．．．．．．．Tangier \％onc	KS6．．．．．．．．．．．American Samoa	VQ2．．．．．．．；Northern Rhodesia
CN8．．．．．．．．．．．．Freneh Moroceo	KT1 ．．．．．．．．．．．．．（Sue（N2）	VQ3．．．．．．．Tanganyika Territory
CP．．．．．．．．．．．．．．．．Bolivia	KV4．．．．．．．．．．．．．Virgin Islands	VQ4．．．．．．．．．．．．．．．．．Kenya
CR4．．．．．．．．Cape Verde lslands	liW6．．．．．．．．．．．．．Wake Island	
CRD．．．．．．．．．Portuguese Guinea	KX6．．．．．．．．．．Marshall lislands	V84．．．．．．．．．Mritish Somaliland
CR̄̄．．．．．．．．．Principe，sao thome	К\％5．．．．．．．．．．．．．．．．．．．（anal \％one	V）8 ．．．．．．．．．．Chagos Islands
CR6．．．．．．．．．．．．．Angola	LA，LB ．．．．．．．．．．．Jan Mayen	VQ8 ．．．．．．．．．．．．．．．Mauritius
Cl27．．．．．．．．．．Mozambique	LA，LB ．．．．．．．．．Norway	VQ9．．．．．．．．．．Seyrdiclies
C128．．．．．．．Goa（Portuguese India）	LA，LB ．．．．Svalbard（Spitzbergen）	VR1．．．．．．．Gilbert \＆Ellice Islands
CR9．．．．．．．．．．．．．．．Macau	LU ．．．．．．．．．－iro Argentina	
CR10．．．．．．．．．．．Portuguese Timor	1，1－\％．．．．．（sec（127\％－－Vlil．VP8）	VR1 ．．．．．．British Phoenix Islands
CT1．．．．．．．．．．．．．．．Portugal	LX ．．．．．．．．．．．．．．Luxenibourg	VR2 ．．．．．．．．．．．．．．Fiji Islands
CT2 ．．．．．．．．．．．Azores Islands	L\％．．．．．．．．．．．．．．．．Bulgaria	VR33 ．．．．．．．．．．．Fanning Island
CT3 ．．．．．．．．．．Madcira Islands	M1．．．．．．．．．．．．．．．Sun Marino	（Christmas Island）
CX．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	MB9 ．．．．．．．．．．．．．．（See OL）	VR4．．．．．．．．．．A Solomon Islands
DJ，DL，DM ．．．．．．Germany	MP4．．．．．．．．．．．Bahrein Island	VR5．．．．．．Tonga（Friendly）Islands
DU．．．．．．．．．Philippine Islunds	MP4．．．．．．．．．．．．．．．．Kıwait	V126．．．．．．．．．．．．Pitcairn Islund
EA．．．．．．．．．．．．．．．．．．．．．Spain	MP4．．．．．．．．．．．．．．．．．．．．（2atar	Vs ．．．．．．．．．．．．．．．．Singapore
EA6．．．．．．．．．．．．．．．Balearic Islands	MP4．．．．．．．．．．．．Trucial Ornan	VS2 ．．．．．．．．．．．．．．．．Malaya
EA8 ．．．．．．．．．．．．（anary Islands	MS4．．．．．．．．．．．．．．．．．．．．．．．（Sce 15）	VSt ．．．．．．．．．．．．．．．．Sarawak
EA9．．．．．．．．．．．．．．．．．．Ifni	OA．．．．．．．．．．．．．．．．．．．${ }^{\text {Peru }}$	Viss ．．．．．．．．．．．．．．．．．．Brunei
EA9 ．．．．．．．．．．．．．${ }^{\text {dio de Oro }}$	OD5．．．．．．．．．．．．．．．．．Lebanon	V86．．．．．．．．．．．．．．．． Itong Kong
EA9．．．．．．．．．．．．Spanish Morocco	OE，MB9，FKiS8 ．．．．．．．．．Austria	VS！．．．．．．．．．．．．Aden \＆Socotra
EAV．．．．．．．．．．．Spanish Guinea	O1！．．．．．．．．．．．．．．．Finland	VS9．．．．．．．．．．．Maldive Islands
EL．．．．．．．．．．．Republie of Ircland	OK．．．．．．．．．．．．．．（zerhoslovakia	Vsy．．．．．．．．．Sultanate of Oman
EL．．．．．．．．．．．．．．．．．．．Liberia	ON4．．．．．．．．．．．．．．．．．Belginm	VL2 ．．．．．．．．．．．．．．．．．．India
EQ ．．．．．．．．．．．．． Iran（Persia）	OQ5，6．．．．．．．．．．．．．Belgian Congo	VLU ．．．．．．．．．．．atacadive Islands
ET2 ．．．．．．．．．．．．．．．．Eritrea	OX．．．．．．．．．．．．．．．．．．．（ireenland	YLi）．Andanan and Nicobar Islands
E13 ．．．．．．．．．．．．．．．Ethiopia	OY ．．．．．．．．．．．．．．．Facroes	XL：．．．．．．．．．．．．．．．．．．Mexico
F．．．．．．．．．．．．．．．．．．．．．．France	OZ ．．．．．．．．．．．．．．．．． I mmark	X\％．．．．．．．．．．．．．．．．．．．．．．．．Burma
	PAD．．．．．．．．．Netherlands	Y．．．．．．．．．．．．．．．．Afghanistan
FB8．Amsterdam \＆St．I＇uul Islands	PJ2．．．．Netherlands West Indies	Y1．．．．．．．．．．．．．．．．．．Irad
FB8．．．．．．．．．．．Vierguclen Islands	P1i，2，3．．．．．．．．．．．．．．．．．．．．lava	YJ．．．．．．．．．．．．．．．．．（see FC8）
FB8．．．．．．．．．．．．．．Madagascar		Yi．．．．．．．．．．．．．．．．．．．syria
FC ．．．．．．．．．．．．．．．．Corsica	Plis．．．．．．．．Netherlands Borneo	YN ．．．．．．．．．．．．．．．Nicaragua
FD．．．．．．．French Togoland	PK6．．．Celebes \＆Molueca Islands	YO．．．．．．．．．．．．．．Roumania
FE8．．．．．．．．French Cameroons	PX．．．．．．．．．．．．．．Andorra	IS．．．．．．．．．．．．．．．．．Salvador
FF8．．．．．．．．．．．．French West Africa	PY．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {arazil }}$	Y＇lu ．．．．．．．．．．．．．．Yugoslavia
FG．．．．．．．．．．．．．．．Guadeloupe	PZ1 ．．．．．．．Nctherlands Guiana	YV ．．．．．．．．．．．．．．．．．Venezueh
F18．．．．．．．．．French Indo－China	SM1．．．．．．．．．．．．．．．．．．．．．．sweden	ZA． Albania
FK8．．．．．．．．．．．．New Caledonia	SP ．．．．．．．．．．．．．．．．．Poland	2131．．．．．．．．．．．．．．．．Malta
FKS8．．．．．．．． （See OE）	ST ．．．．．．．Anglo－Egyptian Sudan	Z132．．．．．．．．．．．．．．．．．．．Gibraltar
FL8．．．．．．．．．French Somaliland	SU ．．．．．．．．．．．．．．．．Egypt	ZC2．．．．．．．．．．．．．．．．．．．．．（sce VK1）
FM ．．．．．．．．．．．．Martinique	SV ．．．．．．．．．．．．．．．．．．	ZC3 ．．．．．．．．．Christmas Island
FN ．．．．．．．．．．．．．．French India	SV ．．．．．．．．．．．．．．．．．Crete	ZC4 ．．．．．．．．．．．．．（yprus
F08．．．．．．．．Clipperton Island	SV．．．．．．iodecanese（e．g．，Jhodes）	ZC5．．．．．．．．Ibritish North liorneo
F08．．．French Oceania（e．g．，Tahiti）	TA．．．．．．．．．．．．．．．Turkey	\％C6．．．．．．．．．．．．．．．．．I＇alestine
F18．．St．Pierre \＆Miquelon Islands	TF ．．．．．．．．．．．．．．．．．leeland	
FQ8．．．．．．Freneh Equatorial Africa	TG．．．．．．．．．．．．．．．．．Guatemala	KI11．．．．．．．．．．．．．．．．sierra Leone
F17．．．．．．．．．．Reunion Island	TL ．．．．．．．．．．．．．Costa Jica	Y／12 ．．．．．．．．．．．．．．．．．Nigeria
FU8，Y．J．．．．．．．．New Hebrides	T19．．．．．．．．．．．．．．．．（ocoss Ishand	Zı3 ．．．．．．．．．．．．．． Gambia $^{\text {a }}$
FY7．．．．．French Guiana \＆Inini	UA1，3，4，6．．．．．．Muroncan Russian	ZI）4．．．．．．．Gold Coast，Togoland
G．．．．．．．．．．．．．．．．．．．．．lingland	Socialist Foderated sovict Republic	Z116．．．．．．．．．．．．．．Nyasaland
G $C^{\text {C．．．．．．．．．．．．}}$ Channel Islands	UA9，0．．．．Asiatic Russian S．F．S．R．	\％，1）7．．．．．．．．．．．．．．sit．Itelena
（i）．．．．．．．．．．．．．．Isle of Man	UB5̄．．．．．．．．．．．．．．．．l＇kraine	ZD8．．．．．．．．．．．．．．Ascension Island
GI ．．．．．．．．．．Northern Ireland	UC2 ．．．．．．．White kussian Soviet	\％D9 ．．．．．．．． Iristan da（unia \＆
GM．．．．．．．．．．．．．．．．．scotland	U2．．．．．．Socialist Republic	Giough Islands
GW．．．．．．．．．．．．．．．．．．．．Wales	UD6 ．．．．．．．．．．．．．．Azerbaijan	ZE ．．．．．．．．．．．Southern Khodesia
11A．．．．．．．．．．．．．．．．．Hungary	UF6．．．．．．．．．．．．．．．． （ieorgia	ZK1．．．．．．．．．．．．．Cook Islunds
MBL，9．．．．．．．．．．．．．．．Switzerland	UG6．．．．．．．．．．．．．．．．．．．Armenia	ZK゙2 ．．．．．．．．．．．．．．．．．．．．．．．Niuc
HC．．．．．．．．．．．．．． Euador	1118．．．．．．．．．．．．．．．．．．．．lurkonian	KL ．．．．．．．．．．New Zealand
HC8 ．．．．．．．．．Galapagos Islands	L18．．．．．．．．．．．．．．．．．Czabek	ZMi6 ．．．．．．．．．．．．British Sanoa
HE．．．．．．．．．．．．．．Leichtenstein	L．J8．．．．．．．．．．．．．．．．Tadzhik	Zat ．．．．．Tokelau（L＇nion）Islands
III ．．．．．．．．．．．．．．Maiti	U17．．．．．．．．．．．．．．Mazakh	ZP＇．．．．．．．．．．．．．．．．Paraguay
III ．．．．．．．．．Dominican Republic	UN8 ．．．Garclo－Finnish Remblic	ZSi，2，4，5，6．Union of South Africa
HK日．．Archipelago of San Andres	UOS ．．．．．．Karcio－Finnish repharic	ZS2．．．．．．．．．．．．．Marion Island
Kb．．．Archipelago and Providencia	U12．．．．．．．．．．．．．．．．．．．Lithuania	ZS3．3 ．．．．．．．．．．．Southwest Africa
HL．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {corea }}$	UQ2 ．．．．．．．．．．．．．．．．．	ZS7 ．．．．．．．．．．．．．．．．．swazziland
HP ．．．．．．．．．．．．．．．．．．I＇anama	U122 ．．．．．．．．．．．．．．．．．．．．．．istonia	ZS8 ．．．．．．．．．．．．．．．．Basutoland
Hit．．．．．．．．．．．．．．．． Honduras	VE，VO ．．．．．．．．．Canada	ZS9 ．．．．．．．．．．．．．．Bechuanaland
HS ．．．．．．．．．．．．．．．．．．．．Siaun	Vk．Atstralia（including Tasmania）	3A．．．．．．．．．．．．．．．．．．．．．Monaco
IV ．．．．．．．．．．．Vatican City	VK1 ．．（Ser（1：\％\％－，LU－Z，V1＇8）	3V8 ．．．．．．．．．．．．．．．．．Tunisia
HZ．．Saudi Arabia（Iledjaz \＆Nejd）．	YK1，\％C2．．．．．．．．Cocos Island	4，7 ．．．．．．．．．．．．．．．．．．．．．． Ceyton
I1．．．．．．．．．．．．．．．．．．．．．．．．．italy	V11．．．．．．．．．．．．．．Heard Island	4W1．．．．．．．．．．．．．．．．．．yemen
	VK1．．．．．．．Mactuarie Ieland	4X4 ．．．．．．．．．．．．．．．．．．．．．．． Israel
15，MS4 ．．．．．．Italian Somaliand	VK！．．．．．．．．．．Norfolk Istand	
IS1 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	Vk！．．．．．．．．．．．．．．．．Papua Territory	5．1 ．．．．．．．．．．．．．．．．．．．Nabrar
JA，ㄴ．．	VK！！．Territory of New（auinea	Qsi ．．．．．．．．．．．．．．Albadra Islands
JY，ZC7．．．．．．．．Jordan	Vo．．．．．．．．．．．．．．．．．．．．．．eve（se）	Ab．a．．．Bhutan
J\％w．．．．．．．Netherlands New Guinea	V1P1．．．．．．．．．．．．．．．．．．．．．．．	．．．．．．．．．．Comoro Islands
K．W．．．．lnited states of America	V12．．．．．．．．．．．Leeward Islands	Fridijof Nansen Land
KA KA日 Bonin \＆Volcano Islands	VP2 ．．．．．．．．Windward Islands	（Franz Josef Land）
KB6．．．Baker，Howland \＆American	V13．．．．．．．．．．．．．British Guiana	．．．．．．．．．Mongolia
Phoenix Islands	VP＇4．．．．．．．．．．．Trinidad di＇lobago	．Nepal
KC4 ．．．．．．．．．．．．Navassa Island	Vrs ．．．．．．．．．．．Cayman Islands	Tannu Tuva
KC6．．．．．．Eastern Caroline Islands	VP5．．．．．．．．．．．．．．．．．．Jamaica	Wrangel Islands

INTERNATIONAL PREFIXES

AAA－ALZ
AMA－AOZ
APA－ASZ
ATA－AWZ
AXA－AXZ
A1A－AZZ
BAA－BZZ
CAA－CEZ
CFA－CKZ
CLA－CMZ
CNA－CNZ
COA－COZ
CPA－CPZ
CQA－CRZ
CSA－CLZ
CVA－CXZ
CYA－CZZ
DAA－1）MZ
INNA－DQZ
I）RA－DT＇
1）LA－DZZ
b：AA－EHZ
EIA－EJZ
EKA－EK2
ELA－ELZ
LIMA－EOZ
EPA－EQZ
ERA－ERZ
ESA－ES\％
1：TA－ETZ
LCA－EZZ
FAA－FZZ
（iAA－GZZ
HAA－HAZ
11BA－11B
11CA－HDZ
HEA－HEZ
HFA－11FZ
11（iA－HGZ
1111A－H11Z
H1A－HI\％
HJA－11KZ
11LA－11MZ
IINA－HNZ
110A－11P＇
HQA－HR2
HSA－11SZ
11PA－HTZ
IIVA－HVZ Vatican City State
HZA－HZZ
IAA－1ZZ
JAA－JS\％
JTA－JVZ
JWA－JXZ
JリカーJZ
JZA－JZZ
KAA－KZZ
LAA－LNZ
LOA－LW\％
LXA－LXZ
LYA－LYZ
L／A－LZ\％
MAA－MZZ
NAA－N\％\％
OAA－OCZ
OIDA－OIZ
OEA－OEZ
OFA－OJZ
OKA－OMZ
ONA－OTZ
OL゙A－OZ\％
PAA－PIZ
PJA－PJZ
PKA－POZ
PPA－PYZ
P＇A－P＇ZZ
QAA－QZZ
SAA－SMZ

HCA－HCZ Republic of Ell Salvador
HWA－HYZ France and Colonies and Protectorates

RAA－RZZ Union of Soviet Socialist Republics
United States of America
Spain
Pakistan
India
Commonwealth of Australia
Argentina Republic
China
Chile
Canada
Cuba
Moroceo
Cuba
Bolivia
Portuguese Colonies
Portugal
Cruguay
Canada
Germany
Belgian（ongo
Bielurussian Sovict Socialist Republic
Republie of the I＇hilippines
Spain
I reland
Uniun of Soviet Socialist Republies
Rejublic of Liberia
Cnion of Soviet Sorialist Republies
Iran
Lnion of Soviet Socialist Republirs
Eistonia
Ethiopia
Cnion of suriet Socialist Republics
France and Colonies and Protertorates
Great Britain
Hungary
Switzerland
Lcuador
Switzorland
Poland
Hungary
Republic of Ilaiti
Dominican Republic
Rejublie of Colombia
Korea
Iralı
Republic of Panama
Republic of Ilonduras
Siam

Kingdom of Saudi Arabia
Italy and Colonies
Japan
Mongolian Pcople＇s Reputhlic
Norway
Hashimite Kingdom of Jordan
Netherlunds New Guinea
C＇nited States of America
Norway
Argentina Republic
Luxembourg
Lithuania
Bulgaria
Great Britain
United States of America
Peru
Republic of Lebanon
Austria
Finland
Czechoslovakia
Belgium and Colonics
Demnark
Netherlands
Curacao
Netherlands Indies
Brazil
Surinam
（Service abbreviations）
Sweden

SNA－SRZ Poland
SSA－SCZ Egypt
SVA－s\％\％Greece
TAA－TCZ Turkey
TDA－TDZ Guatemala
TEA－TL：Z Costa Rica
TFA－TF＇leclund
TGA－TGZ Guatemala
THA－THZ France and Colonics and Protertorates
MA－TIZ CostalRica
TJA－T＇Z\％France and Colonies and I＇rotectorates
CAA－CQZ Union of soviet socialist Republics
CRA－UTZ Ukrainian Sovict Somialist Republic
CUA－UZZ Union of Sovirt Socialist Republics
vaA－vGZ Canada
VHA－VNZ Commonwealth of Australia
COA－VOZ Newfoundland
VPA－VSZ British Colonics and Protectorates
YTA－VWZ India
TXA－VYZ Canada
VZA－VZZ Commonwealth of Australin
WAA－WZ\％C゙nited States of America
XAA－XI\％Mexico
XJA－XOZ Canada
XPA－XPZ Denmark
XQA－XRK Chile
XSA－N®\％China
XCA－Xじ\％Cambodia
XVA－XVZ Viet－Nam
XWA－XWZ Lats
$\mathrm{XXA}-\mathrm{XX} \%$ Portugurse Colunies
XYA－XZ\％Burma
VAd－1AZ Afghanistan
YBA－YII\％Indunesia
CIA－Y゙I\％Iray
CJA－YJZ New Hebrides
VKA－YKZ Syria
MLA－ILZ Latvia
MMA－IM\％Turkey
CNA－1＇N\％Niearagua
IOA－113\％Roumania
YSA－Is\％Republic of I：l Salvador
「TA－1゚C＂Z lugosalvia
VVA－YY\％Venezuela
YZA－YZZ Yugoslavia
ZAA－ZAZ Albunia
ZBA－ZJ\％British Colonies and Protectorates
ZKA－ZM\％New Zealand
ZNA－ZOZ British Colonies and Protectorates
ZPA－Z1＇Z Paraguay
ZQA－ZQ\％British Colonies and Protectorates
ZRA－ZUZ Union of South Africa
ZVA－ZZZ Brazil
2AA－2ZZ Great Britain
3AA－3AZ Principality of Monaco
3BA－3F\％Canada
3GA－3G\％Chile
311A－3UZ China
3VA－3VZ Tunisia
3WA－3WZ Viet－Nam
3YA－Cl＇Z Norway
3ZA－3Z\％Poland
4AA－4CZ Mexico
4DA－4I\％Republic of the Philippines
4JA－4L\％Union of Soviet Socialist Republics
4NA－4M\％Venezucla
4NA－4OZ Vugoslavia
4PA－4S\％Ccylon
4TA－4＇TZ Perı
4 UA 4 LZ United Nations
$4 \mathrm{VA}-4 \mathrm{~V} Z \quad$ Republic of Haiti
4WA－4WZ Yemen
4NA－4XZ Israel
4YA－4YZ International Civil Aviation Organization
5AA－idZ Libya
5CA－i）CZ Moroceo
6AA－6ZZ（Not allocated）
7AA－7KZ（Not allocated）
8AA－8ZZ（Not allocated）
9AA－9AZ San Marino
9NA－9NZ Nepal
9SA－9S\％Saar

INDUCTANCE, CAPACITANCE AND FREQUENCY CHART - 1.5-40 MC.

This chart may he used to find the values of inductance and capacitance required to resonate at any given fre. quency in the medium- or high-freruency ranges; or, conversely, to find the frequency to which any given coilcondenser combination will tune. In the example shown by the dashed lincs, a condenser has a mininum capacitance of $15 \mu \mu \mathrm{fd}$. and a maximum capacitance of $50 \mu \mu \mathrm{fd}$. If it is to be used with a coil of $10 \cdot \mu \mathrm{~h}$. inductance, what frequency range will be covered? The straightedge is connected between 10 on the left hand scale and 15 on the right, giving 13 Mc. as the high-frequency limit. Keeping the straightedge at 10 on the left-hand scale, the other end is swung to 50 on the right-hand scalc, giving a low-frequency limit of 7.1 Mc. The tuning range would, therefore, be from 7.1 Mc. to 13 Mc., or 7100 kc . to $13,000 \mathrm{kc}$. The center scale also serves to convert freguency to wavelength.

The range of the chart can be extended by multiplying each of the scales by 0.1 or 10 . In the example above, if the capacitances are 150 and $500 \mu \mu \mathrm{fd}$. and the inductance $100 \mu \mathrm{~h}$., the range bcomes approximately 231 to 122 meters or 0.7 to 1.3 Mc , Alternatively, 1.5 to $5 \mu \mu \mathrm{fd}$. and $1 \mu \mathrm{~h}$. will give a range of approximately 71 to 130 Mc .

THE DECIBEL

In most radio communication the received signal is converted into sound. This being the case, it is useful to appraise signal strengths in terms of relative loudness as ragistered by the ear. A peculiarity of the ear is that an increase

or decrease in loudness is responsive to the ratio of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" When the transmitter power is increased from 10 watts to 40 watts, he will also estimate that a 400 -watt signal is twice as loud as a 100 -watt signal. In other words, the human car has a logarithmic response.

This fact is the basis for the use of the relative-power unit called the decibel. I change of one decibel (abbreviated db.) in the power level is just detectable as a change in loudness under ideal conditions. The power ratio and decibels are related by the following formula:

$$
D b .=10 \log \frac{P_{2}}{P_{1}}
$$

Common logarithms (base 10) are used.
Note that the decibel is based on power ratios. Voltage or current ratios can be used, but only when the imperlance is the same for both values of vollage, or current. The gain of an amplifier cannot be expressed correctly in db. if it is based on the ratio of the output voltage to the input voltage unless both voltages are measured across the same value of impedance. When the impedance at both points of measurement is the same, the following formula may be used for voltage or current ratios:

$$
\begin{gathered}
\text { Db. }=20 \log \frac{V_{2}}{\Gamma_{1}} \\
\text { or } 20 \log \frac{I_{2}}{I_{1}}
\end{gathered}
$$

The two formulas are shown graphically in the accompanying chart for ratios from 1 to 10 .

Gains (increases) expressed in decibels may be added arithmetically; losses (decreases) may be subtracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 db . means that the power has been multiplied by 4 , while -6 db . means that the power has been divided by 4 . The chart may be used for other ratios by adding (or subtracting, if a loss) $\mathbf{1 0}$ db, each time the ratio scate is multiplied by 10 , for power ratios; or by adding (or subtracting) 20 db . each time the scale is multiplied by 10 for voltage or current ratios.

VOLTAGE DECAY IN RC CIRCUITS

The accompanying chart enables calculation of the instantaneous voltage across the termi-

nals of a conclenser discharging through a resistance. The voltage is given in terms of percentage of the voltage to which the condenser is initially charged. To obtain the voltage-decay time in seconds, multiply the factor ($\ell / C R$) by the time constant of the re-sistor-condenser circuit.

Example: A $0.01-\mu \mathrm{dd}$. condenser is charged to 150 volts and then allowed to discharge through a $0.1-\mathrm{megohm}$ resistor. How long will it take the voltage to fall to 10 volts? In percentage, $10 / 150=6.7 \%$. From the chart, the factor corresponding to 6.7% is 2.7 . The time constant of the circuit is equal to $C R=0.01 \times 0.1=0.001$. The time is therefore $2.7 \times 0.001=0.0027$ second, or 2.7 milliseconds.

Example: An RC circuit is desired in which the voltage will fall to 50% of the initial value in 0.1 second. From the chart, $t C R=0.7$ at the $50 \% / \%$-voltage point. Therefore ${ }^{\prime} R=t / 0.7=0.1 / 0.7=1.43$. Any combination of resistance and capacitance whose product (R in megohms and C in microfarads) is equal to 1.4 is can be used; for example, C could be $1 \mu \mathrm{fd}$. and $R 1.43$ megohms.

GREEK ALPHABET					
Greek Letter	Greek Name	English Equivalent	Greek Letter	Greek liame	English Equivalent
A a	Alpha	a	$\mathrm{N} \nu$	Nu	n
B β	Beta	b	$\Xi \xi$	Xi	x
$I^{\prime} \gamma$	Camma	g	0 O	Omicron	\bigcirc
$\Delta \delta$	Delta	d	11π	Pi	p
$\mathrm{E} \in$	lipsilon	e	Po	Rho	r
\% $\%$	Yata	2	$\stackrel{\text { ® }}{ }$	Sigmat	s
117	Jta	é	T ${ }^{\text {T }}$	Tau	t
$\theta \theta$	Thetie	th	¢	Upsilon	u
1.	Iota	i	中 ϕ	Phi	ph
K к	Kıppa	k	$\mathrm{X} \times$	Chi	ch
$\wedge \lambda$	Lambla Mu	1 m	$\Psi \psi$ $\Omega \omega$	Psi Omega	$\overline{1}_{\bar{o}}^{1 s}$
M μ		m	$\Omega 2$	Omega	0

COPPER-WIRE TABLE

Gauge No. B. \& S.	$\begin{aligned} & \text { Diam. } \\ & \text { in } \\ & \text { Mils } \end{aligned}$	$\begin{aligned} & \text { Circulnr } \\ & \text { Mil } \\ & \text { Area } \end{aligned}$	Turns per Linear Inch ${ }^{2}$				Turns per Square Inch ${ }^{2}$			Feet per Lb.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{fl} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current Carryino Capacily ${ }^{3}$ at 700 C.M. per Amp.	Diam. in mm .	Nearest British S.W.G. No.
			Enamel	S.S.C. ${ }^{4}$	$\begin{gathered} \text { D.S.C. }{ }^{5} \\ o r \\ \text { S.C.C. } \end{gathered}$	D.C.C. ${ }^{7}$	S.C.C.	Enamel S.C.C.	D.C.C.	Bare	D.C.C.				
1	289.3	83690	-	-	-	-	-	-	-	3.947	-	. 1264	119.6	7.348	1
2	257.6	66370	-	-	-	-	-	-	-	4.977	-	. 1593	94.8	6.544	3
3	229.4	52640	-	-	-	-	-	-	-	6.276	-	. 2009	75.2	5.827	4
4	204.3	41740	-	-	-	-	-	-	-	7.914	-	. 2533	59.6	5. 189	5
5	181.9	33100	-	-	-	-	-	-	-	9.980	-	. 3195	47.3	4.621	7
6	162.0	26250	-	-	-	-	-	-	-	12.58	-	. 4028	37.5	4.115	8
7	144.3	20820	-	-	-	-	-	-	-	15.87	-	. 5080	29.7	3.665	9
8	128.5	16510	7.6	-	7.4	7.1	-	-	-	20.01	19.6	. 6405	23.6	3.264	10
9	114.4	13090	8.6	-	8.2	7.8	-	-	-	25.23	24.6	. 8077	18.7	2.906	11
10	101.9	10380	9.6	-	9.3	8.9	87.5	84.8	80.0	31.82	30.9	1.018	14.8	2.588	12
11	90.74	8234	10.7	-	10.3	9.8	110	105	97.5	40.12	38.8	1.284	11.8	2.305	13
12	80.81	6530	12.0	-	11.5	10.9	136	131	121	50.59	48.9	1.619	9.33	2.053	14
13	71.96	- 8178	13.5	-	12.8	12.0	170	162	150	63.80	61.5	2.042	7.40	1.828	15
14	64.08	4107	15.0	-	14.2	13.8	211	198	183	80.44	77.3	2.575	5.87	1.628	16
15	57.07	3257	16.8	-	15.8	14.7	262	250	223	101.4	97.3	3.247	4.65	1.450	17
16	50.82	2583	18.9	18.9	17.9	16.4	321	306	271	127.9	119	4.094	3.69	1.291	18
17	45.26	2048	21.2	21.2	19.9	18.1	307	372	329	161.3	150	5.163	2.93	1.150	18
18	40.30	1624	23.6	23.6	22.0	19.8	493	454	399	203.4	188	6.510	2.32	1.024	19
19	35.89	1288	26.4	26.4	24.4	21.8	592	5.53	479	256.5	237	8.210	1.84	. 9116	20
20	31.96	1022	29.4	29.4	27.0	23.8	775	725	625	323.4	298	10.35	1.46	. 8118	21
21	28.46	810.1	33.1	32.7	29.8	26.0	940	80%	754	407.8	370	13.05	1.16	. 7230	22
22	25.35	642.4	37.0	36.5	34.1	30.0	1150	1070	910	514.2	461	16.46	. 918	. 6438	23
23	22.57	509.5	41.3	40.6	37.6	31.6	1400	1300	1080	648.4	584	20.76	. 728	. 5733	24
24	20.10	404.0	46.3	45.3	41.5	35.6	1700	1570	1260	817.7	745	26.17	. 577	. 5106	25
25	17.90	320.4	51.7	50.4	$4 \overline{4} .6$	38.6	2060	1910	1510	1031	903	33.00	. 478	. 4547	26
26	15.94	254.1	58.0	58.6	30.2	41.8	25000	2300	17.50	1300	1118	41.62	. 363	. 4049	27
27	14.20	201.5	64.9	61.5	\%is. 0	45.0	30.30	2780	2020	16.39	1422	52.48	. 288	. 3606	29
28	12.64	159.8	72.7	68.6	6if. 2	48.5	3670	3350	2310	2067	1759	66.17	. 228	. 3211	30
29	11.26	126.7	81.6	74.8	65.4	51.8	4300	3400	2700	2007	2207	83.44	. 181	. 2859	31
30	10.03	100.5	90.5	83.3	71.5	55.5	5040	4660	3020	3287	2534	105.2	. 144	. 2546	33
31	8.928	79.70	101	92.0	77.5	59.2	5920	5280	-	4145	2768	132.7	. 114	. 2268	34
32	7.950	63.21	113	101	83.6	62.6	7060	6250	-	5227	3137	167.3	. 090	. 2019	36
33	7.080	50.13	127	110	90.3	66.3	8120	7360	-	6591	4697	211.0	. 072	. 1798	37
34	6.305	39.75	143	120	97.0	70.0	9600	8310	-	8310	6168	266.0	. 0.57	. 1601	38
35	5.615	31.52	158	132	104	73.5	10900	8700	-	10480	6737	335.0	. 045	. 1426	38-39
36	5.000	25.00	175	143	111	77.0	12200	10700	-	13210	7877	423.0	. 036	. 1270	39-40
37	4.453	19.83	108	154	118	80.3	,	-	-	16660	9309	533.4	. 028	. 1131	41
38	3.965	15.72	224	166	126	83.6	-	-	-	21010	10666	672.6	. 022	. 1007	42
39	3.531	12.47	248	181	133	86.6	-	-	-	26:00	11907	848.1	. 018	. 0897	43
40	3.145	9.88	282	194	140	89.7	-	-	-	33410	14222	1069	. 014	. 0799	44

${ }^{1}$ A mil is $1 / 1000$ (one-thousandth) of an inch. ${ }^{2}$ The figures given are approximate only. since the thickness of the insulation varies with different manufacturers. ${ }^{3} 700$ circular mils per ampere is a satisfactory design figure for small transformers, but values from 500 to $1000 \mathrm{C} . \mathrm{M}$. arc commonly used. For 1000 C . M./amp. divide the circular mil arca (third column) by 1000 ; for $500 \mathrm{C}, \mathrm{M}$./amp. divide circular mil area by 500 . ${ }^{4}$ Single silk-covered. ${ }^{5}$ Double silk-covered. ${ }^{6}$ Single cotton-covered. ${ }^{7}$ Double cotton-covered.

- FILTERS

The filter sections shown on the facing page can be used alone or, if greater attenuation and sharper cut-off are required, several sections can be connected in series. In the low- and high-pass filters, f_{c} represents the cut-off frequency, the highest (for the low-pass) or the lowest (for the high-pass) frequency transmitted without attenuation. In the bandpassfilter designs, f_{1} is the low-frequency cut-off and f_{2} the high-frequency cut-off. The units for L, C, R and f are henrys, far:uds, ohms and cycles, respectively.

All of the types shown are for use in an unbalanced line (one side grounded), and thus they are suitable for use in coaxial line or any other unbalaned rircuit. To transform them for use in balanced lines (e.g., 300 -ohm transmission line, or push-pull audio circuits), the series reactances should be equally divided between the two legs. Thus the balanced con-stant- k π-section low-pass filter would use two inductances of a value equal to $L_{k} / 2$, while the balanced constant-k π-section high-pass filter would use two condensers of a value equal to $2 C_{4}$.

If several low- (or high-) pass sections are to be used, it is advisable to use m-derived end sections on cither side of a constant- k center section, although an m-derived center seretion can be used. The factor m relates the ratio of the cutoff frequeney f_{c} and f_{∞}, a frequency of high attenuation. Where only one m-derived section is used, a value of 0.6 is generally used for m, although a deviation of 10 or 15 per cent from this value is not too serious in amateur work. For a value of $m=0.6, f_{x}$ will be $1.25 f_{c}$ for the low-pass filter and $0.8 f_{\mathrm{c}}$ for the high-pass filter. Other values can be found from
$m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2}}$ for the low-pass filter and $m=\sqrt{1-\left(\frac{f_{x}}{f_{c}}\right)^{2}}$ for the high-pass filter

The filters shown should be terminated in a resistance $=R$, and there should be little or no reactive component in the termination.

Simple audio filters can be made with pow-dered-iron-core chokes and paper condensers. Sharper cut-off characteristics will be obtained with more sections. The values of the components can vary by $\pm 5 \%$ with little or no redurtion in performance. The more sections there are to a filter the greater is the need for accuracy in the values of the components. High-performance audio filters can be built with only two sections by winding the inductances on toroidial powdered-iron forms - it generally takes three sections to obtain the same results when using other inductances.

Sidehand filters are usually designed to operate in the range 10 to 20 kc . Their attenuation requirements are such that usually at
least a five-section filter is required. The coils should be as high- Q as possible, and mica condensers are the most suitable eapacitors.

Low-pass and high-pass filters for harmonic suppression and receiver-overload prevention in the television frequencies range are usually made with self-supporting coils and mica or ceramic condensers, depending upon the power requirements.

In any filter, there should be no magnetic or capacity coupling between sections of the filter unless the design specifically calls for it. This requirement makes it necessary to shield the coils from each other in some applications, or to mount them at right angles to each other.

Further information on filter design can be found in the following articles:
Bennett, "Audio Filters for Eliminating QRM," QST, July, 1949.
Berry, "Filter Design for the Single-Sideband Transmitter," QST, June, 1949.
Buchheim, "Low-Pass Audio Filters," QST', July, 1948.
Grammer, "Pointers on llarmonic Reduction," QST', April, 1949; "IIigh-Pass Filters for 'TVI Reduction," QS'T, May, 1949.
Mann, "An Inexpensive Sidebind Filter," Qs'T, March, 1949.
Rand, "The Little Slugger," QS"I', February, 1919.

Smith, "Premodulation Speech Clipping and Filtering," (QST, February, 1916; "More on Speech Clipping," QST', Xarch, 1947.

- TUNED-CIRCUIT RESPONSE

The graph below gives the response and phase angle of a high-Q parallel-tuned circuit.

Circuit Q is equal to

$$
2 \pi f R C \text { or } \frac{R}{2 \pi f L}
$$

where L and C are the inductance and capacitance at the resonant frequency, f, and R is the parallel resistance across the circuit. The curves above become more accurate as the circuit Q is higher, but the error is not especially great for values as low as $Q=10$.

In the above formulas R is in ohms, C in farads, L in henrys, and f in eyeles per second.

INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

FREQUENCY
Hy wise of the chart atove, the approximate reactance of anv rapacitance from $1.0 \mu \mu \mathrm{fl}$. to $10 \mu \mathrm{ffl}$, at any frequeney from loo eycles to 100 megacyeles, or the reatance of any indurtance from $0.1 \mu h$. (on l.0 henrs, wan be read directly. Intermediate values ran be estimatell by interpolation. In mahims interpolations, remember that the rate of ehange between lines is logarithmic. Use the frequency or reactance scales as a guide in estimating intermediate values on the capacitance or inductance meales.

This chart also can be used to find the approximate resonance frequencies of Id combinations, or the frequency to which a given coil-and-comelenser eombination will tune. First locate the respertive slanting lines for the rapacitance and inductance. 'The point where thry intersect, i.e., where the reactances are equal, is the resonant frequcney (projected downward and read on the frequency scale).

ELECTRICAL CONDUCTIVITY OF METALS

	Conductivity ${ }^{1}$	of Resistance
Aluminum (2S; pure).	59	0.0049
Aluminum (alloys):		
Soft-annealed.	45-50	
lieat-treated.	30-43	
I3rass.	28	0.002-0.007
Cadmium.	19	
Chromium.	55	
Climax.	1.83	
Cobalt.	16.3	
Constantin.	3.24	0.00002
Copper (hard drawn)	89.7	0.001
Copper (annealed).	100	
Everdur.	. 6	
(ierman Silver (18\%).	5.3	0.00019
Giold.	6.3	
Iron (pure).	17.7	0.006
Iron (cast).	2-12	
Iron (wrought).	11.4	

[^13]| | Relatire Conductivity | Temp. Coef. ${ }^{2}$ of Resistance |
| :---: | :---: | :---: |
| Leard. | 7 | 0.0011 |
| Manganin. | 3.7 | 0.0060: |
| Mereury. | 1.66 | 0.00089 |
| Molybdenum. | 3:3.2 | 0.0033 |
| Monel. | - 4 | 0.0019 |
| Nichrome. | 1.15 | 0.006017 |
| Nickel. | 12-16 | 0.00\% |
| Phosphor Bronz | 36 | 0.004 |
| Platinum. | 15 | |
| Silver. | - 10% | 0.001 |
| Steel. | 3-15 | |
| Tin. | 13 | 0.0042 |
| Tiungsten. | 28.9 | 0.09015 |
| Zine. | 28.2 | 0.00135 |

Approximate relations

An increase of 1 in A. W. G. or $13, \&$ S. wire size increases resistance 25%.
An increase of 2 inereases resistance $60^{\circ}{ }^{\circ}$.
An inerease of 3 inereases resistance 100 ro.
An increase of 10 inereases resistanee 10 times.

PILOT-LAMP DATA														
$\begin{gathered} \text { Lamp } \\ \text { No. } \end{gathered}$	Bead C'olor	Base (.Miniature)	Bulb T'ype	RATING		$\begin{gathered} \text { Lamp } \\ \text { No. } \end{gathered}$	Bead Color	Base (Minialure)	Bulb Type	RATING				
				V olts	Amp.					Volts	Amp.			
40	Brown	Arrew	T-31/4	6-8	0.15	$49 \mathrm{~A}^{3}$	White	Hayonet	T-31/4	2.1	0.12			
40A1	Brown	Bayonet	T-31/4	6-8	0.15	50	White	Screw	G-31/2	6-8	0.2			
41	White*	Sirew	'1-31/4	2.5	0.5	51^{2}	White	Hayonet	($\mathrm{r}-31 / 2$	6-8	0.2			
42	Crreen	Screw	T-31/4	3.2	**	-	White	Screw	G-41/2	6-8	0.4			
43	White	Hayonet	T'-31/4	2.5	0.5	55	White	Bayonet	G-41/2	6-8	0.4			
44	Blue	Bayonet	'1-31/4	(6) 8	0.25	$292{ }^{5}$	White	Screw	T'-31/4	2.9	0.17			
45	*	Bayonet	' 1 -31/4	3.2	**	$292 \mathrm{~A}^{\text {b }}$	White	Hasonet	T-31/4	2.9	0.17			
462	Blue	Srrew	T-31/4	6-8	0.25	1455	Brown	sicrew	G. 5	18.0	0,25			
471	Brown	Bayonet	7'-31/4	(0-9	0.15	1455A	Brown	Bayonet	G-5	18.0	0.25			
48	Pink	Sirrew	T-31/4	2.0	0.06	140 A and 47 are interchangcable. : Have frosted bulb. ${ }^{3} 49$ and 49 A are interchangeable. ${ }^{4}$ Replace with No. 48. 5 ["se in 2.5 -volt sets where regular bulb burns out too frequently.								
493	Pink	Bayonet	T-31/4	2.0	0.06									
,	White	Serew	'1-31/4	2.1	0.12									
* White in G.E, and Syluania; green in National Union, Raytheon and Tung-Sol. 0.35 in G.F. and Sylvania; 0.5 in National Union, Raytheon and Tung-Sol.														

MINIDUCTOR DATA

The chart and table below, furnished through courtesy of Barker \& Williamson, can be used to determine the approximate inductance of coils made of Miniductor material. The curves show the pereentage of the total inductance (given in the right-hand eolumn of the table) of the coil as supplied, when eut to various lengths.

MINIDUCTOR SPECIFICATIONS				
Catalog Number	Diam. (Inches)	$\begin{gathered} \text { Turns Per } \\ \text { Inch } \end{gathered}$	Approx. Lenuth (Inches)	Approx. Inductance (μ h.)
3001	1/2	4	2	0.4
3002	1/2	8	2	0.96
$30 \% 3$	1/2	16	2	3.2
3004	1/2	32	2	13.7
3005	5/8	4	2	0.56
3006	5/8	8	2	1.4
3007	5/8	16	2	4.9
3008	5/8	32	2	19.2
3004	$3 / 4$	4	3	0.94
3010	$3 / 4$	8	3	2.9
3011	$3 / 4$	10	3	10.9
3012	$3 / 4$	32	3	42.5
3013	1	4	3	1.9
3014	1	8	3	4.8
301.5	1	16	3	19.9
3016	1	32	3	73.0

INDUCTANCE OF SMALL COILS

Most inductance formulas lose aecuraey when applicd to the small coils used in v.h.f. work and in low-pass filters built for redueing harmonie interference to television, beeause the eonductor thickness is no longer negligible in eomparison with the size of the coil. The aecompanying ehart shows the measured inductance of typical eoils used for these purposes, and may be used as a basis for eircuit design. Two curves are given: eurve A is for eoils wound to an inside diameter of $1 / 2$ inch; curve B is for coils of $3 / 4$-inch inside diameter. In both eurves the wire size is No. 12, winding piteh 8 turns to the inch ($1 / 8$ inch center-to-eenter turn spacing). The induetance values given inelude leads $1 / 2$ inch long.

[^14]
Vacuum Tubes and Semiconductors

For the convenience of the designer, the re-ceiving-type tubes listed in this chapter are grouped by filament voltages and construction types (glass, metal, miniature, ete.). For example, all 6.3 -volt metal tubes are listed in Table I, all lock-in base tubes are in Table III, all miniatures are in Table XI, and so on.

Transmitting tubes are divided into triodes and tetrodes-pentodes, then listed according to rated plate dissipation. This permits direct comparison of ratings of tubes in the same power classification.

For quick reference, all tubes are listed in numerical-alphabetical order in the index boginning on the following page.

Tube Ratings

Vacuum tubes are designed to be operated within definite maximum (and minimum) ratings. These ratings are the maximum safe operating voltages and currents for the electrodes, based on inherent limiting factors such as permissible cathode temperature, emission, and power dissipation in electrodes.

In the transmiting-tube tables, maximum ratings for electrode voltage, current and dissipation are given separately from the typical operating conditions for the recommended classes of operation. In the receiving-tube tables, because of space limitations, ratings and operating data are combined. Where only one set of operating conditions appears, the positive electrode voltages shown (plate, screen,
etc.) are, in general, also the maximum rated voltages for those electrodes.

For certain air-cooled transmitting tubes, there are two sots of maximum values, one designated as CCs (Continuous Commereial Service) ratings, the other IC.AS (Intermittent Commercial and Amateur service) ratings. Continuous Commercial Service is defined as that type of servier in wheh long tube life and reliability of performane under contimous operating conditions are the prime consideration. Intermittent Commercial and Amateur Service is deffed to include the many applications where the transmitter design factors of minimum size, light weight, and maximum power output are more important than long tube life. ICAS ratings are considerably higher than CCS ratings. They permit the handling of greater power, and although such use involves some sacrifice in tube life, the period over which tubes will continue to give satisfactory performance in intermittent service can be extremely long.

Typical Operating Conditions

The typical operating conditions given for transmitting tubes represent, in general, masimum ICAS ratings where such ratings have been given by the mamufaturer. They do not represent the only possible method of operation of a particular tube type. Other values of plate voltage, plate current, grid bias, ete., may be used so long as the maximum ratings for a particular voltage or current are not exceeded.

INDEX TO TUBE TABLES

Il - 6.3-Volt Cilass Tubes with Oetal Bases V16
III - 7 -Volt Lock-In IBase Tubes. V V 18
IV - 6.3-Volt Cilass Reexiving Tubes.... V20
V - 2.5-Volt Recriving Tubes. V21
VI-2.0-Volt Rereiving Tubes. V22
VIl-2.0-Volt Tubeswith ()etal Bases... V22
VIII - 1, j- Volt Battery Tubes. Viz.
IX - High-Voltage Heater Tubes....... V21
X -Sperial Receiving Tubes............ V2i
X 1 - Miniature Reveiving Tuhes....... V'28

XII-Subminiature Tubes............. Vist
Xlll - Control and Regulator Tubes. . . . V 40
XIV - Rectifiers. V: 12
XV - Triode Transmitting Tubes V45
XVI - Tetrode and l'entode Transmitting Tubes.

V:5
NVII - Vhertrostatic Cathoter-Ray Tubus Vob
XVIII - Transistors. Vtis
XIX - (Brmanium Crystal Diodes.... Via
XX K Klystrons. Vit
XXI — Cavity Magnetrons. Vb7

BASE TYPE DESIGNATIONS

$\mathrm{A}=$ Acorn	$\mathrm{J}=\sqrt{2}$ umbo	$\mathrm{N}=$ None or special type $\quad \mathrm{W}=$ Wafer
$\mathrm{B}=$ Glass-button miniature	$\mathrm{L}=$ Lock-in	$\mathrm{O}=$ (ctal
$\mathrm{B}_{\mathrm{a}}=$ Glass-button subminiature	$\mathrm{M}=$ Medium	$\mathrm{S}=$ Small

INDEX TO VACUUM-TUBE TYPES

Type	Page Base	7'upe	Page Hase	Type rage fase	Page Base	Type	Paje Bas
-	V26 410	$1 \% 2$.	V 427 Cl	3c:28....... 147 Flg .56	5R4@Y.... V42 5 T	6137...	
	V26 41)		-2		5RP1..... V61 14F	6138	$V 158 \mathrm{E}$
	$\checkmark 40530$	2 2 3	V14 4	3(137....... 53	5RP1A-4A. V61 14P	613A5	V36
	V41 4AJ	$2{ }_{2}{ }^{\text {A }} 5$	V40 5S	3¢136...... V29 7CM	5sP1-4...... $61{ }^{14 \mathrm{~K}}$	613A6	V30 7CC
	${ }^{40} 40$		V2163	3 3'P1....... V61 11C		613A7	V30 8''T
	$V 40$ Flg 33	2 A 6	V21 6G	$3176 \ldots . . . V^{23} 61313$		6136	V30 9DR
	V40 5130	2 A 7	V21 70		5 C 4(:	6136	$\downarrow 30713 \mathrm{D}$
	V'1 4AJ	2 AF	$V 28710 \mathrm{~K}$		$51.4 \mathrm{CA} . . . \mathrm{V} 42 \mathrm{5T}$	6136	V31 9AX
	V4 4 AJ	2 AP	V61 1113	3124. V58 T-9J	504(6B.... V42 5T	$6131) 4$	$V 4061313$
00^{0}	V+0 4130	2AP1A		31 PP1...... V61 14C'		61314	40) 6HD4A
	$\mathrm{V} 42 \mathrm{4BU}$	2135	$\checkmark 36$	31)P7...... V61 6 14H	$5 \mathrm{Pril} . . .{ }^{61} 12 \mathrm{E}$	6131	V17 6CK
024	V42 4 R	2146	V21 7J	$31) \times 3 ~ V 58 ~ F i g . ~ 40 ~$	5VP7........ v61 IIN	6131	V31 9 Z
$0 \mathrm{Z4}$.	V44 4R	2137	V21 71)			6_{631}^{613}	V31 7 CH
	V42 4 ¢	21322	V16 Fig. 37	3166......... v23 7(J	5×3........ V42 4C	6131	V31 9AA
	$V 28$ 5AP	2832	V42 3T	$3122 ~ V 58 ~ 813 Y ~$		6131	V31 7BZ
AAP	$\mathrm{V}^{22} 4 \mathrm{M}$	$213 P 1$		3129. V58 713P	5XP1...... vi 14 P	6131	V31 7BT
1 A 4 T	${ }^{1} 22{ }^{4} \mathrm{CK}$	2 C	V40 5AS	31PP1....... V61 11 N	$5 \mathrm{X} 8$. V29 9AK	613 F	V36 8DG
146	$\cdots 226 \mathrm{~L}$	$2 \mathrm{C}^{2}$	$\checkmark 45$ T-7DA			613	V17 513T
1A7C	$\checkmark 237 \mathrm{Z}$	2 C 22	V16 4AM	39P1........ v'6i 11A		613115	V31 9AZ
$1 \mathrm{AB5}$	V23 5BF	$2{ }^{2} 2$	V45 4AM	3GPPIA-4A. . V61 li,	5YP1........ V61 140	$6 \mathrm{CH15}$	
$1 \mathrm{AB6}$	V28 710H	2 C 25	$Y 4640$	3J31,....... V67	5Z3....... - vis 4\%	613 J 5.	V31 6CH
IAC5	$V 36 \mathrm{Flg} 14$	${ }^{2} \times 26$ A	$\because 464813$	3JP1....... V61 14J	57.4........ V42 51	613 J 6	V31 7CM
$1 \mathrm{laC6}$	V36 715	${ }_{2}^{2(34}$	${ }^{4} 46$ T-7DC	3JP2-12... V61 14J		613 J 7	V31 9AX
$\begin{aligned} & \text { lAD4 } \\ & \text { lAD5 } \end{aligned}$	V36	${ }_{2} 2 \mathrm{C3} 3$	${ }_{\text {V }} 45$ Fig Fig 36	$3 \mathrm{K21}$. 666 llg 58	6A3........ V20 41)	613 K	V31 9Ra
laE4	V28 6AR	2 C 39	V52 - ${ }^{\text {cos. }}$		6A5GT. . . . V16 6T		V31 7RT
1 AE5	V36	2 C 39 A	V52	3K27........ v66 Fig. 59	6A6....... v20 713	613 K 7	V31 9AJ
1 AF 4	V28 6AR	$2 \mathrm{Cl0}$.	V45 Fig. 19	$3 \mathrm{k} 30 \cdots{ }^{\text {a }}$, 66 Fig. 54	6A7......... v20 7C	${ }_{6151}$	V66
1AF5	$V 28$ 6au	2 C 43	V46 Fig 19	3KP1....... V61 11M	6A8....... V15 8A	613 L 7 C	V17 8BD
1 AH 4	V38 ${ }^{\text {7 }}$	$2(51$	Y28 8(JJ	$3 \mathrm{LFE} \cdot \ldots$. . V^{28613}	6A144....... V29 5CE	61315	V31 7BZ
$1 \mathrm{AH5}$	V28 7DJ	2 C 52	V24 8 (1)	3154....... V26 61313	6A135...... V20 6R	63M6	V66
$1 \mathrm{l}{ }^{1} \mathrm{AJ} 5$	V28 6AR	2122	V40 7BN	3MP1..... V61 12F	6A136G..... V16 7AU	613×6	V31 7DF
1 AJ5	$\checkmark 36$	215	$\checkmark 2188$	$3 \mathrm{C4}$-i..... V29 73A	6A137....... V15 8N	613 N 7	V31 9aj
$1 \mathrm{AX2}$	V42 9Y	$2 \mathrm{~F}^{2}$	5585		6A138 V29 9at	633669	$V 17$ 6AM
1133 C	V42 3C	2 L 24	V56 761.	30P1...... V6191)	6AC5GT... V16 6Q	613 CbGT	V17 6AM
	$V 22$ 4M	2 E 25	57513 J	31RP1...... V61 121	6AC6G..... V16 7AU	6136	V17 6am
1135	$V 22$ 6M	$21: 26$	$\checkmark 56$ 71'K	3RPIA.... V61 121:	6A(7....... V15 8N	6130^{7}	V31 9AJ
$15 \mathrm{B7}$	V23 7Z	2 E30	Vi6 7c'e	384........ V29 713A	6A134....... V36	6 BC 7 A	v31 gaj
${ }_{1187}^{188}$	$V^{23} 8 \mathrm{AW}$	2 E 30	$V^{28} 76$	$3 \mathrm{HP1} V^{61} 12 \mathrm{E}$	6AD5C.... V16 6Q	$6 \mathrm{BR7}$	V319BC
11347	V40	2 F 31	V36	3V4....... V29 613X	6A136G:.... V16 7AG	6 BS 5	V31 9BK
1184	V42	2132	136	3-25A3..... V47 3G	6A1)7G..... V17 8AY	6RS7	V31
103	V28 5CF	2E35	V36	3-251)3.... 447213	6A138....... V29 9T	$613 T 6$	V31 7BT
$1(50$	$\vee 236 \mathrm{X}$	${ }_{2} \mathbf{1} \mathbf{E} 36$	$\stackrel{1}{6}$	3-50A4...... v48 3G	6AN5G...... V176Q	6 BL 5	V40 8PP
$1 \mathrm{C} \cdot 6$	$\checkmark 2261$	$2 \mathbf{2} 4$	V36	3-501)4.... vis 21	6A1.6G..... V17 7AH	61346	v31 7BT
1078	$\mathrm{V}^{22} 7 \mathrm{Z}$	${ }_{2} \mathbf{E} 42$	$\vee 36-$		6AF7GT… vil 7ax	613 V	V31 9BU
$1(8)$		2 G 5	Y21 6R	3-75A2..... V50 2 D	6AL8...... - 29 96	613 W6	v31 9am
$1{ }_{10} 1$	$1 / 404 V$ V	2 CH	V36		6AF4....... V29 71)K	61317	V319AQ
11)359	$\checkmark 36$	2 CG 2	V36	3-600.d2.... V51 2D	6AF5G..... V17 6Q	613×4	V42 513 S
$1155(1)$	$V^{22} 5 \mathrm{Y}$	2 J 42	V67	3-100A4.7. ${ }^{51} 2 \mathrm{D}$	6AF6G..... V20 7AG	613×6	$\checkmark 31$ 9AQ
1105 G	$\checkmark 22$ 5R	$2 \mathrm{2J42A}$	167	3X-100A11.. V52	6AF7G.... V17 8AG	$6 \mathrm{BX7}$	$V 178 \mathrm{BD}$
1107	${ }^{22}{ }^{72}$	2 K 22	V66	3-150A2.... 538 4BC	6AG5...... V30 7BD	613 Y	$V 4286 \mathrm{~N}$
1108	$\checkmark 2388 \mathrm{CJJ}$	2 K 25	V66 Fis. 60	3-150A3.... 5.53 4BC	6AG6G..... V17 78	6 BY 6	V31 7CH
11.3		2 K 26	V66 Fig. 60	3N-150A3... V53-	6AG7...... V15 8Y	6 BY 7	V31 9AQ
1		2 K 28	${ }^{666}$ Fig. 61	3-200A3.... V54 Fig. 52	$6^{6 A G 7}$..... ${ }^{56} 8 \mathrm{y}$	61376	V31 7CM
1 E 7 G	$\checkmark 228 \mathrm{C}$	2 K 33	V66 Fig. 62	3-250A2.... ${ }^{4}$. ${ }^{4}$ -	6A14GT... V17 8\% ${ }_{\text {c }}$	${ }_{6} \mathbf{8 7 7}$	V31 9AJ
1 F 8	V36 Fig. 27	2 K 34	V66 Fig. 58	$3-300 \mathrm{~A} 2 \cdots \mathrm{~V} 55 \mathrm{4BC}$	6A196...' V30 7C\%		V31 6BG
	V22 5K	2 K 35	V66 Fit. 58			${ }_{6 C} 6$	$V 456 \mathrm{BG}$ V15 6O
155	422 6	2 K 39	- 66 Fig. 59	4ABG....... V22 8L	6AJ4....... V30 913x	6 C 6	V20 6F
	$V 226$	2 K 41	V66 Fig. 59	4A6G...... - 278 L	6AJ5...... V30 7PM	$6{ }^{6} 7$	V20 7G
1 F 7 F	${ }^{22}$ 7A1)	2 K 42	V66 Fig. 59	$4 \mathrm{HC7A} \mathrm{V} 29 \mathrm{9aJ}$	6AJ7........ v15 8N	${ }_{6} 8_{8}{ }^{\text {a }}$	V1789
$1 \mathrm{C4G}$	$\checkmark 2358$	2 K 43	V66 F1g, 59		6AJ8.... ${ }^{\text {c. }}$ v 30 9CA	$6 \mathrm{CA5}$	v31 7 CV
${ }_{1}^{165 G}$	$V_{23} 6 \mathrm{~A}$	2 K 44	V66 Fig. 59	4(32....... V54 2N	6AK5..... V30 7BD	6 C136	V31 7CM
168G7	V23 7AB	2 K 45	V66	$4 \times 34 \ldots . . . V^{54} 2 \mathrm{~N}$	6AK6....... V30 713K	8CDOC	V17 513T
$1{ }^{145}$		2 K 46	166 Fig. 58	4(36....... V52 Fig. 56		6 Cr 6	V31 7CM
1155 C	$\checkmark 2357$	2 K 47	-66 Fig. 58		6AK7....... V15 8Y	BCC6	V31 7RK
1460	$V 22$ 7AA	2 K 48	V66	41222....... v59 Fig. 50	6AK8....... V30 9E	$6 \mathrm{CH6}$	V31 9BA
1 l 5 G	$\checkmark 226$ -	2 K 56	$\checkmark 66$ Fig. 60	4D23....... ${ }^{60} 5 \mathrm{5K}$			V31 9AS
1 l	${ }^{22} 78 \mathrm{AB}$	$2 \mathrm{~S} / 4 \mathrm{~S}$	$\cdots 215$	41332...... v59 Flg. 51	6ALAG..... V17 6AM	8 CK 6	v32 9AR
11.4	$V 28$ 6AR		V29 7 IDK	4E27...... V59 7BM	6AL7CTC... V17 8CII	6CI. 6	V32 9BV
	V28 7DC		V42 8FV	4E27A..... V60 7BM	6AM4..... V30 913	6 CM6	V32 9「「K
lliat	$\checkmark 23$ 5AD	2V3	V42 4 F	4J50........ V67	6AM5..... V30 6CH	8 (V32 7DB
	V23 7AK	2 L	$\mathrm{V} 42 \mathrm{4X}$	4J52......... V67	6AM6..... ${ }^{3} 30$ 71) ${ }^{3}$	6CR6	V32 7EA
	V23 5AD	2	$\mathrm{V}^{42} 4 \mathrm{AB}$	4J78...... V67	6AM8..... V30 9CY	6CS6	V32 7CM
	$\checkmark 23$ 7AO			+ $1150 \mathrm{~A} . . . \mathrm{V}$ V0 T-9J	6AN4..... V30 710K	6CU6.	V17 6AM
1 LC '6	V23 7AK	$2 \mathrm{Z2}$	V42 413	4-65A.... ${ }^{\text {4 }} 59$ Fic 48		6 D 4.	V40 5AY
1 LD 5	$V 23$ 6A.	3A2	42910 T	4-125A V60 5RK	6AN7........ V30 9Q	$61) 7$	V20 7 H
1 LLH	V23 4AA	3 A 3	V42 3A3	4-250A V60 5BK	6AN8........ ${ }^{\text {b }}$, ${ }^{\text {a }}$	${ }_{6089}$	$\mathrm{V}_{17}{ }^{\text {8A }}$
1 LF 3	V23 +AA	3At	$\mathbf{V} 29783$	4-400A..... V'60 5RK	5AN8/6AN8	$6 \mathrm{DB6}$	V32 7cm
1 LG5	$V 23$ 7AO	3A4	$\checkmark 557 \mathrm{HB}$	5A6........ V55 9L	6AQ4...... V30 71'T	$6 \mathrm{DC6}$	V32 7CM
1 LH 4.	V23 5AG	3 A 5	V29 7BC	5ABPI..... V61 14 B	6AC5....... V30 7BZ	6DE6	V32 7CM
1 N 5.	V23 7AO		$V 45713 C$	5AM8..... V29 9СY	6AQ5...... V56 7RZ	6 E 5.	V20 6R
1N5GT	V23 5Y	3 ABG	V26 8AS	5AN8...... V29	6AQ6....... V30 7RT	6126	V20 7B
$1 \mathrm{N6G}$		3 L 5	V29 613T	5AN8..... 5AN8/6AN8	6AQ7CT.... V17 8CK		V 207 H
${ }_{165 G T}$	V23 5Y	$3 \mathrm{AP1}$	V61 7AN	5AP1-4.... V61 11A	6AR5....... V30 6CC	$61: 8 \mathrm{G}$	V1780
105 CT	V23 6AF	3AP1A	$v 61$ 7CE	5AC5....... V29 78\%	6AR6...... V17 6BA	6154	V27 7BR
106	V36 8CO	3AU6	V29 713K	5AU4....... V42 5T	6AR7(iT.... V17 7DE	6 F 4.	V45 7BR
$1 R 4$ $1 R 5$	$\mathrm{V}^{23} 4 \mathrm{AH}$	3AV	V29 713T	5AW4..... V42 5T	6AR8...... V30 91)P	6 F 5	V15 5M
1R5	V28 7AT	3134	V55 7' ${ }^{\text {Y }}$	5AX4GT.... V42 5T	6AS5....... V30 7CV	6F6.	V15 78
154	V28 7AV	3135	$\checkmark 26$ 7AP	5AZ4...... V42 5T	6AS6...... v30 7CM	61.6	V56 7S
155	V28 6AU	3137	$\checkmark 23$ 7BE	5BK7A..... V29 9AJ	6AS6W.... V30 7CM	6 66G	V56 7S
186	V36 8DA	3137	V45 7AP	53P1....... V61 11A	6AS7G...... V17 8HD	617	V20 7F
18A6G	V23 6CA	31324	V42 T-4A	5BPlA...... V61 11N	6AS8....... V30 91)	$6 \mathrm{F8C}$	V1789
lish6GT	$V 236 \mathrm{CH}$	31325	V42 4P	5BP7A...... V61 11\%	6AT6...... V30 7RT	6 6)	V20 6R
$1 \mathrm{~T} 4 \mathrm{~S}^{\text {I }}$	V28 6AR	31326	V42 Fig. 31	5CP1....... V61 14B	6AT8...... V30 9DW	6(96G	V17 7S
$1 \mathrm{IT}^{1} \mathrm{E}$.		31127 3132	V42 ${ }^{4} \mathrm{P}$	5CP1A..... V61 14J		614 C	V17 5AF
$1{ }^{1} 4$	V28 6AR ${ }^{28}$	3138	V29 ${ }^{413}$			6115	V15 6R
1 U 5	V28 6BW	313 E 6	$\checkmark 297 \mathrm{CH}$		6AV4....... V42 5BS		V17 8 L
1 U 6	$V 28$ 7DC	313×6	$\checkmark 29710$	5D22....... V60 513K	6AV5GT.... vil 6ck	6 J 4	V32 7BQ
1-V.	V42 4 G	313 Pl	V61 14A	5GP1....... V68 11A	6AV6...... V30 7BT	6.5	V15 6Q
1 V 2	$V 42$ 9U	313P1A	V61 14G	5HP1-4..... V61 11A	6AW7GT... V17 8CQ	6 J 6	V32 73F
1 l 5	$\because 36$	31316	V29 7CH	5HP1A..... V61 11N	6AX4CT.... V42 4C'	6 J 6	V45 713F
1V6.	V36	31326	V29 7CM	5J6......... V29 713F	6AN5GT.... V42 6S	$6 \mathrm{J6}$ W	V32 713F
$1{ }^{1 W 4}$	V28 5BZ		$\checkmark 296 \mathrm{BX}$	5JP1-11..... V61 11E	6AX64..... V42 78	6 J 7	V15 7R
$\begin{aligned} & 1 W 5 \\ & 1 \times 2 . \end{aligned}$	V^{36} -	${ }_{3} \times$	$V 26{ }^{7} \times 2$	5JP1A-4A... V61 118	$6 \mathrm{AX7} V^{30} 9 \mathrm{~A}$	6 6 8 C	V178H
1×2	V42 ${ }_{9}^{9 Y}$	${ }_{3}^{3} \mathrm{C} 22$	V26 713W 30		$\begin{aligned} & 6 \mathrm{AZ5} \\ & 6 \mathrm{B4G} . . . \\ & \mathrm{V} 36 \\ & \hline \end{aligned}$		$\begin{aligned} & V 37 \\ & V 175 U \end{aligned}$
$1 \times 2 \mathrm{~B}$	V42 9Y		V40 3G. ${ }^{\text {a }}$	5MP1-11.... V61 7AN	$\mathrm{6R5}^{68 ~ V 20 ~ 6 A S ~}$	$6 \mathrm{6K}$	V17 7 S
1 Y 2.	V42 4 P	3 C	427 D	v6i lla	V17 7V		15

V3

Truse	Papb Base	$7^{\text {T'upe }}$	Proe Iase	Tıpe	Prape Base
14.47	1258		121513	1174	1349
14 AF 7	V25 8AC		126 6A	18213	$\checkmark 2741$
14 AF7	V26 yac		12250		$\checkmark 2745$
14AP1-4	V61 12a	50	(27 41)	485	V27 5A
14186	Ye5 xW	50 A	$1: 6$ 6AA		V55 T-4
14138	125 KN	50A	14372	559	${ }^{2} 27$ Fig. 18
$14{ }^{\circ} 5$	1256 AA	50135	1347 BZ	575.	14 4AT
14.7	$\checkmark 258$	50 C 5	13478	59	$\backslash 54$ Fig.
1+1:6	125 sw	504.60	$1267{ }^{2}$	703A	
111:7	$\underline{25}$ satt	50) $66 \mathrm{CiO}^{\circ}$	Y26 7Ac	7054	V44 T-3AA
14 F 7	V25 xAci	501	V50 21	70713	V66 Fix. 61
141'*	『25 *BW	50×6	V43 7AJ	71513	V58
14117	V25 8V	50 YGCT	14370	717 A	V1s 8HK
1457	V25 NB1,	50Y7GT	V43 8AN	723 A	166 Fiks. 60
14×7	V25 8A ${ }^{\circ}$	50\%66	V13 74	756	$\because 48413$
14 (27	$\ 25841$	50776;	V43 8AN	-80	$14721)$
1412	V25 8t1:	51	$1205{ }^{5}$	811	Y46 413
14.27	V25 8131	$5 \cdot$	Y0 50	801 A	$V 4641$
$14 \cdot 7$	12588		12173	802	Y56 613M
14157	$\checkmark 25$ 813J	53	147 T-48	803	1605
14×7	12.5813		V2169	804	159 T-5C
1414	$\mathrm{V}^{43} 5 \mathrm{AB}$		± 2154	805	V52 3N
142	143 4		$\because 2054$	806	V54
1.5	V22 5F		$\underline{2165}$	807.	V58 5AW
15 A	V33 9AR	57	${ }^{20} 60$	807	V88 5AW
151:	- $46 \mathrm{~T}-4 \mathrm{AF}$	58	V21 6F	808	-4921)
16 A 5	V 33 931	$5 \times$	V20 6F	809	V73 30
17	140 36		Y21 7A		V532N
178.		70 a 76	126843	811	1493 C
18.	25613	70A7Cir	43843	811.	- 4938
19	1226	70176	Ve6 maA		- 493 B
19A(25	1337131	701.76'1	l43 \%AA	812 A	-4930
1916 ibz	$\checkmark 25$ 5BT	71-A	127 41	81215	V50 3\%
19:\%	v33 915		1434	813	Y60 5Ba
1956	V33 731	73	Y 43	814	-59 T-51)
19 P	-33 96		Y20 68	815	V57 8VY
$19 \times$	V349A1I	75.1	(50 21)	816	$\checkmark 444$
19×3	143983	75	V50 21	822	V54 3N
$19 \mathrm{N8}$	134 9AK	76	V20 5A	8225	V 542 N
19 Y 3	V43 9B3	77	$\checkmark 206 \mathrm{~F}$	826	V49 73
20	V27 41)		1206F	828	V59 5.
$20 \mathrm{AP}{ }^{\text {d }}$	V61 12A		V20 614	829	V58 73P
$20 J 8 G$,	V25 81I		Y43 46	829 A	$\checkmark 58713 \mathrm{P}$
2146	$\bigcirc 349$ 9AS		143438	829 B	$\because 587 \mathrm{PP}$
2147	Y'25 8AR		14340	830	v48 41)
22	1274 K	83	${ }^{1} 434{ }^{\circ}$	83013	V493\%
24 -A	1215	$83-\boldsymbol{V}$	(43 4A1)	831	V55 T-1AA
24 -G	14721)	84/6z	-4351)	832	$\stackrel{5}{5713 P}$
24×1	162 Fis.	85.	120 6\%	832.4	1577 PP
	125	85	V20 68	833.4	V5 T-1AB
25A7Cil	${ }^{25} 8{ }^{5}$		Y20 6 F	834	14921)
2547 GT	V4 8\%		$12741)$		V51 4*
25A ${ }^{\text {c }}$ (;1	$\cup 2564$	100111	-51 21)	$\times 33$	$\because 444$
25AV5G7	$\because 256 \mathrm{ck}$	1001	V5121)	$\times 37$	15668 M
25 AX4C:7	V43 4(9)	1111	$\stackrel{50}{ } 21)$	838	$\because 5248$
25135	$\stackrel{12561}{ }$	112-A	V26 ${ }^{1}$	840	$\mathrm{V}^{22} 5$
251364	12575	1171.7 Gd	${ }^{2} 26$ 8a ${ }^{\text {c }}$	841	$\bigcirc{ }^{46} 41$
25138 C	$\underline{25} \times 1$	11717 FiT	lit xas	8+1.	-4938
25 BK5	1349318	117.178	V26 8aO	8tisw	14930
258686 A	$\stackrel{25}{64}$	117M7Cil	V4 8as	843	$\checkmark 465 \mathrm{~A}$
253 C 2601 T	$\because 56 \mathrm{~A}$	117N7(3T	$\stackrel{26}{ } 8$ 8,	844	$\because 754 W$
25066	25 7AC	117×7 (iT	V4t 8ay	849	155 T-1A
25 (1)6	25 5BT	117177 ${ }^{\text {did }}$	Vel 8 AV	850	V60 T-3
$25 \cdot 106$	${ }^{25} 6411$	11717 GT	V4 8AV	852	Y52 21
$25188($	Vis itw	11773	lt 43 R		Y0 T-4CB
2516	V25 7A ${ }^{\circ}$	$117 \% 41$	V44 5AA	861	V60 T-113
25.86	ve5 7以	1172601	4472	$\times 64$	V27 41
25%	V22 611	12845	$\checkmark 3654$		${ }^{5} 57{ }^{\text {cta }}$
	14731	1.50 T	$\checkmark 532 \mathrm{C}$		$\mathrm{V}+4 \mathrm{P}$
25 W 4	${ }^{\prime} 43$ 4 ${ }^{\circ} \mathrm{C}$	1.5211	$\checkmark 53413{ }^{\circ}$	${ }^{8} 66{ }^{6}$	V4 4 P
25×647	14378	152 TI	V33 +13C	86613	14 4 P
25 H4il	$\bigcirc 35 \mathrm{AA}$	182-13	$\stackrel{27}{ } 1$	866 jr	Y44 48
2575	${ }^{43} 6 \mathrm{6E}$	18.3	$\because 27+1$		Vti 4 P
2583	$\begin{aligned} & 1434 \\ & 1435 A \end{aligned}$	203-4 $203-11$	V51 4E	878	
	$\mathrm{N}_{4}+3 \mathrm{SHA}$	204-A	-54 T-1a	$\times 874$.	V40 45
2526	14370	2051	-4641)	$\times 76$	V40
		211			144 4 P
2646	34 713 K	$212-1$	$\cdots 55 \mathrm{~T}-2 \mathrm{~A}$		\%4, 48
2647%	$\checkmark 25813 \mathrm{C}$		$\cdots 44 \mathrm{AT}$	88.	V4060
26 Kk 6	13474 T	2176	Vt 4 AT	885	$\underline{1058}$
2616	W34 78T	227 A	V51 T-43	886	Y4
26 CB	134 713 K	24113	V55 T-2AA	902	V418CD
26116	134 7(11	242 A	V50 41	902 A	V61801
2675 W	- 43 913s	242 B		905	$\vee 615 \mathrm{Pr}$
	Y21 5A	$242{ }^{\circ}$	1514	905	V61 5BR
$\stackrel{2817}{28}$		${ }_{2501} 24913$	${ }^{\text {V }} 4.4$ Fig. 53	906	$1617 A P$ $\times 615 \mathrm{P}$
30.	v2 4 L	2.50 TL	$\cdots 54$	908 A	V61 7CF
31	-	254 A .	Y57 T-440	909.	$\checkmark 615 \mathrm{BP}$
	$12{ }^{4}$	2543	- 57 T-4C	910	N61 7AN
32.70	${ }^{25} 88$	2614	V14	911	V61 7AN
$321.76{ }^{\circ}$	14382	270 A	V5 T-1A	912	V61912
	V2 5 E	$\stackrel{276 \mathrm{~A}}{2 \times 2}$	V2 515	913	V61 913
$35 / 51$	V21 5E	2843	$\mathrm{V}_{52} 3 \mathrm{~S}$	93013	V4936
$35 \mathrm{A5}$	-25 6AA	2841)	$v 504 \mathrm{E}$	938	$\checkmark 52+8$
35185	134 713\%	2954	Y $52+\mathrm{E}$	930	${ }^{22} 5 \mathrm{5}$
355.	V34 7\% ${ }^{\text {\% }}$	31009	V5 $2{ }^{\text {d }}$	951	${ }^{22} 4 \mathrm{4M}$
351.6	$\because 257 \mathrm{AC}$	313A	1514	954	$\cdots 275131$
35.	V183G	301 A		95.5	$\begin{array}{r}2758 C \\ \hline\end{array}$
35 PG	V4N 213	304 B	V9 2110	955	${ }^{2} 5{ }^{5 B C}$
35 W 4	V13 51838	301711 30471	V65 +BC\%	9.36	
$35 / 3$	143 42	305 A .		8.58	$\checkmark 2758$
3574 ¢T	V3 SAB	30614	V57 1-50 16	$\mathrm{y}_{5 \times 8} \mathbf{8}$	$\mathbf{V} 275 \mathrm{HB}$
35\%5	[43 6.31)	3107 A	V5 7 1-5	958A	$v 45531)$
35866	vi3 72	30813	V54 T-2A	959	N27 5BE:
36	$\underline{1205}$	311.	V46 41	967	V40 36
	5015 F	311.	V51 51	0175.	${ }^{44} 4 \mathrm{AT}$
3914	V20 515	312 ta	V9 T-60	1\%03	$\mathrm{V}_{44} 4 \mathrm{R}$
	12741	312 F	v5s T-2AA	1005	1445 AQ
40\%569	V43 6A1)	316 A	147	1006	$\cdots 44{ }^{\prime}$
41.	v20 631	327A	-51 T-4Al	1201	$\cdots 278 \mathrm{HN}$
4	${ }^{20} 68$	327 B	V50 T-4A1)	1203	$\stackrel{27}{4 A H}$
	${ }^{25} 613$	342 B	V51 4r	1204	V27 8BO
45	${ }^{21} 40$	356A	v 49 T-4BD	1206	$V 1983 \mathrm{~V}$
4523	V43 5AM	361 A	V51 4E	1221	$\mathrm{Y}^{21} 6{ }^{\text {6 }}$
45 45 ...	V21 5 C		$\mathrm{V}_{66} \mathrm{Fl}$ H. ${ }^{\text {dig. }} 58$		

Type
1230.
1231
1232
1247
1265
1266
1267
1273
1274
1275
1276
1230
1284
1291
1293
1294
1299
1602
1603
1608
1609
1610
1611
1612
1613
1614
1616
1619
1620
1621
1622
1623
1624
1625
1626
1627.
162% ．
1629
1631
1632
1633
1634
1635
1611
1612
1644
1654
1802P1
1803P4
$181141^{3} 4$
1805P1
1806I＇1
｜809P］
1N111P1
1851
1852
1853.
2001
2002
2005
2050
2051
2523×1

	$\checkmark 40$ 5A
5.514	C49 4130
5516	1577014
5517	V44 5130
5556	V45 41）
5562	V59 Fig 54
5590	V＇34 731）
5591	34 7313
5603	V34 730
5608 A ．	V21 713
5410	134 6c ${ }^{\text {c }}$
5618.	$3{ }^{3} 7{ }^{\circ}{ }^{\circ}$
5018	155700
5633	V38
5634	V38－
5835.	V38 81）13
5636	V38 8DC
5637	$V 35-$
5638.	V38－
5639	V38 81）L
5640	V38
5611	V38
5641	V38 6C．J
5642	V38
5643	V38 81）
5644	$1384{ }^{\circ}$ N
5645	V38－
5646	V38
5647	138131
5648	$V 52$
5651	V40 5130
5654	V34 7131）
56.56	13495
5662	1405662
5663	$V 40{ }^{\text {7 }}$－ F
5670	$V 3488$
5672.	V38
5675.	V45 1\％g． 36
5676	$\checkmark 38$－
5677	V38
5678	$V 38$
5679	V19 7CX
5686	$V 56$ Fig． 29
5686	V34 90
5687	V34 915
5690	V44 Flg 74
5691	V1881313
5692	V＇18 8151）
5693	11685
5694	V18 80＇s
5636	140713 N
5697	V38－
5702	V38
5703	V38
5704	$\because 38-$
5718	V38 81）
5719	V＂38 8I）K
5722	V 345 Cl

5722.

0

5
いが的

－－

万
59
59
59
5
5
5
5

6
 \section*{606 606

}00

00

00.0

\section*{| 74 |
| :---: |
| 5725 |
| 5726 |
| 5727 |
| 5731 |
| 5744 |
| 5749 |
| 5751 |
| 5751 |
| 5755 |
| 5763 |
| 5764 |
| 5765 |
| 5766 |
| 5767 |
| 5768 |
| 5784 |
| 5785 |
| 5794 |
| 5812 |
| 5812 |
| 5814 |
| 5814 |
 }

筑定 Wis cosind

$\begin{array}{llll}5 \times 94 A & \ldots . . & V 8 \\ 5 \times 45 & \mathrm{Flg} \\ 5 \times 10 \\ 5 \times 47\end{array}$

9900
59012
59013
5901
590
59
59
59
59
59
59
$\mathbf{5 9 3 . 3} \ldots .$.
$\mathbf{5 9 8 1} .$.
5962
$\mathbf{5 9 6 3}$
$5963 .$.
$5964 .$.

管
$60105 \ldots .$.
$6026 . .$.
6015

6063．．．．．．．
$6064 . .$.
$6060 . .$.

60

$6073 \ldots$.

$60840 . .$.
608
608
608
$\begin{aligned} & 6086 \\ & 6087 \\ & \\ & 6\end{aligned} \ldots . .$. 615
615
615
617

Type	ge Base	pe	age Base	ype	raje Base
6265	Y35 7CM	150	22	RK4J37	V67－
	$\checkmark 3590$	11 Fl 75.	V52 T－3A ${ }^{\text {c }}$	RK4J38	V67
6305 6301	V41 6305	117200	$\checkmark 53$	RRK4340	V67
6.3 .3	$\checkmark 359 \mathrm{CZ}$	117300.	$\checkmark 542 \times$	RK4J41	V67
6374	V44 913W	11 k 24	V47 34	RK4J43	V67
63	V35 8c＇J	HK54	V48 21）	RK4J4 4	V67
6417	Y 56 gk	H657	V59 17\％ 64	RK4J53	V67
6443 6524		IIK154 IK15s	$\text { V48 } 21)$	RK4J54 RK4J55	$\begin{aligned} & \text { V67 } \\ & \text { V67 } \end{aligned}$
7060	v18 7 R	ILK2521，	－53 4130	12K4J56	V67
7193	V45 4AM	11 k 253	V44 41 T	RK4J57	V67
7700	V21 6F	11 K 254	V51 59	RK4J5s	V67
$\begin{aligned} & 8000 \\ & 8001 \end{aligned}$	V53 2 N V 59 1 Mm	$\begin{aligned} & \text { HK257 } \\ & 11 \mathrm{~K} 25713 \end{aligned}$		$\begin{aligned} & \mathrm{RK} 4 \mathrm{~J} 59 \\ & \mathrm{RK} \mathbf{K} 26 . \end{aligned}$	V67
8003	V52 3N	116304L	V55 413C	RK10	V4641）
8005	$\checkmark 503 \mathrm{~T}$	HK354	$\checkmark 532 N$	RK11	$V 47$ 3G
	Y44 Fig． 11	H6354．	1532 N	RK12	V47 30
$\begin{aligned} & 8010- \\ & 8012 \end{aligned}$	$\mathrm{V}_{5} 48$ T－41313	HK354）	$1532 N$ $\checkmark 53$	RK15．	V21 4D
8013	$\mathrm{V}_{4} 4 \mathrm{P}^{\text {P }}$	$\mathrm{HK}^{2} 54 \mathrm{~F}$	$\checkmark 53$ N	RK17	$\checkmark 215$
8016.	v4 4AC	HK454	V54 2 N	RK18	V48 3G
8020	V44 4 P	$11 \mathrm{~K}+541$.	V54 2 N	RK19	V44 4
8025	$\underline{47} 4 \mathrm{~A}$（2	H1665	V55 2N	RK20	V58 T－5C
9001	V36 7131	1 Y 12	1543 N	RK20A	V58 T－5C
9002	V36 7BS	IV18	153 2	RK21．	V44 4
9002	V457383	$1{ }^{1} 27$ 27	Y 543 3	RK22．	V44 T－4AG
			$\checkmark 4568$.	RKK24．	
	V27 5月G	IIY6V6GTX	$\checkmark 56$ 7AC	RK24	$\checkmark 454$
	$\checkmark 36634 \mathrm{H}$	11124	V45 41）	RK25	V56 613M
AT－340	V60 513 K	H225		12 K251	V56 613M
A $\times 9900$	$V 53$ Fig． 5	IV＇30\％	V47 4 40	RK28	$V 595$
A 99901	V55	HY312．	V47 T－41）	RK28A	V60 5 J
A 99903	V58 Fig． 10	1 Y 40	V48 3\％	RK30	V4721）
A $\times 9905$	V57 Fig． 34	1Y40Z	V4836	RK31	$\checkmark^{48} 3 \mathrm{G}$
	1424 J	HY51A	$\stackrel{49}{ } 36$	RK32．	V48 25
	V42 4J	11×518	V49 34	RK33	V45 T－7I
	Y42 41	11	V49 4130	RK34	446 T－7DC
CE22	14248	HY57．	v48 36	RK35	$\checkmark 4821)$
CK50	137	HY60	$55654 W$	RK36	V51 2D
CK502	137	H161	$\checkmark 5754 W$	RE37．	V48 21
（＇R50．	${ }^{1} 37$	11.67		RER39	${ }^{-57} 57$
（\％506	V37	$1{ }^{1} 69$	v5\％T－51）	$12 \mathrm{~K}+2$	$\checkmark 234 \mathrm{I}$
（K507	137	$11{ }^{1} 75$	V46 m^{1}	RE43	$\checkmark 2360$
（\％609	V37	HY754	1462 T	12K4	$\checkmark 56613 \mathrm{M}$
CK510	V37	$1{ }^{1} 113$	V37 5k	RK46	V58 1－5C
CK512	137	Iİ14 ${ }^{\text {a }}$	V45 2 r	RK47	－59 T－5D
（ K 515 B	V37	HY115．	v375k	RK48	－60 7－5D
（\％520A	137	$1{ }^{1} 1123$	V37 5k	RK48A	V60 T－5D
Ok5 14	137	1 H 125	$V 375 \mathrm{~K}$	RK49．	$\checkmark 5764$
（ 6522 A	137	MY145	$\checkmark 375 \mathrm{~K}$	RK51	Y49 3G
CR523AX	V：37	119155	V37 5k	RK52	V49 3G
CK524A	V37	1196	V45 T－8ag	12K56	－56 5AW
OK525AX	V37	Hy801A	$V 46413$	RK57	$\checkmark 523 \mathrm{~N}$
CK526A	137	11）866jr	V44 4	RK58	V51 3
CK527A	137	11Y1231／	Y47 T－41	12659．	v46 T－4
（\％529a	V3：	11.126	V58 T－5113	12K60．	144 T－4
CK551AX	V37	HYe1148．	Y45 T－8AC：	RK61	34
CK553AX	137	KT66．．．	V18 Jar	RK61．	$\cdots 38$
	137	K121	V11	RK6！	Y41
CK568AX	137	K 1866	V1 19ter 8	RK62	$\because 414 \mathrm{D}$
CK569AX	V37	M154．	\＄37	${ }_{\text {RK63 }}$	－53 2N
（： $\mathrm{K}_{605 \mathrm{C}}$ （＇K60613	$\begin{aligned} & V 37 \\ & V 37 \end{aligned}$	164 $\times 174$	$\begin{aligned} & 137 \\ & V 38 \end{aligned}$	RK63A	V53 2 NaW
（k608c	137	N1－2635	Y28 Flg 38	12 k 6.	$\checkmark 60-313 \mathrm{C}$
C＇619C	137	PF340．	460513 K	RK66	458 T－5C
（＇K624 ${ }^{\circ}$	137	（2K140	\66	1 K 75	V57 T－5C
CK650A	$1: 37$	Q16159．	${ }^{166}$ l＇tg． 63	1 RK 100	＋ 46 T－6B
（＇65672	V37	QK174	V67	12K705A	V4
Ck705	165	Q 22226	VR6	126725A	Y67
－＇R706	V65	¢K227	V66	RL726C	${ }^{166}$
CK707	＊65	（2K289	V66	R16730A	V67
CR708	165	（2K290	\66	RK866．	V44 4P
CK710．		QK291	V66	RK558G．	
CR1005	14454	（2K292	V66	RK5009	$\checkmark 67$
CK1006．	V^{4+4}	OK293．	V66	${ }_{1} \mathrm{R} 155657$	$\stackrel{67}{ }$
$\begin{aligned} & \text { CK1007 } \\ & \text { CK1009 } \end{aligned}$	V44	OR204．	V66	TRK5721．	$V 66$ $V 66$
CK5672	V1	人 $\mathrm{L}^{\text {3 }} 306$.	v66	RK5981	V66
1）R31327	V42 4P	QK312	V67	RK5882	V67
HR123C	V52 Fin． 26	RK2J22	V67	RK6043	Y66
${ }_{\text {D }}$ 1R200	4538	RK2J23	V67	RK6115．	V66
F123A		RK2324	$: 67$ 167	RM208．	V41
F127A	V54 Fig． 26	RK2J20	V67		V44
	$\mathrm{V}^{12} 4 \mathrm{H}$	RK2J27	V67	S1）917A	V38
（1L2C39A	V52	RK2J28	V67	SlB28A	V38
G122C39B	V52 ${ }^{517}$	RK2J29	V67	SD8284．	V38
G1．2C44	Vis Fig 17	RK2J30	$\stackrel{V}{67}$	Sipllo3．	V66
GL5C24．	V53 lig 26	RK2J32	V67	SN944．	V38
（1L5）24．	V60 54 K	RK2J33	$\stackrel{1}{67}$	S－1946．	V38
CL146．	V52 T－4139	RKP334	V67	SN9471）	V38
GL152	V52 T－4138	RK2J36	$\stackrel{167}{ }$	Siches	V38
（iL159	Y54 T－4136	RK2J38．	V67	${ }_{\text {8N9531）}}$	V38
（11446A	${ }^{27} 7 \mathrm{Fig}$ ． 19	RK2J48．		SN955i3．	
（ilat6A	V45 Fig． 19	RK2J49	V67	SN05613．	V38
cildt63	V27 Fig． 19	RR2350．	$\stackrel{67}{ }$	S X957A	V38
C1．4463．	V45 Flg． 19	RK2J51．	4.67	SN1006	138
GL464A	V45 Fiv． 17	RR2054．	$\stackrel{V}{67}$	T20．0．	V48 3 －
GL559．	Y27 lig 18	RK2556	：67	121．．．．	$\vee 576$ A
（11592	V54 Fly 52	RK2J58．	$\stackrel{67}{ }$	140	V48 3G
（11．5797	$\checkmark 3780$	RK2J61A	V67	1 T 55	V493G
（1） 6012	$\checkmark 37810$	RKK2J66．	$\checkmark 67$	1100	$\checkmark 5020$
（1L6112	$\vee 3781)($	RK2J67	V67	＇1125．	V52 2 N
91.6463	と28908	RK2J68	：67	T200	$\checkmark 53$ 2N
Glisul2A	Y：47 10－4 ${ }^{513}$	RK2J69．	V67	T300	V54
1118203 A	$\checkmark 533 \mathrm{~N}$	RK2J70．	：67	$1{ }^{1} 814$.	V54 3N
	V50 21）	R K2J71．	$\stackrel{167}{ }$	T822．	$\mathrm{V}_{54} 3 \mathrm{~N}$
HFiod	V50 20	RK＋J31．		${ }_{\text {T1 }}^{\text {T }}$	$\checkmark_{46} 58$
H15120	V51 4 F	RK4J33．		TW75．	V50 2 D
HF゙25	V1	RK4J34．	V67	TW150	$\checkmark 53$ 2N
$\xrightarrow{11 F 130}$		R12 ${ }_{\text {R }}$		$\text { T } 720 .$	$\begin{aligned} & V 63 \mathrm{~B} \\ & \mathrm{~V} 48 \mathrm{BG} \end{aligned}$

	Prge	T＇ure	Prave ！		Page 1	Type	T＇ave	Type	I＇age
Tive	V65	1 N60	V65	1×106		2 N 32	．${ }^{\prime} 63$	M1725	
$1 \times 3+\mathbf{A}$	V65	1×61	－65	1 N107	$V 65$	2×33	V63	M1729	\％63
1×35	V65	1×63	V65	1N108	165	2 N 34	163	M1782	3
1－138	V65	1N64	V5	1N104	V5	2 N 35	fo3	O15	V63 163
1	Y45	1×65	V65	1×111	165	${ }_{7}^{2} \times 36$	V63	P ${ }^{1}+2$	63
1 N39	V65	1N66	165	1×112	65	\％	V63	Pros	V63
1×40	V65	1 N67	V65	1×113	（6）	2.188	163	121734	V63
$1 N+1$	165	1N67A	165	1．114	．69	2×19	46	1112517	163
$1 N+2$	V65	1N68	V65	$1 N 115$	J	2×18	V63	R1）2517A	V63
$1 \times+3$	V65	1 N68A	$V 65$	1．21	（6．）	5×3	163	R132520	V63
1 NH	$\checkmark 65$	1 N69	V6）	1－12	）		V63	R1）2520A	V63
1N45	V65	1 N70	V65	1－126	）	2 Vtio	－63	R13252．	V63
1×46	V65	1N71	Y65	1×127	（	A 100 s	V63	R13252lA	V63
$1 \mathrm{~N}+7$	V65	1N72	（6t）	1N12N	Vif	－18710		12132525	V 9
1Ntx	165	1×73	V6\％	1：133	－6is	（k721	$\checkmark 63$	121）2525A	V64
1 N51	105	1N7t	V65	1－117	V69	（1）722	$\checkmark 63$	1214－14．．	V64
1×52	$\underline{65}$	1N55	V65	N151	V6：	（k7：3	V63	12R－20	64
1×54	V65	1N81．	V65	1 N153	Vibis	（ 12725	V63	12R－21	164
$1 \times 54 \mathrm{~A}$	V65	1N86．	V65	1N175	vis	（以227	Vi3	1212－34	164
1 255	165	lN大\％7．	V65	2A．．．	V1：3	（ill	V63	T－21A	V64
$1 N 55 A$	165	INKS	V65	2 S	Vi\％	（ill－i	163	TA－1613．	V64
1 N05	165	1N90	V゙15	$2{ }^{\circ}$	1633	111－1	V63	TP－01	$16+$
1 N56A	V＇6as	1×91	V65	21）	Vid	11：－2	163	－	
1×57	165	1×12	165	21	， 68	11－3197	＋63	－	
1N5K	V65	1N03	V65	21	Vi，	11）－1！			
1 N 58 A	V65	IN94．	V6）	21	I	Mitias．	\checkmark		

VACUUM－TUBE BASE DIAGRAMS

Sochet connertions correspond to the bate designations gisen in the rohmm headod＂＊ochet Gonnertions＂in the clasified tuhe－data tables．Bothom views are shown thromghout．Berminal designations are as follons：

Generally when the No．I pin of a metal－tyme tule in Table I ，with the exception of all triodes，is shown contected to the shell，the No．I pin in the glase（ \mathbf{C} or CO^{\prime} ）equivalent is combertel to an intermat shield．

R．E．T．M．A．TUBE BASE DIAGRĀMS

$2 A G$

2D

$2 N$

$2 T$
C（3）（4）
22

3A3

$3 C$

3 G

4AC

4AD

3N

3 T

4 AA

$4 A B$

4AP

4AT

4 AF
（3）（3）（3）

4AJ

$4 A Q$

$4 B$

4BB

4BC

4BJ

480

4BR

4BU

4 C

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sorkets are given on page $\mathbf{V} 5$

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page $\mathbf{V} 5$.

			$\begin{gathered} \mathrm{G}_{2}(4)(5)^{\mathrm{NC}} \\ \text { (3) } \\ \text { (2) } \\ \text { (1) } \\ \text { (1) } \\ \mathrm{NC} \end{gathered}$		
5L	$5 \mathrm{M}$				
68X					

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

		$6 G$			
7AG	7ah	7AJ	7AK	7AL	7 A
$7 B$					

TUBE BASE DIAGRAMS

Bottom views are shown. T'erminal designations on soekets are given on page $\backslash 5$.

TUBE BASE DIAGRAMS
Bottom views are shown. Terminal designations on sockets are given on page 15.

8 E
8EL
(3):(4):
8 H

[^15]
TUBE BASE DIAGRAMS

Bottom views are shown. 'Terminal designations on sockets are given on page 15.

Bottom views are shown. 'Terminal designations on sockets are given on page V5.

9L
9 M
(4) (2) (3)
$9 \cup$
9 V

$9 \times$

$9 Y$

9T

92

11 F

11 M

120

12 E

12F

14 K

14 P

14 Q

14 R

145

TUBE BASE DIAGRAMS

Bottom viens are shown. Terminal designations on soekets are given on page $V 5$.

TUBE BASE DIAGRAMS

Hottom views are shown. 'lerminal designations on sorhets are given on page 15.

TABLE I-METAL RECEIVING TUBES
 For "G" ond "GT" tubes not listed (not having mefal counterparts), see Tables II, VII, VIII ond IX.

TABLE I-METAL RECEIVING TUBES-Continued

Typo	Name	Socket Connectlons	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	$\begin{aligned} & \text { Plate } \\ & \text { Reslstonee } \\ & \text { Ohms } \end{aligned}$	Transconductonce Micrombos	Amp. Fector		Power Output Watts	TYpe
			Volts	Amp.	In	Oul	PlateGrid												
6SFS	High- μ Triode	6AB	6.3	0.3	4	3.6	2.4	Class-A Amp.	250	- 2.0	-	-	0.9	66000	1500	100			65F5
6SF7	Diode Variable μ P Pentode	7AZ	6.3	0.3	5.5	6	0.004	Class-A Amp.	250	- 1.0	100	3.3	12.4	700000	2050				6SF7
6SG7	Semivariable- μ Pentode	88K	6.3	0.3	8.5	7	0.003	H.F. Amp.	250	- 2.5	150	3.4	9.2	Over 1 meg.	4000	\cdots			65G7
6SH7	Sharp Cut-off Pentode	8BK	6.3	0.3	8.5	7	0.003	Class-A Amp.	250	- 1.0	150	4.1	10.8	900000	4900				6SH7
65.174	Sharp Cul-off Pentode	8 N	6.3	0.3	6	7	0.005	Class-A Amp.	250	-3.0	100	0.8	3	1500000	1650	2500			6SJ7
$65 K 7$	Variable- μ Pentoda	8 N	6.3	0.3	6	7	0.003	Class-A Amp.	250	-3.0	100	2.4	9.2	800000	2000	1600			6SK7
6507	Duplex-Diode Triode	80	6.3	0.3	3.2	3.0	1.6	Class-A Amp.	250	- 2.0	-	-	0.8	91000	1100	100			6507
6SR7	Duplex-Diode Triode	80	6.3	0.3	3.6	2.8	2.40	Class-A Amp.	250	- 9.0			9.5	8500	1900	16	-		6SR7
6557	Variable- μ Penlode	8 N	6.3	0.15	5.5	7.0	0.004	Class-A Amp.	250	- 3.0	100	2.0	9.0	1000000	1850				6557
6517	Duplex-Diode Triode	80	6.3	0.15	2.8	3	1.50	Class-A Amp.	250	-9.0			9.5	8500	1900	16		-	6ST7
6567	Diode R.F. Pentode	7AZ	6.3	0.3	6.5	6	0.004	Class-A Amp.	250	- 1	150	2.8	7.5	800000	3400				65V7
6587	Duplex-Diode Triode	80	6.3	0.15	2.6	2.8	1.10	Class-A Amp.	250	-3	-	-	1.0	58000	1200	70	-	-	6527
677	Duplex-Diode Triode	$7 V$	6.3	0.15	1.8	3.1	1.70	Class-A Amp.	250	- 3.0		\cdots	1.2	62000	1050	65			$6 \mathrm{T7}$
6V6	Beam Power Amplifier	7AC	6.3	0.45	2.0	7.5	0.7	Class-A, Amp. ${ }^{\text {b }}$	250	-12.5	250	4.5/7.0	45/47	52000	4100	218	5000	4.5	6V6
								Class-AB ${ }_{1}$ Amp. ${ }^{\text {a }}$	250	-15.0	250	5/13	70/79	60000	3750		$10000{ }^{8}$	10.0	
									285	-19.0	285	4/13.5	70/92	65000	3600		$8000{ }^{\text {B }}$	14.0	
1611	Pentode Pawer Amplifier	75	6.3	0.7				Audio Amp.	Characterlsfics same as 6F6										1611
1612	Pentogrid Ampliner	$7 \mathrm{7R}$	6.3	0.3	7.5	11	0.001	Class-A Amp.	250	- 3.0	100	6.5	5.3	600000 \|	1100	880	-	-	1612
1620	Shorp Cul-off Pentode	7 R	6.3	0.3				Class-A Amp.	Characteristics some as 637										1620
1621	Power Amplliter Pentode	75	6.3	0.7	-	-		Class-AB2 Amp ${ }^{6}$	300	-30.0	300	6.5/13	38/69	-	-	-	40008	5.0	1621
1622	Beam Power Amplifier	7 AC	6.3	0.9				Class-A ${ }_{1}$ Amp. ${ }^{\text {a }}$	330	$50{ }^{\circ}$			53/59		-		$5000{ }^{\text {B }}$	2.0	
1851	Telovision Amp. Pentode	7 R	6.3	0.45	11.5	5.2	0.02	Class-A Amp.	300	-2.0	150	4/10.5	106	750000			4000	10.0	1622
5693	Sharp Cut-off Pentod.	8 N	6.3	0.3	5.3	6.2	0.005	Class-A Amp.	250	-3	100	0.85	3.0	1000000	1650	675			1851
5961	Pentagrid Converter	8 R	6.3	0.3	Osc, Grid 20K Ω			Canveritar	250	- 2	100	8.5	3.5	1000000	Conversion $\mathbf{G m}=\mathbf{4 5 0}$				5961
6137	Remote Cut-off Pentode	8N	6.3	0.3	5.0	6.5	0.003	Class-A Amp.	250	- 3	100	2.6	9.2	800000	2000	,	Gm-4s0		6137

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES
(For "G" and "GT"-Type Tubes Not Listed Here, See Equlvalent Type in Table I; Characteristics and Connections Will Be Identical)

Type	Nome	Socket Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	Screen Volis	Sereen Current Mo.	Plate Curront Ma.	Plate Reslstonce Ohms	Transconductance Micromhos	Amp. Factor	$\begin{gathered} \text { Laad } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Outpul Watts	Type
			Volts	Amp.	In	Out	Plate Grid												
2822	Diode	Fig. 37	6.3	0.75	2.2			U.h.f. Datector	Average cathode Ma. $=5$; Output valts $=50$ d.e.; Lood resistance $=10000$.										2822
$2 \mathrm{C22}$	Triode	4AM	6.3	0.3	2.2	0.7	3.60	Class-A Amp.	300	-10.5	-		11	6600	3000	20			$2 \mathrm{C22}$
6A5GT	Triode Power Amplifier	$6 T$	6.3	1.0				Class-A Amp. ${ }^{4}$	250	-45.0			60	800		4.2	2500	3.75	
						-		P.P. Class AB ${ }^{\text {b }}$	325	-68.0		-	80	\cdots	5250	-	$3000{ }^{\circ}$	15.0	6A5G
								P.P. Class AB ${ }^{\text {c }}$	325	850*			80			-	$5000{ }^{\circ}$	10.0	
6AB6G	Direct-Coupled Amplifior	7 AU	6.3	0.5	-	-	-	Class-A Amp.	250	0	Input		5.0	40000	1800	72	8000	3.5	6AB6G
									250	0		tput	34	36700					
6acsct	Triode	60	6.3	0.4				P.P. Class ${ }^{\text {B }}$	250	0	-		5.0		3400	125	$\begin{array}{\|c\|} \hline 10000^{8} \\ \hline 7000 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.0 \\ & \hline 3.7 \end{aligned}$	6ACSGT
6AC6G	Direct-Coupled Amplifier	7 AU	6.3	1.1	-		-	Class-A Amp.	180	0	Inpus		7.0	-	3000	54	4000	3.8	6AC6G
6ADSG	High μ Triode			0.3	4.1	3.9	3.3		180	- 0	Output		45						
6AD6G10	Electron-Ray Tube	7AG	6.3	0.15	-	3.9	-	Indicatar	100		Ofor 90°; - 23 for $135{ }^{\circ} ; 45$ for 0°. Torget current 1.5 me , for 0°.							-	6ADSGG

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES-Continued

Type	Name	Sockel Connections	Fil. or Hester		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bias	$\begin{gathered} \text { Screan } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Mo.	Plate ResislanceOhms	Transconductance Micromhos	Amp. Factor		Power Output Watts	Type
			Volts	Amp.	In	Out	PlaleGrid												
								Triode Amp.	250	-25.0			4.0	19000	325	6.0			6AD7G
6AD7G	Triode-Pentode	8AY	6.3	0.85				Pentode Amp.	250	-16.5	250	6.5	34	80000	2500		7000	3.2	
GAESG ${ }^{\text {cha }}$	Triode Amplifer	60	63	0.3				Class-A Amp.	95	-15.0			7.0	3500	1200	4.2			6AESG
6AEGG	Single-Grid Twin.Plate Triode	7AH	6.3	0.15		-	\square	Plate No. 1 Plate No. 2	$\begin{array}{r} 250 \\ 250 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		-	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 25000 \\ 35000 \end{array}$	$\begin{array}{r} 1000 \\ 950 \end{array}$	$\begin{aligned} & 25 \\ & 33 \end{aligned}$		三	6AESG
6AE7CTH	Twin-Inpul Triode	7 AX	6.3	0.5				Driver Amplifier	250	-13.5			5.0	9300	1500	14			6AE7GT
6AF5G	Trlode	60	6.3	0.3				Closs-A Amplifar	180	-18.0			7.0		1500	7.4			6AFSG
GAF76	Twin Electron Ray	8AG	6.3	0.3				Indicator Tube											6AF7G
6AGEG ${ }^{10}$	Power-Amplifuer Pentode	75	6.3	1.25				Class-A Amplifor	250	- 6.0	250	6.0	32		10000		8500	3.75	6AGBG
CAH4GT	Triode	8EL	6.3	0.75	7.5	3.2	4.2	Class-A Amplifier	250	-23		-	30	1780	4500	8			6AH4GT
SAH5G	Seem Power Amplifier	6AP	6.3	0.9				Class-A Amplifor	350	-18	250			33000	5200		4200	10.8	6AH5G
SAH7GT	Twin Triode	8BE	6.3	0.3				Converter \& Amp.	250	-9.0			121	6600	2400	16			6AH7GT
AAL6G	Beam Power Ampliher	6AM	6.3	0.9				Closs-A Ampliner	250	-14.0	250	5.0	72	22500	6000		2500	6.5	6AL6G
6AL7GT	Electron-Ray Tube	8.CH	6.3	0.15				Indicolor	Ouler edge of any of the three illuminated oreas displaced $1 / 18 \mathrm{in}$. min . outword with +5 volts to its electrode. Similar ínword disp. with -5 volts. No pattern with -6 volts grid.										6AL7GT
AAOTGT	Duplex Dlode Triode	8CK	6.3	0.3	2.3	1.5	2.8	Class-A Amplinar	250	-2.0			2.3	44000	1600	70	-		6AOTGT
GAR6	Beam Power Amp.	6BQ	6.3	1.2	11	7	0.55	Closs-A Amplifier	250	-22.5	250	5	77	21000	5400	95			6AR6
AAR7GT	Duo-Diode Ramote Pentode	7DE	6.3	0.3	5.5	7.5	. 003	Closs-A Amplifier	250	- 2	100	1.8	7.0	1200000	2500				6AR7GT
AAS7G	Low-Mu Twin Triode	88 D	6.3	2.5				D.C. Amplifier	135	250*			125	280	7500	2.1			6A57G
Aaste	Low-Mu Twin Triode	880	6.3	2.5				Closs-A1 Amp. P.P.	250	2500*			100/106	280	$225{ }^{\text { }}$		6000 ${ }^{\circ}$	13	6ASF
GAUSGT	Beam Pentode	6CK	6.3	1.25	11.3	7	0.5	Harz. Def. Amp.	45011	-5011			10011	Peok pos. plote pulse $=\mathbf{5 0 0 0}$ volts.					6AUSGT
GAV5GT	Beam Peniode	6CK	6.3	1.2				Hapz. Dof. Amp.	500^{11}	-5011	17511		100^{11}	Peak pos. plate pulse $=\mathbf{4 5 0 0}$ volts.					6AV5GT
GAW7 GT	Twin Triod	8CO	6.3	0.3		\cdots		Closs-A Amplifier	100	0			1.4	-	1200	80			6AW7GT
6e46	Triode Power Amplifer	55	6.3	1.0				Power Amplifier	Chorocteristics some os Type 6A3-Table IV										6B4G
46	Duplex-Diode High- μ Triode	7 V	6.3	0.3	1.7	3.8	1.7	Detector-Amplinor	Choracteristics same as Type 75-Tablo iV							-			686 G
CSDSGT	Beam Pentode	6CK	6.3	0.9				Horz. Def. Amp.	32511	--	32511		10011	Peak pos. plote puise $=4000$ volts.					6BD5GT
AGC6G	Beam Power Amplifier	5BT	6.3	0.9	11	6.5	0.5	Doflection Amp.	700^{11}	-5011	350		10011	Peak pos. plote pulse $=6000$ volts.					6BG6G
4817 GT	Double Triode	88D	6.3	1.5	4.4	1.1	4	Class-A Amp.	250	-9			401	2000	7000	14			68L7GT
sebga	Beam Pentode	6AM	6.3	1.2	15	7.5	0.6	Horz. Def. Amp.	250	-22.5	150	2.1	55	20000	5500	$4.3{ }^{2}$	-	-	6BQ6GA
E306GT	Beam Pentode	6AM	6.3	1.2		-	.	Deflection Amp.	55011		150		100^{11}	Peak pos. plate pulse $=4000$ valts.					6896GT
EOCGTA	Beam Pentode	6AM	6.3	1.2	15	7.5	0.6	Horz. Def. Amp.	310	130^{18}	140	11.2	79	20000	5500	-		-	6BQ6GTA
6ISCOG	Twin Triode	880	6.3	1.5	4.4	1.1	4.2	Class.A Amplifier	250	390*	-		42	1300	7600	10	-		6BX76T
ecse	Twin Triode	8 G	6.3	0.3			-	Amp. 1 Section	250	- 4.5	-		3.1	26000	1450	38			6C8G
CCD6G	Beam Pentode	5BT	6.3	2.5	26	10	1.0	Horz. Def. Amp.	700^{11}	-5011	17511		170^{11}	Peak pos. plate pulse $=6000$ volts.					6CDSG
SCUS	Beam Pentode	6AM	6.3	1.2	15	7	0.55	Horz. Def. Amp.	465	-28	140	12.3	83	20000	5500	$4.3{ }^{2}$	-		${ }^{6} \mathrm{CU8}$
CDIG	Pentagrid Converter	8A	6.3	0.15				Converter	250	- 3.0	100	Cothode current 13.0 Mo .			Anode grid (No.2) Volts $=25 \mathbf{2 l}^{3}$				608 G
CEEG ${ }^{\text {c }}$	Triode-Hexode Converter	80	6.3	0.3				Converier	250	-2.0	Triode Plate 150 valts								6E8G
6Fag	Twin Triode	8 G	6.3	0.6				Ampliner	250	-8.0	-		91	7700	2600	20	-		6F8G
-G6G	Pentode Power Amplifier	75	6.3	0.15		-		Class-A Ampliner	180	-9.0	180	2.5	15	175000	2300	400	10000	1.1	6G6G
	Pontode Power Ampliner		6.3	0.15				Class-A Ampliner ${ }^{2}$	180	-12.0				4750	2000	9.5	12000	0.25	6G6G
EH4GT	Diode Rectifier	5AF	6.3	0.15				Detector	100				4.0	-	-	-	-		6H4GT
misg	Duo-Dtode High - μ Pentode	8 E	6.3	0.3		-		Class-A Amplifier	250	- 2.0	100	-	8.5	650000	2400		-	-	6H8G
$0^{\text {Neg }}{ }^{10}$	Triode Heptode	8 H	6.3	0.3				Converter	250	- 3.0	100	2.8	1.2	Anode-grid (No. 2) 250 valis max. ${ }^{8} 5$ ma.					6J8G
CKSGT10	High- μ Triode	50	6.3	0.3	2.4	3.6	2.0	Closs-A Amplifior	250	- 3.0		-	1.1	50000	1400	70	[-	1-	6K5GT
EX6GT	Pentode Power Amplifier	75	6.3	0.4				Class-A Amplifer	Charocteristics same os Type 41-Table IV										6K6GT
6 6SG	Triede Ampliner	60	6.3	0.15	2.8	5.0	2.8	Class-A Amplifier	250	- 9.0	-	-	8.0	-	1900	17	-	-	$615 G$
$3^{\text {mag }}{ }^{10}$	Power Amplifor Pontode.	75	6.3	1.2				Class-A Ampliher	250	- 6.0	250	4.0	36		9500		7000	4.4	6M6G
9 mbG	Pentode Amplifier	7R	6.3	0.3				R.F. Amplifier	250	- 2.5	125	2.8	10.5	900000	3400		-	-	6M7G
cmect	Dlode Triede Pemode	8 AU	6.3	0.6				Triode Amplifer	100	- 3		-	0.5	91000	1100		-		6M8GT
-macr	Dlode Triede Pemode		6.3	0.6				Pentode Ampllfier	100	- 3.0	100		8.5	200000	1900		\square		GMag

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES-Cominued

TABLE III-7-VOLT LOCK-IN-BASE TUBES -For other lock-in-base types see Tables VIII, IX, and X

Type	Nome	Socket Connections	Heatar		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bian	ScreenVolts	Screen Current Ma.	Plate Current Ma.	Plate ResistanceOhms	Transeonductance Micromhes	Amp. Factor	LoadReslisfanceOhms	Power Output Wafts	Type
			Volls	Amp.	In	Oul	PlateGrid												
744	Triode Ampilher	SAC	7.0	0.32	3.4	3	4	Class-A Amplliter	250	- 8.0	-		9.0	7700	2600	20	-	-	744
BAS	Beam Power Amplliter	6AA	7.0	0.75	13	7.2	0.44	Class-A, Amplifier	125	- 9.0	125	3.2/8	37.5/40	17000	6100	-	2700	1.9	$7 \mathrm{FA5}$

TABLE III-7-VOLT LOCK-IN-BASE TUBES-Continued

TABLE IV-6.3-VOLT GLASS RECEIVING TUBES

TABLE IV-6.3-vOLT GLASS RECEIVING TUBES-Continued

Tуре	Name	Base	Socket Connec lions	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	Screen Volts	Screen Current Ma.	Plato Currant Ma.	Plote Resistonce Ohms	Transconducfance Micromhos	Amp. Foctor	LoadReststonceOhms	Power Outpul Walts	Type
				Volts	Amp.	In	Oul	PloteGrid												
1221	Pentode R.F. Amplifior	5.	6F	6.3	0.3		-		Class-A Amp.	Special non-microphanic. Characteristics same as 6Cb										1221
1603^{3}	Shapp Cut off Pentode	M.	6F	6.3	0.3				Class-A Amp.	Choracteristics same as 6C6										1803
3871	Beam Power Amplifier	0.	7AC	6.3	0.45	9.5	7.5	0.7	Class-A Amp.	315	-13	225	2.2	34	77000	3750		8500	5.5	5871
77003	Sharp Cut-off Pentode	S.	6F	6.3	0.3		-		Class-A Amp.	Characteristics some as 6C6										7700
* Cathode bias resistormohms. Discontinued.			${ }^{1}$ Current to input plate (P_{1}). 2 Grids Nos. 2 and 3 connected to plate. ${ }^{3}$ Low noise, nonmicrophonic tubes.						${ }^{4} \mathrm{G}_{2}$ tied to plate. ${ }^{3} G_{1}$ tied to G_{2}. - Osc. grid leak ohms.		7 Screen dropping resistor ohms. 8 Grid No. 2, screen; grid No. 3, suppressor. ${ }^{9}$ Values for single tube.					${ }^{10}$ Values for two tubes in push-pull. u Plate-to-plate value. ${ }^{12}$ No signal value.				

table v-2.s-volt receiving tubes

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES

table VII-2.0-volt battery tubes with octal bases

Typ*	Name	Sockat Connections	Filament		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volis } \end{gathered}$	Screen Current Mo.	Plate Current Mo.	Plate ResisfanceOhms	Transconductance Mitromhos	Amp. Factor	$\begin{array}{\|c} \text { Load } \\ \text { Resisfance } \\ \text { Ohms } \end{array}$	Power Outpul Watts	Type
			Volts	Amp.	In	Out	PlateGrid												
1C7G	Heptode	72	2.0	0.06	10	14	0.26	Converter	Characteristics same as Type IC6-Table VI										1C7G
TDSGP	Veriable- μ Pentode	5	2.0	0.06	5	11	. 007	R.F. Ampliher	Characteristics same as Type 144P-Table VI										105GP
TDSGT 4	Varioble- μ Tetrode	5R	2.0	0.06				R.F. Amplifier	180	[-3.0]	67.5	0.7	2.2	600000	650				105GT
1076	Pentagrid Converter	72	2.0	0.06	10.5	9.0	0.25	Converter	Characleristics same as Type IA6-Table VI										107G
IE5GP	Pentode Amplifier	5 Y	2.0	0.06	5	11	. 007	R.F. Amplifier	Characteristics same as Type 184-Table VI										1E5GP
1E7G	Double Pentode Power Amp.	8 C	2.0	0.24				Closs-A Amplifier	135	-7.5]	135	2.01	6.51	220000	1600	350	24000	0.65	1E7G
PFSG	Pentode Power Amplifier	$6 \times$	2.0	0.12				Class-A Amplifier	Characteristics same as Type IF4-Table VI										IFSG
$177 \mathrm{G}^{8}$	Duplex-Diode Pentode	7AD	2.0	0.06	3.8	9.5	0.01	Detector-Amplifier	Characteristics same as Type 1F6-Table Vi										1F7G
1G5G	Pentode Power Amplifier	$6 \times$	2.0	0.12	-			Class-A Amplifier	135	-13.5	135	2.5	8.7	160000	1550	250	9000	0.55	1G5G
JH4G	Triode Amplifior	55	2.0	0.06	-			Detector-Amplifier	Chapacteristics same as Type 30-Table VI										IH4G
JH6G	Duplex-Diode Triode	7AA	2.0	0.06	1.6	1.9	3.6	Detector-Ampllifer	Characteristics same as Type 1B5-Table VI										IH6G
H5G ${ }^{\text {P }}$	Pentode Power Amplifier	$6 \times$	2.0	0.12				Closs-A Amplifier	135	\|-16.5	135	2.0	7.0	-	950	100	13500	0.45	IJ5G
1 16GT	Twin Triode	7AB	2.0	0.24				Class-B Amplifier	Chapacteristics same os Type 19-Table VI										IJ6G
4A6G	Twin Triode	8 L	2.0	0.12				Class-A, 1 section	90	-1.5	-	-	1.1	26800	750	20		$\bar{\square}$	4A6G
			4.0	0.06				Class-B, 2 sections	90	- 1.5	-	-	$10.8{ }^{1}$				8000	1.0	4 A 66

See also Table X for Special 1.4 -voli Tubes

Type	Name	Bose	Sockel Connections	Filamont		Capacitonce $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Blas	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma.	Plate Current Ma.	$\begin{array}{\|c\|} \hline \text { Plate } \\ \text { Ressistonce } \\ \text { Ohms } \end{array}$	Transconductonco Micromhos	Amp. Factor	Lood ReslstanceOhms	Power Outpul M-wafts	Type
				Volts	Amp.	In	Out	PlateGrid												
1A5GT	Pontode Power Amplifier	0.	$6 \times$	1.4	0.05			二	Class-A, Amp.	90	-4.5	90	0.8	4.0	300000	850	240	25000	115	IASGT
1A7GT	Pentagrid Converter	0.	72	1.4	0.05	Osc. Grid leak 200000月			Converter	90	0	45	0.7	0.6	600000	250	Anode-grid volts 90		-	IATGT
1AB5	Pentode R.F. Amplifier	1.	5BF	1.2	0.05	2.8	4.2	0.25	R.F. Amplifer	90 150	0 -1.5	90 150	0.8 2.0	3.5 6.8	275000	1100		-	- 1	1485
11:76T	Heptode	0.	72	1.4	0.1		-	\longrightarrow	Converter	90	0	45	1.3	1.5	350000	Grid No. 1 resistor 200,000 ohms				187 GT
188GT	Diode Triode Pentode	0.	8AW	1.4	0.1	-	\square	-	Triode Amplifier Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -6.0 \end{gathered}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	$\underline{240000}$	$\begin{array}{r} 275 \\ 1150 \end{array}$		$\overline{14000}$	210	188GT
1C5GT	Pentode Power Amplifier	0.	Δx	1.4	0.1				Class-A, Amp.	90	-7.5	90	1.6	7.5	115000	1550	165	8000	240	1C5GT
108GT	Diade Triade Pontode	0.	8 8J	1.4	0.1	-	-	\longrightarrow	Triode Amp. Pentode Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -9.0 \end{gathered}$	90	1.0	$\begin{aligned} & 1.1 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 43500 \\ 200000 \end{array}$	$\begin{aligned} & 575 \\ & 925 \end{aligned}$	25		-	108GT
1846	Triode Amplifier	0.	55	1.4	0.05	2.4	6	2.40	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	-	-	4.5	$\begin{aligned} & 11000 \\ & 17000 \end{aligned}$	$\begin{array}{r} 1325 \\ 825 \end{array}$	$\begin{aligned} & 14.5 \\ & 14 \end{aligned}$	\longrightarrow	- 1	1E4G
1G4GT	Triode Amplifier	ס.	55	1.4	0.05	2.2	3.4	2.80	Class-A Amp.	90	-6.0	-		2.3	10700	825	8.8			1G4GT
IG6GT	Twin Triade	0.	7 AB	1.4	0.1				Class-A Amp.	90	0	\longrightarrow		1.0	45000	675	30	\longrightarrow		IGGGT
IH5GT	Diode High μ Triode	0.	52	1.4	0.05	1.1	6	1.00	Class-B Amp.	90	0			1/7	34 volt	15 input per 9 175	arid 65	12000	675	1H5GT
ILAA	Pontode Power Amplifiner	L.	5AD	1.4	0.05				Class-A Amp.	90				racteristics	same os 1	A5GT				1144
1LA6	Pentagrid Converter	L.	7AK	1.4	0.05	Osc. Grid leak 200000			Converter	90	0	45	0.6	0.55	750000	250	Anode	Grid Volts	90	ILA6
1LB4	Pentode Power Amplifer	1.	5AD	1.4	0.05				Closs-A Amp.	90	-9	90	1.0	5.0	200000	925	-	12000	200	1184
1286	Heptode Converter	1.	BAX	1.4	0.05	-	\square	\square	Converter	90	0	67.5	2.2	0.4		id No. 4-67	7.5 v., N	10. 5-0 v.		1286
ILC5	Remote Cut-off Pentode	L.	7AO	1.4	0.05	3.2	7	. 007	R.F. Amplifer	90	0	45	0.2	1.15	1500000	775	$\longrightarrow 1$	-	- 1	ILC5
1LC6	Pontagrid Converter	L.	TAK	1.4	0.05	Osc. Grid leak 200000 s			Converter	90	0	351	0.7	0.75	650000	275	Anode Grid Volis 45			1LC6
LLO5	Diodo Pantade	L.	SAX	1.4	0.05	3.2	6	0.18	Closs-A Amp.	90	0	45	0.1	0.6	950000	600	\longrightarrow	\longrightarrow		1LD5
ILE3	Triode Amplifier	L.	4AA	1.4	0.05	1.7	3	1.70	Class-A Amp.	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	0 -3	-	\longrightarrow	$\begin{aligned} & 4.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 11200 \\ & 19000 \end{aligned}$	$\begin{array}{r} 1300 \\ 760 \end{array}$	14.5	\longrightarrow	- 1	1153
1LF3	Triode	L.	4AA	1.4	0.05	1.7	3	1.7	Closs-A Amp.	90	-3			1.4	-	760	14.5	-	-	1LF3
1LG5	Pentode R.F. Amp.	L.	740	1.4	0.05	$\underline{-}$		-	Class-A Amp.	90	0	45	0.4	1.7	1000000	800				ILGS
1LH4	Diode High $-\mu$ Triodo	L.	5AG	1.4	0.05	1.1	6	1.00	Closs-A Amp.	90	0			0.15	240000	275	65	-	$\longrightarrow 1$	ILH4
LLN5	Remote Cul-aff Penlode	L.	7AO	1.4	0.05	3.4	8	. 007	Closs-A Amp.	90	0	90	0.3	1.2	1500000	750		-		1LN5
INSGT	Remote Cut-off Pentode	0.	$5 Y$	1.4	0.05	3	10	. 007	Class-A Amp.	90	0	90	0.3	1.2	1500000	750	1160	-		INSGT
IN6G \#	Diode-Power-Pontode	0.	7AM	1.4	0.05				Class-A Amp.	90	-4.5	90	0.6	3.1	300000	800		25000	100	IN6G
PPSGT	Pentode	0.	5 Y	1.4	0.05	3	10	. 007	R.F. Amplifier	90	0	90	0.7	2.3	800000	800	640	25000		IPSGT
10SGT	Tetrode Power Amplifier	0.	SAF	1.4	0.1	-	-	-	Class-A Amp.	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 35 \\ & 90 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 70000 \\ & 75000 \end{aligned}$	$\begin{aligned} & 1950 \\ & 2100 \end{aligned}$	-	$\begin{aligned} & 9000 \\ & 8000 \end{aligned}$	$\begin{aligned} & 250 \\ & 270 \end{aligned}$	10SGT
1R4/1294	U.h.f. Diode	L.	4AH	1.4	0.15	-	-	-	Roclifer	Max. r.m.s. vollage per plate-30					Max. d.e. output eurrent-340 $\mu \mathrm{a}$.					1R4/1294
15A6GT	Medium Cut-off Pentode	0.	SCA	1.4	0.05	5.2	8.6	0.01	R.F. Amplifier	90	0	67.5	0.68	2.45	800000	970	-	ma.	- 1	1SAGGT
1S86GT	Diode Pentode	0.	SCB	1.4	0.05	3.2	3	0.25	Class-A Amp.	90	0	67.5	0.38	1.45	700000	665	-	-		15B6GT
ITSGT	Beam Pawer Ampliner								R.C. Amplifer	90	0	90	Sereen resistor 5 mag., grid 10 meg.					1 meg.	110^{2}	
	Beam Power Amplifer	0.	6AF	1.4	0.05	4.8	8	0.50	Class. A Amp.	90	-6.0	90	1.4	6.5	-	1150	-	14000	170	ITSGT
$387 / 1291$	U.h.f. Twin Triode	L.	$78 E$	$2.8{ }^{3}$	0.11	1.4	2.6	2.6	Class.A Amp.	90	0	-	-	5.2	11350	1850	21	-	- 3	387/1291
1293	U.h.f. Triode	L.	4AA	1.4	0.11	1.7	3.0	1.7	Class-A Amp.	90	0	$\underline{-}$		4.7	10750	1300	14		- 1	1293
3D6/1299	U.h.f. Tolrode	L.	6BB	$2.8{ }^{\text {1 }}$	0.11	7.5	6.5	0.30	Clsss-A Amp.	135	-6	90	0.7	5.7	-	2200		13000	500	306/1299
3E6	R.F. Pentode	L.	7 CJ	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$	5.5	7.5	0.007	Closs-A Amp.	90	0	90	1.3	3.8	300000	2100	-	\longrightarrow	-	356
RK42	Triode Amplifer	5.	40	1.5	0.6			-	Class-A Amp.	Characteristics same as Type 30-Table Vi										RK42
RK43	Twin Triode Amplifer	5.	6 C	1.5	0.12	-	-	-	Class-A Amp.	135	-3	\longrightarrow	\longrightarrow	4.5	14500	900	13	-	-	RK43

Discontinued.
${ }^{1}$ Through serios resistor. Screen voltoge must be at loast 10 valts lower than oseillatar anode.

TABLE IX-high-VOLTAGE HEATER TUBES

Type	Name	Base	Socket ConnecHions	Hoater		Capacifonce $\mu \mu \mathrm{fd}$,			Use	Plate Supply Valls	Grid Bias	Screen Valts	Screen Curren! Ma.	Plate Current Mo.	Plate Resistance Ohms	Transeonduclance Micramhas	Amp. Factor	Laod Resistance Ohms	Power Output Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
$2 \mathrm{CS2}$	High- μ Twin Triode	0.	8BD	12.6	0.3	2.3	0.75	2.7	Class-A Amp.	250	-2	-	-	1.3		1900	100			$2 \mathrm{C5} 2$
12A5:	Pentode Power Amplifter	M.	7F	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	9.0	9.0	0.3	Class-A Amp. ${ }^{6}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & -15 \\ & -25 \end{aligned}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & 3 / 6.5 \\ & 8 / 14 \end{aligned}$	$\begin{aligned} & 17 / 19 \\ & 45 / 48 \end{aligned}$	$\begin{aligned} & 50000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 1700 \\ & 2400 \\ & \hline \end{aligned}$		$\begin{aligned} & 4500 \\ & 3300 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 3.4 \end{aligned}$	12 A 5
12A6	Beam Power Amplifier	0.	7 AC	12.6	0.15				Class-A Amp.	250	-12.5	250	3.5	30	70000	3000		7500	3.4	12 A 6
12A7	Reetifior-Amplifier	M.	7K	12.6	0.3				Class-A Amp.	135	-13.5	135	2.5	9.0	102000	975	100	13500	0.55	1247
12A8GT	Heptodo	0.	8 A	12.6	0.15	9.5	12	0.26	Converter	Characteristics same as 6AB-Table I										12A8GT
12AH7GT	Twin Triode	0.	88E	12.6	0.15	Each Triodo Sect.			Class-A Amp.	180	- 6.5		-	7.6	8400	1900	16			$12 \mathrm{AH7GT}$
1286M	Diode Triode	0.	6 Y	12.6	0.15				Class-A Amp.	250	- 2.0			0.9	91000	1100	100			$12 \mathrm{B6M}$
1287ML	Pentode Amplifier	0.	8 V	12.6	0.15		-		Closs-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000				1287 ML
1288GT ${ }^{\text {s }}$	Triade-Pentode	0.	81	12.6	0.3	Triode Section Pentode Section			Class-A Amp. Class-A Amp.	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & -1 \\ & -3 \end{aligned}$	100	2	8	$\begin{array}{r} 73000 \\ 170000 \end{array}$	$\begin{aligned} & 1500 \\ & 2100 \end{aligned}$	$\begin{array}{r} 110 \\ 360 \end{array}$		—	1288GT
12806GT	Beam Pentode	0.	6AM	12.6	0.6	15	7.5	0.6	Harz. Def. Amp.	Characteristics same as 6BC6GT-Table II										12806GT
12 Cs	Duplex-Diode Pentode	0.	${ }^{\text {B }}$ E	12.6	0.15	6	9	. 005	Closs-A Amp.	Characteristics same as 6B8-Tablel										12 CB
12CU6!	Bram Pentode	0.	GAM	12.6	0.6	15	7	0.55	Harz. Def. Amp.	Characteristics same as 6CU6-Table II										12 CU 6
12E5GT	Triade Ampllifer	0.	60	12.6	0.15	3.4	5.5	2.60	Class-A Amp.	250	-13.5			50		1450	13.8			12E5GT
12F5G7	Triode Amplifer	0.	5M	12.6	0.15	1.9	3.4	2.40	Class-A Amp.	Characteristics some as 65F5-Table I										12F5GT
$12 \mathrm{G7G}$	Duplex-Diode Triode	0.	7 V	12.6	0.15				Class-A Amp.	250	- 3.0				58000	1200	70			12G7G
12H6	Twin Diode	0.	70	12.6	0.15		-	\cdots	Rectifier	Characteristics same as 6H6-Table I										12H6
12 J 5 GT	Triode Amplitior	0.	60	12.6	0.15	3.4	3.6	3.40	Class-A Amp.	Charactoristics same as 6J5-Table i										12J5GT
12J7GT	Sharp Cul-off Pentode	0.	7R	12.6	0.15	4.2	5.0	3.8	Class-A Amp.	Characteristics same as $6 \sqrt{77}$-Table 1										12J7G1
12K7GT	Remale Cut-off Pentode	0.	78	12.6	0.15	4.6	12	. 005	R.F. Amplifer	Characteristics same as 6K7-Table I										12 K GT
12K8	Triode Hexode Converter	0.	aK	12.6	0.15				Converter	Characteristics same as 6K8-Tablel										12 K 8
12L6GT \ddagger	Beam Pentode \ddagger	0.	7 AC	12.6	0.6	-	-	-	Class-A1 Amp.	100	-7.5	100	4/10	49/50	13000	8000		2000	2.1	
-126t	Deam Ponlodef						-		Closs-A Amp.	200	180*	125	2.2/8.5	46/47	28000	8000		4000	3.8	12L6G
12L8GT	Twin Pentode	0.	88U	12.6	0.15	5	6	0.70	Class-A, Amp.	180	- 9.0	180	2.8	13.0	160000	2150		10000	1.0	12L8GT
1207GT	Duplex-Diode Triode	0.	7 V	12.6	0.15	2.2	5	1.60	Class-A Amp.	Characteristics same as 697-Table I										1297GT
1258GT	Triple-Diode Triode	0.	${ }^{\text {CRE }}$	12.6	0.15	2.0	3.8	1.2	Class-A Amp.	250	- 2.0			0.9	91000	1100	100	-		1258 GT
12547	Meprode	0.	8R	12.6	0.15	9.5	12	0.13	Canverter	Characteristics some as 65A7-Tablel										12547
125C7	Twin Triode	0.	85	12.6	0.15	2.2	3.0	2.0	Class-A Amp.	Characteristics same as 6SC7-Table :										$125 C 7$
12SF5	High- μ Triode	0.	6AB	12.6	0.15	4	3.6	2.40	Class-A Amp.	Characteristics same as 65F5-Table 1										12SF5
125F7	Diode Variable- μ.Pentode	0.	7AZ	12.6	0.15	5.5	6.0	. 004	Closs-A Amp.	Characteristics same as 65F7-ratle 1										12557
125G7	Medium Cul-aff Pentade	0.	8BK	12.6	0.15	3.5	7.0	. 003	Class-A Amp.	Characteristics same as 65G7-Table I										12567
12547	Sharp Cul-off Pentade	0.	8BK	12.6	0.15	8.5	7.0	. 003	H-F Amplifer	Characteristics same os $65 \mathrm{H7}$-Table 1										$125 \mathrm{H7}$
12517	Sharp Cut-off Penlode	0.	8 N	12.6	0.15				Class-A Amp.	Characleristics same as 6SJ7-Table I										12537
12567	Remate Cut-aff Pentode	0.	8 N	12.6	0.15	6.0	7.0	. 003	R.F. Amplifer	Characteristics same as 6SK7-Table I										125 K 7
125L7 GT	Twin Triode	0.	880	12.6	0.15				Closs-A Amp.	Characteristics same as 65L7GT-Table II										125L7GT
12SN7GT	Twin Triode	0.	8BD	12.6	0.3	-			Class-A Amp.	Characteristics same as 65N7GT-Table 11										$125 N 76 T$
12507	Duplex-Diode Triode	0.	89	12.6	0.15	3.2	3.0	1.60	Class-A Amp.	Characteristics same as 6597-Table I										12507
125R7	Duplex-Diode Triode	0.	80	12.6	0.15	3.6	2.8	2.40	Class-A Amp.	Characleristics same as 6R7-Table 1										12587
$125 \mathrm{W7}$	Duplex-Diode Triode	0.	80	12.6	0.15	3.0	2.8	2.4	Class-A, Amp.	250	-9			9.5	8500	1900	16			125w7
125×7	Twin Triade	0.	8BD	12.6	0.3	3.0	0.8	3.6	Class-A1 Amp. ${ }^{3}$	250	-8	\square		9	7700	2600	20	-		125×7
$125 Y 7$	Hoplode Convertor	0.	8R	12.6	0.15	Osc.-Grid leak 20000 ohms			Converter	250	- 2	100	8.5	3.5	1000000	450		-	-	125 Y 7
T2V6GT	Beam Pentode	0.	7AC	12.6	0.225	9	7.5	0.7	Class-A Amp.	315	-13	225	2.2/6	34/35	80000	3750		8500	5.5	12V6GT
12W6GF	Beam Pentode	0.	7 AC	12.6	0.6	15	9	0.5	Class-A, Amp.	110	-7.5	110	4/10	49/50	13000	8000	-	2000	2.1	12W6GT
										200	180*	125	2.2/8.5	46/47	28000	8000		4000	3.8	
									Triade Amp. ${ }^{10}$	225	-30	-	--	22	1600	3800	6.2		-	
1444	Triode Amplifier	1.	5AC	14	0.16	3.4	3.0	4.00	Class-A Amp.	Characteristles same as 7A4-Table III										1444
14A5	Beam Power Amplifier	1.	6AA	14	0.16		-	-	Closs-A, Amp.	250	-12.5	250	3.5/5.5	30/32	70000	3000	-	7500	2.8	14A5

TABLE IX-HIGH-VOLTAGE HEATER TUBES-Continued

Type	Name	Base	Socket Connec. tions	Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volls	Grid Bias	Screen Volts	Screen Current Ma.	Plate Current Ma.	Plate Resistonce Ohms	Transcanductance Micromhos	Amp. Factor	Lood Resistance Ohms	Power Oulpul Wotts	Type
				Valis	Amp.	In	Oul	PlateGrid												
$\begin{aligned} & \text { TAA7/ } \\ & 1287 \end{aligned}$	Remate Cut-off Pentade	L.	8 V	14	0.16	6.0	7.0	. 005	Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000	-	-	—	$\begin{aligned} & 14 A 7 / \\ & 12877 \end{aligned}$
S4AF7	Twin Triode	L.	BAC	14	0.16	2.2	1.6	2.30	Closs-A Amp.	250	-10		-	9	7600	2100	16			14 AF7
B4B6	Duplex.Diode Triode	t.	8w	14	0.16				Class-A Amp.				Charact	eristics so	ame os 786	- Table III				1486
T488	Pentogrid Converter	L.	8 X	14	0.16		$2=4$		Canverter				Charoct	eristics so	me os 788-	Toble III				1488
T4C5	Beom Pawer Amplifier	1.	GAA	14	0.24				Class.A Amp.				Charact	-ristics so	me os 6 V 6	-Table 1				14C5
B4C7	R.F. Pentode	1.	8 v	14	0.16	6.0	6.5	. 007	Class-A Amp.	250	-3.0	100	0.7	2.2	1000000	1575				$14 \mathrm{C7}$
B4ES	Duplex.Diade Triode	1.	8w	14	0.16				Closs.A Amp.				Choract	eristics so	ame as 7E6-	- Table III				$14 \mathrm{E6}$
T4E7	Duplex Diode Pentade	1.	8 AE	14	0.16	4.6	5.3	. 005	Closs.A Amp.				Choract	eristics so	me os 7E7	-Tablell				$14 E 7$
14F7	Twin Triade	L.	AAC	14	0.16				Closs-A Amp.				Charact	eristics so	ame os 7F7	Tablelll				14F7
T4Fs	Twin Trisde	L.	8BW	12.6	0.15	2.8	1.4	1.2	Class.A1 Amp.					harocteristics	ics some os	7F8				14 F 8
T4H7	Semi-Vorioble. μ Pentode	L.	8 V	14	0.16	8.0	7.0	. 007	Class.A Amp.	250	- 2.5	150	3.5	9.5	800000	3800				1447
14.37	Triade.Hexode Converter	L.	8 BL	14	0.16		$t=5 \mathrm{M}$	-	Convertar				Choroct	eristics so	ame os 737-	Toble lll				1437
14N7	Twin Triode	L.	8 AC	14	0.32				Class-A Amp.				Choract	eristics so	me os 7N7 -	- Toble III				14N7
1407	Heplode Pentagrid Converter	t.	8 AL	14	0.16		-	-	Convertor				Choroct	eristics so	ame os 707	-Table III				1497
14R7	Duplex Diode Pentode	1.	8AE	14	0.16	5.6	5.3	. 004	Class-A Amp.				Characte	aristics som	meas 7R7 -	Toble 111				14R7
1457	Triode Heptode	L.	88 C	14	0.16		t $=5 \mathrm{M}$		Converter	250	- 2.0	100	3	1.8	1250000	525				1457
34V7	H.f. Pentode	L.	8 V	14	0.24				Class-A Amp.	300	-2.0	150	3.9	9.6	300000	5800				14 V 7
14W7	Pentodo	L.	8 BJ	14	0.24	RK=	160 o	hms	Class-A Amp.	300	- 2.2	150	3.9	10	300000	5800				14W7
14×7	Pwin Diode Triode	1.	882	12.6	0.15		-		Closs. A Amp.	250	- 1			1.9	-	1500	100			14×7
18	Pentode	M	68	14	0.30				Class-A Amp.				Chor	oracteristic	cs same as 6	6F6G				18
198G6G	Beam Power Amp.	0.	587	18.9	0.3	11	6.5	0.65	Deflection Amp.	400		Peak surg	- $\mathrm{E}_{\mathrm{p}}=4000$	V. Peok	surge $\mathrm{E}_{\mathrm{G}}=-$	$-100 \mathrm{~V} . \mathrm{I}_{62}$	= 6 ma .	$1 \mathrm{p}=70 \mathrm{ma}$.		198G6G
20J8GM	Triode Meptode Converter	o.	8 H	20	0.15	-			Convartar	250	- 3.0	100	3.4	1.5	Triad	de Plate (No	.6) 100	v. 1.5 ma		20J8GM
2147	Triode Hexode Converter	L.	8 AR	21	0.16	-		-	Converter	$\begin{aligned} & 250 \\ & 150 \end{aligned}$	$\begin{array}{\|l\|} \hline-\quad 3.0 \\ -\quad 3.0 \end{array}$	100	iode	$\begin{aligned} & 1.3 \\ & 3.5 \end{aligned}$		$\begin{array}{r} 275 \\ 1900 \end{array}$	$\overline{32}$			2147
25A6	Pentode Power Amplifier	0.	75	25	0.3	8.5	12.5	0.20	Class-A Amp.	135	-20.0	135	8	37	35000	2450	85	4000	2.0	2546
25A7GT	Rectifier Power Pentode -	0.	8 F	25	0.3			-	Closs-A Amp.	100	-15.0	100	4	20.5	50000	1800	90	4500	0.77	25A7GI
25ACSGT	Triode Power Amplifer	0.	60	25	0.3				Closs.A Amp.	110	$+15.0$			45		3800	58	2000	2.0	25AC5GT
25ACSGT	Triode Power Amplifier	0.	60	25	0.3		-		Closs.A Amp.	165		Used in	dynomic-co	upled cir	cuit with 6AF	FFSG driver		3500	3.3	25acsgr
25AVSGT	Beom Pentode	0.	6CK	25	0.3				Morz. Def. Amp.	2509	-509	$175{ }^{9}$		$100{ }^{\circ}$	Peal	k pos. plate	pulse $=$	4500 volls.		25AVSGT
25B5 ${ }^{\text {a }}$	- Direct-Coupled Triades	5.	6 D	25	0.3		-		Class-A Amp.	110	0	110	7	45	11400	2200	25	2000	2.0	2585
25E6G ${ }^{8}$	Pentode Power Amplifier	0.	75	25	0.3			-	Class-A Amp.	95	-15.0	95	4	45	-	4000	-	2000	1.75	2586 G
$2588 \mathrm{GT}^{8}$	Triode Pentode	0.	8 T	25	0.15				Closs-A Amp.				Char	octeristica	some as 12	288G7				25B8GI
25806GA	Beom Pentode	0.	6AM	25	0.3	15	7.5	0.6	Horx Def Amp.				Charact	eristics sa	me as 6896	GA-Tabl				25806GA
25806 GT	Beam Pentode	0.	GAM	25	0.3		-	-	Deflection Amp.	250	47*	150	2.1	45	-		-	-		25BCGGT
25C6G ${ }^{\text {8 }}$	Beom Power Amplifier	0.	7 AC	25	0.3		-		Class.A, Amp.	135	-13.5	135	3.5/11.5	$58 / 60$	9300	7000		2000	3.6	25 CbG
25CD6G	Beam Pentode	0.	$5 \overline{87}$	25	0.6	26	10	1.0	Deflection Amp.	500		Peak ${ }^{-1}$	as. Pulse $=$	6000 volt	s. $E_{\mathrm{G}^{2}}=170$.	$1 \mathrm{p}=92 \mathrm{ma}$.	$\mathrm{G}^{2}=15$.	5 ma .		$25 \mathrm{CD} \times \mathrm{G}$
$25 \mathrm{CU6}$	Beam Pentade	0.	GAM	25	0.3	15	7	0.55	Horz. Def. Amp.				Charact	eristics sa	me os 12Cu6					25 Cu 6
	Diode Triade Pentode	0.	8 AF	25	0.15		\square	-	Triade Amp.	100	-1.0	-	-	0.5	91000	1100	100		-	2508GT
2508GI	Diode Triade Peniode	0.	8 AF	25	0.15				Pentode Amp.	100	- 3.0	100	2.7	8.5	200000	1900	-	-		2508G
2516	Beom Power Amplifier	0.	$7{ }^{\text {ac }}$	25	0.3	16	13.5	0.30	Class-A, Amp.	110	-8.0	110	3.5/10.5	45/48	10000	8000	80	2000	2.2	2516
25N6G ${ }^{\text {a }}$	Direct-Coupled Triodes	0.	7W	25	0.3			-	Closs.A Amp.	110	0	110	7	45	11400	2200	25	2000	2.0	25N6G
26A7GT	Twin Beam -Power Audio Amplifer	0.	8BU	26.5	0.6		Each Ur Push-Pu		Class-A Amp Class.AB Amp. ${ }^{3}$	$2 \overline{26.5}$	-4.5 -7.0	26.5	2/5.5 2/8.5	$20 / 20.5$ $19 / 30$	2500	5500		$150 \overline{0}$ 2500	0.2	26A7GT
32 Cl GT	Diode-Beom Tetrode	0.	87	32.5	0.3		-	-	Class-A Amo.	110	- 7.5	110	3	40	15000	6000	-	2500	1.5	32L7GT
3545	Beom Power Amplifer	1.	6AA	35	0.15		$\underline{ }$		Closs A, Amp.	110	-7.5	110	3/7	$40 / 41$	14000	5800	--	2500	1.5	35 A5
3516 GT	Beom Power Amplifer	0.	7AC	35	0.15	13	9.5	0.80	Class-A, Amo.	110	-7.5	110	3/7	40/41	13800	5800	-	2500	1.5	3516GT
43	Pentode Power Amplifier	M.	68	25	0.3	8.5	12.5	0.20	Class-A Amp.	95	-15.0	95	4.0	20.0	45000	2000	90	4500	0.90	43

TABLE IX-HIGH-VOLTAGE HEATER TUBES-Continued

Type	Name	Baso	Socket Connec. tions	Fil. or Heater		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plafe Supply Volis	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volis } \end{aligned}$	Screen Curren 1 Ma.	Plate Current Ma.	Plato Resistonce Ohms	Transconduclance Micromhos	Amp. Factor		PowerOulputWafts	Type
				Volls	Amp.	In	Out	PlateGrid												
(0.A ${ }^{\text {a }}$	Triode Delector	M.	4D	5.0	0.25	3.2	2.0	8.50	Grid-Leork Det.	45		-		1.5	30000	666	20		-	00.A
$01 . A^{\text {? }}$	Triode Derectar Amplifier	M.	4D	5.0	0.25	-			Closs-A Amp.	135	-9.0			3.0	10000	800	8.0			O1.A
2.01 C	U.h.f. Diode	N.	-	5.0	0.34	$0.7{ }^{\text {n }}$			Probe	Peak inverse- 1000 volts. Max d.e. IP-1 ma.										2-01C
3A8GT	Diode Triode Pentode	0.	8 AS	1.4	0.1	2.6	4.2	2.0	Class.A Triode	90	0	9	-	0.15	240000	275	65			3A8GT
3ABG	Dlode Triode Pentode	-	-AS	2.8	0.05	3.0	10.0	0.012	Closs-A Pentode	90	0	90	0.3	1.2	600000	750			-	3A8G1
385GT	Beom Power Amplifler	0.	7 AP	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-	-	-	Class-A Amp.	67.5	- 7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.7 \end{aligned}$	100000	$\begin{aligned} & 1650 \\ & 1500 \end{aligned}$	-	5000	$\begin{array}{\|l\|} \hline 0.2 \\ 0.18 \\ \hline \end{array}$	3B5GT
3C5GT	Power Output Pentode	0.	740	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \\ & \hline \end{aligned}$	-	-	-	Class-A Amp.	90	- 9.0	90	1.4	6.0	-	$\begin{aligned} & 1550 \\ & 1450 \end{aligned}$	-	$\begin{array}{r} 8000 \\ 10000 \end{array}$	$\begin{aligned} & 0.24 \\ & 0.26 \end{aligned}$	3C5GT
3 Cb	Twin Trlode	L.	7aw	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-	-	-	Class-A Amp.	90	0	-	-	4.5	11200	1300	14.5	-	-	3 C 6
$3 \mathrm{EE4}$	Power Amplifer Pentode	1.	68A	2.8	0.05	-			Class-A Amp.	90	- 9.0	90	1.8	9.0	110000	1600		6000	0.30	3LE4
$32 F 4$	Beam Pentode	L.	688	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	-		-	Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 75000 \\ & 80000 \end{aligned}$	$\begin{aligned} & 2200 \\ & 2000 \end{aligned}$	\square	$\begin{aligned} & 8000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.23 \end{aligned}$	3LF4
30sGt	Beam Power Amplifier	0.	740	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	Porallat Filoments Series Filamants			Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	9.5	-	$\begin{array}{r} 2100 \\ 1800 \end{array}$	-	B000	$\begin{aligned} & 0.27 \\ & 0.25 \end{aligned}$	3asct

TABLE X-SPECIAL RECEIVING TUBES-Continued

Type	Name	Bcse	Socket Conner tions	Fil. or Heoter		Copocitonce $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	Screan Volis	Screen Current Mo.	Plote Current Ma.	Plote Resistance Ohms	Transcan. ductonce Mieromho:	Amp. Foclor	$\left\lvert\, \begin{gathered} \text { Load } \\ \text { Resistonce } \\ \text { Ohms } \end{gathered}\right.$	Power Output Watls	TyFe
				Volts	Amp.	In	Out	PloteGrid												
				4.0	0.06	Triodes Parallel			Class-A Amp.	90	-1.5	-		2.2	13300	1500	20		-	4A6G
4 AGG	Twin Triode Amplifier	0.	81	2.0	0.12	Both Sections			Class - 8 Amp.	90	0			4.6				8000	1.0	
$6 F 4$	Acorn Triode	A.	78R	6.3	0.225	2.0	0.6	1.90	Class.A Amp.	80	150*	\square		13.0	2900	5800	17			6F4
614	U.H.F. Triode	A	78 R	6.3	0.225	1.8	0.5	1.6	Class-A, Amp.	80	150*			9.5	4400	6400	28			614
10	Triode Power Amplifier	M.	40	7.5	1.25	4.0	3.0	7.00	Class-A Amp.	425	-39.0	\square		18.0	5000	1600	8.0	10200	1.6	10
11/12	Triode Detector Amplifier	M .	$4 \mathrm{~F} / 4 \mathrm{D}$	1.1	0.25				Class-A Amp.	135	-10.5	-		3.0	15000	440	6.6	-		11/12
20^{\prime}	Triode Power Amplifier	5.	4 D	3.3	0.132	2.0	2.3	4.10	Class.A Amp.	135	-22.5			6.5	6300	525	3.3	6500	0.11	20
22^{\prime}	Totrode R.F. Amplifier	M	4K	3.3	0.132	3.5	10	0.02	Class-A Amp.	135	- 1.5	67.5	1.3	3.7	325000	500	160	-		22
25	Triode Amplifier	M.	4D	1.5	1.05	2.8	2.5	8.10	Class.A Amp.	180	-14.5			6.2	7300	1150	8.3	-	-	26
40^{7}	Triode Vollage Amplifier	M	4D	5.0	0.25	2.8	2.2	2.00	Class-A Amp.	180	- 3.0			0.2	150000	200	30	$\bar{\square}$		40
50	Triode Power Amplifier	M.	4 D	7.5	1.25	4.2	3.4	7.10	Class.A Amp.	450	-84.0	-		55.0	1800	2100	3.8	4350	4.6	50
71.4	Triode Power Amplifier	M	4 D	5.0	0.25	3.2	29	7.50	Class-A Amp.	180	-43.0	- -	-	20.0	1750	1700	3.0	4800	0.79	71.4
99.	Triode Detector Amplifier	5.	40	3.3	0.063	2.5	2.5	3.30	Class-A Amo.	90	- 4.5	-	-	2.5	15500	425	6.6	-	-	99
$112 A^{\text {a }}$	Triode Delector Amplifier	M	40	5.0	0.25	\square	--	--	Class.A Amp.	180	-13.5	-	-	7.7	4700	1800	8.5	-	-	112 A
$\begin{aligned} & 1828 / \\ & 4828 \mathrm{~F} \end{aligned}$	Triode Amplifier	M.	40	5.0	1.25	-	-	-	Class.A Amp.	250	-35.0	-	-	18.0	-	1500	5.0	-	-	$\begin{aligned} & 1828 / \\ & 4828 \end{aligned}$
183/483	Power Triode	M	4 D	5.0	1.25		- -	-	Class.A Amp.	250	-60.0		-	25.0	18000	1800	3.2	4500	2.0	183/483
485^{7}	Triode	5	SA	3.0	1.3	-	-		Closs.A Amp.	180	- 9.0	- -		6.0	9300	1350	12.5	-	-	485
864	Triode Amplifer	s.	40	1.1	0.25			-	Class.A Amp.	90	-4.5		-	2.9	13500	610	8.2	-	-	864
954	Pentode Detector, Amplifier	A.	5BB	6.3	0.15	3.4	3.0	0.007	Class-A Amp. Bios Delector	250	-3.0 -6.0	100	0.7	Plate currentio be adiusted to 0.1 mo . with no signal						954
	Triode Detector,	A.	58C	6.3	0.15	1.0	0.6	1.40	Closs-A Amp.	250	- 7.0			6.3	11400	2200	25			955
955	Amplifier, Oscillotor	A.	sec	6.3	0.15	1.0	0.6	1.40	Closs-A Amp.	90	- 2.5			2.5	14700	1700	25			
956	Vorioble- μ Pentode R.F. Amplifier	A.	58B	6.3	0.15	3.4	3.0	0.007	Closs.A Amp. Mixer	250	$\begin{array}{r}-3.0 \\ \hline-10.0 \\ \hline\end{array}$	100 100	2.7	6.7	Oscillator peak volts -7 min .					956
957	Triode Detector, Amplifer, Oscillotor	A.	SBD	1.25	0.05	0.3	0.7	1.20	Closs.A Amp.	135	- 5.0	-	-	2.0	20800	650	13.5	-	-	957
$\begin{aligned} & 958 \\ & 958 . A \end{aligned}$	Triode A.F. Amplifier. Oscillator	A.	58D	1.25	0.1	0.6	0.8	2.60	Class-A Amp.	135	-7.5	-	-	3.0	10000	1200	12	-	-	$\begin{aligned} & 958 \\ & 958 . A \end{aligned}$
959	Pentode Detector. Amplifier	A.	58E	1.25	0.05	1.8	2.5	0.015	Class-A Amp.	145	- 3.0	67.5	0.4	1.7	800000	600	480	-	-	959
7E5/1201	U.h.f. Triode	t.	8 BN	6.3	0.15	3.6	2.8	1.50	Class-A Amp.	180	- 3	-		5.5	12000	-	36			7ES/1201
7C4/1203	U.h.f. Diode	1.	$4 \overline{A H}$	6.3	0.15				Reclifier	Max. r.m.s. voltoge- 150					Mox. d.c. output current-8 mo.					7C4/1203
$\begin{aligned} & \text { 7AB7/ } \\ & 1204 \end{aligned}$	Sharp Cul-off Pentode	t.	880	6.3	0.15	3.5	4.0	0.06	Closs.A Amp.	250	- 2	100	0.6	1.75	800000	1200	\longrightarrow	-	\sim	$\begin{aligned} & \hline 7 A B 7 / \\ & 1204 \end{aligned}$
1276	Triode Power Amplifier	M.	40	4.5	1.14		-	-	Class.A Amp.	Chorocteristics similor to 6A3										1276
1609	Pentode Amplifier	5.	58	1.1	0.25	\square			Class-A Amp.	135	-1.5	67.5	0.65	2.5	400000	725	300	\square		1609
5731	Acorn Triode	A.	5 BC	6.3	0.15	1.0	0.4	1.3	Closs.A Amp.	250	-7			6.3	11400	2200	25			5731
5768	U.h.f. "Rocket" Triode	N.	Fig. 36	6.3	0.4	1.2	0.01	1.3	$\begin{aligned} & 1000-3000-M \mathrm{Mc} . \\ & \text { Amplifier } \end{aligned}$	250	- 1	-	-	9.3	-	4500	85	-	\square	5768
6173	U.h.t "Pancil" Diode	N	Fig. 67	6.3	0.135	Plate to $\mathrm{K}-1.1$			Rectifier	Peak inverse-375 Volts. Peak lp-50 Mo. Max. d.c. output-5.5 Mo.										6173
9004	U.h.f. Diode	A.	48J	6.3	0.15	-	-	\square	Detector	Max. a.c. valtage- 117 . Max. d.c. output current-5 ma.										9004
9005	U.h.f. Diode	A.	58 G	3.6	0.165				Detector											9005
EF. 50	Shord Cut-olf Pentode	t.	9 C	6.3	0.3	8	5	0.007	I.F.-R.F. Amp.				3.1	10	600000	6300	-	-		EF. 50
$\begin{aligned} & \mathrm{GLL} 2 \mathrm{C44} \\ & \mathrm{GL} .464 \mathrm{~A} \end{aligned}$	U.h.f. Triode	0.	Fig. 17	6.3	0.75	-	-		Class.A Amp. and Modulator	250	100*	\square	-	25.0	-	7000	-	-	\cdots	$\begin{aligned} & \mathrm{GL}-2 \mathrm{C4A} \\ & \mathrm{GL} .464 \mathrm{~A} \end{aligned}$
$\begin{aligned} & G L-446 A \\ & G I-446 B \end{aligned}$	U.h.f. Triode	0.	Fig. 19	6.3	0.75	-	\longrightarrow	-	Oscillator, Amp. or Converter	250	200*	-	-	15.0	-	4500	45	-	-	$\begin{aligned} & G L-446 A \\ & G L-446 B \end{aligned}$
$\begin{aligned} & 559 \\ & 6 L .559 \end{aligned}$	U.h.f. Diode	0.	Fig. 18	6.3	0.75	-	-	1 -	Detector or irons. line switch	5.0	-	-	-	24.0	-	-	-	-	-	$\begin{aligned} & 559 \\ & \text { GL. } 559 \end{aligned}$

TABLE X-SPECIAL RECEIVING TUBES-Continued

Type	Nome	Base	Socket Connestions	Fil. or Heater		Capacitance $\mu \mu \mathrm{ld}$.			Use	Plote Supply Volls	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volis } \end{aligned}$	Screen Current Mo.	Plate Current Ma.		Transconductonce Micromhos	Amp. Factor	$\begin{gathered} \text { Lood } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Power Output Walts	Type
				Volts	Amp.	1 n	Out	$\begin{gathered} \text { Plate } \\ \text { Grid } \end{gathered}$												
GL. 6463	Twin Triode	B.	9CZ	12.6	0.3	3	0.6	5	Freg. Divider Computer Circuit:	100	-	-	-	29	-	-	-	-		GL-6463
										200	-11	-		1.0						
				6.3	0.6		0.5			250	620*			14.5	3850	5200	20	-		
NU.2C35	Special Mi-Mu Triode	0.	Fig. 38	6.3	0.3	5.2	2.3	0.62	Shunt Voltage Regutator	8000	-200	-	-	5.0	525000	950	500	-	-	NU.2C3S
VT52	Triade	M.	4D	7.0	1.18	5.0	3.0	7.7	Class.A1 Amp.	220	-43.5			29.0	1650	2300	3.8	3800	1.0	VT52
$\times 6030$	Diade	1.	Fig. 4	3.0	0.6				Noise Diode	90	-			4.0	-	-	-			$\times 6030$
XXB	Twin.Triode Frequency Converter	t.	Fig. 9	$\begin{aligned} & 2.8 / \\ & 1.4 \\ & 3.23 / \\ & 1.6 \\ & \hline \end{aligned}$	$0.05 /$ 0.10		-		Canverter ${ }^{\text {a }}$	901	$\begin{array}{r} 0 \\ -\quad 3 \end{array}$			$\begin{aligned} & 4.54 \\ & 4.53 \\ & 1.44 \\ & 1.45 \end{aligned}$	$\begin{gathered} 11200^{\prime} \\ 11200^{\circ} \\ 1900^{\prime} \\ 1900^{\prime} \end{gathered}$	$\begin{aligned} & 1300 \\ & 1300 \\ & 760 \\ & 760 \end{aligned}$	$\begin{aligned} & 14.5! \\ & 14.5! \end{aligned}$	-		xx8
XXFM	Twin-Diode Triode	t.	8 BZ	6.3	0.3		-	-	Class.A Amp.	$\begin{aligned} & 250 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ 0 \end{array}$			$\begin{aligned} & 1.9 \\ & 1.2 \end{aligned}$	$\begin{array}{r} 6700 \\ 85000 \end{array}$	$\begin{aligned} & 1500 \\ & 1000 \end{aligned}$	$\begin{array}{r} 100 \\ 85 \end{array}$	[-	XXFM
* Cothode resistor-ohms.		Both sections. ${ }^{3}$ Dry battery operolion. Section No. 2 recommended for h.f.o. - Section No. 1.									Section No. 2. ${ }^{6}$ Same as X99. Type V99 is same, bul sockel connections are 4E.							${ }^{2}$ Discontinued. " Direct inter-electrode.		

TABLE XI-MINIATURE RECEIVING TUBES_Other miniature Iypes in Tables XIII and XIV

Type	Name	Base	Sockel Conner: tions	Fil. or Meater		Capocilance $\mu \mu \mathrm{ld}$ d.			Use	Plate Supply Volts	Grid Bias	Screen Volts	Screen Current Mo.	Plate Current Mo.	Plole Resisfonce Ohms	Transcon. ductonce Mieromhos	Amp. Foctor	LoodResistonceOhms	Power Output Watts	Prototype
				Volts	Amp.	10	Oul	PlatoGrid												
$1{ }^{1} 3$	H. F. Diode	B.	5 AP	1.4	0.15	-	-	-	Detector F.M. Discrim.	Max. a.c. valtage per plate-117. Max. output current-0.5 mo.										-
1AB6	Pentagrid Converter	B.	7DH	1.4	0.025	7.6	8.4	0.36	Converter		-	-	-	-	-	-	-		-	-
1AC6	Pentagrid Converter	B	70M	1.4	0.05	7.5	8.4	0.36	Converter	-	-	-								
IAE4	Sharp Cul-off Pentode	B	6 AR	1.25	0.1	3.6	4.4	0.008	Closs-A, Amp.	90	0	90	1.2	3.5	500000	1550				
IAF4	Pentode	B.	6AR	1.4	0.025	3.8	7.6	. 008	Class-A, Amp.	90	0	90	0.5	1.65	1800000	950				
IAFS	Diode Pentode	B.	6AU	1.4	0.025				Closs-A Amp.	90	0	90	0.4	1.1	2000000	600				
IAHS	Diode A.F. Pentode	B.	6 6AU	1.4	0.025	2.1	2.9	0.3	Class.A Amp.	85	-	-	0.015	0.05	1000000		62			
1AJ4	R.f. Penlode	B	6AR	1.4	0.025	3.3	7.8	0.01	Class.A Amp	85	0	39K!	0.55	1.65	700000	750		-		
$1 \mathrm{C3}$	Triode	B.	SCF	1.4	0.05	0.9	4.2	1.8	Class-A Amp.	90	-3	-		1.4	19000.	760	14.5			12.3
IE3	U.h.f. Triode	B.	9BG	1.25	0.22	1.25	075	1.5	Class-A Amp.	150	-3.5	-	-	20	-	3500	14	-		-
114	Sharp Cut-off Pentode	B.	6AR	1.4	0.05	3.6	7.5	. 008	Class-A Amp.	90	0	90	2.0	4.5	350000	1025		-		INSGT
116	Penlogrid Converter	B.	7DC	1.4	0.05	7.5	12	0.3	Converter	90	0	45	0.6	0.5	650000	300				llab
IR5	Pentagrid Converter	B.	7AT	1.4	0.05		-	-	Converier	90	0	67.5	3.0	1.7	500000	300	Grid No. 1100000 ohms			1A7GT
154	Pentagrid Power Amp.	B.	7AV	1.4	0.1	-	$\underline{\square}$		Class-A Amp.	90	-7.0	67.5	1.4	7.4	100000	1575		8000	0.270	IOSGT
155	Diode Pentode	B.	6AU	1.4	0.05	-	-	-	Closs-A Amp.	67.5	0	67.5	0.4	1.6	600000	625				
	-	-.							R-Coupled Amp.	90	0	90	Screen resistor 3 meg., grid 10 meg .					1 meg.	0.050	
174	Voriablera Pentode	B.	6AR	1.4	0.05	3.6	7.5	0.01	Class-A Amp.	90	0	67.5	1.4	3.5	500000	900			-	IP5GT
104	Sharp Cut-off Pentode	B.	6AR	1.4	0.05	3.6	7.5	0.01	Class-A Amp.	90	0	90	0.5	1.6	1500000	900		-	-	IN5GT
105	Diode Pentode	B.	68W	1.4	0.05			-	Closs-A Amp.	67.5	0	67.5	0.4	1.6	600000	625		-	-	
106	Pentagrid Converter	B.	7DC	1.4	0.025	8	12	0.4	Converter	90	0	45	0.55	0.55	600000	275		-	-	-
IW4	Power Amplifier Pentode	B.	5B2	1.4	0.05	3.6	7	0.1	Closs-A, Amp.	90	-9	90	1	5	300000	925	-	12000	0.2	1184
2AF4	U.h.t. Triode\%	B.	70K	2.35	0.6	2.2	0.45	1.9	950 Mc . Osc.	100	-4 Grid res. $10 \mathrm{~K} \Omega$ \%			22	-	--	T	-	-	6AF4
									Closs-A Amp.	80	150*	-	-	16	2270	6600	15	-	-	
2 C 51	Twin Triode	B.	8CJ	6.3	0.3	2.2	1.0	1.3	Closs-A, Amp.	150	- 2	二	-	$8.2{ }^{1}$	-	5500	35	-		$7 F 8$
$2 E 30$	Beam Power Pentode	B.	780	6.0	0.7	10	4.5	0.5	Closs- A_{1} Single	250	450*	250	7.4 ${ }^{\text {2 }}$	44^{2}	63000	3700	40^{5}	4500	4.5	
									Closs-A, Amp. ${ }^{3}$	250	225*	250	14.8 ?	$88{ }^{2}$	-	-	80^{5}	$9000{ }^{\circ}$	9	
									Closs-AB1. Amp ${ }^{3}$	250	-25	250	13.5 ²	80^{2}	-	-	485	$8000{ }^{\circ}$	12.5	
									Class-AB: Amp. ${ }^{\text {a }}$	250	-30	250	20^{2}	$120{ }^{2}$	-	-	40^{5}	$3800{ }^{\text {8 }}$	17	

TABLE XI-MINIATURE RECEIVING TUBES-Continued

TABLE XI-MINIATURE RECEIVING TUBES-Continued

table XI-miniature receiving tubes - Continued

Type	Name	Bose	Socket Connec. fions	Fii, or Heater		Capacitonce $\mu \mu \mathrm{Id}$.			Use	Plate Supply Volts	Grid Bios	Screen Volts	Screan Current Mo.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistonce } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Factor 4	Load Resisfance Ohms	Power Outpul Watts	Protolype
				Volls	Amp.	In	Oul	PlateGrid												
6BC7	Triple Diode	B.	9AX	6.3	0.45				FM/AM Det.	Mox, diode current per plate $=12$ Ma. Max, htr, eath volls $=200$										-
68D6	Remote Cut-off Pentode	B.	78k	6.3	0.3	4.3	5	0.004	Class-A Amp.	100	-1	100	5	13	120000	2350	-			65K7GT
									Class-A Amp.	250	- 3	100	3.5	9	700000	2000				6sk7G7
6807	Duodiode Hi-mu Triode	B.	97	6.3	0.23	2.4	1.3	1.3	Class-A, Amp.	250	-3			1.0	58000	1200	70			
6BE6	Pentogrid Converter	B.	7 CH	6.3	0.3	Osc. Grid 50000 :			Converter	250	-1.5	100	7.8	3.0	1000000	475				6SA7GT
6BE7	Heptode Limiter-Disc.	B.	9AA	6.3	0.2	-	-	-	FM Limiter Diseriminator	250	-4.4	20	1.5	0.28	5000000	-	-	-	-	-
$68 F 5$	Beam Power Pentade	B.	782	6.3	1.2	14	6	0.65	Closs-A, Amp.	110	-7.5	110	4.0/8.5	49/50	10000	7500		2500	1.9	
68F6	Duplex-Diode Triode	B.	781	6.3	0.3	1.8	1.1	2.0	Class-A1 Amp.	250	-9			9.5	8500	1900	16	10000	-	6SR7GT
6BH5	Remote Cut-off Pentode	B.	$9 A Z$	6.3	0.2	4.9	5.5	0.002	Closs-A Amp.	250	- 2.5	90 K 5	1.7	6	1100000	2200		-		-
6 6H6	Shorp Cut-off Pentode	B.	7CM	6.3	0.15	5.4	4.4	0.0035	Class-A, Amp.	250	- 1	150	2.9	7.4	1400000	4600			-	
$68 \mathrm{J5}$	Pentode	B.	6CH	6.3	0.64			-	Power Amp.	250	-5	250	5.5	35	40000	10500	420	7000	4.0	
68.16	Remole Cut-off Pentode	B.	7 CM	6.3	0.15	4.5	5.0	0.0035	Class-A, Amp.	250	-1	100	3.3	9.2	1300000	3800	-			6557G7
6857	Triplo Diode	B. ${ }^{\text {a }}$	9AX	6.3	0.45	-	-		D.c. Restorer	Mox. peok inverse plole volloge $=330 \mathrm{~V}$. Avg. currett $=1.0 \mathrm{ma}$.										$\underline{-}$
68 K 5	Beom Power Pontode	B.	980	63	1.2	13	5.0	0.6	Class-A: Amp	250	-5	250	3.5/10	35/37	100000	8500	\cdots	6500	3.5	-
$68 \mathrm{K6}$	Duodiode Triode	B.	7BT	6.3	0.3				Closs-A, Amp.11	250	-2		-	1.2	80000	1250	100			-
${ }^{6} \mathbf{B K} \bar{K} 7$	U.h.f. Twin Triode	8.	9AJ	6.3	0.45	3.0	1.1	1.9	Closs-A1 Amp.	150	56*	-	-	18	4700	8500	40	\square		
CBK7A	U.h.f. Twin Triode	B.	9AJ	6.3	0.45	3.0	1.9	1.8	Coscode Amp.	150	56*		-	18	4600	9300	43	-		68K7
6BM5	Power Pentode	B.	7BZ	6.3	0.45	8	5.5	0.5	Class-A Amp.	250	- 6	250	3	30	60000	7000	-	7000	3.5	
GBN6	Goled-boom Disc.	B.	7DF	6.3	0.3	4.2	3.3	. 004	FM Disc.	80	-1.3	60	5	0.23				68000		
6BN7	Duol Triode	B.	9AJ	6.3	0.75	5.5 -	1.6	$3{ }^{3}$	Class-A1 Amp. ${ }^{\text {P }}$	250	-15			24	2200	5500	12	-		-
						1.48	0.38	0.78	Class-A, Amp. ${ }^{8}$	120	-1		-	5	14000	2000	28			
6807	Double Triode	8.	9AJ	6.3	0.4	2.55	1.3	1.15	Closs-A, Amp.'1	150	220*			9.0	5800	6000	35	-	-	-
$6 \mathrm{BO7A}$	Dual Triode	B.	9AJ	6.3	0.4	-		1.15	Closs-A Amp. ${ }^{11}$	150	220*	-		9	6100	6400	39	-		6B97
6BR7	Shorp Cul-cff Pentode	B.	9 BC	6.3	0.15	4.25	4.0	0.01	Closs.A Amp.	250	- 3	100	0.6	2.1	2500000	1250	-	-	-	6.37
6B5 5	Beam Power Àmplifier	B.	9 BK	6.3	0.75	9.5	4.5	0.3	Closs-A Amp.	250	-7.5	250	6	50	17000	7000	120	5000	4.5	--
6857	Shorp Cut-off H.f. Pentode	B.	-	6.3	0.15	4.0	4.0	0.01	Class-A Amp.	$\frac{100}{250}$	-3 -3	$\frac{100}{100}$	0.7	2.0	1500000	1100	-	-	-	6BR7
6BT6	Duodiode Triode	B.	787	6.3	0.03	-			Class-A, Amp.	250	-3 -3	100	0.6	2.1	2400000	1200		-	\square	
¢8ิU	Duodiode Triode	B.	787	6.3	0.3				Class-A, Amp.	$\frac{250}{}$	- ${ }^{-9}$			9.5	$\frac{58000}{\mathbf{8 5 0 0}}$	19	$\frac{70}{16}$	10000	0.3	-
68 V 7	Duodiode Pentode	B.	984	6.3	0.8	11.5	9.5	0.5	Class-A Amp.	250	- 5	250	6	38	100000	1000	16	8000	4.0	-
6BW6	Beom Pentode	B.	9AM	6.3	0.45	-	-		Closs-A, Amp.	315	-13	225	6	35	77000	3750		8500	5.5	
									Closs-A, Amp.	250	-12.5	250	7	47	52000	4100		5000	4.5	
68W7	R.F. Pentode	B.	9 Aa	6.3	0.15	10	3.5	0.01	Closs-A Amp.	180	100*	180	3.8	10	600000	9000		-	-	
	R.F. Penlode	-	9AC	6.3	0.15	10	3.5	0.01	Closs-A Amp.	250	180*	180	3.7	10	750000	8200	-	-		
68×6	R.F. Pentode	B.	9AO	6.3	0.3	7.2	3.4	0.007	Closs-A Amp.	170	- 2	170	2.5	10	400000	7200		-		-
6BY6	Pentogrid Amplifier	B.	7 CH	6.3	0.3	5.4	7.6	0.08	Clipper	10	0	25	3.5	1.4	-	-	-	-	-	-
6837	R.F. Pentode	B.	9 AC	6.3	0.3	7.2	3.7	0.007	Class-A Amp.	250	- 2	100	2.5	10	500000	6000		-		-
6826	Remole Cul-off Pentode	B.	7 CM	6.3	0.3	7.5	1.8	0.02	Closs-A Amp.	200	180*	150	2.6	11	600000	6100	-	-	-	-
6827	U.h.l. Twin Triode	B.	9AJ	6.3	0.4	2.85	2.27	1.15	Class.A Amp. ${ }^{11}$	150	220*	-	-	10	5600	6800	38			6807
$6 \mathrm{C4}$	Triode Amplifier	B.	6BG	6.3	0.15	1.8	1.3	1.60	Closs-A, Amp.	250	-8.5			10.5	7700	2200	17	-	-	6 J GT
6CA5	Beam Pentod	B.	7 CV	6.3	1.2	15	9	0.5	Closs-A, Amp.	110	-4	110	3.5/7.5	32/31	16000	8100	-	3500	1.1	
									Closs-A, Amp.	125	-4.5	125	4/11	37/36	15000	9200	-	4500	1.5	
6 CB 6	Sharp Cul-olf Pentode	B.	7 CM	6.3	0.3	6.3	1.9	0.02	Closs-A, Amp.	200	180*	150	2.8	9.5	600000	6200				
6 CF6	Shorp Cut-off Pontode	B.	7 CM	6.3	0.3	6.3	1.9	0.02	Closs-A, Amp.	200	180*	150	2.8	9.5	600000	6200	-	-	-	-
$6 \mathrm{CG6}$	Remote Cut-ofí Pentode	B.	7BK	6.3	0.3	5	5	0.008	Class-A, Amp.	250	- 8	150	2.3	9.0	720000	2000			-	
6 CH 6	R.F. Pentode	B.	9 BA	6.3	0.75	14	5	0.25	Closs-A Amp.	250	-4.5	250	6	40	50000	11000	-	-		
6 CJ 6	Audio Pentode	B.	9 AS	6.3	1.05	14.7	6.0	0.8	Closs-A Amp.	250	-38.5	250	2.4	32	15000	4600		-	-	-

TABLE XI-MINIATURE RECEIVING TUBES-Confinued

Type	Nome	Base	Socket Connections	Fil. or Heater		Capocitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volis	Grid Bios	Screen Volts	Screen Current Mo.	Plate Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Mieromhos	Amp. Factor -	LoadResistanceOhms	Power Outpul Watts	Prolotype
				Voits	Amp.	In	Out	PloteGrid												
6CK6	R.F. Pentode	B.	9 AR	6.3	0.71	11.2	6.6	0.1	Class-A Amp.	250	- 5.5	250	5	36	130000	10000			-	
${ }^{\circ} \mathrm{CLLS}$	Power Penlode	8.	9 PV	6.3	0.65	11	5.5	0.12	Closs-A, Amp.	250	- 3	150	7/7.2	30/31	15000	11000		7500		
6CM6	Beam Pentode	8.	$9 \overline{C K}$	6.3	0.45	8	8.5	0.7	Vert. Deflection	250	-12.5	250	$\frac{717.5}{}$	45	50000	4100		7500	2.8	6AG7
6 CO6	Var.j H.f. Pentode	8.	708	6.3	0.2	-		-	Class-A Amp.	250	0.5	100	1.25	4.9	-	-	-			
6CRS	Diode Pentode	B.	7EA							250	-2.5	250	2.0	7.8	-	-	-	-	-	
6CRG	Diode Pentode	B.	7EA	6.3					Class-A Amp.	250	- 2	100	3.0	9.5	200000	1950		-	-	-
6CS6	Heptode	B.	7 CH	6.3	0.3	5.5	7.5	0.05	Sync. Separater	Grid \#2 current $=1.1 \mathrm{Ma}$.										
6086	Shorp Cut-off R.F. Pentode	B.	7 CM	6.3	0.3	6	5	0.0035	Demodulator											
60CS	Remote Cut-off Pentode	B.	7 CM	6.3	0.3	6.5	2	$\underline{0.02}$	Class-A A mp.	200	180*	150	${ }^{0.6}$	9.8	50000	2050			-	-
60E6	Sharp Cut-off Penlode	B.	7 CM	6.3	0.3	6.3	1.9	0.02	Closs-A Amp.	200	180*	150	2.8	9.5	600000	6200			-	
614	U.h.f. Grounded-Grid R.F. Amplifier	B.	780	8.3	0.4	5.5	0.24	4.0	Grounded.Grid	150	200*			15.0	4500	12000	55			
									Class-A, Amp.	100	100*			10.0	5000	11000	55			
656	Twin Triode	B.	7BF	6.3	0.45	2.2	0.4	1.6	Class-A A Amp. Mixer, Oscillator	100	50*	-	-	8.5	7100	5300	38	-	-	-
$6 \mathrm{J6W}$	Twin Triode	8.	7 BF	Military Version of 616																
6M5	Power Amplifier Pentode	8.	9N	6.3	0.71	10	6.2	1	Closs-A, Amp.	250	170*	250	5.2	36	40000	10000	-	7000	3.9	
6N4	U.h.f. Triode Amplifier	B.	7CA	6.3	0.2	3.0	1.6	1.10	Class-A Amp.	180	- 3.5			12	4000	6000	32	700		-
6N8	Duodiode Pentode	B.	97	6.3	0.3	4	4.6	. 002	Class-A, Amp.	250	-2	85	-	1	1600000	2200		-		
604	Grnd.-Grid Triode	B.	95	6.3	0.48	5.4	0.06	3.4	Class-A, Amp.	250	- 1.5			15	,	12000	80	-		
6 6R4	U.h.f. Triode	8.	9R	6.3	0.2	1.7	0.5	1.5	Closs-A, Amp.	150	- 2		-	30		5500	16			
6 R8	Triple Diode Triode	B.	9 E	6.3	0.45	1.5	1.1	2.4	Closs-A, Amp.	250	- 9			9.5	8500	1900	16	10000	0.3	
654	Triode	8.	9AC	6.3	0.6				Class-A, Amp.	250	-8	-		26	3600	4500	16			
6544 -674	Triode:	B.	$9 \mathrm{9AC}$								Character	istics sam	005654							654
674	Triode	B.	70K	6.3	0.225	2.4	0.45	1.8	Closs-A Amp.	80	150*	-		18	-	7000	13		-	$\underline{\square}$
678	Triple-Diode Triade	B.	$9 E$	6.3	0.45	1.5	1.1	2.4	Closs-A, Amp.	250	-3		\square	1.0	5800.	1200	70	-		
608	Triode	B.	9AE	6.3	0.45	2.5	1.0	1.8	Closs-A, Amp.	100	- 1	-	-	0.8	5400	1300	70	-		
	Pentode					5.0	2.6	0.01	Class-A, Amp.	250	68*	110	3.5	10	400000	5200	40	-		-
6V8		B.	9 9H	6.3	0.45				Class-A, Amp.	100	- 1			0.8	54000	1300	70			
	Triple-Diade Triade					-	-	-	Class-A, Amp.	250	- 3			1.0	58000	1200	70	-		-
	Medium Mu Triode								Diade	Max. diode $\mathbf{2}$ and \$3 Ma, $=10$ each. Max. diode $11 \mathrm{Ma},=1.0$										
6×8	Sharp Cut-off Pentade	8.	9AK	6.3	0.45		1.0	1.4	Triode Ose.	150	2700: 2	-	-	13	-	-	-	-	-	
98 ms	Pawer Penlode	8.	7B2	9.5	0.3	8.5	5.5	-0.008	Pentade Mix.	150	- 3.5	150	1.1	4.6		1600	-	\square	-	
9BW8	Beom Pentode	8.	9AM	9.45	0.3	\bigcirc			Closs-A Amp.	250 315	- ${ }_{-13}$	250	3.2	30	80000	7000	420	7000	3.5	-
1244	Triode	B.	9AG	6.3	0.6									34		3750		8500	5.5	68W6
				12.6	0.3	6.7	3.8	4.3	Closs-A: Amp.	150	-17		-	30	1200	5200	6.5	-	-	-
12AH8	Triode Heplode	B.	9BP	12.6	${ }_{0}^{0.15}$	-	-		Heprode	250		100	4.4	2.6	1500000	550				
				6.3					Triode	100	- 3			$\mathrm{I}_{\mathrm{K}}=12.5 \mathrm{Ma}$.		3500	17		-	
12AL5	Twin Diode	B.	6BT	12.6	0.15	2.5	3.2	-	Detector	R.m.s. valtage per plate $=117$; d.c. oulput $=9 \mathrm{ma}$. per plate; peak ma. per plole $=54$; peok inverse voltage $=330$.										12H6GT
12 AOS	Beam Penlode	B.	7 BZ	12.6	0.225	8.3	8.2	0.35	Class-A, Amp.	250	-12.5	250	4.5/7	45/47	52000	4100		5000	4.5	6 A05
12AT6	Duplex Diade Triode	B.	78T	12.6	0.15	2.3	1.1	2.10	Class-A Amp.	250	-3.0			1.0	58000	1200	70	-		1297 GT
12AT7	Double Triode	B.	9A	$\begin{array}{r}6.3 \\ \hline 12.6\end{array}$	0.3	$2.5{ }^{7}$	0.45 ${ }^{\text {7 }}$	$\frac{1.457}{1.458}$	Class-A1 Amp. Eoch Unit	250	- 2	-	-	10	10000	5500	55	-		
12AUS	Sharp Cut-off Pentade	B.		$\frac{12.6}{12.6}$	0.15	$\begin{array}{r}2.5 \\ \hline 8.5 \\ \hline\end{array}$	0.35 ${ }^{8.0}$	1.45^{8} 0.0035		180	- 1	150		11	9400	6600	62	-		
12AU7	Twin-Triode Amplifier	B.	9A	6.3	0.3	1.6^{7}	$0.5{ }^{7}$	1.57	Class-A, Amp.	250	-1.0	150	4.3	10.8	1 meg.	5200				12SH7GT
				12.6	0.15	$1.6{ }^{\text {m }}$	0.35 ${ }^{8}$	$1.5{ }^{8}$			- 8.5	-	-	10.5	7700	2200	17	-	1	125N7GT

table Xi-miniature receiving tubes-Continued

TABLE XI-MINIATURE RECEIVING TUBES-Continued

Type	Name	Base	Socket Connections	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bios	Screen Valts	Sereen Current Mo.	Plate Current Mo.	$\begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Foctor 4	Load Resistance Ohms	Power Output M-Woffs	Prolotype	
				Volts	Amp.	In	Out	PlateGrid													
19 V 8	Triple-Diode Triode	B.	9AH	18.9					Characteristics same as $6 \mathbf{V 8}$												
19X8	Triode Pentode	B.	9AK	18.9	0.15	4.3	0.7	0.09	Triode Ose.	150150	2700Ω gridleak			$\begin{gathered} 13 \\ \hline 6.2 \end{gathered}$	3.6 Mo. grid current						
											- 3.5	150	1.8			2100		-			
2146	R.F. Pentode	B.	9AS	21.5	0.3	14.3	6.5	0.4	Horizontol Time Base	180	-23	180	3	45	6500		$=$				
										180	0	180	29	430							
2SBKS	Beam Power Amp.	8.	9BC	25	0.3	13	5.0	0.6	Class-A, Amp.	250	- 5.0	250	3.5/10	35/37	100000	8500	-	6500	3.5		
2646	Remote Cul-off Pentode	8.	7BK	26.5	0.07	6.0	5.0	0.0035	Class-A, Amp.	250	125*	100	4	10.5	1000000	4000					
26BK6	Duodiode Triode	B.	7BT	26.5	0.07	-	-	-	Closs-A A Amp.	Same as 6BK6										-	
$26 C 6$	Duplex-Diode Triode	B.	7BT	26.5	0.07	1.8	1.4	2	Class-A, Amp.	250	-9			9.5	8500	1900	16				
26CG6	Semi-Remote Cut-off Pentode	B.	78K	26.5	0.07	5.0	5.0	0.008	Class-A, Amp.	250	- 8	150	2.3	9.0	720000	2000					
26D6	Pentogrid Converler	8.	7CH	26.5	0.07	Osc.	Grid 20	0000Ω	Converter	250	- 1.5	100	7.8	3.0	1000000	475				-	
35BS	Beom Power Amplifier	B.	782	35	0.15	11	6.5	0.4	Class-A A Amp.	110	- 7.5	110	72	$41{ }^{2}$		5800	40^{5}	2500	1.5	3SL6GT	
35CS	Beam Power Amplifier	8.	7CV	35	0.15	12	6.2	0.57	Class-A, Amp.	110	- 7.5	110	3/7	40/41		5800		2500	1.5	-	
508s	Beam Power Amplifier	6.	782	So	0.15	13	6.5	0.50	Closs-A Amp.	110	- 7.5	110	4.0	49.0	14000	7500		3000	1.9	SOL6GT	
50Cs	Beam Power Amplifier	8.	7CV	So	0.15				Class-A, Amp.	110	- 7.5	110	4/8.5	49/50	10000	7500		2500	1.9		
\$590	Pentode	8.	78D	6.3	0.15	3.4	2.9	0.01	Class-A A Amp.	90	820*	90	1.4	3.9	300000	2000			-		
5591	R.F. Pentode	8.	78D	6.3	0.15	3.9	2.85	0.01	Class-A, Amp.	180	200*	120	2.4	1.7	690000	5100	3500				
5608	Sharp Cut-off Pentode	B.	78D	6.3	1.75	4	2.9	0.02	Class-A Amp.	120	-12	120	2.5	7.5	340000	5000		-	-		
5610	Triode	B.	6CG	6.3	0.15				Class-A Amp.	90	- 1.5	-	-	17	3500	4000	14		-	-	
5618	V.h.f. Pentode	B.	7 CU	6.0 3.0	\|0.23	7	5	0.24	Closs-A1 Amp.	250	- 8	75	1.5	16	-	3500	-	12000	1.2	-	
5654	Sharp Cut-off Pentode	B.	78D	6.3	0.175	4	2.9	0.02	Class-A1 Amp.	120	200*	120	2.5	7.5	340000	5000	-		-	-	
5656	Double Telrode	B.	9 F	6.3	0.4	3.6	1.5	0.06	Closs-A1 Amp. ${ }^{11}$	150	- 2	120	2.7	15	60000	5800					
5670	Dual Triode	B.	8 CJ	6.3	0.35	2.2	1.0	1.3	Class-A1 Amp.	150	240*			8.2		\$500	35			758	
5686	Power Pentode	B.	9 G	6.3	0.35	6.4	4.0	0.11	Closs-A, Amp.	250	-12.5	250	5	27		3100		9000	2.7		
5687	Dual Triode	B.	9H	12.6	0.45	4	0.45	3.1	Class-A Amp.	250	-12.5	-	-	16	4000	4100	16.5		-		
5687	Dual Triode	-.	9H	6.3	0.9	4	0.45	3.1	Class-A Amp.	120	- 2			34	2000	10000	20	-			
5722	Noise Generating Diode	B.	SCB	2/5.5	1.6		1.5		Noise Generator	200	-			35	-	-		-			
5725	Semi-Remote Cut-off Pentode	B.	7CM	6.3	0.175	3.9	3.0	0.01	Class-A1 Amp.	120	- 2	120	3.5	5.2	-	3200	-	-			
5726	Twin Diode	B.	6BT	6.3	0.3	5.	3.2		Rectifier		Max	ximum o.e.	voltage	er plate	117; Maxim	num d.e. Mo	per plo	ate $=9$.			
5749	Remote Cut-off Pentode	B.	78K	6.3	0.30	5.5	5.0	0.0035	Closs-A1 Amp.	250	68*	100	4.2	11	1 Meg.	4400	-	-		-	
5750	Pentagrid Converter	B.	7CH	6.3	0.30	Ose.	Grid 2	20000:	Converier	250	- 1.5	100	7.5	2.6	1 Meg.	475	0.510		-		
5751	Dual Triode	8.	9 A	12.6	. 175				Closs-A, Amp.	250	- 3	-		1.1	58000	1200	70	-		12SL7GT	
5755	Double Triode	B.	93	12.6 6.3	0.18 0.6			-	D.C. Amp.	310	150K*	-	-	0.15	140000	500	70	900000	-	-	
5812	Beam Pentode	B.	700	6.3	0.65	9	7.4	0.2	Class-A1 Amp.	250	-23	250	1.8	40	55000	4100	-	-		-	
5814	Dual Triode	B.	94	6.3	0.35	1.6	0.5	1.5	Class.A1 Amp.	100	0	-	$\underline{\square}$	11.8	6250	3100	17			125N7GT	
5814A	Dual Triode	B.	9 A	12.6	0.175	1.6			Class.A ${ }_{1}$ Amp.	250	-8.5		-	10.5	7700	2200	19.5			12SN7 GT	
$\begin{aligned} & 5842 \\ & 417 A \end{aligned}$	Triode	B.	9 V	6.3	0.3	9.0	0.48	1.8	Closs-A Amp.	150	62*	-	-	26	1800	24000	43	-	-	-	
5844	Twin Triode	B.	7BF	6.3	0.3	2.4	0.5	2.7	Class-A, Amp.	100	470*	-	-	4.8	7950	3400	27	-		616	
5845	Double Triode	B.	5CA	4.3	0.435		0.6	-	Noise Generator	300			(Plotes	lied toge	ther)			600000			
5847	Shorp Cut-off Pentode	B.	9 X	6.3	0.3	7.1	2.9	0.04	Class-A1 Amp.	160	- 8.5	160	4.5		-	12500	-				
5857	Secondary Emission V.h.f. Amplifier	B.	9AB	6.3	0.45	9.3	2.2	0.004	V.h.f. Volf. Amp.	300	-	680K	8	-	70000	20000	0.4		-		
5879	Sharp Cut-off Pentode	B.	9AD	6.3	0.15	2.7	2.4	0.11	Class-A, Amp.	250	- 3	100	0.4	1.8	2 Meg.	1000	-	-	-	-	
5910	Shorp Cut-off Pentoda	B.	6AR	1.4	0.05	3.6	7.5	0.008	Class-A, Amp.	90	0	90	0.45		1.5 Meg .	900					

TABLE XI-MINIATURE RECEIVING TUBES - Continued

TABLE XI-MINIATURE RECEIVING TUBES—Continued

TABLE XII-SUB-MINIATURE TUBES

Type	Name	Base	Sockel Connec. tions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fl}$ d.			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Mo.	Plate Current Ma.	Plate Resistance Ohms	Transconductonce Micromhos	Amp. Foctor	Load ResistanceOhms Ohms	Power Output Watts	Type
				Volts	Amp.	In	Out	PlateGrid												
IAC5	Power Pentode	88.	Fig. 14	1.25	0.04	\square	-		Closs-A1 Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750		25000	0.05	1 AC5
1 AD4	Pentode	1	,	1.25	0.1	4.5	4.5	0.01	Class-A, Amp.	45	0	45	0.8	3.0	500000	2000				1ADA
IAD5	Sharp Cut-off Peniode	Bs.	Fig. 16	1.25	0.04	1.8	2.8	0.01	Class-A, Amp.	67.5	0	67.5	0.75	1.85	700000	735		-	-	IADS
IAE5	Heptode	1	2	1.25	0.06	4.9	2.1	4.0	Mixer	45	0	45	2.0	0.9	200000	200				IAE5
IAH4	R.F. Pentode	1	${ }^{2}$	1.25	0.04	3.5	4.5	0.01	Closs-A, Amp.	67.5	0	67.5	0.2	0.75	2000000	750			-	IAH4
1AJ5	Diode Pentode	1	2	1.25	0.04	1.7	2.4	0.1	Class-A, Amp.	45	0	45	0.3	1.0	300000	425				
$1 \mathrm{C8}$	Heptode	-	\longrightarrow	1.25	0.04	6.5	4.0	0.25	Converter	30	0	30	0.75	0.32	300000	100				IAJ5
ID3	Triode	1	2	1.25	0.3	1.0	1.0	2.6	Class-A Amp.	90	- 5			12.5	300000	100				$1 \mathrm{C8}$
1E8	Pentagrid Converter	Bs.	Fig. 27	1.25	0.04	6			Converter	67.5		67.5				3400	8.7			103
106	Diode Pentode	Bs.	8CO	1.25	0.04	1.8	4.2	0.085	Class-A Amp.	67.5	0	67.5	0.5	1.0	400000	150			-	$1 . \mathrm{EB}$
156	Diode Pentode	Bs.	8DA	1.25	0.04				Delector Amp.	67.5	0	67.5	0.4	1.6	400000	600				106
176	Dlode-Penlode	Bs.	Flg. 28	1.25	0.04		-	\longrightarrow	Closs-A, Amp.	67.5	0	67.5	0.4	1.6	400000	600				IT6
IV5	Audio Pentode	1	2	1.25	0.04				Closs-A1 Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750		25000	0.05	IV5
IV6	Triode Pentode	1	2	1.25	0.04	-	-		Pentode	45	0	45	0.15	0.4	1000000	200		-		IV6
1W5	5harp Cut.off Pentode	1							Triode Osc.	45	Ose. grid current $=12 \mu$ amp. through 1 Meg. gridleok									
	Sharp Culour Pentode	1	\%		0.04	2.3	3.5	0.01	Closs-A, Amp.	67.5	0	67.5	0.75	1.85	700000	735			-	IWS
285	Twin Iriode	1	2	$\frac{1.2}{2.4}$	0.26 0.13	0.8	0.8	1.2	Class-A Amp.	90	-1	-	—	2.6	18700	1150	21.5	-	—	285
2531	R.F. Pentode	1	2	1.25	0.05	-		-	Closs-A Amp.	22.5	0	22.5	0.3	0.4		500			-	2 E 31
$2 \mathrm{E32}$	R.F. Pentode	1	2	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.3	0.4	350000	500		-		2 E 32
$2 \mathrm{E35}$	Audio Pentode	1	"	1.25	0.03				Closs-A, Amp.	22.5	0	22.5	0.07	0.27		385		-	0.0012	2 E35
$2 E 36$	Audio Pentode	1	2	1.25	0.03	-	-	-	Class-A, Amp.	22.5 45	0	22.5	0.07	0.27	220000	385		150000	0.0012	2E36
2541	Diode Pentode									45	-1.25	45	0.11	0.45	250000	500		100000	0.00	
2E42	Diode Pentode	1	2	1.25	0.03				Datecior Amp.	22.5	0	22.5	0.12	0.35	-	-		-	-	$2 E 41$
$2 \mathrm{G21}$	Triode Heptode	1	2	1.25	0.03	-		-	Deteclor Amp.	22.5	0	22.5	0.12	0.35	250000	375	-	1 meg.	\square	$2 E 42$
2G22	Converter	1	2	1.25	0.05	-			Converter	22.5	0	22.5	0.2	0.3	-	75		-		2G21
6AD4	Triode	Bs.	3	6.3	0.15	2.8	3.2	1.31	Closs-A, Amp.	100	820*	-	-	0.2	500000	2700	70	-		2G22
6 6A25	Dual Diode	1	2	6.3	0.15				$\frac{\text { Rectifier }}{\text { Class-A, Amp. }}$	Max. a.e. volis-150. Peak inverse volis-420. Peak Ma.-24. Av. Mo. -4.0										$\begin{aligned} & \text { 6AD4 } \\ & \hline \text { GA25 } \end{aligned}$
6845	Pentode	1	${ }^{2}$	6.3	0.15	4.0	6.5	0.19		100	270*	100	1.25	4.8	150000	3300	-		-	GBA5
68F7	Dual Iriode	Bs.	8DG	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*	-	-	8.0	7000	4800	35	\cdots		6BF7
$68 \mathrm{G7}$	Dual Triode	Bs.	8DG	6.3	0.3	2.0	1.6	1.5	R.F. Amp.	100	100*		-	8.0	7000	4800	35	-	-	6BG7

table XII-sub-miniature tubes-Continuod

Type	Name Bos	Base	Socket Connerlions	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screan } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plafe Current Ma.	Plate Resislance Ohms	Transcon. ductance Micromhos	Amp. Factor	$\begin{array}{\|c\|} \hline \text { Load } \\ \text { Resistonce } \\ \text { Ohms } \end{array}$	Power Outpul Watis	Type
				Volts	Amp.	In	Out	Plala: Grid												
$6 \mathrm{K4}$	Triade	1	2	6.3	0.15	2.4	0.8	2.4	Class A ${ }_{1}$ Amp.	200	680°		-	11.5	4650	3450	16		-	$6 \mathrm{K4}$
$\frac{61247}{}$	Diode	,	\%	0.7	0.065				R.F. Probe	Max. a.c. volts- 300 r.m.s. D.C. plate current- 0.4 Mo .										1247
1247	Diode		2	0.7	0.065				Class-A Amp.	30	0	30	0.06	0.3	1000000	325		-	-	CK501
CK501	Pentode Voltage Amplifier	-	2	1.25	0.033					45	- 1.25	45	0.055	0.28	1500000	300			0.003	CK502
CK 502	Pentode Output Amplifier	-'	2	1.25	0.033			-	Class-A Amp.	30	0	30	0.13	0.55	500000	400	-	60000		
CK 503	Pentode Output Amplifier	-	2	1.25	0.033				Class-A Amp.	30	0	30	0.33	1.5	150000	600		20000	0.006	CKSO3
CK 504	Pontode Output Amplifiar	-	2	1.25	0.033				Closs-A Amp.	30	-1.25	30	0.09	0.4	500000	350		60000		
CK505	Pentade Voltage Amplifier	-	2	0.625	0.03				Class-A Amp.	30	- 0	30	0.07	0.17	$\frac{1100000}{2000000}$	140 150	\square	-		CK505
										45	- -4.25	45	0.08	1.25	120000	500		30000	0.025	CK506
CK506	Pentode Oulput Amplifier	- 1	${ }^{2}$	1.25	0.05 0.05				Class-A, Amp.	45	-4.5	45	0.21	0.6	360000	500		50000	0.010	CK507
CK507	Pentode Output Amplifier Triode Vollage Amplifier	-	2	$\frac{1.25}{0.625}$	0.05 0.03				Class-A, Amp.	45	-2.5	45	0.21	0.15	150000	160	16	1000000		CK 509
CK510	Dual Spoce-Charge Tetrode	-	2	0.625	0.05				Class-A Amp.	45	0	0.2	$200 \mu \alpha$	$60 \mu \alpha$	500000	65	32.5	-	-	CK510
CK512	Low Microphonic Pentode	$\cdot 1$	2	0.625	0.02				Voltage Amp.	22.5	0	22.5	0.04	0.125	-	160				CK412
CK5158X	Triode Voltage Amplifier	-1	,	0.625	0.03				Class-A Amp.	45	0			0.15		160	24	1000000	, 0004	CK515BX
CK520AX	Audio Pentade	1	2	0.625	0.05	-		-	Class-Al Amp.	45	-2.5	45	0.07	0.24	-	180	-		0.0045	CK520AX
CK521AX	Audio Pentade	1	2	1.25	0.05				Class-A, Amp.	22.5	-3	22.5	0.22	0.8		400			0.006	CK521AX
CK522AX	Audio Pentode	1	2	1.25	0.02		-		Class-A, Amp.	22.5	0	22.5	0.08	0.3		450			0.0012	CK522AX
CK523AX	Pentode Output Amp.	1		1.25	0.03				Class-A Amp.	22.5	-1.2	22.5	0.075	0.3		360			0.0025	CK523AX
CK524AX	Pentode Outpul Amp.	1		1.25	0.03				Class-A Amp.	15	-1.75	15	0.125	0.45		300			0.0022	CK52 1AX
CK525AX	Pentode Output Amp.	1	-	1.25	0.2		-		Class-A Amp.	22.5	-1.2	22.5	0.06	0.25		325			0.0022	CK525AX
CK526AX	Pentods Outpul Amp.	1	-	1.25	0.2				Class-A Amp.	22.5	-1.5	22.5	0.12	0.45		400			0.004	CK526AX
CK527AX	Pentode Output Amp.	1	-	1.25	0.015		-		Class-A Amp.	22.5	0	22.5	0.025	0.1		75			0.0	CK527AX
CK529AX	Shiolded Outpul Pentode	1		1.25	0.02				Class-A Amp.	15	-1.5	15	0.05	0.2		275			0.0012	CK529AX
CKS5SIAXA	Diode Penlode	1	8	1.25	0.03				Datector-Amp.	22.5	0	22.5	0.04	0.17		235				CKS5IAXA
CK533AXA	R.F. Pentode	1	?	1.25	0.05				Closs-A, Amp.	22.5	0	22.5	0.13	0.42		530				CS533AXA
CK556AX	U.h.f. Triode	1	2	1.25	0.125				R.F. Oscillator	135	-5			4.0	-	1600				CK556AX
CK568AX	U.h.f. Triode	1	?	1.25	0.07				R.F. Oscillator	135	-6			1.9		650		\square		CK568AX
CKS69AX	R.F. Pentode	1	2	1.25	0.05				Class-A, Amp.	67.5	0	67.5	0.48	1.8		1100				CK569AX
CK605CX	Sharp Cut-off Pentode	1		6.3	0.2				Class-A Amp.	120	-2	120	2.5	7.5		5000				CK605CX
CK606BX	Single Diade	'	2	6.3	0.15				Detector	150 a.c.	-		-	9.0 d.c.	-	5000			0.75	CK608CX
CK608CX	U.h.f Triode	1	2	6.3	0.2			-	500-Mc. Osc.	120	-2		-	9.0		4000			0.75	CK619CX
CK619CX	Hi-Mu Triode	1	2	6.3	0.2				Class-A, Amp.	250	-2			4.0	-	4000				CK624CX
CK624CX	Sharp Cut-off Pentode	1	-	6.3	0.2				Class-A Amp.	120	-2	120	3.5	5.2	-	3000				CK650AX
CK650AX	Sharp Cut-oll Pentode	1	$:$	6.3	0.2				Class-A, Amp.	120	-2	12	2.5	7.5		5000			0.06	CK5672
CK5672	Pentade Output Amp.	1	-	1.25	0.05				Class-A Amp.	67.5	-6.25	67.5	1.0	2.75		625			0.06	GL5797
GL5797	R.F. Pentode	Bs.	8 Cr	26.5	0.045	4.2	3.2	0.024	Closs-A1 Amp. ${ }^{5}$	26.5		26.5	0.9	2.8	70000 7100	3450				GL5798
GL5798	U.h.f. Twin Triode	Bs_{5}	8 Cz	26.5	0.09	1.9	1.7	1.7	Class-A, Amp. ${ }^{5}$	26.5				${ }^{2} .5$	7100 6500	3400	35	-		GL6021
GL6021	Twin Triode	Bs.	8DG	6.3	0.3	2.4	0.32	1.5	Closs-A, Amp. ${ }^{\text {b }}$	100	150*			6.5	39000	1800	70	-		
GL6112	Twin Triode	Bs.	8DG	6.3	0.3	1.7	$\frac{0.23}{}{ }^{0.28^{8}}$	1.0	Class-A, Amp. ${ }^{\text {b }}$	150	${ }^{1500}{ }^{\text {820* }}$		-	0.8 0.175	289000	2500	70	-		GL6112
$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \end{aligned}$	Triode Amplifier	- ${ }^{1}$	5K	1.4	0.07		-	-	Class-A Amp.	45	-4.5	-	-	0.4	25000	250	6.3	40000	0.0065	HY113
$\begin{aligned} & \text { HY115 } \\ & \text { HY145 } \end{aligned}$	Pentode Voltage Amplifier	- ${ }^{1}$	5K	1.4	0.07			-	Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{array}{r} -1.5 \\ -1.5 \end{array}$	$\begin{array}{r} 22.5 \\ 45 \end{array}$	$\begin{aligned} & 0.008 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.48 \end{aligned}$	$\begin{array}{r} 5200000 \\ 1300000 \\ \hline \end{array}$	$\begin{array}{r} 58 \\ 270 \end{array}$	$\begin{aligned} & 300 \\ & 370 \end{aligned}$	-	-	HY115 HY145
HY125 HY 155	Pentode Power Amplifier	- ${ }^{1}$	SK	1.4	0.07			-	Class-A Amp.	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -7.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 825000 \\ & 420000 \end{aligned}$	$\begin{array}{r} 310 \\ 450 \\ \hline \end{array}$	$\begin{array}{r} 255 \\ 190 \\ \hline \end{array}$	$\begin{aligned} & 50000 \\ & 28000 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0 & 0.0115 \\ 0 & 0.09 \\ \hline \end{array}$	$\begin{aligned} & \text { HY125 } \\ & \text { HY155 } \end{aligned}$
M54	Tetrode Power Amplifier	1	2	0.625	0.04				Class-A Amp.	30	0	30	0.06	0.5	130000	200	26	35000	0.005	M54
M64	Tetrode Voltoge Amplifier	-	2	0.625	0.02				Class-A Amp.	30	0			0.03	200000	110	25	-		M64

I ABLE XII-SUK-MINIATUKE IUBES-Continued

Type	Name	Base	Sockef Cannecfions	Fil. or Heater		Capacitonce $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{array}{\|c} \text { Screen } \\ \text { Volts } \end{array}$	Screen Current Ma.	Plate Current Mo.	$\begin{gathered} \text { Plate } \\ \text { Resistonce } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	Amp. Factor		Power Oulput Waths	Type
				Volis	Amp.	1 n	Out	PlateGrid												
M74	Tetrode Vollage Amplifier	1	2	0.625	0.02				Class-A Amp.	30	0	7.0	0.01	0.02						
RK61	Gas Triode	1	2	1.4	0.05				Rodio Control	45	0	7.0	0.01	0.02	500000	125	70			M74
$\begin{aligned} & 50917 A \\ & 5637 \end{aligned}$	Triode	1	2	6.3	0.15	2.6	0.7	1.4	Class.A, Amp.	100				1.5	260					RK61
S0828A						2.6	0.7	1.4	Class ${ }^{\text {A, }}$ A	100	820*	-	-	1.4	26000	2700	70	-		$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$
5638	Audio Pentode	1	2	6.3	0.15	4.0	3.0	0.22	Class-A, Amp.	100	270*	100	1.25	4.8	150000	3300	-	-		SO828A
$\begin{aligned} & 50828 \mathrm{E} \\ & \mathbf{5 6 3 4} \end{aligned}$	Sharp Cut-off Pentode	-	-	6.3	0.15	4.4	2.8	0.01	Class-A1 Amp.	100	150*	100	2.5	6.5	240000	3500	-			$\begin{array}{\|l\|} \hline 5638 \\ \hline \text { SD828E } \\ \hline \end{array}$
$\begin{aligned} & \text { SN944 } \\ & 5633 \\ & \hline \end{aligned}$	Remote Cut-off Pentoda	4	\cdots	6.3	0.15	4.0	2.8	0.01	Closs-A, Amp.	100	150*	100	2.8	7.0	200000	3400		-		$\begin{aligned} & 5634 \\ & \hline \text { SN944 } \end{aligned}$
SN946	Diode	1	2	6.3	0.15	1.8			Rectifier	150										
$\begin{aligned} & \text { SN9470 } \\ & 5640 \end{aligned}$	Audio Beam Pentode	1	2	6.3	0.45				Closs-A1 Amp.	150	-9	100	2.2	9.0	150	5000		3000	- 125	SN946 SN947C
SN948C	Voltage Regulator	1							Regulator	Operating valtage $=95$; Max. current $=25$ Ma.										5640
SN9530	Power Pentode	1		6.3	0.15	9.5	3.8	0.2	Class-A Amp.											SN948C
$\begin{aligned} & \text { 5N954 } \\ & 5641 \end{aligned}$	Half-Wave Reclifier	1	2	6.3	0.45		3.8	0.2	Class-A Amp.	150	100*	100	4/7.5	21/20	50000	9000	-	9000	1.0	SN933D
SN9558	Oual Triode	1	2	6.3	0.45	2.								45.0						5641
SN9568									as8-A	Peak inverse V. $=10000$ Max. Average $\mathrm{Ip}=2 \mathrm{Ma}$. Peak $\mathrm{Ip}=23 \mathrm{Ma}$.										SN9558
S642	H.V. Half-Wave Reclifier		-	1.25	0.14	-	-		H.V. Rectifier											$\begin{aligned} & \text { SN9568 } \\ & 5642 \end{aligned}$
5645	Triode	$\stackrel{1}{1}$	2	6.3	0.15	2.0	1.0	1.8	Class-A, Amp.	100	560*	-	-	5.0	7400	2700	20	——		SN957A
SN1006	Triode	1	2	6.3	0.15				Class-A Amp.	100	820°		-	1.4	29000	2400	70			
SN1007B	Mixer	4	-	6.3	0.15	5.0	2.8	0.003	Mixer	100	150*	100	5.0	4.0	230000	900				SN1006
5635	Dual Triode	Bs.	808	6.3	0.45	2.6	1.6	1.2	Class-A Amp. ${ }^{\text {b }}$	100	100*			4.8	10000	3800	38			5N10078
5636	Penlode Mixer	Bs.	80C	6.3	0.15	4.0	1.9	0.034	Class-A Amp.	100	150*	100	4.0	5.6	110000	3200				5635
5639	Video Pentode	:	80L	6.3	0.45	9.5	7.5	0.10	Class-A1 Amp.	150	100*	100	4.0	21	50K	9000	-	9000	1.0	5636
5641	Single Diode	1	6CJ	6.3	0.45				H. W. Rectifior	235 volis a.e. mox.; 45 Ma . d.c. output.										5639
5643	Telrode Thyratron	1	800	6.3	0.15	1.7	1.6	0.1	Relay Tube Grid	Peak anode volts $=500 ; \mathrm{Inv}$. volis $=500 ;$ Peak $\mathrm{f}_{\mathrm{k}}=100 \mathrm{Ma} ;$ Avg. $=22 \mathrm{Ma}$.										564
5644	Cold Cathode Diode	1	4CN																	5643
5646	Triode	1	$\underline{+}$	6.3	0.15	2.4			Voltage Reg.	Starting voltage $=125 \mathrm{max}$. d.c. Operaling voltage $=95$. Operating current $=5-25 \mathrm{Ma}$. Regulation $=4$ volis approx.										5644
5647	Single Diode	1	81	6.3	0.15	2.4	3.4	1.2	Class-A Amp.	100	820	\longrightarrow	$\overline{-}$	1.4	29000	2400	70	-		5646
5672	Power Pentode	1		1.25	0.05				C. W. Recilifer				150 volits a.e. max; 9 Mo. d.c. outpul.							5647
5676	Triode	1	2	1.25	0.12	1.3	4	2	Class-A Amp.	67.5	-6.5	67.5	1.1	3.25		650	-	20000	0.065	5672
5677	Triode	1	2	1.25	0.06	1.3	3.8	2	Class-A Amp.	135	-5			4.9		1600 650	13			5676
5678	Pentode	1	2	1.25	0.05	3.3	3.8	0.01	Class-A Amp.	67.5	-6			1.9		650	13.5	\square		5677
5697	Lo-Mu Triode	1	-	0.625	0.02				Closs-A Amp.	$\underline{67.5}$	-3	67.5	0.48	$\underline{1.8}$	1000000	1100		-		5678
5702	Remote Cut-off Pentode	1		6.3	0.2	4.4	3.5	0.03	Class-A Amp.	120	$\frac{-3}{200}{ }^{\text {- }}$			0.22	340000	135	2.1	-		5697
5703	Medium Mu Triode	1		6.3	0.2	2.6	0.7	1.2	Class-A Amp.	120	200*	120	2.5	7.5	340000	5000	25	-		5702
5704	Diode	1	-	6.3	0.15				Max. RMS plate volts $=150$; Max. d.c. Ma. $=9$; Peak Ip $=54 \mathrm{Ma}$.; Inverse volls $=420$.											5703
5718	U.h.f. Madium-Mu Triode	1																		5704
		.	-0K	6.3	0.15	2.2	0.7	1.4	U.h.f. Oseillator	150	-12	Fme.	= 500	20		6500 19.3 .7	27			5718
5719	Hi. Mu Triode	1	8DK	6.3	0.15	2.4	0.6	0.7	Closs-A, Amp.	150	680*			1.7	26000	$\lg =3.7$ 2700	Ma.		0.9	
5744	Hi-Mu Triode	1		6.3	0.2				Class-A Amp.	250	500*	-		4.0		4000	70			5719
5784	Dual-Control Pantode	1		6.3	0.2	3.9	3.0	0.03	Class-A Amp.	120	-2	120	4.8	3.6	-	4000	70			5744
5785	High Voltage Diode	1							Max. d.e. Ip $=0.1$ Ma.; Peak $1 p=0.45 \mathrm{Ma}$; Max, peok inverse volts $=3500$.											5784
5840	U.h.f. Sharp Cut-off Pent.	\pm	801	6.3	0.15	4.2	4.0	0.015												5785
5851	Pentode Power Amplifier	1	6CL	2.5	0.055	2.5														5840
5875				1.25	0.11		3.0	0.055	Class-A Amp.	125	-7.5	125	0.9	5.5	175000	1800	-	-	-	5851
	Sharp Cul-off Pentode	1	-	1.25	0.1	4.0	4.0	0.03	Class-A1 Amp.	90	\cdots	90	1.0	3.5	-	2500		-	-	5875

table XII-SUB-MINIATURE TUBES-CONtinued

TABLE XIII-CONTROL AND REGULATOR TUBES-Continued

TABLE XIV-RECTIFIERS-RECEIVING AND TRANSMITTING
See also Table XIII-Control and Regulator Tubes

Type No.	Noma	Base	Socket Connec tions	Cothode	Fil. or Healer		Max.A.C.VoltagePer Plate	D.C. Oulput Current Ma.	Mox. Inverse Peak Volitage		Type
					Volts	Amp.					
BA	Full-Wave Rectifier	4-pin M.	4J	Cald			350	350	Tube drop 80 v .		G
BH	Full-Wave Rectifer	4-pin M.	4 J	Cold			350	125	Tube drop 90 v .		G
BR	Hall-Wave Rectifier	$4-\operatorname{pin}$ M.	4 H	Cold			300	20	Tube drop 60 v .		G
CE-220	Half-Wave Rectifier	4-pin M.	4P	Fil.			-		20000	100	HV
OY4	Half-Wave Rectifier	$5-\mathrm{pin} 0$.	4BU	Cold	Connect Pins 7 and 8		95	75	300	500	G
024	Full-Wave Rectifer	5-pin 0.	4R	Cold			350	30-75	1250	200	G
1	Half-Wave Rectilier	4-pin 5 .	4G	Hir.	6.3	0.3	350	50	1000	400	MV
14×2	Holf-Wave Reclifier	9-pin 8.	9 Y	Fil.	1.4	0.65	20000	1.0	25000	11	HV
I-V	Half-Wave Rectifier	4-pin S.	4G	Hir.	6.3	0.3	350	50			HV
IV2	Half-Wove Rectifier	9-pin B.	9 U	Fil.	0.625	0.3	-	0.5	7500	10	HV
183GT/8016	Half-Wave Rectifier	6-pin 0.	3 C	Fil.	1.25	0.2		2.0	30000	17	HV
1848	Half-Wave Rectiner	7-pin $\mathrm{B}^{\text {a }}$		Cold			800	6	2700	50	G
1×2	Half-Wave Restifier	9-pin B.	$9 Y$	Fil.	1.25	0.2		1	15000	10	HV
$1 \times 2 \mathrm{~A}$	Half-Wave Rectifier	9-pin 8.	9r	Fil.	1.25	0.2	-	1.1	20000	11	HV
1×28	Fly-Back Rectifier	$9-\mathrm{pin}$ B.	9 y	Fil.	1.25	0.2	-	0.5	22000	45	HV
1Y2	Hall-Wave Rectifier	4-pin M.	4P	Fil.	1.5	0.29	-	2	50000	10	HV
122	Holf-Wave Rectifier	7-pin B .	7CB	Fil.	1.5	0.3	7800	2	20000	10	HV
$2 \mathrm{B25}$	Half-Wave Rectifier	7-pin B.	3 T	Fil.	1.4	0.11	1000	1.5		9	HV
2 V 2	Half-Wave Rectifier	8 -pin 0.	8 FV	FiJ.	2.511	0.28		2	15000	80	HV
					1.2512	$0.4{ }^{12}$		1	21000	80	
2V3G	Half-Wave Rectifier	6-pin 0.	4 r	Fil.	2.5	5.0		2.0	16500	12	HV
2W3	Half-Wave Rectifier	5-pin 0.	4X	Fil.	2.5	1.5	350	55	-		HV
2×2/879:0	Half-Wave Rectifier	4-pin 5.	4 AB	Htr.	2.5	1.75	4500	7.5	-	-	HV
2×2-A	Half-Wove Rectifier	4-pin S.	4AB	Same as $2 \times 2 / 879$ but will withstand severe shock 2 vibration							HV
$2 Y 2$	Holf-Wave Reclifier	4-pin M.	4AB	Fil.	2.5	1.75	4400	5.0		-	HV
222/G84	Half-Wave Reclifir	4-pin M.	48	Fil.	2.5	1.5	350	50	-		HV
3 A 2	Half. Wove Rectifier	$9 \cdot \operatorname{pin} B$	9DT	Htr.	3.15	0.22		1.5	18000	80	HV
3A3	Holf-Wave Rectifier	6-pin 0.	3 A3	Hir.	3.15	0.22		1.5	30000	80	HV
3824	Half-Wove Rectifier	4-pin M.	T-4A	Fil.	$\begin{aligned} & 5.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	$\begin{array}{r} 300 \\ 150 \end{array}$	HV
3825	Half-Wave Rectifer	4-pin M.	4P	Fil.	2.5	5.0		500	4500	2000	\underline{G}
3826	Half-Wave Rectifier	8-pin 0 .	Fig. 31	Htr.	2.5	4.75		20	15000	8000	HV
DR-3827	Half-Wove Rectifar	4-pin M.	4P	Fil.	2.5	5.0	3000	250	8500	1000	HV
3828	Half-Wave Recitior	4.pin-M	4 P	Fil.	2.5	5.0	1700	500	5000	2000	G
	Halu-Wave Recklor						3500	250	10000	1000	
		8-pin 0	51	Fil.	5.0	4.5	3004	3504	1400	1075	HV
5AU4	Full-Wave Rectifier						400.	3254			
							$500{ }^{-7}$	325			
5AW4	Full-Wave Rectifier	5 -pin 0.	5 T	Fil.	5.0	4.0	$450 \cdot$	2504	1550	750	HV
	FullWave Reenlior	s-pin 0.					550 :	$250{ }^{\circ}$			
SAX4GT	Full-Wove Rectifier	$5 \cdot \mathrm{pln} 0$.	51	Fil.	5	2.5	$\begin{aligned} & 350^{4} \\ & 500^{7} \end{aligned}$	175	1400	525	HV
5 5AZ4	Full-Wave Rectifier	5-pin 0.	$5 T$	Fil.	5.0	2.0		Same is Type 80			HV
-5R4GY	Full-Wove Rectifior	5 -pin 0.	51	Fin.	5.0	2.0	$\begin{aligned} & 9004 \\ & 950 \end{aligned}$	$\begin{aligned} & 150: \\ & 175 \end{aligned}$	2800	650	HV
5T4	Full-Wave Rectifier	5-pin 0.	$5 T$	Fil.	5.0	3.0	450	250	1250	800	HV
5U4G	Full-Wave Rectifier	$8-\mathrm{pin} 0$.	51	Fil.	5.0	3.0		Same as Type 523			HV
5U4GA	Fuil-Wave Rectifier	$5 \cdot \operatorname{pin} 0$	5 T	Fil.	5.0	3.0	300	2754	1550	900	HV
							4501	2504			
							550	$250{ }^{7}$			
5U4GB	Full-Wove Rectifier	5-pin 0.	$5 T$	Fil.	5.0	3.0	3004	$300+$	1550	1000	HV
							$450{ }^{4}$	2751			
							550	2757			
5V4G	Full-Wove Rectifier	$8-p$ in 0.	51	Htr.	5.0	2.0		Same as Type 83V			HV
5W4	Full-Wave Rectifier	5-pin O.	51	Fil.	5.0	1.5	350	110	1000	-	HV
5×3	Full-Wave Rectifier	4-pin M.	4 C	Fil.	5.0	2.0	1275	30	-	-	HV
5×46	Full-Wave Rectifier	8 -pin 0.	50	Fil.	5.0	3.0		Some as 573			HV
5 F 3 G	Full-Wave Rectifier	5-pin 0.	$5 T$	Fil.	5.0	2.0		Same os Type 80			HV
SY3WGT	Full-Wave Rectifier	5-pin 0.	5 T	Fil.	5.0	2.0	375	120	1550	375	HV
5Y4G	Full-Wave Rectiner	B-pin 0.	50	Fil.	5.0	2.0		Some as Type 80		-	HV
523	Full-Wove Rectifier	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400		HV
524	Full-Wave Rectifler	$\begin{gathered} 5-\operatorname{pin} 0 \\ \hline 6-\operatorname{pin} 0 \\ \hline \end{gathered}$	51	Hits.	5.0	2.0	400	125	1100	-	HV
6AU4GT	Damper Diode		4CG	Her.	6.3	1.8	-	175	4500	1050	HV
6 6, 6	Full-Wave Rectifier	7-ain 8.	$5 \overline{85}$	Her.	6.3	0.95		90	1250	250	HV
6AX4GT	Damper Diade	6-pin 0 .	4CG	Hir.	6.3	1.2	T	125	4000	600	
6AX5GT	Full-Wave Rectifier	6-pin 0 .	65	Hir.	6.3	1.2	450	125	1250	375	HV
6AX6G	Full-Wave Rectifier	7 -pin 0 .	70	Hir.	6.3	2.5	350	250	1250	600	HV
$6 \mathrm{BX4}$	Full-Wove Rectifier	7-pin B .	5 BS	Hir.	6.3	0.6	-	90	1350	270	HV
6BY5G	Full-Wave Rectifior	7-pin O.	6CN	Hir.	6.3	1.6	3754	175	1400	525	HV
SU3	Damper Diode	9-pin 8.	98M	Her.	6.3	0.9	-	180	4000	400	HV
6U4GT	Half-Wave Rectifier,		4CG	Mir.	6.3	1.2	-	138	1375	660	HV

TABLE XIV-RECTIFIERS - RECEIVING AND TRANSMITTING -Continued
See also Table XIII-Conirol and Regulator Tubes

Type No.	Nome	Base	Sockel Connecfions	Cothode	FiI. or Heater		Max. A.C. Voltage Per Plate	D.C. Current Ma.	Max. Inverse Peak Voltage	Peak Plate Current Ma.	Type
					Volts	Amp.					
6 V 3	Half-Wave Rectifier	9-pin B.	9 BD	Hir.	6.3	1.75	350	125	6000	600	HV
6V3A	Damper Diode	9 -pin B.	98D	Hir.	6.3	1.75		135	6000	800	HV
6 V 4	Full-Wove Rectifier	9-pin 8.	9 M	Hit.	6.3	0.6	350	90			HV
6W4GT	Damper Service	$6-p \ln 0$.	4CG	Hfr.	6.3	1.2		125	2000	600	HV
	Half-Wave Rectifier						350	125	1250	600	
6W5G	Full-Wave Rectiner	6-pin 0.	65	Htr.	6.3	0.9	350	100	1250	350	HV
$\begin{aligned} & 6 \times 4 \\ & 6 \times 5 \end{aligned}$	Full-Wave Rectifier	$\begin{aligned} & 7-\text { pin } \mathrm{B} . \\ & 6 \text {-pin } \mathrm{O} . \end{aligned}$	$\begin{aligned} & 7 \mathrm{CF} \\ & 65 \end{aligned}$	Hir.	6.3	0.6	$\begin{aligned} & 3254 \\ & 450^{7} \end{aligned}$	70	1250	210	HV
6Y3G	Half-Wave Rectifier	5-pin 0.	4AC	Htr.	6.3	0.7	5000	7.5	-	-	HV
6 65 10	Full-Wove Rectifier	6-pin S.	6.	Htr.	6.3	0.8	350	50			HV
673	Half-Wave Rectifer	4-pin M.	4 G	Fil.	6.3	0.3	350	50			HV
62510	Full-Wave Rectifier	6-pin S.	6 K	Hh.	6.3	0.6	230	60			HV
6ZY5G	Full-Wave Rectifer	6 -pin 0.	65	His.	6.3	0.3	350	35	1000	150	HV
7×6	Full-Wave Rectifier	8 -pin 0.	7AJ	Hir.	6.3	1.2	235	150	700	450	HV
7×4	Full-Wave Rectifier	B-pin 1.	5AB	Htr.	6.3	0.5	350	60			HV
724	Full-Wave Reclifier	B-pin L .	5AB	Htr.	6.3	0.9	$\begin{aligned} & 4501 \\ & 3254 \end{aligned}$	100	1250	300	HV
12 A 7	Rectifier-Pentode	7 -pin 5.	7K	Htr.	12.6	0.3	125	30		\square	HV
12AX4GT	Damper Dlode	6 -pin 0.	4CG	Hir.	12.6	0.6		125	4000	600	HV
12AX4GTA	Damper Diode \ddagger	6-pin 0.	$4 C 6$	Hir.	12.6	0.6		125	4400	50	HV
12×4	Full-Wave Rectifier	7 -pin B.	5BS	Hir.	12.6	0.3	$\begin{aligned} & 6501 \\ & 900^{7} \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1250 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \\ & \hline \end{aligned}$	HV
1273	Half-Wave Rectifier	4-pin S.	4G	Htr.	12.6	0.3	250	60			HV
122510	Vallage Doubler	7-pin M.	71	Htr.	12.6	0.3	225	60		-	HV
14 Y 4	Full-Wave Rectifier	8 -pin L .	5AB	Htr.	12.6	0.3	$\begin{aligned} & 4501 \\ & 3254 \end{aligned}$	70	1250	210	HV
1423	Half-Wave Reclifier	4-pin S.	4G	Hit.	12.6	0.3	250	60	\square		HV
1723	Damper Diode	9-pin B.	9 CB	Hir.	17	0.3		150	4500	450	V
19×3	Domper Diode	9 -pin B.	9 BM	Hit.	19	0.3		180	4500	400	HV
19 Y 3	Half-Wave Rectifier	9-pin B.	98 M	Hir.	19	0.3		180	700		HV
25A7G ${ }^{10}$	Rectifier-Pentode	8-pin 0.	85	Hir.	25	0.3	125	75		-	HV
25AX4GT	Damper Diode	6-pin 0.	4CG	Hir.	25	0.3		125	4000	600	V
25W4GT	Half-Wave Rectifier	6 -pin 0.	4CG	Hhr.	25	0.3	350	125	1250	600	HV
25X6GT	Voltage Doubler	7 -pin 0.	70	Hir.	25	0.15	125	60			HV
25Y4GT	Half-Wove Rectiffer	6-pin 0.	5AA	Hir.	25	0.15	125	75		-	HV
$25 Y 5{ }^{10}$	Voltage Doubler	6 -pin 5.	$6 E$	Hir.	25	0.3	250	85	-		HV
2573	Holf-Wave Reatifier	4 -pin 5 .	46	Hr.	25	0.3	250	50			HV
2524	Half-Wave Rectifier	6 -pin 0.	5AA	Hr.	25	0.3	125	125	-	500	HV
2575	Reetiffer-Doubler	6-pin S.	6E	Hir.	25	0.3	125	100		500	HV
2625W	Full-Wave Rectifier	9-pin B.	9BS	Htr.	26.5	0.2	$\begin{aligned} & 3254 \\ & 450^{7} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	1250	300	HV
2576	Rectifier-Doubler	7 -pin 0.	70	Hir.	25	0.3	125	100	-	500	HV
2825	Full-Wave Rectifior	8 -pin L .	$54 B$	Htr.	28	0.24	$\begin{aligned} & 450^{7} \\ & 3254 \end{aligned}$	100	\longrightarrow	300	HV
32L7 GT	Rectifier-Tetrade	8 -pin 0.	82	Hir.	32.5	0.3	125	60		-	HV
35W4	Half-Wave Rectifier	7 -pin B.	5BO	Hir.	352	0.15	125	$100{ }^{\text {8 }}$	330	600	HV
$35 Y 4$	Half-Wave Rectifor	$8-p i n 0$.	5 AL	Htr.	35^{2}	0.15	235	$\begin{gathered} 60 \\ 1008 \end{gathered}$	700	600	HV
3523	Half-Wave Rectifier	8-pin L.	42	Htr.	35	0.15	$250{ }^{\circ}$	100	700	600	HV
3524GT	Half-Wave Rectifier	6-pin 0 .	5AA	Hits.	35	0.15	250	100	700	600	HV
3525G	Holf-Wave Rectiffer	6-pin 0.	6AD	Hit.	35 2	0.15	125	$\begin{gathered} 60 \\ 1008 \end{gathered}$	-	-	HV
35Z8G	Votlage Doubler	6-pin 0.	70	Htr.	35	0.3	125	110		500	HV
4025GT	Half-Wave Rectifior	6 -pin 0.	6AD	Htr.	40^{2}	0.15	125	$\begin{gathered} 60 \\ 100: \end{gathered}$	-	-	HV
4523	Holf-Wove Rectifier	7-pin B.	5AM	Htr.	45	0.075	117	65	350	390	HV
452.5GT	Holf-Wave Reciffer	$6-$ pin 0.	6AD	Hr.	45^{2}	0.15	125	$\begin{gathered} 60 \\ 100^{8} \end{gathered}$	-	-	HV
50AX6G	Fult-Wave Rectifier	7 -pin 0.	70	Hir.	50	0.3	350	250	1250	600	HV
50×6	Voltage Daubler	8 -pin L.	7Ad	Hits.	50	0.15	117	75	700	450	HV
soy6GT	Full-Wave Rectifier	7 -pin 0.	70	Hir.	50	0.15	125	85	-		HV
50Y7GT	Voltoge Doubler	8 -pin L.	8 AN	His.	50^{2}	0.15	117	65	700		HV
50Z6G	Voltage Doubler	7 -pin 0.	70	Hit.	50	0.3	125	150			HV
5027610	Voltage Doubler	8 -pin 0.	8AN	Htr.	50	0.15	117	65			HV
70A7GT	Recṭifer-Tetrede	8 -pin 0.	8AB	Htr.	70	0.15	125*	60	-	-	HV
7017 GT	Rechifer-Tetrode	8 -pin 0.	8AA	Htrs.	70	0.15	117	70		350	HV
72	Half-Wove Reclifier	4-pin M.	4P	Fil.	2.5	3.0		30	20000	150	HV
73	Half-Wove Reclifier	$8-p i n ~ O . ~$	4 Y	Fil.	2.5	4.5	\square	20	13000	3000	HV
80	Full-Wove Rectifior	4-pin M.	4 C	Fil.	5.0	2.0	$\begin{aligned} & 350^{4} \\ & 500^{7} \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	HV
81	Half-Wave Rectiffer	4-pin M.	48	Fil.	7.5	1.25	700	85	-	\square	HV
82	Full-Wave Rectifier	4-pin M.	4 C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wave Reclifier	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400	800	MV
83-V	Fuil-Wove Rectifer	4-pin M.	4AD	Htr.	5.0	2.0	400	200	1100		HV
64/674	Full-Wave Rectifier	5-pin S.	5D	Hrs.	6.3	0.5	350	60	1000		HV

table Xiv-rectifiers-receiving and transmiting-Continued
See also Table XIII-Control and Regulotor Tubes

Type No.	Name	Base	Socket Connec. tions	Cathade	Fil, or Heater		Max. A.C. Vollage Per Plole			Peak Current Ma.	Type
					Volts	Amp.					
$\begin{aligned} & 11717 \mathrm{GT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \end{aligned}$	Reclifler-Tetrode	8 -pin 0.	8 AO	Htr.	117	0.09	117	75	-	-	HV
117N7GT	Rectifier-Tehode	8 -pin 0.	8 AV	Hir.	117	0.09	117	75	350	450	HV
117P7GT	Rectifier-Tetrode	8 -pin 0.	BAV	tir.	117	0.09	117	75	350	450	HV
11723	Half-Wave Rectifer	$7-$ pin B,	4BR	Hir,	117	0.04	117	90	330		HV
11724 GT	Half-Wave Rectifier	6-pin 0.	5AA	Hir.	117	0.04	117	90	350		HV
11726GT	Voltage Doubler	7 -pin 0.	70	Hir.	117	0.075	235	60	700	360	HV
$217 . \mathrm{A}^{10}$	Half-Wave Rectifer	4-pin J.	4AT	Fii.	10	3.25			3500	600	HV
217.C	Half-Wave Rectifler	4-pin J.	4AT	Fil.	10	3.25			7500	600	HV
$\underline{225}$	Half-Wave Rectifler	4-pin M.	4P	Fil.	2.5	5.0		250	10000	1000	MV
249.8	Half-Wave Rectifler	4-pin M.	Fig. 53	Fil.	2.5	7.5	3180	375	10000	1500	MV
HK253	Half-Wave Reclifier	4-pin J.	4AT	Fii.	5.0	10		350	10000	1500	HV
$\begin{aligned} & 705 \mathrm{~A} \\ & \text { RK.705A } \end{aligned}$	Half-Wave Reclifler	4-pin W.	T.3AA	Fil.	$\begin{aligned} & 2.5^{9} \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & 35000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 375 \\ & 750 \end{aligned}$	HV
816	Half-Wave Reclifier	4 -pin S.	4P	Fil.	2.5	2.0	2200	125	7500	500	MV
836	Half-Wave Reclifler	4-pin M.	4P	Hir.	2.5	5.0			5000	1000	HV
8664/866	Half-Wave Reclifier	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
8668	Half-Wave Reclifier	4-pin M.	4P	Fil.	5.0	5.0			8500	1000	MV
866 Jr .	Half-Wave Reclifler	4-pin M.	4B	Fil.	2.5	2.5	1250	2503	-		MV
HY866 Jr.	Half-Wave Rechiter	4-pin M.	4P	Fil.	2.5	2.5	1750	2503	5000		MV
RK866	Half-Wave Reclifier	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
871^{10}	Half-Wave Recllier	4-pin M.	4P	Fil.	2.5	2.0	1750	250	5000	500	MV
878	Half-Wave Reclifier	4-pin M.	4P	Fil.	2.5	5.0	7100	5	20000	-	HV
879	Half-Wave Recllfer	4-pin S.	4P	Fil.	2.5	1.75	2650	7.5	7500	100	HV
872A/872	Holf-Wave Reclifier	4-pin J.	4AT	Fil.	5.0	7.5		1250	10000	5000	MV
$\begin{aligned} & 975 A \\ & 575 A \end{aligned}$	Half-Wave Rectifier	4-pin J.	4AT	Fil.	5.0	10.0	-	1500	15000	6000	MV
$\begin{aligned} & \hline \text { O24A/ } \\ & 1003 \end{aligned}$	Full-Wove Rectifier	5-pin 0	4R	Cold	\square	-	-	110	880	-	G
$\begin{aligned} & 1005 / \\ & \text { CK } 1005 \end{aligned}$	Full-Wave Rectifler	$8 \cdot \mathrm{pin} 0$.	5AQ	Fil.	6.3	0.1	-	70	450	210	G
$\begin{aligned} & 1006 / \\ & \text { CK } 1006 \end{aligned}$	Full-Wave Rectifier	4-pin M.	4 C	Fil.	1.75	2.25		200	1600		G
CK 1007	Full-Wave Rectifier	8 -pin 0.	T.9G	Fil.	1.0	1.2		110	980		G
CK1009/BA	Full-Wave Rectifier	4-pin M.		Cold				350	1000		G
1274	Full-Wave Reclifier	6-pin O .	65	Hir.	6.3	0.6		Same a	7Y4		'HV
1275	Full-Wove Rectifier	4-pin M.	4 C	Fil.	5.0	1.75		Same	523		HV
1616	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0		130	6000	800	HV
$\begin{aligned} & 1641 / \\ & \text { RK } 60 \end{aligned}$	Full-Wove Rectifier	4-pin M.	T-4AG	Fil.	5.0	3.0	\square	50	4500		*HV
1654	Half-Wove Rectifler	7 -pin B.	22	Fii.	1.4	0.05	2500	1	7000	- 6	HV
5517	Half-Wave Rectifier	$7.0 i n \mathrm{~B}$.	584	Cold		-	1200	6		50	G
5690	Half-Wave Reclifier	8 -pin 0.	Fig. 74	Hir.	6.3	2.4	350	125	1120	750	HV
					12.6	1.2	350	$150{ }^{7}$	1120	750	
5825	Half-Wave Rectlfier	4-pin M.	4P	Fil.	1.6	1.25		2	60000	40	HV
5839	Full-Wave Rectifier	6-pin 0 .	65	Hir.	26.5	0.285			1375	270	HV
5852	Full-Wave Rectifier	6-pin 0.	65	Hir.	6.3	1.2	-		1375	270	HV
5993	Full-Wove Rectifier	9-pin B.	Fig. 71	Hir.	6.3	0.8			1250	230	HV
6063/6X4	Full-Wave Rectifier	7 -pin B.	5BS	Hir.	6.3	0.6	$325{ }^{\circ}$	70	-	-	HV
6087	Full-Wave Rectifier	5-pin 0.	51	Hir.	5.0	2.0	$350{ }^{3}$	$125{ }^{\text {12 }}$	1400	375	HV
6157	Half-Wave Reclifier	9-pin B.	Fig. 72	Htr.	6.3	0.8	500 350	75	-	\cdots	HV
6023	Full-Wave Reclifier	9-pin B.	9 CD	Hir.	6.3	0.9	$\begin{aligned} & 325 \\ & 450^{\circ} \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	1250	270	HV
6305	Half-Wave Rectifier	7 -pin B	6305	Hir.	4.0	0.5		5	12500	40	HV
6374	Half-Wave Rectifier	9-pin B .	9 BW	Hir.	6.3	1.0		150	2000	900	HV
6443	Hall-Wave Rectifier	9-pin B.	9BW	Hir.	6.3	1.1	-	150	1800	900	HV
8008	Half-Wave Rectifier	4-pin ${ }^{\text {c }}$	Fig. 11	Fil.	5.0	7.5	\square	1250	10000	5000	MV
8013 A	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	$\underline{\square}$	20	40000	150	HV
8016	Holf-Wove Reclifier	6-pin 0.	4AC	Fil.	1.25	0.2	\square	2.0	10000	7.5	HV
8020	Half-Wave Ractifer	4-pin M.	4P	Fil.	5.0	5.5	10000	100	40000	750	HV
					5.8	6.5	12500	100	40000	750	
RK 19	Full-Wave Reclifier	4-pin M.	4AT	Hir.	7.5	2.5	1250	2004	3500	600	HV
RK21	Half-Wove Reclifier	4-ain M.	4P	Hir.	2.5	4.0	1250	2004	3500	600	HV
RK22	Full-Wave Reclifier	4-pin M.	T.4AG	Hir.	2.5	8.0	1250	2004	3500	600	HV
R×21A	Half-Wave Reclifier	5-pin M.	-	Fil.	2.5	10.0	-	750	11000	-	MV

[^16]TABLE XV - TRIODE TRANSMITTING TUBES

Type	Max. Plate Dissi- pation Watts	Cathode		Max. Plate Voltage	Max. Plate CurrentMa.	Max. D.C. Grid Curren! Ma.	Amp. Factor	$\begin{aligned} & \text { Interelectrode } \\ & \text { Copacitances (} \mu \mu \mathrm{fd} . \text {) } \end{aligned}$			Max. Freq. Mc. Full Rating:	Base	Socket Connec. tions	TYpical Operation	Plate Voltage	Grld Voltoge	Plate Current Ma.		Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { Pato-P } \\ \text { load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Oulput Power Watls
		Volts	Amp.					$\begin{aligned} & \text { Grid } \\ & \text { fio } \\ & \text { fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plato } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { fit. } \end{aligned}$											
958.4	0.6	1.25	0.1	135	7	1.0	12	0.6	2.6	0.8	500	A.	5BD	Class-C Amp.-Oscillator	135	- 20	7	1.0	0.035		0.6
3B7 ${ }^{\text {? }}$	-	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	180	25	-	20	1.4	2.6	2.6	125	0.	7AP	Class-C Amp. (Telegraphy)	180	0	25	-	-	-	2.8
RK24	1.5	2.0	0.12	180	20	6.0	8.0	3.5	5.5	3.0	125	s.	4D	Closs-C Amp.-Oscillator	180	- 45	16.5	6.0	0.5		2.0
$656{ }^{2}$	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	250	B.	7BF	Class-C Amp. (Telegraphy) ${ }^{2}$	150	- 10	30	16	0.35 -		3.5
9002	1.6	6.3	0.15	250	8	2.0	25	1.2	1.4	1.1	250	B.	7TM	Class-C Amp.-Oscillator	180	- 35	7	1.5	-		0.5
955	1.6	6.3	0.15	180	8	2.0	25	1.0	1.4	0.6	250	A.	5BC	Closs-C Amp.-Oscillator	180	- 35	7	1.5			0.5
														Class-C Amp.-Oscillator	180	- 35	12	2.0	0.2		$1.4{ }^{3}$
HYI14B	1.8	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	300	0.	21	Class-C Amp. (Telephony)	180	- 35	12	2.5	0.3	-	$1.4{ }^{3}$
3A5 ${ }^{2}$	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	150	30	5.0	15	0.9	3.2	1.0	40	B.	7BC	Class-C Amp.-Oscillator ${ }^{2}$	150	- 35	30	5.0	0.2	-	2.2
6 64	2.0	6.3	0.225	150	20	8.0	17	2.0	1.9	0.6	500	A.	7BR	Class-C Amp.-Oscillator	150	$\begin{array}{r} -15 \\ \mathbf{5 5 0} \\ 2000^{*} \end{array}$	20	7.5	0.2	-	1.8
														Closs-C Amp. (Telegraphy)	180	- 45	20	4.5	0.2	-	2.7
HY24	2.0	2.0	0.13	180	20	4.5	9.3	2.7	5.4	2.3	60	s.	4D	Class-C Amp. (Telephony)	180	- 45	20	4.5	0.3		2.5
RK331+2	2.5	2.0	0.12	250	20	6.0	10.5	3-2	3-2	2.5	60	5.	T.7DA	Class-C Amp.-Os eillator ${ }^{\text {? }}$	250	- 60	20	6.0	0.54	-	3.5
12AU7 ${ }^{\text {2 }}$	$2.75{ }^{6}$	6.3	0.3	350	12^{8}	$3.5{ }^{6}$	18	1.5	1.5	0.5	54	B.	9 A	Class-C Amp.-Oscillotor ${ }^{2}$	350	-100	24	7	-		6.0
6 Na	3.0	6.3	0.2	180	12		32	3.1	2.35	0.55	500	B.	7CA	Class-C Amp. Oseillator	180	-					
6026	3.0	6.3	0.2	150	30	10	24	2.2	1.3	0.38	400	N.		Class-C Oscillator-400 Mc.	135	1300	20	9.5	-		1.25
	3.5	6.3	0.3		20	4.0	20	4.2	3.8	5.0	60	0.		Class-C Amp.-Oscillator	330	- 30	20	2.0	0.2		3.5
HYOJSGIX	3.5	6.3	0.3	330	20	4.0	20	4.2	3.8	5.0	60	0.	60	Class-C Amp. (Telephony)	250	- 30	20	2.5	0.3		2.5
2C22/7193	3.5	6.3	0.3	500	-	-	20	2.2	3.6	0.7	-	0.	4AM	Class-C Amp. (Telegraphy)		-			ー-		
HY615	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	300	0.	T.8AG	Class-C Amp.-Oscillator	300	-35 -35	20	2.0	0.4		$4.0{ }^{3}$
HY-E1148	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	300	-	f.8AG	Class-C Amp. (Telephany)	300	- 35	20	3.0	0.8	-	$3.5{ }^{1}$
$\begin{aligned} & \text { GL-446A1 } \\ & \text { GL-446B1 } \end{aligned}$	3.75	6.3	0.75	400	20	-	45	2.2	1.6	0.02	500	0.	Fig. 19	Closs.C Amp. Oscillator	250	—	-	-	-	-	-
$\begin{aligned} & \text { GL.2C44 } \\ & \text { GL-464A } \end{aligned}$	5.0	6.3	0.75	500	40	-	-	2.7	2.0	0.1	500	0.	Fig. 17	Class-C Amp.-Oscillator	250	-	-	-	-	-	-
$6{ }_{6} 6$	5.0	6.3	0.15	350	25	8.0	18	1.8	1.6	1.3	54	B.	6BG	Closs-C Amp.-Oscillotor	300	- 27	25	7.0	0.35		5.5
1626	5.0	12.6	0.25	250	25	8.0	5.0	3.2	4.4	3.4	30	0.	60	Class-C Amp.-Oscillator	250	- 70	25	5.0	0.5		4.0
$\begin{gathered} \text { RK21/ } \\ \text { RK33 } \end{gathered}$	5.0	6.3	0.6	250	40	12	-	1.6	1.6	2.0	-	S.	T-7DA	Class-C Amp.-Oscillator ${ }^{2}$	250	- 60	40	12	1.0	-	7
2 C 36	5	6.3	0.4	1500 *	-		25	1.4	2.4	0.36	1200	N.	Fig. 36	Plate-Pulsed 1000.Mc. Osc.	1000 5	0	$900{ }^{5}$				2003
$\begin{aligned} & \hline 2 C 37 \\ & 5766 \\ & 5767 \end{aligned}$	5	6.3	0.4	350	-	-	25	1.4	1.85	0.02	3300	N.	Fig. 36	1000.Mc. C.W. Oscillator	150	$3000{ }^{\text {- }}$	15	3.6	-	-	0.5
5764	5	6.3	0.4	1500 3	11.5		25	1.4	1.85	0.02	3300	N.	Fig. 36	Plate-Pulsed 3300-Mc. Osc.	$1000{ }^{\text {B }}$	0	$1300{ }^{5}$				$200{ }^{5}$
5765	5	6.3	0.4	350			25	1.3	2.1	0.03	2900	N.	Fig. 36	1900-Mc. C.W. Oscillotor	180	10000 ${ }^{4}$	25				0.225
5794	-	6.0	0.16	-	-	-	-	-	-	-	-	N.	Fig. 36	Fixed Tuned Oscillator Approximately 1680 Mc.	85/108	-	-	-	-		-
5675	5	6.3	0.135	165	30	8	20	2.3	1.3	0.09	3000	N.	Fig. 36	Grounded-Grid Osc.	120	- 8	25	4	-		0.05
$6 \mathrm{N7}^{2}$	5.53	6.3	0.8	350	30^{8}	$5.0{ }^{\circ}$	35	-	-	-	10	0.	8B	Class-C Amp. Oscillator ${ }^{2,11}$	350	-100	60	10			14.5
					25	-	56	2.5	1.4	0.035	1700	N.		Grounded-Grid Oscillator	250	- 2	23	3	-		0.75
5876	6.25	6.3	0.135	300	25	-	56	2.5	1.4	0.035	1700	N.	Fig. 36	Frequency Mulfiplier	300	- 70	17.3	7	\square		2.0
$2 \mathrm{C40}$	6.5	6.3	0.75	500	25	-	36	2.1	1.3	0.05	500	0.	Fig. 19	Class-C Amp. Oscillator	250	- 5	20	0.3	-	-	0.075
									8.3	3.0		M.	4D	Class-C Amp. (Telegraphy)	350	- 80	35	2	0.25		6
5556	7.0	4.5	1.1	350	40	10	8.5	4.0	8.3	3.0	6	m.	4D	Closs-C Amp. (Telephony	300	-100	30	2	0.3	-	4
														Class-C Amp. (Telegrophy)	350	- 33	35	13	2.4	-	6.5
5893	8.0	6.0	0.33	400	40	13	27	2.5	1.75	0.07	1000		Fig. 36	Class-C Amp. (Telephony)	300	- 45	30	12	2.0	-	6.5

TABLE XV-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissi- polion Watts	Cathode		Max. Plate Voltag*		Max. D.C. Grid Current Mo.	Amp. Factor	$\begin{aligned} & \text { Inferelectrode } \\ & \text { Capocifances (} \mu \mu \mathrm{fd.} \text {) } \end{aligned}$			Max. Freq. Mc. Fult Ratings	Base	$\begin{aligned} & \text { Socket } \\ & \text { Connec- } \\ & \text { tions } \end{aligned}$	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Wotis	$\begin{gathered} \text { Class B } \\ \text { P-fo-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Output Wotls
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { FiI. } \end{aligned}$											
$2 \mathrm{C43}$	12	6.3	0.9	500	40		48	2.9	1.7	0.05	1250	0.	Fig. 19	Class-C Amp.-Oscillator	470	-	387	-	-	\square	97
2C26A	10	6.3	1.10	-	-	-	16.3	2.6	2.8	1.1	250	0.	488		-				-		
$\begin{aligned} & 2 \mathrm{C34/} \\ & \mathrm{RK} 34^{2} \end{aligned}$	10	6.3	0.8	300	80	20	13	3.4	2.4	0.5	250	M.	T-7DC	Closs-C Amp.-Oscillator ${ }^{2}$	300	- 36	80	20	1.8	-	16
	13	6.3	0.28	400	55	25	27	2.9	1.7	0.08	500	N.		Closs-C Amp. (Telegrophy)	350	- 58	40	15	3		10
6263	13				55	25	27	2.9	1.7	0.08	509	N.		Class-C Amp. (Telephony)	320	- 52	35	12	2.4		8
6264	13	6.3	0.28	400	50	25	40	2.95	1.75	0.07	500	N.	-	Class-C Amp. (Telegraphy)	350	-45	40	15	3		8
			1.6	400	50	10		5.2						Class-C Amp.-Oscillator	400	-112	45	10	1.5		10
2050	14	4.5	1.6	400	so	10	7.2	5.2	4.8	3.3	6	M.	40	Class-C Amp. (Telephony)	350	-144	35	10	1.7		7.1
	15	7.0	1.18	450	60	15	8.0	6.0	8.9	3.0	-	M.	40	Class-C Amp.-Oscillator	450	-100	65	15	3.2		19
2 C 25	15	7.0	1.18	450	60	15	8.0	6.0	8.9	3.0	-	M.	40	Class-C Amp. (Telephony)	350	-100	50	12	2.2		12
	15	7.5	1.25	450	65	15	8.0	4.1	7.0	3.0	8	M.	40	Class-C Amp.-Oscillator	450	- 100	65	15	3.2		19
10%	15	7.5	1.25	450	65	15	8.0	4.1	7.0	3.0	8	m.	40	Class-C Amp. (Telephony)	350	-100	50	12	2.2		12
		2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0	6			Class-C Amp.-Oscillotor	450	-140	30	5.0	1.0		7.5
443	15	2.5	2.5	450	40	7.5	7.7	4.0	4.5	4.0	6	M.	SA	Class-C Amp. (Telephony)	350	-150	30	7.0	1.6		5.0
WK59\%	15	6.3	1.0	500	90	25	25	5.0	9.0	1.0	-	M.	T-4D	Class-C Amp.-Oscillator	500	- 60	90	14	1.3		32
	15	6.3	2.6	450	90	25	9.6	1.8	2.6	1.0	175	0.	$2 T$	Class-C Amp. (Telegraphy)	450	-140	90	20	5.2	-	26
HY75A	15	6.3	2.6	450	90	25	9.6	1.8	2.6	1.0	175	0.	$2 T$	Class-C Amp. (Telephony)	400	-140	90	20	5.2		21
	15	6.3	2.5	450	80	20	10	1.8	3.8	1.0	60	-	$2 T$	Class-C Amp.-Oscillator	450	- 50	80	12			21^{2}
HY75	15	6.3	2.5	450	80	20	10	1.8	3.8	1.0	60	O.	27	Closs -C Amp. (Telephony)	450	-60	80	12			16^{2}
														Closs-C Amp. (Telography)	450	-115	55	15	3.3		13
1602 ${ }^{\text {² }}$	15	7.5	1.25	450	80	15	8.0	4.0	7.0	3.0	6	M.	4D	Class-C Amp. (Telephony)	350	-135	45	15	3.5		8.0
														Class-B Amp. Audio ${ }^{1}$	425	- 50	110^{8}	260,	$2.5{ }^{8}$	8000	25
	15	7.5	1.25	450	60	20	30	4.0	7.0	3.0	6		4D	Class-C Amp. (Telography)	450	- 34	50	15	1.8		15
41			1.25	450	60					3.0		m.	4 D	Class-C Amp. (Telephony)	350	- 47	50	15	2.0		11
														Class-C Amp. (Telegraphy)	450	-100	65	15	3.2	-	19
10^{3} RK101	15	7.5	1.25	450	65	15	8.0	3.0	8.0	4.0	60	M.	40	Closs-C Amp. (Telephony)	350	-100	50	12	2.2	-	12
											60			Class-B Audio ${ }^{7}$	425	- 50	55^{8}	130.	$2.5{ }^{8}$	8000	25
	15	6.3	0.9	150	250	100	40	23	19	3.0	-	M.	T-68	Class-C Oscillator	110		80	8.0	2.1		3.5
\$K100	15	6.3	0.9	150	250	100	40	23	19	3.0	-	m.	1.68	Class-C Amplifier	110	-	185	40	2.1		12
TUF-20	20	6.3	2.75	750	75	20	10	1.8	3.6	0.095	250	0.	$2 T$	Closs-C Amp. -Oscillotor	750	-150	75	20	1.5/2.5		40
														Class-C Amp. (Telography)	425	-90	95	20	3.0	-	27
1608.	20	2.5	2.5	425	95	25	20	8.5	9.0	3.0	45	M.	4D	Class-C Amp. (Telephony)	350	- 80	85	20	3.0	-	18
														Class-8 Amp. Audio ${ }^{\text {? }}$	425	-15	$190{ }^{8}$	130 ${ }^{\text {\% }}$	2.2 ${ }^{\text {\% }}$	4800	50
330	20	7.5	1.25	600	70	15	8.0	4.0	7.0	2.2	6	M.	4D	Class-C Amp. (Tolography)	600	-150	65	15	4.0		25
3 c														Class-C Amp. (Tolephony)	500	-190	55	15	4.5	-	18
303-A	20	1.2	4/4.5	350	75	12	8	0.9	1.1	0.6	1400	N.	-	Class-C Amplifier	350	-120	75	12	-		2/2.5
														Class-C Amp. (Telegrophy)	600	-150	65	15	4.0	-	25
c01-A/60t	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Closs-C Amp. (Telephony)	500	-190	55	15	4.5	-	18
														Class-B Amp. Audio ${ }^{7}$	600	- 75	130	320 .	$3.0{ }^{8}$	10000	45
		7.5	1.25	600	70	15	8.0	4.5	60	1.5	60	M.	40	Closs-C Amp. (Talegraphy)	600	-200	70	15	4.0	-	30
WYLOT-A	20	7.5	1.25	600	70	15	8.0	4.5	60	1.5		m.	40	Class-C Amp. (Telephony)	500	-200	60	15	4.5	-	22
				750	85	25	20		5.1	0.7	60			Class-C Amp. (Tolegraphy)	750	-85	85	18	3.6	-	44
120	20	7.5	1.75	750	85	25	20	4.9	5.1	0.7	60	m.	3 G	Class-C Amp. (Talephany)	750	-140	70	15	3.6	-	38
														Closs-C Amp. (Telography)	750	- 40	85	28	3.75	\cdots	44
1220	20	7.5	1,75	750	85	30	62	5.3	5.0	0.6	60	M.	36	Closs-C Amp. (Telephony)	750	-100	70	23	4.8	-	38
														Class-B Amp. Audio ${ }^{\text {? }}$	800	0	40/136	160°	$1.8{ }^{8}$	12000	70
855	20	5.5	4.2	-	二	-	25	1.4	1.15	0.3	600	N.	T-4AF	Closs-C Amp. (Telegraphy)			Character	-ristics si	milar to 2	$25 T$	

table XV-triode transmitting tubes-Continued

Type	Mox. Plate Dissipatian Watts	Cothode		Max. Plote Voltoge	$\begin{aligned} & \text { Max. } \\ & \text { Plate } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	Mox.D.C.GridCurrentMo.	Amp. Factar	Capacifances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Reting:	Base	Sacket Connec tions	Typleal Operation	Pate Voltage	Grid Volfage	Plate Current Ma.		Apprax. Grid Driving Pawer Wolts	$\begin{gathered} \text { Clasis B } \\ \text { P-to-P } \\ \text { CoadRes. } \\ \text { Ohms } \end{gathered}$	Approx. Oulput Power Watts
		Valts	Amp.					$\begin{gathered} \text { Grid } \\ \text { ta } \\ \text { FiII. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plote } \\ \text { to } \\ \text { Fit. } \\ \hline \end{gathered}$											
$\begin{aligned} & 3-25 A 3^{35 T} \\ & 25 \end{aligned}$	25	6.3	3.0	2000	75	25	24	2.7	1.5	0.3	60	M.	3G	Class-C Amp.-Oseillator	2000	-130	63	18	4.0		100
															1500	-95	67	13	2.2	-	75
															1000	- 70	72	9	1.3		47
														Class-B Amp. Audio '	2000	- 80	16/80	270°	$0.7{ }^{8}$	55500	110
$\begin{aligned} & 3.2503 \\ & 246 \end{aligned}$	25	6.3	3.0	2000	75	25	23	$\begin{aligned} & 2.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	150	5.	20	Class-C Amp.-Oscillator	2000	-170	63	17	4.5		100
															1500	-110	67	15	3.1	-	75
															1000	- 80	72	15	2.6		47
														Class-B Audio ${ }^{\text {a }}$	2000	- 85	16/80	290°	$1.1{ }^{8}$	55500	110
$3 C 24$	25	6.3	3.0	2000	75	718	24	1.7	1.6	0.2	60	5.	20	Class-C Amp. (Telegraphy)	2000	-130	63	18	4		100
	17			1600	60									Class-C Amp. (Telephony)	1600	-170	53	11	3.1	-	${ }^{6} 68$
	25			2000	75									Class-A B_{2} (Audio) ${ }^{\text {7 }}$	1250	- 42	24/130	$270{ }^{9}$	3.48	21400	112
$3 \mathrm{C28}$	25	6.3	3.0	2000	75	25	23	2.1	1.8	0.1	100	5.	Fig. 56	Class-C Amp.-Oscillotor	Characteristics same as 24 G						
3 C 34	25	6.3	3.0	2000	75	25	23	2.5	1.7	0.4	60	S.	3G	Closs-C Amp.-Oscillator	Characleristics same as 24 G						
RK11	25	6.3	3.0	750	105	35	20	7.0	7.0	0.9	60	M.	36	Class C Amp. (Talegrophy)	750 ${ }^{50}$-120 \mid		105	21		-	55
														Class-C Amp. (Telephony)			85	24	3.7		38
RK12	25	6.3	3.0	750	105	40	100	7.0	7.0	0.9	60	M.	36	Cless.C Amp. (Telography) Closs-C Amp. (Telephony)	750	-100	105	35	5.2	-	55
															600	-100	85	27	3.8		38
HK24	25	6.3	3.0	2000	75	30	25	2.5	1.7	0.4	60	S.	3 G	Class-C Amp. (Telegraphy)	2000	-140	56	18	4.0	\cdots	90
														Class-C Amp. (Telephony)	1500	-145	50	25	5.5	-	60
HY25	25	7.5	2.25	800	75	25	55	4.2	4.6	1.0	60	M.	3 G	Class-C Amp. (Telegrophy)	750	- 45	75	15	2.0		42
														Class-C Amp. (Telephony)	700	-45	75	17	5.0	-	39
8025	30	6.3	1.92	1000			18	2.7	2.8	0.35	500	M.	4 AO	Class-C Amp. (Grid. Mod.)	1000	-135	50	4	3.5		20
	20				65	20								Class-C Amp. (Telephony)	800	-105	40	10.5	1.4	-	22
	30				80	20								Class-C Amp. (Telegrophy)	1000	- 90	50	14	1.6		35
HY3021	30	6.3	2.25	850	90	25	87	6.0	4.9	1.0	60	M.	480	Class-C Amp.-Oscillator	850	-75	90	25	2.5		58
								6.0	4.8	1.0	60	m.	480	Class-C Amp. (Telophony)	700	-75	90	25	3.5	$\underline{-}$	47
HY312: HY12312:	30	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	3.5	500	150	30	45	5.0	5.5	1.9	60	M.	T-AD	Class-C Amp. (Telegrophy)	500	-45	150	25	2.5		56
									5.5	1.9	60	m.	1-40	Class-C Amp. (Telephony)	400	-100	150	30	3.5		45
$\begin{aligned} & \text { 316A } \\ & \mathrm{VT} .191 \end{aligned}$	30	2.0	3.65	450	80	12	6.5	1.2	1.6	0.8	500	N.	-	Class-C Amp. (Telegraphy)	450	-	80	12	-		7.5
														Class-C Amp. (Telephony)	400		80	12	-	-	6.5
809	30	6.3	2.5	1000	125		50	5.7	6.7	0.9	60	M.	36	Class-C Amp. (Telegraphy)	1000	- 75	100	25	3.8	-	75
						-								Class-C Amp. (Telephony)	750	-60	100	32	4.3	-	55
														Class-B Amp. Audio ${ }^{\text {] }}$	1000	- 9	40/200	155°	$2.7{ }^{8}$	11600	145
1623	30	6.3	2.5	1000	100	25	20	5.7	6.7	0.9	60	M.	36	Class-C Amp.-Oscillator	1000	-90	100	20	3.1	-	75
														Class-C Amp. (Telephony)	750	-125	100	20	4.0		55
														Class-B Amp. Audio	1000	-40	30/200	230*	$4.2{ }^{8}$	12000	145
53A	35	5.0	12.5	15000	-	-	35	3.6	1.9	0.4	-	N.	T.48	Oscillatar of 300 Mc .	Approximataly 50 wotts autput						
RK301	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M.	2 D	Class-C Amp. (Telegraphy)	1250	-180	90	18	5.2	-	85
														Class-C Amp. (Telephony)	1000	-200	80	15	4.5	-	60
														Class-C Amp. (Telegraphy)	1250	-175	70	15	4.0		65
800	35	7.5	3.25	1250	80	25	15	2.75	2.5	2.75	60	M.	20	Class-C Amp. (Telephony)	1000	-200	70	15	4.0	-	50
														Class-8 Amp. Audio	1250	- 70	30/130	300 *	$3.4{ }^{8}$	21000	106
														Class-C Amp.-Oscillator	1000	-65	50	15	1.7	--	35
16281	40	3.5	3.25	1000	60	15	23	2.0	2.0	0.4	500	N.	T-48B	Class-C Amp. (Telephony)	800	-100	40	11	1.6	-	22
														Grid-Modulaied Amp.	1000	-120	50	3.5	5.0	-	20
														Class-C Amp.-Oselllator	1000	- 90	50	14	1.6	-	35
Gl-8012-A	40	6.3	2.0	1000	80	20	18	2.7	$\begin{aligned} & 2.8 \\ & 2.5 \end{aligned}$	0.4	500	N.	T-48B	Class-C Amp. (Telephony)	800	-105	40	10.5	1.4	-	22
														Grid-Modulated Amp.	1000	-135	50	4.0	3.5	-	20

table XV --triode transmitting tubes-Continuad

Type	Max. Plate Dissi- pation Watts	Cathode		Max.Plata Voltage		Mox. D.C. Grid Current Ma.	Amp. Factor	$\begin{gathered} \text { Intervlectrode } \\ \text { Copacitonces (} \mu \mu \mathrm{fd} .) \end{gathered}$			Max. Freq. Mc. Full Rating:	Base	Socket Connec: tions	Typical Operation	Plote Volloge	Grid Voltag*	Plole Current Ma.	$\begin{gathered} \text { D.c. } \\ \text { Grid } \\ \text { Current } \\ \text { Mo. } \end{gathered}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P.lo. } \\ \text { Lood Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power Watts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { io } \\ \text { Fil. } \end{gathered}$		$\begin{array}{c\|} \hline \text { Plote } \\ \text { to } \\ \text { Fil. } \end{array}$											
														Class-C Amp. (Telegraphy)	1250	- 160	100	12	2.8		95
RK181	40	7.5	3.0	1250	100	40	18	6.0	4.8	1.8	60	m.	36	Class-C Amp. (Tolephony)	1000	-160	80	13	3.1	-	64
														Class-C Amp. (Telegraphy)	1250	- 80	100	30	3.0	-	90
RK31	40	7.5	3.0	1250	100	35	170	7.0	1.0	2.0	30	M.	36	Class-C Amp. (Telephony)	1000	- 80	100	28	3.5		70
HY402	40	7.5	2.25	1000	125	25	25	6.1	5.6	1.0	60	M.	36	Class-C Amp. (Telegraphy)	1000	- 90	125	20	5.0		94
														Class-C Amp. (Tolephony)	850	-90	125	25	5.0	-	82
														Grid-Modulated Amp.	1000		125				20
HY40Z ${ }^{1}$	40	7.5	2.6	1000	125	30	80	6.2	6.3	0.8	60	M.	3G	Class-C Amp. (Telegraphy)	1000	- 27	125	25	5.0	-	94
														Class-C Amp. (Telephony)	850	- 30	100	30	7.0	-	82
														Grid-Modulated Amp.	1000	-	60		-		20
T40	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8	60	M.	36	Class-C Amp.-Oscillator	1500	-140	150	28	9.0	-	158
			2.5	1500	150	40	25	4.5	4.8	0.6	60		36	Class-C Amp. (Telephony)	1250	-115	115	20	5.25	-	104
T240	40	7.5	2.5	1500	150	45	62	4.8	5.0	0.8	60	M.	3G	Class-C Amp.-Oscillator	1500	- 90	150	38	10	-	165
														Class-C Amp. (Telephony)	1250	-100	125	30	7.5	-	116
														Class-B Amp. Audio ${ }^{\text {? }}$	1500	- 9	$250{ }^{8}$	285 ${ }^{\text {\% }}$	$6.0{ }^{6}$	12000	250
HY57	40	6.3	2.25	850	110	25	50	4.9	5.1	1.7	60	M.	$3 G$	Class-C Amp. (Telegraphy)	850	-48	110	15	2.5		70
														Class-C Amp. (Telephony)	700	-45	90	17	5.0		47
														Grid-Modulated Amp.	850		70			-	20
7561	40	7.5	2.0	850	110	25	8.0	3.0	7.0	2.7	-	M.	4 D	Class-C Amplifer	850	-	110	25	-	-	-
								4.9	9.9	2.2	15	M.	4D	Class-C Amplifier	750	-180	110	18	7.0	-	55
8301	40	10	2.15	750	110	18	8.0	4.9	9.9	2.2	15	M.	40	Grid-Modulated Amp.	1000	-200	50	2.0	3.0	-	15
$\begin{aligned} & \text { 3-50A4 } \\ & 35 T \\ & 3-50 D 4 \\ & \text { 35TG } \\ & \hline \end{aligned}$	50	5.0	4.0	2000	150	50	39	$\begin{aligned} & 4.1 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	M. M.	$\begin{aligned} & \text { 3G } \\ & \text { 2D } \end{aligned}$	Class-C Amp. (Telegraphy)	2000	-135	125	45	13		200
														Class-C Amp. (Telephony)	1500	-150	90	40	11		105
														Class-B Amp. Audio ${ }^{\text {a }}$	2000	- 40	4/167	255 ${ }^{\text {9 }}$	$4.0{ }^{8}$	27500	235
8010-R	50	6.3	2.4	1350	150	20	30	2.3	1.5	0.07	350	N.		Class-C Amplifer	-	-	-	-	-	-	-
		7.5	3.25	1250	100	25	11	2.5	3.4		100			Class-C Amp. (Telography)	1250	-225	100	14	4.8		90
RK32 ${ }^{2}$	50	7.5	3.25	1250	100	25	11	2.5	3.4	0.7	100	M.	20	Class-C Amp. (Telephony)	1000	-310	100	21	8.7		70
RK351	50	7.5	4.0	1500	125	20	9.0	3.5	2.7	0.4	60	M.	2D	Class-C Amp. (Telography)	1500	-250	115	15	5.0	-	120
														Class-C Amp. (Telephony)	1250	-250	100	14	4.6	-	93
														Grid-Modulated Amp.	1500	-180	37	-	2.0	-	25
RK37	50	7.5	4.0	1500	125	35	28	3.5	3.2	0.2	60	M.	2 D	Class-C Amp. (Telegraphy)	1500	-130	115	30	7.0	-	122
														Class-C Amp. (Tolephony)	1250	-150	100	23	5.6	-	90
														Grid-Moduloted Amp.	1500	- 50	50	-	2.4	-	26
$\begin{aligned} & \text { 3.50G2 } \\ & \text { UH50 } \end{aligned}$	50	7.5	3.25	1250	125	25	10.6	2.2	2.6	0.3	60	M.	20	Class-C Amp. (Telography)	1250	-225	125	20	7.5	-	115
														Class-C Amp. (Telephony)	1250	-325	125	20	10	-	115
														Grid-Modulated Amp.	1250	-200	60	2.0	3.0	-	25
UH51'	50	5.0	6.5	2000	175	25	10.6	2.2	2.3	0.3	60	m.	2D	Class-C Amp. (Telegraphy)	2000	-500	150	20	15		225
														Class-C Amp. (Telephony)	1500	-400	165	20	15	-	200
														Grid-Modulated Amp.	1500	-400	85	2.0	8.0	-	65
HK54	50	5.0	5.0	3000	150	30	27	1.9	1.9	0.2	100	M.	20	Class-C Amp. (Telegraphy)	3000	-290	100	25	10	-	250
														Class-C Amp. (Telephony)	2500	-250	100	20	8.0	-	210
														Class-B Amp. Audio?	2500	-85	20/150	360^{9}	5.0	40000	275
HK154 ${ }^{1}$	50	5.0	6.5	1500										Clasb-C Amp. (Telegraphy)	1500	-590	167	20	15		200
					175	30	6.7	4.3	5.9	1.1	60	M.	2D	Class-C Amp. (Telophony)	1250	-460	170	20	12	-	162
														Grid-Modulated Amp.	1500	-450	52	-	5.0	-	28
														Class-C Amp.-Oscillator	2000	-150	125	25	6.0	-	200
HK158	50	12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	M.	2D	Class-C Amp. (Telephony)	2000	-140	105	25	5.0	-	170

table xv-triode transmitting tubes-Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Voltoge		Max. D.C. Grid Current Ma.	Amp. Factor	InterelectrodeCapacitances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Mc. Full Ratings	Baso	Socket Connes. tions	Typical Operation	Plato Voltage	Grid Voltage	Plate Current Ma.	D.C. Grid Current Ma.	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpul Power Walts
		Volis	Amp.					$\begin{gathered} \text { Grid } \\ \text { Po } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { FiI. } \end{aligned}$											
WE304A ${ }^{1}$	50	7.5	3.25	1250	100	25	11	2.0	2.5	0.7	100		20	Class-C Amp. (Telegraphy)	1250	-200	100			-	85
	so	7.5	3.25	1250	100	25	11	2.0	2.5	0.7	100	M.	20	Class-C Amp. (Telephony)	1000	-180	100			-	65
356A	50	5.0	5.0	1500	120	35	50	2.25	2.75	1.0	60	N.	T.4BD	Class-C Amp. (Telegraphy)	1500	- 60	100				100
356A	so	5.0	5.0	1500	120	35	so	2.25	2.75	1.0	60	N.	1.480	Class-C Amp. (Telephony)	1250	- 100	100	35			85
808	50	7.5	4.0	1500	150	35	47	5.3	2.8	0.15	30	M.	20	Class-C Amp. (Telegraphy)	1500	-200	125	30	9.5		140
														Class-C Amp. (Telephony)	1250	-225	100	32	10.5		105
														Class-B Amp. Audio ${ }^{7}$	1500	- 25	30/190	2209	4.8 \%	18300	185
834	50	7.5	3.1	1250	100	20	10.5	2.2	2.6	0.6	100	M.	20	Closs-C Amp. (Telegraphy)	1250	-225	90	15	4.5		75
-34	so	2.5	3.1	125	100	20	10.5	2.2	2.6	0.6	100	m.	20	Class-C Amp. (Telephany)	1000	-310	90	17.5	6.5	-	58
$41 A^{1}$	50	10	2.0	1250	150	30	14.6	3.5	9.0	2.5	-	M.	3 G	Closs-C A mplifier							85
6415W	50	10	2.0	1000	150	30	14.6		9.0			M.	3 G	Class-C Amplifier							-
T55	55	7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-170	150	18	6.0		170
								5.0	3.9	1.2	60	m.	36	Class-C Amp. (Telephony)	1500	-195	125	15	5.0		145
811	55	6.3	4.0	1500	150	50	160	5.5	5.5	0.6	60	M.	3 G	Class-C Amp. (Telography)	1500	-113	150	35	8.0	ー-	170
														Closs-C Amp. (Telephony)	1250	-125	125	50	11		120
														Class-B Amp. Audio ${ }^{\text { }}$	1500	- 9	20/200	150\%	3.08	17600	220
812	55	6.3	4.0	1500	150	35	29	5.3	5.3	0.8	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-175	150	25	6.5	-	170
														Class-C Amp. (Telephony)	1250	-125	125	25	6.0		120
														Class-B Amp. Audio ${ }^{\text {\% }}$	1500	- 45	50/200	2329	4.78	18000	220
ak5 5	60	7.5	3.75	1500	150	40	20	6.0	6.0	2.5	60	M.	3 G	Class-C Amp. (Telegraphy)	1500	-250	150	31	10		170
														Class-C Amp. (Telephony)	1250	-200	105	17	4.5	-	96
														Grid-Modulated Amp.	1500	-130	60	0.4	2.3	-	128
RK52	60	7.5	3.75	1500	130	50	170	6.6	12	2.2	60	M.	36	Closs-C Amp. (Telagrophy)	1500	-120	130	40	7.0	-	133
														Class-C Amp. (Telephony)	1250	-120	115	47	8.5		102
														Closs-B Amp. Audio ${ }^{\text {l }}$	1250	0	40/300	180^{9}	7.54	10000	250
T. 60	60	10	2.5	1600	150	50	20	5.5	5.2	2.5	60	M.	20	Class-C Amp.-Oscillotor	1500	-150	150	50	9.0		100
326	55	7.5	4.0	1000	140	40	31	3.0	2.9	1.1	250	N.	780	Class-C Amp.-Oscillator	1000	-70	130	35	5.8		90
														Class-C Amp. (Telephony)	1000	-160	95	40	11.5	-	70
														Grid-Modulated Amp.	1000	-125	65	9.5	8.2	-	25
$\begin{array}{r} 8308 \\ 9308 \end{array}$	60	10	2.0	1000	150	30	25	5.0	11	1.8	15	M.	36	Class.C Amp.-Oscillotor	1000	- 110	140	30	7.0	-	90
														Class-C Amp. (Telephony)	800	-150	95	20	5.0	-	50
														Class-B Amp. Audio ${ }^{\text {\% }}$	1000	- 35	20/280	270°	$6.0{ }^{\circ}$	7600	175
311.A	65	6.3	4.0	1500	175	50	160	5.9	5.6	0.7	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-70	173	40	7.1		200
														Class-C Amp. (Talephony)	1250	-120	140	45	10.0	-	135
														Class-B Amp. Audio ${ }^{7}$	1500	-4.5	32/313	170	$4.4{ }^{\text { }}$	12400	340
812.A	65	6.3	4.0	1500	175	35	29	5.4	5.5	0.77	60	M.	36	Class-C Amp. (Telegraphy)	1500	-120	173	30	6.5	-	190
														Closs-C Amp. (Telephony)	1250	-115	140	35	7.6	-	130
														Closs-B Audio ${ }^{\text {? }}$	1500	- 48	28/310	270.	5.0	13200	340
HYSIA: NYS1B	65	7.5	$\begin{aligned} & 3.5 \\ & 2.25 \end{aligned}$	1000	175	25	25	6.5	7.0	1.1	60	M.	3G	Closs-C Amp. (Telegraphy)	1000	-75	175	20	7.5	-	131
														Class-C Amp. (Talephony)	1000	-67.5	130	15	7.5	-	104
														Grid-Moduloted Amp.	1000	-	100	-	-	-	33
MYSIZ1	65	7.5	3.5	1000										Closs-C Amp. (Telegraphy)	1000	-22.5	175	35	10	-	131
					175	35	85	7.9	7.2	0.9	60	M.	480	Class-C Amp. (Telephony)	1000	-30	150	35	10	-	104
														Grid-Modulated Amp.	1000	-	100	-	-	-	33
														Closs.C Amp. (Telegrophy)	1500	-106	175	60	12	\square	200
5514	65	7.5	3.0	1500	175	60	145	7.8	7.9	1.0	60	M.	480	Class-C Amp. (Telephony)	1250	- 84	142	60	10	-	135
														Class-B Audio	1500	-4.5	$350{ }^{8}$	888	6.5 \%	10500	400

TABLE XV-TRIODE TRANSMITTING TUBES-Continued

Typ¢	Max. Plate Disslpallion Watts	Cathode		Max. Plate Volfage	Max.PlateCurrentMa.	Max.D.C.GrldCurrentMa.	Amp. Factor	$\begin{aligned} & \text { Inforelectrode } \\ & \text { Capacitances (} \mu \mu \mathrm{f} . \text {.) } \end{aligned}$			Max. Freq. Mc. Full Ratings	Base	Socket Connections	Typical Operation	Plate Voliage	Grid Vollage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watis	$\begin{gathered} \text { Class } 8 \\ \text { P-to-P } \\ \text { Loud Res. } \\ \text { Ohms } \end{gathered}$	Approx. Outpur Watts
		Volis	Amp.					$\begin{aligned} & \text { Grid } \\ & \text { Io } \\ & \text { Fil. } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate 10 Fil.											
UH35 ${ }^{1}$	70	5.0	4.0	1500	150	35	30	1.4	1.6	0.2	60	M.	36	Class-C Amp. (Telegraphy)	1500	-170	150	30	7.0	-	170
														Class-C Amp. (Telephony)	1500	-120	100	30	5.0		120
													3N	Class-C Amp. (Telography)	1500	-215	130	6.0	3.0	-	140
V70B	70	10	2.5	1500	140	25	14	5.0	9.0	2.3	-	M.	3G	Class-C Amp. (Talephany)	1250	-250	130	6.0	3.0	-	120
						20	25	5.0			-	J.	3 N	Class-C Amp. (Tolography)	1000	- 110	140	30	7.0	-	90
V70C	70	10	2.5	1500	140	20	25	5.0	9.5	2.0	-	M.		Class-C Amp. (Telephony)	800	-150	95	20	5.0	-	50
$50{ }^{1}$	75	5.0	6.0	3000	100	30	12	2.0	2.0	0.4	-	M.	2D	Class-C Amplifier	3000	-600	100	25	-	-	250
$\begin{aligned} & 3.75 A 3 \\ & 75 \mathrm{TH} \end{aligned}$	75	5.0	6.25	3000	225	40	20	2.7	2.3	0.3	40	m.	20	Class-C Amp. (Telegraphy)	2000	-200	150	32	10		225
														Class-B Amp. Audio?	2000	- 90	50/225	350°	$3{ }^{8}$	19300	300
$\begin{aligned} & 3.75 A 2 \\ & 757 \mathrm{TL} \end{aligned}$													2D	Class-C Amp. (Tolography)	2000	-300	150	21	8		225
						35	12	2.6	2.4	0.4				Class-B Amp. Audio?	2000	-160	50/250	$535{ }^{\circ}$	58	18000	350
HF-60	75	10	2.5	1600	160		28	5.4	5.2	1.5	30	M.	2D	Class-C Amp. (Tolography)	1600	-190	158	12	3.5		200
						-								Class-C Amp. (Telephony)	1250	-190	113	8	2.5	\cdots	110
														Class-8 Amp. Audio?	1600	- 75	50/248	310°	3.0	13800	262
														Class-C Amp. (Telegraphy)	1500	-95	158	31	6.0	-	190
28.60	75	10	2.5	1600	160	40	80	6.1	5.8	1.85	30	M.	2D	Class-8 Amp. Audio?	1500	- 9	30/305	$208{ }^{\circ}$	12.5	11200	320
111H	75	10	2.5	1500	160	30	23	5.0	4.6	2.9	30	M.	2D	Class-C Amp. (Telography)	1500	-200	150	18	6.0	-	170
														Class-C Amp. (Telephony)	1250	-250	110	21	8.0	-	105
														Class-8 Amp. Audio ${ }^{7}$	1750	-62	40/270	$324{ }^{\circ}$	9.0	16000	350
HF75	75	10	3.25	2000	120	-	12.5	-	2.0	-	75	M.	2D	Class-C Oscillator-Amp.	2000	-	120	-	-	-	150
	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	60		2D	Closs-C Amp.-Oseillator	2000	-175	150	37	12.7	-	225
TW75	75	7.5	4.15	2000	175	60	20	3.35	1.5	0.7	∞	m.	2 D	Class-C Amp. (Telephony)	2000	-260	125	32	13.2	-	198
$\begin{aligned} & \text { T-100 } \\ & \text { HF100 } \end{aligned}$	75	10	2.5	1:00	150	30	23	4.0	4.5	2.6	30	M.	2D	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0		170
														Class-C Amp. (Telephony)	1250	-250	110	21	8.0	-	105
														Grid-Modulated Amp.	1500	-280	72	1.5	6.0	-	42
														Class-B Amp. Audio'	1750	- 62	40/270	$324{ }^{\circ}$	$9.0{ }^{8}$	16000	350
UE-100	75	10	2.5	1750	150	30	23	3.5	4.5	1.4	30	M.	2D	Class-C Amp. (Telegraphy)	1500	-200	150	18	6.0		170
														Class-C Amp. (Telephony)	1250	-250	120	21	8.0	\longrightarrow	105
														Class-B Audio?	1750	- 62	$540{ }^{8}$		9.0	18000	350
28120	75	10	2.0	1250	160	40	90	5.3	5.2	3.2	30	J.	$4 E$	Class-C Amp. (Telography)	1250	-135	160	23	5.5	-	145
														Class-C Amp. (Tolephony)	1000	-150	120	21	5.0	-	95
														Grid-Modulated Amp.	1250	-	95	8.0	1.5	-	45
														Closs-B Amp. Audio ${ }^{\text {a }}$	1500	- 9	60/296	$196{ }^{\circ}$	5.0^{8}	11200	300
3278	75	10.5	10.6	-	-	\cdots	30	3.4	2.45	0.3	-	N.	T-4AD	-	-	\square	-	-	-	-	-
	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	6	J.	$4 E$	Class-C Amp. (Telegraphy)	1250	-175	150	-	-		130
242A	85	10	3.25	1250	150	50	12.5	6.5	13	4.0	6	J.	$4 E$	Class-C Amp. (Telephony)	1000	-160	150	50	-	-	100
284D	85	10	3.25	1250	150	100	4.8	6.0	8.3	5.6		J.	$4 E$	Class-C Amp. (Tolography)	1250	-500	150		-	-	125
											-			Class-C Amp. (Telophony)	1000	-450	150	50	-	-	100
														Class-B Amp. Audio?	1250	-250	30/200	-	\square	11200	140
812-H	85	6.3	4.0	1750	200	45		5.3	5.3	0.8	30	M.	36	Class -C Amp. (Telography)	1750	-175	170	26	6.5	-	225
															1250	-125	125	25	5.0	-	116
							-							Class-C Amp. (Telephony)	1500	-125	165	21	6.0	-	180
															1250	-125	125	25	6.0	-	120
														Class-B Amp. Audio ${ }^{7}$	1500	- 46	42/200		-	18000	225
8005	85	10	3.25	1500	200	45	20	6.4	5.0	1.0	60	M.	36	Class-C Amp.-Telegraphy	1500	-130	200	32	7.5	-	220
														Class-C Amp. (Telophony)	1250	-195	190	28	9.0	-	170
														Class-8 Amp. Audio ${ }^{\text {] }}$	1500	- 70	40/310	310°	4.0	10000	300

table xv-triode transmitting tubes-Continued

Type	Max. Plate Dissipetion Watts	Cathode		Max. Plate Volioge		Max. D.C. Grid Current Mo.	Amp. Fector	$\begin{gathered} \text { Intoreloctrode } \\ \text { Copocitances (} \mu \mu \mathrm{fd} \text {.) } \end{gathered}$			Max.Frea.Me.FaulRetings	Base	Sockel Connoctions	Typical Operation	Plate Voliage	Grid Vollage	Plate Current Mo.	$\left\lvert\, \begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Mo. } \end{gathered}\right.$	Approx. Grid Oriving Power Wafts	$\begin{gathered} \text { Class } 8 \\ \text { P-to-P } \\ \text { Coad Ress. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plafe	Plate 10 Fil.											
V.70.0	85	7.5	3.25	1750	200	45	-	4.5	4.5	1.7	30	M.	3G	Class-C Amp. (Telegraphy)	1750	-100	170	19	3.9	-	225
															1500	- 90	165	19	3.9		195
														Class-C Amp. (Telephony)	1500	-90	165	19	3.7		185
															1250	-72	127	16	2.6		122
RK36 ${ }^{1}$	100	5.0	8.0	3000	165	35	14	4.5	5.0	1.0	60	m.	20	Closs-C Amp. (Telegraphy)	2000	-360	150	30	15		200
														Closs-C Amp. (Telephony)	2000	-360	150	30	15		200
														Grid-Modulated Amp.	2000	-270	72	1.0	3.5		42
RK381	100	5.0	8.0	3000	165	40		4.6	4.3	0.9	60	M.	20	Class-C Amp. (Telegraphy)	2000	-200	160	30	10		225
							—							Class-C Amp. (Tolophony)	2000	-200	160	30	80		225
														Grid-Modulated Amp.	2000	-150	80	2.0	5.5		60
$\begin{aligned} & 3.100 \mathrm{A4} \\ & 100 \mathrm{TH} \end{aligned}$	100	5.0	6.3	3000	225	60	40	2.9	2.0	0.4	40	M.	20	Class-C Amp. (Tolography)	3000	-200	165	51	18		400
														Class-C Amp. (Tolephany)							
														Grid-Modulated Amp.	3000	-400	70	3.0	7.0	-	
														Class-B Amp. (Audio)?	3000	- 65	40/215	3359	$5.0{ }^{\text {8 }}$	31000	650
$\begin{aligned} & 3.100 \mathrm{~A} 2 \\ & 100 \mathrm{TL} \end{aligned}$	100	5.0	0.3	3000	225	50	14	2.3	2.0	0.4	40	M.	20	Class-C Amp. (Telegraphy)	3000	-400	165	30	20	\square	400
														Class-C Amp. (Telephony)							
														Grid-Modulatod Amp.	3000	-560	60	2.0	7.0		90
														Class-8 Amp. (Audio) ${ }^{\text {] }}$	3000	-185	40/215	640°	$6.0{ }^{\text {\% }}$	30000	450
	100												T-48	Class-C Amp. (Tolegraphy)	2000	-340	210	67	25	$\underline{-}$	315
V1127a	100	5.0	10.4	3000	-	-	15.5	2.7	2.3	0.35	850	N.	$1-48$	Class-B Amp. (Audio) ${ }^{\text {7 }}$	1500	-125	242	44	7.3	3000	200
227 A	100	10.5	10.7			-	31	3.0	2.2	0.30		N.	T-48	Oseillater af 200 Mc .	-	-	-	-	-	-	-
327 A	100	10.5	10.7	-	-	-	31	3.4	2.3	0.35		N.	T-4AO	Oscillater of 200 Mc .		-	-	-	-		-
HK254	100	5.0	7.5	4000	200	40	25	3.3	3.4	1.1	50	J.	2N	Class-C Amp. (Telagraphy)	4000	-380	120	35	20		475
														Class-C Amp. (Talephony)	3000	-290	135	40	23		320
														Grid-Modulated Amp.	3000	-	51	3.0	4.0	-	58
														Closs-B Amp. (Audio)'	3000	-100	40/240	456 \%	$7.0{ }^{8}$	30000	520
RK58	100	10	3.25	1250	175	70	-	8.5	6.5	10.5	-		3N	Class-C Amp. (Telography)	1250	-90	150	30	6.0	-	130
		10	3.25	1250	175	70	-	8.5	6.5	10.5	,	J.	3 N	Closs-C Amp. (Telophony)	1000	-135	150	50	16		100
HF120	100	10	3.25	1250	175	50	12	5.5	12.5	3.5	15	J.	$4 F$	Class-C Amp.-Oseillator	1250	300	166	8	3.5	\cdots	148
HF125	100	10	3.25	1500	175		25		11.5	-	30	J.	-	Closs-C Amp.-Oselllator	1500		175	-	-	\cdots	200
HF140	100	10	3.25	1250	175		12	5.5	13.0	4.5	15	d.	4F	Class-C Amp.-Oscillator	1250	-300	166	8	3.5	-	148
$\begin{aligned} & 203 A \\ & 303 A \end{aligned}$	100	10	3.25	1250	175	80	25	8.5	14.5	5.5	15	J.	$4 E$	Closs-C Amp. (Tolography)	1250	-125	150	25	7.0	-	130
														Class-C Amp. (Tolophony)	1000	-135	150	50	14	-	100
														Class-8 Amp. (Audio)'	1250	- 45	26/320	330 9	11^{8}	9000	260
203H	100	10	3.25	1500	175	60	25	6.5	11.5	1.5	15	J.	3N	Class-C Amp. (Telography)	1500	-200	170	12	3.8	-	200
														Class-C Amp. (Talephony)	1250	-160	167	19	5.0	-	160
														Class-B Amp. (Audio) ${ }^{7}$	1500	- 52	30/320	304*	$5.5{ }^{8}$	11000	340
$\begin{aligned} & 211 \\ & 311 \\ & 8351 \end{aligned}$	100	10	3.25	1250	175	50	12	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.25 \\ \hline \end{gathered}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	15	J.	$4 E$	Class-C Amp. (Telegraphy)	1250	-225	150	18	7.0	\cdots	130
														Class-C Amp. (Tolophony)	1000	-260	150	35	14	-	100
														Class-B Amp. (Audia) ${ }^{\text {] }}$	1250	-100	20/320	410°	$8.0{ }^{8}$	9000	260
242 B	100	10	3.25	1250	150	50	12.5	7.0	13.6	6.0	6	d.	$4 E$	Class-C Amp. (Tutography)	1250	-175	150	-	-	-	130
3428														Class-C Ampi (Tolepheny)	1000	-160	150	50	\square	-	100
$24 \dot{2 C}$	190	10												Class-C Amp. (Talography)	1250	-175	150	-	\longrightarrow	-	130
			3.25	1250	150	50	12.5	6.1	13.0	4.7	6	J.	$4 E$	Class-C Amp. (Telopheny)	1000	-160	150	50	-	-	100
														Class-B Amp. (Audio) ${ }^{\text {7 }}$	1250	-80	25/150	-	258	7600	200
														Class-C Amp. (Tolegraphy)	1250	-175	125		-	-	100
$\begin{aligned} & 261 A \\ & 361 A \end{aligned}$	100	10	3.25	1250	150	50	12	6.5	9.0	4.0	30	d.	$4 E$	Closs-C Amp. (Tolephony)	1000	-160	150	50	\square	-	100
														Class-B Amp. (Audlo) ${ }^{\text { }}$	1250	-90	20/150	-	25 \%	7200	200

TABLE XV-TRIODE TRANSMITTING TUBES-Continued

table XV-triode transmitting tubes-Continued

Type	Max. Plate Dissipation Wolfs	Cathode		Max. Plafe Voltage		Max. D.C. Grid Current Mo.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{fl}$.)			Max. Freq. Mc. Fuld Rotings	Dase	Sockel Connec tions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Mo.	$\begin{gathered} \text { D.C. } \\ \text { Girid } \\ \text { Current } \\ \text { Mo. } \end{gathered}$	Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { LoodRes. } \\ \text { Ohms } \end{gathered}$	Approx. Oulpui Power Walts
		Volis	Amp.					Grid to Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plote } \end{aligned}$	$\begin{gathered} \text { Plole } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
F.127.A	200	10	4.0	3000	325	70	38	13	4	13	-	J	Fig. 26	Class-C Amp. (Telegrophy)	3000	-250	250	47	18		600
														Closs-C Amp. (Telephony)	2500	-300	200	58	25.2	一一	420
														Closs-B Amp. (Audio) ${ }^{\text {3 }}$	2800	- 75	20/400	$175{ }^{9}$	$6.65^{\text {8 }}$	16600	820
$\begin{aligned} & 322 \\ & 3225 \end{aligned}$	200	10	4.0	2500	300	60	30	8.5	13.5	2.1	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	J.	$\begin{aligned} & 3 \mathrm{~N} \\ & \mathbf{2 N} \end{aligned}$	Closs-C Amp. (Telegraphy)	2500	-190	300	51	17		600
														Class-C Amp. (Telephony)	2000	-75	250	43	13.7		405
														Class-8 Amp. (Audio) ${ }^{\text {a }}$	3000	- 80	450 *	$362{ }^{9}$	8.0^{8}	16000	1000
$4 \mathrm{C32}$	200	10	4.5	3000	300	60	30	5.5	5.8	1.1	60	J.	2N	Class-C Amp.-Oscillotor	2000	-165	275	20	10		400
														Closs-C Amp. (Telephony)	2000	-200	250	20	15		375
$\begin{aligned} & 392 / 16 \\ & 3-200 A 3 \end{aligned}$	200	10	5.0	3500	250	25^{13}	25	3.6	3.3	0.29	150	N.	Fig. 52	Class-C Amp. (Telegrophy)	3500	-270	228	30	15	-	600
	130			2600	200	25^{13}								Class-C Amp. (Telephony)	2500	-300	200	35	19		375
	200			3500	250	2513								Closs-B Amp. (Audio)	2000	- 50	120/500	520^{-1}	20*	8500	600
$\begin{aligned} & \text { 4C34 } \\ & H F 300 \end{aligned}$	200	11-12	4.0	3000	275	60	23	6.0	6.5	1.4	6020	J.	2N	Closs-C Amp. (Telegrophy)	3000	-400	250	28	16		600
														Closs-C Amp. (Telephony)	2000	-300	250	36	17		385
														Closs-B Amp. (Audio) ${ }^{\text {? }}$	3000	-115	60/360	$450{ }^{4}$	13^{8}	20000	780
1814 HV12	200	10	4.0	2500	200	63	12	8.5	12.8	1.7	30	J	3 N	Class-C Amp. (Telegrophy)	2500	-240	300	30	10		575
														Closs-C Amp. (Telephony)	2000	-370	300	40	20		485
														Class-B Amp. (Audio) ${ }^{\text {? }}$	2000	-160	50/275	$350{ }^{\text {a }}$	$7.0{ }^{\text {b }}$	14400	400
1822 HV27	200	10	4.0	2500	300	60	27	0.5	13.5	2.1	30	J.	3N	Class-C Amp. (Telegraphy)	2500	-175	300	50	15		585
												J.		Closs-C Amp. (Telephony)	2000	-195	250	45	15		400
T. 300	200	11	6.0	3000	300		23	6.0	7.0	1.4				Class-C Amp. (Telegrophy)	3000	-400	250	28	20		600
						-					-	-	-	Closs-C Amp. (Telephony)	2000	-300	250	36	17		385
														Class-B (Audia) ${ }^{\text {3 }}$	2500	-100	60/450		7.58	-	750
006	225	5.0	10	3300	300	50	12.6	6.1	4.2	1.1	30	J.	2N	Class-C Amp. (Telegrophy)	3300	-600	300	40	34		780
														Class-C Amp. (Telephony)	3000	-670	195	27	24	-	460
														Class-B Amp. (Audio) ${ }^{\text {? }}$	3300	-240	80/475	$930{ }^{9}$	35 \%	16000	1120
$\begin{aligned} & \text { 3-250A4 } \\ & \text { 250IH } \end{aligned}$	250	5.0	10.5	4000	350	100	37	5.0	2.9	0.7	40	J.	2N	Class-C Amp. (Telegraphy)	2000	-120	350	100	34		500
														Class-C Amp. (Telephony)	3000	-210	330	75	42		750
														Grid-Madulated Amp.	3000	-160	125	4.5	20		125
														Class-B Amp. (Audio) ${ }^{\text {? }}$	3000	- 65	100/560	$460{ }^{3}$	$24{ }^{\text {a }}$	12250	1150
$\begin{aligned} & 3-250 A 2 \\ & 25012 \end{aligned}$	250	5.0	10.5	4000	350	50	14	3.7	3.1	0.7	40	J.	2N	Class-C Amp. (Telegrophy)	3000	-350	335	45	29		750
														Closs-C Amp. (Telephony)	3000	-350	335	45	29	-	750
														Grid-Modulated Amp.	3000	-450	125	2.0	15	-	125
														Class-B Amp. (Audio) ${ }^{\text {? }}$	3000	-175	100/500	840"	173	13000	1000
Gl159	250	10	9.6	2000	400	100	20	11	17.6	5.0	15	J.		Closs-C Amp.-Oscillotor	2000	-200	400	17	6.0	-	620
													T.4BG	Class-C Amp. (Telephony)	1500	-240	400	23	9.0		450
														Class-B Amp. (Audio) ${ }^{\text {a }}$	2000	-100	30/660	400 *	4.0 -	6880	900
														Class-C Amp.-Oscillator	2000	- 100	400	42	10		620
G1169	250	10	9.6	2000	400	100	85	11.5	19	4.7	15	J.	T-4BG	Class-C Amp. (Telephony)	1500	-100	400	45	10	-	450
														Class-B Amp. (Audio) ${ }^{\text {] }}$	2000	- 18	30/660	$220{ }^{3}$	6.0*	7000	900
														Class-C Amp. (Telegraphy)	2500	-200	250	30	15	-	450
$\begin{aligned} & \text { 204A } \\ & 304 \mathrm{~A} \end{aligned}$	250	11	3.85	2500	275	80	23	12.5	15	2.3	3	N.	T-1A	Class-C Amp. (Telephony)	2000	-250	250	35	20	-	350
														Class-B Amp. (Audio)	3000	- 100	80/372	500\%	18 .	20000	700
															1750	-345	300	-		-	350
30 ± 8	250	14	4.0	2250	325	75	8.0	13.6	17.4	9.3	1.5	N.	T-2A	Class-C Amp. (Telegrophy)	1500	- 300	300	-	-	-	300
														Class-B Amp. (Audio) ${ }^{\text {3 }}$	1750	-215	30/300		35 \%	5200	575
HK454	250	5.0	11	5000	375	85	30	4.6	3.4	1.4	100	J.	2N	Class-C Amp. (Telegraphy)	3500	-275	270	60	28	-	760
MX454-6	250	5.0	11	5000	375	60	12	4.6	3.4	1.4	100	J.	2N	Closs-C Amp. (Telephony)	3500	-450	270	45	30	-	760

TABLE XV-TRIODE TRANSMITTING TUBES-Continued

Type	Mox. Dissipation Watts	Cathode		$\begin{gathered} \text { Max. } \\ \text { Plotte } \\ \text { Vollage } \end{gathered}$	$\begin{aligned} & \text { Max. } \\ & \text { Plate } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	$\begin{gathered} \text { Mox. } \\ \text { O.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Amp.	$\begin{gathered} \text { Interelectrode } \\ \text { Capacitances (} \mu \mu \mathrm{fd} .) \end{gathered}$			Max. Freq. Full Ratings	Base	SocketConnection:	Typical Oparation	$\begin{gathered} \text { Plate } \\ \text { Voltage } \end{gathered}$	GridVoltage	$\begin{aligned} & \text { Plate } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	$\begin{gathered} \text { D.c. } \\ \text { Grid } \\ \text { Current } \\ \text { Mo. } \end{gathered}$		$\begin{gathered} \text { Class } \\ \text { P-to } \\ \text { (aod Res. } \\ \text { Ohms } \end{gathered}$	Approx. Power Wart
		Volts	Amp.					Grid to Fil. Fil.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { 10. } \\ & \text { Fil. } \end{aligned}$											
$\begin{aligned} & 5867 \\ & \text { AX-9901 } \end{aligned}$	250	5.25	14.1	-	-	-	25	7.0	5.3	0.15	100	-	-	Class-C Amplifier	3000	-400	363	80	-	-	950
														Closs-C Amp. (Tolegrophy)	3500	-275	270	60	28		760
2418	275	14	4.0	3000	350	75	16	14.9	18.8	8.6	1.5	N.	$\mathrm{t}_{\text {T-2AA }}$	Class-C Amp. (Tolephony)	3500	-450	270	45	30		760
														Class-B Amp. (Audio) ${ }^{\text {a }}$	2000	-105	40/300		508	8000	650
$300{ }^{1}$	300	8.0	11.5	3500	350	75	16	4.0	4.0	0.6	-	J.	2N	Class-C Amp. (Telography)	2000	-225	300				400
HK304-L	300	5/10	26/13	3000	1000	150	10	12	9.0	0.8		N.	4 BC	Closs-C Amp. (Telephony)	1500	-200	300	75			300
527	300	5.5	135.0				38	19.0	12.0	1.4	200	N.	T-4B	Oscillator at 200 Mc .			pproxima	ataly 250	watts out	tput	
														Class-C Amp. (Telography)	2000	-380	500	75	57	-	720
HK654	300	7.5	15	4000	600	100	22	6.2	5.5	1.5	20	J.	2 N	Class-C Amp. (Telophony)	2000	-365	450	110	70		655
														Grid-Modulated Amp.	3500 1500	- 210	150	15	15		210
3.300 A						170	20	13.5	10.2	0.7	40	N.	48 C	Class-C Amplifer	1500	-125	667	115	25	-	700
304 TH	300	5/10	25/12.5	3000	900									Class-B Amp. (Audio)	3000 1500	-150	134/867	${ }^{420}{ }^{9}$	${ }^{6.0}{ }^{8}$	10200	1400 700
$\begin{aligned} & 3.300 A 2 \\ & 304 \mathrm{TL} \end{aligned}$						150	12	8.5	9.1	0.6	40	N.	4BC	Class-C Amplifine ${ }^{\text {Closs-B Amp. (Audio)? }}$	35000	-260	130/667	${ }^{950}{ }^{9}$	${ }^{3.088}$	10200	1400
														Class-C Amp. (Tologrophy)	2000	-200	475	65	25		740
833 A	350	10	10	3300	500	100	35	12.3	6.3	8.5	30	N.	T-1AB	Class-C Amp. (Teiephony)	2500	-300	335	75	30		635
270A	350	10	4.0	3000	375	75	16	10	21	2.0	7.5	N.	T-1A	Class-C Amp. (Tolegraphy)	3000	-375	350	80		-	700
														Class-C Amp. (Te:ography)	2500	-250	300	20	8.0		560
8491	400	11	5.0	2500	350	125	19	17	33.5	3.0	3	N.	T-1A	Class-C Amp. (Telephony)	2000	-300	300	30	14	-	425
														Class-C Amp. (Telogrophy)	3500	-400	275	40	30	-	590
$831{ }^{1}$	400	11	10	3500	350	75	14.5	3.8	4.0	1.4		N.	t.laA	Class-C Amp. (Tolephony)	3000	-500	200	60	50		360
* Cathode resistor in ohms.				I Discontinued. ${ }^{2}$ Twin triode. Values, except interelement capacities, are for both sections in push-pull. : Outpul at 112 Mc.							4 Grid leok resistor in ohms. ${ }^{3}$ Peak valves. - Per section. © Values ore for two tubes in push-pull.				Max. signal value. Peak a.l. grid-to-grid volts. For single fube. Class-B data in Table I.			2 Forced-air coaling. ${ }^{3}$ Max. grid dissipation in watts. ${ }_{15}^{14}$ Max. cathode current in ma. ${ }^{15}$ Forced-air cooling required.			

table xvi-tetrode and pentode transmitting tubes

Type	Max. Plate Dissi- pation WoHts	Cothode		Max. Plate Voltage	Max. 5creen Voltage	Max. Screen Dissipation Wotls	Interelectrode Capacifances ($\mu \mu \mathrm{fd}$.)			Max. Freq. Me. Fulf Ratings	Base	5ocket Contions	Typical Operation	Plate Voltoge	5 creen Voltage	5up. pressor Volfoge	Grid Volt. age	Plate Current Ma.	5creen Current Ma.	Grid Current Ma.	5treen Resistor Ohms	Approx. Grid Driving Power Watts	Class B P-to-P Laod Ros. Ohms	
		Valls	Amp.				$\begin{gathered} \text { Grid } \\ \text { fo } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \end{aligned}$	$\begin{gathered} \text { Plale } \\ \text { to } \\ \text { Fil. } \end{gathered}$															
3 A 4	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	150	135	0.9	4.8	0.2	4.2	10	B.	788	Class.C Amp. (Telegrophy)	150	135	0	- 26	18.3	6.5	0.13	2300	-	-	1.2
306	4.5	$\begin{aligned} & 2.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.22 \end{aligned}$	180	135	0.9	7.5	0.3	5.5	50	L.	688	Class-C Amp. (Telegraphy)	150	135		- 20	23	6.0	1.0	-	0.25	-	1.4
384	3.0	$\begin{aligned} & 2.5 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 0.165 \\ & 0.33 \end{aligned}$	150	135	-	4.6	0.16	7.6	100	B.	7CY	Class-C Amp.	150	135		- 75	25	-	-	-	-	-	1.25
													Class-C Amp. (Telegraphy)	200	100	-	-22.5	20	4.0	2.0	-	0.1		3.0
HY63 ${ }^{1}$	3.0	1.25	0.225	200	100	0.6	8.0	0.1	8.0	60	0.	T-808	Class-C Amp. (Telephony)	180	100		- 35	15	3.0	2.0		0.2		2.0
6AKG	3.5	6.3	0.15	375	250	1.0	3.6	0.12	4.2	54	B.	78K	Class-C Amp. (Telegraphy)	375	250	-	-100	15	4.0	3.0	--	--		4.0
5A6	5.0	$\begin{array}{r} 2.5 \\ 5.0 \end{array}$	$\begin{aligned} & 0.46 \\ & 0.23 \end{aligned}$	150	150	2	8.5	0.15	9.5	100	B.	91	Class-C Amp.	150	150	0	- 24	40	11	1.2	-	-	-	3.1
5618	5.0	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.46 \end{aligned}$	306	125	2.0	7.0	0.24	5.0	80	B.	7 Cu	Closs-C Amp. (Tolegraphy)	300	75	0	- 45	25	7.0	1.5	32000	0.3	-	5.4

table xVI-tetrode and pentode transmitting tubes-Continued

table XVI-TETRODE and PENTODE TRANSMITTING TUBES—Continued

Type	Max. Plote Dissipation Wets	Cathod		Max. Plale Volt. oge	Max. Screen Volt. -ge	Max. Screen Dissipotion Waths	$\begin{gathered} \text { Inferalectrode } \\ \text { Capocitonces }(\mu \mu \mathrm{fd} .) \end{gathered}$			$\begin{gathered} \text { Max. } \\ \text { Freq. } \\ \text { Mc. } \\ \text { Fuli } \\ \text { Rolings } \end{gathered}$	Base	Sockal Con. nections	Typical Operation	Plate Voll. age	Screen Voltage	SupPressor Volf-age ag	Grid Voltage	Plate Curren Ma.	Screen Curren Ma.	Grid Current Mo.	Screen Resistor Ohms	Approx. Grid Driving Power Watts	$\begin{aligned} & \text { Closs B } \\ & \text { P-to-P } \\ & \text { Load } \\ & \text { Res } \\ & \text { Ohms } \end{aligned}$	Approx. Output Walts
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { FiI. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Plote } \\ \text { to } \\ \text { Fil. } \\ \hline \end{array}$															
2525	15	6.0	0.8	450	250	4.0	8.5	0.15	6.7	125	0.	5BJ	Class-C Amp.-Oscillator	450	250		- 45	75	15	3.0	-	0.4	-	24
													Class-C Amp. (Telephony)	400	200		- 45	60	12	3.0		0.4		16
													Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	450	250		- 30	44/150	10/40	3.0	142*	$0.9{ }^{7}$	6000	40
306 A	15	2.75	2.0	300	300	6.0	13	0.35	13	-	M.	T-5CB	Class-C Amp. (Tolephony)	300	180		- 50	36	15	3.0	8000		-	7.0
307 A													Closs-C Amp. (Telegraphy)	500	250	0	-35	60	13	1.4	20000			20
RK-75	15	5.5	1.0	500	250	6.0	15	0.55	12	-	M.	T-SC	Suppressor-Madulated Amp.	500	200	-50	- 35	40	20	1.5	14000		-	6.0
		6.3	1.6										Class-C Amp. (Telegraphy)	500	200		- 65	72	14	2.6	21000	0.18		26
$832{ }^{3}$	15		0.8	500	250	5.0	7.5	0.05	3.8	200	N.	7BP	Class-C Amp. (Telephony)	425	200		- 60	52	16	2.4	14000	0.15		16
		6.3	1.6							200	N.		Class-C Amp. (Telegraphy)	750	200		- 85	48	15	2.8	36500	0.19		26
33243	15		0.8	50	250	5.0	7.5	0.05	3.8	200	N.	7BP	Class-C Amp. (Telephony)	600	200		- 65	36	16	2.6	25000	0.16		17
2441	15	2.5	2.5		180	3.0	9.5	0.15	75		M		Class-C Amp. (Telegraphy)	500	175		-125	25		5.0	-			9.0
24	15	2.5	2.5	500	180	3.0	9.5	0.15	7.5	-	M.	SAW	Closs-C Amp. (Telephony)	500	150		-100	20		--	-		-	4.0
85	15	75	2.0	750	175	3.0	8.5	0.1	8.0	15	M	T-4C	Class-C Amp. (Telegraphy)	750	125		- 80	40		5.5	-	1.0	-	16
865	15	7.5	2.0	750	175	3.0	8.5	0.1	8.0	15	M.	T-4C	Class-C Amp. (Telephony)	500	125		-120	40		9.0		2.5	-	10
8619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	45	0.	T9H	Class-C Amp. (Telography)	400	300		- 55	75	10.5	5.0	9500	0.36	-	19.5
													Class-C Amp. (Telepheny)	325	285	-	- 50	62	7.5	2.8	5000	0.18		13
													Class-AB2 Amp. (Audio)"	400	300	0	-16.5	75/150	6.5/11.5		77 \%	0.47	6000	36
5516	15	6.0	0.7	600	250	5.0	8.5	0.12	6.5	80	0.	7CL	Class-C Amp. (Telegraphy)	600	250		-60	75	15	5.0		0.5		32
													Class-C Amp. (Telephony)	475	250		- 90	63	10	4.0	22500	0.5	-	22
													Class-AB2 (Audio) ${ }^{\text {a }}$	600	25		-25	36/140	1/24	47	808	0.16	10500	67
														400	250		- 80	80	6	3.5		0.39		20.8
$9905 \text { ? }$	16	6.3	0.68	400	250	5.0	8.5	0.05	3.3	186	0.	Fig. 34	Class-C Amplifier	250	175		-70	80	6.5	4.2		0.26		16.9
354 A	20	5.0	3.25	750	175	5.0	4.6	0.1	9.4		M.	T-4C	Class-C Amplifier	750	175		-90	60		-			\cdots	25
46	21	6.3	0.9	400	300	3.5	10	0.4	12	10	0.	7AC	Class-C Amp.-Oscillator	400	300		-125	100	12	5.0				28
666							11.5	0.9	9.5				Class-C Amp. (Telephony)	325	250		- 70	65	-	9.0	--	0.8	-	11
													Class-C Amp. (Telegraphy)	500	250		- 50	90	9.0	2.0	-	0.25	-	30
clsGX	21	6.3	0.9	500	300	3.5	11	1.5	7.0	-	O.	7AC	Class-C Amp. (Telephony)	325	225		-45	90	9.0	3.0		0.25	-	20
HY6L6. GTX	21	6.3	0.9	500	300	3.5	11	0.5	7.0	60	0.	7 AC	Class-C Amp.-Oscillator	500	250		-50	90	9.0	2.0		0.5	-	30
													Class-C Amp. (Telephony)	400	225		- 45	90	9.0	3.0	16000	0.8	-	20
													Class-C Amp. (Telegraphy)	400	250		- 50	95	8.0	3.0	-	0.2	-	25
T2T	21	6.3	0.9	400	300	3.5	13	0.7	12	30	M.	6 A	Class-C Amp. (Telephony)	350	200		- 45	65	17	5.0	-	0.35	-	14
													Class-C Amp. (Telography)	400	250		- 50	95	8.0	3.0		0.2		25
1049	21	6.3	0.9	400	300	3.5	11.5	1.4	10.6		M.	6A	Class-C Amp. (Telephony)	300	200	-	- 45	60	15	5.0	6700	0.34		12
5881	23	6.3	0.9	400	300	3.0					0.	7 AC	Class-C Amplifier						Same a	as 816				
1614	25	6.3	0.9	450	300	3.5	10	0.4	12.5	80	0.	7 AC	Class-C Amp. (Telegraphy)	450	250		- 45	100	8	2.0	12500	0.15	-	31
													Class-C Amp. (Telephony)	375	250		- 50	93	7.0	2.0	10000	0.15		24.5
													Class-AB1 Amp. (Audio) ${ }^{\text {B }}$	530	340		- 36	60/160	20^{7}	-	$72{ }^{8}$	-	7200	50
RK41:													Class-C Amp. (Telography)	600	300		- 90	93	10	3.0	-	0.38		36
RK39	25	6.3	0.9	600	300	3.5	13	0.2	10	30	M.	saw	Class-C Amp. (Telephony)	475	250		- 50	85	9.0	2.5	25000	0.2		26
MY61	25	63	0.8	600	300	3.5	11	0.2	7.0	60	M.	5AW	Closs-C Amp. (Telegraphy)	600	250		- 50	85	9.0	4.0	39000	0.4		40
													Class-C Amp. (Telephony)	475	250		- 50	100	9.0	3.5	25000	0.2		27
													Class-AB ${ }_{2}$ Amp, (Audio) ${ }^{\text {s }}$	600	300		- 30	$200{ }^{\text { }}$	10^{7}	2.5	-	$0.1{ }^{7}$		80
8153	25	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	500	200	4.0	13.3	0.2	8.5	125	0.	8BY	Class-C Amp.-Oscillotor	500	200		- 45	150	17	2.5	-	0.13	-	56
													Class-C Amp. (Telephony)	400	175		- 45	150	15	3.0	-	0.16	-	45
													Class-AB2 Amp. (Audio) ${ }^{3}$	500	125		-15	22/150	327		60%	$0.36{ }^{3}$	8000	54
2548	25	7.5	3.25	750	150	5.0	11.2	0.085	5.4	-	M.	T-4C	Closs-C Amplifier	750	150		-135	75	-	-	-	-	-	30
8624	25	2.5	2.0	600	300	3.5	11	0.25	7.5	60	M.	T-5DC	Class-C Amp. (Telegrophy)	600	300		- 60	90	10	5.0	30000	0.43	-	35
													Class-C Amp. (Telephony)	500	275	-	- 50	75	9.0	3.3	25000	0.25	7500	24
													Class - $A B_{2}$ Amp. (Audio) ${ }^{\text {a }}$	600	300		- 25	42/180	5/15	106"	-	1.27	7500	72

table XVI－tetrode and pentode transmitting tubes－Continued

Type	Max． Plate Dissi－ pation Walts	Cathode		Max． Plate Volt－ age	Max． Screen Volf－ age	Max． Screen Dissi－ pation Watts	$\begin{aligned} & \text { Inter electrode } \\ & \text { Capacilancos (} \mu \mu \mathrm{fd} . \text {) } \end{aligned}$			Max． Freq． Mc． Full Ratings	Base	Sockel Con－ nec tions	Typical Operation	Plate Volt－ age	$\begin{aligned} & \text { Screan } \\ & \text { Volt- } \\ & \text { age } \end{aligned}$	Sup－pressor pressorVolt． age	Grid Voll－ age	Plate Current Ma．	Screen Current Ma．	Grid Current Ma．	Screen Resistor Ohms	Approx． Grid Driving Power Watts	Class B P－to－P Load Res． Ohms	Approx． Output Power Watts
		Volts	Amp．				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \\ \hline \end{gathered}$	Grid to Plate	$\begin{aligned} & \text { Plate } \\ & \text { io } \\ & \text { Fil. } \end{aligned}$															
$3 \mathrm{DX3}$	25	6.3	3.0	1500	200	－	－	\longrightarrow	－	250	5.	Fig． 40	Class－C Amp．（Telegraphy）	1000	200	－	－155	75	－－	2.8		0.57		50
$\begin{aligned} & 6146 \\ & 6159 \end{aligned}$	25	$\begin{array}{r} 6.3 \\ 26.5 \end{array}$	$\begin{aligned} & 1.25 \\ & 0.3 \end{aligned}$	750	250	3.0	13.5	0.22	9.0	60	M．	7 CK	Class－C Amp．（C．W． 15 Me.$)$	750	160		－85	120	14.7	3.0		0.3		69
													Class－C Amp．（C．W． 175 Mc ．）	400	200		－ 54	150	9	1.8		3.0	－	35
													Class－C Amp．（Telephony）	600	150		－85	112.5	12	3.0		0.3		52
													Class．AB：Amp．（Audio）${ }^{\text {b }}$	750	165	－	－ 45	35240	0．6／21	101\％	－	0.07	8000	130
$6524{ }^{3}$	25	6.3	1.25	600	300		7	0.11	3.4	100	N．	6524	Class－C Amp．（Telegraphy）	600	200	－	－44	120	8	3.7		0.2	－－	56
						－							Class－C Amp．（Telephony）	500	200		－61	100	7	2.5	－	0.2		40
													Class－AB ${ }_{2}$ Amp．（Audio）${ }^{3}$	500	200		－ 26	20／116	0．1／10	2.6		0.1	11100	40
$3 E 223$	30	12.6	0.8	560	225					200			Class－C Amp．（Telegraphy）${ }^{3}$	600	200		－ 55	160	20	7.0	20000	0.45		72
3522	30		1.6	560	225	6.0	14	0.22	8.5	200	0.	8 y	Class－C Amp．（Telephony）${ }^{3}$	560	200		－ 50	160	20	6.5	18000	0.4		67
RK66	30	6.3	1.5	600	300	3.5	12	0.25	10.5	60	M．	T．5C	Class－C Amp．Oscillator	600	300		－60	90	11	5.0	25000	0.5	－	40
RK66								0.25	10.5	60			Class－C Amp．（Telephony）	500	－	－	－ 50	75	8.0	3.2	25000	0.23		25
$\begin{aligned} & 807 \\ & 807 \mathrm{w} \\ & 5933 \\ & 1625 \end{aligned}$	30	6.3	0.9	750	300	3.5	11	0.2	7.0	60	M．	$\begin{aligned} & 5 A W \\ & \hline 5 A Z \\ & \hline \end{aligned}$	Class－CAmp．（Telegraphy）	750	250	－－	－ 45	100	6	3.5	85000	0.22		50
													Class－C Amp．（Telephony）	600	275	－	－ 90	100	6.5	4.0	50000	0.4	ー－	42.5
		12.6	0.45										Class－AB2 Amp．（Audio）${ }^{\text {c }}$	750	300	－	－ 32	60／240	5／10	928		0.2 \％	6950	120
													Class－B Amp．（Audio）＇1	750			0	15／240		555 8	－	$5.3{ }^{7}$	6650	120
$2 \mathrm{E22}$	30	6.3	1.5	750	250	10	13	0.2	8.0		M．	51	Class－C Amp．－Oscillatar	500	250	22.5	－60	100	16	6.0	15000	0.55	－	34
										－			Class－C Amp．－Oscillator	750	250	22.5	－60	100	16	6.0	30000	0.55		53
													Suppressor－Modulated Amp．	750	250	－90	－65	55	29	6.5	17000	0.6		16.5
${ }^{3023}$	35	6.3	3.0	－	－	－	6.5	0.2	1.8	253			Class－C．Amp．（Telegraphy）	1500	375	－－	－300	110	22	15		4.5		130
TB． 35	35	6.3	3.0	－	－	－	6.5	0.2	1.8	255	m	rig． 34	Class－C Amp．（Telephony）	1000	300		－200	85	14	10		2.0	－	60
AX． 9903^{3} 5894A	40	$\begin{gathered} 6.3 \\ 12.6 \end{gathered}$	$\begin{array}{\|l\|} 1.8 \\ 0.9 \end{array}$	600	250	7	6.7	0.08	2.1	150	N．	Fig． 10	Class－C Amp．（Telegraphy）	600	250		－ 80	200	16	2		0.2	－	80
													Class－C Amp．（Telephony）	600	250	－	-100	200	24	8	－	1.2		85
$\begin{aligned} & \text { RK201 } \\ & \text { RK20A } \\ & \text { RK46 } \end{aligned}$	40	$\begin{array}{r} 7.5 \\ 7.5 \\ 12.6 \end{array}$	$\begin{aligned} & 3.0 \\ & 3.25 \\ & 2.5 \end{aligned}$	1250	300	15	14	0.01	12		M．	T．5C	Class－C Amp．（Telegraphy）	1250	300	45	-100	92	36	11.5		1.6	二ー	84
										－			Class－C Amp．（Telephony）	1000	300	0	－100	75	30	10	23000	1.3	－	52
													Suppressor．Modulated Amo．	1250	300	－45	－100	48	44	11.5	－	1.5		21
													Grid．Modulated Amp．	1250	300	45	－142	40	7.0	1.8		1.5	\cdots	20
HY69	40	6.3	1.5	600	300	5.0	15.4	0.23	6.5	60	M．	T－5D	Class．C Amp．－Oscillator	600	250		－ 60	100	12.5	4.0	30000	0.25		42
													Class－C Amp．（Telephony）	600	250	－	－60	100	12.5	5.0	30000	0.35	－	42
													Modulated Doubler	600	200		－300	90	11.5	6.0	35000	2.8	－	27
													Class－AB2 Amp．（Audio）${ }^{6}$	600	300		－ 35	200	18.	$5.0{ }^{\circ}$	－	$0.3{ }^{\text {7 }}$	－	80
8291,3	40	$\begin{aligned} & 6.3 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 225 \\ & 8.12 \end{aligned}$	500	225	6	14.5	0.1	7.0	200	N．	7BP	Class－C Amp．（Telegraphy）	500	200		－45	240	32	12	9300	0.7	－	83
													Class－C Amp．（Telephony）	425	200	－	-60	212	35	11	6400	0.8	一ー	63
													Grid－Modulated Amp．	500	200		－ 38	120	10	2.0	－	0.5	－	23
829 A ？	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 2.25 \\ & 1.12 \end{aligned}$	750	240	7.0	14.4	0.1	7.0	200	N．	7BP	Class－C Amp．－Oscillator	750	200		－55	160	30	12	18300	0.8	－	87
													Class－C Amp．（Telephony）	600	200	－	-70	150	30	12	13300	0.9	－－	70
													Grid－Modulated Amp．	750	200		－ 55	80	5.0	0	－－	0.7	－	24
$\begin{aligned} & 82983 \\ & 3 E 293 \end{aligned}$	40	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 1.125 \\ & 2.25 \end{aligned}$	750	240	$\begin{aligned} & 6 \\ & 7 \\ & 7 \end{aligned}$	14.5	0.12	7.0	200	N．	7BP	Class－C Amp．（Telegraphy）	500	200		－ 45	240	32	12	9300	0.7		83
													Class－C Amp．（Telephony）	425	200		－ 60	212	35	11	6400	0.8	－	63
													Class－B Amp．（Audio）${ }^{\text {c }}$	500	200		－ 18	27／230		56^{8}	－	0.39	4800	76
HY1269	40	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 3.5 \\ & 1.75 \end{aligned}$	750	300	5.0	16.0	0.25	7.5	6	M．	T－5DB	Class－C Amp．－Oscillator	750	300		－ 70	120	15	4	－	0.25		63
													Class－C Amp．（Telephony）	600	250		－ 70	105	12.5	5	35000	0.5	－	42
													Grid．Modulated Amp．	750	300			80		－		－	－	20
													Class．ABz Amp．（Audio）${ }^{\text {B }}$	600	300	－	－ 35	$200{ }^{7}$		－	－	0.3	－	80
3D24	45	6.3	3.0	2000	400	10	6.5	0.2	2.4	125	t.	7．9J	Class－C Amp．－Oscillator	2000	375	－	－300	90	20	10	－	4.0	－	140
														1500	375	－	－300	90	22	80	－	4.0		105
715．8	50	26／28	－		－	－		\cdots	－	－		－	Class－C Amp．（Telegraphy）	1500	300	－	－	125	－	－	－			

TAble XVI-TETRODE AND PENTODE TRANSmitting tubes- Continued

Type	Mox. Plote Dissipation Watts	Cothode		Mox. Plote Voltage	Max. Screen Volf. age	Mox. Screen Dissipation Wotts	Interelectrode Capacilances ($\mu \mu / \mathrm{d}$.			Max. Freq. Me. Full Ratings	Base	SockerCon-nec-tions	Typical Operotion	Plate Voltage	Sereen Voli--ge	SupPressor oge	Grid Voltage	Plote Current Mo.	Seroen Current Ma.	Grid Current Mo.	Screen Resisfor Ohms	Approx. Grid Driving Power Wotts	Closs B P-to-P Load Res. Ohms	Approx. Output Power Wafts
		Volts	Amp.				$\begin{gathered} \hline \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plote	Plate to Fil.															
					400	8		02	1.8		M.		Class-C Amp. (Telegraphy)	1500	375		-300	116	21	12		3.6		135
5562	45	6,3	3.0	2000	400	8	0.5	02	1.8	120	M.	Fig. 54	Class-C Amp. (Telephony)	1000	300	\square	-200	85	14	10		2.0		60
HK-37	50	5	5	3000	500	25	7.29	0.05	3.13	200	N.	Fig. 64	Class-C Amp. (Telegrophy)	2000	450	+30	-145	110	2	1		0.15		166
													Class-C Amp. (Telephony)	2000	450	+30	-145	80	2	1.5		0.2		135
													Suppressor-Modulatod Amp.	2000	450	-190	-240	80	14	2.5	110000	0.6		90
RK47	50	10	3.25	1250	300	10	13	0.12	10		M.	T-5D	Closs-C Amp. (Telegrophy)	1250	300	-	- 70	138	14	7.0	-	1.0		120
										-			Class-C Amp. (Telephony)	900	300	\square	-150	120	17.5	6.0	-	1.4		87
													Grid-Modulaled Amp.	1250	300		-30	60	2.0	0.9	-	4.0		25
312A	50	10	2.8	1250	500	20	15.5	0.15	12.3	-	M.	T-6C	Class-C Amp. (Telegraphy)	1250	300	20	- 55	100	36	5.5	-	0.7		90
													Class-C Amp. (Telaphony)	1000	-	40	- 40	95	35	7.0	22000	1.0		65
													Suppressor-Modulated Amp.	1250	-	-85	-50	50	42	5.0	22000	0.55		23
804	50	7.5	3.0	1500	300	15	16	0.01	14.5	15	M.	T-5C	Class-C Amp. (Telegraphy)	1500	300	45	-100	100	35	7.0	34000	1.95		110
													Class-C Amp. (Telephony)	1250	250	50	-90	75	20	6.0	50000	0.75		65
													Grid-Madulated Amp.	1500	300	45	-130	50	13.5	3.7		1.3		28
													Suppressor-Moduloted Amp.	1500	300	-50	-115	50	32	7.0		0.95		28
4020	50			750	350	14	28	0.27	13	60	N.		Class-C Amp	750	300		-100	240	26	12		1.5		135
		12.6	1.6										Class-C Amp. (Telegrophy)	600	300		-100	215	35	10		1.25		100
		6.3	3.75									Fig. 51	Class-C Amp. (Telephony)	600	-	-	-100	220	28	10	10000	1.25		100
														550			-100	175	17	6	15000	0.6		70
													Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	600	250	-	- 25	100/365	26 ?	70^{8}		0.45 '	3000	125
	60	10	3.1	1000	200	6	10.5	0.14	5.4	-	M.	T-4CE	Class.C Amp. (Telegrophy)	1000	200		-200	125	-	-			-	85
305A	60	10	3.1	1000	200	6	10.5	0.14	5.4	-	m.	-4CE	Class-C Amp. (Telephony)	800	200		-270	125	-			,		70
HY67	85	$\begin{array}{\|r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 4.5 \\ & 2.25 \end{aligned}$	1250	300	10		0.19	14.5		M.	T.50B	Class-C Amp. (Telegraphy)	1250	300		-80	175	22.5	10		1.5		152
							-			-			Class-C Amp. (Telephony)	1000	300	-	-150	145	17.5	14	-	2.0		101
													Grid-Madulaled Amp.	1250	300			78						32.5
814	65	10	3.25	1500	300	10	135	0.1	13.5	30	M.	T-50	Class-C Amp. (Telegrophy)	1500	300		-90	150	24	10	50000	1.5		160
													Class-C Amp. (Telephiony)	1250	300		-150	145	20	10	48000	3.2		130
													Grid-Moduloled Amp.	1500	250		-120	60	3.0	2.5		4.2		35
4.65A	65	6.0	3.5	3000	400	10	8.0	0.08	2.1	160^{*}	N.	Fig. 48	Closs-C Amp. (Telegraphy)	3000	250		-100	115	22	10		1.7		280
				2500	400								Class-C Amp. (Telephony)	2500	250		-135	110	25	12		2.6		230
				3000	600								Class-B Linear Amp.	2500	500		-105	20/230	0/45	810		$1.3 .{ }^{10}$	-	325 ?
				3000	600								Closs-AB2 Amp. (Audio) ${ }^{6}$	1800	250	-	- 50	50/220	0/30	180 ${ }^{\text {8 }}$	-	2.67	20000	270
													Class-C Amp. (Telogrophy)	1000	150		-160	100	-	-	-	-	\square	33
282A	70	10	3.0	1000	250	5	12.2	0.2	6.8	-	M.	T-4C	Class-C Amp. (Telephony)	750	150		-180	100		50		-		50
$\begin{aligned} & 4 E 27 / \\ & 8001 \end{aligned}$	75	5.0	7.5	4000	750	30	12	0.06	6.5	75	J.	7 BM	Class-C Amp. (Telegraphy)	2000	500	60	-200	150	11	6	136000	1.4		230
													Class-C Amp. (Telephony)	1800	400	60	-130	135	11	8	125000	1.7		178
													Suppressor-Moduloted Amp.	2000	500	-300	-130	55	27	3.0	-	0.4		35
$\begin{aligned} & \text { HK257 } \\ & \text { HK257B } \end{aligned}$	75	5.0	7.5	4000	750	25	13.8	0.04	6.7	$\begin{array}{r} 75 \\ 120 \end{array}$	J.	7BM	Class-C Amp. (Telography)	2000	500	60	-200	150	11	6.0		1.4		230
													Class-C Amp. (Telephony)	1800	400	60	-130	135	11	8.0	-	1.7	-	178
													Suppressor-Moduloted Amp.	2000	500	-300	-130	55	27	3.0	-	0.4	-	35
828	80	10	3.25	2000	750	23	13.5	0.05	14.5	30	M.	5J	Closs-C Amp. (Telegraphy)	1500	400	75	-100	180	28	12	40000	2.2		200
													Class-C Amp. (Telephony)	1250	400	75	-140	160	28	12	30000	2.7	\square	150
													Grid-Moduloled Amp.	1500	400	75	-150	80	4.0	1.3	\longrightarrow	1.3	-	41
													Class-AB1 Amp. (Audio) ${ }^{\circ}$	2000	750	60	-120	50/270	2/60	240	\cdots	0	18500	385
RK28													Closs-C Amp. (Telegraphy)	2000	400	45	-100	150	55	13	21000	2.0	-	210
		10	5.0	2000	400	35	15	0.02	15	-	J.	$5 J$	Class-C Amp. (Telephony)	1500	400	45	-100	135	52	13	21000	2.0	-	155
	100	10	5.0				15	0.02	15	-	J.	5	Suppressor- Modutated Amp.	2000	400	-45	-100	85	65	13	-	1.8		60
													Grid-Moduloted Amplifier	2000	400	45	-140	80	20	4.0	-	0.9		75

table XVI-tetrode and pentode transmitting tubes-Continued

table XVII-ELECTROSTATIC CATHODE-RAY TUBES

Type ${ }^{\text {d }}$	Socket Connec. tions	Heater		Anode No. 2 Voltage	Anode No. 1 Voltage	Anode No. 3 Voltage	Cut-off Grid Voltage ?	Deflection Avg. Volts DC/Inch	
		Volts	Amp.					$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{1}$
2AP1-11	118	6.3	0.6	1000	250		-30/-90	230	196
2APIA	11 L	6.3	0.6	1000	250				
2BP1-11	12 E	6.3	0.6	2000	300/560		-135	270	174
3AP1-4-906-P1-4-5-11	7 AN	2.5	2.1	1500	430		-25/-75	114	109
3APIA	TCE	2.5	2.1	1500			-25/-75		
3BP1-4-11	14A	6.3	0.6	2000	575		-30/-90	200	148
3BPIA	14G	6.3	0.6	2000	575	-	-30/-90	200	148
$3 C P 1$	11 C	6.3	0.6	2000	575	-	-30/-90	124	165
$3 \mathrm{DPP1}$	14 C	6.3	0.6	2000	575	-	-30/-90	220	148
3DP1A-3DP7	14H						-30/-90		
3EP1-1806.P1	11 N	6.3	0.6	2000	575	-	-30/-90	221	165
3FP7	148	6.3	0.6	2000	575	4000	-30/-90	250	180
3 FP7A	14J	6.3	0.6	2000	575		-30/-90	250	
3GP1-4-5-11	11A	6.3	0.6	1500	350		-25/-75	120	105
3GP1A-3GP4A	11 N	6.3	0.6	1500	245/437		-25/-75	96/144	84/126
3JP1-2-4-7-11-12	14J	6.3	0.6	2000	400/690	4000	-30/-90	170/230	125/270
$3 \mathrm{KP1-4-11}$	11 M	6.3	0.6	2000	320/600		0/-90	100/136	76/104
$3 \mathrm{MP1}$	12F	6.3	0.6	2000	400/700		-126	230/290	220/280
$3 \mathrm{QP1}$	90	6.3	0.3	1200	240/480	-	-31/-74	214/290	133/181
3RP1-3RPIA	12E	6.3	0.6	2000	330/620		-135	146/198	104/140
35P1-4-7	12 E	6.3	0.6	2000	330/620		-28/-135	146/198	104/140
5ABP1-7-11	14 B	6.3	0.6	2000	400/690	4000	$-52 /-87$	26/34	18/24
5AP1-1805.P1	$11 A$	6.3	0.6	1500	430		-31/-57	93	90
5AP4-1805.P4	11 A	6.3	0.6	1500	430		-17.5/-57	93	90
58P1-1802-P1-2-4-5-11	11 A	6.3	0.6	2000	425		-20/-60	84	76
5BPIA	11 N	6.3	0.6	2000	450		-20/-60	84	76
58P7A	11 N	6.3	0.6	2000	375/560		-20/-60	70/98	63/89
SCP1-2-4-5-7-11	148	3	0.6	2000	575	4000	$-30 /-90$	92	78
SCP1A	14J	6.3	0.6				-30/-90	92	
SCP7A-11A-12	14,	6.3	0.6	2000	575	4000	-30/-90	92	74
SGP1	11 A	6.3	0.6	2000	425	-	-24/-56	36	72
5HP1-4	IIA	6.3	0.6	2000	425	-	-20/-60	84.8	77.0
5HP1A	IIN	6.3	0.6	2000	450		-20/-60	84	76
5JP1-2-4.5-11	11E	6.3	0.6	2000	520	4000	-45/-105	96	96
5JP1A-5JP4A	115	6.3	0.6	2000	$333 / 630$	4000	$-45 /-105$	77/115	77/115
5LP1-2.4-5-11	11 F	6.3	0.6	2000	500	-	$-30 /-90$	103	90
SLPIA-5LP4A	118	6.3	0.6	2000	376/633	4000	-30/-90	$83 / \overline{124}$	72/108
5MP1-4-5.11	7AN	2.5	2.1	1500	375		$-15 /-45$	66	60
5NP1-4	11A	6.3	0.6	2000	450		-20/-60	84	76
5RP1-2-4.7-11	14F	6.3	0.6	2000	528	20000	$-30 /-90$	140/210	131/197
SRPIA-5RP4A	14P	6.3	0.6	2000	362/695	20000	$-30 /-90$	140/210	131/197
5SP1.4	14k	6.3	0.6	2000	363/695	4000	$-30 /-90$	74/110	$62 / 94$
SUP1.7-11	12E	6.3	0.6	2000	340/360	-	-90	$56 / 77$	$46 / 62$
$5 \mathrm{VP7}$	11 N	6.3	0.6	2000	315/562	-	-20/-60	70/98	63/89
$5 \times P 1$	14P	6.3	0.6	2000	$362 / 695$	20000	$-30 /-90$	140/210	46/68
5YP1	140	6.3	0.6	2000	$541 / 1040$	6000	-45/-135	108/162	$36 / 54$
TEP4	11 N	6.3	0.6	3000	546/858		-43/-100	106/158	$91 / 137$
$7 \mathrm{FPP}^{3}$	146	6.3	0.6	3000	810/1200		$-36 /-84$	93/123	75/102
7 JP1-4-7	14G	6.3	0.6	6000	1620/2400	-	-72/-168	186/246	150/204
7 VPI	146	6.3	0.6	3000	800/1200		-84	93/123	75/102
$8 \mathrm{BP4}$	146	6.3	0.6	6000	2000	-	-72/-168	146/198	124/198
9NPI	6 BN	2.5	2.1	5000	1150	-	$-45 /-135$	190	175
10GP4	14G	6.3	0.6	5000	1250/1850	-	-60/-140	125/165	100/135
$10 \mathrm{HP4}$	146	6.3	0.6	5000	1200/1800	-	$-60 /-140$	110/150	85/115
$12 \mathrm{FP7}$	14 E	6.3	0.6	4000	1250	8000	$-30 /-90$	110	125
$12 \mathrm{GP7}$	145	6.3	0.6	4000	1143	6000	-65/-195	108	101
$12 \mathrm{HP7}$	113	6.3	0.6	5000	1150	-	-45/-135	95	125
14AP1.4	12 A	2.5	2.1	4000	1000	8000	-40/-120	130	130
20AP1	12A	2.5	2.1	4000	1000	8000	-40/-120	110	110
20AP4	12 A	2.5	2.1	4000	1000	8000	$-40 /-120$	130	130
902-A	8CD	6.3	0.6	600	150	-	$-30 /-90$	139	117
905	5BP								
905 -A	5BR	2.5	2.1	2000	450	-	-17.5/-52.5	115	97
907	$5 B^{\prime}$								
908-A	$7 \overline{C E}$	2.5	2.1	1500	430	-	-25/-75	114	109
9093	$5 B \mathrm{P}$	2.5	2.1	2000	450	-	-17.5/-52.5	115	97
$910^{3}-911^{3}$	7 AN	2.5	2.1	1500	430	-	-25/-75	114	109
912	912	2.5	2.1	15000	3000	- 2 Grid 250	-30/-90	915	750
913	913	6.3	0.6	500	1000	-	-20/-60	299	221
$914 . \mathrm{A}$	6BF	2.5	2.1	7000	1550		-25/-75	322	259
2001	4AA	6.3	0.6	500	1000	-	-20/-60	299	221

TABLE XVII-ELECTROSTATIC CATHODE-RAY TUBES-Continued

Type ${ }^{\text {e }}$	Socket Connecfions	Heater		Anode No. 2 Voliage	Anode No. 1 Voltoge :	Anode No. 3 Voltage	Cut-off Grid Voltoge:	Deflection Avg. Volts DC/Inch	
		Volts	Amp.					$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{1}$
2002	Fig. 1	6.3	0.6	600	120		-	0.16^{5}	$0.17{ }^{5}$
2005	Fig. ${ }^{14}$	2.5	2.1	2000	1000	200	-35	$0.5{ }^{8}$	$0.56{ }^{5}$
24-XH	Fig. 1	6.3	0.6	600	120		-60	$0.14{ }^{5}$	$0.16{ }^{\circ}$
VCR139A	VCR139A	4.0	1.1	800	120/150	--	-7/-16	104	140

Bogey value for focus. Voltage should be adjusfable eboul volue shown.
Bogey value for tocis. Vor visual oxtinction of undeflected spot. Vottage should be adjuslable from 0 to the higher value shown.
2 Bias for visual extinction of undeflected spot. Vothage should be adjusiable from 0 to the higher value sho
3 Discontinued.
I Cathode connected to Pin 7.
Disconlinued.
Phosphor characteristics:
Designotion
Color and persistonce
Applicalion
P1..
P2.................................
Green madium.
Oscilloscope.
P4. White medium. .
White medium.
Special Oscilloscopes and rador.

P5
slue white sherl.
Televison.
P7..............................
Yellow long.
Pil.
Yellow long.
Orange long.
Radar indicaters.
Oscifloscope
P12......... Orange long... Rodar indicators

TABLE XVIII－TRANSISTORS

No．	Type	Maximum Rolings Characteristics									Use	Typical Operation								
		Collector			Emitter		Curren Amp． Factar	$\begin{aligned} & \text { Coll. } \\ & \text { R }, \\ & \text { K }, 1 \end{aligned}$	Emilter R． 82	$\begin{aligned} & \text { Base } \\ & \mathbf{R}_{12} \\ & \text { an } \end{aligned}$		Collector Mo．	Collector Volts	Emitrer Ma．	$\begin{gathered} \text { Inpul } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}$	Output load R． Ohms	Powar Gain Db．	Noise Figure Db．	Base Ma．	Power Output M．Watts
		Diss． M．Watts	Ma．	Volts	Diss． M．Watls	Ma．														
2 A	Pi．－Cont．	120	8	50	－	－	2	－	－	－	General	－	－10	1.0	800	15K	20			－
2B	Pt．Cont．	120	8	50	\square	－	2	－	－	－	General		－ 10	1.0	800	15K		－		
2 C	Pl．－Cont．	100	8	50	－	－	2	－	－	－	Switching	4.0	0／－2	3.0	－		－			
20	Pt．－Cont．	100	8	50	－	－	2		－	－	General	1.0	－15	0						－
$2 E$	P1．－Cont．	100	8	50		－	2		－		General	1.0	－15	0	500	10K	20		－	
$2 F$	Pt．－Cont．	120	8	100	－	－	2		－	－	Switching	5.0	0／－1．2	3.0			－			\square
2 G	P1，Cont．	120	8	100	－	$-$	2	－	－	－	Switching	5.0	0／－1．2	3.0	－	－				－
${ }^{2} \times 1{ }^{\text {N3 }}$	Pt．Cont．	50	8	40	－	3	2.2	－	－		Pulse or Switching		－25	0.5	400	31 K	21		－	\square
2N33	Pt．Cont．	30	7	8.5	－	0.8	－		－	－	Oscillator 50 Mc ．	3.3	－ 8	0.3			－			1.0
2N34	Jct．PNP	50	8	25	－	8.0	0.98	－	－	－	General	10	－6	1.0	－	－	40	－	0.25	－
2 N 35	Jat．NPN	50	8	25	－	8.0	0.98	－	－	－	General	10	－ 6	1.0	－	－	40	$\underline{-}$	0.25	
2N36	Jct．PNP	50	8	20		－	45	－	－		General		-6.0	1.0	1000	30K	40	－	0.01	－
2N37	Jet．PNP	50	8	20	－	－	30		－	－	General		－ 6.0	1.0	1000	30K	36	－	0.02	
2N38	Jci．PNP	50	8	20			15			－	General		-6.0	1.0	1000	30K	32		0.05	
2N39	Jct．PNP	50	12	30	－	12	0.97	1－3	30－50	－	General	1.0	-4.5	1.0	500	30K	39	10－40		
2N40	Jct．PNP	50	12	30		12	0.97	0．7－2	30－50	－	General	1.0	-4.5	1.0	500	30k	38	10－40		
2N42	Jct．PNP	50	12	30	－	12	0.94	0．5－2	30－50	－	General	1.0	－ 4.5	1.0	500	30k	36	10－40		－
2N63	Jct．PNP	33	10	22	－	10	22		25	350	Audia and R．F．	－	－ 6	1.0	800	20K	39	25	－	－
2N64	Jct．PNP	33	10	22	－	10	45	2	25	700	Audio and R．F．		－6	1.0	1500	20K	41	22	－	
2N65	Jct．PNP	33	10^{-}	22		10	90	2	25	1500	Audio and R．F．	－	－ 6	1.0	2700	20k	42	20		
A 1698	Pl．．Cont．	120	15	100		15.0		－		200	Switching		－	－						
CK716	PI．－Cont．	100	4	40		10.0	2.5	－	－	－	General	1.5	－10	0.5	250	15K	18	45	－	3.0
CK721	Ict．PNP	30	5	20		5.0	40	－	－	－	General	2.0	－ 3	－	－	1250	38	22	0.3	2.8
CK722	Jct．PNP	30	5	20	－	5.0	12		－	－	General	0.5	-1.5	－	－	－	30	22	0.2	－－
CK723	Jct．PNP	33	10	22	－	10	22	2	25	350	Audio and R．F．	－	-6	1.0	800	20 K	39	25		－
CK725	Jct．PNP	33	10	22	－	10	90	2	25	1500	Audio and R．F．	－	－6	1.0	2700	20K	42	20		
CK727	Jct．PNP	30	10	6		10	25	1			Audio Amplifier	0.5	－ 1.5	1.0	1000	20K	36	12		
G－11	Pt．－Cont．	100	7	30	－	3.0	2.2			200	Amp．Oscillator	－	－	－	475	20K	17	57		－
G．11A	Pi．Cont．	100	7	30		3.0	2.2		－	500	Switching	－	－15	1.0	800	20K	－	－		－
HA－1	Jct．PNP	50	8	20	－		30	－	－	－	Heoring－Aid Amp．	0.5	－ 3		1000	30K	37	12		
HA． 2	Jct，PNP	50	8	20	－	－	30	－	－	－－	Hearing－Aid Amp．	0.5	－ 3	－	1000	30K	37	17	－	\square
HA－3	Jct．PNP	50	8	20	－	－	35		－	－	Hearing－Aid Amp．	0.5	-3	－	1000	30K		－		－
HD－197	Jct．PNP	500	－	40	－	－	－	5	－	70	Switching	50	10	－	100	5000	30	－		
M1689	Pt．Cont．	80	40	50	－	40.0		－	－	－	Switching	－	－		800	10k	－		－	
M1725	Pt，Cont．	200	20	50	－	15.0	2.1	－	－	115	Audio and Carrier	4.0	－ 5	1.5	195	8K	18	48		4.5
M1729	Pt．Cont．	200	20	50	－	15.0	2.5	$\underline{\square}$	－	75	Audio and Carrier	5／7	－30	1／2	190	15K	20／18	54	－	50.0
M1752	Jet．PNP	50	5	50	－－	5.0	0.98	－	－	240	General		－	－	25	13K	－	－		－
$0 \mathrm{OC50}$	P1．．Cont．	120	25	30	25			－	－	－	Amp．Oscillator	－	－ 5	1.5	155	6800	－	43	－	－
OC51	P1．Comt．	120	15	100	二－	15	2.5	－	－－	－	Switching	1.6	－40	0	350	26 K	－			
PT－2A	Pr．．Cont．	100	10	$\overline{40}$		5	1.5	10	300	500	Audia Amplifier	－	－30	1.0	300	20K	19	57	－	－
PT－25	Pt．Cant．	100	10	40	－	5	2.0	－		500	Switching	－	-30	1.0	－	－	－	－		
R1734	Pt．－Cont．	120	－	－	－	－					Switching	－		－	－	－	－	－		－
RD2517	Jct．NPN	50	5	30	－	－	0.93	100	35	500	Audio and R．F．	－	4.5	1.0	－	4500	32	22		1.9
RD2517A	Jct．NPN	50	10	30	－－	10	0.93	3.0 ：	25	100	Audio and R．F．	－	4.5	1.0	－	－	32	20	－	
RD2520	Jct．NPN	50	5	40	－	－	0.95	500	35	100	Audio and R．F．		4.5	1.0	－	4500	34	22	－	2.0
RD2520A	Jci．NPN	50	10	30	－	10	0.975	2.5	25	150	Audio and R．F．	－	4.5	1.0	－	－－	34	20		
RD2521	Jct．NPN	50	10	40	－	10.0	0.975	300	30	100	Amp．Oscillator	－	4.5	1.0	－	－	37	22		
RD2521A	Jct．NPN	50	10	40	－	10	0.975	5.0	25	150	Amp．Oscillator	－	4.5	1.0	ーー	－	39	20		－

TABLE XVIII-TRANSISTORS-Continued

No.	Type	Maximum Ratings Characteristics									Use	Typical Operation								
		Collector			Emitter		Current Amp. Factor	$\begin{gathered} \text { Coll. } \\ \text { R. } \\ \text { K } \Omega_{1} \end{gathered}$	Emitter R. 12	Base R. Ω		Collector Ma.	Collector Volts	Emitter Ma.	InputResistanceOhms	Output Load R. Ohms	Power Gain Db.	Noise Figure Db.	Bose Me.	Power Output M. Watts
		Diss. M. Watts	Ma .	Volts	Diss. M. Watts	Ma.														
RD2525	Jet. NPN	25	5	25	-	-	125	200	35	500	Amp. Oscillator	-	4.5	-	-	4500	42	22	-	1.9
RD2525A	Jct. NPN	25	5	25	-	5	0.993	5.0	20	400	Amp. Oscillator	-	4.5	1.0	-	-	-	20	-	-
RR-14	Jet. PNP	50	5	25	-	--	25	700	30	270	Audio Amplifier	0.5	-1.5	-	-	-	36	22	-	-
RR-20	Jct. PNP	50	5	25	-	-	40	700	30	270	Audio Amplifier	0.5	-1.5	-	-	-	40	22	-	-
RR-21	Jet. PNP	50	5	25	-	-	25	-	-	-	Audio Amplifier	3.0	-15.0	-	-	5000	-	-	-	20
RR-34	Jct. PNP	30	5	20	-	-	10	500	30	270	Audio Amplifier	0.5	- 1.5	1.0	-	30K	30	--	-	-
T-21A	Pt.-Cont.	50	5	30	20	5	0.95	500	50	500	General	1.0	- 4.5	1.0	500	30K	38	25		-
TA-161B	Pt.-Cont.	140	-	-	-	-	2	-	-	120	General	3.0	-20	1.5	300	15K	22	55	-	50.0
TP-01	Pt.Cont.	100	-	35	-	-	2	-	-	-	General	-	-22.5	0.3/0.8	400	IOK	18	-	-	-
X-22	Jct. NPN	50	5	40	-	-	0.90	-	-	-	Audio Switching	-	4.5	1.0	35	-	-	-	-	-
X-23	Jet. NPN	50	5	40	-	-	0.95	-		-	Audio Switching	-	4.5	1.0	35	-	-	-	-	-

table xix-germanium crystal diodes

Type	Use	Max. Inverse Volts	$\begin{aligned} & \text { Max. } \\ & \text { Average } \\ & \text { Ma. } \end{aligned}$	$\begin{gathered} \text { Min. } \\ \substack{\text { Forward } \\ \text { Ma. }} \end{gathered}$	Max. Reverse μ-Amp.	Type	Use	Max. Inverse Volis	Max. Average Ma.	$\begin{aligned} & \text { Min. } \\ & \text { Forward } \\ & \text { Ma. }{ }^{3} \end{aligned}$	Max. Reverse μ-Amp.
IN34	General	60	50	5.0	800 (a)-50 V.	IN69	General	60	40	5.0	850 (a)-50 V.
IN34A	General	60	50	5.0	500 @ -50 V.	IN70	General	100	30	3.0	300 (a) -50 V.
IN35 ${ }^{1}$	Dua-Diade	50	22.5	7.5	10 (a) -10 V.	1N71 ${ }^{2}$	Hi-Conduction	40	60	15.0	300 (a)-30 V.
IN38	100-Voll Diade	100	50	3.0	625 (a) - 100 V .	IN72	U.h.f. Mixer	2	25	1.6	800 (a) -0.5 V.
IN38A	100-Voll Diode	100	50	4.0	500 (a) -100 V .	1N73 ${ }^{2}$	Varistor	75	22.5	$12.75{ }^{5}$	50 (a) -10 V .
1N39	200-Voll Diode	200	50	1.5	800 (a) -200 V.	1N74 ${ }^{2}$	Varistor	75	22.5	12.75	50 (a) -10V.
$1 \mathrm{NHO}^{2}$	Varisfor	25	22.5	12.75 (a)-1.5 V.	40 (a) -10 V .	1N75	Voristor	100	50	2.5	50 (a)-50V.
IN4I ${ }^{2}$	Varistor	25	22.5	12.75 (a) -1.5V.	40 (a) -10 V .	1N81	General	40	30	3.0	10 (a) -10 V.
IN42 ${ }^{2}$	Varistor	50	22.5	12.75@-1.5 V.	625 (a) -100 V .	1N86	General	70	50	4.0	833 @ -50 V.
IN43	General	60	40	5.0	900 @ -50 V.	1N87	Vid. Detector	Max. peak inverse - 30 V. Rect. current at 5 V. r.m.s., 30 Mc., load resistance 2000 ohms $=2.1 \mathrm{ma} . \mathrm{min}$.			
IN44	General	115	35	3.0	410 (a) -50 V.	1N88	Restorer	85	5	2.5	100 @) -50 V.
IN45	General	75	35	3.0	400 (3)-50 V.	1N89	Restorer	80		3.5	100 (a)-50 V.
IN46	General	50	40	3.0	1500@-50 V.	1N90	General	604	-	3.0	800 (a) -50 V.
IN47	General	115	30	3.0	410@-50 V.	1N91	General ${ }^{\text {a }}$	Peak inverse voltage $=100$ V. Peak forward current $=0.47$ Amp. D.c. output current $=150 \mathrm{Ma}$.			
1N48	General	70	50	4.0	830 (a)-50 V.	1N92	Generol ${ }^{\text {a }}$	2008	Peak forward current $=0.31 \mathrm{Amp}$. D.c. output current $=100 \mathrm{Ma}$.		
IN5 1	General	40	25	2.5	$1300 @-40 \mathrm{~V}$.	1N93	General ${ }^{8}$	3008	Peak forward current $=0.25$ Amp. D.c. outpul current $=75 \mathrm{Ma}$.		
IN52	General	70	50	4.0	150 (a)-50 V.	1N94	TV Model ${ }^{6}$	R.m.s. input valtage $=130 \mathrm{~V}$. Peok forward current $=1.57$ Amp. D.c. output current $=500 \mathrm{Ma}$.			
1N54	Hi-Back Resistance	35	50	5.0	10 @-10V.	1N106	Hi-Back Voltage	Max. operoling voltage $=300 \mathrm{~V}$. Mox. forword voltage drop $=$ 1.0 V . (a) 20 ma . d.c.			200 (a) -300 V.
IN54A	Hi-Back Resistance	50	50	5.0	100 (a) -50 V.	1N107	Hi-Forward Current	Max. operating voltage $=\mathbf{3 0 0} \mathrm{V}$. Max. forward voltage drop $=$ 1.0 V. (a) 150 ma. d.c.			200@-10V.
1N5 5	150-Volt Diode	150	50	3.0	800 @-150 V.	INIO8	General	Max. operating voltage $=50 \mathrm{~V}$. Max. forward voltage drop $=$ 1.0 V . @ 50 ma . d.c.			200@-50 V.
IN55A	150.Volt Diode	150	50	4.0	$500 @-150 \mathrm{~V}$.	1N109	Harmonic Gen.	15	50	8.5	20 (a) -3 V.
1N55B	-	1904	-	5.0	500 (3) -150 V.	INIII	Rectifier	70		5.0	125 (3) - 50 V .
1N56	Hi-Conduction	40	60	15.0	300@-30 V.	1N112	Rectifier	70		5.0	250@-50V.
1N56A	Hi-Conduction	40	60	15.0	300@ -30 V.	1N113	Rectifier	70	-	2.5	125@-50V.
IN57	Diode	80	40		500 @ -75V.	1N114	Rectifier	70	-	2.5	250@-50 V.
INS8	100-Volt Diode	100	50	4.0	800@ - 100 V .	IN115	Rectifier	70	-	2.5	500 (3)-50 V.
IN58A	100-Volt Diode	100	50	4.0	600 @ ${ }^{\text {a }}$ - -100 V .	$\begin{aligned} & \text { IN124 } \\ & \text { IN124A } \end{aligned}$	U.h.f. Mixer ${ }^{\text {a }}$	-	25	Mox. forward resistance, normal $=75$ ahms. Min. back resistance $=\mathbf{1 5 0 0}$ ohms.	
IN60	Vid. Detector	25	50	-	-						
IN61	Diode	130	40	-	300 @ -100 V.	IN126	-	60^{7}	30	5.0	850 @ -50 V.
1N63	Hi-Back Resistance	100	50	4.0	50 @ ${ }^{\text {a }}$-50 V.	1N127	-	100^{7}	30	3.0	300 @ -50V.
1N64	Vid. Detector	20		0.1	2.5 (a) -1.3 V .	IN128	-	407	30	3.0	10 (a) -10V.
IN65	Hi-Back Resistonce	70	50	2.5	200@ -50 V.	IN133	U.h.f. Mixer	68	50	3 at 0.5 V .	300 (3)-6 V.
1N66 ${ }^{\text {2 }}$	General	60	50	5.0	800 (3) -50 V.	IN147	U.h.f. Mixer ${ }^{\text {a }}$	$2{ }^{8}$	25	Max. forward resistance $=75$ ohms. Min. back resistance $=1500$ ohms.	
1N67	Hi-Back Resistance	80	35	4.0	$50 @$-50 V.	IN151	TV Model ${ }^{8}$	100^{8}	Peak forward current $=1.57 \mathrm{Amp}$.		
IN67A	Hi-Back Resistance	1004		4.0	50 (a)-50 V.	IN152	TV Model ${ }^{\text {8 }}$	200 ${ }^{\text {\% }}$	D.c. oulput current $=500 \mathrm{Ma}$.		
IN68	Hi-Bock Resistance	80	35	3.0	625 (a) - 100 V .	IN153	TV Madel ${ }^{8}$	$300{ }^{8}$	Peak full load volloge drop $=0.7 \mathrm{~V}$.		
IN68A	General	1304	-	3.0	625 @ - 100 V .	IN175	Hi-Back Voltage	200	Max. forward voltage drop $=1.0 \mathrm{~V} . @ 20$ ma.d.c.		200 @ -200 V.
Rati hours. Avera	iven are for individ ient Temperature ran unt capacitance - 0.8	diodes. for all ty Units	rage life $--50$ A suffix	$\begin{aligned} & \text { over } 10,000 \\ & \text { to }+75^{\circ} \mathrm{C} . \end{aligned}$ eglass lypes.	1 Matched dual diode. ${ }^{2}$ Unit hos four matched diodes. ${ }^{3}$ At +1 voll.		${ }^{4}$ Min. reverse volls for zero dynamic resistance. ${ }^{6}+1.5$ volts rating for each diode. - Operoling frequency 50 Kc .			7 Min. inverse voltage. ${ }^{8}$ Peak value. * Design frequency 900 Mc .	

World Radio History

TABLE XX-KLYSTRONS

TABLE XXI-CAVITY MA GNETRONS

Type	Closs	Band or Range Mc.	Heater		Maximum Ratings					Typical Operation				Peak Pwr. Output KW.
			Volis	Amps.	Anade KV.	Anode Amps.	Duty Cycle	Input Watts	Anode KV.	Anode Amps.	field Gauss		P.P.S.	
RK2J22	1	3267-3333	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2250	1.0	1000	265
RK2J23	1	3071-3100	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J24	1	3047-3071	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J25	1	3019-3047	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J26	1	2992-3019	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J27	1	2965-2992	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J28	1	2939-2965	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J29	1	2914-2939	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	2400	1.0	1000	275
RK2J30	1	2860-2900	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J31	1	2820-2860	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J32	1	2780-2820	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J33	1	2740-2780	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2J34	1	2700-2740	6.3	1.5	22.0	30.0	. 002	600	20.0	30.0	1900	1.0	1000	285
RK2 J36	1	9003-9168	6.3	1.3	13.5	12.0	. 002	200	11.5	10.0	2500	1.0	1000	15.0
RK2J38	1	3249-3263	6.3	1.25	6.0	8.0	. 012	200	4.9	3.0	Pkg.	1.0	2000	5.0
RK2J39	1	3267-3333	6.3	1.25	6.0	8.0	. 002	200	5.4	5.0	Pkg.	1.0	2000	8.7
2 L 42	1	9345-9405	6.3	0.5	5.7	6.5	. 001				4800	2.5		14
2142A	1	9345-9405	6.3	0.5	8.0	7.0	. 001	\cdots			6500	2.5		35
RK2J48	1	9310-9320	6.3	1.0	16.0	16.0	. 002	230	12.0	12.0	4850	1.0	1000	50.0
RK2J49	1	9000-9160	6.3	1.0	16.0	16.0	. 0012	180	12.0	12.0	5400	1.0	1000	58.0
RK2J50	1	8740-8890	6.3	1.0	16.0	16.0	. 0412	180	12.0	12.0	5400	1.0	1000	58.0
RK2J51	2	8500-9600	6.3	1.1	16	16	. 0012	230	15	14	Pkg.	1.0	1000	45
RK2J54	2	3123-3259	6.3	1.5	14.0	15.0	. 002	250	11.6	12.5	1400	1.0	2000	45.0
RK2J55	1	9345-9405	6.3	1.0	16.0	16.0	. 001	180	12.8	12.0	Pkg.	1.0	1000	50.0
RK2J56	1	9215-9275	6.3	1.0	16.0	16.0	. 001	180	12.8	12.0	Pkg.	1.0	1000	50.0
RK2J58	2	2992-3100	6.3	1.5	22.0	15.0	. 002	600	10.5	12.5	1450	1.0	2000	50.0
RK2J61A	2	3000-3100	6.3	1.5	15.0	15.0	. 002	250	10.7	12.5	1300	1.0	2000	35.0
RK2J62A	2	2914-3010	6.3	1.5	15.0	15.0	. 002	250	10.2	12.5	1300	1.0	2000	35.0
RK2J66	2	2845-2905	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J67	2	2795-2855	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2 J68	2	2745-2805	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J69	2	2695-2755	6.3	1.5	20.0	25.0	. 001	400	18.0	25.0	1700	1.0	1000	150
RK2J70	1	3030-3110	6.3	1.25	7.5	15	. 002	200	7	8	Pkg.	0.5	1000	20
RK2J71	1	3190-3201	6.3	1.25	5.5	8	. 002	100	5	5	Pkg.	1.0	2000	6
3 331	1	23744-24224	6.0	1.9	15.0	14.0	. 0005				7600	1.0		54
RK4J31	1	2860-2900	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J32	1	2820-2860	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J33	1	2780-2820	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J34	1	2740-2780	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J35	1	2700-2740	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J36	1	3650-3700	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J37	1	3600-3650	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J38	1	3550-3600	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J39	1	3500-3550	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J40	1	3450-3500	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J41	1	3400-3450	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2500	1.0	400	750
RK4J43	1	2992-3019	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J44	1	2965-2992	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
$4 \mathrm{J50}$	1	9345-9405	13.6	3.5	23.0	27.5	. 004				6300	0.5		300
4 4 52	1	9345-9405	12.6	1.9	16.0	15.0	. 002				5000	6.0		120
RK4J53	1	2793-2813	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK4J54	1	6875-6775	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J55	1	6775-6675	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J56	1	6675-6575	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J57	1	6575-6475	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J58	1	6475-6375	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
RK4J59	1	6375-6275	12.6	3.75	25.0	35.0	. 001	650	17.5	30.0	Pkg.	1.0	1000	200
4178	1	9003-9168	13.6	3.5	23.0	27.5	. 004		-	-	6300	0.5		300
RK5J26	2	1220-1350	23.5	2.2	31.0	60.0	. 002	1800	27.5	46.0	1400	4.0	225	400
RK725A	1	9345-9405	6.3	1.0	16.0	16.0	. 001	180	12.0	12.0	5400	1.0	1000	50.0
RK730A	1	9345-9405	6.3	1.1	16.0	16.0	. 001	180	13.0	12.0	5400	1.0	1000	40.0
RK5586	2	2700-2900	16.0	3.1	30.0	70.0	. 001	1200	28.0	70.0	2700	1.0	400	900
RK5609	4	2425-2475	6.3	3.8	1.7	0.15	CW	200	1.5	0.15	Pkg.			0.125
RK5657	2	2900-3100	16.0	3.4	32.5	70.0	. 001	1300	32.5	70.0	2700	1.0	500	800
RK5982	1	9335-9415	6.3	3.2	15.5	14.5	. 001	225	15.5	13.4	Pkg.	4.5	200	75.5
QK174C	3	1990-2110	4.0	3.1	2.2	0.18	-	198	1.85	0.15	Pkg.			0.07
QK312	4	2425-2475	8.5	3.2	7.0	2.5	CW	3600	5.1	0.56	Pkg.	cw.	cw.	1.5

Jhe
 Catalog Section

In the following pages is a catalog
file of products of the principal manufacturers and the principal distributors who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

32nd EDITION 1955

INDEX OF ADVERTISERS

CATALOG SECTION
The Radia Amateuri Handbook
Page
Advance Electric \& Relay Co. 101
Allied Radio Corp $65-67$
American Electronics Co. 139
American Phenolic Corp 68,69
American Radio Relay League, lac. 53-56
American Television \& Radis Co 124
Amperex Electronic Corp 133
Antenna Engineering Co. 147
Ashe Radio Co., Walter 99
Barker \& Williamson, Inc. 75-77
Beckman Instr. Co., Shasta Div 128
Belden Man:ufacturing Co 146
Bliley Electric Co 88
Brill Co., W. D 142
Bud Radio, Inc. 81-83
Burstein-Applebee Co 113
Cameradio Co., Inc. 123
Candler System Co. 42
Cannon Electric Co. 127
Centralab 125
Chicago Standard Transformer Corp 145
Collins Radio Co 49-52
Cornell-Dubulier Electric Corp 98
Eitel-McCullough, Inc 78,79
Electric Soldering Iron Co., Inc. 135
Electro-Voice, Inc. 74
Elmar Electronics Inc 40
Erie Resistor Corp 107
Fort Orange Radio Distributing Co., Inc. . . . 94, 95
Freed Transformer Co. 80
Fretco, Inc 132
General Electric Co.. $19,64,89$
Hallicrafters Co., The 3-18
Hammarlund Mfg. Co., Inc. 57-59
Harvey Radio Co., Ine 90,91
Harvey-Wells Electronics, Inc. 62, 63
Heath Co., The 84, 85
Henry Radio Stores. 129
Hudson Radio \& Television Corp. 118
Hycon Mfg. Co. 136
Hy-Lite Antennae, Inc. 143
Illinois Condenser Co. 96
Instructograph Co 114
Page
International Crystal Mfg. Co., Inc...... . 102, 103
International Rectifier Corp
International Rectifier Corp 134 134
International Resistance Co. 70-73
Johnson Co., E. F. 36-41
Knights Co., The James 141
Lampkin Laboratories, Inc. 97
Lockheed Aircraft Corp., Missile Systems Div. 148
Mallory \& Co., Inc., P. R. 29
Master Mobile Mounts, Inc 109
Measurements Corp. 121
Millen Manufacturing Co., Inc., The Jas.. . . . 20-26
Miller Co., J. W 144
Mosley Electronics, Inc. 112
National Company, Inc. 30-35
Newark Electric Co. 131
Ohmite Manufacturing Co 117
Par-Metal Products Corp. 111
Precision Apparatus Co., Inc. 130
Radio Corporation of America. 60,61
Radio Shack Corp., The. 137
Shure Brothers, Inc 119
Shurite Meters 138
Sprague Products Co. 120
Superior Instruments Co. 126
Supreme, Inc. 106
Telecommunications Corp. 43-48
Terminal Radio Corp. 115
Turner Co., The 100
United Transformer Co. 104
Vesto Ce., Ine. 105
Vibroplex Co., Inc. 108
Waterman Products Co., Inc. 92,93
Western Gear Works 122
Wile, Eugene G.. 116
Wincharger Corp. 110
World Radio Laboratories, Inc 86,87

> This year marks a milestone in the twenty-one years of Hallicrafters electronic history both in engineering and design.

The following pages
prove Hallicrafters unquestioned leadership in the interests of Amateur Radio.
hallicrafters

Hallicrafters, "the World's Largest Ham Shack," has earned the highest reputation in the ham radio field with its precision-built communications equipment.

amateur equipment!

We plan, engineer and build products that reflect the pride we feel toward our good name.
W. J. Hor y an Piellfallyin. gr.

hallicrefters

This Hallicrafters double conversion selectable side band receiver offers major improvements in stability by the addition of temperature compensation in the high frequency oscillator circuits and the use of crystal controlled second conversion oscillators. Hallicrafters highly selectable 50 ke i-f system is used in this new precision-built receiver.

COVERAGE: Standard Broadcast; 538-1580 kc; Three S/W Bands, 1720 kc .34 Mcs . Band 1:538 kc-1580 kc Band 2: $1720 \mathrm{kc}-4.9 \mathrm{Mcs}$ - Band 3: 4.6 Mcs-13 Mcs Band 4: 12 Mcs- 34 Mcs.
TYPE OF CIRCUIT: Double conversion superheterodyne over the entire frequency range.
TYPE OF SIGNALS: AM-CW-SSB.
FEATURES: Precision gear drives are used on both main tuning and band spread dials. Double conversion with selectable crystal controlled second oscillators. Selectable side band reception of both suppressed carrier and full carrier transmissions by front panel switch, delayed AVC, CW operation with AVC on or off. Calibrated bandspread, "S" meter, low drift, double conversion superhet.
CONTROLS: Sensitivity, band selector, volume, tuning, AVC on/off, noise limiter on/off, AM/CW-SSB, Bandspread, selectivity, pitch control, response (pwr on/off, LSB, USB- 2 tone pos.), receive.
INTERMEDIATE FREQUENCIES: 1650 kc and 50 kc .
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM:
Separate 3 section tuning capacitor assemblies for main tuning and bandspread tuning. Circular main tuning dial has 0.100 logging scale. Bandspread dial is calibrated for the $80,40,20,15$, and 11.10 meter amateur bands. SELECTIVITY: Five steps. 1 . (Broad) $6 \mathrm{db}-5 \mathrm{ke} 60 \mathrm{db}$ 15 kc - 2. (Broad) $6 \mathrm{db} .3 \mathrm{kc} 60 \mathrm{db}-12 \mathrm{kc}-3$. (Broad) $6 \mathrm{db}-2 \mathrm{kc} 60 \mathrm{db}-10 \mathrm{kc}-4$. (Broad) $6 \mathrm{db}-1.3 \mathrm{kc} 60$ $\mathrm{db}-7 \mathrm{kc}$ - 5. (Sherrp) $6 \mathrm{db} .5 \mathrm{kc} 60 \mathrm{db}-5 \mathrm{kc}$.

ANTENNA INPUT IMPEDANCE: 52 to 600 ohms. HEADPHONE OUTPUT IMPEDANCE: 500 ohms. AUDIO OUTPUT IMPEDANCE: $3.2 / 500$ ohms. AUTOMATIC NOISE LIMITER: Series noise limiter operated by toggle switch on front panel.
CARRIER LEVEL INDICATOR: Calibrated in " S " units from 1 to 9 , decibles to 90 db over $\$ 9$, microvalts from 1 to 1000 K .
TUBE COMPLEMENT: 10 tubes plus 1 rectifier and 1 voltage regulator. 6 CB6: r-f amplifier - 6 AU6: 1 st mixer - 6C4: I st conv. osc. - 6BA6: 1650 kc i-f amplifier - 6BA6: 2nd mixer - 12AT7: dual crystal second conv. osc. - 6BA6: 50 kc i-f amplifier - 6BJ7: defector, AVC, ANL - 6SC7: audio amp. and BFO - 6K6GT: audio output - 6Y3GT: rectifier - VR.150: voltage regulator.
EXTERNAL CONNECTIONS: $3.2 / 500$ ohm speaker terminals, terminals for single wire or doublet antenna fexternal antenna provided), phono \{ack, AC power cord, socket for DC operation and remote control, audio output terminals, " S " meter electrical adjustment and mounting hole for co-axial cable connector. Phones jack on front panel. AUDIO POWER OUTPUT: 1.5 watts with 10% or less distortion.
POWER SUPPLY: $105 / 125 \mathrm{~V} .50 / 60$ cycle AC.
PHYSICAL DATA: Gray black steel cabinet with brushed chrome knob trim, patterned silver back plate and red pointers. Piano hinge top. Size $183 / 8^{\prime \prime}$. wide $\times 81 / 2^{\prime \prime}$ high $\times 10 \mathrm{~s} / 8$ " deep. Shipping weight approximately 43 lbs .

This latest addition to the Hallicrafters line provides superior single sideband suppressed carrier transmission plus AM and CW in a compact, stable and highly efficient unit measuring only $18^{\prime \prime} \times 93 / 4^{\prime \prime} \times 12^{\prime \prime}$.
The circuitry employs a proven pretuned r-f selective filter system. This system assures continued suppression of unwanted sideband energy in comparison to systems employing audio and r-f phasing devices whose unwanted sideband energy is always questianable. Built-in VFO.

FEATURES: Highly stable hetrodyne VFO system with 108:1 ratio gear drive. Stability comparable to most crystals $.009 \%$. Ample gain for -55 db microphone. Hum ond noise 40 db down. Full 55 watts peak linear power output on 80 meters. Unwanted sideband at least 40 db down. Undesired beat frequencies down 60 db or more. Provisions for coaxial output fitting. Matching low pass filters available. Built-in bias supply for final outboard amplifier. $T, V, 1$ suppressed control circuits and $A C$ power lines. Provides externol controlled voice operated system if required. Co-ordinated high power amplifier also available.
FRONT PANEL CONTROLS: Full band switching for 80 40,20 and 10 meters; full function control for double sideband, CW, upper, lower sidebands; V.F.O. tuning; P.A. plate tuning; speech level; carrier level 0 to 100%; meter selector; driver tuning; power off-standby-transmit; operation control-VOX-calibrate-MOX; Tuning V.F.O.; headphone jack. Crystal--V.F.O. switch.
TUBE COMPLEMENT: Twenty-one tubes plus voltage regulator and two rectifiers. Ist audio amplifier \& voice control. 2nd amplifier and phase splitter. 2nd voice control amplifer and relay control. 50 ke balanced modula.
tors. 50 kc master oscillator and phase splitter. 50 ke sideband filter amplifier. 1725-1625 kc conversion mixer. Phase splitter for upper or lower sideband ascillators. Upper or lower sideband oscillators. 8.6 ar 6.9 Mc second conversion mixers. 5.3 or 10.6 Mc hetrodyne crystal ascilld. for harmonic amplifier and phase splitter. V. F. O. Mixer. V. F. O. oscillator. V. F, O. harmonic amplifier and crystal oscillator. Buffer amplifer. Linear power amplifiers. Reclifier. Rectifier. VR-1 50: Voltage regulator.
REAR APRON CONNECTIONS: Receiver oulput-speaker -key- 100 V , bias supply-Ant. change over relay, 50 ohn coax fitting with separate 2 terminal strip for antenna connection-mike input.
POWER SUPPLY: Self contained.
PHYSICAL DATA: Complete unit fits into aftractive cabinet $18 \frac{1}{2 \prime \prime} \times 133 / 8^{\prime \prime} \times 9^{\prime \prime}$ over all. Shipping weight approxi. motely 70 lbs .

ELECTRICAL SPECIFICATIONS
POWER INPUT: 250 watts.
QUARTZ CRYSTAL SOCKET: One for spot frequency operation.
MICROPHONE INPUT: Standard mike connector. AUDIO FREQUENCY CHARACTERISTICS: 250.3000 cycles for voice transmission.

Crystal controlled double superhet selectable side band receiver.

model SX-96
Use Hallicrafters R-46A Speaker

Use Hallicrafters R-46A Speaker

hallicreftere

Here is the receiver that went to Clipperton Island and one of the finest to carry the name"Hallicratters." A receiver with more features and finer performance per pound of weight-per cubis inch of space-per dollars of cost-than any receiver built.

COVERAGE: Full coverage from 535 kc to 33.3 Mcs. in six bands.
TYPE OF CIRCUIT: Double conversion superheterodyne over the entire frequency range. Two tuned r-f stages on bands 2.6 , one funed r-f stage on band 1 .
TYPE OF SIGNALS: AM, CW and SSSC (Single side band suppressed carrier).
FEATURES: Dual separate 4 section tuning capacitors. Bond Width Control (Selectivity) from 250 cycles to 10 kc . Full precision gear drive for main and bandspread tuning. Exhalted B.F.O. for tops in single side band reception Buffer amplifier in B.F.O. circuir. Amplified and delayed A.V.C. Built-in 500 kc calibration crystal. Second conversion osciliators erystal controlled. Inertia tuning (fly wheels both diols). Calibrated electrical bandspread 160 , $80,40,20,15$ and 11.10 meters. Logging scales and dial locks on each funing shoft. Illuminated band-in-use indicafor and " S " meter. Outstanding stability plus two r-f stages and eight funed i-f circuits. A.V.C. operates on CW reception. Local oscillator circuits individually temperature compensated for each band. 50 kc i-f output jack via cothod follower for teletype converter, oscilloscopes, etc. CONTROLS: Main tuning and Bundspread Dial Indicators resetable for maximum calibration accuracy. Six position Band Selector, Volume 0.10 and AC/Off, Band Width (In kc: $10,5,2 \frac{1}{2}, 11 / 4,5$ and .250). Pitch (B.F.O. 5-0.5), Response (Bass Boost, High Fidelity, Normal, Communicafions). Antenna Trimmer (5-0-5). Sensitivity (0-10). Toggle Switches: Noise timiter On/Off; A.V.C. On/Off: Calibrator On/Off; Receive/Standby; CW.AM-SSSC

SENSITIVITY: Bands 2.6 : I nicrovolt for $1 / 2$ watt output or 1 microvalt for 10 db signal-to-noise ratio. Band 1 : 10 microvolts for $1 / 2$ watt output.

IMAGE REJECTION: Not less than 80 db on frequencies lower than 20 Mcs. Not less than 60 db on frequencies from 20-30 Mcs
SPURIOUS RESPONSE: (i-f and ascillator tweets): Not less thon 80 db except of 1700 kc where it is not less than 50 db .
CARRIER LEVEL INDICATOR: Illuminated "S" meter calibrated in both " S " units and microvolts.
TUBE COMPLEMENT: Seventeen tubes plus ane voltage regulator, one ballast tube and one rectifier.
EXTERNAL CONNECTIONS: Speaker Terminals $3.2 / 8 /$ 500-600 ohms; Antenna Terminals 52-600 ohms; AC acces. sory Socket 117V. at 250 wotts; Power Socket (Octal) for external power supply ta receiver, such as batteries, and in addition this socket supplies 6.3 volts at 600 ma . and 150 dc at 10 ma . for future occessories; Phono Jack; Fuse holder for $A C$ power circuit.
AUDIO POWER SUPPLY: 10 watt inverse feed back and push-pull oudio output.
POWER SUPPLY: $105 / 125$ V. $50 / 60$ cycles AC.
PHYSICAL DATA: Satin black steel cabinet with gray blue front panel and chrome trim. Size $20^{\prime \prime} \times 103 / 8^{\prime \prime} \times$ $18 \frac{1}{4}$ " deep (Standard $19^{\prime \prime \prime}$ panel for rack mounting). Shipoing weight approximately 85 ibs .
MODEL SX-88..
$\$ 595.00$

This new Hallicrafters receiver is destined to be a ham favorite. Smart new styling and feature packed to make this model stand out in its price range.

COVERAGE: Broadcast Band 540.1680 kc plus three Short-Wave Bands covers $1680 \mathrm{kc}-34 \mathrm{Mc}$
FEATURES: Over 1000 of calibrated bondspread over the 10, 11, 15, 20, 40 and 80 meter amateur bands on easy-lo-read dial. Separate bandspread tuning condenser, crystal filter, antenna trimmer, "S" Meter, one r.f, two i-f stages and new styling
CONTROLS: Antenna funing, sensitivity, band selector, main tuning, bandspread funing, volume, tone, standby, selectivity, crystal phasing, noise limiter.
INTERMEDIATE FREQUENCY: 455 kc .
BAND CHANGE MECHANISM: Ganged rotary wafer switch.
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Ganged, 3 section tuning capacitor assembly with elec trical bandspread. Circular main tuning dial is calibroted in megacycles and has $0-100$ logging scale.
ANTENNA INPUT IMPEDANCE: 52.600 ohm .

HEADPHONE OUTPUT IMPEDANCE: 500 ohms
AUDIO OUTPUT IMPEDANCE: 3.2 and 500 ohms. Headphone jack on front panel disables both.
TUBE COMPLEMENT: Seven tubes plus one rectifier. 6SG7: r-i amplifier - 6SA7: Converter - 6SG7: 1st iamplifer - 6SK7: 2nd i-f amplifier - 6SC7: BFO and audio amplifier - 6K6GT: Audio output - 6H6: ANL AVC-detector - - Y 3GT: Rectitier
EXTERNAL CONNECTIONS: Terminals for doublet or single wire antenna plus terminals for 3.2 and 500 ohm speakers on rear.
AUDIO POWER OUTPUT: 2 walts.
POWER SUPPLY: $105 / 125 \mathrm{~V}$. 50/60 cycle AC
PHYSICAL DATA: Gray black steel cabinet with brushed chrome trim and piano hinge top. Size $18 \frac{1}{8 \prime \prime}$ wide x $81 / 2^{\prime \prime}$ high $\times 11^{\text {" }}$ deep. Shipping weight approximately 36 lbs
MODEL 5×-99 (less speaker)
$\$ 149.95$

Double Conversion, Super Sensitive, Selective SX-88 Receiver

model SX-88
Use Hallicrafters R 46A Speaker

hellicrefters

Here is the world's finest receiver for the all-wave listener. Unequaled in coverage and performance on all bands-Standard Broadcast, Short-Wave or FM.

COVERAGE: Standard Broadeast from 550 kc through 1620ke, three Short-Wave bands $1.62 \mathrm{Mc}-32 \mathrm{Mc}$ and FM from 27 Mc to 109 Mc .
FEATURES: Single tuning control covers wide-vision dial with one band lighting at a time. A 500 kc crystal calibration oscillator built-in to check dial pointer accuracy. Temperature compensated, voltage regulated. Audio flat $50-15,000$ cycles; 10 watt push-pull audio output.
CONTROLS: Band Selector $550 \mathrm{kc}-1620 \mathrm{kc}, 1.62 \mathrm{Mc}-$ 4.9 Mc, 4.9 Mc-15 Mc, $15 \mathrm{Mc}-32 \mathrm{Mc}, 27 \mathrm{Mc}-56 \mathrm{Mc}$, 54 Mc- 109 Mc. Receive/Standby, Calibration Ocs. On/Off, Noise Limiter, Tuning, AF Gain, Phono/FM/AM/ CW, six-position selectivity, Four-position Tone, RF Gain, Calibration Resel.
INTERMEDIATE FREQUENCIES: Bands $1,2,3$ and 4 : 455 kc. Bands 5 and 6: 10.7 Mcs.
TYPE OF SIGNALS: Bands 1, 2, 3 and 4: AM/CW. Bands 5 and 6: AM/FM/CW.
BAND CHANGE MECHANISM: Six position ganged rotary wafer switch.
TUNING ASSEMBLY AND DIAL DRIVE MECHANISMS:
Ganged, 8 section, ball bearing luning capacitor assembly. Smooth acting inertia tuning control. Thirteen inch slide rule dial, each band individually illuminated. Crystal cali-
bration switch and dial pointer reset on front panel. ANTENNA INPUT IMPEDANCE: 52 to 600 ohms. HEADPHONE OUTPUT IMPEDANCE: High impedance. AUDIO OUTPUT IMPEDANCE: $3.2 / 8 / 500$. AUTOMATIC NOISE LIMITER: Series diode TUBE COMPLEMENT: Fourteen tubes plus voltage regulator and rectifier. (2) 6 AG5: RF Amp. - 7F8: Conv. 6SK7: IF Amp. - 6SG7: IF Amp. - 6SG7: IF Amp. 6SG7: FM Limiter and AM Det. - 6H6: FM Det. - 6H5: BFO - 6H6: ANL - 6SI7: Phase Inverter - (2) 6V6: Push-pull audio autput. - 6C4: Calibration Ose. VR.150: Regulator - 5U4G: Rectifier.
EXTERNAL CONNECTIONS: Terminals for doublet or single wire antenna on rear. 3.2/8/500—ohm audio ourputs. External antenna provided. Phone jack, socket for external power and remote control connections. Phone jack on front panel.
AUDIO POWER OUTPUT: 10 watts maximum.
POWER SUPPLY: $105 / 125 \mathrm{~V} .50 / 60$ eycles AC.
PHYSICAL DATA: Satin black steel cabinet with lighs gray front panel and chrome trim. Top opens an piano hinge. Size $20^{\prime \prime}$ wide $\times 10 \frac{1}{2}{ }^{\prime \prime}$ high $\times 16^{\prime \prime}$ deep.

MODEL SX-62A
 meter amateur bands calibrated on large easy-to-read dial. Over 1000° of calibrated bandspread for better selectivity on ham bands. Husky, full sized unit features separate bandspread tuning condenser and built-in PM 5" speaker.

COVERAGE: Broadcast band 540.1680 kc plus three S/W bands $1680 \mathrm{kc}-34 \mathrm{Mc}$.

FEATURES: Bandspread calibrated in over 1000 on 10 . 11, 15, 20, 40 ond 80 meter omateur bands. One r-f, two i-f and separate bandspread tuning condenser. Temperature compensated oscillator, oudio response to 10,000 cycles and built-in speoker.

CONTROLS: Sensitivily, band selector, tuning, bandspread, volume, AVC, noise limiter. AM/CW, on-off/tone, pitch control, standby/receive

INTERMEDIATE FREQUENCY: 455 kc
BAND CHANGE MECHANISM: Ganged rotary water switch.

TUNING ASSEMBLY AND DIAL DRIVE ASSEMBLY: Ganged, 3 section tuning capacitor assembly with electrical bandspread. Circulor main tuning diol is calibrated in megacycles ond has 0.100 logging scale.
ANTENNA INPUT IMPEDANCE: $52-600$ ohms.

HEADPHONE OUTPUT IMPEDANCE: High impedonce.
AUDIO OUTPUT IMPEDANCE: Voice coil impedance 3.2 ohms. High impedance headset output.
TUBE COMPLEMENT: Seven tubes plus rectifier: 6SG7: r-f amplifier - 6SA7: converter .-. 6SK7: 1st i-f amplifier -6SK7: 2nd i-f amplifier - 6SC7: BFO and oudio amplifier - SK6GT: audio output - 6H6: ANL, AVC, and detector - 5Y3GT: Rectifier.

EXTERNAL CONNECTIONS: Terminals for single or doublet antenna on rear. External antenna provided. Headphone jack on front.
AUDIO POWER OUTPUT: 2 walts.
POWER SUPPLY: Model S-85:105/125V. 50/60 cycles AC-Model 5 -86: $105 / 125$ V. 50/60 cyeles AC/DC.
PHYSICAL DATA: Gray-black steel cabinet with brushed chrome trim and red pointers. Piono hinge top. Size $18 \frac{1 / 2^{\prime \prime}}{}$ wide $\times 87 / 8^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep. Shipping weight opproximately 36 lbs.
MODEL S-85 or S-86 \$119.95

model SX-62A
Use Hallicrafters R-46A Speaker.

helliereftere

This famous Hallicrafters' radio, now with smant new styling, amazes even the experts with its superior performance. Featuring the same skillful engineering found in much higher priced communications sets make the S-38D ideal for the Short-Wave listener or new rodio amateur.

COVERAGE: Standard Broodcast from 540.1650 ke plus international reception on 3 Short. Wave Bands covering $1650 \mathrm{ks}-32 \mathrm{Mc}$.

FEATURES: large easy-ro-reod overseas dial with stations clearly morked. Oscillotor for reception of code and electrical bandspread. Separate luning control ond built in 5 * PM speaker

CONTROLS: Tuning dial, separote electrical bondspread dial with 0.100 scale, receive/stondby s witch, on-off/volume, AM/CW switch, band selector $540.1650 \mathrm{kc}, 1.65$-5Mc, $5.145 \mathrm{Mc}, 13.5 .32 \mathrm{Mc}$

INTERMEDIATE FREQUENCY: 455 kc
BAND CHANGE MECHANISM: four position rotary wafer switch
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM:
Two section funing gang with electrical bondspread. Vernier driven circular dial. Bandspreod dial marked 0.100.

AUDIO OUTPUT IMPEDANCE: Five inch PM speaker and low impedance output for headsel.

TUBE COMPLEMENT: Four tubes plus one rectifier: 12SA7: converter - I2SG7: IF omplifier and BFO 12SQ7 or $125 Q 7 G T / G:$ detector and audio omplifier 5016GT: audio output - 35Z5GT: rectifier.

EXTERNAL CONNECTIONS: Phone lip jacks ond terminals for single wire of doublet antenna, switch for speaker or heodphones on rear. Externol ontenna provided.

AUDIO POWER OUTPUT: One Watt

POWER SUPPLY: $105 / 125$ V. $50 / 60$ cycle $A C / D C$. Line cord $\{8701566\}$ for 220 V . AC/DC operotion ovcilable.

PHYSICAL DATA: Gray steel cabinet with silver dial frame and knob trim. Size $127 / 8^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 71 / 4^{\prime \prime}$ deep. Shipping weight 13 lbs .
usands of these precision-built Hallicrafters reseivers have proved their value with outstanding performances around the world. Unquestionably one of the finest built, it offers maximum performance while occupying minimum space. Several steps above the $5-380$ and tops in its price field.

COVERAGE: Standard Broadcast from $540-1630 \mathrm{kc}$ plus four Short-Wave bands over $2.5-31$ and $48-54.5 \mathrm{Mc}$. FEATURES: large easy-to-read overseas dial with international stations clearly marked. Electrical bandspread and logging scale. Five inch built-in PM speaker, jacks for headphones plus phonograph jack. Temperature compensoted to reduce fading due to frequency shift. Two stages of i.f.
CONTROLS: Main tuning in Mc, separate electrical band. spread with $0-100$ logging scale plus Mc calibration for 48-54.5 Mc band, receive/standby switch, band selector $540-1630 \mathrm{kc} ; 2.5-6.3 \mathrm{Mc} ; 6.3-16 \mathrm{Mc} ; 14-31 \mathrm{Mc}$; and $48-54.5 \mathrm{Mc}$. AM/CW switch, sensitivity phono control, noise limiter switch, on-off/volume, two position tone switch.
INTERMEDIATE FREQUENCY: 455 kc
BAND CHANGE MECHANISM: Five position rotory wafer switch.
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM:
Separate 2 section tuning capacitor assemblies for main funing and bandspread tuning. Overseas dial. Bandspread funing colibrated for $48-54.5 \mathrm{Mc}$.

ANTENNA INPUT IMPEDANCE: 300 ohms. HEADPHONE OUTPUT IMPEDANCE: is ohms. AUDIO OUTPUT IMPEDANCE: Five inch PM speaker and low impedance oulput for headset.
TUBE COMPLEMENT: Seven tubes plus one rectifer: 6C4: Osc. - 6BA6: Mixer - (2) 6BA6: IF Amplifier - 6H6: Der., AVC and ANL - 6SC7: BFO and AF amp. 6K6GT: Outpul - 5 Y3GT: Rectifier.
EXTERNAL CONNECTIONS: Phonograph jack, headphone tip jacks, speaker/phones switch, and terminals for doublet or single wire antenno on rear. External antenno provided.
AUDIO POWER OUTPUT: One wolt.
POWER SUPPLY: $105 / 125 \mathrm{~V}$. $50 / 60$ cycle AC.
PHYSICAL DATA: Sturdy satin black sleel cabinet with brushed chrome trim. Top opens on piano hinge. Size $127 / 8^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 7 \frac{1}{4}$ " deep. Shipping weight 19 lbs.

MODEL S-53A
$\$ 89.95$

the hallicrafters co.

hallicrefters

Two new high performance receivers replacing the popular Hallicraffers 5-81 and 5-82. Compact, easy-to-operate and covers police, fire, taxicab, bus, railroad, private telephone mobile, forestry and other industrial and emergency-service communications operating within models' frequencies. Newly engineered FM chassis provides low frequency drift and high signal-to-noise ratio.

COVERAGE: S-94: $30-50 \mathrm{Me}-\mathrm{S} 95: 152.173 \mathrm{Mc}$
FEATURES: Super sensitive, greally increased audio power output plus extremely reliable adjustable built-in relay squelch system to silence entire audio system until signal is received. Low noise grounded grid r-f amplifier, separate high gain d.c. amplifier for squelch system, wide impedance range antenna input system for exceilent performance with any antenna. Low oscillator radiation, greater frequency stability, sensitivity under $11 / 2$ microvolts, 2 i-f stages for extra sensitivity, and built-in 5 " PM speaker.
CONTROLS: Tuning with special logging scale assuring accuracy in logging or relocating stations. On-off/volume, squelch/off.

INTERMEDIATE FREQUENCY: 10.7 Mc .

TUNING ASSEMBLY AND DIAL DRIVE ASSEMBLY: Ganged, 2 section luning capacitor assembly. Circular dial calibrated in megacycles and principal service chan nels. O-100 logging scale.

ANTENNA INPUT IMPEDANCE: 300 ohms.

HEADPHONE OUTPUT IMPEDANCE: 100 ohms.
AUDIO OUTPUT IMPEDANCE: Five inch PM speaker. Low impedance headset output.

TUBE COMPLEMENT: Eight tubes plus one rectifier: 6AB4; Grounded grid low noise r-f amplifier - 12 AT7: High frequency oscillator/mixer -- (2) 12BAO; 1 sp and 2nd i-f amplifier - $12 \mathrm{AL5}$: Ratio detector - 6 BH 6 : Audio amplifier - 50L6GT: Audio oulput -. 12AU7: Squelch Selenium rectıfier.

EXTERNAL CONNECTIONS: Phone tip jacks and terminals for single or twin lead antenna, switch for speaker/ headphones on rear. External antenna provided.
AUDIO POWER OUTPUT: 1.5 walts, maximum.
POWER SUPPLY: $105 / 125 \mathrm{~V} .50 / 60$ cycle AC/DC. Mobile operation possible with external power converter.
PHYSICAL DAYA: Gray steel cabinet with silver trim panel and red pointer. Size $1278^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 7 \frac{1}{4}$ " deep. Shipping weight approximately $121 / 2 \mathrm{lbs}$.

PORTABLE LITTLEFONES: The Hallicrafters series of Littlefone FM two-way radio-lelephone units operate over a frequency of 25.54 Mc or $144-220 \mathrm{Mc}$. Crystal controlled with a total of 22 sub-miniature tubes, the complete portable model with antenna and hand-set weighs only $10 \frac{1}{2}$ to 14 lbs ., and will operate more than eight hours on the self-contained rechargeable batteries. Models for AC power line and $6 / 12$ volis DC operation employ the same r-f chassis as the portable unit; but un audio power output slage is added to drive the lnud speaker. Adjustable squelch controls available on all models. Power outputs 2 watts on $25-54 \mathrm{Mc}$ and up to 1 watt on 144.220 Mc lower powered diy battery models also available. Four inch loudspeakei may ulso be used on oll portable models. PORTABLE MODELS from $\$ 324.95$ (plus $\$ 17.02$ F.E.T.) to $\$ 399.95$ (plus $\$ 21.93$ F.E.T.)

CENTRAL STATION AND MOBILE LITTLEFONES have same performance and specifications as portable uniss Audio-amplifier, providing one waft of audio for loud speaker. Central station AC operated with 35 watts power consumption and plugs in any $A C$ outlet of 117 V . Mobile unit operates on $6 / 12$ volts DC input
CENTRAL STATION MOBILE
$\$ 450.00$ (plus $\$ 23.00$ F.E.T. $\$ 475.00$ (plus $\$ 25.50$ F.E.T.)

Precision-built communications speaker
This $10^{\prime \prime}$ PM speaker is the matching unit for any Hallicrafters or other receiver having a 3.2 ohm output. Featuring an 80 to 5,000 cycle range and 3.2 ohm speaker voice coil impedance. Gray black steel cabinet measuring $15^{\prime \prime}$ wide $\times 10 \% 8^{\prime \prime}$ high $\times 10 \frac{18}{\prime \prime}$ deep, shipping weight 15 lbs.
MODEL R-46A Speoker
$\$ 19.95$

Complete specifications on any model are available for you.
Specifications subject to change without notice.

Hallicrafters Main Plant, 4401 West Fifth Avenue - 150,000 sq. ft.

Serving the 'Ham'

for over 21 years!

N. J. Halligan, Jr.

Sales Manager
Communications

Fritz Franke
Product Mgr.
Conmmunications

Travis Marshall
Asit Sales Mgr.
Communicutions

Ray Bermond
Advertising Mg.

William Shaw Sertice Mgr.

Hallicrafters' growth, paralleling the fast moving and progressive science of Amateur Radio, now includes the new 200,000 sq. ft. 45th Street plant and Hallicrafters Canada, Ltd.

Your critical selection of our products has made this remarkable expansion possible.

Hallicrafters pioneered short-wave radio instruments as far back as 1934 for the same frequencies now used in television. No other company matches Hallicrafters extensive experience on these frequencies.

Hallicrafters • World's leading exclusive manufacturers of communications, television, radio and high fidelity equipment

Radid por youl.

 BRAND-NEW EDITION of G.E's RECEIVING TUBE HANDBOOK loosen. Book opens flat, stays open.Pocket size for convenience.

- Type style shows at a glance whether tube is glass, metal, or miniature.

Base diagram, with pin connections, is on same page as tube listing.

- Includes outline drawings of tubes, with dimensions.

Describes function of each tube ... gives max ratings and typical operating conditions.

- Special section provides basic circuit information.

Approximately 100 new tubes are described and rated.

1,700 types in all, including cathode-ray.

Germanium devices also listed.
Biggest help the amateur can have on his work-bench!

Available only from your G-E lube dişrributor!

Progress /s Our Most Important Product GENERAL (6) ELECTRIC

JAME S MILLENE芭 MALDEN •MASSASHUSETTS

ONE INCH

INSTRUMENTATION OSCILLOSCOPE

Miniaturized, packaged panel mounting cathode roy oscilloscope designed far use in instrumentation in plate of the canventional "pointer lype" maving coil meters uses the 1" ICPI fube. Panel bezel motches in size and type the standard $2^{\prime \prime}$ square meters. Mognitude, phose displocement, wave shape, eic. are cansiantly visible an scope screen. No. 90901 , less tube

INSTRUMENT DIAL

The No. 10030 is an extremely sturdy instrument type indicator. Control shaft has 1 to 1 ratio. Veeder type counter is direct reading in 99 revolutions and vernier scale permits readings to 1 part in 100 of a single revolution. Has builtsin dial lock and $1 / 4^{\prime \prime}$ drive shaft coupling. May be used with multi-revolution transmitter controls, etc., ar through gear reduction mechanism for control of fractianal revolution copacitars, etc., in receivers or laboratory instruments. No. 10030.

GRID DIP METER

The No. 90651 MILLEN GRID DIP METER is compact and completely self contained. The AC power supply is of the "transfarmer" type. The drum dial has seven calibrated unifarm length scales from 1.7 MC to 300 MC with generous over lops plus an orbitrory scale for use with special application inductors. Internal terminal strip permits battery operotion for ontenna measurement.
No. 90651 , with tube
Addioicnal inductors for Lawer Frequencics No. 46702-925 to 2000 KC No. 46703-500 10 1050 KC No. 46704-325 to 600 KC . No. 46705-220 to 350 KC

LABORATORY SYNCHROSCOPES

The $5^{\prime \prime}$ labaratory synchroscopes are available with ond without detector-video strips.
Model P-4-2, with rubes
Model P-4E-2, with fubes

MINIATURE SYNCHROSCOPE

The compact deslgn of the No. 90952, measurino only $71 / 2^{\prime \prime} \times 55 / 8^{\prime \prime} \times 13^{\prime \prime}$, ond weighing only 17 Ibs., makes ovoilable for the first time o truly DESIGNED FOR APPLICATION "field service" Synchroseope.

No. 90952, with Pubes.

CATHODE RAY OSCILLOSCOPES

The No. 90902 , No. 90903 and No. 90905 Rack Panel Oscilloscopes, for two, three and five inch tubes, respectively, are inexpensive bosic units comprising power supply, brilliancy and center ing eontris, safat; foatures, magnetic shielding, switches, pts. As a frammatter monitor, no addio tionol equipment or accessories are required. The well-known trapezoidal monitoring patierns are secured by feeding modulated corrier voltage from o pickup loop directly to vertical plates of the cothode roy fube and audia moduloting volt. age to horizontol plates. By the oddition of such units os sweeps, pulse generotors, amplifiers, servo sweeps, etc., oll of which con be convenientily and neotly constructed on companion rack panels, the original basic 'scope unit may be expanded ta serve any conceivoble industrial or loboratory application.
No. 90902, less fubes
No. 90903, less tubes
No. 90905 , less fubes

'SCOPE AMPLIFIER-SWEEP UNIT

 Vertical ond horizontal amplifiers alang with hardfube, saw tooth sweep gencrator. Complete wilh power supply mounted on o stondard $51 / 4^{\prime \prime}$ rock ponelNa. 90921 , with tubes

REGULATED POWER SUPPLIES

A compact, uncased, reguloted power supply, either for toble use in the laboratory or for incorporation os an integral part of larger equipmenis. Regulated, urirégulaled. hinta and filument wisl. toges provided.
Model 90201, less fubes............... . \$

90952

JAMEESMCLIEN M ALDEN •MASSSACHUSETSS

2101

STANDING WAYE RATIO BRIDGE

The Millen S.W.R. bridge provides easy and

 expensive measurement of standing wave ratio on ontennos using co-ox cable. As assembled the bridge is set up for 52 ohm line. A calibrated 75 ohm resistor is mounted inside the case for substitution in the circuit when 75 ohm line is used No. 90671.
PHASE-SHIFT NETWORK

A complete and laboratary aligned pair of phase. A complete and laboratary aligned pair of phase:
shift networks in a single compact $2^{\prime \prime} \times 17 / 6^{\prime \prime} \times 4^{\prime \prime}$ shift networks in a single campact 2×1 case with characteristics so as to provide a phase
shift between the two networks of $90^{\circ} \pm 1.3^{\circ}$ over - frequency range of 225 cycles to 2750 cycles. This unit is equaliy well adapted for use in either single sidebond transmitting or receiving equipment. When used in a suitably designed transmitter it is passible to obtain a 40 db suppression of the unwonted sideband. The No. 75012 precision adjusted phase-shift network makes passible the building of single sideband equipment without the necessity of complicated laboratory equipment for network adjustment. No. 75012

R9'er MATCHING PREAMPLIFIER

The Millen 92101 is an electronic impedance

 matching device and o broad-band preamplifier combined into a single unit, designed primarily for operation on 6 and 10 meters. Coils for 20 meter band also available. No. 92101 , less tubes
50 WATT EXCITER-TRANSMITYER

Modern design includes features and shielding for TVI reduction, bandswitching for 4-7-14-21-28 megocycle bands, circuit metering. Conservotively rated for use either as a transmitfer or exciter for high power PA stages. 5763 oscillator-buffer- multiplier and 6146 power amplifier. Rack mounted. No. 90801 , less pubes

VARIABLE FREQUENCY OSCILLATOR

The Na. 90711 is a complete transmitter control unit with 6SK7 temperature-compensated, electron coupled ascillator of exceptianal stability and low drift, a 6 SK7 broad-band bulfer or frequency doubler, a 6A67 tuned amplifier which tracks with the ascillator funing, and o regulated power supply. Output sufficient to drive on 607 is available on 160,80 and 40 meters and reduced output is available on 20 meters. Since the output is isolated available on 20 meters. Since the output is isoloted
from the ascillotor by two stages, zero frequency thift occurs whem the output lood is varied from open circuit to shart circuit. The entire unit is unusually solidly built sa thot no frequency shift occurs due to vibration. The keying is clean and free from all annoying chirp, quick drift, jump, and similar difficullies often encountered in keying variable frequency oscillators.
No. 9071 1. with tubes

HIGH VOLTAGE POWER SUPPLY

The No. 90281 high voltage power supply has a d.e. output of 700 volts, with maximum current of 235 mo . In addition, o.c. filament power of 6.3 volts at 4 amperes is also available so that this power supply is on ideal unit for use with tronsmitters, such as the Millen No. 90801, os well as general laborotory purposes. The power supply uses two No. 816 rectifiers. The panel is standard $83 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack mounting
No. 90281 , less tubes

HIGH FREQUENCY RF AMPLIFIER

A physically small unit copable af a power autput of 70 to 85 watts on 'phane or 87 to 110 watts on $\mathrm{C}-\mathrm{W}$ on $20,15,11,10,6$ or 2 meter amateur bands. Provision is made for quick band shift by meons of the new No. 48000 series VHF plug-in coils. The No. 90811 unit uses either an 829-B or coils.
3 E29.
No. 9
No. 90811 with 10 meter band cails, less tube.

RF POWER AMPLIFIER

This 500 watt amplifier moy be used os the basis of a high power amateur transmitter. The Na. 90881 RF power amplifier is wired for use with the popular " 812 A " type tubes. Other popular tubes moy be used. The amplifier is of unusually sturdy mechanical construction, on a $101 / 2^{\prime \prime}$ relay rack panel, Plug-in inductors are furnished for operation an 10, 20, 40 or 80 meter amateur bands. The standard Millen No. 90801 exciter unis is an ideal driver for the new Na. 90881 RF power amplifier.
No. 90881 , with one set of coils, but less tubes...................................... . $\$$

90281

MALDEN •MASSSACHUSETTS

0

TUBE SOCKETS

 DESIGNED FOR APPLICATIONMODERN SOCKETS for MODERN TUBES! Long Flashover path to chassis permits use with tronsmitting tubes, 866 rectifiers, etc. Long leakoge path between contacts. Contacts are type proven by hundreds of millions already in government, commercial and broodcast service, to be extremely dependoble. Sockets may be maunted either with or without metal flange. Mounts in standard size chassis hole. All rypes have barrier between contacts and chassis. All but octol and crystal sockets alsa have barriers between individual contacts in oddition.

The No. 33888 shield is for use with the 33008 octal socket. By its use, the electrostatic isolation of the grid and plate circuits of single-ended metal fubes can be increased to secure greater stoblity ond gain.

The 33087 rube clomp is easy to use, easy to install, effective in function. Available in special sizes for all types af tubes. Single hole mounting. Spring steel, cadmium ploted.
Coviry Sockel Contact Dises, 33446 are for use with the "Lighthouse" ultra high frequency rube. This set consists of three different size unhardened
beryllium capper multifinger contact discs. Heat beryllium capper multifinger contact discs. Heat treating instructions forwarded with each kit for hardening ofter spinning or forming to frequancy requirements.

Voltage regulator dual contact bayonet socket, 33991 black phenolic insulction ond 33992 with low lass high leakage mica filled phenolis insulotion.
Na. 33004
No 33005
No. 33006
No. 33007
No. 33008
No. 33888
No. 33087
No. 33002
Na. 33102
Na. 33202
No. 33302
No. 33446*
No. 33991
No. 33992

* For set of 3 . Single discs $\$ 0.00$ each.

FLEXIBLE COUPLINGS

The No. 39000 series of Millen "Designed for Ap. plication" flexible coupling units include, in addition to improved versions of the conventional types, also such exclusive original designs as the No. 39001 insulated universol joint and the Na. 39006 "slideaction" caupling (in both steatite and bakelite insulation).
The No. 39006 "slide.action" coupling permits longifudinal shaft motion, eccentric shoft motion and out-of-line operotion, as well os angular drive withour backlash.
The Na. 39005 is similar to the No. 39001 , but is not insululed and is designed for applications where relatively high for que is required. The steatite insulated No. 39001 has a special anti-backlash pivot ond socket grip feature. All of the above illustrated units are for $1 / 4^{* *}$ shoft and are stand ard praduction type units. The Na. 39016 incorporates features which have long been desired in a flexible coupling. Na Back Lash-Higher Flexibility-Higher 8reakdawn Voltage-Smaller Diameter-Shorter Length-Higher Allgnment Accuracy-Higher Resistance to Mechanicol Shock-Solid Insuiating Borrler Diaphragm-Molded as o Single Unit.
No. 39001
No. 39002
No. 39003
No. 39005
No. 39006
No. 39016

04000 and 11000 SERIES

 TRANSMITTING CONDENSERSA new member of the "Designed for Application" series of transmitting variable air capacitors is the 04000 series with peak vollage ratings of 3000,6000 , and 9000 volts. Right angle drive, 1-1 ratio. Adjustable drive shaft angle for eilher vertical or sloping panels. Sturdy construction, thick, roundedged, polished aluminum plates with $13 / 4^{\prime \prime}$ radius. Constant impedance, heavy current, multiple finger rotor contactor of new de. sign. Available in all normal capacities.
The 11000 series has 161 ratio center drive and fixed angle drive shaft.

Code	Volts	Capacity	Prise
11035	3000	35	$\$$
11050	3000	50	
11070	3000	70	
04050	6000	50	
04060	9000	60	
04100	6000	90	
04200	3000	205	

12000 and 16000 SERIES TRANSMITTING CONDENSERS

Rigid heavy channeled aluminum end plates. Isolantite insulation, polished or plain edges. One piece rotor contact spring and connection lug. Compact, easy to mount with connector lugs in convenient locations. Same plate sizes as 11000 series above.
The 16000 series has same plate sizes as 04000 series. Also has constant impedance, heavy current, multiple finger rotor contactor of new design. Both 12000 and 16000 series available in single and double sections and many capacities and plate spacing.

THE 28000-29000 SERIES VARIABLE AIR CAPACITORS

"Designed for Application," double bearings, steatite end plates, cadmium or silver plated brass plates. Single or double section $.022^{\prime \prime}$ or $.066^{\prime \prime}$ air gap. End plate size: $19 / 16^{\prime \prime} \times 1116^{\prime \prime}$. Rotor plate radius: $3 / 4^{\prime \prime}$. Shaft lock, rear shaft extension, special mounting brackets, etc., to meet your requirements. The 28000 series has semi-circular rotor plate shape. The 29000 series has approximately straight frequency line rotor plate shape. Prices quoted on request. Many stock sizes.

NEUTRALIZING CAPACITOR

Designed originally for use in our own No. 90881 Power Amplifier, the No. 15011 disc neutralizing capacitor has such unique feafures as rigid channel frame, horizontal or vertical mounting, fine thread over-size lead screw with stop to prevent shorting and roter lock. Heavy rounded-edged polished aluminum plates are $2^{\prime \prime}$ diameter. Glazed Steatite insulation.
No. 15011
\$

THRU-BUSHING

Efficient, compact, easy to use and near appearing. Fits $1 / 4^{\prime \prime}$ hcle in chassis. Held in place with a drop of solder or a "nick" from a crimping lool.
No. 32150 .

MALDEN M MASSSACHUSETTS

The Millen "Designed for Application" line of I.F. transformers includes air condenser tuned, and permeability funed types for all applications. Standard stock units are for 456,1600 and 5000 ke.B.F.O.also available.

PERMEABILITY TUNED CERAMIC FORMS

In uddilion to the populur shielded plug-ln permeability tuned forms, 74000 series, the 69040 series of ceramic permeability tuned unshielded forms are avoilable as standard stock items. Winding diometers and lengths of winding space are $13 / 32 \times \% / 32$ for $6904 \mathrm{I}^{1-2 ; 1 / 4 \times 3 / 6 \text { for } 69043-7-8 \text {; }}$ $1 / 2 \times 11 / 16$ for $69045-6 ; 3 / 16 \times 3 / 16$ for 69044 . No. 69041 -(Copper Slug) No. 69042-(Iron Core)
No. 69043-(Iron Core)
No. 69044 -(Copper Slug) No. 69045 -(Capper Stug) No. 69045 -(Capper S.ug
No. 69046 - (Iron Core).
No. 69046-(Iron Core)
No. 69047 - Copper Slual No. 69048-(Iron Core)
Many have copied, few have equalled, and none hove surpassed the genuine original design Millen Designed for Application series of midget RF Chokes. The more popular styles now in constant production are illustrated herewith. Special styles and variations to meet unusual requirements quickly furnished.
Figures 1 ond 4 illustrate special types of RF chokes available on order. The popular 34300 and 34200 series are shown in figures 2 and 3 respectively.
General Specifications: $2.5 \mathrm{mH}, 250 \mathrm{~mA}$ for types $34100,34101,34102,34103$, 34104 , and $1 \mathrm{mH}, 300 \mathrm{~mA}$ for types 34105 , $34106,34107,34108,34109$.
No. $34100 . .$. $\$$
No. 34101
No. 34102
No. 34103
No. 34104

MIDGET COIL FORMS

Made of low loss mica filled brown bakelite. Guide funnel makes for easy threading of leads through pins.
No. 45000.
\$
No. 45004
No. 45005

OCTAL BASE AND SHIELD

Low loss phenolic base with octal socket plug and aluminum shield con $19 / 16 \times 1 \% \times 3^{13 / 16}$.
No. 74400. \qquad \$

I.F. TRANSFORMERS

JAM邑 M A L DEN

CERAMIC PLATE OR GRID CAPS

Soldering lug and contact one-piece. Lug ears annealed and solder dipped to facilitate easy combination "mechanical plus soldered" connection of cable.
No. 36001-9/16'
No. 36002-3/8"
No. $36004-1 / 4^{\prime \prime}$

SNAP LOCK PLATE CAP

For Mobile, Industrial and other applications where tighter than normal grip with multiple finger 360° low resistance contact is required. Contact self-locking when cap is pressed into position. Insulated snap button at tep releases contact grip for sasy removal without damage to tube.
No. 36011-9/16" No. 36012 - $3 / \mathrm{s}^{\prime \prime}$.

SAFETY TERMINAL

Combinalion high voltage lerminal and thrubushing Tapered contact pin fits firmly into conical socket providing large area, low resistance connection. Pin is swivel mounted in cap to prevent twisting of lead wire. No. 37001 i, Black or Red. \$
No. 37501 , Low loss.

TERMINAL STRIP

A sturdy four-terminal strip of molded black Textolite. Barriers between contacts. "Non furning" studs, threaded 832 each end. No. 37104

POSTS, PLATES and PLUGS

Designed for Application! Compact, easy to use. Made in black and red regular bakelite as well as low loss brown mica filled bakelite or steatite for R.F. uses. Posts have captive head.
No. 37202 Plates (pr.).
No. 37212 Plugs.
No. 37222 Posts (pr.)

STEATITE TERMINAL STRIPS

Terminal and lug are one piece. Lugs are Navy turret type and are free floating so as not to strain steatite during wide temperature variations. Easy to mount with series of round holes for integral chassis bushings.
No. 37302
$\$$
No. 37303
No. 37304
No. 37305
No. 37306

CATHODE RAY TUBE SHIELDS

For mony years we have speciolized in the design ond manufocture of magnetic metal shields of nicoloi and mumetal for cothode ray tubes in our own complete equipment, as well as for applications of all other principal complete equipment monufocturers. Stock types as well as speciol de. signs to customers' specificotions promptly ovoilable. No. 80045-Nicoloi for 5BPI
No. 80055-Nicolo for 5CPI.
No. 80043 -Nicului for $3^{\prime \prime}$ rulue.
No. 80042 -Nicoloi for $2^{\prime \prime \prime}$ tube.

BEZELS FOR

CATHODE RAY TUBES
Stondord types are of satin finish block plostic. $5^{\prime \prime}$ size hos neop, ene support cushion and green lucite filter, $3^{\prime \prime}$ and $2^{\prime \prime}$ sizes have integra! cushioning. No. 80075-5"
No. 80073-3"
No. 80072 - $2^{\prime \prime}$
No. 80071 "
No. 80071-
Woridradio ilistory

MINIATUHIZEID

DESICNEI for APPLICATION miniaturized compoimts develomed for use in our own equipment such as the not) Oscillosiope, are now available for separate sale. Uany of these parts are similar in most details exrept size vilh their pquivalents in our standard component parts (roup and in certain devices where complete miniaturizaion is not paramonnt, a combination of standard and niniature components may prsibly be used to adrantage. -or convenience. we have also listed on this page the exremely small sized coil forms from our standard catalogne. IIditional miniature and subminiature components are in brocess of design and will he announced shortly.
:ODE DESCRIPIION NET PRICE
1006Matches standard knabs in style. Black plastic withbrass insert. For $1 / 0^{\prime \prime}$ shaft. Overall height $1 / 2^{\prime \prime}$. Diam.eter $3 / 4^{\prime \prime}$.

CODE
A019
A061 Shaft lack far $1 \mathbf{1 0}^{\prime \prime}$ diameter shaft. $1 / 4^{\prime \prime}-32$ bushing. Nickle ploted brass.

A066 Shaft bearing far $1 / 0^{\prime \prime}$ diameter shafts. Niekle plated brass. Fits ${ }^{17 / 4} \mathbf{4}^{4}$ diameter hole
EOO1 Steatite standaff ar tie-paint integral maunting eyelet . 205 averall diameter. Bax of five
1300-500 Iran care RF chake 500 uh.
J300-1000 Iran care RF choke 1000 uh.
J300-2500 Iron core RF choke $21 / 2 \mathrm{mh}$.
MOO3 Solid caupling for $1 / \mathbf{1 " \prime}^{\prime \prime}$ diameter shaft. Niekle plated brass.
M008 Universal ioint style flexible coupling. Spring finger. Steatite insulation. Nickle plated brass for $1 / 1^{\text {th }}$ diameter shafts.
Insulated coupling, with nickle plated brass inserts or $1 / 0^{\prime \prime}$ diameter shafts.
Insulated shaft extensian for mounting sub miniature potentiameter with $1 / 6^{\prime \prime}$ diameter shafts and $1 / 4 "-32$ bushing.
Steatite coil form. Adiustable core. Top tuned. Tapped $4-40$ hole in case for mounting. Winding space $1 / 4^{\prime \prime}$ diameter $\times 13 / 2^{\prime \prime}$ length.
Steatite cail form. Adiustable brass core. Bottom tuned. Mounting by No. 10.32 brass base. Winding spoce .187 diameter by $3 / 16^{\prime \prime}$ length.

JAMESAMULEN MALDEN•MASSACHUSETTS

Midget Absorption Frequency Meters

Many amateurs and experimenters do not realize that one of the most useful "tools" of the commercial transmitter designer is a series of very small absorption type frequency meters. These handy instruments can be poked into small shield compartments, coil cans, corners of chassis, efc., to check harmonics; parasitics; oscillator-doubler, etc., tank tuning; and a host of other such applications. Quickly enables the design engineer to find out what is really "going on" in a circuit.

Types 90605 thru 90609 are extremely small and designed primarily for engineering laborotory use where they
will be handled with reasonable care. The most useful combination being the group of four under code No. 90600 and covering the total range of from 3.0 to 140 megacycles. When purchosed in sets of four under code No. 90600 a convenient carrying and storage case is included. Series 90601 are slightly lorger and very much more rugged. They are further protected by a contour fitting transparent polystyrene case to protect against damage and dirt. This latter series is designed primarily for field use and ore not quite as convenient for laboratory use as the 90605 thru 90608 types All types have dials directly calibrated in frequency

Code	Description	Net Price
90604	Range 160 to 210 mc .	\$
90605	Range 3.0 to 10 mc .	
90603	Range 9.0 to 23 mc .	
90607	Range 23 to 60 mc .	
90608	Range 50 to 140 mc .	
90609	Range 130 to 170 mc .	
90610	Range 105 to 150 mc .	
90619	Range 350 to 1000 kc . - Neon Indicator	
90620	Range 150 to 350 ke . - Neon Indicator	
90825	Range 2 to 6 mc . - Neon Indicator	
90626	Range 5.5 to 15 mc . - Neon Indicator	
90600	Complete set of 90605 thru 90608 , in case	
90601	Complete set Field type Frequency Meters in metal carrying case 1.5 to 40 mc .	

NEW YORK
Cooper-DiBlasi 259 W. 14th Street PHILADELPHIA
L. D. Lowery

50 E. Wynnewood Rd. 915 Westfield Blvd.
Wynnewood

SEATTLE
V. Jensen 2616 Second Avenue

INDIANAPOLIS
V. MacNabb

SAN FRANCISCO Moulthrop \& Hunter 160 Tenth Street CHICAGO G. G. Ryan

549 W. Washington Blvd.

Harry Gerber
739 Boylston Street

DISTRICT SALES OFFICES

APPROVED PRECISION PRODUCTS

APPROVED PRECISION PRODUCTS

Specify

 MALLORYAsh your distributor for a copy of the complete Mallory Catalog of Electronic Components.

CAPACITOES - CONTROIS - VIBRATOES - SWIICHES - HESISTORS RECTIFERS - FOWER SUFPLES - FHTER . MEREUEY BAIIERIES APPROVED PRECISION PRODUCTS

Nationals

The HRO Sixty - latest and greatest of a great series! Now, in addition to all the wonderful fegtures of previous HRO's, you get dual conversion on all/frequencids above 7 mes plus 12 permeability-tuned circuits in the three 456 -kcs. I. F. stages! Other features include current-regulated heater's in the highfrequency oscillator and the 6BE6 mixer. Highfrequency oscillator and S-meter amplifier are voltage regulated.
Be sure to see and hear the ultimate - the HRO Sixty!

COVERAGE:

$50.430 \mathrm{kc} ., 480 \mathrm{kc} .-35 \mathrm{mc}$. And 50.54 mc . Voice CW. NFM (with adaptor).

FEATURES:

Edge-lighted, direct frequency-reading scale with one range in view at a time. 3 I.F. stages at 456 kcs . employing 12 permeability-funed circuits on all bands plus one I.F. stage at 2010 kcs . on all frequencies above 7 mcs . Switching is done automatically when coil set is plugged in. Built-in, isolated heavy-duty power, supply. Sensitivity of 1 mv. or better at 6 db . sig. noise. Selectivity variable from 8 kc . overall to app. 1200 cps . of 40 db . Current-regulated high frequency oscillator and second converter heaters. Yoltage-regulated high frequency oscillator and S-meter amplifier. Negligible drift after warm-up. Micromefer dial for logging. Provision for erystal/calibrator unit. Variable ont. trimmer. Lively S -meter. Min. fubes in front end and figh freq. osc. Osc. circuits nof disabled when receiver in send position. Highfidelity push-pull audio ($\pm 2 \mathrm{db} 50-15,000 \mathrm{cps}$.) with phono jack. BFO switch separated from BFOfreq. control. Illumination dimmer control. Accessory socket for Select-O-Ject.

HRO-60 (DE LUXX)

(HRO-SIXTY Rack receiver with rack, speaker and 10-coil compartment. Coils A, B, C, D included). Standard finish, smcoth grey

CONTROLS:

Bandswitch, Oscillator, Tone, Anl. Trimnier, Dimmer, AVC, Limiter, AF Gain, Calibration, CWO, Phasing, Selectivity, On-Off, RF gain, AM-NFM-PHONO.

TUBE COMPLEMENT:

6BA6, 1 st r.f.; 6BA6, 2nd r.f.; 6BE6, mixer; 6C4 h.f. oscillator; 6BE6, 2nd high-frequency conv.; 6SG7, ist i.f.; 6SG7, 2nd i.f.; 6SG7, 3rd h.f.; 6 H6 det. \& a.v.c.; 6H6, q.n.1.; 6SJ7, Ist audio; 6SN7, phase splitte and S-meter amp., 6VGGT (2) p.p. audio; $5 V 4 \mathrm{G}$, rect.; $6 S 1 又$, b.f.o.; OB2, volt reg.; 4 H 4 Osc. Fil. Cur. Reg.

SIZE

Table $193 / 4^{\prime \prime}$ wide $\times 101 /^{\prime \prime}$ high $\times 161 / 2^{\prime \prime}$ deep. Rack: $19^{\prime \prime}$ wide $\times 10^{1 / 2^{\prime \prime}}$ high $\times 17 \sum 16^{\prime \prime}$ from rear of front panel incl. $11 / s^{\prime \prime}$ handle.

RECEIVERS AND ACCESSORIES:

HRO-60R - Rack model receiver with A, B, C, D coil sels HRO-60T-Table model receiver with A, B, C, D coil sets HRO-GORS - Rack Model Speaker
HRO-60TS - Table Model Speaker
HRO-60 - Deluxe Receiving Installation
(Consists of HRO-60R with A, B, C, D coil sets, HRO-60-
SC2 speaker and coil container MRR-2 Tabla Rack.)
HRO-60-SC2 - Speaker and container for 10 cail sets HRO-60-XCU-2 - 100/1000 Kc. crystal calibratok
HRO - $650 \mathrm{~s}-6 \mathrm{v}$. vibrator type supply
MRR-2 - Table Rack
NFM-83.50-Narrow Band FM adaptor
SOJ-3-Select-O.Ject

ADDITIONAL COIL SETS:

Each HRO. 60 is supplied with coil sets A, B, C, D as standard equipment. These coil sets provide complete coverage between 1.7 and 30 Mc., plus bandspread operation of the amateur 80, 40, 20 and 10-11 meter bands. The other coil sets listed below art optional equipment at extra charge to provide additional ffequency coverage, as may be required. Although coil sets may be purchased at any time, it is recommended that they be ordered with the receiver in order to insure the greatest possible accuracy of caliatration ond alignment. Each coil sel furnished with calibrated lucite scale for direct reading dial.
HRO-60AA - 27.30 Mc .
HRO-60AB - 25.35 Mc .
HRO.60AC - 21.21 .5 Mc .
HRO-60AD - 50-54 MC.
*HRO-60A - 14.30 Mc. (Bandspread 27-30 Mc.)
*HRO.60B - 7-14.4 Mc. (Bandspread 14.0-14.4 Mc.)
*HRO -60C - 3.5-7.3 Mc. (Bandspread 7.0.7.3 Mc.)
*HRO-60D - 1.7-4.0 Mc. (Bandspread 3.5-4.0 Mc.)
HRO-60E - 900-2050 Kc.
HRO-60F - $480-960 \mathrm{Kc}$.
HRO-60G - $180-430 \mathrm{Kc}$.
HRO-60H - 100.200 Kc.
HRO-60J-50-100 Kc.
*Furnished with each HRO-60 os slandard equipment.

Nationalo

NC-98

For shortwave listeners, novices and experienced umateurs, here's a receiver that tops them all for value! Compare these features:
1 Crystal filter and S meter
2 Calibrated bandspread for $80,40,20,15,11$ and 10 meter bands torge $6^{\prime \prime}$ indirectly lucite scales)
3 Advanced A.C. superhet circuit uses 8 high gain miniature tubes plus rectifier
4 covers 540 kes. to 40 mcs . in 4 bands
5 luned R.F. stage
6 two I.F. stages
7 2audio stages with phono input and 2-position tone control

> antenna trimmer
> separate high frequency oscillator
> sensitivity control
> series valve noise limiter
> delayed A V.C.
> headphone jack
> standby-receive switch
> conelrad (CD) frequencies clearly marked

TUNING SYSTEM

The main tuning and bandspread tuning capacitors are connected in parallel on all bands. This arrangement permits bandspread tuning at any frequency within the range of the receiver and a logging scale is provided. One RF Stage is employed on all bands and the trimmer for the lst RF stage is controlled from the front panel. Dial calibration is as follows:
Band General Coverage Bandspread
A
B
1.6 - 4.7 Mc .
$\begin{array}{lrl}\mathrm{C} & 4.7 & -14.0 \mathrm{Mc} . \\ \mathrm{D} & 14.0 & -40.0 \mathrm{Mc} . \\ & & 14.0-14.35 \mathrm{Mc} .\end{array}$
$14.0-14.35 \mathrm{Mc}$.
$20.4-21.5 \mathrm{Mc}$.
26.9-30.0 Mc.

SENSITIVITY

One RF and two IF stages are employed in a modern superheterodyne circuit to give the receiver adequate sensitivity ond image rejection.

selectivity

Approximately 11 KC at 20 DB down.

AUDIO SYSTEM

Undistorted 'Power Output. 1.5 Watts
Frequency Response (ot 3 DB points)
Tone Control at Hi 100 to 4000 C.P.S.
Tone Control at lo 100 to 2000 C.P.S.
Output Impedance at phone jack. Not Critical A separate 3.2 ohm external P.M. speaker can be plugged into this outlet.
A phono input jack suitable for crystal pickup, is provided at the rear of the receiver. To operate, the "Sensitivity" Control is turned to zero.

TUBE COMPLEMENT

The NC. 98 is supplied complete with tubes which are employed as follows:
First R.F. Amplifier. GBA6
Mixer.. 6BE6
H.F. Osc. 6BD6
Second l.F. Amplifier. 6BD6
2nd Detector - A.V.C. Limiter 6 AL5
First Audio and BFO. 12AX7
Audio Output 6AQ5
Rectifier. 5Y3/GT

CONTROLS

Main funing; bandspread funing; band selector; sensitivity; AC on/off - volume; receive/standby switch; ANL On/Off switch; tone Hi -Lo switch; CWO pitch; antenna trimmer; AM/CW switch.

FINISH

Hammertone Gray enamel

SIZE

$83 / 4^{\prime \prime}$ high $\times 161 / 2^{\prime \prime}$ wide $\times 101 / 2^{\prime \prime}$ deep (excluding knobs).

SHIPPING WEIGHT

30 lbs.

POWER CONSUMPTION

65 Watts

Special bandspread dial calibrated for short wove listening ($17,19,25,31$ and 49 megacycles) also available.

For shortwave listeners, novices and experienced amateurs, here's a receiver that tops them all for value!
Compare these features:
1 Calibrated bandspread for $80.40,20$, $15,1 /$ and 10 meter bands (large 6" indirectly-lighted lucite scales)

TUNING SYSTEM

The main tuning and bandspread tuning capacitors are connected in parollel on all bands. This arrangement permits bandspread funing af any frequency within the range of the receiver and a logging scale is provided. One RF Stage is employed on all bands and the trimmer for the lst RF stage is controlled from the front panel. Dial calibration is as follows:
 superheterodyne circuit to give the receiver adequate sensitivity and image rejection.

SELECTIVITY

Approximataly 11 KC at 20 DB down.

AUDIO SYSTEM

Undistorted Power Output 1.5 Watts Frequency Response (a† 3 DB points)

Tone Control at Hi 100 to 4000 C.P.S
Tone Control at Lo 100 to 2000 C.P.S.
Output Impedance at phone jack. Not Critical A eparate 3.2 ohm external P.M. speaker can be plugged info this outlet.
A phono input jack suitable for crystal pickup, is provided at the rear of the receiver. To operate, the "Sensitivity" Control is turned to zero.

2 Advanced A.C. superhef circuit uses 8 high gain miniafure fubes plus rectifier
3 covers 540 kcs. to 40 mes. in 4 bands 4 funed R.F. stage
5 two I.F. stages
62 ardid stages with phono input and 2 position tone contral
7 budtin speaker
8 antenna trimmer
9 separate high frequency oscillator
10 sensifivity control
11 series valve noise limiter
12 delayed A.V.C.
13 headphone jack
14 standby-receive switch . . .

TUBE COMPLEMENT

The NC-88 is supplied complete with tubes which are employed as follows:
First R.F. Ampliffer . 6BA6
Mixer......... 6BE6
H.F. Osc.. 6 C4

First I.F. Amplifier . 6806
Second I.F. Amplifier . 6BD6
2nd Detector - A.V.C. Limiter. 6AL5
First Audio and BFO . 12AX7
Audio Output. 6 AQ5
Rectifier . 5Y3/GT
CONTROLS
Main tuning; bandsplead funing; band selector; sensitivity; AC on/off - volume, receive/stand by switch. ANL On/Off switch; tone Hi -Lo swhitch; CWO pitch; antenna trimmer; AM/CW switch.

FINISH

Hammertone Gray enamel.
SIZE
8 $3 / 4^{\prime \prime}$ high $\times 161 / 2^{\prime \prime}$ wide $\times 101 / 2^{\prime \prime}$ deep. (excluding knobs)
SHIPPING WEIGHT
30 lbs.
POWER CONSUMPTION
65 Watts
PRICE
NC-88 Table Model, \$119.95
*Slightly higher West of the Rogkies.
Special bandspread dial calibrated for short wave listening ($17,19,25,31$ and 49 megacycles) also available, $\$ 3.00$ net

FOR COMPLETE RECEIVER CATALOG WRITE DEPT. 55 NATIONAL COMPANY, INC., 61 SHERMAN ST., MALDEN 48, MASS.

National

NOTE AND COMPARE

THESE FEATURES

- New Miniature Tubes
- 3 Stages of I.F.
- New Lucite Dials
- Dual Conversion
- 15 Meter Band Spread
- G-Meter-Band
- Sharp I.F. 12 Permeability Tuned Circuits) No Sacrifice in Nose Selectivity
- Push Pull Audio Output
- Two Stages of R.F.
- Broadcast Band

TUNING SYSTEM

The main tuning and bandspread funing capacitors are connected in parallel on all bands. This arrangement permits bandspread tuning at any frequency within the range of the receiver: Two RF stages are employed on all bands and the trimmer for the lst RF stage is controlled from the front panel. Dial calibration is as follows:

Boind	General	ge		ndspre	
A			47	- 55	Mc.
B	12	Mc.	26.5	- 30	Mc.
			20.0	-21.5	Mc.
			14.0	- 14.4	Mc.
C	4.4 -		6.9	- 7.3	Mc.
D	$1.55-$	Mc.	3.5	- 4	Mc.
E	0.54 -				

SENSITIVITY

Measured with a standard 300 ohm dummy antenna, sensitivity of the NC-183D is better than 1.5 microvolts for a 6 db signal/noise ratio throughout the entire frequency range.

SELECTIVITY

The selectivity witch of the new wide range crystal filter permits a choice of six progressively narrower IF passbands. Maximum and minimum selectivity characteristics ore as follows:

Bandwidth
6 db down 60 db down
Selectivity Switch "Off" $\quad 3.4 \mathrm{KC}$. 12.5 KC . Selectivity Switch "5" 80 cycles $\quad 7.0$ KC.

IMAGE REJECTION

Signal/image better than 55 db at 30 megacycles.

AUDIO SYSTEM

Indistorted Power Output. 8 Watts Frequency Response

Tone Control at 10 60 to 12,000 C.P.S.
Tone Control at 0................. . 60 to 1,000 C.户े.S.
Output trppedance
Speakeh Socket . 8 or 500 Ohms
Phone Jack. Not Critical
A high impedance phono input jack is provided at the rear of the receiver and the phono-radio switch and phono jack ore on the front panel.

TUBE COMPLEMENT

The NC-183D is supplied complete with tubes which are employed as follows:
First R.F. Amplifier.
6BA6
Second R.F. Amplifier.

Small ceramic coil forms designed primarily for high frequency applications and conforming to government specifications. Call form is Grade L4 ceramic (JAN 1-10); base is silver-plated brass; core is brass or iron. Supplied with two nylon rings to separate coils if more than one is wound on same form. Small holes in rings can be used to secure leads.

COUPLINGS

TX-9. This small insulated flexible coupling provides high electrical efliciency when used to isolate circuits. Insulation is steatite. $15 / \mathrm{s}^{\prime \prime}$ diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-10. A very compact insulated coupling free from backlash. Insulation is canvas bakelite. 1-1/16" diam. Fits $1 / 4^{\prime \prime}$ shaft.

TX-19. A steatite insulated flexible coupling for $1 / 4$ " shafts. Consermatively rated at 5000 volts peak. Diameter $13 / 8^{\prime \prime}$, length $1^{\prime \prime}$. Length and flashover voltage can be increased by turning collars out board.
TX-23. A deluxe insulated flexible coupling designed for coupling $1 / 4$ " shafts. Will handle a maximum radial misalignment of $1 / 16^{\prime \prime}$ also 2 degrees maximum angular misalignment.

RAD RIGHT ANGIE DRIVE

Right angle drive. A sturdy right angle drive with Die cast zinc Housing and Gears. Ideal for gang. Housing and Gears. Ideal for gang: ing condensers or potentiometers or other parts located in hard to
get to locations on the chassis.

SAFETY GRID AND PLATE CAPS

SPP-9. Ceramic insulation. Fits 9/16" diameter.
SPP-3. Ceramic insulation. Fits $7 / 8^{\prime \prime}$ diameter. National Safety Grid and Plate Caps have a ceramic body which offers protection against accidental contact with high voltage caps on tubes.

GRID AND PLATE GRIPS

Type 12, for $9 / 16^{\prime \prime}$ Caps.
Type 24, for $3 / 8$ " Caps.
Type 8, for $1 /{ }^{\prime \prime}$ Caps.
National Grid and Plate Grips provide a secure and positive contact with the tube cap and yet are released easily by a slight pressure

COMPONENTS
 PRECISION-WOUND R.F. CHOKES
 CRYSTAL SOCKETS

These RF chokes are identical electrically, but differ in mounting provisions. The $\mathbf{R - 1 0 0}$ employs pigtail leads; the $R-100 \mathrm{U}$ has pigtail leads and a removable stand-off insulator: the R-100S has cotter-pin lus terminals and a non-removable stand-off insulator: the R-100ST has a 6 r32 threaded stud at each end. These chokes are available in 2.5, 5 and 10 millihenry sizes and are rated at 125 milliamperes.

R-300

R-300U

R-3005
R-3005T

R-300 R-300U R-300S R-300ST

These RF chokes are similar in size to $R-100$ series but have higher current capacity. The $R-300 \mathrm{U}$ is provided with a removable stand-off insulator at one end. The R-300S has a non-removable stand-off insulator and cotter-pin lug terminals. The R-300ST has a $6-32$ threaded stud at each end. Inductance values of $0.5,1.0,2.5$ and 5.0 millihenries are available with a current rating of 300 milliamperes. $\mathrm{R}-300, \mathrm{R}-300 \mathrm{U}$, $\mathrm{R}-300 \mathrm{~S}$ and $\mathrm{R}-300 \mathrm{ST}$ are identical electrically.

CS. The CS-5, CS-6, CS-7 and CS. 8 are crystal Mounting Sockets for crystal holders. Socket bases ceramic Conforming to Jan 110 Body glazed. Unglazed surface DC 200 treated.
CS-5. Contacts spaced .500" pin diameter .125 ". Phosphor bronze contacts silver plated. CS-6. Contacts spaced . $486^{\prime \prime}$; pin diameter .095". Phosphor bronze contacts silver plated Cs-7. Contacts spaced . $486^{\prime \prime}$; pin diameter $.050^{\prime \prime}$. Beryllium copper contacts silver plated. CS-8. Contacts spaced $.750^{\prime \prime}$: pin diameter 125". Phosphor bronze contacts silver plated

R-152

R-33. The $R-33$ series chokes are 2 section RF chokes available in 10,50 , 100 and 750 microhenry sizes. Also avail able in this series is a single jayer solenoid choke of 1 microhenry inductance. All are rated at 100 milliamperes. The chokes are wound on a $5 / 8$ " long form and range in diameter up to $5 / 16^{\prime \prime}$ maximum.

R-50, R-50-1. The R-50 series chokes are 3 and 4 -section RF chokes and available in $0.5,1,2.5$, and 10 millihenry sizes. They are rated at 100 millamperes. The chokes are wound on $n 1^{\prime \prime}$ long form and have a maximum diameter of $15 / 32^{\prime \prime}$. The 10 millihenry $R-50-1$ choke is wound on an iron core.

R-152. For use in the range hetween 2 and 4 Mc. Ideal for high power transmitter stages operated in the 80 meter amateur band. Inductance $4 \mathrm{~m} . \mathrm{h}$., DC resistance $10 \mathrm{ohms}, \mathrm{DC}$ current 600 ma . Coils honeycomb wound on steatite core.

HRT-M. This smaller version of the HRT - now available in choice of gray or black - is $1.7 / 16^{\prime \prime}$ in diameter.
AM Dial. The original "Velvet Vernier" mechanism in a metal skirted dial $3^{\prime \prime}$ in dia. ratio 5 to 1 . It is available with $2,3,4,5$ or 6 scale and fits $1 / 4$ " shaft. Mechanisms also available separately.
N Dial. The four-inch N and AD Dials have engine divided and die stamped scales respectively. The N Dial has a decimal vernier; the AD Dial employs a pointer. The planetary drive has a ratio of 5 to 1 , and is contained within the body of the dial. 2, 3, 4, 5 or black scale, Fits $1 / 4$ " shaft. Specify scale.

HRM KNOB. This straight knurl brass satin
chrome finished knob with arrowhead fits $1 / 4$ " slaft. See catalog for description.

E. F. .IDMNSIN IMATEUIR

VIKING II TRANSMITTER

TVI suppressed, bandswitching, and completely self-contained, the Viking II is rated at 180 watts CW input and 130 watts phone on 160 through 10 meters.

RF section: 6AUS oscillator, 6AQ5 buffer/doubler and parallel 6146 output amplifier. Modulator, pp807's operating class $A B 1$ with $\sigma A \cup \delta$ speech amplifier and $6 A \cup 6$ driver. Parallel 5R4GY HV rectifiers. 5V4G low voltage rectifier with 6 AL5 bias rectifier and GAQ5 clamper screen voltage regulator. Fixed bias applied to buffer and output amplifier for break-in CW operation. Audio response limited to center of speech range. All parts furnished including tubes. Detailed instructions for assembly, test, and operation also included. 115 volt $50 / 60$ cycle operation. Dimensions $20^{\prime \prime} \times 10^{1 / 4^{\prime \prime} \times 13^{\prime \prime} \text {. }}$

Cat. No.

Amateur Nel
 crystals, key, and mike................
.$\$ 279.50$
240-102-2 Viking II Transmitter, wired and tested 337.00

VIKING "RANGER" TRANSMITTER

Rugged and compact, the improved Viking "Ranger" has new (break-in) block grid keying system and adiustable wave shaping. Serves as a transmitter or an RF and audio exciter for high power equipment. Self-contained, 75 watts CW or 65 watts phone input. All amateur bands from 10 to 160 meters. Extremely stable built-in VFO or crystal control-100\% AM modulation-high gain audio. Pi-network antenna load matching from 50 to 500 ohms complete TVI shielding and filtering. No internal changes needed to switch from transmitter to exciter operation.

Tube line-up: 6 AU 6 VFO, OA 2 voltage regulator, 6 CL 6 crystal oscillator, 6CL6 buffer, 6146 final amplifier, $6 A Q 5$ clamper, 12AX7 dual triode speech amplifier, 12AU7 dual triode audio driver, 2-1614 push-pull modulators, $6 A X 5$ low voltage rectifier, and $5 R 4$ high voltage rectifier.

Only $15^{\prime \prime} \times 115 / 8^{\prime \prime} \times 9^{\prime \prime}$. Easily assembled-all parts, assembly and operating instructions included.

Cof. No, 240-161

crystals, key, and mike.
Amaleur Net

240-161-2 Viking "Ranger", wired and tested
$\$ 214.50$
293.00

VIKING "ADVENTURER" CW KIT

A compact 50 watt CW transmitter kit, completely selfcontained, single-knob bandswitching, and effectively TVI suppressed. Operates by either crystal or external VFO control. Rear apron power receptacle provides for operation of auxiliary equipment such as a VFO or signal monitor or for plugging in a modulator for phone operation. Receptacle wired to permit using full 450 VDC at 150 mo , and 6.3 VAC at 2 amp . output of the supply to power other equipment when transmitter is not operating. No antenna funer needed. Front panel meter switching monitors final grid or plate currents-break-in keying is clean and crisp.
 by novice or experiensed amateur. All parts, complete assembly directions and operating instructions included.
Cat. No. 240-181-1 Viking "Adventurer" Kit camplete with tubes, less crystals and key................... Amateur Nel $\$ \mathbf{5 4 , 9 5}$

VIKING MOBILE

Power-packed mobile kit rated 60 watts maximum PA input. Instant bandswitching: 75, 40, 20, 15 and 10-11 meters. Under-dash mounting-all controls readily accessible. Ganged coupling circuits for each band. RF section: 6 BH6 oscillator, 6AQ5 buffer doubler and 807 power amplifier. 6 BH 6 speech amplifier, $6 B \mathrm{H} 6$ driver and 807 modulator. 6 or 12 volt operation.
Cat. No. 240.141 Viking Mabile Kit, less tubes, crystols, microphane, pawer supply.

Amateur Net $\$ 99.50$

DYNAMOTOR POWER SUPPLIES

Supplies plate voltages for Viking Mobile and VFO. Rated 500 volts, 200 ma . intermittent. Base kits accommodate PE-103, Carter and others.

Yours on request...the new Johnson

EQUIP.MENT आII ICCEENOITIES

VIKING KILOWATT POWER AMPLIFIER

The boldly styled Viking Kilowatt contoins every conceivable feature for safety, operating convenience, and peak performance. Select low power or maximum legal input AM, CW, or SSB with the flip of a switch. Continuaus funing 3.5 to 30 mc . with no coil change necessary. Compact pedestal contoins the complete Kilowatt, including RF power amplifier, modulotor, power supplies, and all control equipment. Entire unit rolls out of pedestal, providing complete accessibility to oll electricol components for adjustment or maintenance. Excitotion requirements are 30 watts RF and 15 watts audio for AM, ond 10 wotts peak for SSB. The Viking "Ronger" transmitter/ exciter (shown above) is an ideal RF and audio driver for $A M$ and $C W$, and the new Viking SSB transmitter/ exciter will drive the Viking Kilowatt to full output on SSB.

- All controls easily reached from seated position. TVI suppressed. Bridge neutralized parallel 4-250A RF power ampliter. Plate supply delivers 2500 volts at over 700 ma . High level class "B" modulator, using push-pull 810's-audio esponse is better than $\neq 1 \mathrm{db} 200-3500$ cycles. Tamperroof, key-operated main switch . Saft gray finish, maroon rim, and green nomenclature.

Weight 400 pounds. Outside dimensions of complete assembly without accessory desk: $291 / 2^{\prime \prime}$ high, $193 / 4^{\prime \prime}$ wide, and $327 / 8^{\prime \prime}$ deep. With accessory desk top and drawer pedestal: $291 / 2^{\prime \prime}$ high, $631 / 2^{\prime \prime}$ wide, and $327 / 8^{\prime \prime}$ deep. Weight 555 pounds.

Cat. No. 240-1000 Viking Kilowatl Power Ampliffer-wired tested, complete with tubes.Amateur Net \$1595.00 Cat. Na. 251-101-1 Matching Accessory Desk Top and 3 drawer pedestol . FOB Cary, Pa. $\mathbf{\$ 1 2 3 . 5 0}$

"MATCHBOX"
'erforms all antenna loading and witching functions required in medium sower Amateur stations. Amateur zands: $3.5-30 \mathrm{mc}$. Matches balanced antennas from 25 to 1200 ohms and mbalanced or single wire antennas From 25 to 3000 ohms. Input impedance, 52 ohms, rated, 250 wafts. 3uilt-in transmit receive relay grounds eceiver antenna terminols when in "transmit" position. Independent adustment for matching antenna to re:eiver input. RF probe actuates CW reying monitor. Fully shielded. $97 / 8$ - $101 / 2 \times 7^{\prime \prime}$.

Zat. No. 250-23 Johnson "Matchbox", assemsled, wired, tested. . Amateur Net $\$ 49.85$

VIKING VFO KIT

Variable frequency oscillator with 160 and 40 meter output for frequency multiplying fransmitters. Accurately calibrated 160 thru 10 meters. 6 AU 6 electron coupled oscillator, OA2 valtage regulator. Excellent stability. 6-1 vernier tuning. Requires 6.3 volts, 3 amperes, $250-300$ volts 15 ma., DC unregulated. (Power and input connections on Viking I and II transmitters.) All parts, assembly and calibration instructions included.

Cat. No.
240-122
Viking VFO Kit, less tubes.

Amateur Net
\$42.75
240-122-2 Viking VFO Kit, wired ond tested, less tubes. . 63.75

SWR BRIDGE

Measures standing wave ratios for effective use of a low pass filter and antenna coupler. 52 ohms impedance can be changed to 70 ohms or other value. \$O-239 connectors and polarized meter jacks.
Cat. No. 250-24..... Amateur Net $\$ 9.75$

LOW PASS RF FILTER

Four individuolly shielded sectionshandle more than 1000 watts RF, provide 75 db or more attenuation above 54 mc . Insertion loss less than .25 db . Replaceable Teflon insulated fixed capacitors. SO- 239 coaxial connectors. Wired and pre-funed.
Cat. Na. 250-20.... Amateur Net \$13.50

Amateur Catalog... write for it today!

[^17]
E. F. .IDHNSON AMMTEUIL

"SIGNAL SENTRY"
Monitors either CW or phone signals without regard to operating frequency. Energized by transmitter RF. Mutes receiver audio for break-in. May be used as a code practice oscillator with simple circuit modifica. tion. Requires 250 VDC, 5 MA , and $6.3 \mathrm{VAC}, .6 \mathrm{~A}$ from receiver or other source. Size $37 / 8^{\prime \prime} \times 35 / 8^{\prime \prime} \times 33 / 4^{\prime \prime}$. Tube line-up consists of one $12 A X 7$ and one 12AU7. Cat. No. 250-25 Signal Sentry. Wired and lested, less tubes; instructions included.

Amateur Net $\$ 14.70$

ROTOMATIC ROTATOR
Supports beam antennas weighing up to 175 pounds even under heavy icing conditions or high wind loading. Rotates $11 / 4$ RPM-full 360° either direction-overall gear reduction, 1200 to 1. Heavily chrome plated RF slip rings for feeding open wire or coaxial lines. Rotator housing is cast aluminum; with $5 / 16^{\prime \prime}$ steel rotating table. Unit hinged to tilt 90°. Assembly includes desk top control box with selsyn indicator.

[^18]

"WHIPLOAD-6"

Provides high efficiency base looding for mobile whips with instant bandswitch selection of $75,40,20,15$, 11 and 10 meters. On 75 meters a special capacitor, with dial scale, permits tuning entire band. Covers other bands without tuning. Air-wound coil provides extremely high "Q". Fibre. glass housing protects assembly. Mounts on stand. ard mobile whip.
Cat. No. 250-26" Whiplood-6", Bandswitching Mobile Antenna Loading Coil,

Amaleur Net $\$ 19.50$

RF CHOKES

High reactance over 1.7 to 30 mc range (101.760 for VHF). Coils are of enamelled silk-covered wire, impregnated with high grade RF lacquer and wound on steatite cores. Current ratings may be increased for intermittent use.

	Cur-	In-	
Cat.	rent ducl.	Net	
No.	ma.	mh.	Price

MOBILE VFO KIT

Extremely stable, only $4^{\prime \prime}$ x $4^{1 / 2 "} \times 5^{\prime \prime}$, for steering pos or under dash mounting Will drive ony straight pent. ode crystal stage. Vernies dial calibrated $80,40,20$ 15 and $11-10$ meters. 6 HB © oscillator, 6BH6 amplifier/ multiplier, OA2 regulator Requires 6.3 V . at. 45 amps or 12.6 V . at .25 omps. ane $250-300$ VDC at 20 ma .
Cat. No. 250-1 52 Viking Mobil,
$V_{F} \mathrm{O}$ Kit, less tubes. All parts cables and instructions included Amateur $\mathrm{Net} \$ 29.4$:
Cat. No, 250-152-2. Wired.
Amateur Net $\$ 44.9$!

ANTENNA AND FEEDER INSULATORS

High quality porcelain strai insulators. 136-32 compres sion type egg insulator fo aircraft or guy wires.
Cat. No. Length Net Pric

$136-104$	4°	$\$.1$
136.107	7°	.7
$136-112$	12°	.8

136-32
Porcelain Feeder insulator: 136-122 has extra notche for $11 / 2^{\prime \prime}$ line spacing. A have $3 / 8$ " $\times 1 / 2^{\prime \prime}$ cross sectior

Cat. No.	Length	Net Pric
$136-122$	2°	$\$.1$
$136-124$	4°	1
$136-126$	0°	2

EQUIIPMENT unI ICCENSOIEIES

HIGH POWER VARIABLE INDUCTORS
teavy duty rotary inductors for amateur and commercial ise. Handle over a KW af modulated RF energy to 30 nc. Winding $1 / 4^{\prime \prime} \times 1 / 8^{\prime \prime}$ edgewise copper. Spring loaded jeryllium copper contact. Variable pitch winding-wide requency coverage. Height $61 / 2^{\prime \prime}$, width $4^{\prime \prime}$.

		Mounting	No.	Nei
:at. No.	Induciance	Centers	Turns	Price
$!26-1$	22.5 uh	$131 / 2$	$271 / 2$	$\$ 57.00$
$: 26-3$	13.5 uh	$111 / 2$	$191 / 2$	53.00

ROTARY INDUCTOR

iame efficient inductor used in final tank of the Viking II. Zontinuous luning 3.5 to 30.0 mcs . without changing oils. Variable pitch winding of No. 14 tinned copper vire. Maximum inductance 10 uh . Form and end plates teatite. Beryllium copper tension contact. $21 / 2^{\prime \prime} \times 41 / 2^{\prime \prime}$ $3^{\prime \prime}$. Typical tuning curves supplied.
:ot. No. 229-201. Nef Price $\$ 8.85$

SWINGING LINK INDUCTORS

For 160 thru 6 meters; 150,500 and 1000 watt sizes. Two inductance values for each band permit choice of L'C ratio dictated by amplifier plate voltage and plate current. Polystyrene insulation and steatite bases. HCSInductors match high voltage, low current tubes. LCSInductors match low voltage, high current tubes.

EDGEWISE WOUND "HI-Q" INDUCTORS

Edgewise wound, $1 / 4^{\prime \prime}$ copper strip, cadmium plated, glass bonded mica supporting bars. Widely used commercially. Safely handles more than 1000 watts.

Cat. No.	Winding 1×10	Inductonce miero H	Net Price
232-610	$7{ }^{1316} 0^{\circ} \times 21 / 2^{\circ}$	31	\$ 8.90
232-620	$88^{5} 16^{\circ} \times 4^{\circ}$	84	11.40
232-622	$6^{7} 16^{\prime \prime} \times 31 / 4^{\prime \prime}$	41	8.90
232-624	$6^{\circ} \times 31 / 4^{\prime \prime}$	20	6.30
232-626	$43 / 4^{\prime \prime} \times 21 / 2^{\prime}$	10	5.80

232-610

5.80
6.30

114-520

114-100-3

NEW SPECIAL SEMI-AUTOMATIC KEY

Combines the best features of former amateur and proessional models. Heavy cast metal base $61 / 4^{\prime \prime} \times 3^{\prime \prime} \times 1 / 2^{\prime \prime}$, itfractively finished in black wrinkle enamel. Same vibraor as on deluxe keys. Easy action, speed adjustable rom lowest to highest speeds. All hardware and vibrator reavily chrame plated. $1 / \mathrm{s}^{\prime \prime}$ coin silver contacts. Adjustnents have lock nuts for stable operation. Rubber mountng feet prevent slipping, scratching. Circuit closing switch.

Eat. No.

Net Price
i14-520 Special Model, Semi-Automatic. $\$ 11.50$

HIGH SPEED STANDARD KEYS

a superior high speed hand key with adjustable spring 'ension, contact spacing and bearings. Base and binding sosts are brass with instrument lacquer finish. Platinor =ontacts $.072^{\prime \prime}$ diameter.

Cot. No.		
Ret Price		
$114-100$	R48 Key, polished bross, no switch. $\$ 4.90$	
$114-100-3$	M100 Key, polished bross with switch. 5.55	

Amateur Catalog . . . write for it today!

[^19]Heavy die cast base, chrome plated key arm, brass connector strips under base. Well insulated for heavy service. Large $1 / 4^{\prime \prime}$ coin silver contacts. Improved Navy type knob. Adjustable steel bearings and spring design give light keying touch.

Cat. No.		Net Price
114-320	8lack wrinkle enamel base.	\$4.10
114-321	Polished shrome plated base.	5.10

Constant frequency buzzer and key on a $4^{\prime \prime} \times 6^{\prime \prime}$ malded Bakelite base. Use singly or in pairs for code practice.
Cot. No. 114.450 Proctice Set
Net Price $\$ \mathbf{4 . 2 5}$

Many other fine quality Johnson manual and semi-automatic keys ore available-see them at your foyorite distributar.

PRACTICE SET

E. F. .JOHNNON RUMLITY

Manufacturers of more than 5,000 items for all segments of the electronic industry, JOHNSON also builds crystal sockets, shaft couplers, flexible shafts, panel bearings, and extension shaft assemblies for radio-electronic equipment. In addition a complete line of fixed and rotary RF inductors for broadcast transmitting, RF heating, antenna phasing, and other commercial applications is available. Broadcast Transmitting Equipment in the line includes antenna phase sampling loops, isolation inductors, high power RF relays, heavy duty antenna strain insulators, and feed-thru bushings.

Outsianding Johnson Plugs and Jacks - with unique design feafures to provide superior performance in most applications. For example, Johnson tip jacks have exclusive long gripping contact construction providing positive, low resistance contact ind efinitely. Johnson banana plugs have nickel silver springs and are heavily nickel plated for long life. A complete line for virlually any application.

The streamlined Johnson Pilot Light line-a complete selection of famous quality pilot and indicator assemblies, standardized to eliminate confusing variations. Jewel bezels distinctively designed to "dress up" the appearance of all types industrial and electronic equipment. A complete pilot light catalog is available and may be had on request-send for your copy!

Steatite and porcelain RF Insulators -long accepted as standards of the industry. Thru-panel and stand-off types for high and low voltage applications. Also antenna insulators bushings and feeder insulators for broadcast, commercial, aircraft, amoteurs.

9 IV

'LECTIBIVIC CIMIPIDNENTS

TUBE SOCKETS

A quality line-Johnson steatite and porcelcin tube sockets are available for virtually all transmitting, industrial, and special purpose tubes. Each Johnson socket type is available in 3 grades: COMMERCIAL, INDUSTRIAL, and MILITARY. Standardized specifications for each permit the selection of a Johnson socket for almost any application.
Bayonet Types-include Medium, Jumbo, and Super Jumbo 4 pin models.
Steatite Wafer Types-available in 4, 5, 6, 7 , and 8 pin standard sockets as well as Super Jumbo 4 pin, Giant 5 and 7 pin models and VHF transmitting Septar base types.
Miniature Types - are steatite insuluted and ovailable in Miniature 7 and 9 pin models. Matching miniature shields also available. Special Purpose Types-include sockets for lubes such as the 204A and 849, the 833A, $304 \mathrm{TL}, 5 \mathrm{D} 21,705 \mathrm{~A}$, and other special types. Complete information on all Johnson Tube Sockets is available on request write for it today!

AIR VARIABLE CAPACITORS

TYPE "M"-Rugged VHF-UHF trimmers far extremely compact equipment. Ceramic end frame only $3 / 4$ " x $5 / 2^{"}$ Sinate section, butterfly and differential types. Maximum capacities ta 30 mmfd . Air gap $017^{\prime \prime}$. TYPE "L"-Superior quality generol purpose sapacitors with exclusive ceramic saldered construction. Practically indestructible and vibration proof. Single and double end frame types os well os butterfies ond differentials available in capocities to 200 mmfd . Air gap $.030^{\circ}$.
TYPE "R"-Improved Johnson version of o standard copacitor type. Featuring extra rugged construction soldered plotes, and double bearings, the type "R" is ovailable in maximum capacities fram 20 to 320 mmfd. Plate spocing . 024 "
TYPE "K"-Popular militory type trimmer with heovy duty beorings, rugged mounting posts on ceromic end fromes, and screw driver shaft odiustment. Moximum copacities frant 10 ta 100 mmfd . Plate spocing $.015^{\prime \prime}$. TYPE "J"-High voltage trimmer with extra wide plate spacina, 025°. yet extremely small in size. Topped 6.32 mounting sluds on ceramic end frame. TYPE "C" AND "D"-Functional pransmitting types with ratings fram 3500 ta 13,000 volis. Laminated multiple rator contacts and batonced canstruction provide unequalled efficiency. Single and dual models with 50 to 500 mmfd. moximum copocity ratings. IYPE "E" AND " F "- Tronsmitting copacitors for the 2000 to 4500 volt range. Provide large omaunt of copocity per cubic inch yet extremely low capacity to chassis or ponel. Moximum copacities from 35 to 500 mmfd , single and duol models.
TYPE "G" AND "N"-High valrage neutratizing capocitars with smoath copacity vorialion for exact neutralizotion. Peak voitage rotings $8500,11,500$ and 14,500 . Maximum copacities to 11.0 mmfd .

For delailed information on the complete line of Johnson Electronic Components write for your free copy of the new Johnson General Products Catalog today!

The EASY WAY to..

CesmCode

PREPARE FOR YOUR BIG OPPORTUNITY

Picture yourself at your own transmitter . . . sending out radio code, messages that will be received around the globe. Yes, operators like you are waiting to communicate with you today, tonight or anytime. The knowledge of the world ... intimate friendships you will gain... may help you in your business, may be a stepping stone to success.

Wouldn't you like to be the invaluable link with the outside world in time of disaster? Wculdn't you like to serve in o national or local emergency? Be ready for service when the opportunity arises! Learn telegraphy nowthe Candler way.

Every day trained code operators are finding their dreams of success coming true. Get ready for your big chance now. Learn code the modern, easy CANDLER way. Get maximum speed and efficiency to qualify as an operator in the quickest, easiest way-the CANDLER SYSTEM OF CHAMPIONS.

For forty three years the CANDLER SYSTEM has trained beginners for all telegraphing requirements, all operator licenses, highest ratings, and F.C.C. specifications, both amateur and commercial. The record of famous amateurs and expert eperators who learned the Candler way is proof of what the Candler System offers you. Find out how you can save time and money learning code and developing skill with the CANDLER SYSTEM. Send for Free Candler Book of Facts today.

CANDLER SYSTEM CO., P.O. BOX 928
DEPT. 40, DENVER I, COLORADO, U.S.A

IT'S FREE! - MAIL COUPON OR WRITE NOW CANDLER SYSTEM CO., Dept. 40 P. O. Box 928, Denver 1, Colo.

Or 52b, Abingdon Rd., London W.8, England
\square I am a beginner.
[1) I am an operator.
Gentlemen: Yes...l am interested in the CANDLER Code Training System. Please rush my FREE copy of the CANDLER Book of Facts today.

Name
Address. ..
City . Zone . . . State

HERE'S WHAT WORLD CHAMPION TED MCELROY
SAYS ABOUT THE FAMOUS CANDLER SYSTEM

My shill and mued are theresult of the erelusive, 8ciemidia training " 1 alter Camiller gave me. I'rantice is necernary. hut without proner tratinime (a) develop Concentration. Catordination and a heon laraentive Sontae. practice is of little value. ()me is likely topractien the wronk way."

Ste Fitron is the Official Champion Ralio Operator, 75.2 W. I'U. non at Anheville Conle Tomrnament.

SPECIAL COURSES FOR

 BEGINNERS \& OPERATORSThe SCIENTIFIC CODE COURSE, especially designed for the beginner. Teaches the basic principles of sending and receiving code scientifically. Prepares for the following F.C.C. Code License Examinations:
Amoteur: Novice (5 w.p.m.) Technician (5 w.p.m.) Generol (13 w.p.m.) Amoteur Extra (20 w.p.m.)
Cammercial: Second and Third Class (16 w.p.m.)
The HIGH SPEED TELEGRAPHING COURSE for high speed and proficiency.
The HIGH SPEED TYPEWRITING COURSE for mastering fouch. typing, speed and accuracy.

TELECOMMUNICATIONS

LITTLETON, MASSACHUSETTS, U.S.A.

We believe we are the sole manufacturers in the United States of printing telegraph systems employing Morse code.

Much of the equipment described in the following pages has been designed and built here. Some mechanical units in some of the equipment are imported, with final assembly and test in Littleton. Morse code printing telegraph systems have been manufactured during the past thirty years by our capable friends Creed of London and Great Northern of Copenhagen. A typical example of the excellence of this system is the consistent operation at 60 w.p.m., duplex, on the Helsinki to Nagasaki 7500-mile circuit.

Our Chief Telegraph Engineer, Herluf Trolle, witnessed operation of that circuit from 1922 to 1935. As Chief Maintenance Engineer in Shanghai from 1936 to 1941, he contributed toward the functioning of Morse printer operation on circuits averaging better than 100 w.p.m., duplex. Prior to the resumption of G.N.T's Far East operations after the war, "Tralee" supervised the rehabilitation of the Morse printer facilities in Nagasaki and Paris. He returned to Copenhagen for research and development work on urgently needed new types of Morse code equipment. Now, some years later, we've accomplished the not-too-easy job of persuading "Tralee" to give up his restful life at the home of his daughter in Canada and join us here in Littleton - producing dependable Morse printer equipment.

We do not expect to replace normally operating 5 -unit teleprinter systems; but rather, to make available dependable automatic printing telegraph operation where long line telegraph and/or radio circuits under severe atmospheric conditions make difficult or impossible 5 -unit teleprinter operation.

Rear mounted motor for any specified voltage. Normally supplied for

Operator monitors tape instantly, no obstructions

Morse Keyboard Perforator

Model 950

Keyboard for Press Services shown above. Commercial Communications or any other desired style promptly available.

Army, Navy, Air Force and other Government services, as well as R.C.A.C. and Mackay, etc. . . . anyone, anywhere, using Morse!

If your operators are frantic with the old klunker perforators and if your technicians approach a state of dt's trying to keep 'em working, give us permission to ship you one or more perforators for trial. No obligation whatever.

Our keyboard (with combination key) produces Morse characters for carriage return, line feed, figure shift and letter shift. This makes possible our simplified converter, which accepts Morse and delivers five-unit perforated slip for either automatic tape re-
laying or to be fed into a five-unit printer, resulting in page copy.

We make this statement. These are the best perforators that have ever been built. No rectifiers, no silencing covers - no ulcers, either! They are ready for your operators the moment they are taken from their shipping cases and put into operating position. Prompt shipment!
Information is prepared on one or more Keyboard Perforators up to 120 wpm depending upon the skill of the typists. Slip is fed into the Morse transmitter at any desired speed up to 500 wpm . Normal operation is about 100 wpm .

Morse Code Training Unit \& High Speed Automatic Transmitter
 Model MC-55-PT

Rear View of MC-55-PT
(Shown Rack Mounted)
JAN components. Tape reels mounted on heavy duty bearings: All connections clearly marked. Keyed tone output sufficient for hundreds of HS-16 type, low impedance headphones. No outside oscillator or amplifier needed.

One piece of equipment for two jobs! As a "teacher", unit is provided with speed range of 1 to 50 wpm . As a communications transmitter, any speed desired may be supplied: 2 to 100 wpm ; 5 to 250 wpm ; or 10 to 500 wpm. No longer is there any need for inked tapes and photo-tube keyers with all the problems and inaccuracies inevitable with the photo-tube system. When originated 25 years ago, inked tapes reproduced from perforated tapes, provided the only means of low cost practice material. Communications men have always been unhappily aware of the unsatisfactory results, but there has been nothing better available.

Now, with the Morse Keyboard Perforator, original tapes may be produced rapidly and accurately. These master tapes may be run through our automatic keying head to actuate any number of Morse Reperforators, each of which is reproducing the original perforated tape - faster and at less cost than the inked tapes. And it is Morse, not an unsatisfactory substitute. Students will learn the same Morse they'll eventually copy on circuits. Listen to both systems and you'll instantly perceive the difference!

Morse Reperforator

 identical to that produced on the Keyboard Perforator at the transmitting station. The Morse Reperforator operates at speeds up to 150 wpm ; however, normal operating speed is 100 wpm . If desired, incoming code may be simultaneously fed into our R-14 Ink Recorder thereby permitting any operator to monitor the circuit - difficult, if not impossible, with 5 -unit slip.
The slip from the reperforator may be fed into a Morse transmitter keying any other telegraph or radio circuit thus providing automatic tape relaying via Morse. Further, the slip may be fed into a Morse-to-5-unit converter resulting in perforated slip for the keying of any teleprinter circuit thus providing automatic tape relaying, originating in Morse and converted into 5 -unit code at this point.

Morse Relay

The most practical application has been, and we feel will continue to be, the feeding of the Morse perforated slip from the Morse Reperforator directly into the Morse Tape Printer, shown on opposite page, resulting in typewritten copy.

Since its appearance prior to 1930, the rugged Morse Tape Printer has throughout the world (except U.S.) been such a dependable unit of equipment that the old time operators have always called it "the iron horse."

Perforated Morse slip from the reperforator, as described on a preceding page, is fed into this Morse Printer at a speed of 100 w.p.m., resulting in printed copy. Because the Morse Printer is not widely known in the United States we are prepared to make demonstrations at no cost.

Morse Package
Model MP-1A

Recorder, Amplifier, \& Puller Combination

Model R-14

Abstract

We doubt that any communications man anywhere, will question the fact that this is the finest radio telegraph ink recorder ever built. Two, of many of the features that have made obsolete all other recorders, are these: instantaneous starting of the tape puller without the loss of a dot, on incoming signals: stopping of the tape puller at the conclusion of traffic signals. Ignoring the cost of saved slip, the importance of this feature is that the recorder is on the job at all times without constant supervision and signals are never lost because of running out of slip. An accompanying feature is the ink pump which provides for instant start and stop of the ink flow. Calibration of tape feed speed is extremely accurate. Many other features make it everything we claim: the finest ink recorder in the world!

There is nothing new about recording dots and dashes on $3 / 8$ inch wide paper slip. The wireless operator during the early 1920 's, transcribed dots and dashes from waxed cylinders onto a typewriter. The incoming dots and dashes were fed to those waxed cylinders just as a man would dictate a letter. Then, instead of playing back a voice to a stenographer, the waxed cylinder would play back at any desired speed and the operators would copy on their typewriters (at approximately 50 words per minute.) Morse which had been received at 100 words per minute or faster. Several other schemes were used in those days.

At about that time the ink recorder was de veloped and proved to be the most satisfactory all around method. It was easier for the operators to read the inked slip than it was to listen with headphones. No great changes were made in the following twenty-five years or so until the development of the recorder as shown on this page complete with the amplifier and variable speed tape pulling arrangement. The recorder performs valuable functions as a unit in the automatic Morse code printing telegraph system described in these pages.

TELECOMMUNICATIONS

Collims proudly announces A NEW STANDARD in AM, CW and SSB OPERATION

It took Collins to produce the first really new Amateur communication system, designed expressly for Single Sideband as well as AM and CW' operation. Collins new 75A-4 Receiver/32W-1 Exciter or 75A-4 Receiver/30L-1 Transmitter combinations are designed for the most exacting Amateur. Engineering-wise, the equipment meets the high standards Collins has set for military and commercial equipment. Price-wise, the Amateur will get more for his money than ever before. See your nearest Collins distributor for your brochure.

30L-1 TRANSMITTER

Collins engineering plus extensive on-the-air tests account for the 30L-1 Transmitter's reliability and optimum performance in SSB, AM and CW operation. The exciter and RF power amplifier are housed in a single receiver size cabinet. The Collins 367A-1 linear RF power amplifier uses two 4X150A's in class $A B$ operation. RF feedback is employed to improve the linearity characteristics of the power amplifier. The 30L-1 incorporates circuit application and components which have been proved in preceding Collins equipment; to note a few, the 70 E VFO, the Pi-L output network, extremely accurate VFO dial and the Collins Mechanical Filters. To meet the Amateur's future desire for power increase, Collins 32W-1 Exciter can be modified to a $30 \mathrm{~L}-1$ at the factory.

52 AMATEUR ACCESSORIES

312A-1 COHTROL/SPEAKER UNIT

The 312A-1 Control Speaker Unit provides space to mount the loudspeaker and the extra control functions necessary in a complete installation. This unit is furnished with a removable perforated steel panel insert with no cut-outs; the operator can remove the panel and install any control functions he considers desirable. Behind the front panel is a sub-panel that mounts a $10^{\prime \prime}$ loudspeaker. The rear of the unit is open, and across the bottom is a terminal strip for use in making connections to the control unit.

COLLINS RADIO COMPANY
Cedar Ropids, lowo
261 Modison Avenuc, NEW YORK 16
1930 Hi-Line Drive, DALLAS 2
2700 West Olive Avenue, BURBANK

35C-2 LOW PASS FILTER

Collins $35 \mathrm{C}-2$ Low Pass Filter is a 52 -ohm, three-section, low pass filter with approximately 0.2 db insertion loss below 29.7 mc and approximately 75 db attenuation of harmonic emissions at TV frequencies.

MF PLUG-IN ADAPTERS

Mechanical Filter Plug-In Adapters are offered for use in several National and Hammarlund receivers as well as for Collins Amateur and communication receivers.
15
 this fascinating art. The whole picture of amatcur radio, from basic fundamentals through the most complex phases of this appealing hobby is covered in the I eague library. The neweomer who succumbs to the first nibbles of the radio bug can find his "gateway" to amateur racho in such introductory booklets as How to Become a Radio Amaterr, Learning the Radiotelegraph Code, and the License. Vamual. Other League publications, especially that all-time radio best setler. The Radio Amateur's Ilandbook, are storchouses of information for cuerybody interested in electronics and radio communication. Supplies such as log books, world map, calculators, message blanks and binders are specially designed for the necds of active operating amatcurs.
Whether novice or old-time amateur, student on enginecr. League publications will help you to kecp abreast of the times in the ever-expanding field of electronics. Most of the publications described in the following pages are handled by your radio dealer. If you cannot obtain them locally, they may be ordered direct from League Headquarters.

American Radio Relay League

Administrative Headquarsers: West Hortford, Connecticut, U. S. A.

American Radio Reiay League, West Hartford, Conn., U. S. A.

Being genuinely interested in Amateur Radio, I hereby apply for membership in the American Radio Relay League, and enclose $\$ 4.00^{*}$ in payment of one year's dues, $\$ 2.00$ of which is for a subscription to QST for the same period. [Subscription to OST alone cannot be entered for one year for $\$ 2.00$, since membership and subscription are inseparable.] Please begin my subscription with the issuc.

The call of my station is
The class of my operator's license is
I belong to the following radio societies

Send my Certificate of Membership \square or Membership Card \square (Indicate which) to the address below:

Name \qquad

THE N NTH PRO-310

The completely new Pro-310 is the latest addition to the long line of outstanding Hammarlund receivers. It is built to rigorous specifications. Its design has been inspired by its ancestral reputation.

Here is the answer to the challenge to create a truly superior instrument in every detail, in performance, in workmanship, in design, in utility and in style. The Pro-310 is all-receiver, designed to highest professional communications standards, and including the features you need and want. Some of these are:

- Sensitivity - all that can ever be used under all receiving conditions.
- Selectivity - really steep-skirted to let you cut through interference.
- High Image rejection on all six bands. Double conversion on top 4 bands.
- Exceptional stability - every station is always at the same place.
- Hammerlund SCANSPREAD luning lets you read all frequencies to 1 part in 5000 over the entire range from 550 Kc to 35 Mc .
- Single Sideband operation is yours. Exalted BFO and sharp selectivity are built-in.
A rugged furret, sectionalized construction, and restful wrist-high controls are among the many other features that make it the next receiver for your shack.
Our new brochure illustrates and fully describes its construction and operation. Write for it today. Ask for Bulletin 55.

For those who appreciate PROFESSIONAL STANDARDS

Communications Receivers for finest Performance

The "SP-600-JX"

The "SP-600-JX", a masterpiece of receiver design, is a 20 tube dual conversion superheterodyne covering the range of 540 Kc to 54 Mc in 6 bands. Operation on any of 6 crystal-controlled fixed frequency channels is immediately available. The power supply is an integral part of this worldfamous receiver.

The "SP-600" represents today's ultimate in receiver performance. Stability is .001 to .01 percent, image rejection is 80 db to 120 db down, and spurious responses are at least 100 db down. Sensitivity is 1 microvolt CW and 2 microvolts AM. Selectivity for the 3 calibrated crystal and 3 noncrystal ranges is from 200 cycles to 13 Kc .

The "HQ-140-X"

The "HQ-140-X" was designed to give years of reliable, quality performance. Its many out-standing features are evidence that it was built for those who appreciate professional standards. Extremely accurate frequency setting is achieved because of its carefully calibrated bandspread dial. The Hammarlund patented 455 Kc crystal filter and phasing network makes possible bandwidth changes without the slightest detuning. The separate oscillator (6 C 4) and mixer (6BE6) contribute to the high degree of oscillator stability.

Low-loss tube sockets, ceramic bandswitches, temperature compensating capacitors, zero temperature coefficient ceramic trimmers, and a bimetallic compensating plate, all keep frequency drift to less than 0.01%, from the lowest frequency $(540 \mathrm{Kc})$ to the highest (31 Mc).

WANT TO KNOW MORE ABOUT HAMMARLUND RECEIVERS?

Write immediately to have your name placed on our Receiver mailing list.

haMMARLUND CAPACITORS

Reliable Components For Your Equipment

Hammarlund capacitors are considered by many to be the quality standards of the industry. In this complete line of variables are such outstanding types as the new MAC miniature trimmer, the BFC butterfly type for use in VHF applications, and the unique VU for VHF and UHF operations up to 500 Mc .

These and other Hammarlund standards will give long, trouble-free service and continuous fine performance when used in your equipment. They've been doing that for hams since the early years of the hobby

SPECIAL TYPES

Over 5000 different types of special capacitors have been produced by Hammarlund, each designed to meet a customer's specifications. If you have a problem calling for a quantity of a special capacitor, check us first. For among these 5,000 special capacitors there probably is one to meet your needs.

If, however, none of our existing "specials" can fill the bill, our experienced engineering staff will be happy to work with you to design a capacitor that will.

Special Frequency

Meter
Capacitor

THE HAMMARLUND MANUFACTURING CO., INC. 460 WEST 34th STREET - NEW YORK 1, N. Y.

CW and phone power values listed ore maximum rated plate-inpul values for amoleur service.

120 wath CW; 90 wams phono

(Full inpul up to 200 Mc)
Twin Bealn Powor Tube for VHF. One 2526 drives it; two 807 's modulate 11. Moximum plate voltage: 750 V on CW , 600v on phona

40 watis CW; 27 wotts phone (Full input up to 125 Mc Reduced inpul up to 175 Mc)
RF power ampliner, freq, multiplitar, ascillotor. Woll-sullod for moblle and ometgency services. A 6AG7 drives if; © pair of $6 \mathrm{VG}-\mathrm{Cr}$'s or a 6 N 7 modulates 1 .

17 waHs CW; 15 waths phone (Full inpul up to 50 Me
Reduced input up to 173 Mc)
RF amplinar, frequency multiplier, oscil-lator-handles more power than eny "mininiuluc' In omateur rodlo. Far mabile, portable, or Axed service. It delivers full po wer with only a 350 v supply.

345 wams CW, 270 wamsphone

(Full inpul up to 50 Mc)
Medium-power if amplifier. A 6AG7 driyes it. Maximum plate voltage: 3move for CW, 2500y for phane.

with Beam Power-

For that modern, high-efficiency, low-cost transmitter, always design around RCA Beam Power Tubes

Beam power tubes-an original RCA de-velopment-enable you to design and build high-efficiency rigs at less cost. Because of the low power required to drive beam power tubes, you can operate your transmitter with low-power-level exciters-minimize your TVI problems. With beam power tubes, you get peak performance with fewer stages -which makes for easier band switching - fewer tubes, and fewer components.

Put the advantages of beam power to work for you when you design. Specify

RCA. There's an RCA Beam Power Tube for every input up to 1000 watts-and every frequency up to 225 Mc . For additional data on RCA beam power types see Table 16 in Chapter 27 of this Handbook.
rCa ham tips. Written by radio amateurs for radio amateurs, this up-to-the-minute publication is jam-full of how-to-make-it articles, as well as non-constructional articles on TVI. Free from your RCA Tube Distributor. Or write RCA, Commercial Engineering, Section A11M2, Harrison, N. J.

1000 watts and more, CW 675 watts phone
(Full input up to 75 Mc) High-power "hnol." A 2326 drives in. A pair of 810's modulales it. Maximum plase voltaye is 4000 valis for CW and 3200 volls for phonc:

S00watrs CW; 375 wamsphone
(Full input up to 120 Mc) Two 4-125A/4021's toke I KW on CW, 750 wath on phone. One 2526 drives a pair. Two 811-A's modulote them. Moximum plate volfage is 3090v for CW, 2500v for phone.

\#hawen-wers BANDMASTER \& ACCESSORIES

ENGINEERED SPECIFICALLY FOR THE VERSATILE HAM

40 to 50 Watts - 8 Bands - Phone or CW NO PLUG-IN COILS

THE NEW BANDMASTER V F 0

Designed specifically for the Harvey-Wells Bandmaster, but may be used with all types of transmitters. Extremely stable - both electrically and mechanically - rugged tests produce no loss of power or frequency shift even on 28 mc . Slanted, illuminated dial face provides ease of operation and full visibility. Cabinet styled specifically to save valuable space in the shack. Your Bandmaster and VFO become an integral unit. 300 ohm output pluqs into crystal socket. The Bandmaster VFO has been designed to meet the flexible requirements of today's versatile amateur. Six bands each directly calibrated on the oversize slide rule dial - provides 30.35 volts R.F. output over entire frequency range, measured across the 6AQ5 in the transmitter oscillator - Plate and heater voltages are obtained from the terminal strip on the transmitter. Power requirements are 6.3 v @ 0.65 amps . and 300 v @ 30 ma . Highly stable clapp type oscillator circuit uses 6AG7 and OB2 voltage regulator.

80, 40, 20, 15, 11, 10, 6 and 2 Meters
(completely wired and tested-not a kit)

BANDMASTER SENIOR

A complete ready to go transmitter including the new crystal-oscillator-vfo switching circuit. Phone or CW - Eight bands $-80,40,20,15,11,10,6$ and 2 Meters. Ideal for either mobile or fixed station use. Will operate from A.C. power packs up to 450 volts at 275 ma, vibrator supply or dynamotor supply for portable mobile operation. Employs Pi antenna matching network. Power input to final is 50 watts with 450 volt power supply on Bands 1 through 7, 30 watts on Band 8. No tuning adjustments are necessary except those required to resonate the final output to the antentia. May be mounted on rack panel with power supply. For use with carbon microphone. No plug in coils .. $\$ 111.50$

BANDMASTER DELUXE

Has built-in three tube preamplifier for use with crystal mike, and ALL the features of the Bandmaster Sr. \$137.50

A Complete Amateur $\mathrm{S}_{\text {tation }}$ IN anly ONE CUBIC FOOT with Hawey-WELLS BANDMASTERS

6AMATEUR
BANDS
BAND-SWITCHING
Factory built \& tested (NOT A KIt)

90 WATt transmitter
The midget with a MIGHTY PUNCH $\$ 179{ }^{50^{*}}$

Complete with tubes

 less power supply POWER SUPPLIES AVAILABLE FOR FIXED AND MOBILE

9 TUBE RECEIVER DOUBLE CONVERSION PACKED WITH PERFORMANCE

For 115 V. AC Operatio MATCHING SPEAKER AVAILABLE

TRANSMITTER FEATURES

1. TVI Suppressed
2. Complete band-awitching: no plug-in coils
3. Complete Break-in Key or keying of mul. tiplier stages only
4. VFO Tuning without carrier on
5. Cathode biased Exciter tubes and clamp tube control of Final Ampli. conirol of Final Ampli
6. Initial tuning at reduced power
7. Three position excita tion control
8. Antenna loading Ilexibility
9. Selector swritch allows motering of PA Grid.

PA Cathode and Mod. ulator currents
10. Remote Break-in and Receiver muting provided by relay conirol
11. VFO voltage regulated and temperature com. pensated
12. Illuminated dial and meter
13. Crystal doar on front panel
14. Filament Operation 6 or 12 volts AC/DC
15. Low average Modulator current
16. Built-in provision for either Carbon. Crystal or Dynamic microphone and push-to-talk

RECEIVER FEATURES

1. Double conversion on all bands
2. Three tuned circuits on each band, in R.F. section
3. All coils slug tuned, giving high "Q" circuita
4. Separate oscillator coils for each band (no spurious response)
5. Bandwidth: Four kilocycles wide at the 6 db point
6. Complete with tubes
and built-in AC power supply. 6 or 12 voll DC power supply avail. able.
7. Crystal filtering optional.
8. Approximately 6° of dial spread on all bands. Accurately calibrated
9. Rigid Steel construction. (Vibration-Proof)
10. $63 / /^{\prime \prime} \mathrm{hgt}$. enablea easy under dash mounting for mobile insiallation

Send for technical Bulletins HW 456 and HW 457

- Prices subject to change without notice.

ELECTRONICS, INC., southbridge, mass.
 (0) TRANSISTORS • DIODES • RECTIFIERS

駺HE eyes of the operator pictured above only see tiny transistor elements about to be assembled. Our eyes see much more and we see it without benefit of a 40 -power microscope. This year, the same germanium transistor will be formed from mass production techniques and made available at low unit cost. Hand tooling becomes a thing of the past.

But, in addition to this widely publicized G-E "rate-grown" transistor, there are other germanium products of immediate concern to circuit design engineers. Stacked rectifiers were recently announced. These units are of the smallest size yet developed. They reduce comparable rectifier size and weight by as much as 75%. For your application the G-E stacked rectifier can be arranged from 1 to 12 fins with a total of 143 power combinations.

Diodes, too, share this spotlight on semi-
conductor product advancement. Last year, hermetically sealed units were perfected to master the damaging influences of moisture or gas contamination. Their stability and pulse recovery characteristics ideally answer requirements of magnetic and computer customers. Production now moves forward rapidly.

General Electric is at a point today where only development of new or improved equipment incorporating germanium products is a limiting factor. G-E germanium is ready to assist the engineer at work on business office electronics, automation of manufacturing processes, miniature radios, irons, etc. So, whatever your current electronic design problem is, act now to obtain up-to-date information on all G-E germanium products. Germanium' Products, Section X565, General Electric Co., Electronics Park, Syracuse, N. Y.

Progress/s Our Most Important Product

when you're consulted on $\mathrm{Hi}-\mathrm{Fi}$...

WE STOCK

EVERYTHING IN HI-FI

Hams who are active in $\mathrm{Hi}-\mathrm{Fi}$ know ALLIED as America's $\mathrm{Hi}-\mathrm{Fi}$ Center. We stock everythingcomplete systems-all components - the biggest selection of top quality equipment anywhere. Some of our best Hi-Fi buys are illustrated at right. For full details on everything in Hi-Fi see your ALLIED Catalog.

Knight $\mathbf{1 2 - W a t t ~ " B a n t a m " ~ A m p l i f i e r ~}$

The sensational "space-saver" amplifier. Features: 3-position record compensation; separate calibrated bass, treble controls; loudnessvolume control; response, $\pm 0.75 \mathrm{db}, 20-20,000$ cps; less than 1% harmonic distortion at 12 watts; 5 inputs; 8 and 16 ohm output imp. and high imp. for tape recorder. Handsome case. only $31 / 2 \times 13 \times 10 \%$
93 SX 312. Net

supply source for everything in eleatronics

you get every buying advantage

get everything: yes, everything from the largest stocks of Amateur station and industrial electronic supplies - all the nationally-known dependable lines.
get it fast: just mail, wire or phone your order-we'll have it on the way to you in a few hours.
get the best terms: only 10 , down: full carrying charge refund on 60 -day payment. 50°, back if you pay in half the required tine. Extra: 15-day trial on all receivers.
get real Ham-to-Ham help: our Amateur staff goes all-out to give you the straight dope you want. You'll like the kind of personal attention Amateurs have enjoyed at allied for so many years.

WE CAN SUPPLY

complefe parts and components for any Kif or Circuit described in this Handbook or in any other publication. You're on the right track in Amateur Radio when you're "equipped by ALLIED."

easy-to-build modern circuits for modern performance

SEE CATALOG FOR COMPLETE DETAILS

Knight Vfo Kis

Built-in voltage-regulated power supply; TVI suppression; good oscillator keying characteristic; plenty of bandspread; buffer stage; 2-chassis construction. Calibrated for $80,40,20,15,11$ and 10 meters (output on 80 , 40 meters). Complete, ready to build. For $105-125$ volt, $50-60$ cycles AC operation. $83 \mathbf{S} 725$. Net
$\$ 29.50$

Knight "Ocean Hopper" Highly sensitive beginner's AC-DC receiver. Plug-in coils cover 155 kc to $35 \mathrm{nic}-$ short wave, long wave and broadcast band. Bandspread for easy short wave tuning. Complete with 12 AT 6 and 50C5 tubes 35 W 4 rectifier, all parts and broadcast band coil. (See ALLIED Catalog for headphones, LW and SW coils.) For 110-120 v. AC-DC. 83 S 740. Net......... $\$ 12.75$

look to ALLIED for complete systems and components

Knighs 24-Wast Amplifier
Brilliant performance: response, ± 0.75 $\mathrm{db}, 20-40,000 \mathrm{cps}$; less than 1% harmonic distortion at 24 watts. Features: separate bass, treble controls; 4 inputs; record compensator; 8 and 16 ohms speaker output imp. Rich satin gold finish, $8 \times 14 \times 9^{\prime \prime}$.
93 SX 321. Net
$\$ 79.50$

Knight FM-AM Tuner
The ideal "space-saver" tuner. Highly sensitive, drift-compensated circuit with automatic frequency control. RF stage on $F M$ and $A M$. Loop for $A M$. Sensitivity: $F M-5 \mathrm{mv}$. for 20 db quieting; $A M-5 \mathrm{mv}$. Controls: tuning and selector. 10 tubes plus rectifier. Meas-

94 SX 728. Net.
$\$ 89.50$

RF CONNECTORS

Amphenol $R F$ connectors are unsurpassed for mechanical design and electrical efficiency. They provide low-loss continuity in critical RF circuits with little or no impedance change or increase in standing wave ratio.

Ampienol RF connectors are available in Types BNC, BN, HN, LC, N, C and the popular 83 series, including plugs, jacks, receptacles and adapters. All amphenol RF connectors meet or surpass rigid government specifications.

"S" Sockets and "CP" Plugs mate with each other and feature the amphenol retainer ring design - mount without screws or rivets on panel or chassis. They are compact in size and are ruggedly built for troublefree service. Available in black bakelite or mica-filled bakelite. "S" type sockets are also available in amphenol Steatite and in a variety of sizes with the number of contacts ranging from 4 to 11. Supplied with retainer rings for chassis mounting. Plugs and sockets are also available with plates and caps.

POLYSTYRENE COIL FORMS

Three low-loss Coil Forms are available from AMPHENOL: the standard size Plug-in which fits standard tube sockets. Miniature, with a raised hole in the center of base for self-tapping screw, and Miniature Plug-in for transceivers, low power transmitters and UHF receivers.

MINIATURE 7 and 9 PIN SOCKETS

Amphenor has a complete line of miniature 7 and 9 pin sockets for every appin sockets for every application, Materials include black bakelite, mica-
filled bakelite. Steatite or amphenol's own EthylonA. Zip-in sockets are molded of Ethylon-A, a resilient dielectric, and need no mounting plate or retainer ring.

MICROPHONE CONNECTORS

Amphenol manufactures an extensive line of connectors to fit practically all makes of microphones. The 75 Series. illustration " A ", function as either male or female fittings, include jacks, plugs, receptacles, adapters and switches. The 80 Series, "B", are designed for shielded cables and are obtainable in any combination of male or female cable connectors or as chassis receptacles. The 91 Series includes both screw -on, "C", and clickon, "D", types. With three or four contacts. The new QWIKs, "D", introduce modern design to connector design, feature fastest engagement, sleek appearance.

"MIP" SOCKETS
The world's strongest socket! The plated steel mounting plate is molded right into the solid bakelite body. cannot come loose or vibrate. Two holes in each contact provide wiring and anchoring points for resistors, condensers, chokes, etc. Available in black bakelite or mica-filled bakelite in a wide variety of contact arrangements. "MIP" sockets are also available for 8 pin Octal and Loktal tubes. The "MIP" sockets are unequalled in cither strength or versatility.

VHF and UHF TELEVISION ANTENNAS

Amphenol manufactures a complete line of quality television antennas. For VHF, the famous INLINE (Reissue U.S. Pat. 23,273) is available in either single bay or stacked array. amphenol UHF antennas include Bo-Ty, Corner Reflector and Lightweight Corner Reflector types. The Stacked-V antenna receives VHF, UHF or VHF/UHF.

Stacking for greater db gain may be done with the INLINE, Bo-Ty and both Corner Reflector models.

The materials used in all amphenol antennas are the very finest available. Sturdy aluminum and steel with non-rusting finishes assure likenew appearance on the rooftop. All AMPHENOL antennas feature stay-up construction - and perform well for many years.

Reliable antenna installation accessories are also available from amphenol.

COAX and TWINAX CABLE

Amphenol cables are produced in strict conformity to the rigid military specifications. Constant checks and inspections are made to assure the best in mechanical and electrical construction.

Most of the RF cables in the amphenol line have top grade polyethylene dielectric for low-loss, flexibility and mechanical stability. For high temperature applications, cables are also available with other types of dielectric.

FLAT and TUBULAR TWIN-LEAD

All amphenol twin-leads are made of brown pigmented virgin polyethylene and solid or stranded high-grade copper conductors. Fine materials combined with strict quality control assure minimum signal loss and constant impedance.

Available in 3 impedances and in transmitting and receiving types. AIR-CORE Tubular (U.S. Pat. 2,543,696) is a must for low-loss applications requiring a 300 ohm line.

The amphenol Amateur Antenna has been designed to meet your need for a simple, effective folded dipole antenna system. The efficiency of the amphenol Antenna for both transmitting and receiving has been demonstrated by years of satisfied amateur use. The Amateur Antenna is available in an economical, easy-to-assemble kit form. All the kits are pre-cut to band length and are ready for final assembly and installation. Complete assembly instructions are included.

YOUR AMPHENOL DISTRIBUTOR has what yau need in radia and electranic companents. Save time by seeing him for the part you wont. All the companents listed on these pages. and many athers in addition. ore carried in his stack and ore immediately ovailoble.

CATAIOG B. 3

General Catalog B-3 may be obtained at your distributor. It contains illustrations and specifications of the entire AMPHENOL line - now over 11,000 separate radio/electronic components.

B1 2-1000

AMERICAN PHENOLIC CORPORATION 1830 South 54th Avenue, Chicago 50, Illinois

WHEREVER THE CIRCUIT SAYS -MW-

ADVANCED TYPE BT RESISTORS

Type BT Insulated Composition Resistors-meel JAN-R. 11 Specifications af $1 / 3,1 / 2,1$ and 2 watte. Small size BTB specially designed for miniature 2 wott requirements. Type BT's are suited to relevision and similar exacting circuits. Extremely low operating temperature. Ercellent power dissipation. 10 ohms to 22 megohms in RMA ranges (Fully described in Cotolog RDC8.)

BW INSULATED WIRE WOUND RESISTORS

Exceptionally stoble, inezpensive lon worlog* wire wound rristors $1 / 2,1$ and $?$ math 0.24 ohma to 8,200 ohms in RMA ranget 505 ? o 100% oveloads fan of applied ellil a* dilgible honpe, and reture fo in th ralue (Fuir dineribed in Cotmloy RD[8.]

TYPE Q VOLUME CONTROLS

 Fixial Sholl Mandard and fer mol pultar bnol wiftioul aiperof ar. If hatrichangtodble Fiked \$nalf, pronele a daptabilitrio "spocifale: Accommodiales tirpe 70 3-ith 86 planingit tepped D Controle give wif abrerage ot AK |M ata fV neve!.
\{Faly fenctibed in Cobaloas tec) !

2-WATT WIRE WOUND CONTROLS

The -os liependable \#irt mownd cont dols for power requirements up to 2 wath. Iype iW ha: it full rourd shall $3^{\text {"* }}$ long trom coniro fac* Typ: WK has Knob Moster Shaft fo fitting to knurlad and flatted knobs, bu*hing is $1 / 4^{" 1}$ long, and shaft $3^{\prime \prime}$ long from mounting face. Both types have $11 / 4^{\prime \prime}$ diameter and accommodate Type W Smitiches Resistonce values. 2 ohms to $10,000 \mathrm{hm}$. (Fully dascribed in Cotalog RDCI.)

WHEREVER THE CIRCUIT SAYS -M-

CLOSE TOLERANCE

 DEPOSITED CARBON PRECISTORSPRECISTORS offer a unique combination of close folerance, stability and economy. Pure crystallina carbon bonded to selected ceramic cores overcomes limitations of carbon composition resistors and higher cost of precision wire wounds PRECISTORS offer wide range of values, guaranteed accuracy, high stability, low valtage caeff. cient, oxcellent frequency charocieristics. prediciable temperature coefficient.
(Fully described in Catalog RDC-3.)

HIGH FREQUENCY RESISTORS

Type MP Resistors are designed for frequenciez above those of conventional resistors. 2 waft 1090 watts. Special construction, with resistance film bonded to steatife ceramic form, provides stable resistors of low inductance and capacity. Type MPM's are miniature $1 / 4$ wolt units for smoll-space, high frequency receiver applica. tions.
(fully described in Catalog RF-I.)

HIGH VOLTAGE RESISTORS

Type MV's meet high resistance and power requirements in high voltage applications. Resistance coating in helical turns on ceramic fube provides a conducting path of lang effective length. 2 walls to 90 walts. Variety of terminal types. Type MVX's meet requirements for small, high range unit with axial leads. $2^{\prime \prime} \times 1 /^{\prime \prime}$ construction identical with Type MV's, excep: for ferminal.
(Fully described in Catalogs RG-1 and RG-2.)

SPECIAL CONTROLS

TYPE LCI A continuously compensaled cantrol that boosts lows and highs as volume is de-creased-maintains depth and brilliance even at whisper level. Automatically maintains proper balance of all frequencies in the audio spectrum al any listening level Simple instaliation.
TYPE QJ.3. A law cost, easily installed TV attenuator that permits ready odjustment of signal input to TV sets
(Fully described in Catalog DC1.)

SEALED VOLTMETER MULTIPLIERS

Dependable multipliers for use under the most severe humidity conditions, Type MF Resistors consist of a number of IRC Precisions interconnected and hermetically sealed in a glazed ceramic tube. Compact, rugged, stable, fully moisture-proof and easy to install. Maximum current: 1.0 M.A.; 0.5 megohms to 6 megohms.
(Fully described in Catalog RD-2.)

MICROSTAK SELENIUM DIODES

TYPE GA Diodes are IRC engineered for use in low current circuits where very high back resistance and low forward resistance are required. They are small size, hermetically sealed, and ideal for circuit applications up to 1 megacycle.
IRC VARISTORS are non-linear resistors. They are voltage sensitive and provide sharp variation of resistance with applied voltage.
(Fully described in Catalogs RDC11 and RSR-3.)

INSULATED CHOKES

Ideal for TV and similar circuits. Wide range of size and characteristic combinations permit occurate specification to individual requirements. Types CLA and CL-I Chokes are fully insulated in molded phenolic housings-protected from high humidity, abrasion, physical damage or shorting to chassis.
(Completely described in Catalog RDC7.)

OTHER IRC PRODUCTS

IRC manufactures a wide line of resistors, controls and related electronic components for equipment manufacturers, service technicians and amateurs.
In addition to the products described on these pages, IRC olso furnishes -
BORON-CARBON PRECISTORS - MOLDED BORON-CARBON PRECISTORS • INDUSTRIAL CONTROLS • 4 WATT TV CONTROLS • FLAT TYPE POWER WIRE WOUNDS • FEED. THRU TERMINALS.

SEND FOR LITERATURE

4 For full information on any IRC product visit your local IRC Distributor or write for the Catalog Bulletin in which you ore interested.

INTERNATIONAL RESISTANCE COMPANY

A good microphone can improve your results

as much as a high gain antenna

Ever notice that two signals of the same "S meter" intensity sound differently? One is muddy, dull, a little hard to read-the sibilant letters like S and F almost alike. The other signal is sharp, clean and readable even in QRM and QRN-because there's usable intelligence. No mistake about the call or comments.
The greatest variation is in the microphone. A sharp peak adds no intelligibility but limits the modulation to that value. A peak of, say 6 db , which is usual in many ordinary microphones, will reduce voice power by HALF. Don't be fooled by a microphone that sounds "louder"-loudness by itself is not a criterion of performance; quite the contrary since it may indicate undesirable peaks.
An E-V microphone with smooth, peak-free response, replacing an inferior instrument, often will do more for a phone signal than a new antenna or increased power. As a further plus, of course, you get well-known E-V durability, style and performance. An E-V microphone, to raise stations, to carry through a QSO, is your best station investment.

Shown above are a few of the E-V microphones designed for effective communications. Amateur discount applies.
(upper left) Model 619 high output dynamic and Model 911 crystal. On-0ff switch. List from $\$ 25.50$ to $\$ 37.50$
(upper right) Model 950 Cardax high-level crystal cardioid, with dual frequency response. On-0ff switch. List, $\$ 42.50$
(lower left) Model 630 wide range, high output dynamic, with ex. clusive Acoustalloy diaphragm. On-Off switch. List, $\$ 47.00$
(center) Model 636 "Slimair" wide range dynamic. Pop-proof head. Acoustalloy diaphragm, On-Off switch optional. List, $\$ 70.00$
(lower right) Model 623 slim-type high output dynamic, with E-V Acoustalloy diaphragm. On-Off switch. List. $\$ 49.50$. Also Model 926 crystal, less switch and connector. List, $\$ 24.50$
(Other E-V microphones for mobile and aircraft communications, telecasting, broadcasting, recording, and public address.)

For further information, see your E-V Distributor or write for
Condensed Catalog No. 119
Electrovorici
ELECTRO-VOICE, INC. BUCHANAN, MICH.
Export: 13 E, 40 th Si., New York 16, U.S.A. Cables: Ariob

BaW PRODUCTS of the YEAR

Model 5100 Transmilter

wilh Model 51SB Single

Sideband Generator

Here is really sparkling performance on SSB, AM phone, or CW. Teamed up with the famous 5100 Transmitter, the new B\&W Single Sideband Generator gives you outstanding SSI3 operation on all frequencies covered in the 5100 . Tuning and operation are a breeze. No test equipment is required. And you get such extras as voice operated and push-to-talk controls, speaker deactivating circuit, TVI suppression, and unitized construction. Combine this generator with the features of the Model 5100

- 150 watts peak envelope power input (100 watts peak envelope power output) on SSB, 150 watts on CW, 135 watts on AM phone; VFO or crystal operation; pi-network final and - you've got a rig guaranteed to flutter the heart of the most critical operator. The 51 S 13 comes complete - factory wired and tested - with all tubes and components, ready to bolt right onto the transmitter cabinet. This combination provides a superlative driver for any high-powered linear amplifier.

Precision Toroidal Iype SSB Bandpass Filler

At last. you can bave a reasonably priced, bighly selective filtor especially designed for SSB operation. This new unit uses eight stabilized toroidal inductances and precision silver mica capacitors to provide bandpass and attenuation characteristics that remain constant under changing operating temperatures. Filter amplitude characteristic is relatively flat for the nominal 3.0 kc passhand, with sharp skirt selectivity on hoth sides of the bandpass region. A receiving type filter. Model 360, is available and a combination receiving and a transmitting type, Model 361 can be provided on special order.

Type 204 Audio Phase Shifl Nelwork

An octal hased audio phase shift network designed especially for SSB suppressed carrier, radio-telephone receiving and transmitting applications. This high-quality unit will split any audio signal from 300 to 3000 cps into two equal amplitude components $90^{\circ} \pm 1.5^{\circ}$ out of phase with respect to the other. Highly compact, the Model 350, Type 2Q4 requires no more space than a 6J5 rube.

Matchmaster

Once you try this instrument you'll wonder how you ever got along without it. The Matchmaster provides in one completely self-contained unit $6^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime}$.
A dummy load-Perform all kinds of tests on your transmitter without putting a signal on the air Max. SWR 1.2 to 1 from 500 kc to 30 mc .

A direct-reading r-f watt meter-for precise adjustments of all r-f stages
up io 125 watts-bigher powers by sampling. Excellent repeat accuracy over full 125 watt scale.
Integral SWR Bridge-for matching antennas and other loads to transmitter. Direct measurement of SW'R enables precise adjustment of beam antennas, antenna tuning networks, and mobile whip antennas. Model 650 is for use with 52.0 hm line, Model 651 is for use with 73 -ohm line.

Audio Oscillator

[^20]Junior And Heavy Duty Butterlly Variable Capacitors

Low
Pass
Filters

B\&W heavy duty butterfly capacitors pave the way for increased efficiency in single ended and push-pull circuits, providing hetter L.C. ratios at high frequencies. Junior Butterfly capacitors are ideal for medium power triode or tetrode stage plate circuits and many other applications. Having $25{ }^{\circ} \%$ of the frontal area of the heav duty type, these split-stator units provide peak efficiency, more power, in less than normal space.

Equip your transmitter with a new B\&W low pass filter and unwanted harmonics causing TVI will be reduced by a minimum factor equal to 17,780 to 1 , without tuning or any adjustments. A minimum of 8 idh attenuation is achieved throughout the TV band, and more than 100 db on TV channel \#2. The Wave Guide principle employed in the design of this new filter permits a novel type of multisection construction, allowing more sections in less space. Model 425 for 52 -ohm line, Model 426 for 75 -ohm line.

These accessories permit compact assemblies with companion units such as capaciors, jack hars, plug-in coils, and links. Two groups are available, one for open wire plug-in swinging links, and another for Faraday Shielded links. Assemblies include a jack bar, arm and hinge, link (open wire or shielded), and either a metal botom plate or capacitor mounting bracket. Individual parts may be purchased.

Freq. Range: Fundamentals from 30 to 15,000 cycles. Measures harmonics to 45,000 cycles.
Sensitivity: 0.3 volts minimum input required.

Freq. Range: 0 to 30,000 cycles. Sensitivity: 0.25 volts minimum in. put required.
Wave Form: Any form with peak ratios less than $8: 1$.

These new baluns fill the gap between unbalanced feed lines and balanced antenna leads, providing maximun transfer of power, low line radiation on transmission, and high signal-to-noise ratio on reception. Models $700-702$ match low impedance transmitter output with power ratings up to $\mathbf{1 0 0 0}$ watts to beam type antennas, employing the popular "T" MATCHING SECTION. Models 710-714 match such outputs into half wave folded dipoles using 300 ohm feed line.

This completely new exciter unit makes trans mission on either the 80-40-20-15-11 or 10 meter bands available at the flip of a switch. An ideal driver for class " C " or linear amplifiers, the Model 504C may also be used as a low power transmitter when equipped with appropriate accessories. Operation requires 6 to 10 wolts driving power from an external crystal oscillator or VFO hetween frequency range of 3350 to 4000 $K C$ and a suitable power supply providing filament and DC plate power.

An inexpensive, multi-position switch that permits selection of any one of five antennas, transmitters, exciters, receivers, and other r-f generating devices using 52 or 75 obm coaxial line ... without the fumbling and annoyance of screwing and unscrewing connections.

B\&W Rotary Coils are available for all medium and high power requirements of pi-network, final circuits, and antenna coupling and loading units. 500 -watt units are supplied with inductances of 1.6, 6.2, 15, and 72 micro-henries; 1000 -watt types with 60 or 96 micro-henries.

INSTRUMENTS

Sine Wave Clipper

Does the work of a square wave generator costing many times more. Speeds accurate circuit analysis.

Linear Defector

Provides r-f detection and audio bridging circuits. It is an invaluable accessory for distortion meters lacking these features.

This inexpensive instrument helps you get the most out of your equipment. May be used as a sensitive grid dip meter, signal generator, absorption wave meter, or as a signal monitor from 1.75 to 260 mc .

Balun Inductors

Two sturdy bifilar airwound balun inductors give a compact, efficient multi-band unit for matching 75 ohm unbalanced outputs to 75 and 300 ohm balanced feed lines.

2C39A

This small, rugged triode is designed for use as a power amplifier, oscillator or frequency multiplier to frequencies above 2500 mc . It is particularly suitable for compact fixed or mobile equipment.

4-125A

The radial-beam power tetrode that made transmitting screen-grid tubes popular. This tube will take a plate input of 500 watts for CW or 380 watts for fone. Driving power is less than two watts. A pair of these tetrodes make an ideal high power fone or CW final for the amateur.

4-250A

A pair of these radial-beam power tetrodes will easily handle a kilowatt for fone. In CW service, one tube will take a kilowatt input. Driving power is only two to three watts per tube. As modulators a pair will deliver as much as 750 watts audio with simple resistance coupled driver stages.

FINGER STOCK

Preformed Contact Finger Sock is a useful electrical "weather strip" around accesses to equipment cabinets as well as providing good circuit continuity between adjustable components. It is ideally designed for making connections to coaxially constructed and external anode tubes.

of Excellence

 in Electron-power Tubes

4X150A

This small external anode radial-beam power tetrode operates efficiently at all frequencies into the UHF range with a driving power of only a few watts. Its small size and ruggedness make it ideal for compact equipment such as mobile.

4E27A

With simple circuits and less than two watts driving power this radial-beam power pentode gives dependable operation and high output. It is capable of an easy 500 watts input in Class-C service - or when suppressor modulated will deliver 75 watts output at carrier conditions.

$250 T$

A tried, proven and continually improved 250 watt triode. The ideal triode for one KW' CW' input. W'ill handle 825 watts input on fone. With plate voltage as low as 1500 volts in Class-B audio service a pair will modulate a KW RF stage.

4W20,000A

In pulse service and TV operation the Eimac 4W20,000 A is the only time-proved tetrode in its power class. Its rugged construction includes a ceramic envelope that minimizes losses and increases operational life. In VHF-TV operation, it gives 25 kw peak sync power output with only 500 watts drive.

KLYSTRONS

Fimac klystrons offer a complete line of tubes for high power at UHF in all types of communications and pulse applications. These klystrons feature RF circuitry outside the vacuum system, copper and ceramic construction, easy wide range tuning and uncomplicated input and output coupling adjustment. Also available are Eimac local oscillator reflex klystons for use in the $8400-9600 \mathrm{mc}$ range.

RECTIFIERS

Eimac high vacuum rectifiers cover a wide range of average current 50 ma to 750 ma and peak inverse voltages from 25 kv to 75 kv . In power supply units, voltage multipliers, pulse service or special applications at high frequencies, extreme ambient temperatures and high inverse voltages, these rectifiers insure reliability without generating RF transients.

- Write for 28-page booklet, "Care and Feeding of Power Tetrodes.' Available free upon request.

Eimac maintains an Amateurs' Service Bureau for amateur radio operators. Free information may be obtained by writing. Available for engineering consultation and information is the Eimac Application Engineering department.

FOR MILITARY, COMMERCIAL OR AMATEUR APPLICATIONS TRANSFORMERS
THAR
of Quality

TRANSFORMERS - REACTORS - FILTERS				PRECISION TEST INSTRUMENTS			
	$\begin{aligned} & \text { Minialure } \\ & \text { Audio } \end{aligned}$	(2)	Toroidal Inductors			$\begin{aligned} & \text { Pag! } \\ & 0,0.0: \end{aligned}$	$\begin{gathered} \text { No. } 1620 \\ \text { Megohmmeter } \end{gathered}$
T	Sub Miniature Toroidal Inductors Inductor		$\begin{gathered} \text { Military } \\ \text { Pulse } \end{gathered}$		No. 1020B Megohmmeter	\qquad	No. 1010A Comparison Bridge
	$\underset{\text { Fidelity }}{\substack{\text { High } \\ \text { Fin }}}$		$\begin{gathered} \text { Power } \\ \text { Transformers } \end{gathered}$		No. 1210.A Null \& Vacuum Tube Voltmeter		$\begin{aligned} & \text { No. 1140A } \\ & \text { Null } \\ & \text { Detector } \end{aligned}$
11	Precision filters		Subminiature Encapsulated Pulse Transformers		No. 1150 Universal Bridge		No. 1110A Inductance Bridge
E1	$\underset{\text { Class H }}{\text { Components }}$		High Level Pulse Transformers	$\begin{array}{r} 3, \text { Ra } \\ 0 \times 5=0 \end{array}$		\%	(inductors
5	$\begin{aligned} & \text { Standard } \\ & \text { Minitary } \\ & \text { Audio } \end{aligned}$		Magnetic Amplifiers	-	No. 1560 Differentia Voltmete		No. 1580 DB Decade Amplifier

FREED TRANSFORMER CO., INC.
SETS THE STANDARD FOR PERFORMANCE
1718 Weiffield St., Brooklyn (Ridgewood) 27, N. Y.

DE LUXE RELAY RACKS

These relay racks are made of 16 gauge stecl with panel supports. The panel mounting supports are recessed so that no edges of the panel will be exposed

The front and back of the top, the two sides and the door are well louvered to provide adequate ventilation. Snap catches are positioned on the door. A streamlined appearance is achieved by the use of rounded corners and red-lined chrome trim. The relay rack is shipped knockeddown and complete with all necessary hardware for assembly. All standard 19" panels will fit these racks

A SPECIAL FEATURE IS THE USE OF FOUR STURDY SUPPORTS ON THE BOT. TOM SO THAT CASTERS CAN BE FASTENEDDIRECTLYTOTHE BASE, THERE. BY ACHIEVING READY MOBILITY, Bud RC-7756 casters will fit this unit. Casters are not included in price of cabinet. These relay racks are supplied in either black or grev wrinkle racks are suppliedone finish. The overall width is $22^{\prime \prime}$ and the depth is $17^{1 / 4 \prime}$ on all sizes listed.

Catalog	Overall	Panel	Shipping
No.	Height	Space	
CR-1774	$42^{1} 16^{\prime \prime}$	$36{ }^{3 / 4}{ }^{\prime \prime}$	90 lbs.
CR-1771	$47^{\prime \prime} 16^{\prime \prime}$	$42^{\prime \prime}$	100 lbs.
CR-1772	$66^{9} 16^{\prime \prime}$		135 lbs.
CR-1773	$82^{3} 6^{\prime \prime}$	$77^{\prime \prime}$	155 lbs.

ADD-a-RACK SERIES

It has always been necessary to buy special racks without louvers on one side to obtain a maximum of panel space with a minimum of floor space. Now, you no longer need to buy a whole new cabinet when you want additional panel space. Through our new and exclusive Add-a-Rack series, BUD not only offers additional racks at a lower cost, but provides you with a sturdier, better looking assembly.

The illustration at top shows two Add-a-Rack cabinets assembled together. The illustration below shows the unique and ingenious method of adding a unit to your present equipment. In stead of buying an entire new outfit, you purchase only four parts (1) a door (2) a top (3) a bottom and (4) an Add-a-Rack coupling unit. The right (or left) hand side of your present relay rack is removed and replaced by the Add-a-Rack coupling-unit; next, a top and bottom is fastened into place, and the side taken from the first rack is festened onto the second rack which has been added. Place the additional door into position and you have tro racks properly and efficiently coupled together. In the same simple way, more racks can be added at any time and everv one will be CONTINUOUS ONEPIECE assembly

This series is available in two ways. (1) a double unit consisting of two racks and the Add-a-Rack coupling unit, (2) Add-a-Rack unit, consisting of a door, a top, a bottom and an Add-a-Rack coupling-unit. These units are furnished with all necessary assembling and panel mounting hardware. Choice ot finish same as racks above.

Add-a-Rack	Used to	Shipping
Unit	Add-a-Rack to	Weight
AR-1778	CR-1774	70 lbs.
AR-1775	CR-1771	75 lbs,
AR-1776	CRR-1772	100 lbs.
AR-1777	CR-1773	127 lbs.

Complete unit conaisting of the knocked-down parts necessary for two relay racks coupled together
CR-1779 two coupled relay racks same size as CR-1774
CR-1780 two coupled relay racks same size as CR-1771
CR-1786 two coupled relay racks same size as CR-1772
CR-1799 two coupled relay racks same size as CR-1773
Bud RC-7756 Casters will fit this unit. Casters are not included in price of cabinet.
 Shipping eight 75 lbs. 100 lbs . 27 lbs.

BUD BUD Products for high quality and best results

75-WATT TRANSMITTER COILS

These coils are distinguished by their rigid con. struction, attractive appearance and conservative power rating. The polystyrene mounting base keeps the coil a safe distance from the chassis it also permits easy coil removal without disturbing the winding. All coils are air-wound and mount in 5 prong tube sockets.

OEP and OCP Coils are designed for use in circuits using Pentode tubes with high output capacity such as $6 \mathrm{~L} 6,807$, etc.

OEL coils have fixed end link and are not tapped.
OCL have fixed center link with main winding center tapped.
OLS have adjustable center link, main winding center tapped
OES have adjustable end link and are not tapped.
OEP have adjustable end link and are not tapped.
OCP have adjustable center link main winding center tapped.

Catalog No. Fixed End Link	Catalog No. Fixed Center Link	Cat. No. Adjustable Center Link	Cat. No Adjustable End Link		Band	Capacity*	
		OLS-160		160	Meter	100	MMFD
			OES-160	160	Meter	86	MMFD
OEL-80	OCL 80	OLS-80	OES-80	80	Meter	75	MMFD
OEL 40	OCL-40	OLS 40	OES-40	40	Meter	52	MMFD
OEL 27	OCL- 20	OLS 20	OES-20	20	Meter	40	MMFD
OEL-15	OCL-15	OLS-15	OES-15		Meter	30	MMFD
OEL-10	OCL-10	OLS 10	OES-10	10	Meter	25	MMFD
OEL-6	OCL- 6			6	Meter	17	MMFD
		OCP-10	OEP-10	10	Meter	45	MMFD
		OCP-20	OEP-20	20	Meter	50	MMFD
AM-8673	Coil Base	onlv					

AM-8673 Coil Base onlv

ADJUSTABLE LINK TRANSMITTER COILS

Listed are two types of Coils. CL type of coil has an adjustable CENTER link. ES type of coil has an adjustable END link. The CL and ES can be used where fixed links are specified. No additional cost is invs are specified. No add coupling is asinvolved and more efficient coupling is as-
sured because of this special adjustable link, an exclusive BUD feature.
150 WATT RATING

Catalog No.
Center Link Center Link Adjustable RCL-8) RCL-43 RCL- 2) RCL-2) RCL-15 RCL-10

Catalog No.
End link
Adjustable
RES-160
RES-80
RES-40
RES-20
RES-15
RES-10

Band

 160 Meters80 Meters
40 Meters
20 Meters 15 Meters 15 Meters
\square

AM-1932 - Mounting Base for RCL and RES Coils
Also available in 500 W and KW sizes

$$
\begin{aligned}
& \text { Capacity* } \\
& \text { CMFMMF }
\end{aligned}
$$ 110 MMFD 68 MMFD 36 MMFD 27 MMFD 7 MMFD

VARIABLE LINK TRANSMITTER COILS

The most effective method of varying the loading of an R. F. Stage is by the use of a variable link to the plate tank, a feature incorporated in all Bud Variable Link Coils. The link winding is connected to the jack bar into which the coils are plugged, and this link may be used with any of the coils regardless of the band being worked. The link winding is so arranged that it may be readily controlled from the panel by means of an extension shaft if required. 500 WATT COILS

Catalog			Length Mounting	Mounting Hole
Number	Band	Capacity*	Strip Dim.	Dim.
VLS-160	160 Meter	85 M MFD	$51 /{ }^{\prime \prime}$	5
VLS-80	80 M	70 M MFD	51	5',
VLS-40	40 M	36 MMFD	$51 / 2$	5"
VLS-20	20 M	28 MMFD	51	5"'
VLS-15	15 M	25 MMFD	51	$5^{\prime \prime}$
VLS. 10	10 M	25 MMFD	51/2'	$5^{\prime \prime}$
AM-1352 - Base and Link Assembly for 500 Watt Coils				

IRON CORE R. F. CHOKES

The efficiency of any circuit requiring an R, F choke will be definitely improved by utilizing one of these chokes with a finely divided molded metallic core. The improved " Q '" possible with this construction results from the D. C. resistance of these chokes being from 40 to $50^{\circ} \mathrm{C}$ less for a given inductance than for regular air-core types. Thus, the D.C. voltage drop through the choke is considerably less, yet the choking action is equally as good. Windings are made with silk-covered enameled wire terminated on convenient soldering lugs, and the chokes are mounted in small square shield cans measuring $13 / 8^{\prime \prime} \times 13 / 8^{\prime \prime} \times 17 / 16^{\prime \prime}$

Catalog	Inductance	D. C. Resistance	
Number	mh.	Current	
CH-1277	1.5	11.5	ma.
CH-1278	2.5	16.	125
CH-1279	3.4	19.5	125
CH-1280	5.5	27.5	125
CH-1281	8.	46.	125
CH-1282	10.	42.5	125
CH-1283	16.	53.	125
CH-1284	30.	131.	100
CH-1285	60.	163.	100
CH-1286	89.	221.	90
CH-1287	125.		
CH-294	Shield Can Only		

Also available Pie wound and Lattice wound Ceramic Core

SHIELDED COIL-LINK

These links are made to fit RLS, VLS, and MLS series of coils. This
 link will prevent capacity coupling between the tank coil and the link and will reduce TVI by greatly attenuating harmonics. The links can be used on co-ax or balanced lines.

Catalog No.
AM-1300 AM-1301 AM-1.302

Used with RLS coils (150 W
Used with RLS coils (150 W
Used with MLS coils (Kilowatt)
CODE PRACTICE OSCILLATOR AND MONITOR CPO-128A

The BUD Codemaster is a real money. saver. No longer do you have to consider your code practice oscillator useless after you have learned the code. A Hip of the switch and you have a good CW monitor. This is a really versatile instrument.
It has a $4^{\prime \prime}$ built-in permanent magnetic dynamic speaker and will operate up to twenty earphones. Now 2 tubes.

A volume control and pitch control permit adjustments to suit individual requirements. Any number of keys can be connected in parallel to the oscillator for group practice.

This unit will operate on 110 volts A.C. or D.C. An external speaker may be plugged in without the use of an output transformer. All controls are placed on the front of the unit and all jacks are in the rear. The unit is $61 / 2^{\prime \prime}$ high, $51 / 2^{\prime \prime}$ wide and $312^{\prime \prime}$ deep. It is finished in Grey Hammertone enamel with red lettering.

MODEL CPO-13OA

This unit is similar to the CPO-128A. The difference is that the $4^{\prime \prime}$ speaker is not indifference is that the speaker is not in-
cluded. The monitor feature, however, is cluded. The monitor feature, however, is
included. A phone jack is provided for the output and as many as 20 pairs of phones and keys can be operated at one time for class-room operation. This model will also operate a permanent magnetic dynamic speaker. Size is $51 / 2^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ high, $31 / 2^{\prime \prime}$ deep.

FREQUENCY CALIBRATOR FCC-9OA

To comply with federal regulations, some means of accurately checking transmitter fre. quency must be available at every "ham" station. The BUD FCC-90A consists of a 100 kc. crystal oscillator that is Completely Self-Powered. It will give 100 kc . check points on all bands up to 30 megacycles. This enables the operator to determine exact band edges.

No extra wiring is required to install this unit. Plug the FCC-90A into a 110 volt receptacle, connect the pick-up lead to the antenna binding post of the receiver and the unit is ready for operation. An ON-OFF switch and a STANDBY switch are provided. Now 2 tubes.

SLIDING DRAWER ASSEMBLY
The new BUD S.D. 1717 Sliding Drawer Assembly is easily and quickly assembled and installed in any standard rack. Can't fall out, can't tilt ... perfectly safe mounting for any object placed on it. Slides easily in and out on ball bearing suspension in the same manner as the drawers in the most expensive steel filing cabinets. Gold Finished Aluminum.
Here Are Some of the Many Uses of the BUD Sliding Drawer Assembly:

1. Mounting for record player
2. Base for portable typewriter
3. Mounting for apparatus or instruments
4. Base for writing table
5. Handy drawer space

In addition, there are many other handy uses for this practical drawer. Also available. aluminum plate which may be fastened to top of chassis as shelf, desk top or support; or attached to bottom of chassis to form drawer. Size 16 /a' $^{\prime \prime}$ x 14". Made of 14 gauge aluminum. Gold finish. Punched with four mounting holes. Catalog No. T.P. 1718.

"CE" MIDGET CONDENSERS

 SINGLE SECTION DOUBLE BEARINGThese Midget Condensers were designed to meet the rigid requirements in design of efficient high frequency electronic devices and precision laboratory equip. ment. Brass rotor and stator plate stacks are assembled into permanent units by means of electro-soldering, which assures long life and accurate plate spacing, End-plates of Steatite insulate the mountbushings and angles from the rotor and stator assembles. The ge front and rear bearings provide for smooth rotation. Special per contact provides noise-free tuning. All metal parts are Imium plated. Rotor plates semi-circular shaped. Provision for her panel or base mounting.

For sizes consult BUD Catalof

YPE DUAL MIDGET CONDENSERS These Midget Condensers were designed to meet the rigid requirements in design of efficient high frequency electronic devices and precision laboratory equipment. The large front and rear bearings provide for smooth rotation. They feature a rctor wiping contact placed at center of the rotor assembly to assure maximum efficiency at high frequencies. Opposed rotor nstruction assures perfect counterbalance and provides even que at any prsition of rotation. Steatite insulation eliminates sed induction loop in frame. All metal parts cadmium plated. For sizes consult BUD Catalok

TINY MITE TUNING CONDENSER SINGLE SECTION

This series of condensers has been designed for applications where space or weight are limiting factors and for tuning of high frequency circuits. Rigid construction, close fitting bearing positive rotor contact and Steatite insulation are ε outstanding features. Cadmium plated, soldered, brass plates d rods insure high frequency efficiency.

For sizes consult BUD Catalo $\&$

BUD TINY MITE DUAL CONDENSERS
The construction of these units is similar to the regular Tiny Mite Tuning Condensers. The two end pieces are held together firmly with three tie-rods.
A separate round plate is soldered on rotor rod shield the two stator sections. Large surface front and rear sleeve arings, provide smooth rotation.

For sizes consult BUD Catalog

NEW BUD FILTERS TO REDUCE OR ELIMINATE TELEVISION INTERFERENCE

The sources of television interference are most often short wave broadcasting stations, amateur radio transmitting stations, diathermy equipment, X-ray equipment, automotive ignition noises or similar sources. The basic problem of eliminating this interference is that of rejection of the signals received from these sources.

Interference to television receiver reception caused by transmissions from an amateur station can be caused by harmonics or by shock from the transmitter. The shock from the transmitter fundamental can be cured at the television receiver with a Bud HF 600 high pass filter. Harmonics can be greatly reduced or eliminated at the transmitter by use of a Bud LF-601 low pass filter.
The LF-601 high attenuation low pass filter has the following characteristics:

- Minimum attenuation of 85 decibels on all frequencies above 54 megacyeles and a minimum of 93 decibels above 70 megacycles. - Maximum rejection is adjustable from 55 to 90 megacycles. This tunable feature provides two slots at least 100 decibels down. The cut-off frequency is 42 megacycles. The unit will easily handle a full kilowatt modulated on a reasonably flat line. The insertion loss is less than one DB. Since the design of this filter p-ovides loss is less than one DB. Since the design of this filter p-ovides
an adjustable feature, the unit can be used with either 52 ohm or 72 ohm coax. Each inductance is in an individually shielded compartment - All capacitors used are variable . Size $12^{\prime \prime} \times 2 \frac{1}{2} 2^{\prime \prime}$ $\times 21 / 4{ }^{\prime \prime}$

HF-600 HIGH PASS FILTER

The HF-600 high pass filter has a cut off frequency at 42 megacycles, thus this filter rejects signals from 0 to 42 megacycles. It is within this range that the majority of signals causing interference are received. Since there is no attenuation above 42 megacycles, picture strength or quality is not affected. This unit is easily installed and complete installation instructions are included. The filter is housed in an attractive aluminum case $31 /{ }^{\prime \prime}$ $\times 21 / 6^{\prime \prime} \times 11 / \mathbf{a}^{\prime \prime}$

three-gang tiny mite CONDENSERS

Hams, Radio Constructors and Experimenters can find many uses for these compact, three-gang condensers. Designed particularly for high frequency use, they are adaptable for use in converters, preselectors and receivers covering the Amateur, Television and F.M. bands. and receivers covering the Amateur, Television and F.M. bands. Well constructed with soldered brass plates and ceramic brackets.
Rotor shaft extended 1 " at rear. Height $15 / 16^{\prime \prime}$. Width $13 / 16^{\prime \prime}$. Rotor shaft extended ${ }^{3 / 4^{\prime \prime}}$ at rear. Height $15 / 16^{\prime \prime}$. Wi
Length behind panel $3.2^{\prime \prime}$. Mounting holes $23 / 16^{\prime \prime}$ apart. For sizes consult BUD Catalos

MIDGET CONDENSERS

Small size, sturdy construction and high mechanical and electrical efficiency are the outstanding features. Insulation used is Steatite. Rotor and Stator plates are brass and are electro-soldered to their respective rods. All metal parts are cadmium plated. These condensers have both front and rear bearings and are furnished in either mid-line type plates (straight line wave length), or semi-circular plates (straight line capacity.)

For sizes consult RUD CataloR

NEUTRALIZING AND HIGH FREQUENCY

 TUNING CONDENSERSThis line of condensers will fill every neutralizing and high frequency tuning requirement that modern circuits pose. The two-pillar construction ern circuits pose. The two-pillar construction
makes this unit unusually sturdy and eliminates any possibility of capacity variation due to vibration. The movable plate is adjusted by means of the threaded shaft to which it is attached, and it is permanently locked in any position by the lock-nut provided. Any loose thread is taken up by a special nut and locked to give smooth operation. All metal parts are of aluminum or brass. Plates have rounded edges. Steatite insulation is used.

For sizes consult BUD Catalog

Illustrated are only a few of the many types and sizes of Bud Products. For complete catalon see your local Bud distributor. For the name of your nearest Bud distributor write Dept. R-55

Here is the new Heathkit vol you hase bern waiting for. The perfect Companion to the Heathkit Moxpl AT-1 Transmiter. It has suffeinent ontput to arive any main-stage ransmiture of muthers features st a low hit price. (iood mechanicat and electrical (lesign mature oberating stability. (Cois are wound on heaby duty cerame forms. usimg hitz or double rembosi wire roater with bolystyrent rement. Varlable cabarltor is of differential tywe construction, especiatly acsigned for maximum bithdspread athd features ceratme lusulation and double This.
This kit is furnished whth at carefully precalbibralled dial which provides well

 jrovided on the rear of the AT-1 Transmiter Kit. The VFO coaxial output cable terminates in matate plug to the standard $z^{\prime \prime}$ (rystal holder. Construction is simple and wiring is ensy

- 5 mooth acting illuminated and precalibrated dial.
- GAUS election coupled Clapp oscillator and OA2 voltage regulator

7 8and coversge. 160 through 10 meters- 10 Volt RF output.

- Copper plated chassis-aluminum cabinet-easy to build-direct heying.

Heathkit amateur transmitter kit

Here is a matjor lleathkit addition to the llam radionded, the AT-I Transmiter kit. Incorporarime many desirable design fatures at the lowest mossible dollar-mer-watts price. Dand mounted erssial surket. stam-by switho key cllek piltor,
 ton-up to 35 watts fnput. Buitt-in wower supply provides 425 volts al 100 MA. Amazingly low kit price inclutes all circuit componemts, lubes, cabinet. punched chassis, and detated construction manual.
model at-i
\$2950

Ship. Wt

16 lbs.

84

freal for
 Whal hor individ
 mon. ham whark

menis extra shack,
sent for
sericing. Outside
Connpact size,
Mint weirnt.
poraule ser foric
fert or teld
work or
work \%ivit.

Model

OL-I

$\$ 2950$

seylim
 palingmorfer locten it tryy

 cray kno, tightrede cons and
ter and terning antrand
blat
Dost

Pisathezt printed cricult $3^{\prime \prime}$ OSCILLOSCOPE KIT

PRINTED CIRCUIT DESIGN: A new ardition to the famous line of Heathkit Oscilloscopes, a lightweight compact $3^{\prime \prime}$ Scope at only $\$ 29.50$. Ideal for hams, students and experimenters. Peatures modern printed circuit design for easy trouble-free assembly-miniature tubes-transformer operated power supply and direct RF connect ions to the deflection plates. Ideal for portable Tl' work as a "second" shop Scope, or for tralismitter modulation monitoring.
SWEEP GENERATOR: Suecp generator frequency coverage from 15 to 100,000 cyeles. Printed circuit construction :issures uniforn: standardized wiring
AMPLIFIERS: Wentical push-pull vertical and horizontal amplifiers. Ifeal for applications where' phase shift is important, Sensitivity of vertical amplifier .25 volts mer inch, horizontal amplifier .2 volts per inch-deflection plate terminals -transformer operated. Tube lineup t,
 CRT. A terrifie value at $\$ 29.50$.

Nem heathkit printed circuit $\underset{\substack{\text { vacuum } \\ \text { Tues }}}{ }$ VOLTMETER KIT

A new printel cirenit STVM with new peak-to-pe:tk eircuit, new styling and new manel design. 'lhe prewired, prefabricated, printed circuit board eliminates chassis wiring. cuts assembly time in half, assures duplication of engineering pilot mondel specifications. and virtually miminates the possibility of construction error.
RANGES: Seven peak-to-peak voltage ranges: $4,11,40.140,400,1400$, and 4000 volts.
 ranges: Xi, X10, Xlow, X1000, X10に, X100k, Ximeg.
IMPORTANT FEATURES: High impentance 11 megohminput-transformer opera-tion-10; precision resistors- 6.11 .5 and 13.11° ' tubes-seleniun power rectifierindividual AC and DC calibrations-smoother improved zero aljust action-db scalccenter scale zero position - polarity reversal switeh - new platement of pilot light-new positive contaet buttery mounting-new knohs-test learls included. Easily your best buy in kit instruments,
 $3 \rightarrow \begin{gathered}\text { Shpg. Wt. } \\ 7 \mathrm{lbs} .\end{gathered}$

Heathhit Antenna IMPEDANCE METER KIT

The Model AM-1 Antemna Impedance Meter makes an ideal companion unit for the GD-1H Grit! Dip Meter or it valuable instrument in its own right. Perfect for checking antena and receiver impedance and match for optimum system operation. (se on transmission lines, halfwave, folded dipole, or beam antennas. Will double as monitor or relative field strength meter. Covers freq. range of $0-150$ \c and impedance range of 0600 ohms. Uses 100 nicroampere meter and special ealibrated potentiometer. A real buy at only $\$ 14.50$ complete.

HEATH COMPANY

BENTON HARBOR 26, MICHIGAN

LOOK to LEO for BIG VAlUE at LOW COST!

featuring the famous hallicrafters line!

Write for. Complete
List of Hallicrafter
Models Carried in Stock

the hallicrafter S-95

the
hallicrafter S-85

ONLY $\$ 954$ PER MONTH
\$12.00 Cash Down $\$ 119.95$ cash pricı

The receiver with the $10,11,15,20,40$ and 80 meter amateur bands and separate bandspread tuning condenser. Has tuned RF stage, two IF stages for better selectivity, BFO pitch control, AVC noise-limiter and receive/ standby. Seven tubes plus rectifier. Broadcast band: 540-1680 Kc. Three short wave bands: $1680 \mathrm{Kc}-34 \mathrm{Mc}$. Chrome - trimmed, grey-black steel cabinet. Shipping wt: 36 los.

500 Watt
 Completely Bandswitching GLOBE KING 500 watts on fone \& CW

Here is the undisputed leader in the field of transmitters... the new, Model 500 Globe King! This instrument delivers 500 watts for both fone and CW and is completely bandswitching, 10 thru 160 M . Has provisions for VFO and SSB imput. Thoroughly screened and by-passed for TVI! Pi Network matches any antenna from 52-60n nhms. Protective hias, new dual high voltage power supply and push-to-talk, just a few of the many outstanding features. In $31^{\prime \prime} \times 3134^{\prime \prime} \times$ 15" grey hammertone cabinet.

ONLY \$3678 Per Mo.

 $\$ 67.50$ Cash DownWrite for Detailed Specification Sheets TODAY!

65 Watt
 Completely Bandswitching GLOBE SCOUT 65 watts CW, 50 watts fone

RADIO REFERENCE MAP

Ideal map for the wall of your shack. Approximately $36^{\prime \prime}$ wide by $28^{\prime \prime}$ high. Shows time zones, amateur zones and monitoring stations. ordes yours today!

ONLY 25c

RECONDITIONED EQUIPMENT!

you can save up to 50% on over coli hems in our invgatory - ench carying a yu day, tactocy-nem eyarinice on all parts amd moriman. milo. Ani you my revere loo thate - In value an this equipment
If tradedin on NEW equipment with so It trades-in of NEw equipment with so days of pyrchase, act now send for out complete rectind, eapt. Iist.
ully bandswitching 10 thru 160 M . Metering pravided. If Network antenna tuner. Self-contained power supply. Aay be used mobile; provisions for dynamotor attachnent. 100% modulation of Final. Thoroughty TVI :creened cabinet. Here's the ideal rig for the novice, ir as stand-by Xiritr. Cabinel $\mathrm{g}^{\prime \prime}$ a ${ }^{\prime \prime} 6^{\prime \prime} \times \mathrm{B}^{\prime \prime}$.

Wired :ONLY $\$ 795$ per mo. \$10.00 Cash Down
Kit: ONLY $\$ 715$ per mo.

CABLE WRLI
ald prices subject to change without notice.

NOW . . . for spot frequencies... the Bliley

Now . . for spot frequencies . . . the Bliley AX2 is supplied at any integral frequency desired in ranges indicated. Calibration ± 500 cycles; drift less than 0002° o per ${ }^{\circ} \mathrm{C}$.

Famous Bliley quality - which means finest Brazilian quartz, precision oriented, and acidctched to frequency. All clectrodes, springs and contact pins of the holder are stainless stecl.

RANGE	PRICE
$1800 \mathrm{kc}-2000 \mathrm{kc}$	$\$ 3.75$
$3500 \mathrm{kc}-4000 \mathrm{kc}$	$\$ 2.95$
$7000 \mathrm{kc}-7425 \mathrm{kc}$	$\$ 2.95$
$8000 \mathrm{kc}-9000 \mathrm{kc}$	$\$ 2.95$

THE BLILEY CCO-2L

"packaged oscillator"
FOR TWO AND SIX
FOR TWO ANATION
METER OPERATI

Now available for your amateur rig, a complelely packaged oscillator unil designed and engineered to utilize the many advantages of crystal control on two and six meters. Output is obtained directly on six meters; operation on two meters requires only a tripler stage.
The CCO-2L is the ideal oscillator for an efficient two
 band transmitter, or us a basic unit in new construction. Features include: adequate drive for V. H. F. medium power beam tubes, no self-oscillation under any operating condifions.

The CCO-2L is semi-enclosed in a metal case with power input and r. f. output terminals in the back for short direct externat connections. The oscillalar tube specified is a $128 \mathrm{H7} 7$.

CCO-2L Output: 48 to 54 mc ; Dimensions: $21 / 4^{\prime \prime} \times 21 / 4^{\prime \prime} \times$ $4^{\prime \prime}$; Price: $\$ 11.95$ less tube and crystal ($8-9 \mathrm{mc}$).

The following Blley $\mathbf{A} \times 2$ crystals recommended for use with the CCO-2L:

$$
\text { AX2 crystal for six meters, 8333-9000 kc } \$ 2.95
$$

AX2 crystal for two meters, 8000-8222 kc \$2.95
See your amateur distributor for these high quality amateur products.

there's an entire family of G-E COMMUNICATIONS EQUIPMENT

G-E Communications

 Equipment Covers the Range 30 kc to $2,000,000 \mathrm{ke}$. 1 wath to 3,000 wattsG.E. offers a complete line of communications equipment-from audio to microwave-for police, fire, oil, lumber, industrial and civil defense applications. Typical are:

Tone Equipment-Selective signalling systems up to 900 calls. Telemetering up to 18 quantities on one audio channel. Remote and supervisory control. Powerline protective relaying channel equipment.

Microware-G.E microwave equip. ment offers dependable communica. tion over long distances and in difficult terrain areas. Up to 24 channels available for heavy traffic use.
2.IWay Radio Communication-G-E 2-way radio steps up productionincreases profits. Industrial, public safety, and emergency personnel use it for better co-ordination of activities.

For full information on G-E communications equipment call the G-E office near you or write direct: General Electric Company, Communicotions Equipment, Section X565, Electronics Park, Syracuse, Now York.

G-E 2-WAY RADIO FEATURES:

- FREQUENCY STABILITY AND SELECTIVITY guaranteed for life
- Narrow or wide band operation - $6 / 12$ volt operation
- Low battery drain-cooler running equipment
- Quality components-G.E. makes more of its 2-way radio components than any other manufacturer

Progress Is Our Most Important Product GENERAL

ELECTRIC

haruey
 (1.2)
 AUTHORIZED DISTRIBUTORS

HARVEY's line of RCA tubes is so complete, that HARVEY can fill virtually any requirement . . . right from stock . . . and deliver at almost a moment's notice.

This is particularly important to AM, FM, and TV Broadcasters, Industrial and Commercial users, Amateurs, and Service-Technicians, all of whom depend on tubes for sustained operation of important electronic equipment.

I'rite, W'ire, or Phone, for
Prompt Harvey Service.

90
...that's why NoVICES, amateurs, ENGINEERS, and
EXPERIMENTERS Across the Nation RELY UPON HARVEY for all their ELECTRONIC and COMMUNICATION REQUIREMENTS!

Because Harvey's stocks are so large and so complete, almost anything you can name in electronics, can be shipped within minutes of your letter, wire, or phone call. And you can depend upon Harvey that what you receive is exactly as ordered, and that it will function and perform to your complete satisfaction.

Harvey has been the reliable headquarters for hams, experimenters, professionals, commercial and industrial engineers for over 25 years. And the experience gained over these years is always at work for you. Six active amateurs are in Harvey's employ, plus a staff of well informed, trained experts who stand ready to assist you in the selection of parts and equipment, and in troubleshooting your problems. Every possible field is covered, including radio communications and broadcasting, TV, audio, recording, and industrial electronics.

Remember, you are always welcome at Harvey's. So, when in New York, make it a point to come in and say, "Hello".

Harvey is Always at your Service AUTHORIZED DISTRIBUTORS OF RECEIVING and
NON-RECEIVING tUBES
Eatteries - test equipment
TELEVISION COMPONENTS
SERVICE Parts
famous names in theducts of all the
famous names in radio and electronics
Free rca ham tres

There's a free copy of RCA HAM TIPS waiting for you at Harvey Radio. If you can't call personally, write.

...light... compact ... accurate

Featuring smalt size, light weight and ourstanding performance the HIGH, WIDE and TWIN POCKETSCOPES have become the "triple threat" of the oscilloscope field. Their incomparable versatility, reliability and accuracy hove skyrocketed this team of truly portable instruments into unparalleled demand. Each oscilloscope features DC coupled amplifiers in both vertical and horizantal channels.

HIGH

The S-14-A HI-GAIN POCKET SCOPE provides the optimum in oscilloscope flexibility for analysis of low-level electrical impulses. Extremely light weight ($12 \frac{3}{4} \mathrm{lbs}$). compact in size ($12 \times 53 / 4 \times 7$ in.), dependable and accurate in performance. Vertical and horizontal channels: $10 \mathrm{mv} \mathrm{rms} / \mathrm{inch}$ with response within 2DB from DC to 200 KC and pulse rise of $1.8 \mu \mathrm{~s}$
non-frequency discriminating attenuators and gain controls with internal calibration of trace amplitude... repetitive or trigger time base with linearization from $1 / 2$ cycle to 50 KC with \pm sync or trigger.

tube	PHYSICAL DATA		Static voltage		DEFLECTION*		LIGHT output: *
	face	LENGTH	A3	A2	VERT	HOR	
3JPI	$3^{\prime \prime}$	$10^{\prime \prime}$	3000	1500	111	150	352
3 MPI	$3^{\prime \prime}$	$8^{\prime \prime}$		750	99	104	33
3 RPI	$3^{\prime \prime}$	$9.12^{\prime \prime}$		1000	61	86	44
$3 \mathrm{SP1}$	$1.5 \times 3^{\prime \prime}$	$9.12^{\prime \prime}$		1000	61	86	44
$3 \times P 1$	$1.5 \times 3^{\prime \prime}$	$8.875^{\prime \prime}$		2000	33	80	218

WIDE

The S-14-B WIDE BAND POCKETSCOPE is ideal for investigations of transient signals, DC signals, aperiodic pulses or recurrent waveforms. Vertical channel: 50 mv rms/in. within -2DB from DC to $700 \mathrm{KC} .$. pulse rise time of $0.35 \mu \mathrm{~s}$. Horizontal channel: $0.15 \mathrm{v} \mathrm{rms} / \mathrm{in}$. within - 2 DB from DC to 200 $\mathrm{KC} . . \mathrm{p}^{\text {p }}$ pulse rise of $1.8 \mu \mathrm{~s}$. Attenuators and gain controls are non-frequency discriminating ... trace amplitude calibration... repetitive or triggered time base from $1 / 2$ cycle to $50 \mathrm{KC} \ldots \pm$ sync or trigger ... trace expansion, filter graph screen and many other features ... 14 lbs... . $12 \times 6 \times 7$ inches.

TWIN

 tube, high sensitivity oscilloscope with two independent vertical as well as horizontal channels. It is ind ispensable for investigation of electronic circuits in industry, school and laboratory. Vertical channels 10$\mathrm{mv} \mathrm{rms} / \mathrm{in}$. with response within-2DB from DC to 200 KC and pulse rise time of $1.8 \mu \mathrm{~s} \ldots$ horizontal channels 1 v $\mathrm{rms} / \mathrm{in}$. within -2 DB from DC to 150 KC . . . non-frequency discriminating controls . . . internal signal amplitude calibration .. linear time base from $1 / 2$ cycle to 50 KC , triggered or repetitive, for both horizontal channels.

S-11-A

 The S-11-A INDUSTRIAL POCKETSCOPE is a small, compact ($5 \times 7 \times 11$ inches), and lightweight ($83 / 4 \mathrm{lbs}$.) instrument for observing electrical circuit phenomena. The flexibility of the POCKETSCOPE permits its use for AC measurements as well as for DC. The vertical and horizontal amplifiers are capable of reproducing within - 2DB from DC to 200 KC with a sensitivity of $0.1 \mathrm{vrms} / \mathrm{in} . .$. repetitive time base from 3 cycles to 50 KC continuously variable throughout its range . . variations of input impedance, line voltage or controls do not "bounce" the signal--the scope stabilizes immediately.The basic properties of the cathode ray tube that concern the designer or the user are: deflection sensitivity, unit line brightness, line width, static voltage requirements and physical size. A comparison between cathode ray tubes manufactured by Waterman Products Company is shown in the table adjoining. These tubes are available in P1, P2, P7 and P11 phosphors. 3JP1, 3JP7, 3SP1 and 3XP1 are available as JAN tubes.

Write for your complimentary copy of "POCKETSCOOP". Official Waterman publication.

IULSESCDIP
 e Oscilloscope that Portrays the Pulse

 Classic Examples of Precision Engineering...
 The PULSESCOPES ore cathode ray fube oscilloscopes that portray the attributes of

 the pulse: shope, amplitude, duration and time displacement. All PULSESCOPES have internally generated morkers with the bosic difference that in the SAR PULSESCOPE the markers initiate the sweep while in the others the sweep starts the morkers.BROADThe S-6-A BROAD BAND Scope is a PUISESCOPE in performance, POCKETSCOPE in size. The instrument measures DC as well as AC signals. Unique DC calibration methods permit rapid measurements of either positive or negative, AC or DC signals. Vertical amplifier sensitivity of $0.2 \mathrm{v} \mathrm{rms} / \mathrm{inch}$, and response to 5 mc within 3DB... pulse rise time of $0.1 \mu \mathrm{~S} \ldots$ internal markers from 1 to $1000 \mu \mathrm{~s}$. . repetitive or trigger sweep from 5 cycles to 500 KC with 5X sweep expansion ... sweep, marker and DC calibrating voltage available externally. Size $81 / 2 \times 63,4$ $\times 13 \frac{3}{4}$ in. Weight 22 lbs . Operates from 50 to 400 cycles at 115 volis AC.

LAB

 The S-5-A LAB PULSESCOPE is a JANized (Gov't Model No. OS-26) portable, AC, wide band-pass, laboratory oscilloscope ideal for pulse as well as general purpose measurements. Internal delay of $0.55 \mu \mathrm{~s}$ permits observation of pulse leading edge. Includes precision amplitude calibration, 10 X sweep expansion, internal trace intensity time markers, internal trigger generators and many other features. Video amplificr $0.1 \mathrm{v} p$ to $p /$ inch ... pulse rise time of $.035 \mu \mathrm{~s}$ or response to 11 mc . 1.25 to $125,000 \mu \mathrm{~S}$ triggered or repetitive sweep . . . internally generated markers from 0.2 to $500 \mu \mathrm{~s}$ trigger generator from 50 to 5000 pps. for internal and external triggering. Operates from 50 to 400 cycles at 115 volts AC.
SAR

The S-4-C SAR PULSESCOPE is a JANized (Gov't Model No. OS-4) portable instrument (31.5 lbs .) for precision pulse measurements for radar, TV and all electronic meas* urements. Portrays all attributes of the pulse...internal crystal controlled markers of 10 and $50 \mu \mathrm{~s}$ available for self-calibration ... in R operation a small segment of the A sweep is expandable for detailed observation with a direct-reading calibrated dial accurate to 0.1%. Video amplifier band-pass up to $11 \mathrm{mc} .$. optional video delay 0.55 $\mu \mathrm{s} .$. pulse rise and fall time better than $0.07 \mu \mathrm{~s}$. . R pedestal (sweep) 2.4 to $24 \mu \mathrm{~s} \ldots$ video sensitivity of 0.5 v. p to p/inch. Easily convertible from μ s to yards. Operates from 50 to 400 cycles at 115 volts AC.

RAKSCOPE

Because the panel is only $7^{\prime \prime}$ high and fits any standard rack, the S-12-B RAKSCOPE admirably fills the need for a small oscilloscope of wide versatility. With all the features of the S-11-A POCKETSCOPE, the RAKSCOPE is JANized (Gov't Model No. OS-11), and has many additional advantages; the sweep, from s cycles to 50 KC , is either repetitive or trig. gered...vertical and horizontal amplifiers are $50 \mathrm{mv} \mathrm{mms} / \mathrm{inch}$ with band. pass from 0 to 200 KC . . special phasing circuitry for frequency comparison.

Uncle Dave's Ractio Shact FORT ORANGE RADIO DISTRIBUTING COMPANY

Here's Mobile at its Finest!

TUBE LINE-UP

6146-Power Amplifier 6AQ5-Driver 6AK6-Oscillator (V.F.O. or Crystal)

OB2—Voltage Regulator

6BJ6-Reactance

 Modulator 6AU6-Speech Amplifier 12AU7-Speech Driver 5881 (2)—Modulators
ELMAC

 AF-67-TRANS-CITERExciter-Portable Transmitter

$\$ 177$ amateur net

Including all tubes and 15 prong power connector
Designed as an exciter-speech amplifier, V.F.O. driver, or a complete low powered transmitter. This unit may be used for Under-Dash Mobile or wherever an all band V.F.O. transmitter is required. A single control band switches all stages simultaneous ly 160 through 10 Meters.

- 6 Bands
(1) 600 kc to 2000 kc .
(Broadcast and 160 meter band)
(2) 3.5 to 4.0 Mc . (75 and 80 meter band)
(3) 6.9 to 7.4 Mc . (40 meters)
(4) 13.95 to 14.95 Mc . (20 meters)
(5) 20.95 to 21.65 Mc . (15 meters)
(6) 28 to 29.7 Mc . (10 meters)
- Dual-Conversion eliminates images 1800 kc first I.F. 455 ke second I.F.
- Built-in highly effective noise limiter.
- Built-in Beat Frequency Oscillator.
- Tuned R.F. ahead of converter on all bands.
- Voltage regulated to local oscillator, BFO, and second converter.
- Antenna input designed to match 50 ohm coax.
- Power requirements: 6 volts A.C. or D.C. at 3.3 amperes. 250 volts D.C. at 90 milliamperes.
Power Supplies available for 6 and 12 V. D.C. or 115 V. A.C:
- Cabinet finished in grey hammertone size $41 / 2^{\circ}$ H. $\times 6^{\prime \prime}$ W. $\times 81 / 2^{\prime \prime}$ Deep.

Weight: $61 / 2$ pounds.

- Uses 10 tubes.

I-6BJ6 R.F. Amplifier
1-6BE6 First Converter
I-6C4 Local Oscillator
I-6BE6 Second Converter
2-6BA6 First and Second I.F. Amplifier
1-6AL5 Detector and Noise Limiter.
I-I2AT7 First Audio and B.F.O.
I—6BK5 Audio Oułput
1-OB2 Voltage Regulator

- Price: \$134.50

RADIO DISTRIBUTING COMPANY

SX88 receiver - a new peak of perfection! Full precision gear drive for main and band spread tuning. Six position Band Width Control (selectivity) from 250 cycles to 10 kc . Exhalted B.F.O. for tops in single sideband reception. Full frequency coverage from 535 kc to 33.3 mc . Plus more than 20 other features. $\$ 595.00$ Speaker, \$19.95 extra.

S-85 receiver with over 1000 degrees of calibrated bandspread. Newly designed and engineered Hallicrafters with 10, 11, 15, 20, 40 and 80 meter amateur bands calibrated on easy-to-read dial. One r-f, two i-f and separate bandspread tuning condenser. Covers three S / W bands $1680 \mathrm{kc}-34 \mathrm{mc}$. Built-in speaker. \$119.95

HT-30- new V.F.O. exciter/transmitter with full band switching. At your finger tips S.S.B., AM or CW with carrier frequency stability $.009 \%$ or better. Built-in voice control and 50 wats S.S.13. peak envelope power output. Stable 50 kc filter system for side band selection. $\$ 349.95$

SX-96 high frequency oscillator temperature compensated. Dual crystal controlled second conversion uscillator for side band selection on AM or S.S.B. $\$ 249.95$. Speaker $\$ 19.95$

Write for our big, illustrated catalogue.

IHT Popular pigtail type electrolytic in aluminum can. Internal riveted construction. Wire lead or solder lug types. Capacity ranges from 1 to 2,000 mid. and from 3 to 700 WVDC.
IHC For replacement or original equipment. Flexible wire leads. Insulated cardboard sleeves with mounting straps attached. Popular multi-section types. Capacities 25 to 250 mld . and from 5 to 500 WVDC.
LN Extruded aluminum can type electrolytic with screw type neck mounting and flexible leads. Capacities 8 to 80 mfd . and 450 to 600 WVDC.
BT Hermetically sealed bathtub type especially designed to withstand vibration and shock. Meets all Govt. specs. 25 to 600 WVDC in wide capacity ranges.
PE Hermetically sealed octal base plug-in type es. pecially useful in mobile equipment. Molded through pin design. Meets all Govt. specs. Operoting remperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

UMT Specially designed molded terminals. Hermetically sealed - shock resistant. For extremely long life service in highest quality equipment. Fully meets all Govt. specs.
UMS Hermetically sealed inverted can type with screw mounting. Meets all Govt. specs.
UMP Standardized twist prang type using exclusive patented ILLINOIS molded construction. Operates efficiently under wide temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, remaining extremely stable. Available in copacity ranges of 10 to 3000 mid . and from 10 to 525 WVDC . Also available for printed circuitry.
UMC Low leakage high capacity electrolytics for voltage stabilization - power factor correction - motor starting - photo flash equipment, etc. Capacity ranges up to $10,000 \mathrm{mfd}$. and 10 to 525 WVDC.

LATEST ADDITIONS TO THE ILLINOIS LINE

New Miniature and Sub-Miniature Types SM and IMT Incarporating Patented Seals Nowest oddirion to the

alram \sin Oandos
 ILLINOIS line are the MIN. IATURE and SUB-AIN. |A TURE electrolytic capacitors illustated at the left with pencil for size comparison. These Types MT and IMT eapacitors are especially designed for use with rransistors, printed circuir applications, partable equipment and wherever minimum capacitor size and weight are required. Case styles are of $18^{\prime \prime}{ }^{\prime \prime} 3^{\prime \prime} 16^{\prime \prime}, 4^{\prime \prime}$ and 3 " ${ }^{\prime \prime}$ diometers. Available in eapacity ranges from 1 2 to 100 mfd and fram 3 in 75 WVDC. All aluminum construction, hermetic sealing, heavily finned connecting leads, operating temperature range 40 C to $-85^{\circ} \mathrm{C}$

New Tubular Paper Bypass Capacirors in Ceramic Cases, Oil Impregnated Thermosef End Fill ITC - Non - inductively wound foil assemblies sealed into steatite cases. HERMETICALLY SEALED for peok perfarmance in all dimates. HIGH INSULATION RESISTANCE more than 8000 megohms per mifd. as low os \& mfd EXCELLENT POWER F ACTOR less than 1 ㄴ al 25 C HIGH TEMPERATURE OPERATION up to $85^{\circ} \mathrm{C}$, resin end seals will not molt, sohien or flow. ACCURATE CAPACITY, commercial tolerancé $20^{\circ} \%$ at $25^{\circ} \mathrm{C}$ All units rested at THREE TIMES RATED VOLTAGE TIN. NED COPPER LEADS $q^{\prime \prime}$ minimum lenoth Capocity ranges from 0005 to 1.0

Illinois eapacitors are manulactured to their rrademark:
"Time Tested Quality"

FREQUENCY METER
FREQUENCY RANGE - uses only one crystal to measure all transmitters 0.1 to 175 mc ., crystal-controlled transmitters 10500 mc . MEETS FCC SPECS-Accuracy guaranteed better than 0.0025%. CAll-BRATION-Calibration Table for each meter. Charts show percentage transmitter off frequency from FCC assignment. DIAL-4" circular dial with 8000 dial divisions spread over 42 feet. TEMPERATURE COMPEN-SATION-crystal thermometer on panel, automatically indicates dial checkpoint for any temperature. SIGNAL GENERATOR-a pinpoint CW source for mobile-receiver final alignment.

FREE! NEW BOOKLET "HOW TO MAKE MONEY IN MOBILE-RADIO MAINTENANCE!" For your copy-plus complete MALL COUPON TODAY!

Just these two meters-with no additional crystals or factory adjustments-are all you need to make FCC required checks on any number of commercial mobile transmitters on hundreds of different frequencies. Lampkin meters are used by many municipalities-by agencies of 4 l states-by the service organizations of most two-way radio manufacturers-and by hundreds of independent mobile-service engineers. They are guaranteed to please you, too, or your money will be refunded.

LAMPKIN LABORATORIES, INC. BRADENTON, FLORIDA

| Measurements Section

I Lampkin Laboratories, Inc.
| Bradenton, Florida
At no obligation to me, please send
\square "How To Make Money in Mobile-Radio Maintenance!"
$1 \square$ Technical data and prices on Lampkin Meters
Name
Address
City

you know

from your own experience

that Cornell-Dubilier products

Consistently Dependable

High and Medium Voltage Trans. mitter Capacitors in all popular capacities.

Disc and hivoltage ceramic ca pacitors.

Receiver and transmitter capacitors.

COR Rotators, TV-AM.FM and Auto Antennas.

Vibrator-powered converters and inverters.

Auto radio, heavy duty, railroad converter vibrators.

CORNELL-DUBILIER ELECTRIC CORPORATION

New Ashe Cafalog a "TREASURE CHEST/" of Values

Yes, the big, new Walter Ashe catalog, yours for the asking, is the accepted source book and buying reference for all the leading brands of Communication Equipment, Test Instruments, Build-It-Yourself Kits, Hi Fi, Sound and Recording Equipment, Radio \& Electronics Parts and Supplies for every conceivable need... all of it in stock -ready for immediate delivery. You simply can't afford to be without it. Send for your free copy today. Use the coupon below.

TIURUXR MIORROPIIONXS

... in the spotlight for hams

TURNER Model 80 Crystal (center) A compact, convenient mike for increased rig efficiency. Excellent response to voice, 80 to 7000 cps ; level about -54 db . Has high quality Bimorph moisture-sealed crystal shock proofed. Case is die cast zinc overlaid with satin chrome plate. $7-\mathrm{ft}$. attached, single conductor, shielded cable. Shown with Turner C-4 stand.

Model 80
 $\$ 15.95$
 Matching C-4 Stand
 5.75

TURNER Model 95D Dynamic (right) Superior sound characteristics make it ideal for amateur work. Maximum sensitivity to voice with Alnico V Magnets and moving coils. Response, $100-10,000 \mathrm{cps}$. Level, -58 db . Standard 5/8" - 27 coupler. $20-\mathrm{ft}$. removable cable set; high impedance wired single ended (single conductor shielded cable); 50 , 200 or 500 ohm wired for balanced line (two
conductor shielded cable). Also available with ceramic or crystal interiors.

95D Dynamic	\$35.00
S95D, with slide switch	38.50

S95D, with slide s witch
TURNER 90 Mobile (left) Ideal microphones for any mobile rig. Engineered for maximum response to voice with minimum distortion. Zinc alloy case is finished in permanent satin chrome for lasting good appearance. Furnished with hook for hanging and bracket for wall or dash mounting.
Model SR9OR Carbon - Response, 200 to 4000 cps . Level, -38 db . 4-conductor unshielded Koiled Kord
$\$ 26.50$
Model SR90D Dynamic - Response, 200 to 9000 cps . Level, -48 db at high impedance. 200 ohm and high impedance models. 5 - ft . attached straight cable.
$\$ 29.50$
For complete information and specifications, send for the new Turner Catalog.

OM2C 'Formerly 304BF)

PCIC (Formerly 953B)

(Formerly 964B)

AM2C
ormerly K1504RF)

PVIA
Formerly 961C)

$$
\ldots \ldots
$$

AH2C (Formerly 1000)

OE2B
(Formerly 750A)

LE2C
(Formerly 604B)

SVIC
(Formerly 1200)

COMMUNICATIONS

AIRCRAFT

ELECTRONICS
INDUSTRIAL

Whatever your relay requirements may be, and whatever you need in the way of specialized facilities, ADVANCE is equipped to help you. Here are capable personnel and modern machines of a specialized organization with a 37 -year record of successful operation.
Here are unexcelled facilities for the development and production of precision relays for general industry.

TYPE	USE	CONTACTS		colls	DIMENSIONS		
DM	Time Delay	10 Amps	DPDT	$\begin{aligned} & \text { 6-12-24-110-220 A.C. } \\ & \text { 6-12-24-48. } \\ & 110-220 \text { D.C. } \end{aligned}$	15/8	25/8	$33 / 4$
PV	Power Transfer	30 Amps	SPDT	1 to 440 VAC 1 to 220 VDC	15/8	2	3
AH	Antenna	$1 / 2 \mathrm{KW}$	3PDT	1 to 440 VAC 1 to 220 VDC	17/16	15/8	23/4
OE	Overload	10 Amps	DPDT	1 to 440 VAC 1 to 220 VDC	23/8	$23 / 4$	41/4
AM	Antenna	1/4 KW	DPDT	1 to 220 VAC 1 to 150 VDC	11/4	15/6	1\%
PC	Power Transfer	10 Amps	4PDT	1 to 440 VAC 1 to 220 VDC	1\%16	15/8	25/6
AT	Antenna	1 KW	DPDT	1 to 440 VAC 1 to 220 VDC	111/6	$23 / 4$	315/16
LE	Latching	10 Amps	DPDT	Adjustable 250 MA to 500 MA	23/6	21/2	35/6
SV	Sensitive	1 Amp	SPDT	$\begin{aligned} & 1 \text { to } 40,000 \\ & \text { OHMS } \end{aligned}$	11/2	2	2\%16
MG	Miniature	11/2 Amps	3PDT	1 to 220 VAC 1 to 150 VDC	15/8	11/4	111/6
PC	Power Transfer	10 Amps	4PDT	1 to 440 VAC 1 to 220 VDC	1916	15/6	25/8
CB	Coaxial	8/10 KW	SPDT	1 to 440 VAC 1 to 220 VDC	31/16	176	3916

Illustrated are a few typical examples of the ADVANCE relay line. The complete line includes sensitive, midget, midget telephone, keying, instrument, time detelephone, keying, instrument, time deically sealed and ceramic insulated types and variations.
For accurate circuit behavior... lower unit cost . . . increased efficiency .. and uniformly high quality relays specify ADVANCE.

Holders: Mefal, hermetically sealed, available in .093 dia. pins (FA-9) or .050 dia. pins (FA-5).

Frequency Range: 2000 KC to 54 MC .
Calibration Tolerance: $\pm .01 \%$ of nominal at $30^{\circ} \mathrm{C}$.

Temperature Range: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Tolerance over temperature range from frequency at $30^{\circ} \mathrm{C} . \pm .01 \%$.

Circuit: Designed to operate into a load capacitance of 32 mmf on the fundamental between 2000 KC and 15 MC. Designed to operate at antl. resonance on overtone modes into a grid circuit without additional capacifance load. (Write for recommended circuifs.)

Drive Level: Recommended -- Maximum 5 milliwafts for overtones. See chart for fundamental:

Condition of Operntion: 22 mar

Maximum Recommended Power DIssipation

ONE DAY PROCESSING

FA 5, FA 9, 2000 KC to 54 MC

Wire mounted, plated crystals for use by amateurs and experimenters where tolerances of $.01 \%$ are permissable and wide range temperafures are not encountered.

HOW TO OADEB

In order to give the fastest possible service, crystals are sold direct and are not handled by any jobber. Where cash accompanies the order, International will prepay the Airmail postage; otherwise, shipment will be made C.O.D. Specify your exact frequency and the crystal will be calibrated to $.01 \%$ or better of this frequency with the unit operating into a 32 mmf load capacitance.
 ONE-DAY PROCESSING Orders for less than five crystals will be processed and shipped in one day. Orders received on Monday thru Thursday will be shipped the day following receipt of the order. Orders received on Friday will be shipped the following Monday.

For Rotary Beams - VHF - TV - Community TV Antennas

ATTRACTIVE - No Guy Wires!

Takes up only a few feet of ground spoce. No unsightly supporting wires to trip over or pull loose.

EASY TO ERECT!

One man can do it! Your tower arrives in compact bundles. No heavy crates. Parts fit perfectly. Just dig four holes for anchor posts-then erect a piece at a time. Complete, easy-to-follow directions.

PERMANENT!

Vesto towers are made from heavy steel protected against rust by a thick layer of galvanizing. They should last a life-time-yet they are easy to dismantle and move should this become necessary

SAFE!

A strong steel ladder is securely bolted in ploce. Reaches from ground to platform at top. You can make any adjustment necessary without danger of swaying or structure failure. Platform will hold os much weight as you can crowd on is, with perfect safety.

4 LEG CONSTRUCTION!

Better balanced-sturdier-more anchorage, more support. This extra strong design has been proved for years-in thousands of towers!

Withstands Heavy Winds!

No Vesto Tower has ever blown down! They have stood through hurricanes and gales with winds in excess of 100 miles per hour. Every Vesto Tower is stressed for winds of 87 mph with large safety factor

100 ft. Tower.. \$895 61 ft. Tower ... \$299

Vesto 4-Leg Towers Are Priced as Low as \$104!

 $33 \mathrm{ft} . ~ \$ 149 ~ 50 \mathrm{ft} . ~ \$ 239 ~$

SMALL DOWN PAYMENT - EASY TERMS!

Vesto Towers can be purchased for only a small down payment, and nominal monthly payments. Freight costs can be included in the financing, if desired.

SHIPPED DIRECT - ANY PLACE IN THE WORLD!

The complete Vesto Tower, knocked down and securely packaged, is shipped to you-or your specified location-FOB Kansas City, Mo., by 4 th class freight. Prices subject to change, so order now. Send check or money order, or write for full information.

Also Disfribufors for JOHNSON ROTOMATIC BEAM ROTATORS and ANTENNAS

WRITE TODAY FOR FULL INFORMATION

VESTO COMPANY, INC.
 20th \& Cloy, North Kansas City, Mo. Cable Address "VESTO"

SUPREME

Leading manufacturers select Supreme meters and meter movements as components of their products because they are quality built and dependable. Supreme meters for initial equipment uses are made in a variety of sizes and designs with or without special dials and cases. Send a sketch or drawing of the meter you need and Supreme will promptly advise prices and delivery schedules.

able for special applications. Let Supreme know the type you need in your work.

Model 440. Ohmmeter
 . $\$ 11.50$
 Model 405. Millivoltmeter.
 .$\$ 10.65$
 ARE YOU RECEIVING THE SUPREME TEST INSTRUMENT BULLETIN?

The Supreme Test Instrument Bulletin is mailed FREE. Ask to be put on SUpreme's MAlliNG IIST.

Supreme Volt-ohm-milliammeters have become real companions to maintenance men everywhere. Convenient size and durable construc. tion for portability. Built with highest quality materials and workmanship for dependability
Quantity production for a budget price.
Popular Models 542 and 543 are the same size (approx. $6^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}$) and are available in either the moulded (Type B) case illustrated above or in the (Type M) metallic case with meter protector shield and leather handle shown below. Model 542 has 6 functions and 24 ranges and Model 543 has 4 functions and 12 ranges.

Other SUPR EME Instruments: FOR ELECTRONIC TECHNICIANS-Tube Testers, Oscilloscopes, Signal Generators, Vacuum Tube Voltmeters.
FOR MANUFACTURERS, COMMUNICATIONS \& UTILITY GROUPS-Special maintenance equipment designed and built to your own specifications.

FOR A PROMPT REPLY to your inquiry write SUPREME, INC., Attn: HB-5

1755 Carrolton Ave. GREENWOOD, MISSISSIPPI

Since 1927
"Supreme by Comparison"

LEADING DISTRIBUTORS CARRY A COMPLETE STOCK OF ALL ERIE ELECTRONIC COMPONENTS

The "ORIGINAL" - This famous all-purpose key has won international fame for signal qualits; ease of operation and all-around keying excellence, by thousands of the world's finest operators, Complete speed range. Built for long life and rough usage. Complete with circuit closer. cord and wedge. Standard. \$17.95; DeLuxe, $\$ 22.50$

CARRYING CASE - Black, simulated morocco. Cloth-lined. Reinfurced corners. Flexible leather handle. Handy to catry. Protects key from dust. dirt and moisture. and insures safe-keeping when not in use. With lock and key, \$5.75.

Avoid initations!
The "BUG" Trade Mark
identifies the
Genuine Vibroplex
Accept no substitute

Stendard Models have
Blacle cryatal bese, chrome top parta DeLure Models have
Pollahed chromilum base and top parte,
it crim, jewel movernent
All model equipped with $3 / 16^{\prime \prime}$ contacte

Semi-Automatic Key

The "LIGHTNING BUG" - A pupular key, morlerately priced. Many exclusive features contributing to greater keying enjoyment, including a flat pendulum bar, slotted weights adjustable dot conttact spring, bridged damper frame and others. Maintains uniform signals at all speeds. Complete with circuit closer, cord and wedge,
Standard, $\$ 15.95 ;$ DeLuxe, $\$ 21.50$.

The "BLUE RACER" - Smali, compact, handy. Built extra sturdy like the Original, but only half the size. Hit. $2 \mathrm{lbs}, 8$ oz. Takes about as much desk space as about as much resk space as vantakes of the large models. Complete with circuit closer, cord and wedge. Standard. \$17.95; DeLuxe, \$22.50.

All Vibroplez keyo are avallable for left-hmad operation, one dollor more

NEW SPECIAL ENLARGED Edition of PIIILLIPS CODE, $\$ 2.00$ Postpaid

Also includes:

 Radio Code Signals International Morse American Morse Russian, Greek. Arabic Turkish and Japantse Morse CocesWorld Time Chart

United States Time Chart Commercial " Z ". Colle Acronautical " Q " Code Miscellaneous Abbreviations. Used on internacable and radio telegraph carcuits rado lelegraph circuits.

Vibroplex keys are designed to meet exacting operating standards, and to provide trouble-free long life service for the user. At dealers or DIREC'I. FREE descriptive folder.

Whatever you need-simple antenna support towers or heavier towers for complex transmitting arrays-Wincharger Towers can do the best job for you.

mostiy 'Vest Pocke' Beams. ..TRUE BEAM PERFORMANCE!

For HAMS with Limited Space and Budget

Model VPA40-2
2 Element, 40 Meter

Model VPA40-2 2 ELEMENT, 40 METER

Performance Data: 5 Db., or more, Forwarć Gain over reference dipole. 19 Db . Front-toBack Ratio. 1.1/1 SWR at resonant frequency. Electrical \& Mechanical Specifications: Pretuned to 3 frequencies in 7 Mc . band. Link inductance matches 52 ohm co-ax line. Coils rated to $1 \mathrm{Kw} .14^{\prime} 10^{\prime \prime}$ Tubular Steel Boom. 36'13/4' Maximum Eloment Length. (61S-T6 aluminum alloy.) 68 lbs. assembled weight.
Model VPA40-2. 2 Element, 40 Meter ' V-P' Beam, less 52 ohm line, rotor and mast.

Amateur Net \$74.95

Model VPA20-3, 3 Element 20 Meter
Performance Data: 7.5 Db. Forward Gain. 28 Db. Front-to-Back Ratio. 1.05/1 SWR at resonant frequency.
Electrical \& Mechanical Specifications: Pretuned to 3 frequencies in 14 Mc . band. Ratec to 1 Kw .52 ohm Link. 12' Tubular Aluminum Boom. $23^{\prime} 11^{\prime \prime \prime}$ Maximum Element Length. 37 lbs. assembled weight.
Model VPA20-3. 3 Element, 20 Meter ' V-P' Beam, less 52 ohm line, rotor and mast.

Amateur Net $\$ 79.95$
Model VPA1015-2
2 Element, 10 and 15 Meter
"Vest Pocket" Beam
Will be available by publication date. Write for complete data.

[^21]
IT'S

 BIGGER AND BETER

 BIGGER AND BETER THAN ENERE

 THAN ENERE}
AMATEURS

 ENGINEERSThuncanes THEATRES HOTELS
PUBLIC UTILITIES EXPERIMENTERS FACTORIES LABORATORIES

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations

Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in sev. eral models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting should you decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this minety per cent. It takes the place of an expert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest pos. sible time. Therefore, the Instructograph. the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:

FIRST: It teaches you to receive telegraph symbols, words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.

With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Card wiu brima full paritculas IMMEDIATELY

THE INSTRUCTOGRAPH CO.

- COMPLETE STOCKS - PROMPT DELVERY - LOWEST PRICES

Whether it's new equipment or replacement parts, you can always depend on TERMINAL for the BEST BUYS on BEST KNOWN Brands . . Amateur Gear, Radio, Television, High Fidelity Audio, Electronic and Sound Equipment for Home, Indusiry and Commenications.

TERMIVAL'S staff of uctive Amateurs and Experienced Technicians is here to help solve your problems, save you money and assure your complete satisfaction.

Mail orders filled Anywhere in the World.
Repio
avolo VIDEO
EGESTLONIC
Ean TERMMAL

Visit our Salesrooms and Sound Studios

AUTHORIZED DISTRIBUTORS ELECTRONIC EQUIPMENT

85 CORTLANDT STREET, NEW YORK 7, N. Y. Phone: WOrth 4-3311 - Cable Address: termradio

COMPLETE OUTFITTERS

 for the HAM . . .
COMMUNICATIONS

AND

ELECTRONIC

ENGINEERS

EUGENE G. WILE

218-220 South 11th Street
Philadelphia 7, Pa.
Kingsley 5-8370
Distributors of
Nationally Advertised Lines of RADIO, TELEVISION and ELECTRONIC Parts

Where Dependability counts - 117 Use OMM』『!

RHEOSTATS

Insure permanenlly smualh, close cantrol. All-ceramic vitreous enameled: $25,50,75,100,150,225,300$, 500,750 , and 1000 -watt sizes.

"BROWN DFVIL" RESISTORS

Sturdy, wire-wound, vitreaus-enameled resistors for voltoge dropping, bias units, bleaders, itc. In 5, 10, and 20 watt sisess volues fram 0.4 to 100,000 ohms.

"LITTLE DEVIL" RESISTORS

Tiny, molded, composition resistorseach marked with resistance and wattage $-1 / 2,1$, and 2 -watl sizes, $\pm 10 \%$ or $\pm 5 \%$ tol. 10 Ohms to 22 megohms.

FIXED RESISTORS

Resistanco wirs is loethed in plase and protected by vitreaus enamel. Slock sizes-25,50, 100, 160, and 200 watts; values 1 to 250,000 ohms.

ADJUSTABLE RESISTORS

Vitreous enameled. Quickly adiustable to the value needed. Adjustable lugs can be aftached for mulli-lap retistors and voltage dividers sizes 10 to 200 walts, to 100,000 ohms.

R. F. CHOKES

Single-layar-wound on low power factor cores, with moisture-proof coating. Seven stock sizes, 3 to 520 mc. Two units roted 600 ma , others 1000 ma .

TAP SWITCHES

Compart, high-curront ratary selac. tars for a-c use. All ceramic. Selfcleaning silver-to-silver contacts. Roted at $10,15,25,50$, and 100 amperes.

PRECISION RESISTORS

Three types available: vitreous-enomeled, vacuum-impregnated, ar encapsulated. Tolerances to $\pm 0.1 \%$, in $1 / 4$. $1 / 2$. $3 / 8$. and 1 -walt sizes. from 0.1 to $2,000,000$ ohms.

DUMMY ANTENNA

These rugged, vitreous-enameled units are practically nonreactive within their recommended frequency range. In 100 and 250 -watt sizes, 52 to 600 ohms, $\pm 5 \%$.

Write for Stock Catalog

OHMITE MANUFACTURING COMPANY 3608 W. Howard St., Skokie, III., (Suburb of Chicago)

TOP FAVORITE WITH RADIO AMATEURS RGA) TEST EQUIPMENT

 TUBESPARTS

BATTERIES

118

SHURE MICROPHONES Filide from SHACK to CAR! firoved

In the Shack . . .

This sturdy Controlled Reluctance unit is designed to handle the most severe requirements of amateur broadcasting, paging, and dispatching systems. It provides high speech intelligibility, makes your messages instantly understood. The "Dispatcher" has a 2 -conductor shielded cable, and is wired to operate both microphone and relay circuits. Firm downward pressure on the grip-bar locks the switch. The "Dispatcher" is immune to severe conditians of heat and humidity. Output is 52.5 db below one volt per microbar. High impedance. Furnished with 7 -foot cable.

In the Car . . .

A high-quality carbon mierophone specially designed for mobile equipment. Used throughout the world for Ham, Police, Fire, and Transportation Services-more than all other makes cambinedi Rugged, dependable unit with clear, erisp voice response and high output Fits snugly into palm of hand. Heavy duty switch for push-lo-lalk perfermance. Furnished with bracket for wall mounting, plus cailed-cord cable. Output level: 5 db below 1 volt for 100 microbar speech signal. 70 to 80 ohms impedance

Model	Coble	Switch Arrongement	List Price
101 C	Siondord Coiled Cord 11 " retrocted; 5 extended	Iwo Wire Reloy Switch normolly open. [Na microphene swith]	\$27.50
101E	Tinsel Coiled Cord 11"reprocted; S° extended with Amohenol MC4M Connector		\$32.50
102C	Stondard Coiled Cord 11 . retrocted; 5° extended	Reloy normally open. Microphone switch normolly open.	\$27.50
102E	Jinsel Coiled Cord 11 "retrocted; 5' extended with spode lugs		\$30.00
103	Stondord Coiled Cord 11" retrocted; 5' extended with Amohenol MC4MConnector	Two Wire Reloy Swith normolly open. (No microphone switch)	\$29.00

Mierober $=$ one dyne per sq. cm.

For Specialized Electronic Equipment CHECK WEGERN EEAR

HIGH PRECISION GEARS

and precision fine pitch gearing from 200 to 6 Diametral Pitch and dimensions from. $125^{\prime \prime}$ to $10^{\prime \prime}$ diameter. Western Gear Works makes available complete engineering and manufacturing facilities for the application of high precision gearing and gear drives in electronics equipment. For assistance, without obligation, write Executive Offices, Western Gear Works, P. O. Box 182, Lynwood, California

COMPLETE ENCINEERING SERVICE

 on any gear or gear drive problemFor the answers to your MINIATURE MOTOR problems,
Mission-Western Engineers offer an unusually wide range of basic miriouture motor designs. We have available more than fifty basic types, including axial and centrifugal blower designs to cover the great variety of equipment adaptations. Our basic motor designs range from . 001 to 2 H.P., from 50 to 1,000 cycles in frequency and in any voltage range required. Complete motor design service available. For further information or a copy of our motor catalog 254, write 132 West Colorado Sireet. Pasadena, California.*

 PACIHIC GEAR \& TOOL WORKS - SOUTH WESTERN GEAR WORKS

Shown is DC blower, AC motor, DC motor and 400 cycle generator, a few of hundreds of basic designs available. Catalog on request.
"AlWAYS A STEP AHEAD OF THE BEST'

* An afliliate of Western Gear Works, since 1888 a leader in the mechanical power transmission field.

Everyiting ELECTRONIC

Westinghouse Elecirons inc.
Burgess
Superior (Powerstat)
Amphenol Belden
I.R.C.

Ohmite
P. R. Mallory \& Co.

Cornell-Dubilier
Stromberg-Carlson
Centralab
Triplett
Simpson

RADIO

TELEVISION

INDUSTRY

Featuring these nationally recognized products

Thordarson	James Millen
Hallicrafters	National
Collins	U.T.C.
Hickok	Raytheon
E. F. Johnson Co.	Weston
Sylvania	Sola
Potter \& Brumfield	
Struthers Dunn Inc.	

and all other major electronic manufacturers
Cameradio ing distributors serving the electronics industry.

- PROMPT SERVICE - COMPLETE STOCKS - EXPERIENCED PERSONNEL

by every tess ab

 Have Ceramic VIBRATORS
everybody

 rave Ceramic Stack Spacers A complete line of vibrators Opsigned for Use in Stondord Vibrator. with Precision Constructivers. Built ing Ceramic Stack SpereaturLonger Lasting life Spacers for more thin 22 years of Cocked by in Vibrator Design experience mont, and Mes ign, Develop. IN YOUR CAR
INVERTERS applications for inverting D.C. Sesiolly Designed Electric Rotors,
Ondinent

 on d moss moll elea TRUCKS, TREble Upon remanded hor operon operating factor.

STEATITE INSULATORS

SWITCHES

Centralab

America's five most complete, dependable lines of electronic components

For fixed, mobile, miniature, and experimental rigs.
An advertised nameyou can count on for guaranteed dependability.
The brand to ask for-to get higher, safer rated voltages; closer tolerances; compactness; low price.
Stock up at your Centralab distributor.

Centralab
 A Division of Globe-Union Inc,

Milwaukee 1, Wisconsin
In Canada: 804 Mt. Pleasant Rd., Toronto 12, Ont.

PRINTED ELECTRONIC CIRCUITS

The New Model 770-A VOLT-OHM MILLIAMMETER

USING THE NEW "'FULL-VIEW" METER

71% MORE SCALE AREA!! Yes, Although our new FULL-VIEW D'Arsonval type meter occupies exactly the same space used by the older standard $21 / 2 "$ Meters, it provides 710 more scale area. As a result, all calibrations are printed in large easy-to-read type and for the first time it is now possible to obtain measurements instead of approximations on a popular priced pocket-sized V.O.M.

Features

- Compact - measures $31 / 8^{\prime \prime} \times 57 / 8^{\prime \prime}$ $\times 21 / 4$
- Uses "Full View" 20, accurate. 850 Microampere D'Arsonval type meter.
- Housed in round-cornered, molded case.
- Beautiful back etched panel. Depressed letters filled with permanent white, insures long-life even with constant use.

Specifications

6 A.C. VOLTAGE RANGES: $0-15 / 30 / 150 / 300 /$ 15003000 Volts. 6 D.C. VOLTAGE RANGES: $0-7.5 / 15 / 75 / 150 / 750 / 1500$ Volts. 2 RESISTANCE RANGES: $0-10,000$ Ohms 0.1 Megohm. 3 D.C. CURRENT RANGES: $0-15 / 150 \mathrm{Ma}$., $0-1.5$ Amps. 3 DECIBEL RANGES: -6 db to +18 db . 14 db to $+38 \mathrm{db},+34 \mathrm{db}$ to +58 db .
The Model 770-A comes complete with $\$$ I 85 self.contained batteries, test leads and oll operating instructions. ONLY

EXTRA SERVICE-The Model TV.Il may be used as on extremely sensitive Condenser used os on extremely sensitive Condenser tor incorporated in this model will defect leakoges even when the frequency is one per minute.

Ten when * Tests all tubes including 4, 5, 6. 7, Octal, Lock-in. Peanut. tron Miniatures, Sub-miniatures. Novals, Sub-minars, Proximity fuse types, etc.

- Uses the new self-cleaning Lever Action Switches for individual element testing. Because all elements are numbered according to pin-number in the RMA base numbering system, the user can instantly identify which element is under test. Tubes having tapped filaments and tubes with filaments terminating in more than one pin are truly tested with the Model TV-11 as any of the pins may be placed in the neutral position when necessary.
* The Model TV-11 does not use any combination type sockets. Instead, individual sockets are used for each type of tube. Thus it is impossible to damage Thus tube by inserting it in the wrong socket.
* Free-moving built-in roll chart provides complete data for all tubes.
* Newly designed Line Voltage Control compensates for variation of any Line Voltage between 105 Volts and 130 Volts.
* NOISE TEST: Phono-jack on front panel for plugging in either phones or external amplifier will detect microphonic tubes or noise due to faulty elements and loose internal

The model V - 11 operates on $105-130$ Volt 60 Cycles $\$ / 7$ So
A.C. Comes housed in o beatiful hond-rubbed oak
cobinet complete with portoble cover.

The New Model TV-40

A complete picture tube tester of a "make-shiff" adapter!! a makeshifi adapter:! tubes. . ${ }^{\circ}$ in the set . . . out built-in power supply, it tests picturete! Self-contained, including way to power supply, it tests picture tubes in the only practical instruneficiently test such tubes; that is by the use of a separate number of picture tubes!

Simply insert line cord EASY TO USE:
cord into any 110 volt A.C. outlet, then attach tester socket to tube base (Ion Trap Need Not Be on Tube). Throw switch up for quality test...read direct on Good-Bad scale. Throw switch down for all leakage tests. SPECIFICATIONS:

- Tests ALL magnetically deflected picture tubes from 7 inch to 30 inch types. - Tests for quality by the well established emission method. All readines on "Good-Bad" scale. - Tests for inter-element shorts and leakages up to 5 megohms. Tests for open elements.
Model TV. 40 C.R.T. Tube Tester comes absolutely com- \$
plete - nothing else to buy. Housed in round cornered. moided bokelite cose. Only

N NET

SUPERIOR INSTRUMENTS CO.
 Dept. Bb . 542439 white plains rd. new york 67 , n.r.

PLEASE PLACE YOUR ORDER WITH YOUR REGULAR RADIO PARTS JOBBER. IF YOUR
 JOBBER DOES NOT HANDLE OUR LINE PLEASE SEND YOUR ORDER DIRECT TO US

126

- Highest Quality - Greatest Variety-meet every need in radio, sound, TV and related fields - Standard on leading microphones

CANNON plugs

For microphone and related uses. 3 30 contacts only. Plug shown O3-12. Available in 6 basic shapes. Insert $1^{\prime \prime}$ wide. Zinc alloy shell, satin chrome finish. Molded phenolic insert, Latch lock coupling method.

P SERIES

For audio. TV' and instrument uses. 2 to 8 contacts 30 a max. Plug shown P3-CG-11. Avalable in 16 basic shapes. Insert Dia. 1". Zinc or steel shells, satin chrome finish. Molded phenolic insert. Latch lock coupling method.

For audio، instrument and related uses. 1 to + contacts 15 a max. Receptacle shown X-3-14. Available in 5 basic shapes. Insert Dín. .625". Zinc atloy shell, bright nickel finish. Molded phenolic insert. Coupling held by contact friction.

XK SERIES

For audio. instrument and related uses. 1 to 4 contacts. 153 max. Plug shown XK-3-11. Available in 4 basic whaper. Itivert Dia. 625". Zinc or stee! shells. bright nichel finish. Molded phenolic insert. Acme thread coupling mut.

For audio, instrument and related uses. 3-15a contacis only. Pug shown XL-3-11. Available in 14 basic shapes. insert dia. $625^{\prime \prime}$. Zinc or steel shells, bright nickel and satin chrome finish. Molded phenolic insert. Latch lock coupling method

XL SERIES

UA SERIES

The ultimate audio quick disconnect 10 R.T.M.A. Specs. 3-15a contacts only. Plug shown UA-3-11. Available in 7 basic shapes. Insert Dia. 750'. Zinc or steel slells, satin chrome tinZinc or steel shells, satin chrome tin-
ish. Insulation. phenolic with rubber ish. Insulation. phenolic bith rubb
seal. I atch lock coupling inethod.

Similar to XK Series, but weatherproofed by addition of a rubber bushing, special paching ring within the coupling nut and rubber sealing washers oll the retaining serew. Plug shown XKW-3-12. A wailable in 4 basic shapes.

XKW SERIES

For storage batteries, engine starters and other high current uses. $2-6100$ a contacts. 1-contact to accommodate No. 8. 10 or 12 wire for signal or stafler relay circuits. Molded rubber shell. Coupling maintained by contact iriction. Plug shown is G:3-3-21CFS.

GB SERIES

AN SERIES

Proved in military service. Worid-u ide standard. I ightweight. Interchangeable inserts. Threaded coupling nut, Rapid and easy disconnect. Cable clamps and other accessories. 15 diameter and 260 insert layouts, 6 shell styles.

D SERIES
For miniature circuitry, radio or audio. 151050 contacts 5 a Plug shown DA15S. Insert is $1.049^{\prime \prime}$ long. Cold rolled steel slell Cadmium Iridite bleached. Ineerts are molded Nslon. Coupling is held by contact friction.

For hermelically sealed instruments, indicatore miniature swituhes. etc. ? to 12 contacts 5 a in thrie shell sizes Shell is cold rolled steel. Ineerts (min. dia. .294") are vitreous material and Silcan silicone rubber. Bayonet lock.

U SERIES

New streamlined shell Jesign with new ariel, noise proof RISII IENT insulator in the socket astembls X1 R-3-1 plug. with three 15 -amp. Contacts. Intestal cable clamp: rubther cable relief; standard Cannon latchlock.

K SERIES

The receptacle $\mathrm{SK}-\mathrm{M} 7-32 \mathrm{~S}$ (shown) and mating plug $\mathrm{SK}_{\mathrm{K}}-\mathrm{Al}-21 \mathrm{C}-1 / 2 \mathrm{Cl}$ are standard equipment for the recorder connectors used by Teleplione Companies as subscribers voice recorder

TELEPHONE RECORDER

K SERIES

All connectors shown are stock items for Cannon Audio Distributors. All other Cannon Plugs may be purchased from these same distributors by arrangement between the distributor and the customer. For additional catalog information, write for RJC and ICC Bulletins.

since 1915 CANNON ELECTRIC CO., LOS ANGELES 31, CALIF. Factories in Los Angeles: East Haven; Toronto; London, Eng. Licensees in Paris, France; Melbourne, Address inquiries to Cannol Electric Company cities Humboldt Sircet los Ampeles 1 Caliform Humbold Sirect. Los Angeles 31, California Pleose Refor to Dept. 138
 CATHNON PLUGS

 .
TELEVISION

For TV cameras and cable. Coax contacts available. Insert Dia, 2.250". Plug shown LKT-R2AC-22-\%". Straight and 90° shecls, ribbed coupling nut, gland nut, friction washer, bushing, gland washer and racking ring to support cable are features.

ELECTRONIC VOLTMETER - Model 201

D.C. Volts: 1.5 to 1500,7 ranges; 11 megohm input impedance, $\pm 3 \%$ accuracy, full scale. A.C. Volts: 0 to 1.5 RMS, 1.5 to 1500 RMS, $(7$ ranges), 0 to 4 peak to peak, and 4 to 4,000 peak to peak (7 ranges); never less than 800 K input impedance, $\pm 5 \%$ accuracy full scale. Resistance Range: 0 to 1000 megohms. General: Tubes, 12AU7, 2-6AL5 (no selection required). Size, $51 / 4^{\prime \prime} \mathrm{W} \times 83 / 8^{\prime \prime} \mathrm{H} \times 61 / 2^{\prime \prime} \mathrm{D}$; wt. 5 lbs . Price: $\$ 68.00^{*}$

INTEGRATED LINE OF QUALITY TEST

Other

SHASTA Quality Instruments:

A.C. Vacuum Tube

Voltmeters
Square Wave Generators Square Wave Voltage Calibrators
Filament Power Supplies Wide Band Amplifiers Crystal Calibrators Grid Dip Meters Impedance Bridges A.C. Bridges

Low Frequency
Standards
Low Resistance Bridges Intermodulation Meters

AUDIO OSCILLATOR - Model 301

Frequency Range: 12 cps to 1.1 mc in 6 steps Output Level: $\pm 1 \mathrm{db}$ from $25 \mathrm{cps}-360 \mathrm{kcps}$; $\pm 3 \mathrm{db}$ from $12 \mathrm{cps}-1.1 \mathrm{mc}$. Power Output: 150 milliwatts Distortion: Less than 5\% General: Tubes, 2-6AU6, 1.5687, 1-6X4; power requirements, $105 / 130$ volts, $50 / 60$ cycles, 45 watts. Size, $51 / 4^{\prime \prime} \mathrm{W} \times 83 / 8^{\prime \prime} \mathrm{H} \times 61 / 2^{\prime \prime} \mathrm{D}$; wt. 17 lbs . Price: $\$ 95.00^{*}$

INSTRUMENTS BY SHASTA DIIIIION OF.

I
 BECKMAN

REGULATED POWER SUPPLY - Model 702

Output Voltages: 0 to +400 DC, 0 to -150 DC , continuously variable; 6.3 AC center tapped, 8 amps DC Output Current: $200 \mathrm{ma} ; 10$ ma on bias tap Regulation: Better than $1 / 2 \%$, zero to full load Ripple: Less than 10 mv .
Input: 105/130 V., 50/60 cycles
General: Tubes; 5U4, 6X4, 2-0A2, 3-807, 1-6AU6.
Size, 8 " W x $12^{\prime \prime} \mathrm{H} \times 10^{\prime \prime} \mathrm{D}$; weight 16 lbs .
Price: $\$ 185.00^{*}$

WWV RECEIVER - Model 1201

Frequency Coverage: 2.5,5,10,15, 20 and 25 mc (panel switch)
Sensitivity: Better than 1 microvolt for 3 db signal plus noise to noise.
Selectivity: 1 kc at 3 db down
Output Impedance: 3.2 ohms
General: Tubes; 6AH6, 6J6, 6C4, 2-6BA6, 12AT7,
12AU7, 2-6AQ5, 5Y3. Standard $19^{\prime \prime}$ relay rack or cabinet mounting. Outside dimensions, $171 / 8^{\prime \prime} \mathrm{W} \mathrm{X}$ $51 / 4^{\prime \prime}$ H $\times 9.5 / 16^{\prime \prime} D_{\text {; weight }} 17$ lbs.
Price: \$495.00*
*All prices f.o.b. factory, subject to change without notice.

Get the most for your instrument dollar-specify SHASTA for your shack, shop or laboratory. Write now for complete specifications and data; please address Dept. SB-55.

Complete Stocks
Long Trades

Henry has everything in the amateur equipment field, new or used ... transmitters or receivers, and Henry has the NEW equipment FIRST.

Low Terms

100\% Satisfaction
Henry wants to trade and he trades big. YOU get truly liberal allowances on your equipment. Tell us what you want to trade. We also pay cash for used equipment.
You get the best terms anywhere because Henry finances all the terms with his easy time payment plan. 10% down (or your trade-in accepted as down payment), 18 months to pay.
Henry gives you a guarantee of " 100% satisfaction" or your money back at the end of a 10 day trial.
10 Day Trial Try any receiver or transmitter for 10 days. If you are not perfectly satisfied, return it and all you pay are shipping costs.
Fast Delivery Shipments 4 hours after receipt of order. Send only $\$ 5.00$ with order, and shipment will be made COD immediately ... Order from either store TODAY!
Low Prices Henry's large purchasing power means low prices to you. You just can't beat our wholesale prices.

Write, wire, phone or visit either store today.
Since 1929 over 50 thousand hams found HENRY FIRST for Equipment, for Service, for Satisfaction.

SERIES ES-520 $5^{\prime \prime}$ Oscilloscope

SERIES EV-10A
Wide-Range, Zero-Center VTVM and Megohmmeter

SERIES 120 High Sensitivity Multi-Range Test Sel

PRECISYON Apparatus company, Inc.

70-31 84th STREET, GLENDALE 27, L. I., N. Y.
Export Division: 458 Broadway, New York 13. U S.A. Cables: Morhanex Canada: Atlas Radio Corp., itd., 560 king Street w. Toronto 28

at JTEWARK in Stock . . the Complete Line of hallicrafters HAM EQUIPMENT

Model HT-30 Transmitter/

 ExciterSingle Sideband. Highly stable VFO with full $100: 1$ ratio gear drive system. Stability comparable to most crystals 01%. Ample gain for 55 db microphone with noise 40 db down. Full 40 watt lineal peak power output. Undesired beat frequency down 60 db. T. V. I. suppressed. Provisions for coaxial output fitting. Built-in voice control circuit. 19 tubes plus voliage regulator and 2 rectifiers. Size $183 / \mathrm{y} \times 127 / \mathrm{g} \times 9^{\prime \prime}$. Wt. 51 lbs .
98F023. NET.
349.95

Model SX-99 Receiver

Covers Broadcast Band 540.1680 kc plus three short-wave bands 1680 kc 34 Mc calibrated for the 10, 11, 15 , 20,40 and 80 meter amateur bands With calibrated electrical band spread. Features "S" meter, separate bandspread tuning condenser, crystal filter, antenna trimmer, one r-f, two -it plus 3.2 and 500 ohm speaker terminals. Seven tubes plus rectifier $105 / 125 \mathrm{~V} .50 / 60$ cycle AC. Size $183 / 8$ $\times 81 / 2 \times 11$
98F026. NET
149.95

98F002. R46A Speaker. NET........ 19.95

Model SX-88 Dual Conversion Receiver
Frequency range 535 kc to 33.3 mc in 6 bands, Calibrated bandspread for $160,80,40,20,15,11,10$ meter bands. First IF is 1550 kc on band 2. 2075 kc on others, Second IF frequency is 50 kc . Selectivity from 10 kc to 0.25 kc at - 6 db . Output impedances for speaker or line, $3.2 /$ impedances for speaker or line, $3.2 /-8$
$/ 500.600$ ohms. 16 tubes plus $5 U 4 \mathrm{G}$ rectifier. 4 H 4 cuirent regulator and OD 3 voltage regulator. Size 20x $103 / 4 \times 181 / 4^{\prime \prime}$. Shpg. wt. 85 lbs

98F025. NET
595.00

98F002. R46A Speaker. NET'........ 19.95

Model S-85 Receiver

Replacement for S.40B, proven favorite of Hams everywhere. 1000° of calibrated bandspread. Broadcast band 540.1680 Kc and three shortwave bands $1680 \mathrm{Kc}-34 \mathrm{Mc}$ on large easy to read dial. Separate bandspread tuning condenser and builtin speaker. Has noise limiter and AVC circuit. Seven tubes plus recAfier. $105 / 125 \mathrm{~V}, 50 / 60$ cycle. AC tiner, Size: $181 / 8 \times 87 / 8 \times 10^{\prime \prime}$. Shipping wt. 36 lbs.
98F031. (AC only) NET
119.95

98F032. (AC-DC) NET.
....... 119.95

Model SX-96 Sideband Receiver
Covers Broadcast 538-1580 kc plus three S/W $1720 \mathrm{kc}-34 \mathrm{Mc}$. Full precision gear drive dial system. Selectable side band reception of both suppressed carrier and full carrier transmissions. Mixer type second detector, Delayed AVC. Calibrated bandspread -"S" meter-double superhet. 10 tubes, 1 rectifier and voltage regulator. Size $183,6 \times 51 / 2 \times 105 / 8^{\prime \prime}$. Wt. 43 lbs.
249.95

98F002. R46A Speaker. NET 19.95

Model S.93

Four band, 3 -way, portable receiver. Has 170-400 kc band, covers the airway ranges, marine beacon and airfield control towers. 2.6 mc ship-toshore, amateur, shortwave tropical band, etc. Also $6-18 \mathrm{kc}$ band. Telescoping whip on short wave. 3 -way scoping whip on short wave. 3-way
operation plus provisions for 220 V , AC-DC. Six tubes plus selenium rectifier. Size: $15 \times 101 / 2 \times 8^{\prime \prime}$ Shpg. wt. 19 lbs.
98F027. NET.
99.95

Burgess F6A60P. Battery pack for S-93.
49F210. $97 / 1623 / 4 \times 41 / 2{ }^{7}$.

Also Available

Model SX62A All-wave Receiver
98F007. Wi. 77 lbs. NET
Model S-53A Short Wave Receiver
98F009. W\%. 20 lbs . NET
Model S-380 Low Cost Receiver
Model S-38D Low Cost Rec
$98 F 033$. Wt. 13 lbs . NET.
Model S-94 Civil Parrol Receiver
Model S-94 Civil Parrol R
gaFo28. Wt. 13 lbs . NE?
98F029. S-95 Receiver. NET.

Send far Newark's FREE Catalog for' 55

See all the latest releases in Amateur Radio, Audio, Radio, TV and Electronics.

F.O.B. Chicago. Include shipping and insurance charge.

Dept. HB-5., 223 West Madison Street, Chicago 6, Illinois, STate 2-2950

Transistors for IMMEDIATE DELIVERY!

TRANSISTOR TYPES	CRYSTAL TRIODES	PHOTODIODES	SEMICONDUCTOR RELAYS
$2 N$ 32 $2 N$ 33 $2 N$ 34 $2 N$ 35 $2 N$ 36 $2 N$ 37 $2 N$ 38	CT 4 CT 5 CT 15 CT 7 CT 8	$\begin{array}{ll} \text { PD } & 5 \\ \text { PD } & 5 A \\ \text { PD } & 6 \\ \text { PD } & 3 \\ \text { PD } & 7 A \end{array}$	SR 9 SR 10 SR 11 SR 12

FOR YOUR SEMICONDUCTOR REQUIREMENTS WRITE TO:
FRETCO, INC. 406 n. craig st., pittsburgh 13, pa. in OPEN WIRE TRANSMISSION LINE

PACKAGED on spools in lengths of 100-250-500 feet.
INSULATORS—pure polystyrene spaced $6^{\prime \prime}$ apart.
WIRE SIZE No. 18 hard-drawn copper-weld wire.
IMPEDANCE 300 ohms at all frequencies. WIDTH between conductors $3 / 8^{\prime \prime}$ center to center.

PACKAGED on spools in lengths of 100 -250-500 feet.
INSULATORS-pure polystyrene spaced 6" apart.
WIRE SIZE No. 18 hard-drawn copper-weld wire.
IMPEDANCE 425 ohms at all frequencies. WIDTH between conductors $1^{\prime \prime}$ center to center.

INCORPORATED

Specialists in electronic tube design and construction, our over-all laboratory facilities in our new, modern plant with its latest, up-to-the-minute equipment for precision quality control are recognized as outstanding.

AMPEREX Tubes are designed, not only for every phase of communications, but for applications in all fields where electronic equipments are used . . . industrial, radiation detection, electromedical...etc....to assure yourself of unvarying performance and more all-around value for your money... be sure to specify. AMPEREX
See Your Local Radio Parts Distributor

ata Sheets and Brochures are ovailble on request for AMPEREX High vality Germonium Dindes and antion Transictare

interninhional RECTIFIER CORPORATIOM

sh secumoo Et secunoo callfornia

SELENIUM RECTIFIERS SELENIUM \& GERMMNIUM DIODES SELENUM PHOTOCELLS

IRADID \& TV STACKS

Half wave, full wave and voltage doubler units with input ratings of 25 to 165 volts AC. DC output current from 65 milliamperes to 1200 milliamperes. High quality selenium universal replacement Rectifiers for radio and TV sets. Also useful for amateur and experimental applications. Can be used in voltage multiplier circuits directly from line supply to provide a DC voltage output of any multiple of the input voltage. Universal mounting.

IIIGII VOI.TAGE CARTRIIDGES

Designed with ferrule terminals for guick insertion into standard 30 -ampere fuse clips. Recommended for use in high voltage fower supplies where long life and extreme reliability are of prime mportance. DC output from 1.000 volts at 5 milliamperes to 3500 volts at 5 milliamperes.

INDUSTREAL AND PPOWEIR TYPES

Typical uses include heas'y duty plating. general purpose power supplies, cathodic protection. battery chargers and laboratory equipment. DC output from 10 volts at 0.4 amperes to 120 volts at 1 is amperes Avaitable in half wave. center tap and single phase bridge units

SELENIUM DIODES

WIDEST

RANGE

 IN THE INDUSTRYDesigned for stable operation in an ambient temperature range of minus $60^{\circ} \mathrm{C}$ to plus $100^{\circ} \mathrm{C}$. Rectifying elements are potted in a thermosetting compound for protection against corrosion and fungus DC output soltage from 20 to 160 volts. DC output current average from 200 microamperes to 11 milliamperes. Assortments avallable in kit form. Diam: from $1 / 8^{\prime \prime}$ to $13 / 32^{\prime \prime}$ length: from $1 / 4^{\prime \prime}$ 10 $1 / 2^{\prime \prime}$

GEIBMANIUM DISIDES

Avalable in all types in demand by service men. laboratories, experimenters and hobbyists. Case diam: $1 / 4^{\prime \prime}$. Case length: $1 / 2^{\prime \prime}$. Anjal piglail leads for easy soldering and clipping in.
to breadimard set. ups. Assortments
 available in kit form.

Technical information on request fon your lefterhoat

Here's the Soldering Iron You'ue Waited For!

 Soldering handiest rou've EVER SEEN:- Perfectly balanced-speeds work, lessens fatigue
- Quick-heating, long-life, 41/2" narrow loop-type tip, easily reaches narrow, deep spaces
- Easy trigger action
- Rugged, Luger style . . . no stand needed
- Dual or single heat-single 150 or 250 watts; dual $150 / 250$ watts
- Twin lights
- Compact, fits in pocket
'eserve a spot in your tool kit for this new, compact :SICO Luger Soldering Iron. Its light, evenly distributed eight reduces fatigue and speeds your work, and the nasterly way you reach hidden spots makes the Luger indispensable. Its handsome, red, molded housing is silt to "take it", stands up under rough handling. Its effect balance makes it feel "natural" the first time on pick it up because it's designed to fit your hand or easy use. You forget about the oo and concentrate on your work. Quick on the trigger, the ESICO Luger corks with an easy squeeze from ne, two or three fingers, and the

Luger grip has a builtin rest for the little finger. Twin lights eliminate all shadows and spotlight your work. No more eye strain for you! Now . . . reaching those hard-to-get-at places is a snap . . the loop tip gets into nooks, crannies and remote spots with complate ease. ESICO's long-lasting tip heats more quickly, too, . . saves you time. When not in use, just rest the Luger on its side . . . no stand needed. - See the new ESICO Luger . . . and you'll be glad you waited for this revolutionary new development in soldering irons . . . by the makers of famous electric soldering irons for a half-century.

WHERE ACCURACY COUNTS

Buy right... know you're right with Hycon - setting new standards in quality test instruments. In addition to the three basic instruments shown, the Hycon line includes a combination volt-ohmmeter and tube tester, $5^{\prime \prime}$ oscilloscope, sweep generator, bar and dot generator, and color bar generator. All instruments meet color TV requirements. Write the factory or contact your local electronic parts jobber for additional product information.

Model 614 VTVM
Tops in accuracy at low cost sums up the new Model 614 VTVM. Hycon plus features include electrostatically shielded, unbreakable meter face; large illuminated $61 / 2^{\prime \prime}$ meter; 250 MC frequency response with accessory crystal probe. Meter uses new core-type movement for maximum magnetic shielding, and probes stow inside case, ready to use.

Pasodena 8, Celifornia
ELECTRONIC EOUIPMENT
PHOTO RECONNAISSANCE EOUIPMENT AERIAL SURVEY * ORDNANCE PRODUCTS

nevr branch!

Radio Shack Corporation announces a new branch at 230-234 Crown Street

 New Haven 10, ConneotioutNEW HAVEN'S RADIO SHACK duplicates in every way the operations of the 32 -year-old parent company at Boston. In its own three story building on busy Crown Street in downtown New Haven between Temple and College Streets, the new Radio Shack carries the complete line of 30,000 items shown in our 224-page 1955 catalog. Branch Manager WIWIS - sometimes referred to as Mr. Single Sideband - and staff are alert to the needs of novice and veteran Hams alike; not to overlook the music lovers, servicemen, experimenters and "do-it-yourself" gentry who naturally gravitate to Radio Shack because more things are in stock at the right time . . . and because our prices are capital-L-low. In other words, Radio Shack of Connecticut is a full-fledged husky, not a 90 lb . weakling. We hope you'll use our facilities and our SPruce 7-6871 phone number often!

Write or stop in today for your copy of this worlddamous buying guide. Send written requests for catalogs to Boston.

RADIO SHACK CORPORATION

Shurite panel meters are POPULAR WITH HAMS BECAUSE THEY'RE...

RUGGED Exceptionally high ratio, torque to weight, for fast pointer response. Sturdy construction throughout. Molded inner units with internal and external locking nuts for maximum rigidity.
GOOD LOOKING Dials are metal so they stay attractive in spite of age and moisture. Metal cases throughout with rich telephone black finish. Concealed coils and good, readable scales.
WELL DESIGNED AC meters are double-vane repulsion type using hair-spring and jeweled bearing. Most DC meters are polarized-vane solenoid type. High internal resistance voltmeters available in popular ranges. Accuracy well within 5\%.
PRICED RIGHT For instance, the meters pictured are priced at
Model 950, 0-100 DC Ma. . . . \$1.60
Model 650, 0-150 DC Volts . . . 2.10
Model 550, 0-150 AC Volts . . . 3.40
Other meters are correspondingly reasonable in price, starting at $\$ 1.55$. You get the benefit
of low costs made possible by large quantity production.
GUARANTEED For one year from date of purchase against defective workmanship and material, and will be repaired or replaced if sent to the factory postpaid with $40 \not \subset$ handling charge.

A COMPLETE LINE All of these features are available in over 300 ranges and types; AC, DC, Voltmeters, Ammeters, Milliammeters, Resistance Meters. For instance, DC Milliammeters are made in 65 types and ranges. The newest meters are a $0-3 \mathrm{DC}$ Milliammeter with 500 ohms internal resistance and built-in zero adjustor with ten times the sensitivity of previous 0-3 DC Milliammeters, also a 0-1 DC Milliammeter with 1000 ohms internal resistance and zero adjustor.
AVAILABLE Stocked by leading electronic parts distributors in a wide variety of types and ranges. For prompt shipment, contact the authorized Shurite distributor nearest you.

THEY'RE TODAY'S BEST VALUE

Ask for Catalog Sheet G-56(SH), latest revision

POWER TUBES: Triodes, Beam Power types, Rectifier types, and Thyratrons.

CATHODE RAY TUBES: For virtually every oscillographic and TV application-in a choice of screen sizes and phosphors.

SPECIAL TUBES: "Special Red" (long life) types, Multiplier Phototubes, Gas and Vacuum Phototubes, Computer tubes, "Pencil types," Vacuum Gauge tubes, and other small types for industrial and communications services.

TEST EQUIPMENT: Including oscilloscopes, vacuum tube voltmeters, microammeter, VHF and UHF sweep generators, VHF marker generators, RF and Audio Signal generators, color-bar generator, dot-bar generator, and specialpurpose probes for laboratory, production line, and service applications.

200 Page W. D. Brill Buying Guide

Write for your FREE copy of the latest W. D. BRILL Catalog-the complete Buying Guide for all Amateur and Industrial Electronic Equipment. Features the widest selection and largest stocks of equipment.

W. D. BRILL COMPANY 198 10ih STREE OAKLAND 7, CALIF. Phone: TEmplebar 2-6100

PRECISION GLASS ENCLOSED CRYSTALS over a
complete range of 800
cycles to 5 mc .

JK G-12A - with o proven stobility potentiol of one part in 100 million of 1000 ke .

FREQUENCY MANAGEMENT SPECIALISTS

MILITARY TYPES
Hermetic sealed, metal cased, in frequency ranges from 16 he to 100 me .

MINIATURE PRECISION GLASS ENCLOSED
CRYSTALS
over a complete
renge of 10 me to
100 me.

JK G-3 ACTUAL SIZE

A Wide Range of TEMPERATURE CONTROL OVENS

JK 097

JK 09

- Custom Oscillators, Crystal Filter Networks.
- Suppliers of Quariz for Ulira Sonic Transducers.
- Complete customer engineering service provided for quartz crystal applications.

Write
for technical catalog

THE JAMES KNIGHTS COMPANY SANDWICH, ILLINOIS

2.METER STANDARD COMMUNICATOR(Less squelch, etc.)

$$
115 \text { V AC/6V DC. \#3026 . . . } 209.50
$$

2-METER DELUXE COMMUNICATOR
115 V AC/OV DC \#3025 229.50
115V AC/12V DC \#3057 229.50
6.METER DELUXE COMMUNICATOR
115 V AC/6V DC \#3049 229.50
115 V AC/12V DC \#3058 229.50
GROUND-TO-AIR COMMUNICATOR
115 V AC(60-400c) \#3042 299.50
115 V AC/6V DC \#3043 350.00
115V AC/12V DC \#3073 350.00
INDUSTRIAL COMMUNICATOR
115 V AC/6V DC \#3042 350.00
COMMUNICATOR ZIPPER CARRYING BAG \#3023 14.95
2.METER VFO \#3024 84.50
A fitting companion unit for the Communicator, butalso well suited for use with olmost any 2 -meter trans.mitter. Provides stable, calibrated VFO (24 mc . output)brings all the advantages of 1 F VFO to the2 -meter operator.
PRICES SUBJECT TO CHANGE
for a CAREER in communications
. . . to pass FCC amateur exams
LEARN CODE

and Theory $\$ 395$

EASY,
FAST HOME STUDY
with 78 R.P.M. Phonograph Records PASS COMMERCIAL AND AMATEUR CODE EXAMS, AMATEUR THEORY EXAMS, FOR YOUR FCC LICENSE!
4 AMECO Courses Available:
No. I - NOVICE CODE COURSE. You get and keep 10 recordings (alphatet through 8 (t.r.m. Includes typical FCC and receive cole the simplest, fastest way; phus charts to check your receiving accuracy; plus an albumt all for the low price
of only................................... 97.95
\qquad $\$ 7.95$

No. 2 - SENIOR CODE COl'RSE. You get and keen cverything given in the Novice Course except that you Ret 22 recorle exams for Ceneral class an di 2nd class conmercial telegraph licenses. All this for only. $\$ 12.95$

No. 3 - COMPLETE KADIO THEORY COURSE. A COMplete. singnified home study theory course in radio covering the
Novice, Technician. conditional and general claswes all under one cover - with nearly four hundred typical FCC que ques. tions to prepare you for license exam. No technical bachground
recuired. You also get, FiREE. a guide to setting up your own Hiam station. All for the amazing low, low price of $\$ \mathbf{3 . 9 5}$

No. 4-NEW ADVANCED COURSE. Hrepares Novice on-

\qquad

DELUXE CODE PRACTICE OSCILLATOR
In Kit Form
The AMECO Code Practice Oscillator, for 110 volts AC or
DC, with a built-in 4 inch speaker, produces a pure, steady tone with no clicks or chirps. It can take a large number of headphones or keys. Afeer the code has been learned, the AMECO code reactice oscillator. lent C . W, monitor.
Other features include:

- Variable tone control
- Volume control
- Sturdy grey hammerione cabinet
- Lowest prices

In Kit Form, with Instruction, less tubes (Hodel (PS-KL) \$1175
Completely Wired \& Tested, less lubes (Model (PS-WL)
Set of two tubes (35w4 and 50c5)

AMECO LOW PASS FILTER
... suppresses radiation of all frequen. major cause of TVI. The Amecalaw pass filter uses a constont K circuif, and is designed for caaxial cable \{52 to 72 ohms).
Other features include:

- Negligible insertion loss
- 35 db and more attenuation of Amazing spurious frequencies above 50 Mc . Price of
- Will handle up to 200 watts of RF power $\$ 1.95$ instructions
HIGH PASS FILTER
The AMECO high pass filter is placed in series with the TV receiver's antenna to prevent the
transmitter's signal from entering the receiver. Alt frequencies obove 45 Mc are passed through without loss. The AMECO high pass filter is designed for use with the common 300 ahm twin line.

OTHER FEATURES INCIUDE:
. 40 db and more attenuation af 14 Mc . and At the amazing belaw; 20 db attenvation at 10 meters.

- Negligible insertion loss
- Filter uses balanced constant K circuit $89\left(\begin{array}{c}\text { Amateur } \\ \text { Nel }\end{array}\right.$

FOLDED DIPOLE ANTENNA KITS
for 10 to 80 meters... using LOW LOSS iwin lead

SENSATIONALLY LOW PRICED from $\$ 2.50$
AMECO folded Dipole Antennas are easy-tobuild Kits. The fine quality low loss twin lead has proven reliable in all weather conditions. Each kit. complete with flat-top twin lead cut to desired frequency band, 75 ft . of lead-in wire, fclded dipole connector block.
other features inciude:

- Can safely handle up to 300 waths
- High strength, high dielectric connector block insures perfect impedance match and lowest loss
- Na soldering necessary; solderless terminals and hardware provided
- Twin line uses heovy capper conductors and pure polyethylene insulation
- Antennos can be used for receiving as well as transmitting

Available at these LOW PRICES		
Model No.	Meters	Price Net
FD-10	10	$\mathbf{\$ 3 . 5 0}$
FD-20	$15-20$	3.95
FD-40	40	$\mathbf{4 . 9 5}$
FD-80	80	6.75

HY-LITE Antenna, the name knawn to thausands af satisfied users af the "Stondard" and the "Sky-Lite' beams, naw affers the Amateur a terrific new antenna-the SKY-CASTER. Here is a beam that will give yau real perfarmance and put yau way ahead in the 'DX and Skip Departments'.
The SKY.CASTER is structurally superiar-na weak spats created by hales in the baam-na carrasian creating laase fits far bad cantact. Every SKY-CASTER is foctary tested and tuned with mark. ings set far quick, easy assembly when yau receive it-it is ready ta put up and use. But, with the full adjustability of the SKY. CASTER yau can add the fine tauches ta canfarm the antenna ta your location and still yau have the ariginal settings ta return ta . . . Campare these feotures-inspect the beam-and you'll anly be able to buy the SKY-CASTER.
Comes complete with 2 ' standard $2^{\prime \prime}$ I.P.S. (measures $23 / a^{\prime}$ 'OD mast, threaded sufficient to attach to a rototor or your most; T-Match driven Element; RG 8 U Balun match to 52 ohms (2 cooxial PL259 connectors attached): Terminal block mounted to T-Match (3 cooxial SO 239 chassis Connectors); Morkings for setting to prefuned position as well as positive identification of parts for unerring assembly.

Mokers of fine Amennos for AMATEUR - FM - TELEVISION 242 EAST 137 th ST.. N.Y.C. S1, N.Y.

WRITE

 FOR FREE COMPLETE CATALOGHY-LITE FAMOUS LINE OF BEAMS

Fully Atdjustable

FEATURES

- LARGE STRUCTURALLY RIBBED CASTINGS OF SPECIAL STRENGTH ALLOYS.
- POSITIVE CONNECTION WITHOUT "WEAK-SPOT"' HOLES IN EITHER THE BOOM OR THE ELEMENT.
- FIBRE LOCKNUTS THROUGHOUT.
- HEAVY WALL 3" OD BOOM 61ST-6 ALUMINUM.(20-15)
- HEAVY WALL $1 / 2^{\prime \prime}-13 / 8^{\prime \prime}$ TELESCOPING ELEMENTS 61ST-6 ALUMINUM.(20-15)
- FULL INSTRUCTIONS .

AIR CORE AND POWDER IRON CORE CHOKES

 Standard or to SpecificationsThe increasing demand by the leading manufacturers is ample proof of Miller quality.
We manufacture R.F. chokes in air core, ceramic, powdered iron, or ferrite types for almost all application. Inductance ranges are from 1. uh to 250 mh in fixed values, and from .17 uh to 130 mh in adjustable types, with current ratings from 50 ma to 200 amps.
The flat terminal construction of our \#4531 through \#4541 R.F. pie-wound chokes lends itself to printed circuit applications. All R.F. chokes are moisture and fungus proofed.
Quantity orders wound to specific requirements, with extended inductance ranges and Q values other than our stock items (over 200).

Canadian Representative: Atlas Radio Corporation, Lid. 560 King Street, W. Toronto 2B, Canada
144

MISSILE SYSTEMS

Research and Development

The teclmology of guided missiles is literally a new domain, requiring engineers and scientists of outstanding talent. No field of science offers greater challenge and scope for achievement.

Throughout 1955 growth of the Lockheed Missile Systems Division will create many new positions each month for qualified Scientists and

Engineers in the fields listed here \longrightarrow

RADAR
COMPUTERS
SYSTEMS ENGINEERING;

ANTENN: DESIC:
COMMUN1CATIONS
TELEMETERIN('

ELECTROMECHANICAL DESIGN
TEST EQUIPMENT DESIGN INSTRUMENTATION

STRUCTURES ENCINEERING:
NUCLEAR PIIYSICS
MECII.INICAL ENCINEERING

AERONAUTICAL ENGINEERING;
OPERATIONS RESEARC:H
STRESS ENGINEERING;

Those who are able to contribute significantly to the technology of guided missiles are invited to write.

MISSILE SYSTEMS DIVISION
research and engineering staff

Your Ris is only as effective as the Antemne you tie it to!

Out of antenna engineering laboratories, where Radiation experts and Scientists have developed the E. D.* principle for Military, Commercial and Marine use, comes a

RADICALLY NEW ALL-BAND "E. D." robot SKYHOOK!

- This New, All-band Antenna, precisionmanufactured by ANTENNA ENGINEERING CDMPANY, does exactly what has long been considered a virtual IMPOSSIBILITY. ${ }^{\circ}$

Do you want

AUTOMATIC all-band coverage including Novice, C.D. \& MARS
AUTOMATIC IMPEDANCE-MATCHING on EVERY BAND aUTOMATIC Radiation-pattern Control
AUTOMATIC Colinear Array on 15 and 10 meters (V-37)
ALL with maximum operational EFFICIENCY and convenience

Then YOU want-and can NOW HAVE-your CHOICE of a VARIETY OF MODELS of "E.D.'All-Banders which bave been

DESIGNED for AMATEUR SERVICE by Antenna Scientists
developed for hams at the
A. E.C. ANTENNA LABDRATORY

PRECISION-MANUFACTURED for Quality Control at the A. E.C. FACTDRY.

Soooo.

For Ham Radio at its BEST on your Xhatr \& Rcvr For a THRILL as Netu' $\&$ Potent as an "H" bomb For the TOPS in operating efficiency \& convenience
Write us for details, literature and prices
ATTENTION AMATEUR RADIO CLUBS! If you would like one of our Representatives to discuss the vitally-iniportant subject of Amateur Antennas, their problems and how they can be solved, write us for an appointment to address your Members.

ANTENNA ENGINEERING COMPANY 5021 WEST EXPOSITION BLVD., LOS ANGELES 16, CALIF. TELEPHONE: REpublic 4-7807

The Complete line

Belden makes a complete line of ApritudeTested electronic wires and cables. You can gelect the sight wire for every application, becquse all performance values are shown. a your Belden Catalog.

NAEn Manulacturing Company chicerye, Milnolt

Belden

WIREMAKER

 FOR INDUSTRY146

CHICAGO STANDARD MATCHED POWER SUPPLY COMPONENTS FOR EVERY MODERN TRANSMITTER

Dozens of matched power supplies -in a variety of mounting con-structions- to fit any need, any budget-are available from Chicago Standard.

here are just A FEW...

D.C. Volts	$\begin{gathered} \text { DCMA } \\ \text { CCS ICAS } \end{gathered}$		Plate Trans. former	Choke No. 1	Choke No. 2
$400 / 500$	250	325	P. 45	R-63	R. 103
600/750	250	325	P. 67	R-63	R-103
1250	150	200	P. 1240	R.63	R.63
and 400	200	260	P. 1240	RS-8200	RS-12200

D.C.	DCMA		c	Plate
Volts*	CCS	ICAS	Transformer	Choke
1000	225	280	PT -8311	C.1412
1000	325	405	PT -8312	C. 1414
1500	225	280	PT -8314	C. -1412
1750	200	250	PT -8315	C. -1646

* For single-section, reactor-input filter with full-wave mercury-vapor rectification.

CHICAGO

Type S \& SX. Drawn steel case

STANCOR

Type PT \& C. Plate leads out of top on type PT.

CHICAGO

Type FS. Heavy duty cast frames

D.C. Volts	$\begin{gathered} \text { DCMA } \\ \text { CCS ICAS } \end{gathered}$		Plate Trans. former	Choke No. 1	Choke No. 2
2100/2600	500	700	P. 2126	R. 65	R-105
2500/3000	500	700	P. 3035	R-65	R-105
3000/3500	600	800	P-4353	R-67	R-67
/4000					

STANCOR

Type FS. Formed steel frames with ceramic terminals

D.C. Voits	DCMA		Plate Transformer	Swing. ing Choke	Filter Choke
1000/1250	300	375	P. 8026	C. 1403	C. 1413
1250/1500	500	625	P-8029	C. 1405	C. 1415
1750/2000	500	625	P. 8033	C-1405	C-1415
2000/2500	500	575	P. 8035	C. 1405	C. 1415

CHICAGO STANDARD TRANSFORMER CORPORATION

 ADDISON AND ELSTON CHICAGO 18, ILLINOISEXPORT SALES: Roburn Agencies, Inc. 431 Greenwich Street, New York, N. Y.

Index

Charts and Tables
Alignment（＇hart，Crostal－filter
Alphatret，Greck
PAGE $2!14$ 5i36
Amatenr Frequency－Fsands．．．．．．．．．．．．．．．．．．$\quad 1+$
Amaterir＇s Code，The ．．．．．．．．．．．．．．．os
Antenna and loerder Lempths
$322,324,327,329,330,335,3336$
Antenna Diameter is．Letghth ．．．．．．．．．．． 3 ． 33
Antenna（bain ．．．．．．．．．．．．．．．．．．．．336，3337， 340
Antenna length Factor ．．．．．．．．．．．．．．． $3: 3$
Attemuation of Transmission Lines．．．．．．．．．．． 3010
Bandpass Filters
3119
$3: 34$
Bandwidth，Typical I．1．
75,93
Beam lilenment Lengths．．．．．．．．．．．．．．．．． $3 \cdot 11$
Breakdown Voltages
－3！
532
448
$4 \overline{0} 0$
apardanme of Nhort Vertioal Intemmas
450
（athorle and sreen－I）ropping Resistors for R．F．and I．F＇．Amplifiers
Cathode－Iodalation Performance Curves．
Charauteristic Impedatue．．．．．．．．．301， 305
Circuit and Operating Values for Converter Tubes
－Computation
Coaxial Line I Mata 470
．．．．．．．．．．．．． 3144,3015
（ode for latado Parts
514,515
514
Condurtivity of Metals ．．．．．．．．．．．．．．．．．． 8 ， 540
Continental（＇orle．．．．．．．．．．．．．．．．．．．．．．．．．． 13
Conversion of lirational and Multiple Enits．
（opper－Wire＇rable
Corner－Redlector Antobasa liced hmpedance
Countries List，ARIRL．
C＇ouphing－＇onfficiont（ Surves
Coupling to F＇lat Lines
．．．．．．．．．．．．．． 31 ．

Decibel
I ecimal linuivalents of fractions
）ielectric Constants
1）rill Nizes
Driving－Power／Plate－（＇irenit－Lifliciency Curve
Effect of（iround on Horizontal Antennas．
Electrical（＇onductivity of Metals．
Field Strength Meter Calibration Curve．
Filters，［3andpanss
20
$5: 37$
410
5：3：
41
$24 \cdot 4$
$5: 35$
511
-23
－ 0 （！）
$1: 36$
3：3：3
541）
47.2

Frequenev
Gian of Directive Antemats．．．．． $3: 35,336,340,341$
Gamper，Standard Metal ．．．．．．．．．．．．．．．．． 533
Germanium（rysial Diodes．．．．．．．．．．．．．．．．V＇－．．．． 5
Half－Wave Antenna Lemgths．．．．．．．．．．．．．．．．． 32.4
Impedance Step－Up in Folded Dipoles．．．．．$\quad 30!$
Index，Mordulation
Inductance and（＇anacitance for Ripple Reduc－ tion．
Indurtance，Capacitance and Frequenct
Charts．

International Prefixes
34
Intermational Amateur Prefixes ．．．．．．．．．．．．．．．．
International Marse Code
L．－（＇Computation
5.3
473
470

L／R Time Comstant ．．．．．．．．．．．
Linear Anmpifier Tube－Operation Data ．．．．．． 284
Loading－Coil Data ．．．．．．．．．．．．．．．．．．．．． 44
Log，station
．
Long－Wire Antenna Liphts ．．．．．．．．．．．．．．． $322^{\frac{1}{8}}$
Metals，lRedative Resistivity of ．．．．．．．．．．．is
Miniductor I atat
18
541
Mohile－Antemna bata．．．．．．．．．．．．．．．．．．．．．．．．．．．． $44!$
Modulation Index．．
Modulator（haracteristic Chart ．．．．．．．．．．．．260， 264
Musical Scale
Nomenclature of lirequencies ．．．．．．．．．．．．． 18
Open Stubs，Position and Leugth．．．．．．．．．．．．．．．． 308
Operating Values，Coverter Tubes ．．．．．．．．．．．．．．．．8：
Peak－Reetifier－（＇urrent／D）．（＇．－Load－Current Ratio

201
Percentage Ripple Aeross Input Condenser ．．． 201
pagf，
Phase－Shift Network Design Data 290
Phometic Code 519
Pilot－L（amp）Data
j41
j41
Plate－＂ireuit－lifficiency／Driving－Power Curvo 1.36
D＂uncture Voltages，Dielectric $2: 3$
2 Nignals 5：31
k＇＇Time（ounstant ：30
Rボ「 ジstem $5: 31$
Rathation Angles 325
Rambation Patterns 325,328
Radiation Resistame ．302， $2,3: 5,3: 31$
Reartanme（hamge with Antenna Length 3：3：3
Reartame（hart 540
Relationship of Amateur－Hand ILarmonios．pig1， 507
Resistance－（＇ompled Voltage－dmptifior I）ata $2: 3:$
Resistivity of Metals，Relative 18
Resistor Color Code 515
Respomse，Tuned－（ ircuit 538
Rhombir Antenna Design 3：34；
Schematio Nombols 2
Sicren－l）ropping and Cathode Resistors for R．l＇．and I．F．Amplifiers 87
Shorted Situbs，Position and Length 308
大ignal－sitrongth，Readability and Poneriales． $5: 31$
standard Commonent Vialues 51：3
Statulard Metal（iatures 5．36
Standing－Wave Ratio 3106
Station Lon
$5: 1$
$5: 1$
Nuh P＇osition and Length 308
AIVR（：astrattion 47.3
Trank－（ ironit（＇apateitance 13：3，1．40
＇T：！心izos． $5(19)$
Finme，Condenser（harge and Discharge ：30）
Time Comstant，C^{\prime} / R $\cdot 9$
Time Constant，／．／R 30
Ton－Lotuling（＇apatitance 450
Transformer Ratios $\because 50$
Tramsistors： $1-6: 3$
Iramsistorsymbols
（i8
（i8
＇latnsmission－Line Data 305
Transmission－Line Losses 306
Transmission lines，spating． 304， 305
Thued－©irouit IResponse 5：3x
V－intennat I exign（＇hart 3：35
Firumm Tubes and semieonductors（Index to l＇ables） V－1
Velonity Fabtor and Attenuation of Transmis－ sion Limes 305
Voltage I beray 535
Voltage－（）utput／Transformer－Voltage Ratio． 200
Solt－（）hm－Milliammeter Range（＇alibration 457
II ord Lists for Aecurate Transmission．
519
519
WWV schedules． 464
Formulas
A．C．Iverage，Effective R．M．N．and Peak Vialues
17
17
Antenna Length $.32: 3,327,338,40 \overline{5}, 406$
Capacitance of Combenser 24
（Sancitance Measurement 469
（＇apactitive Rearomere 3.3
Cathode－Rias Resistor （is
（hatracterispic Impedance 305
Comxial－Line Matching Section 342
Critical Inductance 201
Derilnels，（iain in 5．35
Delta－Mathhing Transformer Design 326
1\％ficienoy，Power $22-3$
Pnergy，Meletrical $5: 3$
$25: 3$
Fed－Batck Perentare
Peeder Icngth $: 305$
Filter［ esign 533
Folded Dipole，Driven－Llement Length． 406
Frequenes，Resonant 41
Frequency－Wiavelength Conversion 18
（irid Impedance $1: 39$
（iround－Pane Antenna Design 33：32－3：3：3
Half－Wave Phasing Section，Length 3：38
Imperlance Matching ． 39,40

page	page
Input . $302-30303,307$	Lag, Current or Voltage 31, 33-36
Matching 39, 249-250, 404-406	Laminations . 28
Modulating . 2600	Laws Concerning Amateur Operations. 13
Surge . 298	Laws, Electrical . 15-51
Transformation . 302	Lazy-11 Antenia . 338
Transformer . 307 -308	Lead, Current or Voltage 31, 33-36
Transformer Ratio $39,249-250$	Lead-In, Antenna. 344,346-347
Transmission-Line 298	Leakage Flux . 39
Impedance-Coupled Amplifiers. 57	Leakage Inductance . 39
Imperfect Ground . 32.3	Leakage Reactance . 39
Impulse Noise . 90	Lecher Wires . 460
Index, Modulation . 277	Level, Microphone . 229
Indicators, Tuning . $91-92$	License Manual, The Radio 1 mateur's 13
Induced E.M.F. 26	Licenses, Amateur 13
Inductance . 26 2-29	Lighthouse Tubes. 356, 375, 418
Capacitance and Frequency Charts 5344,540	Lightning Protection 347
Critical . 201-202	Limiters, Noise90-91,426
Distributed. 49	Limiting Resistor . 206
Leakage . 39	Line Current . 36
Measurement . 469-470	Line Filters . 490
Mutual .28-29	Line-Voltage Adjustment 212 -213
Optimum Vadue . 202	Linear-Amplifier Tube - Operation Data.. . 287
Slug-Tuned . 81	Linear Amplifiers $59-60,282$, 284-286, 295-297
Small Coil . 541	Linear Reactanees. 307
Inductance-Resistance Time Constant. 30-31	Linear sweep. 478
Inductance in Series and Parallel. 28	Linear Transformers . 307
Inductive Capacitance, Sperifie 2.3	Linearity . $56,260-261$
Inductive Coupling . 45, 1339-140, 314-315, 316-317	Lines, Matched . 298-299
Inductive Neutralization 142-143, 145	Lines of Force . 15
Inductive Reartance 3 3-3-34	Lines, Nonresonant and Resonant 302
Inductor. 2 2 26	Lines, Paralle Conductor $3033-304$
Infinite Impedance Detector 77 -78	Lines, Transmission298-320
Input Choke . 201-202	Link Coupling. 47, 139-140, 314-315, 316;:317
Input Impedance302-30:3, 307	Link Neutralization 142-1433, 145
Instability, Receiver 75.101	Lissajous ligures . 478 8-479
Instantaneous Current Value 17	Load. $22,55-56$
lnsulators . 16	Load Impedance . 249
Interelectrode Capacitances $61-62$	Load Isolation, VrO 130
Interference Patterns. 492	Load Resistor. $53,55-56$
Intermediate Frequency $81-8 \mathbf{}$ 2	Loaded Circuit Q . 43 4, 44
Intermediate Frequency Amplifier . . . 85-87, 92-933	Local Oscillator .81, 84-85
Intermediate-Frequency Bandwidths, Table.. 87	Locking-In . 80
Intermediate-Frequency Noise Silencer. 91	Log, station . 5 . 21
Intermediate-Frequency Transformers. 86 -87	Logarithmic 1.S. Meter 472
Intermittent l irect Current 16-51	Long-Wire Antennas $327-329$
Interpolation-Type Frequency Meter.461-46;3	Long-Wire Directive Arrays $334-336$
Interruption l'requency 358	Loops, Current and Voltage 300
Interstage Coupling. 139-142	Losses, Hysteresis . 28
Inverse-Distance Law of Propagation 70	Loudspeaker Coil Color Code 515
Inverse leak Voltage 198	Low-C. 44
Inversion, Phase . 2333	Low Frequencies . 17
Inversion, Temperature 354	Low-Pass Filters $237,500-503,538,539$
Ionization 15, 70-73, 352-35:3	
Ionosphere 70-73, 35:--353	Lumped-Constant Circuits............. . 413-414
Ionosphere storms . ${ }_{73}$	MUF (see "Maximum Usable Frequency ${ }^{\text {") }}$ (${ }^{\text {a }}$
Ionospheric Propagation $70-73$	Magnetic Storms .73,353
Ions . 15, 71	Magnetizing Current 38
Iron-Core Coils 27-28, 37, 38	Magnetrons . 419-420
Isolating Amplifiers. 130	Marker Frequencies 461-463
ITV . 507	Masts. 344 -345
"J"Antenna . 403, 404	Matched Lines . 298-299
Junction Transistors. 68	Matching, Anterna. 307-313, 324-326,
Keeping at Log . 521	328-329, 341-343
Key Chirps . 220	Maximum Inverse Peak Voltage 198
Key Clicks . 220 , 222-224	Maximum Usable Frequency 72,352
Keyer Tubes. $2: 22$	Measurements:
Keying:	Antenna.467-469, 471-477
Backwave . 220	Capacitance . 469-470
Break-In.220-221, 226-228	Current . 454 -455
Electronic Kevs . 2 228	Field Strength . 471-472
Key-Click Reduction $2222-2: 4$	Frequency . 450 46-463
Methods .220-225	Inductance . 4697470
Monitoring . 225-227	Modulation $2555-251,2690-273$
Kilocyele . 17	Output Power . 149
Kilohm. 20	Phase.................................. . . 31
Kilovolt . 2 2	Power . 469
Kilowatt. 22 22	Resistance... 455-457, 470
Kilowatt Hour . 23	Standing-Wave Ratio 472-477
Klystrons .418-419	Voltage. 453-454,457-458
L (Inductance) . 26-29	Measuring Instruments. 453
	Medium of Propagation 70
I. /(R Ratios 44, 134-135, 264	Medium- Tubes . 55
/ / R Time Constant . $30-31$	Megacyele . 17
'L"'Section litilers. 541	Megatrons................................ 418
Lacing Cable . 513	Megohm .: . 20
Lag Circuits .222-224	Mercury-Vapor Rectifiers. 198

page	page
Ratio, L/C 44 , 134-135, 264	S Srale.................................... 531
Reactance, Caparitive $32-33$	SS13 Exciters. 2888 -294
Reactanre, lmbuttive33-34	Safety . $4 \times$. ${ }_{\text {c }}^{\text {-48 }}$
Reactance, Leakage . 39	Saturation . 27,203
Reactance, linear . 308	Saturation Point . 5 . ${ }^{\text {a }}$
Reartance Mosdulator $278-279,280$	Sawtooth Sweep . 4 4is
Reactance, Transmission-Line 2988 -299	Scatter . 73,354
Reactive Powver. 34	Screen 13y-Pass (ondenser 6 . 6 -6i6
Readability stale. 531	Screen Circuits, Tuned 377 ,396
Receiver servicing.100)-101	Screen Dissipation . 138
Rereivers, High-Frequenry: (see also "V.H.1..")	Sereen Dropping Resistor 65 -6ib
Antennas for............ 343	Sereen-Grid Amplifiers 138-1339, 262
Constructional:	Screen-Grid Keying. 221
All-Purpose Super-Selertive 1.F. Amplifier	Screen-Grid Modulation 26 .6-267
122-125	Screen-Grid Tube Protection 138-139
Antenna Coupling l'nit for Receiving. . . 115	Screen-Grid Tulxes . 6 '2-63
Bandswitehing Preselector for 14 to :30	Screen-Voltage Supply 65 -66
Mr. ${ }^{\text {a }}$. $1133-114$	Second Detector81-82, 87-88
Clipuer/Filter for ('W). or 'Phone.... 110-111	Serondary Coil . 37
Crystalic (ontrolled Converters for 14, 21	Serondary Emission a 62
and $2 \times$ Mr; 118 - 121	Secondary Frequeney Standard 461-463
"Selectojert". 112	Section Communications Manager 525
Two-Band Five-Tube Superhet 105-109	Section Emergency Coördinator. 525
1-Tube Converter for 10 and 11 Meters. 116-117	Seetion Nets. 526
1-Tube Regenerative Rereiver. 102-104	Selertive Fading. ${ }^{\text {a }}$ 7
Reception, NFM, MM and PM. 99	Selectivity . 46 17 17,75
Reception, Single-Sidehand 990 -100	Selectivity Control . 93
Rectification. $533-54$	Selectivity, Receiver $75.92,92$
Rectified A. (\%. 53	Selenium Rectifiers 198, 210 212
Rectifiers. 196-199	Self-13ias. 1336 -137
Rectifiers, Mercurs-Vapor 198	Self-Controlled Uscillators 126
Reetifiers, Melenium 198, 210-212	Self-1nductance . 26
Reflected Imperdance 3 . 35	Self-()scillation .6it-67
Reflected Waves2999, 35:2-354	Self-(2uenching . 3 . $3 \overline{\text { ¢ }}$
Reflection of Radio Waves. $3532-354$	Semiconduetors . 67 -68
Reflection from Meteor Trails...... 30.354	sending. 517
Reflection, Ground 70 , 32: 3	Sensitivity, Receiver 7 7-75, 96 -97
Reflector, Antenna . 340	Series Antenma Tuning $317-318,380$, $3: 30$
Reflex lilystrons . 418-419	Neries Caparitanes . 2 2-2-20
Refraction of Radio Wives. 71, 354	Series Circuits 20-22, 25-24, 28
Regeneration . 60 , (61, 97	series Feed. 48 -49
Regenerative Detectors - 79	series Inductances. .
Regenerativel.f. .	Series-Parallel Resistances21-222
Regenerative R.F. Stage, Receiver.......... 94	Series Resistances. 20.21
Regulation, Driver . 284	Series liesonanre . $41-42$
Regulation, Voltage 199, 200	Series Voltage-Dropping Resistor ${ }^{20}$ 205
Regulations, dmateur 13, 14	sorvicing Superhet Receivers 1000 -101
	Sharp Cut-Off Tulxes. 6.3
Regulator, Voltage. 20 隹 208	Sheet Metal Cutting and Bending. 5.511
Relays. .292, 485	Shiclding . $50,62,495-497$
Resistance . 18-2:2	Shields... 50 50
Resistance, Back. is $^{\text {c }}$	Shiodd, IElectrostatic. 121
Resistance forwardi. lis	Short skip . 335
Resistance-13ridge standing-Wave Indieator	shorting Stick . 48.
47:3-476	Short-('ircuiting .
Resistanmer 'aparitane Tinue (onstant 29-30)	shot Noise . 90
Resistanre-('oupled Amplifior Data (Chart). $2: 32$	Shunts, Meter . 4 .54-456
Resistance in Series and Parallel.20-22	Sidehand Cutting . 86
Resistivity. 18 \%	Sidehand Interference 2505,260
Resistor. 19	Sidehands. 51,257
Resistor Color Conle 515	Side Frequencies . 51,257
Resistor Wattage .22-2.3	Signal Generators. $464-467$
Resonance. 40 - 4	Signal-Handling Capability 75
Resonance (Vurve 41-43, 46-47, 538	Signal-to-Inage Ratio d $_{\text {d }}$
Resonance, Filter 203	Signal Monitor. 224 -228
Resonance, sharphess of $4143,342-343$	Signal Monitoring .224-228
Resonant-Line ('ircuits 412 -413	Signal-Strength Indicators. $91-912$
Resonant Transmission Lines. 3 , 302	Signal-strength Scale. 5.31
Resonator, ('avity 416-417	Signal Voltage . 55
Response, Flat....... 61	Silencers, Noise . 00 . 91
Response, Frequency61, 229, 2:31	Sine Wave..... 17, 31-37
Response, Tuned-C ${ }^{\text {rircuit }} 5$	Single-Ended (irruits. 50
Restricted-spare Antennas. 3239 -3.330	Single Sideband (see also "Radiotelephony")
Restriction of Frequenty lesponse $2335-237$	
Return Trace . 478	Wxiters .2x\% 2 294
Rewinding Transformers 204 -205	Signal lRereption $84,992-100$
Rhombic Anternat $3: 35 \mathrm{5}-3336$	Transmission .2n2 -297
Rhumbatrons. 418 +19	Rereption. .
	Single-Signal Rereption92-013
Ripple preduency and Voltage. 199-200	Skin liffert. 19
RMS Voltage. 17	
	Skip \%one. \quad \% 1
	Skirt Solectivity . ${ }^{75}$
Rotary-13mam Construction 347 -351	Sky Wave . $70-7.3$
Route Manager . 525	Slug-Tuned Inductance. 81
s-Meters. .91-92	Smoothing Choke. 203

PAGE
Solar Cycle 352-35:3
Soldering 511
Space Charge 0
Space Ware 70
Spark Plug Nuppressors $424-425$
Specific Inductive Capacity $17-18$
Spectrum, rreduency
2!30-235
Speech Amplifiers
3:32-2:34
3:32-2:34
Speech Amplifier Design
Speech Amplifier Design 236-237
Speech (ompression $235-236$
Speech Éduipnient 209235
Splatter 259
Sporadic-E' Laver Ionization 7.3, 35. 3
poradic-K Skip 35.3
Spreading of Radio Wiaves 70
Spurious Responses. 82, 98, $504-\mathrm{ion}$
purious Sidebinds $274-275$
Squegring
$14:-14$
Stability, Amplifier
67
67
'Stability, Usmar 75, 101, 357-358
Stability, V'H 131-132
Stabilization, Voltage 206-208
Stacked Arrass $33 \overline{8}-338,407$
Stage, Amplifier 59
Stage, 1)river $5!$
47
Stagger-'Tuning 513
Standards, Frequency $461-46: 3$
Standing Waves 29! !-301
Standing-WVa Ratio $300-301,472-475$
Starting Voltage
Static Charaderisties 50
Static Collectors 425
tation Control Circuits
126
126
Straght Amplifier
Straght Amplifier $488-48!$
Stubs, Antemma-Matching 308
Sunspot (selo
$81-82$
Superheterodyne 18 Prequencies"
Superimposed A.C. on 1).
358
358
Superregeneration
Superregeneration 358
Suppressor (irid (i)
Suppressor-Cirid Modulation $267-268$
Suppressor, Noise 90-11
Surface Wave 70
Surge Impedance 248
Sweep ('irruits 478
Swee, Wayeforms. 478
Swing, Grid 54
Swinging (hoke 202
Switch 19
Switehes, Power
4:
Switching, Antenna 4.3
Switching, Meter $148-149$
Synchronous \ibrators 216
T-Mitch to Antennas $309-310$
T"-neetion bilters $5 \cdot 3$
Tank-('irruit () 414
Tank Cirenits, Multiband 135
Tank Constants $132-135$
Television Interference, Eliminating. . .377, 4!1-507
Temperature liffects19
Temperature Inversion 3ij4
Termination, Line $298-300$
Tertiary Winding 87
Tetrode (i)
Tetrode Amplifiers $138-139$
Tetrodes, beam (i.)
Thermal-Agitation Noise 74
Termionic Imission $5 \cdot$
Thoriated-Tungsten C'athodes 5.
Tickler Coil 78-7!
Time Base 7
Time (onstant 2!)-31
Tire Ntatic 42
Tone Control 2!3:
Torols $5(0)-50)$
Top Loatling 451
Trace, ('itlunde-Ray 478
Tracine Nivise $4: 6$
Tracking 81,96

[^0]: 1 Where it is necessary or desirable to identify the electrodes, the curved element represents the outside electrode (marked "outside foil," "ground," ete.) in fixed paper- and ecramie-dielectric condensers, and the negatite eleetrode in electrolytic eondensers.
 ${ }_{2}$ In the modern symbol, the curved line indieates the moving element (rotor plates) in variable and adjustable airor mica-dielectric condensers.

 In the case of switehes, jacks, relays, ete., only the basie combinations are shown. Any combination of these symbols may be assembled as required, following the elenientary forms shown.

[^1]: Capacitance in $\mu \mu \mathrm{fd}$. Required for Coupling to Flat Coaxial Lines with Tuned Coupling Circuit
 Frequency Characteristic Impedance of Line

 | Band | 52 | 75 |
 | :---: | :---: | :---: |
 | Mc. | ohms ${ }^{1}$ | ohms ${ }^{1}$ |
 | 1.8 | 900 | 600 |
 | 3.5 | 450 | 300 |
 | 7 | 230 | 150 |
 | 14 | 115 | 75 |
 | 28 | 60 | 40 |

 ${ }^{1}$ Capacitanee values are maximum usable.
 Note: Inductance in cireuit must be adjusted to resonate at operating frequency.

[^2]: Fig. 6.50- Circuit diagram of the complete transmitter. Wotted lines in J_{8} indicate jumpers in plag used for normal operation.
 Ci. Cit-220- 0 fid. mica.
 (2-3-30- $\mu \mu \mathrm{fi}$, ceramic trimmer, compression type.
 ($3-0.002-\mu \mathrm{ff}$. mica.

 ($\%$ - $0.002-\mu \mathrm{fd}$. miea.
 (is - io $-\mu \mu \mathrm{fd}$. midyet varialle (13ud IC.-164t).
 (: 8 - $0 .(0) 1-\mu \mathrm{fl}$. mica, 1200 volts, ease type ($: 11-45$.
 (is - $235-\mu \mu$ fol, variable, (0.02t-inch spacing (Bual tope II C-1859).
 (:10-1.40-mufl. variable, 0.024 -inch spacing (Bud type M(:1856).
 C_{11} to (i_{27}, inclusive $-0.001-\mu \mathrm{fd}$. disk ceramic, $3 / 8$-inch diam., 600 volts.
 (:28-170- $\mu \mu$ fil. mica, 1200 volts, case type CMI-45,
 (:29-1) ual $8-\mu$ fil. electrolytic, 450 volts.
 (:30, (31 - 40- $\mu \mathrm{fl}$. electrolytic, 450 volts.
 \mathbf{R}_{1} - 0.1 megohin, $1 / 2$ watt.
 $\mathrm{K}_{2}, \mathrm{~K}_{3}-2 \overline{-2000}$ ohms, 1 watt.
 R_{4} - 5000 ohms, $1 / 2$ watt.
 R_{s} - $I(0)$ ohms, $1 / 2$ watt.
 $R_{6}-263$ ohms (270), $1 / 2$ watt.
 $R_{7}-55.5$ ohms $(560), 1 / 2$ watt.
 $\mathrm{K}_{8}-25$ ohmen (27), $1 / 2$ watt.
 $R_{\theta}-1700$ ohms, 1 watt.
 $\mathrm{R}_{10}-0.1$ megohm, 1 watt.
 $R_{11}, I_{12}-20,000$ ohms, 10 watts.
 $\mathrm{H}_{13}-0.5$ megohm, $1 / 2$ watt.

[^3]:[^4]: Example:
 Transformer r.m.s. voltage - 3.30
 Input resistance - 200 ohms
 Maximum load current, including bleeder current - 175 ma.
 Load resistance $=\frac{350}{0.175}=2000$ ohms approx.

[^5]: ${ }^{1}$ For a description of a well-shielded oseillator, see Smith, "A Solution to the Keyed-VFO Problem," QST. February, 1950.

[^6]: 2 For a more complete discussion of this effect, see Carter, "Reducing Key Clicks." QST, March, 1949.

[^7]: K_{12} — $\overline{-6}, 1000$ ohms $1 / 2$ walt.
 K_{13} - $0 . \overline{2}$-mbequman volume rontrol.
 R_{15} - $1\left(1,0100\right.$ ohmes, 20 watt ${ }^{2}$.

 I.1-20 henrys, 900 ohma (Stancor (-1.515).
 $1.2,1,3-15$ henrys, $\overline{5}$ ma. (stameor ($:-1002$).

 J_{1} - Mierophone calle receptacle (Amphenol PCID).
 J_{2} - (Abasis-mounting 115 -vole plug.
 $\overleftrightarrow{S}_{1}$ - D.f.d.t. rotary switch (Vallory 3122.J).

 Th - Andio transformer, single plate to p.p. grids, ratio 2:1 ("lhordarsom $1^{\prime \prime 2} 011$).
 T_{2} - Drivir transformer, variable ratio, $口$. P , driver to Class-B3 krids, pri. rating 120 ma. per side (Stan(our A-4763).
 Th - lower transformer: 700 v. c. t., 90 ma.; 5 ve, 2 amp.: 6.3 v. 3.5 amp. (Stancor 1'-10.'9).
 T_{4} - Power transformer: 700 v. c. t., 110 ma.; 5 v., 3 amp.: 6.3 v. 4.3 amp. (Stancor 1’-4080).
 $\mathrm{HHC}-2.5 \mathrm{mh}$. r.f. choke.

[^8]: $\mathrm{H}_{3}, \mathrm{R}_{12}-910$ ohms.
 $\mathrm{R}_{4}-1.0$ megohm.
 $\mathrm{Rs}_{5}-0.27$ mekohm.
 $\mathrm{K}_{6}-27,000$ ohms.
 $\mathrm{R}_{7}-0 . \overline{\mathrm{i}}$-megohin volume control.
 $\mathrm{R}_{8}-2700$ ohms.
 $\mathrm{R}_{10}, \mathrm{R}_{13}-10,000$ ohms, 1 watt.
 $\mathbf{R}_{11}, \mathrm{R}_{15}-0.47$ mcgohm.
 $\mathrm{R}_{14}-15,000$-ohm volume control.
 All resistors $1 / 2$-watt unless specified otherwise.
 $\mathrm{T}_{1}-5$-watt modulation transformer, 10,000 ohms c.t. to 4000 olims (Stancor A-3812).
 L_{1} - Small filter or audio choke (Stancor C-1707). H_{y} - Sensitive $\mathbf{1 0 , 0 0 0}$-ohm relay.

[^9]: Alignment

 1) Crystal "A" is re-
 Alignment
 2) Crystal " A " is removed from the circuit. This erystal is best provided with a socket mount so it with a socket mount so it
 can be removed during alignment.
 3) A calibrated signal
 generator covering the crystal range is connected to tal range is connected to
 the grid of the triode section of the 6lis.
[^10]: Fig. $17-18$ - Top rear view of the $144 \cdot \mathrm{Mc}$. excitertransmitter, showing power and output connectors on back of the chassis.

[^11]: * Open-wire line only.

[^12]: 'This example of a "console" shows how it is possilile to find room for a receiver and multiband kilowatt transmitter (plus power supplies and modulator), tokether with a wide variety of accessories including a 7-inch TV receiver, tape recorder and panoramic adapter. (${ }^{\prime} 4 R Q C$, IV'inston-italem, N. C.)

[^13]: ${ }^{1}$ At $20^{\circ} \mathrm{C}$., based on copper as $100 .{ }^{2}$ Per $^{\circ} \mathrm{C}$. at $20^{\circ} \mathrm{C}$.

[^14]: Measured inductance of coils wound with No. 12 bare wire, 8 turns to the inch. The values include halfoinch leads. Where smaller inductance values are required, they sfould be ohtained experimentally ly adjusting to the proper resonance freguency with the specificd capacitance. Coils of larger inductance can be wonnd from the common formulas.

[^15]: (3) (4) (5)

[^16]: Designed for series-sfring, $\mathbf{6 0 0}-\mathrm{ma}$. operation.
 : With inpul choke of al least 20 henrys.
 ? Tapped for pilot lomps.
 : Per pair with choke input.

 - Condenser inpul.
 ${ }^{6}$ Same as 872 A / 872 except for heavy-duty push-type base. Filament connecled to pins 2 and 3, plate to top cap. Choke Input.
 5 Without panel lamp.
 ? Using enly one-half of flament.
 With 100 ohms min. resistance in series with plate; without series resistor, maximum r.m.s. plate rating is 117 volts.

 9 Using only on
 io Discontinued.
 10 Discontinued.

 11 Series -filament aperation.
 12Parollel-filament operation.

[^17]: 3nd specifications without notice and without incurring obligotion.

[^18]: Caf. No.
 138-112.
 Amateur Net ..$\$ 324.00$

[^19]: and specifications without notise and without incurring obligation

[^20]: Freq. Range: 30 to 30,000 cycles. Freq. Response: Better than 1 DB. 30 to 15,000 cycles with 500 ohm load.
 Stability: Better than 1%.

[^21]: Other MOSLEY products for the Ham Shack include: Single and Multiple Crystal Holder Sockets, Crystal Holder Adapters, Dipole Antenna Connectors and Insulators, Transmission Line Connectors and Switches, and many others. Write for Free MOSLEY Catalog $\mathrm{H}-55$.

